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Chapter 1

3D Boundary Layer Theory
Vladimir Shalaev

Abstract

Some new analytical results in 3D boundary layer theory are reviewed and
discussed. It includes the perturbation theory for 3D flows, analyses of 3D boundary
layer equation singularities and corresponding real flow structures, investigations of
3D boundary layer distinctive features for hypersonic flows for flat blunted bodies
including the heat transfer and the laminar-turbulent transition and influences of
these phenomena on flows, and the new approach to the analysis of the symmetric
flow instability over thin bodies and studies of the control possibility with the
electrical discharge using new model of this phenomenon interaction with the 3D
boundary layer. Some new analytical solutions of boundary layer and Navier-Stokes
equations are presented. Applications of these results to analyze viscous flow char-
acteristics of real objects such as aircraft wings, fuselages, and other bodies are
considered.

Keywords: 3D boundary layer, asymptotic perturbation theory, singularities,
flow structures, applications

1. Introduction

Despite the intensive development of computer technologies and numerical
methods for the Navier-Stokes and Reynolds equations, problems of the three-
dimensional boundary layer are of significant interest in the fluid dynamics. So far
these problems have been little studied as a result of objective difficulties related
with the large dimensionality and complexity of equations. Therefore, analytic
results in this field can play an important role in the depth understanding of fluid
dynamics phenomena and their study. In this part, some modern results in the
three-dimensional boundary layer theory are discussed.

The small perturbation theory for inviscid flows is well developed and widely
applied to estimate aerodynamic characteristics of real flight apparatus. Also it has
been attempted to develop such theory for the boundary layer [1]. However, the
zero approximation (“flat plate” approximation, zero cross-flow approximation)
only given a rational contribution and were used in calculations. Equations for
perturbations were complex. They required a numerical solution that was not much
simpler than the full equation system. Father investigations of three-dimensional
effects in the boundary layer theory became possible only after developments of
computers with the enough power, numerical methods, and turbulence models [2].

Another approach was developed on the base of the rational perturbation theory
including the first-order approximation [3–10] for some class of flows, such as
flows over aircraft wings and fuselages at small angle of attack, which have high
importance as for the theory and the practice. In this case, zero-order approxima-
tion functions do not depend on the cross coordinate. Equations of the first-order
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approximation reduce to a two-dimensional system by introducing a new variable.
The cross coordinate is included to this system as a parameter. This property of the
self-similarity simplifies the solution procedures allowing to apply two-dimensional
numerical methods and to reduce computing resources.

The singularity in the solution of 2D steady boundary layer equation is well
known as the separation. Singularities arising in solutions of unsteady or 3D laminar
boundary layer equations are not related directly with the flow separation and are
slightly studied due to difficulties of analytical investigations of complex equations
and uncertainty of numerical result treatments. However, this task is of interest for
the mathematical physics and for numerical modeling of aerodynamic applications.
For the first time, a singularity was found in the solution of 2D unsteady BL
equations for the flow around the flat plate impulsively set into motion [12]. The
singularity of the similar type was discovered on the side edge of a quarter flat plate
in a uniform freestream [13] and at a collision of two jets [14]. In Ref. [15],
necessary conditions were formulated for a singularity formation in self-similar
solutions of the unsteady model and 3D incompressible laminar boundary layers on
a flat surface with pressure gradients. Sufficient conditions and singularity types
were not studied, and real flow conditions were not considered. Singularities of
numerical solutions (the nonuniqueness or the absence of a solution) were found
for the laminar boundary layer in the leeward symmetry plane on a round cone at
incidence [16–18]. Similar results were obtained inside the computation region of
the 3D turbulent boundary layer on the swept wing [19]. The singular behavior of
boundary layer characteristics (the skin friction tends to the infinity in the symme-
try plan) was found for the boundary layer on the small span delta wing [8, 10]. The
explanation of these phenomena was found on the base of analytical solutions of
laminar boundary layer equations on conical surfaces [10, 21–24]. The asymptotic
flow structure on the base of Navier-Stocks equations in the singularity vicinity is
constructed.

The problem of the flow separation control using plasma actuators on the base of
the electrical discharge is assumed as a perspective aerodynamic instrument
[26–28]. It is considered as a one method for the control of the separated flow
asymmetry near the nose part of aircrafts. The problem was complicated by the
absence of an adequate model for the boundary layer-discharge interaction and a
criterion for flow asymmetry arising. The use as a criterion numerical results and
experimental data is restricted as a result of the high sensitivity of the asymmetry
origin to different parameters [29]. Solution of these problems was obtained with
the development of new models [30–34].

2. Small perturbation theory for three-dimensional boundary layer

As follows from the cross-flow impulse equation in biorthogonal coordinates
[2], the necessary conditions for a small cross velocity (|w| << 1) are the relations

1
λH2

∂p
∂z

� cos θ � k1 � ε

λ
, , 1: (1)

The small parameter ε characterizes the gradient of the pressure p t; x; zð Þ with
respect to transverse nondimensional coordinate z; t and x here are dimensionless
time and longitudinal coordinate, λ is body span, H2 is metric coefficient, k1 is
longitudinal coordinate line curvature, and θ is the angle between coordinate lines
on the body surface. Using these conditions flow parameters in the 3D boundary
layer are presented by asymptotic expansions:
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vw ¼ vw0 t; sð Þ þ εvw1 t; s; zð Þ, hw ¼ hw0 t; sð Þ þ εhw1 t; s; zð Þ, w ¼ ε

λ
w1 t; s; n; zð Þ,

V ¼ u; v; h; ρ; μ; κð Þ ¼ V0 t; s; nð Þ þ εV10 t; s; n; zð Þ þ ε1V11 t; s; n; zð Þ:
(2)

Here, s t; x; zð Þ is a dimensionless length of the coordinate line z ¼ constmeasured
from the critical point xc t; zð Þ; n is normal coordinate transformed with Dorodnitsyn
transformation; vw t; x; zð Þ and hw t; x; zð Þ are blow (suction) velocity and the surface
temperature; u and v, h, ρ, κ and μ are dimensionless longitudinal and normal
velocities, enthalpy, density, thermal conductivity, and viscosity. The parameter
ε1 , , 1 is not known a priori, it describes own flow perturbations inside the
boundary layer. The following is found from the analysis of equations: for thin
wings ε1 ¼ ε=λ2, for slightly asymmetric bodies ε characterizes the asymmetry and
ε1 ¼ α∗=λ, where λ is relative body thickness [4–10].

To calculate boundary layer characteristics, the equation system for the com-
posite solution incorporated in all terms of asymptotic expansion (2) was derived:

ρ
∂u
∂t

þ u� βw
λH2

� �
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� �
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� �
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� �
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�
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� cos θ
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∂ρ
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þ ∂ρu

∂s
þ ∂ρv

∂n
þ 1
λH2

ρq� β
∂ρw
∂s

� �
� k2ρu ¼ 0,

n ¼ 0 : u ¼ w ¼ 0, v ¼ vw t; x; zð Þ, h ¼ hw t; x; zð Þ ∂h
∂n

¼ 0
� �

,

n ! ∞ : u ¼ ue t; x; zð Þ, w ¼ we t; x; zð Þ, h ¼ he t; x; zð Þ:

(3)

Eq. (3) is not true in the vicinity of the wing leading edge, where the pressure
perturbation has the singularity. Using the asymptotic theory, singular regions near
blunted and sharp leading edges were analyzed. It was found that the boundary
layer in these regions is described by equations for the boundary layer on the sweep
parabola or wedge. On a body the boundary layer begins in the critical point.

The system (2) was applied to the solution of different problems for wings and
bodies [4–10]. To illustrate the developed approach in Figures 1 and 2, calculations
of displacement thicknesses (Figure 1) and skin frictions (Figure 2) on the wind
tunnel model of the US Air Force fighter TF-8A supercritical wing at Mach numbers
M = 0.99 and 0.5 are presented. Solid lines correspond to solutions of Eq. (3) for the
wing model (Re ¼ 2:246 � 106); dotted lines on Figure 4 are results for full scale
wing (Re ¼ 2:58 � 107); symbols present solutions of full 3D boundary layer
equations [11].
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Eq. (3) is not true in the vicinity of the wing leading edge, where the pressure
perturbation has the singularity. Using the asymptotic theory, singular regions near
blunted and sharp leading edges were analyzed. It was found that the boundary
layer in these regions is described by equations for the boundary layer on the sweep
parabola or wedge. On a body the boundary layer begins in the critical point.

The system (2) was applied to the solution of different problems for wings and
bodies [4–10]. To illustrate the developed approach in Figures 1 and 2, calculations
of displacement thicknesses (Figure 1) and skin frictions (Figure 2) on the wind
tunnel model of the US Air Force fighter TF-8A supercritical wing at Mach numbers
M = 0.99 and 0.5 are presented. Solid lines correspond to solutions of Eq. (3) for the
wing model (Re ¼ 2:246 � 106); dotted lines on Figure 4 are results for full scale
wing (Re ¼ 2:58 � 107); symbols present solutions of full 3D boundary layer
equations [11].
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These figures demonstrate that the asymptotic solution very well reproduce
numerical results as for the skin friction and for displacement thicknesses in the
large parameter diapason.

3. Singularities in solutions of three-dimensional boundary layer
equations

The laminar boundary layer problem on a thin round cone with the half apex
angle δc , , 1 at the angle of attack α* depends on the parameter k ¼ 4α∗= 3δcð Þ
only. Firstly, analytical results about singularities were obtained for outer BL
part for a such cone. It is understood from previous works [15–18, 20], the
singularity can arise when two subcharacteristic (streamlines) families collided
—this is a necessary condition. Such situation arises usually in the leeward
symmetry (runoff) plane over a body of revolution at an angle of attack.
Unusual properties in numerical solutions of self-similar equations in this plane
for a round slender cone in supersonic freestreams were studied in many works
due to the practical interest of the heat exchange on flying vehicles head parts
[16–18, 20]. In this case, one parameter defines the flow. Two solutions were
found in the windward symmetry (attachment) plane and at small angles of
attack (k≤ kc) in the leeward symmetry plane. In this plane, no solutions were

Figure 1.
Displacement thickness distributions on the model of supercritical wing; M ¼ 0:99, Re ¼ 2:246 � 106,
and α∗ ¼ 3:12°.

Figure 2.
Skin friction distributions on the model of supercritical wing; M ¼ 0:5, α∗ ¼ 12:09°, Re ¼ 2:246 � 106

(solid lines), and Re ¼ 2:58 � 107(dotted lines).
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obtained at moderate angles of attack (kc ≤ k≤ 2=3) and many solutions at larger
incidences up to BL separation (2=3≤ k, 1). Full BL equation solutions with
initial conditions in the windward symmetry plane fixed the violation of sym-
metry conditions in the runoff plane, a velocity jump through this plane in the
angle of attack diapason, when the self-similar solution has been absent
[10, 21]. The task for the cone was solved numerically on the base of
parabolized Navier-Stokes equations, without the streamwise viscous diffusion
[20]. However the problem is retained since the flow structure and reasons of
unusual BL properties have not been explained.

Analytical solutions of full equations for the outer BL part on the slender round
cone with initial conditions in the windward symmetry plane showed the singular-
ity presence in the leeward symmetry plane of the logarithmic type at k ¼ 1=3 and
of a power type at k. 1=3 [10, 21]. It had been shown numerical solutions provided
incorrect results near the singularity due to the accuracy loss. Similar but more
complex results were obtained for arbitrary cones; they allow defining the sufficient
conditions of the singularity arising [10, 22]. The asymptotic flow structure at large
Reynolds number near the singularity on the base of Navier-Stokes equations was
constructed, and analytical solutions in different asymptotic regions were obtained,
which were matched with BL solutions. The analysis of the viscous-inviscid inter-
action region, in particular, revealed that the singularity can arise not only in self-
similar but in full 3D BL equations [10, 22]. The theory showed that the singularity
appearance relates with eigensolutions of the BL equations appearing near the
runoff plane; it also explained numerical modeling results on the base of
parabolized Navier-Stokes equations.

In the outer BL part, the theory gives the critical angle of attack for the singu-
larity appearance kc ¼ 1=3. However calculations showed that this parameter is a
function on numbers of Mach M and Prandtl Pr and the wall temperature hw,
kc ¼ kc M∞;Pr; hwð Þ [10]. This indicates that a singularity can arise in the near-wall
region. The series decomposition of the near-wall solution in the runoff plane
showed the presence of a parameter α, the linear combination of skin friction
components, and the sign change of which leads to the change of the physical flow

Figure 3.
Solutions of boundary layer equations (dotted lines) and parabolized Navier-Stokes equations (solid lines).
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topology near this plane [24]. The analysis of BL equations in the near-wall region
showed that α ¼ 0 corresponds to the critical value kc, and it was confirmed by all
published numerical calculations [16–18, 20]. In the runoff plane, the new power
type singularity in solutions of full BL equations revealed that it is related with the
eigensolutions appearing near this plane. Calculation results for BL on delta wing
confirm the singularity presence.

3.1 Self-similar boundary layer on a cone

The 3D laminar boundary layer on a conical surface in the orthogonal coordinate
system xyφ (Figure 3) is described by following self-similar equations and bound-
ary conditions [10, 22]:

uyy ¼ Awuφ þ vuy þ A1w u� wð Þ,

wyy ¼ Awwφ þ vwy þ w
2
3
uþ Kw

� �
� h

2
3
þ K

� �
,

hyy ¼ Awhφ þ vhy �Me u2y þ
3
2
A1w2

y

� �
, ρh ¼ 1,

y ¼ ε

ffiffiffiffiffiffiffiffiffiffiffi
3ρeue
2xμe

r
  
ðy∗

0

ρd 
y∗

l
, Re ¼ ε�2 ¼ ρ∞u∞l

μ∞
,

f y ¼ u, gy ¼ w, v ¼ �f � K � 1
2
A ln ρeμe=ueð Þð Þφ

� �
g � Agφ,

y ¼ 0 : u ¼ v ¼ w ¼ 0, h ¼ hw hy ¼ 0
� �

; y ¼ ∞ : u ¼ w ¼ h ¼ 1:

(4)

Equation coefficients are defined by expressions

Me φð Þ ¼ γ � 1ð ÞM2
∞
u2e
he

, K φð Þ ¼ 2weφ

3Rue
,

A φð Þ ¼ 2we

3Rue
, A1 φð Þ ¼ 2

3
we

ue

� �2 (5)

In these equations, to reduce formulas, Pr ¼ 1 and the linear dependence of the
viscosity on the temperature (ρμ ¼ 1) are assumed. Indexes y and φ denote deriva-
tives with respect to the corresponding variables; x is the distance from the body
nose along the generator referenced to the body length l; y is the Dorodnitsyn
variable; y∗ is normal to the body surface; φ is the transversal coordinate, and it can
be the polar angle for a round cone; f y;φð Þ and g y;φð Þ are longitudinal and trans-
verse stream functions; v y;φð Þ is transformed normal velocity; and R φð Þ is the
metric coefficient. The density ρ, the enthalpy h, the viscosity μ, the longitudinal u,
and transversal w velocities are referenced to the values at the outer boundary
indexed by e, which are normalized to their freestream values indexed by ∞; they
are functions of φ only. The transversal velocity on the outer boundary layer edge
we ¼ 0 in the initial value plane (the attachment plane) φ ¼ 0, in which K 0ð Þ.0,
and in the runoff plane φ ¼ φ1, in which K φ1ð Þ ¼ �k,0, and two boundary layer
parts that came from different sides of the attachment plane collided. For the round
cone, φ1 ¼ π.

Eq. (4) is simplified for slender bodies since in this case, ue ¼ ρe ¼ μe ¼ 1,
A1 , , 1. Neglecting proportional to A1 terms in (4), we obtain the Crocco integral
for the enthalpy and momentum equations in the form

8

Boundary Layer Flows - Theory, Applications and Numerical Methods

h ¼ hw þ hru� 1
2
Meu2, hr ¼ 1� hw þ 1

2
Me,

Me ¼ γ � 1ð ÞM2, v ¼ � f þ Kg þ Agφ
� �

,

uyy ¼ Awuφ þ vuy,

wyy ¼ Awwφ þ vwy þw
2
3
uþ Kw

� �
� h

2
3
þ K

� �
:

(6)

For the slender round cone with the apex half angle δc<< 1 at the angle of attack
α∗, simple expressions for outer functions are

we ¼ 2α∗ sinφ, K φð Þ ¼ k cosφ, A φð Þ ¼ k sinφ, k ¼ 4α∗

3δc
(7)

3.2 Singularities in the outer boundary layer region

In the outer boundary layer region, y≫ 1, (y is the Dorodnitsyn variable normal
to the wall), flow functions are represented as [17, 36]

u ¼ 1þU η;φð Þ, w ¼ 1þW η;φð Þ, η ¼ y� δð Þ= ffiffiffiffiffiffiffiffiffiffi
a φð Þp

,

h ¼ 1þH ¼ 1� 1
2
Me þ hw � 1

� �
U � 1

2
MeU2 (8)

Here δ φð Þ is the displacement thickness defined by the equation of F. Moore [6],
the function a φð Þ is found from the local self-similarity condition, and U, , 1 and
W, , 1 are velocity perturbations with respect to boundary conditions, which in
the first-order approximation satisfy to equations [10, 21]

Uηη þ ηUη � aAUφ ¼ 0, Wηη þ ηWη � 2
3
a

3
2
AWφ þ 1þ 3Kð ÞW

� �
¼ 2

3
ap φð ÞU:

(9)

These equations have solutions:

U η;φð Þ ¼ C1erfc η=
ffiffiffi
2

p� �

W η;φð Þ ¼ �b φð ÞU, W1 η;φð Þ ¼ �b φð ÞU þ B1 kð ÞV η;φð Þ (10)

Constants C1 and B1 are calculated from matching condition with a numeri-
cal solution inside the boundary layer. These solutions satisfy to initial condi-
tions in the attachment plane and must tend to zero at η ! ∞. The function
V η;φð Þ is the solution of the homogeneous equation for the cross-velocity per-
turbation, when the right-hand side equals to zero; it is expressed by Veber-
Hermite functions [21]. The coefficient B1 � 1=K 0ð Þ has the singularity at
K 0ð Þ ! 0. For the round cone this limit corresponds to zero angle of attack; in
this case, the analytical expression for W1 η;φð Þ shows the presence of the power
type singularity in the leeward plane φ ¼ φ1 [10, 21]. The first solution W η;φð Þ
is regular in this limit, and its behavior is defined by functions a φð Þ and b φð Þ,
which satisfy to equations [10, 21, 22]

webφ þ 2 1þMð Þweφb ¼ 2pMweφ, p φð Þ ¼ 1þ 1þ 3
2
K

� �
1
2
Me þ hw � 1

� �
,

weaφ þ 2 N þ 1ð Þweφa ¼ 2Nweφ, N φð Þ ¼ 3M φð Þ ¼ K�1:

(11)
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þ K
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Solutions of these equations with initial conditions in the attachment plane are
represented in integral forms in the general case and have analytical expressions for
the round cone [10, 21]. Their properties near the leeward plane, at
ζ ¼ φ1 � φ, , 1, are represented by expressions

we ¼ 3
2
kRζ, k ¼ �K φ1ð Þ, R ¼ R φ1ð Þ, p1 ¼ p φ1ð Þ, n ¼ 3m ¼ �K�1 φ1ð Þ,

m 6¼ 1 : b ¼ mp1
m� 1

� bmζ2 m�1ð Þ, m ¼ 1 : b ¼ �2p1ln ζ þ b1,

n 6¼ 1 : a ¼ n
n� 1

þ anζ2 n�1ð Þ, n ¼ 1 : a ¼ �2ln ζ þ a1

(12)

Here an and bm are known coefficients [10, 21]. These formulas are true for non-
slender bodies also [10, 22, 23].

These results show the presence in the outer BL part of two singularity types
in the leeward plane related with properties of functions a φð Þ and b φð Þ. For
k, 1 the function U η; ζð Þ exists at ζ ¼ 0 but reaches this limit irregularly; its
behavior is studied analytically in details for the slender round cone [10, 21].
For k≥ 1 the function U η; ζð Þ is singular at ζ ! 0 since a ζð Þ ! ∞ and the BL
thickness tend to infinity as

ffiffiffiffiffiffiffiffiffi
a ζð Þp

: the logarithmic singularity type takes place
at k ¼ 1, and it is of the power type at k. 1. At k≥ 1 the flow separation is
observed in experimental and numerical studies; this phenomenon changes not
only the outer part but also the inner boundary layer structure. It should be
noted that such behavior of velocity viscous perturbations near the BL outer
part at the separation development is a new property in the comparison with
the 2D flows.

The functionW η; ζð Þ has irregular but finite limit in the leeward plane for ζ ! 0
at k, 1=3. This limit is singular at k≥ 1=3: the singularity has the logarithmic or
power type, if k ¼ 1=3 or k. 1=3. At 1=3≤ k, 1 the singularity is related with the
behavior of cross-flow velocity only. This singularity leads to the longitudinal vor-
tex component strengthening in the outer part of the viscous region. The singularity
takes place, if the pressure gradient is negative (k≤ 2=3) or positive (k. 2=3). It is
formed by BL proper solutions, which have homogeneous conditions on both
boundaries and arise near the runoff plane. The critical value kc ¼ 1=3 for the outer
BL part is undependable on the wall temperature and Mach and Prandtl numbers;
however the considered singularities define the real flow structure near the leeward
plane at k≥ 1=3 [17, 36, 37].

3.3 Asymptotic flow structure near the singularity

Due to the irregularity of solutions already at k≥ 1=6 (m≤ 2), the vortex bound-
ary region near the runoff plane is formed with transverse dimension ζ � ε

1
2�m; at

m � 1 this value is of the order of the BL thickness ε. In this region, the transverse
diffusion is the effect of the first order, and to describe it we introduce the following
variables:

ε1 ¼ 3
2 Reρe φ1ð Þue φ1ð Þ=μe φ1ð Þ� ��1

2:

z ¼ ffiffiffiffiffi
kx

p
Rζ=ε1, u ¼ u y; zð Þ, h ¼ h y; zð Þ, w ¼ w y; zð Þ

(13)

Using these variables from Navier-Stokes equations at ζ � ε1 , , 1 for this
region, we derive self-similar equations, which in its outer part, at y≫ 1, reduce to
the form
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Uyy þ kUzz þ 1� kð ÞyUy þ kzUz ¼ 0,

Wyy þ kWzz þ 1� kð ÞyWy þ
2
z
þ kz

� �
Wz þ 2k m� 1ð ÞW þ 2

3
p1U ¼ 0

(14)

For k, 1 these equations have the solution corresponding to the regular at k ! 0
solution of BL equations:

U y; zð Þ ¼ C1 erfc y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kð Þ=2p� �

erf z=
ffiffiffi
2

p� �
, W ¼ �B zð ÞC1erfc y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kð Þ=2p� �

,

Bzz þ 2
z
þ z

� �
Bz � 2 m� 1ð ÞB ¼ �2mp1F zð Þ, F zð Þ ¼ erf z=

ffiffiffi
2

p� �

(15)

The function B zð Þ is expressed by Kummer’s function Φ a; b; xð Þ [10, 22, 23]:

B ¼ mp1B0 zð Þ þ BmΦ 1�m;
3
2
;� 1

2
z2

� �
, Bm ¼ bm R

ffiffiffiffiffi
kx

p
=ε1

� �2 1�mð Þ
: (16)

B0 zð Þ is a particular solution of the inhomogeneous equation; the coefficient Bm
is determined from matching condition.

In Figure 4, comparisons of solutions of BL (dotted lines) and Navier-Stokes
(solid lines) equations for m ¼ 1=2 (curves 1 and 2) and m ¼ 1 (curves 3 and 4) are
presented. It is seen that regular solutions of Navier-Stokes equations are converged
quickly to singular solutions of BL equations.

Another effect generated by the singularity at k≥ 1=3 due to the BL growth at
ζ ! 0 is the viscous-inviscid interaction. This effect is important in the
region, where the inviscid and induced cross velocities have same orders;
this condition defines the transverse dimension of the region Δφ and the
velocity scale:

Δφ � ffiffiffi
ε

p
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1
4, we � kRue
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4: (17)

In this region, the flow has the two-layer structure. Assuming the potential flow
in the outer inviscid region, the solution here is presented by the improper integral

Figure 4.
The general flow scheme and the coordinate system for a cone.
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Solutions of these equations with initial conditions in the attachment plane are
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2
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m 6¼ 1 : b ¼ mp1
m� 1

� bmζ2 m�1ð Þ, m ¼ 1 : b ¼ �2p1ln ζ þ b1,

n 6¼ 1 : a ¼ n
n� 1

þ anζ2 n�1ð Þ, n ¼ 1 : a ¼ �2ln ζ þ a1

(12)

Here an and bm are known coefficients [10, 21]. These formulas are true for non-
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ffiffiffiffiffiffiffiffiffi
a ζð Þp
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2�m; at
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2 Reρe φ1ð Þue φ1ð Þ=μe φ1ð Þ� ��1
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p
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(13)
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from the displacement thickness δ x; sð Þ. In the boundary layer, the flow is described
by full 3D equations:

s ¼ Rζffiffiffi
ε

p , we ¼ 3
2
ue

ffiffiffi
ε

p
We x; sð ÞWe x; sð Þ ¼ �ks 1þ r½ �, r ¼ 4m

π

∂

∂x

ð∞

0

δ x; tð Þdt
s2 � t2

v ¼ f þ Kg þ Ags þ
2
3
xf x, h ¼ hw þ hru� 1

2
Me φ1ð Þu2

uyy ¼ Wewus þ vuy þ 2
3
xuux

wyy ¼ Wewws þ vwy þw
2
3
uþWesw

� �
� h

2
3
þWes

� �
þ 2
3
xuwx

(18)

For these equations boundary conditions have the form (1). A solution of
these equations will be matched with the boundary layer solution at s ! ∞.
Initial conditions are needed at some streamwise location x ¼ x0, which can be
obtained from a solution of Navier-Stokes equations near the body nose; this feature
does the problem more complicated. Obtained equations allow a self-similar
solution for hypersonic flows at some additional assumptions.

The solution in the outer boundary layer part, at y≫ 1, is described by formulas

t ¼ y=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d x; sð Þp

, u ¼ 1þU x; t; sð Þ, w ¼ 1� c x; sð ÞU

U ¼ C1 erfc t=
ffiffiffi
2

p� �
, p0 ¼ 3

2
1
2
M0 þ hw � 1

� �

1þ rð Þsds � 2mxdx � 2 n� 1� rsð Þd ¼ �2n

1þ rð Þscs � 2mxcx � 2 m� 1� rsð Þc ¼ �2m p1 � qp0
� �

(19)

Along characteristics ξ x; sð Þ ¼ const, which are streamlines of the inviscid flow,
the equations for functions d ¼ d ξ; sð Þ and c ¼ c ξ; sð Þ are integrated. At s ! 0 these
functions are represented in the form

c ¼ CsL þm p1 þ p0rs
� �
m� 1� r

, L ξ; sð Þ ¼ m� 1� rs
1þ r

; d ¼ DsI þ n
n� 1� rs

,

I ξ; sð Þ ¼ n� 1� rs
1þ r

, C ¼ bmεm�1, D ¼ anεn�1:

(20)

Coefficients C and D are obtained by matching d ξ; sð Þ and c ξ; sð Þ at s ! ∞ in
relation to a ζð Þ and b ζð Þ at ζ ! 0 [17, 36]. The logarithmic singularity appears in
these functions at I ¼ 0 or L ¼ 0. At L ξ;0ð Þ,0 or I ξ;0ð Þ,0, the singularity is of
the power type.

Following from presented results, in contrast with the 2D separation, the
viscous-inviscid interaction does not eliminate the singularity in 3D boundary layer;
this effect moves only the critical value of kc.

3.4 Singularities in the boundary layer near-wall region

The singularity in the outer BL part gives the critical value kc ¼ 1=3, although
calculations show kc ¼ kc M∞;Pr; hwð Þ. This indicates on the possibility of singularity
arising in the near-wall region. To study this possibility, at the first, we study the
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solution behavior of Eq. (6) at y, , 1 in the runoff plane φ ¼ φ1 where the solution
is presented in the form

τ0 ¼ du0 0ð Þ
dy

, θ0 ¼ dw0 0ð Þ
dy

,

u0 ¼ τ0yþ U0 yð Þ, w0 ¼ θ0yþW0 yð Þ, v0 ¼ �αy2 � F0 þ kG0, α ¼ 1
2

τ0 � kθ0ð Þ
(21)

Second terms of these decompositions can be presented by series

U0 ¼ F0y ¼ ∑
i¼0

αiyiþ4

iþ 4ð Þ! , F0 ¼ ∑
i¼0

αiyiþ5

iþ 5ð Þ! ,

W0 ¼ G0y ¼ ∑
i¼0

βiyiþ2

iþ 2ð Þ! , G0 ¼ ∑
i¼0

βiyiþ3

iþ 3ð Þ! :
(22)

First three coefficients of these series are defined by relations

α0 ¼ �2τ0α, α1 ¼ kτ0β0, α2 ¼ kτ0β1

β0 ¼ �phw, β1 ¼ �pτ0hr, β2 ¼
1
3

τ0 � 3kθ0ð Þθ0 þ 2pMeτ
2
0

(23)

Using these decompositions we can study qualitatively a dependence of the flow
structure near the runoff plane from parameters by analyzing the subcharacteristic
behavior. The transformed normal to the body surface v and transverse w velocities
at ζ, , 1 and y, , 1 in the first-order approximation are represented in the form

v ¼ v0 ¼ � αy2 � 1
6
kβ0y

3
� �

¼ � 1
6
kβ0y

2 yþ yc
� �

yc ¼ � 6α
kβ0

¼ 6α
kphw

, w ¼ �w0 ¼ �kθ0ζy
(24)

In the plane ζ ¼ 0, the cross-flow velocity w ¼ 0 due to symmetry conditions.
Here two critical points, in which v ¼ 0, can be. The first point locates on the cone
surface y ¼ 0, and the second one y ¼ �yc appears in the physical space at α,0, if
p.0 (k, 2=3), that corresponds to small angles of attack for the round cone and at
α.0, if p,0. Commonly, the critical value of the cross-flow velocity gradient
kc ≤ 1=3 corresponds to the negative cross-flow pressure gradient p.0, the trans-
verse skin friction in this region θ0 .0.

Using these expressions, the equation for the subcharacteristics is obtained in
the form

ycdy
y yþ yc
� � ¼ β

dζ
ζ
, β ¼ α

kθ0
; α 6¼ 0 : y ¼ ycy0s

β

yc þ y0 1� sβð Þ , s ¼
ζ

ζ0

����
����,

α ¼ 0 : y ¼ y0
1� y0dln s

, d ¼ phw
6θ0

(25)

Here y0 and z0 define the initial point in the cross-plane.
The subcharacteristic behavior is shown in Figure 5a and b for p.0. At α.0

velocities v,0 and w,0; the only critical point node is in the coordinate origin,
and subcharacteristics go to it from the region ζ 6¼ 0 (Figure 5a). At α ¼ 0 yc ¼ 0
and the point ζ ¼ y ¼ 0 is double critical point of the type saddle node: the saddle is
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from the displacement thickness δ x; sð Þ. In the boundary layer, the flow is described
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For these equations boundary conditions have the form (1). A solution of
these equations will be matched with the boundary layer solution at s ! ∞.
Initial conditions are needed at some streamwise location x ¼ x0, which can be
obtained from a solution of Navier-Stokes equations near the body nose; this feature
does the problem more complicated. Obtained equations allow a self-similar
solution for hypersonic flows at some additional assumptions.

The solution in the outer boundary layer part, at y≫ 1, is described by formulas
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1þ rð Þscs � 2mxcx � 2 m� 1� rsð Þc ¼ �2m p1 � qp0
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(19)

Along characteristics ξ x; sð Þ ¼ const, which are streamlines of the inviscid flow,
the equations for functions d ¼ d ξ; sð Þ and c ¼ c ξ; sð Þ are integrated. At s ! 0 these
functions are represented in the form

c ¼ CsL þm p1 þ p0rs
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, L ξ; sð Þ ¼ m� 1� rs
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; d ¼ DsI þ n
n� 1� rs

,

I ξ; sð Þ ¼ n� 1� rs
1þ r

, C ¼ bmεm�1, D ¼ anεn�1:

(20)

Coefficients C and D are obtained by matching d ξ; sð Þ and c ξ; sð Þ at s ! ∞ in
relation to a ζð Þ and b ζð Þ at ζ ! 0 [17, 36]. The logarithmic singularity appears in
these functions at I ¼ 0 or L ¼ 0. At L ξ;0ð Þ,0 or I ξ;0ð Þ,0, the singularity is of
the power type.

Following from presented results, in contrast with the 2D separation, the
viscous-inviscid interaction does not eliminate the singularity in 3D boundary layer;
this effect moves only the critical value of kc.

3.4 Singularities in the boundary layer near-wall region

The singularity in the outer BL part gives the critical value kc ¼ 1=3, although
calculations show kc ¼ kc M∞;Pr; hwð Þ. This indicates on the possibility of singularity
arising in the near-wall region. To study this possibility, at the first, we study the
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solution behavior of Eq. (6) at y, , 1 in the runoff plane φ ¼ φ1 where the solution
is presented in the form

τ0 ¼ du0 0ð Þ
dy

, θ0 ¼ dw0 0ð Þ
dy

,

u0 ¼ τ0yþ U0 yð Þ, w0 ¼ θ0yþW0 yð Þ, v0 ¼ �αy2 � F0 þ kG0, α ¼ 1
2

τ0 � kθ0ð Þ
(21)

Second terms of these decompositions can be presented by series

U0 ¼ F0y ¼ ∑
i¼0

αiyiþ4

iþ 4ð Þ! , F0 ¼ ∑
i¼0

αiyiþ5

iþ 5ð Þ! ,

W0 ¼ G0y ¼ ∑
i¼0

βiyiþ2

iþ 2ð Þ! , G0 ¼ ∑
i¼0

βiyiþ3

iþ 3ð Þ! :
(22)

First three coefficients of these series are defined by relations

α0 ¼ �2τ0α, α1 ¼ kτ0β0, α2 ¼ kτ0β1

β0 ¼ �phw, β1 ¼ �pτ0hr, β2 ¼
1
3

τ0 � 3kθ0ð Þθ0 þ 2pMeτ
2
0

(23)

Using these decompositions we can study qualitatively a dependence of the flow
structure near the runoff plane from parameters by analyzing the subcharacteristic
behavior. The transformed normal to the body surface v and transverse w velocities
at ζ, , 1 and y, , 1 in the first-order approximation are represented in the form

v ¼ v0 ¼ � αy2 � 1
6
kβ0y
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� �

¼ � 1
6
kβ0y

2 yþ yc
� �

yc ¼ � 6α
kβ0

¼ 6α
kphw

, w ¼ �w0 ¼ �kθ0ζy
(24)

In the plane ζ ¼ 0, the cross-flow velocity w ¼ 0 due to symmetry conditions.
Here two critical points, in which v ¼ 0, can be. The first point locates on the cone
surface y ¼ 0, and the second one y ¼ �yc appears in the physical space at α,0, if
p.0 (k, 2=3), that corresponds to small angles of attack for the round cone and at
α.0, if p,0. Commonly, the critical value of the cross-flow velocity gradient
kc ≤ 1=3 corresponds to the negative cross-flow pressure gradient p.0, the trans-
verse skin friction in this region θ0 .0.

Using these expressions, the equation for the subcharacteristics is obtained in
the form

ycdy
y yþ yc
� � ¼ β

dζ
ζ
, β ¼ α

kθ0
; α 6¼ 0 : y ¼ ycy0s

β

yc þ y0 1� sβð Þ , s ¼
ζ

ζ0

����
����,

α ¼ 0 : y ¼ y0
1� y0dln s

, d ¼ phw
6θ0

(25)

Here y0 and z0 define the initial point in the cross-plane.
The subcharacteristic behavior is shown in Figure 5a and b for p.0. At α.0

velocities v,0 and w,0; the only critical point node is in the coordinate origin,
and subcharacteristics go to it from the region ζ 6¼ 0 (Figure 5a). At α ¼ 0 yc ¼ 0
and the point ζ ¼ y ¼ 0 is double critical point of the type saddle node: the saddle is
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in the lower half-plane, i.e., out of the physical space. The node is in the upper half-
plane, and the subcharacteristic pattern retains the same as at α.0. At α,0 the
node drifts in the point ζ ¼ 0, y ¼ yc .0, and the coordinate origin becomes by the
saddle point (Figure 5b). In this case, at y. yc the normal velocity v,0 and at
0, y, yc v.0; v ¼ 0 on the line y ¼ yc.

This analysis shows that at the parameter α sign change, the physical flow
structure varies qualitatively, and the value α ¼ 0 is a criterion of the new flow
property appearance. It should be noted that in solutions of Navier-Stokes equations
for similar problems near the coordinate origin z ¼ y ¼ 0 in the leeward symmetry
plane, the streamwise-oriented vortex arises, and the flow is not described by the
BL theory since the viscous diffusion inside the vortex is distributed along the
radius from its axis, but not along the normal to the body surface. On the base of
this qualitative analysis, it is supposed that the critical value kc hw;Mð Þ is defined by
the relation

2α kcð Þ ¼ τ0 kcð Þ � kcθ0 kcð Þ ¼ 0 (26)

To support this hypothesis, equations for functions U0 yð Þ and W0 yð Þ are ana-
lyzed by substituting near-wall decompositions to Eq. (6). Considering functions
U0 yð Þ and W0 yð Þ as perturbations, we can linearize resulting equations and obtain
in the first-order approximation:

U0yy þ αy2U0y þ τ0 F0 � kG0ð Þ ¼ �ατ0y2,

W0yy þ αy2W0y � 2
3

τ0 � 3θ0ð ÞyW0 þ θ0 F0 � kG0ð Þ ¼

β0 þ β1yþ
1
2
β2y

2 þ 2
3
θ0y� p hr � 2Meτ0yð Þ

� �
U0

(27)

At y ! 0 U0 yð Þ and W0 yð Þ are expressed by above series, and in order to
match them with the solution of full Eq. (6) in the main BL part, it is required
that these functions will grow at y ! ∞ not faster than a power function. To
study their solution behavior at y ! ∞ and α 6¼ 0, we introduce the new
variable:

ξ ¼ �αy3=3, y ¼ � 3ξ=αð Þ13: (28)

At the limit ξ ! ∞, previous equations are reduced in the first-order approxi-
mation to the form

Figure 5.
Subcharacteristics in the cross-plane at α≥0 (a) and α,0 (b); p.0.
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ξ
∂
2U0

∂ξ2
þ 2

3
� ξ

� �
∂U0

∂ξ
¼ � τ0

3
3ξ
α

� �1
3

, c ¼ 2
τ0 � 3kθ0

9α

ξ
∂
2W0

∂ξ2
þ 2

3
� ξ

� �
∂W0

∂ξ
þ cW0 ¼ � β1

3α
þ β2
6α

3ξ
α

� �1
3

� 2
9α

θ0 þ 3Meτ0ð ÞU0

(29)

Solutions of these equations can be represented as

U0 ¼ A00

ðy

0

e�
1
3αs

3
dsþ τ0

3ξ
α

� �1
3

,

W0 ¼ B00Φ �c;
2
3
; ξ

� �
þ B01ξ

1=3Φ
1
3
� c;

4
3
; ξ

� �
� 3β1
2 τ0 � 3kθ0ð Þ

� 3β2
τ0 � 9kθ0

3ξ
α

� �1
3

� θ0 þ 3Meτ0
τ0 � 3kθ0

U00

(30)

First terms of these expressions are solutions of homogeneous equations,
with zero right-hand sides; A00, B00, and B01 are constants; Φ a; b; xð Þ is
Kummer’s degenerate hypergeometric function, which has asymptotes at
ξ ! ∞:

α.0, ξ,0 : Φ � �ξð Þc; α,0, ξ.0 : Φ � eξξc�2=3 (31)

Solutions grow exponentially at α,0 and p.0; they cannot be matched with
the solution in the main BL part. Therefore, at these conditions a solution of BL
equations cannot exist. This conclusion and also the criterion (26) for the boundary
of the existing leeward symmetry plane solution are confirmed by numerical calcu-
lations for the slender round cone at an angle of attack [25–32, 37], a part of which is
presented in Figure 6. In this figure, symbols correspond to calculations of limit

Figure 6.
The boundary of the solution existing in the leeward symmetry plane of the slender round cone at the angle of
attack and Pr ¼ 1 in the dependence of the critical value kc: ▲, [28]; ■, [29]; and ○, [37].
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in the lower half-plane, i.e., out of the physical space. The node is in the upper half-
plane, and the subcharacteristic pattern retains the same as at α.0. At α,0 the
node drifts in the point ζ ¼ 0, y ¼ yc .0, and the coordinate origin becomes by the
saddle point (Figure 5b). In this case, at y. yc the normal velocity v,0 and at
0, y, yc v.0; v ¼ 0 on the line y ¼ yc.

This analysis shows that at the parameter α sign change, the physical flow
structure varies qualitatively, and the value α ¼ 0 is a criterion of the new flow
property appearance. It should be noted that in solutions of Navier-Stokes equations
for similar problems near the coordinate origin z ¼ y ¼ 0 in the leeward symmetry
plane, the streamwise-oriented vortex arises, and the flow is not described by the
BL theory since the viscous diffusion inside the vortex is distributed along the
radius from its axis, but not along the normal to the body surface. On the base of
this qualitative analysis, it is supposed that the critical value kc hw;Mð Þ is defined by
the relation

2α kcð Þ ¼ τ0 kcð Þ � kcθ0 kcð Þ ¼ 0 (26)

To support this hypothesis, equations for functions U0 yð Þ and W0 yð Þ are ana-
lyzed by substituting near-wall decompositions to Eq. (6). Considering functions
U0 yð Þ and W0 yð Þ as perturbations, we can linearize resulting equations and obtain
in the first-order approximation:

U0yy þ αy2U0y þ τ0 F0 � kG0ð Þ ¼ �ατ0y2,

W0yy þ αy2W0y � 2
3

τ0 � 3θ0ð ÞyW0 þ θ0 F0 � kG0ð Þ ¼

β0 þ β1yþ
1
2
β2y

2 þ 2
3
θ0y� p hr � 2Meτ0yð Þ

� �
U0

(27)

At y ! 0 U0 yð Þ and W0 yð Þ are expressed by above series, and in order to
match them with the solution of full Eq. (6) in the main BL part, it is required
that these functions will grow at y ! ∞ not faster than a power function. To
study their solution behavior at y ! ∞ and α 6¼ 0, we introduce the new
variable:

ξ ¼ �αy3=3, y ¼ � 3ξ=αð Þ13: (28)

At the limit ξ ! ∞, previous equations are reduced in the first-order approxi-
mation to the form

Figure 5.
Subcharacteristics in the cross-plane at α≥0 (a) and α,0 (b); p.0.
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Solutions of these equations can be represented as
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1
3αs

3
dsþ τ0
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� �1
3

,

W0 ¼ B00Φ �c;
2
3
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� �
þ B01ξ

1=3Φ
1
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4
3
; ξ

� �
� 3β1
2 τ0 � 3kθ0ð Þ

� 3β2
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� �1
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τ0 � 3kθ0
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(30)

First terms of these expressions are solutions of homogeneous equations,
with zero right-hand sides; A00, B00, and B01 are constants; Φ a; b; xð Þ is
Kummer’s degenerate hypergeometric function, which has asymptotes at
ξ ! ∞:

α.0, ξ,0 : Φ � �ξð Þc; α,0, ξ.0 : Φ � eξξc�2=3 (31)

Solutions grow exponentially at α,0 and p.0; they cannot be matched with
the solution in the main BL part. Therefore, at these conditions a solution of BL
equations cannot exist. This conclusion and also the criterion (26) for the boundary
of the existing leeward symmetry plane solution are confirmed by numerical calcu-
lations for the slender round cone at an angle of attack [25–32, 37], a part of which is
presented in Figure 6. In this figure, symbols correspond to calculations of limit

Figure 6.
The boundary of the solution existing in the leeward symmetry plane of the slender round cone at the angle of
attack and Pr ¼ 1 in the dependence of the critical value kc: ▲, [28]; ■, [29]; and ○, [37].

15

3D Boundary Layer Theory
DOI: http://dx.doi.org/10.5772/intechopen.83519



values α kcð Þ for the solution existing at different boundary conditions in the diapa-
son of Mach numbers from 2 to ∞ at the Prandtl number 1 for different surface
temperatures. At k, 1=3 data are grouped near the value α ¼ 0 in accordance with
the criterion (26). The data scatter is, apparently, due to the decrease of the calcu-
lation accuracy at the approach to the critical value kc and also with errors of data
copying from papers. At k. 1=3, all calculations are finished with α.0, since the
solution existing in this region is determined by singularities in the outer BL part,
but not in the near-wall region.

Then we consider the solution behavior of full BL equations in the near-wall
region beside the runoff plane at ζ, , 1. 3D BL equations have the parabolic type,
and their solution before the runoff plane knows nothing about the solution in this
plane; however, in order for the first solution to move smoothly into the last one at
α.0, the first will be locally self-similar. Due to this condition, the streamwise τ ζð Þ
and cross-flow θ ζð Þ friction stresses and the self-similar variable η at ζ, , 1 will be
defined by expressions

τ ζð Þ ¼ τ0
a ζð Þ , θ zð Þ ¼ θ0

a ζð Þ , η ¼ y
a ζð Þ (32)

The function a zð Þ at α≥0 will satisfy to the condition a 0ð Þ ¼ 1. In this case,
flow functions in the boundary layer near the wall can be represented in the
form

f η; ζð Þ ¼ a ζð Þ τ0
η2

2
þ F η; ζð Þ

� �
, u η; ζð Þ ¼ f η ¼ τ0ηþU η; ζð Þ

g η; ζð Þ ¼ a ζð Þ θ0
η2

2
þ G η; ζð Þ

� �
, w η; ζð Þ ¼ gη ¼ θ0ηþW η; ζð Þ

v ¼ a α� 1
2
θ0kζ

aζ
a

� �
η2 þ F � kG 1þ kζ

aζ
a

� �
� kζGζ � kζηζW

� �
(33)

Substituting these expressions to Eq. (6) and linearizing the result with respect
to disturbances, we obtain the first-order approximation for the flow in the near-
wall region beside the runoff plane:

Uηη þ αη2Uη þ a2 kθ0ζηUζ þ τ0 F � kG 1þ aζ
a

� �
� kζGζ

h in o
¼ �ατ0η2

Wηη þ αη2Wη þ a2 kθ0ζηWζ þ θ0 F � kG 1þ ζaζ
a

� �
� kζGζ

� �
� 3αcηW

� �
¼

�αθ0η2 þ a2 β0 þ β1ηþ
1
2
β3η

2 þ 2
3

θ0 þ 3pMeτ0
� �

η� phr

� �
U

� �

(34)

Here β3 ¼ 2
3 τ0θ0 � kθ20 þ pMeτ

2
0. Due to local self-similarity at α≥0, we define

the function a ζð Þ as

αa2 � 1
2
kθ0ζaaζ ¼ α, a2 ¼ 1þ Cζq, q ¼ 4α

kθ0
(35)

The constant C is found from a comparison with numerical calculations. It
follows from this relation at α≥0 and q, 2 the solution of Eq. (6) in the near-wall
region at ζ, , 1 can find in the form of the series:
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F η; ζð Þ ¼ F0 ηð Þ þ ζqFq ηð Þ þ…, U η; ζð Þ ¼ U0 ηð Þ þ ζqUq ηð Þ þ…,
G η; ζð Þ ¼ G0 ηð Þ þ ζqGq ηð Þ þ…, W η; ζð Þ ¼ W0 ηð Þ þ ζqWq ηð Þ þ…,

(36)

The first term of this expansion is the solution for the runoff plane but depends
on the self-similar variable. Second terms define the proper solution of BL Eq. (6) at
ζ, , 1, which at η ! ∞, has the form [37]

ξ ¼ � αη3

3
, Uq ξð Þ ¼ Aq0Φ

4
3
;
2
3
; ξ

� �
þ Aq1ξ

1
3Φ

5
3
;
4
3
; ξ

� �

Wq ξð Þ ¼ Bq0Φ
4
3
� c;

2
3
; ξ

� �
þ Bq1ξ

1=3Φ
5
3
� c;

4
3
; ξ

� �
þ 9β1

2τ0
þ 3β2
11
3
τ0 � kθ0

3ξ
α

� �1
3

þ θ0 þ 3Meτ0
2τ0

U0 � θ0 þ 3Meτ0
τ0 � 3kθ0

Uq:

(37)

Here Aq0, Aq1, Bq0, and Bq1 are constants. These relations show that the proper
solution in near-wall BL region near the runoff plane is nonzero. It is irregular at
α≥0 and it is singular at α,0. The logarithmic singularity is not in this case, and
the solution of BL equations exists at the critical value kc in contrast to the outer
region.

In the work of [15], at the analysis of perturbations in the boundary layer related
with the angle of attack, it was found that they lead to infinite disturbances in the
symmetry plane, although equations have no visible singularities contained. In this
case, the first-order approximation is described by the Blasius solution for the delta
flat plate. In Figure 7, dimensionless longitudinal and transverse skin friction dis-
tributions f ʹ ʹ1 zð Þ and gʹ ʹ1 zð Þ, induced by the second order BL approximation
(Figure 7a) and the angle of attack (Figure 7b) are presented in dependence on
transverse coordinate z ¼ 1� Z=X, where X and Z are Cartesian streamwise and
transverse coordinates. By approaching the symmetry plane (z ¼ 1), skin friction
perturbations infinitely grow. Detailed investigation of equations for these func-
tions showed that in these cases singularities take place as in the near-wall and outer
BL parts. In the outer part, the singularity corresponds to values of the parameter

Figure 7.
Skin friction distributions on the small aspect ratio delta wing at М = 2 related with (a) second BL
approximation and (b) angle of attack.
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values α kcð Þ for the solution existing at different boundary conditions in the diapa-
son of Mach numbers from 2 to ∞ at the Prandtl number 1 for different surface
temperatures. At k, 1=3 data are grouped near the value α ¼ 0 in accordance with
the criterion (26). The data scatter is, apparently, due to the decrease of the calcu-
lation accuracy at the approach to the critical value kc and also with errors of data
copying from papers. At k. 1=3, all calculations are finished with α.0, since the
solution existing in this region is determined by singularities in the outer BL part,
but not in the near-wall region.

Then we consider the solution behavior of full BL equations in the near-wall
region beside the runoff plane at ζ, , 1. 3D BL equations have the parabolic type,
and their solution before the runoff plane knows nothing about the solution in this
plane; however, in order for the first solution to move smoothly into the last one at
α.0, the first will be locally self-similar. Due to this condition, the streamwise τ ζð Þ
and cross-flow θ ζð Þ friction stresses and the self-similar variable η at ζ, , 1 will be
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Substituting these expressions to Eq. (6) and linearizing the result with respect
to disturbances, we obtain the first-order approximation for the flow in the near-
wall region beside the runoff plane:
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3 τ0θ0 � kθ20 þ pMeτ
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the function a ζð Þ as

αa2 � 1
2
kθ0ζaaζ ¼ α, a2 ¼ 1þ Cζq, q ¼ 4α

kθ0
(35)

The constant C is found from a comparison with numerical calculations. It
follows from this relation at α≥0 and q, 2 the solution of Eq. (6) in the near-wall
region at ζ, , 1 can find in the form of the series:
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The first term of this expansion is the solution for the runoff plane but depends
on the self-similar variable. Second terms define the proper solution of BL Eq. (6) at
ζ, , 1, which at η ! ∞, has the form [37]
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Here Aq0, Aq1, Bq0, and Bq1 are constants. These relations show that the proper
solution in near-wall BL region near the runoff plane is nonzero. It is irregular at
α≥0 and it is singular at α,0. The logarithmic singularity is not in this case, and
the solution of BL equations exists at the critical value kc in contrast to the outer
region.

In the work of [15], at the analysis of perturbations in the boundary layer related
with the angle of attack, it was found that they lead to infinite disturbances in the
symmetry plane, although equations have no visible singularities contained. In this
case, the first-order approximation is described by the Blasius solution for the delta
flat plate. In Figure 7, dimensionless longitudinal and transverse skin friction dis-
tributions f ʹ ʹ1 zð Þ and gʹ ʹ1 zð Þ, induced by the second order BL approximation
(Figure 7a) and the angle of attack (Figure 7b) are presented in dependence on
transverse coordinate z ¼ 1� Z=X, where X and Z are Cartesian streamwise and
transverse coordinates. By approaching the symmetry plane (z ¼ 1), skin friction
perturbations infinitely grow. Detailed investigation of equations for these func-
tions showed that in these cases singularities take place as in the near-wall and outer
BL parts. In the outer part, the singularity corresponds to values of the parameter

Figure 7.
Skin friction distributions on the small aspect ratio delta wing at М = 2 related with (a) second BL
approximation and (b) angle of attack.
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m = 3/4 and 7/8 in relation to cases а and b, respectively. The longitudinal velocity
perturbation singularity is related only with the near-wall singularity.

Near-wall singularities generate the flow structure including three asymptotic
sublayers describing the viscous-inviscid interaction similar as near the 2D separa-
tion point. However, the viscous-inviscid interaction is not enough to remove the
singularity of the obtained type. Near the wall sublayer close to the symmetry plane
the fourth region is formed, in which the flow is described by the parabolized
Navier-Stocks equations similar to the above case of the outer singularity.

4. Studies of the symmetric flow instability over thin bodies and the
control possibility on the base of the interaction model of 3D boundary
layer with the electrical discharge

The electric discharge is considered as one of effective methods for control of the
flow asymmetry over bodies [23–27]. However, to select optimal control parame-
ters, it needs to have a reasonable criterion for the asymmetry origin and a possi-
bility for fast estimation of the control effect. For the second problem, the model of
the boundary layer and discharge interaction is proposed. The scheme of this model
is shown in Figure 8 [28–31, 37].

It is assumed the plasma discharge effect can be modeled by the heat source in
the boundary layer. The effect of gas ionization is neglected since the ionization
coefficient is of the order of 10�5. This source in the energy equation is presented by
formulas:

Q ¼ Q∗xl
h∞u∞

¼ Q0y
2 exp � y� yc φð Þ� �2

σ

" #
, yc ¼ 2y0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ� φ1ð Þ φ2 � φð Þj j

p
(38)

Here Q∗ is a dimensional source intensity; Q0 is a maximum of dimensionless
heat-release intensity; σ characterizes the discharge width; yc φð Þ is a centerline of
the discharge that is approximated by the parabola; y0 is a maximum distance from
the discharge centerline to the wall; and the angles φ1 and φ2 determine the elec-
trode locations.

Calculations of the turbulent boundary layer characteristics were conducted
using the method [10] for a slender cone of half-apex angle δc ¼ 5∘ at the angle of
attack α ¼ α∗=δc ¼ 3:15. Other parameters are: l ¼ 1 m, T∞ ¼ 288K, u∞ ¼ 10 m=s,
σ ¼ 1, and y0 ¼ 1; the center between electrodes is located at ϕ0 ¼ 0:5 ϕ1 þ ϕ2ð Þ ¼
1:714 rad 98:25°

� �
, ϕ1 ¼ ϕ0 � 3Δϕ, and ϕ2 ¼ ϕ0 þ 3Δϕ, where Δϕ ¼ 0:0314159 is

the integration step of the finite-difference approximation.
In Figure 9, the dimensionless enthalpy (Figure 9a) and circumferential veloc-

ity (Figure 9b) profiles across the boundary layer are shown as functions of η for
Q0 ¼ 200 and for different polar angles φ. These profiles are similar to the source

Figure 8.
A scheme of discharge interaction with the boundary layer.
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heat intensity distribution across the boundary layer. The temperature reaches the
maximum value near the rear electrode, φ ¼ φ2 ¼ 1:809. Behind the heat source
region, the temperature maximum decreases and moves toward the upper bound-
ary-layer edge due to the heat diffusion. The station φ ¼ 1:87 is located just after the
separation point

Figure 10a demonstrates the plasma discharge effect on the separation point. As
the heat source intensity increases from 0 to 400, the separation angle, φs, decreases
from 133° to about 105°. It is seen that the plasma heating is more effective in the
range Q0 , 100, where the slope dφs=dQ0 is relatively large.

Figure 10b illustrates feasibility of the vortex structure control using a local
boundary-layer heating on the base of the developed criterion of symmetric flow
stability (solid line). Due to the heat release, the flow configuration changes from
the initial asymmetric state (φs ≈ 133°, symbol 1) to the symmetric state with
θs ≈ 120° (symbol 2). This requires a nondimensional heat source intensity Q0 ≈ 30
that corresponds to the total power which is approximately equal to 480 W. This
example indicates that the method is feasible for practical applications of the global
flow structure control.

The method of the global flow stability was developed [27–31] using the asymp-
totic approach for the flow over slender cones, the separated inviscid flow model
[34] and the stability theory of autonomous dynamical systems [35]. Comparison of
the calculated criteria for different elliptic slender cones with experimental data for
laminar and turbulent boundary layers sowed its efficiency.

Figure 9.
Profiles of temperature (а) и and circumferential velocity (b) across the boundary layer near the heat-release
region.

Figure 10.
Discharge effect on the separation angle (a) and flow state (b).
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5. Investigations of abnormal features of the heat transfer and the
laminar-turbulent transition for hypersonic flows around flat delta
wing with blunted leading edges

Although found in the experimental zones of abnormal high heat fluxes on the
windward flat surface of the half cone with blunted nose and delta wings with
blunted leading edges, the phenomenon of the early laminar-turbulent transition
[38–46] cannot be explained in frameworks of the boundary layer theory and on the
base of solutions of parabolized Navier-Stocks equations. Only detailed flow simu-
lations using full Navier-Stocks equations allowed to find reasons of such anomalies
[46–48].

Figure 8 shows the comparison of calculated (the upper part) and experimental
(the lower part) heat flux distributions on the delta wing with the leading edge
sweep angle χ = 75°, the bluntness radius of cylindrical edges and the spherical
nose R = 8 at the angles of attack α = 0°, M = 6, unit Reynolds numbers
Re1 = 1.1556 � 106 m�1 [47, 48]. Similar patterns were obtained in numerical
simulations for different Reynolds numbers and Mach numbers up to 10.5 [46].
At moderate Mach numbers, a flow on such simple surface outside the nose and
leading edge regions is described very well by the flat plate approximation and has
no anomalies.

At hypersonic speeds, high heat flux regions, which is present in Figure 11, are
observed in the middle wing span and near the symmetry plane. It is seen that the
experimental middle high heat flux streak is finished by the turbulent wedge.
Calculations were conducted only for the laminar flow.

To understand the reason for the heat flux anomaly, the cross-flow pattern helps
(Figure 9). Three longitudinal vortexes are in this flow. The largest vortex is in the
inviscid region above shock (the dark layer) and boundary (the light layer) layers.
Vortex near the symmetry plane and in the middle of the span occupies both layers.
Its mutual location depends on the blunt radius, Mach, and Reynolds numbers [43,
46]. For the considered case, the middle vortex is above the high heat flux region
that is shown below the cross-flow pattern (Figure 12).

The analysis shows that high heat flux streaks are formed by the convective
transfer of heat gas from the shock layer to the wing surface by the gas rotation
inside the vortex. In the considered case, the middle vortex is formed before the
symmetry plane vortex near the nose in the narrowing flow region between the
head shock and the leading edge due to the cross-flow acceleration near the leading
edge and the induced pressure gradient related with the domed flow structure near
the symmetry plane.

Figure 11.
Comparison of numerical (the upper part) and experimental (the lower part) specific heat flux distribution on
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In considered conditions, the middle vortex also is the reason for the laminar-
turbulent transition. Formed along the vortex center, streamwise velocity profiles
have inflection points that lead to the Rayleigh instability development. Transverse
velocity profiles along this line have the S-shaped form that leads to the cross-flow
instability. Both these processes result to the more early transition than Tollmien-
Schlichting wave evolution.

6. Conclusions

In this work, the short review of researches on the study of BL equation singu-
larities, which are formed when two streamline families are collided, is presented.
This phenomenon can arise only in unsteady and 3D problems and has no analogue
in 2D flows. A typical example of such problem is the flow around a slender cone in
the vicinity of the runoff plane. In this case, solutions are found in the analytical
form that allows to analyze explicitly the singularity character.

The analysis of solutions for the outer flow part revealed two singularity types.
One type is in streamwise and cross-velocity viscous perturbations; it arises at
values of relative cross pressure gradient k≥ 1 and leads to the exponential distur-
bance growth as the runoff plane is approached. At k ¼ 1 the singularity is loga-
rithmic and at k. 1 it is power; its appearance is correlated with the BL separation
appearance. Another singularity type at smaller values of k≥ 1=3 in the first-order
approximation leads to the infinite growth of transverse velocity perturbations only
and is not related directly with the flow separation; at k ¼ 1=3 the singularity is
logarithmic, and at k. 1=3 it is power. These BL singularities correspond to some
asymptotic flow structure at Re≫ 1. This structure includes the boundary region
with the dimension of the order of the BL thickness, in which the viscous transverse
diffusion effect smoothes the singularity. The comparison of obtained parabolized
Navier-Stokes equation solutions describing the flow in the boundary region with
BL equations solutions confirms this conclusion. Second region induced by the
viscous-inviscid interaction effect has the transverse dimension of the order of
square root from the BL thickness and the two-layer structure. For the potential
flow in the outer inviscid subregion, the integral solution representation is found on
the base of the slender wing theory. The inner subregion is described by full 3D BL
equations, the solution of which is obtained for the outer viscous subregion part. It
was shown that the viscous-inviscid interaction does not eliminate the singularity
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but drifts it in the parametric space. To eliminate the irregularity, the boundary
region is needed.

To find the dependence of the critical parameter of the singularity appearance kc
on Mach and Prandtl numbers and the wall temperature BL equations, solutions are
studied in the near-wall region beside the runoff plane. Equation subcharacteristic
(streamlines) analysis showed the presence of one parameter α, the sing of which
defines the qualitative change of the streamline topology and, consequently, the
physical flow structure. It is shown and confirmed by comparison with all available
calculations that the boundary of the solution which exists in the runoff plane
corresponds to the criterion α kcð Þ ¼ 0. The analysis of BL equation solutions near
the runoff plane revealed the presence at α≥0 of irregular and at α,0 singular
proper solutions. This is confirmed by numerical calculations of the flow around
slender delta wing with the small aspect ratio. Singularities in the near-wall region
generate the some flow structure in its vicinity, the study of which is out of this
paper framework. Presented results do not depend on outer boundary conditions
and are true for the full freestream velocity diapason including hypersonic flows.

Presented research allows concluding that the flow in symmetry planes, for
example, on wings, has the complex structure, which is needed to take into account
the numerical modeling in order to eliminate the accuracy loss. Regular flow func-
tion decompositions commonly used at solutions of BL equations are not applied
near this plane, and it cannot be considered as a boundary condition plane due to a
possible solution disappearance.
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Chapter 2

TBL-Induced Structural Vibration
and Noise
Zhang Xilong, Kou YiWei and Liu Bilong

Abstract

One of most import noise sources in a jet powered aircraft is turbulent boundary
layer (TBL) induced structural vibration. In this chapter, the general model for the
prediction of TBL-induced plate vibration and noise is described in detail. Then
numerical examples for a typical plate are illustrated. Comparisons of plate
vibration and radiated noise between numerical results and wind tunnel test are
presented. The effects of structural parameters on modal-averaged radiation
efficiency and therefore the radiated noise are discussed. The result indicates that
an increment of flow velocity will increase the acoustic radiation efficiency below
the hydrodynamic coincidence frequency range. The main reason for this
phenomenon is that a higher convection velocity will coincide with lower order
modes which have higher radiation efficiencies.

Keywords: turbulent boundary layer, plate vibration, radiated noise,
modal radiation efficiency

1. Introduction

The interior noise level in a jet aircraft is mainly depend on noise which
generated by turbulent boundary layers (TBL), if the rest of noise sources such as
ventilation systems, fans, hydraulic systems, etc. have been appropriately
acoustically treated. When the aircraft passes through the atmosphere, the turbu-
lent boundary layer creates pressure fluctuations on the fuselage. These pressure
fluctuations cause the aircraft fuselage to vibrate. The noise generated by the
vibration is then transmitted to the cabin.

The noise emitted by the aircraft fuselage depends on the speed of the vibrating
plate, which in turn depends on the speed of the aircraft, the geometry and size of
the plates, and the loss or damping of the plates. It is obvious that the acoustic
performances of the internal system, trim panels etc., will also affect the noise
inside the aircraft. Graham [1] came up with a model in aircraft plates to predict
TBL induced noise, in which the modal excitation terms were calculated by an
analytical expression. In Graham’s another research [2], the advantages of various
models describing the cross power spectral density induced by a flow or TBL across
a structure was discussed. Han et al. [3] tried to use energy flow analysis to predict
the noise induced by TBL. The method can better predict the response caused by
the TBL excitation. However, the noise radiation caused by the flat panel cannot be
predicted well. To avoid this deficiency, Liu et al. [4–6] described a model to predict
TBL induced noise for aircraft plates. In their work, the modal excitation terms and
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acoustical radiation efficiency can be predicted properly and the predicted results
are also compared with that of the wind tunnel and in-flight test. Rocha and
Palumbo [7] further investigated the sensitivity of sound power radiated by aircraft
panels to TBL parameters, and discussed the findings by Liu [4] that ring stiffeners
may increase TBL induced noise radiation significantly.

The radiation efficiency of a plate plays an important role in vibro-acoustic
problems. In recent related research, the sound medium around the fuselage of the
aircraft is often considered to be stationary. Under this assumption, Cremer and
Heckl [8] used a more concise formula to predict the acoustic radiation efficiency of
an infinite plate. Wallace [9] derived an integral formula based on far-field acoustic
radiation power to calculate the modal acoustic radiation efficiency of a finite plate.
Kou et al. [10] proposed modifications to the classical formulas given by Cremer
and Leppington, regarding the influence of structural damping on the radiation
efficiency.

A comparison of the acoustic radiation of the plate with stationary fluid and
convective fluid-loaded can be found in [11–13]. Graham [11] and Frampton [12]
studied the influence of the mean flow on the modal radiation efficiency of a
rectangular plate. They found that at high speeds, as the modal wave moves
upstream, the increase of flow velocity would reduce the modal critical frequency.
As a consequence, the acoustics radiation efficiency under the critical frequency of
the plate would be higher. Kou et al. [13] also conducted a research for the effect of
convection velocity in the TBL on the radiation efficiency. Kou et al. found that
the modal averaged radiation efficiency will increase with the increase of the
convection velocity below the hydrodynamic coincidence frequency. The study also
showed that the increase of the structural loss factor could increase the modal
average radiation efficiency at the subcritical frequencies, and the damping effect
increases with the increase of the flow velocity.

For a plate subjected to a TBL fluctuation, although a large amount of research
work used experimental and computational methods for the vibro-acoustical
properties of plates, it is worth a chapter to introduce the prediction model and
summarize recent findings for TBL induced plate vibrations and noise radiations.
The following sections begins with a description of models for the wavenumber-
frequency spectrum of TBL, and then a specific presentation of the calculation of
vibro-acoustic responses of the wall plate excited by TBL is followed. In the end,
the effect of flow velocity (Mc) and structural damping on the modal averaged
radiation efficiency is discussed.

2. Models for the wavenumber-frequency spectrum of turbulent
boundary layer fluctuating pressure

As for the research about wavenumber-frequency spectrum of turbulent
boundary layer, Corcos [14], Efimtsov [15], Smolyakov-Tkachenko [16], Williams
[17], Chase [18, 19] and other researchers put up with a series of widely used of
wavenumber-frequency spectrum model. The models are established according to a
large number of experimental data and statistical theory of turbulence. The follow-
ing parts introduce some typical wavenumber-frequency spectrum models.

2.1 The Corcos model

The model proposed by Corcos during the last few decades has been widely used
for many different types of problems. The model is applicable in the immediate
neighborhood of the so-called convective ridge [20], as long as ωδ/U∞ > 1. In this
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expression δ is the thickness of the boundary layer and U∞ the velocity of the flow
well away from the structure. The flat-plate boundary layer is taken to lie in the x-y
plane of a Cartesian coordinate system, with mean flow in the direction of the
x-axis. Corcos assumes that the cross power spectral density, between the pressures
at two different positions separated by the vector n can be expressed as

Spp ξx; ξy;ω
� �

¼ Φpp ωð Þ exp �γ1kc ξxj jð Þ exp �γ3kc ξy
���
���

� �
exp �jkcξx

� �
(1)

where Φpp(ω) is the auto-power spectral density of turbulent boundary layer
fluctuating pressure, kc = ω/Uc is the convection wave number. γ1 and γ3 can be
obtained by fitting experimental data, γ1 and γ3 are 0.11–0.12 and 0.7–0.12
respectively for smooth rigid siding.

The Fourier Transform of ξx and ξy can obtain wavenumber-frequency spectrum

Spp kx; ky;ω
� � ¼

ð ð
Spp ξx; ξy;ω
� �

exp j kxξx þ kyξy
� �h i

dξxdξy

¼ Φpp ωð Þ 2γ1kc
kx � kcð Þ2 þ γ1kcð Þ2 �

2γ3kc
k2y þ γ3kcð Þ2

(2)

So, the normalized wavenumber-frequency spectrum in wavenumber domain is

Ŝpp kx; ky;ω
� � ¼ k2c

Φpp ωð Þ Spp kx; ky;ω
� �

¼ 2γ1
kx=kc � 1ð Þ2 þ γ21

� 2γ3
ky=kc
� �2 þ γ23

(3)

2.2 The generalized Corcos model

Caiazzo and Desmet [21] proposed a generalized model which based on the
Corcos model. The model uses butterworth filter to replace exponential decay of x
and y direction in the Corcos model. It can make the wavenumber-frequency
spectrum attenuation rapidly near the convection wave number by adjusting the
parameters. Expression of this model is as follows

Spp ξx; ξy;ω
� �

¼ �Φpp ωð Þ sin π=2Pð Þ sin π=2Qð Þ exp �jkcξx
� �

� ∑
P�1

p¼0
exp j θp þ γ1kc ξxj j� �� �� ∑

Q�1

q¼0
exp j θq þ γ1kc ξxj j� �� � (4)

where θp = (π/2P)�(1 + 2p), θq = (π/2Q)�(1 + 2q). When P = Q = 1, Eq. (4) is equal
to the Corcos model.

Analogously, the normalized wavenumber-frequency spectrum in wavenumber
domain is

Ŝpp kx; ky;ω
� � ¼ � k2c

π2
PQ γ1kcð Þ2P�1

kx � kcð Þ2P þ γ1kcð Þ2P
h i

∑
P�1

p¼0
ejθp

� Q γ3kcð Þ2Q�1

ky
� �2Q þ γ3kcð Þ2Q
h i

∑
Q�1

q¼0
ejθq

(5)
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2.3 The Efimtsov model

The Efimtsov model assumes, as in the Corcos model, that the lateral and the
longitudinal effects of the TBL can be separated. However, in the Efimtsov model the
dependence of spatial correlation on boundary layer thickness, δ, as well as spatial
separation is taken into account. Correlation length 1/γ1kc and 1/γ3kc in Corcos model
are replaced with Λx and Λy. The Efimtsov model gives the cross power spectral
density of the pressure at two different positions separated by the vector ξ as

Spp ξx; ξy;ω
� �

¼ Φpp ωð Þ exp � ξxj j=Λxð Þ exp � ξy

���
���=Λy

� �
exp �jkcξx

� �
(6)

where

Λx ¼ δ
a1Sh
Uc=Uτ

� �2

þ a22
Sh2 þ a2=a3ð Þ2

" #�1=2

(7)

Λy ¼
δ a4 Sh

Uc=Uτ

� �2
þ a25

Sh2þ a5=a6ð Þ2

� ��1=2

, M∞ <0:75

δ a4 Sh
Uc=Uτ

� �2
þ a27

� ��1=2

, M∞>0:9

8>>><
>>>:

(8)

where Sh is the Strouhal number and equal to Sh = ωδ/Uτ and Uτ the friction
velocity which varies with the Reynolds number but is typically of the order
0.03 U∞–0.04 U∞. At high frequencies these expressions correspond to a Corcos
model with γ1 = 0.1 and γ3 = 0.77. Coefficient a1–a7 are 0.1, 72.8, 1.54, 0.77, 548, 13.5
and 5.66 respectively. When 0.75 < M∞ < 0.9, the Λy can be determined by
numerical interpolation. At high frequency, the Efimtsov model and the Corcos
model are equal while γ1 = 0.10 and γ3 = 0.77.

The normalized wavenumber-frequency spectrum is

Ŝpp kx; ky;ω
� � ¼ 2Λ�1

x

kx=kc � 1ð Þ2 þ Λxkcð Þ�2 �
2Λ�1

y

k2y þ Λ�2
y

(9)

2.4 The Smolyakov-Tkachenko model

Like Efimtsov model, Smolyakov-Tkachenko model also takes the boundary
layer thickness and scale space separation of boundary layer effect of fluctuating
pressure into account. Based on the experimental results, the difference is that
the Smolyakov-Tkachenko model amend the space scale function index

exp � ξxj j=Λx þ ξy

���
���=Λy

� �h i
to exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2x=Λ

2
x þ ξ2y=Λ

2
y

� �r� �
, in order to make

the computing result is consistent with the experimental results.
The normalized wavenumber-frequency spectrum is

Ŝpp kx; ky;ω
� � ¼ 0:974A ωð Þh ωð Þ F kx; ky;ω

� �� ΔF kx; ky;ω
� �� �

(10)

where

A ωð Þ ¼ 0:124 1� 1
4kcδ ∗ þ 1

4kcδ ∗

� �2
" #1=2

(11)
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h ωð Þ ¼ 1� m1A
6:515

ffiffiffiffi
G

p
� ��1

(12)

m1 ¼ 1þ A2

1:025þ A2 (13)

G ¼ 1þ A2 � 1:005m1 (14)

F kx; ky;ω
� � ¼ A2 þ 1� kx=kcð Þ2 þ ky=kc

6:45

� �� ��3=2

(15)

ΔF kx; ky;ω
� � ¼ 0:995 1þ A2 þ 1:005

m1
m1 � kx=kcð Þ2 þ ky=kc

� �2 �m2
1

n o� ��3=2

(16)

where δ* is the thickness of boundary layer, which is also set as δ* = δ/8.

2.5 The Ffowcs-Williams model

Ffowcs-Williams using Lighthill acoustic analogy theory to deduce a frequency-
wave spectrum model, in which the speed of the pneumatic equation is set as the
source term by Corcos form. A number of parameters in the model and function
need further experiments to determine, which is not widely used at present. Hwang
and Geib [22] ignore compression factor of the influence of this model to put
forward a simplified model. The normalized wavenumber-frequency spectrum is

Ŝpp kx; ky;ω
� � ¼ kj j

kc

� �2 2γ1
kx=kc � 1ð Þ2 þ γ21

� 2γ3
ky=kc
� �2 þ γ23

(17)

2.6 The Chase model

Chase’s model is another model commonly used and believed to describe the
low-wavenumber domain better than Corcos’s model, which has the same starting
point with the Ffowcs-Williams model. The normalized wavenumber-frequency
spectrum can be described as

Ŝpp kx; ky;ω
� � ¼ 2πð Þ3ρk2cU3

τ

Φ ωð Þ CMk
2
xK

�5
M þ CT kj j2K�5

T

� �
(18)

where

K2
M ¼ ω� Uckxð Þ2

h2U2
τ

þ kj j2 þ bMδð Þ�2 (19)

K2
T ¼ ω� Uckxð Þ2

h2U2
τ

þ kj j2 þ bTδð Þ�2 (20)

Φ ωð Þ ¼ 2πð Þ2ρ2hU4
τ

3ω 1þ μ2ð Þ CMFM þ CTFTð Þ (21)

FM ¼ 1þ μ2α2M þ μ4 α2M � 1
� �� �

= α2M þ μ2 α2M � 1
� �� �3=2

(22)

FT ¼ 1þ α2T þ μ2 3α2T � 1
� �þ 2μ4 α2T � 1

� �� �
= α2T þ μ2 α2T � 1

� �� �3=2
(23)
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Sh2þ a5=a6ð Þ2

� ��1=2

, M∞ <0:75

δ a4 Sh
Uc=Uτ

� �2
þ a27

� ��1=2

, M∞>0:9

8>>><
>>>:

(8)

where Sh is the Strouhal number and equal to Sh = ωδ/Uτ and Uτ the friction
velocity which varies with the Reynolds number but is typically of the order
0.03 U∞–0.04 U∞. At high frequencies these expressions correspond to a Corcos
model with γ1 = 0.1 and γ3 = 0.77. Coefficient a1–a7 are 0.1, 72.8, 1.54, 0.77, 548, 13.5
and 5.66 respectively. When 0.75 < M∞ < 0.9, the Λy can be determined by
numerical interpolation. At high frequency, the Efimtsov model and the Corcos
model are equal while γ1 = 0.10 and γ3 = 0.77.

The normalized wavenumber-frequency spectrum is

Ŝpp kx; ky;ω
� � ¼ 2Λ�1

x

kx=kc � 1ð Þ2 þ Λxkcð Þ�2 �
2Λ�1

y

k2y þ Λ�2
y

(9)

2.4 The Smolyakov-Tkachenko model

Like Efimtsov model, Smolyakov-Tkachenko model also takes the boundary
layer thickness and scale space separation of boundary layer effect of fluctuating
pressure into account. Based on the experimental results, the difference is that
the Smolyakov-Tkachenko model amend the space scale function index

exp � ξxj j=Λx þ ξy

���
���=Λy

� �h i
to exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2x=Λ

2
x þ ξ2y=Λ

2
y

� �r� �
, in order to make

the computing result is consistent with the experimental results.
The normalized wavenumber-frequency spectrum is

Ŝpp kx; ky;ω
� � ¼ 0:974A ωð Þh ωð Þ F kx; ky;ω

� �� ΔF kx; ky;ω
� �� �

(10)

where

A ωð Þ ¼ 0:124 1� 1
4kcδ ∗ þ 1

4kcδ ∗

� �2
" #1=2

(11)
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h ωð Þ ¼ 1� m1A
6:515

ffiffiffiffi
G

p
� ��1

(12)

m1 ¼ 1þ A2

1:025þ A2 (13)

G ¼ 1þ A2 � 1:005m1 (14)

F kx; ky;ω
� � ¼ A2 þ 1� kx=kcð Þ2 þ ky=kc

6:45

� �� ��3=2

(15)

ΔF kx; ky;ω
� � ¼ 0:995 1þ A2 þ 1:005

m1
m1 � kx=kcð Þ2 þ ky=kc

� �2 �m2
1

n o� ��3=2

(16)

where δ* is the thickness of boundary layer, which is also set as δ* = δ/8.

2.5 The Ffowcs-Williams model

Ffowcs-Williams using Lighthill acoustic analogy theory to deduce a frequency-
wave spectrum model, in which the speed of the pneumatic equation is set as the
source term by Corcos form. A number of parameters in the model and function
need further experiments to determine, which is not widely used at present. Hwang
and Geib [22] ignore compression factor of the influence of this model to put
forward a simplified model. The normalized wavenumber-frequency spectrum is

Ŝpp kx; ky;ω
� � ¼ kj j

kc

� �2 2γ1
kx=kc � 1ð Þ2 þ γ21

� 2γ3
ky=kc
� �2 þ γ23

(17)

2.6 The Chase model

Chase’s model is another model commonly used and believed to describe the
low-wavenumber domain better than Corcos’s model, which has the same starting
point with the Ffowcs-Williams model. The normalized wavenumber-frequency
spectrum can be described as

Ŝpp kx; ky;ω
� � ¼ 2πð Þ3ρk2cU3

τ

Φ ωð Þ CMk
2
xK

�5
M þ CT kj j2K�5

T

� �
(18)

where

K2
M ¼ ω� Uckxð Þ2

h2U2
τ

þ kj j2 þ bMδð Þ�2 (19)

K2
T ¼ ω� Uckxð Þ2

h2U2
τ

þ kj j2 þ bTδð Þ�2 (20)

Φ ωð Þ ¼ 2πð Þ2ρ2hU4
τ

3ω 1þ μ2ð Þ CMFM þ CTFTð Þ (21)

FM ¼ 1þ μ2α2M þ μ4 α2M � 1
� �� �

= α2M þ μ2 α2M � 1
� �� �3=2

(22)

FT ¼ 1þ α2T þ μ2 3α2T � 1
� �þ 2μ4 α2T � 1

� �� �
= α2T þ μ2 α2T � 1

� �� �3=2
(23)
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α2M ¼ 1þ bMkcδð Þ�2, α2T ¼ 1þ bTkcδð Þ�2 (24)

μ ¼ hUτ=Uc (25)

CM ¼ 0:0745, CT ¼ 0:0475, bM ¼ 0:756, bT ¼ 0:378, h ¼ 3:0 (26)

2.7 Comparison of models

Figure 1 shows the comparison of the above models. In the figure, the parame-
ters used by the Corcos model are γ1 = 0.116, γ3 = 0.77, the order of Generalized
Corcos model is (P = 1, Q = 4). From the comparison among those models, it can be
seen that the Generalized Corcos model attenuates quickly in the vicinity of the
convective wave number, and its order is adjustable, which can effectively control
the computational accuracy. The model can obtain more accurate prediction results
by adjusting parameters. In addition, the Chase model is considered to be able to
better describe the pressure characteristics of TBL pulsation at low wave number
segment, while other models have some defects at low wave number segment.
However, Corcos model is the most commonly used in practical application.
Because the model is simple in form and has clear physical significance, a simple
calculation formula can usually be obtained when solving the structural vibration
and sound response induced by turbulent boundary layer. It should be noted that
the structure radiated sound predicted by Corcos model tends to be larger at low
wave number.

3. Calculation of vibro-acoustic responses of the wall plate excited
by TBL

Consider a simply supported thin rectangular plate excited by TBL, as shown in
Figure 2. In the figure, Uc is turbulent flow velocity, and the direction of the
incoming flow is parallel to the X-axis. In this chapter, vibro-acoustic responses are
solved by modal superposition method [23].

Figure 1.
A comparison of models for different wavenumber-frequency spectrum of turbulent boundary layer fluctuating
pressure, reproduced from Ref. [23].
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Assume that point s on the plate is excited by a normal force F at points, and the
vibration displacement response at point rcan be calculated by

W r;ωð Þ ¼ H r; s;ωð Þ � F s;ωð Þ (27)

where s = (xo, y0), r = (x, y).
The impulse response H satisfies the following governing equation

D 1þ jηð Þ∇4 �msω
2� �
H r; s;ωð Þ ¼ δ r� sð Þ (28)

The impulse response can be expanded as

H r; s;ωð Þ ¼ ∑
M

m¼1
∑
N

n¼1
Hmn ωð ÞΨmn rð ÞΨmn sð Þ (29)

The modal amplitude of impulse response by using the Galerkin method can be
described as

Hmn ωð Þ ¼ 1
DKmn 1þ jηð Þ �msω2 (30)

3.1 Vibro-acoustic responses of plate solved by spatial domain integration

Cross spectral density of displacement response for any two points on the plate
can be defined as

SWW r1; r2;ωð Þ ¼ ÐS
Ð
SSpp s1 � s2;ωð ÞH ∗ r1; s1;ωð ÞH r2; s2;ωð Þds1ds2

¼ Φpp ωð Þ ∑
M

m¼1
∑
N

n¼1
Hmn ωð Þj j2Ψmn r1ð ÞΨmn r2ð ÞJmn ωð Þ (31)

where

Jmn ωð Þ ¼
ð

S

ð

S
Spp s1 � s2ð ÞΨmn s1ð ÞΨmn s2ð Þ ds1ds2 (32)

In the above equation, Jmn(ω) is called modal excitation term.
When using the Corcos model, the coordinate transformation of the quadruple

integral in the modal excitation term can be obtained

Jmn ωð Þ ¼ 4
S

1
kmkn

J1mn þ J2mn þ
1
km

J3mn þ
1
kn

J4mn

� �
(33)

Figure 2.
Schematic diagram of simply supported thin rectangular plate excited by TBL.
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α2M ¼ 1þ bMkcδð Þ�2, α2T ¼ 1þ bTkcδð Þ�2 (24)

μ ¼ hUτ=Uc (25)

CM ¼ 0:0745, CT ¼ 0:0475, bM ¼ 0:756, bT ¼ 0:378, h ¼ 3:0 (26)

2.7 Comparison of models

Figure 1 shows the comparison of the above models. In the figure, the parame-
ters used by the Corcos model are γ1 = 0.116, γ3 = 0.77, the order of Generalized
Corcos model is (P = 1, Q = 4). From the comparison among those models, it can be
seen that the Generalized Corcos model attenuates quickly in the vicinity of the
convective wave number, and its order is adjustable, which can effectively control
the computational accuracy. The model can obtain more accurate prediction results
by adjusting parameters. In addition, the Chase model is considered to be able to
better describe the pressure characteristics of TBL pulsation at low wave number
segment, while other models have some defects at low wave number segment.
However, Corcos model is the most commonly used in practical application.
Because the model is simple in form and has clear physical significance, a simple
calculation formula can usually be obtained when solving the structural vibration
and sound response induced by turbulent boundary layer. It should be noted that
the structure radiated sound predicted by Corcos model tends to be larger at low
wave number.

3. Calculation of vibro-acoustic responses of the wall plate excited
by TBL

Consider a simply supported thin rectangular plate excited by TBL, as shown in
Figure 2. In the figure, Uc is turbulent flow velocity, and the direction of the
incoming flow is parallel to the X-axis. In this chapter, vibro-acoustic responses are
solved by modal superposition method [23].

Figure 1.
A comparison of models for different wavenumber-frequency spectrum of turbulent boundary layer fluctuating
pressure, reproduced from Ref. [23].
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Assume that point s on the plate is excited by a normal force F at points, and the
vibration displacement response at point rcan be calculated by

W r;ωð Þ ¼ H r; s;ωð Þ � F s;ωð Þ (27)

where s = (xo, y0), r = (x, y).
The impulse response H satisfies the following governing equation

D 1þ jηð Þ∇4 �msω
2� �
H r; s;ωð Þ ¼ δ r� sð Þ (28)

The impulse response can be expanded as

H r; s;ωð Þ ¼ ∑
M

m¼1
∑
N

n¼1
Hmn ωð ÞΨmn rð ÞΨmn sð Þ (29)

The modal amplitude of impulse response by using the Galerkin method can be
described as

Hmn ωð Þ ¼ 1
DKmn 1þ jηð Þ �msω2 (30)

3.1 Vibro-acoustic responses of plate solved by spatial domain integration

Cross spectral density of displacement response for any two points on the plate
can be defined as

SWW r1; r2;ωð Þ ¼ ÐS
Ð
SSpp s1 � s2;ωð ÞH ∗ r1; s1;ωð ÞH r2; s2;ωð Þds1ds2

¼ Φpp ωð Þ ∑
M

m¼1
∑
N

n¼1
Hmn ωð Þj j2Ψmn r1ð ÞΨmn r2ð ÞJmn ωð Þ (31)

where

Jmn ωð Þ ¼
ð

S

ð

S
Spp s1 � s2ð ÞΨmn s1ð ÞΨmn s2ð Þ ds1ds2 (32)

In the above equation, Jmn(ω) is called modal excitation term.
When using the Corcos model, the coordinate transformation of the quadruple

integral in the modal excitation term can be obtained

Jmn ωð Þ ¼ 4
S

1
kmkn

J1mn þ J2mn þ
1
km

J3mn þ
1
kn

J4mn

� �
(33)

Figure 2.
Schematic diagram of simply supported thin rectangular plate excited by TBL.
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Where

J1mn

J2mn

J3mn

J4mn

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼
ðb
0

ða
0

1

a� xð Þ b� yð Þ
b� yð Þ
a� xð Þ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

�

sin kmx � sin kny
cos kmx � cos kny
sin kmx � cos kny
cos kmx � sin kny

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

~Spp x; y;ωð Þdxdy

(34)

~Spp x; y;ωð Þ ¼ exp �γ1kcxð Þ exp �γ3kcyð Þ cos kcxð Þ (35)

When r1 = r2, the auto-spectral density of displacement response can be
obtained as

SWW r;ωð Þ ¼ Φpp ωð Þ ∑
M

m¼1
∑
N

n¼1
Hmn ωð Þj j2Ψ 2

mn rð ÞJmn ωð Þ (36)

As for vibration (V = jωW) the auto-spectral density is

SVV r;ωð Þ ¼ ω2SWW r;ωð Þ

¼ ω2Φpp ωð Þ ∑
M

m¼1
∑
N

n¼1
Hmn ωð Þj j2Ψ 2

mn rð ÞJmn ωð Þ
(37)

So, vibration energy and acoustic radiation energy can be expressed as

V2� � ¼ 1
S

ð ð
SVV x; y;ωð ÞdS

¼ 1
S
ω2Φpp ωð Þ ∑

M

m¼1
∑
N

n¼1
Jmn ωð Þ Hmn ωð Þj j2

(38)

Πr ¼ ρ0c0ω
2Φpp ωð Þ ∑

M

m¼1
∑
N

n¼1
σmnJmn ωð Þ Hmn ωð Þj j2 (39)

According to the definition, the modal average acoustic radiation efficiency
excited by TBL of the thin plate is

σ ¼ ∑M
m¼1∑

N
n¼1σmn Jmn ωð Þ Hmn ωð Þj j2

∑M
m¼1∑

N
n¼1 Jmn ωð Þ Hmn ωð Þj j2 (40)

3.2 Vibro-acoustic responses of plate solved by wavenumber domain
integration

Another approach to obtain the cross spectral density of vibration response is to
solve it directly by using the separable integral property of some turbulent bound-
ary layer pulsating pressure models in the wavenumber domain [24].

The wavenumber-frequency spectrum of TBL satisfies the following relationship

Spp s1 � s2;ωð Þ ¼ 1

2πð Þ2
ð
Spp k;ωð Þ exp �jk s1 � s2ð Þ½ �dk

¼ 1

2πð Þ2
ð ð

Spp kx; ky;ω
� �

exp �j kxξx þ kyξy
� �h i

dkxdky
(41)
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where s1 � s2 ¼ ξx; ξy
� �

, k ¼ kx; ky
� �

.

The formula can be obtained by substituting the cross spectral density of the
vibration response

SWW r1; r2;ωð Þ ¼
ð ð

Spp s1; s2;ωð ÞH ∗ r1; s1;ωð ÞH r2; s2;ωð Þds1ds2

¼ 1

2πð Þ2
ð
Spp k;ωð Þ exp �jk s1 � s2ð Þ½ �dk

ð ð
H ∗ r1; s1;ωð ÞH r2; s2;ωð Þds1ds2

¼ 1

2πð Þ2
ð
Spp k;ωð Þdk

ð
H ∗ r1; s1;ωð Þ exp �jks1ð Þds1

ð
H r2; s2;ωð Þ exp jks2ð Þds2

¼ 1

2πð Þ2
ð
Spp k;ωð ÞG ∗ r1; k;ωð ÞG r2; k;ωð Þdk

(42)

where

G r; k;ωð Þ ¼
ð
H r; s;ωð Þ exp jksð Þds

¼ ∑
M

m¼1
∑
N

n¼1
Hmn ωð ÞΨmn rð Þ

ð
Ψmn sð Þ exp jksð Þds

¼ ∑
M

m¼1
∑
N

n¼1
Hmn ωð ÞΨmn rð ÞImn kð Þ

(43)

Imn kð Þ ¼ Ð Ψmn sð Þ exp jksð Þds

¼ 2ffiffiffiffiffi
ab

p
ðb
0

ða
0
sin kmxð Þ sin knyð Þ exp j kxxþ kyy

� �� �
dxdy

¼ 2ffiffiffiffiffi
ab

p � km 1� cos mπð Þ exp jkxa
� �� �

k2x � k2m
�
kn 1� cos nπð Þ exp jkyb

� �h i

k2y � k2n
(44)

Similarly, the spectral density of the vibration velocity can be obtained as

SVV r;ωð Þ ¼ ω2

2πð Þ2
ð
Spp k;ωð Þ G r; k;ωð Þj j2dk

¼ ω2

2πð Þ2 ∑
M

m¼1
∑
N

n¼1
Ψ 2

mn rð Þ Hmn ωð Þj j2
ð
Spp k;ωð Þ Imn kð Þj j2dk

(45)

As for the Corcos model, we can obtain that

ð
Spp k;ωð Þ Imn kð Þj j2dk ¼ 4

S
Φpp ωð Þ 2γ1kcΛm ωð Þ½ � 2γ3kcΓn ωð Þ½ � (46)

where

Λm ωð Þ ¼ 2k2m

ð∞
�∞

1� cos mπð Þ cos kxað Þ
k2x � k2m
� �2

kx � kcð Þ2 þ γ1kcð Þ2
h i dkx (47)
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cos kmx � sin kny

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

~Spp x; y;ωð Þdxdy

(34)

~Spp x; y;ωð Þ ¼ exp �γ1kcxð Þ exp �γ3kcyð Þ cos kcxð Þ (35)

When r1 = r2, the auto-spectral density of displacement response can be
obtained as

SWW r;ωð Þ ¼ Φpp ωð Þ ∑
M

m¼1
∑
N

n¼1
Hmn ωð Þj j2Ψ 2

mn rð ÞJmn ωð Þ (36)

As for vibration (V = jωW) the auto-spectral density is

SVV r;ωð Þ ¼ ω2SWW r;ωð Þ

¼ ω2Φpp ωð Þ ∑
M

m¼1
∑
N

n¼1
Hmn ωð Þj j2Ψ 2

mn rð ÞJmn ωð Þ
(37)

So, vibration energy and acoustic radiation energy can be expressed as

V2� � ¼ 1
S

ð ð
SVV x; y;ωð ÞdS

¼ 1
S
ω2Φpp ωð Þ ∑

M

m¼1
∑
N

n¼1
Jmn ωð Þ Hmn ωð Þj j2

(38)

Πr ¼ ρ0c0ω
2Φpp ωð Þ ∑

M

m¼1
∑
N

n¼1
σmnJmn ωð Þ Hmn ωð Þj j2 (39)

According to the definition, the modal average acoustic radiation efficiency
excited by TBL of the thin plate is

σ ¼ ∑M
m¼1∑

N
n¼1σmn Jmn ωð Þ Hmn ωð Þj j2

∑M
m¼1∑

N
n¼1 Jmn ωð Þ Hmn ωð Þj j2 (40)

3.2 Vibro-acoustic responses of plate solved by wavenumber domain
integration

Another approach to obtain the cross spectral density of vibration response is to
solve it directly by using the separable integral property of some turbulent bound-
ary layer pulsating pressure models in the wavenumber domain [24].

The wavenumber-frequency spectrum of TBL satisfies the following relationship

Spp s1 � s2;ωð Þ ¼ 1

2πð Þ2
ð
Spp k;ωð Þ exp �jk s1 � s2ð Þ½ �dk

¼ 1

2πð Þ2
ð ð

Spp kx; ky;ω
� �

exp �j kxξx þ kyξy
� �h i

dkxdky
(41)
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where s1 � s2 ¼ ξx; ξy
� �

, k ¼ kx; ky
� �

.

The formula can be obtained by substituting the cross spectral density of the
vibration response
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¼ 1

2πð Þ2
ð
Spp k;ωð Þ exp �jk s1 � s2ð Þ½ �dk

ð ð
H ∗ r1; s1;ωð ÞH r2; s2;ωð Þds1ds2

¼ 1

2πð Þ2
ð
Spp k;ωð Þdk

ð
H ∗ r1; s1;ωð Þ exp �jks1ð Þds1
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H r2; s2;ωð Þ exp jks2ð Þds2

¼ 1
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Spp k;ωð ÞG ∗ r1; k;ωð ÞG r2; k;ωð Þdk

(42)

where

G r; k;ωð Þ ¼
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H r; s;ωð Þ exp jksð Þds

¼ ∑
M

m¼1
∑
N

n¼1
Hmn ωð ÞΨmn rð Þ

ð
Ψmn sð Þ exp jksð Þds

¼ ∑
M

m¼1
∑
N

n¼1
Hmn ωð ÞΨmn rð ÞImn kð Þ

(43)

Imn kð Þ ¼ Ð Ψmn sð Þ exp jksð Þds

¼ 2ffiffiffiffiffi
ab

p
ðb
0

ða
0
sin kmxð Þ sin knyð Þ exp j kxxþ kyy

� �� �
dxdy

¼ 2ffiffiffiffiffi
ab

p � km 1� cos mπð Þ exp jkxa
� �� �

k2x � k2m
�
kn 1� cos nπð Þ exp jkyb

� �h i

k2y � k2n
(44)

Similarly, the spectral density of the vibration velocity can be obtained as

SVV r;ωð Þ ¼ ω2

2πð Þ2
ð
Spp k;ωð Þ G r; k;ωð Þj j2dk

¼ ω2

2πð Þ2 ∑
M

m¼1
∑
N

n¼1
Ψ 2

mn rð Þ Hmn ωð Þj j2
ð
Spp k;ωð Þ Imn kð Þj j2dk

(45)

As for the Corcos model, we can obtain that

ð
Spp k;ωð Þ Imn kð Þj j2dk ¼ 4

S
Φpp ωð Þ 2γ1kcΛm ωð Þ½ � 2γ3kcΓn ωð Þ½ � (46)

where

Λm ωð Þ ¼ 2k2m
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�∞

1� cos mπð Þ cos kxað Þ
k2x � k2m
� �2

kx � kcð Þ2 þ γ1kcð Þ2
h i dkx (47)
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Γn ωð Þ ¼ 2k2n

ð∞
�∞

1� cos nπð Þ cos kyb
� �

k2y � k2n
� �2

k2y þ γ3kcð Þ2
h i dky (48)

According to the residue theorem, Λm(ω) and Γn(ω) can be further simplified as

Λm ωð Þ ¼ 2k2m

ð∞
�∞

1� cos mπð Þ cos kxað Þ
k2x � k2m
� �2

kx � kcð Þ2 þ γ1kcð Þ2
h i dkx

¼ 2πk2m
a

4k2m km þ kcð Þ2 þ γ1kcð Þ2
h iþ a

4k2m km � kcð Þ2 þ γ1kcð Þ2
h i

8<
:

þ 1� cos mπð Þ exp � jþ γ1ð Þkca½ �
2γ1kcð Þ k2c 1� jγ1ð Þ2 � k2m

h i2 þ 1� cos mπð Þ exp j� γ1ð Þkca½ �
2γ1kcð Þ k2c 1þ jγ1ð Þ2 � k2m
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Vibration energy and sound radiation energy are
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Compare the above two equations, it can be seen that
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Finally, the modal average acoustic radiation efficiency can be obtained as
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By observing the above equation, it can be found that only the modal excitation
term in the modal averaged radiation efficiency is related to turbulence.

Figure 3 shows the comparison of two methods for calculating the modal aver-
aged radiation efficiency excited by TBL. The size of the plate is 1.25 � 1.1 m, and
the thickness is 4 mm, structural loss factor of aluminum plate is 1%, mach number
is 0.5. Obviously, the accuracy of the two methods is equal. Computation speed of
analytical method is much faster than integral method, but its range of application
has limitations. Only the Corcos model and Efimtsov model can be used to separate
integrals in the wave number domain.

The comparison of measured and predicted velocity spectral density and the
radiated sound intensity of a plate (a � b = 0.62 � 0.3 m, and the thickness is
1.1 mm) is shown in Figure 4, which is only compared in narrow band. In this
study, the loss factor of the plate assumes as 1.5%. The measured and predicted
results for radiated sound intensity and auto spectrum of velocity have a good
agreement with the frequency ranges from 100 to 3500 Hz. The agreement of the
two type curves provides solid verification to test measured and predicted results.

3.3 Characteristic frequency in hydrodynamic coincidence

When the velocity of bending wave in the wall plate is close to the sound
velocity in the air, the sound radiation efficiency reaches the maximum value. The
corresponding frequency is the so-called critical frequency, and its expression is

f c ¼
c20
2π

ffiffiffiffiffiffi
ms

D

r
(55)

In the case of flow, when the velocity of flexural wave propagation in the wall
plate is close to the turbulent convection velocity, the wall plate is most excited by
the fluctuating pressure of TBL. The corresponding frequency is defined as the
hydrodynamic coincidence frequency

Figure 3.
Comparison of calculation methods of the modal averaged radiation efficiency excited by TBL. Reproduced
from Ref. [23].
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Similarly, for order (m, n) mode, its critical frequency and hydrodynamic coin-
cidence frequency are

f c,mn ¼
c0
2π

kmn (57)

f h,mn ¼
Uc

2π
kmn (58)

In conclusion, the relationship between critical frequency and hydrodynamic
coincidence frequency can be summarized as follows

f h ¼ M2
c � f c (59)

f h,mn ¼ Mc � f c,mn (60)

In the above two equations, Mc = Uc/c0 is mach number. Subsonic turbulence is
generally considered, so the hydrodynamic coincidence frequency is always less
than the critical frequency of the plate. It is important to note that the characteris-
tics of frequency is a reference value which is based on the infinite plate hypothesis.
Actually, the characteristics frequency of the limited plate slightly higher than a
reference value. In addition, for the transverse flow problem, modal power line
frequency can be thought of only related to the transverse mode. That is to say,
fh,mn ≈ Uckm/2π, where km = mπ/a is lateral modal wave number.

Figure 4.
Measured and predicted velocity auto spectrum and the radiated sound intensity of the plate with the size of
a � b = 0.62 � 0.3 m. Narrow band analysis in per Hz. Flow speed 86 m/s.
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4. Effect of flow velocity and structural damping on the acoustic
radiation efficiency

4.1 Effect of convection velocity on the modal averaged radiation efficiency

The specific parameters and dimensions used in the calculation are listed in
Table 1.

The increment of vibration power and acoustic radiation energy are different
with the increase of the velocity, which indicates that the changing of velocity can
affect the modal averaged radiation efficiency. The modal averaged radiation effi-
ciency of the aluminum plate at three flow velocities (Mc = 0.5; 0.7; 0.9) is shown in
Figure 5. It can be seen that when the Mc increases from 0.5 to 0.9, the modal
averaged radiation efficiency will increase by 3–7 dB below the hydrodynamic
coincidence frequency. And the corresponding hydrodynamic coincidence fre-
quencies (fh) are 1482, 2905, and 4802 Hz, respectively. The results show that the
modal averaged radiation efficiency increases in the frequency range below the
hydrodynamic coincidence frequency. The increase of the modal averaged radiation
efficiency indicates that with the increase of flow velocity, the increment of the
radiated sound power is larger than that of the mean square velocity.

The phenomenon that the modal averaged radiation efficiency increases with
the flow velocity can be explained by the hydrodynamic coincidence effect. For
the lateral incoming flow problem, the hydrodynamic coincidence is mainly

Plate length a 1.25 m

Plate width b 1.1 m

Plate thickness h 0.002 m

Plate surface density ms 5.4 kg/m2

Plate bending stiffness D 52 Nm

Air density ρ0 1.21 kg/m3

Sound speed c0 340 m/s

Table 1.
Parameters used in calculation.

Figure 5.
Effect of the convective Mach number on the modal averaged radiation efficiency of the finite aluminum plate.
Reproduced from Ref. [23].
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determined by the lateral modal trace speed and the convection velocity. When the
bending wave velocity of the lateral mode is the same as the turbulent flow velocity
(Uc = 2πf/km), the corresponding hydrodynamic coincidence frequency is f =mUc/2a.
Thus a higher convection velocity at the same frequency will lead the TBL excita-
tion to coincide with a lower order lateral mode.

The reason for above phenomenon may be further explored through the modal
excitation terms. As illustrated in Figure 6, the lateral modal excitation term
(10log10Λm(ω)) is plotted with the lateral mode number (m) and frequency for
different flow velocity (Mc). In the figure, the peak of the lateral mode excitation
term corresponds to the maximum excitation and its position depends on the
hydrodynamic coincidence frequency. The black bold lines in the two sub graphs
are the positions where the hydrodynamic coincidence occurs. It can be seen that
the slope of the hydrodynamic coincidence line is inversely proportional to the flow
velocity, and the higher the velocity is, the lower the order of a certain frequency is.
In addition, the lateral modes near the hydrodynamic coincidence line are all
strongly excited. As the frequency increases, the number of these modes increases,
but the amplitude of their corresponding mode excitation term decreases. Below the

Figure 6.
Variation of the lateral modal excitation term with the lateral mode number and the frequency of a finite
aluminum plate. (a) Convective Mc = 0.5 and (b) convective Mc = 0.9. Reproduced from Ref. [13].
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critical frequency, a lower order lateral mode always has higher modal averaged
radiation efficiency than that of a higher order lateral mode with the same n, since
the modal critical frequency moves to lower frequency. So plate with higher flow
velocity is supposed to have higher modal averaged radiation efficiency.

As an example, the hydrodynamic coincidence lines for different flow velocity
(Mc) and the modal radiation efficiencies of mode (m, 1) are illustrated in Figure 7.
The black solid lines in the figure are the hydrodynamic coincidence line
corresponding to the mode order and frequency. It can be seen that at a certain
frequency, the modal averaged radiation efficiency of the hydrodynamic coinci-
dence modes at higher velocity is always greater than that of the low velocity. In a
word, an increase of the flow velocity will increase the modal radiation efficiency of
the coincided mode, and then results in the increase of the modal averaged radiation
efficiency. Besides, owing to the low pass property of the modal excitation term, the
increase of the modal radiation efficiency is restrained above the hydrodynamic
coincidence frequency. As a consequence, the modal averaged radiation efficiency
is great affected by the flow velocity which only occurs below the hydrodynamic
coincidence frequency.

4.2 Effect of structural damping on modal averaged radiation efficiency

The modal averaged radiation efficiency changes with structural loss factors for
different flow velocity (Mc), as shown in Figure 8. The reference value is calculated
according to Leppington’s formula [25]. Though Leppington’s formula is widely
used in statistical energy analysis, it does not take the flow and structural damping
into account. Figure 8 indicates that an increase of the structural loss factor will
increase the modal averaged radiation efficiency under the critical frequency, but
the increments are different for different flow velocity. It is found that the modal
averaged radiation efficiency is not sensitive to the change of structure loss factor at
low Mach number. For example, for a typical high-speed train (Mc = 0.25), the
increased modal averaged radiation efficiency is less than 2 dB in the frequency
band below the critical frequency when the structural loss factor increases from 1 to
4%. In the case of high flow velocity, the effect of structure loss factor on the modal
averaged radiation efficiency is much obvious. When Mc = 0.7, the modal averaged
radiation efficiency will increase by about 5 dB if the structural loss factor has the
same increment. The results show that the influence of structural damping on the

Figure 7.
Hydrodynamic coincidence lines and variation of the modal radiation efficiency with the lateral mode number
and the frequency of a finite aluminum plate. m varies, n = 1. Reproduced from Ref. [13].
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critical frequency, a lower order lateral mode always has higher modal averaged
radiation efficiency than that of a higher order lateral mode with the same n, since
the modal critical frequency moves to lower frequency. So plate with higher flow
velocity is supposed to have higher modal averaged radiation efficiency.
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coincidence frequency.
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according to Leppington’s formula [25]. Though Leppington’s formula is widely
used in statistical energy analysis, it does not take the flow and structural damping
into account. Figure 8 indicates that an increase of the structural loss factor will
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the increments are different for different flow velocity. It is found that the modal
averaged radiation efficiency is not sensitive to the change of structure loss factor at
low Mach number. For example, for a typical high-speed train (Mc = 0.25), the
increased modal averaged radiation efficiency is less than 2 dB in the frequency
band below the critical frequency when the structural loss factor increases from 1 to
4%. In the case of high flow velocity, the effect of structure loss factor on the modal
averaged radiation efficiency is much obvious. When Mc = 0.7, the modal averaged
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modal averaged radiation efficiency is related to the flow velocity, and the influence
of structural damping can be enhanced by increasing the flow velocity.

The effect of structural damping on the modal averaged radiation efficiency can
be qualitatively explained by Eq. (61)

σav ¼
Qt

ρ0c0S V2� � ¼ ∑∞
m¼1∑

∞
n¼1σmn ωð ÞJmn ωð Þ Vmn ωð Þj j2

∑∞
m¼1∑

∞
n¼1 Jmn ωð Þ Vmn ωð Þj j2 (61)

Figure 8.
Effect of the structural loss factor on the modal averaged radiation efficiency of a finite aluminum plate.
(a) Convective Mc = 0.25 and (b) convective Mc = 0.7. Reproduced from Ref. [13].
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Eq. (61) shows that the modal averaged radiation efficiency is equivalent to the
weighted average function of the modal velocity response, and the weighted coef-
ficient is the modal averaged radiation efficiency. In the frequency band below the
critical frequency, the radiation efficiency of each mode varies in the range from
0 to 1. Due to this weighted effect of Eq. (61), the vibration energy (denominator in
the equation) decreases more effectively than the acoustic radiation power (mole-
cule in the equation). Thus the radiation efficiency increases in the frequency band
below the critical frequency. However, the phenomenon that the radiation effi-
ciency of a damped plate is enlarged with increment of flow velocity has not yet
been clearly interpreted.

Moreover, it is observed that the effect of structural damping on modal averaged
radiation efficiency has a good agreement with the research of Kou [23] at low flow
velocity. In their work, it is shown that the modal averaged radiation efficiency of
heavily damped structures is sensitive to the change of structural loss factor without
turbulent flow. It also implies that Leppington’s equation is not applicable to the
prediction of modal averaged radiation efficiency of damped structures at high flow
velocity.

5. Conclusion

This chapter studies the vibro-acoustic characteristics of the wall plate structure
excited by turbulent boundary layer (TBL). Based on the modal expansion and
Corcos model, the formulas for calculating the modal averaged radiation efficiency
are derived. The results indicate that an increment of flow rate will increase the
vibration energy and the radiated sound energy of the structure. However, the
amplitude of two cases varies with the velocity are not the same, and when the
velocity increases, the acoustic radiation efficiency will increase below the hydro-
dynamic coincidence frequency range. The main reason for this phenomenon is that
a higher convection velocity will coincide with lower order modes which have
higher radiation efficiencies.

The modal averaged radiation efficiency increases with the increase of structural
damping below the critical frequency band. The larger the flow rate, the more
significant the effect of structural damping on acoustic radiation efficiency. In the
case of low flow velocity, the modal averaged radiation efficiency is not sensitive to
the change of structural damping. The structural damping increases from 1 to 4%,
and the increase of modal averaged radiation efficiency less than 2 dB. In the case of
high flow rate, the modal averaged radiation efficiency will increase by 5 dB when
the increment of the structural damping is from 1 to 4%.
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Corcos model, the formulas for calculating the modal averaged radiation efficiency
are derived. The results indicate that an increment of flow rate will increase the
vibration energy and the radiated sound energy of the structure. However, the
amplitude of two cases varies with the velocity are not the same, and when the
velocity increases, the acoustic radiation efficiency will increase below the hydro-
dynamic coincidence frequency range. The main reason for this phenomenon is that
a higher convection velocity will coincide with lower order modes which have
higher radiation efficiencies.

The modal averaged radiation efficiency increases with the increase of structural
damping below the critical frequency band. The larger the flow rate, the more
significant the effect of structural damping on acoustic radiation efficiency. In the
case of low flow velocity, the modal averaged radiation efficiency is not sensitive to
the change of structural damping. The structural damping increases from 1 to 4%,
and the increase of modal averaged radiation efficiency less than 2 dB. In the case of
high flow rate, the modal averaged radiation efficiency will increase by 5 dB when
the increment of the structural damping is from 1 to 4%.
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Chapter 3

Roughness Effects on Turbulence
Characteristics in an Open
Channel Flow
Abdullah Faruque

Abstract

A comprehensive study was carried out to understand the effects of roughness on
the turbulence characteristics of flow in an open channel and would be presented in
this chapter. Tests were conducted with four different types of bed surface conditions
(an impermeable smooth bed, impermeable rough bed, permeable sand bed and an
impermeable bed with distributed roughness) and at two different Reynolds number
(Re = 47,500 and 31,000). The variables of interest include the mean velocity, turbu-
lence intensity, Reynolds shear stress, shear stress correlation and higher-order
moments. Quadrant decomposition was also used to extract the magnitude of the
Reynolds shear stress from the turbulent bursting events. The effect of bed roughness
on the turbulence characteristics can be seen throughout the depth of flow and thus
dispute the ‘wall similarity hypothesis’. In comparison to other roughness, distributed
roughness shows the greatest effect on both streamwise and vertical turbulence
intensities. Velocity triple products that reflects the transportation of turbulent
kinetic energy is also seen to be affected by roughness of the channel bed with a
variation of 200–300% compared to the flow over smooth bed. To analyze the
turbulent bursting events, quadrant decomposition tools were used and found that
the roughness affected heavily in the production of extreme turbulent events. The
increases of the intensity and frequency of this turbulent burst causes the increase of
instantaneous Reynolds shear stress. Transport of the sediment, pollutant suspension
from the channel bed, changing the composition of the nutrient in the flow, sustain-
ability of the benthic organisms, entrainment and exchange of energy and momen-
tum are all influenced by this change of Reynolds shear stress. The sand used to form
the various bed roughness conditions is same but found that the effect on different
turbulence characteristics are different for different roughness. This is a strong indi-
cation that the geometric formation of the roughness is the cause of the differences in
turbulence characteristics for different roughness formed by the same sand grain.

Keywords: turbulence, open channel flow, roughness, Reynolds shear stress,
quadrant analysis, higher-order moment

1. Introduction

1.1 Open channel flow: general

Open channel flow comprises a sheared boundary layer like flow [1]. It is in
utmost interest for the engineers and researchers to understand the structure and
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dynamics of the open channel flow. Numerical modeling and laboratory experi-
ments are two tools used by the researchers to explain the sediment transport,
resuspension, formation of channel bed, entrainment in the flow and the exchange
of energy and momentum in an open channel flow. Turbulence affects the hori-
zontal and vertical transfer of energy and momentum and causes disruption to
nutrition/oxygen utilization rates of some benthic organisms. Turbulent mixing
increases with the increment of current speed and enhances the transport of phy-
toplankton. There were lot of studies with the explanation of mechanism of the
above-mentioned phenomena but there are still a lot of unanswered questions
and dispute. As indicated by [2] that a significant modulation of turbulence can be
the result of average bed particle volume fractions as low as 10�4. The other
contribution factors to the modulation of turbulence are the shape, size and
arrangement of bed particles. The research in open channel turbulent flow is
much less comparing the vast amount of research done on turbulent boundary layer
and pipe flow. Although there are significance in engineering application for the
flow over rough surfaces but research study on turbulent flow over smooth surfaces
[3–9] in both form of experimental and numerical since 1970 superseded the
research on flow over rough surfaces. As research grows on the flows over rough
surfaces but remains to be the Achilles heel of turbulent research [10]. There are
basic differences between the flow in open channel and boundary layer due to
the presence of the free surface and channel aspect ratio in an open channel flow
and always debatable among researchers to use turbulent boundary layer data
for modeling open channel flow [11]. Formation and enhancement of secondary
currents occur due to the presence of the free surface and the side walls of the
open channel. Free surface also dampens the vertical velocity fluctuations.

1.2 Open channel flow: effect of roughness

The flow progression from a developing state to a fully developed condition was
studied by [12]. They have observed that for the case of a section with fully devel-
oped flow and the aspect ratio b/d ≥ 3, the boundary layer extends to the surface of
the water. At the channel centerline and near free surface, the velocity profile does
not dip even for channel aspect ratio as low as b/d = 3. As discussed earlier about the
differences between the flow in open channel and turbulent boundary due to the
existence of free surface, [13] observed similarity on the velocity field due to the
effect of roughness in a zero-pressure gradient turbulent boundary layer. The for-
mation of secondary currents in an open channel flow is related to the aspect ratio
(width/depth ratio of flow, b/d) and [7] noted the velocity-dip phenomenon for b/
d < 5 where the measurement of maximum velocity on the centerline of a flume are
seen to be below the free surface. In Ref. [14] indicated that the streamwise mean
velocity profiles follow the well-known logarithmic law for the smooth surface, and
with an appropriate shift, for the rough surface. In Ref. [15] observed that wall
roughness led to higher turbulence levels in the outer region of the boundary layer.
In Ref. [13] noted that roughness enhances the levels of the turbulence intensities
over most of the flow.

Particle motion near a solid boundary causing sediment deposition and entrain-
ment is influenced by the coherent structures near the wall as noted by [16] in their
study of the particle behavior in the turbulent boundary layer. The generation of
high-speed regions by vortices in the viscous layer sweeping along the wall causes
particles pushing out of the way [16]. In Ref. [17] reported that for locations above
the roughness sublayer, the distributions of the second-order turbulent stresses are
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similar to the smooth-wall distributions. In Ref. [13] noted that roughness enhances
the levels of the Reynolds shear stress over most of the flow. The specific geometry
of the roughness elements causes significant enhancement to the levels of the
Reynolds stresses as stated by [18]. The enhancement to the levels of the Reynolds
stresses does not contain near the bed only but progresses over most of the flow
creating a stronger interaction between the regions of flow (inner and outer) than
would be implied by the wall similarity hypothesis.

In case of the three-dimensional flow (when b/d ≤ 5) [7] predicted a reversal of
the sign of the Reynolds shear stress (�uv) from positive to negative at the location
closer to the free surface. Correlation coefficient of the Reynolds shear stress is
defined as R ¼ �uv

u� v

� �
and is an indicator of the degree of similarity of turbulence-uv.

The turbulence intensity in streamwise direction (u) and normal to the bed (v) is
used to non-dimensionalize the Reynolds shear stress (�uv). The correlation coef-
ficient of the Reynolds stress only required the turbulence in streamwise and nor-
mal to the bed direction and [7] emphasized that the correlation coefficient of the
Reynolds stress is very important because the estimation of the friction velocity is
not required. The variation of R as stated by [7] is that after monotonous increment
with respect to y/d in the region closer to the bed (y/d < 0.1) decreases as one
moves away from near bed to the free-surface region. R attains a near constant
value in the range of 0.4–0.5 for the middle portion of the flow depth (0.1 ≤ y/d
≤ 0.6). Properties of the mean flow in an open channel and the bed roughness have
no effect on the value of R as noted by [7] and called the distribution of R universal.
For an open channel flow [19] noted that the value of Reynolds shear stress
increases to a maximum at the location closer to the bed and decreases after that.
The researchers [19] explained that for the flow over smooth wall, the above
mentioned variation of Reynolds shear stress is the effect of viscosity, whereas for
the flow over rough bed, the emerging mechanisms for momentum extraction in
the existing roughness sublayer is responsible. They blamed the lower value of
aspect ratio that created secondary currents for the contradiction in the character-
istics of the Reynolds stress with respect to the Reynolds number variation.

In Ref. [17] reported that the relative contributions of sweep and ejection
events within the sublayer showed that sweep events provide the dominant
contribution to the Reynolds shear stress within this region. In Ref. [13] noted that
triple correlations and turbulence diffusion were strongly modified by the surface
roughness. In Ref. [18] noted that surface roughness significantly enhances the
levels of the turbulence kinetic energy, and turbulence diffusion in a way that
depends on the specific geometry of the roughness elements. In Ref. [8] showed
that the wall condition affects the variation of the triple products and the effects are
not restrained to the near wall but extended to the full depth of flow. Ejection
events shown clear dominance over other events for the full depth of the flow as
noted by [8] and they also noted significant variation of ejection events with respect
to bed roughness. To compare the effect of rough wall with smooth wall on the
magnitude of the extreme events, they did the quadrant decomposition of the
instantaneous velocity and found much higher magnitude for the flow over
rough bed compared to the smooth wall flow. This is an indication of the effect of
roughness propagating into the full depth of flow and not constraint to the region
closer to the bed. Quadrant analysis is also done by [11] to compare the turbulent
structures of open channel flow with the same in boundary layer flow. They found
that the turbulent structures are very similar if all turbulent events are included in
the analysis but found very significant difference if only the extreme events are
used in analysis.
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similar to the smooth-wall distributions. In Ref. [13] noted that roughness enhances
the levels of the Reynolds shear stress over most of the flow. The specific geometry
of the roughness elements causes significant enhancement to the levels of the
Reynolds stresses as stated by [18]. The enhancement to the levels of the Reynolds
stresses does not contain near the bed only but progresses over most of the flow
creating a stronger interaction between the regions of flow (inner and outer) than
would be implied by the wall similarity hypothesis.

In case of the three-dimensional flow (when b/d ≤ 5) [7] predicted a reversal of
the sign of the Reynolds shear stress (�uv) from positive to negative at the location
closer to the free surface. Correlation coefficient of the Reynolds shear stress is
defined as R ¼ �uv

u� v

� �
and is an indicator of the degree of similarity of turbulence-uv.

The turbulence intensity in streamwise direction (u) and normal to the bed (v) is
used to non-dimensionalize the Reynolds shear stress (�uv). The correlation coef-
ficient of the Reynolds stress only required the turbulence in streamwise and nor-
mal to the bed direction and [7] emphasized that the correlation coefficient of the
Reynolds stress is very important because the estimation of the friction velocity is
not required. The variation of R as stated by [7] is that after monotonous increment
with respect to y/d in the region closer to the bed (y/d < 0.1) decreases as one
moves away from near bed to the free-surface region. R attains a near constant
value in the range of 0.4–0.5 for the middle portion of the flow depth (0.1 ≤ y/d
≤ 0.6). Properties of the mean flow in an open channel and the bed roughness have
no effect on the value of R as noted by [7] and called the distribution of R universal.
For an open channel flow [19] noted that the value of Reynolds shear stress
increases to a maximum at the location closer to the bed and decreases after that.
The researchers [19] explained that for the flow over smooth wall, the above
mentioned variation of Reynolds shear stress is the effect of viscosity, whereas for
the flow over rough bed, the emerging mechanisms for momentum extraction in
the existing roughness sublayer is responsible. They blamed the lower value of
aspect ratio that created secondary currents for the contradiction in the character-
istics of the Reynolds stress with respect to the Reynolds number variation.

In Ref. [17] reported that the relative contributions of sweep and ejection
events within the sublayer showed that sweep events provide the dominant
contribution to the Reynolds shear stress within this region. In Ref. [13] noted that
triple correlations and turbulence diffusion were strongly modified by the surface
roughness. In Ref. [18] noted that surface roughness significantly enhances the
levels of the turbulence kinetic energy, and turbulence diffusion in a way that
depends on the specific geometry of the roughness elements. In Ref. [8] showed
that the wall condition affects the variation of the triple products and the effects are
not restrained to the near wall but extended to the full depth of flow. Ejection
events shown clear dominance over other events for the full depth of the flow as
noted by [8] and they also noted significant variation of ejection events with respect
to bed roughness. To compare the effect of rough wall with smooth wall on the
magnitude of the extreme events, they did the quadrant decomposition of the
instantaneous velocity and found much higher magnitude for the flow over
rough bed compared to the smooth wall flow. This is an indication of the effect of
roughness propagating into the full depth of flow and not constraint to the region
closer to the bed. Quadrant analysis is also done by [11] to compare the turbulent
structures of open channel flow with the same in boundary layer flow. They found
that the turbulent structures are very similar if all turbulent events are included in
the analysis but found very significant difference if only the extreme events are
used in analysis.
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2. Experimental setup

2.1 Open channel flume

A 9-m long open channel flume at the University of Windsor with a rectangular
cross-section dimension of 1100 mm � 920 mm is used to perform the experiment.
Figure 1 shows the schematic of the experimental setup with open channel flume. A
squire cross-section dimension of 1.2 m and depth of 3 m header tank is placed at the
beginning of the flume. The depth of flow for this series of experiments are kept to
100 mm, eventually achieving the aspect ratio (width/depth ratio of flow, b/d) of 11.
Choice of this aspect ratio is based on the expectation that the generation of the
secondary current will be minimum and the flow can be a representation of two-
dimensional flow [7]. Two centrifugal pumps of 15 horsepower capacity each are
used to recirculate the water. Tempered transparent glass materials are used to build
the sidewalls and bottom of the flume and will enable the LDA (laser Doppler
anemometer) to measure the instantaneous velocity. There were many previous
studies [20–21] confirmed the quality of the flow of this permanent facility. The
flume has an adjustable slope mechanism at the bottom but was kept horizontal for
this series of test. 720 and 450 GPM are the two constant flow rate used for the tests.

2.2 Test conditions to study the effect of roughness

One hydraulically smooth and three characteristically different rough surfaces
are used in this study to capture and understand the open channel flow character-
istics. Figure 2a shows the hydraulically smooth bed condition made up by a
polished aluminum plate spanning full width of the flume. Sand composed of
uniform particles with gradation characteristics as shown in Table 1 is used to
create the three different rough surfaces. Four different types of bed surface condi-
tions were used in this study. Figure 2b shows the ‘distributed roughness’ rough
surface, Figure 2c shows the ‘continuous roughness’ rough surface and Figure 3
shows the ‘natural sand bed’ rough surface. A 18 mm wide sand strip is glued on top
of the polished aluminum plate spanning full width of the flume alternate by a
19 mm wide smooth strip to generate the distributed roughness. The same sand
grain is glued on top of the entire polished aluminum plate spanning full width of
the flume to generate the continuous roughness. Natural sand bed condition is
consist of 3.7 m long 200 mm thick uniform sand of the same characteristics

Figure 1.
Schematic of the open channel flume and experimental setup.
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spanning full width of the flume. Special care had been taken in maintaining the
flow condition in such a way that there were no sand movement in any period of
time of running the test. As a precautionary measure of accidental sand movement
and sand entering into the pipe/pump system causing damage to the pump, a sand
trap is constructed at the end of the flume.

Two different flow Reynolds numbers (Re = Uavgd/ν ≈ 47,500 and 31,000)
correspondence to two different Froude numbers (Fr = Uavg/(gd)

0.5 ≈ 0.40 and
0.24) respectively are used for each four bed surface conditions. The parameters
used for Reynolds and Froude number calculations are the average streamwise
velocity (Uavg), nominal depth of flow (d), kinematic viscosity of the fluid (ν) and
gravitational acceleration g. The flow conditions are maintained to be subcritical
(i.e., Froude numbers less than unity) and choose the flow Reynolds numbers
accordingly. The variation of water surface elevation were measured for the test
section and there are less than 1 mm variation of surface water for a streamwise
distance of 600 mm proves that pressure gradient is negligible. In order of condi-
tioning the flow, two sets of flow straighteners are placed at the beginning and end

d50 (mm)
d95/d5
d95/d50
d84/d50
σg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d84=d16

p

Cz ¼ d230= d60d10ð Þ

2.46
1.91
1.34
1.26
1.24
1.00

Table 1.
Gradation measurements of the sand.

Figure 3.
Section of natural sand bed.

Figure 2.
Plan view of different fixed bed condition. (a) Hydraulically smooth surface, (b) Distributed roughness surface,
(c) Continuous roughness surface.
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spanning full width of the flume. Special care had been taken in maintaining the
flow condition in such a way that there were no sand movement in any period of
time of running the test. As a precautionary measure of accidental sand movement
and sand entering into the pipe/pump system causing damage to the pump, a sand
trap is constructed at the end of the flume.

Two different flow Reynolds numbers (Re = Uavgd/ν ≈ 47,500 and 31,000)
correspondence to two different Froude numbers (Fr = Uavg/(gd)

0.5 ≈ 0.40 and
0.24) respectively are used for each four bed surface conditions. The parameters
used for Reynolds and Froude number calculations are the average streamwise
velocity (Uavg), nominal depth of flow (d), kinematic viscosity of the fluid (ν) and
gravitational acceleration g. The flow conditions are maintained to be subcritical
(i.e., Froude numbers less than unity) and choose the flow Reynolds numbers
accordingly. The variation of water surface elevation were measured for the test
section and there are less than 1 mm variation of surface water for a streamwise
distance of 600 mm proves that pressure gradient is negligible. In order of condi-
tioning the flow, two sets of flow straighteners are placed at the beginning and end
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of the flume. A turbulent boundary layer presence is ensured by tripping the flow
using a 3 mm diameter rod at the upstream of the measurement section as shown in
Figure 1. Shape factor of the boundary layer (the ratio of displacement to momen-
tum thickness) for the flow over smooth bed is found for this case as 1.3 and flow
can be considered as fully developed turbulent flow [22]. The instantaneous veloc-
ity measurement is carried out on top of the 60th sand strip for the flow over
distributed roughness bed. To minimize the effect of secondary current, measure-
ments for all flow test conditions are carried out along the flume centerline. Pre-
liminary tests for all bed conditions are carried out to confirm that the flow
condition is fully developed. Table 2 presents the summary of various test
conditions.

2.3 The laser Doppler anemometry

Velocity measurements were done using A commercial two-component fiber-
optic LDA system (Dantec Inc.) which is powered by a 300-mW Argon-Ion laser.
Details of this is avoided for brevity because using the same system in several
previous studies [20, 23, 9]. A Bragg cell and a focusing lens of 500 mm with beam
spacing of 38 mm are the optical elements of the LDA system. A large amount of
data collected (10,000 validated samples at each and every measurement location)
to minimize the uncertainty of the data collection. The data rate varied widely based
on the location of the measurement and ranges from 4 Hz to 65 Hz. The water
used in the test is seeded with hollow spheres with density of 1.13 g/cc with mean
particle size of 12 microns after filtering the water for many days and it is done prior
to the start of the measurement. The seeded particles can stuck on the flume side
wall and can cause extraneous scattered light distributed throughout the illuminat-
ing beams. The glass side wall around the measurement region were cleaned before
each set of measurement to avoid the erroneous data collection due to the
scattered light. Due to the measurement location at the flume centerline, two
scattered beams of the present two-component LDA system measuring the vertical
component of the velocity cannot reach at very close to the bed or very close to
the free surface but measurement of streamwise one-component velocity were
carried out for full depth of flow. Following the footsteps of other researchers
[16, 6] who have successfully tilted the probe by 3o and 2o, respectively, in their
pursuit to collect two dimensional velocity data closer to the wall, the LDA probe
for the present tests was tilted 2o towards the bottom wall to capture data for two-
component velocity measurements at near proximity of the wall.

Test Bed condition d (mm) Re Fr

1 Smooth bed �100 �47,500 �0.40

2 �100 �31,000 �0.24

3 Distributed roughness �100 �47,500 �0.40

4 �100 �31,000 �0.24

5 Continuous roughness �100 �47,500 �0.40

6 �100 �31,000 �0.24

7 Natural sand bed �100 �47,500 �0.40

8 �100 �31,000 �0.24

Table 2.
Summary of test conditions to study the effect of roughness.
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3. Results and discussions

The purpose of the present study is to explain how the roughness and Reynolds
number affect flow characteristics in an open channel flow (OCF). Tests were
conducted with four different types of bed surface conditions (an impermeable
smooth bed, impermeable rough bed, permeable sand bed and an impermeable bed
with distributed roughness) and at two different Reynolds number (Re = 47,500
and 31,000) for each and every bed surface. Instantaneous velocity components are
used to analyze the streamwise mean velocity, turbulence intensity in both
streamwise and vertical direction, Reynolds shear stress including shear stress cor-
relation and higher-order moments including vertical flux of the turbulent kinetic
energy. Quadrant decomposition was also used to extract the magnitude of the
Reynolds shear stress from the turbulent bursting events.

3.1 Mean velocity profiles

3.1.1 Outer coordinates

Figure 4 shows the variation of streamwise component of the velocity with
respect to the depth of flow in outer coordinates. The mean velocity (U) is non-
dimensionalize by the maximum velocity (Ue) and the wall normal distance (y) is
non-dimensionalize by the maximum flow depth (d). As one can see in the inset in
Figure 4 that the velocity profiles of every flow conditions show a slight dip in the
outer region where the location of maximum velocity happened to be occurred
below the free surface with dU/d∂y is negative in the location close to the free
surface. Velocity dip is different with different rough bed conditions with flow over
natural sand bed showing the biggest dip followed by distributed roughness and
continuous roughness bed. However, the flow over smooth surface shows the dip
higher than the flow over distributed roughness and continuous roughness bed.
Effect of bed roughness is very evident at the location close to the bed with velocity
profile for the flow over smooth wall is fuller compared the flow over different
rough beds. The same phenomenon was also observed by [15] and blamed it to the
increment of surface drug due to the effect bed roughness. Comparing the effect of
various type of bed roughness on the streamwise velocity component as one can see
from Figure 4a that distributed roughness profile has the biggest deviation from
smooth bed profile with continuous roughness and natural sand bed shows identical
deviation. The variation of streamwise component of the velocity with respect to
the depth of flow in outer coordinates with respect to the lower Reynolds number is
shown in Figure 4b. The velocity profile characteristics are very similar for the
lower Reynolds number flow compared to the flow for higher Reynolds number
with the exception of flow over natural sand bed, which shows much higher devia-
tion than flow over the bed of continuous roughness. One can correlate this with the
interchange of fluid and momentum across the boundary, which is permeable like
the flow over the bed of natural sand. The subsequent momentum/energy loss due
to the effect of infiltration and corresponding differences on mean velocity reduces
with the increment of Reynolds stress.

3.1.2 Inner coordinates

Figure 5 shows the variation of streamwise component of the velocity with
respect to the depth of flow in inner coordinates. The Clauser method was used to
calculate the friction velocity for flow over smooth and rough bed conditions by

55

Roughness Effects on Turbulence Characteristics in an Open Channel Flow
DOI: http://dx.doi.org/10.5772/intechopen.85990



of the flume. A turbulent boundary layer presence is ensured by tripping the flow
using a 3 mm diameter rod at the upstream of the measurement section as shown in
Figure 1. Shape factor of the boundary layer (the ratio of displacement to momen-
tum thickness) for the flow over smooth bed is found for this case as 1.3 and flow
can be considered as fully developed turbulent flow [22]. The instantaneous veloc-
ity measurement is carried out on top of the 60th sand strip for the flow over
distributed roughness bed. To minimize the effect of secondary current, measure-
ments for all flow test conditions are carried out along the flume centerline. Pre-
liminary tests for all bed conditions are carried out to confirm that the flow
condition is fully developed. Table 2 presents the summary of various test
conditions.

2.3 The laser Doppler anemometry

Velocity measurements were done using A commercial two-component fiber-
optic LDA system (Dantec Inc.) which is powered by a 300-mW Argon-Ion laser.
Details of this is avoided for brevity because using the same system in several
previous studies [20, 23, 9]. A Bragg cell and a focusing lens of 500 mm with beam
spacing of 38 mm are the optical elements of the LDA system. A large amount of
data collected (10,000 validated samples at each and every measurement location)
to minimize the uncertainty of the data collection. The data rate varied widely based
on the location of the measurement and ranges from 4 Hz to 65 Hz. The water
used in the test is seeded with hollow spheres with density of 1.13 g/cc with mean
particle size of 12 microns after filtering the water for many days and it is done prior
to the start of the measurement. The seeded particles can stuck on the flume side
wall and can cause extraneous scattered light distributed throughout the illuminat-
ing beams. The glass side wall around the measurement region were cleaned before
each set of measurement to avoid the erroneous data collection due to the
scattered light. Due to the measurement location at the flume centerline, two
scattered beams of the present two-component LDA system measuring the vertical
component of the velocity cannot reach at very close to the bed or very close to
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3. Results and discussions

The purpose of the present study is to explain how the roughness and Reynolds
number affect flow characteristics in an open channel flow (OCF). Tests were
conducted with four different types of bed surface conditions (an impermeable
smooth bed, impermeable rough bed, permeable sand bed and an impermeable bed
with distributed roughness) and at two different Reynolds number (Re = 47,500
and 31,000) for each and every bed surface. Instantaneous velocity components are
used to analyze the streamwise mean velocity, turbulence intensity in both
streamwise and vertical direction, Reynolds shear stress including shear stress cor-
relation and higher-order moments including vertical flux of the turbulent kinetic
energy. Quadrant decomposition was also used to extract the magnitude of the
Reynolds shear stress from the turbulent bursting events.
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respect to the depth of flow in outer coordinates. The mean velocity (U) is non-
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profile for the flow over smooth wall is fuller compared the flow over different
rough beds. The same phenomenon was also observed by [15] and blamed it to the
increment of surface drug due to the effect bed roughness. Comparing the effect of
various type of bed roughness on the streamwise velocity component as one can see
from Figure 4a that distributed roughness profile has the biggest deviation from
smooth bed profile with continuous roughness and natural sand bed shows identical
deviation. The variation of streamwise component of the velocity with respect to
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shown in Figure 4b. The velocity profile characteristics are very similar for the
lower Reynolds number flow compared to the flow for higher Reynolds number
with the exception of flow over natural sand bed, which shows much higher devia-
tion than flow over the bed of continuous roughness. One can correlate this with the
interchange of fluid and momentum across the boundary, which is permeable like
the flow over the bed of natural sand. The subsequent momentum/energy loss due
to the effect of infiltration and corresponding differences on mean velocity reduces
with the increment of Reynolds stress.

3.1.2 Inner coordinates

Figure 5 shows the variation of streamwise component of the velocity with
respect to the depth of flow in inner coordinates. The Clauser method was used to
calculate the friction velocity for flow over smooth and rough bed conditions by
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fitting the respective mean velocity profiles of different bed conditions with the
classical log law, U+ = κ�1 ln y+ + B – ΔU+. Log-law constants used here are
U+ = U/Uτ, y

+ = yUτ/ν, κ = 0.41, B = 5 and the downward shift of the velocity profile
represented by the roughness function ΔU+ with ΔU+ = 0 for the flow over the bed
which is smooth. The present test data over the smooth bed has better agreement
with the standard log-law represented by the solid line. For the flow over rough
beds there are downward shift of the profile compared to the smooth bed which is
fully expected and clearly visible. The effect of roughness can be measured by the
downward shift of the profile and one can note from Figure 5a that the distributed
roughness shows the highest deviation from the smooth bed with flow over natural
sand bed shows the least deviation and flow over continuous roughness fall in-
between. The variation of streamwise component of the velocity with respect to the

Figure 4.
Streamwise mean velocity profile for flow over different bed condition.
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depth of flow in inner coordinates with respect to the lower Reynolds number is
shown in Figure 5b. The velocity profile characteristics are very similar for the
lower Reynolds number flow compared to the flow for higher Reynolds number.

The magnitude of friction coefficient Cf (Cf = 2(Uτ/Ue)
2) is found to be depen-

dent on the type of bed roughness with distributed roughness has the highest value
followed by the flow over the continuous roughness bed surface and the sand bed.
The magnitude of friction coefficient is also found to be dependent on the Reynolds
number with the reduction of the magnitude of friction coefficient with the incre-
ment of the Reynolds number. The magnitude of Cf is seen to be smaller for the
flow over a permeable bed (natural sand bed) compared to the flow over an imper-
meable bed (distributed and continuous roughness bed). One can correlate this with
the development of finite slip velocity across the permeable boundary layer causing
the reduction of the magnitude of friction compared to the flow over impermeable
layer. In contrary, [24] discovered that for the boundaries with similar rugosity the

Figure 5.
Mean velocity profile in inner coordinates for flow over different bed condition.
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magnitude of friction resistance is seen to be higher for the flow over a permeable
bed compared to the flow over an impermeable bed. Dissipation of energy hap-
pened in the transition zone of the porous permeable medium with added loss of
energy due to interchange of fluid and momentum across the permeable boundary
translated back into the main flow. They commented that the net effect of com-
bined energy loss might be responsible for the higher resistance.

3.2 Turbulence intensity

3.2.1 Streamwise turbulence intensity

The distribution of the streamwise component of the turbulence intensity for
flow over both smooth and rough beds is shown in Figure 6. Computed quantities

Figure 6.
Streamwise turbulence intensity for flow over different bed condition.
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can bring additional uncertainties in relation to the scaling parameters and to avoid
any additional uncertainties, the streamwise turbulent intensity (u) is non-
dimensionalize by the maximum velocity (Ue) and the wall normal distance (y) is
non-dimensionalize by the maximum flow depth (d). Magnitude of the streamwise
component of the turbulence intensity reaches to the maximum at the location very
close to the bed irrespective of the bed condition as one can note from Figure 6a.
The location of maximum streamwise component of the turbulence intensity is
different with different bed conditions. The location of the peak for the flow over
smooth bed is very close to the bed at y/d � 0, whereas the peak for the flow over
rough surfaces varies with the different type of roughness. As one can note from
Figure 6a that the distributed roughness shows the highest peak compared to the
flow over continuous roughness and flow over natural sand bed. The location of the
peak for the flow over rough beds are also varied depending on the type of rough-
ness. The location of the peak for the flow over distributed roughness is at around
y/d � 0.08 whereas the location of the peak for the flow over continuous roughness
and natural sand bed have occurred at the same location of y/d � 0.04 which is a
distance closer to the bed compared to the flow over distributed roughness. Imme-
diately after reaching the peak the streamwise component of the turbulence inten-
sity for flow over both smooth and rough beds reduces but the trend of reduction is
very different for the flow over smooth bed compared to the flow over rough
surfaces. There is a sharp drop of the magnitude of the streamwise component of
the turbulence intensity for the smooth bed before a more constant drop towards
the free surface and reaching a near constant value at y/d � 0.5. For the flow over
rough surfaces the drop of the value towards the free surface after the peak is linear
and attains a near constant value but the location and magnitude of constant value is
different for different rough surfaces (distributed roughness does not attain con-
stant value but variation near free surface is minimal). The location of a near
constant value for the flow over continuous roughness and natural sand bed is at the
same level of y/d � 0.62. The streamwise component of the turbulence intensity
near the free surface also shows the effect of roughness with natural sand bed shows
the highest intensity followed by the distributed roughness with flow over continu-
ous roughness is the lowest. The effect of roughness on the distribution of the
streamwise component of the turbulence intensity is very evident throughout the
flow depth with distributed roughness shows the highest deviation followed by
natural sand bed and continuous roughness compared to the smooth surfaces with
the exception at the location very close to the bed. Although the sand grain used to
create all three bed roughness is of the same gradation characteristics but the
geometry of the roughness formation is different causing the differences in the
distribution of the streamwise component of the turbulence intensity.

The variation of streamwise component of the turbulence intensity with respect
to the depth of flow for the flow conditions to the lower Reynolds number is shown
in Figure 6b. The streamwise component of the turbulence intensity profile char-
acteristics are very similar for the lower Reynolds number flow compared to the
flow for higher Reynolds number with the exception of flow over distributed
roughness bed, which shows much higher deviation than flow over the smooth bed
at the lower Reynolds number. In lower Reynolds number flow, the differences in
streamwise component of the turbulence intensity for continuous roughness and
natural sand bed is negligible.

3.2.2 Vertical turbulence intensity

The distribution of the vertical component of the turbulence intensity for flow
over both smooth and rough beds is shown in Figure 7. Significant effect of
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magnitude of friction resistance is seen to be higher for the flow over a permeable
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translated back into the main flow. They commented that the net effect of com-
bined energy loss might be responsible for the higher resistance.
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The distribution of the streamwise component of the turbulence intensity for
flow over both smooth and rough beds is shown in Figure 6. Computed quantities

Figure 6.
Streamwise turbulence intensity for flow over different bed condition.
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roughness can be seen for lower two third of the depth of flow with the effect
tapered off at the location closer to the surface. Comparing the effect of various
type of bed roughness on the vertical component of the turbulence intensity as one
can see from Figure 7a that distributed roughness profile has the biggest deviation
from smooth bed profile with continuous roughness and natural sand bed shows
identical deviation for most the depth of the flow. For the location closer to the
surface, the flow over natural sand bed shows higher magnitude of the vertical
component of the turbulence intensity compared to any other surfaces. The variation
of the vertical component of the turbulence intensity for flow with respect to the
lower Reynolds number is shown in Figure 7b. The profile characteristics are very
similar for the lower Reynolds number flow compared to the flow for higher Reynolds

Figure 7.
Vertical turbulence intensity for flow over different bed condition.
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number with the exception that there are almost no effect of roughness on the vertical
component of the turbulence intensity for the location closer to the surface.

3.3 Reynolds shear stress

The distribution of the Reynolds shear stress in outer variables for flow over
both smooth and rough beds is shown in Figure 8. Magnitude of the Reynolds shear
stress reaches to the maximum at the location very close to the bed (y/d < 0.2)
irrespective of the bed condition as one can note from Figure 8a. Effect of rough-
ness on the Reynolds shear stress is very evident for lower two third of the depth of
flow with the effect tapered off at the location closer to the surface. The peak for the
flow over rough surfaces varies with the different type of roughness. As one can

Figure 8.
Reynolds shear stress distribution for flow over different bed condition.
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note from Figure 8a that the flow over natural sand bed shows the highest peak
compared to the similar peak for flow over continuous roughness and flow over
distributed roughness. Immediately after reaching the peak the Reynolds shear
stress for flow over both smooth and rough beds reduces but the trend of reduction
is very different for the flow over smooth bed compared to the flow over rough
surfaces. There is a sharp drop of the magnitude of the Reynolds shear stress for the
rough beds compared to the smooth bed before a more constant drop towards the
free surface. For the region further away from the near bed (y/d > 0.2), flow over
distributed roughness shows generation of higher Reynolds shear compared to the
other two rough beds where the generation of the Reynolds shear stress is very
similar. As one can see in Figure 8a that the Reynolds shear stress falls below zero
and becomes negative in the location close to the free surface for flow over both
smooth and rough beds. The location of zero Reynolds shear stress is different for flow
over smooth bed (at y/d� 0.5) compared to the flow over rough beds (y/d� 0.7).
The location of negative Reynolds shear stress for different bed conditions are on
the same location where dU/d∂y is negative as one can see in Figure 4. Few other
researchers [25, 6, 26] found the visible effect of roughness on Reynolds shear stress
for the depth of flow y/d ≈ 0.2–0.3 but the distinct effect of roughness for the present
study can be seen penetrating deep into the flow y/d ≈ 0.7. In case of the study by [3]
where the researcher did not find any effect of roughness (2 mm sand and 9 mm
pebbles) on Reynolds shear stress compared to the flow over smooth bed. The sample
size used for the tests by [3] were rather very small rendered to the unexpected
conclusion. The variation of the Reynolds shear stress for flow with respect to the
lower Reynolds number is shown in Figure 8b. The profile characteristics are very
similar for the lower Reynolds number flow compared to the flow for higher Reynolds
number with one of the exception is that the flow over continuous roughness and flow
over distributed roughness shows the similar highest peak compared to the flow
over natural sand bed. Another exception can be seen as much higher generation of
Reynolds shear stress for the flow over distributed roughness for the region further
away from the near bed (y/d > 0.2) followed by flow over natural sand bed and
continuous roughness.

3.4 Shear stress correlation coefficient

The distribution of the correlation coefficient of the Reynolds shear stress
R ¼ �uv

u� v

� �
for flow over both smooth and rough beds is shown in Figure 9. One can

state that R is the expression of a normalized covariance where degree of similarity
between the streamwise component of the turbulence intensity and the vertical
component of the turbulence intensity is established. The range of the R as
�1 ≤ R ≤ 1 where the value of R = 1 is the indication that the linear relationship
between the streamwise component and the vertical component of the turbulence
intensity is increasing. The value of R = �1 is the indication that the linear relation-
ship between the streamwise component and the vertical component of the turbu-
lence intensity is decreasing. Local statistics of R at a particular location can be an
indication of the presence or absence of any flow structures. The effect of roughness
on the variation of R is mixed compared to the smooth bed flow. As one can see
from Figure 9a that at the location close to the bed (y < 0.3d) the magnitude of R is
very similar for flow over smooth bed compared to the flow over distributed
roughness with much higher value of R for the flow over continuous roughness and
natural sand bed. The effect of roughness for the outer layer (y > 0.3d) is very clear
with value of R is consistently higher for the flow over all three rough beds com-
pared to the flow over smooth bed. One can also see from Figure 9a that the value
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of R increases with the increasing distance from the bed and the trend reverses for
the outer layer (y > 0.3d), indicating the changes of flow structure characteristics
between the near-bed region and outer region. This observation is clearly different
than the characteristics of R noted by [7, 5–6] where [7] called the distribution of R
universal as they did not find any effect of roughness on the value of R. In Ref. [7]
noted an existence of equilibrium region for 0.1 ≤ y/d ≤ 0.6 with a value of
R = 0.4–0.5 in open-channels, pipes, and boundary layers, irrespective of whether
the wall bed is smooth or rough. In the inner region and for the flow over smooth
bed, [6] found a much lower value of R and noted indifference of R value for the
flow over rough and smooth bed for y > 0.15d with the peak values floating to
0.35 � 0.02 range. Comparing the effect of various type of bed roughness on the
correlation coefficient as one can see from Figure 9a that distributed roughness has

Figure 9.
Distribution of correlation coefficient for flow over different bed condition.
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of R increases with the increasing distance from the bed and the trend reverses for
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the higher absolute value of R followed by continuous roughness and natural sand
bed for the upper third of the flow. One can also note from Figure 9a that the value
of R changes sign and become negative for flow over both smooth and rough bed
surfaces at the locations where the Reynolds shear stress and dU/dy is negative. In
the reference [6] also report similar observation. The value of R for the present
study ranges from �0.25 < R < 0.5 and can be considered as small to medium
correlation between the streamwise component and the vertical component of the
turbulence intensity for all bed conditions and full depth of flow. The variation of
the correlation coefficient of the Reynolds shear stress for flow over various bed
surfaces with respect to the lower Reynolds number is shown in Figure 9b. The
profile characteristics are very similar for the lower Reynolds number flow com-
pared to the flow for higher Reynolds number with the exception that the profiles
are more or less flatter for all bed conditions and bottom third of the flow. Another
difference is that for the outer layer (y > 0.3d) flow the magnitude of R is higher for
flow over natural sand bed compared to the flow over continuous roughness.

3.5 Higher-order moments

Velocity triple products u3 , u2v, v3 and v2u are very useful tools used by the
researchers to extract valuable information of the flow structures and the distribu-
tion of different normalized velocity triple products are shown in Figure 10. To
avoid any additional uncertainties by using computed quantities in relation to the
scaling parameters, directly measured parameters of the maximum velocity (Ue)
and the maximum flow depth (d) are used for normalizing all four velocity triple
products. Streamwise flux of the turbulent kinetic energy u2 and v2 is defined by u3

and v2u respectively whereas vertical transport/diffusion of the turbulent kinetic
energy u2 and v2 is defined by u2v and v3 respectively. Transportation in the
direction normal to the bed for the Reynolds shear stress is also defined by v2u.
Ejection-sweep cycle is considered to be the main turbulent motion contributing to
the turbulent transport and velocity triple products are the tools used by the
researchers to explain the ejection-sweep events effectively. Various bed conditions
affect the variation of the different velocity triple products eventually provide
insight about causing turbulent transport mechanisms change/modification.

For the flow condition over the smooth bed and very close to the bed, the
magnitude of u3 is negative and u2v is positive as one can note from Figure 10a and
b indicating a fluid parcel slowly moving upward causing transportation of u
momentum away from the bed representing an motion of ejection type. For the
flow condition over the rough beds and very close to the bed, the magnitude of u3 is
positive with very high comparable value and u2v is negative as one can note from
Figure 10a and b indicating a fast moving fluid parcel acting downwards causing
transportation of u momentum towards the bed representing an motion of sweep
type. Both triple products parameters of u3 and u2v changes sign as one moves away
from bed towards the free surface rendered changes of ejection-sweep cycle. The
change of ejection-sweep cycle as one moving away from the bed is also observed
by [27] and they had related this characteristic to the accompanying streaks of low-
speed produced by the rough bed conditions and modification of the longitudinal
vortices. The magnitude of u3 becomes more negative as one moves further away
from the bed (y/d > 0.08) causing the sweeping events reduced substantially with
the value of u3 fluctuates but stays negative for the depth throughout. The effect of
roughness is also very evident for the value of u3when compared with flow over
smooth bed. The above mentioned differences between the flow over smooth bed
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and rough beds are in complete opposite to the observation of [27–28] who did not
observe much variation at distance y/d > 0.2. For flows over transverse rod rough-
ness, large differences in the variation of u3 were observed by [29] upto to the edge
of the boundary layer. This difference as related by [3] is related to the lack of
formation of long streamwise vortices near the rough wall. Comparing flow over
rough bed conditions with flow over smooth bed, the mechanics of the entrainment
of low momentum fluid at the wall differed as noted by [3]. The variation trend for
of v3(Figure 10c) and u2v (Figure 10b) are very similar but there are exception in

Figure 10.
Distribution of different velocity triple products for flow over different bed condition at Re � 47,500.
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sign that throughout the depth the v3 is positive and much smaller magnitude
(�60%) than u2v. The trend is qualitatively similar if one compare v2u
(Figure 10d) with u3 (Figure 10a) with the exception that the magnitude of v3 is
about 60% less than that of u2v but the magnitude of v2u is much lower (about 20–
25%) comparing magnitude of u3 . In Refs. [6, 8] in their open channel flow exper-
iments and [27–28] in their turbulent boundary layer experiments had also noted a
similar reduction. The lower turbulent intensity in vertical direction is mainly the
reason for the differences between v3 and u2v and v2u and u3 . Comparing the
magnitude of different velocity triple products for the open channel flow with the
turbulent boundary layer flow, one can see the similarity as well as differences for
magnitude and extent of the depth of the flow affected mainly in the outer layer by
the roughness. As one can see from the Figure 10 that the local peak (maxima/
minima) for all normalized velocity triple products are in very similar location for
the flow over smooth wall (≈0.26d). But the location of the peak (maxima/minima)
for all normalized velocity triple products does not vary much with different type of
roughness and occurs at a location of y/d ≈ 0.33 for different rough beds. The
magnitude of various velocity triple products changes in the range of 200–300% as
one can note it from Figure 10when comparing the flow over the smooth bed to the
flow over rough beds. The similar significant decrease/increase of the magnitude of
various velocity triple products in the range of�300% was also noticed by [8] when
comparing the flow over the smooth bed to the flow over dunes. With the exception
of the magnitude of u3 for the flow over distributed roughness, the magnitudes of
the various velocity triple products approach zero for all smooth and rough surfaces
as one moves from the location where the local maximum/minimum level achieved
towards the free surface at y/d > 0.85.

The magnitude of various velocity triple product reaches near-zero at the loca-
tion very close to the free surface irrespective of the bed surface conditions as one
can note from Figure 10 which is a clear indication of significant reduction of
turbulent activity at near free surface. There is another significant finding one can
note from the same figure that the type of bed roughness does not affect the
location of maximum/minimum of various velocity triple product although there is
clear effect of roughness on the magnitude of various velocity triple products. Flow
over distributed roughness shows higher magnitude of various velocity triple prod-
uct comparing with flow over other rough beds followed by very similar magnitude
for flow over continuous roughness and natural sand bed. Turbulent activity at the
near bed (y/d < 0.1) location also seen to be dependent on bed surface conditions.
Flow over smooth bed shows the ejection type activity near bed location whereas
the flow over rough beds show the sweep type activity at the location close to the
bed. Interpolating this scenario to the real life stream or river flow, one can clearly
note the influence of strong ejection/sweeping motion of the fluid parcels to the
resuspension/transport of the bed particles. Ejection type events are very evident
throughout the depth of flow with the exception of the location very close to the
bed with flow over smooth bed only where one can observe some sweeping type of
event. Bed surface conditions clearly affect the strength of the ejection like events
with distributed roughness again shows the highest strength compared to similar
strength from continuous bed roughness and natural sand bed. Figure 11 shows
the variation of same velocity triple products for the flow with respect to lower
Reynolds number. The profile characteristics of all velocity triple products are very
similar for flow with respect to lower Reynolds number compared to the flow with
respect to higher Reynolds number. The differences in magnitude of various veloc-
ity triple products are seen to be reduced in the case of lower Reynolds number flow
comparing the flow over smooth bed to the flow over continuous bed roughness and
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natural sand bed. The value of u3 is also reaches near-zero close to the free surfaces
irrespective of the bed conditions representing a vanishing turbulent activity at that
location.

3.6 Vertical flux of the turbulent kinetic energy

The distribution of the vertical flux of the turbulent kinetic energy described as

Fkv and which is normally measured as 0:5 v3 þ vu2
� �

for a two-dimensional flow [8]

Figure 11.
Distribution of different velocity triple products for flow over different bed condition at Re � 31,000.
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is shown in Figure 12 in outer variables for the flow over both smooth and rough
beds. The LDA used to measure the velocity component is two-dimensional and not
possible to measure the third component of turbulent intensity. An approximate
method as proposed by [30] is used to overcome this shortcoming and the coefficient
is changed from 0.75 to 0.5. The effect of roughness is very evident for the transport
of the turbulent kinetic energy in the vertical direction as one can see from Figure 12.
The effect of roughness is not only confined for near bed but can be seen throughout
the depth of flow. This observation is in direct conflict with the observation of [8]
who in their tests with large-bottomed roughness did not visualize notable differ-
ences in profile for the vertical flux of the turbulent kinetic energy when comparing
open channel flow over smooth bed and rough bed conditions.

Figure 12.
Distribution of vertical flux of the turbulent kinetic energy for flow over different bed condition.
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In Ref. [6] noted that the location of the outer (larger) peak of Fkv is closer to the
wall (albeit slightly) as the roughness effect increases. The maximum value of Fkv is
also noted in Ref. [8] where they found it occurred near the bed for the flow over
rib roughness. As one can note from Figure 12 that there are obvious effect of
roughness on the variation of the vertical flux of the turbulent kinetic energy with
the magnitude of the peak is very different for different type of rough surfaces but
the location of the peak for all rough beds are more or less at around y/d � 0.3. The
differences in magnitude of the vertical flux of the turbulent kinetic energy when
comparing between smooth bed flow and flow over rough beds is a clear indication
that the strength of the vertical flux of the turbulent kinetic energy is very different
for flow over different surfaces. The slope of the variation of Fkv is different
between smooth and rough beds representing difference in loss or gain of turbulent
kinetic energy resulted from turbulent diffusion. Flow over distributed roughness
shows the highest deviation compared to the flow over smooth bed. The vertical
flux of the turbulent kinetic energy approaches near zero value after a peak value
around y/d = 1 at the location near free surface for all bed conditions. Location of
reaching zero value for the vertical flux of the turbulent kinetic energy also varies
with the bed surface condition with flow over different rough beds show zero
values closer to the free surface compared to the flow over smooth bed. Figure 12b
shows the variation of the vertical flux of the turbulent kinetic energy for the flow
with respect to lower Reynolds number. The profile characteristics are very similar
for flow with respect to lower Reynolds number compared to the flow with respect
to higher Reynolds number. The differences in magnitude of Fkv is seen to be
reduced in the case of lower Reynolds number flow comparing the flow over
smooth bed to the flow over continuous bed roughness and natural sand bed.

3.7 Quadrant analysis

In order to extract the magnitude of the Reynolds shear stress related to turbu-
lent bursting events researchers often use quadrant decomposition as a convenient
tool. A hydro dynamically unstable low-speed fluid particle lifted up from the
surface because of the turbulent flow over a fixed bed can be swept away by
comparatively high-speed fluid from the outer layer moving towards the bed sur-
face. All different type of turbulent flow events that eventually contributed in the
four different very important turbulent characteristics closer to the wall can be
described by coupling streamwise and vertical fluctuating velocity components u
and v based on their sign. Four different quadrants formed by using u and v with
proper sign are related to four very important turbulent bursting events. Quadrant 1
represents the bursting effect called as outward interaction where the value of u is
>0 and the value of v is >0. Quadrant 2 represents the bursting effect called as
ejection where the value of u is <0 and the value of v is >0. Quadrant 3 represents
the bursting effect called as inward interaction where the value of u is <0 and the
value of v is <0. Quadrant 4 represents the bursting effect called as sweep where
the value of u is >0 and the value of v is <0.

The contributions from Q2 and Q4 events for different threshold values to the
Reynolds shear stress are shown in Figure 13 with higher Reynolds number
(Re = 47,500). For the flow over rough walls and inclusive of all turbulent
events, it was noted higher magnitude of Q2 and Q4 contributions as shown in
Figure 13a and b compared to the flow over smooth wall for H = 0. The effect of
roughness is not limited to the near-bed region but well progressed into the outer
layer (y/d ≈ 0.7). A local peak can be seen at y/d = 0.1–0.2 for the Q2 and Q4
contributions as one progresses from the bed towards the free surface for the flow
over all rough beds. The peak magnitudes of both of the events eventually reduced
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to a near-zero constant value as flow moves towards the free surface. The location
where the contributions from Q2 and Q4 events attains a near-zero constant value is
not the same but varied with bed conditions. For the smooth bed condition the
distance of the attainment of near-zero constant value is 0.5d from the bed, for the
continuous roughness and sand bed condition the distance is 0.6d from the bed and
for the distributed roughness the distance is 0.75d from the bed. Different rough

Figure 13.
Contribution of different quadrant events to the Reynolds shear stress for flow over different bed condition with
higher Reynolds number.
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bed conditions show different deviation from smooth wall with distributed rough-
ness showing the highest deviation. The maximum deviation comparing the flow
over smooth wall with the flow over rough bed occurs at a depth of around 0.2d
from the bed with distributed roughness shows the highest deviation and continu-
ous roughness and sand bed show almost equal deviation. In Ref. [31] found signif-
icantly higher magnitude of Q2 and Q4 events in the region very close to the bed
but found very similar distribution for the flow over smooth bed and rough beds for
the outer layer.

In order to investigate the contribution of the extreme turbulent events quad-
rant analysis at different threshold levels (H = 2–5) was also carried out. The
respective approach was taken to take care of the contribution of the more energetic
eddies and filtering out the small random turbulent fluctuations. The contributions
from the extreme events whose amplitude exceeds the threshold value of H = 2
are shown in Figure 13c and d. Although due to the change of threshold value from
0 to 2, the number of events occurring corresponding to Q2 and Q4 reduce quite
sharply but the events corresponding to H = 2 produced very large instantaneous
Reynolds shear stress >5:5 uvð Þ, which can potentially influence the sediment
transport in the stream, causing resuspension of pollutant from the bed, bed for-
mation/changes, downstream transportation of nutrients, entrainment and the
exchange of energy and momentum in the flow. The trend of the data at H = 2 is
very close to H = 0, however, the region of the flow depth affected for Q4 events
reduces compared to H = 0. The contributions related to other threshold levels of
H = 2.5–5 are shown in Figure 13e–i and one can observe that the region affected
over the depth of flow for Q4 events reduces with respect to the increase of the
threshold level of H but the affected region goes deep into the outer layer (y� 0.7d)
for the Q2 events even for the value of H as high as 5. The incorporation of
roughness is clearly visible in the increase in both Q2 and Q4 contribution to the
Reynolds shear stress, irrespective of the affected region of the depth. Much stron-
ger Q2 events were observed by [31–32] on a flow over a smooth wall when
compared to the flow over a rough wall for the location close to the bed and they
relate the phenomena for the smooth wall to the contributions of strongly favored
Reynolds stress from ejection (Q2 events). The differences in observation between
the turbulent boundary layer flow and open channel flow can confirm that turbu-
lent bursting and eventual production of Reynolds shear stress due to ejection (Q2
events) and sweep (Q4 events) is different for the flow in open channel. Significant
ejection and sweep components were noted by [8] with ejection events being
dominant throughout the depth of flow and they also noted that different types of
rib roughness result significant variations. One can notice in the present study that
Q2 and Q4 events are dependent on the bed roughness accompanied by significant
drop near the free surface for both events, signifies the important role the bed
roughness type possesses on Q2 and Q4 events. At the location near bed, generation
of turbulent activity varies with the type of bed roughness. Low momentum slow
moving fluid from the near-bed is ejected and travels towards the outer layer/free
surface and the same will happen for the fluid between the interstices of the
roughness. In contrast, high momentum fast moving fluid from the outer layer
travels towards bed, sweeping away the low momentum slow moving fluid parcels
ejected earlier. The extent of depth of flow affected by the existence of universal
intermittent sweep and ejection events is dependent on the type of bed and the flow
condition. Figure 14 shows the variation of the contributions from Q2 and Q4
events for different threshold values to the Reynolds shear stress with lower Reyn-
olds number (Re = 31,000). The profile characteristics are very similar for flow with
respect to lower Reynolds number compared to the flow with respect to higher
Reynolds number for the threshold values of H = 0–5.
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Figure 15 shows the ratio to the Reynolds shear stress contributions of Q2/Q4 for
H = 0–5 and for two different Reynolds numbers. The Q2/Q4 ratio is near unity at
the location very close to the bed indicating identical strength of sweep and ejection
event as one can note from Figure 15. The Q2/Q4 ratio increases from near unity to
maximum at around mid-depth of the flow (y/d � 0.5) as one progress from the
bed and towards the free surface which is an indication of relatively stronger

Figure 14.
Contribution of different quadrant events to the Reynolds shear stress for flow over different bed condition with
lower Reynolds number.
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ejection events compared to the sweep events. The corresponding strength of the
ejection events increases in comparison to sweep events with respect to increasing
H and as one can note from the Figure 15 that there is a 100 over fold increase for
the threshold value of H = 5 compared to H = 0. As one can also note from Figure 15
that there is little dependency on bed conditions of smooth and rough for H = 0 on
the ratio of Reynolds shear stress in Q2 and Q4 but for the same value of H = 0 there
are some effect of roughness for y > 0.5d.

Figure 15.
Ratio of different quadrant events to the Reynolds shear stress for flow over different bed condition.

73

Roughness Effects on Turbulence Characteristics in an Open Channel Flow
DOI: http://dx.doi.org/10.5772/intechopen.85990



Figure 15 shows the ratio to the Reynolds shear stress contributions of Q2/Q4 for
H = 0–5 and for two different Reynolds numbers. The Q2/Q4 ratio is near unity at
the location very close to the bed indicating identical strength of sweep and ejection
event as one can note from Figure 15. The Q2/Q4 ratio increases from near unity to
maximum at around mid-depth of the flow (y/d � 0.5) as one progress from the
bed and towards the free surface which is an indication of relatively stronger

Figure 14.
Contribution of different quadrant events to the Reynolds shear stress for flow over different bed condition with
lower Reynolds number.

72

Boundary Layer Flows - Theory, Applications and Numerical Methods

ejection events compared to the sweep events. The corresponding strength of the
ejection events increases in comparison to sweep events with respect to increasing
H and as one can note from the Figure 15 that there is a 100 over fold increase for
the threshold value of H = 5 compared to H = 0. As one can also note from Figure 15
that there is little dependency on bed conditions of smooth and rough for H = 0 on
the ratio of Reynolds shear stress in Q2 and Q4 but for the same value of H = 0 there
are some effect of roughness for y > 0.5d.

Figure 15.
Ratio of different quadrant events to the Reynolds shear stress for flow over different bed condition.

73

Roughness Effects on Turbulence Characteristics in an Open Channel Flow
DOI: http://dx.doi.org/10.5772/intechopen.85990



Figure 16 shows the ratio to the number of events occurring/contributing in Q2
and Q4 for H = 0–3 and for two different Reynolds numbers. The ratio to the
number of events occurring/contributing to Q2 and Q4 shows different trends for
the threshold value of H = 0 (Figure 16a and b) compared to the threshold value of
H = 2–3 (Figure 16c–h). This is very unlike to the ratio of the Reynolds shear stress
contributions of Q2/Q4 as shown in Figure 15. The NQ2/NQ4 ratio is near unity at
the location very close to the bed indicating almost equal occurrence of ejection and
sweep events as one can note from Figure 16a and b. The NQ2/NQ4 ratio decreases
from near unity to minimum at around mid-depth of the flow (y/d � 0.5) as one
progress from the bed and towards the free surface which is an indication of
relatively reduced ejection events compared to the sweep events. Moving farther
away from bed (y > 0.5d) and towards the free surface, the ratio of NQ2/NQ4 ratio is
keep on increasing again and reaches to near unity indicating almost equal occur-
rence of ejection and sweep events. Figure 16c–h show a trend different from
Figure 16a and b. As one progress from the bed towards the free surface, there is an
increment of 30 over fold for the value of NQ2/NQ4 at around y � 0.5d, indicating
substantial increase of ejection events. As one can also note from Figure 16 that
there is little dependency on bed conditions of smooth and rough for H = 0 on the
ratio of number of events in Q2 and Q4.

Figure 16.
Ratio of number of different quadrant events for flow over different bed condition.
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4. Conclusions

The purpose of the present study [1] is to explain how the roughness and
Reynolds number affect flow characteristics in an open channel flow (OCF). Tests
were conducted with four different types of bed surface conditions and at two
different Reynolds number for each and every bed surface. Instantaneous velocity
components are used to analyze the streamwise mean velocity, turbulence intensity
in both streamwise and vertical direction, Reynolds shear stress including shear
stress correlation and higher-order moments including vertical flux of the turbulent
kinetic energy. In order to extract the magnitude of the Reynolds shear stress
related to turbulent bursting events quadrant decomposition was used. The main
findings are summarized as follows:

1.Surface drug increases due to surface roughness making the mean streamwise
velocity profile to be more fuller for the smooth bed compared to the rough
beds. It is very much evident throughout the depth of the flow that the mean
velocity profile is very much affected by the different type of bed roughness.
Comparing the effect of various type of bed roughness on the streamwise
velocity component and flow with higher flow Reynolds number, distributed
roughness profile has the biggest deviation from smooth bed profile with
continuous roughness and natural sand bed shows identical deviation. For the
flow with lower flow Reynolds number, it was found that the flow over natural
sand bed shows much higher deviation than flow over the bed of continuous
roughness.

2.The magnitude of friction coefficient is found to be dependent on the type of
bed roughness with distributed roughness has the highest value followed by the
flow over the continuous roughness bed surface and the sand bed. The
magnitude of friction coefficient is also found to be dependent on the Reynolds
number with the reduction of the magnitude of friction coefficient with the
increment of the Reynolds number. The magnitude of friction coefficient is
seen to be smaller for the flow over a permeable bed (natural sand bed)
compared to the flow over an impermeable bed (distributed and continuous
roughness bed).

3.The effect of roughness on the distribution of the streamwise component of
the turbulence intensity is very evident throughout the flow depth with
distributed roughness shows the highest deviation followed by natural sand
bed and continuous roughness compared to the smooth surfaces with the
exception at the location very close to the bed. Comparing the effect of
various type of bed conditions on the vertical component of the turbulence
intensity, it was seen that distributed roughness profile has the biggest
deviation from smooth bed profile with continuous roughness and natural
sand bed shows identical deviation for most the depth of the flow. At
locations very close to the bed and due to the introduction of roughness,
streamwise turbulence intensity reduces but vertical turbulence intensity
increases. Although the sand grain used to create all three bed roughness is
of the same gradation characteristics but the specific geometry of the roughness
formation is different causing the differences in the formation of turbulence
structure.

4.Wall similarity hypothesis is disputed by the present experimental results
where the researchers suggested that in the location of outside the roughness
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Figure 16.
Ratio of number of different quadrant events for flow over different bed condition.
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4. Conclusions

The purpose of the present study [1] is to explain how the roughness and
Reynolds number affect flow characteristics in an open channel flow (OCF). Tests
were conducted with four different types of bed surface conditions and at two
different Reynolds number for each and every bed surface. Instantaneous velocity
components are used to analyze the streamwise mean velocity, turbulence intensity
in both streamwise and vertical direction, Reynolds shear stress including shear
stress correlation and higher-order moments including vertical flux of the turbulent
kinetic energy. In order to extract the magnitude of the Reynolds shear stress
related to turbulent bursting events quadrant decomposition was used. The main
findings are summarized as follows:

1.Surface drug increases due to surface roughness making the mean streamwise
velocity profile to be more fuller for the smooth bed compared to the rough
beds. It is very much evident throughout the depth of the flow that the mean
velocity profile is very much affected by the different type of bed roughness.
Comparing the effect of various type of bed roughness on the streamwise
velocity component and flow with higher flow Reynolds number, distributed
roughness profile has the biggest deviation from smooth bed profile with
continuous roughness and natural sand bed shows identical deviation. For the
flow with lower flow Reynolds number, it was found that the flow over natural
sand bed shows much higher deviation than flow over the bed of continuous
roughness.

2.The magnitude of friction coefficient is found to be dependent on the type of
bed roughness with distributed roughness has the highest value followed by the
flow over the continuous roughness bed surface and the sand bed. The
magnitude of friction coefficient is also found to be dependent on the Reynolds
number with the reduction of the magnitude of friction coefficient with the
increment of the Reynolds number. The magnitude of friction coefficient is
seen to be smaller for the flow over a permeable bed (natural sand bed)
compared to the flow over an impermeable bed (distributed and continuous
roughness bed).

3.The effect of roughness on the distribution of the streamwise component of
the turbulence intensity is very evident throughout the flow depth with
distributed roughness shows the highest deviation followed by natural sand
bed and continuous roughness compared to the smooth surfaces with the
exception at the location very close to the bed. Comparing the effect of
various type of bed conditions on the vertical component of the turbulence
intensity, it was seen that distributed roughness profile has the biggest
deviation from smooth bed profile with continuous roughness and natural
sand bed shows identical deviation for most the depth of the flow. At
locations very close to the bed and due to the introduction of roughness,
streamwise turbulence intensity reduces but vertical turbulence intensity
increases. Although the sand grain used to create all three bed roughness is
of the same gradation characteristics but the specific geometry of the roughness
formation is different causing the differences in the formation of turbulence
structure.

4.Wall similarity hypothesis is disputed by the present experimental results
where the researchers suggested that in the location of outside the roughness
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layer, the turbulent mixing properties should be essentially the same for the
flow over smooth and rough walls which was initially proposed by [33] and
generalized by [34].

5.Effect of roughness on the Reynolds shear stress is very evident at the
location close to the bed generating much higher Reynolds shear stress than the
smooth bed. The distinct effect of roughness for the present study can be seen
penetrating deep into the flow and distinctly visible at the location as high as
y/d ≈ 0.7.

6.The trend of the changes of the value of R (correlation coefficient) in the near-
bed and outer layer indicating the changes of flow structure characteristics
between the near-bed region and outer region. The present results clearly
dispute the observation of [5] that the distribution of R is independent of the
properties of the wall roughness, mean flow, and called the distribution of R is
universal.

7.The magnitude of various velocity triple products changes in the range of 200–
300% when comparing the flow over the smooth bed to the flow over rough
beds. This is a clear indication that the transportation of turbulent kinetic
energy and Reynolds shear stress is significantly affected by the bed roughness.

8.Turbulent activity at the near bed location also seen to be dependent on bed
surface conditions. Flow over smooth bed shows the ejection type activity near
bed location whereas the flow over rough beds show the sweep type activity at
the location close to the bed. Interpolating this scenario to the real life stream or
river flow, one can clearly note the influence of strong ejection/sweeping
motion of the fluid parcels to the resuspension/transport of the bed particles.

9.Ejection type events are very evident throughout the depth of flow with the
exception of the location very close to the bed with flow over smooth bed only
where one can observe some sweeping type of event. Bed surface conditions
clearly affect the strength of the ejection like events with distributed roughness
again shows the highest strength compared to other form of bed roughness.

10.Effect of roughness is clearly visible well beyond the near-bed region and
deep into the outer layer (y ≈ 0.7d) from the analysis/result of turbulent
bursting events (through quadrant decomposition). For the flow over rough
walls and inclusive of all turbulent events, it was noted higher magnitude of
Q2 and Q4 contributions compared to the flow over smooth wall for H = 0.

11.Analysis were also carried out to investigate the contribution of the extreme
turbulent events at different threshold levels (H = 2–5). The region affected
over the depth of flow for active sweep (Q4) events reduces with respect to
the increase of the threshold level of H but the affected region goes deep into
the outer layer (y � 0.7d) for the active ejection (Q2) events even for the
value of H as high as 5. Although due to the change of threshold value from
0 to 2, the number of events occurring corresponding to Q2 and Q4 reduce
quite sharply but the events corresponding to H = 2 produced very large
instantaneous Reynolds shear stress >5:5 uvð Þ, which can potentially influence
the sediment transport in the stream, causing resuspension of pollutant from
the bed, bed formation/changes, downstream transportation of nutrients,
entrainment and the exchange of energy and momentum in the flow.
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12.The ratio to the Reynolds shear stress contributions of Q2/Q4 is near unity at
the location very close to the bed and location close to the free surface
indicating identical strength of sweep and ejection. With the exception of
near bed and near free surface, relatively stronger ejection events compared
to the sweep events can be seen for throughout the flow depth and the
strength of the ejection events increases many fold with increase of the
threshold value of H.

13.The ratio to the number of events occurring/contributing in Q2 and Q4 is
near unity at the location very close to the bed and location close to the free
surface indicating almost equal occurrence of sweep and ejection events. With
the exception of near bed and near free surface, relatively reduced ejection
events compared to the sweep events can be seen for throughout the flow
depth for H = 0 but shows substantial increase of ejection events compared to
the sweep events for H > 0.

Author details

Abdullah Faruque
Civil Engineering Technology, Rochester Institute of Technology, Rochester,
New York, USA

*Address all correspondence to: aafite@rit.edu

©2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

77

Roughness Effects on Turbulence Characteristics in an Open Channel Flow
DOI: http://dx.doi.org/10.5772/intechopen.85990



layer, the turbulent mixing properties should be essentially the same for the
flow over smooth and rough walls which was initially proposed by [33] and
generalized by [34].

5.Effect of roughness on the Reynolds shear stress is very evident at the
location close to the bed generating much higher Reynolds shear stress than the
smooth bed. The distinct effect of roughness for the present study can be seen
penetrating deep into the flow and distinctly visible at the location as high as
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dispute the observation of [5] that the distribution of R is independent of the
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Chapter 4

Leading Edge Receptivity at
Subsonic and Moderately
Supersonic Mach Numbers
Marvin E. Goldstein and Pierre Ricco

Abstract

This chapter is a review of the receptivity and resulting global instability of
boundary layers due to free-stream vortical and acoustic disturbances at subsonic
and moderately supersonic Mach numbers. The vortical disturbances produce an
unsteady boundary layer flow that develops into oblique instability waves with a
viscous triple-deck structure in the downstream region. The acoustic disturbances
(which have phase speeds that are small compared to the free stream velocity)
produce boundary layer fluctuations that evolve into oblique normal modes down-
stream of the viscous triple-deck region. Asymptotic methods are used to show that
both the vortically and acoustically-generated disturbances ultimately develop into
modified Rayleigh modes that can exhibit spatial growth or decay depending on the
nature of the receptivity process.

Keywords: boundary layer, boundary layer receptivity,
compressible boundary layers, global instability

1. Introduction

This chapter is concerned with the effect of unsteady free-stream disturbances
on laminar to turbulent transition in boundary layer flows. The exact mechanism
depends on the nature and intensity of the disturbances. Transition at high distur-
bance levels (say >1%) usually begins with the excitation of low frequency streaks
in the boundary layer flow that eventually break down into turbulent spots. This
phenomena was initially studied by Dryden [1] and much later for compressible
flows by Marensi et al. [2]. But the focus of this chapter is on low free steam
disturbances levels (say less than 1%) where the transition usually results from a
series of events beginning with the generation of spatially growing instability waves
by acoustic and/or vortical disturbances in the free-stream. This so-called receptiv-
ity phenomenon results in a boundary value problem and therefore differs from
classical instability theory which results in an eigenvalue problem for the Rayleigh
or Orr-Sommerfeld equations that only apply when the mean flow can be treated as
being nearly parallel (see, for example, Reshotko, [3]). The relevant boundary
conditions cannot be imposed on the Orr-Sommerfeld or Rayleigh equations in the
infinite Reynolds number limit being considered here but the free-stream distur-
bances can produce unsteady boundary layer perturbations in regions of rapidly
changing mean flow that eventually produce unstable Rayleigh or Orr-Sommerfeld
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equation eigensolutions further downstream. These regions of nonparallel flow
can result from surface roughness elements [4, 5], blowing or suction effects [6]
or from the nonparallel mean flow that occurs near the boundary layer leading
edge [7, 8].

The mechanism is similar in all cases but the simplest and arguably the most
fundamental of these is the one resulting from the nonparallel leading edge flow and
the focus here is, therefore, on that case. The initial studies were carried out for two
dimensional incompressible flows. Ref. [7] used a low frequency parameter
matched asymptotic expansion to show that there is an overlap domain where
appropriate asymptotic solutions to the forced boundary layer equations (which
apply near the edge) match onto the so-called Tollmien-Schlichting waves that
satisfy the Orr-Sommerfeld equation in a region that lies somewhat further down-
stream. The coupling to the free-stream disturbances turns out to be fairly weak for
the two dimensional incompressible flow considered in [7] due to the relatively
large decay of boundary layer disturbances upstream of the Tollmien-Schlichting
wave region where the Orr-Sommerfeld equation applies.

But there can be a much stronger coupling in supersonic flows which can sup-
port a number of different instabilities [9]. The coupling mechanism can be either
viscous or inviscid and the instability can either be of the viscous Tollmien-
Schlichting type or can be purely inviscid when the mean boundary layer flow has a
generalized inflection point. The inviscid coupling, which was first analyzed in
[10], tends to be dominant when the obliqueness angle θ of the disturbance differs
from the critical angle, θc � cos �1 1=M∞ð Þ, where the M∞ is the free-stream Mach
number, by an O 1ð Þ amount. Figure 1 shows that the theoretical results of Ref. [10]
are in good agreement with experimental data when Δθ � θc � θ ¼ O 1ð Þ but the
agreement breaks down when θ ! θc [12] and a new rescaled analysis was carried
out in Ref. [11] to deal with this case.

Fedorov and Khokhlov [10] analyzed the generation of inviscid instabilities in a
supersonic flat plate boundary layer by fast and slow acoustic disturbances in the
free stream. They showed that the slow acoustic mode propagates downstream/
upstream when the obliqueness angle θ of the acoustic disturbances is smaller/larger
than the critical angle θc and that downstream propagating slow acoustic modes
with Δθ>0 generate unsteady boundary layer disturbances that match onto the
inviscid 1st Mack mode instability without undergoing any significant decay. The

Figure 1.
Comparison of the Fedorov/Khokhlov solution with experiment [12].
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focus of that reference was on hypersonic flows while the interest here is in the
moderately supersonic regime (Mach number less than 4), where the so called 1st
Mack mode is the dominant instability, but (as shown in Section 6) emerges much
too far downstream to be of practical interest when generated by the inviscid
mechanism analyzed in [7]. The instability produced by the small Δθ analysis of
Ref. [11] can, however, occur much further upstream when Δθ is sufficiently small.
But there is a smallest value of Δθ for which the instability wave coupling can occur.

Smith [13] showed that viscous instabilities, which exhibit the same triple-deck
structure as the subsonic Tollmien-Schlichting waves, can also occur at supersonic
speeds when the obliqueness angles θ is greater than the critical angle θc. Their
phase speeds are very small and they must therefore be produced by a viscous wall
layer mechanism similar to the one identified in [7].

The analysis of Ref. [7] was extended to compressible subsonic and supersonic
flat plate boundary layer flows by Ricco and Wu [14] who showed that highly
oblique vortical disturbances can generate a limiting form of the Smith instability
[13]. They found that the instability wave lower branch lies further upstream at
supersonic speeds than the subsonic lower branch and much further upstream than
the incompressible lower branch considered in [7], which means that the instability
wave/free-stream disturbance coupling is much greater at supersonic speeds than it
is in the incompressible flow considered in [7]. Goldstein and Ricco [11] show that
the instability does not possess an upper branch in this case and matches onto a low
frequency (short streamwise wavenumber) Rayleigh instability (that can be identi-
fied with the 1st Mack mode) when the downstream distance is slightly smaller than
the downstream distance where acoustically generated instability corresponding to
the smallest possible Δθ emerges. It therefore makes sense to consider both of these
receptivity mechanisms simultaneously.

As noted above, the present chapter is concerned with the unsteady flow in a flat
plate boundary layer generated by mildly oblique vortical disturbance and small Δθ
acoustic disturbances in a moderately supersonic Mach number free stream. The
results are expected to be relevant to transition in the straight wing boundary layers
on supersonic aircraft such as the low-sweep Aerion AS2 Bizjet, shown in Figure 2.

2. Imposed free-stream disturbances

Since the boundary layer is believed to be convectively unstable, the receptivity
phenomena are best illustrated by considering a small amplitude harmonic distor-
tion with angular frequency ω∗ superimposed on a subsonic or moderately low

Figure 2.
Low-sweep Aerion AS2 supersonic Bizjet. M∞≤1:5. Posted by Tim Brown on the Manufacturer Newsletter.
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Mach number supersonic flow of an ideal gas past an infinitely thin flat plate with
uniform free-stream velocity U∗

∞, temperature T∗
∞, dynamic viscosity μ∗∞ and den-

sity ρ∗∞. The velocities, pressure fluctuations, temperature and dynamic viscosity

are normalized by U∗
∞, ρ

∗
∞ U∗

∞
� �2, T∗

∞ and μ∗∞, respectively. The time t is normalized
by ω∗ and the Cartesian coordinates, say x; y; zf g, are normalized by L∗ � U∗

∞=ω
∗

with the coordinate y being normal to the plate.
As noted above the phenomenon is analyzed by requiring the Reynolds number

Re ¼ ρ∗∞U
∗
∞L

∗=μ∗∞ to be large, or equivalently requiring the frequency parameter
F � 1=Re to be small, and using asymptotic theory to explain how the imposed
harmonic distortion generates oblique instabilities at large downstream distances in
the viscous boundary layer that forms on the surface of the plate. The natural
expansion parameter turns out to be

ε � F1=6: (1)

The free-steam disturbances will be inviscid at the lowest order of approxima-
tion and, as is well known [15], can be decomposed into an acoustic component that
carries no vorticity, and vortical and entropic components that produce no pressure
fluctuations. But only the first two will be considered here.

The vortical disturbance uv is given

uv ¼ uv; vv;wvf g ¼ δ̂ u∞; v∞;w∞f g exp i x� tþ γyþ βzð Þ½ �, (2)

where δ̂≪ 1 is a common scale factor and u∞, v∞, w∞ satisfy the continuity
condition

u∞ þ γv∞ þ βw∞ ¼ 0 (3)

but are otherwise arbitrary constants while the acoustic component is governed
by the linear wave equation which has a fundamental plane wave solution

ua; pa
� � ¼ ua; va;wa; pa

� � ¼ δ̂

1� α
α; γ; β; 1� αf gei αxþγyþβz�tð Þ, (4)

for the velocity and pressure perturbation ua; pa
� �

where

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

∞ � 1
� �

α� α1ð Þ α� α2ð Þ
q

, α1,2 ¼
M2

∞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

∞ þ β2 M2
∞ � 1

� �q

M2
∞ � 1

(5)

and, as noted in Section 1, M∞ denotes the free-stream Mach number.
The leading edge interaction will produce large scattered fields for O 1ð Þ values of

the incidence angles tan �1 va=uað Þ ¼ tan �1 γ=αð Þ and tan �1 vv=uvð Þ of the acoustic
and vortical disturbances, respectively. And, in order to focus on the fundamental
mechanisms, we assume that the incidence angles of the vortical disturbances are
small and that the incidence angles of the acoustic disturbances are zero, which
requires that

v∞=u∞ ≪ 1 (6)

for the former disturbances and that

α ¼ α ∓ ¼ M∞ cos θ= M∞ cos θ ∓ 1ð Þ, θ � tan �1 β=αð Þ, (7)
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for the latter, where the subscripts �/+ refer to the slow/fast acoustic modes.
Eq. (7) shows that the slow mode wavenumber becomes infinite when the oblique-
ness angle is equal to the critical angle referred to in the introduction.

3. Boundary layer disturbances

As indicated above our interest here is in explaining how the incident harmonic
distortions generate oblique instabilities at large downstream distances in the vis-
cous boundary layer that forms on the surface of the plate. We begin by considering
the fluctuations imposed on this flow by the free-stream vortical disturbance (2).

3.1 Boundary layer disturbances generated by the free-stream vorticity

As noted in the introduction, these disturbances will generate oblique Tollmien-
Schlichting instability waves which are known to exhibit a triple-deck structure in
the vicinity of their lower branch which lies at an O ε�2ð Þ distance downstream [13]
of the leading edge in the high Reynolds number flow being considered here. The
Tollmien-Schlichting waves will have O ε�1ð Þ spanwise wavenumbers and we
therefore require that

β � εβ ¼ O 1ð Þ (8)

since the spanwise wavenumber must remain constant as the disturbances
propagate downstream.

The continuity condition (3) and the obliqueness restriction (6) will be satisfied
if we put

w∞ � w∞=ε ¼ O 1ð Þ, v∞ � v∞=ε ¼ O 1ð Þ, γ � εγ ¼ O 1ð Þ: (9)

The vortical velocity (2) will then interact with the plate to produce an inviscid
velocity field [12] that generates a slip velocity at the surface of the plate which
must be brought to zero in a thin viscous boundary layer whose temperature,
density and streamwise velocity, say T ηð Þ, ρ ηð Þ, U ηð Þ, respectively, are assumed to
be functions of the Dorodnitsyn-Howarth variable

η � 1
ε3

ffiffiffiffiffi
2x

p
ðy

0

ρ x;~yð Þd~y (10)

and are determined from the similarity equations given in Stewartson [16] and
Ref. [14].

We begin by considering the flow in the vicinity of the leading edge where the
streamwise length scale is x ¼ O 1ð Þ. Since the inviscid velocity field can only
depend on the streamwise coordinate through this relatively long streamwise length
scale the solution for the velocity and temperature perturbation u0 � u0; v0;w0; ϑ0f g
in this region is given by [14], [17]

u0 ¼ δ̂ u∞ u; v;0; ϑ
� �þ β w∞ þ iv∞ð Þ u 0ð Þ; v 0ð Þ;w 0ð Þ; ϑ

0ð Þn oh i
ei βz=ε�tð Þ, (11)

where u 0ð Þ x; ηð Þ; v 0ð Þ x; ηð Þ;w 0ð Þ x; ηð Þ; ϑ 0ð Þ x; ηð Þ
n o

satisfies the three dimensional

compressible linearized boundary layer equations (with unit spanwise
wavenumber) subject to the boundary conditions [14]
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for the latter, where the subscripts �/+ refer to the slow/fast acoustic modes.
Eq. (7) shows that the slow mode wavenumber becomes infinite when the oblique-
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u 0ð Þ, ϑ
0ð Þ ! 0, w 0ð Þ ! eix, as η ! ∞, (12)

while u x; ηð Þ; v x; ηð Þ;0; ϑ x; ηð Þ� �
exp i βz=ε� t

� �
is a quasi-two dimensional solu-

tion that satisfies the two dimensional linearized boundary layer equations subject
to the boundary conditions

u ! eix, w,ϑ ! 0 as η ! ∞: (13)

The lowest order triple-deck solution will match onto the quasi-two dimensional
solution u; v;0;ϑ

� �
exp i βz=ε� t

� �
of the two dimensional boundary layer equa-

tions, where the spanwise dependence only enters parametrically through the
exponential factor in(11) .

Prandtl [18], Glauert [19] and Lam and Rott [20] showed that

u x; ηð Þ ¼ �B xð ÞU0 ηð Þ
T
ffiffiffiffiffi
2x

p ,ϑ x; yð Þ ¼ �B xð ÞT0 ηð Þ
T ηð Þ ffiffiffiffiffi

2x
p , (14)

v x; ηð Þ ¼ iB xð Þ þ dB
dx

U ηð Þ � B xð ÞU
0 ηð Þηc
2x

, (15)

where

ηc �
1

T ηð Þ
ðη

0

T ~ηð Þd~η (16)

is an exact eigensolution of the two-dimensional linearized unsteady boundary
layer equations that satisfies the homogeneous boundary conditions
u x; ηð Þ, w x; ηð Þ,ϑ x; ηð Þ ! 0 as η ! ∞ for all B xð Þ, but does not necessarily satisfy
the no-slip condition at the wall.

Lam and Rott [20], [21] analyzed the two dimensional flat plate boundary layer
and showed that the linearized equations possess asymptotic eigensolutions that
satisfy a no-slip condition at the wall when x becomes large. These solutions exhibit
a two-layer structure consisting of an outer region that encompasses the main part
of the boundary layer and a thin viscous region near the wall. The outer solution is
given by (14) and (15) with the arbitrary function B xð Þ determined by matching
with the viscous wall layer flow.

Ref. [14] showed that the Lam and Rott [20, 21] analysis also applies to com-
pressible flows when the full compressible solution (14) and (15) is used in the
outer region and the viscous wall layer solution is slightly modified to account for
the temperature and viscosity variations. The function B xð Þ is then given by

B xð Þ ¼ x3=2Bn exp � 23=2eiπ=4

3λς3=2n

Tw

μw

� �1=2

x3=2
" #

þ :… (17)

where Tw � T 0ð Þ, μw � μ T 0ð Þð Þ, λ � U0 0ð Þ and ζn is a root of

Ai0 ςnð Þ ¼ 0, for n ¼ 0, 1, 2, 3:… (18)

The only difference from the Lam-Rott result is the Tw=μwð Þ1=2 factor in the
exponent. The asymptotic solution to the full inhomogeneous boundary value
problem can now be expressed as the sum of a Stokes layer solution plus a number
of these asymptotic eigensolutions. The first few Bn were determined from
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numerical solutions to the boundary layer problem in Ref. [8]. But we are primarily
concerned with the lowest order n ¼ 0 mode because that is the only one that
matches onto a spatially growing oblique Tollmien-Schlicting wave further down-
stream [11]. The receptivity problem can then be solved by combining the numer-
ical computations with appropriate matched asymptotic expansions to relate the
instability wave amplitude to that of the free-stream disturbance. But we will
analyze the boundary layer disturbances generated by the free-stream acoustic
disturbances before considering these expansions.

3.2 Boundary layer disturbances generated by the Fedorov/Khokhlov
mechanism for obliqueness angles close to critical angle

Fedorov and Khokhlov [10] used matched asymptotic expansions to analyze the
generation of Mack mode instabilities by oblique acoustic waves of the form (4)
where the wavenumbers α and β satisfy the dispersion relation (7) when the inci-
dence angle γ is equal to zero, which, as noted, above is the case being considered
here. Their focus was on hypersonic flows where the most rapidly growing distur-
bances are usually two dimensional 2nd Mack modes, while, as noted in the intro-
duction, the focus of the present chapter is on the relatively low supersonic Mach
number regime (say, less than about 4) where the most rapidly growing instability
waves are highly oblique 1st Mack modes. Numerical results [9] show that the
obliqueness angle of the most rapidly growing 1st mode lies between 50 and 70
degrees at Mach numbers between 2 and 6.

Ref. [10] shows that the boundary layer disturbance produced by diffraction of
the slow acoustic wave by the nonparallel mean flow in the region where x ¼ o ε�3ð Þ
can be matched onto a 1st Mack mode instability in the downstream region where
x ¼ O ε�6

� �
when the deviation

Δθ � θc � θ (19)

of the obliqueness angle θ from the critical angle

cos θc � 1=M∞ (20)

takes on O 1ð Þ positive values. The diffraction region has a double layer structure
which consists of a region that fills the mean boundary layer and an outer diffrac-
tion region of thickness O 1=ε3=2

� �
. (The purely passive Stokes layer near the wall

does not play a role in the diffraction process and can be ignored).
The instability emerges from the downstream limit of the solution in this region.

But as noted in the introduction this occurs too far downstream to be of practical
interest when scaled up to actual flight conditions if Δθ ¼ O 1ð Þ [14] at the moder-
ately supersonic Mach numbers being considered here. It will however emerge
much further upstream when θ is close to the critical angle θc, i.e., when Δθ≪ 1. But
the solution in Ref. [10] does not apply when Δθ≪ 1 and a new analysis was
developed in Ref. [11] to extend their result into the small -Δθ regime.

It follows from (7) that

α ¼ ~α=Δθ þ ~α1 þ…, β ¼ β1 ¼ ~β=Δθ (21)

where

~α � 1= tan θc, ~β � 1, ~α1 � 1= sin 2θc (22)
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exp i βz=ε� t

� �
is a quasi-two dimensional solu-

tion that satisfies the two dimensional linearized boundary layer equations subject
to the boundary conditions

u ! eix, w,ϑ ! 0 as η ! ∞: (13)

The lowest order triple-deck solution will match onto the quasi-two dimensional
solution u; v;0;ϑ

� �
exp i βz=ε� t

� �
of the two dimensional boundary layer equa-

tions, where the spanwise dependence only enters parametrically through the
exponential factor in(11) .

Prandtl [18], Glauert [19] and Lam and Rott [20] showed that

u x; ηð Þ ¼ �B xð ÞU0 ηð Þ
T
ffiffiffiffiffi
2x

p ,ϑ x; yð Þ ¼ �B xð ÞT0 ηð Þ
T ηð Þ ffiffiffiffiffi

2x
p , (14)

v x; ηð Þ ¼ iB xð Þ þ dB
dx

U ηð Þ � B xð ÞU
0 ηð Þηc
2x

, (15)

where

ηc �
1

T ηð Þ
ðη

0

T ~ηð Þd~η (16)

is an exact eigensolution of the two-dimensional linearized unsteady boundary
layer equations that satisfies the homogeneous boundary conditions
u x; ηð Þ, w x; ηð Þ,ϑ x; ηð Þ ! 0 as η ! ∞ for all B xð Þ, but does not necessarily satisfy
the no-slip condition at the wall.

Lam and Rott [20], [21] analyzed the two dimensional flat plate boundary layer
and showed that the linearized equations possess asymptotic eigensolutions that
satisfy a no-slip condition at the wall when x becomes large. These solutions exhibit
a two-layer structure consisting of an outer region that encompasses the main part
of the boundary layer and a thin viscous region near the wall. The outer solution is
given by (14) and (15) with the arbitrary function B xð Þ determined by matching
with the viscous wall layer flow.

Ref. [14] showed that the Lam and Rott [20, 21] analysis also applies to com-
pressible flows when the full compressible solution (14) and (15) is used in the
outer region and the viscous wall layer solution is slightly modified to account for
the temperature and viscosity variations. The function B xð Þ is then given by

B xð Þ ¼ x3=2Bn exp � 23=2eiπ=4

3λς3=2n

Tw

μw

� �1=2

x3=2
" #

þ :… (17)

where Tw � T 0ð Þ, μw � μ T 0ð Þð Þ, λ � U0 0ð Þ and ζn is a root of

Ai0 ςnð Þ ¼ 0, for n ¼ 0, 1, 2, 3:… (18)

The only difference from the Lam-Rott result is the Tw=μwð Þ1=2 factor in the
exponent. The asymptotic solution to the full inhomogeneous boundary value
problem can now be expressed as the sum of a Stokes layer solution plus a number
of these asymptotic eigensolutions. The first few Bn were determined from
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numerical solutions to the boundary layer problem in Ref. [8]. But we are primarily
concerned with the lowest order n ¼ 0 mode because that is the only one that
matches onto a spatially growing oblique Tollmien-Schlicting wave further down-
stream [11]. The receptivity problem can then be solved by combining the numer-
ical computations with appropriate matched asymptotic expansions to relate the
instability wave amplitude to that of the free-stream disturbance. But we will
analyze the boundary layer disturbances generated by the free-stream acoustic
disturbances before considering these expansions.

3.2 Boundary layer disturbances generated by the Fedorov/Khokhlov
mechanism for obliqueness angles close to critical angle

Fedorov and Khokhlov [10] used matched asymptotic expansions to analyze the
generation of Mack mode instabilities by oblique acoustic waves of the form (4)
where the wavenumbers α and β satisfy the dispersion relation (7) when the inci-
dence angle γ is equal to zero, which, as noted, above is the case being considered
here. Their focus was on hypersonic flows where the most rapidly growing distur-
bances are usually two dimensional 2nd Mack modes, while, as noted in the intro-
duction, the focus of the present chapter is on the relatively low supersonic Mach
number regime (say, less than about 4) where the most rapidly growing instability
waves are highly oblique 1st Mack modes. Numerical results [9] show that the
obliqueness angle of the most rapidly growing 1st mode lies between 50 and 70
degrees at Mach numbers between 2 and 6.

Ref. [10] shows that the boundary layer disturbance produced by diffraction of
the slow acoustic wave by the nonparallel mean flow in the region where x ¼ o ε�3ð Þ
can be matched onto a 1st Mack mode instability in the downstream region where
x ¼ O ε�6

� �
when the deviation

Δθ � θc � θ (19)

of the obliqueness angle θ from the critical angle

cos θc � 1=M∞ (20)

takes on O 1ð Þ positive values. The diffraction region has a double layer structure
which consists of a region that fills the mean boundary layer and an outer diffrac-
tion region of thickness O 1=ε3=2

� �
. (The purely passive Stokes layer near the wall

does not play a role in the diffraction process and can be ignored).
The instability emerges from the downstream limit of the solution in this region.

But as noted in the introduction this occurs too far downstream to be of practical
interest when scaled up to actual flight conditions if Δθ ¼ O 1ð Þ [14] at the moder-
ately supersonic Mach numbers being considered here. It will however emerge
much further upstream when θ is close to the critical angle θc, i.e., when Δθ≪ 1. But
the solution in Ref. [10] does not apply when Δθ≪ 1 and a new analysis was
developed in Ref. [11] to extend their result into the small -Δθ regime.

It follows from (7) that

α ¼ ~α=Δθ þ ~α1 þ…, β ¼ β1 ¼ ~β=Δθ (21)

where

~α � 1= tan θc, ~β � 1, ~α1 � 1= sin 2θc (22)
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when Δθ≪ 1 since tan θc � Δθð Þ ¼ tan θc � Δθ= cos 2θc þO Δθð Þ2 in that case.
This shows that α also becomes large when Δθ≪ 1 and that α will expand in

powers of Δθ as indicated in (21) if β is fixed at the indicated value to all orders in
Δθ (which we now assume to be the case).

The spanwise wavenumber will equal the vortical spanwise wavenumber (8)
when Δθ ¼ O εð Þ and as in that case the diffraction wave solution will eventually
develop a triple-deck structure but the resulting solution will (as shown in [11]) not
decay at large wall normal distances and is therefore invalid. This means that the
diffraction region solution cannot be continued downstream for Δθ ¼ O εð Þ.

Ref. [11] shows that the smallest value of Δθ is Δθ ¼ O ε2=3
� �

and the diffraction
region will then occur at an O ε�4=3

� �
distance downstream. The relevant solution

will have the triple-deck structure shown in Figure 3: a main boundary layer region
that fills the mean boundary layer (region 1), an outer diffraction region of thick-
ness O ε�1=3

� �
(region 2) and an O ε3ð Þ thick viscous wall layer in which the unsteady,

convective and viscous terms all balance.
The pressure in region 2 is of the form

p ¼ 1þ δ̂p2 x2; y2
� �

ei ~α=Δθþ~α1ð Þxþ~βz=Δθ�t½ �, (23)

where

x2 � xε4=3 ¼ O 1ð Þ, y2 � yε1=3 ¼ O 1ð Þ (24)

and the surface pressure p2 x2;0ð Þ is related to the up-wash velocity
v1 x2;∞ð Þ � limη!∞ v1 x2; ηð Þ at the outer edge of the boundary layer by

p2 x2;0ð Þ ¼ p1 x2ð Þ ¼ 1� x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πi~α M2

∞ � 1
� �q

ð1

0

ffiffiffi
σ

p
ffiffiffiffiffiffiffiffiffiffiffi
1� σ

p i~α
v1 x2σ;∞ð Þffiffiffiffiffiffiffi

x2σ
p

� �
dσ, (25)

where p1 x2ð Þ denotes the pressure in the boundary layer region 1 (which is
independent of the wall normal direction) and the wall normal velocity v1 x2;∞ð Þ is
given in terms of

ξ2 � �i1=3
ffiffiffiffiffiffiffi
2x2

p
=~αλ

� �2=3
Tw=μwð Þ1=3 (26)

and the integral and the derivative of the Airy function Ai ξð Þ by

Figure 3.
Structure of diffraction region for Δθ ¼ O ε2=3

� �
.
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v1 x2;∞ð Þffiffiffiffiffiffiffi
2x2

p ¼ ip1 x2ð Þ
~α2 þ ~β

2
� �

T2
wξ2

λAi0 ξ2ð Þ
ð∞

ξ2

Ai ξð Þdξ, (27)

which behaves like

v1 x2;∞ð Þ=
ffiffiffiffiffiffiffi
2x2

p
� �ip1 x2ð Þ ~α2 þ ~β

2
� �

T2
w=λ (28)

as x2 ! ∞ since ([22], pp. 446–447)

Ai0 ξð Þ=
ð∞

ξ

Ai qð Þdq ! �ξ as ξ ! ∞: (29)

Inserting (28) and (27) into (25) shows that

p1 x2ð Þ ¼ 1� γ0x2

ð

0
1

ffiffiffi
σ

p
ffiffiffiffiffiffiffiffiffiffiffi
1� σ

p p1 σx2ð Þdσ, as x2 ! ∞ (30)

where

γ0 �
~α2 þ ~β

2
� �

~α1=2T2
w

λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πi M2

∞ � 1
� �q , (31)

which is formally the same as the equation considered in [10] who showed that
the solution behaves like

p1 x2ð Þ � exp γ20π x2ð Þ2
h i

as x2 ! ∞: (32)

The acoustically and vortically generated boundary layer disturbances consid-
ered in this section will eventually evolve into propagating eigensolutions in regions
that lie further downstream. The resulting flow will have a triple-deck structure of
the type considered in [13], [23] and [14] in the former (i.e., vortically generated)
case. But the acoustically generated disturbance will only develop an eigensolution
structure much further downstream. The minimum distance occurs when
Δθ ¼ O ε2=3

� �
. We begin by considering the triple-deck region.

4. The viscous triple-deck region

Refs. [13, 14, 23] show that the linearized Navier-Stokes equations possess an
eigensolution of the form

u; v;w; pf g ¼ δ̂Π y; εð Þe
i 1

ε3

Ðx1
0

κ x1;εð Þdx1þβz�t

� �

(33)

in the triple-deck region where δ̂≪ 1 is the common scale factor introduced at
the beginning of Section 2,
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when Δθ≪ 1 since tan θc � Δθð Þ ¼ tan θc � Δθ= cos 2θc þO Δθð Þ2 in that case.
This shows that α also becomes large when Δθ≪ 1 and that α will expand in

powers of Δθ as indicated in (21) if β is fixed at the indicated value to all orders in
Δθ (which we now assume to be the case).

The spanwise wavenumber will equal the vortical spanwise wavenumber (8)
when Δθ ¼ O εð Þ and as in that case the diffraction wave solution will eventually
develop a triple-deck structure but the resulting solution will (as shown in [11]) not
decay at large wall normal distances and is therefore invalid. This means that the
diffraction region solution cannot be continued downstream for Δθ ¼ O εð Þ.

Ref. [11] shows that the smallest value of Δθ is Δθ ¼ O ε2=3
� �

and the diffraction
region will then occur at an O ε�4=3

� �
distance downstream. The relevant solution

will have the triple-deck structure shown in Figure 3: a main boundary layer region
that fills the mean boundary layer (region 1), an outer diffraction region of thick-
ness O ε�1=3

� �
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� �

T2
wξ2

λAi0 ξ2ð Þ
ð∞
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Ai ξð Þdξ, (27)

which behaves like

v1 x2;∞ð Þ=
ffiffiffiffiffiffiffi
2x2

p
� �ip1 x2ð Þ ~α2 þ ~β

2
� �

T2
w=λ (28)

as x2 ! ∞ since ([22], pp. 446–447)

Ai0 ξð Þ=
ð∞

ξ

Ai qð Þdq ! �ξ as ξ ! ∞: (29)

Inserting (28) and (27) into (25) shows that

p1 x2ð Þ ¼ 1� γ0x2

ð

0
1

ffiffiffi
σ

p
ffiffiffiffiffiffiffiffiffiffiffi
1� σ

p p1 σx2ð Þdσ, as x2 ! ∞ (30)

where

γ0 �
~α2 þ ~β

2
� �

~α1=2T2
w

λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πi M2

∞ � 1
� �q , (31)

which is formally the same as the equation considered in [10] who showed that
the solution behaves like

p1 x2ð Þ � exp γ20π x2ð Þ2
h i

as x2 ! ∞: (32)

The acoustically and vortically generated boundary layer disturbances consid-
ered in this section will eventually evolve into propagating eigensolutions in regions
that lie further downstream. The resulting flow will have a triple-deck structure of
the type considered in [13], [23] and [14] in the former (i.e., vortically generated)
case. But the acoustically generated disturbance will only develop an eigensolution
structure much further downstream. The minimum distance occurs when
Δθ ¼ O ε2=3

� �
. We begin by considering the triple-deck region.

4. The viscous triple-deck region

Refs. [13, 14, 23] show that the linearized Navier-Stokes equations possess an
eigensolution of the form

u; v;w; pf g ¼ δ̂Π y; εð Þe
i 1

ε3

Ðx1
0

κ x1;εð Þdx1þβz�t

� �

(33)

in the triple-deck region where δ̂≪ 1 is the common scale factor introduced at
the beginning of Section 2,
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Π y; εð Þ ¼ A x1ð ÞU0 ηð Þ
T ηð Þ ;�iκ0A x1ð ÞU ηð Þ

ffiffiffiffiffiffiffi
2x1

p
,� ε2βPT ηð Þ

κ0U ηð Þ ; ε2P
��

(34)

in the main boundary layer where η ¼ O 1ð Þ,

x1 � ε2x ¼ O 1ð Þ (35)

and

z � z=ε ¼ z∗ω∗=εU∗
∞ (36)

is a scaled transverse coordinate. The complex wavenumber κ has the
expansion [11].

κ x1; εð Þ ¼ κ0 x1ð Þ þ εκ1 x1ð Þ þ ε2κ2 x1ð Þ þ :…, (37)

where the lowest order term in this expansion satisfies the following dispersion
relation ([13, 14, 23])

κ20 þ β
2 ¼ 1

iκ0ð Þ1=3
λffiffiffiffiffiffiffi
2x1

p
� �5=3 μw

T7
w

 !1=3 β
2 � M2

∞ � 1
� �

κ20

h i1=2
Ai0 ξ0ð Þ

Ð∞
ξ0

Ai qð Þdq
(38)

and

ξ0 ¼ �i1=3
ffiffiffiffiffiffiffi
2x1

p
κ0λ

� �2=3

Tw=μwð Þ1=3 (39)

whose solution must satisfy the inequality

Re β
2 � M2

∞ � 1
� �

κ20

h i1=2
≥0 (40)

in order to insure that the eigensolution does not exhibit unphysical wall normal
growth.

This requirement will be satisfied for allM∞ < 1 but will only be satisfied at super-
sonicMach numbers when the obliqueness angle θ is greater than the critical angle
θc � cos �1 1=M∞ð Þ [11, 13]. The dispersion relation (38) and (39) reduces to the disper-
sion relation given by Eqs. (4.52), (5.2) and (5.3) of [7] when β andM∞ are set to zero.

4.1 Matching with the Lam-Rott solution

The dispersion relation (38) and (39) will be satisfied at small values of x1 if
κ0 � ffiffiffiffiffi

x1
p

and ξ0 ! ζn, for n ¼ 0, 1, 2… as x1 ! 0, where ςn is the nth root of the
Lam-Rott dispersion relation (18). Inserting this into (38) shows that

κ0 ! 1

λς3=2n

2Twx1
iμw

� �1=2

as x1 ! 0: (41)

The cross flow velocity w drops out of (33) as x1 ! 0 and the flow in the main
deck is therefore compatible with the quasi-two dimensional Lam-Rott solution
(14)–(17).
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4.2 Numerical results

The dispersion relation (38) is expected to have at least one root corresponding
to each of the infinitely many roots of (18). But only the lowest order n ¼ 0 root can
produce the spatially growing modes of (38). The wall temperature Tw and viscosity
μw can be scaled out of this equation by introducing the rescaled variables.

κ†0 ¼ κ0T1=2
w μ1=6w , x†1 ¼ x1T2

w=μw
2=3, β† ¼ βT1=2

w μ1=6w : (42)

The real and negative imaginary parts of κ†0 calculated from (38) together with
the n ¼ 0 Lam-Rott initial condition (41) are plotted as a function of the scaled
streamwise coordinate x†1 in Figures 4 and 5 for three values of the frequency scaled

transverse wavenumber β
† ≥ 2. The insets are included to more clearly show the

changes at small x†1 . The dashed curves in the insets denote the real and imaginary
parts of the small-x†1 asymptotic formula (41).

The triple-deck eigensolution (33) (which contains the Lam-Rott solution as an
upstream limit) can undergo a significant amount of damping before it turns into a
spatially growing instability wave at the lower branch of the neutral stability curve.

The exponential damping in Eq. (33) is proportional to Im
ÐxLB
0

κ x1ð Þdx ¼

ε�2Im
Ðx1ð ÞLB

0
κ x1ð Þdx1, where x1ð ÞLB and xLB denote the scaled and unscaled

streamwise location of the lower branch of the neutral stability, which implies that
the total damping is proportional to the area under the growth rate curve between
zero and the lower branch in Figure 5. The inset shows that the length Δx†1 ¼ 0:01
of this upstream region is very short and therefore that the total amount of damping
is relatively small.

Figure 4.
Re κ†0
� �

as a function of x†1 calculated from (38) together with the initial condition (41) for M∞ ¼ 2, 3, 4

(double dot dashed, dot dashed, and solid lines, respectively) and three values of β
† ≥ 2. The dashed curve in the

main graph is the rescaled large-x†1 asymptote (49).
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5. The inviscid triple-deck region

As noted above the acoustically driven solution will only match onto an
eigensolution in the downstream region when O Δθð Þ≥ ε3=2. This region will lie
downstream of the viscous triple-deck region considered above and will be closest
to that region when O Δθð Þ ¼ ε3=2. It will have an inviscid triple- deck structure and
the relevant dispersion relation can be obtained by putting ε=Δθ ¼ O ε1=3
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in (21),

inserting the rescaled variables

β ¼ β=ε1=3, κ0 ¼ κ0=ε
1=3, x̂1 ¼ x1ε4=3 (43)

into (38), using (29), and taking the limit as ε ! 0 with β, κ0 and x̂1 held fixed,
to show that the rescaled wavenumber κ0 satisfies the inviscid dispersion relation
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It can then be shown by direct substitution that the solution κ0 behaves like

κ0 ! β
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�Im κ†0
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as a function of x†1 calculated from (38) together with the initial condition (41) for M∞ ¼ 2, 3, 4

(double dot dashed, dot dashed and solid lines, respectively) and three values of the frequency scaled transverse
wavenumber.
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satisfies the inequality (40) when x̂1 ! 0 and (44) therefore remains valid in this
limit.

The pressure component of the resulting solution will then match onto the
downstream limit (32) and (30) of the acoustically generated diffraction region

solution when β ¼ O ε2=3=Δθ
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and x2 is given by (24) since it follows from (8),(35),
(43) and (45) that
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(46)

5.2 Numerical results

Figure 6 is a plot of the scaled lowest order wavenumber κ0=β ¼ κ0=β as a

function of the scaled streamwise coordinate βTw

� �4
x̂1=λ

2 ¼ βTw
� �4

x1=λ2 for

various values of the free-stream Mach number M∞ calculated from the inviscid
triple-deck dispersion relation(44) together with the asymptotic initial condition
(45) which is shown by the dashed curves in the figure. The lowest order wave
number κ0 is purely real which means that exponential growth (if it occurs) can
only occur at higher order. This suggests that the acoustically generated instabilities
will be less significant than the vortically-generated instabilities which appear
upstream.

Figure 6.

Scaled wavenumber κ0=β ¼ κ0=β as a function of βTw

� �4
x̂1=λ

2 ¼ βTw
� �4

x1=λ2 for various values ofM∞. The

solid lines represent the numerical solution. Dashed lines are the asymptotic solution(45) .
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6. The next stage of evolution

6.1 Downstream behavior of the triple-deck solution

Eqs. (29), (38) and (39) show that

β ! 1

κ1=30

λffiffiffiffiffiffiffi
2x1

p
� �5=3 1

T2
w

 ! ffiffiffiffiffiffiffi
2x1

p
κ0λ

� �2=3

¼ λ

κ0T2
w
ffiffiffiffiffiffiffi
2x1

p (47)

when x1 ! ∞ and, therefore, that

κ0 ! λ

βT2
w
ffiffiffiffiffiffiffi
2x1

p , (48)

when κ0 is allowed to approach zero as x1 ! ∞.
The dashed curves in the main plot of Figure 4 represent the re-scaled large-x†1

asymptote (48). It confirms that the numerical results are well approximated by the
(appropriately rescaled) large-x1 asymptote (48).

As noted in [11], the solution to the reduced dispersion relation (44) satisfies the
rescaled version

κ0 ! λ

βT2
w

ffiffiffiffiffiffiffi
2x̂1

p as x̂1 ! ∞ (49)

of (48), which can be considered to be a special case of this result if we put

β ¼ β=εr, κ0 ¼ κ0=ε
r, x̂1 ¼ x1ε4r (50)

and allow r to be zero or 1/3.
The expansion (37) then generalizes to [11]

κ x1; εð Þ ¼ κ0 x̂1ð Þ þ ε1�rκ1 x̂1ð Þ þ ε2 1�rð Þκ2 x̂1ð Þ þ :…, (51)

where

κ, κ1, κ2… � κ=εr, κ1, κ2εr… (52)

and x̂1 is defined in (43).

6.2 Derivation of the governing equations

Eq. (49) shows, among other things, that the lowest order wave number and
streamwise growth rate approach zero but do not become negative as the distur-
bance propagates downstream. The boundary layer thickness which is O ε3

ffiffiffi
x

pð Þ
continues to increase and the triple-deck scaling breaks down at the streamwise
location

x1 ¼ xε4þ2r ¼ O 1ð Þ, (53)

where it becomes of the order of the spanwise length scale, which remains
constant at O ε1�rð Þ. This region is located well upstream of the region where the
unsteady flow is governed by the full Rayleigh equation considered in [9].
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Eqs. (37), (43), (51) and (52) show that the Tollmien-Schlichting wave becomes
more oblique and

exp i
1
ε3

ðx1

0

κ x1; εð Þdx1 þ βz� t

2
4

3
5 ¼ exp i

1
ε3 1þrð Þ

ð̂x1

0

κ0 x̂1; εð Þdx̂1 þ 1
ε2þ4r

ð̂x1

0

κ1 x̂1; εð Þdx̂1

2
4

þ 1
ε1þ5r

ð̂x1

0

κ2 x̂1; εð Þdx̂1 þO ε�4rð Þ þ εrβz� t

3
5! e

i ε�2 2þrð Þ

ðx1

0

α x1; εð Þdx1 þ β z�t

2
4

3
5

(54)

as x̂1 ! ∞, where α x1ð Þ is an O 1ð Þ function of x1 (given by (53)) and

z � εrz ¼ z=ε1�r, (55)

which means that the solution should be proportional to

exp i ε� 4þ2rð Þ Ðx1
0
α x1; εð Þdx1 þ β z� t

" #
, where α x1ð Þ is an O 1ð Þ function of x1 that

behaves like

α ! λ

βT2
w
ffiffiffiffiffiffiffi
2x1

p þ… as x1 ! 0 (56)

in this stage of evolution. The solution should remain inviscid in the main
boundary layer and the viscous wall layer (i.e., a Stokes layer) is expected to be
completely passive.

The scaled variable

y � y=ε1�r (57)

will be O 1ð Þ in the main boundary layer since its thickness is now of the order of
the spanwise length scale, O ε1�rð Þ. It therefore follows from (53) and (57) that the
transverse pressure gradients will come into play and the solution in this region
should expand like

u; v;w; pf g ¼ U;0;0;0f g þ δ̂A x1ð Þ u y; x1ð Þ; ε1�rv y; x1ð Þ, ε1�rw y; x1ð Þ; ε2 1�rð Þp y; x1ð Þ� �

exp i
1

ε4þ2r

ðx1

0

α x1; εð Þdx1 þ βz� t

2
4

3
5…

(58)

where A x1ð Þ is a function of the slow variable x1. Substituting (58) into the
linearized Navier-Stokes equations shows that the wall normal velocity perturbation
v is determined by the incompressible reduced Rayleigh equation

T
d
dy

1
T
dv
dy

þ Tα
1� αU

d
dy

dU=dy
T

� �
� β2

� �
v ¼ 0 (59)
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completely passive.

The scaled variable
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will be O 1ð Þ in the main boundary layer since its thickness is now of the order of
the spanwise length scale, O ε1�rð Þ. It therefore follows from (53) and (57) that the
transverse pressure gradients will come into play and the solution in this region
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where A x1ð Þ is a function of the slow variable x1. Substituting (58) into the
linearized Navier-Stokes equations shows that the wall normal velocity perturbation
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whose solution must satisfy the following boundary conditions

v � e�βy as y ! ∞, v ¼ 0 at y ¼ 0: (60)

Matching with the upstream solution (33) and (37) requires that α x1ð Þ satisfy the
matching condition (56) as x1 ! 0.

Inserting (10) and (57) into (59), using (60) and assuming the ideal gas law
ρT ¼ 1 shows that

d
dη

1
T2

dv
dη

þ α

1� αU
U0

T2

� �0
� β

ffiffiffiffiffiffiffi
2x1

p� �2� �
v ¼ O ε2 1�rð Þ

� �
, (61)

v ¼ 0 at η ¼ 0, (62)

which means that

α ¼ f β̂
� �

, (63)

where

β̂ � β
ffiffiffiffiffiffiffi
2x1

p
: (64)

6.3 Matching with the triple-deck solution

Eq. (64) clearly approaches zero when x1 ! 0, which means that α will be
consistent with the matching condition (54) if we require that it behave like

α ¼ λ=T2
wβ̂ þ α1 þ α2β̂ þ… as x1 ! 0 (65)

where α1, α2… are (in general complex) constants such that

α1 ¼ lim
x̂1!∞

κ1 x̂1ð Þ, α2 ¼ lim
x̂1!∞

κ2 x̂1ð Þ=β
ffiffiffiffiffiffiffi
2x̂1

p
: (66)

Ref. [11] proved that (60)–(64) possess an asymptotic solution of the form

v ¼ U ηð Þ þ β̂v1 þ β̂
2
v2 þ ::… as β̂ ! 0 when α satisfies (65) which implies that their

solutions are able to match onto the lowest order triple-deck solution upstream and
are consistent with the higher order solutions in this region.

6.4 Numerical results

The Rayleigh eigenvalues α are determined by the boundary value problem (60),
(61) and (62). We assume in the following that the Prandtl number is equal to unity
and that the viscosity μ Tð Þ satisfies the simple linear relation μ Tð Þ ¼ T ηð Þ.

Parts (a) and (b) of Figure 7 are plots of the real and imaginary parts respec-
tively of these eigenvalues as a function of β̂. They show that the numerical solution
for α will be consistent with the matching conditions (65)and(66) if the higher
order terms in the triple-deck expansion(51) satisfy Im limx̂1!∞ κ1 x̂1ð Þ ¼ 0 and

limx̂1!∞ κ2 x̂1ð Þ=β ffiffiffiffiffiffiffi
2x̂1

p
=�iC, where the values of C are given in the caption of

Figure 7. They also show that α is initially real and eventually becomes complex.
But these eigenvalues must occur in complex conjugate pairs since the coefficients
in (61) are all real. The computations show that Im αð Þ eventually goes to zero at
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some finite value of β̂ which is consistent with the fact that U0=T2� �0
is equal to zero

at some finite value of η and Eq. (61) therefore has a generalized inflection point
there.

7. Conclusions

This chapter uses high Reynolds number asymptotics to study the nonlocal
behavior of boundary layer instabilities generated by small amplitude free-stream
disturbances at subsonic and moderate supersonic Mach numbers. The appropriate
small expansion parameter turns out to be ε ¼ F1=6, where F denotes the frequency
parameter. The oblique 1st Mack mode instabilities generated by free-stream
acoustic disturbances are compared with those generated by elongated vortical
disturbances. The focus is on explaining the relevant physics and not on obtaining
accurate numerical predictions.

The free-stream vortical disturbances generate unsteady flows in the leading
edge region that produce short spanwise wavelength instabilities in a viscous triple-
deck region which lies at an O ε�2ð Þ distance downstream from the leading edge. The
mechanism was first considered for two dimensional incompressible flows in Ref.
[7], but the instability onset occurs much further upstream in the supersonic case
and is, therefore, much more likely to be important at the higher Mach numbers
considered in this chapter. The lowest order triple-deck solution does not possess an
upper branch and evolves into an inviscid 1st Mack mode instability with short
spanwise wavelength at an O ε�4ð Þ distance downstream.

Fedorov and Khokhlov [10] used asymptotic methods to study the generation of
inviscid instabilities in supersonic boundary layers by fast and slow acoustic distur-
bances in the free stream whose obliqueness angle θ deviated from its critical value
by an O 1ð Þ amount and showed that slow acoustic disturbances generate unsteady
boundary layer disturbances that produce O 1ð Þ spanwise wavelength inviscid 1st
Mack mode instabilities a much larger O ε�6

� �
distance downstream. But the calcu-

lations in Ref. [11] show that the physical streamwise distance x∗ ¼ U∗
∞

� �3
= ω∗ð Þ2ν∗∞

corresponding to this scaled downstream location is at least equal to about 7 m for
the typical supersonic flight conditions at

Figure 7.
(a) Re αð Þ and (b) Im αð Þj j vs. β̂ calculated from the modified Rayleigh solution. The red dashed curves are
calculated from the asymptotic formula(56) . The red dashed lines in the inset are Im αð Þj j ¼ C β̂, where C ¼ 36
for M∞ ¼ 2C ¼ 129:4 for M∞ ¼ 3 and C ¼ 340:1 for M∞ ¼ 4.
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whose solution must satisfy the following boundary conditions
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acoustic disturbances are compared with those generated by elongated vortical
disturbances. The focus is on explaining the relevant physics and not on obtaining
accurate numerical predictions.

The free-stream vortical disturbances generate unsteady flows in the leading
edge region that produce short spanwise wavelength instabilities in a viscous triple-
deck region which lies at an O ε�2ð Þ distance downstream from the leading edge. The
mechanism was first considered for two dimensional incompressible flows in Ref.
[7], but the instability onset occurs much further upstream in the supersonic case
and is, therefore, much more likely to be important at the higher Mach numbers
considered in this chapter. The lowest order triple-deck solution does not possess an
upper branch and evolves into an inviscid 1st Mack mode instability with short
spanwise wavelength at an O ε�4ð Þ distance downstream.

Fedorov and Khokhlov [10] used asymptotic methods to study the generation of
inviscid instabilities in supersonic boundary layers by fast and slow acoustic distur-
bances in the free stream whose obliqueness angle θ deviated from its critical value
by an O 1ð Þ amount and showed that slow acoustic disturbances generate unsteady
boundary layer disturbances that produce O 1ð Þ spanwise wavelength inviscid 1st
Mack mode instabilities a much larger O ε�6

� �
distance downstream. But the calcu-

lations in Ref. [11] show that the physical streamwise distance x∗ ¼ U∗
∞

� �3
= ω∗ð Þ2ν∗∞

corresponding to this scaled downstream location is at least equal to about 7 m for
the typical supersonic flight conditions at

Figure 7.
(a) Re αð Þ and (b) Im αð Þj j vs. β̂ calculated from the modified Rayleigh solution. The red dashed curves are
calculated from the asymptotic formula(56) . The red dashed lines in the inset are Im αð Þj j ¼ C β̂, where C ¼ 36
for M∞ ¼ 2C ¼ 129:4 for M∞ ¼ 3 and C ¼ 340:1 for M∞ ¼ 4.
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M∞ ¼ 3 U∗
∞ ¼ 888 m=s; ν∗∞ ¼ 0:000264 m2=s

� �
end an altitude of 20 km with an

upper bound of 100 kHz for the characteristic frequency. This means that this
instability occurs too far downstream to be of any practical interest at the
moderately low supersonic Mach numbers considered in this chapter.

But, the inviscid instability, which first appears at an O ε� 4þ2=3ð Þ� �
distance

downstream when Δθ is reduced to O ε2=3
� �

can be significant when scaled to flight
conditions. It is therefore appropriate to compare the vortically-generated instabil-
ities with the instabilities generated by oblique acoustic disturbances with oblique-
ness angles in this range as done in this chapter.
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Chapter 5

Transition Modeling for Low to 
High Speed Boundary Layer Flows 
with CFD Applications
Unver Kaynak, Onur Bas, Samet Caka Cakmakcioglu and  
Ismail Hakki Tuncer

Abstract

Transition modeling as applied to CFD methods has followed certain line of 
evolution starting from simple linear stability methods to almost or fully predictive 
methods such as LES and DNS. One pragmatic approach among these methods, 
such as the local correlation-based transition modeling approach, is gaining more 
popularity due to its straightforward incorporation into RANS solvers. Such 
models are based on blending the laminar and turbulent regions of the flow field 
by introducing intermittency equations into the turbulence equations. Menter 
et al. pioneered this approach by their two-equation γ-Reθ intermittency equa-
tion model that was incorporated into the k-ω SST turbulence model that results 
in a total of four equations. Later, a range of various three-equation models was 
developed for super-/hypersonic flow applications. However, striking the idea that 
the Reθ-equation was rather redundant, Menter produced a novel one-equation 
intermittency transport γ-equation model. In this report, yet another recently 
introduced transition model called as the Bas-Cakmakcioglu (B-C) algebraic model 
is elaborated. In this model, an algebraic γ-function, rather than the intermittency 
transport γ-equation, is incorporated into the one-equation Spalart-Allmaras 
turbulence model. Using the present B-C model, a number of two-dimensional 
test cases and three-dimensional test cases were simulated with quite successful 
results.

Keywords: transitional flow, correlation-based transition model,  
intermittency transport equation, boundary layer flow, turbulence modeling

1. Introduction

Industrial design aerodynamics heavily depends on development of new CFD 
methods that can be only as good as their experimental database. All these indus-
trial design CFD codes, as they may be called, are constantly in search of better 
physical modeling starting with appropriate transition and turbulence modeling. To 
this end, although numerical representation of turbulence has reached the accept-
able levels of accuracy for computational aerodynamics, transition modeling has 
yet to reach the level of turbulence modeling capability for routine calculations. 
Therefore, transition modeling as part of turbulence has always been standing as 
the crux of the matter with regard to turbulence modeling. Today, state of the art 
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Reynolds Averaged Navier-Stokes (RANS) solvers are widely available for numeri-
cally predicting fully turbulent part of flow fields by frequent use of, for instance, 
one- or two-equation turbulence closure models. However, none of these models 
are adequate to handle flows with significant transition effects due to the lack of 
practical transition modeling. Menter et al. [1] state that some of the main require-
ments for pragmatic transition modeling are the following: calibrated prediction of 
the onset and length of transition, allow inclusion of different mechanisms, allow 
local formulation, and allow a robust integration with background turbulence 
models.

Nevertheless, transition modeling as applied to CFD methods has followed 
certain line of evolution covering a range of methods starting from simple linear 
stability methods such as the eN method [2, 3] to almost or fully predictive methods 
such as LES and DNS that are very costly for engineering applications [1]. The eN 
method is the lowest level transition model based on linear stability theory. This 
method has found quite wide application in numerical boundary layer methods [4], 
but translating this into RANS methods has proven quite demanding as it requires 
a high-resolution boundary layer code that must work hand in hand with the RANS 
method. Also, this method is also dependent on the empirical factor-n that is not 
universal and depends on the type of flow.

Following the eN method, a better level of complexity that is compatible with the 
CFD methods is the low Reynolds number turbulence models [5]. Yet, they do not 
reflect real flow physics and lack the true predictive capability. These methods take 
advantage of the fortuitous ability of the wall damping terms mimicking some of 
the effects of transition. Next in the line of increasing complexity comes the class 
of the so-called correlation-based transition models [1]. These models are based on 
the fundamental approach of blending the laminar and the turbulent regions of the 
flow field by introducing intermittency equations to the turbulence equations. In 
this line, based on the boundary layer methods, there are three similar examples of 
intermittency equation approach that was introduced by Dhawan and Narasimha 
[6], Steelant and Dick [7], and Cho and Chung [8]. First, Dhawan and Narasimha 
[6] used a generalized form of intermittency distribution function in order to 
combine the laminar and the turbulent flow regions. Second, Steelant and Dick [7] 
proposed an intermittency equation that behaves like an experimental correlation. 
Third, Cho and Chung [8] introduced the k-ε-γ model which was formulated by an 
additional transport equation-γ to the well-known k-ε turbulence model. Finally, 
Suzen and Huang [9] significantly improved intermittency equation approach for 
flow transition prediction by combining the last two methods with a model that 
simulates transition in both streamwise and cross-stream directions. However, these 
models all rely on nonlocal flow data, and it was difficult to embed these models 
into practical CFD codes. These models require calculating the momentum thick-
ness Reynolds number-Reθ, which is an integral parameter, and comparing it with a 
critical momentum thickness Reynolds number. For this reason, these early models 
are “nonlocal” methods that require exhausting search algorithms for flows with 
complex geometries.

After the success of the “nonlocal” transition models that use intermittency 
transport equations including experimental correlations, a range of new methods 
[10, 11] has been developed, called as the local correlation-based transition models 
(LCTM) by Menter et al. [1] that are compatible with the modern CFD codes. This 
compatibility has been achieved by the experimental observation that a locally cal-
culated parameter called as the vorticity Reynolds number (Rev) is proportional to 
the momentum thickness Reynolds number (Reθ) in a Blasius boundary layer. This 
observation is also shown to be quite effective for a wide class of flow types with 
moderate pressure gradients. This is due to the fact that the relative error between 
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the two parameters is less than 10% for such flows [1]. Therefore, the vorticity 
Reynolds number-Rev would be used in order to avoid all the troublesome work that 
existed in the nonlocal models.

Following the success of the γ-Reθ two-equation transition model of Menter 
et al. [1], some other two-, or three-equation models are proposed, such as the 
near/freestream intermittency model by Lodefier et al. [12], variations of the 
k-kL-ω models of Walters and Leylek [13] and Walters and Cokljat [14], and 
the k-ω-γ model of Fu and Wang [15] with super/hypersonic flow applications. In 
addition, some researchers proposed extensions to local correlation-based transi-
tion models (LCTM) in order to take more physical phenomena into account. 
To this end, cross-flow instability effects by Seyfert and Krumbein [16], surface 
roughness effects by Dassler et al. [17], and compressibility effects by Kaynak [18] 
were included. Meanwhile, Bas et al. [19] proposed a very pragmatic approach 
by introducing an algebraic or a zero-equation model called later as the Bas-
Cakmakcioglu (B-C) model [20]. Herein, it was shown that an equivalent level of 
prediction compared with the two- and three-equation models could be achieved 
with less equations provided that physics was correctly modeled. In parallel, 
Kubacki et al. [21] proposed yet another algebraic transition model with a good 
level of success vindicating this line of approach. Similarly, Menter et al. [22] 
proposed a new one-equation γ-model which is the simplification of their earlier 
two-equation γ-Reθ model [11] without the Reθ-equation that produced equal 
level of results as in the original model. Following this logical trend for reducing 
the total number of equations, the Wray-Agarwal (WA) wall-distance-free one-
equation turbulence model [23] was complemented with the Menter et al. [22] 
one-equation intermittency transport-γ model to obtain the so-called two-equation 
Nagapetyan-Agarwal WA-γ transition model [24]. In the following, a brief review 
of the transition modeling is made that covers the practical applications of a range 
of models that are currently used in the industrial design aerodynamics. Based on 
the present authors’ recent experiences, the Bas-Cakmakcioglu model [20] will 
be covered in some detail to display the viability of the algebraic intermittency 
equation approach vis-a-vis the one- and two-equation local correlation-based 
transition models (LCTM).

2. Review of transition models

2.1 eN Method

The well-known eN method is based on the linear stability theory [25], and it 
is developed by assuming that the flow is two-dimensional and steady, the bound-
ary layer is thin and the level of disturbances in the flow region is initially very 
low. In this method, the Orr-Sommerfeld eigenvalue equations are solved by using 
the previously obtained velocity profiles over a surface in order to calculate the 
local instability amplification rates of the most unstable waves for each profile. By 
taking the integral of those rates after a certain point where the flow first becomes 
unstable along each streamline, an amplification factor is calculated. Transition is 
said to occur when the value of the amplification factor exceeds a threshold N value. 
Typical values of N vary between 7 and 9.

2.2 Low Reynolds number turbulence models

In the low Reynolds number turbulence models, the wall damping functions 
are modified in order to capture the transition effects [5]. To be able to predict the 
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Reynolds number-Rev would be used in order to avoid all the troublesome work that 
existed in the nonlocal models.

Following the success of the γ-Reθ two-equation transition model of Menter 
et al. [1], some other two-, or three-equation models are proposed, such as the 
near/freestream intermittency model by Lodefier et al. [12], variations of the 
k-kL-ω models of Walters and Leylek [13] and Walters and Cokljat [14], and 
the k-ω-γ model of Fu and Wang [15] with super/hypersonic flow applications. In 
addition, some researchers proposed extensions to local correlation-based transi-
tion models (LCTM) in order to take more physical phenomena into account. 
To this end, cross-flow instability effects by Seyfert and Krumbein [16], surface 
roughness effects by Dassler et al. [17], and compressibility effects by Kaynak [18] 
were included. Meanwhile, Bas et al. [19] proposed a very pragmatic approach 
by introducing an algebraic or a zero-equation model called later as the Bas-
Cakmakcioglu (B-C) model [20]. Herein, it was shown that an equivalent level of 
prediction compared with the two- and three-equation models could be achieved 
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Nagapetyan-Agarwal WA-γ transition model [24]. In the following, a brief review 
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the present authors’ recent experiences, the Bas-Cakmakcioglu model [20] will 
be covered in some detail to display the viability of the algebraic intermittency 
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2. Review of transition models

2.1 eN Method

The well-known eN method is based on the linear stability theory [25], and it 
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taking the integral of those rates after a certain point where the flow first becomes 
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2.2 Low Reynolds number turbulence models

In the low Reynolds number turbulence models, the wall damping functions 
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transition onset, these models depend on the diffusion of the turbulence from 
freestream into the boundary layer and its interaction with the source terms of 
the turbulence models. For this reason, these models are more suitable for bypass 
transition flows. Nonetheless, due to the similarities between a developing laminar 
boundary layer and a viscous sublayer, their success is thought to be coincidental, 
and thus these modes are mostly unreliable. These models also lack sensitivity to 
adverse pressure gradients and convergence problems arise for separation-induced 
transition cases.

2.3 Intermittency equation transition models

It has been known from experiment that turbulence has an intermittent char-
acter with large fluctuations in flow variables like velocity, pressure, etc. Based on 
this observation, transition to turbulence has been tried to be modeled using the 
so-called intermittency function. One-, two- or three-equation partial differential 
equations have been derived to include the intermittency equation as one of the 
equations of the complete equation set including relevant experimental calibrations 
that mimic the actual physical behavior. To this end, “nonlocal” [7–9] and “local” 
[1, 10, 11] correlation transition models have been proposed. In the following, a 
systematic line of progress is presented that reveals the evolution of such models.

2.3.1 Models depending on nonlocal flow variables

2.3.1.1 Dhawan and Narasimha model

Dhawan and Narasimha [6] proposed a scalar intermittency function-γ that 
would provide some sort of a measure of progression toward a fully turbulent 
boundary layer. Based on the experimentally measured streamwise intermittency 
distributions on flat plate boundary layers, for instance, Dhawan and Narasimha [6] 
introduced the following function for streamwise intermittency profile:

  γ =  
{

 
0

  
   x <  x  t  

      
1.0 − exp  [−     (x −  x  t  )    2  n𝜎𝜎 ________ U  ]  = 1.0 − exp  (− 0.41  ξ   2 ) 

  
x ≤  x  t  

     
(1)

In the above function, xt is the known transition onset location, n is the turbu-
lence spot formation rate per unit time per unit distance in the spanwise direction, σ 
is a turbulence spot propagation parameter, and U is the freestream velocity.

2.3.1.2 Cho and Chung model

Cho and Chung [8] developed the k-ε-γ turbulence model that is not designed 
for prediction of transitional flows but for free shear flows. In this model, the inter-
mittency effect is incorporated into the conventional k-ε turbulence model with the 
addition of an intermittency transport equation for the intermittency factor γ. In 
this model, the turbulent viscosity is defined in terms of k, ε, and γ. The intermit-
tency transport equation is given as:

   u  j     
∂ γ ___ ∂  x  j  

   =  D  γ   +  S  γ    (2)

where Dγ is the diffusion term and Sγ is the source term. This model is tested for 
a plane jet, a round jet, a plane far-wake, and a mixing layer case. As mentioned 
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before, although the model was not designed for transition prediction, the γ inter-
mittency profile for the turbulent-free shear layer flows was quite realistic.

2.3.1.3 Steelant and Dick model

Steelant and Dick [7] developed an intermittency transport model that can be used 
with the so-called conditioned Navier-Stokes equations. In this model, the intermit-
tency function of Dhawan and Narasimha [6] is first differentiated along the stream-
line direction, s, and the following intermittency transport equation is obtained:

    d𝛾𝛾 ___ ∂ τ   +   ∂ 𝜌𝜌u𝛾𝛾 _____ dx   +   ∂ 𝜌𝜌v𝛾𝛾 _____ ∂ y   =  (1 − γ) ρ  √ 
______

  u   2  +  v   2    β (s)   (3)

In the above equation, β(s) is a turbulent spot formation and propagation term, 
which is seen in the exponential function part of the Dhawan and Narasimha 
model. Steelant and Dick tested their model for zero, adverse and favorable pressure 
gradient flows by using two sets of the so-called conditioned averaged Navier-
Stokes equations. Although their model reproduces the intermittency distribution 
of Dhawan and Narasimha for the streamwise direction, a uniform intermittency 
distribution in the cross-stream direction is assumed. Yet, this is inconsistent with 
the experimental observations of, for instance, Klebanoff [26] where a variation of 
the intermittency in the normal direction by means of an error function formula.

2.3.1.4 Suzen and Huang model

Suzen and Huang [9] proposed an intermittency transport equation model by 
mixing the production terms of the Cho and Chung [8] and Steelant and Dick [7] 
models by means of a new blending function. An extra diffusion-related produc-
tion term due to Cho and Chung is also added to the resultant equation. This model 
successfully reproduces experimentally observed streamwise intermittency profiles 
and demonstrates a realistic profile for the cross-stream direction in the transition 
region. This model is coupled with the Menter’s k-ω SST turbulence model [27] in 
which the intermittency factor calculated by the Suzen and Huang model is used 
to scale the eddy viscosity field computed by the turbulence model. This model is 
successfully tested against several flat plate and low-pressure turbine experiments. 
However, as mentioned before, this model is not a fully local formulation, and thus 
it cannot be implemented in straightforward fashion in the modern CFD codes.

2.3.2 Models depending on local flow variables

2.3.2.1 Langtry and Menter γ-Reθ model

Langtry and Menter’s formulation of the two-equation γ-Reθ model [11] is one of 
the most widely used transition models as far as general CFD applications in aero-
nautics are concerned. This model is formulated in such a way that allows calibrated 
prediction of transition onset and length that are valid for both the 2-D and 3-D 
flows. It uses the so-called local variables and thus applicable to any type of grids 
generated around complex geometries with robust convergence characteristics. As 
mentioned in the introduction part, this model is based on an important experimen-
tal observation that a locally calculated parameter called as the vorticity Reynolds 
number (Rev) and the momentum thickness Reynolds number (Reθ) where

   Re  θ   =    Re  vmax   ______ 2.193   and  Re  v   =   ρ  d  w  2   ____ μ   Ω  (4)
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transition onset, these models depend on the diffusion of the turbulence from 
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the turbulence models. For this reason, these models are more suitable for bypass 
transition flows. Nonetheless, due to the similarities between a developing laminar 
boundary layer and a viscous sublayer, their success is thought to be coincidental, 
and thus these modes are mostly unreliable. These models also lack sensitivity to 
adverse pressure gradients and convergence problems arise for separation-induced 
transition cases.

2.3 Intermittency equation transition models

It has been known from experiment that turbulence has an intermittent char-
acter with large fluctuations in flow variables like velocity, pressure, etc. Based on 
this observation, transition to turbulence has been tried to be modeled using the 
so-called intermittency function. One-, two- or three-equation partial differential 
equations have been derived to include the intermittency equation as one of the 
equations of the complete equation set including relevant experimental calibrations 
that mimic the actual physical behavior. To this end, “nonlocal” [7–9] and “local” 
[1, 10, 11] correlation transition models have been proposed. In the following, a 
systematic line of progress is presented that reveals the evolution of such models.

2.3.1 Models depending on nonlocal flow variables

2.3.1.1 Dhawan and Narasimha model

Dhawan and Narasimha [6] proposed a scalar intermittency function-γ that 
would provide some sort of a measure of progression toward a fully turbulent 
boundary layer. Based on the experimentally measured streamwise intermittency 
distributions on flat plate boundary layers, for instance, Dhawan and Narasimha [6] 
introduced the following function for streamwise intermittency profile:
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x ≤  x  t  

     
(1)

In the above function, xt is the known transition onset location, n is the turbu-
lence spot formation rate per unit time per unit distance in the spanwise direction, σ 
is a turbulence spot propagation parameter, and U is the freestream velocity.

2.3.1.2 Cho and Chung model

Cho and Chung [8] developed the k-ε-γ turbulence model that is not designed 
for prediction of transitional flows but for free shear flows. In this model, the inter-
mittency effect is incorporated into the conventional k-ε turbulence model with the 
addition of an intermittency transport equation for the intermittency factor γ. In 
this model, the turbulent viscosity is defined in terms of k, ε, and γ. The intermit-
tency transport equation is given as:

   u  j     
∂ γ ___ ∂  x  j  

   =  D  γ   +  S  γ    (2)

where Dγ is the diffusion term and Sγ is the source term. This model is tested for 
a plane jet, a round jet, a plane far-wake, and a mixing layer case. As mentioned 
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before, although the model was not designed for transition prediction, the γ inter-
mittency profile for the turbulent-free shear layer flows was quite realistic.

2.3.1.3 Steelant and Dick model

Steelant and Dick [7] developed an intermittency transport model that can be used 
with the so-called conditioned Navier-Stokes equations. In this model, the intermit-
tency function of Dhawan and Narasimha [6] is first differentiated along the stream-
line direction, s, and the following intermittency transport equation is obtained:

    d𝛾𝛾 ___ ∂ τ   +   ∂ 𝜌𝜌u𝛾𝛾 _____ dx   +   ∂ 𝜌𝜌v𝛾𝛾 _____ ∂ y   =  (1 − γ) ρ  √ 
______

  u   2  +  v   2    β (s)   (3)

In the above equation, β(s) is a turbulent spot formation and propagation term, 
which is seen in the exponential function part of the Dhawan and Narasimha 
model. Steelant and Dick tested their model for zero, adverse and favorable pressure 
gradient flows by using two sets of the so-called conditioned averaged Navier-
Stokes equations. Although their model reproduces the intermittency distribution 
of Dhawan and Narasimha for the streamwise direction, a uniform intermittency 
distribution in the cross-stream direction is assumed. Yet, this is inconsistent with 
the experimental observations of, for instance, Klebanoff [26] where a variation of 
the intermittency in the normal direction by means of an error function formula.

2.3.1.4 Suzen and Huang model

Suzen and Huang [9] proposed an intermittency transport equation model by 
mixing the production terms of the Cho and Chung [8] and Steelant and Dick [7] 
models by means of a new blending function. An extra diffusion-related produc-
tion term due to Cho and Chung is also added to the resultant equation. This model 
successfully reproduces experimentally observed streamwise intermittency profiles 
and demonstrates a realistic profile for the cross-stream direction in the transition 
region. This model is coupled with the Menter’s k-ω SST turbulence model [27] in 
which the intermittency factor calculated by the Suzen and Huang model is used 
to scale the eddy viscosity field computed by the turbulence model. This model is 
successfully tested against several flat plate and low-pressure turbine experiments. 
However, as mentioned before, this model is not a fully local formulation, and thus 
it cannot be implemented in straightforward fashion in the modern CFD codes.

2.3.2 Models depending on local flow variables

2.3.2.1 Langtry and Menter γ-Reθ model

Langtry and Menter’s formulation of the two-equation γ-Reθ model [11] is one of 
the most widely used transition models as far as general CFD applications in aero-
nautics are concerned. This model is formulated in such a way that allows calibrated 
prediction of transition onset and length that are valid for both the 2-D and 3-D 
flows. It uses the so-called local variables and thus applicable to any type of grids 
generated around complex geometries with robust convergence characteristics. As 
mentioned in the introduction part, this model is based on an important experimen-
tal observation that a locally calculated parameter called as the vorticity Reynolds 
number (Rev) and the momentum thickness Reynolds number (Reθ) where

   Re  θ   =    Re  vmax   ______ 2.193   and  Re  v   =   ρ  d  w  2   ____ μ   Ω  (4)
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are proportional in a Blasius boundary layer. For most of the flow types, the rela-
tive error between the scaled vorticity Reynolds number and momentum thickness 
Reynolds number is reported [1] to be around 10%.

The model solves for two additional equations besides the underlying two-equation 
k-ω SST turbulence model, an intermittency equation (γ) that is used to trigger the 
turbulence production term of the k-ω SST turbulence model and a momentum thick-
ness Reynolds number transport equation (Reθ) that includes experimental correla-
tions that relates important flow parameters such as turbulence intensity, freestream 
velocity, pressure gradients etc. and supplies it to the intermittency equation. The 
details of the model are available in the literature [1, 11].

2.3.2.2 Walters and Cokljat k-kL-ω model

Walters and Cokljat’s three-equation k-kL-ω model [14] is proposed by the introduc-
tion of a transport equation for the laminar kinetic energy (kL) into the conventional 
k-ω turbulence model and is used for natural and bypass transitional flows. This model 
is based on the understanding that the freestream turbulence is the cause of the high 
amplitude streamwise fluctuations in the pretransitional boundary layer, and these 
fluctuations are quite distinctive from the classic turbulence fluctuations. Also, growth 
of the laminar kinetic energy correlates with low frequency wall-normal fluctuations 
of the freestream turbulence. In this model, the total kinetic energy is assumed to be 
the sum of the large-scale energy which contributes to laminar kinetic energy and the 
small-scale energy which contributes to turbulence production. Thus, the transport 
equation for laminar kinetic energy (kL) is solved in conjunction with the turbulent 
kinetic energy (kT). Since the k-kL-ω model uses a fully local formulation, it is suitable 
for the modern CFD codes and appears to be the first local model to specifically address 
pretransitional growth mechanism that is responsible for bypass transition [14].

2.3.2.3 Menter one-equation γ model

Menter’s one-equation γ transition model [22] is a simplified version of the 
two-equation γ-Reθ transition model [10, 11]. In the new model, the Reθ equation 
is avoided, and the experimental correlations for transition onset is embedded into 
the γ equation in a simplified fashion. In effect, the simplified one-equation γ model 
still possesses the same level of predictive capabilities as the original model. Menter 
et al. [22] summarize the advantages and the key changes to the model as follows: 
the new model is still fully local with new correlations valid for nearly all types 
of transition mechanisms, solves for one less equation, which is computationally 
cheaper; it is Galilean invariant; it has less coefficients that makes the model easier 
to fine-tune for specific application areas; and the new model would be coupled to 
any turbulence model that has viscous sublayer formulation. Menter et al. tested 
their model against most of the test cases which they previously used for the two-
equation model. The results show that the new one-equation model is quite success-
ful, and it would be a viable replacement for the original model.

2.3.2.4 Nagapetyan and Agarwal two-equation WA-γ transition model

Following the trend for reducing the number of transition equations, a novel 
method was developed by integrating the recent Wray-Agarwal (WA) wall- 
distance-free one-equation turbulence model [23] based on the k-ω closure, with the 
one-equation intermittency transport γ-equation of Menter et al. [22] to construct 
the so-called two-equation Nagapetyan-Agarwal transition model WA-γ [24]. An 
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important difference between the one-equation turbulence model derived earlier 
from k-ω models and the baseline turbulence model is the addition of a new cross 
diffusion term and a blending function between two destruction terms [23]. It was 
reported that the presence of destruction terms enables the Wray-Agarwal (WA) 
model to switch between a one-equation k-ω or one equation k-ε model. The new 
two-equation model was quite successfully validated for computing a number of 
two-dimensional benchmark experiments such as the transitional flows past flat 
plates in zero and slowly varying pressure gradients, flows past airfoils such as the 
S809, Aerospatiale-A, and NLR-7301 two-element airfoils.

2.3.2.5 Bas and Cakmakcioglu algebraic transition model

Bas and Cakmakcioglu (B-C) model [20] is an algebraic or zero-equation model 
that solves for an intermittency function rather than an intermittency transport 
(differential) equation. The main approach behind the B-C model follows the 
pragmatic idea of further reducing the total number of equations. Rather than 
deriving extra equations for intermittency convection and diffusion, already 
present convection and diffusion terms of the underlying turbulence model could 
be used. From a philosophical point of view, the transition, as such, is just a phase 
of a general turbulent flow. Addition of, in a sense, artificially manufactured 
transition equations appear to be rather redundant. Yet, for most of industrial flow 
types, the experimentally evidenced close relation between the scaled vorticity 
Reynolds number and the momentum thickness Reynolds number stood out as the 
primary reason for the success of so many intermittency transport equation mod-
els following the Langtry and Menter’s original two-equation γ-Reθ model [11].

In the application, the production term of the underlying turbulence model is 
damped until a considerable amount of turbulent viscosity is generated, and the 
damping effect of the transition model would be disabled after this point. The 
Spalart-Allmaras (S-A) turbulence model [28] is used as the baseline turbulence 
model, and rather than using an intermittency equation, just an intermittency 
function is proposed to control its production term. To this end, the B-C model is 
also a local correlation transition model that can be easily implemented for both 
2-D and 3-D flows with reduced number of equations. For instance, for a 3-D 
problem, the B-C model solves for six equations (1 continuity + 3 momentum + 
1 energy + 1 turbulence), whereas the two-equation γ-Reθ model solves for nine 
equations (1 continuity + 3 momentum + 1 energy + 2 turbulence + 2 transition). 
In addition, in the B-C model formulation, the freestream turbulence intensity 
parameter is only present in the critical momentum thickness Reynolds number 
function that makes the calibration of the model quite easy for different prob-
lems. The details of the B-C model formulation are presented in the following.

The S-A one-equation turbulence model is used as the underlying turbulence model 
for the B-C model. The S-A model solves for a transport equation for a new working 
variable νT, which is related to the eddy viscosity. The B-C model’s transition effects 
are included into the turbulence model is provided by multiplying the intermittency 
distribution function (γBC) with the production term of the S-A equation given as:

    ∂  ν  T   ____ ∂ t   +   ∂ ___ ∂  x  j  
   ( ν  T    u  j  )  =  γ  BC    C  b1   S  ν  T   −  C  w1    f  w     (   ν  T   __ d  )    

2
  +   1 __ σ   {  ∂ ___ ∂  x  j  

   [ ( ν  L   +  ν  T  )    ∂ ν ___ ∂  x  j  
  ]  

                                                  +  C  b2     ∂  ν  T   ____ ∂  x  j  
     ∂  ν  T   ____ ∂  x  j  

  }    
(5)

The γBC function works in such a way that the turbulence production is damped 
(γBC = 0) until some transition onset criteria is fulfilled. After a point at which the onset 
criteria is ensured, the damping effect of the intermittency function γBC is checked, 
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are proportional in a Blasius boundary layer. For most of the flow types, the rela-
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turbulence production term of the k-ω SST turbulence model and a momentum thick-
ness Reynolds number transport equation (Reθ) that includes experimental correla-
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details of the model are available in the literature [1, 11].
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Walters and Cokljat’s three-equation k-kL-ω model [14] is proposed by the introduc-
tion of a transport equation for the laminar kinetic energy (kL) into the conventional 
k-ω turbulence model and is used for natural and bypass transitional flows. This model 
is based on the understanding that the freestream turbulence is the cause of the high 
amplitude streamwise fluctuations in the pretransitional boundary layer, and these 
fluctuations are quite distinctive from the classic turbulence fluctuations. Also, growth 
of the laminar kinetic energy correlates with low frequency wall-normal fluctuations 
of the freestream turbulence. In this model, the total kinetic energy is assumed to be 
the sum of the large-scale energy which contributes to laminar kinetic energy and the 
small-scale energy which contributes to turbulence production. Thus, the transport 
equation for laminar kinetic energy (kL) is solved in conjunction with the turbulent 
kinetic energy (kT). Since the k-kL-ω model uses a fully local formulation, it is suitable 
for the modern CFD codes and appears to be the first local model to specifically address 
pretransitional growth mechanism that is responsible for bypass transition [14].

2.3.2.3 Menter one-equation γ model

Menter’s one-equation γ transition model [22] is a simplified version of the 
two-equation γ-Reθ transition model [10, 11]. In the new model, the Reθ equation 
is avoided, and the experimental correlations for transition onset is embedded into 
the γ equation in a simplified fashion. In effect, the simplified one-equation γ model 
still possesses the same level of predictive capabilities as the original model. Menter 
et al. [22] summarize the advantages and the key changes to the model as follows: 
the new model is still fully local with new correlations valid for nearly all types 
of transition mechanisms, solves for one less equation, which is computationally 
cheaper; it is Galilean invariant; it has less coefficients that makes the model easier 
to fine-tune for specific application areas; and the new model would be coupled to 
any turbulence model that has viscous sublayer formulation. Menter et al. tested 
their model against most of the test cases which they previously used for the two-
equation model. The results show that the new one-equation model is quite success-
ful, and it would be a viable replacement for the original model.

2.3.2.4 Nagapetyan and Agarwal two-equation WA-γ transition model

Following the trend for reducing the number of transition equations, a novel 
method was developed by integrating the recent Wray-Agarwal (WA) wall- 
distance-free one-equation turbulence model [23] based on the k-ω closure, with the 
one-equation intermittency transport γ-equation of Menter et al. [22] to construct 
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important difference between the one-equation turbulence model derived earlier 
from k-ω models and the baseline turbulence model is the addition of a new cross 
diffusion term and a blending function between two destruction terms [23]. It was 
reported that the presence of destruction terms enables the Wray-Agarwal (WA) 
model to switch between a one-equation k-ω or one equation k-ε model. The new 
two-equation model was quite successfully validated for computing a number of 
two-dimensional benchmark experiments such as the transitional flows past flat 
plates in zero and slowly varying pressure gradients, flows past airfoils such as the 
S809, Aerospatiale-A, and NLR-7301 two-element airfoils.

2.3.2.5 Bas and Cakmakcioglu algebraic transition model

Bas and Cakmakcioglu (B-C) model [20] is an algebraic or zero-equation model 
that solves for an intermittency function rather than an intermittency transport 
(differential) equation. The main approach behind the B-C model follows the 
pragmatic idea of further reducing the total number of equations. Rather than 
deriving extra equations for intermittency convection and diffusion, already 
present convection and diffusion terms of the underlying turbulence model could 
be used. From a philosophical point of view, the transition, as such, is just a phase 
of a general turbulent flow. Addition of, in a sense, artificially manufactured 
transition equations appear to be rather redundant. Yet, for most of industrial flow 
types, the experimentally evidenced close relation between the scaled vorticity 
Reynolds number and the momentum thickness Reynolds number stood out as the 
primary reason for the success of so many intermittency transport equation mod-
els following the Langtry and Menter’s original two-equation γ-Reθ model [11].

In the application, the production term of the underlying turbulence model is 
damped until a considerable amount of turbulent viscosity is generated, and the 
damping effect of the transition model would be disabled after this point. The 
Spalart-Allmaras (S-A) turbulence model [28] is used as the baseline turbulence 
model, and rather than using an intermittency equation, just an intermittency 
function is proposed to control its production term. To this end, the B-C model is 
also a local correlation transition model that can be easily implemented for both 
2-D and 3-D flows with reduced number of equations. For instance, for a 3-D 
problem, the B-C model solves for six equations (1 continuity + 3 momentum + 
1 energy + 1 turbulence), whereas the two-equation γ-Reθ model solves for nine 
equations (1 continuity + 3 momentum + 1 energy + 2 turbulence + 2 transition). 
In addition, in the B-C model formulation, the freestream turbulence intensity 
parameter is only present in the critical momentum thickness Reynolds number 
function that makes the calibration of the model quite easy for different prob-
lems. The details of the B-C model formulation are presented in the following.

The S-A one-equation turbulence model is used as the underlying turbulence model 
for the B-C model. The S-A model solves for a transport equation for a new working 
variable νT, which is related to the eddy viscosity. The B-C model’s transition effects 
are included into the turbulence model is provided by multiplying the intermittency 
distribution function (γBC) with the production term of the S-A equation given as:

    ∂  ν  T   ____ ∂ t   +   ∂ ___ ∂  x  j  
   ( ν  T    u  j  )  =  γ  BC    C  b1   S  ν  T   −  C  w1    f  w     (   ν  T   __ d  )    

2
  +   1 __ σ   {  ∂ ___ ∂  x  j  

   [ ( ν  L   +  ν  T  )    ∂ ν ___ ∂  x  j  
  ]  

                                                  +  C  b2     ∂  ν  T   ____ ∂  x  j  
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(5)

The γBC function works in such a way that the turbulence production is damped 
(γBC = 0) until some transition onset criteria is fulfilled. After a point at which the onset 
criteria is ensured, the damping effect of the intermittency function γBC is checked, 
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and the remaining part of the flow is taken to be fully turbulent (γBC = 1). For this 
purpose, an exponential function of the form (1-e−x) is proposed for the γBC as follows:

   γ  BC   = 1 − exp  (−  √ 
______

  Term  1     −  √ 
______

  Term  2    )   (6)

where Term1 and Term2 are defined as:

   Term  1   =   max  ( Re  θ   −  Re  𝜃𝜃c  , 0.0)   _________________  χ  1    Re  𝜃𝜃c  
  ,  Term  2   =   max  ( ν  BC   −  χ  2  , 0.0)   ______________  χ  2      (7)

and,

   Re  θ   =    Re  v   ____ 2.193   and  Re  v   =   ρ   d  w     2  ____ μ   Ω,  ν  BC   =    ν  t   ____  Ud  w      (8)

In the above, ρ is the density, μ is the molecular viscosity, dw is the distance 
from the nearest wall, νBC is a proposed turbulent viscosity-like nondimensional 
term where νt is the turbulent viscosity, U is the local velocity magnitude, dw is 
the distance from the nearest wall, and χ1 and χ2 are calibration constants. Reθc 
is defined as the critical momentum thickness Reynolds number, which is a cor-
relation that is based on a range of transition experiments. In effect, Term1 checks 
for the transition onset point by comparing the locally calculated Reθ with the 
experimentally obtained critical momentum thickness Reynolds number Reθc. As 
soon as the vorticity Reynolds number Rev exceeds a critical value, Term1 becomes 
greater than zero and the intermittency function γBC begins to increase. However, 
the vorticity Reynolds number Rev relation above is a function of the square of the 
wall distance dw; therefore, it takes a very low value inside the boundary layer where 
the wall distance is quite low. Because of this, Term1 alone is not enough for intermit-
tency generation inside the boundary layer. To remedy this, Term2 is introduced. 
Inspecting the Term2 equation with the νBC relation shows that the regions close to 
wall is inversely related and the damping effect of the transition model would be 
disabled inside the boundary layer. In effect, Term2 checks for the viscosity levels 
inside the boundary layer, and the turbulence production is activated wherever νBC 
exceeds a critical value χ2. In order to determine the calibration constants’ χ1 and χ2 
values, the well-known zero pressure gradient flat plate test case of Schubauer and 
Klebanoff [29] is used. This test case represents a natural transition process due to 
the wind tunnel used in the experiment generates a freestream Tu around 0.2%. The 
model calibration is done by numerical experimentation; setting χ1 and χ2 such that 
the transition occurs at the same location as in the experiment. As a result, the χ1 and 
χ2 values are set to be 0.002 and 5.0, respectively.

Any experimental Reθc correlation could be used in the model. However, it 
should be noted that, since the S-A turbulence model does not solve for the local 
turbulent kinetic energy, local turbulence intensity values cannot be calculated. Due 
to this reason, the turbulence intensity Tu is assumed, for now, to be constant in the 
entire flow domain as Suluksna et al. [30] and Medida [31] have also suggested. For 
this lack of ability for calculating the local Tu values, the B-C model has some defi-
ciency in this respect that it cannot handle some physical effects compared with the 
models that can dynamically calculate the local Tu levels. Whereas this deficiency 
makes the B-C model rather limited, there are quite a few aerodynamic flows for 
which the model is still viable. The transition onset correlation that was also used in 
the original two-equation γ-Reθ model [1] is given by:

   Re  𝜃𝜃c   = 803.73   ( Tu  ∞   + 0.6067)    −1.027   (9)
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As mentioned before, any transition onset correlation would be incorporated 
into the B-C model. For instance, a class of potential transition onset correlations 
along with the one preferred in the present B-C model is shown in Figure 1.

Currently, the B-C model is available in the SU2 (Stanford University 
Unstructured) v6.0, an open-source CFD solver by the ADL of Stanford University 
[32]. The SU2 can solve two- and three-dimensional incompressible/compressible 
Euler/RANS equations using linear system solver methods.

3. Two- and three-dimensional test cases for low to high speeds

Some outstanding test cases that make a good platform for measuring novel 
transition model performances are simulated by the foregoing transition models. 
These cases cover a wide range of flows from low speed two-dimensional flat plate 
and airfoil test cases to three-dimensional wind turbine blade and aircraft wing test 
cases from low to high speeds.

3.1 Low speed flat plate test cases

Well-known benchmark experiments such as the Schubauer and Klebanoff 
natural transition flat plate experiment [29] and the ERCOFTAC T3 series flat plate 
experiments by Savill [33] are used. The T3 series flat plate experiments consist of 
three zero pressure flat plate cases (T3A, T3B, and T3A-) and five variable pressure 
flat plate cases (T3C1, T3C2, T3C3, T3C4, and T3C5), in which the pressure gradients 
are generated using an adjustable upper tunnel wall. In all ERCOFTAC T3 test cases, 
the free stream turbulence intensities vary between 0.1 and 6%. Table 1 summarizes 
the upstream conditions of the Schubauer and Klebanoff and the ERCOFTAC T3 flat 
plate experiments.

Figure 2 shows the numerical and experimental skin friction coefficients of 
the zero pressure gradient test cases of S&K, T3A, T3B and T3A-, respectively. The 
figures include numerical predictions of several researchers, including for instance 
Suzen and Huang [9], Langtry and Menter [11], Walters and Cokljat [14], Menter 
et al. [22], Nagapetyan and Agarwal [24], and Medida [31]. In the S&K calibration 
case, the B-C model displays a good agreement with the experiment for the transi-
tion onset point similar to other methods. For the T3A and T3B cases, the B-C model 
shows rather late transition onset, whereas the other models predict some early 
or late onset points. Specifically, Nagapetyan and Agarwal [24] show a very good 
agreement with the experiment as to the transition onset and rapid skin-friction 

Figure 1. 
Transition onset correlations compared with experiments.
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three zero pressure flat plate cases (T3A, T3B, and T3A-) and five variable pressure 
flat plate cases (T3C1, T3C2, T3C3, T3C4, and T3C5), in which the pressure gradients 
are generated using an adjustable upper tunnel wall. In all ERCOFTAC T3 test cases, 
the free stream turbulence intensities vary between 0.1 and 6%. Table 1 summarizes 
the upstream conditions of the Schubauer and Klebanoff and the ERCOFTAC T3 flat 
plate experiments.

Figure 2 shows the numerical and experimental skin friction coefficients of 
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case, the B-C model displays a good agreement with the experiment for the transi-
tion onset point similar to other methods. For the T3A and T3B cases, the B-C model 
shows rather late transition onset, whereas the other models predict some early 
or late onset points. Specifically, Nagapetyan and Agarwal [24] show a very good 
agreement with the experiment as to the transition onset and rapid skin-friction 
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Figure 2. 
Comparison of skin friction coefficients for the zero pressure gradient flat plate test cases.

rise characteristic. Finally, for the T3A- case, the B-C [20], Menter et al. [22], 
Walters and Cokljat [14], and Nagapetyan and Agarwal [24] display early transition 
onset points with rather rapid rise in skin-friction, whereas two-equation Langtry 
and Menter [11] and Medida [31] models show quite good onset point and a gradual 
rise in the skin friction.

Figure 3 depicts numerical and experimental skin friction coefficients for the 
T3C series variable pressure flat plate test cases. The T3C series flat plate test cases 
represent actual turbine characteristics by changing the pressure gradient by chang-
ing the upper wall profile of the wind tunnel over the flat plate. For the T3C1 case, 

Case Uin Re∞ Tu%

S&K 50.1 3.4E+6 0.18

T3A 5.4 3.6E+5 3.00

T3B 9.4 6.3E+5 6.00

T3A- 19.8 1.4E+6 0.90

T3C1 5.9 3.9E+5 6.60

T3C2 5.0 3.3E+5 3.00

T3C3 3.7 2.5E+5 3.00

T3C4 1.2 8.0E+4 3.00

T3C5 8.4 5.6E+5 3.00

Table 1. 
Inlet conditions for the flat plate test cases.
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which represents the highest turbulence intensity test case among the T3C series 
test cases, the B-C model results are quite in agreement with the experimental data 
as the transition onset location is predicted with decent accuracy. For the T3C2 case, 
it is observed that although the B-C model predicted a good transition onset point, 
the turbulent stress abruptly rises after the onset. All other models predicted the 
transition onset location rather late in general.

For the T3C3 case, it is observed that the γ-Reθ model [11], k-kL-ω model [14], 
and WA-γ model [24] outperform the other models as the B-C model prediction 
shows an early transition onset, whereas the one-equation γ model [22] predicts a 
rather late transition onset. For the T3C4 case, which represents the lowest Reynolds 
number case, all the models except for the B-C and WA-γ models show flow separa-
tion as their skin friction coefficients are below zero. Here, the B-C model obtained 
a quite good transition onset point that agreed with the experimental data although 

Figure 3. 
Comparison of skin friction coefficients for the variable pressure gradient flat plate test cases.
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shows an early transition onset, whereas the one-equation γ model [22] predicts a 
rather late transition onset. For the T3C4 case, which represents the lowest Reynolds 
number case, all the models except for the B-C and WA-γ models show flow separa-
tion as their skin friction coefficients are below zero. Here, the B-C model obtained 
a quite good transition onset point that agreed with the experimental data although 

Figure 3. 
Comparison of skin friction coefficients for the variable pressure gradient flat plate test cases.
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Figure 4. 
S809 airfoil (a) lift coefficients and (b) drag coefficients at M = 0.15 and Re = 2 M.

the laminar region was rather inaccurate. Finally, for the T3C5 case, solution of 
the zero-equation B-C model [20], Menter et al. one-equation γ model [22], and 
WA-γ model [24] well agree with the experiment in the laminar region, the onset of 
transition is also fairly good with some delay, and again quite good agreement in the 
subsequent variable pressure gradient region is obtained.

3.2 Airfoil and turbomachinery test cases

3.2.1 S809 airfoil

The S809 airfoil is a 21% thick profile, which specifically designed for horizon-
tal-axis wind turbine applications. The S809 airfoil was tested in a low-turbulence 
wind tunnel (Tu = 0.2%) by Somers [34] at Re number of 2 million (based on 
chord length) and a Mach number of 0.15. Comparison of the numerical results by 
Langtry and Menter [11] γ-Reθ, Walters and Cokljat [14] k-kL-ω, and Medida [31] 
SA-γ-Reθ and B-C models [20] with the experimental data is given in Figures 4–6. 
In general, all transition models agree well with the experimental data until the stall 
angle. Although the lift and drag coefficients (Figure 4) are rather inaccurate after 
the stall angle, it is observed that the experimental measurements of the transition 
locations are quite successfully predicted by all models (Figure 5). Also, compar-
ing the experimental and numerical pressure coefficient distributions on the S809 
airfoil at 1̊ angle of attack, it is observed that the separation bubble is predicted 
quite well by all the models (Figure 6).

3.2.2 T106 turbine cascade

T106 turbine cascade experiment was designed to investigate the interaction of 
a convected wake and a separation bubble on the suction surface of a highly loaded 
low-pressure turbine blade. In these experiments by Stieger et al. [35], five-blade 
cascade of T106 profile was placed downstream of a moving bar wake generator 
in order to simulate an unsteady wake passing environment of a turbomachine. In 
the experiment, the flow conditions correspond to a Reynolds number of nearly 
91,000 based on the chord length of the T106 profile and the inlet velocity. The 
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experimental turbulence intensity is specified to be 0.1%. Geometric details of the 
experimental cascade setup are given in Table 2. Comparison of the experimental 
and numerical pressure coefficient distributions for T106 cascade for the steady 
case is depicted in Figure 7. Looking at Figure 7, it is observed that the separation 
bubble on the blade predicted by the B-C model and the two-equation γ-Reθ model 
is slightly smaller in size than the experimentally measured bubble.

3.3 3-D wing test cases from low to high speeds

3.3.1 Low speed rotating wind turbine blade

Two twisted and tapered 10-meter diameter turbine blades that use the S809 
airfoil profile are tested in the NASA Ames Research Center wind tunnels [36, 37]. 
In the experiments, the NREL wind turbine rotation speed was set to 72 RPM for all 
cases, whereas the wind speeds varied from 7 to 25 m/s.

Figure 8 compares the pressure coefficient distributions over various spanwise 
locations on the turbine blades at the freestream velocity of 7 m/s. It is observed 

Figure 6. 
Pressure coefficient distribution comparison for the S809 airfoil at 1̊.

Figure 5. 
S809 airfoil transition location comparison.
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the laminar region was rather inaccurate. Finally, for the T3C5 case, solution of 
the zero-equation B-C model [20], Menter et al. one-equation γ model [22], and 
WA-γ model [24] well agree with the experiment in the laminar region, the onset of 
transition is also fairly good with some delay, and again quite good agreement in the 
subsequent variable pressure gradient region is obtained.

3.2 Airfoil and turbomachinery test cases

3.2.1 S809 airfoil

The S809 airfoil is a 21% thick profile, which specifically designed for horizon-
tal-axis wind turbine applications. The S809 airfoil was tested in a low-turbulence 
wind tunnel (Tu = 0.2%) by Somers [34] at Re number of 2 million (based on 
chord length) and a Mach number of 0.15. Comparison of the numerical results by 
Langtry and Menter [11] γ-Reθ, Walters and Cokljat [14] k-kL-ω, and Medida [31] 
SA-γ-Reθ and B-C models [20] with the experimental data is given in Figures 4–6. 
In general, all transition models agree well with the experimental data until the stall 
angle. Although the lift and drag coefficients (Figure 4) are rather inaccurate after 
the stall angle, it is observed that the experimental measurements of the transition 
locations are quite successfully predicted by all models (Figure 5). Also, compar-
ing the experimental and numerical pressure coefficient distributions on the S809 
airfoil at 1̊ angle of attack, it is observed that the separation bubble is predicted 
quite well by all the models (Figure 6).

3.2.2 T106 turbine cascade

T106 turbine cascade experiment was designed to investigate the interaction of 
a convected wake and a separation bubble on the suction surface of a highly loaded 
low-pressure turbine blade. In these experiments by Stieger et al. [35], five-blade 
cascade of T106 profile was placed downstream of a moving bar wake generator 
in order to simulate an unsteady wake passing environment of a turbomachine. In 
the experiment, the flow conditions correspond to a Reynolds number of nearly 
91,000 based on the chord length of the T106 profile and the inlet velocity. The 

113

Transition Modeling for Low to High Speed Boundary Layer Flows with CFD Applications
DOI: http://dx.doi.org/10.5772/intechopen.83520

experimental turbulence intensity is specified to be 0.1%. Geometric details of the 
experimental cascade setup are given in Table 2. Comparison of the experimental 
and numerical pressure coefficient distributions for T106 cascade for the steady 
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In the experiments, the NREL wind turbine rotation speed was set to 72 RPM for all 
cases, whereas the wind speeds varied from 7 to 25 m/s.
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Figure 7. 
Comparison of numerical and experimental pressure coefficient distributions on the T106 blade for 
Re = 91,000.

that both fully turbulent and the transitional solutions differ very slightly and both 
agree well with the experimental data. The skin friction contours and the surface 
streamlines obtained by Medida [31], Potsdam et al. [38], and Aranake et al. [39] 
for the same freestream velocity are compared to the B-C model and the S-A model 
solutions in Figure 9.

3.3.2 High subsonic flow over 3-D swept wing

DLR-F5 wing tested by Sobieczky [40] is a 0.65 m span wing with 20° sweep 
angle and an average chord length of 150 mm. The wing is mounted to the tunnel 
wall with a smooth blending region, and the angle of attack is set to be 2°. The 
square cross-section wind tunnel has dimensions of 1 × 1 × 4 meters. The experi-
mental inlet Mach number and the turbulence intensity are specified as M = 0.82 
and Tu <0.35%, respectively. The corresponding Re number based on the average 
chord is 1.5 million. In the experiment, the transition locations are determined 
by the sublimation technique, whereas measurements of pressure coefficients at 
different spanwise stations are available. In 1987, a workshop with several research-
ers were took place in Gottingen [41], where the results were compared against the 
experimental data.

Figure 10 shows the pressure coefficient distributions at different span loca-
tions. It is observed that the fully turbulent and the transitional solutions are very 

Blade chord 198 mm

Blade stagger 59.3°

Cascade pitch 158 mm

Inlet flow angle 37.7°

Design exit flow angle 63.2°

Bar diameter 2.05 mm

Axial distance from bars to leading edge 70 mm

Table 2. 
Geometric details of the T106 cascade experimental setup.
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Figure 8. 
Comparison of pressure coefficient distributions for the NREL phase IV blade for U = 7 m/s freestream velocity.

Figure 9. 
Comparison of numerical skin friction contours obtained by several researchers.
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and Tu <0.35%, respectively. The corresponding Re number based on the average 
chord is 1.5 million. In the experiment, the transition locations are determined 
by the sublimation technique, whereas measurements of pressure coefficients at 
different spanwise stations are available. In 1987, a workshop with several research-
ers were took place in Gottingen [41], where the results were compared against the 
experimental data.

Figure 10 shows the pressure coefficient distributions at different span loca-
tions. It is observed that the fully turbulent and the transitional solutions are very 

Blade chord 198 mm

Blade stagger 59.3°

Cascade pitch 158 mm

Inlet flow angle 37.7°

Design exit flow angle 63.2°

Bar diameter 2.05 mm

Axial distance from bars to leading edge 70 mm

Table 2. 
Geometric details of the T106 cascade experimental setup.
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Figure 8. 
Comparison of pressure coefficient distributions for the NREL phase IV blade for U = 7 m/s freestream velocity.

Figure 9. 
Comparison of numerical skin friction contours obtained by several researchers.
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Figure 10. 
Pressure coefficient distributions for the DLR-F5 wing at M = 0.82 and Re = 1.5 M.

Figure 11. 
Skin-friction coefficient comparisons for the DLR-F5 wing.

similar to each other. Figure 11 compares the skin friction contours of different 
numerical models with the experiment [40]. As seen, the B-C model predicts a 
somewhat similar transition and separation region with the experiment obtained by 
the sublimation and pressure measurement techniques.

Finally, in order to emphasize the difference between the fully turbulent and the 
transitional solutions, comparison of the skin friction coefficients at 80% span on 
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the DLR-F5 wing is depicted in Figure 12. It can be clearly observed that the B-C 
model predicts marked extent of laminar regions for both the suction and pressure 
sides of the wing, which is in agreement with the contours shown in Figure 11.

4. Conclusions

Local correlation-based transition models in the sense of empirical correlations 
incorporated into Reynolds-averaged Navier-Stokes methods have been discussed. 
A logical path for the development of such models is highlighted such that a variety 
of combinations of turbulence and transition equations lead to different modeling 
alternatives. For instance, the pioneering work by Menter et al. [1] two-equation 
γ-Reθ transition model sums up to a total of four-equation model by the incor-
poration of the two-equation k-ω SST turbulence model of Menter et al. [27]. In 
the same line of development but in a leaner approach, Walters and Cokljat [14] 
developed a three-equation k-kL-ω model. Similarly, Medida [31] developed a 
three-equation S-A-γ-Reθ transition model that is a sum of the Menter et al. [1] two-
equation γ-Reθ transition model and the one-equation S-A turbulence model [28].

In fact, in a recent work, Menter [22] reached to the conclusion that the Reθ 
equation was rather redundant. Without any loss of accuracy, Menter produced a 
leaner three-equation k-ω SST-γ transition model by incorporating a novel one-
equation intermittency transport γ-model [22] with the two-equation k-ω SST 
turbulence model of Menter et al. [27]. In the same line of thought, Nagapetyan-
Agarwal constructed the so-called two-equation transition model of WA-γ [24] by 
incorporating the Wray-Agarwal (WA) wall-distance-free one-equation turbulence 
model [23] based on the k-ω closure with the one-equation intermittency transport 
γ-equation of Menter et al. [22]. These two models paved the way for developing 
yet another leaner transition model by Bas et al. [19] with the introduction of the 
algebraic Bas-Cakmakcioglu (B-C) model by incorporating an algebraic γ-function 
with the one-equation S-A turbulence model [28].

The Bas-Cakmakcioglu (B-C) [19] model qualifies as a zero-equation model 
that solves for an intermittency function rather than an intermittency transport 
(differential) equation. The main approach behind the B-C model follows again 
the pragmatic idea of further reducing the total number of equations. Thus, rather 
than deriving extra equations for intermittency convection and diffusion, already 

Figure 12. 
Comparison of the skin friction coefficients predicted by the S-A turbulence model and the B-C transition 
model at 80% span on the DLR-F5 wing.
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present convection and diffusion terms of the underlying turbulence model could 
have been used. From a philosophical point of view, the transition, as such, is just a 
phase of a general turbulent flow. In a sense, addition of artificially manufactured 
transition equations may appear to be rather redundant. Yet, for most of indus-
trial flow types, there is experimental evidence that a close relation between the 
scaled vorticity Reynolds number and the momentum thickness Reynolds number 
exists. This fact stands out as the primary reason for the success of the class of so 
many intermittency transport equation models following the Menter’s pioneering 
two-equation γ-Reθ model [1]. Using the present B-C model, a number of two-
dimensional test cases including flat plates, airfoils, turbomachinery blades, and 
three-dimensional low speed wind turbine and high-speed transport plane wing 
were simulated with quite successful results. These results may be regarded to 
vindicate this leaner approach of using even lesser equations for industrial design 
aerodynamics problems.
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Abstract

Experimental studies on wind engineering require the use of different types 
of physical models of boundary layer flows. Small-scale models obtained in a 
wind tunnel, for example, attempt to reproduce real atmosphere phenomena like 
wind loads on structures and pollutant dispersion by the mean flow and turbulent 
mixing. The quality of the scale model depends on the similarity between the 
laboratory-generated flow and the atmospheric flow. Different types of neutral 
atmospheric boundary layer (ABL) including full-depth and part-depth simula-
tions are experimentally evaluated. The Prof. Jacek Gorecki wind tunnel of the 
UNNE, Argentina, and the Prof. Joaquim Blessmann closed-return wind tunnel of 
the UFRGS, Brazil, were used to obtain the experimental data. Finally, some recent 
wind engineering applications of this type of physical wind models are shown.

Keywords: wind tunnel, turbulence, aerodynamic loads, atmospheric dispersion, 
physical simulation

1. Introduction

Wind tunnels are designed to realize similarity in model studies, with the 
confidence that actual operational conditions will be reproduced. The first step is 
the evaluation of the flow characteristics with the empty wind tunnel, and then, 
different flow characteristics are achieved or reproduced at the test section to be 
applied in the experimental tests. To perform aerodynamic studies of structural 
models, the distribution of the incident flow must be such that the atmospheric 
boundary layer (ABL) at the actual location of the structure is reproduced. This is 
obtained by surface roughness elements and vortex generators, so that natural wind 
simulations are performed.

The atmospheric boundary layer (ABL) is the lowest part of the atmosphere 
where the effects of the surface roughness, temperature, and others properties are 
transmitted by turbulent flows. Turbulent exchanges are very weak when there are 
conditions of weak winds and very stable stratification [1]. On the other hand, the 
atmospheric boundary layer over nonhomogeneous terrain is not well defined, and 
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topographical features could cause highly complex flows. The depth of the atmo-
spheric boundary layer is typically 100 m during the nighttime stable conditions, 
and this could reach 1 km in daytime unstable conditions [2]. The Prandtl logarith-
mic law (Eq. (1)), proposed from similarity theories, can be used near the surface in 
the case of a neutral boundary layer.

    U (z)  ____ u ∗   =   1 ___ 0. 4   ln   z −  z  d   ____  z  0      (1)

where U is the mean velocity, u* is the friction velocity, z0 is known as the rough-
ness height, and zd is defined as the zero-plane displacement for very rough surface.

The potential law (Eq. (2)) is also widely used in wind engineering to character-
ize the vertical velocity distribution. The values for the exponent α vary between 
0.10 and 0.43 and the boundary layer thickness zg between 250 and 500 m, accord-
ing to the terrain type [2]. This law is verifiable in the case of strong winds and 
neutral stability conditions that must be considered for structural analysis.

    U (z)  _____ U ( z  g  )   =    (  z __  z  g    )    α   (2)

Similarity requirements corresponding to studies of atmospheric flow in 
the laboratory can be obtained by the dimensional analysis. The equations are 
expressed in dimensionless form by means of reference parameters that lead to the 
following set of non-dimensional groups or numbers: Reynolds number, Prandtl 
number, Rossby number, and Richardson number. These dimensionless parameters 
must be in the same value with the model and prototype to obtain the exact simi-
larity, and, in addition, there must be geometric similarity and similarity of the 
boundary conditions, including incident flow, surface temperature, heat flow, and 
longitudinal pressure gradient [3].

Geometric scales defined between the simulated laboratory boundary layer and 
the atmospheric boundary layer are generally <1:200, velocities in the model and 
prototype have values of the same order, and the viscosity is the same for both cases. 
This results in the impossibility of reproducing the Reynolds number in low-speed 
wind tunnels; however, the effects of Reynolds number variation can be taken into 
account according to the type of wind tunnel test. On the other hand, the equality 
of the Prandtl number is obtained simply by using the same fluid in model and 
prototype, as in this case. The equality of the Rossby and Richardson numbers may 
not be considered for simulation of neutral ABL since Coriolis forces and thermal 
effects are negligible.

In most laboratories it is more common to simulate the neutrally stratified 
boundary layer. This implies modeling the distribution of mean velocities, tur-
bulence scales, and atmospheric spectrum [4]. The quality of these approximate 
models is simply evaluated by comparing the results expressed in dimensionless 
form with design values. Turbulence intensity distribution is commonly compared 
with values obtained by other authors [5] and by using Harris-Davenport formula 
for atmospheric boundary layer [2].

Atmospheric velocity fluctuations with frequencies upper than 0.0015 Hz define 
the micrometeorological spectral region. Interest of wind engineering is concen-
trated on this spectral turbulence region. von Kármán suggested an expression for 
the turbulence spectrum in 1948, and today this spectral formula is still used for 
wind engineering applications. According to Reference [2], the expression for the 
dimensionless spectrum of the longitudinal component of atmospheric turbulence 
is given by Eq. (3):
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5/6
 
    (3)

where Su is the spectral density function of the longitudinal component, f is the 
frequency in Hertz, and uRMS

2 is the quadratic mean, or the variance, of the longitu-
dinal velocity fluctuations in m2/s2. The dimensionless frequency fzref/U is defined 
using an appropriate zref, generally gradient height, and the mean velocity U.

Different boundary layer flows are experimentally analyzed in this work. First, 
three types of boundary layer flows developed at the UNNE wind tunnel: one 
corresponding to a naturally developed boundary layer with the empty wind tunnel 
and the other two generated by different ABL simulation methods. Then, simulated 
ABL flows obtained with different velocities at the UFRGS wind tunnel are ana-
lyzed, and the results are compared with each other. Finally, some recent applica-
tions of ABL simulations are described, among them wind effects in high-rise 
buildings considering the urban environment and the surrounding topography, low 
buildings, aerodynamics of cable-stayed bridges, pollutant atmospheric dispersion, 
and flow in the wake of wind turbines.

2. Boundary layer flows at the UNNE wind tunnel

Next, measurement results obtained at the Prof. Jacek Gorecki wind tunnel of the 
UNNE (Figure 1) in three different boundary layer flows are analyzed. The UNNE 
wind tunnel is a 39.56-m-long channel where the air enters through a contraction to 
reach the test section. This is connected to the velocity regulator and to the blower, 
and then, the air passes through a diffuser before leaving the wind tunnel. The 
contraction has a honeycomb and a screen to uniform the airflow. The test section is 
a 22.8-m-long rectangular channel (2.40 m width, 1.80 m height) where two rotating 
tables are located to place test models. Conditions of zero-pressure-gradient bound-
ary layers can be obtained by the vertical displacement of the upper wall. The blower 
has a 2.25 m diameter and is driven by a 92 kW electric motor at 720 rpm.

The first of these flows correspond to a boundary layer developed on the smooth 
floor of the wind tunnel test section. Then, the results obtained for two ABL 
simulations are analyzed. The first model corresponds to a full-depth simulation of 
the neutrally stable ABL and the second to a part-depth model.

Figure 1. 
The Prof. Jacek Gorecki boundary layer wind tunnel of the UNNE.
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Velocity and longitudinal velocity fluctuations were measured by a Dantec 56C 
constant temperature hot-wire anemometer connected to a Stanford amplifier with 
low- and high-pass analogic filters. Hot-wire signals were digitalized by a DAS-1600 
A/D converter board controlled by a computer which was also used for the analysis of 
the results. Voltage output from hot wires was converted in mean velocity and velocity 
fluctuations [6, 7] by the probe calibration curves previously determined. Full spectra 
from longitudinal velocity fluctuations were obtained by juxtaposing three different 
partial spectra from three different sampling series, registered in the same location, 
each with a specific sampling frequency, designed as low, mean, and high frequen-
cies. Then, the fast Fourier transform (FFT) algorithm was applied to each numerical 
series, and the corresponding longitudinal turbulence spectra were obtained.

2.1 The boundary layer obtained with empty tunnel

The uniformity of the flow corresponding to the empty boundary layer wind 
tunnel is evaluated previously to implement physical models of turbulent flows. 
Deviations of mean velocity and turbulence intensity are measured to determine 
uniform flow zones and boundary layer thickness in the test section. Finally, longi-
tudinal component of the turbulence spectrum is obtained from the boundary layer 
flow and from the uniform flow.

Dimensionless velocity profiles measured with the empty tunnel along a vertical 
line on the center of the rotating table of the test section (see reference [8]) and at 
positions 0.6 m to the right and left of this line are presented in Figure 2. The verti-
cal coordinate z is measured from the floor, and H is the test section height equal to 
1.80 m. Measurements are presented only for the lower half of the test section. The 
depth of the boundary layer is of about 0.3 m, and a good uniformity can be observed 
from the vertical velocity distributions. A maximal deviation of the mean velocity of 
about 3% is verified outside the boundary layer, by taking the velocity at the center of 
the channel as reference.

Figure 2. 
Vertical profiles of mean velocity and turbulence intensity with the empty wind tunnel.
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Turbulence intensity distribution at the same locations shows values around 
1% outside the boundary layer increasing, as expected, inside the boundary layer. 
Reference velocity for these tests was the velocity at the center of the channel, 
27 m/s. The value of Reynolds number calculated with the hydraulic diameter of the 
test section was 3.67 × 106.

Turbulence spectra obtained inside and outside the boundary layer with the 
empty tunnel are presented in Figure 3. Inside the boundary layer, it is possible 
to observe higher values of fluctuation energy and a clear definition of the 5/3 
declivity, characterizing Kolmogorov’s inertial subrange. Outside the boundary 
layer, low turbulence levels produce a spectral definition only for frequencies 
minor than 70 Hz.

2.2 Full-depth simulation of the atmospheric boundary layer

The complete boundary layer thickness of the ABL is simulated when a full-
depth simulation is developed. The Counihan method [9] was applied at the UNNE 
wind tunnel, and four 1.42-m-high elliptic vortex generators and a 0.23 m (b) 
barrier were used, together with prismatic roughness elements placed on the test 
section floor along 17 m (see Figure 4).

Velocity and longitudinal velocity fluctuations were measured by the same 
hot-wire anemometer system described above. Measurements of the mean velocity 
distribution were made along a vertical line on the center of rotating table and along 
lines 0.30 m to the right and left of this line. Figure 5 shows the vertical velocity 
distribution, and at center, the same measured values are presented in a log-graph 
to verify the low part of the profile where the distribution of mean speeds is loga-
rithmic. There is a good similarity among the three measured velocity profiles, and 
the value of the exponent α obtained by fitting to Eq. (2) is 0.24.

Turbulence intensity distribution at the same locations is also shown in Figure 5 
on the right. The values are lower than those obtained by using Harris-Davenport for-
mula for atmospheric boundary layer [2]. This behavior was verified by other authors 
[5] mainly in the points located above (z/H > 0.5).

Figure 3. 
Spectral density function with the empty wind tunnel.
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Three spectra obtained at positions z = 0.23, 0.58, and 0.97 m are presented in 
Figure 6. An important characteristic of the spectra is the presence of a clear region 
of the Kolmogorov’s inertial subrange. The comparison of the results obtained 
through the simulations with the atmospheric boundary layer is made by means 
of dimensionless variables of the auto-spectral density and of the frequency using 
the von Kármán spectrum (Eq. (3)). A good agreement is observed at z = 0.23 m, 
but this agreement diminishes at positions z = 0.58 and 0.97 m, and this behavior is 
coincident with the behavior observed for the turbulence intensities.

These measurements were realized at velocity Uref ≈ 27 m/s, being Uref mea-
sured at gradient height zg = 1.16 and the corresponding Reynolds number value of 
Re ≈ 2.10 × 106. A scale factor of 250 was calculated through the Cook’s procedure 
[5], using the roughness length z0 and the integral scale Lu as key parameters. The 

Figure 4. 
Counihan vortex generators, barrier, and roughness elements of the full-depth boundary layer simulation.

Figure 5. 
Vertical mean velocity and turbulence intensity profiles measured for the full-depth boundary layer simulation.
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value of the roughness length was obtained by fitting mean velocity values to the 
logarithmic law, and the integral scale values were determined through the fitting of 
the measured spectrum to the design spectrum.

2.3 Part-depth simulation of the atmospheric boundary layer

Two Irwin-type generators separated 1.5 m were used to simulate the part-depth 
boundary layer by means of the Standen method [10]. The windward plate of the 

Figure 6. 
Dimensionless spectra obtained at different heights for the full-depth boundary layer simulation and the von 
Kármán spectrum.

Figure 7. 
Irwin vortex generators and roughness elements of the part-depth boundary layer simulation.
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logarithmic law, and the integral scale values were determined through the fitting of 
the measured spectrum to the design spectrum.

2.3 Part-depth simulation of the atmospheric boundary layer

Two Irwin-type generators separated 1.5 m were used to simulate the part-depth 
boundary layer by means of the Standen method [10]. The windward plate of the 

Figure 6. 
Dimensionless spectra obtained at different heights for the full-depth boundary layer simulation and the von 
Kármán spectrum.

Figure 7. 
Irwin vortex generators and roughness elements of the part-depth boundary layer simulation.
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simulator has a trapezoidal shape of 1.50 m height, 0.53 and 0.32 m sides. The 
roughness elements distributed on the test section floor is the same that was used 
for the Counihan method (Figure 7).

Measurements of mean velocity and longitudinal velocity fluctuations were 
made along a vertical line on the center of rotating table and along lines 0.60 m to 
the right and left of this line. Vertical velocity distribution and the corresponding 
log-graph representation to verify the extension of the logarithmic behavior are 
shown in Figure 8. The three measured velocity profiles are quite similar, and the fit 
to Eq. (2) determines a value of the exponent α of 0.23.

Figure 9. 
Dimensionless spectra obtained at different heights for the part-depth boundary layer simulation and the von 
Kármán spectrum.

Figure 8. 
Vertical mean velocity and turbulence intensity profiles measured for the part-depth boundary layer 
simulation.
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Figure 8, to the right, also shows turbulence intensity distribution at the same loca-
tions. The values are higher than those obtained by full-depth boundary layer, mainly 
in the positions located above, but lower than those obtained using Harris-Davenport 
formula if the condition of part-depth is considered. However, higher turbulence levels 
in these positions indicate a coherent behavior when a part-depth ABL is simulated.

Figure 9 has shown spectra obtained at positions z = 0.23, 0.58, and 0.97 m. 
Dimensionless spectral comparison indicates a shift of the experimental peak 
toward low frequencies with respect to the von Kármán spectrum. Higher dif-
ferences of energy contents are also observed between the spectrum obtained at 
z = 0.23 m and spectra measured at upper positions.

The reference velocity for these tests was Uref ≈ 25.5 m/s and the gradient height 
zg = 1.21 m. The corresponding Reynolds number value of Re ≈ 2.01 × 106. Finally, 
the Cook’s procedure [5] was applied, and a scale factor of 150 was calculated.

3. Boundary layer flows at the UFRGS wind tunnel

Next, tests made at the wind tunnel of the UFRGS (Figure 10) are analyzed. 
The Prof. Joaquim Blessmann boundary layer wind tunnel at the Laboratório de 
Aerodinâmica das Construções of UFRGS, Brazil, is a closed-return circuit, and 
it has a cross-section of 1.30 m × 0.90 m at downstream end of the main working 
section that is 9.32 m long (Figure 10). A detailed description of the characteristics 
of the tunnel is indicated in Blessmann’s previous work [11].

3.1 Simulation of atmospheric boundary layers with different velocities

Four perforated spires, a barrier, and surface roughness elements were used to 
simulate a full-depth boundary layer. The arrangement of the simulation hardware 
is shown/illustrated in Figure 11. Velocity and longitudinal velocity fluctuations 
were measured by means of a TSI hot-wire anemometer along a vertical line on the 
center of rotating table located downstream of the working section.

Figure 10. 
The Prof. Joaquim Blessmann boundary layer wind tunnel of the UFRGS.
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Figure 12 shows the non-dimensional profiles obtained with low velocities Uref = 1 
and 3.5 m/s, respectively. These profiles are compared with the values obtained with 
the highest mean velocity achievable in the wind tunnel (Uref ≈ 35 m/s). The mean 
velocity profile given by the power law expression (Eq. (2)) is also included in this 
graph, being the power law exponent α equal to 0.23 and the boundary layer thick-
ness H = 0.60 m.

Also, turbulence intensities measured in correspondence to Uref = 1, 3.5, and 
35 m/s are shown in Figure 12. Turbulence intensity values corresponding to 3.5 m/s 
are slightly higher than those obtained at high velocity, which is a behavior com-
monly observed at low velocities. For measurements at velocity Uref = 1 m/s, it is 
possible to observe even larger deviations in comparison with 3.5 and 35 m/s cases 
that can be attributed to extremely low velocity. It is worth noting that with these 
velocity magnitudes, the relative errors affecting the hot-wire anemometer tech-
nique are larger than for measurements at high velocities. This kind of measurement 
deviation was also observed in similar wind tunnel tests using three-dimensional 
laser Doppler velocimetry [12].

Power spectra of the velocity fluctuations obtained at two different positions, 
z = 0.15 and 0.35 m with low velocities Uref = 1 and 3.5 m/s, respectively, are pre-
sented in Figure 13. Sampling series used for the spectral analysis were obtained 
with an acquisition frequency of 1024 Hz. A poor definition of the Kolmogorov’s 
inertial subrange is observed for the spectra measured at velocity Uref = 1 m/s.

3.2 Analysis of the model scale factor

The evaluation of the model scale factor was only realized with high velocity 
Uref = 35 m/s. The Cook’s procedure [5] was applied using the form proposed by 
Blessmann [11] and a value of the scale factor at each measurement position by 
means of the roughness length z0 and the integral scale Lu. Finally, a mean value of 
the model scale factor of 400 was calculated, and it is considered the same in the 
case of low velocities based on the maintenance of the mean statistical parameters.

Figure 11. 
Perforated spires, barrier, and roughness elements to simulate a full-depth atmospheric boundary layer.
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4. Recent applications of simulated boundary layer flows

Some recent wind engineering applications of the ABL simulations are pre-
sented. In general, this type of applications was referred to wind action on civil 
structures, but new studies related with ambient evaluation, urban design, and 
wind energy are being developed. In this work, experimental studies related to 

Figure 12. 
Vertical mean velocity and turbulence intensity profiles measured with different reference velocities for a full-
depth boundary layer simulation.

Figure 13. 
Spectral density function measured with low velocity at two positions z = 0.15 m and 0.35 m for a full-depth 
boundary layer simulation.
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high-rise and low building, atmospheric pollutant dispersion, rain-wind action on 
structures, and the turbulent wake of wind turbines will be shown.

4.1 Wind tunnel study of the local aerodynamic loads on a high-rise building

A study of the wind loads on a high-rise building was realized in the Prof. Jacek 
Gorecki wind tunnel using a 1/400 scale model [13]. The building is 240 m high; 
it is named Infinity Tower and it is built in Camboriu, RS, Brazil. Local mean, 
maximum, minimum, and rms pressure coefficients were measured by means of a 
Scanivalve pressure system.

Atmospheric boundary layer simulations similar to the full-depth simulation 
described in Section 2.2 were used. Some characteristics of the incident wind were 
modified according to the terrain features upwind model. Thus, two different mean 
velocity profiles were used according to the incident wind direction. Aerodynamic 
details were reproduced in the building model (Figure 14), and fluctuating local 
pressures in 511 tower points for 24 wind directions were measured. The effects of 
urban vicinity and topographic surrounding were considered by means of a detailed 
modeling.

Some considerations referred to the extreme values approximation were realized 
in this work. The graph in Figure 14 illustrates a fluctuating pressure registered at a 
measurement point. Mean values associated with different duration times of wind 
gusts (1, 4, and 16 s full-scale) can be obtained by means of this technique, and 
statistical extreme value analysis can be applied to improve the calculation of local 
wind loads.

4.2 Wind tunnel study of the aerodynamic loads on a low structure

There exist structures that due to its size, complexity, or importance justify 
turning to wind tunnel tests in order to optimize the structural design. A wind tun-
nel study of the Ezeiza Airport located in that village of Buenos Aires was realized 
in 2010 [14]. The study comprised the determination of both local and global wind 
actions.

It was carried out at the Prof. Jacek Gorecki wind tunnel of the UNNE, using 
different 1/200 scale models (Figure 15) that were compatible with the scale factor 
of the wind simulated in the wind tunnel. The real neighbor conditions were taken 
into account as well as the turbulent features of the atmospheric wind in agreement 
with the type of terrain. In this case, an ABL flow similar to the part-depth simula-
tion described in Section 2.3 was used.

In addition to the mean load coefficients, peak coefficients were obtained by 
extreme value analysis using the Cook and Mayne method [15]. It is shown how 

Figure 14. 
High-rise building scale model in the test section of the UNNE wind tunnel and detail of the fluctuating local 
pressure.
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the application of this kind of analysis is influenced in this particular case and, in 
general terms, how the design of structures could be optimized by means of this 
kind of studies.

4.3 Aerodynamic analysis of cable-stayed bridges

The prediction of the aerodynamic performance of concrete cable-stayed 
bridges can be realized by means of wind tunnel testing. The analyses of the 
structural stability under the aerodynamic actions must be included into the design 
verifications. The structural characteristics of cable-stayed bridges and the dynamic 
aspects of the aerodynamic actions implicate the application of special analyses of 
aerodynamic stability including flutter and vortex shedding. The determination of 
the critical velocity is very important in the design of cable-stayed bridges.

First, static forces are obtained through force balance measurements for simple 
models of the bridge deck and towers. Aerodynamic coefficients varying with 
wind incidence for the deck may be easily measured with pressure systems or force 
balance.

A sectional model is used for the dynamic modeling of the deck. The sec-
tional model must be ideally rigid to avoid the influence of the own model 
vibration in the experimental results. Details of the bridge deck must be rep-
resented. Figure 16, left, shows a picture of a 1:60 dynamic sectional model 
mounted in the test section of the wind tunnel of Prof. Joaquim Blessmann of 
the UFRGS. The deck corresponds to the Octávio Frias de Oliveira cable-stayed 
bridge, and the obtained results permitted to observe the differences in the deck 
vertical and torsional responses [16].

The relevant parameters in aeroelastic modeling are length, specific mass 
(density), and acceleration. The design of a full-aeroelastic model must reproduce 
the aerodynamic and dynamic characteristics of the structure of interest. The flow 
and geometric similarities must be respected and the Reynolds number considered 
for aerodynamic similarity. The most relevant frequencies and mode shapes must 
be reproduced to obtain dynamic similarity. The design of full-aeroelastic model 
includes bridge deck, cables, masts, and end supports. The complexity of this type 
of model can be observed in Figure 16, right, showing the full-aeroelastic model, 
the Octávio Frias de Oliveira cable-stayed bridge tested at the wind tunnel Prof. 
Joaquim Blessmann of the UFRGS [17].

The incident wind used to test sectional models is normally a turbulent uniform 
flow similar to the flow obtained with empty tunnel out the wall boundary layer and 
described in Section 2.1. Meanwhile, the full-aeroelastic model of the Octávio Frias de 
Oliveira cable-stayed bridge was tested using a full-depth boundary layer simulated 

Figure 15. 
Ezeiza Airport 1/200 models (partial) in the test section of the UNNE wind tunnel.
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in the return section of the wind tunnel Prof. Joaquim Blessmann. The simulation 
devices and roughness elements are similar to those described in Section 2.2.

4.4 Study of atmospheric dispersion by means of scale model

The concentration fields in the proximities of a local gas emission source were 
experimentally analyzed in several combinations of wind incidences and source 
emissions. Concentration measurements were performed by an aspirating probe in 
a boundary layer wind tunnel. The analysis included the mean concentration values 
and the intensity of concentration fluctuations in a neutral atmospheric boundary 
layer flow [18–20].

To perform atmospheric diffusion studies, it is usual to consider full-scale wind 
speeds in the range of 5–20 m/s [21]. Thus, in order to fulfill the Froude number simi-
larity, the wind tunnel modeling must be performed at low free-stream mean veloci-
ties. Atmospheric boundary layer developed with low mean velocities similar to the 
full-depth simulations described in Section 3.1 was used in the UFRGS wind tunnel.

The hot-wire anemometer, by incorporating the aspirating probe, becomes a 
density measurement system, and when binary gas mixtures are used, the system 
measures instantaneous concentrations. A gas mixer was used to provide known 
air-helium mixtures to calibrate the probe [22]. This type of probe produces a wide 
useful bandwidth of frequency response, and it allows the evaluation of the plume 
fluctuating concentration near the source in a turbulent wind. At each measure-
ment point, a sample of 1 min was taken at a sampling frequency of 1024 Hz.

Different configurations were tested in the wind tunnel of Prof. Joaquim 
Blessmann of the UFRGS, but in this work only the case of an isolated stack in a 
homogeneous terrain is shown in partial form (Figure 17). The results obtained are 
presented as profiles of concentration coefficient K and intensity of the concentra-
tion fluctuations Ic, being K = CUHH2/Q0 and Ic = σc/C, where C and σc are the mean 
concentration and the standard deviation (rms) of the concentration fluctuations, 
respectively, Q0 is the total exhaust volume flow rate (m3/s), UH is the wind velocity 
at the emission source height (stack height), and z is the vertical coordinate mea-
sured from the wind tunnel floor.

Figure 18 presents vertical profiles of concentration coefficient K and Ic for a 
specific condition of emission where plume velocity ratio is 0.66, plume momentum 
is 0.060, and the buoyancy parameter is −0.031. The experimental mean concen-
tration values are contrasted with Gaussian profiles. It was possible to highlight the 
observation of the plume vertical asymmetry in the case of an isolated emission 
source and different probabilistic behavior of the concentration fluctuation data in 
a cross-sectional measurement plane inside the plume.

Figure 16. 
Sectional model and full-aeroelastic model of the Octávio Frias de Oliveira cable-stayed bridge in the wind 
tunnel Prof. Joaquim Blessmann.
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One practical application of this type of development is presented next. Wind 
tunnel tests were realized to evaluate some characteristics of the Alcântara Launch 
Center (ALC), which is the Brazilian gate to the space located at the north coast of 
Maranhão State, close to the Equator. Topographical local characteristics modify the 
parameters of incident atmospheric winds, and it can cause great influence on the 
gas dispersion process.

The topographical scale models were built to measure mean and fluctuating 
flow characteristics in order to understand the real behavior of ALC winds, and 
then, physical simulations of the effluent dispersion process were made using these 
scale models. The wind velocity was measured by a hot-wire anemometer, and the 
concentration fields in the proximities of a gas emission source were analyzed by an 
aspirating probe connected to the same anemometer system [23].

The dispersion process of the gases emitted from the launch center is illustrated 
in Figure 19. Different effluent conditions were tested to reproduce the emission 
caused by a rocket. Helium gas was used at the emission source to simulate the 
turbulent diffusion process. The results obtained were compared with previous 
full-scale measurements and computational evaluations considering the emis-
sion at ground level. A coherent behavior with the physics of the phenomena was 
observed [24].

4.5 Wind tunnel tests of the flow in the wake of wind turbines

The interaction between the incident wind and wind turbines in a wind farm 
causes mean velocity deficit and increased levels of turbulence in the wake. The tur-
bulent flow is characterized by the superposition of wind turbine wakes. A research 
work that included a series of wind tunnel tests to evaluate experimentally the 
spectral characteristics of turbulence in the wake of a wind turbine. Longitudinal 

Figure 17. 
Isolated emission source model in the test section of the UFRGS wind tunnel.

Figure 18. 
Concentration profiles K, at x/H = 0.60, 1.20, and 1.80 and comparison with the Gaussian profile.



Boundary Layer Flows - Theory, Applications and Numerical Methods

138

in the return section of the wind tunnel Prof. Joaquim Blessmann. The simulation 
devices and roughness elements are similar to those described in Section 2.2.

4.4 Study of atmospheric dispersion by means of scale model

The concentration fields in the proximities of a local gas emission source were 
experimentally analyzed in several combinations of wind incidences and source 
emissions. Concentration measurements were performed by an aspirating probe in 
a boundary layer wind tunnel. The analysis included the mean concentration values 
and the intensity of concentration fluctuations in a neutral atmospheric boundary 
layer flow [18–20].

To perform atmospheric diffusion studies, it is usual to consider full-scale wind 
speeds in the range of 5–20 m/s [21]. Thus, in order to fulfill the Froude number simi-
larity, the wind tunnel modeling must be performed at low free-stream mean veloci-
ties. Atmospheric boundary layer developed with low mean velocities similar to the 
full-depth simulations described in Section 3.1 was used in the UFRGS wind tunnel.

The hot-wire anemometer, by incorporating the aspirating probe, becomes a 
density measurement system, and when binary gas mixtures are used, the system 
measures instantaneous concentrations. A gas mixer was used to provide known 
air-helium mixtures to calibrate the probe [22]. This type of probe produces a wide 
useful bandwidth of frequency response, and it allows the evaluation of the plume 
fluctuating concentration near the source in a turbulent wind. At each measure-
ment point, a sample of 1 min was taken at a sampling frequency of 1024 Hz.

Different configurations were tested in the wind tunnel of Prof. Joaquim 
Blessmann of the UFRGS, but in this work only the case of an isolated stack in a 
homogeneous terrain is shown in partial form (Figure 17). The results obtained are 
presented as profiles of concentration coefficient K and intensity of the concentra-
tion fluctuations Ic, being K = CUHH2/Q0 and Ic = σc/C, where C and σc are the mean 
concentration and the standard deviation (rms) of the concentration fluctuations, 
respectively, Q0 is the total exhaust volume flow rate (m3/s), UH is the wind velocity 
at the emission source height (stack height), and z is the vertical coordinate mea-
sured from the wind tunnel floor.

Figure 18 presents vertical profiles of concentration coefficient K and Ic for a 
specific condition of emission where plume velocity ratio is 0.66, plume momentum 
is 0.060, and the buoyancy parameter is −0.031. The experimental mean concen-
tration values are contrasted with Gaussian profiles. It was possible to highlight the 
observation of the plume vertical asymmetry in the case of an isolated emission 
source and different probabilistic behavior of the concentration fluctuation data in 
a cross-sectional measurement plane inside the plume.

Figure 16. 
Sectional model and full-aeroelastic model of the Octávio Frias de Oliveira cable-stayed bridge in the wind 
tunnel Prof. Joaquim Blessmann.
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One practical application of this type of development is presented next. Wind 
tunnel tests were realized to evaluate some characteristics of the Alcântara Launch 
Center (ALC), which is the Brazilian gate to the space located at the north coast of 
Maranhão State, close to the Equator. Topographical local characteristics modify the 
parameters of incident atmospheric winds, and it can cause great influence on the 
gas dispersion process.

The topographical scale models were built to measure mean and fluctuating 
flow characteristics in order to understand the real behavior of ALC winds, and 
then, physical simulations of the effluent dispersion process were made using these 
scale models. The wind velocity was measured by a hot-wire anemometer, and the 
concentration fields in the proximities of a gas emission source were analyzed by an 
aspirating probe connected to the same anemometer system [23].

The dispersion process of the gases emitted from the launch center is illustrated 
in Figure 19. Different effluent conditions were tested to reproduce the emission 
caused by a rocket. Helium gas was used at the emission source to simulate the 
turbulent diffusion process. The results obtained were compared with previous 
full-scale measurements and computational evaluations considering the emis-
sion at ground level. A coherent behavior with the physics of the phenomena was 
observed [24].

4.5 Wind tunnel tests of the flow in the wake of wind turbines

The interaction between the incident wind and wind turbines in a wind farm 
causes mean velocity deficit and increased levels of turbulence in the wake. The tur-
bulent flow is characterized by the superposition of wind turbine wakes. A research 
work that included a series of wind tunnel tests to evaluate experimentally the 
spectral characteristics of turbulence in the wake of a wind turbine. Longitudinal 

Figure 17. 
Isolated emission source model in the test section of the UFRGS wind tunnel.

Figure 18. 
Concentration profiles K, at x/H = 0.60, 1.20, and 1.80 and comparison with the Gaussian profile.
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Figure 20. 
Wind turbine model spinning during the wind tunnel test.

velocity fluctuations were measured in the incident flow and in the wake of a wind 
turbine-reduced model in the test section of the UNNE wind tunnel. In these 
experiments, the adequacy of spectral technique and changes in the turbulence 
spectral composition of the incident wind and the wake were analyzed [25].

All longitudinal velocity fluctuation measurements were realized employing 
a neutral ABL flow obtained by the Counihan method similar to the full-depth 
simulation described in Section 2.2. The simulated incident wind corresponds to 
a power law profile with an exponent α = 0.27 and a gradient height zg = 1.20 m. 
Wind tunnel measurements were made using a hot-wire anemometer system. The 
wind turbine model corresponds to a three-bladed UNIPOWER wind turbine, with 
a tower height of 100 m and a rotor diameter of 100 m. The scale of the model is 
approximately 1/450, and the model height is 0.33 m. Figure 20 shows the wind 
incident, making the turbine model rotate.

The rotational velocity of the wind turbine was estimated and remained nearly 
constant during the measurements, but the values of the dimensionless speed ratio 
λ ensure the similarity of phenomenon in the range of the proper operation of the 
generator. Vertical profiles of dimensionless mean longitudinal velocity U/Uref 
measured in the incident wind and in the wake generated by the wind turbine are 

Figure 19. 
Launch of a space vehicle at the ACL, Maranhão, Brazil, and simulation of the dispersion process in the wind 
tunnel of the LAC/UFRGS.
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indicated in Figure 21. Two profiles measured at locations x = 225 and 1185 mm 
downwind of the plane determined by the rotor blades are included. The comparison 
of the characteristic spectra of the incident wind and those obtained in the wake are 
also shown in Figure 21 and allow observing the changes in the energy fluctuation 
distribution. These changes are a product of the turbulence introduced by the wind 
generator. Measurements allowed to analyze the configuration of the spectra in dif-
ferent frequency ranges, the effect of analog signal filtering, and differences in the 
spectral behavior of the incident wind relative to wind in the wake of the turbine.

5. Concluding remarks

In this work, different boundary layer flows were experimentally analyzed. The 
BLF developed at the UNNE wind tunnel include a naturally developed boundary 
layer with the empty wind tunnel, a full-depth ABL generated by the Counihan 
method, and a part-depth ABL simulated by the Standen method.

A simplified analysis considering the depth of the neutral ABL of about 500 m 
compared with the gradient height (0.30 m) obtained for the empty tunnel impli-
cates a scale factor of 1/1650. In addition, turbulence intensity values inside the 
boundary layer are always minor than 10%, concluding that this boundary layer 
flow is not appropriate to wind engineering experiments.

Full-depth and part-depth simulations developed in the UNNE wind tunnel 
seem to show adequate performance. It is observed that values of measured turbu-
lence intensity are lower than the values in the neutral atmosphere, mainly in the 
positions above, but other authors obtained similar results. Dimensionless spectral 
comparison indicates a deviation of the experimental results with respect to design 
spectra, but it is possible that parameters used to normalize the spectrum are not 
fully adequate. Some studies are being developed to verify this behavior.

Comparison of ABL flows obtained with low velocities and the ABL flow 
obtained with high velocity at the UFRGS wind tunnel indicates an acceptable 
behavior of the mean velocity and turbulence intensity distribution. Dimensionless 
spectra were not obtained for measurements with low velocities. However, a poor 
spectral definition was observed for measurements realized at the lowest velocity.

Five recent applications of ABL simulations in both wind tunnels (UNNE 
and UFRGS) are presented. A study of local wind loads on a high-rise building 

Figure 21. 
Vertical profiles of dimensionless mean longitudinal velocity and spectral comparison of the incident wind and 
the wake flow at z = 225 mm.
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Launch of a space vehicle at the ACL, Maranhão, Brazil, and simulation of the dispersion process in the wind 
tunnel of the LAC/UFRGS.
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indicated in Figure 21. Two profiles measured at locations x = 225 and 1185 mm 
downwind of the plane determined by the rotor blades are included. The comparison 
of the characteristic spectra of the incident wind and those obtained in the wake are 
also shown in Figure 21 and allow observing the changes in the energy fluctuation 
distribution. These changes are a product of the turbulence introduced by the wind 
generator. Measurements allowed to analyze the configuration of the spectra in dif-
ferent frequency ranges, the effect of analog signal filtering, and differences in the 
spectral behavior of the incident wind relative to wind in the wake of the turbine.

5. Concluding remarks

In this work, different boundary layer flows were experimentally analyzed. The 
BLF developed at the UNNE wind tunnel include a naturally developed boundary 
layer with the empty wind tunnel, a full-depth ABL generated by the Counihan 
method, and a part-depth ABL simulated by the Standen method.

A simplified analysis considering the depth of the neutral ABL of about 500 m 
compared with the gradient height (0.30 m) obtained for the empty tunnel impli-
cates a scale factor of 1/1650. In addition, turbulence intensity values inside the 
boundary layer are always minor than 10%, concluding that this boundary layer 
flow is not appropriate to wind engineering experiments.

Full-depth and part-depth simulations developed in the UNNE wind tunnel 
seem to show adequate performance. It is observed that values of measured turbu-
lence intensity are lower than the values in the neutral atmosphere, mainly in the 
positions above, but other authors obtained similar results. Dimensionless spectral 
comparison indicates a deviation of the experimental results with respect to design 
spectra, but it is possible that parameters used to normalize the spectrum are not 
fully adequate. Some studies are being developed to verify this behavior.

Comparison of ABL flows obtained with low velocities and the ABL flow 
obtained with high velocity at the UFRGS wind tunnel indicates an acceptable 
behavior of the mean velocity and turbulence intensity distribution. Dimensionless 
spectra were not obtained for measurements with low velocities. However, a poor 
spectral definition was observed for measurements realized at the lowest velocity.

Five recent applications of ABL simulations in both wind tunnels (UNNE 
and UFRGS) are presented. A study of local wind loads on a high-rise building 

Figure 21. 
Vertical profiles of dimensionless mean longitudinal velocity and spectral comparison of the incident wind and 
the wake flow at z = 225 mm.
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considering the urban environment and the surrounding topography realized in the 
UNNE wind tunnel, where full-depth simulation flows were used. An experimental 
study of a low structure, specifically an airport where a part-depth boundary layer 
simulation developed at the UNNE wind tunnel, was utilized. Some wind tunnel 
applications to the aerodynamic analysis of cable-stayed bridges are shown where 
different incident flows were used.

Then, a pollutant atmospheric dispersion study realized in the UFRGS wind 
tunnel was shown. ABL flows obtained with low velocities were used to simulate 
the gas plume emission. A case study applied to the Brazilian Launch Center of 
Alcântara to evaluate the emitted gas dispersion process is also shown.

Finally, a recent wind tunnel study of the flow in the wake of wind turbines is 
presented. Measurements of the flow characteristics upwind and downwind of 
the turbine rotor were analyzed. Comparison of the turbulence spectra were also 
developed to evaluate the rotor effects on the turbine wake flow.

Also numerical methods are used mainly for forecasting and studying the 
dynamics of the airflow over large surfaces, usually with domains of several square 
kilometers. The Weather Research and Forecasting (WRF) model, which is a 
numerical weather prediction and atmospheric simulation system, is an example of 
this type of computational modeling. The size of the domain of the simulation of 
these models is much larger than the simulated spaces of boundary layer flows in a 
wind tunnel. However, some efforts are being made to link results from computa-
tional model and experimental data. In South America, for example, a WRF model 
was used by Puliafito et al. [26] to simulate mesoscale events of Zonda winds, and 
the obtained results were compared with meteorological data. The next objective of 
this research is to try the physical simulation of these events in a wind tunnel [27].
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Chapter 7

Dimple Generators of 
Longitudinal Vortex Structures
Volodymyr Voskoboinick, Andriy Voskoboinick, 
Oleksandr Voskoboinyk and Volodymyr Turick

Abstract

Visual research of characteristic features and measurement of velocity and pres-
sure fields of a vortex flow inside and nearby of a pair of the oval dimples on hydrau-
lically smooth flat plate are conducted. It is established that depending on the flow 
regime inside the oval dimples, potential and vortex flows with ejection of vortex 
structures outside of dimples in the boundary layer are formed. In the conditions of 
a laminar flow, a vortex motion inside dimples is not observed. With an increase of 
flow velocity in dimples, boundary layer separation, shear layer, and potential and 
circulating flows are formed inside the oval dimples. In the conditions of the turbu-
lent flow, the potential motion disappears, and intensive vortex motion is formed. 
The profiles of longitudinal velocity and the dynamic and wall-pressure fluctuations 
are studied inside and on the streamlined surface of the pair of oval dimples. The 
maximum wall-pressure fluctuation levels are pointed out on the aft walls of the 
dimples. The tonal components corresponding to oscillation frequencies of vortical 
flow inside the dimples and ejection frequencies of the large-scale vortical structures 
outside the dimples are observed in velocity and pressure fluctuation spectra.

Keywords: dimple generator, oval dimple, visualization, vortex structure, 
velocity profile, wall-pressure fluctuations

1. Introduction

Various inhomogeneities of the streamlined surface in the form of cavities or 
dimples are present in many hydraulic structures and constructions. Under appro-
priate conditions of the flow, large-scale coherent vortex systems and small-scale 
vortices are formed inside dimples that generate intense fluctuations of velocity, 
pressure, temperature, vorticity, and other turbulence parameters [1–3]. Boundary 
layer control uses these artificial vortex structures for drag reduction, increase of 
mixing, and noise minimization. Vortex structures of various scales, directions, 
rotational frequencies, and oscillations are generated in space and in time depend-
ing on the flow regime, the geometric parameters, and the shape of the cavities. 
Experimental and numerical results of aerodynamic and thermophysical studies 
showed a rather high efficiency of dimple reliefs, which allowed to increase heat 
and mass transfer for a slight increase in the level of hydrodynamic losses [4–6].

The boundary layer separation from the frontal edge of the cavity and the 
instability of the shear layer flow generate vortex structures inside the cavity. With 
the increase of flow velocity, one of the edges of vortex structures, circulating in 
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the cavity, is separated from the streamlined surface of the cavity and is extracted 
following the flow. These inclined structures have a longitudinal dimension that 
substantially exceeds their lateral scale. They intensively initiate the interaction of 
medium of the cavity and the surrounding area [2, 3, 7, 8].

The experience achieved by scientists and engineers when using dimple sur-
faces indicates that the creation of time and space stable vortex systems generated 
inside the cavities has a perspective value for boundary layer control. The creation 
of large-scale coherent vortex structures, with predefined qualities, allows you to 
change the structure of the boundary layer or the separation flow. It improves the 
heat and mass transfer, reduces the drag of streamlined structures, or changes the 
spectral composition of aerohydrodynamic noise, in order to reduce it [3, 9, 10].

In Refs. [11, 12], it was noted that spherical cavities for heat and hydraulic 
efficiency are not the best for turbulent regime of heat carrier flow and for laminar 
regime; their use is practically not justified. The presence of a switching mechanism 
of generation and ejection of vortex structures inside spherical cavities on a stream-
lined surface [13–15] does not allow to form longitudinal vortex structures that are 
stable in space and time, which are necessary for boundary layer control. This defect 
is absent in oval dimples, which are at an angle to the current direction. Asymmetry 
of the dimple shape due to its lateral deformation allows transforming the vortex 
structure and intensifying the transverse flow of liquid within its boundaries. 
Adding a shallow dimple of an asymmetric shape leads to a reorganization of its 
flow. A two-dimensional vortical structure in the dimple, generated in a symmetri-
cal dimple during its laminar flow, is changed to an inclined monovortex. The high 
stability of the inclined structure should be noted, which ensures the stability of 
vortex intensification of heat transfer [16–18].

In this connection, the purpose of this experimental work is to study the charac-
teristic features of the flow of a system of oval dimples on a flat plate and to study 
the fields of dynamic and wall-pressure fluctuations inside and on the streamlined 
surface of the inclined oval dimples and in their vicinity.

2. Experimental setup

Experimental research was carried out in a hydrodynamic flume with an open 
surface of water 16 m long, 1 m wide, and 0.4 m deep. The scheme of the experi-
mental stand and the location of the measuring plate with dimples are given in 
works [19, 20]. At a distance of about 8 m from the input part of the flume, there 
were a measuring section equipped with control equipment and means of visual 
recording of the flow characteristics, coordinate devices, lighting equipment, and 
other auxiliary tools necessary for conducting experimental research. The design 
and equipment of the hydrodynamic flume allowed the flow velocity and water 
depth control in wide limits.

Transparent walls of a hydrodynamic flume, which were made of thick shock-
proof glass, ensured high-quality visual research.

Hydraulically flat plate made of polished organic glass of 0.01 m thick, 0.5 m in 
width, and 2 m in length was sharpened from one (front) and from the other (aft) 
side. End washers are fixed to the lateral sides of the plate. At a distance of  X  = 0.8 m 
from the front edge of the plate, there was a hole, where the system of two oval 
dimples was installed, which was located at an angle of 30 degrees to the direction 
of flow (Figure 1). The diameter of a spherical part of the dimple (d) was 0.025 m. 
The width and length of the cylindrical part of the dimple were also 0.025 m. Thus, 
the oval dimples located at a distance of 0.005 m from each other had a width of 
0.025 m, a length of 0.05 m, and a depth to width ratio of  h/d  = 0.22.
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According to the developed program and experimental research methodol-
ogy, visual studies were initially carried out. Then, in the characteristic points of 
the vortex generation and the places of interaction of vortices with a streamlined 
surface, measurements of the fields of velocity and pressure were carried out. 
Visualization was carried out by drawing of contrasting coatings on the streamlined 
surface and coloring agents that were introduced into the stream. Paints and labeled 
particles through a small diameter tube were introduced into the boundary layer 
before the dimple and/or inside the dimple.

The study of the pressure fluctuation fields on the streamlined surface of the 
oval dimples and the plate, as well as the velocity fields of the vortex flow over the 
investigated surfaces, was carried out using miniature piezoceramic and piezoresistive 
sensors of pressure fluctuations and differential electronic manometers (Figure 2a). 
Specially designed and manufactured pressure sensors were installed in a level with a 
streamlined surface and measured the absolute pressure and the wall-pressure fluctua-
tions [9, 21, 22]. Inside of the system of oval dimples and in their near wake, 12 sensors 
of pressure fluctuations were used (Figure 2b). The field of velocity fluctuations inside 
a pair of oval dimples and over a streamlined plate surface was measured by sensors of 
the dynamic pressure fluctuations or dynamic velocity pressure based on piezoceramic 
sensing elements.

The degree of the flow turbulence in the hydrodynamic flume did not exceed 
10% for the velocity range from 0.03 to 0.5 m/s. The levels of acoustic radiation 
in the area of the dimples were no more than 90 dB relative to 2 × 10−5 Pa in the 
frequency range from 20 Hz to 20 kHz, and the vibration levels of the test plate with 

Figure 1. 
Scheme and photography of the experimental plate with pair of the oval dimples.

Figure 2. 
Absolute pressure and pressure fluctuation sensors (a) and their disposition (b).
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a pair of dimples and sensor holder did not exceed −55 dB relative to  g  (gravitation 
constant) in the frequency range from 2 Hz to 12.5 kHz. The measurement error of 
the averaged parameters of the fields of velocity and pressure did not exceed 10% 
(reliability 0.95). The measurement error of the spectral components of the velocity 
fluctuations did not exceed 1 dB, and the pressure and acceleration fluctuations—
no more than 2 dB—in the frequency range from 2 Hz to 12.5 kHz.

3. Research results

The vortical motion in the middle of the dimples is not what was observed 
(Figure 3a) for a laminar flow regime over a pair of oval dimples ( U  = (0.03…0.06)
m/s,   Re  X   = UX/ν  = (24,000…48,000), and   Re  d   = Ud/ν  = (750…1500), where  ν  is the 
kinematic coefficient of water viscosity). The contrast dye was transferred inside 
the dimple along its front spherical and cylindrical parts and gradually filled the 
entire volume of the oval dimples. The separation flow was not observed inside the 
dimples, and colored dye, which was moved from the front of the dimple to its aft 
part, made non-intensive oscillatory motion.

When the flow velocity was increased to (0.08…0.12) m/s, then a separation 
zone of the boundary layer appeared inside the front parts of the oval dimples. A 
shear layer began to form over the dimple opening, generating a circulating flow 
and a slow vortex motion inside the dimples (Figure 3b). This fluid motion had a 
kind of longitudinal spirals and was slow and almost symmetrical in each of the 
dimples. The liquid of the dimples fluctuated in three mutually perpendicular 
planes. The oscillation frequencies in each of the dimples were practically equal, but 
the destruction of the vortex sheet did not occur simultaneously. Contrast mate-
rial went inside the dimples along their front semispherical and cylindrical parts. 
The separation and circulation areas behind the front edge of the dimple occupied 
almost half the volume of the dimple. There was a very slow rotation of the fluid 
inside the dimples, and its direction was coincided with the direction of the flow as 
well as its fluctuations along the longitudinal and transverse axes of the dimples. 
The disturbance package was transferred in the direction of the flow at a transfer 
velocity of approximately (0.4…0.5)  U . In this case, the contrast material was 
ejected into the plate boundary layer over the region of the combination of the aft 
cylindrical and spherical parts of the dimple (Figure 3b). The ejection of a large-
scale vortex or spiral-like vortices from the oval dimple was observed at a frequency 
close to  f  = (0.16…0.2) Hz, which the Strouhal number corresponded to  St = fd/U  = 
(0.04…0.05). A wake of the contrast material into the boundary layer outside the 
dimples was traced at a distance of about 8–10 in diameter of the dimple.

Figure 3. 
Flow visualization inside the oval dimple for   Re  X    = 48,000 (a) and   Re  X    = 96,000 (b).
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The vortex motion became more intense when the flow velocity over the dimple 
system was increased up to (0.2…0.3) m/s (  Re  X    = (160,000…240,000) and  
  Re  d    = (5000…7500)). The zone of potential flow near the separation wall of the oval 
dimple had almost vanished (Figure 4a). The entire fluid filling the front spherical 
part of the dimple is turned in a circulating flow and formed a coherent large-scale 
spindle-shaped vortex. This vortex had a source near the center of the spherical 
part of the dimple and made intensive oscillations. During the ejection, the spindle-
shaped vortex structures began to lift above the front hemispheres of oval dimples 
and to stretch along the axis of the dimples. Then they were ejected outside the 
dimples over their aft parts. These large-scale vortex structures were rotated in 
the XOZ plane in each of the dimples in opposite directions. For example, in the 
left dimple in Figure 4a, the vortex rotated against the clockwise arrow, and in the 
right—clockwise. Ejection of vortex structures from the dimples was sometimes 
observed at the same time, but in most cases, ejections occurred at different time 
intervals. At the same time, there was no interaction of these vortex structures in 
the near wake of the dimples. The frequency of ejections of large-scale vortex struc-
tures from each of the dimples was estimated as (0.4…0.6)Hz or  St  = (0.04…0.06). 
In addition, ejections of the small-scale eddy structures were also observed. These 
vortices were broken off from the upper part of a large-scale spindle-shaped vortex 
during its formation, when its transverse scale exceeded the depth of the dimple. 
Vortex structures retained their identity at a distance (7…9) of the diameter of the 
dimple.

The contrast dye inside the dimple was concentrated inside the front spherical 
parts of the dimple (Figure 4b) for developed turbulent flow and flow velocity 
(0.4…0.5) m/s (  Re  X    = (320,000…400,000) and   Re  d    = (10,000…12,500)). Here, 
spindle-shaped vortex structures were generated, and they were ejected from the 
dimples at a frequency close to 1 Hz ( St  ~0.05). Color dyes, swirling in a spindle-
shaped vortex, were intensively oscillated in three mutually perpendicular planes. 
When the transverse scale of the spindle-shaped vortex exceeded the depth of the 
dimple, an intensive ejection of small-scale structures was observed from its upper 
part. These vortices were flushed over the region of the conjugation of the front 
spherical part of the dimple and its aft cylindrical part. The ejection frequency of 
small-scale vortices was estimated as (4…5) Hz or  St  = (0.2…0.25). As shown by the 
dye visualization (see Figure 4b), in the gap between the dimples, the flow did not 
undergo significant perturbations, as can be seen on the dye on the axis of the plate, 
which was not washed.

The intensity of the fluctuations of the longitudinal velocity over the streamlined 
surface of the oval dimple ( u′/U ), which was calculated from the fluctuations  
of the dynamic pressure (  u  rms  ′   =  √ 

____________
 2   ( p  rms  ′  )   dyn   / ρ   ) measured by the piezoceramic 

Figure 4. 
Flow visualization inside the dimple for   Re  X    = 240,000 (a) and   Re  X    = 400,000 (b).
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sensors, depending on the distance from the streamlined surface ( y / δ , where  δ  is the 
boundary layer thickness in front of the oval dimple), is presented in Figure 5a. These 
results were obtained for two flow velocities, namely,  U  = 0.25 m/s (  Re  X    = 200,000) 
and  U  = 0.45 m/s (  Re  X    = 360,000). The results were measured over the streamlined 
surface of one of the oval dimples above the wall-pressure fluctuation sensor of No. 2 
(see Figure 1b). The longitudinal velocity fluctuations are increased with approach 
to the streamlined plate surface. They have a maximum and then are decreased at the 
level of the plate surface above the opening of the oval dimple. When the dynamic 
pressure fluctuation sensors are deepened in the opening of the oval dimple, the 
velocity fluctuations again increased (the boundary of the shear layer) and then 
decreased (the core of the circulating flow inside the dimple).

The change of the rms values of the wall-pressure fluctuations measured on the 
streamlined surface of the oval dimple and in its vicinity is presented in Figure 5b 
depending on the Reynolds number. The normalization of the root mean square 
values of the wall-pressure fluctuations was carried out by the dynamic pressure  
( q = ρ  U   2 /2 ). In this figure, the curve numbers correspond to the numbers of the 
wall-pressure fluctuation sensors, which are set to the level with the streamlined 
surface in accordance with Figure 1b.

Thus, the wall-pressure fluctuations on a flat surface before the dimples are 
subjected to a quadratic dependence on the flow velocity. It should be noted that the 
wall-pressure fluctuations normalized by the dynamic pressure in the undisturbed 
boundary layer before the oval dimples are approximately 0.01, practically, in the 
entire range of studied Reynolds numbers.

Consequently, the smallest levels of the wall-pressure fluctuations are observed 
at the bottom of the oval dimples, in their front parts, especially for low flow 
velocities and Reynolds numbers (curve 2, Figure 5b). Inside the oval dimples, the 
levels of the wall-pressure fluctuations are greatest in the aft spherical parts of the 
dimples and in the near wake immediately after the dimples (see curves 4, 7, and 
9 in Figure 5b).

A spectral analysis of the wall-pressure fluctuations on the streamlined surfaces 
of the oval dimples and plate was performed. To do this, we used the fast Fourier 
transform algorithm and the Hanning weighting function, as recommended in 
[23–25]. Power spectral densities of the wall-pressure fluctuations on a streamlined 
surface of oval dimples and on a flat plate near the system of these dimples have 
clearly visible discrete peaks which correspond to the nature of the vortex and jet 
motion over the investigated surfaces.

Figure 5. 
Velocity profile (a) and root mean square value of wall-pressure fluctuations (b).
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Figure 6a shows the power spectral densities of the wall-pressure fluctuations, 
which were measured inside one of the oval dimples for a flow velocity of 0.25 m/s  
(  Re  d    = 6250 and   Re  x    = 200,000). The spectra were normalized by the dynamic pres-
sure and external variables, namely, the diameter of the oval dimple and the flow 
velocity (  p  q  ∗  (St)  =  ( p   ′ )   2  (St) U/ q   2  d ). Frequency ( f  ) was normalized and presented 
as the number of Strouhal  St . The numbers of curves correspond to the numbers of 
pressure fluctuation sensors, which are shown in Figure 1b. The maximum levels 
of the wall-pressure fluctuations occur at the aft wall of the dimple, where there are 
the intense interactions of the vortex flow ejected from the dimple and the shear 
layer formed above the streamlined surface of the plate. The smallest spectral levels 
of wall-pressure fluctuations occur at the bottom of the front spherical part of the 
oval dimple (curve 2). The ejections of the large-scale vortex structures observed 
during visual investigations occur at a frequency of (0.37…0.45) Hz or  
 St  = (0.04…0.05).

Oscillations of the vortex flow inside the oval dimple are observed at frequencies 
(0.035…0.037) Hz or  St  = (0.003…0.004) and (0.13…0.15) Hz or  St  = (0.013…0.015) 
in the longitudinal and transverse directions relative to the axes of the oval dimple, 
respectively. In this case, the oscillations of the vortex motion and, respectively, 
the field of the wall-pressure fluctuations inside the dimple correspond to the 
subharmonics and harmonics of higher orders of these frequencies, as it is clearly 
illustrated in Figure 6a.

The results of the measurements of the power spectral densities of the wall-
pressure fluctuations along the middle section of the oval dimple system, as well 
as inside the dimples, are shown in Figure 6b. It should be noted that under the 
boundary layer on a flat surface of a hydraulically smooth plate, the spectral levels 
of the wall-pressure fluctuations (curve 1) are minimal and do not have the tonal or 
discrete peaks observed inside and near the dimples. Behind the oval dimples, these 
discrete peaks are clearly visible on the spectra, but the tone frequencies near the 
system of oval dimples and at a distance of 2 d  differ from them (see curves 8 and 

Figure 6. 
Power spectral densities of the wall-pressure fluctuations inside (a) and near (b) the oval dimple for the 
Reynolds number   Re  X    = 200,000.
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Figure 6a shows the power spectral densities of the wall-pressure fluctuations, 
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as the number of Strouhal  St . The numbers of curves correspond to the numbers of 
pressure fluctuation sensors, which are shown in Figure 1b. The maximum levels 
of the wall-pressure fluctuations occur at the aft wall of the dimple, where there are 
the intense interactions of the vortex flow ejected from the dimple and the shear 
layer formed above the streamlined surface of the plate. The smallest spectral levels 
of wall-pressure fluctuations occur at the bottom of the front spherical part of the 
oval dimple (curve 2). The ejections of the large-scale vortex structures observed 
during visual investigations occur at a frequency of (0.37…0.45) Hz or  
 St  = (0.04…0.05).

Oscillations of the vortex flow inside the oval dimple are observed at frequencies 
(0.035…0.037) Hz or  St  = (0.003…0.004) and (0.13…0.15) Hz or  St  = (0.013…0.015) 
in the longitudinal and transverse directions relative to the axes of the oval dimple, 
respectively. In this case, the oscillations of the vortex motion and, respectively, 
the field of the wall-pressure fluctuations inside the dimple correspond to the 
subharmonics and harmonics of higher orders of these frequencies, as it is clearly 
illustrated in Figure 6a.

The results of the measurements of the power spectral densities of the wall-
pressure fluctuations along the middle section of the oval dimple system, as well 
as inside the dimples, are shown in Figure 6b. It should be noted that under the 
boundary layer on a flat surface of a hydraulically smooth plate, the spectral levels 
of the wall-pressure fluctuations (curve 1) are minimal and do not have the tonal or 
discrete peaks observed inside and near the dimples. Behind the oval dimples, these 
discrete peaks are clearly visible on the spectra, but the tone frequencies near the 
system of oval dimples and at a distance of 2 d  differ from them (see curves 8 and 
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Power spectral densities of the wall-pressure fluctuations inside (a) and near (b) the oval dimple for the 
Reynolds number   Re  X    = 200,000.
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11 in Figure 6b). In the middle section of the oval dimple system, where the sensor 
number 8 is located, the character of the pressure fluctuation spectrum differs from 
that which occurs on the aft wall of the dimple. Here, the maximum of spectral 
levels is observed at a frequency of 0.2 Hz ( St  = 0.02), and in the frequency range 
of the order of 0.03 Hz ( St  = 0.003), the intensity of the wall-pressure fluctuations 
is negligible. At a distance of 2 d  from the dimples, the tonal peaks appear in the 
spectra corresponding to the ejection frequencies of large-scale vortex structures 
outside of the dimples. Thus, the traces of the vortex flows ejected from the oval 
dimples are intersected at the location of the sensor No. 11.

Experiments have shown that all sensors located at a distance of 2 d  from the 
system of oval dimples record the field of the wall-pressure fluctuations with 
tonal peaks in the spectra corresponding to the ejection frequencies of large-scale 
vortex structures from the dimples, the frequencies of oscillatory motion inside 
the dimples, and their subharmonics and harmonics of higher orders. In this case, 
the spectral levels at such a distance from the dimples are of lesser value than in the 
near wake of the dimples. Thus, with the distance from the system of oval dimples, 
the boundary layer is gradually restored, which was observed during the visualiza-
tion of the flow.

In the conditions of developed turbulent flow (  Re  d    > 11,000 and   Re  X    
> 350,000), the spectral characteristics of the wall-pressure fluctuation field are 
similar to those observed for Reynolds numbers   Re  X    = 200,000 and   Re  d    = 6250. 
But the spectral levels become higher (Figure 7a). The highest spectral levels of 
wall-pressure fluctuations, as well as tonal peaks, are observed on the aft spherical 
part of the oval dimple as for the lower flow velocity. The smallest spectral levels 
are generated in the forward spherical part of the dimple (curve 2). Discrete peaks 
are observed at frequencies (0.05…0.06) Hz or  St  = (0.003…0.004), (0.11 …0.13) 
Hz or  St  = (0.006…0.007), and (0.8…0.9) Hz or  St  = (0.04…0.05). The first two 
low-frequency ranges correspond to the oscillation frequency in the oval dimple, 
and the frequency range  St  = (0.04…0.05) is due to the ejection of large-scale vortex 
structures from the dimple. Also in the spectral characteristics of the field of the 

Figure 7. 
Power spectral densities of the wall-pressure fluctuations inside (a) and near (b) the oval dimple for the 
Reynolds number   Re  X    = 400,000.
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wall-pressure fluctuations inside the oval dimple, there are discrete peaks that cor-
respond to subharmonics and harmonics of higher orders of dominant frequencies 
of the vortex motion.

The features of the vortex motion, as well as wall-pressure fluctuation field, 
which it generates, in the near wake of the oval dimple system, in its middle 
section and at a distance of 2 d  from the system of oval dimples, are shown in 
Figure 7b. The spectral levels of the wall-pressure fluctuations in the wake 
behind the aft spherical part of the dimple are similar to those obtained inside 
the oval dimple as for a lower flow velocity. At the same time, the spectra in the 
middle section of the system of oval dimples (in their near wake) have a specific 
character with a maximum at 0.13 Hz (curve 8 in Figure 7b). Behind the aft 
spherical part of the oval dimple in the spectral dependences of the field of the 
wall-pressure fluctuations, there are tone peaks which are characteristic of the 
vortical motion inside the oval dimples. In the middle section of the oval dimple 
system at a distance 2 d  from the dimples, discrete peaks appear in the spectral 
levels of wall-pressure fluctuations. They are characteristic for the low-frequency 
oscillations of the vortex motion inside the dimples, as well as for the ejection of 
large-scale vortex structures from the dimples. The intensity, for example, of the 
wall-pressure fluctuations at the ejection frequency, is much lower for this flow 
regime than that observed for the velocity flow 0.25 m/s (Figures 6b and 7b). 
This is due to the fact that for a large flow velocity, the interaction between the 
vortices of each of the dimples takes place more distant from the dimples, and 
the distance 2 d  from the pair of oval dimples for this regime is in the initial stage 
of this interaction.

4. Conclusions

1. The visual images of the vortex flow formed inside the oval dimple system are 
obtained, and the characteristic features of vortex formation for different flow 
regimes are determined. It has been experimentally established that the separa-
tion flow was not observed inside the dimples for laminar regime. For transient 
flow regime and small flow velocities within the oval dimples, the formation 
of very intense longitudinal spirals is observed, which are rotated and slowly 
fluctuated along the longitudinal and transverse axes of the dimples. For a 
turbulent flow regime inside the oval dimples, the spindle-shaped vortices are 
formed, which, with increasing velocity, are pressed against the front spheri-
cal parts of the dimples. These spindle-shaped vortices, reaching the scales of 
the dimples, are ejected from the oval dimples, disturbing the structure of the 
boundary layer. Inside the oval dimples, there is a low-frequency oscillatory 
motion in mutually perpendicular planes relative to the axes of the dimples, 
whose frequency is increased with increasing flow velocity.

2. It is shown that the intensity of the field of the velocity fluctuations has maxi-
mum values near the streamlined surface and also on the boundary of the shear 
layer in the opening of the oval dimple. The intensity of the wall-pressure fluc-
tuation field is greatest in the interaction region between vortex structures of 
the shear layer and large-scale vortex systems ejected from the dimples with the 
aft wall of the oval dimple. The smallest intensity of the wall-pressure fluctua-
tions occurred at the bottom of the oval dimple in its forward spherical part.

3. It has been established that depending on the flow regimes in the spectral 
characteristics of the field of the wall-pressure fluctuations measured on the 



Boundary Layer Flows - Theory, Applications and Numerical Methods

154

11 in Figure 6b). In the middle section of the oval dimple system, where the sensor 
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Power spectral densities of the wall-pressure fluctuations inside (a) and near (b) the oval dimple for the 
Reynolds number   Re  X    = 400,000.

155

Dimple Generators of Longitudinal Vortex Structures
DOI: http://dx.doi.org/10.5772/intechopen.83518

wall-pressure fluctuations inside the oval dimple, there are discrete peaks that cor-
respond to subharmonics and harmonics of higher orders of dominant frequencies 
of the vortex motion.

The features of the vortex motion, as well as wall-pressure fluctuation field, 
which it generates, in the near wake of the oval dimple system, in its middle 
section and at a distance of 2 d  from the system of oval dimples, are shown in 
Figure 7b. The spectral levels of the wall-pressure fluctuations in the wake 
behind the aft spherical part of the dimple are similar to those obtained inside 
the oval dimple as for a lower flow velocity. At the same time, the spectra in the 
middle section of the system of oval dimples (in their near wake) have a specific 
character with a maximum at 0.13 Hz (curve 8 in Figure 7b). Behind the aft 
spherical part of the oval dimple in the spectral dependences of the field of the 
wall-pressure fluctuations, there are tone peaks which are characteristic of the 
vortical motion inside the oval dimples. In the middle section of the oval dimple 
system at a distance 2 d  from the dimples, discrete peaks appear in the spectral 
levels of wall-pressure fluctuations. They are characteristic for the low-frequency 
oscillations of the vortex motion inside the dimples, as well as for the ejection of 
large-scale vortex structures from the dimples. The intensity, for example, of the 
wall-pressure fluctuations at the ejection frequency, is much lower for this flow 
regime than that observed for the velocity flow 0.25 m/s (Figures 6b and 7b). 
This is due to the fact that for a large flow velocity, the interaction between the 
vortices of each of the dimples takes place more distant from the dimples, and 
the distance 2 d  from the pair of oval dimples for this regime is in the initial stage 
of this interaction.

4. Conclusions

1. The visual images of the vortex flow formed inside the oval dimple system are 
obtained, and the characteristic features of vortex formation for different flow 
regimes are determined. It has been experimentally established that the separa-
tion flow was not observed inside the dimples for laminar regime. For transient 
flow regime and small flow velocities within the oval dimples, the formation 
of very intense longitudinal spirals is observed, which are rotated and slowly 
fluctuated along the longitudinal and transverse axes of the dimples. For a 
turbulent flow regime inside the oval dimples, the spindle-shaped vortices are 
formed, which, with increasing velocity, are pressed against the front spheri-
cal parts of the dimples. These spindle-shaped vortices, reaching the scales of 
the dimples, are ejected from the oval dimples, disturbing the structure of the 
boundary layer. Inside the oval dimples, there is a low-frequency oscillatory 
motion in mutually perpendicular planes relative to the axes of the dimples, 
whose frequency is increased with increasing flow velocity.

2. It is shown that the intensity of the field of the velocity fluctuations has maxi-
mum values near the streamlined surface and also on the boundary of the shear 
layer in the opening of the oval dimple. The intensity of the wall-pressure fluc-
tuation field is greatest in the interaction region between vortex structures of 
the shear layer and large-scale vortex systems ejected from the dimples with the 
aft wall of the oval dimple. The smallest intensity of the wall-pressure fluctua-
tions occurred at the bottom of the oval dimple in its forward spherical part.

3. It has been established that depending on the flow regimes in the spectral 
characteristics of the field of the wall-pressure fluctuations measured on the 
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streamlined surface, characteristic features appear in the form of discrete 
peaks corresponding to the frequencies of low-frequency oscillations of the 
vortex flow inside the oval dimples and the ejection frequencies of large-scale 
vortex systems from the dimples. In the middle section of the system of oval 
dimples (in their near wake), there is no interaction of vortex structures that 
are ejected from the dimples. With a distance of more than two diameters of 
the dimple, intensive tone peaks are observed in the spectral dependences. 
They correspond to the ejection frequencies of large-scale vortices and the 
frequency of oscillations of the vortex motion inside the dimples, both in the 
middle section of the system of the dimples and behind their aft spherical 
parts. With the distance from the system of oval dimples, the intensity of the 
tonal oscillations, which are characteristic for the vortical motion inside the 
dimples, is decreased, and the boundary layer is restored.
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streamlined surface, characteristic features appear in the form of discrete 
peaks corresponding to the frequencies of low-frequency oscillations of the 
vortex flow inside the oval dimples and the ejection frequencies of large-scale 
vortex systems from the dimples. In the middle section of the system of oval 
dimples (in their near wake), there is no interaction of vortex structures that 
are ejected from the dimples. With a distance of more than two diameters of 
the dimple, intensive tone peaks are observed in the spectral dependences. 
They correspond to the ejection frequencies of large-scale vortices and the 
frequency of oscillations of the vortex motion inside the dimples, both in the 
middle section of the system of the dimples and behind their aft spherical 
parts. With the distance from the system of oval dimples, the intensity of the 
tonal oscillations, which are characteristic for the vortical motion inside the 
dimples, is decreased, and the boundary layer is restored.
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Chapter 8

Thermal-Hydrodynamic
Characteristics of Turbulent Flow
in Corrugated Channels
Nabeel S. Dhaidana and Abdalrazzaq K. Abbas

Abstract

The heat transfer-flow characteristics of turbulent flow inside corrugated chan-
nels heated by constant heat flux are numerically investigated. The rate of heat
transfer, pressure drop, and performance evaluation criterion is determined for
smooth channel and various designs of corrugated channels at the Reynolds number
ranged from 5000 to 60,000. The effect of rib arrangement distributions of inward,
outward, and inward-outward ribs are examined. The various rib configurations of
corrugated channels are also tested. In addition, the influences of rib roughness
parameters (height, pitch, and width) and rib shapes (semicircular, trapezoidal,
and rectangular) are researched. The Reynolds-averaged Navier-Stokes equations
(RANS) are used to model the governing flow equations. The computational model
is validated through a reasonable agreement between the present numerical results
and the outcomes of related works. For different geometrical and operating condi-
tions, the results revealed that the rate of heat exchange in corrugated channels
exceeds higher than that of smooth ones but with additional pressure loss. More-
over, the rib arrangements, rib configuration, and rib roughness parameters exhibit
a relatively significant effect on the performance of the corrugated channels. On the
other hand, the influence of the rib shapes seems to be small.

Keywords: thermal-flow performance, corrugated channel, rib distribution,
rib configuration, rib shapes

1. Introduction

The reliable efficient heat exchangers transfer the maximum rate of heat with
minimum friction losses. The rate of heat transfer of most fluids is restricted by
their low thermal conductivity. Thus, the thermal systems adopt techniques of heat
transfer enhancement to reduce the effect of this issue. There are three techniques
of enhancing heat transfer, namely, active methods (require external power) [1],
passive methods (fins, corrugation, ribs, etc.) [2], and compound techniques
(simultaneous use of active and passive techniques) [3]. Corrugation of tubes and
channels is considered an efficient passive method to augment the rate of heat
exchange. The thermal-flow features of turbulent flow in corrugated tubes are
reported extensively in many articles (for example [4–8]).

Corrugated channels are widely utilized in industrial applications as they are the
major components in plate heat exchangers. Naphon [9] conducted experiments to
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show the performance of a turbulent flow inside a two-sided corrugated channel
with an in-line and staggered arrangements. He showed the important effect of
corrugation on the augmentation of heat transfer and pressure loss. Eiamsa-ard and
Promvonge [10] experimentally examined the thermal-hydrodynamic perfor-
mance of the three types of ribbed-grooved ducts. They reported that the maximum
rate of heat exchange and pressure drop exist in the ducts with a rectangular rib
and a triangular groove. Elshafei et al. [11] conducted experiments to examine the
thermal-hydraulic performance of corrugated channels under the influence of var-
iations of phase shift and channel spacing. The corrugated channels exhibit a com-
pound increase in heat transfer and pressure loss. Mohammed et al. [12] performed
a computational model to investigate the effects of wavy tilt angle, channel height,
and channel height on the flow-thermal fields in a corrugated channel. A three-
dimensional numerical model to investigate the employing baffles on the heat
transfer-flow in the corrugated channels was presented by Li and Gao [13].
Increasing the baffle height enhances heat transfer effectively but leads to dramatic
penalty in pressure drop. Pehlivan et al. [14] experimentally investigated the rate of
heat exchange for sharp corrugation peak fins of corrugated channel for three
different types and sinusoidal converging–diverging channels. It is reported that the
rate of heat transfer increases with the corrugated angle. The numerical results
showed that the wavy channel is an efficient method to increase the heat transfer.
Ravi et al. [15] numerically studied the impact of different rib configurations on the
heat transfer-flow characteristics of the turbulent flow inside corrugated channels.
Shubham et al. [16] numerically investigated the thermal-hydrodynamic transport
characteristics of non-Newtonian fluids in corrugated channels. It was found that
using of shear thinning fluids is more convenient for maximum augmentation of
thermal performance with a minimum penalty in pressure drop.

The present study offers a numerical model to investigate the thermal flow
attributes of turbulent flow in corrugated channels. The performance of corrugated
channels are examined under the effects of corrugation arrangement (inward, out-
ward, and inward-outward rib distribution), corrugation configuration, corrugation
roughness parameters (rib pitch, rib width, and rib height), and rib shapes (rectan-
gular, trapezoidal, and semicircular). The comparisons between the predicted ther-
mal flow performance of corrugated channels and that of smooth ones are fulfilled
under a large range of Reynolds number (5000–60,000).

2. Numerical model

The two-dimensional corrugated channel with a width (b) of 10 mm is described
schematically in Figure 1. The water as heat transfer fluid enters the computational
domain at a temperature of 27°C and intensity of turbulent of 5%. Also, 5% of
turbulent intensity is considered at the exit. The end effects and viscous dissipation
terms are ignored. The constant heat flux of 600 W/cm2 is applied on the channel
wall. The consideration of an axisymmetric situation reduces the size of the numer-
ical domain for saving computational time.

The flow-thermal behavior is modeled by the governing conservation equations
(continuity, momentum, and energy) in a RANS technique as

∂ui
∂xi

¼ 0 (1)

∂

∂xj
ρ uiuj
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∂xi
þ ∂
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in which ρ, μ, u0, and ρu0iu
0
j are density, viscosity, fluctuated velocity, and

turbulent shear stress, respectively.
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where Prt is the turbulent Prandtl number and (τij)eff is the deviatoric stress
tensor which is evaluated as

τij
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The transport equations in k-e model are presented as [17]
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and μt is the eddy viscosity which is modeled as

μt ¼
ρ Cμ k

2

ε
(7)

The model constants Cμ, C1ε, C2ε, σk, and σε are 0.09, 1.44, 1.92, 1.0, and 1.3,
respectively.

No-slip condition and constant wall heat flux are assumed as boundary conditions.
The thermal-hydrodynamic performance of the corrugated channels is assessed

by dimensionless parameters which are the Nusselt number, friction factor, and
performance evaluation criterion (PEC).

The average Nusselt number is presented as

Nu ¼ q″d
kt

ðx
0

1
Tw xð Þ � Tb xð Þ dx (8)

Figure 1.
Schematic representation of the computational domain.
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where q″ and Tw(x) and Tb(x) act as the supplied heat flux and wall and local
bulk temperatures, respectively.

The friction factor is defined as

f ¼ 2 ΔP d
L ρ um2 (9)

The comparison between the enhancement in thermal performance and a pen-
alty in the pressure drop is assessed by introducing the performance evaluation
criteria (PEC) of corrugated channels with different roughness dimensions. The
PEC can be calculated as

PEC ¼ Nu=Nus

f=f s
� �1=3 (10)

where fs and Nus are the friction factor and the Nusselt number of smooth
channel, respectively.

The performance of corrugated channels is estimated according to different
values of the Reynolds number which is introduced as

Re ¼ ρ um dh
μ

(11)

where μ, ρ, dh, and um are dynamic viscosity, density, hydrodynamic diameter,
and mean fluid velocity.

The ANSYS Fluent CFD package-based control volume method is adopted to
discretize the governing equations and simulate thermal flow behavior of corru-
gated channels. The SIMPLE algorithm is utilized for solving the flow field. The
diffusion terms and other resulting terms are discretized by employing the first-
order upwind scheme. The residuals lower than 10�6 is chosen to achieve the
convergence criterion for all variables. A fine grid discretization close to the wall is
adopted. Also, the meshing system of 23,964 grids is sufficient for solution accu-
racy. On the other hand, the numerical code that is validated through a reasonable
agreement is shown (Figure 2a) between the Nusselt number of the present work
and the same number which is obtained from the well-known Gnielinski correlation
[18]. Furthermore, good agreement is indicated for the friction factor (Figure 2b)
between the present work and the work of San and Huang [5].

Figure 2.
(a) Numerical Nu of the present work and that obtained from Gnielinski’s correlation [17] and (b) Numerical
f and that of San and Huang [5].
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3. Results and discussion

The flow-thermal features of turbulent flow in corrugated channels are evalu-
ated numerically. The enhanced heat transfer and an accompanied pressure loss are
assessed for corrugated channels under the influences of rib arrangement, rib con-
figuration, rib roughness parameters, and rib shapes. The dimensionless parameters
Nu, f, and PEC through a wide range of Re are presented to assess the performance
of corrugated channels.

3.1 The effect of rib arrangements

Corrugated channels exist in three layouts depending on rib arrangements,
IOCC, ICC, and OCC, as described in Figure 1a. The variations of Nu and f with the
Re number of all rectangular rib arrangements of corrugated channels and smooth
one are presented in Figure 3a and b, respectively. The rate of heat that is trans-
ferred in corrugated channels is higher than that of the smooth channel. The heat
transfer varies insignificantly with the rib distribution at the low Re. The rib distri-
bution experiences a pronounced influence on the Nusselt number when Re
increases. The ICC shows a maximum ability to exchange the heat, while the OCC
has a lower thermal performance. On the other hand, there is an additional pressure
loss associated with corrugated channels compared with smooth ones as exhibited
in Figure 3b. The friction factor decreases slightly with the Re. Also, the OCC has a

Figure 3.
(a) Different rib arrangements of corrugated channels and the influence of rib configuration on Nu, f, and PEC
as described in (b), (c), and (d), respectively, for the different values of Re.
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alty in the pressure drop is assessed by introducing the performance evaluation
criteria (PEC) of corrugated channels with different roughness dimensions. The
PEC can be calculated as

PEC ¼ Nu=Nus

f=f s
� �1=3 (10)

where fs and Nus are the friction factor and the Nusselt number of smooth
channel, respectively.

The performance of corrugated channels is estimated according to different
values of the Reynolds number which is introduced as

Re ¼ ρ um dh
μ

(11)

where μ, ρ, dh, and um are dynamic viscosity, density, hydrodynamic diameter,
and mean fluid velocity.

The ANSYS Fluent CFD package-based control volume method is adopted to
discretize the governing equations and simulate thermal flow behavior of corru-
gated channels. The SIMPLE algorithm is utilized for solving the flow field. The
diffusion terms and other resulting terms are discretized by employing the first-
order upwind scheme. The residuals lower than 10�6 is chosen to achieve the
convergence criterion for all variables. A fine grid discretization close to the wall is
adopted. Also, the meshing system of 23,964 grids is sufficient for solution accu-
racy. On the other hand, the numerical code that is validated through a reasonable
agreement is shown (Figure 2a) between the Nusselt number of the present work
and the same number which is obtained from the well-known Gnielinski correlation
[18]. Furthermore, good agreement is indicated for the friction factor (Figure 2b)
between the present work and the work of San and Huang [5].

Figure 2.
(a) Numerical Nu of the present work and that obtained from Gnielinski’s correlation [17] and (b) Numerical
f and that of San and Huang [5].
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3. Results and discussion

The flow-thermal features of turbulent flow in corrugated channels are evalu-
ated numerically. The enhanced heat transfer and an accompanied pressure loss are
assessed for corrugated channels under the influences of rib arrangement, rib con-
figuration, rib roughness parameters, and rib shapes. The dimensionless parameters
Nu, f, and PEC through a wide range of Re are presented to assess the performance
of corrugated channels.

3.1 The effect of rib arrangements

Corrugated channels exist in three layouts depending on rib arrangements,
IOCC, ICC, and OCC, as described in Figure 1a. The variations of Nu and f with the
Re number of all rectangular rib arrangements of corrugated channels and smooth
one are presented in Figure 3a and b, respectively. The rate of heat that is trans-
ferred in corrugated channels is higher than that of the smooth channel. The heat
transfer varies insignificantly with the rib distribution at the low Re. The rib distri-
bution experiences a pronounced influence on the Nusselt number when Re
increases. The ICC shows a maximum ability to exchange the heat, while the OCC
has a lower thermal performance. On the other hand, there is an additional pressure
loss associated with corrugated channels compared with smooth ones as exhibited
in Figure 3b. The friction factor decreases slightly with the Re. Also, the OCC has a

Figure 3.
(a) Different rib arrangements of corrugated channels and the influence of rib configuration on Nu, f, and PEC
as described in (b), (c), and (d), respectively, for the different values of Re.
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minimum friction factor, while the ICC owns a maximum pressure loss. Moreover,
the performance evaluation criterion (PEC) varies inversely with the Re as
exhibited in Figure 3c. The increase in pressure loss exceeds the enhancement in
the heat transfer for all corrugated channel layouts. Also, OCC has higher PEC than
both IOCC and ICC channels. This is due to the increase in f of OCC is lower than
that of ICC and IOCC. Even though, both ICC and IOCC have higherNu than IOCC.

3.2 The influence of rib configurations

Seven configurations of rib trapezoidal corrugated channels are denoted (B1, B2,
C1, C2, C3, D1, and D2) which are presented in Figure 4a. Also, the smooth channel
is indicated by A. The variation of the Nusselt number for all channels is depicted in
Figure 4b. The increase in Re and flow velocity causes enhancement in mixing the

Figure 4.
(a) Different configurations of corrugated channels and the influence of rib configuration on Nu, f, and PEC as
depicted in (a), (b), and (c), respectively, for the different values of Re.
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rate between the core flow and recirculating flow. Thus, the heat exchange between
the heating wall and the flow is enhanced. On the other hand, f is higher for corru-
gated channels than the smooth one as revealed in Figure 4c. In one side, the results
revealed that the heat is transferred more effectively in the corrugated channel than
the smooth one due to the additional surface area, suppressing the boundary layer
thickness associated with corrugated channels. On the other side, the corrugation
results in a substantial flow recirculation and separation and an extra surface area, and
thus it creates higher pressure drop. The corrugated channel C1 registers the highest
Nu, while the minimum Nu is achieved for corrugated channel B1. Conversely, the
results exhibit that the minimum pressure drop is registered for B1 configuration
channel among other corrugated channels. Moreover, the influence of rib configura-
tion of corrugated channels on the PEC is presented in Figure 4d. The results reveal
that there is a monotonic decrease of PEC with the Re. The optimum performance is
accomplished at the lower Re. As Re increases the conflict between the augmentation
in thermal performance and degradation in pressure drop is initiated. The higher
values of PEC are obtained for C3 and B1 corrugated channels, whereas D1 and D2
configurations have the minimum values of PEC.

Figure 5.
Nu, f, and PEC for different (a) rib heights, (b) rib pitches, and (c) rib widths.
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3.3 The impact of rib roughness parameters

The roughness parameters of corrugated channels involve relative rib height
(e/b), relative rib pitch (p/b), and relative rib width (w/b) as illustrated later in
Figure 6a. The impact of roughness parameters on the thermal-flow behavior of
corrugated channels is presented in Figure 5. The computed Nu, f, and PEC are
tested for different relative roughness heights which are presented in Figure 5a1,
5a2, and 5a3, respectively, with constant values of p/b and w/b. Generally,
corrugated channels have higher Nu than a smooth channel. It is observed that the
Nusselt number increases monotonically with both rib height and Re. But there is a
relatively small effect of rib height on the Nu at lower values of Re. At the same
time, the friction factor varies positively with the relative rib height. While, there is
an insignificant effect of Re on f, the variation of PEC (Figure 5a3) confirms that
the diverse effect of friction factor exceeds the enhancement in transferred heat
especially with an increase of Re. The influence of rib pitch of corrugation on Nu, f,
and PEC of corrugated channels is illustrated in Figure 5b1, 5b2, and 5b3, respec-
tively, for constant corrugation height and width. Decreasing the pitch results in an
increase in the number of ribs for unit length and excites the secondary flow.
Therefore, the thickness of boundary layer is decreased, and the rate of heat trans-
fer is augmented. However, the flow impedance is increased due to the increase in
the number of roughness elements which add extra friction to the flow stream. It
appears that the influence of corrugation pitch is insignificant on the PEC as

Figure 6.
(a) Different rib shapes of IOCC channels and the influence of rib shapes on the Nu, f, and PEC as presented in
(b), (c), and (d), respectively, for the different values of the Re.
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presented in Figure 5b3. In a similar way, the influences of two values of rib width
on the performance of corrugated channel are shown in Figure 5c. As the rib width
increases, the secondary flow becomes more intense. Therefore, there is a mutual
increase in Nu and f as depicted in Figure 5c1 and 5c2, respectively. Furthermore,
the PEC shows a monotonic decrease with the rib width and Re as described by
Figure 5c3.

3.4 The influence of rib shape

The heat transfer-flow behavior of IOCC channel, for example, is examined
for rectangular, semicircular, and trapezoidal rib shapes. The different shapes of
the rib are illustrated in Figure 6a, while the Nu, f, and PEC for various rib shapes
are presented in Figure 6b, c and d, respectively, for (p/b = 1, e/b = 0.025, and
w/b = 0.05). It is found that the influence of the roughness shape is small on the
performance of corrugated channels.

4. Conclusion

The computational investigation of thermal-flow performance of turbulent flow
in corrugated channels is carried out for the Reynolds number from 5000 to
60,000. The effects of rib arrangements, rib configurations, rib roughness parame-
ters, and rib shapes are investigated. All layouts of corrugated channels showed a
superior ability of exchange heat than that experienced by smooth channel. How-
ever, the pressure loss associated with corrugated channels is higher than that of the
smooth ones. Furthermore, it is inferred that the arrangement of rib distribution,
rib configuration, and rib roughness parameters has a pronounced effect on the
thermal-flow performance of corrugated channels, while the influence of rib shapes
seems to be small.
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increases, the secondary flow becomes more intense. Therefore, there is a mutual
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Chapter 9

Singularly Perturbed Parabolic
Problems
Asan Omuraliev and Ella Abylaeva

Abstract

The aim of this work is to construct regularized asymptotic of the solution of a
singularly perturbed parabolic problems. Namely, in the first paragraph, we con-
sider the case when the scalar equation contains a free term consisting of a finite
sum of the rapidly oscillating functions. In the first paragraph, it is shown that the
asymptotic solution of the problem contains parabolic, power, rapidly oscillating,
and angular boundary layer functions. Angular boundary layer functions have two
components: the first one is described by the product of a parabolic boundary layer
function and a boundary layer function, which has a rapidly oscillating change. The
second section is devoted to a two-dimensional equation of parabolic type. Asymp-
totic of the scalar equation contains a rapidly oscillating power, parabolic boundary
layer functions, and their product; then, the multidimensional equation additionally
contains a multidimensional composite layer function.

Keywords: singularly perturbed parabolic problem, asymptotic, stationary phase,
power boundary layer, parabolic boundary layer, angular boundary layer

1. Asymptotics of the solution of the parabolic problem with a
stationary phase and an additive-free member

1.1 Introduction

Singularly perturbed problems with rapidly oscillating free terms were studied
in [1–3]. Ordinary differential equations with a rapidly oscillating free term whose
phase does not have stationary points are studied in [1]. Using the regularization
method for singularly perturbed problems [4], differential equations of parabolic
type with a small parameter were studied in [2, 3] when fast-oscillating functions as
a free member. The asymptotic solutions constructed in [1–3] contain a boundary
layer function having a rapidly oscillating character of change. In addition to such a
boundary layer function, ordinary differential equations contain an exponential [1],
and parabolic equations - parabolic [2, 3] and angular boundary layer [2, 5] func-
tions. If the phase of the free term has stationary points, then boundary layers arise
additionally, having a power character of change. In this case, the asymptotic
solution consists of regular and boundary layer terms. The boundary layer members
are parabolic, power, rapidly oscillating boundary layer functions, and their prod-
ucts, which are called angular boundary layer functions [4]. In this chapter we used
the methods of [4, 5].
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in [1–3]. Ordinary differential equations with a rapidly oscillating free term whose
phase does not have stationary points are studied in [1]. Using the regularization
method for singularly perturbed problems [4], differential equations of parabolic
type with a small parameter were studied in [2, 3] when fast-oscillating functions as
a free member. The asymptotic solutions constructed in [1–3] contain a boundary
layer function having a rapidly oscillating character of change. In addition to such a
boundary layer function, ordinary differential equations contain an exponential [1],
and parabolic equations - parabolic [2, 3] and angular boundary layer [2, 5] func-
tions. If the phase of the free term has stationary points, then boundary layers arise
additionally, having a power character of change. In this case, the asymptotic
solution consists of regular and boundary layer terms. The boundary layer members
are parabolic, power, rapidly oscillating boundary layer functions, and their prod-
ucts, which are called angular boundary layer functions [4]. In this chapter we used
the methods of [4, 5].
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1.2 Statement of the problem

In this chapter we study the following problem:

Lεu x; t; εð Þ � ∂tu� ε2a xð Þ∂2xu� b x; tð Þu ¼ ∑
N

k¼1
f к x; tð Þ exp iθк tð Þ

ε

� �
, x; tð Þ∈Ω,

(1)

u x; t; εð Þjt¼0 ¼ u x; t; εð Þ x¼0 ¼ u x; t; εð Þj jx¼1 ¼ 0

where ε.0 is a small parameter and Ω = {(x, t): x∈ 0; 1ð Þ, t∈ 0;Tð �g.
The problem is solved under the following assumptions:

1. a xð Þ.0, a xð Þ∈С∞ 0; 1½ �,b x; tð Þ, f x; tð Þ∈С∞ Ω
� �

:

2.∀x∈ 0; 1½ � function a xð Þ.0.

3. θ0k tð Þ��t¼0 ¼ 0 is the phase function.

1.3 Regularization of the problem

For the regularization of problem (Eq. (1)), we introduce regularizing indepen-
dent variables using methods [5, 6]:

η ¼ t
ε2
, rk ¼ i θk tð Þ � θk 0ð Þ½ �

ε
, ξν ¼

φν xð Þ
ε

, i ¼
ffiffiffiffiffiffi
�1

p
,

ζv ¼
φν xð Þ
ε2

,φν xð Þ ¼ �1ð Þν�1
ðx
ν�1

dsffiffiffiffiffiffiffiffi
a sð Þp , ν ¼ 1, 2,

σk ¼
ðt
0
exp

i θк sð Þ � θк 0ð Þ½ �
ε

� �
ds � pк t; εð Þ, l ¼ 0, r, j ¼ 0, kl � 1

(2)

Instead of the desired function u x; t; εð Þ, we will study the extended function

�u M; εð Þ,M ¼ x; t; r; η; σ; ξ; ζð Þ,σ ¼ σ1; σ2…σNð Þ, r ¼ r1; r2…rNð Þ, ξ ¼ ξ1; ξ2ð Þ, ζ ¼ ζ1; ζ2ð Þ
such that its restriction by regularizing variables coincides with the desired

solution:

�u M; εð Þjγ¼p x;t;εð Þ � u x; t; εð Þ
γ ¼ r; σ; η; ξ; ζð Þ

(3)

Taking into account (Eqs. (21)) and ((3)), we find the derivatives
On the basis of (Eqs. (1)–(4)) for the extended function �u M; εð Þ, we set the

problem:

∂tu x; t; εð Þ � ð∂t�u M; εð Þ þ 1
ε2 ∂η�u M; εð Þ þ ∑

N

k¼1
½iθk

0 tð Þ
ε

∂rk�u M; εð Þ þ exp rkð Þ∂σk�u M; εð ÞÞ
����
γ¼p x;t;εð Þ

,

∂xu x; t; εð Þ � ∂x�u ðM; εð Þ þ ∑
2

ν¼1

φ0
ν xð Þ
ε

∂ξν�u M; εð Þ þ φ0
ν xð Þ
ε2

∂ζν�u M; εð Þ
� �� �����

γ¼p x;t;εð Þ
,

(4)
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∂
2
xu x; t; εð Þ � ∂

2
x �u ðM; ε

� �þ ∑
2

ν¼1

φ0
ν xð Þ
ε

� �2

∂
2
ξν
�u M; εð Þ þ φ0

ν xð Þ
ε2

� �2

∂
2
ζν
�u M; εð Þ þ 1

ε
Dξ,v�u M; εð Þ

( 

þ 1
ε2 Dζ,v�u M; εð Þ

)!�����
γ¼p x;t;εð Þ

,

Dξ,v � 2φ0
ν xð Þ∂2x,ξν þ φ00

ν xð Þ∂ξν ,
Dζ,v � 2φ0

ν xð Þ∂2x,ζν þ φ00
ν xð Þ∂ζν :

L
�
ε�u M; εð Þ � 1

ε2
T0 �u M; εð Þ þ ∑

N

k¼1

iθ0k tð Þ
ε

∂rk�u M; εð Þ þ T1 �u M; εð Þ

¼ ∑
N

k¼1
fк x; tð Þ exp rk þ iθк 0ð Þ

ε

� �
þ Lζ �u M; εð Þ þ εLξ�u M; εð Þ þ ε2Lx�u M; εð Þ

     �u M; εð Þjt¼rk¼η¼0 ¼ �u M; εð Þ x¼0,ξ1¼ζ1¼0 ¼ �u M; εð Þ�� ��
x¼1,ξ2¼ζ2¼0 ¼ 0,

T1 � ∂η � ∑
2

ν¼1
∂
2
ζv ,

T2 � ∂t � ∑
2

ν¼1
∂
2
ξv � b x; tð Þ þ ∑

N

k¼1
exp rkð Þ∂σk ,

Lξ � a xð Þ∑
2

v¼1
Dξ,v,

Lζ � a xð Þ∑
2

v¼1
Dζ,v,

Lx � a xð Þ∂2x:

(5)

The problem (Eq. (5)) is regular in ε as ε ! 0:

L
�
ε�u M; εð Þ

� ����
q¼q x;t;εð Þ

� Lε�u x; t; εð Þ: (6)

1.4 Solution of iterative problems

The solution of problem (Eq. (5)) will be determined in the form of a series:

�u M; εð Þ ¼ ∑
∞

v¼0
εvuv Mð Þ: (7)

For the coefficients of this series, we obtain the following iterative problems:

T1u0 Mð Þ ¼ 0,T1u1 Mð Þ ¼ �i∑
N

k¼1
θ0k tð Þ∂rku0 Mð Þ,

T1u2 Mð Þ ¼¼ �i∑
N

k¼1
θ0k tð Þ∂rku1 Mð Þ � T2u0 Mð Þ þ ∑

N

k¼1
fк x; tð Þ exp rk þ iθк 0ð Þ

ε

� �
þ Lζ u0 Mð Þ,

T1uv Mð Þ ¼ �i∑
N

k¼1
θ0k tð Þ∂rkuv�1 Mð Þ � T2uv�2 Mð Þ þ Lζuv�2 þ Lξuv�3 Mð Þ þ Lxuv�4 Mð Þ:

(8)

The solution of this problem contains parabolic boundary layer functions; inter-
nal power boundary layer functions which are connected with a rapidly oscillating
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Taking into account (Eqs. (21)) and ((3)), we find the derivatives
On the basis of (Eqs. (1)–(4)) for the extended function �u M; εð Þ, we set the
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1.4 Solution of iterative problems
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ε

� �
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free term in a phase which are vanished at t ¼ tl, l ¼ 0, 1,……,n in addition; and the
asymptotic also contain angular boundary layer functions. We introduce a class of
functions in which the iterative problems will be solved:

G0 ffi C∞ Ω
� �

, G1 ¼ u Mð Þ : u Mð Þ ¼ ⊕2
l¼1G0⊗erfc ξl

2
ffiffi
t

p
� �n o

,

G2 ¼ u Mð Þ : u Mð Þ ¼ ⊕N
k¼1G0⊗ exp rkð Þ� �

,

G3 ¼ u Mð Þ : u Mð Þ ¼ ⊕N
k¼1⊕

2
l¼1Y

l
k Nlð Þ⊗ exp rkð Þ; Yl

k Nlð Þ�� ��, c exp � ς2l
8η

� �� �
,

G4 ¼ u Mð Þ : u Mð Þ ¼ ⊕N
k¼1G0 ⊕2

l¼1G0⊗erfc
ξl
2
ffiffi
t

p
� �� �

σk
� �

,Nl ¼ x; t; η; ς1; ς2ð Þ:

From these spaces we construct a new space:

G ¼ ⊕4
l¼0Gl:

The element u Mð ÞϵG has the form:

u Mð Þ ¼ v x; tð Þ þ ∑
2

l¼1
wl x; tð Þerfc ξl

2
ffiffi
t

p
� �

þ ∑
N

k¼1
ck x; tð Þ þ ∑

2

l¼1
Yl
k Nlð Þ

� �
exp rkð Þ

þ ∑
N

k¼1
zk x; tð Þ þ ∑

2

l¼1
qlk x; tð Þerfc ξ2l

2
ffiffi
t

p
� �� �

σk:

(9)

1.5 Solvability of intermediate tasks

The iterative problems (Eq. (9)) in general form will be written:

T1u Mð Þ ¼ H Mð Þ: (10)

Theorem 1. Suppose that the conditions (1)–(3) and H Mð ÞϵG3 are satisfied.
Then, equation (Eq. (10)) is solvable in G.

Proof. Let the free term H Mð ÞϵG3 be representable in the form:

H Mð Þ ¼ ∑
N

k¼1
∑
2

l¼1
Hl

k Nlð Þ, Hl
k Nlð Þ�� ��, c exp

ς2l
8η

� �
:

Then, by directly substituting function u Mð Þϵ G from (Eq. (9)) in (Eq. (10)), we
see that this function is a solution if and only if the function Yl

k Nlð Þwill be a solution
of equation:

∂ηYl
k Nlð Þ ¼ ∂

2
ςlY

l
k Nlð Þ þHl

k Nlð Þ, l ¼ 1, 2, k ¼ 1, 2,…,N: (11)

With the corresponding boundary conditions, this equation has a solution which
have the estimate:

Yl
k Nlð Þ�� ��, c exp

ς2l
8η

� �
:

The theorem is proven.
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Theorem 2. Suppose that the conditions of Theorem 1 are satisfied. Then, under
additional conditions:

1.
u Mð Þ t¼η¼0 ¼ 0;u Mð Þ�� ��

x¼l�1,ξl¼0,ςl¼0 ¼ 0, l ¼ 1, 2:

2.
Lςu Mð Þ ¼ 0,Lξu Mð Þ ¼ 0:

3.

i ∑
N

k¼1
θ0k tð Þ∂rkuv Mð Þ þ T2uv�1 Mð Þ þ h Mð Þ∈G3:

Eq. (10) is uniquely solvable.
Proof. By Theorem 1 equation (Eq. (10)) has a solution that is representable in

the form (Eq. (9)). With satisfying condition (1), we obtain

v x; tð Þ t¼0 ¼ � ∑
N

k¼1
ck x;0ð Þ;wl x; tð Þ

����
����
t¼0

¼ wl xð Þ, (12)

Yl
k Nlð Þ t¼η¼0 ¼ 0; qlk x; tð Þ�� ��

t¼0=q
l
k xð Þ, dl

k x; tð Þ
���
t¼0

¼ d
l
k xð Þ,

wl x; tð Þ x¼l�1 ¼ �ck l� 1; tð Þ; qlk x; tð Þ�� ��
x¼l�1 ¼ �zk l� 1; tð Þ, l ¼ 1, 2:

Due to the fact that the function erfc θ
2
ffiffi
t

p
� �

is zero at θ ¼ 0, the values for

wl x; tð Þ t¼0; qlk x; tð Þ�� ��
t¼0 are chosen arbitrarily.

We calculate

i ∑
N

k¼1
θ0k tð Þ∂rkuv Mð Þ þ T2uv�1 Mð Þ þ h Mð Þ

¼ i ∑
N

k¼1
θ0k tð Þ ck,v x; tð Þ þ ∑

2

l¼1
Yl
k,v Nlð Þ

� �
exp rkð Þ þ ∂tvv�1 x; tð Þ � b x; tð Þvv�1ðx; t½ Þ�

þ ∑
2

l¼1
∂twl

v�1 x; tð Þ � b x; tð Þwl
v�1 x; tð Þ� �

erfc
ξl
2
ffiffi
t

p
� �

þ ∑
N

k¼1
∂tck,v�1 x; tð Þ � b x; tð Þck,v�1 x; tð Þ þ ∑

2

l¼1
∂tYl

k,v�1 Nlð Þ � b x; tð ÞYl
k,v�1 Nlð Þ� �� �

exp τkð Þ

þ ∑
N

k¼1
∂tzk,v�1 x; tð Þ � x; tð Þzk,v�1 x; tð Þ þ ∑

2

l¼1
∂tqlk,v�1 x; tð Þ � b x; tð Þqlk,v�1 x; tð Þ
h i

erfc
ξl
2
ffiffi
t

p
� �� �

σk

þ ∑
N

k¼1
zk,v�1 x; tð Þ þ ∑

2

l¼1
qlk,v�1 x; tð Þerfc ξl

2
ffiffi
t

p
� �� �

exp τkð Þ þ h0 x; tð Þ þ ∑
2

l¼1
hl
1 x; tð Þerfc ξl

2
ffiffi
t

p
� �

þ ∑
N

k¼1
hk2 x; tð Þ þ ∑

2

l¼1
hl,k
2 x; tð Þ

� �
exp τkð Þ þ ∑

N

k¼1
hk
3 x; tð Þ þ ∑

2

l¼1
hl,k
3 x; tð Þerfc ξl

2
ffiffi
t

p
� �� �

σk:

(13)

Condition (3) of the theorem will be ensured, if we choose arbitrarily (Eq. (9))
as the solutions of the following equations:
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free term in a phase which are vanished at t ¼ tl, l ¼ 0, 1,……,n in addition; and the
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Lςu Mð Þ ¼ 0,Lξu Mð Þ ¼ 0:

3.

i ∑
N

k¼1
θ0k tð Þ∂rkuv Mð Þ þ T2uv�1 Mð Þ þ h Mð Þ∈G3:

Eq. (10) is uniquely solvable.
Proof. By Theorem 1 equation (Eq. (10)) has a solution that is representable in

the form (Eq. (9)). With satisfying condition (1), we obtain

v x; tð Þ t¼0 ¼ � ∑
N

k¼1
ck x;0ð Þ;wl x; tð Þ

����
����
t¼0

¼ wl xð Þ, (12)

Yl
k Nlð Þ t¼η¼0 ¼ 0; qlk x; tð Þ�� ��

t¼0=q
l
k xð Þ, dl

k x; tð Þ
���
t¼0

¼ d
l
k xð Þ,

wl x; tð Þ x¼l�1 ¼ �ck l� 1; tð Þ; qlk x; tð Þ�� ��
x¼l�1 ¼ �zk l� 1; tð Þ, l ¼ 1, 2:

Due to the fact that the function erfc θ
2
ffiffi
t

p
� �

is zero at θ ¼ 0, the values for

wl x; tð Þ t¼0; qlk x; tð Þ�� ��
t¼0 are chosen arbitrarily.

We calculate

i ∑
N

k¼1
θ0k tð Þ∂rkuv Mð Þ þ T2uv�1 Mð Þ þ h Mð Þ

¼ i ∑
N

k¼1
θ0k tð Þ ck,v x; tð Þ þ ∑

2

l¼1
Yl
k,v Nlð Þ

� �
exp rkð Þ þ ∂tvv�1 x; tð Þ � b x; tð Þvv�1ðx; t½ Þ�

þ ∑
2

l¼1
∂twl

v�1 x; tð Þ � b x; tð Þwl
v�1 x; tð Þ� �

erfc
ξl
2
ffiffi
t

p
� �

þ ∑
N

k¼1
∂tck,v�1 x; tð Þ � b x; tð Þck,v�1 x; tð Þ þ ∑

2

l¼1
∂tYl

k,v�1 Nlð Þ � b x; tð ÞYl
k,v�1 Nlð Þ� �� �

exp τkð Þ

þ ∑
N

k¼1
∂tzk,v�1 x; tð Þ � x; tð Þzk,v�1 x; tð Þ þ ∑

2

l¼1
∂tqlk,v�1 x; tð Þ � b x; tð Þqlk,v�1 x; tð Þ
h i

erfc
ξl
2
ffiffi
t

p
� �� �

σk

þ ∑
N

k¼1
zk,v�1 x; tð Þ þ ∑

2

l¼1
qlk,v�1 x; tð Þerfc ξl

2
ffiffi
t

p
� �� �

exp τkð Þ þ h0 x; tð Þ þ ∑
2

l¼1
hl
1 x; tð Þerfc ξl

2
ffiffi
t

p
� �

þ ∑
N

k¼1
hk2 x; tð Þ þ ∑

2

l¼1
hl,k
2 x; tð Þ

� �
exp τkð Þ þ ∑

N

k¼1
hk
3 x; tð Þ þ ∑

2

l¼1
hl,k
3 x; tð Þerfc ξl

2
ffiffi
t

p
� �� �

σk:

(13)

Condition (3) of the theorem will be ensured, if we choose arbitrarily (Eq. (9))
as the solutions of the following equations:
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∂tvv�1 x; tð Þ � b x; tð Þvv�1 x; tð Þ ¼ �h0 x; tð Þ,
∂twl

v�1 x; tð Þ � b x; tð Þwl
v�1 x; tð Þ ¼ �hl

1 x; tð Þ,
∂tYl

k,v�1 Nlð Þ � b x; tð ÞYl
k,v�1 Nlð Þ ¼ � hl,k

2 x; tð Þ þ qlk,v�1 x; tð Þerfc ςl
2
ffiffiffiηp

� �� �
,

∂tzk,v�1 x; tð Þ � b x; tð Þzk,v�1 x; tð Þ ¼ �hk
3 x; tð Þ,

∂tqlk,v�1 x; tð Þ � b x; tð Þqlk,v�1 x; tð Þ ¼ �hl,k
3 x; tð Þ,

iθ0k tð Þck,v x; tð Þ ¼ �zk,v�1 x; tð Þ � ∂tck,v�1 x; tð Þ � b x; tð Þck,v�1 x; tð Þ½ � � hk2 x; tð Þ:

(14)

After this choice of arbitrariness, expression (Eq. (13)) is rewritten:

i ∑
N

k¼1
θ0k tð Þ∂rkuv Mð Þ þ T2uv�1 Mð Þ þ h Mð Þ ¼ ∑

N

k¼1
∑
2

l¼1
iθ0k tð ÞYl

k,v Nlð Þ� �
exp τkð Þ∈G3

In (Eq. (14)), transition was made from ξl=2
ffiffi
t

p
to variable ςl=2

ffiffiffiηp
. The function

Yl
k Nlð Þ is defined as the solution of equation (Eq. (30)) under the boundary condi-

tions from (Eq. (12)) in the form:

Yl
k Nlð Þ ¼ dl

k x; tð Þerfc ςl
2
ffiffiffiηp

� �
þ 1
2
ffiffiffi
π

p
ðη
0

ð∞
0

Hl
k �ð Þffiffiffiffiffiffiffiffiffiffiffiη� τp exp � ςl � y

� �2
4 η� τð Þ

 !
� exp � ςl þ y

� �2
4 η� τð Þ

 !" #
dydτ:

(15)

We substitute this function in the corresponding equation from (Eq. (14)); then
with respect to dl

k x; tð Þ, we obtain a differential equation, which is solving under the

initial condition dl
k x; tð Þ

���
t¼0

¼ d
l
k xð Þ, and we find

dlk x; tð Þ ¼ d
l
k x; tð ÞB x; tð Þ þ Pl

k x; tð Þ,B x; tð Þ ¼ exp
ðt
0
b x; sð Þds

� �
,

where Pl
k x; tð Þ is known as the function.

By substituting the obtained function into condition for dl
k x; tð Þ

���
x¼l�1

from

(Eq. (12)), we define the value of d
l
k xð Þ

���
x¼l�1

. The obtained value is used as an initial

condition for a differential equation with respect to d
l
k xð Þ, which is obtained after

substitution dl
k x; tð Þ into the first condition of (2). With that we ensure fulfillment

of this condition and uniqueness of the function Yl
k Nlð Þ: The last equation from

(Eq. (14)) due to the fact that θ0k tkð Þ ¼ 0 is solvable if

zlk,v�1 x;0ð Þ ¼ �hk
2 x;0ð Þ � ∂tck,v�1 x; tð Þ � b x; tð Þck,v�1 x; tð Þ½ �

���
t¼0

:

The obtained ratio is used as the initial condition for the differential equation
with respect to zlk,v�1 x; tð Þ from (Eq. (14)).

The equation with respect to vv�1 x; tð Þ under the initial condition from (12)
determines this function uniquely. Equations with respect to
wl

k,v�1 x; tð Þ, qlk,v�1 x; tð Þ under the corresponding condition from (Eq. (12)) have
solutions representable in the form:
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wl
k,v�1 x; tð Þ ¼ wl

k,v�1 xð ÞB x; tð Þ þHl
1,v�1 x; tð Þ,

qlk,v�1 x; tð Þ ¼ qlk,v�1 xð ÞB x; tð Þ þHl
2,v�1 x; tð Þ

(16)

where Hl
1,v�1 x; tð Þ,Hl

2,v�1 x; tð Þ- are known functions.
With substituting (Eq. (16)) into the conditions under x ¼ l� 1 from (Eq. (12)),

we define values of wl
k,v�1 xð Þ x¼l�1; qlk,v�1 xð Þ

���
���
x¼l�1

. These conditions are used in

solving differential equations which are obtained from the second condition of
(Eq. (21)):

Lξ wl
k,v�1 x; tð Þerfc ξl

2
ffiffi
t

p
� �� �

¼ 0,Lξ qlk,v�1 x; tð Þerfc ξl
2
ffiffi
t

p
� �� �

¼ 0:

Thus, function u Mð Þ is determined uniquely. The theorem is proven.

1.6 Solution of iterative problems

Eq. (8) is homogeneous for k = 0; therefore, by Theorem 1, it has a solution in G,
representable in the form:

u0 Mð Þ ¼ v0 x; tð Þ þ ∑
2

l¼1
wl x; tð Þerfc ξl

2
ffiffi
t

p
� �

þ∑N
k¼1 ck,0 x; tð Þ þ ∑

2

l¼1
Yl
k,0 Nlð Þ

� �
erk þ zk,0 x; tð Þ þ ∑

2

l¼1
qlk,0 x; tð Þerfc ξl

2
ffiffi
t

p
� �� �

σk
� �

(17)

If the function Yl
k,0 Nlð Þ is the solution of the equation ∂ηYl

k,0 Nlð Þ ¼ ∂
2
ςlY

l
k,0 Nlð Þ

which is satisfying that

Yl
k,0 Nlð Þ t¼η¼0 ¼ 0;Yl

k,0 Nlð Þ�� ��
x¼l�1,ςl¼0 ¼ �ck,0 l� 1; tð Þ:

from the last problem, we define

Yl
k,0 Nlð Þ ¼ dlk,0 x; tð Þ erfc ςl

2
ffiffiffiηp

� �
,dlk,0 x; tð Þ x¼l�1 ¼ �ck,0 l� 1; tð Þ;where dlk,0 x; tð Þ

���
���
t¼0

¼ d
l
k,0 xð Þ:

d
l
k,0 xð Þ is the arbitrary function. In the next step, equation (Eq. (8)) for k = 1

takes the form:

T1u1 Mð Þ ¼ �i ∑
N

k¼1
θ0k tð Þ ck,0 x; tð Þ þ ∑

2

l¼1
Yl
k,0 Nlð Þ

� �
erk :

According to Theorem 1, this equation is solvable in U, if ck,0 x; tð Þ=0; the func-
tion Yl

k,0 Nlð Þ is the solution of the differential equation ∂ηYl
k,0 Nlð Þ ¼ ∂

2
ςlY

l
k,0 Nlð Þþ

Hl
k,0 Nlð Þ, and its solution is representable in the form (Eq. (14)), where

Hl
k 0ð Þ ¼ iθ0k tð ÞYl

k,0 Nlð Þ: Satisfying condition (1)–(3) of Theorem 1, we obtain (see
(Eq. (14)))
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∂tvv�1 x; tð Þ � b x; tð Þvv�1 x; tð Þ ¼ �h0 x; tð Þ,
∂twl

v�1 x; tð Þ � b x; tð Þwl
v�1 x; tð Þ ¼ �hl

1 x; tð Þ,
∂tYl

k,v�1 Nlð Þ � b x; tð ÞYl
k,v�1 Nlð Þ ¼ � hl,k

2 x; tð Þ þ qlk,v�1 x; tð Þerfc ςl
2
ffiffiffiηp

� �� �
,

∂tzk,v�1 x; tð Þ � b x; tð Þzk,v�1 x; tð Þ ¼ �hk
3 x; tð Þ,

∂tqlk,v�1 x; tð Þ � b x; tð Þqlk,v�1 x; tð Þ ¼ �hl,k
3 x; tð Þ,

iθ0k tð Þck,v x; tð Þ ¼ �zk,v�1 x; tð Þ � ∂tck,v�1 x; tð Þ � b x; tð Þck,v�1 x; tð Þ½ � � hk2 x; tð Þ:

(14)

After this choice of arbitrariness, expression (Eq. (13)) is rewritten:

i ∑
N

k¼1
θ0k tð Þ∂rkuv Mð Þ þ T2uv�1 Mð Þ þ h Mð Þ ¼ ∑

N

k¼1
∑
2

l¼1
iθ0k tð ÞYl

k,v Nlð Þ� �
exp τkð Þ∈G3

In (Eq. (14)), transition was made from ξl=2
ffiffi
t

p
to variable ςl=2

ffiffiffiηp
. The function

Yl
k Nlð Þ is defined as the solution of equation (Eq. (30)) under the boundary condi-

tions from (Eq. (12)) in the form:

Yl
k Nlð Þ ¼ dl

k x; tð Þerfc ςl
2
ffiffiffiηp

� �
þ 1
2
ffiffiffi
π

p
ðη
0

ð∞
0

Hl
k �ð Þffiffiffiffiffiffiffiffiffiffiffiη� τp exp � ςl � y

� �2
4 η� τð Þ

 !
� exp � ςl þ y

� �2
4 η� τð Þ

 !" #
dydτ:

(15)

We substitute this function in the corresponding equation from (Eq. (14)); then
with respect to dl

k x; tð Þ, we obtain a differential equation, which is solving under the

initial condition dl
k x; tð Þ

���
t¼0

¼ d
l
k xð Þ, and we find

dlk x; tð Þ ¼ d
l
k x; tð ÞB x; tð Þ þ Pl

k x; tð Þ,B x; tð Þ ¼ exp
ðt
0
b x; sð Þds

� �
,

where Pl
k x; tð Þ is known as the function.

By substituting the obtained function into condition for dl
k x; tð Þ

���
x¼l�1

from

(Eq. (12)), we define the value of d
l
k xð Þ

���
x¼l�1

. The obtained value is used as an initial

condition for a differential equation with respect to d
l
k xð Þ, which is obtained after

substitution dl
k x; tð Þ into the first condition of (2). With that we ensure fulfillment

of this condition and uniqueness of the function Yl
k Nlð Þ: The last equation from

(Eq. (14)) due to the fact that θ0k tkð Þ ¼ 0 is solvable if

zlk,v�1 x;0ð Þ ¼ �hk
2 x;0ð Þ � ∂tck,v�1 x; tð Þ � b x; tð Þck,v�1 x; tð Þ½ �

���
t¼0

:

The obtained ratio is used as the initial condition for the differential equation
with respect to zlk,v�1 x; tð Þ from (Eq. (14)).

The equation with respect to vv�1 x; tð Þ under the initial condition from (12)
determines this function uniquely. Equations with respect to
wl

k,v�1 x; tð Þ, qlk,v�1 x; tð Þ under the corresponding condition from (Eq. (12)) have
solutions representable in the form:
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wl
k,v�1 x; tð Þ ¼ wl

k,v�1 xð ÞB x; tð Þ þHl
1,v�1 x; tð Þ,

qlk,v�1 x; tð Þ ¼ qlk,v�1 xð ÞB x; tð Þ þHl
2,v�1 x; tð Þ

(16)

where Hl
1,v�1 x; tð Þ,Hl

2,v�1 x; tð Þ- are known functions.
With substituting (Eq. (16)) into the conditions under x ¼ l� 1 from (Eq. (12)),

we define values of wl
k,v�1 xð Þ x¼l�1; qlk,v�1 xð Þ

���
���
x¼l�1

. These conditions are used in

solving differential equations which are obtained from the second condition of
(Eq. (21)):

Lξ wl
k,v�1 x; tð Þerfc ξl

2
ffiffi
t

p
� �� �

¼ 0,Lξ qlk,v�1 x; tð Þerfc ξl
2
ffiffi
t

p
� �� �

¼ 0:

Thus, function u Mð Þ is determined uniquely. The theorem is proven.

1.6 Solution of iterative problems

Eq. (8) is homogeneous for k = 0; therefore, by Theorem 1, it has a solution in G,
representable in the form:

u0 Mð Þ ¼ v0 x; tð Þ þ ∑
2

l¼1
wl x; tð Þerfc ξl

2
ffiffi
t

p
� �

þ∑N
k¼1 ck,0 x; tð Þ þ ∑

2

l¼1
Yl
k,0 Nlð Þ

� �
erk þ zk,0 x; tð Þ þ ∑

2

l¼1
qlk,0 x; tð Þerfc ξl

2
ffiffi
t

p
� �� �

σk
� �

(17)

If the function Yl
k,0 Nlð Þ is the solution of the equation ∂ηYl

k,0 Nlð Þ ¼ ∂
2
ςlY

l
k,0 Nlð Þ

which is satisfying that

Yl
k,0 Nlð Þ t¼η¼0 ¼ 0;Yl

k,0 Nlð Þ�� ��
x¼l�1,ςl¼0 ¼ �ck,0 l� 1; tð Þ:

from the last problem, we define

Yl
k,0 Nlð Þ ¼ dlk,0 x; tð Þ erfc ςl

2
ffiffiffiηp

� �
,dlk,0 x; tð Þ x¼l�1 ¼ �ck,0 l� 1; tð Þ;where dlk,0 x; tð Þ

���
���
t¼0

¼ d
l
k,0 xð Þ:

d
l
k,0 xð Þ is the arbitrary function. In the next step, equation (Eq. (8)) for k = 1

takes the form:

T1u1 Mð Þ ¼ �i ∑
N

k¼1
θ0k tð Þ ck,0 x; tð Þ þ ∑

2

l¼1
Yl
k,0 Nlð Þ

� �
erk :

According to Theorem 1, this equation is solvable in U, if ck,0 x; tð Þ=0; the func-
tion Yl

k,0 Nlð Þ is the solution of the differential equation ∂ηYl
k,0 Nlð Þ ¼ ∂

2
ςlY

l
k,0 Nlð Þþ

Hl
k,0 Nlð Þ, and its solution is representable in the form (Eq. (14)), where

Hl
k 0ð Þ ¼ iθ0k tð ÞYl

k,0 Nlð Þ: Satisfying condition (1)–(3) of Theorem 1, we obtain (see
(Eq. (14)))
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∂tv0 � b x; tð Þv0 x; tð Þ ¼ 0, ∂twl
0 x; tð Þ � b x; tð Þwl

0 x; tð Þ ¼ 0,

∂td
l
k,0 x; tð Þ � b x; tð Þdl

k,0 x; tð Þ ¼ �qlk,0 x; tð Þ,
∂tzk,0 x; tð Þ � b x; tð Þzk,0 x; tð Þ ¼ 0,

∂tqlk,0 x; tð Þ � b x; tð Þqlk,0 x; tð Þ ¼ 0,

iθ0k tð Þck,1 x; tð Þ ¼ �zk,0 x; tð Þ þ fk x; tð Þ exp iθк 0ð Þ
ε

� �
,

Lς dl
k,0 x; tð Þerfc ςl

2
ffiffiffiηp

� �� �
¼ 0:

(18)

When the equation is obtained with respect to dl
k,0 x; tð Þ in the

qlk,0 x; tð Þerfc ξl
2
ffiffi
t

p
� �

, a transition ξl
2
ffiffi
t

p ¼ ςl
2
ffiffiηp occurs:

The initial conditions for equation (Eq. (18)) are determined from (Eq. (12)).
Functions wl

0 x; tð Þ, dl
k,0 x; tð Þ, qlk,0 x; tð Þ are expressed through arbitrary functions

wl
0 xð Þ,dl

k,0 xð Þ, qlk,0 xð Þ. These arbitrary functions provide the condition:

Lξuk mð Þ ¼ 0,Lςuk mð Þ ¼ 0,

ensuring the solvability of the equation with respect to clk,1 x; tð Þ: Suppose that

Zk,0 x; tð Þjt¼0 ¼ fk x; tð Þ exp iθk 0ð Þ
ε

� �
:

This relation is used by the initial condition for determining Zk,0 x; tð Þ from the
equation entering into (Eq. (18)).

Further repeating this process, we can determine all the coefficients of uk mð Þ of
the partial sum:

uεn mð Þ ¼ ∑
n

i¼0
εiui mð Þ:

In each iteration with respect to vi x; tð Þ,wl
i x; tð Þ, dlk, i x; tð Þ, zk, i x; tð Þ, qlk, i x; tð Þ, we

obtain inhomogeneous equations.

1.7 Assessment of the remainder term

For the remainder term

Rεn x; t; εð Þ � Rεn m; εð Þ γ¼ρ x;t;εð Þ ¼ u x; t; εð Þ � ∑
n

i¼0
εiui mð Þ

����
����
γ¼ρ x;t;εð Þ

,

taking into account (Eqs. (3) and (6)), we obtain the equation

LεRεn x; t; εð Þ ¼ εnþ1gn x; t; εð Þ
with homogeneous boundary conditions. Using the maximum principle, like

work of [7], we get the estimate:

Rεn x; t; εð Þj j, cεnþ1: (19)
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Theorem 3. Suppose that conditions (1)–(3) are satisfied. Then, the constructed
solution is an asymptotic solution of problem (Eq. (1)), i.e., ∀n ¼ 0, 1, 2,…; the
estimate is fair (Eq. (18)).

2. Two-dimensional parabolic problem with a rapidly oscillating
free term

2.1 Introduction

In the case when a small parameter is also included as a multiplier with a
temporal derivative, the asymptotic of the solution acquires a complex structure.

Different classes of singularly perturbed parabolic equations are studied in [2].
There, regularized asymptotics of the solution of these equations are constructed,
when a small parameter is in front of the time derivative and with one spatial
derivative. It is shown that the constructed asymptotic contains exponential, para-
bolic, and angular products of exponential and parabolic boundary layer functions.
The equations are studied when the limiting equation has a regular singularity. Such
equations have a power boundary layer. If a small parameter is entering as the
multiplier for all spatial derivatives, then the asymptotic solution contains a
multidimensional parabolic boundary layer function. When entering into the equa-
tion, as free terms of rapidly oscillating functions, then the asymptotic of the
solution additionally contains fast-oscillating boundary layer functions. If it is addi-
tionally assumed that the phase of this free term has a stationary point, in addition
to the rapidly oscillating boundary layer function that arises as a power boundary
layer.

This section is devoted to a two-dimensional equation of parabolic type.

2.2 Statement of the problem

Consider the problem:

Lεu x; t; εð Þ � ∂tu� ε2Δau� b x; tð Þu ¼ f x; tð Þ exp iθ tð Þ
ε

� �
, x; tð ÞϵE,

u t¼0 ¼ 0; uj j
∂Ω¼0 ¼ 0, (20)

where ε.0 is the small parameter, x ¼ x1; x2ð Þ, Ω ¼ 0, x1 , 1ð Þx
0, x2 , 1ð Þ, E ¼ 0, t≤Tð ÞxΩ,Δa � ∑2

l¼1al xlð Þ∂2xl .
The problem is solved under the following assumptions:

1. ∀xl ∈ 0; 1½ � the function al xlð Þ∈С∞ 0; 1½ �, l ¼ 1, 2.

2. b x; tð Þ, f x; tð Þ∈С∞ E½ �.

3. θ0 0ð Þ ¼ 0:

2.3 Regularization of the problem

Following the method of regularization of singularly perturbed problems [1, 2],
along with the independent variables x; tð Þ, we introduce regularizing variables:
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∂tv0 � b x; tð Þv0 x; tð Þ ¼ 0, ∂twl
0 x; tð Þ � b x; tð Þwl

0 x; tð Þ ¼ 0,

∂td
l
k,0 x; tð Þ � b x; tð Þdl

k,0 x; tð Þ ¼ �qlk,0 x; tð Þ,
∂tzk,0 x; tð Þ � b x; tð Þzk,0 x; tð Þ ¼ 0,

∂tqlk,0 x; tð Þ � b x; tð Þqlk,0 x; tð Þ ¼ 0,

iθ0k tð Þck,1 x; tð Þ ¼ �zk,0 x; tð Þ þ fk x; tð Þ exp iθк 0ð Þ
ε

� �
,

Lς dl
k,0 x; tð Þerfc ςl

2
ffiffiffiηp

� �� �
¼ 0:

(18)

When the equation is obtained with respect to dl
k,0 x; tð Þ in the

qlk,0 x; tð Þerfc ξl
2
ffiffi
t

p
� �

, a transition ξl
2
ffiffi
t

p ¼ ςl
2
ffiffiηp occurs:

The initial conditions for equation (Eq. (18)) are determined from (Eq. (12)).
Functions wl

0 x; tð Þ, dl
k,0 x; tð Þ, qlk,0 x; tð Þ are expressed through arbitrary functions

wl
0 xð Þ,dl

k,0 xð Þ, qlk,0 xð Þ. These arbitrary functions provide the condition:

Lξuk mð Þ ¼ 0,Lςuk mð Þ ¼ 0,

ensuring the solvability of the equation with respect to clk,1 x; tð Þ: Suppose that

Zk,0 x; tð Þjt¼0 ¼ fk x; tð Þ exp iθk 0ð Þ
ε

� �
:

This relation is used by the initial condition for determining Zk,0 x; tð Þ from the
equation entering into (Eq. (18)).

Further repeating this process, we can determine all the coefficients of uk mð Þ of
the partial sum:

uεn mð Þ ¼ ∑
n

i¼0
εiui mð Þ:

In each iteration with respect to vi x; tð Þ,wl
i x; tð Þ, dlk, i x; tð Þ, zk, i x; tð Þ, qlk, i x; tð Þ, we

obtain inhomogeneous equations.

1.7 Assessment of the remainder term

For the remainder term

Rεn x; t; εð Þ � Rεn m; εð Þ γ¼ρ x;t;εð Þ ¼ u x; t; εð Þ � ∑
n

i¼0
εiui mð Þ

����
����
γ¼ρ x;t;εð Þ

,

taking into account (Eqs. (3) and (6)), we obtain the equation

LεRεn x; t; εð Þ ¼ εnþ1gn x; t; εð Þ
with homogeneous boundary conditions. Using the maximum principle, like

work of [7], we get the estimate:

Rεn x; t; εð Þj j, cεnþ1: (19)
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Theorem 3. Suppose that conditions (1)–(3) are satisfied. Then, the constructed
solution is an asymptotic solution of problem (Eq. (1)), i.e., ∀n ¼ 0, 1, 2,…; the
estimate is fair (Eq. (18)).

2. Two-dimensional parabolic problem with a rapidly oscillating
free term

2.1 Introduction

In the case when a small parameter is also included as a multiplier with a
temporal derivative, the asymptotic of the solution acquires a complex structure.

Different classes of singularly perturbed parabolic equations are studied in [2].
There, regularized asymptotics of the solution of these equations are constructed,
when a small parameter is in front of the time derivative and with one spatial
derivative. It is shown that the constructed asymptotic contains exponential, para-
bolic, and angular products of exponential and parabolic boundary layer functions.
The equations are studied when the limiting equation has a regular singularity. Such
equations have a power boundary layer. If a small parameter is entering as the
multiplier for all spatial derivatives, then the asymptotic solution contains a
multidimensional parabolic boundary layer function. When entering into the equa-
tion, as free terms of rapidly oscillating functions, then the asymptotic of the
solution additionally contains fast-oscillating boundary layer functions. If it is addi-
tionally assumed that the phase of this free term has a stationary point, in addition
to the rapidly oscillating boundary layer function that arises as a power boundary
layer.

This section is devoted to a two-dimensional equation of parabolic type.

2.2 Statement of the problem

Consider the problem:

Lεu x; t; εð Þ � ∂tu� ε2Δau� b x; tð Þu ¼ f x; tð Þ exp iθ tð Þ
ε

� �
, x; tð ÞϵE,

u t¼0 ¼ 0; uj j
∂Ω¼0 ¼ 0, (20)

where ε.0 is the small parameter, x ¼ x1; x2ð Þ, Ω ¼ 0, x1 , 1ð Þx
0, x2 , 1ð Þ, E ¼ 0, t≤Tð ÞxΩ,Δa � ∑2

l¼1al xlð Þ∂2xl .
The problem is solved under the following assumptions:

1. ∀xl ∈ 0; 1½ � the function al xlð Þ∈С∞ 0; 1½ �, l ¼ 1, 2.

2. b x; tð Þ, f x; tð Þ∈С∞ E½ �.

3. θ0 0ð Þ ¼ 0:

2.3 Regularization of the problem

Following the method of regularization of singularly perturbed problems [1, 2],
along with the independent variables x; tð Þ, we introduce regularizing variables:
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μ ¼ t
ε
, ξl ¼

�1ð Þl�1

ffiffiffiffi
ε3

p
ðx1
l�1

dsffiffiffiffiffiffiffiffiffiffi
a1 sð Þp , ηl ¼

φl x1ð Þ
ε2

ξlþ2 ¼
�1ð Þl�1

ffiffiffiffi
ε3

p
ðx2
l�1

dsffiffiffiffiffiffiffiffiffiffi
a2 sð Þp , ηlþ2 ¼

φlþ2 x2ð Þ
ε3

σ ¼ Ð t0 e
i θ sð Þ�θ 0ð Þ½ �

ε ds, τ2 ¼ i θ tð Þ � θ 0ð Þ½ �
ε

, τ1 ¼ t
ε2
,

φl xrð Þ ¼ �1ð Þl�1 Ð xr
l�1

dsffiffiffiffiffiffiffiffiffiffi
ar sð Þ

p ,

(21)

For extended function eu M; εð Þ,M ¼ x; t; τ; ξ; ηð Þ such that

eu M; εð Þjμ¼ψ x;t;εð Þ � u x; t; εð Þ,
χ ¼ τ; ξ; ηð Þ, τ ¼ τ1; τ2ð Þ, ξ ¼ ξ1; ξ2; ξ3; ξ4ð Þ,

η ¼ η1; η2; η3; η4ð Þ,

ψ x; t; εð Þ ¼ t
ε2
;
t
ε
;
i θ tð Þ � θ 0ð Þ½ �

ε
;
φ xð Þ
ε

;
φ xð Þ
ε2

� �
,

φ xð Þ ¼ φ1 x1ð Þ;φ2 x1ð Þ;φ3 x2ð Þ;φ4 x2ð Þð Þ
eu M; εð Þjμ¼ψ x;t;εð Þ � u x; t; εð Þ, χ ¼ τ; ξ; ηð Þ,

τ ¼ τ1; τ2ð Þ, ξ ¼ ξ1; ξ2; ξ3; ξ4ð Þ,

η ¼ η1; η2; η3; η4ð Þ,

ψ x; t; εð Þ ¼ t
ε2
;
t
ε
;
i θ tð Þ � θ 0ð Þ½ �

ε
;
φ xð Þ
ε

;
φ xð Þ
ε2

� �
,

φ xð Þ ¼ φ1 x1ð Þ;φ2 x1ð Þ;φ3 x2ð Þ;φ4 x2ð Þð Þ:

(22)

Find from (Eq. (22)) the derivatives based on

∂tu � ∂teu þ 1
ε ∂μeu þ 1

ε2 ∂τ1eu þ iθ0 tð Þ
ε ∂τ2eu þ exp τ2ð Þ∂σeu

� ����
χ¼ψ x;t;εð Þ

,

∂xru � ∂xreu þ ∑
2r

l¼2r�1

φ0
l xrð Þffiffiffiffi
ε3

p ∂ξleu þ φ0
l xrð Þ
ε2

∂ζleu
� �� �����

χ¼ψ x;t;εð Þ
,

∂
2
xru � ∂

2
xreu þ ∑

2r

l¼2r�1

φ0
l2 xrð Þ
ε3

∂
2
ξl
eu þ φ0

l2 xrð Þ
ε4

∂
2
ζl
eu

� ��

þ ∑
2r

l¼2r�1

2φ0
l xrð Þffiffiffiffi
ε3

p ∂
2
xrξl
eu þ φ00

l xrð Þffiffiffiffi
ε3

p ∂ξleu þ 1
ε2

φ0
l xrð Þ∂2xrηleu þ �φ00

l xrð Þ∂ηleu
� �� ������

χ¼ψ x;t;εð Þ
(23)

Below, it is shown that the solution of the iterative problems does not contain
terms depending on ξ1; ξ2ð Þ, ξ3; ξ4ð Þ, ζ1; ζ2ð Þ, ζ3; ζ4ð Þ, ξl; ζkð Þ, l, k ¼ 1, 2: Therefore, to
simplify recording, the mixed derivatives of these variables are omitted. Based
on (Eq. (20)), (Eq. (22)), and (Eq. (23)) for extended function eu M; εð Þ, set the
problem:
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eLεeu � 1
ε2
T0eu þ 1

ε
iθ0 tð Þ∂τ2eu þ 1

ε
T1eu þDσeu � Lηeu � ffiffiffi

ε
p

Lξeu � ε2Δaeu ¼ f x; tð Þ exp τ2 þ iθ 0ð Þ
ε

� �
,

eu|t¼τ1¼τ2¼0 ¼ 0,eu|xl¼r�1,ξk¼ηk¼0 ¼ 0, r ¼ 1, 2, l ¼ 1, 2, k ¼ 1,4

T0 � ∂τ1 � Δη, T1 � ∂μ þ Δξ, Dσ � Dt þ exp τ2ð Þ∂σ, Dt � ∂t þ b x; tð Þ,

Lη � ∑
2

r¼1
∑
2r

l¼2r�1
ar xrð ÞDr,l

x,η,

Dr, l
x,ξ � 2φ0

l xrð Þ∂2xrξl þ φ00
l xrð Þ∂ηl

h i
,

Δη � ∑
4

k¼1
∂
2
ηk
, E1 ¼ Eх 0;∞ð Þ10

(24)

In this case, the identity is satisfied:

eLεeu
� ����

χ¼ψ x;t;εð Þ
� Lεu x; t; εð Þ: (25)

2.4 Solution of iterative problems

For the solution of the extended function (Eq. (24)), we search in the form of
series

eu M; εð Þ ¼ ∑
∞

i¼0
ε
i
2ui Mð Þ: (26)

Then, for the coefficients of this series, we get the following problems:

T0uv Mð Þ ¼ 0, v ¼ 0, 1,
T0uq ¼ �iθ0 tð Þ∂τ2uq�2 � T1uq�2, q ¼ 2, 3:

T0u4 ¼ f x; tð Þ exp τ2 þ iθ 0ð Þ
ε

� �
� T1u2 �Dσu0 þ Lηu0,

T0ui ¼ �iθ0 tð Þ∂τ2ui�2 � T1ui�2 �Dσui�4 þ Lηui�4 þ Lξui�5 þ Δaui�8,
ui t¼τ¼0 ¼ 0; uij jxl¼r�1,ξk¼ηk¼0 ¼ 0, l, r ¼ 1, 2:k ¼ 1, 4

(27)

We introduce a class of functions:

U0 ¼ V0 Nð Þ ¼ c x; tð Þ þ F1 Nð Þ þ F2 Nð Þ½ � exp τ2ð Þ; F1 Nð Þ∈U4;F2 Nð Þ∈U5; c x; tð Þ∈C∞ E
� �� �

,

U1 ¼ V1 Mð Þ : V1 Mð Þ ¼ v x; tð Þ þ F1 Mð Þ þ F2 Mð Þ; F1 Mð Þ∈U4; F2 Mð Þ∈U5; v x; tð Þ∈C∞ E
� �� �

,

U2 ¼ V2 Mð Þ : V2 Mð Þ ¼ z x; tð Þ þ F1 Mð Þ þ F2 Mð Þ½ �σ; F1 Mð Þ∈U4; F2 Mð Þ∈U5; z x; tð Þ∈C∞ E
� �� �

,

U4 ¼ V4 Mð Þ : V1 Mð Þ ¼ ∑
4

l¼1
Yl Nlð Þ; Yl Nlð Þ�� ��, cexp � η2l

8τ1

� �� �
,

U5 ¼ V5 Mð Þ : V2 Mð Þ ¼ ∑
4

r, l¼1
Yrþ2, l Nrþ2, lð Þ; Yrþ2, l Nrþ2, lð Þ�� ��, cexp � ηr, l

�� ��2
8τ1

 !
; ηr, l
�� �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2r þ η2l

q( )
:

From these classes we will construct a new one, as a direct sum:

U ¼ U0 ⨁U1 ⨁U2:

Any item u Mð Þ∈U is representable in the form:
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μ ¼ t
ε
, ξl ¼

�1ð Þl�1

ffiffiffiffi
ε3

p
ðx1
l�1

dsffiffiffiffiffiffiffiffiffiffi
a1 sð Þp , ηl ¼

φl x1ð Þ
ε2

ξlþ2 ¼
�1ð Þl�1

ffiffiffiffi
ε3

p
ðx2
l�1

dsffiffiffiffiffiffiffiffiffiffi
a2 sð Þp , ηlþ2 ¼

φlþ2 x2ð Þ
ε3

σ ¼ Ð t0 e
i θ sð Þ�θ 0ð Þ½ �

ε ds, τ2 ¼ i θ tð Þ � θ 0ð Þ½ �
ε

, τ1 ¼ t
ε2
,

φl xrð Þ ¼ �1ð Þl�1 Ð xr
l�1

dsffiffiffiffiffiffiffiffiffiffi
ar sð Þ

p ,

(21)

For extended function eu M; εð Þ,M ¼ x; t; τ; ξ; ηð Þ such that

eu M; εð Þjμ¼ψ x;t;εð Þ � u x; t; εð Þ,
χ ¼ τ; ξ; ηð Þ, τ ¼ τ1; τ2ð Þ, ξ ¼ ξ1; ξ2; ξ3; ξ4ð Þ,

η ¼ η1; η2; η3; η4ð Þ,

ψ x; t; εð Þ ¼ t
ε2
;
t
ε
;
i θ tð Þ � θ 0ð Þ½ �

ε
;
φ xð Þ
ε

;
φ xð Þ
ε2

� �
,

φ xð Þ ¼ φ1 x1ð Þ;φ2 x1ð Þ;φ3 x2ð Þ;φ4 x2ð Þð Þ
eu M; εð Þjμ¼ψ x;t;εð Þ � u x; t; εð Þ, χ ¼ τ; ξ; ηð Þ,

τ ¼ τ1; τ2ð Þ, ξ ¼ ξ1; ξ2; ξ3; ξ4ð Þ,

η ¼ η1; η2; η3; η4ð Þ,

ψ x; t; εð Þ ¼ t
ε2
;
t
ε
;
i θ tð Þ � θ 0ð Þ½ �

ε
;
φ xð Þ
ε

;
φ xð Þ
ε2

� �
,

φ xð Þ ¼ φ1 x1ð Þ;φ2 x1ð Þ;φ3 x2ð Þ;φ4 x2ð Þð Þ:

(22)

Find from (Eq. (22)) the derivatives based on

∂tu � ∂teu þ 1
ε ∂μeu þ 1

ε2 ∂τ1eu þ iθ0 tð Þ
ε ∂τ2eu þ exp τ2ð Þ∂σeu

� ����
χ¼ψ x;t;εð Þ

,

∂xru � ∂xreu þ ∑
2r

l¼2r�1

φ0
l xrð Þffiffiffiffi
ε3

p ∂ξleu þ φ0
l xrð Þ
ε2

∂ζleu
� �� �����

χ¼ψ x;t;εð Þ
,

∂
2
xru � ∂

2
xreu þ ∑

2r

l¼2r�1

φ0
l2 xrð Þ
ε3

∂
2
ξl
eu þ φ0

l2 xrð Þ
ε4

∂
2
ζl
eu

� ��

þ ∑
2r

l¼2r�1

2φ0
l xrð Þffiffiffiffi
ε3

p ∂
2
xrξl
eu þ φ00

l xrð Þffiffiffiffi
ε3

p ∂ξleu þ 1
ε2

φ0
l xrð Þ∂2xrηleu þ �φ00

l xrð Þ∂ηleu
� �� ������

χ¼ψ x;t;εð Þ
(23)

Below, it is shown that the solution of the iterative problems does not contain
terms depending on ξ1; ξ2ð Þ, ξ3; ξ4ð Þ, ζ1; ζ2ð Þ, ζ3; ζ4ð Þ, ξl; ζkð Þ, l, k ¼ 1, 2: Therefore, to
simplify recording, the mixed derivatives of these variables are omitted. Based
on (Eq. (20)), (Eq. (22)), and (Eq. (23)) for extended function eu M; εð Þ, set the
problem:
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eLεeu � 1
ε2
T0eu þ 1

ε
iθ0 tð Þ∂τ2eu þ 1

ε
T1eu þDσeu � Lηeu � ffiffiffi

ε
p

Lξeu � ε2Δaeu ¼ f x; tð Þ exp τ2 þ iθ 0ð Þ
ε

� �
,

eu|t¼τ1¼τ2¼0 ¼ 0,eu|xl¼r�1,ξk¼ηk¼0 ¼ 0, r ¼ 1, 2, l ¼ 1, 2, k ¼ 1,4

T0 � ∂τ1 � Δη, T1 � ∂μ þ Δξ, Dσ � Dt þ exp τ2ð Þ∂σ, Dt � ∂t þ b x; tð Þ,

Lη � ∑
2

r¼1
∑
2r

l¼2r�1
ar xrð ÞDr,l

x,η,

Dr, l
x,ξ � 2φ0

l xrð Þ∂2xrξl þ φ00
l xrð Þ∂ηl

h i
,

Δη � ∑
4

k¼1
∂
2
ηk
, E1 ¼ Eх 0;∞ð Þ10

(24)

In this case, the identity is satisfied:

eLεeu
� ����

χ¼ψ x;t;εð Þ
� Lεu x; t; εð Þ: (25)

2.4 Solution of iterative problems

For the solution of the extended function (Eq. (24)), we search in the form of
series

eu M; εð Þ ¼ ∑
∞

i¼0
ε
i
2ui Mð Þ: (26)

Then, for the coefficients of this series, we get the following problems:

T0uv Mð Þ ¼ 0, v ¼ 0, 1,
T0uq ¼ �iθ0 tð Þ∂τ2uq�2 � T1uq�2, q ¼ 2, 3:

T0u4 ¼ f x; tð Þ exp τ2 þ iθ 0ð Þ
ε

� �
� T1u2 �Dσu0 þ Lηu0,

T0ui ¼ �iθ0 tð Þ∂τ2ui�2 � T1ui�2 �Dσui�4 þ Lηui�4 þ Lξui�5 þ Δaui�8,
ui t¼τ¼0 ¼ 0; uij jxl¼r�1,ξk¼ηk¼0 ¼ 0, l, r ¼ 1, 2:k ¼ 1, 4

(27)

We introduce a class of functions:

U0 ¼ V0 Nð Þ ¼ c x; tð Þ þ F1 Nð Þ þ F2 Nð Þ½ � exp τ2ð Þ; F1 Nð Þ∈U4;F2 Nð Þ∈U5; c x; tð Þ∈C∞ E
� �� �

,

U1 ¼ V1 Mð Þ : V1 Mð Þ ¼ v x; tð Þ þ F1 Mð Þ þ F2 Mð Þ; F1 Mð Þ∈U4; F2 Mð Þ∈U5; v x; tð Þ∈C∞ E
� �� �

,

U2 ¼ V2 Mð Þ : V2 Mð Þ ¼ z x; tð Þ þ F1 Mð Þ þ F2 Mð Þ½ �σ; F1 Mð Þ∈U4; F2 Mð Þ∈U5; z x; tð Þ∈C∞ E
� �� �

,

U4 ¼ V4 Mð Þ : V1 Mð Þ ¼ ∑
4

l¼1
Yl Nlð Þ; Yl Nlð Þ�� ��, cexp � η2l

8τ1

� �� �
,

U5 ¼ V5 Mð Þ : V2 Mð Þ ¼ ∑
4

r, l¼1
Yrþ2, l Nrþ2, lð Þ; Yrþ2, l Nrþ2, lð Þ�� ��, cexp � ηr, l

�� ��2
8τ1

 !
; ηr, l
�� �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2r þ η2l

q( )
:

From these classes we will construct a new one, as a direct sum:

U ¼ U0 ⨁U1 ⨁U2:

Any item u Mð Þ∈U is representable in the form:
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u Mð Þ ¼ v x; tð Þ þ c x; tð Þ exp τ2ð Þ þ z x; tð Þσ þ ∑
4

l¼1
Yl Nlð Þ þ ∑

2

r, l¼1
Yrþ2, l Nrþ2, lð Þ

" #
exp τ2ð Þ

þ∑
4

l¼1
wl x; tð Þerfc ξl

2
ffiffiffi
μ

p
� �

þ ∑
2

l, r¼1
wrþ2, l Mrþ2, lð Þ þ ∑

4

l¼1
ql x; tð Þerfc ξl

2
ffiffiffi
μ

p
� �

þ ∑
2

l, r¼1
zrþ2, l Mrþ2, lð Þ

" #
σ,

Nl ¼ x; t; τ1; ηlð Þ, Nrþ2, l ¼ x; t; τ1; ηl; ηrþ2
� �

,

Ml ¼ x; t; μ; ξlð Þ,Mrþ2, l ¼ x; t; μ; ξl; ξrþ2ð Þ:
(28)

Let’s satisfy this function to the boundary conditions:

v x;0ð Þ ¼ �c x;0ð Þ;Yl Nlð Þ��t¼τ1¼0 ¼ 0 (29)

Yrþ2, l Nrþ2, lð Þ t¼τ1¼0 ¼ 0;wl
�� ��

t¼0 ¼ wl xð Þ,
ql
��
t¼0 ¼ ql xð Þ,

wrþ2, l Mrþ2, lð Þ��t¼μ¼0 ¼ 0,

zrþ2, l Mrþ2, lð Þ��t¼μ¼0 ¼ 0,

wl x; tð Þ��x1¼l�1 ¼ �v l� 1; x2; tð Þ,
ql x; tð Þ��x1¼l�1 ¼ �z l� 1; x2; tð Þ,

Yl
��
x1¼l�1,ηl¼0 ¼ �c l� 1; x2; tð Þ, Yrþ2, l

x1¼l�1,ηl¼0 ¼ �Yrþ2, l Nrþ2, lð Þ�� ��
x1¼l�1,

wrþ2, l��
x1¼l�1,ξl¼0 ¼ �wrþ2 l� 1; x2; tð Þerfc ξrþ2

2
ffiffi
t

p
� �

,

zrþ2, l��
x1¼l�1,ξl¼0 ¼ �qrþ2 l� 1; x2; tð Þerfc ξrþ2

2
ffiffi
t

p
� �

,

wl x; tð Þ xr¼l�1 ¼ �v x; tð Þj jxr¼l�1,

ql x; tð Þ xr¼l�1 ¼ �z x; tð Þj jxr¼l�1,

Yrþ2
��
x2¼l�1,ηrþ2¼0 ¼ �c x1; l� 1; tð Þ,

Yrþ2, l
x2¼l�1,ηrþ2¼0 ¼ �Yl
�� ��

x2¼l�1,

wrþ2, l
x2¼l�1,ξrþ2¼0 ¼ �wl
�� ��

x2¼l�1erfc
ξl
2
ffiffi
t

p
� �

,

zrþ2, l
x2¼l�1,ξrþ2¼0 ¼ �ql
�� ��

x2¼l�1erfc
ξl
2
ffiffi
t

p
� �

, l, r ¼ 1, 2:

We compute the action of the operators T0, T1, Lη, Lξ on function u Mð Þ∈U, and
we have

T1u Mð Þ ¼ ∑
2

r, l¼1
∂μwrþ2, l � Δξwrþ2, l þ σ ∂μzrþ2, l � Δξzrþ2, l� �� �

,
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Lηu ¼ ∑
2

r¼1
∑
2r

l¼2r�1
Dr, l

x,ηY
l Nlð Þ þ ∑

2

v¼1
∑
2

r, l¼1
Dv, l

x,ηY
rþ2, l Nrþ2, lð Þ,

Lξu ¼ ∑
2

r¼1
∑
2r

l¼2r�1
Dr, l

x,ξw
l x; tð Þerfc ξl

2
ffiffiffi
μ

p
� �

þ ∑
2

v¼1
∑
2

r, l¼1
Dv, l

x,ξw
rþ2, l Mrþ2, lð Þ

þσ ∑
2

r¼1
∑
2r

l¼2r�1
Dr, l

x,ξq
l x; tð Þerfc ξl

2
ffiffiffi
μ

p
� �

þ ∑
2

v¼1
∑
2

r, l¼1
Dv, l

x,ξ z
rþ2, l Mrþ2, lð Þ

" #
,

Dσu Mð Þ ¼ Dtv x; tð Þ þ ∑
4

l¼1
Dtwl x; tð Þerfc ξl

2
ffiffiffi
μ

p
� �

þ ∑
2

r, l¼1
Dtwrþ2, l Mrþ2, lð Þ

þ Dtc x; tð Þ þ ∑
4

l¼1
DtYl Nlð Þ þ ∑

2

r, l¼1
DtYrþ2, l Nrþ2, lð Þ

" #
exp τ2ð Þ

þσ Dtz x; tð Þ þ ∑
4

l¼1
Dtql x; tð Þerfc ξl

2
ffiffiffi
μ

p
� �

þ ∑
2

r, l¼1
Dtzrþ2, l Mrþ2, lð Þ

" #

þ z x; tð Þ þ ∑
4

l¼1
ql x; tð Þerfc ξl

2
ffiffiffi
μ

p
� �

þ ∑
2

r, l¼1
zrþ2, l Mrþ2, lð Þ

" #
exp τ2ð Þ

We write iterative equation (8) in the form:

T0u Mð Þ ¼ H Mð Þ: (31)

Theorem 1. Let be H Mð Þ∈U4 ⨁U5 and condition (1) is satisfied. Then,
Eq. (31) is solvable in U, if the equations are solvable:

T0Yl Nlð Þ ¼ H1 Nlð Þ, l ¼ 1,4, T0Yrþ2, l Nrþ2, lð Þ ¼ H2 Nrþ2, lð Þ, r, l ¼ 1, 2:

Theorem 2. Let be H1 Nlð Þ∈U4. Then, the problem ∂τ1Y
l Nlð Þ ¼ ΔηYl Nlð Þþ

H1 Nlð Þ, Yl Nlð Þ τ1¼0 ¼ 0;Yl Nlð Þ�� ��
ηl¼0 ¼ dl x; tð Þ, l ¼ 1,4 (Eq. (32)) has a

solution Yl Nlð Þ∈U4.
Theorem 3. Let be H2 Nrþ2, lð Þ∈U5, Yl Nlð Þ∈U4, and then the problem ∂τ1Y

rþ2, l

Nrþ2, lð Þ ¼ ΔηYrþ2, l Nrþ2, lð Þ þH2 Nrþ2, lð Þ , Yrþ2, l Nrþ2, lð Þ ηl¼0 ¼ �Yrþ2 Nrþ2ð Þ;Yrþ2, l��
Nrþ2, lð Þjηrþ2¼0 ¼ �Yl Nlð Þ, r, l ¼ 1, 2 has a solution Yrþ2, l Nrþ2, lð Þ∈U5:

The proof of these theorems is given in [2].

2.5 The decision of the iterative problems

Eq. (27) under v ¼ 0, 1 is homogeneous. By Theorem 1, it has a solution repre-
sentable in the form u0 Mð Þ∈U if functions Yl Nlð Þ and Yrþ2, l Nrþ2, lð Þ – are solutions
of the following equations:

T0Yl
v Nlð Þ ¼ 0, T0Yrþ2, l

v Nrþ2, lð Þ ¼ 0:

Based on the boundary conditions from (Eq. (29)), the solution is written:

Yl
v Nlð Þ ¼ dlv x; tð Þerfc ηl

2
ffiffiffiffi
τ1

p
� �

, l ¼ 1, 2, 3,4: (32)
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u Mð Þ ¼ v x; tð Þ þ c x; tð Þ exp τ2ð Þ þ z x; tð Þσ þ ∑
4

l¼1
Yl Nlð Þ þ ∑

2

r, l¼1
Yrþ2, l Nrþ2, lð Þ

" #
exp τ2ð Þ

þ∑
4

l¼1
wl x; tð Þerfc ξl

2
ffiffiffi
μ

p
� �

þ ∑
2

l, r¼1
wrþ2, l Mrþ2, lð Þ þ ∑

4

l¼1
ql x; tð Þerfc ξl

2
ffiffiffi
μ

p
� �

þ ∑
2

l, r¼1
zrþ2, l Mrþ2, lð Þ

" #
σ,

Nl ¼ x; t; τ1; ηlð Þ, Nrþ2, l ¼ x; t; τ1; ηl; ηrþ2
� �

,

Ml ¼ x; t; μ; ξlð Þ,Mrþ2, l ¼ x; t; μ; ξl; ξrþ2ð Þ:
(28)

Let’s satisfy this function to the boundary conditions:

v x;0ð Þ ¼ �c x;0ð Þ;Yl Nlð Þ��t¼τ1¼0 ¼ 0 (29)

Yrþ2, l Nrþ2, lð Þ t¼τ1¼0 ¼ 0;wl
�� ��

t¼0 ¼ wl xð Þ,
ql
��
t¼0 ¼ ql xð Þ,

wrþ2, l Mrþ2, lð Þ��t¼μ¼0 ¼ 0,

zrþ2, l Mrþ2, lð Þ��t¼μ¼0 ¼ 0,

wl x; tð Þ��x1¼l�1 ¼ �v l� 1; x2; tð Þ,
ql x; tð Þ��x1¼l�1 ¼ �z l� 1; x2; tð Þ,

Yl
��
x1¼l�1,ηl¼0 ¼ �c l� 1; x2; tð Þ, Yrþ2, l

x1¼l�1,ηl¼0 ¼ �Yrþ2, l Nrþ2, lð Þ�� ��
x1¼l�1,

wrþ2, l��
x1¼l�1,ξl¼0 ¼ �wrþ2 l� 1; x2; tð Þerfc ξrþ2

2
ffiffi
t

p
� �

,

zrþ2, l��
x1¼l�1,ξl¼0 ¼ �qrþ2 l� 1; x2; tð Þerfc ξrþ2

2
ffiffi
t

p
� �

,

wl x; tð Þ xr¼l�1 ¼ �v x; tð Þj jxr¼l�1,

ql x; tð Þ xr¼l�1 ¼ �z x; tð Þj jxr¼l�1,

Yrþ2
��
x2¼l�1,ηrþ2¼0 ¼ �c x1; l� 1; tð Þ,

Yrþ2, l
x2¼l�1,ηrþ2¼0 ¼ �Yl
�� ��

x2¼l�1,

wrþ2, l
x2¼l�1,ξrþ2¼0 ¼ �wl
�� ��

x2¼l�1erfc
ξl
2
ffiffi
t

p
� �

,

zrþ2, l
x2¼l�1,ξrþ2¼0 ¼ �ql
�� ��

x2¼l�1erfc
ξl
2
ffiffi
t

p
� �

, l, r ¼ 1, 2:

We compute the action of the operators T0, T1, Lη, Lξ on function u Mð Þ∈U, and
we have

T1u Mð Þ ¼ ∑
2

r, l¼1
∂μwrþ2, l � Δξwrþ2, l þ σ ∂μzrþ2, l � Δξzrþ2, l� �� �

,
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Lηu ¼ ∑
2

r¼1
∑
2r

l¼2r�1
Dr, l

x,ηY
l Nlð Þ þ ∑

2

v¼1
∑
2

r, l¼1
Dv, l

x,ηY
rþ2, l Nrþ2, lð Þ,

Lξu ¼ ∑
2

r¼1
∑
2r

l¼2r�1
Dr, l

x,ξw
l x; tð Þerfc ξl

2
ffiffiffi
μ

p
� �

þ ∑
2

v¼1
∑
2

r, l¼1
Dv, l

x,ξw
rþ2, l Mrþ2, lð Þ

þσ ∑
2

r¼1
∑
2r

l¼2r�1
Dr, l

x,ξq
l x; tð Þerfc ξl

2
ffiffiffi
μ

p
� �

þ ∑
2

v¼1
∑
2

r, l¼1
Dv, l

x,ξ z
rþ2, l Mrþ2, lð Þ

" #
,

Dσu Mð Þ ¼ Dtv x; tð Þ þ ∑
4

l¼1
Dtwl x; tð Þerfc ξl

2
ffiffiffi
μ

p
� �

þ ∑
2

r, l¼1
Dtwrþ2, l Mrþ2, lð Þ

þ Dtc x; tð Þ þ ∑
4

l¼1
DtYl Nlð Þ þ ∑

2

r, l¼1
DtYrþ2, l Nrþ2, lð Þ

" #
exp τ2ð Þ

þσ Dtz x; tð Þ þ ∑
4

l¼1
Dtql x; tð Þerfc ξl

2
ffiffiffi
μ

p
� �

þ ∑
2

r, l¼1
Dtzrþ2, l Mrþ2, lð Þ

" #

þ z x; tð Þ þ ∑
4

l¼1
ql x; tð Þerfc ξl

2
ffiffiffi
μ

p
� �

þ ∑
2

r, l¼1
zrþ2, l Mrþ2, lð Þ

" #
exp τ2ð Þ

We write iterative equation (8) in the form:

T0u Mð Þ ¼ H Mð Þ: (31)

Theorem 1. Let be H Mð Þ∈U4 ⨁U5 and condition (1) is satisfied. Then,
Eq. (31) is solvable in U, if the equations are solvable:

T0Yl Nlð Þ ¼ H1 Nlð Þ, l ¼ 1,4, T0Yrþ2, l Nrþ2, lð Þ ¼ H2 Nrþ2, lð Þ, r, l ¼ 1, 2:

Theorem 2. Let be H1 Nlð Þ∈U4. Then, the problem ∂τ1Y
l Nlð Þ ¼ ΔηYl Nlð Þþ

H1 Nlð Þ, Yl Nlð Þ τ1¼0 ¼ 0;Yl Nlð Þ�� ��
ηl¼0 ¼ dl x; tð Þ, l ¼ 1,4 (Eq. (32)) has a

solution Yl Nlð Þ∈U4.
Theorem 3. Let be H2 Nrþ2, lð Þ∈U5, Yl Nlð Þ∈U4, and then the problem ∂τ1Y

rþ2, l

Nrþ2, lð Þ ¼ ΔηYrþ2, l Nrþ2, lð Þ þH2 Nrþ2, lð Þ , Yrþ2, l Nrþ2, lð Þ ηl¼0 ¼ �Yrþ2 Nrþ2ð Þ;Yrþ2, l��
Nrþ2, lð Þjηrþ2¼0 ¼ �Yl Nlð Þ, r, l ¼ 1, 2 has a solution Yrþ2, l Nrþ2, lð Þ∈U5:

The proof of these theorems is given in [2].

2.5 The decision of the iterative problems

Eq. (27) under v ¼ 0, 1 is homogeneous. By Theorem 1, it has a solution repre-
sentable in the form u0 Mð Þ∈U if functions Yl Nlð Þ and Yrþ2, l Nrþ2, lð Þ – are solutions
of the following equations:

T0Yl
v Nlð Þ ¼ 0, T0Yrþ2, l

v Nrþ2, lð Þ ¼ 0:

Based on the boundary conditions from (Eq. (29)), the solution is written:

Yl
v Nlð Þ ¼ dlv x; tð Þerfc ηl

2
ffiffiffiffi
τ1

p
� �

, l ¼ 1, 2, 3,4: (32)
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Yrþ2, l
v Nrþ2, lð Þ ¼ �

ðτ1
0

ð∞
0
Yl
v ∗ð Þ ∂

∂ξ
G Nl; ξ; η; τ1 � τð Þ

� �
ξ¼0dηdτ
��

�
ðt
0

ð∞
0
Yrþ2
v ∗ð Þ ∂

∂η
G Nrþ2, l; ξ; η; τ1 � τð Þ

� �
jη¼0dξdτ,

where dl x; tð Þ– is arbitrary function such as

dpv x; tð Þ t¼0 ¼ �d
p
v xð Þ; dlv x; tð Þ

���
���
x1¼l�1

¼ �cv l� 1; x2; tð Þ,

G ηl; ηrþ2, l; ξ; η; τ1
� � ¼ 1

4πτ1
exp � ηl � ξð Þ2

4τ1

 !
� exp � ηl þ ξð Þ2

4τ1

 !( )

exp � ηrþ2 � η
� �2

4τ1

 !
� exp � ηrþ2 þ η

� �2
4τ1

 !( )
:

(33)

Due to the fact that the function dlv x; tð Þ при t ¼ τ1 ¼ 0 multiplied by the func-

tion becomes as dl0 x; tð Þ
���
t¼0

¼ �d
l
0 xð Þ, an arbitrary function is accepted, and its

values under x1 ¼ l� 1 are determined from the second relation. According to
Theorems 2 and 3, the functions found by the formula (Eq. (33)) satisfy the esti-
mates:

Yl
v Nlð Þ�� ��, cexp � η2l

8τ1

� �
, Yrþ2, l

v Nrþ2, lð Þ�� ��, cexp � η2rþ2 þ η2l
8τ1

� �
, r, l ¼ 1, 2: (34)

Free member of equation (Eq. (27)) under v ¼ 2, 3 has a form

Fv�2 Mð Þ � T1uv�2 Mð Þ þ iθ0 tð Þ∂σuv�2 Mð Þ ¼ iθ0 tð Þ cv�2 x; tð Þ þ ∑
4

l¼1
Yl
v�2 Nlð Þ þ ∑

2

r, l¼1
Yrþ2, l
v�2 Nrþ2, lð Þ

" #

exp τ2ð Þ þ ∑
2

l, r¼1
∂μwrþ2, l

v�2 � Δξwrþ2, l
v�2 þ σ ∂μzrþ2, l

v�2 � Δξzrþ2, l
v�2

h in o
,

so that equation (Eq. (27)), under v ¼ 2, 3, has a solution in U; we set

cv�2 x; tð Þ ¼ 0, T1wrþ2, l
v�2 ¼ 0, T1zrþ2, l

v�2 ¼ 0:

Solutions of the last equations under the boundary conditions from (Eq. (29))
have a form (Eq. (33)) for which estimates of the form (Eq. (35) are fair. Eq. (27),
i=4, has a free term:

F4 Mð Þ ¼ �iθ0 tð Þ∂τ2 � T1u2 þ f x; tð Þ exp iθ 0ð Þ
ε

� �
�Dσu0 þ Lηu0

¼ �iθ0 tð Þ c2 x; tð Þ þ ∑
4

l¼1
Yl
2 Nlð Þ þ ∑

2

r, l¼1
Yrþ2, l

2 Nrþ2, lð Þ
" #

exp τ2ð Þ

� ∑
2

l, r¼1
T0wrþ2, l

2 Mrþ2, lð Þ þ σT0zrþ2, l
2

h i
�Dtv0 x; tð Þ � ∑

4

l¼1
Dtwl

0 x; tð Þerfc ξl
2
ffiffiffi
μ

p
� �

� ∑
2

l, r¼1
Dtwrþ2, l

0 x; tð Þ � exp τ2ð Þ ∂tc0 x; tð Þ þ ∑
4

l¼1
∂tYl

0 þ ∑
2

l, r¼1
DtYrþ2, l

0

" #
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�σ Dtz0 x; tð Þ þ ∑
4

l¼1
Dtql0 x; tð Þerfc ξl

2
ffiffiffi
μ

p
� �

þ ∑
2

r, l¼1
Dtzrþ2, l

0 Mrþ2, lð Þ
" #

� z0 x; tð Þ þ ∑
4

l¼1
ql0 x; tð Þerfc ξl

2
ffiffiffi
μ

p
� �

þ ∑
2

r, l¼1
zrþ2, l
0 Mrþ2, lð Þ

" #
exp τ2ð Þ

þ∑
2

r¼1
  ∑

2r

l¼2r�1
Dr, l

x,ξw
p
0 x; tð Þerfc ξl

2
ffiffiffi
μ

p
� �

þ ∑
2

v¼1
  ∑

2

r, l¼1
Dv, l

x,ηY
rþ2, l
0 Nrþ2, lð Þ:

By providing F4 Mð Þ∈U4 ⨁U5 with regard to cv x; tð Þ ¼ 0, v ¼ 0, 1,we set

�iθ0 tð Þc2 x; tð Þ þ f x; tð Þ exp iθ 0ð Þ
ε

� �
� z0 x; tð Þ ¼ 0,

Dtv0 x; tð Þ ¼ 0, Dtz0 x; tð Þ ¼ 0,

DtYl
0 Nlð Þ, T0wrþ2, l

2 ¼ 0, T0zrþ2, l
2 ¼ 0,

Dtwl
0 ¼ 0, Dtwrþ2, l

0 ¼ 0, DtYrþ2, l
0 ¼ 0,

Dtql0 x; tð Þ ¼ 0, Dtzrþ2, l
0 x; tð Þ ¼ 0,

Dr, l
x,ξw

l
0 x; tð Þ ¼ 0, Dv, l

x,ηY
rþ2, l
0 ¼ 0, Dr, l

x,ηY
l
0 ¼ 0,

(35)

then

F4 Mð Þ ¼ �iθ0 tð Þ ∑
4

l¼1
Yl
2 Nlð Þ þ ∑

2

r, l¼1
Yrþ2, l
2 Nrþ2, lð Þ

" #
exp τ2ð Þ

� ∑
4

l¼1
ql0 x; tð Þerfc ηl

2
ffiffiffiffi
τ2

p
� �

þ ∑
2

r, l¼1
zrþ2, l
0 Nrþ2, lð Þ

" #
exp τ2ð Þ:

In the last bracket, the transition is from the variables ξl
2
ffiffi
μ

p to the variables ηl
2
ffiffiffi
τ2

p .

Substituting the value Yl
0 Nlð Þ ¼ dl0 x; tð Þerfc ηl

2
ffiffiffi
τ1

p
� �

into equation DtYl
0 Nlð Þ ¼ 0,

with respect to dl0 x; tð Þ,we get the equation Dtd
l
0 x; tð Þ ¼ 0,which is solved under an

arbitrary initial condition dl0 x; tð Þ
���
t¼0

¼ d
l
0 xð Þ. This arbitrary function provides the

condition Lη Yl
0 ¼ 0; therefore, Dx,η Yl

0 ¼ 0:The initial condition for this equation is
determined from the relation:

dl0 x; tð Þ x1¼l�1 ¼ �c0 l� 1; x2; tð Þ; dlþ2
0 x; tð Þ

���
���
x2¼l�1

¼ �c0 x1; l� 1; tð Þ,

which comes out from (Eq. (29)) and (Eq. (33)). The function Yrþ2, l
0 Nrþ2, lð Þ

expresses through Yl
0 Nlð Þ therefore provided that

DtYrþ2, l
0 ¼ 0, Dv, l

x,ηY
rþ2, l
0 ¼ 0:

The same is true for functions wrþ2, l
0 Mrþ2, lð Þ, zrþ2, l

0 Mrþ2, lð Þ; in other words, the
following relations hold: Dtwrþ2, l

0 ¼ 0, Dtzrþ2, l
0 ¼ 0, Dv, l

x,ξw
rþ2, l
0 ¼ 0, Dv, l

x,ξz
rþ2, l
0 ¼ 0:

Solutions of equations with respect wrþ2, l
0 , zrþ2, l

0 under appropriate boundary
conditions from (Eq. (29) are representable as (Eq. (33)), and they are expressed
through wl

2 x; tð Þ, ql2 x; tð Þ: The first equation (Eq. (36)) is solvable,
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Yrþ2, l
v Nrþ2, lð Þ ¼ �

ðτ1
0

ð∞
0
Yl
v ∗ð Þ ∂

∂ξ
G Nl; ξ; η; τ1 � τð Þ

� �
ξ¼0dηdτ
��

�
ðt
0

ð∞
0
Yrþ2
v ∗ð Þ ∂

∂η
G Nrþ2, l; ξ; η; τ1 � τð Þ

� �
jη¼0dξdτ,

where dl x; tð Þ– is arbitrary function such as

dpv x; tð Þ t¼0 ¼ �d
p
v xð Þ; dlv x; tð Þ

���
���
x1¼l�1

¼ �cv l� 1; x2; tð Þ,

G ηl; ηrþ2, l; ξ; η; τ1
� � ¼ 1

4πτ1
exp � ηl � ξð Þ2

4τ1

 !
� exp � ηl þ ξð Þ2

4τ1

 !( )

exp � ηrþ2 � η
� �2

4τ1

 !
� exp � ηrþ2 þ η

� �2
4τ1

 !( )
:

(33)

Due to the fact that the function dlv x; tð Þ при t ¼ τ1 ¼ 0 multiplied by the func-

tion becomes as dl0 x; tð Þ
���
t¼0

¼ �d
l
0 xð Þ, an arbitrary function is accepted, and its

values under x1 ¼ l� 1 are determined from the second relation. According to
Theorems 2 and 3, the functions found by the formula (Eq. (33)) satisfy the esti-
mates:

Yl
v Nlð Þ�� ��, cexp � η2l

8τ1

� �
, Yrþ2, l

v Nrþ2, lð Þ�� ��, cexp � η2rþ2 þ η2l
8τ1

� �
, r, l ¼ 1, 2: (34)

Free member of equation (Eq. (27)) under v ¼ 2, 3 has a form

Fv�2 Mð Þ � T1uv�2 Mð Þ þ iθ0 tð Þ∂σuv�2 Mð Þ ¼ iθ0 tð Þ cv�2 x; tð Þ þ ∑
4

l¼1
Yl
v�2 Nlð Þ þ ∑

2

r, l¼1
Yrþ2, l
v�2 Nrþ2, lð Þ

" #

exp τ2ð Þ þ ∑
2

l, r¼1
∂μwrþ2, l

v�2 � Δξwrþ2, l
v�2 þ σ ∂μzrþ2, l

v�2 � Δξzrþ2, l
v�2

h in o
,

so that equation (Eq. (27)), under v ¼ 2, 3, has a solution in U; we set

cv�2 x; tð Þ ¼ 0, T1wrþ2, l
v�2 ¼ 0, T1zrþ2, l

v�2 ¼ 0:

Solutions of the last equations under the boundary conditions from (Eq. (29))
have a form (Eq. (33)) for which estimates of the form (Eq. (35) are fair. Eq. (27),
i=4, has a free term:

F4 Mð Þ ¼ �iθ0 tð Þ∂τ2 � T1u2 þ f x; tð Þ exp iθ 0ð Þ
ε

� �
�Dσu0 þ Lηu0

¼ �iθ0 tð Þ c2 x; tð Þ þ ∑
4

l¼1
Yl
2 Nlð Þ þ ∑

2

r, l¼1
Yrþ2, l

2 Nrþ2, lð Þ
" #

exp τ2ð Þ

� ∑
2

l, r¼1
T0wrþ2, l

2 Mrþ2, lð Þ þ σT0zrþ2, l
2

h i
�Dtv0 x; tð Þ � ∑

4

l¼1
Dtwl

0 x; tð Þerfc ξl
2
ffiffiffi
μ

p
� �

� ∑
2

l, r¼1
Dtwrþ2, l

0 x; tð Þ � exp τ2ð Þ ∂tc0 x; tð Þ þ ∑
4

l¼1
∂tYl

0 þ ∑
2

l, r¼1
DtYrþ2, l

0

" #
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�σ Dtz0 x; tð Þ þ ∑
4

l¼1
Dtql0 x; tð Þerfc ξl

2
ffiffiffi
μ

p
� �

þ ∑
2

r, l¼1
Dtzrþ2, l

0 Mrþ2, lð Þ
" #

� z0 x; tð Þ þ ∑
4

l¼1
ql0 x; tð Þerfc ξl

2
ffiffiffi
μ

p
� �

þ ∑
2

r, l¼1
zrþ2, l
0 Mrþ2, lð Þ

" #
exp τ2ð Þ

þ∑
2

r¼1
  ∑

2r

l¼2r�1
Dr, l

x,ξw
p
0 x; tð Þerfc ξl

2
ffiffiffi
μ

p
� �

þ ∑
2

v¼1
  ∑

2

r, l¼1
Dv, l

x,ηY
rþ2, l
0 Nrþ2, lð Þ:

By providing F4 Mð Þ∈U4 ⨁U5 with regard to cv x; tð Þ ¼ 0, v ¼ 0, 1,we set

�iθ0 tð Þc2 x; tð Þ þ f x; tð Þ exp iθ 0ð Þ
ε

� �
� z0 x; tð Þ ¼ 0,

Dtv0 x; tð Þ ¼ 0, Dtz0 x; tð Þ ¼ 0,

DtYl
0 Nlð Þ, T0wrþ2, l

2 ¼ 0, T0zrþ2, l
2 ¼ 0,

Dtwl
0 ¼ 0, Dtwrþ2, l

0 ¼ 0, DtYrþ2, l
0 ¼ 0,

Dtql0 x; tð Þ ¼ 0, Dtzrþ2, l
0 x; tð Þ ¼ 0,

Dr, l
x,ξw

l
0 x; tð Þ ¼ 0, Dv, l

x,ηY
rþ2, l
0 ¼ 0, Dr, l

x,ηY
l
0 ¼ 0,

(35)

then

F4 Mð Þ ¼ �iθ0 tð Þ ∑
4

l¼1
Yl
2 Nlð Þ þ ∑

2

r, l¼1
Yrþ2, l

2 Nrþ2, lð Þ
" #

exp τ2ð Þ

� ∑
4

l¼1
ql0 x; tð Þerfc ηl

2
ffiffiffiffi
τ2

p
� �

þ ∑
2

r, l¼1
zrþ2, l
0 Nrþ2, lð Þ

" #
exp τ2ð Þ:

In the last bracket, the transition is from the variables ξl
2
ffiffi
μ

p to the variables ηl
2
ffiffiffi
τ2

p .

Substituting the value Yl
0 Nlð Þ ¼ dl0 x; tð Þerfc ηl

2
ffiffiffi
τ1

p
� �

into equation DtYl
0 Nlð Þ ¼ 0,

with respect to dl0 x; tð Þ,we get the equation Dtd
l
0 x; tð Þ ¼ 0,which is solved under an

arbitrary initial condition dl0 x; tð Þ
���
t¼0

¼ d
l
0 xð Þ. This arbitrary function provides the

condition Lη Yl
0 ¼ 0; therefore, Dx,η Yl

0 ¼ 0:The initial condition for this equation is
determined from the relation:

dl0 x; tð Þ x1¼l�1 ¼ �c0 l� 1; x2; tð Þ; dlþ2
0 x; tð Þ

���
���
x2¼l�1

¼ �c0 x1; l� 1; tð Þ,

which comes out from (Eq. (29)) and (Eq. (33)). The function Yrþ2, l
0 Nrþ2, lð Þ

expresses through Yl
0 Nlð Þ therefore provided that

DtYrþ2, l
0 ¼ 0, Dv, l

x,ηY
rþ2, l
0 ¼ 0:

The same is true for functions wrþ2, l
0 Mrþ2, lð Þ, zrþ2, l

0 Mrþ2, lð Þ; in other words, the
following relations hold: Dtwrþ2, l

0 ¼ 0, Dtzrþ2, l
0 ¼ 0, Dv, l

x,ξw
rþ2, l
0 ¼ 0, Dv, l

x,ξz
rþ2, l
0 ¼ 0:

Solutions of equations with respect wrþ2, l
0 , zrþ2, l

0 under appropriate boundary
conditions from (Eq. (29) are representable as (Eq. (33)), and they are expressed
through wl

2 x; tð Þ, ql2 x; tð Þ: The first equation (Eq. (36)) is solvable,
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if z0 x; tð Þjt¼0 ¼ f x;0ð Þ exp iθ 0ð Þ
ε

� �
: This ratio is used by the initial condition for the

equation
Dtz0 x; tð Þ ¼ 0. The remaining equations from (Eq. (36)) are solvable under the

initial conditions from (Eq. (29)).
Thus, the main term of the asymptotics is uniquely determined. As can be seen

from the representation (Eq. (28)) and the estimates (Eq. (35)), we note that the
asymptotics of the solution have a complex structure. In addition to regular mem-
bers, it contains various boundary layer functions. Parabolic boundary layer func-
tions have an estimate:

Yl Nlð Þ�� ��, cexp � η2l
8τ1

� �
, wl x; tð Þerfc ξl

2
ffiffiffi
μ

p
� �����

����, cexp � ξ2l
8μ

� �
:

Multidimensional and angular parabolic boundary layer functions have an
estimate:

Yrþ2, l Nrþ2, lð Þ�� ��, cexp � η2rþ2 þ η2l
8τ1

� �
,

wrþ2, l Mrþ2, lð Þ�� ��, cexp � ξ2rþ2 þ ξ2l
8μ

� �
:

The boundary layer functions with rapidly oscillating exponential and power
type of change:

c x; tð Þ exp τ2ð Þ, σ ¼
ðt
0
e
i θ sð Þ�θ 0ð Þ½ �

ε ds:

In addition, the asymptotic contains the product of the abovementioned bound-
ary layer functions.

Repeating the above process, we construct a partial sum:

euεn Mð Þ ¼ ∑
n

i¼0
ε
i
2ui Mð Þ: (36)

2.6 Assessment of remainder term

Substituting the function eu M; εð Þ ¼ uεn Mð Þ þ εnþ
1
2Rεn Mð Þ into problem

(Eq. (24)), then taking into account the iterative tasks of (Eq. (27)) and (Eq. (29)),
we obtain the following problem for the remainder term Rεn Mð Þ :

eLεRεn Mð Þ ¼ gn M; εð Þ, Rεn Mð Þ t¼0 ¼ Rεn Mð Þj jxl¼r�1,ξr¼0,ηk ¼ 0, r ¼ 1, 2; k ¼ 1, 4,

(37)

where gn M; εð Þ ¼ �iθ0 tð Þ∂τ2un�1 � ε
1
2iθ0 tð Þ∂τ2un Mð Þ � T1un�1 Mð Þ � ε

1
2T1un Mð Þ�

Dσ � Lη

� �
∑3

k¼0ε
k
2un�3þk Mð Þþ Lη∑5

k¼0ε
k
2un�5þk Mð Þ þ Δa∑7

k¼0ε
k
2un�7þk Mð Þ:

We put in both parts (Eq. (38)) χ ¼ ψ x; t; εð Þ considering (Eq. (25)), with
respect to

LεRεn x; t; εð Þ ¼ gεn x; t; εð Þ, Rεn t¼0 ¼ 0;Rεnj j
∂Ω¼0:

By virtue of the above constructions, the function is gεn x; t; εð Þ�� ��, c, ∀ x; tð Þ∈ ;
therefore, applying the maximum principle, an estimate is established:
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Rεn x; t; εð Þj j, c:

Thus, we have proven the following:
Theorem 4. Suppose that the conditions (1)–(3) are satisfied. Then, using the

above method for solving u x; t; εð Þ of the problem (Eq. (20)), a regularized series
(Eq. (26)) such that ∀n ¼ 0, 1, 2,… can be constructed, and for small enough
ε.0, inequality is fair:

u x; t; εð Þ � uεn x; t; εð Þj j ¼ Rεn x; t; εð Þj j, cεnþ
1
2,

where c is independent of ε.
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Chapter 10

Solving Partial Differential
Equation Using FPGA Technology
Vu Duc Thai and Bui Van Tung

Abstract

This chapter introduces the method of using CNN technology on FPGA chips to
solve differential equation with large space, with lager computing space, while
limitation of resource chip on FPGA is needed, we have to find solution to separate
differential space into several subspaces. Our solution will do: firstly, division of the
computing space into smaller areas and combination of sequential and parallel
computing; secondly, division and combination of boundary areas that are required
to be continuous to avoid losing temporary data while processing (using buffer
memory to store); and thirdly, real-time data exchange. The control unit controls
the activities of the whole system set by the algorithm. We have configured the
CNN chip for solving Navier-Stokes equation for the hydraulic fluid flow success-
fully on the Virtex 6 chip XCVL240T-1FFG1156 by Xilinx and giving acceptance
results as well.

Keywords: Navier-Stokes equation, cellular neural network, field programmable
gate array, boundary processing, separating computing space

1. Introduction

Solving the partial differential equation (PDE) has been investigated by many
researchers, implementing digital decoding on PCs successfully. However, with the
problem of large computing space, the resolution on the PC is difficult to meet the
requirements of speed and accuracy calculations; in some cases, the problem cannot
be solved because of the calculation. Cellular Neural Network technology (CNN)
researchers have applied cellular neural network (CNN) technology successfully to
perform analysis of the problem, design CNN chip, and solve some PDEs.

Using CNN technology for solving PDE, we have to analyze and difference the
original particular equations of problem, find templates, design CNN architecture,
and then configure FPGA to make a CNN chip. It means that there is no CNN chip
for every equation, but for each problem (consist of some equations), there is need
to design appropriate CNN chip. When solving large problems, computing
resources are needed to configure blocks of CNN chips. In order to save resources,
we have proposed a solution for dividing computing space into smaller subspaces
and composite parallel and sequential calculations, which ensures high computing
rates but saves resources of FPGA chips used.

Because the architecture of CNN chips varies depending on each problem,
making the CNN chip is very difficult and costly with traditional methods. Using
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making the CNN chip is very difficult and costly with traditional methods. Using
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the FPGA technology, users can use hardware programming languages, such as
Verilog and VHDL, to configure the logic elements in the FPGA to produce the
electronic circuit of a CNN chip. The recent FPGA architectures (Virtex 7; Stratix
10) have many tools support to test, optimize, and coordinate data exchange. The
CNN designer should use FPGA for making a CNN chip.

2. CNN and FPGA technology

2.1 Cellular neural network technology

Cellular neural network (CNN) was introduced by Chua and Yang at Berkeley
University, California (USA), in 1988, which combined both analog spatial tempo-
ral dynamic and logic [1–3]. The CNN paradigm is a natural framework to describe
the behavior of locally interconnected dynamic systems, which has an arrayed
structure, so it is very useful in solving the partial differential equations [3–7].
Today, visual microprocessors based on this processing type can perform at
TeraOPs computing power and approximately 50,000 fps. The possibility of devel-
oping algorithms and programs based on CNN was quickly exploited worldwide.
Up to now, there are several CNN models for processing images, solving PDE,
recognizing pattern, gene analysis, etc. Depending on problems, the designer can
make a CNN chip having size of millions cells. The common CNN architectures are
1D, 2D, and 3D.

The standard CNN 2D is the dynamic system of autonomous cells that are
connected locally with its neighbor forming a two-dimensional array [2, 18]. Each
cell in the array C(i,j) contains one independent voltage source, one independent
current source, a linear capacitor, resistors, and linear voltage-controlled current
sources which are coupled to its neighbor cells via the controlling input voltage, and
the feedback from the output voltage of each neighbor cell C(k,l). The templates
A(i,j;kl) and B(i,j;k,l) are the parameters linking cell C(i,j) to neighbor C(k,l).
The effective range of Sr(I,j) on radius r of cell C(I,j) is identified by the set of
neighbor cells which satisfies (Figure 1).

Sr i, jð Þ ¼ C k, lð Þ jmax jk–ij, jl– jjf g≤ rf g
with 1≤ k≤ M, 1≤ l≤ N:

The state equation of cell C(i,j) is given by the following equation:

C
∂xij
∂t

¼ � 1
R
xij þ

X
C k, lð Þ∈ Sr i, jð Þ

A i, j; k, lð Þ ykl þ
X

C k, lð Þ∈ Sr i, jð Þ
B i, j; k, lð Þukl þ zij (1)

With R, C is the linear resistor and capacitor; A(i,j;kl) is the feedback operator
parameter; B(i,j;kl) is the control parameter; and zij is the bias value of the cell
C(i,j). On the CNN chip, (A, B, z) are the local connective weight values of each cell
C(i,j) to its neighbors. The output of the cell C(i,j) is presented by Yij as:

Yij ¼ f xij
� � ¼ 1

2
∣xij þ 1∣þ 1

2
∣xij–1∣ (2)

The characteristic of the CNN output function Yi,j = f(xij) is presented in
Figure 2.

On the CNN 3D, beside connection with neighbors, the cell has other connection
to upper and lower layer in the three-dimensional space [18] as shown in Figure 3.
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Thus, if radius r = 1, the cell C(i,j,k) has 26 neighbors; hence, the templates A and B
have more three coefficients A(i,j,k) and B(i,j,k).

The state equation of CNN 3D takes the form:

C
∂xijk
∂t

¼ � 1
R
xijk þ

X
C l,m, nð Þ∈ Sr i, j, kð Þ

A i, j, k; l,m, nð Þ ylmn

þ
X

C l,m, nð Þ∈ Sr i, j, kð Þ
B i, j, k; l,m, nð Þ ylmn þ zijk (3)

The output function is similar to CNN 2D:

yijk ¼ f xijk
� � ¼ 1

2
jxijk þ 1j þ jxijk � 1j� �

For the problem-solving of three-dimensional PDE, the CNN 3D must be used.
The original PDE is differentiated and from that the appropriate templates (A,B,z)
of the CNN 3D are generated.

Figure 2.
CNN circuit output function.

Figure 3.
The 3D CNN, with r = 1, (having 26 neighbors) in three dimensions coordinates x,y,z.

Figure 1.
The architecture of a CNN chip
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sources which are coupled to its neighbor cells via the controlling input voltage, and
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A(i,j;kl) and B(i,j;k,l) are the parameters linking cell C(i,j) to neighbor C(k,l).
The effective range of Sr(I,j) on radius r of cell C(I,j) is identified by the set of
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Sr i, jð Þ ¼ C k, lð Þ jmax jk–ij, jl– jjf g≤ rf g
with 1≤ k≤ M, 1≤ l≤ N:

The state equation of cell C(i,j) is given by the following equation:

C
∂xij
∂t

¼ � 1
R
xij þ

X
C k, lð Þ∈ Sr i, jð Þ

A i, j; k, lð Þ ykl þ
X

C k, lð Þ∈ Sr i, jð Þ
B i, j; k, lð Þukl þ zij (1)

With R, C is the linear resistor and capacitor; A(i,j;kl) is the feedback operator
parameter; B(i,j;kl) is the control parameter; and zij is the bias value of the cell
C(i,j). On the CNN chip, (A, B, z) are the local connective weight values of each cell
C(i,j) to its neighbors. The output of the cell C(i,j) is presented by Yij as:

Yij ¼ f xij
� � ¼ 1

2
∣xij þ 1∣þ 1

2
∣xij–1∣ (2)

The characteristic of the CNN output function Yi,j = f(xij) is presented in
Figure 2.

On the CNN 3D, beside connection with neighbors, the cell has other connection
to upper and lower layer in the three-dimensional space [18] as shown in Figure 3.
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Thus, if radius r = 1, the cell C(i,j,k) has 26 neighbors; hence, the templates A and B
have more three coefficients A(i,j,k) and B(i,j,k).

The state equation of CNN 3D takes the form:

C
∂xijk
∂t

¼ � 1
R
xijk þ

X
C l,m, nð Þ∈ Sr i, j, kð Þ

A i, j, k; l,m, nð Þ ylmn

þ
X

C l,m, nð Þ∈ Sr i, j, kð Þ
B i, j, k; l,m, nð Þ ylmn þ zijk (3)

The output function is similar to CNN 2D:

yijk ¼ f xijk
� � ¼ 1

2
jxijk þ 1j þ jxijk � 1j� �

For the problem-solving of three-dimensional PDE, the CNN 3D must be used.
The original PDE is differentiated and from that the appropriate templates (A,B,z)
of the CNN 3D are generated.

Figure 2.
CNN circuit output function.

Figure 3.
The 3D CNN, with r = 1, (having 26 neighbors) in three dimensions coordinates x,y,z.

Figure 1.
The architecture of a CNN chip
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2.2 Field-programmable gate array technology

Field-programmable gate array (FPGA) is the technology in which the blank
blocks have available resources of logic gates and RAM blocks are used to imple-
ment complex digital computations. FPGAs can be used to implement any logical
function. The FPGA block is able to update the functionality after shipping, partial
reconfiguration of a portion of the design, and the low nonrecurring engineering
costs relative to an ASIC design [13–16].

A recent trend has been to take the coarse-grained architectural approach by
combining the logic blocks and interconnects of traditional FPGAs with embedded
chips and related peripherals to form a complete “system on a programmable chip”
[17–19].

Users like teachers and students could use FGGA for making prototypes for
testing application system, with VHDL or Verilog users easily design and test and
then reconfigure the system until it has desired results.

2.3 Using FPGA to make CNN chip for solving PDE

Because the CNN architecture is not the same for every application, based on
the standard model, the designer develops a particular chip for each problem.
FPGA is the most useful for configuring a blank chip to make a CNN chip using
programming language like Verilog or VHDL. For solving PDE, firstly, one needs
to analyze (differencing) the original model of partial differential equations for
finding appropriate template, then base on template found designing architecture
CNN chip, finally, using VHDL to configure FPGA following designed hardware
making CNN chip.

Some PDEs have been solved using the CNN technology:
Burger equation [3]:

∂u x, tð Þ
∂t

¼ 1
R
∂
2u x, tð Þ
∂x2

� u x, tð Þ ∂u x, tð Þ
∂x

þ F x, tð Þ

Klein-Gordon equation [19]:

∂
2u x, tð Þ
∂t2

¼ ∇2u x, tð Þ � sinu x, tð Þ

Heat diffusion equation [3]:

∂u x, y, t
� �
∂t

¼ c∇2u x, y, t
� �

Black-Scholes equation [9]:

∂V x, tð Þ
∂t

¼ rV x, tð Þ � 1
2
σ2S2

∂
2V x, tð Þ
∂S2

� rS
∂V x, tð Þ

∂S

Air pollution equation [4]:

∂φ

∂t
þ divvφþ σφ� γ

∂
2φ

∂z2
� μ∇2φ ¼ f x, y, zð Þ
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Saint venant 2D equation [5]:

∂H
∂t

þ ∂u
∂x

þ ∂v
∂ y

¼ 0

∂u
∂t

þ ∂u2

∂x
þ g

∂H
∂x

þ ∂uv
∂ y

¼ �gu
u2 þ v2ð Þ1=2
K2

xH
2

∂v
∂t

þ ∂v2

∂ y
þ g

∂H
∂ y

þ ∂uv
∂x

¼ �gv
u2 þ v2ð Þ1=2
K2

yH
2

Saint venant 1D equation [6]:

b
∂h x, tð Þ

∂t
þ ∂Q x, tð Þ

∂x
¼ q (4)

∂Q x, tð Þ
∂t

þ
∂

Q x, tð Þ2
bh x, tð Þ
h i

∂x
þ gbh x, tð Þ ∂h x, tð Þ

∂x
� gIbh x, tð Þ þ g Jbh x, tð Þ ¼ kqq (5)

Example of making a CNN chip for solving Saint venant 1D:

• Designing the templates

First, changing the original equation (4)

b
∂h x, tð Þ

∂t
þ ∂Q x, tð Þ

∂x
¼ q

⇔
∂h x, tð Þ

∂t
¼ �∂Q x, tð Þ

b∂x
þ q
b

(6)

and then choosing the difference space of variables x with step Δx for right part
of (6). After differencing only the right side of (6) for space variable x by Taylor
expansion, one has equation for cell at position (i):

∂h
∂t

¼ � 1
2bΔx

Qiþ1 � Qi�1
� �þ q

b
(7)

Note that, following the CNN algorithm, on the left, we do use symbol (∂h=∂t).
From (7), one has found templates:

AhQ ¼ 1
2bΔx

1
Rh

�1
2bΔx

� �
;Bh ¼ 0 1 0½ �;zh ¼ 0;

where Rh is the linear resistance on cell circuit of h.
For Eq. (5), changing slightly with assumptions above:
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∂Q x, tð Þ
∂t

þ
∂

Q x, tð Þ2
bh x, tð Þ
h i

∂x
þ gbh x, tð Þ ∂h x, tð Þ

∂x
� gIbh x, tð Þ þ g Jbh x, tð Þ ¼ kqq (8)

Assume that q > 0, then kq = 0. After differencing, applying the template design
algorithm of CNN, one can has templates for (8):

AQ ¼ Qiþ1

2bΔxhiþ1

1
RQ � Qi�1

2bΔxhi�1
�;

AQh ¼ gbhi
2Δx

gb I � Jð Þ � gbhi
2Δx

� �
;BQ ¼ 0;zQ ¼ 0;

From template found, we can design the CNN architecture for problem
as (1) two layered-1D CNN chip (Figure 4) and (2) the h, Q processing block
(Figure 5).

The cell is mixed both of h, Q in one block to make the physical architecture of a
CNN cell.

In general, for each calculation, we need some basic computing block like
ADDITION, SUBTRACT, MULTIPLE, DIVIDE. When designing a CNN cell using
FPGA, one has to design many separate blocks of them to perform arithmetical

Figure 4.
Logical architecture of a CNN cell.

Figure 5.
Logical architecture of a h, Q cell.
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processing for each input. In order to save computing resource in FPGA, the
method that shares basic block in one cell leading to sequential calculating can be
used (Figure 6). In this case, the processing time of each cell will be high. To reduce
the processing time of each cell, we can use a pipeline mechanism shown in
Figure 7, but it needs more computing resource for each cell. Finally, for cells in a
CNN chip, we process parallel as in Figure 8.

Figure 6.
Physical architecture of CNN cell.

Figure 7.
Solution for physical architecture CNN chip.
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C1, … , C4 are the coefficients as shown in Figure 7, (C1= 1
2bΔxΔt; C2=

gb
2ΔxΔt; C3=

gb I � Jð ÞΔt; C4= q
bΔt).

If each cell is uses a pipeline mechanism shown in Figure 7. With the length of a
pipeline is 6, the first calculation pays 6 clock pulse (clk), and each calculation after
that only needs 1 clk.

3. Solving Navier-Stokes equations

3.1 Physico-mathematical model of Navier-Stokes equations

In hydraulics, many flow models have been researched, such as flows in chan-
nels, streams, or rivers, for controlling the flow for preventing disasters, saving
water, and exploiting energy of the flow as well. Most of mathematical models of
those phenomena are partial differential equations like Saint venant equations and
Navier-Stokes equations [8, 9]. Some types of Navier-Stokes equations have various
parameters and constraints. Using CNN technology, we could solve some of them
which have clear values of boundary conditions; it means we do not research
boundary problems deeply. The effectiveness of the CNN technology is making a
physical parallel computing chip to increase the computing speed for satisfying a
real-time system.

Navier-Stokes equations here consist of three partial differential equations, with
functional variables representing water height, and flow velocity in x- and
y-directions. The empirical model is a flow through a small port, which diffuses in
two directions Ox and Oy.

Solving Navier-Stokes equations by using CNN requires the discretion of
continuity model by difference method, the smaller difference intervals the higher
accuracy. However, if difference intervals are too small, then it leads to increasing
the calculation complexity and time. The CNN chip with parallel physically
processing abilities, the above difficulties will be overcome.

Figure 8.
A core architecture for CNN chip.
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3.2 Description equations in Navier-Stokes equations

• Equations describing the water level

∂ρzw
∂t

þ ∂ρqx
∂x

þ
∂ρq y

∂ y
¼ ρqA (9)

Assume that the height of water is taken from the bottom of the flow, which is
regarded as the origin of the coordinate system, so zw has no negative values.

• Momentum equations in x-direction:

∂ρqx
∂t

þ ∂

∂x
ρβ

q2x
d

� �
þ ∂

∂ y
ρβ

qxq y

d

� �
þ ρgd

∂zw
∂x

þ ρgdS fx � τwx � ∂

∂x
ρKL

∂qx
∂x

� �
� ∂

∂ y
ρKT

∂qx
∂ y

� �
¼ 0 (10)

• Momentum equations in y-direction:

∂ρq y

∂t
þ ∂

∂ y
ρβ

q2y
d

 !
þ ∂

∂x
ρβ

q yqx
d

� �
þ ρgd

∂zw
∂ y

þ ρgdSfy � τwy � ∂

∂ y
ρKL

∂q y

∂ y

� �
� ∂

∂x
ρKT

∂q y

∂x

� �
¼ 0 (11)

Explain the meanings of quantities in the equations:

•
∂ρqx
∂t and

∂ρq y

∂t : quantities characterizing the momentum variation over time in
x-axis and y-axis, respectively.

• ∂

∂x ρβ q2x
d

� �
and ∂

∂ y ρβ
q2y
d

� �
: kinetic energy variations of flow in x- and

y-directions.

• ρgd ∂zw
∂x and ρgd ∂zw

∂ y : potential energy variations of flow in x- and y-directions.

• ρgdS fx and ρgdSfy: influence of friction by bottom and walls of channel on flow
in x- and y-directions. Values of Sfx and Sfy are determined based on physical
properties of bottom and walls of hydraulic channels according to the
following formulas:

S fx ¼ qx
n2 q2x þ q2y
� �1=2

d1=3
;Sfy ¼ q y

n2 q2y þ q2x
� �1=2

d1=3
n is Manning coefficientð Þ

• τwx and τwy: wind pressure on free surface of hydraulic flow in x-and
y-directions are calculated as follows:

τwx ¼ csρaW
2cos Ψð Þ;τwy ¼ csρaW

2sin Ψð Þ,

where:

cx ¼
10�3;khiW≤ Wmin

cs1 þ cs2 W‐Wminð Þ½ �:10�3;khiW>Wmin

( )
;
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( )
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With cs1; cs2; Wmin are values get from practical, for example: Wmin = 4 m/s;
wind speed is 10 m/s, then cs1 = 1.0; cs2 = 0.067;

• ρa is the air density at free surface (kgm�3); W is wind speed at free surface;
and Ψ is the angle between wind direction and x-axis.

• Expressions, ∂

∂x ρKL
∂qx
∂x

� �
� ∂

∂ y ρKT
∂qx
∂ y

� �
and ∂

∂ y ρKL
∂q y

∂ y

� �
� ∂

∂x ρKT
∂q y

∂x

� �
, are the

impact of turbulence in hydraulic flow caused between x- and y-directions,
where: KL ¼ qxl

pe
with Pe as the Peclet coefficient with the value of 15–40; l as

the length of flow; KL as coefficient varying according to locations along flow;
and KT = 0.3–0.7 KL.

3.3 Analyzing and designing CNN to solve the equations

To simplify, change parameters as: the water level zw = h; and the velocity in x-
axis qx = u, in y-axis qy = v. Assume that qA = 0; the kinetic influence of turbulent
values between velocity in the direction from 0y to 0x (or 0x to 0y) is trivial since
horizontal velocity is small enough to be considered as zero; then (9)–(11) are
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Step 1: Differencing equations following Taylor formula
Using finite difference grid with difference interval in x-axis as Δx and in y-axis

as Δ y and apply Taylor difference formulas for Eqs. (12)–(14); we have difference
equations corresponding to the equations:
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Step 2: Designing a sample of CNN
Based on CNN state equations and difference equations (15)–(17), we can have

CNN templates for layers h, u, v:
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With cs1; cs2; Wmin are values get from practical, for example: Wmin = 4 m/s;
wind speed is 10 m/s, then cs1 = 1.0; cs2 = 0.067;

• ρa is the air density at free surface (kgm�3); W is wind speed at free surface;
and Ψ is the angle between wind direction and x-axis.

• Expressions, ∂

∂x ρKL
∂qx
∂x

� �
� ∂

∂ y ρKT
∂qx
∂ y

� �
and ∂

∂ y ρKL
∂q y

∂ y

� �
� ∂

∂x ρKT
∂q y

∂x

� �
, are the

impact of turbulence in hydraulic flow caused between x- and y-directions,
where: KL ¼ qxl

pe
with Pe as the Peclet coefficient with the value of 15–40; l as

the length of flow; KL as coefficient varying according to locations along flow;
and KT = 0.3–0.7 KL.

3.3 Analyzing and designing CNN to solve the equations

To simplify, change parameters as: the water level zw = h; and the velocity in x-
axis qx = u, in y-axis qy = v. Assume that qA = 0; the kinetic influence of turbulent
values between velocity in the direction from 0y to 0x (or 0x to 0y) is trivial since
horizontal velocity is small enough to be considered as zero; then (9)–(11) are
rewritten:

∂h
∂t

þ ∂u
∂x

þ ∂v
∂ y

¼ 0 ⇔
∂h
∂t

¼ � ∂u
∂x

� ∂v
∂ y

(12)

∂v
∂t

þ ∂

∂ y
β
v2

d

� �
þ ∂

∂x
β
vu
d

� �
þ gd

∂h
∂ y

þ gdSfy �
τwy

ρ
� ∂

∂ y
KL

∂v
∂ y

� �
¼ 0

⇔
∂v
∂t

¼ ∂

∂ y
KL

∂v
∂ y

� �
� ∂

∂ y
β
v2

d

� �
� ∂

∂x
β
vu
d

� �
� gd

∂h
∂ y

þ τwy

ρ
� gdSfy

� � (13)

∂u
∂t

¼ ∂

∂x
β
u2

d

� �
þ ∂

∂ y
β
uv
d

� �
þ gd

∂h
∂x

þ gdS fx �
τwx

ρ
� ∂

∂x
KL

∂u
∂x

� �

⇔
∂u
∂t

¼ ∂

∂x
KL

∂u
∂x

� �
� ∂

∂x
β
u2

d

� �
� ∂

∂ y
β
uv
d

� �
� gd

∂h
∂x

þ τwx

ρ
� gdS fx

� � (14)

Step 1: Differencing equations following Taylor formula
Using finite difference grid with difference interval in x-axis as Δx and in y-axis

as Δ y and apply Taylor difference formulas for Eqs. (12)–(14); we have difference
equations corresponding to the equations:

∂hij
∂t

¼ uiþ1, j � ui�1, j

2Δx
� vi, jþ1 � vi, j�1

2Δy
(15)

∂ui, j
∂t

¼ � β

d
uiþ1, j

2Δx
uiþ1, j �

ui�1, j

2Δx
ui�1, j

h i
� β

d
vi, jþ1

2Δ y
uiþ1, j �

vi, j�1

2Δ y
ui�1, j

� �

�gd
hiþ1, j � hi�1, j

2Δx
gdSfx þ 1

ρ
τwxKL

uiþ1, j � 2ui, j þ ui�1, j

Δx2
�

(16)

202

Boundary Layer Flows - Theory, Applications and Numerical Methods

∂vi, j
∂t

¼ � β

d
vi, jþ1

2Δy
vi, jþ1 �

vi, j‐1
2Δy

vi, j�1

� �
� β

d
uiþ1, j

2Δx
vi, jþ1 �

ui‐1, j
2Δx

vi, j�1

h i

�gd
hi, jþ1 � hi, j�1

2Δx
� gdSfy þ 1

ρ
τwyKL

vi, jþ1 � 2vi, j þ vi, j�1

Δ y2
�

(17)

Step 2: Designing a sample of CNN
Based on CNN state equations and difference equations (15)–(17), we can have

CNN templates for layers h, u, v:

• Layer h:

Ahu ¼

0 0 0

1
2Δx

0
�1
2Δx

0 0 0

2
6664

3
7775 Ahv ¼

0
1

2Δ y
0

0 0 0

0
�1
2Δ y

0

2
6666664

3
7777775

(18)

• Layer u:

Auv ¼

0
βui, j�1

2dΔ y
0

0 0 0

0
�βui, jþ1

2dΔ y
0

2
6666664

3
7777775
; Auh ¼

0 0 0

gd
2Δx

0
�gd
2Δx

0 0 0

2
6664

3
7775; B

u ¼ 1
ρ
τwx

0 0 0

0 1 0

0 0 0

2
664

3
775

Au ¼

0 0 0

βui�1, j

2dΔx
þ KL

Δx2
gd

n2 u2ij þ v2ij
� �1=2

d1=3
þ 1
Ru

þ 4KL

Δx2
�βuiþ1, j

2dΔx
þ�KL

Δx2

0 0 0

2
666664

3
777775
;

zu ¼ 0

(19)• Layer v:

Avh ¼

0
gd
2Δ y

0

0 0 0

0
�gd
2Δ y

0

2
6666664

3
7777775
; Avu ¼

0 0 0

βui�1, j

2dΔx
0

�βui�1, j

2dΔx
0 0 0

2
6664

3
7775; B

v ¼ 1
ρ
τwy

0 0 0

0 1 0

0 0 0

2
664

3
775; zv ¼ 0

Av ¼

0
βvi, jþ1

2dΔ y
þ KL

Δ y2
0

KL

Δ y2
gd

n2 u2i, j þ v2i, j
� �2

d1=3
þ 1
Rv þ

KL

Δ y2
�KL

Δ y2

0
�βvi, jþ1

2dΔ y
� KL

Δ y2
0

2
66666666664

3
77777777775

(20)

Step 3: Designing hardware architecture of CNN to solve Navier-Stokes
equations

203

Solving Partial Differential Equation Using FPGA Technology
DOI: http://dx.doi.org/10.5772/intechopen.84588



Based on templates found in (18)–(20), we can design an architecture for circuit
for CNN chip. It is a three-layered CNN 2D. Then, the arithmetic unit for each layer
and links to perform parallel calculation on chip can be made. Figure 9 shows the
architecture of layer h and layer u (the layer v is similar to u).

3.4 Proposed system architecture for MxN CNN

The empirical problems that need a solution is that: firstly, identifying boundary
points of whole difference grid (space); secondly, dividing the entire computing
space into smaller subspaces. Division and combination of boundary areas need to
perform appropriately avoiding incorrect results because of tep time computing
time; thirdly, controlling real-time data exchange and combining sequential and
parallel computing in a CNN chip. The CNN chip proposed in this chapter has
solved similarity in the previous problems [4, 5]. The new issues here are dividing
computing space processing dynamic sub-boundary and combining sequential and
parallel.

3.4.1 General MxN CNN

Each CNN cell has its own data element and a core that performs the computing
function. The CNN has MxN CNN cells in which only (M-2)x(N-2) CNN cells have
computing functions, so that the CNN has MxN data elements and (M-2)x(N-2)
cores (Figure 10).

The Buffer supplies MxN data elements for CNN. Each MxN data element is
called as one block of data (Figure 11).

The white area is the data element for CNN boundary cells; and the gray part is
the data area which requires to be processed by CNN. The CNN arithmetic unit has
size of (M-2)x(N-2) cells processing data for the gray area which is inside the input
buffer unit.

The Input memory has PxQ blocks of data. It is a true dual port memory.
The Temp memory also has PxQ blocks of data. It is a simple dual port memory.

It is used to temporarily store data computed from CNN core and supply data for
Boundary updating unit.

Figure 9.
Logic architecture of cell of h, u.
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Data that need processing sent from PC have the size of mxn (Figure 12).
Assume that m = 5, n = 6, M = 3, and N = 4; the white part is boundary and the

gray part is the area requiring to be processed. Before the processing data, tempo-
rary vertical and horizontal boundaries be need to be added, as in Figure 13, column
(0,3) and row (3,0).

Temporary vertical and horizontal boundaries are added to the data structure
similar to CNN buffer. The data after being added from temporary vertical and
horizontal boundaries will be sent to Input memory. The blocks of data in the Input
memory unit (in case that mxn = 5x6,MxN = 3x4) are detailed as follows (Figure 14).

Figure 11.
Buffer (MxN) for CNN core.

Figure 10.
General architecture of a CNN chip.

Figure 12.
Computing space with main boundary.
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0, 1, 2,.., 6 are the addresses of blocks. In case that mxn = 5x6 and MxN = 3x4,
we have P = 3 and Q = 2.

PxQ ¼ m� 2
M� 2

x
n� 2
N � 2

The Boundary updating unit is in detail structure as follows (in case MxN = 3x4)
(Figure 15).

The control unit controls the activities of the whole system set by the algorithm
which is as follows:
(1) At every posedge of clk do
(2) {
(3) if (has IO event)
(4) do the IO task;
(5) else
(6) buffer = read(Input memory)
(7) if (finish computing the first block)
(8) if (BoundaryUpdating())
(9) write(Input memory)
(10) }

3.4.2 Proposed CNN architecture when M = 3 (3xN CNN)

The 3xN CNN architecture is similar to the general MxN CNN architecture
(M = 3). In order to reduce the memory consumption and simplify the Boundary
updating unit, there are some differences (Figure 16).

Each block of data in the memory (Input memory or Temp memory) is 1xN
data elements. Assume that the data which need processing sent from PC has
the size of mxn, m = 5, n = 6, and assume that N = 4. As mention above, the
data will be processed after temporary vertical boundaries are added; so that,
the Input Memory unit will has 5x2 blocks of data (m = 5, Q = 2) as follow
(Figure 17).

Each block has size of 1x4 data elements.
The Buffer unit is a Shift up register that has size of 3xN. The input and output

have sizes of 1xN and 3xN, respectively. The input is at the bottom.
The Input memory has m rows and Q columns of blocks of data. The control unit

reads the blocks in the Input memory by vertical and puts the block of data to the

Figure 13.
Divide computing space into subspace with subboundary.
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Figure 16.
The architecture of 3xN CNN chip.

Figure 15.
The Boundary updating structure (MxN = 3x4).

Figure 14.
The blocks of data in the Input memory in case that mxn = 5x6, MxN = 3x4.
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input of buffer. The buffer shifts up 1 step. After step 3, the Buffer has 3xN blocks
of data to supply to CNN core. After each step, the Buffer has 3xN blocks of data
that need to supply to CNN core (Figure 18).

The output of CNN core has the size of 1xN.
The Boundary updating unit is shown in Figure 19.
The control algorithm for control unit (Figure 20).

(1) At every posedge of clk do
(2) {
(3) if (has IO event)
(4) do the IO task;
(5) else
(6) buffer = read(Input memory);//read by vertical
(7) if (finish computing the first block of column q)
(8) if (column_of_current_block==0)

write(Temp memory);
else

BoundaryUpdating(CNNoutput,read(Temp
memory));

(9) write(Input memory);
(10) }

3.5 Implementation

In this part, we implement the 3xN CNN. Q, m, and N are the parameters that
we can configure before compiling and programming to the FPGA chip. For
defaulting, we assigned Q = 2, m = 8, and N = 4.

3.5.1 Development environment

For experiencing, the ISE Design Suite software version 14.7 and ML605 evalu-
ation board including chip XCVL240T-1FFG1156 (Virtex 6) are used to implement
the schematic of CNN.

First, we use Verilog HDL language to describe the CNN architecture. Then, we
use ISim simulator to verify our system. Finally, we program the system to the
FPGA chip on ML605 board.

The image of experience system as in Figure 20 is as follows.

3.5.2 Input data for h, u, v values

The input of CNN to solve the Navier-Stokes Equation has h, u, v values. We
use three Input memory units, three Buffer units, and three Temporary memory
units to store h, u, v values. The data element is represented in 32-bit floating point

Figure 17.
The memory with 5x2 blocks (m==5, n = 6, N = 4).
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Figure 18.
The Buffer’s state after each step (m==5, n = 6, N = 4).

Figure 19.
The output size of CNN core (N = 4).

Figure 20.
The Boundary updating structure (N = 4).

Figure 21.
The chip Virtex 6 (XCVL240T-1FFG1156) connected to PC for configuring to make CNN chip and
performing calculation.
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The input of CNN to solve the Navier-Stokes Equation has h, u, v values. We
use three Input memory units, three Buffer units, and three Temporary memory
units to store h, u, v values. The data element is represented in 32-bit floating point

Figure 17.
The memory with 5x2 blocks (m==5, n = 6, N = 4).
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Figure 18.
The Buffer’s state after each step (m==5, n = 6, N = 4).

Figure 19.
The output size of CNN core (N = 4).

Figure 20.
The Boundary updating structure (N = 4).

Figure 21.
The chip Virtex 6 (XCVL240T-1FFG1156) connected to PC for configuring to make CNN chip and
performing calculation.
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real numbers. Data into h, u, v are added with temporary boundaries, detailed as
follow (presented in Decimal and Hex of Single-type Floating-point) (Figure 22).

The interface of each Input memory, Temporary memory for h, u, v is
configurated as same in Figure 23. The initial data for the Input memory h, u, v is
initialed by COE files. A COE file stores initial values for a memory (Figure 24).

3.5.3 Shift up register

Figure 22.
Initial data for the Input memory h, u, v.
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3.5.4 CNN core

3.5.5 Boundary updating
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3.5.6 Control unit

The interface of Control unit is described as follows.

3.5.7 System scheme

To verify the system, the interface of the top module of the system should
include all the signals that we want to verify.

The top module is described as follows.

Control CU(
.CountCLK(CountCLK),
.wraddressHUVTemp(wraddrTemp),
.rdaddressHUVTemp(rdaddrTemp),
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.wrenTemp(wrenTemp),

.clk(clk),

.wraddressHUV(wraddr),

.rdaddressHUV(rdaddr),

.wren(wren),

.start(start),

.EnableBoundaryUpdating(EnableBoundaryUpdating),

.finish(finish));
InputMemoryHUV #(N) InputMemory(

clk,rdaddr,doutH,doutU,doutV,
wraddr,wren,HNew,UNew,VNew);

InputBuffer #(M,N) Buffer(
clk,doutH,doutU,doutV,
matrixhin,matrixuin,matrixvin);

CNNCore #(M,N) uut(
.clk(clk),
.matrixhin(matrixhin),
.matrixuin(matrixuin),
.matrixvin(matrixvin),
.matrixhout(matrixhout),
.matrixuout(matrixuout),
.matrixvout(matrixvout));

BoundaryUpdatingHUV #(N) Boundary(
matrixhout,matrixuout,matrixvout,
doutHNewTemp,doutUNewTemp,doutVNewTemp,
EnableBoundaryUpdating,
HNewTemp,UNewTemp,VNewTemp,
HNew,UNew,VNew);

TempMemoryHUV #(N) TempMemory(
clk,wraddrTemp,wrenTemp,HNewTemp,UNewTemp,
VNewTemp,
rdaddrTemp,doutHNewTemp,doutUNewTemp,doutVNewTemp);
endmodule

Figure 23.
Interface for Input and Temp memory h, u, v.
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3.6 Simulation results

The ISE design software shows the device utilization summary as in Table 1.
Figures 25–27 show the schematics synthesized by the ISE design software.
Comparing the new values of h in Figure 28i, k (doutH) with Figure 29, we can

see that the 3x4 CNN system worked well.
The simulation results show the properness and effectiveness of installation

methods. The cost for calculating the first three blocks of 1xN taken from memory
units h, u, v is 10 clock pulses, of which 1 clock pulse is for initial reading Input
memory, 3 clock pulse is for initial updating buffer to CNN, and 6 clock pulses for
initial calculation. Each successive 1xN unit takes only 1 clock pulse to calculate, due
to the use of the pipeline mechanism to update buffer to CNN and calculate at CNN
arithmetic unit. After finishing reading each column of blocks of data in the Input
memory, it needs 2 more clocks for initiating the buffer again. It also takes 1 clk for
initial writing Temp memory, 1 clk for initial reading Temp memory, and 1 clk for
initial writing result back to Input memory.

Devices used summary (estimated values)

Logic utilization Used Available Utilization

Number of slice registers 3952 301,440 1%

Number of slice LUTs 16,365 150,720 10%

Number of fully used LUT-FF pairs 1770 18,547 9%

Number of bonded IOBs 3112 600 518%

Number of Block RAM/FIFO 12 416 2%

Number of BUFG/BUFGCTRLs 1 32 3%

Number of DSP48E1s 132 768 17%

Table 1.
Device utilization summary.

Figure 24.
An example of h.core file to initial data for the Input memory h.
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As a result, the time for one computing cycle is:

T ¼ 8þm Q þ 1ð Þ clkð Þ
As the above implementation, m = 8, Q = 2, and T = 32 (clk).

4. Conclusion

This chapter gives the solution for configuring CNN chip to solve Navier-Stokes
equations, especially concerning to solution in the temporary boundary problem

Figure 25.
The architecture of CNN chip.
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when it is required. The purpose is to divide the big data space into many subspaces.
The processing of the big data space is based on the calculation of each subdata.
With the input data of 32-bit floating point real number and FPGA chip Virtex 6
XCVL240T-1FFG1156, the CNN of 1x12 cells has successfully installed. The instal-
lation results show that the effectiveness of this solution mainly lies on the

Figure 26.
The architecture of one CNN cell.
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Figure 27.
Inside electronic circuit for h.
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Figure 28.
Signals operating inside the 3x4 CNN system, m = 8, Q = 2. (a) Starting a computing cycle by setting start = 1.
(b) The output of Input memory (doutH). (c) The data outputting from Buffer after 4 clks. (d) The results
from CNN core after 10 clks; and start writing the results to Temp memory. (e) The CNN core finish computing
the first column of blocks of data at 16 clks; and pause writing the results to Temp memory at 16 clks. (f) The
results from CNN core after 18 clks; read Temp memory, start updating boundaries, and write the results to
Input memory. (g) Pause updating boundaries from 24 clks. (h) The CNN core finishes computing; read the
last column of blocks of data from Temp memory and write to Input memory. (h) Finish writing all results of
the first computing cycle to Input memory. (i) The controller sets finish = 1 at 33 clks. (k) The output of Input
memory shows the results computed at previous computing cycle. (l) The overview of signals.
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expansion of calculation space and resource saving and the accuracy of the calcula-
tion acceptable as well. This model can be further developed to feasibly solve similar
problems in larger computing space and could be developed for some types of
complicated (mixed) boundaries as well.
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The new values of h computed by excel for the first computing cycle.
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