IntechOpen

Data Mining

Methods, Applications and Systems

Edited by Derya Birant

Data Mining - Methods,

Applications and Systems
Edited by Derya Bivant

Published in London, United Kingdom

C
o
Q.
@)
L
&)
o
)
£

Supporting open minds since 2005

Data Mining - Methods, Applications and Systems
http:/dx.doi.org/10.5772/intechopen. 87784
Edited by Derya Birant

Contributors

Esma Ergiiner Ozkog, Pramod Kumar, Sameer Ambekar, Subarna Roy, Manish Kumar, Makhamisa Senekane,
Sana Dardouri, Jalila Sghaier, Selma Tekir, Yalin Bastanlar, Ferda Balci Unal, Derya Birant, Elife
Ozturk Kiyak, Mehmet Aktas, Oguz Celik, Oya Kalipsiz, Muruvvet Hasanbasoglu, Venkata Subba Reddy
Poli, Bouchra Lamrini, Mhlambululi Mafu, Molibeli Benedict Taele

© The Editor(s) and the Author(s) 2021

The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright,
Designs and Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED.
The book as a whole (compilation) cannot be reproduced, distributed or used for commercial or
non-commercial purposes without INTECHOPEN LIMITED’s written permission. Enquiries concerning
the use of the book should be directed to INTECHOPEN LIMITED rights and permissions department
(permissions@intechopen.com).

Violations are liable to prosecution under the governing Copyright Law.

@) |

Individual chapters of this publication are distributed under the terms of the Creative Commons
Attribution 3.0 Unported License which permits commercial use, distribution and reproduction of
the individual chapters, provided the original author(s) and source publication are appropriately
acknowledged. If so indicated, certain images may not be included under the Creative Commons
license. In such cases users will need to obtain permission from the license holder to reproduce
the material. More details and guidelines concerning content reuse and adaptation can be found at
http: /www.intechopen.com/copyright-policy. html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not
necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of
information contained in the published chapters. The publisher assumes no responsibility for any
damage or injury to persons or property arising out of the use of any materials, instructions, methods
or ideas contained in the book.

First published in London, United Kingdom, 2021 by IntechOpen

IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales,
registration number: 11086078, 5 Princes Gate Court, London, SW7 2QJ, United Kingdom
Printed in Croatia

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

Data Mining - Methods, Applications and Systems
Edited by Derya Birant

p.cm.

Print ISBN 978-1-83968-318-3

Online ISBN 978-1-83968-319-0

eBook (PDF) ISBN 978-1-83968-320-6

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

51®®+ 127,000+ 145M+

ailable International authors and editor: Downloads

Our authors are among the

156 Top 1% 12. 2%

Countries deliv most cited s Contributors from top 500 un sities

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

Meet the editor

Dr. Derya Birant received a BS, MS, and Ph.D. in Computer En-
gineering from Dokuz Eylul University, Turkey in 2000, 2002,
and 2006, respectively. Since 2017, she has been an Associate
Professor at the Computer Engineering Department of Dokuz
Eylul University. She is also the vice-chair of the department.
She was a Visiting Lecturer at South East European University in
2006 and Ege University between 2010 and 2012. Her research
interests include data mining and machine learning. She is the author of six book
chapters and more than seventy publications. Dr. Birant has supervised more than
thirty Ph.D. and MSc students. She has been involved in more than twenty long-
term interdisciplinary R&D projects on data mining.

Contents

Preface

Chapter 1

Deep Learning: Exemplar Studies in Natural Language Processing
and Computer Vision

by Selma Tekir and Yalin Bastanlar

Chapter 2
Contribution to Decision Tree Induction with Python: A Review
by Bouchra Lamvrini

Chapter 3

Association Rule Mining on Big Data Sets

by Oguz Celik, Muruvvet Hasanbasoglu, Mehmet S. Aktas
and Oya Kalipsiz

Chapter 4

Data Mining in Banking Sector Using Weighted Decision
Jungle Method

by Derya Birant

Chapter 5

Analytical Statistics Techniques of Classification and Regression
in Machine Learning

by Pramod Kumar, Sameer Ambekar, Manish Kumar

and Subarna Roy

Chapter 6
Clustering of Time-Series Data
by Esma Ergiiner Ogkog

Chapter 7

Weather Nowecasting Using Deep Learning Techniques
by Makhamisa Senekane, Mhlambululi Mafu

and Molibeli Benedict Taele

Chapter 8
Data Mining and Machine Learning for Software Engineering
by Elife Ogturk Kiyak

XIII

21

43

55

67

87

107

119

Chapter 9 153
Data Mini_pg for Student Performance Prediction in Education
by Ferda Unal

Chapter 10 165
Tracer Transport in a Homogeneous Porous Medium:

Experimental Study and Acquisition Data with LabVIEW

by Sana Dardouri and Jalila Sghaier

Chapter 11 177
Data Mining and Fuzzy Data Mining Using MapReduce

Algorithms

by Poli Venkata Subba Reddy

XII

Preface

Data mining is a branch of computer science that is used to automatically extract
meaningful, useful knowledge and previously unknown, hidden, interesting
patterns from a large amount of data to support the decision-making process.

This book presents recent theoretical and practical advances in the field of data
mining. It reports on a number of data mining methods, including classification,
clustering, and association rule mining.

This book brings together many different successful data mining studies in various
areas such as health, banking, education, software engineering, animal science, and
the environment. The goal is to help data miners, researchers, academics, and
scientists who wish to apply data mining techniques in their studies. The references
collected in this book may be used as further reading lists.

The main strength of the book is the wealth of the case studies contained within.
Chapters cover a number of innovative and recently developed data mining
applications. Another important feature of the book is the clear introduction and
background information provided at the beginning of each chapter.

The authors of this book have been actively working in the data mining field for
years and thus have a lot of experience. They have the skills, knowledge, and
expertise needed to share with us about real-world data mining applications. They
have aimed at providing readers with a comprehensive understanding of data
mining methods and thus present research results in various domains from
different points of view. They explain the fundamental data mining techniques for
extracting information from a large dataset.

It was not possible for me to accomplish this book without the outstanding
contributions of many people. I would like to thank the contributing authors for
their excellent works. Much appreciation goes to them for the time and effort they
put in. I would also like to thank my husband for his love and support during the
editing of this book. I also extend many thanks to Lada Bozic and Marijana Francetic
for facilitating administrative matters. Finally, I express my gratitude to the
publisher, IntechOpen, for giving me the opportunity to complete this book.

I hope you enjoy reading this book as much as I enjoyed editing it.

Dr. Derya Birant

Associate Professor,

Dokuz Eyliil University,

Department of Computer Engineering,
Turkey

Chapter 1

Deep Learning: Exemplar Studies
in Natural Language Processing
and Computer Vision

Selma Tekir and Yalin Bastanlar

Abstract

Deep learning has become the most popular approach in machine learning in
recent years. The reason lies in considerably high accuracies obtained by deep
learning methods in many tasks especially with textual and visual data. In fact,
natural language processing (NLP) and computer vision are the two research areas
that deep learning has demonstrated its impact at utmost level. This chapter will
firstly summarize the historical evolution of deep neural networks and their funda-
mental working principles. After briefly introducing the natural language
processing and computer vision research areas, it will explain how exactly deep
learning is used to solve the problems in these two areas. Several examples
regarding the common tasks of these research areas and some discussion are also
provided.

Keywords: deep learning, machine learning, natural language processing,
computer vision, transfer learning

1. Introduction

Early approaches of artificial intelligence (AI) have sought solutions through
formal representation of knowledge and applying logical inference rules. Later on,
with having more data available, machine learning approaches prevailed which
have the capability of learning from data. Many successful examples today, such as
language translation, are results of this data-driven approach. When compared to
other machine learning approaches, deep learning (deep artificial neural networks)
has two advantages. It benefits well from vast amount of data—more and more of
what we do is recorded every day, and it does not require defining the features to be
learned beforehand. As a consequence, in the last decade, we have seen numerous
success stories achieved with deep learning approaches especially with textual and
visual data.

In this chapter, first a relatively short history of neural networks will be pro-
vided, and their main principles will be explained. Then, the chapter will proceed to
two parallel paths. The first path treats text data and explains the use of deep
learning in the area of natural language processing (NLP). Neural network methods
first transformed the core task of language modeling. Neural language models have
been introduced, and they superseded n-gram language models. Thus, initially the
task of language modeling will be covered. The primary focus of this part will be

1 IntechOpen

Data Mining - Methods, Applications and Systems

representation learning, where the main impact of deep learning approaches has
been observed. Good dense representations are learned for words, senses,
sentences, paragraphs, and documents. These embeddings are proved useful in
capturing both syntactic and semantic features. Recent works are able to compute
contextual embeddings, which can provide different representations for the same
word in different contextual units. Consequently, state-of-the-art embedding
methods along with their applications in different NLP tasks will be stated as the use
of these pre-trained embeddings in various downstream NLP tasks introduced a
substantial performance improvement.

The second path concentrates on visual data. It will introduce the use of deep
learning for computer vision research area. In this aim, it will first cover the
principles of convolutional neural networks (CNNs)—the fundamental structure
while working on images and videos. On a typical CNN architecture, it will explain
the main components such as convolutional, pooling, and classification layers.
Then, it will go over one of the main tasks of computer vision, namely, image
classification. Using several examples of image classification, it will explain several
concepts related to training CNNs (regularization, dropout and data augmentation).
Lastly, it will provide a discussion on visualizing and understanding the features
learned by a CNN. Based on this discussion, it will go through the principles of how
and when transfer learning should be applied with a concrete example of real-world
four-class classification problem.

2. Historical evolution of neural networks and their fundamental
working principles

2.1 Historical evolution of neural networks

Deep neural networks currently provide the best solutions to many problems in
computer vision and natural language processing. Although we have been hearing
the success news in recent years, artificial neural networks are not a new research
area. In 1943, McCulloch and Pitts [1] built a neuron model that sums binary inputs,
and outputs 1 if the sum exceeds a certain threshold value, and otherwise outputs 0.
They demonstrated that such a neuron can model the basic OR/AND/NOT

O
W -x
o +20 . f)
O
Jul(x) = wot+ wix + waxa

Jul(x) = -30+20x1+20x2

Figure 1.

A neuron that mimics the behavior of logical AND operator. It multiplies each input (x, and x,) and the bias
unit (+1) with a weight and thresholds the sum of these to output 1 if the sum is big enough (similar to our
neurons that either fire or not).

Deep Learning: Exemplar Studies in Natural Language Processing and Computer Vision
DOI: http://dx.doi.org/10.5772/intechopen.91813

functions (Figure 1). Such structures are called neurons due to the biological inspi-
ration: inputs (x;) represent activations from nearby neurons, weights (w;) repre-
sent the synapse strength to nearby neurons, and activation function (f) is the cell
body, and if the function output is strong enough, it will be sensed by the synapses
of nearby neurons.

In 1957, Rosenblatt introduced perceptrons [2]. The idea was not different from
the neuron of McCulloch and Pitts, but Rosenblatt came up with a way to make
such artificial neurons learn. Given a training set of input-output pairs, weights are
increased/decreased depending on the comparison between the perceptron’s output
and the correct output. Rosenblatt also implemented the idea of the perceptron in
custom hardware and showed it could learn to classify simple shapes correctly with
20 x 20 pixel-like inputs (Figure 2).

Marvin Minsky who was the founder of MIT AI Lab and Seymour Papert
together wrote a book related to the analysis on the limitations of perceptrons [4].
In this book, as an approach of Al, perceptrons were thought to have a dead end. A
single layer of neurons was not enough to solve complicated problems, and
Rosenblatt’s learning algorithm did not work for multiple layers. This conclusion
caused a declining period for the funding and publications on AlI, which is usually
referred to as “Al winter.”

Paul Werbos proposed that backpropagation can be used in neural networks [5].
He showed how to train multilayer perceptrons in his PhD thesis (1974), but due to
the AI winter, it required a decade for researchers to work in this area. In 1986, this
approach became popular with “Learning representations by back-propagating
errors” by Rumelhart et al. [6]. First time in 1989, it was applied to a computer
vision task which is handwritten digit classification [7]. It has demonstrated excel-
lent performance on this task. However, after a short while, researchers started to
face problems with the backpropagation algorithm. Deep (multilayer) neural net-
works trained with backpropagation did not work very well and particularly did not
work as well as networks with fewer layers. It turned out that the magnitudes of

f
H
£
i
i
:
f
;I
i
i
i
t
i
I

- e

Figure 2.
Mark I Perceptron at the Cornell Aeronautical Laboratory, hardware implementation of the first perceptron
(source: Cornell University Library [3]).

Data Mining - Methods, Applications and Systems

backpropagated errors shrink very rapidly and this prevents earlier layers to learn,
which is today called as “the vanishing gradient problem.” Again it took more than a
decade for computers to handle more complex tasks. Some people prefer to name
this period as the second Al winter.

Later, it was discovered that the initialization of weights has a critical impor-
tance for training, and with a better choice of nonlinear activation function, we can
avoid the vanishing gradient problem. In the meantime, our computers got faster
(especially thanks to GPUs), and huge amount of data became available for many
tasks. G. Hinton and two of his graduate students demonstrated the effectiveness of
deep networks at a challenging AI task: speech recognition. They managed to
improve on a decade-old performance record on a standard speech recognition
dataset. In 2012, a CNN (again G. Hinton and students) won against other machine
learning approaches at the Large Scale Visual Recognition Challenge (ILSVRC)
image classification task for the first time.

2.2 Working principles of a deep neural network

Technically any neural network with two or more hidden layers is “deep.”
However, in papers of recent years, deep networks correspond to the ones with
many more layers. We show a simple network in Figure 3, where the first layer is
the input layer, the last layer is the output layer, and the ones in between are the
hidden layers.

In Figure 3, a;*) denotes the value after activation function is applied to the
inputs in jth neuron of ith layer. If the predicted output of the network, which is
a1 in this example, is close to the actual output, then the “loss” is low. Previously
mentioned backpropagation algorithm uses derivatives to carry the loss to the

oL (4

previous layers. - represents the derivative of loss with respect to a;
a1
L

75,7 Tepresents the derivative of loss with respect to a second layer neuron a1?. The

derivative of loss with respect to 41?) means how much of the final error (loss) is

), whereas

neuron a;? responsible for.

Activation function is the element that gives a neural network its nonlinear
representation capacity. Therefore, we always choose a nonlinear function. If acti-
vation function was chosen to be a linear function, each layer would perform a
linear mapping of the input to the output. Thus, no matter how many layers were
there, since linear functions are closed under composition, this would be equivalent
to having a single (linear) layer.

ad® W@ 4®

UL

l
O boa

Figure 3.
A simple neural network with two hidden layers. Entities plotted with thicker lines are the ones included in
Eq. (1), which will be used to explain the vanishing gradient problem.

Deep Learning: Exemplar Studies in Natural Language Processing and Computer Vision
DOI: http://dx.doi.org/10.5772/intechopen.91813

The choice of activation function is critically important. In early days of multi-
layer networks, people used to employ sigmoid or tanh , which cause the problem
named as vanishing gradient. Let’s explain the vanishing gradient problem with the
network shown in Figure 3.

oL oL
@D (2 w® s (2P .
D w o (z) w o (21) 30, (1)

Eq. (1) shows how the error in the final layer is backpropagated to a neuron in
the first hidden layer, where w®) denotes the weights in layer i and z;(?) denotes the
weighted input to the jth neuron in layer i. Here, let’s assume sigmoid is used as the
activation function. Then, a j(i) denotes the value after the activation function is
applied to 2,7, i.e., a;%) = 6(z;?). Finally, let o’ denote the derivative of sigmoid
function. Entities in Eq. (1) are plotted with thicker lines in Figure 3.

Figure 4 shows the derivative of sigmoid, where we observe that the highest
point derivative is equal to 25% of its original value. And most of the time, deriva-

tive is much less. Thus, at each layer w(/) - ¢/ (z(/*V) < 0.25 in Eq. (1). As a result,

-2 becomes 16 (or more) times smaller than 5%
iy oy

Thus, gradients become very small (vanish), and updates on weights get smaller,
and they begin to “learn” very slowly. Detailed explanation of the vanishing gradi-
ent problem can be found in [8].

products decrease exponentially.

0.25

0.2

0.05

Figure 4.
Derivative of the sigmoid function.

sigmoid RelLU Leaky RelU
na 1 [3 6

alx) = T5o= max((),x) max(0. lx,x)
08 4 4
04 2
0.2 o a /____,

2 -2
£ 4 a f L] 5 6 4 Z 1] 2 4 8 5 =] -] - 2 z 4 -] 8
x x X

Figure 5.
Plots for some activation functions. Sigmoid is on the left, vectified linear unit is in the middle, and leaky
rectified linear unit is on the right.

Data Mining - Methods, Applications and Systems

Today, choices of activation function are different. A rectified linear unit
(ReLU), which outputs zero for negative inputs and identical value for positive
inputs, is enough to eliminate the vanishing gradient problem. To gain some other
advantages, leaky ReLU and parametric ReLU (negative side is multiplied by a
coefficient) are among the popular choices (Figure 5).

3. Natural language processing

Deep learning transformed the field of natural language processing (NLP). This
transformation can be described by better representation learning through newly
proposed neural language models and novel neural network architectures that are
fine-tuned with respect to an NLP task.

Deep learning paved the way for neural language models, and these models
introduced a substantial performance improvement over n-gram language models.
More importantly, neural language models are able to learn good representations in
their hidden layers. These representations are shown to capture both semantic and
syntactic regularities that are useful for various downstream tasks.

3.1 Representation learning

Representation learning through neural networks is based on the distributional
hypothesis: “words with similar distributions have similar meanings” [9] where
distribution means the neighborhood of a word, which is specified as a fixed-size
surrounding window. Thus, the neighborhoods of words are fed into the neural
network to learn representations implicitly.

Learned representations in hidden layers are termed as distributed representa-
tions [10]. Distributed representations are local in the sense that the set of activa-
tions to represent a concept is due to a subset of dimensions. For instance, cat and
dog are hairy and animate. The set of activations to represent “being hairy” belongs
to a specific subset of dimensions. In a similar way, a different subset of dimensions
is responsible for the feature of “being animate.” In the embeddings of both cat and
dog, the local pattern of activations for “being hairy” and “being animate” is
observed. In other words, the pattern of activations is local, and the conceptualiza-
tion is global (e.g., cat and dog).

The idea of distributed representation was realized by [11] and other studies
relied on it. Bengio et al. [11] proposed a neural language model that is based on a
feed-forward neural network with a single hidden layer and optional direct con-
nections between input and output layers.

The first breakthrough in representation learning was word2vec [12]. The
authors removed the nonlinearity in the hidden layer in the proposed model archi-
tecture of [11]. This model update brought about a substantial improvement in
computational complexity allowing the training using billions of words. Word2vec
has two variants: continuous bag-of-words (CBOW) and Skip-gram.

In CBOW, a middle word is predicted given its context, the set of neighboring
left and right words. When the input sentence “creativity is intelligence having fun”
is processed, the system predicts the middle word “intelligence” given the left and
right contexts (Figure 6). Every input word is in one-hot encoding where there is a
vocabulary size (V) vector of all zeros except the one in that word’s index. In the
single hidden layer, instead of applying a nonlinear transformation, the average of
the neighboring left and right vectors (w,.) is computed to represent the context. As
the order of words is not taken into consideration by averaging, it is named as a bag-
of-words model. Then the middle word’s (w;) probability given the context

Deep Learning: Exemplar Studies in Natural Language Processing and Computer Vision
DOI: http://dx.doi.org/10.5772/intechopen.91813

(")
Ol
creativity | = e —
O O
O 40
D’ L0
i @] =l
is = =)
QP i Q
}_2) = - "“j" = lug :}-," intelligence
=) . u®) g%
4 O
i [S0)
’ S —
() - a i
| O v
' - s
@) 5 N dxV
QI ; h) intelligence =
fun))*' : 10, ...,0,1,0, ..., 0¥
(@]
! Vxd d
):

fun=[0,..0,1,0,..0

Figure 6.
CBOW architecture.

(p(we|w,)) is calculated through softmax on context-middle word dot product
vector (Eq. (2)). Finally, the output loss is calculated based on the cross-entropy
loss between the system predicted output and the ground-truth middle word.

exp (W - wy)
> jevexp (wj-w)

(2)

p(wt|w0) =

In Skip-gram, the system predicts the most probable context words for a given
input word. In terms of a language model, while CBOW predicts an individual
word’s probability, Skip-gram outputs the probabilities of a set of words, defined by
a given context size. Due to high dimensionality in the output layer (all vocabulary
words have to be considered), Skip-gram has higher computational complexity than
CBOW (Figure 7). To deal with this issue, rather than traversing all vocabulary in
the output layer, Skip-gram with negative sampling (SGNS) [13] formulates the
problem as a binary classification where one class represents the current context’s
occurrence probability, whereas the other is all vocabulary terms’ occurrence in the
present context. In the latter probability calculation, a sampling approach is incor-
porated. As vocabulary terms are not distributed uniformly in contexts, sampling is
performed from a distribution where the order of the frequency of vocabulary
words in corpora is taken into consideration. SGNS incorporates this sampling idea
by replacing the Skip-gram’s objective function. The new objective function
(Eq. (3)) depends on maximizing P(D = 1jw,c), where w, ¢ is the word-context
pair. This probability denotes the probability of (w,c) coming from the corpus data.
Additionally, P(D = Olu;, c) should be maximized if (;,c) pair is not included in the
corpus data. In this condition, (#;,¢) pair is sampled, as the name suggests negative
sampled k times.

(1ogo(i-¢)) + 3 (togo (=7) ®

w,c i=1

Both word2vec variants produced word embeddings that can capture multiple
degrees of similarity including both syntactic and semantic regularities.

A regular extension to word2vec model was doc2vec [14], where the main goal is
to create a representation for different document levels, e.g., sentence and

Data Mining - Methods, Applications and Systems

. f'()-‘_ —— C)
rr()" N)
¥ O
[o -
= .O 10 abacus.
O = -O a4 F
Ol - O
o= i O,
O KOL7
intelligence 8
=, ..., 0,1,0, ..., O]V it - = \ :G
o TN st
P d dxV &

zucchini =

0.0, 1,0,0

Figure 7.
Skip-gram architecture.

paragraph. Their architecture is quite similar to the word2vec except for the exten-
sion with a document vector. They generate a vector for each document and word.
The system takes the document vector and its words’ vectors as an input. Thus, the
document vectors are adjusted with regard to all the words in this document. At the
end, the system provides both document and word vectors. They propose two
architectures that are known as distributed memory model of paragraph vectors
(DM) and distributed bag-of-words model of paragraph vectors (DBOW).

DM: In this architecture, inputs are the words in a context except for the last
word and document, and the output is the last word of the context. The word
vectors and document vector are concatenated while they are fed into the system.

DBOW: The input of the architecture is a document vector. The model predicts
the words randomly sampled from the document.

An important extension to word2vec and its variants is fastText [15], where they
considered to use characters together with words to learn better representations for
words. In fastText language model, the score between a context word and the
middle word is computed based on all character n-grams of the word as well as the
word itself. Here n-grams are contiguous sequences of # letters like unigram for a
single letter, bigram for two consecutive letters, trigram for three letters in succes-
sion, etc. In Eq. (4), v, represents a context vector, 2, is a vector associated with
each n-gram, and G,, is the set of all character n-grams of the word w together with
itself.

s(w,c) = Z (ngvc) (4)

2€Gy

The idea of using the smallest syntactic units in the representation of words
introduced an improvement in morphologically rich languages and is capable to
compute a representation for out-of-vocabulary words.

The recent development in representation learning is the introduction of contex-
tual representations. Early word embeddings have some problems. Although they can
learn syntactic and semantic regularities, they are not so good in capturing a mixture
of them. For example, they can capture the syntactic pattern look-looks-looked.

Deep Learning: Exemplar Studies in Natural Language Processing and Computer Vision
DOI: http://dx.doi.org/10.5772/intechopen.91813

In a similar way, the words hard, difficult, and tough are embedded into closer points
in the space. To address both syntactic and semantic features, Kim et al. [16] used
a mixture of character- and word-level features. In their model, at the lowest level
of hierarchy, character-level features are processed by a CNN; after transferring
these features over a highway network, high-level features are learned by the use
of a long short-term memory (LSTM). Thus, the resulting embeddings showed
good syntactic and semantic patterns. For instance, the closest words to the word
richard are returned as eduard, gevard, edward, and carl, where all of them are
person names and have syntactic similarity to the query word. Due to character-
aware processing, their models are able to produce good representations for
out-of-vocabulary words.

The idea of capturing syntactic features at a low level of hierarchy and the
semantic ones at higher levels was realized ultimately by the Embeddings from
Language Models (ELMo) [17]. ELMo proposes a deep bidirectional language model
to learn complex features. Once these features are learned, the pre-trained model is
used as an external knowledge source to the fine-tuned model that is trained using
task-specific data. Thus, in addition to static embeddings from the pre-trained
model, contextual embeddings can be taken from the fine-tuned one.

Another drawback of previous word embeddings is they unite all the senses of a
word into one representation. Thus, different contextual meanings cannot be
addressed. The brand new ELMo and Bidirectional Encoder Representations from
Transformers (BERT) [18] models resolve this issue by providing different repre-
sentations for every occurrence of a word. BERT uses bidirectional Transformer
language model integrated with a masked language model to provide a fine-tuned
language model that is able to provide different representations with respect to
different contexts.

3.2 NLP with neural network solutions

In NLP, different neural network solutions have been used in various down-
stream tasks.

Language data are temporal in nature so recurrent neural networks (RNNs)
seem as a good fit to the task in general. RNNs have been used to learn long-range
dependencies. However, because of the dependency to the previous time steps in
computations, they have efficiency problems. Furthermore, when the length of
sequences gets longer, an information loss occurs due to the vanishing gradient
problem.

Long short-term memory architectures are proposed to tackle the problem of
information loss in the case of long sequences. Gated recurrent units (GRUs) are
another alternative to LSTMs. They use a gate mechanism to learn how much of the
past information to preserve at the next time step and how much to erase.

Convolutional neural networks have been used to capture short-ranging depen-
dencies like learning word representation over characters and sentence representa-
tion over its n-grams. Compared to RNNs, they are quite efficient due to
independent processing of features. Moreover, through the use of different convo-
lution filter sizes (overlapping localities) and then concatenation, their learning
regions can be extended.

Machine translation is a core NLP task that has witnessed innovative neural
network solutions that gained wide application afterwards. Neural machine trans-
lation aims to translate sequences from a source language into a target language
using neural network architectures. Theoretically, it is a conditional language model
where the next word is dependent on the previous set of words in the target
sequence and the source sentence at the same time. In traditional language

Data Mining - Methods, Applications and Systems

modeling, the next word’s probability is computed based solely on the previous set
of words. Thus, in conditional language modeling, conditional means conditioned
on the source sequence’s representation. In machine translation, source sequence’s
processing is termed as encoder part of the model, whereas the next word predic-
tion task in the target language is called decoder. In probabilistic terms, machine
translation aims to maximize the probability of the target sequence y given the
source sequence x as follows.

arg max P(y|x) (5)
y

This conditional probability calculation can be conducted by the product of
component conditional probabilities at each time step where there is an assumption
that the probabilities at each time step are independent from each other (Eq. (6)).

P(ylx) = P(yl|x)P(y2|yl,x)P(y3|yl,y2,x), ’P(J’tb’p ""yt—l’x)

(6)
P(y;lyss s9i15%)

I
zw

1

Il
N

The first breakthrough neural machine translation model was an LSTM-based
encoder-decoder solution [19]. In this model, source sentence is represented by the
last hidden layer of encoder LSTM. In the decoder part, the next word prediction is
based on both the encoder’s source representation and the previous set of words in
the target sequence. The model introduced a significant performance boost at the
time of its release.

In neural machine translation, the problem of maximizing the probability of a
target sequence given the source sequence can be broken down into two compo-
nents by applying Bayes rule on Eq. (5): the probability of a source sequence given
the target and the target sequence’s probability (Eq. (7)).

arg max P(x|y)P(y) 7)
y

In this alternative formulation, P(x|y) is termed as translation model and P(y) is
a language model. Translation model aims to learn correspondences between source
and target pairs using parallel training corpus. This learning objective is related to
the task of learning word-level correspondences between sentence pairs. This
alignment task is vital in that a correct translation requires to generate the counter-
part word(s) for the local set of words in the source sentence. For instance, the
French word group “tremblement de terre” must be translated into English as the
word “earthquake,” and these correspondences must be learned in the process.

Bandanau et al. [20] propose an attention mechanism to directly connect to each
word in the encoder part in predicting the next word in each decoder step. This
mechanism provides a solution to alignment in that every word in translation is
predicted by considering all words in the source sentence, and the predicted word’s
correspondences are learned by the weights in the attention layer (Figure 8).

Attention is a weighted sum of values with respect to a query. The learned
weights serve as the degree of query’s interaction with the values at hand. In the
case of translation, values are encoder hidden states, and query is decoder hidden
state at the current time step. Thus, weights are expected to show each translation
step’s grounding on the encoder hidden states.

Eq. (8) gives the formulae for an attention mechanism. Here ; represents each
hidden state in the encoder (VALUES in Figure 8), w; is the query vector coming

10

Deep Learning: Exemplar Studies in Natural Language Processing and Computer Vision
DOI: http://dx.doi.org/10.5772/intechopen.91813

6‘ ATTENTION

% .

O‘ TT——— _ _ QUTPUT

- i '.‘WEIGHTS'; *
I [— = = |
| ‘. ll ‘| VALUES |
T e
\ I =S
I
B g B B
ENCODER DECODER
Figure 8.

Sequence-to-sequence attention.

from the current hidden state of the decoder (each QUERY in Figure 8), ¢;
(WEIGHTS in Figure 8) are attention weights, and K (OUTPUT in Figure 8) is the
attention output that is combined with the last hidden state of the decoder to make
the next word prediction in translation.

o — exp (hi - w;)
LY jexp (hy-w))
0; = aih; (8)

K= Zoi

The success of attention in addressing alignment in machine translation gave rise
to the idea of a sole attention-based architecture called Transformer [21]. The
Transformer architecture produced even better results in neural machine transla-
tion. More importantly, it has become state-of-the-art solution in language model-
ing and started to be used as a pre-trained language model. The use of it as a pre-
trained language model and the transfer of this model’s knowledge to other models
introduced performance boost in a wide variety of NLP tasks.

The contribution of attention is not limited to the performance boost introduced
but is also related to supporting explainability in deep learning. The visualization of
attention provides a clue to the implicit features learned for the task at hand.

4. Computer vision and CNNs

To observe the performance of the developed methods on computer vision
problems, several competitions are arranged all around the world. One of them is
Large Scale Visual Recognition Challenge [22]. This event contains several tasks
which are image classification, object detection, and object localization. In image
classification task, the aim is to predict the class of images in the test set given a set
of discrete labels, such as dog, cat, truck, plane, etc. This is not a trivial task since

11

Data Mining - Methods, Applications and Systems

different images of the same class have quite different instances and varying view-
points, illumination, deformation, occlusion, etc.

All competitors in ILSVRC train their model on ImageNet [22] dataset.
ImageNet 2012 dataset contains 1.2 million images and 1000 classes. Classification
performances of proposed methods were compared according to two different
evaluation criteria which are top 1 and top 5 score. In top 5 criterion, for each image
top 5 guesses of the algorithm are considered. If actual image category is one of
these five labels, then the image is counted as correctly classified. Total number of
incorrect answers in this sense is called top 5 error.

An outstanding performance was observed by a CNN (convolutional neural
network) in 2012. AlexNet [23] got the first place in classification task achieving
16.4% error rate. There was a huge difference between the first (16.4%) and second
place (26.1%). In ILSVRC 2014, GoogleNet [24] took the first place achieving 6.67%
error rate. Positive effect of network depth was observed. One year later, ResNet
took the first place achieving 3.6% error rate [25] with a CNN of 152 layers. In the
following years, even lower error rates were achieved with several modifications.
Please note that the human performance on the image classification task was
reported to be 5.1% error [22].

4.1 Architecture of a typical CNN

CNNss are the fundamental structures while working on images and videos.
A typical CNN is actually composed of several layers interleaved with each other.

4.1.1 Convolutional layer

Convolutional layer is the core building block of a CNN. It contains plenty of
learnable filters (or kernels). Each filter is convolved across width and height of
input images. At the end of training process, filters of network are able to identify
specific types of appearances (or patterns). A mathematical example is given to
illustrate how convolutional layers work (Figure 9). In this example, a 5 x 5 RGB
image is given to the network. Since images are represented as 3D arrays of num-
bers, input consists of three matrices. It is convolved with a filter of size 3 x 3 x 3
(height, weight, and depth). In this example, convolution is applied by moving the
filter one pixel at a time, i.e., stride size = 1. First convolution operation can be seen
at Figure 9a. After moving the kernel one pixel to the right, second convolution
operation can be seen at Figure 9b. Element-wise multiplication © is applied in
each convolution phase. Thus the operation in Figure 9a is shown below Eq. (9).

110 1 1 0 1 2 1 0O 0 1
112|600 0 1|+|1 0 OjO|1T 1 O
2 11 -1 1 1 2 20 0 -1 1
9)
2 20 11 O
+10 1 2|01 1 0 |+1=8
011 0 -1 -1

Convolution depicted in Figure 9 is performed with one filter which results in
one matrix (called activation map) in the convolution layer. Using # filters for the
input in Figure 9 produces a convolution layer of depth # (Figure 10).

12

Deep Learning: Exemplar Studies in Natural Language Processing and Computer Vision
DOI: http://dx.doi.org/10.5772/intechopen.91813

Input Volume (5x5%3) Filter W1 (3x3x3) Output Volume Input Volume (5x5x3) Filter W1 (3x3x3) Output Volume
T 1 0o 1 17| 1Ly Eleo s 1o o T 8 E]s
o [0 2 00 1 7 116 () EIRR R) 0 0 1 7116
2 (5] i s 2 2 il 40 i3 b 20 2 =Fl G A 4456
TEEETE il [0 Y 2 @
i 200 ety 120 00 g

o k) 1 VB
) 2 el 2 9. =l =L N Bl E 0 EL =1
Tl o) oal &) tfo o 2]t

18 Xl i
2 2o 212 0 oo

10 1 0
RS 20 [0 20 5 1
1l /2 1 20 2 e
Bias(1x1x1)
R 2 @ 2012 002 i
o o B o 1 o1
ol i) o |rlre
(AFEE) I TETE
2 0F) 2 20 [oll 2| JEY o
Figure 9.

Convolution process. (a) First convolution operation applied with filter W1. Computation gives us the
top-left member of an activation map in the next layer. (b) Second convolution operation, again applied
with filter W1.

Activation maps

_
Convolution

Figure 10.

Formation of a convolution layer by applying n number of learnable filters on the previous layer. Each
activation map is formed by convolving a different filter on the whole input. In this example input to the
convolution is the RGB image itself (depth = 3). For every further layer, input is its previous layer. After
convolution, width and height of the next layer may or may not decrease.

4.1.2 Pooling layer

Pooling layer is commonly used between convolutional layers to reduce the
number of parameters in the upcoming layers. It makes the representations smaller
and the algorithm much faster. With max pooling, filter takes the largest number in
the region covered by the matrix on which it is applied. Example input, on which
2 x 2 max pooling is applied, is shown in Figure 11. If the input size isw x h x n,
then the output size is (w/2) x (h/2) x n. Techniques such as min pooling and
average pooling can also be used.

Standard CNNs generally have several convolution layers, followed by pooling
layers and at the end a few fully connected layers (Figure 12). CNNs are similar to
standard neural networks, but instead of connecting weights to all units of the
previous layer, a convolution operation is applied on the units (voxels) of the
previous layer. It enables us scale weights in an efficient way since a filter has a
fixed number of weights and it is independent of the number of the voxels in the
previous layer.

13

Data Mining - Methods, Applications and Systems

5 2x2 Max-pool 30

Figure 11.
Max pooling.

O
- poal2
conv? fully softmax
connected layer
layers
Figure 12.
A typical CNN for image classification task.
— L;=-log(0.13) = 0.89

tiger 5.1 — 1640 — 087

lion -1.7 0.18 0.00

Image; .

classes scores exp(0)) normalized
o; probabilities

P}'

Figure 13.

An example of softmax classification loss calculation. Computed loss, L;, is only for the ith sample in the dataset.

4.1.3 Classification layer

What we have in the last fully connected layer of a classification network is the
output scores for each class. It may seem trivial to select the class with the highest
score to make a decision; however we need to define a loss to be able to train the
network. Loss is defined according to the scores obtained for the classes. A common
practice is to use softmax function, which first converts the class scores into nor-
malized probabilities (Eq. (10)):

e%

P Ee

where k is the number of classes, o; are the output neurons (scores), and p; are

(10)

the normalized probabilities. Softmax loss is equal to the log of the normalized
probability of the correct class. An example calculation of softmax loss with three
classes is given in Figure 13.

4.2 Generalization capability of CNNs

The ability of a model to make correct predictions for new samples after trained
on the training set is defined as generalization. Thus, we would like to train a CNN

14

Deep Learning: Exemplar Studies in Natural Language Processing and Computer Vision
DOI: http://dx.doi.org/10.5772/intechopen.91813

with a high generalization capacity. Its high accuracy should not be only for training
samples. In general, we should increase the size and variety of the training data, and
we should avoid training an excessively complex model (simply called overfitting).
Since it is not always easy to obtain more training data and to pick the best com-
plexity for our model, let’s discuss a few popular techniques to increase the gener-
alization capacity.

4.2.1 Regularization loss

This is a term, R(W), added to the data loss with a coefficient (1) called
regularization strength (Eq. (10)). Regularization loss can be a sum of L1 or L2
norm of weights. The interpretation of R(W) is that we want smaller weights to be
able to achieve smoother models for better generalization. It means that no input
dimension can have a very large influence on the scores all by itself.

1 N
L:N;LH—A-R(W) (11)

4.2.2 Dropout

Another way to prevent overfitting is a technique called dropout, which corre-
sponds to removing some units in the network [26]. The neurons which are
“dropped out” in this way do not contribute to the forward pass (computation of
loss for a given input) and do not participate in backpropagation (Figure 14). In
each forward pass, a random set of neurons are dropped (with a hyperparameter of
dropping probability, usually 0.5).

4.2.3 Data augmentation

The more training samples for a model, the more successful the model will be.
However, it is rarely possible to obtain large-size datasets either because it is hard to
collect more samples or it is expensive to annotate large number of samples. There-
fore, to increase the size of existing raw data, producing synthetic data is sometimes
preferred. For visual data, data size can be increased by rotating the picture at
different angles, random translations, rotations, crops, flips, or altering brightness
and contrast [27].

4.3 Transfer learning

Short after people realized that CNNs are very powerful nonlinear models for
computer vision problems, they started to seek an insight of why these models

No Dropout With Dropout

Figure 14.
Applying dropout in a neural net.

15

Data Mining - Methods, Applications and Systems

perform so well. To this aim, researchers proposed visualization techniques that
provide an understanding of what features are learned in different layers of a CNN
[28]. It turns out that first convolutional layers are responsible for learning
low-level features (edges, lines, etc.), whereas as we go further in the convolutional
layers, specific shapes and even distinctive patterns can be learned (Figure 15).

In early days of observing the great performance of CNNs, it was believed that
one needs a very large dataset in order to use CNNs. Later, it was discovered that,
since the pre-trained models already learned to distinguish some patterns, they
provide great benefits for new problems and new datasets from varying domains.
Transfer learning is the name of training a new model with transferring weights
from a related model that had already been trained.

If the dataset in our new task is small but similar to the one that was used in pre-
trained model, then it would work to change the classification layer (according to
our classes) and train this last layer. However, if our dataset is also big enough, we
can include a few more layers (starting from the fully connected layers at the end)
to our retraining scheme, which is also called fine-tuning. For instance, if a face
recognition model trained with a large database is available and you would like to
use that model with the faces in your company, that would constitute an ideal case
of transferring the weights from the pre-trained model and fine-tune one or two
layers with your local database. On the other hand, if the dataset in our new task is
not similar to the one used in pre-trained model, then we would need a larger
dataset and need to retrain a larger number of layers. An example of this case is
learning to classify CT (computer tomography) images using a CNN pre-trained on
ImageNet dataset. In this situation, the complex patterns (cf. Figure 15c and d) that
were learned within the pre-trained model are not much useful for your new task.
If both the new dataset is small and images are much different from those of a
trained model, then users should not expect any benefit from transferring weights.
In such cases users should find a way to enlarge the dataset and train a CNN from
scratch using the newly collected training data. The cases that a practitioner may
encounter from the transfer learning point of view are summarized in Table 1.

(a) (b) (c)

Figure 15.

Image patches corresponding to the highest activations in a random subset of feature maps. First layer’s high
activations occur at patches of distinct low-level features such as edges (a) and lines (b); further layers’ neurons
learn to fire at more complex structuves such as geometvic shapes (c) or patterns on an animal (d). Since
activations in the first layer correspond to small areas on images, resolution of patches in (a) and (b) is low.

Very similar dataset Very different dataset
Very little data Replace the classification layer Not recommended
A lot of data Fine-tune a few layers Fine-tune a larger number of layers

Table 1.
Strategies of transfer learning according to the size of the new dataset and its similarity to the one used in pre-
trained model.

16

Deep Learning: Exemplar Studies in Natural Language Processing and Computer Vision
DOI: http://dx.doi.org/10.5772/intechopen.91813

Figure 16.
Example images for each class used in the experiment of transfer learning for animal classification.

S — -— o —o ——pg=—(®) Final
g
&
% Training
< — —@— = Valdation
20
Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5§
5 EPoen 1, [Epoch2 ~ Epxn3 Ephd | Epoch5
0 5 10 15 20 25 30 35 40 45
lteration
(@)
100 -
1l |
i 7 P Final
g
5 60
g
3
& 40 Training
— -@— = Validation
20
10 20 30 40
0 Il 1 i L i 1 L K
0 100 200 300 400 500 600 700 BOO 800
Iteration
(b)
Figure 17.

Training and validation set accuracies obtained (a) with transfer learning and (b) without transfer learning.

To emphasize the importance of transfer learning, let us present a small exper-
iment where the same model is trained with and without transfer learning. Our task
is the classification of animals (four classes) from their images. Classes are zebra,
leopard, elephant, and bear where each class has 350 images collected from the
Internet (Figure 16). Transfer learning is performed using an AlexNet [23] pre-
trained on ImageNet dataset. We have replaced the classification layer with a four-
neuron layer (one for each class) which was originally 1000 (number of classes in
ImageNet). In training conducted with transfer learning, we reached a 98.81%
accuracy on the validation set after five epochs (means after seeing the dataset five
times during training). Readers can observe that accuracy is quite satisfactory even
after one epoch (Figure 17a). On the other hand, in training without transfer
learning, we could reach only 76.90% accuracy even after 40 epochs (Figure 17b).
Trying different hyperparameters (regularization strength, learning rate, etc.)
could have a chance to increase accuracy a little bit more, but this does not alleviate
the importance of applying transfer learning.

17

Data Mining - Methods, Applications and Systems

5. Conclusions

Deep learning has become the dominant machine learning approach due to the
availability of vast amounts of data and improved computational resources. The
main transformation was observed in text and image analysis.

In NLP, change can be described in two major lines. The first line is learning
better representations through ever-improving neural language models. Currently,
self-attention-based Transformer language model is state-of-the-art, and learned
representations are capable to capture a mix of syntactic and semantic features and
are context-dependent. The second line is related to neural network solutions in
different NLP tasks. Although LSTMs proved useful in capturing long-term depen-
dencies in the nature of temporal data, the recent trend has been to transfer the pre-
trained language models’ knowledge into fine-tuned task-specific models. Self-
attention neural network mechanism has become the dominant scheme in pre-
trained language models. This transfer learning solution outperformed existing
approaches in a significant way.

In the field of computer vision, CNNs are the best performing solutions. There
are very deep CNN architectures that are fine-tuned, thanks to huge amounts of
training data. The use of pre-trained models in different vision tasks is a common
methodology as well.

One common disadvantage of deep learning solutions is the lack of insights due
to learning implicitly. Thus, attention mechanism together with visualization seems
promising in both NLP and vision tasks. The fields are in the quest of more
explainable solutions.

One final remark is on the rise of multimodal solutions. Till now question
answering has been an intersection point. Future work are expected to be devoted
to multimodal solutions.

Author details

Selma Tekir*" and Yalin Bastanlar®
Computer Engineering Department, Izmir Institute of Technology, Izmir, Turkey

*Address all correspondence to: selmatekir@iyte.edu.tr

+ These authors are contributed equally.

IntechOpen

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

18

Deep Learning: Exemplar Studies in Natural Language Processing and Computer Vision

DOI: http://dx.doi.org/10.5772/intechopen.91813

References

[1] McCulloch WS, Pitts W. A logical
calculus of the ideas immanent

in nervous activity. Bulletin of
Mathematical Biophysics. 1943;5:
115-133

[2] Rosenblatt F. The Perceptron,
a Perceiving and Recognizing
Automaton Project Para. Cornell
Aeronautical Laboratory; 1957

[3] Images from the Rare Book and
Manuscript Collections. Cornell
University Library. Available from:
https://digital.library.cornell.edu/cata
log/ss:550351

[4] Minsky M, Papert S. Perceptrons. An

Introduction to Computational Geometry.

Cambridge, MA: MIT Press; 1969

[5] Werbos P. Beyond regression: New
tools for prediction and analysis in the
behavioral sciences [PhD thesis].
Cambridge, MA: Harvard University;
1974

[6] Rumelhart DE, Hinton GE,
Williams R]. Learning representations
by back-propagating errors. Nature.
1986;323:533-536

[7]1 LeCun Y, Jackel LD, Boser B,
Denker JS, Graf HP, Guyon I, et al.
Handwritten digit recognition:
Applications of neural network chips
and automatic learning. IEEE
Communications Magazine. 1989;
27(11):41-46

[8] Nielsen M. Neural Network and
Deep Learning. Available from: http://
neuralnetworksanddeeplearning.com/
chap5.html [Accessed: 30 December
2019]

[9] Harris Z. Distributional structure.
Word. 1954;10(23):146-162

[10] Hinton GE, McClelland JL,
Rumelhart DE. Distributed

19

representations. In: Parallel Distributed
Processing: Explorations in the
Microstructure of Cognition. Vol. 1.
Cambridge, MA: MIT Press; 1986.

pp. 77-109

[11] Bengio Y, Ducharme R, Vincent P,
Janvin C. A neural probabilistic
language model. Journal of Machine
Learning Research. 2003;3:1137-1155

[12] Mikolov T, Chen K, Corrado G,
Dean J. Efficient estimation of
word representations in vector

space. In: Workshop Proceedings of
ICLR. 2013

[13] Mikolov T, Sutskever I, Chen K,
Corrado G, Dean J. Distributed
representations of words and phrases
and their compositionality. CoRR. abs/
1310.4546. Available from: http://arxiv.
org/abs/1310.4546

[14] Le Q, Mikolov T. Distributed
representations of sentences and
documents. In: Proceedings of the 31st
International Conference on
International Conference on Machine
Learning (ICML). 2014

[15] Bojanowski P, Grave E, Joulin A,
Mikolov T. Enriching word vectors with
subword information. Transactions of
the Association for Computational
Linguistics (TACL). 2016;5:135-146

[16] Kim Y, Jernite Y, Sontag D,

Rush AM. Character-aware neural
language models. In: Proceedings of
Thirtieth AAAI Conference on Artificial
Intelligence (AAAI). 2016

[17] Peters ME, Neumann M, Iyyer M,
Gardner M, Clark C, Lee K, et al. Deep
contextualized word representations. In:
Proceedings of NAACL. 2018

[18] Devlin J, Chang M, Lee K,
Toutanova K. BERT: Pre-training of
deep bidirectional transformers for

Data Mining - Methods, Applications and Systems

language understanding. In: Proceedings
of NAACL. 2019

[19] Sutskever I, Vinyals O, Le QV.
Sequence to sequence learning with
neural networks. In: Proceedings of
Advances in Neural Information
Processing Systems (NIPS). 2014

[20] Bandanau D, Cho K, Bengio Y.
Neural machine translation by jointly
learning to align and translate. In:
Proceedings of 3rd International
Conference on Learning
Representations (ICLR). 2015

[21] Vaswani A, Shazeer N, Parmar N,
Uszkoreit J, Jones L, Gomez AN, et al.
Attention is all you need. In:
Proceedings of Advances in Neural
Information Processing Systems (NIPS).
2017

[22] Russakovsky O et al. ImageNet large
scale visual recognition challenge.
International Journal of Computer
Vision (IJCV). 2015;115(3):211-252

[23] Krizhevsky A, Sutskever I,
Hinton GE. Imagenet classification with

deep convolutional neural networks. In:
Proceedings of NIPS. 2012

[24] Szegedy C, Liu W, Jia Y,
Sermanet P, Reed S, Anguelov D, et al.
Going deeper with convolutions. In:
Proceedings of CVPR. 2015

[25] He K, Zhang X, Ren S, Sun J. Deep
residual learning for image recognition.
In: Proceedings of CVPR. 2016

[26] Srivastava N et al. Dropout: A
simple way to prevent neural networks
from overfitting. The Journal of
Machine learning Research. 2014;15(1):
1929-1958

[27] Goodfellow I, Bengio Y, Courville A.

Deep Learning. Cambridge, MA: MIT
Press; 2016

20

[28] Zeiler MD, Fergus R. Visualizing
and understanding convolutional
networks. In: Proceedings of ECCV.
2014

Chapter 2

Contribution to Decision Tree
Induction with Python: A Review

Bouchra Lamrini

Abstract

Among the learning algorithms, one of the most popular and easiest to under-
stand is the decision tree induction. The popularity of this method is related to three
nice characteristics: interpretability, efficiency, and flexibility. Decision tree can be
used for both classification and regression kind of problem. Automatic learning of a
decision tree is characterised by the fact that it uses logic and mathematics to
generate rules instead of selecting them based on intuition and subjectivity. In this
review, we present essential steps to understand the fundamental concepts and
mathematics behind decision tree from training to building. We study criteria and
pruning algorithms, which have been proposed to control complexity and optimize
decision tree performance. A discussion around several works and tools will be
exposed to analyze the techniques of variance reduction, which do not improve or
change the representation bias of decision tree. We chose Pima Indians Diabetes
dataset to cover essential questions to understand pruning process. The paper’s
original contribution is to provide an up-to-date overview that is fully focused on
implemented algorithms to build and optimize decision trees. This contributes to
evolve future developments of decision tree induction.

Keywords: decision tree, induction learning, classification, pruning,
bias-variance trade-off

1. Introduction

Decision tree induction is the most known and developed model of machine
learning methods often used in data mining and business intelligence for prediction
and diagnostic tasks [1-4]. It is used in classification problems, regression problems
or time-dependent prediction. The main strength of decision tree induction is its
interpretability characteristics. It is a graphical method designed for problems
involving a sequence of decisions and successive events. More precisely, his results
formalise the reasoning that an expert could have to reproduce the sequence of
decisions and find a characteristic of an object. The main advantage of this type of
model is that a human being can easily understand and reproduce decision sequence
to predict the target category of a new instance. The results provide a graphic
structure or a base of rules facilitates understanding and corresponds to human
reasoning.

Learning by decision tree is part of supervised learning, where the class of each
object in the database is given. The goal is to build a model from a set of examples

21 IntechOpen

Data Mining - Methods, Applications and Systems

associated with the classes to find a description for each of the classes from the
common properties between the examples. Once this model has been built, we can
extract a set of classification rules. In this model, the extracted rules are then used to
classify new objects whose class is unknown. The classification is done by travelling
a path from the root to a leaf. The class returned (default class) is the one that is
most frequent among the examples on the sheet. At each internal node (decision
node) of the tree, there is a test (question) which corresponds to an attribute in the
learning base and a branch corresponding to each of the possible values of the
attribute. At each leaf node, there is a class value. A path from the root to a node
therefore corresponds to a series of attributes (questions) with their values
(answers). This flowchart-like structure with recursive partitioning helps user in
decision-making. It is this visualisation, which easily mimics the human-level
thinking. That is why decision trees are easy to understand and interpret.

Another advantage of decision tree induction is its ability to automatically iden-
tify the most discriminating features for an use case, i.e., the most representative
data inputs for a given task. This is explained by its flexibility and autonomy as a
model with little assumption on the hypothesis space. It is an approach that remains
particularly useful for input space problems and a powerful tool able to handle very
large-scale problems, thus particularly useful in big data mining. However, it is
generally less accurate than other machine learning models like neural networks.

In brief, this learning algorithm has the following three essential characteristics:

* Interpretability: Because of its flowchart-like structure, the way attributes
interact to give a prediction is very readable.

* Efficiency: The induction process is done by a top-down algorithm which
recursively splits terminal nodes of the current tree until they all contain
elements of only one class. Practically, the algorithm is very fast in terms of
running time and can be used on very large datasets (e.g. of millions of objects
and thousands of features).

* Flexibility: This method does not make any hypothesis about the problem
under consideration. It can handle both continuous and discrete attributes.
Predictions at leaf nodes may be symbolic or numerical (in which case, trees
are called regression trees). In addition, the tree induction method can be easily
extended by improving tests at tree nodes (e.g. introducing linear
combinations of attributes) or providing a prediction at terminal nodes by
means of another model.

The review is organised into three parts. The first aims at introducing a brief
history of decision tree induction. We present mathematically basics and search
strategy used to train and build a decision tree. We discuss the supervised learning
problem and the trade-off between a model’s ability to minimise bias and variance.
In this regard, we are extending our investigation to fundamental aspects, such as
ensemble meta-algorithms and pruning methods, which we must put in advance for
building an optimal decision tree. In the second section, we introduce some results
obtained by means of the Scikit-Learn Python modules and Pima Indians Diabetes
data in order to feed our discussions and our perspectives in terms of future devel-
opments and applications of Python community. The third section is devoted to the
improvements of decision tree induction in order to improve its performance. We
have collected some technical discussions that we raise given our experience in
Research and Development (R&D). Finally, the conclusions give a general synthesis
of the survey developed and discuss some ideas for future works.

22

Contribution to Decision Tree Induction with Python: A Review
DOI: http://dx.doi.org/10.5772 /intechopen.92438

2. A brief history of decision tree induction

There are many induction systems that build decision trees. Hunt et al. [5] were
the first in this field to study machine learning using examples. Their concept
learning system (CLS) framework builds a decision tree that tries to minimise the
cost of classifying an object. There are two types of costs: (1) the cost of determining
the value of a property of the object O, exhibited by the object and (2) the
misclassification cost of deciding that the object belongs to class C when its real
class is K. The CLS method uses a strategy called Lookahead which consists of
exploring the space of all possible decision trees to a fixed depth and choosing an
action to minimise the cost in this limited space and then moving one level down in
the tree. Depending on the depth of the Lookahead chosen, CLS can require a
substantial amount of computation but has been able to unearth subtle patterns in
the objects shown to it.

Quinlan [6] proposed Iterative Dichotomiser 3 (ID3), which takes up certain
concepts of CLS. ID3 was developed following a challenge induction task on the
study of end of chess games posed by Donald Michie. Analogue concept learning
system (ACLS) [7] is a generalisation of ID3. CLS and ID3 require that each attri-
bute used to describe the object takes its values in a finite set. In addition to this type
of attribute, ACLS allows the use of attributes whose values can be integer. ASSIS-
TANT [8], which is a descendant of ID3, allows the use of continuous attributes and
builds a binary decision tree. ASSISTANT avoids overfitting by using a pruning
technique, which has resulted in ASSISTANT-86 [9]. Another descendant of ID3 is
[10, 11], which will be explained later.

There is another family of induction systems, such as the algorithm of the star
AQ [12], which induces a set of decision rules from a base of examples. AQ builds an
R function that covers positive examples and rejects negative ones. CN2 [13] learns
a set of unordered rules of the form “IF-THEN” from a set of examples. For this,
CN2 performs a top-down search (from general to specific) in the rule space,
looking for the best rule, then removes the examples covered by this rule and
repeats this process until no good rule is found. CN2’s strategy is similar to that of
AQ in that it eliminates the examples covered by the discovered rule, but it also
differs in that it specialises a starting rule instead of generalising it.

Statisticians have attributed the authorship of decision tree building to Morgan
and Sonquist [1], who are the first researchers to introduce the automatic interac-
tion detector (AID) method. This method is applied to learning problems whose
attribute to predict (the class) is quantitative. It works sequentially and is indepen-
dent of the extent of linearity in the classifications or the order in which the
explanatory factors are introduced. Morgan and Sonquist were among the first to
use decision trees and among the first to use regression trees.

Several extensions have been proposed: theta AID (THAID) [2] and chi-squared
AID (CHAID) [3] which uses chi-square as the independence gap to choose the best
partitioning attribute. There is also a method proposed by [4] called classification
and regression tree (CART) which builds a binary decision tree using the feature
and threshold that yield the largest information gain at each node.

Quinlan [11] then proposes the C4.5 algorithm for IT community. C4.5 removed
the restriction that entities must be categorical by dynamically defining a discrete
attribute based on numerical variables. This discretization process splits the contin-
uous attribute value into a discrete set of intervals. C4.5 then converts the trees
generated at the end of learning step into sets of if-then rules. This accuracy of each
rule is well taken into account to determine the order in which they must be
applied. Pruning is performed by removing the rule’s precondition if the precision
of the rule improves without it.

23

Data Mining - Methods, Applications and Systems

Many decision tree algorithms have been developed over the years, for example,
SPRINT by Shafer et al. [14] and SLIQ by Mehta et al. [15]. One of the studies
comparing decision trees and other learning algorithms was carried out by Tjen-
Sien et al. [16]. The study shows that C4.5 has a very good combination of error rate
and speed. C4.5 assumes that the training data is in memory. Gehrke et al. [17]
proposed Rainforest, an approach to develop a fast and scalable algorithm. In [18],
Kotsiantis represents a synthesis of the main basic problems of decision trees and
current research work. The references cited cover the main theoretical problems
that can lead the researcher into interesting directions of research and suggest
possible combinations of biases to explore.

2.1 Mathematical basics and search strategy

The automatic learning of the rules in a decision tree consists in separating the
learning objects into disjoint sub-samples of objects (which have no elements in
common) where the majority of objects ideally have the same value for the output
variable, i.e. the same class in the case of a classification problem. Each internal
node performs a test on an input attribute. This test is determined automatically
based on the initial training sample and according to test selection procedures that
differ from one tree induction algorithm to another. For attributes with numerical
values (or after encoding data), the test consists in comparing the value of an
attribute with a numerical value which is called discretization threshold. According
to the algorithm used, the terminal nodes of the tree are labelled either by the
majority class of objects in the training sample which have reached this sheet
following successive separations or by a distribution of probabilities of the classes
by frequency of these objects in each class.

As indicated above, the main learning algorithms using decision trees are C4.5
[11] and CART [4]. The CART algorithm is very similar to C4.5, except for a few
properties [19, 20], but it differs in that it supports numerical target variables
(regression) and does not compute rule sets. The CART algorithm can be used to
construct classification and regression decision trees, depending on whether the
dependent variable is categorical or numeric. It also handles missing attribute
values. The decision tree built by the CART algorithm is always a binary decision
tree (each node has only two child nodes), also called hierarchical optimal discrim-
inate analysis (HODA). The measurement of impurity (or purity) used in the
decision tree by CART is the Gini index (C4.5 uses the notion of entropy) for
classification tasks. In regression tasks, the fit method takes inputs and target
arguments as in the classification setting, only that in this case target, it is expected
to have floating point values (continuous values) instead of integer values. For a leaf
L;, common criteria to minimise as for determining locations for future splits are
mean squared error (MSE), which minimises the L; + 1 error using mean values at
terminal nodes, and mean absolute error (MAE), which minimises the L; error
using median values at terminal nodes.

Several software for decision trees building are available, most of them
referenced in the literature. We cite the chi-squared automatic interaction detector
(CHAID) method implemented in the SIPINA" tool which seeks to produce a tree of
limited size, allowing to initiate a data exploration. WEKA? uses C4.5 algorithm,
and there is no need to discretize any of the attributes, and scikit-learn Python
library uses an optimised version of the CART algorithm. The current (version

" http://eric.univ-lyon2.fr/~ricco/sipina.html

2 https://www.cs.waikato.ac.nz/ml/weka/

24

Contribution to Decision Tree Induction with Python: A Review
DOI: http://dx.doi.org/10.5772 /intechopen.92438

0.22.1) implementation of scikit-learn library does not support categorical variables.
A data encoding is mandatory at this stage (the labels transform into a value
between 0 and nbClasses-1). The algorithm options are described in the Python
documentation®.

The algorithm below generally summarises the learning phase of a decision tree
which begins at the top of the tree with a root node containing all the objects of the

learning set:

Algorithm 1: build DT

if DT contains objects all af which belong to the same class then
‘ return a leal labeled with this class
else

1- Take |ag<ay, = _choose_test_[{DT);

f 2- Split DT into DT and DT according to test [ap<ay] and build
the sub-trees SDTyp = build DTjp and SDTep = build DTy from
this sub-sets;

[3 Creat a node with the test [g<ay , make SDTjg and SDT e like

snecessors of this node and retnr the resulting tree.

L A

7 end
s _choose_test_(DT): Select an attribute a; and a threshold 2y, which
minimizes the measurement ol the score on D7

In order for the tree to be easily interpreted, its size must be minimum. Thus, the
test selection procedure applied at each node aims to choose the test (the attribute-
threshold pair) which separates the objects from the current sub-sample in an
optimal way, i.e. which reduces the uncertainty linked to the output variable within
successor nodes. An entropy measurement (score based on a normalisation of the
Shannon information measurement) allows to evaluate the gain of information
provided by the test carried out. Once the model has been built, we can infer the
class of a new object by propagating it in the tree from top to bottom according to
the tests performed. The chosen test separates the current sample of objects into
two sub-samples which are found in the successors of this node. Each test at a node
makes it possible to direct any object to one of the two successors of this node
according to the value of the attribute tested at this node. In other words, a decision
tree is seen as a function which attributes to any object the class associated with the
terminal node to which the object is directed following tests to the internal nodes of
the tree. Figure 1 illustrates an example using two input attributes with the
partitioning of the input space it implies.

The induction algorithm continues to develop the tree until the terminal nodes
contain sub-samples of objects that have the same output value. The label associated
with a leaf in the tree is determined from the objects in the learning set that have
been directed to this leaf. The majority class among the classes of these objects can
be used or even the distribution of class probabilities if a stop criterion has
interrupted development before reaching “pure” nodes.

The principal objective of an induction algorithm is to build on the learning data
a simpler tree whose reliability is maximum, i.e. the classification error rate is
minimal. However, a successful and very precise model on the learning set is not
necessarily generalizable to unknown examples (objects), especially in the presence
of noisy data. In this case, two sources of error expressed in the form of bias
(difference between the real value and the estimated value) and the variance can
generally influence the precision of a model. Several bibliographic analyses ([21]

3 https://scikit-learn.org/stable/modules/tree.html#

25

Data Mining - Methods, Applications and Systems

1

|' % N ¢,

.Ro?t Node . \:‘ Q‘
| Y - e @

IsX>05 " 9
W (&
Yas [\Nc ‘ \Q" Y
IsY>05 b § §

Yes r \NO 0 1
Q.‘ \‘\ Is X>0.25
| [

A R

r 7

Figure 1.
An example of a decision tree and the partition it implies (Figure taken from https://www.kdnuggets.com/
website).

and the references cited in this work, [22]) have shown that decision trees suffer
from a significant variance which penalises the precision of this technique. A tree
may be too large due to too many test nodes determined at the bottom of the tree on
sub-samples of statistically unreliable size objects. The choice of tests (attributes
and thresholds) at the internal nodes of a decision tree can also depend on a sample
to another which contributes to the variance of the models built. For these reasons,
the criteria for stopping the development of a tree or simplification techniques such
as pruning procedures is to find a good compromise between the complexity of the
model and its reliability on an independent sample. These techniques can only
improve the first source of error (bias) mentioned above. Different variance reduc-
tion techniques are proposed in the literature, notably the ensemble meta-
algorithms such as bagging, random forests, extra-trees and boosting.

The ensemble meta-algorithms are effective in combination with decision trees.
These methods differ by their way of adapting the original tree induction algorithm
and/or aggregating the results. Bagging, random forests and extra-trees methods
have several similarities. They independently build T constitutive trees. The pre-
dictions of different trees are aggregated as follows: each tree produces a vector of
class probabilities. The T trees probability are additional in a weight vector, and the
class that receives the most weight according to this one is assigned to the object.
Note that these three methods use a random component and their precision can
then vary slightly from one execution to another. Boosting method produces
sequentially (and deterministically) the set of trees unlike these three methods
using a different aggregation procedure. These methods have been successfully
applied to numerous applications, notably in bioinformatics [23] and in networks
[24]. Maree [22] presents a bibliographical analysis of these methods. His work
covers the problem of automatic image classification using sets of random trees
combined with a random extraction of sub-windows of pixel values.

2.2 Pruning

Pruning is a model selection procedure, where the models are the pruned sub-
trees of the maximum tree T. Let 7 be the set of all binary sub-trees of T having
the same root as T. This procedure minimises a penalised criterion where the
penalty is proportional to the number of leaves in the tree [25]. Defining the
optimal size of a decision tree consists in stopping the pre-pruning or reducing the

26

Contribution to Decision Tree Induction with Python: A Review
DOI: http://dx.doi.org/10.5772 /intechopen.92438

post-pruning of the tree to have the best pruned sub-tree from the maximum tree to
the sense of the generalisation error, i.e. improving the predictive aspect of the tree,
on the one hand, and reducing its complexity, on the other hand. To this end,
several pruning methods have been developed, such as:

* Minimal cost complexity pruning (MCCP), also called as post-pruning for the
CART algorithm [4]. This method consists in constructing a nested sequence of
sub-trees using a formulation called minimum cost complexity. In Section
2.2.1, we detail the general concept of this method that Scikit-Learn Library
adopted in its implementation.

* Reduced ervor pruning (REP) consists of estimating the real error of a given sub-
tree on a pruning or test set. The pruning algorithm is performed as follows:
“As long as there is a tree that can be replaced by a leaf without increasing the
estimate of the real error, then prune this tree”. This technique gives a slightly
congruent tree in the sense that some examples may be misclassified. The study
of Elomaa and Kadridinen [26] presents a detailed analysis of the REP method.
In this analysis, the two authors evoke that the REP method was introduced by
Quinlan [27] but the latter never presented it in an algorithmic way, which is a
source of confusion. Even though REP is considered a very simple, almost
trivial algorithm for pruning, many different algorithms have the same name.
There is no consensus whether REP is a bottom-up algorithm or an iterative
method. Moreover, it is not apparent that the training or pruning set is used to
determine the labels of the leaves that result from pruning.

* Pessimistic ervor pruning (PEP). In order to overcome the disadvantages of the
previous method, Quinlan [27] proposed a pruning strategy which uses a single
set of construction and pruning of the tree. The tree is pruned by examining
the error rate at each node and assuming that the true error rate is considerably
worse. If a given node contains N records in which E among them are
misclassified, then the error rate is estimated at E/N. The central concern of
the algorithm is to minimise this estimate, by considering this error rate as a
very optimistic version of the real error rate [28, 29].

* Minimum error pruning (MEP) was proposed by Niblett and Bratko [30],
critical value pruning (CVP) by Mingers [31] and error-based pruning (EBP)
proposed by Quinlan as an improvement of the PEP method, for the
algorithm C4.5.

2.2.1 Pre-pruning

Pre-pruning consists in fixing a stopping rule which allows to stop the growth of
a tree during learning phase by fixing a local stopping criterion which makes it
possible to evaluate the informational contribution of the segmentation relating to
the node that is being processed. The principle of the CHAID algorithm [32] is
based on the same principle by accepting segmentation if the measure of informa-
tion gain (y? difference in independence or ¢ from Tschuprow [3]) calculated on a
node is significantly higher than a chosen threshold. According to Rakotomalala
et al. [32, 33], formalisation involves a test of statistical hypothesis: the null
hypothesis is the independence of the segmentation variable with the class attribute.
If the calculated y? is higher than the theoretical threshold corresponding to the risk
of the first kind that we have set (respectively if the p-value calculated is lower than
the risk of first kind), we accept the segmentation.

27

Data Mining - Methods, Applications and Systems

One of the cons of this algorithm is that it prematurely stops the building process
of the tree. Furthermore, the use of the statistical test is considered critical. This is a
classic independence test whose variable tested is produced at the end of several
optimisation stages: search for the optimal discretization point for continuous vari-
ables and then search for the segmentation variable which maximises the measure
used. The statistical law is no longer the same from one stage to another. The
correction of the test by the introduction of certain procedures known as the
Bonferroni correction [33] is recommended, but in practice, this type of correction
does not lead to improvement in terms of classification performance. We also cite
the work of [34], which proposes two pruning approaches: the first is a method of
simplifying rules by the test of statistical independence to modify the pruning
mechanism of the algorithm CHAID, and the second uses validation criteria
inspired by the discovery technique of association rules.

The depth (maximum number of levels) of the tree and the minimum number
of observations from which no further segmentation attempts are made also
remain two practical options that can be fixed at start learning to manage the
complexity of the model. However, the choice of these parameters remains a critical
step in the tree building process because the final result depends on these parame-
ters that we have chosen. To this is added the fact that the evaluation is local
(limited to a node) and we take more account of the global evaluation of the tree. It
is therefore necessary to propose a rule which is not too restrictive (respectively not
too permissive) to obtain a suitable tree and not undersized (respectively not
oversized).

2.2.2 Post-pruning

The algorithm for building a binary decision tree using CART browses for each
node the m attributes (x1, %2, ..., %) one by one, starting with x; and continuing up
to x,,,. For each attribute, it explores all the possible tests (splits), and it chooses the
best split (dichotomy) which maximises the reduction in impurity. Then, it
compares the m best splits to choose the best of them. The function that measures
impurity should reach its maximum when the instances are fairly distributed
between the different classes and its minimum when a class contains all the
examples (the node is pure). There are different functions which satisfy these
properties. The function used by CART algorithm is Gini function (Gini impurity
index). Gini function on a node ¢ with a distribution of class probabilities on this
node P (j|t), c =1, .., kis:

G(p) = ¢(P(1]r), P(2lt), ..., P(k|t))
=3 P(clo).(1 - P(c])) @

If a split s on a node ¢ splits the subset associated with this node into two subsets,
left ¢ with a proportion p and right ¢p with a proportion p,, we can define the
impurity reduction measure as follows:

AG(s5,t) = G(t) — pg *Glta) — pp * Gltp) 2)

On each node, if the set of candidate splits is S, the algorithm searches the best
split s* such that:

AG(s*,t) = max ;csAG(s,t) 3)

28

Contribution to Decision Tree Induction with Python: A Review
DOI: http://dx.doi.org/10.5772 /intechopen.92438

Suppose we got some splits and came up with a set of terminal nodes T The set
of splits, used in the same order, determines the binary tree T. We have I(t) =
G(t)p(t). So the impurity function on the tree is:

I(T) =) 1(t) =) Gt)*p(t) 4)

teT teT

G(t) is the impurity measure on the node ¢, and p(z) is the probability that an
instance belongs to the node ¢.

It is easy to see that the selection of the splits which maximise 4;(s, t) is equiva-
lent to the selection of the splits which minimise the impurity I(T) on all the trees. If

we take any node ¢ € T and we use a split s which partitions the node into two parts
tp and ¢, the new tree T has the following impurity:

I(T) - TZ{;}I(t) +I(tp) +I(tc) (5)

Because we have partitioned the subset arrived at ¢ and ¢p and ¢¢, reducing the
impurity of the tree is therefore:

I(T) = 1(T) = I(T) ~ I(to) ~ I(tG) 6)

It only depends on the node ¢ and the splits s. So, to maximise the reduction of
impurity in the tree on a node ¢, we maximise:

Al(s,t) =1(t) — I(tg) — I(tp) @)

The proportions p, are defined as follows: p,, = p(tp)/p(t), p; = p(tc)/p(t) and
pe +pp = 1. So, Eq. (7) can be written as follows:

Al(s,t) = [G(t) = pg *Glta) —pp *G(tp)] +p(t)
=AG(s,t) *p(t)

(8)

Since p(t) is the only difference between (s,¢) and (s, 1), the same splits s*
maximises both expressions.

The stop splitting criterion used by CART was very simple: for a threshold > 0,
a node is declared terminal (leaf) if maxAI(s,t) <. The algorithm assigns to each
terminal node the most probable class.

Post-pruning is a procedure that appeared with the CART method [4]. It was
very widely taken up in different forms thereafter. The principle is to build the tree
in two phases. (1) The first phase of expansion consists in producing the purest
possible trees and in which all segmentations are accepted even if they are not
relevant. This is the principle of hurdling building. (2) In the second phase, we try
to reduce the tree by using another criterion to compare trees of different sizes. The
building time of the tree is of course longer. It can be penalising when the database
is very large while the objective is to obtain a tree that performs better in classifica-
tion phase.

The idea that was introduced by Breiman et al. [4] is to construct a sequence of
trees T, .., T}, .., Ty, which minimise a function called cost complexity metric (previ-
ously mentioned). This function combines two factors: the classification error rate
and the number of leaves in the tree using a parameter.

29

Data Mining - Methods, Applications and Systems

For each internal node, Ne and T, the relationship is defined as:

ARS

— emp
ale) =™ ©)

where ARfmp is the number of additional errors that the decision tree makes on

the set of samples S when we prune it at position p. [p| — 1 measures the number of
sheets deleted. The tree T, is obtained by pruning T; at its node which has the
smallest value of a(p) parameter. We thus obtain a sequence Ty, .., T, .., Tt of
elements of T, the last of which is reduced to a leaf. To estimate the error rate for
each tree, the authors suggest using two different methods, one based on cross-
validation and the other on a new test base.

3. Decision tree classifier building in Scikit-Learn

Today there are several best machine learning websites that propose tutorials to
show how decision trees work using the different modules of python. We quote for
example three popular websites: Towards Data Science,* KDnuggets,® and Kaggle.®
Developers offer in a few lines of optimised code how to use decision tree method
by covering the various topics concerning attribute selection measures, information
gain, how to optimise decision tree performance, etc.

From our side, we choose Pima Indians Diabetes datasets (often used in classifi-
cation problems) to examine the various tuned parameters proposed as arguments
by Scikit-Learn package. The Pima are a group of Native Americans living in
Arizona. A genetic predisposition allowed this group to survive normally to a diet
poor of carbohydrates for years. In the recent years, a sudden shift from traditional
agricultural crops to processed foods, together with a decline in physical activity,
made them develop the highest prevalence of type 2 diabetes, and for this reason
they have been subject of many studies. The original dataset is available at UCI
Machine Learning Repository and can be downloaded from this address,” “diabetes-
data.tar.Z”, containing the distribution for 70 sets of data recorded on diabetes
patients, several weeks to months worth of glucose, insulin and lifestyle data per
patient. The dataset includes data from 768 women with 8 characteristics, in par-
ticular:

1.Number of times pregnant (NTP)

2.Plasma glucose concentration in 2 h in an oral glucose tolerance test (PGC)
3. Diastolic blood pressure (mm Hg) (DBP)

4. Triceps skinfold thickness (mm) (TSFT)

5.Two-hour serum insulin (mu U/ml) (HSI)

6.Body mass index (weight in kg/(height in m)?) (BMI)

* https://towardsdatascience.com/decision-tree-algorithm-explained-83beb6e78ef4
> https://www.kdnuggets.com/2020/01/decision-tree-algorithm-explained.html
© https://www.kaggle.com/dmilla/introduction-to-decision-trees-titanic-dataset

7 http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes

30

Contribution to Decision Tree Induction with Python: A Review
DOI: http://dx.doi.org/10.5772 /intechopen.92438

7.Diabetes pedigree function (DPF)
8. Age (years)

The last column of the dataset indicates if the person has been diagnosed with
diabetes or not.

Without any data preparation step (cleaning, missing values processing, etc.),
we partitioned the dataset into a training data (75%) to build the tree and test data
(25%) for prediction. Then we kept the default settings which we can see through
the profile class function (Figure 2).

The Scikit-Learn documentation® explains in detail how to use each parameter
and offers other modules and functions to search information and internal struc-
tures of classifier from training to building step. Among these parameters, we
highlight in this review the following four we use to optimise the tree:

* criterion: Optional (default = “gini”). This parameter allows to measure the
quality of a split, use the different-different attribute selection measure and
supports two criteria, “gini” for the Gini index and “entropy” for the
information gain.

* max_depth: Optional (default = None), the maximum depth of a tree. If None,
then nodes are expanded until all the leaves contain less than
min_samples_split samples. A higher value of maximum depth causes
overfitting, and a lower value causes underfitting.

* min_samples_leaf: Optional (default = 1), the minimum number of samples
required to be at a leaf node. A split point at any depth will only be considered
if it leaves at least min_samples_leaf training samples in each of the left and
right branches. This may have the effect of smoothing the model, especially in
regression.

* min_impurity_decrease: Optional (default = 0.0). A node will be split if this
split induces a decrease of the impurity greater than or equal to this value.
The weighted impurity decrease equation is the following:

N, /N = (impurity — N /Ny * vight;mpurity — Ny, /N, * left; mpurity) (10)

where N is the total number of samples, N; is the number of samples at the
current node, Ny, is the number of samples in the left child and Nz is the number of
samples in the right child. N, Ny, N and Ny, all refer to the weighted sum, if
sample_weight is passed.

DecisionTreeClassifier(class weight=None, criterion="gin1', max depth=None,
max_features=None, max_leaf nodes=None,
min_impurity decrease=0.6, man_impurity split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight fraction leaf=0.6, presort=False,
random_state=None, splitter='best')

Figure 2.
Default setting to create decision tree classifier without pruning.

® https://scikit-learn.org/stable/modules/generated/sklearn.tree. DecisionTreeClassifier.html

31

Data Mining - Methods, Applications and Systems

In this example, each internal node has a decision rule that divides the data. The
node impurity is set by default at Gini ratio. A node is pure when all the objects
belong to the same class, i.e. impurity = 0. The unpruned tree resulting from this
setting is inexplicable and difficult to understand. In Figures 3 and 4, we will show
you how to adjust some tuned parameters to get an optimal tree by pruning.

“export_graphviz” and “pydotplus” modules convert the decision tree classifier
to a “dot” file and in “png/pdf/..” format. Using various options of this modules,
you can adjust leaf colours and edit leaf content, important descriptors, etc.
Personally, I really enjoyed doing it during my R&D works.

i
1
i

Figure 3.
Decision tree without pruning. Accuracy = 0.72.

Most important features - Decision Tree

PGC

EMI

DPF -

Age

NTP

HSI 1

TSFT

00 007 013 02 027 033 D4 047 053 06
Impartance

Figure 4.
Feature importance. Decision tree without pruning.

32

Contribution to Decision Tree Induction with Python: A Review
DOI: http://dx.doi.org/10.5772 /intechopen.92438

We will now adjust only one parameter, the maximum depth of the tree. This
will control the tree size (number of levels). On the same data, we set
maximum_depth at 4. Next, we set “min_impurity_decrease” at 0.01 and
min_samples_leaf at 5. We will see that this pruned tree is less complex and easier to
understand by a field expert than the previous flowchart. We will see that we have
good accuracy with this setting. Accuracy can be computed by comparing actual
test set values and predicted values (Figures 5-8).

Most important features of Pima Indians Diabetes dataset is shown in
Figures 4, 6 and 8. We can see the root node is glucose, which can show the glucose
has the max information gain, so it confirm the common sense and the clinical

Figure 5.
Decision tree pruned by mean of maximum depth parameter. Accuracy = 0.79.

Most important features - Decision Tree

PGC

EMI

DPF +

NTP -

H5I -

TSFT

DEBP

T T ‘ T
00 007 013 02 027 033 D4 047 053 06
Impartance

Figure 6.
Feature importance. Decision tree after pruning (corvesponding to Figure 5 results).

33

Data Mining - Methods, Applications and Systems

True False

node #1 node #8
Age <= 28.5 BMI <= 29.95
gini = 0.325 gini = 0.469
samples = 382 samples = 194
value = [304, 78] value = [73, 121]
class = 0 class = 1
node #2 BMn(l)ii#Z%) node #9
gini = 0.191 ini =0 44'2 gini = 0.459
samples = 215 g ! . 167 samples = 56
value = [192, 23] samples value = [36, 20]
b= value = [112, 55] ph: Wil
class =0
/ node #5
ey 8 DPF <= 0.563
gm - Y. gini = 0.479

samples = 34

alue = [32, 2 samples = 133
value = B2 | value - (80, 53]

class =0

/

node #6
gini = 0.424
samples = 95
value = [66, 29]
class = 0

Figure 7.
Decision tree pruned by mean maximum depth and impurity parameters. Accuracy = 0.80.

diagnosis basis. Body mass index (BMI) and age are also found among the first
important variables. According to consulting relevant information, we know there
are three indicators to determine the diabetes mellitus, which are fasting blood
glucose, random blood glucose and blood glucose tolerance. Pima Indians Diabetes
dataset only has blood glucose tolerance. Prevalence of diabetes mellitus, hyperten-
sion and dyslipidaemia increase with higher BMI (BMI 25 kg/m?). On the other
hand, type 2 diabetes usually begins after age 40 and is diagnosed at an average age
of 65. This is why the French National Authority for Health recommends renewing
the screening test every 3 years in people over 45 years and every year if there is
more than one risk factor.

Despite the stop criterion of tree depth, the trees generated may be too deep for
a good practical interpretation. The notion of “accuracy” associated with each level

34

Contribution to Decision Tree Induction with Python: A Review
DOI: http://dx.doi.org/10.5772 /intechopen.92438

Most important features - Decision Tree

NTP -

013 02 027 033 04 047

Impartance

Figure 8.
Feature importance. Decision tree after pruning (corresponding to Figure 7 vesults).

Prédit/réel Classe A Classe B

Classe A VA (Vrais A) FA (Faux A)

Classe B FB (Faux B) VB (Vrais B)
Table 1.

Confusion matrix.

of the tree will make it possible to present a partial tree sufficiently precise. This is
based on the confusion matrix: The accuracy P is the ratio of well-classified
elements to the sum of all elements and is defined by the following expression
(Table 1):

- VA + VB
 VA+VB+FA+FB

(11)

The accuracy associated with a level of the tree is calculated by summing the VA,
VB, FA and FB taking into account the labels A or B of each node, and we add to VA
or VB the elements corresponding to pure nodes A or B in the previous levels. We
can thus decide to choose the partial tree according to the desired accuracy.

4, Discussions

Decision trees accept, like most learning methods, several hyper-parameters that
control its behaviour. In our use case, we used Gini index like information criteria to

35

Data Mining - Methods, Applications and Systems

split the learning data. This criterion has directed the method to build a tree with a
maximum of 15 levels and to accept a node as a leaf if it includes at least five
learning instances. Impurity (entropy) is a measure of disorder in dataset; if we
have zero entropy, it means that all the instances of the target classes are the same,
while it reaches its maximum when there is an equal number of instances of each
class. At each node, we have a number of instances (from the dataset), and we
measure its entropy. Setting impurity to a given value (chosen according to exper-
tise and tests) will allow us to select the questions which give more homogeneous
partitions (with the lowest entropy), when we consider only the instances for which
the answer to the question is yes or no, that is to say when the entropy after answer
to the question decreases.

During my previous R&D work, we used the CART algorithm implemented in
the scikit-learn library. This implementation is close to the original one proposed by
[4]; however there is no parameter for penalising the deviance of the model by its
complexity (number of leaves) in order to build a sequence of trees nested in the
prospect of optimal pruning by cross-validation. The generic function of k-fold
cross-validation “GridSearchCV” can be used to optimise the depth parameter but
with great precision in pruning. The depth parameter eliminates a whole level and
not the only unnecessary leaves to the quality of the prediction. On the other hand,
the implementation anticipates those of model aggregation methods by integrating
the parameters (number of variables drawn, importance, etc.) which are specific to
them. On the other hand, the graphical representation of tree is not included and
requires the implementation of another free software like “Graphviz” and
“Pydotplus” modules.

The pros and cons of decision trees are known and described in almost all the
articles and works developed in this field. We highlight some that we consider
important for industrial applications. Selecting features is an extremely important
step when creating a machine learning solution. If the algorithm does not have good
input functionality, it will not have enough material to learn, and the results will not
be good, even if we have the best machine learning algorithm ever designed. The
selection of characteristics can be done manually depending on the knowledge of
the field and the machine learning method that we plan to use or by using automatic
tools to evaluate and select the most promising. Another common problem with
datasets is the problem of missing values. In most cases, we take a classic imputation
approach using the most common value in the training data, or the median value.
When we replace missing values, we should understand that we are modifying the
original problem and be careful when using this data for other analytical purposes.
This is a general rule in machine learning. When we change the data, we should
have a clear idea of what we are changing, to avoid distorting the final results.
Fortunately, decision tree requires fewer data preprocessing from users. It is used
with missing data, and there is no need to normalise features. However, we must be
careful in the way we describe the categorical data. Having a priori knowledge of
the data field, we can favour one or more modalities of a descriptor to force the
discretization process to choose a threshold, which highlights the importance of the
variables. Moreover, Geurts [21] has shown that the choice of tests (attributes and
thresholds) at the internal nodes of the tree can strongly depend on samples, which
also contributes to the variance of the models built according to this method.

Decision tree can easily capture nonlinear patterns, which is important in big
data processing. Nevertheless it is sensitive to noisy data, and it can overfit it. In big
data mining, online data processing is subject to continuous development (upgrade,
environment change, catching up, bugs, etc.) impacting the results expected by
customers and users. To this, the problem of variation that can be reduced by
bagging and boosting algorithms (that we mentioned in Section 2.1) is added.

36

Contribution to Decision Tree Induction with Python: A Review
DOI: http://dx.doi.org/10.5772 /intechopen.92438

Decision tree is biased with imbalance dataset. It is recommended to balance
dataset before training to prevent the tree from being biased towards the classes
that are dominant. According to scikit-learn documentation “class balancing can be
done by sampling an equal number of samples from each class, or preferably by
normalising the sum of the sample weights (sample_weight) for each class to the
same value. Also note that weight-based pre-pruning criteria, such as
min_weight_fraction_leaf, will then be less biased towards dominant classes than
criteria that are not aware of the sample weights, like min_samples_leaf”.

5. Conclusions

Decision trees simply respond to a classification problem. Decision tree is one of
the few methods that can be presented quickly, without getting lost in mathematical
formulations difficult to grasp, to hearing not specialised in data processing or
machine learning. In this chapter, we have described the key elements necessary to
build a decision tree from a dataset as well as the pruning methods, pre-pruning and
post-pruning. We have also pointed to ensemble meta-algorithms as alternative for
solving the variance problem. We have seen that letting the decision tree grow to
the end causes several problems, such as overfitting. In addition, the deeper the tree
is, the more the number of instances (samples) per leaf decreases. On the other
hand, several studies have shown that pruning decreases the performance of the
decision tree in estimating probability.

Decision tree properties are now well known. It is mainly positioned as a refer-
ence method despite the fact that efforts to develop the method are less numerous
today. The references cited in this chapter are quite interesting and significant.
They provide a broad overview of statistical and machine learning methods by
producing a more technical description pointing the essential key points of tree
building. In spite of the fact that the CART algorithm has been around for a long
time, it remains an essential reference, by its precision, its exhaustiveness and the
hindsight which the authors, developers and researchers demonstrate in the solu-
tions they recommend. Academic articles also suggest new learning techniques and
often use it in their comparisons to locate their work, but the preferred method in
machine learning also remains C4.5 method. The availability of source code on
the web justifies this success. C4.5 is now used for Coronavirus Disease 2019
(COVID-19) diagnosis [35, 36].

Finally, we would like to emphasise that the interpretability of a decision tree is a
factor which can be subjective and whose importance also depends on the problem.
A tree that does not have many leafs can be considered easily interpretable by a
human. Some applications require good interpretability, which is not the case for all
prediction applications. On industrial problems, an interpretable model with great
precision is often necessary to increase knowledge of the field studied and identify
new patterns that can provide solutions to needs and to several expert questions.
We continue to put a lot of effort (scientific researchers, developers, experts,
manufacturers, etc.) to make more improvements to this approach: decision tree
induction. This chapter opens several opportunities in terms of algorithms and in
terms of applications. For our use case, we would like to have more data to predict
the type of diabetes and determine the proportion of each indicator, which can
improve the accuracy of predicting diabetes.

37

Data Mining - Methods, Applications and Systems

Author details
Bouchra Lamrini
Ex-researcher (Senior R&D Engineer) within Livingobjects Company, Toulouse,

France

*Address all correspondence to: lamrini.bouchra@gmail.com

IntechOpen

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

38

Contribution to Decision Tree Induction with Python: A Review

DOI: http://dx.doi.org/10.5772 /intechopen.92438
References

[1] Morgan J, Sonquist J. Problems in the
analysis of survey data, and a proposal.
Journal of the American Statistical
Association. 1963;58(2):415-435

[2] Morgan], Messenger R. THAID-A
Sequential Analysis Program for the
Analysis of Nominal Scale Dependent
Variables. Ann Arbor: Survey Research
Center, Institute for Social Research,
University of Michigan; 1973

[3] Kass G. An exploratory technique for
investigating large quantities of
categorical data. Applied Statistics. 1973;
29(2):119-127

[4] Breiman L, Friedman J, Stone C,
Olshen R. Classification and Regression
Trees. Taylor & Francis;; 1984.
Available from: https://books.google.fr/
books?id=JwQx-WOmSyQC

[5] Hunt E, Marin J, Stone P.
Experiments in Induction. New York,
NY, USA: Academic Press; 1997.
Available from: http://www.univ-
tebessa.dz/fichiers/mosta/544£77fe0Ocf
29473161c8187.pdf

[6] Quinlan JR. Discovering rules by
induction from large collections of
examples. In: Michie D, editor. Expert
Systems in the Micro Electronic Age.
Vol. 1. Edinburgh University Press;
1979. pp. 168-201

[7] Paterson A, Niblett T. ACLS Manual.
Rapport Technique. Edinburgh:
Intelligent Terminals, Ltd; 1982

[8] Kononenko I, Bratko I, Roskar E.
Experiments in Automatic Learning of
Medical Diagnostic Rules. Technical
Report. Ljubljana, Yugoslavia: Jozef
Stefan Institute; 1984

[9] Cestnik B, Knononenko I, Bratko I.
Assistant86-A knowledge elicitation tool
for sophisticated users. In: Bratko I,
Lavrac N, editors. Progress in Machine

39

Learning. Wilmslow, UK: Sigma Press;
1987. pp. 31-45

[10] Quinlan JR, Compton PJ, Horn KA,
Lazarus L. Inductive knowledge
acquisition: A case study. In:
Proceedings of the Second Australian
Conference on Applications of Expert
Systems. Boston, MA, USA: Addison
Wesley Longman Publishing Co., Inc.;
1987. pp. 137-156

[11] Quinlan R. C4.5-Programs for
Machine Learning. San Francisco, CA,
USA: Morgan Kaufman; 1993. p. 368

[12] Michalski RS. On the quasi minimal
solution of the general covering
problem. In: Proceedings of the 5th
International Symposium on
Information Processing; 1969.

pp. 125-128

[13] Clark P, Niblett T. The cn2
induction algorithm. Machine Learning.
1989;3(4):261283

[14] Shafer J, Agrawal R, Mehta M.
SPRINT-A scalable parallel classifier for
data mining. Proceeding of the VLDB
Conference. 1996;39:261-283. DOI:
10.1007/s10462-011-9272-4

[15] Mehta M, Agrawal R, Riassnen J.
SLIQ-A fast scalable classifier for data
mining. Extending Database
Technology. 1996;39:18-32

[16] Tjen-Sien L, Wei-Yin L, Yu-Shan S.
SLIQ. A comparison of prediction
accuracy, complexity, and training time
of thirty-three old and new
classification algorithms. Machine
Learning. 2000;40:203-228

[17] Gehrke J, Ramakrishnan R, Ganti V.
RainForest—A framework for fast
decision tree construction of large
datasets. Data Mining and Knowledge
Discovery. 2000;4(2-3):127-162. DOL:
10.1023/A:1009839829793

Data Mining - Methods, Applications and Systems

[18] Kotsiantis SB. Decision trees—A
recent overview. Artificial Intelligence
Review. 2013;39:261-283. DOI: 10.1007/
s10462-011-9272-4

[19] Rokach L, Maimon O. Top-down
induction of decision trees classifiers—
A survey. IEEE Transactions on
Systems, Man, and Cybernetics: Part C.
2005;35(4):476-487. DOI: 10.1109/
TSMCC.2004.843247

[20] Brijain MR, Patel R, Kushik MR,
Rana K. International Journal of
Engineering Development and
Research. 2014;2(1):1-5. DOI: 10.1109/
TSMCC.2004.843247

[21] Geurts P. Contributions to Decision
Tree Induction: Bias/Variance Tradeoff
and Time Series Classification. Belgium:
University of Liége; 2002. p. 260.
Available from: http://www.montefiore.
ulg.ac.be/services/stochastic/pubs/
2002/Geu02

[22] Marée R, Geurts P, Visimberga G,
Piater J, Wehenkel L. A comparison of
generic machine learning algorithms for
image classification. In: Proceeding
Research and Development in Intelligent
Systems XX; 2004. pp. 169-182

[23] Geurts P, Fillet M, de Seny D,
Meuwis MA, Merville MP, Wehenkel L.
Proteomic mass spectra classification
using decision tree based ensemble
methods. Bioinformatics. 2004;21(14):
3138-3145. DOI: 10.1093/
bioinformatics/bti494

[24] Geurts P, Khayat E, Leduc G. A
machine Learning approach to improve
congestion control over wireless
computer networks. In: Proceedings of
the IEEE International Conference on
Data Mining (ICDM’04); 2004.
Available from: https://ieeexplore.ieee.
org/document/1410316

[25] Genuer R, Poggi JM. Arbres CART

et Foréts aléatoires, Importance et
sélection de variables. hal-01387654v?2;

40

2017. pp. 1-5. Available from: https://
hal.archives-ouvertes.fr/hal-013876

[26] Elomaa T, Kaaridinen M. An
analysis of reduced error pruning.
Journal of Artificial Intelligence
Research. 2001:163-187. Available from:
http://dl.acm.org/citation.cfm?id=
26079.26082

[27] Quinlan R. Simplifying decision
trees. International Journal of Human
Computer Studies. 1999;51(2):497-510

[28] Berry MJ, Linoff G. Data Mining
Techniques for Marketing, Sales, and
Customer Relationship Management.
John Wiley & Sons; 1997. Available
from: http://hdl.handle.net/2027/md
p-39015071883859

[29] Brostaux Y. Etude du Classement
par Foréts Aléatoires D’échantillons
Perturbés a Forte Structure
D’interaction. Belgium: Faculté
Universitaire des Sciences Agronomiques
de Gembloux; 2005. p. 168. Available
from: http://www.montefiore.ulg.ac.be/
services/stochastic/pubs/2002/Geu02

[30] Niblett T, Bratko I. Learning
decision rules in noisy domains. In:
Proceedings of Expert Systems ‘86, The
6th Annual Technical Conference on
Research and Development in Expert
Systems III. Cambridge University
Press; 1987. pp. 25-34. Available from:
http://dl.acm.org/citation.cfm?id=
26079.26082

[31] Mingers J. Experts systems-rule
induction with statistical data. Journal of
the Operational Research Society. 1987;
38(1):39-47

[32] Rakotomalala R, Lallich S.
Construction d’arbres de décision par
optimisation. Revue des Sciences et
Technologies de I'Information - Série
RIA: Revue d’Intelligence Artificielle.
2002;16(6):685-703. Available from:
https://hal.archives-ouvertes.fr/
hal-00624091

Contribution to Decision Tree Induction with Python: A Review
DOI: http://dx.doi.org/10.5772 /intechopen.92438

[33] Rakotomalala R. Arbres de décision.
Revue Modular. 2005;33:163-187.
Available from: https://www.rocq.inria.
fr/axis/modulad/archives/numero-
33/tutorial-rakotomalala-33/
rakotomalala-33-tutorial.pdf

[34] Mededjel M, Belbachir H. Post-
élagage indirect des arbres de décision
dans le data mining. In: 4th
International Conference: Sciences of
Electronic, Technologies of Information
and Telecommunications; 2007. pp. 1-7.
Available from: http://www.
univ-tebessa.dz/fichiers/mosta/
544£77fe0cf29473161c8187.pdf

[35] Wiguna W, Riana D. Diagnosis of
Coronavirus Disease 2019 (COVID-19)
surveillance using C4.5 Algorithm.
Jurnal Pilar Nusa Mandiri. 2020;16(1):
71-80. DOI: 10.33480/pilar.v16i1.1293

[36] Wiguna W. Decision tree of
Coronavirus Disease (COVID-19)
surveillance. IEEE Dataport. 2020. DOI:
10.21227/remc-6d63

1

Chapter 3

Association Rule Mining on Big
Data Sets

Oguz Celik, Muruvvet Hasanbasoglu, Mehmet S. Aktas
and Oya Kalipsiz

Abstract

An accurate, complete, and rapid establishment of customer needs and existence
of product recommendations are crucial points in terms of increasing customer
satisfaction level in various different sectors such as the banking sector. Due to the
significant increase in the number of transactions and customers, analyzing costs
regarding time and consumption of memory becomes higher. In order to increase
the performance of the product recommendation, we discuss an approach, a
sample data creation process, to association rule mining. Thus instead of processing
whole population, processing on a sample that represents the population is used to
decrease time of analysis and consumption of memory. In this regard, sample com-
posing methods, sample size determination techniques, the tests which measure
the similarity between sample and population, and association rules (ARs) derived
from the sample were examined. The mutual buying behavior of the customers was
found using a well-known association rule mining algorithm. Techniques were com-
pared according to the criteria of complete rule derivation and time consumption.

Keywords: big data, sampling, association rule mining, data mining, data
preprocessing techniques

1. Introduction

Thanks to improved storage capacities, databases in various fields such as bank-
ing have grown up to a rich level. Most of the strategic sales and marketing deci-
sions are taken by processing these data. For example, strategies such as cross-sell,
up-sell, or risk management are being created as a result of processing the customer
data. Because of the increasing number of customers and the need for a higher pro-
cessing capacity, it has made it more difficult to identify the customer requirements
in a rapid and accurate way and to present solution recommendations. Innovative
data mining applications and techniques are required to solve this issue [1].

The market basket analysis is one of the data mining methods applied to identify
the pattern which is found in product ownership data of customers. Thanks to this
analysis, a pattern among the products frequently bought together by the customers
can be established. The obtained pattern plays an active role in developing cross-sell
and up-sell strategies.

Market basket analysis consists of two main processes. These are clustering
and association processes, respectively. The clustering process involves grouping
of similar customers in terms of clusters. Thus, those customers which should be

43 IntechOpen

Data Mining - Methods, Applications and Systems

examined in the same category will be identified. During the association process,
commonness in buying behavior of customers through a selected cluster is being
identified, assuming that clustered customers having similar characteristics would
demonstrate similar buying behaviors.

As the banking databases have grown up to a very high volume, the association
process has become a very costly process in terms of time and memory consump-
tion. In order to improve the time and memory performance, sampling process
should be included in the previous phase of association.

In this regard, a sample which involves less observations in comparison to the
whole data is used. We use the term “space” to refer the whole data set. In case the
representation capability of the obtained sampling is high, loss of data is mini-
mized, and the association process is realized through the sample instead of the
space itself. Thus, less data shall be processed, and association rules (ARs) shall be
obtained faster by consuming less memory.

As the subject of this book chapter was focused onto the banking data, cus-
tomer segmentation conducted by the bank data was accepted as the clustering.
As aresult of the segmentation, clusters created by similar customers were used as
input of sampling.

In this chapter, sample creation methods, techniques to find ideal sampling size,
the space representing capability of these samples generated by these techniques,
and association rules discovered through these samples were examined, respectively.
Association rules obtained from both the space and sample were used to verify the sam-
pling process. Besides, the spared amount in terms of time consumption was calculated.

This book chapter was organized as follows: Section 2 explains the studies toward
deriving association rules through the space and sampling. Section 3 explains the
parameters required to obtain association rules and the Apriori algorithm. Section
4 contains parameters to create the sample, sample creation methods, and the
techniques used to calculate the sample size. Section 5 examines association rules
obtained from the space and the sample and the results showing the representation
capability of the sample for the respective space and the results showing rewards in
terms of time consumption. Section 6 gives an overview and concludes the chapter.

2. Related work

In association rule mining, first the item sets, which are found together fre-
quently, are found, and then the rules are obtained from these item sets.

Association algorithms are classified according to characteristics of the obtained
item sets. In early studies Agrawal-Imielinski-Swami (AIS) algorithm which was allowed
to find wide item sets was used, and then algorithms were found such as Apriori, which
were used frequently now and which were able to process the bigger data sets faster [2].

The mutual usage of association discovery and sample creation methods is not
anew approach. Sample creation studies toward association detection have begun
with papers demonstrating mathematically that it was possible to create a sample
which maintained the characteristics of the space. The following studies involved
several techniques calculating the optimal number of observations [3-7].

At the beginning of the sample size detection studies, the data to be sampled were
not considered; they have tried to determine the sample size using parameters not
depending on the data such as margin of error, minimum support, and minimum
confidence [3]. In current studies, formulas (using variables such as maximal process
length or Vapnik-Chervonenkis (VC) size of the data cluster) considering the data
characteristics have appeared [4-7]. There exists a number of studies focusing on
how the management of metadata of big data sets are provided in a distributed

44

Association Rule Mining on Big Data Sets
DOI: http://dx.doi.org/10.5772/intechopen.91478

computing setting [8-11]. Moreover, there exists a number of studies that are
conducted in the field of information systems for managing distributed data storage
platforms [12-16]. Unlike these studies, this chapter focuses on extracting meaning-
ful information, i.e. association rules, from the big data sets. Initial results of the
experimental studies, covered in this chapter, were reported in a previous study
[17]. Sections 3 and 4 give detailed information on association detection and sample
creation methods, respectively, and explain the techniques used in this study.

3. Association detection methods

In data mining, it is used to determine the pattern found among the association
algorithms and observations [2, 18, 19]. In case any organization’s transaction database
is discussed, an analogy can be established between the observations and customers and
between areas where a pattern is tried to be found and the bought products. Patterns
obtained by association algorithms are processed to obtain association rules.

Association rules may be defined as follows: let us call each subset of products
within the database an “itemset,” and let us call each set of products purchased
together by the customer a “transaction.” The support count of any itemset is
defined as the number of transactions associated with the items in the set within the
database. The support indicates the ratio of support count to the number of transac-
tions within the database. The itemset which meets the minimum support require-
ment is called the frequent itemset (FI).

For example, if a database with 10 transactions contains product A in 3 different
transactions, then the product A’s support count is 3, and its support is 0.3. In case
the minimum support is defined by a value lower than 0.3, then the product A will
be classified as FI.

There are several algorithms deriving FI using the transactions within the data-
base [2, 18]. In this chapter, Apriori algorithm was preferred due its ability of deriv-
ing all itemsets within the space. This algorithm derives primarily candidate itemsets
starting with one-element itemset from the database. Those providing minimum
support from candidate itemsets are filtered and recorded as FI. New candidate item-
sets are created from the FI obtained in the previous step by increasing the number of
elements. In each step, the candidate itemsets are passed through a minimum support
test, and the algorithm continues until no FI with k-elements can be generated.

Among the elements of the FI obtained from the database, it is possible to derive
association rules in A- > B format. Then, AR’ support gets equal to AUB itemset
support. The confidence is defined as the ratio of AUB itemset support to the A
itemset support. AR should meet the minimum confidence requirement specified
by the customer [2].

Assuming that A - > B rule has a support of s and the confidence of ¢, we can
derive that the itemsets A and B in the whole database are associated with a prob-
ability of s and a customer owning the itemset A might be an owner of the itemset B
with a probability of c.

To find out all ARs within the database, a rule mining algorithm is applied to
each FI obtained. Candidate rule combinations are created for rule mining among
all subsets of a selected FI in A - > B format. Those providing minimal confidence
from candidate rules are filtered and recorded as association rule.

4. Sample creation methodology

Sample creation is the process of creating a subset containing the characteristics
of a data set. The subset created through sampling is expected to represent the

45

Data Mining - Methods, Applications and Systems

data set (space). In traditional statistical methods, the similarity of two data sets is
measured by either y2 test or Kolmogorov-Smirnov (K-S) test.

In this study, these tests were utilized, in order to measure the similarity of the
created sample in comparison with its space. A comparison was conducted through
p values (the probability p of finding the space characteristics) of the statistics
resulting from both tests. In case the obtained p value exceeds 0.05, it can be
deducted that “the sample is similar to the space with a probability of at least 95%.”

Sample creation is discussed under two topics, i.e., sample creation methods and
sample size determination techniques. Sample creation methods are explained in
Chapter 4.1 and sample size determination techniques explained in Chapter 4.2.

4.1 Sample creation methods

When creating samples from the space, it is possible to use several sample cre-
ation methods. These methods are classified according to the selection of observa-
tions from the space. The main sample creation methods are as follows:

4.1.1 Simple random sampling

The observations within the space are selected without following a specific
routine. The selection probability of each observation is equal.

Systematic sampling: The observations within the space are numbered. Sampling
interval is created by dividing the space size to the observation size. A random num-
ber is selected. The observation sample at this number from each interval is included.

4.1.2 Stratified sampling

This is used where the observations within the space can be divided into groups.
The samples are created maintaining the ratio between the number of observations
of groups within the space and the total number of observations. The selection
probability of each observation in the same stratus is equal.

4.1.3 Cluster sampling

This is used where the observations within the space can be divided into groups.
After the groups are determined, they are selected using the simple random sam-
pling method. All observations within selected groups are included into the sample.

4.1.4 Multistage sampling

This is used where the observations within the space can be divided into groups.
After the groups are determined, groups are selected by the simple random sam-
pling method. Unlike cluster sampling, observations to be selected from groups are
determined by the simple random sampling method.

Among the mentioned methods, the simple random sampling method stands up
by its high speed. As the methods, which require creation of groups within the space
and sorting of observations, need a pre-analysis, their time consumption is more
than the simple random sampling method.

4.2 Sample size determination methods

The expected parameter in sample creation methods is the size of the sample to be
created. When the optimal sample size is calculated, a number which will not decrease

46

Association Rule Mining on Big Data Sets
DOI: http://dx.doi.org/10.5772/intechopen.91478

its space representing capability should be found. Under association detection
algorithms, it is important to derive all FIs and ARs within the space from the sample.
In this study, techniques specialized on association detection algorithms have been
examined from those developed for sample size determination [3-5, 7]. Sample size
determination techniques are divided into two groups to minimize the FI and AR loss.

When the association algorithms will be run using the same parameters, support
and confidence values calculated from the sample appear to be different than their
counterparts calculated from the space. This margin of error is measured using two
different methods. When calculating absolute margin of error, the absolute value
of the difference between values from the space and the sample is considered. The
relative margin of error is calculated by dividing absolute margin of error into the
value within the space. In Table 1, the lines containing “absolute” at the “type of
technique” column aim at reducing absolute margin of error, while those containing
“relative” aim to minimize relative margin of error.

All examined techniques are shown in Table 1 with suggested formulas and
type of formula. The values found through the techniques determine the minimum
number of transactions required for sample creation. The number of transactions
which are equal to the values found is selected from the space by the preferred
sample creation method.

Sample size determination techniques determine the minimum number of trans-
actions required for sample creation. The number of transactions which are equal to
the values found is selected from the space by the preferred sample creation method.

The complexity of the space is calculated theoretically using the Vapnik-
Chervonenkis size [20]. Assuming that the transactions within the database are
sorted according to their number of elements and that the “number of transactions”
and “number of elements” are plotted on the coordinate system, the d-index value
would correspond to the edge length of the largest square.

Description Type of Technique Formula
Zaki Fl-absolute =21ln(1=y)
03
Toivonen Fl-absolute 1 1n2
282)
Chakaravarthy Fl-absolute 24 A+5+Iln_4)
(1-g)e2@ (1-e)08
Chakaravarthy AR-absolute 48 (A+5+1In_s)
(1-g)e’@ (1-£)@0
Riondato Fl-absolute 4c(v+1n1)
=2 -]
Riondato Fl-relative d2+exc (vln_2te +1In1)
£1(2-£)@ O(2-¢) o
Riondato AR-absolute c (wln1 +1Ina)
np P 6
Riondato AR-relative c (vin_1 +1na)
np P 4

Minimal sample size can be determined in terms of accuracy e, probability of error 6, minimum support 6,
minimum confidence y, d-index value of the space v, maximal process length of the space A, and the constant c. In
formulas, the value n is calculated depending on variables O, y, and & and the value p is calculated depending on
values n and O.

Table 1.
Sample size calculation techniques are provided.

47

Data Mining - Methods, Applications and Systems

In this study, we use a d-index algorithm, which does not seek a sorting require-
ment among the transactions, and it calculates v (d-index value), by initializing
with 1 and by increasing it. All transactions within the database should be scanned
to find the value. Where a number of transactions are large and the item number
within each transaction is less, such as banking data, the length of transactions
becomes decisive in determining the d-index value. In d-index algorithm, the
transactions within the database were sorted in descending order of item numbers,
and the value v was calculated decreasingly beginning from the maximal transac-
tion length. Here, it is not necessary to scan all transactions.

5. Experimental evaluation and results

The tests were performed on product ownership data of banking custom-
ers. Statistical studies’ code development was performed on the widely used R
programming language.

When tests were performed, the steps below were followed:

1. Determine the sample size utilizing various techniques

2. Create three different samples for each technique using the simple random
sampling method

3. Compare the representability of the space for the obtained sample examination
with y2 and K-S tests

4.Use the Apriori algorithm included in the arules package of R language, and
determine the FI and AR through the space and sample

5. Calculate the absolute error in support and trust values, and compare the re-
sults with those obtained from the space

6. Compare the duration of obtaining AR and the duration of sample creation.
Generate AR from the sample

Theoretically, it is expected that the samples in various sizes obtained from FI
and AR results are tuned with the results from the space, that there is a correspon-
dence between representability and absolute error, and that the duration of transac-
tions made on the sample and the memory consumption reduce.

To accelerate the test processes, instead of 143 products of the bank, 10 different
product groups were determined, and the association between those groups was
examined. The utilized banking data is a matrix including 1,048,575 customers and
an ownership status of customers about 10 different product groups. The lines repre-
sent customers and the columns represent product groups. In case the customer owns
a product, the intersection of that line-column indicates 1, otherwise 0. In these tests
the following parameters were used: accuracy ¢ = 0.04, probability of error & = 0.07,
minimal support value ® = 0.02, and minimum confidence y = 0.06, 0.1, and 0.14.

Table 2 shows varying sample sizes corresponding to varying minimum
confidence values. Because y was not used as a parameter in formulas Toivonen,
Chakaravarthy FI-absolute, Chakaravarthy AR-absolute, Riondato FI-absolute, and
Riondato Fl-relative, there are no variations in calculated sizes.

When Table 2 was examined in detail, it is obvious that the sizes obtained from
the techniques Chakaravarthy FI-absolute, Chakaravarthy AR-absolute, Riondato

48

Association Rule Mining on Big Data Sets
DOI: http://dx.doi.org/10.5772/intechopen.91478

Description Type of Technique y=0.06 y=0.1 y=0.14
Zaki Fl-absolute 3867 6585 9426
Toivonen Fl-absolute 1047 1047 1047
Chakaravarthy Fl-absolute 14842499 14842499 14842499
Chakaravarthy AR-absolute 30033660 30033660 30033660
Riondato Fl-absolute 9574 9574 9574
Riondato Fl-relative 1458404 1458404 1458404
Riondato AR-absolute 15057 47005 96859
Riondato AR-relative 5468750 5468750 5468750

Techniques where the calculated size is larger than the space were not used at the sample creation step.

Table 2.
Calculated sample sizes based on varying minimum trust values ave provided.

FI-relative, and Riondato AR-relative are larger than the space (1,048,575). As the
aim was to reduce the data set, these techniques were not examined in the following
tests. In order to minimize the error due to simple random sampling method, three
samples were created for each of the Zaki, Toivonen, Riondato FI-absolute, and
Riondato AR-absolute techniques.

Table 3 shows average p values calculated from y2 and K-S tests. As the similarity
significance between the space and sample was accepted as 95%, it is expected that p
values are higher than 0.05. The results indicate that values were obtained to prove an
adequate statistical similarity between the space and all obtained samples. An instabil-
ity is obvious regarding p values of Toivonen where the sample size does not vary. We
consider this instability results from the small sample size provided by this technique.

FIs and their corresponding ARs were determined from the samples created
using Apriori algorithm. To measure the similarities of FIs and ARs, absolute error
was calculated through support and trust values. Zaki and Toivonen techniques
were inadequate to determine all FIs and ARs existing in the space for the value
¥ = 0.1. Because a loss of rule was undesirable, we have observed that these two
techniques were not suitable to sample creation and time consumption tests were
not examined. By calculating the error by substituting incomplete values with 0, the
results on Table 4 were obtained. As expected, where absolute support error was
high, an also high-confidence error was found.

In a comparative review of Tables 3 and 4, no relation was detected between
support and confidence errors by the results obtained from y2 and K-S tests. We
have noticed that traditional statistical measurements were inadequate in measur-
ing the representability of the sample which was created for association mining.

In Table 5, durations until creation of AR are provided for the space and cre-
ated samples. While the duration from sample creation until obtaining the AR
was provided for the space, the time required for sample size determination, total
average time required for sample creation, and obtaining the AR by simple random

Description Type of Technique y=0.06 y=0.1 y=0.14
x K-S x? K-8 xz2 K-8
Zaki Fl-absolute 0.824 0.591 0.6300.439 0.1900.382
Toivonen Fl-absolute 0.3790.512 0.4350.395 0.341 0.675
Riondato Fl-absolute 0.1420.182 0.5950.434 0.234 0.081
Riondato AR-absolute 0.6900.618 0.663 0.300 0.3850.396

All the techniques were found to be similar to the space.

Table 3.
p values calculated from y2 and K-S tests were provided based on minimum trust values.

49

Data Mining - Methods, Applications and Systems

Description Type of Technique y=0.06 y=0.1 y=0.14
Supp. Conf. Supp. Conf. Supp. Conf.
Zaki Fl-absolute 0.002 0.009 0.003 0.06 0.002 0.001
Toivonen Fl-absolute 0.0050.022 0.006 0.042 0.004 0.001
Riondato Fl-absolute 0.023 0.008 0.0020.011 0.002 0.001
Riondato AR-absolute 0.011 0.004 0.001 0.001 0.001 0.001

Techniques where AR loss was experienced were not tested in terms of running time.

Table 4.
Average support and trust absolute error generated based on varying minimum trust values are provided.

Description Type of Technique y=0.06 y=0.1 y=0.14
Space - 1,832 1,825 1.87
Riondato Fl-absolute 0,186 0,193 0,193
Riondato AR-absolute 0,193 0,253 0,343

Techniques where AR loss was experienced were not tested in terms of running time.

Table 5.
The time until rule mining based on varying minimum trust values y was given in seconds.

sampling method were provided for the samples. As expected, the time perfor-
mance of all techniques for each value y was found better than the space. Even more
benefits are expected by using actually 143 different products instead of 10 product
groups in these tests.

FI and AR results of the samples were compared to those generated from the
space. Within the space, the mostly encountered depository (D) product has a ratio
of 94%, credit card (CC) product has 11%, and installment loan (IL) product has
8%. These products are found together within the space by a ratio of 2.3%. In spite of
this low support value, three different rules with high confidence were derived. “CC,
IL — D” rule was derived, and eventually, it was observed that 92% of people who
have bought CC and IL also have bought D. According to another derived rule “IL,

D -> CC,” it was discovered that 31% of people who bought CC and D also bought
IL. It was also found through another rule CC, D - > IL that 28% of people who
bought IL and D also bought CC. These rules could not be derived from the tech-
niques Zaki and Toivonen, and information loss was experienced. Therefore, these
techniques are not suitable on sample creation for association mining. As expected,
when sample size increased, the obtained absolute error in results decreased.

The utilized banking data contains information about customers and the
product groups of their owned products. In other words, instead of products owned
by customers, banking product groups were used. This was preferred to reduce the
data set sparsity and to accelerate the test speeds. So, it was observed that even tests
on the space did not take longer than 2 seconds. Whenever the advantages in terms
of duration seem to be in the order of seconds, tests to be conducted with a data set
containing more products (or product groups) will show decisive advantages.

6. Conclusion and future work

Because AR mining process through the space takes a long time, we have aimed
at determining a smaller sized sample representing the space and AR mining
through that sample. For this purpose, in this book chapter, we have investigated
for techniques which provide an ideal sample size specialized on association
mining.

50

Association Rule Mining on Big Data Sets
DOI: http://dx.doi.org/10.5772/intechopen.91478

The samples were created using the simple random sampling method, and three
different samples were obtained per technique. We have tried to prevent a potential
noise in our results by creating multiple samples.

The similarity of samples to the space was measured by the 42 test and K-S test.
It was obvious that after both tests the obtained values for association mining were
inadequate in measuring the representability of samples. In those tests, no relation-
ship was found among support and confidence error values. We consider that the
probability of tests giving biased outputs and the inadequacy of suggested sample
sizes in measuring were the reasons for having these results.

The results indicate that the duration of AR generation within the space was
compared to the total time of sample size determination, sample creation, and AR
generation through the sample. It was observed that each technique was better per-
forming in terms of space results. Riondato FI-absolute and Riondato AR-absolute
techniques have given good results based on calculated absolute error values. When
smaller sample size and less time consumption criteria were considered, Riondato
FI-absolute technique becomes favorable.

In future studies, the data set shall be renewed in this regard, and other sample
methods will also be applied. Besides, results which might be related to a single data
set shall be extended with tests to be performed on another data set, and the results
shall be cross-checked.

Author details

Oguz Celik, Muruvvet Hasanbasoglu, Mehmet S. Aktas* and Oya Kalipsiz
Department of Computer Engineering, Yildiz Technical University Istanbul, Turkey

*Address all correspondence to: aktas@yildiz.edu.tr

IntechOpen

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

51

Data Mining - Methods, Applications and Systems

References

(1] Jayasree V, Balan RVS. A review

on data mining in banking sector.
American Journal of Applied Sciences.
2013;10(10):1160-1165

[2] Agrawal R, Imieliniski T, Swami A.
Mining association rules between sets
of items in large databases. In: SIGMOD
‘93, Proceedings of the 1993 ACM
SIGMOD International Conference on
Management of Data; 1993

[3] Zaki MJ, Parthasarathy S, Li W,
Ogihara M. Evaluation of sampling for
data mining of association rules. In:
Proceedings 7th International Workshop
on Research Issues in Data Engineering;
1997

[4] Chakaravarthy TV et al. Analysis
of sampling techniques for association
rule mining. In: 12th International
Conference on Database Theory; 2009

[5] Klemettinen M et al. Finding
interesting rules from large sets of
discovered association rules. In: CIKM
‘94: Proceedings of the 3rd International
Conference on Information and
Knowledge Management; 1994

[6] Toivonen H. Sampling large
databases for association rules.

In: Proceedings of the 22nd VLDB
Conference, Mumbai (Bombay), India.
1996. pp. 134-145

[7] Riondato M et al. Efficient discovery
of association rules and frequent

item sets through sampling with tight
performance guarantees. ECML PKDD.
2012:25-41

(8] Baeth MJ et al. An approach to
custom privacy violation detection
problems using big social provenance
data. Concurrency and Computation-
Practice & Experience. 2018;30(21):1-9

[9] Baeth M]J et al. Detecting
misinformation in social networks using

52

provenance data. Concurrency and
Computation-Practice & Experience.
2019;31(3):1-13

[10] Riveni M et al. Application of
provenance in social computing:

A case study. Concurrency and
Computation-Practice & Experience.
2019;31(3):1-13

[11] TasY et al. An approach to
standalone provenance systems for big
provenance data. In: The International
Conference on Semantics, Knowledge
and Grids on Big Data (SKG-16); 2016.
pp. 9-16

[12] Aktas MS. Hybrid cloud computing
monitoring software architecture.
Concurrency and Computation: Practice
and Experience. 2018;30(21):1-9

[13] Aktas MS et al. A web based
conversational case-based recommender
system for ontology aided metadata
discovery. In: The 5th IEEE/ACM
International Workshop on Grid
Computing. 2004. pp. 69-75

[14] Aktas MS et al. Fault tolerant high-
performance information services for
dynamic collections of Grid and Web
services. Future Generation Computer
Systems. 2007;23(3):317-337

[15] Pierce ME et al. The QuakeSim
project: Web services for managing
geophysical data and applications.
Pure and Applied Geophysics.
2008;165(3-4):635-651

[16] Aydin G et al. SERVOGrid
complexity computational
environments (CCE) integrated
performance analysis. In: The 6th IEEE/
ACM International Workshop on Grid
Computing; 2005. pp. 256-261

[17] Celik O et al. Implementation
of data preprocessing techniques on

Association Rule Mining on Big Data Sets
DOI: http://dx.doi.org/10.5772/intechopen.91478

distributed big data platforms. In: 4th
International Conference on Computer
Science and Engineering (UBMK); 2019.
pp- 73-78

[18] Eltabakh MY et al. Incremental
mining for frequent patterns in evolving
time series databases. Technical report.
Department of Computer Science,
Purdue University; 2008

[19] Pei], Han], Lu H, Nishio S,

Tang S, Yang D. H-Mine: Fast and space-
preserving frequent pattern mining

in large databases. IIE Transactions.
2007;39(6):593-605. DOI:
10.1080/07408170600897460

[20] Vapnik V et al. Measuring the

VC-dimension of a learning machine.
Neural Computation. 1994;6(5):851-876

53

Chapter 4

Data Mining in Banking Sector
Using Weighted Decision
Jungle Method

Derya Birant

Abstract

Classification, as one of the most popular data mining techniques, has been used
in the banking sector for different purposes, for example, for bank customer churn
prediction, credit approval, fraud detection, bank failure estimation, and bank
telemarketing prediction. However, traditional classification algorithms do not take
into account the class distribution, which results into undesirable performance on
imbalanced banking data. To solve this problem, this paper proposes an approach
which improves the decision jungle (DJ) method with a class-based weighting
mechanism. The experiments conducted on 17 real-world bank datasets show that
the proposed approach outperforms the decision jungle method when handling
imbalanced banking data.

Keywords: data mining, classification, banking sector, decision jungle,
imbalanced data

1. Introduction

Data mining is the process of analyzing large data stored in data warehouses in
order to automatically extract hidden, previously unknown, valid, interesting, and
actionable knowledge such as patterns, anomalies, associations, and changes. It has
been commonly used in a wide range of different areas that include marketing,
health care, military, environment, and education. Data mining is becoming
increasingly important and essential for banking sector as well, since the amount of
data collected by banks has grown remarkably and the need to discover hidden and
useful patterns from banking data becomes widely recognized.

Banking systems collect huge amounts of data more rapidly as the number of
channels (i.e., Internet banking, telebanking, retail banking, mobile banking, ATM)
has increased. Banking data has been currently generated from various sources,
including but not limited to bank account transactions, credit card details, loan
applications, and telex messages. Hence, data mining can be used to extract mean-
ingful information from these collected banking data, to enable banking institutions
to make better decision-making process. For example, classification, which is one of
the most popular data mining techniques, can be used to predict bank failures [1-3],
to estimate bank customer churns [4], to detect frauds [5], and to evaluate loan
approvals [6].

55 IntechOpen

Data Mining - Methods, Applications and Systems

In many real-world banking applications, the distribution of the classes in the
dataset is highly skewed. A bank data is imbalanced, when its target variable is
categorical and if the number of samples in one class is significantly different from
those of the other class(es). For example, in credit card fraud detection, most of the
instances in the dataset are labeled as “non-fraud” (majority class), while very few
are labeled as “fraud” (minority class). Similarly, in bank customer churn predic-
tion, many instances are represented as negative class, whereas the minorities are
marked as positive class. However, the performance of classification models is
significantly affected by a skewed distribution of the classes; hence, this imbalance
problem in the dataset may lead to bad estimates and misclassifications. Dealing
with imbalanced data has been considered as one of the 10 most difficult problems
in the field of data mining [7]. With this motivation, this paper proposes a class-
based weighting strategy.

The main contribution of this paper is that it improves the decision jungle (DJ)
method by a class-based weighting mechanism to make it effective in handling
imbalanced data. In the proposed approach, a weight is assigned to each class based
on its distribution, and this weight value is combined with class probabilities. The
experimental studies conducted on 17 real-world banking datasets confirm that our
approach generally performs better than the traditional decision jungle algorithm
when the data is imbalanced.

The rest of this paper is organized as follows. Section 2 briefly presents the
recent and related research in the literature. Section 3 describes the proposed
approach, class-based weighted decision jungle method, in detail. Section 4 is
devoted to the presentation and discussion of the experimental results, including
the dataset descriptions. Finally, Section 5 gives the concluding remarks and
provides some future research directions.

2. Related work

As a data-intensive sector, banking has been a popular application area for data
mining researchers since the information technology revolution. The continuous
developments in banking systems and the rapidly increasing availability of big
banking data make data mining one of the most essential tasks for the banking
industry.

Banking industries have used data mining techniques in various applications,
especially on bank failure prediction [1-3], possible bank customer churns identifi-
cation [4], fraudulent transaction detection [5], customer segmentation [8-10],
predictions on bank telemarketing [11-14], and sentiment analysis for bank cus-
tomers [15]. Some of the classification studies in the banking sector have been
compared in Table 1. The objectives of the studies, years they were conducted,
algorithms and ensemble learning techniques they used, the country of the bank,
and obtained results are shown in this table.

The main data mining tasks are classification (or categorical prediction), regres-
sion (or numeric prediction), clustering, association rule mining, and anomaly
detection. Among these data mining tasks, classification is the most frequently used
one in the banking sector [16], which is followed by clustering. Some banking
applications [8, 10] have used more than one data mining techniques, among which
clustering before classification has shown sufficient evidence of both popularity and
applicability.

Apart from novel task-specific algorithms proposed by the authors, the most
commonly used classification algorithms in the banking sector are decision tree
(DT), neural network (NN), support vector machine (SVM), k-nearest neighbor

56

"403925 Sutuvq ay1 ur suouwarddy uowarfissv]y

/ldx.doi.org/10.5772/intechopen.91836

http

Data Mining in Banking Sector Using Weighted Decision Jungle Method

DOl

T 9[qeL

103098 [6]

%/TL'L6 DDV BIUBWIOY Sunjueq ur uonejuswas rowWoISN) A €107 °[e 3° nueaInawg
SaUI00INO

8°0 DNV [e8muog Sunayjrews|a) yueq Jo UONDIPaI] \/ \/ \(\(+10C [#1] 'Te 30 o10]\

[ot1]

+6°0 DOV [e3usuUnRUOdIA U] Jo1ARY(q Iaw0lsNd yueq Jurkynuspy N N SI0z Te 3@ Beenm3Q

§96°0 DNV it} sueo[Sururiojraduou Sunorpaig N A FAA FAR1 114 [9] e e uep

6260 DOV — uondIpaid WwInyd I9WO3ISNd yueg M 910z [¥] TeIe newersy

60 SunoxTew [8] Pre[eseq

NV [eSmuiog 19911p YUeq 10§ UOIIEIIJISSE[D ISUIOISN)) N N AT AR A {11/ pUue SOMBULIB\]
S2W02IN0

%1 DDV [e3n1io4 SunaxTews[a) Yueq Jo UoNdIPalq N /10T [eT] rruye

916'0 DAV vsn uonorpad axnrey yueg N NrMroON 810z [€] Sueg pue Suif

%¥/L¥6 DOV vsn uondrpaxd aanyrey yjueg M M N 610C [c] Te 39 eUOULIED

SOWI00IN0 [e1]

%C'T6 DDV eSmuog Gunexrewra[a) yueq Jo UOLDIPAIJ \/ \/ \/ \/ \/ 6107 [eqby pue tbooreg

8978°0 DNV BIpU] SI9WI0ISND YUeq I0J SISA[EUR JUSUIIUDS \/ \/ \/ \/ \/ \/ \« \« 6107 [ST] ‘Te 30 euysiDy

%6¢°L6 DOV - SIUNOJJE YUeq Ul UOMOSP pnely N 610C [S] Te 3w AT

%L0°L6 DDV [e8mioq uonorpaxd ysodop wira)-Guog A NMNAONMN MM N etor [1T] e wrEy

(1]

£6°0< DNV vsn uonotpaxd aanfrey yueq M N M 0T0T °[e 32 synoyuey

Jureq (DX ‘dV) Sunsoog (4y “o1) Surdfeg Y1 AN NNM WAS NN 1d
Insay a1 Jo Anunoy uonduosaq Surures| syquiasuy sunyLioS[y Ied)x 3o

57

Data Mining - Methods, Applications and Systems

(KNN), Naive Bayes (NB), and logistic regression (LR), as shown in Table 1. Some
data mining studies in the banking sector [1, 2, 6, 11, 15] have used ensemble
learning methods to increase the classification performance. Bagging and boosting
are the most popular ensemble learning methods due to their theoretical perfor-
mance advantages. Random forest (RF) [2, 6, 11, 15], AdaBoost (AB) [6], and
extreme gradient boosting (XGB) [2, 15] have also been used in the banking sector
as the most well-known bagging and boosting algorithms, respectively. As shown in
Table 1, accuracy (ACC) and area under ROC curve (AUC) are the commonly used
performance measures for classification.

Dealing with class imbalance problem, various solutions have been proposed in
the literature. Such methods can be mainly grouped under two different
approaches: (i) application of a data preprocessing step and (ii) modifying existing
methods. The first approach focuses on balancing the dataset, which may be done
either by increasing the number of minority class examples (over-sampling) or
reducing the number of majority class examples (under-sampling). In the literature,
synthetic minority over-sampling technique (SMOTE) [17] is commonly used as an
over-sampling technique. As an alternative approach, some studies (i.e., [18]) focus
on modifying the existing classification algorithms to make them more effective
when dealing with imbalanced data. Unlike these studies, this paper proposes a
novel approach (class-based weighting approach) to solve imbalanced data
problem.

3. Methods
3.1 Decision jungle

A decision jungle is an ensemble of rooted decision directed acyclic graphs (DAGs),
which are powerful and compact distinct models for classification. While a tradi-
tional decision tree only allows one path to every node, a DAG in a DJ allows
multiple paths from the root to each leaf [19]. During the training phase, node
splitting and merging operations are done by the minimization of an objective
function (the weighted sum of entropies at the leaves).

Unlike a decision forest that consists of several evolutionary induced decision
trees, decision jungle consists of an ensemble of decision directed acyclic graphs.
Experiments presented in [19] show that decision jungles require significantly less
memory while significantly improving generalization, compared to decision forests
and their variants.

3.2 Class-based weighted decision jungle method

In this study, we improve the decision jungle method by a class-based weighting
mechanism to make it effective in dealing with imbalanced data.

Giving a training dataset D = {(x1, y1), (%2, ¥2), ..., (X4, yn)} that contains N
instances, each instance is represented by a pair (x, y), where x is a d-dimensional
vector such that x; = [x;1, X;, ..., %;4] and y is its corresponding class label. While x is
defined as input variable, y is referred as output variable in the categorical domain
Y = {y1, ¥2, ---» Y}, where k is the number of class labels. The goal is to learn a
classifier function f: X — Y that optimizes some specific evaluation metric(s) and
can predict the class label for unseen instances.

Training dataset is usually considered as a set of samples from a probability
distribution F on X x Y. An instance component x is associated with a label class y;
of Y such that:

58

Data Mining in Banking Sector Using Weighted Decision Jungle Method
DOI: http://dx.doi.org/10.5772/intechopen.91836

P(y.|x
M > threshold, Vm +# j 1)
P(y,,lx)

where P(y; |x) is the predicted conditional probability of x belonging to y; and
threshold is typically set to 1.

In this paper, we focus on imbalanced data problem, where the number of
instances in one class (y;) is much larger or less than instances in the other class (y;).
Like many other classification algorithms, the decision jungle method is also
affected by a skewed distribution of the classes, because the traditional classifiers
tend to be overwhelmed by the majority class and ignore the rare samples in the
minority class. In order to overcome this problem, we locally adapted a class-based
weighted mechanism, where weights are determined depending on the distribution
of the class labels in the dataset. The main idea is that the minority class receives a
higher weight, while the majority class is assigned with a lower weight during the
combination class probabilities. According to this approach, the weight over a class
is calculated as follows:

1
Wc _ Log(N.+1) (2)

S oD
i=1 Log(N;+1)

where W, is the weight assigned to the class ¢, N is the total number of instances
in the dataset, N, is the number of instances present in the class ¢, and k is the
number of class labels. In the proposed approach, Eq. (1) is updated as follows:

WP (Y |x)

—————2 >threshold,Vm #j 3)
W P(y,,lx)

Figure 1 shows the general structure of the proposed approach. In the first step,
various types of raw banking data are obtained from different sources such as
account transactions, credit card details, loan applications, and social media texts.
Next, raw banking data is preprocessed by applying several different techniques to
provide data integration, data selection, and data transformation. The prepared data
is then passed to the training step, where weighted decision jungle algorithm is used
to build an effective model which accurately maps inputs to desired outputs. The
classification validation step provides feedback to the learning phase for adjustment

—_—

Income Data
Preprocessing

Credit Technigues
m Scores l l

Djzcr::lt;ﬂ Class-Based
i Weighting Q

31 T L

| .‘ " DAG
Z. | Loans — - 8
%‘ o N JR— J o ARAR o
R | Data =/ \ Apply POPLPN |
Patterns [Preprocessing| prepared Data Algonthm . Model | Prediction
Levels of ‘) [)
Risk . Iterate until data is ready Iterate for optimal model
111 hyperparameters

Social
Media Bank

€E0e0@0EDE0

Banking Data

Figure 1.
General structure of proposed approach.

59

Data Mining - Methods, Applications and Systems

to improve model performance. The training phase is repeated until a desired
classification performance is achieved. Once a model is build, after that it can be
used to predict unseen data.

4. Experimental studies

We implemented the proposed approach in Azure Machine Learning Studio
framework on cloud platform. In all experiments, default input parameters of the
decision forest algorithm were used as follows:

* Ensemble approach: Bagging

* Number of decision DAGs: 8

* Maximum width of the decision DAGs: 128

* Maximum depth of the decision DAGs: 32

* Number of optimization steps per decision DAG layer: 2048

Conventionally, accuracy is the most commonly used measure for evaluating a
classifier performance. However, in the case of imbalanced data, accuracy is not
sufficient alone since the minority class has very little impact on accuracy than the
majority class. Using only accuracy measure is meaningless when the data is
imbalanced and where the main learning target is the identification of the rare
samples. In addition, accuracy does not distinguish between the numbers of correct
class labels or misclassifications of different classes. Therefore, in this study, we also
used several more metrics: macro-averaged precision, vecall, and F-measure.

4.1 Dataset description

In this study, we conducted a series of experiments on 17 publically available
real-world banking datasets which are described in Table 2. We obtained eight
from the UCI Machine Learning Repository [20] and nine datasets from Kaggle data
repository.

4.2 Experimental results

Table 3 shows the comparison of the classification performances of DJ and
weighted DJ methods. According to the experimental results, on average, the
weighted DJ method shows better classification outcome than its traditional version
on the imbalanced banking datasets in terms of both accuracy and recall metrics.
For example, the imbalanced dataset “bank additional” has an accuracy of 94.54%
with the D] method and 94.61% with the weighted D] method. The accuracy is
slightly higher with the weighted version because the classifier was able to classify
the minority class samples better (0.8385, instead of 0.7914). The proposed method
only disappointed in its accuracy and recall values for 4 of 17 datasets (with IDs 5, 9,
12, and 13).

It is observed from the experiments that the weighted D] method failed in
classifying only one dataset among 17 datasets in terms of macro-averaged recall
values. This means that the proposed method generally can be able to build a good
model to predict minority class samples.

60

Data Mining in Banking Sector Using Weighted Decision Jungle Method
DOI: http://dx.doi.org/10.5772/intechopen.91836

No Dataset #Instances #Features #Class Majority Minority Data
class (%) class (%) source
1 Abstract dataset for 3075 12 2 85.4 14.6 Kaggle
credit card fraud
detection
2 Bank Bank 4521 17 2 88.5 11.5 UCI
keti
3 ma;;z]mg Bank full 45,211 17 2 88.3 117 ucl
4 Bank 4119 21 2 89.1 10.9 UcCl
additional
5 Bank 41,188 21 2 88.7 11.3 UCI
additional
full
6 Bank customer churn 10,000 14 2 79.6 20.4 Kaggle
prediction
7 Bank loan status 100,000 19 2 77.4 22,6 Kaggle
8 Banknote authentication 1372 5 2 55.5 445 ucI
9 Credit approval 690 16 2 55.5 44.5 UCI
10 Credit card fraud 284,807 31 2 99.8 0.2 Kaggle
detection [21]
11 Default of credit card 30,000 25 2 77.9 2.1 UCI
clients [22]
12 German credit 1000 21 2 70.0 30.0 UCI
13 Give me some credit 150,000 12 2 93.3 6.7 Kaggle
14 Loan campaign response 20,000 40 2 87.4 12.6 Kaggle
15 Loan data for dummy 887,379 30 2 92.4 7.6 Kaggle
bank
16 Loan prediction 614 13 2 68.7 31.3 Kaggle
17 Loan repayment 9578 14 2 84.0 16.0 Kaggle
prediction
Table 2.

The main characteristics of the banking datasets.

It can be deduced from the average precision and recall values that higher
classification rates can be achieved with the weighted DJ method for minority
classes, while more misclassified points in majority classes may also be detectable in
the case of imbalanced data.

Figure 2 shows the comparison of the classification performances of two
methods in terms of F-measure: decision jungle and class-based weighted decision
jungle (weighted DJ). In principle, F-measure is defined as F = (2 x Recall x
Precision)/(Recall + Precision), which is a harmonic mean between recall and
precision. According to the results, for all banking datasets, the proposed method
showed some increase or the same performance in the F-measure value.

It can be possible to conclude from the experiments that the minority and
majority ratios are not the only issues in constructing a good prediction model. For
example, the minority and majority ratios of the first and last datasets are very
close, but the classification outcomes related to these datasets are not similar.
Although the minority and majority class ratios are almost the same for these two
datasets, there is a significant difference between the classification accuracy, preci-
sion, and recall values of the datasets, as can be seen in Table 3. There is also a need

61

Data Mining - Methods, Applications and Systems

ID Dataset Decision jungle Class-based weighted
decision jungle

Acc (%) Precision Recall Acc (%) Precision Recall

1 Abstract dataset for credit card 99.09 0.9918 0.9715 99.19 0.9923 0.9749
fraud detection

2 Bank 92.70 0.8909 0.7175 92.70 0.8492 0.7593
3 Bank full 91.06 0.8181 0.6874 91.17 0.8039 0.7217
4 Bank additional 94.54 0.9082 0.7914 94.61 0.8739 0.8385
5 Bank additional full 92.21 0.8332 0.7347 9219 0.8126 0.7762
6 Bank customer churn prediction 87.37 0.8514 0.7291 87.40 0.8394 0.7411
7 Bank loan status 84.37 09170 0.6328 84.38 0.9169 0.6332
8 Banknote authentication 99.85 0.9987 0.9984 100.00 1.0000 1.0000
9 Credit approval 92.80 0.9273 0.9275 92.65 0.9257 0.9261
10 Credit card fraud detection 99.97 0.9915 0.9167 99.97 0.9861 0.9309
11 Default of credit card clients 83.05 0.7833 0.6695 83.16 0.7793 0.6785
12 German credit 86.30 0.8545 0.8088 8570 0.8338 0.8198
13 Give me some credit 93.88 0.8245 0.5986 93.77 0.7861 0.6240
14 Loan campaign response 89.34 0.9393 0.5763 90.34 0.9390 0.6178
15 Loan data for dummy bank 95.19 0.9753 0.6837 9520 0.9753 0.6844
16 Loan prediction 83.54 0.8715 0.7443 83.54 0.8631 0.7481
17 Loan repayment prediction 84.82 0.9059 0.5266 85.35 0.8900 0.5453

Average 91.18 0.8990 0.7479 9125 0.8863 0.7659

Table 3.

Comparison of unweighted and class-based weighted decision jungle methods in terms of accuracy,
macro-averaged precision, and macro-averaged recall.

1.00

o mD)

5 030 -)

> Weighted D)

Y pao -

£

w

0.70 -

0.60 -

0.50 - Dataset
v, @& & & ¢ & ¢ D O O <O o & [o
%% 555588 99%%%%%%%

2, > %

A T T -
Q 7 % % % B % Y v g e B
% BB B % B e Q% B R B B
% 2% %% B3 8% % %% B
% ¥ %% > % % Qi 7 %

2 " %
Figure 2.

Comparison of unweighted and class-based weighted decision jungle methods in terms of F-measure.

62

Data Mining in Banking Sector Using Weighted Decision Jungle Method
DOI: http://dx.doi.org/10.5772/intechopen.91836

for appropriate training examples that have data characteristics consistent with the
class label assigned to them.

5. Conclusion and future work

As a well-known data mining task, classification in real-world banking applica-
tions usually involves imbalanced datasets. In such cases, the performance of clas-
sification models is significantly affected by a skewed distribution of the classes.
The data imbalance problem in the banking dataset may lead to bad estimates and
misclassifications. To solve this problem, this paper proposes an approach which
improves the decision jungle method with a class-based weighting mechanism. In
the proposed approach, a weight is assigned to each class based on its distribution,
and this weight value is combined with class probabilities. The empirical experi-
ments conducted on 17 real-world bank datasets demonstrated that it is possible to
improve the overall accuracy and recall values with the proposed approach.

As a future study, the proposed approach can be adapted for multi-label classi-
fication task. In addition, it can be enhanced for the ordinal classification problem.

Author details

Derya Birant
Department of Computer Engineering, Dokuz Eylul University, Izmir, Turkey

*Address all correspondence to: derya@cs.deu.edu.tr

IntechOpen

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

63

Data Mining - Methods, Applications and Systems

References

[1] Manthoulis G, Doumpos M,
Zopounidis C, Galariotis E. An ordinal
classification framework for bank
failure prediction: Methodology and
empirical evidence for US banks.
European Journal of Operational
Research. 2020;282(2):786-801

[2] Carmona P, Climent F, Momparler A.
Predicting failure in the U.S. banking
sector: An extreme gradient boosting
approach. International Review of
Economics and Finance. 2019;61:
304-323

[3] Jing Z, Fang Y. Predicting US bank
failures: A comparison of logit and data

mining models. Journal of Forecasting.
2018;37:235-256

[4] Keramati A, Ghaneei H,
Mirmohammadi SM. Developing a
prediction model for customer churn
from electronic banking services using
data mining. Financial Innovation. 2016;
2(1):1-13

[5] Lv F, Huang], Wang W, Wei Y,
Sun Y, Wang B. A two-route CNN
model for bank account classification

with heterogeneous data. PLoS One.
2019;14(8):1-22

[6] Wan], Yue Z-L, Yang D-H, Zhang Y,
Jiao L, Zhi L, et al. Predicting non
performing loan of business Bank with
data mining techniques. International
Journal of Database Theory and
Application. 2016;9(12):23-34

[7] Yang Q, Wu X. 10 challenging
problems in data mining research.
International Journal of Information
Technology and Decision Making. 2006;
5(4):597-604

[8] Marinakos G, Daskalaki S.
Imbalanced customer classification for

bank direct marketing. Journal of
Marketing Analytics. 2017;5(1):14-30

64

[9] Smeureanu I, Ruxanda G, Badea LM.
Customer segmentation in private
banking sector using machine learning
techniques. Journal of Business
Economics and Management. 2013;
14(5):923-939

[10] Ogwueleka FN, Misra S, Colomo-
Palacios R, Fernandez L. Neural
network and classification approach in
identifying customer behavior in the
banking sector: A case study of an
international bank. Human Factors and
Ergonomics in Manufacturing. 2015;
25(1):28-42

[11] [Tham A, Khikmah L, Indra A,
Ulumuddin A, Iswara I. Long-term
deposits prediction: A comparative
framework of classification model for
predict the success of bank
telemarketing. Journal of

Physics Conference Series. 2019;
1175(1):1-6

[12] Farooqi R, Igbal N. Performance
evaluation for competency of bank
telemarketing prediction using data
mining techniques. International Journal
of Recent Technology and Engineering.
2019;8(2):5666-5674

[13] Lahmiri S. A two-step system for
direct bank telemarketing outcome
classification. Intelligent Systems in
Accounting, Finance and Management.
2017;24(1):49-55

[14] Moro S, Cortez P, Rita P. A data-
driven approach to predict the success
of bank telemarketing. Decision Support
Systems. 2014;62:22-31

[15] Krishna GJ, Ravi V, Reddy BV,
Zaheeruddin M, Jaiswal H, Sai Ravi
Teja P, et al. Sentiment classification of
Indian Banks’ Customer Complaints. In:
Proceedings of IEEE Region 10 Annual
International Conference. India; 17-20
October 2019. pp. 429-434

Data Mining in Banking Sector Using Weighted Decision Jungle Method
DOI: http://dx.doi.org/10.5772/intechopen.91836

[16] Hassani H, Huang X, Silva E.
Digitalisation and Big Data Mining in
Banking. Big Data and Cognitive
Computing. 2018;2(3):1-13

[17] Chawla NV, Bowyer KW, Hall LO,
Kegelmeyer WP. SMOTE: Synthetic
minority over-sampling technique.
Journal of Artificial Intelligence
Research. 2002;16:321-357

[18] Cieslak D, Liu W, Chawla S,
Chawla N. A robust decision tree
algorithms for imbalanced data sets. In:
Proceedings of the Tenth SIAM
International Conference on Data
Mining (SDM 2010). Columbus, Ohio,
USA; 29 Apr-1 May 2010. pp. 766-777

[19] Shotton J, Nowozin S, Sharp T,
Winn J, Kohli P, Criminisi A. Decision
jungles: Compact and rich models for
classification. Advances in Neural
Information Processing Systems. 2013;
26:234-242

[20] Dua D, Graff C. UCI Machine
Learning Repository. Irvine, CA:
University of California, School of
Information and Computer Science.
2019. Available from: http://archive.ics.
uci.edu/ml

[21] Carcillo F, Borgne Y-A, Caelen O,
Oble F, Bontempi G. Combining
unsupervised and supervised learning in
credit card fraud detection. Information
Sciences. 2020 in press. DOI: 10.1016/j.
ins.2019.05.042

[22] Yeh IC, Lien CH. The comparisons
of data mining techniques for the
predictive accuracy of probability of
default of credit card clients. Expert
Systems with Applications. 2009;36(2):
2473-2480

65

Chapter 5

Analytical Statistics Techniques of
Classification and Regression in
Machine Learning

Pramod Kumar, Sameer Ambekar, Manish Kumar
and Subarna Roy

Abstract

This chapter aims to introduce the common methods and practices of statistical
machine learning techniques. It contains the development of algorithms, applica-
tions of algorithms and also the ways by which they learn from the observed data by
building models. In turn, these models can be used to predict. Although one
assumes that machine learning and statistics are not quite related to each other, it is
evident that machine learning and statistics go hand in hand. We observe how the
methods used in statistics such as linear regression and classification are made use
of in machine learning. We also take a look at the implementation techniques of
classification and regression techniques. Although machine learning provides stan-
dard libraries to implement tons of algorithms, we take a look on how to tune the
algorithms and what parameters of the algorithm or the features of the algorithm
affect the performance of the algorithm based on the statistical methods.

Keywords: machine learning, statistics, classification, regression, algorithms

1. Introduction

Stating that statistical methods are useful in machine learning is analogous to
saying that wood working methods are helpful for a carpenter. Statistics is the
foundation of machine learning. However not all machine learning methods have
been said to have derived from statistics. To begin with let us take a look at what
statistics and machine learning means.

Statistics is extensively used in areas of science and finance and in the industry.
Statistics is known to be mathematical science and not just mathematics. It is said to
have been originated in seventeenth century. It consists of data collection, organiz-
ing the data, analyzing the data, interpretation and presentation of data. Statistical
methods are being used since a long time in various fields to understand the data
efficiently and to gain an in-depth analysis of the data [1].

On the other hand, machine learning is a branch of computer science which
uses statistical abilities to learn from a particular dataset [2]. It was invented in the
year 1959. It learns using algorithm and then has the ability to predict based on
what it has been fed with. Machine learning gives out detailed information than
statistics [3].

67 IntechOpen

Data Mining - Methods, Applications and Systems

Most of the techniques of machine learning derive their behavior from statistics.
However not many are familiar with this since both of them have their own jargons.
For instance learning in statistics is called as fitting, supervised learning from
machine learning is called as regression. Machine learning is a subfield of computer
science and artificial intelligence. Machine learning is said to be a subdivision of
computer science and artificial intelligence. It does use fewer assumptions than
statistics. Machine learning unlike statistics deals with large amount of data and it
also requires minimum human effort since most of its computation is done by the
machine or the computer itself. Machine learning unlike statistics has a strong
predicting power than statistics. Depending on the type of data machine learning
can be categorized into supervised machine learning, unsupervised machine
learning and reinforcement learning [4].

There seems to be analogy between machine learning and statistics. The
following picture from textbook shows how statistics and machine learning
visualize a model. Table 1 shows how terms of statistics have been coined
in machine learning.

To understand how machine learning and statistics come out with the
results let’s look at Figure 1. In statistical modeling on the left half of the
image, linear regression with two variables is fitting the best plane with fewer
errors. In machine learning the right half of the image to fit the model in the best
possible way the independent variables have been converted into the square of error
terms. That is machine learning strives to get a better fit than the statistical
model. In doing so, machine learning minimizes the errors and increases the
prediction rates.

Statistics methods are not just useful in training the machine learning model but
they are helpful in many other stages of machine learning such as:

Machine learning Statistics

Network, graphs Model

Weights Parameters

Learning Fitting

Generalization Tool set performance

Supervised learning Regression/classification

Unsupervised learning Density estimation, clustering
Table 1.

Machine learning jargons and corresponding statistics jargons.

Sratistical way Machine learning way
i =R Xy 48Xz

£ = (¥ = (B = Xy + B2 X)) J

Figure 1.
Statistical and machine learning method.

68

Analytical Statistics Techniques of Classification and Regression in Machine Learning
DOI: http://dx.doi.org/10.5772/intechopen.84922

* Data preparation—where statistics is used for data preprocessing which is later
sent to the model. For instance when there are missing values in the dataset, we
compute statistical mean or statistical median and fill it in the empty spaces of
the dataset. It is recommended that machine learning model should never be
fed with a dataset which has empty cells in it. It also used in preprocessing
stage to scale the data by which the values are scaled to a particular range by
which the mathematical computation becomes easy during the training of
machine learning.

* Model evaluation—no model is perfect in predicting when it is built for the
first time. Simply building the model is not enough. It is vital to check how well
is it performing and if not then by how much is it closer to being accurate
enough. Hence, we evaluate the model by statistical methods, which tell by
how much the result is accurate and a lot many things about the end result
obtained. We make use of metrics such as confusion matrix, Kolmogorov
Smirnov chart, AUC—ROC, root mean squared error and many metrics to
enhance our model.

* Model selection—we make use of many algorithms to train the algorithm and
there is a chance of selecting only one which gives out accurate results when
compared to others. The process of selecting the right solution for this is
called model selection. Two of the statistical methods can be used to select
the appropriate model such as statistical hypothesis test and estimation
statistics [5].

* Data selection—some datasets carry a lot of features with them. Of many
features, it may happen so that only some contribute significantly in
estimation of the result. Considering all the features becomes
computationally expensive and as well as time consuming. By making use of
statistics concepts we can eliminate the features which do not contribute
significantly in producing the result. That is it helps in finding out the
dependent variables or features for any result. But it is important to note that
this method requires careful and skilled approach. Without which it may
lead to wrong results.

In this chapter we take a look at how statistical methods such as, regression and
classification are used in machine learning with their own merits and demerits.

2. Regression

Regression is a statistical measure used in finance, investing and many other
areas which aims to determine relationship between the dependent variables and ‘n’
number of independent variables. Regression consists of two types:

Linear regression—where one independent variable is used to explain or predict
the outcome of the dependent variable.

Multiple regression—where two or more independent variables are used to
explain or predict the outcome of the dependent variable.

In statistical modeling, regression analysis consists of set of statistical methods to
estimate how the variables are related to each other.

Linear and logistic are the types of regression which are used in predictive
modeling [6].

69

Data Mining - Methods, Applications and Systems

Linear assumes that the relationship between the variables are linear that is they
are linearly dependent. The input variables consist of variables X;, X5, ..., X,, (where
n is a natural number).

Linear models were developed long time ago but till date they are able to
produce significant results. That is even in the modern computer’s era they are well
off. They are widely used because they are not complex in nature. In prediction,
they can even out perform complex nonlinear models.

There are ‘n’ number of regressions that can be performed. We look at the most
widely used five types of regression techniques. They are:

* Linear regression

* Logistic regression

* Polynomial regression

* Stepwise regression

* Ridge regression

Any regression method would involve the following:

* The unknown variables is denoted by beta

* The dependent variables also known as output variable

* The independent variables also known as input variables

It is denoted in the form of function as:

Y~£(X,p) 1

2.1 Linear regression

It is the most widely used regression type by far. Linear regression establishes a
relationship between the input variables (independent variables) and the output
variable (dependent variable).

That ISY:X1+X2++XH

It assumes that the output variable is a combination of the input variables. A
linear regression line is represented by Y = a + bX, where X is the explanatory
variable and Y is the dependent variable. The slope of the line is ‘b’, and ‘a’ is the
intercept (the value of y when x = 0).

A line regression is represented by the equation:

Y =a+bX
where X indicates independent variables and ‘Y’ is the dependent

variable [7]. This equation when plotted on a graph is a line as shown below
in Figure 2.

70

Analytical Statistics Techniques of Classification and Regression in Machine Learning
DOI: http://dx.doi.org/10.5772/intechopen.84922

Figure 2.
Linear regression on a dataset.

However, linear regression makes the following assumptions:

* That there is a linear relationship

¢ There exists multivariate normality

* There exists no multi collinearity or little multicollinearity among the variables
* There exists no auto-correlation between the variables

* No presence of homoscedasticity

It is fast and easy to model and it is usually used when the relationship to be

modeled is not complex. It is easy to understand. However linear regression is
sensitive to outliners.

Note: In all of the usages stated in this chapter, we have assumed the following:
The dataset has been divided into training set (denoted by X) and test set

(denoted by y_test)

71

The regression object “reg” has been created and exists.
We have used the following libraries:
Scipy and Numoy for numerical calculations
Pandas for dataset handling
Scikit-learn to implement the algorithm, to split the dataset and various other purposes.
Usage of linear regression in python:
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
#Declare the linear regression function
reg=linear_model.LinearRegression()
#call the method
reg.fit(height,weight)
#to check slope and intercept

Data Mining - Methods, Applications and Systems

m=reg.coef_[0]

b=reg.intercept_

print("slope=",m, "intercept=",b)

check the accuracy on the training set
reg.score(X, y)

2.2 Logistic regression

Logistic regression is used when the dependent variable is binary (True/False) in
nature. Similarly the value of y ranges from 0 to 1 (Figure 3) and it is represented
by the equation:

Odds = p/(1 — p) = probability that event will occur/probability

that the event will not occur
In (odds) = In (p/(1 - p)))
logit(p) = In (p/(1 —p)) = bo + b1X1 + b2X; + b3Xs... + bi X

Logistic regression is used in classification problems. For example to classify
emails as spam or not and to predict whether the tumor is malignant or not. It is not
mandatory that the input variables have linear relationship to the output variable
[8]. The reason being that it makes us of nonlinear log transformation to the
predicted odds. It is advised to make use of only the variables which are powerful
predictors to increase the algorithms performance.

However, it is important to note the following while making use of logistic
regression:

Doesn’t handle large number of categorical features.

The non-linear features should be transformed before using them.

Usage of logistic regression in python:

import numpy as np

import pandas as pd

from sklearn.linear_model import LogisticRegression

instantiate a logistic regression model, and fit with X and y
reg = LogisticRegression()

reg = model fit(X, y)

check the accuracy on the training set

reg.score(X, y)

o o
0,54
.-"Ir.
'/
L = | o I I j
—6 -4 -2 0 2 4 &

Figure 3.
Standard logistic function.

72

Analytical Statistics Techniques of Classification and Regression in Machine Learning
DOI: http://dx.doi.org/10.5772/intechopen.84922

2.3 Polynomial regression

It is a type of regression where the independent variable power is greater than 1.
Example:

Y=a-+ b(Xz + X3+ Xn) 3)

The plotted graph is usually a curve in nature as shown in Figure 4.

If the degree of the equation is 2 then it is called quadratic. If 3 then it is called
cubic and if it is 4 it is called quartic. Polynomial regressions are fit with the method
of least squares. Since the least squares minimizes the variance of the unbiased
estimators of all the coefficients which are done under the conditions of Gauss-
Markov theorem. Although we may get tempted to fit a higher degree polynomial so
that we could get a low error, it may cause over-fitting [9].

Some guidelines which are to be followed are:

The model is more accurate when it fed with large number of observations.

Not a good thing to extrapolate beyond the limits of the observed values.

Values for the predictor shouldn’t be large else they will cause overflow with
higher degree.

Usage of polynomial regression in python:

from sklearn.preprocessing import PolynomialFeatures
import numpy as np

#makes use of a pre-processor called degree for the function
reg = PolynomialFeatures(degree=2)

reg.fit_transform(X)

reg.score(X, y)

2.4 Step-wise regression

This type of regression is used when we have multiple independent variables. To
select the variables which are independent an automatic process is used. If used in
the right way it puts more power and presents us ton of information. It can be used
when the number of variables is too many. However if it is used haphazardly it may
affect the models performance.

20

10

=10

— Truth -
. — Estimate .
20 Cl N
-4 -2 0 2)
X

Figure 4.
Plotted graph is looks as curve in nature.

73

Data Mining - Methods, Applications and Systems

We make use of the following scores to help us find out the independent vari-
ables which contribute to the output variable significantly—R-squared, Adj. R-
squared, F-statistic, Prob (F-statistic), Log-Likelihood, AIC, BIC and many more.

It can be performed by any of the following ways:

* Forward selection—where we start by adding the variables to the set and check
how affects the scores.

* Backward selection—we start by taking all the variables to the set and start
eliminating them one by one by looking at the score after each elimination.

¢ Bidirectional selection—a combination of both the methods mentioned above.

The greatest limitation of using step-wise regression is that the each instance or
sample must have at least five attributes. Below which it has been observed that the
algorithm doesn’t perform well [10].

Code to implement Backward Elimination algorithm:

Assume that the dataset consists of 5 columns and 30 rows, which are present in
the variable X’ and let the expected results contain in the variable ‘y’. Let X_opt’
contain the independent variables which are used to determine the value of ‘y’.

We are making use of a package called statsmodels, which is used to estimate the
model and to perform statistical tests.

#import stats models package

import statsmodels.formula.api as sm

#since it is a polynomial add a column of 1s to the left

X = np.append (arr = np.ones([30,1]).astype(int), values = X, axis = 1)

#Let X-opt contain the independent variables only and Let y contain the output
variable

X_opt = X[;,[0,1,2,3,4,5]]

#assign y to endog and X_opt to exog

regressor_OLS = sm.OLS(endog = y, exog = X_opt).fit()

regressor_OLS.summary ()

The above code outputs the summary and based on it the variable which should
be eliminated should be decided. Once decided remove the variable from X-opt’.

It is used to handle high dimensionality of the dataset.

2.5 Ridge regression

It can be used to analyze the data in detail. It is a technique which is used to
get rid of multi collinearly. That is the independent values may be highly correlated.
It adds a degree of bias due to which it reduces the standard errors.

The multi collinearity of the data can be inspected by correlation matrix.
Higher the values, more the multi collinearity. It can also be used when number
of predictor variables in the dataset exceeds the number of instances or
observations [11].

The equation for linear regression is

Y =A+bX (4)
This equation also contains error. That is it can be expressed as

Y = A + bX + (error)

74

Analytical Statistics Techniques of Classification and Regression in Machine Learning
DOI: http://dx.doi.org/10.5772/intechopen.84922

OLS estimate

Hidge
eslimale

Figure 5.
Ridge and OLS.

Error with mean zero and known variance.
Ridge regression is known to shrink the size by imposing penalty on the size. It is
also used to control the variance.
In (Figure 5) how ridge regression looks geometrically.
Usage of ridge regression in python:
from sklearn import linear_model
reg = linear_model.Ridge (alpha = .5)
reg.fit ([[0, 0], [0, 0], [1, 1]], [0, .1, 1])
Ridge(alpha=0.5, copy_X=True, fit_intercept=True, max_iter=None,
normalize=False, random_state=None, solver="auto', tol=0.001)
#to return the co-efficient and intercept
reg.coef_
reg.intercept_

2.6 Lasso regression

Least absolute shrinkage and selection operator is also known as LASSO. Lasso is
a linear regression that makes use of shrinkage. It does so by shrinking the data
values toward the mean or a central point. This is used when there are high levels of
multi collinearity [12].

It is similar to ridge regression and in addition it can reduce the variability and
improves the accuracy of linear regression models.

It is used for prostate cancer data analysis and other cancer data analysis.

Important points about LASSO regression:

* It helps in feature extraction by shrinking the co-efficient to zero.
* It makes use of L1 regularization.

* In the data if the predictors are have high correlation, the algorithm selects
only one of the predictors discards the rest.

Code to implement in python:

from sklearn import linear_model
clf = linear_model.Lasso(alpha = 0.1)

75

Data Mining - Methods, Applications and Systems

clf.fit()

Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000,
normalize=False, positive=False, precompute=False, random_state=None,
selection='cyclic', tol=0.0001, warm_start=False)

#to return the co-efficent and intercept

print(clf.coef_)

print(clf.intercept_)

3. Classification

A classification task is when the output is of the type “category” such as segre-
gating data with respect to some property. In machine learning and statistics,
classification consists of categorizing the new data to a particular category where it
fits in on the basis of the data which has been used to train the model. Examples of
tasks which make use of classification techniques are classifying emails as spam or
not, detecting a disease on plants, predicting whether it will rain on some particular
day, predicting the house prices based on the area it is located.

In terms of machine learning classification techniques fall under supervised
learning [13].

The categories may be either:

* categorical (example: blood groups of humans—A, B, O)

* ordinal (example: high, medium or low)

* integer valued (example: occurrence of a letter in a sentence)
* Real valued

The algorithms which make use of this concept in machine learning and classify
the new data are called as “Classifiers.” Algorithms always return a probability score
of belonging to the class of interest. That is considered an example where we are
required to classify a gold ornament. Now when we input the image to the machine
learning model the algorithms returns the probability value for each category, such
as for if it is a ring the probability value may be higher than 0.8 if it not a necklace it
may return less than 0.2, etc.

Higher the value more likely it is for it to belong to the particular group.

We make use of the following approach to build a machine learning classifier:

1. Pick a cut off probability above which we consider a record to belong to that
class.

2. Estimate that a new observation belongs to a class.

3.1f the obtained probability is above the cut off probability, assign the new
observation to that class.

Classifiers are of two types: linear and nonlinear classifiers.
We now take a look at various classifiers are also statistical techniques:

1. Naive Bayes

2. stochastic gradient dissent (SGD)

76

Analytical Statistics Techniques of Classification and Regression in Machine Learning
DOI: http://dx.doi.org/10.5772/intechopen.84922

3.K-nearest neighbors

4.decision trees

5.random forest

6.support vector machine
3.1 Naive Bayes

In machine learning, these classifiers belong to “probabilistic classifiers.” This
algorithm makes use of Bayes’ theorem with strong independence assumptions
between the features. Although Naive Bayes were introduced in the early 1950s,
they are still being used today [14].

Given a problem instance to be classified, represented by a vector
X= (Xla X2, X3, -0y Xn)
Which represent ‘n’ features.
P(Ck | x1,%3, ..., Xn)

We can observe that in the above formula that if the number of features is more
or if a feature accommodates a large number of values, then it becomes infeasible.
Therefore we rewrite the formula based on Bayes theorem as:

P(Cx/x) = p(Ci)p(x[Ci) /p(x) ®)

Makes two “naive” assumptions over attributes:

* All attributes are a priori equally important

o All attributes are statistically independent (value of one attribute is
* not related to a value of another attribute)

This classifier makes two assumptions:

o All attributes are equally important

* All attributes are not related to another attribute

There are three types of naive Bayes algorithms, which can be used:
GaussianNB, BernoulliNB, and MultinomialNB.
Usage of naive Bayes in python:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.naive_bayes import GaussianNB
reg= GaussianNB()
reg.fit(X,y)
reg.predict(X_test)
reg.score()

Data Mining - Methods, Applications and Systems

3.2 Stochastic gradient dissent (SGD)

An example of linear classifier which implements regularized linear model
(Figure 6) with stochastic gradient dissent. Stochastic gradient descent (often
shortened to SGD), also known as incremental gradient descent, is an iterative
method to optimize a differentiable objective function, a stochastic approximation
of gradient descent optimization [15]. Although SGD has been a part of machine
learning since ages it wasn’t extensively used until recently.

In linear regression algorithm, we make us of least squares to fit the line. To
ensure that the error is low we use gradient descent. Although gradient descent does
the job it can’t handle big tasks hence we use stochastic gradient classifier. SGD
calculates the derivative of each training data and also calculates the update within
no time.

The advantages of using SGD classifier are that they are efficient and they are
easy to implement.

However it is sensitive to feature scaling.

Usage of SGD classifier:

from sklearn.linear_model import SGDClassifier
X =1[[0,0.], [1, 1]]

y= [0’ 1]

clf = SGDClassifier (loss = "hinge", penalty = "I2")
cffit(X, y)

#to predict the values

clf fit(X_test)

3.3 K-nearest neighbors

Also known as k-NN is a method used to classify as well as for regression. The
input consists of k number of closest training examples. It is also referred as lazy
learning since the training phase doesn’t require a lot of effort.

In k-NN an object’s classification is solely dependent on the majority vote of the
object’s neighbors. That is the outcome is based on the presence of the neighbors.
The object is assigned to the class most common among its k nearest neighbors. If
the value of k is equal to 1 then it’s assigned to its nearest neighbor. Simply put, the

Figure 6.
Feature scaling classifier.

78

Analytical Statistics Techniques of Classification and Regression in Machine Learning
DOI: http://dx.doi.org/10.5772/intechopen.84922

k-NN algorithm is entirely dependent on the neighbors of the object to be classified.
Greater the influence of a neighbor, the object is assigned to it. It is termed as
simplest machine learning algorithm among all the algorithms [16].

Let us consider an example where the green circle is the object which is to be
classified as shown in Figure 7. Let us assume that there are two circles—the solid
circle and the dotted circle.

As we know that there are two classes class 1 (blue squares) and class 2 (red
squares). If we consider only the inner circle that is the solid circle then there are
two objects of red circle existing which dominates the number of blue squares due
to which the new object is classified to Class 1. But if we consider the dotted circle,
the number of blue circle dominates since there are more number of blue squares
due to which the object is classified to Class 2 [17].

However, the cost of learning process is zero.

The algorithm may suffer from curse of dimensionality since the number of
dimensions greatly affects its performance. When the dataset is very large the
computation becomes very complex since the algorithm takes time to look out for
its neighbors. If there are many dimensions then the samples nearest neighbors can
be far away. To avoid curse of dimensionality dimension reduction is usually
performed before applying k-NN algorithm to the data.

Also the algorithm may not perform well with categorical data since it is difficult
to find the distance between the categorical features.

Usage in python:

from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier (n_neighbors=5)
classifier.fit(X_train, y_train)

3.4 Decision trees

Decision trees are considered to be most popular classification algorithms
while classifying data. Decision trees are a type of supervised algorithm where the
data is split based on certain parameters. The trees consist of decision nodes and
leaves [18].

The decision tree consists of a root tree from where the tree generates and this
root tree doesn’t have any inputs. It is the point from which the tree originates. All
the other nodes except the root node have exactly one incoming node. The other

Figure 7.
K-Neighbors.

79

Data Mining - Methods, Applications and Systems

nodes except the root node are called leaves. Below is the example of a decision tree
an illustration of how the decision tree looks like as shown in Figure 8.

“Is sex male” is the root node from where the tree originates. Depending on the
condition the tree further bifurcates into subsequent leaf nodes. Few more condi-
tions like “is Age >9.5?” are applied by which the depth of the node goes on
increasing. As the number of leaf nodes increase the depth of the tree goes on
increasing. The leaf can also hold a probability vector.

Decision tree algorithms implicitly construct a decision tree for any dataset.

The goal is to construct an optimal decision tree by minimalizing the generali-
zation error. For any tree algorithm, it can be tuned by making changes to param-
eters such as “Depth of the tree,” “Number of nodes,” “Max features.” However
construction of a tree by the algorithm can get complex for large problems since the
number of nodes increase as well as the depth of the tree increases.

Advantages of this tree are that they are simple to understand and can be easily
interpreted. It also requires little data preparation. The tree can handle both
numerical and categorical data unlike many other algorithms. It also easy to validate
the decision tree model using statistical testes. However, disadvantages of the trees
are that they can be complex in nature for some cases which won’t generalize the
data well. They are unstable in nature since if there are small variations in data they
may change the structure of the tree completely.

Usage in python:

from sklearn.neighbors import tree
classifier = tree.DecisionTreeClassifier()
classifier.fit(X_train, y_train)
clf.predict(X_test)

3.5 Random forest
These are often referred as ensemble algorithms since these algorithms combine

the use of two or more algorithms. They are improved version of bagged decision
trees. They are used for classification, regression, etc.

[yea] I8 sex male? |

is age > 9.57

]

r

=

L]
a

Figure 8.
Typical decision tree.

80

Analytical Statistics Techniques of Classification and Regression in Machine Learning
DOI: http://dx.doi.org/10.5772/intechopen.84922

Random forest creates n number of decision trees from a subset of the data. On
creating the trees it aggregates the votes from the different trees and then decides
the final class of the sample object. Random forest is used in recommendation
engines, image classification and feature selection [19].

The process consists of four steps:

1. It selects random samples from the dataset.

2.For every dataset construct a dataset and then predict from every decision tree.
3. For every predicted result perform vote.

4.Select the prediction which has the highest number of votes.

Random forest’s default parameters often produce a good result in most of the
cases. Additionally, one can make changes to achieve desired results. The parame-
ters in Random Forest which can be used to tune the algorithm which can be used to
give better and efficient results are:

1. Increasing the predictive power by increasing “n_estimators” by which the
number of tress which will be built can be altered. “max_features” parameter
can also be adjusted which is the number of features which are used to train the
algorithm. Another parameter which can be adjusted is “min_sample_leaf”
which is the number of leafs that are used to split the internal node.

2.To increase the model’s speed, “n_jobs” parameter can be adjusted which is the
number of processors it can use. To use as many as needed “—1” can be
specified which signifies that there is no limit.

Due to large number of decision trees random forest is highly accurate. Since it
takes the average of all the predictions which are computed the algorithm doesn’t
suffer from over fitting. Also it does handle missing values from the dataset. How-
ever, the algorithm is takes time to compute since it takes time to build trees and
take the average of the predictions and so on.

One of the real time examples where random forest algorithm can be used is
predicting a person’s systolic blood pressure based on the person’s height, age,
weight, gender, etc.

Random forests require very little tuning when compared to other algorithms.
The main disadvantage of random forest algorithm is that increased number of tress
can make the process computationally expensive and lead to inaccurate results.

Usage in python:

from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier(max_depth=2, random_state=0)
cffit(X, y)

clf.predict(X_test)

3.6 Support vector machine
Support vector machines also known as SVMs or support vector networks fall
under supervised learning. They are used for classification as well as regression

purposes. Support vectors are the data points which lie close to the hyper plane.
When the data is fed to the algorithm the algorithm builds a classifier which can be

81

Data Mining - Methods, Applications and Systems

used to assign new examples to one class or the other [20]. A SVM consists of points
in space separated by a gap which is as wide as possible. When a new sample is
encountered it maps it to the corresponding category.

Perhaps when the data is unlabeled it becomes difficult for the supervised SVM
to perform and this is where unsupervised method of classifying is required.

A SVM constructs a hyper plane which can be used for classification, regression
and many other purposes. A good separation can be achieved when the hyper plane
has the largest distance to the nearest training point of a class.

In (Figure 9) H; line doesn’t separate, while H, separates but the margin is very
small whereas Hj separates such as the distance between the margin and the nearest
point is maximum when compared to H; and H,.

SVMs can be used in a variety of applications such as:

They are used to categorize text, to classify images, handwritten images can be
recognized, and they are also used in the field of biology.

SVMs can be used with the following kernels:

1. Polynomial kernel SVM

2. Linear kernel SVM

3. Gaussian kernel SVM

4.Gaussian radial basis function SVM (RBF)
The advantages of SVM are:

1. Effective in high dimensional data

2.1t is memory efficient

3.1t is versatile

z I,
® s £
» ®
@
. -
® []

Figure 9.
Hyper plane construction and H,, H, and H; line separation.

82

Analytical Statistics Techniques of Classification and Regression in Machine Learning
DOI: http://dx.doi.org/10.5772/intechopen.84922

It may be difficult for SVM to classify at times due to which the decision
boundary is not optimal. For example, when we want to plot the points randomly
distributed on a number line.

It is almost impossible to separate them. So in such cases we transform the
dataset by applying 2D or 3D transformations by using a polynomial function or any
other appropriate function. By doing so it becomes easier to draw a hyper plane.

When the number of features is much greater than number of samples it doesn’t
perform well with the default parameters.

Usage of SVM in python:

from sklearn import svin
clf = svm.SVC()
clf.fit(X,y)
clf.predict(X_test)

4, Conclusion

It is evident from the above regression and classification techniques are strongly
influenced by statistics. The methods have been derived from statistical methods
which existed since a long time. Statistical methods also consist of building models
which consists of parameters and then fitting it. However not all the methods which
are being used derive their nature from statistics. Not all statistical methods are
being used in machine learning. Extensive research in the field of statistical
methods may give out new set methods which can be used in machine learning
apart from the existing statistical methods which are being used today. It can also be
stated that machine learning to some extent is a form of ‘Applied Statistics.’

Author details
Pramod Kumar®, Sameer Ambekar’", Manish Kumar? and Subarna Roy1

1 Department of Health Research, Biomedical Informatics Centre, ICMR-National
Institute of Traditional Medicine, Belagavi, Karnataka, India

2 Department of Electrical Engineering, College of Engineering, Bharti Vidyapeeth,
Pune, Maharashtra, India

*Address all correspondence to: pramodbiotech@gmail.com

TSameer Ambekar shares first authorship.

IntechOpen

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

83

Data Mining - Methods, Applications and Systems

References

[1] Hawkins DM. On the investigation of
alternative regressions by principal
component analysis. Journal of the
Royal Statistical Society Series. 1973;22:
275-286. https://www.jstor.org/stable/
316057

[2] Kourou K, Exarchos TP, Exarchos
KP, Karamouzis MV, Fotiadis DI.
Machine learning applications in cancer
prognosis and prediction.
Computational and Structural
Biotechnology Journal. 2015;13:8-17.
DOI: 10.1016/j.csbj.2014.11.005

[3] Machine Learning [Internet].
Available from: https://en.wikipedia.
org/wiki/Machine_learning

[4] Trevor H, Robert T. The Elements of
Statistical Learning: Data Mining,
Inference, and Prediction. New York:
Springer; 2009. pp. 485-586. DOLI:
10.1007/978-0-387-84858-7_14

(5] Aho K, Derryberry DW, Peterson T.
Model selection for ecologists: The
worldviews of AIC and BIC. Ecology.
2014;95(3):631-636. DOI: 10.1890/
13-1452.1

[6] Freedman DA. Statistical Models:
Theory and Practice. USA: Cambridge
University Press; 2005. ISBN: 978-0-
521-85483-2

[7]1 sklearn.linear_model.
LinearRegression—scikit-learn 0.19.2
documentation [Internet]. Available
from: http://scikit-learn.org/stable/mod
ules/generated/sklearn.linear_model.
LinearRegression.html

[8] Linear Regression—Wikipedia
[Internet]. Available from: https://en.
wikipedia.org/wiki/Linear_regression

[9] Shaw P et al. Gergonne's 1815 paper

on the design and analysis of polynomial
regression experiments. Historia

84

Mathematica; 2006;1(4):431-439. DOI:
10.1016/0315-0860(74)90033-0

[10] Stepwise Regression—Wikipedia
[Internet]. Available from: https://en.
wikipedia.org/wiki/Stepwise_regression

[11] Tikhonov Regularization—
Wikipedia [Internet]. Available from:
https://en.wikipedia.org/wiki/Tikhonov_
regularization

[12] sklearn.linear_model.
LogisticRegression—scikit-learn 0.19.2
documentation [Internet]. Available
from: http://scikit-learn.org/stable/
modules/generated/sklearn.linear_
model. LogisticRegression.html

[13] Statistical Classification—Wikipedia
[Internet]. Available from: https://en.
wikipedia.org/wiki/Statistical
classification

[14] Naive Bayes Scikit-Learn 0.19.2
Documentation [Internet]. Available
from: http://scikit-learn.org/stable/
modules/naive_bayes.html

[15] Stochastic Gradient Descent
—Scikit-Learn 0.19.2 Documentation
[Internet]. Available from: http://scikit-
learn.org/stable/modules/sgd.html

[16] k-Nearest Neighbors Algorithm—
Wikipedia [Internet]. Available from:
https://en.wikipedia.org/wiki/K-nearest_
neighbors_algorithm

[17] Kaminski B, Jakubczyk M, Szufel P.
A framework for sensitivity analysis of
decision trees. Central European Journal
of Operations Research. 2017;26:
135-159. DOI: 10.1007/s10100-017-
0479-6

[18] Lasso (Statistics)—Wikipedia
[Internet]. Available from: https://en.
wikipedia.org/wiki/Lasso_(statistics)

Analytical Statistics Techniques of Classification and Regression in Machine Learning
DOI: http://dx.doi.org/10.5772/intechopen.84922

[19] sklearn.linear_model.Lasso—Scikit-
Learn 0.19.2 Documentation [Internet].
Available from: http://scikit-learn.org/
stable/modules/generated/sklearn.linear_
model.Lasso.html

[20] Corinna C, Vapnik Vladimir N.
Support-vector networks. Machine
Learning. 1995;20(3):273-297. DOL:
10.1007/BF00994018

85

Chapter 6
Clustering of Time-Series Data

Esma Ergiiner Ozkog

Abstract

The process of separating groups according to similarities of data is called “clus-
tering.” There are two basic principles: (i) the similarity is the highest within a
cluster and (ii) similarity between the clusters is the least. Time-series data are
unlabeled data obtained from different periods of a process or from more than one
process. These data can be gathered from many different areas that include engi-
neering, science, business, finance, health care, government, and so on. Given the
unlabeled time-series data, it usually results in the grouping of the series with
similar characteristics. Time-series clustering methods are examined in three main
sections: data representation, similarity measure, and clustering algorithm. The
scope of this chapter includes the taxonomy of time-series data clustering and the
clustering of gene expression data as a case study.

Keywords: time-series data, data mining, data representation, similarity measure,
clustering algorithms, gene expression data clustering

1. Introduction

The rapid development of technology has led to the registration of many pro-
cesses in an electronic environment, the storage of these records, and the accessi-
bility of these records when requested. With the evolving technology such as cloud
computing, big data, the accumulation of a large amount of data stored in data-
bases, and the process of parsing and screening useful information made data
mining necessary.

It is possible to examine the data which are kept in databases and reach to huge
amounts of size every second, in two parts according to their changes in time: static
and temporal. Data is called the static data when its feature values do not change
with time, if the feature comprise values change with time then it is called the
temporal or time-series data.

Today, with the increase in processor speed and the development of storage
technologies, real-world applications can easily record changing data over time.

Time-series analysis is a trend study subject because of its prevalence in various
fields ranging from science, engineering, bioinformatics, finance, and government
to health-care applications [1-3]. Data analysts are looking for the answers of such
questions: Why does the data change this way? Are there any patterns? Which series
show similar patterns? etc. Subsequence matching, indexing, anomaly detection,
motif discovery, and clustering of the data are the answers of some questions [4].
Clustering, which is one of the most important concepts of data mining, defines its
structure by separating unlabeled data sets into homogeneous groups. Many
general-purpose clustering algorithms are used for the clustering of time-series

87 IntechOpen

Data Mining - Methods, Applications and Systems

data, either by directly or by evolving. Algorithm selection depends entirely on the
purpose of the application and on the properties of the data such as sales data,
exchange rates in finance, gene expression data, image data for face recognition, etc.

In the age of informatics, the analysis of multidimensional data that has emerged
as part of the digital transformation in every field has gained considerable impor-
tance. These data can be from data received at different times from one or more
sensors, stock data, or call records to a call center. This type of data, that is,
observing the movement of a variable over time, where the results of the observa-
tion are distributed according to time, is called time-series data. Time-series analy-
sis is used for many purposes such as future forecasts, anomaly detection,
subsequence matching, clustering, motif discovery, indexing, etc. Within the scope
of this study, the methods developed for the time-series data clustering which are
important for every field of digital life in three main sections. In the first section,
the proposed methods for the preparation of multidimensional data for clustering
(dimension reduction) in the literature are categorized. In the second section, the
similarity criteria to be used when deciding on the objects to be assigned to the
related cluster are classified. In the third section, clustering algorithms of time-
series data are examined under five main headings according to the method used. In
the last part of the study, the use of time-series clustering in bioinformatics which is
one of the favorite areas is included.

2. Time-series clustering approaches

There are many different categorizations of time-series clustering approaches.
Such as, time-series clustering approaches can be examined in three main sections
according to the characteristics of the data used whether they process directly on
raw data, indirectly with features extracted from the raw data, or indirectly with
models built from the raw data [5]. Another category is according to the clustering
method: shape-based, feature-based, and model-based [6]. But whatever the cate-
gorization is, for any time-series clustering approach, the main points to be consid-
ered are: how to measure the similarity between time series; how to compress the
series or reduce dimension and what algorithm to use for cluster. Therefore, this
chapter examines time-series clustering approaches according to three main build-
ing blocks: data representation methods, distance measurements, and clustering
algorithms (Figure 1).

2.1 Data representation

Data representation is one of the main challenging issues for time-series cluster-
ing. Because, time-series data are much larger than memory size [7, 8] that
increases the need for high processor power and time for the clustering process
increases exponentially. In addition, the time-series data are multidimensional,
which is a difficulty for many clustering algorithms to handle, and it slows down the
calculation of the similarity measurement. Consequently, it is very important for
time-series data to represent the data without slowing down the algorithm execu-
tion time and without a significant data loss. Therefore, some requirements can be
listed for any data representation methods [9]:

i. Significantly reduce the data size/dimensionality,

ii. Maintain the local and global shape characteristics of the time series,

88

Clustering of Time-Series Data
DOI: http://dx.doi.org/10.5772 /intechopen.84490

iii. Acceptable computational cost,
iv. Reasonable level of reconstruction from the reduced representation,
v. Insensitivity to noise or implicit noise handling.

Dimension reduction is one of the most frequently used methods in the litera-
ture [7, 10-12] for the data representation.

Definition:

The representation of a time series T with length n is a model T with reduced
dimensions, so that T approximates T [13]. Dimension reduction or feature extrac-
tion is a very useful method for reducing the number of variables/attributes or units

Data
Representation

Distance
Measurements

Clustering
Algorithms

Figure 1.
Time-series clustering.

89

eData Adaptive
*Non-Data Adaptive
*Model-Based
eData Dictated

eSimilarity in Time
eSimilarity in Shape
esimilarity in Change

ePartitioning Clustering
eHierarchical Clustering
*Density-Based Clustering
*Model-Based Clustering
*Grid Based Clustering

Data Mining - Methods, Applications and Systems

in multivariate statistical analyzes so that the number of attributes can be reduced
to a number that “can handle.”

Due to the noisy and high-dimensional features of many time-series data, data
representations have been studied and generally examined in four main sections:
data adaptive, nondata adaptive, model-based, and data dictated [6].

* Data adaptive methods that have changing parameters according to
processing time-series data. Methods in this category try to minimize global
reconstruction error by using unequal length segments. Although it is difficult
to compare several time series, this method approximates each series better.
Some of the popular data adaptive representation methods are: Symbolic
Aggregate Approximation (SAX) [14], Adaptive Piecewise Constant
Approximation (APCA) [15], Piecewise Linear Approximation (PLA) [16],
Singular Value Decomposition (SVD) [17, 18], and Symbolic Natural Language
(NLG) [19].

* Non-data adaptive methods are use fix-size parameters for the representing
time-series data. Following methods are shown among non-data adaptive
representation methods: Discrete Fourier Transform (DFT) [18], Discrete
Wavelet Transform (DWT) [20-22], Discrete Cosine Transformation (DCT)
[17], Perceptually Important Point (PIP) [23], Piecewise Aggregate
Approximation (PAA) [24], Chebyshev Polynomials (CHEB) [25],

Random Mapping [26], and Indexable Piecewise Linear Approximation
(IPLA) [27].

* Model-based methods assume that observed time series was produced by an
underlying model. The real issue here is to find the parameters that produce
this model. Two time series produced by the same set of parameters using the
underlying model are considered similar. Some of the model-based methods
can be listed as: Auto-regressive Moving Average (ARMA) [28, 29], Time-
Series Bitmaps [30], and Hidden Markov Model (HMM) [31-33].

* Data dictated methods automatically determine the dimension reduction rate
but in the three methods mentioned above, the dimension reduction rates are
automatically determined by the user. The most common example of data
dictated method is clipped data [34-36].

Many representation methods for time-series data are proposed and each of
them offering different trade-offs between the aforementioned requirements. The
correct selection of the representation method plays a major role in the effectiveness
and usability of the application to be performed.

2.2 Similarity/distance measure

In particular, the similarity measure is the most essential ingredient of time-
series clustering.

The similarity or distance for the time-series clustering is approximately calcu-
lated, not based on the exact match as in traditional clustering methods. It requires
to use distance function to compare two time series. In other words, the similarity
of the time series is not calculated, it is estimated. If the estimated distance is large,
the similarity between the time series is less and vice versa.

90

Clustering of Time-Series Data
DOI: http://dx.doi.org/10.5772 /intechopen.84490

Definition:

Similarity between two “n” sized time series T = {ty,ty,....t,} and U = {ug,up,....u,}
is the length of the path connecting pair of points [11]. This distance is the measure
of similarity. D (T, U) is a function that takes two times series (T, U) as input and
calculates their distance “d”.

Metrics to be used in clustering must cope with the problems caused by common
features of time-series data such as noise, temporal drift, longitudinal scaling, offset
translation, linear drift, discontinuities, and amplitude scaling. Various methods
have been developed for similarity measure, and the method to choose is problem
specific. These methods can be grouped under three main headings: similarity in
time, similarity in shape, and similarity in change.

2.2.1 Similarity in time

The similarity between the series is that they are highly time dependent. Such a
measure is costly for the raw time series, so a preprocessing or transformation is
required beforehand [34, 36].

2.2.2 Similarity in shape

Clustering algorithms that use similarity in shape measure, assigns time series
containing similar patterns to the same cluster. Independently of the time, it does
not care how many times the pattern exists [37, 38].

2.2.3 Similarity in change

The result of using this metric is time-series clusters that have the similar
autocorrelation structure. Besides, it is not a suitable metric for short time series
[29, 39, 40].

2.3 Clustering algorithms

The process of separating groups according to similarities of data is called “clus-
tering.” There are two basic principles: the similarity within the cluster is the
highest and the similarity between the clusters is the least. Clustering is done on the
basis of the characteristics of the data and using multivariate statistical methods.
When dividing data into clusters, the similarities/distances of the data to each other
are measured according to the specification of the data (discrete, continuous, nom-
inal, ordinal, etc.)

Han and Kamber [41] classify the general-purpose clustering algorithms which
are actually designed for static data in five main sections: partition-based,
hierarchical-based, density-based, grid-based, and model-based. Besides these, a
wide variety of algorithms has been developed for time-series data. However, some
of these algorithms (ignore minor differences) intend to directly use the methods
developed for static data without changing the algorithm by transforming it into a
static data form from temporal data. Some approaches apply a preprocessing step
on the data to be clustered before using the clustering algorithm. This preprocessing
step converts the raw-time-series data into feature vectors using dimension reduc-
tion techniques, or converts them into parameters of a specified model [42].

91

Data Mining - Methods, Applications and Systems

Definition:

Given a dataset on n time series T = {t, t,,...., t,}, time-series clustering is the
process of partitioning of T into C = {C;,Cy,....,Ci} according to certain similarity
criterion. C; is called “cluster” where,

T = s, Ciand CG;NC; = @ fori #]j (1)

In this section, previously developed clustering algorithms will be categorized.
Some of these algorithms work directly with raw time-series data, while others use
the data presentation techniques that are previously mentioned.

Clustering algorithms are generally classified as: partitioning, hierarchical,
graph-based, model-based, and density-based clustering.

2.3.1 Partitioning clustering

The K-means [43] algorithm is a typical partition-based clustering algorithm
such that the data are divided into a number of predefined sets by optimizing the
predefined criteria. The most important advantage is its simplicity and speed. So it
can be applied to large data sets. However, the algorithm may not produce the same
result in each run and cannot handle the outlier. Self-organizing map [44] is stron-
ger than the noisy data clustering from K-means. The user is prompted to enter the
cluster number and grid sets. It is difficult to determine the number of clusters for
time-series data. Other examples of partition-based clustering are CLARANS [45]
and K-medoids [46]. In addition, the partitioning approach is suitable for low-
dimensional, well-separated data. However, time-series data are multidimensional
and often contain intersections, embedded clusters.

In essence, these algorithms act as n-dimensional vectors to time-series data and
applies distance or correlation functions to determine the amount of similarity
between two series. Euclidean distance, Manhattan distance, and Pearson
correlation coefficient are the most commonly used functions.

2.3.2 Hierarchical clustering

Contrary to the partitioning approach, which aims segmenting data that do not
intersect, the hierarchical approach produces a hierarchical series of nested clusters
that can be represented graphically (dendrogram, tree-like diagram). The branches
of the dendrogram show the similarity between the clusters as well as the knowl-
edge of the shaping of the clusters. Determined number of clusters can be obtained
by cutting the dendrogram at a certain level.

Hierarchical clustering methods [47-49] are based on the separating clusters
into subgroups that are processed step by step as a whole, or the stepwise integra-
tion of individual clusters into a cluster [50]. Hierarchical clustering methods are
divided into two methods: agglomerative clustering methods and divisive hierar-
chical clustering methods according to the creation of the dendrogram.

In agglomerative hierarchical clustering methods, each observation is initially
treated as an independent cluster, and then repeatedly, until each individual obser-
vation obtains a single set of all observations, thereby forming a cluster with the
closest observation.

In the divisive hierarchical clustering methods, initially all observations are
evaluated as a single cluster and then repeatedly separated in such a way that each
observation is separated from the farthest observation to form a new cluster. This
process continues until all the observations create a single cluster.

92

Clustering of Time-Series Data
DOI: http://dx.doi.org/10.5772 /intechopen.84490

Hierarchical clustering not only forms a group of similar series but also provides
a graphical representation of the data. Graphical presentation allows the user to
have an overall view of the data and an idea of data distribution. However, a small
change in the data set leads to large changes in the hierarchical dendrogram.
Another drawback is high computational complexity.

2.3.3 Density-based clustering

The density-based clustering approach is based on the concepts of density and
attraction of objects. The idea is to create clusters of dense multi-dimensional areas
where objects attract each other. In the core of dense areas, objects are very close
together and crowded. The objects in the walls of the clusters were scattered less
frequently than the core. In other words, density-based clustering determines dense
areas of object space. The clusters are dense areas which are separated by rare dense
areas. DBSCAN [51] and OPTICS [52] algorithms are the most known of density-
based clustering examples.

The density-based approach is robust for noisy environments. The method also
deals with outliers when defining embedded clusters. However, density-based clus-
tering techniques cause difficulties due to high computational complexity and input
parameter dependency when the dimensional index structure is not used.

2.3.4 Model-based clustering

The model-based approach [53-55] uses a statistical infrastructure to model the
cluster structure of the time-series data. It is assumed that the underlying probabil-
ity distributions of the data come from the final mixture. Model-based algorithms
usually try to estimate the likelihood of the model parameters by applying some
statistical techniques such as Expectation Maximization (EM). The EM algorithm
iterates between an “E-step,” which computes a matrix z such that z; is an estimate
of the conditional probability that observation i belongs to group k given the current
parameter estimates, and an “M-step,” which computes maximum likelihood
parameter estimates given z. Each data object is assigned to a cluster with the
highest probability until the EM algorithm converges, so as to maximize likelihood
for the entirety of the grant.

The most important advantage of the model-based approach is to estimate the
probability that i. observation belongs to k. cluster. In some cases, the time series is
likely to belong to more than one cluster. For such time-series data, the probability-
giving function of the approach is the reason for preference. In this approach, it is
assumed that the data set has a certain distribution but this assumption is not always
correct.

2.3.5 Grid-based clustering

In this approach, grids made up of square cells are used to examine the data
space. It is independent of the number of objects in the database due to the used
grid structure. The most typical example is STING [56], which uses various levels of
quadrilateral cells at different levels of resolution. It precalculates and records
statistical information about the properties of each cell. The query process usually
begins with a high-level hierarchical structure. For each cell at the current level, the
confidence interval, which reflects the cell’s query relation, is computed. Unrelated
cells are exempt from the next steps. The query process continues for the
corresponding cells in the lower level until reaching the lowest layer.

93

Data Mining - Methods, Applications and Systems

After analyzing the data set and obtaining the clustering solution, there is no
guarantee of the significance and reliability of the results. The data will be clustered
even if there is no natural grouping. Therefore, whether the clustering solution
obtained is different from the random solution should be determined by applying
some tests. Some methods developed to test the quality of clustering solutions are
classified into two types: external index and internal index.

* The external index is the most commonly used clustering evaluation method
also known as external validation, external criterion. The ground truth is the
goal clusters, usually created by experts. This index measures how well the
target clusters and the resulting clusters overlap. Entropy, Adjusted Rand
Index (ARI), F-measure, Jaccard Score, Fowlkes and Mallows Index (FM), and
Cluster Similarity Measure (CSM) are the most known external indexes.

* The internal indexes evaluate clustering results using the features of data sets
and meta-data without any external information. These are often used in cases
where the correct solutions are not known. Sum of squared error is one of the
most used internal methods which the distance to the nearest cluster
determines the error. So clusters with similar time series are expected to give
lower error values. Distance between two clusters (CD) index, root-mean-
square standard deviation (RMSSTD), Silhouette index, R-squared index,
Hubert-Levin index, semi-partial R-squared (SPR) index, weighted inter-intra
index, homogeneity index, and separation index are the common internal
indexes.

2.3.6 Clustering algorithm example: FunFEM

The funFEM algorithm [55, 57] allows to cluster time series or, more generally,
functional data. FunFem is based on a discriminative functional mixture model
(DFM) which allows the clustering of the curves (data) in a functional subspace. If
the observed curves are {x1, x,...x, }, FunFem aims cluster into K homogenous
groups. It assumes that there exists an unobserved random variable Z = {zy, z,...z,}

€{0,1}*, if x belongs to group k, Z, is defined as 1 otherwise 0. The clustering
task goal is to predict the value z; = (zi,... zy) of Z for each observed curve x;, for

i = 1...n. The FunFem algorithm alternates, over the three steps of Fisher EM
algorithm [57] (“F-step,” “E-Step” and “M-step”) to decide group memberships of
Z = {z1, 23...zn}. In other words, from 12 defined discriminative functional mixture
(DFM) models, Fisher-EM decides which data fit the best. The Fisher-EM algorithm
alternates between three steps:

* an E step in which posterior probabilities that observations belong to the K
groups are computed,

* an F step that estimates the orientation matrix U of the discriminative latent
space conditionally to the posterior probabilities,

* an M step in which parameters of the mixture model are estimated in the latent
subspace by maximizing the conditional expectation of the complete

likelihood.

Fisher-EM algorithm updates the parameters repeatedly until the Aitken
criterion is provided. Aitken criterion estimates the asymptotic maximum of the

94

Clustering of Time-Series Data
DOI: http://dx.doi.org/10.5772 /intechopen.84490

log-likelihood in order to detect in advance the algorithm converge [57]. In
model-based clustering, a model is defined by its number of component/cluster K
and its parameterization. In model selection task, several models are reviewed
while selecting the most appropriate model for the considered data.

FunFEM allows to choose between AIC (Akaike Information Criterion) [58],
BIC (Bayesian information criteria) [59], and ICL (Integrated Completed Likeli-
hood) [60] when deciding the number of clusters. The penalty terms are:

@ log (n) in the BIC criterion, y(M) in the AIC criterion, and Z:’:lzf:ltik log (ti)
in the ICL criterion. Here, M indicates the number of parameters in the model, n is
the number of observations, K is the number of clusters, and t;, is the probability of
ith observation belonging to kth cluster.

FunFem is implemented in R programming languages and serves as a
function [61]. The algorithm is applied on a time series gene expression data in the
following section. Input of the algorithm is gene expression data which is given in
Table 1. The table shows the gene expression values measured as a result of the
microarray experiment. The measurement was performed at six different times
for each gene. The data were taken from the GEO database (GSE2241) [62].
FunFEM method is decided, and the best model is DkBk with K = 4
(bic = —152654.5) for input data. As a result, method assigned each gene to the
appropriate cluster which is determined by the algorithm. Table 2 demonstrates the
gene symbol and cluster number. As a result, method assigned each gene to the
appropriate cluster which is determined by the algorithm (Table 2).

Gene Symbol TP1 TP2 TP3 TP4 TP5 TP6
AADAC 18.4 29.7 30 79.7 86.7 163.2
AAK1 253.2 141.8 49.2 118.7 145.2 126.7
AAMP 490 340.9 109.1 198.4 210.5 212
AANAT 5.6 1.4 3.7 31 1.6 4.9
AARS 1770 793.6 226.5 1008.9 713.3 1253.7
AASDHPPT 940.1 570.5 167.2 268.6 683 263.5
AASS 10.9 1.9 1.5 4.1 19.7 25.5
AATF 543.4 520.1 114.5 305.7 354.2 384.9
AATK 124.5 74.5 17 25.6 64.6 13.6
ZP2 4.1 1.4 0.8 1.4 1.4 3
ZPBP 23.4 13.7 7 7.8 22.3 26.9
ZW10 517.1 374.5 72.6 240.8 345.7 333.1
ZWINT 1245.4 983.4 495.3 597.4 1074.3 620.7
ZYX 721.6 554.9 135.5 6315 330.9 706.8
ZZEF1 90.5 49.3 18.6 66.7 10.4 52.2
7773 457.3 317.1 93 2432 657.5 443
Table 1.

Input data of the FunFEM algorithm.

95

Data Mining - Methods, Applications and Systems

Gene symbol Cluster number

AADAC 2

AAK1

W | W

AAMP

AANAT

=

AARS

[SSEE TN

AASDHPPT

AASS 1

AATF

AATK 2

ZpP2 1

ZPBP

[

ZW10

ZWINT

ZYX

ZZEF1

W N~ W

7773

Table 2.
Output data of the FunFEM algorithm.

3. Clustering approaches for gene expression data clustering

The approach to be taken depends on the application area and the characteristics
of the data. For this reason, as a case study, the clustering of gene expression data,
which is a special area of clustering of time-series data, will be examined in this
section. Microarray is the technology which measures the expression levels of large
numbers of genes simultaneously. DNA microarray technology overcomes tradi-
tional approaches in the identification of gene copies in a genome, in the identifica-
tion of nucleotide polymorphisms and mutations, and in the discovery and
development of new drugs. It is used as a diagnostic tool for diseases. DNA
microarrays are widely used to classify gene expression changes in cancer cells.

The gene expression time series (gene profile) is a set of data generated by
measuring expression levels at different cases/times in a single sample. Gene
expression time series have two main characteristics, short and unevenly sampled.
In The Stanford Microarray database, more than 80% of the time-series experi-
ments contains less than 9 time points [63]. Observations below 50 are considered
to be quite short for statistical analysis. Gene expression time-series data are sepa-
rated from other time-series data by this characteristics (business, finance, etc.). In
addition to these characteristics, three basic similarity requirements can be identi-
fied for the gene expression time series: scaling and shifting, unevenly distributed
sampling points, and shape (internal structure) [64]. Scaling and shifting problems
arise due to two reasons: (i) the expression of genes with a common sequence is
similar, but in this case, the genes need not have the same level of expression at the
same time. (ii) Microarray technology, which is often corrected by normalization.

96

Clustering of Time-Series Data
DOI: http://dx.doi.org/10.5772 /intechopen.84490

The scaling and shifting factor in the expression level may hide similar expressions
and should not be taken into account when measuring the similarity between the
two expression profiles. Sampling interval length is informative and cannot be
ignored in similarity comparisons. In microarray experiments, the density change
characterizes the shape of the expression profile rather than the density of the gene
expression. The internal structure can be represented by deterministic function,
symbols describing the series, or statistical models.

There are many popular clustering techniques for gene expression data. The
common goal of all is to explain the different functional roles of the genes that play
a key biological process. Genes expressed in a similar way may have a similar
functional role in the process [65].

In addition to all these approaches, it is possible to examine the cluster of gene
expression data in three different classes as gene-based clustering, sample-based
clustering, and subspace clustering (Figure 2) [66]. In gene-based clustering, genes
are treated as objects, instances (time-point/patient-intact) as features. Sample-
based clustering is exactly the opposite: samples are treated as objects, genes as
features. The distinction between these two clustering approaches is based on the
basic characterization of the clustering process used for gene expression data. Some
clustering algorithms, such as K-means and hierarchical approach, can be used to
cluster both genes and fragments of samples. In the molecular biology, “any func-
tion in the cell is carried out with the participation of a small subset of genes, and
the cellular function only occurs on a small sample subset.” With this idea, genes
and samples are handled symmetrically in subspace clustering; gene or sample,
object or features.

In gene-based clustering, the aim is to group the co-expressed genes together.
However, due to the complex nature of microarray experiments, gene expression
data often contain high amounts of noise, characterizing features such as gene
expression data often linked to each other (clusters often have a high intersection
ratio), and some problems arising from constraints from the biological domain.

Gene expression data clustering Approaches

——

= =M

Gene-based Sample-based
Clustering Clustering

f - . o

Subspace clustering

L~ N
Supervised approach

S

. %%
Unsupervised

approach

N

Figure 2.
Gene expression data clustering approaches.

97

Data Mining - Methods, Applications and Systems

Also, among biologists who will use microarray data, the relationship between
genes or clusters that are usually related to each other within the cluster, rather than
the clusters of genes, is a more favorite subject. That is, it is also important for the
algorithm to make graphical presentations not just clusters. K-means, self-
organizing maps (SOM), hierarchical clustering, graph-theoretic approach, model-
based clustering, and density-based approach (DHC) are the examples of gene-
based clustering algorithms.

The goal of the sample-based approach is to find the phenotype structure or the
sub-structure of the sample. The phenotypes of the samples studied [67] can only be
distinguished by small gene subsets whose expression levels are highly correlated
with cluster discrimination. These genes are called informative genes. Other genes
in the expression matrix have no role in the decomposition of the samples and are
considered noise in the database. Traditional clustering algorithms, such as K-
means, SOM, and hierarchical clustering, can be applied directly to clustering sam-
ples taking all genes as features. The ratio of the promoter genes to the nonrelated
genes (noise ratio) is usually 1:10. This also hinders the reliability of the clustering
algorithm. These methods are used to identify the informative genes. Selection of
the informative genes is examined in two different categories as supervised and
unsupervised. The supervised approach is used in cases where phenotype informa-
tion such as “patient” and “healthy” is added. In this example, the classifier
containing only the informative genes is constructed using this information. The
supervised approach is often used by biologists to identify informative genes. In the
unsupervised approach, no label specifying the phenotype of the samples is placed.
The lack of labeling and therefore the fact that the informative genes do not guide
clustering makes the unsupervised approach more complicated. There are two
problems that need to be addressed in the unsupervised approach: (i) the high
number of genes versus the limited number of samples and (ii) the vast majority of
collected genes are irrelevant. Two strategies can be mentioned for these problems
in the unsupervised approach: unsupervised gene selection and clustering. In
unsupervised gene selection, gene selection and sample clustering are treated as two
separate processes. First, the gene size is reduced, and then classical clustering
algorithms are applied. Since there is no training set, the choice of gene is based
solely on statistical models that analyze the variance of gene expression data. Asso-
ciated clustering dynamically supports the combination of repetitive clustering and
gene selection processes by the use of the relationship between genes and samples.
After many repetitions, the sample fragments converge to the real sample structure
and the selected genes are likely candidates for the informative gene cluster.

When subspace clustering is applied to gene expression vectors, it is treated as
a “block” consisting of clusters of genes and subclasses of experimental conditions.
The expression pattern of the genes in the same block is consistent under the
condition in that block. Different greedy heuristic approaches have been adapted to
approximate optimal solution.

Subspace clustering was first described by Agrawal et al. in 1998 on general data
mining [68]. In subspace clustering, two subspace sets may share the same objects
and properties, while some objects may not belong to any subspace set. Subspace
clustering methods usually define a model to determine the target block and then
search in the gen-sample space. Some examples of subspatial cluster methods pro-
posed for gene expression are biclustering [69], coupled two way clustering
(CTWC) [70], and plaid model [71].

According to different clustering criteria, data can be clustered such as the co-
expressing gene groups, the samples belonging to the same phenotype or genes
from the same biological process. However, even if the same criteria are used in

98

Clustering of Time-Series Data
DOI: http://dx.doi.org/10.5772 /intechopen.84490

different clustering algorithms, the data can be clustered in different forms. For this
reason, it is necessary to select more suitable algorithm for data distribution.

4, Conclusions

Clustering for time-series data is used as an effective method for data analysis of
many areas from social media usage and financial data to bioinformatics. There are
various methods introduced for time-series data. Which approach is chosen is
specific to the application. The application is determined by the needs such as time,
speed, reliability, storage, and so on. When determining the approach to clustering,
three basic issues need to be decided: data representation, similarity measure, and
clustering algorithm.

The data representation involves transforming the multi-dimensional and noisy
structure of the time-series data into a less dimensional that best expresses the
whole data. The most commonly used method for this purpose is dimension reduc-
tion or feature extraction.

It is challenging to measure the similarity of two time series. The chapter has
been examined similarity measures in three sections as similarity in shape, similar-
ity in time, and similarity in change.

For the time-series clustering algorithms, it is not wrong to say that the evolu-
tion of conventional clustering algorithms. Therefore, the classification of tradi-
tional clustering algorithms (developed for static data) has been included. It is
classified as partitioning, hierarchical, model-based, grid-based, and density-based.
Partition algorithms initially require prototypes. The accuracy of the algorithm
depends on the defined prototype and updated method. However, they are suc-
cessful in finding similar series and clustering time series with equal length. The fact
that the number of clusters is not given as the initial parameter is a prominent and
well-known feature of hierarchical algorithms. At the same time, works on time
series that are not of equal length causes it to be one step ahead of other algorithms.
However, hierarchical algorithms are not suitable for large data sets due to the
complexity of the calculation and the scalability problem. Model-based algorithms
suffer from problems such as initialization of parameters based on user predictions
and slow processing time for large databases. Density-based algorithms are not
generally preferred over time-series data due to their high working complexity.
Each approach has pros and cons compared to each other, and the choice of algo-
rithm for time-series clustering varies completely according to the characteristics of
the data and the needs of the application. Therefore, in the last chapter, a study on
the clustering of gene expression data, which is a specific field of application, has
been mentioned.

In time-series data clustering, there is a need for algorithms that execute fast,
accurate, and with less memory on large data sets that can meet today’s needs.

29

Data Mining - Methods, Applications and Systems

Author details

Esma Ergiiner Ozkog
Bagkent University, Ankara, Turkey

*Address all correspondence to: eeozkoc@baskent.edu.tr

IntechOpen

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

100

Clustering of Time-Series Data
DOI: http://dx.doi.org/10.5772 /intechopen.84490

References

[1] Ratanamahatana C. Multimedia
retrieval using time series
representation and relevance feedback.
In: Proceedings of 8th International
Conference on Asian Digital

Libraries (ICADL2005); 2005.

pp. 400-405

[2] C)zkog EE, Ogul H. Content-based
search on time-series microarray
databases using clustering-based

fingerprints. Current Bioinformatics.
2017;12(5):398-405. ISSN: 2212-392X

[3] Lin J, Keogh E, Lonardi S, Lankford J,
Nystrom D. Visually mining and
monitoring massive time series. In:
Proceedings of 2004 ACM SIGKDD
International Conference on Knowledge
Discovery and data Mining—KDD ’04;
2004. p. 460

[4] Bornemann L, Bleifufd T,
Kalashnikov D, Naumann F, Srivastava
D. Data change exploration using time
series clustering. Datenbank-Spektrum.
2018;18(2):79-87

[5] Rani S, Sikka G. Recent techniques of
clustering of time series data: A survey.
International Journal of Computers and
Applications. 2012;52(15):1

[6] Aghabozorgi S, Shirkhorshidi AS,
Wah TY. Time-series clustering-A
decade review. Information Systems.
2015;53:16-38

(7] Lin J, Keogh E, Lonardi S, Chiu B. A
symbolic representation of time series,
with implications for streaming
algorithms. In: Proceedings of the 8th
ACM SIGMOD Workshop on Research
Issues in Data Mining and Knowledge
Discovery; 13 June 2003; ACM; pp. 2-11

[8] Keogh EJ, Pazzani MJ. A simple
dimensionality reduction technique for
fast similarity search in large time series
databases. In: Pacific-Asia Conference

101

on Knowledge Discovery and Data
Mining; 18 April 2000; Springer, Berlin,
Heidelberg. pp. 122-133

[9] Esling P, Agon C. Time-series data
mining. ACM Computing Surveys
(CSUR). 2012;45(1):12

[10] Keogh E, Lin J, Fu A. Hot sax:
Efficiently finding the most unusual
time series subsequence. In: Fifth IEEE
International Conference on Data
Mining (ICDM’05); 27 November 2005;
IEEE. pp. 226-233

[11] Ghysels E, Santa-Clara P, Valkanov
R. Predicting volatility: Getting the most
out of return data sampled at different
frequencies. Journal of Econometrics.
2006;131(1-2):59-95

[12] Kawagoe GD. Grid Representation
of Time Series Data for Similarity
Search. In: Data Engineering Workshop;
2006

[13] Agronomischer Zeitreihen CA. Time
Series Clustering in the Field of
Agronomy. Technische Universitat
Darmstadt (Master-Thesis); 2013

[14] Keogh E, Lonardi S,
Ratanamahatana C. Towards parameter-
free data mining. In: Proceedings of
Tenth ACM SIGKDD International
Conference on Knowledge Discovery
Data Mining; 2004, Vol. 22, No. 25.

pp. 206-215

[15] Keogh E, Chakrabarti K, Pazzani M,
Mehrotra S. Locally adaptive
dimensionality reduction for indexing

large time series databases. ACM
SIGMOD Record. 2001;27(2):151-162

[16] Keogh E, Pazzani M. An enhanced
representation of time series which
allows fast and accurate classification,
clustering and relevance feedback. In:
Proceedings of the 4th International

Data Mining - Methods, Applications and Systems

Conference of Knowledge
Discovery and Data Mining; 1998.
pp. 239-241

[17] Korn F, Jagadish HV, Faloutsos C.
Efficientlysupportingadhoc queries in
large datasets of time sequences.
ACM SIGMOD Record. 1997;26:
289-300

(18] Faloutsos C, Ranganathan M,
Manolopoulos Y. Fasts ubsequence
matching in time-series databases.
ACM SIGMOD Record. 1994;23(2):
419-429

[19] Portet F, Reiter E, Gatt A, Hunter J,
Sripada S, Freer Y, et al. Automatic
generation of textual summaries from
neonatal intensive care data. Artificial
Intelligence. 2009;173(7):789-816

[20] Chan K, Fu AW. Efficient time
series matching by wavelets. In:
Proceedings of 1999 15th International
Conference on Data Engineering; 1999,
Vol. 15, no. 3. pp. 126-133

[21] Agrawal R, Faloutsos C, Swami A.
Efficient similarity search in sequence
databases. Foundations of Data
Organization and Algorithms. 1993;46:
69-84

[22] Kawagoe K, Ueda T. A similarity
search method of time series data with
combination of Fourier and wavelet
transforms. In: Proceedings Ninth
International Symposium on Temporal
Representation and Reasoning; 2002.
pp. 86-92

[23] Chung FL, Fu TC, Luk R. Flexible
time series pattern matching based on
perceptually important points. In: Jt.
Conference on Artificial Intelligence
Workshop. 2001. pp. 1-7

[24] Keogh E, Pazzani M, Chakrabarti K,
Mehrotra S. A simple dimensionality
reduction technique for fast similarity
search in large time series databases.

102

Knowledge and Information Systems.
2000;1805(1):122-133

[25] Caiand Y, Ng R. Indexing spatio-
temporal trajectories with Chebyshev
polynomials. In: Procedings of 2004
ACM SIGMOD International; 2004.
p. 599

[26] Bingham E. Random projection in
dimensionality reduction: Applications
to image and text data. In: Proceedings
of the Seventh ACM SIGKDD
International Conference on Knowledge
Discovery and Data Mining; 2001.

pp. 245-250

[27] Chen Q, Chen L, Lian X, Liu Y.
Indexable PLA for efficient similarity
search. In: Proceedings of the 33rd
International Conference on Very large
Data Bases; 2007. pp. 435-446

[28] Corduas M, Piccolo D. Timeseries
clustering and classification by the
autoregressive metric. Computational
Statistics & Data Analysis. 2008;52(4):
1860-1872

[29] Kalpakis K, Gada D, Puttagunta V.
Distance measures for effective
clustering of ARIMA time-series. In:
Proceedings 2001 IEEE International
Conference on Data Mining; 2001.

pp- 273-280

[30] Kumar N, Lolla N, Keogh E, Lonardi
S. Time-series bitmaps: A practical
visualization tool for working with large
time series databases. In: Proceedings of
the 2005 SIAM International
Conference on Data Mining; 2005.

pp. 531-535

[31] Minnen D, Starner T, Essa M, Isbell
C. Discovering characteristic actions
from on body sensor data. In:
Proceedings of 10th IEEE International
Symposium on Wearable Computers;
2006. pp. 11-18

[32] Minnen D, Isbell CL, Essa I, Starner
T. Discovering multivariate motifs using

Clustering of Time-Series Data
DOI: http://dx.doi.org/10.5772 /intechopen.84490

subsequence density estimation and
greedy mixture learning. In:
Proceedings of the National Conference
on Artificial Intelligence; 2007, Vol. 22,
No. 1. p. 615

[33] Panuccio A, Bicego M, Murino V.
A hidden Markov model-based
approach to sequential data clustering.
In: Joint IAPR International Workshops
on Statistical Techniques in Pattern
Recognition (SPR) and Structural and
Syntactic Pattern Recognition (SSPR).
Berlin, Heidelberg: Springer; 2002, pp.
734-743

[34] Bagnall AAJ, “Ann”
Ratanamahatana C, Keogh E, Lonardi S,
Janacek G. A bit level representation for
time series data mining with shape
based similarity. Data Mining

and Knowledge Discovery. 2006;13(1):
11-40

[35] Ratanamahatana C, Keogh E,
Bagnall AJ, Lonardi S. A novel bit level
time series representation with
implications for similarity search and
clustering. In: Proceedings of 9th
Pacific-Asian International Conference
on Knowledge Discovery and Data
Mining (PAKDD’05); 2005. pp. 771-777

[36] Bagnall AJ, Janacek G. Clustering
time series with clipped data. Machine
Learning. 2005;58(2):151-178

[37] Sakoe H, Chiba S. A dynamic
programming approach to continuous
speech recognition. In: Proceedings of

the Seventh International Congress on
Acousticsvol; 1971, Vol. 3. pp. 65-69

[38] Sakoe H, Chiba S. Dynamic
programming algorithm optimization
for spoken word recognition. IEEE

Transactions on Acoustics, Speech, and
Signal Processing. 1978;26(1):43-49

[39] Smyth P. Clustering sequences with
hidden Markov models. Advances in
Neural Information Processing Systems.
1997;9:648-654

103

[40] Xiong Y, Yeung DY. Mixtures of
ARMA models for model-based time
series clustering. In: Data Mining, 2002.
ICDM 2003; 2002. pp. 717-720

[41] Han], Kamber M. Data Mining:
Concepts and Techniques. San
Francisco: Morgan Kaufmann; 2001.

pp. 346-389

[42] Liao TW. Clustering of time series
data—a survey. Pattern Recognition.
2005;38(11):1857-1874

[43] MacQueen J. Some methods for
classification and analysis of
multivariate observations. In:
Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics
and Probability; 21 June 1967, Vol. 1,
No. 14. pp. 281-297

[44] Tamayo P, Slonim D, Mesirov J,
Zhu Q, Kitareewan S, Dmitrovsky E,

et al. Interpreting patterns of gene
expression with self-organizing maps:
Methods and application to
hematopoietic differentiation.
Proceedings of the National Academy of
Sciences. 1999;96(6):2907-2912

[45] Ng RT, Han J. Efficient and
effective clustering methods for spatial
data mining. In: Proceedings of the
International Conference on Very Large
Data Bases; 1994. pp. 144-144

[46] Kaufman L, Rousseeuw PJ,
Corporation E. Finding Groups in Data:
An Introduction to Cluster Analysis,
Vol. 39. Hoboken, NewJersey: Wiley
Online Library; 1990

[47] Guha S, Rastogi R, Shim K. CURE:
An efficient clustering algorithm for
large databases. ACM SIGMOD Record.
1998;27(2):73-84

[48] Zhang T, Ramakrishnan R, Livny
M. BIRCH: An efficient data clustering
method for very large databases.

ACM SIGMOD Record. 1996;25(2):
103-114

Data Mining - Methods, Applications and Systems

[49] Karypis G, Han EH, Kumar V.
Chameleon: Hierarchical clustering
using dynamic modeling. Computer.

1999;32(8):68-75

[50] Beal M, Krishnamurthy P. Gene
expression time course clustering with
countably infinite hidden Markov
models. arXiv preprint arXiv:1206.6824;
2012

[51] Ester M, Kriegel HP, Sander J, Xu X.
A density-based algorithm for
discovering clusters in large spatial data
bases with noise. In: Knowledge
Discovery and Data Mining. Vol. 96, No.
34; August 1996. pp. 226-231

[52] Ankerst M, Breunig M, Kriegel H.
OPTICS: Ordering points to identify the
clustering structure. ACM SIGMOD
Record. 1999;28(2):40-60

(53] Fisher DH. Knowledge acquisition
via incremental conceptual clustering.
Machine Learning. 1987;2(2):139-172

[54] Carpenter GA, Grossberg S. A
massively parallel architecture for a self-
organizing neural pattern recognition

machine. Computer Vision Graphics
Image Process. 1987;37(1):54-115

[55] Bouveyron C, Céme E, Jacques J.
The discriminative functional mixture
model for the analysis of bike sharing
systems. The Annals of Applied
Statistics. 2015;9(4):1726-1760

[56] Wang W, Yang J, Muntz R. STING:
A statistical information grid approach
to spatial data mining. In: Proceedings
of the International Conference on Very
Large Data Bases; 1997. pp. 186-195

[57] Bouveyron C, Brunet C.
Simultaneous model-based clustering
and visualization in the fisher
discriminative subspace. Statistics and
Computing. 2012;22:301-324

[58] Akaike H. A new look at the
statistical model identification. IEEE

104

Transactions on Automatic Control.
1974;19:716-723

[59] Kass RE, Raftery AE. Bayes factors.
Journal of the American Statistical
Association. 1995;90(430):773-795

[60] Biernacki C, Celeux G, Govaert G.
Assessing a mixture model for clustering
with the integrated completed
likelihood. IEEE Transactions on Pattern
Analysis and Machine Intelligence.
2000;22:719-725

[61] Bouveyron C. funFEM: Clustering in
the Discriminative Functional Subspace.
R package version. 2015;1

[62] Barrett T, Troup DB, Wilhite SE,
Ledoux P, Rudnev D, Evangelista C,
et al. NCBI GEO: Archive for high-
throughput functional genomic data.
Nucleic Acids Research. 2009;37
(Database):D885-D890

[63] Kuenzel L. Gene clustering methods
for time series microarray data.
Biochemistry. 2010;218

[64] Moller-Levet CS, Cho KH, Yin H,
Wolkenhauer O. Clustering of gene
expression time-series data. Technical
report. Department of Computer

Science, University of Rostock,
Germany; 2003

[65] Beal M, Krishneamurthy P. Gene
expression time course clustering with
countably infinite hidden Markov
models. arXiv preprint arXiv:1206.6824;
2012

[66] Jiang D, Tang C, Zhang A. Cluster
analysis for gene expression data: A
survey. IEEE Transactions on
Knowledge and Data Engineering. 2004;
16(11):1370-1386

[67] Golub TR, Slonim DK, Tamayo P,
Huard C, Gaasenbeek M, Mesirov JP,
et al. Molecular classification of cancer:
Class discovery and class prediction by

Clustering of Time-Series Data
DOI: http://dx.doi.org/10.5772 /intechopen.84490

gene expression monitoring. Science.
1999;286(5439):531-537

[68] Agrawal R, Gehrke J, Gunopulos D,
Raghavan P. Automatic Subspace
Clustering of High Dimensional Data for
Data Mining Applications. ACM; 1998,
27(2):94-105

[69] Cheng Y, Church GM. Biclustering
of expression data. In: ISMB; 2000, Vol.
8, No. 2000. pp. 93-103

[70] Getz G, Levine E, Domany E.
Coupled two-way clustering analysis of
gene microarray data. Proceedings of
the National Academy of Sciences.
2000;97(22):12079-12084

[71] Lazzeroni L, Owen A. Plaid models

for gene expression data. Statistica
Sinica. 2002;1:61-86

105

Chapter7

Weather Nowcasting Using Deep
Learning Techniques

Makhamisa Senekane, Mhlambululi Mafu
and Molibeli Benedict Taele

Abstract

Weather variations play a significant role in peoples’ short-term, medium-term
or long-term planning. Therefore, understanding of weather patterns has become
very important in decision making. Short-term weather forecasting (nowcast-
ing) involves the prediction of weather over a short period of time; typically few
hours. Different techniques have been proposed for short-term weather forecast-
ing. Traditional techniques used for nowcasting are highly parametric, and hence
complex. Recently, there has been a shift towards the use of artificial intelligence
techniques for weather nowcasting. These include the use of machine learning
techniques such as artificial neural networks. In this chapter, we report the use of
deep learning techniques for weather nowcasting. Deep learning techniques were
tested on meteorological data. Three deep learning techniques, namely multi-
layer perceptron, Elman recurrent neural networks and Jordan recurrent neural
networks, were used in this work. Multilayer perceptron models achieved 91 and
75% accuracies for sunshine forecasting and precipitation forecasting respectively,
Elman recurrent neural network models achieved accuracies of 96 and 97% for
sunshine and precipitation forecasting respectively, while Jordan recurrent neural
network models achieved accuracies of 97 and 97% for sunshine and precipitation
nowecasting respectively. The results obtained underline the utility of using deep
learning for weather nowcasting.

Keywords: nowcasting, deep learning, artificial neural network, Elman network,
Jordan network, precipitation, rainfall

1. Introduction

Weather changes play a significant role in peoples’ short-term, medium-term or
long-term planning. Therefore, the understanding weather patterns have become
very important in decision making. This further raises the need for availability of
tools for accurate prediction of weather. This need is even more pronounced if the
prediction is intended for a short-term weather forecasting, conventionally known
as nowcasting.

To date, different weather nowcasting models have been proposed [1]. These
models are mainly based on the different variants of artificial neural networks and
fuzzy logic. As will be discussed later in this chapter, these techniques have some
limitations which need to be addressed. In this chapter, we report the use multilayer
perceptron (MLP) neural networks, Elman neural networks (ENN) and Jordan

107 IntechOpen

Data Mining - Methods, Applications and Systems

neural networks for solar irradiance (sunshine) and precipitation (rainfall) now-
casting. The approach taken in this work is in line with the observation given in [1]
in the sense that the performances of these models are further compared in order to
establish which model performs best in weather nowcasting. The main contribution
of the work reported in this chapter is the development of three solar irradiation and
rainfall models using MLP, ENN and Jordan neural networks. These three models
are examples of deep learning [2-4]. Therefore, the contribution of this work can be
summarized as the use of deep learning models for weather nowcasting. Thus, the
research question being addressed in this chapter is the design of integrated high-
accuracy nowcasting techniques. Furthermore, the objectives of this work include:

* The design of integrated high-accuracy nowcasting techniques using the follow-
ing deep learning architectures:

o MLP
o ENN

o Jordan recurrent neural networks
* Application of such techniques to the following tasks:

o sunshine nowcasting
O precipitation nowcasting

The remainder of this chapter is divided as follows. The next section provides a
background information on artificial neural networks and the related work on the
use of artificial neural networks in weather nowcasting. This is followed by Section
3, which discusses the method used for the design and Implementation of both solar
irradiation and rainfall nowcasting models. Results are provided and discussed in
Section 4, while Section 5 concludes this chapter.

2. Preliminaries
2.1 Artificial neural networks (ANNs)

Artificial neural network (ANN) is an example of supervised machine learning
[5-7]. It draws inspiration from how the biological neuron in the brain operates.
Thus, it mimics natural intelligence in its learning from experience [5]. As a super-
vised learning algorithm, ANN learns from the examples by constructing an input-
output mapping [8]. A typical ANN consists of an input layer, an output layer, and
at least one hidden layer. Each layer consists of nodes representing neurons and is
connected by weights. Each internal node of artificial neural network consists of
two functions, namely transfer function and activation function [6, 7]. The transfer
function is a function of inputs (x;) and weights (w;), and is given as

f(x) = Zwix; + by, (1)
where b; is a bias value. On the other hand, an activation function ¢ is nonlinear

and hence responsible for modeling nonlinear relationships. Additionally, this func-
tion is differentiable [8]. The output of such an internal node is given as

vi= o(f(x)).)

108

Weather Nowcasting Using Deep Learning Techniques
DOI: http://dx.doi.org/10.5772/intechopen.84552

Figure 1 shows a schematic diagram of a typical ANN. Each node in the figure
represents a neuron, while the arrows represent the weights. The first layer is the
input layer, and each node (neuron) of the input layer corresponds to the feature used
for prediction. Thus, in Figure 1, there would be three features used for prediction.
The hidden layer is between the input layer and the output layer. Its nodes take a set
of weighted inputs defined by transfer function in Eq. (1), and produces the output
given by Eq. (2).

Depending on the number of hidden layers, artificial neural networks can
be classified as either shallow neural networks or deep neural networks. In the
former class (shallow neural networks), fewer hidden layers are used while on the
latter (deep neural networks), several hidden layers are used for better predic-
tion accuracy. Examples of deep neural network architectures include multilayer
perceptrons, convolutional neural networks and recurrent neural networks [2, 4, 9].
It is worth noting that both Elman neural networks and Jordan neural networks are
examples of recurrent neural networks [4, 10].

2.2 Related work: weather forecasting using ANNs
Different neural networks-based approaches to short-term weather forecasting

have been proposed in literature [1, 10, 11]. furthermore, Mellit et al. [12] proposed
artificial neural network model for predicting global solar radiation. The model

Hidden
/7

Figure 1.

Schematic diagram of a typical ANN. It consists of an input layey, a hidden layer and an output layer. An
input layer consists of three nodes, a hidden layer consists of four nodes, while an output layer consists of two
nodes. Since an output layer has two nodes, this ANN is used for two-class (binary) classification. The arrows
represent the weights.

109

Data Mining - Methods, Applications and Systems

proposed uses radial basis function networks, and uses sunshine duration and air
temperature as inputs. The model used 300 data points for training, while 65 data
points were used for validation and testing. The authors reported that the best
performance was obtained with one hidden layer containing 9 neurons (nodes). In
Ref. [13], authors reported adaptive neuro-fuzzy inference scheme (ANFIS)-based
total solar radiation data forecasting model that takes as inputs daily sunshine dura-
tion and mean ambient temperature. The data used in the study spanned a period
of 10 years; from 1981 to 1990. It reported validation mean relative error of 1% and
correlation coefficient obtained from validation data set was reported to be 98%.

A solar radiation forecasting model based on meteorological data using artificial
neural networks is reported in [8]. This algorithm uses meteorological data from
Dezful city in Iran. Daily meteorological data from 2002 to 2005 is used to train the
model, while 235 days’ data from 2006 is used as a testing data. The model takes
as inputs length of the day, daily mean air temperature, humidity and sunshine
hours. The model achieved absolute testing error of 8.84%. Additionally, Ruffing
and Venayagamoorthy [14] proposed a short-to-medium range solar irradiance
prediction model using echo state network (ESN). ESN is another variant of a
recurrent neural network. The model reported in [14] is capable of predicting solar
irradiance 30-270 minutes into the future. Correlation coefficient was used as a
performance metric for the model. For 30 minutes ahead predictions, coefficient
of correlation was obtained to be 0.87, while for 270 minutes ahead predictions, it
decreased to 0.48. Finally, Hosssain et al. [15] reported the use of deep learning to
forecast weather in Nevada. Their proposed model uses deep neural networks with
stacked auto-encoders to predict air temperature using pressure, humidity, wind
speed and temperature as inputs. Data used was collected in an hourly interval from
November 2013 to December 2014. The model achieved accuracy of 97.94%.

Precipitation forecasting model using artificial neural networks was reported
in [16]. This model is capable of estimating 6 hour rainfall over the south coast of
Tasmania, Australia. The data used for this model consists of 1000 training exam-
ples, 300 validation examples and 300 test examples. The model obtained accuracy
of 84%. On the other hand, Shi et al. [17] reported a model for precipitation
nowecasting which uses convolutional long short term memory (LSTM) network.
Unlike other models that were above, this model uses radio detection and ranging
(RADAR) data instead of meteorological data. The model obtained a correlation
coefficient of 0.908 and mean square error of 1.420.

As will be discussed in the next section, the abovementioned methods are
limited compared to the method proposed in this chapter. One of the limitations
is that the methods use fewer data instances than the one used in the method
discussed in the next section. Another limitation is that the abovementioned
techniques use fewer features (less than six features). Finally, unlike the technique
discussed in the next section, which integrates different deep learning architec-
tures for both sunshine nowcasting and precipitation nowcasting, the techniques
mentioned above either use only one neural network architecture or are designed
for one nowcasting task.

3. Methodology for design and implementation of weather
nowcasting models

The forecasting models reported in this chapter are tested on hourly weather
data from Lesotho for the period ranging from 01/01/2012 to 26/03/2012. This
meteorological data consists of 2045 instances; and six features were used to make
predictions. As opposed to the approaches discussed in Section 2.2 above, the

110

Weather Nowcasting Using Deep Learning Techniques
DOI: http://dx.doi.org/10.5772/intechopen.84552

method discussed in this chapter has two major advantages. The first one is that it
uses more data; 2045 instances. Additionally, the method is feature-rich, since it
uses six features (more than what other methods reported in Section 2.2 use) for
short-term weather forecasting. As a means of feature engineering, all the predic-
tors (features) were plotted against one another, in order to ensure that they are not
linearly related, in which case it would be sufficient to use one instead of all those
that are related. Therefore, these six features were selected because they proved to
be independent predictors. These features are summarized in Figure 2. As can be
observed from Figure 2, all the six features form the nodes of the input layers of all
three deep learning architectures (namely, MLP, ENN and Jordan recurrent neural
networks). Figure 3 summarizes the design of the method discussed in this chapter.
The models were developed using R statistical programming language [18-20],
and RSNNS package was used to implement artificial neural networks [21].
The models created make use of multilayer perceptron, Elman recurrent neural
network and Jordan recurrent neural network. These models were then used
for weather Nowcasting to perform two tasks, namely sunshine predictions and
precipitation predictions. Additionally, each model was designed with a time lag
of 1 hour (thereby allowing 1 hour ahead forecasting). Furthermore, from the
collected meteorological data, 80% of the data was used to train the model, 10%

2 e] - ? < 1 A
-4 Q =
‘ Z el : 10
g =] £ 4 5 0
‘2'. "l 3 - a -
E & * %9 g 2
& -1 T T T 1 r ' rrraEa
0 500 1500 0 500 1500 0 500 1500
Hours Hours Hours
i)
©
= 'g‘a £
@ =
sa:l\w" W‘W § ¥ §]
@ =]] 6 c
§_ - - = 2+ s N
il o - z N
= -
£ g g] £ o
2 o T T T T 1 g o B | T) T R
0 500 1500 0 500 1500 é 0 500 1500
Hours Hours Hours
Figure 2.
Summary of features that were used for weather forecasting.
Temperature
Humidity
. Predicted Output
Pressure Deep Learning
Wind Speed Architecture
Wind Direction
Maximum Wind Speed

Figure 3.
Summary of the method used for weather nowcasting tasks using deep learning architectures.

111

Data Mining - Methods, Applications and Systems

for validation, while the remaining 10% was used to test the model for accuracy.
In order to enable reproducibility of the result, a seed was set to 2017 using the R
command: “set.seed (2017)”

4, Results and discussion

Figures 4-6 show the MLP, Elman RNN and Jordan RNN sunshine forecasting
models respectively. The black line is a fit for an ideal model, while a red line is a fit
of the proposed model. As it can be observed, Jordan neural network model outper-
forms the other two models, while the multilayer perceptron model is the poorest of
the three in sunshine nowcasting. Additionally, performances of both Elman neural
network model and Jordan neural network model are comparable.

Figures 7-9 compare the performances of the three neural network models in
precipitation nowcasting. Once again, the black line is a fit for an ideal model, while
ared line is a fit of the proposed model. It can be observed that once again, MLP has
the lowest performance while Jordan neural network model is the best-performing
model. Also, the performances of both the Elman neural network model and Jordan
neural network model are comparable.

MLP Plot

1.0

fits

00 02 04 06 08

targets

Figure 4.
MLP sunshine forecasting model.

Elman Plot

1.0

fits

00 02 04 06 08

targets

Figure 5.
Elman RNN sunshine forecasting model.

112

Weather Nowcasting Using Deep Learning Techniques
DOI: http://dx.doi.org/10.5772/intechopen.84552

Finally, accuracies of the models were compared, and the results are shown in
Figure 10. The figure shows that MLP yet once again performing poorly compared
to Elman RNN and Jordan RNN. Although these models have high accuracies
individually, it is suggested that combining them together (as ensemble of mod-
els) might improve the accuracy even further. This possibility warrants further
investigation.

Jordan Plot

1.0

fits

0.0 02 04 06 08

targets

Figure 6.
Jordan RNN sunshine forecasting model.

MLP Plot

fits

00 02 04 06 08 1.0

targets
Figure7.
MLP precipitation forecasting model.
Elman Plot
Q
@
o
©
g ©
o=
o
o
o
o
o

targets

Figure 8.
Elman RNN precipitation forecasting model.

113

Data Mining - Methods, Applications and Systems

Jordan Plot

1.0

fits

0.0 02 04 06 08

largets

Figure 9.
Jordan RNN precipitation forecasting model.

Mip_sunny Jordan_sunny Elman_rainy

Accuracy

00 02 04 06 08

Figure 10.
Accuracies of different neural network models for weather nowcasting.

5. Conclusion

In this chapter, we have reported the application of deep learning for short- term
forecasting of Lesotho’s weather. The deep learning models used are multilayer per-
ceptron, Elman recurrent neural networks and Jordan neural networks. These models
were used to predict sunshine and precipitation. High accuracies of these models in
weather forecasting underline their utility. Thus, high-accuracy results obtained from
this work, coupled with the integrated nature of the technique reported, provide
more advantages over other approaches used for weather nowcasting. Future work
will focus on improving the accuracy of weather nowcasting by using an ensemble of
the stated deep learning models, instead of using them as individual models.

Acknowledgements

Makhamisa Senekane and Benedict Molibeli Taele acknowledge support
from the National University of Lesotho Research and Conferences Committee.
Mhlambululi Mafu thanks his colleagues at Botswana International University of
Science and Technology for their unwavering support and constructive discussions.

Conflict of interest

The authors declare no conflict of interest.

114

Weather Nowcasting Using Deep Learning Techniques
DOI: http://dx.doi.org/10.5772/intechopen.84552

Author details
Makhamisa Senekane®™, Mhlambululi Mafu? and Molibeli Benedict Taele!

1 Department of Physics and Electronics, National University of Lesotho,
Roma, Lesotho

2 Department of Physics and Astronomy, Botswana International University of
Science and Technology, Palapye, Botswana

*Address all correspondence to: makhamisal2@gmail.com

IntechOpen

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

115

Data Mining - Methods, Applications and Systems

References

[1] Yadav AK, Chandel S. Solar
radiation prediction using artificial
neural network techniques: A review.
Renewable and Sustainable Energy
Reviews. 2013;33:772-781

[2] Goodfellow I, Bengio Y, Courville A.
Deep Learning. Massachusetts: MIT
Press; 2016, Available from: http://www.
deeplearningbook.org

[3] Nielsen M. Neural Networks and Deep
Learning. California: Determination
Press; 2015

[4] Lewis N. Deep Learning Made Easy
with R: A Gentle Introduction For

Data Science. California: CreateSpace
Independent Publishing Platform; 2016

[5] Wasserman PD. Advanced Methods
in Neural Computing. New Jersey: John
Wiley & Sons, Inc; 1993

[6] Christopher MB. Pattern Recognition
and Machine Learning. New York:
Springer-Verlag; 2016

[7] Russell SJ, Norvig P. Artificial
Intelligence: A Modern Approach.
Malaysia: Pearson Education Limited; 2016

[8] Ghanbarzadeh A, Noghrehabadi A,
Assareh E, Behrang M. Solar radiation
forecasting based on meteorological
data using artificial neural networks.

In: Industrial Informatics, 2009. INDIN
20009. 7th IEEE International Conference
on, IEEE. 20009. pp. 227-231

[9] Schmidhuber J. Deep learning in
neural networks: An overview. Neural
Networks. 2015;61:85-117

[10] Lewis N. Neural Networks for Time
Series Forecasting with R: Intuitive
Step by Step for Beginners. California:
CreateSpace Independent Publishing
Platform; 2017

[11] Yadav AK, Malik H, Chandel S.
Selection of most relevant input

116

parameters using weka for artificial
neural network based solar radiation
prediction models. Renewable

and Sustainable Energy Reviews.
2014;31:509-519

[12] Mellit A, Menghanem M, Bendekhis
M. Artificial neural network model

for prediction solar radiation data:
Application for sizing stand-alone
photovoltaic power system. In: Power

Engineering Society General Meeting,
2005. IEEE. IEEE; 2005. pp. 40-44

[13] Mellit A, Arab AH, Khorissi N, Salhi
H. An anfis-based forecasting for solar
radiation data from sunshine duration
and ambient temperature. In: Power
Engineering Society General Meeting,
2007. IEEE. IEEE; 2007 pp. 1-6

[14] Ruffing SM, Venayagamoorthy GK.
Short to medium range time series
prediction of solar irradiance using

an echo state network. In: Intelligent
System Applications to Power Systems,
2009. ISAP’09. 15th International
Conference on, IEEE. 20009. pp. 1-6

[15] Hossain M, Rekabdar B, Louis SJ,
Dascalu S. Forecasting the weather

of nevada: A deep learning approach.

In: Neural Networks (IJCNN), 2015
International Joint Conference on, IEEE.
2015. pp. 1-6

[16] McCullagh J, Bluff K, EbertE. A
neural network model for rainfall
estimation. In: Artificial Neural
Networks and Expert Systems, 1995.
Proceedings., Second New Zealand
International Two-Stream Conference
on, IEEE. 1995. pp. 389-392

(17] Shi X, Chen Z, Wang H, Yeung D-Y,
Wong W-K, Woo W-C. Convolutional
LSTM network: A machine learning
approach for precipitation nowcasting.
In: Advances in Neural Information
Processing Systems. New York: Curran
Associates; 2015. pp. 802-810

Weather Nowcasting Using Deep Learning Techniques
DOI: http://dx.doi.org/10.5772/intechopen.84552

[18] Verzani J. Using R for Introductory
Statistics. Florida: Chapman & Hall;
2005

[19] Kohl M. Introduction to Statistical
Analysis with R. London: Bookboon;
2015

[20] Stowell S. Using R for Statistics.
New York: Apress; 2014

[21] Bergmier C, Benitez J. Neural
networks in R using the stuttgart neural
network simulator: RSNNS. Journal of
Statistical Software. 2012;46(7):1-26

117

Chapter 8

Data Mining and Machine
Learning for Software Engineering

Elife Ozturk Kiyak

Abstract

Software engineering is one of the most utilizable research areas for data mining.
Developers have attempted to improve software quality by mining and analyzing
software data. In any phase of software development life cycle (SDLC), while huge
amount of data is produced, some design, security, or software problems may
occur. In the early phases of software development, analyzing software data helps
to handle these problems and lead to more accurate and timely delivery of software
projects. Various data mining and machine learning studies have been conducted
to deal with software engineering tasks such as defect prediction, effort estimation,
etc. This study shows the open issues and presents related solutions and recom-
mendations in software engineering, applying data mining and machine learning
techniques.

Keywords: software engineering tasks, data mining, text mining, classification,
clustering

1. Introduction

In recent years, researchers in the software engineering (SE) field have turned
their interest to data mining (DM) and machine learning (ML)-based studies since
collected SE data can be helpful in obtaining new and significant information.
Software engineering presents many subjects for research, and data mining can give
further insight to support decision-making related to these subjects.

Figure 1 shows the intersection of three main areas: data mining, software
engineering, and statistics/math. A large amount of data is collected from organiza-
tions during software development and maintenance activities, such as requirement
specifications, design diagrams, source codes, bug reports, program versions, and
so on. Data mining enables the discovery of useful knowledge and hidden patterns
from SE data. Math provides the elementary functions, and statistics determines
probability, relationships, and correlation within collected data. Data science, in the
center of the diagram, covers different disciplines such as DM, SE, and statistics.

This study presents a comprehensive literature review of existing research and
offers an overview of how to approach SE problems using different mining tech-
niques. Up to now, review studies either introduce SE data descriptions [1], explain
tools and techniques mostly used by researchers for SE data analysis [2], discuss
the role of software engineers [3], or focus only on a specific problem in SE such
as defect prediction [4], design pattern [5], or effort estimation [6]. Some existing
review articles having the same target [7] are former, and some of them are not

119 IntechOpen

Data Mining - Methods, Applications and Systems

e gl T
e Statistics/ Data ™ Data \
/ Processing N ..
{ Math B - . ‘] Mining
AN _— Data P /
S~ " Traditional Sclence Data . 7
T Research Analysis SN——
{)
Software /

Engineering

Figure 1.
The intersection of data mining and software engineering with other areas of the field.

comprehensive. In contrast to the previous studies, this article provides a systematic
review of several SE tasks, gives a comprehensive list of available studies in the
field, clearly states the advantages of mining SE data, and answers “how” and
“why” questions in the research area.

The novelties and main contributions of this review paper are fivefold.

* First, it provides a general overview of several SE tasks that have been the
focus of studies using DM and ML, namely, defect prediction, effort
estimation, vulnerability analysis, refactoring, and design pattern mining.

* Second, it comprehensively discusses existing data mining solutions in
software engineering according to various aspects, including methods
(clustering, classification, association rule mining, etc.), algorithms (k-nearest
neighbor (KNN), neural network (NN), etc.), and performance metrics
(accuracy, mean absolute error, etc.).

* Third, it points to several significant research questions that are unanswered
in the recent literature as a whole or the answers to which have changed
with the technological developments in the field.

* Fourth, some statistics related to the studies between the years of 2010 and
2019 are given from different perspectives: according to their subjects and
according to their methods.

* Five, it focuses on different machine learning types: supervised and
unsupervised learning, especially on ensemble learning and deep learning.

This paper addresses the following research questions:

RQ1. What kinds of SE problems can ML and DM techniques help to solve?

RQ2. What are the advantages of using DM techniques in SE?

RQ3. Which DM methods and algorithms are commonly used to handle SE
tasks?

RQ4. Which performance metrics are generally used to evaluate DM models
constructed in SE studies?

RQ5. Which types of machine learning techniques (e.g., ensemble learning, deep
learning) are generally preferred for SE problems?

RQ6. Which SE datasets are popular in DM studies?

The remainder of this paper is organized as follows. Section 2 explains the
knowledge discovery process that aims to extract interesting, potentially useful, and
nontrivial information from software engineering data. Section 3 provides an over-
view of current work on data mining for software engineering grouped under five
tasks: defect prediction, effort estimation, vulnerability analysis, refactoring, and

120

Data Mining and Machine Learning for Software Engineering
DOI: http://dx.doi.org/10.5772 /intechopen.91448

design pattern mining. In addition, some machine learning studies are divided into
subgroups, including ensemble learning- and deep learning-based studies. Section 4
gives statistical information about the number of highly validated research
conducted in the last decade. Related works considered as fundamental by journals
with a highly positive reputation are listed, and the specific methods they used

and their categories and purposes are clearly expressed. In addition, widely used
datasets related to SE are given. Finally, Section 5 offers concluding remarks and
suggests future scientific and practical efforts that might improve the efficiency

of SE actions.

2. Knowledge discovery from software engineering data

This section basically explains the consecutive critical steps that should be
followed to discover beneficial knowledge from software engineering data. It
outlines the order of necessary operations in this process and explains how related
data flows among them.

Software development life cycle (SDLC) describes a process to improve the
quality of a product in project management. The main phases of SDCL are planning,
requirement analysis, designing, coding, testing, and maintenance of a project. In
every phase of software development, some software problems (e.g., software bugs,
security, or design problems) may occur. Correcting these problems in the early
phases leads to more accurate and timely delivery of the project. Therefore, soft-
ware engineers broadly apply data mining techniques for different SE tasks to solve
SE problems and to enhance programming efficiency and quality.

Figure 2 presents the data mining and knowledge discovery process of SE tasks
including data collection, data preprocessing, data mining, and evaluation. In the
data collection phase, data are obtained from software projects such as bug reports,
historical data, version control data, and mailing lists that include various informa-
tion about the project’s versions, status, or improvement. In the data preprocessing
phase, the data are preprocessed after collection by using different methods such
as feature selection (dimensionality reduction), feature extraction, missing data
elimination, class imbalance analysis, normalization, discretization, and so on. In
the next phase, DM techniques such as classification, clustering, and association
rule mining are applied to discover useful patterns and relationships in software

-~

— | . ‘ID‘IHH i ﬁ il = soo Q
/Software By —-. |
| Engineering \,' —— O 1 E

~Jasks e Eftar Dimfuct ezt Puttern Refactoring Vulnerability
- i Mining Analysis
7

L -~ Evaluation \\ s O O O CEE - Z(}' e
. (2 i o = e]

K-fold Cross Validation Accuracy, Recall, Precision Sum of Squared-Error

— T~ . 2> o) | ==
’/ Data Mining ! g 25 G:'
Y ’ e
1 - Classification Clustering Regression Association Rule Mining Toxt Mining
f " Data EEEEE B : o |
[Preprocessing RN = B | e : —
\ o CECEC] g o
l Pimansionality Rads ,___Femtars Extraiiicn Normalization ___ Discretirstion ___J
—~ '_‘| 5o -
“Data Col!z(hnn) % (;) - -
N | 2
= - Historical Data Documentation umML Execution Traces Bug Report Source Code Version Data

Figure 2.
KDD process for software engineering.

121

Data Mining - Methods, Applications and Systems

engineering data and therefore to solve a software engineering problem such as
defected or vulnerable systems, reused patterns, or parts of code changes. Mining
and obtaining valuable knowledge from such data prevents errors and allows
software engineers to deliver the project on time. Finally, in the evaluation phase,
validation techniques are used to assess the data mining results such as k-fold cross
validation for classification. The commonly used evaluation measures are accuracy,
precision, recall, F-score, area under the curve (AUC) for classification, and sum
of squared errors (SSE) for clustering.

3. Data mining in software engineering

In this review, we examine data mining studies in various SE tasks and evaluate
commonly used algorithms and datasets.

3.1 Data mining in defect prediction

A defect means an error, failure, flaw, or bug that causes incorrect or unex-
pected results in a system [8]. A software system is expected to be without any
defects since software quality represents a capacity of the defect-free percentage
of the product [9]. However, software projects often do not have enough time or
people working on them to extract errors before a product is released. In such a
situation, defect prediction methods can help to detect and remove defects in the
initial stages of the SDLC and to improve the quality of the software product. In
other words, the goal of defect prediction is to produce robust and effective
software systems. Hence, software defect prediction (SDP) is an important topic for
software engineering because early prediction of software defects could help to
reduce development costs and produce more stable software systems.

Various studies have been conducted on defect prediction using different met-
rics such as code complexity, history-based metrics, object-oriented metrics, and
process metrics to construct prediction models [10, 11]. These models can be con-
sidered on a cross-project or within-project basis. In within-project defect predic-
tion (WPDP), a model is constructed and applied on the same project [12]. For
within-project strategy, a large amount of historical defect data is needed. Hence, in
new projects that do not have enough data to train, cross-project strategy may be
preferred [13]. Cross-project defect prediction (CPDP) is a method that involves
applying a prediction model from one project to another, meaning that models are
prepared by utilizing historical data from other projects [14, 15]. Studies in the field
of CPDP have increased in recent years [10, 16]. However, there are some deficien-
cies in comparisons of prior studies since they cannot be replicated because of the
difference in utilizing evaluation metrics or preparation way of training data.
Therefore, Herbold et al. [16] tried to replicate different CPDP methods previously
proposed and find which approach performed best in terms of metrics such as
F-score, area under the curve (AUC), and Matthews correlation coefficient (MCC).
Results showed that 7- or 8-year approaches may perform better. Another study
[17] replicated prior work to demonstrate whether the determination of classifica-
tion techniques is important. Both noisy and cleaned datasets were used, and the
same results were obtained from the two datasets. However, new dataset gave
better results for some classification algorithms. For this reason, authors claimed
that the selection of classification techniques affects the performance of the model.

Numerous defect prediction studies have been conducted using DM techniques.
In the following subsections, we will explain these studies in terms of whether they
apply ensemble learning or not. Some defect prediction studies in SE are compared

122

DNV ‘enbruyoay uoneprfea

G-doig
03 7-doxg woiy Areyarrdorg

INAS ‘LA
‘paseq o1 ‘YT ‘NN ‘soxenbs

e oAy ued sdunies 1ojaurered

//dx.doi.org/10.5772 /intechopen.91448

http

Data Mining and Machine Learning for Software Engineering

DOl

densiooq sjdures-jo-mQ S0d ‘TIN[VSVN paues[) 3unsooq ‘Surddeg 1sea] renaed YT ‘NN ‘AN Ioyreym pardde usaq sey 1ore) uonedyisse[d 9107 [+]
£0< 1'¢’y ploipuy ‘T'¢'y ploipuy 1soog epy ‘Isoog wa)shs
SEATIN ‘4T ‘AN 103 DNV TT'¥ Proapuy "0’y proipuy 180 ‘sean [2powr GNLQ ‘93uN Superado proipuy jo sasea]ar Xis
uonepiea ‘£°€'C proIpuy ‘z'g'g proipuy ons1807] 952103 LAV ‘8¥[‘LAVD ‘dA ‘WAS uo sdmaw OO Sursn sanbruyday [ec
asea[aI-1a1ur ‘p[oJ-0T :dde proxpuy jo sasespai g wopuer ‘Gurddeg A9Y ‘d'TIN °N4g ‘AN YT TIN 8T Jo Apmis aanereduiony uonesyisse]d 9107 “Cz]
€' S9019X 97 Ue[exX
A9y pue NN sutroyradino ‘9 1BOWO, ‘¢ 104 ‘4°7 duadn]
IoUIBd] 3seq + Y ‘I (4807 “p ups[p°1 £A] ‘9T (INg) sofeq aareu qnoutsg Surures] S[qUIASUS PUL UONII[DS
pue LT onsiSoy oduus pure) 73Uy (Z0Y) HSINOU pue ANIN T ‘(SWAS-M) 2xmyed; Sururquiod &q pasodoxd
‘60°0 =0 13893 OUN-NO2S ¥Dd ‘€Dd TOd ‘TOd ‘TMIN DI SINAS P21YSIom ‘qDS S1o1Isse[d st onpow Jurures] (44V)
G'0 <DV ‘AD PI®}-0T x 0T ‘€0 ‘IO ‘TN “TIND *VSYN a9 ‘aq U9ADS SAUIQUIOD W2)SAS AV ajquiasua Anqiqeqod a8eraay uonedyIssed S0z (1]
A9 pue NN swiojradino €7 s9019X LINT ‘8%[s1a
JIouIes[aseq + gy ‘gz uerey ‘g 1edwo], ‘¢ 10d ‘' NN :Toqy3iau 1sa1eaN S[epowt
pue ‘LT OnsiSop ofdwirs suadn T (307 4 upa(4T Aa] A9Y SNN uonorpard 109J9p a1EMIJOS
‘G0°0 = 0 35931 OUY[-1300G ‘9°T PUIe) /1 Y :JSINOYd soedsqns wopuer 1opry ‘roddry :paseq sy Jo aoueurtoyiad a3 uo joeduir
G0 <DNV +0d ‘€Dd T0d ‘TOd ‘TMI D3I €}s3103 UOKEIOL N ‘DI “SuttaisnD ue sey anbruyoa) uoNEdyISSEd UOLEIYISSE
AD PIOJ-0T X OT €03 “TOM ‘TN ‘TIND “VSVN ~ ‘9soogepy ‘Suiddeqg onstSo ajdurig ‘gN :eonsnels JO uondAPAs Ay Jeyl MoYs O, /SuLAIsSn[D) GTOT [£1]
S19SETED JO SINSHIAIIEIEYD $0d ‘¥0d ‘€0d ‘20d ‘1d
03 Surprodoe afueyd TMIN ‘COIN ‘TOW ‘€D ‘7O 44 ‘Sunsooq HLOWS ‘SN ‘SOY :Surdureg e3ep paduefequil
sINsa1 DOY DO ‘ADS XS TN ‘TINM ‘TIND :s1oserep YSYN “Suiddeq soogepy AN ‘SHD sTayIsse[) aseg yam [edp 01 Apmis aaneredwio) uonedyIsse)) 107 [0¢]
ON'1so0gepy
dd ‘ad 10d ‘TMIN ‘€D ‘TIND Jo uors19a drureudp pasodoxd
DNV pue uesw-H ‘wouereg ‘€D ‘vDd ‘TO ‘TIN(‘TOM TOW DN'1soogepy DNg PuE spoyzouw Sururea] adue[equit
AD PIo§-01 :A1onsodar FSINON PUB VSVN ONA ‘dINS ‘A4 ‘NS ‘WHLL ‘T89-SNY ‘SNY ‘AN ssep jo Apmis aaneredwo) woneoyisse)) €107 [61]
Sunop pue
%06°£8 SO ¥Dd €Dd TDA 1Dd ‘Buppelg asoogepy SUO0 9A13093)9 Jsow
ssa40f wiopuv1 %8488 2104 TMIN ZOIN TOIA ¥ €23 7O ‘SY ‘A¥ ‘1™ 2y} puly 03 SPOYIAW S|qUIASUD
DNV pue DDV ‘AD PIoJ-01 IO TIN[TIND *s395838p YSYN ‘unsooq ‘Surddeq aN snotrea jo Apnis aaneredwo) uonesyissed 1107 [81]
s)msax
pue soLPow uorEN[EAY josereq Suruwres| sjquuasuy sunLoS[y EYNSRET(To) jysel, Iedx ‘Joy

123

Data Mining - Methods, Applications and Systems

INF Pue W-0OSd ‘4

(suoxd-ney j0u 10 suoxd-ymney)
sa[npow 21eM1JOs Y3 SuLIaIsnyo

ASINOY¥d ‘ddIN BeN -OSd “W-IND “H-IN wraroS[e SupeIsno 0Sd 103 OSd UMM dquiasud 13sn) Supesnd $107 [8]
a1y pue o3exoed L1245 10§ 510959p
DOV ‘Ired91 4d 0°¢ ‘1T ‘o'z asdipy - Y1 osespr-asod pue -a1d punoj oy, uonesysse)y £00¢ [87]
saurpaseq a3
ITe uey) 19139q Apuediyudis
surzoyred [TNN Dse181s0g (uonorpaid
1dogq ‘e[[1zo]y ‘wirojie[d osdipog Sy 159104 uoneIoy g0V 11 :pestazadnsupn) 10939p aremijos swn ur 3sn()
pue ‘DDV ‘AD-9smawn ‘AD 1dfasdipg ‘equmo) ‘ezéng soogepy ‘Surddeg PNADY “TIS YTVE dds-1i[103 poyiew [TN Uonedyisse]d 8107 [/L¢]
£0< (T¢y pue
SLATIN ‘9T ‘AN 103 DOV TTH TTF) wedgAypp(pue (40 LA ‘dTN ‘pasodoad st
UOTIEPI[EA PUE 7'('f) YOIMPUES WEIID) 3] 19y ‘dN ‘(uorssaxdax onsido] poyrawr (JDSY) uonorpaid 3nq ur
9SBI[aI-I93UL ‘P[OJ-OT “(L°€'C pue g'g'g) peaig 18urn Sunop Areurq) DO :sI91Isse[d aseg SISYISSE[D JO UONDI[AS 2andepy uonesyisse[d /107 [€1]
TOS2131504
pue ‘e[[IZo|\ ‘uriofie|d (T41L)
91095-4 ‘AD PIoF-0T ‘1Al ‘equnjo) ‘eqrz3ng Suppels ‘Sursdeqg NN VAT ‘Ld ‘NAS ‘AN uono1paid 109§op awn-ur-isnf uonedyIsse[d /10T [9¢]
JNITHY ‘ANIDLIN dN-1S004d ‘1Ld s1eserep
DNV “DDIN 9109s-4 ‘WHFAY ‘ddIN VSYN -1S004 ‘AN-O9Vd Jua191p G uo areduwiod pue
omsedw-n DIV Ud Me2d ‘OMNZOTAN(‘s39serep d[qe[reae G ‘1d-5vd ‘4d ‘41 INAS ‘AN YT LA ‘sdydeoxdde qdad +¢ avedndey uonesyissed /107 [91]
159q 213 St
(INT) 1prenbrey Sroquanay
1M MIOMISU [BINDN SPOYIoU S[qUIDSUD SOLI}2UI 3POD 3DINOS JO
sisAreue Kronsoday FSTINOYJ woxy Ieaurjuou pue T ‘NN “XAD 19s 9[qelns & AJIUSpI pue soL1aur
W10 5911 ‘AD PIOJ-0T syoafoxd eae[aomos-uado 9 reaur] snosuadorsloy D ‘@D ‘swyittoS[e Sururer1 G 9pod 9INOS) AJBPI[eA 0] ST WY uorssaxday /107 [S]

syutod o8ejusorad g 01
dn soueurtoyrad Dy 101D

Aad VAN
‘1al 9°€ LMS ‘¥ 8ngeg
‘0°¢-T1'z—0°C uutopeld asdipy

976"z uefex ‘7’1 [pure) aysedy

S[opour GOEU«UDM& 109J9p Jo

soueurroyrad oy uo 3oeduur s3re

synsax
pue soLndouI UoEN[eAY

jesereqg

Surures] sjqurasuy

suqitody

2an22(q0

yse], Iedx oY

124

OT-10M

uonorpaid

//dx.doi.org/10.5772 /intechopen.91448

http

Data Mining and Machine Learning for Software Engineering

DOl

Ld > NNV “I0d 7O ‘IO ‘TIN[‘TIND 109J3p 218M1JOS 103 SWYHIOT[e
AD PIOJ-0T :519se1Ep JSIINOYUd PUe BSEN - D07 ‘AN ‘1d ‘0Sd ‘NNV TNl tendod 241y ozATeuy uonmesysse)d /10T [L€]
¥2d ‘€0d
53q Y3 st (S + SNY-OS.L) 20d ‘10d ‘TMIN ‘TOIN ‘€D AN ‘NN (OS.L) 1e1snpo dais-om3 uo S +SNY-OSL
DNV ‘AD PIoF-0T IO TIND “2'1:ddIN VSYN 47T ‘1d :Buppeig paseq Surjduresispun wopuer y - paj[ed poypaw puqhy ue asodorg wonesyisse)y /107 [9€]
U.HNE.«Ow 14 WO
sjeseiep $Dd pue VINDINNV YN YHHSIA ~ stusuodwos Ayney puyy 03 [ppow
%06 DOV ‘SI9 3U2 DDV ‘€Dd ‘7Dd ‘TOd ‘TN ‘T ‘IO - soyoeoxdde 1oy prgdy uonorpaid 102§op 2IEMYOS Y UOHEIYISSE)) 9TOT [SE]
anfea 3soySiy oy NNION
soonpoxd (¢£°0) N OIN dD K1onsodar FSTNOU ANOW ‘ANOIN sanbruyoay Sururesy
3593 URI UOXOO[IM D1V WOIJ PAUTRIqO S1asejep 03zodIn{ - “YTON ‘LAON ‘LA YT ‘AN saeq aareu 2and2(qo-nmu y — 910z [¥€]
dd JO 150 UOTIed1JISSeOSIUL
3521 U1 pauBls UOXOI[IAL puyy 03 (INASLSTM)
ueaw-on 9103s-4 €D ‘7O ‘O ‘vDd ‘€Dd ‘IDd JI0OMIDU [BINSU SAIISUIS-ISOD suryoewr 103094 110ddns
221 Yd ‘AD PIOJ-0T ‘TOM ‘TIND :A1ousodar FSINOUA - ‘NG ‘NN YT ‘A¥ ‘AN ‘NAS umy sarenbs-1sea] paiySom — o9t0z [g€]
0€sd o1 1sd
1s91-1 astmired woiy A1oysoda1 SINOY WOy soLIaw
DDV 9100s- ‘AD PIoJ-G s1valoxd aremijos somos-uado ¢ — dJINAS YINAS “TINAS ‘INT 47T 9PO2 92IN0S 9[qeIns J09[as 01 YO UONIRIYISSE]D 9107 [C€]
10SOWOYONISIN PUE ‘9Jed1a1u]
‘[9zZNz ‘g’() 3S9110J 319 991], 49y ‘1Y ‘dureig uorsma(g
199°0 =DV ‘Burures]-> oxe ‘o'z L] ‘¢ yMpAl 9soog M80T YT ‘dA ‘OIS ssouauoxd-yney spuy
DNV ‘AD PIOJ-0T LT 3UV ‘0"9 ¥eowo], ‘9 T[oure) a4 ‘ans ‘dTNl NASAIT 4T ‘AN 7eqs [opowr e pasodoxd szoqny wonesyisse)y 910¢ [T€]
suryaiode Sa[npow 21emijos
Ld <NN <dN 10d 7O 1noj ay3 jo Jo 21e3s 2a10Jp 213 1paid
21005~ DDV ‘[e221 4d ‘IO ‘TIN[‘TIND :$725e1ep YSYN [N Sunjoa paiydapm 1d ‘s3[m1 uonerosse ‘NN ‘AN Jey} SAINQLIE 9Y3} MOYS O], UOIRILISSe[D ST0T [0€]
€0d ‘72d ‘10d TMIN
189q A SLATINA “COIN “TOIN ‘€D ‘IO ‘TN “TIND surqose WA
“Ud DDV ‘AD PI0F-0T 39se3ep JAIN VSVN ‘HSINOUd - dTA ‘st[‘AN Buiddde £q uoneoynuapr 10250q uonedyIssE]) SIOT [67]
synsax
pue SOLIoW uoren[eAy josereq Surwres sjquiasuy surqiLioSy aAnoalqQ yse], Ieax ‘JoY

125

Data Mining - Methods, Applications and Systems

uounpaad 102op,) 192lgns oy uo sarpnis Juruava] suryovus puv Surutus vIv

T 2[qeL,

dddod
uey) 19139q surioyiad Xey

D0Y DNV Yd @1095-4

ueey ‘yeowof,
‘doiq ‘104 ‘ousonT ‘80
qpaf ‘Aa1 ‘PPure) Uy JSTNOYd

Jd ‘N Sunsoog
‘g(Sunsoog ‘gN
Gui83egq gy (Jurddeg

‘dadoD ‘Xe

Ld pue ‘(991,(V) 9913 UOISIOP
Sunewsole ‘TN ‘499 ‘N4 YT

ddaod ym

paredurod are swyiiodre TN uonedyisse[) 8107 [0T]

AN < NNV <.Ld
%L6 DDV

€5d TSa ‘1Sa

‘paxredurod axe senbruyosy

D0V ‘d ‘Ieo?1 4d DDV SI9SEIBP JUIISHIP 991], - NNV ‘1d ‘AN TIN UMOWY-[[2M 9911], UOHEdHIsse[D 8107 [8€]
synsax
pue soLndouI UoEN[eAY 1esereq Surures] sjqurasuy sunpLogd[y 2analqQ yse], Iedx oY

126

Data Mining and Machine Learning for Software Engineering
DOI: http://dx.doi.org/10.5772 /intechopen.91448

in Table 1. The objective of the studies, the year they were conducted, algorithms,
ensemble learning techniques and datasets in the studies, and the type of data
mining tasks are shown in this table. The bold entries in Table 1 have better
performance than other algorithms in that study.

3.1.1 Defect prediction using ensemble learning techniques

Ensemble learning combines several base learning models to obtain better per-
formance than individual models. These base learners can be acquired with:

i. Different learning algorithms
ii. Different parameters of the same algorithm
iii. Different training sets

The commonly used ensemble techniques bagging, boosting, and stacking are
shown in Figure 3 and briefly explained in this part. Bagging (which stands for
bootstrap aggregating) is a kind of parallel ensemble. In this method, each model is
built independently, and multiple training datasets are generated from the original
dataset through random selection of different feature subsets; thus, it aims to
decrease variance. It combines the outputs of each ensemble member by a voting
mechanism. Boosting can be described as sequential ensemble. First, the same
weights are assigned to data instances; after training, the weight of wrong predic-
tions is increased, and this process is repeated as the ensemble size. Finally, it uses a
weighted voting scheme, and in this way, it aims to decrease bias. Stacking is a
technique that uses predictions from multiple models via a meta-classifier.

Some software defect prediction studies have compared ensemble techniques to
determine the best performing one [10, 18, 21, 39, 40]. In a study conducted by
Wang et al. [18], different ensemble techniques such as bagging, boosting, random
tree, random forest, random subspace, stacking, and voting were compared to each
other and a single classifier (NB). According to the results, voting and random
forest clearly exhibited better performance than others. In a different study [39],

Original Dataszet Original Dataset
et Training Test o — Training
g Predbctiona
—
- = == - -
! o~ ! gz - . + €m
Now Data €1 - s = = Cm Classification New Data ¥
Models
PA» - - - . @BmD eredictions
Weighted
vat
Voting o
P Final Prediction
P Final Prediction
a) b)
Original Dataset
Tt Tratning
New Data €1 = = « =« "Cm Classification

Models
1 - - = . Pm Predictions
All Level 1 Predictions.

Meta
Classifies

Pl Final Prediction

<)

Figure 3.
Common ensemble learning methods: (a) Bagging, (b) boosting, (c) stacking.

127

Data Mining - Methods, Applications and Systems

ensemble methods were compared with more than one base learner (NB, BN, SMO,
PART, J48, RF, random tree, IB1, VFI, DT, NB tree). For boosted SMO, bagging J48,
and boosting and bagging RT, performance of base classifiers was lower than that of
ensemble learner classifiers.

In study [21], a new method was proposed of mixing feature selection and
ensemble learning for defect classification. Results showed that random forests and
the proposed algorithm are not affected by poor features, and the proposed algo-
rithm outperforms existing single and ensemble classifiers in terms of classification
performance. Another comparative study [10] used seven composite algorithms
(Ave, Max, Bagging C4.5, bagging naive Bayes (NB), Boosting J48, Boosting naive
Bayes, and RF) and one composite state-of-the art study for cross-project defect
prediction. The Max algorithm yielded the best results regarding F-score in terms of
classification performance.

Bowes et al. [40] compared RF, NB, Rpart, and SVM algorithms to determine
whether these classifiers obtained the same results. The results demonstrated that a
unique subset of defects can be discovered by specific classifiers. However, whereas
some classifiers are steady in the predictions they make, other classifiers change in
their predictions. As a result, ensembles with decision-making without majority
voting can perform best.

One of the main problems of SDP is the imbalance between the defect and non-
defect classes of the dataset. Generally, the number of defected instances is greater
than the number of non-defected instances in the collected data. This situation
causes the machine learning algorithms to perform poorly. Wang and Yao [19]
compared five class-imbalanced learning methods (RUS, RUS-bal, THM, BNC,
SMB) and NB and RF algorithms and proposed the dynamic version of AdaBoost.
NC. They utilized balance, G-mean, and AUC measures for comparison. Results
showed that AdaBoost.NC and naive Bayes are better than the other seven algo-
rithms in terms of evaluation measures. Dynamic AdaBoost.NC showed better
defect detection rate and overall performance than the original AdaBoost.NC. To
handle the class imbalance problem, studies [20] have compared different methods
(sampling, cost sensitive, hybrid, and ensemble) by taking into account evaluation
metrics such as MCC and receiver operating characteristic (ROC).

As shown in Table 1, the most common datasets used in the defect prediction
studies [17-19, 39] are the NASA MDP dataset and PROMISE repository datasets. In
addition, some studies utilized open-source projects such as Bugzilla Columba and
Eclipse JDT [26, 27], and other studies used Android application data [22, 23].

3.1.2 Defect prediction studies without ensemble learning

Although use of ensemble learning techniques has dramatically increased
recently, studies that do not use ensemble learning are still conducted and success-
ful. For example, in study [32], prediction models were created using source code
metrics as in ensemble studies but by using different feature selection techniques
such as genetic algorithm (GA).

To overcome the class imbalance problem, Tomar and Agarwal [33] proposed a
prediction system that assigns lower cost to non-defective data samples and higher
cost to defective samples to balance data distribution. In the absence of enough data
within a project, required data can be obtained from cross projects; however, in this
case, this situation may cause class imbalance. To solve this problem, Ryu and Baik
[34] proposed multi-objective naive Bayes learning for cross-project environments.
To obtain significant software metrics on cloud computing environments, Ali et al.
used a combination of filter and wrapper approaches [35]. They compared different
machine learning algorithms such as NB, DT, and MLP [29, 37, 38, 41].

128

Data Mining and Machine Learning for Software Engineering
DOI: http://dx.doi.org/10.5772 /intechopen.91448

3.2 Data mining in effort estimation

Software effort estimation (SEE) is critical for a company because hiring more
employees than required will cause loss of revenue, while hiring fewer employees
than necessary will result in delays in software project delivery. The estimation
analysis helps to predict the amount of effort (in person hours) needed to develop a
software product. Basic steps of software estimation can be itemized as follows:

* Determine project objectives and requirements.
* Design the activities.

¢ Estimate product size and complexity.

* Compare and repeat estimates.

SEE contains requirements and testing besides predicting effort estimation [42].
Many research and review studies have been conducted in the field of SEE.
Recently, a survey [43] analyzed effort estimation studies that concentrated on ML
techniques and compared them with studies focused on non-ML techniques.
According to the survey, case-based reasoning (CBR) and artificial neural network
(ANN) were the most widely used techniques. In 2014, Dave and Dutta [44]
examined existing studies that focus only on neural network.

The current effort estimation studies using DM and ML techniques are
available in Table 2. This table summarizes the prominent studies in terms
of aspects such as year, data mining task, aim, datasets, and metrics. Table 2
indicates that neural network is the most widely used technique for the effort
estimation task.

Several studies have compared ensemble learning methods with single learning
algorithms [45, 46, 48, 49, 51, 60] and examined them on cross-company (CC) and
within-company (WC) datasets [50]. The authors observed that ensemble methods
obtained by a proper combination of estimation methods achieved better results
than single methods. Various ML techniques such as neural network, support vector
machine (SVM), and k-nearest neighbor are commonly used as base classifiers for
ensemble methods such as bagging and boosting in software effort estimation.
Moreover, their results indicate that CC data can increase performance over WC
data for estimation techniques [50].

In addition to the abovementioned studies, researchers have conducted studies
without using ensemble techniques. The general approach is to investigate which
DM technique has the best effect on performance in software effort estimation. For
instance, Subitsha and Rajan [54] compared five different algorithms—MLP,
RBFNN, SVM, ELM, and PSO-SVM—and Nassif et al. [57] investigated four neural
network algorithms—MLP, RBFNN, GRNN, and CCNN. Although neural networks
are widely used in this field, missing values and outliers frequently encountered in
the training set adversely affect neural network results and cause inaccurate esti-
mations. To overcome this problem, Khatibi et al. [53] split software projects into
several groups based on their similarities. In their studies, the C-means clustering
algorithm was used to determine the most similar projects and to decrease the
impact of unrelated projects, and then analogy-based estimation (ABE) and NN
were applied. Another clustering study by Azzeh and Nassif [59] combined SVM
and bisecting k-medoids clustering algorithms; an estimation model was then
built using RBFNN. The proposed method was trained on historical use case
points (UCP).

129

Data Mining - Methods, Applications and Systems

INAS-ST

‘SYVIN ‘STTO + D4 ‘SINT < STO + 8071 S0dsSN TRPMXeN INAS ‘NNA9Y ‘NNdTIN "}103J9 21eM3J0S uorssa1dar
1593 uewpatlg ‘(Gz)Paid ‘HINWPIN ‘eseud0) ‘sreureysaq ‘DSD ‘180D — ‘SYVIN 9T LUVD SN ajewnss 03 sonbruyde) W@ /uonesyisse]) zIOT [¢S]
NNS-049V
9%¢€8 Uey] 19139q wriojrad suoneurquio) spotzour ‘NNI-039dV spotzow
"HIGIN ofos | doy AMS 9STd wonorpaid sdnnur Jo sajqurasus
‘TIIIN YININ “TINPIN “TININ YVIN ASINOY¥d Suruiquo) YDd T ‘NN ‘LAVO W01 S9JPUINSD 2712Ud3 O, uorssa1day 710z [16]
(£6SENT820DESEND0D)
44S Suraoxdur pu® 820D)BSENI0D)
10§ [eRyauaq A[renualod erep DD ASINOYJ W01 s1aseIep sadueypo o3 1depe Ajpeorureudp
.14 uodn aaoxdur pmod 1O A[UO T (DS4SI ‘T007DSASI ‘000TDSISI) 03 3]qe SI[qUISSUD SSISAIP 931D
159) ueWIpaLL ‘GVIN A1oy1sodax HSgS] woay s1aserep € INMA-DM WMA-DD SId DM 01 sjppowr Auedurod-sso1d asn o, uorssaiday 710z [0S]
‘s 3dooxs
¢S9INSeaUl [[10 S[qUIdSUD 0318
AVPIN ‘AVIN K1oysodar Hggs] ‘srewreysap sa[quIasua pood 91ea1d 01 pue FHS
“TIINPIN ‘AST (S0)ATAd “TININ €ZOWO0O0D ‘BSEU ‘gEESEU ‘Tg0UWI0J0D uiddeg 1L dAY ‘AdY ‘dTIN Ul 9ABYS(S2INSEBIW 3} MOYS O, uorssa1day 710z [6+]
Apreqruats A10y1s0da1 HSGS] WOy s19seIRp § qHS doueyUD
uriorad sgTIN yaim SurdSeq pue sy STRUTRYSI(] PUE “IPS ‘BSBU ‘CGRSEU SPOYIaW J[qUIISUD J[qe[IeA.
(S0)aTdd ‘TINPIN ‘TININ ~ ‘T8OWO909 :HSTINOYJ WOIJ SI35eIep § Surddeg 1Y A9y ‘dTIN Apipea1 1oyioym ojenfead o], uoissaidoy 10T [8+]
s19y3l0 wEhouCumu:o IAS
TINIPIN q4s 103
TINAIN (ST)PId “TININ ‘ADOOT mmmny, — A9 UAS YAS JO SSPUSALIDIID oY} MOYS O], uorssa139y 010C [/¥]
1599 943 ST YNNH (VNNE) Arousm
(T)Axdd pue ‘QINPIN “HININ SreuIeysa(g SAIIBIDOSSE M SYIOMIIU [BINSU
1593 ‘Gurgduresqns wopuey “4ds DSN ‘€6 VSYN ‘VSYN ~ Suiddeg NN ‘dTIN ‘NN Jo dquiasud ay3 pasodoxd stoqny uorssa1day 600¢ [9t]
8 = (§7)HYd IoMIaU [BINAU 10,
$'9¢ = (S0)aTUd VNNH 104 sreureysaq (VNNA) A1ouraw aaryerosse
(T)a=gdd pue RYWPIN ‘HININ “AAs OSN ‘€6 VSYN ‘VSVN Surddeg NN ‘dTIN ‘NN Y3M SIIOMIDU [eINAU JO S[qUIasuy uorssa18y 8007 [St]
Surureay
S)[NS2I pUe SOLIIDUWI UOIIenjeAy j9sele(g d[quIasuy sunqLiodyy aandalqo yse], Ieax JPY

130

o UoLIPULISa 140fJ3, 102lqns Y3 U0 SA1pNIS SUIUADI] JUIYIVUL PUB TuruiuL VIV

Data Mining and Machine Learning for Software Engineering

DOI: http://dx.doi.org/10.5772 /intechopen.91448

T 9IqeL
[[PMXEIN 10J %8+°G8 = DOV INAS
STewIRysa(J 10§ %SE'T6 = DDV pue NN sanbruysay Ty Sursn
AD P93 ‘ADOOT [[PMXEJA ‘Steureysaq NN ‘NAS £q 110332 S1EMIOS BrEWNSD 0], UOHEIYISSED /T0T [09]
s[opout
1s9q a1 st yoeoxdde pasodoid ay, s109(01d euonyeonpa g9 = giesereq snoraaid jsurede pareduod NNGY uorssax3ax
VS ‘HIGIN ‘TIIIN ‘AVIN ‘ADOOT s109foxd [ernsnpur Gy = T30s€1RQ NNGY ‘NAS pue WAS Suisn [opowr puqdy y /uonesyisse)) 9107 [66]
1s9q st [opour pasodoxd ay, s10Mlou ueisakeg
YA 91d 1ese1e(VYSYN OINODO0D 0OSd pue VD uo paseq [ppowt e asodoxd o, uorssa18ay 910z [8S]
s[epour
92111 1930 33 suriojradino NNDD Y, NNDD “I9130 yoed ym paredurod
YVIAL ‘AD PIOJ-0T 41oysodar Hggs] ‘NNED ‘NNAGH ‘dTIN 218 S[PPOW YI0MIPU [eINdU oy uoissa189y 9T0T [£6]
Ssd ‘ssd
‘SO ‘Sd ‘IN ‘AT ‘LA HHS Ul spoyowt
11dSN yoax Surssaoordarg T uo senbruyos) Surssasoxdaxd
TIIPIN “(ST'0) ATYd “TUIN ‘AD ‘wrequayIy ‘steureysaq ‘DSASI I¥VD ‘NNV 94D ©1ep JO 39332 a1y Aerdsip o, uorssa18ay G1oT [95]
uoneziundo 10§ OOV
1s2q 213 st poyawt pasodod ay3 “TININ S19seIEp VSYN 0DV ‘VD Ppuy yD uo paseq [opou puqdy y — ¥10T [SS]
sauryoey Surures|
1599 943 ST INAS-OSd SwaNXH INAS-0OSd [ppowr OINOD0D
aaydd ‘TININ ®led II OWNOD0D NAS ‘NNAY ‘dTIN Susn paurwrexa a1e SNNV uorssa13ey $10C [+S]
agid “TININ 110330 Juowdo[eAdp UOTIEDIJISSE]D
‘TIN ‘HY ‘ADOOT PU® AD PIoF-¢ [[PMXEIN sueaw-D IV ‘NN 91eM}JOS JO UORWNSH [Buiaasnd €107 [€6]
S)[NS31 pUe SOLI}PUI UOTIeN[eAT 1osereq sunqLiodyy aandalqo jse], Ieax ‘Joy

131

Data Mining - Methods, Applications and Systems

Zare et al. [58] and Maleki et al. [55] utilized optimization methods for accurate
cost estimation. In the former study, a model was proposed based on Bayesian
network with genetic algorithm and particle swarm optimization (PSO). The latter
study used GA to optimize the effective factors’ weight, and then trained by ant
colony optimization (ACO). Besides conventional effort estimation studies,
researchers have utilized machine learning techniques for web applications. Since
web-based software projects are different from traditional projects, the effort
estimation process for these studies is more complex.

It is observed that PRED(25) and MMRE are the most popular evaluation met-
rics in effort estimation. MMRE stands for the mean magnitude relative error, and
PRED(25) measures prediction accuracy and provides a percentage of predictions
within 25% of actual values.

3.3 Data mining in vulnerability analysis

Vulnerability analysis is becoming the focal point of system security to prevent
weaknesses in the software system that can be exploited by an attacker. Description
of software vulnerability is given in many different resources in different ways [61].
The most popular and widely utilized definition appears in the Common Vulnera-
bilities and Exposures (CVE) 2017 report as follows:

Vulnerability is a weakness in the computational logic found in software and
some hardware components that, when exploited, results in a negative impact to
confidentiality, integrity or availability.

Vulnerability analysis may require many different operations to identify defects
and vulnerabilities in a software system. Vulnerabilities, which are a special kind of
defect, are more critical than other defects because attackers exploit system vul-
nerabilities to perform unauthorized actions. A defect is a normal problem that can
be encountered frequently in the system, easily found by users or developers and
fixed promptly, whereas vulnerabilities are subtle mistakes in large codes [62, 63].
Wijayasekara et al. claim that some bugs have been identified as vulnerabilities after
being publicly announced in bug databases [64]. These bugs are called “hidden
impact vulnerabilities” or “hidden impact bugs.” Therefore, the authors proposed a
hidden impact vulnerability identification methodology that utilizes text mining
techniques to determine which bugs in bug databases are vulnerabilities. According
to the proposed method, a bug report was taken as input, and it produces feature
vector after applying text mining. Then, classifier was applied and revealed whether
it is a bug or a vulnerability. The results given in [64] demonstrate that a large
proportion of discovered vulnerabilities were first described as hidden impact bugs
in public bug databases. While bug reports were taken as input in that study, in
many other studies, source code is taken as input. Text mining is a highly preferred
technique for obtaining features directly from source codes as in the studies [65-69].
Several studies [63, 70] have compared text mining-based models and software
metrics-based models.

In the security area of software systems, several studies have been conducted
related to DM and ML. Some of these studies are compared in Table 3, which shows
the data mining task and explanation of the studies, the year they were performed,
the algorithms that were used, the type of vulnerability analysis, evaluation metrics,
and results. In this table, the best performing algorithms according to the evaluation
criteria are shown in bold.

Vulnerability analysis can be categorized into three types: static vulnerability
analysis, dynamic vulnerability analysis, and hybrid analysis [61, 80]. Many studies
have applied the static analysis approach, which detects vulnerabilities from source
code without executing software, since it is cost-effective. Few studies have

132

%G6> MITADIL
9PO02 JO JUNOWE ‘UOHIONPII ‘DUIL} UOIINIIKD
‘oW uoneIdUa3 ‘s[esIoAe) Jo Isquinu

(3pdx) 121ddog ‘DTA ‘w1dpid

(a8exurf-a391durod)

9pod D) Ul SaNI[IqeIau[nA

//dx.doi.org/10.5772 /intechopen.91448

http

Data Mining and Machine Learning for Software Engineering

DOl

‘UOIIBZIIIUES JO91I0D ‘90INOS 1091100 “1ssuadQ “xnury :s309(oxd somos-uado ¢ onerg Juneisnpo [eoryorerary 9[A1s-jure} 10y suralyed yoreag Suuasny s1oz [S/]
DAV-YT ‘ddgdd ‘ADd-9d SOLI_IN (urwpyANdHA O[POOIN ‘Tedniq) S[9POUI SOLI}OUI DIEMIJOS UOIFEDIJISSE[D
AD PI0J-01 sdde gam so1mos-uado uroxy sanIqeIaumnA — gy pue Sururur 1xa) jo uostreduron /Bunjuey s10z [0/]
S9pod
[[8931 JO [9A3] [epowr snozaduep Aqreryuajod urerqo oy
SUIES 3] 1B 066> SULIE[E S[e ‘AD P[0J- s303[oxd qniIrn 99 surejuod aseqelep ayJ, — uo10213P paseq-INAS (1PpuriDDA) yoeordde mouy uonesyisse)d SLoz [¥/]
Gururu
%08 < [[e231 pue ¥J proipuy pue 1x91 Sursn 1a1y1ssepd Areurq e
[1ed21 “4d ‘AD PIoJ-0T Aronsodax proxq-g ayp wosy suonedriddy onelg A ‘AN JO WLIOj 9y} UI [9pOUWL 93eaId O], UONedIsse]) +107 [69]
[Tex240 syjauaq sapraoxd Jururur 1xa], (urwpyANdHJ O[POOIN ‘Tedniq) Sururur 1xa1 YIIm SOLIPW
DOV “Udd Ud NI reda1 ‘AD pioj-¢ sdde gom aomos-uado wroy saniiqersumy oIS a9 aremijos jo uostredwro) uonesyisse]) 107 [€9]
5dD Suisn sapod 921mos
— saseqerep ydeinajuiyuy pue (FOaN OIS — uroly sanIIqerauna Ayruspy Suuasn 107 [€/]
T ‘WAS ‘dTN SOHI[IqeIsumA
%18 = VAV ‘%6 = Ud ‘%8°06 = DOV 99N soheg ‘N ‘NN urelqo o3 Sururur eyep uorssa1gdar
Vddvl ¥d DDV ‘ddl ‘AD PIo3-0T E1Ep 941 199[[00 01 JVM JO UOISI2A Y PHQAH LY ‘A¥ ‘8¥[/S¥D ‘€l pue sisA[eue Jure; suiquio) /uonedyIsse[) y10C [2/]
san[IqeIdunA
30 (TOSAIN) %79 pue (Xnury) %z saseqeyep saseqerep Snq Sururur 3xa)
¥dd “9d1 9ad Snq TOSAIN Pue HAD HYLIN [PUI] XU O1Elg - ur sanTIqerduna AJRuspr O, /UONdYISSE[) TI0T [+9]
88°0 = [[®991 ‘58°0 = Yd /8°0 = DOV
[1eda1 “4d DOV urrojie[d proipuy ay3 10J JUSID [TeWd G) J1EIS INAS ‘4g¥ 1X91 Se apod 201nos jo sisAfeuy Sururwi 1xa], 710z [S9]
OIS Anpiqersuma uorssa13ax
ASYY ‘4SIWA DD SSAD ‘4dD ‘AN ouEs ‘A9 ‘dTIN ‘ST 4T IXaU 03 Sy oy} P1paxd o, /uUoWEdYISSED TI0T [¢¥]
DAY uo paseq sanIqeIdauna
ddd ANd Adonug-qy 4q mq st oseqereq dneIS oday aremos SurureiqQ SumasnD 1107 [14]
S)[NSal pue SOLI}PW uonen[eAy uonduosap josereq adAj, sunpLogd[y 2analqQ Jysel, Iedx ‘PY

133

Data Mining - Methods, Applications and Systems

Ssishppuy Anpiquasugna, 122lqns ayg uo sarpnis Sutuiva] aunyovus puy Sururul IV

"€ 3qeL,
qnyU3LH Wolj palda[[0d SI 9P0Od 32IN0S sanI[Iqerauna
NAS < IST pue ‘e[iz3ng woiy syuswraambai ‘gAD pue syusuraimbaz
9100s-4 ‘[[eda1 YJ “qeowo, aydedy woiy paroyed st ereq — dN ‘INAS YT Sunsixa usamiaq Surddewr y - uoneoyisse;d 8107 [64]
(1929499 NA)
%8'08 = 2102s-4 wa1shs UuoraePp %EEE@E?}
2100s-4 “[[e221 “4d ‘AD PI0J-0T 109fo1d Yys pue QAN :ISIN d1eEIS NN NISTE poseq-Suturesy dosp y worssa1day 8107 [8/]
tureoyp\ O brup “xp, “yonog, ‘qrey, ‘41og apod
%vL = DOV ‘doays ‘gnyg ‘bag ‘ury ‘@1sed ‘IN “UPAN 44 ‘1A ‘WAS ‘NN 90IN0S 7 WO} saInjesy 1xa}
NLL ‘dL DDV AD PIoJ-S ‘I ‘peRH ‘oydg ‘ng ‘dD 9D ‘AN oneIs ‘sueaut-y ‘NN ‘AN Sunoenxa £q s8nq Anuapy wonesyisserd) 8107 [99]
%08 < 91008- pue ‘[[eda1 Ydq 9pod Ul sainjesy
y1omIoN jorpeg deag urroyzerd g0 prorpuy a3 J1)0JUAS PUE DTJUBWIAS UILJ] OF
9100s-J pue ‘[[eaa1 YJ ‘AD P[oJ-0T woiy suonedridde eae[g1 uo syuswLiadxy — NAd ‘NIST ‘NNY¥ posnst (WLST) Sutures; dooq Sururwrixay, /107 [89]
S3[1J 92IN0S
woiy .%u_:n—m.uwﬂﬁﬂxw 2Iemljos
%09 = [[B221 ‘9%0/ = ¥d saseqerep AN ‘AMD “AAD — — Jo sonsueloeIeyd azATeUR O], Jururwi1xa], /10T [£9]
UOI303[9s 9INJe3J pue
%/T°06 (proignjuy ‘1apeay[o0) sisA[eue ureigd-N aurquio) ¢
= 18991 %I/ ¥6 = ¥d ‘%/8°T6 = DDV 30q1oauuo)) “eenaurenpieod) JIomiau
AD PI0J-6 Suisn sawn o suonyeoridde 4, wo1y UONORIIXS 2INIEI] — yaomiau [ernau dea(g rerau deap e Aojdwig ' uonesyisseld /107 [/£]
surex3oxd s[qeraumA Jo %GG 19919 I9yde1], 3ng UBIQ(] Y} WIOIJ SISLD UOIIRDIJISSE[D
AN Ydd 3591 6£0T Surzh[eue £q pajeard sem asereq pLqAy A9 ‘dTIN 47T 10§ sa1njeay orwreudp pue dpelg UONEdYISSED 910C [9/]
S)[NSaI pue SOLI}PW Uonen[eay uonduosap Josereq adAg, sunqLoS[y aAnoalqQ Jyse], Ieax JoY

134

Data Mining and Machine Learning for Software Engineering
DOI: http://dx.doi.org/10.5772 /intechopen.91448

performed the dynamic analysis approach, in which one must execute software and
check program behavior. The hybrid analysis approach [72, 76] combines these two
approaches.

As revealed in Table 3, in addition to classification and text mining, clustering
techniques are also frequently seen in software vulnerability analysis studies. To
detect vulnerabilities in an unknown software data repository, entropy-based
density clustering [71] and complete-linkage clustering [75] were proposed.
Yamaguchi et al. [73] introduced a model to represent a large number of source
codes as a graph called control flow graph (CPG), a combination of abstract syntax
tree, CFG, and program dependency graph (PDG). This model enabled the discov-
ery of previously unknown (zero-day) vulnerabilities.

To learn the time to next vulnerability, a prediction model was proposed in the
study [42]. The result could be a number that refers to days or a bin representing
values in a range. The authors used regression and classification techniques for the
former and latter cases, respectively.

In vulnerability studies, issue tracking systems like Bugzilla, code repositories
like Github, and vulnerability databases such as NVD, CVE, and CWE have been
utilized [79]. In addition to these datasets, some studies have used Android
[65, 68, 69] or web [63, 70, 72] (PHP source code) datasets. In recent years,
researchers have concentrated on deep learning for building binary classifiers [77],
obtaining vulnerability patterns [78], and learning long-term dependencies in
sequential data [68] and features directly from the source code [81].

Li et al. [78] note two difficulties of vulnerability studies: demanding, intense
manual labor and high false-negative rates. Thus, the widely used evaluation met-
rics in vulnerability analysis are false-positive rate and false-negative rate.

3.4 Data mining in design pattern mining

During the past years, software developers have used design patterns to create
complex software systems. Thus, researchers have investigated the field of design
patterns in many ways [82, 83]. Fowler defines a pattern as follows:

“A pattern is an idea that has been useful in one practical context and will
probably be useful in others.” [84]

Patterns display relationships and interactions between classes or objects. Well-
designed object-oriented systems have various design patterns integrated into them.
Design patterns can be highly useful for developers when they are used in the right
manner and place. Thus, developers avoid recreating methods previously refined by
others. The pattern approach was initially presented in 1994 by four authors—
namely, Erich Gama, Richard Helm, Ralph Johnson, and John Vlissides—called the
Gang of Four (GOF) in 1994 [85]. According to the authors, there are three types of
design patterns:

1. Creational patterns provide an object creation mechanism to create the
necessary objects based on predetermined conditions. They allow the system
to call appropriate object and add flexibility to the system when objects are
created. Some creational design patterns are factory method, abstract factory,
builder, and singleton.

2.Structural patterns focus on the composition of classes and objects to allow the

establishment of larger software groups. Some of the structural design patterns
are adapter, bridge, composite, and decorator.

135

Data Mining - Methods, Applications and Systems

3.Behavioral patterns determine common communication patterns between
objects and how multiple classes behave when performing a task. Some
behavioral design patterns are command, interpreter, iterator, observer, and
visitor.

Many design pattern studies exist in the literature. Table 4 shows some design
pattern mining studies related to machine learning and data mining. This table
contains the aim of the study, mining task, year, and design patterns selected by the
study, input data, dataset, and results of the studies.

In design pattern mining, detecting the design pattern is a frequent study objec-
tive. To do so, studies have used machine learning algorithms [87, 89-91], ensemble
learning [95], deep learning [97], graph theory [94], and text mining [86, 95].

In study [91], the training dataset consists of 67 object-oriented (OO) metrics
extracted by using the JBuilder tool. The authors used LRNN and decision tree
techniques for pattern detection. Alhusain et al. [87] generated training datasets
from existing pattern detection tools. The ANN algorithm was selected for pattern
instances. Chihada et al. [90] created training data from pattern instances using 45
OO metrics. The authors utilized SVM for classifying patterns accurately. Another
metrics-oriented dataset was developed by Dwivedi et al. [93]. To evaluate the
results, the authors benefited from three open-source software systems (JHotDraw,
QuickUML, and JUnit) and applied three classifiers, SVM, ANN, and RF. The
advantage of using random forest is that it does not require linear features and can
manage high-dimensional spaces.

To evaluate methods and to find patterns, open-source software projects such as
JHotDraw, Junit, and MapperXML have been generally preferred by researchers.
For example, Zanoni et al. [89] developed a tool called MARPLE-DPD by combin-
ing graph matching and machine learning techniques. Then, to obtain five design
patterns, instances were collected from 10 open-source software projects, as shown
in Table 4.

Design patterns and code smells are related issues: Code smell refers to symp-
toms in code, and if there are code smells in a software, its design pattern is not well
constructed. Therefore, Kaur and Singh [96] checked whether design pattern and
smell pairs appear together in a code by using J48 Decision Tree. Their obtained
results showed that the singleton pattern had no presence of bad smells.

According to the studies summarized in the table, the most frequently used
patterns are abstract factory and adapter. It has recently been observed that studies
on ensemble learning in this field are increasing.

3.5 Data mining in refactoring

One of the SE tasks most often used to improve the quality of a software system
is refactoring, which Martin Fowler has described as “a technique for restructuring
an existing body of code, altering its internal structure without changing its external
behavior” [98]. It improves readability and maintainability of the source code and
decreases complexity of a software system. Some of the refactoring types are: Add
Parameter, Replace Parameter, Extract method, and Inline method [99].

Code smell and refactoring are closely related to each other: Code smells repre-
sent problems due to bad design and can be fixed during refactoring. The main
challenge is to obtain which part of the code needs refactoring.

Some of data mining studies related to software refactoring are presented in
Table 5. Some studies focus on historical data to predict refactoring [100] or to
obtain both refactoring and software defects [101] using different data mining
algorithms such as LMT, Rip, and J48. Results suggest that when refactoring

136

NNAT
£q.%001 = DOV
91008- ‘[[eda1 Yd

[001 1op[ing(£q pa1denXD

suroned 1o1depe

‘surnurodpe T Sursn

//dx.doi.org/10.5772 /intechopen.91448

http

Data Mining and Machine Learning for Software Engineering

DOl

9DV ‘AD PIoJ-§ ‘SOOI OO /9 UM J19SeIR(] 9POD 22IN0S ‘A1010ey 10B1ISqY — I1d ‘NNYT1 uonmudooar urened uissaq uonesyisse[d 9107 [16]
8¢0°0 = dd
‘I18°0 = 2100s-4
‘I8°0= I9A138q0
[18291 ‘18°0 = ¥4d ‘10381931 ‘poyiow SOHd-INAS
d4 ‘e100s-4 A101085 ‘Onsodurod INAS ‘NN S'+D pasodoad st (SOHJ
‘[reva1 “4d Aioysoder euwr-g 9pod 221N0g ‘1op[ng ‘xordepy — onst3o ardung -INAS) PoyIau Mau Y uorssai3ay G107 [06]
8'TA QINd ‘¥'0A
YoInN ‘£'6'TA TNX*Rddey
‘T°GA MRI(JIOH(°/L°€A poylowr
MU X'0°TA SUBSQIDN ‘$7'9°TA K10100] pue ‘10121009p
K1010830y(“eydye 1°T°0A 1Xo] ‘ansodurod 103 Jurraysnyd 440D souelsul
%$8= <DV ‘T00T TWNAPMY ‘O[durexgdq pue uonesyIsse[n ‘dri(‘gN YPuQ PooS 10 peq e SI I I2yIayM
DAV ©1008- swayshs 101depe pue uoja[3urs 01377 ‘sueaut saduejsur £Jisse[d 03 Surrasno
DOV ‘AD PIJ-0T axemyyos so1nos-uado T — 10§ UOTIEOIJISSE[D) — ‘48 ‘1A ‘WAS Padoppasp st AdA-TIdYVIN /uonedyisse)) S0z [68]
TNNOS1Y
uostredwod QreyDar(Nun(o7 apod yoeoxdde
eorndurs Aue oN TV A09foxd somos-uadp 201nos eae(— — ydexnason paseq-Bururwr ydeid-qng Sururw ydein 4107 [88]
SassE[d Axo1d pue ‘1oa195q0
[reoax uoneoydde a1epIpued ¢10721009p ‘@y1s0durod 10U 10 J(J B JO 90URISUI PI[eA
“d4d ‘AD PIoJ 0T 201nos-uado T°G MeIIOH [FIREI ‘puewrwod ‘1a1depy — NNV ® puij 0 st yoeoxdde uy uorssaiday €107 [/8]
G/0 = [[ed21 suroped oo suwraned uisop Suruwres]—g
290 = 4d ¢z ‘suzayed sse[dno(g WAS 0] UOTJEDIJISSE[D JX9)—] UONEDIJISSE[D
INMA Treds1 “4d oD ‘sse[dno(‘Aiumdag syuawmdoq ¢ ‘suranred Ajumoss 94 — ‘LA ‘NNDI ‘AN :poyour aseyd-om], XL, 710t [98]
synsax
pue soLnaur suranyed
uoryenyeAy josejeq eyep ndujg uSisap pajos[as T4 surnyILIod[y aandalqo jyse], Ieag ‘JoY

137

Data Mining - Methods, Applications and Systems

< Sururu ua233vd udisap,) 192lqns oyl uo saPNIs Furuava] GuLYIPUL Puv Suruius VIV

L C LA
s[jours
peq jo aouasaxd
ou smoys
urened uojadurg
DO BUWISEJI ST UOIID3)3P uoja[urs apod a3
‘OYd @I00s-, [[PWIS SPOD 10J PIVI[3S [00] Y], ‘orerdura, “o3priq ur 3s1x200 Yo1ym sared [jpurs
‘edar gg suraired jo qopn uidnyd asdipyg opoo somog ‘xerdepe :surened pasn — 8y pue wroped udisep Surpury uonesyisse[) 8107 [96]
suropred
ugsap jo
suontuop DI suzared uSisop orerzdordde uonreziioSayes
21008- Aumoag ‘sse[dno(100 ‘dd ud[qord suralred udisop snorrep -a[quiasuy suesw-d Azznyg 210U JO UOTIDI[AS XL, /10T [S6]
poraur
pasodoxd oy [er01ARYRq Suryoyewr sydeid onjueurss
Aq A>emooe y3iy sureiderp ‘[BINIONIIS ‘[BUOIIEIID ydeid ‘uonenuis P?30311p JO 135 B UO paseq
1291 “4d — ssep NN :sdnoid sa1py [y — ydeid Suong synow udisop jo uondsldg UONEDdYISSE]D /I0T [#6]
MmeiqIoH(
103¥d %001
03 poppIA 44
PU® ‘INAS ‘NNV areidurag, suroned uSisop
9102s-4 (3un(pue pue ‘oysodurod 91BM]JOS JO UOII9I(‘¢
‘I1edax “Yd ‘AD “TINQRPIMD ‘MeII0H[) s9pod ‘o8puiq ‘1o1depe }osejep pajusLio
PIOJ-0T PUE P[0J-G 9DINOS WIOIJ PAIDBIIXD SOLID[N 9POd 22IN0G ‘A1010ey 10B1ISqY I WAS ‘NNV -SOLIPUI JO UONEaI) " UONEdIIsSe]) /107 [€6]
a9
£q %00T = DDV poylowr arejduia) pue spoyjour
49 pue NNY'T 4q ‘uo3a[3urs (NNYT) Sururea| pasiazadns pue
%00T = 91005- [001 1op[mg(£q paoenxe “o3puiq ‘1ordepe JIOMISN [eINDN ‘SOLIIOUI 2IeMIJOS ‘suraired
2100s- “[[eda1 Yd SOLIIPW OO /9 YIM 19SeIR(] SPOD 22IN0S ‘A1010ey 10B1ISqY 1 JuLLINOYY 19K udisop :syoadse saxy], uonesyisse[) 9107 [¢6]
synsax
pue soLnaur suranyed
uoryenyeAy josejeq eyep ndujg uSisap pajos[as T4 surnyILIod[y aandalqo jyse], Ieag ‘JoY

138

960 ST [PUI] GY INAS-ST
10J DV JO dnJea ueaw oy,
[puray ferwoukjod pue

//dx.doi.org/10.5772 /intechopen.91448

http

Data Mining and Machine Learning for Software Engineering

DOl

Teaur] surtoy1adino [pursy Jqy surayshs
S9AIND a1eM1JOS 201n0s-uado uaAds A9Y9 ‘INAS-ST
DOY PUE DNV ‘AD PIoJ-0T A10ms0dey HSTNOUA -e123 Wwolg - HLOWS ‘VOd [23] s[> 1e uto3oeax 301paid 03 anbruyday v wonesyisse]y /10 [66]
UOTIOUN,] JLIDJA UOIIEN[eAT unyjrzode [0A3] a3exoed a3 1e Surioloear
pue A1[eny) UOIRZLIBNPOIA] sarpnys ased adamos-uado sy, — Suria)snpd [eo1yoIeISIE] a1eM1JOS 10J (dSYH) wyiLioS[e [paou v /102 [SOT]
1918N[>
“BIUTL %99°99 PUE %EE EE
“UTW SUBdW-) pue ggMIOD suoneorjdde
I21SN[O-IUT ‘05 PUE %EE"ES SuUBdN-X ‘GIMIOD pajuario-adtaras ur sanruniroddo Surroloegar
"XeW SUeIW-)] pue ggMg0OD SIULUWNO0P TASM JO S19seIep om[, — ‘sueaul-y INVd 10939p 03 yorordde Jurures] pasiazadnsup) 9107 [¥01]
(%1 > VINIEV
0) [9AJ] SDUIPLJUOD %66 PpIog-1q[pue ‘I03[exIJ ‘II-VOSN uo paseq yoeoxdde aanoalqo
B 3IM 1S9] WINS YUBI UOXOD[I\\ @IBWId]IH WMeyDaax[‘sdngpuryg ‘w0 3[e 9A13[(qo-TIMIA -T[NUI € UT SILISS SUIT) YIIM S102J9p Suraouray S10z [£01]
‘ouryy pue ‘mexrqIoH(
(1070 = ©) [9A3] SOUSPIJUOD ‘oyoedyiuy 90sfoignuen NNV uo paseq 3urioioejar
%66 B YILM 1S9} UOXOD[IAA ‘AeyDaaL[‘[-sad19x — NNV ‘VO a1emiyos 10y Surures| paseq-yo) asodoig +10C [C0T1]
_Poax
“romaurer Jurdg ‘rerrog $109J3p pue
2100s-J ‘[[eda1 gd Aeiayry ‘oyse) ssog(“TINNOSTY — 93NN “dry “LINT ‘S+D Surioloeyar usamiaq drysuornrefar ay3 Surpurg 800z [101]
TNNOS1yY s)[nsa1 a1y jo sisA[eue
10§ 8°() 21k [[edaI pue ¥YJ (S) “Surssasoxd-1sod (4) “TA (€) “Burssadordaxd
2100s-4 “[[e221 “4d ‘AD PI0J-0T yromaurery Suudg “TNN0S1Y — 93NN ‘dry ‘LINT ‘st [() ‘Burpueisiapun ejep (1) :sade1g £00z [00T]
synsax
pue soLRaw uorjenfeAy 1osereq T4 sunqLiosyy aanslqo Iesx Joy

139

Data Mining - Methods, Applications and Systems

< Bui01ovfou | 102lqns 2y3 uo spnIs SuLUADI] JUIYIVUL PUY JuruiuL vIVT

‘S JqeL,
SNaINzy H.HOMWQ
(%S = 0) [2A3] 2ouapryuod ‘quy aydedy 9sa1 slorgnuen s 1odo[aAdp 95€2109p 01 Jurures] pastatadnsun
%G6 & IM YAONYV Lem-2uQ ‘MBIQI0H(“TINNOS1Y - INH ‘WIND PUE 2A1303(qo-N[Nu JO 2SN 2} JO UOHEUIGUIO]) Suuasny 8107 [601]
109(oxd-ssoxd
a1 UI %9/ = 2100s-4
100foxd-urym uaong sar1031s0da1 woiy
31 UI 9%€Q = 9100S- pue ‘Aqny[‘areynaa1[‘Yoresg 1sooqepy sdnoi3 suopd paioloejai-uou pue pa1oldeyaI
2103s- [[e231 4d onseq ‘@1003plasdipy gsixy ‘d AN ‘OIS ‘S¥D 10enx2 03 (OHYD) yorordde paseq-Jurures y uonedsyisse)d 8107 [80T]
o923 pasodoid 10y
12931 %86-T/ PU® ¥d %.6-98 ukld
[[e221 “4d ‘AD PI0F-01 “MeyDa214(upal “Twnodry quy 4 T WNAS ‘PPNsaheq gy 2pod 20nos ut seprunizoddo Surioyoeger Surpury — 1oz [Lo01]
((%86) ADA 0T Pue *(%56)
ADOOT ‘(%86) 3umy) DOV (LNVY)
gN urroyradino gy pue NN3| wra)sAs a1em1j0s eAR[90INOS 9ZIS 9p0D 1531 3] U0
2100s- ‘AoeIndoe qesar Yd -uado ue woiy Paioda[[od eIEp ER AN ‘NN YT (9D) Suroioeyax suop jo 1oeduur oy Surtojdxy uonesyisse;d /107 [90T]
s)msax
pue soLIjdW UorIENeAT jasereq T4 sunpodyy EYNRET(To) jse], Iedx ‘Joy

140

Data Mining and Machine Learning for Software Engineering
DOI: http://dx.doi.org/10.5772 /intechopen.91448

increases, the number of software defects decreases, and thus refactoring has a
positive effect on software quality.

While automated refactoring does not always give the desired result, manual
refactoring is time-consuming. Therefore, one study [109] proposed a clustering-
based recommendation tool by combining multi-objective search and unsupervised
learning algorithm to reduce the number of refactoring options. At the same time,
the number of refactoring that should be selected is decreasing with the help of the
developer’s feedback.

4. Discussion

Since many SE studies that apply data mining approaches exist in the literature,
this article presents only a few of them. However, Figure 4 shows the current
number of papers obtained from the Scopus search engine for each year from 2010
to 2019 by using queries in the title/abstract/keywords field. We extracted publica-
tions in 2020 since this year has not completed yet. Queries included (“data mining”
OR “machine learning”) with (“defect prediction” OR “defect detection” OR “bug
prediction” OR “bug detection”) for defect prediction, (“effort estimation” OR
“effort prediction” OR “cost estimation”) for effort estimation, (“vulnerab*” AND
“software” OR “vulnerability analysis”) for vulnerability analysis, and (“software”
AND “refactoring”) for refactoring. As seen in the figure, the number of studies
using data mining in SE tasks, especially defect prediction and vulnerability
analysis, has increased rapidly. The most stable area in the studies is design
pattern mining.

Figure 5 shows the publications studied in classification, clustering, text mining,
and association rule mining as a percentage of the total number of papers obtained
by a Scopus query for each SE task. For example, in defect prediction, the number
of studies is 339 in the field of classification, 64 in clustering, 8 in text mining, and
25 in the field of association rule mining. As can be seen from the pie charts, while
clustering is a popular DM technique in refactoring, no study related to text mining
is found in this field. In other SE tasks, the preferred technique is classification,
and the second is clustering.

Defect prediction generally compares learning algorithms in terms of whether
they find defects correctly using classification algorithms. Besides this approach, in
some studies, clustering algorithms were used to select futures [110] or to compare
supervised and unsupervised methods [27]. In the text mining area, to extract
features from scripts, TF-IDF techniques were generally used [111, 112]. Although
many different algorithms have been used in defect prediction, the most popular
ones are NB, MLP, and RBF.

Number of Publications

103
=
o8
s0
as) a9,
1 o
a5 x - . a6 as
433 x 25 e
18
20 - 18 = = h\ T l: L) 218 13,012
a k b '
l |] 3 - - = 1 —ht‘_ IL"EH -

2019 2018 z017 2016 2015 2014 2013 2012 2011 2010

= Defect Prediction Vulnerability Effort Estimation = Design Pattern Mining Refactoring

Figure 4.
Number of publications of data mining studies for SE tasks from Scopus search by their years.

141

Data Mining - Methods, Applications and Systems

Figure 6 shows the number of document types (conference paper, book chapter,
article, book) published between the years of 2010 and 2019. It is clearly seen that
conference papers and articles are the most preferred research study type. It is
clearly seen that there is no review article about data mining studies in design
pattern mining.

Table 6 shows popular repositories that contain various datasets and their
descriptions, which tasks they are used for, and hyperlinks to download. For

DEFECT PREDICTION DESIGN PATTERN MINING

REFACTORING

EFFORT ESTIMATION VULNERABILITY ANALYSIS
S4%
49%
= Classification Clustering
Text Mining Association Rule
A41%
Figure 5.

Number of publications of data mining studies for SE tasks from Scopus search by their topics.

Defect Pradiction Effort Estimation Refactoring

Paren cHArTER rarEA exarTEn

Vulnerability Design pattern mining

re———— s

Figure 6.
The number of publications in terms of document type between 2010 and 2019.

Repository Topic Description Web link

Nasa MDP Defect Pred. NASA’s Metrics Data Program https://github.com/opensciences/ope
nsciences.github.io/tree/master/re
po/defect/mccabehalsted/_posts

Android Git Defect Pred. Android version bug reports https://android.googlesource.com/
PROMISE Defect Pred. It includes 20 datasets for http://promise.site.uottawa.ca/SERe
Effort Est. defect prediction and cost pository/datasets-page.html
estimation

Software Defect Defect Pred. It includes software metrics, http://www.seiplab.riteh.uniri.hr/?
Pred. Data # of defects, etc. Eclipse JDT: page_id=834&lang=en
Eclipse PDE:

PMART Design It has 22 patterns 9 Projects, http://www.ptidej.net/tools/desig
pattern 139 ins. Format: XML npatterns/
mining Manually detected and
validated
Table 6.

Description of popular vepositories used in studies.

142

Data Mining and Machine Learning for Software Engineering
DOI: http://dx.doi.org/10.5772 /intechopen.91448

example, the PMART repository includes source files of java projects, and the
PROMISE repository has different datasets with software metrics such as
cyclomatic complexity, design complexity, and lines of code. Since these reposito-
ries contain many datasets, no detailed information about them has been provided
in this article.

Refactoring can be applied at different levels; study [105] predicted refactoring
at package level using hierarchical clustering, and another study [99] applied
class-level refactoring using LS-SVM as learning algorithm, SMOTE for handling
refactoring, and PCA for feature extraction.

5. Conclusion and future work

Data mining techniques have been applied successfully in many different
domains. In software engineering, to improve the quality of a product, it is highly
critical to find existing deficits such as bugs, defects, code smells, and vulnerabil-
ities in the early phases of SDLC. Therefore, many data mining studies in the past
decade have aimed to deal with such problems. The present paper aims to provide
information about previous studies in the field of software engineering. This survey
shows how classification, clustering, text mining, and association rule mining can
be applied in five SE tasks: defect prediction, effort estimation, vulnerability
analysis, design pattern mining, and refactoring. It clearly shows that classification
is the most used DM technique. Therefore, new studies can focus on clustering
on SE tasks.

Abbreviations

LMT logistic model trees

Rip repeated incremental pruning

NNge nearest neighbor generalization

PCA principal component analysis

PAM partitioning around medoids

LS-SVM least-squares support vector machines
MAE mean absolute error

RBF radial basis function

RUS random undersampling

SMO sequential minimal optimization
GMM Gaussian mixture model

EM expectation maximizaion

LR logistic regression

SMB SMOTEBoost

RUS-bal balanced version of random undersampling
THM threshold-moving

BNC AdaBoost.NC

RF random forest

RBF radial basis function

cC correlation coefficient

ROC receiver operating characteristic
BayesNet Bayesian network

SMOTE synthetic minority over-sampling technique

143

Data Mining - Methods, Applications and Systems

Author details

Elife Ozturk Kiyak
Graduate School of Natural and Applied Sciences, Dokuz Eylul University, Turkey

*Address all correspondence to: elife.ozturk@ceng.deu.edu.tr

IntechOpen

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

144

Data Mining and Machine Learning for Software Engineering

DOI: http://dx.doi.org/10.5772 /intechopen.91448
References

[1] Halkidi M, Spinellis D, Tsatsaronis G,
Vazirgiannis M. Data mining in
software engineering. Intelligent Data
Analysis. 2011;15(3):413-441. DOL:
10.3233/IDA-2010-0475

[2] Dhamija A, Sikka S. A review paper
on software engineering areas
implementing data mining tools &
techniques. International Journal of
Computational Intelligence Research.
2017;13(4):559-574

[3] Minku LL, Mendes E, Turhan B. Data
mining for software engineering and
humans in the loop. Progress in
Artificial Intelligence. 2016;5(4):
307-314

[4] Malhotra R. A systematic review of
machine learning techniques for
software fault prediction. Applied Soft
Computing. 2015;27:504-518. DOL:
10.1016/j.as0c.2014.11.023

[5] Mayvan BB, Rasoolzadegan A,
Ghavidel Yazdi Z. The state of the art on
design patterns: A systematic mapping
of the literature. Journal of Systems and
Software. 2017;125:93-118. DOI:
10.1016/].jss.2016.11.030

[6] Sehra SK, Brar YS, Kaur N, Sehra SS.
Research patterns and trends in
software effort estimation. Information
and Software Technology. 2017;91:1-21.
DOI: 10.1016/j.infsof.2017.06.002

[7] Taylor Q, Giraud-Carrier C, Knutson
CD. Applications of data mining in
software engineering. International
Journal of Data Analysis Techniques and
Strategies. 2010;2(3):243-257

[8] Coelho RA, Guimaries FRN, Esmin
AA. Applying swarm ensemble
clustering technique for fault prediction
using software metrics. In: Machine
Learning and Applications (ICMLA),
2014 13th International Conference on
IEEE. 2014. pp. 356-361

145

[9] Prasad MC, Florence L, Arya A. A
study on software metrics based
software defect prediction using data
mining and machine learning techniques.
International Journal of Database Theory
and Application. 2015;8(3):179-190. DOL:
10.14257/ijdta.2015.8.3.15

[10] Zhang Y, Lo D, Xia X, Sun J.
Combined classifier for cross-project
defect prediction: An extended
empirical study. Frontiers of Computer
Science. 2018;12(2):280-296. DOI:
10.1007/s11704-017-6015-y

[11] Yang X, Lo D, Xia X, Zhang Y, SunJ.
Deep learning for just-in-time defect
prediction. In: International Conference
on Software Quality, Reliability and
Security (QRS); 3-5 August 2015;
Vancouver, Canada: IEEE; 2015.

pp- 17-26

[12] Zhang F, Zheng Q, Zou Y, Hassan
AE. Cross-project defect prediction
using a connectivity-based
unsupervised classifier. In: Proceedings
of the 38th International Conference on
Software Engineering ACM; 14-22 May
2016; Austin, TX, USA: IEEE; 2016.

pp- 309-320

[13] Di Nucci D, Palomba F, Oliveto R,
De Lucia A. Dynamic selection of
classifiers in bug prediction: An
adaptive method. IEEE Transactions on
Emerging Topics in Computational
Intelligence. 2017;1(3):202-212. DOL:
10.1109/TETCI1.2017.2699224

[14] Zimmermann T, Nagappan N, Gall
H, Giger E, Murphy B. Cross-project
defect prediction: A large scale
experiment on data vs. domain vs.
process. In: Proceedings of the 7th Joint
Meeting of the European Software
Engineering Conference and the
Symposium on the Foundations of
Software Engineering (ESEC/FSE *09);
August 2009; Amsterdam, Netherlands:
ACM; 20009. pp. 91-100

Data Mining - Methods, Applications and Systems

[15] Turhan B, Menzies T, Bener AB, Di
Stefano J. On the relative value of cross-
company and within-company data for
defect prediction. Empirical Software
Engineering. 2009;14(5):540-578. DOI:
10.1007/s10664-008-9103-7

[16] Herbold S, Trautsch A, Grabowski J.
A comparative study to benchmark
cross-project defect prediction
approaches. IEEE Transactions on
Software Engineering. 2017;44(9):
811-833. DOI: 10.1109/TSE.2017.2724538

[17] Ghotra B, Mclntosh S, Hassan AE.
Revisiting the impact of classification
techniques on the performance of defect
prediction models. In: IEEE/ACM 37th
IEEE International Conference on
Software Engineering; 16-24 May 2015;
Florence, Italy: IEEE; 2015. pp. 789-800

(18] Wang T, Li W, Shi H, Liu Z.
Software defect prediction based on
classifiers ensemble. Journal of
Information & Computational Science.
2011;8:4241-4254

[19] Wang S, Yao X. Using class
imbalance learning for software defect
prediction. IEEE Transactions on
Reliability. 2013;62:434-443. DOLI:
10.1109/TR.2013.2259203

[20] Rodriguez D, Herraiz I, Harrison R,
Dolado J, Riquelme JC. Preliminary
comparison of techniques for dealing
with imbalance in software defect
prediction. In: Proceedings of the 18th
International Conference on Evaluation
and Assessment in Software
Engineering; May 2014; London, United
Kingdom: ACM; 2014. p. 43

[21] Laradji IH, Alshayeb M, Ghouti L.
Software defect prediction using
ensemble learning on selected features.
Information and Software Technology.
2015;58:388-402. DOI: 10.1016/j.
infsof.2014.07.005

[22] Malhotra R, Raje R. An empirical
comparison of machine learning

146

techniques for software defect
prediction. In: Proceedings of the 8th
International Conference on Bioinspired
Information and Communications
Technologies. Boston, Massachusetts;
December 2014. pp. 320-327

[23] Malhotra R. An empirical
framework for defect prediction using
machine learning techniques with
Android software. Applied Soft
Computing. 2016;49:1034-1050. DOL:
10.1016/j.as0c.2016.04.032

[24] Tantithamthavorn C, McIntosh S,
Hassan AE, Matsumoto K. Automated
parameter optimization of classification
techniques for defect prediction models.
In: Proceedings of the 38th International
Conference on Software Engineering
(ICSE ’16). Austin, Texas; May 2016.
pp. 321-332

[25] Kumar L, Misra S, Rath SK. An
empirical analysis of the effectiveness of
software metrics and fault prediction
model for identifying faulty classes.
Computer Standards & Interfaces. 2017;
53:1-32. DOI: 10.1016/j.csi.2017.02.003

[26] Yang X, Lo D, Xia X, Sun J. TLEL: A
two-layer ensemble learning approach
for just-in-time defect prediction.
Information and Software Technology.
2017;87:206-220. DOI: 10.1016/j.
infsof.2017.03.007

[27] Chen X, Zhao Y, Wang Q, Yuan Z.
MULTI: Multi-objective effort-aware
just-in-time software defect prediction.
Information and Software Technology.
2018;93:1-13. DOI: 10.1016/j.
infsof.2017.08.004

[28] Zimmermann T, Premraj R, Zeller A.
Predicting defects for eclipse. In: Third
International Workshop on Predictor
Models in Software Engineering
(PROMISE’07); 20-26 May 2007;
Minneapolis, USA: IEEE; 2007. p. 9

[29] Prakash VA, Ashoka DV, Aradya
VM. Application of data mining

Data Mining and Machine Learning for Software Engineering

DOI: http://dx.doi.org/10.5772 /intechopen.91448

techniques for defect detection and
classification. In: Proceedings of the 3rd
International Conference on Frontiers
of Intelligent Computing: Theory and
Applications (FICTA); 14-15 November
2014; Odisha, India; 2014. pp. 387-395

[30] Yousef AH. Extracting software
static defect models using data mining.
Ain Shams Engineering Journal. 2015;6:
133-144. DOI: 10.1016/j.
asej.2014.09.007

[31] Gupta DL, Saxena K. AUC based
software defect prediction for object-
oriented systems. International Journal
of Current Engineering and Technology.
2016;6:1728-1733

[32] Kumar L, Rath SK. Application of
genetic algorithm as feature selection
technique in development of effective
fault prediction model. In: IEEE Uttar
Pradesh Section International
Conference on Electrical, Computer and
Electronics Engineering (UPCON); 9-11
December 2016; Varanasi, India: IEEE;
2016. pp. 432-437

[33] Tomar D, Agarwal S. Prediction of
defective software modules using class
imbalance learning. Applied
Computational Intelligence and Soft
Computing. 2016;2016:1-12. DOI:
10.1155/2016/7658207

[34] Ryu D, Baik J. Effective multi-
objective naive Bayes learning for cross-
project defect prediction. Applied Soft
Computing. 2016;49:1062-1077. DOI:
10.1016/j.as0c.2016.04.009

[35] Ali MM, Huda S, Abawajy J,
Alyahya S, Al-Dossari H, Yearwood J. A
parallel framework for Software Defect
detection and metric selection on cloud
computing. Cluster Computing. 2017;
20:2267-2281. DOI: 10.1007/s10586-017-
0892-6

[36] Wijaya A, Wahono RS. Tackling

imbalanced class in software defect
prediction using two-step cluster based

147

random undersampling and stacking
technique. Jurnal Teknologi. 2017;79:
45-50

[37] Singh PD, Chug A. Software defect
prediction analysis using machine
learning algorithms. In: 7th International
Conference on Cloud Computing, Data
Science & Engineering-Confluence; 2-13
January 2017; Noida, India: IEEE; 2017.
pp- 775-781

[38] Hammouri A, Hammad M,
Alnabhan M, Alsarayrah F. Software
bug prediction on using machine
learning approach. International Journal
of Advanced Computer Science and
Applications. 2018;9:78-83

[39] Akour M, Alsmadi I, Alazzam I.
Software fault proneness prediction: A
comparative study between bagging,
boosting, and stacking ensemble and
base learner methods. International
Journal of Data Analysis Techniques and
Strategies. 2017;9:1-16

[40] Bowes D, Hall T, Petric J. Software
defect prediction: Do different
classifiers find the same defects?
Software Quality Journal. 2018;26:
525-552. DOI: 10.1007/s11219-016-
9353-3

[41] Watanabe T, Monden A, Kamei Y,
Morisaki S. Identifying recurring
association rules in software defect
prediction. In: IEEE/ACIS 15th
International Conference on Computer
and Information Science (ICIS); 26-29
June 2016; Okayama, Japan: IEEE; 2016.

pp- 1-6

[42] Zhang S, Caragea D, Ou X. An
empirical study on using the national
vulnerability database to predict
software vulnerabilities. In: International
Conference on Database and Expert
Systems Applications. Berlin, Heidelberg:
Springer; 2011. pp. 217-223

[43] Wen], Li S, Lin Z, Hu Y, Huang C.
Systematic literature review of machine

Data Mining - Methods, Applications and Systems

learning based software development
effort estimation models. Information
and Software Technology. 2012;54:
41-59. DOLI: 10.1016/j.
infsof.2011.09.002

[44] Dave VS, Dutta K. Neural network
based models for software effort
estimation: A review. Artificial
Intelligence Review. 2014;42:295-307.
DOI: 10.1007/s10462-012-9339-x

[45] Kultur Y, Turhan B, Bener AB.
ENNA: Software effort estimation using
ensemble of neural networks with
associative memory. In: Proceedings of
the 16th ACM SIGSOFT; November
2008; Atlanta, Georgia: ACM; 2008.

pp- 330-338

[46] Kultur Y, Turhan B, Bener A.
Ensemble of neural networks with
associative memory (ENNA) for
estimating software development costs.
Knowledge-Based Systems. 2009;22:
395-402. DOI: 10.1016/j.
knosys.2009.05.001

[47] Corazza A, Di Martino S, Ferrucci F,
Gravino C, Mendes E. Investigating the
use of support vector regression for web
effort estimation. Empirical Software
Engineering. 2011;16:211-243. DOLI:
10.1007/510664-010-9138-4

[48] Minku LL, Yao X. A principled
evaluation of ensembles of learning
machines for software effort estimation.
In: Proceedings of the 7th International
Conference on Predictive Models in
Software Engineering; September 2011;
Banff, Alberta, Canada: ACM; 2011.

pp. 1-10

[49] Minku LL, Yao X. Software effort
estimation as a multiobjective learning
problem. ACM Transactions on
Software Engineering and Methodology
(TOSEM). 2013;22:35. DOI: 10.1145/
2522920.2522928

[50] Minku LL, Yao X. Can cross-
company data improve performance in

148

software effort estimation? In:
Proceedings of the 8th International
Conference on Predictive Models in
Software Engineering (PROMISE ’12);
September 2012; New York, United
States: ACM; 2012. pp. 69-78

[51] Kocaguneli E, Menzies T, Keung JW.
On the value of ensemble effort
estimation. IEEE Transactions on
Software Engineering. 2012;38:
1403-1416. DOI: 10.1109/TSE.2011.111

[52] Dejaeger K, Verbeke W, Martens D,
Baesens B. Data mining techniques for
software effort estimation. IEEE
Transactions on Software Engineering.
2011;38:375-397. DOI: 10.1109/
TSE.2011.55

[53] Khatibi V, Jawawi DN, Khatibi E.
Increasing the accuracy of analogy
based software development effort
estimation using neural networks.
International Journal of Computer and
Communication Engineering. 2013;2:78

[54] Subitsha P, Rajan JK. Artificial neural
network models for software effort
estimation. International Journal of

Technology Enhancements and Emerging
Engineering Research. 2014;2:76-80

[55] Maleki I, Ghaffari A, Masdari M.

A new approach for software cost
estimation with hybrid genetic
algorithm and ant colony optimization.
International Journal of Innovation and
Applied Studies. 2014;5:72

[56] Huang J, Li YF, Xie M. An empirical
analysis of data preprocessing for
machine learning-based software cost
estimation. Information and Software
Technology. 2015;67:108-127. DOLI:
10.1016/j.infsof.2015.07.004

[57] Nassif AB, Azzeh M, Capretz LF,
Ho D. Neural network models for
software development effort estimation.
Neural Computing and Applications.
2016;27:2369-2381. DOI: 10.1007/
s00521-015-2127-1

Data Mining and Machine Learning for Software Engineering

DOI: http://dx.doi.org/10.5772 /intechopen.91448

[58] Zare F, Zare HK, Fallahnezhad MS.
Software effort estimation based on the
optimal Bayesian belief network. Applied
Soft Computing. 2016;49:968-980. DOI:
10.1016/j.as0c.2016.08.004

[59] Azzeh M, Nassif AB. A hybrid
model for estimating software project
effort from use case points. Applied Soft
Computing. 2016;49:981-989. DOLI:
10.1016/j.as0¢.2016.05.008

[60] Hidmi O, Sakar BE. Software
development effort estimation using
ensemble machine learning.
International Journal of Computing,
Communication and Instrumentation
Engineering. 2017;4:143-147

[61] Ghaffarian SM, Shahriari HR.
Software vulnerability analysis and
discovery using machine-learning and
data-mining techniques. ACM
Computing Surveys (CSUR). 2017;50:
1-36. DOI: 10.1145/3092566

[62] Jimenez M, Papadakis M, Le Traon
Y. Vulnerability prediction models: A
case study on the linux kernel. In: IEEE
16th International Working Conference
on Source Code Analysis and
Manipulation (SCAM); 2-3 October
2016; Raleigh, NC, USA: IEEE; 2016.
pp. 1-10

[63] Walden J, Stuckman J, Scandariato
R. Predicting vulnerable components:
Software metrics vs text mining. In:
IEEE 25th International Symposium on
Software Reliability Engineering; 3-6
November 2014; Naples, Italy: IEEE;
2014. pp. 23-33

[64] Wijayasekara D, Manic M, Wright
JL, McQueen M. Mining bug databases
for unidentified software
vulnerabilities. In: 5th International
Conference on Human System
Interactions; 6-8 June 2012; Perth, WA,
Australia: IEEE; 2013. pp. 89-96

[65] Hovsepyan A, Scandariato R, Joosen
W, Walden J. Software vulnerability

149

prediction using text analysis
techniques. In: Proceedings of the 4th
International Workshop on Security
Measurements and Metrics (ESEM ’12);
September 2012; Lund Sweden: IEEE;
2012. pp. 7-10

[66] Chernis B, Verma R. Machine
learning methods for software
vulnerability detection. In: Proceedings
of the Fourth ACM International
Workshop on Security and Privacy
Analytics (CODASPY ’18); March 2018;
Tempe, AZ, USA: 2018. pp. 31-39

[671 Li X, Chen], Lin Z, Zhang L, Wang
Z, Zhou M, et al. Mining approach to
obtain the software vulnerability
characteristics. In: 2017 Fifth
International Conference on Advanced
Cloud and Big Data (CBD); 13-16
August 2017; Shanghai, China: IEEE;
2017. pp. 296-301

[68] Dam HK, Tran T, Pham T, Ng SW,
Grundy J, Ghose A. Automatic feature
learning for vulnerability prediction.
arXiv preprint arXiv:170802368 2017

[69] Scandariato R, Walden],
Hovsepyan A, Joosen W. Predicting
vulnerable software components via
text mining. IEEE Transactions on
Software Engineering. 2014;40:
993-1006

[70] Tang Y, Zhao F, Yang Y, Lu H,
Zhou Y, Xu B. Predicting vulnerable
components via text mining or software
metrics? An effort-aware perspective.
In: IEEE International Conference on
Software Quality, Reliability and
Security; 3-5 August 2015; Vancouver,
BC, Canada: IEEE; 2015. p. 27-36

[711 Wang Y, Wang Y, Ren J. Software
vulnerabilities detection using rapid
density-based clustering. Journal

of Information and Computing Science.
2011;8:3295-3302

[72] Medeiros I, Neves NF, Correia M.
Automatic detection and correction of

Data Mining - Methods, Applications and Systems

web application vulnerabilities using
data mining to predict false positives. In:
Proceedings of the 23rd International
Conference on World Wide Web
(WWW ’14); April 2014; Seoul, Korea;
2014. pp. 63-74

[73] Yamaguchi F, Golde N, Arp D,
Rieck K. Modeling and discovering
vulnerabilities with code property
graphs. In: 2014 IEEE Symposium on
Security and Privacy; 18-21 May 2014,
San Jose, CA, USA: IEEE; 2014.

pp. 590-604

[74] Perl H, Dechand S, Smith M, Arp D,
Yamaguchi F, Rieck K, et al. Vccfinder:
Finding Potential Vulnerabilities in
Open-source Projects to Assist Code
Audits. In: 22nd ACM Conference on
Computer and Communications
Security (CCS’15). Denver, Colorado,
USA; 2015. pp. 426-437

[75] Yamaguchi F, Maier A, Gascon H,
Rieck K. Automatic inference of search
patterns for taint-style vulnerabilities.
In: 2015 IEEE Symposium on Security
and Privacy; San Jose, CA, USA: IEEE;
2015. pp. 797-812

[76] Grieco G, Grinblat GL, Uzal L,
Rawat S, Feist J, Mounier L. Toward
large-scale vulnerability discovery using
machine learning. In: Proceedings of the
Sixth ACM Conference on Data and
Application Security and Privacy;
March 2016; New Orleans, Louisiana,
USA; 2016. pp. 85-96

[77] Pang Y, Xue X, Wang H. Predicting
vulnerable software components
through deep neural network. In:
Proceedings of the 2017 International
Conference on Deep Learning
Technologies; June 2017; Chengdu,
China; 2017. pp. 6-10

[781 Li Z, Zou D, Xu S, Ou X, Jin H,
Wang S, et al. VulDeePecker: A

Deep Learning-Based System for
Vulnerability Detection. arXiv preprint
arXiv:180101681. 2018

150

[79] Imtiaz SM, Bhowmik T. Towards
data-driven vulnerability prediction for
requirements. In: Proceedings of the
2018 26th ACM Joint Meeting on
European Software Engineering
Conference and Symposium on the
Foundations of Software Engineering;
November, 2018; Lake Buena Vista, FL,
USA. 2018. pp. 744-748

[80] Jie G, Xiao-Hui K, Qiang L. Survey
on software vulnerability analysis
method based on machine learning. In:
IEEE First International Conference on
Data Science in Cyberspace (DSC);
13-16 June 2016; Changsha, China:
IEEE; 2017. pp. 642-647

[81] Russell R, Kim L, Hamilton L,
Lazovich T, Harer J, Ozdemir O, et al.
Automated vulnerability detection in
source code using deep representation
learning. In: 17th IEEE International
Conference on Machine Learning and
Applications (ICMLA). Orlando, FL,
USA: IEEE; 2018, 2019. pp. 757-762

[82] Mayvan BB, Rasoolzadegan A,
Yazdi ZG. The state of the art on design
patterns: A systematic mapping of the
literature. Journal of Systems and
Software. 2017;125:93-118. DOI:
10.1016/j.jss.2016.11.030

[83] Dong J, Zhao Y, Peng T. A review of
design pattern mining techniques.
International Journal of Software
Engineering and Knowledge
Engineering. 2009;19:823-855. DOI:
10.1142/S021819400900443X

[84] Fowler M. Analysis Patterns:
Reusable Object Models. Boston:
Addison-Wesley Professional; 1997

[85] Vlissides], Johnson R, Gamma E,
Helm R. Design Patterns-Elements of
Reusable Object-Oriented Software. 1st
ed. Addison-Wesley Professional; 1994

[86] Hasheminejad SMH, Jalili S. Design
patterns selection: An automatic two-
phase method. Journal of Systems and

Data Mining and Machine Learning for Software Engineering

DOI: http://dx.doi.org/10.5772 /intechopen.91448

Software. 2012;85:408-424. DOI:
10.1016/j.jss.2011.08.031

[87] Alhusain S, Coupland S, John R,
Kavanagh M. Towards machine learning
based design pattern recognition. In:
2013 13th UK Workshop on
Computational Intelligence (UKCI);
9-11 September 2013; Guildford, UK:
IEEE; 2013. pp. 244-251

[88] Tekin U. Buzluca F, A graph mining
approach for detecting identical design
structures in object-oriented design
models. Science of Computer
Programming. 2014;95:406-425. DOL:
10.1016/j.scic0.2013.09.015

[89] Zanoni M, Fontana FA, Stella F. On
applying machine learning techniques
for design pattern detection. Journal of
Systems and Software. 2015;103:
102-117. DOI: 10.1016/j.jss.2015.01.037

[90] Chihada A, Jalili S, Hasheminejad
SMH, Zangooei MH. Source code and
design conformance, design pattern
detection from source code by
classification approach. Applied Soft
Computing. 2015;26:357-367. DOI:
10.1016/j.as0c.2014.10.027

[91] Dwivedi AK, Tirkey A, Ray RB,
Rath SK. Software design pattern
recognition using machine learning
techniques. In: 2016 IEEE Region 10
Conference (TENCON); 22-25
November 2016; Singapore, Singapore:
IEEE; 2017. pp. 222-227

[92] Dwivedi AK, Tirkey A, Rath SK.
Applying software metrics for the
mining of design pattern. In: IEEE

Uttar Pradesh Section International
Conference on Electrical, Computer and
Electronics Engineering (UPCON); 9-11
December 2016; Varanasi, India: IEEE;
2017. pp. 426-431

[93] Dwivedi AK, Tirkey A, Rath SK.
Software design pattern mining using
classification-based techniques. Frontiers
of Computer Science. 2018;12:908-922.
DOI: 10.1007/s11704-017-6424-y

151

[94] Mayvan BB, Rasoolzadegan A.
Design pattern detection based on the
graph theory. Knowledge-Based
Systems. 2017;120:211-225. DOI:
10.1016/j.knosys.2017.01.007

[95] Hussain S, Keung J, Khan AA.
Software design patterns classification
and selection using text categorization
approach. Applied Soft Computing.
2017;58:225-244. DOI: 10.1016/j.
asoc.2017.04.043

[96] Kaur A, Singh S. Detecting software
bad smells from software design
patterns using machine learning
algorithms. International Journal of
Applied Engineering Research. 2018;13:
10005-10010

[97] Hussain S, Keung J, Khan AA,
Ahmad A, Cuomo S, Piccialli F.
Implications of deep learning for the
automation of design patterns
organization. Journal of Parallel and
Distributed Computing. 2018;117:
256-266. DOI: 10.1016/j.
jpdc.2017.06.022

[98] Fowler M. Refactoring: Improving
the Design of Existing Code. 2nd ed.
Boston: Addison-Wesley Professional;
2018

[99] Kumar L, Sureka A. Application of
LSSVM and SMOTE on seven open
source projects for predicting
refactoring at class level. In: 24th
Asia-Pacific Software Engineering
Conference (APSEC); 4-8 December
2017; Nanjing, China: IEEE; 2018.

pp. 90-99

[100] Ratzinger J, Sigmund T, Vorburger
P, Gall H. Mining software evolution to
predict refactoring. In: First
International Symposium on Empirical
Software Engineering and Measurement
(ESEM 2007); 20-21 September 2007;
Madrid, Spain: IEEE; 2007. pp. 354-363

[101] Ratzinger J, Sigmund T, Gall HC.
On the relation of refactoring and

Data Mining - Methods, Applications and Systems

software defects. In: Proceedings of the
2008 International Working Conference
on Mining Software Repositories; May
2008; Leipzig, Germany: ACM; 2008.
pp. 35-38

[102] Amal B, Kessentini M, Bechikh S,
Dea J, Said LB. On the Use of Machine
Learning and Search-Based software
engineering for ill-defined fitness
function: A case study on software
refactoring. In: International
Symposium on Search Based Software
Engineering; 26-29 August 2014;
Fortaleza, Brazil; 2014. pp. 31-45

[103] Wang H, Kessentini M, Grosky W,
Meddeb H. On the use of time series and
search based software engineering for
refactoring recommendation. In:
Proceedings of the 7th International
Conference on Management of
Computational and Collective
intElligence in Digital EcoSystems.
Caraguatatuba, Brazil; October 2015.
pp. 35-42

[104] Rodriguez G, Soria A, Teyseyre A,
Berdun L, Campo M. Unsupervised
learning for detecting refactoring
opportunities in service-oriented
applications. In: International Conference
on Database and Expert Systems
Applications; 5-8 September; Porto,
Portugal: Springer; 2016. pp. 335-342

[105] Marian Z, Czibula IG, Czibula G. A
hierarchical clustering-based approach
for software restructuring at the package
level. In: 9th International Symposium
on Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC);
21-24 September 2017; Timisoara,
Romania: IEEE; 2018. pp. 239-246

[106] Mourad B, Badri L, Hachemane O,
Ouellet A. Exploring the impact of clone
refactoring on test code size in object-
oriented software. In: 16th IEEE
International Conference on Machine
Learning and Applications (ICMLA);
18-21 December 2017; Cancun, Mexico.
2018. pp. 586-592

152

[107] Imazato A, Higo Y, Hotta K,
Kusumoto S. Finding extract method
refactoring opportunities by analyzing
development history. In: IEEE 41st
Annual Computer Software and
Applications Conference (COMPSAC);
4-8 July 2017; Turin, Italy: IEEE; 2018.
pp. 190-195

[108] Yue R, Gao Z, Meng N, Xiong Y,
Wang X. Automatic clone
recommendation for refactoring based
on the present and the past. In: IEEE
International Conference on Software
Maintenance and Evolution (ICSME);
23-29 September 2018; Madrid, Spain:
IEEE; 2018. pp. 115-126

[109] Alizadeh V, Kessentini M.
Reducing interactive refactoring effort
via clustering-based multi-objective
search. In: 33rd ACM/IEEE
International Conference on Automated
Software Engineering; September 2018;
Montpellier, France: ACM/IEEE; 2018.
pp. 464-474

[110] Ni C, Liu WS, Chen X, Gu Q, Chen
DX, Huang QG. A cluster based feature
selection method for cross-project
software defect prediction. Journal of
Computer Science and Technology.
2017;32:1090-1107. DOI: 10.1007/
s11390-017-1785-0

[111] Rahman A, Williams L.
Characterizing defective configuration
scripts used for continuous deployment.
In: 11th International Conference on
Software Testing, Verification and
Validation (ICST); 9-13 April 2018;
Vasteras, Sweden: IEEE; 2018. pp. 34-45

[112] Kukkar A, Mohana R. A supervised
bug report classification with
incorporate and textual field knowledge.
Procedia Computer Science. 2018;132:
352-361. DOI: 10.1016/j.procs.2018.
05.194

Chapter 9

Data Mining for Student
Performance Prediction in
Education

Ferda Unal

Abstract

The ability to predict the performance tendency of students is very important to
improve their teaching skills. It has become a valuable knowledge that can be used
for different purposes; for example, a strategic plan can be applied for the develop-
ment of a quality education. This paper proposes the application of data mining
techniques to predict the final grades of students based on their historical data. In
the experimental studies, three well-known data mining techniques (decision tree,
random forest, and naive Bayes) were employed on two educational datasets related
to mathematics lesson and Portuguese language lesson. The results showed the
effectiveness of data mining learning techniques when predicting the performances
of students.

Keywords: data mining, student performance prediction, classification

1. Introduction

Recently, online systems in education have increased, and student digital data
has come to big data size. This makes possible to draw rules and predictions about
the students by processing educational data with data mining techniques. All kinds
of information about the student’s socioeconomic environment, learning environ-
ment, or course notes can be used for prediction, which affect the success or failure
of a student.

In this study, the successes of the students at the end of the semester are
estimated by using the student data obtained from secondary education of two
Portuguese schools. The aim of this study is to predict the students’ final grades to
support the educators to take precautions for the children at risk. A number of data
preprocessing processes were applied to increase the accuracy rate of the prediction
model. A wrapper method for feature subset selection was applied to find the
optimal subset of features. After that, three popular data mining algorithms (deci-
sion tree, random forest, and naive Bayes) were used and compared in terms of
classification accuracy rate. In addition, this study also investigates the effects of
two different grade categorizations on data mining: five-level grade categorization
and binary grade categorization.

The remainder of this paper is organized as follows. In Section 2, the previous
studies in this field are mentioned. In Section 3, the methods used in this study are

153 IntechOpen

Data Mining - Methods, Applications and Systems

briefly explained to provide a comprehensive understanding of the research con-
cepts. In Section 4, experimental studies are presented with dataset description,
data preprocessing, and experimental result subtitles. Finally, conclusion and the
direction for future research are given in Section 5.

2. Related work

Predicting students’ academic performance is one of the main topics of educa-
tional data mining [1, 2]. With the advancement of technology, technological
investments in the field of education have increased. Along with technological
developments, e-Learning platforms such as web-based online learning and multi-
media technologies have evolved, and both learning costs have decreased, and time
and space limitations have been eliminated [3]. The increase of online course train-
ings and the increase of online transactions and interactive transactions in schools
led to the increase of digital data in this field. Costa (2017) emphasized the data
about the failure rate of the students; the educators were concerned and raised
important questions about the failure prediction [4].

Estimating students’ performances becomes more difficult because of the large
volume of data in training databases [5]. Descriptive statistical analysis can be
effectively used to provide the basic descriptive information of a given set of data
[6]. However, this alone is not always enough. To inform the instructors and
students early, students may be able to identify early, using estimated modeling
methods [7]. It is useful to classify university students according to their potential
academic performance in order to increase success rates and to manage the
resources well [8]. The large growth of electronic data from universities leads to an
increase in the need to obtain meaningful information from these large amounts of
data [9]. By using data mining techniques on education data, it is possible to
improve the quality of education processes [10].

Until now, data mining algorithms have been applied on various different edu-
cational fields such as engineering education [11], physical education [12], and
English language education [13]. Some studies have focused on high school students
[14], while some of them have interested in higher education [15]. Whereas some
data mining studies have focused on the prediction of student performance [16],
some studies have investigated the instructor performance [17].

3. Method

The increase in digitalization caused us to have plenty of data in every field.
Having too much data is getting worth if we know how to use it. Data mining aims
to access knowledge from data using various machine learning techniques. With
data mining, it becomes possible to establish the relationships between the data and
make accurate predictions for the future. One of the application areas of data
mining is education. Data mining in education is the field that allows us to make
predictions about the future by examining the data obtained so far in the field of
education by using machine learning techniques. There are basically three data
mining methods: classification, clustering, and association rule mining. In this study,
we focus on the classification task.

The methods to be used in data mining may differ depending on the field of
study and the nature of the data we have. In this study, three well-known

154

Data Mining for Student Performance Prediction in Education
DOI: http://dx.doi.org/10.5772 /intechopen.91449

classification algorithms (decision tree, random forest, and naive Bayes) were
employed on the educational datasets to predict the final grades of students.

3.1 Naive Bayes

Naive Bayes classifiers are a family of algorithms. These classifiers are based on
Bayes’ Theorem, which finds the possibility of a new event based on previously
occurring events. Each classification is independent of one another but has a com-
mon principle.

3.2 Decision tree

A decision tree uses a tree like graph. Decision trees are like flowchart but not
noncyclic. The tree consists of nodes and branches. Nodes and branches are
arranged in a row. Root node is on the top of a tree and represents the entire dataset.
Entropy is calculated when determining nodes in a tree. It models decisions with
efficacy, results, and resource costs. In this study, decision tree technique is pre-
ferred because it is easy to understand and interpret.

3.3 Random forest

Random forest is an ensemble learning algorithm. It is a supervised classification
method. It consists of randomly generated many decision trees. The established
forest is formed by the decision trees community trained by the bagging method,
which is one of the ensemble methods. Random forest creates multiple decision
trees and combines them to achieve a more accuracy rates and stable prediction.

Figure 1 illustrates the workflow of data mining model for classification. In the
first step, feature selection algorithms are applied on the educational data. Next,
classification algorithms are used to build a good model which can accurately map
inputs to desired outputs. The model evaluation phase provides feedback to the
feature selection and learning phases for adjustment to improve classification per-
formance. Once a model is built, then, in the second phase, it is used to predict label
of new student data.

l. Training Phase

Model
l l Evaluation™ |

Feature Data
Selection Mining Moﬂ

Educational
data

Class
Label

New student

data Il. Prediction Phase

Figure 1.
Flowchart of the data mining model.

155

Data Mining - Methods, Applications and Systems

4. Experimental studies

In this study, the feature subset selection and classification operations were
conducted by using WEKA open-source data mining software [18]. In each exper-
iment, 10-fold cross-validation was performed to evaluate the classification models.
The classification accuracy of the algorithm for the test dataset was measured as
given in Eq. 1:

Zmleval(tl) 1,if classify(t) =

1(t) = 1
[T eval(t) { 0, otherwise @

accuracy(T) =

where T is a test set that consists of a set of data items to be classified; ¢ is the
actual class of the item ¢, where ¢ € T; and classify(t) returns the classification output
of ¢ by the algorithm.

4.1 Dataset description

In this study, two publically available datasets [19] were used to predict student
performances. Both datasets were collected from secondary education of two Por-
tuguese schools. Dataset attributes are about student grades and social, demo-
graphic, and school-related features. All data were obtained from school reports and
questionnaires. The first dataset has information regarding the performances of
students in Mathematics lesson, and the other one has student data taken from
Portuguese language lesson. Both datasets have 33 attributes as shown in Table 1.

4.2 Data preprocessing

In the raw dataset, the final grade is in the range of 0-20 as with many European
countries, where 0 is the worst grade and 20 is the best score. Since the final grade
of the students is in the form of integer, the predicted class should be in the form of
categorical values, the data needed to be transformed to categories according to a
grading policy. In the study, we used and compared two different grading systems:
five-level grading and binary grading systems.

We first categorized the final grade in five groups. These ranges are defined
based on the Erasmus system. As shown in Table 2, the range 0-9 refers to grade F,
which is the worst grade and corresponds to “fail” label. The others (10-11, 12-13,
14-15, and 16-20) correspond to D (sufficient), C (satisfactory), B (good), and A
(excellent/very good) class labels, respectively.

To compare the results, we also categorized the final grade as “passed” and
“fail.” As shown in Table 3, the range of 0-9 corresponds to F, and it means “fail”;
the range of 10-20 refers to A, B, C, and D, and it means “pass.”

4.3 Experimental results

As a preprocessing operation, the final grade attribute was categorized according
to two different grading systems, before classification. As a result, we have created
two versions of both datasets. Both math and Portuguese datasets were available in
both five-level and binary grading versions. Hence, we have the chance to compare
the results of these versions.

In the first experiment, three algorithms [decision tree (J48), random forest, and
naive Bayes] were compared on the five-level grading version and binary version of

156

Data Mining for Student Performance Prediction in Education

DOI: http://dx.doi.org/10.5772 /intechopen.91449

Feature Description Type Values

Sex The gender of the student Binary Female or male

Age The age of the student Numeric From 15 to 22

School The school of the student Binary GP (Gabriel Pereira) or
MS (Mousinho da Silveira)

Address Home address type of student Binary Urban or rural

Pstatus Cohabitation status of student’s parent Binary Living together or apart

Medu Education of student’s mother Numeric From 0 to 4

Mjob Job of student’s mother Nominal Teacher, health, services, at home,
others

Fedu Education of student’s father Numeric From 0 to 4

Fjob Job of student’s father Nominal Teacher, health, services, at home,
others

Guardian Guardian of student Nominal Mother, father, or otherd

Famsize Size of family Binary “LE3” (less or equal to 3) or “GT3”
(greater than 3)

Famrel Quality of family relationships Numeric From 1 very bad to 5 excellent

Reason Reason of choosing this school Nominal Close to home, school reputation,
course preference, or others

Travel Travel time of home to school Numeric 1-<15 min., 2-15 to 30 min., 3-30 min.

time to 1 hour, or 4—>1 hour

Study Study time of a week Numeric —< 2 hours, 2-2 to 5 hours, 3-5 to

time 10 hours or 4— > 10 hours

Failures Number of past class failures Numeric nifl < =n < 3, else 4

Schoolsup Extra educational school support Binary Yesor no

Famsup Family educational support Binary Yes or no

Activities Extracurricular activities Binary Yes or no

Paid class Extra paid classes Binary Yesor no

Internet Internet access at home Binary Yes or no

Nursery Attended nursery school Binary Yes or no

Higher Wants to take higher education Binary Yesor no

Romantic With a romantic relationship Binary Yesor no

Free time Free time after school Numeric From 1 (very low) to 5 (very high)

Go out Going out with friends Numeric From 1 (very low) to 5 (very high)

Walc Alcohol consumption of weekend Numeric From 1 (very low) to 5 (very high)

Dalc Alcohol consumption of workday Numeric From 1 (very low) to 5 (very high)

Health Status of current health Numeric From 1 (very low) to 5 (very high)

Absences Number of school absences Numeric From 0 to 93

G1 Grade of first period Numeric From 0 to 20

G2 Grade of second period Numeric From 0 to 20

G3 Grade of final period Numeric From 0 to 20

Table 1.

The main characteristics of the dataset.

157

Data Mining - Methods, Applications and Systems

1 2 3 4 5

Excellent/very good Good Satisfactory Sufficient Fail

16-20 14-15 12-13 10-11 0-9

A B C D F
Table 2.

Five-level grading categories.

Pass Fail

10-20 0-9

A,B,C,D F
Table 3.

Binary fail/pass category.

the Portuguese dataset. As shown in Table 4, the best performance for the five-
level grading version for this dataset was obtained with an accuracy rate of 73.50%
with the random forest algorithm. However, this accuracy rate was increased with
binary grading version of this dataset. In the dataset, where the final grade is
categorized in binary form (passing or failing), the accuracy rate was increased to
93.07%.

The performances of three classification algorithms on mathematics datasets
(five-level and binary label dataset versions) are shown in Table 5. The best results
for five-level grading version were obtained with the decision tree (J48) algorithm
with an accuracy rate of 73.42%. The best accuracy rate 91.39% for binary dataset
version was obtained with the random forest ensemble method.

As a second experiment, we made all comparisons after dataset preprocessing, in
other terms, after feature subset selection. Hence, the most appropriate attributes
were selected by using wrapper subset method to increase the accuracy rates.

One of the important steps to create a good model is attribute selection. This
operation can be done in two ways: first, select relevant attributes, and second,
remove redundant or irrelevant attributes. Attribute selection is made to create a

Algorithm Five-level grading Binary grading (P/F)
Decision tree (J48) 67.80% 91.37%
Random forest 73.50% 93.07%
Naive Bayes 68.26% 88.44%

(accuracy values, bold — best model).

Table 4.
Classification accuracy rates for the Portuguese lesson dataset.

Mathematics Five-level grading Binary grading (P/F)
Decision tree (J48) 73.42% 89.11%
Random forest 71.14% 91.39%
Naive Bayes 70.38% 86.33%

(accuracy values, bold — best model).

Table 5.
Classification accuracy rates for the mathematics lesson dataset.

158

Data Mining for Student Performance Prediction in Education
DOI: http://dx.doi.org/10.5772 /intechopen.91449

simple model, to create a model that is easier to interpret, and to find out which
features are more important for the results. Attribute selection can be done using
filters and wrapper methods. In this study, we use the wrapper method, because it
generally produces better results. This method has a recursive structure. The pro-
cess starts with selecting a subset and induces the algorithm on that subset. Then
evaluation is made according to the success of the model. There are two options in
this assessment. The first option returns to the top to select a new subset, the second
option uses the currently selected subset.

In Table 6, the accuracy rates were compared before and after the attribute
selection process for the Portuguese dataset for five-level grade version. Thanks to
the wrapper subset method, the accuracy rate of the J48 algorithm has increased
from 67.80 to 74.88% with the selected attributes. This accuracy rate increased from
68.26 to 72.57% for naive Bayes algorithm. For the random forest method where we
get the best accuracy results, the accuracy rate has increased from 73.50 to 77.20%.

In Table 7, the accuracy rates were compared before and after the attribute
selection process for the mathematics dataset for five-level grading version. In this
dataset, attribute selection significantly increased our accuracy. Here, unlike Portu-
guese language dataset, the best jump was obtained with J48 algorithm and search
forward technique in wrapper method. In this way, the accuracy rate increased
from 73.42 to 79.49%. A close result was obtained with the search backward tech-
nique and accuracy increased from 73.42 to 78.23%. Through this way, naive Bayes
and random forest methods also increased significantly. This method increased the

Feature Wrapper subset (J48) Wrapper subset Wrapper
selection (naive Bayes) subset
(random
forest)
Before 67.80% 68.26% 73.50%
After 74.88% 72.57% 77.20%
Selected Search backward: age, famsize, Mjob, Search backward: travel time, School, Travel
features schoolsup, paid, internet, go out, romantic, free time, health, time, G2
health, G1, G2 G1, G2

The obtained classification accuvacy rates for the Portuguese lesson dataset with five-level grading system.
(accuracy values, bold — best model).

Table 6.
Before and after feature selection with five-level grading system

Feature Wrapper subset (J48) Wrapper Wrapper subset ~ Wrapper subset
selection subset (naive Bayes) (random forest)
(J48)
Before 73.42% 73.42% 70.38% 71.14%
After 78.23% 79.49% 74.18% 78.99%
Selectedfeatures Search backward: age, Search Famsize, Medu, Famsize, Fedu,
pstatus, Medu, Fedu, Fjob, forward: Fjob, activities, schoolsup, paid,
failures, schoolsup, paid, sex, Mjob, higher, activities, higher,
activities, famrel, Dalc, Walc, G2 romantic, free romantic, Walc,
Walc, G2 time, G2 absences, G1, G2

The obtained classification accuracy rates for the mathematics lesson dataset with five-level grading system.
(accuracy values, bold — best model).

Table 7.
Before and after feature selection with binary grading system.

159

Data Mining - Methods, Applications and Systems

Feature Wrapper subset (J48) Wrapper subset (naive Wrapper subset (random

selection Bayes) forest)

Before 91.37% 88.44% 93.07%

After 91.99% 89.68% 93.22%

Selected School, age, address, Medu, Sex, age, Pstatus, Fedu, School, sex, age, address,

Features Fjob, travel time, study time, Mjob, Fjob, reason, failures, famsize, Pstatus, Medu,

schoolsup, nursery, higher, famsup, paid, higher, Mjob, Fjob, reason, guardian,

famrel, free time, G1, G2 Internet, romantic, go out, travel time, study time,

health, absences, G1, G2 failures, schoolsup, famsup,
paid, activities, higher,
Internet, romantic, famrel,
free time, go out, Dalc, Walc,
health, absences, G1, G2

The obtained classification accuracy rates for the Portuguese lesson dataset with binary grading system.
(accuracy values, bold — best model).

Table 8.
Before and after featuve selection.

Feature Wrapper subset (J48) Wrapper subset (naive Wrapper subset (random

selection Bayes) forest)

Before 89.11% 86.33% 91.39%

After 90.89% 89.11% 93.67%

Selected School, age, address, Medu, Sex, age, Pstatus, Fedu, Address, famsize, Fedu,

features Fedu, guardian, failures, Mjob, Fjob, reason, failures, Mjob, Fjob, reason, guardian,
schoolsup, famsup, Internet, famsup, paid, higher, study time, schoolsup,
romantic, famrel, free time, Internet, romantic, go out, higher, famrel, go out,

G1, G2 health, absences, G1, G2 absences, G2

The obtained classification accuracy rates for the mathematics lesson dataset with binary grading system.
(accuracy values, bold — best model).

Table 9.
Before and after feature selection.

accuracy rate of naive Bayes method from 70.38 to 74.18%. Random forest result is
increased from 71.14 to 78.99%. These results show that attribute selection with this
wrapper subset method also works in this dataset.

In Table 8, the results of the wrapper attribute selection method before and
after the application to the Portuguese binary version are compared. There was no
significant increase in accuracy. The best results were obtained with random forest.
The best jump was experienced by the naive Bayes method but did not reach the
random forest value. Naive Bayes result has risen from 88.44 to 89.68%. Random
forest maintained the high accuracy achieved before the attribute selection and
increased from 93.07 to 93.22%.

After successful results in five-level grade versions, we tried the same attribute
selection method in binary label version dataset. Table 9 shows the accuracy values
before and after the wrapper attribute selection for the mathematical binary dataset
version. Because the accuracy of the binary version is already high, the jump is less
than the five-level grades. But again, there is a nice increase in accuracy. The
accuracy rate of the J48 algorithm was increased from 89.11 to 90.89%, while the
naive Bayes result was increased from 86.33 to 89.11%. As with the mathematics
five-level grade dataset, the best results were obtained with random forest in binary
label dataset. Accuracy rate increased from 91.39 to 93.67%.

160

Data Mining for Student Performance Prediction in Education
DOI: http://dx.doi.org/10.5772 /intechopen.91449

As a result, it can be possible to say that accuracy rates have changed positively
in all trials using wrapper subset attribute selection method.

5. Conclusion and future work

This paper proposes the application of data mining techniques to predict the
final grades of students based on their historical data. Three well-known classifica-
tion techniques (decision tree, random forest, and naive Bayes) were compared in
terms of accuracy rates. Wrapper feature subset selection method was used to
improve the classification performance. Preprocessing operations on the dataset,
categorizing the final grade field into five and two groups, increased the percentage
of accurate estimates in the classification. The wrapper attribute selection method
in all algorithms has led to a noticeable increase in accuracy rate. Overall, better
accuracy rates were achieved with the binary class method for both mathematics
and Portuguese dataset.

In the future, different feature selection methods can be used. In addition,
different classification algorithms can also be utilized on the datasets.

Author details
Ferda Unal
The Graduate School of Natural and Applied Sciences, Dokuz Eylul University,

Izmir, Turkey

*Address all correspondence to: ferda.balci@ceng.deu.edu.tr

IntechOpen

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

161

Data Mining - Methods, Applications and Systems

References

[1] Fan Y, Liu Y, Chen H, Ma J. Data
mining-based design and
implementation of college physical
education performance management
and analysis system. International
Journal of Emerging Technologies in
Learning. 2019;14(06):87-97

[2] Guruler H, Istanbullu A. Modeling
student performance in higher
education using data mining. Studies in
Computational Intelligence. 2014;524:
105-124

[3] Hu YH, Lo CL, Shih SP. Developing
early warning systems to predict
students’ online learning performance.

Computers in Human Behavior. 2014;
36:469-478

[4] Costa EB, Fonseca B, Santana MA, de
Aratjo FF, Rego]. Evaluating the
effectiveness of educational data mining
techniques for early prediction of
students' academic failure in
introductory programming courses.
Computers in Human Behavior. 2017;73:
247-256

[5] Shahiri AM, Husain W. A review on
predicting student's performance using
data mining techniques. Procedia
Computer Science. 2015;72:414-422

[6] Fernandes E, Holanda M,

Victorino M, Borges V, Carvalho R, Van
Erven G. Educational data mining:
Predictive analysis of academic
performance of public school students
in the capital of Brazil. Journal of
Business Research. 2019;94:335-343

[7]1 Marbouti F, Diefes-Dux HA,
Madhavan K. Models for early
prediction of at-risk students in a course
using standards-based grading.
Computers in Education. 2016;103:1-15

[8] Miguéis VL, Freitas A, Garcia PJ,

Silva A. Early segmentation of students
according to their academic

162

performance: A predictive modelling
approach. Decision Support Systems.
2018;115:36-51

[9] Asif R, Merceron A, Ali SA,
Haider NG. Analyzing undergraduate
students’ performance using

educational data mining. Computers in
Education. 2017;113:177-194

[10] Rodrigues MW, Isotani S, Zarate
LE. Educational Data Mining: A review
of evaluation process in the e-learning.
Telematics and Informatics. 2018;35(6):
1701-1717

[11] Buenano-Fernandez D, Villegas-CH
W, Lujan-Mora S. The use of tools of
data mining to decision making in
engineering education—A systematic
mapping study. Computer Applications
in Engineering Education. 2019;27(3):
744-758

[12] Zhu S. Research on data mining of
education technical ability training for
physical education students based on
Apriori algorithm. Cluster Computing.
2019;22(6):14811-14818

[13] Lu M. Predicting college students
English performance using education
data mining. Journal of Computational
and Theoretical Nanoscience. 2017;
14(1):225-229

[14] Marquez-Vera C, Cano A,
Romero C, Noaman AYM, Mousa FH,
Ventura S. Early dropout prediction
using data mining: A case study with
high school students. Expert Systems.
2016;33(1):107-124

[15] Amjad Abu S, Al-Emran M,
Shaalan K. Factors affecting students’
performance in higher education: A
systematic review of predictive data
mining techniques. Technology,
Knowledge and Learning. 2019;24(4):
567-598

Data Mining for Student Performance Prediction in Education
DOI: http://dx.doi.org/10.5772 /intechopen.91449

[16] Fujita H. Neural-fuzzy with
representative sets for prediction of
student performance. Applied
Intelligence. 2019;49(1):172-187

[17] Agaoglu M. Predicting instructor
performance using data mining
techniques in higher education. IEEE
Access. 2016;4:2379-2387

[18] Hall M, Frank E, Holmes G,
Pfahringer B, Reutemann P, Witten TH.
The WEKA data mining software: An
update. ACM SIGKDD explorations
newsletter. 2009

[19] Cortez P, Silva A. Using data mining
to predict secondary school student
performance. In: Brito A, Teixeira J,
editors. Proceedings of 5th Annual
Future Business Technology
Conference. tpPorto: EUROSIS-ETI;
2018. pp. 5-12

163

Chapter 10

Tracer Transportina
Homogeneous Porous Medium:
Experimental Study and
Acquisition Data with LabVIEW

Sana Davdouri and Jalila Sghaier

Abstract

This work represent the incorporation of information procurement (DAQ)
equipment and programming to acquire information (LabVIEW) as well as real-
time transport to show parameter appraises with regard to subsurface stream and
transport issues. The main objective is to understand the mechanism of water and
solute transfer in a sandy medium and to study the effect of some parameters on
the transport of an inert tracer. In order to achieve this objective, a series of experi-
ments were carried out on a soil column equipped with a tensiometer to monitor the
state of saturation of the medium and by two four-electrode probes for measuring
the electrical conductivity in the porous medium.

Keywords: tracer test experiments, groundwater contaminant,
transport in porous media

1. Introduction

The comprehension of contaminant destiny in groundwater conditions is of
high enthusiasm for supply and the executives of water assets in urban regions.
Contaminant discharges invade through the dirt to cross the vadose zone and
achieve the water table where they spread after the specific stream bearings and
hydrodynamic states of groundwater bodies. Localization and checking of contami-
nants is the primary essential advance to remediation systems [1, 2].

In any case, exact data are generally compelled by the absence of thickness of
inspecting areas which are illustrative of the region of the boreholes yet do not
render of nearby heterogeneities and particular stream headings of the crest [3].

A slug of solutes (tracers) promptly infused into permeable media with a
uniform stream field is normally alluded to as the slug-tracer test. The injected
tracer will go through permeable media as a pulse with a peak concentration
eventually after injection. This sort of test is utilized generally to determinate
contaminant transport parameters in permeable media or subsurface conditions
[4, 5]. The transport parameters including porosities, pore velocities, and disper-
sivities are imperative to examine the fate and transport of the contaminants and
colloid in permeable media and groundwater [6-9].

165 IntechOpen

Data Mining - Methods, Applications and Systems

Many studies showed that the type of array and the sequence of measurements
incredibly affected the shape and intensity of the resistivity contrasts ascribed to
tracer temporal spreads [10, 11].

2. Experimental study
2.1 Materials and methods

The experimental setup (Figure 1) consists of a cylindrical glass column of
36 cm long and 7.5 cm in diameter. The column is closed below with a plastic
cover having a hole at the center of diameter 1 cm and provided with a filter grid
preventing the passage of the solid phase beyond the column. The pressure within
the column is measured using a tensiometer located 5 cm from the bottom of the
column. This blood pressure monitor is of type Soilmoisture model 2100F. There
are also two four-electrode probes located 5 and 30 cm from the base of the column.
These probes make it possible to follow the transport of a tracer by measuring the
electrical conductivity in the ground.

2.1.1 Pressure measurement

The 2100F Soilmoisture Tester (Figure 2) is an instrument designed to measure
soil pressure potentials. This model is ideal for laboratory measurements such as mea-
surement of soil suction at fixed depth in a soil column. This blood pressure monitor
consists mainly of a porous ceramic stem (ceramic is rigid and permeable), a ventila-
tion tube, a plastic body, and a Bourdon manometer. This circulatory strain screen
comprises for the most part of a permeable earthenware stem (artistic is unbending
and penetrable), a ventilation tube, a plastic body, and a Bourdon manometer.

The operating principle of this blood pressure monitor is simple. Indeed, when
the porous ceramic saturated with water is placed in the unsaturated soil, a water
potential gradient appears between the interior of the porous ceramic and the soil.
These results in a transfer of water to the soil which exerts a depression (suction)

Sondes 1 erodes

Sysime d'sequistion

Ston 1

1| -

Figure 1.
Experimental device.

166

Tracer Transport in a Homogeneous Porous Medium: Experimental Study and Acquisition Data...
DOI: http://dx.doi.org/10.5772/intechopen.88328

Figure 2.
“Soilmoisture 2001F” blood pressure monitor.

on the water contained in the tensiometer. The transfer of water takes place through
the porous wall of the ceramic and can only exist if the liquid phase is continuous
from the ground, the wall of the rod, and the inside of the tube. It is necessary

to calibrate the monitor before use to ensure proper function. This calibration is
performed as follows:

The first step is to immerse the porous ceramic in the water. At the same time,
remove the drain screw and fill the plastic tube. It should be noted that filling is
done slowly to prevent the occlusion of a large unwanted air volume in the nylon
tube. The tube is continued to fill until a flow of water without air bubbles at the
aeration tube is obtained. To purge all the air bubbles and make sure that the tube is
completely filled with water, the drain screw is tightened, and the moisture present
in the porous ceramic is removed.

As the water evaporates on the surface of the porous ceramic, an increase in the
Bourdon tube needle is observed due to the increase in vacuum in the tube. After
an hour or two, the manometer reading increases to a value equal to or greater than
60 centibar. This is an accumulation of air volume trapped in the nylon tube and the
plastic tube. To remove this accumulated air, first tap the plastic tube to remove air
bubbles as much as possible, then remove the lid of the plastic tube, and add water
as previously done. The inner nylon tube is then trimmed so that it does not exceed
6.35 mm. After balancing, tighten the drain screw and cover.

Acquisition of pressure through a current transducer (Figure 3) is accomplished
through the NI-DAQ 6009 acquisition card (Figure 4). The transducer output

Figure 3.
Current transducer.

167

Data Mining - Methods, Applications and Systems

Figure 4.
NI 6009 acquisition board.

is connected to the analog input of the board. The LabVIEW software supplied
with the acquisition card allows, thanks to its graphic environment, to obtain the
desired measurements. Another solution for the acquisition is the direct use of the
NI-DAQmzx acquisition card driver with a small code on MATLAB R2012, certainly
less developed but which also allows to acquire the pressure data.

Using NI-DAQmx, one must first choose the type of the property to be measured
(voltage, current, strain gauge/pressure, temperature, etc.) and then start the acqui-
sition by choosing the number of samples to be measured and the sampling period.

It should be noted that the current transducer used is of the 4-20 mA current
loop type. That is, this device measures the pressure by converting it into current
such that the minimum value (Ocbar) corresponds to 4 mA and the maximum value
(100 cbar) corresponds to 20 mA. Measurements can be voltage measurements by
connecting the current transducer to a 500 Q resistor.

2.1.2 Concentration measurement

Two four-electrode probes for the measurement of the electrical conductivity
in the soil were carried out within the ENIM, in collaboration with the electrical
engineering department. For each probe (Figure 5), a printed circuit has been
designed which has four equidistant copper surfaces of 6 mm representing the four
electrodes. The purpose of manufacturing these probes is to measure the electrical
conductivity in the soil as a function of time at a given depth.

The operating principle of these probes consists of sending an alternating
electric current into the ground through the two surface electrodes and measuring
the potential difference by means of two inner electrodes.

Figures.
Four-electrode probe for measuring electrical conductivity.

168

Tracer Transport in a Homogeneous Porous Medium: Experimental Study and Acquisition Data...
DOI: http://dx.doi.org/10.5772/intechopen.88328

Lignes équipotentielles

Figure 6.
Schematic diagram of the Wenner model.

The method of four electrodes was chosen from several generally non-
destructive electrical methods because its principle is simple and the application
disrupts very little the flow in the ground. The geometry of these probes is based
on the Wenner configuration (Figure 6).

The electrical resistivity of the ground is written as

p= %.Zm/z (1)

where a is the distance that separates each electrode from the other.
The apparent electrical conductivity is then determined by

ou=g @)

where k = a*(1/4) is a constant; f is the temperature correction factor; and Rs is
the electrical resistance equal to AV/I.

It is essential to know the electrical behavior of the manufactured probe so that
we can draw good results and especially choose the appropriate acquisition system.
Thus, several tests were carried out with sand and NaCl solution. The probe is
pushed into the sand and the solution is injected. At the same time, the response
of the probe is visualized on an oscilloscope. It has been concluded that the probe
behaves similar to a capacitive impedance since the current and voltage output
signals are out of phase (Figure 7). In addition, the frequency behavior performed
with a GBF also confirms this.

Figure7.
Electrical behavior of the probe.

169

Data Mining - Methods, Applications and Systems

données Mumérique 2
-3,3416 2
_Rg data Tension_1L B data Tension H
1500
U
RI1
£}/400 2 r
«E 10,0 - P e e o 1§
stop
0,17 0 0 1 1 1 3,47 | | i 1 1
0,0 200,0m 400,0m 600,0m 800,0m 1,0 ,0 200,0m 400,0m 6€00,0m 800,0m 1,0
N e = e
data Tension 0 [data Giobale [N
o o .
;é_ 10,0 - i e Yy e R E -
< g -2,0-
-ﬂ,l N 1 1 [1 1 1 1 I [[1 1 1 I 1
0,0 200,0m 400,0m 600,0m 800,0m 1,0 200,0m 400,0m 600,0m 800,0m 1,0
Tirne Tite
Tableau 1 Tableau 2 Tableau 3
F i &
A BT 0 1341 o0 136
-3,33015 {-3,33018 10,000860361
——
Figure 8.

Front side of the program under LabVIEW,

2.2 Data acquisitions

Regarding the acquisition of the data signals, the LabVIEW software was manip-
ulated to record the results acquired by the three current sensors (pressure sensor
and two electrical conductivity sensors). We chose an average acquisition frequency
corresponding to 1800 points for the tracer injection phase and 720 points for the
leaching phase. The acquisition principle diagram under LabVIEW (program front
panel (Figure 8)) is as follows:

2.2.1 Synthesis of the experiments carried out on the soil column

A total of four experiments was performed on homogeneous porous media
under saturated conditions with a slot injection of a tracer. The tests carried out are
summarized in Table 1. The main tasks performed are mentioned and dissolved for
each experiment.

* The column is filled with initially dry soil, and the sand is well sanded to
prevent maximum entrapment of air bubbles in the porous medium.

* During filling, two four-electrode probes are introduced at two levels of the
column, z = 5 and z = 30 cm, to measure the electrical conductivity in the soil.
The tensiometer is also introduced at a height of 5 cm from the bottom of the
column.

* A well-defined volume of water is fed at the top of the column for saturation of
the medium.

170

Tracer Transport in a Homogeneous Porous Medium: Experimental Study and Acquisition Data...
DOI: http://dx.doi.org/10.5772/intechopen.88328

Experiences
A B C D
Type of injection Slot Slot Slot Slot
Average injection rate (L. min™") 0.044 0.053 0.053 0.07
Tracer used NaCl KCl KCl KCl
Tracer concentration (g.l_l) 2.8 0.74 0.74 0.74
Medium studied Sousse sand Monastir Sousse sand Sousse sand
sand
Water status of the saturated Distilled Distilled Distilled Distilled
medium ‘water water water ‘water
Medium saturation condition Saturated Saturated Saturated Saturated
Table 1.
Summary of all experiments carried out in the soil column.
data Tension [| Jata LG H 3
0,6 : 3,3+
g 3
8 a
£ 2
0,5-7 0 0 1 0 1 0 1 0 I I -3,4 - - - ' - - - - - - 1
0,0 200,0m 4uu,um"mmu,un 800,0m 1,0 ol ' 20000m ' 400,0m | 600,0m ' e00om | 1.0
Time
(a) (b)
Figure 9.

Recording tensions acquired by the tensiometer for (a) a saturated medium and (b) an unsaturated medium.

* The pressure load within the column is monitored until it reaches a positive
and stable value indicating saturation of the medium (Figure 9a).

* Once assured that our medium is saturated, we begin the tracer injection with a
peristaltic pump (Roth Cyclo I) at a constant average flow rate.

3. Results and discussions
3.1 Evolution of electrical conductivity

The four experiments are described well, through the evolution of the electrical
conductivity in the soil and the phenomena of convection and dispersion. Indeed,
moving away from the upper base of the column (tracer injection point), that is, to
say down the height of the column, the electrical conductivity decreases. It is clear,
by comparing two curves of the same sample at z = 5 cm and z = 30 c¢m, that there is
a significant delay (Figure 10).

This delay and this small peak are the reasons for the quasi-total dispersion of the
tracer in the soil water and, subsequently, the decrease of the electrical conductivity. The
high value of the electrical conductivity in the Sousse sand in experiment A (Figure 10a)
is justified by the high concentration of the NaCl tracer injected into the column.

171

Data Mining - Methods, Applications and Systems

5500 (a) » 7= Bom
5000 e z= 30cm

[W

T 4500 ® b ‘% o
(&) ®
@ 4000 pad i T
© 3500 @
% ¥ o™ "
g 30004 ® .
° e ﬂ" * ® »
S 25007 @ ! e .
2 2000-."
= Je
g 1500
S 1000
(=)
O 5001

0 T T T T T T T T T T)

0 10 20 30 40 50 60 70 80 90 100 11C

t(min)
1200 4 (b)
1100 . .
© z=5cm
= 1000 + * & z=30cm
S 900
-] *
= 800
€ 700 A *
%’ 600 | o %o T e *
g MERS PEEE X
@ 500_‘3 < °
b]
£ 400
S 300
2 200
8 100 4
0 T T T T T T d
0 5 10 15 20 25 30 35
t(min)
1400 ©
22
’gmom - [® z=5cm |
-@ 1000 L] . z= 30:m|
ot T L]
=2
£ 8004
D
~D
@ 6004
= 4007 & M.-.-’oomm--—
é -...o'uuomuoo
S 200A
4] v v T . T T T !
0 10 20 30 40 50 60 70 80

t(min)

Figure 10.
Evolution of electrical conductivity: (a) experiment A, (b) experiment B, and (c) experiment C.

3.2 Effect of the hydraulic conductivity of the medium

It can be seen from Figure 11 that the electrical conductivity curve for slot
tracer injection in the Sousse sand has the same behavior as the Monastir sand. The
peaks of the ascending part of two curves are at very close moments. This indicates
that the hydrodynamic characteristics of two media are close and that there is no
interaction between the tracer and the medium [12]. The peak shape of the curve
of the Monastir sand sample proves that during the flow, there is no preferential

172

Tracer Transport in a Homogeneous Porous Medium: Experimental Study and Acquisition Data...
DOI: http://dx.doi.org/10.5772/intechopen.88328

1400 4
o. -~
'E 1200 ® ® Sable de Sousse I
° o ® ¢ Sable de Monastir
=5
~= 1000 4
g M
©
£ 8004 o P o
8 ® LR 2N
@
o 600 €0 00 ¢ o
2 & ® @ed®® ® seneietiies
G 4001 ¢ T
°
g 200
&)
0+ T T T T T T T
0 5 10 15 20 25 30 35

t(min)

Figure 11.
Effect of medium permeability: comparison between experiments B and C.

1800+

— 1600 ®
®

-

B

[=}

(=)
1

® Q=0,07 I/min
® Q=0,05 I/min

°
.
1200 - &

10004 o
800 +
600
..
® ® goo
400 g %oom.o." LT 23 Paradt-2-arisgl

200 -

Conductivité électrique (us/cm

0 T T T T T T T l
0 10 20 30 40 50 60 70 80

t(min)

Figure 12.
Effect of average tracer injection rate: comparison between experiments C and D.

path creation. The small offset in ordinates for the two curves can be justified by the
nature of sandy environment. The sand of Sousse is thinner and has a lower satura-
tion hydraulic conductivity than the sand of Monastir. The low hydraulic conductiv-
ity of the Sousse sand results in greater retention of the tracer and an increase in the
measured electrical conductivity.

3.3 Injection flow effect

The influence of injection rate of a tracer KClI on the curves of the electrical
conductivity in a sandy medium (sand of Sousse region) at a height z = 30 cm from
the bottom of the column is studied. The two selected flow rates are high and cor-
respond to flow rates in the column of 0.327 and 0.458 cm/s. By increasing the flow,
the tracer appears faster and disappears more slowly. Indeed, the higher the flow
rate, the greater the dispersion phase of the breakthrough curve [13]. In our case,
the two flow values are close, which explains why the variation has no significant
effect on the shape of the tracer restitution curve (Figure 12).

173

Data Mining - Methods, Applications and Systems

4. Conclusion
In this chapter, we studied the transport of two inert tracers in a homogeneous

porous medium (sand). The effects of injection rate and permeability of the
medium on the evolution of the tracer elution curve were examined.

Author details

Sana Dardouri* and Jalila Sghaier
National Engineering School of Monastir, Monastir, Tunisia

*Address all correspondence to: sanadardouri_en@yahoo.fr

IntechOpen

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

174

Tracer Transport in a Homogeneous Porous Medium: Experimental Study and Acquisition Data...

DOI: http://dx.doi.org/10.5772/intechopen.88328

References

[1] Herrera GS, Pinder GF. Space-time
optimization of groundwater quality

sampling networks. Water Resources
Research. 2005;41:W12407

[2] Meyer PD, Valocchi AJ, Eheart JW.
Monitoring network design to provide
initial detection of groundwater
contamination. Water Resources
Research. 1994;30(9):2647-2659

[3] Kim KH, Lee KK. Optimization of
groundwater-monitoring networks
for identification of the distribution
of a contaminant plume. Stochastic
Environmental Research and Risk
Assessment. 2007;21(6):785-794

[4] Bear]. Some experiments in
dispersion. Journal of Geophysical
Research. 1961;66(8):2455-2467

[5] Mackay DM, Freyberg DL,

Roberts PV. A natural gradient
experiment on solute transport in a
sand aquifer. 1. Approach and overview
of plume movement. Water Resources
Research. 1986;22(13):2017-2029

(6] Boy-Roura M et al. Towards the
understanding of antibiotic occurrence
and transport in groundwater: Findings
from the Baix Fluvia alluvial aquifer
(NE Catalonia, Spain). Science of the
Total Environment. 2018;612:1387-1406

[7] Han B, Liu W, Zhao X, Cai Z,
Zhao D. Transport of multi-walled
carbon nanotubes stabilized by
carboxymethyl cellulose and starch
in saturated porousmedia: Influences
of electrolyte, clay and humic acid.
Science of the Total Environment.
2017;599:188-197

(8] Liang X, Zhan H, Liu]J,

Dong G, Zhang YK. A simple method of
transport parameter estimation for slug
injecting tracer tests in porous media.
Science of the Total Environment.
2018;644:1536-1546

175

[9] Ma] et al. Enhanced transport of
ferrihydrite colloid by chain-shaped
humic acid colloid in saturated
porous media. Science of the Total
Environment. 2018;621:1581-1590

[10] Bellmunt F, Marcuello A,

Ledo J, Queralt P. Capability of cross-
hole electrical configurations for
monitoring rapid plume migration
experiments. Journal of Applied
Geophysics. 2016;124:73-82

[11] Lekmine G, Auradou H, Pessel M,
Rayner JL. Quantification of tracer
plume transport parameters in 2D
saturated porous media by cross-
borehole ERT imaging. Journal of
Applied Geophysics. 2017;139:291-305

[12] Bayard R. Etude de I'adsorption/
désorption de polluants organiques
dans les sols: Approche méthodologique
et application au pentachlorophénol

et aux hydrocarbures aromatiques
polycycliques. Diss. Lyon, INSA; 1997

[13] Dalla Costa C. Transferts de traceur
en milieu poreux consolidé et milieu
poreux fissuré: Expérimentations et
Modélisations [Doctoral dissertation].
Université Joseph-Fourier-Grenoble I;
2007

Chapter 11

Data Mining and Fuzzy Data
Mining Using MapReduce
Algorithms

Poli Venkata Subba Reddy

Abstract

Data mining is knowledge discovery process. It has to deal with exact informa-
tion and inexact information. Statistical methods deal with inexact information but
it is based on likelihood. Zadeh fuzzy logic deals with inexact information but it is
based on belief and it is simple to use. Fuzzy logic is used to deal with inexact
information. Data mining consist methods and classifications. These methods and
classifications are discussed for both exact and inexact information. Retrieval of
information is important in data mining. The time and space complexity is high in
big data. These are to be reduced. The time complexity is reduced through the
consecutive retrieval (C-R) property and space complexity is reduced with black-
board systems. Data mining for web data based is discussed. In web data mining,
the original data have to be disclosed. Fuzzy web data mining is discussed for
security of data. Fuzzy web programming is discussed. Data mining, fuzzy data
mining, and web data mining are discussed through MapReduce algorithms.

Keywords: data mining, fuzzy logic, fuzzy data mining, web data mining,
fuzzy MapReduce algorithms

1. Introduction

Data mining is an emerging area for knowledge discovery to extract hidden and
useful information from large amounts of data. Data mining methods like associa-
tion rules, clustering, and classification use advanced algorithms such as decision
tree and k-means for different purposes and goals. The research fields of data
mining include machine learning, deep learning, and sentiment analysis. Informa-
tion has to be retrieved within a reasonable time period for big data analysis. This
may be achieved through the consecutively retrieval (C-R) of datasets for queries.
The C-R property was first introduced by Ghosh [1]. After that, the C-R property
was extended to statistical databases. The C-R cluster property is a presorting to
store the datasets for clusters. In this chapter, C-R property is extended to cluster
analysis. MapReduce algorithms are studied for cluster analysis. The time and space
complexity shall be reduced through the consecutive retrieval (C-R) cluster prop-
erty. Security of the data is one of the major issues for data analytics and data
science when the original data is not to be disclosed.

177 IntechOpen

Data Mining - Methods, Applications and Systems

The web programming has to handle incomplete information. Web intelligence
is an emerging area and performs data mining to handle incomplete information.
The incomplete information is fuzzy rather than probability. In this chapter, fuzzy
web programming is discussed to deal with data mining using fuzzy logic. The
fuzzy algorithmic language, called FUZZYALGOL, is discussed to design queries in

data mining. Some examples are discussed for web programming with fuzzy data
mining.

2. Data mining

Data mining [2-5] is basically performed for knowledge discovery process. Some
of the well-known data mining methods are frequent itemset mining, association
rule mining, and clustering. Data warehousing is the representation of a relational
dataset in two or more dimensions. It is possible to reduce the space complexity of
data mining with consecutive storage of data warehouses.

The relational dataset is a representation of data with attributes and tuples.

Definition: A relational dataset R or cluster dataset is defined as a collection of
attributes A, A, , ..., A,, and tuples ¢4, £, ..., t,, and is represented as

R=A1xA,x ..xA,

1;=a;1Xdp X ... X djy, are tuples, where i =1,2,..,n

or

R(A;. A,. ... A,,). R is arelation.

R(t)= (a;1. ai» ... a;y, are tuples, where i =1,2,.., n

or instance, two sample datasets “price” and “sales” are given in Tables 1 and 2,
respectively.

INo IName Price

1005 Shirt 100

1007 Dress 50

1004 Pants 80

1008 Jacket 60

1009 Skirt 100
Table 1.

Sample dataset “price.”

INo IName Sales

1005 Shirt 80

1007 Dress 60

1004 Pants 100

1008 Jacket 50

1009 Skirt 80
Table 2.

Sample dataset “sales.”

178

Data Mining and Fuzzy Data Mining Using MapReduce Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.92232

The lossless join of the datasets “price” and “sales” is given in Table 3.

INo IName Sales Price

1005 Shirt 80 100

1007 Dress 60 50

1004 Pants 100 80

1008 Jacket 50 60

1009 Skirt 80 100
Table 3.

Lossless join of the price and sales datasets.

In the following, some of the methods (frequency, association rule, and clustering)
are discussed.
Consider the “purchase” relational dataset given in Table 4.

CNo INo IName Price
C001 1005 shirt 100
Co01 1007 Dress 50
C003 1004 pants 80
C002 1007 dress 80
Co001 1008 Jacket 60
C002 1005 shirt 100
Table 4.

Sample dataset “purchase.”

2.1 Frequency

Frequency is the repeatedly accrued data.

Consider the following query:

Find the frequently customers purchase more than one item.
SELECT P.CNo, P.INo, IName, COUNT(*)

FROM purchase P

WHERE COUNT(*)>1.

The output of this query is given in Table 5.

CNo INo COUNT
Co01 1005 2
C002 1005 2
Table 5.
Frequency.

2.2 Association rule

Association rule is the relationship among the data.
Consider the following query:

Find the customers who purchase shirt and dress.
<shirt& dress>

SELECT P.CNo, P.INo

179

Data Mining - Methods, Applications and Systems

FROM purchase P
WHERE IName="shirt” and IName="dress”.
The output of this query is given in Table 6.

CNo INo
C001 1005
C002 1005

Table 6.

Association.

2.3 Clustering

Clustering is grouping the particular data.

Consider the following query:

Group the customers who purchase dress and shirt.
The output of this query is given in Table 7.

CNo INo IName Price
C001 1007 Dress 50
1005 shirt 100
C002 1007 dress 80
1005 shirt 100
Table 7.
Clustering.

3. Data mining using C-R cluster property

The C-R (consecutive retrieval) property [1, 3] is the retrieval of records of
database consecutively. Suppose R = {ry, 7, ..., 7,} is the dataset of records and
C={Cy, Cy, ..., C,} is the set of clusters.

The best type of file organization on a linear storage is one in which records
pertaining to clusters are stored in consecutive locations without redundancy
storing any data of R.

If there exists on such organization of R for C said to have the Consecutive
Retrieval Property or C-R cluster property with respect to dataset R. Then C-R
cluster property is applicable to linear storage.

The C-R cluster property is a binary relation between a cluster set and dataset.

R C, C, . Cmn

r1 1 0 1

Iy 0 1 555 0

I, 1 1 1
Table 8.

Incidence matrix.

180

Data Mining and Fuzzy Data Mining Using MapReduce Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.92232

Suppose if a cluster in a cluster set C is relevant to the data in a dataset R, then
the relevancy is denoted by 1 and the irrelevancy is denoted by 0. Thus, the
relevancy between cluster set C and dataset R can be represented as (# x) matrix,
as shown in Table 8. The matrix is called dataset-cluster incidence matrix (CIM).

Consider the dataset for customer account given in Table 9.

R CNo IName Sales
1 70001 Shirt 150
Iy 70002 Dress 30
r3 70003 Pants 100
Iy 60001 Dress 50
Is 60002 Jacket 75
Ig 60003 Shirt 120
1y 60004 Dress 40
Table 9.

Storage of sales.

The dataset given in Table 9 is reorganized in ascending order based on sorting,
as shown in Table 10.

R CNo IName Sales
r 70001 Shirt 150
T 60003 Dress 120
I3 70003 Pants 100
Is 60002 Dress 75
Iy 60001 Jacket 50
1y 60004 Shirt 40
Iy 70002 Dress 30
Table 10.

Reorganizing for C-R cluster.

Consider the following clusters of queries:

C1 = Find the customers whose sales is greater than or equal to 100.

C2 = Find the customers whose sales is less than 100.

C3 = Find the customers whose sales is greater than or equal average sales.

C4 = Find the customers whose sales is less than average sales.

The CIM is given in Table 11.

The dataset given in Table 11 is reorganized with sort on C; in descending order,
as shown in Table 12. Thus, C; has C-R cluster property.

The dataset given in Table 11 is reorganized with sort on C, in descending order,
as shown in Table 13. Thus, C; has C-R cluster property.

The dataset given in Table 11 is reorganized with sort on C3 in descending order,
as shown in Table 14. Thus, C; has C-R cluster property.

The dataset given in Table 11 is reorganized with sort on C, in descending order,
as shown in Table 15. Thus, C, has a C-R cluster property.

181

Data Mining - Methods, Applications and Systems

R C; C, Cs Cy
et 1 0 1 0
I 0 1 0 1
I3 1 0 1 0
T4 0 1 0 1
Is 0 1 1 0
Ts 1 0 1 0
1y 0 1 0 1

Table 11.

Cluster incidence matrix.
R C;
31 1
I3 1
Is 1
1 0
T4 0
Is 0
R, 0

Table 12.

Sorting on C,.
R C,
o1 0
I3 0
Is 0
I 1
T4 1
Is 1
ry 1

Table 13.

Sorting on C,.
R Cs
31 1
I3 1
Is 1
s 1
I 0
r4 0
ry 0

Table 14.

Sorting on Cy

182

Data Mining and Fuzzy Data Mining Using MapReduce Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.92232

R Cy
1 0
I3 0
Is 0
Te 0
1 1
T4 1
17 1
Table 15.

Sorting on C,.

The dataset is given for C; I C; has C-R cluster property (Table 16).

R Ci1 X Cy

1 1

I3 1

Ig 1

Iy 1

Iy 1

Is 1

ry 1
Table 16.
C, X C,.

The dataset is given for C;) C, has C-R cluster property (Table 17).

R C3MCy

11 1

T3 1

Is 1

Te 1

I 1

T4 1

I, 1
Table 17.
C, M C,

The dataset is given for C; M C; has C-R cluster property (Table 18).

The dataset is given for C, M C4 has C-R cluster property (Table 19).

The dataset is given for C,) Cj3 has C-R cluster property (Table 20).

The cluster sets {C; X C,, C3 X Cy4, C; X C3, C, U Cy4, C, U C3} has C-R
cluster property. Thus, the cluster sets have C-R cluster properties with respect to
dataset R.

3.1 Design of parallel C-R cluster property

The design of parallel cluster shall be studied through the C-R cluster
property. It can be studied in two ways: the parallel cluster design through graph

183

Data Mining - Methods, Applications and Systems

R C; XCs3

1 1

I3 1

I'g 1

1 1

r4 0

Is 0

I, 0
Table 18.
C, X C,.

R Cz NC4

r1 0

I3 0

Te 0

I 1

Iy 1

Is 1

7 1
Table 19.
C, xC,

R C,UCGC;

r; 1

I3 1

T 1

Iy 1

Iy 1

Is 1

ry 1
Table 20.
C, X C,.

theoretical approach and the parallel cluster design through response vector
approach.

The C-R cluster property between cluster set C and dataset R can be stated in
terms of the properties of vectors. The data cluster incidences of cluster set C with
C-R cluster property may be represented as response vector set V. For instance the
cluster set {Cy, Cy, C3, C4} has response vector set {V;=(1,1,1,0,0,0,0), V5=
(0,0,0,1,1,1,1), V3=(1,1,1,0,0,0), and V,=(0,0,0,0,1,1,1)} (Tables 21-23).

For instance, the response vector of the cluster C1 is given by column vector
(1,1,1,0,0,0,0).

Suppose C; and C; are two clusters. If the two vectors V; and V; of C; and C; and
the intersection V; N V; = @, then the cluster set {C;, C;} has a parallel cluster

184

Data Mining and Fuzzy Data Mining Using MapReduce Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.92232

R Cy C,
et 1 0
I3 1 0
s 1 0
Ty 0 1
r4 0 1
Is 0 1
1y 0 1

Table 21.

{C,, C,}.
R C3 Cy
1 1 0
I3 1 0
Ts 1 0
I, 1 0
r4 0 1
Is 0 1
Iy 0 1

Table 22.

{C,, C,J.
R C, C;
11 0 1
I3 0 1
T 0 1
1 1 1
Ty 1 0
Is 1 0
1y 1 0

Table 23.

{C,, C;}.

property. Consider the vectors V; and V; of C; and C,. The intersection of V; NV, =
®, so that the cluster set {C;, C,} has parallel cluster property. Similarly the cluster
set {C3, C4} has parallel cluster property. The cluster set {C,, C5} does not have
parallel cluster property because V; N V, # ® and r, depending on C; and C».

3.2 Visual design for parallel cluster

The C-R cluster property is studied with graphical approach. This graphical
approach can be studied for designing parallel cluster processing (PCP).

185

Data Mining - Methods, Applications and Systems

Suppose V; is the vertex of RICM of C. The G(C) is defined by vertices V;,
i=1,2,..., and n, and two vertices have an edge E;; associated with interval I;={V;, V;,1}
i=1,...,n-1.

If G(C) has C-R cluster property, the vertices of G(C) have consecutive 1’s or 0’s.

Consider the cluster set {C;, C,}. The G(C1) has the vertices (1,1,1,0,0,0,0), and
the G(C,) has the vertices (0,0,0,1,1,1,1), G(C5) has the vertices (1,1,1,1, 0,0,0),
and G(C,) has vertices (0,0,0,0,1,1,1).

The parallel cluster property exists if G(C;) NG(C;)=®.

For instance, consider the G(C;) and G(C,). G(C;) NG(C,)=®, so that the
cluster set {C;, C,} has parallel cluster property. The graphical representation is
shown in Figure 1.

Similarly the cluster set {C3, C4} has the parallel cluster property (PCP). The
cluster set {C3, C4} has no PCP because it is G(C,) N G(C3) # @

The graph G(C;) n G(C,) = @ have consecutive cluster property.

The graph G(C3) n G(C,4) = ® have consecutive cluster property. The graphical
representation is shown in Figure 2.

The graph G(C;) n G(C3) # @ does not have consecutive cluster property. The
graphical representation is shown in Figure 3.

Parallel Clusters

—_—Cl c2
¥ F 1 ¥ 1 1 1
uJ ¥ L8 W J u U
1 2 3 4 5 [7
Figure 1.
{Cl) CZ}'
Parallel Clusters
—C =4
I ¥ I 1 T & 1
U u U o u u o
1 2 3 4 5 7] 7
Figure 2.
{C., C,J.

186

Data Mining and Fuzzy Data Mining Using MapReduce Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.92232

Not Parallel Clusters

—Cz —C3

Figure 3.
{Cz’ C3}'

3.3 Parallel cluster design through genetic approach

Genetic algorithms (GAs) were introduced by Darwin [6]. GAs are used to learn
and optimize the problem [7]. There are four evaluation processes:

* Selection

* Reproduction
* Mutation

* Competition

Consider the following crossover with two cuts:

Parent #1 00001111

Parent #2 11110000

The parent #1 and #2 match with crossover.

The C-R cluster property is studied through genetical study. This study will help
for designing parallel cluster processing (PCP).

Definition: The gene G of cluster G(C) is defined as incidence sequence.

Suppose G(C;) is parent and G(C;) child genome of cluster incidence for
C1 and Cz.

Suppose the G(C;) has (1,1,1,0,0,0,0) and the G(C,) has the v(0,0,0,1,1,1,1).

The parallel cluster property may be designed using genetic approach with the
C-R cluster property.

Suppose C is cluster set, R is dataset and G(C) is genetic set.

The parallel cluster property exists if G(C;) and G(C;) matches with crossover.

For instance,

G(C,) = 11110000

G(C,) = 00001111

G(C;) and G(C,)matches with the crossover.

The cluster set {C;, C,} has parallel cluster property.

Similarly the cluster set {C3, C4} has the parallel cluster property. The cluster set
{C3, C4} has no PCP because G(C,) and G(C3) are not matched with crossover.

187

Data Mining - Methods, Applications and Systems

3.4 Parallel cluster design cluster analysis

Clustering is grouping the particular data according to their properties, and
sample clusters C; and C; are given in Tables 24 and 25, respectively.

R Cy
1 1
I3 1
s 1
Table 24.
Cluster C,.
R C,
1 1
T4 1
Is 1
ry 1
Table 25.
Cluster C,.

Thus, the C; and C; have consecutive parallel cluster property
(Tables 26 and 27).

R Cs
1 1
r3 1
Is 1
Te 1
Table 26.
Cluster C,.
R Cy
I 1
T4 1
17 1
Table 27.
Cluster C,.

Thus, the C; and C4 have consecutive parallel properly. C, and C; do not have
consecutive parallel cluster property because r, is common.

4. Design of retrieval of cluster using blackboard system

Retrieval of clusters from blackboard system [8] is the direct retrieval of data
sources. When the query is being processed, the entire database has to bring to main

188

Data Mining and Fuzzy Data Mining Using MapReduce Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.92232

data source retrieval
data jtem 1
datalitem 2
h(x) —
datgitem n
Figure 4.
Blackboard system.

memory but in blackboard architecture, the data item source is direct from the
blackboard structure. For the retrieval of information for a query, data item is

directly retrieved from the blackboard which contains data item sources. Hash
function may be used to store the data item set in the blackboard.

The blackboard systems may be constructed with data structure for data item
sources.

Consider the account (AC-No, AC-Name, AC-Balance)

Here AC-No is key of datasets.

Each data item is data sourced which is mapped by h(x).

These data items are stored in blackboard structure.

When the transaction is being processed, there is no need to take the entire
database into the main memory. It is sufficient to retrieval of particular data item of
particular transaction from the blackboard system (Figure 4).

The advantage of blackboard architecture is highly secured for blockchain
transaction. The blockchain technology has no third-party interference.

5. Fuzzy data mining

Sometimes, data mining is unable to deal with incomplete database and unable
to combine the data and reasoning. Fuzzy data mining [6, 7, 9-18] will combine the
data and reasoning by defining with fuzziness. The fuzzy MapReducing algorithms
have two functions: mapping reads fuzzy datasets and reducing writes the after
operations.

Definition: Given some universe of discourse X, a fuzzy set is defined as a pair
{t, pa(®)}, where ¢ is tuples and 4 is domains and membership function pq(x) is
taking values on the unit interval [0,1], i.e., pg(t) => [0,1], where £,€X is tuples
(Table 28).

R1 d, d, . dm [

t an ap . Am Ha(ts)

t a ayn Aom Ha(ta)

th A1n A1in . Anm Hd (tn)
Table 28.

Fuzzy dataset.

189

Data Mining - Methods, Applications and Systems

The sale is defined intermittently with fuzziness (Tables 29-32).

CNo INo IName Demand
C001 1005 shirt 0.9
C001 1007 Dress 0.65
C003 1004 pants 0.85
C002 1007 dress 0.6
Co01 1008 Jacket 0.65
C002 1005 shirt 0.9
Table 29.

Fuzzy demand.

H Demand(%)=0.9/90+0.85/80+0.8/75+0.65/70

or

Fuzziness may be defined with function

I Demana(*)= (1+(Demand-100)/100) ~! Demand <=100

=1 Demand>100

A. Negation

CNo INo IName Negation of price
Co01 1005 shirt 0.3
Co01 1007 Dress 0.5
C003 1004 pants 0.4
C002 1007 dress 0.5
Co01 1008 Jacket 0.4
C002 1005 shirt 0.3

Table 30.

Negation of price.

A. Union

CNo INo IName Sales U price
C001 1005 Shirt 0.8
Co001 1007 Dress 0.5
C003 1004 Pants 0.6
C002 1007 Dress 0.5
C001 1008 Jacket 0.6
C002 1005 Shirt 0.7

Table 31.

Sales U price.

Union of 1105 = max{0.8,0.7}=0,8
Fuzzy semijoin is given by sales 4 items-sale as shown in Table 33.

190

Data Mining and Fuzzy Data Mining Using MapReduce Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.92232

INo IName Sales

1005 Shirt 0.8

1007 Dress 0.5

1004 Pants 0.6

1007 Dress 0.5

1008 Jacket 0.6
Table 32.

Ttems-sales.

CNo INo IName Sales
Co01 1005 shirt 0.8
Co01 1007 Dress 0.5
C003 1004 pants 0.6
C002 1007 dress 0.5
C001 1008 Jacket 0.7
C002 1005 shirt 0.7
Table 33.

Fuzzy semijoin.

The fuzzy k-means clustering algorithm (FKCA) is optimization algorithm for
fuzzy datasets (Table 34).

CNo INo IName Sales
C001 10051007 Shirt&Dress 0.4
C003 1004 pants 0.6
C002 10071005 Dress<shirt 0.5
Table 34.
Association.

Fuzzy k-means cluster algorithm (FKAC) is given by, using FAD

best=R

K=means=best

for i range(1,n)

for j range(1,n)
ti=fuzzy union(r;.RU r;.R;), if ryR=1;.R

C reduce best

k-means < best

return

The fuzzy multivalued association property of data mining may be defined with
multivalued fuzzy functional dependency.

The fuzzy multivalued association (FMVD) is the multivalve dependency
(MVD). The association multivalve dependency (FAMVD) may be defined by
using Mamdani fuzzy conditional inference [3].

If EQ(#1(X),t2(X) #3(X)) then EQ(#1(Y) ,£2(Y)) or EQ(£2(Y) ,t3(Y)) or EQ(#1(Y) ,
t3(Y))

= min{EQ(t,(Y) ,t(Y)) EQ(t2(Y) ,t3(Y)) EQ(t1(Y) ,13(Y))}

= min{min(t;(Y) ,t(Y)) , min(22(Y) ,£5(Y)) , min(1(Y) ,3(Y))}

191

Data Mining - Methods, Applications and Systems

= min(t;(Y) ,t,(Y). t3(Y))
The fuzzy k-means clustering algorithm (FKCA) is the optimization algorithm
for fuzzy datasets (Table 35).

CNo INo IName Sales
C001 10051007 <1008 ShirteDress 0.8
sJacket 0.4
0.5
C003 1004 Pants 0.6
C002 10071005 Dresseshirt 0.5
0.7

Table 35.

Association using AFMVD.

Fuzzy k-means cluster algorithm (FKAC) is given by, using FAMVD

best=R

K=means=best

for i range(1,n)

for j range(1,n)
for k range(1,n)
ti=fuzzy union(r;.R U ;.R U 1.R), if 7;,.R=1j.R=r;.R

C reduce best

k-means<best

return

The fuzzy k-means clustering algorithm (FKCA) is the optimization algorithm
for fuzzy datasets.

K=means=n

for i range(1,n)

for j range(1,n)
ti=fuzzy union(r;.R U s..S)), if 7;.R=s;.S

C =best

k-means < best

return

For example, consider the sorted fuzzy sets of Table 5 is given in Table 36.

CNo INo IName Sales M Pricepd Demand
Co01 1005 Shirt 0.8
Co01 1007 Dress 0.5
C003 1004 Pants 0.6
C002 1007 Dress 0.5
C001 1008 Jacket 0.6
C002 1005 Shirt 0.7
Table 36.
Fuzzy join.

192

Data Mining and Fuzzy Data Mining Using MapReduce Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.92232

6. Fuzzy security for data mining

Security methods like encryption and decryption are used cryptographically.
These security methods are not secured. Fuzzy security method is based on the
mind and others do not descript. Zadeh [16] discussed about web intelligence,
world knowledge, and fuzzy logic. The current programming is unable to deal
question answering containing approximate information. For instance “which is the
best car?” The fuzzy data mining with security is knowledge discovery process with
data associated.

The fuzzy relational databases may be with fuzzy set theory. Fuzzy set theory is
another approach to approximate information. The security may be provided by
approximate information.

Definition: Given some universe of discourse X, a relational database R1 is
defined as pair {t, 4}, where ¢ is tuple and d is domain (Table 37).

R1 d; d; . dn

t a1 ap . A1m

t axn axn Aom

th ain an . Apm
Table 37.

Relational database.

Price = 0.4/50+0.5/60+07/80+0.8/100
The fuzzy security database of price is given in Table 38.

INo IName Price

1005 Benz 0.8

1007 Suzuki 0.4

1004 Toyota 0.7

1008 Skoda 0.5

1009 Benz 0.8
Table 38.

Price fuzzy set.

Demand = 0.4/50+0.5/60+0.7/80+0.8/100
The fuzzy security database of demand is given in Table 39.

INo IName Demand I

1005 Benz 80 0.7

1007 Suzuki 60 0.5

1004 Toyota 100 0.8

1008 Skoda 50 0.4

1009 Benz 80 0.7
Table 39.

Demand fuzzy set.

193

Data Mining - Methods, Applications and Systems

The lossless natural join of demand and price is union and is given in Table 40.

ino Iname Demand | price u

1005 Benz 20 100 0.8
1007 Suzuki 60 S0 0.5
1004 Toyota 100 80 0.8
1008 Skoda 50 60 0.5
1009 Benz 80 100 0.8

Table 40.
Lossless join.

The actual data has to be disclosed for analysis on the web. There is no need to
disclose the data if the data is inherently define with fuzziness.
“car with fuzziness >07” may defined as follows:

For instance,

XML data may be defined as
<CAR>

<COMPANY>

<NAME> Benz <NAME>
<FUZZ> 0.8 <FUZZ>
</COMPANY>
<COMPANY>

<NAME> Suzuki <NAME>
<FUZZ> 0.9<FUZZ>
</COMPANY >
<COMPANY>

<NAME> Toyoto<NAME>
<FUZZ> 0.6<FUZZ>
</COMPANY>
<COMPANY>

I<NAME> Skoda<NAME>
<FUZZ> 0.7<FUZZ>
</COMPANY>

Xquery may define using projection operator for demand car is given as

Name space default = http:\www.automoble.com/company

Validate <CAR> {

For $name in COMPANY/CAR

where $company/ Max($demand>0.7)}

return <COMPANY> {$company/name, $company/fuzzy}</COMPANY>

</CAR>

The fuzzy reasoning may be applied for fuzzy data mining.

Consider the more demand fuzzy database by decomposition
(Tables 41 and 42).

The fuzzy reasoning [14] may be performed using Zadeh fuzzy conditional
inference

The Zadeh [14] fuzzy conditional inference is given by

ifxisPiand xis P,xis P, thenxis Q =

min 1> {1’min(uP1(X): HPZ(X)) e an(X)) +HQ(X)}

194

Data Mining and Fuzzy Data Mining Using MapReduce Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.92232

INo IName Demand
1005 Benz 0.8
1007 Suzuki 0.9
1004 Toyota 0.6
1008 Skoda 0.7
1009 Benz 0.9

Table 41.

Demand.
INo IName Price
1005 Benz 0.7
1007 Suzuki 0.4
1004 Toyota 0.6
1008 Skoda 0.5
1009 Benz 0.7

Table 42.

Price.

The Mamdani [7] fuzzy conditional inference s given by
ifxisPiandxisP,xisP,thenxis Q =

min {pp1(X), pp2(X), ..., ppn(x) , PQ(X)}

The Reddy [12] fuzzy conditional inference s given by

= min(ppy(x), pp2(X), ..oy Bpn(X))

If x is Demand then x is price

x is more demand

x is more Demand o (Demand => Price)

x is more Demand o min{1, 1-Demand+Price}Zadeh

x is more Demand o min{Demand, Price} Mamdani

% is more Demand o {Demand} Reddy

“If x is more demand, then x is more prices” is given in Tables 43 and 44.

The inference for price is given in Table 45.

So the business administrator (DA) can take decision to increase the price or not.

INo IName More demand

1005 Benz 0.89

1007 Suzuki 0.95

1004 Toyota 0.77

1008 Skoda 0.84

1009 Benz 0.95
Table 43.

More demand.

195

Data Mining - Methods, Applications and Systems

INo IName Zadeh Mamdani Reddy

1005 Benz 0.9 0.7 0.7

1007 Suzuki 0.5 0.4 0.4

1004 Toyota 1,0 0.6 0.6

1008 Skoda 0.8 0.5 0.5

1009 Benz 0.8 0.7 0.7
Table 44.

Demand = Price.

INo IName Zadeh Mamdani Reddy

1005 Benz 0.89 0.7 0.7

1007 Suzuki 0.5 0.4 0.4

1004 Toyota 0.77 0.6 0.6

1008 Skoda 0.8 0.5 0.5

1009 Benz 0.8 0.7 0.7
Table 45.

Inference price.

7. Web intelligence and fuzzy data mining

Let C and D be the fuzzy rough sets (Tables 46-51).

d1 22 . dm R
t1 ag ap . A1m Ha(ts)
t Ay axn Ao Ha(t2)
ty Ain Ain . Anm Ha (tn)
Table 46.
Fuzzy database.
INo IName Price n
1005 Shirt 100 0.8
1007 Dress 50 0.4
1004 Pants 80 0.7
1008 Jacket 60 0.5
1009 Skirt 100 0.8

Table 47.
Price database.

The operations on fuzzy rough set type 2 are given as
1-C= 1- pc(x) Negation

CVD=max{pc(x), pp(x)} Union

CAD=min{pc(x) , pp(x)} Intersection

196

Data Mining and Fuzzy Data Mining Using MapReduce Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.92232

INo IName Demand | Price U
1005 Shirt 30 100 1 0.7
007 Dress 60 501 0.4
1004 Pants 100 80107
1008 Jacket 50 60104
1009 Skirl 80 1001 0.7
Table 48.
Intersect of demand and price.
INo IName Demand n
1005 Shirt 80 0.8
1007 Dress 60 0.5
1004 Pants 100 0.8
1008 Jacket 50 0.5
1009 Skirt 80 0.8
Table 49.
Lossless decomposition of demand.
INo IName Price I
1005 Shirt 100 0.8
1007 Dress 50 0.5
1004 Pants 80 0.8
1108 Jacket 60 0.5
1009 Skirt 100 0.8
Table 50.
Lossless decomposition of price.
Company n
IBM 0.8
Microsoft 0.9
Google 0.75
Table 51.

Best software company.

XML data may be defined as
<SOFTWARE>
<COMPANY>

<NAME> IBM <NAME>
<FUZZ> 0.8 <FUZZ>
</COMPANY>

197

Data Mining - Methods, Applications and Systems

<COMPANY>

<NAME> Microsoft <NAME>

<FUZZ> 0.9<FUZZ>

</COMPANY>

<COMPANY>

<NAME> Google <NAME>

<FUZZ> 0.75<FUZZ>

</COMPANY>

Xquery may define using projection operator for best software company is
given as

Name space default = http:\www.software.cm/company

Validate <SOFTWARE> {For $name in COMPANY/SOFTWARE where $com-
pany/ Max($fuzz)}

return <COMPANY> {$company/name, $company/fuzzy} </COMPANY>

</SOFTWARE>

Similarly, the following problem may be considered for web programming.

Let P is the fuzzy proposition in question-answering system.

P=Which is tallest buildings City?

The answer is “x is the tallest buildings city.”

For instance, the fuzzy set “most tallest buildings city” may defined as

most tallest buildings city = 0.6/Hoang-Kang + 0.6/Dubai + 0.7/New York +0.8/
Taipei+ 0.5/Tokyo

For the above question, output is “tallest buildings city”= 0.8/Taipei by using
projection.

The fuzzy algorithm using FUZZYALGOL is given as follows:

BEGIN

Variable most tallest buildings City = 0.6 / Hoang-Kang + 0.6 / Dubai + 0.7 /
New York + 0.8 / Taipei + 0.5 / Tokyo

most tallest buildings City =0.8 / Taipei

Return URL, fuzziness=Taipei, 0.8

END

The problem is to find “most pdf of type-2 in fuzzy sets”

The Fuzzy algorithm is

Go to most visited fuzzy set cites

Go to most visited fuzzy sets type-2

Go to most visited fuzzy sets type -2 pdf

The web programming gets “the most visited fuzzy sets” and put in order

The web programming than gets “the most visited type-2 in fuzzy sets”

The web programming gets “the most visited pdf in type-2”

8. Conclusion

Data mining may deal with incomplete information. Bayesian theory needs
exponential complexity to combine data. Defining datasets with fuzziness inher-
ently reduce complexity. In this chapter, fuzzy MapReduce algorithms are studied
based on functional dependencies. The fuzzy k-means MapReduce algorithm is
studied using fuzzy functional dependencies. Data mining and fuzzy data mining
are discussed. A brief overview on the work on business intelligence is given as an
example.

Most of the current web programming studies are unable to deal with incom-
plete information. In this chapter, the web intelligence system is discussed for fuzzy
data mining. In addition, the fuzzy algorithmic language is discussed for design

198

Data Mining and Fuzzy Data Mining Using MapReduce Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.92232

fuzzy algorithms for data mining. Web intelligence system for data mining is
discussed. Some examples are given for web intelligence and fuzzy data mining.
Acknowledgements

The author thanks the reviewer and editor for revision and review suggestions
made in this work.

Author details
Poli Venkata Subba Reddy
Department of Computer Science and Engineering, Sri Venkateswara University,

Tirupati, India

*Address all correspondence to: pvsreddy @hotmail.co.in

IntechOpen

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

199

Data Mining - Methods, Applications and Systems

References

[1] Ghosh SP. File organization: The
consecutive retrieval property.
Communications of the ACM. 1972;
15(9):802-808

[2] Chin FY. Effective Inference Control
for Range SUM Queries, Theoretical
Computer Science, 32,77-86. North-
Holland; 1974

[3] Kamber M, Pei J. Data Mining:
Concepts and Techniques. New Delhi:
Morgan Kaufmann; 2006

[4] Ramakrishnan R, Gehrike J. Data
Sets Management Systems. New Delhi:
McGraw-Hill; 2003

[5] Tan PN, Steinbach V, Kumar V.
Introduction to Data Mining. New
Delhi: Addison-Wesle; 2006

[6] Zadeh LA. Fuzzy logic. In: IEEE
Computer. 1988. pp. 83-92

[7] Tanaka K, Mizumoto M. Fuzzy
programs and their executions. In:
Zadeh LA, King-Sun FU, Tanaka K,
Shimura M, editors. Fuzzy Sets and
Their Applications to Cognitive and
Decision Processes. New York:
Academic Press; 1975. pp. 47-76

(8] Englemore R, Morgan T. Blackboard
Systems. New Delhi: Addison-Wesley;
1988

[9] Poli VSR. On existence of C-R
property. Proceedings of the
Mathematical Society. 1989;5:167-171

[10] Venkta Subba Reddy P. Fuzzy
MapReduce Data Mining Algorithms,

2018 International Conference on Fuzzy

Theory and Its Applications
(iIFUZZY2018), November 14-17; 2108

[11] Reddy PVS, Babu MS. Some
methods of reasoning for conditional
propositions. Fuzzy Sets and Systems.
1992;52(3):229-250

200

[12] Venkata Subba Reddy P. Fuzzy data
mining and web intelligence. In:
International Conference on Fuzzy
Theory and Its Applications (iFUZZY);
2015. pp. 74-79

[13] Reddy PVS. Fuzzy logic based on
belief and disbelief membership
functions. Fuzzy Information and
Engineering. 2017;9(9):405-422

[14] Zadeh LA. A note on web
intelligence, world knowledge and fuzzy
logic. Data and Knowledge Engineering.
2004;50:91-304

[15] Zadeh LA. A note on web
intelligence, world knowledge and fuzzy
logic. Data and Knowledge Engineering.
2004;50:291-304

[16] Zadeh LA. Calculus of fuzzy
restrictions. In: Zadeh LA, King-Sun FU,
Tanaka K, Shimura M, editors. Fuzzy
Sets and Their Applications to Cognitive
and Decision Processes. New York:
Academic Press; 1975. pp. 1-40

[17] Zadeh LA. Fuzzy algorithms.
Information and Control. 1968;12:
94-104

[18] Zadeh LA. Precipitated Natural
Language (PNL). Al Magazine. 2004;
25(3):74-91

Edited by Derya Birant

Data mining is a branch of computer science that is used to automatically extract
meaningful, useful knowledge and previously unknown, hidden, interesting
patterns from a large amount of data to support the decision-making process. This
book presents recent theoretical and practical advances in the field of data mining.
It discusses a number of data mining methods, including classification, clustering,
and association rule mining. This book brings together many different successful
data mining studies in various areas such as health, banking, education, software
engineering, animal science, and the environment.

978-1-83968-

Published in London, UK

TSBN 320-6
o 0|
© pinglabel / iStock InteCh pen 97738 06

1839"6832

	Data Mining - Methods, Applications and Systems
	Contents
	Preface
	Chapter 1 - Deep Learning: Exemplar Studies in Natural Language Processing and Computer Vision
	Chapter 2 - Contribution to Decision Tree Induction with Python: A Review
	Chapter 3 - Association Rule Mining on Big Data Sets
	Chapter 4 - Data Mining in Banking Sector Using Weighted Decision Jungle Method
	Chapter 5 - Analytical Statistics Techniques of Classification and Regression in Machine Learning
	Chapter 6 - Clustering of Time-Series Data
	Chapter 7 - Weather Nowcasting Using Deep Learning Techniques
	Chapter 8 - Data Mining and Machine Learning for Software Engineering
	Chapter 9 - Data Mining for Student Performance Prediction inEducation
	Chapter 10 - Tracer Transport in a Homogeneous Porous Medium: Experimental Study and Acquisition Data with LabVIEW
	Chapter 11 - Data Mining and Fuzzy Data Mining Using Map ReduceAlgorithms

