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2 Zusammenfassung
Der Schwerpunkt dieser Arbeit liegt auf der Entwicklung, Herstellung und Prüfung der supralei-

tenden Elemente eines 35 kA HTS DC Kabeldemonstrators. Drei wichtige HTS-Hochstromleiter-

konzepte (Stapel, Roebel, Cable on Round Core (CORC)) wurden analysiert und das HTS Cross

Conductor (HTS CroCo) Stapelkonzept ausgewählt. Für Hochstromanwendungen wurde ein

Designprozess für HTS-Gleichstromkabel entwickelt. Basierend auf dem Designprozess wurde

ein 100 kA Kabeldesign auf Basis von 36 CroCos entwickelt und anschließend auf einen 35 kA

Kabeldemonstrator mit 12 CroCos herunterskaliert. Die Länge des Kabeldemonstrators wurde

auf 3,6 m und die Betriebstemperatur auf 77 K festgelegt.

Vor der CroCo-Herstellung wurde eine Studie über das Degradationsverhalten der kritische

Stromdichte von HTS-Bändern der zweiten Generation unter thermischer Belastung durchge-

führt. Diese Untersuchungen sind notwendig, da HTS Bänder während der Herstellung oft

thermischen Belastungen ausgesetzt sind, z.B. durch Löten. Ein Verständnis des genauen Degra-

dationsverhaltens kann daher zur Optimierung von Fertigungsprozessen beitragen. Die Un-

tersuchung ergab ein vorhersagbares und wiederholbares Degradationsverhalten, das durch

die Sauersto�verarmung des Kristalls verursacht zu werden scheint. Es wurde gezeigt, dass

Zinn-Silber-Lote eine kostengünstige Alternative zu bleihaltigen Loten in der CroCo-Herstellung

sein könnten. Die Ergebnisse der Untersuchung sind in [Pre+18] verö�entlicht.

Für die Herstellung der CroCos wurden Supraleiter zweier Hersteller auf ihre Kompatibilität

mit dem CroCo-Herstellungsprozess untersucht. Es wurde festgestellt, dass Supraleiter eines

Herstellers grundsätzlich kompatibel sind, aber starke Tendenzen zu einer ungleichen Verteilung

von galvanisiertem Kupfer aufweisen. Supraleiter des anderen Herstellers erwiesen sich zu

dem Zeitpunkt als nicht kompatibel, sind aber vielversprechende Kandidaten für zukünftige

Arbeiten.

Der CroCo-Herstellungsprozess wurde weiterentwickelt, um eine runde äußere Lötmatrix

zu integrieren. Darüber hinaus wurde der Herstellungsprozess angepasst, um Supraleiter mit

minimalem galvanisiertem Kupfer (ca. 5-10 µm) zu erlauben, was dazu beiträgt, die Kosten

für die Supraleiter zu senken. Um diese Veränderungen zu ermöglichen, wurde eine neue

CroCo-Fertigungsmaschine eingerichtet. Die 12 CroCos, die im Demonstrationskabel verwendet

wurden, wurden in 8 Produktionsläufen produziert. Aus jedem CroCo-Produktionslauf wurden

ein oder zwei der gewünschten 3,6 m langen CroCos geschnitten. Der kritische Strom jedes

der 12 CroCos wurde unter Eigenfeldbedingungen bei 77 K gemessen und variierte zwischen

2890 A und etwa 3680 A. Die relativ große Variation ist auf die Optimierung zahlreicher Ferti-

gungsschritte und eine steigende Leistung der Supraleiter zurückzuführen. Es wurde gezeigt,

dass der kritische Strom eines CroCo zuverlässig berechnet werden kann, basierend auf dem

durchschnittlichen kritischen Strom der Supraleiter, die zur Herstellung des CroCo verwendet
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2 Zusammenfassung

werden. Lötverbindungen wurden verwendet, um den CroCos mit normal leitenden Kupfer-

kabeln zu verbinden. Der Widerstand dieser Verbindungen betrug im Durchschnitt 200 nΩ

und mit einer Standardabweichung von 43 nΩ bei 77 K. Dies würde zu einer Wärmelast von ca.

0,7 mW pro Anschluss bei einem Betriebsstrom von 3500 A führen. Dies sollte für die meisten

Anwendungen ausreichend niedrig sein.

Für den Test des Kabeldemonstrators wurde ein 6 m langer, 1 m breiter und 0,8 m hoher

Kryostat entwickelt und gebaut. Das Demonstrationskabel selbst besteht aus den 12 CroCos

mit je 22 6 mm breiten und 10 4 mm breiten Supraleiter Bändern. Die CroCos sind auf einem

Aluminiumkern mit einem Durchmesser von 110 mm montiert und parallel geschaltet.

Während der Messreihe erreichte der Kabeldemonstrator einen stationären Strom von 34 kA

und 35 kA für kurze Zeit. Eine Analyse der Stromverteilung während des Kabeltests ergab

eine relativ große Streuung der Stromverteilung über die CroCos, die wahrscheinlich dadurch

verursacht wurde, dass Wasser zwischen den Kontakten kondensierte und somit den Über-

gangswiderstand erhöhte. Ein CroCo wurde nach dem Test vom Demonstrator demontiert,

um sicherzustellen, dass keine Degradation, z.B. durch Spannungen während der Abkühlung,

auftrat.

Diese Arbeit schließt mit einer Fallstudie über ein supraleitendes Kabel in einer Aluminium-

Elektrolyseanlage. Es wird gezeigt, dass die Energieeinsparungen für ein 500 m langes supraleit-

endes Kabel der Klasse 100 kA im Vergleich zu einer herkömmlichen Aluminium-Sammelschiene

im Bereich von 6 GWh bis 6,5 GWh pro Jahr liegen, was in etwa dem jährlichen Energieverbrauch

von 2000 2-Personen-Haushalten in Deutschland entspricht. Die Investitionskosten für das oben

genannte supraleitende System sind derzeit drei- bis sechsmal höher als bei einem herkömm-

lichen Aluminium-Sammelschienensystem. Der große Unterschied in den Investitionskosten

des supraleitenden Systems ist weitgehend auf eine große Varianz in den Supraleiterkosten

zurückzuführen, die die Investitionskosten dominieren. Der Break-Even-Punkt zwischen dem

supraleitenden System und dem konventionellen System für die minimalen Investitionskosten

beider Systeme liegt bei einem Strompreis von ungefähr 30 €/MWh, berechnet über einen

Zeitraum von 40 Jahren.
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3 Introduction
The threat of climate change has captured the attention of millions of peoples and motivated

politicians around the world to take measures to limit the emission of green house gases. In the

last decade Germany started with the Energiewende a nation wide project to move its electricity

production away from nuclear and fossil fuel based technologies towards renewable energies in

an attempt to limit the nation’s impact on global warming. In this framework, Germany aims

to reduce its primary energy consumption by 20 % in 2020 and 50 % by 2050 compared to its

2008 consumption [Bun19; Bun]. A large part of the primary energy reduction will be achieved

by replacing fossil fuel based technologies with renewable energies. Nonetheless, e�orts to

increase energy e�ciency are needed in particular since the primary energy reduction in 2018

was only about 10 % compared to 2008 [App+19]. Considering the net power consumption in

Germany by sectors, shows that the industry in general is the largest consumer with roughly

46 % [App+19]. About 50 % of the industries net power consumption (or 23 % of Germany’s

net power consumption) can be attributed to a few so called energy intensive industries such

as steel, paper, glass, chemicals and metals production [Gei19]. If one aims to increase energy

e�ciency, then it appears to be prudent to investigate the energy savings potential in the largest

consumers.

One technology to improve energy e�ciency that has been discussed for decades is the loss

free transport of electricity via superconducting cables [Gra97]. However, early concepts with

low temperature superconductor were not competitive due to the high cooling e�ort. This

changed with the advent of commercially available high temperature superconductors in the last

two decades that have the advantage of requiring only liquid nitrogen for cooling. Consequently,

several superconducting cable projects set out to demonstrate the technical feasibility of the

technology with the longest cable so far being installed in Essen and being in operation for more

than 5 years without any interruption [Ste+13; Her+16; Her18; Mag+11; MYR15]. The early

high temperature superconducting cables focused mainly on the AC distribution grid [Yum+09;

Kim+13b; Sch+12] and only recently DC cables have gathered increased attention [Wat+17;

Yan+15; Zha+15].

This thesis aims to develop high direct current, high temperature superconducting cables for

example for energy intensive industries. For this purpose chapter 4 reviews the basic properties

of superconductors in general and high temperature superconductors in particular that are

relevant for the application in the high current sector. Chapter 5 reviews the advantages of

superconducting power transmission and follows up with a summary of the state of the art in

regards to high current power transmission with high temperature superconductors.
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3 Introduction

In Chapter 6 a conceptual design process for high temperature superconducting cables for

high direct current application is developed. The design process is used to generate a conceptual

design of a 100 kA cable which is then down scaled to a 3.6 m long 35 kA cable demonstrator for

�rst proof of concept.

Manufacturing a superconducting cable is a challenging task due to the mechanical and

thermal properties of the basic superconducting wires. Therefore, the performance degradation

of high temperature superconducting wires under various thermal loads is investigated in detail

in Chapter 7.

Chapter 8 describes in detail the electrical and microscopic characterization of the demon-

strator strands and compares them with the expected performance based on calculations. The

individual characterization allows for an estimation of the current carrying capacity of the cable

demonstrator which was tested in a newly designed cryostat.

To apply the design methods developed in this thesis, a case study for superconducting high

current cable in an aluminum electrolysis plant is performed in Chapter 9. The study consists of

a conceptual design of the cable based on the design process developed in the Chapter 6 and an

economic evaluation of the superconducting cable compared to a conventional solution based

on a present value calculation of the investment.

The results of this thesis are summarized in Chapter 10 and an outlook for future work is

given.

2



4 Basics of high temperature
superconductivity

At the beginning of the 20th century, Heike Kamerlingh Onnes measured the electrical resistance

of various materials when cooled to very low temperatures. In 1911 he observed that the electrical

resistance of mercury vanished at a temperature of 4.2 K [Kam11]. Since these materials behaved

as superior conductors he called the e�ect superconductivity. In following years it was discovered

that many materials can reach the superconducting state when cooled down to su�ciently low

temperatures [Sha15, p. 17-18]. New materials were found that turned superconducting at

slightly higher temperatures but it appeared that superconductivity was limited to temperatures

below 30 K [Man11].

This changed in 1986 when Bednorz and Müller discovered a new type of superconductor

[BM86]. Based on this discovery, soon a wide variety of materials were found that were su-

perconducting at temperatures in the 90 K range [WU+87]. These new superconductors could

not be completely described by the existing theories and are referred to as high temperature

superconductors (HTS) to di�erentiate them from the classical, low temperature superconductors

(LTS).

A hundred years after the discovery of superconductivity, new superconductors are still being

found for example Magnesium diboride (MgB2) in 2001 [Nag+01], iron-based superconductors

in 2006 (since 2008 with critical temperatures above 55 K) [Kam+06; Tak+08; Ren+08], hydrogen

sulphide (H2S) in 2015 at 203 K at high pressures [Dro+15] or lanthanum hydride (LaH10) in

2019 at 250 K at high pressures [Dro+19].

4.1 Critical values of superconductivity

There are three so-called critical values that limit the superconducting state

• critical temperature T c

• critical magnetic �eld Bc

• critical current density jc

The critical values are dependent on each other as it is illustrated in Figure 4.1. The critical

values and their mutual dependence are inherent material properties that depend in addition

on the various processes that are used to manufacture superconductors. In order to accurately

describe an operation point, all three critical values need to be de�ned. For example critical

current values are often reported at a de�ned temperature under self �eld (s.f.) conditions.

3



4 Basics of high temperature superconductivity

Figure 4.1: Schematic of the interdependence of the critical values for HTS. The three critical values create a surface

that sets the boundary for the superconducting state.

4.1.1 Critical temperature

Figure 4.2 shows the electrical resistance of a HTS as a function of the temperature. The

resistance is normalized to the linear decrease of the normal conducting phase. The transition

between normal conducting state and superconducting state is usually steep. It is common

practice to de�ne the transition width as well as a critical temperature. Within the normalized

values certain thresholds of the electrical resistance are de�ned (usually 10% and 90%) and the

transition width calculated as Δ)2 = )2,90 −)2,10 [KC17, P. 1228].

4.1.2 Critical current density

In Figure 4.3 the electrical �eld of a HTS is schematically shown as a function of the applied

current. Initially, there is no electrical �eld across the HTS however at a certain current an

electrical �eld starts to develop. The critical current is de�ned at a certain electrical �eld

threshold for LTS: Ec = 0.1 µV/cm [DKE07a; DKE07b] and for HTS: Ec = 1 µV/cm [DKE07c].

This current-electric �eld behavior can be modeled in the transition area with a power law

dependence. [Gri+14a]

� = �2

(
9

92

)=
(4.1)
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4.1 Critical values of superconductivity

Figure 4.2: Electrical resistance of a superconductor normalized to the linear decrease of the normal conducting phase.

De�nition of two critical temperatures at 10 % and 90 % electrical resistance.

Figure 4.3: Schematic of electrical �eld-current behavior of a HTS. For HTS the critical current is reached when the

electrical �eld reaches 1 µV/cm.

with Ec being the standardized, critical electrical �eld for example Ec = 1 µV/cm in case of HTS.

The exponent n represents the steepness of the phase transition from superconducting to normal

conducting. In this work the n value is determined between Ec and 10 · �2 when possible.
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4 Basics of high temperature superconductivity

Reports of the current carrying capacity of superconducting wires usually include either the

critical current I c of the wire, the critical current density jc, or the engineering critical current

density jce. The current densities jc and jce di�er by the cross section used to normalize the

critical current. The critical current density normalizes to the superconducting cross section of

the wire:

92 =
�2

�(D?4A2>=3D2C>A

The engineering critical current density normalizes to the entire wire cross section:

924 =
�2

�,8A4

(4.2)

4.1.3 Critical magnetic field

Figure 4.4 shows a schematic magnetic phase diagram of cuprate HTS. There are three distinctive

values: the Meißner phase limit Bc1 , the superconducting phase limit Bc2 , and the irreversibility

�eld Birr [Sha15; Lar+01; KC17]. The irreversibility �eld Birr describes the maximum �eld to

which a superconductor can transfer a current. Beyond Birr the critical current density of the

superconductor is zero and therefore describes the limit for application relying on loss free

current transfer such as cables or magnets.

An empirical formula for estimating the irreversibility �eld Birr is

�8AA = �8AA (0 K)
(
1 − )

)2

)U
(4.3)

with being U a material characteristic �t parameter [KC17, p. 1240].

The magnetic �eld acting upon a superconductor can either be self-induced or externally

induced. Self-induced magnetic �elds occur in all superconducting devices that carry a current

such as wires or cables. The self-induced magnetic �eld is often referred to as self-�eld (s.f.).

Externally induced �elds refer to �elds generated by other devices such as magnets in the vicinity

of the application and are also called background-�eld.

4.2 Technical superconductors

Most superconductors are not suitable for large scale applications such as cables or magnets

due to toxicity, weak superconducting or mechanical properties, or expensive manufacturing.

The superconductors that are used for large scale applications are often referred to as technical

superconductors.

Table 4.1 summarizes some basic properties of technical superconductors. It is important

to note that the properties may vary. For example, the high temperature superconductors

6



4.3 Second generation HTS

Figure 4.4: Simpli�ed magnetic phase diagram of cuprate HTS (after [KC17, p. 1240])

show signi�cant anisotropies in regards to their magnetic properties. Nonetheless, the shown

properties allow for a basic understanding of the boundaries of these superconductors. The low

irreversibility �eld of Bi-2223 at 77 K makes it suitable for some power cables but is already too

low for high current cables as will be shown later in this work. In these scenarios REBCO may

be used instead, to �elds up to about 7 T at 77 K. The irreversibility �eld of REBCO shows also

the limit for high �eld magnets operated in the liquid nitrogen region, suggesting that high �eld

magnets with �elds larger than 10 T will not be possible at these temperatures. The remaining

HTS, Bi-2212, is technically a high temperature superconductor but is largely developed for high

�eld applications in the low temperature region [Mia+05]. This is due to the fact that Bi-2212

can be manufactured in round strands contrary to the the �at tape geometry of Bi-2223 and

REBCO.

Magnesium diboride was discovered in 2001 and therefore is a relatively new material. Due to

the wide availability of its raw materials it is considered a prospective low cost superconductor

that can operated at liquid hydrogen temperatures. This could for example be applied in feeder

lines towards low temperature magnets [BF17].

4.3 Second generation HTS

Rare earth barium copper oxide (REBCO) represents a group of HTS that have a molecular

formula of '�1Ba2Cu3OX . The oxygen content X is in the region of X = 7 but may vary slightly

depending on the targeted properties, manufacturing process or chosen rare earth. The �rst

superconductor of this type used yttrium as a rare earth and has a critical temperature of equal to

7



4 Basics of high temperature superconductivity

Table 4.1: Basic properties of technical superconductors

Synonym Chemical Formula T c/ K Bc2 / T Birr / T Reference

NbTi NbTi 9.5 12 (4.2 K) 10.5 (4.2 K) [Lub83;

Lar+01]

Nb3Sn Nb3Sn 18 27 (4.2 K) 24 (4.2 K) [Lar+01]

MgB2 MgB2 39 15 (4.2 K) 8 (4.2 K) [Lar+01]

Bi-2212 Bi2Sr2CuO6+X 96 >100 (4.2 K) >100 T (4.2 K) [Mia+05;

Che+07;

Jia+11]

Bi-2223 Bi2Sr2Ca2Cu3O10+X 122 >10 (77 K) ~0.2 T (77 K) [Cha+03;

Lar+01]

REBCO YBa2Cu3OX 93 >10 (77 K) 7 (77 K) [Hän+07;

Nak+98]

93 K [WU+87]. Yttrium can be substituted by many rare earths such as Gadolinium, Dysprosium

etc. [Sha15, P. 80].

Figure 4.5 shows the crystal structure of YBCO. The superconducting current transport occurs

within copper oxide planes of the crystal and is limited perpendicular to these planes thus

resulting in strong anisotropic electrical current transport properties in the superconducting

state [BK07, P. 100-104].

Figure 4.5: Structure of YBCO crystal . The superconducting current transfer takes place within the copper oxide planes.

(after [KC17, p. 1236])
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4.3 Second generation HTS

4.3.1 Structure and properties of REBCO wires

In polycrystalline REBCO (for example in long length wires) the superconducting grain to grain

current transport is strongly dependent on the grain boundary angle and decreases exponentially

with misalignment [KC17, p. 1242]. To prevent grain misalignment, REBCO layers can be grown

epitaxially on a previously textured layer. In the growth process of the REBCO layer defects will

inevitably occur and decrease the amount of well aligned grains as the layer gets thicker. Due to

this, the REBCO layer thickness is currently limited to a few microns. Maximizing the surface

on which the REBCO can be grown lead to the �at tape geometry (s. �g. 4.6) that is today the

standard in long length REBCO wires.

Figure 4.6 shows the structure of a REBCO wire which consists of at least 5 di�erent layers.

• Substrate material that provides mechanical stabilization for the wire but can also contain

the texture (RABiTS)

• Bu�er layers that act as di�usion barrier between substrate and superconductor as well as

providing the texture for the REBCO layer

• REBCO layer which provides the superconducting current transport

• Silver layer that acts a �rst layer of protection but also allows the adjustment of the target

oxygen content in the crystal

• In addition REBCO tapes are often surrounded by an electrical and thermal stabilizer (for

example copper) to protect the tape during over current events

There are three established methods to provide a texture for the REBCO crystals: rolling assisted

biaxially textured substrates (RABiTS), ion beam assisted deposition (IBAD) and inclined sub-

strate deposition (ISD) [PI04]. In RABiTS the substrate is textured and the bu�er layers retain

the texture of the substrate. In IBAD and ISD the texture is directly deposited into one of the

bu�er layers.

For the deposition of the REBCO layer there are also several methods employed. They

can be grouped into the physical vapor deposition processes such as pulsed laser deposition

(PLD), reactive co-evaporation (RCE), metal-organic chemical vapor deposition (MOCVD), and

into chemical solution deposition processes such as metal-organic deposition (MOD). Detailed

descriptions of the texturing and depositing technologies can be found in [[Mat+09; PI04; GPS04],

[Sei15] p. 256�.].

At present, more than a dozen companies develop REBCO tapes. Table 4.2 lists the companies,

the technologies employed to manufacture REBCO tapes, and the critical current at 77 K, self-

�eld normalized to the tape width. At the point of writing, several of the manufacturer were

in preproduction or prototype stages. It can be seen that there is large spread in the critical
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4 Basics of high temperature superconductivity

Figure 4.6: Schematic structure of REBCO tapes. The thickness of the individual layer can vary depending on the

manufacturing processes employed. The surrounding stabilizer material is optional but usually included in

commercial tapes to act as electrical and thermal bu�er in case of fault events.

currents from 60 A/cm up to 400 A/cm. This can be due to the fact that manufacturers optimize

their products for di�erent applications. For example, Bruker HTS is tailoring their tape towards

extremely high �eld (20+ T) at very low temperatures (4.2 K) [Uso+18]. The critical current of the

SuNAM tapes are optimized for the 77 K, low �eld region (B < 1 T). Most manufacturers can o�er

single piece lengths in the range of 200 to 500 m. For shorter piece length many manufacturers

can o�er higher critical currents than what is listed in table 4.2.

Over the past years, the top ten suppliers of REBCO tapes have delivered in sum about 3000 km

of tapes (in 4 mm wide equivalent). They anticipate that they will increase the supply of 4 mm

equivalent tapes to about 4500 km/a until 2020. [Hol17]

4.3.2 Critical current magnetic field dependence

The critical current density of HTS depends strongly on the amplitude of the magnetic �eld

and in general on its orientation. Figure 4.7 shows the angular critical current dependence of

REBCO tapes from three di�erent manufacturers. It can be seen that the magnitude as well as

the position of the peak currents varies strongly among the three manufacturers. These di�erent

behaviors can be attributed to the di�erent manufacturing processes that are used.

As seen in Figure 4.7 a precise knowledge of the orientation of the superconductor within

the magnetic �eld is required to accurately calculate its critical current in practical applications.

Furthermore, the critical current angular dependency of the superconductor has to be known

and an accurate model to re�ect it has to be determined. It was shown in [Gri+14b] that a model

as shown in equation 4.4 is able to reproduce measurements within a 10% error

94 (�, \ ) =
940[

1 +
√
(:1 · � · cos(\ + U))2 + (� · sin(\ + U))2/�:

]:2 (4.4)
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4.3 Second generation HTS

Table 4.2: List of REBCO tape manufacturers and available, normalized critical currents of selected manufacturers at

77 K, s.f.

Company Process Texture I c / width Ref.

American Superconductor

(AMSC)

MOD RABITS 300 A/cm [Tsu+17]

SuperPower Inc. (SPI) MOCVD IBAD 400 A/cm [Haz17]

SuNAM RCE IBAD 400 A/cm [Lee17]

SuperOx PLD IBAD 400 A/cm [Mol17]

Fujikura PLD IBAD 400 A/cm [Fuj17]

Bruker HTS PLD ABAD 100 A/cm [Uso+18]

Theva RCE ISD 400 A/cm [Bau17]

Superconductor

Technologies (STI)

RCE IBAD 300 A/cm [SN16]

Shanghai Superconductor

Technology (SST)

PLD IBAD 300 A/cm [SN16]

Deutsche Nanoschicht

(DNA)

MOD RABITS 300 A/cm [Bäc17]

Shanghai Creative

Superconductor

Technologies

MOD IBAD 170 A/cm [Tsu+17]

Oxolutia MOD IBAD 60 A/cm [Vla+18]

SWCC Showa Cable

Systems

MOD IBAD 350 A/cm [Tsu+17]

MetOx MOCVD RABITS 300 A/cm [Met]

Samri MOCVD IBAD 300 A/cm [Sam]

with Bk, k1 and k2 being model parameters , je0 the critical current density in self �eld , B the

magnetic �eld magnitude , \ the �eld angle, U the displacement of the critical current peaks

from 0°. Based on the procedure described in [Gri+14b] the model parameters were determined

from ITEP internal data for six manufacturers (see Table 4.3).

4.3.3 Critical current temperature dependence

Figure 4.8 displays the critical current per centimeter tape width of commercial REBCO tapes at

di�erent temperatures for various manufacturers. The temperature dependence follows a roughly

linear behavior for large temperature ranges. When comparing temperature dependencies of

several tapes or manufacturers it is common practice to normalize the critical current values to

its 77 K, s.f. value. These normalized values are often called lift factors (LF).
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4 Basics of high temperature superconductivity

Figure 4.7: Angular critical current dependence of REBCO tapes from deutsche Nanoschicht, Shanghai Superconductor

Technology and Theva at 77 K and 100 mT background �eld. (Data published in [Sch17])

Table 4.3: Angular dependencies parameters at 77 K, s.f. conditions

Manufacturer Average Error / % Bk k1 k2 U Data range / mT

SST 3.5 0.15 0.35 0.95 10 50-600

DNA 4.4 0.6 0.85 1.95 0 50-600

Theva 2.5 0.25 0.7 1.05 25 50-600

SuperOx 5.8 0.25 0.45 1.45 10 25-600

SPI 4.5 0.15 0.2 0.9 3 50-600

SuNAM 6.8 2.65 0.45 10 0 50-200

!� () ) = �2 () )
�2 (77 )

Figure 4.9 shows that the temperature dependence is very similar among the manufacturers

within the liquid nitrogen region (65-77 K). At 65 K the smallest increase is observed with

SuNAM tapes with a lift factor of 1.86 while the highest increase is shown in the SPI tapes with

a lift factor of 2.37.

In summary it can be noted that the critical current temperature dependence of REBCO tapes

is signi�cant within the liquid nitrogen region with lift factors of up to about 2.5. Variation in

the temperature dependence among di�erent suppliers can be observed.
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4.3 Second generation HTS

Figure 4.8: Critical current - temperature dependence of REBCO tapes in self-�eld conditions (based on data published

in [SN16])

Figure 4.9: Lift Factors of REBCO tapes in self-�eld conditions (based on data published in [SN16])

4.3.4 Critical current strain dependence

The critical current of a REBCO tape strongly depends on its strain. In [BMS15] the electro-

mechanical properties of REBCO tapes from several manufacturers were studied. The results

of that study are summarized in Table 4.4. The irreversible strain limit Y100 is the strain value
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4 Basics of high temperature superconductivity

after which the critical current did not return to its original value when the strain was relaxed.

It is therefore the threshold for permanent mechanical damage to the conductor. A reversible

reduction of the critical current is observed before the damage becomes permanent. For the

studied superconductors in [BMS15] this reversible reduction started at around 0.4 % strain for

all manufacturers.

Table 4.4: Summarized electro-mechanical properties measured in [BMS15] at 77 K in self �eld.

Manufacturer Irreversible strain limit, Y100/ % Irreversible stress limit, f100/ MPa

Bruker HTS 0.70-0.72 660-670

Fujikura 0.56-0.58 690-700

SuNAM 0.66-0.68 740-750

SuperOx 0.47-0.49 740-760

SPI 0.66-0.69 800-820
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5 State of the art of REBCO high
current transmission

5.1 High current applications

Voltage levels such as ’high voltage’ are de�ned by standards of the IEEE, VDE or other stan-

dardization organizations. This is not the case for currents. The term ’high current’ can mean

di�erent currents depending on the context of the work. For the purpose of this work ’high

current’ is de�ned as currents above 10 kilo amperes.

The advantages of superconductors in general and REBCO in particular for direct current

transmission have been recognized in several pilot and demonstrator projects around the world

(see Section 5.3). In the following it will be discussed how these advantages translate into the

high current regime.

Advantages

• High current density
Conventional copper bus bar systems have, according to DIN 43671 [Ger00], a current

density in the area of 1 A/mm² and even less if the required distance between individual

bars is considered. Single REBCO tapes have an engineering current density of 400 A/mm²

in 77 K, s.f. and more (see Table 4.2). Of course these current densities can not be achieved

in a cable system due to the cooling requirements and the critical current magnetic �eld

dependence. However, it shows how strong the current carrying capacity can be upscaled

once a coolant supply is in place. This can be used to upgrade the capacity of existing

transfer lines by substituting them with superconducting ones (retro�tting) or create

signi�cant space and weight saving [Mic+15] for example in data centers or industrial

electrolysis facilities.

• Zero resistance transmission
Superconducting transmission systems can achieve lower system losses than conventional

bus bar systems in the high current regime [Mic+15]. This advantage increases for higher

currents and operational times as the ohmic losses scale with the power of two to the

current. Industrial electrolysis is one extreme application with currents up to 600 kA

while also having operational times of 23 h per day or more [KD14; FM06; Gar04; OBH07;

GE ; Mor15]. Chapter 9 describes a case study for a REBCO power transmission system in

industrial electrolysis.

15
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The lower system losses are also represented in a lower voltage drop along the a trans-

mission line. This is an attractive characteristic for example in feeder lines for public

transportation. In order to keep the voltage drop within acceptable bounds, the Japan

Railway requires in Tokyo, Japan, substations every 2-3 km. A superconducting solution

could signi�cantly reduce the numbers of substations [Tom+12]. It could also allow new

layouts in for example data centers utilizing a facility wide low voltage network [Min+09;

PKA07].

• High critical temperature
The high critical temperature of REBCO compared to for example MgB2 allows simple,

reliable LN2 cooling systems utilizing redundancies that exist in large scale nitrogen

lique�ers [HKI14; Sau17]. Furthermore it also simpli�es the design of the cryostat as a

simple two-walled vacuum isolated cryostat is usually su�cient.

5.2 High current conductor concepts

One of the challenges of high current transfer with HTS is that the current of the individual

tapes is limited to a few hundreds amperes. Depending on the desired current, tens or hundreds

of tapes need to be combined to achieve the operational currents. This is further complicated

by the �at HTS tape geometry and strain dependence of the critical current which makes it

di�cult to directly employ cabling techniques from for example LTS or conventional power

cables. Currently there are three distinctly di�erent cabling approaches which will be explained

in detail.

In order to avoid confusion within this work the following terms are de�ned as

• Conductor: General term for a superconducting element transferring electrical energy of

any size

• Wire: Superconducting base element for strands and cables, usually REBCO tapes within

this work, also called coated conductors in the literature

• Strand: Arrangement of several wires

• Cable: Arrangement of several wires or strands into a functional unit including a cryostat

• Conventional: Element with an ohmic resistance

5.2.1 Co-axial winding concept

Figure 5.1 illustrates the concept of strands based on wound REBCO tapes. The tapes are wound
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Figure 5.1: Schematic of REBCO co-axial winding concept. REBCO tapes are wound around a cable core under the lay

angle U and a certain lead.

around a central core with a diameter d and a lead p utilizing the good bend ability of the REBCO

tapes around their �at side. The lay angle U is calculated by

U = arctan

(
c3

?

)
(5.1)

There are two variants of this concept

• large core and small lay angle e.g. d = 35 mm, U = 15◦ in [Kim+13c]

• small core and high lay angle e.g. d = 5 mm, U = 30° in [vGH12]

The �rst variant has been used in several AC and DC cable projects around the world [Yum+09;

Mas+05; Kim+13b; Cho+11; Lee+11; Kim+13c; Yam+15; Yan+15]. In this case the superconductors

are roughly aligned with the cable self �eld which can be bene�cial to minimize the impact of

the angular critical current dependency of the superconductor (s. Fig. 4.7).

The second variant is currently developed as a high current strand by Advanced Conductor

Technologies (ACT) under the brand name Conductor on Round Core (CORC). To achieve high

currents multiple layers of superconductors are wound onto each other under alternating lay

angles into a single CORC strand. Due to the high lay angle a CORC strand o�ers very small

bending radii for example 5 cm with a minimum of degradation [van+13; van14] and has an

isotropic �eld dependence due to alternating the lay angle [Bar+15]. These two bene�ts make

the CORC variant an attractive option for magnets. The CORC strand is also one of the few

REBCO high current strand concepts that are commercially available. In 2016, approximately

120 m of CORC strand were produced of which about 70 m were commercial orders [Wei17].

17



5 State of the art of REBCO high current transmission

An inherent disadvantage of wound concepts is that for a meter of the conductor more than

one meter REBCO tape is required. As can be see from Figure 5.1 it scales with the lay angle U as

!'���$ =
!201;4

cosU
(5.2)

Table 5.1 lists some exemplary results of co-axial wound conductors. The 500 m co-axial cable

is a fully functional REBCO demonstrator cable that operates on Jeju Island, Korea. It features

two REBCO tapes layers which have a lead of 290 mm and 320 mm on core radii of 10.7 mm and

11.4 mm respectively. The cable is designed to operate at 3125 A and 80 kV with a maximum

operating temperatures of 72 K. It was installed in 2015 to connect two substations and is so far

the only long length DC cable that uses REBCO tapes as superconductors [Sim+13; Yan+15].

The 6 around 1 CORC follows the classical cabling structure with a central tube for the coolant

and all encased in an aluminum jacket. It was designed for large high �eld magnets (~20 T) such

as fusion or detector magnets. Each of CORC strand contains 38 4 mm wide REBCO tapes spread

over 12 layers. The tapes are wound around a 5.2 mm core resulting in an outer diameter of

7,6 mm of the CORC strand. [Mul+17; Mul+16b; Mul+16a; Mul+16c]

The 2 phase CORC system was designed to be used on US Air Force on-board applications

that require currents of up to 18.5 kA at 270 V. The two phases are arranged in a concentric

manner. The inner phase consists of 10 layers of REBCO tapes with radii between 2.77 mm and

4.12 mm and lead between 30 mm and 68 mm. The outer phase consists of 7 layer of REBCO

tapes with radii between 4.2 mm and 5.1 mm and lead between 52 mm and 69 mm. The system

was rated to carry 20 kA at 55 K per phase and achieved 7.5 kA at 76 K self-�eld [vGH12].

Table 5.1: Experimental results of CORC and co-axial winding concept cables using REBCO tapes

Type Critical current Length References

Co-axial winding cable 4103 A 72 K s.f. 500 m [Sim+13]

CORC: Two Phase 7561 A 76 K, s.f. ~1 m [vGH12]

CORC: 6 Around 1 13000 A, 77 K s.f. 0.8 m [Mul+17]

5.2.2 Roebel concept

A Roebel strand consists of several REBCO tapes from which a portion of the tape has been

punched out. These meandering tapes can be assembled into a cable as is shown in Figure 5.2.

The advantages of the Roebel concept are transposition of the tapes which results in relatively

low AC losses [Gol+14], good bend ability around the �at site of cable [Ott+16] and possibly

favorable alignment to an external magnetic �eld.

However due to the punching process material loss is unavoidable which can be a challenge

considering the high cost of HTS. Applications where the conductor experiences high stresses
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Figure 5.2: Schematic of Roebel cable consisting of 5 tapes [Bar13]

are also challenging for the Roebel cable as there can be degradation at the edges [Bay+15]. A

way to mitigate this is to add for example resins to improve mechanical stabilization [Ott+15].

Scaling up of the Roebel strand is also limited due to the fact only a certain amount of tapes �t

within on twist pitch [Gol+14].

The Roebel concept is developed by the KIT and General Cable Superconductors (GCS).

Table 5.2 lists some basic properties of Roebel strands prepared in the past.

Table 5.2: Basic results of Roebel strands produced in the past

Group I c 77 K,s.f. Length Number of tapes Punched tape width Ref.

KIT 447 A 1 m 10 1.8 mm [Gol+14]

KIT 2628 A 1.1 m 45 5 mm [Gol+14]

KIT 936 A 5 m 10 5.5 mm [Gol+14]

KIT 1411 A 1.1 m 15 5.5 mm [Ott+16]

GCS 309 A 0.54 m 9 2 mm [Gol+14]

GCS 1100 A 5 m 15 5 mm [Gol+14]

GCS 1420 A 21 m 15 5 mm [Gol+14]

5.2.3 Stack concepts

In stack concepts, individual REBCO tapes are stacked on top of each other. There are two main

variations of this approach. In the �rst approach tapes are stacked until the design critical current

is achieved. In the second approach a certain amount of tapes is stacked and then embedded into

casing or matrix to create a round strand. Multiple of these round strands can than be assembled

to achieve higher critical currents.
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The �rst approach has the advantage of being easily scalable to very high currents as was

demonstrated at the National Institute for Fusion Science (NIFS) in Japan. Where a demonstrator

was build that achieved 100 kA at 20 K and 5 T background �eld. The demonstrator uses three

directly adjacent stacks of 18 10 mm wide REBCO tapes totaling 54 tapes each having a critical

current of about 600 A at 77 K, s.f. The conductor was build to demonstrate the feasibility of a

stacked tape conductor approach in a helical fusion reactor [Ter17; Ter+15; Ter+14; Ito+14].

A joint development of Vision Electrics Super Conductors (VESC) and Karlsruhe Institute of

Technology (KIT) also used the �rst approach to develop a commercial stacked conductor for

industrial applications. The goal was to develop sti� conductor elements that can be quickly

assembled on site and easily connected via low resistive joints. The concept uses two stacks

of REBCO tapes with each tape being separated by a copper spacer to reduce the impact of

the magnetic �eld. The joints developed in the project achieved contact resistance below 1 nΩ

between to stacks. A prototype with two stacks of 23 REBCO tapes reached 20 kA at 77 K [Els17].

The second approach is followed by the Massachusetts Institute of Technology (MIT) that

developed a stack concept where the conductor is twisted around its central axis. The twisting

helps to decrease heat dissipation in large scale magnets for example in fusion devices due to

decreasing AC losses. Grooved copper rods have been investigated in which the stack can be

inserted to create a round strand [Tak+12]. The stacks are usually square therefore resulting in

40 to 60 tapes for 4 and 6 mm wide tapes assuming a tape thickness of 100 µm [Tak+17].

The Swiss Plasma Center (SPC) also follows the second approach by stacking and twisting

REBCO tapes. Additionally the REBCO tapes are soldered into two grooved copper half’s thus

creating a round strand. Twenty of these round strands each containing 16 4 mm wide tapes were

assembled into a demonstrator conductor for a future fusion device. In total, two conceptually

identical demonstrators were build with REBCO tapes from di�erent manufacturers, one was

supplied by SuperPower Inc and the other by SuperOx. Both demonstrators achieved 60 kA at

5 K and 12 T background �eld. [Ugl+15; Byk+16]

Another concept following the second approach is the Cross Conductor developed by KIT

which will be examined in detail in section 5.2.4.

In Italy at ’Agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico

sostenibile’ (ENEA) a concept is developed with focus on industrial scale production. The concept

is to use an extruded aluminum pro�le with 5 to 6 grooves into which 20 to 30 unsoldered 4 mm

wide REBCO tapes are stacked. The grooves of the aluminum pro�le follow a helical pro�le

with a lead of about 1.6 m. The diameter of the aluminum pro�le is about 20 mm. To the authors

knowledge no sample has been measured where all grooves were fully stacked with REBCO

tapes. The expected current is 10 kA at 77 K, s.f. conditions. [Cel+14; Aug+15]

Table 5.3 summarizes basic properties of samples following the stack approach.
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5.2 High current conductor concepts

Table 5.3: Experimental results of stack concepts

Group Type Current Intended Application Ref.

MIT Strand 6 kA 4.2 K 17 T High �eld magnets [Tak+17]

SPC Strand 1.6 kA, 77 K s.f. Future Fusion Reactor [Ugl+15]

SPC Demonstrator 60 kA 5 K 12 T Future Fusion Reactor [Ugl+15]

NIFS Demonstrator 100 kA 20 K, 5 T Helical Fusion Reactor [Ter17]

ENEA
Expected Prototype

Performance
10 kA 77 K s.f. Fusion Applications [Aug+15]

KIT,

VESC
Subscale Prototype 20 kA 77K s.f. Industrial Applications [Els17]

5.2.4 Cross Conductor

In the Cross Conductor (CroCo) concept individual tapes are soldered together and embedded

into a solder matrix. The concept is illustrated in Figure 5.3. By utilizing two di�erent tape

widths, the HTS CroCo aims to maximize the HTS cross section within the round matrix cross

section. In an additional process the round strand can then be jacketed by for example a copper

tube to improve thermal and electrical stability in case of a fault current event.

Currently there are three di�erent sizes of HTS CroCo under development (s. Tab. 5.4). The

largest currently developed CroCo uses REBCO tapes with widths of 6 mm and 4 mm which

typically achieves currents in the range of 3 kA at 77 K, s.f.. By reducing the size of the CroCo it

is possible to reduce the minimum bending radius.

Figure 5.3: Schematic of HTS CroCo using REBCO tapes of two di�erent widths in a round solder matrix with an

optional copper tube
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5 State of the art of REBCO high current transmission

Table 5.4: Basic composition of HTS CroCos of various sizes.

6/4 CroCo 4/2 CroCo 3/2 CroCo

Number of tapes
22 x 6 mm 18 x 4 mm 18 x 3 mm

10 x 4 mm 18 x 2 mm 10 x 2 mm

Ideal solder matrix diameter 7,2 mm 4,8 mm 3,6 mm

I c(77 K, s.f.) 3200 A 2000 A 1500 A

Min. bending radius 60 cm 40 cm 30 cm

When lower current densities are possible, additional stabilizer material instead of REBCO

tapes, can be included into the stack. This has the advantage that it increases the distance

between neighboring REBCO tapes and therefore reduces the self �eld reduction of the critical

current (Sec. 4.3.2). Additionally, the stabilizer materials helps with the current transfer into the

superconducting layers. Furthermore additional stabilizer material acts as a shunt and thermal

bu�er to protect the superconductors from damage during a fault current event.

5.2.5 Concept comparison

In the following a conceptual comparison based on bending properties, joint and termination

techniques, and tape usage is performed.

Bending

Bending is one of the challenges in REBCO conductor designs due to the �at tape geometry

which can be easily bend out-of-plane but hard in-plane [van+10; Ott+16]. The minimum

bending radius is used as a criteria for the bending properties. It describes the radius below the

conductor experiences a certain reduction in critical current (95 % I c compared to unbend is

often used). In general the minimum bending radius scales with the size of the conductor: The

larger a conductor is the higher the minimum bending radius is required.

The co-axial winding concept solves the directional dependency of the bending radius. With

the variation of the lay angle and lead, the minimum bending radius can be adjusted to the

applications needs. The CORC strands manage minimum bending radii in the order of 5 cm for

CORC strands with a diameter between 5 mm and 8 mm. Smaller CORC strands with diameter

between 2.5 mm and 4.5 mm can have bending radii in the order of 2.5 cm. [Wei17]. The

minimum bending radius of the full scale cable installed on Jeju Island (see Table5.1) is 1,85 m

which is su�cient for transportation in drums [Yan+15].

The Roebel concept retains the good out-of-plane bend ability of the tapes with minimum

bending radii in the area of 2 cm [Ott+16]. In-plane bend ability is still being investigated but

likely not improved compared to tapes.
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5.2 High current conductor concepts

The stacked concepts usually have a minimum bending radii in the range of a few decimeters

[Tak+13; Byk+15] as can be seen in Table 5.4 for the CroCo. In particular bending can be

challenging for the twisted variants of stacked conductors as the conductor will be forced to

bend around in-plane.

Joints and terminations

Superconducting power transmission lines longer than a few hundred meters require the use

of joints between the superconducting elements. Resistance free joints have been achieved for

REBCO tapes [Par+14] however the process is at the moment not suitable for application on

industrial sites. Therefore each joints currently introduces a resistance into the superconducting

system which usually should be kept to a minimum. A challenge for low resistive joints is the

layered structure of the REBCO tapes with the relatively high resistive substrates. Therefore,

low resistive joints can usually achieved only with access to the superconducting layer. Several

methods have been investigated in the past including soldering and welding.

There are several joint concept for stacked concepts that range in their resistance from 1 to

100 nΩ [WFP17; TCM14; Els17].

For the Roebel cable joints with resistances in the range of 10 to 20 nΩ have been realized in

the laboratory [Mur+18].

Joints for co-axial conductors often face the challenge of di�cult access to the REBCO layers

placed below several other layers of REBCO tape. For relatively few layers, practical industrial

solutions have been demonstrated [Sch+12; Muk+09]. For a 10 layer CORC this problem has

been solved by cutting away the layers in a staggered manner. With that technique a termination

resistance of about 30 nΩ was achieved [Mul+15].

Tape usage

One of the challenges of REBCO based power transmission is the cost of the superconductor.

Therefore, it is important to analyze how e�cient the various concepts use the base material. In

the past, the comparison was often driven by how well the REBCO tapes were aligned within a

magnetic self �eld due to the strong anisotropic critical current magnetic �eld relation. In recent

years a lot of progress has been made to create more isotropic tapes (see Figure 4.7). Shifting

this conductor design challenge towards a manufacturer selection problem, in particular for low

�eld applications such as power cables.

To illustrate this, critical current calculations were performed for three strand concepts and

three di�erent critical current magnetic �eld dependencies valid for materials from various

manufacturers. For a useful comparison the dimensions and initial amount of tapes need be

similar across all concepts. The outer diameter was therefore limited to about 7.6 mm. The
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5 State of the art of REBCO high current transmission

amount of REBCO tapes is de�ned by the sum of the REBCO tapes widths and was set to 156 mm

unless otherwise noted. The critical current was 30 A per mm width.

For the CORC this manifested in 39 4 mm wide tapes that were distributed over 13 layers

with a layer thickness of 100 µm, similar to a CORC described in [Mul+16c]. The stack concepts

were represented by a CroCo with 22 6 mm tapes and 6 4 mm tapes with 215 µm between the

tapes. For the Roebel strand 40 4 mm wide tapes were used totaling 160 mm width with 320 µm

distance between the tapes. The calculations were performed with the models described in

section 6.3.

The results are summarized in Table 5.5. Noticeable is that the Roebel concept results in the

lowest critical current with about 50 % of the critical current of the other concepts. This is not

surprising since the punching process reduces the tape cross section by about 50 %.

Table 5.5: Critical currents of three strand concepts for three di�erent critical current magnetic �eld dependencies.

Initially all tapes have the same amount of tapes. The strong reduction of the Roebel concepts is due to the

reduction of tape width during the punching process.

Manufacturer CroCo CORC Roebel

SST 3406 A 3762 A 1747 A

DNA 3236 A 3283 A 1642 A

Theva 3181 A 3281 A 1627 A

The CORC strand achieves the overall highest critical current in all cases. Compared to the

CroCo the critical current of CORC strand is about 10% higher for tapes with strong anisotropic

angular critical current dependency (SST) but only between 1% and 3% higher for more isotropic

tapes.

In addition to the critical current, one needs also to consider how much tape is necessary for

one unit length of strand for an accurate estimation of the tape usage. This can be expressed in

a factor such as Ltape / Lstrand. For the CroCo this factor is 1 as one unit length of tape results in

one unit length of strand. This is not true for the Roebel strand and the CORC strand. In the

Roebel strand it depends on the transposition and the amount of tapes while the CORC strand it

depends on the lay angle. According to [Bar+15] the lay angle in CORC varies between 30° and

60° which translate into a Ltape / Lstrand factors between 1.15 and 2.

Summary

In this summary three strand concepts are being compared on a scale of 3 (+, 0, -) in the previously

described categories.

In terms of bending, the winding concepts (CORC) have the clear advantage over all other

concepts due to solving the directional dependence of the REBCO tape and realizing very tight

bending radii if necessary. The Roebel concepts also manages small bending radii out-of-plane
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5.3 Summary of HTS DC cable projects

but in-plane bending remains to be investigated [Ott+16]. Stacks have the poorest bending

properties of the three concepts.

Joints and terminations have been developed the furthest in stack concepts with multiple

suggestions on how to realizes practical low resistive joints. For the Roebel concepts promising

joint concepts have also been realized. Practical low resistive joints remain a challenge in

winding concepts with multiple superconducting layers.

The Roebel cable has the highest tape consumption in regards to achieved critical current

per meter strand of the three concepts which is largely due to the loss of superconductor in the

punching process. The winding concepts can pro�t from being well aligned with the magnetic

�eld thus achieving higher critical currents than a stack for certain tape properties. However,

the necessary winding around the core negates the advantage in critical current by higher tape

consumption per meter strand compared to a stack. If the critical current between stack and

winding concept is equal than the advantage in tape usage has to be granted to the stack concept.

The ratings are summarized in Table 5.6. In conclusion it can be noted that the Roebel concept

is not suitable for bulk power transmission due to its poor tape usage. The winding and stack

concepts are equal in their overall rating with the distinction in the bending properties.

Table 5.6: Rating of three strand concept based on their bending, joints and tape usage.

Bending Joints Tape usage

Winding + 0 0

Roebel ± + -

Stacks - + +

5.3 Summary of HTS DC cable projects

Table 5.7 gives an overview of existing DC power transmission projects of signi�cant length.

It can be seen that the majority of the cables still utilizes BSCCO as superconductors. Only in

recent years two projects were realized with REBCO. One explanation might be the relatively

long project time of such long length cables and the present availability of large amounts of

HTS.

The highest currents of 20 kA so far were realized with two 20 m MgB2 cables operated at

24 K at CERN which were part of investigations for LHC High Luminosity upgrade at CERN

[BF17]. The goal of the investigation was to determine if MgB2 cables could be used as high

current feeders for the magnet systems installed at CERN.

A REBCO stack concept developed by Vision Electrics Super Conductors (VESC) and KIT also

achieved 20 kA at 77 K in a subscale test. The concept was unique as it features multiple joints
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5 State of the art of REBCO high current transmission

with resistances below 1 nΩ. Full scale elements with a total length of 25 m were installed in a

chlorine electrolysis at BASF in Ludwigshafen and are being tested.

In the 10-kA range a 360 m long BSCCO based cable has been in operation since 2012 in China

as a connection between a power plant and an aluminum electrolysis plant. Similar currents

are planned for a high-voltage MgB2 cable demonstrator which is developed by a consortium

including Nexans, KIT and CERN for bulk power transmission within the Best Path framework

of the European Commission. The goal is to build a full scale demonstrator cable that validate

the usability of MgB2 in high power electricity transfer as well as study the economic viability

of such a cable and its environmental impact.
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6 Conceptual design of REBCO
DC cables

Since REBCO tapes became commercially available there have been a number of HTS cable

projects. They all share certain basic components that are required for HTS cables.

1. HTS section for current transfer

2. Cryostat to reduce heat leakage into the cable

3. Coolant �owing along the cable to cool to the superconducting state and

remove excess heat

4. Dielectric to separate the cable from ground potential

5. Stabilizer to protect the superconductor during fault events

In the following sections equations that allow to conceptually design these core components are

summarized.

6.1 Temperature and pressure profile

The purpose of the coolant is to remove heat that has leaked through the cryostat or was

generated within due to dissipation. The overarching formulas describing the coolant �ow can

be derived from the balances of mass, momentum and energy. In case of a round cable the radial

dimensions are negligible with respect to the axial dimensions. This allows us to simplify the

equations to a 1D problem. When considering an incompressible �uid (d = 2>=BC .) in steady

state operation

(
3
3C

= 0
)

the balances are

¤< = 2>=BC . (6.1)

3?

3G
=
Z · E2 · d!#2

�ℎ · 2
(6.2)

3)

3G
=

1

2?

(
Z · E2

�ℎ · 2
+ @¤<

)
(6.3)

with Z the Darcy friction factor, E velocity, d density, �ℎ hydraulic diameter, ¤< mass �ow, 2?

speci�c heat capacity and @ heat load per unit length. A complete derivation of the formulas is

noted in [Tre06]. The heat load per unit length @ contains the heat leakage through the cryostat

@2A~> as well as electromagnetic losses within the superconductor @(� (see section 6.5).
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6 Conceptual design of REBCO DC cables

@ = @2A~> + @(� (6.4)

Equation 6.2 utilizes the Darcy friction factor Z to describe the pressure drop due to friction

within the cable. They are either determined experimentally or estimated with empirical formulas

which depend on the Reynolds number

'4 =
E · d · �ℎ

`
(6.5)

with ` being the dynamic viscosity.

If a constant speci�c heat 2? = 2>=BC . along the cable length is assumed than the pressure

drop and temperature increase can be written as

Δ? =
Z · E2 · d · !
�ℎ · 2

(6.6)

Δ) =
Z · E2 · !
2 · �ℎ · 2?

+ @ · !
¤< · 2?

(6.7)

with L as the cable length. Equation 6.6 is also known as the Darcy–Weisbach Equation.

The coolant channel usually has the geometry of a round central channel or ring type channel.

The hydraulic diameter for a round central channel is the diameter of the channel �ℎ = � .

For ring type channels it is calculated with the inner and outer diameter of the ring �ℎ =

�>DC4A − �8==4A .
The model described in this section represents a simple analysis of the balances of mass,

momentum and energy and neglects the thermal conduction in radial direction entirely. For the

purpose of this conceptual design it will be assumed that all temperatures in radial direction are

equal to the liquid nitrogen temperature.

Liquid nitrogen cooling

Table 6.1 lists the �xed point properties of nitrogen [Spa00]. Figure 6.1 shows the phase diagram

of liquid nitrogen and illustrates the operational range of REBCO cable applications. Most HTS

cables utilize sub-cooled LN2 in order to increase the critical current and therefore the current

carrying capacity of the cables (Sec. 4.3). Nitrogen can be liquid until the triple point at 63.151 K.

With a safety margin against freezing and boiling, the operational temperature range of REBCO

cables is usually between 65 K and 77 K. Larger temperature di�erences are possible but one

needs to consider that the critical current of REBCO is roughly reduced by half from 65 K to 77 K

(Fig. 4.8). In addition, a temperature margin for potential fault scenarios needs to be considered.
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6.1 Temperature and pressure pro�le

Figure 6.1: Liquid nitrogen phase diagram with a schematic of the operational range of LN-cooled HTS cables

Table 6.1: Fixed point properties of nitrogen

Temperature (K) Pressure (MPa) Density (mol/dm
3
)

Critical point 126.192 3.34 11.184

Triple point 63.151 0.013

Liquid nitrogen alternatives

There are alternatives to achieve lower temperatures than 63 K. Table 6.2 lists �xed point

properties of possible alternatives to nitrogen. Liquid helium is a commonly used cryogenic for

LTS but the cost of 10 - 20 €/l makes it unattractive for power transmission applications. Instead

gaseous helium is used in closed con�nes for example on ships, when the risk of su�ocation

also prohibits the use of liquid nitrogen [FKG07; Kep+11].

The use of liquid hydrogen is investigated as a method for combined transport of chemical

and electrical energy with MgB2 superconductors [Kos+12; Kos+15; Vys+13; Vys+15; Shi17].

However, the highly �ammable nature of hydrogen may limit the use of liquid hydrogen.

Neon is usually not considered as cryogenic cooling �uid due to its lower thermal conductivity

and higher price compared to helium [Ord+13].

A method to lower the freezing temperature of nitrogen is by mixing it with oxygen. The

freezing point of this so called mixed refrigerant can be decreased to 50.1 K at 77 mol% oxygen

and 23 mol% nitrogen. This could allow the economic operation of HTS applications in the

50 - 60 K region [KGO15].
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6 Conceptual design of REBCO DC cables

Table 6.2: Boiling points and triple points of possible coolants for HTS cables

Cryogenic Boiling Temperature at normal pressure / K Triple Point Temperature / K

Helium 4.2

Hydrogen 20.4 13.8

Neon 27.1 24.6

Nitrogen 77.4 63.2

Argon 87.3 83.8

6.2 Fault mitigation

For conventional cables the fault scenario is typically a short circuit for which design guidelines

have been published in the IEC 60364-5-54 standard. To the best of the authors knowledge no

such guidelines have been published for superconducting cables. However an IEC standard for

testing AC superconducting power cables is in the drafting phase.

REBCO has a high intrinsic electrical resistivity in the normal conducting state. In consequence,

the high electrical resistivity during an over current event would lead to a signi�cant amount of

joule heating within the cable. This heat in�ux could damage the superconductor (burn through,

critical current degradation) or break down the dielectric.

One option to limit the heat in�ux is the use of a low resistive conductor in parallel connection,

called stabilizer. As a conservative approach one assumes that the entire fault current �ows in

the stabilizer and not in the superconductor. The Joule heat is then

& � >D;4 = '() ) · �25 0D;C (6.8)

with R(T) being the temperature-dependent electrical resistance of the stabilizer.

To calculate the resulting temperature rise during an over current event within the stabilizer

an adiabatic energy balance is used

� · !
)�=3∫

)(C0AC

2 () ) 3) =

C5 0D;C∫
0

d4; () ) · !
�

· �2
5 0D;C

3C (6.9)

With A being the stabilizer cross section, L cable length, d4; () ) speci�c electrical resistivity of

the stabilizer, 2 () ) volumetric heat capacity of the stabilizer, and C5 0D;C the fault duration. )BC0AC

is the starting temperature, and )4=3 the maximum temperature.

In [Muk+09] it was reported that a REBCO power transmission cable was exposed to a

fault current of I fault = 31500 A for C5 0D;C = 2 s. The majority of the current �owed over copper
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6.3 Critical current calculation

stabilizer with a total cross section of Astab = 600 mm². During the fault the temperature increased

from T start = 77.3 K to T end = 80 K.

Applying equation 6.9 to calculate the required copper cross section to reproduce the reported

temperature rise

�BC01 =

√√√√√√√√√√√√√√
C5 0D;C∫
0

d4;,BC01 ()4=3 ) · �25 0D;C 3C

)�=3∫
)>?

2BC01 () ) 3)
(6.10)

=

√√√√√√√√√√√√√
C5 0D;C∫
0

d4;,BC01 ()4=3 ) · �25 0D;C 3C

)�=3∫
)BC0AC

00 + 01 exp (03) ) 3)
(6.11)

= 974 mm2
(6.12)

with 00 = 3, 513 · 106 J
m3K

, 01 = −5, 414 · 106 J
m3K

and 02 = −0, 014 1
K and d4;,BC01 (80 K) =

2, 276 · 10−9 Ω
m .

According to Equation 6.10 974 mm² of copper would be required to achieved the observed

temperature rise of the experiment performed in [Muk+09]. The actual stabilizer amount was

600 mm². The di�erence is likely caused by neglecting the heat capacity of all other cable

components as well as as the heat transfer within the cable during the fault. Additionally the

material properties are �tted in this case based on low temperature measurements of copper

published in [SDR92; WC84] and therefore the properties might di�er from the actual used

materials.

6.3 Critical current calculation

The calculation of the critical current is complex due to its various dependencies (s. sec. 4.3).

This results in varying critical currents over the conductor cross section (magnetic �eld, strain)

and length (temperature, strain).

To simplify the problem it is assumed that the strain does not impact the critical current

and that the temperature is constant. As a conservative approach the highest superconductor

temperature within the system is chosen. With these assumptions the critical current calculation

is simpli�ed to solve the critical current magnetic �eld dependency of the superconductor. To

simplify matters further, the problem is reduced to steady state and 2D which means that the
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6 Conceptual design of REBCO DC cables

critical current magnetic �eld dependency is expressed in the x-y-plane and that current �ows

perpendicular to the plane.

A fast implementation for calculating the critical current of a conductor is to approximate the

conductor as a grid of in�nitely long line conductors. In case a su�ciently dense grid is given,

the magnetic �eld in a line conductor can be approximated by the sum of the magnetic �elds

produced by all neighboring line conductors. Applying the Biot-Savart law for in�nitely long

straight line conductors gives the magnetic �eld components of a line conductor Bi,x and Bi,y as

�8,G =
`0

2c

∑
9≠8

�2 (� 9,G , � 9,~)
(G8 − G 9 )

(G8 − G 9 )2 + (~8 − ~ 9 )2
(6.13)

�8,~ =
`0

2c

∑
9≠8

�2 (� 9,G , � 9,~)
−(~8 − ~ 9 )

(G8 − G 9 )2 + (~8 − ~ 9 )2
(6.14)

with I c(Bj,x ,Bj,y) being the critical current magnetic �eld dependence described in section 4.3.2

and equation 4.4. An implementation of this type was published in [ZQG16] and additionally

provides an open source code written in MATLAB. Implementations of this type allow for rapid

critical current calculations for e.g. stack like geometries. However complex geometries can

quickly become challenging as the generation of line conductor grids can become very tedious.

It can therefore be bene�cial to utilize the Finite Element Method (FEM). In commercial

implementations of this method such as COMSOL, the geometries can be imported from computer

aided design (CAD) software and the mesh generation is automated. Within such a software the

magnetic vector potential

∇ ×
(
1

`
∇ ×G

)
= P (6.15)

In this case the J distribution is iteratively resolved with the constraint that J = Jc(B) while

the B �eld distribution across the tapes is refreshed in each iteration until self consistent Jc(B)
and B distributions are reached. For details on this method can be found in [Gri+14b].

Both implementations neglect the impact of varying contact resistances at the ends of the

superconductor which could distort the current distribution. Therefore it is assumed that the

current in each element of the calculation is at its critical point as de�ned by critical electrical

�eld.

6.4 Electric insulation

The dielectric has the purpose of separating the surfaces at elevated voltage from its surroundings

at ground potential. The ability of a material to prevent a discharge between two surfaces at

di�erent voltages is called dielectric breakdown strength. The breakdown of the dielectric is a
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6.4 Electric insulation

statistical event. The break down voltages of a material is tested in a, preferably, large number

of tests under a certain operational mode. The individual break down voltages are then �tted,

usually with a Weibull distribution. Interpolation to a su�cient low breakdown probability

(often 0.1 %) results in the breakdown strength of the material.

There are several factors that e�ect the breakdown strength of a material like electrode type,

electrode surface roughness, dielectric volume etc. This unfortunately can lead to a rather wide

spread of reported breakdown strengths.

According to [Bul67] the electric stress of a cylindrical DC cable can be calculated by

� (A ) = *

A · ln A2
A1

(6.16)

with* being the rated voltage, A1 and A2 being the inner and outer diameter of the cylinder

respectively. For the formula it is assumed that the temperature and the conductivity of the

dielectric, is constant across the dielectric.

In superconducting cables two groups of dielectrics are often distinguished: Cold and warm

dielectrics.

In cold dielectrics the insulation within the cryostat is at cryogenic temperatures. This has

the advantage that the entire cryostat is at ground potential as well as allowing HTS screens

which improves the performance of cable during transients or in AC operation. A typical cold

dielectric used in cables is polypropylene laminated paper (PPLP) [GS12; Cho+12; Haz+02;

Hwa+13; Kik+15; Kim+15; Kim+13a; Lee+13; Oku+02; Rez+10].

In a warm dielectric the insulation is applied to the outer wall of the cryostat at ambient

temperatures. This allows the use of the full range of traditional dielectrics such as extruded

cross linked polyethylene (XLPE). Furthermore, the inner cryostat can be, depending on the

voltage, signi�cantly smaller thus decreasing the cold surface and ultimately the heat leakage

into the cryostat. The lower thermal mass within the cryostat can also be bene�cial in terms of

cool down time of the cable.

Limitations of the approach

At this point the accumulation of space charges in DC operation as well as various transient

behaviors such as lightning impulses or polarity reversals are neglected. An overview of the

electric �elds of a DC cable in it’s various operational stages can be found in [JM98].

The dielectric strength of the PPLP is slightly dependent on the pressure but saturates after

0.3 MPa [Kim+12]. There is also a slight di�erence between positive and negative polarity in

which the positive polarity has a lower break down strength [Kim+12] and is therefore used as

the reference polarity.
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6 Conceptual design of REBCO DC cables

Insulating cooling channels

Section 6.1 describes the necessity of coolants to maintain the cryogenic temperatures. These

coolants often �ow in dedicated coolant channels that connect further to the cryogenic system.

Generally, it is not desirable to operate the cryogenic system (valves, storage tanks, circulation

pumps, etc.) at the operating voltage of the cable. In order to prevent this, the coolant can be

surrounded by for example PPLP to electrically insulate the coolant channel from the remainder

of the cable. Another approach could be to install electric insulation breaks [Kov+15] for example

at the end of the cables.

6.5 Cable losses

Two types of losses are discussed within the frame of this work. First the losses due to heat

leakage into the cryostat qcryo and second electromagnetic losses within the superconductor

qSC.

@C>C0; = @2A~> + @(� (6.17)

Cryostat losses

Cryostats are used to reduce heat leakage into the cold, superconducting system. Cryostats

operating in the liquid nitrogen region (65 K - 77 K) are often multi walled vacuum vessels

with multi-layer super insulation (MLI) in between. Multi layer insulation reduces the heat

transfer by using multiple layer of re�ective foil to reduce heat transfer by radiation. These

layers are loosely stacked with spacers of low thermal conductivity thereby limiting the heat

transfer by conduction. By placing MLI into a vacuum, the heat transfer by gas convection can

be minimized.

Cryostats can be grouped into rigid cryostats and �exible cryostats. Flexible cryostats often

utilize corrugated pipes to allow for bend ability and compensate for the thermal contraction

when being cooled. Aside from the obvious advantage of a bendable cable, �exible cryostats

also have the advantage that long cable pieces can be manufactured, evacuated and tested at the

manufacturers facilities. The transport to the installation site can be achieved on drums. The

�exibility of the cryostats comes at the price of higher heat transfer rates compared to rigid

cryostats [Fes02b; Fes02a].

A challenge for both cryostat types is to guarantee a high vacuum for life times of 20 years

and more. This is usually accomplished by installing getter materials into the cryostat that

compensate for out-gassing of materials [Rey15, p. 200].
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6.5 Cable losses

The calculation of heat transfer through multi layer insulation is very challenging due to un-

predictable changes of parameters like winding pressure, uniform contact pressure or interstitial

pressure [Neu04].

For this �rst conceptual design, experimentally established data is used. The thermal con-

ductivity of several �exible, corrugated pipes with 30 to 60 layers of MLI was investigated in

[Fes02a; Fes02b] at various pressures. It showed that a thermal conductivity of k = 4 mW/(m K)

is achievable at pressures in the region of p = 10-8
MPa for �exible cryostats that bridge room

to liquid nitrogen temperature. With the thermal conductivity, Fourier’s law can be used for a

cylinder to calculate the speci�c heat load per meter q into the cold system

@2A~> = 2: c
Δ)

ln(3>DC4A/38==4A )
(6.18)

Applying this formula to a real cable for example the AmpaCity cable results in

@2A~> = 2 · 0.4 <,

(< ) c
300 − 70 

ln(120<</75<<) = 1.2
,

<
(6.19)

which is in the range of what has been reported for the cable [Sha+17].

Commercial �exible cryostats such as Nexan’s Cryo�ex [Nex] are usually only available

at certain diameters which would impose additional restrictions on the design process. To

avoid these restrictions it will be assumed that the outer diameter scales linearly with the inner

diameter

3>DC4A = 1.5 · 38==4A + 1 (6.20)

with b = 13 mm. The formula is based on a linear regression of commercially available cryostats

[Nex].

Electromagnetic losses

There are several sources of dissipation in a REBCO tape. They were summarized in [Gri+14a]

as follows

• Hysteresis losses, which are caused by the penetration and movement of the magnetic

�ux in the superconducting material

• Eddy-current losses, which are caused by the currents induced by a magnetic �eld and

circulating in the normal metal parts of a superconducting tape

• Coupling losses, which are caused by the currents coupling two or more superconducting

�laments via the normal conducting metal regions separating them

• Ferromagnetic losses, which are caused by the hysteresis cycles in magnetic materials
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6 Conceptual design of REBCO DC cables

The hysteresis losses are the only mechanism that is unique to superconducting power appli-

cations and are often the dominant source for power dissipation. For this reason the other

mechanisms are often neglected. The challenge in calculating the hysteresis losses is that they

depend on the critical current of the tape. As already mentioned in section 4.3.2, the critical

current of a tape not only varies with amplitude of the magnetic �eld but also with the angle. To

accurately calculate the hysteresis losses, numerical models are required that have a su�ciently

high resolution to consider these changes of the critical current.

There are several analytic models which help to provide a �rst estimate of losses within a

REBCO tape or cable under AC operation [NOR70; VM95]. For a tape or cable operating under

DC current with a small ripple current no such analytic models have been developed as of yet.

As a consequence some publication chose to adopt the pure AC models to the ripple currents

under DC currents problematic as worst case scenario [Rey15, p. 210].

Investigations of the problem of AC ripple losses within a large DC current suggest that these

losses are negligible compared to cryostat losses [Iva+16; Yos+14]. Under the assumption that

high current application such aluminum electrolysis use very high pulse recti�ers [FI02], AC

ripple losses will be neglected at this point.

In order to model the losses qSC that a superconductor exhibits when it is operated close to

critical current the power law will be used

@(� = �>?�2

(
�>?

�2

)=
(6.21)

6.6 Strain

One of the main features of cables in comparison to bus bars is that they can be bent. Bending

a cable leads to strain in most parts of the cable. The performance of the superconductor is

strain-dependent therefore it is necessary to determine the bending limits that a cable can

sustain.

One axis bending

For calculating the bending strain of a single HTS CroCo, the Euler-Bernoulli beam theory

[Bal14] will be used, which is valid for axial dimensions far greater then radial (L >‌> R), small

deformations, and one axis bending. The strain distribution is linear over the cross section with

compression on the inner side and tensile strain on the outer side while a center line remains

strain free (neutral axis). When comparing the strain limits of a REBCO tape, one can see that

the tensile strain limit is the weaker one and therefore limits the performance of the conductor

[vE07]. With a linear strain distribution, the maximum strain acts at the edges of the CroCo.
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6.6 Strain

n<0G =
�2A>2>

�=4DCA0;
(6.22)

with Dcroco being the diameter of the CroCo and Dneutral the diameter of the bend neutral axis.

For the investigated geometry it is important to know if the individual conductors can move

or slip with respect to neighboring surfaces. When slipping is possible, the conductor bends

around its own central axis. However, when it is �xed to a surface it bends around the center

axis of that surface’s body. As an example, the individual HTS tapes in a CroCo bend around the

central axis of the CroCo because they are soldered together and therefore can not slip. This can

also happen when for example a jacket exerts a high radial force on the CroCo.

For the case of slipping one can assume a maximum strain of n<0G = 0.4% based on the strain

limits shown in Table 4.4 and a CroCo diameter of DCroCo = 7 mm (Sec. 5.2.4) are considered. This

leads to a minimal neutral diameter of Dneutral = 1.75 m. This is su�cient to transport CroCos

on conventional woods drums [Kab; Nex06].

For the no-slip case the minimum diameter of the drum can not be determined because DCroCo

is unknown in this case. However one can determine the maximum CroCo diameter DCroCo,max

that can be transported on the available drums which is 9.6 mm for a drum with 2.4 m inner

diameter.

Helical bending

Section 5.2.1 describes the co-axial winding conductor in which REBCO tapes are wound around

a central core. The same principle can be applied to CroCos in order to modify the bending

properties of cable consisting of CroCos or to mitigate thermal contraction during cool down

(see Annex A.6).

When considering the CroCo for bending purposes it is assumed that it acts as a solid rod.

This means when a CroCo is bend into a helical shape the outer tapes of the CroCo will always be

under tensile strain, the inner tapes are under compression while the central tape is una�ected.

The bending strain is then

n14=38=6 =
!<0G − !=4DCA0;

!=4DCA0;
(6.23)

with

!=4DCA0; =

√
(c�=4DCA0; )2 + ?2 (6.24)

!<0G =

√
(c�<0G )2 + ?2 (6.25)
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6 Conceptual design of REBCO DC cables

with Dneutral being the diameter to the central axis of the CroCo and p being the twist pitch of

the helix and Dmax is the maximum distance from the central axis of the CroCo to the edges of

the cross.

Bending of helical wound cable

Bending a helical wound cable can result in additional strain acting upon the individual conduc-

tors. This can be avoided when the individual conductors can slip against each other [Li+13]. To

ensure this behavior, the jacketing forces and therefore the friction forces need to be kept below

a certain threshold. The determination of the friction forces is a whole process in itself. For a

precise calculation of these please refer to literature [IEZ07; Pap97; HYL12; Li+13].

6.7 Design procedure

This section provides a step by step conceptual design process for REBCO DC cables. A broad

range of DC cables can be created based on the previously discussed formulas. However the

high degree of freedom makes it di�cult to de�ne a practical design process without going to

extraordinary lengths to cover all possibilities. Therefore additional constraints to the design

process are imposed.

• The �rst constraint is the use of the Cross Conductor (CroCo) as superconducting strands

in the cable. This is a design choice based on the observation that for the targeted

very high currents the number of tapes increases into the hundreds. Combining the

required superconductors into larger sub-strands allows for simpli�ed cabling and o�ers

the possibility of a modular design.

• The second constraint is the use of a dedicated channel for the coolant. This is a constraint

to reduce the complexity of temperature and pressure calculations. Without a dedicated

coolant channel the coolant would need to �ow in the gaps between the CroCos which

poses a problem of signi�cant complexity in itself and is out of the scope of this work. For

the purpose of this work, focus is put on a cable geometry with a central cooling channel.

• The third constraint is that the cable must be transportable on conventional drums.

The design process is illustrated in Figure 6.2. There are several possible ways to order the

calculations steps while creating a viable processes. However, two of them appear to be logical,

one can build a cable by starting with the inner most component and build outwards or one can

start at the outer limit and build inwards. The �rst approach would likely be faster in �nding

compact designs while the second would likely be faster in �nding cost e�cient designs.

The process displayed in Figure 6.2 starts from the outer most layer and builds inwards.
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6.7 Design procedure

Define design specifications 

Iop, Uop, Lcable, Ifault,, tfault, TH, dcryo 

Define boundary conditions 

Tin, Tout, pin, pout, Iop/Ic 

Calculate dielectric thickness δdie 

Calculate number of CroCos  ncroco 

Calculate stabilizer cross section Astab 

Calculate cooling channel diameter Dcha  

Calculate losses q 

Calculate Strain & Bending Radii 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Dcha <  

dcryo – 2(DCroCo + δdie) 

 

Output parameters 

Save data and create new set of   

boundary conditions 

Chose solution 

No 

Yes 

Figure 6.2: Design process for conceptual REBCO DC cable utilizing HTS CroCos with liquid nitrogen cooling
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6 Conceptual design of REBCO DC cables

Step 1: Design specifications

The design speci�cations de�ne the required operational parameters for the target application

and have to be de�ned as a �rst step in the design process. Table 6.3 lists the minimum design

speci�cations.

Table 6.3: Required design speci�cation for REBCO DC cable

Description Symbol

Operational current Iop

Operational voltage U op

Cable length L

Fault current I fault

Fault duration tfault

Ambient temperature T H

Inner cryostat diameter dcryo

In addition to these design speci�cations material properties and parameters need to de�ned.

This includes coolant and dielectric properties.

The design speci�cation can also be extended by boundary conditions to reduce the parameter

space in an optimization process. As an example, the coolant could be de�ned as a design

speci�cation or certain geometrical structure could be imposed.

The inner cryostat diameter is of particular importance, as it acts as limiting geometric

condition which often decides if a set of speci�cations has a solution.

Step 2: Boundary conditions

In addition to the design speci�cations, certain boundary conditions need to be de�ned in

order to solve the equation system and generate a conceptual design. In contrast to the design

speci�cation, the boundary condition can be modi�ed during an optimization process. Table 6.4

lists the boundary conditions that were chosen for this design process. The boundary conditions

were chosen due to the fact that it allows more freedom within the design process if the

temperatures and pressures are de�ned as boundary conditions. This way it is possible to

perform for example critical current calculations before the thermal design is completed.After

this step, the cable consist of a cryostat and will be �lled in the next steps. This is schematically

shown in Figure 6.3. The size of the outer cryostat is only a suggestion at this point and may

vary.
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6.7 Design procedure

Figure 6.3: Schematic display of a conceptual cable design after Step 2 of the design process

Table 6.4: Required boundary conditions

Description Symbol

Inlet temperature T in

Outlet temperature T out

Inlet pressure pin

Outlet pressure pout

Operational to critical current ratio Iop/ I c

Step 3: Dielectric layer

In this step the dielectric thickness is calculated to insulate the superconducting cable core from

the inner cryostat. Solving Eq. 6.16 at A = A384 with A2 = A384 + X384 gives the thickness of the

dielectric layer X384

X384 = A384

(
exp

(
( ·*

��� · A384

)
− 1

)
(6.26)

To ensure that the electric �eld is greater than the breakdown strength, the safety factor ( is

always larger than one. In high current operation the voltages are often relatively low (< 2000 V),

this can result in a very thin dielectric. In case the dielectric is realized by several tapes wound

around the core it needs to be considered that several layers are required to achieve a su�cient

overlap between the tapes. For PPLP the minimum layer count is usually between 3 and 5 layers.

In case of a warm dielectric cable the dielectric will be applied to the outer wall of the warm

cryostat wall.
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6 Conceptual design of REBCO DC cables

Step 4: Stabilizer cross section

All variables in the stabilizer calculation are de�ned in the design speci�cations and boundary

conditions. For small temperature di�erences the stabilizer cross section can be quickly calculated

with Eq. 6.10. A possible procedure for large temperature di�erences is discussed as an example

in Section 6.8.

Step 5: HTS CroCos

If the inner diameter of the dielectric layer is known, the maximum number of CroCos that can �t

into one layer following the dielectric can be calculated by dividing the available circumference

by the CroCo diameter

#<0G,�A>�> =
c (3384;42CA82 − ��A>�> )

��A>�>
(6.27)

with DCroCo being the outer diameter of the CroCo. Dividing the required critical current by

the number of CroCos provides the required critical current per CroCo

�2,�A>�> =
�2,201;4

#<0G,�A>�>
(6.28)

The number, location and critical current of the cable are known and the operational tem-

perature is de�ned in Step 2. Therefore critical current calculations by the methods outlined in

section 6.3 are possible. This is an iterative process in which the critical current of the CroCos is

adjusted until the cable critical current is met. This can be done for example by changing the

number of REBCO tapes per CroCo or changing the tapes properties (magnetic �eld behavior,

critical current). The critical current values listed in Table 5.4 can act as initial values in this

process.

During the iterative CroCo design process one should consider the required amount of

stabilizer material calculated in Step 4. It can be bene�cial when all the necessary stabilizer is

already build into the CroCo. Otherwise, the lacking stabilizer material needs to be added for

example into the voids between adjacent CroCos and connected to the electrical circuit.

Should it not be possible to achieve the required critical cable current with a single layer of

CroCos than additional layers can be added.

After this step the conceptual design features the cryostat, dielectric and the superconducting

part in form of the CroCos. A schematic of the status at this point is shown in Figure 6.4. The

�nal component of this design process will be a cooling channel in the center of the cable.
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6.7 Design procedure

Figure 6.4: Schematic of a possible conceptual cable design after calculating the number of CroCos

Step 6: Loss calculation

The cable losses can be calculated based on the design speci�cations and the boundary conditions.

The calculated losses include the electromagnetic losses of the superconductor modeled by the

power law as well as heat leak through the cryostat

@ = 2: c
Δ)

ln
(
1, 5 + 1

32A~>

) + �>?�2 (
�>?

�2

)=
(6.29)

with k = 4 mW/(m K) being the experimentally determined heat transfer through the cryostat

and b = 13 mm a �t factor (section 6.2 and 6.5).

Step 7: Cooling channel dimensions

Based on the boundary condition of a central round cooling channel, the hydraulic diameter is

set to the diameter of the cooling channel �2ℎ0 = �ℎ . For the purpose of this conceptual design

a corrugated pipe will be used as cooling channel.

The determination of the Darcy friction factor for corrugated pipes is non-trivial and outside

of this work. Therefore a worst case assumption is made based on a meta study on friction factors

of corrugated pipes [Ji+15] and set it to be 4.5 times the friction factor of smooth pipes. This

allows the use of well developed empirical equations for smooth pipe friction factors [RRM02].

These equations are dependent on the Reynolds numbers and therefore on the �uid velocity

resulting in an implicit problem.

The temperature rise due to the pipe friction can be rewritten with pressure drop resulting in
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Δ) =
Δ?

d · 2?
+ @ · !
�2ℎ0 · E · d · 2?

(6.30)

with and ¤< = �2ℎ0 · E · d .

In order to eliminate the coolant velocity Eq. 6.6 is inserted as

E =

√
Δ? · � · 2
Z · d · ! (6.31)

and solved for �2ℎ0

�2ℎ0 =
@ · !(

Δ) · d · 2? − Δ?
)
· E

(6.32)

c�2
2ℎ0

4
=

@ · ! ·
√
Z · d · !(

Δ) · d · 2? − Δ?
)
·
√
Δ? · �2ℎ0 · 2

(6.33)

�2ℎ0 =

(
4 · @ · ! ·

√
Z · d · !

c
(
Δ) · d · 2? − Δ?

)
·
√
Δ? · 2

)2/5

(6.34)

Eq. 6.34 calculates the required inner channel diameter for the coolant channel to satisfy a

given temperature and pressure drop along the cable. Due to the Darcy friction factor Z this

equation needs to be solved numerically.

Step 8: Geometric compatibility check

In the previous step the diameter of the coolant channel was calculated. The available space

within the cable is restricted by dielectric, the stabilizer material and the CroCos as calculated in

Step 5. In this step the remaining space is compared with the available space. If the available

space is not su�cient than the current set of boundary conditions does not have a solution.

�2ℎ0 < 32A~> − 2 · (��A>�> + X384 ) (6.35)

Depending on the magnitude of discrepancy one might reconsider the CroCo design.

After a �tting coolant channel is found all components of the conceptual design are created.

A possible conceptual design at this point is shown in Figure 6.5

Step 9: Strain and bending Radii

To transport the cable on a drum the CroCos need to be helical wound around the core. The

minimum twist pitch of this helix is calculated by
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Figure 6.5: Schematic of a conceptual design with all components present

?<8= =

c

√
�2
<0G − �2

=4DCA0;
(1 − 2n − n2)

√
n2 + 2n

(6.36)

with n being the degradation strain limit of the used superconductor.

Step 10: Save data and create new set of boundary conditions

Based on the optimization goal, a new set of boundary conditions can be chosen for which a

new design will be generated.

Step 11: Chose solution

A solution is chosen based on the optimization goal out of all possible solutions.

Step 12: Out parameters

All calculated parameters are returned when the �nal design is chosen.
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6 Conceptual design of REBCO DC cables

6.8 Design study of 35 kA REBCO DC cable demonstrator

A fully developed cable prototype including all components described in the previous section

would signi�cantly exceed project resources. In this project the focus is on the superconducting

component of the cable. The design process is therefore simpli�ed as the cooling is reduced to

an open liquid nitrogen bath.

Step 1: Specifications

The speci�cations for the cable demonstrator are listed in Table 6.5. The operational current of

35 kA was determined as a �rst step towards a 100 kA-class cable.

The operational voltage was limited due to safety concerns to less than 50 V. The cable length

was de�ned to be at least 3 m.

The fault current is de�ned by the maximum current of the power supply which is 50 kA. The

dedicated quench protection used in the project is expected to detect a quench and shut down

the power supply within 1 s. More information on current source and quench detection can be

found in 8.2.3.

The operational temperature is set to the saturation boiling temperature at normal pressures

of liquid nitrogen.

The maximum outer diameter was set to 130 mm. This is derived from the fact that larger

diameters signi�cantly reduce the amount of cable that �t on standard drums. Therefore it

appeared sensible to limit the diameter to dimensions that are relevant for a full scale cable.

Table 6.5: Summary of cable demonstrator speci�cations

Description Symbol Value

Operational current Iop 35000 A

Operational voltage U op <50 V

Cable length L 3 m

Fault current I fault 50000 A

Fault duration tfault 1 s

Operational temperature T op 77 K

Maximum outer diameter Dmax 130 mm

Step 2: Boundary conditions

Due to the simpli�ed design process the only boundary condition necessary to solve the system

of equations is the maximum permissible temperature rise during fault T end. In order to prevent

degradation of superconductors during faults, the maximum temperature should not exceed 400 K
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6.8 Design study of 35 kA REBCO DC cable demonstrator

[Kim+08]. For this project the maximum temperature during fault was set to be T end = 323 K. This

is possible as there is no dielectric that could be compromised by gaseous nitrogen. Therefore the

main risks are damage to the superconductor, the cable or measurement setup. The measurement

setup and the cable could be damaged if for example soldering connections dissolve. To prevent

this, only solder with melting temperatures above 323 K should be used in this project (see Table

7.1).

Step 3: Dielectric

No dedicated dielectric was required due to low voltage requirement. In order to minimize leak

currents the test setup was insulated as described in section 8.2.

Step 4: Stabilizer cross section

Copper is chosen as stabilizer material due to its good solderability, electrical resistance, heat

capacity as well as price. The electrical resistance and the heat capacity of copper as a function

of the temperature are summarized in Annex A.2. The material properties and the boundary

conditions are su�cient to solve the adiabatic energy balance (Eq. 6.10) under the assumption

of d4;,BC01 ()4=3 ). For a 50 kA fault current, a fault duration of 1 s and an end temperature

T end = 323 K, the required stabilizer cross section is Astab= 252 mm².
The di�erence between operating temperature and end temperature is with J) = 296 K

large. Consequently the di�erence between the electrical resistance at the start of the fault

d4;,BC01 (77 K) = 2 · 10−9 Ωm is about one order of magnitude smaller compared to the resistivity

at the end d4;,BC01 (373 K) = 2, 2 · 10−8 Ωm. Therefore the stabilizer cross section calculated by

Eq. 6.10 appears to be signi�cantly overestimated.

One way to mitigate this problem is to solve equation 6.9 in small increments of the temperature

gradient for the time it takes to achieve the temperature increment. This results in a series of

time increments which in sum is the total fault duration. Now the stabilizer cross section can be

altered until the total fault duration matches the requirements.

The advantage of this process is that the electrical resistance is only constant over a small

temperature increment. Thus resulting in a more accurate estimation of the required stabilizer

cross section for large temperature di�erences. Figure 6.6 shows the temperature of the stabilizer

as a function of time at a fault current of 50 kA calculated with the previous described process. At

a stabilizer cross section of Astab = 169 mm² it takes longer than 1 s to reach the end temperature

and therefore a copper cross section of 169 mm² is su�cient in this fault scenario.

An implementation of above described process written in MATLAB is attached in Annex A.3.
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6 Conceptual design of REBCO DC cables

Figure 6.6: Temperature development within the stabilizer material as a function of time at a fault current of 50 kA with

a stabilizer cross section of 169 mm².

Step 5: HTS CroCo

Section 5.2.4 describes three CroCo variations with di�erent outer diameters. For the purpose of

this design some space for cabling and jacketing is added on top of the outer diameters resulting

in outer diameters of 10 mm, 8 mm and 6 mm. Calculating the maximum number of CroCos

that �t into the 130 mm cable results in: 37, 47 and 64 CroCos for the di�erent CroCo diameter

respectively. For the critical current calculation the number of CroCos is reduced to 36, 45 and

60 respectively. This is a design choice based on the understanding that manufacturing and

assembly of the cable demonstrator is easier when the number of CroCo is a integer fraction of

360°.

The operational current of the demonstrator cable is in this design process equal to the critical

current.

The speci�cation of the 35-kA cable demonstrator dictated that the demonstrator should be

easily upgradable towards a 100-kA class cable. Therefore the critical current calculations were

performed for a 100-kA cable and than down scaled based on feasible design for a 35-kA class

cable. The critical current calculations were performed in accordance to the methods described

in section 6.3 and performed with the commercial FEM software COMSOL.

Through an iterative process, one CroCo design per size was determined which would achieve

100 kA at 77 K s.f. under the previously described limitations. The results of the iterative process

are summarized in Table 6.6. The �rst section of the table describes the structure of the CroCos.

The REBCO tapes were assumed to be 85 µm thick and their electroplated copper was neglected

in the calculation of the amount of copper per CroCo which only refers to copper added on

top of the electroplated copper. As can be seen the largest CroCo still contains a signi�cant

amount of copper while the smallest one does not contain any additional copper. This is due to

50



6.8 Design study of 35 kA REBCO DC cable demonstrator

the smaller cross section available for the smaller CroCos which is caused by the condition of a

single layer of CroCos. Thus enforcing more tightly packed REBCO tapes in the smaller CroCo

types.

Table 6.6: Summary of iterative CroCo design to achieve 100-kA class cable consisting of CroCos of various sizes

CroCo properties

CroCo type 6/4 4/3 3/2

REBCO tape number
22 x 6 mm

10 x 4 mm

26 x 4 mm

8 x 3 mm

24 x 3 mm

12 x 2 mm

Copper cross

section per CroCo
17.2 mm² 4.62 mm² 0

Diameter 7.3 mm 5.2 mm 3.6 mm

Distance between

REBCO layers
185 µm 120 µm 85 µm

Cable properties

Number of CroCo 36 45 60

Tape I c sum (I c0)
77 K s.f.

186 kA 173 kA 173 kA

I c, 77 K s.f.

SST 104 kA 97 kA 96 kA

DNA 110 kA 103 kA 102 kA

Theva 111 kA 104 kA 103 kA

Number of CroCo 12 15 20

Tape I c sum (I c0)
77 K s.f.

62 kA 58 kA 58 kA

I c, 77 K s.f.

SST 37 kA 34 kA 34 kA

DNA 40 kA 37 kA 37 kA

Theva 40 kA 37 kA 36 kA

Total copper

cross section
206 mm² 69 mm² 0

The second part of the table shows the critical current of each CroCo size in a 100 kA

arrangement. The critical currents were calculated with three parameter sets of the critical

current magnetic �eld dependence that are typical for the listed manufacturers (s. Figure 4.7). A

critical current of 30 A/mmwidth was assumed for all REBCO tapes and calculations. The sum of

the critical current of all REBCO tapes under self �eld conditions is listed (I c,0). The I c/I c0 ratio is

a measure for how e�cient the REBCO tape is used and it is nearly constant across the di�erent

CroCo types but varies between about 0.56 to 0.6 for the tapes from di�erent manufacturers.
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6 Conceptual design of REBCO DC cables

The third part of table shows the critical current when the number of CroCo is reduced to

one third of the 100 kA scenario. This is the target scenario of this design process. The I c/I c0

remains nearly constant across CroCo types but increases from 0.59 to 0.64 across di�erent

manufacturers. This increase is due to the decrease in the magnetic �eld as can be seen in Figure

6.7.

Figure 6.7 shows the magnetic �eld distribution of the 6/4 type CroCo in the two scenarios

investigated. In Figure 6.7 only one CroCo is shown as the remaining CroCos were replaced by

symmetry conditions within the calculation in order to save computational time. The left �gure

shows a tightly packed 100 kA-class arrangement of 36 CroCos. The right �gure shows a down

scaled arrangement which would achieve 37 kA and consists of 12 CroCos.

Figure 6.8 is a detail of Figure 6.7 and show the magnetic �eld distribution within a CroCo. The

arrows indicate the direction of the magnetic �eld. It can be seen in the 104 kA arrangement that

the magnetic �eld increases towards the upper half of the CroCo and peaks at B = 0.44 T in the

outer REBCO tapes. While the magnetic �eld in the bottom half is signi�cantly reduced. In the

down scaled arrangement the low �eld region is almost in the center of the CroCo, suggesting

very little impact from neighboring CroCo. Also the peak �eld in the outer layer is signi�cantly

lower with B = 0.28 T. This also shows in the critical currents. The CroCo within the down scaled

arrangement has an individual critical current of I c,CroCo,cable = 3148 A (SST) while it achieves

I c,CroCo,s.f. = 3114 A (SST) under self �eld conditions.

The magnetic �eld distribution of smaller CroCo types are nearly identical with peak magnetic

�elds of B = 0.42 T and B = 0.43 T for the 4/3 and 3/2 type respectively in the 100 kA arrangement.

In the down scaled arrangement the peak �elds are B = 0.29 T (4/3 type) and B = 0.30 T (3/2

type) are higher than in the 6/4 type. The cause for the higher �eld in that scenario is the tighter

arrangement of the REBCO tapes within the CroCo.

Step 6: Losses

The losses are being discussed as part of the description of the test setup in Section 8.2.1.

Step 7 & 8: Coolant channel & geometric compatibility check

The cable will be tested in an open liquid nitrogen where no temperature or pressure drop is

expected. Therefore these steps are not necessary.

Step 9: Strain and bending radii

The strain and bending properties of the demonstrator cable will investigated in future work.
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6.8 Design study of 35 kA REBCO DC cable demonstrator

Figure 6.7: Magnetic �eld distribution of 6/4 CroCo in a 104 kA arrangement and a down scaled 37 kA arrangement.

Figure 6.8: Detailed magnetic �eld distribution of 6/4 type CroCo104 kA arrangement and a down scaled 35 kA arrange-

ment

Step 10: Save data and create a new set of boundary conditions

Since the CroCo contains su�cient amount of stabilizer no further iteration is required.
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Step 11: Chose solution

It is possible to create a single layer 100-kA-class cable with CroCos of all sizes. However in

case of the 4/3 and 3/2 CroCo arrangement signi�cant amounts of stabilizer would need to be

added in order to meet requirements. The 6/4 CroCo arrangement has already build in su�cient

amounts of stabilizer to withstand the speci�ed short circuit. The larger CroCos are also less

costly due to increased losses during the tape cutting which makes smaller tapes usually more

expensive.

In conclusion the 6/4 arrangement appears to be the logical choice and was therefore chosen

in this design process. The 35 kA cable will therefore consist of 12 6/4 CroCos.

Step 12: Output parameters

To achieve a critical current of at least 35 kA, 12 CroCos are required each containing 22 6 mm

wide tapes and 10 4 mm wide tapes with at least 30 A/mmwidth. The tape thickness was set

to 185 µm of which 100 µm are designated as copper stabilizer. The CroCos will need to be

mounted onto a cable core with a diameter of 110 mm and operated in liquid nitrogen in order

to reach the expected critical current.
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7 HTS CroCo Manufacturing

7.1 Thermal stability of REBCO tapes

The soldering process is the key process of the HTS CroCo manufacturing process. Within the

soldering process REBCO tapes are exposed to elevated temperature for a certain amount of

time. In [Yaz+13] the critical current degradation of two di�erent REBCO tapes was investigated

for tapes that were exposed to 135°C and 195°C for up to 36 h. No degradation was found at

135°C. At 195°C signi�cant degradation was found in both tapes at di�erent duration.

This degradation limits the number of available solders when additional properties like �ow

characteristics during soldering, mechanical or electrical properties at cryogenic temperatures

need to be considered. The solder selection becomes increasingly challenging when manufac-

turing requires multiple soldering steps. This often necessitates several solders with staggered

melting points to prevent the melting of previous solder steps. Table 7.1 lists basic properties

such as electrical resistance and melting point for solders that have been used with REBCO

tapes. The price of the solders varies depending on the global market situation of expensive

metals such as silver or indium but it illustrates the orders of which they di�er. To estimate the

cost of solder in a CroCo, a 6/4 CroCo with a solder matrix diameter of 8 mm and a �lling factor

of 75 % is considered. When using for example In-Sn, the solder cost would amount to about

75 €/m while Sn-Pb would only cost about 2 €/m.

Lead containing solders belong to the hazardous substance according to European legislation

(Restriction of Hazardous Substances, 2011/65/EU) making it challenging to use them outside

the scienti�c community.

Better knowledge of the degradation behavior could enable the use of alternatives such as

Sn-Ag for some soldering processes. The following results were published in [Pre+18].

Table 7.1: Properties of solder used for REBCO tapes[Lu+11; Ted+12; Zha+11; BBW14]

Solder Composition /

m%

T l

/ °C

d(77 K)

/`Ωcm

d(293 K)

/`Ωcm

Price

/ €/kg

In-Bi In66Bi33 72 15 - 1000

In-Sn In52Sn48 118 9 - 800

Bi-Sn Bi57Sn43 139 - 38 80

In In97Ag3 141 - - 1250

Sn-Pb Sn63Pb37 183 2.5 14 20

Sn-Ag Sn96Ag4 221 2.5 12 50
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7.1.1 Experimental setup and procedure

To reproduce soldering conditions, an aluminum solder bath was used (s. Fig. 7.1). The dimen-

sions of the liquid solder volume of the bath are 10 cm x 1.5 cm x 1.5 cm. The commonly available

Sn63Pb37 was used as solder. The heat was provided by two heat cartridges. The temperature

of the solder was independently checked by a Type K thermocouple immersed into the liquid

solder.

The critical current measurements were performed with a Keysight 6671A DC source, a

Keithley 2000 Multimeter coupled with a Femto DLPVA preampli�er at 60 dB power ampli�cation.

Spring-loaded pins with 7 cm distance in between were used as voltage taps. The taps

were positioned on the HTS side of the REBCO tapes. All critical current measurements were

performed in an open LN2 bath.

The critical temperature T C was determined by four-probe resistance measurements using a

physical property measurement system (PPMS, from Quantum Design). The electrical resistance

was determined through voltage measurement with a current of 1 mA.

All REBCO tapes were cut from spools to 15 cm long samples and cleaned with Isopropanol.

Subsequently, their initial critical current was determined based on an electric �eld criterion of

1µV/cm.

For the heat treatments, the samples were placed into the solder bath for a certain amount of

time. Approximately 2 cm on each end of the samples were outside the solder bath. No �ux was

used.

Figure 7.1: Soldering bath with a REBCO tape inserted
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The solder bath temperature was kept constant within ±2.5°C. Up to three samples were

heat-treated in the solder bath simultaneously. After the samples were removed from the solder

bath, they were cooled to room temperature and subsequently measured again in LN2.

REBCO tapes from SuperPower Inc. (SPI), Shanghai Superconductor Technology (SST) and

Deutsche Nanoschicht (DNA) were investigated. In Table 7.2, the sample properties are summa-

rized. All samples use electroplated copper of various thicknesses as stabilizer material. Unless

otherwise noted, the SPI samples were from batch M4-154-2 FS. To allow comparison, the results

for each tape were normalized to their initial, untreated critical current I c/I c.0.

Table 7.2: Summary of sample properties from Superpower Inc. (SPI), Shanghai Superconductor Technology (SST), and

Deutsche nanoschicht (DNA)

Company Batch ID Width /

mm

Stabilizer /

µm

Year of delivery I c,min /

A

SPI M4-69-4 BS 4 100 2013 107

SPI M4-154-2 FS 4 40 2014 85

SPI M3-1072-3 0306 4 110 2014 115

SPI M3-1050-4 0103 3 40 2016 76

SST 4 40 2016 120

DNA 10 40 2017 250

7.1.2 Results

Accumulation of critical current degradation

In a �rst step, it was investigated if the number of heat treatments has an impact on the critical

current degradation. In Figure 7.2 the normalized critical currents of several samples that

underwent a series of subsequent heat treatments of various duration’s is shown. The x-axis

shows the accumulated time the samples spent in the solder bath. The solder bath temperatures

were 225 °C and 250 °C for Fig. 7.2 (a) and (b), respectively.

In Fig. 7.2 (a) it can be seen at 5 min that the relative critical current of the four samples is

almost the same, even though samples 26 and 27 where brought to 5 min total by a series of

three 1 minute and one 2 min heat treatment. On the other hand sample 28 and 29 had just one

5 min heat treatment. Similar behavior can be observed at 15 min.

In Fig. 7.2 (b) this independence from the number of heat treatments can also be observed for

a 250 °C heat treatment.

Subsequently it was assumed that this behavior is also valid for all other temperature levels

investigated (200 °C, 275 °C, 300 °C). In consequence, samples were used multiple times to reduce
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7 HTS CroCo Manufacturing

Figure 7.2: Critical current degradation over multiple heat treatments at (a) 225 °C and (b) 250 °C for the SPI tape.

the amount of samples necessary for this type of investigations. In addition all investigations

used the accumulated time of the samples.

Different production batches

In order to determine if the results are representative it needs to be investigated if the critical

current degradation under soldering conditions depends on the production batch. This is also
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7.1 Thermal stability of REBCO tapes

important for larger applications like cables that require multiple production batches of REBCO

tapes. The degradation of four di�erent production batches from SPI tapes were investigated,

two at 225 °C and two at 250 °C. The results are shown in Fig. 7.3.

No di�erence between the production batches was observed at the respective temperatures.

The exact date of manufacturing is not known however the orders are from 2013 to 2016

indicating that this behavior has been fairly constant for the last years.

The investigated tapes in Fig. 7.3 have a slightly di�erent structure. The samples measured

at 250 °C have an overall stabilizer thickness of 110 µm and 100 µm, respectively. The tapes

investigated at 225 °C have a stabilizer thickness of 40 µm (s. Table 7.2). To investigate the

in�uence of di�erent stabilizer thickness, one batch with 40 µm thick stabilizers is compared

with tapes having 110 µm and 100 µm thick stabilizers in Figure 7.4. For duration <10 min the

degradation of all three batches appears to be similar. For duration >20 min the degradation

of the tapes with 40 µm stabilizer is noticeably less than the tapes with 100/110 µm stabilizer

batches.

Due to unknown details of the manufacturing process a cause for this behavior could not be

found.

Critical current degradation as a function of temperature and time

The critical current degradation of a REBCO tapes under soldering conditions shows a pro-

nounced dependence on time and temperature as shown in Fig. 7.5. At 250 °C a degradation of

10% occurs after 10 min. At higher soldering temperatures of 300 °C it is visible that the same

degradation of 10% occurs already after 1 min. After 10 min at 300 °C the critical current, reaches

only 50 % of the initial current. Figure 7.6 displays the critical current degradation as a function

of time up to 120 min and for various temperature levels between 225 °C and 300 °C.

The strong temperature dependence can be illustrated by the 95 % I c retention criteria. At

225 °C it takes about 10 min for the tape to degrade to 95 % of its initial critical current. At 250 °C,

275 °C and 300 °C it only takes about 5 min, 1 min and 30 s, respectively.

Comparison between different manufacturers tapes

In addition to tapes from SuperPower, samples from Shanghai Superconductors and Deutsche

Nanoschicht were investigated for duration up to 10 min which turned out as a critical time

for the 95 % retention criteria. In Figure 7.7 it can be seen that the degradation of SPI and STT

is very similar. The samples of DNA showed a stronger degradation for soldering times larger

than 2 min at 250 °C compared to the other manufacturers.
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7 HTS CroCo Manufacturing

Figure 7.3: Critical current degradation with varying production batches for SPI tapes

Figure 7.4: Critical current degradation of multiple production batches at 250°C with di�erent copper stabilizer thick-

nesses of SPI-tapes.

Critical temperature measurements

A likely cause for the degradation is oxygen di�usion out of the crystal structure of the REBCO.

Localized measurements of the oxygen content in REBCO tapes are di�cult. Therefore, the
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7.1 Thermal stability of REBCO tapes

Figure 7.5: Critical current degradation of SPI tapes as a function of the temperature.

Figure 7.6: Overview of time dependent critical current degradation for SPI tapes

critical temperature as an indicator for a shift in the oxygen content of the REBCO crystal was

measured.

Figure 7.8 shows the electrical resistance as a function of temperature. One sample was treated

for 1 hour at 225°C and one remained untreated. Table 7.3 summarizes the critical temperatures

of the sample. The critical temperature T c,10 was reduced by 1.5 K due to the heat treatment. In
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Figure 7.7: Critical current degradation of samples from three manufacturers at soldering temperature of 250°C.

addition to that reduction the transition width almost doubled from 0.2 K to 0.4 K. To check a

connection between I c degradation and possible oxygen loss, the exponential decays of I c/I c0

at the di�erent heating temperatures T s were �tted (s. Fig. 7.6) . With the resulting decay

constants g the Arrhenius law was used and plotted ln g over 1/T s in Figure 7.9. An activation

energy of 0.94 eV was found, which is in the order of activation energy of oxygen di�usion in

REBCO[Tis+99; Can+92].

Table 7.3: Summary of critical temperatures of untreated and heat treated SPI samples

T c,90 / K T c,10 / K ΔT c / K

Untreated 92.3 92.1 0.2

225 °C, 1 h 91.0 90.6 0.4

ΔT c,treat 1.3 1.5

Assuming a linear temperature dependence between critical temperature and 77 K temperature

(see. Figure 4.9) it is possible to roughly estimate the impact of T c degradation on the I c . The

slope would be 5.53 A/K using T c,10 with �2 () = )2 ) = 0 and �2 () = 77 K) = 80.77 A. A decline

of 1.5 K in critical temperature would therefore result in a decline of the critical current by 8.3 A.

Relative to the untreated critical current this would be I c/I c0 = 0.9 compared to the observed

values in Figure 7.6 of I c/I c0= 0.83.
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7.1 Thermal stability of REBCO tapes

Figure 7.8: Critical temperature measurement of heat treated and untreated SPI tapes

Figure 7.9: Arrhenius plot of the decay constants of the exponential decays in Figure 7.9

7.1.3 Conclusion

The degradation of REBCO follows a predictable and repeatable pattern which, at least in part,

appears to be caused by oxygen depletion of the REBCO crystal. If oxygen di�usion is the only
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cause than it should be possible to reverse the critical current reduction by annealing tapes

within an oxygen atmosphere. For this experiment the tapes would need to be only silver coated.

For the CroCo manufacturing it was determined that Sn-Ag solder might be a viable alternative

to Sn-Pb with a soldering temperature of 250 °C. Measurable degradation appeared at 250°C for

duration larger than 1 min. The soldering unit of the CroCo process is about 30 cm long which

would translate to about 1 cm/s when one applies at 30 second safety margin.

7.2 CroCo manufacturing process and machine

The CroCo manufacturing process consists of six consecutive steps as shown in Figure 7.10. As

a �rst step the tapes are arranged for example on spools as shown in Figure 7.11. The tapes are

then pre-tinned which includes the application of a �ux in order to remove contamination on

tapes such as oxides and ensure optimal soldering of the tapes. Following the pre-tinning, the

tapes are than brought into the characteristic cross shaped stack form and soldered together. An

outer geometry can be applied such as the round solder matrix used in this work. The �nal step

of the CroCo process is the jacketing of the CroCo with for example a round copper tube.

The �rst �ve steps of CroCo manufacturing can be performed on one machine while the �nal

jacketing steps is performed separately. Figure 7.11 shows the CroCo manufacturing machine

used in this project. The machine supports up to 60 spools with a tape capacity of 50 m to 100 m

per spool depending on the thickness of the tapes. The to-be-soldered tapes are guided from the

spools towards the soldering unit. Within the soldering unit the tapes form the cross-shape and

leave the soldering unit embedded into a round solder matrix.

To ensure smooth forward motion, the machine uses a linear drive with a total length of 8 m

that pulls the tapes through the soldering unit.

Figure 7.10: The six steps of the CroCo manufacturing process
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Figure 7.11: CroCo manufacturing machine

In comparison to the proof of concept [Wol+16], the CroCo process has now integrated the

outer geometry forming directly into the CroCo process instead of being an external process.

When the �rst CroCo were fabricated, tapes with in total 100 µm electroplated copper stabilizer

were used which lead to additional cost and restricted the number of available suppliers. The
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CroCo process now uses REBCO tapes with in total only 20-40 µm of electroplated copper

stabilizer. Copper tapes are laminated between the REBCO tapes to compensate for the lower

thickness of electroplated stabilizer material.

The manufacturing machine shown in Figure 7.11 was a new development based on the

experiences of the proof-of-concept machine to accommodate the changes to the CroCo process.

During the CroCo manufacturing, the machine went through several iterations of optimization

with the �nal one being shown in Figure 7.11.

7.3 Manufacturer qualification

Six manufacturers could in principle supply 6 mm and 4 mm wide tapes with electroplated copper

at the beginning of 2017: SuperPower, SuperOx, SuNAM, Deutsche Nanoschicht (DNA), Theva,

Shanghai Superconductors Technology (SST). Each company, with the exception of SuperPower,

was contacted to supply 6 mm and 4 mm wide tapes for CroCo production quali�cation tests.

The CroCo process was initially developed on SuperPower tapes and therefore no additional

test for SuperPower tapes were deemed necessary. Theva and SuNAM were at the time unable to

provide su�ciently long pieces. SuperOx tapes were not acquired due to being signi�cantly more

expensive at that time than tapes from STT or DNA. Table 7.4 lists the basic tape speci�cations

of the REBCO tapes used in the manufacturer quali�cation.

Table 7.4: Tape structure speci�cation of the REBCO tapes used in the manufacturer quali�cation

DNA SST

Total thickness 100 µm 95 µm

Copper layer thickness 40 µm 40 µm

Substrate 60 µm Ni5W 50 µm Hastelloy

Critical current, 77 K s.f. 30 A/mmwidth 30 A/mmwidth

Tensile strength 150 MPa 600 MPa

Min Bending Radius 15 mm 7.5 mm

The quali�cation test was to manufacture a 2 m long CroCos consisting of 4 REBCO and

16 copper tapes of 6 mm width as well as 2 REBCO tapes and 8 copper tapes of 4 mm width. The

copper tape thickness is 150 µm. The eutectic Sn63Pb37 (T m = 183 °C) was used as solder with

an appropriate �ux.

For critical current measurements, the CroCos were cut into approximately 80 cm long pieces

and the critical current was determined over a length of approx. 35 cm under LN2, s.f conditions.

Figure 7.12 shows the E-I characteristic of the manufactured CroCos. Table 7.5 summarizes the

measurement results and provides an expected critical current based on a FEM critical current
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simulation following the method described in section 6.3. The input for the simulation was the

speci�ed minimal critical current of the tapes and their angular critical current dependencies

and therefore represent the minimum value the CroCo should achieve (see Section 4.3.2 and

Table 4.3).

Table 7.5: Overview of the measurement and simulation results of the quali�cation CroCos. The expected critical cur-

rent calculation is based on the minimal speci�ed critical current of the acquired tapes.

Sample I c/ A n Expected I c / A

SST 916 23.4 831

DNA 1 412 5.9 861

DNA 2 633 8.8 861

DNA 3 858 8.3 861

In total three CroCos containing tapes of DNA were manufactured. The �rst and second

DNA CroCo (s. Fig. 7.12) were manufactured under the same conditions as the SST CroCo.

The DNA 1 CroCo shows a signi�cantly reduced critical current and n value compared to the

SST CroCo. As this measurement represents only one data point the experiment was repeated

without systematic changes. The second DNA CroCo shows an improvement of the critical

current and n value but still below the expected critical current. Even though no systematic

changes were performed, unconscious changes in for example the handling of the REBCO tapes

can not be excluded.

Figure 7.12: E-I characteristics at 77 K, s.f. during preliminary production tests for manufacturers selection
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The observed critical current increase could be due to an improvement in the performance

of the individual tapes. To investigate this, 15 cm long pieces were cut out from the spool at

various distances and their critical current was measured in LN2, s.f. conditions. In Figure 7.13 it

can be seen that the critical current of the 4 mm wide tapes slightly increases along the tape

but remained at 12.5 m still below the speci�ed 120 A. For the 6 mm wide no such trend was

observable however the sample size was small. The improvement of the critical current in the

4 mm tape is not su�cient to explain the improvement in critical current from DNA 1 to DNA 2.

However it might indicate a warm-up phase during some of the DNA manufacturing processes

for 4 mm tapes.

A cross section of a 4 mm DNA tape was prepared to investigate the tape structure for defects

that could explain the critical current improvements. Figure 7.14 shows the edge region of a

4 mm wide DNA tape. In the top picture it can be seen that REBCO layer delaminated from the

substrate. The bottom picture shows that copper grew into the void, proving that the initial

delamination did not occur during the cross section preparation or tape handling but rather

during manufacturing.

The observed delamination could make the DNA tapes highly susceptible to mechanical stress

which could result in the observed degradation of CroCos DNA 1 and 2.

A spring was inserted into the pulling apparatus for the �nal DNA CroCo (DNA 3) to reduce

possible tensile stress spikes acting upon the superconductors.

Figure 7.13: Critical current of 4 mm and 6 mm wide tapes of DNA at LN2, s.f. at various position along the delivery

piece length
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Figure 7.14: Cross section of the edge of a 4 mm DNA tapes a) left side edge region with delaminated copper and REBCO

layer b) right side edge region with delaminated copper as well as copper in-grow into delamination area .

(Figures prepared by A. Jung)

With this measure DNA 3 achieved the expected critical current. However the low n value

suggests that there is still degradation occurring during the manufacturing.

In conclusion the available DNA tapes were presently not suitable for the project. However

DNA might become a viable choice for future projects if for example the delamniation would be

resolved and additional measures to reduce tensile stress during fabrication are introduced.

Finally, out of the six manufacturer that could in principle supply the REBCO tapes only

SST and SuperPower were viable REBCO tape manufacturers for CroCo production at the time.

Out of these two options SST o�ered the cost e�ective option and was consequently chosen as

supplier. The tape speci�cation were identical with the speci�cation listed in Table 7.4 expect

for the stabilizer thickness. In order to save cost a thinner stabilizer of in total 20 µm was used.

The superconductors arrived in three batches spread over 4 months. Random samples were

taken from the superconductor batches upon arrival and their critical current was measured.

The measurements matched the critical currents data provided by the supplier. In addition, the

thickness of the REBCO tapes was measured with a micrometer gauge. Two measurements

were performed, one across the tape and one along the center of the tapes. Figure 7.15 shows

these measurements for two samples along the samples length. The distance between the

positions is roughly 5 m. The grey area represents the expected tape thickness according to

speci�cations. The tape thickness at the edges achieves the speci�cations however in the center
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Figure 7.15: Measured tape thicknesses of two SST samples at various positions along the sample length

the tape thickness is signi�cantly below the expected value with as little as 58 µm measured.

This phenomenon is often referred to as dog boning.
Resolving this issue with the supplier would have incurred several months of delay to the

project. It was previously decided that the majority of the required stabilizer would be provided

by copper tapes. Therefore the missing electroplated stabilizer was not deemed critical and the

project continued without exchanging the REBCO tapes.

7.4 CroCo strand manufacturing

7.4.1 Preliminary CroCo manufacturing tests

The deployment of a new CroCo manufacturing machine as well as the integration of the

outer geometry forming into the CroCo process necessitated preliminary tests to establish basic

production parameters. The �rst tests was to manufacture CroCos consisting only of copper

tapes in order to save superconductor. The CroCos in this step consisted of 20 x 200 µm thick

6 mm tapes and in total 10 x 200 µm thick 4 mm tapes. In the following these CroCos will be

referred to as ’Pure copper CroCos’.

The second step was to substitute 4 copper tapes with REBCO tapes in order to check for

critical current degradation during the manufacturing. In the following these CroCos will be

referred to as ’Partially �lled CroCos’
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The chosen criteria to move from pure copper to partially �lled (with superconductors) CroCos

was the surface smoothness of the CroCo, the dimensions of the CroCo, and how smooth the

process runs. This last criteria describes how often operators had to intervene to ensure the

desired results.

One of the easily controllable production parameters is the pull speed of the drive train.

During the pure copper tests it was established that a pull speed of about 40 cm/min resulted in

a smooth round solder matrix surface. Higher speeds resulted in defects in the surface of the

solder matrix that appeared at irregular intervals (see Figure 7.16).

The substitution of individual copper tapes with REBCO tapes had no signi�cant impact on the

surface quality of the solder matrix or the behavior of the process in general. An approximately

80 cm long sample was prepared and the critical current was measured over a distance of 40 cm.

Figure 7.17 shows the critical current measurement of the partially �lled CroCo. The n value is

16 which is low but acceptable. The critical current of CroCo is well above the simulated critical

current, most likely due to better than speci�ed performance of the individual tapes.

The results of the partially �lled CroCos were su�cient to move towards a �rst test of fully

packed CroCo.

7.4.2 CroCo manufacturing

The target CroCo composition in this project was 22 6 mm wide REBCO tapes in a sandwich

arrangement around 11 200 µm thick 6 mm wide copper tapes. The same sandwich geometry

was adopted for the 10 4 mm wide REBCO tapes around 4 200 µm thick copper tapes with an

additional 2 100 µm thick copper tape for the outer 2 REBCO tapes. The REBCO layers of the

tapes were arranged to face the copper tapes. This is schematically shown in Figure 7.18.

The �rst test with a fully stacked CroCo revealed a di�erent behavior from previous tests.

Surface defects as shown in Figure 7.16 appeared in regular 30-40 cm intervals. In addition the

operators had to intervene several times for the process to progress. It took several iterations of

optimization to improve the process to a level that no operator intervention required. It was not

Figure 7.16: Surface of pure cropper CroCos. Top picture shows the desired smooth surface. Bottom picture shows the

defects encountered at higher draw speeds
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7 HTS CroCo Manufacturing

Figure 7.17: Critical current measurement of a partially �lled CroCo with two 6 mm wide REBCO tapes and two 4 mm

wide REBCO tapes added

Figure 7.18: Schematic of the targeted CroCo structure. The REBCO tapes are arranged in a sandwich structure around

a relatively thick copper tape. The REBCO layer of the REBCO tape is facing towards the copper tape.

Stacking multiple of these sandwiches on top of each other creates the desired CroCo structure

possible to fully reproduce the system behavior with copper tapes and therefore it was necessary

to optimize the process with fully stacked CroCos.
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7.4 CroCo strand manufacturing

Table 7.6 lists the length, manufacturer and geometry of each CroCo produced. The �rst three

CroCo were produced in shorter length of approx. 4 m and then cut to the required 3.6 m. The

remaining CroCos were produced in 8 m pieces and the 3.6 m were cut out of them. The second

half of CroCo 6 was cut into shorter pieces and used in a di�erent project.

Table 7.6: Summary of the produced length, used manufacturer and geometry of each CroCo

CroCo Manufacturer Length

Geometry

Copper tapes REBCO tapes

6 mm 4 mm 6 mm 4 mm

1 STT 4

11 · 0.2 µm
8 · 0.2 µm

+2 · 0.1 µm
22 10

2 STT 4

3 STT 4

4 & 5 STT 8

6 STT 8

7 & 8 STT 8

9 & 10 STT 8

11 & 12 SPI 8 - - 22 10

7.4.3 CroCo residual production strain

A CroCo is a composite material with three major components: REBCO tapes, copper tapes, and

solder. The solder solidi�es during the manufacturing of a CroCo e�ectively connecting the

REBCO tapes with the copper tapes. Strain and stress will occur within the CroCo as it cools

down due to the di�erent coe�cient of thermal expansion (CTE) of its components.

Table 7.7 lists the CTE, young’s modulus E, and o�set yield strength Rp02 of the components

at 77 K. The REBCO tape has the smallest CTE, largely de�ned by the Hastelloy substrate, which

means that it will be compressed by the other materials during cool down. The critical current

of a REBCO tape is dependent on the strain (see section 4.3.4) and therefore it is important

to investigate the magnitude of the REBCO tape compression within a CroCo at operating

temperatures.

The individual thermal strain of a component Y8 during cool down to a temperature T is given

in [OMH16] as

Y8 =

∫ )

)<

U8 − U�A>�>d) (7.1)
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Table 7.7: Coe�cient of thermal expansion (CTE), Young modulus E and o�set yield strength Rp02 of CroCo composite

materials at 77 K

Material CTE / 1/K E (77 K) Rp02 (77 K) References

REBCO tape 11 · 10−6 121 GPa 540 MPa [LCZ08; DS13; Cli+06]

Copper tape 14 · 10−6 116 GPa 488 MPa [Mit05; Deu]

Sn63Pb37 24 · 10−6 50 GPa 90 MPa [Fin+08; BBW14]

with U8 being the component CTE, U�A>�> being the CroCo CTE and T m= 183 °C the solidus

temperature of the Sn-Pb solder. Within the CroCo, the stresses which are caused by the

contraction during cool down have to be in an equilibrium∑
8

08f8 = 0 (7.2)

with ai being the component volume fraction and f8 the component stress. The stress-strain

relationship needs to be de�ned to solve the force equilibrium.

Tensile tests were performed at 77 K in order to determine the stress-strain relationship of

each of the CroCo component materials. The tests were performed in the Cryomak facility

on the MTS 100 for the REBCO and copper tapes and on the ATLAS test rig for the solder

[SWB15]. The REBCO and copper samples were cut from the spools with which the CroCos

were produced. The REBCO tape had a cross section 0.326 mm² while the copper had 1.194 mm².

The solder samples were cut out of a 4 mm thick solder sheet and had a width of about 4.8 mm.

The solder sheet was created by a fast cool down below the melting point in order to emulate

the conditions during the CroCo manufacturing. Two samples were measured for each material

and the averaged results are shown in Figure 7.19.

In Figure 7.19, the copper as well as the REBCO tape show a large linear-elastic area up to a

strain of about 0.3 % which can be modeled with the simpli�ed Hooke’s law

f8 = �8Y8 (7.3)

The linear-elastic area of the solder is much smaller, instead an plastic deformations sets in

relatively early. The elastic-plastic deformation curve can be �tted with an exponential function

such as

f8 = G0 + G1 ·
(
1 − exp

(
Y8

G2

))
+ G3 ·

(
1 − exp

(
Y8

G4

))
(7.4)

A least-square �t over the data shown in Figure 7.19 determines the constants as

x0 = -4.234 MPa, x1 = 67.73 MPa, x2 = 0.011, x3 = 82.24 MPa, x4 = 0.002 for the solder.
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7.4 CroCo strand manufacturing

Figure 7.19: Stress-Strain curve of hardened copper and Sn63Pb37 solder at 77 K

Inserting equations 7.1, 7.3 and 7.4 into 7.2 allows to solve for the thermal expansion coe�cient

of the CroCo U�A>�> . Following that, the individual strains and stresses in each component can

be calculated with equations 7.1, 7.3 and 7.4.

Figure 7.20 shows the residual strain of the CroCo component materials as a function of

temperature between the solder solidus temperature of T m= 456 K and the operating temperature

of T op = 77 K. The solder experiences the highest tensile strain due to being the softest material

while copper remains almost strain free. The REBCO tape experiences compressive strain of up

to 0.09 % at 77 K.

The REBCO layer within the REBCO tape is also subjugated to residual strains during the

manufacturing [Diz+14; OMH16] which need to be considered when determining the strain

status of the REBCO layer. In general, the increased compressive strain is positive since it counter

acts tensile strain during for example bending and due to the fact that compressive strain does

not degrade the critical current as fast as tensile strain (see section 4.3.4).

7.4.4 CroCo jacket

In general, a jacket improves the short circuit resilience of a CroCo and adds a protective layer

to it. Therefore, the application of a copper tube jacket was investigated. Such jackets were

previously realized by rotary swagging a copper tube onto the cross shaped CroCo and manually

�lling the gaps with solder [Wol+16]. To test if it is possible to rotary swag a copper tube on to

the round solder matrix two 60 cm long fully stacked samples were prepared. The diameter of
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Figure 7.20: Residual strain of CroCo component materials between the solder solidus temperature of T m= 456 K and

the operating temperature of T op = 77 K

the CroCo core was measured in the designated rotary swagging area every centimeter in two

perpendicular directions. The diameter varied between 7.56 mm and 7.99 mm.

Figure 7.21 shows sample 1 prepared for a critical current measurement in LN2, s.f. conditions.

The rotary swagged area was approximately 20 cm and the distance between the voltage taps

was 22 cm. The initial outer diameter of the copper tube was 10 mm with a wall thickness of

0.5 mm.

The rotary swagging reduces the outer diameter of the copper tube in steps of approximately

0.15 mm. Figure 7.22 shows the degradation of the samples over the outer diameter of the copper

tube. At an outer diameter of 9.15 mm the copper tube could be moved freely along the CroCo

core for both samples. At 9 mm the copper tube could still be rotated by hand around the copper

tube for sample 1. At 8.88 mm outer diameter the copper tube could not be moved by hand but

sample 1 was fully degraded. The measurements were discontinued for sample 2 because the

degradation was already out of acceptable bounds while the copper tube could still be moved by

hand.

Figure 7.21: Sample 1 prepared for critical current measurement with rotary swagged area
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Figure 7.22: Degradation of fully stacked CroCos with declining outer diameter of a copper tube after rotary swagging

This behavior could be explained by the high variation in the outer diameter of the CroCo core

with almost 0.5 mm between the minimum and maximum outer diameter. At the largest diameter

the the copper tube would be pressed against to CroCo and cause mechanical degradation while

a gap remains along the rest of the CroCo.

From Figure 7.22 it can be concluded that jacketing with the existing rotary swagging machine

is not a viable solution for the round solder matrix CroCo in its current iteration. This is due to

the fact that degradation occurred while the copper tube was still movable by hand. Suggesting

that the contact between copper tube and CroCo core is limited to very few points. This would

than defeat the purpose of the jacketing (mechanical, thermal and electrical stabilization). If

the jacketing is not LN2 tight it could even harm the thermal stability of the CroCo in case of a

quench. During a quench the LN2 would evaporate and be contained by the jacketing e�ectively

creating an insulating gas bubble around the CroCo core.

Figure 7.23 shows a cross section of sample 1 after it was fully degraded. It can be seen that the

6 mm wide REBCO tapes are slightly vertically out of position. Non of the REBCO tapes appear

to bend or otherwise signi�cantly altered that could explain the full critical current degradation.

This would indicate micro fracture directly within the superconducting layer as a cause for the

degradation.

For this reason no jacketing was applied to the CroCos in this project. This was possible

since the jacketing only acted as thermal stabilizer under extreme conditions which were not

scheduled to be tested within the frame of this work.
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Figure 7.23: Cross section of sample 1 after its critical current fully degraded.

The rotary swagging approach is driven by CroCo development for fusion applications where

a seamless jacket o�ers advantages due to large Lorentz forces acting upon the CroCo which

could lead to cracks along the seam. For power applications non-seamless solutions such a

wrapping could be a scalable solution for long length CroCos. However this investigation was

out of the scope of this work.
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8 35 kA REBCO DC cable test

8.1 Single CroCo characterization

The electrical characterization of the CroCo and its terminals consists of a critical current

measurement with a constant ramp rate and a constant current experiment in order to verify

steady state operation at elevated currents. Microscopic cross sections were prepared to assess

the quality of the CroCo shape in regards to the roundness of the solder matrix and the alignment

of REBCO tapes. Finally, the electrical characterization allows for a validation of the current

capacity of the assembled demonstrator.

8.1.1 Electric CroCo characterization

Figure 8.1 shows a schematic side view (end section) and cross section of the measurement setup

for the single CroCo characterization.The CroCos and their terminations are mounted with glass

�ber reinforced plastic (GFRP) holders on a 5 m long aluminum pro�le. The aluminum pro�le

is then placed on GFRP blocks into an 5.5 m long open stainless steel tank that is insulated

with 50 mm of Styrodur on each side. After connecting the termination’s cable shoe with two

300 mm² of copper cables to the source, the stainless steel tank is �lled with liquid nitrogen

until the cable shoe is submerged. The source consists of 4 Keysight 6680A DC power supply

systems with a total current capacity of approximately 3500 A. The data acquisition is described

in section 8.2.4.

Figure 8.1: Cross sectional and side view of the experimental setup for single CroCo characterization measurements in

LN2
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Figure 8.2 displays a schematic (not to scale) of a CroCo with its terminations and the voltages

that were measured during single CroCo characterization. At both ends, the CroCo is soldered

over a length 10 cm into a grooved copper cylinder (CC) with a low melting solder. The copper

cylinder in turn is connected through 300 mm² of copper litz (CL) to a cable shoe (CS) to which

additional cables can than be connected as shown in the experimental setup (Figure 8.1). The

connection of the copper litz wire to the neighboring components is realized through soldering

with eutectic Sn-Pb solder. Soldering posts are added to each of the components to which voltage

taps can be connected as for example schematically shown in Figure 8.2.

The cable shoe solder posts are screwed to the center of the cable shoe’s inclined surface

while the copper litz solder posts are soldered to a copper clamp surrounding the copper litz.

The clamps are mounted on the copper litz with a distance of 10 mm to cable shoe and copper

cylinder respectively. The solder post within the copper cylinder is placed at the end of the

groove into which the CroCo is soldered. No solder posts were placed on the CroCo itself,

instead voltage taps are soldered directly to the CroCo’s solder matrix surface with a lower

melting solder.

The purpose of the cable shoe to copper litz and copper litz to copper cylinder measurements is

to assess the quality of the soldered connections between copper litz wire, cable shoe and copper

cylinder respectively. Thus enabling intervention in case the resistances of the connections are

not within acceptable bounds relative to the other CroCos.

By measuring the CL resistance it is possible to use the CL as a shunt in the demonstrator

assembly and thus enabling a direct measurement of the current distribution across the CroCos.

The contact resistance of the CroCo (CC-CroCo) is measured to provide statistical data about

the spread of the resistances that can achieved with such a connection. The voltage tap on the

CroCo is placed with a distance of 10 cm from the edge of the copper cylinder. Directly along

the CroCo two voltage measurements are performed by using voltage taps with a distance of

2 m and 2.8 m respectively.

Figure 8.2: Single CroCo characterization cabling plan (not to scale)
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Figure 8.3: Electrical �eld as a function of current for all 12 CroCo over the 2.8 m voltage taps

The voltage along the entire length of the CroCo including soldered connections is measured

and used as a guideline for setting up the quench protection threshold, which uses the same

voltage taps.

Two types of experiments were performed during the single CroCo characterization. During

the �rst one, the current was ramped up with a constant ramp rate of approximately 50 A/s

until the quench detection triggered or the maximum current of the source (approx. 3.5 kA) was

reached. For a constant ramp rate any inductive signals that are be picked up in the measurement

remain constant and therefore can be compensated in the data analysis.

The second experiment was to ramp up to a constant current and to hold it for at least 3 min

before ramping down. This was done to ensure that the CroCos were capable of carrying the

expected current for a long time and to observe if the components enter a steady state.

CroCo critical current

Figure 8.3 shows the electrical �eld of all 12 CroCos as a function of the current of the 2.8 m

voltage taps at 77 K. In general, a relatively large spread in the critical current can be observed

with the lowest critical current being 2890 A and the highest in the area of 3680 A. Notably

the lowest performing CroCo are the last two CroCo manufactured with SPI tapes. The critical

current of the STT CroCos increased after the �rst four CroCos beyond the capabilities of the

current source of approx. 3.5 kA.

Table 8.1 lists the measured and calculated critical currents of the CroCos. The measured

critical current is determined through a power-law least square �t (see section 4.1) over a
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measurement with constant current ramp. Constant voltage o�sets caused for example by

inductance were removed prior to the �t. The details of critical current calculation are discussed

in Section A.5.

The n-values listed in Table 8.1 vary between 10 and 25 even though some of the lower values

for example from CroCo 5 might be due to a lack of data for a su�ciently accurate �t in the

region. The critical current of CroCo 5 and CroCos 7 to 10 is above capabilities of the current

source. Therefore the listed values of these CroCos need to be considered as an extrapolation

rather than a measurement.

Table 8.1: Measured critical current and n-values of all CroCos for voltage taps with 2 m and 2.8 m distance at 77 K, s.f.

and calculated critical current values based three di�erent scenarios (see Section A.5)

Measured Calculated

CroCo I c(2 m) n (2 m) I c (2.8 m) n (2.8 m) Avg. Max. Min.

A - A - A A A

1 3080 18 3060 19.4 3460 3194 3706

2 3210 18.3 3193 16.4 3512 3240 3938

3 3398 20.6 3410 17.4 3691 3237 3993

4 3437 18.5 3320 15.4 3743 3341 4079

5 3680 13.5 3699 12.4 3743 3341 4079

6 3482 24.5 3485 22.4 3600 3200 3903

7 3597 18.5 3596 19 3692 3296 3296

8 3618 18.2 3632 18.2 3692 3296 3296

9 3621 11 3607 11 3676 3287 3984

10 3607 18.1 3615 18.3 3676 3287 3984

11 2890 24 2890 24 - - 2995

12 2928 24.9 2926 24.9 - - 2995

Figure 8.4 shows the measured critical currents, and calculated critical currents as listed

in Table 8.1. The critical current measurements across the two di�erent distances are almost

identical except for CroCo 4. The di�erence in critical current might indicate some damage to

the CroCo in the outer areas of CroCo 4. It can be noted that the expected critical current of

the �rst 3 CroCos is lower than the remaining CroCos and that the performance of the �rst 4

CroCos is better predicted by the simulation based on the minimum tape data. For CroCos 5 to

10 the critical current based on average tape data is more accurate. The improvement in critical

current predictability based on average critical currents can be attributed to a learning curve

and successive improvements in the manufacturing process.
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Figure 8.4: Critical currents of the all CroCos compared with simulated critical currents based on minimum, average,

and maximum tape critical currents

Termination resistances

Figure 8.5 shows and Table 8.2 lists the termination resistance of the CroCos and of the compo-

nents in the termination. The resistance was analyzed by two methods: a linear voltage-current

�t between 500 A and 1500 A and an average at 100 A for at least 60 s. Since the results of the

two methods do not show signi�cant deviation only the �rst method is shown.

The major resistive parts are the copper litz (CL) with a resistance of about 3 `Ω per pole. The

connections between copper litz and the cable shoe (CL-CS) are in the range of about 0.5 `Ω

to 0.9 `Ω per pole as are the connections between copper litz and copper cylinder (CL-CC).

The joints between the copper cylinder and the CroCo show the lowest resistance within the

termination with 0.15 `Ω to 0.32 `Ω.

The total resistance varies between 7.81 `Ω at CroCo 12 and 10.08 `Ω at CroCo 6. The high

resistance of CroCo 6 is largely due to the high copper litz wire resistance at the minus pole.

It can be noted, that for the CroCo connection (CC-CroCo) no signi�cant deviation between

the two manufacturers SST (CroCo 1 to CroCo 10) and SPI (CroCo 11/12) can be observed.

This result indicates that it is possible to produce low resistance joints with CroCos that utilize

laminated copper instead of electroplated [WFP17].

The copper litz wires are used to estimate the current distribution within the cable demon-

strator and therefore it is important to determine if a voltage drift occurs due to for example

increased temperatures at high currents. Several constant current measurements were performed

for each CroCo between 2 kA and 3.5 kA depending on the critical current of CroCo. Figure 8.6
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Figure 8.5: Termination resistances (s. Fig 8.2) of all CroCos at 77 K and determined between 500 A and 1500 A

Table 8.2: List of termination resistances (s. Fig 8.2) of all CroCos at 77 K and determined between 500 A and 1500 A

CroCo CL+ CL- CS-CL+ CS-CL- CL-CC+ CL-CC- CC-CroCo+ CC-CroCo-

- \ µΩ

1 3.12 3.21 0.42 0.53 0.57 0.7 0.25 0.15

2 2.93 2.71 0.64 0.62 0.47 0.4 0.18 0.16

3 2.76 3.17 0.45 0.77 0.63 0.59 0.18 0.18

4 2.79 2.92 0.55 0.48 0.6 0.6 0.18 0.18

5 2.67 2.89 0.54 0.8 0.88 0.56 0.28 0.16

6 2.82 4.04 0.42 1.17 0.65 0.61 0.19 0.19

7 2.84 2.71 0.47 0.44 0.92 0.61 0.32 0.19

8 2.74 2.68 0.47 0.51 0.89 0.53 0.27 0.18

9 2.79 2.72 0.41 0.4 0.6 0.59 0.19 0.18

10 2.7 2.7 0.47 0.43 0.87 0.54 0.28 0.19

11 2.77 2.86 0.47 0.45 0.63 0.6 0.17 0.18

12 2.75 2.65 0.45 0.44 0.61 0.57 0.17 0.18

shows a constant current measurement for CroCo 4. The current is ramped with about 50 A/s

up to 3.5 kA where it remains constant for 3 min and then is ramped down with 100 A/s. A

small voltage drift can be observed during the constant current period for the voltage across the

copper litz, all others remain in steady state. The voltage increases by about 0.35 mV (CL +) and
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Figure 8.6: Voltage development of CroCo 4 during a 3 min constant current of about 3.5 kA

0.54 mV (CL -) and appear to enter a steady state after 3 min. The voltage drift relative to the

total voltage is therefore in the region of 5 %.

It is assumed that voltage drift is due to a temperature increase at high currents which is a

function of the heat transfer between copper wires and liquid nitrogen. The heat transfer in

turn is largely impacted by the available surface area for the heat transfer. A tightly packed

copper litz wire o�ers less surface area than a loosely packed one and therefore the steady state

resistance at a certain current can vary.

The results of the electrical characterization are published in [Pre+19].

8.1.2 Microscopic characterization

Shown in Figure 8.7 are the cross sections of CroCo 1 to CroCo 8 and in Figure 8.8 the cross

sections of CroCos 9 to CroCo 12. For each CroCo production run (see Table 7.6) a cross section

was prepared and therefore multiple CroCos for example 4 & 5 share the same cross section.

In general, one can recognize the thicker copper tapes which are laminated between the

thinner REBCO tapes as described in section 7.4.2 for CroCo 1 to CroCo 10. In CroCo 11 and

CroCo 12 the thicker electroplated stabilizer layers of the REBCO tapes are visible which made

it possible to forgo additional laminated copper.

In detail, CroCo 1 shows severe deformation of two REBCO tapes that are completely outside

the regular CroCo structure and several other tapes that are slightly out of position. The

deformation of the out-of-position REBCO tapes likely resulted in a strong critical current
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degradation thus contributing to the lower critical current of CroCo 1. Furthermore the solder

matrix has an irregular oval shape.

Figure 8.7: Microscopic cross section of CroCo 1 to CroCo 8
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Figure 8.8: Microscopic cross section of CroCo 9 to CroCo12. The CroCos were produced in pairs and only on cross

section was produced

Major improvements in terms of the CroCo structure integrity and solder matrix roundness

can be observed from CroCo 1 to CroCo 2. The remaining small displacements of REBCO tapes

relative to their copper tapes are still within manufacturing tolerances and could likely be further

reduced by decreasing the dog-boning of the REBCO tapes.

In CroCo 3 one of the inner 4 mm tapes slipped into 6 mm structure due to wide tolerances in

the stack forming process. This phenomenon reoccurs in CroCo 5 to CroCo 8.

In CroCo 6 one 6 mm wide REBCO tape is missing which is due to a rupture during the

manufacturing. The structure of the CroCo remains una�ected by rupture as it occurred early

in the process.

The cross section for CroCo 7 and CroCo 8 is embedded in a solder matrix with a defect,

as shown in Figure 7.16. Thus, the shape of the solder matrix shown in the �gure is not

representative for the rest of the CroCo length.

The last two CroCos (11 and 12) used tapes from SuperPower Inc with 100 µm electroplated

copper stabilizer. Therefore no additional copper tapes were necessary as can be seen in

Figure 8.8.

Figure 8.9 shows an example of solder layer thickness measurements that were performed

optically on CroCo 6. The solder layer thickness usually varied between 5 µm and 40 µm with

some outliers as for example seen in Figure 8.7, CroCo 3 on the right side.

Figure 8.9 also shows the cross section CroCo 6 with the missing REBCO tape in detail. No

variation in terms of solder layer thickness are observed due to the missing REBCO tape.
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Figure 8.9: Solder layer thickness measurements on CroCo 10

8.1.3 Current distribution simulation

Based on the characterization of the CroCos and the individual termination resistance (Sec-

tion 8.1.1) it is possible to calculate the expected current distribution in the demonstrator. The

CroCos are connected in parallel and therefore the voltage drop is given by

* = ('8 + '4=3 )�8 + �2!
(
�8

�2,8

)=8
(8.1)

with Ri being the sum of all terminal resistances measured (Table 8.2), I c,i, and ni being the

CroCo speci�c properties (Table 8.1) and Rend an additional contact resistance between the

terminations cable shoe and the copper block (see Fig. 8.14).

The current I i �owing in each CroCo can be numerically calculated with equation 8.1 for a

given voltage U. This has the advantage that each equation can be solved independently instead

of a system of 12 highly non-linear equations as it would be the case for a given total current I.
Solving Equation 8.1 with the electrical properties determined in Section 8.1.1 (Tables 8.2 and

8.1) results in the current distribution as shown in Figure 8.10. Displayed is the current �owing

in the individual CroCo as the function of total current. In general, the relation is largely linear

due to the large termination resistance. CroCo 6 shows a distinctively lower current compared

to the other CroCos due to its relatively high termination resistance. CroCo 11 and CroCo 12

are likely to be the limiting factor as they have relatively low termination resistance and the by

far lowest critical current. This result in a deviation from the linear behavior at around 35 kA

for both CroCo 11 and CroCo 12.
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Figure 8.10: Individual CroCo current as a function of the total current �owing through the cable

For the simulation an Rend of 500 nΩ was estimated based on contact resistance measurements

with thin copper sheets. Based on the experience of single CroCo measurements it was deemed

safe to the set the quench limit to 3 mV. At 3 mV CroCo 11 and CroCo 12 are expected to be in

the �ux-�ow regime above their critical current.

8.2 Demonstrator cable setup

8.2.1 Cryostat

Figure 8.11 shows a schematic of the cryostat built for this experiment. It is a double walled

cryostat with inner dimensions of 5870 mm x 870 mm x 485 mm in length, widths, and height

respectively. The insulation consists of 50 mm thick Styrodur. Five overlapping lids can be

placed on top of the cryostat to reduce heat in�ux and ensure controlled removal of gaseous

nitrogen. The liquid nitrogen enters the cryostat through the central lid and is pumped from the

cryostat at both ends as it evaporates. The nitrogen is heated up through water baths to avoid

damaging the pumps before being released to the environment. Care needs to be taken during

operation to avoid an accumulation of liquid oxygen within the cryostat.

The cryostat is equipped with 9 Pt 100 temperature sensors which are placed in groups of

three at the center of the cryostat, and at each end of the cryostat as shown in Figure 8.12. The

vertical distance between the temperature sensors is 20 cm which results in heights measured

from the bottom of 2 cm, 22 cm and 42 cm respectively. The Pt 100 are mounted on top of a small
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8 35 kA REBCO DC cable test

Figure 8.11: Liquid nitrogen cryostat used in the main experiment

copper plate which in turn is screwed to the surface of the inner cryostat wall. The purpose of

the temperature sensors is to monitor the temperature gradients within the cryostat wall during

cool down and thus helping to prevent damage to the cryostat through for example thermal

expansion.

A pressure gradient will develop within the LN2 as the cryostat is �lled and therefore a

temperature gradient could develop. The target �ll height of cryostat during an experiment is

h = 35 cm and thus the maximum pressure gradient within the LN2 assuming an in-compressible

�uid is

Δ?!#2 = ℎ · d · 6 = 0.35 m · 802 kg/m39.81 m/s2 = 2754 Pa (8.2)

Figure 8.12: Location of PT 100 sensors within the cryostat
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Assuming saturation properties the temperature gradient would be about Δ) = 0.13 K

between the surface and the bottom of the cryostat [Lin97]. The pressure induced temperature

gradient between the lowest and highest placed CroCo is about Δ) = 0.065 K.

The heat leakage through the cryostat is estimated as

&(C~A>3DA =
_�Δ)

B
=

0.03 m2K
W 16.75 m2 (300 K − 77 K)

0.05 m
= 2241 W (8.3)

the thermal conductivity of Styrodur _was linearly extrapolated to 77 K based on manufacturer

information. The leakage through the current leads at I = 0 A is equal to

&�>??4A =
� · #
!

∫
_3) =

0.0003 m2 · 36

0.5 m
· 90000

W

m
= 1944 W (8.4)

with _ being the thermal conductivity of copper. During an experiment there will be additional

losses due to ohmic losses in the resistive parts of the experiment. At a current of 40 kA the

resistive losses amount to about 1500 W. In total the expected losses are therefore about 5700 W.

For one experiment a consumption of about 5000 l of liquid nitrogen was estimated. This split

into 868 l for cooling the heat capacity of all major cold components, 1766 l for the required liquid

nitrogen level within the cryostat, and 2400 l due to cryostat losses assuming an experiment

duration of 24 h. The coolant is supplied directly from the liquid nitrogen storage tank through a

vacuum insulated supply line coupled with manually controlled valves. In addition, transportable

liquid nitrogen tanks can be connected to the cryostat to increase the �ll rate.

Figure 8.13 shows the closed cryostat during a cool down test. Clearly visible are the water

bath heaters at the ends of the cryostat through which the gaseous nitrogen is pumped. Also

shown are two nitrogen supply lines, one with liquid nitrogen and one with room temperature

nitrogen supply line which is used to remove air and therefore humidity from the cryostat prior

to the cool down.

On the left side, the copper cables leading out of the cryostat and connecting to a copper

block are visible. Connected on the other side of the copper block are water cooled cables that

lead to the power source. The copper block itself needs to be heated to avoid freezing the water

during cool-downs. The signi�cant heat loss (sec. 8.2.1) by the copper cables leading out of the

cryostat is further illustrated by the snow cap developing around them.

8.2.2 35 kA cable demonstrator

In Figure 8.14 the design schematic of the 35 kA cable demonstrator is shown in a top and side

view as well as two cross sectional views at di�erent positions. The 12 CroCos are mounted with

braces upon an aluminum core with a diameter of 110 mm and 3 m length. Pro�le B in Figure

8.14 shows the location of the the previously characterized CroCos around the aluminum core.

The copper cylinders at the end of the CroCos are placed into GFRP holders with a GFRP core
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8 35 kA REBCO DC cable test

Figure 8.13: Cryostat with water bath heaters during cool down

in the center that allows for axial movement but restrict any radial movement. This helps to

minimize any strain occurring due to temperature gradients during cool-down. The termination

cable shoe’s are screwed with a de�ned momentum to large copper blocks placed within the

cryostat. Up to three copper blocks per side can �t into the cryostat therefore making it possible

to connect CroCos in series. This was implemented to allow for experiments exceeding the

current limitation of the power source in the future. The copper blocks are connected to the

power source through several of copper cables.

The challenge of this termination method is that the current distribution across the CroCos is

largely determined by the resistance of the terminals and the soldering connections. Current

redistribution will be very limited if a CroCo should quench. This necessitates a fast quench de-

tection for each CroCo in order to prevent damage during quench or fault currents. Terminations

that allow for higher current redistribution will be investigated in future work.

8.2.3 Current source and quench detection

The current source is a 12 pulse thyristor converter from ABB which was originally designed as

source for large superconducting fusion magnets. It provides a maximum current of 50 kA DC

and up to 30 V.

The current of the power source was measured with a Fiber Optic Current Sensor from ABB

which is based on the Faraday e�ect. It has a rated current of 80 kA, a sampling rate of 4 kHz, an

accuracy of ±0.1 %, and a linearity of ±0.1 %. The Fiber Optic Current Sensor outputs a ±1 V

signal which is recorded in the data acquisition.
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8 35 kA REBCO DC cable test

The quench detection is realized by a RC low pass �lter coupled with a threshold switch.

Thresholds can be varied between 1 mV and 10 mV in 1 mV steps. The quench detection triggers

the emergency shut down of the power source which initiates a ramp down with a rate of

1 kA/ms. Details on the quench detection are published in [Hol+13].

8.2.4 Data acquisition

The experiment requires a series of voltage measurements with an expected minimum voltage

drop between 200 µV and 300 µV across the CroCos at their critical current. Therefore, a mea-

surement system with a sensitivity in the range of 1 µV is necessary. A di�erential measurement

method was used due to the small signal and the relatively long cables. All measured voltages

are �oating signals for which isolated measurement channels are bene�cial. Based on previous

experiments, signi�cant current ripples are expected from the current source. To limit the impact

of these ripples on the measurement a low-pass �lter of less than 50 Hz was deemed necessary

since the converter was not designed with extended current smoothing capabilities.

The NI SCXI 1125 conditioning module in combination with the NI PCI 6280 analog-digital

converter o�ers the aforementioned requirements and was chosen as measurements system

in this project. The SCXI 1125 multiplexes several channels into one di�erential measurement

channel which is read by the NI PCI 6280.

The conditioning module is equipped with a 4 Hz or 10 kHz low pass �lter. For the majority of

the measurements the 4 Hz �lter was active. A sampling rate of at least 8 Hz would be necessary

to ful�ll the Nyquist-Shannon-Criterion. The e�ective sampling rate was set to 100 Hz to avoid

in any concerns in regards to aliasing,

The NI PCI 6280 is a 18 bit measurement system with a variable input range between ±10 V

and ±0.1 V resulting in a sensitivity of 0.8 µV at an input range of ±0.1 V.

8.3 Demonstrator cable test

8.3.1 Cryostat cool down and warm up

Figure 8.15 a) shows the cryostat wall temperatures over time leading up to an experiment and

the warm up phase afterwards. The di�erent temperatures re�ect the position of the temperature

sensors in the cryostat as shown in Figure 8.12.

During the cool down the temperature di�erence across the temperature sensors is kept

roughly within 100 K to limit thermal strain on the cryostat. Temperature oscillation (Figure

Figure 8.15 b) can be observed during the �rst 4 h to 6 h of the cool down cycle in particular

at the bottom temperature sensors. The oscillation is caused by gas bubbles in the LN2 supply

line that temporarily reduce the LN2 �ow rate. The amount of gas bubbles reduces over time
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8.3 Demonstrator cable test

Figure 8.15: a) Temperature development within the cryostat during an experimental cycle b) Detail of Figure 8.15 a for

the �rst 12 h of the cooling cycle with emphasis on the temperature oscillations

as the supply line itself cools down. Temperature sensors on the West side tend to show lower

temperatures over time which indicates a small tilt of the cryostat.

The cable operation is distinguishable by simultaneous peaks in all temperature sensors.

The peaks coincide with the triggering of the quench detection and the subsequent emergency

shutdown and are therefore likely an induction based measurement error and do not represent

an actual temperature rise.
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The warm up takes about 72 h if no external heaters are used and at least another 24 h to

remove condensed water from the cryostat and the sample. The warm up phase is initiated by

closing the LN2 supply line and pumping room temperature gaseous nitrogen into cryostat in

order to reduce the accumulation of water within the cryostat. The warm-up phase could likely

be signi�cantly shortened by the use of dedicated heaters but no such attempts have been made

so far.

The total losses of the cryostat were estimated by measuring the LN2 level in the cryostat

before the LN2 supply was stopped for the night and again in the morning before the supply

was resumed. The average losses during this 12 h stand-by period amounted to about 10 g/s LN2

which is about half of the estimated value. The large deviation is due to worst case assumptions

in the loss calculation that were adopted as a safety measure in the design of the water bath

heaters.

8.3.2 Cable test

The current source was operated in such a way that the individual steps of the measurement

programs were entered manually. The current is ramped up to a constant value where it rests

for at least 30 s until the current is ramped to the next constant value. This proceeds until the

previous de�ned quench detection limit is reached or the current is manually ramped down

again.

Table 8.3 lists the maximum constant current that was achieved in each test run. During the

�rst two measurements the quench detection triggered after 25 kA and 23 kA respectively. It is

important to note that voltage taps used for the quench detection include the terminal resistance

of the CroCos as shown in Figure 8.2. A total terminal resistance of 0.5 µΩ (Tab. 8.2) at a current

of 3.5 kA (Tab. 8.1) would already result in a voltage drop of 1.75 mV. The voltage drop over the

remaining CroCo length (3.4 m) at its critical point (100 µV/m) would be 0.34 mV. The quench

limit was therefore initially set to 3 mV in order to measure overcritical behavior as well.

Table 8.3: High current experiments

Measurement Maximum current QD integration time Maximum QD limit

1 25 kA 10 ms 3 mV

2 23 kA 10 ms 3 mV

3 33 kA 50 ms 3 mV

4 34 kA 50 ms 4 mV

5 34 kA 50 ms 5 mV

6 35 kA 50 ms 6 mV

96



8.3 Demonstrator cable test

Figure 8.16: Electric �eld across all CroCos as a function of time and at various total cable currents during the second

measurement run

In Figure 8.16 the electrical �eld of each CroCo over the 2 m voltage taps is displayed as a

function of time at various total cable currents. At the beginning, several small peaks across all

CroCos are visible as the power supply is switched. At around 1:30 min a drop in the electric �eld

of most CroCos is observable. This drop is associated with a change in the rectifying program of

the power supply at about 7 kA. The exact change in behavior is unknown as it is proprietary

information of the power supply manufacturer. If one compares the magnitude of the change

with the position of the CroCos around the cable core (see Figure 8.14) than it is noticeable that

the CroCos with the largest change in the electrical �eld are all located at the bottom. A possible

causal connection needs to be further investigated in future measurements.

The voltage drop caused by the change in switching behavior recovers to some degree as

the current increases. At 23 kA the emergency shut down is triggered by the quench detection

even though none of the CroCos show any indication of quenching. The likely cause for the

emergency shut down are the random peaks that already occurred at lower currents in CroCo 5,

CroCo 6 and CroCo 12.

The data displayed in Figure 8.16 is already averaged as described in Section 8.2.4 meaning

that the measured peak voltage is likely signi�cantly higher and thus triggering the quench

detection which is based on a raw signal. The integration time of the QD was subsequently

increased from 10 ms to 50 ms in order to avoid false-positive emergency shut downs. The

increased integration time of the quench detection made it possible to achieve currents of up
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to 33 kA. In order to achieve higher currents its was necessary to incrementally increase the

quench detection limit of CroCo 2 and CroCo 12.

Figure 8.17 shows the electric �eld over the 2.8 m voltage taps of all CroCos during a measure-

ment with a maximum total cable current of 35 kA. Towards higher cable currents the initial

drop in the electric �eld at around 7 kA total cable current recovers to the expected zero until

the CroCos reach the �ux �ow region.

Figure 8.17: Electric �eld across all CroCos as a function of time and at various total cable currents during the sixth

measurement run

The �rst CroCos that develop a distinctive electric �eld are CroCo 2 and CroCo 12. At 33 kA

both of these CroCos reach their critical current but can still achieve a steady state.

At 35 kA total cable current CroCo 12 does not achieve steady state and develops a run away

behavior. The experiment was manually shut down after about 1 min at 35 kA total cable current.

Also, CroCos 1, 4, 5 and 9 entered the �ux �ow region at 35 kA and display a signi�cant electric

�eld. In particular CroCo 4 is interesting as it does not achieve steady state at 35 kA even though

the electric �eld of CroCo is about 2 µV/cm lower compared to CroCo 2 or CroCo 12. During

single CroCo characterization CroCo 4 achieved a steady state at 3.5 kA with an electrical �eld

of around 2.5 µV/cm.

Figure 8.18 shows the individual current in each CroCo as a function of the total cable current

up to 35 kA and in dashed lines the expected behavior as shown in Figure 8.10. In general, the

current distribution follows the expected linear distribution and only shows non-linearity for

CroCo 2 and CroCo 12 for currents beyond 30 kA.The small nicks in the measured curves are due

to inductive elements that disappear when the measurement enters a constant current section.
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There are several deviations compared to the simulation performed in section 8.1.3. The

spread in the current distribution is higher than expected. This is immediately recognizable for

CroCo 11, that carries signi�cant less current than all other CroCos.

The simulation correctly identi�ed CroCo 2 and CroCo 12 as current limiting for the entire

cable. However it predicted CroCo 12 to be the critical one and not CroCo 2 which in turn can

be attributed to small deviations in the contact resistance.

Figure 8.18: a) Individual CroCo current as a function of the total cable of up to 35 kA b) Detail of Figure 8.18 a above

30 kA. Compact lines represent measured values during the 35 kA measurement. Dashed lines show the

expected values based on measured contact resistances in the single CroCo characterization (see Table 8.2)
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For the calculations shown in Figure 8.10 it was assumed that the contact resistance Rend

between the termination’s cable shoe and the copper block (see Figure 8.14) are identical

for all CroCos with a value of 0.5 `Ω. Based on the measured current distribution one can

calculate the contact resistance between the cables shoes and the copper block by incrementally

increasing the contact resistance of the CroCos until the measured current distribution is

achieved. Figure 8.19 shows a well matching current distribution simulation (dashed lines)

compared to the measurement results (compact lines). This con�rms that current distribution

can be simulated very well with the data of the individual CroCos.

Table 8.4 summarizes the numerically calculated contact resistance during the experiment

shown in Figure 8.17. The lowest contact resistance was assumed to be 0.5 `Ω based on prior

measurements. In general, a spread of contact resistances can be observed with the highest

(3.18 `Ω) being an order of magnitude higher than the lowest calculated value (0.64 `Ω) with an

additional outlier at 9.06 `Ω.

The high resistance at CroCo 11 was likely caused by water condensing between the cable

shoe and copper block within the cryostat during prior thermal cycles tests and thus reducing

the e�ective cross section available for current transfer. The same issue was observed to a lower

degree in all connections. A possible solution could be in polishing the cable shoes and copper

block surface prior to the experiments.

Table 8.4: Calculated contact resistances based on measurements during cable operation at 77 K

CroCo 1 2 3 4 5 6 7 8 9 10 11 12

Rend / `Ω 1 0.64 2.05 0.89 0.88 0.5 3.18 2.72 0.82 1.96 9.06 1.86

8.3.3 CroCo performance post cable operation

One major concern in the development of a cable prototype is the degradation of the supercon-

ductor due to for example inhomogeneous cool down resulting in damaging strain. Therefore, it

is prudent to investigate if degradation occurred during or after the experiments performed in

this work. For this purpose, CroCo 2 was dismounted from the cable assembly and measured

again at 77 K with the setup described in Section 8.1.1. CroCo 2 was chosen as it was one of

the CroCo that quenched during the 35 kA experiment (Figure 8.17) and was easily accessible

(Figure 8.14).

Figure 8.20 shows the electrical �eld of CroCo 2 as a function of the current at various

experiments. The black line represents the result of the initial CroCo characterization already

shown in Figure 8.3. The brown line shows the electrical �eld of CroCo 2 during the 35 kA

experiment shown in Figure 8.17 which exactly matches the initial CroCo characterization.

In blue is shown a measurement after the cable measurements were performed and CroCo 2
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Figure 8.19: a) Individual CroCo current as a function of the cable current up to 35 kA b) Shows a detail of Figure 8.19 a)

above 30 kA. Compact lines represent the measured values. Dashed lines show the simulated values with

incrementally increased contact resistance (see Table 8.4).

disassembled from the cable demonstrator. The CroCo shows an increased critical current

by about 32 A which is about 1 % of the total current and is therefore assumed to be within

measurement uncertainty.

Table 8.20 summarizes the critical currents of CroCo 2 during the above mentioned experi-

ments. The variation in n value between the CroCo 2 Single and CroCo 2 Cable appear to be
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Figure 8.20: Electrical �eld as a function of current of CroCo 2 during initial CroCo characterization, within the cable

assembly, and in a single CroCo arrangement after the cable experiments

largely caused by �tting algorithms as no major deviation between the curves can be recognized

in Figure 8.20.

Table 8.5: Summary of electrical properties of CroCo 2 during single characterization and cable experiments

Measurement I c / A n

CroCo 2 Single 3193 16.4

CroCo 2 Cable 3189 18.5

CroCo 2 Single II 3225 15.8

In Table 8.6 the contact resistances are shown prior and after the cable experiment. The

contact resistances of the superconductors remain unchanged while some variation is observed

at the cable shoe of the minus pol and between the connection of copper litz and copper cylinder.

The variation might be cause by movement of the copper braces that are used as voltage tap

(Figure 8.2) during the assembly and disassembly of the cable.

In summary, no indication for degradation was found in CroCo 2 which experienced multiple

cooling cycles and quenched multiple times during cable operation.
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Table 8.6: Summary of contact resistances of CroCo 2 before and after the cable experiments

CroCo CL+ CL- CS-CL+ CS-CL- CL-CC+ CL-CC- CC-CroCo+ CC-CroCo-

- \ µΩ

Single 2.93 2.71 0.64 0.62 0.47 0.4 0.18 0.16

Single II 3.04 2.72 0.64 0.45 0.45 0.56 0.18 0.17

8.4 Chapter summary and outlook

In this chapter the individual characterization results of 12 3.6 m CroCos long was shown. The

critical current of each CroCo was measured with two voltage taps with a distance of 2.8 m

and 2 m, respectively. The measured critical currents were then compared with critical current

calculations that showed a good agreement when the average critical current of the REBCO

tapes is used as an initial point for the iterative calculation.

Microscopic cross sections of each CroCo showed severe deformations in the �rst CroCo

manufactured but a steady improvement in regards to the roundness of the CroCo and shape of

the cross formed by the REBCO tapes for the following CroCos. The rupture of one REBCO tape

resulted in no lasting consequences in regards to the shape of the CroCo.

The resistances of the CroCo terminations were measured in detail. The resistances between

CroCo and copper cylinder proved very low resistive with values between 0.15 `Ω and 0.32 `Ω.

Based on the termination resistances and the critical currents of the CroCos it was possible to

calculate an expected current distribution and maximum current for the cable demonstrator that

consists of all 12 CroCos connected in parallel.

The cable demonstrator was successfully assembled, cooled down and a series of experiments

were performed. The �nal experiment achieved a steady state at 34 kA and for a short period

35 kA. The current distribution did not match the expected current distribution. The cause was

likely condensed water between contacts.

In order to check for degradation one of the CroCos that quenched during the demonstrator

cable experiment was removed from the demonstrator and measured again individually. No

degradation was found.

The current layout of the demonstrator cable allows for very little current redistribution

when one of the CroCos approaches its critical current due to the high termination resistances.

In future work it is planned to decrease the termination resistance to the very low resistive

connections between the CroCo and copper cylinder thus allow for current redistribution. This

measure could increase the current carrying capacity of the demonstrator to more than 40 kA.

In another experiment it is planned to reduce the diameter of the aluminum core and therefore

decrease the size of demonstrator to a more compact design.
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aluminum plants

In the following the application of HTS high current DC cables is discussed at the example of an

aluminum smelter. The focus of this design study is the superconducting cable in general and

the superconductor itself in particular due to the fact that the REBCO tapes are expected to be

the major cost factor in the superconducting cable system.

9.1 Aluminum production

The production of primary aluminum is based on an electrolysis process (Hall-Héroult process)

in which aluminum oxide (Al2O3) is dissolved in an electrolyte consisting of molten cryolite

(Na3AlF6) and aluminum �uoride (AlF3). The oxygen of aluminum oxide reacts at the carbon

anodes to carbon monoxide in a �rst step and then further to carbon dioxide thus consuming

the anodes eventually. [KD14]

The overall reaction formula is

Al2O3 + 3 C→ 2 Al + 3 CO (9.1)

Within an aluminum plant several hundred electrolysis cells are arranged side by side and

connected in series which results in facilities that can be 1 km long and more. The voltage in the

electrolysis cells may vary slightly depending on the heat balance, or cell operating conditions

etc. The current however is constant across all cells and ranges between 100 kA and 600 kA.

[Tri18; KD14]

The electrolysis cells are operated non-stop all year around since an interruption could lead

to the freezing of the electrolyte which would entail a time consuming and therefore costly

restarting procedure [RUN95].

The energy consumption in the electrolysis process is about 13 kWh/kg in modern aluminum

plants. For example, TRIMET Aluminum SE operates three aluminum electrolysis plants in

Germany and produced 385000 t of aluminum in 2018 [Tri19]. This equals an electricity con-

sumption of about 5 TWh in 2018. As a perspective, about 543 TWh of electricity were produced

in Germany in 2018 [Bur19] which means that about 1 % of the total electricity production

in Germany was consumed in three aluminum plants. Naturally, the electricity price in such

energy intensive industries is one of major cost factors. In the following, it will be investigated

if superconducting high current cables can contribute to energy and cost savings.
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Figure 9.1: Schematic of primary and secondary circuit within an aluminum production plant (after [Duv+14, Fig. 7])

9.2 Superconducting cable systems within

aluminum plants

9.2.1 Superconducting cable use cases

Energy savings with the help of superconductors in the context of aluminum production is

often associated with substituting conventional aluminum or copper bus bar systems with

superconducting ones [RUN95; Mor15]. Energy savings are possible due to the extremely high

currents (up to 600 kA) coupled with nearly non-stop operation of the electrolysis cells.

Previously two di�erent circuits within an aluminum production plant have been examined

for the use of superconducting high current cables [RUN95; Mor15]. These are illustrated in

Figure 9.1 with the �rst one being in the primary circuit that connects recti�ers units with

electrolysis cells. Within the primary circuit, the current can reach the above mentioned 600 kA.

However, one has to acknowledge that a superconducting cable is a more complex system than

a conventional air cooled bus bar and the risk of failure is signi�cantly higher. A back-up system

would be necessary due to high system failure cost. [RUN95]

Potential candidates for replacements within the primary circuit are aluminum bus bars

between the recti�ers and the electrolysis cell which can be up to several hundred meters long

(L1 in Fig. 9.1). The connections between the aluminum cells in the typical U-shape arrangement
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L3 can also be several dozens of meter long. The connections between the electrolysis cells L2

should not exceed a couple of meters and therefore an unlikely use case. [Mor15]

A secondary circuit can be placed within the aluminum smelter to mitigate the magnetic

�eld generated by the primary circuit. This can be bene�cial as the magnetic �eld can have an

adverse e�ect on the performance of the electrolysis cell [Ren+16]. The current in the secondary

circuit can vary between 10 % and 150 % of the electrolysis current depending on the design

[RUN95; Ren+16]. The operational requirements are not as high in the secondary circuit as in

the primary circuit and therefore no additional back-up system is necessary [RUN95].

The secondary circuit is a particular interesting use case for a high current cable consisting of

CroCos as the CroCos do not necessarily need to be connected in parallel. Instead the CroCos

can be placed within one cryostat and connected in series creating multiple turns as it was

proposed in [Duv+14; Mor15]. This way the same magnetic �eld is generated at the electrolysis

cell but the losses at the terminations can be drastically reduced due to the lower current that is

transferred to LN2 temperatures (see Section 9.6.2).

9.2.2 Cryogenic system

A superconducting cable needs a cryogenic system that is capable of removing any heat that is

generated or leaked into the cable. In the following a brief summary of the available concepts is

given.

The cable discussed in this case study is based around a forced �ow cooling concept meaning

that a coolant (LN2) is pumped along the cable to remove heat that leaked into the system. In

cable systems the nitrogen usually �ows in a closed system meaning that it does not evaporate

into the environment under operating conditions. Instead the coolant is continuously re-cooled

by a cryogenic system thus maintaining operating conditions of the cable.

These re-cooling systems can be grouped in closed and open systems. Closed systems are

self contained units that only require electricity, maintenance and often cooling water. Open

systems are based on the evaporation of LN2 and therefore need a continuous supply of LN2 in

addition to electricity and maintenance.

Closed systems

One method of re-cooling the circulated LN2 is by using commercial cryocoolers and coupling

them through for example a heat exchanger with the circulating coolant. The cryocoolers will

manage the temperature within the heat exchanger and remove any excess heat from the system.

Table 9.1 lists some basic properties of currently commercially available cryocoolers from

several manufacturers. As can be seen, cryocoolers based on a Stirling process are readily

available for several kilo watts of cold power. One signi�cant drawback of the Stirling cryocoolers,

is the relatively short maintenance interval. Cryocoolers based on a Gi�ord-McMahon process
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perform better in terms of maintenance but provide also signi�cant less cold power. The pulse

tube cryocooler are almost maintenance free due to avoiding any moving parts in the cold system

but the cold power of currently available pulse tube cryocoolers is limited. This is however not

an inherent problem of the technology as was shown in a demonstrator pulse tube cryocooler

that provided 1 kW at 77 K for a superconducting cable [Che+10]. Even larger cryocoolers with

10 kW capacity based on a reverse turbo Brayton process are currently under development

[Cha+].

Table 9.1: Basic performance overview of commercially available cryocoolers

Cryocooler Cold power at

70 K

Input power Maintenance

interval

Process Reference

SPC-4 3200 W 46 kW 6000 h Stirling [Sti19]

AL600 500 W 12.5 kW 10000 h Gi�ord-McMahon [Cry19]

CH-110 160 W N/A 13000 h Gi�ord-McMahon [SHI19]

PT90 70 W 4.3 kW 20000 h Pulse Tube [Cry19]

Open system

A di�erent approach is to utilize LN2 to re-cool the circulating coolant. The concept is to create

and maintain a vacuum within a LN2 tank (sub-cooler). The temperature of the LN2 within the

tank will decrease as the pressure decreases since the nitrogen boiling temperature is pressure

dependent (see Figure 6.1). The sub-cooler can then be coupled with the circulating coolant to

maintain the operating temperature.

The cold power Q provided by such a sub-cooler is dependent on the mass �ow ¤< of the

evaporating nitrogen which can be calculated by

¤< =
&

ΔℎE0? − Δℎ
(9.2)

with ΔℎE0? being the enthalpy of vaporization of nitrogen of about 200 kJ/kg and Δℎ the

enthalpy change of the LN2 due to subcooling. For example a sub-cooler providing 4000 W at

70 K would require

¤< =
3200 W

200 kJ/kg − (136.97 − 122.75) kJ/kg
= 62 kg/h (9.3)

assuming the liquid nitrogen is supplied at 77 K. To liquefy nitrogen consumes about

0.48 kWh/kg of electricity in large scale system resulting in about 30 kW electricity consumption

for the above mentioned 4 kW at 70 K [Her+16].
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The power consumption of the pumps maintaining the vacuum within the sub cooler also

needs to be considered. The mass �ow of 62 kg/h liquid nitrogen is equal to about 78 m³/h of

gaseous nitrogen. This kind of suction capacity could be realized for example with a rotary claw

vacuum pump that have an electricity requirement of about 4 kW.

The maintenance interval of the sub-cooler system is based on the maintenance requirements

of the vacuum pumps which require in this example an oil change every 20000 h and a general

overhaul every 6 years.

Comparison

Table 9.2 lists a basic comparison of the two discussed re-cooling systems. The overall losses

within an open system are usually lower than the closed system due to the increased e�ciency of

large scale lique�er units. If the lower losses also translates into lower operational cost depends

on the electricity price.

In terms of space and weight the closed system have a clear advantage due to avoiding the

large LN2 tanks that are necessary for the open system.

Both systems can be designed in a redundant manner [Ste15]. In a closed system the entire

system needs to be redundant while it is su�cient to install multiple vacuum pumps in the open

system to create redundancy [Her18]. Which case is more cost e�cient is of course dependent

on the cold power requirements etc.

The maintenance intervals of the closed system depends on the chosen cryocooler process

which in turn largely depends on the cold power demand. The maintenance of the vacuum

pumps also depends on the cold power demand since the vacuum pump design is a function of

the mass �ow through it.

Table 9.2: General comparison between the open and closed cryogenic re-cooling systems

Parameter Closed system Open system

Overall losses - +

Space & weight + -

Redundancy + +

Maintenance -/+ +

One additional issue for the open system can be the supply of LN2 if the aluminum plant is

in a remote location which is often transported to the facility via trucks. On site, the liquid

nitrogen can be stored in tanks that are available with capacities of 60000 kg [Lin19].
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9.2.3 Current leads

One of the major heat sources in relatively short but high current superconducting cable

systems are current leads. Current leads transfer electrical current from ambient to cryogenic

temperatures while minimizing the heat load into the cold system. A thorough analysis of

various current lead concepts in regards to their cold losses and their ideal power consumption

at ambient temperature was performed in [Gol04]. Table 9.3 is assembled and translated into

English from various tables contained within [Gol04].

Table 9.3 provides an overview of the performance of several di�erent current lead concepts.

Listed are heat loss at cryogenic temperatures per current �owing through the current lead

and minimum amount of power necessary to provide the cold power based on the ideal Carnot

process (see Section 9.6.2) with an ambient temperature of 293 K.

Table 9.3: Loss overview of di�erent types of current leads assuming an ambient temperature of 293 K. A copper RRR
of 100 was used for the conduction based current leads. The gas cooled current assumed a heat transfer

coe�cient of 1000 W/(m² K) (assembled and translated into English from [Gol04])

Type Cold losses Ideal power input

W/kA W/kA

Conduction, One-Stage 44.23 at 77.4 K 123.2

Conduction, Two-Stage
31.86 at 154 K

Σ90.1
22.13 at 77.4 K

Conduction, Three stage

24.72 at 197 K

Σ83.917.17 at 150 K

17.44 at 77.4 K

Conduction, In�nite stages 10.4 at 77.4 K Σ78.4

Vapor cooled 27.2 at 77.4 K Σ101.7

The simplest version of a current lead is a one stage conduction based current lead in which a

resistive conductor is connected to the superconducting cable. In this case heat will propagate

via conduction into the superconducting system where it is removed by the cryogenic system.

In [McF59] an optimization process for minimizing the heat leakage into the cold system of

these so called conduction based current leads is described. All conduction based current leads

listed in Table 9.3 utilize copper with a residual resistance ratio (RRR) of 100. However copper is

not mandatory since [McF59] showed that the heat leak of an optimized current lead is largely

independent of the material properties as long as the material follows the Wiedemann-Franz-

Relation.

A method of reducing heat leakage in conduction based current leads is to introduce additional

temperature stages between the operating temperature and the ambient temperature. The
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bene�t is based on the fact that it is less energy intensive to remove heat at these intermediate

temperatures. Table 9.3 lists a two-, three-, and in�nite stage current leads. The temperature

levels of the stages are chosen based on an optimization process that minimizes the heat leakage

into the system [Gol04]. Introducing a second stage already reduces ideal power consumption

by roughly a third. However it can also be seen that adding further temperature stages quickly

develops diminishing returns with only a decrease in ideal power consumption of 7 % for a third

temperature stage.

The ideal current lead would consist of an in�nite amount of temperature stages and is listed

in Table 9.3.

If the temperature at the lower end of a current lead is maintained by for example by a

LN2 bath then the evaporated gaseous nitrogen could be used to cool the current leads and

thus reducing the losses. This so called vapor cooled current lead is the last entry in Table

9.3. The listed current lead refers to a self-su�cient vapor current lead in which no additional

gaseous nitrogen is added to increase the cooling capacity. From Table 9.3 it can be seen that

a self-su�cient vapor cooled current lead has about 20 % less energy consumption than a one

stage pure conduction cooled. One challenging aspect of vapor cooled current leads is to ensure

a su�cient heat transfer coe�cient which is assumed to be 1000 W/(m² K) in the listed scenario.

9.3 Primary circuit

Likely candidates for a superconducting cable in the primary circuits are the connections from

the recti�er units to the electrolysis cells (L1 in Figure 9.1) and between pot lines (L3 in Figure 9.1).

Design specifications

For the purpose of this design study a superconducting cable with an operational current of

100 kA is considered for the primary circuit. In Section 8.3 Figure 8.17 it was shown that is

possible to operate CroCos at their critical current and even beyond it, provided there is su�cient

cooling. Operating a 100-kA class cable at its critical current however would generate losses

equal to

@(� = �2 · � = 100 µV/m · 100 kA = 10 W/m (9.4)

which would be roughly 10 times higher than the cryostat losses. The losses directly transfer

into operating cost for the superconducting cable and therefore the exact operating point of a

superconducting cable needs to be determined in an economical evaluation. For the purpose of

this design study the losses will be de�ned as qSC = 0.1 W/m which amounts to roughly 10 % of

the cryostat losses. The operational to critical current ratio is then equal to
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�>?

�2
=

(
@(�

�2 �>?

)1/=
=

(
0.1 W/m

100 · 10−6 V/m · 100000 A

)1/20

= 0.8 (9.5)

Therefore the critical current of the cable system needs to be at least 125 kA.

The operational voltage of 2 kV is based on the maximum voltages commonly encountered in

the primary circuit [FI02].

The inlet temperature of the LN2 is limited by the nitrogen triple point and the fact that a

temperature gradient between the re-cooler and the inlet temperature is necessary to maintain the

temperature. Considering the inlet temperature of previous superconducting cables (Table 5.7)

shows that an inlet temperature of 67 K and a temperature rise to 70 K appears to be within

reasonable bounds.

The maximum permissible temperature rise during a short circuit is largely dependent on the

pressure of the coolant and therefore a high inlet pressure and low pressure drop are desirable.

The maximum pressure of LN2 is limited by its critical point, the approved maximum pressure

of the cryostat (2 MPa for Nexans Cryo�ex [Nex]) and the circulating pumps (1.5 MPa [Zer12]).

An inlet pressure of 1.5 MPa is chosen for this design study. The pressure loss is set to 0.001 MPa

due to the large cross section available for the coolant channel.

The short circuit speci�cation for the primary circuit are chosen to be rather restrictive due

to the large currents �owing. Sophisticated current limiter are likely necessary to manage the

de�ned fault duration of 0.1 s

The inner diameter of the cable is limited to 130 mm to ensure that the 500 m cable can be

transported on a single drum without any major restrictions on transportation.

Table 9.4 summarizes the design speci�cation and boundary conditions.

Table 9.4: Design speci�cations and boundary conditions used in this case study

Description Symbol Value Description Symbol

Operating current Iop 100 kA Inlet temperature T in 67 K

Operational voltage U op <50 V Outlet temperature Tout 70 K

Cable length L 500 m Inlet pressure pin 1.5 MPa

Fault current I fault 5 · �>? Outlet pressure pout 1.499 MPa

Fault duration tfault 0.1 s Operational to critical

current ratio

Iop/ I c 0.8

Ambient temperature TH 293 K

Inner cryostat diameter dcryo 130 mm
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Figure 9.2: Superconducting primary circuit cable

Conceptual design

Following the design process outlined in Chapter 6 yields a cable as described by its characteristics

in Table 9.6 and schematically shown in Figure 9.2. The �rst step in the conceptual design process

is the calculation of the dielectric thickness. In this case, the relatively low voltage of 2 kV is

insulated by a layer of 1 mm thick PPLP between the CroCos and inner cryostat wall.

Next in the design process is the calculation of the stabilizer requirement. The maximum

permissible temperature rise during a fault is determined by the boiling temperature of the

liquid nitrogen at a pressure of pout = 1.499 MPa which is about 110 K (see Figure 6.1). Adding a

safety margin of 2 K results in T end = 108 K. Under the given boundary conditions a stabilizer

cross section of 960 mm² is necessary (using the code in Annex A.3) to limit the temperature

rise during fault.

In section 6.8 Table 6.6 it was shown that the usage of CroCos consisting of 6 mm and

4 mm wide tapes is bene�cial under the boundary conditions imposed in by the design process.

Accordingly the cable utilizes in total 36 CroCos 6/4 CroCos in parallel connection. The number

of CroCos is determined by the maximum number of CroCos that �t in a single layer within the

cryostat. For the design of the CroCos, a REBCO tape current per width of 30 A/mm at 77 K,

s.f. is assumed to allow for a broad selection of manufacturers (Table 4.2). A Lift Factor of 1.5 is

adopted since the highest temperature in the system is by design 70 K thus resulting in a current

per width of 45 A/mm at 70 K s.f (s. Figure 4.9).
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In order to achieve a current of 100 kA each of the 36 CroCos needs to be operated at about

2.8 kA and have a critical current of about 3.5 kA. Accordingly, critical current calculations were

performed with the above described conditions by iterating the number of REBCO tapes built into

the CroCos until a solution was found. In Table 9.5 the results of the critical current calculations

are shown for three manufacturers and two CroCos with di�erent numbers of REBCO tapes

built in. Furthermore, the sum of critical currents of the individual tapes at 70 K, s.f. to gauge the

critical current reduction due to the magnetic �eld of the cable is listed. The manufacturers were

chosen because their REBCO tapes o�er distinctively di�erent critical current angular magnetic

�eld dependencies (see Table 4.3 and Figure 4.7). Depending on the critical current magnetic

�eld dependence of the REBCO tapes each of 36 CroCos needs between 18 and 20 6 mm wide

tapes and 8 4 mm wide tapes.

To accommodate the high demand in stabilizer material the copper cross section can be

increased to 19.2 mm² per CroCo without distorting the distinctive geometry of the conductor

or decreasing the number of REBCO tapes resulting in a total of 691 mm² of copper stabilizer

built-into the CroCos. Inserting copper wires (2.3 mm and 2.7 mm diameter) into the gaps

between CroCos provides another 355 mm² of copper stabilizer thus totaling 1046 mm² and

exceeding the requirement.

Table 9.5: Individual critical current of CroCos of REBCO tapes and di�erent manufacturers

Number of Tape I c sum CroCo I c 70 K, cable �eld

REBCO tapes 70 K, s.f. SST DNA Theva

6 mm 20
6.8 kA 3.5 kA 3.7 kA 3.8 kA

4 mm 8

6 mm 18
6.3 kA 3.3 kA 3.5 kA 3.5 kA

4 mm 8

The losses of the superconducting cable amount to 1.25 W/m through the cryostat and the

0.1 W/m due to operating the cable close to the critical current.

The large cross section of the LN2 channel is largely due to the restriction that only a single

layer of CroCos is to be used. The cable could be signi�cantly more compact at the cost of more

superconductor material. The LN2 mass �ow rate in the coolant channel needs to be 0.141 kg/s

to achieve an end temperature of 70 K at the given pressure drop.

The aim of cable design presented in this work is to provide cables that incorporate all

necessary components into the cable including the stabilizer. For cables exceeding the 100 kA or

signi�cantly higher short circuit requirements it may be worth investigating if the stabilizer

material could be removed from the superconducting cable and provided through a separate

circuit in parallel. For example in order to achieve the short circuit requirements of the secondary
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Table 9.6: Cable characteristic based on the design process

Parameter Value

CroCos

Numbers of CroCos 36

6 mm wide REBCO tapes 18 - 20

4 mm wide REBCO tapes 8

Tape I c sum (I c0), 70 K, s.f. 6.3 - 6.8 kA

I c, 70 K, cable �eld 3.5 kA

CroCo diameter ~7.5 mm

Stabilizer

Built-in stabilizer (CroCos) 691 mm²

36 copper wires, ∅2.7 mm 206 mm²

36 copper wires, ∅2.3 mm 150 mm²

Total 1047 mm²

Losses

Cryostat losses 625 W at 67 K

Superconductor losses 50 W at 67 K

Total 675 W at 67 K

Coolant Mass �ow 0.141 kg/s

Dielectric Cryostat dielectric, PPLP 1 mm

circuit cable (5 · �>? for 1 s) a 100 kA class cable would need about 3000 mm² of copper stabilizer

which is about 3 times the amount built into the current conceptual design. Providing the

remaining 2000 mm² would require a copper cable of roughly 50 mm diameter to be placed into

the cable. This is illustrated by the dashed lines circle in Figure 9.2 and as can be seen requires a

signi�cant portion of the cable.

9.4 Secondary circuit

In following section a conceptual design for superconducting cable operating in the secondary

circuit of an aluminum plant is outlined. The purpose of the secondary circuit is to provide a

magnetic �eld that is capable of mitigating the magnetic �eld generated by the primary circuit.

Therefore the secondary circuit is not strictly a power transmission cable but rather akin to a

magnet.

A magnet design approach has been subsequently adapted by [Duv+14] for the secondary

circuit of aluminum plants. The concept is to use multiple high current conductors (CroCos in

this design study) and to connect them in series instead parallel. Due to the series connection

the current now runs in multiple turns along cable. The advantage of this concept is that the
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current transferred to cryogenic temperatures can be drastically reduced and that current source

can be down scaled. For example the 3.5 kA source used in Section 8.1.1 �ts into a conventional

19 inch rack.

This conceptual design will therefore expand on the concept of a series connection of high

current conductors.

Design specifications

The operational current of the secondary circuit is set to 100 kA to be identical to the primary

circuit cable discussed in the previous section. Depending on the outline of the facility the

secondary circuit may require between 10 % and 150 % of the primary circuit current [RUN95;

Ren+16]. Operational current in this case means that the total current �owing over the cross

section of the cable in one direction is 100 kA. This means that the CroCos in this scenario will

be connected in series through 35 low resistive joints between the individual CroCos.

Since no signi�cant voltage drop occurs within the superconductor, a voltage of lower then

50 V should be su�cient to operate the system.

In terms of fault resilience, the secondary circuit should not require sophisticated fault current

limiters and therefore the the fault current is set to 5 times the operational current and the fault

duration to 1 s.

The remaining design speci�cations are identical to primary circuit. For a detailed discussion

refer to Section 9.3.

Table 9.7 summarizes the speci�cations for the secondary circuit cable.

Table 9.7: Design speci�cations and boundary conditions used in this case study

Description Symbol Value Description Symbol

Total cross section current Iop 100 kA Inlet temperature T in 67 K

Operational voltage U op <50 V Outlet temperature Tout 70 K

Cable length L 500 m Inlet pressure pin 1.5 MPa

Fault current I fault 5 · �>? Outlet pressure pout 1.499 MPa

Fault duration tfault 1 s Operational to critical

current ratio

Iop/ I c 0.8

Ambient temperature TH 293 K

Inner cryostat diameter dcryo 130 mm

Conceptual design

The conceptual cable design for secondary circuit as shown in Figure 9.3 is very similar to the

primary circuit design (Figure 9.2) which is due to the large overlap in the speci�cations.
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Figure 9.3: Schematic cross section of a 100 kA at 70 K consisting of 36 CroCos with an additional 36 copper wires to

provide additional stabilizer material in case of a fault current.

The individual CroCo design is identical to the primary circuit, please refer to Section 9.3 for

a detailed discussion of the CroCo design.

It may be necessary to insulate the CroCos from each other through a dedicated dielectric to

ensure the series connection. However so called non-insulation magnets have gained increased

attention over the last years [Hah+11; Yoo+16]. Non-Insulation magnets rely on the fact that the

resistance along a the superconductor (including joints) is orders of magnitudes lower than any

connections between the conductors and therefore forego any dedicated conductor dielectric.

For the purpose of this work, it will be assumed that a layer 0.5 mm thick layer of PTFE can be

extruded on the CroCos which should provide su�cient insulation if necessary.

The series connection of the CroCos in�icts additional losses due to the necessity of non-

superconducting joints. Easy to manufacture joints between CroCos have achieved resistances

in the range of 30-60 nΩ[WFP17]. The voltage drop across all 35 joints is therefore in between

3 mV and 6 mV resulting in up to 16 W at 67 K of additional losses for the cable system.

An advantage of the series connection is that the short circuit currents are signi�cantly lower

compared to the primary circuit. The expected fault current within the CroCo is 14 kA (5 ·2.8 kA)

for a duration of 1 s. The maximum permissible temperature rise during a fault is determined by

the boiling temperature of the liquid nitrogen at a pressure of pout = 1.499 MPa which is about

110 K (see Figure 6.1). Adding a safety margin of 2 K results in T end = 108 K. Copper is used

as stabilizer material and applying the code in Annex A.3 provides a stabilizer requirement of
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Table 9.8: Cable characteristic based on the design process

Parameter Value

CroCos

Numbers of CroCos 36

6 mm wide REBCO tapes 18 - 20

4 mm wide REBCO tapes 8

Tape I c sum (I c0), 70 K, s.f. 6.3 - 6.8 kA

I c, 70 K, cable �eld 3.5 kA

CroCo diameter ~7.5 mm

Stabilizer

Built-in stabilizer 19 mm²

36 copper wires, ∅2.5 mm 176 mm²

Total 195 mm²

Losses

Cryostat losses 625 W at 67 K

Superconductor losses 50 W at 67 K

Joints 16 W at 67 K

Total 691 W at 67 K

Coolant Mass �ow 0.141 kg/s

Dielectric CroCo dielectric, PTFE 0.5 mm

85 mm². The built-in copper stabilizer of 19.2 mm² in each CroCos is insu�cient for this fault

scenario. Additional copper wires have been added in Figure 9.3 to supply additional stabilizer

material. The copper wires have a diameter of 2.5 mm and amount to a total cross section of

176 mm² which ful�lls the requirements if they are connected in parallel.

The large cross section of the LN2 channel that is largely due to the restriction that only a

single layer of CroCos is to be used. The cable could be signi�cantly more compact at the cost

of more superconductor material. No return channel for the liquid nitrogen is included into

the design. As can be seen in Figure 9.1 the cable start and end points are close together and

therefore both ends can be directly connected to the refrigerator system making an dedicated

return channel redundant. The LN2 mass �ow rate in the coolant channel needs to be 0.141 Kg/s

to achieve an end temperature of 70 K at the given pressure drop.

9.5 Aluminum bus bar

A 100 kA bus bar system is outlined in this section as a reference system to the superconducting

system previously discussed. Copper and aluminum are commonly used materials for bus bar

systems in energy intensive industries due to their low resistance, mechanical properties, and
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price [OBH07, p. 728]. In case of an aluminum plant it will be assumed that aluminum bus bars

are used.

Design specifications

The DIN 43670 standard describes the maximum operating current of aluminum bus bar systems

based on a maximum operating temperature of the bus bar for currents up to about 10 kA. At

10 kA the operating current density is about 1.25 A/mm² with an operating temperature of 65 °C

and ambient temperature of 35 °C. However, the current density can not be scaled up linearly

with the current as the heat dissipation is reduced when bus bars are stacked [OBH07, p. 731].

For this case study a current density of j = 0.5 A/mm² and a operating temperature of 50 °C is

assumed [Mor15]. The remaining design speci�cations are identical to the HTS system in order

to maintain comparability.

Table 9.9: Design speci�cations and boundary conditions used in this case study

Description Symbol Value

Operating current Iop 100 kA

Operating current density jop 0.5 A/mm²

Operational voltage U op 2 kV

Bus bar length L 500 m

Fault current I fault 500 kA

Fault duration tfault 0.1 s

Ambient temperature T H 27 °C

Operating temperature T op 50 °C

Outline

The necessary aluminum cross section is calculated with the targeted operating current and

the previously de�ned operating current density and is in this scenario 200000 mm². Due to

cooling requirements this cross section can not be realized in a single bus bar, instead it needs

to be separated into for example multiple plates to maximize the surface for air cooling. Joints

to connect the individual bus bars will be neglected at this point.

The speci�c resistance of aluminum at 50 °C is d = 3.17 nSm [OBH07, p. 732]. The losses per

meter in a 100 kA bus bar system with the above mentioned values would then be

@�;D = d 9� = 3.17 · 10−9Sm · 5 · 105 A/m2 · 106 A = 1585 W/m (9.6)
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9.6 System comparison

9.6.1 General properties

In Table 9.10 general properties of the above conceptually designed superconducting cable and

aluminum bus bar are shown. It can be seen that the current density of the superconducting

system is roughly six times higher than the aluminum bus bar system. The current density of

the aluminum bus bar however neglects the minimum distance between the aluminum bars that

are necessary for cooling. Including these distances would reduce the current density of the

aluminum bus bar by roughly by a factor 2 to 3 [OBH07, p. 728f].

Table 9.10: Comparison of general properties of a superconducting cable and aluminum bus bar within the primary

circuit of an aluminum smelter

Primary circuit Secondary circuit Aluminum

Length 500 m 500 m 500 m

Operating current 100 kA 2.8 kA 100 kA

Current density 2.89 A/mm² 2.89 A/mm² 0.5 A/mm²

Operating voltage 2 kV 50 V 2kV/50V

Critical current ≈125 kA ≈3.5 kA -

Operating temperature 70 K 70 K 323 K

Operating pressure 1.5 MPa 1.5 MPa -

Diameter ≈210 mm ≈210 mm -

Cross section 0.035 m² 0.035 m² 0.2 m²

Total weight ≈16 t ≈15 t 270 t

REBCO tape, 6 mm 324 km - 360 km 324 km - 360 km -

REBCO tape, 4 mm 144 km 144 km -

In terms of weight the superconducting system is 18 times lighter than the aluminum system.

In addition signi�cant savings in terms of support structure can be expected with the supercon-

ducting cable only weighting about 30 kg/m compared to the 540 kg/m of the aluminum bus

bar.

A detailed comparison of the overall system losses, operating and investment cost is performed

in the following sections.

9.6.2 Annual losses and operating cost

To judge the e�ciency of superconducting systems it is important to not only know the losses

at low temperature but also estimate the amount of energy that is required to compensate these
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losses. For this, the so called coe�cient of performance (COP) is often used. It is de�ned as the

ratio of the heat removed at cryogenic temperature to the amount of work that must be applied

to remove it.

�$% =
&

%
(9.7)

The minimal amount that is required to cool down can be calculated with the ideal Carnot

refrigerator cycle

�$%�0A=>C =
)2>;3

)0<184=C −)2>;3
(9.8)

with T cold being the cold temperature and T ambient the ambient temperature in K. Since real

refrigerators can not achieve the e�ciency of the Carnot process the so called ’Figure of Merit’

(FOM) or Carnot-E�ciency is used to compare real refrigerators to the ideal process.

�$" =
�$%

�$%�0A=>C
(9.9)

Losses

Table 9.11 lists the losses in the current leads and the cable for the two discussed superconducting

uses cases and a reference aluminum bus bar. For this case study a two-stage current lead was

chosen based on a study that investigated two- and three-stage current leads for 64 K operation

and an ambient temperature of 293 K [Bro+]. The three stage current lead showed a reduction

in losses by about 6 % compared to the two stage current lead. The operation temperature in

[Bro+] is close enough to the lowest temperature within this case study (67 K) so that the heat

loads will be directly adopted. The heat loads at the two stages are then 39 W/kA at 145 K and

17 W/kA at 67 K. For detailed conceptual designs for current leads please refer to the literature

[Gol04; Sch+17; Bro+].

Table 9.11: Loss summary for primary, secondary circuit superconducting cables and aluminum bus bar assuming an

ambient temperature of 293 K.

Current lead Cable P ideal Σ%8340; Preal Σ%A40; Pannual

/ W / W / W / W / W / kW / MWh/a

Primary 7800 at 145 K - 7961

21707

39807
112 977

circuit 3400 at 67 K 675 at 67 K 13746 72882

Secondary 272 at 145 K - 279
3011

1858
20 175

circuit 119 at 67 K 691 at 67 K 2732 18215

Aluminum bar - - - - - 791 6877
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The cable losses in Table 9.11 consist for largest part of cryostat heat leakage (625 W) and the

losses of the superconductor due to being operated close to the critical current (50 W). Losses

introduced by circulation pumps are negligible in this case due to the low pressure drop. In case

of the secondary circuit an additional 16 W of losses are introduced by the joints necessary to

connect the CroCos in series.

The ideal power consumption P ideal at 293 K is calculated by using the coe�cient of perfor-

mance of the ideal Carnot process (equation 9.8) and are equal to

�$%�0A=>C (145 K) =
145 K

293 K − 145 K
= 0.98 (9.10)

�$%�0A=>C (67 K) =
67 K

293 K − 67 K
= 0.296 (9.11)

For an estimation of the real power consumption Preal a Figure of Merit of 0.2 for primary

circuit and 0.15 for the secondary was assumed [Gre15]. The di�erence is introduced to factor

in that refrigerators become more e�cient at higher capacities [Str; Rad09; Gre15].

An estimation of the real power consumption Preal at 293 K is calculated by applying a Figure

of Merit of 0.2 for primary circuit and 0.15 for the secondary circuit cable to the ideal power

consumption [Gre15].

%A40; =
%8340;

�$"
(9.12)

The annual losses Pannual are calculated by

%0==D0; = C0==D0; · Σ%A40; (9.13)

with tannual being the operational time per year. In this case study nearly non-stop operation

of tannual = 8700 h/a is assumed.

Operating cost

The electricity price for non-household consumers with a consumption between 70 GWh and

150 GWh was 45.7 €/MWh in Germany and 58.2 €/MWh on average in the European Union

excluding taxes and other levies [eur19]. Large consumers that considerably exceed the 150 GWh

can have prices signi�cantly lower and are in the range of 30 €/MWh but even for these industrial

consumer electricity prices have been rising in recent years [Ask18]

Table 9.12 shows the annual electricity cost accrued by operating the superconducting cables

discussed in the case study and a reference aluminum bus bar for the three above mentioned

electricity prices. Within the primary circuit the electricity cost can be reduced by about 85 %

compared to the conventional aluminum bus bar. In the secondary circuit the cost is reduced

even further by about 97.5 % amounting the several hundred thousand Euro per year.
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9.6 System comparison

Table 9.12: Comparison of operating cost of conventional and superconducting solutions for three di�erent electricity

prices

Annual cost of electricity

Electricity price 30 € / MWh 45.7 € / MWh 58.2 € / MWh

Primary circuit 29 k€ / a 45 k€ / a 57 k€ / a

Secondary circuit 5 k€ / a 8 k€ / a 10 k€ / a

Aluminum bar 206 k€ / a 314 k€ / a 400 k€ / a

The maintenance cost are neglected at this point as they are strongly dependent on the chosen

cryogenic system for the superconducting system.

9.6.3 Investment cost

In the following the investment cost of the two superconducting cable systems and the aluminum

reference system will be discussed. For each of the systems, a high and low cost estimation will

given. The investment cost are based on o�ers from manufacturers when possible.

Table 9.13 and 9.14 show two investment cost scenarios for a superconducting cable system.

In general it can be noted that system cost of a superconducting cable is dominated by the cost

of the superconductor that account for roughly 65 % of the total system cost. The high variance

in the system cost is also due to the high variance in the superconductor cost. The high cost

scenario of the superconductor represents the best o�er received during the demonstrator cable

design phase while the low cost considers a price drop by 50 %. The large price drop appears to

be reasonable since advances in manufacturing and a discount for large orders can be factored

in. In addition it was shown in Figure 8.4 that the average critical current of tapes is a good

foundation for the calculation of the critical current of a CroCo. This potentially allows for less

strict tape speci�cations on the minimum critical current of the superconductor which could also

lead to cost reductions. The price of the copper tapes within the CroCo is based upon London

Metal Exchanges rates. The CroCo solder price is based upon orders performed by the author.

The superconducting cable manufacturing cost are based on the experience of CroCo manu-

facturing performed in this work.

Flexible cryostat sizes in the area of DN 130 and larger are non standard products and therefore

the price was extrapolated from o�ers of smaller �exible cryostats.

The refrigerator cost is estimated based on a study performed in [Gre15]. The study showed

that there is signi�cant variance at the capital of cryocooler is for the LN2 region. Therefore the

following function gives only a rough estimate

� = 1.81 · '0.57
(9.14)
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9 Application of HTS DC cables in aluminum plants

Table 9.13: Investment cost of a 500 m superconducting cable within the primary circuit

Component
Low cost High cost

Comments
in k€ in k€

Superconducting Cable 5507 10611
CroCo 4256 8361 REBCO tape 50 - 100 €/(kA m),

copper 7.3 €/kg, SnAg4

solder 50 €/kg

Cryostat 750 1500 Flexible cryostat e.g. Nexans

Cryo�ex, DN130, 1500 - 3000 €/m

Manufacturing 500 750 1 cm/s CroCo production speed,

60 €/h labor cost

Cryogenic system 800 1180
Refrigerators 250 280 5 kW at 67 K

Current leads 400 600 Two-stage current leads

Accessories 150 300 Control system, pipes, pumps, etc

Installation 50 100 Estimation based on [Rei14]

Total system cost 6357 11891

C being the capital cost in thousand US$ and the R the refrigerator power in W at 77 K. The

cooling capacity of cryocoolers declines as the temperature decreases. The decline is usually

provided by the manufacturers in so called capacity maps. In Section A.7 the capacity maps of

commercially available cryocoolers (Table 9.1) were considered to calculate the capital cost at

67 K. This results in capital cost equal to

� = 1.81 ·
(

'

0 ·) + 1

)0.57

(9.15)

with T being the temperature in K and a = 0.009 1/K, b = 0.303 in the low cost scenario and

a = 0.024, b = -0.866 in the high cost scenario (see Table A.2). The losses are about 4000 W at

67 K and 800 W at 67 K for the primary and secondary circuit respectively. For the capital cost

of calculation a cold power capacity bu�er of 25 % was set and therefore 5 kW at 67 K for the

primary circuit cable and 1 kW at 67 K for the secondary circuit cable was used.

The installation cost of the secondary circuit is slightly more expensive due to the necessity

of manufacturing the joints between the CroCos on site.

Table 9.15 shows the investment cost of an conventional 100 kA aluminum bus bar. A major

part of the investment cost is installation which includes support materials for the roughly 270 t

of aluminum.
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9.6 System comparison

Table 9.14: Investment cost of a 500 m superconducting cable within the secondary circuit

Component
Low cost High cost

Comments
in k€ in k€

Superconducting Cable 5474 10578
CroCo 4224 8328 REBCO tape 50 - 100 €/(kA m),

copper 7.3 €/kg, SnAg4

solder 50 €/kg

Cryostat 750 1500 Flexible cryostat e.g. Nexans

Cryo�ex, DN130, 1500 - 3000 €/m

Manufacturing 500 750 1 cm/s CroCo production speed,

60 €/h labor cost

Cryogenic system 400 610
Refrigerators 100 110 1 kW at 65 K

Current leads 200 300 Two-stage current leads

Accessories 100 200 Control system, pipes, pumps, etc

Installation 100 200 Estimation based on [Rei14] and

slightly increased to joint

manufacturing

Total system cost 5974 11388

In comparison, it can be seen that the investment cost of the superconducting system are

roughly 3 to 5 times higher compared to a conventional aluminum bus bar.

Table 9.15: Investment cost of 500 m of aluminum bus bar

Component
Low cost High cost

Comments
in k€ in k€

Aluminum bus bar 1673 2447
Material 561 758 Material cost between 1850 $/t and

2500 $/t [The19]

Manufacturing 112 189 Assumption: Manufacturing is

between 20 % and 25 % of material

cost

Installation 1000 1500 Estimation based on [Rei14]
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9 Application of HTS DC cables in aluminum plants

Figure 9.4: Total present value of superconducting cable systems within the primary and secondary circuit at an oper-

ational current of 100 kA over 500 m compared to a conventional aluminum bus bar system for a life time

of 40 years and 4 % interest.

Present value as a function of electricity price

The present value o�ers the possibility to evaluate all cost of an investment (for example

operating cost) by calculating their value at a given time. The operating cost in this scenario will

be discounted over the life time of the system with a �xed interest rate. Assuming the operating

cost are paid at the end of the year and the interest rate r is constant then the present value C
can be calculated by

� = � +$ (1 + A )
# − 1

(1 + A )# · A
(9.16)

I being the initial investment cost, O the operating cost and N the operating life time [TBE19,

p. 80f].

The total present value of the three systems discussed in this chapter are shown as a function

of the electricity price in Figure 9.4. The colored areas shows the spread of the total present

value due to the high and low investment cost estimations performed in this section (Tables

9.13,9.14, &9.15). The dashed vertical lines represent the average electricity prices of consumers

with up to 150 GWh consumption in Germany (also see Table 9.12). An operational life time of

40 years and an interest rate of 4 % was assumed for the displayed �gure.

The total present value of electricity cost in the secondary circuit system are only about

350 k€ at 100 €/MWh and therefore the total present value of the secondary circuit (Figure 9.4)
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9.6 System comparison

Figure 9.5: Total present value of superconducting 100 kA cable in the primary and secondary circuit compared to a

conventional aluminum bus bar as a function of cable length

appears to be roughly independent of the electricity price. The present value of the conventional

system increases steadily and shows the �rst the �rst overlap with a superconducting system at

electricity prices around 30 €/MWh with the secondary circuit system and at around 35 €/MWh

with the primary circuit system. This means that under ideal conditions, superconducting system

could be competitive investment alternatives to conventional solutions for electricity prices

above 35 €/MWh.

Present value as a function of cable length

In the previous sections a length of 500 m was assumed in all solutions to maintain comparability.

To address cables of di�erent lengths Figure 9.5 shows the total present value as a function of

cable length at an electricity price of 45.7 €/MWh [eur19], a life time of 40 years and an interest

rate of 4 %. For the calculation the operational and investment cost of the previously outlined

cable concepts were expressed as a function of the cable length. This means that additional

technical challenges for long cables such as increased pressure drop were neglected at this point.

In Figure 9.5 it can be seen that the break even point between a superconducting and a

conventional solution occurs around 100 m and 300 m for the low cost assumption of the

secondary and primary circuit respectively. For the high cost assumptions it can be seen that no

beak even point will be achieved with the current parameter set since the discounted the cost

per meter of the superconducting system exceeds the conventional systems.
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9 Application of HTS DC cables in aluminum plants

9.7 Chapter summary

In this chapter the application of a high current HTS cable system in an aluminum smelting

plant has been investigated. A use case of a superconducting cable within the primary circuit

between HVDC recti�ers units and the electrolysis pot has been identi�ed. A second use case

is the adaptation of a superconducting system in a secondary circuit that is used to mitigate

the magnetic �eld of the primary circuit. The second use case is particularly interesting for

superconducting cables utilizing multiple high current conductors such as the cable designed,

build, and tested in this work (Chapters 6 to 8).

A conceptual design for a superconducting cable has been performed for each of the identi�ed

uses cases with a rated operational current of 100 kA. As a reference a conventional aluminum

bus bar system as been conceptually designed. The losses of all three systems were calculated

based on an analysis of current lead concepts and cryogenic system concepts. An analysis of

the operating cost showed that a superconducting system could save several hundred thousand

Euros per year.

The investment cost of each of the three conceptually designed system was assessed by

considering a low and high investment cost scenario. In a subsequent analysis of the total

present value of the investments it could be shown that superconducting system could be

competitive choices at electricity prices around 30 €/MWh to 35 €/MWh.

128



10 Summary and outlook
The focus of this thesis was the development, manufacturing and testing of the superconducting

elements of a 35 kA HTS DC cable demonstrator. Three major HTS high current conductor con-

cepts (Stack, Roebel, cable on round core (CORC)) were analyzed and the HTS Cross Conductor

(HTS CroCo) stack concept was chosen. A design process for HTS DC cables was developed for

high current applications (Chapter 6). Based on the design process, a 100 kA cable design based

on the 36 CroCos was developed and subsequently down scaled to a 35 kA cable demonstrator

utilizing 12 CroCos. The length of the cable demonstrator was de�ned as 3.6 m and the operating

temperature was set to 77 K (Section 6.8).

Prior to the CroCo manufacturing, a study of the critical current degradation behavior of sec-

ond generation HTS tapes under thermal loads was performed (Section 7.1). These investigations

are necessary since REBCO tapes are often exposed to thermal loads during manufacturing for

example due to soldering. An understanding of the precise degradation behavior can therefore

help to optimize the manufacturing processes. The investigation found a predictable and repeat-

able degradation pattern that appears to be caused by oxygen depletion of the REBCO crystal.

It was shown that tin-silver solders could be a viable low-cost alternative to lead containing

solders in CroCo manufacturing. The results of the investigation are published in [Pre+18].

Towards the manufacturing of the CroCos for the cable demonstrator, REBCO tapes from two

manufacturers were investigated in regards to their compatibility with the CroCo manufacturing

process (Section 7.3). Tapes from one manufacturer were found not compatible at the time but are

promising candidates for future work. It was found that REBCO tapes from other manufacturer

were in principle compatible but had strong tendencies towards an unequal distribution of

electroplated copper. However this problem was not critical for the formation of the CroCos

and the tapes could be used.

The CroCo manufacturing process was further developed to incorporate a round outer solder

matrix. In addition, the manufacturing process was adapted to accommodate REBCO tapes with

minimal electroplated copper (≈5-10 µm) which helps to reduce the cost of the REBCO tapes.

To enable these major changes a new CroCo manufacturing machine was set up (Section 7.2).

The 12 CroCos used in the demonstrator cable were produced in 8 production runs. From each

CroCo production run, one or two of the desired 3.6 m long CroCos were cut. The critical

current of each of the 12 CroCos were measured under self �eld conditions at 77 K and varied

between 2890 A and about 3680 A. The relatively large variation is due to optimizing various

manufacturing steps and an increasing performance of the REBCO tapes. It was shown that

the critical current of a CroCo can be reliably calculated based on the average critical current

of REBCO tapes used to manufacture the CroCo (Section 8.1.1). Soldered joints were used to

connect the CroCos with normal conducting copper cables. The resistance of these joints was
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10 Summary and outlook

200 nΩ on average with a standard deviation of 43 nΩ at 77 K. This results in a heat load about

0.7 mW per connection at an operational current of 3500 A which should be su�ciently low for

most applications.

In order to test the cable demonstrator, a 6 m long, 1 m wide and 0.8 m high cryostat was

developed and built (Section 8.2.1). The demonstrator cable itself consists of the 12 CroCos, each

incorporating 22 6 mm wide and 10 4 mm wide REBCO tapes. The CroCos are mounted upon

an aluminum core with a diameter of 110 mm and connected in parallel (Section 8.2.2).

During the measurement series the cable demonstrator achieved a steady state current of

34 kA and 35 kA for a short period of time. An analysis of the current distribution during the

cable test showed a relatively large spread in the current distribution across the CroCos that was

likely caused by water condensing between contacts and thus increasing the contact resistance

(Section 8.3.2). A CroCo was dismounted from the demonstrator after the test to verify that no

degradation for example due to strain during the cool down occurred (Section 8.3.3).

This thesis concludes with a case study of a superconducting cable in an aluminum electrolysis

plant. It is shown that the energy savings for a 500 m long 100 kA class superconducting cable

compared to a conventional aluminum bus bar are in the range of 6 GWh to 6.5 GWh per year

which is roughly equal to the yearly energy consumption of 2000 two person households in

Germany. The investment cost for the above mentioned superconducting system is presently

three to six times higher than a conventional aluminum bus bar system. The large spread in

the investment cost of the superconducting system is largely due to a large variance in the

superconductor cost that dominate the investment cost. The break even point between the

superconducting system and the conventional system for the minimal investment cost of both

systems is around an electricity price of 35 €/MWh calculated over a period of 40 years.

In conclusion, this thesis performed a �rst step towards demonstrating the technical feasibility

of superconducting high current DC cables and showed an economically feasible use case in the

foreseeable future.

The time constraints of this work allowed only for a brief measurement series of the 35 kA

cable demonstrator. A series of experiments should be performed in future work to further

investigate the capabilities of a high current cable based on multiple CroCos. A �rst step is

the improvement of the current distribution across all CroCos by ensuring more homogeneous

contact resistances. A more compact aluminum core could facilitate a more compact cable in

which the magnetic �eld of the cable has a larger impact compared to the magnetic �eld of the

individual CroCo. In addition, the behavior of the demonstrator during transients for example

short circuits should be investigated for example in regards to heat development.
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A Appendix

A.1 Order of magnitude estimation of the coolant friction

In the temperature rise there are two terms discussed one is the external heat load due to heat

leak through the cryostat or dissipation within the superconductor. The other factor is the

coolant friction during the �ow. The order of magnitude of the impact of the friction factor is

quickly estimated

Δ) =
Z · E2 · !
2 · �ℎ · 2?

+ @ · !
¤< · 2?

(A.1)

The AmpaCity cable which has a mass �ow of 0.425 Kg/s, is 1000 m long and the diameter of

the supply line is 32 mm.

Δ) =

Z

(
¤<

d!#2 c A
2

)2

!

4 A 2?,!#2
=

Z ¤<2 !

4c2 A5 2?,!#2 d
2
!#2

(A.2)

Assuming a friction factor of 0.02 results

Δ) =
0, 02 · 0, 425 · 1000

4 · c2 · 0, 0165 · 2000 · 8072
K = 0.067 K (A.3)

A.2 Relevant copper material properties for the use as

stabilizer material

The heat capacity of copper between 50 K and 400 K was �tted an exponential function based

on data from [WC84]

2 () ) = 00 + 01 exp (03) ) (A.4)

with 00 = 3.513 · 106 J
m3K

, 01 = −5.414 · 106 J
m3K

and 02 = −0.014 1
K .
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A Appendix

Figure A.1: Temperature dependent volumetric heat capacity of pure copper between 50 K and 400 K

A.3 Temperature incremental code to calculate stabilizer

cross section

Code written in MATLAB to calculate the stabilizer cross section.

c l e a r a l l

I _ f a u l t = 5 0 0 0 0 ; % f a u l t c u r r e n t

T _ s t a r t = 7 7 ; % s t a r t t e m p e r a t u r e

T_end = 3 7 3 ; % end t e m p e r a t u r e

t _ f a u l t = 1 ; % d u r a t i o n

%% V o l u m e t r i c h e a t c a p a c i t y o f copper 50 < T < 400 K ,

% cp ( T)= a0+a1 ∗ exp ( a3 ∗T ) [ J / (m^3 K ) ]

a0 = 3 . 5 1 3 2 9 E6 ;

a1 = −5 . 41352 E6 ;

a2 = −0 . 0 1 4 3 6 ;

%% E l e t r i c a l r e s i s t a n c e

% E l e c t r i c a l r e s i s t a n c e o f copper 50 < T < 400 K ,

% rho_cu ( T ) = c0 + c1 ∗T [Ohm∗m]
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A.3 Temperature incremental code to calculate stabilizer cross section

c0 = −3 . 1 6 2 ∗1 E −9 ;

c1 = 6 . 7 9 8 ∗ 1 E −1 1 ;

%% C a l c u l a t i o n s

% Temperature inc rement

T_s tep = 0 . 1 ;

% L i s t o f t e m p e r a t u r e i n c r e m e n t s

T _ l i s t = T _ s t a r t : T_s tep : T_end ;

A = 0 ; % c r o s s s e c t i o n i n m^2

t o t a l _ t i m e = 0 ;

% u n t i l the t ime t o T_end i s h i g h e r than t _ f a u l t

wh i l e t o t a l _ t i m e < t _ f a u l t

A = A+1E −6 ; % add one mm^2 per loop through

run_1 = 1 ; % r e s e t o f run v a r i a b l e

f o r i i = 1 : s i z e ( T _ l i s t , 2 ) − 1 % loop through

% i n t e g r a t e d h e a t c a p a c i t y o f the t e m p e r a t u r e inc rement . . .

i n t _ c p ( run_1 ) = ( a0 ∗ ( T _ l i s t ( i i +1) − T _ l i s t ( i i ) ) + . . .

a1 / a2 ∗ ( exp ( T _ l i s t ( i i + 1 ) ∗ a2 ) − exp ( T _ l i s t ( i i ) ∗ a2 ) ) ) ∗ A ;

% t o t a l power d i s s i p a t i o n

h e a t ( run_1 ) = I _ f a u l t ^ 2 ∗ ( c0 + c1 ∗ T _ l i s t ( i i + 1 ) ) / A ;

% t ime t o r e a c h the T_end o f the t e m p e r a t u r e inc rement

t ( run_1 ) = i n t _ c p ( run_1 ) / h e a t ( run_1 ) ;

run_1 = run_1 + 1 ;

t o t a l _ t i m e _ s t a m p ( run_1 ) = sum ( t ) ;

end

% t o t a l f a u l t d u r a t i o n

t o t a l _ t i m e = sum ( t ) ;

c l e a r i n t _ c p h e a t t

end

A_inc = A∗1 E6 ;

%% Worst c a s e

r h o _ s t a r t = c0 + c1 ∗ T _ s t a r t ;

rho_end = c0 + c1 ∗ T_end ;

i n t _ c p = ( a0 ∗ ( T_end− T _ s t a r t )+ a1 / a2 ∗ ( exp ( T_end ∗ a2 ) . . .

−exp ( T _ s t a r t ∗ a2 ) ) ) ;
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h e a t = I _ f a u l t ^ 2 ∗ ( c0 + c1 ∗ T_end ) ∗ t _ f a u l t ;

A_wc = s q r t ( h e a t / i n t _ c p ) ∗ 1 E6 ;

%% D i s p l a y i n g v a l u e s

d i s p ( [ ’ I n c r e m e n t a l A : ’ , num2str ( A_inc ) , ’ mm^ 2 ’ ] )

d i s p ( [ ’ Worst c a s e A : ’ , num2str ( A_wc ) , ’ mm^ 2 ’ ] )

p l o t ( t o t a l _ t i m e _ s t a m p , T _ l i s t )

A.4 Darcy friction factor for smooth and corrugated pipes

Smooth and rough pipes

For a pipe the Darcy friction factor depends on the relative roughness of the pipe nZ /�ℎ and

the Reynolds number '4 [RRM02]. In laminar �ow the friction factor can be determined by the

Hagen-Poiseuille equation

Z =
64

'4
(A.5)

For turbulent �ow with Reynolds numbers between 4000 and 108
and relative roughness from 0

to 0.05 the friction factor can be estimated with the Colebrook-White equation

1√
Z
= −2 log10

(
nZ /�ℎ
3.71

+ 2.52

'4
√
Z

)
(A.6)

Eq.A.6 being implicit it has to be solved numerically. However there are several explicit approx-

imation of the Colebrook-White equation. [RRM02] compared several of such approximations

and concluded that eq A.7 provides, statistically, the best approximation

1√
Z

= −2 log10

[
nZ /�ℎ
3, 7065

− 5, 0272

'4
· (A.7)

log10

(
nZ /�ℎ
3, 827

− 4, 567

'4
log10

((
nZ /�ℎ
7, 7918

)0,9924

+
(

5, 3326

208, 815 + '4

)0,9345
)) ]

for 3000 < '4 < 1.5 ∗ 108
and 0 ≤ nZ /�ℎ ≤ 0.05.

These formulas utilize the hydraulic diameter so they can be used for the ring as well as the

normal pipe geometry.
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A.5 Critical current calculation of manufactured CroCos

Corrugated Pipes

The meta study of [Ji+15] shows that the friction factor of various corrugated pipes is 1.5 to 4.5

times higher than the friction factor of a smooth pipe with the same diameter. However it also

shows that no overarching empirical formula has been found that is valid for a large range of

diameters or Reynolds numbers. Even with the multitude of studies listed in the meta study

there are still a lot of cases that aren’t covered by the empirical formulas found in these studies.

This leaves only the experimental determination of the friction factor in a lot of cases.

One empirical formula that was not listed in the meta study was determined by Knut Kauder

[Kau71]. Since his PhD thesis is not readily available his empirical formula is repeated here

Z = 3400 · 10

√( 4
3

)6 (?2>A
4

)7 ( 4
3

)3,53
(
4

?2>A

)230·( 43 )2,1

'4
0,193·4G?

(
−3300( 43 )2,6

)
4

?2>A (A.8)

within the borders of 0.2 ≤ 4/?2>A ≤ 0.6, 5 · 104 ≤ '4 ≤ 3 · 105
and 0.0455 ≤ 4/3 ≤ 0.0635

with d being the inner diameter of the corrugated pipe, pcor the pitch and the groove depth e.
According to [Kau71] the transition to smooth pipe behavior starts at e/pcor < 0,2 so Eq A.7 with

n = 0 can be used for these cases.

A.5 Critical current calculation of manufactured CroCos

In Figure 8.4 of section 8.1.1 calculated critical currents are compared with measured critical

current of all manufactured CroCos.

Three calculations were performed based on di�erent initial values for the critical current

of the REBCO tapes. The initial values are based on the critical currents of the batches used to

manufacture a CroCo. Figure A.2 shows schematically the critical current variation of a REBCO

tape along its length of two di�erent batches. It can be seen that average critical current in

Batch 2 is higher than in Batch 1 and that the deviation is lower. The manufacturer often provides

information similar to Figure A.2 for each batch. In addition to that, minimum, maximum, and

average critical currents of the batch are determined by the manufacturer and provided to the

customer.

In the CroCo manufacturing each CroCo consisted of 22 6 mm wide tapes and 10 4 mm wide

tapes of several di�erent batches. For example Table A.1 shows the batches of the 6 mm wide

REBCO tapes and their average, maximum and minimum critical current that were used to

manufacture CroCo 8. The number of tapes used of a respective batch was multiplied with the

three di�erent critical currents and the resulting critical currents were than averaged across

their respective category (Avg I c , Max I c , Min I c ). The �nal average per tape critical current

were than used as initial values for critical current calculations that are shown in Figure 8.4.
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Figure A.2: Critical current variation of REBCO tapes along their length

The same process was applied to the 4 mm wide tapes.

Table A.1: Determination of initial critical current values of 6 mm wide tapes in CroCo 8

Batch CroCo

Number Avg I c /

A

Max I c /

A

Min I c /

A

Tapes Avg I c /

A

Max I c /

A

Min I c /

A

ST1707-19 203 224 185 1 203 224 185

ST1707-18 196 219 180 4 784 876 720

ST1707-17 195 211 180 1 195 211 180

ST1712-6 215 247 180 1 215 247 180

ST1712-7 210 230 186 2 420 460 372

ST1712-8 259 290 209 1 259 290 209

ST1712-9 251 281 207 1 251 281 207

ST1712-10 245 279 197 1 245 279 197

ST1712-11 252 274 208 3 756 822 624

ST1712-12 245 276 206 1 245 276 206

ST1712-13 246 298 186 4 984 1192 744

ST1712-14 263 300 228 1 263 300 228

Average per

tape

228 257 192

The critical current calculations were performed with a FEM model within the commercial

software COMSOL. Figure A.3 shows geometric model that was used for the CroCos and the

magnetic �eld distribution of the CroCo at its critical current. As can be seen the geometric
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A.6 Thermal contraction of superconducting cables

Figure A.3: Magnetic �eld distribution of CroCo 8 at its critical current

model consist only of thin rectangles with a thickness of 1 µm which model the REBCO layer

of the REBCO tape. All other components of the CroCo were neglected for the critical current

calculation. The electrical current within the REBCO layers was imposed as an external current

with a magnetic �eld dependence in accordance to the measured angular dependency of the

used tapes (see Figure 4.7 and Table 4.3). The critical current magnetic �eld dependence was

scaled with critical currents as determined by the process described above.

The SuperPower tapes used to manufacture CroCo 11 and 12 followed the advanced pinning

formula which results in the very complicated angular dependency. In [Par+11] a model was

proposed based on equation 4.4 that requires 14 manually determined parameters to actuartely

represent the critical current angular magnetic �eld dependency of a SuperPower tape with

advanced pinning.

Instead of choosing the complicated accurate model described in [Par+11] it was decided to

simplify equation 4.4 to a magnetic �eld dependence by averaging the critical current across all

angles resulting in the follow equation

94 (�) =
940

[1 + �/�: ]:2
(A.9)

A.6 Thermal contraction of superconducting cables

The cold parts of a superconducting cable will contract during the cooldown with respect to the

outer (warm) cryostat wall. The radial contraction is due to the small radial dimensions of cables

of neglectable but the axial contraction can amount to several meters in long superconducting

cables. Inhibiting the contraction can lead to signi�cant strain and possibly damage to the cable

(see Section 7.4.3). Another possibility is to compensate for axial contraction for example with
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movable cable terminations [ST04] or to translate the axial movement due to the contraction

into a radial movement.

In the following it will be quickly estimated if it is possible to translate the axial contraction

of a CroCo into a radial contraction by bending the CroCo into a helix at the example of the

demonstrator cable.

In section 5.2.1 the helix is described by its twist pitch p and its helix radius r. The arc length

of the helix is then

B =

√
?2 + (2cA )2 (A.10)

Due to the thermal contraction the arc length of the helix changes during cooldown.

B · (1 + Δ) · CTE) =
√
?2 + (2cA )2 (A.11)

The new helix radius is then

A2 =

√
(B · (1 + Δ) · CTE))2 − ?2

2c
(A.12)

Considering a thermal expansion coe�cient of 11 ·10−6 1/K , a twist pitch of p = 1.5 m and an

initial helix radius of r = 58 mm. Than the new radius would be r2 = 55 mm. Allowing for 3 mm

of radial movement of the CroCo would be su�cient to translate the complete axial contraction

into a radial and thus not require any additional compensation for example at the terminations.

A.7 Cryocooler capacity maps

In section 9.6.3, equation 9.14 a cost function is given for cold power at 77 K. In order to estimate

the capital cost at 65 K the capacity maps of the cryocoolers listed in Table 9.1 are shown in

Figure A.4. For comparison the cold power of cryocoolers is normalized to the 77 K value. It can

be noted that the decline between 77 K and 65 K is roughly linear for all cryocoolers and that

the magnitude of the decline varies.

Assuming a linear function such as

% = ) · 0 + 1 (A.13)

than the following parameters can be found for the cryocoolers shown in Table A.4.
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A.7 Cryocooler capacity maps

Figure A.4: Cold power as a function of temperature normalized to the cold power at 77 K of commercially available

cryocoolers (based on [Cry19; Sti19; SHI19])

Table A.2: Linear �t parameters for the normalized cold power of cryocoolers as a function of temperature

a / 1/K b

PT90 0.016 -0.204

AL600 0.014 -0.07

SPC-1 0.024 -0.866

CH-110 0.009 0.303
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B List of abbreviations

AC Alternating current

ACT Advanced Conductor Technologies

AMSC American Superconductor

Bi-2212 Bi2Sr2CuO6+X

Bi-2223 Bi2Sr2Ca2Cu3O10+X

CAD Computer aided design

CC Grooved copper cylinder

CERN European Organization for Nuclear Research

CL Copper litz

COP Coe�cient of performance

CORC Conductor on Round Core

CroCo HTS Cross Conductor

6/4 CroCo CroCo using tape width of 6 mm and 4 mm

4/2 CroCo CroCo using tape width of 4 mm and 2 mm

3/2 CroCo CroCo using tape width of 3 mm and 2 mm

CS Cable shoe

CTE Coe�cient of thermal expansion

DC Direct current

DNA Deutsche Nanoschicht

DIN Deutsches Institut für Normung

ENEA Agenzia nazionale per le nuove tecnologie, l’energia e lo

sviluppo economico sostenibile

FEM Finite element method

FOM Figure of Merit

GCS General Cable Superconductors

GFRP Glass �ber reinforced plastic

H2S Hydrogen sulphide
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B List of abbreviations

HTS High temperature superconductor(s)

IBAD Ion beam assisted deposition

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

ISD Inclined substrate deposition

KIT Karlsruhe Insitute for Technology

LaH10 Lanthanum hydride

LF Lift factor

LHC Large Hadron Collider

LN2 Liquid nitrogen

LTS Low temperature superconductor(s)

MgB2 Magnesium diboride

MOCVD Metal-organic chemical vapour deposition

MOD Metal-organic deposition

MIT Massachusetts Institute of Technology

MLI Multi-layer super insulation

NbTi Niobium Titan

NIFS National Institute for Fusion Science

Nb3Sn Niobiun Tin

PLD Pulsed laser deposition

PPLP Polypropylene laminated paper

PPMS Physical property measurement system

RABiTS Rolling assisted biaxially textured substrates

RCE Reactive co-evaporation

REBCO Rare earth barium copper oxide

s.f. Self �eld

SPC Swiss Plasma Center

SPI SuperPower Inc.
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B List of abbreviations

SST Shanghai Superconductor Technology

STI Superconductor Technologies

VDE Verband der Elektrotechnik Elektronik Informationstechnik e. V.

VESC Vision Electrics Super Conductors

XLPE Cross linked polyethylene

YBCO Yttrium barium copper oxide
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C List of symbols

U Displacement of critical current peaks from 0 °

U Lay angle

U8 Coe�cient of thermal expansion

a0 , a1, a2 Fit parameter

ai Volume fraction

A Cross section

A Magnetic vector potential

B Magnetic �eld

Bc Critical magnetic �eld

Birr Irreversibility �eld

Bc1 Meißer phase limit

Bc2 Shubnikov phase limit

Bk Model parameter within critical current

angular magnetic �eld dependency

cp Speci�c heat capacity

Dh Hydraulic Diameter

Douter Outer diameter of ring type cooling channel

Dinner Inner diameter of a ring type cooling channel

Dneutral Diameter of neutral axis

DCroCo CroCo Diameter

DCroCo,max Maximum CroCo Diameter

d Helix core diameter

X Oxygen contect

X384 Dieletric thickness

E Electric �eld

Ei Young’s modulus
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C List of symbols

Ec Critical eletric �eld

EBD Dieletric breakddown strength

JℎE0? enthalpy of vaporization

Jℎ Enthalpy change

I c Critical current

Iop Operational current

I fault Fault current

j Current density

jc Critrical current density

jce Critical engineering current density

jc0 Initial critical current density

k1 Model parameter within critical current

angular magnetic �eld dependency

k2 Model parameter within critical current

angular magnetic �eld dependency

k Thermal conductivity

L Cable Length

_ Thermal conductivity

¤< Mass �ow rate

n Fit parametr within the Power Law

nfault Fault current factor =5 0D;C =
�5 0D;C

�>?

N Number of copper cables

\ Magnetic �eld angle

Z Darcy friction factor

µ Dynamic viscosity

µ0 Permeability of vacuum

d Density

d4; Speci�c electric resistance

C5 0D;C Fault duration
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C List of symbols

Z Darcy friction factor

Δ? Pressure drop

Δ) Temperature rise

Re Reynolds Number

Ri Sum of all measured termination resistances

Rend Resistance between cable shoe and copper block

nZ Pipe surface roughness

Y100 Iirreversible strain limit

f100 Irreversible stress limit

T Temperature

T H Ambient Temperature

T in Coolant inlet temperature

T out Coolant outlet temperature

T c Critical temperature

T c,90 Critical temperature at 90 % of the nomarlized resistance

T c,10 Critical temperature at 10 % of the nomarlized resistance

Δ)2 Transition width Δ)2 = T c,90 - T c,10

T start Temperature at the beginng of a fault

T s Heating temperature

T end Temperture at the end of a faultw

T op Opertional temperature

T m Solidus temperature

pin Coolant inlet pressure

pout Coolant outlet pressure

p Helix lead

q Heat �ow density

qcryo Heat �ow through the cryostat

qsc Heat load per meter dissipated by the superconductor

Q Heat �ow
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C List of symbols

R Electric resistance

r Radius

Y Strain

S Safety factor

f stress

v Coolant velocity

x, y Cooridnates

U Voltage
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