Image from Google Jackets
Image from OpenLibrary

Trace element supplementation as a management tool for anaerobic digester operation

By: Contributor(s): Material type: TextTextIWA Publishing 2018Description: 1 online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
Other title:
  • benefits and risks
Subject(s): Online resources: Summary: This guide is intended for use by industry stakeholders, decision-makers and digester operators in navigating the topic of trace element (TE) supplementation as a management tool for anaerobic digester operation. The subject is the application of TE, and supplementation regimes in anaerobic waste-conversion biotechnologies, such as biogas digesters. TE is a term used to include a wide range of micronutrients essential for the microbial community underpinning AD. TE mostly includes elements from the metal groups (e.g. cobalt, nickel, zinc and tungsten) but also other elemental groups, such as metalloids (e.g. selenium). TE are dosed to anaerobic digesters to boost biological activity and to increase biogas production rates. Little is understood about the concentrations and dosing strategies best suited to sustained supplementation and stable performance in anaerobic biotechnologies. A range of companies offer proprietary blends of trace elements for supplementation of anaerobic digesters. Very little joined-up information is available on the concentrations of individual TE best suited to improved digester performance. Moreover, typically no attention whatsoever is paid to the bioavailability of TE dosed to digesters i.e. despite high concentrations, TE may not be available for uptake by the microorganisms underpinning the digestion process. Based on extensive engagement with a range of stakeholders throughout the course of the recent EU COST Action on ‘The ecological roles of trace metals in anaerobic biotechnologies’, and particularly on feedback from industrial partners, it is clear that such a guide is needed by industry stakeholders, decision-makers and operators of anaerobic digesters.
Tags from this library: No tags from this library for this title.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
E-Book E-Book Directory of Open Access Books Available

This guide is intended for use by industry stakeholders, decision-makers and digester operators in navigating the topic of trace element (TE) supplementation as a management tool for anaerobic digester operation. The subject is the application of TE, and supplementation regimes in anaerobic waste-conversion biotechnologies, such as biogas digesters. TE is a term used to include a wide range of micronutrients essential for the microbial community underpinning AD. TE mostly includes elements from the metal groups (e.g. cobalt, nickel, zinc and tungsten) but also other elemental groups, such as metalloids (e.g. selenium). TE are dosed to anaerobic digesters to boost biological activity and to increase biogas production rates. Little is understood about the concentrations and dosing strategies best suited to sustained supplementation and stable performance in anaerobic biotechnologies. A range of companies offer proprietary blends of trace elements for supplementation of anaerobic digesters. Very little joined-up information is available on the concentrations of individual TE best suited to improved digester performance. Moreover, typically no attention whatsoever is paid to the bioavailability of TE dosed to digesters i.e. despite high concentrations, TE may not be available for uptake by the microorganisms underpinning the digestion process. Based on extensive engagement with a range of stakeholders throughout the course of the recent EU COST Action on ‘The ecological roles of trace metals in anaerobic biotechnologies’, and particularly on feedback from industrial partners, it is clear that such a guide is needed by industry stakeholders, decision-makers and operators of anaerobic digesters.

There are no comments on this title.

to post a comment.

University of Rizal System
Email us at univlibservices@urs.edu.ph

Visit our Website www.urs.edu.ph/library

Powered by Koha