Heike Wehrheim

Jordi Cabot (Eds.)

Fundamental Approaches
to Software Engineering

23rd International Conference, FASE 2020
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2020
Dublin, Ireland, April 25-30, 2020, Proceedings

f'\ ETAPS

LNCS 12076 | ARCoSS

EUROPEAN JOINT CONFERENCES ON
THEORY & PRACTICE OF SOFTWARE

Lecture Notes in Computer Science 12076

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA Gerhard Woeginger ®, Germany
Wen Gao, China Moti Yung, USA
Bernhard Steffen ®, Germany

Advanced Research in Computing and Software Science

Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy
Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany

Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen®, University of Dortmund, Germany

Deng Xiaotie, Peking University, Beijing, China

Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

Heike Wehrheim - Jordi Cabot (Eds.)

Fundamental Approaches
to Software Engineering

23rd International Conference, FASE 2020

Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2020
Dublin, Ireland, April 25-30, 2020

Proceedings

@ Springer Open

Editors

Heike Wehrheim Jordi Cabot
University of Paderborn ICREA
Paderborn, Germany Open University of Catalonia

Barcelona, Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-45233-9 ISBN 978-3-030-45234-6 (eBook)

https://doi.org/10.1007/978-3-030-45234-6
LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

© The Editor(s) (if applicable) and The Author(s) 2020. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

ETAPS Foreword

Welcome to the 23rd ETAPS! This is the first time that ETAPS took place in Ireland in
its beautiful capital Dublin.

ETAPS 2020 was the 23rd instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each
conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from
theoretical computer science to foundations of programming language developments,
analysis tools, and formal approaches to software engineering. Organizing these
conferences in a coherent, highly synchronized conference program enables researchers
to participate in an exciting event, having the possibility to meet many colleagues
working in different directions in the field, and to easily attend talks of different
conferences. On the weekend before the main conference, numerous satellite
workshops took place that attracted many researchers from all over the globe. Also, for
the second time, an ETAPS Mentoring Workshop was organized. This workshop is
intended to help students early in the program with advice on research, career, and life
in the fields of computing that are covered by the ETAPS conference.

ETAPS 2020 received 424 submissions in total, 129 of which were accepted,
yielding an overall acceptance rate of 30.4%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their
contributions, and in particular the PC (co-)chairs for their hard work in running this
entire intensive process. Last but not least, my congratulations to all authors of the
accepted papers!

ETAPS 2020 featured the unifying invited speakers Scott Smolka (Stony Brook
University) and Jane Hillston (University of Edinburgh) and the conference-specific
invited speakers (ESOP) Isil Dillig (University of Texas at Austin) and (FASE) Willem
Visser (Stellenbosch University). Invited tutorials were provided by Erika Abrahdm
(RWTH Aachen University) on the analysis of hybrid systems and Madhusudan
Parthasarathy (University of Illinois at Urbana-Champaign) on combining Machine
Learning and Formal Methods. On behalf of the ETAPS 2020 attendants, I thank all the
speakers for their inspiring and interesting talks!

ETAPS 2020 took place in Dublin, Ireland, and was organized by the University of
Limerick and Lero. ETAPS 2020 is further supported by the following associations and
societies: ETAPS e.V., EATCS (European Association for Theoretical Computer
Science), EAPLS (European Association for Programming Languages and Systems),
and EASST (European Association of Software Science and Technology). The local
organization team consisted of Tiziana Margaria (general chair, UL and Lero),
Vasileios Koutavas (Lero@UCD), Anila Mjeda (Lero@UL), Anthony Ventresque
(Lero@UCD), and Petros Stratis (Easy Conferences).

vi ETAPS Foreword

The ETAPS Steering Committee (SC) consists of an Executive Board, and
representatives of the individual ETAPS conferences, as well as representatives of
EATCS, EAPLS, and EASST. The Executive Board consists of Holger Hermanns
(Saarbriicken), Marieke Huisman (chair, Twente), Joost-Pieter Katoen (Aachen and
Twente), Jan Kofron (Prague), Gerald Liittgen (Bamberg), Tarmo Uustalu (Reykjavik
and Tallinn), Caterina Urban (Inria, Paris), and Lenore Zuck (Chicago).

Other members of the SC are: Armin Biere (Linz), Jordi Cabot (Barcelona), Jean
Goubault-Larrecq (Cachan), Jan-Friso Groote (Eindhoven), Esther Guerra (Madrid),
Jurriaan Hage (Utrecht), Reiko Heckel (Leicester), Panagiotis Katsaros (Thessaloniki),
Stefan Kiefer (Oxford), Barbara Konig (Duisburg), Fabrice Kordon (Paris), Jan
Kretinsky (Munich), Kim G. Larsen (Aalborg), Tiziana Margaria (Limerick), Peter
Miiller (Zurich), Catuscia Palamidessi (Palaiseau), Dave Parker (Birmingham),
Andrew M. Pitts (Cambridge), Peter Ryan (Luxembourg), Don Sannella (Edinburgh),
Bernhard Steffen (Dortmund), Mari€lle Stoelinga (Twente), Gabriele Taentzer
(Marburg), Christine Tasson (Paris), Peter Thiemann (Freiburg), Jan Vitek (Prague),
Heike Wehrheim (Paderborn), Anton Wijs (Eindhoven), and Nobuko Yoshida
(London).

I would like to take this opportunity to thank all speakers, attendants, organizers
of the satellite workshops, and Springer for their support. I hope you all enjoyed
ETAPS 2020. Finally, a big thanks to Tiziana and her local organization team for all
their enormous efforts enabling a fantastic ETAPS in Dublin!

February 2020 Marieke Huisman
ETAPS SC Chair
ETAPS e.V. President

Preface

This volume contains the papers presented at the 23rd International Conference on
Fundamental Approaches to Software Engineering (FASE 2020) held during
April 25-30, 2020, in Dublin, Ireland. FASE 2020 was organized as part of the annual
European Joint Conferences on Theory and Practice of Software (ETAPS 2020).

FASE is concerned with the foundations on which software engineering is built. The
papers submitted covered topics such as requirements engineering, software architec-
tures, specification, software quality, validation, verification of functional and
non-functional properties, model-driven development and model transformation, soft-
ware processes, security, and software evolution. In particular, the 2020 edition of
FASE saw an increased number of papers with empirical studies.

FASE 2020 had no separate abstract submission deadline and we received 81
submissions on the paper deadline with 5 tool papers, 4 empirical evaluation papers and
72 research papers. The submissions came from the following countries (in alphabetical
order): Argentina, Australia, Austria, Belgium, Canada, China, Colombia, Denmark,
Estonia, Finland, France, Germany, Greece, Hungary, India, Iran, Italy, Japan,
Luxembourg, Macedonia, Netherlands, New Zealand, Norway, Portugal, Russia,
Singapore, South Korea, Spain, Sweden, Switzerland, the UK, and the USA. Out
of these submissions, we accepted 23 papers (28% acceptance rate) after the review and
discussion phases with the Program Committee (PC) members plus 63 additional
external reviewers. FASE again used a double-blind reviewing process. We thank the
PC members and reviewers for doing an excellent job!

This volume also contains an invited paper by our keynote speaker Willem Visser. It
complements his talk on “The Magic of Analyzing Programs”.

For the first time, FASE hosted the International Competition on Software Testing
(Test-Comp 2020), chaired and organized by Dirk Beyer. Test-Comp 2020 is the
second edition of an annual competition for testing tools providing a comparative
evaluation of different tools. This edition contained 10 participating tools, from aca-
demia and industry. These proceedings contain papers of six tools, having participated
in the competition, as well as a summary by the competition organizer Dirk Beyer. The
tool papers were reviewed and selected by a separate PC: the Test-Comp 2020 jury.
Each Test-Comp paper was assessed by at least three reviewers.

We thank the ETAPS 2020 organizers, in particular, Tiziana Margaria, the general
chair, and Vasileios Koutavas, Anila Mjeda, Anthony Ventresque, and Petros Stratis.
We also thank Marieke Huisman, the ETAPS Steering Committee (SC) chair, for
managing the whole process, and Gabriele Taentzer, the FASE SC chair, for swift
feedback on several questions.

We hope that you will enjoy reading this volume.

February 2020 Jordi Cabot
Heike Wehrheim

Organization

FASE - Program Committee

Amel Bennaceur
Jordi Cabot

Yu-Fang Chen
Maria Christakis
Vittorio Cortellessa
Jin Song Dong
Neil Ernst

Esther Guerra
Reiko Heckel
Soichiro Hidaka
Rob Hierons
Jennifer Horkoff
Marieke Huisman
Reiner Hihnle
Marie-Christine Jakobs
Einar Broch Johnsen
Marjan Mernik
Arend Rensink
Augusto Sampaio
Ina Schaefer

Ana Sokolova
Perdita Stevens
Marielle Stoelinga
Gabriele Taentzer
Wil van der Aalst
Heike Wehrheim
Manuel Wimmer
Tao Yue

The Open University, UK

ICREA - UOC (Internet Interdisciplinary Institute),
Spain

Academia Sinica, Taiwan

MPI SWS, Germany

Universita’ dell’ Aquila, Italy

National University of Singapore, Singapore

University of Victoria, Canada

Universidad Auténoma de Madrid, Spain

University of Leicester, UK

Hosei University, Japan

The University of Sheffield, UK

Chalmers and the University of Gothenburg, Sweden

University of Twente, The Netherlands

TU Darmstadt, Germany

TU Darmstadt, Germany

University of Oslo, Norway

University of Maribor, Slovenia

University of Twente, The Netherlands

Federal University of Pernambuco, Brazil

TU Braunschweig, Germany

University of Salzburg, Austria

The University of Edinburgh, UK

University of Twente, The Netherlands

Philipps-Universitit Marburg, Germany

RWTH Aachen University, Germany

Paderborn University, Germany

Johannes Kepler University Linz, Austria

Nanjing University of Aeronautics and Astronautics
and Simula Research Laboratory, China

Test-Comp — Program Committee and Jury

Dirk Beyer (Chair)
Marie-Christine Jakobs
(CoVeriTest)

Lucas Cordeiro (ESBMC)

Sebastian Ruland
(HybridTiger)

LMU Munich, Germany
TU Darmstadt, Germany

University of Manchester, UK
TU Darmstadt, Germany

X Organization

Martin Nowack (KLEE) Imperial College London, UK
Gidon Ernst (Legion) LMU Munich, Germany

Hoang M. Le (LibKluzzer) University of Bremen, Germany
Thomas Lemberger LMU Munich, Germany

(PRTest)
Marek Chalupa (Symbiotic) Masaryk University, Czech Republic
Joxan Jaffar (Tracer-X) National University of Singapore, Singapore

Raveendra Kumar Tata Consultancy Service, India

Medicherla (VeriFuzz)

Additional Reviewers

Ahrendt, Wolfgang
Algahtani, Abdullah Q. F.
Antonino, Pedro
Bacci, Giorgio
Bankhammer, Gregor
Barros, Flavia
Basciani, Francesco
Berardinelli, Luca
Bill, Robert

Bliudze, Simon
Bride, Hadrien
Bubel, Richard
Cerna, David

Di Pompeo, Daniele
Dillmann, Stefan
Dong, Naipeng

Fila, Barbara
Franzago, Mirco
Gerhold, Marcus
Ghaffari Saadat, Maryam
Gheyi, Rohit

Haas, Andreas
Heydari Tabar, Asmae
Hoare, Suchismita
Janku, Petr
Kamburjan, Eduard
Katsaros, Panagiotis
Klikovits, Stefan
Kniippel, Alexander
Konighofer, Bettina
Le, Hoang M.

Leroy, Dorian

Lima, Lucas

Lin, Hsin-Hung
Lin, Shang-Wei
Lin, Yun

Lombardi, Tiziano
Lukina, Anna
Mauro, Jacopo
Nieke, Michael
Olveczky, Peter
Pierantonio, Alfonso
Ponce De Leodn, Hernan
Pun, Ka 1.

Quangqi, Ye
Resmerita, Stefan
Ruijters, Enno
Runge, Tobias
Rutle, Adrian
Saivasan, Prakash
Sanan, David
Steffen, Martin
Steinhofel, Dominic
Stolz, Volker
Summers, Alexander J.
Tapia Tarifa, Silvia Lizeth
Teixeira, Leopoldo
Thiim, Thomas
Tucci, Michele
Turrini, Andrea

van der Wal, Djurre
Wally, Bernhard
Wasser, Nathan
Wolny, Sabine

Contents

Invited Talk

Improving Symbolic Automata Learning with Concolic Execution
Donato Clun, Phillip van Heerden, Antonio Filieri,
and Willem Visser

FASE Contributions

Platinum: Reusing Constraint Solutions in Bounded Analysis
of Relational Logic
Guolong Zheng, Hamid Bagheri, Gregg Rothermel, and Jianghao Wang

Integrating Topological Proofs with Model Checking to Instrument
Tterative Design
Claudio Menghi, Alessandro Maria Rizzi, and Anna Bernasconi

A Generalized Formal Semantic Framework for Smart Contracts.
Jiao Jiao, Shang-Wei Lin, and Jun Sun

An Empirical Study on the Use and Misuse of Java 8 Streams
Raffi Khatchadourian, Yiming Tang, Mehdi Bagherzadeh,
and Baishakhi Ray

Extracting Semantics from Question-Answering Services

for Snippet Reuse L
Themistoklis Diamantopoulos, Nikolaos Oikonomou,
and Andreas Symeonidis

Global Reproducibility Through Local Control for Distributed
Active ObJECtSo
Lars Tveito, Einar Broch Johnsen, and Rudolf Schlatte

Multi-level Model Product Lines: Open and Closed Variability
for Modelling Language Families
Juan de Lara and Esther Guerra

Computing Program Reliability Using Forward-Backward Precondition
Analysis and Model Counting.
Aleksandar S. Dimovski and Axel Legay

Xii Contents

Skill-Based Verification of Cyber-Physical Systems. 203
Alexander Kniippel, Inga Jatzkowski, Marcus Nolte, Thomas Thiim,
Tobias Runge, and Ina Schaefer

Generating Large EMF Models Efficiently: A Rule-Based,
Configurable Approach 224
Nebras Nassar, Jens Kosiol, Timo Kehrer, and Gabriele Taentzer

Family-Based SPL Model Checking Using Parity Games with Variability ... 245
Maurice H. ter Beek, Sjef van Loo, Erik P. de Vink,
and Tim A. C. Willemse

Model-Based Tool Support for Service Design. 266
Francisco J. Pérez-Blanco, Juan M. Vara, Cristian Gomez,
Valeria De Castro, and Esperanza Marcos

Incremental Concurrent Model Synchronization using Triple
Graph Grammars.t 273
Fernando Orejas, Elvira Pino, and Marisa Navarro

Statistical Model Checking for Variability-Intensive Systems 294
Maxime Cordy, Mike Papadakis, and Axel Legay

Schema Compliant Consistency Management via Triple Graph Grammars
and Integer Linear Programming. 315
Nils Weidmann and Anthony Anjorin

Towards Multiple Model Synchronization with Comprehensive Systems 335
Patrick Stiinkel, Harald Kénig, Yngve Lamo, and Adrian Rutle

Analysis and Refactoring of Software Systems Using Performance

Antipattern Profiles L 357
Radu Calinescu, Vittorio Cortellessa, loannis Stefanakos,
and Catia Trubiani

Business Process Compliance Using Reference Models of Law. 378
Hugo A. Lopez, Soren Debois, Tijs Slaats, and Thomas T. Hildebrandt

Algorithmic Analysis of Blockchain Efficiency with Communication Delay ... 400
Carlos Pinzon, Camilo Rocha, and Jorge Finke

Holistic Specifications for Robust Programs 420
Sophia Drossopoulou, James Noble, Julian Mackay,
and Susan Eisenbach

Automated Generation of Consistent Graph Models with First-Order Logic
Theorem Provers. 441
Aren A. Babikian, Oszkar Semerath, and Daniel Varro

Contents

Combining Partial Specifications using Alternating Interface Automata

Ramon Janssen

Revisiting Semantics of Interactions for Trace Validity Analysis.

Erwan Mahe, Christophe Gaston, and Pascale Le Gall

Test-Comp Contributions

Second Competition on Software Testing: Test-Comp 2020

Dirk Beyer

HybridTiger: Hybrid Model Checking and Domination-based Partitioning

for Efficient Multi-Goal Test-Suite Generation (Competition Contribution). . .

Sebastian Ruland, Malte Lochau, and Marie-Christine Jakobs

ESBMC: Scalable and Precise Test Generation based on the Floating-Point

Theory (Competition Contribution),

Mikhail R. Gadelha, Rafael Menezes, Felipe R. Monteiro,
Lucas C. Cordeiro, and Denis Nicole

TracerX: Dynamic Symbolic Execution with Interpolation

(Competition Contribution). vt

Joxan Jaffar, Rasool Maghareh, Sangharatna Godboley,
and Xuan-Linh Ha

LLVM-based Hybrid Fuzzing with LibKluzzer (Competition Contribution). . . .

Hoang M. Le

CoVeriTest with Dynamic Partitioning of the Iteration Time Limit

(Competition Contribution). ot

Marie-Christine Jakobs

LEecion: Best-First Concolic Testing (Competition Contribution)

Dongge Liu, Gidon Ernst, Toby Murray, and Benjamin I. P. Rubinstein

Author Index e

Xiii

462

482

505

520

525

530

535

Invited Talk

®

Check for
updates

Improving symbolic automata learning
with concolic execution *

Donato Clun'@®, Phillip van Heerden?®, Antonio Filieri'®, and Willem
Visser?

! Tmperial College London
2 Stellenbosch University

Abstract. Inferring the input grammar accepted by a program is cen-
tral for a variety of software engineering problems, including parsers
verification, grammar-based fuzzing, communication protocol inference,
and documentation. Sound and complete active learning techniques have
been developed for several classes of languages and the corresponding au-
tomaton representation, however there are outstanding challenges that
are limiting their effective application to the inference of input grammars.
We focus on active learning techniques based on L™ and propose two ex-
tensions of the Minimally Adequate Teacher framework that allow the
efficient learning of the input language of a program in the form of sym-
bolic automata, leveraging the additional information that can extracted
from concolic execution. Upon these extensions we develop two learning
algorithms that reduce significantly the number of queries required to
converge to the correct hypothesis.

1 Introduction

Inferring the input grammar of a program from its implementation is central
for a variety of software engineering activities, including automated documenta-
tion, compiler analyses, and grammar-based fuzzing.

Several learning algorithms have been investigated for inferring a grammar
from examples of accepted and rejected input words, with active learning ap-
proaches achieving the highest data-efficiency and strong convergence guaran-
tees. Active learning is a theoretical framework enabling a learner to gather
information about a target language by interacting with a teacher [1]. A mini-
mally adequate teacher that can guarantee the convergence of an active language
learning procedure for regular language is an oracle that can answer membership
and equivalence queries. Membership queries check whether a word indicated by
the learner is accepted by the target language and equivalence queries can con-
firm that a hypothesis language proposed by the learner is equivalent to the
target language, or provide a counterexample word otherwise.

* This work has been partially supported by the EPSRC HiPEDS Centre for Doc-
toral Training (EP/L016796/1), the DSI-NRF Centre of Excellence in Mathematical
and Statistical Sciences (CoE-MaSS), and a Royal Society Newton Mobility Grant
(NMG\R2 \170142).

© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 326, 2020.
https://doi.org/10.1007/978-3-030-45234-6_1

http://orcid.org/0000-0001-5190-8957
http://orcid.org/0000-0002-1801-2996
http://orcid.org/0000-0001-9646-646X
http://orcid.org/0000-0002-0913-3091
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_1&domain=pdf

4 D. Clun et al.

However, when learning the input language accepted by a program from its
code implementation, it is unrealistic to assume the availability of a complete
equivalence oracle, because such an oracle would need to check the equivalence
between the hypothesis language and arbitrary software code.

In this paper, we explore the use of concolic execution to design active learn-
ing procedures for inferring the input grammar of a program in the form of a
symbolic finite automaton. In particular, we extend two state of the art active
learning frameworks for symbolic learning by enabling the teacher to 1) provide
more informative answers for membership queries by pairing the accept/reject
outcome with a path condition describing all the input words that would result in
the same execution as the word indicated by the learner, and 2) provide a partial
equivalence oracle that may produce counterexamples for the learner hypothe-
sis. The partial equivalence oracle would rely on the exploration capabilities of
the concolic execution engine to identify input words for which the acceptance
outcome differs between the target program and the learner’s hypothesis. To
guarantee the termination of the concolic execution for equivalence queries, we
set a bound on the length of the inputs the engine can generate during its ex-
ploration. While necessarily incomplete, such equivalence oracle may effectively
guide the learning process and guarantee the correctness of the learned language
for inputs up to the set input bound. Finally, we propose a new class of symbolic
membership queries that build on the constraint solving capabilities of the con-
colic engine to directly infer complete information about the transitions between
states of the hypothesis language.

In our preliminary evaluation based on Java implementations of parsers for
regular languages from the Automatark benchmark suite, the new active learning
algorithms enabled by concolic execution learned the correct input language
for 76% of the subject, despite the lack of a complete equivalence oracle and
achieving a reduction of up to 96% of the number of membership and equivalence
queries produced by the learner.

The remaining of the paper is structured as follows: Section 2 introduces
background concepts and definitions concerning symbolic finite state automata,
active learning, and concolic execution. Section 3 describes in details the data
structures and learning algorithms of two state of the art approaches — A* [11]
and MAT* [3] — that will be the base for active learning strategies based on
concolic execution formalized in Section 4. Section 5 will report on our prelim-
inary experiments on the effectiveness and query-efficiency capabilities of the
new strategies. Finally, Section 6 discusses related work and Section 7 presents
our concluding remarks.

2 Preliminaries
2.1 Symbolic finite state automata

Symbolic finite state automata (SFA) are an extension of finite state au-
tomata where a transitions can be labeled with a predicate identifying a subset
of the input alphabet [28]. The set of predicates allowed on SFA transitions
should constitute an effective Boolean algebra [3], which guarantees closure with
respect to boolean operations according to the following definition:

Improving symbolic automata learning with concolic execution 5

Definition 1. Effective Boolean algebra [3]. An effective Boolean algebra A is a
tuple (D, W, [], L, T,V,A,—) where D is the set of domain elements; ¥ is the set
of predicates, including L and T; [] : & — 27 is a denotation function such that
[L] =0, [T] =D, and for all ,4 € ¥, [¢V] = [p]U[Y], [oA¢] = [g]N[¥].
and [-¢] = D\ [¢].

Given an effective Boolean algebra 4, an SFA is formally defined as:

Definition 2. Symbolic Finite Automaton (SFA) [3]. A symbolic finite automa-
ton M is a tuple (A, Q, ginit, F, A) where A is an effective Boolean algebra, called
the alphabet; @ is a finite set of states; qinit € @ is the initial state; F' C @ is
the set of final states; and A C Q x ¥4 x Q is the transition relation consisting
of a finite set of moves or transitions.

Given a linearly ordered finite alphabet X, through the rest of the paper we
will assume A to be the Boolean algebra over the union of intervals over X', with
the canonical interpretations of union, intersection, and negation operators. With
an abuse of notation, we will write ¢ € A to refer to a predicate ¢ in the set ¥ of
A. A word is a finite sequence of alphabet symbols (characters) w = wowy ... wy
(w; € X)), whose length len(w) = n — 1. We indicate with wl[: ¢] the prefix of
w up to the i element excluded, and with w[i :] the suffix of w starting from
element i. We will use the notation w; and w[i] interchangeably. The language
accepted by an SFA M will be indicated as Ly, or only L when the SFA M can
be inferred by the context. For an SFA M and a word w, M(w) = true if M
accepts w; false otherwise.

Similarly to finite state automata, SFAs are closed under language inter-
section, union, and complement, and admit a minimal form [3]. Compared to
non-symbolic automata, SFAs can produce more compact representations over
large alphabets (e.g., Unicode), allowing a single transition predicate to account
for a possibly large set of characters, instead of explicitly enumerating all of
them.

2.2 Active learning and minimally adequate teachers

Active learning encompasses a set of techniques enabling a learning algo-
rithm to gather information interacting with a suitable oracle, referred to as
teacher. Angluin [1] proposed an exact, active learning algorithm for a regular
language L named L*. In L* the learner can ask the oracle two types of queries,
namely membership and equivalence queries. In a membership query, the learner
selects a word w € X* and the oracle answers whether the w € L (formally, the
membership oracle is a function O,, : X* — B, where B = {true, false}). In
an equivalence query, the learner selects an hypothesis finite state automaton
(FSA) H and asks the oracle whether Ly, = L; if Ly # L, the oracle returns a
counterexzample, i.e., a word w in which L differs from Ly (formally, the equiv-
alence oracle is a function O, : FSA — X* U {true}). A teacher providing both
O,, and O, and able to produce a counter example as result from O, is called
a minimally adequate teacher. Given a minimally adequate teacher, L* is guar-
anteed to learn the target language L with a number of queries polynomial in
the number of states of a minimal deterministic automaton accepting L and in
the size of the largest counterexample returned by the teacher [1].

6 D. Clun et al.

Discovering FSA states. Consider an FSA M. Given two words u and v such
that M(u) # M(v) (i.e., one accepted and one rejected), it can be concluded
that u and v reach different states of M. Moreover, if u and v share a suffix
s (i.e., v = a.s and v = b.s with a,b,s € X* and the dot representing word
concatenation), a and b necessarily reach two different states ¢, and g, of M. The
suffix s is a discriminator suffiz for the two states because its parsing starting
from ¢, and ¢, leads to difference acceptance outcomes. The words a and b are
instead access words of q, and gy, respectively, because their parsing from the
initial state reaches ¢, and g¢,. This observation can be generalized to a set of
words by considering all the unordered pairs of words in the set. Because M is a
finite state automaton, there can be only a finite number of discriminable words
in 2* and, correspondingly, a finite number of distinct access string identifying
the automaton’s states.

State reached parsing a word. For a word w, consider a known discriminator
suffix s and access word a. If O, (w.s) # Op,(a.s), the state reached parsing w
cannot be the one identified by a. Throughout the learning process, it is possible
that none of the already discovered access words identifies the state reached by
w. In this case, w would be a suitable candidate for discovering a new FSA state
as described in the previous paragraph.

Discovering FSA transitions. For each access string a and symbol o € X' a
transition should exist between the states reached parsing a and a.o, respectively.
2.3 Concolic execution

Concolic execution [14,27] combines concrete and symbolic execution of a
program, allowing to extract for a given concrete input a set of constraints on
the input space that uniquely characterize the corresponding execution path. To
this end, the target program is instrumented to pair each program input with a
symbolic input variable and to record along an execution path the constraints
on the symbolic inputs induced by the encountered conditional branches. The
conjunction of the constraints recorded during the execution of the instrumented
program on a concrete input is called path condition and characterize the equiv-
alence class of all the inputs that would follow the same execution path (in this
paper, we focus on sequential program, whose execution is uniquely determined
by the program inputs).

Explored path conditions can be stored in a prefix tree (symbolic execution
tree), which captures all the paths already covered by at least one executed in-
put. A concolic engine can traverse the symbolic execution tree to find branches
not yet explored. The path condition corresponding to the selected unexplored
branch is then solved using a constraint solver (e.g., an SMT solver [26]) gen-
erating a concrete input that will cover the branch. The traversal order used to
find the next branch to be covered is referred to as search strategy of the concolic
executor.

2.4 From path conditions to SFA

In this paper, we consider only terminating programs that can either accept
or reject a finite input word w € X* (e.g., either parsing it correctly or throwing
a parsing exception). Furthermore, we assume for a given input word w, the
resulting path condition to be expressible using a subset of the string constraint

Improving symbolic automata learning with concolic execution 7

language defined in [5]. This allows the translation of the resulting path condition
into a finite state automaton [5]. The adaptation of this translation procedure
to produce SFAs is straightforward. In particular, we will focus on constraints
F recursively defined as:

F—-C|-F|FANF|FVF

C—FEOE]|len(w) OF|wn]Oo|wlen(w)—n] O o

E—-n|in+n|n—n

O—=< | =] >
with n € Z is an integer constant and ¢ € Y. Informally, the path condition
corresponding to processing a symbolic input word w should be reducible to a
combination of interval constraints on the linearly ordered alphabet X for each
of the symbols w[i] composing the input. Despite its restriction, this constraint
language is expressive enough to capture the path conditions obtained from the
concolic execution of a variety of programs that accept regular languages (which
will be described in the evaluation section). The extension to support the entire
string constraint language proposed in [5] is left as future work.

3 Active learning for SFA

Several active learning algorithms have been defined for SFAs. In this section,
we recall and formalize the core routines of two extensions of L* proposed in [11]
and [3], named A* and M AT*, respectively. We will then extend and adapt these
routines to improve their efficiency and resilience to incomplete oracles based on
partial concolic execution.
Running example. To demonstrate the functioning of the algorithms discussed
in this section and their extensions later one, we introduce here as running
example the SFA accepting the language corresponding to regular expression
A\w["\wl\d["\d].*, where \w matches any letter, digit, or underscore (i.e.,
[a-zA-Z0-9_]1), \d matches any digit, and .* matches any sequence of symbols.
The regular expression is evaluated over the 16bit unicode symbols. The corre-
sponding SFA is represented in Figure 1, where transitions are labeled by the
union of disjoint intervals and each interval is represented as o; — o, or o if it
is composed by a single element; intervals are separated by a semicolon.

u0000-ufftf

u0000-/; :-@;

u0000-/;:-@; 0.9; A-7; [7: % {-uffff

[-7; %5 {-uffff

s az

u0000-/; :-@;
[A;; {-uffef

Fig. 1. SFA accepting the language for the running example.

This example highlights the conciseness of symbolic automata. It was chosen
because the benefits of the methodologies discussed in this paper increase as the

8 D. Clun et al.

transitions are labeled with predicates representing larger set of characters, and
the intervals used in this example are representative of commonly used ones.

3.1 Learning using observation tables

A* is an adaptation of L* for learning SFAs. In both algorithms, the learner
stores and process the information gathered by the oracle in an observation table
(we adapt here the notation defined in [11]):

Definition 3. Observation table [11]. An observation table T for an SFA M is
a tuple (X, S, R, E,) where X is a potentially infinite set called the alphabet;
S, R, E C X* are finite subsets of words called, respectively, prefixes, boundary,
and suffixes. f : (SUR) x E — {true, false} is a Boolean classification function
such that for word w € (SUR) and e € E, f(w.e) = true iff M(w.e). Addition-
ally, the following invariants hold: (i) SN R =0, (ii) SU R is prefiz-closed, and
the empty word € € S, (iii) for all s € S, there exists a character o € X such
that s.o € R, and () e € E.

Figure 2a shows an example observation table (T) according to the notation
n [11]. The rows are indexed by elements of S U R, with the elements of S
reported above the horizontal line and those of R below it. The columns instead
are indexed by elements of . An element in s € S represent the access word to a
state ¢s, i.e., the state that would be reached by parsing s from the initial state.
Elements in the boundary set R provide information about the SFA transitions.
The elements of e € E are discrimination suffixes in that, if there exist s;,s; € S
and e € E such that f(s;.e) # f(s;.e), s; and s; reach different states of M. The
cell corresponding to a row index w € S U R and column index e € E contains
the result of f(w.e), which, for compactness, is represented as + or — when the
f evaluates to true or false, respectively. For an element w € S U R, we use
row(w) to indicate the vector of +/— in the row of the table indexed by w.

An observation table is: closed if for each r € R there exists s € S such that
row(r) = row(s); reduced if for all s;,s; € S, s; # s; = row(s;) # row(s;);
consistent if for all w;,w; € SUR and o € X, if w;.o,w;.0c € SU R and
row(w;) = row(w;) then row(w;.c) = row(w;.o); evidence-closed if for alle € £
and s € S, s.e € SU R. An observation table is choesive if it is closed, reduced,
consistent, and evidence-closed. Informally, closed means that every element of
R corresponds to a state identified by an element of S; reduced, that every state
is identified by a unique access string in S; consistent, that if two words w; and
w; are equivalent according to f and E, then also w;.c and w;.c should be
equivalent for any symbol o € X.

Induced SFA. A cohesive observation table T induces an SFA that accepts
or reject words consistently with its classification function f. Such induced SFA
Mo = (A, Q, Ginit, I, A), where A is assumed to be the effective Boolean algebra
over the union of intervals of X, is constructed as follows. For each s € S a
corresponding state g5 € @ is defined, with the initial state g;n;: being g.. The
final states F' are all the states g5 such that f(s) = true. Since T is cohesive, a
function g : SU R — S can be defined such that g(w) = s iff row(w) = row(s).
Given g, for w € X* and 0 € ¥, if w.o € SU R then (qg(w), 0, ¢g(w.0)) € A.
However, this intuitive construction of the transition relation A would result in

Improving symbolic automata learning with concolic execution 9

[10000-ufFff]

(a) (b)

Tole

Fig. 2. Example of a cohesive observation table and its induced automata.

the construction of a FSA, where each transition is labeled with a single element
o € Y. To obtain an equivalent SFA, an additional step is required to learn the
transition predicates of the SFA Mmp.

Transition predicates. Given a Boolean algebra A with domain D = X, a
partition function can be defined that generalizes the concrete evidence for a
transition of the induced automaton into a predicate of A. Intuitively, the re-
sulting predicate for a transition from state g; to state g; should evaluate pos-
itively for all the elements o; € X that would label a transition from g; to g;
according to the function g defined in the previous paragraph, and negatively
for all the elements o that would label a transition from ¢; to a state other than
g;. Because the function g is by construction a partial function (defined only for
words w.o € SU R), the partition function can arbitrarily assign the symbols &
not classified by g. This produces a natural generalization of the induced SFA
from an observation table.

In this paper, we assume A to be the Boolean algebra over the union of
intervals over X/, with X' being a linearly ordered finite alphabet, such as the ascii
or unicode symbols. For this algebra, a partition function can be trivially defined
by constructing for each transition an interval union predicate characterizing all
the concrete evidence symbols that would label the transition according to g.
Then, for a given state, the symbols for which g is not defined can be arbitrarily
added to any of the predicates labeling an outgoing transition. A more efficient
definition of a partition function for this algebra is beyond the scope of this
section. The interested reader is instead referred to [11].

The introduction of a partition function to abstract concrete transition sym-
bols into predicates of a Boolean algebra is the key generalization of A* over L*
that allow learning SFAs instead of FSA. Going back to the observation table
in Figure 2a, the induced SFA is shown in Figure 2b. The observation table
provides concrete evidence for labeling the transition from e to itself with the
symbol A. The partition function generalized this concrete evidence into the
predicate [u0000-uffff], which assigned all the elements of the unicode alphabet
to the sole outgoing transition from gq.

Learning algorithm. Initially, the learner assumes an observation table cor-
responding to the empty language, with S = E = {e} and R = {0} for an
arbitrary o € X, like the one in Figure 2a. The corresponding induced SFA
M is the hypothesis the learner proposes to the equivalence oracle O.. If the
hypothesis does not correspond to the target language, the equivalence oracle
returns a counterexample ¢ € X*. There are two possible reasons for a coun-

10 D. Clun et al.

terexample: either a new state should be added to the current hypothesis or one
of the predicates in the hypothesis SFA needs refinement. Both cases will be
handled updating the observation table to include new evidence from the coun-
terexample ¢, with the partition function automatically refining the transition
predicates according to the new evidence in the table.

To update the observation table, first all the prefixes of ¢ (including c itself)
are added to R, except those already present in S. (We assume every time an
element is added to R, the corresponding row is filled by issuing membership
queries to determine the value of f(r.e), e € E, for each cell.) If for a word
r € R there is no word s € S such that row(r) = row(s), the word r identifies a
newly discovered state and it is therefore moved to S; a word r.o for an arbitrary
o € X is then added to R to trigger the exploration of outgoing transitions from
the newly discovered state. To ensure the updated observation table is evidence-
closed, for all s € S and e € F s.e and all its prefixes are added to R, if not
already present. Finally, the observation table should be made consistent. To
this end, if there exist and element ¢ € X' such that w;, w;, w;.o,w;.0c € SUR
with row(w;) = row(w;) but row(w;.c) # row(w;.o), then w; and w; should
lead to different states. Since row(w;.c) # row(w;.c), there exist e € E such
that f(w;.0.e) # f(wj.co.e). Therefore, a.e can discriminate between the states
reached parsing w; and w; and as such a.e should be added to E. The observation
table is now cohesive and its induced SFA can be checked against the equivalence
oracle, repeating this procedure until no counterexample can be found.
Running example. We demonstrate the first three iterations of the A* learning
procedure invoked on the automaton in Figure 1. The initial table (Figure 2a) is
cohesive, so an SFA is induced (Figure 2b) and an equivalence query is issued.
The oracle returns the counter example A!0B. The counter example and its
prefixes are added to the table (Figure 3a), and the table becomes open. The
table is closed (Figure 3b), and becomes cohesive. An SFA is induced (Figure
3.1), and the equivalence query returns the counter example B. The counter
example is added to the evidence (Figure 3c¢), and the table becomes consistent
but open. The table is closed (Figure 3d), and becomes cohesive.

T ¢ Ts| € Ts|e B T4l e B

- - €l- - €l- -

Al- A0B|+ A0B|+ + AIOB|+ +

AlOB|+ Al- Al- - AlO|- +

Al0| - Al0] - Alo| - + Al- -

Al - All - All- - All- -

B|- - B|- -

(a) Add A!OB to ta- (b) Close. (c) Add B to table (d) Close.
ble. and evidence.

Fig. 3. Observation tables for two iterations of A*.

Improving symbolic automata learning with concolic execution 11

[u0000-u0041] [w0000-ufFfE]

[u0042-uffff]
start —{ 4o @

(a) SFA for Table 3b

[10000-u0029] U [u0041-uffff] [u0000-u0041] [w0000-ufFfE]

[u0030-u0040] % [u0042-uffff]
start qo0 @ q2

(b) SFA for Table 3d

Fig. 4. Hypothesis automata for the learning iterations in Figure 3.

3.2 Learning using discrimination trees

A discrimination tree (DT) is a binary classification tree used by the learner
to store the information gathered from the teacher. Introduced in [23], it is
the core data structure of several learning algorithms, including TTT [20] and
MAT™ [3]. We formalize its structure and main routines that will be the baseline
for extensions presented in the next section.

Recalling from Section 2.2, each state g, of an SFA M is identified by the
learner using a unique access word a € X*. Given two states g, and ¢, s € X*
is a discriminator suffiz for q, and ¢ if parsing s starting from the two states
leads to different outcomes (accept or reject). In terms of the state access words,
this is equivalent to stating M(a.s) # M(b.s). A discrimination tree stores the
access words and discriminator suffixes learned for an SFA as per the following
definition:

Definition 4. Discrimination tree (adapted from [3]). A discrimination tree T
is a tuple (N, L,T) where N is a set of nodes, L C N is a set of leaves, and
T C N x N x B is the transitions relation. Fach leaf | € L is associated with
a corresponding access word (aw(l)). Each internal node i € N\L is associated
with a discriminator suffiz d(i). For each element (p,n,b) € T, p is the parent
node of n and if b = true (respectively b = false) we say that n is the accept
(respectively, reject) child of p.

For a leaf [€ L and inner node n € N\L, if [is in the subtree of n rooted
in its accept child, then M(aw(l).d(n)) = true. Similarly, if [is in the reject
subtree of n, M(aw(l).d(n)) = false. In other words, the concatenation of aw(l)
with the discriminator suffix of any of its ancestor nodes is accepted iff [is
in the accept subtree of the ancestor node. For any two leaves [;,l; € L let
n; ; be their lowest common ancestor in the DT. Then the discriminator suffix
d(n; ;) allows to discriminate the two states corresponding to [; and [; since
M(aw(l;).d(n; ;) # M(aw(l;).d(n, ;)), with aw(l;).d(n; ;) being the accepted
word if [; is in the accept subtree of n; ;, or the rejected word otherwise.
Learning algorithm. We will here refer to the functioning of MAT™* [3], al-
though the main concepts apply to DT-based learning in general. To initialize

12 D. Clun et al.

the DT, the learner performs a membership query on the empty string e. The
initial discrimination tree will be composed of two nodes: the root and a leaf
node, both labeled with €. Depending on the outcome of the membership query,
the leaf will be either the accept or the reject child of the root.

Given a word w € X*, to identify the state reached by parsing it accord-
ing to the DT, the learner performs an operation called sift. Sift traverses the
tree starting from its root r. For each internal node n it visits, it executes the
membership query O, (w.d(n)) to check whether w concatenated with the dis-
criminator suffix of d is accepted by the target language. If it is accepted, sift
continues visiting the accept child of n, and the reject child otherwise. If a leaf is
reached, the learner concludes that parsing w the target SFA reaches the state
identified by the leaf’s access word. If instead the child node sift should tra-
verse next does not exist, a new leaf is created in its place with access word w.
Membership queries of the form a.o, where a is an access string in the DT and
o € X are then issued to discover transitions of the SFA, possibly leading to the
discovery of new states.

Induced SFA. A discrimination tree DT induces an SFA Mpr = (A, Q, ¢init,
F,A). In this paper, we assume 4 to be the Boolean algebra over the union of
disjoint intervals over Y. @ is populated with one state ¢; for each leaf [€ L of
DT. The state g, is the initial state. If O,,(aw(l)) = true, then ¢; € F is a final
state of M pr. To construct the transition relation A, sifts of the form aw(l).c
for o € X are issued for the states ¢; and the concrete evidence for a transition
between two states ¢; and ¢; is summarized into a consistent predicate of A
using a partition function, as described for A*.

Counterexamples. The equivalence query O.(Mpr) will either confirm the
learner identified the target language or produce a counterexample ¢ € X*. As
for A*, the existence of ¢ implies that either a transition predicate is incorrect
or that there should be a new state. To determine the cause of ¢, the first step
is to identify the longest prefix c[:] before the behavior of the hypothesis SFA
diverged from the target language. To localize the divergence point, the learner
analyzes the prefixes c[: ¢] for ¢ € [0,len(c)]. Let a; be the access string of the
state of M prp reached parsing c[: i|. If O, (a;.wl[i :]) # Op,(c), i is the divergence
point, which implies that the transition taken from g¢,, is incorrect. Let g; be
the state corresponding to the leaf reached when sifting a;.c[i :]. The predicate
guarding the transition between ¢,, and g; is incorrect if c[i] does not satisfy
the corresponding transition predicate. This is possible because the partition
function assigns the symbols in X for which no concrete evidence is available
to any of the outgoing transitions of ¢,,. In this case, the transition predicates
should be recomputed to account for the new evidence from c. If instead ci]
satisfies the transition predicate between q,, and g;, a new state should be added
such that parsing c[i] from ¢, reaches it. To add the new state, the leaf labeled
with a; is replaced by a subtree composed of three nodes: an internal node with
discriminator suffix ¢[¢ :] having as children the leaf a; and a new leaf labeled
by the access string j.c[i], where j is the access string of the state ¢; obtainened
by sifting a;.c[i :]. This procedure is called split (for more details, see, e.g., [3]).
The updated DT will then be the base for the next learning iteration.

Improving symbolic automata learning with concolic execution 13

Running example. A DT corresponding to the running example introduced
in Section 3 is shown below. While the specific structure of the learned DT
depends on the order in which words are added to it, all the DT resulting from
the learning process induce the same classification of the words w € X*, being
them consistent representations of the same target language.

Discriminator: &

N
~
Accept ~ Reject
N

~

State 4

Discriminator: "A4_"

Access string: "u"4%"

\

Accept * \Reject
\

| Discriminator: "_" | | Discriminator: "4_" |
T
N
1 . ~)
‘%pt Reject |Accept > Reject
N
v a
State 3 State 1 State 2 State 0
Access string: "u”4" Access string: "u" Access string: "uM" Access string: €

Fig. 5. Discrimination tree learned for the example of Section 3.

4 Active learning with concolic execution

The state-of-the-art active learning algorithms formalized in the previous
sections are of limited use when trying to infer (an approximation of) the input
language accepted by a program. Their main limitation is the reliance on a
complete equivalence oracle, which is unavailable in this case.

In this section, we will propose several extensions of the A* and M AT* algo-
rithms formalized in Sections 3.1 and 3.2 that make use of a concolic execution
engine to 1) gather enhanced information from membership queries thanks to
the path condition computed by the concolic engine, and 2) mitigate the lack of
an equivalence oracle using the concolic engine to find counterexamples for a hy-
pothesis. While it is usually unrealistic to assume a complete concolic execution
of a large program (which would per se be sufficient to characterize the accepted
input language), the ability of the concolic engine to execute each execution path
only once brings significant benefits in our preliminary evaluation. Additionally,
because the concolic engine can ask a constraints solver to produce inputs with
a bounded length, it can be used to prove bounded equivalence between the
learned input SFA and the target language. Finally, the availability of a partial
symbolic execution tree and a constraint solver enables the definition of more
effective types of membership queries.

4.1 Concolic learning with symbolic observation tables

Given a program P its concolic execution on a word w € X* produces a
boolean outcome (accept/reject) and a path condition capturing the properties

14 D. Clun et al.

of w that led to that outcome. In particular, we assume the path condition to be
reducible to the constraint language defined in Section 2.4, i.e., the conjunction
of interval predicates on the elements w; of w and its length len(w). Under this
assumption, the path condition is directly translatable to a word wy over the
predicates ¥ of the Boolean algebra A over the union of intervals over Y. We
will therefore refer to the path condition produced by the concolic execution of
a word w € X* with the ¥-predicate as wy, where len(w) = len(wy).

Symbolic observation table. The surjective relation between concrete words
w and their predicates wy enables a straightforward extension of the observation
table used for A*, where the rows of the table can be indexed by words wy € ¥*
instead of concrete words from X*, i.e., SU R C ¥*. This allows for each row
index to account for the entire equivalence class of words w € X* that would
follow the same execution path (these words will also have the same length). We
describe as [wy] a concrete representative of the class wy. The set of suffixes
E C X* will instead contain concrete elements of the alphabet.

Membership queries. Executing a membership query of the form O,, ([wg].0),
with o € X, will produce both the boolean outcome (accept/reject) and a word
over ¥* that can be added to R, if not already present. As a result, the transition
predicates of the induced SFA can be obtained directly from the symbolic obser-
vation table, avoiding the need for a partition function to synthesize ¥-predicates
from the collected concrete evidence, as required in A*. The transition relation
is then completed by redirecting every o € X that does not satisfy any of the
discovered transition predicates to an artificial sink state. The induced SFA is
then used as hypothesis for the next equivalence query.

Equivalence queries. Because a complete equivalence oracle for the target
language is not available, we will use concolic execution to obtain a bounded
equivalence oracle comparing the hypothesis SFA induced by the symbolic ob-
servation table with the program under analysis. To this end, we translate the
hypothesis SFA into a function in the same programming language of the tar-
get program P that takes as argument a word w and returns true (respectively,
false) if the hypothesis SFA accepts (respectively, rejects) the word. We assume
‘P to be wrapped into an analogous boolean function. We then write a program
asserting that the result of the two functions is equal and use the concolic en-
gine to find an input word that violate the assertion. If such word can be found,
the counterexample is added to the symbolic observation table and the learner
starts another iteration. If the concolic execution terminates without finding
any assertion violation, it can be concluded that the hypothesis SFA represent
the input language of P. However, it is usually unrealistic to assume the termi-
nation of the concolic execution. Instead, we configure the solver to search for
counterexamples up to a fixed length n. Assuming this input bounded concolic
execution terminates without finding a counterexample, it can be concluded that
the hypothesis is equivalent to P’s input language for every word up to length
n. Notably, this implies that if the target language is actually regular and the
corresponding minimal automata has at most n states, the hypothesis learned
the entire language.

Improving symbolic automata learning with concolic execution 15

Running example. A symbolic observation table inducing the SFA for the
example introduced in Section 3 is shown in Figure 6. The use of ¥ predicates
to index its rows significantly reduces the size of the table, since each row index
accounts for a possibly large number of concrete elements of X.

T|e _$1) $1) 1))
el - —+ - -
0-9; [-"; 0-9; :-\uffff|+ + + + +
0-9; [-7;0-9/- + + +
0-9; [-"|- + - + -
0-9|- 4+ + - -
a-z; a-z| - + + - -
0 {-\uffff| - 4+ - - -
-7 + -+ -
+ + - -
+ - +
+ - -
+ +
+ -
-+ -
A-Z; _; {-\uffff; 0- + 4 +
0-9; :-@; 0-9; 0-9| - 4+ + -
A-Z; \u0000-/; :-@| - 4+ - -
0-9; [-°; \u0000-/|- + - -
A-Z;-@|- 4+ - 4 -
a-z|- + 4+ - -
A-Zy |- + + - -
B + -+ -
-l- + + - -
0-9; :-@; 0-9|- + 4+ - +
A-Z; -@; A-Z|- + + - -
T
A-Z; ¢ 0-9; -\uffff|+ + 4+ + +
P C N
0-9; {-\uffff|- + - 4+ -
{-\uffff| - + - - -
A-Z; \u0000-/|- + - 4+ -
A-Z; _; {-\uffff; 0-9; \u0000-/|+ + + + +
s [Fvazl- + + - -
A-Zl- + + - -
A-Z; ¢ 0-9; :-\uffff; \u0000-\uffff|+ + + + +
A-Z; -@; ‘|- + - - -
a-z; -Q@; _| - + —+

Fig. 6. Symbolic observation table for the example of Section 3.

4.2 Concolic learning with a symbolic membership oracle

In the previous section, we used the concolic engine to extract the path con-
ditions corresponding to the execution of membership queries produced by the
learner. This enabled reducing the number of queries — each query gathering
information about a set of words instead of a single one — and keeping the obser-
vation table more compact. In this section, we introduce an oracle that answers
a new class of symbolic membership queries (SM@Qs) using the constraint solving
capabilities of the concolic engine to directly compute predicates characterizing
all the accepted words of the form p.o.s, where p,s € X* and o € Y. This ora-
cle will enable a more efficient learning algorithm based on an extension of the
discrimination tree data structure.

Definition 5. Symbolic Membership Oracle (O;). Given a Boolean algebra A
with predicate set ¥, a symbolic membership oracle Oy : X* x X* — ¥ takes as
input a pair (p,s) and returns a predicate » € ¥ such that for a symbol o € X,

16 D. Clun et al.

the target program accepts p.o.s iff o = 1. p and s are called prefix and suffix,
respectively.

An SMQ query can be solved by issuing a membership query for each o € X.
However, this operation would be costly for large alphabets, such as unicode.
On the other hand, the concolic execution of w = p.o.s for a concrete symbol
o returns via the path condition the entire set of symbols that wold follow
the same execution path, in turn leading to the same execution outcome. A
constraint solver can then be used to generate a new concrete input outside of
such set, which is guaranteed to cover a new execution path. This procedure
is summarized in Algorithm 1, where we use pathCondition|o] to represent the
projection of the path condition on the element of the input string w = p.o.s
corresponding to the position of o.

Input: SMQ Q = (p, 1, s); concolic : X* —(accepted, pathCondition)
Result: ¢ such that Vo € X : p.o.s is accepted iff o = ¢

P L
unknown < X;
while unknown # () do
o < pickElementFrom(unknown);
accepted, pathCondition < concolic(p.o.s);
if accepted then
| ¥ < ¥ V pathCondition[o];
end
unknown <+ unknown A — pathCondition|o];
end
return ;

Algorithm 1: Answering SMQ queries.

Learning transition predicates with O,. Consider the learning algorithm
using discrimination tree introduced in Section 3.2, M AT*. After each iteration,
the discrimination tree DT contains in its leaves all the discovered states (iden-
tified by the respective access words) and organized according to their discrimi-
nation suffixes (labeling the internal nodes of DT). To construct the transition
relation of the induced SFA, the algorithm executes for each leaf [and o € X a
sift operation to determine the state reached when parsing aw(l).c. Each such
sift operation requires as many membership query as the depth of the reached
state to be determined. Therefore, the number of sift operations needed to con-
struct the complete transition relation is proportional to the number of states
times the size of the input alphabet, with each sift operation issuing a number
of membership queries proportional to the depth of DT.

Using the symbolic membership oracle, we can instead define a procedure that
traversing DT directly synthesize the transition predicate between a source state
qs and a destination state g; of the induced SFA. This procedure is formalized
in Algorithm 2.

Improving symbolic automata learning with concolic execution 17

Input: DT = (N, L, T); Os : X* — 1); source state gs; target state ¢
Result: The transition predicate m between ¢s and g
n < root of DT}
T+ T;
while n € N\L do
¥ O, (aw(q,), d(n));
if q: in the accept subtree of n then
T4 T AY;
‘ n < acceptChild(n);
else
T A
‘ n < rejectChild(n);
end
end
return T;
Algorithm 2: Learning transition predicates with Oj.

Algorithm 2 allows to construct the induced SFA by computing for each
ordered pair of leaves of DT the transition predicate of the corresponding tran-
sition. This results in the direct construction of the complete transition relation
of the induced SFA. In practice, the implementation of Algorithm 2 can be
improved by observing that 7; computed in the i-th iteration of the loop is by
construction a subset of m;_;. The symbolic membership oracle Og can make use
of this observation to limit the search procedure for the construction of the pred-
icate psi during the i-th iteration to only symbols that satisfy 7;_1, significantly
improving its efficiency. Finally, for the same reason, the loop in Algorithm 2 can
terminate as soon as m = L, which indicates that no transition exists between
the source and destination states.

Ezxample. Referring to the discrimination tree in Figure 5 for the example in-
troduced in Section 3, assume we want to learn transition predicate from State
2 to State 3. Initially, myp = T. The access string of State 2 is “u””. The suf-
fix of the root node is €. Invoking the symbolic membership oracle, we obtain
= 0Og(“u™”,€) = L (no string of length 3 are accepted by the target language).
Because State 3 is in the reject subtree, m; = myp A =L = T and the execution
moves to the internal node labeled with the discriminator suffix “"4_”. The cor-
responding SMQ query returns ¢ = Og(“u"”,“"47)={0...9,A... Z, ,a...z}.
Because State 3 is in the accept subtree of the current node, mg = M A Y =
{0...9,A...Z,_a...z} and the execution moves to the internal node with dis-

criminator prefix “.”, where pis = [0...9] is finally computed as the transition
predicate from State 2 to State 3.

Decorated discrimination tree. For every leaf [and internal node n of a
discrimination tree DT, Algorithm 2 issues a SMQ query (aw(l),d(n)). The
corresponding intermediate value of the transition predicate 7 is intersected
with the result of the SMQ query or its negation depending on whether [is in
the accept or the reject subtree of n. Notably, the addition of a newly discovered
state to DT does not change the relative positioning of a leaf [with respect to an

18 D. Clun et al.

internal node n, i.e., if [is initially in the accept (respectively, reject) subtree of
n, it will remain in that subtree also after a new state is added. This observation
implies that the results of the SMQ queries performed through Algorithm 2
remain valid between different executions of the algorithm. Therefore, when
a new state is discovered and added to the discrimination tree via the split
operation defined in Section 3.2, only the membership queries involving the new
internal node and the new leaf added by split would require an actual execution
of the symbolic membership oracle.

To enable the reuse of previous SMQ queries issued through Algorithm 2,
we decorate the DT adding to each node a map from the set of leaves L to
the value of m computed when traversing the node. We refer to this map as
predicate map. Every predicate in the root node map is T, as this is the initial
value of 7 in Algorithm 2. The maps in the children nodes are then computed
as follows. Let n be a parent node and n,, n, its accept and reject children
respectively, m be a leaf of DT, and #;*, m* , 7' the predicates for m stored
in n, ng, and n,., respectively. Then 7 = O,(aw(m),d(n)) A 77 and ,, =
=0, (aw(m),d(n)) A m. Proceeding recursively a leaf [will be decorated with
a predicate map assigning to each leaf [; in DT the predicate of the transition

going from ¢, to q;.

Figure 7 shows the decorated version of the discrimination tree of Figure 5,
constructed for the same example language introduced in Section 3.

Discriminator: &
0 | u0000-uffff
1 | u0000-uffff
2 | u0000-uffff
3 | u0000-uffff
4 | u0000-uffff
N
Accept ° \Reject
R
State 4 ‘ Access string: "ur4%" Discriminator: "4 _"
0 2] 0 u0000-uffff
1 (2] 1 u0000-uffff
2 (2] 2 u0000-uffff
3 u0000-/; :-uffff 3 09
4 u0000-uffff 4 [2]
/ \
"Accept \Reject
LY
Discriminator: "_" Discriminator: "4_"
0|09 AZ ;az 0
1109 AZ saz 1
2109 AZ _caz 2
3 09 3 [
4 (2] 4 (2]
T
"Accept ‘Rqecl |Accept \\ N I{cjccl
XN
State 3 | Access string: "ut4" State 1 ‘ Access string: "u" State 2 Access string: "uM" State 0 Access string: €
0 1] 0 0-9;A-Z; _;az 0 (%) 0 | u0000-/; :-@; [-*;; {-uffff
1 [1 0-9;A-Z; az 1 | u0000-/; :-@;: [-~;"; {-uffff 1 (2]
2 09 2 AZ; s az 2 @ 2 | u0000-/; :-@; [{-uffff
3 () 3 0-9 3 (4] 3 (2]
4 (4] 4 [2] 4 (9] 4 [2]

Fig. 7. Decorated version of the discrimination tree in Figure 5.

Improving symbolic automata learning with concolic execution 19

Induced SFA and number of equivalence queries. Notice that, by con-
struction, for every node n with accept child n, and reject child n,., if 7/, ﬁﬁla,
and 7rf% are the predicates the three nodes associate with a leaf [, 71'51{1 \/7T£LT =l
and Wfla A 7T£LT = 1. As a consequence, after all the maps decorating a node in
the discrimination tree are completed, the predicates in the leaves represent the
complete transition relation of the induced SFA. Further more, the maps grows
monotonically through the learning process, with entries computed in previous
iterations remaining valid throughout the entire process. Practically, after each
split operation resulting from the counterexample of an equivalence query (see
Section 3.2), we traverse the discrimination tree and incrementally update all
the predicate maps to include information about transitions to the new leaf, as
well as populating the maps of the new internal node and new leaf added by the
split.

Differently from the original algorithm M AT™ described in Section 3.2, a
counterexample for the induced SFA corresponding to a decorated discrimina-
tion tree can only be returned if a new state has been discovered. This bound
the number of equivalence query to be at most equal to the minimum number
of states needed to represent the target language as an SFA. In our settings, a
complete equivalence oracle is not available for the target program P. Equiv-
alence queries are instead solved using a (input bounded) concolic execution
that compares the hypothesis SFA (induced by the discrimination tree) with the
original program. Because this execution is computationally expensive, reduc-
ing the number of necessary equivalence queries has a significant impact on the
execution time (at the cost of keeping in memory the node predicate maps).

5 Experimental evaluation
5.1 Experimental Setup

In this section we evaluate a prototype implementation of our contributions,
built upon SVPAlib [9] (the symbolic automata and alphabet theory library
used by MAT*) and Coastal [12], a concolic execution engine for Java bytecode.
in Section 5.2 we consider our approach of using symbolic observations tables
from Section 4.1 (referred to as SYMLEARN in the following presentation) and
in Section 5.3 we evaluate the use of the symbolic membership queries from
Section 4.2 (referred to as MAT*++). All the experiments have been executed
on a server equipped with an AMD EPYC 7401P 24-Core CPU and 440Gb
of memory. Coastal was configured to use at most 3 threads using its default
generational exploration strategy [12] to find counterexamples for equivalence
queries.

The experiments in this section are based on regular expressions taken from
the AutomatArk [8] benchmark suite. To ensure a uniform difficulty distribution
among the experiments, the regular expressions were converted to their automa-
ton representation, sorted by the number of states, and 200 target automata
selected by a stratified sampling (maximum number of states in an automaton is
637 and average 33; maximum number of transitions 2, 495 and average 96). Each
automaton is then translated into a Java program accepting the same language
and compiled. The program analysis is performed on the resulting bytecode.

20 D. Clun et al.

In the first experiment, we demonstrate the increase in query efficiency we
achieve, by comparing the number of queries, using a complete oracle that can
answer equivalence queries in a negligible amount of time. In this idealised setup
the learner halted when the correct automaton was identified, relying on the
fact that the oracle can confirm the correctness of the hypothesis. Although this
setup does not represent a realistic scenario, it allowed us to reliably evaluate
the number of queries of each type that are required to converge to the cor-
rect automaton, and to measure the computational requirements of the learning
algorithm in isolation.

In the second experiment, we demonstrate the use of a concolic engine as
a symbolic oracle, and measure the impact on the execution time of the algo-
rithms. Providing a meaningful evaluation of the cost of the equivalence queries
is difficult, as it is essentially a software verification problem over arbitrary Java
code, and in principle an equivalence query could never terminate. Instead, a
complete concolic analysis of each parser is performed, without using the perfect
oracle for any type of query, and enforcing a timeout of ten minutes for each
analysis, after which the learner yielded it’s latest hypothesis. The correctness of
that hypothesis is then confirmed by comparison to the known target automata.
Note also that we use an input string length limit of 30 for the words to be
parsed during concolic execution.

5.2 Learning with symbolic observation tables

Evaluating the algorithm with a perfect oracle. We learn 78% of the target
languages within the ten minute timeout using a perfect oracle for equivalence.
We see a 54% reduction in the total number of membership queries, and a 88%
reduction in the total number of equivalence queries over MAT* (see Table 1).

Table 1. Number of queries and execution time with perfect oracle.

Algorithm Membership queries Equivalence queries Execution time (s)

MAT* 1,545,255 25,802 38.60
SYMLEARN 720,658 3,124 1321.70

The SYMLEARN approach requires the path conditions to be stored in the
observation table, even when using a perfect oracle for equivalence. In order
to achieve this, concrete counter examples from the perfect oracle are resolved
to path conditions via the concolic engine. The slower execution time can be
attributed to the infrastructure overhead present in our implementation, and
the speed of the concolic engine when performing these resolutions.
Evaluating the algorithm with the concolic oracle. We now replace the
perfect equivalence oracle with a concolic execution engine, as described in Sec-
tion 4.1. We learn 30% of the target automata within the ten minute timeout.
The execution time is orders of magnitude slower when compared MAT*, and in
our implementation 99% of the learner’s execution time is spent running symbolic
equivalence queries. While the increase in bandwidth due to the path conditions

Improving symbolic automata learning with concolic execution 21

returned for each query does result in a significant reduction of queries overall,
the execution time of the SYMLEARN approach is orders of magnitude slower
than MAT*, partly because SYMLEARN requires the actual (concolic) execution
of the program implementation, instead of performing queries on an SFA repre-
sentation of the regular expression. There are however a number of optimizations
that can be made to improve the performance (some of which will be discussed
in the following section).

5.3 Learning with symbolic membership queries

Under the assumption that the language to be learned is regular, and that the
equivalence check will eventually find a counterexample if there exists one, our
active learning approach guarantees that eventually the correct hypothesis will
be generated. The experimental evaluation was therefore aimed at understanding
what is achievable in a realistic setting, with constrained time, and how our
methodology improves the outcome.

Table 2. Number of queries and execution time with perfect oracle.

Membership Equivalence Learner
. SMQ . . .
queries queries execution time
MAT* 3,017,474 - 47,374 137.51 s
MAT*++ 42,075 81,401 1,913 1.33 s

Table 2 shows the total number of queries® necessary to learn the correct

automaton over the 200 test cases, along with the CPU time used by the learner
process alone, without considering the time required to answer the queries.
The decrease in the CPU time required by the learner process can be ex-
plained by the reduction in the number of counterexamples that the learner has
to process (recall that in MAT*++ a counterexample can be caused only by a
missing state in the hypothesis, while in MAT* it can be also be due to an incor-
rect transition predicate). To understand the balance between the benefit due to
the sharp reduction in the number of membership and equivalence queries, and
the cost due to the introduction of the symbolic queries, the next section will
evaluate the cost of answering each type of query without the help of a perfect
oracle.
Evaluating the impact of SMQ. First, observe that the impact of member-
ship queries are negligible since it is simply a check to see if an input is accepted.
However, measuring the complexity of the symbolic membership queries (SMQs)
is crucial to assess the effectiveness of our approach. Answering a SMQ requires
the concolic execution of the program under analysis potentially multiple times,
and requires processing each resulting path condition to collect the information
needed to refine the answer. In this experiment we measured the time and the

3 Note that all 200 automata, are included in Table 2 whereas only the results for the
subset that finished before the timeout was shown in Table 1.

22 D. Clun et al.

number of concolic executions required to answer all the SMQs of table 2. The
total time required to answer the queries was 4,408s, with an average of 54.15
ms per query. The number of concolic executions per query was between 1 and
31, with an average of 3.45. Since the concolic execution requires the program
under analysis to be instrumented and a symbolic state to be maintained, it is
orders of magnitude slower than a standard concrete execution.

Evaluating the impact of equivalence queries. Each equivalence query is
answered in the same way as in the SYMLEARN approach (see Section 4.1), by
doing a concolic execution of the hypothesis and the program being analyzed
on the same symbolic input to see if they give a different result; if so, we have
a counter-example, otherwise we simply know none could be found before the
timeout or within the input string length of 30. As a further optimization, we also
maintained two automata knownAccept and knownReject that were the union of
the automata translation of the path conditions of all the previously explored
accepted and rejected inputs respectively.

In this experiment 1,207 equivalence queries were issued, and on average it
took 56.92s to answer a query. 573 answers were generated in negligible time us-
ing the knownAccept and knownReject automata (demonstrating the usefulness
of this optimization), 93 cases Coastal could not find a counter-example (within
the input size limit), 107 the timeout occurred and in the rest a counter-example
was found by Coastal. In 152 cases the correct automaton was learned (76%),
and interestingly in 62 of these cases Coastal timed-out (but the current hypoth-
esis at the time was in fact correct). In 3 of the cases Coastal finished exploring
the complete state-space up to the 30 input before the timeout, but the correct
automaton was not learned. This happened because a counter-example requiring
more than 30 input characters exist.

Discussion of the results. The benefit of the symbolic membership queries
is clear: it reduces the number of equivalence queries by 96%, and the latter
is by far the most expensive step in active learning without a perfect oracle.
Furthermore, simple engineering optimizations, for example a caching scheme
for the accepted and rejected path conditions, can have a significant impact on
the execution time.

6 Related work

The problem of learning input grammars has been tackled using a variety of
techniques, and with various specific goals in mind.

6.1 Active learning

The active learning algorithms most closely related to our are A* [11] and
MAT* [3], which have been extensively discussed in Section 3.

Argyros et al. [4] used Angluin-style active learning of symbolic automata
for the analysis of finite state string sanitizers and filters. Being focused on
security, their goal was not to learn exactly the filter under analysis, but to verify
that it filters every potentially dangerous string. In the proposed approach each
equivalence query is approximated with a single membership query, which is a
string that is not filtered by the current hypothesis, but belongs to the given

Improving symbolic automata learning with concolic execution 23

language of “dangerous” strings. If no such string exists, the filter is considered
successfully validated. If the string exists but is successfully filtered it provides
a counterexample with which the hypothesis is refined, otherwise a vulnerability
in the filter has been found. This equivalence approximation is incomplete, but
greatly simplifies the problem, considering the complexity of equivalence queries.

Multiple other approaches use different active learning techniques not based
on L* that, compared to our solution, provide less theoretical guarantees and
often rely on a corpus of valid inputs. Glade [6] generates a context free grammar
starting from a set of seed inputs that the learner attempts to generalize, using
a membership oracle to check whether the generalization is correct. No other
information is derived from the execution of the program under analysis, and
therefore the set of seed inputs is of crucial importance. Reinam [29] further
extends Glade by using symbolic execution to automatically generate the seed
inputs, and adding a second probabilistic grammar refinement phase in which
reinforcement learning is used to select the generalization rules to be applied.

The approach proposed by Héschele et al. [19] uses a corpus of valid inputs
and applies generalizations that are verified with a membership oracle. Dynamic
taint analysis is used to track the flow of the various fragments of the input
during the execution, extracting additional information that aids in the creation
of the hypothesis and generates meaningful non-terminal symbol names. A sim-
ilar approach is used by Gopinath et al. [16], with the addition of automatic
generation of the initial corpus.

6.2 Passive learning

Godefroid et al. [15] use recurrent neural networks and a corpus of sample
inputs to create a generative model of the input language. This approach does
not learn any information from the system under test, so the sample corpus is
important.

A completely different approach is used by Lin et al. [24] to tackle a related
problem: reconstructing the syntax tree of arbitrary inputs. The technique is
based on the analysis of an execution trace generated by an instrumented version
of the program under analysis. This approach relies on the knowledge of the
internal mechanisms used by different types of parsers to generate the syntax
tree.

Tupni [7] is a tool to reverse engineer input formats and protocols. Starting
from one or more seed inputs, it analyzes the parser execution trace together with
data flow information generated using taint analysis, identifies the structure of
the input format (how the data is segmented in fields of various types, aggregated
in records, and some constraints that must be satisfied), and generates a context
free grammar.

7 Conclusions

Most established active learning algorithms for (symbolic) finite state au-
tomata assume the availability of a minimal adequate teacher, which includes
a complete equivalence oracle to produce counterexample disproving an incor-
rect hypothesis of the learner. This assumption is unrealistic when learning the

24 D. Clun et al.

input grammar of a program from its implementation, as such a complete or-
acle would need to automatically check the equivalence of the hypothesis with
arbitrary software code. In this paper, we explored how the use of a concolic
execution engine can improve the information efficiency of membership queries,
provide a partial input-bounded oracle to check the equivalence of an hypothesis
against a program, and enable the definition of a new class of symbolic mem-
bership queries that allow the learner inferring the transition predicates of a
symbolic finite state automata representation of the target input language more
efficiently.

Preliminary experiments with the Autmatark [8] benchmark showed that
our implementations of SYMLEARN and MAT*++ achieve a significant reduc-
tion (up to 96%) in the number of queries required to actively learn the input
language of a program in the form of a symbolic finite state automaton. Despite
bounding the total execution time to 10 minutes, using the concolic execution
engine as partial equivalence oracle, MAT*++ managed to learn the correct
input language in 76% of the cases.

This results demonstrate the suitability of concolic execution as enabling
tool for the definition of active learning algorithms for the input grammar of a
program. However, our current solutions learn the input grammar in the form
of a symbolic finite state automaton. This implies that only an approximation
of non-regular input languages can be constructed. Such approximation can at
best match the input language up to a finite length, but would fail in recognizing
more sophisticated language features that may require, for example, a context
free representation. Investigating how the learning strategies based on concolic
execution we explored in this paper can generalize to more expressive language
models is envisioned as a future direction for this research, as well as the use of
the inferred input languages to support parsers validation and grammar-based
fuzzing.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2), 87-106 (1987)

2. Angluin, D.: Queries and Concept Learning. Machine Learning 2(4), 319-342 (apr
1988)

3. Argyros, G., D’Antoni, L.: The learnability of symbolic automata. In: Chockler,
H., Weissenbacher, G. (eds.) Computer Aided Verification. CAV 2018. pp. 427-445.
Springer International Publishing, Cham (2018)

4. Argyros, G., Stais, I., Kiayias, A., Keromytis, A.D.: Back in Black: To-
wards Formal, Black Box Analysis of Sanitizers and Filters. Proceedings -
2016 IEEE Symposium on Security and Privacy, SP 2016 pp. 91-109 (2016).
https://doi.org/10.1109/SP.2016.14

5. Aydin, A., Bang, L., Bultan, T.: Automata-Based Model Counting for String Con-
straints. In: Kroening, D., Pasiareanu, C.S. (eds.) Computer Aided Verification. pp.
255-272. Lecture Notes in Computer Science, Springer International Publishing,
Cham (2015)

6. Bastani, O., Sharma, R., Aiken, A., Liang, P.: Synthesizing Program Input Gram-
mars. In: Proceedings of the 38th ACM SIGPLAN Conference on Programming

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Improving symbolic automata learning with concolic execution 25

Language Design and Implementation. pp. 95-110. ACM (2017), http://arxiv.org/
abs/1608.01723

Cui, W., Peinado, M., Chen, K., Wang, H.J., Irun-Briz, L.: Tupni: Auto-
matic reverse engineering of input formats. Proceedings of the ACM Con-
ference on Computer and Communications Security pp. 391-402 (2008).
https://doi.org/10.1145/1455770.1455820

D’Antoni, L.: AutomatArk (2018), https://github.com/lorisdanto/automatark
D’Antoni, L.: SVPAlib (2018), https://github.com/lorisdanto/symbolicautomata/

. D’Antoni, L., Veanes, M.: The power of symbolic automata and transducers. Lec-

ture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 10426 LNCS, 47-67 (2017)
Drews, S., D’Antoni, L.: Learning symbolic automata. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 10205 LNCS, 173-189 (2017)

Geldenhuys, J., Visser, W.: Coastal (2019), https://github.com/DeepseaPlatform/
coastal

Godefroid, P., Kiezun, A., Levin, M.Y.: Grammar-based whitebox
fuzzing. In: Proceedings of the 29th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. pp. 206-215 (2008).
https://doi.org/10.1145/1379022.1375607

Godefroid, P., Klarlund, N., Sen, K.: Dart: Directed automated random testing. In:
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation. p. 213-223. PLDI ’05, Association for Computing
Machinery, New York, NY, USA (2005). https://doi.org/10.1145/1065010.1065036,
https://doi.org/10.1145/1065010.1065036

Godefroid, P., Peleg, H., Singh, R.: Learn&Fuzz: Machine Learning for Input
Fuzzing. In: Proceedings of the 32nd IEEE/ACM International Conference on Au-
tomated Software Engineering. pp. 50-59. IEEE Press, Urbana-Champaign, IL,
USA (2017)

Gopinath, R., Mathis, B., Hoschele, M., Kampmann, A., Zeller, A.: Sample-
Free Learning of Input Grammars for Comprehensive Software Fuzzing (2018).
https://doi.org/arXiv:1810.08289v1, http://arxiv.org/abs/1810.08289

Heinz, J., Sempere, J.M.: Topics in grammatical inference (2016)

de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, New York, NY, USA (2010)

Hoschele, M., Kampmann, A., Zeller, A.: Active Learning of Input Grammars
(2017), http://arxiv.org/abs/1708.08731

Isberner, M.: Foundations of Active Automata Learning: an Algorithmic Perspec-
tive. Ph.D. thesis (2015)

Isberner, M., Howar, F., Steffen, B.: The TTT Algorithm: A Redundancy-Free
Approach to Active Automata Learning. In: Bonakdarpour, B., Smolka, S.A.
(eds.) Runtime Verification. pp. 307-322. Springer International Publishing, Cham
(2014), http://link.springer.com/10.1007/978-3-319-11164-3{_}26

Isberner, M., Steffen, B.: An Abstract Framework for Counterexample Analysis in
Active Automata Learning. JMLR: Workshop and Conference Proceedings (1993),
79-93 (2014)

Kearns, M.J., Vazirani, U.: Learning Finite Automata by Experimentation. In:
An Introduction to Computational Learning Theory, pp. 155-158. The MIT Press
1994

E;in, Z)., Zhang, X., Xu, D.: Reverse engineering input syntactic structure from pro-
gram execution and its applications. IEEE Transactions on Software Engineering
36(5), 688-703 (2010). https://doi.org/10.1109/TSE.2009.54

26

25.

26.

27.

28.

29.

D. Clun et al.

Maler, O., Mens, I.E.: Learning Regular Languages over Large Alphabets. In: Abra-
ham, E., Havelund, K. (eds.) Tools and Algorithms for the Construction and Anal-
ysis of Systems. TACAS 2014. pp. 485-499. Springer Berlin Heidelberg, Berlin,
Heidelberg (2014)

de Moura, L., Bjgrner, N.: Z3: An efficient smt solver. In: Ramakrishnan, C.R., Re-
hof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Systems.
pp. 337-340. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

Sen, K., Marinov, D., Agha, G..: Cute: A concolic unit testing en-
gine for c¢. SIGSOFT Softw. Eng. Notes 30(5), 263-272 (Sep 2005).
https://doi.org/10.1145/1095430.1081750, https://doi.org/10.1145/1095430.
1081750

Veanes, M., De Halleux, P., Tillmann, N.: Rex: Symbolic regular expression ex-
plorer. ICST 2010 - 3rd International Conference on Software Testing, Verification
and Validation pp. 498-507 (2010). https://doi.org/10.1109/ICST.2010.15

Wau, Z., Johnson, E., Bastani, O., Song, D.: REINAM: Reinforcement Learning for
Input-Grammar Inference. In: Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. pp. 488-498. ACM (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

FASE Contributions

)

Check for
updates

Platinum: Reusing Constraint Solutions in Bounded
Analysis of Relational Logic

Guolong Zheng', Hamid Bagheri!, Gregg Rothermel?, and Jianghao Wang!

' Department of Computer Science and Engineering, University of Nebraska-Lincoln,
Lincoln, NE, USA
2 Department of Computer Science, North Carolina State University, Raleigh, NC, USA
gzheng@cse.unl.edu, bagheri@unl.edu, gerother@ncsu.edu, jianghaow@cse.unl.edu

Abstract. Alloy is a lightweight specification language based on relational logic,
with an analysis engine that relies on SAT solvers to automate bounded verifica-
tion of specifications. In spite of its strengths, the reliance of the Alloy Analyzer
on computationally heavy solvers means that it can take a significant amount of
time to verify software properties, even within limited bounds. This challenge
is exacerbated by the ever-evolving nature of complex software systems. This
paper presents PLATINUM, a technique for efficient analysis of evolving Alloy
specifications, that recognizes opportunities for constraint reduction and reuse of
previously identified constraint solutions. The insight behind PLATINUM is that
formula constraints recur often during the analysis of a single specification and
across its revisions, and constraint solutions can be reused over sequences of anal-
yses performed on evolving specifications. Our empirical results show that PLAT-
INUM substantially reduces (by 66.4% on average) the analysis time required on
specifications extracted from real-world software systems.

1 Introduction

The growing reliance of society on software and software-intensive systems drives
a continued demand for increased software dependability. Software verification pro-
vides the highest degree of software assurance, with its strengths residing in the math-
ematical concepts that can be leveraged to prove correctness with respect to specific
properties. Most notably, bounded verification techniques, such as Alloy [28], have
recently received a great deal of attention in the software engineering community
(e.g., [8,9, 11, 13, 14, 16, 20, 26, 34, 35, 38, 43, 46, 48, 52, 54, 55, 61, 63, 66]),
due to the strength of their automated, yet formally precise, analysis capabilities. The
basic idea behind these techniques is to construct a formula that encodes the behavior
of a system and examine it up to a user-specified bound. They thus enable analyses of
partial models that represent key aspects of a system.

Bounded verification techniques often transform a software specification to be an-
alyzed into a satisfiability problem, and delegate the task of solving this to a con-
straint solver. In the past decade, constraint solving technologies have made spectacular
progress (e.g., [19, 22, 42]). Despite these advances, however, constraint solving con-
tinues to be a bottleneck in analyses that rely on it [58]. This is because the magnitude
of formulas tends to increase exponentially with the size of the system being analyzed,
making it impractical to employ constraint solving on complex systems. Further, de-
spite the many optimizations applied to constraint solvers, they are still unable to detect
many instances of subformula recurrence that are generated by Alloy.

© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 29-52, 2020.
https://doi.org/10.1007/978-3-030-45234-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_2&domain=pdf

30 G. Zheng et al.

The foregoing challenges are exacerbated when considering the ever-evolving na-
ture of complex software systems and their corresponding specifications. Formal speci-
fications are developed iteratively, and each iteration involves repeated runs of the ana-
lyzer for assessment of their semantics [31, 36]. In online analyses, where specifications
are kept in sync with the evolving software and analyses are performed at runtime, the
time required to verify the properties of software is of even greater significance. This
calls for techniques that assist constraint solvers in dealing with large corpora of for-
mulas, many of which contain tens of thousands of clauses.

In this paper, we introduce PLATINUM, an extension of the Alloy Analyzer that sup-
ports efficient analysis of evolving Alloy specifications, by recognizing opportunities
for constraint reduction and reuse of previously identified constraint solutions. Unlike
the Alloy Analyzer and its other variants, e.g., Aluminum [45], that dispose of prior
results in response to changes in the system specification, PLATINUM stores solved
constraints incrementally, and retrieves them when they are needed again within the
analysis of the revised specification. PLATINUM further improves analysis efficiency by
omitting redundant constraints from a specification before translating them into propo-
sitional formulas to be solved by expensive constraint solvers, thereby greatly reducing
the required computational effort. Although techniques for storing the results of satisfi-
ability checking and reusing them later have been considered in the context of symbolic
execution [6, 7, 29, 49, 62], these techniques cannot be directly applied to Alloy due
to the specifics of its core logic, which consolidates the quantifiers of first-order logic
with the operators of the relational calculus [28]. (Section 5 provides details.)

We evaluate the performance of PLATINUM in several scenarios. First, we apply
PLATINUM to several pairs of specifications in which the second contains a small but
non-trivial set of changes relative to the first. Second, we apply PLATINUM to several
sequences of specifications that model evolution scenarios. Our empirical results show
that PLATINUM is able to support reuse of constraint solutions both within a single
analysis run and across a sequence of analyses of evolving specifications, while achiev-
ing speed-up over the Alloy Analyzer. Third, we show that as the scope of the analysis
increases, PLATINUM achieves even greater improvements. Fourth, we show that the
overhead associated with PLATINUM is a fraction of that required by the Alloy An-
alyzer. Finally, we show that PLATINUM substantially reduces (by 66.4% on average)
the analysis time required on specifications extracted from real-world software systems.

This paper makes the following contributions:

— Efficient analysis of evolving relational logic specifications. We present a novel ap-
proach to improve the bounded analysis of relational logic specifications by trans-
forming constraints into more concise forms and enabling substantial reuse of so-
lutions, which in turn substantially reduces analysis costs.

— Tool implementation. We implement PLATINUM as an extension to Alloy and its
underlying relational logic analyzer, Kodkod [57]. We make PLATINUM available
to the research and education community [5].

— Empirical evaluation. We evaluate PLATINUM in the context of Alloy specifications
found in prior work and specifications automatically extracted from real-world sys-
tems, corroborating PLATINUM’s ability to substantially outperform the Alloy An-
alyzer without sacrificing soundness or completeness.

Reusing Constraint Solutions in Bounded Analysis of Relational Logic

2 Illustrative Example

31

To motivate this research and illustrate our approach, we provide a simple Alloy spec-
ification and describe the analysis process followed by the Alloy Analyzer and PLAT-

INUM.

Consider snippets of the Alloy speci-
fication for a simple customer-order class
diagram, shown in Listing 1.1 (adapted
from [15]). Each Alloy specification con-
sists of data types and formulas that de-
fine constraints over those data types. A
signature (sig) paragraph introduces a ba-
sic data type and a set of its relations,
called fields, accompanied by the type
of each field. The running example de-
fines seven signatures (Lines 2-21). The
Customer class (Lines 2—7) has two at-
tributes, customerID and customerName,
that are assigned to the attrSet field of the
Customer class. The id field specifies that
customerlD is the identifier of this class.
The last two lines of the Customer signa-
ture specification indicate that Customer
is not an abstract class and that it has no
parent. Similarly, the code in Lines 10—
15 represents the Order signature spec-
ification, and CustOrder (Lines 18-21)
specifies an association relationship be-
tween Customer and Order.

Facts (fact) are formulas that take
no arguments, and define constraints that
each instance of a specification must sat-
isfy, restricting the specification’s solu-

1 // (a) a simple customer-order class diagram

2 one sig Customer extends Class{}{

3 attrSet = customerlD +customerName
4 id=customerID

5 isAbstract = No

6 no parent

73

8 one sig customerlD extends Integer{}
9 one sig customerName extends string{}

10 one sig Order extends Class{}{

11 attrSet = orderlD + orderValue

12 id=orderlID

13 isAbstract = No

14 no parent

15

16 one sig orderID extends Integer{}

17 one sig orderValue extends Real{}

18 one sig CustOrder extends Association{}{
19 src = Customer

20 dst = Order

21 }

22 fact associationMultiplicity{

23 one CustOrder.src and some CustOrder.dst
24}

1 // (b) new constructs added to the revised specification
2 one sig PreferredCustomer extends Class{}{
3 attrSet = discount

4 one parent

5 parent in Customer

6 isAbstract = No

7 id=customerlID

8)

9 one sig discount extends Integer{}

Listing 1.1: (a) a specification describing
a simple customer order class diagram;
(b) new constructs added to a revised
version of that specification.

tion space. The formulas can be further structured using predicates (pred) and functions
(fun), which are parameterized formulas that can be invoked. The associationMultiplicity
fact paragraph (Lines 22-24) states multiplicities of source and destination classes in

the CustOrder association relationship.

into a corresponding finite rela-

<C1,C1><C1,01><01,C1>,<01,01>}]

To analyze such a relational {c1.01}
specification, both the Alloy An- 3 customer: (1,1):[{ <C1>L{<C1>}]
alyzer and PLATINUM translate it ¢ Order: (1.1):z({<O1>}{<01>}
5 parent: (0,4)::[{},
6 {
7
8

tional model in a language called
Kodkod [56]. Listing 1.2 shows a

(no Customer.parent) && (no Order.parent) ...

partial Kodkod translation of List-
ing 1.1(a). A specification in Kod-
kod’s relational logic is a triple

Listing 1.2: Kodkod representation of the Alloy
specification of Listing 1.1 (partially elided for
space and readability).

32 G. Zheng et al.

consisting of a universe of elements (a.k.a. atoms), a set of relation declarations in-
cluding lower and upper bounds specified over the model’s universe, and a relational
formula in which the declared relations appear as free variables [56].

The first line of Listing 1.2 declares a universe of two uninterpreted atoms. (Due to
space limitations, the listing omits some of the relations and atoms.) While in Kodkod
all relations are untyped, in the interest of readability we assume an interpretation of
atoms in which C1 represents a Customer element and O1 represents an Order element.

Lines 3-6 of Listing 1.2 declare relational variables. Similar to Alloy, formulas in
Kodkod are constraints defined over relational variables. Whereas in Alloy these rela-
tional variables are separated into signatures that represent unary relations establishing
a type system, and fields that represent non-unary relations, in Kodkod all relations are
untyped, with no difference made between unary and non-unary variables.

Kodkod also allows scope to be
specified from above and below each
relational variable by two relational
constants; these sets are called upper
and lower bounds, respectively. In prin-
ciple, a relational constant is a pre-
specified set of tuples drawn from a
universe of atoms. Each relation in a
specification solution must contain all
tuples that appear in the lower bound,
and no tuple that does not appear in the upper bound. That is, the upper bound repre-
sents the entire set of tuples that a relational variable may contain, and the lower bound
represents a partial solution for a specification.

(1(v1]v2)) &(Iv2 | Iv1) &(1(v3|va)) &(1v4 | Iv3)

Slices:
(1(v1]v2))&(Iv2|lvl)
(1(v3|va))&(Iv4|1v3)

Canonical form:
(1(1]2) &('2]!1))

0NN B W -

Listing 1.3: Excerpt of the boolean
encoding for the Kodkod specification
shown in Listing 1.2.

Consider the Customer declaration (Listing 1.2, Line 3). Both its upper and lower
bounds contain just one atom, C1, given that it is defined as a singleton set in List-
ing 1.1. The upper bound for the variable parent C Class x Class (Lines 5-6) is a prod-
uct of the upper bound set for its corresponding domain and co-domain relations, here
(Customer U Order) — (Customer U Order), taking every combination of an element
from both and concatenating them.

To transform such a finite relational model into a boolean logic formula, Kodkod
renders each relation as a boolean matrix, in which any tuple in the upper bound of
the given relation that is not in the lower bound maps to a unique boolean vari-
able [56]. Relational constraints are then captured as boolean constraints over the trans-
lated boolean variables.

To render this idea concrete, consider the parent relation along with the next con-
straint defined over it (Listing 1.2, Lines 5-8). Each of the four tuples in the upper bound
of the parent relation is allocated a fresh boolean variable (v1 to v4) in the boolean en-
coding. The relational constraint (no Customer.parent) && (no Order.parent) is then
translated as a boolean constraint over those boolean variables, as shown in List-
ing 1.3, Line 1.

Expressions and constraints in relational specifications typically contain equivalent
slices in their boolean representations. PLATINUM detects such semantically redundant
slices by refining the specification in its boolean logic form into its essential, indepen-

Reusing Constraint Solutions in Bounded Analysis of Relational Logic 33

dently analyzable slices, and then rendering them in a canonical form. The boolean
encoding of the constraints defined over the parent relation, for example, embodies two
slices with equivalent but syntactically distinct formulas (Listing 1.3, Lines 4-5). Line 8
represents the result of restructuring the slices into a canonical form, suggesting that the
two slices are in fact equivalent. The slicing technique we use to determine the sets of
clauses, the satisfiability of which can be analyzed independent of other clauses in the
formula, is presented in Section 3.

PLATINUM prevents redundant slices from being propagated to the CNF formula to
be solved by the underlying SAT solver, substantially reducing computational effort. In
the case of our example specification (Listing 1.1(a)), PLATINUM partitions the original
relational specification into 30 slices, with only seven distinct canonical slices. As such,
PLATINUM is faster at finding a solution instance, requiring 19 ms to do so compared
to the 26 ms that the Alloy Analyzer requires to produce the first solution instance. The
time required to compute the entire instance set also improves, from 6481 ms to 246
ms, in this simple example.

PLATINUM also reuses results produced for specification slices to further improve
the analysis of evolving specifications. Consider Listing 1.1(b), for example, in which
two new signature paragraphs are added, stating that the PreferredCustomer class in-
herits from the Customer class. Given the updated specification, PLATINUM reuses
the results from the prior run and solves a smaller problem. Specifically, after slicing
and canonicalizing the formula, the results for 29 slices, out of the total of 30 slices,
are already available. As a result, PLATINUM requires only one millisecond to find
the first solution for the revised specification, whereas the Alloy Analyzer requires
27 milliseconds to produce the first solution. PLATINUM also produces speed-ups in
computing the whole solution space. In the case of this particular example, PLAT-
INUM reduces the time required to produce the entire solution set from 768 millisec-
onds to two milliseconds.

3 Approach

Fig. 1 provides an architectural overview that shows how PLATINUM fits in with Al-
loy. As the figure shows (left), the Alloy Analyzer reads in an Alloy specification and
translates it into a relational model, then passes that to Kodkod. Kodkod translates the
relational model into a boolean formula, then to CNF, and passes the CNF to off-the-
shelf SAT solvers to obtain a solution. Last, the Alloy interpreter translates the SAT
result into a solution instance.

PLATINUM is inserted between Kodkod and the Alloy interpreter, as shown in the
figure. At the highest level, PLATINUM takes in the boolean formula from Kodkod and
outputs SAT results to the Alloy interpreter. The box at right shows the steps PLATINUM
follows to do this. PLATINUM first decomposes the boolean formula into independent
slices. Then, for each slice, PLATINUM canonicalizes it into a normalized format and
searches the storage for a previously existing equivalent slice. If such a slice exists, the
previous results will be reused. Otherwise, the slice is translated to CNF and assigned to
an independent SAT solver for processing. Both the slice and the results of processing it

34 G. Zheng et al.
Specificatio
Alloy :‘H Slices "
Analyzer E P
Relational Slicing Canonicalization
Model Boolean
Formula
. Solve =
Boolean ||=_ Store gl
Formula = . SAT Storage
Sohver PLATIN UM Solver Feuse
Satisfying 4
Solution EF|
Alloy 60
Interpreter | Satisfying Generating
Alloy Solution Results

Instance *

Fig. 1: Overview of Alloy and PLATINUM

are then stored. Finally, PLATINUM combines the results for each slice and passes them
to the Alloy interpreter.
Next, we describe each step taken by PLATINUM in detail.

3.1 Slicing

In PLATINUM, the slicing operation takes in the
boolean formula generated from Kodkod and decom-
poses it into a set of independently analyzable sub-
formulas. Formally, given a boolean formula @, slic-
ing decomposes it into subformulas @1, @3, ..., ¢,, such
that the following equations hold:

Algorithm 1 Slicing

Require: f: original Boolean Formula root
Ensure: Slices: Set of Independent Slices
1: procedure SLICE(f)
Slices <— null
for each variable v € f do
parent[v] < v
rank[v] < v
end for
DECOMPOSE(f)
end procedure

- PQIAPN NG =0

var(@1) Uvar(@z) U...Uvar(¢,) = var(@)
var(@;) Nvar(@;) = 0, for each ¢; and ¢; where
i#

var(@;) £0, fori=1,2,...n

where var(@) is the set of boolean variables of @. else .
Subformulas @ to @, can be solved independently. ¢! end[iijION'FIND(f)
Thus, @ is satisfiable if and only if each slice ; is sat-
isfiable individually.

A boolean formula can be sliced either logically (based on semantics) or alge-
braically (based on syntax). In the interest of efficiency, PLATINUM applies a syn-
tactic slicing algorithm. There are two types of boolean formulas in Alloy: a propo-
sitional formula that Kodkod translates from the relational model and the conjunctive
normal form generated from the propositional formula. PLATINUM applies slicing on
the propositional formula level for two reasons. First, translating a propositional for-
mula to CNF introduces many auxiliary variables [21]. For example, when the Cus-
tomerOrder specification in Section 2, with 81 variables in its propositional formula, is
translated to a CNF formula containing 352 variables, 271 auxiliary variables are in-
troduced. The explosion in the number of variables affects the performance of slicing

procedure DECOMPOSE(f)
if f.operator = AND then
for each subformula f; € f do
DECOMPOSE(f;)
end for

N,
TESDIOSY ®Rauswy

17: end procedure

Reusing Constraint Solutions in Bounded Analysis of Relational Logic 35

and canonicalization. Second, in certain cases, auxiliary variables connect two inde-
pendent formulas together. Given the boolean formula v;&v,, its CNF translation is
(vi|lo)&(v2]!0)&(!vi|!v2|0), where o is the auxiliary variable. Even if v; and v, are
independent formulas, in the CNF, v and v, are dependent on each other.

Slicing can be viewed as iden-
tifying connected components in a
graph, where the vertices of the
graph are boolean variables and the
edges of the graph represent two
variables that appear within the same
clause. Each slice is thus one con-
nected component in the graph. The
conventional way to proceed with
this is to first build a graph for the
entire boolean formula, and then run
a depth-first-search (DFS) to iden-
tify each connected component [62].
For large specifications this can be
both time and memory intensive.
To improve performance, our algo-
rithm applies a modified UNION-
FIND algorithm [17], that traverses
the boolean formula only once to
identify connected components.

Algorithm 1 outlines the slic-
ing process. Given boolean formula
root, the algorithm first initializes a
data structure used by its subrou-
tine (Lines 2—6). Each slice is iden-
tified by a representative, which is
one variable within the slice. Array
Parent is used to find the represen-
tative variable. Array Rank is used
to construct a balanced parent ar-
ray. Array Slices maps a represen-
tative variable to its corresponding
slice; its size equals the number of
slices. The algorithm then calls sub-
routine DECOMPOSE to decompose
the root formula.

Algorithm 2 Union-Find

1: procedure UNION-FIND(f)

2 represent < null

3: for each variable v € f do

4: if v has been visited then

5: if UnMeetState then

6: represent < FINDSLICE(v)

7: add f to Slices[represent)

8: changeto MeetState

9: else

10: if FINDSLICE(v) != FINDSLICE(represent)
then

11: UNIONSLICES(Slices[represent],Slices[v])

12: end if

13: end if

14: else

15: UNIONVARS(v, represent)

16: v.visited < TRUE

17: end if

18: end for

19: end procedure

20: procedure UNIONVARS(v,represent)

21: if represent is null then

22: represent < FINDSLICE(v)

23: endif

24: Parent[represent] < FINDSLICE(v)
25: Rank[represent] <— Rank[represent] + 1

26: end procedure

27: procedure UNIONSLICES(represent,v)
28: v < FindSlice(v)
29: if Rank[represent] < Rank[v] then

30: Slices|v].add(Slices[represent])

31: Parent|represent] < v

32: Rank|v] < Rank[represent] + Rank[v]

33: else

34: Slices[represent].add(Slices|v])

35: Parent|v] < represent

36: Rank[represent] < Rank[represent] + Rank[v]
37: endif

38: end procedure

39: procedure FINDSLICE(V)
40: while v != Parent[v] do

41: v < Parent[v]
42: Parent|v] < Parent|Parent[v]]
43: end whilereturn v

44: end procedure

DECOMPOSE recursively partitions a boolean formula f into subformulas in such
a way that the conjunction of all subformulas equals f, and each subformula cannot be
decomposed into smaller subformulas.

The UNION-FIND procedure (Algorithm 2) takes a decomposed subformula and
finds a slice to which it belongs. The basic idea behind the algorithm is that each slice is

36 G. Zheng et al.

represented by one variable. UNION-FIND has two basic operators: UNION and FIND.
If UNION operates on two slices, it joins them into one slice (Lines 27-38). If UNION
operates on two variables, it assigns one variable to be the parent of the other (Lines 20—
26). The FINDSLICE operation determines the representative variable for the slice — the
variable to which the input variable belongs. It does so by traversing the Parent array
until it finds one variable v, whose parent is itself, i.e., parent[v,] = v,. All variables
along this path belong to the same slice and are represented by v),.

The input boolean formula has two states: UnMeetState, which indicates that f does
not belong to any slice yet, and MeetState, which indicates that f belongs to some slice
that is represented by represent. For each variable v of the input boolean formula f,
UnMeetState first obtains the representative variable for v (which could be itself if v
does not belong to any slice yet). If v has not been visited, the algorithm unions v and
the representative variable of the subformula (Lines 20-26). Otherwise, if v has been
visited (i.e., it belongs to some slice), and if f is in UnMeetState, then the algorithm
adds f to the slice represented by represent. Finally, if f is in MeetState, this means that
f belongs to one slice and v belongs to another and these need to be joined together
(Lines 27-38).

3.2