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Preface

Flame Retardants has a significant meaning since flame retardants are one of the most impor‐
tant properties of materials for fire resistance and characterization of materials. The preven‐
tion and control of fire in different fields is a hot topic of research. Flame-retardant materials
are used to reduce the risk of fire by decreasing the combustion rate and flame propagation
in the presence of fire. Phosphorus, silicone, boron, nitrogen, and other miscellaneous ele‐
ments containing materials or reactive monomers (petroleum or bio-based) possess inherent
flame-retarding characteristics and they are used as halogen-free and green flame-retardant
materials. They can be used on their own or added to develop materials to enhance flame
retardancy. Moreover, nanoadditives/fillers such as graphite, carbon nanotubes, organoclay,
and others have gained interest in improving the flammability of materials because of their
small size when forming nanocomposites.

The book is divided into four sections. Section 1 consists of an introduction that focuses on
the basic aspects of flame-retardant materials, types of fillers, and additives used. The intro‐
duction also discusses briefly bio-based flame retardants, while particular emphasis is given
to the development of vegetable oil-based flame retardants and their applications. Section 2
is dedicated to physiochemical properties such as molecular weight, vapor pressure, octa‐
nol/air partitioning coefficient, octanol/water partition coefficient, water solubility, and or‐
ganic carbon/water partitioning coefficient, all of which influence the distribution pattern of
these contaminants in the environment. In addition, this section also provides an evaluation
of the concentrations of these chemicals in various environmental media, such as indoor and
outdoor air, indoor dust, soil and sediment, sewage sludge, biota and food, and human tis‐
sues. Section 3 focuses on thermoplastic polymers and their interactions with the surfaces of
flame-retardant fillers; physical properties of nanocomposites such as mechanical proper‐
ties, gas permeability, rheological performance, and thermal conductivity are also briefly re‐
viewed along with flame retardancy. Section 4 includes computational analysis. The book
will be useful for scientists and researchers interested in the field of fire control.

It has been a rewarding process for us to learn from all the contributing authors throughout
the editing process and we would like to express appreciation to all them. Their dedication
and enriching expertise have added value to this book and will definitely be appreciated by
readers.

I would like to acknowledge the technical staff and Ms. Romina Skomersic, author service
manager of Intech Open Access Publisher, for their remarkable efforts and coordination
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1. Introduction

Fire is one of the greatest inventions of human beings, no doubt. However, if not managed 
cautiously, it may be deadly hazardous causing inestimable harm to life and property. 
Polymeric materials comprising of hydrocarbon chains are prone to burning when exposed to 
fire, releasing enormous heat, flame and smoke. With polymers all around us today, the great 
significance of fire/flame retardant materials [FiRs] in our lives can be judiciously realized. 
Polymers can be made fire/flame retardant [FiR] by the inclusion of micro- and nano- FiR
fillers or by the incorporation of FiR compounds in their backbone. This review paper focuses 
on the basic aspects of FiR polymers such as their composition, types of fillers and additives 
used, and their applications. The review also discusses briefly about bio-based FiRs, while 
emphasis will be particularly made on the developments in the field of vegetable oil–based 
FiRs and their applications.

Polymers celebrate prominent place in our daily lives. The extensive uses of polymers 
also raise our concerns and requirements for fire safety, as the polymers are highly com-
bustible, being mainly made up of carbon and hydrogen. When exposed to fire, polymers 
burn rapidly, releasing lot of heat and smoke, causing great damage to life and property. 
Thus, the use of FiRs has become mandatory from viewpoint of safety of life and environ-
ment. FiRs stop or inhibit the polymer combustion process, acting physically or chemically, 
by interfering with heating, pyrolysis, ignition, thermal degradation, i.e., various processes 
involved in polymer combustion. Thus, to improve FiR properties of polymers, it is very 
important to understand combustion which requires three main candidates: heat, oxygen 
and fuel (combusting material). When a substance is heated, its temperature rises to its 
pyrolysis temperature, and it produces char, liquid condensates and some gases (flammable 
and non-flammable). At still higher temperature, combustion temperature, these flammable 
gases produce large amount of light, heat and smoke on combining with oxygen (Figure 1). 

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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4 Flame Retardants 

The combustion cycle thus continues with the help of heat produced by combustion [1]. The 
disruption in this combustion cycle can cause flame retardancy, and can be achieved by the 
following mechanisms (Figure 2): 

• incorporation of such materials in polymers that, on exposure to heat do not allow the 
temperature of material to rise to pyrolysis temperature, 

• incorporation of materials that produce more non-flammable by-products and char during 
pyrolysis; the latter acts as an obstacle to heat and mass transfer between gas and con-
densed phase (condensed phase mechanism), and 

• using FiRs that cause reduction in O2 concentration in flame zone, by releasing non-flam-
mable gases (gas phase mechanism). 

FiRs comprise of additive FiRs, compounds (mineral fillers, hybrids) that are incorporated in 
polymers but they react with polymers only at higher temperatures, that is at the onset of fire, 
and reactive FiRs that are incorporated in polymer chains during synthesis.�

There are many types of FiRs based on:�

• minerals (oxides and hydroxides of metals, ex: magnesium hydroxide, aluminum hydrox-
ide, calcium carbonate; borates, ex: zinc borates) 

• halogens 

• phosphorus 

• silicon 

• nitrogen 

• nanoparticles 

Figure 1. Combustion cycle. 
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Figure 2. Types of FiRs and their mode of action.�

Some examples of FiRs containing bromine and phosphorus are given in Figures 3 and 4. 

Nanoparticles not only improve mechanical strength but also enhance flame retardance of poly-
mers. These include nanoclays, carbon nanotubes, sepiolites, silsesquioxane, silica and titanium�
nanoparticles, nano metal oxides and others (Figure 5). Figure 6 provides mechanism of flame�
retardance by nanoclays in a polymer composite. The selection of a particular nanoparticle as�
FiR, in polymer composite systems, depends upon its chemical structure and geometry.�

Figure 3. Bromine-based aliphatic and aromatic FiRs (a) hexabromocyclododecane, (b) tris (tribromoneopentyl) 
phosphate, (c) decabromodiphenyl ether, (d) tetrabromo bisphenol A, (e) bis (2–3-dibromopropylether) tetrabromo 
bisphenol A and (f) 1,2-ethylene bis (tetrabromophthalimide).�

http://dx.doi.org/10.5772/intechopen.82783


      

  

6 Flame Retardants 

Figure 4. Phosphorus containing FiRs (a) phosphinate salts (M�=�Al, Zn, R�=�alkyl), (b) ammonium polyphosphate, 
(c) 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, (d) bisphenol A diphosphate, (e) triphenylphosphate and�
(f) resorcinol diphosphate. 

Figure 5. Some nanofillers used for fire/flame retardance. 
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Figure 6. Mechanism of flame retardance by nanoclays.�

FiRs are tested by UL 94�V, limited oxygen index, cone calorimeter, and other tests. Several 
prospects of FiRs have been described in detail in previously published reviews [1–3].�

The strategies to improve fire/flame resistance are primarily governed by the nature and 
chemical structure of polymers, their mode of decomposition, fire safety level required and 
the performance of the polymer product. Today, our rising concerns towards human health 
and environment protection, together with the fire safety of life and property, have driven us 
to develop FiRs that are cost effective, less/non-toxic, environment-friendly and are conducive 
to optimum fire safety performance. Bio-based FiRs are ideal alternatives in this context, dis-
cussed briefly in following section.�

2. Bio-based FiRs 

Fast depleting petroleum resources, high prices of petro-based chemicals, health and environ-
mental hazards caused by these, worldwide legislations and also ban on the use of some com-
pounds have drastically influenced the world of polymer materials, so also FiRs. Thus it has�
become imperative to use bio-based resources in the field of FiRs. Biomolecules such as carbohy-
drates (cellulose, starch, chitosan, alginates), proteins, lipids (vegetable oils, cardanol) and phe-
nolic compounds (lignin, tannin) can be used as such or can be derivatised to obtain bio-based 

http://dx.doi.org/10.5772/intechopen.82783


 

 

 

 

  

8 Flame Retardants 

building blocks. The latter can be further modified to obtain FiRs, based on their chemical struc-
ture and inherent thermal properties. To assess the use of bio-based materials as FiRs, it is neces-
sary to inspect their composition and thermal behavior. Apart from this, bio-based materials�
should meet some other criteria as well, to be used as FiRs, that is, (i) these materials should bear�
sufficiently high thermal stability in compliance with their processing, (ii) their charring abil-
ity should be high, (iii) they should bear functional groups such as hydroxyls, carboxylic acids, 
amines, double bonds and others, that may undergo chemical transformations, and (iv) there 
should be inclusion of elements (P, N, Si) that are capable of introducing flame retardancy. Bio-
based materials can be used by themselves as an ideal component of FiRs, or in combination with�
traditional FiRs such as P, N or with melamine, boric acid and also by chemical modifications.�

2.1. Why biomolecules mentioned above are used in the field of FiRs?�

Lignin is used as an additive to increase the fire retardance of polymers. At high tempera-
tures, it gives the highest char yield. This char residue slows down combustion as it forms a�
protective layer. Lignin has been used in combination with boric acid, melamine, aluminum�
phosphate, urea and other FiRs. Proteins and deoxyribonucleic acid [DNA] are used in the�
field as both contain important elements, N and P, showing flame retardance. Both are capable�
to form films over textiles. The protein coating increases the burning time and slows down the�
burning rate. DNA, a natural intumescent FiR, contains C, N and P.�Carbohydrates are used as�
charring agents as they contain oxygen. Starch is used as matrix and also as FiR coating in tex-
tiles through layer-by-layer technique. Chitosan as a carbon source is also used as FiR in textile�
coating by layer-by-layer technique. This technique improves FiR ability of the coated fabrics�
by declining their thermal decomposition and decreasing their burning time. Lipids such as�
fatty acids, vegetable oils, cardanol and others are also used as FiRs. Phosphorylation is the 
most frequently used method to introduce fire retardance in bio-based materials. Chitosan,�
lignin, vegetable oils, cardanol, and others have successfully undergone phosphorylation. 

Past years have witnessed great research and development in this field. Several fire protec-
tion solutions have cropped up utilizing bio-based resources and complying with “Green 
Chemistry” principles. However, even with gigantic number of solutions available, it is not 
easy to assess which one is the most successful. In this context what should significantly be kept�
in mind is (i) overall performance of FiRs, (ii) environmental and health hazards associated�
with their processing, formulation and application, and (iii) cost effectiveness of raw materials�
used and processes involved. Vegetable oils [VO] are domestically abundant, cost-effective�
and non-toxic. They contain several functional groups that can be tailor-made by different�
chemical transformations through “greener” methods for different applications such as FiRs.�

3. Vegetable oil based FiRs 

VO can be modified by P, Si, halogens such as chlorine and bromine, to be used as FiRs. Such�
VO derivatives can be used as plasticizers for PVC (Figure 7).�During thermal degradation,�
they provide carbon and acid sources that enhance flame retardancy by promoting char residue�
formation [4].�
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Figure 7. Phosphorus containing VO based derivatives, where (a-c) 9, 10-Dihydro-9-oxa-10-phosphaphenenthrene-
10-oxide groups containing soybean oil based derivatives, (d-e) diphenyl phosphine oxide containing sunflower oil 
based derivatives, (f-g) cashew nut shell liquid based derivatives, and (h-j) diethyl phosphate and chlorinated phosphate 
derivatives of castor oil [4].�

In the synthesis of FiR polymers from VO, the advantage is taken of the presence of functional�
groups in VO such as double bonds, hydroxyl and ester groups which undergo derivatization�
reactions such as epoxidation, esterification, urethanation, alcoholysis and others (Figure 8). 
The inserted epoxide, ester, urethane groups or the alcoholyzed products are then modified�
accordingly by phosphorylation, silylation, boronation, halogenation and others resulting in 
FiRs [5]. The polymerization on double bonds can also be done by using styrene, divinyl ben-
zene, dicyclopentadiene, and norbornadiene. Soybean and sunflower oils were reacted with�
acrylic acid and N-bromosuccinimide. The bromoacrylated products were then copolymerized�
with styrene, and this resulted in the formation of rigid FiR�polymer [6, 7]. Bromine containing�
FiRs release hydrogen bromide during combustion, causing toxicity and corrosion. Therefore,�
P, Si and B containing polymers are significantly popular relative to those containing halogen�
because the combustion products they produce are non-toxic, while the latter release corro-
sives, pollute environment, erode instruments and are hazardous to human health. 

VO derivatives have also shown dual behavior as they render flame retardancy and also plas-
ticizing effect to polyvinyl chloride (PVC) materials, which find wide applications in pack-
aging, pipes, toys, wire and cable. PVC materials show excellent mechanical and physical 
properties, not in neat form, but when combined with plasticizers, such as dioctyl phthalate 
[DOP] and dibutyl phthalate. However, there are disadvantages associated with the use of 
these plasticizers with PVC, such as diffusion of these plasticizers into surroundings, dete-
rioration in the performance of PVC materials due to loss of plasticizers, and often being 

http://dx.doi.org/10.5772/intechopen.82783


 

 

 
 
 

   
 
 

 
  

  
 
 
 

  
 
 

  

10 Flame Retardants 

Figure 8. Chemical routes to produce VO derivatives [5].�

susceptible to burning easily. The latter restricts their application in wire and cable that 
demand FiR�properties. Thus, bio-based plasticizers that improve mechanical properties and 
flame retardancy (by supplying acid, carbon and gas source during thermal degradation of 
PVC materials) are welcomed [8–10].�

VO-based FiRs and FiR plasticizers are prepared by different chemical transformations as 
mentioned above. Some of these have been discussed briefly in following sections:�

By epoxidation: Epoxidation is carried out at the double bonds of VO.�Epoxidized VO, fol-
lowed by further derivatization such as ring opening of oxirane forming polyols, and also 
urethanation, produce FiRs. Castor oil [CO] was esterified at hydroxyl groups and then�
epoxidized at unsaturation producing epoxidized CO polyol ester, and the latter was treated�
with phosphorus oxychloride forming chloro phosphate ester of CO [ClPECO]. ClPECO was�
substituted in place of 50�wt% DOP for plasticizing PVC.�ClPECO and DOP were blended�
with PVC in different ratio producing PVC films that showed high limited oxygen index�
[LOI] and improved thermal stability. During thermal degradation, the fatty acid chains of�
CO in ClPECO provided carbon source and the generated phosphorus containing compo-
nents promoted the formation of char residual. Thus ClPECO improved plasticization and�
also flame retardancy of PVC (Figure 9) [4, 8]. CO was epoxidized at double bond and then�
the inserted oxirane ring was modified with diethyl phosphate in presence of triphenylphos-
phine producing phosphate ester, which was blended with PVC.�The plasticized PVC showed�
high Tg, improved thermal stability and high LOI values [11, 12]. Phosphorylated polyol�
polyurethanes [PU] were prepared by epoxidation of soybean oil followed by epoxide ring 
opening reaction with phosphoric acid, and the treatment of formed phosphorylated polyols 
with polymeric diphenylmethane diisocyanate [PMDI]. These PU�showed flame retardancy�
same as commercial PU [13]. In another example, two types of polyols were prepared from�
rapeseed oil, one through epoxidation followed by ring opening reaction and the other one 
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Figure 9. Phosphorus and halogen containing FiRs from castor oil [8].�

by transesterification with triethanolamine. PU foams were prepared by replacing 70% of 
petrochemical polyols by each of these polyols, adding expandable graphite [EG] as filler and�
then these formulations were treated with PMDI forming two-component PU.�EG has stacked�
layers which are intercalated with acids (sulfuric, nitric, and acetic). Under the influence of�
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Figure 10. Phosphaphenanthrene containing FiR from castor oil [17].�

high temperatures, EG reacts with acids releasing H2O, CO2, SO2 gases that cause expansion 
of graphite that behaves as physical barrier for heat and mass transfer. EG modified PU foams�
were characterized by flammability test by cone calorimeter to determine certain parameters 
(time to ignition, heat release rate, peak of heat release rate, time to peak of heat release�
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rate, total smoke release, maximum average rate of heat emission), and by combustion and 
thermal stability analyses. The inclusion of EG into VO-based PU foam reduced flammability,�
prolonged the combustion time, increased the average burning temperature and rendered 
overall good thermal properties and flame resistance to VO-based PU foam [7]. In another�
approach, CO was epoxidized, and phosphaphenanthrene [PPP] groups were inserted on 
epoxidized CO by oxirane ring opening reaction. The hydroxyl groups of CO and hydroxyl�
groups formed during oxirane ring opening reaction were esterified in the next step. This CO�
polyester with PPP groups was blended with PVC (partially replacing DOP). The modified�
CO polyester improved thermal stability of PVC by promoting the formation of char residue.�
The thermal degradation of PPP groups produces phosphorus rich layers that prevent oxy-
gen and heat transfer, rendering PVC more thermally stable and flame retardant. Long fatty�
acid chains of CO form a rigid char skeleton preventing char from collapsing [14].�

By glycerolysis: Glycerolysis of CO was accomplished with glycerol, in presence of sodium�
methoxide and triethanolamine forming monoglyceride and diglyceride of CO [15, 16]. 
The latter were further epoxidized at double bonds, and the epoxy ring opening reaction�
with diethylphosphate resulted in the formation of P containing flame retardant polyol.�
The flame retardant polyol formed PU foams in one shot process with PMDI.�Such PU�
foams were analyzed with thermogravimetric analysis, flammability tests and cone calo-
rimetric measurement, which showed excellent fire resistance performance of these PU,�
with only 3% P incorporation, compared to pure PU [15]. In another attempt, glycerolyzed�
products of CO, monoglyceride and diglyceride, were epoxidized and PPP groups were 
inserted in CO mono- and diglycerides by epoxide ring opening reaction. The hydroxyl�
groups of CO and those formed by epoxide ring opening were further esterified and these�
PPP-containing CO polyols were used as plasticizer for PVC, partially replacing with DOP�
(Figure 10).�Thus plasticized, PVC showed high LOI (35.95%) values, improved thermal�
stability and reduced flammability [17]. Monoglyceride obtained by glycerolysis of Nahar�
seed oil, epichlorohydrin, bisphenol A and tetrabromobisphenol A were reacted together 
in an alkaline medium and then nanoclay was incorporated in different weight percent-
ages (1, 2.5, and 5�wt%). These nanocomposites showed high LOI values ranging from 40�
to 45. Flame retardance of these nanocomposites is related to the incorporation of nanoclay�
that acts as thermal insulator and mass transport barrier during thermal decomposition of 
epoxy, and also promotes char formation [18].�

Thus, VO can be modified in several ways for their applications as FiRs. With numerous types 
of nanoparticulate systems and synthesis methods cropping up and the advent of newer tech-
niques of analyses of FiRs, there is immense scope for utilization of VO as “green” FiRs.�

4. Summary 

With the presence of polymers in every sphere of daily life, the use of FiRs poses greater safety,�
health and environment concerns, also keeping in mind the demands for non-toxicity, cost�
effectiveness, level of performance and degree of “greenness” of the final product. The polymer�
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matrices are extensively diverse, and therefore no strategy claims as an ideal solution of fire/�
flame retardance. The�research still continues on the topic in the quest for better and yet better.�

FiRs. To some extent, bio-based FiRs do fill the gap.�
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Abstract

Polybrominated diphenyl ethers (PBDEs) and ‘novel’ brominated flame retardants 
(NBFRs) are synthetic chemicals widely used in consumer products to enhance their 
ignition resistance. Since in most applications, these chemicals are used additively, they 
can transfer from such products into the environment. PBDEs have been classified as sig-
nificant pollutants in the environment. Knowledge of PBDE and NBFR physicochemical 
properties provides information about their potential environmental fate and behaviour. 
This chapter highlights the most important physiochemical properties such as molecu-
lar weight, vapour pressure, octanol/air partitioning coefficient, octanol/water partition 
coefficient, water solubility and organic carbon/water partitioning coefficient that influ-
ence the distribution pattern of these contaminants in the environment. In addition, this 
chapter provides an evaluation of the concentrations of these chemicals in various envi-
ronmental media such as indoor and outdoor air, indoor dust, soil and sediment, sewage 
sludge, biota and food, and human tissues.

Keywords: PBDEs, NBFRs, physiochemical properties, environmental levels, fate and 
behaviour

1. Introduction

Brominated flame retardants (BFRs) are a group of synthetic chemicals added to a wide range 
of polymers, foam, plastic, textile, and building materials to meet flame retardancy standards 
set by various jurisdictions worldwide, containing 50–85% bromine by weight [1]. Depending 
on their mode of incorporation into the polymers to which they are added, they are referred to 
as either reactive or additive BFRs. Reactive flame retardants, such as tetrabromobisphenol-A 
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(TBBPA), are chemically bonded to the polymer. Conversely, additive BFRs, such as PBDEs 
and hexabromocylododecane (HBCD) are simply blended with the polymers and do not 
become a part of the base polymer. Additive BFRs are the most common because their appli-
cation in consumer goods is less complicated than for reactive BFRs [2]. An extensive body 
of research has reported the presence of BFRs in air, dust, soil, sediment and biota samples. 
Evidence of their persistence and capacity for bioaccumulation, coupled with concerns about 
their adverse health effects has led to widespread bans and restrictions on the manufacture 
and use of PBDEs and their listing under the Stockholm Convention on Persistent Organic 
Pollutants (POPs) [3]. Such bans and restrictions on the use of BFRs without the relaxation 
of flammability standards has likely resulted in increased production and use of alternatives 
referred to collectively as ‘novel’ brominated flame retardants [4]. According to the empirical 
data, studies suggest that some NBFRs have the same hazard profiles as ‘legacy’ BFRs [5]. 

2. PBDEs and NBFRs 

PBDEs are a family of chemicals with a common structure of a brominated diphenyl ether 
and have the chemical formula C12 O.�Any of the 10 hydrogen atoms of the diphe-H(0–9)Br(1–10) 

nyl ether moiety can be exchanged with bromine, resulting in 209 possible congeners. Each 
individual PBDE is distinguished from others by both the number of bromine atoms and the 
placement of those atoms (Figure 1). These congeners are numbered using the International 
Union of Pure and Applied Chemistry (IUPAC) system [6]. 

Commercial products of PBDEs have been marketed in three main formulations, namely: 
pentabromodiphenyl ether (Penta-BDE), octabromodiphenyl ether (Octa-BDE) and deca-
bromodiphenyl ether (Deca-BDE). The leading commercial Penta-BDE mixture is primarily 
comprised 28% BDE-47 and 43% BDE-99. A commercial Octa-BDE mixture is comprised of 
13–42% BDE-183 and 11–22% BDE-197, while Deca-BDE mixture contains primarily >97% 
BDE-209 [7]. 

Bans and restrictions on the use of established BFRs have resulted in the production of alter-
natives to comply with flammability standards. The term NBFRs refer to brominated flame 
retardants, which ‘are new to the market or recently observed in the environment due to 
the restrictions and bans on the use of some “legacy” BFRs’. Other terms such as ‘alternate’, 
‘emerging’ or ‘non-PBDEs’ have also been used to refer to these BFRs [4]. It has been indi-
cated that the NBFRs are urgently required because any non-halogenated substituting chemi-
cals can involve significant costs, as industries must adapt their products for all required 

Figure 1. General structure of PBDEs (n + m = 1–10). 



 

 
 
 

   

 

  

Physiochemical Properties and Environmental Levels of Legacy and Novel Brominated Flame… 21 
http://dx.doi.org/10.5772/intechopen.79823 

performances and product standards [1]. The most common NBFRs replacing PBDEs are: a 
mixture of 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and bis (2-ethylhexyl)3,4,5,6-
tetrabromophthalate (BEH-TEBP) under the trade name Firemaster 550 as a replacement for 
Penta-BDEs; 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) as a replacement for Octa-BDE; 
and decabromodiphenyl ethane (DBDPE) as a replacement for Deca-BDE [8]. Figure 2 illus-
trates the chemical structure of selected NBFRs replacing PBDEs. 

2.1. Physicochemical properties of PBDEs and NBFRs 

PBDE commercial products are solids at room temperature, not flammable, and do not pres-
ent a physiochemical hazard [7]. They are hydrophobic contaminants (highly water insoluble) 
and typically have high log octanol-water partition coefficients.�

Similar to PBDEs, NBFRs are highly hydrophobic compounds and displaying low volatility. 
However, differences in molecular structure between PBDEs and their NBFR replacements�
result in specific differences in physicochemical properties. For example, the ethane bridge�
between the aromatic rings in the DBDPE molecule makes it more flexible and hydrophobic�
than BDE-209, with consequences for its environmental fate and behaviour [4]. In general,�
BTBPE, BEH-TEBP and DBDPE possess lower vapour pressures and higher log octanol-water 
partition coefficients compared with Octa-, Penta- and Deca-BDE, respectively. Tables 1 and 2 
and Figure 3 illustrate the most important physiochemical properties: molecular weight (MW),�
vapour pressure (VP), octanol/air partitioning coefficient (KOA), octanol/water partition coef-
ficient (KOW), water solubility and organic carbon/water partitioning (KOC) that influences the�
environmental fate and behaviour of PBDEs and NBFRs. 

Figure 2. Chemical structure of selected NBFRs replacing PBDEs.�

http://dx.doi.org/10.5772/intechopen.79823


 

    

    

    

    

  

 

  

  

  

  

  

  

  

  

22 Flame Retardants 

BDE Molecular Water solubility mg/L Log KOW Log KOA Log Vapour pressure (Pa) 
weight (@25°C) (@25°C) KOC (@25°C) 

BDE-28 407.1 0.07 5.94 9.5 3.91 6.51 × 10−4�

BDE-47 485.82 0.001–0.002 6.81 10.53 4.12 5.52 × 10−5�

BDE-99 564.75 0.009 7.32 11.31 4.34 7.94 × 10−6�

BDE-100 564.75 0.04 7.24 11.13 n.a 7.07 × 10−6�

BDE-153 643.62 0.001 7.9 11.82 n.a 5.80 × 10−6�

BDE-154 643.62 0.001 7.82 11.92 n.a 2.64 × 10−7�

BDE-183 722.4 0.002 8.27 11.96 n.a n.a 

BDE-209 959.17 <0.001 6.3–12.6 13.21 6.30 9.28 × 10−9�

Table 1. Physicochemical properties of selected BDEs [1, 7, 9]. 

NBFR 

EH-TBB 

Molecular 
weight 

549.92 

Water solubility (mg/L 
@ 25°C) 

1.10 × 10−5�

Log 
KOW 

7.73 

Log KOA 
(@25°C) 

12.34 

Log 
KOC 

5.59 

Vapour pressure (Pa) 
(@25°C) 

4.57 × 10−6�

BTBPE 687.64 1.90 × 10−5� 8.31 15.67 5.89 3.88 × 10−10�

BEH-TEBP 706.14 1.60 × 10−6� 9.34 16.86 6.45 1.55 × 10−11�

DBDPE 971.22 2.10 × 10−7� 11.1 19.22 7.00 6.00 × 10−15�

Table 2. Physicochemical properties of selected NBFRs [8, 10, 11]. 

2.1.1. Impact of physicochemical properties on the environmental behaviour of BFRs 

Knowledge of the physicochemical properties of substances provides information about their 
potential environmental fate and behaviour. 

2.1.1.1. Molecular weight (MW) 

Depending on their molecular weight, chemicals show diverse behaviour in environmental 
and biological systems. With specific regard to PBDEs, variations in the degree of bromination 
drive variations in physicochemical properties such as vapour pressure, hydrophobicity and 
lipophilicity, which in turn lead to congener-specific variations in environmental fate and 
behaviour. For example, while those less brominated congeners prevalent in the commercial 
Penta- and Octa-BDE formulations are more bioaccumulative in aquatic biota; higher bromi-
nated congeners, such as BDE-209, predominated in sediments. However, potential degra-
dation of higher brominated compounds could yield lower brominated PBDEs that display 
stronger bioaccumulation characteristics than BDE-209 itself [12]. 

2.1.1.2. Vapour pressure (VP) 

VP is a useful indicator to determine the potential of chemicals to volatilise from surfaces to 
the atmosphere. Inhalation is less likely to be a substantial pathway of exposure to chemicals 
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Figure 3. Molecular weight, Log KOW�(octanol/water partition coefficient), Log KOA�(octanol/air partitioning coefficient) 
and vapour pressure of selected PBDEs and NBFRs. *Octa-BDE.�

with a VP < 10−6�mm Hg (10−4�Pa). Conversely, inhalation is likely significant for chemicals 
with a VP > 1 × 10−4�mm Hg (10−2�Pa) [5]. Chemicals including many BFRs possess a VP between 
1 × 10−8 and 1 × 10−4�mm Hg partition between the gas and particulate phases and are thereby 
considered semi-volatile. The equilibrium between the two phases is controlled by the VP, the 
surrounding air temperature, and the concentration and chemical composition of airborne 
particulate matter. V�p of PBDEs and NBFRs decrease with increasing molecular weight and 
degree of bromination [5, 7]. 

2.1.1.3. Octanol-air partition coefficient (KOA) 

is a parameter that describes the partition of semi-volatile organic compounds (SVOCs) KOA�

between the gas phase and organic matter such as that found in airborne particles. Commonly 
expressed as log KOA, it is the ratio between the concentration of the chemical in air and its 
concentration in octanol at the equilibrium state. As with Vp, log KOA depends on the tempera-
ture. Higher log KOA values imply stronger binding to the organic content of particles [13, 14]. 
As shown in Tables 1 and 2, log KOA values fall between 9.5 and 13.2 for PBDEs and between 
12.3 and 19.2 for NBFRs. This indicates that BFRs will deposit readily from the gas phase into 
indoor dust, soil and vegetative biomass. In addition, the wide range of log KOA values implies 
a varying abundance of these pollutants in particulate phases [7]. 

2.1.1.4. Water solubility and octanol/water partition coefficient (KOW) 

As shown in Tables 1 and 2 and Figure 3, in general, PBDE water solubility values are higher 
than those of NBFRs. Water solubility is strongly inversely related to the KOW. Commonly 
expressed as log KOW, this is an important property for assessing the environmental fate and 
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behaviour of chemicals. Generally, organic chemicals with a log KOW�value ≥ 5.0 are very 
hydrophobic, thereby displaying a high tendency to sorb organic carbon in sediments, soils, 
and indoor dust and—when combined with a resistance to metabolism—possess a marked 
capacity for bioaccumulation [7]. 

2.1.1.5. Organic carbon water partitioning coefficient (KOC) 

Another important physiochemical property is KOC, which provides an indication of a chemi-
cal to leach from soil to groundwater and to partition from the aqueous phase of water bodies 
to suspended solids and sediments. Chemicals with high KOC�values are strongly sorb to soil 
[5, 7]. In general, as shown in Tables 1 and 2, KOC values for PBDEs (3.9–6.3) are slightly lower 
than by those of their replacements (log KOC of NBFRs 5.8–7). 

2.2. Environmental levels of PBDEs and NBFRs 

PBDEs and NBFRs as additive flame retardants can be released from treated products and 
enter the environment via several ways. These include volatilisation and leaching from 
treated products, partitioning to indoor dust, leaching from landfills and recycling of waste 
products [15]. As a consequence of their persistence and potential for long-range atmospheric 
transport, PBDEs and NBFRs have been detected in Arctic media, transported on airborne 
particulates rather than the gas phase. The first detection of PBDEs was in 1979�in soil, and 
slug samples from the USA, with the first detection in vertebrates (fish and marine mammals 
collected from the Baltic Sea) were in the 1980s. By comparison with legacy BFRs, the occur-
rence of NBFRs in the environment is at lower levels; however, the last few years has seen a 
rise in contamination with NBFRs [16]. 

2.2.1. Levels of PBDEs and NBFRs in indoor and outdoor air 

Depending on their VP and KOA, SVOC BFRs can volatilise from treated products and be 
abundant in both gaseous and particulate phases. The partitioning between the two phases is 
mainly driven by atmospheric temperature. It is expected that at a given temperature, lower 
brominated compounds are more abundant in the gas phase, while higher brominated conge-
ners are more prevalent in the particle phase [14]. 

It is difficult to compare PBDEs levels in air samples between countries, due to the different 
number of individual congeners, sampling method (passive or active) and the atmospheric 
phase sampled (vapour, particle or both). PBDEs were detected in indoor air samples from 
the UK [17], Germany [18], Denmark [19], Sweden [20], USA [21], Canada [22], China [23] 
Japan [24], and Australia [25]. Concentrations were variable between countries. For the above-
mentioned countries, PBDE concentrations were between 17 and 55 pg/m3 in Japan and 210 
and 3980 pg/m3 in the USA.�In Norway, the maximum concentration of BDE-209�in indoor air 
samples was 4150 pg/m3 with a median concentration of 3.8 pg/m3 (n = 47) [26]. 

In outdoor air samples, BFRs were detected at low levels compared with those in indoors. For�
each of BDE-47, BDE-99 and BDE-100, concentrations in indoor air were 100 times higher than 
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the outdoor in the UK [17]. In the USA, ΣPBDE concentrations ranged between 10 and 85�pg/m3, 
with BDE-47 predominant [27]. In China, concentrations of Σtri-hepta-PBDEs ranged between�
87.6 and 1941 pg/m3, with BDE-47 and BDE-99 predominant [28]. 

Recently, in addition to PBDEs, more attention has been paid to NBFRs. Low concentrations 
of NBFRs were detected in air samples. In Sweden, BEH-TEBP and DBDPE in indoor air 
ranged <35–150 pg/m3 and < 90–250 pg/m3 with detection frequencies of 15 and 8% for BEH-
TEBP and DBDPE respectively [29]. In China, only EH-TBB and DBDPE were detected, at 
very low concentrations [30]. 

2.2.2. Levels of PBDEs and NBFRs in surface water 

As a source of fresh water, lakes are important. In the UK, an average concentrations of tri-
hexa-BDEs in nine English lakes was 61.9�pg/L.�Spatial variation was found between lakes, 
however, no correlation was detected between PBDE concentrations and population density. 
In addition, no evidence a decline in concentrations during the sampling period [31]. Another 
study [32] in the USA, from 18 stations on the five Great Lakes’ water, reported that the aver-
age concentrations of Σtri-deca-BDEs (112�pg/L) were dominated by BDE-47 and BDE-99 with 
average concentrations of 26.8 and 26.4�pg/L respectively followed by BDE-209 (9.5�pg/L). 
Average concentrations of BEH-TEBP, EH-TBB and other NBFRs were 10.4, 5.6 and�<1.1�pg/L, 
respectively [32]. In sea water from the European Arctic, concentration of Σ10PBDEs (tri-deca) 
in dissolved water and suspended phases of seawater ranged from 0.03 to 0.64�pg/L, with 
BDE-47 and BDE-99 predominant [33]. 

2.2.3. Levels of PBDEs and NBFRs in sediment and soil 

PBDE congener profiles in sediments are dominated by higher brominated congeners such as 
BDE-209 and DBDPE.�This is different from profiles in biota samples, which are dominated 
by lower brominated congeners, such as BDE-47 and BDE-99 [34]. In marine sediments, BFRs 
were detected in Canada [35], San Francisco Bay, USA [36], Gulf of Lion, France [37], Northern 
Arabian Gulf [38], East Java Province, Indonesia [39], Goseong Bay, Korea [40], South China 
[41], and the Scheldt estuary, the Netherlands [42]. With the exception of the Scheldt estuary, 
the Netherlands (where sediment concentrations ranged 14–22 ng/g dw for tri-hepta-BDEs 
and 240–1650�ng/g dw for BDE-209) and south China (for which sediment concentrations fell 
between 30 and 5700 ng/g dw for BDE-209); concentrations of PBDEs in other countries were 
very low. In surficial sediments sampled along cruise transects from the Bering Sea to the cen-
tral Arctic Ocean, Σ24PBDEs (without BDE-209) in the marine sediments ranged from <MDL 
to 67.8 pg/g dw, with an average concentration of 9.8 ± 11.9 pg/g dw [43]. The study pointed 
that the Σ24PBDE concentrations show a reduction from 2008 to 2012. In river sediment cores 
from China, PBDE concentrations ranged between 1.3 and 1800�ng/g dwt with the highest 
levels found at 4–6 cm depth [44]. 

Soil represents a major sink for many volatile organic pollutants operating during atmospheric 
transport. In Birmingham, UK, average concentrations of BDE-209 and Σtri-hepta-BDEs in 
soil samples were 11 and 3.6 ng/g, respectively [45]. These concentrations were higher in sites 
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closest to Birmingham city centre [45]. In an e-waste recycling area in South China, PBDE and 
NBFR concentrations in rhizosphere soils and non-rhizosphere soils were 13.9–351 ng/g for 
PBDEs and 11.6–70.8 ng/g for NBFRs. BDE-209 and DBDPE were predominant compounds 
[46]. Another study in China emphasised that�DBDPE and BDE-209 were the predominant 
compounds in the forest soil samples. The concentrations of DBDPE and BDE-209 ranged 
between 25-18,000 pg/g and <dl -5900 pg/g respectively. In the same study, the distribution 
of BEH-TEBP and most PBDEs�were significantly correlated with population density. In 
addition, the correlation between PBDEs and their replacement products indicates similar 
environmental behaviour [47]. Possible debromination of BDE-209 to lower brominated con-
geners in soils and sediments is a major concern [48]. 

2.2.4. Levels of PBDEs and NBFRs in sewage sludge 

Wastewater treatment plants may not be effective in removing PBDEs. About 52–80% and 
21–45% PBDEs remained in effluent and dewatered sludge, respectively, post-sewage treat-
ment [49]. On the other hand, both lower brominated PBDEs and BDE-209 could be successfully 
removed from contaminated sludge under aerobic conditions [50]. In Korea, concentrations of 
ΣPBDE in sludge ranged from 298 to 48,000�ng/g dry weight, and among 10 NBFRs, DBDPE 
and BTBPE were only detected in sludge samples. DBDPE and BTBPE concentrations ranged 
from <dl-3100 to <dl-21.0, with average concentrations of 237 and 1.57 ng/g dwt for DBDPE 
and BTBPE, respectively [40]. In Spain, the occurrence of eight PBDEs and NBFRs (EH-TBB, 
BTBPE, BEH-TEBP and DBDPE) was evaluated in wastewater from wastewater treatment 
plants. With the exception of BEH-TEBP, no PBDEs or NBFRs were detected in unfiltered 
influent samples. However, 279–2299�ng/g dwt of flame retardants were detected in primary 
sludge [51]. 

From 12 countries around the world, the highest levels of DBDPE in slug samples from 
wastewater treatment plants were found in Germany (216 ng/g dwt) compared with Europe 
(81�ng/g dwt) and North America (31�ng/g dwt). The highest concentrations of Deca-BDE were�
found in the UK and the USA with values of 12,000�ng/g dwt and 19,000�ng/g dwt, respec-
tively [52]. In waste biological sludge and treated bio solids from wastewater treatment plants�
in Canada, BDE-209, BDE-99 and BDE-47 were the predominant compounds with concentra-
tions of 230–82,000, 530–8800 and 420–6000 ng/g, for BDE-209, -99 and -47 respectively [53]. 

2.2.5. Levels of PBDEs and NBFRs in biota and food 

During the last decade, in addition to PBDEs, their replacement of NBFRs has been shown to 
accumulate in biota. NBFR levels in seven animal species from the Arctic, specifically one fish 
species, three seabirds, and three mammalian species were investigated. BTBPE and DBDPE 
were not detected in any of these species, while EH-TBB was found in all species and BEH-
TEBP in only five. Concentrations of EH-TBB ranged between 378 and 3460�pg/g wet wt, 
while those of BEH-TEBP ranged from 573 to 1799�in whole fish, liver, egg and plasma [54]. 
For PBDEs, Eulaers et al. [55] reported that PBDE concentrations in muscle, liver, adipose, 
preen gland and feathers in Barn Owls were 7.46–903�ng/g lw in 2008–2009, which were lower 
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than in those collected in 2003–2004 (46–11,000 ng/g lw). The authors tentatively ascribed the 
decline to the 2004 European ban of Penta- and Octa-BDE mixtures. By comparison, NBFRs 
were found to be poorly bioaccumulated (2.3%) [55]. 

PBDEs and NBFRs have been detected in human food, animal feed and baby food. In the 
UK, concentrations of Σ17PBDEs in food samples ranged between 0.02 and 8.91 ng/g whole 
weight, and, in animal feed, samples ranged between 0.11 and 9.63 ng/g whole weight. The 
highest PBDE concentrations were detected in fish, processed foods and fish feeds [56]. In 
home produced eggs from e-waste sites in China, EH-TBB and BEH-TEBP were found in low 
concentrations in 50% of chicken egg samples, ranged between <dl-1.82 and 1.17–2.6 ng/g 
for EH-TBB and BEH-TEBP, respectively [57]. In the three categories of baby food (formula, 
cereal, and puree) from USA and Chinese stores, median concentrations of ΣPBDEs (sum of 
BDE-17, -28, -47, -49, -99, -100, -153, -183, and -209) were 21 and 36�pg/g for American and 
Chinese baby foods, respectively [58]. 

2.2.6. Levels of PBDE and NBFR in human tissues 

As discussed above, numerous studies have shown the presence of PBDEs and NBFRs in�
many media pertinent for human exposure via inhalation, ingestion and dermal routes. Due 
to their persistent and bioaccumulative properties, PBDEs and NBFRs have been found in 
human milk, serum, hair and nail samples. EH-TBB, BEH-TEBP, BTBPE, DBDPE, BDE-
209 and BDE-153 in paired human serum (n = 102) and breast milk (n = 105) samples from 
Canada were investigated. Only EH-TBB and BDE-153 (lower brominated degree and more�
bioaccumulative) had detection frequencies higher than 55% in both serum and human milk 
samples, while detection frequencies for other BFRs were lower than 30%. Concentrations in�
serum and human milk were 1.6 and 0.41 ng/g lw for EH-TBB, and 1.5 and 4.4 ng/g lw for 
BDE-153, respectively [59]. In the UK, the average concentrations of Σtri-hexa-BDE and BDE-
209�in human milk were 5.95 and 0.31�ng/g lw respectively. Concentrations of BDE congeners�
were BDE-47 > BDE-153 > BDE-99 [60]. BDE-47, −99, −100, and�−183 were detected in most�
human hair samples from Hong Kong [61]. Concentrations of PBDEs in human hair samples in�
females were higher than males [62]. For NBFRs, EH-TBB and BEH-TEBP were detected in hair 
and nail samples at concentrations between 20 and 240 and 11 and 350 ng/g in hair samples 
and <17–80 ng/g and <9–71 ng/g in nail samples for EH-TBB and BEH-TEBP respectively [63]. 

2.2.7. Levels of PBDE and NBFR in indoor dust 

As semi-volatile organic compounds (SVOCs) and additive flame retardants, PBDEs and 
NBFRs can be released from the products via volatilisation into surrounding air, depending 
on their VP. Such volatilised pollutants may then undergo deposition to both suspended and 
settled indoor dust, with the relative partitioning between these two phases governed by the 

 of the BFRs [13]. KOA�

A large number of investigations around the world have reported high concentrations of 
BFRs in indoor dust. The highest levels of PBDEs were reported in US dust samples with 
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Country (media) [reference] Median/range—indoor air (pg/m3) 

BDEs EH-TBB BEH-TEBP BTBPE DBDPE 

USA [21] 760 

Germany [18] 37.8 

Sweden [20] 330 

Australia [25] 19 

China [23] 628 

UK [17] 128 

Sweden [29] <35 <90 

China [30] 7.2 40 

Indoor dust (ng/g)�

Germany [78] 979.1 <3.0 343 <10 146 

USA [79] 133 142 30 201 

Canada [80] 120 99 30 

Pakistan [70] 143.8 

UK [64] 2862 

Kuwait [70] 339.4 

Iraq [72] 631.5 5.3 64.2 14.1 125 

Egypt [71] 53.07 0.81 0.12 0.24 

Pakistan [81] 0.03 3.5 3.15 14 

Surface water (pg/L)�

European Arctic [33] 0.03–0.64 

USA, Great Lakes [32] 117–623 

UK, lakes [31] 9.2–171.5 

Sediment and soil (pg/g dw) 

Arabian Gulf [38] 0.06–0.44 

Netherlands [42] 14,000–22,000 

China Marin sediment) [41] 30,000–5,700,000 

China (river sediment) [44] 1300–1800 

South China (soil) [46] 13,900–351,000 

China (forest soils) [47] <dl-5900 (BDE-209) <dl-1400 4–643 25–1800 

Sewage sludge (ng/g dw) 

Korea [40] 298–48,000 <dl-21.0 <dl-3100 

Spain [51] 279–2299 (BFRs) 

Canada (biological slug) [53] 230–82,000 (BDE-209) 
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Country (media) [reference] Median/range—indoor air (pg/m3) 

BDEs EH-TBB BEH-TEBP BTBPE DBDPE 

Biota, food and human tissues (ng/g) 

The Arctic (fish and seabirds) [54] 0.378–3.460 0.573–1.799 

Belgium (Barn Owls) [55] 7.46–903 

UK (food samples) [56] 0.02–8.91 

UK (animal feed) [56] 0.11–9.63 

China (Egg) [57] <dl-1.82 1.17–2.6 

Canada (serum) [59] 1.5(BDE-153) 1.6 

Canada (human milk) [59] 4.4 (BDE-153) 0.41 

UK (human milk) [60] 6.26 

Hong Kong (human hair) [61] 0.86–5.24 (BDE-47) 

Table 3. Concentrations of PBDEs and NBFRs in air, water, sediment, soil, indoor dust and human tissues from different 
countries around the world. 

median concentrations of ΣPBDEs ranging between 1910 and 21,000�ng/g [21, 63]. The UK dis-
played the second highest PBDE indoor levels with concentrations ranging between 2900 and 
10,000 ng/g [64]. For other parts of the world, ΣPBDE median concentrations were: 950�ng/g 
in Canada [65], 386 ng/g in Germany [18], 510 ng/g in Sweden [20], 1941�ng/g in China [61] 
and 1200�ng/g in Australia [66]. In the Middle East, the first study in Kuwait in 2006 reported 
a median concentration of ΣPBDEs of 90.6�ng/g [67], these levels increased in 2011 to a median 
concentration of 356 ng/g [68]. In Egypt, Iraq and Pakistan, ΣPBDE median concentrations 
were 46 [69], 635 [70] and 143 ng/g [68], respectively. Similar to the distribution of PBDE 
congeners in indoor dust from UK and China, BDE-209 was the major BFR detected in indoor 
dust from the Middle East. The PBDE congener profiles have changed, and Penta-BDE levels 
were about one-third those measured in previous studies in 2006 [71, 72]. 

Recently, studies have increasingly measured NBFRs in indoor dust. EH-TBB, BEH-TEBP, 
BTBPE and DBDPE represented the highest NBFR concentrations in house dust in the USA 
[73], with a distribution profile of EH-TBB�>�BEH-TEBP > DBDPE�> BTBPE.�The median con-
centrations were 337, 186, 22.3 and 82.8 for EH-TBB, BEH-TEBP, BTBPE and DBDPE respec-
tively [74]. In Europe, NBFR concentrations and profiles differ from those in the USA.�The 
major compounds in European indoor dust are DBDPE and BEH-TEBP, with EH-TBB and 
BTBPE present at lower levels. In the UK (classroom dust), median concentrations were 25, 
96, 9 and 98 for EH-TBB, BEH-TEBP, BTBPE and DBDPE, respectively [75]. Meanwhile, in 
Sweden, median concentrations of EH-TBB, BEH-TEBP, BTBPE and DBDPE were 51, 47, 320, 
2.6, 61, 6.3, and 150 ng/g, respectively [76]. 

In China, in addition to the elevated concentrations of PBDEs, high concentrations of NBFRs 
were detected in floor house dust as well. ΣPBDEs ranged between 685 and 67,500�ng/g, and 
ΣNBFRs ranged between 1460 and 50,010�ng/g in indoor dust from e-waste sites, with BDE-
209 and DBDPE the major BFRs. DBDPE was predominant (nd—16,000 ng/g) followed by 
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BEH-TEBP (nd—1600), BTBPE (0.2–220 ng/g) and EH-TBB (nd—6300 ng/g) [77]. In addition 
to the mentioned studies, Table 3 summarises concentrations of PBDEs and NBFRs in air, 
water, sediment, soil, indoor dust and human tissues from different countries around the 
world. 

3. Conclusion 

Depending on their physiochemical properties, PBDEs and NBFRs show diverse behaviour in 
various environmental media and the possibility of human exposure. Low molecular weight 
compounds (less brominated degree) possess lower vapour pressures and higher log KOA. This 
implies a high tendency of such chemicals to the gas phase of indoor air and consequently the 
exposure will occur via inhalation pathway. On the other hand, water solubility and octanol/�
water partition coefficient (KOW) are important properties to assess the tendency of higher 
brominated compounds to organic carbon in sediment, soils, and indoor dust, in which the 
main exposure will occur via ingestion. This is different from profiles in biota samples which 
are dominated by lower brominated compounds such as BDE-47 and EH-TBB. The highest 
levels of PBDEs and NBFRs were reported in US, China and UK indoor dust samples, which 
were dominated by BDE-209, DBDPE and BEH-TEBP with a decline in PBDE levels and rise 
in NBFRs. 

Author details 

Layla Salih�Al-Omran�

Address all correspondence to: laylaalomran@yahoo.com�

Department of Chemistry, College of�Science, University of Basrah, Basrah, Iraq�

References 

[1] Danish EPA.�Danish Ministry of Environment, Environmental Protection Agency. Fire 
Safety Requirements and Alternatives to Brominated Flame-Retardants. 2016. No. 1822. 
Available from: http://www2.mst.dk/Udgiv/publications/[Accessed: January 20, 2018]�

[2] Alaee M.�An overview of commercially used brominated flame retardants, their applica-
tions, their use patterns in different countries/regions and possible modes of release. 
Environment International. 2003;29(6):683-689. DOI: 10.1016/S0160-4120(03)00121-1�

[3] UNEP.�Stockholm Convention on POPs. Risk Management Evaluation for Commercial 
Octabromodiphenyl ether. 2008. Available from: http://chm.pops.int/portals/0/reposi-
tory/poprc4/unep-pops-poprc.4-6.english.pdf [Accessed: December 15, 2017]�

http://chm.pops.int/portals/0/reposi
http://www2.mst.dk/Udgiv/publications/[Accessed
mailto:laylaalomran@yahoo.com


  

  

 

  

  
 

   
 

   

  

  

 

   
 

    

  

  

  

Physiochemical Properties and Environmental Levels of Legacy and Novel Brominated Flame… 31 
http://dx.doi.org/10.5772/intechopen.79823 

[4] Covaci A, Harrad S, Abdallah MA, Ali N, Law RJ, Herzke D, de Wit CA.�Novel bromi-
nated flame retardants: A review of their analysis, environmental fate and behaviour. 
Environment International. 2011;37(2):532-556. DOI: 10.1016/j.envint.2010.11.007�

[5] USEPA.�US Environmental Protection Agency. An Alternatives Assessment for the 
Flame Retardant Decabromodiphenyl Ether (deca BDE). 2014. Available from: https://�
www.epa.gov/sites/production/files/2014-05/documents/decabde_final�[Accessed: Feb-
ruary 16, 2018] 

[6] Birnbaum LS, Staskal DF.�Brominated flame retardants: Cause for concern? Environ-
mental Health Perspectives. 2004;112(1):9-17. DOI: 10.1289/ehp.6559�

[7] USEPA.�US Environmental Protection Agency. 2010. An Exposure Assessment of Poly-
brominated Diphenyl Ethers. Available from: http://www.epa.gov/ncea�[Accessed:�
August 22, 2017]�

[8] de Wit CA, Kierkegaard A, Ricklund N,�Sellström U. Emerging Brominated Flame Retardants 
in the Environment. In: Eljarrat E, Barceló D, editors. Brominated Flame�Retardants. The 
Handbook of Environmental Chemistry. Vol. 16. Berlin, Heidelberg: Springer; 2010. DOI:�
doi.org/10.1007/698_2010_73�

[9] Tittlemier SA, Halldorson T, Stern GA, Tomy GT.�Vapor pressures, aqueous solubili-
ties, and Henry's law constants of some brominated flame retardants. Environmental 
Toxicology and Chemistry. 2002;21(9):1804-1810�

[10] ATSDR.�Agency for Toxic Substances and Disease Registry. Toxicological Profile for 
Polybrominated Biphenyls and Polybrominated Diphenyl Ethers. 2004. Available from: 
http://www.atsdr.cdc.gov/toxprofiles/tp68 [Accessed: March 19, 2018]�

[11] EFSA, European Food Safety Authority. Scientific opinion on emerging and novel bro-
minated flame retardants (BFRs) in food. European Food Safety Authority Journal. 
2012;10(10):2908. DOI: 10.2903/j.efsa.2012.2908�

[12] Domínguez AA, Law RJ, Herzke D, de�Boer J. Bioaccumulation of Brominated Flame 
Retardants. In: Eljarrat E, Barceló D, editors. Brominated Flame Retardants.�The Handbook 
of Environmental Chemistry. Vol. 16. Berlin, Heidelberg: Springer; 2010. DOI:�doi. 
org/10.1007/698_2010_95�

[13] Li X, Chen J, Zhang L, Qiao X, Huang L.�The fragment constant method for predicting 
octanol–air partition coefficients of persistent organic pollutants at different tempera-
tures. Journal of Physical and Chemical Reference Data. 2006;35(3):1365-1384. DOI: 10.�
1063/1.2203356 

[14] Weschler CJ, Nazaroff WW.�SVOC partitioning between the gas phase and settled 
dust indoors. Atmospheric Environment. 2010;44(30):3609-3620. DOI: 10.1016/j.atmo-
senv.2010.06.029 

[15] Segev O, Kushmaro A, Brenner A.�Environmental impact of flame retardants (persis-
tence and biodegradability). International Journal of Environmental Research and Public 
Health. 2009;6(2):478-491. DOI: 10.3390/ijerph6020478�

http://www.atsdr.cdc.gov/toxprofiles/tp68
https://doi.org/10.1007/698_2010_73
http://www.epa.gov/ncea
www.epa.gov/sites/production/files/2014-05/documents/decabde_final
http://dx.doi.org/10.5772/intechopen.79823


   
   

    
 

  

  
 

  

  

   
 

  

  

  

   

  

32 Flame Retardants 

[16] Law RJ, Herzke D. Current Levels and Trends of Brominated Flame Retardants in the 
Environment: Brominated Flame Retardants in the Environment. In: Eljarrat�E, Barceló D,�
editors. The Handbook of Environmental Chemistry. Vol. 16.�Berlin, Heidelberg:�Springer; 
2010. DOI:�10.1016/j.chemosphere.2005.12.007 

[17] Harrad S, Wijesekera R, Hunter S, Halliwell C, Baker R.�Preliminary assessment of UK 
human dietary and inhalation exposure to polybrominated diphenyl ethers. Environ-
mental Science and Technology. 2004;38(8):2345-2350. DOI: 10.1021/es0301121�

[18] Fromme H, Körner W, Shahin N, Wanner A, Albrecht M, Boehmer S, Parlar H, Mayer R, 
Liebl B, Bolte G.�Human exposure to polybrominated diphenyl ethers (PBDE), as evi-
denced by data from a duplicate diet study, indoor air, house dust, and biomonitor-
ing in Germany. Environment International. 2009;35(8):1125-1135. DOI: 10.1016/j.�
envint.2009.07.003 

[19] Vorkamp K, Thomsen M, Frederiksen M, Pedersen M, Knudsen LE.�Polybrominated 
diphenyl ethers (PBDEs) in the indoor environment and associations with prenatal 
exposure. Environment International. 2011;37(1):1-10. DOI: 10.1016/j.envint.2010.06.001�

[20] Thuresson K, Björklund JA, de Wit CA.�Tri-decabrominated diphenyl ethers and hexa-
bromocyclododecane in indoor air and dust from Stockholm microenvironments 1: 
Levels and profiles. Science of the Total Environment. 2012;414:713-721. DOI: 10.1016/j.�
scitotenv.2011.11.016 

[21] Johnson-Restrepo B, Kannan K.�An assessment of sources and pathways of human�
exposure to polybrominated diphenyl ethers in the United States. Chemosphere. 2009;�
76(4):542-548. DOI: 10.1016/j.chemosphere.2009.02.068�

[22] Wilford BH, Shoeib M, Harner T, Zhu J, Jones KC.�Polybrominated diphenyl ethers in 
indoor dust in Ottawa, Canada: Implications for sources and exposure. Environmental 
Science and Technology. 2005;39(18):7027-7035. DOI: 10.1021/es050759g�

[23] Chen L, Mai B, Xu Z, Peng X, Han J, Ran Y, Sheng G, Fu J.�In-and outdoor sources of 
polybrominated diphenyl ethers and their human inhalation exposure in Guangzhou, 
China. Atmospheric Environment. 2008;42(1):78-86. DOI: 10.1016/j.atmosenv.2007.09.010�

[24] Takigami H, Suzuki G, Hirai Y, Sakai SI.�Brominated flame retardants and other polyha-
logenated compounds in indoor air and dust from two houses in Japan. Chemosphere. 
2009;76(2):270-277. DOI: 10.1016/j.chemosphere.2009.03.006�

[25] Toms LML, Hearn L, Kennedy K, Harden F, Bartkow M, Temme C, Mueller JF.�
Concentrations of polybrominated diphenyl ethers (PBDEs) in matched samples of 
human milk, dust and indoor air. Environment International. 2009;35(6):864-869. DOI: 
10.1016/j.envint.2009.03.001 

[26] Cequier E, Ionas AC, Covaci A, Marcé RM, Becher G, Thomsen C.�Occurrence of a broad 
range of legacy and emerging flame retardants in indoor environments in Norway. 
Environmental Science and Technology. 2014;48(12):6827-6835. DOI: 10.1021/es500516u�



  

 

  

  

 
 

  

  

  

 
 

  

  

 
 

Physiochemical Properties and Environmental Levels of Legacy and Novel Brominated Flame… 33 
http://dx.doi.org/10.5772/intechopen.79823 

[27] Hoh E, Zhu L, Hites RA.�Novel flame retardants, 1,2-bis(2,4,6-tribromophenoxy)eth-
ane and 2,3,4,5,6-pentabromoethylbenzene, in United States' environmental samples. 
Environmental Science and Technology. 2005;39(8):2472-2477. DOI: 10.1021/es048508f�

[28] Chen LG, Mai BX, Bi XH, Chen SJ, Wang XM, Ran Y, Luo XJ, Sheng GY, Fu JM, Zeng EY.�
Concentration levels, compositional profiles, and gas-particle partitioning of polybromi-
nated diphenyl ethers in the atmosphere of an urban city in South China. Environmental 
Science and Technology. 2006;40(4):1190-1196. DOI: 10.1021/es052123v�

[29] Newton S, Sellström U, de Wit CA.�Emerging flame retardants, PBDEs, and HBCDDs 
in indoor and outdoor media in Stockholm, Sweden. Environmental Science and Tech-
nology. 2015;49(5):2912-2920. DOI: 10.1021/es505946e�

[30] Newton S, Sellström U, Harrad S, Yu G, de Wit CA.�Comparisons of indoor active and 
passive air sampling methods for emerging and legacy halogenated flame retardants in 
Beijing, China offices. Emerging Contaminants. 2016;2(2):80-88. DOI: 10.1016/j.emcon.�
2016.02.001 

[31] Yang C, Harrad S, Abdallah MAE, Desborough J, Rose NL, Turner SD, Davidson TA, 
Goldsmith B. Polybrominated diphenyl ethers (PBDEs) in English freshwater lakes, 
2008-2012. Chemosphere. 2014;110:41-47. DOI: 10.1016/j.chemosphere.2014.03.028�

[32] Venier M, Dove A, Romanak K, Backus S, Hites R.�Flame retardants and legacy chemi-
cals in Great Lakes’ water. Environmental Science and Technology. 2014;48(16):9563-
9572. DOI: 10.1021/es501509r�

[33] Möller A, Xie Z, Sturm R, Ebinghaus R.�Polybrominated diphenyl ethers (PBDEs) and 
alternative brominated flame retardants in air and seawater of the European Arctic. 
Environmental Pollution. 2011;159(6):1577-1583. DOI: 10.1016/j.envpol.2011.02.054�

[34] Lee HJ, Kim GB.�An overview of polybrominated diphenyl ethers (PBDEs) in the marine 
environment. Ocean Science Journal. 2015;50(2):119-142. DOI: 10.1007/s12601-015-0010-8�

[35] Grant PBC, Johannessen SC, Macdonald RW, Yunker MB, Sanborn M, Dangerfield N, 
Wright C, Ross PS.�Environmental fractionation of PCBs and PBDEs during particle 
transport as recorded by sediments in coastal waters. Environmental Toxicology and 
Chemistry. 2011;30(7):1522-1532. DOI: 10.1002/etc.542�

[36] Klosterhaus SL, Stapleton HM, La Guardia MJ, Greig DJ.�Brominated and chlorinated 
flame retardants in San Francisco Bay sediments and wildlife. Environment International. 
2012;47:56-65. DOI: 10.1016/j.envint.2012.06.005�

[37] Salvadó JA, Grimalt JO, López JF, de Madron XD, Heussner S, Canals M.�Transformation 
of PBDE mixtures during sediment transport and resuspension in marine environments 
(Gulf of Lion, NW Mediterranean Sea). Environmental Pollution. 2012;168:87-95. DOI: 
10.1016/j.envpol.2012.04.019 

[38] Gevao B, Boyle EA, Aba AA, Carrasco GG, Ghadban AN, Al-Shamroukh D, Alshemmari 
H, Bahloul M.�Polybrominated diphenyl ether concentrations in sediments from the 

http://dx.doi.org/10.5772/intechopen.79823


  

  

  

  

  

  

  

  

 
 

 
 

  

34 Flame Retardants 

Northern Arabian Gulf: Spatial and temporal trends. Science of the Total Environment. 
2014;491:148-153. DOI: 10.1016/j.scitotenv.2013.12.122�

[39] Ilyas M, Sudaryanto A, Setiawan IE, Riyadi AS, Isobe T, Takahashi S, Tanabe S.�
Characterization of polychlorinated biphenyls and brominated flame retardants in 
sediments from riverine and coastal waters of Surabaya, Indonesia. Marine Pollution 
Bulletin. 2011;62(1):89-98. DOI: 10.1016/j.marpolbul.2010.09.006�

[40] Lee S, Song GJ, Kannan K, Moon HB.�Occurrence of PBDEs and other alternative bro-
minated flame retardants in sludge from wastewater treatment plants in Korea. Science 
of the Total Environment. 2014;470-471:1422-1429. DOI: 10.1016/j.scitotenv.2013.07.118�

[41] Zhang XL, Luo XJ, Chen SJ, Wu JP, Mai BX.�Spatial distribution and vertical profile 
of polybrominated diphenyl ethers, tetrabromobisphenol A, and decabromodiphenyl-
ethane in river sediment from an industrialized region of South China. Environmental 
Pollution. 2009;157(6):1917-1923. DOI: 10.1016/j.envpol.2009.01.016�

[42] Verslycke TA, Vethaak AD, Arijs K, Janssen CR.�Flame retardants, surfactants and 
organotins in sediment and mysid shrimp of the Scheldt estuary (The Netherlands). 
Environmental Pollution. 2005;136(1):19-31. DOI: 10.1016/j.envpol.2004.12.008�

[43] Ma Y, Halsall CJ, Crosse JD, Graf C, Cai M, He J, Gao G, Jones K.�Persistent organic 
pollutants in ocean sediments from the North Pacific to the Arctic Ocean. Journal of 
Geophysical Research: Oceans. 2015;120(4):2723-2735. DOI: 10.1002/2014JC010651�

[44] Jin J, Liu W, Wang Y, Tang XY.�Levels and distribution of polybrominated diphenyl ethers 
in plant, shellfish and sediment samples from Laizhou Bay in China. Chemosphere. 
2008;71(6):1043-1050. DOI: 10.1016/j.chemosphere.2007.11.041�

[45] Drage DS, Newton S, de Wit CA, Harrad S.�Concentrations of legacy and emerging 
flame retardants in air and soil on a transect in the UK West Midlands. Chemosphere. 
2016;148:195-203. DOI: 10.1016/j.chemosphere.2016.01.034�

[46] Wang S, Wang Y, Song M, Luo C, Li J, Zhang G.�Distributions and compositions of 
old and emerging flame retardants in the rhizosphere and non-rhizosphere soil in an 
e-waste contaminated area of South China. Environmental Pollution. 2016;208(Pt B):619-
625. DOI: 10.1016/j.envpol.2015.10.038�

[47] Zheng Q, Nizzetto L, Li J, Mulder MD, Sáňka O, Lammel G, Bing H, Liu X, Jiang Y, 
Luo C, Zhang G.�Spatial distribution of old and emerging flame retardants in Chinese 
forest soils: Sources, trends and processes. Environmental Science and Technology. 
2015;49(5):2904-2911. DOI: 10.1021/es505876k�

[48] Law RJ, Covaci A, Harrad S, Herzke D, Abdallah MAE, Fernie K, Toms L-ML, Takigami 
H.�Levels and trends of PBDEs and HBCDs in the global environment: Status at the end 
of 2012. Environment International. 2014;65:147-158. DOI: 10.1016/j.envint.2014.01.006�

[49] Deng D, Chen H, Tam NFY.�Temporal and spatial contamination of polybrominated 
diphenyl ethers (PBDEs) in wastewater treatment plants in Hong Kong. Science of the 
Total Environment. 2015;502:133-142. DOI: 10.1016/j.scitotenv.2014.08.090�



   
 

  

  

   

  
 

  

  
 

  

  

  

   

  

Physiochemical Properties and Environmental Levels of Legacy and Novel Brominated Flame… 35 
http://dx.doi.org/10.5772/intechopen.79823 

[50] Stiborova H, Vrkoslavova J, Lovecka P, Pulkrabova J, Hradkova P, Hajslova�J,�
Demnerova K.�Aerobic biodegradation of selected polybrominated diphenyl ethers 
(PBDEs) in wastewater sewage sludge. Chemosphere. 2015;118:315-321. DOI: 10.1016/j.�
chemosphere.2014.09.048 

[51] Cristale J, Lacorte S.�PBDEs versus NBFR in wastewater treatment plants: Occurrence 
and partitioning in water and sludge. AIMS Environmental Science. 2015;2(3):533-546. 
DOI: 10.3934/environsci.2015.3.533�

[52] Ricklund N, Kierkegaard A, McLachlan MS.�An international survey of decabromodi-
phenyl ethane (deBDethane) and decabromodiphenyl ether (decaBDE) in sewage sludge 
samples. Chemosphere. 2008;73(11):1799-1804. DOI: 10.1016/j.chemosphere.2008.08.047�

[53] Kim M, Guerra P, Theocharides�M, Barclay K, Smyth SA, Alaee M.�Polybrominated 
diphenyl ethers in sewage sludge and treated biosolids: Effect factors and mass balance. 
Water Research. 2013;47(17):6496-6505. DOI: 10.1016/j.watres.2013.08.022�

[54] Sagerup K, Herzke D, Harju M, Evenset A, Christensen GN, Routti H, Fuglei E, Aars J, 
Strom H, Gabrielsen GW.�New brominated flame retardants in Arctic biota. Statlig 
Program for forurensningsovervåking. 2010. Available from: http://www.miljodirek-
toratet.no/old/klif/publikasjoner/2630/ta2630 [Accessed: February 29, 2018]�

[55] Eulaers I, Jaspers VLB, Pinxten R, Covaci A, Eens M.�Legacy and current-use brominated 
flame retardants in the Barn Owl. Science of the Total Environment. 2014;472:454-462. 
DOI: 10.1016/j.scitotenv.2013.11.054�

[56] Fernandes AR, Mortimer D, Rose M, Smith F, Panton S, Garcia-Lopez M.�Bromine content 
and brominated flame retardants in food and animal feed from the UK.�Chemosphere. 
2016;150:472-478. DOI: 10.1016/j.chemosphere.2015.12.042�

[57] Zheng X, Xu F, Luo X, Mai B, Covaci A.�Phosphate flame retardants and novel bro-
minated flame retardants in home-produced eggs from an e-waste recycling region in 
China. Chemosphere. 2016;150:545-550. DOI: 10.1016/j.chemosphere.2015.09.098�

[58] Liu LY, Salamova A, Hites RA.�Halogenated flame retardants in baby food from the 
United States and from China and the estimated dietary intakes by infants. Environmental 
Science and Technology. 2014;48(16):9812-9818. DOI: 10.1021/es502743q�

[59] Zhou SN, Buchar A, Siddique S, Takser L, Abdelouahab N, Zhu J.�Measurements of 
selected brominated flame retardants in nursing women: Implications for human expo-
sure. Environmental Science and Technology. 2014;48(15):8873-8880. DOI: 10.1021/�
es5016839 

[60] Abdallah MAE, Harrad S.�Polybrominated diphenyl ethers in UK human milk: Im-
plications for infant exposure and relationship to external exposure. Environment 
International. 2014;63:130-136. DOI: 10.1016/j.envint.2013.11.009�

[61] Kang Y, Wang HS, Cheung KC, Wong MH.�Polybrominated diphenyl ethers (PBDEs) 
in indoor dust and human hair. Atmospheric Environment. 2011;45(14):2386-2393. DOI: 
10.1016/j.atmosenv.2011.02.019 

http://www.miljodirek
http://dx.doi.org/10.5772/intechopen.79823


  

 

  

   
 

  

  
  

  

  

  

  

  

  

36 Flame Retardants 

[62] Tang L, Lei B, Xu G, Ma J, Lei JQ, Jin SQ, Hu GY, Wu MH.�Polybrominated diphenyl 
ethers in human hair from the college environment: Comparison with indoor dust. 
Bulletin of Environmental Contamination and Toxicology. 2013;91(4):377-381. DOI: 10.�
1007/s00128-013-1056-x 

[63] Liu LY, Salamova A, He K, Hites RA.�Analysis of polybrominated diphenyl ethers and 
emerging halogenated and organophosphate flame retardants in human hair and nails. 
Journal of Chromatography A. 2015;1406:251-257. DOI: 10.1016/j.chroma.2015.06.003�

[64] Harrad S, Ibarra C, Abdallah MAE, Boon R, Neels H, Covaci A.�Concentrations of�
brominated flame retardants in dust from United Kingdom cars, homes, and offices:�
Causes of variability and implications for human exposure. Environment International. 
2008;34(8):1170-1175. DOI: 10.1016/j.envint.2008.05.001�

[65] Harrad S, Abdallah MAE, Covaci A. Causes of variability in concentrations and diastereo-
mer patterns of hexabromocyclododecanes in indoor dust. Environment International. 
2009;35(3):573-579. DOI: 10.1016/j.envint.2008.10.005�

[66] Sjödin A, Päpke O, McGahee E, Focant JF, Jones RS, Pless-Mulloli T, Toms LML,�
Herrmann T, Müller J, Needham LL.�Concentration of polybrominated diphenyl ethers�
(PBDEs) in household dust from various countries. Chemosphere. 2008;73(1):S131-S136. 
DOI: 10.1016/j.chemosphere.2007.08.075�

[67] Gevao B, Al-Bahloul M, Al-Ghadban AN, Al-Omair A, Ali L, Zafar J, Helaleh M.�House 
dust as a source of human exposure to polybrominated diphenyl ethers in Kuwait. 
Chemosphere. 2006;64(4):603-608. DOI: 10.1016/j.chemosphere.2005.11.055�

[68] Ali N, Ali L, Mehdi T, Dirtu AC, Al-Shammari F, Neels H, Covaci A.�Levels and pro-
files of organochlorines and flame retardants in car and house dust from Kuwait and 
Pakistan: Implication for human exposure via dust ingestion. Environment International. 
2013;55:62-70. DOI: 10.1016/j.envint.2013.02.001�

[69] Hassan Y, Shoeib T.�Levels of polybrominated diphenyl ethers and novel flame retar-
dants in microenvironment dust from Egypt: An assessment of human exposure. Science 
of the Total Environment. 2015;505:47-55. DOI: 10.1016/j.scitotenv.2014.09.080�

[70] Al-Omran LS, Harrad S.�Polybrominated diphenyl ethers and “novel” brominated 
flame retardants in floor and elevated surface house dust from Iraq: Implications for 
human exposure assessment. Emerging Contaminants. 2016;2(1):7e13. DOI: 10.1016/j.�
emcon.2015.10.001 

[71] Schreder ED, La Guardia MJ.�Flame retardant transfers from U.S. households (dust 
and laundry wastewater) to the aquatic environment. Environmental Science and 
Technology. 2014;48(19):11575-11583. DOI: 10.1021/es502227h�

[72] Stapleton HM, Misenheimer J, Hoffman K, Webster TF.�Flame retardant associations 
between children’s handwipes and house dust. Chemosphere. 2014;116:54-60. DOI: 
10.1016/j.chemosphere.2013.12.100 



  
 

  

 
 

  

  

  

 
 

  

  

Physiochemical Properties and Environmental Levels of Legacy and Novel Brominated Flame… 37 
http://dx.doi.org/10.5772/intechopen.79823 

[73] Brown FR, Whitehead TP, Park JS, Metayer C, Petreas MX.�Levels of non-polybromi-
nated diphenyl ether brominated flame retardants in residential house dust samples�
and fire station dust samples in California. Environmental Research. 2014;135:9-14. DOI: 
10.1016/j.envres.2014.08.022 

[74] La Guardia MJ, Hale RC.�Halogenated flame-retardant concentrations in settled dust, 
respirable and inhalable particulates and polyurethane foam at gymnastic training 
facilities and residences. Environment International. 2015;79:106-114. DOI: 10.1016/j.�
envint.2015.02.014 

[75] Ali N, Harrad S, Goosey E, Neels H, Covaci A. “Novel” brominated flame retardants 
in Belgian and UK indoor dust: Implications for human exposure. Chemosphere. 2011;�
83(10):1360-1365. DOI: 10.1016/j.chemosphere.2011.02.078�

[76] Sahlström LMO, Sellström U, de Wit CA, Lignell S, Darnerud PO.�Estimated intakes of 
brominated flame retardants via diet and dust compared to internal concentrations in 
a Swedish mother–toddler cohort. International Journal of Hygiene and Environmental 
Health. 2015;218(4):422-432. DOI: 10.1016/j.ijheh.2015.03.011�

[77] Zheng X, Xu F, Chen K, Zeng Y, Luo X, Chen S, Mai B, Covaci A.�Flame retardants 
and organochlorines in indoor dust from several e-waste recycling sites in South 
China: Composition variations and implications for human exposure. Environment 
International. 2015;78:1-7. DOI: 10.1016/j.envint.2015.02.006�

[78] Fromme H, Hilger B, Kopp E, Miserok M, Volkel W.�Polybrominated diphenyl ethers 
(PBDEs), hexabromocyclododecane (HBCD) and “novel” brominated flame retardants 
in house dust in Germany. Environment International. 2014;64:61-68. DOI: 10.1016/j.�
envint.2013.11.017 

[79] Stapleton HM, Allen JG, Kelly SM, Konstantinov A, Klosterhaus S, Watkins D, McClean 
MD, Webster TF.�Alternate and new brominated flame retardants detected in U.S. house 
dust. Environmental Science and Technology. 2008;42(18):6910-6916. DOI: 10.1021/�
es801070p 

[80] Shoeib M, Harner T, Webster GM, Sverko E, Cheng Y.�Legacy and current-use flame retar-
dants in house dust from Vancouver, Canada. Environmental Pollution. 2012;169:175-
182. DOI: 10.1016/j.envpol.2012.01.043�

[81] Ali N, Harrad S, Muenhor D, Neels H, Covaci A.�Analytical characteristics and determi-
nation of major novel brominated flame retardants (NBFRs) in indoor dust. Analytical 
and Bioanalytical Chemistry. 2011;400(9):3073-3083. DOI: 10.1007/s00216-011-4966-7�

http://dx.doi.org/10.5772/intechopen.79823


Section 3

Fire Retardant Polymer Nanocomposite



Section 3 

Fire Retardant Polymer Nanocomposite 



Chapter 3

Flame Retardant Polymer Nanocomposites and
Interfaces

Yuan Xue, Yichen Guo* and Miriam H. Rafailovich

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.79548

Provisional chapter

DOI: 10.5772/intechopen.79548

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited. 

Flame Retardant Polymer Nanocomposites and 
Interfaces

Yuan Xue, Yichen Guo and Miriam H. Rafailovich

Additional information is available at the end of the chapter

Abstract

The flame retardant efficiency of polymer nanocomposites is highly dependent on the 
dispersion of the nano-fillers within the polymer matrix. In order to control the filler 
dispersion, it is very essential to explore the interfacial compatibility between fillers and 
matrices, which provides a guide for the flame retardant nanocomposites compound-
ing. In this short review, we mainly focus on the thermoplastic polymers and their 
interactions with the surfaces of the flame retardant fillers. Other physical properties 
of those nanocomposites such as mechanical properties, gas permeability, rheological 
performance and thermal conductivity are also briefly reviewed along with the flame 
retardancy, since they are all dispersion related.

Keywords: polymer nanocomposites, filler dispersion, interfacial compatibility, 
flame retardancy, mechanical properties

1. Introduction

In past decades, polymeric materials have been extensively used in construction, transporta-
tion, and electronic devices due to the high performance and cost-effectiveness [1]. However, 
most of the polymeric materials were intrinsically combustible, which caused the fire haz-
ard. The necessity to improve the flame retardancy of polymeric materials was urgent, so 
that people started to incorporate flame retardants into polymers to produce flame retardant 
polymer composites. The commercial used flame retardants mainly included endothermic 
additives, halogenated additives, phosphorus additives, expandable graphite and melamine 
derivatives. However, using a single component flame retardant to make the polymer reach 
the desired flame retardant performance required high loading of additives, which can cause 
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the deterioration of the mechanical properties of the polymer matrix. In order to enhance the 
flame retardant efficiency of additives, synergistic flame retardant systems were developed 
[2–6]. These systems contained two or more additives. Some additives were not flame retar-
dant themselves, but can effectively synergize the performance with other flame retardants, 
thereby minimizing the total loading of the additives within the polymer matrices. The most 
common combinations, such as antimony oxides [7]/halogens [8], metal hydroxides [9–11]/ 
zinc borate [12], and intumescent phosphates [13, 14] have already been widely used in vari-
ous polymers and successfully commercialized. Recently, people started to use nano-scale 
additives to make polymer nanocomposites and expect further enhancement of the flame 
retardant performance. The practice of mixing nanoparticles with polymers to make polymer 
nanocomposites can be traced back to nineteenth century [15, 16]. Those composite mate-
rials inherited the properties of the nanoparticles and showed significant enhancement in 
performance compared to their polymeric matrices. However, the mechanisms for the rein-
forcement of the polymeric matrices by nanoparticles were not adequately understood until 
1990s. This rise of polymer nanocomposites research benefitted from the growing availability 
of nanoparticles and the emergence of instrumentation to probe the nano-scale structure of 
materials [17]. Furthermore, powerful computers allowed for the development of theoretical 
models which together with experiments were used to develop the guiding principles for 
engineering new nanocomposites with desirable properties. These models highlighted the 
critical role of surface and interfacial energies between the fillers and the polymer matrix and 
as well as the role particle morphology. Consequently, research of flame retardant polymer 
nanocomposites has been widely reported from both academic�and industrial laboratories 
[18, 19].�

In this review, we will mainly focus on the thermoplastic polymer based nanocomposites. 
Comparing to the thermoset polymer nanocomposites, thermoplastic polymer nanocompos-
ites are easy to process and formulate in manufacturing, which makes them a very diverse and 
manageable composite system. This review describes the mechanisms of interaction between 
singular or binary thermoplastic polymer matrices with the commonly used nanoparticles: 
montmorillonite clay, graphene, nature nanotubes and fibers. The effect of nanoparticles 
influence on flame retardant efficiency was discussed, as well as the change in physical prop-
erties, such as impact resistance, ductility, gas permeability and rheology performance.�

2. Singular polymer matrix 

2.1. Montmorillonite clays 

Montmorillonite is one of the most commonly used fillers in materials application. It could�
be dispersed in a polymer matrix to form polymer-clay nanocomposite. Okamoto et�al.�
have shown that the organically modified montmorillonite clay could improve the thermal�
mechanical and gas barrier effect of poly (lactic acid) (PLA) [20]. By using wide-angle X-ray�
diffraction and transmission electron microscopy, they found that with the differences in clay�
modification, four different types of clay-polymer morphology were formed: intercalated,�
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intercalated-and-flocculated, exfoliated and coexistence of intercalated and exfoliated. The�
intercalated structure achieved great mechanical property improvement, and the near exfoli-
ated composite has the highest gas barrier effect. However, the mechanism of the surface�
interaction was not well developed. Also, to improve the degree of exfoliation of clay platelets,�
cation exchange with quaternary ammonium chloride salts was commonly used for clay mod-
ification. The development of this method was held back due to the toxicity of these salts [21].�

Recently, Guo et�al. developed a much efficient way to determine the affinity between large 
aspect ratio nanoparticles and the polymer matrix by simply measuring the Young’s contact 
angle [22]. The relative affinity between PLA and Closite Na+ clay/Closite 30B (C-30B) clay 
were studied. They also used resorcinol di(phenyl phosphate) (RDP) adsorption to modify 
the Closite Na+ clay (C-Na+), which has been proven to perform better than using organo-
clays alone in conventional polymer systems [23]. The chemical formula of RDP is shown in 
Figure 1. With the nonpolar moieties of phenol groups and polar moieties of phosphoric acids 
groups, RDP could be used as a surfactant [24]. It has also been proven to react with polymers 
at high temperatures to form chars, which renders its ability to work as a flame retardant 
additive [25, 26]. In this research, a monolayer of these clay particles were formed on Si wafer 
using Langmuir–Blodgett (LB) technique. A 5�mg PLA pellet was melted on top of each clay 
monolayer and the Young’s contact angles at the polymer/clay surface/air interface were mea-
sured. The procedure is illustrated in Figure 2. Then with the combination of the interfacial 
energy equation and the equation for work of adhesion (Wa), the relationship between Wa�and 
Young’s contact angle (A) was developed as below:�

Wa = γl
(1 + cosA)�

whereγ
l 
is the surface tension of liquid phase, which is PLA in this case. By substituting the 

measured contact angle and calculate the individual Wa�between PLA and each clay (listed 
in Figure 2), they found that comparing to the original MMT clay C-Na+, the synthesized 
C-30B clay and the C-RDP clay were more compatible to the PLA matrix. Further small angle 
scattering (SAXS) and TEM results, shown in Figure 3, confirmed that there is no change 
on the interlayer spacing of C-Na+ clay and they formed tactoids inside the polymer matrix. 

Figure 1. The chemical formula of RDP.�

http://dx.doi.org/10.5772/intechopen.79548


  

   

44 Flame Retardants 

Figure 2. An illustration of creating monolayer of nanoparticle by LB technique, and a list of measure contact angle of 
PLA on each type of clay with calculated work of adhesion. Adapted from Ref. [22]. Copyright (2018) with permission 
from Elsevier.�

Figure 3. TEM imaging and X-ray pattern of PLA/clay composites: (a) TEM images of PLA/C-Na+ blend (PCNa5), 
PLA/C-RDP blend (PCRDP5) and PLA/C-30B blend (PC30B5); (b) small angle X-ray scattering patterns of pure PLA and 
composites with clays. Adapted from Ref. [22]. Copyright (2018) with permission from Elsevier.�
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The interlayer spacing for C-RDP increased from 2.04 to 3.65�nm, which indicates the poly-
mer chains intercalated with the clay platelets. In the case for C-30B, the SAXS pattern only 
showed a weak secondary (002) peak which proved that the C-30B platelets were exfoliated. 
These results are in good agreement with the previous Wa�measurement, which concludes 
that the work of adhesion between the clay platelets and polymer needs to increase to achieve 
particle exfoliation inside polymer matrix.�

Since C-30B are mostly exfoliated in the PLA matrix, Guo et�al. continued to study its possible�
effect on improving the performance of flame retardant agent [4]. As a biodegradable polymeric�
material with good mechanical and processing properties, PLA has been extensively studied�
over recent years and has been used as a substitution for conventional polymers [27, 28]. In�
order to expand its usage into electron devices and automobile industry, the high flammabil-
ity of PLA must be resolved. Melamine polyphosphate (MPP) was used in this study, which�
is a halogen-free flame retardant agent [29]. When used alone, 28�wt.% of MPP is needed to�
achieve the V0 grade in UL-94 vertical burning test. TEM images in Figure 4(a) showed that�
the MPP formed droplet shaped domains with a diameter around 500�nm. According to Araki�
et�al., when large aspect ratio particles were used to compatible a binary system, the domain�
size is controlled by balancing between the reduction of system enthalpy and the increase of�
bending energy due to particle curvature [30], and the minimum domain size should be simi-
lar to the radius of particle platelets. When 1�wt.% of C-30B is added to the system, the MPP�
were better dispersed and the domain size were reduced to around 150�nm, which is similar�
to the radius of C-30B platelets. And only 17�wt.% of MPP is needed to obtain the V0 grade, as�

Figure 4. TEM and SEM images of PLA/MPP/C-30B blends: (a) TEM images taken on cross-sections of PLA composites; 
(b) SEM images on the char residue after cone calorimetry test. Adapted from Ref. [4]. Copyright (2018) with permission 
from Elsevier.�
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Sample 

100PLA�

Avg. heat release rate 
(kW/m2) 

6–1120 

Peak heat release rate 
(kW/m2) 

1.1–29.0�

Total heat release (MJ/m2) 

80–920 

PLA/MPP� 117.5� 12.6� 359 

PLA/MPP/1C-30B� 239.7� 17.3� 441 

PLA/MPP/2C-30B� 133.3� 13.4� 348 

Table 1. Cone calorimetry results of PLA/MPP/C-30B blends. Adapted from Ref. [4]. Copyright (2018) with permission 
from Elsevier.�

oppose to the previous 28%. However, further increase C-30B concentration to 2% resulted in�
enlarged and elongated MPP domain, which is to reduce the energy penalty brought by bend-
ing clay particles. And C-30B starts to form aggregates on the elongated MPP domain surface,�
which blocked the contact of polyphosphate to the PLA molecules. In the cone calorimetry test�
(listed in Table 1), the better dispersed MPP/1%C-30B system has lower average heat release�
rate (aHRR), peak heat release rate (pHRR) and total heat release (THR) than MPP with 2%�
C-30B.�Examination of char residue also agree with this result. Intumescent char layers were�
found for both samples with only MPP and MPP/1% C-30B.�As shown in Figure 4(b), the char�
layer of sample with only MPP is continuous and has a winkled structure due to the gas inflat-
ing during heating and releasing after cooling. Similar winkled structure was found on the char�
layer of sample containing MPP/1% C-30B, where the winkle was formed by dense polymer/�
clay aggregates. In contrast, the char layer of sample with MPP/2% C-30B was loose and pow-
dery, which is composed of large polymer/clay agglomerates and has numerous micro-cracks.�
This result confirmed their theory that when clay platelets were exfoliated and act as a disper-
sant, the MPP is better dispersed which could increase the flame retardant efficiency. The exfoli-
ated clay platelets also provide large surface area to interact with both polymer chain and MPP,�
improving the formation of the intumescent char. Yet the window of improvement is limited�
because further increasing clay content would result in clay aggregating on the polymer/FR�
interface and harming the FR performance.�

2.2. Graphene 

Having a similar platelet structure to clay, graphene is also a large aspect ratio nanoparticle 
and has gained great attention in many research areas due to its superior thermal conductiv-
ity, heat sink effect and great mechanical performance [31–33]. Given the large surface area 
and heat adsorption of graphene, Xue et�al. developed a three component flame retardant 
ethylene vinyl acetate (EVA) composite as a replacement of polyvinyl chloride (PVC) for 
cable sheathing [6]. The three component FR system consists of aluminum hydroxide (ATH), 
molybdenum disulfide (MoS2) and graphene nanoplatelets (GNPs). When ATH was used 
alone, it could absorb heat and release water vapor during combustion, which could dilute 
the oxygen surround the sample surface. However, due to the poor compatibility between 
ATH and EVA, ATH would form large aggregates in the polymer matrix, which decreased the 
interfacial area for ATH to react and therefore decreasing its efficiency, as shown in the TEM 
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Figure 5. (a) TEM images taken on cross-sections of EVA based composites; (b) SEM and EDS mapping of EVA based 
composites. Annotations of abbreviations used: A—ATH, M—MoS2,�G—GNPs and numbers stands for weight ratio. 
Adapted from Ref. [6]. Copyright (2018) with permission from Elsevier.�

images in Figure 5(a). As a result, 50–60�wt.% of ATH is needed to achieve the V0 grade in 
UL-94 test, which will greatly decrease the ductility of EVA.�When substituting 2�wt.% of ATH 
to MoS2, the PHRR was reduced but a sharp peak is still observed on the heat release curve, as 
seen in Figure 6. This is because MoS2 have formed tactoids in EVA matrix, which decreased 
their surface area and reducing its ability to form protective char layer. On the other hand, 
when further substituting 2�wt.% of ATH to GNPs, a better dispersion was observed for both 
ATH and MoS2 and the heat release curve was flattened. TEM images showed that the domain 
size of ATH is greatly reduced and EDS mapping (Figure 5(b)) showed that MoS2 was par-
tially exfoliated. This is contributed to the large surface area of graphene platelets, which 
could react at the polymer/filler interface and reducing the interfacial tension. Thus, as shown 
in Scheme 1, when the EVA composite with the three-component FR system was subject to 
high heat flux or flame, the ATH has a higher efficiency on absorbing heat and releasing water 
vapor due to the improved dispersion. The exfoliated MoS2 and GNPs will form protective 
char layer on the sample surface, which could reduce the peak heat release rate and flatten 
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Figure 6. Cone calorimetry results of EVA composites. Reproduced from Ref. [6]. Copyright (2018) with permission from 
Elsevier.�

Scheme 1. The decomposition process of EVA/ATH/MoS2/GNPs composite.�Adapted from Ref. [6]. Copyright (2018) 
with permission from Elsevier.�

the heat release curve. The GNPs will start to decompose at around 635°C, but the MoS2 layer 
will continue to control the heat release. As a result, this EVA-ATH-MoS2-GNPs composite 
has a PHRR of 377�kW/m2, which is a huge reduction comparing to that of pure EVA, which 
is 1815�kW/m2.�

2.3. Natural nanotubes and fibers�

Nanotubes such as carbon nanotube, Halloysite nanotube (HNTs), and cellulose fibers have 
gained increasing attentions in recent years to replace filler that have high environmental per-
sistence [34–36]. They could also render the polymer composite to have increased mechanical 
properties [37]. When applied in the flame retardant composites, surface modification is com-
monly used to increase the flame retardancy. As previous mentioned, resorcinol bis (diphenyl 
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Scheme 2. An illustration of the UL-94 test process of PLA based composites. CF stands for cellulose fiber. Adapted from 
Ref. [5]. Copyright (2018) with permission from Elsevier.�

phosphate) (RDP) is a liquid form flame retardant, which could be adsorbed on to fillers with 
hydroxyl groups. In the previously mentioned study [22], Guo et�al. have also compared the 
change of work of adhesion between PLA and HNTs, with and without the RDP coating. 
They found that RDP coated HNTs had a higher work of adhesion to PLA than pure HNTs, 
which indicated that PLA wetted the RDP coating, and RDP could successfully improve the 
dispersion of HNTs. Thus, they used the same methodology to develop a new flame retardant 
PLA composite using RDP coated cellulose [5]. When subjected to flame, pure PLA burns 
easily with heavy dripping that could ignite the cotton on the bottom in a UL-94 test. An 
illustration of the burning proves is shown in Scheme 2. When 2�wt.% of RDP is added to the 
polymer, the sample could self-extinguish in 2�s, but it also induced heavy dripping due to the 
fact that RDP is also a liquid plasticizer. When 6�wt.% cellulose was used alone, the dripping 
was greatly reduced but the sample kept on burning for more than 30�s. Although neither 
RDP nor cellulose could make the composite pass the V0 criteria, they could significantly 
improve one of the factors that would lead to V0 grade. Naturally, the idea of combining the 
two occurred and the addition of only 8�wt.% RDP coated cellulose (CF-RDP) is needed for 

Figure 7. SEM image and FTIR spectra of cellulose fibers: (a) SEM images taken on neat cellulose fiber with and without 
RDP coating; (b) FTIR spectra of neat cellulose fiber and RDP-cellulose before and after 10s burning. Adapted from Ref. 
[5]. Copyright (2018) with permission from Elsevier.�
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the PLA composite to self-extinguish in 2�s and only slight dripping was observed, which is 
also relatively cold and did not ignite the cotton on the bottom. Further SEM imaging and 
FTIR tests showed that RDP completely wets the cellulose surface though the hydrogen bond 
between RDP and cellulose, as shown in Figure 7. Cellulose also immobilized RDP which 
help retained its ability of plasticizing and surface blooming. When PLA/CF-RDP decom-
poses during combustion, CF-RDP will dehydrate, where it releases water vapor and lower 
the temperature by absorbing heat. The dehydration of CF-RDP is confirmed by the intensity 
reduction of the H-bonding on the FTIR spectra.�

3. Binary polymer system 

Melt blending two different polymers together is one of the simplest way to produce a new�
material with combined properties. Yet most polymers tend to phase separate due to the large�
unfavorable enthalpy [38–40]. Although the block or graft copolymers could easily solve the�
problem, the synthesizing procedure is often system specific and expensive for industrial appli-
cations [41]. Thus, research on numerous possible compatibilizers have been done over several�
decades [42–45]. As briefly mentioned before, Araki et�al. have developed a theory for explain-
ing the effect of clay in compatibilizing polymer blends [30]. Two types of polymer blends�
were studied: polystyrene/poly(methyl methacrylate) (PS/PMMA) blend stands for when only�
one polymer has a favorable interaction with clay; polycarbonate/poly(styrene-co-acrylonitrile)�
(PC/SAN) blend stands for when both polymers have similar affinity to clay platelets. In both�
situations, the organoclays have successfully reduced the domain size and phase separation,�
and the clay platelets appeared to be adsorbed onto the polymer interface and aligned following�
the contour of the domain. The compatibilizing effect would generally increase with increasing�
clay concentration. When the domain size is reduced with better compatibility, more interface�
area is created to contain the increased clay content. However, the clay platelets would start�
to bend when the domain size is smaller than the clay radius. This would result in increasing�
the bending energy, as opposed to reducing the system free energy. Thus, the compatibilizing�
effect of clay could only work to the extend where the minimum domain size is reached. And�
the minimum domain size is approximately equal to the linear dimension of the filler.�

Figure 8. TEM images taken on cross-sections of PS/PMMA composites. Adapted from Ref. [2]. Copyright (2018) with 
permission from Elsevier.�
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Based on this theory, Park et�al. studied the effect of clay’s effect on improving flame retardant�
efficiency in binary polymer systems [2]. For the PS/PMMA/Microfine AO3 (AO)/decabromo-
diphenyl ether (DB) blend, addition of Cloisite 20A clay (C-20A) could significantly improve�
the dispersion of DB and AO, shown in Figure 8, which result in passing the UL-94�V0 grade.�
C-20A clay was exfoliated in the polymer blend, and the FR agents were attached to the�
clay surface. Hence, the dispersion of FR agent was also improved and resulted in higher�
FR efficiency. However, for PC/SAN/DB/AO blend, adding C-20A did not enhance the flame�
retardant performance. They argue that for this blend, the attraction between clay and FR�
agent is larger than that between clay and the polymer blend. Thus clay has a lower degree of�
exfoliation and did not enhance the FR agent’s dispersion. Later on, they have also discussed�
the effect of RDP coating [23]. RDP coated clay was added to both PS/PMMA blend and PC/�
SAN24 blend and two different morphologies were observed. The RDP coated clay would seg-
regate in the PMMA domain in PS/PMMA blend, whereas it was segregated on the polymer�
interface in PC/SAC24 blend. This difference is attributed to the interfacial tension difference�
between RDP with each polymer component, and the interfacial tension of the polymer inter-
face. In PS/PMMA blend, the interfacial tensile of RDP/PS and RDP/PMMA were both larger�
than that of PS/PMMA interface. In this case, the addition of RDP-clay could not reduce the�
overall interfacial energy. As a contrast, the interfacial energy of PC/SAN24 interface is higher�
than that of PC/RDP-clay. Hence, the system interfacial energy would decrease with RDP-clay�
segregated on the PC/SAN24 interface. Further examination on the flammability of PC/SAN24�
blend with RDP-clay also showed that during combustion, the RDP-clay worked against the�
phase separation and stabilized the polymer blend. RDP helped reducing the brittleness of the�
protective char layer, which in turn reduced the heat release rate and mass loss rate.�

4. Physical properties 

4.1. Impact resistance 

It was well known that for singular polymer matrix, the particle size and particle/polymer sur-
face interaction have a great influence on the composite’s mechanical properties [46]. By com-
paring between C-Na+, C-RDP clay and C-30B clay, Guo et�al. [22] concludes that the mechanical�
properties, such as impact strength and tensile strength, will decrease with increasing degree of�
exfoliation of the clay particles. This is due to the fact that the magnitude of the internal stress,�
which generated at the tip of the particle and could form micro-cracks, is in direct proportion to�
the particle aspect ratio. Given that the aspect ratio of exfoliated clay platelets could be several�
magnitudes larger than that of clay tactoids, it is easier for the micro-cracks to enlarge and�
propagate under external stress in the exfoliated polymer/clay blend. Moreover, a similar result�
was also found in binary polymer blends with clay [47]. When C-Na+, C-RDP clay and C-30B�
clay were added to a biodegradable PLA/poly(butylene adipate-co-butylene terephthalate)�
(PBAT) blend, C-30B performs best in reducing the domain size and increasing compatibility�
between two polymers, as can be seen in Figure 9. However, the PLA/PBAT blend with clays�
showed a rapid and huge reduction on the impact strength even with low clay concentration,�
as seen in Figure 10. This phenomenon is explained by the theory that the clay platelets formed�
a strong barrier at the polymer interface, which blocked inter-diffusion between two polymers,�
and as a consequence, the two polymer phases were easily separated under stress.�
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Figure 9. TEM images taken on cross-sections of PLA/PBAT based composites: (Blend) PLA/PBAT; (BCNa5) PLA/�
PBAT/5�wt.% of C-Na2; (BCRDP5) PLA/PBAT/5�wt.% of C-RDP; (BH5) PLA/PBAT/5�wt.% of HNTs; (BHRDP5) PLA/�
PBAT/5�wt.% of H-RDP; (BHRDP15) PLA/PBAT/15�wt.% of H-RDP.�Adapted with permission from Ref. [47]. Copyright 
(2018) American Chemical Society.�

Figure 10. Impact strength of PLA/PBAT based blends. Adapted with permission from Ref. [47]. Copyright (2018) 
American Chemical Society.�
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To resolve the problem of the mechanical properties reduction, they discovered that tubular�
nanoparticles, such as Hollysite nanotubes, would lie perpendicular to the PLA/PBAT polymer�
interface instead of parallel as the clay, shown in Figure 9. Moreover, with this vertical orientation�
of HNTs particle, a “stitching” effect was observed where the impact strength first increase with�
the increasing HNTs concentration. The difference of particle orientation between nanotubes�
and clays is due to the fact that nanotubes are longer and more rigid than clay platelets. Hence,�
a much larger bending energy is required for nanotubes to lie along the domain curvature. As�
a result, the system energy is lower when nanotubes lie vertical to the polymer interface. In this�
way, nanotubes could enhance the interfacial diffusion and reinforce the binary polymer blend.�

4.2. Ductility 

For polymers that are highly flammable, high loading of flame retardant filler is generally 
need to render self-extinguish of the composite [48–50], which will significantly reduce the 
ductility of the material, making the composite hard to process. In the previous discussed 
three component flame retardant EVA composite [6], EVA/ATH/MoS2/graphene, the total FR 
filler loading was reduced from 60 to 40�wt.%, which maintained the elasticity of pure EVA 
and increased the tensile modulus and tensile strength to equivalent with that of PVC, as 
summarized in Table 2. With careful examination of the individual effect of each component, 
they discovered that addition of MoS2 to the EVA/ATH blend decreased the tensile modulus, 
strength and elongation, while addition of graphene significantly increased these mechanical 
properties. In the V0 blend containing all three components, the ultimate tensile strength 
is even higher than the EVA/ATH/graphene blend, which has the highest tensile modulus 
and elongation at break. This is achieved through the second quasi-elastic response, which 
is an indication of nanoparticles reinforcing the matrix against scission and polymer chain 
disentanglement. Thus, the addition of graphene platelets improved the overall FR particle 
dispersion which provide a larger surface area for polymer chain absorption, while MoS2 did 
not have the dispersant effect which lead to reduction of its specific surface area.�

Ductility is also an important property which determines the extruding conditions when the 
polymers are processed. In particular, the recent popularity of FDM printing requires that 
the ductility of the blends needs to be preserved and allow them to be drawn into uniform 

Sample Young’s modulus 
(MPa) 

Tensile 
strength (MPa) 

Elongation at 
break (%) 

Impact 
toughness 
(J/cm3) 

UL-94 
grade 

PVC� 6–1120 (avg. 38.8)� 1.1–29.0 (avg. 
15.6)�

80–920 (avg. 
308)�

N.A.� V-0�

EVA/ATH� 117.5�±�8.6� 12.6�±�1.1� 359�±�28� 39.3� V-2�

EVA/ATH/MoS2 163.5�±�9.3� 14.1�±�1.0� 306�±�26� 35.0� V-2�

EVA/ATH/GNPs� 261.6�±�15.5� 19.7�±�1.6� 455�±�51� 72.9� NG�

EVA/ATH/MoS2/GNPs� 258.4�±�12.2� 21.5�±�1.5� 448�±�43� 70.7� V-0�

Table 2. Tensile properties and impact toughness of EVA based blends. Reproduced�from Ref. [6]. Copyright (2018) with 
permission from Elsevier.�

http://dx.doi.org/10.5772/intechopen.79548


  

 

 

                      
         

       

                      
                

       

           
      

  

__ 

54 Flame Retardants 

filaments and withstand further drawing through the printer nozzles [51]. As mentioned in 
previous section [4], the addition of C-30B to PLA/MPP successfully improved the dispersion 
of MPP which provides a higher flame retardant efficiency. Through comparing the impact 
strength, the addition of MPP embrittles the PLA composite, while adding C-30B and MPP 
together restored the impact strength to the same level of pure PLA and even slight higher. 
Examination of the fracture surface showed that the MPP tactoids would delaminate from 
the PLA matrix under impact stress. With C-30B localized at the PLA/MMP interface, the 
micro-cracks brought by MPP tactoids were restricted by the rigid C-30B platelets. Therefore, 
the impact energy dissipation was improved and the PLA/MPP/C-30B blend was success-
fully drawn into filaments. The printed PLA/MPP/C-30B sample also achieved V0 grade in 
the UL-94 test. Figure 11 summarized the comparison of cone calorimetry test result and 
mechanical properties between molded and printed PLA/MPP/C-30B sample. The cone calo-
rimetry data of printed sample was similar to the molded one. The impact strength, Young’s 
modulus, tensile strength and elongation of the printed sample was slightly lower than the 
molded sample, but the difference was within one statistical deviation. This is due to the 
incomplete fusion between the filaments during printing. Never the less, the printing process 
does not have a significant influence on the composite performance.�

4.3. Gas permeability 

Gas permeability�is a very important factor for polymer materials used in packaging. Many 
studies have been established that layered particles have a great effect in enhancing the gas 
barrier effect [52, 53]. As part of their study on comparing between clay platelets and nano-
tubes, Guo et�al. [22] derived individual equations to calculate the oxygen permeability for 
blends containing clay or nanotubes:�

1 −�∅__ P _____ 
P = (for clay)� (1)�

o 1 + α 
2 ∅ 

1 −�∅__ P _______= (for nanotubes)� (2)P ____o 1 + π
2 −�8 ∅16 

where, P is gas permeability of polymer with particle, and P
o 
is gas permeability of polymer with-

out particle. ∅ is the volume fraction of nanoparticles.α is the aspect ratio of clay platelets. From�
the equations we could see that the aspect ratio of platelets particle could directly influence the�

Figure 11. Comparison between molded and 3D printed PLA/MPP/C-30B blend: (a) UL-94 test results; (b) mechanical 
properties; (c) cone calorimetry test result. Adapted from Ref. [4]. Copyright (2018) with permission from Elsevier.�
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Figure 12. Gas permeability results of PLA based blends: (a) an illustration of oxygen pathway in PLA blends with clay 
or nanotubes; (b) comparison between calculated (dotted line) and measured values of gas permeability of PLA/clay 
blends; (c) comparison between calculated (dotted line) and measured values of gas permeability of PLA/nanotubes 
blends. Adapted from Ref. [22]. Copyright (2018) with permission from Elsevier.�

gas permeability, whereas for tubular particles the gas permeability is independent on its dimen-
sion. Figure 12 shows the comparison between the measured gas permeability and the calculated�
value, and a scheme of the possible pathway in PLA blends with clay or nanotubes. For clay par-
ticles, when calculating the gas permeability with the dimension of single clay platelets, the calcu-
lated result is higher than the measured result. By back calculating the α value from the measured�
gas permeability, the values are equivalent to the aspect ratio of the tactoids, instead of dimension�
of the clay platelets. Therefore, the gas permeability of polymer/clay blend is directly affected by�
the work of adhesion (Wa) between the polymer and the clay surface. When Wa�increases, the�
clay platelets have a higher degree of exfoliation in the polymer matrix, which result in a smaller�
tactoid aspect ratio and produces low gas permeability result. On the other hand, the measured�
gas permeability data for polymer/HNTs blend and polymer/H-RDP blend showed only slight�
decreasing with increasing nanotubes concentration. This result is in good agreement with the�
previous equation. Moreover, there is not much difference between the gas permeability data of�
polymer/HNTs and polymer/H-RDP, which is in agreement with the slight difference on their�
Wa. In conclusion, clay platelets have a higher barrier effect than nanotubes due to their structure�
difference, and the barrier effect will increase with increasing degree of exfoliation.�

4.4. Thermal conductivity 

In addition to its compatibilizing effect and char promotion effect, the high thermal conduc-
tivity of graphene has drawn a great attention as well. Kai et�al. melt blended graphene with 
polypropylene (PP) [54]. PP blends with carbon black and Cu microparticles, which also have 
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Sample Particle concentration (wt.%) Thermal conductivity (W/mK) 

PP� 100/0 0.23�

PP/Cu� 80/20 0.29�

PP/carbon black� 80/20 0.36�

PP/GNPs� 80/20 0.57�

70/30 1.12�

60/40 2.02�

50/50 2.31�

Table 3. Thermal conductivity of PP based composites. Reproduced from Ref. [55] with open access.�

high thermal conductivity, were also prepared. They found that at the same filler loading, 
the thermal conductivity of PP/graphene blend is two times higher than that of pure PP, 
as seen in Table 3, whereas the addition of carbon black or Cu only slightly increased the 
thermal conductivity. This effect is contributed to the large aspect ratio of graphene. The large 
surface area of graphene provides a better coupling between polymer chains and graphene. 
Comparing to the spherical structure of carbon black and Cu, it is easier for graphene plate-
lets to form an efficient heat transfer path inside the polymer matrix. They also measured 
the thermal conductivity of PP/graphene at different graphene loading, and found that the 
thermal conductivity increased linearly with graphene concentration up to 50% graphene 
loading. Zhang et�al. have stated that up to approximately 30�vol.% of filler, the thermal 
conductivity will first increase linearly with filler loading due to the increase in the contact 
area between filler and the polymer matrix [55]. Then the slop of this linear relationship will 
decrease because the filler starts to agglomerate within the polymer matrix and the conduc-
tive pathway was destructed. Thus, the linear relationship found by Kai et�al. indicated that 
graphene platelets were uniformly distributed in the PP matrix. At 40% graphene loading, the 
thermal conductivity of PP/graphene blend is 2.0�W/mK, which is the same with flue gas in a 
metal heat exchanger. This result opens up the possibility of PP/graphene blends used in the 
application of heat exchanger which is also corrosion resistance and easy to process.�

4.5. Rheology 

In general, since the addition of fillers will restrict polymer chain movement, they will rein-
force the polymer matrix in the rheological response. The efficiency of the reinforcement is 
related to the interaction between the filler and the polymer matrix. Through the comparison 
between the G’ dependency on frequency of PLA blend with C-Na+, C-RDP and C-30B, Guo 
et�al. [22] discovered that PLA/C-30B has the lowest slop at low frequency, and it is related 
to the fact that C-30B has the highest degree of exfoliation comparing to C-Na+ and C-RDP, 
shown in Figure 13. PLA blends with HNTs and H-RDP have the similar result to PLA/C-
30B, which indicates the nanotubes are very effective in restrict the polymer chain motion. 
Moreover, the PLA/H-RDP blend have a better performance than PLA/HNTs blend, which is 
due to the higher affinity (Wa) between the PLA and particles induced by RDP coating. When 
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Figure 13. Rheology performance of PLA based composites. Adapted from Ref. [22]. Copyright (2018) with permission 
from Elsevier.�

utilized in flame retardant composites, using RDP alone will decrease the G’, which results 
in swelling the polymer chain and reducing the strength, and also caused heavily dripping 
during UL-94 test [5]. By adding cellulose to the PLA matrix, the G’ was increased at low 
frequency, which resulted in prevent deformation and reduce dripping during combustion. 
Replacing cellulose by RDP coated cellulose, the G’ further increased slightly showing that 
the RDP coating would increase the interaction between the polymer and the cellulose fiber. 
Hence, the RDP coated cellulose has a higher efficiency in prevent deformation upon heating 
and prevent dripping during combustion.�

For binary polymer systems, the morphology of the polymer phase separation and filler loca-
tion play a significant role in the rheological response. In previous section, Guo, et�al. [47, 56] 
showed that the addition of C-30B and C-RDP could effectively increase the compatibility 
between PLA and PBAT, while reducing the impact strength due to the strong barrier effect 
at the polymer interface. HNTs and H-RDP were not as effective at reducing the domain size 
and increasing the polymer compatibility, but the impact strength was enhanced with the 
“stitching” effect of nanotubes. The rheological response of PLA/PBAT blends were plotted in 
Figure 14, they found that the G’ of PLA/PBAT/C-30B and PLA/PBAT/C-RDP were both three 
magnitudes higher than PLA/PBAT control blend. This is attributed to the strong interaction 
between clay platelets and the polymers. However, at higher strain amplitude, both PLA/�
PBAT/C-30B and PLA/PBAT/C-RDP sample showed a G’ peak. This is identified as a stick 
slip motion caused by polymer chain confinement due to clay platelets blocking the polymer 
chain entanglement. On the G’ curve of PLA/PBAT/H-RDP blend, no peak was observed. This 
is also attributed to the nanotubes stay perpendicular to the polymer interface, and therefore 
the entanglement between two polymers was not affected.�
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Figure 14. Rheology response of PLA/PBAT blends with clays or nanotubes. Adapted with permission from Ref. [47]. 
Copyright (2018) American Chemical Society.�

5. Conclusion 

We first reviewed the interaction between three widely used nanoparticles and singular poly-
mer matrix. As being reported, the affinity between the nanoparticle and polymer could be�
determined by measuring the Young’s contact angle and calculating the work of adhesion (Wa).�
With a higher Wa, the nanoparticle will generally achieve a higher degree of exfoliation inside�
the polymer matrix. In a polymer composite where flame retardant particles tend to form�
agglomerates, the high exfoliated nanoparticle could act as a dispersant. They will segregate at�
the polymer/FR particle interface and increase the interaction between these two. As a result,�
the dispersion of the flame retardant particle is improved, as well as a higher flame retardant�
efficiency, which will render the polymer composite pass the V0 rating in UL-94 test at a lower�
filler content. We also looked at the surface interaction of nanoparticles in binary polymer�
systems, they perform in a similar mechanism as in the singular polymer system, where the�
dispersion of the flame retardant additive is improved and the phase separation is reduced.�
Moreover, the addition of the nanoparticles has a significant influence on the mechanical�
properties of the polymer composite. In a singular polymer matrix, when clay platelets were�
added, the impact strength will decrease with increasing degree of clay exfoliation, due to the�
high magnitude of internal stress created at the tip of exfoliated clay platelets. In binary poly-
mer blends, the addition of clay will also decrease the impact resistance by localizing at the�
polymer interface and blocking the polymer chain entanglement across the interface. Tubular�
nanoparticle, on the other hand, will lie perpendicular to the polymer interface, which will�
enhance the impact and tensile properties by a “stitching” effect. Rheology performance was�
affected in the similar way as the impact and tensile properties. Clay has also been proved to�
have a higher improvement on the gas barrier effect than tubular particles. Large aspect ratio�
particles with high thermal conductivity, such as graphene, could also be used in applications�
for developing corrosion-resistant polymer composites for heat exchangers. In sum, the usage�
of nanoparticles could greatly increase the flame retardant efficiency by improving the filler�
dispersion in the polymer matrix, as well as other physical properties.�
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1. Introduction 

The advent of engineered nanoparticles with high aspect ratio, such as graphene and carbon 
nanotubes (CNT), and their availability in quantities relevant for industrial production, has 
greatly expanded opportunities to modify polymers to meet demanding requirements in a 
broad range of applications. Such nano-additives have been shown to improve polymer 
mechanical (e.g., stiffness, strength and fracture properties) as well as physical characteristics 
(e.g., electrical and thermal conductivity), see e.g., [1–6]. The same holds true in the context of 
flame retardancy. Among the three commonly considered flame retardant approaches—i.e., 
gas phase flame retardants, endothermic flame retardants, and char-forming flame retardants 
—nanofillers are typically active via the latter mechanism. Nanofillers operate in the polymer 
condensed phase where they may provide thermal insulation and a mass transport barrier that 
mitigates the release of fuel into the gas phase. Nanocomposites with suitable filler morphol-
ogy and loading were observed to form a coherent filler network layer covering sample 
surfaces, which significantly reduced peak heat release and radiant heat flux [7]. In addition 
to the char-forming mechanism, nanofillers were found to reduce the melt flow of polymers. 
High aspect ratio nano-additives were reported to form jammed network structures causing 
melt to behave rheologically like a gel, thus inhibiting dripping of flammable material [8]. 

While the potential of nano-fillers to enhance flame retardancy through increased barrier 
properties impeding heat flux and fuel release, and altered rheological properties inhibiting 
flammable drips, has widely been acknowledged in the technical literature, the influence of 
filler addition on increased thermal conductivity and thus heat transfer into the polymer still 
requires further study [1]. Carbon-based fillers possess thermal conductivities that exceed 
those of polymers by several orders of magnitude. For example, thermal conductivity ranging 
from 2000 to 5000 W m˜1 K˜1 has been reported for CNT and graphene while values for 
typical polymers are between 0.1 and 0.3 W m˜1 K˜1 [9, 10]. Assessing and understanding 
thermal conduction in nanocomposites with high aspect ratio fillers is particular complex due 
to the inherent propensity of filler contact, alignment and agglomeration. 

Besides randomly oriented and dispersed particles, polymer nanocomposites with purposely 
aligned particulate fillers have been created, which resulted in improved performance in a 
variety of applications. Nanocomposites with aligned particles have been used for the design 
of sensors [11–13] and high-strength modified polymers that require particle alignment in 
order to achieve specific anisotropic properties [14–16]. Carbon nanotubes, as a ‘one-
dimensional’ high aspect ratio carbon allotrope, are especially suited to create nanocomposites 
with anisotropic properties, e.g., in terms of heat transfer properties [17–22]. 

Determining the mechanical and physical properties using experimental methods is typically a 
time-consuming and costly approach. Analytical methods, on the other hand, are highly 
efficient for predicting effective material properties of particulate composites [23]. However, 
analytical methods lack accuracy when predicting properties, especially for higher filler vol-
ume fraction modified polymers. Considering these limitations, and in light of a rapidly 
growing number of applications involving particulate composites, experimental and analytical 
approaches are not sufficient to address the demands imposed by a vast field of available filler 
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materials and fabrication parameters. Hence, alternative methods for assessing and designing 
filler modified composites need to be developed [24–26]. 

Stochastic analysis is one of the most reliable and recognized methods for analyzing complex 
problems involving many input and output parameters in the field of reliability analysis. This 
method can predict accurate outcomes using statistical principles. Stochastic analysis can be 
used in a variety of applications, e.g., financial forecasting and modeling, where numerous 
input and output variables need to be considered. Recently, a numerical modeling framework 
was developed based stochastic analysis to simulate the effective material properties of filler 
modified composites [27]. Specifically, a stochastic finite element analysis (SFEA) approach 
was employed that enabled the prediction of the effective thermal conductivity of randomly 
distributed and disperses spherical particles embedded in a polymer matrix. In the present 
contribution, aforementioned SFEA approach was adopted to predict the effective thermal 
conductivity of a polymer matrix containing randomly oriented or aligned rod-shaped filler 
particles. The particle geometry was adapted to mimic CNT. The study described herein 
investigates the effect of filler addition and alignment on heat transfer into polymer composites 
in the context of fire-retardant materials. 

2. Stochastic finite element analysis framework 

The nature of stochastic analysis, and thus the presented modeling approach, requires 
performing numerous iterations in order to calculate the effective thermal conductivity of a 
polymer matrix containing a rod-shaped filler. The SFEA algorithm described in [27] was 
adopted and employed for the present study. This algorithm provides a framework for 
connecting a customized stochastic analysis with a parametric finite element analysis (FEA). 
In this manner, the process of applying uncertainty to input variables, and creating and solving 
FEA models is automated. The modeling framework, which uses several scripting languages, 
is briefly summarized in the present section. The interested reader is referred to [27] for 
additional details on the modeling approach. Figure 1 depicts a flowchart outlining the main 
domain, i.e., the elemental structure and connections, of the framework’s various modules. 

Figure 1. Stochastic finite element analysis framework [27]. 
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The main domain was developed in Visual Basic for Applications scripting language (VBA; 
Microsoft, Redmond, Washington, USA). Input parameters are provided via the ‘Front End’ 
module. The set of required input parameters comprises (i) the modeling domain that is 
defined by the size of the considered cubic representative volume element (RVE); (ii) a set of 
filler volume fractions that are to be analyzed; (iii) the material properties for the filler and 
matrix; (iv) the filler particle size distribution; (v) information on boundary effects, i.e., 
particle-to-particle and particle-to-matrix interfacial thermal resistance (ITR) as well as a 
threshold gap size that defines direct contact between particles and particles to the RVE 
boundary; (vi) details for the FEA mesh generation; and (vii) details regarding the model 
output acceptance criteria required for statistical analyses, i.e., standard deviation and vari-
ance. The input parameters are transferred to a database with an appropriate management 
system (‘DBMS’), which holds and communicates input and computed data between the 
various modules. 

The Monte Carlo simulation (MCS) module, also developed using VBA scripting language, 
performs two subprocesses, i.e., the random number generator (RNG) and the FEA modeling. 
Using the algorithm depicted in Figure 2, the MCS module retrieves needed input parameters 
from the database, performs iteratively the SFEA, computes statistical data (standard deviation 
and variance) after each iteration, and finally stores results back into the database. The MCS 
module repeats the modeling subprocess until the acceptance criteria defined in the database are 
satisfied. Once results converge according to the criteria specified, the MCS module determines 
the effective thermal conductivity (by calculating an average value). The MCS module repeats 
the above processes until all specified filler volume fractions are analyzed. 

The RNG module was developed in the numerical computing environment MATLAB 
(MathWorks, Natick, Massachusetts, USA), which has pseudorandom number generating 
capabilities. This module retrieves the input data defining the RVE size and the particle size 
distribution from the database. The RNG module sequentially creates sets of random numbers 
for anchor points in Cartesian coordinates as well as vectors required for generating the 

Figure 2. Monte Carlo simulation (MCS) module algorithm [27]. 
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position and orientation of rod-shaped filler particle geometries, respectively. The RNG mod-
ule also performs a collision detection using a geometrical model to avoid particles interfering 
with each other as well as with the RVE surfaces. When detecting interference, the RNG rejects 
the most recently generated particle. In the geometrical model, the rod-shaped particle geom-
etry is represented by a series of spheres (see Figure 3). The distance between each sphere 
associated with the most recent rod-shaped particle and all preexisting sphere geometries in 
the RVE, and the RVE boundaries, is evaluated to discern a particle collision. While 
representing rod-shaped particles using a series of spheres is only an approximation, it pro-
vides an expedient means for performing the collision detection algorithm. For the analyses 
presented herein, as series of 200 spheres was used to represent rod-shaped particles for 
interference detection. 

The process performed by the RNG module can be controlled to yield both randomly oriented 
and aligned rod-shaped particles within the RVE. In the case of aligned particles, constraints 
are imposed on the vector indicating particle orientation. As shown in Figure 4, after generat-
ing the set of random numbers for each particle, these data are stored in the database in a 
tabulated format for later use by the FEA module. The RNG module iteration is terminated 
when the required filler volume fraction is reached. 

It should be mentioned that the RNG module also has the ability of creating particles that 
conform to a given size distribution (whilst, this feature was not utilized in the present study). 
The interested reader is referred to [27] for details on the algorithm that produces particles 
obeying a certain size distribution, and the effect that different size-ordered particle addition 
has on computational performance. 

The FEA module was developed as a fully customizable parametric FEA platform in ANSYS 
Workbench (Version 19, ANSYS Inc., Canonsburg, PA, USA) using IronPython scripting lan-
guage, which enabled applying uncertainties to input parameters required for performing the 
FEA simulation. This platform consists of a model generation environment, i.e., ANSYS 
DesignModeler, and a model solution environment, i.e., ANSYS Mechanical, which enable 
creating the parametric geometry and the finite element model, respectively. JAVA scripting 
language was used to automate the process of reading input data from the database (i.e., RVE 
dimensions and particle anchor points and orientation vectors) and creating particle geome-
tries in the model generation environment. The three-dimensional geometry thus created is 
transferred to the model solution environment for further analysis. Similar to the model 
generation environment, the model solution environment also uses JAVA scripting language 
to automate the FEA process. The model solution environment retrieves further inputs parameters 

Figure 3. Schematic of series of spheres representing rod-shaped particles. 
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from the database, including material properties, information on boundary effects and condi-
tions, and mesh generation parameters, and then constructs the finite element model for each 
model iteration. After performing the analysis, the FEA results are saved to the database in 
tabulated format for further statistical analysis. Figure 5 illustrated the algorithm for the FEA 
module. 

Figure 4. Random number generator algorithm [27]. 

Figure 5. FEA module algorithm [27]. 
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3. Steady-state numerical modeling 

The developed SFEA framework was employed to estimate the effective thermal conductivity 
under steady-state conditions of filler modified composites with randomly and aligned rod-
shaped particles embedded in a polymer matrix. The rod-shaped particles mimic CNT embed-
ded in epoxy polymer in order to elucidate the effect of filler addition and alignment in the 
context of fire-retardant materials. Table 1 shows the CNT longitudinal and lateral thermal 
properties and volumetric mass density, which were adopted from [9, 28, 29]. The mean 
particle diameter was set to 2.85 nm with a constant particle aspect ratio of 56, i.e., only a 
single particle size was utilized in this study to limit the parameter space affecting the results. 
The RVE size was set 200 nm. 

Since CNT have anisotropic thermal properties it is not possible to define their thermal 
conductivity using global coordinates. Hence, an algorithm was developed in JAVA scripting 
language that provides dedicated local Cartesian coordinates for each rod-shaped particle. As 
depicted in Figure 6, the local coordinates (x,y,z) have their origin at one end of a particle with 
the x-direction aligning with the particle’s longitudinal axis. For the case of aligned particles 
the components describing the vector for each particle’s major axis (x) were constrained to 

Material Epoxy CNT 

˜3]Density [kg m 1250 1600 

˜1 K˜1]Thermal conductivity, longitudinal [W m 0.25 3500 

˜1 K˜1]Thermal conductivity, lateral [W m 0.25 1.5 

Table 1. Volumetric mass density and thermal conductivity of polymer and CNT [9, 28, 29]. 

Figure 6. Illustration of local coordinate systems for rod-shaped particles. 
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remain within upper and lower bounds. For the present analyses, these constraints correspond 
to a maximum possible angle of approximately 8.5˜ between a particle’s major axis (x) and the 
global (RVE) X-direction. 

Three-dimensional ten-node quadratic tetrahedral thermal solid elements, i.e., SOLID87, were 
used to generate the finite element mesh for both the particles and matrix. This element type, 
which provides one degree of freedom (temperature), is recommended for meshing irregular 
geometries. The latter characteristic is desirable in the present context, given that the rod-
shaped particles constitute geometries that typically are difficult to mesh. As an example, 
Figure 7 depicts the meshing generated for the matrix (left-hand side) and randomly distrib-
uted and aligned rod-shaped particles occupying the RVE devoid matrix (right-hand side). 

As demonstrated in [27], it is essential to model the ITR between particles and the matrix as 
well as between particles that are in contact with each other in order to achieve a model that 
realistically captures effective thermal conductivities for different filler loadings. In this study 
the particle-to-matrix thermal contact conductance (TCC) was adopted from literature [30–32] 
as 108 W m  °2 K °1. Also, the direct particle-to-particle heat transfer threshold was set to 
approximately 1 nm. Note that implementing this threshold is necessary since the employed 
particle collision algorithm prevents true direct particle-to-particle contact. ITR and particle-
to-particle thermal contact was implemented using three-dimensional 6-node quadratic surface-
to-surface elements, i.e., CONTA174 and TARGE170. For details on the chosen approach to 
model contact phenomena the readers is referred to [27]. 

Thermal boundary conditions were applied to the RVE to perform the stead-state thermal 
analysis and calculate effective thermal conductivities. A temperature 22 and 32˜C were defined 
on opposite sides of the RVE, respectively, with the remaining surfaces considered adiabatic. 
Note that for the case of aligned filler particles, the alignment direction is referred to as the 

Figure 7. Finite element mesh of matrix (left) and aligned rod-shaped particles occupying the RVE devoid matrix (right). 
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Figure 8. Illustration of longitudinal (left) and lateral (right) heat flux between opposing warm and cold RVE surfaces. 

longitudinal direction, as opposed to the two lateral directions that are defined in a Cartesian 
coordinate system. Three sets of boundary conditions were also applied for randomly distrib-
uted filler particles for determining the effective thermal conductivities along the global Carte-
sian coordinate directions (X,Y,Z), thus enabling the assessment of isotropy. The applied 
boundary conditions create a temperature gradient and thus a heat flux between the warm and 
cold RVE surfaces, as illustrated in Figure 8. The thermal conductivity of nodes Ki located in the 
warm surface was determined using Eq. (1). 

Qi � l
Ki ¼ (1)

T2 � T1 

where Qi is the calculated numerical total heat flux at the ith node located on the warm side, l is 
the RVE length, and T1 and T2 correspond the temperature on the warm and cold surface, 
respectively. Consequently, Eq. (2) yields the effective thermal conductivity, Keff. 

Pn 
i¼1 KiKeff ¼ (2)
n 

where n is total number nodes on the warm surface of the RVE. 

4. Results and discussion 

The described modeling framework was employed to calculate effective thermal conductivities 
of composites with randomly distributed particles that were either aligned or had random 
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orientations. The studied filler volume fractions were 2.0, 4.0, 7.5 and 10%. Note that successful 
mesh generation becomes challenging for high filler aspect ratios, and hence, the particle 
aspect ratio was limited to 56 in the current study. While this value is comparatively low for 
CNT it does represent actual (multiwall) CNT structures as indicated in [33]. Moreover, model-
ing filler volume fractions exceeding 10% was found to demand excessive computational 
effort, and hence, analyses were limited to 10% filler volume fractions and below. Note that 
effective enhancement of flame retardant properties was ascertained in CNT-polymer compos-
ites that were significantly below the set 10% limit, see e.g., [7]. 

A convergence study was performed for a composite with randomly distributed and aligned 
particles at a filler volume fraction of 4.0%. To assess the sensitivity of the computed effective 
thermal conductivity to mesh refinement, numerical analyses were performed at different 
levels of mesh refinement. The results are depicted in Figure 9. It was observed that changing 
mesh density from ˜266,000 nodes to ˜376,000 nodes created a change in the effective thermal 
conductivity result of only less than 3.5%. Consequently, in order to maintain computational 
efforts within reasonable bounds, mesh generation was controlled to remain below 400,000 
nodes. 

Figure 10 shows an example of a model with randomly distributed and randomly oriented 
particles. Ideally, particle spacial distributions for this case should result in isotropic thermal 

Figure 9. Convergence study for composites with 4% filler volume fraction. 
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Figure 10. Example of randomly distributed and randomly oriented filler particles. 

conductivity properties. To further investigate this hypothesis, a study was performed in 
which effective thermal conductivities were computed along the global RVE directions, i.e., 
X,Y,Z coordinates. This analysis was completed for the chosen set of filler volume fractions 
(2.0, 4.0, 7.5 and 10%). Corresponding effective thermal conductivity results for a single model 
are included in Table 2. The given data indicates that thermal conductivity values were 

Filler volume fraction [%] 2.0% 4.0% 7.5% 10% 

Thermal conductivity, X 0.556 0.781 1.08 1.29 
˜1 K˜1][W m

Thermal conductivity, Y 0.525 0.676 1.14 1.26 
˜1 K˜1][W m

Thermal conductivity, Z 0.525 0.778 1.13 1.14 
˜1 K˜1][W m

Average thermal conductivity 0.536 0.745 1.12 1.23 
˜1 K˜1][W m

Table 2. Average and directional thermal conductivities of composites with randomly distributed and randomly oriented 
filler particles. 
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essentially isotropic for models with lower filler loading (i.e., 2%) while for increasing filler 
volume fractions a mild level of anisotropy was sometimes observed. For that reason, the 
average effective thermal conductivity was computed from the three Cartesian coordinate 
directions and subsequently used for comparing composites with randomly oriented particles 
with aligned filler composites. 

As explained previously, the MCS module of the modeling framework performs numerous 
iterations for each filler volume fraction and subsequently computes the effective thermal 
conductivity and stores these data in the database. The MCS module repeats this process until 
specified acceptance criteria are satisfied. For the presented study, the analysis process was 
terminated after 100 iterations for each of the set filler volume fractions. (Alternatively, a 
threshold for the unbiased standard deviation or variance could be defined as a termination 
criterion.) The effective thermal conductivity for a certain filler volume fraction was then 
computed from the mean of the results stored in the database. Statistical analyses were also 
performed on the data in order to assess the quality of the employed stochastic process. Data 
plots for specific volume fractions suggest that data is normally distributed, as shown in Figure 11 
by the normalized probability density of effective thermal conductivity data for the direction 
lateral to filler alignment in a composite with 4.0% filler volume fraction. Data were computed 
for normality tests for each volume fraction, including the data mean, median, skewness and 

Figure 11. Normalized probability density of effective thermal conductivity data for the direction lateral to filler align-
ment and 4.0% filler volume fraction. 
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kurtosis. Tables 3 and 4 list corresponding results for the longitudinal and lateral directions of 
composites with randomly distributed and aligned particles. These results indicate that the 
effective thermal conductivity data obey normal distributions, e.g., mean and median of effective 
thermal conductivity results were practically identical (differences are less than 0.04%). Similar to 
results presented in [27], appropriate randomness of computed data was thus ascertained. Graphs 

Filler volume fraction [%] 2.0 4.0 7.5 10.0 

Number of iterations 100 100 100 100 
[/] 

Mean value 0.775 1.027 1.318 1.489 
˜1 K˜1][W m

Median value 0.774 1.031 1.325 1.486 
˜1 K˜1][W m

Standard deviation 0.019 0.032 0.037 0.038 
˜1 K˜1][W m

Variance 3.7 ° 10˜4 1.0 ° 10˜3 1.3 ° 10˜3 1.4 ° 10˜3 

˜1 K˜1][W m

Skewness 1.197 ˜0.159 ˜0.672 0.083 
[/] 

Kurtosis ˜0.079 ˜0.539 0.607 0.128 
[/] 

95% confidence value 0.0038 0.0064 0.0073 0.0076 
˜1 K˜1][W m

Table 3. Results for longitudinal effective thermal conductivity and statistical analyses. 

Filler volume fraction [%] 2.0 4.0 7.5 10.0 

Number of iterations 100 100 100 100 
[/] 

Mean value 0.262 0.276 0.306 0.332 
˜1 K˜1][W m

Median value 0.262 0.276 0.306 0.331 
˜1 K˜1][W m

Standard deviation 0.001 0.001 0.003 0.004 
[W m˜1 K˜1] 

Variance 1.6 ° 10˜6 2.6 ° 10˜6 9.4 ° 10˜6 2.3 ° 10˜5 

˜1 K˜1][W m

Skewness [/] ˜0.819 ˜0.267 ˜0.180 0.216 

Kurtosis [/] 2.410 0.031 ˜0.124 0.344 

95% confidence value 0.0002 0.0003 0.0006 0.0009 
˜1 K˜1][W m

Table 4. Results for lateral effective thermal conductivity and statistical analyses. 

http://dx.doi.org/10.5772/intechopen.82878


78 Flame Retardants 

showing normally distributed effective thermal conductivity data for the chosen filler volume 
fractions are plotted for the longitudinal and lateral case in Figures 12 and 13, respectively. 

The effective thermal conductivity data calculated by SFEA framework can be considered 
continuous random variables, and hence, it is recommended to calculate the probability of 
occurrence of an explicit effective thermal conductivity within an identified interval. This 
calculation can be performed using Eq. (3). 

ðb 

P að ≤ Χ ≤ bÞ ¼  f χ dχð Þ  (3) 
a 

where P is the probability of an event of explicit effective thermal conductivity within the interval 
a and b; Χ and f χð Þ are correspondingly a continuous random variable and the probability 
distribution function. A cumulative distribution function (CDF) can be computed from Eq. (3) 
for each of the selected filler volume fractions. Corresponding CDF graphs are depicted in 
Figures 14 and 15 for the longitudinal and lateral cases of aligned filler composites, respectively. 

Finally, the modeling approach was used to achieve the objective of the study, that is, assessing 
the effect of filler addition and alignment on heat transfer into polymer composites in the context 
of fire-retardancy. Figure 16 depicts average effective thermal conductivity results for different 

Figure 12. Normalized probability density of effective thermal conductivity data for the direction of filler alignment and 
different filler volume fractions (VF). 
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Figure 13. Normalized probability density of effective thermal conductivity data for the direction lateral to filler align-
ment and different filler volume fractions (VF). 

Figure 14. Cumulative density function of effective thermal conductivity data for the direction of filler alignment and 
different filler volume fractions (VF). 
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Figure 15. Cumulative density function of effective thermal conductivity data for the direction lateral to filler alignment 
and different filler volume fractions (VF). 

Figure 16. Effective thermal conductivity of randomly oriented and aligned rod-shaped particles embedded in epoxy 
polymer matrix. 
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filler volume fractions for the cases of randomly oriented (isotropic) and aligned rod-shaped 
particles mimicking CNT. For the aligned filler morphologies, effective thermal conductivity 
results are shown for the direction of filler alignment (longitudinal) and the corresponding lateral 
direction. Despite the fact that the modeling approach employed generic material properties and 
simplifying assumptions for the CNT geometry, the data is in satisfactory agreement with data 
published in the technical literature (e.g., [32]). Experimentally characterized CNT-polymer 
composites involve a wide range of material properties and fabrication routes. Notwithstanding 
these differences, the modeled thermal conductivity in the order of 1.0 W m˜1 K˜1 for isotropic 
composites with filler loadings approaching 10% are shown to be realistic. 

The relative increase in effective thermal conductivity for the different filler volume fractions is 
depicted in the graph in Figure 17 for the cases of randomly oriented (isotropic) and aligned 
particles (longitudinal and lateral). These data clearly demonstrate that heat transfer into the 
polymer can greatly be reduced when filler particles are aligned parallel to the surface of a 
component. For example, while thermal conductivity in an isotropic and aligned filler com-
posite was found to respectively increase almost sixfold and fivefold over the matrix for 10% 
filler loading, the lateral thermal conductivity in the aligned filler composite rose only by a 
factor of 1.3. In the context of fire-retardancy it can therefore be concluded that aligning CNT 
and other high aspect ratio carbon allotrope fillers parallel to the surface of a polymer compo-
nent may provide an effective means for alleviating heat input into the material while enabling 

Figure 17. Relative increase in effective thermal conductivity of randomly oriented and aligned rod-shaped particles 
embedded in epoxy polymer matrix. 
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the desired mass transport barrier for mitigating fuel release into the gas phase, and reduced 
peak heat release and radiant heat flux. 

5. Conclusions 

A stochastic finite element analysis framework was employed to simulate the effective thermal 
conductivity of randomly distributed rod-shape particles mimicking carbon nanotubes embed-
ded in a polymer matrix. Particles were either randomly oriented or aligned, creating isotropic or 
anisotropic thermal conductivity behavior, respectively. The modeling framework that is based 
on Monte Carlo simulation considers filler-matrix and particle-to-particle interfacial effects. 

The numerical study indicated that the effective thermal conductivity is greatly enhanced for 
aligned filler composites in the alignment direction and isotropic filler modified composites. 
However, in the direction lateral to filler alignment the increase in thermal conductivity is only 
modest. Therefore, in order to limit heat input into the material, CNT and other high aspect 
ratio carbon allotrope fillers may be aligned parallel to the surface of a polymer component. In 
this manner, the flame-retardancy effectiveness of filler modified polymer composites can be 
improved, while providing a mass transport barrier that lessens the release of fuel into the gas 
phase, peak heat release and radiant heat flux, all of which were previously described in the 
technical literature. 

Acknowledgements 

The authors gratefully acknowledge Hi-Kalibre Equipment Ltd. for providing software and 
computing resources for this research. This work was further supported by the Natural Sci-
ences and Engineering Research Council of Canada, Grant number: RGPIN-2016-04650. 

Author details 

Hamidreza Ahmadi Moghaddam and Pierre Mertiny* 

*Address all correspondence to: pmertiny@ualberta.ca 

Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada 

References 

[1] Liu S, Chevalia VS, Xu Z, Hui D, Wang H. A review of extending performance of epoxy 
resins using carbon nanomaterials. Composites Part B: Engineering. 2018;136:197-214. 
DOI: 10.1016/j.compositesb.2017.08.020 

mailto:pmertiny@ualberta.ca


Stochastic Finite Element Modelling of Char Forming Filler Addition and Alignment – Effects on Heat… 83 
http://dx.doi.org/10.5772/intechopen.82878 

[2] Mishra D, Mohapatra S, Satapathy A. A detailed investigation on thermal and micro-
structural properties of hexagonal boron nitride composites. Materials Today: Proceed-
ings. 2018;5(9):19747-19753. DOI: 10.1016/j.matpr.2018.06.337 

[3] Ansari R, Rouhi S, Ahmadi M. On the thermal conductivity of carbon nanotube/polypro-
pylene nanocomposites by finite element method. Journal of Computational Applied 
Mechanics. 2018;49(1):70-85. DOI: 10.22059/jcamech.2017.243530.195 

[4] Shi X, Hassanzadeh Aghdam MK, Ansari R. Effect of aluminum carbide interphase on the 
thermomechanical behavior of carbon nanotube/aluminum nanocomposites. Proceedings 
of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Appli-
cations. 2018. DOI: 10.1177/1464420718794716 

[5] Ahmadi M, Ansari R, Hassanzadeh Aghdam MK. Micromechanical analysis of elastic 
modulus of carbon nanotube-aluminum nanocomposites with random microstructures. 
Journal of Alloys and Compounds. 2019;779:433-439. DOI: 10.1016/j.jallcom.2018.11.326 

[6] Ahmadi M, Ansari R, Rouhi S. Investigating the thermal conductivity of concrete/graphene 
nanocomposite by a multi-scale modeling approach. International Journal of Modern Phys-
ics B. 2018;32(14):15. Artical ID: 1850171. DOI: 10.1142/S0217979218501710 

[7] Kashiwagi T, Grulke E, Hilding J, Groth K, Harris R, Butler K, et al. Thermal and flamma-
bility properties of polypropylene/carbon nanotube nanocomposites. Polymer. 2004;45: 
4227-4239. DOI: 10.1016/j.polymer.2004.03.088 

[8] Liu S, Yan H, Fang Z, Wang H. Effect of graphene nanosheets on morphology, thermal 
stability and flame retardancy of epoxy resin. Composites Science and Technology. 2014; 
90:40-47. DOI: 10.1016/j.compscitech.2013.10.012 

[9] Pop E, Mann D, Wang Q, Goodson K, Dai H. Thermal conductance of an individual 
single-wall carbon nanotube above room temperature. Nano Letters. 2006;6(1):96-100. 
DOI: 10.1021/nl052145f 

[10] Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, et al. Superior thermal 
conductivity of single-layer graphene. Nano Letters. 2008;8:902-907. DOI: 10.1021/nl0731872 

[11] Liu J, Liu J, Yang L, Chen X, Zhang M, Meng F, et al. Nanomaterial-assisted signal enhance-
ment of hybridization for DNA biosensors: A review. Sensors. 2009;9(9):7343-7364. DOI: 
10.3390/s90907343 

[12] Balasubramanian K, Burghard M. Biosensors based on carbon nanotubes. Analytical and 
Bioanalytical Chemistry. 2006;385(3):452-468. DOI: 10.1007/s00216-006-0314-8 

[13] Yan T, Wang Z, Wang YQ, Pan ZJ. Carbon/graphene composite nanofiber yarns for highly 
sensitive strain sensors. Materials & Design. 2018;143:214-223. DOI: 10.1016/j.matdes.2018.02. 
006 

[14] Coleman JN, Khan U, Gun’ko YK. Mechanical reinforcement of polymers using carbon 
nanotubes. Advanced Materials. 2006;18(6):689-706. DOI: 10.1002/adma.200501851 

https://10.1016/j.matdes.2018.02
http://dx.doi.org/10.5772/intechopen.82878


84 Flame Retardants 

[15] Moniruzzaman M, Winey KI. Polymer nanocomposites containing carbon nanotubes. 
Macromolecules. 2006;39(16):5194-5205. DOI: 10.1021/ma060733p 

[16] Green MJ, Behabtu N, Pasquali M, Adams WW. Nano tubes as polymer. Polymer. 2009; 
50(21): 50:4979-4997. DOI: 10.1016/j.polymer.2009.07.044 

[17] Harris PJF. Carbon nanotubes and related structures: New materials for the twenty-first 
century. American Journal of Physics. 2004;72(3):415. DOI: 10.1119/1.1645289 

[18] Dai L. Carbon Nanotechnology: Recent Developments in Chemistry, Physics, Materials Sci-
ence and Device Applications. 1st ed. Amsterdam: Elsevier; 2006. ISBN-13: 978-0-444-51855-2 

[19] Wu Q, Zhu W, Zhang C, Liang Z, Wang B. Study of fire retardant behavior of carbon 
nanotube membranes and carbon nanofiber paper in carbon fiber reinforced epoxy com-
posites. Carbon. 2010;48(6):1799-1806. DOI: 10.1016/j.carbon.2010.01.023 

[20] Knight C, Filbert IP, Zeng C, Zhange C, Wang B. A highly efficient fire-retardant nano-
material based on carbon nanotubes and magnesium hydroxide. Fire and Materials. 2013; 
37(2):91-99. DOI: 10.1002/fam.2115 

[21] Xiong L, Liu K, Shuai J, Hou Z, Zhu L, Li W. Toward high strength and high electrical 
conductivity in super-aligned carbon nanotubes reinforced copper. Advance Engineering 
Materials. 2018;20(5):1700805. DOI: 10.1002/adem.201700805 

[22] Xiong L, Shuai J, Liu K, Hou Z, Zhu L, Li W. Enhanced mechanical and electrical properties 
of super-aligned carbon nanotubes reinforced copper by severe plastic deformation. Com-
posites Part B: Engineering. 2018;160:315-320. DOI: 10.1016/j.compositesb.2018.10.023 

[23] Meincke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H. Mechanical 
properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its 
blends with acrylonitrile/butadiene/styrene. Polymer. 2004;45(3):739-748. DOI: 10.1016/j. 
polymer.2003.12.013 

[24] Valavala PK, Odegard GM. Modeling techniques for determination of mechanical proper-
ties of polymer nanocomposites. Advances in Materials Science. 2005;9:34-44 

[25] Odegard G, Clancy T, Gates T. Modeling of the mechanical properties of nanoparticle/ 
polymer composites. Polymer. 2005;46(2):553-562. DOI: 10.1016/j.polymer.2004.11.022 

[26] Liu YJ, Chen XL. Evaluations of the effective material properties of carbon nanotube-
based composites using a nanoscale representative volume element. Mechanics of Mate-
rials. 2003;35(1–2):69-81. DOI: 10.1016/S0167-6636(02)00200-4 

[27] Ahmadi Moghaddam H, Mertiny P. Stochastic finite element analysis framework for model-
ling thermal conductivity of particulate modified polymer composites. 2018;11:905-914. 
DOI: 10.1016/j.rinp.2018.10.045 

[28] Sinha S, Barjami S, Iannacchione G, Schwab A, Muench G. Off-axis thermal properties of 
carbon nanotube films. Journal of Nanoparticle Research. 2005;7(6):651-657. DOI: 10.1007/ 
s11051-005-8382-9 



Stochastic Finite Element Modelling of Char Forming Filler Addition and Alignment – Effects on Heat… 85 
http://dx.doi.org/10.5772/intechopen.82878 

[29] Sugime H, Esconjauregui S, Yang J, D'Arsié L, Oliver RA, Bhardwaj S, et al. Low temper-
ature growth of ultra-high mass density carbon nanotube forests on conductive supports. 
Applied Physics Letters. 2013;103(7):109901. DOI: 10.1063/1.4818619 

[30] Huxtable ST, Cahill DG, Shenogin S, Xue L, Ozisik R, Barone P, et al. Interfacial heat flow in 
carbon nanotube suspensions. Nature Material. 2003;2(11):731-734. DOI: 10.1038/nmat996 

[31] Shenogin S, Xue L, Ozisik R, Keblinski P, Cahill DG. Role of thermal boundary resistance 
on the heat flow in carbon-nanotube composites. Journal of Applied Physics. 2004;95: 
8136-8144. DOI: 10.1063/1.1736328 

[32] Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: 
A review. Progress in Polymer Science. 2011;36(7):914-944. DOI: 10.1016/j.progpolymsci. 
2010.11.004 

[33] Xu DH, Wang ZG, Douglas JF. Influence of carbon nanotube aspect ratio on normal stress 
differences in isotactic polypropylene nanocomposite melts. Macromolecules. 2008;41(3): 
815-825. DOI: 10.1021/ma702178e 

http://dx.doi.org/10.5772/intechopen.82878






 

 

Edited by Fahmina Zafar and Eram Sharmin 

Flame retardants reduce the risk of fre by decreasing the combustion rate and fame 
propagation in the presence of fre, leading to the prevention and control of fre. 

Flame Retardants is divided into four sections: section 1 consists of the introduction, 
section 2 discusses properties, Section 3 comprises nanocomposites, and section 4 

includes computational analysis. Te book will be useful for scientists and researchers 
interested in the feld of fre control. 

Published in London, UK 
©  2019 IntechOpen 
©  hansvanluijk / iStock 

ISBN 978-1-78985-879-2ISBN 978-1-83881-139-6 


	Flame Retardant
	Contents
	Preface 
	Section 1 - Introduction
	Chapter 1 - Introductory Chapter: Flame Retardants 
	Section 2 - Properties
	Chapter 2 - Physiochemical Properties and Environmental Levels of Legacy and Novel Brominated Flame Retardants
	Section 3 - Fire Retardant Polymer Nanocomposite
	Chapter 3 - Flame Retardant Polymer Nanocomposites and Interfaces
	Section 4 - Computational analysis
	Chapter 4 - Stochastic Finite Element Modelling of Char Forming Filler Addition and Alignment – Effects on Heat Conduction into Polymer Condensed Phase




