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Preface

The autonomic nervous system (ANS) plays a vital role not only for homeostasis of
the organism but also for reaction rate and extent to stimuli. Thus, monitoring ANS is
crucial for understanding disease progress. There are many methods for monitoring
ANS, including heart rate variability (HRV), hormonal biomarkers (epinephrine,
cortisol, norepinephrine), infrared digital pupillometry, salivary α-amylase, electro-
dermal activity recording, and functional nervous system imaging.

Every ANS marker is considered a complex reflection of the sympathetic—
parasympathetic system balance activation (autonomic outflow), neuroendocrine
influences, and the ability of the human system network to respond to the former
factors (autonomic responsiveness). They are probably more than an indicator for
probable disturbances in the autonomous system. They can serve as a surrogate
indexes both for the objective well-being (homeostasis and health status) and for
subjective well-being (emotional and psychological health). Increasing data support
in its use of ANS for monitoring for both somatic and psychological disorders
and diseases. Moreover, newer studies provide us an insight into the physiology
of consciousness and raise our understanding of several psychological and 
physiological processes, like neuroendocrine habituation or emotional regulation.

This book focuses on HRV, which refers to the interval between R waves in the
electrocardiogram (i.e., variability in beat-by-beat heart period). The first section
of the book is dedicated to technical themes related to both modes of monitoring 
and the variables recorded. The second section highlights special aspect use of
heart rate variability HRV in relation to hypothermia. Finally, the third section of
the book covers general aspects of its HRV application. Throughout the book, the
authors offer us not only a “vigorous” review of the current literature but also a
research road path for further advancement.

Theodoros Aslanidis, MD, PhD
Consultant/Researcher,

Anaesthesiology - Critical Care,
Pre-hospital Emergency Medicine,

Intensive Care Unit,
St. Paul General Hospital,

Thessaloniki, Greece
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Chapter 1

HRV in an Integrated Hardware/
Software System Using 
Artificial Intelligence to Provide 
Assessment, Intervention and 
Performance Optimization
Robert L. Drury

Abstract

Heart rate variability (HRV) is increasingly recognized as a central variable of 
interest in health maintenance, disease prevention and performance optimization. 
It is also a sensitive biomarker of health status, disease presence and functional 
abilities, acquiring and processing high fidelity inter beat interval data, along with 
other psychophysiological parameters that can assist in clinical assessment and 
intervention, population health studies/digital epidemiology and positive perfor-
mance optimization. We describe a system using high-throughput artificial intel-
ligence based on the KUBIOS platform to combine time, frequency and nonlinear 
data domains acquired by wearable or implanted biosensors to guide in clinical 
assessment, decision support and intervention, population health monitoring and 
individual self-regulation and performance enhancement, including the use of 
HRV biofeedback. This approach follows the iP4 health model which emphasizes an 
integral, personalized, predictive, preventive and participatory approach to human 
health and well-being. It therefore includes psychological, biological, genomic, 
sociocultural, evolutionary and spiritual variables as mutually interactive elements 
in embodying complex systems adaptation.

Keywords: heart rate variability, HRV, health, well-being, health biomarker, high 
fidelity data acquisition, digital epidemiology, KUBIOS platform, high-throughput 
artificial intelligence, implantable biosensors, iP4 health model, complexity theory, 
complex adaptive systems

1. Introduction

The history of science shows clearly that the development of new techniques and 
tools of observation lead to improved scientific understanding and the development 
of more adequate theories. The development of the telescope and microscope made 
for conceptual breakthroughs in both the physical and biological sciences, facilitat-
ing empirical observations that allowed astute observers to create new and more 
powerful conceptual approaches.
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This chapter will describe the development of heart rate variability (HRV) as 
a meaningful variable to monitor, interrogate and intervene in the functioning of 
the human nervous system and the psychophysiological systems it communicates 
with [1, 2]. It will provide a context for understanding HRV’s role in the assessment, 
maintenance and enhancement of human health, well-being and performance. 
Further, appropriate techniques for studying HRV will be explored and a variety of 
applications will be described. Finally, iP4, a systems-based model of human health 
and optimal performance will be described, and several HRV-based integrated 
hardware/software systems will be described that exemplify that model.

2. HRV and the nervous system

Since the development of the original neuron approximately 600 billion years 
ago in worm-like creatures, the nervous system has emerged into increasingly 
complex and multifunctional neural networks that have vastly increased the 
adaptive capabilities of those organisms so endowed. This typifies the evolutionary 
process that has been studied as complexity theory within the systems view life [3]. 
Recently, the understanding of complex adaptive systems has been aided by the 
application of non-linear systems dynamics, as a supplement to more traditional 
linear modes of exploration and understanding. Increasingly complex entities 
emerge through processes of self-organization in interaction with environments 
demanding fitness to form adaptive systems which consist of multiple interactive 
and interdependent coevolving components. In the case of humans, the nervous 
system has played a decisive role in the increasingly dominant position currently 
occupied in the planetary ecosystem.

The central nervous system (CNS), composed of the brain and spinal cord has 
been historically identified as the most important part of the nervous system for 
conventional scientific study [4], with Kandel devoting only one chapter out of 64 
to the autonomic nervous system (ANS). It is becoming increasingly clear that the 
peripheral nervous system (PNS) plays a crucial part in the remarkable abilities of 
humans. In particular, the ANS is known to mediate the sophisticated homeostatic 
dynamics that allow organisms to maintain a relatively stable interior environment 
needed to carryout complex adaptive tasks and supports the affective elements that 
comprise the significant motivational features characteristic of humans. The two 
major subdivisions of the ANS are the sympathetic and parasympathetic nervous 
systems [5]. The sympathetic nervous system is associated with energizing the 
organism during times of threat or challenge. Such activities have been described 
as “fight or flight” responses. The parasympathetic nervous system has been found 
to exert calming, stabilizing or reparative effects described as “tend and befriend” 
responses. A key structural and functional component which modulates the 
dynamic homeostatic balance is the vagus nerve complex, which originates in the 
brain stem and is widely connected with major organs such as the heart, lungs, 
stomach, genitals, pharynx, larynx, facial musculature, and middle ear muscles [1]. 
In addition to the stress “fight or flight” and calming “tend and befriend” responses, 
the vagus mediates the equally important “freeze” or immobilization response 
which is associated with death feigning in many species possessing the vagal nerve 
complex. These three response elements are integral to HRV, which is defined as the 
amount of variance in R-R wave intervals, also called the interbeat interval (IBI). 
The IBI is used to calculate the moment by moment variations in heart rate which 
constitutes HRV.

In addition to the systems described above, other neural network systems play 
significant roles in the overall integrated functioning of the human organism. 
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A key example is the enteric nervous system (ENS) which is an integral part of 
the enteric region and bidirectionally communicates with the CNS and ANS [6]. 
It has been described by some investigators as a “second brain” and functions 
largely independently, generating significant amounts of the neurotransmitter 
serotonin, important in proper neurobehavioral functioning. It also may be a key 
participant in the functioning of the immune system and mediate the role of the 
enteric microbiome. It is proposed here that the increasing empirical understand-
ing of the vagal nerve complex warrants the use of the term cardio-vagal nervous 
system (CVNS). Notably, the role of the vagus nerve and its role in determining 
HRV, which has been studied for over 150 years [7], have been expanding rapidly 
with over 26,000 citations resulting from a recent PubMed search of the terms 
“HRV” and “heart rate variability.”

3. Heart rate variability and the vagal nerve complex

The term vagus derives from the Latin term for “traveler.” As described above, 
this is apt as the vagal nerve complex is widely distributed throughout the body. Its 
origins in the subcortical region of the CNS have been identified by Porges [1] as 
the nucleus ambiguus, the dorsomedial medulla and the nucleus tractus solitarius. 
These three neural structures represent the primary central regulatory compo-
nents of the vagal complex and are responsible for three significant functions. The 
sympathetic mobilization for fight or flight has been recognized for some time, 
while the dorsal vagal response is a vestigial immobilization/death feigning system 
and the ventral vagal complex mediates the social engagement system for adaptive 
motion, emotion and communication. This is perhaps its most important feature 
to social organisms such as humans, where communication and mutual support 
have been identified as crucial aspects of evolutionary fitness, contributing to both 
biological and cultural evolution. This conceptual approach has been called the 
polyvagal theory by Porges [1] and the neuro-visceral integration model by Thayer 
and Lane [2].

While these functions are not currently subject to isomorphic assessment, it has 
been demonstrated empirically that HRV is an accurate and sensitive measure of 
the actions of these three subsystems. HRV is defined as the instantaneous vari-
ability found when continuous R-R intervals in the EKG are recorded [8]. These 
intervals are easily recorded using both standard 12 lead EKG protocols and a wide 
variety of freestanding equipment whose quality ranges from adequate to poor. It is 
impossible to obtain reliable HRV data when the equipment used to acquire the R-R 
intervals is either lacking reliability or is poor fidelity. If high fidelity quality data 
are obtained, there are three primary approaches to data analysis that have been 
found valuable: frequency domain measures, time domain measures and nonlinear 
measures [9]. Each of these approaches have demonstrated utility, although it has 
also been shown that some measures are less sensitive to salient phenomena and 
therefore, selection of the most robust analytic strategy is an important area of 
ongoing investigation and will be discussed further in the section of algorithmic 
analysis, artificial intelligence and related issues.

The research literature on HRV indicates that it can be a sensitive biomarker 
for a wide variety of disorders and conditions [10]. This includes medical disorders 
such as all-cause mortality, sudden cardiac death, sepsis, myocardial infarction, 
diabetic neuropathy, transplantation issues, myocardial dysfunction/heart failure 
and noncardiovascular diseases such as Alzheimer’s dementia, epilepsy, diabetes, 
tetraplegia and liver cirrhosis [11]. It is important to note that in some condi-
tions such as sepsis, the onset of subjective symptoms is often delayed and makes 
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effective intervention difficult or impossible. However, HRV is frequently sup-
pressed before these subjective reports occur, giving a crucial advanced warning 
of serious developments. HRV has also been shown to be sensitive to psychosocial 
disorders and dysfunctions such as depression, anxiety, bipolar disorder, attention 
deficit/hyperactivity disorder, substance abuse/craving disorder and post-traumatic 
stress disorder. HRV has also been used as a sensitive monitoring strategy in 
pacing physical training and determining when rest and recovery are indicated to 
avoid overtraining. Similarly, HRV has been shown to be an indicator of the level 
of executive functioning and resilience, both positive psychological phenomena. 
Another positive adaptive measure is the respiratory sinus arrhythmia (RSA), which 
is observed when HR increases during inhalation and decreases during exhalation. 
Notably, when a person is near death, the RSA, and therefore, HRV, are diminished 
or nonexistent. It should be noted that while HRV fulfills the epidemiological virtue 
of relatively high sensitivity, it does not possess high specificity, and therefore 
a careful consideration of contextual factors is necessary to make HRV a useful 
biomarker of health [12, 13]. In general, reduced HRV indicates impairment or 
dysfunction, while increased HRV shows improved functional or health status.

4. Methodological and technical issues

Accompanying the explosive growth of interest and research on HRV (12) have 
come a number of significant issues and problems that can impede progress. While 
the standard 12 lead EKG protocol is widely used in conventional medicine to 
produce high quality data, it is cumbersome, obtrusive and expensive. It also lacks 
the necessary data analytic software capable of recording and interpreting multiple 
HRV domains. These issues limit accessibility and more widespread use. A number 
of devices are available for research and clinical applications, some of which use 
hardwired photoplethysmography and occasionally wireless photoplethysmog-
raphy accomplished by Bluetooth, relieving the individual from being physically 
connected to the equipment. Research studies have shown that implanted sensors 
may acquire interbeat interval data from which HRV can be derived. The interbeat 
interval data is either stored for later analysis or processed onboard with some type 
of feedback “HRV” score generated. The actual details regarding the meaning of 
some composite “HRV” scores is not always clear.

Similar devices are offered on the consumer market, targeting customers wish-
ing to enhance or “fine tune” their physical training regimens. These devices most 
often use either ring or watch based sensors to obtain interbeat data and reliability 
data are not generally available, but it is likely that these modes of data collection 
and analysis contain significant artifacts and other data flaws more accurate chest 
straps and photoplethysmography sensors are seldom used. A transparent approach 
to the operation of such devices is desirable to examine both the reliability and 
validity of such devices, although manufacturers sometimes proclaim proprietary 
interests which shield them from this type of accountability. A technically feasible 
approach for interbeat data collection is to use implanted sensor systems which 
combine high fidelity data acquisition with Bluetooth data transmission and 
wireless capacitive battery charging so that the device could remain in place for a 
significant period, even indefinitely. This method would allow collection of more 
longitudinal data and make data collection in the natural environment relatively 
simple. Such data would be invaluable in determining a person’s baseline state, a 
feature that is often missing in brief “snapshot” assessments. With such baseline 
data, a much more meaningful “vital sign” could be available, not only during office 
visits, but at any other time deemed relevant. It would also popularize the use of 
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HRV, since one of the drawbacks cited by many individuals is the cumbersome and 
inconvenient nature of currently available devices. Using the Bluetooth protocol to 
transmit data to a smart phone would also make data collection and analysis much 
more accessible, since smart phones are very widely used globally, including in 
areas with no other communication resources. With appropriate machine learn-
ing algorithms, the smart phone could also mediate actionable patient prompting 
or intervention, including HRV biofeedback. Using the digital epidemiological 
approach of population surveillance, ongoing monitoring could be available to dis-
tant healthcare facilities to prompt more detailed assessment and/or intervention at 
the individual or group level. Since this approach could involve an implanted device 
and longitudinal assessment, it might be perceived as more “invasive” and raise 
privacy and confidentiality issues, especially as used in healthcare contexts. Such 
concerns are legitimate and would need to be carefully addressed, although data 
collected by other means is equally worthy of such consideration, especially at this 
time when individual’s data are regularly “harvested” or “scraped” surreptitiously 
by commercial ventures and monetized.

Until our understanding of HRV improves through machine learning and other 
artificial intelligence approaches, any one metric amongst the more than a dozen 
available, is somewhat incomplete. Currently, the SDNN time domain measure 
(standard deviation of interbeat intervals) is most frequently used and has value. A 
very comprehensive systemic software suite has been developed by Tarvainen and 
colleagues [14] called KUBIOS. It is available for analysis of HRV in multiple modes 
of time domain, frequency domain and nonlinear modes using a batching approach. 
A current limitation, however, is that KUBIOS does not conduct its analyses in 
real time, but that limitation is being addressed and a real time version of KUBIOS 
is in development for purposes of both scientific clarity and consumer use [15]. 
The KUBIOS platform offers many benefits such as multi-method analytic strate-
gies and clear documentation, making it ideal for increasingly popular big data 
approaches such as artificial intelligence, machine learning, and high-throughput 
and cloud computing. Such approaches are especially applicable to the large number 
of data points that can be collected in longitudinal HR data.

5. Innovative applications of HRV

Given the popularity and “sizzle” of developments in the big data areas of 
artificial intelligence, machine learning and high-throughput cloud computing, a 
recent report by Liu and colleagues [16] illustrates an area of high potential value. 
Building on the work of King and associates [17] on the use of HRV in decision sup-
port for trauma patients being transported by helicopter to a trauma center, Liu used 
machine learning to create predictive models that could detect the need for lifesav-
ing interventions. Their results were near perfect predictions with receiver operating 
characteristics under the curve = 0.99. While their preliminary report suffered from 
issues such a relatively small sample size and difficulty extracting high fidelity HRV 
data, it is still proof of concept that such a systems approach is feasible and relevant.

Another important model described by the National Institute of Standards and 
Technology as the Analysis as a Service (AaaS) has been developed and exempli-
fied by IBM’s Watson Analytics (WA), which is a cloud based AaaS that claims to 
“carry out a number of significant data analysis and display approaches in a user 
friendly manner” [18]. The Explore and Predict modalities use a variety of data 
clustering and machine learning approaches that can go far beyond single variable 
linear prediction, while the Assemble modality develops effective data display and 
infographics.
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The use of WA by Guidi and colleagues [19] demonstrates proof of concept for a 
cloud-based data acquisition and analysis system which can make accurate clinical 
diagnostic decisions differentiating patients with heart failure from normal indi-
viduals on the basis of HRV. The process developed by Guidi involves data acquisi-
tion using the PhysioBank and PhysioNet to obtain and categorize ECG data into the 
appropriate format of R to R intervals using the PhysioNet HRV Toolkit [20]. This 
data consisted of 15 subjects with severe heart failure, 29 subjects with moderate 
heart failure and 54 healthy subjects with normal respiratory sinus arrhythmia. 
All subject data was initially collected using standard ECG protocols. The resulting 
data set was examined by WA and a variety of commonly used HRV statistics were 
derived. These statistics were compared to the data available in the current litera-
ture. This shows the results concerning accuracy of prediction using the Total Power 
HRV (TOT_PWR) statistic with a 90% predictive accuracy.

The use of such tools in critical care is exemplary and similar approaches have 
been suggested by Drury [21] in the areas of more routine clinical care and digital 
epidemiology. As noted by Topol [22], while the use of the terms artificial intel-
ligence and machine learning has tended to be overblown, the use of existing 
big data sets and extensive longitudinal data as proposed here is ideal for such an 
approach and can assist in the laborious and sometimes obscure task of empirical 
investigation. I have previously suggested [10] using a wireless implantable high 
fidelity data acquisition device, networked by Bluetooth to a suitable machine 
learning version of the functionalities possessed by KUBIOS could interrogate the 
data sets for the creation of the most suitable predictive models for making not only 
clinical decisions based on changes in patient status, but monitor patients regarding 
the emergence of new conditions. This type of monitoring could also realize the 
concept of digital epidemiology, including the use of self-monitoring prompts to aid 
individuals in appropriate help seeking and self-regulation strategies. See Figures 1 
and 2 to visualize the use of such a system and its ability to discriminate rest, activ-
ity and recovery periods [23]. As is indicated by the development of groups such 
as the quantitative self and biohackers, there is a social demand to assist individu-
als in optimizing their health and well-being and enhancing their performance 
in a wide variety of areas. As proposed here, these groups have sometimes used 

Figure 1. 
ReThink wireless biosensor with capability to acquire HR, three-dimension accelerometry and respiration 
data. These data are then transferred to a Bluetooth enhanced personal device, as well as stored there. Quarter 
is shown for size comparison, with dimensions of 7.5 mm width, 4 mm height, and 1.4 mm depth (used with 
permission).
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implanted devices to monitor their physiological status. The professional commu-
nity has perennially spoken through the Institute of Medicine, the National Science 
Foundation, the National Institutes of Health, the World Health Organization and 
other organizations of the need for accessible, safe and effective healthcare.

The development and utilization of predictive models derived from artificial 
intelligence approaches such as machine learning could be beneficial in many 
aspects of care provided by the current healthcare industry. If clinicians had highly 
specific empirically based decision support data readily available, their interactions 
with patients might be more timely, less stressful and “more human,” to use Topol’s 

Figure 2. 
A subject using the ReThink wireless biosensor during rest, activity and recovery periods. Note that multiple 
physiological data channels (HR, respiration and accelerometry) are displayed on a laptop computer (used 
with permission).
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phrase, with less time with the care provider on the computer and more face to face 
interaction. If ongoing HRV monitoring was used to track clinical status of patients, 
the need for routine exams, especially of the “worried well” would likely decrease. 
Prompt intervention for patients whose ongoing status was being monitored would 
be more likely, thus addressing the serious problems of both under and overuti-
lization of medical services. This would accomplish a transition away from the 
expensive intensive care model to a less expensive, more extensive model. As is the 
case with the work of Liu’s proof of concept, this approach is currently feasible and 
the elements of such a hardware-software system exist. Using the rubric of artificial 
intelligence could complete the development of such an approach by creating the 
necessary predictive models, as I have advocated elsewhere [10].

6. Conclusion: health, well-being and HRV

It is an oversimplification to suggest that the adoption of the HRV software/
hardware integrated system proposed would resolve the many serious issues that 
plague the current healthcare environment in the United States. Similarly, Topol 
of the Scripps Transformational Research Institute observes in his recent Deep 
Medicine [22] that the increasing use of artificial intelligence (AI) is not a panacea 
and can only contribute to improving the status quo. In particular, machine learning 
may make significant progress possible by using the relatively large number of data 
points generated by HRV and other psychophysiological parameters. It is a tru-
ism that both data quality and quantity are crucial in producing the most valuable 
predictive algorithmic equations. In addition to Topol’s astute observations, other 
physicians such as Agus in the End of Illness [24] and Emanuel in Prescription for 
the Future [25] have also voiced more nuanced critiques of the healthcare venture 
in the US, identifying multiple domains of concern. The use of innovations such 
as machine learning and integrated HRV systems, however, may contribute to the 
achievement of a reformulated model of health, well-being and healthcare that is 
both more comprehensive and more tailored to the care of specific individuals. This 
approach was initially introduced as the human genome was being sequenced as 
personalized or precision medicine, the implication being that knowledge of the 
details of the individual’s genetic makeup would make for highly specific treatment 
recommendations perhaps involving genetic engineering. A more multidimensional 
approach has emerged which addressed the many individual characteristics that 
each individual possesses; not just genetic, but biochemical, anatomical/physiologi-
cal, cognitive/affective, social, cultural and spiritual. One of the major limitations 
of the majority of AI initiatives is the relative neglect of the affective domain of 
functioning that most distinctively characterizes humans. These multiple domains 
of individual variability require not only a highly personalized approach, but an 
integral view of the caring relationship that is participatory, predictive and pre-
ventive, as well. I have described this approach as the iP4 health model [10]. The 
emphasis on an integral perspective [26] highlights that each person is a complex 
adaptive system and that no aspect of their condition is independent from other 
details of their internal characteristics and external environmental conditions. The 
focus on predictive understanding acknowledges that a variety of risk and resilience 
factors exist and that any effort to maintain optimal health and well-being must 
note and plan to deal with such factors. Similarly, a preventive approach focuses 
on identification and early intervention to minimize or eliminate the onset and/
or severity of disease states and promote health. Perhaps most important, we hope 
to partner with informed individuals and support their decisions that will maxi-
mize their participation in the care process, making it not only more efficient and 
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effective, but also actually demonstrating care for the individual. It is only through 
a detailed integration of such important issues that a truly personalized health care 
is possible. Since we do not see this as a continuation of the existing approach to 
patient care, we prefer to designate the individual not as a patient, but a Pioneer.

The role which HRV may play in actualizing this model is expanding rapidly 
and, together with Drs. Steven Porges, Julian Thayer and Jay Ginsberg, I have edited 
a Research Topic that has jointly appeared in the journals Frontiers in Medicine and 
Frontiers in Public Health entitled “Heart Rate Variability, Health and Wellbeing: A 
Systems Perspective” [27]. This series of research papers and reviews summarizes 
current empirical findings and conceptual bases for applying our understanding of 
HRV to a wide variety of problems, diseases and issues. Thus, our efforts will not 
only monitor the various human nervous systems but help to assist and optimize 
them in their important task of shepherding each individual’s health and well-being. 
Through both scientific and technological investigation using advanced AI tools 
such as machine learning, and appropriate provider education, a common interac-
tional language must evolve that allows the evaluation of HRV and other relevant 
parameters to generate actionable feedback, whether decision support for physi-
cians and other healthcare personnel or personal behavioral prompts or interven-
tions for individuals. Though the current state of our understanding is relatively 
primitive, there is reason to be optimistic that such an evolution is possible.
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Chapter 2

Root Mean Square of the 
Successive Differences as Marker 
of the Parasympathetic System 
and Difference in the Outcome 
after ANS Stimulation
Giovanni Minarini

Abstract

The autonomic nervous system has a huge impact on the cardiac regulatory 
mechanism, and many markers exist for evaluating it. In this chapter we are going 
to focus on the RMSSD (Root mean square of successive differences), considered 
the most precise marker for the parasympathetic effector on the heart. Before is 
necessary to learn what the Heart Rate Variability is and how it works, which type 
of range of HRV exists and how we can measure it. Finally, there will be a presenta-
tion of how the RMSSD can be used in different field, and how and why the out-
come can change and what does it mean.

Keywords: autonomic nervous system, sympathetic nervous system, 
parasympathetic nervous system, root mean square of successive differences, heart, 
cardiac mechanism, ANS influence

1. Introduction

Homeostasis can be defined as the result of the stability of physiological systems 
that maintain life; it applies strictly to a limited number of systems such as regula-
tion of pH, concentration of different ions in the extracellular fluid, osmolality 
of extracellular fluid, glucose levels and arterial oxygen tension, which are truly 
essential for life and are therefore maintained within a narrow range for the current 
life history stage [1]. The homeostatic balance is considered as a change of state 
compatible with the actual environmental situations [2]. The temporary variations 
between the “set point” of the homeostatic control system during adaptation to 
internal (i.e. digestion) or external (i.e. climatic condition) perturbations are called 
allostasis [1]. Thus, allostasis is the reaching of physiological stability through a 
change of homeostatic state [1, 3].

The allostatic adaptations during environmental changes are temporary pro-
cesses; if not turned off when not needed, if they occur too frequently or fail to 
occur at all, there may be development of systemic disease(s) such as cardiovascular 
disease, type II diabetes, obesity, etc. [4–6]. Allostatic and homeostatic control 
are ruled by the autonomic nervous system (ANS) integrated within the central 
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nervous system (CNS) [1]. A disorder of the ANS can affect the homeostatic and 
allostatic processes, leading to a risk of developing systemic disorder such as hyper-
tension [7] baroreflex failure for blood pressure regulation [8], type II diabetes or 
affect the immune system and the inflammatory process [9]. Moreover, this has 
been demonstrated how the ANS is strictly correlated to the modulation of pain 
perceived by the subject.

One of the most common markers of the ANS is the rMSSD, square root of the 
mean squared differences of successive NN intervals. It is evaluated through the 
Heart Rate Variability (HRV) and the distance between the peaks of the R values in 
the echocardiogram. The rMSSD allowed the researcher to monitor the alteration in 
the parasympathetic activity with good precision. In this chapter will be explained 
how the rMSDD is related to parasympathetic nervous system, what could modulate 
the outcome and what a different result mean.

2. Heart rate variability

Heart rate variability consists of changes in the time intervals between con-
secutive heartbeats called interbeat intervals (IBIs) [10]. A healthy heart is not a 
metronome. The oscillations of a healthy heart are complex and constantly chang-
ing, which allow the cardiovascular system to rapidly adjust to sudden physical and 
psychological challenges to homeostasis.

The HRV is the fluctuation in time intervals between adjacent heartbeats, 
it indexes neurocardiac function and is generated by heart-brain interactions 
and dynamic non-linear autonomic nervous system (ANS) processes. HRV is an 
emergent property of interdependent regulatory systems which operate on differ-
ent time scales to help us adapt to environmental and psychological challenges by 
stimulating and regulating some vascular component of the allostasis: HRV reflects 
regulation of autonomic balance, blood pressure (BP), gas exchange, gut, heart, 
and vascular tone, which refers to the diameter of the blood vessels that regulate BP, 
and possibly facial muscles [11].

Higher HRV is not always associated to better state of health of the subjects, 
numerous diseases affect the HRV and has the potential to increase this value. 
When cardiac conduction abnormalities cause an increase in the HRV, this is 
strongly linked to increased risk of mortality, particularly among the elderly  
(e.g. causing atrial fibrillation) [12].

Despite that has been demonstrated how optimal level of HRV are associated 
to health and self-regulatory capacity, adaptability and resilience [13, 14]. This is 
due to the vagal modulation of the HRV: heart rate (HR) estimated at any given 
time represents the net effect of the neural output of the parasympathetic (vagus) 
nerves, which slow HR, and the sympathetic nerves, which accelerate it. Opthof 
published a study on the normal range and the determinants of intrinsic heart rate 
in man, following the main research done before on the subject by Jose an Collins in 
1970: he found that a denervated human heart, with no connections to the ANS, the 
intrinsic rate generated by the pacemaker, the Senoatrial Node (SA), is near to 100 
beats per minute [15]. Whenever the rate decrease below this level, it means that 
a parasympathetic outflow is predominating in the balance between sympathetic 
and parasympathetic activity. This happens usually during normal daily activities, 
at rest and when we sleep. On the contrary, if the ratio raises over 100 beats the 
shift is toward the sympathetic system. The average 24 h HR in healthy people is 
approximately 73 bpm. Higher HRs are independent markers of mortality in a wide 
spectrum of conditions [16].
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2.1 Sympathetic and parasympathetic pathways on the heart

Sinus node pacemaker cells activity is continuously under regulation by specific 
neural mechanism.

The SA node is targeted by the descending efferent sympathetic nerves via the 
intrinsic cardiac nervous system and the bulk of the myocardium. Norepinephrine 
and epinephrine release, which increases HR and strengthens the contractility 
of the atria and ventricles, is triggered by these motor neurons action potentials. 
Subsequent the onset of sympathetic stimulus, there is a delay of up to 5 seconds 
before the stimulation induces a progressive rise in HR, which reaches a stable level 
in 20–30 seconds if the stimulus is continuous [17]. A sympathetic stimulus, even if 
brief, can easily affect the HRV rhythm for 5–10 seconds. This is in contrast with the 
vagal stimulation, which is almost instantaneous, due to the acetylcholine degrada-
tion mechanism [17, 18], we will see that later on this chapter. What does that mean? 
That any sudden changes in the HR, up or down, or between the beat, is primarily 
mediated by the parasympathetic nervous system.

The vagus nerves innervate the intrinsic cardiac nervous system. Inside the 
intrinsic cardiac nervous systems are present some synapse between vagus nerve 
and motor neurons that directly project to the sinoatrial node and a portion of the 
surrounding tissue. They trigger acetylcholine release to slow HR. [19] However, 
more than 80% of the efferent preganglionic vagal neurons has connection to local 
circuitry neurons in the intrinsic cardiac nervous system where motor information 
is integrated with inputs from T.

The single efferent vagal stimulation on the SA node is very short, resulting in an 
immediate response that typically occurs within the cardiac circle in which it occurs, 
affecting only 1 or 2 heartbeats after its onset [17]. After cessation of vagal stimulation, 
HR rapidly increases to its previous level. An increase in heart rate can also be achieved 
by reduced vagal activity, or vagal withdrawal. Hence, any sudden increase or decrease 
HR, between 1 beat and the next, are primarily parasympathetically mediated [17, 18].

The medulla oblongata is the major structure integrating incoming afferent 
information from the heart, lungs and face with inputs from cortical and subcorti-
cal structures and is the source of the respiratory modulation of the activity pat-
terns in sympathetic and parasympathetic outflow. The intrinsic cardiac nervous 
system integrates mechanosensitive and chemosensitive neuron inputs with 
efferent information from both the sympathetic and parasympathetic inputs from 
the brain. As a complete system, it affects HRV, vasoconstriction, venoconstriction, 
and cardiac contractility in order to regulate HR and BP [17].

2.2 Heart rate variability frequency band

The European Society of Cardiology and the North American Society of Pacing 
and Electrophysiology Task Force Report on HRV divided heart rhythm oscillations 
into 4 primary frequency bands: high-frequency (HF), low-frequency (LF), very-low-
frequency (VLF), and ultra-low-frequency (ULF) [20]. Most HRV analysis is done in 
5-min segments (of a 24 h recording), although other recording periods are often used. 
When other recording lengths are analyzed, the length of the recording should be 
reported since this has large effects on both HRV frequency and time domain values.

2.2.1 High-frequency band

The HF range is from 0.15 to 0.4 Hz, which correspond to a rhythm period 
between 2.5 and 7 seconds. This band is called the “respiratory band” because 
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correspond to the HR variations related to the respiratory cycle, known also as 
“respiratory sinus arrhythmia”. Is conventionally recorded over a minimum 1 min 
period. For infants and children, who breathe faster than adults, the resting range 
can be adjusted to 0.24–1.04 Hz [21]. A complex regulatory mechanism involving 
both central and reflex interaction is the main organizer of this system. During 
inhalation there is an acceleration in the heart rate due to an inhibition of the vagal/
outflow from the cardio-respiratory center. On the opposite, while exhaling, the 
vagal outflow is restored to a normal level resulting in slowing the HR.

The HF modulation has also psychological involvement: reduced vagally medi-
ated HRV has been related to a reduced self-regulatory capacity and cognitive func-
tions that involve the executive centers of the prefrontal cortex. This is consistent 
with the finding that lower HF power is associated with stress, panic, anxiety, or 
worry. It has to be noted how this reaction is due a reduction of the parasympathetic 
activity, and not to an increase in sympathetic ones. This has been shown by numer-
ous studies, where a total vagal blockade obtained pharmacologically eliminates the 
HF oscillations and reduces power in the LF range, resulting in a strong reduction of 
the HRV, including LF and VLF bands. Thus, they concluded that HRV is a resultant 
of the parasympathetic mechanism.

High-frequency power is highly correlated with the pNN50 and RMSSD time-
domain measures [22]. HF band power may increase at night and decrease during 
the day [10].

2.2.2 Low-frequency band

LF range is between 0.04 and 0.15 Hz, which equates to rhythms or modula-
tions periods between 7 and 25 seconds. Is typically recorded over a minimum 
2 min period [23]. This range of action was called the “baroreceptor range” or 
“mid-frequency band”, due to its strong correlation with baroreceptor activity 
at rest [10, 24]. Baroreceptors are stretch-sensitive mechanoreceptors located in 
vena cavae, carotid sinuses, aortic arch and heart chambers. The ones found in the 
carotid are the most sensitive. Baroreflex is transported to the brain by the vagus 
nerve and represent the beat-to-beat change in HR per unit of change in systolic 
blood pressure [25]. A decreased baroreflex is related to aging and weakened 
regulatory capacity [26].

There is a different influence of the sympathetic and parasympathetic system 
inside this band, due to the rhythms: above 0.1 Hz the SNS seems to be lesser 
influent, whilst the parasympathetic affect heart rhythms down to 0.05 Hz [27, 28]. 
There rhythms are obtained during slow respiration rates, where a vagal activity 
easily generates oscillations in the heart rhythms crossing into the LF band [29, 30]. 
Therefore, when the respiratory rates are below 8.5 per minutes, or 1 in 7 seconds, 
or when a subject take a deep breath there is a vagal mediation influence.

Despite has been generally accepted the LF band has a marker for the sympa-
thetic activity, and the LF/HF ratio is used to assess the balance between SNS and 
PNS, is still not totally clear if in resting condition the Low Frequency band reflect 
the baroreflex activity instead of the cardiac sympathetic innervation [31–33].

2.2.3 Very-low-frequency band

The VLF is the power in the range between 0.0033 and 0.04 Hz, which equates 
to rhythms or modulations with periods that occur between 25 and 300 seconds. 
Although all 24 h clinical measures of HRV reflecting low HRV are linked with 
increased risk of adverse outcomes, the VLF band has stronger associations with all-
cause mortality than the LF and HF bands [34–37]. Low VLF power has been shown 
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to be associated with arrhythmic death [38] and posttraumatic stress disorder 
(PTSD) [39]. Moreover, low power expression in this band has been associated with 
high inflammation [40, 41] and has been correlated with low levels of testosterone. 
In contrast, other biochemical markers, such as those mediated by the hypotha-
lamic–pituitary–adrenal (HPA) Axis axis (e.g., cortisol), did not [42]. Longer time 
periods using 24 h HRV recordings should be obtained to provide comprehensive 
assessment of VLF and ULF fluctuations [22].

Historically, is still not well defined the physiological explanation and mecha-
nisms involved in the generation of the VLF component, compared to the LF and 
HF components. Despite the accuracy and the most predictive outcomes, this area 
has been largely ignored even. Long-term regulatory mechanisms and ANS activity 
related to thermoregulation, the renin-angiotensin system, and other hormonal 
factors appear to contribute to this band [43, 44].

Very-low-frequency power is strongly correlated with the SDNNI time-domain 
measure, which averages 5 min standard deviations for all NN intervals over a 24 h 
period. There is uncertainty regarding the physiological mechanisms responsible 
for activity within this band [14]. The heart’s intrinsic nervous system appears to 
contribute to the VLF rhythm and the SNS influences the amplitude and frequency 
of its oscillations [20].

Based on work by Armor [45] and Kember et al. [32, 46], the VLF rhythm 
appears to be generated by the stimulation of afferent sensory neurons in the heart. 
This, in turn, activates various levels of the feedback and feed-forward loops in the 
heart’s intrinsic cardiac nervous system, as well as between the heart, the extrinsic 
cardiac ganglia, and spinal column. This experimental evidence suggests that the 
heart intrinsically generates the VLF rhythm and efferent SNS activity due to physi-
cal activity and stress responses modulates its amplitude and frequency.

2.2.4 Ultra-low-frequency band

The ultra-low-frequency band (ULF) falls below 0.0033 Hz (333 seconds or 
5.6 minutes). Oscillations or events in the heart rhythm with a period of 5 minutes 
or greater are reflected in this band and it can only be assessed with 24 h and longer 
recordings [22]. The circadian oscillation in HR is the primary source of the ULF 
power, although other very slow-acting regulatory processes, such as core body 
temperature regulation, metabolism, and the renin-angiotensin system likely add 
to the power in this band [20]. The Task Force Report on HRV suggests that 24 h 
recordings should be divided into 5-min segments and that HRV analysis should be 
performed on the individual segments prior to the calculation of mean values. This 
effectively filters out any oscillations with periods longer than 5 minutes. However, 
when spectral analysis is applied to entire 24 h records, several lower frequency 
rhythms are easily detected in healthy individuals [23].

There is disagreement about the contribution by the PNS and SNS to this band. 
Different psychiatric disorders show distinct circadian patterns in 24 h HRs, par-
ticularly during sleep [25, 47].

2.3 Heart rate variability measurement

Three types of measurement exist for the HRV, time-domain index, frequency-
domain index and non-linear measurements. Time-domain indices quantify the 
amount of HRV observed during monitoring periods that may range from ~2 min 
to 24 h. Frequency-domain values calculate the absolute or relative amount of signal 
energy within component bands. Non-linear measurements allow us to quantify the 
unpredictability of a time series.
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correspond to the HR variations related to the respiratory cycle, known also as 
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to be associated with arrhythmic death [38] and posttraumatic stress disorder 
(PTSD) [39]. Moreover, low power expression in this band has been associated with 
high inflammation [40, 41] and has been correlated with low levels of testosterone. 
In contrast, other biochemical markers, such as those mediated by the hypotha-
lamic–pituitary–adrenal (HPA) Axis axis (e.g., cortisol), did not [42]. Longer time 
periods using 24 h HRV recordings should be obtained to provide comprehensive 
assessment of VLF and ULF fluctuations [22].

Historically, is still not well defined the physiological explanation and mecha-
nisms involved in the generation of the VLF component, compared to the LF and 
HF components. Despite the accuracy and the most predictive outcomes, this area 
has been largely ignored even. Long-term regulatory mechanisms and ANS activity 
related to thermoregulation, the renin-angiotensin system, and other hormonal 
factors appear to contribute to this band [43, 44].

Very-low-frequency power is strongly correlated with the SDNNI time-domain 
measure, which averages 5 min standard deviations for all NN intervals over a 24 h 
period. There is uncertainty regarding the physiological mechanisms responsible 
for activity within this band [14]. The heart’s intrinsic nervous system appears to 
contribute to the VLF rhythm and the SNS influences the amplitude and frequency 
of its oscillations [20].

Based on work by Armor [45] and Kember et al. [32, 46], the VLF rhythm 
appears to be generated by the stimulation of afferent sensory neurons in the heart. 
This, in turn, activates various levels of the feedback and feed-forward loops in the 
heart’s intrinsic cardiac nervous system, as well as between the heart, the extrinsic 
cardiac ganglia, and spinal column. This experimental evidence suggests that the 
heart intrinsically generates the VLF rhythm and efferent SNS activity due to physi-
cal activity and stress responses modulates its amplitude and frequency.

2.2.4 Ultra-low-frequency band

The ultra-low-frequency band (ULF) falls below 0.0033 Hz (333 seconds or 
5.6 minutes). Oscillations or events in the heart rhythm with a period of 5 minutes 
or greater are reflected in this band and it can only be assessed with 24 h and longer 
recordings [22]. The circadian oscillation in HR is the primary source of the ULF 
power, although other very slow-acting regulatory processes, such as core body 
temperature regulation, metabolism, and the renin-angiotensin system likely add 
to the power in this band [20]. The Task Force Report on HRV suggests that 24 h 
recordings should be divided into 5-min segments and that HRV analysis should be 
performed on the individual segments prior to the calculation of mean values. This 
effectively filters out any oscillations with periods longer than 5 minutes. However, 
when spectral analysis is applied to entire 24 h records, several lower frequency 
rhythms are easily detected in healthy individuals [23].

There is disagreement about the contribution by the PNS and SNS to this band. 
Different psychiatric disorders show distinct circadian patterns in 24 h HRs, par-
ticularly during sleep [25, 47].

2.3 Heart rate variability measurement

Three types of measurement exist for the HRV, time-domain index, frequency-
domain index and non-linear measurements. Time-domain indices quantify the 
amount of HRV observed during monitoring periods that may range from ~2 min 
to 24 h. Frequency-domain values calculate the absolute or relative amount of signal 
energy within component bands. Non-linear measurements allow us to quantify the 
unpredictability of a time series.
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2.3.1 Time domain measurements of heart rate variability

Time domain measures are the simplest to calculate. Time domain measures do not 
provide a means to adequately quantify autonomic dynamics or determine the rhyth-
mic or oscillatory activity generated by the different physiological control systems. 
However, since they are always calculated the same way, data collected by different 
researchers are comparable but only if the recordings are exactly the same length of 
time and the data are collected under the same conditions. Time domain indices quan-
tify the amount of variance in the inter-beat-intervals (IBI) using statistical measures. 
The three most important and commonly reported time domain measures are the 
standard deviation of normal-to-normal (SDNN), the SDNN index, and the root mean 
square of successive differences (RMSSD) are the most commonly reported metrics.

2.3.2 The standard deviation of the normal-to-normal

The SDNN is the standard deviation of the normal-to-normal (NN) sinus-
initiated IBIs measured in milliseconds. This measure reflects the ebb and flow 
of all the factors that contribute to HRV. In 24 h recordings, the SDNN is highly 
correlated with ULF and total power [48]. In short-term resting recordings, the 
primary source of the variation is parasympathetically mediated, especially with 
slow, deep breathing protocols. However, in ambulatory and longer term recordings 
the SDNN values are highly correlated with lower frequency rhythms [23]. Thus, 
low age-adjusted values predict morbidity and mortality. For example, patients with 
moderate SDNN values (50–100 milliseconds) have a 400% lower risk of mortality 
than those with low values (0–50 milliseconds) in 24 h recordings [49, 50].

2.3.3 Standard deviation of the normal-to-normal index

The SDNN index is the mean of the standard deviations of all the NN intervals 
for each 5 min segment. Therefore, this measurement only estimates variability 
due to the factors affecting HRV within a 5 min period. In 24 h HRV recordings, 
it is calculated by first dividing the 24 h record into 288 five-minute segments and 
then calculating the standard deviation of all NN intervals contained within each 
segment. The SDNN index is the average of these 288 values [20]. The SDNN index 
is believed to primarily measure autonomic influence on HRV. This measure tends 
to correlate with VLF power over a 24 h period [23].

2.3.4 The root mean square of successive differences

The RMSSD is the root mean square of successive differences between normal 
heartbeats. This value is obtained by first calculating each successive time difference 
between heartbeats in milliseconds. Each of the values is then squared and the result 
is averaged before the square root of the total is obtained. The RMSSD reflects the 
beat-to-beat variance in HR and is the primary time domain measure used to estimate 
the vagally mediated changes reflected in HRV [20]. The RMSSD is correlated with 
HF power and therefore also reflects self-regulatory capacity as discussed earlier [23].

3. Root mean square of successive differences as PNS marker

As aforementioned, the RMSSD reflects the vagally mediated changes in the 
relation that occur between two peaks in the R value of an echocardiogram, thus 
give to the researcher an overview of the PNS activity.
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The parasympathetic modification evaluation is one of the most used param-
eters and find its utility in different research [51, 52]. Accordingly, to Zygmunt 
and Stanczyk [53], the rMSSD “describes short-term variations, and thus reflects 
parasympathetic activities”. Although the HRV and rMSSD does not reflect perfectly 
the tonic activity of parasympathetic and sympathetic, but rather the resultant on 
the effector, that are sinus cells node receptors; the vagal activity is predominant 
compared to sympathetic one. Influence of parasympathetic is fast and transient, 
due to acetylcholine degradation by acetylesterase. These physiological redundan-
cies cause parasympathetic activities to be visible in the cycle that follows the 
stimulus, whilst the sympathetic stimulation develop more slowly, and their effects 
are visible only after 2–3 s, causing slower oscillation with higher amplitude [54]. 
One concern regarding this issue is that HRV studies are quite sensitive to a number 
of factors as eloquently pointed out by Piché and Descarreaux [55], which can make 
data interpretation challenging.

Due to the ambiguity in physiological meaning in low frequency (LF) variations 
during short recording periods [20] the Time Domain Indices (rMSSD) has revealed 
itself more reliable than frequency domain [56], and considered as PNS modula-
tion indices [20]. R-R intervals is a time domain measure of HRV calculated by 
the equation of Kim et al. [57]. According to Hayward et al. [58], the rMSSD time 
domain measurement has high sensitivity to identify ANS modification in temporal 
window of 1–2 minutes, concordant to Thong et al. [59] who found how rMSSD is a 
valuable measurement for ultra-short-term records (1–5 minutes) due to its ability 
to be improved by combining disjoint records; e.g. combining 6 rMSSD records of 
10 seconds each to obtain the equivalent of a 60 seconds length rMMSD registra-
tion. Moreover, Esco and Flat [60] showed and almost perfect relationship between 
ultra-short-term and criterion measures (5 minutes) by recording rMSSD in 23 
athletes pre- and post-exercises.

3.1 RMSSD modulation with physical activity

RMSSD is often used for professional athletes in order to monitor cardiac activ-
ity and modulation of the HRV subsequentially to physical performance. Acute 
decreases in HRV have been reported to occur following intense endurance training 
[61], resistance training [62], and competition [63]. Therefore, low HRV is com-
monly thought to provide a reflection of acute fatigue from training or competing.

But despite what has been accepted for the last years, recent discovery shows 
how not always an increase in this value is a positive result.

In the context of monitoring fatigue or training status in athletes, a common 
belief is that high HRV is good and low HRV is bad. Or, in terms of observing the 
overall trend, increasing HRV trends are good, indicative of positive adaptation or 
increases in fitness. Decreasing trends are bad, indicative of fatigue accumulation or 
“overtraining” and performance decrements.

Unfortunately, an increasing HRV trend throughout training is not always 
a good thing and thus should not always be interpreted as such. In fact, several 
studies have reported increasing HRV trends in overtrained athletes predominately 
involved in endurance sports. For example, Le Meur et al. [64] showed decreased 
maximal incremental exercise performance and increased weekly HRV mean values 
in elite endurance athletes following a 3 week overload period, compared to a con-
trol group who saw no changes. Following a taper, performance supercompensation 
was observed along with a return of HRV toward baseline.

He most common response to overload training is a progressive decrease in 
HRV. This is your typical alarm response to a stressor, where the sympathetic arm of 
the autonomic nervous system is activated. In this situation, resting HR is elevated 
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studies have reported increasing HRV trends in overtrained athletes predominately 
involved in endurance sports. For example, Le Meur et al. [64] showed decreased 
maximal incremental exercise performance and increased weekly HRV mean values 
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and HRV decreases. With insufficient recovery time, HRV may not fully recover to 
baseline before the next training stimulus and thus will result in a downward trend 
when this cycle is perpetuated. An intense day of training can result in suppressed 
HRV for up to 72 hours post-exercise [65]. With the higher training frequencies and 
training volumes often associated with overload periods, it makes sense that HRV 
will show a decreasing trend. Typically, HRV will respond first with a decreasing 
trend and performance decrements will follow if the overload period is sustained.

A study by Pichot et al. [66] provides a good example of a decreasing HRV trend 
in response to overload training. They showed that middle distance runners saw a 
progressive downward HRV trend (up to −43%) during a 3 week overload period. 
In week 4, training loads were reduced and HRV recovered and exceeded baseline 
values.

These aspects demonstrate a new aspect of the RMSSD modulation due to a 
physical stimulus, and the complexity of the cardiac regulation mechanism.

3.2 RMSSD application inside the psychological field

Altered cardiac autonomic functions in form of reduced Heart Rate Variability 
(HRV) have been found to be associated with increased cardiovascular morbidity 
and mortality in depressive patients.

Most studies have now identified depression as a strong and independent 
risk factor for cardiovascular disease even in physically healthy individuals [67] 
and also for adverse cardiovascular outcomes such as mortality [68]. Although 
the underlying pathophysiological mechanism is yet to be elucidated, autonomic 
imbalance has been projected as one of the underlying mechanisms [69]. Heart Rate 
Variability (HRV) is a useful non-invasive measure for assessing cardiac autonomic 
modulations.

Reduced HRV has been reported in several studies done in depressed patients 
both with and without cardiovascular diseases compared to non-depressed subjects 
[70, 71]. Although negative studies have been reported as well, which were unable 
to prove an association [72]. Most of the researches carried out to observe the 
association between HRV and depression have been done in individuals who were 
already either having Cardiovascular Disease (CVD) besides depression or were on 
medications [73].

A meta-analysis done by Kemp et al., in depression patients without cardiovas-
cular diseases also reported the association between reduced HRV and depression 
and was found to be more in severely depressed individuals [74].

In addition, Agelink et al., showed the inverse correlation of parasympathetic 
HRV values with the severity of depression [75]. In a recent study Wang et al., 
also observed higher LF, LF:HF Ratio and lower SDNN, RMSSD and HF values in 
depression group compared to control group [52].

4. Conclusion

The rMSSD can be a very useful tool for many relevant findings: from the para-
sympathetic activation to a marker for cardiac dysfunction. Despite the findings 
and the large are of application, it is still an unknown area.

The correlation between the psychological issues and the rMSSD value add a 
deeper meaning on how the body is strictly correlated to the mind, and the interre-
lation between the thought and its physical response. Many research has been done 
regarding the heart and its physiology and mechanism, but only now we are starting 
to really understand how this tissue really works, and for better comprehend how 
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this organ is connected to the body and how it respond to the numerous different 
stimuli throughout the day, is necessary to delineate a clear structure of evaluation 
capable of considering also these new aspect, like the psychological impact and the 
psychological response.

Author details

Giovanni Minarini
Studio Alphaomega, Modena, Italy

*Address all correspondence to: giovanni.minarini@gmail.com

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



Autonomic Nervous System Monitoring - Heart Rate Variability

22
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will show a decreasing trend. Typically, HRV will respond first with a decreasing 
trend and performance decrements will follow if the overload period is sustained.

A study by Pichot et al. [66] provides a good example of a decreasing HRV trend 
in response to overload training. They showed that middle distance runners saw a 
progressive downward HRV trend (up to −43%) during a 3 week overload period. 
In week 4, training loads were reduced and HRV recovered and exceeded baseline 
values.

These aspects demonstrate a new aspect of the RMSSD modulation due to a 
physical stimulus, and the complexity of the cardiac regulation mechanism.

3.2 RMSSD application inside the psychological field

Altered cardiac autonomic functions in form of reduced Heart Rate Variability 
(HRV) have been found to be associated with increased cardiovascular morbidity 
and mortality in depressive patients.

Most studies have now identified depression as a strong and independent 
risk factor for cardiovascular disease even in physically healthy individuals [67] 
and also for adverse cardiovascular outcomes such as mortality [68]. Although 
the underlying pathophysiological mechanism is yet to be elucidated, autonomic 
imbalance has been projected as one of the underlying mechanisms [69]. Heart Rate 
Variability (HRV) is a useful non-invasive measure for assessing cardiac autonomic 
modulations.

Reduced HRV has been reported in several studies done in depressed patients 
both with and without cardiovascular diseases compared to non-depressed subjects 
[70, 71]. Although negative studies have been reported as well, which were unable 
to prove an association [72]. Most of the researches carried out to observe the 
association between HRV and depression have been done in individuals who were 
already either having Cardiovascular Disease (CVD) besides depression or were on 
medications [73].

A meta-analysis done by Kemp et al., in depression patients without cardiovas-
cular diseases also reported the association between reduced HRV and depression 
and was found to be more in severely depressed individuals [74].

In addition, Agelink et al., showed the inverse correlation of parasympathetic 
HRV values with the severity of depression [75]. In a recent study Wang et al., 
also observed higher LF, LF:HF Ratio and lower SDNN, RMSSD and HF values in 
depression group compared to control group [52].

4. Conclusion

The rMSSD can be a very useful tool for many relevant findings: from the para-
sympathetic activation to a marker for cardiac dysfunction. Despite the findings 
and the large are of application, it is still an unknown area.

The correlation between the psychological issues and the rMSSD value add a 
deeper meaning on how the body is strictly correlated to the mind, and the interre-
lation between the thought and its physical response. Many research has been done 
regarding the heart and its physiology and mechanism, but only now we are starting 
to really understand how this tissue really works, and for better comprehend how 
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this organ is connected to the body and how it respond to the numerous different 
stimuli throughout the day, is necessary to delineate a clear structure of evaluation 
capable of considering also these new aspect, like the psychological impact and the 
psychological response.
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Abstract

Heart rate variability (HRV) is a physiological measurement that can help to
monitor and diagnose chronic diseases such as cardiovascular disease, depression,
and psychological stress. HRV measurement is commonly extracted from the elec-
trocardiography (ECG). However, ECG has bulky wires where it needs at least
three surface electrodes to be placed on the skin. This may cause distraction during
the recording and need longer time to setup. Therefore, photoplethysmography
(PPG), a simple optical technique, was suggested to obtain heart rate. This study
proposes to investigate the effectiveness of PPG recording and derivation of HRV
for feature analysis. The PPG signal was preprocessed to remove all the noise and to
extract the HRV. HRV features were collected using time-domain analysis (TA),
frequency-domain analysis (FA) and nonlinear time-frequency analysis (TFA).
Five out of 22 HRV features, which are HR, RMSSD, LF/HF, LFnu, and HFnu,
showed high correlation (rho > 0.6 and prho < 0.05) in comparison to standard
5-min excerpt while producing significant difference (p-value < 0.05) during the
stressing condition across all interval HRV excerpts. This simple yet accurate PPG
recording system perhaps might useful to assess the HRV signal in a short time, and
further can be used for the ANS assessment.

Keywords: HRV, PPG, stress, autonomic function, ECG

1. Introduction

Human body is interacting between each other where it consists of many different
interacting systems. Any changes in human body will generate response to all parts of
the body include the autonomic nervous system (ANS) [1]. ANS controls the system
that regulates bodily functions such as the digestion, respiratory rate, heart rate,
pupillary response, urination, and sexual arousal. Any changes in ANS can be
detected by heart rate variability (HRV) since HRV and ANS is directly related.

Heart rate can be defined as the number of heart beats per minute while heart rate
variability (HRV) is the fluctuation in the time intervals between adjacent heartbeats.
HRV refers to the time series of the interval variation between consecutive heart beats
and it can be analyzed in time, frequency and nonlinear domains [2]. The fluctuations
in HRV value reflects neurocardiac function of the body as it is generated through
heart-brain connection and autonomic nervous system (ANS) dynamics [3, 4].
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Abstract

Heart rate variability (HRV) is a physiological measurement that can help to
monitor and diagnose chronic diseases such as cardiovascular disease, depression,
and psychological stress. HRV measurement is commonly extracted from the elec-
trocardiography (ECG). However, ECG has bulky wires where it needs at least
three surface electrodes to be placed on the skin. This may cause distraction during
the recording and need longer time to setup. Therefore, photoplethysmography
(PPG), a simple optical technique, was suggested to obtain heart rate. This study
proposes to investigate the effectiveness of PPG recording and derivation of HRV
for feature analysis. The PPG signal was preprocessed to remove all the noise and to
extract the HRV. HRV features were collected using time-domain analysis (TA),
frequency-domain analysis (FA) and nonlinear time-frequency analysis (TFA).
Five out of 22 HRV features, which are HR, RMSSD, LF/HF, LFnu, and HFnu,
showed high correlation (rho > 0.6 and prho < 0.05) in comparison to standard
5-min excerpt while producing significant difference (p-value < 0.05) during the
stressing condition across all interval HRV excerpts. This simple yet accurate PPG
recording system perhaps might useful to assess the HRV signal in a short time, and
further can be used for the ANS assessment.
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1. Introduction

Human body is interacting between each other where it consists of many different
interacting systems. Any changes in human body will generate response to all parts of
the body include the autonomic nervous system (ANS) [1]. ANS controls the system
that regulates bodily functions such as the digestion, respiratory rate, heart rate,
pupillary response, urination, and sexual arousal. Any changes in ANS can be
detected by heart rate variability (HRV) since HRV and ANS is directly related.

Heart rate can be defined as the number of heart beats per minute while heart rate
variability (HRV) is the fluctuation in the time intervals between adjacent heartbeats.
HRV refers to the time series of the interval variation between consecutive heart beats
and it can be analyzed in time, frequency and nonlinear domains [2]. The fluctuations
in HRV value reflects neurocardiac function of the body as it is generated through
heart-brain connection and autonomic nervous system (ANS) dynamics [3, 4].
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HRV is a common measurement that can be extracted from the physiological
measurement and helps to monitor the psychological stress [5]. It is because, HRV
has direct connection with the autonomic nervous system (ANS) where any
changes that occurred in human body can be directly detected by the HRV. The
common methods to get the HRV are by using the ECG. However, there are several
difficulties to record the ECG signal. First, it requires at least three surface elec-
trodes to be placed on the skin to get single lead channel [6]. This clearly shows
bulky of wires are needed for the recording and might cause distraction and
uncomfortable feeling to the patient. Furthermore, it requires several times to set
up the ECG before start the recording.

In deriving the HRV signal, appropriate QRS algorithms need to be applied to
detect the peaks and its R wave, to obtain the interval of RR, and to find acceptable
interpolation and resampling to produce a consistently sampled tachogram. By
using the ECG signal, the resultant HRV could have several errors in the HRV signal
due to drift, electromagnetic and biological disturbance, and the complicated mor-
phology of the ECG signal [6].

Therefore, a simple recording system in deriving the HRV signal is needed. PPG
which is an electro-optical technique that detect the changes of blood volume in the
microvascular bed of the tissue is believed able to overcome the problem that faced
by ECG signal and has been suggested as an alternative method to derive the HRV
signal [7].

The PPG sensor’s system is equipped with a light source and a detector, it also
developed with red and infrared (IR) light-emitting diodes (LEDs) that commonly
used as the light source. The light intensity of the PPG sensor monitor has been
changed via the reflection from or transmission through the tissue. Figure 1 shows
the signal from ECG and PPG signal. Derivation HRV signal from ECG is calculated
from R-R interval, while the calculation of HRV signal from PPG signal is used
inter-beat interval (IBI) or pulse interval (PPI) [8].

The light traveling through biological tissue passes many materials, including
pigments in the skin, bone, and arterial and venous blood. The changes of blood
flow mainly occur in the arteries and arterioles (but not in the veins). For example,
during the systolic phase of the cardiac cycle, the arteries contain more blood
volume than the diastolic phase. PPG sensors optically detect changes in the
blood flow volume, for instance, changes in the detected light intensity in the
microvascular bed of tissue through the reflection from or transmission through
the tissue [9].

Figure 1.
ECG and PPG signals.
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As previously discussed, both ECG and PPG system are able to provide infor-
mation on cardiovascular activities. While ECG system allow better depiction of
real cardiac movement through the measurement of the electrical signals produced
by the action potential of the tissue, PPG allow adequate cardiovascular measure-
ments such as heart rate and cardiac output only through pulsatile flow of blood in
the arteries. Several studies have shown that the cardiovascular parameters col-
lected through PPG systems are highly correlative and comparable to the measure-
ments taken through standard ECG system [8, 10, 11]. This proves that despite not
being able to illustrate exact cardiac waveforms or ectopic beats, PPG could serve as
better alternative for portable heart monitoring device.

In terms of measurement accuracy, there are several factors to be considered to
ensure the reliability of data collection. Topographical factor such as position of
sensor placement on the body plays an important factor since different area of the
body constitutes different accuracy of perfusion readings. The most accurate per-
fusion readings are recorded in earlobe; however, the wrist does allow perfusion
readings with appropriate accuracy [9]. PPG watch is not subjected to electrical
interference and drying or dropping-off of electrodes [8].

Therefore, this study proposes a PPG recording system for heart rate variability
measurement that can be further used for mental stress assessment.

2. Method

ECG and PPG signal has been collected from 12 healthy subjects randomly
selected with no prior symptoms of autonomic or cardiovascular disorder, ages
between 20 and 30 years old. The data was collected with duration of 30 min
including 10 min of adjustment, 10 min of rest (baseline) and 10 min of mental
arithmetic testing. As a type of mental stress test, participants were needed to
conduct an internet arithmetic test for 10 min in order to evaluate HRV under stress
conditions such as time constraint. Lead II ECG setup with three electrodes were
placed on the skin of the subject. For PPG signal, the wristband was placed on the
left wrist. The subject was asked to sit down and make sure they are familiarized
with the procedure. The ECG and PPG were recorded simultaneously after device
was setup. The data was imported to the MATLAB software for the signal
processing (Figure 2).

2.1 Signal processing

The recorded PPG and ECG signals were then pre-processed to extract the HRV
using MATLAB software (Figure 3).

Figure 2.
Experiment setup.
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2.1.1 HRV derived using PPG

The PPG signal began with the band pass filter to attenuate noises contained in the
signals. The band-pass filter was made of cascaded lowpass and high-pass filters. The
cut-off frequencies that have been used 5 and 11 Hz. The low pass filter (LPF) elimi-
nates the noise from other part of body, such as themuscle noise and also 50 Hz power
line noise. The high pass filter (HPF)which is used to remove themotion artifacts [12].

After that, the PPG signal undergo the slope sum function (SSF). This method is
to enhance the systolic peak of the PPG pulse and to suppress the balance of the
pressure waveform by using equation in Eq. (1) [13].

SSF ¼
Xi

k¼i�w

Δxk, where Δxk ¼ ΔSk: ΔSk>0
0 : ΔSk ≤0

n
(1)

where w and sk are the length of the analyzing window and the filtered PPG
signal, respectively. The SSF algorithm initialize the localization of the onset and
offset of SSF then the pulse peak is identified as the local maxima within the range.
The SSF signal produced coincides completely with the PPG pulse onset and offset
and the pulse peaks appeared within the range of SSF pulse [14].

2.1.2 HRV derived using ECG

For ECG processing, Pan and Tompkins algorithm was implemented to get the
HRV signal [15]. The Pan and Tompkins procedure are more complex as ECG signal

Figure 3.
Pan and Tompkins algorithm for ECG signal analysis and slope sum function (SSF) for PPG signal analysis.
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contains superimposition of several waves (P, QRS, and T waves) as seen in
Figure 3 [16]. After initial denoising using BPF, the waveform undergoes differen-
tiation process to obtain slope information overcome baseline drift. The next step is
to perform signal squaring to emphasize higher frequency signal components (QRS
waves) while attenuating components of low frequency. Resultant signal obtained
through the squaring phase was then smoothed using moving average filter with a
moving window integrator at 80 ms. A thresholding process is required to ensure
that only the true QRS complex detected and the adaptive thresholds have been set
for the classification of the locations of the detected R points.

The N-N interval was then computed and outliers presented in the signal was
removed. Some of the data segment loss through the outlier extraction method was
substituted by a new data segment using a linear interpolation method that resulted
in NN intervals with nonequivalent moment sampling. However, the use of irregu-
larly sampled NN intervals during HRV analysis characteristics such as frequency
and TF analysis would cause generation of additional harmonic components and
artifacts in (Figure 4) [16].

Therefore, the HRV signals were resampled at standard sampling frequency of
4 Hz [17]. Finally, the NN interval was passed through detrending process to
overcome irregular trends.

2.2 HRV feature extraction

The following HRV features (Table 1) were computed based on the guidelines
provided by Task Force of The European Society of Cardiology (ESC) [18].
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Overview of HRV signal processing using Pan and Tompkins algorithm.
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SSF ¼
Xi

k¼i�w

Δxk, where Δxk ¼ ΔSk: ΔSk>0
0 : ΔSk ≤0

n
(1)
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Figure 3.
Pan and Tompkins algorithm for ECG signal analysis and slope sum function (SSF) for PPG signal analysis.
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contains superimposition of several waves (P, QRS, and T waves) as seen in
Figure 3 [16]. After initial denoising using BPF, the waveform undergoes differen-
tiation process to obtain slope information overcome baseline drift. The next step is
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2.2.1 Time-domain features

In this study, the time domain has been analyzed from HRV signal. Besides that,
HRV features were extracted which are standard deviation of the normal-to-normal
intervals (SDNN), standard deviation of the average of normal-to-normal intervals
(SDANN) and root mean square successive difference (RMSSD). SDNN, SDANN and
RMSSDwere calculated by using equations in Eq. (2), Eq. (3) and Eq. (4) respectively.

SDNN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N � 1

XN

n¼1
RRn �mean RRð Þ½ �2

r
(2)

where N is total window length and NN is normal-to-normal time interval.

SDANN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ns�1

XNs

n¼1
RRn �mean RRð Þ½ �2

r
(3)

where N5 is 5 min window length and NN is normal-to-normal time interval.

RMSSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N � 2

XN

n¼3
I nð Þ � I n� 1ð Þ½ �2

r
(4)

where N is total window length.

2.2.2 Frequency-domain features

For this research, AR using the Burg estimation technique has been used to
optimize forward and backward prediction errors. The power spectrum of the AR
technique using the Burg estimation can be calculated as follows,

PBurg fð Þ ¼ êp

1þPp
l¼1âp lð Þe�2jfl

�� ��2 (5)

where êp represents the sum of both forward and backward prediction errors or
the total least square error while p denotes the model order and â (l) indicate pth
order of the AR coefficient.

2.2.3 Nonlinear time-frequency features

Nonlinear analysis was performed using Modified B-distribution (MBD) as the
technique is capable of providing high resolution TF distribution without cross-
terms for HRV analysis. [16]. The kernel for the MBD as follows,

Processing method HRV features No. of features

Time analysis HR, SDNN, SDANN, RMSSD, HTI, NN50, pNN50 7

Frequency analysis VLF, LF, HF, LF/HF, LFnu, HFnu, TP 7

Nonlinear analysis Shannon entropy: LF, HF, LF/HF, Total(O); Renyi
entropy: LF, HF, LF/HF, Total(O)

8

Total 22

Table 1.
Selected HRV features for extraction.
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g v, τð Þ ¼ Γ βþ jπνð Þ2=Γ2 βð Þ (6)

where Γ defines as gamma function and β is a real positive number between 0
and 1 that regulates the trade-off between component resolution and cross-cutting
elimination.

2.3 Multiscale HRV comparison and correlation analysis

In order to investigate the statistical significance (p-value < 0.05), Spearman’s
correlation is conducted between HRV features of multiple length under both
resting and stress conditions. It is performed to determine the correlation between
the HRV features produced through PPG signal in comparing with standardized
ECG signal. A nonparametric Wilcoxon signed-rank test was performed to observe
the difference between resting (baseline) and arithmetic stress test.

3. Result and discussion

This chapter presented the results obtained through pre-processing, feature
extraction of HRV and multiscale comparison and correlation analysis along with
relevant discussions of the findings.

3.1 Signal processing

The results of each pre-processing phase for HRV assessment and the resulting
PPG signal HRV are shown in Figures 5 and 6, whereas the resulting ECG signal
HRV is shown in Figures 7 and 8.

3.1.1 HRV derived using PPG

Figure 5 presented the attenuation of the PPG signal pulses after the application
of the SSF conversion. The pulse peaks became more distinct throughout the entire
signal duration using SSF conversion as lower ectopic beats were also amplified to

Figure 5.
The output of pulse peak detection from PPG signals using SSF.
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In order to investigate the statistical significance (p-value < 0.05), Spearman’s
correlation is conducted between HRV features of multiple length under both
resting and stress conditions. It is performed to determine the correlation between
the HRV features produced through PPG signal in comparing with standardized
ECG signal. A nonparametric Wilcoxon signed-rank test was performed to observe
the difference between resting (baseline) and arithmetic stress test.

3. Result and discussion

This chapter presented the results obtained through pre-processing, feature
extraction of HRV and multiscale comparison and correlation analysis along with
relevant discussions of the findings.

3.1 Signal processing

The results of each pre-processing phase for HRV assessment and the resulting
PPG signal HRV are shown in Figures 5 and 6, whereas the resulting ECG signal
HRV is shown in Figures 7 and 8.

3.1.1 HRV derived using PPG

Figure 5 presented the attenuation of the PPG signal pulses after the application
of the SSF conversion. The pulse peaks became more distinct throughout the entire
signal duration using SSF conversion as lower ectopic beats were also amplified to
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The output of pulse peak detection from PPG signals using SSF.
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match ordinary pulse peaks that facilitate peak detection during thresholding
method. Figure 6 showed the resulting HRV signal that was obtained after removal,
resampling and detrending of the outlier.

3.1.2 HRV derived using ECG

Figure 7 showed the changes in the ECG signal throughout the Pan and Tomp-
kins algorithm processes. It can be seen that the algorithm was able to detect the R-
R intervals throughout the signal excerpt. This method was chosen due to the
simplicity and efficacy of this algorithm in QRS detection among adult subjects with
99.3% accuracy rate [15]. The subsequent HRV signal produced (illustrated in

Figure 6.
The HRV signal obtained from pulse peak detected in SSF signal.

Figure 7.
The output of QRS peak detection from ECG signals using Pan and Tompkins algorithm.
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Figure 8) after smoothing procedure was then used for feature analysis. Smoothing
process which comprised of the outlier removal, resampling and detrending.

While evaluating the algorithm necessary for the HRV signal acquisition, it can
be said that the pre-processing of the HRV signal recorded using the PPG system is
simpler, as the signal contained only one type of wave (blood pulse) compared to
the ECG signals usually containing a combination of three waves (P, QRS and T
waves). Despite that, the HRV signal produced through both recordings do have
relatively consistent magnitude.

3.2 HRV feature extraction

The analysis discussed in this section focuses mainly on the HRV features
extracted using PPG method. Generally, the features selected have been associated
with significant reactivity under stress conditions.

3.2.1 Time-domain features

The HRV signal obtained under resting and stress conditions were subsequently
plotted in Figure 9 which also showed the HRV obtained with time excerpts of
10 min duration. In addition, different lengths of HRV excerpts carry different

Figure 8.
The HRV signal obtained from RR peak detected.

Figure 9.
Samples of PPG-derived HRV for 10 min from same sample between resting and stress condition.
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waves). Despite that, the HRV signal produced through both recordings do have
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weightage of information on the HRV of the sample. Longer HRV excerpts allow
better visualization of fluctuations in the HRV measurements in both conditions.
However, it is difficult to distinguish the difference of HRV changes between
resting and stress testing through visual inspection only.

3.2.2 Frequency-domain features

The PSD can be classified into three components which are VLF band between
0.0033 and 0.04 Hz, LF band between 0.04 and 0.15 Hz and HF band between 0.15
and 0.4 Hz [18].

Based on the findings in Figure 10, the LF components increases during stress
testing while HF components relatively decreases.

3.2.3 Nonlinear time-frequency features

For the plotted Figure 11, it was observed that more complex changes experi-
enced during stress testing in 10 min. TFD plot was able to provide supplementary
visualization of more complex changes within the HRV features during stress phase.
Next, the changes within VLF and LF frequency bands were also more noticeable in
TFD analysis.

Figure 10.
Samples of PSD generated from PPG-derived HRV for 10 min from same sample between resting and stress
condition.

Figure 11.
Samples of TFD generated from PPG-derived HRV for 10 min from same sample between resting and stress
condition.

38

Autonomic Nervous System Monitoring - Heart Rate Variability

3.3 Multiscale HRV comparison and correlation analysis

Based on this finding, it can be seen that most of the HRV features extracted
using the PPG device produced similar measurements as the ECG, especially for the
TA and FA features. However, for more sophisticated measurements, such as
nonlinear TF characteristics, the correlation between the two techniques was less
important, particularly for smaller HRV characteristics. This could be due to the
fact that PPG waveform mainly reflects the central artery properties which means
factors such as artery stiffness may attenuate the signal and resulted in differences
of NN intervals obtained between different individuals [19]. The PPG signals are
also influenced by other parasympathetic activity such as temperature variations

Features r Rest r Stress

Time analysis HR* 0.964 0.970

SDNN* 0.893 0.920

RMSSD* 0.793 0.801

SDANN* 0.909 0.964

NN50* 0.659 0.907

pNN50* 0.716 0.851

HTI* 0.800 0.773

Frequency analysis VLF 0.918 0.491

LF* 0.773 0.764

HF* 0.845 0.718

LF/HF* 0.936 0.873

TP 0.827 0.364

LFnu* 0.936 0.873

Hfnu* 0.936 0.864

Nonlinear analysis ShEn LF* 0.800 0.818

ShEn HF* 0.645 0.836

ShEn LFHF* 0.727 0.818

ShEn O* 0.709 0.773

ReEn LF �0.064 0.255

ReEn HF* 0.873 0.909

ReEn LFHF* 0.873 0.791

ReEn O* 0.909 0.945

In bold, Spearman’s correlation coefficient (rho) greater than 0.6 and resulted correlation significant (prho < 0.05); and
based on results, the time domain HRV features (except HTI) maintained a significantly high correlation coefficient.
Frequency domain features at 10 minutes showed consistent significant correlation with the equivalent standard HRV
features during both resting and stress phases. For non-linear analysis, Shanon Entropy measurements (ShEn LF, ShEn
HF, ShEn LFHF and ShEn O) showed to be highly correlate with standard excerpt for HRV features at 10 minutes.
HR—mean of heart rate; SDNN—standard deviation of NN intervals; RMSSD—root mean square of the successive
differences; SDANN—standard deviation of average NN intervals; NN50—NN intervals differing by more than 50 ms;
pNN50—percentage of NN50 count; HTI—HRV triangular index; VLF—very low frequency; LF—low frequency; HF—
high frequency; TP—total power; Lfnu—low frequency normalized unit; Hfnu—high frequency normalized unit; ShEn
LF—Shannon entropy measurements; and ReEn—Renyi entropy measurements.
*Correlation is significant at the 0.01 level (2-tailed).

Table 2.
Correlation between multi-length HRV features with standard of 10 min.
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Next, the changes within VLF and LF frequency bands were also more noticeable in
TFD analysis.

Figure 10.
Samples of PSD generated from PPG-derived HRV for 10 min from same sample between resting and stress
condition.

Figure 11.
Samples of TFD generated from PPG-derived HRV for 10 min from same sample between resting and stress
condition.
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3.3 Multiscale HRV comparison and correlation analysis

Based on this finding, it can be seen that most of the HRV features extracted
using the PPG device produced similar measurements as the ECG, especially for the
TA and FA features. However, for more sophisticated measurements, such as
nonlinear TF characteristics, the correlation between the two techniques was less
important, particularly for smaller HRV characteristics. This could be due to the
fact that PPG waveform mainly reflects the central artery properties which means
factors such as artery stiffness may attenuate the signal and resulted in differences
of NN intervals obtained between different individuals [19]. The PPG signals are
also influenced by other parasympathetic activity such as temperature variations
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HTI* 0.800 0.773
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HF* 0.845 0.718

LF/HF* 0.936 0.873

TP 0.827 0.364

LFnu* 0.936 0.873

Hfnu* 0.936 0.864
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ShEn HF* 0.645 0.836
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ShEn O* 0.709 0.773

ReEn LF �0.064 0.255

ReEn HF* 0.873 0.909

ReEn LFHF* 0.873 0.791

ReEn O* 0.909 0.945

In bold, Spearman’s correlation coefficient (rho) greater than 0.6 and resulted correlation significant (prho < 0.05); and
based on results, the time domain HRV features (except HTI) maintained a significantly high correlation coefficient.
Frequency domain features at 10 minutes showed consistent significant correlation with the equivalent standard HRV
features during both resting and stress phases. For non-linear analysis, Shanon Entropy measurements (ShEn LF, ShEn
HF, ShEn LFHF and ShEn O) showed to be highly correlate with standard excerpt for HRV features at 10 minutes.
HR—mean of heart rate; SDNN—standard deviation of NN intervals; RMSSD—root mean square of the successive
differences; SDANN—standard deviation of average NN intervals; NN50—NN intervals differing by more than 50 ms;
pNN50—percentage of NN50 count; HTI—HRV triangular index; VLF—very low frequency; LF—low frequency; HF—
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Table 2.
Correlation between multi-length HRV features with standard of 10 min.
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[20] and could significantly changes due to factors such as body age, vascular age,
physical status, sleeping hours, physical activities [21].

Correlation analysis was performed to assess the interdependence between
PPG-derived HRV and ECG-derived HRV as shown in Table 2.

In general, HRV features resulted less correlated in resting than during stress
conditions. This is most likely due to the fact that HRV showed a more depressed
dynamic during stress phase. Other than that, HRV features such as HR, NN50, TP,
VLF, LF, HF, Lfnu, Hfnu, LF/HF, and Renyi entropy (LF, HF and Total(O)) has also
showed significant correlation between the values measured for HRV excerpts col-
lected using PPG and ECG. This prove that PPG is able to produce HRV signal with
equivalent significant to HRV signal produced by ECG during stress testing [8, 22].
Besides, it can be deduced that HR, RMSSD, LF/HF, Lfnu and Hfnu features showed
consistent characteristics as valid surrogate of the standard HRV which means
regardless of length of HRV signal (between 1 and 10 min), these features would
produce values that high correlate to value produced with standard HRV excerpt.

This study intends to investigate if there is different length of HRV excerpts
provide valid measurement of HRV indices with comparison to standard 5-min
excerpt for detection of mental stress. Although many studies have shown that HRV
analyzes provide a reliable quantification technique for mental stress, it is hard to
compare the precision of each method as their experimental design (i.e., duration of
HRV characteristics) differs. Although it was claimed that the excerpt of 5-min
HRV is the gold standard [18], the growing demand for wearable devices to instantly
evaluate mental stress has increased interest in HRV computing characteristics
shorter than the 5-min HRV standard [2]. In order to investigate the utility of
various length of HRV excerpts in quantifying HRV features, 22 features were
extracted at each time interval. The agreement between features at each time
interval was compared with standard 5-min excerpt under both resting and stress
phases. Overall, TA features (except HTI) conform significantly across all excerpts
in correlation to standard excerpt while FA features (i.e., VLF, LF, HF, and TP)
showed significant correlation across excerpts longer than 3 min while LFnu, HFnu
and LF/HF showed consistent high correlation for all excerpts. As for time-
frequency analysis, Shannon entropy measurements showed significant correlation
for signal excerpts longer than 4 min while for Renyi entropy, only HF and Total(O)
measurements showed significant correlation throughout all time excerpts.

Despite that, the limitation of these analyses is that correlation coefficient is
blind to the possibility of bias caused by the difference in the mean or standard
deviation between two measurements [23].

4. Conclusion

In comparison to conventional ECG, a correlation assessment between HRV
characteristics obtained by PPG was also performed to observe any variation
between the extracted measurements and analyze whether the PPG system is suffi-
ciently robust to obtain HRV characteristics according to clinical standards. For this
research, an ultra-short and short-term HRV feature was presumed to be a valid
surrogate of the equivalent standard HRV if the feature sustained at a high correla-
tion (i.e., rho > 0.6 and prho < 0.05) with the equivalent 5-min standard feature
over all time scales and produced consistent trend and significant difference (p-
value < 0.05) during the rest and stress phase. Therefore, it can be deduced that
HR, RMSSD, LF/HF, LFnu and HFnu features showed consistent characteristics as
valid surrogate of the standard HRV which means regardless of length of HRV
signal (between 1 and 10 min), these features would produce values that high
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correlate to value produced with standard HRV excerpt. In the future, methods
such as machine learning may be applied to test the accuracy between the use
different PPG specifications such as measurement site, probe contact force and LED
wavelengths which affect the reliability of its recordings or between different
experimental protocol such as type of stressor and subject conditions.
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In general, HRV features resulted less correlated in resting than during stress
conditions. This is most likely due to the fact that HRV showed a more depressed
dynamic during stress phase. Other than that, HRV features such as HR, NN50, TP,
VLF, LF, HF, Lfnu, Hfnu, LF/HF, and Renyi entropy (LF, HF and Total(O)) has also
showed significant correlation between the values measured for HRV excerpts col-
lected using PPG and ECG. This prove that PPG is able to produce HRV signal with
equivalent significant to HRV signal produced by ECG during stress testing [8, 22].
Besides, it can be deduced that HR, RMSSD, LF/HF, Lfnu and Hfnu features showed
consistent characteristics as valid surrogate of the standard HRV which means
regardless of length of HRV signal (between 1 and 10 min), these features would
produce values that high correlate to value produced with standard HRV excerpt.

This study intends to investigate if there is different length of HRV excerpts
provide valid measurement of HRV indices with comparison to standard 5-min
excerpt for detection of mental stress. Although many studies have shown that HRV
analyzes provide a reliable quantification technique for mental stress, it is hard to
compare the precision of each method as their experimental design (i.e., duration of
HRV characteristics) differs. Although it was claimed that the excerpt of 5-min
HRV is the gold standard [18], the growing demand for wearable devices to instantly
evaluate mental stress has increased interest in HRV computing characteristics
shorter than the 5-min HRV standard [2]. In order to investigate the utility of
various length of HRV excerpts in quantifying HRV features, 22 features were
extracted at each time interval. The agreement between features at each time
interval was compared with standard 5-min excerpt under both resting and stress
phases. Overall, TA features (except HTI) conform significantly across all excerpts
in correlation to standard excerpt while FA features (i.e., VLF, LF, HF, and TP)
showed significant correlation across excerpts longer than 3 min while LFnu, HFnu
and LF/HF showed consistent high correlation for all excerpts. As for time-
frequency analysis, Shannon entropy measurements showed significant correlation
for signal excerpts longer than 4 min while for Renyi entropy, only HF and Total(O)
measurements showed significant correlation throughout all time excerpts.

Despite that, the limitation of these analyses is that correlation coefficient is
blind to the possibility of bias caused by the difference in the mean or standard
deviation between two measurements [23].

4. Conclusion

In comparison to conventional ECG, a correlation assessment between HRV
characteristics obtained by PPG was also performed to observe any variation
between the extracted measurements and analyze whether the PPG system is suffi-
ciently robust to obtain HRV characteristics according to clinical standards. For this
research, an ultra-short and short-term HRV feature was presumed to be a valid
surrogate of the equivalent standard HRV if the feature sustained at a high correla-
tion (i.e., rho > 0.6 and prho < 0.05) with the equivalent 5-min standard feature
over all time scales and produced consistent trend and significant difference (p-
value < 0.05) during the rest and stress phase. Therefore, it can be deduced that
HR, RMSSD, LF/HF, LFnu and HFnu features showed consistent characteristics as
valid surrogate of the standard HRV which means regardless of length of HRV
signal (between 1 and 10 min), these features would produce values that high
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correlate to value produced with standard HRV excerpt. In the future, methods
such as machine learning may be applied to test the accuracy between the use
different PPG specifications such as measurement site, probe contact force and LED
wavelengths which affect the reliability of its recordings or between different
experimental protocol such as type of stressor and subject conditions.
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Chapter 4

Modeling Thermoregulatory 
Responses to Cold Environments
Adam W. Potter, David P. Looney, Xiaojiang Xu,  
William R. Santee and Shankar Srinivasan

Abstract

The ability to model and simulate the rise and fall of core body temperature 
is of significant interest to a broad spectrum of organizations. These organiza-
tions include the military, as well as both public and private health and medical 
groups. To effectively use cold models, it is useful to understand the first principles 
of heat transfer within a given environment as well as have an understanding of 
the underlying physiology, including the thermoregulatory responses to various 
conditions and activities. The combination of both rational or first principles and 
empirical approaches to modeling allow for the development of practical models 
that can predict and simulate core body temperature changes for a given individual 
and ultimately provide protection from injury or death. The ability to predict these 
maximal potentials within complex and extreme environments is difficult. The 
present work outlines biomedical modeling techniques to simulate and predict cold-
related injuries, and discusses current and legacy models and methods.

Keywords: hypothermia, cold injury, clothing, military, biophysics, survival

1. Introduction

Mitigating hot and cold injuries is a complex problem and has been shown to 
have significant links to a number of individualized factors, to include race, gender, 
job specialty, and geographic origin [1, 2]. There are many other individualized 
elements (e.g., fitness, body composition, and genetics) that are intuitively linked 
to these health outcomes; however, there is a lack of adequate data to scale that 
sufficiently addresses these issues.

The history of characterizing heat exchange and thermoregulatory functions 
in humans can be traced back to the late 1770s; where British military physiologist, 
Sir Charles Blagden conducted descriptive studies of man, dog, and beef steak 
responses in a hot room [3]. Mathematically describing heat exchange theory has 
roots in physics and with the development of the laws of thermodynamics and heat 
exchange, specifically as described in Fourier’s law [4] a mathematical expression of 
the dynamics of heat balance in solids, simplified as:

  ρ ∙ c ∙  (  ∂ T ___ ∂ t  )  = ∇ k ∇ T + H  (1)

where   ρ  is density (g/m3), c is specific heat [(kcal/°K. kg)], k is heat conduc-
tance [kcal/(hr cm °K)], T is temperature (°K), t is time (hours), and H is the net 
flow rate of heat other than by diffusion.
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Key work by Pennes in 1948 [5], reported measured temperatures of tissue and 
blood at the forearm and enabled the creation of the bioheat transfer equation. This 
equation has proven to be a key underlying basis of future models, seen as:

  ∇  ∙ k ∇ T +  q  p   +  q  m   −  W   C  b     (T −  T  a  )  = ρ  c  p   (  ∂ T ___ ∂ t  )   (2)

where k (w/m °C) is the tissue thermal conductivity, T is tissue temperature 
in °C,   q  p    (w/m3) is energy deposition rate,   q  m    (w/m3) is metabolism, W (kg/m3/s) 
is local tissue blood perfusion rate,   C  b    (J/kg/°C) is specific blood heat,   T  a    (°C) is 
arterial temperature, ρ (kg/m3) is the tissue density, and   c  p    (J/kg/°C) is the specific 
tissue heat.

Conceptually, heat exchange between the human and the environment was first 
described by Lefevre in 1911; where he characterized the human as a sphere with 
an internal core that exchanged heat through the shell into the environment [6]. In 
1934, Burton applied Fourier’s law, presenting this exchange mathematically and 
describing the human as one uniform cylinder in what is considered by many as the 
first visual conceptualization of human thermoregulatory modeling [7].

Representation of the human in a thermoregulatory model is most often done 
by sectioning the human into nodes, segments, and elements; typically using one of 
four different designs, (1) one-node, (2) two-node, (3) multi-node, or (4) multi-ele-
ment [8]. An example of the difference between these designs is shown in Figure 1; 
while the multi-element approach is more realistic human shape (e.g., finite analysis 
distribution). Typically each node represents an independent layer with unique 
thermal properties, each segment represents a section or grouped section of an area 
of the body, and each element represents multiple thermal components that make up 
the whole body (often more geometrically accurate to the shape of the human).

One node models are essentially empirically derived and do not include elements 
within the thermoregulatory response system. There are several one node thermo-
regulatory models that have been used extensively over time to predict core body 
temperature and thermal discomfort within a given environment [9–12].

Simple two-node models describe specific thermodynamic responses of a single 
segment, typically separated into concentric core and shell nodes. They have often 
been used examine thermal discomfort and physiological responses, to include 
the work by Gagge and Nishi [13–15], and several others [16–19]. Two node model 
approaches have been used where the two node design was applied to multi-seg-
ments [20–23]. Multi-node models are essentially expanded versions of the two-
node methods with additional shells or layers within them where the heat balance is 

Figure 1. 
Example of model designs.
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calculated for each layer. Multi-node models, with both single- and multi-segment 
designs have become the more prevalent approach. The first multi-node model 
was developed by Crosbie et al. [24] and has been followed by many since [25–29]. 
Notable is the work of Solwijk and Hardy [30–33], where they first introduced the 
concepts of temperature set points and negative feedback in a controlled theory 
design. Their work has been built upon by many researchers over time [34–42]. The 
first multi-element model was originally published in 1961 by Wissler, and later 
improved upon [43–45]. Additional multi-element models include work by Smith 
[46], with the first three-dimensional (3D) transient multi-element model. As 
computation methods improved, a series of improvements has led to more realistic 
and complex models [8, 47–50].

While the majority of these models were developed with the intent of charac-
terizing thermoregulation in various environments; several have been designed 
specifically to address cold environments or thermoregulatory events that specifi-
cally address cold issues (e.g., finger, hand, foot temperatures). With the intricacies 
of human response to cold, studies have focused on extremities, the specific areas 
most subject to cold injuries. One of the first attempts was by Molnar in 1957, used a 
heat balance approach to study hand temperature responses to cold [51]. This work 
was followed by work focused on finger freezing points [52–57] and whole hand 
modeling [58, 59]. Specific models have also been developed of the foot [60], toes 
[61], and facial tissues [62, 63]. Cold survival models have been developed over 
time to make predictions in both open air and submerged environments [64–68].

2. Clinical definitions of cold injuries

Characterizing cold related injuries is fairly complex, as the responses to cold 
have higher individual variability when compared to heat related injuries. From a 
clinical perspective, cold related injuries can be broadly divided into three catego-
ries: frostbite, nonfreezing cold injuries, and hypothermia. In addition, each of 
these has varying levels of severity and subcategories associated to them.

Frostbite is below the point at which skin tissue begins to freeze. While 0°C 
(32°F) is traditionally considered the freezing point of water, the freezing point of 
skin is understood to be marginally lower due to electrolytes [69]. Observed freez-
ing points range from as low as −4.8°C to as high as −0.6°C [69, 70].

Nonfreezing cold injuries include an array of injury events where tissue freezing 
has not occurred but damage occurs. The level of severity of nonfreezing injuries is 
determined by the temperature, duration, and wetness of the exposure to the tissue. 
Four of the more common specific types of nonfreezing injuries include immersion 
(trench) foot, chilblain, cold urticaria, and cold-induced bronchoconstriction [71].

Immersion foot is a nonfreezing injury. The foot presents swollen, the skin is 
red initially but as severity increases the skin becomes lower in oxygen saturation 
and becomes cyanotic (purple, bluish discoloration) [69, 71]. Immersion foot is 
most often reported after tissue have been exposed for extended periods of time to 
non-freezing temperatures, between 0 and 15°C (32–60°F) [71]. The term ‘immer-
sion’ itself refers to when the foot is actually immersed in water when the foot is wet 
within boots for sustained periods of time [69, 71].

Chilblain is a fairly common nonfreezing injury to the skin. It can occur during 
1–5 hours of temperatures below 16°C (60°F) [69]. Cold urticaria is expressed as a 
quick onset of redness, swelling and itchiness of the skin in response to short-term 
exposure (i.e., minutes) to cold environments [71]. Cold-induced bronchoconstric-
tion is a physiological response where an individual’s airways are narrowed during 
exercise in cold environments [69, 71–73].
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equation has proven to be a key underlying basis of future models, seen as:

  ∇  ∙ k ∇ T +  q  p   +  q  m   −  W   C  b     (T −  T  a  )  = ρ  c  p   (  ∂ T ___ ∂ t  )   (2)

where k (w/m °C) is the tissue thermal conductivity, T is tissue temperature 
in °C,   q  p    (w/m3) is energy deposition rate,   q  m    (w/m3) is metabolism, W (kg/m3/s) 
is local tissue blood perfusion rate,   C  b    (J/kg/°C) is specific blood heat,   T  a    (°C) is 
arterial temperature, ρ (kg/m3) is the tissue density, and   c  p    (J/kg/°C) is the specific 
tissue heat.

Conceptually, heat exchange between the human and the environment was first 
described by Lefevre in 1911; where he characterized the human as a sphere with 
an internal core that exchanged heat through the shell into the environment [6]. In 
1934, Burton applied Fourier’s law, presenting this exchange mathematically and 
describing the human as one uniform cylinder in what is considered by many as the 
first visual conceptualization of human thermoregulatory modeling [7].

Representation of the human in a thermoregulatory model is most often done 
by sectioning the human into nodes, segments, and elements; typically using one of 
four different designs, (1) one-node, (2) two-node, (3) multi-node, or (4) multi-ele-
ment [8]. An example of the difference between these designs is shown in Figure 1; 
while the multi-element approach is more realistic human shape (e.g., finite analysis 
distribution). Typically each node represents an independent layer with unique 
thermal properties, each segment represents a section or grouped section of an area 
of the body, and each element represents multiple thermal components that make up 
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One node models are essentially empirically derived and do not include elements 
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regulatory models that have been used extensively over time to predict core body 
temperature and thermal discomfort within a given environment [9–12].

Simple two-node models describe specific thermodynamic responses of a single 
segment, typically separated into concentric core and shell nodes. They have often 
been used examine thermal discomfort and physiological responses, to include 
the work by Gagge and Nishi [13–15], and several others [16–19]. Two node model 
approaches have been used where the two node design was applied to multi-seg-
ments [20–23]. Multi-node models are essentially expanded versions of the two-
node methods with additional shells or layers within them where the heat balance is 

Figure 1. 
Example of model designs.
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calculated for each layer. Multi-node models, with both single- and multi-segment 
designs have become the more prevalent approach. The first multi-node model 
was developed by Crosbie et al. [24] and has been followed by many since [25–29]. 
Notable is the work of Solwijk and Hardy [30–33], where they first introduced the 
concepts of temperature set points and negative feedback in a controlled theory 
design. Their work has been built upon by many researchers over time [34–42]. The 
first multi-element model was originally published in 1961 by Wissler, and later 
improved upon [43–45]. Additional multi-element models include work by Smith 
[46], with the first three-dimensional (3D) transient multi-element model. As 
computation methods improved, a series of improvements has led to more realistic 
and complex models [8, 47–50].

While the majority of these models were developed with the intent of charac-
terizing thermoregulation in various environments; several have been designed 
specifically to address cold environments or thermoregulatory events that specifi-
cally address cold issues (e.g., finger, hand, foot temperatures). With the intricacies 
of human response to cold, studies have focused on extremities, the specific areas 
most subject to cold injuries. One of the first attempts was by Molnar in 1957, used a 
heat balance approach to study hand temperature responses to cold [51]. This work 
was followed by work focused on finger freezing points [52–57] and whole hand 
modeling [58, 59]. Specific models have also been developed of the foot [60], toes 
[61], and facial tissues [62, 63]. Cold survival models have been developed over 
time to make predictions in both open air and submerged environments [64–68].

2. Clinical definitions of cold injuries

Characterizing cold related injuries is fairly complex, as the responses to cold 
have higher individual variability when compared to heat related injuries. From a 
clinical perspective, cold related injuries can be broadly divided into three catego-
ries: frostbite, nonfreezing cold injuries, and hypothermia. In addition, each of 
these has varying levels of severity and subcategories associated to them.

Frostbite is below the point at which skin tissue begins to freeze. While 0°C 
(32°F) is traditionally considered the freezing point of water, the freezing point of 
skin is understood to be marginally lower due to electrolytes [69]. Observed freez-
ing points range from as low as −4.8°C to as high as −0.6°C [69, 70].

Nonfreezing cold injuries include an array of injury events where tissue freezing 
has not occurred but damage occurs. The level of severity of nonfreezing injuries is 
determined by the temperature, duration, and wetness of the exposure to the tissue. 
Four of the more common specific types of nonfreezing injuries include immersion 
(trench) foot, chilblain, cold urticaria, and cold-induced bronchoconstriction [71].

Immersion foot is a nonfreezing injury. The foot presents swollen, the skin is 
red initially but as severity increases the skin becomes lower in oxygen saturation 
and becomes cyanotic (purple, bluish discoloration) [69, 71]. Immersion foot is 
most often reported after tissue have been exposed for extended periods of time to 
non-freezing temperatures, between 0 and 15°C (32–60°F) [71]. The term ‘immer-
sion’ itself refers to when the foot is actually immersed in water when the foot is wet 
within boots for sustained periods of time [69, 71].

Chilblain is a fairly common nonfreezing injury to the skin. It can occur during 
1–5 hours of temperatures below 16°C (60°F) [69]. Cold urticaria is expressed as a 
quick onset of redness, swelling and itchiness of the skin in response to short-term 
exposure (i.e., minutes) to cold environments [71]. Cold-induced bronchoconstric-
tion is a physiological response where an individual’s airways are narrowed during 
exercise in cold environments [69, 71–73].
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Hypothermia is a broad category of cold injury and is clinically described to 
be the point at which core body temperature has dropped below 35°C (95°F) [74]. 
However, hypothermia is more specifically defined with four levels of severity; 
where normothermia (normal temperature level) is approximately 37°C (98.6°F), 
mild hypothermia is between 91.4–95°C (33–35°F), moderate hypothermia being 
85.2–89.6°C (29–32°F), and severe hypothermia being 56.7–82.4°C (13.7–28°F) 
[69, 71]. Figure 2 outlines specific core temperature reference points associated 
with physiological responses using work by Castellani et al. [69] and Pozos and 
Danzl [74] and described in Army Guidance [75].

3. Basics of thermophysiology

The human body is capable of maintaining thermal balance while operating 
within a wide range of temperatures. The human system generally maintains an 

Figure 2. 
The range of human core temperatures and associated physiological responses [76].
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internal core temperature (Tc) of approximately 37°C. Due to natural circadian 
rhythm, Tc fluctuates ~0.5°C daily. However, Tc can fluctuate based on physical 
activity or environmental conditions, and may range from 36.0–40.0°C. The 
microenvironment created between human skin and clothing typically must remain 
within 28–30°C to maintain thermal homeostasis at rest [45]. This microenviron-
ment changes significantly with physical activity due to metabolic heat production 
and air movement.

Humans have an internal control system, primarily the preoptic area of the 
anterior hypothalamus, responsible for maintaining healthy body temperature. The 
hypothalamus uses feedback from two main sources, the skin and the blood. When 
temperature changes (hot or cold) are identified by either of these two sources, 
impulses are sent to the hypothalamus which in turn directs physiological changes 
to compensate for these temperatures. To protect from cold or heat injury, the 
human body attempts to either generate or dissipate heat to stay warm or cool off. 
Heat production is a natural process for humans and is a function of metabolism, 
oxidation of foods, and muscular activity. Heat transfer between the human and 
environment occurs via four pathways: conduction, convection, radiation, and 
evaporation. This heat exchange process is typically referred to as heat or thermal 
energy balance, and can be described in the heat balance equation:

  S = M ± W ± R ± C ± K − E  [W /  m   2 ]   (3)

where S is heat storage; M is metabolic rate; W is work rate; R is radiation; C is 
convection; K is conduction; and E is evaporation. Radiation is heat that is trans-
ferred via electromagnetic waves (e.g., solar radiation). Conduction is heat transfer 
due to the body’s direct contact with a solid object (e.g., touching a cold surface). 
Convection is heat transfer between the body and a fluid such as air or water. 
Evaporation is heat loss to the environment due to the phase change from liquid to 
vapor, typically associated with evaporation of sweat and respiratory water.

Hyperthermia is when heat gain exceeds heat loss; while hypothermia occurs 
when body temperature drops below normal levels as heat production is inadequate 
to compensate for the rate of heat loss to the environment [77].

Vasoconstriction and vasodilation are the two key physiological responses 
of how heat transfer is regulated from the body to the periphery [78, 79]. 
Vasoconstriction is the constriction of blood vessels and occurs in response to cold 
environments to reduce the amount of blood flow to the skin. Vasoconstriction 
protects the internal organs from cold exposure but increases cold injury risk in the 
extremities due to lower blood flow and lower skin temperatures. Vasoconstriction 
in effect creates a two-layer distribution of body temperature; a cold outer shell sur-
rounding a warmer core. The colder outer shell reduces heat loss to the environment 
by reducing the temperature gradient between the skin surface and the environ-
ment, and a colder surface radiates less heat.

Vasodilation is essentially the opposite of vasoconstriction; where blood vessels 
open to allow increased blood flow across the body and out to the extremities to 
enable increased heat dissipation [78, 79]. During these responses, there are other 
associated physiological responses that help compensate for the increased skin 
blood flow (e.g., increased heart rate and cardiac output).

The extremities are more affected by cold exposure than other parts of the body. 
When the human body cools, blood flow is reduced to the extremities (i.e., the 
hands and feet) decreasing the amount of warm blood flowing to these areas. It is 
a challenge to protect the hands and feet as they have lower metabolic heat produc-
tion of the hands and feet due to their inherently small muscle mass and large 
surface area to mass ratio.
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internal core temperature (Tc) of approximately 37°C. Due to natural circadian 
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activity or environmental conditions, and may range from 36.0–40.0°C. The 
microenvironment created between human skin and clothing typically must remain 
within 28–30°C to maintain thermal homeostasis at rest [45]. This microenviron-
ment changes significantly with physical activity due to metabolic heat production 
and air movement.
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hypothalamus uses feedback from two main sources, the skin and the blood. When 
temperature changes (hot or cold) are identified by either of these two sources, 
impulses are sent to the hypothalamus which in turn directs physiological changes 
to compensate for these temperatures. To protect from cold or heat injury, the 
human body attempts to either generate or dissipate heat to stay warm or cool off. 
Heat production is a natural process for humans and is a function of metabolism, 
oxidation of foods, and muscular activity. Heat transfer between the human and 
environment occurs via four pathways: conduction, convection, radiation, and 
evaporation. This heat exchange process is typically referred to as heat or thermal 
energy balance, and can be described in the heat balance equation:

  S = M ± W ± R ± C ± K − E  [W /  m   2 ]   (3)

where S is heat storage; M is metabolic rate; W is work rate; R is radiation; C is 
convection; K is conduction; and E is evaporation. Radiation is heat that is trans-
ferred via electromagnetic waves (e.g., solar radiation). Conduction is heat transfer 
due to the body’s direct contact with a solid object (e.g., touching a cold surface). 
Convection is heat transfer between the body and a fluid such as air or water. 
Evaporation is heat loss to the environment due to the phase change from liquid to 
vapor, typically associated with evaporation of sweat and respiratory water.

Hyperthermia is when heat gain exceeds heat loss; while hypothermia occurs 
when body temperature drops below normal levels as heat production is inadequate 
to compensate for the rate of heat loss to the environment [77].

Vasoconstriction and vasodilation are the two key physiological responses 
of how heat transfer is regulated from the body to the periphery [78, 79]. 
Vasoconstriction is the constriction of blood vessels and occurs in response to cold 
environments to reduce the amount of blood flow to the skin. Vasoconstriction 
protects the internal organs from cold exposure but increases cold injury risk in the 
extremities due to lower blood flow and lower skin temperatures. Vasoconstriction 
in effect creates a two-layer distribution of body temperature; a cold outer shell sur-
rounding a warmer core. The colder outer shell reduces heat loss to the environment 
by reducing the temperature gradient between the skin surface and the environ-
ment, and a colder surface radiates less heat.

Vasodilation is essentially the opposite of vasoconstriction; where blood vessels 
open to allow increased blood flow across the body and out to the extremities to 
enable increased heat dissipation [78, 79]. During these responses, there are other 
associated physiological responses that help compensate for the increased skin 
blood flow (e.g., increased heart rate and cardiac output).

The extremities are more affected by cold exposure than other parts of the body. 
When the human body cools, blood flow is reduced to the extremities (i.e., the 
hands and feet) decreasing the amount of warm blood flowing to these areas. It is 
a challenge to protect the hands and feet as they have lower metabolic heat produc-
tion of the hands and feet due to their inherently small muscle mass and large 
surface area to mass ratio.
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From a functional perspective, the balance of control within the human system 
depends on the response to cold exposure and interaction between peripheral (skin) 
and core body temperatures with the central nervous system (CNS) and the various 
physiological responses (Figure 3); [74].

4. Importance of clothing

Clothing has long been used to provide protection from environmental elements 
(heat, cold, etc.) or physical or biological hazards (e.g., rocks, thorns). Clothing 
properties and requirements vary widely among users and use cases. A single clothing 
ensemble cannot protect an individual from the extremes of the temperature spectrum 
of earth, being approximately −89°C at its coldest and 58°C at its warmest. However, 
clothing is a toll to protect each end of this spectrum of environmental extremes 
[80]. However, protections must be based on use cases to achieve the desired thermal 
comfort. For example, protective equipment for American football players (i.e., pads 
and helmet) is vastly different than protective equipment worn by soldiers (i.e., body 
armor, ballistic helmet). It should be noted that added protection may increase the 
thermal burden to wearers, and thus increases risk of heat injuries [81–83].

It is critical to understand the clothing option tradespace in order to predict and 
prepare for the impact clothing has on protecting or impairing human health. That 
is to say, the selection of the proper clothing, requires an understanding of how the 
human (physiology, anthropology, etc.), the anticipated activities (i.e., work rate, 
length of exposure and metabolic heat production), the work environments (tem-
perature, humidity, etc.), and the biophysical properties of clothing worn (heat 
transfer performance) will interact in each workplace scenario.

Figure 3. 
Peripheral (skin) and core temperature influence on central nervous system (CNS) and physiological outcomes.
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4.1 Clothing biophysics

Clothing protects the wearer from environmental threats, but may impose a 
level of thermal burden. Both the biophysical resistances (thermal and evaporative) 
and spectrophotometric (reflectance, absorptivity, and transmittance) properties 
of clothing can have a significant influence on the impact of the environment on 
the wearer. Measurements of the biophysical properties of clothing can be used to 
model the impacts on thermal sensation (e.g., thermal comfort) and thermoregula-
tory responses (e.g., heat strain, cold protection). The thermal and evaporative 
resistances, wind effects, and spectrophotometric properties of the clothing are 
critical measurements for this purpose.

4.1.1 Thermal and evaporative resistance

Sweating thermal manikins have long been used to provide biophysical measures 
of clothing and equipment worn by the human [84]. While direct biophysical com-
parisons can be helpful, i.e., comparing one ensemble’s value to another [85], a more 
informative approach is to combine these measured values with thermoregulatory 
modeling. Models enable the prediction of thermoregulatory responses based on 
different individuals, as well as varied environments, clothing, or activity levels.

The current standard for thermal manikin testing calls for two fundamental 
measures: thermal resistance (Rt) [86] and evaporative resistance (Ret) [87]. These 
two measures represent the dry heat exchange (Rt: convection, conduction, and 
radiation) and wet heat exchange (Ret: evaporation). After converting both Rt and 
Ret into units of clo and im [88, 89], a ratio can be used to describe an ensemble’s 
evaporative potential (im/clo) [90].

Each ensemble should be tested using chamber conditions from the American 
Society for Testing and Materials (ASTM) standards for assessing Rt (ASTM F1291-
16) and Ret (ASTM F2370-16) [86, 87] (Table 1).

Thermal resistance (Rt) is the dry heat transfer from the surface of the manikin 
through the clothing and into the environment, mainly from convection, and 
described as:

   R  t   =    ( T  s   −  T  a  )  _______ Q / A   [ m   2  K / W]   (4)

where Ts is surface temperature and Ta is the air temperature, both in °C or °K. Q 
is power input (W) to maintain the surface (skin) temperature (Ts) of the manikin 
at a given set point; A is the surface area of the measurement in m2. These measures 
of Rt can then be converted to units of clo:

  1 clo = 6.45 ( I  T  )   (5)

Variable 
(unit)

Skin/surface 
temperature  

(Ts, °C)

Ambient 
temperature 

(Ta, °C)

Relative 
humidity 
(RH, %)

Wind 
velocity 

(V, ms−1)

Saturation 
(%)

Rt (m2 
K/W)

35 20 50 0.4 0

Ret (m2 
Pa/W)

35 35 40 0.4 100

Table 1. 
American Society for Testing and Materials standard chamber and manikin conditions for testing thermal (Rt) 
and evaporative (Ret) resistance.
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where IT is the total insulation including boundary air layers. Evaporative resis-
tance (Ret) is heat loss from the body in isothermal conditions (Ts ≈ Ta), described as:

   R  et   =    ( P  sat   −  P  a  )  _______ Q / A   [ m   2  Pa / W]   (6)

where Psat is vapor pressure in Pascal at the surface of the manikin (assumed 
to be fully saturated), and Pa is ambient vapor pressure, in Pascal, of the chamber 
environment. Measures of Ret can then be converted to a vapor permeability index 
(im), a non-dimensional measure of water vapor resistance of materials defined as:

                                  i  m   =   
60.6515   Pa ___ 

     °  C
    R  t  
 _____________________  R  et  

                                                         (7)

4.1.2 Wind effects on thermal and evaporative resistance

In order to use the biophysical measures, i.e., measures of Rt (clo) and Ret (im) 
for thermoregulatory modeling there is a need to first estimate the effects of wind 
velocity on the biophysical characteristics of the ensemble (i.e., to determine how 
wind affects clo and im values). These effects are typically referred to as wind 
velocity coefficients or gamma values (g) [91]. Historically, these coefficients were 
determined by collecting measurements of both Rt and Ret at multiple wind veloci-
ties above the ASTM standard of 0.4 m/s. However, recent work suggests these coef-
ficient values can be accurately estimated from single wind velocity tests [91, 92].

Clothing properties and wind coefficients are critical inputs to a number of 
predictive mathematical models [10, 11, 93, 94], as they use these values to describe 
wind-related effects, such as intrinsic insulation (Icl) and intrinsic permeability 
index (icl) for either the whole body or segments of the body, as seen with:

   I  cl   =  I  t   −  (   I  a   __ 
 f  cl  

  )   (8)

where Ia is insulation measured on a nude thermal manikin, It is total insulation, 
and (fcl) is clothing area factor, calculated by:

   f  cl   =   A ___  A  cl  
    (9)

where A (m2) is surface area of the nude manikin, and Acl (m2) is surface area 
the clothed manikin.

True measures of Acl require a three-dimensional scan. However, methods for 
estimating Acl have been derived by McCullough et al. [95]. Simplified or estimated 
Acl and fcl is often used where a value of 1 is assumed for warm-weather or indoor 
clothing. For cold-weather clothing a value would be calculated from:

   f  cl   = 1.0 + 0.3 ∙  I  cl    (10)

While these estimation methods have been studied and produce acceptable 
variance between estimated and direct measured results [96], there are questions 
whether estimates remain acceptable for clothing insulation outside typical cold 
weather clothing insulation ranges, e.g., 0.2–1.7 clo [97].

Most clothing-based thermal models, by design, predict human thermo-
regulatory responses to various environmental conditions and therefore require 
quantitative insights into the change in clothing properties with changes in wind 
velocity. Furthermore, elements of wind can significantly influence physiological 
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responses and injury outcomes in cold environments due to wind chill effects [69, 
98, 99]. There has been work to develop that relates exposure time to predicted 
injury (e.g., frostbite) likely to occur due to temperature and levels of wind speed 
exposure [98].

5. Modeling risk and predicting heat and cold related injuries

Mathematical models can predict the human thermal response (e.g., meta-
bolic heat production, core body temperature (Tc), endurance time) resulting 
from activity, environment, and clothing. These mathematical models are typi-
cally binned into one of three categories, either as rational, empirical, or hybrid. 
Rational (mechanistic) models mathematically represent phenomena based on an 
understanding of physics and physiology (biology, chemistry, physics). Empirical 
models mathematically reflect the observed relationship among experimental data. 
While both methods, rational and empirical, are scientifically valid approaches, 
perhaps the most effective approach is the hybrid or mixed model method that uses 
a combination of the two.

5.1 Rational models

Rational modeling incorporates equations that describe heat balance and thermo-
regulatory processes [100]. Two fundamental equations are used to describe internal 
heat balance and for heat exchange between skin and environment. One equation 
outlines the temperature gradient change from core to skin and can be seen as:

  ρc ∙   ∂T ___ ∂t   =  q  m   + λ ∙  ∇   2  T +  ω  bl   ∙  ρ  bl    c  bl   ∙  ( T  bl   − T)   [W  m   −3 ]   (11)

where  ρ  is tissue mass (kg m−3), c is the specific heat of the tissue (kJ kg−1 °C−1), 
T is the tissue temperature (°C),  t  is time (sec), qm is metabolic heat production rate 
(W m−3), λ is the tissue heat conductivity (W m−1 °C−1),   ∇   2   is a Laplace transform 
for heat conduction based on the tissue temperature gradient,   ω  bl    is blood flow rate 
(m3 s−1 m−3 tissue),   ρ  bl    is blood flow mass (kg m−3),   c  bl    is the blood specific heat (kJ 
kg−1 °C−1), and   T  bl    is the blood temperature (°C).

The second equation describes heat exchange from the skin surface to the 
environment as:

  − λ ∙   ∂T ___ ∂n   = R + C + K + E  [W  m   −2 ]   (12)

where λ is the tissue heat conductivity (W m−1 °C−1), T is tissue temperature 
(°C),  n  is the tissue coordinate normal to the skin surface; while the balance is the 
array of avenues of heat exchange (W m−2): R is radiative, C is convective, K is 
conductive, and E is evaporative.

Rational models of thermoregulatory processes usually include equations for the 
controlling signals of the thermoregulation system and equations for thermoregula-
tory actions such as sweating, vasodilation, vasoconstriction, and shivering.

Understanding the interplay between each of the different layers of the human 
(grossly consisting of core, muscle, fat, and skin) along with clothing and air 
layers within clothing is only the first step to modeling the human’s response in 
a given environment. Figure 4 shows the rational basis behind the SCENARIO 
model where the human is mathematically represented as one multi-layer cylinder, 
based on the relationship of the layers of the human, their respective physiological 
responses, and clothing [93, 94].
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where IT is the total insulation including boundary air layers. Evaporative resis-
tance (Ret) is heat loss from the body in isothermal conditions (Ts ≈ Ta), described as:

   R  et   =    ( P  sat   −  P  a  )  _______ Q / A   [ m   2  Pa / W]   (6)

where Psat is vapor pressure in Pascal at the surface of the manikin (assumed 
to be fully saturated), and Pa is ambient vapor pressure, in Pascal, of the chamber 
environment. Measures of Ret can then be converted to a vapor permeability index 
(im), a non-dimensional measure of water vapor resistance of materials defined as:

                                  i  m   =   
60.6515   Pa ___ 

     °  C
    R  t  
 _____________________  R  et  

                                                         (7)

4.1.2 Wind effects on thermal and evaporative resistance

In order to use the biophysical measures, i.e., measures of Rt (clo) and Ret (im) 
for thermoregulatory modeling there is a need to first estimate the effects of wind 
velocity on the biophysical characteristics of the ensemble (i.e., to determine how 
wind affects clo and im values). These effects are typically referred to as wind 
velocity coefficients or gamma values (g) [91]. Historically, these coefficients were 
determined by collecting measurements of both Rt and Ret at multiple wind veloci-
ties above the ASTM standard of 0.4 m/s. However, recent work suggests these coef-
ficient values can be accurately estimated from single wind velocity tests [91, 92].

Clothing properties and wind coefficients are critical inputs to a number of 
predictive mathematical models [10, 11, 93, 94], as they use these values to describe 
wind-related effects, such as intrinsic insulation (Icl) and intrinsic permeability 
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   I  cl   =  I  t   −  (   I  a   __ 
 f  cl  

  )   (8)

where Ia is insulation measured on a nude thermal manikin, It is total insulation, 
and (fcl) is clothing area factor, calculated by:

   f  cl   =   A ___  A  cl  
    (9)

where A (m2) is surface area of the nude manikin, and Acl (m2) is surface area 
the clothed manikin.

True measures of Acl require a three-dimensional scan. However, methods for 
estimating Acl have been derived by McCullough et al. [95]. Simplified or estimated 
Acl and fcl is often used where a value of 1 is assumed for warm-weather or indoor 
clothing. For cold-weather clothing a value would be calculated from:

   f  cl   = 1.0 + 0.3 ∙  I  cl    (10)

While these estimation methods have been studied and produce acceptable 
variance between estimated and direct measured results [96], there are questions 
whether estimates remain acceptable for clothing insulation outside typical cold 
weather clothing insulation ranges, e.g., 0.2–1.7 clo [97].

Most clothing-based thermal models, by design, predict human thermo-
regulatory responses to various environmental conditions and therefore require 
quantitative insights into the change in clothing properties with changes in wind 
velocity. Furthermore, elements of wind can significantly influence physiological 
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responses and injury outcomes in cold environments due to wind chill effects [69, 
98, 99]. There has been work to develop that relates exposure time to predicted 
injury (e.g., frostbite) likely to occur due to temperature and levels of wind speed 
exposure [98].

5. Modeling risk and predicting heat and cold related injuries

Mathematical models can predict the human thermal response (e.g., meta-
bolic heat production, core body temperature (Tc), endurance time) resulting 
from activity, environment, and clothing. These mathematical models are typi-
cally binned into one of three categories, either as rational, empirical, or hybrid. 
Rational (mechanistic) models mathematically represent phenomena based on an 
understanding of physics and physiology (biology, chemistry, physics). Empirical 
models mathematically reflect the observed relationship among experimental data. 
While both methods, rational and empirical, are scientifically valid approaches, 
perhaps the most effective approach is the hybrid or mixed model method that uses 
a combination of the two.

5.1 Rational models

Rational modeling incorporates equations that describe heat balance and thermo-
regulatory processes [100]. Two fundamental equations are used to describe internal 
heat balance and for heat exchange between skin and environment. One equation 
outlines the temperature gradient change from core to skin and can be seen as:

  ρc ∙   ∂T ___ ∂t   =  q  m   + λ ∙  ∇   2  T +  ω  bl   ∙  ρ  bl    c  bl   ∙  ( T  bl   − T)   [W  m   −3 ]   (11)

where  ρ  is tissue mass (kg m−3), c is the specific heat of the tissue (kJ kg−1 °C−1), 
T is the tissue temperature (°C),  t  is time (sec), qm is metabolic heat production rate 
(W m−3), λ is the tissue heat conductivity (W m−1 °C−1),   ∇   2   is a Laplace transform 
for heat conduction based on the tissue temperature gradient,   ω  bl    is blood flow rate 
(m3 s−1 m−3 tissue),   ρ  bl    is blood flow mass (kg m−3),   c  bl    is the blood specific heat (kJ 
kg−1 °C−1), and   T  bl    is the blood temperature (°C).

The second equation describes heat exchange from the skin surface to the 
environment as:

  − λ ∙   ∂T ___ ∂n   = R + C + K + E  [W  m   −2 ]   (12)

where λ is the tissue heat conductivity (W m−1 °C−1), T is tissue temperature 
(°C),  n  is the tissue coordinate normal to the skin surface; while the balance is the 
array of avenues of heat exchange (W m−2): R is radiative, C is convective, K is 
conductive, and E is evaporative.

Rational models of thermoregulatory processes usually include equations for the 
controlling signals of the thermoregulation system and equations for thermoregula-
tory actions such as sweating, vasodilation, vasoconstriction, and shivering.

Understanding the interplay between each of the different layers of the human 
(grossly consisting of core, muscle, fat, and skin) along with clothing and air 
layers within clothing is only the first step to modeling the human’s response in 
a given environment. Figure 4 shows the rational basis behind the SCENARIO 
model where the human is mathematically represented as one multi-layer cylinder, 
based on the relationship of the layers of the human, their respective physiological 
responses, and clothing [93, 94].



Autonomic Nervous System Monitoring - Heart Rate Variability

56

5.2 Empirical models

Empirical models are mathematical representations of data, often using 
statistical methods such as regression or correlational analysis. An example model 
is the Heat Strain Decision Aid (HSDA), empirically derived by the U.S. Army 
from an extensive database of human studies that incorporates the biophysics of 
heat exchange [10, 11, 101] and predicts core temperature, maximum work times, 
sustainable work-rest cycles, water requirements, and the estimated likelihood 
of heat casualties. This model has been used to derive guidance and doctrine for 
military [102] and fluid intake guidance for the public [103]. The basis of HSDA 
includes both principles of heat exchange along with empirical predictions of 
physiological responses. Collectively 16 inputs from four elements (individual 
characteristics, physical activity, clothing biophysics, and environmental condi-
tions) are used to mathematically predict the rise in core body temperature during 
physical activity [10].

5.3 Simple models

Originally developed by Holmér [104], a simple calculation was adopted by the 
International Organization Standardization (ISO) technical report (ISO 11079) 
[105], as an evaluation metric of the insulation required (IREQ ) for given environ-
ments and activities to compare ensemble performance. The IREQ method func-
tionally describes the concept for balancing the heat exchange between the human 
and the environment, and simplified as:

  M − W =  E  res   +  C  res   + E + K + R + C + S  (13)

where M is metabolic heat produced, W is effective mechanical work and 
collectively M-W represents the heat produced within the human; while the 
opposite side of this balance, Eres and Cres represent the respiratory heat exchange 
(evaporative and convective), and E, K, R, and C represent the conventional heat 
exchange methods (evaporative, conductive, radiative, and convective) and S is 
heat storage.

The IREQ equation illustrates the rational balance between thermal insulation 
and heat transfer, seen as:

  IREQ =     t ̄    sk   −  t  cl   _____ R + C    (14)

Figure 4. 
Fundamental rational basis (SCENARIO model) [93], reused with permission. Note: BFcr is core blood flow, 
BFmu is muscle blood flow, BFfat is muscle blood flow, BFsk is skin blood flow.

57

Modeling Thermoregulatory Responses to Cold Environments
DOI: http://dx.doi.org/10.5772/intechopen.81238

or more formally as:

  IREQ =     t ̄    sk   −  t  cl   _______________  M − W −  E  res   −  C  res   − E    (15)

where tsk is mean skin temperature, tcl clothing surface temperature, and  
M − W −  E  res   −  C  res   − E = R + C. 

This method also determines the minimum and neutral IREQ (IREQmin and 
IREQneutral), and describes amounts of insulation needed to maintain thermal balance 
(minimum) and to maintain an equilibrium balance (neutral). The ISO 11079 also outlines 
general scenarios for the minimum required insulation (IREQmin) for multiple work inten-
sities and environments. Collectively this method provides a simple method for evaluating 
the effectiveness of specific cold weather clothing at protecting from cold injuries [106].

5.4 Key elements for model development

When developing a cold-based thermal model there are a number of physiologi-
cal, environmental, and biophysical parameters that can and should be considered. 
Particular attention should be paid to the extremity temperatures blood flow and 
metabolic heat production.

5.4.1 Blood flow

As blood flow is a major component to the overall movement of heat, it is impor-
tant to be able to predict blood flow to the muscle, skin, and distribution of blood 
flow to these regions within the body. Table 2 outlines some historical methods 
used in models for predicting each of these elements.

5.4.2. Shivering

Shivering is where, in response to cold exposure, muscles involuntarily contract 
rhythmically off and on in an attempt to increase body temperature [74]. During 

Prediction Equation Units References

Cutaneous blood 
flow (  q  s   )

  q  s   =  q  s,r   ∙ AVD ∙ CVCM ∙ CVCL ∙ CVCE mL 100 mL 
tissue−1 min−1

[79, 
107–115]

Skin vasodilation 
(dilat)

 dilat =  β  dil,1   ∙ erro  r  1   +  β  dil,2   ∙  (warms − colds)  +  
β  dil,3   ∙ war  m  1   ∙ warms 

L h−1 [33]

Skin vasoconstriction 
(stric)

 stric =  β  str,1   ∙ erro  r  1   +  β  str,2   ∙  (warms − colds)  +  
β  str,3   ∙ col  d  1   ∙ colds 

L h−1 [33]

Skin blood flow ( b  f  s   )   bf  s   = 0.53 ∙ b  f  forearm   − 0.83 mL min−1 [116]

Local blood flow ( l  q  s   )   lq  s   =    q  s,r   +  γ  dil   ∙ dilat ___________ 1 +  γ  str   ∙ stric   ∙  Q  10    T− T  0   _____ 10    L h−1 [33]

Muscle blood flow 
(  q  m   )

  q  m   =  q  m,r   +  c  m   ∙ ∆  M  w   L h−1 [33]

Muscle blood flow 
( b  f  m   )

  bf  m   = 0.47 ∙ b  f  forearm   + 0.83 mL min−1 [116]

Note: qs and qs,r are skin blood flow and rate; AVD is active vasodilation; CVC is cutaneous vascular conductance—
addition of M (mediated), L (locally), and E (effect of exercise);  β dil and  β str are control coefficients for vasodilation 
and vasoconstriction; warms and colds refer to calculated net warm and cold receptors;  b  f  forearm    is blood flow at 
the forearm;   γ  dil    and   γ  str    are distribution coefficients for vasodilation and vasoconstriction; cm is a proportionality 
coefficient; and MW is metabolic heat produced from exercise.

Table 2. 
Methods for predicting skin blood flow in thermoregulatory models.
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5.2 Empirical models

Empirical models are mathematical representations of data, often using 
statistical methods such as regression or correlational analysis. An example model 
is the Heat Strain Decision Aid (HSDA), empirically derived by the U.S. Army 
from an extensive database of human studies that incorporates the biophysics of 
heat exchange [10, 11, 101] and predicts core temperature, maximum work times, 
sustainable work-rest cycles, water requirements, and the estimated likelihood 
of heat casualties. This model has been used to derive guidance and doctrine for 
military [102] and fluid intake guidance for the public [103]. The basis of HSDA 
includes both principles of heat exchange along with empirical predictions of 
physiological responses. Collectively 16 inputs from four elements (individual 
characteristics, physical activity, clothing biophysics, and environmental condi-
tions) are used to mathematically predict the rise in core body temperature during 
physical activity [10].

5.3 Simple models

Originally developed by Holmér [104], a simple calculation was adopted by the 
International Organization Standardization (ISO) technical report (ISO 11079) 
[105], as an evaluation metric of the insulation required (IREQ ) for given environ-
ments and activities to compare ensemble performance. The IREQ method func-
tionally describes the concept for balancing the heat exchange between the human 
and the environment, and simplified as:

  M − W =  E  res   +  C  res   + E + K + R + C + S  (13)

where M is metabolic heat produced, W is effective mechanical work and 
collectively M-W represents the heat produced within the human; while the 
opposite side of this balance, Eres and Cres represent the respiratory heat exchange 
(evaporative and convective), and E, K, R, and C represent the conventional heat 
exchange methods (evaporative, conductive, radiative, and convective) and S is 
heat storage.

The IREQ equation illustrates the rational balance between thermal insulation 
and heat transfer, seen as:

  IREQ =     t ̄    sk   −  t  cl   _____ R + C    (14)

Figure 4. 
Fundamental rational basis (SCENARIO model) [93], reused with permission. Note: BFcr is core blood flow, 
BFmu is muscle blood flow, BFfat is muscle blood flow, BFsk is skin blood flow.
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or more formally as:

  IREQ =     t ̄    sk   −  t  cl   _______________  M − W −  E  res   −  C  res   − E    (15)

where tsk is mean skin temperature, tcl clothing surface temperature, and  
M − W −  E  res   −  C  res   − E = R + C. 

This method also determines the minimum and neutral IREQ (IREQmin and 
IREQneutral), and describes amounts of insulation needed to maintain thermal balance 
(minimum) and to maintain an equilibrium balance (neutral). The ISO 11079 also outlines 
general scenarios for the minimum required insulation (IREQmin) for multiple work inten-
sities and environments. Collectively this method provides a simple method for evaluating 
the effectiveness of specific cold weather clothing at protecting from cold injuries [106].

5.4 Key elements for model development

When developing a cold-based thermal model there are a number of physiologi-
cal, environmental, and biophysical parameters that can and should be considered. 
Particular attention should be paid to the extremity temperatures blood flow and 
metabolic heat production.

5.4.1 Blood flow

As blood flow is a major component to the overall movement of heat, it is impor-
tant to be able to predict blood flow to the muscle, skin, and distribution of blood 
flow to these regions within the body. Table 2 outlines some historical methods 
used in models for predicting each of these elements.

5.4.2. Shivering

Shivering is where, in response to cold exposure, muscles involuntarily contract 
rhythmically off and on in an attempt to increase body temperature [74]. During 

Prediction Equation Units References

Cutaneous blood 
flow (  q  s   )

  q  s   =  q  s,r   ∙ AVD ∙ CVCM ∙ CVCL ∙ CVCE mL 100 mL 
tissue−1 min−1

[79, 
107–115]

Skin vasodilation 
(dilat)

 dilat =  β  dil,1   ∙ erro  r  1   +  β  dil,2   ∙  (warms − colds)  +  
β  dil,3   ∙ war  m  1   ∙ warms 

L h−1 [33]

Skin vasoconstriction 
(stric)

 stric =  β  str,1   ∙ erro  r  1   +  β  str,2   ∙  (warms − colds)  +  
β  str,3   ∙ col  d  1   ∙ colds 

L h−1 [33]

Skin blood flow ( b  f  s   )   bf  s   = 0.53 ∙ b  f  forearm   − 0.83 mL min−1 [116]

Local blood flow ( l  q  s   )   lq  s   =    q  s,r   +  γ  dil   ∙ dilat ___________ 1 +  γ  str   ∙ stric   ∙  Q  10    T− T  0   _____ 10    L h−1 [33]

Muscle blood flow 
(  q  m   )

  q  m   =  q  m,r   +  c  m   ∙ ∆  M  w   L h−1 [33]

Muscle blood flow 
( b  f  m   )

  bf  m   = 0.47 ∙ b  f  forearm   + 0.83 mL min−1 [116]

Note: qs and qs,r are skin blood flow and rate; AVD is active vasodilation; CVC is cutaneous vascular conductance—
addition of M (mediated), L (locally), and E (effect of exercise);  β dil and  β str are control coefficients for vasodilation 
and vasoconstriction; warms and colds refer to calculated net warm and cold receptors;  b  f  forearm    is blood flow at 
the forearm;   γ  dil    and   γ  str    are distribution coefficients for vasodilation and vasoconstriction; cm is a proportionality 
coefficient; and MW is metabolic heat produced from exercise.

Table 2. 
Methods for predicting skin blood flow in thermoregulatory models.
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cold exposure the shivering response is a critical element to model, as the produc-
tion of heat protects the body core temperature despite skin to the ambient heat 
loss. Table 3 outlines some of the modeling approaches that have been used to 
predict the shivering response as they relate to the total metabolic rate (M) and the 
heat production from shivering (Mshiv).

Prediction Equation Units References

Total shivering 
(TOTMshiv)

  = 300 ∙  ( T  h   −  T  h,set  )  + 1.35 ∙  (   ∑ m=1  14     W  a,m   ∙  (  q  s,m      ̇   −  q  s,set,m  )   
+ 75 ∙  (   ∑ m=1  14     W  a,m   ∙  ( T  s,m   −  T  s,set,m  )   

kcal h−1 [37]

Maximal 
shivering 
(Shivmax)

 = 30.5 + 0.348 ∙ V  O  2max   − 0.909 ∙ BMI − 0.233 ∙ age (yrs)  
mLO2 kg−1 

min−1
[37]

Metabolic rate 
of shivering 
(Mshiv)

 = 60 ∙  (36.6 −  T  ty  )  ∙  (34.1 −  T  s  )  
kcal h−1 [30]

Metabolic rate 
of shivering 
(Mshiv)

 = 36 ∙  (36.5 −  T  ty  )  ∙  (32.2 −  T  s  )  + 7 ∙  (32.2 −  T  s  )  
kcal h−1 [117]

Metabolic rate 
to open air 
(M1)

 = 41.31 − 57.77 ∙   d  T  s   ___ 
dt

   − 5.01 ∙  ( T  s   − 34)  
W m−2 [118]

Total metabolic 
rate (M2)

 = M1 +  (894.15 − 23.79 ∙  T  re  )  W m−2 [118]

Total metabolic 
rate (M)

 = 0.0314 ∙  ( T  s   − 42.4)  ∙  ( T  re   − 41.4)  W kg−1 [119]

Metabolic rate 
of shivering 
(Mshiv)

 =   155.5 ∙  (37 −  T  es  )  + 47 ∙  (33 −  T  s  )  − 1.57 ∙   (33 −  T  s  )    2     _________________________________  
 √ 

_____
 BF%  
   

W m−2 [120]

Note: T is temperature; h is head; set is set point of temperatures; Wa,m is a weighting coefficient; qs is heat flux s is 
skin; BMI is body mass index; ty is Tympanic membrane; re is rectal; and es is esophageal; BF% is body fat percentage.

Table 3. 
Methods for predicting shivering related model calculations.

Prediction Equation Units References

Metabolic rate

=1.44 + 1.94∙S0.43 + 0.24∙S4 W kg−1 [124]

=3.5 + 6∙S + 1.08∙S∙G mLO2 
kg−1 

min−1

[125]

=17.7–18.138∙S + 9.72∙S2 mLO2

kg−1 
min−1

[126]

=1.4 + 0.42∙G + 3.68∙S − 0.01∙M − 0.03∙Age W kg−1 [127]

=1.5∙M + 2∙(M + L)∙(L∙M−1)2 + η(M + L)
(1.5∙S2 + 0.35∙S∙G)

W [128]

=Ht∙(0.0136∙Ht − 0.375)−1∙(1.92∙S0.176–1.445) 
∙Wt∙105∙(0.82∙S2–3.94∙S + 9.66)

l O2 min−1 [129]

Note: G is grade (° for Ref. [125], % for others); Ht, height (inches for Ref. [129]); L, external load (kg); M, mass 
(kg); η, terrain factor; S, speed (mph for Ref. [129], m s−1 for others); VO2-rest, resting oxygen consumption (ml kg−1 
min−1); Wt, weight (lbs).

Table 4. 
Methods for predicting metabolic rates during walking or standing.
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5.4.3 Metabolic heat production

An individual’s metabolic heat production can be estimated at rest and during 
activity using the assumed basal rate of 58.2 W/m2 [121] and the estimated metabolic 
equivalents (METS) of activity; where 1 MET is resting. Ainsworth et al. [122] outlines 
a wide range of activities and their associated MET level for reference. However, there 
are metabolic rate estimation methods available based on energy costs of standing or 
walking (Table 4). Recently work has also been published that makes corrections to 
some of these prediction methods specific to traveling over snow terrain [123].

6. Summary and discussion

Mathematical models and decision aids are tools for inspiring advancements 
within the field of thermophysiology, and for providing solutions to help mitigate 
injury risk.

Scientifically based models have been used in the development of public [97, 
98, 103, 104, 130–132] and military guidance [75, 131, 133], for forensic assess-
ments [134–140], as well in the creation of operational tools for survival [141, 142]. 
Notably, the use of Xu and Werner’s six cylinder model [41] was used to develop 
the Probability of Survival Decision Aid (PSDA), a computer model used to predict 
hypothermia and dehydration impact on functional time (i.e., duration of ability 
for useful work), and survival time while exposed to marine environments [67, 143, 
144]. The PSDA model is underpinned by the rational principles described herein 
and the outputs are provided in a customized graphical user interface. This tool has 
been transitioned for use by Search and Rescue (SaR) personnel and continues to be 
refined and verified based on real-world feedback and data collected [144].

There is a need for continued advancement in the development of individual-
ized modeling methods such as finite element models as well as providing models 
and decision aids that can be used in dynamic settings and for complex scenarios 
with prolonged durations. Additionally, inclusion of probabilistic and statistically 
based risk factors should be used as elements that help improve individualized 
predictions. The accessibility of the information from these tools continues to be a 
challenge for the scientific community. While providing usable information to the 
public, military, and other user communities should be the ultimate goal of these 
work efforts; feedback from these communities should be translated back to the 
scientists to ensure relevant improvements are made from real-world information.
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cold exposure the shivering response is a critical element to model, as the produc-
tion of heat protects the body core temperature despite skin to the ambient heat 
loss. Table 3 outlines some of the modeling approaches that have been used to 
predict the shivering response as they relate to the total metabolic rate (M) and the 
heat production from shivering (Mshiv).
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Total shivering 
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kcal h−1 [117]

Metabolic rate 
to open air 
(M1)

 = 41.31 − 57.77 ∙   d  T  s   ___ 
dt

   − 5.01 ∙  ( T  s   − 34)  
W m−2 [118]

Total metabolic 
rate (M2)

 = M1 +  (894.15 − 23.79 ∙  T  re  )  W m−2 [118]

Total metabolic 
rate (M)

 = 0.0314 ∙  ( T  s   − 42.4)  ∙  ( T  re   − 41.4)  W kg−1 [119]

Metabolic rate 
of shivering 
(Mshiv)

 =   155.5 ∙  (37 −  T  es  )  + 47 ∙  (33 −  T  s  )  − 1.57 ∙   (33 −  T  s  )    2     _________________________________  
 √ 

_____
 BF%  
   

W m−2 [120]

Note: T is temperature; h is head; set is set point of temperatures; Wa,m is a weighting coefficient; qs is heat flux s is 
skin; BMI is body mass index; ty is Tympanic membrane; re is rectal; and es is esophageal; BF% is body fat percentage.

Table 3. 
Methods for predicting shivering related model calculations.

Prediction Equation Units References

Metabolic rate

=1.44 + 1.94∙S0.43 + 0.24∙S4 W kg−1 [124]

=3.5 + 6∙S + 1.08∙S∙G mLO2 
kg−1 

min−1

[125]

=17.7–18.138∙S + 9.72∙S2 mLO2

kg−1 
min−1

[126]

=1.4 + 0.42∙G + 3.68∙S − 0.01∙M − 0.03∙Age W kg−1 [127]

=1.5∙M + 2∙(M + L)∙(L∙M−1)2 + η(M + L)
(1.5∙S2 + 0.35∙S∙G)

W [128]

=Ht∙(0.0136∙Ht − 0.375)−1∙(1.92∙S0.176–1.445) 
∙Wt∙105∙(0.82∙S2–3.94∙S + 9.66)

l O2 min−1 [129]

Note: G is grade (° for Ref. [125], % for others); Ht, height (inches for Ref. [129]); L, external load (kg); M, mass 
(kg); η, terrain factor; S, speed (mph for Ref. [129], m s−1 for others); VO2-rest, resting oxygen consumption (ml kg−1 
min−1); Wt, weight (lbs).

Table 4. 
Methods for predicting metabolic rates during walking or standing.
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5.4.3 Metabolic heat production

An individual’s metabolic heat production can be estimated at rest and during 
activity using the assumed basal rate of 58.2 W/m2 [121] and the estimated metabolic 
equivalents (METS) of activity; where 1 MET is resting. Ainsworth et al. [122] outlines 
a wide range of activities and their associated MET level for reference. However, there 
are metabolic rate estimation methods available based on energy costs of standing or 
walking (Table 4). Recently work has also been published that makes corrections to 
some of these prediction methods specific to traveling over snow terrain [123].

6. Summary and discussion

Mathematical models and decision aids are tools for inspiring advancements 
within the field of thermophysiology, and for providing solutions to help mitigate 
injury risk.

Scientifically based models have been used in the development of public [97, 
98, 103, 104, 130–132] and military guidance [75, 131, 133], for forensic assess-
ments [134–140], as well in the creation of operational tools for survival [141, 142]. 
Notably, the use of Xu and Werner’s six cylinder model [41] was used to develop 
the Probability of Survival Decision Aid (PSDA), a computer model used to predict 
hypothermia and dehydration impact on functional time (i.e., duration of ability 
for useful work), and survival time while exposed to marine environments [67, 143, 
144]. The PSDA model is underpinned by the rational principles described herein 
and the outputs are provided in a customized graphical user interface. This tool has 
been transitioned for use by Search and Rescue (SaR) personnel and continues to be 
refined and verified based on real-world feedback and data collected [144].

There is a need for continued advancement in the development of individual-
ized modeling methods such as finite element models as well as providing models 
and decision aids that can be used in dynamic settings and for complex scenarios 
with prolonged durations. Additionally, inclusion of probabilistic and statistically 
based risk factors should be used as elements that help improve individualized 
predictions. The accessibility of the information from these tools continues to be a 
challenge for the scientific community. While providing usable information to the 
public, military, and other user communities should be the ultimate goal of these 
work efforts; feedback from these communities should be translated back to the 
scientists to ensure relevant improvements are made from real-world information.
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Chapter 5

Techniques to Reduce the 
Magnitude and Duration of 
Redistribution Hypothermia in 
Adults
Jonathan V. Roth

Abstract

While much effort has been devoted to correcting intraoperative hypothermia 
and documenting the adverse outcomes associated with hypothermia, less atten-
tion has been directed to preventing redistribution hypothermia in the first place. 
Methods currently exist that can reduce the magnitude of redistribution hypo-
thermia, but are not widely practiced. This chapter focuses on the pathophysiol-
ogy of redistribution hypothermia and the currently available methods that can 
be employed to reduce redistribution hypothermia. Additional promising, but 
currently unproven, methods are discussed. Since hypothermia causes adverse 
outcomes, it is anticipated that the reduction in redistribution hypothermia will 
improve patient outcome.

Keywords: redistribution hypothermia, hypothermia, perioperative hypothermia, 
intraoperative hypothermia, inhalation induction, anesthesia induction

1. Background

Hypothermia has multiple adverse consequences and should be avoided (Table 1) 
[1, 2]. The Anesthesia Patient Safety Foundation has recently reaffirmed that even mild 
hypothermia is associated with an increase in complications [3]. In studies assessing 
whether patients were hypothermic, typically the end-of-case temperature has been 
used for this determination and its association with complications. With the exception 
of one study where there was increased blood loss at 36.5°C [4], an increase in complica-
tions occurs when the end-of-case temperature is <36.0°C. However, there is increasing 
recognition that intraoperative temperature matters. The American College of Surgeons 
consider intraoperative hypothermia to be a modifiable risk factor for surgical site 
infections; they recommend the maintenance of intraoperative normothermia and the 
use of prewarming [5]. The 2017 Centers for Disease Control and Prevention (CDC) 
guidelines recommend maintenance of perioperative normothermia [6].

While much effort has been devoted to documenting adverse outcomes 
and correcting intraoperative hypothermia, relatively little attention has been 
directed to preventing intraoperative hypothermia in the first place. “Despite 
Active Warming, Hypothermia Is Routine in the First Hour of Anesthesia” 
was written on the cover of the February 2015 issue of Anesthesiology. In a 
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retrospective review, Sun et al. found 64% of 58,814 adult patients had a tem-
perature measurement under 36.0°C after 45 min [7]. Some hypothermia com-
plications occur intraoperatively (e.g., coagulopathy and increased transfusion 
requirements), some postoperatively (e.g., shivering and delayed emergence) 
and some likely both (e.g., infection risk). The contribution of intraoperative 
hypothermia to postoperative complications may often be unrecognized. For 
example, patients may have decreased immunologic defense against infection at 
the time of incision, that is, during the vulnerable period when infections can 
become established. It is plausible that, if redistribution hypothermia can be 
reduced, one may be able to reduce the intraoperative and postoperative compli-
cations associated with hypothermia, particularly in situations where patients 
are at increased risk of developing a greater degree of hypothermia or may have 
increased risk of hypothermia-associated complications (Table 2). End-of-case 
hypothermia implies intraoperative hypothermia. End-of-case normothermia 
does not imply intraoperative normothermia. A patient may have been hypo-
thermic intraoperatively, having suffered the consequences of intraoperative 
hypothermia, achieving normothermia only at the end of the case.

The body contains three thermal zones: the core (abdomen, thorax, and brain), 
the periphery (the extremities), and the skin. At rest, the core temperature is 37.0°C 
(36.5–37.5°C) and the periphery is 2–4°C cooler. The skin temperature can approach 
ambient temperature. At rest, most of the basal heat production occurs in the core. 
Heat travels from the core to the periphery to the skin and out to the environment. 
In the steady state, the rate of heat loss equals the rate of heat production, and the 
heat content of the body remains the same. Since temperature is just a measurement 
that reflects heat content, the temperature remains the same. The body normally 
maintains core temperature within a narrow range. Within limits, the periphery 
can act as a temperature buffer as it can add or lose heat, changing its temperature, 
while keeping the core temperature within a narrow range. The core temperature is 
the temperature that is physiologically most important [8].

There are behavioral (e.g., seeking an environment of a different temperature 
and changing clothing) and physiologic defenses to thermal challenges. Under 
anesthesia only the physiologic defenses are available. As one becomes too warm, 
the first physiologic defense is to vasodilate. If the temperature increases further, 

• Morbid cardiac events (ischemia, infarctions, arrhythmias, sympathetic activation)

• Surgical wound infection

• Coagulopathy, increased blood loss, increased transfusion requirements

• Patient discomfort, postoperative shivering

• More likely to require postoperative ventilation

• Adverse respiratory events in PACU

• Delayed wake-up

• Prolonged PACU stays

• Increased hospital length of stay

• Negative nitrogen balance

• Delayed wound healing

• Increased financial cost of care of hypothermia complications

• Failure to meet MACRA standard

Table 1.  
Complications of hypothermia.
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the patient perspires. As one cools, the first defense is to vasoconstrict. If the 
temperature decreases further, the patient shivers [9]. These physiologic defenses 
are impaired during anesthesia.

There is a large vascular supply to the periphery and skin, but at rest these ves-
sels are relatively vasoconstricted and there is relatively little blood flow. The blood 
flow to the periphery and skin can increase if these blood vessels vasodilate because 
of the administration of a vasodilator (or there is an increased metabolic need such 
as what occurs during physical activity). If pharmacologic-induced vasodilation 
occurs, the increased blood flow to the periphery transfers more heat from the 
core to the periphery and skin. As a result, the core’s temperature decreases while 
that of the periphery will increase. This process is called redistribution hypo-
thermia. Since heat only travels from higher to lower temperature (second law of 

Risk posed by postoperative hyperdynamic/tachycardic response to hypothermia

Coronary artery disease

Stenotic valvular heart disease

Dynamic obstructive cardiomyopathies

Increased risk or consequence of infection

Immunocompromised

Colon surgery

Foreign body placement (e.g., artificial joints)

Potential for large blood loss increased by hypothermia- induced coagulopathy

Spine surgery

Liver surgery

Prostate resection

Large exposure of tissues that have a propensity to bleed

Hypercarbia exacerbating hypothermia-induced coagulopathy

Increased risk of hypothermia due to patient characteristics

Elderly

Frail

Inability or delay in warming patient or environment

Lateral or prone positioning

Other prolonged positioning

Robotic surgery

Axillary-bifemoral artery bypass

Large surface area burn

Remote location with inability to adjust ambient temperature

Warming devices not available

Risk from hypothermia- induced vasoconstriction

Vascular surgery

Raynaud’s disease or syndrome

Free flap with arterial vascular anastomosis

Table 2. 
Examples of situations where patients are at increased risk of developing a greater degree of hypothermia or 
may have increased risk of hypothermia-associated complications.
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• Morbid cardiac events (ischemia, infarctions, arrhythmias, sympathetic activation)

• Surgical wound infection

• Coagulopathy, increased blood loss, increased transfusion requirements

• Patient discomfort, postoperative shivering

• More likely to require postoperative ventilation

• Adverse respiratory events in PACU

• Delayed wake-up

• Prolonged PACU stays

• Increased hospital length of stay

• Negative nitrogen balance

• Delayed wound healing

• Increased financial cost of care of hypothermia complications

• Failure to meet MACRA standard

Table 1.  
Complications of hypothermia.
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the patient perspires. As one cools, the first defense is to vasoconstrict. If the 
temperature decreases further, the patient shivers [9]. These physiologic defenses 
are impaired during anesthesia.

There is a large vascular supply to the periphery and skin, but at rest these ves-
sels are relatively vasoconstricted and there is relatively little blood flow. The blood 
flow to the periphery and skin can increase if these blood vessels vasodilate because 
of the administration of a vasodilator (or there is an increased metabolic need such 
as what occurs during physical activity). If pharmacologic-induced vasodilation 
occurs, the increased blood flow to the periphery transfers more heat from the 
core to the periphery and skin. As a result, the core’s temperature decreases while 
that of the periphery will increase. This process is called redistribution hypo-
thermia. Since heat only travels from higher to lower temperature (second law of 

Risk posed by postoperative hyperdynamic/tachycardic response to hypothermia

Coronary artery disease

Stenotic valvular heart disease

Dynamic obstructive cardiomyopathies

Increased risk or consequence of infection

Immunocompromised

Colon surgery

Foreign body placement (e.g., artificial joints)

Potential for large blood loss increased by hypothermia- induced coagulopathy

Spine surgery

Liver surgery

Prostate resection

Large exposure of tissues that have a propensity to bleed

Hypercarbia exacerbating hypothermia-induced coagulopathy

Increased risk of hypothermia due to patient characteristics

Elderly

Frail

Inability or delay in warming patient or environment

Lateral or prone positioning

Other prolonged positioning

Robotic surgery

Axillary-bifemoral artery bypass

Large surface area burn

Remote location with inability to adjust ambient temperature

Warming devices not available

Risk from hypothermia- induced vasoconstriction

Vascular surgery

Raynaud’s disease or syndrome

Free flap with arterial vascular anastomosis

Table 2. 
Examples of situations where patients are at increased risk of developing a greater degree of hypothermia or 
may have increased risk of hypothermia-associated complications.



Autonomic Nervous System Monitoring - Heart Rate Variability

74

thermodynamics), the heat in the periphery cannot be transferred back to the core. 
However, warming the periphery decreases the temperature gradient between the 
core and periphery. A smaller temperature gradient reduces the rate of heat transfer 
from the core [10]. Thus, more of the heat produced in the core will remain in the 
core, thus contributing to increasing the core temperature or decreasing the rate of 
core temperature decrease. If the periphery is warmed to a temperature greater than 
the core, heat can be transferred from the periphery to the core.

Propofol administration causes vasodilation and thus redistribution hypo-
thermia. Propofol inductions typically result in a decrease in core temperature of 
about 1.5°C [11–13]. While there is also heat loss to the environment (via con-
duction, convection, radiation, evaporation, and airway losses), redistribution 
hypothermia is the major reason for the core temperature decrease in the first 
15–60 min of an anesthetic. Although not specified in Sun’s results, because pro-
pofol is the most common method of anesthetic induction in developed nations, 
it is likely most of these patients were induced with intravenous propofol and can 
explain the 64% incidence hypothermia (core temperature < 36.0°C) found in 
his review [7].

With this understanding, the following physiologic strategies have been studied 
to reduce redistribution hypothermia: (1) reduce the increased blood flow to the 
periphery and skin, (2) prewarm the periphery and skin, (3) increase metabolic 
activity, and (4) warm the environment. This chapter will discuss actual and 
potential methods available to reduce the magnitude and duration of redistribution 
hypothermia in adults.

2. Studied methods to reduce redistribution hypothermia

2.1 Reducing the increased blood flow to the periphery and skin

2.1.1 Etomidate

Compared to propofol, etomidate inductions result in a lesser initial temperature 
drop (1.4 vs. 0.5°C) [12]. Because of the adrenal axis suppression resulting from 
etomidate [14], the author does not recommend using etomidate just for thermal 
stability. However, if etomidate is used for other indications, one would expect a 
thermal benefit.

2.1.2 Ketamine

Compared to propofol, ketamine inductions result in a lesser initial temperature 
drop (1.5 vs. 0.9°C) [13]. Because of the risk of emergence reactions and hallucina-
tions from an anesthetic dose of ketamine [15], the author does not recommend 
using ketamine just for thermal stability. However, if an anesthetic dose of ket-
amine is used for other indications, one would expect a thermal benefit.

2.1.3 Phenylephrine infusion

Ikeda et al. have demonstrated that a phenylephrine infusion of 0.5 mcg/kg/
min starting immediately before induction with 2.5 mg/kg propofol results in an 
initial lower temperature decrease compared to propofol after the first hour (1.2 vs. 
0.5°C decrease after 1 h) [16]. Presumably the vasoconstriction from phenylephrine 
opposes the vasodilation resulting from propofol administration. In addition, the 
patients who received the phenylephrine infusion maintained a higher mean arterial 
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blood pressure (83 ± 9 vs. 72 ± 8 mm Hg, mean ± SD). (It seems plausible that any 
technique discussed in this section that reduces vasodilation has the potential to 
accrue an additional benefit of reducing induction-associated hypotension. This 
hypothesis requires investigation.)

2.1.4 Phenylephrine bolus

A 160 mcg bolus of phenylephrine immediately prior to 2.2 mg/kg propofol 
reduces the mean decrease in core temperature by about 0.43°C in the first hour than 
those who did not receive the phenylephrine bolus [17, 18]. While redistribution 
hypothermia can continue for up to 3 h, a large part of the temperature decrease 
occurs within the first 15 min. The vasoconstricting effect of a bolus of phenyleph-
rine lasts sufficiently long to oppose much of the maximal vasodilation resulting 
from propofol induction. While most patients decrease their blood pressure after 
propofol administration, the bolus phenylephrine reduced the incidence of propofol-
induced hypotension from 98 to 58% [17, 18]. While generally effective, the 160 mcg 
dose was used on all patients in this study but may not be optimal. Some patients 
still became hypotensive (systolic BP < 85 mm Hg), and 1 patient in this group of 
50 patients increased the systolic blood pressure to >180 mm Hg [17, 18]. It remains 
to be determined if a weight-based dose could be found that further reduces the 
incidence of hypotension, avoids dangerous hypertension, and still maintains the 
thermal benefit.

2.1.5 Inhalation inductions

Ikeda et al. demonstrated less core hypothermia when anesthesia is induced 
with inhaled sevoflurane than with intravenous propofol (1.5 vs. 0.8 °C decrease 
after 1 h) [11]. This study of 10 patients in each group was done at a time when the 
concept of redistribution hypothermia was still in development and the harmful 
effects of even mild hypothermia were not as well appreciated as they are today. A 
recent study (50 patients in each of six groups) replicated and strengthened these 
findings [17, 18]. Inhalation inductions of 8% sevoflurane in either 100% oxygen 
or 50% oxygen/50% nitrous oxide resulted in a higher mean temperature by about 
0.5°C than those who received 2.2 mg/kg propofol in patients aged 18–55 years 
[17, 18]. Inhalation inductions were also found effective in reducing redistribution 
hypothermia in older (56–88 years, mean 67.2 years) patients. Elderly patients 
have an increased risk for hypothermia [19–21] for reasons that include decreased 
metabolic activity, decreased muscle mass, an impaired vasoconstriction response, 
and an impaired shivering response. A previous study also concluded that inhala-
tion induction is more hemodynamically stable than IV propofol inductions [22]. 
In contrast to propofol inductions where significant hypotension can occur imme-
diately, an inhalation induction typically causes a more gradual decrease in blood 
pressure which can be treated before severe hypotension develops.

In adults, anesthetic inductions are achieved most commonly by intravenous, 
not inhalation, inductions for reasons that include inhalation inductions take extra 
time, room contamination with anesthetic gases, and possible patient dissatisfac-
tion. An inhalation induction takes 1–2 min longer than an intravenous induction 
[17, 18] and that lost time may be recovered by a quicker wake-up because of the 
patient being warmer. However, Muzi et al. demonstrated that the speed of inhala-
tion induction approached that of an intravenous induction using a primed circuit 
[23]. Although many anesthesia practitioners may assume patients would not want 
the inhalation technique, when offered a choice, 50% chose an inhalation induction, 
33% chose IV induction, and 17% were undecided [24].
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blood pressure (83 ± 9 vs. 72 ± 8 mm Hg, mean ± SD). (It seems plausible that any 
technique discussed in this section that reduces vasodilation has the potential to 
accrue an additional benefit of reducing induction-associated hypotension. This 
hypothesis requires investigation.)

2.1.4 Phenylephrine bolus

A 160 mcg bolus of phenylephrine immediately prior to 2.2 mg/kg propofol 
reduces the mean decrease in core temperature by about 0.43°C in the first hour than 
those who did not receive the phenylephrine bolus [17, 18]. While redistribution 
hypothermia can continue for up to 3 h, a large part of the temperature decrease 
occurs within the first 15 min. The vasoconstricting effect of a bolus of phenyleph-
rine lasts sufficiently long to oppose much of the maximal vasodilation resulting 
from propofol induction. While most patients decrease their blood pressure after 
propofol administration, the bolus phenylephrine reduced the incidence of propofol-
induced hypotension from 98 to 58% [17, 18]. While generally effective, the 160 mcg 
dose was used on all patients in this study but may not be optimal. Some patients 
still became hypotensive (systolic BP < 85 mm Hg), and 1 patient in this group of 
50 patients increased the systolic blood pressure to >180 mm Hg [17, 18]. It remains 
to be determined if a weight-based dose could be found that further reduces the 
incidence of hypotension, avoids dangerous hypertension, and still maintains the 
thermal benefit.

2.1.5 Inhalation inductions

Ikeda et al. demonstrated less core hypothermia when anesthesia is induced 
with inhaled sevoflurane than with intravenous propofol (1.5 vs. 0.8 °C decrease 
after 1 h) [11]. This study of 10 patients in each group was done at a time when the 
concept of redistribution hypothermia was still in development and the harmful 
effects of even mild hypothermia were not as well appreciated as they are today. A 
recent study (50 patients in each of six groups) replicated and strengthened these 
findings [17, 18]. Inhalation inductions of 8% sevoflurane in either 100% oxygen 
or 50% oxygen/50% nitrous oxide resulted in a higher mean temperature by about 
0.5°C than those who received 2.2 mg/kg propofol in patients aged 18–55 years 
[17, 18]. Inhalation inductions were also found effective in reducing redistribution 
hypothermia in older (56–88 years, mean 67.2 years) patients. Elderly patients 
have an increased risk for hypothermia [19–21] for reasons that include decreased 
metabolic activity, decreased muscle mass, an impaired vasoconstriction response, 
and an impaired shivering response. A previous study also concluded that inhala-
tion induction is more hemodynamically stable than IV propofol inductions [22]. 
In contrast to propofol inductions where significant hypotension can occur imme-
diately, an inhalation induction typically causes a more gradual decrease in blood 
pressure which can be treated before severe hypotension develops.

In adults, anesthetic inductions are achieved most commonly by intravenous, 
not inhalation, inductions for reasons that include inhalation inductions take extra 
time, room contamination with anesthetic gases, and possible patient dissatisfac-
tion. An inhalation induction takes 1–2 min longer than an intravenous induction 
[17, 18] and that lost time may be recovered by a quicker wake-up because of the 
patient being warmer. However, Muzi et al. demonstrated that the speed of inhala-
tion induction approached that of an intravenous induction using a primed circuit 
[23]. Although many anesthesia practitioners may assume patients would not want 
the inhalation technique, when offered a choice, 50% chose an inhalation induction, 
33% chose IV induction, and 17% were undecided [24].
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Inhalation inductions are not for everyone. Medical contraindications would 
include concern of increased intracranial pressure, indication for hypothermia, 
contraindication to hyperthermia (e.g., multiple sclerosis), increased aspiration 
risk, unfavorable airway anatomy, and patient fear of face masks. Since patients 
may lighten more rapidly when the face mask is removed for endotracheal intuba-
tion than with propofol, it may be prudent to avoid inhalation inductions when 
intubation may be a more prolonged process as there may potentially be an 
increased risk of awareness than a propofol induction. Examples would include 
inserting double-lumen tubes or training novice laryngoscopists.

However, there are additional potential benefits to preforming inhalation induc-
tions. First, there will be no pain on propofol injection. Second, trainees will get more 
practice with airway management. In current practice, most patients after IV induc-
tion immediately receive a laryngeal mask airway (LMA) or endotracheal intubation. 
Third, future propofol shortages can be mitigated by employing inhalation inductions. 
Fourth, LMAs may be easier to insert while patients are breathing spontaneously as the 
airway tends to open during inspiration and there is less of an obstruction to proper 
LMA positioning than a totally collapsed airway one typically gets after IV propofol 
inductions. Fifth, there will be less second-hand exposure to propofol, currently a 
candidate factor in propofol addiction. Sixth, inhalation inductions may be a superior 
alternative over other induction agents to patients with allergies to propofol. Seventh, 
with intravenous inductions, atelectasis develops very quickly. One would expect that 
with spontaneous ventilation, there may be less atelectasis, but this will need to be 
studied. In patients breathing spontaneously via an LMA after IV propofol induction, 
one does not have to manage a patient who becomes apneic, thus eliminating extra 
tasks and saving time while starting a case. Lastly, propofol supports bacterial growth 
[25]. There is an increased number of colony-forming units in the stopcocks of patients 
who received propofol (10× at 24 h and >100× at 48 h) compared to those who did not 
[26]. While it is not established that this is a cause of increased infections, the avoid-
ance of propofol would eliminate this as a concern. Removing the stopcocks could also 
address this concern but that adds cost and likely would not be universally done.

2.1.6 Nitrous oxide

Previous work suggests an ongoing thermal benefit to using nitrous oxide. 
Ozaki et al. found nitrous oxide impairs thermoregulation less than sevoflurane or 
isoflurane [27]. The threshold for vasoconstriction was 35.8 ± 0.3°C (mean ± SD) in 
the patients given 50% nitrous oxide combined with 0.5 MAC sevoflurane, which 
was statistically significantly greater than that in those given 1.0 MAC sevoflurane: 
35.1 ± 0.4°C. Similarly, the threshold for vasoconstriction was 35.9 ± 0.3°C in the 
patients given 60% nitrous oxide combined with 0.5 MAC isoflurane, which was 
statistically significantly greater than that in those given 1.0 MAC isoflurane: 
35.0 ± 0.5°C. The use of nitrous oxide allows for the thermal defense of vasocon-
striction to activate before the patient becomes more hypothermic.

Nitrous oxide has been under challenge for several decades. Two of the rea-
sons why nitrous oxide has been out of favor with many practitioners have been 
the concern of major cardiovascular morbidity and mortality and an increased 
risk of surgical site infections (SSI). In combination with another retrospective 
study of 49,016 patients where nitrous oxide use was associated with decreased 
30-day mortality and decreased in-hospital mortality/morbidity, the results of the 
ENIGMA II have essentially eliminated these concerns [28–31]. ENIGMA II con-
cludes “Our findings support the safety profile of nitrous oxide use in major non-
cardiac surgery. Nitrous oxide did not increase the risk of death and cardiovascular 
complications or surgical site infection, the emetogenic effect of nitrous oxide can 
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be controlled with antiemetic prophylaxis, and a desired effect of reduced volatile 
agent use was shown.” [4] The other major reason for not using nitrous oxide has 
been the concern for postoperative nausea and vomiting (PONV). If a patient has 
been administered an antiemetic, there is a small nonsignificant increased risk of 
severe PONV. ENIGMA II concludes “Nitrous oxide increases the risk of severe 
PONV by only a small percentage, and the increased risk is essentially eliminated by 
antiemetic drug prophylaxis. Concern about severe PONV thus does not appear to 
be a valid reason to avoid nitrous oxide.”

Except for potential environmental concerns, there is little reason not to use 
nitrous oxide in cases that are not of long duration (>4–6 h) unless there are physi-
cal contraindications (e.g., gas space expansion). Besides from its potential thermal 
benefit, nitrous oxide has been shown to reduce chronic pain in specific populations 
(Asians and other patients with variants in the methylenetetrahydrofolate reductase 
gene) [32]. The United States is in the midst of an opioid epidemic. The major-
ity of heroin users got their start from medically prescribed opioids [33]. Nitrous 
oxide also has analgesic efficacy and may reduce intraoperative opioid use. Further 
research is needed, but the possibility of reducing chronic pain and intraoperative 
opioid use may have benefit in combatting the opioid epidemic [34].

2.2 Prewarm the periphery and skin

Prewarming is the active warming of the body surface, often via forced-air 
warming, prior to induction of general or central neuraxial anesthesia. It is currently 
the most effective method of reducing redistribution hypothermia. It has been 
extensively studied, and, in addition to demonstrating warmer core temperatures, 
improved outcomes (decreased blood loss, transfusion requirement, and infection 
rate) have been demonstrated. (A recent chapter reviews much of the relevant detail 
and will not be repeated here [10]. A small representative sample of studies are listed 
[35–39].) Prewarming is fundamentally different from all other techniques in that it’s 
the only technique that exogenously adds heat content to the patient. However, the 
technique is not universally used [40]. Obstacles to its use include (1) requirement of 
space, equipment, supplies, and personnel time, (2) change in the pattern of patient 
flow, (3) patient refusal or intolerance, (4) requirement of cleaning if reusable 
equipment is utilized, (5) insufficient availability of a power supply, (6) requirement 
to train personnel, (7) bypass of the holding area, (8) additional equipment mainte-
nance requirement, and (9) inadequate knowledge of the value of prewarming [10].

Prewarming works by adding heat content to the periphery. This decreases 
the temperature gradient between core and periphery and thus decreases the 
heat transfer and redistribution hypothermia. Any method that can increase the 
peripheral temperature will reduce redistribution hypothermia. Any event that 
decreases peripheral temperature will increase redistribution. Thus, all reasonable 
efforts should be made to keep the periphery warm before induction of anesthesia. 
After application of forced-air warming, it will take time (usually 30 min) until an 
increase in core temperature occurs [41, 42]. This delay occurs because the periph-
ery needs to be warmed before there is a significant effect on core temperature.

The efficacy of prewarming can be limited by sweating, thermal discomfort, 
and efficacy of the warming device. Sessler et al. found that 30 min of prewarming 
increased peripheral tissue heat content by more than the amount normally dis-
tributed during the first hour of anesthesia [43]. Since there are other and ongoing 
mechanisms of heat loss, prewarming more than 30 min will likely benefit many 
patients. However, if it is difficult to arrange for 30+ min of prewarming or the 
patient does not tolerate the longer durations, even 10–20 min of prewarming is 
effective in reducing hypothermia and shivering [44].
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be controlled with antiemetic prophylaxis, and a desired effect of reduced volatile 
agent use was shown.” [4] The other major reason for not using nitrous oxide has 
been the concern for postoperative nausea and vomiting (PONV). If a patient has 
been administered an antiemetic, there is a small nonsignificant increased risk of 
severe PONV. ENIGMA II concludes “Nitrous oxide increases the risk of severe 
PONV by only a small percentage, and the increased risk is essentially eliminated by 
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Except for potential environmental concerns, there is little reason not to use 
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oxide also has analgesic efficacy and may reduce intraoperative opioid use. Further 
research is needed, but the possibility of reducing chronic pain and intraoperative 
opioid use may have benefit in combatting the opioid epidemic [34].
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equipment is utilized, (5) insufficient availability of a power supply, (6) requirement 
to train personnel, (7) bypass of the holding area, (8) additional equipment mainte-
nance requirement, and (9) inadequate knowledge of the value of prewarming [10].

Prewarming works by adding heat content to the periphery. This decreases 
the temperature gradient between core and periphery and thus decreases the 
heat transfer and redistribution hypothermia. Any method that can increase the 
peripheral temperature will reduce redistribution hypothermia. Any event that 
decreases peripheral temperature will increase redistribution. Thus, all reasonable 
efforts should be made to keep the periphery warm before induction of anesthesia. 
After application of forced-air warming, it will take time (usually 30 min) until an 
increase in core temperature occurs [41, 42]. This delay occurs because the periph-
ery needs to be warmed before there is a significant effect on core temperature.

The efficacy of prewarming can be limited by sweating, thermal discomfort, 
and efficacy of the warming device. Sessler et al. found that 30 min of prewarming 
increased peripheral tissue heat content by more than the amount normally dis-
tributed during the first hour of anesthesia [43]. Since there are other and ongoing 
mechanisms of heat loss, prewarming more than 30 min will likely benefit many 
patients. However, if it is difficult to arrange for 30+ min of prewarming or the 
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Because of redistribution hypothermia, ideally, every patient undergoing general 
or neuraxial anesthesia should be prewarmed [45, 46]. If the patient receives just a 
peripheral nerve block, there is little risk of hypothermia. Prewarming (and forced-air 
warming) should not be applied over ischemic limbs. Normally when there is heat 
transfer to an area of the body, blood circulation removes the heat from that area, thus 
decreasing the local temperature. If there is impaired blood flow, it is possible that 
the heat accumulation from prewarming or intraoperative forced-air warming could 
cause tissue damage. (In therapeutic hyperthermia, temperatures >42.0°C have been 
associated with tissue damage such as fat necrosis [47].) For similar reasons, forced-air 
warming over the lower extremities should be turned off during aortic cross-clamping. 
Also, in theory, there may be more risk of cell death from warming ischemic tissue 
because of the resulting increase in metabolic oxygen demand in combination with the 
impaired blood supply. It may be prudent to avoid prewarming when there is a contra-
indication to hyperthermia (e.g., risk of neurologic ischemia and pregnancy).

There is no data to guide the decision to use prewarming on patients who are 
hyperthermic preoperatively. Patients are hyperthermic because either (1) their 
cooling mechanisms have been overwhelmed as that which occurs in heat exhaus-
tion or heatstroke (nonfebrile hyperthermia) or (2) they have an elevated tempera-
ture set point as occurs with many infections (febrile hyperthermia). The nonfebrile 
patients probably should be allowed to have their core temperature normalized 
and thus probably should not be prewarmed. It has been suggested that the febrile 
patients should be allowed to remain hyperthermic intraoperatively [48]. There is 
overwhelming evidence that fever is part of a coordinated defense system [49, 50]. 
The lines of evidence include evolutionary, correlative, antipyretic, and hyperther-
mia/hypothermia studies [49]. For example, infectious illnesses in animals are of 
longer duration, and mortality rates increase if the fever is treated [49]. Some of 
the enzymes in the immune system have a temperature optima in the febrile range. 
In addition, if the temperature of these patients decrease to below their elevated 
temperature set point and the set point does not change during the anesthetic, then 
these patients will behave postoperatively as though they are hypothermic (e.g., 
increasing metabolism and cardiac output, shivering), even if their temperature is 
>37.0°C. Thus, although unproven, there is reason to maintain the febrile hyper-
thermia intraoperatively. It is an unanswered question as to whether these patients 
should be prewarmed.

2.3 Increase metabolic activity

2.3.1 Amino acid administration

The preoperative administration of amino acids increases metabolic heat 
production and leads to the release of insulin and leptin resulting in a mean tem-
perature increase of 0.46°C [51]. These hormones may also affect central thermo-
regulation. If amino acid infusion is started after hypothermia develops, rewarming 
is not augmented [52]. It is possible that the amino acid-induced increase in 
cardiopulmonary demands may be problematic in frail patients and those with 
reduced cardiopulmonary reserve. Since there is limited evidence, this technique is 
considered experimental.

2.3.2 Fructose administration

The preoperative administration of fructose increases metabolic heat production 
and affects central thermoregulation [53]. However, in patients with hereditary 
fructose intolerance (HFI), the infusion of fructose can lead to liver damage, kidney 
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damage, convulsions, and death. HFI often goes undiagnosed. The prevalence of 
HFI is estimated at 1 in 20,000, similar to the incidence of malignant hyperthermia 
events.

2.4 Warming the environment

As discussed above, anything that is practical and can be done to keep the 
patient warmer will likely result in the periphery remaining warmer and thus less 
redistribution. There is often a difference of opinion among various operating 
room personnel as to what temperature of the operating room should be. A cooler 
environment will increase the rate of heat loss from the patient. With the resultant 
decrease in peripheral heat content, the magnitude of redistribution hypothermia 
will be greater [8].

There are five methods of heat loss (conduction, convection, radiation, evapora-
tion, and loss via the airway). Radiation and convection losses are most important 
[54]. One of the major determinants of radiative heat loss is the temperature 
difference between the radiator (i.e., the patient) and the environment. A greater 
temperature difference will result in a greater heat loss. Another major determinant 
is the absorption/reflection properties of the environment. The author is unaware 
of any clinical data regarding these factors.

Convection refers to heat transfer resulting from the bulk movement of a fluid 
(i.e., gas or liquid). A patient will transfer heat to warm the air immediately around 
him or herself. Convective airflow will move this warm air away from the patient 
and replace it with cooler ambient air. Thus, heat loss will continue to warm the 
newly adjacent cool air. The cooler the adjacent air, the greater the rate of heat loss 
from the patient.

Surgeons generally prefer a cooler room because they are working, are under 
lights that may emit heat, may be under stress, are gowned, may be in physical con-
tact with other personnel, and may also be wearing lead aprons. An uncomfortable 
surgeon may not work at his/her best and may drip perspiration into the surgical 
wound. With modern operating rooms where the air is replaced many times an 
hour, the temperature can be adjusted within minutes. Thus, a reasonable compro-
mise would be to keep the operating room warm until the patient is prepped and 
draped and then cool the room for the benefit of the surgical team. Once the patient 
is draped, convective losses are reduced except from the surgical wound.

3. Candidate methods to reduce redistribution hypothermia

Unfortunately, none of the abovementioned techniques fully solves the redistri-
bution hypothermia problem. It is plausible that either reducing propofol dosages 
or combining techniques may provide additional thermal benefit. The following 
techniques show promise but require formal investigation:

1. Ketamine in analgesic doses is commonly used as part of a multimodal analge-
sia strategy. It is plausible that reducing the propofol dose by an analgesic dose 
of ketamine would reduce the magnitude of redistribution hypothermia. The 
induction dose of propofol (2.2 mg/kg) is similar in mg to the induction dose 
of ketamine (2 mg/kg). Reducing the propofol dose by 30 mg and replacing it 
with 30 mg ketamine seems reasonable.

2. Kazama et al. found that patients can be induced with a reduced total dose of 
propofol and with less hypotension when diluted propofol was administered 
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damage, convulsions, and death. HFI often goes undiagnosed. The prevalence of 
HFI is estimated at 1 in 20,000, similar to the incidence of malignant hyperthermia 
events.

2.4 Warming the environment

As discussed above, anything that is practical and can be done to keep the 
patient warmer will likely result in the periphery remaining warmer and thus less 
redistribution. There is often a difference of opinion among various operating 
room personnel as to what temperature of the operating room should be. A cooler 
environment will increase the rate of heat loss from the patient. With the resultant 
decrease in peripheral heat content, the magnitude of redistribution hypothermia 
will be greater [8].

There are five methods of heat loss (conduction, convection, radiation, evapora-
tion, and loss via the airway). Radiation and convection losses are most important 
[54]. One of the major determinants of radiative heat loss is the temperature 
difference between the radiator (i.e., the patient) and the environment. A greater 
temperature difference will result in a greater heat loss. Another major determinant 
is the absorption/reflection properties of the environment. The author is unaware 
of any clinical data regarding these factors.

Convection refers to heat transfer resulting from the bulk movement of a fluid 
(i.e., gas or liquid). A patient will transfer heat to warm the air immediately around 
him or herself. Convective airflow will move this warm air away from the patient 
and replace it with cooler ambient air. Thus, heat loss will continue to warm the 
newly adjacent cool air. The cooler the adjacent air, the greater the rate of heat loss 
from the patient.

Surgeons generally prefer a cooler room because they are working, are under 
lights that may emit heat, may be under stress, are gowned, may be in physical con-
tact with other personnel, and may also be wearing lead aprons. An uncomfortable 
surgeon may not work at his/her best and may drip perspiration into the surgical 
wound. With modern operating rooms where the air is replaced many times an 
hour, the temperature can be adjusted within minutes. Thus, a reasonable compro-
mise would be to keep the operating room warm until the patient is prepped and 
draped and then cool the room for the benefit of the surgical team. Once the patient 
is draped, convective losses are reduced except from the surgical wound.

3. Candidate methods to reduce redistribution hypothermia

Unfortunately, none of the abovementioned techniques fully solves the redistri-
bution hypothermia problem. It is plausible that either reducing propofol dosages 
or combining techniques may provide additional thermal benefit. The following 
techniques show promise but require formal investigation:

1. Ketamine in analgesic doses is commonly used as part of a multimodal analge-
sia strategy. It is plausible that reducing the propofol dose by an analgesic dose 
of ketamine would reduce the magnitude of redistribution hypothermia. The 
induction dose of propofol (2.2 mg/kg) is similar in mg to the induction dose 
of ketamine (2 mg/kg). Reducing the propofol dose by 30 mg and replacing it 
with 30 mg ketamine seems reasonable.

2. Kazama et al. found that patients can be induced with a reduced total dose of 
propofol and with less hypotension when diluted propofol was administered 
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as an infusion [55]. It is plausible that, by using less propofol, there would be a 
lesser amount of redistribution hypothermia (and less hypotension).

3. A blended propofol-inhalation induction would utilize less propofol and thus 
potentially reduce redistribution hypothermia.

4. Combining prewarming with any of the other techniques (e.g., prewarming 
and inhalation induction, prewarming and phenylephrine prior to propofol).

5. Combining prophylactic phenylephrine with inhalation inductions.

4. Summary

At this time, prewarming is the most studied and likely the most effective 
method of reducing redistribution hypothermia, and improved outcomes have been 
documented. Unfortunately, it is not universally used. Given the priority of operat-
ing room expediency, either inhalation inductions or prophylactic administration of 
bolus phenylephrine are practical and can be used in virtually every anesthetizing 
location. Even though these techniques have been demonstrated to reduce redistri-
bution hypothermia, and post-induction temperatures are similar to what one sees 
after prewarming and a propofol induction, we can only anticipate but not yet infer 
the same improved outcomes will accrue. Although a strong correlation of adverse 
outcomes and hypothermia has been documented in numerous studies, an outcome 
study is needed. Inhalation inductions or prophylactic administration of phenyleph-
rine reduces redistribution hypothermia by reducing vasoconstriction; they do not 
add heat content. Prewarming reduces redistribution hypothermia by warming the 
periphery and adds heat content to the patient. Because the periphery needs to get 
warmed before forced-air warming increases the core temperature, it is likely that 
prewarmed patients will rewarm more rapidly, which is likely beneficial.

It is important to keep the operating room warm until the patient is prepped and 
draped. The temperature of a modern operating room can be decreased rapidly for 
the comfort of the operating room personnel. Putting a warm blanket on a patient 
as he/she enters a cold operating room does little to rewarm a patient. The skin 
temperature receptors have a disproportionate influence on the hypothalamus. The 
warm blanket may make the patient feel warmer, but the patient may still have lost 
significant heat content to the cool environment.

Besides from thermal benefits, financial benefits may accrue from reducing 
redistribution hypothermia. In the United States, the new Medicare Access and 
CHIP Reauthorization Act of 2015 (MACRA) temperature target (35.5°C) may now 
be easier to achieve [56]. Avoidance of unpleasant side effects (e.g., shivering) may 
result in less patient dissatisfaction. Reducing hypothermia-associated complica-
tions will reduce costs.
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Heart Rate Variability as 
Biomarker for Prognostic of 
Metabolic Disease
Alondra Albarado-Ibañez, Rosa Elena Arroyo-Carmona, 
Daniela Alexandra Bernabé-Sánchez, Marissa Limón-Cantú, 
Benjamín López-Silva, Martha Lucía Ita-Amador  
and Julián Torres-Jácome

Abstract

Lifestyle emerging diseases like obesity, metabolic syndrome (MeS), and diabe-
tes mellitus are considered high-risk factors for lethal arrhythmias and side effects. 
A Poincaré plot is constructed with the time series of RR and PP electrocardiogram 
(ECG) intervals, using two stages: the new phase and the old phase. We proposed 
this diagram of two dimensions, a way to quantify and observe the regularity of 
events in space and time. Therefore, the heart rate variability (HRV) can be used as 
a biomarker for early prognostic and diagnostic of several metabolic diseases; addi-
tionally, this biomarker is obtained by a noninvasive tool like the electrocardiogram.

Keywords: Poincaré plot, heart rate variability, metabolism, biomarker

1. Introduction

The biological phenomena could be explained by classical physics, and most of 
these phenomena are characterized by cycles. Usually, the time period required to 
“complete a cycle” is not constant. The study of time period fluctuations represents 
a way to assess interactions between other systems and the intrinsic properties of 
the same system.

The light/dark cycle (circadian rhythm) and the cyclic seasons that divide the 
year by changes on weather, ecology, and hour of daylight allowed the evolution 
of life on earth [1]. These series of events have influenced the organisms inducing 
cycles that are essential for life (hormonal, organ function, behavior, production 
of neurotransmitters, reproduction, and others); all cycles are fluctuations related 
to several biological phenomena. The study and knowledge of the fluctuations of 
biological phenomena are valuable to analyze the intrinsic properties of a system 
and the interaction with other cyclic systems [2].

The quantification of biological variability has been used to study several 
physiological phenomena, among them, fluctuations on the heart rate using the RR 
interval period of the electrocardiogram (ECG). The heart rate variability (HRV) is 
a useful health indicator [3], and in this chapter we detail how this tool is used for 
the prognosis and diagnosis of metabolic diseases.
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2. Biological variability

All organisms present dynamic and complex oscillations in their function. The 
time between every oscillation is called period, and it represents biological rhythms. 
These rhythms regulate all physiological processes with periods of milliseconds 
as neuronal activity, seconds as the heart rate, hours as hormone release, monthly 
as the ovarian cycle, and annually as the growth and migration. The biological 
rhythms are present in all levels of biological organization at the molecular, organ-
elle, cell, and tissue levels; these organizations are present in vertebrates, inverte-
brates, and plants (Figure 1).

The study of period variations is essential because these fluctuations represent 
the interaction of the cycles with other systems or alterations on the intrinsic 
properties of the same system, individual and interspecific variability [4].

The periods can oscillate only under the influence of an external periodic signal 
originating exogenous rhythms; these allow changes in the variability of biological 
rhythm associated with external environmental synchronizer [5]. However, when 
the light/darkness external synchronizer is removed, a self-sustaining oscillation is 
shown, so it is said that the system has an autonomous endogenous rhythm.

The biological rhythms with a periodicity of 24 h are denominated circadian 
rhythms (circa = about, diem = a day). These circadian rhythms develop an endogen 
rhythm with one period close to 24 h under constant darkness, the free running, but 
can be synchronized again with the light and darkness; this phenomenon is called 
circadian entrainment. The circadian rhythms of longer period are infradians, 
such as the menstrual cycle, while shorter periods are ultradians, such as cardiac 
frequency, the autonomic system regulation, electrical activity of neurons, and 
secretion of hormones, among others (see Figure 1).

Figure 1. 
Variability biologic system. All organisms develop the variability of biological systems for environmental 
adaptation. Physiological and metabolic processes depend on the interaction between the central and peripheral 
rhythms.

91

Heart Rate Variability as Biomarker for Prognostic of Metabolic Disease
DOI: http://dx.doi.org/10.5772/intechopen.88766

The autonomous nervous system (sympathetic and parasympathetic) 
regulates the cardiovascular system that involves the heart rate variability. The 
relevance that the intermittent oscillations of peripheral clocks modulate the 
variability of the central clock is fundamental for health process. The coordina-
tion and communication among peripheral and central clock are essential for 
metabolic, enzymatic, molecular, and physiological process.

3. Heart rate

The heart rate (HR) is determined by the activity of the sinoatrial node. The 
electrical activity propagates to the atria and then to the atrioventricular node, and, 
finally, the electrical activity reaches the ventricles triggering its contraction from 
apex to base. Any change in the origin and propagation of this electrical activity 
is denominated arrhythmia. The contraction and relaxation of cardiac tissue is a 
process named heartbeat. It is a cyclical event, the beats per minute produce the 
heart rate. Heart rate is a parameter that serves to diagnose some health problems 
in patients. When HR is increased, it is called tachycardia and the decrease of HR is 
called bradycardia. Tachycardia is related to exercise, emotions, the fight or flight 
phenomenon, among other activities. Bradycardia is related to sleep and rest. To 
measure HR there are several methods that are used in the clinic, like pulse taking, 
auscultation, and electrocardiography.

4. Heart rate variability

The interaction of the organisms with its environment causes changes in the 
metabolic requirements of the multiple tissues that are depending on the circulating 
blood to supply oxygen and nutrients and remove metabolic waste, i.e., age, physi-
cal conditioning or exercise, behavior (emotions, pathologies, spice that is being 
studied, activity that takes place when the HR is taken, hemorrhages, heart attacks, 
addictions). In response to these demands, the heart adapts its interbeat intervals.

These intervals vary thanks to the intrinsic properties of the heart (spontaneous 
activity of the sinoatrial node [6] and atrial and ventricular electrical properties 
along with extracellular matrix composition) and especially the influence of the 
autonomic nervous system (ANS), a communication pathway between the heart 
and the whole body. This system modulates the spontaneous activity of the sino-
atrial node and conduction system of the heart (Figure 2).

The ANS regulates heart rate, visceral activities, and glandular functions to 
keep homeostasis. The ANS innervation on the heart can be divided in sympathetic 
(SNS) and parasympathetic (PNS) nervous system. They both have opposing 
effects on the heart activity. The sympathetic nervous system is responsible for the 
“fight or run” response, increasing the myocardium contractile properties and the 
rate of spontaneous activity of the sinoatrial node (SAN), the natural pacemaker 
of the heart, augmenting the heart rate. On the other hand, the parasympathetic 
nervous system has an inhibitory effect on the peacemaker and atrioventricular 
node (NAV) activity (see Figure 2), adjusting to rest states by means of a decrease 
in the heart rate [2].

Sympathetic innervation secretes norepinephrine, a neurotransmitter that links 
to β1 receptors on the cardiac sarcolemma activating G proteins. This union induces 
a conformational change that dissociates the αs subunit activating adenylyl cyclase. 
The activated adenylyl cyclase catalyzes the conversion of ATP to AMPc, which joins 
directly to ionic channels responsible for the hyperpolarization activated pacemaker 
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2. Biological variability

All organisms present dynamic and complex oscillations in their function. The 
time between every oscillation is called period, and it represents biological rhythms. 
These rhythms regulate all physiological processes with periods of milliseconds 
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as the ovarian cycle, and annually as the growth and migration. The biological 
rhythms are present in all levels of biological organization at the molecular, organ-
elle, cell, and tissue levels; these organizations are present in vertebrates, inverte-
brates, and plants (Figure 1).

The study of period variations is essential because these fluctuations represent 
the interaction of the cycles with other systems or alterations on the intrinsic 
properties of the same system, individual and interspecific variability [4].
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secretion of hormones, among others (see Figure 1).

Figure 1. 
Variability biologic system. All organisms develop the variability of biological systems for environmental 
adaptation. Physiological and metabolic processes depend on the interaction between the central and peripheral 
rhythms.
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The autonomous nervous system (sympathetic and parasympathetic) 
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called bradycardia. Tachycardia is related to exercise, emotions, the fight or flight 
phenomenon, among other activities. Bradycardia is related to sleep and rest. To 
measure HR there are several methods that are used in the clinic, like pulse taking, 
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to β1 receptors on the cardiac sarcolemma activating G proteins. This union induces 
a conformational change that dissociates the αs subunit activating adenylyl cyclase. 
The activated adenylyl cyclase catalyzes the conversion of ATP to AMPc, which joins 
directly to ionic channels responsible for the hyperpolarization activated pacemaker 
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current (If) increasing the SAN depolarization rate. This stimulus also increases 
the opening probability and the inward calcium current enhancing the strength 
of cardiac contraction. Parasympathetic innervation releases acetylcholine, a 
neurotransmitter that binds to M2 receptors on the cardiac sarcolemma activating 
inhibitory G proteins, inducing a conformational change in Gi protein that dissoci-
ates the αi subunit inhibiting adenylyl cyclase leading to a decrease in the formation 
of AMPc, thus decreasing the SAN depolarization rate. The dynamical interaction 
between SNS and PNS enables the heart to fulfill the organism requirements in the 
short and long term.

Since the heartbeat is a cyclic phenomenon that repeats continually as a result of 
the interaction between spontaneous SAN activity [7], passive and active properties 
of the myocardium, conduction system, and ANS influence, it can be regarded as 
a result of the interaction of multiple coupled systems that oscillate. This complex 
nonlinear interaction reflects on interbeat interval variability; such phenomenon is 
called heart rate variability.

The interbeat intervals are usually assessed as the time between the R-wave 
peaks of the ECG signal (RR time series). This registry is consequence of the spatial 
and temporal sum of the electrical activity of the whole heart, and each wave is 
characteristic of specific electrical events. The R wave is representative of the QRS 
complex, which is the result of the ventricular transmural depolarization heteroge-
neity [8]. In view on the fact that the time from the start of the depolarizing wave 
at the sinoatrial node to the ventricle depolarization can account as other oscillation 
sources, inter-beat interval indicated by the PP interval (depolarization of the atria) 
can provide some insights that can be concealed by the RR interval (Figure 2).

HRV analysis is a valuable noninvasive method to quantify modifications caused 
by aging, disease progression, and other physiologic or pathologic changes. These 
alterations influence the oscillating systems or the way they couple, as sympathetic 
and parasympathetic heartbeat modulation besides intrinsic properties of the heart 

Figure 2. 
Heart rate variability sources. The time interval variations between consecutive heartbeats are result of the 
interaction between the autonomous nervous system modulation and intrinsic properties of the heart regulating 
its function.
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that rely on extracellular matrix, sarcolemma composition (ionic channel density 
and kinetics, gap junction density, lipid composition), myocyte size, adipocyte, and 
fibroblast distribution. The etiology of these alterations is often related to metabolic 
diseases [9].

5. Poincaré plots

5.1 Time series

To analyze HRV using the ECG signal, we used the R waves of the QRS complex. 
The evaluation of the time between an R-wave peak (R1) and the next immediate 
R-wave peak (R2), the time interval between the appearance of an R wave and the 
next (t1–2) will be called heart period. The RR intervals are organized in chrono-
logical order, with an organized set of numbers. This set will be called the “heart 
activity time series.”

The heart rate (number of beats per unit of time) can be estimated as the inverse 
of the time period. When the frequency is stable, it is always the same, so are the 
period and the time series. When the time series is plotted against its order appear-
ance, a time series graph is obtained [10]. The times series values determine the 
shape of the graph. When the frequency is constant, the graph is a parallel line to 
the time axis. And in the case that the frequency has variations (HRV), the graph is 
like in Figure 3.

The time series has all the information of the variability of system; then, to 
determine that two time series are similar, numerical values were allocated to this 
variability. The first tool used was RR time series spectral analysis, this technique 
is based on the use of all periodic signals consisting of sums of sine and cosine 
functions with different frequencies and amplitudes, with the purpose to deter-
mine which frequencies are involved in the formation of the time series [10]. The 
frequencies obtained by this mathematical tool have been associated to the nervous 
system, breathing, and other physiological functions. The frequencies and power 
spectrum of the different components of the time series are the parameters used to 
quantify the variability with this method [11].

The disadvantage (if it can be considered as one) of using this method is that not 
everybody is expert in Fourier series; therefore it’s difficult to analyze, interpret, 
and perform. The second tool we use is the Poincaré plots. They require graphing 

Figure 3. 
Heart rate variability analysis. (A) Time series with chronological order and (B) Poincaré plot of time series.
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The evaluation of the time between an R-wave peak (R1) and the next immediate 
R-wave peak (R2), the time interval between the appearance of an R wave and the 
next (t1–2) will be called heart period. The RR intervals are organized in chrono-
logical order, with an organized set of numbers. This set will be called the “heart 
activity time series.”

The heart rate (number of beats per unit of time) can be estimated as the inverse 
of the time period. When the frequency is stable, it is always the same, so are the 
period and the time series. When the time series is plotted against its order appear-
ance, a time series graph is obtained [10]. The times series values determine the 
shape of the graph. When the frequency is constant, the graph is a parallel line to 
the time axis. And in the case that the frequency has variations (HRV), the graph is 
like in Figure 3.

The time series has all the information of the variability of system; then, to 
determine that two time series are similar, numerical values were allocated to this 
variability. The first tool used was RR time series spectral analysis, this technique 
is based on the use of all periodic signals consisting of sums of sine and cosine 
functions with different frequencies and amplitudes, with the purpose to deter-
mine which frequencies are involved in the formation of the time series [10]. The 
frequencies obtained by this mathematical tool have been associated to the nervous 
system, breathing, and other physiological functions. The frequencies and power 
spectrum of the different components of the time series are the parameters used to 
quantify the variability with this method [11].

The disadvantage (if it can be considered as one) of using this method is that not 
everybody is expert in Fourier series; therefore it’s difficult to analyze, interpret, 
and perform. The second tool we use is the Poincaré plots. They require graphing 
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the time series as follows: the first RR1 interval is assigned as x value, and then the 
value of the RR2 interval is assigned as y; this ordered pair is plotted on a Cartesian 
coordinate axis. Now we consider RR2 as x, and RR3 as y to plot it. After that the rest 
of the RR intervals are graphed in the same way, where the x is the RR(i) interval 
and the y is the interval RR(i+1); we plot each RR interval against the next immedi-
ate one. The resulting graphs are converted into spot stains; this chart is known as 
Poincaré plot (Figure 3). Now the question is how to quantify the spots. Before we 
give an answer to the problem, we will first describe the advantages of Poincaré 
plot.

5.2 Advantages of the Poincaré plots

First of all, it is important to mention that the heart rate will be 1/RRi; conse-
quently the analysis of the interval variations gives us information of the heart rate 
variation. That is, the Poincaré plots give us information about changes in heart rate 
even if this parameter is not explicitly represented in this graph. As above men-
tioned, the frequency (F) is the inverse of the time period (T), hence F*T = 1.

In the plot we trace the identity straight line RR(i+1) = RR(i), this line divides the 
plane into three parts: one where the RR(i+1) is equal to RR(i) (blue line in Figure 3), 
another where RR(i+1) > RR(i) which is the top of the identity line. And the third 
where RR(i+1) < RR(i) which is the part that is under the identity line (Figure 3). 
Therefore, just by looking at the point localization, we can say that the next interval 
has a higher value, i.e., the frequency is less. In other words, when the points fall 
above the identity straight line, the period i + 1 is greater and the further the point is 
from the identity line, the value of the period i + 1 will be greater; otherwise when 
the points are under the identity graph, the period i + 1 will be smaller, and the 
frequency will be higher [3].

5.3 SDD1 and SDD2 calculation

The distance between the points and the identity straight line tells us what 
the instantaneous (or sequential) changes of the RR interval will look like, as 
mentioned in the short term [12]. As an example, we will mention that when the 
distance from the points to the identity straight line is zero RR(i+1) = RR(i), there 
are no changes in the interval, but if this distance becomes greater, the variation 
between RR is greater. These distances are called D1i; the D1i distances that are above 
the identity straight line will be positive and those below will be negative in such 
a way that the average of these distances are zero, but the standard deviation of 
these distances (SDD1) will be different from zero, and this parameter will be used 
to characterize the width of the Poincaré plot. The width or SDD1 will be used to 
determine the variability of D1; this parameter is related to the short-term variabil-
ity of the RR, and this relates to the interaction of the sympathetic system and the 
heart. To calculate SDD1 all distances from points to the identity line are calculated 
the average and standard deviation [3, 13]. Thus it is found that

  D1i =  √ 

____________

    (   RR  i   −  RR  i+1   _ 2  )    
2
       (1)

All D1i distances are added and divided by the number of distances to get the 
average; the standard deviation to the latter is called SDD1. SDD1 is a parameter that 
characterizes short-term variability.

Secondly, calculate the distance from all points to the perpendicular line that 
crosses the identity line at the coordinate point of the mean value (RRm, RRm). This 
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distance is called D2j (Eq. (2) and Figure 3). All D2j distances are added and divided 
by the number of distances to get the average; the standard deviation to the latter is 
called SDD2.

The RR variability changes can be obtained based on the RR time series without 
using explicitly the time:

  D2j =  √ 

_____________________

  2   (  2  ̄   RR  j    −   RR  j     −   RR  j+1      _________________ 2  )    
2

      (2)

where    ̄   RR  j     is the average value of the sum of all RR intervals.
By obtaining the values of SDD1 and SDD2, we quantify the variability of the 

heart rate in the short and long term. This data defines the coefficient of variability 
as SDD1/SDD2.

Using the Poincaré plots, the quantification of the variability in the heart rate is 
determined by calculating SDD1, SDD2, and the SDD1/SDD2 ratio. The advantage of 
this method is that the calculation of these parameters is clearly arithmetic, and just 
by looking at the Poincaré, plot you have an idea of how the variability is given.

6. Biomarkers

A biological marker or biomarker is any substance, structure, or process that is 
objectively measured and evaluated as an indicator of normal biological processes. 
The biomarkers in the medical science field play essential role for disease detection, 
pathogenic responses, and therapeutic intervention. These markers are obser-
vational side products with potential utility in clinical and research studies [14]. 
Additionally they are used in new treatment strategies for clinical management. The 
biomarker field opens the opportunity to originate new knowledge in the complex 
health scheme.

7. Metabolic disease

Metabolic alterations cause metabolic diseases as result of changes in chemical 
reactions in the organism by several enzyme deficit, developing alterations like lipid 
metabolism disorders. These diseases are associated with synthesis and degrada-
tion of fatty acids. The principal and general symptoms of metabolism injury are 
lethargy, weight alteration, inflammatory process, seizures, and jaundice.

8. Metabolic syndrome

For the last decade, the cardiovascular diseases have been the first cause of death 
worldwide, and the deadly arrhythmias have increased in the industrialized coun-
tries; this fact is related to lifestyle and metabolic alterations such as sedentarism 
and diet [15, 16]. Obesity and metabolic syndrome are disorders associated with 
metabolic modifications.

The metabolic syndrome has been described as a cluster of several signs 
like abdominal obesity, hyperglycemia, dyslipidemia, and high blood pressure 
(Figure 4). These factors predispose to develop cardiovascular diseases, and each 
component is strongly correlated with CVD. An opportune diagnosis is necessary to 
know the progression of MeS and predisposition to develop lethal risks. HRV analy-
sis is a tool to assess cardiac function in patients with several pathologic conditions. 
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distance is called D2j (Eq. (2) and Figure 3). All D2j distances are added and divided 
by the number of distances to get the average; the standard deviation to the latter is 
called SDD2.

The RR variability changes can be obtained based on the RR time series without 
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where    ̄   RR  j     is the average value of the sum of all RR intervals.
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heart rate in the short and long term. This data defines the coefficient of variability 
as SDD1/SDD2.

Using the Poincaré plots, the quantification of the variability in the heart rate is 
determined by calculating SDD1, SDD2, and the SDD1/SDD2 ratio. The advantage of 
this method is that the calculation of these parameters is clearly arithmetic, and just 
by looking at the Poincaré, plot you have an idea of how the variability is given.
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objectively measured and evaluated as an indicator of normal biological processes. 
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pathogenic responses, and therapeutic intervention. These markers are obser-
vational side products with potential utility in clinical and research studies [14]. 
Additionally they are used in new treatment strategies for clinical management. The 
biomarker field opens the opportunity to originate new knowledge in the complex 
health scheme.

7. Metabolic disease

Metabolic alterations cause metabolic diseases as result of changes in chemical 
reactions in the organism by several enzyme deficit, developing alterations like lipid 
metabolism disorders. These diseases are associated with synthesis and degrada-
tion of fatty acids. The principal and general symptoms of metabolism injury are 
lethargy, weight alteration, inflammatory process, seizures, and jaundice.

8. Metabolic syndrome

For the last decade, the cardiovascular diseases have been the first cause of death 
worldwide, and the deadly arrhythmias have increased in the industrialized coun-
tries; this fact is related to lifestyle and metabolic alterations such as sedentarism 
and diet [15, 16]. Obesity and metabolic syndrome are disorders associated with 
metabolic modifications.

The metabolic syndrome has been described as a cluster of several signs 
like abdominal obesity, hyperglycemia, dyslipidemia, and high blood pressure 
(Figure 4). These factors predispose to develop cardiovascular diseases, and each 
component is strongly correlated with CVD. An opportune diagnosis is necessary to 
know the progression of MeS and predisposition to develop lethal risks. HRV analy-
sis is a tool to assess cardiac function in patients with several pathologic conditions. 
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However, relationships between HRV and cardiac rhythm with changes in MeS have 
not been found, improving considerably the prognostic and diagnostic of MeS, as 
well as the side effects.

The ECG is a biomarker for early diagnosis of metabolic diseases [3], and to asses 
HRV, a five random minute interval must be measured and analyzed. When more 
time is analyzed, the characteristic SDD1 and SDD2 will be lost [3]. In humans, the 
MeS showed changes in RR intervals; SDD1 or short-term variability was modified 
in young adults, while in woman and elderly human, the alterations were vagal as 
sympathovagal balance (SDD1 and SDD2 [17]).

Also, spectral analysis with Fourier transform was used for the 24-h ECG record; 
this analysis showed that in human, the high frequencies (HF 0.15–0.40 Hz), which 
represents sympathetic modulation, were lower only in women with metabolic syn-
drome [18] and at low frequencies (LF 0.04–0.15 Hz), which represent parasym-
pathetic modulation, heart rate was not altered by MeS. Furthermore, individual 
components of the MeS were highly correlated with imbalance cardiac autonomic 
system; the obesity modifies sympathetic nervous system [19]; hyperglycemia alters 
parasympathetic system [20]; and microalbuminuria, dyslipidemia, and hyperten-
sion do not alter neither of them but decrease LF/HF index (see Figure 4) [21, 22].

Rats with obesity and hypertension presented similar cardiovascular changes 
as humans: a decrease in parasympathetic system without any increase in sympa-
thetic modulation [23], and only temporary alterations in sympathetic nervous 
system were reported in rats with high sucrose diet, insulin resistance, and 
visceral fat (epididymal fat) [24]. However, the rats with high sucrose diet showed 
higher LF than control [25], and also the heart rate was decreased showing sinus 
bradycardia and a threefold increase of heart rate variability, SDD1 15 ± 0.4, and 
SDD2 69 ± 1, compared with control animals 5.5 ± 0.1 and 26 ± 0.1, respectively. 
In addition, sinoatrial node doubled its variability as shown in the SDD1/SDD2 
index = 0.25 for control condition and MeS: SDD1/SDD2 = 0.55 [26]. In genetically 
modified rats, cardiac alterations were observed independently on individual 
characteristic of MeS (see Figure 4).

Figure 4. 
The metabolic syndrome increases the heart rate variability. (A) The cluster signs of MeS increase the risk to 
develop cardiovascular diseases (CVD) and diabetes mellitus. (B) ECG of control and MeS rats, showing lower 
heart rate in MeS rats. (C) Poincaré plots exhibiting lower balance between parasympathetic and sympathetic 
systems. (D) Fourier analysis indicating that lower frequencies predominate in MeS rat RR time series.
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9. Diabetes mellitus

The cardiac arrhythmias in diabetes mellitus are due to structural and func-
tional remodeling, which are alterations in the architecture of the heart that 
include fibrosis, fat deposition, hypertrophy, modification in the utilization, and 
production of energy. In addition, electrical activity remodeling includes failure in 
electrical conduction, dysregulation in ion channels and gap junctions [27], and all 
these changes are added to the autonomic imbalance between the sympathetic and 
parasympathetic nervous systems until it becomes cardiac autonomic neuropathy 
(CAN), which is recognized as a risk for development of atrial fibrillation and sud-
den cardiac death (see Figure 5)[28].

In order to realize clinical diagnosis of CAN, the performing cardiac autonomic 
reflex test or neuropathy Ewing’s battery is recommended. It consists of the assess-
ment of the HRV in rest condition, while standing, during paced deep breathing, 
during sustained muscle contraction with the use of a handgrip dynamometer 
(handgrip exercise), and during and after a provoked increase in intrathoracic/
abdominal pressure (maneuver of Valsalva) (see Figure 5) [29, 30].

Unfortunately, these tests have limitations: patients must be aware so they can 
perform each of the tests, and it is necessary to suspend medications that could alter 
the results of the test (e.g., the avoidance of medications that cause hypotension, 
such as diuretics, tricyclic antidepressants, and vasodilators) [31].

Due to these disadvantages, the measurement of HRV has been used as an 
alternative for CAN diagnosis in recent years because it is a noninvasive test, it 
does not provoke pain in the patient, the analysis is performed in a short time, it 
is reliable, and it is a low-cost technique. In addition, this methodology allows the 
HRV analysis to be performed in less time because it is not necessary to have spe-
cialized knowledge in statistics or mathematics since the values of SDD1, SDD2, 
and SDD1/SDD2 are obtained by means of relatively simple arithmetic calculations 
and it does not need specialized software to perform them [3]. Another improve-
ment is that the Poincaré plot analysis can be done with only 100 RR intervals, 
which excludes the use of a Holter registry without reducing the reliability and 
sensitivity of the test [32].

Several authors have reported a decrease in HRV in patients with DM types 
1 and 2 regardless of the method used to measure it (frequency-domain HRV 
or time domain). The decrease in HRV in diabetic patients is associated with an 
early phase of the evolution of CAN. There is a loss of parasympathetic function 
with a relative increase of sympathetic function causing an imbalance of the 
sympathetic/parasympathetic tone (without parasympathetic denervation). The 
patient experiments an increase in resting heart rate. In the next stage, sympa-
thetic denervation takes place increasing the risk of arrhythmias [33]. Despite 
the existence of a large number of studies on HRV in diabetic patients, we still do 
not have a relationship that allows us to know the stage of damage in which the 
autonomic nervous system is found.

On the other hand, we have validated the use of HRV and the measurement of 
SDD1, SDD2, and the Poincaré SDD1/SDD2 index (Eqs. (1) and (2)) as a biomarker 
for diagnosis and prognosis of cardiac autonomic neuropathy. For this purpose, a 
model of type 1 diabetes pharmacologically induced by STZ was used. This model 
was developed in CD1 mice in which the progress of disease is allowed for 10 weeks 
without insulin administration (the time compared with human 8 years of disease 
progression), which produces a decrease in the values of SDD1 (1 vs. 0.9), SDD2 (1.3 
vs. 0.8), and SDD1/SDD2 (0.8 vs. 1.1) compared to the control (Figure 6) [32].

In this stage of the disease, no decrease in heart rate was reported, which sug-
gests that CAN was in the early stages. However, after a time period equivalent to 



Autonomic Nervous System Monitoring - Heart Rate Variability

96

However, relationships between HRV and cardiac rhythm with changes in MeS have 
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The ECG is a biomarker for early diagnosis of metabolic diseases [3], and to asses 
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represents sympathetic modulation, were lower only in women with metabolic syn-
drome [18] and at low frequencies (LF 0.04–0.15 Hz), which represent parasym-
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Figure 4. 
The metabolic syndrome increases the heart rate variability. (A) The cluster signs of MeS increase the risk to 
develop cardiovascular diseases (CVD) and diabetes mellitus. (B) ECG of control and MeS rats, showing lower 
heart rate in MeS rats. (C) Poincaré plots exhibiting lower balance between parasympathetic and sympathetic 
systems. (D) Fourier analysis indicating that lower frequencies predominate in MeS rat RR time series.
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9. Diabetes mellitus
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(CAN), which is recognized as a risk for development of atrial fibrillation and sud-
den cardiac death (see Figure 5)[28].

In order to realize clinical diagnosis of CAN, the performing cardiac autonomic 
reflex test or neuropathy Ewing’s battery is recommended. It consists of the assess-
ment of the HRV in rest condition, while standing, during paced deep breathing, 
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such as diuretics, tricyclic antidepressants, and vasodilators) [31].
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cialized knowledge in statistics or mathematics since the values of SDD1, SDD2, 
and SDD1/SDD2 are obtained by means of relatively simple arithmetic calculations 
and it does not need specialized software to perform them [3]. Another improve-
ment is that the Poincaré plot analysis can be done with only 100 RR intervals, 
which excludes the use of a Holter registry without reducing the reliability and 
sensitivity of the test [32].

Several authors have reported a decrease in HRV in patients with DM types 
1 and 2 regardless of the method used to measure it (frequency-domain HRV 
or time domain). The decrease in HRV in diabetic patients is associated with an 
early phase of the evolution of CAN. There is a loss of parasympathetic function 
with a relative increase of sympathetic function causing an imbalance of the 
sympathetic/parasympathetic tone (without parasympathetic denervation). The 
patient experiments an increase in resting heart rate. In the next stage, sympa-
thetic denervation takes place increasing the risk of arrhythmias [33]. Despite 
the existence of a large number of studies on HRV in diabetic patients, we still do 
not have a relationship that allows us to know the stage of damage in which the 
autonomic nervous system is found.

On the other hand, we have validated the use of HRV and the measurement of 
SDD1, SDD2, and the Poincaré SDD1/SDD2 index (Eqs. (1) and (2)) as a biomarker 
for diagnosis and prognosis of cardiac autonomic neuropathy. For this purpose, a 
model of type 1 diabetes pharmacologically induced by STZ was used. This model 
was developed in CD1 mice in which the progress of disease is allowed for 10 weeks 
without insulin administration (the time compared with human 8 years of disease 
progression), which produces a decrease in the values of SDD1 (1 vs. 0.9), SDD2 (1.3 
vs. 0.8), and SDD1/SDD2 (0.8 vs. 1.1) compared to the control (Figure 6) [32].

In this stage of the disease, no decrease in heart rate was reported, which sug-
gests that CAN was in the early stages. However, after a time period equivalent to 
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15 human years of DM induction without hypoglycemic treatment CAN, a decrease 
in HRV is developed (Figure 6). Additionally, in this second stage, mice showed 
denervation in the pacemaker tissue [13]. We conclude that the use of HRV and 
Poincaré plots could detect CAN even in early stages of the disease, and therefore 
it will allow introducing therapeutic maneuvers to control the symptoms and delay 
the damage to the ANS due to DM.

Figure 6. 
Poincaré plots of interval RR of ECG. The HRV in conditions of control vs. 8 years of DM development. The 
influence of the ANS allowed maintaining the balance of an elliptical shape.

Figure 5. 
Relations between alterations in DM and cardiac arrhythmias. The alterations in the architecture of heart 
tissue and functions produce a decrease in HRV during diabetes, which increment the risk of arrhythmias.
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10. Conclusions

The periodic oscillations in biological phenomena are quantified with the 
purpose to use them as a health indicator (biomarker) in mammalian. By means of 
the ECG interval analysis, HRV is quantified using RR and PP time series. Poincaré 
plots were constructed, and three indicators were obtained: SDD1, SDD2, and SDD1/
SDD2 index. The behavior of these indicators is related with health or metabolic 
disease. In MeS, a sympathovagal imbalance was reported, and the parasympathetic 
system showed alterations with a twofold increase in SDD2 indicator. Furthermore, 
the three indicators were decreased by DM. These biomarkers have the advantages 
of being based on a noninvasive tool, being objective, and being obtained by easy 
arithmetic calculus. In addition, the shape of the Poincaré plots offers qualitative 
information by only looking at it.
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Chapter 7

Evolution of Parasympathetic
Modulation throughout the Life
Cycle
Moacir Fernandes de Godoy and Michele Lima Gregório

Abstract

Based on the largest data set ever available for analysis of heart rate variability
(HRV) variables, in healthy individuals, it was possible to determine the evolution-
ary behavior of three representative components of parasympathetic nervous sys-
tem function (RMSSD, PNN50, and HF ms2), in different age groups of the life
cycle: newborns, children and adolescents, young adults, and, finally, middle-aged
adults. A near-parabolic and nonsynchronous behavior was observed among the
different variables evaluated, with low values at first, then progressive elevation,
and later fall, approximating the values of the newborns to the values of middle-
aged adults and suggesting that the autonomic nervous system, at least relatively to
its parasympathetic component, undergoes a growing maturation that is completed
in the young adult and later suffers a progressive degeneration, completing the life
cycle. This fact should be considered when comparing the analysis between healthy
individuals and those with different states of pathological impairment.

Keywords: autonomic nervous system, parasympathetic nervous system, heart rate
variability, homeostasis, life cycle

1. Introduction

The autonomic nervous system (ANS) is a division of the peripheral nervous
system and, based on anatomy and physiology, has three subdivisions: sympathetic
nervous system (SNS), parasympathetic nervous system (PNS), and enteric ner-
vous system (ENS). SNS has thoracolumbar distribution, and PNS has a craniosacral
distribution, while ENS is the major part of the peripheral nervous system being
found throughout the gastrointestinal tract, extending from the esophagus to the
rectum, and is also present in the pancreas and in the gallbladder [1–4].

ANS has the responsibility to ensure that homeostasis be maintained in the face
of disturbances produced by both the external and internal environment [5]. In the
heart of rats, ANS begins its development on the embryonic 18.5 day until the
twenty-first postnatal day (P21) [6].

Sympathetic neurons are located in the paravertebral ganglia, have long axonal
projections to the organs, and produce excitatory effects mediated by the norad-
renergic transmitter norepinephrine (NE). Conversely, parasympathetic neurons
are located in ganglia near or on the surface of organs, have shorter axonal pro-
jections, and produce inhibitory effects mediated by the cholinergic transmitter
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acetylcholine (ACh). The enteric nervous system provides the intrinsic innervation
of the gut, controlling different aspects of the gut function, such as motility [4].

Although ANS can actually function autonomously, the central nervous system
can contribute to a significant regulatory effect [3].

Heart rate variability (HRV) analysis is a practical, noninvasive, reproducible,
and cost-effective resource that has been widely applied to study the autonomic
behavior of the human organism, being particularly useful for the evaluation of
sympathetic and parasympathetic components, although with regard to sympa-
thetic behavior, there is still controversy about the mechanisms involved [7].

Higher vagally mediated heart rate variability is associated with better auto-
nomic balance, better health outcomes, and flexible physiological responses. In
contrast, lower HRV is associated with disease and all-cause mortality [8].

In [9], some reference values for normality of HRV variables are suggested,
although highlighting that “As no comprehensive investigations of all HRV indices
in large normal populations have yet been performed, some of the normal values
[…] were obtained from studies involving small number of subjects.”

The reference values for normality cited and recommended in the Task Force
were taken from the work of Bigger et al. (1995). The authors were based on only
274 individuals considered healthy and restricted to be 40–69 years old [10].

The aim of this chapter is restricted to the parasympathetic division of ANS. For
the evaluation of this component, there is a well-established consensus that some
variables, such as the root mean square of the successive RR interval differences
(RMSSD), the percent of normal RR intervals that differed by more than 50 ms
(PNN50) both in the time domain, and the absolute power of the high-frequency
band component (HF ms2), in the frequency domain, specifically represent vagal
modulation, presenting both diagnostic and prognostic properties [11–12].

Generally speaking, heart rate variability analysis has become the most used
noninvasive tool to evaluate autonomic control mechanisms and to predict mortal-
ity risk in several clinical conditions, including coronary artery disease, heart fail-
ure, diabetes, and hypertension [13].

According to Goldberger et al. [14], there was some evidence that age influenced
the responsiveness of the HRV parameters with changing parasympathetic effect.
They studied 29 normal volunteers (15 women; mean age 39 � 12 years) after β-
adrenergic blockade with intravenous propranolol. Five-minute ECG recordings
were made during graded infusions of phenylephrine and nitroprusside to achieve
baroreflex-mediated increases and decreases in parasympathetic effect, respec-
tively. There was some evidence that age influenced the responsiveness of the HRV
parameters with changing parasympathetic effect, with significant association for
RMSSD and PNN50.

Despite the significant amount of studies in the literature dealing with the HRV
and autonomic regulation subject, there is a lack of studies with large series,
addressing several variables in different age ranges, from birth to the elderly adult.
So, we will evaluate the contribution of these three variables in the study of para-
sympathetic autonomic behavior throughout the life cycle based on the evaluation
of a significant amount of data (835,902 in total) extracted from the literature
regarding heart rate variability variables and admittedly related to the parasympa-
thetic nervous system being 53,882 results from healthy individuals.

2. Method

The inclusion criterion was quite broad in view of the proposed objective, which
was to establish reference values, based on the largest amount of information
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possible. Thus, by searching the available databases (PubMed, Google Scholar,
Cochrane Library, ScienceDirect, Wiley Online Library, SciELO, LILACS, and The-
sis Banks of Brazilian Universities, among others) and following the PRISMA 2009
flow diagram [15], articles evaluating the values of heart rate variability (Flow
Diagram) were included, and after, those directly related to the parasympathetic
component of ANS, in the time domains (RMSSD and PNN50) and in the frequency
domain (HF ms2), in humans, regardless of age and gender and also regardless of
the length of the time series, patient position, and analysis equipment, were selected
but provided that the data were always collected from individuals specifically con-
sidered to be healthy. Based on this criterion, it is noteworthy that the individuals,
who in the original work were cataloged as being from the general population, were
not considered to be healthy because there are known comorbidities in this type of
sample, and so, they were not included.

Values with evident evidence of extreme outliers (three or more standard devi-
ations below the first quartile or above the third quartile, from the set of values
collected for a given variable) were excluded.

Flow diagram
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Table 1 informs the studied variable, its domain, and the amount of values
collected in the literature.

RMSSD (root mean square of the successive RR intervals differences, in ms;
PNN50 (percent of normal RR intervals that differed by more than 50 ms in %); HF
(absolute power of the high-frequency band; 0.15–0.40 Hz, in ms2).

Groupings were made by age range to precisely characterize the evolutionary
behavior of the parasympathetic system throughout the life cycle. The amounts of
data evaluated for each group and their average ages and standard deviations are
shown in Table 2.

From all included studies, the mean and the standard deviation values of each
variable of interest were extracted. The overall mean value was obtained by
weighted average. The global standard deviation was obtained from the individual
mean set of each study. As the collected values were the means and standard
deviations, the existence of normality was assumed. The values from the different
age groups were compared with the aid of the unpaired t-test assuming that the
standard deviations of each group were not similar to each other (Welch correc-
tion). GraphPad InStat version 3.00 software was used to obtain P-values. A PDF
file containing all the 335 references used to mounting the database can be solicited
to the correspondent author. The large number of references would make it impos-
sible to include them directly in the present text.

3. Results

Table 3 summarizes the results obtained.
RMSSD (root mean square of the successive RR intervals differences in ms;

PNN50 (percent of normal RR intervals that differed by more than 50 ms), HF
(absolute power of the high-frequency band; 0.15–0.40 Hz); SD, standard deviation.

Domain Variable Total group General population + diseased Healthy

Time RMSSD ms 208,657 183,155 25,502

Time PNN50 49,400 35,043 14,357

Frequency HF ms2 159,894 145,871 14,023

Table 1.
Distribution of the literature data evaluated, in terms of the variable studied, highlighting the sample of interest
(healthy individuals) and its size in relation to the total amount obtained.

Age range (years) Age mean � SD RMSSD (ms) PNN50 (%) HF(ms2)

Newborns [0 a 3 days] 234 78 272

Up to 20 13.29 � 4.64 4,419 2,790 4,346

20–40 25.21 � 4.88 8,459 1,031 5,721

40–70 52.74 � 7.56 12,390 10,468 3,684

Totals 25,502 14,357 14,023

Table 2.
Mean and standard deviation of the analyzed age groups and respective amounts of data analyzed, by studied
variable..
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The statistical analysis (p-values, t-test unpaired, two-tailed, Welch correction)
comparing the mean values for each variable along the age ranges is showed below.

As can be observed, the P-values were extremely robust indicating significant
extreme differences for all comparisons.

Figures were constructed showing the behavior of each variable along the pro-
gressive increase in chronological age, from the healthy newborn group (subgroup 1)
to children and adolescents (subgroup 2) and young adults (subgroup 3), until
reaching the middle-aged adults (subgroup 4).

Figures 1–3 graphically demonstrate this behavior.

Group Age range RMSSD PNN50 HF

Mean � SD Mean � SD Mean � SD

1 Newborns 11.6 � 0.9 1.4 � 3.7 66.7 � 85.5

2 Up to 20 52.0 � 18.0 25.7 � 11.6 1124.0 � 710.8

3 20–40 53.1 � 22.2 19.9 � 12.9 2067.2 � 1144.7

4 40–70 28.2 � 11.8 6.9 � 0.3 236.3 � 248.5

Table 3.
Mean and standard deviation of the variables studied according to the different age groups.

Group RMSSD PNN50 HF

1 versus 2 P < 0.0001 P < 0.0001 P < 0.0001

1 versus 3 P < 0.0001 P < 0.0001 P < 0.0001

1 versus 4 P < 0.0001 P < 0.0001 P < 0.0001

2 versus 3 P = 0.0024 P < 0.0001 P < 0.0001

2 versus 4 P < 0.0001 P < 0.0001 P < 0.0001

3 versus 4 P < 0.0001 P < 0.0001 P < 0.0001

Figure 1.
Mean evolutionary behavior of RMSSS values for the different age groups studied. RMSSD (root mean square of
the successive RR interval differences in ms; 1, healthy newborns subgroup; 2, children and adolescents (up to
20 years) subgroup; 3, young adults (20–40 years) subgroup; 4, middle-aged adults (40–70 years) subgroup.
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4. Discussion

It is well known that the heart rate variability declines with age. Bonnemeier
et al. (2003) [16] obtained 24h recordings from 166 healthy volunteers (85 men and
81 women) aged 20–70 years. They found the most dramatic HRV parameter
decrease between the second and third decades. Almeida-Santos et al. (2016) [17]
obtained 24h ECG recordings of 1743 subjects of 40–100years of age. They found a
linear decline in SDNN, SDANN, and SDNN index. Curiously, they described U-
shaped pattern for RMSSD and pNN50 with aging, decreasing from 40 to 60 and
then increasing after age 70.

The present study adds new information about this evolutionary behavior. It
was quite clear that parasympathetic autonomic development in healthy individuals
is peculiar, being reduced at birth, presenting a progressive elevation up to about
20 years of age (for the three variables studied), and typically, after that initial
elevation, two different patterns of behavior occur. The RMSSD variable arises a
little more until around 40 years of age when it then begins to decline progressively
(Figure 1), which we might call as a “‘negatively skewed tent’ behavior.” The
PNN50 variable, once reaching its maximum levels around the age of 20, begins to

Figure 2.
Mean evolutionary behavior of PNN50 values for the different age groups studied.PNN50% ((percent of
normal R-R intervals that differed by more than 50 ms); 1, healthy newborns subgroup; 2, children and
adolescents (up to 20 years) subgroup; 3, young adults (20–40 years) subgroup; 4, middle-aged adults
(40–70 years) subgroup.

Figure 3.
Mean evolutionary behavior of HF ms2 values for the different age groups studied. HF ms2 (absolute power of
the high-frequency band; 0.15–0.40 Hz); 1, healthy newborns subgroup; 2, children and adolescents (up to
20 years) subgroup; 3: Young adults (20–40 years) subgroup; 4, middle-aged adults (40–70 years) subgroup.
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decline progressively until the age of 70 (Figure 2), which would graphically be a
“positively skewed tent” behavior. Finally, the HF variable rises from birth to about
40 years, when it begins to decline until 70 years of age being graphically a “nega-
tively skewed tent” behavior (Figure 3).

We did not find significant studies on heart rate variability in healthy individ-
uals over 70s, probably because above that age, the vast majority of the individuals
already have some pathological impairment. Yes, it would exist for the general
population, but that was not the focus at this moment. Therefore, a complete
definition of HRV behavior in that older group, based on a significant sample like
that used here for the other age groups, was not yet possible.

The significant amount of data obtained, together with the extremely significant
difference between the values in the different age groups, strongly indicates that
this was not a casual finding but a true expression of parasympathetic autonomic
behavior.

This is a relevant finding as it sheds new light on the knowledge of normal values
in different age groups, since the current gold standard is still established by the
Task Force data, based on only 274 cases and exclusively on the age range of
40–69 years.

5. Conclusion

Like every other complex system, in accordance with Chaos Theory, ANS, at
least in its parasympathetic component, exhibits a near-parabolic and
nonsynchronous behavior for the main variables that evaluates it using heart rate
variability, and this fact should be considered in the comparative analysis between
healthy individuals and those with different grades of pathological impairment.

Based on the largest data set ever available for healthy individuals, the found
values can be proposed as reference standards for future studies about heart rate
variability.
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(Figure 1), which we might call as a “‘negatively skewed tent’ behavior.” The
PNN50 variable, once reaching its maximum levels around the age of 20, begins to

Figure 2.
Mean evolutionary behavior of PNN50 values for the different age groups studied.PNN50% ((percent of
normal R-R intervals that differed by more than 50 ms); 1, healthy newborns subgroup; 2, children and
adolescents (up to 20 years) subgroup; 3, young adults (20–40 years) subgroup; 4, middle-aged adults
(40–70 years) subgroup.

Figure 3.
Mean evolutionary behavior of HF ms2 values for the different age groups studied. HF ms2 (absolute power of
the high-frequency band; 0.15–0.40 Hz); 1, healthy newborns subgroup; 2, children and adolescents (up to
20 years) subgroup; 3: Young adults (20–40 years) subgroup; 4, middle-aged adults (40–70 years) subgroup.
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decline progressively until the age of 70 (Figure 2), which would graphically be a
“positively skewed tent” behavior. Finally, the HF variable rises from birth to about
40 years, when it begins to decline until 70 years of age being graphically a “nega-
tively skewed tent” behavior (Figure 3).

We did not find significant studies on heart rate variability in healthy individ-
uals over 70s, probably because above that age, the vast majority of the individuals
already have some pathological impairment. Yes, it would exist for the general
population, but that was not the focus at this moment. Therefore, a complete
definition of HRV behavior in that older group, based on a significant sample like
that used here for the other age groups, was not yet possible.

The significant amount of data obtained, together with the extremely significant
difference between the values in the different age groups, strongly indicates that
this was not a casual finding but a true expression of parasympathetic autonomic
behavior.

This is a relevant finding as it sheds new light on the knowledge of normal values
in different age groups, since the current gold standard is still established by the
Task Force data, based on only 274 cases and exclusively on the age range of
40–69 years.

5. Conclusion

Like every other complex system, in accordance with Chaos Theory, ANS, at
least in its parasympathetic component, exhibits a near-parabolic and
nonsynchronous behavior for the main variables that evaluates it using heart rate
variability, and this fact should be considered in the comparative analysis between
healthy individuals and those with different grades of pathological impairment.

Based on the largest data set ever available for healthy individuals, the found
values can be proposed as reference standards for future studies about heart rate
variability.
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Chapter 8

The Role of Magnetic Resonance 
Imaging (MRI) in Autonomic 
Nervous System Monitoring
Yousif Mohamed Y. Abdallah and Nouf H. Abuhadi

Abstract

Medical imaging of the nervous system is the methodology used to achieve 
pictures of parts of the nervous system for therapeutic uses to recognize the ail-
ments. Magnetic resonance imaging (MRI) is a kind of medical imaging tool that 
utilizes solid magnetic fields and radio waves to deliver point-by-point pictures of 
the inside of the body. There are large number of imaging methodologies done each 
week around the world. Medical imaging is developing rapidly due to developments 
in image acquisition tools including functional MRI and hybrid imaging modalities. 
This chapter abridged the role of magnetic resonance imaging (MRI) in autonomic 
nervous system monitoring. This chapter also summarizes the image interpretation 
challenges in diagnosing autonomic nervous system disorders.

Keywords: medical, imaging, autonomic nervous system

1. Introduction

The nervous system is divided into two parts, the central (CNS) and peripheral 
(PNS) part. The CNS includes the majority of the neural tissues and comprises 
the brain and spinal cord. PNS comprises all the structures outside the CNS and 
includes the special sense, spinal and cranial, and autonomic nervous system (ANS) 
[1–4]. The nervous system is composed mostly of the axons of sensual and motor 
neurons that permit between the CNS and the body. The autonomic sensory system 
(ANS) is divided into the peripheral sensory parts that provision the muscles and 
organs and influence the capacity of inner organs [5–7]. This system is considered as 
a regulatory framework that stimulates the action of those organs and muscles. This 
system manages in essence capacities, for example, the pulse, absorption, optical 
reaction, pee, and voluptuous stimulation [8–11]. This framework is the essential 
instrument responsible for the battle or flight reaction. Inside the mind, the central 
nerves manage this system. Autonomic capacities incorporate control of breath, 
heart guideline (the cardiovascular control focus), vasomotor action (the vasomo-
tor focus), and certain reflex activities, for example, hacking, wheezing, gulping, 
and heaving [11–14]. This system is then subdivided into different zones that are 
connected additionally to ANS and sensory structures outside to the cerebrum. The 
central nerve over the cerebrum trunk goes as an integrator for autonomic capaci-
ties, accepting ANS administrative contribution from the limbic framework to do as 
such. The ANS has three subdivisions: the thoughtful sensory, the parasympathetic 
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sensory, and the enteric anxious system. [15–18] Some researchers exclude the 
enteric sensory as a component of this organization. [8] The thoughtful sensory 
organization frequently includes “fight or flight” framework, although the para-
sympathetic sensory organization regularly includes the “rest and digest” or “feed 
and breed” framework. Most of the time, both of these frameworks have “inverse” 
activities where one framework actuates a physiological reaction and the other 
hinders it [19–23]. A more established improvement of thoughtful and parasym-
pathetic structures as “excitatory” and “inhibitory” was toppled because of the 
numerous exemptions found. In ANS, there are many constrainers and excitatory 
neurotransmitters, which locate among neural cells.

The non-noradrenergic system affects the gut and the lungs [24, 25]. Magnetic 
resonance imaging (MRI) is a medicinal imaging method utilized to frame photos 
of the life systems and the functional procedures of the body. MRI machines utilize 
solid magnetic fields and RF pulse to create pictures of the structures of the body. 
MRI does not use ionizing radiation like CT, PET, and other scanners. MRI is a restor-
ative utilization of nuclear magnetic resonance (NMR) [26–28]. This technique can 
be utilized for NMR spectroscopy. Although the risks of conventional radiography 
are presently very much protected in utmost medicinal settings, an MRI examination 
may at present be viewed as a superior decision than a CT exam. MRI is generally 
utilized in emergency clinics and facilities for therapeutic determination. An MRI 
may produce diverse data in contrast to CT scan. There might be dangers and incon-
venience related to MRI scans. In contrast to CT filters, this procedure commonly 
is more intense and risky. In the 1970–80s, MRI has demonstrated to be a flexible 
imaging method. Although MRI is utmost unmistakably utilized in analytic prescrip-
tion and biological researches, it additionally might be utilized to make pictures of 
inorganic particles. The supported increment sought after for MRI inside wellbeing 
frameworks has prompted worries about cost adequacy and overdiagnosis [29–32].

2. Anatomy of autonomic nervous system (ANS)

The ANS is partitioned into the thoughtful and the parasympathetic sensory 
system. The thoughtful division starts in the thoracic spines and ends up in the 
L2–3. The parasympathetic division includes both cranial (III, IX, X) and sacral 
(S2–4) nerves (Figure 1) [33, 34].

The thoughtful sensory system consists of neural cells that appear beyond T1 
and continue to level L2/3. There are a few areas whereupon preganglionic neurons 
can be able neurotransmitters because of their postganglionic neuron stability.

These ganglia assign the postganglionic neurons beside which innervation of 
goal structures pursues. Instances regarding splanchnic (instinctive) nerves are as 
follows:

1. Cervical cardiovascular nerves then thoracic instinctive nerves, which are 
neural ligature of the thoughtful band

2. Thoracic splanchnic nerves

3. Lumbar splanchnic nerves, which are neural connection of the prevertebral 
ganglia

4. Sacral splanchnic nerves, which are neural concretion of the second quantity 
hypogastric plexus [35–40]
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2.1 Sensory neurons

The sensory part is taken outdoors concerning necessary instinctive true neurons 
determined in the hem sensory dictation (PNS), of cranial real ganglia: the genicu-
late, petrosal, or nodose ganglia, annexed one at a time after cranial nerves. These 
tactile neurons are responsible of organization of the degrees of charcoal dioxide, 
oxygen, or grit between the blood, blood boat ounce yet the artificial business enter-
prise about the belly and intestine content [41–44]. The nTS gets the performance 
beside an adjacent chemosensory focus, the area postrema, who recognizes poisons 
among the blood yet the cerebrospinal melted and is necessary because synthetically 
instigated spewing and restrictive style repugnance (the intelligence as ensures so a 
life as has been harmed through sustenance in no way connection such again). These 
instinctive tactile data constantly then unknowingly regulate the labor regarding the 
machine neurons about the ANS (Figure 2) [45, 46].

Figure 1. 
Autonomic nervous system [1, 3, 8].
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Figure 3. 
The central and peripheral nervous system [1, 3, 8].

Figure 2. 
Sensory neurons [1, 3, 8].
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2.2 Innervation

Autonomic nerves travel in accordance with organs via the entire body. The 
true portion on the of the autonomic nerves remaining achieves the spinal piece at 
definitive spinal fragments. The neural signal travel from the autonomic system to 
the other body part through number pf the nerves that distributed throughout the 
body (Figure 3) [47, 48].

3. Physiology of autonomic nervous system

Thoughtful and parasympathetic divisions regularly work contrary to one 
another. Yet, this resistance is better named reciprocal in nature as opposed to 
hostile. The thoughtful partition regularly works in activities needing fast reac-
tions. The thoughtful framework is regularly the “battle or flight” framework, 
while the other framework is frequently the “rest and summary” or “feed and 
breed” framework [49–51]. In any case, numerous cases of thoughtful and para-
sympathetic movement cannot be credited to “battle” or “rest” circumstances. 
For example, adjustable over out of a leaning again and placing role would 
contain an unsustainable decline between circulatory pressure notwithstand-
ing a compensatory rise within the blood vessel’s thoughtful tonus. Another 
mannequin is the steady, second-to-second tweak of the bough with the aid of 
thoughtful then parasympathetic impacts, so an aspect on the respiratory cycle. 
When all is said and done, these two frameworks ought to be viewed as for all 
time tweaking imperative capacities, in normally hostile design, to accomplish 
homeostasis. Higher living beings keep up their honesty by means of homeo-
stasis, which depends on negative criticism guideline, which, thusly, ordinar-
ily relies upon the autonomic anxious system [52–55]. Some run-of-the-mill 
activities of the thoughtful and parasympathetic sensory systems are recorded 
beneath [55].

4. Pathology of autonomic nervous system

4.1 Sweating abnormalities

Sudomotor or perspiring changes can likewise be highlights of autonomic 
brokenness, inferring changes in perspiring not related legitimately to side effects 
of orthostatic narrow mindedness or on the other hand presyncope [56–58]. 
Patients may report either expanded or on the other hand over the top perspiring or 
diminished perspiration yield and warmth narrow mindedness, either internation-
ally, segmentally, or on the other hand sketchy in appropriation. Numerous patients 
with distal perspiration misfortune report expanded perspiration yield, which may 
happen as a compensatory reaction is unaffected territories, for example, the head 
and upper-middle, yet which is seen by the patient as unnecessary perspiring [59].

Sudomotor brokenness might be because of anomalies in focal control instru-
ments (as in the different framework decay), or all the more generally in patients 
with autonomic fringe neuropathy, either as a disconnected variation from the 
norm of postganglionic thoughtful nerve strands just in hypohidrosis or worldwide 
anhidrosis, or as a component of an increasingly summed up autonomic neuropa-
thy, either essential (immune system autonomic neuropathy) or auxiliary (amy-
loidosis, diabetic fringe neuropathy, or little fiber tangible neuropathy because of 
Sjögren’s disorder) in nature [60, 61].
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Figure 3. 
The central and peripheral nervous system [1, 3, 8].

Figure 2. 
Sensory neurons [1, 3, 8].
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2.2 Innervation
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definitive spinal fragments. The neural signal travel from the autonomic system to 
the other body part through number pf the nerves that distributed throughout the 
body (Figure 3) [47, 48].
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tions. The thoughtful framework is regularly the “battle or flight” framework, 
while the other framework is frequently the “rest and summary” or “feed and 
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sympathetic movement cannot be credited to “battle” or “rest” circumstances. 
For example, adjustable over out of a leaning again and placing role would 
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thoughtful then parasympathetic impacts, so an aspect on the respiratory cycle. 
When all is said and done, these two frameworks ought to be viewed as for all 
time tweaking imperative capacities, in normally hostile design, to accomplish 
homeostasis. Higher living beings keep up their honesty by means of homeo-
stasis, which depends on negative criticism guideline, which, thusly, ordinar-
ily relies upon the autonomic anxious system [52–55]. Some run-of-the-mill 
activities of the thoughtful and parasympathetic sensory systems are recorded 
beneath [55].

4. Pathology of autonomic nervous system
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brokenness, inferring changes in perspiring not related legitimately to side effects 
of orthostatic narrow mindedness or on the other hand presyncope [56–58]. 
Patients may report either expanded or on the other hand over the top perspiring or 
diminished perspiration yield and warmth narrow mindedness, either internation-
ally, segmentally, or on the other hand sketchy in appropriation. Numerous patients 
with distal perspiration misfortune report expanded perspiration yield, which may 
happen as a compensatory reaction is unaffected territories, for example, the head 
and upper-middle, yet which is seen by the patient as unnecessary perspiring [59].

Sudomotor brokenness might be because of anomalies in focal control instru-
ments (as in the different framework decay), or all the more generally in patients 
with autonomic fringe neuropathy, either as a disconnected variation from the 
norm of postganglionic thoughtful nerve strands just in hypohidrosis or worldwide 
anhidrosis, or as a component of an increasingly summed up autonomic neuropa-
thy, either essential (immune system autonomic neuropathy) or auxiliary (amy-
loidosis, diabetic fringe neuropathy, or little fiber tangible neuropathy because of 
Sjögren’s disorder) in nature [60, 61].
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4.2 Secretomotor symptoms

Secretomotor indications incorporate sicca manifestations of dry eyes (xeroph-
thalmia) and dry mouth (xerostomia). Patients do not visit the physicians for more 
investigations unless they becomes serious, however, with cautious addressing, 
they might be evoked. The brokenness of autonomic innervation might be seen in 
autonomic neuropathies or part of summed up autonomic disappointment, albeit 
even more ordinarily found previously [62–65].

5. Magnetic resonance imaging (MRI)

For MRI examination, the patient is situated inside an MRI scanner up to expec-
tation constructions a consolidated alluring discipline around the sector in imitation 
of keep imaged. In utmost therapeutic applications, protons (hydrogen particles) 
that containing cloud particles was passed into tissues in order to create a sign that 
later use to make a photograph of internal structure of the body. Initially, energy 
of swaying magnetic field is temporarily related after the patient at the becoming 
reverberation recurrence. The energized hydrogen iotas beam a radio recurrence 
signal, which is estimated with the aid of an accepting curl. The radio sign may stay 
instituted to encode role data with the aid of altering the foremost pleasing subject 
utilizing bias loops. As those curls are rapidly became concerning or far away that 
redact the trademark stupid concussion on an MRI check. The difference in a number 
of tissues is managed by using the dimensions at which energized particles appear 
returned to a coherent state. Exogenous division specialists would possibly lie fond 
in accordance with the unaccompanied in conformity to perform the photograph 
clearer. [65] The actual parts of an MRI machine are precept magnet and the RF 
framework, which admits the NMR signal. The complete framework is restrained by 
using at least certain PCs. The area virtue on the magnet is estimated in teslas then 
preserving in thinking so just concerning the frameworks labor at 1.5 T, business 
frameworks are on hand someplace in the extent concerning 0.2 yet 7 T. For claustro-
phobic patient usually the open superconducting magnet machine is used. Recently, 
MRI has been shown either at ultra-low fields. The place ample sign quality is done 
conceivable via prepolarization (on the pray of 10 up to −100 mT) then by estimat-
ing the Larmor antecedence fields at around one hundred microteslas including very 
delicate superconducting quantum arrest gadgets (SQUIDs) [66]. Each art comes 
lower back according to its harmony administration and then exasperation by using 
the unrestricted unwinding approaches regarding T1 or T2. The T1 weighted picture 
is treasured because surveying the brain tissues, distinguishing greasy structure, 
describing average lung accidents and now every is pointed out in performed because 

Figure 4. 
MRI T1-weighted image [30, 64–66]
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of acquiring morphological data, simply namely because of post-differentiate imag-
ing (Figure 4) [30, 67, 68].

The T2-weighted picture shows a valuable structure for identifying and recogni-
tion of the pathophysiological problems of ANS and gives useful information that 
enable the neurosurgeons to perform a successful procedure (Figure 5).

6. Conclusion

In nervous system disorders, the non-ionizing radiation is used to scan and 
produce multi-dimension images with and without contrast media utilization. In 
the 1970s, Ian Robert Young and Hugh Clow had first brain images using MRI. In 
1990, Seiji Ogawa who used the oxygen-depleted blood phenomena introduced 
functional MRI (fMRI). In the 1990s, the development and introduction of the new 
MRI protocols helped in the demonstration of gray and white matter areas of the 
nervous system. Many MRI scans later were done by using high magnetic strength 
(3.0 up to 9.4 T).
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of acquiring morphological data, simply namely because of post-differentiate imag-
ing (Figure 4) [30, 67, 68].

The T2-weighted picture shows a valuable structure for identifying and recogni-
tion of the pathophysiological problems of ANS and gives useful information that 
enable the neurosurgeons to perform a successful procedure (Figure 5).
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