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Preface

Over the years, due to great applications in various fields such as social science, 
biomedicine, genomics, and signal processing, and the improvement of comput-
ing ability, Bayesian statistics have made substantial developments. In particular, 
many novel Bayesian theories and methods, including novel sampling techniques, 
the selection of the prior, and new Bayesian estimation procedures, have been 
developed. This book introduces key ideas of Bayesian sampling methods, 
Bayesian estimation, and the selection of the prior. This book is structured 
around topics on the impact of the choice of the prior on Bayesian statistics, some 
advances on Bayesian sampling methods, and Bayesian inference for complicated 
data including breast cancer data, cloud-based healthcare data, gene network 
data, and longitudinal data.

Fundamental statistical problems have changed with the move from continuous/
discrete data to network and cloud-based data analyses. As a result of network 
and cloud-based data analyses, traditional Bayesian sampling techniques suffer 
from unprecedented challenges. To this end, this book introduces some novel 
approaches to make Bayesian inference on a few topics of interest, rather than give 
a comprehensive overview.

This book includes three sections and seven chapters. Section I introduces 
the impact problem of the choice of the prior. It includes Chapter 1, in which 
Professor Ley Christophe investigates the impact of the choice of the prior on 
Bayesian statistics including conjugate prior and Jeffrey’s prior. Section II focuses 
on some advances on sampling methods. It contains Chapters 2 and 3, in which 
Professor Wang Michelle introduces Gibbs sampler, slice sampler, Metropolis-
Hastings sampling, Hamiltonian Monte Carlo, and cluster sampling, among 
others, and Professor Dai Hongsheng reviews exact Monte Carlo simulation tech-
niques. Section III describes Bayesian inference for complicated data. It contains 
Chapters 4, 5, 6, and 7, in which Professor Liu Catherine introduces Bayesian 
analysis for random effects models, Professor Chen Xi studies Bayesian integra-
tion for gene network data, Professor Nguyen Loc discusses Bayesian inference 
for cloud-based healthcare data, and Dr. Zhang Ying-Ying considers Bayesian 
estimators under six loss functions.

I was invited to edit this book after the publication of  “Bayesian analysis for 
hidden Markov factor analysis models,” which I co-wrote with Xia Yemao, 
Zeng Xiaoqian, and Tang Niansheng. I am very grateful to Mr. Mateo Pulko for 
his kind invitation to edit this book and for providing me the chance to work 
with my aforementioned coauthors. I would also like to thank Professors Ley 
Christophe, Wang Michelle, Dai Hongsheng, Liu Catherine, Chen Xi, Nguyen 
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will be of great interest to statisticians, engineers, doctors, and machine learning 
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Chapter 1

On the Impact of the Choice of the
Prior in Bayesian Statistics
Fatemeh Ghaderinezhad and Christophe Ley

Abstract

A key question in Bayesian analysis is the effect of the prior on the posterior, and
how we can measure this effect. Will the posterior distributions derived with
distinct priors become very similar if more and more data are gathered? It has been
proved formally that, under certain regularity conditions, the impact of the prior is
waning as the sample size increases. From a practical viewpoint it is more important
to know what happens at finite sample size n. In this chapter, we shall explain how
we tackle this crucial question from an innovative approach. To this end, we shall
review some notions from probability theory such as the Wasserstein distance and
the popular Stein’s method, and explain how we use these a priori unrelated con-
cepts in order to measure the impact of priors. Examples will illustrate our findings,
including conjugate priors and the Jeffreys prior.

Keywords: conjugate prior, Jeffreys prior, prior distribution, posterior distribution,
Stein’s method, Wasserstein distance

1. Introduction

A key question in Bayesian analysis is the choice of the prior in a given situation.
Numerous proposals and divergent opinions exist on this matter, but our aim is not
to delve into a review or discussion, rather we want to provide the reader with a
description of a useful new tool allowing him/her to make a decision. More pre-
cisely, we explain how to effectively measure the effect of the choice of a given
prior on the resulting posterior. How much do two posteriors, derived from two
distinct priors, differ? Providing a quantitative answer to this question is important
as it also informs us about the ensuing inferential procedures. It has been proved
formally in [1, 2] that, under certain regularity conditions, the impact of the prior is
waning as the sample size increases. From a practical viewpoint it is however more
interesting to know what happens at finite sample size n, and this is precisely the
situation we are considering in this chapter.

Recently, [3, 4] have devised a novel tool to answer this question. They measure
the Wasserstein distance between the posterior distributions based on two distinct
priors at fixed sample size n. The Wasserstein (more precisely, Wasserstein-1)
distance is defined as

dW P1, P2ð Þ ¼ sup
h∈H

∣E h X1ð Þ½ � � E h X2ð Þ½ �∣

for X1 and X2 random variables with respective distribution functions P1 and P2,
and where H stands for the class of Lipschitz-1 functions. It is a popular distance
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between two distributions, related to optimal transport and therefore also known as
earth mover distance in computer science, see [5] for more information. The
resulting distance thus gives us the desired measure of the difference between two
posteriors. If one of the two priors is the flat uniform prior (leading to the posterior
coinciding with the data likelihood), then this measure quantifies how much the
other chosen prior has impacted on the outcome as compared to a data-only poste-
rior. Now, the Wasserstein distance being mostly impossible to calculate exactly, it
is necessary to obtain sharp upper and lower bounds, which will partially be
achieved by using techniques from the so-called Stein method, a famous tool in
probabilistic approximation theory. We opt for the Wasserstein metric instead of,
e.g., the Kullback-Leibler divergence because of precisely its nice link with the Stein
method, see [3].

The chapter is organized as follows. In Section 2 we provide the notations and
terminology used throughout the paper, provide the reader with the minimal nec-
essary background knowledge on the Stein method, and state the main result
regarding the measure of the impact of priors. Then in Section 3 we illustrate how
this newmeasure works in practice, by first working out a completely new example,
namely priors for the scale parameter of the inverse gamma distribution, and
second giving new insights into an example first treated in both [3, 4], namely
priors for the success parameter in the binomial distribution.

2. The measure in its most general form

In this section we provide the reader with the general form of the new measure
of the impact of the choice of prior distributions. Before doing so, we however first
give a very brief overview on Stein’s method that is of independent interest.

2.1 Stein’s method in a nutshell

Stein’s method is a popular tool in applied and theoretical probability, typically
used for Gaussian and Poisson approximation problems. The principal goal of the
method is to provide quantitative assessments in distributional comparison state-
ments of the form W≈Z where Z follows a known and well-understood probability
distribution (typically normal or Poisson) and W is the object of interest. Charles
Stein [6] in 1972 laid the foundation of what is now called “Stein’s method” by
aiming at normal approximations.

Stein’s method consists of two distinct components, namely

Part A: a framework allowing to convert the problem of bounding the error in
the approximation of W by Z into a problem of bounding the expectation of a
certain functional of W.

Part B: a collection of techniques to bound the expectation appearing in Part A;
the details of these techniques are strongly dependent on the properties of W as
well as on the form of the functional.

We refer the interested reader to [7, 8] for detailed recent accounts on this
powerful method. The reader will understand in the next sections why Stein’s
method has been of use for quantifying the desired measure, even without formal
proofs or mathematical details.

4
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2.2 Notation and formulation of the main goal

We start by fixing our notations. We consider independent and identically
distributed (discrete or absolutely continuous) observations X1,…, Xn from a para-
metric model with parameter of interest θ∈ Θ⊆. We denote the likelihood of
X1,…, Xn by ℓ x; θð Þ where x ¼ x1,…, xnð Þ are the observed values. Take two differ-
ent (possibly improper) prior densities p1 θð Þ and p2 θð Þ for our parameter θ; the
famous Bayes’ theorem then readily yields the respective posterior densities

pi θ; xð Þ ¼ κi xð Þpi θð Þℓ x; θð Þ, i ¼ 1, 2,

where κ1 xð Þ, κ2 xð Þ are normalizing constants that depend only on the observed
values. We denote by Θ 1, P1ð Þ and Θ 2, P2ð Þ the couples of random variables and
cumulative distribution functions associated with the densities p1 θ; xð Þ and p2 θ; xð Þ.

These notations allow us to formulate the main goal: measure the Wasserstein
distance between p1 θ; xð Þ and p2 θ; xð Þ, as this will exactly correspond to the differ-
ence between the posteriors resulting from the two priors p1 and p2. Sharp upper
and lower bounds have been provided for this Wasserstein distance, first in [3] for
the special case of one prior being flat uniform, then in all generality in [4]. The
determination of the upper bound has been achieved by means of the Stein Method:
first a relevant Stein operator has been found (Part A), and then a new technique
designed in [3] has been put to use for Part B. The reader is referred to these two
papers for details about the calculations; since this chapter is part of a book on
Bayesian inference, we prefer to keep out those rather probabilistic manipulations.

2.3 The general result

The key element in the mathematical developments underlying the present
problem is that the densities p1 θ; xð Þ and p2 θ; xð Þ are nested, meaning that one
support is included in the other. Without loss of generality we here suppose that
I2⊆ I1, allowing us to express p2 θ; xð Þ as κ2 xð Þ

κ1 xð Þ ρ θð Þp1 θ; xð Þ with

ρ θð Þ ¼ p2 θð Þ
p1 θð Þ :

The following general result has been obtained in [4], where we refer the reader
to for a proof.

Theorem 1.1 Consider H the set of Lipschitz-1 functions on  and define

τi θ; xð Þ ¼ 1
pi θ; xð Þ

ðθ
ai
μi � yð Þpi y; xð Þdy, i ¼ 1, 2, (1)

where ai is the lower bound of the support Ii ¼ ai, bið Þ of pi. Suppose that
both posterior distributions have finite means μ1 and μ2, respectively. Assume
that θ↦ρ θð Þ is differentiable on I2 and satisfies (i) E jΘ 1 � μ1jρ Θ 1ð Þ½ �<∞,

(ii) ρ θð ÞÐ θa1 h yð Þ � E h Θ 1ð Þ½ �ð Þp1ðy; xÞdy
� �

is integrable for all h∈H and

(iii) lim θ!a2, b2ρ θð ÞÐ θa1 h yð Þ � E h Θ 1ð Þ½ �ð Þp1 y; xð Þdy ¼ 0 for all h∈H. Then

∣μ1 � μ2∣ ¼
∣E τ1 Θ 1; xð Þρ0 Θ 1ð Þ½ �∣

E ρ Θ 1ð Þ½ � ≤ dW P1, P2ð Þ≤ E τ1 Θ 1; xð Þjρ0 Θ 1ð Þj½ �
E ρ Θ 1ð Þ½ �
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and, if the variance of Θ 1 exists,

∣μ1 � μ2∣ ≤ dW P1, P2ð Þ≤ ρ0k k∞
Var Θ 1½ �
E ρ Θ 1ð Þ½ �

where �k k∞ stands for the infinity norm.
This result quantifies in all generality the measure of the difference between two

priors p1 and p2, and comprises of course the special case where one prior is flat
uniform. Quite nicely, if ρ is a monotone increasing or decreasing function, the
bounds do coincide, leading to

dW P1; P2ð Þ ¼ E τ1 Θ 1; xð Þjρ0 Θ 1ð Þj½ �
E ρ Θ 1ð Þ½ � , (2)

hence an exact result. The reader notices the sharpness of these bounds given
that they contain the same quantities in both the upper and lower bounds; this fact
is further underpinned by the equality Eq. (2). Finally we wish to stress that the
functions τi θ; xð Þ, i ¼ 1, 2, from Eq. (1) are called Stein kernel in the Stein method
literature and that these functions are always positive and vanish at the boundaries
of the support.

3. Applications and illustrations

Numerous examples have been treated in [3, 4], such as priors for the location
parameter of a normal distribution, the scale parameter of a normal distribution, the
success parameter of a binomial or the event-enumerating parameter of the Poisson
distribution, to cite but these. In this section we will, on the one hand, investigate a
new example, namely the scale parameter of an inverse gamma distribution, and,
on the other hand, revisit the binomial case. Besides providing the bounds, we will
also for the first time plot numerical values for the bounds and hence shed new
intuitive light on this measure of the impact of the choice of the prior.

3.1 Priors for the scale parameter of the inverse gamma (IG) distribution

The inverse gamma (IG) distribution has the probability density function

x ! βα

Γ αð Þ x
�α�1 exp � β

x

� �
,  x>0,

where α and β are the positive shape and scale parameters, respectively. This
distribution corresponds to the reciprocal of a gamma distribution (if X � Gamma
α, βð Þ then 1

X � IG α, βð Þ) and is frequently encountered in domains such as machine
learning, survival analysis and reliability theory. Within Bayesian Inference, it is a
popular choice as prior for the scale parameter of a normal distribution. In the
present setting, we consider θ ¼ β as the parameter of interest and α is fixed. The
observations sampled from this distribution are written x1,…, xn.

The first prior is the popular noninformative Jeffreys prior. It is invariant under
reparameterization and is proportional to the square root of the Fisher information
quantity associated with the parameter of interest. In the present setting simple
calculations show that it is proportional to 1

β. The resulting posterior P1 then has a
density of the form
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which is none other than a gamma distribution with parameters nα,
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Now, the gamma distribution happens to be the conjugate prior for the scale
parameter of an IG distribution. We consider thus as second prior a general
gamma distribution with density β↦ κη

Γ ηð Þ β
η�1 exp �κβf g, where the shape and scale

parameters η and κ are strictly positive. The ensuing posterior distribution P2 has
then the density
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Considering Jeffreys prior as p1 and the gamma prior as p2 leads to the ratio
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One can easily check that all conditions of Theorem 1.1 are fulfilled, hence we
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In order to acquire the upper bound we need to calculate
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and, writing Θ 1 the random variable associated with Gamma nα,
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From the Stein literature we know that the Stein kernel for the gamma distribu-

tion with parameters nα,
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corresponds to τ β;xð Þ ¼ βPn

i¼1
1
xi

. Employing the

triangular inequality we have thus
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Now we need to calculate the expectation
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The final expression for the upper bound then corresponds to

dW P1, P2ð Þ≤

κηPn

i¼1
1
xi

� �
Γ ηð Þ

�
Pn

i¼1
1
xi

� �nα

Γ nαð Þ η Γ nαþηð ÞPn

i¼1
1
xi
þκ

� �nαþη þ κ Γ nαþηþ1ð ÞPn

i¼1
1
xi
þκ

� �nαþηþ1

2
64

3
75

κη
Beta nα, ηð Þ �

Pn

i¼1
1
xi

� �nα

Pn

i¼1
1
xi
þκ

� �nαþη

(18)

¼
Beta nα, ηð Þ Pn

i¼1
1
xi
þ κ

� �nαþη

Γ nαð ÞΓ ηð Þ
Γ nαþηð Þ

Pn
i¼1

1
xi

� � � 1
Pn

i¼1
1
xi
þ κ

� �nαþη ηþ κ
nαþ ηPn
i¼1

1
xi
þ κ

 !
(19)

8

Bayesian Inference on Complicated Data

¼ 1Pn
i¼1

1
xi

ηþ κ
nαþ ηPn
i¼1

1
xi
þ κ

 !
: (20)

The Wasserstein distance between the posteriors based on the Jeffreys prior and
conjugate gamma prior for the scale parameter β of the IG distribution is thus
bounded as

nακ � η
Pn

i¼1
1
xiPn

i¼1
1
xi
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1
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κ þPn
i¼1

1
xi

 !
:

It can be seen that both the lower and upper bound are of the order of O n�1ð Þ. In
addition, it is noticeable that for the larger observations, the rate of convergence is
getting slower.

In order to show the performance of the methodology which leads to have the
lower and upper bounds, we have conducted a simulation study including two
parts. First we simulate N ¼ 100 samples for each sample size n ¼ 10, 11,⋯, 100
from the inverse gamma distribution with parameters α, βð Þ ¼ 0:5, 1ð Þ in each iter-
ation. For each of these samples we calculate the lower and upper bounds of the
Wasserstein distance and calculate the average over all N replications, together with
the difference between the bounds. Finally we plot these values for each sample size
in Figure 1. We repeat the same process for N ¼ 1000 samples with the same sizes.
The hyperparameters from the prior gamma distribution are κ, ηð Þ ¼ 0:2, 2ð Þ. We
clearly observe how fast these values decrease with the sample size. Of course,
augmenting the number of replications does not increase the speed of convergence,
however the curves become noticeably smoother.

This methodology not only can help the practitioners to make a decision
between existing priors in theory, but also helps them to know from what sample
size on the effect of choosing one prior becomes less important, especially in
situations when the cost and time matter. This can be particularly useful when the

Figure 1.
(a) Shows the bounds and the distances between the bounds for N ¼ 100 iterations for each sample size 10–100
by steps of 1, and (b) illustrates the same situation for N ¼ 1000. The hyperparameters are κ ¼ 0:2 and η ¼ 2,
while the fixed parameter α equals 0.5.
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getting slower.
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in Figure 1. We repeat the same process for N ¼ 1000 samples with the same sizes.
The hyperparameters from the prior gamma distribution are κ, ηð Þ ¼ 0:2, 2ð Þ. We
clearly observe how fast these values decrease with the sample size. Of course,
augmenting the number of replications does not increase the speed of convergence,
however the curves become noticeably smoother.

This methodology not only can help the practitioners to make a decision
between existing priors in theory, but also helps them to know from what sample
size on the effect of choosing one prior becomes less important, especially in
situations when the cost and time matter. This can be particularly useful when the

Figure 1.
(a) Shows the bounds and the distances between the bounds for N ¼ 100 iterations for each sample size 10–100
by steps of 1, and (b) illustrates the same situation for N ¼ 1000. The hyperparameters are κ ¼ 0:2 and η ¼ 2,
while the fixed parameter α equals 0.5.
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hesitation is between a simple, closed-form prior and a more complicated one. It is
advisable to use the simpler one when there is no considerable difference between
the effect of the two priors.

3.2 The impact of priors for the success parameter of the binomial model

The probability mass function of a binomial distribution is given by

x↦
n
x

� �
θx 1� θð Þn�x

where x∈ 0, 1,⋯, nf g is the number of observed successes, the natural number n
indicates the number of binary trials and θ∈ 0, 1ð Þ stands for the success parameter.
In this setting we suppose n is fixed and the underlying parameter of interest is θ.

A comprehensive comparison of various priors for the binomial distribution
including a beta prior, the Haldane prior and Jeffreys prior, has been done in [9],
based on the methodology described above. Therefore, since there is a complete
reference for the reader in this case, we use the binomial distribution as a second
example to show numerical results.

The theoretical lower and upper bounds between a Beta α, βð Þ prior and the flat
uniform prior are given by

xþ 1
nþ 2

αþ β � 2
nþ αþ β

� �
� α� 1
nþ αþ β

����
����≤ dW P1, P2ð Þ≤ 1

nþ 2
jα� 1jþ xþ α

nþ αþ β
jβ � 1j � jα� 1jð Þ

� �
,

where x is the observed number of successes. We see that both lower and upper
bounds are of the order of O n�1ð Þ. This rate of convergence remains even in the
extreme cases x ¼ 0 and x ¼ n. We invite the reader to see [3, 9] for more details.

In order to illustrate the behavior of the lower and upper bounds and the
distances between them, we have conducted a two-part simulation study for the
binomial distribution. First, we consider 100 sample sizes (number of trials in the
binomial distribution) varying from 10 to 1000 by steps of 10, and generate bino-
mial data exactly once for every sample size (with θ ¼ 0:2). The results of the
bounds, obtained for hyperparameters α, βð Þ ¼ 2, 4ð Þ from the beta prior, are
reported in Figure 2a and we can see that, even with only one iteration, when the
number of trials (the sample size) increases the lower and upper bound become
closer, which is a numerical quantification of the fact that the influence of the
choice of the prior wanes asymptotically. This becomes also visible from the dis-
tance between the two bounds. Sampling only once for each sample size leads to
slightly unpleasant variations in the lower bounds (non-monotone behavior), which
however nearly disappear in the second considered scenario. Indeed, in Figure 2b
we increased the number of iterations to 50 for the same different sample sizes and
took averages. A better smoothness is the consequence. This simulation study not
only provides the reader with numerical values for the bounds, to which he/she can
compare his/her bounds obtained for real data, but also gives a nice visualization of
the impact of the choice of the prior at fixed sample size. The main conclusion is
that the impact drops fast at small sample sizes, and the bounds start to become
very close for medium-to-large sample sizes.

Finally, we investigate the impact of the hyperparameters on the upper and
lower bounds. To this end, we varied both α and β in Table 1. The situation with α
fixed to two and relatively small β corresponds well with p ¼ 0:2, which explains
why the upper and lower bounds, and hence the Wasserstein distance and thus the
impact of the prior, are the smallest. Increasing β more augments the distance.
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Hyperparameters (α, β) Average of the lower bounds Average of the upper bounds

(0.2, 0.4) 0:002561383 0:003726728

(0.2, 0.8) 0:00296002 0:003344393

(2, 2) 0:002699325 0:00490119

(2, 5) 0:0008115384 0:007984289

2, 10ð Þ 0:004506271 0:01241273

2, 15ð Þ 0:008208887 0:01626326

2, 30ð Þ 0:01750177 0:02581062

2, 50ð Þ 0:02739205 0:0359027

2, 100ð Þ 0:04592235 0:05470826

2, 200ð Þ 0:07071766 0:07976386

2, 500ð Þ 0:1103048 0:1196464

2, 1000ð Þ 0:1399961 0:1495087

10, 2ð Þ 0:02813367 0:03132908

35, 2ð Þ 0:08571115 0:09033568

50, 2ð Þ 0:1127136 0:1178113

100, 2ð Þ 0:1830272 0:189071

200, 2ð Þ 0:2783722 0:2853418

400, 2ð Þ 0:3933338 0:401145

700, 2ð Þ 0:4901209 0:4985089

1000, 2ð Þ 0:5482869 0:5569829

Table 1.
The summary of upper and lower bounds for different hyperparameters, with p ¼ 0:2 and for N = 50
iterations.

Figure 2.
(a) Shows the lower and upper bounds and the distances for the number of trials {n = 10,...,1000} for one
iteration. (b) Shows the same situation, however this time based on averages obtained for 50 iterations. In both
situations the hyperparameters from the beta prior are α ¼ 2 and β ¼ 4.
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On the contrary, fixing β ¼ 2 yields priors rather centered around large values of p
and hence bigger distances. Moreover, the more α is increased, the more the dis-
tance augments, as the prior is further away from the data and hence impacts more
on the posterior at a fixed sample size. For the sake of illustration, we present three

Figure 3.
Plots of the beta prior densities together with the average lower and upper bounds (and their difference) on the
Wasserstein distance between the data-based posterior and the posterior resulting from each beta prior.
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choices of hyperparameters together with the bounds and the related prior density
in Figure 3. This will help understanding our conclusions.

4. Conclusions

In this chapter we have presented a recently developed measure for the impact
of the choice of the prior distribution in Bayesian statistics. We have presented the
general theoretical result, explained how to use it in a particular example and
provided some graphics to illustrate it numerically. The practical importance of this
study is when practitioners hesitate between two proposed priors in a given situa-
tion. For instance, Kavetski et al. [10] considered a storm depth multiplier model to
represent rainfall uncertainty where the errors appear under multiplicative form
and are assumed to be normal. They fix the mean, but state that “less is understood
about the degree of rainfall uncertainty,” i.e., the multiplier variance, and therefore
studied various priors for the variance. Knowledge of the tools presented in this
chapter would have simplified the decision process.

In case of missing data, the present methodology can still be used. Either the
data get imputed, in which case nothing changes, or the missing data simply are left
out from the calculation of upper and lower bounds, whose expression does of
course not alter.

Further developments on this new measure might lead to a more concrete
quantification of words such as “informative, weakly informative, noninformative”
priors, and we hope to have stimulated interest in this promising new line of
research within Bayesian Inference.
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Chapter 2

A Brief Tour of Bayesian
Sampling Methods
Michelle Y. Wang and Trevor Park

Abstract

Unlike in the past, the modern Bayesian analyst has many options for approxi-
mating intractable posterior distributions. This chapter briefly summarizes the class
of posterior sampling methods known as Markov chain Monte Carlo, a type of
dependent sampling strategy. Varieties of algorithms exist for constructing chains,
and we review some of them here. Such methods are quite flexible and are now used
routinely, even for relatively complicated statistical models. In addition, extensions
of the algorithms have been developed for various goals. General-purpose software
is currently also available to automate the construction of samplers, freeing the
analyst to focus on model formulation and inference.

Keywords: Markov chain Monte Carlo, Gibbs sampler, slice sampler,
Metropolis-Hastings, Hamiltonian Monte Carlo, cluster sampling, JAGS, Stan

1. Introduction

Modern Bayesian data analysis is enabled by specialized computational tools.
Except in relatively simple models, explicit solutions for quantities relevant to
Bayesian inference are not available. This limitation has sparked the development of
many different approximation methods.

Some approximation methods, such as Laplace approximation [1] and varia-
tional Bayes [2], are based on replacing the Bayesian posterior density with a
computationally convenient approximation. Such methods may have the advantage
of relatively quick computation and scalability, but they leave open the question of
how much the resulting approximate Bayesian inference can be trusted to reflect
the actual Bayesian inference. There is an inherent bias in the approximation that
generally cannot be reduced by applying more intensive computation.

When accuracy is important, simulation-based (stochastic) methods offer an
attractive alternative. The goal of these methods is to produce a simulation sample
(though not necessarily an independent one) from the (joint) posterior distribution.
A simulation sample can be used to approximate almost any quantity relevant to
Bayesian inference, including posterior expectations, variances, quantiles, and mar-
ginal densities. Since the approximations become more exact as more samples are
used, accuracy tends to be limited only by the computational resources available.

Random variates from a general probability distribution that has a known den-
sity may be simulated using many classical methods, such as accept/reject and
importance sampling. However, such methods tend to be efficient only in special
cases and often require analytical insight to improve efficiency. The past three
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decades have seen interest dramatically increase in the category of Markov chain
Monte Carlo (MCMC) methods. Unlike most classical methods, MCMC can often
be efficiently automated, even for moderately complicated models. A variety of
MCMC methods are available, giving the analyst flexibility in implementation.
Moreover, general software is now available that automates most computational
details, allowing the analyst to focus on model formulation and inference.

The purpose of this chapter is to offer an introduction to Bayesian simulation
methods, with emphasis on MCMC. The motivation and popularity of posterior
sampling are illustrated in Section 2. Section 3 describes MCMC and the associated
issues including convergence monitoring, mixing, and thinning. Varieties of spe-
cific sampling methods are provided in Sections 4 and 5, with the general-purpose
software implementing them described in Section 6.

2. Posterior sampling

Bayesian inference requires access to the posterior distribution. Let y denote all
of the data to be modeled, and suppose its sampling distribution is in a parametric
family with density π yjθð Þ, where θ represents the parameter (usually a vector),
including any hyperparameters. If the prior on θ has density π θð Þ then, according to
Bayes’ rule, the posterior distribution has density

π θj yð Þ ¼ π yjθð Þπ θð Þ
π yð Þ ∝θπ yjθð Þπ θð Þ (1)

where the proportionality is in θ (not y). (An improper prior can be used,
provided the posterior is proper.) The normalizing constant π yð Þ is notoriously
difficult to compute, so methods that avoid using it are preferred.

Since π yjθð Þ and π θð Þ are typically specified by the analyst, the (unnormalized)
posterior density is readily available and typically easy to evaluate. Nonetheless,
most quantities used in Bayesian inference (posterior expected values, quantiles,
marginal densities, etc.) are defined by integrals involving the posterior density,
which are usually intractable and are difficult to deterministically approximate
when θ has more than a few components.

This explains the popularity of posterior sampling. Given a sample from the
posterior of sufficient effective size, posterior expected values can be approximated
by sample means, posterior quantiles by sample quantiles, posterior marginal
densities by sample-based density estimates, and so forth. Most posterior inference
is readily accomplished if an efficient method of sampling from the posterior is
available.

Independent sampling from the posterior is seemingly ideal, since relatively few
samples are required to obtain a good approximation in most cases, and the
approximation error is relatively easy to characterize. Unfortunately, methods for
independent sampling have proven difficult to implement in a general way that
efficiently scales with the dimension of θ. For example, rejection sampling (accept/
reject) is efficient only if the posterior is tightly bounded by a known function
proportional to a density that is easy to sample. Finding such a function is generally
difficult, and even adaptive variants struggle in high-dimensional situations.

Currently, the most efficient generally adaptable methods use dependent sam-
pling. Dependent sampling usually incurs a computational cost of acquiring a larger
number of samples to attain a given accuracy, but the flexibility of these methods
and their scalability to higher dimensions offset this disadvantage.
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3. Sampling with Markov chains

MCMC is a type of dependent sampling in which the samples are obtained from
successive states of a discrete-time Markov chain [3]. The Markov chain is designed
to be easy to simulate and intended to (eventually) produce samples that have a
distribution arbitrarily close to the posterior distribution.

Specifically, the Markov chain is designed to have a particular stationary distri-
bution: a distribution on the state space of the chain that is preserved by the
transition kernel. If the chain is started in the stationary distribution, all successive
states will have the stationary distribution. In the most basic case, the state space
will be the range of θ, and the stationary distribution will be the posterior distribu-
tion. A collection of successive states can then be regarded as a (dependent) sample
from the posterior.

Since starting the chain in the stationary distribution is difficult, MCMC relies
on the stationary distribution also being the (unique) limiting distribution: the dis-
tribution to which the states converge (in law) as the time index increases. Condi-
tions under which the chain converges are technical (e.g., [4]) and can be difficult
to verify analytically in complicated models. Thus, though convergence properties
may benefit from following some general guidelines in specifying the MCMC
method, convergence is usually checked empirically.

General convergence monitoring tools and techniques are available to determine
by what time point convergence has been practically achieved, so that accurate
samples can be collected thereafter. See [5] for an overview. Some tools rely on
simulating the chain several times, independently, from different starting points.

Running the chain(s) until declaring convergence is called burn-in, or sometimes
warm up. All values generated during burn-in are discarded, except for the final
state, which becomes the starting point for sampling.

The degree of dependence within a Markov chain determines the number of
samples needed for a given level of approximation. Most MCMCmethods produce
chains with positive dependence, requiring a larger number of samples to be taken
than if independent sampling were used. Chains that are highly dependent exhibit
slowmixing: the decay rate of dependence between the states of the chain at two time
points as the time lag increases. In extreme cases, slow mixing makes MCMC compu-
tationally prohibitive, since an enormous number of samples may be needed to
achieve a reasonable approximation. Methods with fast mixing are typically preferred.

When sampling is highly dependent, using only a regularly spaced subsample of
the generated values may be almost as accurate as using all of the values. Retaining
only the regularly spaced subsample is called thinning. Although it does not reduce
the amount of computation required, it can dramatically reduce the time and space
required for storage of the values.

Characterizing Monte Carlo error in approximations from an MCMC sample is
more difficult than from an independent sample. However, effective methods are
available for most cases. See [6].

4. Constructing Markov chains for sampling

This section briefly summarizes the most practical and frequently used methods
for forming a Markov Chain appropriate for sampling from a posterior distribution.
All of them need only a function proportional to the posterior density of θ, as in
Eq. (1). For brevity, we denote it as

f θð Þ∝θ π yjθð Þπ θð Þ (2)
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Specifically, the Markov chain is designed to have a particular stationary distri-
bution: a distribution on the state space of the chain that is preserved by the
transition kernel. If the chain is started in the stationary distribution, all successive
states will have the stationary distribution. In the most basic case, the state space
will be the range of θ, and the stationary distribution will be the posterior distribu-
tion. A collection of successive states can then be regarded as a (dependent) sample
from the posterior.

Since starting the chain in the stationary distribution is difficult, MCMC relies
on the stationary distribution also being the (unique) limiting distribution: the dis-
tribution to which the states converge (in law) as the time index increases. Condi-
tions under which the chain converges are technical (e.g., [4]) and can be difficult
to verify analytically in complicated models. Thus, though convergence properties
may benefit from following some general guidelines in specifying the MCMC
method, convergence is usually checked empirically.

General convergence monitoring tools and techniques are available to determine
by what time point convergence has been practically achieved, so that accurate
samples can be collected thereafter. See [5] for an overview. Some tools rely on
simulating the chain several times, independently, from different starting points.

Running the chain(s) until declaring convergence is called burn-in, or sometimes
warm up. All values generated during burn-in are discarded, except for the final
state, which becomes the starting point for sampling.

The degree of dependence within a Markov chain determines the number of
samples needed for a given level of approximation. Most MCMCmethods produce
chains with positive dependence, requiring a larger number of samples to be taken
than if independent sampling were used. Chains that are highly dependent exhibit
slowmixing: the decay rate of dependence between the states of the chain at two time
points as the time lag increases. In extreme cases, slow mixing makes MCMC compu-
tationally prohibitive, since an enormous number of samples may be needed to
achieve a reasonable approximation. Methods with fast mixing are typically preferred.

When sampling is highly dependent, using only a regularly spaced subsample of
the generated values may be almost as accurate as using all of the values. Retaining
only the regularly spaced subsample is called thinning. Although it does not reduce
the amount of computation required, it can dramatically reduce the time and space
required for storage of the values.

Characterizing Monte Carlo error in approximations from an MCMC sample is
more difficult than from an independent sample. However, effective methods are
available for most cases. See [6].

4. Constructing Markov chains for sampling

This section briefly summarizes the most practical and frequently used methods
for forming a Markov Chain appropriate for sampling from a posterior distribution.
All of them need only a function proportional to the posterior density of θ, as in
Eq. (1). For brevity, we denote it as

f θð Þ∝θ π yjθð Þπ θð Þ (2)
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where the proportionality is in θ only, and the dependence on y has been
suppressed in the notation.

4.1 Gibbs sampling

Consider a partition of θ into K pieces (which may themselves be vectors):

θ ¼ θ1, … , θKð Þ (3)

The full conditional (or conditional posterior) distribution of θk is its posterior
distribution conditional on all the other pieces θ�k, i.e., the distribution with density

π θkjθ�k, yð Þ (4)

Gibbs sampling, in its purest form, is sequential sampling from the full condi-
tional distributions of θk, k ¼ 1, … ,K, each time conditioning upon the most
recently sampled value for each component of θ�k. Each complete cycle of this
process produces a single sampled value of θ, and these successive values form a
Markov chain whose stationary distribution (if unique) is the posterior distribution
(since each step in the cycle preserves the posterior distribution of θ).

Essentially, Gibbs sampling reduces the problem of sampling θ to the problem of
conditionally sampling each of its pieces. It relies on each full conditional being easy
to sample. Because the pieces are of lower dimension (perhaps even one-
dimensional), they may be easier to sample by conventional methods. Moreover, it
is often possible to choose a prior distribution such that many of the full condi-
tionals are easy to sample. For example, when conditional priors are chosen from
easily sampled families that are partially conjugate to the sampling model (see, e.g.,
[7]), the Gibbs sampler is easy to construct. Even if a full conditional cannot be
directly sampled, its density is proportional to f θð Þ, since

π θkjθ�k, yð Þ ¼ π θjyð Þ
π θ�kjyð Þ ∝θk f θð Þ (5)

where the proportionality is in θk only (for fixed θ�k). The density of the full
conditional is therefore known (up to a constant scaling), so techniques described in
the following subsections may be used.

Performance of Gibbs sampling can sometimes be improved by modifying the
algorithm. For example, the order in which the pieces are sampled can affect the
mixing rate (e.g., [8]). Also, replacing some of the full conditional distributions
with (partial) posterior marginals results in a partially collapsed Gibbs sampler,
which may have better sampling properties [9], though must be implemented
carefully to preserve the stationary distribution (e.g., [10]).

Even when a Gibbs sampler is easy to implement, its mixing can be arbitrarily
slow. This happens especially when there is a high degree of posterior dependence
among the pieces of θ, such as when some pieces are highly correlated, or when the
posterior density exhibits multiple modes offset “diagonally” from each other. Mixing
may be improved by alternating Gibbs sampler cycles with steps of some other kind
of MCMC, or by special modifications described in the following subsections.

4.2 Auxiliary variables

Gibbs sampling can be facilitated by techniques that involve sampling more than
just the parameter θ. Data augmentation involves adding latent variables, usually as
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intermediaries in a hierarchical structure, that make full conditionals easier to
sample. Parameter expansion involves creating extra dimensions in the parameter
space that do not affect the Bayesian model, but allow a faster-mixing Markov chain
to be constructed.

Data augmentation is natural in models that are defined using random effects.
The random effects simply become latent variables to be sampled with the param-
eters. But it can also be used to add purely artificial latent variables designed to
make full conditionals easy to sample. For example, data modeled with a location-
scale t-distribution lacks any direct partial conjugacy properties. Nonetheless, a t-
distribution can be represented as a scale mixture of normal distributions, with an
inverse gamma distribution for the scale (variance). The scale variables then
become the latent variables. Both the normal and inverse gamma distributions enjoy
partial conjugacy properties that make full conditionals easy to sample. See [7],
Section 12.1, for details.

Parameter expansion involves defining a redundant parameter ρ unrelated to the
model itself and supplying it with an arbitrary prior density. The expanded param-
eterization θ, ρð Þ is then reparameterized in a way specially chosen to improve
Gibbs sampler performance. A basic example can be found in Section 12.1 of [7]. It
is sometimes possible to use an improper prior on ρ. This leads to a Gibbs sampler
that lacks a stationary distribution, but may still be able to produce valid posterior
samples (see [11]).

Parameter expansion is typically used in conjunction with data augmentation,
whence it is known as parameter expansion-data augmentation (PX-DA) [12].

4.3 Slice sampling

One general-purpose method to sample from an arbitrary univariate continuous
density is to first sample uniformly from the bivariate (unit area) region beneath its
graph and then retain only the horizontal coordinate. The uniform sampling could
be performed by a simple two-step Gibbs sampler, alternating between vertical and
horizontal sampling. This general approach is called slice sampling [13]. It can be
interpreted as a special auxiliary variables method, with the vertical coordinate
representing the auxiliary variable.

For a multivariate θ, slice sampling can be performed on one univariate piece at
a time, as in a Gibbs sampler. Specifically, if θk is continuous and univariate, then
the slice sampler first samples v uniformly from interval 0, f θð Þð Þ, then samples θk
uniformly from θk : f θð Þ> vf g. Sampling is simplest when the latter set is an interval
with easily computed endpoints, but adaptive methods are available for when this is
not the case [13].

Though multivariate versions of slice sampling exist (e.g., [14]), practical
implementations are often univariate and implemented as a single step within a
Gibbs sampler framework, for continuous pieces that would otherwise be difficult
to sample.

4.4 Metropolis-Hastings

A general approach to posterior sampling is to perform a carefully controlled
random walk over the parameter space. The steps are chosen such that the resulting
Markov chain has the posterior as its stationary distribution. This is accomplished
by the Metropolis-Hastings algorithm.

In one popular version, the properties of the algorithm are determined by the
choice of a random walk. The choice is arbitrary, but it is often such that each step is
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where the proportionality is in θ only, and the dependence on y has been
suppressed in the notation.
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mixing rate (e.g., [8]). Also, replacing some of the full conditional distributions
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which may have better sampling properties [9], though must be implemented
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eters. But it can also be used to add purely artificial latent variables designed to
make full conditionals easy to sample. For example, data modeled with a location-
scale t-distribution lacks any direct partial conjugacy properties. Nonetheless, a t-
distribution can be represented as a scale mixture of normal distributions, with an
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become the latent variables. Both the normal and inverse gamma distributions enjoy
partial conjugacy properties that make full conditionals easy to sample. See [7],
Section 12.1, for details.

Parameter expansion involves defining a redundant parameter ρ unrelated to the
model itself and supplying it with an arbitrary prior density. The expanded param-
eterization θ, ρð Þ is then reparameterized in a way specially chosen to improve
Gibbs sampler performance. A basic example can be found in Section 12.1 of [7]. It
is sometimes possible to use an improper prior on ρ. This leads to a Gibbs sampler
that lacks a stationary distribution, but may still be able to produce valid posterior
samples (see [11]).

Parameter expansion is typically used in conjunction with data augmentation,
whence it is known as parameter expansion-data augmentation (PX-DA) [12].

4.3 Slice sampling

One general-purpose method to sample from an arbitrary univariate continuous
density is to first sample uniformly from the bivariate (unit area) region beneath its
graph and then retain only the horizontal coordinate. The uniform sampling could
be performed by a simple two-step Gibbs sampler, alternating between vertical and
horizontal sampling. This general approach is called slice sampling [13]. It can be
interpreted as a special auxiliary variables method, with the vertical coordinate
representing the auxiliary variable.

For a multivariate θ, slice sampling can be performed on one univariate piece at
a time, as in a Gibbs sampler. Specifically, if θk is continuous and univariate, then
the slice sampler first samples v uniformly from interval 0, f θð Þð Þ, then samples θk
uniformly from θk : f θð Þ> vf g. Sampling is simplest when the latter set is an interval
with easily computed endpoints, but adaptive methods are available for when this is
not the case [13].

Though multivariate versions of slice sampling exist (e.g., [14]), practical
implementations are often univariate and implemented as a single step within a
Gibbs sampler framework, for continuous pieces that would otherwise be difficult
to sample.

4.4 Metropolis-Hastings

A general approach to posterior sampling is to perform a carefully controlled
random walk over the parameter space. The steps are chosen such that the resulting
Markov chain has the posterior as its stationary distribution. This is accomplished
by the Metropolis-Hastings algorithm.

In one popular version, the properties of the algorithm are determined by the
choice of a random walk. The choice is arbitrary, but it is often such that each step is
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easy to simulate and can transition from any point in the parameter space to any
other point. Let T θ0jθð Þ be its transition kernel for a step from θ to θ0. For example, if
θ is chosen according to some continuous distribution with density ~π θð Þ, then taking
one step of the random walk from θ to θ0 will result in θ0 having density

ð
T θ0jθð Þ~π θð Þdθ (6)

(We assume T is time-invariant, although this is not necessary, provided the
time dependence does not depend on the history of the Markov chain.) The density
T �jθð Þ defines the proposal distribution when the current state is θ. Values of this
density (up to a constant factor that does not depend on θ) must be computable.

The transitions of the Markov chain are determined by the following algorithm:
let θold be the current state of the chain. Then

1.Sample proposal θ0 from the proposal distribution at θold.

2.Compute

α ¼ f θ0ð Þ=T θ0jθold� �

f θold
� �

=T θoldjθ0� � (7)

3.Set the next state of the chain to be

θnew ¼ θ0 with probabilitymin α, 1ð Þ
θold otherwise

�
(8)

Note the possibility that the next state of the chain will be identical to the
previous state, even if θ is continuous under the posterior. If θ0 actually becomes the
next state of the chain, we say that the proposal is accepted. The long-run fraction of
times the proposal is accepted is the acceptance rate.

General proof that this algorithm produces a Markov chain with the posterior as
its stationary distribution can be found in, for example, [15]. Convergence proper-
ties have been extensively studied [4].

One important special case is the Metropolis algorithm, in which the transition
kernel is symmetric: T θ0jθð Þ ¼ T θjθ0ð Þ. In this case, T cancels from Eq. (7), so there
is no need to compute its values. If parameter θ is continuous on an open subset of a
space of real vectors, a typical example is a multivariate normal proposal distribu-
tion centered at the current value (θold). The covariance matrix is arbitrary and can
be chosen to make the sampling more efficient.

Proposal distributions often admit a choice of scaling that can be tuned to
improve sampling efficiency. Setting the scale too large leads to a low acceptance
rate, hence slow mixing due to many repeated values. Setting the scale too small
leads to a high acceptance rate, but each proposal will be close to the current value,
and hence the mixing will also be slow. In some cases, theoretical results are
available to guide the choice of scale. For example, for the Metropolis algorithm,
research suggests that the optimal acceptance rate is about 0.44 for a one-
dimensional θ and quickly falls to about 0.23 as the dimension of θ increases [16].

In addition, the shape of the proposal distribution can often be tuned. Perhaps
the best shapes are ones that approximate the shape of the posterior distribution,
since then proposals will tend to be in directions in which the posterior is wider.
While the exact shape of the posterior may not be obvious, it may still be possible to
choose a proposal that has a similar covariance structure.
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The scale and shape of the proposal can be tuned in an automated manner, by
making a preliminary run of the algorithm during which features of the proposal are
modified adaptively to improve efficiency. This stage of adaptation occurs prior to
burn-in: The algorithm is not a Markov chain when the proposal distribution is
changed based on the sampling history, so it may not be converging to the posterior.
Once adaptation is declared complete, the proposal distribution is kept fixed for
burn-in and for sampling.

Although it may not be obvious, exact Gibbs sampling can actually be viewed as
a special case of Metropolis-Hastings (e.g., [3]). The α turns out to always equal 1
for this situation, so no tuning is needed. Also, in a Gibbs sampler context, when a
piece of θ cannot be easily simulated using conventional methods, its Gibbs step
may be replaced with an easier step of Metropolis for the full conditional of that
piece.

Since the posterior density is analytically available (up to a constant factor), its
local properties may suggest an efficient choice of proposal distribution. For a
continuous posterior, Langevinmethods use the gradient of the log posterior density
at the current point to adaptively choose the proposal distribution (e.g., [16]). This
provides higher optimal acceptance rates and better scaling properties than pure
Metropolis, though at the expense of more computation for each step. While this is
an important improvement, modern practice has evolved even further to use more
global properties of the posterior density, as detailed in the next subsection.

4.5 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC), also called hybrid Monte Carlo, can be
regarded as a special case of Metropolis-Hastings that uses a proposal involving a
special set of auxiliary variables and the path of a carefully devised differential
equation [17]. Computing each proposal is complicated, and perhaps expensive, but
this is often compensated by achieving a high acceptance rate even when the step
size is large. This results in a sequence of samples that are less dependent, and hence
fewer are needed to achieve high approximation accuracy.

HMC can be applied directly to θ if the posterior is continuous and its density is
continuously differentiable. Let p represent a vector of auxiliary variables having
the same size as θ, but independent of θ. Specify for p an easily-sampled continuous
distribution (often multivariate normal) with a continuously differentiable density
proportional to g pð Þ. Define

H θ, pð Þ ¼ � ln f θð Þ � ln g pð Þ (9)

Then apply the Metropolis algorithm to sample θ, pð Þ jointly, with proposals
generated as follows:

1.Directly generate p (independently of θ).

2.Starting from θold, p
� �

, follow the path θ tð Þ, p tð Þð Þ of the differential equation
system defined by

dθk
dt

¼ ∂H
∂pk

dpk
dt

¼ � ∂H
∂θk

(10)

for each element θk of θ and corresponding element pk of p, up to a
predetermined point tL.
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3.Let θ tLð Þ, p tLð Þð Þ be the new proposed value.

In the Metropolis acceptance step, we use

α ¼ exp H θold, p
� ��H θ tLð Þ, p tLð Þð Þ� �

(11)

Actually, if the path is followed exactly, the acceptance probability will always
be 1, since value of H is constant along any differential equation path [17]. The
Metropolis step is needed only because, in practice, a numerical approximation is
used to solve the differential equation.

To follow the differential equation numerically, we use the leapfrogmethod [17].
This method has a number of advantages over competing methods, including sta-
bility (better preservation of H) and volume preservation, which makes Metropolis
valid (i.e., makes the joint transition kernel defined by this process symmetric).

If θ is not entirely continuous, HMC may still be applicable to the continuous
pieces of θ, for example, when used as part of a Gibbs sampler. Also, if the posterior
density is nonzero only over a certain region, HMC can be adapted for that situa-
tion. For example, it is possible to place lower and upper bounds on the elements
of θ [17].

The differential equation path of an HMC proposal has a tendency to loop back
on itself, making the efficiency sensitive to the length of the path (i.e., the choice of
tL). The no-U-turn sampler (NUTS) [18] is a modification of HMC designed to
avoid this behavior. Essentially, it allows for adaptive choice of the leapfrog algo-
rithm’s step size and number of steps.

In theory, the computational cost of HMC scales better with the dimension of θ
than does the computational cost of ordinary (random-walk) Metropolis methods.
An extensive theoretical comparison can be found in [17].

5. Cluster sampling and variation

The first non-local or cluster sampling for Monte Carlo simulation for large
systems is the Swendsen-Wang (SW) algorithm [19]. It was designed for the Ising
and Potts models and was later generalized to other systems. The main component
was the random cluster model, represented via percolation models of connecting
bonds. Let us start with a spin configuration σf g and generate a percolation config-
uration based on the spin configuration. Next, the old spin configuration is forgot-
ten and a new spin configuration σ0f g is generated according to percolation. The
rule for the process is defined in order for the detailed balance condition to be
satisfied. In this way, the transition leaves the equilibrium probability invariant.

Consider a Potts model with probability distribution

g σð Þ ¼ 1
Z
exp K

X
< i, j>

δσi,σ j � 1
� � !

(12)

where K is the coupling strength; the spins take on the values 1, 2, … , q, e.g.
σi ¼ 1, 2, … , q; δσi,σ j is the Kronecker delta, which equals one whenever σi ¼ σ j and
zero otherwise; the summation goes through nearest neighbor pairs; and Z is the
partition function.

A SW Monte Carlo move is based on the following two steps: the first step
transforms a Potts configuration to a bond configuration, and the second trans-
forms back from bond to a new Potts configuration.
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1.If σi ¼ σ j, a bond nij ¼ 1 is created stochastically between neighbor sites i and j
with a probability of 1� eð Þ�K . Otherwise, no bond will be present and the
bond variable is set to nij ¼ 0.

2.Clusters are identified as sets of sites connected by bonds (otherwise isolated
sites). If there is a connected path of bonds joining two sites, they are said to be
in the same cluster. A new Potts value is assigned to each cluster, chosen with
equal probability among 1 to q. The new Potts variable σ0 is determined as the
value of the cluster it belongs to.

With this approach, every state can be reached from any other state in one move
with a non-zero probability. The two steps leave the probability distribution invari-
ant and the method generates an equilibrium distribution Eq. (12).

One variation of the SW method is generalizing it to arbitrary sampling proba-
bilities defined on graph partitions, which is achieved through considering it as a
Metropolis-Hastings algorithm and computing the acceptance probability of the
proposed Monte Carlo move [20]. The new inference algorithm begins by calculat-
ing graph edge weights using local image features and then is followed by two
iterative steps: Cluster Graph: cutting the edges probability using their weights, to
form connected components; Relabel Graph: selecting one connected component,
and simultaneously flipping the partition of all its vertices in a probabilistic way.
Accordingly, instead of flipping a single vertex as in Gibbs sampler, the split,
merge, and re-grouping of a chunk of the graph are realized with this strategy.

The generalized cluster sampling implements ergodic and reversible Markov chain
jumps on graph partitions. It is applicable to arbitrary posterior probabilities or energy
functions in the space of graphs. Examples in image analysis (e.g., image segmenta-
tion) demonstrate that the cluster Monte Carlo is more efficient than the classical
Gibbs sampler and performs better than the graph cuts and belief propagation.

6. Software implementation

In the statistics community, the first development of practical general-purpose
software for MCMC was the BUGS (Bayesian inference using Gibbs sampling)
project, starting in 1989. The original implementation, designed for the Windows
operating system, was WinBUGS, which included a graphical interface. When
development of WinBUGS ended, the OpenBUGS project was created as a succes-
sor. This software uses a special model specification language, the “BUGS lan-
guage,” that is remarkably flexible. Usually, the analyst only needs to specify the
model in the BUGS language and then leave the construction of appropriate sam-
plers to the software. The basic structure is a Gibbs sampler, but the pieces may be
sampled using specialized methods.

Inspired by BUGS, a parallel effort called JAGS (Just another Gibbs sampler) was
developed. Like BUGS, it is based on Gibbs sampling and, in principle, requires the
analyst to specify only a model (written in a variant of the BUGS language), leaving
the construction of samplers to an automated engine. It tends to be faster than
OpenBUGS, is more actively developed, and features better integration with the R
language. It also incorporates efficient slice samplers in some of its steps. JAGS is
entirely open-source and has versions for many operating systems.

PyMC’s development was an effort to generalize the process of building
Metropolis-Hastings samplers, making MCMC more accessible to non-statisticians.
It is now a Python package helping users define stochastic models and construct
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3.Let θ tLð Þ, p tLð Þð Þ be the new proposed value.
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α ¼ exp H θold, p
� ��H θ tLð Þ, p tLð Þð Þ� �

(11)
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g σð Þ ¼ 1
Z
exp K

X
< i, j>

δσi,σ j � 1
� � !

(12)

where K is the coupling strength; the spins take on the values 1, 2, … , q, e.g.
σi ¼ 1, 2, … , q; δσi,σ j is the Kronecker delta, which equals one whenever σi ¼ σ j and
zero otherwise; the summation goes through nearest neighbor pairs; and Z is the
partition function.

A SW Monte Carlo move is based on the following two steps: the first step
transforms a Potts configuration to a bond configuration, and the second trans-
forms back from bond to a new Potts configuration.
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2.Clusters are identified as sets of sites connected by bonds (otherwise isolated
sites). If there is a connected path of bonds joining two sites, they are said to be
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Bayesian posterior samples. A large number of problems are suitable for PyMC due
to its flexibility and extensibility. Key features include ability to fit Bayesian statis-
tical models via MCMC and other algorithms; a large set of well-documented sta-
tistical distributions; a module for modeling Gaussian processes; sampling loops can
be manipulated manually, etc.

A more recently introduced tool (since 2012) is the language Stan, which
remains under active development (as of this writing). Stan allows model specifi-
cation, but in an inherently more flexible way than BUGS or its variants. Software
for compiling Stan includes the option for MCMC using HMC and NUTS. It there-
fore tends to produce more nearly independent samples than software based on
Gibbs sampling. (There are also options for inference not based on sampling, such
as variational methods.) The Stan software integrates with R, Python, MATLAB,
Julia, and Stata.

7. Conclusion

This chapter has merely touched upon the important concepts and methods of
modern MCMC. Routine-use software automating the construction of samplers is
also introduced. There are many good references that provide more detailed theo-
retical or practical treatment and further extensions, based on which future
research can be developed.
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Chapter 3

A Review on the Exact
Monte Carlo Simulation
Hongsheng Dai

Abstract

Perfect Monte Carlo sampling refers to sampling random realizations exactly
from the target distributions (without any statistical error). Although many differ-
ent methods have been developed and various applications have been implemented
in the area of perfect Monte Carlo sampling, it is mostly referred by researchers to
coupling from the past (CFTP) which can correct the statistical errors for the Monte
Carlo samples generated by Markov chain Monte Carlo (MCMC) algorithms. This
paper provides a brief review on the recent developments and applications in CFTP
and other perfect Monte Carlo sampling methods.

Keywords: coupling from the past, diffusion, Monte Carlo, perfect sampling

1. Introduction

In the past 30 years, substantial progress has been made in popularizing
Bayesian methods for the statistical analysis of complex data sets. An important
driving force has been the availability of different types of Bayesian computational
methods, such as Markov chain Monte Carlo (MCMC), sequential Monte Carlo
(SMC), approximate Bayesian computation (ABC) and so on. For many practical
examples, these computational methods can provide rapid and reliable approxima-
tions to the posterior distributions for unknown parameters.

The basic idea that lies behind these methods is to obtain Monte Carlo samples
from the distribution of interest, in particular the posterior distribution. In Bayesian
analysis of complex statistical models, the calculation of posterior normalizing
constants and the evaluation of posterior estimates are typically infeasible either
analytically or by numerical quadrature. Monte Carlo simulation provides an alter-
native. One of the most popular Bayesian computational methods is MCMC, which
is based on the idea of constructing a Markov chain with the desired distribution as
its stationary distribution.

By running a Markov chain, MCMC methods generate statistically dependent
and approximate realizations from the limiting (target) distribution. A potential
weakness of these methods is that the simulated trajectory of a Markov chain will
depend on its initial state. A common practical recommendation is to ignore the
early stages, the so-called burn-in phase, before collecting realizations of the state of
the chain. How to choose the length of the burn-in phase is an active research area.
Many methods have been proposed for convergence diagnostics; [1] gave a compara-
tive review. Rigorous application of diagnostic methods requires either substantial
empirical analysis of the Markov chain or complex mathematical analysis.
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In practice, judgments about convergence are often made by visual inspection of the
realized chain or the application of simple rules of thumb.

Concerns about the quality of the sampled realizations of the simulated Markov
chains have motivated the search for Monte Carlo methods that can be guaranteed
to provide samples from the target distribution. This is usually referred to as perfect
sampling or exact sampling. In some cases, for example, the multivariate normal,
perfect samples are readily available. For more complicated distributions, perfect
sampling can be achieved, in principle, by the rejection method. This involves sam-
pling from a density that bounds a suitable multiple of the target density, followed
by acceptance or rejection of the sampled value. The difficulty here is in finding a
bounding density that is amenable to rapid sampling while at the same time pro-
viding sample values that are accepted with high probability. In general this is a
challenging task, although efficient rejection sampling methods have been devel-
oped for the special class of log-concave densities; see, for example, [2, 3].

A surprising breakthrough in the search for perfect sampling methods was made
by [4]. The method is known as coupling from the past (CFTP). This is a sophisti-
cated MCMC-based algorithm that produces realizations exactly from the target
distribution. CFTP transfers the difficulty of running the Markov chain for exten-
sive periods (to ensure convergence) to the difficulty of establishing whether a
potentially large number of coupled Markov chains have coalesced. An efficient
CFTP algorithm depends on finding an appropriate Markov chain construction that
will ensure fast coalescence. There have been a few further novel theoretical devel-
opments following the breakthrough of CFTP, including [2, 5, 6]. Since then,
perfect sampling methods have attracted great attention in various Bayesian com-
putational problems and applied probability areas.

Apart from coupling from the past, many other perfect sampling methods were
proposed for specific problems, for example, perfect sampling for random spanning
trees [7, 8] and path-space rejection sampler for diffusion processes [9–11]. Very
recently, a type of divide-and-conquer method has been developed in [12, 13].
These methods use the technique for the exact simulation of diffusions and samples
from simple sub-densities to obtain perfect samples from the target distribution.

Perfect samples are useful in Bayesian applications either as a complete replacement
for MCMC-generated values or as a source of initial values that will guarantee that a
conventionalMCMCalgorithm runs in equilibrium. Perfect samples can also be used as
a means of quality control in judging a proposedMCMC implementation when there
are questions about the speed of convergence of the MCMC algorithm or whether the
chain is capable of exploring all parts of the sample space. Of course, when perfect
samples can be obtained speedily, they will be preferred to MCMC values, since they
eliminate such doubts. In addition, sophisticated perfect samplingmethodology often
motivates efficient approximate algorithms and computational techniques. For exam-
ple, [14] uses regeneratedMarkov chains to obtain simple standard error estimates for
importance sampling underMCMC context. The condition required there will allow us
to carry out perfect sampling via multigamma coupling approach [15].

This paper will present a brief review for perfect Monte Carlo sampling and
explain the advantages and drawbacks of different types of methods. Section 2 will
present rejection sampling techniques, and then CFTP will be covered in Section 3.
Recent divide-and-conquer methods will be reviewed in Section 4. The paper ends
with a discussion in Section 5.

2. Rejection sampling techniques

Rejection sampling, also known as ‘acceptance-rejection sampling’, generates
realizations from a target probability density function f xð Þ by using a hat function
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Mg xð Þ, where f xð Þ≤Mg xð Þ and g xð Þ are a probability density function from which
samples can be readily simulated. The basic rejection sampling algorithm is as
follows:

Algorithm 2.1 (Basic rejection sampling)

Sample x from g xð Þ and U from Unif 0, 1½ �. 01

If U ≤ f xð Þ
Mg xð Þ,

02

accept x as a realisation of f xð Þ and stop; 03
else 04

reject the value of x and go back to step 01. 05

Many other perfect sampling methods are actually equivalent to rejection sam-
pling. For example, ratio-of-uniform (RoU) method [16] may have to be
implemented via a rejection sampling approach.

The efficiency of rejection sampling depends on the acceptance probability,
which is 1=M. To perform rejection sampling efficiently, it is very important to find
hat functions which provides higher acceptance probabilities. In other words, we
shall choose M as small as possible [17]; however for many complicated problems,
there is no easy way to find M small enough to guarantee high acceptance proba-
bility. A number of sophisticated rejection sampling methods have been
suggested for dealing with complex Bayesian posterior densities, which we
discuss below.

2.1 Log-concave densities

A function h xð Þ is called log-concave if

log h λxþ 1� λð Þyð Þ≥ λ log h xð Þ þ 1� λð Þ log h yð Þ,

for all x, y and λ∈ 0, 1½ �. For the special class of log-concave densities, Gilks
and wild [3] developed the adaptive rejection sampling (ARS) method. The
method constructs an envelope function for the logarithm of the target density,
f xð Þ, by using tangents to log f xð Þ at an increasing number, n, of points. The
envelope function un xð Þ is the piecewise linear upper hull formed from the tangents.
Note that, the envelope can be easily constructed due to the concavity of log f xð Þ.
The method also constructs a squeeze function ln xð Þ which is formed from the
chords of the tangent points. The sampling steps of the ARS algorithm are as
follows.

Algorithm 2.2 (Adaptive rejection sampling).

Outputs a stream of perfect samples from f xð Þ.
Initialise un xð Þ and ln xð Þ by using tangents at several points. 01
Sample x ∗ from density ∝ exp un xð Þð Þ and U � Unif 0, 1ð Þ 02
If U ≤ exp ln x ∗ð Þ � un x ∗ð Þð Þ, Output x ∗ ; 03
else if U ≤ f x ∗ð Þ= exp un x ∗ð Þð Þ, 04

Output x ∗ ; Update un, lnð Þ to unþ1, lnþ1ð Þ using x ∗ ; 05
Goto 02 06

The ARS algorithm is adaptive and the sampling density is modified whenever
f x ∗ð Þ is evaluated. In this way, the method becomes more efficient as the sampling
continues. Leydold [18] extends ARS to log-concave multivariate densities.
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In practice, judgments about convergence are often made by visual inspection of the
realized chain or the application of simple rules of thumb.

Concerns about the quality of the sampled realizations of the simulated Markov
chains have motivated the search for Monte Carlo methods that can be guaranteed
to provide samples from the target distribution. This is usually referred to as perfect
sampling or exact sampling. In some cases, for example, the multivariate normal,
perfect samples are readily available. For more complicated distributions, perfect
sampling can be achieved, in principle, by the rejection method. This involves sam-
pling from a density that bounds a suitable multiple of the target density, followed
by acceptance or rejection of the sampled value. The difficulty here is in finding a
bounding density that is amenable to rapid sampling while at the same time pro-
viding sample values that are accepted with high probability. In general this is a
challenging task, although efficient rejection sampling methods have been devel-
oped for the special class of log-concave densities; see, for example, [2, 3].

A surprising breakthrough in the search for perfect sampling methods was made
by [4]. The method is known as coupling from the past (CFTP). This is a sophisti-
cated MCMC-based algorithm that produces realizations exactly from the target
distribution. CFTP transfers the difficulty of running the Markov chain for exten-
sive periods (to ensure convergence) to the difficulty of establishing whether a
potentially large number of coupled Markov chains have coalesced. An efficient
CFTP algorithm depends on finding an appropriate Markov chain construction that
will ensure fast coalescence. There have been a few further novel theoretical devel-
opments following the breakthrough of CFTP, including [2, 5, 6]. Since then,
perfect sampling methods have attracted great attention in various Bayesian com-
putational problems and applied probability areas.

Apart from coupling from the past, many other perfect sampling methods were
proposed for specific problems, for example, perfect sampling for random spanning
trees [7, 8] and path-space rejection sampler for diffusion processes [9–11]. Very
recently, a type of divide-and-conquer method has been developed in [12, 13].
These methods use the technique for the exact simulation of diffusions and samples
from simple sub-densities to obtain perfect samples from the target distribution.

Perfect samples are useful in Bayesian applications either as a complete replacement
for MCMC-generated values or as a source of initial values that will guarantee that a
conventionalMCMCalgorithm runs in equilibrium. Perfect samples can also be used as
a means of quality control in judging a proposedMCMC implementation when there
are questions about the speed of convergence of the MCMC algorithm or whether the
chain is capable of exploring all parts of the sample space. Of course, when perfect
samples can be obtained speedily, they will be preferred to MCMC values, since they
eliminate such doubts. In addition, sophisticated perfect samplingmethodology often
motivates efficient approximate algorithms and computational techniques. For exam-
ple, [14] uses regeneratedMarkov chains to obtain simple standard error estimates for
importance sampling underMCMC context. The condition required there will allow us
to carry out perfect sampling via multigamma coupling approach [15].

This paper will present a brief review for perfect Monte Carlo sampling and
explain the advantages and drawbacks of different types of methods. Section 2 will
present rejection sampling techniques, and then CFTP will be covered in Section 3.
Recent divide-and-conquer methods will be reviewed in Section 4. The paper ends
with a discussion in Section 5.

2. Rejection sampling techniques

Rejection sampling, also known as ‘acceptance-rejection sampling’, generates
realizations from a target probability density function f xð Þ by using a hat function
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Mg xð Þ, where f xð Þ≤Mg xð Þ and g xð Þ are a probability density function from which
samples can be readily simulated. The basic rejection sampling algorithm is as
follows:

Algorithm 2.1 (Basic rejection sampling)

Sample x from g xð Þ and U from Unif 0, 1½ �. 01

If U ≤ f xð Þ
Mg xð Þ,

02

accept x as a realisation of f xð Þ and stop; 03
else 04

reject the value of x and go back to step 01. 05

Many other perfect sampling methods are actually equivalent to rejection sam-
pling. For example, ratio-of-uniform (RoU) method [16] may have to be
implemented via a rejection sampling approach.

The efficiency of rejection sampling depends on the acceptance probability,
which is 1=M. To perform rejection sampling efficiently, it is very important to find
hat functions which provides higher acceptance probabilities. In other words, we
shall choose M as small as possible [17]; however for many complicated problems,
there is no easy way to find M small enough to guarantee high acceptance proba-
bility. A number of sophisticated rejection sampling methods have been
suggested for dealing with complex Bayesian posterior densities, which we
discuss below.

2.1 Log-concave densities

A function h xð Þ is called log-concave if

log h λxþ 1� λð Þyð Þ≥ λ log h xð Þ þ 1� λð Þ log h yð Þ,

for all x, y and λ∈ 0, 1½ �. For the special class of log-concave densities, Gilks
and wild [3] developed the adaptive rejection sampling (ARS) method. The
method constructs an envelope function for the logarithm of the target density,
f xð Þ, by using tangents to log f xð Þ at an increasing number, n, of points. The
envelope function un xð Þ is the piecewise linear upper hull formed from the tangents.
Note that, the envelope can be easily constructed due to the concavity of log f xð Þ.
The method also constructs a squeeze function ln xð Þ which is formed from the
chords of the tangent points. The sampling steps of the ARS algorithm are as
follows.

Algorithm 2.2 (Adaptive rejection sampling).

Outputs a stream of perfect samples from f xð Þ.
Initialise un xð Þ and ln xð Þ by using tangents at several points. 01
Sample x ∗ from density ∝ exp un xð Þð Þ and U � Unif 0, 1ð Þ 02
If U ≤ exp ln x ∗ð Þ � un x ∗ð Þð Þ, Output x ∗ ; 03
else if U ≤ f x ∗ð Þ= exp un x ∗ð Þð Þ, 04

Output x ∗ ; Update un, lnð Þ to unþ1, lnþ1ð Þ using x ∗ ; 05
Goto 02 06

The ARS algorithm is adaptive and the sampling density is modified whenever
f x ∗ð Þ is evaluated. In this way, the method becomes more efficient as the sampling
continues. Leydold [18] extends ARS to log-concave multivariate densities.
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Leydold’s algorithm is based on decomposing the domain of the density into cones
and then computing tangent hyperplanes for these cones. Generic computer code
for sampling from a multivariate log-concave density is available on the author’s
website; it is only necessary to code a subroutine for the target density. Leydold’s
algorithm works well for simple low-dimensional densities. The drawback of ARS
algorithm is that it only works for log-concave densities, which is a very small class
of posteriors in practice. Also computationally it is very challenging to implement
ARS algorithm for high-dimensional densities [19].

2.2 Fill’s rejection sampling algorithm

We consider a discrete Markov chain with transition probability P x, yð Þ and
stationary distribution π xð Þ, x∈ S. Let ~P x, yð Þ ¼ π yð ÞP y, xð Þ=π xð Þ be the transition
probability for the time-reversed chain. Suppose that there is a partial ordering on
the states S, denoted by x≼ y. Let 0̂ and 1̂ be unique extremal points of the partial
ordering.

To demonstrate the algorithm given by [2], we will assume that there are update
functions ϕ and ~ϕ both mapping S� 0, 1½ � to S such that

P x, yð Þ ¼ P ϕ x,Uð Þ ¼ yð Þ, (1)

~P x, yð Þ ¼ P ~ϕ x,Uð Þ ¼ y
� �

, (2)

where U � Unif 0, 1½ � and

x≼ y ) ~ϕ x, uð Þ≼ ~ϕ y, uð Þ a:e: u∈ 0, 1½ �:

The algorithm is as follows:

Algorithm 2.3 (Fill’s algorithm)

1. Choose an integer t>0. Fix x0 ¼ 0̂ and y0 ¼ 1̂.
2. Generate xk ¼ ϕ xk�1,Ukð Þ, k ¼ 1,⋯, t, where Ukf g are i.i.d. Unif 0, 1½ �.
3. Generate ~Uk from the conditional distribution of U given ~ϕ xt�kþ1,Uð Þ ¼ xt�k, k ¼ 1,⋯, t.
4. Generate yk ¼ ~ϕ yk�1, ~Uk

� �
, k ¼ 1,⋯, t.

5. If yt ¼ x0 then accept xt; else double t and repeat from step 2.

In Algorithm 2.3 (step 2) z≔ xt is sampled from Pt 0̂, �� �
. If we find an upper

bound M for π zð Þ=Pt 0̂, z
� �

, then we can use rejection sampling. Fill [2] finds a

bounding constant given by M ¼ π 0̂
� �

=~P
t
1̂, 0̂
� �

and proves that steps from 3 to 5 of

Algorithm 2.3 are to accept z with probability π zð Þ
MPt 0̂, zð Þ. The output of this algorithm

is indeed a perfect sample from π.
From Algorithm 2.3, we can see that rejection sampling can still be possible, even

if we do not have a closed form of the hat function. The first limitation of Algorithm
2.3 is that it works only if the time-reversed chain is monotone, but [5] has extended
the algorithm theoretically for general chains. The second limitation is that step 3 of
Algorithm 2.3 is difficult to perform [2]. For these reasons, Fill’s algorithm is not
practical for realistic problems.
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3. Coupling from the past

Coupling from the past was introduced in the landmark paper of [4] which showed
how to provide perfect samples from the limiting distribution of aMarkov chain.

3.1 Basic CFTP algorithms

Let Xtf g be an ergodic Markov chain with state space X ¼ 1,⋯, nf g, where the
probability of going from i to j is pij and the stationary distribution is π. Suppose we
design an updating function ϕ �,Uð Þ, which satisfies P ϕ i,Uð Þ ¼ j½ � ¼ pij, where ϕ is a
deterministic function and U is a random variable. To simulate the next state Y of the
Markov chain, currently in state i, we draw a random variable U and let Y ¼ ϕ i,Uð Þ.

Let f t ið Þ ¼ ϕ i,Utð Þ, and define the composition

Ft2
t1 ¼ f t2�1∘f t2�2∘⋯∘f t1þ1∘f t1 , (3)

for t1 < t2.
Proposition 3.1 [4] Suppose there exists a time t ¼ �T, the backward coupling

time, such that chains starting from any state in X ¼ 1,⋯, nf g, at time t ¼ �T, and
with the same sequence Ut, t ¼ �T,⋯,�1f g, arrive at the same state X ∗

0 . Then it
must follow that X ∗

0 comes from π.
This proposition is easy to prove. If we run an ergodic Markov chain from time

t ¼ �∞ and with the sequence Ut, t ¼ �T,⋯,�1f g after �T, the Markov chain will
arrive at X ∗

0 . Then X ∗
0 comes exactly from π since it is collected at time 0 and the

Markov chain started from �∞. The algorithm is as follows:

Algorithm 3.1 (Basic CFTP)

t ¼ 0 01
repeat 02
t ¼ t � 1 03
generate Ut 04
F0
t ¼ F0

tþ1∘ϕ �,Utð Þ 05

until F0
t �ð Þ is a constant 06

return F0
t �ð Þ 07

Propp andWilson [4] also proved that this algorithm is certain to terminate. The
idea of simulating from the past is important. Note that if we collect FT

0 �ð Þ as the result,
where T is the smallest value that makes FT

0 �ð Þ a constant, we will get a biased sample.
This is because T is a stopping time, which is not independent of the Markov chain.

3.2 Read-once CFTP

The basic CFTP algorithm needs to restart the Markov chains at some points in
the past if they have not coalesced by time 0. We must use the same random
sequence Utf g�1

�∞ when we restart the Markov chains. In Monte Carlo simulations,
we usually use pseudorandom number generators, which are deterministic algo-
rithms. So if we give the same random seed, we will get the same random sequence.
This means that the same sequence Utf g can be regenerated in each coupling
procedure.
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Leydold’s algorithm is based on decomposing the domain of the density into cones
and then computing tangent hyperplanes for these cones. Generic computer code
for sampling from a multivariate log-concave density is available on the author’s
website; it is only necessary to code a subroutine for the target density. Leydold’s
algorithm works well for simple low-dimensional densities. The drawback of ARS
algorithm is that it only works for log-concave densities, which is a very small class
of posteriors in practice. Also computationally it is very challenging to implement
ARS algorithm for high-dimensional densities [19].

2.2 Fill’s rejection sampling algorithm

We consider a discrete Markov chain with transition probability P x, yð Þ and
stationary distribution π xð Þ, x∈ S. Let ~P x, yð Þ ¼ π yð ÞP y, xð Þ=π xð Þ be the transition
probability for the time-reversed chain. Suppose that there is a partial ordering on
the states S, denoted by x≼ y. Let 0̂ and 1̂ be unique extremal points of the partial
ordering.

To demonstrate the algorithm given by [2], we will assume that there are update
functions ϕ and ~ϕ both mapping S� 0, 1½ � to S such that

P x, yð Þ ¼ P ϕ x,Uð Þ ¼ yð Þ, (1)

~P x, yð Þ ¼ P ~ϕ x,Uð Þ ¼ y
� �

, (2)

where U � Unif 0, 1½ � and

x≼ y ) ~ϕ x, uð Þ≼ ~ϕ y, uð Þ a:e: u∈ 0, 1½ �:

The algorithm is as follows:

Algorithm 2.3 (Fill’s algorithm)

1. Choose an integer t>0. Fix x0 ¼ 0̂ and y0 ¼ 1̂.
2. Generate xk ¼ ϕ xk�1,Ukð Þ, k ¼ 1,⋯, t, where Ukf g are i.i.d. Unif 0, 1½ �.
3. Generate ~Uk from the conditional distribution of U given ~ϕ xt�kþ1,Uð Þ ¼ xt�k, k ¼ 1,⋯, t.
4. Generate yk ¼ ~ϕ yk�1, ~Uk

� �
, k ¼ 1,⋯, t.

5. If yt ¼ x0 then accept xt; else double t and repeat from step 2.

In Algorithm 2.3 (step 2) z≔ xt is sampled from Pt 0̂, �� �
. If we find an upper

bound M for π zð Þ=Pt 0̂, z
� �

, then we can use rejection sampling. Fill [2] finds a

bounding constant given by M ¼ π 0̂
� �

=~P
t
1̂, 0̂
� �

and proves that steps from 3 to 5 of

Algorithm 2.3 are to accept z with probability π zð Þ
MPt 0̂, zð Þ. The output of this algorithm

is indeed a perfect sample from π.
From Algorithm 2.3, we can see that rejection sampling can still be possible, even

if we do not have a closed form of the hat function. The first limitation of Algorithm
2.3 is that it works only if the time-reversed chain is monotone, but [5] has extended
the algorithm theoretically for general chains. The second limitation is that step 3 of
Algorithm 2.3 is difficult to perform [2]. For these reasons, Fill’s algorithm is not
practical for realistic problems.
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3. Coupling from the past

Coupling from the past was introduced in the landmark paper of [4] which showed
how to provide perfect samples from the limiting distribution of aMarkov chain.

3.1 Basic CFTP algorithms

Let Xtf g be an ergodic Markov chain with state space X ¼ 1,⋯, nf g, where the
probability of going from i to j is pij and the stationary distribution is π. Suppose we
design an updating function ϕ �,Uð Þ, which satisfies P ϕ i,Uð Þ ¼ j½ � ¼ pij, where ϕ is a
deterministic function and U is a random variable. To simulate the next state Y of the
Markov chain, currently in state i, we draw a random variable U and let Y ¼ ϕ i,Uð Þ.

Let f t ið Þ ¼ ϕ i,Utð Þ, and define the composition

Ft2
t1 ¼ f t2�1∘f t2�2∘⋯∘f t1þ1∘f t1 , (3)

for t1 < t2.
Proposition 3.1 [4] Suppose there exists a time t ¼ �T, the backward coupling

time, such that chains starting from any state in X ¼ 1,⋯, nf g, at time t ¼ �T, and
with the same sequence Ut, t ¼ �T,⋯,�1f g, arrive at the same state X ∗

0 . Then it
must follow that X ∗

0 comes from π.
This proposition is easy to prove. If we run an ergodic Markov chain from time

t ¼ �∞ and with the sequence Ut, t ¼ �T,⋯,�1f g after �T, the Markov chain will
arrive at X ∗

0 . Then X ∗
0 comes exactly from π since it is collected at time 0 and the

Markov chain started from �∞. The algorithm is as follows:

Algorithm 3.1 (Basic CFTP)

t ¼ 0 01
repeat 02
t ¼ t � 1 03
generate Ut 04
F0
t ¼ F0

tþ1∘ϕ �,Utð Þ 05

until F0
t �ð Þ is a constant 06

return F0
t �ð Þ 07

Propp andWilson [4] also proved that this algorithm is certain to terminate. The
idea of simulating from the past is important. Note that if we collect FT

0 �ð Þ as the result,
where T is the smallest value that makes FT

0 �ð Þ a constant, we will get a biased sample.
This is because T is a stopping time, which is not independent of the Markov chain.

3.2 Read-once CFTP

The basic CFTP algorithm needs to restart the Markov chains at some points in
the past if they have not coalesced by time 0. We must use the same random
sequence Utf g�1

�∞ when we restart the Markov chains. In Monte Carlo simulations,
we usually use pseudorandom number generators, which are deterministic algo-
rithms. So if we give the same random seed, we will get the same random sequence.
This means that the same sequence Utf g can be regenerated in each coupling
procedure.
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If we can run the Markov chain forward starting at 0 and collect a perfect sample
in the future, we will not have to regenerate Utf g. Wilson [20] developed a read-
once CFTP method to implement the forward coupling idea. A simple example is
provided by [21]. In fact, the multigamma coupler in [15] can be implemented via
the more efficient read-once CFTP algorithm.

3.3 Improvement of CFTP algorithms

Propp and Wilson [4] showed that the computational cost of the algorithm can
be reduced if there is a partial order for the state space X that is preserved by the
update function ϕ, i.e. if x≤ y then ϕ x,Uð Þ≤ϕ y,Uð Þ. Their procedure is outlined in
Algorithm 3.2, whereas before 0̂ and 1̂ are the unique extremals. Note that their
algorithm needs a monotone update function ϕ for the Markov chain, while
Algorithm 2.3 requires a monotone update function ~ϕ for the time-reversed chain.

Algorithm 3.2 (Monotone CFTP)

T ¼ 1 01
Repeat 02

upper ¼ 1̂ 03

lower ¼ 0̂ 04

for t ¼ �T to t ¼ �1 05
upper ¼ ϕt upper,Utð Þ 06
lower ¼ ϕt lower,Utð Þ 07

T ¼ 2T 08
until upper ¼ lower 09
return upper 10

Algorithm 3.2 is much simpler than Algorithm 3.1, since only two chains have to
be run at the same time, but the requirement of monotonicity is very restrictive.
Markov chains with transitions given by independent Metropolis-Hastings and
perfect slice sampling have been shown to have this property, by [22, 23], respec-
tively. However [23, 24] have also noticed that such independent M-H CFTP is
equivalent to simple rejection sampler.

In general it is hard to code perfect slice samplers correctly. For example,
Hörmann and Leydold [25] have pointed out that the perfect slice samplers in
[26, 27] are incorrect. The challenge of monotone CFTP is usually to construct the
detailed updating function with a guarantee of preserving the partial order.

Finding a partial order preserved by the Markov chains is a non-trivial task in
many cases. An alternative improvement is to use CFTP with bounding chains, such
as that in [28, 29]. If the bounding chains, which bound all the Markov chains,
coalesce, then all Markov chains coalesce. Thus if only a few bounding chains are
required, the efficiency of the CFTP algorithm can be improved significantly.
Sometimes, it may be impossible to define an explicit bounding chain (the maxi-
mum of the state space may be infinity, and the upper bound chain cannot start
from infinity), but it is possible to use a dominated process to bound all Markov
chains [30].

3.4 Applications and challenges

Although CFTP is extremely challenging to be implemented for many practical
problems, it did find a few applications in certain discrete state space problems, for
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example, the Ising model [4]. Also [31] applied CFTP to ancestral selection graph to
simulate samples from population genetic models. Refs. [32, 33] applied CFTP to a
class of fork-join type queuing system problems. Connor and Kendal [34] applied
CFTP for the perfect simulation of M/G/c queues. CFTP also finds its application in
signal processing [35].

CFTP for continuous state space Markov chains is very challenging, since a
random map from an interval to a finite number of points is required. In recent
years, many methods have been developed for unbounded continuous state space
Markov chains, such as perfect slice sampler in [23], multigamma coupler and the
bounded M-H coupler in [15, 24]. Wilson [36] developed a layered multi-shift
coupling, which shifts states in an interval to a finite number of points. However,
none of these methods can solve any practical problems.

4. Recent advances in perfect sampling

Recently, a new type of perfect Monte Carlo sampling method based on the
decomposition of the target density f , as f �ð Þ ¼ g1 �ð Þg2 �ð Þ, was proposed in [12],
where g1 and g2 are also (proportional to) proper density functions. Note that here
g1 and g2 are continuous density functions which are easy to simulate from. Suppose
that q-dimensional vector values x1 and x2 are independently drawn from g1 and g2,
respectively. If the two independent samples are equal, i.e. x1 ¼ x2 ¼ y then we
have y must be from f �ð Þ∝ g1 �ð Þg2 �ð Þ. Note that such a naive approach may be
practical for discrete random variables with low-dimensional state space, but for
continuous random variables, it is impossible since P x1 ¼ x2ð Þ ¼ 0. Dai [12]
proposed a novel approach to deal with this, which is explained in the following
subsection.

4.1 Perfect distributed Monte Carlo without using hat functions

First we introduce the following notations related to the logarithm of the
sub-densities:

α xð Þ ¼ α 1ð Þ,⋯, α qð Þ
� �tr

xð Þ ¼ ∇ log g1 xð Þ (4)

where ∇ is the partial derivative operator for each component of x. Then we

consider a q-dimensional diffusion process Xt ω
!� �

, t∈ 0,T½ � (T <∞), defined on the

q-dimensional continuous function space Ω, given by:

dXt ¼ α Xtð Þdtþ dBt, (5)

where Bt ω
!� �

¼ ωt is a Brownian motion and ω
! ¼ ωt, t∈ 0,T½ �f g is a typical

element of Ω. Let  be the probability measure for a Brownian motion with the
initial probability distribution B0 ¼ w0 � f 1 �ð Þ ¼ g21 �ð Þ.

Clearly Xt has the invariant distribution f 1 xð Þ (using the Langevin diffusion
results [37]). Let  be the probability law induced by Xt, t∈ 0,T½ �, with X0 ¼
ω0 � f 1 �ð Þ, i.e. under  we have Xt � f 1 xð Þ for any t∈ 0,T½ �.

The idea in [12] is to use a biased diffusion process X ¼ Xt; 0≤ t≤T
� �

to
simulate from the target function f . It is defined as follows.
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If we can run the Markov chain forward starting at 0 and collect a perfect sample
in the future, we will not have to regenerate Utf g. Wilson [20] developed a read-
once CFTP method to implement the forward coupling idea. A simple example is
provided by [21]. In fact, the multigamma coupler in [15] can be implemented via
the more efficient read-once CFTP algorithm.

3.3 Improvement of CFTP algorithms

Propp and Wilson [4] showed that the computational cost of the algorithm can
be reduced if there is a partial order for the state space X that is preserved by the
update function ϕ, i.e. if x≤ y then ϕ x,Uð Þ≤ϕ y,Uð Þ. Their procedure is outlined in
Algorithm 3.2, whereas before 0̂ and 1̂ are the unique extremals. Note that their
algorithm needs a monotone update function ϕ for the Markov chain, while
Algorithm 2.3 requires a monotone update function ~ϕ for the time-reversed chain.

Algorithm 3.2 (Monotone CFTP)

T ¼ 1 01
Repeat 02

upper ¼ 1̂ 03

lower ¼ 0̂ 04

for t ¼ �T to t ¼ �1 05
upper ¼ ϕt upper,Utð Þ 06
lower ¼ ϕt lower,Utð Þ 07

T ¼ 2T 08
until upper ¼ lower 09
return upper 10

Algorithm 3.2 is much simpler than Algorithm 3.1, since only two chains have to
be run at the same time, but the requirement of monotonicity is very restrictive.
Markov chains with transitions given by independent Metropolis-Hastings and
perfect slice sampling have been shown to have this property, by [22, 23], respec-
tively. However [23, 24] have also noticed that such independent M-H CFTP is
equivalent to simple rejection sampler.

In general it is hard to code perfect slice samplers correctly. For example,
Hörmann and Leydold [25] have pointed out that the perfect slice samplers in
[26, 27] are incorrect. The challenge of monotone CFTP is usually to construct the
detailed updating function with a guarantee of preserving the partial order.

Finding a partial order preserved by the Markov chains is a non-trivial task in
many cases. An alternative improvement is to use CFTP with bounding chains, such
as that in [28, 29]. If the bounding chains, which bound all the Markov chains,
coalesce, then all Markov chains coalesce. Thus if only a few bounding chains are
required, the efficiency of the CFTP algorithm can be improved significantly.
Sometimes, it may be impossible to define an explicit bounding chain (the maxi-
mum of the state space may be infinity, and the upper bound chain cannot start
from infinity), but it is possible to use a dominated process to bound all Markov
chains [30].

3.4 Applications and challenges

Although CFTP is extremely challenging to be implemented for many practical
problems, it did find a few applications in certain discrete state space problems, for
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example, the Ising model [4]. Also [31] applied CFTP to ancestral selection graph to
simulate samples from population genetic models. Refs. [32, 33] applied CFTP to a
class of fork-join type queuing system problems. Connor and Kendal [34] applied
CFTP for the perfect simulation of M/G/c queues. CFTP also finds its application in
signal processing [35].

CFTP for continuous state space Markov chains is very challenging, since a
random map from an interval to a finite number of points is required. In recent
years, many methods have been developed for unbounded continuous state space
Markov chains, such as perfect slice sampler in [23], multigamma coupler and the
bounded M-H coupler in [15, 24]. Wilson [36] developed a layered multi-shift
coupling, which shifts states in an interval to a finite number of points. However,
none of these methods can solve any practical problems.

4. Recent advances in perfect sampling

Recently, a new type of perfect Monte Carlo sampling method based on the
decomposition of the target density f , as f �ð Þ ¼ g1 �ð Þg2 �ð Þ, was proposed in [12],
where g1 and g2 are also (proportional to) proper density functions. Note that here
g1 and g2 are continuous density functions which are easy to simulate from. Suppose
that q-dimensional vector values x1 and x2 are independently drawn from g1 and g2,
respectively. If the two independent samples are equal, i.e. x1 ¼ x2 ¼ y then we
have y must be from f �ð Þ∝ g1 �ð Þg2 �ð Þ. Note that such a naive approach may be
practical for discrete random variables with low-dimensional state space, but for
continuous random variables, it is impossible since P x1 ¼ x2ð Þ ¼ 0. Dai [12]
proposed a novel approach to deal with this, which is explained in the following
subsection.

4.1 Perfect distributed Monte Carlo without using hat functions

First we introduce the following notations related to the logarithm of the
sub-densities:

α xð Þ ¼ α 1ð Þ,⋯, α qð Þ
� �tr

xð Þ ¼ ∇ log g1 xð Þ (4)

where ∇ is the partial derivative operator for each component of x. Then we

consider a q-dimensional diffusion process Xt ω
!� �

, t∈ 0,T½ � (T <∞), defined on the

q-dimensional continuous function space Ω, given by:

dXt ¼ α Xtð Þdtþ dBt, (5)

where Bt ω
!� �

¼ ωt is a Brownian motion and ω
! ¼ ωt, t∈ 0,T½ �f g is a typical

element of Ω. Let  be the probability measure for a Brownian motion with the
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The idea in [12] is to use a biased diffusion process X ¼ Xt; 0≤ t≤T
� �

to
simulate from the target function f . It is defined as follows.
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Definition 4.1 (Biased Langevin diffusions) The joint density for the pair X0,XT
� �

(the starting and ending points of the biased diffusion process), evaluated at point
x, y
� �

, is f 1 xð Þt ∗ yjx� �
f 2 y
� �

, where t ∗ yjx� �
is the transition density for the diffusion

process X defined in Eq. (6) fromX0 ¼ x toXT ¼ y and f 2 y
� � ¼ g2 y

� �
=g1 y
� �

.
Given X0,XT

� �
the process Xt, 0< t<T

� �
is given by the diffusion bridge

driven by Eq. (6).
The marginal distribution for XT is f y

� �
. Therefore, to draw a sample from the

target distribution f xð Þ, we need to simulate a process Xt, t∈ 0,T½ � from  (the law
induced by X) and then XT � f xð Þ.

Simulation from  can be done via rejection sampling. We can use a biased
Brownian motion Bt; 0≤ t≤T

� �
as the proposal diffusion:

Definition 4.2 (Biased Brownian motion) The starting and ending points
B0,BT
� �

follow a distribution with a density h x, y
� �

, and Bt; 0< t<T
� �

is a
Brownian bridge given B0,BT

� �
.

Under certain mild conditions, Dai [12] proved the following lemma.
Lemma 4.1 Let  be the probability law induced by Bt; 0≤ t≤T

� �
. By letting

h ω0,ωTð Þ ¼ g2 ωTð Þg1 ω0ð Þ 1ffiffiffiffiffiffiffiffiffi
2πT

p e�
∥ωT�ω0∥

2

2T (6)

we have

d
d

ω
!� �

∝ exp � 1
2

ðT
0

αk k2 þ divα
� �

ωtð Þdt
� �

(7)

where div is the divergence operator.
Condition 4.1 There exists l> �∞ such that

1
2

αk k2 þ divα
� �

xð Þ � l≥0: (8)

Under Condition 4.1 the ratio (8) can be rewritten as

d
d

ω
!� �

∝ exp �
ðT
0

1
2

αk k2 þ divα
� �

ωtð Þ � l
� �

dt
� �

, (9)

which has a value no more than 1.
Therefore we can use rejection sampling to simulate from , with proposal

measure . This acceptance probability (10) can be dealt with using similar methods
as that in [9, 11]. The algorithm is presented below; see [12, 38] for more details.

Algorithm 4.1 (Simple distributed sampler)

Simulate ω0,ωTð Þ from density h 01
Simulate the biased Brownian bridge Bt, t∈ 0,Tð Þ� �

02

Accept ωT as a sample from f , with probability (6); If rejected, go back to step 01. 03

Such a method is a rejection sampling algorithm, but it does not require finding a
hat function to bound the target density, which is usually the main challenge of the
traditional rejection sampling for complicated target densities. The above algorithm
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uses g2 as the proposal density function, which does not have to bound the target f .
However, it requires a bound for the derivatives of the logarithm of the sub-
densities (see Condition 4.1). This is usually easier to get in practice, since the
logarithm of the posterior is usually easy to deal with. Also [12] noted that we
should choose sub-densities g1 and g2 as similar as possible, in order to achieve high
acceptance probability.

Dai [12] focused on the simple decomposition of f ¼ g1g2, although it mentioned
that for more general decomposition of f ¼ g1g2⋯gC, a recursive method can be
used. Unfortunately, a naive recursive method is very inefficient. A more sophisti-
cated method is introduced in the following section.

4.2 Monte Carlo fusion for distributed analysis

A more efficient and sophisticated methods were proposed recently in [13],
named as Monte Carlo fusion. Suppose that we consider

f xð Þ∝ g1 xð Þ⋯gC xð Þ, (10)

where each gc xð Þ (c∈ 1, … ,Cf g) is a density (up to a multiplicative constant).
Here C denotes the number of parallel computing cores available in big data
problems, and each gc xð Þ means the sub-posterior density based on a subset of the
big data. In group decision problems, C means the number of different decisions
which should be combined and gc xð Þ stands for the decision from each group
member.

Dai et al. [13] considered simulating from the following density on extended
space,

g x 1ð Þ, … ,x Cð Þ, y
� �

¼
YC
c¼1

g2c x cð Þ
� �

� pc y jx cð Þ
� �

� 1
gc y
� �

" #
, (11)

which admits the marginal density f for y. Here pc y jx cð Þ� �
is the transition

density from x cð Þ to y for the Langevin diffusion defined in Eq. (6) associated with
each sub-density gc.

Dai et al. [13] considered a rejection sampling approach with proposal density
proportional to the function

h x 1ð Þ, … , x Cð Þ, y
� �

¼
YC
c¼1

gc x cð Þ
� �h i

� exp �C � ∥y� x∥2

2T

� �
, (12)

where x ¼ C�1PC
c¼1x

cð Þ and T is an arbitrary positive constant.
Simulation from the proposal h can be achieved directly. In particular,

x 1ð Þ, …x Cð Þ are first drawn independently from g1, … , gC, respectively, and then y is
simply a Gaussian random variable centred on x. This is a distributed analysis or
divide-and-conquer approach. Detailed acceptance probabilities and rejection
sampling algorithms can be found in [13].

The above fusion approach arises in modern statistical methodologies for ‘big
data’. A full dataset will be artificially split into a large number of smaller data sets,
and inference is then conducted on each smaller data set and combined (see, for
instance, [39–46]). The advantage for such an approach is that inference on each
small data set can be conducted in parallel. Then the heavy computational cost
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used. Unfortunately, a naive recursive method is very inefficient. A more sophisti-
cated method is introduced in the following section.

4.2 Monte Carlo fusion for distributed analysis

A more efficient and sophisticated methods were proposed recently in [13],
named as Monte Carlo fusion. Suppose that we consider

f xð Þ∝ g1 xð Þ⋯gC xð Þ, (10)

where each gc xð Þ (c∈ 1, … ,Cf g) is a density (up to a multiplicative constant).
Here C denotes the number of parallel computing cores available in big data
problems, and each gc xð Þ means the sub-posterior density based on a subset of the
big data. In group decision problems, C means the number of different decisions
which should be combined and gc xð Þ stands for the decision from each group
member.

Dai et al. [13] considered simulating from the following density on extended
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is the transition

density from x cð Þ to y for the Langevin diffusion defined in Eq. (6) associated with
each sub-density gc.
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cð Þ and T is an arbitrary positive constant.
Simulation from the proposal h can be achieved directly. In particular,

x 1ð Þ, …x Cð Þ are first drawn independently from g1, … , gC, respectively, and then y is
simply a Gaussian random variable centred on x. This is a distributed analysis or
divide-and-conquer approach. Detailed acceptance probabilities and rejection
sampling algorithms can be found in [13].

The above fusion approach arises in modern statistical methodologies for ‘big
data’. A full dataset will be artificially split into a large number of smaller data sets,
and inference is then conducted on each smaller data set and combined (see, for
instance, [39–46]). The advantage for such an approach is that inference on each
small data set can be conducted in parallel. Then the heavy computational cost
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of algorithms such as MCMC will not be a concern. Traditional methods suffer from
the weakness that the fusion of the separately conducted inferences is inexact.
However, the Monte Carlo fusion in [13] is an exact simulation algorithm and does
not have any approximation weakness.

The above fusion approach also arises in a number of other settings, where
distributed analysis came naturally. For example, in signal processing, distributed
multi-sensor may be used for network fusion systems. Fusion approach arises
naturally to combine results from different sensors [47].

5. Conclusion

Although perfect simulation usually refers to correcting the statistical errors for
the samples drawn via MCMC, it actually covers a much wider area beyond CFTP.
In fact for certain applications, it is often possible to construct other types of perfect
sampling methods which are much more efficient than CFTP. For example, for the
exact simulation of the posterior of simple mixture models, the geometric-
arithmetic mean (GAM) method in [19] is much more efficient than CFTP in [48].
Details of GAM method is provided in Appendix. Also the random walk construc-
tion for exact simulation for random spanning trees [7] is much more efficient than
the CFTP version.

Bayesian computational algorithms keep evolving, in particular under the cur-
rent big data era. Although almost all newly developed algorithms are approximate
simulation algorithms, perfect sampling is still one of the key wheel-driven forces
for new Bayesian computational algorithms, and they usually can quickly motivate
new class of ‘mainstream’ algorithms. More focus should be given to methods
beyond CFTP, for example, the fusion type of algorithms.

The Monte Carlo fusion method has the potential to be used in many Bayesian big
data applications. For example, for large car accident data, the response variable is
usually a categorical variable representing the seriousness of the accident, and gener-
alized linear regression model is often used. Under a Bayesian framework, we may
estimate the posterior distribution for the regression parameters via such a fusion
approach. Then the posterior mean, the posterior median, or other characteristics of
the posterior distribution can be estimated using the Monte Carlo samples. Also such
an algorithm is perfect sampling algorithm, and no convergence justification is
needed, since it always provided realizations exactly from the target distribution.

Appendix

A. Geometric-arithmetic mean method for simple mixture model

Observations from a simple mixture model are assumed to be either discrete or
continuous. The density function of an individual observation y has the form

f y;pð Þ ¼
XK

k¼1

pkf k yð Þ, where
XK

k¼1

pk ¼ 1, and pk >0, k ¼ 1, … ,K: (13)

We assume that the component weights p ¼ p1, … , pK
� �

are unknown parame-
ters and the number of components, K, and the component densities, f k, are all
known. We focus on the perfect sampling from the posterior distribution of p.
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Suppose that we have N observations, y1, … , yN. Let Lnk ¼ f k yn
� �

and assume
that the prior distribution of p is Dirichlet:

π0 pð Þ∝
YK

k¼1

pαk�1
k , αk >0, k ¼ 1, … ,K: (14)

Then the posterior distribution is given by

f pjyð Þ∝ π0 pð Þ
YN
n¼1

XK

k¼1

pkLnk

 !
IX pð Þ, (15)

where X ¼ pjPK
k¼1pk ¼ 1, pk >0, k ¼ 1, … ,K

n o
.

There are several ways to carry out perfect sampling from Eq. (16). The first
method is based on CFTP [48]. An alternative perfect sampling method for simple
mixture models is introduced by [49]. The third approach is to use adaptive rejec-
tion sampling [3, 18], since the posterior is log-concave. We may also use the ratio-
of-uniform method. However, none of these methods are more efficient than the
geometric–arithmetic mean method in [19].

A.1 Geometric-arithmetic mean method

Suppose that p ∗ , the MLE of p is unique and for simplicity, assume the prior
π0 pð Þ is uniform. Define ank ¼ Lnk=

P
p ∗
k Lnk. The posterior density of p is then

given by

f pjyð Þ∝ h pjyð Þ ¼
YN
n¼1

XK

k¼1

pkank

 !
IX pð Þ, (16)

where X is defined in (16).
Let In be a random element of arg max kLnk. Define Aj ¼ n : In ¼ jf g and let

n ¼ n1, … , nkð Þ where nj is the number of elements in Aj.

Define M ¼ mjk
� �

with mjk ¼
P

n∈Aj
ank

� �
=nj. If nj ¼ 0, then set mjj ¼ 1 and

mjk ¼ 0 for j 6¼ k. We now make two assumptions, which we will return to later on:
A: M is invertible.

B: The elements of v ¼ MT� ��11 are all positive.
Under these assumptions, we will show that the following rejection sampler

generates simulated values from the posterior distribution of p. First we define V to
be the diagonal matrix with diagonal elements vT ¼ v1 … , vKð Þ.

Algorithm 6.1 (GAM sampler)

Sample q from the Dirichlet distribution with parameter nþ 1. 01
Sample U from Unif 0, 1½ �. 02
Calculate p with p ¼ M�1V�1q. 03

If U ≤ h pjyð Þ=QK
j¼1 qj=vj
� �nj

, 04

Accept p and stop; 05
else 06

reject p and go to 01. 07
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Suppose that we have N observations, y1, … , yN. Let Lnk ¼ f k yn
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Proposition 6.1 Under assumptions A and B, Algorithm 6.1 samples p with
probability density (17).

Proof: Since the geometric average is no larger than the arithmetic average, for
p∈X , we have

h pjyð Þ ¼
YN
n¼1

XK

k¼1

pkank

 !
¼
YK
j¼1

Y
n∈Aj

XK

k¼1

pkank

 !
(17)

≤
YK
j¼1

P
n∈Aj

PK
k¼1pkank

� �

nj

0
@

1
A

nj

, (18)

where in the case nj ¼ 0, the product term is taken as 1. So that, for p∈X , with
mjk as previously defined, we have

h pjyð Þ≤
YK
j¼1

XK

k¼1

pkmjk

 !nj

(19)

¼
YK
j¼1

v�nj
j

" #YK
j¼1

vj
XK

k¼1

pkmjk

 !nj

(20)

¼
YK
j¼1

qj=vj
� �nj

, (21)

where qj ¼ vj
PK

k¼1pkmjk, j ¼ 1, … ,K or equivalently q ¼ VMp.

Since vj >0 and
PK

k¼1pkmjk >0, it follows that qj >0 for j ¼ 1, … ,K. Furthermore

XK
j¼1

qj ¼
XK
j¼1

vj
XK

k¼1

pkmjk ¼ pTMTv ¼ pT1 ¼ 1,

since MTv ¼ 1, from the definition of v. It follows that p∈X implies q∈X , so
that

h pjyð ÞIX pð Þ≤
YK
j¼1

qj=vj
� �nj

IX qð Þ: (22)

Note that the right-hand side of Eq. (22) is proportional to a Dirichlet distribu-
tion with parameters n1 þ 1, … , nK þ 1ð Þ.

Rejection sampling then proceeds as usual:

• A sample q is drawn from Dirichlet nþ 1ð Þ.

• The value p ¼ M�1V�1q is calculated.

• It is accepted with probability h pj yð ÞIX pð Þ=QK
j¼1 qj=vj
� �nj

.

We now return to assumptions A and B. Suppose that M is invertible but the

elements of v ¼ MT� ��11 are not all positive. In this case, let
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αk ¼ 1
N

PN
n¼1ank, α ¼ max

k
αkf g, v ¼ αNð Þ�1n and ~M ¼ αMΔ,

where Δ is a diagonal matrix with diagonal elements 1=α1, … , 1=αKð Þ. Note that

v ¼ ~M
T

� ��1
1>0. Algorithm 6.1 and its proof can then be modified by replacing M

by ~M.
Suppose now that assumption A does not hold, i.e. M is not invertible. This can

be remedied by adding positive quantities to the diagonal elements of M. This also
provides an alternative way of ensuring that the elements of v are positive.

A.2 Dirichlet priors and pseudo data

Suppose that the prior π0 pð Þ is Dirichlet α1 þ 1, … , αK þ 1ð Þ, where αi : i ¼
1, … ,K are positive, integers and let A ¼PK

j¼1αj. The prior can be synthesized by
introducing pseudo data, ~amk,m ¼ 1, … ,A; k ¼ 1, … ,K, defined as follows:

~amk ¼ 1 if
Pk�1

j¼1 αj þ 1≤m≤
Pk

j¼1αj

0 otherwise,

(
(23)

since

π0 pð Þ∝
YK

k¼1

pαkk ¼
YA
m¼1

XK

k¼1

~amkpk

 !
: (24)

With the Dirichlet prior, the posterior distribution given by Eq. (16) can be
written as

f pjyð Þ∝
YNþA

l¼1

XK

k¼1

pkalk

 !
IX pð Þ, (25)

where alk, l ¼ 1, … ,N þ Af g contains the real data ank, n ¼ 1, … ,Nf g and the
pseudo data ~amk,m ¼ 1, … ,Af g.

The posterior distribution (26) has the same form as Eq. (17). Therefore GAM
can be used to sample realizations from the posterior distribution (26).

A.3 Simulation results and discussion

We compare the running time of mixture models with sample sizes (N) and
different number of components (K) in Table 1. The components have specified
normal distributions with means μ ¼ μ1, … , μKð Þ and variances σ2 ¼ σ21, … , σ2K

� �
.

The prior on p is uniform. We sample 10,000 realizations from the posterior of the
models.

When K ¼ 3, 4, we simulate N observations from a three-component normal
mixture with μ ¼ 0, 0, 2ð Þ, σ2 ¼ 1, 4, 1ð Þ andmixture weight p0 ¼ 1=2, 1=3, 1=6ð Þ. We
then either sample from the posterior distribution of p using the same distributional
components in the case K ¼ 3 or sample from the posterior distribution of p with an
additional component having mean μ4 ¼ 4 and variance σ24 ¼ 4, in the case K ¼ 4.

When K ¼ 5, observations are simulated from the normal mixture distribution
with components having means μ ¼ �2, 0, 4, 2, 3ð Þ, variances σ2 ¼ 1, 1, 4, 1, 4ð Þ
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Proposition 6.1 Under assumptions A and B, Algorithm 6.1 samples p with
probability density (17).

Proof: Since the geometric average is no larger than the arithmetic average, for
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pkank
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k¼1pkank
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nj
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@

1
A

nj

, (18)

where in the case nj ¼ 0, the product term is taken as 1. So that, for p∈X , with
mjk as previously defined, we have

h pjyð Þ≤
YK
j¼1

XK

k¼1

pkmjk

 !nj
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¼
YK
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v�nj
j

" #YK
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vj
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pkmjk

 !nj

(20)

¼
YK
j¼1

qj=vj
� �nj

, (21)

where qj ¼ vj
PK

k¼1pkmjk, j ¼ 1, … ,K or equivalently q ¼ VMp.

Since vj >0 and
PK

k¼1pkmjk >0, it follows that qj >0 for j ¼ 1, … ,K. Furthermore

XK
j¼1

qj ¼
XK
j¼1

vj
XK

k¼1

pkmjk ¼ pTMTv ¼ pT1 ¼ 1,

since MTv ¼ 1, from the definition of v. It follows that p∈X implies q∈X , so
that

h pjyð ÞIX pð Þ≤
YK
j¼1

qj=vj
� �nj

IX qð Þ: (22)

Note that the right-hand side of Eq. (22) is proportional to a Dirichlet distribu-
tion with parameters n1 þ 1, … , nK þ 1ð Þ.

Rejection sampling then proceeds as usual:

• A sample q is drawn from Dirichlet nþ 1ð Þ.

• The value p ¼ M�1V�1q is calculated.

• It is accepted with probability h pj yð ÞIX pð Þ=QK
j¼1 qj=vj
� �nj

.

We now return to assumptions A and B. Suppose that M is invertible but the

elements of v ¼ MT� ��11 are not all positive. In this case, let
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αk ¼ 1
N

PN
n¼1ank, α ¼ max

k
αkf g, v ¼ αNð Þ�1n and ~M ¼ αMΔ,

where Δ is a diagonal matrix with diagonal elements 1=α1, … , 1=αKð Þ. Note that

v ¼ ~M
T

� ��1
1>0. Algorithm 6.1 and its proof can then be modified by replacing M

by ~M.
Suppose now that assumption A does not hold, i.e. M is not invertible. This can

be remedied by adding positive quantities to the diagonal elements of M. This also
provides an alternative way of ensuring that the elements of v are positive.

A.2 Dirichlet priors and pseudo data

Suppose that the prior π0 pð Þ is Dirichlet α1 þ 1, … , αK þ 1ð Þ, where αi : i ¼
1, … ,K are positive, integers and let A ¼PK

j¼1αj. The prior can be synthesized by
introducing pseudo data, ~amk,m ¼ 1, … ,A; k ¼ 1, … ,K, defined as follows:

~amk ¼ 1 if
Pk�1

j¼1 αj þ 1≤m≤
Pk

j¼1αj

0 otherwise,
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written as
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where alk, l ¼ 1, … ,N þ Af g contains the real data ank, n ¼ 1, … ,Nf g and the
pseudo data ~amk,m ¼ 1, … ,Af g.

The posterior distribution (26) has the same form as Eq. (17). Therefore GAM
can be used to sample realizations from the posterior distribution (26).

A.3 Simulation results and discussion

We compare the running time of mixture models with sample sizes (N) and
different number of components (K) in Table 1. The components have specified
normal distributions with means μ ¼ μ1, … , μKð Þ and variances σ2 ¼ σ21, … , σ2K

� �
.

The prior on p is uniform. We sample 10,000 realizations from the posterior of the
models.

When K ¼ 3, 4, we simulate N observations from a three-component normal
mixture with μ ¼ 0, 0, 2ð Þ, σ2 ¼ 1, 4, 1ð Þ andmixture weight p0 ¼ 1=2, 1=3, 1=6ð Þ. We
then either sample from the posterior distribution of p using the same distributional
components in the case K ¼ 3 or sample from the posterior distribution of p with an
additional component having mean μ4 ¼ 4 and variance σ24 ¼ 4, in the case K ¼ 4.

When K ¼ 5, observations are simulated from the normal mixture distribution
with components having means μ ¼ �2, 0, 4, 2, 3ð Þ, variances σ2 ¼ 1, 1, 4, 1, 4ð Þ
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and p0 ¼ 0:35, 0:3, 0:1, 0:2, 0:05ð Þ. Samples from the posterior distribution of p
are drawn assuming the same components. Similar calculations are carried out
for K ¼ 6, where μ ¼ 0, 3, 2,�2,�4, 5ð Þ, variances σ2 ¼ 1, 1, 1, 1, 1, 4ð Þ and p0 ¼
0:05, 0:3, 0:3, 0:1, 0:08, 0:17ð Þ, again assuming that the component distributions are
known.

From Table 1, we can see that the GAM algorithm, while using very little
memory, is highly efficient in running time. The last row of the table is the esti-
mated acceptance probability of the GAM algorithm. The algorithm is very efficient
when the component densities are known. We can see this not only by simulation
but also from theoretical considerations, as follows.

A.3.1 Explanation of efficiency

When v ¼ MT� ��11>0, we are able to use M directly without modification to
construct the hat function, thereby speeding up the calculations. In the simulations
of the previous section, this was always found to be the case. Now we explain why
this should be so.

If the maximum likelihood estimator of p is consistent, then when N ! ∞,

1
nj

X
n∈Aj

LnkPK
k¼1p

∗
k Lnk

� LnkPK
k¼1pkLnk

�����

�����!
p
0: (26)

Assuming sufficient regularity, we also have

mjk ¼
P

n∈Aj
ank

nj
(27)

¼ 1
nj

X
n∈Aj

LnkPK
k¼1p

∗
k Lnk

(28)

!p E
f k Yð Þ
f Yð Þ jLj

� �
(29)

¼
Ð
Lj
f k yð Þdy
γj

, as N ! ∞, (30)

K 3 3 4 4 6 6

N 400 1000 400 1000 400 1000

Fearnhead’s 242 s 3610 s * * * *

Leydold’s ≤ 1 s 3.6 s * * * *

RoU 16:11 s 28:16 s 31:18 s 68:33 s 88:60 s 152:76 s

GAM 4 s 9 s 11 s 16 s 6 s 11 s

GAM AP 0.7472 0.7509 0.2433 0.3088 0.5325 0.5505

Fearnhead’s algorithm, Leydold’s algorithm and ratio-of-uniform. GAM method. GAM acceptance probability. The
* indicates that Fearnhead’s method, and Leydold’s method will not run on a standard desktop when K ¼ 4 and K ¼ 5.

Table 1.
Running times (in s).
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where Y has density f yð Þ ¼PK
k¼1 pk f k yð Þ, Lj ¼ yj f j yð Þ≥ f k yð Þ, k ¼ 1, … ,K

n o

and γj ¼
Ð
Lj

f yð Þdy.
Therefore

MT !p WT, (31)

where

W ¼ wjk
� �

,wjk ¼
Ð
Lj
f k yð Þdy
γj

: (32)

Let v ¼ γ1, … , γKð Þ, then

WTv ¼

PK
j¼1

Ð
Lj

f 1 yð Þdy
⋮PK

j¼1

Ð
Lj

f K yð Þdy

2
664

3
775 ¼

Ð
f 1 yð Þdy
⋮Ð

f K yð Þdy

2
64

3
75 ¼ 1, (33)

where the second equal sign is because ∪K
j¼1Lj ¼ �∞,∞ð Þ. So, there exists v>0,

satisfying WTv ¼ 1. Using Eq. (32), we can conclude that when N is large enough,
there also exists v≈ v>0, satisfying MTv ¼ 1.

Since γj ¼
Ð
Lj
f yð Þdy and nj ¼ # Aj

� �
, we have nj=N !p γj: When each nj, j ¼

1, … ,K is large, if a random sample q is drawn from a Dirichlet distribution with
parameter nþ 1, then each qj is approximately equal to nj=N ≈ γj. Furthermore,
vj ≈ γj, so q satisfies

V�1q≈ 1, (34)

and then,

p ¼ M�1V�1q≈M�11 ¼ p ∗ : (35)

If p is approximately equal to the mode p ∗ , the two sides of the inequality,

h pj yð Þ ¼
YN
n¼1

XK

k¼1

pkank

 !
≤
YK
j¼1

v�nj
j

" #YK
j¼1

qnjj , (36)

are approximately equal as well. Thus, the closer the sampled realization p is to
p ∗ , the larger the acceptance probability is. So the algorithm runs very rapidly,
since the sampled values of p are always around the mode p ∗ .

This algorithm requires calculating theMLE, which can be performed very quickly
since the likelihood function is log-concave. In fact an approximate guess for p ∗ will
suffice. The more accurate the guess is, the more efficient the algorithm will be.

The method performs well when the component densities are correctly speci-
fied, as explained in the previous section. For these same reasons, we would expect
the algorithm to perform poorly under misspecification. Details of robustness to
misspecification can be found in [19].
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and p0 ¼ 0:35, 0:3, 0:1, 0:2, 0:05ð Þ. Samples from the posterior distribution of p
are drawn assuming the same components. Similar calculations are carried out
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When v ¼ MT� ��11>0, we are able to use M directly without modification to
construct the hat function, thereby speeding up the calculations. In the simulations
of the previous section, this was always found to be the case. Now we explain why
this should be so.
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where Y has density f yð Þ ¼PK
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where the second equal sign is because ∪K
j¼1Lj ¼ �∞,∞ð Þ. So, there exists v>0,

satisfying WTv ¼ 1. Using Eq. (32), we can conclude that when N is large enough,
there also exists v≈ v>0, satisfying MTv ¼ 1.

Since γj ¼
Ð
Lj
f yð Þdy and nj ¼ # Aj
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, we have nj=N !p γj: When each nj, j ¼

1, … ,K is large, if a random sample q is drawn from a Dirichlet distribution with
parameter nþ 1, then each qj is approximately equal to nj=N ≈ γj. Furthermore,
vj ≈ γj, so q satisfies

V�1q≈ 1, (34)

and then,

p ¼ M�1V�1q≈M�11 ¼ p ∗ : (35)

If p is approximately equal to the mode p ∗ , the two sides of the inequality,
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are approximately equal as well. Thus, the closer the sampled realization p is to
p ∗ , the larger the acceptance probability is. So the algorithm runs very rapidly,
since the sampled values of p are always around the mode p ∗ .

This algorithm requires calculating theMLE, which can be performed very quickly
since the likelihood function is log-concave. In fact an approximate guess for p ∗ will
suffice. The more accurate the guess is, the more efficient the algorithm will be.

The method performs well when the component densities are correctly speci-
fied, as explained in the previous section. For these same reasons, we would expect
the algorithm to perform poorly under misspecification. Details of robustness to
misspecification can be found in [19].
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Chapter 4

Bayesian Analysis for Random
Effects Models
Junshan Shen and Catherine C. Liu

Abstract

Random effects models have been widely used to analyze correlated data sets,
and Bayesian techniques have emerged as a powerful tool to fit the models. How-
ever, there has been scarce literature that systematically reviews and summarizes
the recent advances of Bayesian analyses of random effects models. This chapter
reviews the use of the Dirichlet process mixture (DPM) prior to approximate the
distribution of random errors within the general semiparametric random effects
models with parametric random effects for longitudinal data setting and failure
time setting separately. In a survival setting with clusters, we propose a new class of
nonparametric random effects models which is motivated from the accelerated
failure models. We employ a beta process prior to tact clustering and estimation
simultaneously. We analyze a new data set integrated from Alzheimer’s disease
(AD) study to illustrate the presented model and methods.

Keywords: beta process, Dirichlet process mixture, clustered data, longitudinal
data, random effects, survival outcome, nonparametric transformation model

1. Introduction

Random effects models have been widely used as a powerful tool for analyzing
correlated data [1, 2]. The model features a finite number of random terms acting as
latent variables to model unobserved factors; see [3] for a comprehensive review.
Some authors have further proposed semiparametric mixed effect models by
allowing for infinite dimensional random effects [4, 5]. Most of the aforementioned
works draw inferences using frequentist approaches, while Bayesian approaches
have been largely ignored because of the lack of computational feasibility and
expediency. With the advent of the “supercomputer” era, Bayesian analyses have
recently sparked much interest in the setting of random effects models for clustered
data or longitudinal settings. However, there is scarce literature that has systemat-
ically reviewed the Bayesian works in the area.

By extending the traditional random effects models, recent research focus has
shifted to study heterogeneous random effects or nonparametric distributions of
random effects, which arise because of skewness of data, missing covariates, or
unmeasurable subject-specific covariates [6]. The extended random effects models,
termed semiparametric random effects models, improve statistical performance
with added interpretability. Bayesian techniques, which provide a convenient
means to model non-Gaussian distributions, have recently been proposed for
semiparametric random effects model in a variety of settings ([7, 8], among others).
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The discreteness of the Dirichlet process makes it impossible as a prior for estimat-
ing a density. However, as a remedy by convolving with a kernel, Dirichlet process
mixture plays an important role [9].

For censored outcome data, transformation models, which transform the time-
to-event responses using a monotone function and link them to the covariates of
interest, have surged as a strong competitor of the Cox model [10]. Moreover, the
transformation model framework is fairly general. The Cox model and the propor-
tional odd model [11] can be viewed as nonparametric transformation linear models
with some specific error terms; see [12–14]. For correlated data, the transformation
model naturally extends the semiparametric random effects model by directly
incorporating random effects to the transformation functions, treating them as
realizations of an underlying random function. Bayesian analyses have found much
use in this new area. For example, the beta process has been found to be a reason-
able candidate for the prior of the monotone transformation function [15–17].

This chapter focuses on the Bayesian analysis of the transformed linear model
with censored data and in a clustered setting. In many biomedical studies, the
observations are naturally clustered. For example, patients in observational studies
can be grouped in analysis according to a variety of factors, such as age, race,
gender, and hospital, in order to reduce the confounding effects. Following Mallick
and Walker [18], we explore using a mixture of beta distributions and the beta
process as the candidates for the prior distribution of the random transformation
function [17, 19, 20].

The rest of this chapter is structured as follows. Section 2 reviews the use of the
Bayesian approach to infer parametric random effects models. In the setting of
survival analysis, Section 3 proposes a beta process prior to fit random effects model
with nonparametric transformation functions, and Section 4 applies the method to
study the progression of Alzheimer’s disease (AD). Section 5 concludes the chapter
with future research directions.

2. Dirichlet process mixture prior

In parametric random effects models, we considered the situation that the dis-
tribution form of the random error term is unknown. Dirichlet process mixture
(DPM) is used as the prior for the baseline distribution in that error terms used to
be continuous random variables in most situations.

2.1 Linear mixed effects model

With a longitudinal data set Yi, xi, zif g, we posit a mixed effects model with an
AR(1) serial correlation structure:

yi ¼ xiβþ zibi þwi, i ¼ 1, … ,m;

wi ¼ wi1, … ,winið ÞT;wij ¼ ρwi, j�1 þ ϵij, j ¼ 2, … , ni,
(1)

where yi ¼ yi1, … , yini

� �T
with yij being the jth response of the ith subject for

i ¼ 1, … ,m, β is a p� 1 vector of fixed effect parameters, bi a q� 1 Gaussian
random vector representing the subject-specific random effects, xi and zi are ni � p
and ni � q design matrices linking β and bi to yi, respectively, wi ¼ wi1, … ,winið ÞT
is an ni � 1 vector of model errors, ρ is the autoregressive coefficient, and ϵij 0 s are i.i.
d. noises. When ϵij

� �
is non-normal, we assume a mixture model:
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f G ϵjσ2� � ¼
ð
φ ϵju, σ2� �

dG uð Þ, (2)

where φ �ju, σ2ð Þ is the probability density function for a normal random variable
with mean u and variance σ2 and G is an unspecified probability distribution of u
satisfying

Ð
udG uð Þ ¼ 0, which ensures that ϵ comes from a mean-zero mixture

distribution.
Replacing the Dirichlet process by an equivalent Pólya urn representation, [8]

employed an empirical likelihood approach with the moment constraints and
developed a posterior adjusted Gibbs sampler for more precise estimation. The
algorithm is computationally feasible.

2.2 Accelerated failure time model

We shift gears to study survival outcomes with a cluster structure. Denote the
data set by Tij,Xij

� �
, i ¼ 1,⋯,K, j ¼ 1,⋯, ni, where Tij is the failure time of the jth

subject in the ith cluster and Xij is a vector of associated covariates. To accommo-
date such data, we utilize a general accelerated failure time model:

logTij ¼ XT
ijβþ εij, i ¼ 1,⋯,K and j ¼ 1,⋯, ni, (3)

where β is a vector of p-dim regression coefficients of interest and εij are inde-
pendent random errors following the distribution with density f i. [7] posed an
exponential tilt on the distributions of error terms to incorporate the cluster het-
erogeneity. That is,

f i tð Þ
f 1 tð Þ ¼ exp θ0i þ θTi q tð Þ� �

, i ¼ 2,⋯,K, (4)

where q tð Þ is a q-dimensional prespecified functions containing potential

covariate information and θi is the corresponding parameter vector with θ0i ¼
log

Ð
exp θTi q tð Þ� �

f 1 tð Þdt� ��1
h i

: Thus, θi represents the parametric random effects in

the model. Li et al. [7] place the DPM prior on the baseline density f 1 to develop a
set of procedures which improves estimation efficiency through information
pooling.

3. Beta process prior

We now present a nonparametric random effects model for the clustered sur-
vival data with nonparametric monotone link functions. We employ a beta process
as the prior for the baseline function.

Let Tij denote the failure time of the jth subject in the ith cluster, Xij be the
covariate vector for the subject, and Cij be the potential censoring time to the jth
subject in the ith cluster. Assume that Cij is independent of the failure time Tij. Let
Zij ¼ min Tij,Cij

� �
and let δij ¼ I Tij <Cij

� �
be the censoring indicator. Then the

observed data can be described as

Zij, δij,Xij
� �

, i ¼ 1,⋯, n; j ¼ 1,⋯, ni: (5)
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Within each cluster, Tij is linked to Xij via the following transformation model:

lnHi Tij
� � ¼ XT

ijβþ lnεij, i ¼ 1, 2⋯, n, (6)

where εij are i.i.d. variables with a known density function f ε �ð Þ and Hi tð Þ are
unknown cluster-specific monotone functions, which are i.i.d. realizations of a
random function and can be viewed as a nonparametric version of random effects
for independent clusters. In a parametric setting, if we set Hi tð Þ ¼ texp �bið Þ with bi
being a cluster-specific random effect, Eq. (6) reduces to a classical random effects
model, which has been discussed in Section 2.2. The challenge, however, lies in how
to draw inferences in such a nonparametric setting.

To proceed, let the coefficient vector β be a p-dim unknown vector of interest.
We further assumeHi

0s are differentiable with derivative hi tð Þ ¼ H0
i tð Þ, and then the

likelihood based on the observed data is

L β,H1,⋯,Hnjdatað Þ ¼
Yn
i¼1

Yni
j¼1

p Tij,Xij, δijjHi, β
� �

, (7)

where

p t, x, δjH, βð Þ ¼ f ε H tð Þe�xTβ
� �

h tð Þe�xTβ
� �δ

Sε H tð Þe�xTβ
� �1�δ

:

Here Sε is the survival function of varepsilon defined by Sε sð Þ ¼ P ε≥ sð Þ.
We develop a Bayesian inference procedure based on model (6). We assume

that the regression coefficient β follows a normal prior:

β � Np 0, σ2βIp
� �

, (8)

where Ip is the p� p dimensional identity matrix. Since Hi is assumed differen-
tiable, we model it with a kernel convolution:

Hi ¼
ð
Φσ � � sð ÞdBi sð Þ,

where B is an increasing function and Φσ is the zero-mean normal distribution
with variance σ2. Hence, the derivative of Hi is

hi ¼
ð
ϕσ � � sð ÞdBi sð Þ

with ϕσ tð Þ ¼ 1
σ ϕ

t
σ

� �
: This actually mimics the idea of DPM to smooth beta process

by convolution.
We are in a position to select an appropriate stochastic process used as the prior

of Bi. Beta process, as studied by [16, 17], is an ideal candidate for the prior of a
monotone function. Specifically, beta process BP γ,B0ð Þ with concentration param-
eter γ and a base measure B0 is an increasing Lévy process with independent
increments of the form

dB tð Þ � Beta γdB0 tð Þ, γ 1� dB0 tð Þð Þð Þ:
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Teh et al. [20] showed that a sample from BP γ,B0ð Þ could be represented as

Bi yð Þ ¼
X∞

l¼1

pilI θil ≤ yð Þ, (9)

where pil ¼
Ql

j¼1νil and θil, νilð Þ follows

θil � B0 θð Þ, νil � Beta γ, 1ð Þ l ¼ 1, 2,⋯:

In practice, we need to approximate samples of BP γ,B0ð Þ with a finite dimen-
sional form. Since beta process BP γB0ð Þ can be represented by a stick-breaking
process defined in Eq. (9), a natural approximation is obtained by retaining its first
L components. That is,

B ∗
i ¼

XL

l¼1

pilδθil ,

with pil ¼
Ql

j¼1νil, l ¼ 1,⋯,L. Denote ξi ¼ νi1,⋯, νiL, θi1,⋯, θiLð ÞT and define

H ∗
σ z, ξið Þ ¼

XL

l¼1

pilΦσ z� θilð Þ, h ∗
σ z, ξið Þ ¼

XL

l¼1

pilϕσ z� θilð Þ:

The approximated posterior based on the truncated DP is

π βð Þ
Yn
i¼1

πξ ξið Þ
Yni
j¼1

f Zij,Xij, δijjβ, ξiÞ
� �

,

"
(10)

where

f z, x, δjβ, ξð Þ ¼ pε H ∗
σ z, ξð Þexp �xTβ

� �� �
h ∗
σ z, ξð Þexp �xTβ

� �� �δ

� Pε H ∗
σ z, ξð Þexp �xTβ

� �� �� �1�δ
:

The samples for β and ξ1, … , ξnð Þ based on the posterior can be obtained with
Markov chain Monte Carlo (MCMC) [21]. In our simulation, we use the R-package
MCMC (https://cran.r-project.org/web/packages/mcmc/index.html) to draw sam-
ples for ξ1, … , ξn and β and use the Metropolis algorithm with a normal working
distribution.

4. An application to Alzheimer’s disease neuroimaging initiative

Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a multisite cooperative
study for the purpose of improving the prevention and treatment of Alzheimer’s
disease. The subjects in the study fall into three groups, cognitively normal (CN)
individuals, mild cognitive impairment (MCI) patients, and early AD patients.
ADNI provides a rich array of patients’ information, including functional magnetic
resonance imaging (fMRI), positron emission tomography (PET), longitudinal
functional cognitive tests scores, blood samples, genetics data, and censored failure
time outcomes. Details of the study can be found at http://adni.loni.usc.edu.
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Figure 1 illustrates the estimated transformation function H of the failure time
without clustering. The posterior means (PM) and standard errors (SE) of the
regression coefficients in the model are reported in Table 1. We run the MCMC for

Figure 1.
Smoothed transformation function without clustering.
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20,000 iterations with the first 4000 draws discarded as burn-in samples and use
Geweke’s statistic to ensure the convergence of the chains.

Figure 2 illustrates the estimated transformation functions with age-stratified
data, and Table 2 summarizes the posterior means and standard errors of the other
regression coefficients.

The left curve is relatively flat, while the right curve has a sharper slope. This is
consistent with the recognition that AD is an aging disease: elder people above a
certain age threshold tend to progress faster from MCI to AD.

Both Tables 1 and 2 show that none of the biomarkers are significant, whereas
they are statistically significant in the analysis of [14]. One possible conjecture is
that our nonparametric transformation functions may have well captured the
effects of unobserved confounders, which may leave little to be explained by the
observed covariates. More thorough investigation is warranted.

RID AGE PTGENDER PTEDUCAT APOE4 Hipp.

PM �0.9635 0.0069 �0.1453 �0.0231 �0.1817 0.2710

SE 1.3288 0.0841 1.2331 0.1835 0.8616 0.5333

Table 1.
Posterior estimates of regression coefficients with standard errors.

Figure 2.
Smoothed transformation functions with two age-strata: The left curve is the smoothed transformation function
for group aged below the average age; the right curve is the smoothed transformation function for the group aged
over the average age.

RID PTGENDER PTEDUCAT APOE4 Hipp.

PM �0.6399 �0.0706 �0.0072 �0.1349 0.1919

SE 0.9273 0.8491 0.1267 0.6098 0.3716

Table 2.
Posterior estimators of regression coefficients with standard errors.
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5. Future directions

Following [12], we can extend the transformation model (6) by allowing the
error function f ε to be unspecified. In this case, we need to specify the regression
coefficient β to obey some constraints such as β1 ¼ 1 or ∥β∥ ¼ 1 for identifiability.
We will propose to model the error function using a Dirichlet processes mixture
model:

f ε tð Þ ¼
ð
φ tjμ, σ2� �

dG μ, σ2
� �

, G � DP α,G0 ¼ N μjμ0, σ20
� �� IG α1, α2ð Þ� �

,

where φ tjμ, σ2ð Þ is a normal kernel with mean μ and variance σ2 and G are
samples from a Dirichlet process DP α1,G0 ¼ N μjμ0, σ20

� �� IG a, bð Þ� �
, where α1 is

the mass parameter and IG �ja, bð Þ is the inverse gamma distribution with shape
parameter a and scale parameter b.

In a slightly different context, we may also consider clustering observations by
developing a new nested beta-Dirichlet process prior with companion MCMC algo-
rithms. As there are limited works on functional random effects models that
accommodate clustering structures observed, for example, from neural studies, we
may propose a nested Dirichlet process [19] as the prior of Dirichlet process to
cluster cumulative distribution functions successfully. We envision that such a
nested Bayesian procedure will provide substantial computational expedience for
practitioners and can certainly be applied to studies that cover beyond the neuro-
degenerative and aging diseases.
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Chapter 5

Bayesian Inference of Gene
Regulatory Network
Xi Chen and Jianhua Xuan

Abstract

Gene regulatory networks (GRN) have been studied by computational scientists
and biologists over 20 years to gain a fine map of gene functions. With large-scale
genomic and epigenetic data generated under diverse cells, tissues, and diseases, the
integrative analysis of multi-omics data plays a key role in identifying casual genes
in human disease development. Bayesian inference (or integration) has been suc-
cessfully applied to inferring GRNs. Learning a posterior distribution than making a
single-value prediction of model parameter makes Bayesian inference a more robust
approach to identify GRN from noisy biomedical observations. Moreover, given
multi-omics data as input and a large number of model parameters to estimate, the
automatic preference of Bayesian inference for simple models that sufficiently
explain data without unnecessary complexity ensures fast convergence to reliable
results. In this chapter, we introduced GRN modeling using hierarchical Bayesian
network and then used Gibbs sampling to identify network variables. We applied
this model to breast cancer data and identified genes relevant to breast cancer
recurrence. In the end, we discussed the potential of Bayesian inference as well as
Bayesian deep learning for large-scale and complex GRN inference.

Keywords: gene regulatory network, data integration, Bayesian inference,
Gibbs sampling, breast cancer

1. Introduction

The era of “big data” has arrived to the field of computational biology [1].
Biological systems are so complex that in many situations, it is not feasible to
directly measure the target signals. Actually, most of biological measurements are
noisy and dependent to but not exactly about what we aim to find. This is where
probability theory comes to our aid: estimate the true signals from noisy measure-
ments in the presence of uncertainty. Bayesian inference has been widely applied in
computational biology field. In certain systems for which we have a good under-
standing, i.e., gene regulation, behind the observed signals, there exist multiple
hidden factors controlling how genes behave under a specific condition. As we are
lacking observations on those hidden factors, we model them as parameters in a
Bayesian framework, with or without informative prior. Then, for each parameter,
Bayesian inference learns a “posterior” distribution, through which we make a final
estimation with a confidence interval.

Bayesian inference can update the shape of the learned posterior distributions
for model parameters whenever new data observations arrive, providing enough
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flexibility for integrative analysis and model extension [2]. Although using more
data types means defining more model parameters, Bayesian inference automati-
cally prefers for simple models that sufficiently explain data without unnecessary
complexity. This is a very important property for biological data analysis because a
simple model is much easier to validate using lab-controlled experiments.

In this chapter, we introduce how to apply Bayesian inference to inferring gene
regulatory networks (GRN). GRN is a hierarchical network with regulatory pro-
teins, target genes, and interactions between them [3], playing a key role in medi-
ating cellular functions and signaling pathways in cells [4]. Accurate inference of
GRN using data specific for a disease returns disease-associated regulatory proteins
and genes, serving as potential targets for drug treatment [5]. In recent years,
noncoding DNA analysis reveals more and more noncoding regions with strong
regulatory effects on gene transcription [6], which greatly expands the scope of
GRN research.

GRN analysis requires an integration of multiple types of measurements includ-
ing but not limited to gene expression, chromatin accessibility, transcription factor
binding, methylation, and histone modification [7]. The challenge of GRN inference
is that there exit hundreds of proteins and tens of thousands of genes. One protein
can regulate hundreds of target genes, and their regulatory relationship (an inter-
action in GRN) may vary across different cell types, tissues, or diseases. Experi-
ments of high-throughput target gene measurements for one protein in one specific
condition are costive and noisy [8], let alone for hundreds of proteins under diverse
conditions. For many tissues or diseases, we need to integrate multiple relevant data
types and computationally infer GRNs specific for those conditions.

Bayesian inference is particularly suitable for GRN inference as it is very flexible
for large-scale data integration. Moreover, when we have multiple datasets gener-
ated from very similar conditions, estimating variables using distribution learning
than a single-value prediction makes the final estimation more robust and easier to
compare across multiple datasets. We demonstrated this using two breast cancer
datasets generated under very similar conditions, in which we also compared a
hierarchical Bayesian model with several competing methods. Moreover, using
patient data as model input, although they are noisy, we successfully identified a
GRN associated with breast cancer recurrence. Finally, we discussed the potential of
Bayesian deep learning for large-scale and complex GRN inference.

2. Gene regulatory networks

Human genome can be simply divided into coding (exomes) and noncoding
regions. The process of producing an RNA copy from exomes is called transcription,
which can be quantitatively measured usingmicroarray or RNA-seq technics [9, 10],
producing gene expression data of�30,000 genes simultaneously. The transcription
process is mediated by regulatory regions located in the noncoding genome, includ-
ing promoters and enhancers [11]. Promoters are proximal to gene transcription
starting sites (TSS), usually within 3 kbps (Figure 1A), while enhancers are usually
located distantly, i.e., 200 kbps (Figure 1B), and can be up to 1 Mbps. In general,
each gene could be associated with one promoter and multiple enhancers.

Transcription factors (TFs), a special category of proteins, often coordinate with
each other as cis-regulatory modules (CRMs) [12] and co-bind at regulatory regions
[13]. For example, in Figure 1A or B, there are three TFs binding at promoter or
enhancer regions and functioning together as one CRM to mediate the transcription
process of their target genes. It has been known that the association relationships of
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TFs are not random [14, 15]. Some TFs tend to co-bind at the same regions more
often than with others, i.e. MYC and MAX. One TF can regulate multiple genes, and
a target gene can also be regulated by multiple TFs considering the existence of
CRMs (Figure 1C). For each specific TF-gene interaction in Figure 1C, its regula-
tory effect can be either positive (activating gene expression) or negative (depress-
ing gene expression), as shown in Figure 1D. The protein activities of TFs are
therefore connected to the dynamic changes of gene expression across multiple
samples [13]. To accurately identify GRNs, we need quantitative measures of all
types of signals in Figure 1D–F. However, due to technical limitations, we can
obtain good quality measurements of gene expression, binary measurements
(existence or not) of individual TF-gene interactions yet with a high false positive
rate, but no measurements of TF activities. To infer GRNs, we must jointly estimate
TF activities, TF-gene regulation strengths, and CRMs (TF associations) given gene
expression observations.

Figure 1.
Illustration of gene regulation: (A) transcription factor (TF)-gene regulation through proximal promoter
regions; (B) TF-gene regulation through distal enhancer regions; (C) a gene regulatory network (GRN)
including TFs, genes, and their interactions; (D) regulatory effects of TFs on individual genes with “red” as
activation, “blue” as depression, and “white” as no regulatory effects; (E) a heatmap of TF protein activities
across biological samples of multiple conditions with “red” as enhanced activity, “green” as reduced activity,
“black” as no activity; and (F) a heatmap of gene expression across multiple samples, with “red” as
up-regulated, “green” as down-regulated, “back” as no change.
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3. Bayesian inference

Bayesian inference is particularly suitable for inferring GRN as it will learn a
posterior distribution for each variable, with a high tolerance on the noise existing
in the gene expression data or caused by non-perfect prior assumptions.

3.1 A hierarchical Bayesian model

Given gene expression data under multiple biological samples (conditions), we
focus on the expression variation of each gene from its baseline expression because
such variation reflects the effects of condition changes. For a specific disease, only
genes showing significant expression changes between disease cells and normal cells
are interesting candidates. Thus, for gene n, we calculate the log fold change of gene
expression under each sample (1,2,3,…,M) to that of baseline condition (0). To
model gene expression data of hundreds of genes in the same framework, for genen,
we normalize its M log fold change values (indexed by m) to values with 0-mean
and 1-standard deviation, denoted by yn,m. Then, a linear model is applied to
modeling yn,m as follows [16, 17]:

yn,m ¼
X
t
an, tbn, txt,m þ εn, (1)

where variable an,t denotes the regulation strength of TF t on gene n; bn,t is a
binary variable denoting the regulation occurrence of TF t on gene n; TF protein
activity variable xt,m under condition (sample) m directly connects to gene expres-
sion yn,m under the same condition [16]; and the noise variable εn denotes inaccu-
racy of gene expression marvelments.

Given protein-DNA binding measurements of T TFs and N genes (i.e., ENCODE
database), we are able to identify TF binding sites at promoter or enhancer regions
within 1 Mbps around individual target genes [18]. Each gene can be associated with
several regulatory regions, and at each region, there exit a subset of TFs, as a
candidate CRM. Then, we may observe multiple candidate CRMs (in total Kn) for
gene n, indexed by cn ¼ 1, 2, 3,…, k,…, Kn. Each cn is associated with a unique set of
TF-gene binding events (bcn, t ¼ 1 or bcn, t ¼ 0). We assume cn a hidden variable
controlling how binding variables are associated with each other, with candidate
space defined from existing databases.

To estimate the abovementioned variables, we develop a hierarchical Bayesian
network to model their internal dependency and associations with gene expression,
as shown in Figure 2. CRM variable c controls the state of each binding variable b.
For b ¼ 1, regulation strength a can be either positive or negative denoting gene
activation or depression by the binding TF. In the meanwhile, through TF-gene
regulation, the protein activities of TFs are directly connected to target gene
expression, with ε denoting the measurement noise in gene expression data.
With Eq. (1) and Figure 2, we aim to estimate all these variables using Bayesian
inference, which requires a prior assumption (not necessary to be informative) on
the distribution of each variable.

Based on prior binding observations from public database, the candidate space
of CRM is known, denoted by C. Given a gene expression dataset generated from a
specific condition, for gene n, we need to estimate which CRM cn is regulating its
gene expression. As the prior data does not tell which CRM is more likely to be true
under a specific condition, we assume a discrete uniform prior on c.

Based on data observation, y has a Gaussian-like distribution with 0-mean and
1-standard deviation. The gene expression noise component ε can be assumed to
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follow a 0-mean Gaussian distribution as well, denoted by N 0; σ2ε
� �

. Although the
variance of noise is hard to determine, it should fall in the same scale as gene
expression measurements. Therefore, we set σ2ε ¼ 1.

The regulation strength variable a is conditional on the state of b (as shown in
Figure 2): for b ¼ 0, we set a ¼ 0, denoting the nonexistence of TF-gene regula-
tion; for b ¼ 1, a can be either positive or negative so that we assume a 0-mean

Gaussian prior on a, as N 0; σ2a,prior
� �

(the variance σ2a,prior is a hyperparameter).

As GRN is a sparse network, most a values would be 0.
We model TF activity x under multiple biological samples using Gaussian ran-

dom processes. As baseline expression is largely removed from gene expression data
during the data normalization process, ideally the baseline activity of each TF is 0.
In each sample, x can be either enhanced or reduced with respect to its baseline

activity. Thus, we assume a 0-mean Gaussian prior for x, as N 0; σ2x,prior
� �

(the

variance σ2x,prior is also a hyperparameter).
Regarding hyperparameters of the prior mean and variance for a or x, a benefit

of assuming 0-mean prior is to control model overfitting. Only when the posterior
distribution has a significant non-zero mean value that we will accept that estima-
tion. It is hard to determine the scale of variable values without direct measure-
ments. A conservative way is to assume non-informative prior on them and let the
algorithm determine the final posterior distribution, although the non-informative
prior will lead to a stickier chain and a posterior with potential multiple modes.
Exploring such a posterior is certainly more challenging than exploring a well-
behaved unimodal posterior. However, there is really no need to trouble with this
multimodal posterior on a or x, as the inferential values of the whole framework are:
the discrete posterior distributions of CRMs. For each gene, the posterior distribu-
tion of CRMs learned from a data reveals which CRM(s) are regulating this gene.
If there are more than one mode in the CRM posterior distribution, this gene will
be associated with two or three CRMs. This is quite common in gene regulatory
networks as one gene can be regulated by CRMs at multiple regulatory regions
simultaneously. σ2a,prior and σ2x,prior should be significantly larger than the variance of

Figure 2.
A hierarchical Bayesian framework for GRN modeling. The number of variables in this framework depends on
the numbers of biological samples,TFs, genes, and candidate CRMs. Given gene expression data under different
conditions, for the same TF and same gene, their regulatory relationship (variable b) may have very different
regulatory strength (variable a). And the TF activity (variable x) can be significantly different as well.
Therefore, GRNs are highly context-specific.
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gene expression data to allow a “large” space for the algorithm to generate posterior
distributions. As y is already normalized with variance of 1, we set σ2a,prior ¼ 10 and

σ2x,prior ¼ 100.
Then, the problem of GRN inference is Bayesian formed as estimating posterior

probabilistic distributions of A ¼ acn, tf g, B ¼ bcn, tjbcn, t ¼ 0 or 1f g, and X ¼ xt,mf g
given Y ¼ yn,m

n o
. Considering the dependence relationship of all variables in

Figure 2, we define a joint posterior probability as follow:
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Estimating the joint distribution of above-mentioned variables is difficult.
Alternatively, we can approximate the joint posterior distribution by estimating the
marginal distribution of each variable. To do that, we iteratively calculate each
variable’s conditional probability and perform Bayesian estimation using Gibbs
sampling. The advantage of using Gibbs sampling is that it is theoretically
guaranteed to converge to the posterior distribution [2, 19–21].

3.2 Gibbs sampling

We first sample TF activity variable xt,m for the TF t and sample m, according to
its conditional probability (based on Eq. (2)) as follows (Figure 3):
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P xt,m Y;A;Bjð Þ is a Gaussian distribution with mean and variance as follows:
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As shown in Eq. (4), the estimation of distribution of xt,m is conditional on other
TF activities xj,m j 6¼ tð Þ. Therefore, we iteratively sample xt,m as xt,m∣xj,m j 6¼ tð Þ one
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by one for t ¼ 1 � T according to each individual posterior Gaussian distribution
N μx; σ

2
x

� �
.

Secondly, for gene n, for each bcn, t ¼ 1, we estimate the associated regulation
strength acn, t according to the following conditional probability:
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P acn, t Y;X;Bjð Þ is a Gaussian distribution, too, with mean and variance calculated
as follows:

μa ¼
σ2a,prior
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Similar to the estimation process of TF activity variables, the posterior distribu-
tion of each acn, t also depends on the values of the other acn, j j 6¼ tð Þ. Thus, we
iteratively sample acn, t for TFs in module cn one by one according to each individual
posterior Gaussian distribution N μa; σ

2
a

� �
.

Finally, with sampled TF activity and regulation strength variables, we sample
CRM variable cn for the gene n. It is hard to assume a prior probabilistic distribution
shape on the joint distribution of multiple binding variables in cn. In practice, cn has
a finite number of states as Kn. Therefore we can directly calculate a discrete
discrete conditional probability for each cn ¼ k as follows:

Figure 3.
Gibbs sampling of CRMs,TF activities, and regulation strengths with prior TF-gene regulation and gene
expression observations as input.
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Estimating the joint distribution of above-mentioned variables is difficult.
Alternatively, we can approximate the joint posterior distribution by estimating the
marginal distribution of each variable. To do that, we iteratively calculate each
variable’s conditional probability and perform Bayesian estimation using Gibbs
sampling. The advantage of using Gibbs sampling is that it is theoretically
guaranteed to converge to the posterior distribution [2, 19–21].
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We first sample TF activity variable xt,m for the TF t and sample m, according to
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Similar to the estimation process of TF activity variables, the posterior distribu-
tion of each acn, t also depends on the values of the other acn, j j 6¼ tð Þ. Thus, we
iteratively sample acn, t for TFs in module cn one by one according to each individual
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Finally, with sampled TF activity and regulation strength variables, we sample
CRM variable cn for the gene n. It is hard to assume a prior probabilistic distribution
shape on the joint distribution of multiple binding variables in cn. In practice, cn has
a finite number of states as Kn. Therefore we can directly calculate a discrete
discrete conditional probability for each cn ¼ k as follows:

Figure 3.
Gibbs sampling of CRMs,TF activities, and regulation strengths with prior TF-gene regulation and gene
expression observations as input.
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After calculating Eq. (7) for all possible values of cn, we sample one value
according to the following discrete probability density function:

p cn ¼ kð Þ ¼ P cn ¼ k yn;X;A
��� �

P
p P cn ¼ p yn;X;A

��� � (8)

After sampling TFA, TF-gene regulation strength, and cis-regulatory module
variables for all N genes, we update binding states in matrix B according to the
sampled CRMs for individual genes and start the next round of sampling.

Convergence of Gibbs sampling can be monitored based on the ratio (R) of
within-variance and between-variance using multiple sequences with different ini-
tial states [22]. In each application, we ran five sequences of sampling in parallel. In
the i-th round of sampling, for each variable we calculated the within-variance
using samples from 1 to i in each sequence and then take the mean value of
variances from five sequences. In the meanwhile, we calculate the between-
variance of the same variable using its sampled values in the i-th round but from
five sequences. For each catalog of variables, the distribution of ratio (R) between
within-variance and between-variance is used to monitor the overall sampling
convergence. When the sampler converges, values of R would be around “1.” We,
respectively, monitor the sampling convergence for regulation strengths and TF
activities. Once both of them converge, we start to accumulate samples on TF-gene
binding variables. As each TF-gene binding variable is binary, its sampling fre-
quency represents the posterior probability of binding occurrence. In the mean-
while, for each gene, a discrete posterior probability distribution of all associated
candidate CRMs is inferred, the mode of which reveals the most likely regulatory
region associated with current gene.

4. Inferring GRNs for breast cancer

4.1 Application to in vitro breast cancer cell line data

We first applied the hierarchical Bayesian model to gene expression data mea-
sured from in vitro breast cancer cell lines. We chose to use cell line data mainly
because such data is usually clean and good for validating computational models.
Here, we carefully selected two public available breast cancer cell line datasets
measured independently but under the same condition (downloadable from the
GEO database https://www.ncbi.nlm.nih.gov/geo/, with accession number
GSE62789 for Data #1 and accession number GSE51403 for Data #2, both treated by
24 hours of 17b-estradiol (E2) to stimulate breast cancer cells proliferation). The
similarity between the two inferred GRNs can be used to evaluate the robustness of
GRN inference methods.

For prior TF-gene collection, we checked the ENCODE database (https://www.
encodeproject.org/) and selected genome-wide binding profiles of 39 TFs, measured
from the same breast cancer cell line. We collected candidate binding events by
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examining TF binding signals at promoter and distantly associated enhancers asso-
ciated with each gene. In total we collected 2,319 candidate TF-gene interactions
(Figure 4A) between 39 TFs and 275 genes, whose gene expression is consistently
upregulated in both datasets when breast cancer cells are stimulated to fast prolif-
erate (Figure 4B and C). We, respectively, applied the hierarchical Bayesian model
to the two gene expression datasets with the same prior settings. To monitor the
convergence of the sampling process, we ran five sequences with different initial
states and sampled 1000 times in each. As shown in Figure 4C andD (for Data #1),
after 100 rounds of sampling, the model started to converge. The sampling fre-
quency on each TF-gene interaction was calculated as the posterior probabilistic
weight. We extracted top �500 most confident TF-gene interactions as the final
GRN estimation for each data set and then focused on common interactions
between two relevant GRNs.

Here, we specifically compared our approach with three competing methods
(COGRIM [20], LASSO [23], and NARROMI [24]). COGRIM was a Bayesian infer-
ence approach without modeling on CRMs. It treated individual TF-gene binding
events independently. Although such an assumption lowered the model complexity,
it made the model less robust against the inaccuracy in the TF-gene binding prior.
Moreover, for the TF activity, COGRIM simply treated it as an observed value by
directly using TF mRNA expression. Although ideally the variation of mRNA tran-
scription is proportional to the activity change of mRNA-translated protein, cur-
rently this correlation is very low in most studies using gene expression. These
inaccurate assumptions brought a lot of uncertainty to modeling gene expression
data. LASSO used a linear regression model to integrate prior TF-gene interactions
and gene expression data and predicted one value for each TF-gene interaction.
The NARROMI approach inferred GRNs using gene expression data only without
any prior on TF-gene interactions, and also, it made single-value prediction for each
interaction based on the mutual information between gene and TF expression
values. Theoretically, the Bayesian approach described in this chapter should be

Figure 4.
Input breast cancer cell line data for GRN inference: (A) prior TF-gene interactions (“black” denotes binding
occurrence); (B) heatmap of time-course gene expression data; (C) heatmap of steady-state gene expression, all
data are from the same breast cancer cell line; (D) convergence of regulatory strength estimation using time-
course gene expression data; and (E) convergence of TF activity estimation using time-course gene expression
data.
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while, for each gene, a discrete posterior probability distribution of all associated
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encodeproject.org/) and selected genome-wide binding profiles of 39 TFs, measured
from the same breast cancer cell line. We collected candidate binding events by
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examining TF binding signals at promoter and distantly associated enhancers asso-
ciated with each gene. In total we collected 2,319 candidate TF-gene interactions
(Figure 4A) between 39 TFs and 275 genes, whose gene expression is consistently
upregulated in both datasets when breast cancer cells are stimulated to fast prolif-
erate (Figure 4B and C). We, respectively, applied the hierarchical Bayesian model
to the two gene expression datasets with the same prior settings. To monitor the
convergence of the sampling process, we ran five sequences with different initial
states and sampled 1000 times in each. As shown in Figure 4C andD (for Data #1),
after 100 rounds of sampling, the model started to converge. The sampling fre-
quency on each TF-gene interaction was calculated as the posterior probabilistic
weight. We extracted top �500 most confident TF-gene interactions as the final
GRN estimation for each data set and then focused on common interactions
between two relevant GRNs.

Here, we specifically compared our approach with three competing methods
(COGRIM [20], LASSO [23], and NARROMI [24]). COGRIM was a Bayesian infer-
ence approach without modeling on CRMs. It treated individual TF-gene binding
events independently. Although such an assumption lowered the model complexity,
it made the model less robust against the inaccuracy in the TF-gene binding prior.
Moreover, for the TF activity, COGRIM simply treated it as an observed value by
directly using TF mRNA expression. Although ideally the variation of mRNA tran-
scription is proportional to the activity change of mRNA-translated protein, cur-
rently this correlation is very low in most studies using gene expression. These
inaccurate assumptions brought a lot of uncertainty to modeling gene expression
data. LASSO used a linear regression model to integrate prior TF-gene interactions
and gene expression data and predicted one value for each TF-gene interaction.
The NARROMI approach inferred GRNs using gene expression data only without
any prior on TF-gene interactions, and also, it made single-value prediction for each
interaction based on the mutual information between gene and TF expression
values. Theoretically, the Bayesian approach described in this chapter should be

Figure 4.
Input breast cancer cell line data for GRN inference: (A) prior TF-gene interactions (“black” denotes binding
occurrence); (B) heatmap of time-course gene expression data; (C) heatmap of steady-state gene expression, all
data are from the same breast cancer cell line; (D) convergence of regulatory strength estimation using time-
course gene expression data; and (E) convergence of TF activity estimation using time-course gene expression
data.
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more robust to identify GRNs. We applied the four competing methods to the above
two datasets. Indeed, GRNs identified using our Bayesian model were more consis-
tent between two related datasets (Table 1).

By analyzing the common 306 TF-gene interactions in Table 1, we identified
two functional CRMs. The first CRM had five TFs including POL2A, TDRD3, MYC,
MAX, and E2F1 (Figure 5A). The activities of these TFs, as inferred from both
datasets, were shown in Figure 5B and C, respectively. In total there were 100
genes regulated by this module, and 60 of them were associated with breast cancer
through literature survey (selected genes shown in Figure 5D). The second CRM
had six TFs including ELF1, JUND, JUN, FOXA1, CTCF, and HDAC1. In total, there
were 89 genes regulated by this module, and 51 of them were associated with breast
cancer (selected genes shown in Figure 5E). COGRIM identified fewer genes for the
first CRM and failed to identify the second CRM. For the other non-Bayesian
approaches, as the number of common TF-gene interactions inferred from two

Methods GRN edges
in Data #1

Similarity with
other methods

GRN edges
in Data #2

Similarity with
other methods

Common GRN for
Data #1 and #2

Bayesian 500 0.878*** 413 0.822*** 306***

COGRIM 516 0.798 457 0.696 239

LASSO 565 0.486 510 0.533 74

NARROMI 514 0.519 591 0.516 44

***denotes hypergeometric p-value < 0.001.

Table 1.
Comparison of methods for robust GRN inference.

Figure 5.
Key CRMs inferred from breast cancer cell line data: (A) CRM #1 and their TF components; (B) estimated TF
activities from Data #1 (time-course); (C) estimated TF activities from Data #2 (steady state); (D) target
genes regulated by CRM with MAX, MYC, E2F1, POL2A and TDRD3; (E) target genes regulated by CRM
with ELF1, JUND, JUN, FOXA1, CTCF, and HDAC2. Target genes in D and E are associated with breast
cancer as supported by literature survey. “Blue” block represents genes showing up in at least two literatures,
while “green” block represents genes with one literature support.
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datasets was small, size reduced by over 75%. We did not identify the two key
CRMs using either approach.

4.2 Application to breast cancer patient data

We finally applied the Bayesian approach to breast cancer patient data
downloaded from the TCGA database (https://portal.gdc.cancer.gov/). Survival
time distribution of 93 breast cancer patients treated by tamoxifen revealed two
modes with 5-year survival as division. Accordingly, we defined an “Early recur-
rence” group including patients with survival time <5 years and a “Late recur-
rence” group including patients with survival time longer than 5 years.
Differentially expressed genes between two groups (t-test p-value <0.05) were
selected for further GRN analysis. It can be seen from Figure 6B that the gene
expression data of breast cancer patient is quite noisy. To increase the robustness of
GRN results, we used another cell line dataset. Specifically, gene expression data
was generated from four cell lines including MCF7, MIII, LCC1, and LCC9, with
three replicates for each. MCF7 cells were sensitive to tamoxifen treatment, while
LCC9 cells were drug-resistant. One hypothesis is that breast cancer recurrence is
associated with drug resistance. Thus, we expected that the overexpressed genes in
the “Early recurrence” group were also overexpressed in LCC9 cells. For 431 genes
with such expression pattern in both patient and cell line data, we collected prior
TF-gene interactions from 39 TF binding profiles used in previous sections. We,
respectively, inferred GRNs using both datasets and identified a common GRN
including interactions between 25 proteins and 161 genes. Analysis of this common
CRN revealed 5 key CRMs with 11 proteins and 32 target genes highly relevant to
breast cancer recurrence (Figure 6).

5. Discussion

5.1 Gene regulatory networks in different cell states

Recent technology advance in single-cell gene transcription makes it feasible to
study TF-gene regulation during the cell differentiation process [25]. In sections

Figure 6.
Breast cancer recurrence-associated GRN: (A) heatmap of gene expression in breast cancer cell lines including
MCF7, MIII, LCC1, and LCC9, where “red” represents overexpression and “green” represents lower expression;
(B) heatmap of gene expression of breast cancer patients in “Early recurrence” and “Late recurrence” groups,
divided by 5-year survival; (C) binding sites of 11 TFs on 32 target genes; and (D) association of 5 CRMs and
32 target genes.
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datasets was small, size reduced by over 75%. We did not identify the two key
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above, across multiple samples, TF-gene interactions are assumed to hold, and the
gene expression change is connected to the dynamic variation of TF activities
across samples. Yet, at the single-cell level, gene expression measurements are
very noisy, whose variation across cells may be partially disconnected from the
dynamic changes of TF activities [26]. In that situation, the linear model in Eq. (1)
will not work with such gene expression input. Moreover, during the cell
differentiation process, in fact we do not have prior knowledge on whether GRNs
will hold or change between individual cell states. That means TF-gene interaction
change can be another causal factor on gene expression variation across different
cell states, too. To model GRNs individually for cell states, we need to define more
binding variables, which will definitely make the estimation process more
complex.

Those cell state-specific GRNs will uncover the regulatory mechanism that
drives cell differentiation. This would be particularly useful for cancer treatment. If
any regulation changes at a very early cell state eventually lead to cancer cell fast
proliferation, we can engineeringly target those TFs, binding regions, or genes for
cancer prevention. Currently inference of cell-state-specific GRN is either through
enrichment analysis of TF binding signals in each cell state [27] or regression
modeling of gene expression using the matched measurements of regulatory region
activities [28]. When the single-cell expression measurements become more
accurate, we hope the connection between gene expression and TF activities still
holds. Then, the model in Eq. (1) with proper improvement can be used to infer
cell-state-specific GRNs.

5.2 Bayesian neural network

Although theoretically there is no upper limit on the number of model para-
meters in the Bayesian framework (Figure 2), the more variables we have, the
slower the convergence will be. Moreover, given a complex network with many
states, the dependence of different variables will be hard to model, and the estima-
tion process is more easily to stuck into a local state. In recent years, neural network
is widely applied to variable estimation in complex systems. Neural network is an
end-to-end system that mimics the human brain and tries to learn complex repre-
sentation within the dataset to provide an output. Similar to conventional machine
learning, deep neural networks make a single-value prediction for each model
parameter, without measuring uncertainty. That means the model performance
relies heavily on the prediction accuracy, and even one overconfident decision can
result in a big problem. A Bayesian approach to neural networks can naturally solve
this problem by learning a distribution accounting for the uncertainty in parameter
estimates [29].

Unlike Bayesian inference discussed in previous sections, inferring model pos-
terior in a Bayesian neural network is much more difficult as there are many
parameters to estimate in neural networks. Direct inference of variable posterior
distribution is hard so that approximations to the posterior are often used, i.e., the
variational inference. The posterior can be modelled using a simple variational
distribution such as a Gaussian distribution, and the distribution’s parameters are
fitted to approximate the true posterior as close as possible by minimizing the
Kullback-Leibler divergence between this simple variational distribution and the
true posterior. In earlier sections, we have demonstrated that modeling variables in
GRN using Gaussian distribution provided robust performance. To infer large-scale
GRN with thousands of genes and hundreds of TFs, Bayesian neural network can be
a solution in which posterior distributions of all variables can be approximated by
Gaussian distribution.
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6. Conclusion

In this chapter, we mathematically illustrated how Bayesian inference can be
used to infer gene regulatory networks. Using several breast cancer-specific
datasets, we demonstrated the effectiveness of Bayesian network modeling in
biological meaningful signal discovery, in comparison with methods of linear
regression. Potentially, Bayesian inference can be used to infer dynamic GRN
during cell differentiation using new types of gene expression data. For very
large-scale GRN inference in complex systems, the big number of variables may
degrade conventional Bayesian inference performance. Bayesian neural networks
using variational inference can be a good solution.
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Chapter 6

Patient Bayesian Inference:
Cloud-Based Healthcare Data
Analysis Using Constraint-Based
Adaptive Boost Algorithm
Shahid Naseem

Abstract

Cloud-based healthcare data are a form of distributed data over the internet. The
internet has become the most vulnerable part of critical healthcare infrastructures.
Healthcare data are considered to be sensitive information, which can reveal a lot
about a patient. For healthcare data, apart from confidentiality, privacy and pro-
tection of data are very sensitive issues. Proactive measures such as early warning
are required to reduce the risk of patient’s data violation. This chapter investigates
the ability of Patient Bayesian Inference (PBI) for network scenario analysis with
violation of patient data to produce early warning. The Bayesian inference allows
modeling the uncertainties that come with the problem of dealing with missing
data, allows integrating data from remote nodes, and explicitly indicates depen-
dence and independence. The use of constraint-based adaptive boost algorithm can
demonstrate the patient’s Bayesian inference performance in the real-world datasets
from healthcare data.

Keywords: Bayesian inference, healthcare, constraint-based learning, explicitly,
adaptive

1. Introduction

Healthcare data have always been considered to be sensitive information, which
can reveal a lot about a patient. This is why medical confidentiality prohibits a
medical professional to disclose information about a patient’s case. If a physician
does not have accurate information on a patient’s health, it may lead to an inaccu-
rate diagnosis and improper treatment. Data concerning health mean personal data
related to the physical or mental health of patients, including the provision of
healthcare, which are real information about patient’s health. Sensitive data
concerning health require additional protection as it can go to the core of a human
being. Healthcare data come within a person’s most intimate sphere. Unauthorized
disclosure may lead to various forms of discrimination and violation of fundamental
rights. The risk of data processing generally does not depend on the contents of the
data but on the context in which they are used [1].

The processing of healthcare data is likely to lead violation of individual rights
and interests. Patients’ data, which are, by their nature, particularly sensitive in
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relation to fundamental rights and freedoms. Data processing could create signifi-
cant risk to the patient’s rights and freedoms. In principle, processing of sensitive
data is prohibited, unless a suitable safeguard method is used to protect the data [2].
Derogating from the prohibition to process special categories of a patient data
including health data is allowed with the following cases [3]:

• Explicit consent is given by the data subject.

• Processing is necessary to protect the vital interest of a patient if this patient is
physically or legally incapable to give consent, for example, in emergency
situations or with minors.

• Processing is necessary in order to provide healthcare if the data are processed
by or under the responsibility of a professional subject to the obligation of
professional secrecy.

2. Risks in cloud-based healthcare data

Cloud computing has many risks related to data confidentiality and data secu-
rity. The data stored in the cloud are highly confidential, such as patient records.
Most of time, data being stored or processed in cloud are in large numbers, and the
cloud servers sometimes become lazy because of the computation that affects cor-
rectness of final result. Therefore, the computation has to be made transparent.
Healthcare data mainly contain of large media files such as X-ray, CT scans, radiol-
ogy, and other type of images and videos. Such files are called as the Electronic
Health Records that are stored in distributed storage. Possibly, this patient percep-
tion is fueled by the fact that healthcare data may be disclosure to unauthorized
person [4].

In order to secure the patient’s sensitive data from unauthorized access, an
appropriate encryption standard must be applied to data stored in cloud. This
sensitive information is most confidential and needs to be protected. To put every-
thing in the cloud in an unencrypted is a big risk. Over the past four decades, a lot of
efforts have been put into developing healthcare information security systems.
There is a great variety of commercially available programs to assist clinicians with
diagnosis, decision making, pattern recognition, medical reasoning, filtering, and so
on for general and very specialized domain applications. If a healthcare system is
not secured, an adversary could read, modify, and inject messages into the network.
Such incorrect information, even when not for nefarious reasons, can lead to serious
consequences for patients and for safe services such as remote healthcare monitor-
ing due to using heterogeneous devices that use a variety of communication rules.
Most of the rules that are designed for cloud-based communication cannot be
directly applied in the cloud-based healthcare network. In cloud-based healthcare
system, remote nodes have limited computation, processing, and communication
rights [5].

The existing techniques for healthcare data include pseudo copulation (replacing
the most identifying fields in a data) and encryption (encoding the data in such a
way that only authorized remote institutions can access it). The existing safeguards
are referred to as medical confidentiality or doctor-patient privilege, which prohibit
a medical professional to disclose information about a patient’s case. This is an
important obligation within the medical professional in order to create trust
between a doctor and his patient and a trusting environment in which the patient
feels comfortable. If a patient cannot trust a physician’s discretion, he will not seek
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medical care altogether or will withhold information during a consultation. If a
physician does not have accurate information about a patient’s health, this may lead
to an inaccurate diagnosis and improper treatment, which may lead to great harm to
the patient’s health [6].

Figure 1 shows a typical information flows in the healthcare network. Patient
information serves as a range of purposes apart from diagnosis and treatment
provision. Patient information could be used to improve efficiency within the
healthcare system. Patient information could be shared with finance facilitators to
justify payment of service rendered. Health service providers may share health
information through improved service quality. Furthermore, these providers may
share health information through Regional Services to facilitate care services in the
regional areas [7].

Credentialing is a vital process for all healthcare systems that must be performed
to ensure that those healthcare workers who will be providing the clinical services
are qualified to do so. The cloud-based healthcare system is capable to ensure
patient safety and deliver an acceptable standard of care. While employing excellent
medical staff is vital for success, the healthcare system must have to define the
required minimum credentialing and privileging requirements to validate the com-
petency of healthcare providers. In the classical systems, only hospitals used to
perform credentialing, but our proposed system has capability to provide all
healthcare facilities and also to perform credentialing [8].

In this framework, we classify different modules based on the probability (i.e.,
trust level) of each provider in violating the patient’s data in detail. Honestly, I
cannot understand exactly what this statement means. Remote nodes (healthcare
physicians, nurses, family members, and other authorized individuals) are different
from main modules (patients, health service providers, finance facilitators, regional
services, and evaluative decisions), and so it is necessary to make clear remote
nodes and modules because the patient Bayesian model only evaluates the trusty of

Figure 1.
Cloud-based healthcare system.
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remote nodes and whole network based on service level expectation (SLE) as
evidence, following the statement “we take advantage of the nature of the Bayesian
inference to calculate the probability of wireless communication between the
healthcare system and its remote institutions” [9].

3. Problem statement

Healthcare system has become the inspiration for patients’ data in terms of
wirelessly communication for decision making and logical functionality of the
remote institutions such as health physicians, nurses, family members, and autho-
rized individuals. Conventional healthcare systems are using various encryption
methods to secure patients’ data. Observing the limitations of the existing encryp-
tion methods, we take advantage of the nature of the Bayesian inference to calculate
the probability of wireless communication between the healthcare system and its
remote institutions. The dynamics of the cloud environment requires the healthcare
system being able to self-adapt, being aware of its surrounding environment’s
changing parameters, and being able to create new rules based on past experience.
To eliminate the problem of repetition in the cloud environment, the security
algorithm must maintain the remote institution limitations and at the same time
must provide high level of data protection. Constraint-based adaptive boost algo-
rithm has progressed to an advanced level data analysis for cloud-based healthcare
system. The implementation of patient Bayesian Inference for cloud-based
healthcare system will be suitable to demonstrate its performance in the real-world
patients’ datasets. Protection of patient’s sensitive data is one of the main obstacles
to the growth of cloud computing in the health field because of the need for high
level of data integration, interoperability, and sharing among healthcare institu-
tions. It is necessary to create standard guidelines and identify security challenges
for improving information security in healthcare system. There are multiple remote
institutions (nodes) that have to deal with healthcare data such as healthcare phy-
sicians, nurses, family members, and other authorized individuals. Similarly, within
healthcare system, there are multiple entities that have to deal with healthcare data
such as healthcare providers, hospital administration staff, finance providers, and
patients themselves. Cloud services suffer from certain vulnerabilities [10]. By
contrast, Bayesian model as an uncertain reasoning tool is more efficient for
dynamic trust evaluation. Bayesian inference combined with cloud model and
Bayesian network is proposed in this research.

4. Patient Bayesian inference

In cloud-based healthcare systems, patients’ electronic data have been widely
adapted to improve the quality of patient care and increase the productivity and
efficiency of healthcare delivery. In cloud-based systems, patients’ data can be
helpful to resolve many of the existing problems associated with disease diagnosis
and also maintaining the privacy and sensitivity of the patient’s medical informa-
tion. PBI can be beneficial in the healthcare system for tracking fatigue by using
multiarmed bandits, which facilitate the healthcare doctors in treatment by
dynamically taking more samples from those treatments, which are most likely to
be the best. PBI may facilitate the doctors in better understanding the patient’s data
and make decisions based on it. Because of security in cloud computing, outcomes
can be measured in real time, rather than waiting for enough data. Recently, health
data privacy has become an important issue in the cloud-based healthcare systems.
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As a result, data mining techniques include swapping attribute values and principal
component analysis-based techniques, adding random components have gained
much more attention in the healthcare data analysis [11].

In healthcare system, PBI is an extremely powerful set of tools that use some
knowledge or beliefs to calculate the probability of biomedical and healthcare
events, statics, and Service Level Expectation (SLE). PBI can be used for mapping
our understanding of a problem and evaluating observed data into a quantitative
measure of how certain we are of a particular fact in probabilistic terms, where the
probability of a proposition simply represents a degree of belief in the trust of that
proposition. PBI can also be used as data mining technique for analyzing network
healthcare system variables, virtual assistants, and other variable analytics [12]. PBI
uses data and evidence that certain facts are more likely than others. Prior distribu-
tion reflects our belief before seeing any data, whereas posterior distributions
reflect our belief after we have considered all the evidence.

Cloud-based PBI consists of five main modules: (i) patients; (ii) health service
providers; (iii) finance facilitators; (iv) regional services; and (v) traditional and
evaluative decisions and four submodules: (a) employers; (b) pharmacists; (c) regional
health organizations; and (d) business associates. In this framework, we classify dif-
ferent modules based on the probability (i.e., trust level) of each provider in violating
the patient’s data. Bayesian rules allow calculating the posterior probability of any
information violation events as hypothesis (H) based on a set of historical data (D).

P HjDð Þ ¼ P DjHð ÞP Hð Þ
P Dð Þ (1)

where P(H|D) is the posterior probability of H given knowledge data D; P(H) is
the prior probability for H; P(D|H) is the likelihood probability of H given D; and P
(D) is the marginal probability that would have happened whether or not H is true.
In cloud-based healthcare system, we use Bayes’ rule to find the probability func-
tion as in Eq. (2):

P SLE, healthcare system, remote nodes
� � ¼ P SLE j healthcare system, remote nodes

� �

∗P remote nodes j healthcare system
� �

∗P healthcare system
� �

(2)

SLE is abbreviation of service level expectations. In cloud-based healthcare
system, SLE is responsible to provide the quality of services to the remote nodes. It
can also be variable that has enough relevance for the service and can be quantita-
tively and objectively measured. It strengthens the processes to improve the out-
comes. In Bayesian Inference, our initial beliefs are represented by the prior
distribution P(healthcare system) as shown in Figure 2.

In Figure 2, remote nodes and healthcare network are hidden variables, and the
only observable variable is the SLE metric. An SLE node forecasts how long it
should take a share healthcare information to the remote nodes. The SLE itself has
two parts: a period of elapsed time and a probability associated with that period
(e.g., 38% of healthcare information is shared in 5 min or less, which can also be
stated as “5 min with 38% confidence/probability”). However, the healthcare net-
work is a complete system for the variables and their dependencies. Healthcare
system can also calculate the services provides to the services provided to the
remote nodes like “what is the probability that network successfully passes and the
given SLE has failed, P(healthcare system = true | SLE = false), which shows that the
sharing of the healthcare information with the remote nodes is not completed
within the threshold level. In general, the ultimate purpose of the proposed patient
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Bayesian model is to calculate the posterior (conditional) probability of the
healthcare system given SLE, P(healthcare system| SLE), which reflects the trusty
of the healthcare system. Eq. (3) calculates the posterior probability P(healthcare
system | SLE), according to Bayes’ rule (Figure 3).

It is necessary to choose a probabilistic model represented by Eq. (2) that relates
to the random variables and the model parameters associated with it. At the end,
Bayes’ rules are applied to combine the prior knowledge and the new observed data
to find the posterior probability distribution, following Eq. (3).

P healthcare system j SLE� � ¼ Sum of P SLE, healthcare system, remote nodes
� �

over all values of remote nodes divided by sum of P SLE, healthcare system, remote nodes
� �

over all values of remote nodes and SLE:

(3)

5. Constraint-based adaptive boost algorithm

The constraint-based adaptive boost (CBAB) algorithm is a simple, flexible, and
effective classifier [13]. In cloud-based healthcare system, CBAB is used for
patient’s data analysis. In healthcare system, each patient has different set of records
with some common features and unique attributes such as name, age, disease, etc.

Figure 3.
Bayesian rules.

Figure 2.
Communication between healthcare system and remote nodes.
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n Mð Þ are the datasets of M patients and the dataset of Pth node

contains a total of n pð Þ samples, and it can be represented as:
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where Xp
i is the patient’s data at P

th node and Yp
i is the decision making that is

being consider here. The CBAB algorithm is applied to analyze the health informa-
tion of each patient for “t” boosting iterations. In the decision making, each
unidentified data is represented by f n, θ, δ

� �
, where fn represents the selected

health parameter, θ is the decision threshold, and δ is the sign of decision, i.e., +1 or
�1. CBAB calls a given learning algorithm in a series of loops t = 1, 2, … t. For any
health information Xi, the hypothesis h(Xi) means the decision is either +1 or �1.
For the Pth patient, HP :ð Þ is the set of T unidentified data:

hP 1ð Þ :ð Þ∝P 1ð Þ, hP 2ð Þ :ð Þ∝P 2ð Þ, … hP Tð Þ :ð Þ∝P Tð Þ
n o

(5)

where hP tð Þ is the unidentified data at tth iteration and ∝P tð Þ is the corresponding
weight of the unidentified data. For a particular patient’s information Xi, the pre-
diction made by the Pth patient can be defined as:

HP Xð Þ ¼ sign HP Xð Þ� � ¼ sign
XT
t¼0

∝P tð ÞhP tð Þ Xið Þ
( )

(6)

In a cloud-based healthcare system, all the nodes can share a patient’s data to
each other, and hence each node will receive M-1 information from other nodes.
Therefore, each node would integrate specific information. In this way, the
healthcare system would value the sensitivity of the patient’s information for
decision making. To analyze the original patient’s data among different nodes in
healthcare system is infeasible due to patient’s privacy, therefore, we alternate to
applying all the other nodes in the training set of Pth node, and compare the error
rate of each node with the training rate of Pth node as shown in Eq.(7):

The node receiving information from any other node might be changed data,
hence before using such data, the Pthnode should select a suitable subset of relevant
data based on fn. For the Pthnode, the error rate of qthnode is given by:
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where Hq :ð Þ is the selected information patterns from patient’s shared data by
node q, and I(.) is the indicator function. The training rate of the Pthtrained node is
given by:

∈ P ¼ 1
nP
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i¼1
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� � 6¼ YP
i
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(8)

For every node, we compute the difference between ∈ qð Þ
P and ∈ P. If ∈ qð Þ

P

�
�

∈ PÞ is less than a certain threshold level, then we can assume that the patient’s data
shared between Pth and qth nodes are similar and we can use qth node as trust node
for Pth node
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Bayesian model is to calculate the posterior (conditional) probability of the
healthcare system given SLE, P(healthcare system| SLE), which reflects the trusty
of the healthcare system. Eq. (3) calculates the posterior probability P(healthcare
system | SLE), according to Bayes’ rule (Figure 3).
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P healthcare system j SLE� � ¼ Sum of P SLE, healthcare system, remote nodes
� �
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� �

over all values of remote nodes and SLE:

(3)

5. Constraint-based adaptive boost algorithm

The constraint-based adaptive boost (CBAB) algorithm is a simple, flexible, and
effective classifier [13]. In cloud-based healthcare system, CBAB is used for
patient’s data analysis. In healthcare system, each patient has different set of records
with some common features and unique attributes such as name, age, disease, etc.

Figure 3.
Bayesian rules.

Figure 2.
Communication between healthcare system and remote nodes.
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6. Conclusion

In our research, we have proposed a patient Bayesian Interference for analyzing
the healthcare system. The Bayesian Inference is used to model the uncertainties
that come with the problems and dealing with missing data and also allow integrat-
ing data from remote resources. We have also used the concept of constraint-based
adaptive boosting to demonstrate the patient’s Bayesian inference performance in
the real datasets from healthcare system to remote resources. In the future, we will
try to find more accurate ways to protect the patient’s data more accurately without
compromising on patient’s privacy.
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Chapter 7

The Bayesian Posterior Estimators
under Six Loss Functions for
Unrestricted and Restricted
Parameter Spaces
Ying-Ying Zhang

Abstract

In this chapter, we have investigated six loss functions. In particular, the squared
error loss function and the weighted squared error loss function that penalize
overestimation and underestimation equally are recommended for the unrestricted
parameter space �∞;∞ð Þ; Stein’s loss function and the power-power loss function,
which penalize gross overestimation and gross underestimation equally, are
recommended for the positive restricted parameter space 0;∞ð Þ; the power-log loss
function and Zhang’s loss function, which penalize gross overestimation and gross
underestimation equally, are recommended for 0; 1ð Þ. Among the six Bayesian esti-
mators that minimize the corresponding posterior expected losses (PELs), there exist
three strings of inequalities. However, a string of inequalities among the six smallest
PELs does not exist. Moreover, we summarize three hierarchical models where the
unknown parameter of interest belongs to 0;∞ð Þ, that is, the hierarchical normal and
inverse gamma model, the hierarchical Poisson and gamma model, and the hierar-
chical normal and normal-inverse-gamma model. In addition, we summarize two
hierarchical models where the unknown parameter of interest belongs to 0; 1ð Þ, that
is, the beta-binomial model and the beta-negative binomial model. For empirical
Bayesian analysis of the unknown parameter of interest of the hierarchical models,
we use two common methods to obtain the estimators of the hyperparameters, that
is, the moment method and the maximum likelihood estimator (MLE) method.

Keywords: Bayesian estimators, power-log loss function, power-power loss
function, restricted parameter spaces, Stein’s loss function, Zhang’s loss function

1. Introduction

In Bayesian analysis, there are four basic elements: the data, the model, the
prior, and the loss function. A Bayesian estimator minimizes some posterior
expected loss (PEL) function. We confine our interests to six loss functions in this
chapter: the squared error loss function (well known), the weighted squared error
loss function ([1], p. 78), Stein’s loss function [2–10], the power-power loss func-
tion [11], the power-log loss function [12], and Zhang’s loss function [13]. It is
worthy to note that among the six loss functions, the first and second loss functions
are defined on Θ ¼ �∞;∞ð Þ, and they penalize overestimation and
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underestimation equally. The third and fourth loss functions are defined on
Θ ¼ 0;∞ð Þ, and they penalize gross overestimation and gross underestimation
equally, that is, an action a will suffer an infinite loss when it tends to 0 or ∞. The
fifth and sixth loss functions are defined on Θ ¼ 0; 1ð Þ, and they penalize gross
overestimation and gross underestimation equally, that is, an action a will suffer an
infinite loss when it tends to 0 or 1.

The squared error loss function and the weighted squared error loss function
have been used by many authors for the problem of estimating the variance, σ2,
based on a random sample from a normal distribution with mean μ unknown (see,
for instance, [14, 15]). As pointed out by [16], the two loss functions penalize
equally for overestimation and underestimation, which is fine for the unrestricted
parameter space Θ ¼ �∞;∞ð Þ.

For Θ ¼ 0;∞ð Þ, the positive restricted parameter space, where 0 is a natural
lower bound and the estimation problem is not symmetric, we should not choose
the squared error loss function and the weighted squared error loss function but
choose a loss function which can penalize gross overestimation and gross underes-
timation equally, that is, an action a will suffer an infinite loss when it tends to 0 or
∞. Stein’s loss function owns this property, and thus it is recommended for
Θ ¼ 0;∞ð Þ by many researchers (e.g., see [2–10]). Moreover, [11] proposes the
power-power loss function which not only penalizes gross overestimation and gross
underestimation equally but also has balanced convergence rates or penalties for its
argument too large and too small. Therefore, Stein’s loss function and the power-
power loss function are recommended for Θ ¼ 0;∞ð Þ.

Analogously, for a restricted parameter space Θ ¼ 0; 1ð Þ, where 0 and 1 are two
natural bounds and the estimation problem is not symmetric, we should not select
the squared error loss function and the weighted squared error loss function but
select a loss function which can penalize gross overestimation and gross underesti-
mation equally, that is, an action a will suffer an infinite loss when it tends to 0 or 1.
It is worthy to note that Stein’s loss function and the power-power loss function are
also not appropriate in this case. The power-log loss function proposed by [12] has
this property. Moreover, they propose six properties for a good loss function on
Θ ¼ 0; 1ð Þ. Specifically, the power-log loss function is convex in its argument,
attains its global minimum at the true unknown parameter, and penalizes gross
overestimation and gross underestimation equally. Apart from the six properties,
[13] proposes the seventh property, that is, balanced convergence rates or penalties
for the argument too large and too small, for a good loss function on Θ ¼ 0; 1ð Þ.
Therefore, the power-log loss function and Zhang’s loss function are recommended
for Θ ¼ 0; 1ð Þ.

The rest of the chapter is organized as follows. In Section 2, we obtain two
Bayesian estimators for θ∈Θ ¼ �∞;∞ð Þ under the squared error loss function and
the weighted squared error loss function. In Section 3, we obtain two Bayesian
estimators for θ∈Θ ¼ 0;∞ð Þ under Stein’s loss function and the power-power loss
function. In Section 4, we obtain two Bayesian estimators for θ∈Θ ¼ 0; 1ð Þ under
the power-log loss function and Zhang’s loss function. In Section 5, we summarize
three strings of inequalities in a theorem. Some conclusions and discussions are
provided in Section 6.

2. Bayesian estimation for θ ∈(�∞,∞)

There are two loss functions which are defined on Θ ¼ �∞;∞ð Þ and penalize
overestimation and underestimation equally, that is, the squared error loss function
(well known) and the weighted squared error loss function (see [1], p. 78).
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2.1 Squared error loss function

The Bayesian estimator under the squared error loss function (well known), δπ2 xð Þ,
minimizes the posterior expected squared error loss (PESEL), E L2 θ; að Þjx½ �, that is,

δπ2 xð Þ ¼ argmin
a∈A

E L2 θ; að Þjx½ �, (1)

where A a xð Þ : a xð Þ∈ �∞;∞ð Þf g is the action space, a ¼ a xð Þ∈ �∞;∞ð Þ is an
action (estimator),

L2 θ; að Þ ¼ θ � að Þ2 (2)

is the squared error loss function, and θ∈ �∞;∞ð Þ is the unknown parameter of
interest. The PESEL is easy to obtain (see [16]):

PESEL π; ajxð Þ ¼ E L2 θ; að Þjx½ � ¼ a2 � 2aE θjxð Þ þ E θ2jx� �
: (3)

It is found in [16] that

δπ2 xð Þ ¼ E θjxð Þ (4)

by taking partial derivative of the PESEL with respect to a and setting it to 0.

2.2 Weighted squared error loss function

The Bayesian estimator under the weighted squared error loss function, δπw2 xð Þ,
minimizes the posterior expected weighted squared error loss (PEWSEL) (see [1]),
E Lw2 θ; að Þjx½ �, that is,

δπw2 xð Þ ¼ argmin
a∈A

E Lw2 θ; að Þjx½ �, (5)

where A a xð Þ : a xð Þ∈ �∞;∞ð Þf g is the action space, a ¼ a xð Þ∈ �∞;∞ð Þ is an
action (estimator),

Lw2 θ; að Þ ¼ 1
θ2

θ � að Þ2 (6)

is the weighted squared error loss function, and θ∈ �∞;∞ð Þ is the unknown
parameter of interest. The PEWSEL is easy to obtain (see [1]):

PEWSEL π; ajxð Þ ¼ E Lw2 θ; að Þjx½ � ¼ a2E
1
θ2

jx
� �

� 2aE
1
θ
jx

� �
þ 1: (7)

It is found in [1] that

δπw2 xð Þ ¼ E 1
θ jx
� �

E 1
θ2
jx

� � (8)

by taking partial derivative of the PEWSEL with respect to a and setting it to 0.

3. Bayesian estimation for θ ∈ (0,∞)

There are many hierarchical models where the parameter of interest is
θ∈Θ ¼ 0;∞ð Þ. As pointed out in the introduction, we should calculate and use the
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2.2 Weighted squared error loss function

The Bayesian estimator under the weighted squared error loss function, δπw2 xð Þ,
minimizes the posterior expected weighted squared error loss (PEWSEL) (see [1]),
E Lw2 θ; að Þjx½ �, that is,

δπw2 xð Þ ¼ argmin
a∈A

E Lw2 θ; að Þjx½ �, (5)

where A a xð Þ : a xð Þ∈ �∞;∞ð Þf g is the action space, a ¼ a xð Þ∈ �∞;∞ð Þ is an
action (estimator),

Lw2 θ; að Þ ¼ 1
θ2

θ � að Þ2 (6)

is the weighted squared error loss function, and θ∈ �∞;∞ð Þ is the unknown
parameter of interest. The PEWSEL is easy to obtain (see [1]):

PEWSEL π; ajxð Þ ¼ E Lw2 θ; að Þjx½ � ¼ a2E
1
θ2

jx
� �

� 2aE
1
θ
jx

� �
þ 1: (7)

It is found in [1] that

δπw2 xð Þ ¼ E 1
θ jx
� �

E 1
θ2
jx

� � (8)

by taking partial derivative of the PEWSEL with respect to a and setting it to 0.

3. Bayesian estimation for θ ∈ (0,∞)

There are many hierarchical models where the parameter of interest is
θ∈Θ ¼ 0;∞ð Þ. As pointed out in the introduction, we should calculate and use the
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Bayesian estimator of the parameter θ under Stein’s loss function or the power-
power loss function because they penalize gross overestimation and gross underes-
timation equally. We list several such hierarchical models as follows.

Model (a) (hierarchical normal and inverse gamma model). This hierarchical
model has been investigated by [10, 16, 17]. Suppose that we observe X1, X2,…, Xn
from the hierarchical normal and inverse gamma model:

Xi∣θ�iidN μ; θð Þ, i ¼ 1, 2,…, n,
θ � IG α; βð Þ,

(
(9)

where �∞< μ<∞, α>0, and β>0 are known constants, θ is the unknown
parameter of interest, N μ; θð Þ is the normal distribution, and IG α; βð Þ is the inverse
gamma distribution. It is worthy to note that the problem of finding the Bayesian
rule under a conjugate prior is a standard problem and the problem is treated in
almost every text on mathematical statistics. The idea of selecting an appropriate
prior from the conjugate family was put forward by [18]. Specifically, Bayesian
estimation of θ under the prior IG α; βð Þ is studied in Example 4.2.5 (p. 236) of [17]
and in Exercise 7.23 (p. 359) of [16]. However, they only calculate the Bayesian
estimator with respect to IG α; βð Þ prior under the squared error loss, δπ2 xð Þ ¼ E θjxð Þ.

Model (b) (hierarchical Poisson and gamma model). This hierarchical model
has been investigated by [1, 16, 19, 20]. Suppose that X1, X2,…, Xn are observed
from the hierarchical Poisson and gamma model:

Xi∣θ�iidP θð Þ, i ¼ 1, 2,…, n,

θ � G α; βð Þ,

(
(10)

where α>0 and β>0 are hyperparameters to be determined, P θð Þ is the Poisson
distribution with an unknown mean θ>0, and G α; βð Þ is the gamma distribution
with an unknown shape parameter α and an unknown rate parameter β. The gamma
prior G α; βð Þ is a conjugate prior for the Poisson model, so that the posterior distri-
bution of θ is also a gamma distribution. The hierarchical Poisson and gamma model
(10) has been considered in Exercise 4.32 (p. 196) of [4]. It has been shown that the
marginal distribution of X is a negative binomial distribution if α is a positive
integer. The Bayesian estimation of θ under the gamma prior is studied in [19] and
in Tables 3.3.1 (p. 121) and 4.2.1 (p. 176) of [1]. However, they only calculated the
Bayesian posterior estimator of θ under the squared error loss function.

Model (c) (hierarchical normal and normal-inverse-gamma model). This
hierarchical model has been investigated by [2, 21, 22]. Let the observations
X1, X2,…, Xn be from the hierarchical normal and normal-inverse-gamma model:

Xi∣ μ; θð Þ�iidN μ; θð Þ, i ¼ 1, 2,…, n,

μ∣θ � N μ0; θ=κ0ð Þ, θ � IG v0=2; v0σ20=2
� �

,

(
(11)

where �∞< μ0 <∞, κ0 >0, v0 >0, and σ0 >0 are known hyperparameters,
N μ; θð Þ is a normal distribution with an unknown mean μ and an unknown variance
θ, μ∣θ is N μ0,ð θ=κ0Þ which is a normal distribution, and θ is IG v0=2; v0σ20=2

� �
which

is an inverse gamma distribution. More specifically, with a joint conjugate prior
π μ; θð Þ � N � IG μ0; κ0; v0; σ20

� �
, which is the normal-inverse-gamma distribution,

the posterior distribution of θ was studied in Example 1.5.1 (p. 20) of [21] and Part I
(pp. 69–70) of [22]. However, they did not provide any Bayesian posterior
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estimator of θ. Moreover, the normal distribution with a normal-inverse-gamma
prior which assumes that μ is unknown is more realistic than the normal distribu-
tion with an inverse gamma prior investigated by [10] which assumes that μ is
known.

3.1 Stein’s loss function

3.1.1 One-dimensional case

The Bayesian estimator under Stein’s loss function, δπs xð Þ, minimizes the poste-
rior expected Stein’s loss (PESL) (see [1, 10, 16]), E Ls θ; að Þjx½ �, that is,

δπs xð Þ ¼ argmin
a∈A

E Ls θ; að Þjx½ �, (12)

whereA a xð Þ : a xð Þ>0f g is the action space, a ¼ a xð Þ>0 is an action (estimator),

Ls θ; að Þ ¼ a
θ
� 1� log

a
θ

(13)

is Stein’s loss function, and θ>0 is the unknown parameter of interest. The PESL
is easy to obtain (see [10]):

PESL π; ajxð Þ ¼ E Ls θ; að Þjx½ � ¼ aE
1
θ
jx

� �
� 1� log aþ E log θjxð Þ: (14)

It is found in [10] that

δπs xð Þ ¼ 1
E 1

θ jx
� � (15)

by taking partial derivative of the PESL with respect to a and setting it to 0. The
PESLs evaluated at the Bayesian estimators are (see [10])

PESLs π;xð Þ ¼ E Ls θ; að Þjx½ �ja¼δπs xð Þ,

PESL2 π;xð Þ ¼ E Ls θ; að Þjx½ �ja¼δπ2 xð Þ,
(16)

where δπ2 xð Þ ¼ E θjxð Þ is the Bayesian estimator under the squared error loss
function.

For the variance parameter θ of the hierarchical normal and inverse gamma
model (9), [10] recommends and analytically calculates the Bayesian estimator:

δπs xð Þ ¼ 1
α ∗ β ∗ , (17)

where

α ∗ ¼ αþ n
2
andβ ∗ ¼ 1

β
þ 1
2

Xn
i¼1

xi � μð Þ2
" #�1

, (18)

with respect to IG α; βð Þ prior under Stein’s loss function. This estimator mini-
mizes the PESL. [10] also analytically calculates the Bayesian estimator,
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Bayesian estimator of the parameter θ under Stein’s loss function or the power-
power loss function because they penalize gross overestimation and gross underes-
timation equally. We list several such hierarchical models as follows.

Model (a) (hierarchical normal and inverse gamma model). This hierarchical
model has been investigated by [10, 16, 17]. Suppose that we observe X1, X2,…, Xn
from the hierarchical normal and inverse gamma model:

Xi∣θ�iidN μ; θð Þ, i ¼ 1, 2,…, n,
θ � IG α; βð Þ,

(
(9)

where �∞< μ<∞, α>0, and β>0 are known constants, θ is the unknown
parameter of interest, N μ; θð Þ is the normal distribution, and IG α; βð Þ is the inverse
gamma distribution. It is worthy to note that the problem of finding the Bayesian
rule under a conjugate prior is a standard problem and the problem is treated in
almost every text on mathematical statistics. The idea of selecting an appropriate
prior from the conjugate family was put forward by [18]. Specifically, Bayesian
estimation of θ under the prior IG α; βð Þ is studied in Example 4.2.5 (p. 236) of [17]
and in Exercise 7.23 (p. 359) of [16]. However, they only calculate the Bayesian
estimator with respect to IG α; βð Þ prior under the squared error loss, δπ2 xð Þ ¼ E θjxð Þ.

Model (b) (hierarchical Poisson and gamma model). This hierarchical model
has been investigated by [1, 16, 19, 20]. Suppose that X1, X2,…, Xn are observed
from the hierarchical Poisson and gamma model:

Xi∣θ�iidP θð Þ, i ¼ 1, 2,…, n,

θ � G α; βð Þ,

(
(10)

where α>0 and β>0 are hyperparameters to be determined, P θð Þ is the Poisson
distribution with an unknown mean θ>0, and G α; βð Þ is the gamma distribution
with an unknown shape parameter α and an unknown rate parameter β. The gamma
prior G α; βð Þ is a conjugate prior for the Poisson model, so that the posterior distri-
bution of θ is also a gamma distribution. The hierarchical Poisson and gamma model
(10) has been considered in Exercise 4.32 (p. 196) of [4]. It has been shown that the
marginal distribution of X is a negative binomial distribution if α is a positive
integer. The Bayesian estimation of θ under the gamma prior is studied in [19] and
in Tables 3.3.1 (p. 121) and 4.2.1 (p. 176) of [1]. However, they only calculated the
Bayesian posterior estimator of θ under the squared error loss function.

Model (c) (hierarchical normal and normal-inverse-gamma model). This
hierarchical model has been investigated by [2, 21, 22]. Let the observations
X1, X2,…, Xn be from the hierarchical normal and normal-inverse-gamma model:

Xi∣ μ; θð Þ�iidN μ; θð Þ, i ¼ 1, 2,…, n,

μ∣θ � N μ0; θ=κ0ð Þ, θ � IG v0=2; v0σ20=2
� �

,

(
(11)

where �∞< μ0 <∞, κ0 >0, v0 >0, and σ0 >0 are known hyperparameters,
N μ; θð Þ is a normal distribution with an unknown mean μ and an unknown variance
θ, μ∣θ is N μ0,ð θ=κ0Þ which is a normal distribution, and θ is IG v0=2; v0σ20=2

� �
which

is an inverse gamma distribution. More specifically, with a joint conjugate prior
π μ; θð Þ � N � IG μ0; κ0; v0; σ20

� �
, which is the normal-inverse-gamma distribution,

the posterior distribution of θ was studied in Example 1.5.1 (p. 20) of [21] and Part I
(pp. 69–70) of [22]. However, they did not provide any Bayesian posterior
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estimator of θ. Moreover, the normal distribution with a normal-inverse-gamma
prior which assumes that μ is unknown is more realistic than the normal distribu-
tion with an inverse gamma prior investigated by [10] which assumes that μ is
known.

3.1 Stein’s loss function

3.1.1 One-dimensional case

The Bayesian estimator under Stein’s loss function, δπs xð Þ, minimizes the poste-
rior expected Stein’s loss (PESL) (see [1, 10, 16]), E Ls θ; að Þjx½ �, that is,

δπs xð Þ ¼ argmin
a∈A

E Ls θ; að Þjx½ �, (12)

whereA a xð Þ : a xð Þ>0f g is the action space, a ¼ a xð Þ>0 is an action (estimator),

Ls θ; að Þ ¼ a
θ
� 1� log

a
θ

(13)

is Stein’s loss function, and θ>0 is the unknown parameter of interest. The PESL
is easy to obtain (see [10]):

PESL π; ajxð Þ ¼ E Ls θ; að Þjx½ � ¼ aE
1
θ
jx

� �
� 1� log aþ E log θjxð Þ: (14)

It is found in [10] that

δπs xð Þ ¼ 1
E 1

θ jx
� � (15)

by taking partial derivative of the PESL with respect to a and setting it to 0. The
PESLs evaluated at the Bayesian estimators are (see [10])

PESLs π;xð Þ ¼ E Ls θ; að Þjx½ �ja¼δπs xð Þ,

PESL2 π;xð Þ ¼ E Ls θ; að Þjx½ �ja¼δπ2 xð Þ,
(16)

where δπ2 xð Þ ¼ E θjxð Þ is the Bayesian estimator under the squared error loss
function.

For the variance parameter θ of the hierarchical normal and inverse gamma
model (9), [10] recommends and analytically calculates the Bayesian estimator:

δπs xð Þ ¼ 1
α ∗ β ∗ , (17)

where

α ∗ ¼ αþ n
2
andβ ∗ ¼ 1

β
þ 1
2

Xn
i¼1

xi � μð Þ2
" #�1

, (18)

with respect to IG α; βð Þ prior under Stein’s loss function. This estimator mini-
mizes the PESL. [10] also analytically calculates the Bayesian estimator,
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δπ2 xð Þ ¼ E θjxð Þ ¼ 1
α ∗ � 1ð Þβ ∗ , (19)

with respect to IG α; βð Þ prior under the squared error loss, and the
corresponding PESL. [10] notes that

E log θjxð Þ ¼ � log β ∗ � ψ α ∗ð Þ, (20)

which is essential for the calculation of

PESLs π;xð Þ ¼ log α ∗ � ψ α ∗ð Þ (21)

and

PESL2 π;xð Þ ¼ 1
α ∗ � 1

þ log α ∗ � 1ð Þ � ψ α ∗ð Þ, (22)

depends on the digamma function ψ �ð Þ. Finally, the numerical simulations
exemplify that PESLs π;xð Þ and PESL2 π;xð Þ depend only on α and n and do not
depend on μ, β, and x; the estimators δπs xð Þ are unanimously smaller than the
estimators δπ2 xð Þ; and PESLs π;xð Þ are unanimously smaller than PESL2 π;xð Þ.

For the hierarchical Poisson and gamma model (43), [20] first calculates the
posterior distribution of θ, π θjxð Þ, and the marginal pmf of x, π xð Þ, in Theorem 1
of their paper. [20] then calculates the Bayesian posterior estimators δπs xð Þ and
δπ2 xð Þ, and the PESLs PESLs π;xð Þ and PESL2 π;xð Þ, and they satisfy two inequalities.
After that, the estimators of the hyperparameters of the model (10) by the
moment method α1 nð Þ and β1 nð Þ are summarized in Theorem 2 of their paper.
Moreover, the estimators of the hyperparameters of the model (10) by the
maximum likelihood estimator (MLE) method α2 nð Þ and β2 nð Þ are summarized in
Theorem 3 of their paper. Finally, the empirical Bayesian estimators of the param-
eter of the model (10) under Stein’s loss function by the moment method and the
MLE method are summarized in Theorem 4 of their paper. In numerical simulations
of [20], they have illustrated the two inequalities of the Bayesian posterior estima-
tors and the PESLs, the moment estimators and the MLEs are consistent estimators
of the hyperparameters, and the goodness of fit of the model to the simulated data.
The numerical results indicate that the MLEs are better than the moment
estimators when estimating the hyperparameters. Finally, [20] exploits the
attendance data on 314 high school juniors from two urban high schools to illustrate
their theoretical studies.

For the variance parameter θ of the normal distribution with a normal-inverse-
gamma prior (11), [23] recommends and analytically calculates the Bayesian poste-
rior estimator, δπs xð Þ, with respect to a conjugate prior μ∣θ � N μ0,ð θ=κ0Þ, and
θ � IG v0=2; v0σ20=2

� �
under Stein’s loss function which penalizes gross

overestimation and gross underestimation equally. This estimator minimizes the
PESL. As comparisons, the Bayesian posterior estimator, δπ2 xð Þ ¼ E θjxð Þ, with
respect to the same conjugate prior under the squared error loss function, and the
PESL at δπ2 xð Þ, are calculated. The calculations of δπs xð Þ, δπ2 xð Þ, PESLs π;xð Þ, and
PESL2 π;xð Þ depend only on E θjxð Þ, E θ�1jx� �

, and E log θjxð Þ. The numerical simu-
lations exemplify their theoretical studies that the PESLs depend only on v0 and n,
but do not depend on μ0, κ0, σ0, and especially x. The estimators δπ2 xð Þ are unani-
mously larger than the estimators δπs xð Þ, and PESL2 π;xð Þ are unanimously larger
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than PESLs π;xð Þ. Finally, [23] calculates the Bayesian posterior estimators and the
PESLs of the monthly simple returns of the Shanghai Stock Exchange (SSE) Com-
posite Index, which also exemplify the theoretical studies of the two inequalities of
the Bayesian posterior estimators and the PESLs.

3.1.2 Multidimensional case

For estimating a covariance matrix which is assumed to be positive definite,
many researchers exploit the multidimensional Stein’s loss function (e.g., see
[2, 8, 24–31]). The multidimensional Stein’s loss function (see [2]) is originally
defined to estimate the p� p unknown covariance matrix Σ by Σ̂ with the loss
function:

L Σ; Σ̂
� � ¼ trΣ�1Σ̂ � log detΣ�1Σ̂ � p: (23)

When p ¼ 1, the multidimensional Stein’s loss function reduces to

Ls σ2; a
� � ¼ a

σ2
� log

a
σ2

� 1, (24)

which is in the form of (13), the one-dimensional Stein’s loss function.

3.2 Power-power loss function

The Bayesian estimator under the power-power loss function, δπp xð Þ, minimizes

the posterior expected power-power loss (PEPL) (see [11]), E Lp θ; að Þjx� �
, that is,

δπp xð Þ ¼ argmin
a∈A

E Lp θ; að Þjx� �
, (25)

whereA a xð Þ : a xð Þ>0f g is the action space, a ¼ a xð Þ>0 is an action (estimator),

Lp θ; að Þ ¼ a
θ
þ θ

a
� 2 (26)

is the power-power loss function, and θ>0 is the unknown parameter of inter-
est. The PEPL is easy to obtain (see [11]):

PEPL π; ajxð Þ ¼ E Lp θ; að Þjx� � ¼ aE
1
θ
jx

� �
þ 1
a
E θjxð Þ � 2: (27)

It is found in [11] that

δπp xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E θjxð Þ
E 1

θ jx
� �

s
(28)

by taking partial derivative of the PEPL with respect to a and setting it to 0. The
PEPLs evaluated at the Bayesian estimators are (see [11])

PEPLp π;xð Þ ¼ E Lp θ; að Þjx� ���
a¼δπp xð Þ,

PEPL2 π;xð Þ ¼ E Lp θ; að Þjx� ���
a¼δπ2 xð Þ:

(29)

95

The Bayesian Posterior Estimators under Six Loss Functions for Unrestricted and Restricted…
DOI: http://dx.doi.org/10.5772/intechopen.88587



δπ2 xð Þ ¼ E θjxð Þ ¼ 1
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with respect to IG α; βð Þ prior under the squared error loss, and the
corresponding PESL. [10] notes that

E log θjxð Þ ¼ � log β ∗ � ψ α ∗ð Þ, (20)

which is essential for the calculation of

PESLs π;xð Þ ¼ log α ∗ � ψ α ∗ð Þ (21)

and

PESL2 π;xð Þ ¼ 1
α ∗ � 1

þ log α ∗ � 1ð Þ � ψ α ∗ð Þ, (22)

depends on the digamma function ψ �ð Þ. Finally, the numerical simulations
exemplify that PESLs π;xð Þ and PESL2 π;xð Þ depend only on α and n and do not
depend on μ, β, and x; the estimators δπs xð Þ are unanimously smaller than the
estimators δπ2 xð Þ; and PESLs π;xð Þ are unanimously smaller than PESL2 π;xð Þ.

For the hierarchical Poisson and gamma model (43), [20] first calculates the
posterior distribution of θ, π θjxð Þ, and the marginal pmf of x, π xð Þ, in Theorem 1
of their paper. [20] then calculates the Bayesian posterior estimators δπs xð Þ and
δπ2 xð Þ, and the PESLs PESLs π;xð Þ and PESL2 π;xð Þ, and they satisfy two inequalities.
After that, the estimators of the hyperparameters of the model (10) by the
moment method α1 nð Þ and β1 nð Þ are summarized in Theorem 2 of their paper.
Moreover, the estimators of the hyperparameters of the model (10) by the
maximum likelihood estimator (MLE) method α2 nð Þ and β2 nð Þ are summarized in
Theorem 3 of their paper. Finally, the empirical Bayesian estimators of the param-
eter of the model (10) under Stein’s loss function by the moment method and the
MLE method are summarized in Theorem 4 of their paper. In numerical simulations
of [20], they have illustrated the two inequalities of the Bayesian posterior estima-
tors and the PESLs, the moment estimators and the MLEs are consistent estimators
of the hyperparameters, and the goodness of fit of the model to the simulated data.
The numerical results indicate that the MLEs are better than the moment
estimators when estimating the hyperparameters. Finally, [20] exploits the
attendance data on 314 high school juniors from two urban high schools to illustrate
their theoretical studies.

For the variance parameter θ of the normal distribution with a normal-inverse-
gamma prior (11), [23] recommends and analytically calculates the Bayesian poste-
rior estimator, δπs xð Þ, with respect to a conjugate prior μ∣θ � N μ0,ð θ=κ0Þ, and
θ � IG v0=2; v0σ20=2

� �
under Stein’s loss function which penalizes gross

overestimation and gross underestimation equally. This estimator minimizes the
PESL. As comparisons, the Bayesian posterior estimator, δπ2 xð Þ ¼ E θjxð Þ, with
respect to the same conjugate prior under the squared error loss function, and the
PESL at δπ2 xð Þ, are calculated. The calculations of δπs xð Þ, δπ2 xð Þ, PESLs π;xð Þ, and
PESL2 π;xð Þ depend only on E θjxð Þ, E θ�1jx� �

, and E log θjxð Þ. The numerical simu-
lations exemplify their theoretical studies that the PESLs depend only on v0 and n,
but do not depend on μ0, κ0, σ0, and especially x. The estimators δπ2 xð Þ are unani-
mously larger than the estimators δπs xð Þ, and PESL2 π;xð Þ are unanimously larger
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than PESLs π;xð Þ. Finally, [23] calculates the Bayesian posterior estimators and the
PESLs of the monthly simple returns of the Shanghai Stock Exchange (SSE) Com-
posite Index, which also exemplify the theoretical studies of the two inequalities of
the Bayesian posterior estimators and the PESLs.

3.1.2 Multidimensional case

For estimating a covariance matrix which is assumed to be positive definite,
many researchers exploit the multidimensional Stein’s loss function (e.g., see
[2, 8, 24–31]). The multidimensional Stein’s loss function (see [2]) is originally
defined to estimate the p� p unknown covariance matrix Σ by Σ̂ with the loss
function:

L Σ; Σ̂
� � ¼ trΣ�1Σ̂ � log detΣ�1Σ̂ � p: (23)

When p ¼ 1, the multidimensional Stein’s loss function reduces to

Ls σ2; a
� � ¼ a

σ2
� log

a
σ2

� 1, (24)

which is in the form of (13), the one-dimensional Stein’s loss function.

3.2 Power-power loss function

The Bayesian estimator under the power-power loss function, δπp xð Þ, minimizes

the posterior expected power-power loss (PEPL) (see [11]), E Lp θ; að Þjx� �
, that is,

δπp xð Þ ¼ argmin
a∈A

E Lp θ; að Þjx� �
, (25)

whereA a xð Þ : a xð Þ>0f g is the action space, a ¼ a xð Þ>0 is an action (estimator),

Lp θ; að Þ ¼ a
θ
þ θ

a
� 2 (26)

is the power-power loss function, and θ>0 is the unknown parameter of inter-
est. The PEPL is easy to obtain (see [11]):

PEPL π; ajxð Þ ¼ E Lp θ; að Þjx� � ¼ aE
1
θ
jx
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þ 1
a
E θjxð Þ � 2: (27)

It is found in [11] that

δπp xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E θjxð Þ
E 1

θ jx
� �

s
(28)

by taking partial derivative of the PEPL with respect to a and setting it to 0. The
PEPLs evaluated at the Bayesian estimators are (see [11])

PEPLp π;xð Þ ¼ E Lp θ; að Þjx� ���
a¼δπp xð Þ,
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The power-power loss function is proposed in [11], and it has all the seven
properties proposed in his paper. More specifically, it penalizes gross overestimation
and gross underestimation equally, is convex in its argument, and has balanced
convergence rates or penalties for its argument too large and too small. Therefore, it is
recommended for the positive restricted parameter space Θ ¼ 0;∞ð Þ.

4. Bayesian estimation for θ∈ 0; 1ð Þ

There are some hierarchical models where the unknown parameter of interest is
θ∈Θ ¼ 0; 1ð Þ. As pointed out in the introduction, we should calculate and use the
Bayesian estimator of the parameter θ under the power-log loss function or Zhang’s
loss function because they penalize gross overestimation and gross underestimation
equally. We list two such hierarchical models as follows.

Model (d) (beta-binomial model). This hierarchical model has been investi-
gated by [1, 12, 13, 16, 32, 33]. Suppose that X1, X2,…, Xn are from the beta-binomial
model:

Xi∣θ�iidBin m; θð Þ, i ¼ 1, 2,…, n,
θ � Be α; βð Þ,

(
(30)

where α>0 and β>0 are known constants, m is a known positive integer,
θ∈ 0; 1ð Þ is the unknown parameter of interest, Be α; βð Þ is the beta distribution, and
Bin m; θð Þ is the binomial distribution. Specifically, Bayesian estimation of θ under
the prior Be α; βð Þ is studied in Example 7.2.14 (p. 324) of [16] and in Tables 3.3.1
(p. 121) and 4.2.1 (p. 176) of [1]. However, they only calculate the Bayesian esti-
mator with respect to Be α; βð Þ prior under the squared error loss, δπ2 xð Þ ¼ E θjxð Þ.
Moreover, they only consider one observation. The beta-binomial model has been
investigated recently. For instance, [32] uses the beta-binomial to draw the random
removals in progressive censoring; [12, 13] use the beta-binomial to model some
magazine exposure data for the monthly magazine Signature; [33] develops estima-
tion procedure for the parameters of a zero-inflated overdispersed binomial model
in the presence of missing responses.

Model (e) (beta-negative binomial model). This hierarchical model has been
investigated by [1, 34]. Suppose that X1, X2,…, Xn are from the beta-negative bino-
mial model:

Xi∣θ�iidNB m; θð Þ, i ¼ 1, 2,…, n,
θ � Be α; βð Þ,

(
(31)

where α>0 and β>0 are known constants, m is a known positive integer,
θ∈ 0; 1ð Þ is the unknown parameter of interest, Be α; βð Þ is the beta distribution, and
NB m; θð Þ is the negative binomial distribution. Specifically, Bayesian estimation of θ
under the prior Be α; βð Þ is studied in Tables 3.3.1 (p. 121) and 4.2.1 (p. 176) of [1].
However, he only calculates the Bayesian estimator with respect to Be α; βð Þ prior
under the squared error loss function, δπ2 xð Þ ¼ E θjxð Þ. Moreover, he only considers
one observation.

4.1 Power-log loss function

A good loss function L θ; að Þ ¼ L ajθð Þ ¼ L xð Þjx¼a=θ for Θ ¼ 0; 1ð Þ should have the
six properties summarized in Table 1 (see Table 1 in [12]).

96

Bayesian Inference on Complicated Data

In Table 1, property (a) means that any action a of the parameter θ should
incur a nonnegative loss. Property (b) means that when x ¼ a=θ ¼ 1, or a ¼ θ,
that is, a correctly estimates θ, the loss is 0. Property (c) means that when
x ¼ a=θ ! 1=θð Þ�, that is, a is moving away from θ and tends to 1�, it will incur an
infinite loss. Property (d) means that when x ¼ a=θ ! 0þ, that is, a is moving away
from θ and tends to 0þ, it will also incur an infinite loss. Properties (c) and (d)
mean that the loss function will penalize gross overestimation and gross underesti-
mation equally. Property (e) is useful in the proofs of some propositions of the
minimaxity and the admissibility of the Bayesian estimator (see [1]). Property (f)
means that 1 and θ are the local extrema of L xð Þ and L ajθð Þ, respectively. Property
(f) also implies that L θ þ Δajθð Þ ¼ o Δað Þ, that is, the loss incurred by an action
a ¼ θ þ Δa near θ (Δa≈0), is very small compared to Δa.

Let

gpl xð Þ ¼
1
θ � 1
� �2
1
θ � x

� log x and gpl 1ð Þ ¼ 1
θ
� 1: (32)

Define

Lpl xð Þ ¼ gpl xð Þ � gpl 1ð Þ ¼
1
θ � 1
� �2
1
θ � x

� log x� 1
θ
� 1

� �
: (33)

Thus

Lpl θ; að Þ ¼ Lpl ajθð Þ ¼ Lpl xð Þ��x¼a=θ ¼
1
θ � 1
� �2
1
θ
� a

θ

� log
a
θ
� 1

θ
� 1

� �

¼ θ 1
θ � 1
� �2
1� a

� log aþ log θ � 1
θ
� 1

� �
:

(34)

It is easy to check (see the supplement of [12]) that Lpl θ; að Þ ¼ Lpl ajθð Þ ¼
Lpl xð Þ��x¼a=θ, which is called the power-log loss function, satisfies all the six

properties listed in Table 1. Consequently, the power-log loss function is a good
loss function for Θ ¼ 0; 1ð Þ, and thus it is recommended for Θ ¼ 0; 1ð Þ.

We remark that the power-log loss function on Θ ¼ 0; 1ð Þ is an analog of the
power-log loss function on Θ ¼ 0;∞ð Þ, which is the popular Stein’s loss function.

Properties L xð Þ L ajθÞð

(a) L xð Þ≥0 for all 0< x< 1
θ

L ajθð Þ≥0 for all 0< a< 1

(b) L 1ð Þ ¼ 0 L θjθð Þ ¼ L ajθð Þja¼θ ¼ 0

(c) L 1
θ

� ��� � ¼ limx! 1
θð Þ� L xð Þ ¼ ∞ L 1�jθð Þ ¼ lima!1� L ajθð Þ ¼ ∞

(d) L 0þð Þ ¼ limx!0þ L xð Þ ¼ ∞ L 0þjθð Þ ¼ lima!0þ L ajθð Þ ¼ ∞

(e) Convex in x for all 0< x< 1
θ

Convex in a for all 0< a< 1

(f) L
0
1ð Þ ¼ dL xð Þ

dx

���
x¼1

¼ 0
∂

∂a L ajθð Þ� ���
a¼θ

¼ 0

Table 1.
(Table 1 in [12]) The six properties of a good loss function for Θ ¼ 0; 1ð Þ. 0< θ< 1 is fixed.
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The power-power loss function is proposed in [11], and it has all the seven
properties proposed in his paper. More specifically, it penalizes gross overestimation
and gross underestimation equally, is convex in its argument, and has balanced
convergence rates or penalties for its argument too large and too small. Therefore, it is
recommended for the positive restricted parameter space Θ ¼ 0;∞ð Þ.

4. Bayesian estimation for θ∈ 0; 1ð Þ

There are some hierarchical models where the unknown parameter of interest is
θ∈Θ ¼ 0; 1ð Þ. As pointed out in the introduction, we should calculate and use the
Bayesian estimator of the parameter θ under the power-log loss function or Zhang’s
loss function because they penalize gross overestimation and gross underestimation
equally. We list two such hierarchical models as follows.

Model (d) (beta-binomial model). This hierarchical model has been investi-
gated by [1, 12, 13, 16, 32, 33]. Suppose that X1, X2,…, Xn are from the beta-binomial
model:

Xi∣θ�iidBin m; θð Þ, i ¼ 1, 2,…, n,
θ � Be α; βð Þ,

(
(30)

where α>0 and β>0 are known constants, m is a known positive integer,
θ∈ 0; 1ð Þ is the unknown parameter of interest, Be α; βð Þ is the beta distribution, and
Bin m; θð Þ is the binomial distribution. Specifically, Bayesian estimation of θ under
the prior Be α; βð Þ is studied in Example 7.2.14 (p. 324) of [16] and in Tables 3.3.1
(p. 121) and 4.2.1 (p. 176) of [1]. However, they only calculate the Bayesian esti-
mator with respect to Be α; βð Þ prior under the squared error loss, δπ2 xð Þ ¼ E θjxð Þ.
Moreover, they only consider one observation. The beta-binomial model has been
investigated recently. For instance, [32] uses the beta-binomial to draw the random
removals in progressive censoring; [12, 13] use the beta-binomial to model some
magazine exposure data for the monthly magazine Signature; [33] develops estima-
tion procedure for the parameters of a zero-inflated overdispersed binomial model
in the presence of missing responses.

Model (e) (beta-negative binomial model). This hierarchical model has been
investigated by [1, 34]. Suppose that X1, X2,…, Xn are from the beta-negative bino-
mial model:

Xi∣θ�iidNB m; θð Þ, i ¼ 1, 2,…, n,
θ � Be α; βð Þ,

(
(31)

where α>0 and β>0 are known constants, m is a known positive integer,
θ∈ 0; 1ð Þ is the unknown parameter of interest, Be α; βð Þ is the beta distribution, and
NB m; θð Þ is the negative binomial distribution. Specifically, Bayesian estimation of θ
under the prior Be α; βð Þ is studied in Tables 3.3.1 (p. 121) and 4.2.1 (p. 176) of [1].
However, he only calculates the Bayesian estimator with respect to Be α; βð Þ prior
under the squared error loss function, δπ2 xð Þ ¼ E θjxð Þ. Moreover, he only considers
one observation.

4.1 Power-log loss function

A good loss function L θ; að Þ ¼ L ajθð Þ ¼ L xð Þjx¼a=θ for Θ ¼ 0; 1ð Þ should have the
six properties summarized in Table 1 (see Table 1 in [12]).
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In Table 1, property (a) means that any action a of the parameter θ should
incur a nonnegative loss. Property (b) means that when x ¼ a=θ ¼ 1, or a ¼ θ,
that is, a correctly estimates θ, the loss is 0. Property (c) means that when
x ¼ a=θ ! 1=θð Þ�, that is, a is moving away from θ and tends to 1�, it will incur an
infinite loss. Property (d) means that when x ¼ a=θ ! 0þ, that is, a is moving away
from θ and tends to 0þ, it will also incur an infinite loss. Properties (c) and (d)
mean that the loss function will penalize gross overestimation and gross underesti-
mation equally. Property (e) is useful in the proofs of some propositions of the
minimaxity and the admissibility of the Bayesian estimator (see [1]). Property (f)
means that 1 and θ are the local extrema of L xð Þ and L ajθð Þ, respectively. Property
(f) also implies that L θ þ Δajθð Þ ¼ o Δað Þ, that is, the loss incurred by an action
a ¼ θ þ Δa near θ (Δa≈0), is very small compared to Δa.

Let

gpl xð Þ ¼
1
θ � 1
� �2
1
θ � x

� log x and gpl 1ð Þ ¼ 1
θ
� 1: (32)

Define

Lpl xð Þ ¼ gpl xð Þ � gpl 1ð Þ ¼
1
θ � 1
� �2
1
θ � x

� log x� 1
θ
� 1

� �
: (33)

Thus

Lpl θ; að Þ ¼ Lpl ajθð Þ ¼ Lpl xð Þ��x¼a=θ ¼
1
θ � 1
� �2
1
θ
� a

θ

� log
a
θ
� 1

θ
� 1

� �

¼ θ 1
θ � 1
� �2
1� a

� log aþ log θ � 1
θ
� 1

� �
:

(34)

It is easy to check (see the supplement of [12]) that Lpl θ; að Þ ¼ Lpl ajθð Þ ¼
Lpl xð Þ��x¼a=θ, which is called the power-log loss function, satisfies all the six

properties listed in Table 1. Consequently, the power-log loss function is a good
loss function for Θ ¼ 0; 1ð Þ, and thus it is recommended for Θ ¼ 0; 1ð Þ.

We remark that the power-log loss function on Θ ¼ 0; 1ð Þ is an analog of the
power-log loss function on Θ ¼ 0;∞ð Þ, which is the popular Stein’s loss function.

Properties L xð Þ L ajθÞð

(a) L xð Þ≥0 for all 0< x< 1
θ

L ajθð Þ≥0 for all 0< a< 1

(b) L 1ð Þ ¼ 0 L θjθð Þ ¼ L ajθð Þja¼θ ¼ 0

(c) L 1
θ

� ��� � ¼ limx! 1
θð Þ� L xð Þ ¼ ∞ L 1�jθð Þ ¼ lima!1� L ajθð Þ ¼ ∞

(d) L 0þð Þ ¼ limx!0þ L xð Þ ¼ ∞ L 0þjθð Þ ¼ lima!0þ L ajθð Þ ¼ ∞

(e) Convex in x for all 0< x< 1
θ

Convex in a for all 0< a< 1

(f) L
0
1ð Þ ¼ dL xð Þ

dx

���
x¼1

¼ 0
∂

∂a L ajθð Þ� ���
a¼θ

¼ 0

Table 1.
(Table 1 in [12]) The six properties of a good loss function for Θ ¼ 0; 1ð Þ. 0< θ< 1 is fixed.
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The Bayesian estimator under the power-log loss function, δπpl xð Þ, minimizes the

posterior expected power-log loss (PEPLL) (see [12]), E Lpl θ; að Þjx� �
, that is,

δπpl xð Þ ¼ argmin
a∈A

E Lpl θ; að Þjx� �
, (35)

where A a xð Þ : a xð Þ∈ 0; 1ð Þf g is the action space, a ¼ a xð Þ∈ 0; 1ð Þ is an action
(estimator), Lpl θ; að Þ given by (34) is the power-log loss function, and θ∈ 0; 1ð Þ is
the unknown parameter of interest. The PEPLL is easy to obtain (see [12]):

PEPLL π; ajxð Þ ¼ E Lpl θ; að Þjx� � ¼ E1 xð Þ
1� a

� log aþ E2 xð Þ � E3 xð Þ þ 1, (36)

where

E1 xð Þ ¼ E θ�1 1� θð Þ2jx
h i

>0,

E2 xð Þ ¼ E log θjx½ �<0,

E3 xð Þ ¼ E θ�1jx� �
>0:

(37)

It is found in [12] that

δπpl xð Þ ¼ 2þ E1 xð Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 xð Þ E1 xð Þ þ 4ð Þp
2

(38)

by taking partial derivative of the PEPLL with respect to a and setting it to 0.
The PEPLLs evaluated at the Bayesian estimators are (see [12])

PEPLLpl π;xð Þ ¼ E Lpl θ; að Þjx� ���
a¼δπpl xð Þ,

PEPLL2 π;xð Þ ¼ E Lpl θ; að Þjx� ���
a¼δπ2 xð Þ:

(39)

Finally, the numerical simulations and a real data example of some monthly
magazine exposure data (see [35]) exemplify the theoretical studies of two size
relationships about the Bayesian estimators and the PEPLLs in [12].

4.2 Zhang’s loss function

Zhang et al. [12] proposed six properties for a good loss function
L θ; að Þ ¼ L ajθð Þ ¼ L xð Þjx¼a=θ on Θ ¼ 0; 1ð Þ. Apart from the six properties, [13] pro-
poses the seventh property (balanced convergence rates or penalties for the argu-
ment too large and too small) for a good loss function on Θ ¼ 0; 1ð Þ. Moreover, the
seven properties for a good loss function on Θ ¼ 0; 1ð Þ are summarized in Table 1 of
[13]. The explanations of the first six properties in Table 1 of [13] can be found in
the previous subsection (see also [12]). In Table 1 of [13], property (g) (the seventh
property) means that L k1 θð Þ 1

n

� �
and L 1

θ 1� 1
n

� �� �
tend to ∞ at the same rate and

L k2 θð Þ 1
n jθ

� �
and L 1� 1

n jθ
� �

tend to ∞ at the same rate. In other words,

lim
n!∞

L k1 θð Þ 1
n

� �

L 1
θ 1� 1

n

� �� � ¼ 1and lim
n!∞

L k2 θð Þ 1
n jθ

� �

L 1� 1
n jθ

� � ¼ 1: (40)
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And they say that L k1 θð Þ 1
n

� �
and L 1

θ 1� 1
n

� �� �
are asymptotically equivalent.

Similarly, L k2 θð Þ 1
n jθ

� �
and L 1� 1

n jθ
� �

are said to be asymptotically equivalent. They
also say that L xð Þ (L ajθð Þ) has balanced convergence rates or penalties for x (a) too
large and too small. It is worthy to note that k1 θð Þ 1

n ! 0 and 1
θ 1� 1

n

� �! 1
θ at the

same order O 1
n

� �
. Analogously, k2 θð Þ 1

n ! 0 and 1� 1
n ! 1 at the same order O 1

n

� �
.

Finally, only when properties (c) and (d) hold, property (g) may hold.
Let

gz xð Þ ¼ 1
1
θ � 1
� �2x

þ 1
1
θ � x

and gz 1ð Þ ¼ 1

θ 1
θ � 1
� �2 : (41)

Let

Lz xð Þ ¼ gz xð Þ � gz 1ð Þ ¼ 1
1
θ � 1
� �2x

þ 1
1
θ � x

� 1

θ 1
θ � 1
� �2 : (42)

Thus

Lz θ; að Þ ¼ Lz ajθð Þ ¼ Lz xð Þjx¼a=θ ¼
1

1
θ � 1
� �2 a

θ

þ 1
1
θ
� a

θ

� 1

θ 1
θ � 1
� �2

¼ θ
1
θ � 1
� �2a

þ θ

1� a
� 1

θ 1
θ � 1
� �2 :

(43)

It is easy to check (see the supplement of [13]) that Lz θ; að Þ ¼ Lz ajθð Þ ¼
Lz xð Þjx¼a=θ, which is called Zhang’s loss function, satisfies all the seven properties
listed in Table 1 of [13]. Consequently, Zhang’s loss function is a good loss function,
and thus it is recommended for Θ ¼ 0; 1ð Þ.

The Bayesian estimator under Zhang’s loss function, δπz xð Þ, minimizes the poste-
rior expected Zhang’s loss (PEZL) (see [13]), E Lz θ; að Þjx½ �, that is,

δπz xð Þ ¼ argmin
a∈A

E Lz θ; að Þjx½ �, (44)

where A a xð Þ : a xð Þ∈ 0; 1ð Þf g is the action space, a ¼ a xð Þ∈ 0; 1ð Þ is an action
(estimator), Lz θ; að Þ given by (43) is Zhang’s loss function, and θ∈ 0; 1ð Þ is the
unknown parameter of interest. The PEZL is easy to obtain (see [13]):

PEZL π; ajxð Þ ¼ E Lz θ; að Þjx½ � ¼ E1 xð Þ
a

þ E2 xð Þ
1� a

� E3 xð Þ, (45)

where

E1 xð Þ ¼ E
θ3

1� θð Þ2 jx
" #

,

E2 xð Þ ¼ E θjxð Þ,

E3 xð Þ ¼ E
θ

1� θð Þ2 jx
" #

:

(46)
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The Bayesian estimator under the power-log loss function, δπpl xð Þ, minimizes the

posterior expected power-log loss (PEPLL) (see [12]), E Lpl θ; að Þjx� �
, that is,

δπpl xð Þ ¼ argmin
a∈A

E Lpl θ; að Þjx� �
, (35)

where A a xð Þ : a xð Þ∈ 0; 1ð Þf g is the action space, a ¼ a xð Þ∈ 0; 1ð Þ is an action
(estimator), Lpl θ; að Þ given by (34) is the power-log loss function, and θ∈ 0; 1ð Þ is
the unknown parameter of interest. The PEPLL is easy to obtain (see [12]):

PEPLL π; ajxð Þ ¼ E Lpl θ; að Þjx� � ¼ E1 xð Þ
1� a

� log aþ E2 xð Þ � E3 xð Þ þ 1, (36)

where

E1 xð Þ ¼ E θ�1 1� θð Þ2jx
h i

>0,

E2 xð Þ ¼ E log θjx½ �<0,

E3 xð Þ ¼ E θ�1jx� �
>0:

(37)

It is found in [12] that

δπpl xð Þ ¼ 2þ E1 xð Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 xð Þ E1 xð Þ þ 4ð Þp
2

(38)

by taking partial derivative of the PEPLL with respect to a and setting it to 0.
The PEPLLs evaluated at the Bayesian estimators are (see [12])

PEPLLpl π;xð Þ ¼ E Lpl θ; að Þjx� ���
a¼δπpl xð Þ,

PEPLL2 π;xð Þ ¼ E Lpl θ; að Þjx� ���
a¼δπ2 xð Þ:

(39)

Finally, the numerical simulations and a real data example of some monthly
magazine exposure data (see [35]) exemplify the theoretical studies of two size
relationships about the Bayesian estimators and the PEPLLs in [12].

4.2 Zhang’s loss function

Zhang et al. [12] proposed six properties for a good loss function
L θ; að Þ ¼ L ajθð Þ ¼ L xð Þjx¼a=θ on Θ ¼ 0; 1ð Þ. Apart from the six properties, [13] pro-
poses the seventh property (balanced convergence rates or penalties for the argu-
ment too large and too small) for a good loss function on Θ ¼ 0; 1ð Þ. Moreover, the
seven properties for a good loss function on Θ ¼ 0; 1ð Þ are summarized in Table 1 of
[13]. The explanations of the first six properties in Table 1 of [13] can be found in
the previous subsection (see also [12]). In Table 1 of [13], property (g) (the seventh
property) means that L k1 θð Þ 1

n

� �
and L 1

θ 1� 1
n

� �� �
tend to ∞ at the same rate and

L k2 θð Þ 1
n jθ

� �
and L 1� 1

n jθ
� �

tend to ∞ at the same rate. In other words,

lim
n!∞

L k1 θð Þ 1
n

� �

L 1
θ 1� 1

n

� �� � ¼ 1and lim
n!∞

L k2 θð Þ 1
n jθ

� �

L 1� 1
n jθ

� � ¼ 1: (40)
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And they say that L k1 θð Þ 1
n

� �
and L 1

θ 1� 1
n
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are asymptotically equivalent.

Similarly, L k2 θð Þ 1
n jθ

� �
and L 1� 1

n jθ
� �

are said to be asymptotically equivalent. They
also say that L xð Þ (L ajθð Þ) has balanced convergence rates or penalties for x (a) too
large and too small. It is worthy to note that k1 θð Þ 1

n ! 0 and 1
θ 1� 1

n

� �! 1
θ at the

same order O 1
n

� �
. Analogously, k2 θð Þ 1

n ! 0 and 1� 1
n ! 1 at the same order O 1

n

� �
.

Finally, only when properties (c) and (d) hold, property (g) may hold.
Let

gz xð Þ ¼ 1
1
θ � 1
� �2x

þ 1
1
θ � x

and gz 1ð Þ ¼ 1

θ 1
θ � 1
� �2 : (41)

Let

Lz xð Þ ¼ gz xð Þ � gz 1ð Þ ¼ 1
1
θ � 1
� �2x

þ 1
1
θ � x

� 1

θ 1
θ � 1
� �2 : (42)

Thus

Lz θ; að Þ ¼ Lz ajθð Þ ¼ Lz xð Þjx¼a=θ ¼
1

1
θ � 1
� �2 a

θ

þ 1
1
θ
� a

θ

� 1

θ 1
θ � 1
� �2

¼ θ
1
θ � 1
� �2a

þ θ

1� a
� 1

θ 1
θ � 1
� �2 :

(43)

It is easy to check (see the supplement of [13]) that Lz θ; að Þ ¼ Lz ajθð Þ ¼
Lz xð Þjx¼a=θ, which is called Zhang’s loss function, satisfies all the seven properties
listed in Table 1 of [13]. Consequently, Zhang’s loss function is a good loss function,
and thus it is recommended for Θ ¼ 0; 1ð Þ.

The Bayesian estimator under Zhang’s loss function, δπz xð Þ, minimizes the poste-
rior expected Zhang’s loss (PEZL) (see [13]), E Lz θ; að Þjx½ �, that is,

δπz xð Þ ¼ argmin
a∈A

E Lz θ; að Þjx½ �, (44)

where A a xð Þ : a xð Þ∈ 0; 1ð Þf g is the action space, a ¼ a xð Þ∈ 0; 1ð Þ is an action
(estimator), Lz θ; að Þ given by (43) is Zhang’s loss function, and θ∈ 0; 1ð Þ is the
unknown parameter of interest. The PEZL is easy to obtain (see [13]):

PEZL π; ajxð Þ ¼ E Lz θ; að Þjx½ � ¼ E1 xð Þ
a

þ E2 xð Þ
1� a

� E3 xð Þ, (45)

where

E1 xð Þ ¼ E
θ3

1� θð Þ2 jx
" #

,

E2 xð Þ ¼ E θjxð Þ,

E3 xð Þ ¼ E
θ

1� θð Þ2 jx
" #

:

(46)
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It is found in [13] that

δπz xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
E1 xð Þp

ffiffiffiffiffiffiffiffiffiffiffiffi
E1 xð Þp þ ffiffiffiffiffiffiffiffiffiffiffiffi

E2 xð Þp (47)

by taking partial derivative of the PEZL with respect to a and setting it to 0. The
PEZLs evaluated at the Bayesian estimators are (see [13])

PEZLz π;xð Þ ¼ E Lz θ; að Þjx½ �ja¼δπz xð Þ,

PEZL2 π;xð Þ ¼ E Lz θ; að Þjx½ �ja¼δπ2 xð Þ:
(48)

Zhang et al. [13] considers an example of some magazine exposure data for the
monthly magazine Signature (see [12, 35]) and compares the numerical results with
those of [12].

For the probability parameter θ of the beta-negative binomial model (31), [34]
recommends and analytically calculates the Bayesian estimator δπz xð Þ, with respect
to Be α; βð Þ prior under Zhang’s loss function which penalizes gross overestimation
and gross underestimation equally. This estimator minimizes the PEZL. They also
calculate the usual Bayesian estimator δπ2 xð Þ ¼ E θjxð Þ which minimizes the PESEL.
Moreover, they also obtain the PEZLs evaluated at the two Bayesian estimators,
PEZLz π;xð Þ and PEZL2 π;xð Þ. After that, they show two theorems about the
estimators of the hyperparameters of the beta-negative binomial model (31) when
m is known or unknown by the moment method (Theorem 1 in [34]) and the
MLE method (Theorem 2 in [34]). Finally, the empirical Bayesian estimator of the
probability parameter θ under Zhang’s loss function is obtained with the
hyperparameters estimated by the moment method or the MLE method from the
two theorems.

In the numerical simulations of [34], they have illustrated three things: the
two inequalities of the Bayesian posterior estimators and the PEZLs, the moment
estimators and the MLEs, which are consistent estimators of the hyper-
parameters, and the goodness of fit of the beta-negative binomial model to the
simulated data. Numerical simulations show that the MLEs are better than the
moment estimators when estimating the hyperparameters in terms of the good-
ness of fit of the model to the simulated data. However, the MLEs are very
sensitive to the initial estimators, and the moment estimators are usually proved
to be good initial estimators.

In the real data section of [34], they consider an example of some insurance
claim data, which are assumed from the beta-negative binomial model (31). They
consider four cases to fit the real data. In the first case, they assume that m ¼ 6 is
known for illustrating purpose (of course, one can assume another knownm value).
In the other three cases, they assume that m is unknown, and they provide three
approaches to handle this scenario. The first two approaches consider a range of m
values, for instance, m ¼ 1, 2,…, 20. The first approach is to maximize the
log-likelihood function. The second approach is to maximize the p-value of the
goodness of fit of the model (31) to the real data. The third approach is to determine
the hyperparameters α, β, and m from Theorems 1 and 2 in [34] by the moment
method and the MLE method, respectively, when m is unknown. Four tables which
show the number of claims, the observed frequencies, the expected probabilities,
and the expected frequencies of the insurance claims data are provided to illustrate
the four cases.
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5. Inequalities among Bayesian posterior estimators

For the six loss functions, we have the corresponding six Bayesian estimators
δπw2 xð Þ, δπpl xð Þ, δπs xð Þ, δπp xð Þ, δπ2 xð Þ, and δπz xð Þ. Interestingly, for the six Bayesian esti-
mators, we discover three strings of inequalities which are summarized in Theorem 1
(see Theorem 1 in [36]). To our surprise, an order between the two Bayesian estima-
tors δπw2 xð Þ and δπpl xð Þ on Θ ¼ 0; 1ð Þ does not exist. It is worthy to note that the three
strings of inequalities only depend on the loss functions. Moreover, the inequalities are
independent of the chosen models, and the used priors provided the Bayesian estima-
tors exist, and thus they exist in a general setting which makes them quite interesting.

In this section, we compare the six Bayesian estimators δπw2 xð Þ, δπpl xð Þ, δπs xð Þ,
δπp xð Þ, δπ2 xð Þ, and δπz xð Þ. The domains of the loss functions, the six Bayesian estima-
tors, the PELs, and the smallest PELs are summarized in Table 2 (see Table 1 in
[36]). The six PELs are PEWSEL, PEPLL, PESL, PEPL, PESEL, and PEZL. In
Table 2, each Bayesian estimator minimizes some corresponding PEL. Further-
more, the smallest PEL is the PEL evaluated at the corresponding Bayesian
estimator.

It is easy to see that all the six loss functions are well defined on Θ ¼ 0; 1ð Þ, and
thus all the six Bayesian estimators are well defined on Θ ¼ 0; 1ð Þ. There are only
four loss functions defined on Θ ¼ 0;∞ð Þ, since the power-log loss function and
Zhang’s loss function are only defined on Θ ¼ 0; 1ð Þ. Hence, only four Bayesian
estimators are well defined on Θ ¼ 0;∞ð Þ. Moreover, only the weighted squared
error loss function and the squared error loss function are defined on Θ ¼ �∞;∞ð Þ,
and therefore only two Bayesian estimators are well defined on Θ ¼ �∞;∞ð Þ.
Among the six Bayesian estimators, there exist three strings of inequalities which
are summarized in the following theorem.

Theorem 1 (Theorem 1 in [36]). Assume the prior satisfies some regularity condi-
tions so that the posterior expectations involved in the definitions of the six Bayesian
estimators exist. Then for Θ ¼ 0; 1ð Þ, there exists a string of inequalities among the six
Bayesian estimators:

max δπw2 xð Þ; δπpl xð Þ
� �

≤ δπs xð Þ≤ δπp xð Þ≤ δπ2 xð Þ≤ δπz xð Þ: (49)

Moreover, for Θ ¼ 0;∞ð Þ, there exists a string of inequalities among the four Bayes-
ian estimators:

δπw2 xð Þ≤ δπs xð Þ≤ δπp xð Þ≤ δπ2 xð Þ: (50)

Finally, forΘ ¼ �∞;∞ð Þ, there exists an inequality between the two Bayesian estimators:

δπw2 xð Þ≤ δπ2 xð Þ: (51)

The proof of Theorem 1 exploits a key, important, and unified tool, the covari-
ance inequality (see Theorem 4.7.9 (p. 192) in [16]), and the proof can be found in
the supplement of [36].

It is worthy to note that the six Bayesian estimators and the six smallest PELs are
all functions of π, x, and the loss function. Because there exists three strings of
inequalities among the six Bayesian estimators, we would wonder whether there
exists a string of inequalities among the six smallest PELs, in other words,
PEWSELw2 π;xð Þ, PEPLLpl π;xð Þ, PESLs π;xð Þ, PEPLp π;xð Þ, PESEL2 π;xð Þ, and
PEZLz π;xð Þ. The answer to this question is no! The numerical simulations of the
smallest PELs exemplify this fact (see [36]).
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6. Conclusions and discussions

In this chapter, we have investigated six loss functions: the squared error loss
function, the weighted squared error loss function, Stein’s loss function, the power-
power loss function, the power-log loss function, and Zhang’s loss function. Now we
give some suggestions on the conditions for using each of the six loss functions. It is
worthy to note that among the six loss functions, the first two loss functions are
defined on Θ ¼ �∞;∞ð Þ and they penalize overestimation and underestimation
equally on �∞;∞ð Þ, and thus we recommend to use them when the parameter
space is �∞;∞ð Þ. Moreover, the middle two loss functions are defined on
Θ ¼ 0;∞ð Þ, and they penalize gross overestimation and gross underestimation
equally on 0;∞ð Þ, and thus we recommend to use them when the parameter space is
0;∞ð Þ. In particular, if one prefers the loss function to have balanced convergence
rates or penalties for its argument too large and too small, then we recommend to
use the power-power loss function on 0;∞ð Þ. Furthermore, the last two loss func-
tions are defined on Θ ¼ 0; 1ð Þ, and they penalize gross overestimation and gross
underestimation equally on 0; 1ð Þ, and thus we recommend to use them when the
parameter space is 0; 1ð Þ. In particular, if one prefers the loss function to have
balanced convergence rates or penalties for its argument too large and too small,
then we recommend to use Zhang’s loss function on 0; 1ð Þ.

For each one of the six loss functions, we can find a corresponding Bayesian
estimator, which minimizes the corresponding posterior expected loss. Among the
six Bayesian estimators, there exist three strings of inequalities summarized in
Theorem 1 (see also Theorem 1 in [36]). However, a string of inequalities among the
six smallest PELs does not exist.

We summarize three hierarchical models where the unknown parameter of
interest is θ∈Θ ¼ 0;∞ð Þ, that is, the hierarchical normal and inverse gamma
model (9), the hierarchical Poisson and gamma model (10), and the hierarchical
normal and normal-inverse-gamma model (11). In addition, we summarize two
hierarchical models where the unknown parameter of interest is θ∈Θ ¼ 0; 1ð Þ, that
is, the beta-binomial model (30) and the beta-negative binomial model (31).

Now we give some suggestions on the selection of the hyperparameters. One
way to select the hyperparameters is through the empirical Bayesian analysis, which
relies on a conjugate prior modeling, where the hyperparameters are estimated
from the observations and the “estimated prior” is then used as a regular prior in the
later inference. The marginal distribution can then be used to recover the prior
distribution from the observations. For empirical Bayesian analysis, two common
methods are used to obtain the estimators of the hyperparameters, that is, the
moment method and the MLE method. Numerical simulations show that the MLEs
are better than the moment estimators when estimating the hyperparameters in
terms of the goodness of fit of the model to the simulated data. However, the MLEs
are very sensitive to the initial estimators, and the moment estimators are usually
proved to be good initial estimators.
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6. Conclusions and discussions

In this chapter, we have investigated six loss functions: the squared error loss
function, the weighted squared error loss function, Stein’s loss function, the power-
power loss function, the power-log loss function, and Zhang’s loss function. Now we
give some suggestions on the conditions for using each of the six loss functions. It is
worthy to note that among the six loss functions, the first two loss functions are
defined on Θ ¼ �∞;∞ð Þ and they penalize overestimation and underestimation
equally on �∞;∞ð Þ, and thus we recommend to use them when the parameter
space is �∞;∞ð Þ. Moreover, the middle two loss functions are defined on
Θ ¼ 0;∞ð Þ, and they penalize gross overestimation and gross underestimation
equally on 0;∞ð Þ, and thus we recommend to use them when the parameter space is
0;∞ð Þ. In particular, if one prefers the loss function to have balanced convergence
rates or penalties for its argument too large and too small, then we recommend to
use the power-power loss function on 0;∞ð Þ. Furthermore, the last two loss func-
tions are defined on Θ ¼ 0; 1ð Þ, and they penalize gross overestimation and gross
underestimation equally on 0; 1ð Þ, and thus we recommend to use them when the
parameter space is 0; 1ð Þ. In particular, if one prefers the loss function to have
balanced convergence rates or penalties for its argument too large and too small,
then we recommend to use Zhang’s loss function on 0; 1ð Þ.

For each one of the six loss functions, we can find a corresponding Bayesian
estimator, which minimizes the corresponding posterior expected loss. Among the
six Bayesian estimators, there exist three strings of inequalities summarized in
Theorem 1 (see also Theorem 1 in [36]). However, a string of inequalities among the
six smallest PELs does not exist.

We summarize three hierarchical models where the unknown parameter of
interest is θ∈Θ ¼ 0;∞ð Þ, that is, the hierarchical normal and inverse gamma
model (9), the hierarchical Poisson and gamma model (10), and the hierarchical
normal and normal-inverse-gamma model (11). In addition, we summarize two
hierarchical models where the unknown parameter of interest is θ∈Θ ¼ 0; 1ð Þ, that
is, the beta-binomial model (30) and the beta-negative binomial model (31).

Now we give some suggestions on the selection of the hyperparameters. One
way to select the hyperparameters is through the empirical Bayesian analysis, which
relies on a conjugate prior modeling, where the hyperparameters are estimated
from the observations and the “estimated prior” is then used as a regular prior in the
later inference. The marginal distribution can then be used to recover the prior
distribution from the observations. For empirical Bayesian analysis, two common
methods are used to obtain the estimators of the hyperparameters, that is, the
moment method and the MLE method. Numerical simulations show that the MLEs
are better than the moment estimators when estimating the hyperparameters in
terms of the goodness of fit of the model to the simulated data. However, the MLEs
are very sensitive to the initial estimators, and the moment estimators are usually
proved to be good initial estimators.
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