Image from Google Jackets
Image from OpenLibrary

Advanced Computational Fluid Dynamics for Emerging Engineering Processes : Eulerian vs. Lagrangian

By: Contributor(s): Material type: TextTextPublication details: IntechOpen 2019Description: 1 electronic resource (172 p.)ISBN:
  • 9781789850314
Subject(s): Online resources: Summary: As researchers deal with processes and phenomena that are geometrically complex and phenomenologically coupled the demand for high-performance computational fluid dynamics (CFD) increases continuously. The intrinsic nature of coupled irreversibility requires computational tools that can provide physically meaningful results within a reasonable time. This book collects the state-of-the-art CFD research activities and future R&D directions of advanced fluid dynamics. Topics covered include in-depth fundamentals of the Navier-Stokes equation, advanced multi-phase fluid flow, and coupling algorithms of computational fluid and particle dynamics. In the near future, true multi-physics and multi-scale simulation tools must be developed by combining micro-hydrodynamics, fluid dynamics, and chemical reactions within an umbrella of irreversible statistical physics.
List(s) this item appears in: E-Books from Directory of Open Access Books
Tags from this library: No tags from this library for this title.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
E-Book E-Book Directory of Open Access Books Not For Loan

Open Access

As researchers deal with processes and phenomena that are geometrically complex and phenomenologically coupled the demand for high-performance computational fluid dynamics (CFD) increases continuously. The intrinsic nature of coupled irreversibility requires computational tools that can provide physically meaningful results within a reasonable time. This book collects the state-of-the-art CFD research activities and future R&D directions of advanced fluid dynamics. Topics covered include in-depth fundamentals of the Navier-Stokes equation, advanced multi-phase fluid flow, and coupling algorithms of computational fluid and particle dynamics. In the near future, true multi-physics and multi-scale simulation tools must be developed by combining micro-hydrodynamics, fluid dynamics, and chemical reactions within an umbrella of irreversible statistical physics.

Creative Commons

There are no comments on this title.

to post a comment.

University of Rizal System
Email us at univlibservices@urs.edu.ph

Visit our Website www.urs.edu.ph/library

Powered by Koha