
23rd International Conference, FASE 2020
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2020
Dublin, Ireland, April 25–30, 2020, Proceedings

Fundamental Approaches
to Software EngineeringLN

CS
 1

20
76

AR
Co

SS
Heike Wehrheim
Jordi Cabot (Eds.)

Lecture Notes in Computer Science 12076

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China
Bernhard Steffen , Germany

Gerhard Woeginger , Germany
Moti Yung, USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen , University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

More information about this series at http://www.springer.com/series/7407

Heike Wehrheim • Jordi Cabot (Eds.)

Fundamental Approaches
to Software Engineering
23rd International Conference, FASE 2020
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2020
Dublin, Ireland, April 25–30, 2020
Proceedings

Editors
Heike Wehrheim
University of Paderborn
Paderborn, Germany

Jordi Cabot
ICREA
Open University of Catalonia
Barcelona, Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-45233-9 ISBN 978-3-030-45234-6 (eBook)
https://doi.org/10.1007/978-3-030-45234-6

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© The Editor(s) (if applicable) and The Author(s) 2020. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

ETAPS Foreword

Welcome to the 23rd ETAPS! This is the first time that ETAPS took place in Ireland in
its beautiful capital Dublin.

ETAPS 2020 was the 23rd instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each
conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from
theoretical computer science to foundations of programming language developments,
analysis tools, and formal approaches to software engineering. Organizing these
conferences in a coherent, highly synchronized conference program enables researchers
to participate in an exciting event, having the possibility to meet many colleagues
working in different directions in the field, and to easily attend talks of different
conferences. On the weekend before the main conference, numerous satellite
workshops took place that attracted many researchers from all over the globe. Also, for
the second time, an ETAPS Mentoring Workshop was organized. This workshop is
intended to help students early in the program with advice on research, career, and life
in the fields of computing that are covered by the ETAPS conference.

ETAPS 2020 received 424 submissions in total, 129 of which were accepted,
yielding an overall acceptance rate of 30.4%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their
contributions, and in particular the PC (co-)chairs for their hard work in running this
entire intensive process. Last but not least, my congratulations to all authors of the
accepted papers!

ETAPS 2020 featured the unifying invited speakers Scott Smolka (Stony Brook
University) and Jane Hillston (University of Edinburgh) and the conference-specific
invited speakers (ESOP) Işıl Dillig (University of Texas at Austin) and (FASE) Willem
Visser (Stellenbosch University). Invited tutorials were provided by Erika Ábrahám
(RWTH Aachen University) on the analysis of hybrid systems and Madhusudan
Parthasarathy (University of Illinois at Urbana-Champaign) on combining Machine
Learning and Formal Methods. On behalf of the ETAPS 2020 attendants, I thank all the
speakers for their inspiring and interesting talks!

ETAPS 2020 took place in Dublin, Ireland, and was organized by the University of
Limerick and Lero. ETAPS 2020 is further supported by the following associations and
societies: ETAPS e.V., EATCS (European Association for Theoretical Computer
Science), EAPLS (European Association for Programming Languages and Systems),
and EASST (European Association of Software Science and Technology). The local
organization team consisted of Tiziana Margaria (general chair, UL and Lero),
Vasileios Koutavas (Lero@UCD), Anila Mjeda (Lero@UL), Anthony Ventresque
(Lero@UCD), and Petros Stratis (Easy Conferences).

The ETAPS Steering Committee (SC) consists of an Executive Board, and
representatives of the individual ETAPS conferences, as well as representatives of
EATCS, EAPLS, and EASST. The Executive Board consists of Holger Hermanns
(Saarbrücken), Marieke Huisman (chair, Twente), Joost-Pieter Katoen (Aachen and
Twente), Jan Kofron (Prague), Gerald Lüttgen (Bamberg), Tarmo Uustalu (Reykjavik
and Tallinn), Caterina Urban (Inria, Paris), and Lenore Zuck (Chicago).

Other members of the SC are: Armin Biere (Linz), Jordi Cabot (Barcelona), Jean
Goubault-Larrecq (Cachan), Jan-Friso Groote (Eindhoven), Esther Guerra (Madrid),
Jurriaan Hage (Utrecht), Reiko Heckel (Leicester), Panagiotis Katsaros (Thessaloniki),
Stefan Kiefer (Oxford), Barbara König (Duisburg), Fabrice Kordon (Paris), Jan
Kretinsky (Munich), Kim G. Larsen (Aalborg), Tiziana Margaria (Limerick), Peter
Müller (Zurich), Catuscia Palamidessi (Palaiseau), Dave Parker (Birmingham),
Andrew M. Pitts (Cambridge), Peter Ryan (Luxembourg), Don Sannella (Edinburgh),
Bernhard Steffen (Dortmund), Mariëlle Stoelinga (Twente), Gabriele Taentzer
(Marburg), Christine Tasson (Paris), Peter Thiemann (Freiburg), Jan Vitek (Prague),
Heike Wehrheim (Paderborn), Anton Wijs (Eindhoven), and Nobuko Yoshida
(London).

I would like to take this opportunity to thank all speakers, attendants, organizers
of the satellite workshops, and Springer for their support. I hope you all enjoyed
ETAPS 2020. Finally, a big thanks to Tiziana and her local organization team for all
their enormous efforts enabling a fantastic ETAPS in Dublin!

February 2020 Marieke Huisman
ETAPS SC Chair

ETAPS e.V. President

vi ETAPS Foreword

Preface

This volume contains the papers presented at the 23rd International Conference on
Fundamental Approaches to Software Engineering (FASE 2020) held during
April 25–30, 2020, in Dublin, Ireland. FASE 2020 was organized as part of the annual
European Joint Conferences on Theory and Practice of Software (ETAPS 2020).

FASE is concerned with the foundations on which software engineering is built. The
papers submitted covered topics such as requirements engineering, software architec-
tures, specification, software quality, validation, verification of functional and
non-functional properties, model-driven development and model transformation, soft-
ware processes, security, and software evolution. In particular, the 2020 edition of
FASE saw an increased number of papers with empirical studies.

FASE 2020 had no separate abstract submission deadline and we received 81
submissions on the paper deadline with 5 tool papers, 4 empirical evaluation papers and
72 research papers. The submissions came from the following countries (in alphabetical
order): Argentina, Australia, Austria, Belgium, Canada, China, Colombia, Denmark,
Estonia, Finland, France, Germany, Greece, Hungary, India, Iran, Italy, Japan,
Luxembourg, Macedonia, Netherlands, New Zealand, Norway, Portugal, Russia,
Singapore, South Korea, Spain, Sweden, Switzerland, the UK, and the USA. Out
of these submissions, we accepted 23 papers (28% acceptance rate) after the review and
discussion phases with the Program Committee (PC) members plus 63 additional
external reviewers. FASE again used a double-blind reviewing process. We thank the
PC members and reviewers for doing an excellent job!

This volume also contains an invited paper by our keynote speaker Willem Visser. It
complements his talk on “The Magic of Analyzing Programs”.

For the first time, FASE hosted the International Competition on Software Testing
(Test-Comp 2020), chaired and organized by Dirk Beyer. Test-Comp 2020 is the
second edition of an annual competition for testing tools providing a comparative
evaluation of different tools. This edition contained 10 participating tools, from aca-
demia and industry. These proceedings contain papers of six tools, having participated
in the competition, as well as a summary by the competition organizer Dirk Beyer. The
tool papers were reviewed and selected by a separate PC: the Test-Comp 2020 jury.
Each Test-Comp paper was assessed by at least three reviewers.

We thank the ETAPS 2020 organizers, in particular, Tiziana Margaria, the general
chair, and Vasileios Koutavas, Anila Mjeda, Anthony Ventresque, and Petros Stratis.
We also thank Marieke Huisman, the ETAPS Steering Committee (SC) chair, for
managing the whole process, and Gabriele Taentzer, the FASE SC chair, for swift
feedback on several questions.

We hope that you will enjoy reading this volume.

February 2020 Jordi Cabot
Heike Wehrheim

Organization

FASE – Program Committee

Amel Bennaceur The Open University, UK
Jordi Cabot ICREA - UOC (Internet Interdisciplinary Institute),

Spain
Yu-Fang Chen Academia Sinica, Taiwan
Maria Christakis MPI SWS, Germany
Vittorio Cortellessa Universita’ dell’Aquila, Italy
Jin Song Dong National University of Singapore, Singapore
Neil Ernst University of Victoria, Canada
Esther Guerra Universidad Autónoma de Madrid, Spain
Reiko Heckel University of Leicester, UK
Soichiro Hidaka Hosei University, Japan
Rob Hierons The University of Sheffield, UK
Jennifer Horkoff Chalmers and the University of Gothenburg, Sweden
Marieke Huisman University of Twente, The Netherlands
Reiner Hähnle TU Darmstadt, Germany
Marie-Christine Jakobs TU Darmstadt, Germany
Einar Broch Johnsen University of Oslo, Norway
Marjan Mernik University of Maribor, Slovenia
Arend Rensink University of Twente, The Netherlands
Augusto Sampaio Federal University of Pernambuco, Brazil
Ina Schaefer TU Braunschweig, Germany
Ana Sokolova University of Salzburg, Austria
Perdita Stevens The University of Edinburgh, UK
Marielle Stoelinga University of Twente, The Netherlands
Gabriele Taentzer Philipps-Universität Marburg, Germany
Wil van der Aalst RWTH Aachen University, Germany
Heike Wehrheim Paderborn University, Germany
Manuel Wimmer Johannes Kepler University Linz, Austria
Tao Yue Nanjing University of Aeronautics and Astronautics

and Simula Research Laboratory, China

Test-Comp – Program Committee and Jury

Dirk Beyer (Chair) LMU Munich, Germany
Marie-Christine Jakobs

(CoVeriTest)
TU Darmstadt, Germany

Lucas Cordeiro (ESBMC) University of Manchester, UK
Sebastian Ruland

(HybridTiger)
TU Darmstadt, Germany

Martin Nowack (KLEE) Imperial College London, UK
Gidon Ernst (Legion) LMU Munich, Germany
Hoang M. Le (LibKluzzer) University of Bremen, Germany
Thomas Lemberger

(PRTest)
LMU Munich, Germany

Marek Chalupa (Symbiotic) Masaryk University, Czech Republic
Joxan Jaffar (Tracer-X) National University of Singapore, Singapore
Raveendra Kumar

Medicherla (VeriFuzz)
Tata Consultancy Service, India

Additional Reviewers

Ahrendt, Wolfgang
Alqahtani, Abdullah Q. F.
Antonino, Pedro
Bacci, Giorgio
Bankhammer, Gregor
Barros, Flavia
Basciani, Francesco
Berardinelli, Luca
Bill, Robert
Bliudze, Simon
Bride, Hadrien
Bubel, Richard
Cerna, David
Di Pompeo, Daniele
Dillmann, Stefan
Dong, Naipeng
Fila, Barbara
Franzago, Mirco
Gerhold, Marcus
Ghaffari Saadat, Maryam
Gheyi, Rohit
Haas, Andreas
Heydari Tabar, Asmae
Hoare, Suchismita
Janků, Petr
Kamburjan, Eduard
Katsaros, Panagiotis
Klikovits, Stefan
Knüppel, Alexander
Könighofer, Bettina
Le, Hoang M.
Leroy, Dorian

Lima, Lucas
Lin, Hsin-Hung
Lin, Shang-Wei
Lin, Yun
Lombardi, Tiziano
Lukina, Anna
Mauro, Jacopo
Nieke, Michael
Ölveczky, Peter
Pierantonio, Alfonso
Ponce De León, Hernán
Pun, Ka I.
Quanqi, Ye
Resmerita, Stefan
Ruijters, Enno
Runge, Tobias
Rutle, Adrian
Saivasan, Prakash
Sanan, David
Steffen, Martin
Steinhöfel, Dominic
Stolz, Volker
Summers, Alexander J.
Tapia Tarifa, Silvia Lizeth
Teixeira, Leopoldo
Thüm, Thomas
Tucci, Michele
Turrini, Andrea
van der Wal, Djurre
Wally, Bernhard
Wasser, Nathan
Wolny, Sabine

x Organization

Contents

Invited Talk

Improving Symbolic Automata Learning with Concolic Execution 3
Donato Clun, Phillip van Heerden, Antonio Filieri,
and Willem Visser

FASE Contributions

Platinum: Reusing Constraint Solutions in Bounded Analysis
of Relational Logic . 29

Guolong Zheng, Hamid Bagheri, Gregg Rothermel, and Jianghao Wang

Integrating Topological Proofs with Model Checking to Instrument
Iterative Design . 53

Claudio Menghi, Alessandro Maria Rizzi, and Anna Bernasconi

A Generalized Formal Semantic Framework for Smart Contracts. 75
Jiao Jiao, Shang-Wei Lin, and Jun Sun

An Empirical Study on the Use and Misuse of Java 8 Streams 97
Raffi Khatchadourian, Yiming Tang, Mehdi Bagherzadeh,
and Baishakhi Ray

Extracting Semantics from Question-Answering Services
for Snippet Reuse . 119

Themistoklis Diamantopoulos, Nikolaos Oikonomou,
and Andreas Symeonidis

Global Reproducibility Through Local Control for Distributed
Active Objects . 140

Lars Tveito, Einar Broch Johnsen, and Rudolf Schlatte

Multi-level Model Product Lines: Open and Closed Variability
for Modelling Language Families . 161

Juan de Lara and Esther Guerra

Computing Program Reliability Using Forward-Backward Precondition
Analysis and Model Counting. 182

Aleksandar S. Dimovski and Axel Legay

Skill-Based Verification of Cyber-Physical Systems. 203
Alexander Knüppel, Inga Jatzkowski, Marcus Nolte, Thomas Thüm,
Tobias Runge, and Ina Schaefer

Generating Large EMF Models Efficiently: A Rule-Based,
Configurable Approach . 224

Nebras Nassar, Jens Kosiol, Timo Kehrer, and Gabriele Taentzer

Family-Based SPL Model Checking Using Parity Games with Variability . . . 245
Maurice H. ter Beek, Sjef van Loo, Erik P. de Vink,
and Tim A. C. Willemse

Model-Based Tool Support for Service Design . 266
Francisco J. Pérez-Blanco, Juan M. Vara, Cristian Gómez,
Valeria De Castro, and Esperanza Marcos

Incremental Concurrent Model Synchronization using Triple
Graph Grammars. 273

Fernando Orejas, Elvira Pino, and Marisa Navarro

Statistical Model Checking for Variability-Intensive Systems 294
Maxime Cordy, Mike Papadakis, and Axel Legay

Schema Compliant Consistency Management via Triple Graph Grammars
and Integer Linear Programming . 315

Nils Weidmann and Anthony Anjorin

Towards Multiple Model Synchronization with Comprehensive Systems 335
Patrick Stünkel, Harald König, Yngve Lamo, and Adrian Rutle

Analysis and Refactoring of Software Systems Using Performance
Antipattern Profiles . 357

Radu Calinescu, Vittorio Cortellessa, Ioannis Stefanakos,
and Catia Trubiani

Business Process Compliance Using Reference Models of Law. 378
Hugo A. López, Søren Debois, Tijs Slaats, and Thomas T. Hildebrandt

Algorithmic Analysis of Blockchain Efficiency with Communication Delay . . . 400
Carlos Pinzón, Camilo Rocha, and Jorge Finke

Holistic Specifications for Robust Programs . 420
Sophia Drossopoulou, James Noble, Julian Mackay,
and Susan Eisenbach

Automated Generation of Consistent Graph Models with First-Order Logic
Theorem Provers. 441

Aren A. Babikian, Oszkár Semeráth, and Dániel Varró

xii Contents

Combining Partial Specifications using Alternating Interface Automata 462
Ramon Janssen

Revisiting Semantics of Interactions for Trace Validity Analysis 482
Erwan Mahe, Christophe Gaston, and Pascale Le Gall

Test-Comp Contributions

Second Competition on Software Testing: Test-Comp 2020 505
Dirk Beyer

HybridTiger: Hybrid Model Checking and Domination-based Partitioning
for Efficient Multi-Goal Test-Suite Generation (Competition Contribution) . . . 520

Sebastian Ruland, Malte Lochau, and Marie-Christine Jakobs

ESBMC: Scalable and Precise Test Generation based on the Floating-Point
Theory (Competition Contribution) . 525

Mikhail R. Gadelha, Rafael Menezes, Felipe R. Monteiro,
Lucas C. Cordeiro, and Denis Nicole

TracerX: Dynamic Symbolic Execution with Interpolation
(Competition Contribution). 530

Joxan Jaffar, Rasool Maghareh, Sangharatna Godboley,
and Xuan-Linh Ha

LLVM-based Hybrid Fuzzing with LibKluzzer (Competition Contribution) 535
Hoang M. Le

CoVeriTest with Dynamic Partitioning of the Iteration Time Limit
(Competition Contribution). 540

Marie-Christine Jakobs

LEGION: Best-First Concolic Testing (Competition Contribution) 545
Dongge Liu, Gidon Ernst, Toby Murray, and Benjamin I. P. Rubinstein

Author Index . 551

Contents xiii

Invited Talk

Improving symbolic automata learning
with concolic execution �

Donato Clun1 , Phillip van Heerden2 , Antonio Filieri1 , and Willem
Visser2

1 Imperial College London
2 Stellenbosch University

Abstract. Inferring the input grammar accepted by a program is cen-
tral for a variety of software engineering problems, including parsers
verification, grammar-based fuzzing, communication protocol inference,
and documentation. Sound and complete active learning techniques have
been developed for several classes of languages and the corresponding au-
tomaton representation, however there are outstanding challenges that
are limiting their effective application to the inference of input grammars.
We focus on active learning techniques based on L∗ and propose two ex-
tensions of the Minimally Adequate Teacher framework that allow the
efficient learning of the input language of a program in the form of sym-
bolic automata, leveraging the additional information that can extracted
from concolic execution. Upon these extensions we develop two learning
algorithms that reduce significantly the number of queries required to
converge to the correct hypothesis.

1 Introduction

Inferring the input grammar of a program from its implementation is central
for a variety of software engineering activities, including automated documenta-
tion, compiler analyses, and grammar-based fuzzing.

Several learning algorithms have been investigated for inferring a grammar
from examples of accepted and rejected input words, with active learning ap-
proaches achieving the highest data-efficiency and strong convergence guaran-
tees. Active learning is a theoretical framework enabling a learner to gather
information about a target language by interacting with a teacher [1]. A mini-
mally adequate teacher that can guarantee the convergence of an active language
learning procedure for regular language is an oracle that can answer membership
and equivalence queries. Membership queries check whether a word indicated by
the learner is accepted by the target language and equivalence queries can con-
firm that a hypothesis language proposed by the learner is equivalent to the
target language, or provide a counterexample word otherwise.

� This work has been partially supported by the EPSRC HiPEDS Centre for Doc-
toral Training (EP/L016796/1), the DSI-NRF Centre of Excellence in Mathematical
and Statistical Sciences (CoE-MaSS), and a Royal Society Newton Mobility Grant
(NMG\R2 \170142).

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 3–26, 2020.
https://doi.org/10.1007/978-3-030-45234-6_1

http://orcid.org/0000-0001-5190-8957
http://orcid.org/0000-0002-1801-2996
http://orcid.org/0000-0001-9646-646X
http://orcid.org/0000-0002-0913-3091
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_1&domain=pdf

However, when learning the input language accepted by a program from its
code implementation, it is unrealistic to assume the availability of a complete
equivalence oracle, because such an oracle would need to check the equivalence
between the hypothesis language and arbitrary software code.

In this paper, we explore the use of concolic execution to design active learn-
ing procedures for inferring the input grammar of a program in the form of a
symbolic finite automaton. In particular, we extend two state of the art active
learning frameworks for symbolic learning by enabling the teacher to 1) provide
more informative answers for membership queries by pairing the accept/reject
outcome with a path condition describing all the input words that would result in
the same execution as the word indicated by the learner, and 2) provide a partial
equivalence oracle that may produce counterexamples for the learner hypothe-
sis. The partial equivalence oracle would rely on the exploration capabilities of
the concolic execution engine to identify input words for which the acceptance
outcome differs between the target program and the learner’s hypothesis. To
guarantee the termination of the concolic execution for equivalence queries, we
set a bound on the length of the inputs the engine can generate during its ex-
ploration. While necessarily incomplete, such equivalence oracle may effectively
guide the learning process and guarantee the correctness of the learned language
for inputs up to the set input bound. Finally, we propose a new class of symbolic
membership queries that build on the constraint solving capabilities of the con-
colic engine to directly infer complete information about the transitions between
states of the hypothesis language.

In our preliminary evaluation based on Java implementations of parsers for
regular languages from the Automatark benchmark suite, the new active learning
algorithms enabled by concolic execution learned the correct input language
for 76% of the subject, despite the lack of a complete equivalence oracle and
achieving a reduction of up to 96% of the number of membership and equivalence
queries produced by the learner.

The remaining of the paper is structured as follows: Section 2 introduces
background concepts and definitions concerning symbolic finite state automata,
active learning, and concolic execution. Section 3 describes in details the data
structures and learning algorithms of two state of the art approaches – Λ∗ [11]
and MAT* [3] – that will be the base for active learning strategies based on
concolic execution formalized in Section 4. Section 5 will report on our prelim-
inary experiments on the effectiveness and query-efficiency capabilities of the
new strategies. Finally, Section 6 discusses related work and Section 7 presents
our concluding remarks.

2 Preliminaries

2.1 Symbolic finite state automata

Symbolic finite state automata (SFA) are an extension of finite state au-
tomata where a transitions can be labeled with a predicate identifying a subset
of the input alphabet [28]. The set of predicates allowed on SFA transitions
should constitute an effective Boolean algebra [3], which guarantees closure with
respect to boolean operations according to the following definition:

4 D. Clun et al.

Improving symbolic automata learning with concolic execution 5

Definition 1. Effective Boolean algebra [3]. An effective Boolean algebra A is a
tuple (D, Ψ, � �,⊥,�,∨,∧,¬) where D is the set of domain elements; Ψ is the set
of predicates, including ⊥ and �; � � : Ψ → 2D is a denotation function such that
�⊥� = ∅, ��� = D, and for all φ, ψ ∈ Ψ , �φ∨ψ� = �φ�∪ �ψ�, �φ∧ψ� = �φ�∩ �ψ�,
and �¬φ� = D \ �φ�.

Given an effective Boolean algebra A, an SFA is formally defined as:

Definition 2. Symbolic Finite Automaton (SFA) [3]. A symbolic finite automa-
ton M is a tuple (A, Q, qinit, F,Δ) where A is an effective Boolean algebra, called
the alphabet; Q is a finite set of states; qinit ∈ Q is the initial state; F ⊆ Q is
the set of final states; and Δ ⊆ Q×ΨA ×Q is the transition relation consisting
of a finite set of moves or transitions.

Given a linearly ordered finite alphabet Σ, through the rest of the paper we
will assume A to be the Boolean algebra over the union of intervals over Σ, with
the canonical interpretations of union, intersection, and negation operators. With
an abuse of notation, we will write ψ ∈ A to refer to a predicate ψ in the set Ψ of
A. A word is a finite sequence of alphabet symbols (characters) w = w0w1 . . . wn

(wi ∈ Σ), whose length len(w) = n − 1. We indicate with w[: i] the prefix of
w up to the i element excluded, and with w[i :] the suffix of w starting from
element i. We will use the notation wi and w[i] interchangeably. The language
accepted by an SFA M will be indicated as LM, or only L when the SFA M can
be inferred by the context. For an SFA M and a word w, M(w) = true if M
accepts w; false otherwise.

Similarly to finite state automata, SFAs are closed under language inter-
section, union, and complement, and admit a minimal form [3]. Compared to
non-symbolic automata, SFAs can produce more compact representations over
large alphabets (e.g., Unicode), allowing a single transition predicate to account
for a possibly large set of characters, instead of explicitly enumerating all of
them.

2.2 Active learning and minimally adequate teachers

Active learning encompasses a set of techniques enabling a learning algo-
rithm to gather information interacting with a suitable oracle, referred to as
teacher. Angluin [1] proposed an exact, active learning algorithm for a regular
language L named L∗. In L∗ the learner can ask the oracle two types of queries,
namely membership and equivalence queries. In a membership query, the learner
selects a word w ∈ Σ∗ and the oracle answers whether the w ∈ L (formally, the
membership oracle is a function Om : Σ∗ → B, where B = {true, false}). In
an equivalence query, the learner selects an hypothesis finite state automaton
(FSA) H and asks the oracle whether LH ≡ L; if LH ≡ L, the oracle returns a
counterexample, i.e., a word w in which L differs from LH (formally, the equiv-
alence oracle is a function Oe : FSA → Σ∗ ∪ {true}). A teacher providing both
Om and Oe, and able to produce a counter example as result from Oe is called
a minimally adequate teacher. Given a minimally adequate teacher, L∗ is guar-
anteed to learn the target language L with a number of queries polynomial in
the number of states of a minimal deterministic automaton accepting L and in
the size of the largest counterexample returned by the teacher [1].

Discovering FSA states. Consider an FSA M. Given two words u and v such
that M(u) = M(v) (i.e., one accepted and one rejected), it can be concluded
that u and v reach different states of M. Moreover, if u and v share a suffix
s (i.e., u = a.s and v = b.s with a, b, s ∈ Σ∗ and the dot representing word
concatenation), a and b necessarily reach two different states qa and qb ofM. The
suffix s is a discriminator suffix for the two states because its parsing starting
from qa and qb leads to difference acceptance outcomes. The words a and b are
instead access words of qa and qb, respectively, because their parsing from the
initial state reaches qa and qb. This observation can be generalized to a set of
words by considering all the unordered pairs of words in the set. Because M is a
finite state automaton, there can be only a finite number of discriminable words
in Σ∗ and, correspondingly, a finite number of distinct access string identifying
the automaton’s states.
State reached parsing a word. For a word w, consider a known discriminator
suffix s and access word a. If Om(w.s) = Om(a.s), the state reached parsing w
cannot be the one identified by a. Throughout the learning process, it is possible
that none of the already discovered access words identifies the state reached by
w. In this case, w would be a suitable candidate for discovering a new FSA state
as described in the previous paragraph.
Discovering FSA transitions. For each access string a and symbol σ ∈ Σ, a
transition should exist between the states reached parsing a and a.σ, respectively.

2.3 Concolic execution

Concolic execution [14,27] combines concrete and symbolic execution of a
program, allowing to extract for a given concrete input a set of constraints on
the input space that uniquely characterize the corresponding execution path. To
this end, the target program is instrumented to pair each program input with a
symbolic input variable and to record along an execution path the constraints
on the symbolic inputs induced by the encountered conditional branches. The
conjunction of the constraints recorded during the execution of the instrumented
program on a concrete input is called path condition and characterize the equiv-
alence class of all the inputs that would follow the same execution path (in this
paper, we focus on sequential program, whose execution is uniquely determined
by the program inputs).

Explored path conditions can be stored in a prefix tree (symbolic execution
tree), which captures all the paths already covered by at least one executed in-
put. A concolic engine can traverse the symbolic execution tree to find branches
not yet explored. The path condition corresponding to the selected unexplored
branch is then solved using a constraint solver (e.g., an SMT solver [26]) gen-
erating a concrete input that will cover the branch. The traversal order used to
find the next branch to be covered is referred to as search strategy of the concolic
executor.

2.4 From path conditions to SFA

In this paper, we consider only terminating programs that can either accept
or reject a finite input word w ∈ Σ∗ (e.g., either parsing it correctly or throwing
a parsing exception). Furthermore, we assume for a given input word w, the
resulting path condition to be expressible using a subset of the string constraint

6 D. Clun et al.

Improving symbolic automata learning with concolic execution 7

language defined in [5]. This allows the translation of the resulting path condition
into a finite state automaton [5]. The adaptation of this translation procedure
to produce SFAs is straightforward. In particular, we will focus on constraints
F recursively defined as:

F → C | ¬F | F ∧ F | F ∨ F

C → E O E | len(w) O E | w[n] O σ | w[len(w)− n] O σ

E → n | n+ n | n− n

O → < | = | >

with n ∈ Z is an integer constant and σ ∈ Σ. Informally, the path condition
corresponding to processing a symbolic input word w should be reducible to a
combination of interval constraints on the linearly ordered alphabet Σ for each
of the symbols w[i] composing the input. Despite its restriction, this constraint
language is expressive enough to capture the path conditions obtained from the
concolic execution of a variety of programs that accept regular languages (which
will be described in the evaluation section). The extension to support the entire
string constraint language proposed in [5] is left as future work.

3 Active learning for SFA

Several active learning algorithms have been defined for SFAs. In this section,
we recall and formalize the core routines of two extensions of L∗ proposed in [11]
and [3], named Λ∗ and MAT ∗, respectively. We will then extend and adapt these
routines to improve their efficiency and resilience to incomplete oracles based on
partial concolic execution.

Running example. To demonstrate the functioning of the algorithms discussed
in this section and their extensions later one, we introduce here as running
example the SFA accepting the language corresponding to regular expression
.*\w[^\w]\d[^\d].*, where \w matches any letter, digit, or underscore (i.e.,
[a-zA-Z0-9_]), \d matches any digit, and .* matches any sequence of symbols.
The regular expression is evaluated over the 16bit unicode symbols. The corre-
sponding SFA is represented in Figure 1, where transitions are labeled by the
union of disjoint intervals and each interval is represented as σi − σj , or σ if it
is composed by a single element; intervals are separated by a semicolon.

0

u0000-/; :-@;
 [-^; `; {-uffff

10-9; A-Z;
 _; a-z

0-9; A-Z; _; a-z

2

u0000-/; :-@;
 [-^; `; {-uffff

u0000-/; :-@;
 [-^; `; {-uffff

A-Z; _; a-z

3
0-9

0-9

4u0000-/; :-uffff

u0000-uffff

Fig. 1. SFA accepting the language for the running example.

This example highlights the conciseness of symbolic automata. It was chosen
because the benefits of the methodologies discussed in this paper increase as the

transitions are labeled with predicates representing larger set of characters, and
the intervals used in this example are representative of commonly used ones.

3.1 Learning using observation tables

Λ∗ is an adaptation of L∗ for learning SFAs. In both algorithms, the learner
stores and process the information gathered by the oracle in an observation table
(we adapt here the notation defined in [11]):

Definition 3. Observation table [11]. An observation table T for an SFA M is
a tuple (Σ,S,R,E, f) where Σ is a potentially infinite set called the alphabet;
S,R,E ⊂ Σ∗ are finite subsets of words called, respectively, prefixes, boundary,
and suffixes. f : (S∪R)×E → {true, false} is a Boolean classification function
such that for word w ∈ (S ∪R) and e ∈ E, f(w.e) = true iff M(w.e). Addition-
ally, the following invariants hold: (i) S ∩R = ∅, (ii) S ∪R is prefix-closed, and
the empty word ε ∈ S, (iii) for all s ∈ S, there exists a character σ ∈ Σ such
that s.σ ∈ R, and (iv) ε ∈ E.

Figure 2a shows an example observation table (T) according to the notation
in [11]. The rows are indexed by elements of S ∪ R, with the elements of S
reported above the horizontal line and those of R below it. The columns instead
are indexed by elements of E. An element in s ∈ S represent the access word to a
state qs, i.e., the state that would be reached by parsing s from the initial state.
Elements in the boundary set R provide information about the SFA transitions.
The elements of e ∈ E are discrimination suffixes in that, if there exist si, sj ∈ S
and e ∈ E such that f(si.e) = f(sj .e), si and sj reach different states of M. The
cell corresponding to a row index w ∈ S ∪ R and column index e ∈ E contains
the result of f(w.e), which, for compactness, is represented as + or − when the
f evaluates to true or false, respectively. For an element w ∈ S ∪ R, we use
row(w) to indicate the vector of +/− in the row of the table indexed by w.

An observation table is: closed if for each r ∈ R there exists s ∈ S such that
row(r) = row(s); reduced if for all si, sj ∈ S, si = sj ⇒ row(si) = row(sj);
consistent if for all wi, wj ∈ S ∪ R and σ ∈ Σ, if wi.σ, wj .σ ∈ S ∪ R and
row(wi) = row(wj) then row(wi.σ) = row(wj .σ); evidence-closed if for all e ∈ E
and s ∈ S, s.e ∈ S ∪R. An observation table is choesive if it is closed, reduced,
consistent, and evidence-closed. Informally, closed means that every element of
R corresponds to a state identified by an element of S; reduced, that every state
is identified by a unique access string in S; consistent, that if two words wi and
wj are equivalent according to f and E, then also wi.σ and wj .σ should be
equivalent for any symbol σ ∈ Σ.
Induced SFA. A cohesive observation table T induces an SFA that accepts
or reject words consistently with its classification function f . Such induced SFA
MT = (A, Q, qinit, F,Δ), whereA is assumed to be the effective Boolean algebra
over the union of intervals of Σ, is constructed as follows. For each s ∈ S a
corresponding state qs ∈ Q is defined, with the initial state qinit being qε. The
final states F are all the states qs such that f(s) = true. Since T is cohesive, a
function g : S ∪R → S can be defined such that g(w) = s iff row(w) = row(s).
Given g, for w ∈ Σ∗ and σ ∈ Σ, if w.σ ∈ S ∪ R then (qg(w), σ, qg(w.σ)) ∈ Δ.
However, this intuitive construction of the transition relation Δ would result in

8 D. Clun et al.

Improving symbolic automata learning with concolic execution 9

T0 ε

ε -

A -

(a)

q0

[u0000-uffff]

(b)

Fig. 2. Example of a cohesive observation table and its induced automata.

the construction of a FSA, where each transition is labeled with a single element
σ ∈ Σ. To obtain an equivalent SFA, an additional step is required to learn the
transition predicates of the SFA MT.
Transition predicates. Given a Boolean algebra A with domain D = Σ, a
partition function can be defined that generalizes the concrete evidence for a
transition of the induced automaton into a predicate of A. Intuitively, the re-
sulting predicate for a transition from state qi to state qj should evaluate pos-
itively for all the elements σj ∈ Σ that would label a transition from qi to qj
according to the function g defined in the previous paragraph, and negatively
for all the elements σk that would label a transition from qi to a state other than
qj . Because the function g is by construction a partial function (defined only for
words w.σ ∈ S ∪R), the partition function can arbitrarily assign the symbols σ
not classified by g. This produces a natural generalization of the induced SFA
from an observation table.

In this paper, we assume A to be the Boolean algebra over the union of
intervals over Σ, with Σ being a linearly ordered finite alphabet, such as the ascii
or unicode symbols. For this algebra, a partition function can be trivially defined
by constructing for each transition an interval union predicate characterizing all
the concrete evidence symbols that would label the transition according to g.
Then, for a given state, the symbols for which g is not defined can be arbitrarily
added to any of the predicates labeling an outgoing transition. A more efficient
definition of a partition function for this algebra is beyond the scope of this
section. The interested reader is instead referred to [11].

The introduction of a partition function to abstract concrete transition sym-
bols into predicates of a Boolean algebra is the key generalization of Λ∗ over L∗

that allow learning SFAs instead of FSA. Going back to the observation table
in Figure 2a, the induced SFA is shown in Figure 2b. The observation table
provides concrete evidence for labeling the transition from ε to itself with the
symbol A. The partition function generalized this concrete evidence into the
predicate [u0000-uffff], which assigned all the elements of the unicode alphabet
to the sole outgoing transition from q0.
Learning algorithm. Initially, the learner assumes an observation table cor-
responding to the empty language, with S = E = {ε} and R = {σ} for an
arbitrary σ ∈ Σ, like the one in Figure 2a. The corresponding induced SFA
MT is the hypothesis the learner proposes to the equivalence oracle Oe. If the
hypothesis does not correspond to the target language, the equivalence oracle
returns a counterexample c ∈ Σ∗. There are two possible reasons for a coun-

terexample: either a new state should be added to the current hypothesis or one
of the predicates in the hypothesis SFA needs refinement. Both cases will be
handled updating the observation table to include new evidence from the coun-
terexample c, with the partition function automatically refining the transition
predicates according to the new evidence in the table.

To update the observation table, first all the prefixes of c (including c itself)
are added to R, except those already present in S. (We assume every time an
element is added to R, the corresponding row is filled by issuing membership
queries to determine the value of f(r.e), e ∈ E, for each cell.) If for a word
r ∈ R there is no word s ∈ S such that row(r) = row(s), the word r identifies a
newly discovered state and it is therefore moved to S; a word r.σ for an arbitrary
σ ∈ Σ is then added to R to trigger the exploration of outgoing transitions from
the newly discovered state. To ensure the updated observation table is evidence-
closed, for all s ∈ S and e ∈ E s.e and all its prefixes are added to R, if not
already present. Finally, the observation table should be made consistent. To
this end, if there exist and element σ ∈ Σ such that wi, wj , wi.σ, wj .σ ∈ S ∪ R
with row(wi) = row(wj) but row(wi.σ) = row(wj .σ), then wi and wj should
lead to different states. Since row(wi.σ) = row(wj .σ), there exist e ∈ E such
that f(wi.σ.e) = f(wj .σ.e). Therefore, a.e can discriminate between the states
reached parsing wi and wj and as such a.e should be added to E. The observation
table is now cohesive and its induced SFA can be checked against the equivalence
oracle, repeating this procedure until no counterexample can be found.

Running example. We demonstrate the first three iterations of the Λ∗ learning
procedure invoked on the automaton in Figure 1. The initial table (Figure 2a) is
cohesive, so an SFA is induced (Figure 2b) and an equivalence query is issued.
The oracle returns the counter example A!0B. The counter example and its
prefixes are added to the table (Figure 3a), and the table becomes open. The
table is closed (Figure 3b), and becomes cohesive. An SFA is induced (Figure
3.1), and the equivalence query returns the counter example B. The counter
example is added to the evidence (Figure 3c), and the table becomes consistent
but open. The table is closed (Figure 3d), and becomes cohesive.

T1 ε

ε -

A -

A!0B +

A!0 -

A! -

(a) Add A!0B to ta-
ble.

T2 ε

ε -

A!0B +

A -

A!0 -

A! -

(b) Close.

T3 ε B

ε - -

A!0B + +

A - -

A!0 - +

A! - -

B - -

(c) Add B to table
and evidence.

T4 ε B

ε - -

A!0B + +

A!0 - +

A - -

A! - -

B - -

(d) Close.

Fig. 3. Observation tables for two iterations of Λ∗.

10 D. Clun et al.

q0start q1

[u0000-u0041]

[u0042-uffff]

[u0000-uffff]

(a) SFA for Table 3b

q0start q1 q2

[u0000-u0029] ∪ [u0041-uffff]

[u0030-u0040]

[u0000-u0041]

[u0042-uffff]

[u0000-uffff]

(b) SFA for Table 3d

Fig. 4. Hypothesis automata for the learning iterations in Figure 3.

3.2 Learning using discrimination trees

A discrimination tree (DT) is a binary classification tree used by the learner
to store the information gathered from the teacher. Introduced in [23], it is
the core data structure of several learning algorithms, including TTT [20] and
MAT ∗ [3]. We formalize its structure and main routines that will be the baseline
for extensions presented in the next section.

Recalling from Section 2.2, each state qa of an SFA M is identified by the
learner using a unique access word a ∈ Σ∗. Given two states qa and qb, s ∈ Σ∗

is a discriminator suffix for qa and qb if parsing s starting from the two states
leads to different outcomes (accept or reject). In terms of the state access words,
this is equivalent to stating M(a.s) = M(b.s). A discrimination tree stores the
access words and discriminator suffixes learned for an SFA as per the following
definition:

Definition 4. Discrimination tree (adapted from [3]). A discrimination tree T
is a tuple (N,L, T) where N is a set of nodes, L ⊆ N is a set of leaves, and
T ⊂ N × N × B is the transitions relation. Each leaf l ∈ L is associated with
a corresponding access word (aw(l)). Each internal node i ∈ N\L is associated
with a discriminator suffix d(i). For each element (p, n, b) ∈ T , p is the parent
node of n and if b = true (respectively b = false) we say that n is the accept
(respectively, reject) child of p.

For a leaf l ∈ L and inner node n ∈ N\L, if l is in the subtree of n rooted
in its accept child, then M(aw(l).d(n)) = true. Similarly, if l is in the reject
subtree of n, M(aw(l).d(n)) = false. In other words, the concatenation of aw(l)
with the discriminator suffix of any of its ancestor nodes is accepted iff l is
in the accept subtree of the ancestor node. For any two leaves li, lj ∈ L let
ni,j be their lowest common ancestor in the DT. Then the discriminator suffix
d(ni,j) allows to discriminate the two states corresponding to li and lj since
M(aw(li).d(ni,j)) = M(aw(lj).d(ni,j)), with aw(li).d(ni,j) being the accepted
word if li is in the accept subtree of ni,j , or the rejected word otherwise.
Learning algorithm. We will here refer to the functioning of MAT ∗ [3], al-
though the main concepts apply to DT-based learning in general. To initialize

Improving symbolic automata learning with concolic execution 11

the DT, the learner performs a membership query on the empty string ε. The
initial discrimination tree will be composed of two nodes: the root and a leaf
node, both labeled with ε. Depending on the outcome of the membership query,
the leaf will be either the accept or the reject child of the root.

Given a word w ∈ Σ∗, to identify the state reached by parsing it accord-
ing to the DT, the learner performs an operation called sift. Sift traverses the
tree starting from its root r. For each internal node n it visits, it executes the
membership query Om(w.d(n)) to check whether w concatenated with the dis-
criminator suffix of d is accepted by the target language. If it is accepted, sift
continues visiting the accept child of n, and the reject child otherwise. If a leaf is
reached, the learner concludes that parsing w the target SFA reaches the state
identified by the leaf’s access word. If instead the child node sift should tra-
verse next does not exist, a new leaf is created in its place with access word w.
Membership queries of the form a.σ, where a is an access string in the DT and
σ ∈ Σ are then issued to discover transitions of the SFA, possibly leading to the
discovery of new states.

Induced SFA. A discrimination tree DT induces an SFA MDT = (A, Q, qinit,
F,Δ). In this paper, we assume A to be the Boolean algebra over the union of
disjoint intervals over Σ. Q is populated with one state ql for each leaf l ∈ L of
DT. The state qε is the initial state. If Om(aw(l)) = true, then ql ∈ F is a final
state of MDT . To construct the transition relation Δ, sifts of the form aw(l).σ
for σ ∈ Σ are issued for the states ql and the concrete evidence for a transition
between two states qi and qj is summarized into a consistent predicate of A
using a partition function, as described for Λ∗.
Counterexamples. The equivalence query Oe(MDT) will either confirm the
learner identified the target language or produce a counterexample c ∈ Σ∗. As
for Λ∗, the existence of c implies that either a transition predicate is incorrect
or that there should be a new state. To determine the cause of c, the first step
is to identify the longest prefix c[: i] before the behavior of the hypothesis SFA
diverged from the target language. To localize the divergence point, the learner
analyzes the prefixes c[: i] for i ∈ [0, len(c)]. Let ai be the access string of the
state of MDT reached parsing c[: i]. If Om(ai.w[i :]) = Om(c), i is the divergence
point, which implies that the transition taken from qai

is incorrect. Let qj be
the state corresponding to the leaf reached when sifting ai.c[i :]. The predicate
guarding the transition between qai

and qj is incorrect if c[i] does not satisfy
the corresponding transition predicate. This is possible because the partition
function assigns the symbols in Σ for which no concrete evidence is available
to any of the outgoing transitions of qai

. In this case, the transition predicates
should be recomputed to account for the new evidence from c. If instead c[i]
satisfies the transition predicate between qai

and qj , a new state should be added
such that parsing c[i] from qai

reaches it. To add the new state, the leaf labeled
with ai is replaced by a subtree composed of three nodes: an internal node with
discriminator suffix c[i :] having as children the leaf ai and a new leaf labeled
by the access string j.c[i], where j is the access string of the state qj obtainened
by sifting ai.c[i :]. This procedure is called split (for more details, see, e.g., [3]).
The updated DT will then be the base for the next learning iteration.

12 D. Clun et al.

Improving symbolic automata learning with concolic execution 13

Running example. A DT corresponding to the running example introduced
in Section 3 is shown below. While the specific structure of the learned DT
depends on the order in which words are added to it, all the DT resulting from
the learning process induce the same classification of the words w ∈ Σ∗, being
them consistent representations of the same target language.

Discriminator:

State 4

Access string: "u^4%"

Accept

Discriminator: "^4_"

Reject

Discriminator: "_"

Accept

Discriminator: "4_"

Reject

State 3

Access string: "u^4"

Accept

State 1

Access string: "u"

Reject

State 2

Access string: "u^"

Accept

State 0

Access string:

Reject

Fig. 5. Discrimination tree learned for the example of Section 3.

4 Active learning with concolic execution

The state-of-the-art active learning algorithms formalized in the previous
sections are of limited use when trying to infer (an approximation of) the input
language accepted by a program. Their main limitation is the reliance on a
complete equivalence oracle, which is unavailable in this case.

In this section, we will propose several extensions of the Λ∗ and MAT ∗ algo-
rithms formalized in Sections 3.1 and 3.2 that make use of a concolic execution
engine to 1) gather enhanced information from membership queries thanks to
the path condition computed by the concolic engine, and 2) mitigate the lack of
an equivalence oracle using the concolic engine to find counterexamples for a hy-
pothesis. While it is usually unrealistic to assume a complete concolic execution
of a large program (which would per se be sufficient to characterize the accepted
input language), the ability of the concolic engine to execute each execution path
only once brings significant benefits in our preliminary evaluation. Additionally,
because the concolic engine can ask a constraints solver to produce inputs with
a bounded length, it can be used to prove bounded equivalence between the
learned input SFA and the target language. Finally, the availability of a partial
symbolic execution tree and a constraint solver enables the definition of more
effective types of membership queries.

4.1 Concolic learning with symbolic observation tables

Given a program P its concolic execution on a word w ∈ Σ∗ produces a
boolean outcome (accept/reject) and a path condition capturing the properties

of w that led to that outcome. In particular, we assume the path condition to be
reducible to the constraint language defined in Section 2.4, i.e., the conjunction
of interval predicates on the elements wi of w and its length len(w). Under this
assumption, the path condition is directly translatable to a word wΨ over the
predicates Ψ of the Boolean algebra A over the union of intervals over Σ. We
will therefore refer to the path condition produced by the concolic execution of
a word w ∈ Σ∗ with the Ψ -predicate as wΨ , where len(w) = len(wΨ).

Symbolic observation table. The surjective relation between concrete words
w and their predicates wΨ enables a straightforward extension of the observation
table used for Λ∗, where the rows of the table can be indexed by words wΨ ∈ Ψ∗

instead of concrete words from Σ∗, i.e., S ∪ R ⊂ Ψ∗. This allows for each row
index to account for the entire equivalence class of words w ∈ Σ∗ that would
follow the same execution path (these words will also have the same length). We
describe as �wΨ � a concrete representative of the class wΨ . The set of suffixes
E ⊂ Σ∗ will instead contain concrete elements of the alphabet.

Membership queries. Executing a membership query of the form Om(�wΨ �.σ),
with σ ∈ Σ, will produce both the boolean outcome (accept/reject) and a word
over Ψ∗ that can be added to R, if not already present. As a result, the transition
predicates of the induced SFA can be obtained directly from the symbolic obser-
vation table, avoiding the need for a partition function to synthesize Ψ -predicates
from the collected concrete evidence, as required in Λ∗. The transition relation
is then completed by redirecting every σ ∈ Σ that does not satisfy any of the
discovered transition predicates to an artificial sink state. The induced SFA is
then used as hypothesis for the next equivalence query.

Equivalence queries. Because a complete equivalence oracle for the target
language is not available, we will use concolic execution to obtain a bounded
equivalence oracle comparing the hypothesis SFA induced by the symbolic ob-
servation table with the program under analysis. To this end, we translate the
hypothesis SFA into a function in the same programming language of the tar-
get program P that takes as argument a word w and returns true (respectively,
false) if the hypothesis SFA accepts (respectively, rejects) the word. We assume
P to be wrapped into an analogous boolean function. We then write a program
asserting that the result of the two functions is equal and use the concolic en-
gine to find an input word that violate the assertion. If such word can be found,
the counterexample is added to the symbolic observation table and the learner
starts another iteration. If the concolic execution terminates without finding
any assertion violation, it can be concluded that the hypothesis SFA represent
the input language of P. However, it is usually unrealistic to assume the termi-
nation of the concolic execution. Instead, we configure the solver to search for
counterexamples up to a fixed length n. Assuming this input bounded concolic
execution terminates without finding a counterexample, it can be concluded that
the hypothesis is equivalent to P’s input language for every word up to length
n. Notably, this implies that if the target language is actually regular and the
corresponding minimal automata has at most n states, the hypothesis learned
the entire language.

14 D. Clun et al.

Improving symbolic automata learning with concolic execution 15

Running example. A symbolic observation table inducing the SFA for the
example introduced in Section 3 is shown in Figure 6. The use of Ψ predicates
to index its rows significantly reduces the size of the table, since each row index
accounts for a possibly large number of concrete elements of Σ.

T ε $1) $1) 1))

ε - + - - -

0-9; [-ˆ; 0-9; :-\uffff + + + + +

0-9; [-ˆ; 0-9 - + + - +

0-9; [-ˆ - + - + -

0-9 - + + - -

a-z; a-z - + + - -

; ‘; {-\uffff - + - - -

; [-ˆ - + - + -

0-9; 0-9 - + + - -

a-z; :-@ - + - + -

; [-ˆ; [-ˆ - + - - -

A-Z; A-Z - + + - -

\u0000-/ - + - - -

[-ˆ - + - - -

A-Z; ; {-\uffff; 0-9 - + + - +

0-9; :-@; 0-9; 0-9 - + + - -

A-Z; \u0000-/; :-@ - + - - -

0-9; [-ˆ; \u0000-/ - + - - -

A-Z; :-@ - + - + -

a-z - + + - -

A-Z; - + + - -

; ‘ - + - + -

- + + - -

0-9; :-@; 0-9 - + + - +

A-Z; :-@; A-Z - + + - -

‘ - + - - -

A-Z; ‘; 0-9; :-\uffff + + + + +

:-@ - + - - -

0-9; {-\uffff - + - + -

{-\uffff - + - - -

A-Z; \u0000-/ - + - + -

A-Z; ; {-\uffff; 0-9; \u0000-/ + + + + +

; [-ˆ; a-z - + + - -

A-Z - + + - -

A-Z; ‘; 0-9; :-\uffff; \u0000-\uffff + + + + +

A-Z; :-@; ‘ - + - - -

a-z; :-@; - + + - -

Fig. 6. Symbolic observation table for the example of Section 3.

4.2 Concolic learning with a symbolic membership oracle

In the previous section, we used the concolic engine to extract the path con-
ditions corresponding to the execution of membership queries produced by the
learner. This enabled reducing the number of queries – each query gathering
information about a set of words instead of a single one – and keeping the obser-
vation table more compact. In this section, we introduce an oracle that answers
a new class of symbolic membership queries (SMQs) using the constraint solving
capabilities of the concolic engine to directly compute predicates characterizing
all the accepted words of the form p.σ.s, where p, s ∈ Σ∗ and σ ∈ Σ. This ora-
cle will enable a more efficient learning algorithm based on an extension of the
discrimination tree data structure.

Definition 5. Symbolic Membership Oracle (Os). Given a Boolean algebra A
with predicate set Ψ , a symbolic membership oracle Os : Σ

∗ ×Σ∗ → Ψ takes as
input a pair (p, s) and returns a predicate ψ ∈ Ψ such that for a symbol σ ∈ Σ,

the target program accepts p.σ.s iff σ |= ψ. p and s are called prefix and suffix,
respectively.

An SMQ query can be solved by issuing a membership query for each σ ∈ Σ.
However, this operation would be costly for large alphabets, such as unicode.
On the other hand, the concolic execution of w = p.σ.s for a concrete symbol
σ returns via the path condition the entire set of symbols that wold follow
the same execution path, in turn leading to the same execution outcome. A
constraint solver can then be used to generate a new concrete input outside of
such set, which is guaranteed to cover a new execution path. This procedure
is summarized in Algorithm 1, where we use pathCondition[σ] to represent the
projection of the path condition on the element of the input string w = p.σ.s
corresponding to the position of σ.

Input: SMQ Q = (p, ψ, s); concolic : Σ∗ →(accepted, pathCondition)
Result: ψ such that ∀σ ∈ Σ : p.σ.s is accepted iff σ |= ψ

ψ ← ⊥;
unknown ← Σ;
while unknown �= ∅ do

σ ← pickElementFrom(unknown);
accepted, pathCondition ← concolic(p.σ.s);
if accepted then

ψ ← ψ ∨ pathCondition [σ];
end
unknown ← unknown ∧ ¬ pathCondition [σ];

end
return ψ;

Algorithm 1: Answering SMQ queries.

Learning transition predicates with Os. Consider the learning algorithm
using discrimination tree introduced in Section 3.2, MAT ∗. After each iteration,
the discrimination tree DT contains in its leaves all the discovered states (iden-
tified by the respective access words) and organized according to their discrimi-
nation suffixes (labeling the internal nodes of DT). To construct the transition
relation of the induced SFA, the algorithm executes for each leaf l and σ ∈ Σ a
sift operation to determine the state reached when parsing aw(l).σ. Each such
sift operation requires as many membership query as the depth of the reached
state to be determined. Therefore, the number of sift operations needed to con-
struct the complete transition relation is proportional to the number of states
times the size of the input alphabet, with each sift operation issuing a number
of membership queries proportional to the depth of DT.

Using the symbolic membership oracle, we can instead define a procedure that
traversing DT directly synthesize the transition predicate between a source state
qs and a destination state qt of the induced SFA. This procedure is formalized
in Algorithm 2.

16 D. Clun et al.

Improving symbolic automata learning with concolic execution 17

Input: DT = (N,L, T); Os : Σ∗ → ψ; source state qs; target state qt
Result: The transition predicate π between qs and qt
n ← root of DT;
π ← �;
while n ∈ N\L do

ψ ← Os(aw(qs), d(n));
if qt in the accept subtree of n then

π ← π ∧ ψ;
n ← acceptChild(n);

else
π ← π ∧ ¬ψ;
n ← rejectChild(n);

end

end
return π;

Algorithm 2: Learning transition predicates with Os.

Algorithm 2 allows to construct the induced SFA by computing for each
ordered pair of leaves of DT the transition predicate of the corresponding tran-
sition. This results in the direct construction of the complete transition relation
of the induced SFA. In practice, the implementation of Algorithm 2 can be
improved by observing that πi computed in the i-th iteration of the loop is by
construction a subset of πi−1. The symbolic membership oracle Os can make use
of this observation to limit the search procedure for the construction of the pred-
icate psi during the i-th iteration to only symbols that satisfy πi−1, significantly
improving its efficiency. Finally, for the same reason, the loop in Algorithm 2 can
terminate as soon as π = ⊥, which indicates that no transition exists between
the source and destination states.

Example. Referring to the discrimination tree in Figure 5 for the example in-
troduced in Section 3, assume we want to learn transition predicate from State
2 to State 3. Initially, π0 = �. The access string of State 2 is “uˆ”. The suf-
fix of the root node is ε. Invoking the symbolic membership oracle, we obtain
ψ = Os(“uˆ”, ε) = ⊥ (no string of length 3 are accepted by the target language).
Because State 3 is in the reject subtree, π1 = π0 ∧ ¬⊥ = � and the execution
moves to the internal node labeled with the discriminator suffix “ˆ4 ”. The cor-
responding SMQ query returns ψ = Os(“uˆ”,“ˆ4 ”) = {0 . . . 9, A . . . Z, , a . . . z}.
Because State 3 is in the accept subtree of the current node, π2 = π1 ∧ ψ =
{0 . . . 9, A . . . Z, , a . . . z} and the execution moves to the internal node with dis-
criminator prefix “ ”, where pi3 = [0 . . . 9] is finally computed as the transition
predicate from State 2 to State 3.

Decorated discrimination tree. For every leaf l and internal node n of a
discrimination tree DT, Algorithm 2 issues a SMQ query (aw(l), d(n)). The
corresponding intermediate value of the transition predicate π is intersected
with the result of the SMQ query or its negation depending on whether l is in
the accept or the reject subtree of n. Notably, the addition of a newly discovered
state to DT does not change the relative positioning of a leaf l with respect to an

internal node n, i.e., if l is initially in the accept (respectively, reject) subtree of
n, it will remain in that subtree also after a new state is added. This observation
implies that the results of the SMQ queries performed through Algorithm 2
remain valid between different executions of the algorithm. Therefore, when
a new state is discovered and added to the discrimination tree via the split
operation defined in Section 3.2, only the membership queries involving the new
internal node and the new leaf added by split would require an actual execution
of the symbolic membership oracle.

To enable the reuse of previous SMQ queries issued through Algorithm 2,
we decorate the DT adding to each node a map from the set of leaves L to
the value of π computed when traversing the node. We refer to this map as
predicate map. Every predicate in the root node map is �, as this is the initial
value of π in Algorithm 2. The maps in the children nodes are then computed
as follows. Let n be a parent node and na, nr its accept and reject children
respectively, m be a leaf of DT, and πm

n , πm
na
, πm

nr
the predicates for m stored

in n, na, and nr, respectively. Then πm
na

= Os(aw(m), d(n)) ∧ πm
n and πnr

=
¬Os(aw(m), d(n)) ∧ πm

n . Proceeding recursively a leaf l will be decorated with
a predicate map assigning to each leaf li in DT the predicate of the transition
going from qli to ql.

Figure 7 shows the decorated version of the discrimination tree of Figure 5,
constructed for the same example language introduced in Section 3.

Discriminator:

0

1

2

3

4

u0000-uffff

u0000-uffff

u0000-uffff

u0000-uffff

u0000-uffff

State 4 Access string: "u^4%"

0

1

2

3

4

Ø

Ø

Ø

u0000-/; :-uffff

u0000-uffff

Accept

Discriminator: "^4_"

0

1

2

3

4

u0000-uffff

u0000-uffff

u0000-uffff

0-9

Ø

Reject

Discriminator: "_"

0

1

2

3

4

0-9; A-Z; _; a-z

0-9; A-Z; _; a-z

0-9; A-Z; _; a-z

0-9

Ø

Accept

Discriminator: "4_"

0

1

2

3

4

u0000-/; :-@; [-^; `; {-uffff

u0000-/; :-@; [-^; `; {-uffff

u0000-/; :-@; [-^; `; {-uffff

Ø

Ø

Reject

State 3 Access string: "u^4"

0

1

2

3

4

Ø

Ø

0-9

Ø

Ø

Accept

State 1 Access string: "u"

0

1

2

3

4

0-9; A-Z; _; a-z

0-9; A-Z; _; a-z

A-Z; _; a-z

0-9

Ø

Reject

State 2 Access string: "u^"

0

1

2

3

4

Ø

u0000-/; :-@; [-^; `; {-uffff

Ø

Ø

Ø

Accept

State 0 Access string:

0

1

2

3

4

u0000-/; :-@; [-^; `; {-uffff

Ø

u0000-/; :-@; [-^; `; {-uffff

Ø

Ø

Reject

Fig. 7. Decorated version of the discrimination tree in Figure 5.

18 D. Clun et al.

Improving symbolic automata learning with concolic execution 19

Induced SFA and number of equivalence queries. Notice that, by con-
struction, for every node n with accept child na and reject child nr, if π

l
n, π

l
na
,

and πl
nr

are the predicates the three nodes associate with a leaf l, πl
na

∨πl
nr

= πl
n

and πl
na

∧ πl
nr

= ⊥. As a consequence, after all the maps decorating a node in
the discrimination tree are completed, the predicates in the leaves represent the
complete transition relation of the induced SFA. Further more, the maps grows
monotonically through the learning process, with entries computed in previous
iterations remaining valid throughout the entire process. Practically, after each
split operation resulting from the counterexample of an equivalence query (see
Section 3.2), we traverse the discrimination tree and incrementally update all
the predicate maps to include information about transitions to the new leaf, as
well as populating the maps of the new internal node and new leaf added by the
split.

Differently from the original algorithm MAT ∗ described in Section 3.2, a
counterexample for the induced SFA corresponding to a decorated discrimina-
tion tree can only be returned if a new state has been discovered. This bound
the number of equivalence query to be at most equal to the minimum number
of states needed to represent the target language as an SFA. In our settings, a
complete equivalence oracle is not available for the target program P. Equiv-
alence queries are instead solved using a (input bounded) concolic execution
that compares the hypothesis SFA (induced by the discrimination tree) with the
original program. Because this execution is computationally expensive, reduc-
ing the number of necessary equivalence queries has a significant impact on the
execution time (at the cost of keeping in memory the node predicate maps).

5 Experimental evaluation

5.1 Experimental Setup

In this section we evaluate a prototype implementation of our contributions,
built upon SVPAlib [9] (the symbolic automata and alphabet theory library
used by MAT*) and Coastal [12], a concolic execution engine for Java bytecode.
in Section 5.2 we consider our approach of using symbolic observations tables
from Section 4.1 (referred to as SymLearn in the following presentation) and
in Section 5.3 we evaluate the use of the symbolic membership queries from
Section 4.2 (referred to as MAT*++). All the experiments have been executed
on a server equipped with an AMD EPYC 7401P 24-Core CPU and 440Gb
of memory. Coastal was configured to use at most 3 threads using its default
generational exploration strategy [12] to find counterexamples for equivalence
queries.

The experiments in this section are based on regular expressions taken from
the AutomatArk [8] benchmark suite. To ensure a uniform difficulty distribution
among the experiments, the regular expressions were converted to their automa-
ton representation, sorted by the number of states, and 200 target automata
selected by a stratified sampling (maximum number of states in an automaton is
637 and average 33; maximum number of transitions 2, 495 and average 96). Each
automaton is then translated into a Java program accepting the same language
and compiled. The program analysis is performed on the resulting bytecode.

In the first experiment, we demonstrate the increase in query efficiency we
achieve, by comparing the number of queries, using a complete oracle that can
answer equivalence queries in a negligible amount of time. In this idealised setup
the learner halted when the correct automaton was identified, relying on the
fact that the oracle can confirm the correctness of the hypothesis. Although this
setup does not represent a realistic scenario, it allowed us to reliably evaluate
the number of queries of each type that are required to converge to the cor-
rect automaton, and to measure the computational requirements of the learning
algorithm in isolation.

In the second experiment, we demonstrate the use of a concolic engine as
a symbolic oracle, and measure the impact on the execution time of the algo-
rithms. Providing a meaningful evaluation of the cost of the equivalence queries
is difficult, as it is essentially a software verification problem over arbitrary Java
code, and in principle an equivalence query could never terminate. Instead, a
complete concolic analysis of each parser is performed, without using the perfect
oracle for any type of query, and enforcing a timeout of ten minutes for each
analysis, after which the learner yielded it’s latest hypothesis. The correctness of
that hypothesis is then confirmed by comparison to the known target automata.
Note also that we use an input string length limit of 30 for the words to be
parsed during concolic execution.
5.2 Learning with symbolic observation tables

Evaluating the algorithm with a perfect oracle. We learn 78% of the target
languages within the ten minute timeout using a perfect oracle for equivalence.
We see a 54% reduction in the total number of membership queries, and a 88%
reduction in the total number of equivalence queries over MAT* (see Table 1).

Table 1. Number of queries and execution time with perfect oracle.

Algorithm Membership queries Equivalence queries Execution time (s)

MAT* 1, 545, 255 25, 802 38.60

SymLearn 720, 658 3, 124 1321.70

The SymLearn approach requires the path conditions to be stored in the
observation table, even when using a perfect oracle for equivalence. In order
to achieve this, concrete counter examples from the perfect oracle are resolved
to path conditions via the concolic engine. The slower execution time can be
attributed to the infrastructure overhead present in our implementation, and
the speed of the concolic engine when performing these resolutions.
Evaluating the algorithm with the concolic oracle. We now replace the
perfect equivalence oracle with a concolic execution engine, as described in Sec-
tion 4.1. We learn 30% of the target automata within the ten minute timeout.
The execution time is orders of magnitude slower when compared MAT*, and in
our implementation 99% of the learner’s execution time is spent running symbolic
equivalence queries. While the increase in bandwidth due to the path conditions

20 D. Clun et al.

returned for each query does result in a significant reduction of queries overall,
the execution time of the SymLearn approach is orders of magnitude slower
than MAT*, partly because SymLearn requires the actual (concolic) execution
of the program implementation, instead of performing queries on an SFA repre-
sentation of the regular expression. There are however a number of optimizations
that can be made to improve the performance (some of which will be discussed
in the following section).

5.3 Learning with symbolic membership queries

Under the assumption that the language to be learned is regular, and that the
equivalence check will eventually find a counterexample if there exists one, our
active learning approach guarantees that eventually the correct hypothesis will
be generated. The experimental evaluation was therefore aimed at understanding
what is achievable in a realistic setting, with constrained time, and how our
methodology improves the outcome.

Table 2. Number of queries and execution time with perfect oracle.

Membership
queries

SMQ
Equivalence

queries
Learner

execution time

MAT* 3,517,474 – 47,374 137.51 s

MAT*++ 42,075 81,401 1,913 1.33 s

Table 2 shows the total number of queries3 necessary to learn the correct
automaton over the 200 test cases, along with the CPU time used by the learner
process alone, without considering the time required to answer the queries.

The decrease in the CPU time required by the learner process can be ex-
plained by the reduction in the number of counterexamples that the learner has
to process (recall that in MAT*++, a counterexample can be caused only by a
missing state in the hypothesis, while in MAT* it can be also be due to an incor-
rect transition predicate). To understand the balance between the benefit due to
the sharp reduction in the number of membership and equivalence queries, and
the cost due to the introduction of the symbolic queries, the next section will
evaluate the cost of answering each type of query without the help of a perfect
oracle.
Evaluating the impact of SMQ. First, observe that the impact of member-
ship queries are negligible since it is simply a check to see if an input is accepted.
However, measuring the complexity of the symbolic membership queries (SMQs)
is crucial to assess the effectiveness of our approach. Answering a SMQ requires
the concolic execution of the program under analysis potentially multiple times,
and requires processing each resulting path condition to collect the information
needed to refine the answer. In this experiment we measured the time and the

3 Note that all 200 automata are included in Table 2 whereas only the results for the
subset that finished before the timeout was shown in Table 1.

Improving symbolic automata learning with concolic execution 21

number of concolic executions required to answer all the SMQs of table 2. The
total time required to answer the queries was 4,408s, with an average of 54.15
ms per query. The number of concolic executions per query was between 1 and
31, with an average of 3.45. Since the concolic execution requires the program
under analysis to be instrumented and a symbolic state to be maintained, it is
orders of magnitude slower than a standard concrete execution.
Evaluating the impact of equivalence queries. Each equivalence query is
answered in the same way as in the SymLearn approach (see Section 4.1), by
doing a concolic execution of the hypothesis and the program being analyzed
on the same symbolic input to see if they give a different result; if so, we have
a counter-example, otherwise we simply know none could be found before the
timeout or within the input string length of 30. As a further optimization, we also
maintained two automata knownAccept and knownReject that were the union of
the automata translation of the path conditions of all the previously explored
accepted and rejected inputs respectively.

In this experiment 1,207 equivalence queries were issued, and on average it
took 56.92s to answer a query. 573 answers were generated in negligible time us-
ing the knownAccept and knownReject automata (demonstrating the usefulness
of this optimization), 93 cases Coastal could not find a counter-example (within
the input size limit), 107 the timeout occurred and in the rest a counter-example
was found by Coastal. In 152 cases the correct automaton was learned (76%),
and interestingly in 62 of these cases Coastal timed-out (but the current hypoth-
esis at the time was in fact correct). In 3 of the cases Coastal finished exploring
the complete state-space up to the 30 input before the timeout, but the correct
automaton was not learned. This happened because a counter-example requiring
more than 30 input characters exist.

Discussion of the results. The benefit of the symbolic membership queries
is clear: it reduces the number of equivalence queries by 96%, and the latter
is by far the most expensive step in active learning without a perfect oracle.
Furthermore, simple engineering optimizations, for example a caching scheme
for the accepted and rejected path conditions, can have a significant impact on
the execution time.

6 Related work

The problem of learning input grammars has been tackled using a variety of
techniques, and with various specific goals in mind.

6.1 Active learning

The active learning algorithms most closely related to our are Λ∗ [11] and
MAT* [3], which have been extensively discussed in Section 3.

Argyros et al. [4] used Angluin-style active learning of symbolic automata
for the analysis of finite state string sanitizers and filters. Being focused on
security, their goal was not to learn exactly the filter under analysis, but to verify
that it filters every potentially dangerous string. In the proposed approach each
equivalence query is approximated with a single membership query, which is a
string that is not filtered by the current hypothesis, but belongs to the given

22 D. Clun et al.

language of “dangerous” strings. If no such string exists, the filter is considered
successfully validated. If the string exists but is successfully filtered it provides
a counterexample with which the hypothesis is refined, otherwise a vulnerability
in the filter has been found. This equivalence approximation is incomplete, but
greatly simplifies the problem, considering the complexity of equivalence queries.

Multiple other approaches use different active learning techniques not based
on L* that, compared to our solution, provide less theoretical guarantees and
often rely on a corpus of valid inputs. Glade [6] generates a context free grammar
starting from a set of seed inputs that the learner attempts to generalize, using
a membership oracle to check whether the generalization is correct. No other
information is derived from the execution of the program under analysis, and
therefore the set of seed inputs is of crucial importance. Reinam [29] further
extends Glade by using symbolic execution to automatically generate the seed
inputs, and adding a second probabilistic grammar refinement phase in which
reinforcement learning is used to select the generalization rules to be applied.

The approach proposed by Höschele et al. [19] uses a corpus of valid inputs
and applies generalizations that are verified with a membership oracle. Dynamic
taint analysis is used to track the flow of the various fragments of the input
during the execution, extracting additional information that aids in the creation
of the hypothesis and generates meaningful non-terminal symbol names. A sim-
ilar approach is used by Gopinath et al. [16], with the addition of automatic
generation of the initial corpus.

6.2 Passive learning

Godefroid et al. [15] use recurrent neural networks and a corpus of sample
inputs to create a generative model of the input language. This approach does
not learn any information from the system under test, so the sample corpus is
important.

A completely different approach is used by Lin et al. [24] to tackle a related
problem: reconstructing the syntax tree of arbitrary inputs. The technique is
based on the analysis of an execution trace generated by an instrumented version
of the program under analysis. This approach relies on the knowledge of the
internal mechanisms used by different types of parsers to generate the syntax
tree.

Tupni [7] is a tool to reverse engineer input formats and protocols. Starting
from one or more seed inputs, it analyzes the parser execution trace together with
data flow information generated using taint analysis, identifies the structure of
the input format (how the data is segmented in fields of various types, aggregated
in records, and some constraints that must be satisfied), and generates a context
free grammar.

7 Conclusions

Most established active learning algorithms for (symbolic) finite state au-
tomata assume the availability of a minimal adequate teacher, which includes
a complete equivalence oracle to produce counterexample disproving an incor-
rect hypothesis of the learner. This assumption is unrealistic when learning the

Improving symbolic automata learning with concolic execution 23

input grammar of a program from its implementation, as such a complete or-
acle would need to automatically check the equivalence of the hypothesis with
arbitrary software code. In this paper, we explored how the use of a concolic
execution engine can improve the information efficiency of membership queries,
provide a partial input-bounded oracle to check the equivalence of an hypothesis
against a program, and enable the definition of a new class of symbolic mem-
bership queries that allow the learner inferring the transition predicates of a
symbolic finite state automata representation of the target input language more
efficiently.

Preliminary experiments with the Autmatark [8] benchmark showed that
our implementations of SymLearn and MAT*++ achieve a significant reduc-
tion (up to 96%) in the number of queries required to actively learn the input
language of a program in the form of a symbolic finite state automaton. Despite
bounding the total execution time to 10 minutes, using the concolic execution
engine as partial equivalence oracle, MAT*++ managed to learn the correct
input language in 76% of the cases.

This results demonstrate the suitability of concolic execution as enabling
tool for the definition of active learning algorithms for the input grammar of a
program. However, our current solutions learn the input grammar in the form
of a symbolic finite state automaton. This implies that only an approximation
of non-regular input languages can be constructed. Such approximation can at
best match the input language up to a finite length, but would fail in recognizing
more sophisticated language features that may require, for example, a context
free representation. Investigating how the learning strategies based on concolic
execution we explored in this paper can generalize to more expressive language
models is envisioned as a future direction for this research, as well as the use of
the inferred input languages to support parsers validation and grammar-based
fuzzing.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2), 87–106 (1987)

2. Angluin, D.: Queries and Concept Learning. Machine Learning 2(4), 319–342 (apr
1988)

3. Argyros, G., D’Antoni, L.: The learnability of symbolic automata. In: Chockler,
H., Weissenbacher, G. (eds.) Computer Aided Verification. CAV 2018. pp. 427–445.
Springer International Publishing, Cham (2018)

4. Argyros, G., Stais, I., Kiayias, A., Keromytis, A.D.: Back in Black: To-
wards Formal, Black Box Analysis of Sanitizers and Filters. Proceedings -
2016 IEEE Symposium on Security and Privacy, SP 2016 pp. 91–109 (2016).
https://doi.org/10.1109/SP.2016.14

5. Aydin, A., Bang, L., Bultan, T.: Automata-Based Model Counting for String Con-
straints. In: Kroening, D., Păsăreanu, C.S. (eds.) Computer Aided Verification. pp.
255–272. Lecture Notes in Computer Science, Springer International Publishing,
Cham (2015)

6. Bastani, O., Sharma, R., Aiken, A., Liang, P.: Synthesizing Program Input Gram-
mars. In: Proceedings of the 38th ACM SIGPLAN Conference on Programming

24 D. Clun et al.

Improving symbolic automata learning with concolic execution 25

Language Design and Implementation. pp. 95–110. ACM (2017), http://arxiv.org/
abs/1608.01723

7. Cui, W., Peinado, M., Chen, K., Wang, H.J., Irun-Briz, L.: Tupni: Auto-
matic reverse engineering of input formats. Proceedings of the ACM Con-
ference on Computer and Communications Security pp. 391–402 (2008).
https://doi.org/10.1145/1455770.1455820

8. D’Antoni, L.: AutomatArk (2018), https://github.com/lorisdanto/automatark
9. D’Antoni, L.: SVPAlib (2018), https://github.com/lorisdanto/symbolicautomata/

10. D’Antoni, L., Veanes, M.: The power of symbolic automata and transducers. Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 10426 LNCS, 47–67 (2017)

11. Drews, S., D’Antoni, L.: Learning symbolic automata. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 10205 LNCS, 173–189 (2017)

12. Geldenhuys, J., Visser, W.: Coastal (2019), https://github.com/DeepseaPlatform/
coastal

13. Godefroid, P., Kiezun, A., Levin, M.Y.: Grammar-based whitebox
fuzzing. In: Proceedings of the 29th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. pp. 206–215 (2008).
https://doi.org/10.1145/1379022.1375607

14. Godefroid, P., Klarlund, N., Sen, K.: Dart: Directed automated random testing. In:
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation. p. 213–223. PLDI ’05, Association for Computing
Machinery, New York, NY, USA (2005). https://doi.org/10.1145/1065010.1065036,
https://doi.org/10.1145/1065010.1065036

15. Godefroid, P., Peleg, H., Singh, R.: Learn&Fuzz: Machine Learning for Input
Fuzzing. In: Proceedings of the 32nd IEEE/ACM International Conference on Au-
tomated Software Engineering. pp. 50–59. IEEE Press, Urbana-Champaign, IL,
USA (2017)

16. Gopinath, R., Mathis, B., Höschele, M., Kampmann, A., Zeller, A.: Sample-
Free Learning of Input Grammars for Comprehensive Software Fuzzing (2018).
https://doi.org/arXiv:1810.08289v1, http://arxiv.org/abs/1810.08289

17. Heinz, J., Sempere, J.M.: Topics in grammatical inference (2016)
18. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars.

Cambridge University Press, New York, NY, USA (2010)
19. Höschele, M., Kampmann, A., Zeller, A.: Active Learning of Input Grammars

(2017), http://arxiv.org/abs/1708.08731
20. Isberner, M.: Foundations of Active Automata Learning: an Algorithmic Perspec-

tive. Ph.D. thesis (2015)
21. Isberner, M., Howar, F., Steffen, B.: The TTT Algorithm: A Redundancy-Free

Approach to Active Automata Learning. In: Bonakdarpour, B., Smolka, S.A.
(eds.) Runtime Verification. pp. 307–322. Springer International Publishing, Cham
(2014), http://link.springer.com/10.1007/978-3-319-11164-3{ }26

22. Isberner, M., Steffen, B.: An Abstract Framework for Counterexample Analysis in
Active Automata Learning. JMLR: Workshop and Conference Proceedings (1993),
79–93 (2014)

23. Kearns, M.J., Vazirani, U.: Learning Finite Automata by Experimentation. In:
An Introduction to Computational Learning Theory, pp. 155–158. The MIT Press
(1994)

24. Lin, Z., Zhang, X., Xu, D.: Reverse engineering input syntactic structure from pro-
gram execution and its applications. IEEE Transactions on Software Engineering
36(5), 688–703 (2010). https://doi.org/10.1109/TSE.2009.54

25. Maler, O., Mens, I.E.: Learning Regular Languages over Large Alphabets. In: Abra-
ham, E., Havelund, K. (eds.) Tools and Algorithms for the Construction and Anal-
ysis of Systems. TACAS 2014. pp. 485–499. Springer Berlin Heidelberg, Berlin,
Heidelberg (2014)

26. de Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Ramakrishnan, C.R., Re-
hof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Systems.
pp. 337–340. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

27. Sen, K., Marinov, D., Agha, G.: Cute: A concolic unit testing en-
gine for c. SIGSOFT Softw. Eng. Notes 30(5), 263–272 (Sep 2005).
https://doi.org/10.1145/1095430.1081750, https://doi.org/10.1145/1095430.
1081750

28. Veanes, M., De Halleux, P., Tillmann, N.: Rex: Symbolic regular expression ex-
plorer. ICST 2010 - 3rd International Conference on Software Testing, Verification
and Validation pp. 498–507 (2010). https://doi.org/10.1109/ICST.2010.15

29. Wu, Z., Johnson, E., Bastani, O., Song, D.: REINAM: Reinforcement Learning for
Input-Grammar Inference. In: Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. pp. 488–498. ACM (2019)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

26 D. Clun et al.

FASE Contributions

Platinum: Reusing Constraint Solutions in Bounded

Analysis of Relational Logic

Guolong Zheng1, Hamid Bagheri1, Gregg Rothermel2, and Jianghao Wang1

1 Department of Computer Science and Engineering, University of Nebraska-Lincoln,
Lincoln, NE, USA

2 Department of Computer Science, North Carolina State University, Raleigh, NC, USA
gzheng@cse.unl.edu, bagheri@unl.edu, gerother@ncsu.edu, jianghaow@cse.unl.edu

Abstract. Alloy is a lightweight specification language based on relational logic,
with an analysis engine that relies on SAT solvers to automate bounded verifica-
tion of specifications. In spite of its strengths, the reliance of the Alloy Analyzer
on computationally heavy solvers means that it can take a significant amount of
time to verify software properties, even within limited bounds. This challenge
is exacerbated by the ever-evolving nature of complex software systems. This
paper presents PLATINUM, a technique for efficient analysis of evolving Alloy
specifications, that recognizes opportunities for constraint reduction and reuse of
previously identified constraint solutions. The insight behind PLATINUM is that
formula constraints recur often during the analysis of a single specification and
across its revisions, and constraint solutions can be reused over sequences of anal-
yses performed on evolving specifications. Our empirical results show that PLAT-
INUM substantially reduces (by 66.4% on average) the analysis time required on
specifications extracted from real-world software systems.

1 Introduction

The growing reliance of society on software and software-intensive systems drives
a continued demand for increased software dependability. Software verification pro-
vides the highest degree of software assurance, with its strengths residing in the math-
ematical concepts that can be leveraged to prove correctness with respect to specific
properties. Most notably, bounded verification techniques, such as Alloy [28], have
recently received a great deal of attention in the software engineering community
(e.g., [8, 9, 11, 13, 14, 16, 20, 26, 34, 35, 38, 43, 46, 48, 52, 54, 55, 61, 63, 66]),
due to the strength of their automated, yet formally precise, analysis capabilities. The
basic idea behind these techniques is to construct a formula that encodes the behavior
of a system and examine it up to a user-specified bound. They thus enable analyses of
partial models that represent key aspects of a system.

Bounded verification techniques often transform a software specification to be an-
alyzed into a satisfiability problem, and delegate the task of solving this to a con-
straint solver. In the past decade, constraint solving technologies have made spectacular
progress (e.g., [19, 22, 42]). Despite these advances, however, constraint solving con-
tinues to be a bottleneck in analyses that rely on it [58]. This is because the magnitude
of formulas tends to increase exponentially with the size of the system being analyzed,
making it impractical to employ constraint solving on complex systems. Further, de-
spite the many optimizations applied to constraint solvers, they are still unable to detect
many instances of subformula recurrence that are generated by Alloy.

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 29–52, 2020.
https://doi.org/10.1007/978-3-030-45234-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_2&domain=pdf

The foregoing challenges are exacerbated when considering the ever-evolving na-
ture of complex software systems and their corresponding specifications. Formal speci-
fications are developed iteratively, and each iteration involves repeated runs of the ana-
lyzer for assessment of their semantics [31, 36]. In online analyses, where specifications
are kept in sync with the evolving software and analyses are performed at runtime, the
time required to verify the properties of software is of even greater significance. This
calls for techniques that assist constraint solvers in dealing with large corpora of for-
mulas, many of which contain tens of thousands of clauses.

In this paper, we introduce PLATINUM, an extension of the Alloy Analyzer that sup-
ports efficient analysis of evolving Alloy specifications, by recognizing opportunities
for constraint reduction and reuse of previously identified constraint solutions. Unlike
the Alloy Analyzer and its other variants, e.g., Aluminum [45], that dispose of prior
results in response to changes in the system specification, PLATINUM stores solved
constraints incrementally, and retrieves them when they are needed again within the
analysis of the revised specification. PLATINUM further improves analysis efficiency by
omitting redundant constraints from a specification before translating them into propo-
sitional formulas to be solved by expensive constraint solvers, thereby greatly reducing
the required computational effort. Although techniques for storing the results of satisfi-
ability checking and reusing them later have been considered in the context of symbolic
execution [6, 7, 29, 49, 62], these techniques cannot be directly applied to Alloy due
to the specifics of its core logic, which consolidates the quantifiers of first-order logic
with the operators of the relational calculus [28]. (Section 5 provides details.)

We evaluate the performance of PLATINUM in several scenarios. First, we apply
PLATINUM to several pairs of specifications in which the second contains a small but
non-trivial set of changes relative to the first. Second, we apply PLATINUM to several
sequences of specifications that model evolution scenarios. Our empirical results show
that PLATINUM is able to support reuse of constraint solutions both within a single
analysis run and across a sequence of analyses of evolving specifications, while achiev-
ing speed-up over the Alloy Analyzer. Third, we show that as the scope of the analysis
increases, PLATINUM achieves even greater improvements. Fourth, we show that the
overhead associated with PLATINUM is a fraction of that required by the Alloy An-
alyzer. Finally, we show that PLATINUM substantially reduces (by 66.4% on average)
the analysis time required on specifications extracted from real-world software systems.

This paper makes the following contributions:

– Efficient analysis of evolving relational logic specifications. We present a novel ap-
proach to improve the bounded analysis of relational logic specifications by trans-
forming constraints into more concise forms and enabling substantial reuse of so-
lutions, which in turn substantially reduces analysis costs.

– Tool implementation. We implement PLATINUM as an extension to Alloy and its
underlying relational logic analyzer, Kodkod [57]. We make PLATINUM available
to the research and education community [5].

– Empirical evaluation. We evaluate PLATINUM in the context of Alloy specifications
found in prior work and specifications automatically extracted from real-world sys-
tems, corroborating PLATINUM’s ability to substantially outperform the Alloy An-
alyzer without sacrificing soundness or completeness.

30 G. Zheng et al.

2 Illustrative Example

To motivate this research and illustrate our approach, we provide a simple Alloy spec-
ification and describe the analysis process followed by the Alloy Analyzer and PLAT-
INUM.

1 // (a) a simple customer-order class diagram
2 one sig Customer extends Class{}{
3 a t t r S e t = customerID +customerName
4 i d =customerID
5 i s A b s t r a c t = No
6 no parent
7 }
8 one sig customerID extends I n t ege r{}
9 one sig customerName extends s t r i n g{}

10 one sig Order extends Class{}{
11 a t t r S e t = orderID + orderValue
12 i d =order ID
13 i s A b s t r a c t = No
14 no parent
15 }
16 one sig order ID extends I n t ege r{}
17 one sig orderValue extends Real{}
18 one sig CustOrder extends Assoc ia t ion{}{
19 src = Customer
20 dst = Order
21 }
22 fact a s s o c i a t i o n M u l t i p l i c i t y{
23 one CustOrder . s rc and some CustOrder . ds t
24 }

1 // (b) new constructs added to the revised specification
2 one sig PreferredCustomer extends Class{}{
3 a t t r S e t = d iscount
4 one parent
5 parent in Customer
6 i s A b s t r a c t = No
7 i d =customerID
8 }
9 one sig d iscount extends I n t ege r{}

Listing 1.1: (a) a specification describing
a simple customer order class diagram;
(b) new constructs added to a revised
version of that specification.

Consider snippets of the Alloy speci-
fication for a simple customer-order class
diagram, shown in Listing 1.1 (adapted
from [15]). Each Alloy specification con-
sists of data types and formulas that de-
fine constraints over those data types. A
signature (sig) paragraph introduces a ba-
sic data type and a set of its relations,
called fields, accompanied by the type
of each field. The running example de-
fines seven signatures (Lines 2–21). The
Customer class (Lines 2–7) has two at-
tributes, customerID and customerName,
that are assigned to the attrSet field of the
Customer class. The id field specifies that
customerID is the identifier of this class.
The last two lines of the Customer signa-
ture specification indicate that Customer
is not an abstract class and that it has no
parent. Similarly, the code in Lines 10–
15 represents the Order signature spec-
ification, and CustOrder (Lines 18–21)
specifies an association relationship be-
tween Customer and Order.

Facts (fact) are formulas that take
no arguments, and define constraints that
each instance of a specification must sat-
isfy, restricting the specification’s solu-
tion space. The formulas can be further structured using predicates (pred) and functions
(fun), which are parameterized formulas that can be invoked. The associationMultiplicity
fact paragraph (Lines 22–24) states multiplicities of source and destination classes in
the CustOrder association relationship.

1 {C1,O1}
2
3 Customer : (1 ,1) ::[{<C1>},{<C1>}]
4 Order : (1 ,1) ::[{<O1>},{<O1>}]
5 parent : (0 ,4) : : [{} ,
6 {<C1, C1>,<C1,O1>,<O1, C1>,<O1,O1>}]
7
8 (no Customer . parent) && (no Order . parent) . . .

Listing 1.2: Kodkod representation of the Alloy
specification of Listing 1.1 (partially elided for
space and readability).

To analyze such a relational
specification, both the Alloy An-
alyzer and PLATINUM translate it
into a corresponding finite rela-
tional model in a language called
Kodkod [56]. Listing 1.2 shows a
partial Kodkod translation of List-
ing 1.1(a). A specification in Kod-
kod’s relational logic is a triple

Reusing Constraint Solutions in Bounded Analysis of Relational Logic 31

consisting of a universe of elements (a.k.a. atoms), a set of relation declarations in-
cluding lower and upper bounds specified over the model’s universe, and a relational
formula in which the declared relations appear as free variables [56].

The first line of Listing 1.2 declares a universe of two uninterpreted atoms. (Due to
space limitations, the listing omits some of the relations and atoms.) While in Kodkod
all relations are untyped, in the interest of readability we assume an interpretation of
atoms in which C1 represents a Customer element and O1 represents an Order element.

Lines 3–6 of Listing 1.2 declare relational variables. Similar to Alloy, formulas in
Kodkod are constraints defined over relational variables. Whereas in Alloy these rela-
tional variables are separated into signatures that represent unary relations establishing
a type system, and fields that represent non-unary relations, in Kodkod all relations are
untyped, with no difference made between unary and non-unary variables.

1 (! (v1 | v2)) & (! v2 | ! v1) & (! (v3 | v4)) & (! v4 | ! v3)
2
3 Slices:
4 (! (v1 | v2)) & (! v2 | ! v1)
5 (! (v3 | v4)) & (! v4 | ! v3)
6
7 Canonical form:
8 (! (1 | 2) & (! 2 | ! 1))

Listing 1.3: Excerpt of the boolean
encoding for the Kodkod specification
shown in Listing 1.2.

Kodkod also allows scope to be
specified from above and below each
relational variable by two relational
constants; these sets are called upper
and lower bounds, respectively. In prin-
ciple, a relational constant is a pre-
specified set of tuples drawn from a
universe of atoms. Each relation in a
specification solution must contain all
tuples that appear in the lower bound,
and no tuple that does not appear in the upper bound. That is, the upper bound repre-
sents the entire set of tuples that a relational variable may contain, and the lower bound
represents a partial solution for a specification.

Consider the Customer declaration (Listing 1.2, Line 3). Both its upper and lower
bounds contain just one atom, C1, given that it is defined as a singleton set in List-
ing 1.1. The upper bound for the variable parent ⊆Class×Class (Lines 5–6) is a prod-
uct of the upper bound set for its corresponding domain and co-domain relations, here
(Customer∪Order) → (Customer∪Order), taking every combination of an element
from both and concatenating them.

To transform such a finite relational model into a boolean logic formula, Kodkod
renders each relation as a boolean matrix, in which any tuple in the upper bound of
the given relation that is not in the lower bound maps to a unique boolean vari-
able [56]. Relational constraints are then captured as boolean constraints over the trans-
lated boolean variables.

To render this idea concrete, consider the parent relation along with the next con-
straint defined over it (Listing 1.2, Lines 5–8). Each of the four tuples in the upper bound
of the parent relation is allocated a fresh boolean variable (v1 to v4) in the boolean en-
coding. The relational constraint (no Customer.parent) && (no Order.parent) is then
translated as a boolean constraint over those boolean variables, as shown in List-
ing 1.3, Line 1.

Expressions and constraints in relational specifications typically contain equivalent
slices in their boolean representations. PLATINUM detects such semantically redundant
slices by refining the specification in its boolean logic form into its essential, indepen-

32 G. Zheng et al.

dently analyzable slices, and then rendering them in a canonical form. The boolean
encoding of the constraints defined over the parent relation, for example, embodies two
slices with equivalent but syntactically distinct formulas (Listing 1.3, Lines 4–5). Line 8
represents the result of restructuring the slices into a canonical form, suggesting that the
two slices are in fact equivalent. The slicing technique we use to determine the sets of
clauses, the satisfiability of which can be analyzed independent of other clauses in the
formula, is presented in Section 3.

PLATINUM prevents redundant slices from being propagated to the CNF formula to
be solved by the underlying SAT solver, substantially reducing computational effort. In
the case of our example specification (Listing 1.1(a)), PLATINUM partitions the original
relational specification into 30 slices, with only seven distinct canonical slices. As such,
PLATINUM is faster at finding a solution instance, requiring 19 ms to do so compared
to the 26 ms that the Alloy Analyzer requires to produce the first solution instance. The
time required to compute the entire instance set also improves, from 6481 ms to 246
ms, in this simple example.

PLATINUM also reuses results produced for specification slices to further improve
the analysis of evolving specifications. Consider Listing 1.1(b), for example, in which
two new signature paragraphs are added, stating that the PreferredCustomer class in-
herits from the Customer class. Given the updated specification, PLATINUM reuses
the results from the prior run and solves a smaller problem. Specifically, after slicing
and canonicalizing the formula, the results for 29 slices, out of the total of 30 slices,
are already available. As a result, PLATINUM requires only one millisecond to find
the first solution for the revised specification, whereas the Alloy Analyzer requires
27 milliseconds to produce the first solution. PLATINUM also produces speed-ups in
computing the whole solution space. In the case of this particular example, PLAT-
INUM reduces the time required to produce the entire solution set from 768 millisec-
onds to two milliseconds.

3 Approach

Fig. 1 provides an architectural overview that shows how PLATINUM fits in with Al-
loy. As the figure shows (left), the Alloy Analyzer reads in an Alloy specification and
translates it into a relational model, then passes that to Kodkod. Kodkod translates the
relational model into a boolean formula, then to CNF, and passes the CNF to off-the-
shelf SAT solvers to obtain a solution. Last, the Alloy interpreter translates the SAT
result into a solution instance.

PLATINUM is inserted between Kodkod and the Alloy interpreter, as shown in the
figure. At the highest level, PLATINUM takes in the boolean formula from Kodkod and
outputs SAT results to the Alloy interpreter. The box at right shows the steps PLATINUM
follows to do this. PLATINUM first decomposes the boolean formula into independent
slices. Then, for each slice, PLATINUM canonicalizes it into a normalized format and
searches the storage for a previously existing equivalent slice. If such a slice exists, the
previous results will be reused. Otherwise, the slice is translated to CNF and assigned to
an independent SAT solver for processing. Both the slice and the results of processing it

Reusing Constraint Solutions in Bounded Analysis of Relational Logic 33

Fig. 1: Overview of Alloy and PLATINUM

are then stored. Finally, PLATINUM combines the results for each slice and passes them
to the Alloy interpreter.

Next, we describe each step taken by PLATINUM in detail.

3.1 Slicing

Algorithm 1 Slicing
Require: f : original Boolean Formula root
Ensure: Slices: Set of Independent Slices
1: procedure SLICE(f)
2: Slices ← null
3: for each variable v ∈ f do

4: parent[v]← v
5: rank[v]← v
6: end for

7: DECOMPOSE(f)
8: end procedure

9: procedure DECOMPOSE(f)
10: if f .operator = AND then

11: for each subformula fi ∈ f do

12: DECOMPOSE(fi)
13: end for

14: else

15: UNION-FIND(f)
16: end if

17: end procedure

In PLATINUM, the slicing operation takes in the
boolean formula generated from Kodkod and decom-
poses it into a set of independently analyzable sub-
formulas. Formally, given a boolean formula ϕ, slic-
ing decomposes it into subformulas ϕ1,ϕ2, ...,ϕn, such
that the following equations hold:

– ϕ1 ∧ϕ2 ∧ ...∧ϕn = ϕ
– var(ϕ1)∪ var(ϕ2)∪ ...∪ var(ϕn) = var(ϕ)
– var(ϕi)∩ var(ϕ j) = /0, for each ϕi and ϕ j where

i 	= j
– var(ϕi) 	= /0, f or i = 1,2, ...,n

where var(ϕ) is the set of boolean variables of ϕ.
Subformulas ϕ1 to ϕn can be solved independently.
Thus, ϕ is satisfiable if and only if each slice ϕi is sat-
isfiable individually.

A boolean formula can be sliced either logically (based on semantics) or alge-
braically (based on syntax). In the interest of efficiency, PLATINUM applies a syn-
tactic slicing algorithm. There are two types of boolean formulas in Alloy: a propo-
sitional formula that Kodkod translates from the relational model and the conjunctive
normal form generated from the propositional formula. PLATINUM applies slicing on
the propositional formula level for two reasons. First, translating a propositional for-
mula to CNF introduces many auxiliary variables [21]. For example, when the Cus-
tomerOrder specification in Section 2, with 81 variables in its propositional formula, is
translated to a CNF formula containing 352 variables, 271 auxiliary variables are in-
troduced. The explosion in the number of variables affects the performance of slicing

34 G. Zheng et al.

and canonicalization. Second, in certain cases, auxiliary variables connect two inde-
pendent formulas together. Given the boolean formula v1&v2, its CNF translation is
(v1|!o)&(v2|!o)&(!v1|!v2|o), where o is the auxiliary variable. Even if v1 and v2 are
independent formulas, in the CNF, v1 and v2 are dependent on each other.

Algorithm 2 Union-Find
1: procedure UNION-FIND(f)
2: represent ← null
3: for each variable v ∈ f do

4: if v has been visited then

5: if UnMeetState then

6: represent ← FINDSLICE(v)
7: add f to Slices[represent]
8: change to MeetState
9: else

10: if FINDSLICE(v) != FINDSLICE(represent)
then

11: UNIONSLICES(Slices[represent],Slices[v])
12: end if

13: end if

14: else

15: UNIONVARS(v, represent)
16: v.visited ← T RUE
17: end if

18: end for

19: end procedure

20: procedure UNIONVARS(v,represent)
21: if represent is null then

22: represent ← FINDSLICE(v)
23: end if

24: Parent[represent]← FINDSLICE(v)
25: Rank[represent]← Rank[represent]+1
26: end procedure

27: procedure UNIONSLICES(represent,v)
28: v ← FindSlice(v)
29: if Rank[represent] ≤ Rank[v] then

30: Slices[v].add(Slices[represent])
31: Parent[represent]← v
32: Rank[v]← Rank[represent]+Rank[v]
33: else

34: Slices[represent].add(Slices[v])
35: Parent[v]← represent
36: Rank[represent]← Rank[represent]+Rank[v]
37: end if

38: end procedure

39: procedure FINDSLICE(v)
40: while v != Parent[v] do

41: v ← Parent[v]
42: Parent[v]← Parent[Parent[v]]
43: end whilereturn v
44: end procedure

Slicing can be viewed as iden-
tifying connected components in a
graph, where the vertices of the
graph are boolean variables and the
edges of the graph represent two
variables that appear within the same
clause. Each slice is thus one con-
nected component in the graph. The
conventional way to proceed with
this is to first build a graph for the
entire boolean formula, and then run
a depth-first-search (DFS) to iden-
tify each connected component [62].
For large specifications this can be
both time and memory intensive.
To improve performance, our algo-
rithm applies a modified UNION-
FIND algorithm [17], that traverses
the boolean formula only once to
identify connected components.

Algorithm 1 outlines the slic-
ing process. Given boolean formula
root, the algorithm first initializes a
data structure used by its subrou-
tine (Lines 2–6). Each slice is iden-
tified by a representative, which is
one variable within the slice. Array
Parent is used to find the represen-
tative variable. Array Rank is used
to construct a balanced parent ar-
ray. Array Slices maps a represen-
tative variable to its corresponding
slice; its size equals the number of
slices. The algorithm then calls sub-
routine DECOMPOSE to decompose
the root formula.

DECOMPOSE recursively partitions a boolean formula f into subformulas in such
a way that the conjunction of all subformulas equals f, and each subformula cannot be
decomposed into smaller subformulas.

The UNION-FIND procedure (Algorithm 2) takes a decomposed subformula and
finds a slice to which it belongs. The basic idea behind the algorithm is that each slice is

Reusing Constraint Solutions in Bounded Analysis of Relational Logic 35

represented by one variable. UNION-FIND has two basic operators: UNION and FIND.
If UNION operates on two slices, it joins them into one slice (Lines 27–38). If UNION
operates on two variables, it assigns one variable to be the parent of the other (Lines 20–
26). The FINDSLICE operation determines the representative variable for the slice – the
variable to which the input variable belongs. It does so by traversing the Parent array
until it finds one variable vp whose parent is itself, i.e., parent[vp] = vp. All variables
along this path belong to the same slice and are represented by vp.

The input boolean formula has two states: UnMeetState, which indicates that f does
not belong to any slice yet, and MeetState, which indicates that f belongs to some slice
that is represented by represent. For each variable v of the input boolean formula f,
UnMeetState first obtains the representative variable for v (which could be itself if v
does not belong to any slice yet). If v has not been visited, the algorithm unions v and
the representative variable of the subformula (Lines 20–26). Otherwise, if v has been
visited (i.e., it belongs to some slice), and if f is in UnMeetState, then the algorithm
adds f to the slice represented by represent. Finally, if f is in MeetState, this means that
f belongs to one slice and v belongs to another and these need to be joined together
(Lines 27–38).

3.2 Canonicalization

Algorithm 3 Canonicalization
Require: f : boolean formulas
Ensure: f ′ : canonical boolean formula
1: procedure CANONICALIZE(f)
2: varSet ← var o f f
3: varSet ← sort(varSet)
4: for i in 0 to varSet.length do

5: labelMap.add(varSet[i].label, i)
6: varSet[i].label ← i
7: end for

8: L ← varSet.length
9: for each subformula sf ∈ f do

10: RENAME(sf)
11: end for

12: f ′ ← f
13: end procedure

14: procedure RENAME(f)
15: for each subformula sf ∈ f do

16: L ← RENAME(s f)
17: end for

18: f .label ←++L
19: returnL
20: end procedure

The time complexity of the UNION-
FIND algorithm is near linear [17]. With-
out this improvement and using the con-
ventional DFS-based approach taken by
Green [62] among others, in one case in
our empirical study, a few minutes were
required to produce independently ana-
lyzable slices. Using our algorithm, this
time was reduced to about 10 millisec-
onds – an order of magnitude speedup.
This speedup occurs for the following
reason. A graph is needed to start the
DFS. The graph contains information
about which variable belongs to which
clause and which clause contains which
variables, and a map-like data structure
is needed to store this information. When
the number of variables becomes huge—
typically hundreds of thousands in formulas produced for Alloy specifications of real-
world systems—it is time and memory consuming to obtain this information and store
it. It is also time consuming to retrieve the graph information during the DFS. Our
UNION-FIND based algorithm, in contrast, requires information only on the node’s
parents, and this can be placed in a static array that requires only linear time to store
and retrieve.

The slices produced by the prior step are passed to this step, which transforms each
slice into a canonical format in order to capture the syntactic equivalence between dif-

36 G. Zheng et al.

ferent slices. For a slice ϕ, where ϕ = ϕ1 ∧ϕ2 ∧ ...∧ϕn, canonicalization generates one
boolean formula ϕ′, such that ϕ′ = ϕ′

1∧ϕ′
2∧ ...∧ϕ′

n, where ϕ′ is the canonical format of
ϕ. The canonical form of the formulas is constructed by renaming variables and formula
labels. Algorithm 3 outlines this transformation.

Canonicalization first renames each boolean variable based on its weight (Lines 2–
7). For each variable v ∈V , where V = var(ϕ1)∪ var(ϕ2)∪ ...∪ var(ϕn), the weight of
v is calculated as the sum of the number of its occurrences and the number of operators
applied on v in all of the subformulas. To improve the performance of this step, the
weight for each variable is collected during the slicing phase; then, V is sorted based
on variable weight. If two variables have the same weight, their original labels are
used to sort them. Each variable is then renamed to their index in the sorted array.
The mapping relations from canonical variables to original variables for each slice are
stored in labelMap for use in assembling the solution for the original boolean formula.
Next, the label for each formula is renamed (Lines 8–20). The purpose of this step is
to maintain consistency with variables when translating to CNF. The labels of formulas
are used as auxiliary variables when they are translated to CNF.

3.3 Storing and Reuse

After slicing and canonicalization have been completed, each boolean formula is de-
composed into several independent formulas. For each canonicalized boolean formula,
PLATINUM checks its hash code in storage. If there is a hit, this boolean formula is
already solved, and the result will then be retrieved. If not, the boolean formula will be
translated into CNF and solved by the SAT solver independently. The result will then
be stored.

After solving all slices, using the labelMap (Algorithm 3) that maps canonical vari-
ables to original variables, PLATINUM obtains the solution for the original boolean
formula and passes it to Alloy to generate a solution instance.

4 Empirical Study

We empirically evaluated the performance of PLATINUM in relation to the following
research questions:
RQ1: How does the performance of PLATINUM compare to the performance of existing
approaches on specifications that have undergone relatively small amounts of change?
RQ2: How does the performance of PLATINUM compare to the performance of exist-
ing approaches on specifications that have gone through several successive rounds of
evolution?
RQ3: How does the performance of PLATINUM compare to the performance of existing
approaches on specifications that have run against higher scopes?
RQ4: What is the overhead of PLATINUM in restructuring a relational logic formula
into its canonical form?
RQ5: How does the performance of PLATINUM compare to the performance of Alloy
Analyzer in practice on specifications automatically extracted from real-world applica-
tions?

Reusing Constraint Solutions in Bounded Analysis of Relational Logic 37

4.1 Objects of Analysis

Table 1: Objects of Analysis
Specification # Rels
Ecommerce 70
Decider 47
CSOS 64
Wordpress 54
Andr. Bundle 1 665
Andr. Bundle 2 558
Andr. Bundle 3 485
Andr. Bundle 4 569
Andr. Bundle 5 501
Andr. Bundle 6 456

Our objects of analysis are specifications drawn from
a variety of sources and problem domains. These spec-
ifications vary widely in terms of size and complexity.
Table 1 lists the specifications that we use, with statis-
tics on their size in terms of the numbers of relations in
their underlying logic. Note that this number, in turn,
represents the sum of the numbers of signatures and
fields, as both are indeed translated into relations in
the underlying relational logic.

Ecommerce is a model, adopted from Lau and
Czarnecki [30], that represents a common architecture
for open-source and commercial E-commerce sys-
tems. Decider [15] is a model of a system to support
design space exploration. CSOS is a model of a cyber-social operating system meant
to help coordinate people and tasks. WordPress is an object model obtained by reverse
engineering an open-source blog system [3]. Finally, the last six rows of the table cor-
respond to six large specifications intended for the analysis of security properties in
the context of the Android platform. Each consists of a bundle of Android applications
installed on a mobile device for detecting security vulnerabilities that may arise due to
inter-application communication, adopted from [12].

For the first four objects of analysis, we do not have access to actual, modified ver-
sions of their Alloy specifications, and even if we did, there would not likely be enough
versions to provide data sufficient to support quantitative analyses. Thus, instead, we
used a mutation-based approach to create modified versions of the specifications. We
used edit operations for Alloy specifications [10] and incorporated into the MuAlloy
mutation system [64] to derive a list of mutation operators. Table 2 provides a list of
these mutation operators, together with short descriptions.

Table 2: Mutation Operators

Description

ADS Add a new signature
DLS Delete a signature without children
CSM Change the signature multiplicity,3 i.e., to set,

one, lone or some (one that is different from
the multiplicity defined in the original specifi-
cation)

ABS Make an abstract signature non-abstract or vice
versa

MOV Move a sub-signature to a new parent signature
ADF Add a new field to a signature declaration
DLF Delete a field from a signature declaration
CFM Change a multiplicity constraint in a field dec-

laration

To investigate RQ1 we
wished to apply our mutation
operators to create 30 modified
versions of each of our objects
of study. Because prior work
by Li et al. [31] showed that
users tend to modify Alloy
specifications incrementally by
small amounts, we chose to
create versions of our object
specifications by mutating
between one and 10% of the
relations in the specifications.
Given object specification S, for
each modified specification S′
of S to be created, we randomly
chose a number N in this range;

38 G. Zheng et al.

N denotes the number of mutations to apply to S. We then began randomly choosing
relations L in S′, then randomly choosing a mutation operator M applicable to L, and
applied M to S′. We did not allow a given L to be utilized more than once in this
process. Following each operator application, we ran Alloy on the current version of
S′ to ensure that it is a valid specification. We repeated this process until N mutations
had been inserted into S′. Ultimately, this process produced 30 modified versions of
each object specification, wherein each version contained a randomly selected number
of randomly selected mutations – a number no greater than 10% of the number of
relations in the original specification.

To investigate RQ2 we used a similar process; however, in this case our goal was to
“evolve” each object specification S iteratively. Given the original version S, we created
a successor version S1 by repeating the process of inserting a randomly selected number
of randomly selected mutations (again, a number no greater than 10% of the number of
relations in S). However, our next iteration applied this same process to S1 (which now
contains a number of mutations) to produce a version S2 that potentially contains more
mutations. Here, we say “potentially” because we did not place any restrictions on the
re-use of mutation operators or mutation locations in subsequent versions Sk of S; thus,
conceivably, a mutation could be “undone” in a subsequent version. We repeated this
process 30 times on each specification, thereby obtaining a sequence of specifications
that have evolved iteratively.

It is common for users of bounded verification techniques such as Alloy to increase
the scope of the analysis, in order to obtain greater confidence in the validity of the
specification. As the scope of analysis increases, the space of cases that must be exam-
ined expands dramatically. To investigate RQ3, we increased the scope of analysis on
each of our object specifications. Note that the only change in the specification between
two successive runs of the analyzer in this case was the scope of analysis.

To investigate RQ4 we used the dataset created for RQ1. To investigate RQ5, we
created six different app bundles, each containing 20 Android apps drawn from public
app repositories such as Google Play [2]. We then used the COVERT tool [1] to auto-
matically extract Alloy specifications from the app bundles. Given an original bundle
B, we created a successor version B′ by adding a new app or removing an existing app
(randomly selected) to/from the given bundle. The specifications automatically derived
from app bundles tend to evolve as apps are added to, or removed from, the bundles.
The resulting app bundles thus provide us with an ideal suite of evolving specifications
that can be used for our evaluation. We repeated this process 30 times on each of the
app bundles to produce 30 modified versions of each bundle specification.

4.2 Variables and Measures

Independent Variables As independent variables we wished to utilize PLATINUM, as
well as baseline techniques representing state of the art approaches capable of perform-
ing the same function as PLATINUM.

We consider the Alloy Analyzer (version 4.2) as a baseline technique to compare
against PLATINUM. The other potential baseline technique is Green [62], an optimiza-
tion technique that, during symbolic execution, memoizes and reuses the results of satis-
fiability checking. The current implementation of Green, however, has two fundamental

Reusing Constraint Solutions in Bounded Analysis of Relational Logic 39

problems in the context of this study. First, while Green supports the use of Integer and
Real variables in expressions, it does not support the use of boolean variables, which
are widely used in the context of Alloy’s relational logic. We were able to work around
this challenge, however, by modeling boolean variables as Green’s Integers and limit-
ing their size to zero and one – an approach suggested by Green’s developers. A more
insidious problem, however, is that the Green framework does not currently support
constraints with the disjunction operator. Because Alloy specifications are in relational
logic, native support for the disjunction operator is essential to effectively analyze such
specifications. This issue has been reported to the Green repository [4], and we have
been in contact with the authors about it; however, to date, the issue has not been re-
solved and there are no workarounds for it. Thus, we were ultimately unable to use
Green as a baseline technique.

Additional independent variables used were (b) the size of specifications in terms
of relations in the relational logic, (c) the number of mutation operations, (d) the type
of mutation operations, and (e) the scope of the analysis.

Dependent Variables We measure several dependent variables. The first variable, anal-
ysis time, tracks performance directly. Here, we measure the wall clock time required
to run (1) a complete Alloy analysis and (2) a complete PLATINUM analysis on each
specification considered. The second variable is the number of unique, independently
analyzable slices produced by PLATINUM for each specification under analysis. The
third variable is the number of slices for which solutions are already available for each
specification under analysis. Finally, the fourth variable is the size of the generated CNF
formulas that must be solved by the underlying SAT solver. In the last case, we record
the number of CNF variables and clauses produced by each of the two techniques when
translating high-level Alloy specifications into SAT formulas.

4.3 Study Operation

For RQ1 and RQ3, for each of our specification pairs, we applied the Alloy Analyzer
and PLATINUM, measuring the time required by each approach, and the number of
variables and clauses at the SAT level produced by each tool.

For RQ2, for each of our specification sequences, we applied both the Alloy Ana-
lyzer and PLATINUM to each pair of successive specifications in the sequence, measur-
ing, for each iteration, the time required by each approach, the size of the SAT formula
produced by each tool, and the number of slices reused across sequences.

For RQ4, for each of our specification pairs, we applied PLATINUM, measuring the
time required for formula restructuring, including the slicing and canonicalization steps.

Finally, for RQ5, for each of the specification pairs extracted from app bundles, we
applied both the Alloy Analyzer and PLATINUM, measuring the time required by each
approach.

All of our runs of the Alloy Analyzer and PLATINUM were conducted on an 8-core
2.0 GHz AMD Opteron 6128 system with 40 GB of memory. Both techniques leveraged
SAT4J as the SAT solver across the entire study to keep extraneous variables constant.

40 G. Zheng et al.

4.4 Threats to Validity

External validity threats concern the generalization of our findings. We have studied
ten sets of Alloy specifications and cannot claim that they are representative of all
such specifications. Additionally, our modified specifications for the first four objects
of analysis were created via a mutation approach, and while this allows us to obtain
large amounts of data, these objects may not directly represent modified specifications
that exist in practice. To reduce this threat and help determine whether our results may
generalize, we conducted additional studies using real-world software systems, where
both the Alloy specifications and their revisions are automatically extracted from evolv-
ing bundles of real Android apps. Finally, different versions of the Alloy Analyzer may
leverage different translation algorithms to CNF, and this may affect the execution time
of the analyzer. To reduce this threat we used the latest stable release of the Alloy Ana-
lyzer, Alloy Analyzer 4.2, for all runs collected in the study.

Construct validity threats concern our metrics and measures; we are aware of no
such threats in this case.

4.5 Results for RQ1 (Small Changes)

(a)

(b)

Fig. 2: Sizes of generated CNF formulas in terms of
the number of (a) variables and (b) clauses produced
by the Alloy Analyzer and PLATINUM across muta-
tions for each object of study.

We first assess the effective-
ness of PLATINUM with respect
to the incremental changes de-
rived from our first four ob-
ject specifications. The boxplots
in Fig. 2 depict the size of
the generated CNF formulas,
given as the number of variables
(Fig. 2a) and clauses (Fig. 2b)
across mutations for each ob-
ject of study. The results show
that in comparison to the Alloy
Analyzer, PLATINUM’s transla-
tion of relational logic specifi-
cations results in much smaller
and simpler SAT formulas, and
the numbers of CNF variables
and clauses generated by PLAT-
INUM were smaller than the
numbers generated by Alloy.
Specifically, in the analyses
of the CSOS, Decider, Ecom-
merce, and Wordpress specifica-
tions, the numbers of variables
and the numbers of clauses in the formulas produced by PLATINUM on average were
4.5/2.6/5.1/3.5 and 2.1/1.4/2.0/1.7 times lower, respectively, than the numbers in the
formulas produced by the Alloy Analyzer. This is because already analyzed slices do

Reusing Constraint Solutions in Bounded Analysis of Relational Logic 41

not need to be translated into SAT formulas, thus reducing the sizes of the generated
CNF formulas.

Table 3: Performance Statistics

Alloy PLATINUM

Analysis Analysis
% Improvement

Time (S) Time (S)
Ecommerce 280.92 49.69 82.31%
CSOS 120.64 56.71 52.99%
Wordpress 57.19 47.57 16.82%
Decider 27.38 5.69 79.21%
Average 121.53 39.91 67.16%

Table 3 shows the results
of a comparison of the aver-
age analysis times required by
the Alloy Analyzer and PLAT-
INUM across the four objects of
study. On average, PLATINUM
exhibited a 67.16% improve-
ment over the Alloy Analyzer,
with the average improvement
across objects of study ranging
from 16.82% to 82.31%.

These results demonstrate the potential effectiveness of our optimization technique,
because in every case, the analysis time required by PLATINUM to find solution in-
stances of mutated specifications was less than that required by the state of the art
analysis techniques.

4.6 Results for RQ2

(Successive Changes)

Fig. 3: Speedup and reuse during successive mu-
tation analyses across subject domains. The left
column represents scatter plots of time ratios
(Analysis time taken by PLATINUM / Analysis
time taken by Alloy), and the right column rep-
resents scatter plots of reuse ratios (#Variables
in the SAT formula transformed by PLATINUM
/ #Variables in the SAT formula transformed by
the Alloy Analyzer) across systems.

To assess the effectiveness of PLAT-
INUM in accelerating analysis in suc-
cessive runs on evolving specifica-
tions we use two performance met-
rics: time ratio (TR) and variable
ratio (VR). We define the time ra-
tio as tP

tA
, where tP is the analysis

time taken by PLATINUM and tA is
the analysis time taken by the Al-
loy Analyzer. Intuitively, lower val-
ues of TR imply greater speedup. A
TR of 0.5, for example, indicates that
PLATINUM is two times faster than
the Alloy analysis of the same spec-
ification, whereas a TR of 0.1 in-
dicates that PLATINUM is 10 times
faster. Similarly, we define the vari-
able ratio as varP

varA
, where varP is the

number of variables in a SAT for-
mula produced by PLATINUM and
varA is the number of variables in
a SAT formula produced by the Al-
loy Analyzer for the same specifica-
tion. Again, lower values of VR im-
ply that there are fewer variables in a

42 G. Zheng et al.

formula generated by PLATINUM than in a formula generated by the Alloy Analyzer.
We started PLATINUM with an empty cache, and then analyzed each mutation in turn,
continually populating the cache.

Fig. 3 presents a pair of diagrams for each of the four object specifications, demon-
strating speedup and reuse during successive mutation analyses. The left column repre-
sents scatter plots of time ratios across subject domains, and the right column represents
scatter plots of variable ratios. All four sets of experiments exhibit similar behavior: in
every case, and for every revision, the analysis time taken by PLATINUM is less than
that of using the Alloy Analyzer (values of TR are always less than 1), and the num-
ber of variables in formulas generated by PLATINUM is significantly less than those
generated by the Alloy Analyzer. The speedup, however, varies for different mutations.
Variation across mutations is expected, given that the size and complexity of the muta-
tions produced in successive runs differ greatly. In a few cases, the values for TR jump.
Investigation of the data shows that this occurred because the mutations present in those
cases contained several new slices not yet observed, which in turn reduced the amount
of reuse. Despite these few cases, the empirical results suggest that significant speedup
was possible in all cases.

4.7 Results for RQ3 (Scope Changes)

Alloy’s analysis is exhaustive, yet bounded, up to a user-specified scope on the size
of the domains. In cases in which the analyzer fails to produce a solution that satisfies
specification constraints within a given scope, a solution may be found in a larger scope.
In practice, Alloy users often conduct consecutive analysis runs of specifications, ap-
plying small increases in the analysis scope, in the hopes of gaining further confidence
in their results. It has been shown that 17.6% of consecutive Alloy analyses differ only
in terms of their analysis scopes [31].

To examine how our optimization approach responds to increases in analysis scope,
for each specification, we gradually increased the scope of the analysis. We set the
initial scope for the analysis of each specification to the scope that had already been
specified by its original modeler, reasoning that whoever had developed and analyzed
the specification is most likely the best judge of the scope that is needed. The initial
scopes for the CSOS, Decider, Ecommerce, and Wordpress specifications were 51, 27,
50, and 32, respectively. We started PLATINUM with an empty cache for the analysis of
each specification, and gradually populated it as the analysis scope increased.

Table 4: Analysis Time Improvements Over In-
creasing Sizes of Analysis Scope

Scope increase +1 +2 +3 +4 +5

CSOS 0.765 0.122 0.098 0.118 0.035
Decider 0.393 0.036 0.038 0.023 0.034
Ecommerce 0.727 0.234 0.413 0.049 0.031
Wordpress 0.486 0.107 0.079 0.053 0.079

Table 4 shows the time ratios (TRs)
measured as the analysis scope increased
for each of the objects of study. Re-
call that lower values for TR indicate
that greater acceleration was achieved
by our optimization technique. The data
shows that overall as scope increased, TR
tended to decrease. For example, for the
Ecommerce system, the lowest value for
TR occurred when the scope increased to
five, resulting in a 1 / 0.031 = 32 fold analysis speed acceleration.

Reusing Constraint Solutions in Bounded Analysis of Relational Logic 43

4.8 Results for RQ4 (Overhead)

Table 5: Analysis Times With Respect to Over-
head Incurred Due to Restructuring of Formulas

Slicing Canon
%overhead

Time(ms) Time(ms)
CSOS 7 268 0.36%
Decider 3 41 0.63%
Ecommerce 10 116 1.01%
Wordpress 5 138 2.44%
Average 6.25 140.75 1.11%

We next evaluate the performance of
PLATINUM’s formula restructuring anal-
ysis. Table 5 shows the time required to
restructure relational logic formulas into
their canonical forms. The first column
represents the time spent decomposing
formulas into independent slices, and the
second column represents the time spent
canonicalizing them into normalized for-
mats.

As the data shows, the analysis time overhead incurred by these two steps is 1.11%
on average, and no greater than 2.44% in any case. This is negligible, particularly when
compared to the analysis time overhead incurred by the Alloy Analyzer (cf. Table 3).
While the restructuring steps introduce little overhead, they substantially enable reuse
of slice solutions, which in turn greatly reduces analysis costs.

Fig. 4: Analysis times for the Alloy Analyzer and PLATINUM across specifications from real-
world Android apps.

4.9 Results for RQ5 (Real-World Specifications)

Finally, to assess the improvements one could expect in practice using PLATINUM, we
used Alloy specifications that were automatically extracted from real-world software
systems and evolved versions thereof, as described in Section 4.1. Fig. 4 shows the re-
sults of a comparison of the analysis time required by each of the two techniques as
boxplots across the six bundle specifications. As the results show, PLATINUM exhibited
a 66.4% improvement, on average, over the Alloy Analyzer; the average improvement
across app bundles ranged from 44.2% to 78.4%, indicating relative stability across

44 G. Zheng et al.

bundles. These results further confirm those obtained through our mutation-based ex-
periments, corroborating the effectiveness of PLATINUM in improving the analysis time
required by the Alloy Analyzer to find solution instances of revised specifications.

5 Related Work

The literature contains a large body of research related to ours. Here, we provide an
overview of the most notable and closely related work and examine it in the light of our
research.

The widespread use of Alloy has prompted a number of extensions to the language
and its underlying automated analyzer [10, 23, 24, 25, 27, 32, 37, 39, 40, 41, 45, 53,
58, 59]. Among these, Titanium [10] presents an exploration space reduction strategy
that narrows the space of values to be explored by an underlying constraint solver. This
approach, however, requires an entire solution set to be produced for the original spec-
ification, to determine tighter bounds for certain relations in the revised specification.
Our work differs primarily in its emphasis on reducing constraints into a more concise
form at the level of relational logic abstractions, which in turn allows for substantial
reuse of analysis efforts in subsequent analyses. Research efforts on bound adjustment
and solution reuse are complementary in that, in spite of the adjustments made to the
analysis bounds, the solver still needs to solve for the shared constraints.

Uzuncaova and Khurshid [60] partition a specification into base and derived slices,
in which a solution to the base slice can be extended to produce a solution for the
entire specification. PLATINUM is fundamentally different from this work in that the
problem addressed by Uzuncaova and Khurshid assumes a fixed specification and does
not consider specification evolution. Further, their approach does not eliminate the need
to solve shared, canonicalized constraints across analyses.

Rosner et al. [51] present a technique, Ranger, that leverages a linear ordering of
the solution space to support parallel analysis of first-order logic specifications. While
the linear ordering enables partitioning of the solution space into ranges, there is no
clear way in which it can be extended with incremental analysis capabilities, which are
crucial for effective analysis of evolving specifications.

Several techniques attempt to explore specification instances derived from Alloy’s
relational logic constraints [18, 33, 44, 45, 56]. Macedo et al. [33] examine scenario ex-
plorations in the context of relational logic. Aluminum [45] extends the Alloy Analyzer
to generate minimal specification instances. Both of these efforts focus primarily on the
order in which solutions are produced, as opposed to facilitating analysis of evolving
specifications, which is our goal. Montaghami and Rayside [39] extend the Alloy lan-
guage to explicitly support partial modeling. Their work, however, does not consider
evolving specifications. In fact, it is widely recognized that efficient techniques for ana-
lyzing Alloy specifications are needed [58]. To the best of our knowledge, however, no
prior research has attempted to reduce the need to call a solver to improve the efficiency
of the analysis of evolving Alloy specifications.

The technique most closely related to ours is Green [62]; this technique has been
the subject of several more recent papers [6, 7, 29, 47, 49, 50, 65], that improve on its
algorithm. As noted in Section 1, Green and its offshoots also rely on back-end con-

Reusing Constraint Solutions in Bounded Analysis of Relational Logic 45

straint solving engines. In contrast to all of this prior work, the problem we address
in this paper involves supporting the evolutionary analysis of relational logic. Among
other things, this requires the development of both original slicing and canonicalization
approaches appropriate for models specified in Alloy’s relational logic. Moreover, nei-
ther Green’s slicer nor its canonicalizer take into account the disjunction operator [4].
While the lack of support for the disjunction operator might be allowable in the con-
text of symbolic execution, that support is essential in the context of first-order logic
to allow an approach to effectively recognize opportunities for constraint reduction and
reuse. Further, while most of the prior techniques use a classic lexicographic order-
ing of the variables before transforming each slice into a canonical format, PLATINUM
leverages a reverse shortlex order, in which the variables are first sorted by their weight
and then sorted lexicographically. This choice improves the identification of syntactic
equivalence between different slices. To the best of our knowledge, PLATINUM is the
first technique for evolutionary analysis of relational logic specification that operates
without requiring an entire solution set for the original specification.

6 Conclusions

We have presented PLATINUM, a novel extension to the Alloy Analyzer that substan-
tially improves the process of analyzing evolving Alloy specifications. Our approach
proceeds by storing solved constraints incrementally, and reusing them within subse-
quent analysis of a revised specification. It also omits redundant constraints from spec-
ifications before translating them into formulas that will be sent to constraint solvers.
Our evaluation of PLATINUM shows that it is able to support substantial reuse of con-
straint solutions across analyses of evolving specifications. Our empirical results show
significant speedup over the Alloy Analyzer in various scenarios. Our evaluation also
shows that as the scope of analysis increases, PLATINUM achieves even further im-
provements, and that the overhead associated with the approach is negligible. Finally,
our evaluation shows that PLATINUM continues to result in savings on specifications
extracted from real-world software systems.

Our future work involves extending the optimization ideas presented here to lever-
age domain-specific knowledge. Specifically, we intend to explore the possibility of
driving the automated discovery of domain-specific optimizations, wherein each system
of interest can have bounded verification tailored to its specific characteristics. While
such optimizations historically have arisen from the insights of a few dozen experts in
software verification, we envision a bounded speculative analysis to identify how opera-
tions permissible within a certain domain may impact the exploration space of bounded
analyses, thereby facilitating efficient analysis of specifications in a given domain.

Acknowledgment

We would like to thank the anonymous reviewers for their valuable comments. This
work was supported in part by awards CCF-1755890 and CCF-1618132 from the Na-
tional Science Foundation.

46 G. Zheng et al.

References

[1] Covert analysis tool. http://www.sdalab.com/projects/covert (2017)
[2] Google play market. http://play.google.com/store/apps/ (2017)
[3] WordPress. http://codex.wordpress.org/Database Description/3.3 (2017)
[4] Green solver. https://github.com/green-solver/green-

solver/tree/master/green/test/za/ac/sun/cs/green/misc (2018)
[5] Platinum repository. https://sites.google.com/view/platinum-repository (2019)
[6] Aquino, A., Bianchi, F.A., Chen, M., Denaro, G., Pezzè, M.: Reusing constraint

proofs in program analysis. In: Proceedings of the International Symposium on
Software Testing and Analysis. pp. 305–315 (2015)

[7] Aquino, A., Denaro, G., Pezzè, M.: Heuristically Matching Solution Spaces of
Arithmetic Formulas to Efficiently Reuse Solutions. In: Proceedings of the 39th
International Conference on Software Engineering. pp. 427–437. ICSE ’17, IEEE
Press, Piscataway, NJ, USA (2017), https://doi.org/10.1109/ICSE.2017.46

[8] Bagheri, H., Kang, E., Malek, S., Jackson, D.: Detection of design flaws in the an-
droid permission protocol through bounded verification. In: Bjørner, N., de Boer,
F.S. (eds.) FM 2015: Formal Methods - 20th International Symposium, Oslo,
Norway, June 24-26, 2015, Proceedings. Lecture Notes in Computer Science,
vol. 9109, pp. 73–89. Springer (2015), https://doi.org/10.1007/978-3-319-19249-
9 6

[9] Bagheri, H., Kang, E., Malek, S., Jackson, D.: A formal approach for detection
of security flaws in the android permission system. Formal Asp. Comput. 30(5),
525–544 (2018), https://doi.org/10.1007/s00165-017-0445-z

[10] Bagheri, H., Malek, S.: Titanium: Efficient analysis of evolving alloy specifica-
tions. In: Proceedings of the International Symposium on the Foundations of Soft-
ware Engineering (2016)

[11] Bagheri, H., Sadeghi, A., Behrouz, R.J., Malek, S.: Practical, formal synthesis and
automatic enforcement of security policies for android. In: 46th Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks, DSN 2016,
Toulouse, France, June 28 - July 1, 2016. pp. 514–525. IEEE Computer Society
(2016), https://doi.org/10.1109/DSN.2016.53

[12] Bagheri, H., Sadeghi, A., Garcia, J., Malek, S.: Covert: Compositional analysis of
android inter-app permission leakage. IEEE Transactions on Software Engineer-
ing (2015)

[13] Bagheri, H., Sullivan, K.J.: Model-driven synthesis of formally precise, styl-
ized software architectures. Formal Asp. Comput. 28(3), 441–467 (2016),
https://doi.org/10.1007/s00165-016-0360-8

[14] Bagheri, H., Tang, C., Sullivan, K.: Trademaker: Automated dynamic analysis
of synthesized tradespaces. In: Proceedings of the 36th International Conference
on Software Engineering. pp. 106–116. ICSE 2014, ACM, New York, NY, USA
(2014), http://doi.acm.org/10.1145/2568225.2568291

[15] Bagheri, H., Tang, C., Sullivan, K.: Automated synthesis and dynamic analysis
of tradeoff spaces for object-relational mapping. IEEE Transactions on Software
Engineering 43(2), 145–163 (2017)

Reusing Constraint Solutions in Bounded Analysis of Relational Logic 47

[16] Bagheri, H., Wang, J., Aerts, J., Malek, S.: Efficient, evolutionary secu-
rity analysis of interacting android apps. In: 2018 IEEE International Con-
ference on Software Maintenance and Evolution, ICSME 2018, Madrid,
Spain, September 23-29, 2018. pp. 357–368. IEEE Computer Society (2018),
https://doi.org/10.1109/ICSME.2018.00044

[17] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
Third Edition. The MIT Press, 3rd edn. (2009)

[18] Cunha, A., Macedo, N., Guimaraes, T.: Target oriented relational model finding.
In: Proceedings of the International Conference on Fundamental Approaches to
Software Engineering. pp. 17–31 (2014)

[19] De Ita Luna, G., Marcial-Romero, J.R., Hernandez, J.: The Incremen-
tal Satisfiability Problem for a Two Conjunctive Normal Form. Elec-
tronic Notes in Theoretical Computer Science 328, 31–45 (Dec 2016),
http://www.sciencedirect.com/science/article/pii/S1571066116301013

[20] Devdatta Akhawe, Adam Barth, Peifung E. Lamy, John Mitchelly, Dawn Song:
Towards a Formal Foundation of Web Security. In: Proceedings of the 23rd Inter-
national Conference on Computer Security Foundations Symposium (CSF). pp.
290–304 (2010)

[21] Een, N., Sorensson, N.: Translating pseudo-boolean constraints into sat. Journal
on Satisfiability, Boolean Modeling and Computation 2, 1–26 (2006)

[22] Egly, U., Lonsing, F., Oetsch, J.: Automated Benchmarking of Incremental SAT
and QBF Solvers. In: Logic for Programming, Artificial Intelligence, and Reason-
ing. pp. 178–186. Lecture Notes in Computer Science, Springer, Berlin, Heidel-
berg (Nov 2015)

[23] Galeotti, J.P., Rosner, N., Pombo, C.G.L., Frias, M.F.: Analysis of invariants for
efficient bounded verification. In: Proceedings of International Symposium on
Software Testing and Analysis. pp. 25–36 (2010)

[24] Galeotti, J.P., Rosner, N., Pombo, C.G.L., Frias, M.F.: TACO: Efficient SAT-based
bounded verification using symmetry breaking and tight bounds. IEEE Transac-
tions on Software Engineering 39(9), 1283–1307 (2013)

[25] Ganov, S., Khurshid, S., Perry, D.E.: Annotations for alloy: Automated incremen-
tal analysis using domain specific solvers. In: Proc. of ICFEM. pp. 414–429 (2012)

[26] Hao, J., Kang, E., Sun, J., Jackson, D.: Designing Minimal Effective Normative
Systems with the Help of Lightweight Formal Methods. In: Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering. pp. 50–60. FSE 2016, ACM, New York, NY, USA (2016),
http://doi.acm.org/10.1145/2950290.2950307

[27] Heaven, W., Russo, A.: Enhancing the alloy analyzer with patterns of analysis. In:
Workshop on Logic-based Methods in Programming Environments (2005)

[28] Jackson, D.: Software Abstractions. MIT Press, 2nd edn. (2012)
[29] Jia, X., Ghezzi, C., Ying, S.: Enhancing reuse of constraint solutions to improve

symbolic execution. In: Proceedings of the International Symposium on Software
Testing and Analysis. pp. 177–187 (2015)

[30] Lau, S.Q.: Domain Analysis of E-Commerce Systems Using Feature-Based
Model Templates. Master’s thesis, University of Waterloo, Canada (2006)

48 G. Zheng et al.

[31] Li, X., Shannon, D., Walker, J., Khurshid, S., Marinov, D.: Analyzing the
Uses of a Software Modeling Tool. Electronic Notes in Theoretical Computer
Science 164(2), 3–18 (Oct 2006). https://doi.org/10.1016/j.entcs.2006.10.001,
http://www.sciencedirect.com/science/article/pii/S1571066106004786

[32] Macedo, N., Brunel, J., Chemouil, D., Cunha, A., Kuperberg, D.: Lightweight
Specification and Analysis of Dynamic Systems with Rich Configurations. In:
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering. pp. 373–383. FSE 2016, ACM, New York, NY,
USA (2016), http://doi.acm.org/10.1145/2950290.2950318

[33] Macedo, N., Cunha, A., Guimaraes, T.: Exploring scenario exploration. In: Pro-
ceedings of the International Conference on Fundamental Approaches to Software
Engineering. pp. 301–315 (2015)

[34] Maldonado-Lopez, F.A., Chavarriaga, J., Donoso, Y.: Detecting Network Policy
Conflicts Using Alloy. In: Abstract State Machines, Alloy, B, TLA, VDM, and
Z. pp. 314–317. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
(Jun 2014)

[35] Mansoor, N., Saddler, J.A., Silva, B., Bagheri, H., Cohen, M.B., Farritor, S.: Mod-
eling and testing a family of surgical robots: an experience report. In: Leav-
ens, G.T., Garcia, A., Pasareanu, C.S. (eds.) Proceedings of the 2018 ACM
Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake
Buena Vista, FL, USA, November 04-09, 2018. pp. 785–790. ACM (2018),
https://doi.org/10.1145/3236024.3275534

[36] Marinov, D., Khurshid, S.: What will the user do (next) in the tool? In: Proceedings
of the ACM SIGSOFT First Alloy Workshop. pp. 98–99. ACM (2006)

[37] Milicevic, A., Rayside, D., Yessenov, K., Jackson, D.: Unifying execution of im-
perative and declarative code. In: Proceedings of the 33rd International Confer-
ence on Software Engineering. pp. 511–520. ICSE ’11, ACM, New York, NY,
USA (2011), http://doi.acm.org/10.1145/1985793.1985863

[38] Mirzaei, N., Garcia, J., Bagheri, H., Sadeghi, A., Malek, S.: Reducing com-
binatorics in GUI testing of android applications. In: Dillon, L.K., Visser, W.,
Williams, L. (eds.) Proceedings of the 38th International Conference on Software
Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016. pp. 559–570. ACM
(2016), https://doi.org/10.1145/2884781.2884853

[39] Montaghami, V., Rayside, D.: Extending Alloy with partial instances. In: Proceed-
ings of the International Conferece on Abstract State Machines, Alloy, B, VDM,
and Z. pp. 122–135 (2012)

[40] Montaghami, V., Rayside, D.: Staged evaluation of partial instances in a relational
model finder. In: Proceedings of the International Conferece on Abstract State
Machines, Alloy, B, VDM, and Z. pp. 318–323 (2014)

[41] Montaghami, V., Rayside, D.: Bordeaux: A tool for thinking outside the box. In:
Proceedings of the International Conference on Fundamental Approaches to Soft-
ware Engineering. pp. 22–39 (2017)

[42] Nadel, A., Ryvchin, V., Strichman, O.: Ultimately Incremental SAT. In: Theory
and Applications of Satisfiability Testing (SAT 2014). pp. 206–218. Lecture Notes
in Computer Science, Springer, Cham (Jul 2014)

Reusing Constraint Solutions in Bounded Analysis of Relational Logic 49

[43] Near, J.P., Jackson, D.: Derailer: Interactive security analysis for web applications.
In: Proceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering. pp. 587–598. ASE ’14, ACM, New York, NY, USA (2014),
http://doi.acm.org/10.1145/2642937.2643012

[44] Nelson, T., Danas, N., Dougherty, D.J., Krishnamurthi, S.: The Power of ”Why”
and ”Why Not”: Enriching Scenario Exploration with Provenance. In: Pro-
ceedings of the 2017 11th Joint Meeting on Foundations of Software Engi-
neering. pp. 106–116. ESEC/FSE 2017, ACM, New York, NY, USA (2017),
http://doi.acm.org/10.1145/3106237.3106272

[45] Nelson, T., Saghafi, S., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Aluminum:
Principled scenario exploration through minimality. In: Proceedings of the Inter-
national Conference on Software Engineering. pp. 232–241 (2013)

[46] Nijjar, J., Bultan, T.: Bounded verification of ruby on rails data models.
In: Proceedings of the 2011 International Symposium on Software Testing
and Analysis. pp. 67–77. ISSTA ’11, ACM, New York, NY, USA (2011),
http://doi.acm.org/10.1145/2001420.2001429

[47] Person, S., Yang, G., Rungta, N., Khurshid, S.: Directed incremental symbolic
execution. In: Proceedings of the Conference on Programming Language Design
and Implementation. pp. 504–515 (2011)

[48] Ponzio, P., Aguirre, N., Frias, M.F., Visser, W.: Field-exhaustive Testing. In: Pro-
ceedings of the 2016 24th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering. pp. 908–919. FSE 2016, ACM, New York, NY,
USA (2016), http://doi.acm.org/10.1145/2950290.2950336

[49] Qiu, R., Yang, G., Pasareanu, C.S., Khurshid, S.: Compositional symbolic exe-
cution with memoized replay. In: Proceedings of the International Conference on
Software Engineering (2015)

[50] Ramos, D.A., Engler, D.R.: Practical, low-effort equivalence verification of real
code. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verification, Lec-
ture Notes in Computer Science, vol. 6806, pp. 669–685. Springer Berlin Heidel-
berg (2011), htt p : //dx.doi.org/10.1007/978−3−642−22110−155

[51] Rosner, N., Siddiqui, J.H., Aguirre, N., Khurshid, S., Frias, M.F.: Ranger: Parallel
analysis of Alloy models by range partitioning. In: Proceeding of the International
Conference on Automated Software Engineering. pp. 147–157 (2013)

[52] Ruchansky, N., Proserpio, D.: A (Not) NICE Way to Verify the Openflow
Switch Specification: Formal Modelling of the Openflow Switch Using Al-
loy. In: Proceedings of the ACM SIGCOMM 2013 Conference on SIG-
COMM. pp. 527–528. SIGCOMM ’13, ACM, New York, NY, USA (2013),
http://doi.acm.org/10.1145/2486001.2491711

[53] Semerath, O., Varas, A., Varra, D.: Iterative and Incremental Model Generation
by Logic Solvers. In: Fundamental Approaches to Software Engineering. pp. 87–
103. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (Apr 2016),
htt ps : //link.springer.com/chapter/10.1007/978−3−662−49665−76

[54] Stevens, C., Bagheri, H.: Reducing run-time adaptation space via analysis of pos-
sible utility bounds. In: Proceedings of the 42nd International Conference on Soft-
ware Engineering. ICSE 2020, ACM (2020)

50 G. Zheng et al.

[55] Taghdiri, M.: Inferring specifications to detect errors in code. In: Proceedings
of the 19th IEEE International Conference on Automated Software Engineering.
pp. 144–153. ASE ’04, IEEE Computer Society, Washington, DC, USA (2004),
http://dx.doi.org/10.1109/ASE.2004.42

[56] Torlak, E.: A Constraint Solver for Software Engineering: Finding Models
and Cores of Large Relational Specifications. PhD thesis, MIT (Feb 2009),
http://alloy.mit.edu/kodkod/

[57] Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Proceedings of the
13th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. pp. 632–647. TACAS’07, Springer-Verlag, Berlin, Heidel-
berg (2007), http://dl.acm.org/citation.cfm?id=1763507.1763571

[58] Torlak, E., Taghdiri, M., Dennis, G., Near, J.P.: Applications and extensions of Al-
loy: Past, present and future. Mathematical Structures in Computer Science 23(4),
915–933 (2013)

[59] Uzuncaova, E., Khurshid, S.: Kato: A program slicing tool for declarative specifi-
cations. In: Proceedings of the International Conference on Software Engineering.
pp. 767–770 (2007)

[60] Uzuncaova, E., Khurshid, S.: Constraint prioritization for efficient analysis of
declarative models. In: Proceedings of the International Symposium on Formal
Methods (2008)

[61] Uzuncaova, E., Khurshid, S., Batory, D.: Incremental test generation for software
product lines. IEEE Trans. Software Eng. 36(3), 309–322 (2010)

[62] Visser, W., Geldenhuys, J., , Dwyer, M.B.: Green: Reducing, reusing and recy-
cling constraints in program analysis. In: Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering. pp. 58:1–
58:11 (2012)

[63] Wang, J., Bagheri, H., Cohen, M.B.: An evolutionary approach for analyzing alloy
specifications. In: Huchard, M., Kästner, C., Fraser, G. (eds.) Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineering,
ASE 2018, Montpellier, France, September 3-7, 2018. pp. 820–825. ACM (2018),
https://doi.org/10.1145/3238147.3240468

[64] Wang, K.: MuAlloy : an automated mutation system for alloy. Thesis (May 2015),
https://repositories.lib.utexas.edu/handle/2152/31865

[65] Yang, G., Păsăreanu, C.S., Khurshid, S.: Memoized symbolic execution. In: Pro-
ceedings of the International Symposium on Software Testing and Analysis. pp.
144–154 (2012)

[66] Zave, P.: Using Lightweight Modeling to Understand Chord.
SIGCOMM Comput. Commun. Rev. 42(2), 49–57 (Mar 2012),
http://doi.acm.org/10.1145/2185376.2185383

Reusing Constraint Solutions in Bounded Analysis of Relational Logic 51

The images or other third party material in this chapter are included in the chap-
ter’s Creative Commons license, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which per-
mits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

52 G. Zheng et al.

Integrating Topological Proofs with Model
Checking to Instrument Iterative Design

Claudio Menghi1 , Alessandro Maria Rizzi2, and Anna Bernasconi2

1 University of Luxembourg, Luxembourg, Luxembourg
claudio.menghi@uni.lu

2 Politecnico di Milano, Milano, Italy
{alessandromaria.rizzi,anna.bernasconi}@polimi.it

Abstract. System development is not a linear, one-shot process. It pro-
ceeds through refinements and revisions. To support assurance that the
system satisfies its requirements, it is desirable that continuous verifica-
tion can be performed after each refinement or revision step. To achieve
practical adoption, formal verification must accommodate continuous
verification efficiently and effectively. Model checking provides develop-
ers with information useful to improve their models only when a property
is not satisfied, i.e., when a counterexample is returned. However, it is
desirable to have some useful information also when a property is instead
satisfied. To address this problem we propose TOrPEDO, an approach
that supports verification in two complementary forms: model checking
and proofs. While model checking is typically used to pinpoint model
behaviors that violate requirements, proofs can instead explain why re-
quirements are satisfied. In our work, we introduce a specific notion of
proof, called Topological Proof. A topological proof produces a slice of
the original model that justifies the property satisfaction. Because mod-
els can be incomplete, TOrPEDO supports reasoning on requirements
satisfaction, violation, and possible satisfaction (in the case where satis-
faction depends on unknown parts of the model). Evaluation is performed
by checking how topological proofs support software development on 12
modeling scenarios and 15 different properties obtained from 3 exam-
ples from literature. Results show that: (i) topological proofs are ≈60%
smaller than the original models; (ii) after a revision, in ≈78% of cases,
the property can be re-verified by relying on a simple syntactic check.

Keywords: Topological Proofs · Iterative Design · Model Checking ·
Theorem Proving · Unsatisfiable Core.

1 Introduction

One of the goals of software engineering and formal methods is to provide au-
tomated verification tools that support designers in producing models of an
envisioned system which follows a set of properties of interest. Designers benefit
from automated support to understand why their system does not behave as
expected (e.g., counterexamples), but they might find it also useful to retrieve

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 53–74, 2020.
https://doi.org/10.1007/978-3-030-45234-6_3

http://orcid.org/0000-0001-5303-8481
http://orcid.org/0000-0001-8016-5750
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_3&domain=pdf

information when the system already follows the specified requirements. While
model checkers provide the former, theorem provers sustain the latter. Theorem
provers usually rely on some form of deductive mechanism that, given a set of
axioms, iteratively applies a set of rules until a theorem is proved. The proof
consists of the specific sequence of deductive rules applied to prove the theo-
rem. In the literature, many approaches have dealt with an integration of model
checking and theorem proving at various levels (e.g., [48,60,53,36]). These ap-
proaches are oriented to produce certified model checking procedures rather than
tools that actually help the design process. Even when the idea is to provide a
practically useful framework [49,50], the output consists of deductive proofs that
are usually difficult to understand and hardly connectable with the designer’s
modeling choices. Moreover, verification techniques only take into account com-
pletely specified designs. This is a remarkable limitation in practical contexts,
where the designer may start by providing an initial, high-level version of the
model, which is iteratively narrowed down as design progresses and uncertain-
ties are removed [13,42,8,19,65,43]. A recent work [4,5] considered cases in which
a partial knowledge of the system model is available. However, the presented
approach was mainly theoretical and lacked a practical implementation.

We formulate our problem on models that contain uncertain parts. We choose
Partial Kripke Structures (PKSs) as a formalism to represent general models for
the following reasons: (i) PKSs have been used in requirement elicitation to
reason about system behavior from different points of view [19,8], and are a
common theoretical reference language used in the formal method community
for the specification of uncertain models (e.g, [26,9,27,10]); (ii) other model-
ing formalisms commonly used in software development [23,64], such as Modal
Transition Systems [37] (MTSs), can be converted into PKSs through a simple
transformation [26] making our solution easily applicable to those models.

Kripke Structures (KSs) are particular instances of PKSs that represent com-
plete models. Requirements on the model are expressed in Linear-time Temporal
Logic (LTL). As such, the approach presented in the following is generic: it can
be applied on models that contain uncertain parts (PKSs) or not (KSs), and can
be easily adapted to support MTSs.

Verification techniques that consider PKSs return three alternative values:
true if the property holds in the partial model, false if it does not hold, and
maybe if the property possibly holds, i.e., its satisfaction depends on the parts
of the model that still need to be refined. As models are revised, i.e., they are
modified during design iterations, designers need support to understand why
properties are satisfied, or possibly satisfied.

A comprehensive and integrated design framework able to support software
designers in understanding such motivation is still missing. We tackle this prob-
lem by presenting TOrPEDO (TOpological Proof drivEn Development frame-
wOrk), a novel automated verification framework, that:

(i) supports a modeling formalism which allows a partial specification of the
system design;

54 C. Menghi et al.

(ii) allows performing analysis and verification in the context of systems in which
“incompleteness” represents a conceptual uncertainty;

(iii) provides guidance in producing model revisions through complementary out-
puts: counterexamples and proofs;

(iv) when the system is completely specified, allows understanding which changes
impact or not the satisfaction of certain properties.

TOrPEDO is based on the novel notion of topological proof (TP), which
tries to overcome the complexity of deductive proofs and is designed to make
proofs understandable on the original system design. A TP is a slice of the
original model that specifies which part of it impacts the property satisfaction.
If the slice defined by the TP is not preserved during a revision, there is no
assurance that the property holds (possibly holds) in the revised model. This
paper proposes an algorithm to compute topological proofs—which relies on the
notion of unsatisfiable cores (UCs) [56]—and proves its correctness on PKSs. It
also proposes an algorithm that checks whether a TP is preserved in a model
revision. This simple syntactic check avoids (in many cases) the execution of the
model checking procedure. While architectural decomposition and composition
of components can be considered during the system development [42], in this
work we present our solution by assuming that the system is modeled as a single
PKS. However, our framework can be extended to consider the composition of
components, such as the parallel composition of PKSs or MTSs. This can be done
by extracting the portions of the TP that refer to the different components.

TOrPEDO has been implemented on top of NuSMV [14] and PLTL-MUP [58].
The implementation has been exploited to evaluate TOrPEDO by considering
a set of examples coming from literature including both completely specified
and partially specified models. We considered 3 different example models and 4
variations for each model that was presented in the literature [12,20]. We con-
sidered 15 properties, i.e., 5 for each example, leading to a total of 60 (3×4×5)
scenarios that require the evaluation of a property on a model. We evaluated
how our framework supports model design by comparing the size of the gener-
ated topological proofs against the size of the original models. Results show that
topological proofs are ≈60% smaller than the original models. Moreover, after
a revision, in ≈78% of cases, our syntactic check avoids the re-execution of the
model checker.

Organization. Section 2 describes TOrPEDO. Section 3 discusses the back-
ground. Sections 4 and 5 present the theoretical results and the algorithms that
support TOrPEDO. Section 6 evaluates the achieved results. Section 7 discusses
related work. Section 8 concludes.

2 TOrPEDO

TOrPEDO is a proof based development framework which allows verifying PKSs
and evaluating their revisions. To illustrate TOrPEDO, we use a simple model
describing the states of a vacuum-cleaner robot that has to satisfy the require-
ments in Fig. 2, specified through LTL formulae and English natural language.

Integrating Model Checking and Topological Proofs 55

move = ⊥
suck = ⊥
on = ⊥

reached = ⊥

OFF

move = ⊥
suck = ⊥
on = �

reached =?

IDLE

move =?
suck = �
on = �

reached = �

CLEANING

move = �
suck =?
on = �

reached =?

MOVING

Fig. 1: PKS of a vacuum-cleaner robot.

LTL formulae

φ1 = G(suck → reached)
φ2 = G((¬move)W on)
φ3 = G(((¬move) ∧ on) → suck)
φ4 = ((¬suck)W(move ∧ (¬suck)))
Textual requirements

φ1: the robot is drawing dust (suck) only if
it has reached the cleaning site.
φ2: the robot must be turned on before it can
move.
φ3: if the robot is on and stationary (¬move),
it must be drawing dust (suck).
φ4: the robot must move before it is allowed
to draw dust (suck).

Fig. 2: Natural language and LTL for-
mulation of the requirements of the
vacuum-cleaner robot.
G and W are the “globally” and “weak
until” LTL operators.

The TOrPEDO framework is illustrated in Fig. 3 and carries out verification in
four phases: initial design, analysis, revision, and re-check.

������� ��	�
� � � � The model of the system is expressed using a PKS M
(1), which can be generated from other languages, along with the property of
interest φ, in LTL (2).

Running example. The PKS presented in Fig. 1 is defined over two atomic
propositions representing actions that a robot can perform: move, i.e., the agent
travels to the cleaning site; suck , i.e., the agent is drawing the dust, and two
atomic propositions representing conditions that can trigger actions: on, true
when the robot is turned on; reached , true when the robot has reached the
cleaning site. The state OFF represents the robot being shut down, IDLE the
robot being tuned on w.r.t. a cleaning call, MOVING the robot reaching the
cleaning site, and CLEANING the robot performing its duty. Each state is la-
beled with the actions move and suck and the conditions on and reached . Given
an action or condition α and a state s, we use the notation: α = � to indicate
that α occurs when the robot is in state s; α = ⊥ to indicate that α does not
occur when the robot is in state s; α =? to indicate that there is uncertainty on
whether α occurs when the robot is in state s.

�����	�	 � � � TOrPEDO provides automated analysis support, which in-
cludes the following elements:

(i) Information about what is wrong in the current design. This information in-
cludes a definitive-counterexample, which indicates a behavior that depends
on already performed design choices and violates the properties of interest.
The definitive-counterexample (3 ⊥-CE) can be used to produce a revised
version M ′ of M that satisfies or possibly satisfies the property of interest.

56 C. Menghi et al.

Initial
design

The image part with relationship ID
rId3 was not found in the file.

TOrPEDO

M: PKS

!: LTL

True,M’

False,M

Def-CEDef-CE⊥ ⊥-CE

inspire

⊤ Def-TP⊤ Def-TP
inspire

?
Poss-CE
Poss-TP?

Poss-CE
Poss-TP?
?-CE
?-TP

⊤ ⊤-TP

M’: PKS

Re-check
Correct
design

Correct
design

Correct
designRevisionAnalysis

10

11

13

1

1

2
3 4

1

2

3

4

5

6

7 7

9

9

8

10
10

11

12

Fig. 3: TOrPEDO structure. Continuous arrows represent inputs and outputs to
phases. Numbers are used to reference the image in the text.

(ii) Information about what is correct in the current design. This information
includes definitive-topological proofs (4 �-TP) that indicate a portion of
the design that ensures satisfaction of the property.

(iii) Information about what could be wrong/correct in the current design, de-
pending on how uncertainty is removed. This information includes: a possible-
counterexample (5 ?-CE), indicating a behavior (which depends on uncer-
tain actions and conditions) that violates the properties of interest, and a
possible-topological proof (6 ?-TP), indicating a portion of the design that
ensures the possible satisfaction of the property of interest.

In the following we will use the notation x-topological proofs or x-TP to indi-
cate arbitrarily definitive-topological or possible-topological proofs. The results
returned by TORPEDO for the different properties in our motivating example
are presented in Table 1. Property φ2 is satisfied, φ3 is not. In those cases TOR-
PEDO returns respectively a definitive-proof and a definitive-counterexample.
Since φ1 and φ4 are possibly satisfied, in both cases a possible-counterexample
and a possible-topological proof are returned.

Running example. For φ1 the possible-counterexample shows a run that
may violate the property of interest. The possible-topological proof in Table 1
shows that if OFF remains the only initial state (TPI), reached still holds in
CLEANING , and suck does not hold in OFF and IDLE , while unknown in
MOVING (TPP), property φ1 remains possibly satisfied. In addition, all tran-
sitions must be preserved (TPT).3 Note that the proof highlights portions of the
model that influence the property satisfaction. For example, by inspecting the
proof, the designer understands that she can change the value of the proposition
reached in all the states of the PKS, with the exception of the state CLEANING ,
without making the property violated.

3 The precise formal descriptions of x-topological proofs, TPI, TPT and TPT are
presented in Section 4.

Integrating Model Checking and Topological Proofs 57

Table 1: Results provided by TOrPEDO for properties φ1, φ2, φ3 and φ4. �, ⊥
and ? indicate that the property is satisfied, violated and possibly satisfied.

φ1 ?
?-CE OFF , IDLE , (MOVING)ω.

?-TP

TPP: 〈CLEANING , reached ,�〉 〈OFF , suck ,⊥〉, 〈IDLE , suck ,⊥〉, 〈MOVING , suck , ? 〉
TPT: 〈OFF , {OFF , IDLE}〉, 〈IDLE , {OFF , IDLE ,MOVING}〉,

〈MOVING , {MOVING ,CLEANING}〉, 〈CLEANING , {CLEANING , IDLE}〉
TPI: 〈{OFF}〉

φ2 � �-TP

TPP: 〈MOVING , on,�〉, 〈CLEANING , on,�〉, 〈OFF ,move, ⊥ 〉, 〈IDLE ,move,⊥〉
TPT: 〈OFF , {OFF , IDLE}〉, 〈IDLE , {OFF , IDLE ,MOVING}〉,

〈MOVING , {MOVING ,CLEANING}〉, 〈CLEANING , {CLEANING , IDLE}〉
TPI: 〈{OFF}〉

φ3 ⊥ ⊥-CE OFF , IDLEω

φ4 ?
?-CE OFF , (IDLE , MOVING , CLEANING , IDLE , OFF)ω

?-TP
TPP: 〈OFF , suck ,⊥〉, 〈IDLE , suck ,⊥〉, 〈MOVING , suck , ? 〉, 〈MOVING ,move,�〉
TPT: 〈OFF , {OFF , IDLE}〉, 〈IDLE , {OFF , IDLE ,MOVING}〉
TPI: 〈{OFF}〉

�������� � 	
� Revisions (8) can be obtained by changing some parts of
the model: adding/removing states and transitions or by changing propositions
labelling inside states, and are defined by considering the TP (9).

Running example. The designer may want to propose a revision that still
does not violate properties φ1, φ2, and φ4. Thus, she changes the values of
some atomic propositions: move becomes � in state CLEANING and reached
becomes ⊥ in state IDLE . Since φ1, φ2, and φ4 were previously not violated,
TOrPEDO performs the re-check phase for each property.

������ � �
� The automated verification tool provided by TOrPEDO
checks whether all the changes in the current model revision are compliant with
the x-TPs (10), i.e., changes applied to the revised model do not include parts
that had to be preserved according to the x-topological proof. If a property of in-
terest is (possibly) satisfied in a previous model, and the revision of the model is
compliant with the property x-TP, the designer has the guarantee that the prop-
erty is (possibly) satisfied in the revision. Thus, she can perform another model
revision round (7) or approve the current design (11). Otherwise, TOrPEDO
re-executes the analysis (12).

Running example. In the vacuum-cleaner case, the revision passes the re-
check and the designer proceeds to a new revision phase.

3 Background

We present background notions by relying on standard notations for the selected
formalisms (see for example [26,9,10,30]).

Partial Kripke Structures (1) are state machines that can be adopted
when the value of some propositions is uncertain on selected states.

Definition 1 ([9],[35]). A Partial Kripke Structure (PKS) M is a tuple 〈S,R,
S0, AP, L〉, where: S is a set of states; R ⊆ S × S is a left-total transition

58 C. Menghi et al.

relation on S; S0 is a set of initial states; AP is a set of atomic propositions;
L : S×AP → {�, ?,⊥} is a function that, for each state in S, associates a truth
value to every atomic proposition in AP . A Kripke Structure (KS) M is a PKS
〈S,R, S0, AP, L〉, where L : S ×AP → {�,⊥}.
A PKS represents a system as a set of states and transitions between these states.
Uncertainty on the AP is represented through the value ?. The model in Fig. 1
is a PKS where propositions in AP are used to model actions and conditions.
LTL properties (2). For KSs we consider the classical LTL semantics [M |= φ]
over infinite words that associates to a model M and a formula φ a truth value
in the set {⊥,�}. The interested reader may refer, for example, to [3]. Let M
be a KS and φ be an LTL property. We assume that the function Check, such
that 〈res, c〉 = Check(M , φ), returns a tuple 〈res, c〉, where res is the model
checking result in {�,⊥} and c is the counterexample if res = ⊥, else an empty
set.

The three-valued LTL semantics [9] [M |= φ] associates to a model M and
a formula φ a truth value in the set {⊥, ?,�} and is defined based on the in-
formation ordering � > ? > ⊥. The three-valued LTL semantics is defined by
considering paths of the model M . A path π is an infinite sequence of states
s0, s1, . . . such that, for all i ≥ 0, (si, si+1) ∈ R. We use the symbol πi to in-
dicate the infinite sub-sequence of π that starts at position i, and Path(s) to
indicate all the paths that start in the state s.

Definition 2 ([9]). Let M = 〈S,R, S0, AP, L〉 be a PKS, π = s0, s1, . . . be a
path, and φ be an LTL formula. Then, the three-valued semantics [(M,π) |= φ]
is defined inductively as follows:

[(M,π) |= p] = L(s0, p)

[(M,π) |= ¬φ] = comp([(M,π) |= φ])

[(M,π) |= φ1 ∧φ2] = min([(M,π) |= φ1], [(M,π) |= φ2])

[(M,π) |= X φ] = [(M,π1) |= φ]

[(M,π) |= φ1 U φ2] = max
j≥0

(min({[(M,πi) |= φ1]|i < j} ∪ {[(M,πj) |= φ2]}))

Let M = 〈S,R, S0, AP, L〉 be a PKS, and φ be an LTL formula. Then [M |=
φ] = min({[(M,π) |= φ] | π ∈ Path(s) and s ∈ S0}).

The conjunction (resp. disjunction) is defined as the minimum (resp. max-
imum) of its arguments, following the order ⊥ < ? < �. These functions are
extended to sets with min(∅)=� and max(∅)=⊥. The comp operator maps �
to ⊥, ⊥ to �, and ? to ?. The semantics of the G (“globally”) and W (“weak
until”) operators is defined as usual [28].

Model Checking. Checking KSs with respect to LTL properties can be done
by using classical model checking procedures. For example, the model checking
problem of property φ on a KS M can be reduced to the satisfiability problem
of the LTL formula ΦM ∧¬φ, where ΦM represents the behaviors of model M .
If ΦM ∧¬φ is satisfiable, then [M |= φ] = ⊥, otherwise [M |= φ] = �.

Integrating Model Checking and Topological Proofs 59

Checking a PKS M with respect to an LTL property φ considering the three-
valued semantics is done by performing twice the classical model checking pro-
cedure for KSs [10], one considering an optimistic approximation Mopt and one
considering a pessimistic approximationMpes. These two procedures consider the
LTL formula φ′ = F(φ), where F transforms φ with the following steps: (i) negate
φ; (ii) convert ¬φ in negation normal form; (iii) replace every subformula ¬α,
where α is an atomic proposition, with a new proposition α.

To create the optimistic and pessimistic approximations Mopt and Mpes,
the PKS M = 〈S,R, S0, AP, L〉 is first converted into its complement-closed
version Mc = 〈S,R, S0, APc, Lc〉 where the set of atomic propositions APc =
AP ∪AP is such that AP = {α | α ∈ AP}. Atomic propositions in AP are called
complement-closed propositions. Function Lc is such that, for all s ∈ S and α ∈
AP , Lc(s, α) = L(s, α) and, for all s ∈ S and α ∈ AP , Lc(s, p) = comp(L(s, p)).
The complement-closed PKS of the vacuum-cleaner agent in Fig. 1 presents eight
propositional assignments in the state IDLE: move = ⊥, move = �, suck = ⊥,
suck = �, on = �, on = ⊥, reached =?, and reached =?.

The two model checking runs for a PKS M = 〈S,R, S0, AP, L〉 are based
respectively on an optimistic (Mopt = 〈S,R, S0, APc, Lopt〉) and a pessimistic
(Mpes = 〈S,R, S0, APc, Lpes〉) approximation of M ’s related complement-closed
Mc = 〈S,R, S0, APc, Lc〉. Function Lpes (resp. Lopt) is such that, for all s ∈ S,
α ∈ APc, and Lc(s, α) ∈ {�,⊥}, then Lpes(s, α) = Lc(s, α) (resp. Lopt(s, α) =
Lc(s, α)), and, for all s ∈ S, α ∈ APc, and Lc(s, α) =?, then Lpes(s, α) = ⊥
(resp. Lopt(s, α) = �).

Let A be a KS and φ be an LTL formula, A |=∗ φ is true if no path that
satisfies the formula F(φ) is present in A.

Theorem 1 ([9]). Let φ be an LTL formula, let M = 〈S,R, S0, AP, L〉 be a
PKS, and let Mpes and Mopt be the pessimistic and optimistic approximations
of M ’s relative complement-closed Mc. Then

[M |= φ]
def
=

⎧
⎪⎨

⎪⎩

� if Mpes |=∗ φ

⊥ if Mopt �|=∗ φ

? otherwise

(1)

We call Check∗ the function that computes the result of operator |=∗. It
takes as input either Mpes or Mopt and the property F(φ), and returns a tuple
〈res, c〉, where res is the model checking result in {�,⊥}, and c can be an empty
set (when M satisfies φ), a definitive-counterexample (3 , when M violates φ),
or a possible-counterexample (5 , when M possibly-satisfies φ).

4 Revising models

We define how models can be revised and the notion of topological proof, that is
used to describe why a property φ is (possibly) satisfied in a PKS M .

Initial design and revisions (1 , 3). In the initial design a preliminary PKS
is manually defined or automatically obtained from other modeling formalisms.

60 C. Menghi et al.

During a revision, a designer can add and remove states and transitions and/or
change the labeling of the atomic propositions in the states of the PKS. Let
M = 〈S, R, S0, AP, L〉 and M ′ = 〈S′, R′, S′

0, AP ′, L′〉 be two PKSs. Then
M ′ is a revision of M if and only if AP ⊆ AP ′. Informally, the only constraint
the designer has to respect during a revision is not to remove propositions from
the set of atomic propositions. This condition is necessary to ensure that any
property that can be evaluated on M can also be evaluated on M ′, i.e., every
atomic proposition has a value in each of the states of the automaton. The
deactivation of a proposition can instead be simulated by associating its value
to ⊥ in all the states of M ′.

Topological proofs (4 , 6). The pursued proof is made of a set of clauses
specifying certain topological properties of M , which ensure that the property
is (possibly) satisfied.

Definition 3. Let M = 〈S, R, S0, AP, L〉 be a PKS. A Topological Proof clause
(TP-clause) γ for M is either:

– a Topological Proof Propositional clause (TPP-clause), i.e., a triad 〈s, α, v〉
where s ∈ S, α ∈ AP , and v ∈ {�, ?,⊥};

– a Topological Proof Transitions-from-state clause (TPT-clause), i.e., a pair
〈s, T 〉, such that s ∈ S, T ⊆ S;

– a Topological Proof Initial-states clause (TPI-clause), i.e., an element 〈S0〉.
These clauses indicate topological properties of a PKS M . Informally, TPP-

clauses constrain how states are labeled (L), TPT-clauses constrain how states
are connected (R), and TPI-clauses constrain from which states the runs on the
model begin (S0). For example, in Table 1, for property φ1, 〈CLEANING , reached ,
�〉 is a TPP-clause that constrains the atomic proposition reached to be labeled
as true (�) in the state CLEANING ; 〈OFF , {OFF , IDLE}〉 is a TPT-clause
that constrains the transition from OFF to OFF and from OFF to IDLE to
not be removed; and 〈{OFF}〉 is a TPI-clause that constrains the state OFF to
remain the initial state of the system.

A state s′ is constrained: by a TPP-clause 〈s, α, v〉 if s = s′, by a TPT-clause
〈s, T 〉 if s = s′ or s′ ∈ T , and by a TPI-clause 〈S0〉 if s′ ∈ S0.

Definition 4. Let M = 〈S,R, S0, AP, L〉 be a PKS and let Ω be a set of TP-
clauses for M . Then a PKS Ω-related to M is a PKS M ′ = 〈S′, R′, S′

0, AP ′, L′〉,
such that the following conditions hold:

– AP ⊆ AP ′;
– for every TPP-clause 〈s, α, v〉 ∈ Ω, s ∈ S′, v = L′(s, α);
– for every TPT-clause 〈s, T 〉 ∈ Ω, s ∈ S′, T ⊆ S′, T = {s′ ∈ S′|(s, s′) ∈ R′};
– for every TPI-clause 〈S0〉 ∈ Ω, S0 = S′

0.

Intuitively, a PKS Ω-related to M is a PKS obtained from M by changing
any topological aspect that does not impact on the set of TP-clauses Ω. Any
transition whose source state is not the source state of a transition included in

Integrating Model Checking and Topological Proofs 61

the TPT-clauses can be added or removed from the PKS and any value of a
proposition that is not constrained by a TPP-clause can be changed. States can
be always added and they can be removed if they are not constrained by any
TPT-, TPP-, or TPI-clause. Initial states cannot be changed if Ω contains a
TPI-clause.

Definition 5. Let M = 〈S,R, S0, AP, L〉 be a PKS, let φ be an LTL property,
let Ω be a set of TP-clauses, and let x be a truth value in {�, ?}. A set of TP-
clauses Ω is an x-topological proof (or x-TP) for φ in M if: (i) [M |= φ] = x;
and (ii) every PKS M ′ Ω-related to M is such that [M ′ |= φ] ≥ x.

Intuitively, an x-topological proof is a set of TP-clauses Ω such that ev-
ery PKS M ′ that satisfies the conditions specified in Definition 4 is such that
[M ′ |= φ] ≥ x. We call �-TP a definitive-topological proof and ?-TP a possible-
topological proof. In Definition 5, the operator ≥ assumes that values �, ?,⊥ are
ordered considering the classical information ordering � > ? > ⊥ among the
truth values [9].

Regarding the PKS in Fig. 1, Table 1 shows two ?-TPs for properties φ1 and
φ4, and one �-TP for property φ2.

Definition 6. Let M and M ′ be two PKSs, let φ be an LTL property, and let
Ω be an x-TP. Then M ′ is an Ωx-revision of M if M ′ is Ω-related to M .

Intuitively, since the Ωx-revision M ′ of M is such that M ′ is Ω-related to M ,
it is obtained by changing the model M while preserving the statements that
are specified in the x-TP. A revision M ′ of M is compliant with the x-TP for a
property φ in M if it is an Ωx-revision of M .

Theorem 2. Let M be a PKS, let φ be an LTL property such that [M |= φ] = �,
and let Ω be a �-TP. Then every Ω�-revision M ′ is such that [M ′ |= φ] = �.
Let M be a PKS, let φ be an LTL property such that [M |= φ] =?, and let Ω be
an ?-TP. Then every Ω?-revision M ′ is such that [M ′ |= φ] ∈ {�, ?}.
Proof Sketch. We prove the first statement of the Theorem; the proof of the
second statement is obtained by following the same steps.

If Ω is a �-TP, it is a �-TP for φ in M ′, since M ′ is an Ω�-revision of M (by
Definition 6). Furthermore, since Ω is a �-TP for φ in M ′, then [M ′ |= φ] ≥ �
(by Definition 5). ��

5 TOrPEDO automated support

This section describes the algorithms that support the analysis and re-check
phases of TOrPEDO.

�������� � 	
� To analyze a PKS M = 〈S,R, S0, AP, L〉 (1), TOrPEDO
uses the three-valued model checking framework based on Theorem 1. The model
checking result is provided as output by the analysis phase of TOrPEDO, whose
behavior is described in Algorithm 1.

62 C. Menghi et al.

1: function Analyze(M , φ)
2: 〈res, c〉 = Check∗(Mopt, φ)
3: if res == ⊥ then return 〈⊥, {c}〉
4: else
5: 〈res′, c′〉 = Check∗(Mpes, φ)
6: if res′ == � then return
7: 〈�, {Ctp KS(M,Mpes, F(φ))}〉
8: else
9: return

10: 〈?, {c′,Ctp KS(M,Mopt, F(φ))}〉
11: end if
12: end if
13: end function
Algorithm 1: The analysis algorithm.

1: function Ctp KS(M , A, ψ)
2: η(CA ∪ {ψ}) = Sys2LTL(A, ψ)
3: η(C ′

A ∪ {ψ}) = GetUC(η(CA ∪ {ψ}))
4: TP = GetTP(M,η(C ′

A ∪ {ψ}))
5: return TP
6: end function
Algorithm 2: Compute Topological Proofs.

The algorithm returns a tuple 〈x, y〉, where x is the verification result and y
is a set containing the counterexample, the topological proof or both of them.
The algorithm first checks whether the optimistic approximation Mopt of the
PKS M satisfies property φ (2 , Line 2). If this is not the case, the property is
violated by the PKS and the definitive-counterexample c (3 , ⊥-CE) is returned
(Line 3). Then, it checks whether the pessimistic approximation Mpes of the PKS
M satisfies property φ (Line 5). If this is the case, the property is satisfied and
the value � is returned along with the definitive-topological proof (4 , �-TP)
computed by the Ctp KS procedure applied on the pessimistic approximation
Mpes and the property F(φ) (Line 7).

If this is not the case, the property is possibly satisfied and the value ? is
returned along with the possible-counterexample c′ (5 , ?-CE) and the possible-
topological proof (6 , ?-TP) computed by the Ctp KS procedure applied to
Mopt and F(φ) (Line 10).

The procedure Ctp KS (Compute Topological Proofs) to compute x-TPs is
described in Algorithm 2. It takes as input a PKS M , its optimistic/pessimistic
approximation, i.e., denoted generically as the KS A, and an LTL formula ψ—
satisfied in A— corresponding to the transformed property F(φ) (see Section 3).
The three steps of the algorithm are described in the following.

Sys2LTL. Encoding of the KS A and the LTL formula ψ into an LTL formula
η(CA ∪ {ψ}). The KS A = 〈S,R, S0, APc, LA〉 (where LA is the optimistic or
pessimistic function, Lopt or Lpes, as defined in Section 3) and the LTL formula
ψ are used to generate an LTL formula

η(CA ∪ {ψ}) =
∧

c∈(CA∪{ψ})
c

Integrating Model Checking and Topological Proofs 63

Table 2: Rules to transform the KS in LTL formulae.

ci =
∨

s∈S0

p(s)

The KS is initially in one of its initial states.

CR = {G(¬p(s) ∨ X (
∨

(s,s′)∈R

p(s′))) | s ∈ S}
If the KS is in state s in the current instant, in the next instant it is in one of the successors s′ of s.

CL�,A = {G(¬p(s) ∨ α) | s ∈ S, α ∈ APc, LA(s, α) = �}
If the KS is in state s s.t. LA(s, α) = �, the atomic proposition α is true.

CL⊥,A = {G(¬p(s) ∨ ¬α) | s ∈ S, α ∈ APc, LA(s, α) = ⊥}.
If the KS is in state s s.t. LA(s, α) = ⊥, the atomic proposition α is false.

CREG = {G(¬p(s) ∨ ¬p(s′)) | s, s′ ∈ S and s �= s′}
The KS is in at most one state at any time.

where CA are sets of LTL clauses obtained from the KS A.4 The set of clauses
that encodes the KS is CA = CKS ∪CREG , where CKS = {ci} ∪CR ∪CL�,A ∪
CL⊥,A and ci, CR, CL�,A and CL⊥,A are defined as specified in Table 2. Note
that the clauses in CA are defined on the set of atomic propositions APS = APc∪
{p(s)|s ∈ S}, i.e., APS includes an additional atomic proposition p(s) for each
state s, which is true when the KS is in state s. The size of the encoding depends
on the cardinality of CA i.e., in the worst case, 1 + |S|+ |S| × |APc|+ |S| × |S|.

GetUC. Computation of the Unsatisfiable Core (UC) η(C ′
A∪{ψ}) of η(CA∪

{ψ}). Since the property ψ is satisfied on A, η(CA∪{ψ}) is unsatisfiable and the
computation of its UC core is performed by using the PLTLMUP approach [58].
Let C = {ϕ1, ϕ2, . . . , ϕn} be a set of LTL formulae, such that η(C) =

∧
ϕ∈C

ϕ is

unsatisfiable, then the function η(C ′) = GetUC(η(C)) returns an unsatisfiable
core η(C ′) =

∧
ϕ∈C′

ϕ of
∧

ϕ∈C

ϕ. In our case, since the property holds on the KS

A, GetUC(η(CA ∪ {ψ})) returns a subset of clauses η(C ′
A ∪ {ψ}), where C ′

A =
C ′

KS ∪ C ′
REG such that C ′

KS ⊆ CKS and C ′
REG ⊆ CREG .

Lemma 1. Let A be a KS and let ψ be an LTL property. Let also η(CA ∪ {ψ})
be the LTL formula computed in the step Sys2LTL of the algorithm. Then, any
unsatisfiable core η(C ′

A ∪ {ψ}) of η(CA ∪ {ψ}) is such that C ′
A ⊆ CA.

Proof Sketch. As the property φ is satisfied by M , the LTL formula η(CA∪{ψ}),
where ψ = F(φ) must be unsatisfiable as discussed in the Section 3. Indeed, F(φ)
simply perform some proposition renaming on the negation of the formula ψ.
As CA encodes a KS,

∧
c∈CA

c is satisfied. As such, the unsatisfiability is caused

by the contradiction of some of the clauses in CA and the property ψ, and as a
consequence ψ must be a part of the UC.

GetTP. Analysis of C ′
A and extraction of the topological proof. The set C ′

A,
where C ′

A = C ′
KS ∪ C ′

REG , contains clauses regarding the KS (C ′
KS and C ′

REG)

4 Note that this formula is equivalent to φM ∧¬φ used in Section 3 as φM is generated
by the clauses in CA and ¬φ from ψ.

64 C. Menghi et al.

Table 3: Rules to extract the TP-clauses from the UC LTL formula.

LTL clause TP clause Type LTL clause TP clause Type

ci =
∨

s∈S0

p(s) 〈S0〉 TPI G(¬p(s) ∨ ¬α) 〈s, α, comp(L(s, α))〉 TPP

G(¬p(s)∨
X (

∨

(s,s′)∈R

p(s′)))
〈s, T 〉 where
T = {s′|(s, s′) ∈ R} TPT G(¬p(s) ∨ α) 〈s, α, comp(L(s, α))〉 TPP

G(¬p(s) ∨ α) 〈s, α, L(s, α)〉 TPP G(¬p(s) ∨ ¬α) 〈s, α, L(s, α)〉 TPP

and the property of interest (ψ) that made the formula η(C ′
A∪{ψ}) unsatisfiable.

Since we are interested in clauses related to the KS that caused unsatisfiability,
we extract the topological proof Ω, whose topological proof clauses are obtained
from the clauses in C ′

KS as specified in Table 3. Since the set of atomic proposi-
tions of A is APc = AP ∪AP , in the table we use α for propositions in AP and
α for propositions in AP .

The elements in C ′
REG are not considered in the TP computation as, given

an LTL clause G(¬p(s) ∨ ¬p(s′)), either state s or s′ is constrained by other
TP-clauses that will be preserved in the model revisions.

Lemma 2. Let A be a KS and let ψ be an LTL property. Let also η(CA ∪ {ψ})
be the LTL formula computed in the step Sys2LTL of the algorithm, where
CA = CREG ∪ CKS , and let η(C ′

A ∪ {ψ}) be an unsatisfiable core, where C ′
A =

C ′
REG ∪ C ′

KS . Then, if G(¬p(s) ∨ ¬p(s′)) ∈ C ′
REG , either:

(i) there exists an LTL clause in C ′
KS that constrains state s (or state s′); or

(ii) η(C ′′
A ∪{ψ}), s.t. C ′′

A = C ′
A \ {G(¬p(s)∨¬p(s′))}, is an UC of η(C ′

A ∪{ψ}).
Proof Sketch. We indicate G(¬p(s) ∨ ¬p(s′)) as τ(s, s′). Assume per absurdum
that conditions (i) and (ii) are violated, i.e., no LTL clause in C ′

KS constrains
state s or s′ and η(C ′′

A ∪ {ψ}) is not an unsatisfiable core of η(C ′
A ∪ {ψ}).

Since η(C ′′
A ∪ {ψ}) is not an unsatisfiable core of η(C ′

A ∪ {ψ}), η(C ′′
A ∪ {ψ})

is satisfiable, as C ′′
A ⊂ C ′

A. Since η(C ′′
A ∪ {ψ}) is satisfiable, η(C ′

A ∪ {ψ}) s.t.
C ′

A = C ′′
A ∪ {τ(s, s′)} must also be satisfiable. Indeed, it does not exist any

LTL clause that constrains state s (or state s′) and, in order to generate a
contradiction, the added LTL clause must generate it using the LTL clauses
obtained from the LTL property ψ. This is a contradiction. Thus, conditions (i)
and (ii) must be satisfied. ��

The Analyze procedure in Algorithm 1 obtains a TP (4 , 6) for a PKS by
first computing the related optimistic or pessimistic approximation (i.e., a KS)
and then exploiting the computation of the TP for such KS.

Theorem 3. Let M = 〈S,R, S0, AP, L〉 be a PKS, let φ be an LTL property,
and let x ∈ {�, ?} be an element such that [M |= φ] = x. If the procedure
Analyze, applied to the PKS M and the LTL property φ, returns a TP Ω, this
is an x-TP for φ in M .

Proof Sketch. Assume that the Analyze procedure returns the value � and
a �-TP. We show that every Ω-related PKS M ′ is such that [M ′ |= φ] ≥ x

Integrating Model Checking and Topological Proofs 65

(Definition 5). If Analyze returns the value �, it must be that Mpes |=∗ φ by
Lines 5 and 7 of Algorithm 1. Furthermore, by Line 7, ψ = F(φ) and A = Mpes .

Let N = 〈SN , RN , S0,N , APN , LN 〉 be a PKS Ω-related to M . Let η(CA ∪
{ψ}) be the LTL formula associated with A and ψ and let η(CB ∪ {ψ}) be the
LTL formula associated with B = Npes and ψ. Let us consider an UC η(C ′

A∪{ψ})
of η(CA ∪{ψ}), where C ′

A = C ′
KS ∪C ′

REG , C ′
KS ⊆ CKS and C ′

REG ⊆ CREG . We
show that C ′

A ⊆ CB, i.e., the UC is also an UC for the LTL formula associated
with the approximation B of the PKS N .

– C ′
A ⊆ CB, i.e., (C ′

KS ∪ C ′
REG) ⊆ CB. By Lemma 2 we can avoid considering

C ′
REG . By construction (see Line 2 of Algorithm 2) any clause c ∈ C ′

KS

belongs to one rule among CR, CLpes,�, CLpes,⊥ or c = ci:
• if c = ci then, by the rules in Table 3, there is a TPI-clause {S0} ∈ Ω.
By Definition 4, S0 = S′

0. Thus, ci ∈ CB since N is Ω-related to M .
• if c ∈ CR then, by rules in Table 3, there is a TPT-clause 〈s, T 〉 ∈ Ω
where s ∈ S and T ⊆ R. By Definition 4, T = {s′ ∈ S′|(s, s′) ∈ R′}.
Thus, c ∈ CB since N is Ω-related to M .

• if c ∈ CLA,� or c ∈ CLA,⊥, by rules in Table 3, there is a TPP-clause
〈s, α, L(s, α)〉 ∈ Ω where s ∈ S and α ∈ AP . By Definition 4, L′(s, α) =
L(s, α). Thus, c ∈ CB since N is Ω-related to M .

Since N is Ω-related to M , it has preserved the elements of Ω. Thus η(C ′
A∪{ψ})

is also an UC of CB. It follows that [N |= φ] = �.

The proof from the case in which Analyze procedure returns the value ?
and a ?-TP can be derived from the first case. ��

�������� � � 	
 Let M = 〈S,R, S0, AP, L〉 be a PKS. The re-check algo-
rithm verifies whether a revision M ′ of M is an Ω-revision. Let Ω be an x-TP
(10) for φ in M , and let M ′ = 〈S′, R′, S′

0, AP ′, L′〉 be a revision of M (8).
The re-check algorithm returns true if and only if the following holds:

– AP ⊆ AP ′;
– for every TPP-clause 〈s, α, v〉 ∈ Ω, s ∈ S′, v = L′(s, α);
– for every TPT-clause 〈s, T 〉 ∈ Ω, s ∈ S′, T ⊆ S′, T = {s′ ∈ S′|(s, s′) ∈ R′};
– for every TPI-clause 〈S0〉 ∈ Ω, S0 = S′

0.

These conditions can be verified by a simple syntactic check on the PKS.

Lemma 3. Let M = 〈S,R, S0, AP, L〉 and M ′ = 〈S′, R′, S′
0, AP ′, L′〉 be two

PKSs and let Ω be an x-TP. The re-check algorithm returns true if and only
if M ′ is Ω-related to M .

Proof Sketch. Since M ′ is Ω-related to M , the conditions of Definition 4 hold.
Each of these conditions is a condition of the re-check algorithm. Thus, if
M ′ is Ω-related to M , the re-check returns true. Conversely, if re-check
returns true, each condition of the algorithm is satisfied and, since each of these
conditions corresponds to a condition of Definition 4, M ′ is Ω-related to M . ��

This Lemma allows us to prove the following Theorem.

66 C. Menghi et al.

Table 4: Properties considered in the evaluation

φ1: G(¬OFFHOOK) ∨ (¬OFFHOOK U CONNECTED)
φ2: ¬OFFHOOK W (¬OFFHOOK ∧ CONNECTED)
φ3: G(CONNECTED → ACTIVE)
φ4: G(OFFHOOK ∧ACTIVE ∧ ¬CONNECTED → X (ACTIVE))
φ5 G(CONNECTED → X (ACTIVE))

ψ1: G(CONNECTED → ACTIVE)
ψ2: G(CONNECTED → X (ACTIVE))
ψ3: G(CONNECTED) ∨ (CONNECTED U ¬OFFHOOK)
ψ4: ¬CONNECTED W (¬CONNECTED ∧OFFHOOK)
ψ5: G(CALLEE SEL → OFFHOOK)

η1: G((OFFHOOK ∧ CONNECTED) → X (OFFHOOK ∨ ¬CONNECTED))
η2: G(CONNECTED) ∨ (CONNECTED W ¬OFFHOOK)
η3: ¬CONNECTED W (¬CONNECTED ∧OFFHOOK)
η4: G(CALLEE FREE ∨ LINE SEL)
η5: G(X (OFFHOOK) ∧ ¬CONNECTED)

Theorem 4. Let M be a PKS, let φ be a property, let Ω be an x-TP for φ in
M where x ∈ {�, ?}, and let M ′ be a revision of M . The re-check algorithm
returns true if and only if M ′ is an Ω-revision of M .

Proof Sketch. By applying Lemma 3, the re-check algorithm returns true if
and only if M ′ is Ω-related to M . By Definition 6, since Ω is an x-TP, the re-
check algorithm returns true if and only if M ′ is an Ω-revision of M . ��

The analysis and re-check algorithms assume that the three-valued LTL
semantics is considered. While the thorough LTL semantics [10] has been shown
to provide an evaluation of formulae that better reflects the natural intuition,
the two semantics coincide in the case of self-minimizing LTL formulae. In this
case, our results are correct also w.r.t. the thorough semantics. Note that, as
shown in [24], most practically useful LTL formulae are self-minimizing. Future
work will consider how to extend the analysis and re-check to completely
support the thorough LTL semantics.

6 Evaluation

We implemented TOrPEDO as a Scala stand alone application and made it
available online [62]. We evaluated how the analysis helps in creating models
revisions and how frequently running the re-check algorithm allows the user
to avoid the re-execution of the analysis algorithm from scratch.

We considered a set of example PKSs proposed in the literature to evaluate
the χChek [20] model checker and defined a set of properties (see Table 4)
inspired by the original properties and based on the LTL property patterns [18].5

�������� support (2). We checked how the size of the proofs compares w.r.t.
the size of the original models. Intuitively, since the proofs represent constraints

5 The original properties used in the examples were specified in Computation Tree
Logic (CTL), which is currently not supported by TOrPEDO.

Integrating Model Checking and Topological Proofs 67

Table 5: Cardinalities |S|, |R|, |AP |, |?|, and |M | are those of the evaluated
model M . |Ωp|x is the size of proof Ωp for a property p; x indicates if Ωp is a
�-TP or a ?-TP.

analysis re-check

Model |S| |R| |AP | |?| |M | |Ωφ1 | |Ωφ2 | |Ωφ3 | |Ωφ4 | |Ωφ5 | φ1 φ2 φ3 φ4 φ5

callee-1 5 15 3 7 31 7? 9? 21? 23? 23? - - - - -
callee-2 5 15 3 4 31 7? 9? 21? 22� × � � � � �

callee-3 5 15 3 2 31 7? 9? 21? 23� × � � � � -
callee-4 5 15 3 0 31 × × 23� 21� × � � � � -

Model |S| |R| |AP | |?| |M | |Ωψ1 | |Ωψ2 | |Ωψ3 | |Ωψ4 | |Ωψ5 | ψ1 ψ2 ψ3 ψ4 ψ5

caller-1 6 21 5 4 52 28? × 2� 9? 28? - - - - -
caller-2 7 22 5 4 58 30? × 2� 9? 30? � - � � �

caller-3 6 19 5 1 50 26� 28� 2� 11� 26� � - � � �

caller-4 6 21 5 0 52 28� × 2� 9� 28� � � � � �

Model |S| |R| |AP | |?| |M | |Ωη1 | |Ωη2 | |Ωη3 | |Ωη4 | |Ωη5 | η1 η2 η3 η4 η5

caller-callee-1 6 30 6 30 61 37? 2� 15? 37? × - - - - -
caller-callee-2 7 35 6 36 78 43? 2� 18? 43? × � � � � -
caller-callee-3 7 45 6 38 88 53? 2� 53? 53? 53? � � � � -
caller-callee-4 6 12 4 0 42 × × × 19� × � � � � �

that, if satisfied, ensure that the property is not violated (or possible violated),
the smaller are the proofs the more flexibility the designer has, as more elements
can be changed during the revision. The size of a PKS M = 〈S,R, S0, AP, L〉
was defined as |M | = |AP | ∗ |S|+ |R|+ |S0|. The size of a proof Ω was defined as
|Ω| = ∑

c∈Ω

|c| where: |c| = 1 if c = 〈s, α, v〉; |c| = |T | if c = 〈s, T 〉, and |c| = |S0|
if c = 〈S0〉. Table 5 summarizes the obtained results (columns under the label
analysis). We show the cardinalities |S|, |R| and |AP | of the sets of states,
transitions, and atomic propositions of each considered PKS M , the number |?|
of couples of a state s with an atomic proposition α such that L(s, α) =?, the
total size |M | of the model, and the size |Ωp|x of the proofs, where p indicates
the considered LTL property and x indicates whether p is satisfied (x = �) or
possibly satisfied (x =?). Proofs are ≈ 60% smaller than their respective initial
models. Thus, we conclude that the proofs are significantly coincise w.r.t. the
original model enabling a flexible design.

�������� support (3). We checked how the results output by the re-check
algorithm were useful in producing PKSs revisions. To evaluate the usefulness
we assumed that, for each category of examples, the designer produced revisions
following the order specified in Table 5. The columns under the label re-check
contain the different properties that have been analyzed for each category. A
cell contains � if the re-check was passed by the considered revised model,
i.e., a true value was returned by the re-check algorithm, � otherwise. The
dash symbol - is used when the model of the corresponding line is not a revi-
sion (i.e., the first model of each category) or when the observed property was
false in the previous model, i.e., an x-TP was not produced. We inspected the
results produced by the re-check algorithm to evaluate their benefit in verify-
ing if revisions were violating the proofs. Table 5 shows that, in ≈ 32% of the

68 C. Menghi et al.

cases, the TOrPEDO re-check notified the designer that the proposed revi-
sion violated some of the clauses contained in the Ω-proof, while in ≈ 78% the
re-check allowed designers to avoid re-runnning the analysis (and thus the
model checker).

Scalability. The analysis phase of TOrPEDO combines three-valued model
checking and UCs computation, therefore its scalability improves as the perfor-
mance of frameworks enhances. Three-valued model checking is as expensive as
classical model checking [9], i.e., it is linear in the size of the model and expo-
nential in the size of the property. UCs computation is FPSPACE complete [55].
In our cases running TOrPEDO required on average 8.1s and for the callee ex-
amples, 8.2s for the caller examples, and 7.15s for the caller-callee examples.6

However, while model checking is currently supported by very efficient tech-
niques, UCs computation of LTL formulae is still far from being applicable in
complex scenarios. For example, we manually designed an additional PKS with
10 states and 5 atomic propositions and 26 transitions and defined a property
satisfied by the PKS and with a �-TP proof that requires every state of the
PKS to be constrained by a TPP-clause. We run TOrPEDO and measure the
time required to compute this proof. Computing the proof required 1m33s. This
results show that TOrPEDO has a limited scalability due to the low efficiency
of the procedure that extracts the unsatisfiable core. For an analysis of the scal-
ability of the extraction of the unsatisfiable core the interested reader can refer
to [58]. We believe that reporting the current lack of FM techniques to support
the proposed framework (that, as just discussed, is effective in our preliminary
evaluation), is a further contribution of this paper.

7 Related work

Partial knowledge has been considered in requirement analysis and elic-
itation [46,45,38,13], in novel robotic planners [40,41,43], software mod-
els [66,65,22,1], and testing [15,63,67]. Several researchers analyzed the model
checking problem for partially specified systems [44,12], considering both three-
valued [37,25,9,10,28] and multi-valued [30,11] semantics. Other works apply
model checking to incremental program development [33,6]. However, all these
model checking approaches do not provide an explanation on why a property is
satisfied, by means of a certificate or proof. Although several works have tackled
this problem [4,60,50,49,29,16], differently from this work, they mostly aim to
automate proof reproducibility.

Tao and Li [61] propose a theoretical solution to model repair: the problem
of finding the minimum set of states in a KS which makes a formula satisfi-
able. However, the problem is different from the one addressed in this paper.
Furthermore, the framework is only theoretical and based on complete systems.

Approaches were proposed in the literature to provide explanations by using
different artifacts. For example, some works proposed using witnesses. A witness

6 Processor: 2,7 GHz Quad-Core Intel Core i7, Memory: 16 GB 2133 MHz LPDDR3.

Integrating Model Checking and Topological Proofs 69

is a path of the model that satisfies a formula of interest [7,34,48]. Other works
(e.g., [31,59]) studied how to enrich counterexamples with additional informa-
tion in a way that allows better understanding the property violation. Work has
also been done to generate abstractions of the counterexamples that are easier
to understand (e.g., [21]). Alur et al. [2] analyzed the problem of synthesizing a
controller that satisfies a given specification. When the specification is not real-
izable, a counter-strategy is returned as a witness. Pencolé et al. [51] analyzed
model consistency, i.e., the problem of checking whether the system run-time be-
haviour is consistent with a formal specification. Bernasconi et al. [4] proposed an
approach that combines model checking and deductive proofs in a multi-valued
context. The notion of topological proof proposed in this work is substantially
different from the notion of deductive proof.

Some works (e.g., [52,54]) considered how to understand why a property is
unsatisfiable. This problem is different from the one considered in this paper.

Approaches that detect unsatisfiable cores of propositional formulae were pro-
posed in the literature [47,39,17,32,57]. Understanding whether these approaches
can be re-used to develop more efficient techniques to detect the unsatisfiable
cores of LTL formulae is definitely an interesting future work direction, which
deserves to be considered in a separate work since it is far from trivial.

8 Conclusions

We have proposed TOrPEDO, an integrated framework that supports the itera-
tive creation of model revisions. The framework provides a guide for the designer
who wishes to preserve slices of her model that contribute to satisfy fundamental
requirements while other parts of the model are modified. For these purposes,
the notion of topological proof has been formally and algorithmically described.
This corresponds to a set of constraints that, if kept when changing the proposed
model, ensure that the behavior of the model w.r.t. the property of interest is pre-
served. Our Lemmas and Theorems prove the soundness of our framework, i.e.,
how it preserves correctness in the case of PKS and LTL. The proposed frame-
work can be used as baseline for other FM frameworks, and can be extended by
considering other modeling formalisms that can be mapped onto PKSs.

TOrPEDO was evaluated by showing the effectiveness of the analysis and
re-check algorithms included in the framework. Results showed that proofs are
smaller than the original models, and can be verified in most of the cases using
a simple syntactic check, paving the way for an extensive evaluation on real case
scenarios. However, the scalability of existing tools, upon which TOrPEDO is
based, is not sufficient to efficiently support the proposed framework when bigger
models are considered.

Acknowledgments. This work has received funding from the European Re-
search Council under the European Union’s Horizon 2020 research and innova-
tion programme (grant agreement No 694277).

70 C. Menghi et al.

References

1. A. Albarghouthi, A. Gurfinkel, and M. Chechik. From under-approximations to
over-approximations and back. In International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems. Springer, 2012.

2. R. Alur, S. Moarref, and U. Topcu. Counter-strategy guided refinement of GR(1)
temporal logic specifications. In Formal Methods in Computer-Aided Design, pages
26–33, Oct 2013.

3. C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press, 2008.

4. A. Bernasconi, C. Menghi, P. Spoletini, L. D. Zuck, and C. Ghezzi. From model
checking to a temporal proof for partial models. In International Conference on
Software Engineering and Formal Methods. Springer, 2017.

5. A. Bernasconi, C. Menghi, P. Spoletini, L. D. Zuck, and C. Ghezzi. From model
checking to a temporal proof for partial models: preliminary example. arXiv
preprint arXiv:1706.02701, 2017.

6. D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software model
checker blast. International Journal on Software Tools for Technology Transfer,
9(5-6):505–525, 2007.

7. A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model
checking using sat procedures instead of bdds. In Design Automation Conference.
ACM, 1999.

8. G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and M. Sabetzadeh.
A manifesto for model merging. In International workshop on Global integrated
model management. ACM, 2006.

9. G. Bruns and P. Godefroid. Model checking partial state spaces with 3-valued tem-
poral logics. In International Conference on Computer Aided Verification. Springer,
1999.

10. G. Bruns and P. Godefroid. Generalized model checking: Reasoning about partial
state spaces. In International Conference on Concurrency Theory. Springer, 2000.

11. G. Bruns and P. Godefroid. Model checking with multi-valued logics. In Interna-
tional Colloquium on Automata, Languages and Programming. Springer, 2004.

12. M. Chechik, B. Devereux, S. Easterbrook, and A. Gurfinkel. Multi-valued symbolic
model-checking. Transactions on Software Engineering and Methodology, 12(4):1–
38, 2004.

13. M. Chechik, R. Salay, T. Viger, S. Kokaly, and M. Rahimi. Software assurance
in an uncertain world. In R. Hähnle and W. van der Aalst, editors, Fundamental
Approaches to Software Engineering, pages 3–21, Cham, 2019. Springer.

14. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. Nusmv 2: An opensource tool for symbolic model
checking. In International Conference on Computer Aided Verification. Springer,
2002.

15. P. Daca, T. A. Henzinger, W. Krenn, and D. Nickovic. Compositional specifications
for ioco testing. In International Conference on Software Testing, Verification and
Validation, pages 373–382. IEEE, 2014.

16. C. Deng and K. S. Namjoshi. Witnessing network transformations. In International
Conference on Runtime Verification. Springer, 2017.

17. N. Dershowitz, Z. Hanna, and A. Nadel. A scalable algorithm for minimal unsat-
isfiable core extraction. In International Conference on Theory and Applications
of Satisfiability Testing, pages 36–41. Springer, 2006.

Integrating Model Checking and Topological Proofs 71

18. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications
for finite-state verification. In International Conference on Software engineering.
ACM, 1999.

19. S. Easterbrook and M. Chechik. A framework for multi-valued reasoning over
inconsistent viewpoints. In International conference on software engineering. IEEE,
2001.

20. S. Easterbrook, M. Chechik, B. Devereux, A. Gurfinkel, A. Lai, V. Petrovykh,
A. Tafliovich, and C. Thompson-Walsh. χChek: A model checker for multi-valued
reasoning. In International Conference on Software Engineering, pages 804–805,
2003.

21. N. Een, A. Mishchenko, and N. Amla. A single-instance incremental SAT formu-
lation of proof- and counterexample-based abstraction. In Conference on Formal
Methods in Computer-Aided Design, FMCAD, pages 181–188. FMCAD Inc, 2010.

22. M. Famelis, R. Salay, and M. Chechik. Partial models: Towards modeling and
reasoning with uncertainty. In International Conference on Software Engineering.
IEEE, 2012.

23. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Ltsa-ws: a tool for model-based
verification of web service compositions and choreography. In International con-
ference on Software engineering. ACM, 2006.

24. P. Godefroid and M. Huth. Model checking vs. generalized model checking: Se-
mantic minimizations for temporal logics. In Logic in Computer Science. IEEE,
2005.

25. P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based model checking us-
ing modal transition systems. In International Conference on Concurrency Theory.
Springer, 2001.

26. P. Godefroid and R. Jagadeesan. On the expressiveness of 3-valued models. In
International Workshop on Verification, Model Checking, and Abstract Interpreta-
tion. Springer, 2003.

27. P. Godefroid and N. Piterman. LTL generalized model checking revisited. In
Verification, Model Checking, and Abstract Interpretation, pages 89–104. Springer,
2009.

28. P. Godefroid and N. Piterman. LTL generalized model checking revisited. Inter-
national journal on software tools for technology transfer, 13(6):571–584, 2011.

29. A. Griggio, M. Roveri, and S. Tonetta. Certifying proofs for LTL model checking.
In Formal Methods in Computer Aided Design (FMCAD), pages 1–9. IEEE, 2018.

30. A. Gurfinkel and M. Chechik. Multi-valued model checking via classical model
checking. In International Conference on Concurrency Theory. Springer, 2003.

31. A. Gurfinkel and M. Chechik. Proof-like counter-examples. In International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 160–175. Springer, 2003.

32. O. Guthmann, O. Strichman, and A. Trostanetski. Minimal unsatisfiable core
extraction for SMT. In Formal Methods in Computer-Aided Design (FMCAD),
pages 57–64. IEEE, 2016.

33. T. A. Henzinger, R. Jhala, R. Majumdar, and M. A. Sanvido. Extreme model
checking. In Verification: Theory and Practice, Essays Dedicated to Zohar Manna
on the Occasion of His 64th Birthday. Springer, 2003.

34. H. S. Hong, I. Lee, O. Sokolsky, and H. Ural. A temporal logic based theory of test
coverage and generation. In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. Springer, 2002.

35. S. A. Kripke. Semantical considerations on modal logic. Acta Philosophica Fennica,
16(1963):83–94, 1963.

72 C. Menghi et al.

36. O. Kupferman and M. Y. Vardi. From complementation to certification. Theoretical
computer science, 345(1):83–100, 2005.

37. K. G. Larsen and B. Thomsen. A modal process logic. In Logic in Computer
Science. IEEE, 1988.

38. E. Letier, J. Kramer, J. Magee, and S. Uchitel. Deriving event-based transition
systems from goal-oriented requirements models. Automated Software Engineering,
2008.

39. M. H. Liffiton and K. A. Sakallah. Algorithms for computing minimal unsatisfiable
subsets of constraints. Journal of Automated Reasoning, 40(1):1–33, 2008.

40. C. Menghi, S. Garcia, P. Pelliccione, and J. Tumova. Multi-robot LTL planning
under uncertainty. In Formal Methods. Springer, 2018.

41. C. Menghi, S. Garćıa, P. Pelliccione, and J. Tumova. Towards multi-robot ap-
plications planning under uncertainty. In International Conference on Software
Engineering: Companion Proceeedings. ACM, 2018.

42. C. Menghi, P. Spoletini, M. Chechik, and C. Ghezzi. Supporting verification-
driven incremental distributed design of components. In Fundamental Approaches
to Software Engineering. Springer, 2018.

43. C. Menghi, P. Spoletini, M. Chechik, and C. Ghezzi. A verification-driven frame-
work for iterative design of controllers. Formal Aspects of Computing, Jun 2019.

44. C. Menghi, P. Spoletini, and C. Ghezzi. Dealing with incompleteness in automata-
based model checking. In Formal Methods. Springer, 2016.

45. C. Menghi, P. Spoletini, and C. Ghezzi. COVER: Change-based Goal Verifier and
Reasoner. In International Conference on Requirements Engineering: Foundation
for Software Quality: Companion Proceeedings. Springer, 2017.

46. C. Menghi, P. Spoletini, and C. Ghezzi. Integrating goal model analysis with iter-
ative design. In International Working Conference on Requirements Engineering:
Foundation for Software Quality. Springer, 2017.

47. A. Nadel. Boosting minimal unsatisfiable core extraction. In Conference on Formal
Methods in Computer-Aided Design, pages 221–229. FMCAD Inc, 2010.

48. K. S. Namjoshi. Certifying model checkers. In Computer Aided Verification.
Springer, 2001.

49. D. Peled, A. Pnueli, and L. Zuck. From falsification to verification. In Foundations
of Software Technology and Theoretical Computer Science. Springer, 2001.

50. D. Peled and L. Zuck. From model checking to a temporal proof. In International
SPIN Workshop on Model Checking of Software. Springer, 2001.

51. Y. Pencolé, G. Steinbauer, C. Mühlbacher, and L. Travé-Massuyès. Diagnosing
discrete event systems using nominal models only. In DX, pages 169–183, 2017.

52. I. Pill and T. Quaritsch. Behavioral diagnosis of LTL specifications at operator
level. In Twenty-Third International Joint Conference on Artificial Intelligence,
2013.

53. S. Rajan, N. Shankar, and M. K. Srivas. An integration of model checking with
automated proof checking. In Computer Aided Verification. Springer, 1995.

54. V. Raman, C. Lignos, C. Finucane, K. C. Lee, M. P. Marcus, and H. Kress-Gazit.
Sorry Dave, I’m Afraid I Can’t Do That: Explaining Unachievable Robot Tasks
Using Natural Language. In Robotics: Science and Systems, volume 2, pages 2–1,
2013.

55. L. Säıs, M. Hacid, and F. Hantry. On the complexity of computing minimal un-
satisfiable LTL formulas. Electronic Colloquium on Computational Complexity
(ECCC), 19:69, 2012.

Integrating Model Checking and Topological Proofs 73

56. V. Schuppan. Enhancing unsatisfiable cores for LTL with information on temporal
relevance. Theoretical Computer Science, 655(Part B):155 – 192, 2016. Quantita-
tive Aspects of Programming Languages and Systems (2013-14).

57. V. Schuppan. Enhanced unsatisfiable cores for QBF: Weakening universal to exis-
tential quantifiers. In International Conference on Tools with Artificial Intelligence
(ICTAI), pages 81–89. IEEE, 2018.

58. T. Sergeant, S. R. Goré, and J. Thomson. Finding minimal unsatisfiable subsets
in linear temporal logic using BDDs, 2013.

59. S. Shoham and O. Grumberg. A game-based framework for ctl counterexamples
and 3-valued abstraction-refinement. In International Conference on Computer
Aided Verification, pages 275–287. Springer, 2003.

60. L. Tan and R. Cleaveland. Evidence-based model checking. In International Con-
ference on Computer Aided Verification, pages 455–470. Springer, 2002.

61. X. Tao and G. Li. The complexity of linear-time temporal logic model repair.
In International Workshop on Structured Object-Oriented Formal Language and
Method, pages 69–87. Springer, 2017.

62. Torpedo. http://github.com/alessandrorizzi/torpedo, 2020.
63. J. Tretmans. Testing concurrent systems: A formal approach. In International

Conference on Concurrency Theory, pages 46–65. Springer, 1999.
64. S. Uchitel. Partial behaviour modelling: Foundations for incremental and iterative

model-based software engineering. In M. V. M. Oliveira and J. Woodcock, editors,
Formal Methods: Foundations and Applications. Springer, 2009.

65. S. Uchitel, D. Alrajeh, S. Ben-David, V. Braberman, M. Chechik, G. De Caso,
N. D’Ippolito, D. Fischbein, D. Garbervetsky, J. Kramer, et al. Supporting in-
cremental behaviour model elaboration. Computer Science-Research and Develop-
ment, 28(4):279–293, 2013.

66. S. Uchitel, G. Brunet, and M. Chechik. Synthesis of partial behavior models from
properties and scenarios. Transactions on Software Engineering, 35(3):384–406,
2009.

67. M. van der Bijl, A. Rensink, and J. Tretmans. Compositional testing with ioco.
In Formal Approaches to Software Testing, pages 86–100. Springer, 2004.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

74 C. Menghi et al.

A Generalized Formal Semantic Framework for
Smart Contracts

Jiao Jiao1(�) , Shang-Wei Lin1 , and Jun Sun2

1 Nanyang Technological University, Singapore
{jiao0023,shang-wei.lin}@ntu.edu.sg

2 Singapore Management University, Singapore
{junsun}@smu.edu.sg

Abstract. Smart contracts can be regarded as one of the most popular
blockchain-based applications. The decentralized nature of the blockchain
introduces vulnerabilities absent in other programs. Furthermore, it is
very difficult, if not impossible, to patch a smart contract after it has
been deployed. Therefore, smart contracts must be formally verified be-
fore they are deployed on the blockchain to avoid attacks exploiting these
vulnerabilities. There is a recent surge of interest in analyzing and veri-
fying smart contracts. While most of the existing works either focus on
EVM bytecode or translate Solidity contracts into programs in inter-
mediate languages for analysis and verification, we believe that a direct
executable formal semantics of the high-level programming language of
smart contracts is necessary to guarantee the validity of the verification.
In this work, we propose a generalized formal semantic framework based
on a general semantic model of smart contracts. Furthermore, this frame-
work can directly handle smart contracts written in different high-level
programming languages through semantic extensions and facilitates the
formal verification of security properties with the generated semantics.

Keywords: Blockchain · Smart contracts · Generalized semantics

1 Introduction

Blockchain [17] technologies have been studied extensively recently. Smart con-
tracts [16] can be regarded as one of the most popular blockchain-based applica-
tions. Due to the very nature of the blockchain, credible and traceable transac-
tions are allowed through smart contracts without relying on an external trusted
authority to achieve consensus. However, the unique features of the blockchain
introduce vulnerabilities [10] absent in other programs.

Smart contracts must be verified for multiple reasons. Firstly, due to the de-
centralized nature of the blockchain, smart contracts are different from programs
written in other programming languages (e.g., C/Java). For instance, the storage
of each contract instance is at a permanent address on the blockchain. In this
way, each instance is a particular execution context and context switches are
possible through external calls. Particularly, in Solidity, delegatecall executes

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 75–96, 2020.
https://doi.org/10.1007/978-3-030-45234-6_4

http://orcid.org/0000-0002-0543-1147
http://orcid.org/0000-0002-9726-3434
http://orcid.org/0000-0002-3545-1392
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_4&domain=pdf

programs in the context of the caller rather than the recipient, making it possible
to modify the state of the caller. Programmers must be aware of the execution
context of each statement to guarantee the programming correctness. Therefore,
programming smart contracts is error-prone without a proper understanding of
the underlying semantic model. Secondly, a smart contract can be deployed on
the blockchain by any user in the network. Vulnerabilities in deployed contracts
can be exploited to launch attacks that lead to huge financial loss. Verifying
smart contracts against such vulnerabilities is crucial for protecting digital as-
sets. One famous attack on smart contracts is the DAO attack [41] in which the
attacker exploited the reentrancy vulnerability and managed to take 60 million
dollars under his control. Thirdly, it is very difficult, if not impossible, to patch
a smart contract once it is deployed due to the very nature of the blockchain.

Related Works. There is a surge of interest in analyzing and verifying smart
contracts [32,12,24,28,26,9,25,31,21,44,20,22,38,36,4,34,43,19,30,35,29,23,46,14].
Some of the existing works focus on EVM [2,47] (Ethereum Virtual Machine).
For instance, a symbolic execution engine called Oyente is proposed in [32] to
analyze Solidity smart contracts by translating them into EVM bytecode. In ad-
dition, a complete formal executable semantics of EVM [24] is developed in the
K-framework to facilitate the formal verification of smart contracts at bytecode
level. A set of test oracles is defined in [26,45] to detect security vulnerabilities
on EVM bytecode. In [21], a semantic framework is proposed to analyze smart
contracts at EVM level. Securify [44] translates EVM bytecode into a stackless
representation in static-single assignment form for analyzing smart contracts.
In other works, Solidity smart contracts are translated into programs in inter-
mediate languages for analysis and verification. Specifically speaking, Solidity
programs are formalized with an abstract language and then translated into
LLVM bitcode in Zeus [28]. Similarly, Boogie is used to verify smart contracts
as an intermediate language in the proposed verifiers in [31,23]. In addition, the
formalization in F* [12] is an intermediate-level language for the equivalence
checking of Solidity programs and EVM bytecode. In [22], a simple imperative
object-based programming language, called SMAC, is used to facilitate the on-
line detection of Effectively Callback Free (ECF) objects in smart contracts. To
conclude, most of the existing approaches either focus on EVM bytecode, or
translate Solidity smart contracts into programs in intermediate languages that
are suitable for verifying smart contracts or detecting potential issues in associ-
ated verifiers or checkers. Furthermore, none of the existing works can directly
handle smart contracts written in different high-level programming languages
without translating them into EVM bytecode or intermediate languages.

Motivations. A direct executable formal semantics of the high-level smart
contract programming language is a must for both understanding and verifying
smart contracts. Firstly, programmers write and reason about smart contracts
at the level of source code without the semantics of which they are required to
understand how Solidity programs are compiled into EVM bytecode in order to
understand these contracts, which is far from trivial. In addition, there may be se-
mantic gaps between high-level smart contract programming languages and low-

76 J. Jiao et al.

level bytecode. Therefore, both high-level [27,48,49,15,11] and low-level [24,21]
semantics definitions are necessary to conduct equivalence checking to guarantee
that security properties are preserved at both levels and reason about compiler
bugs. Secondly, even though smart contracts can be transformed into programs
in intermediate languages to be analyzed and verified in existing model checkers
and verifiers, the equivalence checking of the high-level smart contract program-
ming language and the intermediate language considered is crucial to the validity
of the verification. For instance, most of the false positives reported in Zeus [28]
are caused by the semantic inconsistency of the abstract language and Solidity.

As domain-specific languages, high-level smart contract programming lan-
guages, such as Solidity, Vyper, Bamboo, etc, intend to implement the correct
or desired semantics of smart contracts although they may not actually achieve
this. This means that these languages are semantically similar in order to in-
terpret the same high-level semantics of smart contracts. For instance, Vyper is
quite similar to Solidity in spite of syntax differences and the semantics inter-
preted by Bamboo is consistent with that of Solidity (cf. Section 2.1 for details).
Considering this fact, we propose a generalized formal semantic framework based
on a general semantic model of smart contracts. Different from previous works
which either analyze and verify smart contracts on EVM semantics or interpret
Solidity semantics with the semantics of intermediate languages, the proposed
framework aims to generate a direct executable formal semantics of a particular
high-level smart contract programming language to facilitate the high-level verifi-
cation of contracts and reason about compiler bugs. Furthermore, this framework
provides a uniform formal specification of smart contracts, making it possible to
apply verification techniques to contracts written in different languages.

Challenges. The challenges of developing a generalized formal semantic
framework mainly lie in the construction of a general semantic model of smart
contracts. Firstly, different high-level smart contract programming languages dif-
fer in syntax which limits state transitions. Compared with Solidity, Vyper [8]
and Bamboo [1] have more syntax limits to exclude some vulnerabilities reported
in Solidity. For instance, Vyper eliminates gasless send by blocking recursive
calls and infinite loops, and reentrancy attacks by excluding the possibility
of state changes after external calls [40]. In addition, there are no state variables
in Bamboo and each contract represents a particular execution state, making
it possible to limit operations to certain states to prevent attacks. Therefore,
we need to take into account the syntax differences when constructing a gen-
eral semantic model for smart contracts. Secondly, semantics developed with the
general semantic model must be direct to guarantee the validity of the verifi-
cation. For instance, as discussed above, even though intermediate languages
may be a good solution to construct a general semantic model, they introduce
semantic-level equivalence checking issues due to pure syntax translations.

Contributions. In this work, we develop a generalized formal semantic
framework for smart contracts. The contributions of this work lie in three as-
pects. Firstly, our work is the first approach, to our knowledge, to a generalized
formal semantic framework for smart contracts which can directly handle con-

A Generalized Formal Semantic Framework for Smart Contracts 77

tracts written in different high-level programming languages. Secondly, a gen-
eral semantic model of smart contracts is constructed with rewriting logic in the
K-framework. With the general semantic model, a direct executable formal se-
mantics of a particular high-level smart contract programming language can be
constructed as long as its core features fall into the ones defined in this model.
The general semantic model is validated with its interpretation in Solidity using
the Solidity compiler test set [6] and evaluation results show that it is complete
and correct. Lastly, the generated semantics facilitates the formal verification
of smart contracts written in a particular high-level programming language as
a formal specification of the corresponding language. Together with low-level
specifications [24,21], it allows us to conduct equivalence checking on high-level
programs and low-level bytecode to reason about compiler bugs and guarantee
that security properties are preserved at both levels.

Outline. The remaining part of this paper is organized as follows. In Sec-
tion 2, we introduce smart contracts and the K-framework. The general semantic
model of smart contracts is introduced in Section 3. In Section 4, we take Solidity
as an example to illustrate how to generate a direct executable formal semantics
of a particular high-level smart contract programming language based on the
general semantic model. Section 5 shows the evaluation results of the proposed
framework. Section 6 concludes this work.

2 Preliminaries

In this section, we briefly introduce smart contracts and the K-framework.

2.1 Smart Contracts

Solidity Smart Contracts. Ethereum [2,47], proposed in late 2013 by Vita-
lik Buterin, is a blockchain-based distributed computing platform supporting
the functionality of smart contracts. It provides a decentralized international
network where each participant node equipped with EVM can execute smart
contracts. It also provides a cryptocurrency called “ether” (ETH) which can be
transferred between different accounts and used to compensate participant nodes
for their computations on smart contracts.

Solidity is one of the high-level programming languages to implement smart
contracts on Ethereum. A smart contract written in Solidity can be compiled
into EVM bytecode and executed by any participant node equipped with EVM.
A Solidity smart contract is a collection of code (its functions) and data (its
state) that resides at a specific address on the Ethereum blockchain [7]. Fig. 1
shows an example of Solidity smart contracts, named Coin, implementing a
very simple cryptocurrency. In line 2, the public state variable minter of type
address is declared to store the address of the minter of the cryptocurrency, i.e.,
the owner of the smart contract. The constructor, denoted by constructor(),
is defined in lines 5–7. Once the smart contract is created and deployed3, its

3 How to create and deploy a smart contract is out of scope and can be found in:
https://solidity.readthedocs.io

78 J. Jiao et al.

1 contract Coin {
2 address public minter;
3 mapping (address => uint) public balances;
4

5 constructor () public {
6 minter = msg.sender;
7 }
8

9 function mint(address receiver , uint amount) public {
10 if (msg.sender != minter) return;
11 balances[receiver] += amount;
12 }
13

14 function send(address receiver , uint amount) public {
15 if (balances[msg.sender] < amount) return;
16 balances[msg.sender] -= amount;
17 balances[receiver] += amount;
18 }
19 }

Fig. 1. Solidity Smart Contract Example

constructor is invoked automatically, and minter is set to be the address of
its creator (owner), represented by the built-in keyword msg.sender. In line 3,
the public state variable balances is declared to store the balances of users.
It is of type mapping, which can be considered as a hash-table mapping from
keys to values. In this example, balances maps from a user (represented as an
address) to his/her balance (represented as an unsigned integer value). The mint
function, defined in lines 9–12, is supposed to be invoked only by its owner to
mint coins, the number of which is specified by amount, for the user located
at the receiver address. If mint is called by anyone except the owner of the
contract, nothing will happen because of the guarding if statement in line 10.
The send function, defined in lines 14–18, can be invoked by any user to transfer
coins, the number of which is specified by amount, to another user located at the
receiver address. If the balance is not sufficient, nothing will happen because
of the guarding if statement in line 15; otherwise, the balances of both sides
will be updated accordingly.

A blockchain is actually a globally-shared transactional database or ledger.
If one wants to make any state change on the blockchain, he or she has to cre-
ate a so-called transaction which has to be accepted and validated by all other
participant nodes. Furthermore, once a transaction is applied to the blockchain,
no other transactions can alter it. For example, deploying the Coin smart con-
tract generates a transaction because the state of the blockchain is going to be
changed, i.e., one more smart contract instance will be included. Similarly, any
invocation of the function mint or send also generates a transaction because
the state of the contract instance, which is a part of the whole blockchain, is
going to be changed. Transactions have to be selected and added into blocks to
be appended to the blockchain. This procedure is the so-called mining, and the
participant nodes are called miners.

Vyper Smart Contracts. Vyper is a high-level programming language for
smart contracts running on EVM. As an alternative to Solidity, Vyper is con-

A Generalized Formal Semantic Framework for Smart Contracts 79

1 minter: public(address)
2 balances: map(address , wei_value)
3

4 @public
5 def __init__ ():
6 self.minter = msg.sender
7

8 @public
9 def mint(receiver: address , amount: wei_value):

10 if (msg.sender != self.minter): return
11 self.balances[receiver] += amount
12

13 @public
14 def send(receiver: address , amount: wei_value):
15 if (self.balances[msg.sender] < amount): return
16 self.balances[msg.sender] -= amount
17 self.balances[receiver] += amount

Fig. 2. Vyper Smart Contract Example

sidered to be more secure by blocking recursive calls and infinite loops to avoid
gasless send, and excluding the possibility of state changes after external calls
to prevent reentrancy attacks [40]. Thus, it is more difficult to write vul-
nerable code in Vyper. In addition, it supports bounds and overflow checking,
and strong typing. Particularly, timing features such as block timestamps are
supported as types, making it possible to detect the vulnerability of timestamp
dependence [32] on Vyper semantics. This is not possible on Solidity semantics
since Solidity does not support timing features. Apart from security, simplicity
is another goal of Vyper. It aims to provide a more human-readable language,
and a simpler compiler implementation. An example Vyper smart contract cor-
responding to the Solidity smart contract illustrated in Fig. 1 is shown in Fig. 2.

Bamboo Smart Contracts. Bamboo is another high-level programming
language for Ethereum smart contracts. In Bamboo, state variables are elimi-
nated and each contract represents a particular execution state, making state
transitions explicit to avoid reentrancy attacks by default. This is because
operations in functions are limited to certain states. An example Bamboo smart
contract which is equivalent to the Solidity smart contract illustrated in Fig. 1 is
shown in Fig. 3. In this example, explicit state transitions are applied to strictly
limit operations in the constructor to a certain state. To be specific, the default
part in the contract PreCoin which is equivalent to the constructor in Fig. 1 can
only be invoked once, after which the state is always Coin. This is consistent
with the fact that the constructor of a Solidity smart contract is only invoked
once when a new contract instance is created.

Comparison. As introduced above, Vyper smart contracts are similar to So-
lidity smart contracts regardless of the differences in syntax formats. Compared
with Solidity, Vyper simply excludes the vulnerabilities reported in Solidity at
syntax level. Apart from the syntax differences, explicit state transitions are ap-
plied in Bamboo to prevent potential attacks. Despite the limits in syntax and
state transitions, high-level smart contract programming languages have a lot in
common in semantics due to the fact that they have to be functionally the same.

80 J. Jiao et al.

1 contract PreCoin(address => uint balances){
2 default{
3 return then become Coin(sender(msg), balances);
4 }
5 }
6

7 contract Coin(address minter , address => uint balances){
8 case(void mint(address receiver , uint amount)){
9 if (sender(msg) != minter)

10 return then become Coin(minter , balances);
11 balances[receiver] = balances[receiver] + amount;
12 return then become Coin(minter , balances);
13 }
14 case(void send(address receiver , uint amount)){
15 if (balances[sender(msg)] < amount)
16 return then become Coin(minter , balances);
17 balances[sender(msg)] = balances[sender(msg)] - amount;
18 balances[receiver] = balances[receiver] + amount;
19 return then become Coin(minter , balances);
20 }
21 }

Fig. 3. Bamboo Smart Contract Example

2.2 The K-framework

The K-framework (K) [39] is a rewriting logic [33] based formal executable se-
mantics definition framework. The semantics definitions of various programming
languages have been developed using K, such as Java [13], C [18], etc. Partic-
ularly, an executable semantics of EVM [24], the bytecode language of smart
contracts, has been constructed in the K-framework. K backends, like the Is-
abelle theory generator, the model checker, and the deductive verifier, can be
utilized to prove properties on the semantics and construct verification tools [42].

A language semantics definition in the K-framework consists of three main
parts, namely the language syntax, the configuration specified by the developer
and a set of rules constructed based on the syntax and the configuration. Given
a semantics definition and some source programs, the K-framework executes
the source programs based on the semantics definition. In addition, specified
properties can be verified by the formal analysis tools in K backends. We take
IMP [37], a simple imperative language, as an example to show how to define a
language semantics in the K-framework.

The configuration of the IMP language is shown in Fig. 4. There are only
two cells, namely k and state, in the whole configuration cell T. The cells in
the configuration are used to store some information related to the program
execution. For instance, the cell k stores the program for execution Pgm, and in
the cell state a map is used to store the variable state.

< < $PGM:Pgm >k < .Map >state >T
Fig. 4. IMP Configuration

Here, we introduce some basic rules in the K-IMP semantics. These rules are
allocate, read and write. The syntax of IMP is also given in Fig. 5.

A Generalized Formal Semantic Framework for Smart Contracts 81

Pgm ::= "int" Ids ";" Stmt Ids ::= List{Id , ","}
AExp ::= Int | Id | "-" Int | AExp "/" AExp > AExp "+" AExp | "(" AExp ")"
BExp ::= Bool | AExp "<=" AExp | "!" BExp > BExp "&&" BExp | "(" BExp ")"
Block ::= "{" "}" | "{" Stmt "}"
Stmt ::= Block | Id "=" AExp ";" | "if" "(" BExp ")" Block "else" Block |
"while" "(" BExp ")" Block > Stmt Stmt

Fig. 5. Syntax of IMP

RULE Allocate

< int X,Xs;S

int Xs;S
. . .>k < Rho:Map

Rho (X |-> 0) >state
requires notBool (X in keys(Rho))

RULE Finish-Allocate

< int .Ids;S

S
. . .>k

RULE Read

< X:Id

I
. . .>k <. . . X |-> I . . .>state

RULE Write

< X = I:Int;

.
. . .>k < . . .

X |->

X |-> I
. . .>state

Let us start with the rule of memory allocations in IMP shown in Allocate.
When Pgm, interpreted as int X,Xs;S, is encountered, we need to store a list of
variables (X,Xs) starting from X in the cell state with a list of mappings. Here
state can be regarded as a physical memory or storage, and Xs is also a list of
variables which can be empty. X is popped out of the cell k and a new mapping
from X to 0 is created in the cell state, which means that a memory slot has
been allocated for X to store its initial value 0. No duplicate names are allowed
in state, which is guaranteed by the require condition. Then we go like this until
Xs becomes empty, which means that all the variables have already been stored
in state. At this point, the execution of the first part of Pgm has been finished
and we proceed to the execution of the statement S. This can be summarized
in Finish-Allocate where .Ids is an empty list of identifiers, which means
that the variable list is empty. Please note that . means an empty set in the
K-framework. If a rule ends with ., it means that nothing will be executed.

Then we come to the rules of read and write for variables. As shown in
Read, if we want to look up the value of the variable X, we need to search
it in the cell state by mapping the variable name X to its value I. So the
evaluation of this expression X is its value I. If we cannot find a mapping for X,
the program execution will stop at this point. Particularly, ... means there can
be something in the corresponding position. For instance, the mapping of X can
be in any position in the cell state. However, for rules in the cell k, ... can only
be at the end since the program which is stored in k is executed sequentially.
As illustrated in Write, if we want to assign the integer I to the variable X,
similarly we need to search it in state by mapping the variable name. We also
need to rewrite the value of X, denoted by “ ” which is a placeholder, to I.

Rewriting logic facilitates the construction of a general semantic model for
smart contracts. This is because a rewriting logic style semantics consists of a set
of rewriting steps from the language syntax to its evaluations. In spite of syntax
differences, different smart contract languages have a lot in common in logical

82 J. Jiao et al.

RULE Allocate-General

< #allocate(X, I)

.
. . .>k < Rho:Map

Rho (X |-> I) >state
requires notBool (X in keys(Rho))

RULE Read-General

< #read(X)

I
. . .>k

<. . . X |-> I . . .>state

RULE Write-General

< #write(X, I)

.
. . .>k < . . .

X |->

X |-> I
. . .>state

RULE Allocate-IMP

< int X,Xs;S

#allocate(X, 0)

� int Xs;S

. . .>k RULE Read-IMP

< X:Id

#read(X)
. . .>k

RULE Write-IMP

< X = I:Int;

#write(X, I)
. . .>k

MemoryOperations ::= #read(Id) | #write(Id , Int) | #allocate(Id, Int)

Fig. 6. Syntax of General Memory Operations

aspects to achieve the equivalent functionality. Rewriting logic makes it possible
to separate the language syntax from the common logical aspects based on which
the general semantic model is constructed. The semantics rules introduced above
can be general and not specific to IMP. We show the general rules for read,
write and allocate in Read-General, Write-General and Allocate-
General, respectively. In these rules, #read, #write and #allocate represent
the functions to read, write and allocate memory slots for variables with specified
parameters and their syntax is shown in Fig. 6. The semantics rules for memory
operations in IMP can be obtained by rewriting the corresponding IMP syntax
to the general memory operations defined above, namely #read, #write and
#allocate, which form a general semantic model. The semantics rules for read,
write and allocate in IMP based on the general semantic model are shown in
Read-IMP, Write-IMP and Allocate-IMP, respectively. Particularly, the
symbol�means “followed by”. The semantics rules interpreted with the internal
semantics of the general memory operations defined in Fig. 6 are equivalent to
those developed from scratch, namely Read, Write and Allocate. Rather
than pure syntax translations to intermediate languages, a general semantic
model enables semantic-level mappings to commonly shared high-level features.

3 A General Semantic Model

Different high-level smart contract programming languages vary in syntax but
have a lot in common semantically to achieve the equivalent functionality. Con-
sidering this fact, we construct a general semantic model for smart contracts
based on the commonly shared high-level semantic features that are indepen-
dent of any specific language or platform. The semantics of a high-level smart
contract programming language can be summarized into three aspects in terms
of its functionality, namely memory operations, new contract instance creations

A Generalized Formal Semantic Framework for Smart Contracts 83

and function calls. Particularly, new contract instance creations and function
calls are the two kinds of transactions on the blockchain. In this section, we
present an overview of the desired semantics of these three core features.

3.1 Syntax

The syntax of the general semantic model is defined in the K-framework and
shown in Fig. 7. Due to limit of space, we only present the syntax of rewriting
steps related to memory operations, new contract instance creations and function
calls with MemOp, NewInstanceCreation and InstanceStateUpdate, respec-
tively. Particularly, ExpressionList is a list of Expressions. TypeName consists
of ElementaryTypeName which takes one memory slot, ComplexTypeName which
is composed of a set of ElementaryTypeNames, and ReferenceTypeName which
refers to a pre-defined instance. For Solidity, ElementaryTypeName consists of
all the elementary types defined in the official documentation [7] except Byte.
ComplexTypeName refers to mappings, arrays and Byte. ReferenceTypeName in-
volves user-defined types and function types. Id stands for identifiers. Int and
Bool represent integers and Boolean values, respectively. Values, a subset of
ExpressionList, is a list of Value types which can be integers (Int) or Boolean
types (Bool). Msg is the type of transaction information. VarInfo stores variable
information. MemberAccess deals with expressions in member access formats.

RewritingSteps ::= MemOp | NewInstanceCreation | InstanceStateUpdate

MemOp ::= read(Expression) | readAddress(Int , Id) | write(Expression , Value)
| writeAddress(Int , Id, Value) | allocate(Int , VarInfo)
| allocateAddress(Int , Int , Id, Value)

NewInstanceCreation ::= createNewInstance(Id, ExpressionList)
| updateState(Id) | allocateStorage(Id)
| initInstance(Id, ExpressionList)

InstanceStateUpdate ::= functionCall(Expression; Expression; Id;
ExpressionList; Msg) | functionCall(Id; ExpressionList)
| switchContext(Int , Int , Id, Msg) | returnContext(Int)
| exception () | updateExceptionState () | revertState ()

Expression ::= Id | Value | Msg | VarInfo | MemberAccess
ExpressionList ::= List{Expression , ","} | Values
Value ::= Int | Bool Values ::= List{Value , ","}
Msg ::= #msgInfo(Int , Int , Int , Int)
VarInfo ::= #varInfo(Id , TypeName , Id, Value)
MemberAccess ::= #memberAccess(Expression , Id)
TypeName ::= ElementaryTypeName | ComplexTypeName | ReferenceTypeName

Fig. 7. Syntax of the General Semantic Model

3.2 Configuration

The runtime configuration indicates program states at each execution step, mak-
ing detailed runtime features available. The runtime configuration of the general
semantic model is illustrated in Fig. 8. Due to limit of space, only a part of the

84 J. Jiao et al.

cells is presented here. In this configuration, there are six main cells in the whole
configuration cell T and they are k, controlStacks, contracts, functions,
contractInstances and transactions. The value of each cell is initialized in
the configuration with its type specified. A dot followed by any type represents
an empty set of this type. For instance, .List is an empty list. Particularly, K is
the most general type which can be any specific type defined in the K-framework.

<
< $PGM:SourceUnit >k

< < ListItem(-1) >contractStack < .List >functionStack

< .List >newStack < .List >blockStack >controlStacks

< < 0:Int >cntContractDefs

< < .K >cName < .List >stateV ars < false >Constructor . . .>contract∗ >contracts

< < 0:Int >cntFunctions

< < 0:Int >fId < .K >fName < .K >inputParameters

< .K >returnParameters < .K >Body

< .K >funQuantifiers

. . .>function∗ >functions

< < 0:Int >cntContracts

< < (-1):Int >ctId < .K >ctName

< .Map >ctContext < .Map >globalContext

< .Map >ctType < .Map >ctLocation

< .Map >ctStorage < .Map >Memory

< 0:Int >slotNum < 0:Int >Balance

. . .>contractInstance∗ >contractInstances

< < 1:Int >cntTrans < 0 |-> "Main" >tranComputation

< .K >Msg < .List >msgStack >transactions >T
Fig. 8. Runtime Configuration of the General Semantic Model

In k, source programs, called SourceUnit, are stored for execution. If the
programs stored in k terminate in a proper way, there will be a dot in this cell,
indicating that this cell is empty and there are no more programs to execute.

controlStacks consists of contractStack, functionStack, newStack and
blockStack. To be specific, contractStack keeps track of the current contract
instance. functionStack stores a list of function calls. newStack records a list
of new contract instance creations. blockStack stores a list of variable contexts
to look up and assign values to variables in different scopes.

In contracts, a set of contract definitions is stored. Each cell contract
represents a contract definition. The number of distinct contracts is counted in
cntContractDefs. In contract, the contract name is stored in cName. State
variable information is stored in stateVars. In addition, Constructor indicates
whether the contract has a constructor or not and its initial value is false.

Similarly, functions stores a set of function definitions. Each cell function
represents a function definition. The total number of function definitions is stored
in cntFunctions. For each function definition, the function Id and the function
name are stored in fId and fName, respectively. In addtion, function parameters,
including input parameters and return parameters, are recorded in the corre-

A Generalized Formal Semantic Framework for Smart Contracts 85

sponding cells. We also store the function body in the cell Body and the function
quantifiers which can be modifiers or specifiers in the cell funQuantifiers.

In contractInstances, there is a set of contract instances. Each cell contract-
Instance represents a contract instance. The number of contract instances is
counted in cntContracts. We store the contract instance Id and the name of
its associated contract in the cells ctId and ctName, respectively. Four different
mappings are applied to keep track of more information of a variable. Specifi-
cally speaking, ctContext, ctType, ctLocation and ctStorage/Memory record
the mappings from a variable name to its logical address in the storage or mem-
ory, a variable name to its type, a variable name to its location information,
namely “global” or “local”, and the logical address of a variable in the storage
or memory to its value, respectively. globalContext keeps track of the state
variable context. The number of memory slots taken by variables is calculated
in slotNum. The cell Balance records the balance of each contract instance.

In the cell transactions, we keep track of the number of transactions in
cntTrans, every transaction in tranComputation and also “msg” information
in Msg and msgStack. “msg” is a keyword in smart contracts to represent trans-
action information. For instance, “msg.sender” is the caller of the function and
“msg.value” specifies the amount of ether to be transferred in Solidity. The cell
msgStack stores a list of transaction information tuples while Msg records the
current one. We simulate transactions of smart contracts with a “Main” contract
which is similar to the main function in C. In the “Main” contract, new contract
instances can be created and external function calls to these instances are avail-
able. The Id of the “Main” contract is “-1”, since other contract instances start
from 0. Therefore, the initialized content in contractStack is ListItem(-1),
and cntTrans is counted from 1, which means that the creation of the “Main”
contract is the first transaction recorded in tranComputation.

3.3 Semantics of the Core Features

We introduce the semantics rules for the core features in smart contracts. Due to
limit of space, the implementation details (cf. [3]) of the sub-steps are omitted.

Memory Operations. We present an overview of the semantics rules for
memory operations on elementary types, such as int, uint and address in So-
lidity, each of which takes only one memory slot. Complex types, such as arrays,
mappings, etc, are compositions of elementary types. A memory operation on a
complex type can be regarded as a set of recursive memory operations on elemen-
tary types. For instance, the memory allocation for a one-dimensional fixed-size
array is equivalent to allocating an elementary type for each index of this array.
Reading and writing a particular index involve recursive steps to retrieve the
logical address of this index from the base address of the array. Mappings are
similar to dynamic arrays. For a mapping from address to uint, the memory
allocation for this mapping is equivalent to allocating an unsigned integer type
at each address involved. Reference types which refer to pre-defined instances
can be simply implemented as mappings in the K-framework.

86 J. Jiao et al.

RULE Read

< read(X:Id)

readAddress(Addr, L)
. . .>k < ListItem(N:Int) . . .>contractStack

< < N >ctId <. . . X |-> Addr . . .>ctContext

<. . . X |-> L . . .>ctLocation

<. . . X |-> T:ElementaryTypeName . . .>ctType

. . .>contractInstance

RULE Write

< write(X:Id, V:Value)

writeAddress(Addr, L, V)
. . .>k < ListItem(N:Int) . . .>contractStack

< < N >ctId <. . . X |-> Addr . . .>ctContext

<. . . X |-> L . . .>ctLocation

<. . . X |-> T:ElementaryTypeName . . .>ctType

. . .>contractInstance

RULE Allocate

< allocate(N:Int, #varInfo(X:Id, T:ElementaryTypeName, L:Id, V:Value))

allocateAddress(N, Addr, L, V)
. . .>k

< < N >ctId < Addr

Addr +Int 1 >slotNum < TYPE:Map

TYPE (X |-> T) >ctType

< CON:Map

CON (X |-> Addr) >ctContext < LOC:Map

LOC (X |-> L) >ctLocation

. . .>contractInstance

RULE New-Contract-Instance-Creation

< createNewInstance(X:Id, E:ExpressionList)

updateState(X) � allocateStorage(X) � initInstance(X, E)
. . .>k

RULE Function-Call

< functionCall(C:Int; R:Int; F:Id; Es:Values; M:Msg)

switchContext(C, R, F, M) � functionCall(F; Es) � returnContext(R)
. . .>k

Let us start with the read operation on elementary types shown in Read.
Here, we consider the object X as a variable which is an Id type. The first thing
to do is to get the current execution context. This is achieved by retrieving the
current contract instance Id N in contractStack and mapping the corresponding
contract instance with N in the cell ctId. After that, we retrieve the logical
address of X, denoted by Addr, in ctContext and the location information of
X, denoted by L, in ctLocation. With these two parameters, we can obtain the
evaluation of X through readAddress which retrieves the value located at Addr
in the associated cell specified by L. To be specific, if L specifies this variable
as a global one, the search space is ctStorage. Otherwise, the value is retrieved
in Memory. write is similar to read. After retrieving the logical address of X,
denoted by Addr, and the location information of X, denoted by L, we rewrite
the value at Addr to the value V in the cell specified by L through writeAddress.

Then we come to the allocation for elementary types shown in Allocate.
The first input parameter N indicates the object contract instance Id. The vari-
able information including the name X, the type T, the location information L

and the initial value V, is stored in #varInfo. First, we retrieve the correspond-
ing instance by mapping the Id N in ctId. Then the number of memory slots is
increased by 1 in slotNum. After that, the variable information is recorded in the
associated cells. To be specific, we record the logical address Addr, the type T, and

A Generalized Formal Semantic Framework for Smart Contracts 87

the location information L in ctContext, ctType and ctLocation, respectively.
Finally, a memory slot is allocated for this variable through allocateAddress.

New Contract Instance Creations. As illustrated in New-Contract-
Instance-Creation, the contract name X and the arguments in the construc-
tor E are taken as input parameters to create a new instance of X. There
are altogether three sub-steps for this transaction and they are updateState,
allocateStorage and initInstance. To be specific, updateState updates the
blockchain states, including the states of contract instances and transactions,
and the stack information to indicate the new contract instance creation. In ad-
dition, allocateStorage allocates state variables and initInstance deals with
initialization issues, such as calling the constructor, in the new instance.

Function Calls. In order to make the semantics of function calls general
for all kinds of calls and extensible for different smart contract languages, a
uniform format is applied to generalize the semantics. The uniform format is
functionCall(Id of Caller; Id of Recipient; Function Name; Arguments;

Msg Info). Particularly, Msg Info represents the transaction information, in-
cluding the Ids of the caller and the recipient instances, the value of digital
assets to be transferred and the transaction fees to be consumed. The semantics
rule for function calls based on this format is shown in Function-Call.

In the rule Function-Call, the caller of this function is C and the recipient
is R. F is the function name and Es specifies the function call arguments. M is the
“msg” information to keep track of transactions. In particular, the types of these
parameters have been specified. The semantics of function calls is designed from
a general point of view. Each external function call is regarded as an extension
of an internal function call. Whenever there is an external function call, we first
switch to the recipient instance and then call the function in this instance as an
internal call. Finally, we switch back to the caller instance. In this way, external
function calls can be achieved through internal function calls and switches of
contract instances. This mechanism also applies to internal function calls where
the caller is the same as the recipient. There are three sub-steps in Function-
Call. The first one is to switch to the recipient instance from the caller through
switchContext. The second is an internal function call functionCall. The last
one is to return to the caller instance through returnContext.

Particularly, the semantics of function calls is equipped with exception han-
dling features. If an exception is encountered, it will be propagated to the trans-
actional function call to revert the whole transaction. The propagation of excep-
tions is a sub-step in returnContext. The exception handling mechanism is also
general, making it possible to deal with all kinds of exception handling features
in smart contracts, such as revert and assert in Solidity, in a similar way.

RULE Exception-Propagation

< exception()

updateExceptionState()
. . .>k

< ListItem(R)ListItem(C) . . .>contractStack

requires C >=Int 0

RULE Transaction-Reversion

< exception()

updateExceptionState()

� revertState()

. . .>k
< ListItem(R)ListItem(-1) >contractStack

88 J. Jiao et al.

There are two stages in handling exceptions. The first one is the propaga-
tion of exceptions to the transactional function call as shown in Exception-
Propagation, and the second is the reversion of the transaction as shown in
Transaction-Reversion. The first stage is present in nested calls to propa-
gate exceptions to the transactional function call, while the second stage is only
present in the transactional function call stemming from the “Main” contract.
In the stage of propagating exceptions, the exception state is updated through
updateExceptionState() to indicate that an exception has been encountered.
Particularly, the Id of the caller instance should be larger than or equal to 0 since
the caller cannot be the “Main” contract. And in the stage of reverting transac-
tions, the caller is the “Main” contract whose Id is “-1”. In addition to updating
the exception state, the whole transaction is reverted through revertState().

4 Direct Semantics Generation

A direct semantics of a high-level smart contract programming language can be
developed based on the general semantic model introduced above. From the per-
spective of rewriting logic, a language semantics is a set of rewriting steps from
the language syntax to its evaluations. Each of these rewriting steps implements
a function to move the syntax a step further to its final evaluations. The general
semantic model which consists of a set of internal rewriting steps and defines the
desired semantics of smart contracts can be regarded as a logical intermediate
language. A direct semantics of a high-level smart contract programming lan-
guage can be constructed by rewriting its syntax to the features in the general
semantic model with several functional steps. This also indicates the process of
smart contract language design. We take Solidity as an example to illustrate how
to generate the semantics based on the general semantic model. The semantics
rules presented below are based on the Solidity syntax defined in [7].

Let us start with the look-up operation in Solidity. As shown in Look-Up,
the object is considered to be a variable X. X is evaluated with read in the general
semantic model. We simply rewrite the corresponding Solidity syntax to read.
assignment is similar to look-up. As shown in Assignment, we simply rewrite
the assignment syntax in Solidity to write in the general semantic model.

RULE Look-Up

< X:Id

read(X)
. . .>k

RULE Assignment

< X:Id = V:Value

write(X, V)
. . .>k

RULE New-Instance-Solidity

< new X:Id (E:ExpressionList)

createNewInstance(X, E)
. . .>k

Both state and local variable allocations are achieved through allocate in
the general semantic model. State variables are allocated when new contract
instances are created, while local variables are allocated right after declarations.

In New-Instance-Solidity, the syntax of new contract instance creations
in Solidity is rewritten to createNewInstance in the general semantic model.

Function calls in Solidity are written in a format similar to member access.
For instance, target.deposit.value(2)() is a typical function call in Solidity.
To be specific, target specifies the recipient instance and deposit is the function

A Generalized Formal Semantic Framework for Smart Contracts 89

RULE Function-Call-Solidity

< #memberAccess(R:Int, F:Id) � Es:Values � MsgValue:Int � MsgGas:Int

functionCall(C; R; F; Es; #msgInfo(C, R, MsgValue, MsgGas))
. . .>k

< ListItem(C:Int) . . .>contractStack

RULE Revert

< revert(.ExpressionList);

exception()
. . .>k

RULE Assert

< assert(true);

.
. . .>k < assert(false);

exception()
. . .>k

RULE Require

< require(true);

.
. . .>k < require(false);

exception()
. . .>k

to be called in that instance. value specifies msg.value as 2. In addition, we
can specify other parameters, such as msg.gas, function arguments, etc. When
it comes to the semantics of function calls in Solidity, the first thing to do
is to decompose the member access like format and transform it into the one
in the general semantic model. As shown in Function-Call-Solidity, each
decomposed part in Solidity calls is reorganized in functionCall. Specifically
speaking, #memberAccess(R:Int, F:Id) specifies the recipient instance R and
the function to be called in this instance F. Es specifies the function arguments.
MsgValue and MsgGas represent msg.value and msg.gas, respectively.

The semantics rules for function calls apply to all kinds of function calls in
Solidity, including high-level and low-level calls, constructors and fallback func-
tions. For instance, if there is no function name specified in a function call or
the specified function name does not match any existing function in the recip-
ient instance, the first decomposed part in Function-Call-Solidity will be
#memberAccess(R:Int, String2Id("fallback")) where R is the Id of the re-
cipient instance and “fallback” refers to the fallback function in that instance.
In this case, the fallback function in R will be invoked. In addition, in the case
of delegatecall, the recipient instance R is the same as the caller instance C

since the execution takes place in the caller’s context.

Exception handling features in Solidity can be interpreted with the semantics
of exception() in the general semantic model. The semantics rules for revert,
assert and require are shown in Revert, Assert and Require, respectively.

5 Evaluation

We evaluate the proposed generalized formal semantic framework for smart con-
tracts by showing that the generated semantics, an interpretation of the general
semantic model with a particular language, is consistent with the semantics
interpreted by the corresponding official compiler on benchmarks. The testing
language makes no difference to the evaluation since it aims to validate the
semantics of the commonly shared high-level features defined in the general se-
mantic model. We take Solidity as an object for the evaluation since there are
sufficient Solidity smart contracts available for testing the generated Solidity

90 J. Jiao et al.

Table 1. Coverage of the Generated Solidity Semantics

Features Coverage Features Coverage

Types(Core) Statements(Core)
Elementary Types If Statement FC

address FC While Statement FC
bool FC For Statement FC
string FC Block FC
Int FC Inline Assembly N
Uint FC Statement
Byte FC Do While Statement FC
Fixed N Place Holder Statement FC
Ufixed N Continue FC

User-defined Types FC Break FC
Mappings FC Return FC
Array Types FC Throw,Revert,Assert,Require FC
Function Types FC Simple Statement FC
address payable FC Emit Statement FC

Functions(Core) Expressions(Core)
Function Definitions Bitwise Operations FC

Constructors FC Arithmetic Operations FC
Normal Functions FC Logical Operations FC
Fallback Functions FC Comparison Operations FC
Modifiers FC Assignment FC

Function Calls Look Up FC
Internal Function Calls FC New Expression FC
External Function Calls FC Other Expressions FC

Using For FC Inheritance FC
Event FC

FC: Fully Covered and Consistent with Solidity IDE N: Not Covered

semantics. The Solidity semantics developed with the proposed framework is
publicly available at https://github.com/kframework/solidity-semantics.

The generated Solidity semantics is evaluated from two perspectives: the
first one is its coverage (i.e., completeness), and the second is its correctness
(i.e., consistency with Solidity compilers). Evaluation results show that the So-
lidity semantics developed with the proposed framework completely covers the
supported high-level core language features specified by the official Solidity doc-
umentation [7] and is consistent with the official Solidity compiler Remix [5].

We evaluate and test the Solidity semantics developed with the proposed
framework with the Solidity compiler test set [6]. This test set is regarded as
a standard test set or benchmarks for evaluating Solidity semantics since the
test programs are written in a standard or correct way defined by the language
developers and cover all the features in Solidity. There are altogether 482 tests
in the Solidity compiler test set. The evaluation is done by manually comparing
the execution behaviours of the generated Solidity semantics with the ones of
the Remix compiler on the test programs. We consider the generated Solidity
semantics is correct if the execution behaviours indicated in the configuration
are consistent with the ones of the Remix compiler. A feature is considered to
be fully covered if all the compiler tests involving this feature are passed. We list
the coverage of the generated Solidity semantics in Table 1 from the perspective
of each feature specified by the official documentation.

From Table 1, we can observe that the generated Solidity semantics com-
pletely covers the supported high-level core features of Solidity. As for types, the

A Generalized Formal Semantic Framework for Smart Contracts 91

generated Solidity semantics covers the following elementary types: address,
bool, string, Int, Uint and Byte. Fixed and Ufixed are not covered because
they are not fully supported by Solidity yet [7]. User-defined types, including
struct, contract types and enum, are covered. Mappings, arrays, function types
and address payable are also covered. In addition, the semantics associated
with functions, such as function definitions and function calls, is fully cov-
ered. The semantics of statements is completely covered except that of inline
assembly statements which are considered to be low-level features accessing
EVM (i.e., this part of semantics can be integrated with KEVM [24]). All kinds
of expressions in Solidity are covered. Lastly, the semantics of event is also cov-
ered and the parts of semantics for using for and inheritance are covered
with rewriting. For all the parts of covered semantics, they are considered to be
correct since the execution behaviours involved are consistent with the ones of
Remix. Therefore, the generated Solidity semantics can be considered to be com-
plete and correct in terms of the supported high-level core features of Solidity,
indicating the completeness and correctness of the general semantic model.

Threats to Validity. We validate the general semantic model with its in-
terpretation in Solidity. The validity of the proposed framework holds for any
particular high-level smart contract programming language as long as its core
features fall into or can be properly rewritten to the ones defined in the gen-
eral semantic model. The proposed framework may not work if the core features
cannot be interpreted with the ones defined in the general semantic model. How-
ever, this is unlikely due to the nature of smart contract executions. For instance,
transactions in existing instances are implemented with or can be transformed
into function calls regardless of the platforms of smart contract programs.

6 Conclusion

In this paper, we propose a generalized formal semantic framework for smart con-
tracts. This framework can directly handle smart contracts written in different
high-level programming languages, such as Solidity, Vyper, Bamboo, etc, without
translating them into EVM bytecode or intermediate languages. In this frame-
work, a direct executable formal semantics of a particular high-level smart con-
tract programming language is constructed based on a general semantic model
with rewriting logic. The general semantic model is validated with its interpre-
tation in Solidity and evaluation results show that it is complete and correct.
Furthermore, the proposed framework provides a formal specification of smart
contracts written in different languages.

Acknowledgements. This work is supported by the Ministry of Education,
Singapore under its Tier-2 Project (Award Number: MOE2018-T2-1-068) and
partially supported by the National Research Foundation, Singapore under its
NSoE Programme (Award Number: NSOE-TSS2019-03).

92 J. Jiao et al.

References

1. Bamboo (2018), https://github.com/pirapira/bamboo
2. Ethereum (2020), https://www.ethereum.org
3. Implementation Details (2020), https://github.com/SmartContractSemantics/

SemanticFrameworkforSmartContracts
4. Mythril (2020), https://github.com/ConsenSys/mythril
5. Remix - Solidity IDE (2020), https://remix.ethereum.org
6. Solidity Compiler Test Set (2020), https://github.com/ethereum/solidity
7. Solidity Documentation (2020), https://solidity.readthedocs.io/en/latest
8. Vyper Documentation (2020), https://vyper.readthedocs.io/en/latest
9. Amani, S., Bégel, M., Bortin, M., Staples, M.: Towards Verifying Ethereum Smart

Contract Bytecode in Isabelle/HOL. In: Proceedings of the 7th ACM SIGPLAN
International Conference on Certified Programs and Proofs. pp. 66–77. CPP 2018,
ACM, New York, NY, USA (2018)

10. Atzei, N., Bartoletti, M., Cimoli, T.: A Survey of Attacks on Ethereum Smart
Contracts (SoK). In: Maffei, M., Ryan, M. (eds.) Principles of Security and Trust
- 6th International Conference, POST 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden,
April 22-29, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10204,
pp. 164–186. Springer (2017). https://doi.org/10.1007/978-3-662-54455-6 8

11. Bartoletti, M., Galletta, L., Murgia, M.: A Minimal Core Calculus for Solidity
Contracts. In: DPM/CBT@ESORICS (2019)

12. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G.,
Kobeissi, N., Kulatova, N., Rastogi, A., Sibut-Pinote, T., Swamy, N., Béguelin,
S.Z.: Formal Verification of Smart Contracts: Short Paper. In: Murray, T.C., Ste-
fan, D. (eds.) Proceedings of the 2016 ACM Workshop on Programming Languages
and Analysis for Security, PLAS@CCS 2016, Vienna, Austria, October 24, 2016.
pp. 91–96. ACM (2016)

13. Bogdanas, D., Rosu, G.: K-Java: A Complete Semantics of Java. In: Rajamani,
S.K., Walker, D. (eds.) Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India,
January 15-17, 2015. pp. 445–456. ACM (2015)

14. Chen, T., Zhang, Y., Li, Z., Luo, X., Wang, T., Cao, R., Xiao, X., Zhang, X.: Token-
Scope: Automatically Detecting Inconsistent Behaviors of Cryptocurrency Tokens
in Ethereum. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2019, London, UK, November 11-15, 2019. pp. 1503–1520. ACM (2019)

15. Crafa, S., Pirro, M., Zucca, E.: Is Solidity Solid Enough? In: Financial Cryptogra-
phy Workshops (2019)

16. Delmolino, K., Arnett, M., Kosba, A.E., Miller, A., Shi, E.: Step by Step Towards
Creating a Safe Smart Contract: Lessons and Insights from a Cryptocurrency Lab.
In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D.S., Brenner, M., Rohloff, K.
(eds.) Financial Cryptography and Data Security - FC 2016 International Work-
shops, BITCOIN, VOTING, and WAHC, Christ Church, Barbados, February 26,
2016, Revised Selected Papers. Lecture Notes in Computer Science, vol. 9604, pp.
79–94. Springer (2016). https://doi.org/10.1007/978-3-662-53357-4 6

17. Drescher, D.: Blockchain Basics (2017)
18. Ellison, C., Rosu, G.: An Executable Formal Semantics of C with Applications.

In: Field, J., Hicks, M. (eds.) Proceedings of the 39th ACM SIGPLAN-SIGACT

A Generalized Formal Semantic Framework for Smart Contracts 93

Symposium on Principles of Programming Languages, POPL 2012, Philadelphia,
Pennsylvania, USA, January 22-28, 2012. pp. 533–544. ACM (2012)

19. Feist, J., Grieco, G., Groce, A.: Slither: A Static Analysis Framework for Smart
Contracts. In: Proceedings of the 2nd International Workshop on Emerging Trends
in Software Engineering for Blockchain, WETSEB@ICSE 2019, Montreal, QC,
Canada, May 27, 2019. pp. 8–15. IEEE / ACM (2019)

20. Grech, N., Kong, M., Jurisevic, A., Brent, L., Scholz, B., Smaragdakis, Y.: Mad-
Max: Surviving Out-of-gas Conditions in Ethereum Smart Contracts. PACMPL
2(OOPSLA), 116:1–116:27 (2018)

21. Grishchenko, I., Maffei, M., Schneidewind, C.: A Semantic Framework for the Se-
curity Analysis of Ethereum Smart Contracts. In: Bauer, L., Küsters, R. (eds.)
Principles of Security and Trust - 7th International Conference, POST 2018,
Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings.
Lecture Notes in Computer Science, vol. 10804, pp. 243–269. Springer (2018).
https://doi.org/10.1007/978-3-319-89722-6 10

22. Grossman, S., Abraham, I., Golan-Gueta, G., Michalevsky, Y., Rinetzky, N., Sa-
giv, M., Zohar, Y.: Online Detection of Effectively Callback Free Objects with
Applications to Smart Contracts. PACMPL 2(POPL), 48:1–48:28 (2018)

23. Hajdu, Á., Jovanovic, D.: solc-verify: A Modular Verifier for Solidity Smart Con-
tracts. arXiv preprint abs/1907.04262 (2019)

24. Hildenbrandt, E., Saxena, M., Rodrigues, N., Zhu, X., Daian, P., Guth, D., Moore,
B.M., Park, D., Zhang, Y., Stefanescu, A., Roşu, G.: KEVM: A Complete Formal
Semantics of the Ethereum Virtual Machine. In: 31st IEEE Computer Security
Foundations Symposium, CSF 2018, Oxford, United Kingdom, July 9-12, 2018.
pp. 204–217. IEEE Computer Society (2018)

25. Hirai, Y.: Defining the Ethereum Virtual Machine for Interactive Theorem Provers.
In: Brenner, M., Rohloff, K., Bonneau, J., Miller, A., Ryan, P.Y.A., Teague, V.,
Bracciali, A., Sala, M., Pintore, F., Jakobsson, M. (eds.) Financial Cryptogra-
phy and Data Security - FC 2017 International Workshops, WAHC, BITCOIN,
VOTING, WTSC, and TA, Sliema, Malta, April 7, 2017, Revised Selected Pa-
pers. Lecture Notes in Computer Science, vol. 10323, pp. 520–535. Springer (2017).
https://doi.org/10.1007/978-3-319-70278-0 33

26. Jiang, B., Liu, Y., Chan, W.K.: ContractFuzzer: Fuzzing Smart Contracts for Vul-
nerability Detection. In: Huchard, M., Kästner, C., Fraser, G. (eds.) Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software Engi-
neering, ASE 2018, Montpellier, France, September 3-7, 2018. pp. 259–269. ACM
(2018)

27. Jiao, J., Kan, S., Lin, S., Sanán, D., Liu, Y., Sun, J.: Executable Operational
Semantics of Solidity. arXiv preprint abs/1804.01295 (2018)

28. Kalra, S., Goel, S., Dhawan, M., Sharma, S.: ZEUS: Analyzing Safety of Smart
Contracts. In: 25th Annual Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, February 18-21, 2018. The Internet So-
ciety (2018)

29. Kolluri, A., Nikolic, I., Sergey, I., Hobor, A., Saxena, P.: Exploiting the Laws of
Order in Smart Contracts. In: Zhang, D., Møller, A. (eds.) Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2019, Beijing, China, July 15-19, 2019. pp. 363–373. ACM (2019)

30. Krupp, J., Rossow, C.: teEther: Gnawing at Ethereum to Automatically Exploit
Smart Contracts. In: Enck, W., Felt, A.P. (eds.) 27th USENIX Security Sym-

94 J. Jiao et al.

posium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018. pp.
1317–1333. USENIX Association (2018)

31. Lahiri, S.K., Chen, S., Wang, Y., Dillig, I.: Formal Specification and Verification
of Smart Contracts for Azure Blockchain. arXiv preprint abs/1812.08829 (2018)

32. Luu, L., Chu, D., Olickel, H., Saxena, P., Hobor, A.: Making Smart Contracts
Smarter. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, Vienna, Austria, October 24-28, 2016. pp. 254–269. ACM
(2016)

33. Mart́ı-Oliet, N., Meseguer, J.: Rewriting Logic: Roadmap and Bibliography. Theor.
Comput. Sci. 285, 121–154 (2002)

34. Mossberg, M., Manzano, F., Hennenfent, E., Groce, A., Grieco, G., Feist, J., Brun-
son, T., Dinaburg, A.: Manticore: A User-Friendly Symbolic Execution Framework
for Binaries and Smart Contracts. In: 34th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2019, San Diego, CA, USA, November
11-15, 2019. pp. 1186–1189. IEEE (2019)

35. Nehai, Z., Bobot, F.: Deductive Proof of Ethereum Smart Contracts Using Why3.
arXiv preprint abs/1904.11281 (2019)

36. Nikolic, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A.: Finding the Greedy,
Prodigal, and Suicidal Contracts at Scale. In: Proceedings of the 34th Annual
Computer Security Applications Conference, ACSAC 2018, San Juan, PR, USA,
December 03-07, 2018. pp. 653–663. ACM (2018)

37. Nipkow, T., Klein, G.: IMP: A Simple Imperative Language. Concrete Semantics.
Springer, Cham (2014)

38. Rodler, M., Li, W., Karame, G.O., Davi, L.: Sereum: Protecting Existing Smart
Contracts Against Re-Entrancy Attacks. In: 26th Annual Network and Distributed
System Security Symposium, NDSS 2019, San Diego, California, USA, February
24-27, 2019. The Internet Society (2019)

39. Roşu, G., Şerbănuţă, T.F.: An Overview of the K Semantic Framework. Journal
of Logic and Algebraic Programming 79(6), 397–434 (2010)

40. Sergey, I., Kumar, A., Hobor, A.: Scilla: A Smart Contract Intermediate-level Lan-
guage. arXiv preprint abs/1801.00687 (2018)

41. Siegel, D.: Understanding the DAO Attack (2016), https://www.coindesk.com/
understanding-dao-hack-journalists

42. Stefanescu, A., Park, D., Yuwen, S., Li, Y., Roşu, G.: Semantics-based Program
Verifiers for All Languages. In: Visser, E., Smaragdakis, Y. (eds.) Proceedings of the
2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2016, part of SPLASH 2016,
Amsterdam, The Netherlands, October 30 - November 4, 2016. pp. 74–91. ACM
(2016)

43. Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R., Marchenko, E.,
Alexandrov, Y.: SmartCheck: Static Analysis of Ethereum Smart Contracts. In: 1st
IEEE/ACM International Workshop on Emerging Trends in Software Engineering
for Blockchain, WETSEB@ICSE 2018, Gothenburg, Sweden, May 27 - June 3,
2018. pp. 9–16. ACM (2018)

44. Tsankov, P., Dan, A.M., Drachsler-Cohen, D., Gervais, A., Bünzli, F., Vechev,
M.T.: Securify: Practical Security Analysis of Smart Contracts. In: Lie, D., Man-
nan, M., Backes, M., Wang, X. (eds.) Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018. pp. 67–82. ACM (2018)

A Generalized Formal Semantic Framework for Smart Contracts 95

45. Wang, H., Li, Y., Lin, S., Ma, L., Liu, Y.: VULTRON: Catching Vulnerable Smart
Contracts Once and for All. In: Sarma, A., Murta, L. (eds.) Proceedings of the
41st International Conference on Software Engineering: New Ideas and Emerging
Results, ICSE (NIER) 2019, Montreal, QC, Canada, May 29-31, 2019. pp. 1–4.
IEEE / ACM (2019)

46. Wang, S., Zhang, C., Su, Z.: Detecting Nondeterministic Payment Bugs in
Ethereum Smart Contracts. PACMPL 3(OOPSLA), 189:1–189:29 (2019)

47. Wood, G.: Ethereum: A Secure Decentralised Generalised Transaction Ledger.
Ethereum project yellow paper 151, 1–32 (2014)

48. Yang, Z., Lei, H.: Lolisa: Formal Syntax and Semantics for a Subset of the Solidity
Programming Language. arXiv preprint abs/1803.09885 (2018)

49. Zakrzewski, J.: Towards Verification of Ethereum Smart Contracts: A Formal-
ization of Core of Solidity. In: Piskac, R., Rümmer, P. (eds.) Verified Software.
Theories, Tools, and Experiments - 10th International Conference, VSTTE 2018,
Oxford, UK, July 18-19, 2018, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 11294, pp. 229–247. Springer (2018). https://doi.org/10.1007/978-3-
030-03592-1 13

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

96 J. Jiao et al.

An Empirical Study on the Use and Misuse of
Java 8 Streams

Raffi Khatchadourian1,2 , Yiming Tang2, Mehdi Bagherzadeh3 , and
Baishakhi Ray4

1 CUNY Hunter College, New York, NY USA
2 CUNY Graduate Center, New York, NY USA

{raffi.khatchadourian,ytang3}@{hunter,gradcenter}.cuny.edu
3 Oakland University, Rochester, MI USA

mbagherzadeh@oakland.edu
4 Columbia University, New York, NY USA

rayb@cs.columbia.edu

Abstract. Streaming APIs allow for big data processing of native data
structures by providing MapReduce-like operations over these structures.
However, unlike traditional big data systems, these data structures typi-
cally reside in shared memory accessed by multiple cores. Although popu-
lar, this emerging hybrid paradigm opens the door to possibly detrimental
behavior, such as thread contention and bugs related to non-execution
and non-determinism. This study explores the use and misuse of a popular
streaming API, namely, Java 8 Streams. The focus is on how developers
decide whether or not to run these operations sequentially or in parallel
and bugs both specific and tangential to this paradigm. Our study in-
volved analyzing 34 Java projects and 5.53 million lines of code, along
with 719 manually examined code patches. Various automated, including
interprocedural static analysis, and manual methodologies were employed.
The results indicate that streams are pervasive, parallelization is not
widely used, and performance is a crosscutting concern that accounted
for the majority of fixes. We also present coincidences that both confirm
and contradict the results of related studies. The study advances our
understanding of streams, as well as benefits practitioners, programming
language and API designers, tool developers, and educators alike.

Keywords: empirical studies · functional programming · Java 8 · streams
· multi-paradigm programming · static analysis.

1 Introduction

Streaming APIs are widely-available in today’s mainstream Object-Oriented
programming (MOOP) languages and platforms [5], including Scala [14], Java-
Script [44], C# [33], F# [47], Java [39], and Android [27]. These APIs allow for
“big data”-style processing of native data structures by incorporating MapReduce-
like [10] operations. A “sum of even squares” example in Java, where a stream of
numbers is derived from a list, filtered for evens, mapped to its squared, and
summed [5] is: list.stream().filter(x -> x % 2 == 0).map(x -> x * x).sum().

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 97–118, 2020.
https://doi.org/10.1007/978-3-030-45234-6_5

http://orcid.org/0000-0002-7930-0182
http://orcid.org/0000-0003-1549-881X
http://orcid.org/0000-0003-3406-5235
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_5&domain=pdf

Traditional big data systems, for which MapReduce is a popular backbone [3],
minimize the complexity of writing massively distributed programs by facilitating
processing on multiple nodes using succinct functional-like constructs. This makes
writing parallel code easier, as writing such code can be difficult due to possible
data races, thread interference, and contention [1,4,28]. The code above, e.g., can
execute in parallel simply by replacing stream() with parallelStream().

However, unlike traditional big data systems, data structures processed by
streaming APIs like Java 8 Streams typically reside in shared memory accessed
by multiple cores. Therefore, issues may arise from the close intimacy between
shared memory and the operations being performed, especially for developers not
previously familiar with functional programming. Streams are not just an API
but rather an emerging, hybrid paradigm. To obtain the expressiveness, speed,
and parallelism that streams have to offer, developers must adopt the paradigm
as well as the API [6, Ch. 7]. This requires determining whether running stream
code in parallel yields an efficient yet interference-free program [24] and ensuring
that no operations on different threads interleave [42].

Despite the benefits [53, Ch. 1], misusing streams may result in detrimental
behavior, and the ∼4K questions related to streams on Stack Overflow [48], of
which ∼5% remain unanswered, suggest that there is ample confusion surrounding
the topic. Bugs related to thread contention (due to λ-expressions, i.e., units of
computation, side-effects, buffering), non-execution (due to deferred execution),
non-determinism (due to non-deterministic operations), operation sequencing
(ordering of stream operations), and data ordering (ordering of stream data) can
lead to programs that undermine concurrency, underperform, are incorrect, and
are inefficient. Worse yet, these problems may increase over time as streams rise
in popularity, with Mazinanian et al. [32] finding a two-fold increasing trend in
the adoption of λ-expressions, an essential part of streams.

This study explores the use and misuse of a popular and representative
streaming API, namely, Java 8 Streams. We set out to understand the usage and
bug patterns involving streams in real software. Particularly, we are interested
in discovering (i) how developers decide whether to run streams sequentially or
in parallel, (ii) common stream operations, (iii) common stream attributes and
whether they are amenable to safe and efficient parallelization, (iv) bugs both
specific and tangential to streams, (v) how often incorrect stream APIs were
used, and (vi) how often stream APIs were misused and in which ways?

Knowing the kinds of bugs typically associated with streams can, e.g., help
improve (automated) bug detection. Being aware of the typical usage patterns
of streams can, e.g., improve code completion in IDEs. In general, the results
(i) advance our understanding of this emerging hybrid paradigm, (ii) provide
feedback to language and API designers for future API versions, (iii) help tool
designers comprehend the struggles developers have with streams, (iv) propose
preliminary best practices and anti-patterns for practitioners to use streaming
APIs effectively, (v) and assist educators in teaching streaming APIs.

We analyzed 34 Java projects and 5.53 million lines of source code (SLOC),
along with 140,446 code patches (git commits), of which 719 were manually

98 R. Khatchadourian et al.

Listing 1 Snippet of Widget collection processing using Java 8 streams [24,39].
1 Collection<Widget> unorderedWidgets = new HashSet<>(); // populate ...
2 Collection<Widget> orderedWidgets = new ArrayList<>(); // populate ...
3 List<Widget> sortedWidgets = unorderedWidgets.stream()
4 .sorted(Comparator.comparing(Widget::getWeight)).collect(Collectors.toList());
5 // collect weights over 43.2 into a set in parallel.
6 Set<Double> heavyWidgetWeightSet = orderedWidgets.parallelStream().map(Widget::getWeight)
7 .filter(w -> w > 43.2).collect(Collectors.toSet());
8 // sequentially collect into a list, skipping first 1000.
9 List<Widget> skippedWidgetList = orderedWidgets.stream().skip(1000)

10 .collect(Collectors.toList());

examined. The methodologies varied depending on the research questions and
encompassed both automated, including interprocedural static analysis, and
manual processes aided by automated software repository mining. Our study
indicates that (i) streams have become widely used since their inception in 2014,
(ii) developers tend to reduce streams back to iterative-style collections, favor
simplistic, linear reductions, and prefer deterministic operations, (iii) stream
parallelization is not widely used, yet streams tend not to have side-effects,
(iv) performance is the largest category of stream bugs and is crosscutting.

This work makes the following contributions:
Stream usages patterns A large-scale analysis of stream and collector method

calls and an interprocedural static analysis on 1.65 million lines source code
is performed, reporting on attributes essential to efficient parallel execution.

Stream bug hierarchical taxonomy From the 719 git patches from 22 projects
manually examined using 140 identifying keywords, we build a rich hierarchi-
cal, crosscutting taxonomy of common stream bugs and fixes.

Best practices and anti-patterns We propose preliminary best practices and
anti-patterns of using streams in particular contexts from our statistical results
as well as an in-depth analysis of first-hand conversations with developers.

2 Motivating Example and Conceptual Background

Lst. 1 portrays code that uses the Java 8 Stream API to process collections
of Widgets (class not shown) with colors and weights. A Collection of Widgets
is declared (line 1) that does not maintain element ordering as HashSet does not
support it [38]. Note that ordering is dependent on the run time type.

A stream (a view representing element sequences supporting MapReduce-style
operations) of unorderedWidgets is created on line 3. It is sequential, i.e., its
operations will execute serially. Streams may also have an encounter order that
may depend on its source. Here, it is unordered since HashSets are unordered.

On line 4, the stream is sorted by the corresponding intermediate oper-
ation, the result of which is a stream with the encounter order rearranged.
Widget::getWeight is a method reference denoting the comparison scheme. In-
termediate operations are deferred until a terminal operation is executed like
collect() (line 4). The collect() operation is a (mutable) reduction that aggre-
gates results of prior intermediate operations into a given Collector. In this case,
it is one that yields a List. The result is a Widget List sorted by weight.

An Empirical Study on the Use and Misuse of Java 8 Streams 99

To potentially improve performance, this stream’s “pipeline” (sequence of
operations) may be executed in parallel. Note, however, that had the stream
been ordered, running the pipeline in parallel may result in worse performance
due to the multiple passes or data buffering required by stateful intermediate
operations (SIOs) like sorted(). Because the stream is unordered, the reduction
can be done more efficiently as the run time can use divide-and-conquer [39].

In contrast, line 2 instantiates an ArrayList, which maintains element ordering.
Furthermore, a parallel stream is derived from this collection (line 6), with each
Widget mapped to its weight, each weighted filtered (line 7), and the results
collected into a Set. Unlike the previous example, however, no optimizations are
available here as an SIO is not included in the pipeline and, as such, the parallel
computation does not incur possible performance degradation.

Lines 9–10 create a list of Widgets gathered by (sequentially) skipping the first
thousand from orderedWidgets. Like sorted(), skip() is also an SIO. Unlike the
previous example, executing this pipeline in parallel could be counterproductive
because the stream is ordered. It may be possible to unorder the stream (via
unordered()) so that its pipeline would be more amenable to parallelization. In
this situation, however, unordering could alter semantics as the data is assembled
into a structure maintaining ordering. As such, the stream correctly executes
sequentially as element ordering must be preserved.

This simplified example demonstrates that using streams effectively is not
always straight-forward and can require complex (and interprocedural due to
aliasing) analysis. It necessitates a thorough understanding of API intricacies, a
problem that can be compounded in more extensive programs. As streaming APIs
become more pervasive, it would be extremely valuable to MOOP developers not
familiar with functional programming if statistical insight can be given on how
best to use streams efficiently and how to avoid common bugs.

3 Study Subjects

At the core of our study is 34 open source Java projects that use streams. They
vary widely in their domain and application, as well as size and popularity.
All the subjects have their sources publicly available on GitHub and include
popular libraries, frameworks, and applications. Many subjects were selected from
previous studies [20,21,22,24], others because they contained relatively diverse
stream operations and exhibited non-trivial metrics, including stars, forks, and
number of collaborators. It was necessary to use different subjects for different
parts of the study due to the computationally intensive nature of some of the
experiments. For such experiments, subjects were chosen so that the analysis
could be completed in a reasonable time period with reasonable resources.

4 Stream Characteristics

We explore the typical usage patterns of streams, including the frequency of
parallel vs. sequential streams and amenability to safe and efficient parallelism,
by examining stream characteristics. This has important implications for under-
standing the use of this incredibly expressive and powerful language feature. It
also offers insight into developers’ perceived risks concerning parallel streams.

100 R. Khatchadourian et al.

Table 1. Stream characteristics.

subject KLOC age eps k str seq para ord unord se SIO

bootique 4.91 4.18 362 4 14 14 0 11 3 4 0
cryptomator 7.99 6.05 148 3 12 12 0 11 1 2 0
dari 64.86 5.43 3 2 18 18 0 15 3 0 0
elasticsearch 585.71 10.03 78 6 210 210 0 165 45 10 0
htm.java 41.14 4.53 21 4 190 188 2 189 1 22 5
JabRef 138.83 16.36 3,064 2 301 290 11 239 62 9 0
JacpFX 23.79 4.71 195 4 12 12 0 9 3 1 0

jdp* 19.96 5.53 25 4 38 38 0 35 3 11 1

jdk8-exp* 3.43 6.35 34 4 49 49 0 47 2 5 0
jetty 354.48 10.93 106 4 57 57 0 47 10 8 0
JetUML 20.95 5.09 660 2 7 7 0 4 3 0 0
jOOQ 154.01 8.58 43 4 23 23 0 22 1 2 0
koral 7.13 3.47 51 3 8 8 0 8 0 0 0
monads 1.01 0.01 47 2 3 3 0 3 0 0 0
retrolambda 5.14 6.52 1 4 11 11 0 8 3 0 0

spring* 188.46 11.62 5,981 4 61 61 0 60 1 21 0
streamql 4.01 0.01 92 2 22 22 0 22 0 2 18

threeten* 27.53 7.01 36 2 2 2 0 2 0 0 0

Total 1,653.35 116.40 11,047 6 1,038 1,025 13 897 141 97 24

* jdp is java-design-patterns, jdk8-exp is jdk8-experiments, spring is a
portion of spring-framework, and threeten is threeten-extra.

4.1 Methodology

For this part of the study, we examined 18 projects that use streams,5 spanning
∼1.65 million lines of Java source code. The subjects are depicted in tab. 1.
Column KLOC corresponds to thousands of source lines of code, which ranges
from ∼1K for monads to ∼586K for elasticsearch. Column age is the age of the
subject project in years, averaging 6.47 years per subject. Column str is the
total number of streams analyzed. The remaining columns are discussed in § 4.2.

Stream Pipeline Tracking Several factors contribute to determining stream
attributes. First, streams are typically derived from a source (e.g., a collection)
and take on its characteristics (e.g., ordering), as seen in lst. 1. There are
several ways to create streams, including being derived from Collections, being
created from arrays (e.g., Arrays.stream()), and via static factory methods (e.g.,
IntStream.range()). Second, stream attributes can change by the invocation of
various intermediate operations in the building of the stream pipeline. Such
attributes must be tracked, as it is possible to have arbitrary assignments of
stream references to variables, as well as be data-dependent.

Our study involved tracking streams and their attributes (i.e., state) using
a series of labeled transition systems (LTSs). The LTSs are fed into the static
analysis portion of a refactoring tool [23] based on typestate analysis [16,49].
Stream pipelines are tracked and stream state when a terminal operation is issued
is determined by the tool. Typestate analysis is a program analysis that augments
the type system with “state” information and has been traditionally used for
prevention of program errors such as those related to resource usage. It works
by assigning each variable an initial (⊥) state. Then, method calls transition
the object’s state. States are represented by a lattice and possible transitions

5 Recall from § 3 that it was necessary to use different subjects for different parts of
the study due to the computationally intensive nature of some of the experiments.

An Empirical Study on the Use and Misuse of Java 8 Streams 101

are represented by LTSs. If each method call sequence on the receiver does not
eventually transition the object back to the ⊥ state, the object may be left in a
nonsensical state, indicating the potential presence of a bug.

The LTSs for execution mode and ordering work as follows. The state ⊥ is
a phantom initial state immediately before stream creation. Different stream
creation methods may transition the newly created stream to one that is either
sequential or parallel or ordered or unordered. The transition continues for each
invoked intermediate operation and ends with a terminal operation.

Since the analysis is focused on client-side analysis of stream APIs, the call
graph is constructed using a k-CFA, where k is the call string length. It is an
analysis parameter, with k = 2 being the default, as it is the minimum k needed
to consider client-code, for methods returning streams and k = 1 elsewhere. The
refactoring tool includes heuristics for determining sufficient and tractable k.

Counting Streams Since stream attributes are control flow sensitive, the
streams studied must be in the control flow of entry points. For non-library
subjects, all main methods were chosen, otherwise, all unit tests were chosen.

Streams are counted as follows. First, every syntactic stream is counted, i.e.,
every allocation site. Streams in the control flow of the program starting from an
entry point transition according to the LTSs. If a stream is not in the control
flow, it is still counted but it remains at the state following ⊥. This way, more
information about various stream attributes is available for the study as we do
not need control flow to determine the state following ⊥.

Side-effects and Stateful Intermediate Operations Stream side-effects
are determined using a ModRef analysis on stream operation parameters (λ-
expressions) using WALA [52]. SIOs are obtained from the documentation [39].

4.2 Results

Tab. 1 illustrates our findings on stream characteristics. Column eps is the
number of entry points. Column k is the maximum k value used (see § 4.1).
Columns seq and para correspond to the number of sequential and parallel
streams, respectively. Column ord is the number of streams that are ordered,
i.e., those whose operations must maintain an encounter order, which can be
detrimental to efficient parallel performance, while column unord is the number
unordered streams. Column se is the number of stream pipelines that include side-
effects, which may induce race conditions. Finally, column SIO is the number
of pipelines that include stateful intermediate operations, which may also be
detrimental to efficient parallel performance.

4.3 Discussion

Parallel streams are not popular (1.25%) despite their ease-of-use. Although Niele-
bock et al. [36] did not consider λ-expressions in stream contexts, this confirms
that their findings extend into stream contexts. It may also coincide with the
finding of Lu et al. [28], i.e., that developers tend to “think” sequentially.

Finding 1 : Stream parallelization is not widely used.

When considering using parallel streams, it may also be important to consider
the context. For example, many server applications deal with thread pools that

102 R. Khatchadourian et al.

span the JVM, and developers may be leery of the interactions of such pools
with the underlying stream parallelization run time system. We found this to be
the case with several pull requests [15,45] that were issued by Khatchadourian
et al. [24] as part of their refactoring evaluation to introduce parallel streams into
existing projects. It may also be the case that the locations where streams operate
are already fast enough or do not process significant amounts of data [7,30]. In
fact, Naftalin [35, Ch. 6] found that there is a particular threshold in data size
that must be reached to compensate for overhead incurred by parallel stream
processing. Lastly, developers pointed us to several blog articles [54,59] expressing
that parallel streams could be problematic under certain conditions.

There were, however, two projects that use parallel streams. Particularly,
JabRef used the most parallel streams at 11. We conjecture that JabRef’s use
of parallel streams may stem from its status as a desktop application. Such
applications typically are not managed by application containers and thus may
not utilize global thread pools as in more traditional server applications.

Many streams are ordered (86.42%), which can prevent optimal performance
of parallel streams under certain conditions [24,35,40]. Thus, even if streams were
run in parallel, they may not reap all of the benefits. This extends the findings
of Nielebock et al. [36] that λ-expressions do not appear in contexts amenable to
parallelization to streams for the case of ordering. Streams may still be amenable
to parallelization, as § 5.2 shows that many streams are traversed using API that
ignores ordering (e.g., forEach() vs. forEachOrdered()).

Finding 2 : Streams are largely ordered, possibly hindering parallelism.

That only ∼10% of streams have side-effects and only 2.31% have SIOs
contradict the findings of Nielebock et al. [36] in the context of streams. This
suggests that streams may run efficiently in parallel as, although they are largely
ordered, they include minimal side-effects and SIOs. streamql had the most
streams with SIOs (18/22), which may be due to its querying features using
aggregate operations that are manifested as SIOs in the Java 8 Streaming API
(e.g., distinct()).

Finding 3 : Streams tend not to have side-effects.

5 Stream Usage

We discover the common operations on streams and the underlying reasons by
examining stream method calls. This has important implications in understanding
how streams are used, and studying language feature usage has been shown to
be beneficial [11,43]. It provides valuable insight to programming language API
designers and tool-support engineers on where to focus their evaluation efforts.
We may also comprehend contexts where developers struggle with using streams.

5.1 Methodology

We examined 34 projects that use streams, spanning ∼5.53 million lines of source
code. To find method calls, we parsed ASTs with source-symbol bindings using
the Eclipse Java Developer Tools (JDT) [12]. Then, method invocation nodes
were extracted whose compile-time targets are declared in types residing in the
java.util.stream package. This includes types such as Streams and Collectors.

An Empirical Study on the Use and Misuse of Java 8 Streams 103

While stream creation is interesting and a topic for future work, our focus is
on operations on streams as our scope is stream usage. We also combined methods
with similar functionalities, e.g., mapToLong() with map() but not forEach() and
forEachOrdered(). Additionally, only the method name is presented, resulting in
a comparison of methods from both streams and collectors. The type is clear from
the method name (e.g., map() is for Streams, while groupingBy() is for Collectors).
We then proceeded to count the number of method calls in each project.

5.2 Results

Fig. 1 depicts the result of our analysis.6 A full table is available in our dataset [25].
The horizontal axis lists the method name, and the legend depicts projects
analyzed. The chart is sorted by the total number of calls in descending order.
Calls per project range from 4 for threeten-extra to 4,635 for cyclops. Calls per
method range from 2 for characteristics(), which returns stream attributes
such as whether it is ordered or parallel, and 3,161 for toList().

5.3 Discussion

The number of method calls in fig. 1 is substantial. There are 14,536 calls to
methods operating on streams in 34 projects. This is impressive considering that
Android, which uses the Java syntax, did not adopt streams immediately.

It is not surprising that the four most used stream methods are toList(),
collect(), map(), and filter(), as these are the core MapReduce data transforma-
tion operations. collect() is a specialized reduction that reduces to a non-scalar
type (e.g., a map) as opposed to the traditional scalar type. The toList() method
is a static method of Collectors, which are pre-made reductions, in this case, to
an ArrayList. This informs the collect() operation of the non-scalar type to use.
It is peculiar that there are more calls to toList() than collect(). This is due
to cyclops. We conjecture that it has some unorthodox usages of Collectors as it
is a platform for writing functional-style programs in Java ≥ 8 [2].

That collect() and toList(), along with other terminal operations such
as forEach(), iterator(), toSet(), and toArray(), appear towards the top to
the list suggest that, although developers are writing functional-style code to
process data in a “big data” processing style, they are not staying there. Instead,
they are “bridging” back to imperative-style code, either by collecting data into
imperative-style collections or processing the data further iteratively.

There can be various reasons for this, such as unfamiliarity with functional
programming, the need to introduce side-effects, or the need to interoperate with
legacy code. Further investigation is necessary, yet, Nielebock et al. [36] mention
that developers tend to introduce side-effects into λ-expressions, which is related.

Finding 4 : Although stream usage is high, developers tend to reduce
streams back to iterative-style collections.

We infer that developers tend to favor more simplistic (linear) rather than more
specialized (higher-dimensionality) non-scalar reductions. It is surprising that
more of the advanced reductions, such as those that return maps (e.g., toMap(),

6 Similar conclusions hold when normalizing with subject KLOC.

104 R. Khatchadourian et al.

F
ig
.
1
.
S
tr
ea
m

m
et
h
o
d
ca
ll
s

An Empirical Study on the Use and Misuse of Java 8 Streams 105

groupingBy()) are not used more frequently as these are highly expressive opera-
tions that can save substantial amounts of imperative-style code. For example, one
may group Widgets by their Color as Map<Color, List<Widget>> widgetsByColor =

widgets.stream().collect(Collectors.groupingBy(Widget::getColor)). Although
these advanced reductions are powerful and expressive, developers may be leery
of using them, perhaps due to unfamiliarity or risk adversement. This motivates
future tools that refactor to uses of advanced reductions to save developers time
and effort while possibly mitigating errors.

Finding 5 : Developers favor simplistic, linear reductions.

Another powerful stream feature is its non-determinism. For instance, findAny()
returns any stream element. However, this operation has only 62 calls, while its
deterministic counterpart, findFirst(), has 270, suggesting that developers tend
to favor determinism. Yet, in contrast, developers overwhelmingly favor the non-
deterministic forEach() operation (552) over the deterministic forEachOrdered()

(32). We conjecture that although forEach() does not guarantee a particular
ordering [41], in practice, since developers are inclined to use sequential over
parallel streams, as suggested by § 4 and mirrored by Nielebock et al. [36] in
terms of λ-expressions, the difference does not play out.

It could also be that traversal order is largely unimportant for many streams.
This is curious because, as demonstrated in § 4, the majority of streams are
ordered, an attribute detrimental to efficient parallelism [24,35,40]. As such, there
may exist opportunities to alleviate the burden of stream ordering maintenance
to make parallel streams more efficient. It may also entice developers to use more
parallel streams as the performance gains may be significant.

Finding 6 : Developers prefer deterministic operations.

Lastly, there is a minimal amount of calls to parallel stream APIs. Of particular
concern is that there are only 4 calls to groupingByConcurrent() in contrast to
the 87 calls to groupingBy(). This suggests that either advanced reductions to
maps are not being used on parallel streams or that they are not used safely
as the concurrent version provides synchronization [37]. Furthermore, not using
groupingByConcurrent() on a parallel stream may produce inefficient results [40].

6 Stream Misuses

This section is focused on discovering stream bug patterns. We are interested
in bugs both specific and tangential to streams, i.e., bugs that occur in stream
contexts. Understanding this can, e.g., help improve (automated) bug detection
and other tool-support for writing optimal stream code. We may also begin to
understand the kinds of errors developers make with streams, which may positively
influence how future API and language feature versions are implemented.

6.1 Methodology

Here, we explore 22 projects that use streams, comprising ∼4.68 million lines
of source code and 140,446 git commits.7 Tab. 2 summarizes the subjects used.

7 Recall from § 3 that it was necessary to use different subjects for different parts of
the study due to the computationally intensive nature of some of the experiments.

106 R. Khatchadourian et al.

Table 2. Studied subjects.

subject KLOC studied periods cmts kws exe

binnavi 328.28 2015-08-19 to 2019-07-17 286 4 4
blueocean-plugin 49.70 2016-01-23 to 2019-07-24 4,043 118 25
bootique 15.47 2015-12-10 to 2019-08-08 1,106 5 5
che 189.24 2016-02-11 to 2019-08-19 8,093 75 75
cryptomator 9.83 2014-02-01 to 2019-08-08 1,443 50 10
dari 72.46 2012-09-26 to 2018-03-02 2,466 18 6
eclipse.jdt.core 1,527.89 2001-06-05 to 2019-08-07 24,085 234 106
eclipse.jdt.ui 712.91 2001-05-02 to 2019-08-09 28,136 149 32
error-prone 165.85 2011-09-14 to 2019-08-15 3,893 71 71
guava 393.47 2009-06-18 to 2019-08-15 5,031 36 36
htm.java 41.63 2014-08-09 to 2019-02-19 1,507 40 1
JacpFX 24.06 2013-08-12 to 2018-04-27 365 37 14
jdk8-experiments 3.47 2013-08-03 to 2018-03-10 8 1 1
java-design-patterns 33.52 2014-08-09 to 2019-07-31 2,192 37 12
jetty 400.26 2009-03-16 to 2019-08-02 17,051 835 219
jOOQ 184.25 2011-07-24 to 2019-07-31 7,508 94 4
qbit 52.27 2014-08-25 to 2018-01-18 1,717 65 9
retrolambda 5.10 2013-07-20 to 2018-11-30 522 17 4
selenium 234.12 2004-11-03 to 2019-08-09 24,145 114 57
streamql 4.26 2014-04-27 to 2014-04-29 27 2 2
threeten-extra 31.26 2012-11-17 to 2019-07-14 559 28 2
WALA 203.84 2006-11-22 to 2019-07-24 6,263 52 24

Total 4,683.12 140,446 2,082 719

To find changesets (patches) corresponding to stream fixes, we compiled 140
keywords from the API documentation [39] that match stream operations and
related method names from the java.util.stream package. We then randomly
selected a subset of these commits whose changesets included these keywords
and were likely to be bug fixes to manually examine.

Commit Mining To discover commits that had changesets including stream
API keywords, we used gitcproc [9], a tool for processing and classifying git
commits, which has been used in previous work [17,50]. Due to the keyword-based
search used, not all of the examined commits pertained to streams (e.g., “map”
has a broad range of applications outside of streams). To mitigate this, we focused
more on keywords that were specific to stream contexts, e.g., “Collector.” Also
to reduce false positives, we only considered commits after the Java 8 release
date of March 18, 2014, which is when streams were introduced.

Finding Bug Fixes We used a feature of gitcproc that uses heuristics based
on commit log messages to identify commits that are bug fixes. Natural language
processing (NLP) is used to determine which commits fall in this category. This
helps us to focus on the likely bug-fix commits for further manual examination.

Next, the authors manually examine these commits to determine if the com-
mits were indeed related to stream-related bugs. Three of the authors are software
engineering and programming language professors with extensive expertise in
streaming and parallel systems, concurrent systems, and empirical software engi-
neering. The authors also have several years of industrial experience working as
software engineers. As the authors did not always have expertise in the subject
domains, only changes where a bug fix was extremely likely were marked as
such. The authors also used commit comments and referenced bug databases to
ascertain whether a change was a bug fix. This is a common practice [8,26,28].

An Empirical Study on the Use and Misuse of Java 8 Streams 107

Table 3. Stream bug/patch category legend.

name description acronym

Bounds Incorrect/Missing Bounds Check BC
Exceptions Incorrect/Missing Exception Handling EH
Other Other change (e.g., syntax, refactoring) Other
Perf Poor Performance PP
Concur Concurrency Issue CI
Stream Source Incorrect/Missing Stream Source SS
Intermediate Operations Incorrect/Missing Intermediate Operations IO
Data Ordering Incorrect Data Ordering DO
Operation Sequencing Incorrect Operation Sequencing OS
Filter Operations Incorrect/Missing Filter Operations FO
Map Operations Incorrect/Missing Map Operations MO
Terminal Operations Incorrect/Missing Terminal Operations TO
Reduction Operations Incorrect Reduction Operations RO
Collector Operations Incorrect/Missing Collector Operations CO
Incorrect Action Incorrect Action (e.g., λ-expression) IA

Classifying Bug Fixes Once bug fixes were identified, the authors studied the
code changes to determine the category of bug fixes and whether the category
relates to streams. Fortunately, we found that many commits reference bug
reports or provide more details about the fix. Such information proved highly
valuable in understanding the fixes. When in doubt, we also sent emails to
developers for clarification purposes as git commits include email addresses.

6.2 Results

Quantitative Column kws of tab. 2 is the number of commits where occurrences
of keywords were found and correspond to possible stream bug fixes. Column exe
depicts the number of commits manually examined. From these 719 commits, we
found 61 stream client code bug fixes. This is depicted in column total of tab. 4.
Finding these bugs and understanding their relevance required a significant
amount of manual labor that may not be feasible in more larger-scale, automated
studies. Nevertheless, as streams become more popular (they were only introduced
in 2014), we expect the usage and number of bugs related to streams to grow.

From the manual changes, we devised a set of common problem categories.
Fixes were then grouped into these categories as shown in fig. 2 and tab. 4. A
category legend appears in tab. 3, where column name is the “short” name of
the bug category and is used in fig. 2. Column description is the categories
extended name and column acronym is used in tab. 4.

Fig. 2 presents a hierarchical categorization of the 61 stream-related bug fixes.
Bugs are represented by their category name (column name in tab. 3) and their
bug counts. Categories with no count are abstract, i.e., those grouping categories.

Bugs are separated into two top-level categories, namely, bugs specifically
related to stream API usage (stream-specific) and those tangentially related,
i.e., bugs appearing in stream contexts but not specifically having to do with
streams (generic). Generic bugs were further categorized into related to exception
handling (EH), bounds checking (BC), poor performance (PP), and “other.”
Generic exception handling bugs (6) include those where, e.g., λ-expressions
passed to stream operations threw exceptions that were not handled properly.
Generic bounds checking bugs (2) included those where λ-expressions missed
traversal boundary checks, and generic performance bugs (2) were those involving,

108 R. Khatchadourian et al.

Fig. 2. Studied stream bugs and patches (hierarchical).

e.g., local variables holding stream computation results. The “other” category (3)
is aligned with a similar one used by Tian and Ray [50] and involved syntactic
corrections, e.g., incorrect types, and refactorings. Generally, “other” bugs can
either be stream-specific or generic.

Stream-specific bugs are further divided into several categories corresponding
to whether they involved intermediate operations (IO), terminal operations
(TO), the stream source (SS), concurrency (CI), and performance and exception
handling bugs specific to streams. IO-specific bugs (2) are related to intermediate
operations other than filter operations (FO, 7) and map operations (MO, 6), e.g.,
distinct(). IO bugs are additionally partitioned into those involving incorrect
operation sequencing (OS, 2), e.g., map() before filter(), data ordering (DO, 2),
e.g., operating on a stream that should have been sorted, and performance bugs
appearing in intermediate operations other than map() and filter() (1).

Terminal operations are split into two categories, namely, reduction oper-
ations (RO), e.g., collect(), reduce(), and side-effect producing operations,
e.g., forEach(), iterator(). RO-specific bugs (3) were those related to scalar
reductions, e.g., anyMatch(), allMatch(). RO-specific bugs related to collector
operations (CO, 3), on the other hand, involve non-scalar reductions, e.g., a
collector malfunction. RO-specific data ordering bugs (DO, 2) correspond to
ordering of data related to scalar reductions, e.g., using findAny() instead of

An Empirical Study on the Use and Misuse of Java 8 Streams 109

Table 4. Studied stream bugs and patches (nonhierarchical).

subject BC CI CO DO EH FO IA IO MO OS PP RO SS Other Total

binnavi 1 1
blueocean-plugin 1 1
bootique 1 1
che 1 1 1 1 4
cryptomator 1 2 1 2 6
dari 2 2
eclipse.jdt.core 1 1
eclipse.jdt.ui 1 1
error-prone 2 1 1 3 1 1 2 1 12
guava 1 1
JacpFX 1 1 2 4
jdp 1 1
jetty 1 2 1 3 7
jOOQ 1 1
selenium 2 1 2 5 1 2 2 1 1 17
threeten-extra 1 1

Total 2 1 3 4 7 7 2 2 6 2 9 3 3 10 61

findFirst(). RO-specific incorrect actions (IA, 1) is where there is a problematic
λ in a scalar reduction, e.g., an incorrect predicate in noneMatch(). Side-effect
producing operation bugs also include incorrect actions (IA, 1), e.g., a problematic
λ in forEach(). Such operations can also exhibit poor performance (PO, 1).

Some bug categories are crosscutting, appearing under multiple categories.
An example is performance. For this reason, tab. 4 portrays a nonhierarchical
view of fig. 2, which is also broken down by subject, including a column for each
bug category regardless of its parent category (acronyms correspond to tab. 3).

Finding 7 : Bugs, e.g., performance, crosscut concerns, affecting multiple
categories, both specifically and tangentially, associated with streams.

Performance issues dominate the functional (excluding “other”) bugs depicted
in tab. 4, making up the categories “Performance/API misuse” and “Performance,”
accounting for 14.75% (9/61) of the bugs found. While some of these fixes were
more cleaning-based (e.g., superfluous operations), others affected central parts
of the system and were found during performance regression testing [56].

Finding 8 : Although streams feature performance improving parallelism,
developers tend to struggle with using streams efficiently.

Despite widespread performance issues, concurrency issues (CI), on the other
hand, were not prevalent (1.64%). The one concurrency bug was where a stream
operation involved non-atomic variable access, which resulted in improper ini-
tialization [34]. Given that such a variable is accessed in a stream operation,
however, it does indicate a possible side-effect and a need to consider refactoring
such accesses to remove side-effects. This would make streams more amenable to
efficient parallelization and perhaps promote more usage of parallel streams.

Finding 9 : Concurrency issues were the least common streams bugs. How-
ever, concurrent variable access can cause thread contention, motivating
future refactoring approaches that may promote more parallel streams.

The subjects selenium and error-prone had the most stream bugs with 27.87%
and 19.67%, respectively. We hypothesize that this is due to the relatively large
size of these projects, as well as their high usage of streams. Specifically, they fell
into the top ten in terms of KLOC and stream method calls in tab. 2 and fig. 1,

110 R. Khatchadourian et al.

respectively, with ∼400 combined KLOC and 1,414 combined calls. Naturally,
projects that use streams more are likely to have more bugs involving streams.

Qualitative We highlight several of the most common bug categories with
examples, summarize common fixes, and propose preliminary best practices (BP)
and anti-patterns (AP). Due to space limitations, only a single example of each
BP/AP is shown; a complete set is available in our dataset [25]. Although some
APs may seem applicable beyond streams, e.g., avoiding superfluous operations,
we conjecture that streams are more prone to such patterns, e.g., due to the ease
in which operations can be chained and the deferred execution they offer.

SS→PP Performance issues dominated the number of stream bugs found and also
crosscut multiple categories. Consider the following performance regression [56]:

Project: jetty
Commit ID: 70311fe98787ffb8a74ad296c9dd2ba9ac431c9c

Log: Issue #3681

1 - List<HttpField> cookies = preserveCookies ? _fields.stream().filter(f ->
2 - f.getHeader() == HttpHeader.SET_COOKIE).collect(Collectors.toList()) : null;
3 + List<HttpField> cookies = preserveCookies?_fields.getFields(HttpHeader.SET_COOKIE):null;

The stream field is replaced with getFields(), which performs an iterative traver-
sal, effectively replacing streams with iteration. The developer found that using
iteration was faster than using streams [57] and wanted more “JIT-friendly” code.
The developer further admitted that using streams can make code more easy to
read but can also be associated with “allocation/complexity cost [55].”

BP1 : Use performance regression testing to verify that streams in critical
code paths perform efficiently.

In the following, a pair of superfluous operations are removed:

Project: JacpFX
Commit ID: 4f0d62d3a0987e47a4cbdf8e056bdf89713e6aac

Log: fixed class scanning

1 final Stream<String> componentIds = CommonUtil
2 .getStringStreamFromArray(annotation.perspectives());
3 final Stream<Injectable> perspectiveHandlerList =
4 - componentIds.parallel().sequential().map(this::mapToInjectable);
5 + componentIds.map(this::mapToInjectable);

getStringStreaFromArray() returns a sequential stream, which is then converted
to parallel and then to sequential. The superfluous operations are then removed.

AP1 : Avoid superfluous intermediate operations.

Fix: Generally, fixes for performance problems varied widely. They ranged
from replacing stream code with iterative code, as seen above, to removing
operations, to changing the stream source representations. Depending on context,
the bugs’ effect can be either innocuous and cause server performance degradation.

SS→TO→RO→CO The stream API provides several ready-made Collectors
for convenience. However, the API does not guarantee a specific non-scalar used
during the reduction. On one hand, this is convenient as developers may not need
a specific collection type; on the other hand, however, developers must be careful
to ensure that the specific subclass returned by the API meets their needs.

In the following, the developer does not realize, until an incorrect program
output, that the Map returned by Collectors.toMap() does not support nulls:

An Empirical Study on the Use and Misuse of Java 8 Streams 111

Project: selenium
Commit ID: 91eb004d230d8d78ec97180e66bcc7055b16130f

Log: Fix wrapping of maps with null values. Fixes #3380

1 if (result instanceof Map) {
2 - return ((Map<String, Object>) result).entrySet().stream().collect(Collectors.toMap(
3 - e -> e.getKey(), e -> wrapResult(e.getValue())));
4 + return ((Map<String, Object>) result).entrySet().stream().collect(HashMap::new,
5 + (m, e) -> m.put(e.getKey(), e.getValue()), Map::putAll);

The ready-made collector (line 2) is replaced with a direct call to collect() with
a particular Map implementation specified (line 4), i.e., HashMap.

BP2 : Use collectors only if client code is agnostic to particular container
implementations. Otherwise, use the direct form of collect().

Fix: Collector-related bugs are typically corrected by not using a Collector

(as above), changing the Collector used, or altering the Collector arguments.
They often adversely affect program behavior but are also caught by unit tests.

SS→IO In the ensuing commit, distinct() is called on a concatenated stream
to ensure that no duplicates are created as a result of the concatenation:

Project: selenium
Commit ID: eb7d9bf9cea19b8bc1759c4de1eb495829489cbe

Log: Fix tests failing because of ProtocolHandshake

1 - return Stream.concat(fromOss, fromW3c);
2 + return Stream.concat(fromOss, fromW3c).distinct();

BP3 : Ensure concatenated streams have distinct elements.
Fix : SS→IO bugs tend to be fixed by adding additional operations.

SS→IO→Other Developers “bridged” back to an imperative-style performed an
operation, then switched back to streams to continue a more functional-style:

Project: jetty
Commit ID: 91e9e7b76a08b776be21560d7ba20f9bfd943f04

Log: Issue #984 Improve module listing

1 - List<String> ordered = _modules.stream()
2 - .map(m->{return m.getName();}).collect(Collectors.toList());
3 - Collections.sort(ordered);
4 - ordered.stream().map(n->{return get(n);}).forEach(module->
5 + _modules.stream().filter(m->...).sorted().forEach(module->

Each module is mapped to its name and collected into a list. Then, ordered
is sorted via a non-stream Collections API. Another stream is then derived
from ordered to perform further operations. However, on line 5, the bridge to
a collection and subsequent sort operation is removed, and the computation
remains within the stream API. It is now more amenable to parallelization.

AP2 : Avoid “bridging” between stream API and legacy collection APIs.

Using a long λ-expression in a single map() operation may make stream code
less “functional,” more difficult to read [29], and less amenable to parallelism.
Consider the abbreviated commit below that returns the occupied drive letters
on Windows systems by collecting the first uppercase character of the path:

Project: cryptomator
Commit ID: b691e374eb2dad0284e13927e7c3fc1fdccae9bf

Log: fixes #74

1 - return rootDirs.stream().map(path -> path.toString().toUpperCase()
2 - .charAt(0)).collect(toSet());
3 + return rootDirs.stream().map(Path::toString).map(CharUtils::toChar)
4 + .map(Character::toUpperCase).collect(toSet());

The λ-expression has been replaced with method references, however, there
are more subtle yet import changes. Firstly, as CharUtils.toChar() returns the

112 R. Khatchadourian et al.

first character of a String, there is a small performance improvement as the
entire string is no longer turned to uppercase but rather only the first character.
Also, the new version is written in more of a functional-style by replacing the
single λ-expression passed to map() with multiple map() operations. How data is
transformed in the pipeline is easily visible, and future data transformations can
be easily integrated by simply adding operations.

AP3 : Avoid too many operations within a single map() operation.

Fix : “Other” non-type correcting fixes, e.g., refactorings, included introduc-
ing streams, sometimes from formerly iterative code (3), replacing map() with
mapToInt() [20], and dividing “larger” operations into smaller ones.

7 Threats to Validity

Subjects may not be representative. To mitigate this, subjects were chosen
from diverse domains and sizes. They have also been used in previous studies
(e.g., [20,22]). Although java-design-patterns is artificial, it is a reference im-
plementation similar to that of JHotDraw, which has been studied extensively
(e.g., [31]). Also, as streams are relatively new, we expect a larger selection of
subjects as they grow in popularity.

Entry points may not be correct, which could affect how stream attributes are
calculated. Since standard entry points were chosen, these represent a superset
of practically true entry points. Furthermore, there may be custom streams or
collectors outside the standard API that we are not considered. As we aim to
understand stream usage and misuse in the large, we hypothesize that the vast
majority of projects using streams use ones from the standard libraries.

Our study involved many hours of manual validation, which can be subject
to bias. However, we investigated referenced bug reports and other comments
from developers to help us understand changes more fully. We also reached out to
several developers via email correspondence when in doubt. All but one returned
the correspondence. The NLP features of gitcproc may have missed changesets
that were indeed bug fixes. Nevertheless, we were still able to find 61 bugs
that contributed to a rich bug categorization, best practices, and anti-patterns.
Furthermore, gitcproc has been used previously in other studies.

8 Related Work

Previous studies [29,32,36,46,51] have focused specifically on λ-expressions. While
λ-expressions are used as arguments to stream operations, our focus is on stream
operations themselves. Such operations transition streams to different states,
which can be detrimental to parallel performance [24,35]. Also, since streams
can be aliased, we use a tool [24] based on typestate analysis to obtain stream
attributes more reliably than AST-based approaches. We also study bugs related
to stream usage and present developer feedback—fixing bugs related to streams
may not involve changing λ-expressions; bugs can be caused by, e.g., an incorrect
sequence of stream operations. Lastly, although Nielebock et al. [36] consider
λ-expressions in “concurrency contexts,” such contexts do not include streams,
where λ-expressions can easily execute in parallel with minimal syntactical effort.

An Empirical Study on the Use and Misuse of Java 8 Streams 113

Khatchadourian et al. [24] report on some stream characteristics as part of
their refactoring evaluation but do so on a much smaller-scale, as their focus
was on the refactoring algorithm. The work presented here goes significantly
above in beyond by reporting on a richer set of stream characteristics (e.g.,
execution mode, ordering), with a noteworthy larger and updated corpus. We
also include a comprehensive categorization of stream-related bug fixes, with 719
commits manually analyzed. Preliminary best practices and anti-patterns are
also proposed.

Zhou et al. [60] conduct an empirical study on 210 service quality issues of a
big data platform at Microsoft to understand their common symptoms, causes,
and mitigations. They identify hardware faults, systems, and customer side effects
as major causes of quality issues. There are also empirical studies on data-parallel
programs. Kavulya et al. [19] study failures in MapReduce programs. Jin et al.
[18] study performance slowdowns caused by system side inefficiencies. Xiao
et al. [58] conduct a study on commutativity, nondeterminism, and correctness
of data-parallel programs, revealing that non-commutative reductions lead to
bugs. Though related, our work specifically focuses on stream APIs as a language
feature and programming paradigm, which pose special considerations due to its
shared memory model, i.e., interactions between the operations and local memory.
Bloch [6, Ch. 7] also puts-forth stream best practices and anti-patterns. However,
ours are based on a statistical analysis of real-world software and first-hand
interactions with real-world developers.

Others also study language features. Parnin et al. [43] study the adoption of
Java generics. Dyer et al. [11] build an expansive infrastructure for studying the
use of language features over time. Khatchadourian and Masuhara [22] employ a
proactive approach in empirically assessing new language features and present
a case study on default methods. There are also many studies regarding bug
analysis. For example, Engler et al. [13] present a general approach to inferring
errors in systems code, and Tian and Ray [50] study error handling bugs in C.

9 Conclusion & Future Work

This study advances our understanding of stream usage and bug patterns. We
have surveyed common stream operations, attributes, and bugs specific and
tangentially related to streams. A hierarchical taxonomy of stream bugs was
devised, preliminary best practices and anti-patterns were proposed, and first-
hand developer interactions were detailed. In the future, we will explore stream
creation, use our findings to devise automated error checkers, and explore topics
that interest stream developers. Lastly, we will investigate applicability to other
streaming frameworks and languages.

Acknowledgments We would like to thank Krishna Desai and Robert Dyer
for work on data summarization and discussions, respectively. Support for this
project was provided by PSC-CUNY Award #617930049, jointly funded by The
Professional Staff Congress and The City University of New York. This material
is based upon work supported by the National Science Foundation under Grant
No. CCF 1845893, CNS 1842456, and CCF 1822965.

114 R. Khatchadourian et al.

References

1. Ahmed, S., and Bagherzadeh, M.: What Do Concurrency Developers Ask About?: A
Large-scale Study Using Stack Overflow. In: International Symposium on Empirical
Software Engineering and Measurement, 30:1–30:10 (2018). doi: 10.1145/3239235.
3239524

2. AOL: AOL/cyclops: An advanced, but easy to use, platform for writing functional
applications in Java 8. (2019). http://git.io/fjxzF (visited on 08/29/2019)

3. Bagherzadeh, M., and Khatchadourian, R.: Going Big: A Large-scale Study on What
Big Data Developers Ask. In: Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. ESEC/FSE
2019, pp. 432–442. ACM, Tallinn, Estonia (2019). doi: 10.1145/3338906.3338939

4. Bagherzadeh, M., and Rajan, H.: Order Types: Static Reasoning About Message
Races in Asynchronous Message Passing Concurrency. In: International Workshop
on Programming Based on Actors, Agents, and Decentralized Control, pp. 21–30
(2017). doi: 10.1145/3141834.3141837

5. Biboudis, A., Palladinos, N., Fourtounis, G., and Smaragdakis, Y.: Streams a la carte:
Extensible Pipelines with Object Algebras. In: European Conference on Object-
Oriented Programming, pp. 591–613 (2015). doi: 10.4230/LIPIcs.ECOOP.2015.591

6. Bloch, J.: Effective Java. Prentice Hall, Upper Saddle River, NJ, USA (2018)
7. Bordet, S.: Pull Request #2837 • eclipse/jetty.project, Webtide. (2018). http:

//git.io/JeBAF (visited on 10/20/2019)
8. Casalnuovo, C., Devanbu, P., Oliveira, A., Filkov, V., and Ray, B.: Assert Use in

GitHub Projects. In: International Conference on Software Engineering. ICSE ’15,
pp. 755–766. IEEE Press, Florence, Italy (2015). http://dl.acm.org/citation.cfm?
id=2818754.2818846

9. Casalnuovo, C., Suchak, Y., Ray, B., and Rubio-González, C.: GitcProc: A Tool
for Processing and Classifying GitHub Commits. In: International Symposium on
Software Testing and Analysis. ISSTA 2017, pp. 396–399. ACM, Santa Barbara,
CA, USA (2017). doi: 10.1145/3092703.3098230

10. Dean, J., and Ghemawat, S.: MapReduce: Simplified Data Processing on Large
Clusters. Commun. ACM 51(1), 107–113 (2008). doi: 10.1145/1327452.1327492

11. Dyer, R., Rajan, H., Nguyen, H.A., and Nguyen, T.N.: Mining Billions of AST Nodes
to Study Actual and Potential Usage of Java Language Features. In: International
Conference on Software Engineering. ICSE 2014, pp. 779–790. ACM, Hyderabad,
India (2014)

12. Eclipse Foundation: Eclipse Java development tools (JDT), Eclipse Foundation.
(2019). http://eclipse.org/jdt (visited on 10/19/2019)

13. Engler, D., Chen, D.Y., Hallem, S., Chou, A., and Chelf, B.: Bugs As Deviant
Behavior: A General Approach to Inferring Errors in Systems Code. In: Symposium
on Operating Systems Principles. SOSP ’01, pp. 57–72. ACM, Banff, Alberta,
Canada (2001). doi: 10.1145/502034.502041

14. EPFL: Collections–Mutable and Immutable Collections–Scala Documentation,
(2017). http://scala-lang.org/api/2.12.3/scala/collection/index.html (visited on
08/24/2018)

15. Erdfelt, J.: Pull Request #2837 • eclipse/jetty.project, Eclipse Foundation. (2018).
http://git.io/JeBAM (visited on 10/20/2019)

16. Fink, S.J., Yahav, E., Dor, N., Ramalingam, G., and Geay, E.: Effective Typestate
Verification in the Presence of Aliasing. ACM Transactions on Software Engineering
and Methodology 17(2), 91–934 (2008). doi: 10.1145/1348250.1348255

An Empirical Study on the Use and Misuse of Java 8 Streams 115

17. Gharbi, S., Mkaouer, M.W., Jenhani, I., and Messaoud, M.B.: On the Classification
of Software Change Messages Using Multi-label Active Learning. In: Symposium
on Applied Computing. SAC ’19, pp. 1760–1767. ACM, Limassol, Cyprus (2019).
doi: 10.1145/3297280.3297452

18. Jin, H., Qiao, K., Sun, X.-H., and Li, Y.: Performance Under Failures of MapReduce
Applications. In: International Symposium on Cluster, Cloud and Grid Computing.
CCGRID ’11, pp. 608–609. IEEE Computer Society, Washington, DC, USA (2011).
doi: 10.1109/ccgrid.2011.84

19. Kavulya, S., Tan, J., Gandhi, R., and Narasimhan, P.: An Analysis of Traces from a
Production MapReduce Cluster. In: International Conference on Cluster, Cloud and
Grid Computing. CCGrid 2010, pp. 94–103. IEEE, Melbourne, Australia (2010).
doi: 10.1109/CCGRID.2010.112

20. Ketkar, A., Mesbah, A., Mazinanian, D., Dig, D., and Aftandilian, E.: Type
Migration in Ultra-large-scale Codebases. In: International Conference on Software
Engineering. ICSE ’19, pp. 1142–1153. IEEE Press, Montreal, Quebec, Canada
(2019). doi: 10.1109/ICSE.2019.00117

21. Khatchadourian, R., and Masuhara, H.: Automated Refactoring of Legacy Java
Software to Default Methods. In: International Conference on Software Engineering,
pp. 82–93 (2017). doi: 10.1109/ICSE.2017.16

22. Khatchadourian, R., and Masuhara, H.: Proactive Empirical Assessment of New
Language Feature Adoption via Automated Refactoring: The Case of Java 8 Default
Methods. In: International Conference on the Art, Science, and Engineering of
Programming, 6:1–6:30 (2018). doi: 10.22152/programming-journal.org/2018/2/6

23. Khatchadourian, R., Tang, Y., Bagherzadeh, M., and Ahmed, S.: A Tool for
Optimizing Java 8 Stream Software via Automated Refactoring. In: International
Working Conference on Source Code Analysis and Manipulation, pp. 34–39 (2018).
doi: 10.1109/SCAM.2018.00011

24. Khatchadourian, R., Tang, Y., Bagherzadeh, M., and Ahmed, S.: Safe Automated
Refactoring for Intelligent Parallelization of Java 8 Streams. In: International
Conference on Software Engineering. ICSE ’19, pp. 619–630. IEEE Press (2019).
doi: 10.1109/ICSE.2019.00072

25. Khatchadourian, R., Tang, Y., Bagherzadeh, M., and Ray, B.: An Empirical Study
on the Use and Misuse of Java 8 Streams, (2020). doi: 10.5281/zenodo.3677449.
Feb. 2020.

26. Kochhar, P.S., and Lo, D.: Revisiting Assert Use in GitHub Projects. In: Interna-
tional Conference on Evaluation and Assessment in Software Engineering. EASE’17,
pp. 298–307. ACM, Karlskrona, Sweden (2017). doi: 10.1145/3084226.3084259

27. Lau, J.: Future of Java 8 Language Feature Support on Android. Android Developers
Blog (2017). http://android-developers.googleblog.com/2017/03/future-of-java-8-
language-feature.html (visited on 08/24/2018)

28. Lu, S., Park, S., Seo, E., and Zhou, Y.: Learning from Mistakes: A Comprehensive
Study on Real World Concurrency Bug Characteristics. In: International Conference
on Architectural Support for Programming Languages and Operating Systems,
pp. 329–339. ACM (2008). doi: 10.1145/1346281.1346323

29. Lucas, W., Bonifácio, R., Canedo, E.D., Marćılio, D., and Lima, F.: Does the
Introduction of Lambda Expressions Improve the Comprehension of Java Programs?
In: Brazilian Symposium on Software Engineering. SBES 2019, pp. 187–196. ACM,
Salvador, Brazil (2019). doi: 10.1145/3350768.3350791

30. Luontola, E.: Pull Request #140 • orfjackal/retrolambda, Nitor Creations. (2018).
http://git.io/JeBAQ (visited on 10/20/2019)

116 R. Khatchadourian et al.

31. Marin, M., Moonen, L., and Deursen, A. van: An Integrated Crosscutting Concern
Migration Strategy and its Application to JHotDraw. In: International Working
Conference on Source Code Analysis and Manipulation (2007)

32. Mazinanian, D., Ketkar, A., Tsantalis, N., and Dig, D.: Understanding the Use of
Lambda Expressions in Java. Proc. ACM Program. Lang. 1(OOPSLA), 85:1–85:31
(2017). doi: 10.1145/3133909

33. Microsoft: LINQ: .NET Language Integrated Query, (2018). http://msdn.microsoft.
com/en-us/library/bb308959.aspx (visited on 08/24/2018)

34. Moncsek, A.: allow OnShow when Perspective is initialized, fixed issues with
OnShow/OnHide in perspective • JacpFX/JacpFX@f2d92f7, JacpFX. (2015).
http://git.io/Je0X8 (visited on 10/24/2019)

35. Naftalin, M.: Mastering Lambdas: Java Programming in a Multicore World. McGraw-
Hill (2014)

36. Nielebock, S., Heumüller, R., and Ortmeier, F.: Programmers Do Not Favor Lambda
Expressions for Concurrent Object-oriented Code. Empirical Softw. Engg. 24(1),
103–138 (2019). doi: 10.1007/s10664-018-9622-9

37. Oracle: Collectors (Java Platform SE 10 & JDK 10)–groupingByConcurrent, (2018).
http://docs.oracle.com/javase/10/docs/api/java/util/stream/Collectors.html#
groupingByConcurrent(java.util.function.Function) (visited on 08/29/2019)

38. Oracle: HashSet (Java SE 9) & JDK 9, (2017). http://docs.oracle.com/javase/9/
docs/api/java/util/HashSet.html (visited on 04/07/2018)

39. Oracle: java.util.stream (Java SE 9 & JDK 9), (2017). http://docs.oracle.com/
javase/9/docs/api/java/util/stream/package-summary.html (visited on 02/22/2020)

40. Oracle: java.util.stream (Java SE 9 & JDK 9)–Parallelism, (2017). http://docs.oracle.
com/javase/9/docs/api/java/util/stream/package-summary.html#Parallelism
(visited on 02/22/2020)

41. Oracle: Stream (Java Platform SE 10 & JDK 10)–forEach, (2018). http://docs.
oracle.com/javase/10/docs/api/java/util/stream/Stream.html#forEach(java.util.
function.Consumer) (visited on 08/29/2019)

42. Oracle: Thread Interference, (2017). http://docs.oracle .com/javase/tutorial/
essential/concurrency/interfere.html (visited on 04/16/2018)

43. Parnin, C., Bird, C., and Murphy-Hill, E.: Adoption and Use of Java Generics.
Empirical Softw. Engg. 18(6), 1047–1089 (2013). doi: 10.1007/s10664-012-9236-6

44. Refsnes Data: JavaScript Array map() Method, (2015). http://w3schools.com/
jsref/jsref map.asp (visited on 02/22/2020)

45. Rutledge, P.: Pull Request #1 • RutledgePaulV/monads, Vodori. (2018). http:
//git.io/JeBAZ (visited on 10/20/2019)

46. Sangle, S., and Muvva, S.: On the Use of Lambda Expressions in 760 Open Source
Python Projects. In: Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. ESEC/FSE 2019,
pp. 1232–1234. ACM, Tallinn, Estonia (2019). doi: 10.1145/3338906.3342499

47. Shilkov, M.: Introducing Stream Processing in F#, (2016). http://mikhail.io/2016/
11/introducing-stream-processing-in-fsharp (visited on 07/18/2018)

48. Stack Overflow: Newest ’java-stream’ Questions, (2018). http://stackoverflow.com/
questions/tagged/java-stream (visited on 03/06/2018)

49. Strom, R.E., and Yemini, S.: Typestate: A programming language concept for
enhancing software reliability. IEEE Transactions on Software Engineering SE-
12(1), 157–171 (1986). doi: 10.1109/tse.1986.6312929

50. Tian, Y., and Ray, B.: Automatically Diagnosing and Repairing Error Handling
Bugs in C. In: Joint Meeting on European Software Engineering Conference and

An Empirical Study on the Use and Misuse of Java 8 Streams 117

Symposium on the Foundations of Software Engineering. ESEC/FSE 2017, pp. 752–
762. ACM, Paderborn, Germany (2017). doi: 10.1145/3106237.3106300

51. Uesbeck, P.M., Stefik, A., Hanenberg, S., Pedersen, J., and Daleiden, P.: An
empirical study on the impact of C++ lambdas and programmer experience. In:
International Conference on Software Engineering. ICSE ’16, pp. 760–771. ACM,
Austin, Texas (2016). doi: 10.1145/2884781.2884849

52. WALA Team: T.J. Watson Libraries for Analysis, (2015). http://wala.sf.net (visited
on 01/18/2017)

53. Warburton, R.: Java 8 Lambdas: Pragmatic Functional Programming (2014)
54. Weiss, T.: Java 8: Behind The Glitz and Glamour of The New Parallelism APIs.

OverOps Blog (2014). http://blog.overops.com/new-parallelism-apis-in-java-8-
behind-the-glitz-and-glamour (visited on 10/20/2019)

55. Wilkins, G.: Issue #3681 • eclipse/jetty.project@70311fe, Webtide, LLC. (2019)
56. Wilkins, G.: Jetty 9.4.x 3681 http fields optimize by gregw • Pull Request

#3682 • eclipse/jetty.project, Webtide, LLC. (2019). http://git.io/JeBAq (visited
on 09/18/2019)

57. Wilkins, G.: Jetty 9.4.x 3681 http fields optimize by gregw • Pull Request
#3682 • eclipse/jetty.project. Comment, Webtide, LLC. (2019). http://git.io/
Je0MS (visited on 10/24/2019)

58. Xiao, T., Zhang, J., Zhou, H., Guo, Z., McDirmid, S., Lin, W., Chen, W., and
Zhou, L.: Nondeterminism in MapReduce Considered Harmful? An Empirical Study
on Non-commutative Aggregators in MapReduce Programs. In: ICSE Companion,
pp. 44–53 (2014). doi: 10.1145/2591062.2591177

59. Zhitnitsky, A.: How Java 8 Lambdas and Streams Can Make Your Code 5 Times
Slower. OverOps Blog (2015). http://blog.overops.com/benchmark-how-java-8-
lambdas-and-streams-can-make-your-code-5-times-slower (visited on 10/20/2019)

60. Zhou, H., Lou, J.-G., Zhang, H., Lin, H., Lin, H., and Qin, T.: An Empirical Study
on Quality Issues of Production Big Data Platform. In: International Conference
on Software Engineering. ICSE 2015, pp. 17–26. ACM, Florence, Italy (2015)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

118 R. Khatchadourian et al.

Extracting Semantics from Question-Answering
Services for Snippet Reuse

Themistoklis Diamantopoulos , Nikolaos Oikonomou , and Andreas
Symeonidis

Electrical and Computer Engineering Dept., Aristotle University of Thessaloniki
Thessaloniki, Greece

thdiaman@issel.auth.gr, nikooiko@ece.auth.gr, asymeon@eng.auth.gr

Abstract. Nowadays, software developers typically search online for
reusable solutions to common programming problems. However, form-
ing the question appropriately, and locating and integrating the best
solution back to the code can be tricky and time consuming. As a re-
sult, several mining systems have been proposed to aid developers in
the task of locating reusable snippets and integrating them into their
source code. Most of these systems, however, do not model the seman-
tics of the snippets in the context of source code provided. In this work,
we propose a snippet mining system, named StackSearch, that extracts
semantic information from Stack Overlow posts and recommends use-
ful and in-context snippets to the developer. Using a hybrid language
model that combines Tf-Idf and fastText, our system effectively under-
stands the meaning of the given query and retrieves semantically similar
posts. Moreover, the results are accompanied with useful metadata using
a named entity recognition technique. Upon evaluating our system in a
set of common programming queries, in a dataset based on post links,
and against a similar tool, we argue that our approach can be useful for
recommending ready-to-use snippets to the developer.

Keywords: Code Search · Snippet Mining · Code Semantic Analysis ·
Question-Answering Systems.

1 Introduction

Lately, the widespread use of the Internet and the introduction of the open-
source development initiative have given rise to a new way of developing soft-
ware. Developers nowadays rely more than ever on online services in order to
solve common problems arising during development, including e.g. developing a
component, integrating an API, or even fixing a bug. This new reuse paradigm
has been greatly supported by search engines, code hosting facilities, program-
ming forums, and question-answering communities, such as Stack Overflow1.
One could even argue that software today is built using reusable components,
which are found in software libraries and are exposed via APIs.

1 https://stackoverflow.com/

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 119–139, 2020.
https://doi.org/10.1007/978-3-030-45234-6_6

http://orcid.org/0000-0002-0520-7225
http://orcid.org/0000-0002-2286-0162
http://orcid.org/0000-0003-0235-6046
https://stackoverflow.com/
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_6&domain=pdf

As a result, the challenge lies in properly integrating these APIs/components
in order to support the required functionality. This process is typically performed
via snippets, i.e. small code fragments that usually perform clearly defined tasks
(e.g. reading a CSV file, connecting to a database, etc.). Given the vastness of
data in the services outlined in the previous paragraph (e.g. Stack Oveflow alone
has more than 18 million question posts2), locating the most suitable snippet to
perform a task and integrating it to one’s own source code can be hard. In this
context, developers often have to leave the IDE, form a query in an online tool
and navigate through several solutions before finding the most suitable one.

To this end, several systems have been proposed. Some of these systems focus
on the API usage mining problem [5,9,13,14,17,18,27,30] and extract examples
for specific library APIs, while others offer more generic snippet mining solutions
[3, 6, 28, 29] and further allow queries for common programming problems (e.g.
how to read a file in Java). Both types of systems usually employ an indexing
mechanism that allows developers to form a query and retrieve relevant snippets.

These systems, however, have important limitations. First of all, several of
them do not allow queries in natural language and may require the developer
to spend time in order to form a query in some specialized format. Secondly,
most systems index only information extracted from source code, without ac-
counting for the semantics that can be extracted from comments or even from
the surrounding text in the context (web location) that each snippet is found.
Furthermore, most tools employ some type of lexical (term frequency) indexing,
thus not exploiting the benefits of embeddings that can lead to semantic-aware
retrieval. Finally, the format and the presentation of the results is most of the
time far from optimal. There are systems that return call sequences as opposed
to ready-to-use snippets, while, even when snippets are retrieved, they are some-
times provided as-is without any additional information concerning their APIs.

In this paper, we design and develop StackSearch, a system that receives
queries in natural language and employs an indexing mechanism on Stack Over-
flow data in order to retrieve useful snippets. The indexing mechanism takes ad-
vantage of all possible information about a snippet by extracting semantics from
both the textual (title, tags, body) and the source code part of Stack Overflow
posts. The information is extracted using lexical matching as well as embeddings
in order to produce a hybrid model and retrieve the most useful results, even
when taking into account the possible ambiguities of natural language. Finally,
the snippets retrieved by StackSearch are accompanied by relevant labels that
provide an interpretation of the semantics of the posts and the employed APIs.

2 Related Work

As already mentioned, we focus on snippet mining systems that recommend
solutions to typical programming problems. Some of the first systems proposed
in this area were Prospector [16] and PARSEWeb [25]. These systems focus on

2 Source: https://data.stackexchange.com/

120 T. Diamantopoulos et al.

recommending snippets that form a path between a source object to a target
object. For Prospector, these paths are called jungloids and the program flow is a
jungloid graph. Though interesting, the system has a local database, which limits
its applicability. PARSEWeb, on the other hand, uses the Google search engine
and produces better results in most scenarios [25]). However, both systems have
important limitations; they require the developer to know which API calls to use
and further receive queries in a specialized format, and not in natural language.

Another popular category of systems in current research involves those fo-
cusing on the challenge of API usage mining, such as MAPO [30], UP-Miner [27]
or PAM [9]. The problem is typically defined as extracting common usage pat-
terns from client source code, i.e. source code that uses the relevant API. To
do so, MAPO employs frequent sequence mining, while UP-Miner uses graphs
and mines frequent closed API call paths. PAM, on the other hand, employs
probabilistic machine learning to extract sequences that exhibit higher coverage
of the API under analysis and are more diverse [9]. Though quite effective, these
systems are actually limited to the API under analysis and cannot support more
generic queries. Furthermore, they too do not accept queries in natural language,
while their output is in the form of sequences, instead of ready-to-use snippets.

Similar conclusions can be drawn for API mining systems that output snip-
pets. For example, APIMiner [17] performs code slicing in order to generate
common API usage examples, while eXoaDocs [14] further performs semantic
clustering (using the DECKARD code clone detection algorithm [11]) to group
them according to their functionality. CLAMS [13] also clusters the snippets and
further generates the most representative (medoid) snippet of each cluster us-
ing slicing and code summarization techniques. Another interesting approach is
MUSE [18], which employs a novel ranking scheme for the recommended snippets
based on metrics such as the ease of reuse, a metric computed by determining
whether a snippet has custom object types, and thus requires external depen-
dencies. As with the previous approaches, these systems are effective for mining
API usage examples, however they do not generalize to the problem of receiving
natural language queries and retrieving API-agnostic reusable solutions.

This more generic snippet mining scenario is supported by several contempo-
rary systems. One such system is SnipMatch [29], which employs pattern-based
code search to retrieve useful snippets. SnipMatch, however, relies on a local
index that has to be updated from the developer. More advanced systems in
this aspect usually connect to online search engines and process their results to
extract and recommend snippets. For example, Blueprint [3] and CodeCatch [6]
employ the Google search engine, while Bing Code Search [28] employs Bing.
Due to the integration with strong engines, these systems tend to offer effective
natural language understanding features and their results are adequate even in
less common queries. However, the text surrounding the code is not parsed for se-
mantic information, so the quality of the retrieved snippets is bound only to the
semantics introduced by the search engines. Moreover, the agnostic web search
that these systems perform may often be suboptimal compared to issuing the
queries to a better focused question-answering service.

Extracting Semantics from Question-Answering Services for Snippet Reuse 121

These limitations have led to more specialized tools that employ Stack Over-
flow in order to recommend snippets that are proposed by the community and
are accompanied by useful metadata. One of the first such systems is Example
Overflow [35], an online code search engine that uses Tf-Idf as a scoring mecha-
nism and retrieves snippets relevant to the jQuery framework. Two other systems
in this area, which are built as plugins of the Eclipse IDE, are Prompter [22] and
Seahawk [21]. Prompter employs a sophisticated ranking mechanism based not
only on the code of each snippet, but also on metadata, such as the score of the
post or reputation of the user that posted it on Stack Overflow. Seahawk also
uses similar metadata upon building a local index using Apache Solr3. The main
limitation of the systems in this category is their reliance on term occurrence;
the lack of more powerful semantics restricts the retrieved results to cases where
the query terms appear as-is within the Stack Overflow posts.

Finally, there are certain research efforts towards semantic-aware snippet re-
trieval. SWIM [23], for instance, which is proposed by the research team behind
Bing Code Search [28], uses a natural language to API mapper that computes
the probability Pr(t|Q) that an API t appears as a result to a query Q. The sys-
tem retrieves the most probable snippets and synthesizes them to produce valid
and human-readable snippets. A limitation of SWIM, which was highlighted by
Gu et al. [10], is that it follows the bag-of-words assumption, therefore it cannot
distinguish among certain queries (e.g. “convert number to string” and “convert
string to number). The authors instead propose DeepAPI [10], a system that de-
fines snippet recommendation as a machine translation problem, where natural
language is the source language and source code is the target language. DeepAPI
employs a model with three recurrent neural networks (one for the text of the
query as-is, one for the same text reversed, and one to combine them) that re-
trieves the most relevant API call sequence given a query. The system, however,
is largely based on code comments, so its performance depends on whether there
is sufficient documentation in the snippets of its index. A similar approach is
followed by T2API [20], another Ecliple plugin that uses a graph-based trans-
lation approach to translate query text into API usages. This system, however,
is also largely based on synthesizing API calls and does not focus on semantic
retrieval. Finally, an even more recent system is CROKAGE [24], which employs
embeddings and further expands the query with relevant API classes from Stack
Overflow. The final results are ranked according to multiple factors, including
their lexical and semantic similarity with the query and their similar API usage.

In conclusion, the systems analyzed in the above paragraphs have the limita-
tions that were discussed also in the introduction of this work. Several of them
are focused only on APIs without generalizing to common programming prob-
lems. And while there are certain systems that allow queries in natural language,
most of them rely on term frequency indexing and do not incorporate semantics
extracted by the context of the snippets. In this work, we design a hybrid system
that employs both a lexical (term frequency) and a word embeddings model on
Stack Overflow posts’ data. Note that, compared to source code comments that

3 https://lucene.apache.org/solr/

122 T. Diamantopoulos et al.

may be incomplete or sometimes even non-existent, the text of Stack Overflow
posts is a more complete source of information as it is the outcome of the expla-
nation efforts of different members of the community [7]. As a result, our system
can extract the semantic meaning of natural language queries and retrieve useful
snippets, which are accompanied by semantic-aware labels.

3 StackSearch: A Semantic-aware Snippet Recommender

3.1 Overview

The architecture of StackSearch is shown in Figure 1. The left part of the figure
refers to building the index while the right one refers to answering user queries.

Fig. 1. Architecture of StackSearch

At first, our system retrieves information from Stack Overflow4 and builds
an SQLite5 database of all Java posts. Note that our methodology is mostly
language agnostic, however we use Java here as a proof of concept6. We created
four tables in order to store question posts, answer posts, comments, and post
links (to be used for evaluation, see subsection 4.2). For each of these tables we
kept all information, i.e. title, tags, body, score, etc., as well as all connections
of the data dump as foreign keys (e.g. any answer has a foreign key towards the
corresponding question), so that we fully take into account the post context.

Upon storing the data in a suitable format, the Preprocessor receives as
input all question posts, answer posts, and comments and extracts a corpus of
texts. The corpus is then given to the Word Model Builder, which trains different
models to transform the text to vector form. Finally, the system includes a vector
index, where each set of vectors corresponds to to the title, tags, and body of
one question post, the produced word models, and certain metadata for each
question, which are extracted by the Metadata Extractor.

4 We used the latest official data dump provided by Stack Overflow, which is available
at https://archive.org/details/stackexchange

5 https://www.sqlite.org/
6 Applying our methodology to a different language requires only providing a prepro-
cessor in order to extract the relevant source code elements from the post snippets.

Extracting Semantics from Question-Answering Services for Snippet Reuse 123

When the developer issues a query, the Querying Engine initially extracts
a vector for the query given the stored vector models, and then computes the
similarity between the query vector and each vector in the vector index. The
engine then ranks the results and presents them to the user along with their
metadata. The steps required to build the index as well as the issuing of queries
are discussed in detail in the following subsections.

3.2 Preprocessor

Upon creating our database, the next step is to preprocess the data in order
to build the corpus that will be used to train our models. We extract the text
and the code of each post by parsing the <pre> and <code> tags. We further
remove all html tags from text and then perform a series of preprocessing steps.
At first, the code is parsed to extract its semantic information. The posts are
then filtered to remove the ones that introduce noise to the dataset and, finally,
the texts are tokenized. These steps are outlined in the following paragraphs.

Extracting Semantics from Source Code Upon extracting the code from
each question post, we parse it using an extension of the parser described in [8].
The parser checks if the snippets are compilable and also drops any snippets that
are not written in Java. Upon making these checks, our parser extracts the AST
of each snippet and takes two passes over it, one to extract type declarations,
and one to extract method invocations (i.e. API calls). For example, in the
snippet of Figure 2, the parser initially extracts the declarations is: InputStream,
br: BufferedReader, and sb: StringBuilder (strings and exceptions are excluded).
After that, it extracts the relevant API calls, which are highlighted in Figure 2.

// initialize an InputStream
InputStream is = new ByteArrayInputStream (”sample”.getBytes());
// convert InputStream to String
BufferedReader br = null;
StringBuilder sb = new StringBuilder ();
String line;
try {

br = new BufferedReader (new InputStreamReader (is));
while ((line = br. readLine ()) != null) { sb. append (line); }

} catch (IOException e) {
e.printStackTrace();

} finally {
if (br != null) {

try { br. close (); } catch (IOException e) { e.printStackTrace(); }
}

}

Fig. 2. Example snippet for “How to read a file line by line” (API calls highlighted)

124 T. Diamantopoulos et al.

Finally, the calling object of each API call is replaced by its type and the
text of comments is also retrieved to produce the sequence shown in Figure 3.

initialize an InputStream, InputStream, ByteArrayInputStream, convert InputStream to
String, BufferedReader, StringBuilder, StringBuilder, BufferedReader, InputStreamReader,
BufferedReader.readLine, StringBuilder.append, BufferedReader.close

Fig. 3. Extracted sequence for the snippet of Figure 2

Filtering the Posts Filtering is performed using a classifier that rules out any
posts that are considered by our system as noise. We used the regional CNN-
LSTM model of Wang et al. [26], a model shown in Figure 4 that combines the
CNN and LSTM architectures and achieves in capturing the characteristics of
text considering also its order. Our classifier is binary; it receives as input the
data of each post and its output determines whether a post is useful or noisy.

Fig. 4. Architecture of Regional CNN-LSTM model by Wang et al. [26]

The input embedding layer receives a one-hot encoding that corresponds to
the concatenation of the title, body and tags of each post. Tokenization and one-
hot encoding are performed before the text is given as input so no rules are given
other than splitting on spaces and punctuation (this tokenization process is only

Extracting Semantics from Question-Answering Services for Snippet Reuse 125

used here on-the-fly to filter the posts, while we fully tokenize the text afterwards
as described in the next paragraph). Punctuation marks are also kept as each of
them is actually a token. After that, the classifier includes a CNN layer, which
extracts and amplifies the terms (including punctuation) that cause noise. The
CNN layer is followed by a max pooling layer that is used to reduce the number
of parameters that have to be optimized by the model. Finally, the next layer
is the LSTM that captures semantic information from nearby terms, which is
finally given to the output to provide the binary decision.

To train our classifier, we have annotated a set of 2500 posts. For each post,
we consider it noisy if it has error logs, debug logs or stack traces. Though
useful in other contexts, in our case these posts would skew our models, as they
contain a lot of generic data. Furthermore we deem noisy any posts with large
amounts of numeric data (usually in tables) and any posts with code snippets
in languages other than Java. The training was performed with accuracy as
the metric to optimize, while we also used dropout to avoid overfitting. Upon
experimenting with different parameter values, we ended up using the Adagrad
optimizer, while the dropout and recurrent dropout parameters were set to 0.6
and 0.05 respectively. Setting the embedding length to 35 and the number of
epochs to 5 proved adequate, as our classifier achieved accuracy equal to 0.94.

Text Tokenization Upon filtering, we now have a set of texts that must be
tokenized before they are given as input to the models. Since tokenization might
split Java terms (e.g. method invocations), we excluded these from tokenizing us-
ing regular expressions. After that, we removed all URLs and all non-alphabetical
characters (i.e. numbers and special symbols) and tokenized the text.

3.3 Word Model Builder

We build two models for capturing the semantics of posts, a Tf-Idf model and
a FastText embedding. These models are indicative of lexical matching and se-
mantic matching, respectively. They will serve as baselines and at the same time
be used to build a more powerful hybrid model (see subsection 3.5). Both models
are executed three times, one for the titles of the question posts, one for their
bodies, and one for their tags. As already mentioned the code snippets are re-
placed by their corresponding text sequences, so they now are textual parts of
the bodies. The two models are analyzed in the following paragraphs.

Tf-Idf Model We employ a vector space model to represent the texts (titles
or bodies or tags) as documents and the words/terms as dimensions. The vector
representation for each document is extracted using Tf-Idf vectorizer. According
to Tf-Idf, the weight (vector value) of each term t in a document d is defined as:

tfidf(t, d,D) = tf(t, d) · idf(t,D) (1)

where tf(t, d) is the term frequency of term t in document d and refers to the
number of occurrences of the term t in the document (title, body or tag). Also,

126 T. Diamantopoulos et al.

idf(t,D) is the inverse document frequency of term t in the set of all documents
D, and is used as a normalizing factor to indicate how common the term is in
the corpus. In our implementation (we used scikit-learn), idf(t,D) is equal to
1+ log((1+ |D|)/(1+dt)), where |dt| is the number of documents containing the
term t, i.e. the number of titles, bodies or tags that include the relevant term.
Intuitively, very common terms (e.g. “Java” or “Exception”) may act as noise
for our dataset, as they could appear to semantically different posts.

FastText Model FastText is a neural language model proposed by Facebook’s
AI Research (FAIR) lab [2,12]. Practically, fastText is a shallow neural network
that is trained in order to reconstruct linguistic contexts of words. In our case,
we transform the terms of the documents in one-hot encoding format and give
the documents as input to the network during the training step. The result, i.e.
the output of the hidden layer, is actually a set of word vectors. So, in this case,
the resulting model is one where terms are represented as vectors. Given proper
parameters, these vectors should incorporate semantic information, so that our
model will have learned from the context.

We used the official implementation of fastText7, selected the skip-gram vari-
ation of the model and we also set it up to use n-grams of size 3, 4, 5, 6, and 7.
Upon experimenting with the parameters of the model, we ended up building a
model with 300 dimensions and training it for 25 epochs. We used the negative
sampling cost function (with number of negative samples equal to 10) and set
the learning rate to 0.025 and the window size (i.e. number of terms that are
within the context of a word) to 10. Also, the sampling threshold was set to
10−6, while we also dropped any words with fewer than 5 occurrences. Upon
extracting all word vectors, we create the vector of each document level (title,
body or tags) by averaging over its word vectors.

Finally, the output of either of our two models is a set of vectors, one for the
title, one for the body and one for the tags of each post. In the case of Tf-Idf
the dimensions of the vector are equal to the total number of words, while in the
case of fastText there are 300 dimensions. In both cases, the vectors are stored
in a vector index, which also contains ids that point to the original posts.

3.4 Metadata Extractor

As metadata, we extract the named entities of each post, i.e. useful terms that
may help the developer understand the semantics behind each post. To do so, we
build a Conditional Random Fields (CRF) classifier [15], which performs named
entity recognition based on features extracted from the terms themselves and
from their context (neighboring terms). The goal is to estimate the probability
that a term belongs to one of the available categories. To create a feature set for
each term, we initially use two models.

At first, we employ the Brown hierarchical clustering algorithm [4] to generate
a binary representation of all terms in the corpus. The algorithm clusters all

7 https://github.com/facebookresearch/fastText

Extracting Semantics from Question-Answering Services for Snippet Reuse 127

terms in a binary tree structure. An example fragment of such a tree is shown
in Figure 5. The leaf nodes of the tree are all the terms, so by traversing the
tree from the root to a leaf we are given a binary representation known as
bitstring for the corresponding term. Semantically similar terms are expected
to share more similar tree paths. For instance, in the fragment of Figure 5, the
terms ‘array’ and ‘table’ have binary representations 00100000 and 00100001
respectively, which are quite similar, as is their semantic meaning. The terms
‘collection’ and ‘list’ are also similar, yet somewhat less, as their representations
(001000010 and 001001 respectively) differ more.

Fig. 5. Example Fragment of Binary Tree generated by the Brown Algorithm

Secondly, we use the fastText model of subsection 3.3. As already mentioned,
our model extracts vector representations of terms so that semantically similar
terms have vectors that are closer to each other (where proximity is computed
using cosine similarity, see section 3.5). To reduce the size of these vectors (and
thus avoid the curse of dimensionality), we further employ K-Means to cluster
them into 5 configurations with different number of clusters (500, 1000, 1500,
2000, and 3000), an idea originating from similar natural language approaches
[33,34]. Thus, instead of using the term vector, we use 5 features for each term,
each one corresponding to the id of the cluster that the feature is assigned.

Upon applying the two models, we finally build the feature set for the CRF
classifier. Given each term ti, its preceding term ti−1 its following term ti+1, we
define their Brown bitstrings as bi, bi−1, and bi+1 respectively, and we also define
their K-Means cluster assignments as ki, ki−1, and ki+1 respectively. Note that
the ki includes all 5 cluster configurations used, thus producing on its own five
features. Using these definitions, we build the following feature set:

– the term itself (ti), and its combination with the preceding term (ti−1ti),
and the following term (titi+1);

– the ids of the cluster assigned by K-Means to the term (ki), the preceding
term (ki−1), and the following term (ki+1);

– the bigram of the ids of K-Means clusters for the three terms (ki−1kiki+1);
– the bitstrings of the term (bi), the preceding term (bi−1), and the following

term (bi+1);

128 T. Diamantopoulos et al.

– the bigram of the three bitstrings (bi−1bibi+1);
– the prefixes with length 2, 4, 6, 8, 10, 12 of each one of the three bitstrings

(e.g. for a bitstring 100100 the prefixes are 10, 1001, and 100100).

Finally, our features are augmented by employing the dataset proposed by
Ye et al. [31,32]. The dataset comprises annotated entities extracted from Stack
Overflow that lie in five categories: API calls, programming languages, platforms
(e.g. Android), tools-frameworks (e.g. Maven), and standards (e.g. TCP). For
each of these categories, we check whether the term is found in the corresponding
dataset file and produce a true/false decision that is added as one more feature
in our feature set. After that, we apply the CRF classifier for all terms and build
a metadata index. Using this index we can produce a list of semantically rich
named entities for each post in the dataset.

3.5 Querying Engine

As already mentioned in subsection 3.3, the vector index comprises a set of
vectors, three for each question post, corresponding to the title, the body and the
tags of the post. When a developer issues a new query, it is initially preprocessed
and tokenized, and then it is vectorized using either of our models. After that,
we now have to produce a similarity score between each question post p and the
query q of the developer. To do so, we use the following equation:

simmodel(q, p) =
csim(vq, vtitle(p)) + csim(vq, vbody(p)) + csim(vq, vtags(p))

3
(2)

where vq is the vector of the query and vtitle(p), vbody(p), and vtags(p) are the
vectors of the title, the body, and the tags of the question post respectively.
Finally, csim is the cosine similarity, which is computed for two vectors v1 and
v2 as follows:

csim(v1, v2) =
v1 · v2

|v1| · |v2| (3)

Apart from the two models described so far, we also created a hybrid model
by taking the average between the two scores computed by our models:

simhybrid(q, p) =
simTf−Idf (q, p) + simfastText(q, p)

2
(4)

This hybrid model incorporates the advantages of fastText, while giving more
weight than only fastText to well-formed queries (i.e. with expected terms).

Finally, the user is presented with a list of possible results to the query,
ranked according to their score. Each result contains information extracted by
a question post and the corresponding answer posts. In specific, we include the
title of the question post, the snippets extracted by the answer posts, the links to
the question and answer posts (should the developer want to examine them), the
Stack Overflow score of the answer posts, and the 8 most frequent named entities
among all answer posts of the relevant question post. For example, assuming our
system receives the query “How to read from text file?”, an example result is
shown in Table 1. The developer can obviously select to check the second most
relevant snippet of this question post, or even check another question post.

Extracting Semantics from Question-Answering Services for Snippet Reuse 129

Table 1. Example StackSearch Response to Query “How to read from text file?”

Type Data

Post title Reading a plain text file in Java
Question post link https://stackoverflow.com/questions/4716503
Top 8 labels FileReader, BufferedReader, FileInputStream, InputStreamReader,

Scanner.hasNext, Files.readAllBytes, FileUtils.readLines, Scanner

Snippet 1

Scanner in = new Scanner(new FileReader(“file.txt”));
StringBuilder sb = new StringBuilder();
while(in.hasNext()) {

sb.append(in.next());
}
in.close();
outString = sb.toString();

Answer post link https://stackoverflow.com/questions/4716556
Answer post score 117

4 Evaluation

To fully evaluate StackSearch, we perform three experiments. The first exper-
iment involved annotating the results of common programming problems and
is expected to illustrate the usefulness of our system. The second experiment
relies on post links and is used to provide proof that our system is effective
(and minimize possible threats to validity). Finally, for our third experiment,
we compare StackSearch to the tool CROKAGE [24], which is quite similar to
our system. Comparing StackSearch with other approaches was not possible,
since several systems are not maintained and/or they are not publicly avail-
able (to facilitate researchers with similar challenges, we uploaded our code at
https://github.com/AuthEceSoftEng/StackSearch).

4.1 Evaluation using Programming Queries

We initially evaluate StackSearch using a set of common programming queries
shown in Table 2. The dataset includes certain queries that are semantically very
similar, which are marked as belonging to the same group, to determine whether
our method captures the semantic features of the dataset. Queries in the same
group call for the same solutions, i.e. their only difference is in the phrasing.

We evaluate all three implementations of our system, the Tf-Idf model, the
fastText model, and the hybrid model. For each implementation, upon giving the
queries as input, we retrieve the first 20 results and annotate them as relevant or
non-relevant. A result is marked as relevant if its snippet covers the functionality
that is described by the query. We gathered the results of all three algorithms
together and randomly permuted them, so the annotation was performed without
any prior knowledge about which result corresponds to each model, in order to
be as objective as possible.

130 T. Diamantopoulos et al.

Table 2. Dataset used for Semantically Evaluating StackSearch

ID Query Group

1 How to read a comma separated file? 1
2 How to read a CSV file? 1
3 How to read a delimited file? 1
4 How to read input from console? 2
5 How to read input from terminal? 2
6 How to read input from command prompt? 2
7 How to play an mp3 file? 3
8 How to play an audio file? 3
9 How to compare dates? 4
10 How to compare time strings? 4
11 How to dynamically load a class? 5
12 How to load a jar/class at runtime? 5
13 How to calculate checksums for files? 6
14 How to calculate MD5 checksum for files? 6
15 How to iterate through a hashmap? 7
16 How to loop over a hashmap? 7
17 How to split a string? 8
18 How to handle an exception? 9

For each query, we evaluate each implementation by computing the average
precision of the results. Given a ranked list of results, the average precision is
computed by the following equation:

AveP =

∑n
k=1 (P (k) · rel(k))

number of relevant results
(5)

where P (k) is the precision at k and corresponds to the percentage of relevant
results in the first k, and rel(k) denotes if the result in the position k is relevant.
We also use the mean average precision, defined us the mean of the average
precision values of all queries.

We calculated the average precision at 10 and 20 results. The values for each
query are shown in Figure 6. As shown in these graphs, the fastText and the
hybrid models clearly outperform the Tf-Idf model, which is expected as they
incorporate semantic information. We also note that the hybrid implementation
is even more effective than fastText for most queries. Interestingly, there are
certain queries in which Tf-Idf outperforms one or both of the other implemen-
tations. Consider, for example, query 17; this is a very specific query with clear
terms (i.e. developers would rarely form such a query without using the term
‘string’) so there is not really any use for semantics. For most queries, however,
better results are proposed by fastText or by our hybrid model.

We note, especially, what is the case with queries in the same group (divided
by gray lines in the graphs of Figure 6). Given, for instance, the second group,
query 4, which refers to input from the console, returns multiple useful results
using any of the three models. The results, however are quite different for queries

Extracting Semantics from Question-Answering Services for Snippet Reuse 131

(a)

(b)

Fig. 6. Average Precision for the three Implementations (a) at 10, and (b) at 20 Results

5 and 6, which are similar albeit for the replacement of the term ‘console’ with
‘terminal’ and with ‘command prompt’ respectively. This indicates that our word
embedding successfully captures the semantics of the text and considers the
aforementioned terms as synonyms. This advantage of our system is also clear
in group 1 (comma-separated vs CSV vs delimited file), group 4 (dates vs time
strings), etc., and even in more difficult semantic relationships, such as the one
of group 5 (i.e. loading dynamically vs at runtime).

Finally, we calculated the mean average precision for the same configurations
as before. The values for the three implementations are shown in Figure 7a, where
it is clear once again that the word embeddings outperform the Tf-Idf model,
while our hybrid model is the most effective of the three models.

To further outline the differences among the models we also computed the
mean search length. The search length is a very useful metric since it intuitively
simulates the process used when searching for relevant results. The metric is
defined as the number of non-relevant results that one must examine in order to
find a number of relevant results. We computed the search length for all queries
for finding from 1 up to 10 relevant results.

132 T. Diamantopoulos et al.

(a) (b)

Fig. 7. Results depicting (a) the Mean Average Precision, and (b) the Mean Search
Length, for the three Implementations

Averaging over all queries provides the mean search length, of which the re-
sults are shown in Figure 7b. The results are again encouraging for our proposed
models. Indicatively, to find the first useful result, the developer has to exam-
ine less than 0.1 irrelevant results on average for fastText and for the hybrid
model, whereas using Tf-Idf requires examining 1.5 irrelevant results. Further-
more, when the developer skims over the results of fastText, he/she will only
need to view 2.11 irrelevant snippets on average, before finding the first 5 rele-
vant. Using the hybrid model, he/she will only need to see 1.22. Tf-Idf is clearly
outperformed in this case, providing on average almost 7 irrelevant results, along
with the first 5 relevant. Similar conclusions can be drawn for the first 10 relevant
results. In this case, the developer would need to examine around 17.5, 7.5, and
5.5 results on average, for Tf-Idf, fastText, and our hybrid model, respectively.

4.2 Evaluation using Post Links

The main goal of the previous subsection was to illustrate the potential of our
word embedding models. The results, especially for the groups of queries, have
shown that our models indeed capture the semantics of text. As already men-
tioned, the annotation process was performed in such a way to limit any threats
to validity. Nevertheless, to further strengthen the objectivity of the results, we
perform one more experiment, which is described in this subsection.

In the lack of a third-party annotated Stack Overflow dataset, what we de-
cided to do is evaluate our models using the post links provided by Stack Over-
flow, an idea found in [8]. In Stack Overflow, the presence of a link between two
questions is an indicator that the two questions are similar. Note, of course, that
the opposite assumption, i.e. that any two questions that are not linked are not
similar to each other, is not necessarily correct. There are many questions that
are asked and perhaps not linked to similar ones. In our evaluation, however, we

Extracting Semantics from Question-Answering Services for Snippet Reuse 133

formulate the problem as a search/retrieval scenario, so we only use post links
to determine whether our models can retrieve objectively relevant results.

To create our link evaluation dataset, we first extracted all post links of
Java question posts. After that, for performance reasons, we dropped any posts
without snippets and any posts with Stack Overflow score lower or equal to -3, as
these are not within the scenario of a system that retrieves useful snippets. These
criteria reduced the number of question posts to roughly 200000 (as opposed to
the original dataset that had approximately 1.3 million question posts). These
question posts have approximately 37000 links, reinforcing our assumption that
non-linked questions are not necessarily dissimilar.

We execute StackSearch with all three models giving as queries the titles of all
question posts of the dataset. For each query, we retrieve the first 20 results (as
we may assume this is the maximum a developer would normally examine). We
determine how many of these 20 results are linked to the specific question post,
and compute the percentage of relevant results compared to the total number of
relevant post links of the question post. By averaging over all queries (i.e. titles
of question posts of the dataset), we compute the percentage of relevant links
retrieved on average for each model. The results are shown in Figure 8.

Fig. 8. Percentage of Relevant Results (compared to the number of Links of each
Question Post) in the first 20 Results for the three Implementations

At first, one may note that the results for all models are below 30%, a rather
low number, which is however expected, given the shortcomings of our dataset.
Many retrieved results are actually relevant, however they are not linked to the
question posts of the queries. In any case, we are given an objective relative
comparison of the three models. And this comparison provides some interesting
insights. An interesting observation is that Tf-Idf outperforms fastText. This is
not totally unexpected, if we consider that the post links of Stack Overflow are
created by the community, therefore it is possible that posts with similar mean-
ings but different key terms are not linked. As a result, fastText may discover

134 T. Diamantopoulos et al.

several posts that should be linked, yet they are not. On the other hand, Tf-Idf
focuses on identical terms which are rather easier to discover using the Stack
Overflow service. In any case, however, our hybrid model outperforms Tf-Idf
and fastText, as it combines the advantages of Tf-Idf and fastText.

4.3 Comparative Evaluation

Upon demonstrating the effectiveness of StackSearch in the previous subsections,
we now proceed to compare it with a similar system, the tool CROKAGE. To
do so, we have employed the dataset proposed by CROKAGE [24]. The dataset
involves 48 programming queries, similar to those introduced in subsection 4.1.
The queries include diverse tasks, such as comparing dates, resizing images,
pausing the current thread, etc.

Given that our dataset comprises Stack Overflow posts, it can be used to
assess both tools. Thus, we issued the queries at both StackSearch and CROK-
AGE. The results of the queries had been originally annotated by two annotators
(of which the results were merged) in Stack Overflow posts, marking any post
as relevant if it addresses the query with a feasible amount of changes [24]. So
we have used these annotations and only had to update a small part of them in
order to make sure that they are on par with our dataset, which includes the
latest data dump of Stack Overflow. As before, for each query we have calculated
the average precision at 5 and 10 results as well as the search length for finding
1 up to 10 relevant results. The mean average precision and the mean search
length results for the two tools are shown in Figures 9a and 9b, respectively
(results per query are omitted due to space limitations).

(a) (b)

Fig. 9. Results depicting (a) the Mean Average Precision, and (b) the Mean Search
Length, for StackSearch and CROKAGE

Both tools seem to be effective on the provided dataset. Concerning mean
average precision, StackSearch outperforms CROKAGE both at 5 and at 10

Extracting Semantics from Question-Answering Services for Snippet Reuse 135

results, indicating that it retrieves more useful results on average. Moreover, it
seems that their difference is more noticeable when a fewer number of results is
required, indicating that StackSearch provides a better ranking.

This difference is also illustrated by the mean search length for the two
approaches. Indicatively, using StackSearch, the developer will need to examine
only 0.66 irrelevant snippets on average, before finding the first relevant one (the
corresponding value for CROKAGE is 1.42). Our tool also performs better for
finding the second and third relevant results, while the two tools perform equally
well for finding five or more results.

5 Conclusion

Although several API usage and snippet mining solutions have been proposed,
most of them do not account for the semantics of the source code and the sur-
rounding text. Furthermore, most contemporary systems do not employ word
embeddings to enable semantic-aware retrieval of snippets, and are limited ei-
ther by the format of their input, which is not natural language, or by their
output, which is not ready-to-use snippets. In this work, we have created a novel
snippet mining system that extracts snippets from Stack Overflow and employs
word embeddings to model code and as well as contextual information. Given
our evaluation, we conclude that the hybrid model of StackSearch effectively
extracts the semantics of the data and outperforms both our baselines (Tf-Idf
and fastText) as well as the snippet mining tool CROKAGE. Finally, our sys-
tem accompanies the retrieved snippets with useful metadata that convey the
meaning of each post.

Future work lies in several directions. At first, we may employ a more sophis-
ticated ranking scheme using more information from Stack Overflow (e.g. the
Stack Overflow score of the snippet’s answer post) or even from other sources
(e.g. the reuse rate of Stack Overflow snippets in GitHub [1]) and assess the in-
fluence of that information on the effectiveness of the scheme. Furthermore, we
could employ different word embedding techniques or even variations of fastText,
such as the combination of the In-Out vectors of fastText [19]. We could also
further investigate our hybrid solution, implementing a more complex scheme
other than averaging the scores of the two models. Finally, we could further as-
sess StackSearch using a survey to ask developers whether the system actually
retrieves useful snippets and whether it reduces the effort required for finding
and integrating reusable snippets.

Acknowledgements

This research has been co-financed by the European Regional Development Fund
of the European Union and Greek national funds through the Operational Pro-
gram Competitiveness, Entrepreneurship and Innovation, under the call RE-
SEARCH - CREATE - INNOVATE (project code: T1EDK-02347).

136 T. Diamantopoulos et al.

References

1. Baltes, S., Treude, C., Diehl, S.: SOTorrent: Studying the Origin, Evolution, and
Usage of Stack Overflow Code Snippets. In: Proceedings of the 16th International
Conference on Mining Software Repositories. pp. 191–194. MSR ’19, IEEE Press,
Piscataway, NJ, USA (2019)

2. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching Word Vectors with
Subword Information. Transactions of the Association for Computational Linguis-
tics 5, 135–146 (2017)

3. Brandt, J., Dontcheva, M., Weskamp, M., Klemmer, S.R.: Example-centric Pro-
gramming: Integrating Web Search into the Development Environment. In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems. pp.
513–522. CHI ’10, ACM, New York, NY, USA (2010)

4. Brown, P.F., deSouza, P.V., Mercer, R.L., Pietra, V.J.D., Lai, J.C.: Class-based
N-gram Models of Natural Language. Computational Linguistics 18(4), 467–479
(1992)

5. Buse, R.P.L., Weimer, W.: Synthesizing API Usage Examples. In: Proceedings of
the 34th International Conference on Software Engineering. pp. 782–792. ICSE ’12,
IEEE Press, Piscataway, NJ, USA (2012)

6. Diamantopoulos, T., Karagiannopoulos, G., Symeonidis, A.L.: CodeCatch: Ex-
tracting Source Code Snippets from Online Sources. In: Proceedings of the 6th
International Workshop on Realizing Artificial Intelligence Synergies in Software
Engineering. pp. 21–27. RAISE ’18, ACM, New York, NY, USA (2018)

7. Diamantopoulos, T., Sifaki, M.I., Symeonidis, A.L.: Towards Mining Answer Ed-
its to Extract Evolution Patterns in Stack Overflow. In: Proceedings of the 16th
International Conference on Mining Software Repositories. p. 215–219. MSR ’19,
IEEE Press (2019)

8. Diamantopoulos, T., Symeonidis, A.L.: Employing Source Code Information to Im-
prove Question-answering in Stack Overflow. In: Proceedings of the 12th Working
Conference on Mining Software Repositories. pp. 454–457. MSR ’15, IEEE Press,
Piscataway, NJ, USA (2015)

9. Fowkes, J., Sutton, C.: Parameter-free Probabilistic API Mining across GitHub.
In: Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. pp. 254–265. FSE 2016, ACM, New York,
NY, USA (2016)

10. Gu, X., Zhang, H., Zhang, D., Kim, S.: Deep API Learning. In: Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. pp. 631–642. FSE 2016, ACM, New York, NY, USA (2016)

11. Jiang, L., Misherghi, G., Su, Z., Glondu, S.: DECKARD: Scalable and Accurate
Tree-Based Detection of Code Clones. In: Proceedings of the 29th International
Conference on Software Engineering. pp. 96–105. ICSE ’07, IEEE Computer Soci-
ety, Washington, DC, USA (2007)

12. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of Tricks for Efficient Text
Classification. In: Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: Volume 2, Short Papers. pp.
427–431. Association for Computational Linguistics, Valencia, Spain (2017)

13. Katirtzis, N., Diamantopoulos, T., Sutton, C.: Learning a Metric for Code Read-
ability. In: 21th International Conference on Fundamental Approaches to Software
Engineering. pp. 189–206. FASE 2018, Springer International Publishing, Boston,
MA, USA (2018)

Extracting Semantics from Question-Answering Services for Snippet Reuse 137

14. Kim, J., Lee, S., Hwang, S.w., Kim, S.: Towards an Intelligent Code Search Engine.
In: Proceedings of the 24th AAAI Conference on Artificial Intelligence. pp. 1358–
1363. AAAI ’10, AAAI Press, Palo Alto, CA, USA (2010)

15. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional Random Fields: Prob-
abilistic Models for Segmenting and Labeling Sequence Data. In: Proceedings of
the Eighteenth International Conference on Machine Learning. pp. 282–289. ICML
’01, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2001)

16. Mandelin, D., Xu, L., Bod́ık, R., Kimelman, D.: Jungloid Mining: Helping to Nav-
igate the API Jungle. SIGPLAN Not. 40(6), 48–61 (2005)

17. Montandon, J.E., Borges, H., Felix, D., Valente, M.T.: Documenting APIs with
Examples: Lessons Learned with the APIMiner Platform. In: Proceedings of the
20th Working Conference on Reverse Engineering. pp. 401–408. WCRE 2013, IEEE
Computer Society, Piscataway, NJ, USA (2013)

18. Moreno, L., Bavota, G., Di Penta, M., Oliveto, R., Marcus, A.: How Can I Use
This Method? In: Proceedings of the 37th International Conference on Software
Engineering - Volume 1. pp. 880–890. ICSE ’15, IEEE Press, Piscataway, NJ, USA
(2015)

19. Nalisnick, E., Mitra, B., Craswell, N., Caruana, R.: Improving Document Ranking
with Dual Word Embeddings. In: Proceedings of the 25th International Confer-
ence Companion on World Wide Web. pp. 83–84. WWW ’16 Companion, Inter-
national World Wide Web Conferences Steering Committee, Republic and Canton
of Geneva, Switzerland (2016)

20. Nguyen, T., Rigby, P.C., Nguyen, A.T., Karanfil, M., Nguyen, T.N.: T2API: Syn-
thesizing API Code Usage Templates from English Texts with Statistical Transla-
tion. In: Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. pp. 1013–1017. FSE 2016, ACM, New
York, NY, USA (2016)

21. Ponzanelli, L., Bacchelli, A., Lanza, M.: Seahawk: Stack Overflow in the IDE. In:
Proceedings of the 2013 International Conference on Software Engineering. pp.
1295–1298. ICSE ’13, IEEE Press, Piscataway, NJ, USA (2013)

22. Ponzanelli, L., Bavota, G., Di Penta, M., Oliveto, R., Lanza, M.l.: Mining Stack-
Overflow to Turn the IDE into a Self-confident Programming Prompter. In: Pro-
ceedings of the 11th Working Conference on Mining Software Repositories. pp.
102–111. MSR 2014, ACM, New York, NY, USA (2014)

23. Raghothaman, M., Wei, Y., Hamadi, Y.: SWIM: Synthesizing What I Mean: Code
Search and Idiomatic Snippet Synthesis. In: Proceedings of the 38th International
Conference on Software Engineering. pp. 357–367. ICSE ’16, ACM, New York, NY,
USA (2016)

24. Silva, R.F.G., Roy, C.K., Rahman, M.M., Schneider, K.A., Paixao, K.,
de Almeida Maia, M.: Recommending Comprehensive Solutions for Programming
Tasks by Mining Crowd Knowledge. In: Proceedings of the 27th International Con-
ference on Program Comprehension. p. 358–368. ICPC ’19, IEEE Press (2019)

25. Thummalapenta, S., Xie, T.: PARSEWeb: A Programmer Assistant for Reusing
Open Source Code on the Web. In: Proceedings of the 22nd IEEE/ACM Inter-
national Conference on Automated Software Engineering. pp. 204–213. ASE ’07,
ACM, New York, NY, USA (2007)

26. Wang, J., Yu, L.C., Lai, K.R., Zhang, X.: Dimensional sentiment analysis using a
regional CNN-LSTM model. In: Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers). pp. 225–230.
Association for Computational Linguistics, Berlin, Germany (2016)

138 T. Diamantopoulos et al.

27. Wang, J., Dang, Y., Zhang, H., Chen, K., Xie, T., Zhang, D.: Mining Succinct
and High-Coverage API Usage Patterns from Source Code. In: Proceedings of the
10th Working Conference on Mining Software Repositories. pp. 319–328. MSR ’13,
IEEE Press, Piscataway, NJ, USA (2013)

28. Wei, Y., Chandrasekaran, N., Gulwani, S., Hamadi, Y.: Building Bing Developer
Assistant. Tech. Rep. MSR-TR-2015-36, Microsoft Research (2015)

29. Wightman, D., Ye, Z., Brandt, J., Vertegaal, R.: SnipMatch: Using Source Code
Context to Enhance Snippet Retrieval and Parameterization. In: Proceedings of
the 25th Annual ACM Symposium on User Interface Software and Technology. pp.
219–228. UIST ’12, ACM, New York, NY, USA (2012)

30. Xie, T., Pei, J.: MAPO: Mining API Usages from Open Source Repositories. In:
Proceedings of the 2006 International Workshop on Mining Software Repositories.
pp. 54–57. MSR ’06, ACM, New York, NY, USA (2006)

31. Ye, D., Xing, Z., Foo, C.Y., Ang, Z.Q., Li, J., Kapre, N.: Software-Specific
Named Entity Recognition in Software Engineering Social Content. In: 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER). vol. 1, pp. 90–101. IEEE Press (2016)

32. Ye, D., Xing, Z., Foo, C.Y., Li, J., Kapre, N.: Learning to Extract API Mentions
from Informal Natural Language Discussions. In: 2016 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME). pp. 389–399. IEEE Press
(2016)

33. Yin, W., Kann, K., Yu, M., Schütze, H.: Comparative Study of CNN and RNN for
Natural Language Processing. arXiv:1702.01923 (2017)

34. Yu, M., Zhao, T., Dong, D., Tian, H., Yu, D.: Compound Embedding Features
for Semi-supervised Learning. In: Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies. pp. 563–568. Association for Computational Linguistics, At-
lanta, Georgia (2013)

35. Zagalsky, A., Barzilay, O., Yehudai, A.: Example Overflow: Using Social Media for
Code Recommendation. In: Proceedings of the Third International Workshop on
Recommendation Systems for Software Engineering. pp. 38–42. RSSE ’12, IEEE
Press, Piscataway, NJ, USA (2012)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Extracting Semantics from Question-Answering Services for Snippet Reuse 139

Global Reproducibility through Local Control
for Distributed Active Objects

Lars Tveito, Einar Broch Johnsen , and Rudolf Schlatte

Department of Informatics, University of Oslo, Oslo, Norway
{larstvei,einarj,rudi}@ifi.uio.no

Abstract. Non-determinism in a concurrent or distributed setting may
lead to many different runs or executions of a program. This paper
presents a method to reproduce a specific run for non-deterministic ac-
tor or active object systems. The method is based on recording traces
of events reflecting local transitions at so-called stable states during ex-
ecution; i.e., states in which local execution depends on interaction with
the environment. The paper formalizes trace recording and replay for a
basic active object language, to show that such local traces suffice to
obtain global reproducibility of runs; during replay different objects may
operate fairly independently of each other and in parallel, yet a program
under replay has guaranteed deterministic outcome. We then show that
the method extends to the other forms of non-determinism as found in
richer active object languages. Following the proposed method, we have
implemented a tool to record and replay runs, and to visualize the com-
munication and scheduling decisions of a recorded run, for Real-Time
ABS, a formally defined, rich active object language for modeling timed,
resource-aware behavior in distributed systems.

1 Introduction

Non-determinism in a concurrent or distributed setting leads to many different
possible runs or executions of a given program. The ability to reproduce and
visualize a particular run can be very useful for the developer of such programs.
For example, reproducing a specific run representing negative (or unexpected)
behavior can be beneficial to eliminate bugs which occur only in a few out
of many possible runs (so-called Heisenbugs). Conversely, reproducing a run
representing positive (and expected) behavior can be useful for regression testing
for new versions of a system.

Deterministic replay is an emerging technique to provide deterministic ex-
ecutions of programs in the presence of different non-deterministic factors [1].
In a first phase, the technique consists of recording sufficient information in a
trace during a run to reproduce the same run during a replay in a second phase.
Approaches to reproduce runs of non-deterministic systems can be classified as
either content-based or ordering-based replay. Content-based replay records the
results of all non-deterministic operations whereas ordering-based replay records
the ordering of non-deterministic events.

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 140–160, 2020.
https://doi.org/10.1007/978-3-030-45234-6_7

http://orcid.org/0000-0001-5382-3949
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_7&domain=pdf

This paper considers deterministic replay for non-deterministic runs of Ac-
tive Object languages [2], which combine the asynchronous message passing of
Actors with object-oriented abstractions. Compared to standard OO languages,
these languages decouple communication and synchronization by communicating
through asynchronous method calls without transfer of control and by synchro-
nizing via futures. We develop a method to reproduce the runs of active objects.
The method is ordering-based, as we represent the parallel execution of active
objects as traces of events. We show that locally recording events at so-called
stable states suffice to obtain deterministic replay. In these states, local execu-
tion needs to interact with the environment, e.g., to make a scheduling decision
or to send or receive a message. We formalize execution with record and replay
for a basic active object language, and show that its executions enjoy confluence
properties which can be described using such traces. These confluence properties
justify the recording and replay of local traces to reproduce global behavior.

Active object languages may also contain more advanced features [2], such as
cooperative scheduling [3, 4], concurrent object groups [3, 5] and timed, resource-
aware behavior [6]. With cooperative scheduling, an object may suspend its
current task while waiting for the result of a method call and instead schedule
a different task. With concurrent object groups, several objects share an actor’s
lock abstraction. With timed, resource-aware behavior, local execution requires
resources from resource-centers (e.g., virtual machines) to progress. These fea-
tures introduce additional non-determinism in the active object systems, in ad-
dition to the non-determinism caused by asynchronous calls. We show that the
proposed method extends to handle these additional sources of non-determinism.

The proposed method to deterministically replay runs has been realized for
Real-Time ABS [6], a modeling language with these advanced features, which has
been used to analyze, e.g., industrial scale cloud-deployed software [7], railway
networks [8], and complex low-level multicore systems [9, 10]. Whereas the lan-
guage supports various formal analysis techniques, most validation of complex
models (at least in an early stage of model development) is based on simulation.
The tracing capabilities have a small enough performance impact to be enabled
by default in the simulator. The simulator itself is implemented as a distributed
system in Erlang [11]. The low performance overhead comes from only recording
local events in each actor, which does not impose any additional communication
or synchronization, which are typically bottlenecks in a distributed system.

Contributions. Our main contributions can be summarized as follows:

– we propose a method to reproduce runs for active object systems based on
recording events reflecting local transitions from stable object states;

– we provide a formal justification for the method in terms of confluence and
progress properties for ordering-based record & replay for a basic actor lan-
guage with asynchronous communication and synchronization via futures;

– we show that the method extends to address additional sources of non-
determinism as found in richer active object languages; and

– we provide an implementation of the proposed method to record, replay and
visualize runs for the active object modeling language Real-Time ABS.

Global Reproducibility through Local Control 141

class C {
Int n = 1;
Unit m1() { n = n - 1; }
Unit m2() { n = n * 3; }

}

// Main block
{

C o = new C();
o!m1();
o!m2();

}

Fig. 1: A simple program, with
two possible results

Fig. 2: The executions leading to the two
different results for the simple program.

Paper overview Section 2 provides a motivating example, Section 3 considers the
problem of reproducibility for a formalization of a basic active object language
and Section 4 formalizes record and replay over the operational semantics of the
basic language. Section 5 considers reproducibility for extensions to the basic
language. Section 6 presents our implementation of the method for Real-Time
ABS. Section 7 discusses related work and Section 8 concludes the paper.

2 Motivating Example

Consider the program in Fig. 1. It consists of a class C, with a single integer
field, initialized to 1 and two methods m1 and m2. The main block of the pro-
gram creates an active object o as an instance of the class, and performs two
asynchronous calls on o, o!m1() and o!m2() respectively. Since the calls are
asynchronous, the caller can proceed to make the second call immediately, with-
out waiting for the first call to complete. The two calls are placed in the queue
of o and scheduled in some order for execution by o. (We here assume method
execution is atomic, but this assumption will be relaxed in Section 5.)

Thus, even the execution of this very simple program can lead to two differ-
ent results, depending on whether o!m1() is scheduled before o!m2(), and con-
versely, o!m2() is scheduled before o!m1(). In the first case, the field n (which
is initially 1) will first be decremented by 1 and then be multiplied with 3, re-
sulting in a final state in which the field n has the value 0. In the second case,
the field n is first multiplied by 3, then decremented by 1, resulting in a final
state in which the field n has the value 2. Fig. 2 depicts the two cases (using
the visualization support in our tool, described in Section 6.3). Note that this
problem still occurs for languages with ordered message passing between two
actors (e.g., Erlang [11]) when the two calls are made by different callers.

The selection of run to execute is decided by the runtime system and is
thus non-deterministic for the given source program. In general, there can be
much more than two possible runs for a parallel active object system. If only

142 L. Tveito et al.

a few of the possible runs exhibit a particular behavior (e.g., a bug), it can be
very interesting to be able to reproduce a particular run of the given program.
We propose a method to instrument active objects systems which allows global
reproducibility of runs through local control for each active object.

3 A Formal Model of Reproducibility

To formalize the problem of global reproducibility through local control for ac-
tive object systems, we consider a basic active object language in which non-
determinism stems from the order in which method calls are selected from the
queue of the active objects.

3.1 A Basic Active Object Language

P ::“ CL tT x; s u
CL ::“ classC tT x; Mu
M ::“ T m pT xq tT x; s u
s ::“ s; s | skip | x “ rhs

| if e t s u else t s u
| while e t s u | return e

rhs ::“ e | new C peq | e!mpeq | x.get
Fig. 3: BNF for the basic active
object language.

Consider a basic active object language with
asynchronous method calls and synchroniza-
tion via futures. The language has a Java-
like syntax, given in Fig. 3. Let T , C and m
range over type, class and method names, re-
spectively, and let e range over side-effect free
expressions. Overlined terms denote possibly
empty lists over the corresponding syntactic
categories (e.g., e and x).

A program P consists of a list CL of class declarations and a main block
tT x; su, with variables x of type T and a statement s. A class C declares fields
(both with types T) and contains a list M of methods. A method m has a return
type, a list of typed formal parameters and a method body which contains local
variable declarations and a statement s. Statements are standard; assignments
x “ rhs allow expressions with side-effects on the right-hand side rhs.

Asynchronous method calls decouple invocation from synchronization. The
execution of a call f = o!m(args) corresponds to sending a message m(args)

asynchronously to the callee object o and initializes a future, referenced by f,
where the return value will be stored. The statement x = f.get retrieves the
value stored in the future f. This operation synchronizes with the method return;
i.e., the execution of this statement blocks the active object until the future f has
received a value. Messages are not assumed to arrive in the same order as they
are sent. The selection of messages in an object gives rise to non-determinism in
the execution. An example of a program in this language was given in Section 2.

3.2 An Operational Semantics for the Basic Language

We present the semantics of the basic active object language as a transition
relation between configurations cn. In the runtime syntax (Fig. 4), a configura-
tion cn can be empty (ε), or a set of objects, futures, and invocation messages.
We let o and f be dynamically created names from a set of object and future

Global Reproducibility through Local Control 143

cn ::“ ε | object | future | invoc | cn cn q ::“ ε | process | q q
future ::“ futpf, valq val ::“ v | K
object ::“ obpo, a, p, qq a ::“ x Ñ v | a, a

process ::“ ta | su p ::“ process | idle
invoc ::“ invpo, f,m, vq v ::“ o | f | true | false | t

Fig. 4: Runtime syntax; here, o and f are object and future identifiers.

identifiers, denoted Identifiers. An active object obpo, a, p, qq has an identifier o,
attributes a, an active process p (that may be idle) and an unordered process
pool q. A future futpf, valq has an identifier f and a value val (which is K if the
future is not resolved). An invocation invpo, f,m, vq is a message to object o to
activate method m with actual parameters v and send the return value to the
future f . Attributes bind program variables x to values v. A process ta | su has
local variables a and a statement list s to execute. Values are object identifiers
o, future identifiers f , Boolean values true and false, and other literal val-
ues t (e.g., natural numbers). The initial state of a program consists of a single
active objects obpomain, a, p,Hq, where the active process p corresponds to the
main block of the program. Let namespcnq denote the set of object and future
identifiers occurring in a configuration cn.

Figure 5 presents the main rules of the transition relation cn Ñ cn1. A run
is a finite sequence of configurations cn0, cn1, . . . , cnn such that cni Ñ cni`1 for
0 ď i ă n. We assume configurations to be associative and commutative (so

we can reorder configurations to match rules), where Ý̊Ñ denotes the reflexive
and transitive closure of Ñ. Let bindpm, v, f, Cq denote method lookup in the
class table, returning the process corresponding to method m in class C with
actual parameters v and with future f as the return address of the call. Thus,
every process has a local variable destiny which denotes the return address of the
process (i.e., the future that the process will resolve upon completion), similar
to the self-reference this for objects. We omit explanations for the standard rules
for assignment to fields and local variables, conditionals, while and skip.

Rule Activate formalizes the scheduling of a process p from the unordered
queue q when an active object is idle. In Async-Call, an asynchronous method
call creates a message to a target object o1 and an unresolved future with a fresh
name f . Object creation in New-Actor creates a new active object with a fresh
identifier o1, and initializes its attributes with initAttributespC, o1q, including
reference to itself (this). These are the only rules that introduce new names for
identifiers; let a predicate freshpoq denote that o is a fresh name in the global
configuration (abstracting from how this is implemented). Rule Load puts the
process corresponding to an invocation message in called object’s queue. Rule
Return resolves the future associated with a process with return value v, and
Read-Fut fetches the value v of a future f into a variable. With rule Context,
parallel execution in different active objects has an interleaving semantics.

Definition 1 (Stable configurations). A configuration cn is stable if, for all
objects in cn, the execution is blocked or the object needs to make a scheduling

144 L. Tveito et al.

(Activate)

p P q

obpo, a, idle, qq
Ñ obpo, a, p, qztpuq

(Assign1)

v “ rresspa˝lq x P domplq
obpo, a, tl | x “ e; su, qq

Ñ obpo, a, tlrx Ñ vs | su, qq

(Assign2)

v “ rresspa˝lq x R domplq
obpo, a, tl | x “ e; su, qq

Ñ obpo, arx Ñ vs, tl | su, qq

(Cond1)

true “ rresspa˝lq
obpo, a, tl | if e ts1u else ts2u; su, qq

Ñ obpo, a, tl | s1; su, qq

(Cond2)

false “ rresspa˝lq
obpo, a, tl | if e ts1u else ts2u; su, qq

Ñ obpo, a, tl | s2; su, qq

(While)

s1
1 “ s1; while e ts1u

obpo, a, tl | while e ts1u; s2u, qq
Ñ obpo, a, tl | if e ts1

1u else tskipu; s2u, qq

(New-Actor)

a1 “ initAttributespC, o1q freshpo1q
obpo, a, tl | x “ new Cpq; su, qq

Ñ obpo, a, tl | x “ o1; su, qq obpo1, a1, idle,Hq

(Skip1)

obpo, a, tl | skip; su, qq
Ñ obpo, a, tl | su, qq

(Skip2)

obpo, a, tl | skipu, qq
Ñ obpo, a, idle, qq

(Context)

cn1 Ñ cn1
1

cn1 cn2 Ñ cn1
1 cn2

(Async-Call)

o1 “ rresspa˝lq v “ rresspa˝lq freshpfq
obpo, a, tl | x “ e!mpeq; su, qq

Ñ obpo, a, tl | x “ f ; su, qq invpo1, f,m, vq futpf,Kq

(Load)

p1 “ bindpm, v, f, classOfpoqq
invpo, f,m, vq obpo, a, p, qq

Ñ obpo, a, p, q Y tp1uq

(Return)

v “ rresspa˝lq lpdestinyq “ f

obpo, a, tl | return eu, qq futpf,Kq
Ñ obpo, a, idle, qq futpf, vq

(Read-Fut)

v ‰ K f “ rresspa˝lq
obpo, a, tl | x “ e.get; su, qq futpf, vq
Ñ obpo, a, tl | x “ v; su, qq futpf, vq

Fig. 5: Semantics of the basic active object language.

decision. An object is blocked if it needs to execute a get-statement. An object
needs to make a scheduling decision if its active process is idle.

Let G denote a stable configuration. We say that two stable configurations

G1 and G2 are consecutive in a run G1 Ý̊Ñ G2 if, for all cn such that G1 Ý̊Ñ cn

and cn Ý̊Ñ G2, if cn ‰ G1 and cn ‰ G2 then cn is not a stable configuration.

Lemma 1 (Reordering of atomic sections). Let G1 and G2 be stable con-

figurations. If G1 Ý̊Ñ G2, then there exists a run between G1 and G2 in which
only a single object executes between any two consecutive stable configurations.

Proof (sketch). Observe that the notion of stability captures any state of an
object in which it needs input from its environment. The proof then follows
from the fact that the state spaces of different objects are disjoint and that
message passing is unordered. This allows consecutive independent execution
steps from different objects to be reordered. [\

Global Reproducibility through Local Control 145

(Local-Assign1)

v “ rresspa˝lq x P domplq
a, tl | x “ e; su � a, tlrx Ñ vs | su

(Local-Assign2)

v “ rresspa˝lq x R domplq
a, tl | x “ e; su � arx Ñ vs, tl | su

(Local-While)

s1
1 “ s1; while e ts1u

a, tl | while e ts1u; s2u � a, tl | if e ts1
1u else tskipu; s2u

(Local-Skip1)

a, tl | skip; su � a, tl | su

(Local-Cond1)

true “ rresspa˝lq
a, tl | if e ts1u else ts2u; su� a, tl | s1; su

(Local-Cond2)

false “ rresspa˝lq
a, tl | if e ts1u else ts2u; su� a, tl | s2; su

(Local-Skip2)

a, tl | skipu � a, idle

(Global-Activate)

p P q a, p
!� a1, p1 p “ tl | su

lpdestinyq “ f q1 “ qztpu
obpo, a, idle, qq

sched xo,fyÝÝÝÝÝÝÝÑ obpo, a1, p1, q1q

(Global-Return)

v “ rresspa˝lq lpdestinyq “ f

obpo, a, tl | return eu, qq futpf,Kq
futWr xo,fyÝÝÝÝÝÝÝÝÑ obpo, a, idle, qq futpf, vq

(Global-Context)

cn1
ev?ÝÝÑ cn1

1

cn1 cn2
ev?ÝÝÑ cn1

1 cn2

(Global-New-Actor)

a2 “ initAttributespC, o1q
freshpo1q a, tl | x “ o1; su � a1, p1

obpo, a, tl | x “ new Cpq; su, qq
new xo,o1yÝÝÝÝÝÝÝÑ obpo, a1, p1, qq obpo1, a2, idle,Hq

(Global-Read-Fut)

v ‰ K f “ rresspa˝lq
a, tl | x “ v; su !� a1, p

obpo, a, tl | x “ e.get; su, qq futpf, vq
futRe xo,fyÝÝÝÝÝÝÝÑ obpo, a1, p, qq futpf, vq

(Global-Async-Call)

o1 “ rresspa˝lq v “ rresspa˝lq
freshpfq a, tl | x “ f ; su !� a1, p

obpo, a, tl | x “ e!mpeq; su, qq
inv xo,fyÝÝÝÝÝÝÑ obpo, a1, p, qq invpo1, f,m, vq futpf,Kq

(Global-Load)

p1 “ bindpm, v, f, classOfpoqq
invpo, f,m, vq obpo, a, p, qq

Ñ obpo, a, p, q Y tp1uq

Fig. 6: Coarse-grained, labelled semantics of the basic active object language.

3.3 A Labelled Operational Semantics for the Basic Language

Based on Lemma 1, we can define a semantics of the basic active object language
with a more coarse-grained model of interleaving which is equivalent to the
semantics presented in Fig. 5. We let this coarse-grained semantics be labeled
by events to record the interaction between an active object and its environment.
The events are defined as follows:

Definition 2 (Events). Let o,f PIdentifiers. The set E of events ev is given by

ev ::“ new xo, oy | inv xo, fy | sched xo, fy | futWr xo, fy | futRe xo, fy.
In the coarse-grained semantics, a transition relation a, p � a1, p1 captures

local execution in an active object with attributes a. These rules are given in

146 L. Tveito et al.

Fig. 6 (top) and correspond to the rules Assign1, Assign2,While, Cond1, Cond2,
Skip1 and Skip2 of Fig. 5. These rules are deterministic as there is at most one

possible reduction for any given pair a, p. Let �̊ denote the reflexive, transitive
closure of �, let the unary relation |� denote that there is no transition from

a given pair a, p, and let the relation
!� denote the reduction to normal form

according to �; i.e.,

a, p
!� a1, p1 ðñ a, p �̊ a1, p1 ^ a1, p1 |�

In the remaining rules, given in Fig. 6 (bottom), a labelled transition relation
cn

evÝÑ cn1 captures transitions in which the local execution of an active object
interacts with its environment through scheduling, object creation, method in-
vocation, or interaction with futures. These rules also correspond to the similar
rules in Fig. 5, with two differences:

1. The rules are labelled with an event reflecting the particular action taken in
the transition, and

2. the rules perform a local deterministic reduction to normal form according
to the � relation in each step.

Remark that rule Global-Load is identical to Load of Fig. 5; although we do not
need to add an explicit label the rule is kept at the global level since it involves
both an object and a message. Rule Global-Context is labeled by ev? to cap-
ture that the label is optional (i.e., the rule also combines with Global-Load).
We henceforth consider runs for the basic active object language based on this
labelled semantics.

3.4 Execution Traces and their Reordering

This section looks at traces reflecting the runs of programs in the basic active
object language according to the semantics of Section 3.3, and their reordering.
We consider traces over events in E . Let ε denote the empty trace, and τ1 ¨ τ2 the
concatenation of traces τ1 and τ2. For an event ev and a trace τ , we denote by
ev P τ that ev occurs somewhere in τ and by τ ew ev that τ ends with ev (i.e.,
Dτ 1.τ “ τ 1¨ev). Define τ{o and τ{f as the projection of a trace τ to the alphabet of
an object o and a future f , by their first or second argument respectively (where
an alphabet is the set of events involving that name). Finally, let namespτq
denote the inductively defined function returning the set of identifiers that occur
in a trace τ (e.g., namespinv xo, fyq “ to, fu). We assume that every initial
configuration has a main object and process, and let namespεq “ tomain, fmainu.

Given a run cn0
ev0ÝÝÑ ¨ ¨ ¨ evnÝÝÑ cnn`1, we denote cn0

τùñ cnn`1 that a trace τ
is the trace of the run if τ “ ev0 ¨ ¨ ¨ evn (where τ ignores the unlabeled transition
steps of the run). Well-formed traces can be defined as follows, based on [12]:

Global Reproducibility through Local Control 147

Definition 3 (Well-formed Traces). Given o, o1, f P Identifiers. Let wfpτq
denote that τ is well-formed, defined inductively:

wfpεq ðñ True
wfpτ ¨ new xo, o1yq ðñ wfpτq ^ o P namespτq ^ o1 R namespτq
wfpτ ¨ inv xo, fyq ðñ wfpτq ^ o P namespτq ^ f R namespτq
wfpτ ¨ sched xo, fyq ðñ wfpτq ^ o P namespτq ^ τ{f “ inv xo1, fy
wfpτ ¨ futWr xo, fyq ðñ wfpτq ^ τ{f ew sched xo, fy
wfpτ ¨ futRe xo, fyq ðñ wfpτq ^ futWr xo1, fy P τ

Wellformedness thus captures a happens-before relation over events while
ensuring that certain identifiers are new at given points in the trace. Din and
Owe have shown that the trace of any run of the semantics of an active object
language similar to ours is well-formed [12]. For example, no process can be
scheduled unless it has been invoked (which again requires the Global-Load
rule to apply in between Global-Async-Call andGlobal-Activate). Given
a trace τ , we can now define the equivalence class rτ s of traces which preserve
the local ordering and the wellformedness of τ , as follows:

Definition 4 (Global trace set). Let τ be a trace and define

rτ s “ tτ 1 | τ 1{o “ τ{o for all object identifiers o P namespτq ^ wfpτ 1qu.
Remark that this construction is closely related to equivalence classes in

Mazurkiewics trace theory [13], with wellformedness as the dependency relation
of the equivalence classes.

Example 1. The program from Fig. 1 (Section 2) has the following traces:

τ1 “ new xomain, oy ¨ inv xomain, fm1y ¨ inv xomain, fm2y ¨ sched xo, fm1y ¨ sched xo, fm2y
τ2 “ new xomain, oy ¨ inv xomain, fm1y ¨ sched xo, fm1y ¨ inv xomain, fm2y ¨ sched xo, fm2y
τ3 “ new xomain, oy ¨ inv xomain, fm1y ¨ inv xomain, fm2y ¨ sched xo, fm2y ¨ sched xo, fm1y
Observe that traces τ1 and τ2 belong to the same global trace set (i.e. rτ1s “ rτ2s),
and will produce the same final state.

Let G
o:fùñ G1 denote a run between consecutive stable configurations which

executes the process identified by f on object o in the stable configuration G

until the next stable configuration G1. If sched xo, fy ¨ τ is the trace of G
o:fùñ G1,

then τ is a trace over the event set tinv xo, f 1y, new xo, o1y, futWr xo, fy | o1, f 1 P
Identifiersu. This observation provides an intuition for the following lemma:

Lemma 2 (Local confluence). Let G1, G2, G3 be stable configurations, o, o1

object and f, f 1 future identifiers, with o ‰ o1, f ‰ f 1. If G1
o:fùñ G2 and G1

o1:f 1
ùùñ

G3, then there is a stable configuration G4 such that G2
o1:f 1
ùùñ G4 and G3

o:fùñ G4.

Proof (sketch). The proof follows from the fact that execution in an object does
not inhibit a process to run in another object. [\

148 L. Tveito et al.

The following theorem shows that local confluence implies global confluence
for executions in the same global trace set (which means that the two executions
agree on the local trace projections).

Theorem 1 (Global confluence). Let G1, G2, G3 be stable configurations and

τ1, τ2 traces such that G1
τ1ùñ G2 and G1

τ2ùñ G3. If τ2 P rτ1s then G2 “ G3.

Proof (sketch). Observe that runs with traces in the same global trace set must
agree on the naming of objects and futures. The result then follows by induction

over the length of G1
τ1ùñ G2 from local confluence (Lemma 2). [\

4 Global Reproducibility with Local Traces

The global confluence of executions with traces in the same global trace set
provides a formal justification for a method to obtain global reproducibility for
distributed active object systems which exhibit non-deterministic behavior. The
method is based on enforcing the local trace projection from the global trace
set on each active object. For the basic active object language, the method is
based on recording the events from the set E during an execution. This set of
events, which includes events capturing the scheduling decisions of the runtime
system as well as the choice of dynamically created names during a particular
execution, is sufficient to establish the wellformedness of the recorded trace and
identify the global trace set of the recorded run. Furthermore, if we record local
traces for each active object, these will correspond to the local trace projections
of the global trace set. In fact, any composition of local traces recorded during
a run will result in the same global trace set. Similarly, any composition of local
trace projections enforced during a replay will result in a trace in the same
global trace set. Thus, Theorem 1 guarantees that local recording and replay of
different traces from the same global trace set will result in the same final state.
It remains to show that for any such trace in the global trace set corresponding to
a recorded run, the execution during replay will not get stuck. For this purpose,
we now formalize record and replay as extensions to the semantics of the basic
active object language.

We extend the operational semantics of Fig. 6 to record and replay traces.
Let τ Ź cn denote an extended runtime configuration, where τ is a witness for
cn, playing dual roles for recording and replaying. A recorded run starts from an
initial configuration εŹ cn, where cn is the initial configuration of the run to be
recorded. The reduction system for recording a trace is given as a relation

‚ÝÑ by
the rules in Fig. 7; the two rules correspond to the unlabeled (just Global-Load)
and labeled transitions of the semantics, respectively. A replay starts from an
initial configuration τ Ź cn, where τ is a trace and cn the initial configuration
of the run to be replayed. The reduction system for replaying a trace is given as
a relation

§ÝÑ by the rules in Fig. 8, the two rules are symmetric to those for
recording a run. The rules in Fig. 7 and Fig. 8 formalize the obvious relation
between the recording and replaying of a trace and a run in the semantics of the

Global Reproducibility through Local Control 149

(Unlabeled-Record)

cn Ñ cn1

τ Ź cn
‚ÝÑ τ Ź cn1

(Labeled-Record)

cn
evÝÑ cn1

τ Ź cn
‚ÝÑ τ ¨ ev Ź cn1

Fig. 7: Semantics of Record

(Unlabeled-Replay)

cn Ñ cn1

τ Ź cn
§ÝÑ τ Ź cn1

(Labeled-Replay)

cn
evÝÑ cn1

ev ¨ τ Ź cn
§ÝÑ τ Ź cn1

Fig. 8: Semantics of Replay

basic active object language. Let
‚ùñ and

§ùñ denote the reflexive, transitive
closures of

‚ÝÑ and
§ÝÑ, respectively.

Lemma 3 (Freshness of names). For any recording ε Ź cn
‚ùñ τ Ź cn1 or

replay τ ¨ τ 1 Ź cn
§ùñ τ 1 Ź cn1, we have that namespτq “ namespcn1q.

Proof (sketch). Follows by induction over the length of ε Ź cn
‚ùñ τ Ź cn1 and

τ ¨ τ 1 Ź cn
§ùñ τ 1 Ź cn1, respectively. [\

It follows from Lemma 3 that given an identifier x P Identifiers and a run

ε Ź cn
‚ùñ τ Ź cn1, if x R namespτq, then x R namespcn1q and consequently,

the predicate freshpxq will hold as a premise for any rule in the semantics that
one may want to apply to cn1. Consequently, fresh-predicates in the premises of
the transition rules of the basic active language will accept the identifier names
chosen from the recorded trace when replaying a run.

Lemma 4 (Progress for replay by global trace). Let G,G1 be stable con-

figurations. If ε Ź G
‚ùñ τ Ź G1 then τ Ź G

§ùñ ε Ź G1.

Proof. The proof is by induction over the length of the run εŹG
‚ùñ τ ŹG1. The

base case is obvious. We assume (IH) that if εŹG
‚ùñ τŹcn then τŹG

§ùñ εŹcn

and show that if ε Ź G
‚ÝÑ τ ¨ ev Ź cn1 then τ ¨ ev Ź G

§ÝÑ τ Ź cn1. By the IH,
this amounts to showing that if εŹ cn

‚ÝÑ ε ¨ evŹ cn1 then ev ¨ εŹ cn
§ÝÑ εŹ cn1.

The proof proceeds by cases over the transition rules of the basic active object
language (cf. Fig. 5). The interesting cases are the rules which need new names.
Lemma 3 ensures that the predicate freshpoq will hold for a new name o in ev
(and similarly for f), and the corresponding rules can be applied. [\

It follows from Theorem 1 that if we can replay a run which is equivalent to
a recorded run τ , the final state of the replayed run will be the same as for the
recorded run. It remains to show that any run in the equivalence class rτ s can
in fact be replayed.

Theorem 2 (Progress for replay by local control). Let G,G1 be stable

configurations, τ, τ 1 traces. If εŹG
‚ùñ τŹG1 and τ 1 P rτ s, then τ 1ŹG

§ùñ εŹG1.

Proof (sketch). We show by induction over the length of trace τ that if εŹG
‚ùñ

τ Ź cn and τ 1 P rτ s, then τ 1 ŹG
§ùñ εŹ cn1. It then follows from Theorem 1 that

cn “ cn1. [\

150 L. Tveito et al.

5 Extensions for Richer Active Object Languages

The method for global reproducibility of executions for a basic active object
language based on record & replay of local traces, may be extended to include
features introducing other sources of non-determinism in richer active object
languages [2]. We here briefly review some such features and how the method
may be extended to cover them.

Cooperative scheduling. In cooperatively scheduled languages (e.g., [3–5, 14]),
methods may explicitly release control, allowing other pending method invoca-
tions be scheduled. The criteria for being rescheduled may be that some boolean
condition is met, or a future being resolved. Note that methods still execute until
it cooperatively releases control; i.e., a method will not be interrupted because
the condition of another method is satisfied. With cooperative scheduling, the
same task may be scheduled several times, which means that the same schedul-
ing event may occur multiple times in a trace. In the method for reproducibility,
this extension can be covered by an additional suspension-event reflecting the
processor release and an adjustment of the wellformedness condition to reflect
that a scheduling event either comes after a invocation event (as for the basic
language) or after a suspension event on the same future.

Concurrent object groups. In language with concurrent object groups (e.g., [3,5]),
a group of concurrent objects (or cog) share a common scheduler, which be-
comes the unit of distribution; this gives an interleaved semantics between ob-
jects within the same cog, while separate cogs are truly concurrent. For record
& replay, the events of a trace need to capture the cog, rather than the object,
in which an event originated. Recording the names of cogs is sufficient for re-
producibility without controlling the naming of objects. For the reproducibility
method, the proofs in Section 4 would use an equivalence relation between con-
figurations that only differ in the choice of object names inside the cogs and the
global trace set (Def. 4) would project on cogs rather than objects.

Resource-aware behavior. Active objects may reside in a resource center with
limited resources, e.g. CPU or memory restrictions, with regards to time (e.g.,
[6, 15]). Statements may have some associated cost which requires available re-
sources in order to execute. If there are insufficient resources, then execution is
blocked in that object until time advances. Here, object compete for resources, in
the same sense that tasks compete for processing time. Following our method for
deterministic replay, the traces can be extended with events for resource request
in a similar manner as method invocations in the basic active objects language,
and resource provision with events similar to the task scheduling events.

External non-determinism and random numbers. Active object languages may
also feature external factors that may influence an execution, such as input from a
user, fetching data from a database or receiving input from a socket, or random
number generation. Here, a purely ordering-based method is insufficient. Our

Global Reproducibility through Local Control 151

replay method needs to be extended with events which include the data received
from the external source and the replay would need to fetch data from the trace
rather than from the external source, similar to the reuse of object and future
identifiers from the trace in the previous section. Random number generation
can be seen as a special case of external non-determinism; for pseudo-random
number generators it would be sufficient to only record the initial seed for reuse
during replay.

6 Implementing Record & Replay for Real-Time ABS

We report on our implementation1 of record & replay, based on the formalization
in Section 4. The implementation was done for Real-Time ABS [6, 16], an ac-
tive object modeling language which includes the following features discussed in
Section 5: cooperative scheduling, concurrent object groups, and timed, resource-
aware behavior, all of which are handled by our implementation. The simulator
for Real-Time ABS models, written in Erlang, supports interaction with a model
during execution via the Model API [17] in order to, e.g. fetch the current state
of an object, advance the simulated clock or visualize the resource consumption
of a running model. In addition, we have implemented a visualizer for recorded
traces. In this section, we discuss the following aspects of the implementation:
the recording of traces in a distributed setting, the handling of names, the vi-
sualization of traces, and performance characteristics for the implementation of
record & replay.

6.1 Recording Traces in a Distributed Setting

For simulation, ABS models are transpiled to Erlang code by representing most
entities as Erlang actors, e.g., concurrent object groups (or cogs), resource cen-
ters, futures and ABS-level processes. Thus, execution is concurrent and may
be distributed over multiple machines. This leads to two important differences
from the formalization in Section 4:

– True concurrency: The formalization is based on an interleaved concurrency
model, which yields a total order of events. In the simulator, cogs are imple-
mented as Erlang actors and may operate in true parallel, where two events
may happen simultaneously, which corresponds to a partial order of events.

– Distributed state: Because the state of the model is distributed over many
independent actors, we cannot easily synchronize over the state of different
actors. In the implementation, such synchronization in the formalization
must be realized by asynchronous message passing protocols.

1 The Real-Time ABS simulator is available at
https://github.com/abstools/abstools
The accompanying visualization tool is available at
https://github.com/larstvei/ABS-traces

152 L. Tveito et al.

These differences pose challenges for recording and replaying global traces in the
implementation. When recording a run, it is not trivial to obtain a global trace. If
all cogs and resource centers were to report their recorded events to a single actor
maintaining the global trace, races could occur between different asynchronous
messages. For example, if an object o invokes a method on another object o1, then
the corresponding invocation and scheduling events could arrive in any order.
Such races could be resolved by, e.g., introducing additional synchronization or
using Lamport timestamps [18, 19]. Similarly, precisely replaying a global trace
would require some synchronization protocol with the actor holding the global
trace, severely increasing the level of synchronization during execution.

We address these challenges by only considering the local projections of the
global trace for each cog and resource center. The information needed to con-
struct local traces does not require any additional synchronization. During re-
play, only the local execution of an actor is controlled, which is sufficient to
obtain a run with a trace in the same global trace set.

6.2 Names in the Erlang Simulator

The formalization allows recorded names to be reused when replaying a run.
In contrast, in the Erlang system cogs, resource centers and futures are imple-
mented as actors (i.e. Erlang actors) and identified by a process identifier (pid)
determined by Erlang. To ensure that names in the events of the recorded trace
are easily identifiable in a replay without modifying the naming scheme of Er-
lang, we construct additional names that are associated with the given pid. The
constructed names follow a deterministic naming scheme, which guarantees that
names are globally unique without depending on knowledge of names generated
in other actors (in contrast to the fresh-predicate in the semantics).

Cogs, resource centers and futures can be named locally following a naming
scheme based on existing actors already having such unique, associated names.
The name xAid, i ` 1y of a new actor can be determined by the actor Aid in
which it is created, together with a local counter denoting the number i of
actors previously created in Aid. Thus, the name of the actor corresponds to its
place in the topology and is guaranteed to be fresh.

6.3 Visualization of Recorded Traces

The trace recorded during a simulation can give the user insight into that exe-
cution of a model, since it captures the model’s communication structure. The
recorded trace may be extracted from a running simulation via the Model API
or written to file on termination. However, the terse format of the traces makes
it hard for users to quickly get an intuitive idea of what is happening in the
model. Complementing the replay facility, we have developed a tool to visual-
ize recorded traces, which conveys information from traces in a more intuitive
format. To facilitate visualization, the events in our implementation are slightly
richer than those in Definition 2; e.g., they include the name of the method
corresponding to the future in the event.

Global Reproducibility through Local Control 153

The visualization reconstructs a global trace τ from its local projections.
Since the local ordering of events is already preserved by the recorded traces,
we only need to compose local traces in a way that preserves wellformedness.
We derive a happens-before relation ă from wellformedness (Definition 3), and
denote its transitive closure by Î.

The happens-before relation Î gives a partial order of events. In the visu-
alization of the trace τ , all events are depicted by a colored dot. For any two
events e1, e2, e1 is drawn above e2 if e1 Î e2; the events are drawn in the same
column only if they reside in the same cog or resource center. An arrow is drawn
between any two events e1, e2 if e1 ă e2. Events that are independent (i.e., nei-
ther e1 Î e2 nor e2 Î e1) may be drawn in the same row. Events with the
same future as argument are drawn with the same color. The tool additionally
supports simple navigation in the trace, gives visual indicators of simulated time
steps, and supports time advancement in a running model through the model
API, making it easy to step forward in time. Fig. 2 illustrates the visualization
for two runs of the motivating example.

6.4 Example

Consider a Real-Time ABS model of an image rendering service which can pro-
cess either still photos or video. The service is modeled as a class Service with
two methods photo_request and video_request. The model captures resource-
sensitive behavior in terms of cost annotations associated with the execution of
skip-statements inside the two methods and in terms of deadlines provided to
each method call. The processing cost for rendering an image is constant (here,
the cost is given by the field image_cost), but the processing cost of rendering
a video depends on the number of frames (captured by a parameter n to the
method video_request). The success of each method call depends on whether
it succeeded in processing its job, as specified by the cost annotation, before
its deadline passes; this is captured by the expression in the return statement
return (Duration(0) < deadline()). Remark that deadline() is a prede-
fined read-only variable in Real-Time ABS processes. Its value is given by the
caller.

In the main block, a server is created on which the service can run. This
server is a resource-center with limited processing capacity (called a deployment
component in Real-Time ABS [6]), restricting the amount of computation that
can happen on the server per time interval in the execution of the model. The
service is then deployed on the server (by an annotation [DC: server] to new-
statement. We let a class Client (omitted here) model a given number of pro-
cessing requests to the image rendering service in terms of asynchronously calling
the two methods a given number of times (e.g., the call to video_request takes
the form [Deadline: Duration(10)] f = s!video_request(n), pushing the
associated futures f to a list, and then counting the number of successful re-
quests when the corresponding futures have been resolved. It is easy to see that
the success of calls to the video_request method which requires more resources,
may depend on whether it is scheduled before or after calls to photo_request,

154 L. Tveito et al.

class Service {
Int image_cost = 1;

Bool photo_request () {
[Cost: image_cost] skip;
return (Duration (0)

< deadline ());
}

Bool video_request(Int n) {
[Cost: n*image_cost] skip;
return (Duration (0)

< deadline ());
}

}

// Main block
{

DC server
= new DC("Server", 2);

[DC: server] Service s1
= new Service ();

new Client(s1, 1, 100);
}

Fig. 9: Real-Time ABS code for
the photo rendering service.

Fig. 10: Visualization of a run of the
photo rendering service.

depending on the provided deadlines. Thus, the model exhibits both schedul-
ing non-determinism for asynchronous calls and resource-aware behavior. The
image in Fig. 10 depicts a trace from a simulation of the model, showing inter-
actions between a deployment component (left), the service (middle) and the
client (right).

6.5 Performance Characteristics of the Implementation

We give a brief evaluation of the performance characteristics of record & replay
for Real Time ABS. The size of the traces is proportional to the number of
objects, method invocations and resource provisions. Because we do not impose
additional synchronization, we are able to achieve a constant-time overhead. To
investigate how record & replay scales, we created a micro-benchmark perform-
ing method invocations on an active object, and recorded execution times for

Global Reproducibility through Local Control 155

Fig. 11: Record and replay: example (left) and process microbenchmark (right)

102, 103, . . . , 106 method calls. We also ran the example of Section 6.4, record-
ing execution times for 102, 103 and 104 Client iterations. These are worst-case
scenarios for record & replay, as the invoked methods do not perform any com-
putation that does not result in creating an event.

Fig. 11 shows the results of the two programs with replay enabled, with record
enabled and the last release of Real-Time ABS which does not feature record &
replay. Note that we only measure simulation time and do not include the time
reading and writing trace files. We can see that the results of Fig. 11 (left) are
slightly improved and the overhead observed in Fig. 11 (right) is about a factor
of 1.8. We note that supporting record & replay in Real-Time ABS required
extensive modifications to the Real-Time ABS simulators implementation.

7 Related Work

This work complements other analysis techniques for Real-Time ABS models,
such as simulation [17], deductive verification [9], and parallel cost analysis [20]
and testing [21]. We here discuss related work on deterministic replay. Deter-
ministic replay is an emerging technique to reproduce executions of computer
programs in the presence of different non-deterministic factors [1]. It enables
cyclic debugging [22] in non-deterministic execution environments. Our focus is
on software-level reproducibility in the context of actor-systems. Approaches to
reproduce specific runs of non-deterministic systems can be either content-based
or ordering based [23].

Content-based methods trace the values read from a shared memory location.
These are particularly suitable when there is a lot of external non-determinism
(typically I/O operations, like user input). Content-based replay for actor sys-
tems typically record messages, including the sender, receiver and message con-
tent, (see, e.g., [24–26]). This technique is typically used for rich debuggers like
Actoverse [24] for Scala’s Akka library, which provides visualization support sim-
ilar to ours. However, content-based approaches do not scale well [27], because
the traces can become very large for message-intensive applications.

156 L. Tveito et al.

Ordering-based (or control-based) methods trace a system’s control-flow. Our
work fits within this category. Without external non-determinism, replaying the
control-flow will reproduce the data of the recorded run. Ordering-based meth-
ods exist for asynchronous message passing using the message passing interface
(MPI) [19,28]. MPI assumes that messages from the same source are received in
order, this does not generally hold for actor systems. Aumayr et al. in [27] study
ordering-based replay for actor systems with a memory-efficient representation
of the generated traces. Netzer et al. [29] propose an interesting method to only
trace events directly related to races, rather than all events (removing up to 99%
of the events). This line of work is complementary to our focus on formal correct-
ness and low runtime-overhead during record and replay. We believe we could
benefit from their work to obtain more efficient trace representations. Lanese
et al. recently proposed a notion of causal-consistent replay based on reversible
debugging [30], which enables replay to a state by only replaying its causal de-
pendencies. Similar to our work, they also formalize record & replay for an actor
language. In contrast to our work, their approach is based on a centralized actor
for tracing, and can only be used in combination with a debugger [31].

8 Conclusion and Future Work

This paper has introduced a method for global reproducibility for runs of dis-
tributed Active Object systems, based on local control. The proposed method
is order-based and decentralized in that local traces are recorded and replayed
without incurring any additional synchronization at the global level. The method
is formalized as an operational semantics for a basic active object language, with
trace recording and replay. This system exhibits non-determinism through the
scheduling of asynchronous method calls and synchronization using first-class
futures. Based on this formalization, we justify in terms of properties of trace
equivalence classes that local control suffices to reproduce runs with a final state
which is equivalent to the final state of a recorded run. We then discuss how other
features of active object languages which introduce additional non-determinism
can be supported by our method, including cooperative concurrency, concurrent
object groups and resource-aware behavior.

The proposed method has been implemented for Real-Time ABS, an Active
Object modeling language which includes most of the above-mentioned features
and which has a simulator written in Erlang. The implementation only records
local ordering information, which allows the overhead of both the record and
replay phases to be kept low compared to deterministic replay systems which
reproduce an exact global run.

In future work, we plan to build on the proposed record & replay tool for
systematic model exploration, by modifying traces between the record and replay
phase to explore different runs. This can be done by means of DPOR-algorithms
for actor-based systems [32–34]. Combining DPOR with our proposed tool for
record & replay would result in a stateless model checker [35] for Active Object
systems.

Global Reproducibility through Local Control 157

References

1. Chen, Y., Zhang, S., Guo, Q., Li, L., Wu, R., Chen, T.: Deterministic replay: A
survey. ACM Comput. Surv. 48(2) (September 2015) 17:1–17:47

2. de Boer, F., Serbanescu, V., Hähnle, R., Henrio, L., Rochas, J., Din, C.C., Johnsen,
E.B., Sirjani, M., Khamespanah, E., Fernandez-Reyes, K., Yang, A.M.: A survey
of active object languages. ACM Comput. Surv. 50(5) (October 2017) 76:1–76:39

3. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core
language for abstract behavioral specification. In Aichernig, B., de Boer, F.S.,
Bonsangue, M.M., eds.: Proc. 9th Intl. Symp. on Formal Methods for Components
and Objects (FMCO 2010). Volume 6957 of Lecture Notes in Computer Science.,
Springer (2011) 142–164

4. Brandauer, S., Castegren, E., Clarke, D., Fernandez-Reyes, K., Johnsen, E.B., Pun,
K.I., Tapia Tarifa, S.L., Wrigstad, T., Yang, A.M.: Parallel objects for multicores:
A glimpse at the parallel language encore. In: Formal Methods for Multicore
Programming (SFM 2015). Volume 9104 of Lecture Notes in Computer Science.,
Springer (2015) 1–56

5. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: Generalizing active objects to con-
current components. In D’Hondt, T., ed.: Proc. 24th European Conference on
Object-Oriented Programming (ECOOP 2010). Volume 6183 of Lecture Notes in
Computer Science., Springer (2010) 275–299

6. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Integrating deployment architec-
tures and resource consumption in timed object-oriented models. J. Log. Algebr.
Meth. Program. 84(1) (2015) 67–91

7. Albert, E., de Boer, F.S., Hähnle, R., Johnsen, E.B., Schlatte, R., Tapia Tarifa,
S.L., Wong, P.Y.H.: Formal modeling and analysis of resource management for
cloud architectures: an industrial case study using real-time ABS. Service Oriented
Computing and Applications 8(4) (2014) 323–339

8. Kamburjan, E., Hähnle, R., Schön, S.: Formal modeling and analysis of railway
operations with active objects. Sci. Comput. Program. 166 (2018) 167–193

9. Din, C.C., Tapia Tarifa, S.L., Hähnle, R., Johnsen, E.B.: History-based specifi-
cation and verification of scalable concurrent and distributed systems. In: Proc.
17th Intl. Conf. on Formal Engineering Methods (ICFEM 2015). Volume 9407 of
Lecture Notes in Computer Science., Springer (2015) 217–233

10. Bezirgiannis, N., de Boer, F.S., Johnsen, E.B., Pun, K.I., Tapia Tarifa, S.L.: Imple-
menting SOS with active objects: A case study of a multicore memory system. In:
Proc. 22nd Intl. Conf. on Fundamental Approaches to Software Engineering (FASE
2019). Volume 11424 of Lecture Notes in Computer Science., Springer (2019) 332–
350

11. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf Series. Pragmatic Bookshelf (2007)

12. Din, C.C., Owe, O.: A sound and complete reasoning system for asynchronous
communication with shared futures. J. Log. Algebr. Meth. Program. 83(5-6) (2014)
360–383

13. Mazurkiewicz, A.W.: Trace theory. In Brauer, W., Reisig, W., Rozenberg, G., eds.:
Advances in Petri Nets 1986. Volume 255 of Lecture Notes in Computer Science.,
Springer (1987) 279–324

14. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling 6(1) (2007) 39–58

158 L. Tveito et al.

15. Albert, E., Genaim, S., Gómez-Zamalloa, M., Johnsen, E.B., Schlatte, R., Tapia
Tarifa, S.L.: Simulating concurrent behaviors with worst-case cost bounds. In
Butler, M.J., Schulte, W., eds.: Proc. 17th International Symposium on Formal
Methods (FM 2011). Volume 6664 of Lecture Notes in Computer Science., Springer
(2011) 353–368

16. Bjørk, J., de Boer, F.S., Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: User-
defined schedulers for real-time concurrent objects. Innovations in Systems and
Software Engineering 9(1) (2013) 29–43

17. Schlatte, R., Johnsen, E.B., Mauro, J., Tapia Tarifa, S.L., Yu, I.C.: Release the
beasts: When formal methods meet real world data. In: It’s All About Coordination
- Essays to Celebrate the Lifelong Scientific Achievements of Farhad Arbab. Volume
10865 of Lecture Notes in Computer Science., Springer (2018) 107–121

18. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7) (1978) 558–565

19. Ronsse, M., Kranzlmüller, D.: Roltmp-replay of Lamport timestamps for message
passing systems. In: Proc. 6th Euromicro Workshop on Parallel and Distributed
Processing (PDP’98), IEEE (1998) 87–93

20. Albert, E., Correas, J., Johnsen, E.B., Pun, V.K.I., Román-Dı́ez, G.: Parallel cost
analysis. ACM Trans. Comput. Log. 19(4) (2018) 31:1–31:37

21. Albert, E., Gómez-Zamalloa, M., Isabel, M.: SYCO: a systematic testing tool for
concurrent objects. In Zaks, A., Hermenegildo, M.V., eds.: Proc. 25th Intl. Conf.
on Compiler Construction (CC 2016), ACM (2016) 269–270

22. LeBlanc, T.J., Mellor-Crummey, J.M.: Debugging parallel programs with instant
replay. IEEE Trans. Computers 36(4) (1987) 471–482

23. Ronsse, M., Bosschere, K.D., de Kergommeaux, J.C.: Execution replay and de-
bugging. In: AADEBUG. (2000)

24. Shibanai, K., Watanabe, T.: Actoverse: a reversible debugger for actors. In Koster,
J.D., Bergenti, F., eds.: Proc. 7th Intl. Workshop on Programming Based on Actors,
Agents, and Decentralized Control (AGERE 2017), ACM (2017) 50–57

25. Barr, E.T., Marron, M., Maurer, E., Moseley, D., Seth, G.: Time-travel debugging
for javascript/node.js. In Zimmermann, T., Cleland-Huang, J., Su, Z., eds.: Proc.
24th Intl. Symp. on Foundations of Software Engineering (FSE 2016), ACM (2016)
1003–1007

26. Burg, B., Bailey, R., Ko, A.J., Ernst, M.D.: Interactive record/replay for web
application debugging. In Izadi, S., Quigley, A.J., Poupyrev, I., Igarashi, T., eds.:
Proc. 26th Symp. on User Interface Software and Technology (UIST’13), ACM
(2013) 473–484

27. Aumayr, D., Marr, S., Béra, C., Boix, E.G., Mössenböck, H.: Efficient and deter-
ministic record & replay for actor languages. In Tilevich, E., Mössenböck, H., eds.:
Proc. 15th Intl. Conf. on Managed Languages & Runtimes (ManLang’18), ACM
(2018) 15:1–15:14

28. de Kergommeaux, J.C., Ronsse, M., Bosschere, K.D.: MPL*: Efficient record/play
of nondeterministic features of message passing libraries. In Dongarra, J.J., Luque,
E., Margalef, T., eds.: Recent Advances in Parallel Virtual Machine and Message
Passing Interface, proc. 6th European PVM/MPI Users’ Group Meeting. Volume
1697 of Lecture Notes in Computer Science., Springer (1999) 141–148

29. Netzer, R.H.B., Miller, B.P.: Optimal tracing and replay for debugging message-
passing parallel programs. The Journal of Supercomputing 8(4) (1995) 371–388

30. Lanese, I., Palacios, A., Vidal, G.: Causal-consistent replay debugging for message
passing programs. In Pérez, J.A., Yoshida, N., eds.: Proc. 39th Intl. Conf. on

Global Reproducibility through Local Control 159

Formal Techniques for Distributed Objects, Components, and Systems (FORTE
2019). Volume 11535 of Lecture Notes in Computer Science., Springer (2019) 167–
184

31. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: Cauder: A causal-consistent re-
versible debugger for erlang. In Gallagher, J.P., Sulzmann, M., eds.: Proc. 14th
Intl. Symp. on Functional and Logic Programming (FLOPS 2018). Volume 10818
of Lecture Notes in Computer Science., Springer (2018) 247–263

32. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In Palsberg, J., Abadi, M., eds.: Proc. 32nd Symp. on Principles of
Programming Languages (POPL 2005), ACM (2005) 110–121

33. Abdulla, P.A., Aronis, S., Jonsson, B., Sagonas, K.: Optimal dynamic partial order
reduction. In Jagannathan, S., Sewell, P., eds.: Proc. 41st Symposium on Principles
of Programming Languages (POPL’14), ACM (2014) 373–384

34. Albert, E., Arenas, P., de la Banda, M.G., Gómez-Zamalloa, M., Stuckey, P.J.:
Context-sensitive dynamic partial order reduction. In Majumdar, R., Kuncak, V.,
eds.: Proc. 29th Intl. Conf. on Computer Aided Verification (CAV 2017). Volume
10426 of Lecture Notes in Computer Science., Springer (2017) 526–543

35. Godefroid, P.: Model checking for programming languages using Verisoft. In Lee,
P., Henglein, F., Jones, N.D., eds.: Proc. 24th Symp. on Principles of Programming
Languages (POPL 1997), ACM (1997) 174–186

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

160 L. Tveito et al.

Multi-level Model Product Lines

Open and closed variability for modelling language families

Juan de Lara and Esther Guerra

Universidad Autónoma de Madrid (Spain)
{Juan.deLara, Esther.Guerra}@uam.es

Abstract. Modelling is an essential activity in software engineering processes. It
typically involves two meta-levels: one includes meta-models that describe mod-
elling languages, and the other contains models built by instantiating those meta-
models. Multi-level modelling generalizes this approach by allowing models to
span an arbitrary number of meta-levels.
A scenario that profits from multi-level modelling is the definition of language
families that become specialized by successive refinements at subsequent meta-
levels, hence promoting language reuse. This enables an open set of variability
options for the possible specializations of a given language. However, multi-level
modelling lacks the ability to express closed variability regarding the supported
language primitives and their realizations. This limits the reuse opportunities of
a language family. To improve this situation, we propose a novel combination of
product lines with multi-level modelling to cover both open and closed variability.
Our proposal is backed by a formal theory that guarantees correctness, and is
implemented atop the METADEPTH multi-level modelling tool.

Keywords: Meta-modelling, Multi-level modelling, Product lines, Domain-specific
languages, METADEPTH

1 Introduction

Modelling is intrinsic to most engineering disciplines. Within software engineering, it
plays a pivotal role in model-driven engineering (MDE) [43]. This is a software con-
struction paradigm where models are actively used to describe, analyse, validate, verify,
generate code and maintain the application to be built, among other activities.

Models are built using modelling languages, which can be either general-purpose,
like the UML [46], or domain-specific languages (DSLs) tailored to a specific con-
cern [25]. In MDE, the abstract syntax of modelling languages is defined through a
meta-model that describes the primitives that models can use one meta-level below.
This modelling approach, which is the standard nowadays, constrains engineers to con-
fine their models within one meta-level (the “model” level).

Some researchers have observed that domain modelling can benefit from the use
of more than one meta-level [6, 14, 17, 19, 29]. This way of modelling – called multi-
level modelling [4] or deep meta-modelling [12] – results in simpler models in scenar-
ios that involve the type-object pattern [6, 14, 30]. Moreover, it permits defining lan-
guage families (e.g., for process modelling), which can be specialized to specific do-
mains (e.g., software process modelling, industrial process modelling) via instantiation

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 161–181, 2020.
https://doi.org/10.1007/978-3-030-45234-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_8&domain=pdf

Fig. 1. (a) Open variability through instantiation. (b) Closed variability through product lines.

at lower meta-levels [15]. Instantiation is an open variability mechanism that permits
the language customization by specializing the language primitives for a domain, or
adding new ones via linguistic extensions [12]. Fig. 1(a) shows a tiny process modelling
language that defines the primitive TaskType, which is customized by instantiation in
the lower meta-level for the software process modelling domain (Coding and Design).
However, multi-level modelling lacks support for expressing optionality of language
primitives or alternative primitive realizations. This prevents wider language reuse and
customization possibilities.

Software product lines (SPLs) encompass methods, tools and techniques to engi-
neer collections of similar software systems using a common means of production [32,
35]. SPLs support closed variability, where a concrete software product is obtained
by selecting among a finite set of available features (i.e., by setting a configuration).
SPL techniques have been applied to language engineering to define product lines of
languages representing a close set of predefined language variants [20, 34, 47]. As an
example, Fig. 1(b) shows a process modelling language product line with two config-
urable features: actors and initial tasks. Selecting a configuration of features (in the
figure, initial tasks but no actors) yields a language variant. Languages so defined can
be configured with respect to the primitives they offer and their realization, but cannot
be specialized for specific domains as this requires from open variability mechanisms.

To improve current language reuse techniques, we propose combining multi-level
modelling and product lines. This allows the definition of highly configurable language
families that profit from both open variability (as given by instantiation) and closed
variability (as given by configuration). This way, this paper makes the following con-
tributions: (i) a novel notion of multi-level model product line; (ii) a theory that guar-
antees the correctness of (certain) interleavings of instantiation and configuration steps;
and (iii) an implementation of these ideas on top of the METADEPTH tool [12].
Paper organization. Section 2 introduces multi-level modelling and identifies the chal-
lenges tackled in this paper. Section 3 provides a light formalization of multi-level mod-
elling, which is extended with product line techniques in Section 4. Section 5 describes
tool support. Section 6 discusses related research, and Section 7 ends with the conclu-
sions and future work. An appendix includes the proofs of the theorems in the paper.

2 Multi-level modelling: intuition and challenges

In this section, we introduce the main concepts of multi-level modelling by example
(Section 2.1), and then discuss the challenges that we aim to tackle (Section 2.2).

162 J. de Lara and E. Guerra

Fig. 2. Commerce example using (a) standard modelling and (b) multi-level modelling.

2.1 Multi-level modelling, by example

Multi-level modelling permits the definition of models using multiple meta-levels [6,
14]. To understand its rationale, assume we would like to create a language to define
commerce information systems (a standard example often used in the multi-level mod-
elling literature [6, 14]). This language should allow defining product types (like books
or food) which have a tax, as well as products of the defined types (like Othello or ba-
nana) which have a price. Moreover, some product types may need to define specific
properties, like the number of pages in books.

Fig. 2(a) shows a solution using two meta-levels. In this solution, the meta-model
of the language uses the type-object pattern [30] to emulate the typing relation between
Product and ProductType. In addition, classes Attribute and Slot permit defining prop-
erties in ProductTypes and assigning them a value in Products (called dynamic features
pattern in [14]). The model in the bottom meta-level represents an information system
for Kiosks, and defines the product types Book and Food. The model also defines the
products sold by a particular kiosk: the Othello book and Bananas.

On reflection, one can realize that this solution emulates two meta-levels within one,
as we convey with the dashed line in Fig. 2(a). Therefore, Fig. 2(b) shows an alterna-
tive multi-level solution using three meta-levels. The top level defines just ProductType,
which is instantiated at the next level to create Book and Food product types, which
in turn are instantiated at the bottom level to create specific products. Hence, elements
in this approach are called clabjects [2] (from the contraction of the words class and
object), as they are types for the elements in the level below, and instances of the ele-
ments in the level above (see for instance Book).

The multi-level solution leads to a simpler model (with fewer elements) as it re-
quires just a clabject to represent both ProductType and Product. However, one needs
to control the properties of instances beyond the next meta-level. In the example, we
need to control that the direct instances of ProductType have a tax, and the instances of

Multi-level Model Product Lines 163

Fig. 3. Multi-level model for process modelling, and application to software process modelling.

its instances have a price. For this purpose, we use a deep characterization mechanism
called potency [2, 4]. This is a natural number, or zero, which governs the instantiation
depth of elements. Fig. 2(b) depicts the potency after the “@” symbol, and the elements
that do not declare potency take the potency from their container (e.g., attribute price

takes its potency from ProductType, and this from the Commerce model). When an el-
ement is instantiated, the instance gets the potency of the element minus 1. Elements
with potency 0 are pure instances and cannot be instantiated. This way, attribute Pro-

ductType.tax is instantiated into Book.tax and Food.tax, which therefore have potency 0
and can receive values. As model Commerce has potency 2, it can be instantiated at the
two subsequent meta-levels. The potency of a model is often called its level [6].

Sometimes, it is not possible to foresee every possible property required by clab-
ject instances several meta-levels below, like the number of pages in books. To handle
those cases, multi-level modelling supports linguistic extensions. These are clabjects
or features with no ontological type, but with a linguistic type which corresponds to
the meta-modelling primitive used to create it (see Orthogonal Classification Architec-
ture in [5] for more details). As an example, Book.numPages is a linguistic extension
modelling a property specific to Book but not to other product types. Instead, in the two-
level solution in Fig. 2(a), the properties of specific ProductTypes need to be explicitly
modelled by classes Attribute and Slot, leading to more complexity.

2.2 Improving reuse in multi-level modelling: some challenges

Multi-level modelling enables language reuse by supporting the definition of language
families. For example, Fig. 3 shows at the top a generic process modelling language
that can be used to define process modelling languages for different domains, like ed-
ucation, software engineering, or production engineering. The language is designed to
consider three levels. Level 2 contains the language definition, consisting of primitives

164 J. de Lara and E. Guerra

Fig. 4. Examples of variability needs: (a) optional attributes, (b) optional primitives, (c) alterna-
tive primitive realizations.

to define task and gateway types. Level 1 contains language specializations for specific
domains. The figure shows the case for the software engineering domain, which defines
the task types Requirements and Design, and two gateway types: ReqDep to transition
from requirement tasks to either design or requirement tasks, and DesignDep to declare
dependencies between design tasks. Finally, level 0 contains domain-specific processes.
The one in the figure declares three tasks and one gateway.

This example shows how instantiation permits customizing the language primitives
offered at the top level for particular domains, and how linguistic extensions (e.g., at-
tribute Design.style at level 1 in Fig. 3) allow adding domain-specific primitives to lan-
guage specializations. However, the following scenarios require further facilities that
enable a better fit for particular domains and increase language reuse.

– Alternative realizations. A language primitive may be realised in different ways,
each more adequate than the others depending on the domain. For example, in
Fig. 3, dependencies between task types are modelled by GatewayType. However,
in domains that do not require distinguishing gateway types, a simpler representa-
tion of dependencies as a reference between TaskTypes is enough (see Fig. 4(c)).
Unfortunately, multi-level modelling does not support this kind of variability.

– Primitive excess. Some offered language primitives may be unnecessary in simple
domains. This can be controlled by not instantiating the primitive, but still, with-
drawing the needless primitives to simplify the language usage may be a better
option. Moreover, there are problematic situations. First, if the primitive is an at-
tribute (like initial in Fig. 4(a)), then it becomes instantiated by force, polluting the
model with unnecessary information. Second, some mandatory primitives may not
be needed in certain domains. For example, in Fig. 4(b), the language designer as-
sumes that any TaskType (e.g., Requirements) will be performed by one ActorKind

(e.g., Analyst or DomainExpert). However, there may be domains that do not in-
volve actors (e.g., if tasks are automated), but the mandatory relation perfBy forces
having instances of ActorKind associated to instances of TaskType.

– Deferred variability resolution and exploratory modelling. The decision about
the inclusion or not of a primitive may not be clear when the language is instanti-
ated for a domain, but this is determined later at lower meta-levels. For example,
in Fig. 4(a), an engineer might hesitate whether, in addition to the expected task
duration (attribute duration), s/he may want to store the real task duration (attribute

Multi-level Model Product Lines 165

rDuration with potency 2), in which case, s/he may prefer deferring the decision to
levels 1 or 0. In general, resolving all variability in a language family at the top
level may be hasty in some cases, as the suitability of a primitive may become
evident only when a language has reached certain specificity (i.e., at lower meta-
levels). Moreover, enabling modelling before resolving the variability may be good
for exploratory purposes.

To tackle these challenges, we incorporate variability into multi-level models taking
ideas from SPLs. As a first step, next we formalize multi-level models.

3 A formal foundation for multi-level modelling

We start defining the structure of models equipped with deep characterization, which
we call deep models. We represent models at different meta-levels in a uniform way, in
order to cope with an arbitrary number of meta-levels. For simplicity of presentation,
we omit inheritance, cardinalities and integrity constraints in our formalization.

Def. 1 (Deep model) A deep model is a tuple M = 〈p, C, S,R, src, tar, pot〉, where:

– p ∈ N0 is called the model potency, or level.
– C, S and R are disjoint sets of clabjects, slots and references, respectively.
– src : S ∪R → C is a function assigning slots and references to clabjects.
– tar : R → C is a function assigning the target clabject to references.
– pot : C ∪ S ∪R → N0 is a function assigning a potency to each element, s.t.:

1. ∀e ∈ C ∪ S ∪R • pot(e) ≤ p
2. ∀s ∈ S ∪R • pot(s) ≤ pot(src(s))
3. ∀r ∈ R • pot(r) ≤ pot(tar(r))

In the previous definition, we assign a level p to deep models. Elements in a deep
model have a potency via function pot, which must satisfy three conditions: (1) the
potency of an element should not be larger than the model level, (2) the potency of slots
and references should not be larger than the one of their container clabject, and (3) the
potency of references should not be larger than the one of the clabjects they point to.

Next, we define a general notion of mapping (a morphism) between deep models
as a tuple of three (total) functions between the sets of clabjects, slots and references.
Each morphism has a depth (an integer or 0) controlling the distance between the levels
of the involved models. We use two particular types of mappings to represent the type
relation between deep models at adjacent meta-levels (when the morphism depth is 1),
and extensions of a deep model to add linguistic extensions (when the depth is 0).

Def. 2 (D-morphism, type and extension) Given two deep models Mi = 〈pi, Ci, Si, Ri,

srci, tari, poti〉 for i = {0, 1}, a deep model morphism (D-morphism in short) m =
〈d,mC ,mS ,mR〉 : M0 → M1 is a tuple made of a number d ∈ N0 called depth, and
three functions mC : C0 → C1, mS : S0 → S1 and mR : R0 → R1 s.t.:

1. p0 + d = p1
2. ∀e ∈ X0 • pot0(e) + d = pot1(mX(e)) (for X = {C, S,R})

166 J. de Lara and E. Guerra

S1
src1 �� C1 C1 R1

src1�� tar1 �� C1

S0

mS

��

src0 ��

=

C0

mC

��

C0

mC

��
=

R0
src0�� tar0 ��

mR

��
=

C0

mC

��

Fig. 5. Commutativity conditions for D-morphisms.

3. Each function mC ,mS ,mR commutes with functions srci and tari (see Fig. 5)

D-morphism tp = 〈d, tpC , tpS , tpR〉 : M0 → M1 is called type if d = 1, and is called
indirect type if d > 1. M1 is called the (indirect) model type of M0.
D-morphism ex = 〈d, exC , exS , exR〉 : M0 → M1 is called level-preserving if d = 0.
A level-preserving D-morphism ex is called extension if each exX (for X = {C, S,R})
is an inclusion. An extension is called identity if each exX is surjective.

In the previous definition, condition 1 ensures that the D-morphism connects models
of suitable levels, condition 2 checks that the potency decreases according to the depth
of the D-morphism, and condition 3 ensures that the D-morphism is coherent with the
source and target of slots and references (just like in standard graph morphisms [16]).
We use total functions to represent the type, which ensures that each element in a deep
model has a type. Linguistic extensions are not typed, but they are modelled as an exten-
sion D-morphism of a (typed) deep model into a larger model. This avoids resorting to
partial functions to represent the type, which would complicate the formalization [38].
Identity extensions map isomorphic deep models. D-morphisms can be composed by
composing the three mappings and adding their depths.

A multi-level model is made of a root deep model, and a sequence of instantia-
tions and extensions. The length of this sequence is equal to the root model level. The
extensions are allowed to be identity extensions.

Def. 3 (Multi-level model) A multi-level model MLM = 〈M ′
0,ML = 〈(M ′

i

tpi+1←−
Mi+1

exi+1−→ M ′
i+1)〉i=0..p′

0−1〉 is made of a deep model M ′
0 called the root and a se-

quence ML (of length p′0, the level of M ′
0) of spans of D-morphisms, where the left

D-morphism is a type and the right D-morphism a (possibly identity) extension.

Example. Fig. 6 shows a multi-level model (an excerpt of the one in Fig. 3) according
to Def. 3. Slots are represented as rounded nodes, instead of inside the owner clabject
box. In Fig. 3, we do not show slots with potency bigger than 0 that are typed, like
Design.duration at level 1, which is omitted. However, such instances do exist, and are
explicitly shown in Fig. 6 (see slot duration’@1 in models M1 and M’1). If a model
does not include linguistic extensions (like M2), then we use the identity extension D-
morphism. Finally, it would be possible to derive the (indirect) type of M2 w.r.t. M’0 by
defining a construction akin to a pullback that yields the part of M2 typed by M1 [28].

4 Multi-level model product lines

In order to solve the challenges identified in Section 2.2, we extend deep models with
closed variability options by borrowing concepts from product lines. We use feature
models [24] to represent the allowed variability.

Multi-level Model Product Lines 167

Fig. 7. Feature model for the example. (a) Feature diagram notation. (b) Using Def. 4.

Def. 4 (Feature model) A feature model FM = 〈F,Φ〉 is a tuple made of a set F of
features and a propositional formula Φ specifying the valid feature configurations.

Example. Fig. 7 shows the feature model for the running example using both the fea-
ture diagram notation (a), and our definition (b). The feature model permits choosing if
the process modelling language will have primitives to define actors (feature actors, cf.
Fig. 4(b)), initial tasks and their enactment at level 0 (features initial and enactment, cf.
Fig. 4(a)), as well as selecting whether gateways are to be represented either as refer-
ences or objects (features simple and object, cf. Fig. 4(c)). The feature model includes
the mandatory features ProcessLanguage, Gateways and Tasks as syntactic sugar to
obtain a tree representation, but they are not needed in our formalization.

The selection of one option within the variability space offered by a feature model
is done through a configuration. This assigns true to the selected features, and false to
the discarded ones. To enhance flexibility of use, we also support partial configurations,
where some features are not given any value. This will be used to allow deferring the
resolution of some variability options to lower meta-levels.

168 J. de Lara and E. Guerra

Def. 5 (Configuration) Given a feature model FM = 〈F,Φ〉, a configuration of FM
is a tuple C = 〈F+, F−〉 made of two disjoint sets F+ ⊆ F and F− ⊆ F , s.t.
Φ[F+/true, F−/false] � false. C is total if F = F+ ∪ F−, otherwise it is partial.

In the previous definition, F+ contains the selected features (i.e., given the value
true), F− the discarded features (i.e., given the value false), and F \ (F+ ∪ F−) is
the set of features whose value has not been set. A configuration must be compatible
with the feature model formula, so the definition demands that the formula Φ once we
substitute F+ by true and F− by false is not false. If the configuration is total, then the
condition entails that Φ must evaluate to true.

Next, we assign a level to feature models, and potencies to features, in order to
restrict the level at which features can be assigned a value.

Def. 6 (Deep feature model) A deep feature model DFM = 〈l, FM = 〈F,Φ〉, pot〉
is made of a level l ∈ N0, a feature model FM , and a function pot : F → N0 assigning
a potency to each feature, s.t. ∀f ∈ F • pot(f) ≤ l.

Next, we define a mapping between deep feature models, called F-morphism. Sim-
ilar to D-morphisms (cf. Def. 2), F-morphisms have a depth which can be positive or 0.
In addition, they include a configuration, and a mapping for the features excluded from
the configuration. There are two special kinds of F-morphisms: one representing a type
relationship between feature models (where the morphism depth is 1 and the configura-
tion empty), and the other expressing a specialization relationship between two feature
models via a total or partial configuration (where the morphism depth is 0).

Def. 7 (F-morphism, type and specialization) Given two deep feature models DFMi =
〈li, FMi, poti〉 (for i = {0, 1}), a deep feature model morphism (F-morphism in short)
m = 〈d,mF , C〉 : DFM0 → DFM1 is made of:

– a depth d ∈ N0 s.t. l0 + d = l1
– an injective set morphism mF : F0 → F1 s.t. ∀f ∈ F0 • pot0(f)+d = pot1(mF (f))
– a configuration C = 〈F+

1 , F−
1 〉 of FM1 s.t.:

1. mF (F0) = F1 \ (F+
1 ∪ F−

1)
2. Φ1[F

+
1 /true, F−

1 /false] ∼= Φ0[F0/mF (F0)]

F-morphism tp is a type morphism if d = 1 and C = 〈∅, ∅〉, and it is an indirect type
morphism if d > 1 and C = 〈∅, ∅〉. F-morphism sp is a specialization if d = 0.

The definition requires that the F-morphism depth fills the gap between the feature
model levels, and between the potencies of the mapped features. FM0 may have fewer
features than FM1, in case the configuration C assigns a value to features of FM1. In
particular, the injectivity condition of mF and requiring mF (F0) = F1 \ (F+

1 ∪ F−
1)

ensures that only the features left undefined by C are mapped from FM0. Moreover,
when the configuration C assigns a value to some feature, we require that the formula
Φ1, once we substitute the features in C by their value true or false, be equivalent to
Φ0, once we substitute the features in F0 by their mapping in F1. This corresponds to a
(partial) evaluation of the formula Φ1 as a result of a feature model specialization.

As a remark, F-morphisms so defined are composable by adding their depths and
making the union of the positive (resp. negative) features in the configurations.

Multi-level Model Product Lines 169

Fig. 8. Examples of F-morphisms.

Example. Fig. 8 shows two F-morphisms, with tp a type and sp a specialization. F-
morphism tp : FM1 → FM2 relates two deep feature models FM1 and FM2, where
the level and potencies of FM1 are one less than those in FM2, and the formulae
are the same modulo feature renaming. Specialization sp : FM0 → FM1 has depth 0
and partial configuration C = 〈F+ = {object}, F− = {simple}〉. Hence, the levels
and potencies are maintained, but the feature set F0 is decreased by removing from F1

the features that appear in C. According to condition 1 in Def. 7, {Gwys} = {Gwys,

simple, object} \ ({simple} ∪ {object}). According to condition 2 in the definition, the
formula Φ0 is equivalent to replacing object by true and simple by false in Φ1. If we
compose sp with tp, the resulting F-morphism tp ◦ sp has depth 1 and configuration
C = 〈F+ = {object}, F− = {simple}〉, which is neither a type nor a specialization.

Finally, we are ready to characterize deep model product lines (PLs) as a deep
model, a deep feature model with the same level as the deep model, and a mapping
of presence conditions (PCs) to deep model elements.

Def. 8 (Deep model PL) A deep model PL DM = 〈M,DFM,φ〉 is made of:

– A deep model M and a deep feature model DFM with the same level (p = l).
– A function φ : C ∪ S ∪ R → B(F) mapping each element in M to a (non-false)

propositional formula over the features in F , called presence condition (PC), s.t.:
1. ∀s ∈ S ∪R • φ(s) =⇒ φ(src(s))
2. ∀r ∈ R • φ(r) =⇒ φ(tar(r))
3. ∀e ∈ C ∪ S ∪R, ∀v ∈ V ar(φ(e)) • pot(v) ≤ pot(e)

Intuitively, given a configuration, we can derive a product (a deep model) of the
PL by deleting the model elements whose PC evaluates to false. To avoid dangling
references and slots, Def. 8 requires their PC not to be weaker than that of their owning
clabject (condition 1), and the PC of references not to be weaker than the one of their
target clabject (condition 2). In addition, the variability of an element must be resolved
in a level that contains the element. To this aim, condition 3 ensures that the potency of
the variables in the PC of an element is not higher than the element’s potency (we use
function Var to return all variables within a propositional formula).

170 J. de Lara and E. Guerra

Fig. 9. Deep model PL example.

Example. Fig. 9 shows a deep model PL for process modelling languages. The left
compartment shows the deep feature model, and the one to the right the deep model
with its elements annotated with their PC between square brackets. If an element does
not show a PC (like TaskType), then its PC is true. The deep model PL permits select-
ing between two alternative realizations for gateways, either as the reference next or
the clabject GatewayType. This variability needs to be resolved before instantiating the
language for a specific domain, as features simple and object have potency 0. The PL
also offers the choice to add or not the primitive ActorKind to the language, but this de-
cision can be taken before specializing the language or at level 1 to enable exploratory
modelling. Finally, the PL allows selecting whether tasks can be initial and whether they
hold enactment information. Feature initial in the feature model cannot have potency
2 because the feature is used in the PC of attribute TaskType.initial, which has potency
1. The feature model shows features ProcessLanguage, Gateways and Tasks in colour
and without a potency; this is so as these features are mandatory (i.e., their value is true
in any valid configuration), and while they enable a hierarchical representation of the
feature model, the formalization of the example does not include them.

Next, we introduce mappings between deep model PLs (called PL-morphisms) as a
tuple of morphisms between their constituent deep models and deep feature models. As
in the previous cases, we are interested in type morphisms, linguistic extensions, and
specializations of deep model PLs via a (partial) configuration.

Def. 9 (PL-morphism, type, extension, specialization) Given two deep model PLs
DMi = 〈Mi, DFMi, φi〉 (for i = {0, 1}), a PL-morphism m = 〈mD,mF 〉 is made
of a D-morphism mD : M0 → M1 and an F-morphism mF : DFM0 → DFM1 with
configuration C = 〈F+, F−〉, s.t. ∀e ∈ C0 ∪ S0 ∪ R0 • φ1(e)[F

+
1 /true, F−

1 /false]
∼= φ0(e)[F0/m

F
F (F0)].

PL-morphism tp = 〈tpD, tpF 〉 is a type if both tpD and tpF are types.
PL-morphism ex = 〈exD, idF 〉 is an extension if exD is an extension and idF is an
identity.
PL-morphism sp = 〈mD, spF 〉 is a specialization if spF is a specialization and mD

is injective, level-preserving, and the elements e ∈ C1 ∪ S1 ∪ R1 s.t. φ1(e)[F
+
1 /true,

F−
1 /false] � false are in its co-domain.

Remark. No condition on the equality of depths of mD and mF is required, since the
levels of M0 and DFM0 are the same (and similar for the levels of M1 and DFM1).

Multi-level Model Product Lines 171

Fig. 10. Examples of PL-morphisms and deferred configuration.

The condition for PL-morphisms demands that the PCs in the deep model M0 are mod-
ified according to the selection of features in configuration C of mF . In addition, in
specialization PL-morphisms, M0 should contain just the elements whose PC is not
false after substituting the features in F+ by true, and the ones in F− by false. There-
fore, in case of a specialization, the definition requires that, when the configuration C is
considered, exactly the elements in M1 whose PC is not false receive a mapping from
M0, while the mapping needs to be injective. Moreover, by Def. 8 of deep model PL,
no element in M0 can have a PC that is false.

Other kinds of PL-morphisms are possible, for example, adding features to a fea-
ture model in lower meta-levels to increase its variability. While this is an interesting
possibility to increase language reuse, we leave its formalization to future work.

Example. Fig. 10 shows four valid PL-morphisms (tp, tp′, sp, sp′) and an invalid one
(ex). Both tp and tp′ are types: they relate models at adjacent levels, where one is an
instance of the other. Types always use the empty configuration C = 〈∅, ∅〉 (cf. Def. 7),
and therefore, a model element and its instances have the same PC (see, e.g., ActorKind

and its instance SoftEng). Both sp and sp′ are specialization PL-morphisms. This is
so as they preserve level and potencies, and the deep models only contain elements
with non-false PC. As the configuration C of both PL-morphisms is total, the PC of
the elements in DM3 and DM2 evaluates to true, and hence, these models do not have
more closed variability options to configure (i.e., they are final products of the PL).
The figure also shows an attempt to extend DM1 by a linguistic extension made of the
clabject Skill connected to SoftEng through reference exp. However, the result is not a
valid deep model PL as the PC of SoftEng (actors) is stronger than the PC of exp (true).
This could be solved by adding actors as PC of exp (and Skill).

When the configuration C of a specialization PL-morphism sp is total, DM0 is a
product of DM1 with no variability, being equivalent to a deep model (cf. Def. 1). How-
ever, the question remains whether for any valid configuration C of a deep model PL
DM , we can find a deep model PL DM ′ and a specialization PL-morphism sp : DM ′ →
DM that uses C. This requires showing that any choice of F+ and F− results in a valid
deep model PL DM ′ as given by Def. 8. Theorem 1 captures this result.

172 J. de Lara and E. Guerra

Theorem 1 (Derivation through specialization morphisms). Given a deep model PL
DM = 〈M,DFM,φ〉 and any configuration C of DFM , there is one deep model PL
DM ′ and a specialization morphism sp : DM ′ → DM with configuration C.

Proof. In appendix.

Next, we look into the soundness of deferring the configuration of an element after
it is instantiated. The question is whether, in any situation that allows configuring an
element after its instantiation, we obtain the same result by resolving the element vari-
ability first and then instantiating. This result is important as, regardless of the order
in which configurations and instantiation are performed, we can calculate the language
that results of applying the configurations as the first step, by advancing the configura-
tion steps over the instantiations.

The next theorem captures the fact that if we can instantiate and then configure, then
we obtain the same result if we configure and then instantiate.

Theorem 2 (Specialization can be advanced to instantiation). Given three deep model
PLs DMi = 〈Mi, DFMi, φi〉 (for i = {0, 1, 2}), a type PL-morphism tp : DM1 →
DM0 and a specialization PL-morphism sp : DM2 → DM1, there is a unique deep
model PL DM3, a unique type PL-morphism tp′ : DM2 → DM3 and a unique spe-
cialization PL-morphism sp′ : DM3 → DM0 s.t. the diagram in Fig. 11 commutes.

DM0 DM3sp′��

DM1

tp

��

=

DM2sp��

tp′

��

Fig. 11. Deferred configuration: specialization can be advanced to instantiation.

Proof. In appendix.

Remark. Note that the converse is not true in general, that is, instantiation cannot be
advanced to specialization. The reason is that a type morphism is not allowed from
features with potency 0, meaning that they must be configured first.

Example. Fig. 10 shows a deferred configuration. Deep model PL DM0 is instantiated
into DM1, and then configured using C = 〈F+ = {}, F− = {actors}〉 to yield DM2.
Instead, we obtain the same result by first configuring DM0 to yield DM3, and then
instantiating DM3 into DM2. Deep model PL DM3 is relevant as it corresponds to the
fully-configured language (i.e., with no variability) employed to build DM2.

5 Tool support

We have implemented the notions presented so far atop METADEPTH [12]. This is a tex-
tual multi-level modelling tool which supports an arbitrary number of meta-levels and

Multi-level Model Product Lines 173

Listing 1. Deep model with PCs. Fig. 12. Internal representation of deep model PL.

deep characterization through potency. It integrates the Epsilon family of languages for
model management [33], which permits defining code generators and model transfor-
mations for multi-level models.

METADEPTH was used to define language families via multi-level modelling in [15],
but it did not support the definition of closed sets of variability options by means of
PLs. For this work, we have extended the tool to allow creating deep feature models
and multi-level models with PCs, and specializing deep model PLs via configurations.
The extended tool is available at http://metadepth.org/pls.

Listing 1 specifies the deep model in the right part of Fig. 9, using METADEPTH’s
syntax. First, line 1 states the name of the deep feature model (defined in Listing 2) as-
sociated to the deep model. Then, line 2 declares the deep model, named ProcessModel,
with level 2. This contains three clabjects: TaskType (lines 3–13), ActorKind (lines 15–
16) and GatewayType (lines 18–22). PCs are specified as annotations. This is possible
as, similar to Java [10], METADEPTH permits defining annotation types by providing
their syntax, parameters, and kind of elements they can annotate (i.e., models, clabjects
or fields) [40]. This definition is a meta-model, and so, when annotations are parsed,
they are transformed into an annotation model that refers to the annotated model. Re-
garding the PC of fields, for usability reasons, our implementation internally conjoins
the PC of fields with the PC of their owner clabject. For example, the PC of reference
GatewayType.src is object because the PC of GatewayType is object.

Listing 2 shows the METADEPTH definition of the deep feature model in Fig. 9.
This conforms to a meta-model that we have created to represent deep feature models,

174 J. de Lara and E. Guerra

and to which we have assigned a concrete syntax similar to the FAMILIAR tool [1].
Line 1 declares a feature model called ProcessOptions with level 2. Line 2 declares the
root feature ProcessLanguage, and its children features Gateways, Tasks and actors.
Children features can specify a potency after the “@” symbol, and be declared optional
using the “?” symbol. Line 3 declares the children of Gateways, which are alternative as
specified by the keyword alt. Line 4 declares the children of Tasks, which are optional.

Fig. 12 shows the internal representation of a deep model PL in METADEPTH. The
PC annotations are automatically converted into an annotation model, which is also
linked to the deep feature model (ProcessOptions).

Annotations in METADEPTH can attach actions to be triggered upon certain mod-
elling events, like instantiation or value assignment. These actions are defined via a
meta-object protocol (MOP) [26, 40]. This way, we have defined a MOP with actions
for the PC annotations, to help instantiating deep model PLs. Specifically, when an ele-
ment of a model with variability is instantiated (like ProcessModel in Listing 1), its PC
is copied to the instance. Moreover, a constraint forbids instantiating a deep model PL
if the associated deep feature model has features with potency 0.

Finally, we have created a command called config to specialize a deep model PL
via a configuration (see Listing 3). When the command is applied, the PCs attached to
model elements are evaluated (partially if the configuration is partial), and then removed
if their value is false. The applied configuration (i.e., the boolean values assigned to the
features) is stored in the deep feature model itself (cf. model ProcessOptions in Fig. 12).
Overall, this simple example language already admits 16 total configurations, which can
be succinctly represented as a PL, increasing its reuse possibilities.

6 Related work

Next, we review related research coming from language PLs; variability in multi-level
modelling; and SPLs.

Language PLs. Some researchers have proposed increasing the reusability of mod-
elling languages by incorporating SPL techniques. For example, in [47], DSL meta-
models can be configured using a feature model. In [34], the authors propose featured
model types: meta-models whose elements have PCs, and with operations that are of-
fered depending of the chosen variant. In [20], meta-models can have variability, and
their instantiability is analysed at the PL level. However, all these works only consider
closed variability, while our work also supports open variability through instantiation.

Variability in multi-level modelling. A plethora of multi-level modelling approaches
and tools have emerged recently, like DeepTelos [22], FMMLx [18], Melanee [3], Mul-
tEcore [29], MLT [17] and OMLM [21]. Some of them are based on deep character-
ization through potency [3, 18, 21, 29], while others rely on powertypes [17] or most-
general instances [22]. None of them support variability based on feature models as we
describe here. However, there have been some attempts to improve multi-level mod-
elling with SPL techniques, which we describe next.

Reinhartz-Berger and collaborators [37] present a preliminary proposal to support
the configuration of classes with optional attributes. It is based on a kernel language

Multi-level Model Product Lines 175

which supports multiple meta-levels but not deep characterization. The proposal is in-
cipient as it is neither formalized nor implemented. In [9], the authors analyse the limi-
tations of feature models alone to describe a set of assets, and propose using multi-level
models instead. As multi-level models have limitations to express variability – as de-
scribed in Section 2.2 – we propose to combine feature models and multi-level models.

Nesic and collaborators [31] explore the use of MLT [17] to reverse engineer sets of
related legacy assets into PLs. MLT is a multi-level modelling approach based on pow-
ertypes and first order logic. In their work, the authors represent variability concepts like
PCs and product groups within MLT models. This embedding may result in complex
models where elements can represent either variability concepts or domain concepts.
Instead, we separate PCs and feature models to avoid cluttering the multi-level model.
Our goal is to define highly reusable language families, for which we provide feature
models to describe variability options, and offer the possibility to defer configurations;
instead, the approach in [31] lacks an explicit representation of feature models. Finally,
we provide both a theory and a working implementation.

Other formalizations of potency-based multi-level modelling exist, like [38]. That
theory does not account for variability, but it could be extended with feature models, in
a similar way as we do.

SPLs. Our deferred configurations can be seen as a particular case of staged con-
figurations [11]. These permit selecting a member of the PL in stages, where each
stage removes some choices. In our approach, the potency controls the level where
the variability can be resolved. Staged configurations are also useful in software design
reuse. In this setting, Kienzle and collaborators [27] propose Concern-Oriented Reuse,
a paradigm where reusable modules (called concerns) define variability interfaces as
feature models. The variability of a reused concern can be resolved partially, in which
case, the undefined features are re-exposed in the interface of the resulting concern.
We also support deferring the variability resolution, but composing deep model PLs is
future work.

Taentzer and collaborators [45] formalized model-based SPLs using category the-
ory. Different from ours, their formalization does not capture typing (it is within a single
meta-level), while their morphisms can expand the feature model but cannot be used to
model partial configurations. Borba and collaborators [8] have studied PL refinements
to add new products maintaining the behaviour of existing ones. In our case, we do
not increase variability, but it would be interesting to consider mechanisms to do so
combined with instantiation.

To cope with large variability spaces, partitioning techniques can be applied to fea-
ture models to yield so-called multi-level feature models [11, 36]. However, the term
multi-level does not refer to multiple levels of classification (as in our case), but to
multiple partitions of a feature model.

Other modelling notations support variability. For example, Clafer [23] is an ap-
proach that unifies feature and class modelling. It supports both class and (partial) ob-
ject models, feature models, (partial) configurations and logic constraints. However,
it does not support multi-level modelling or deep characterization. Similar to delta-
oriented programming [42], Δ-modelling [41] permits defining a set of products as a
core model plus a set of modification deltas to the core model according to given ap-

176 J. de Lara and E. Guerra

plication conditions. The approach has been combined with MDE, showing that model
configuration and refinement (e.g., a component being refined by a set of classes) com-
mute. This is in line with our Theorem 2, but we are interested in instantiation (instead
of refinement), and need to incorporate potency for deep characterization. Hence, in our
case, instantiation and specialization (configuration) do not commute, but the latter can
be advanced to former.

In the programming world, Batory [7, 44] proposes mixin layers, a composition
mechanism to add features to sets of base classes (so called two-level designs). Higher-
level designs can be obtained by applying the same techniques. In [7], these higher-level
designs are called multi-level models. Again, the use of the term multi-level is different
from ours, which refers to models related by classification relations.

Overall, our proposal is the first one adding variability to multi-level models with
support for deep characterization.

7 Conclusions and future work

In this paper, we have proposed a new notion of multi-level model PL to improve current
reuse techniques for modelling languages. This is so as it permits both open variability
(by successive instantiations leading to language refinements for specific domains), and
closed variability (by selecting among a set of variants). We have presented a theory,
with results ensuring the proper interleave of instantiation and configuration steps. The
ideas have implemented on top of the multi-level modelling tool METADEPTH.

In the future, we plan to provide a categorical formalization of the theory which
brings operations like intersection via common parts (pullbacks) and merging (pushouts)
of deep model PLs. We also want to offer the possibility of extending a deep model PL
with new features (i.e., extra variability) and move this variability to the top model
whenever possible. We would like to develop analysis techniques for multi-level model
PLs, e.g., to check instantiability properties in the line of [20]. Finally, our goal is
to make multi-level model PLs ready for MDE. This would entail the ability to de-
fine MDE services like transformations and code generators on multi-level model PLs.
Technically, our plan is to use the Epsilon languages supported by METADEPTH, and
follow ideas from existing works on PLs of transformations [13], and transformation of
PLs [39].

Acknowledgments. Work funded by the Spanish Ministry of Science (project MAS-
SIVE, RTI2018-095255-B-I00) and the R&D programme of Madrid (project FORTE,
P2018/TCS-4314). We thank the anonymous referees for their useful comments.

Appendix

Proof of Theorem 1: Given a deep model PL DM and a configuration C = 〈F+, F−〉,
we build DM ′ = 〈M ′, DFM ′, φ′〉 as follows:

– M ′ has the same level as M , and contains the elements e of M s.t. φ(e)[F+/true,
F−/ false] � false. Functions src′, tar′ and pot′ are restrictions of src, tar and
pot to the elements in M ′.

Multi-level Model Product Lines 177

– DFM ′ = 〈l, FM ′ = 〈F ′, Φ′〉, pot′〉, where F ′ = F\(F+∪F−), Φ′ = Φ[F+/true,
F−/false], and pot′ is the restriction of pot to F ′.

– ∀e ∈ C ′ ∪ S′ ∪R′ • φ′(e) = φ(e)[F+/true, F−/false].

Now we show that M ′ is a valid deep model according to Def. 1:

– To check that src′ is well formed, we show that ∀s ∈ S′∪R′, src(s′) is defined. By
condition 1 in Def. 8, φ(s) =⇒ φ(src′(s)). This precludes the source of any s ∈
S′ ∪ R′ to be absent from C ′, since if φ(src′(s))[F+/true, F−/false] = false,
then φ′(s)[F+/true, F−/false] = false.

– The well-formedness of tar′ is shown like in the previous case.
– Function pot′ satisfies conditions 1–3 of Def. 1, since pot satisfies them, and pot′

is just a restriction of pot.

Now we show that DM ′ is a valid deep model PL according to Def. 8:

– M ′ and DFM ′ have the same level (l).
– The three conditions over φ′ and pot′ hold, since they hold for φ and pot.

Finally, we build a specialization PL-morphism sp = 〈mM , spF 〉 : DM ′ → DM
as follows:

– mM = 〈0, incMC , incMS , incMR 〉, where X ′ incMX
↪−−−→ X (for X = {C, S,R}) are

inclusion set morphisms,

– spM = 〈0, incF , C〉, where F ′ incF

↪−−−→ F is an inclusion morphism.

We need to show that: (i) mF (F
′) = F ′ = F\(F+∪F−), which holds since F ′ was

defined above as F \(F+∪F−); and (ii) Φ[F+/true, F−/false] ≡ Φ′[F ′/incF (F ′)],
which holds since Φ′ was defined above as Φ[F+/true, F−/false]. �

Proof of Theorem 2: Let C = 〈F+, F−〉 be the configuration of the specialization PL-
morphism sp : DM2 → DM1. From DM0 and C, we construct a deep model DM3

and a specialization PL-morphism sp′ : DM3 → DM0 as described in the proof of
Theorem 1. Then, we build a type PL-morphism tp′ = 〈tp′D, tp′F 〉 : DM2 → DM3 as
follows:

– tp′D = 〈1, tpDC |C2
, tpDS |S2

, tpDR |R2
〉, with tpDX |X2

the restriction of tpDX to set X2

in DM2 (for X = {C, S,R}).
– tp′F = 〈1, tpFF |F2

, C〉 with tpFF |F2
the restriction of tpFF to set F2.

D-morphism tp′D is well defined because ∀c ∈ C2, ∃c′ ∈ C3 s.t. tpDC (spDC (c)) =
sp′DC (c′). This is so as φ1(sp

D
C (e))[F+/true, F−/false] � false due to Def. 9 of

specialization PL-morphism. And now, since the configuration of tp is empty, we have
φ0(tp

D
C (spDC (e))[F+/true, F−/false] � false. This means that, according to Def. 9,

this element is in the co-domain of sp′DC , and is assigned to c by tp′DC . The same rea-
soning applies to sets S2 and F2. Function tpFF |F2

is also well formed, since the same
configuration C was used to derive DM2 and DM3.

This reasoning also shows that tp ◦ sp = sp′ ◦ tp′, as Theorem 2 demands. �

178 J. de Lara and E. Guerra

References

1. M. Acher, P. Collet, P. Lahire, and R. B. France. FAMILIAR: A domain-specific language
for large scale management of feature models. Sci. Comput. Program., 78(6):657–681, 2013.

2. C. Atkinson. Meta-modeling for distributed object environments. In EDOC, pages 90–101.
IEEE Computer Society, 1997.

3. C. Atkinson and R. Gerbig. Flexible deep modeling with melanee. In Modellierung 2016,
2.-4. März 2016, Karlsruhe - Workshopband, pages 117–122, 2016.

4. C. Atkinson and T. Kühne. The essence of multilevel metamodeling. In UML, volume 2185
of LNCS, pages 19–33. Springer, 2001.

5. C. Atkinson and T. Kühne. Rearchitecting the UML infrastructure. ACM Trans. Model.
Comput. Simul., 12(4):290–321, 2002.

6. C. Atkinson and T. Kühne. Reducing accidental complexity in domain models. Software
and Systems Modeling, 7(3):345–359, 2008.

7. D. S. Batory. Multilevel models in model-driven engineering, product lines, and metapro-
gramming. IBM Systems Journal, 45(3):527–540, 2006.

8. P. Borba, L. Teixeira, and R. Gheyi. A theory of software product line refinement. Theor.
Comput. Sci., 455:2–30, 2012.

9. T. Clark, U. Frank, I. Reinhartz-Berger, and A. Sturm. A multi-level approach for supporting
configurations: A new perspective on software product line engineering. In ER Forum Demo
Track, volume 1979 of CEUR Workshop Proceedings, pages 156–164. CEUR-WS.org, 2017.

10. I. Córdoba-Sánchez and J. de Lara. Ann: A domain-specific language for the effective design
and validation of java annotations. Computer Languages, Systems & Structures, 45:164–190,
2016.

11. K. Czarnecki, S. Helsen, and U. W. Eisenecker. Staged configuration through specializa-
tion and multilevel configuration of feature models. Software Process: Improvement and
Practice, 10(2):143–169, 2005.

12. J. de Lara and E. Guerra. Deep meta-modelling with MetaDepth. In TOOLS, volume 6141
of LNCS, pages 1–20. Springer, 2010.

13. J. de Lara, E. Guerra, M. Chechik, and R. Salay. Model transformation product lines. In
MoDELS, pages 67–77. ACM, 2018.

14. J. de Lara, E. Guerra, and J. Sánchez Cuadrado. When and how to use multilevel modelling.
ACM Trans. Softw. Eng. Methodol., 24(2):12:1–12:46, 2014.

15. J. de Lara, E. Guerra, and J. Sánchez Cuadrado. Model-driven engineering with domain-
specific meta-modelling languages. Software and Systems Modeling, 14(1):429–459, 2015.

16. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph Transfor-
mation. Monographs in Theoretical Computer Science. An EATCS Series. Springer, 2006.

17. C. M. Fonseca, J. P. A. Almeida, G. Guizzardi, and V. A. de Carvalho. Multi-level conceptual
modeling: From a formal theory to a well-founded language. In ER, volume 11157 of LNCS,
pages 409–423. Springer, 2018.

18. U. Frank. Multilevel modeling - toward a new paradigm of conceptual modeling and infor-
mation systems design. Business & Information Systems Engineering, 6(6):319–337, 2014.

19. C. González-Pérez and B. Henderson-Sellers. A powertype-based metamodelling frame-
work. Software and Systems Modeling, 5(1):72–90, 2006.

20. E. Guerra, J. de Lara, M. Chechik, and R. Salay. Analysing meta-model product lines. In
SLE, pages 160–173. ACM, 2018.

21. M. Igamberdiev, G. Grossmann, M. Selway, and M. Stumptner. An integrated multi-level
modeling approach for industrial-scale data interoperability. Software and Systems Modeling,
17(1):269–294, 2018.

Multi-level Model Product Lines 179

22. M. A. Jeusfeld and B. Neumayr. Deeptelos: Multi-level modeling with most general in-
stances. In ER, volume 9974 of LNCS, pages 198–211, 2016.

23. P. Juodisius, A. Sarkar, R. R. Mukkamala, M. Antkiewicz, K. Czarnecki, and A. Wasowski.
Clafer: Lightweight modeling of structure, behaviour, and variability. Programming Journal,
3(1):2, 2019.

24. K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-oriented domain analy-
sis (foda) feasibility study. Technical Report CMU/SEI-90-TR-021, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, 1990.

25. S. Kelly and J. Tolvanen. Domain-Specific Modeling - Enabling Full Code Generation.
Wiley, 2008.

26. G. Kiczales and J. D. Rivieres. The Art of the Metaobject Protocol. MIT Press, Cambridge,
MA, USA, 1991.

27. J. Kienzle, G. Mussbacher, P. Collet, and O. Alam. Delaying decisions in variable concern
hierarchies. In GPCE, pages 93–103. ACM, 2016.

28. S. M. Lane. Categories for the Working Mathematician. Springer, 1971.
29. F. Macı́as, A. Rutle, V. Stolz, R. Rodrı́guez-Echeverrı́a, and U. Wolter. An approach to

flexible multilevel modelling. EMISA, 13:10:1–10:35, 2018.
30. R. C. Martin, D. Riehle, and F. Buschmann. Pattern Languages of Program Design 3.

Addison-Wesley, 1997.
31. D. Nesic, M. Nyberg, and B. Gallina. Modeling product-line legacy assets using multi-level

theory. In SPLC, pages 89–96. ACM, 2017.
32. L. Northrop and P. Clements. Software Product Lines: Practices and Patterns. Addison-

Wesley Longman Publishing Co., Inc., 2002.
33. R. F. Paige, D. S. Kolovos, L. M. Rose, N. Drivalos, and F. A. C. Polack. The design of

a conceptual framework and technical infrastructure for model management language engi-
neering. In ICECCS, pages 162–171. IEEE Computer Society, 2009.

34. G. Perrouin, M. Amrani, M. Acher, B. Combemale, A. Legay, and P. Schobbens. Featured
model types: Towards systematic reuse in modelling language engineering. In MiSE@ICSE,
pages 1–7. ACM, 2016.

35. K. Pohl, G. Böckle, and F. J. v. d. Linden. Software Product Line Engineering: Foundations,
Principles and Techniques. Springer-Verlag, Berlin, Heidelberg, 2005.

36. D. Rabiser, H. Prähofer, P. Grünbacher, M. Petruzelka, K. Eder, F. Angerer, M. Kromoser,
and A. Grimmer. Multi-purpose, multi-level feature modeling of large-scale industrial soft-
ware systems. Software and Systems Modeling, 17(3):913–938, 2018.

37. I. Reinhartz-Berger, A. Sturm, and T. Clark. Exploring multi-level modeling relations using
variability mechanisms. In MULTI@MoDELS, volume 1505 of CEUR Workshop Proceed-
ings, pages 23–32. CEUR-WS.org, 2015.

38. A. Rossini, J. de Lara, E. Guerra, A. Rutle, and U. Wolter. A formalisation of deep meta-
modelling. Formal Asp. Comput., 26(6):1115–1152, 2014.

39. R. Salay, M. Famelis, J. Rubin, A. D. Sandro, and M. Chechik. Lifting model transformations
to product lines. In ICSE, pages 117–128. ACM, 2014.

40. J. Sánchez Cuadrado and J. de Lara. Open meta-modelling frameworks via meta-object
protocols. Journal of Systems and Software, 145:1–24, 2018.

41. I. Schaefer. Variability modelling for model-driven development of software product lines.
In Variability Modelling of Software-Intensive Systems (VaMoS), pages 85–92, 2010.

42. I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella. Delta-oriented programming
of software product lines. In SPLC, volume 6287 of LNCS, pages 77–91. Springer, 2010.

43. D. C. Schmidt. Guest editor’s introduction: Model-driven engineering. Computer, 39(2):25–
31, Feb. 2006.

180 J. de Lara and E. Guerra

44. Y. Smaragdakis and D. S. Batory. Mixin layers: an object-oriented implementation tech-
nique for refinements and collaboration-based designs. ACM Trans. Softw. Eng. Methodol.,
11(2):215–255, 2002.

45. G. Taentzer, R. Salay, D. Strüber, and M. Chechik. Transformations of software product
lines: A generalizing framework based on category theory. In MODELS, pages 101–111.
IEEE Computer Society, 2017.

46. UML 2.5.1 OMG specification. http://www.omg.org/spec/UML/2.5.1/, 2017.
47. J. White, J. H. Hill, J. Gray, S. Tambe, A. S. Gokhale, and D. C. Schmidt. Improving domain-

specific language reuse with software product line techniques. IEEE Software, 26(4):47–53,
2009.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not in-
cluded in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

Multi-level Model Product Lines 181

Computing Program Reliability using
Forward-Backward Precondition Analysis and

Model Counting

Aleksandar S. Dimovski 1 and Axel Legay2

1 Mother Teresa University, 12 Udarna Brigada 2a, 1000 Skopje, N. Macedonia
aleksandar.dimovski@unt.edu.mk

2 Université catholique de Louvain, 1348 Ottignies-Louvain-la-Neuve, Belgium
axel.legay@uclouvain.be

Abstract. The goal of probabilistic static analysis is to quantify the
probability that a given program satisfies/violates a required property
(assertion). In this work, we use a static analysis by abstract interpretation
and model counting to construct probabilistic analysis of deterministic
programs with uncertain input data, which can be used for estimating
the probabilities of assertions (program reliability).
In particular, we automatically infer necessary preconditions in order a
given assertion to be satisfied/violated at run-time using a combination of
forward and backward static analyses. The focus is on numeric properties
of variables and numeric abstract domains, such as polyhedra. The ob-
tained preconditions in the form of linear constraints are then analyzed to
quantify how likely is an input to satisfy them. Model counting techniques
are employed to count the number of solutions that satisfy given linear
constraints. These counts are then used to assess the probability that the
target assertion is satisfied/violated. We also present how to extend our
approach to analyze non-deterministic programs by inferring sufficient
preconditions. We built a prototype implementation and evaluate it on
several interesting examples.

1 Introduction

Program verification is often concerned by only determining whether one assertion
always holds at a given program point. However, there are many applications
where we need to know a more fine-grained information about how likely a target
assertion (event) is to be satisfied/violated. Examples of other target events
include the invocation of a certain method, the access to confidential information,
etc. In those cases, we want to distinguish between what is possible event (even
with extremely low probability) and what is likely event (possible with higher
probability). In this work, we show how to calculate the reliability of programs
by using combination of static analysis by abstract interpretation and model
counting. In particular, we are interested to learn how the presence of uncertainty
in the inputs can affect the probability of assertions at the exit of the program.

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 182–202, 2020.
https://doi.org/10.1007/978-3-030-45234-6_9

http://orcid.org/0000-0002-3601-2631
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_9&domain=pdf

This is an important problem to consider, since uncertainty is a common aspect of
many real-world software systems today (e.g., medicine and aerospatial domains).

Abstract interpretation [6,7,8] is a general theory for approximating the
semantics of programs. It provides safe (all answers are correct) and efficient
(with a good trade-off between precision and cost) static analyses of run-time
properties of real programs. It is based on the idea of approximations between
concrete and abstract domains of program properties. Its practical success is
mainly enabled by the design of numerical abstract domains, which reason on
numerical properties of variables. For example, the interval domain [6], which
is non-relational, infers the information about the possible values of individual
variables; the octagon domain [25], which is weakly relational, infers unit binary
linear constraints between program variables; and the polyhedra domain [10],
which is fully relational, infers the linear constraints between all program variables.
Abstract interpretation is a powerful technique for deriving approximate, albeit
computable analyses, by using fully automatic algorithms. These abstract analyses
pay the price for finite computability (always terminate) by an inevitable loss of
precision. We use abstract analyses for automatic inference of (over-approximated)
invariants by forward analysis, and (over-approximated) necessary preconditions
by backward analysis. These two abstract analyses can be combined such that the
results of the first analysis refine the results of the second one. In this work, we use
a combination of forward and backward analyses to automatically generate the
necessary preconditions on input variables that lead to the satisfaction/violation
of a given assertion. If obtained preconditions are satisfied by some concrete values
for input variables, then they represent input values that will allow the given
assertion to be definitely satisfied/violated by all program executions branching
from them. In fact, we run two backward analyses: the first one determines
necessary preconditions for the given assertion to be satisfied, while the second
one determines necessary preconditions for the given assertion to be violated.

Model counting is the problem of determining the number of solutions of
a given constraint (formula). The LattE tool [1] implements state-of-the-art
algorithms for computing volumes, both real and integral, of convex polytopes as
well as integrating functions over those polytopes. More specifically, we use the
LattE tool to estimate algorithmically the exact number of points of a bounded
(possibly very large) discrete domain that satisfy given linear constraints.

In this paper, we describe a method which uses abstract interpretation-based
static analysis and model counting to perform a specific type of quantitative
analysis of deterministic programs, that is the calculation of program reliability.
Calculating the program reliability involves counting the number of solutions to
preconditions, which are given in the form of linear constraints between variables,
i.e. elements from the polyhedra domain, that ensure satisfaction/violation of a
given assertion by using model counting, and dividing it by the total space of
values of the inputs. We assume that the input values are uniformly distributed
within their finite discrete domain. Since the set of generated preconditions
represents an over-approximation, we compute the reliability of programs as
upper and lower bounds of exact probabilities that a given assertion is satisfied

Computing Program Reliability 183

or violated. The reported uncertainty is due to the approximation inherent in
abstract interpretation, which is introduced in order to obtain a scalable and
fully automatic analysis.

The focus here is on programs whose input values range over finite discrete
domains. Thus, we obtain a finite input domain and so we can use model counting
algorithms to compute the required probabilities. We also restrict ourselves to
the domain of linear integer arithmetic, since this is supported by LattE and
the polyhedra numeric domain we use.

We also consider an extension of our approach to non-deterministic programs.
For non-deterministic programs, sufficient and necessary preconditions no more
coincide [26]. Sufficient preconditions ensure that the target invariant holds for
all sequences of non-deterministic choices made at each execution step, whereas
necessary preconditions ensure that the target invariant holds for at least one
sequence of non-deterministic choices made at each execution step. In effect,
increasing the non-determinism will reduce the set of sufficient preconditions and
enlarge the set of necessary preconditions. Hence, for non-deterministic programs
we construct backward analyses for inferring (under-approximated) sufficient
preconditions that lead to the satisfaction/violation of a given assertion. The
calculation of reliability is then similar to the one for deterministic programs.

We have developed a prototype probabilistic static analyzer which uses the
APRON library [21] to implement numeric property domains and the LattE
tool [1] to implement model counting algorithms. APRON provides a common
high-level API to the most common numerical property domains, such as intervals,
octagons, and polyhedra. We have implemented a combination of forward and
backward analyses of deterministic (resp., non-deterministic) C programs for the
automatic inference of invariants and necessary (resp. sufficient) preconditions
in all program points. Our static analyzer has two components: (1) it computes
the required preconditions in the input program point for a given assertion to be
satisfied/violated, and (2) it then calls LattE to count the number of solutions
of those preconditions and calculates the program reliability.

The main contributions of this work are:

– We demonstrate how to calculate the program reliability of deterministic and
non-deterministic programs using static analysis by abstract interpretation
and model counting.

– We develop a probabilistic static analyzer, which uses numerical property
domains from the APRON library and the LattE model counting tool.

– Finally, we evaluate our method for probabilistic static analysis of C programs
and show how to handle a set of small but compelling benchmarks.

2 Motivating Examples

Consider the program P1 in Fig. 1. Suppose that the initial value of i ranges over
the integer domain [0, 19], and the initial value is independently and uniformly
distributed across this range. When (i ≥ 10) the variable k is assigned to 12,
otherwise k is assigned to 50. A forward invariant analysis will find the invariant

184 A. S. Dimovski and A. Legay

void main() {
1© : int i:=[0, 19]; linput :
2© : int k:=0;
3© : if (i ≥ 10) k:=12; else k:=50;

lfinal : assert (k ≤ 30);
}
Fig. 1: The program P1

void main() {
1© : int j:=[0, 9]; linput :
2© : int i:=0;
3© : while (i < 100) {
4© : i:=i+1;
5© : j:=j+1; }

lfinal : assert (j ≤ 105);
}

Fig. 2: The program P2

k = 12 ∨ k = 50 at point lfinal. Therefore, the assertion (k ≤ 30) can be satisfied
(when k = 12) and can be violated (when k = 50). We are interested in inferring
necessary preconditions on the input state at control point linput, when the
assertion is satisfied and when the assertion is violated. We back-propagate
necessary conditions of satisfaction and violation of the assertion from point lfinal
to linput. A backward necessary condition analysis will infer the precondition
i ≥ 10 at point linput assuming that the assertion is satisfied, and the precondition
i < 10 at point linput assuming that the assertion is violated. The size of the
input domain is 20, since i ∈ [0, 19]. By calling LattE to count the number of
solutions to the above preconditions, we can calculate that the probability for the
assertion to be satisfied (success probability) is: 10

20 = 50%, and the probability
for the assertion to be violated (failure probability) is: 10

20 = 50%.
Consider the program P2 in Fig. 2. A forward invariant analysis will find the

invariant 100 ≤ j ≤ 109 at point lfinal, so the corresponding assertion can be
satisfied (when 100 ≤ j ≤ 105) and can be violated (when 105 < j ≤ 109). A
backward necessary condition analysis will infer the precondition 0 ≤ j ≤ 5 at
point linput for the assertion to be satisfied, and the precondition 5 < j ≤ 9 at
point linput for the assertion to be violated. Therefore, we can calculate that the
success probability is: 6

10 = 60%, and the failure probability is: 4
10 = 40%.

3 Forward-Backward Precondition Analyses

We describe the combination of forward and backward analyses in the framework
of abstract interpretation for inferring necessary preconditions that a given
assertion is satisfied/violated. The principle of the combination is to use the
result of the forward invariant analysis in the subsequent backward necessary
condition analysis in order to get more precise results which are still sound.

Syntax. We consider a simple deterministic programming language that is a
subset of C, which will be used to exemplify our work. The control point (location)
before each statement and at the end of each block is associated to a unique label
l ∈ L. The syntax of the language is given by:

s ::=skip |x:=e |x:=[n, n′] | s;s | if (e) then s else s | while (e) do s |assert(e)
e ::= n | x | e ⊕ e

Computing Program Reliability 185

where n ranges over integers, [n, n′] ranges over integer intervals, x ranges over
variable names Var, and ⊕ over arithmetic-logic operators. Non-deterministic
interval assignment x:=[n, n′] represents an input statement which assigns to the
input variable x a uniformly distributed random value from the interval [n, n′].
This interval assignment can occur only in the input section of the program,
and is used to model input uncertainties. The set of all generated statements s
is denoted by Stm, whereas the set of all expressions e is denoted by Exp. We
assume linput is the location after the input statements (i.e. it denotes the end of
the input section) and lfinal is the location at the end of the program, where an
assertion assert(ef) is posed. Without loss of generality, a program is a sequence
of statements followed by a single assertion.

Concrete semantics. A program state is given by a control location in L and
an environment in E : Var → Z mapping each variable to its value (integer
number). We write Σ = L × E to denote the set of all possible program states.
Programs are modelled as transition systems (Σ, −→), where Σ is a set of states
and −→⊆ Σ × Σ is a transition relation modelling atomic execution steps. The
relation −→ is defined by local rules, such as the following:

assignment l0 : x:=e; l1 :: (l0, ρ) −→ (l1, ρ[x 	→ [[e]](ρ)]), where [[e]](ρ) ∈ Z is
the result of the evaluation of e in the environment ρ, and ρ[x 	→ n] denotes
the environment that updates ρ at variable x with the value n.

input l0 : x:=[n, n′]; l1 :: (l0, ρ) −→ (l1, ρ[x 	→ n′′]), where n′′ ∈ [n, n′].
conditional l0 : if (e) then {lt

0 : s; lt
1} else {lf

0 : s′; lf
1 }; l1 :: (l0, ρ) −→ (lt

0, ρ)
if [[e]](ρ)
= 0 3, (l0, ρ) −→ (lf

0 , ρ) if [[e]](ρ) = 0, (lt
1, ρ) −→ (l1, ρ), and

(lf
1 , ρ) −→ (l1, ρ).

loop l0 : while (e) do {lt
0 : s; lt

1}; l1 :: (l0, ρ) −→ (lt
0, ρ) if [[e]](ρ)
= 0, (l0, ρ) −→

(l1, ρ) if [[e]](ρ) = 0, and (lt
1, ρ) −→ (l0, ρ). 4

Let E ⊆ E be the set of input environments obtained after executing the
input statements. The set of input states is I = {(linput, ρ) | ρ ∈ E}. The
invariant inference (reachability) problem consists of finding out the possible
environments (values of all variables) that may arise at each control location.
The concrete semantic domain is the complete lattice of the powerset of states
(P(Σ), ⊆, ∪, ∩, ∅, Σ), and the concrete semantics in the form of invariant states
encountered branching from I, denoted inv(I), is:

inv(I) = lfpIλX.X ∪ post(X)

where post(X) = {σ ∈ Σ | ∃σ′ ∈ X.σ′ −→ σ} and lfpIf is the least fixed point
of the function f greater than I.

In this work, we consider the problem of inferring necessary preconditions.
Assume that a program exits with lfinal : assert(ef). We want to distinguish
3 Following the convention popularized by C, we model Boolean values as integers,

with zero interpreted as false and everything else as true.
4 Note that control moves from the final label lt

1 of s to the initial label l0 of while.

186 A. S. Dimovski and A. Legay

between program termination that leads to the satisfaction of the final assertion
at lfinal from the one that leads to the violation of the final assertion at lfinal.
Let Fsat = {(l, ρ) ∈ inv(I) | l = lfinal =⇒ [[ef]](ρ)
= 0} and Fviol = {(l, ρ) ∈
inv(I) | l = lfinal =⇒ [[ef]](ρ) = 0} be the invariant sets which enforce the
assertion at the point lfinal to be satisfied and violated, respectively, and coincide
with inv(I) everywhere else. In the following, F may represent either Fsat or
Fviol. Given an invariant set F to obey, we want to infer the set of input states
cond(F) that guarantee that all program executions stay in F :

cond(F) = gfpF λX.X ∩ pre(X)

where pre(X) = {σ ∈ Σ | ∃σ′ ∈ X.σ −→ σ′} is the set of predecessors of X, and
gfpF f is the greatest fixed point of the function f smaller than F . The above
two fixed points (lfp and gfp) exist according to Tarski, as the corresponding
functions are monotone and continuous in the complete lattice of state sets.

Given a set of input environments E ⊆ E , we can compute the subsets Esat

and Eviol of input environments that lead to satisfaction and violation of the
final assertion as:

Esat = E ∩ {ρ |(linput, ρ)∈cond(Fsat)},Eviol = E ∩ {ρ |(linput, ρ)∈cond(Fviol)}

Abstract semantics. Transition systems can become large or infinite for real
programs, so that neither inv(I) nor cond(F) can be computed at all. Therefore,
we seek for sound approximations. The actual computable abstract analyses can
be defined as over-approximations of the concrete semantics. A static analyzer will
infer over-approximated necessary preconditions so that all program executions
that lead to satisfaction (resp., violation) of the final assertion are taken into
account, thus computing an over-approximation of Esat (resp., Eviol).

We consider an abstract domain (D, �D), such that there exist a Galois
connection 5 〈P(E), ⊆〉 −−−→←−−−

αD

γD 〈D, �D〉. We assume that the abstract domain
D is equipped with sound operators for ordering �D, least upper bound (join)
�D, greatest lower bound (meet) �D, bottom ⊥D, top �D, widening �D, and
narrowing �D, as well as sound transfer functions for assignments −−−−→assignD :
Var × Exp × D → D, tests −−−−→filterD : Exp × D → D, and backward assignments←−−−−−−b-assignD : Var × Exp × D × D → D. We let lfp# (resp., gfp#) denote an
abstract post-fixpoint (resp., pre-fixpoint) operator, derived using widening �D

and narrowing �D, that over-approximates the concrete lfp (resp., gfp) [8].
Finally, the concrete domain on which concrete semantics is defined (P(Σ), ⊆) is
abstracted using a Galois connection 〈P(Σ), ⊆〉 −−−→←−−−

α

γ 〈L → D, �̇〉 where α(R) =
λl ∈ L. �D {d ∈ D | (l, ρ) ∈ R, αD(ρ) = d}. Hence, each control point l ∈ L is
associated with an element d ∈ D in the abstract semantics.

5 〈L, ≤L〉 −−−→←−−−
α

γ 〈M, ≤M 〉 is a Galois connection between complete lattices L and M
iff α and γ are total functions that satisfy: α(l) ≤M m ⇐⇒ l ≤L γ(m) for all
l ∈ L, m ∈ M . Here �L and �M are the pre-order relations for L and M , respectively.

Computing Program Reliability 187

We define a family of forward transfer functions
−→
δ l,l′ : D → D that compute

the effect of any concrete transition at the abstract level. The definition of
−→
δ l,l′

for some statements is:

assignment l0 : x:=e; l1 :: −→
δ l0,l1(d) = −−−−→assignD(x, e, d)).

conditional l0 : if (e) then {lt
0 : s; lt

1} else {lf
0 : s′; lf

1 }; l1 :: −→
δ l0,lt

0
(d) =

−−−−→filterD(e, d),
−→
δ l0,lf

0
(d) =

−−→
filterD(¬e, d),

−→
δ lt

1,l1(d) = d,
−→
δ lf

1 ,l1
(d) = d.

loop l0 : while (e) do {lt
0 : s; lt

1}; l1 :: −→
δ l0,lt

0
(d) = −−−−→filterD(e, d),

−→
δ l0,l1(d) =

−−→
filterD(¬e, d), and

−→
δ lt

1,l0(d) = d.

The soundness of {−→
δ l,l′ | l, l′ ∈ L} is written as: ∀d ∈ D, ∀ρ ∈ γD(d), (l, ρ) −→

(l′, ρ′) =⇒ ρ′ ∈ γD(
−→
δ l,l′(d)).

Suppose that the abstract element αD(E) = dinput ∈ D is at the input control
point linput. We can collect the abstractions of possible environments at each
program control point using the following forward interpreter:

−→
F # = λI.λ(l ∈ L). �D {−→

δ l′,l(I(l′)) | l′ ∈ L}

such that the result of the forward analyzer is −→I # = lfp#
I0

−→
F #, where I0(linput) =

dinput. Assume that lfp#
I0

−→
F #(lfinal) = dfinal. Let dsat

final =
−−→
filterD(e, dfinal) and

dviol
final =

−−→
filterD(¬e, dfinal). We want to design two backward abstract interpreters

that propagate backwards the invariants ensuring that the final assertion is
satisfied dsat

final and violated dviol
final, respectively. The backward interpreters refine

the invariants found by −→
F #. Thus, they take two elements of D as inputs: an

invariant to refine and an invariant to propagate backwards. They are based
on a family of backward transfer functions

←−
δ l,l′ : D × D → D, which map

a precondition to refine and a postcondition into a refined precondition. The
definition of

←−
δ l,l′ for some statements is:

assignment l0 : x:=e; l1 :: ←−
δ l0,l1(d, d′) = ←−−−−−−b-assignD(x, e, d, d′).

conditional l0 : if (e) then {lt
0 : s; lt

1} else {lf
0 : s′; lf

1 }; l1 :: ←−
δ l0,lt

0
(d, d′) = d�d′,

←−
δ l0,lf

0
(d, d′) = d � d′,

←−
δ lt

1,l1(d, d′) = d � d′,
←−
δ lf

1 ,l1
(d, d′) = d � d′.

loop l0 : while (e) do {lt
0 : s; lt

1}; l1 :: ←−
δ l0,lt

0
(d, d′) = d�d′,

←−
δ l0,l1(d, d′) = d�d′,

and
←−
δ lt

1,l0(d, d′) = d � d′.

The soundness of {←−
δ l,l′ | l, l′ ∈ L} is written as: ∀d, d′ ∈ D, ∀ρ ∈ γD(d), ρ′ ∈

γD(d′), (l, ρ) −→ (l′, ρ′) =⇒ ρ ∈ γD(
←−
δ l,l′(d, d′)). That is, d is refined into a

stronger precondition by taking into account the postcondition d′.
Suppose that F sat

D
(lfinal) = dsat

final, F viol
D

(lfinal) = dviol
final, and F sat

D
(l) =

F viol
D

(l) = −→I #(l) for l
= lfinal. The backward interpreters are defined as:

←−
F # = λ(I, F).λ(l ∈ L). �D {←−

δ l,l′(I(l), F (l′)) | l′ ∈ L}

188 A. S. Dimovski and A. Legay

such that the results of the two backward analyzers are: ←−
C #

sat = gfp#
(−→I #,F sat

D
)

←−
F #

and ←−
C #

viol = gfp#
(−→I #,F viol

D
)

←−
F #. The necessary preconditions that the final asser-

tion is satisfied and violated are dsat
input = ←−

C #
sat(linput) and dviol

input = ←−
C #

viol(linput),
respectively. We can now compute the over-approximated sets E

#
sat and E

#
viol of

input environments Esat and Eviol that lead to satisfaction and violation of the
final assertion as:

E
#
sat = E∩γD(dsat

input), E
#
viol = E∩γD(dviol

input)

such that E
#
sat ⊇ Esat and E

#
viol ⊇ Eviol.

Polyhedra numeric abstract domain. Although, the abstract domain D can be
instantiated with different property domains, in the following, we will use the
polyhedra numerical abstract domain for D. This is due to the fact that only for
the polyhedra domain all necessary abstract operations and transfer functions,
such as −−−−→assignD, ←−−−−−−b-assignD, ←−−−−−−−−−−−−b-assign-underD (see Section 5), are implemented
in the APRON library. The Polyhedra domain [10], denoted as 〈P, �P 〉, is a fully
relational numerical property domain, which allows manipulating conjunctions
of linear inequalities of the form α1x1 + . . . + αnxn ≥ β, where x1, . . ., xn are
program variables and αi, β ∈ R (reals). The abstract operations of the Polyhedra
domain are defined in [10]. Polyhedra analysis is expensive but also very precise.

A property element is represented as a conjunction of linear constraints given
in the matrix form 〈A, b〉 that consists of a matrix A ∈ R

m×n and a vector
b ∈ R

m, where n is the number of variables and m is the number of constraints.
This is called the constraint representation of polyhedra elements, and there is
another so-called generator representation. One representation can be converted
to the other one using the Chernikova’s algorithm [5]. Some domain operations
can be performed more efficiently using the generator representation only, others
based on the constraint representation, and some making use of both. We now
present some operations that can be defined using the constraint representation.

The concretization function is: γP (〈A, b〉) = {v ∈ R
n | A · v ≥ b}. The meet

�P is defined as: 〈A1, b1〉 �P 〈A2, b2〉 = 〈(A1
A2

)
,
(b1

b2

)〉. We also need widening
since the polyhedra domain has infinite strictly increasing chains.

〈A1, b1〉�P 〈A2, b2〉 = {c ∈ 〈A1, b1〉 | 〈A2, b2〉 �P {c}}
where c represents one constraint from 〈A1, b1〉. The transfer function −−−−→filterP

abstracts affine inequality expressions by adding them to the input polyhedra.
−−−−→filterP (

∑
i

αixi ≥ β, 〈A, b〉) = 〈
(

A
α1 . . . αn

)
,

(
b
β

)
〉

Example 1. Consider the program P1 from Fig. 1. Assume that D is the polyhedra
domain. The input abstract element is dinput = (0 ≤ i ≤ 19). Using the forward
analyzer −→

F #, we obtain dfinal = (k = 12 ∨ k = 50), and so dsat
final = (k = 12) and

dviol
final = (k = 50). Using backward analyzers ←−

F #, we obtain dsat
input = (i ≥ 10)

and dviol
input = (i < 10). ��

Computing Program Reliability 189

4 Computing Success and Failure Probabilities

The overall goal of our approach is to answer questions about the probability
of assertions at the exit of a deterministic program P . We define the success
probability as the probability that a program terminates successfully with the
target assertion being satisfied. The failure probability is the probability that a
program hits a failure caused by the target assertion being violated.

The combination of forward and two backward analyses infers the necessary
preconditions, denoted dsat

input = ←−
C #

sat(linput) and dviol
input = ←−

C #
viol(linput), that the

target assertion is satisfied and violated, respectively. Calculating the likelihood of
satisfying/violating the given assertion involves counting the number of solutions
to dsat

input/dviol
input and dividing it by the total space of possible values in its input

domain E. In particular, we use model counting techniques and LattE tool [1] to
estimate algorithmically the exact number of points of a bounded (possibly very
large) discrete domain E that satisfy the (linear) constraints dsat

input and dviol
input.

We restrict our attention on programs that have finite input domains E and on
numeric abstract elements from the polyhedra domain expressed as linear integer
arithmetic (LIA) constraints over program variables whose values are uniformly
distributed over their input domain.

We use the LattE tool to compute the number of elements of E that satisfy
dsat

input and dviol
input, denoted #(dsat

input) and #(dviol
input). The size of E, denoted #(E),

is the product of domain’s sizes of all input variables in program P . Thus, we have:
#(E) =

∏
x:=[n,n′]∈P |n′ −n+1|. Note that the exact sets of input states that lead

to satisfaction and violation of the given assertion are Esat and Eviol, and their
sizes are denoted #(Esat) and #(Eviol). Since the found necessary preconditions
dsat

input and dviol
input are over-approximations of Esat and Eviol respectively, we have

#(Esat) ≤ #(dsat
input) and #(Eviol) ≤ #(dviol

input). Moreover, the input environments
which are not in γD(dsat

input), that is they are in E\γD(dsat
input), definitely lead to

the violation of the assertion. Therefore, we have #(E) − #(dsat
input) ≤ #(Eviol) ≤

#(dviol
input). By similar reasoning as above, we can also establish that: #(E) −

#(dviol
input) ≤ #(Esat) ≤ #(dsat

input). Finally, we calculate the success and failure
probability of a program P as follows:

#(E)−#(dviol
input)

#(E) ≤ Prs(P) = #(Esat)
#(E) ≤ #(dsat

input)
#(E)

#(E)−#(dsat
input)

#(E) ≤ Prf (P) = #(Eviol)
#(E) ≤ #(dviol

input)
#(E)

(1)

Note that Prs(P) + Prf (P) = 1.

Example 2. Consider the program P1 from Fig. 1. We have E = {[i 	→ n] |
n ∈ [0, 19]}, and so #(E) = 20. Using forward and two backward analyses, we
obtain dsat

input = (i ≥ 10) and dviol
input = (i < 10), and so #(dsat

input) = 10 and
#(dviol

input) = 10. Thus, the success and failure probabilities are:

Prs(P1) = 10
20 (50%), and Prf (P1) = 10

20 (50%) ��

190 A. S. Dimovski and A. Legay

We use model counting and the LattE tool [1] to determine the number of
solutions of a given constraint. LattE accepts LIA constraints expressed as a
system of linear inequalities each of which defines a hyperplane encoded as the
matrix inequality: Ax ≤ B, where A is an m×n matrix of coefficients and B is an
m × 1 column vector of constants. Most LIA constraints can easily be converted
into the form: a1x1 + . . . + anxn ≤ b. For example, ≥ and > can be flipped
by multiplying both sides by −1, and strict inequalities < can be converted by
decrementing the constant b. In LattE, equalities = can be expressed directly. If
we have disequalities
=, they can be handled by counting a set of constraints that
encode all possible solutions. For example, the constraint α∧ (x1
= x2) is handled
by finding the sum of solutions for α ∧ (x1 ≤ x2 − 1) and α ∧ (x1 ≥ x2 + 1). For a
system Ax ≤ B, where A is an m × n matrix and B is an m × 1 column vector,
the input LattE file is:

m n+1
B −A

where the first line indicates the matrix size: the number of inequalities m by
the number of variables n plus one. The following lines encode all inequalities.

5 Extension to non-deterministic programs

Let us reconsider the program P2 from Fig. 2, where the assignment in point
5© is now replaced with: j:=j+[0,1]. That is, the variable j is incremented by

a uniformly distributed random integer between 0 and 1 at each iteration. We
denote this non-deterministic program as P3 (taken from [26]), given below:

void main() {
1© : int j:=[0, 9]; linput :
2© : int i:=0;
3© : while (i < 100) {
4© : i:=i+1;
5© : j:=j+[0,1]; }

lfinal : assert (j ≤ 105); }

A forward invariant analysis will find that at lfinal holds: 0 ≤ j ≤ 109, and so
the assertion (j ≤ 105) can be both satisfied and violated. A backward necessary
condition analysis for assertion satisfaction will infer the precondition 0 ≤ j ≤ 9
at linput, since for any value j ∈ [0, 9] there exists an program execution satisfying
the assertion (e.g., consider the executions where the random integer from [0, 1]
always evaluates to 0 in the body of while). However, a backward sufficient
condition analysis for assertion satisfaction computes the set of input states such
that all program executions branching from them satisfy the assertion. In this
case, the sufficient condition analysis will infer the precondition 0 ≤ j ≤ 5 at
linput, since even if the random integer from [0, 1] always evaluates to 1 in the
body of while, the assertion will always hold. As a result of this, we can conclude
that the success probability is greater or equal to: 6

10 = 60%.

Computing Program Reliability 191

We can see that necessary and sufficient preconditions are different in the
presence of non-determinism [26]. Note that, if the non-determinism is increased
in a program, then the set of sufficient preconditions will be reduced, while the set
of necessary preconditions will be enlarged. For non-deterministic programs, Esat

and Eviol are subsets of input environments E that definitely lead to satisfaction
and violation of the final assertion for all possible non-deterministic choices,
respectively. We define the success probability Prs(P) as the probability that
a program terminates successfully with the target assertion being satisfied for
all possible non-deterministic choices taken at each step. The failure probability
Prf (P) is the probability that a program hits a failure caused by the target
assertion being violated for all possible non-deterministic choices taken at each
step. We now show how to compute the success and failure probabilities for
non-deterministic programs using sufficient conditions.

Remark. Note that in case of deterministic programs, Esat and Eviol form a
partition of the set of input environments E (Esat ∪ Eviol = E), thus we have
Prs(P) + Prf (P) = 1 for any deterministic program P . However, for non-
deterministic programs this is not true anymore. That is, Esat ∪ Eviol ⊆ E and
Prs(P) + Prf (P) ≤ 1 for any non-deterministic program P . This means that
there exist input environments for which it is possible the target assertion to be
both satisfied and violated depending on non-deterministic choices made at each
step of the given execution. For example, in the above program P3, for input
environments that satisfy 6 ≤ j ≤ 9, the target assertion is satisfied (when [0, 1]
in the body of while always evaluates to 0) and violated (when [0, 1] in the
body of while always evaluates to 1), so those input environments are neither
in Esat nor in Eviol. We have, Esat = {ρ | 0 ≤ [[j]]ρ ≤ 5} and Eviol = ∅, thus
Prs(P3) = 60% and Prf (P3) = 0%.

Syntax. The extended non-deterministic programming language includes the
same expression and statement productions as previously (see Section 3), but we
add a support for non-deterministic expressions by using integer intervals [n, n′]:

e ::= . . . | [n, n′]

The integer interval [n, n′] denotes a uniformly distributed random integer from
the interval [n, n′] (non-deterministic choice of an integer). Note that the interval
assignment x:=[n, n′] can now be freely used everywhere in programs, not only
in the input section as in deterministic programs.

Concrete semantics. We now consider the problem of backward sufficient con-
dition inference. Given an invariant set F to obey, we want to infer the set of
input states cond(F) that guarantee that all program executions branching from
them for all possible non-deterministic choices taken at each step stay in F :

cond(F) = gfpF λX.X ∩ p̃re(X)

where p̃re(X) = {σ ∈ Σ | ∀σ′ ∈ Σ.σ −→ σ′ =⇒ σ′ ∈ X} is the set of states
which represent predecessors only of states in X. Note that the function p̃re(X)

192 A. S. Dimovski and A. Legay

differs from the function pre(X) used in Section 3, that is p̃re(X)
= pre(X), if
the transition system is non-deterministic (i.e. some states have several successors
or none). Using p̃re(X) ensures that the invariant set F holds for all sequences of
non-deterministic choices made at each execution step, while pre(X) ensures that
the invariant set F holds for at least one sequence of non-deterministic choices.
Note that p̃re(X) = pre(X) for deterministic programs, since |post({σ})| = 1
for every state σ ∈ Σ in this case.

Abstract semantics. In order to compute an under-approximating set of sufficient
preconditions, we require an abstract domain D with the following backward
abstract operators: meet �under

D
, backward assignment ←−−−−−−−−−−−−b-assign-underD : Var ×

Exp × D × D → D, backward tests ←−−−−−−−−−−−−b-filter-underD : Exp × D × D → D,
and a lower widening �

D
[26]. The above abstract operators represent a sound

under-approximation of the corresponding concrete operators. We let gfp#under

denote an abstract pre-fixpoint operator, derived using lower widening �
D

, that
under-approximates the concrete gfp.

We design two backward sufficient condition abstract interpreters that propa-
gate backwards the invariants ensuring that the final assertion is satisfied dsat

final
and violated dviol

final, respectively. They are based on a family of backward transfer
functions

←−
δ under

l,l′ : D × D → D, which for some statements are defined as:

– assignment l0 : x:=e; l1 : ←−
δ under

l0,l1
(d, d′) = ←−−−−−−−−−−−−b-assign-underD(x, e, d, d′)

– if statement l0 : if (e) then {lt
0 : s; lt

1} else {lf
0 : s′; lf

1 }; l1 : ←−
δ l0,lt

0
(d, d′) =

←−−−−−−−−−−−−b-filter-underD(e, d, d′),
←−
δ l0,lf

0
(d, d′) = ←−−−−−−−−−−−−b-filter-underD(¬e, d, d′), and

←−
δ lt

1,l1(d, d′) = d � d′,
←−
δ lf

1 ,l1
(d, d′) = d � d′

– l0 : while (e) do {lt
0 : s; lt

1}; l1 : ←−
δ l0,lt

0
(d, d′) = ←−−−−−−−−−−−−b-filter-underD(e, d, d′),

←−
δ l0,l1(d, d′) = ←−−−−−−−−−−−−b-filter-underD(¬e, d, d′), and

←−
δ lt

1,l0(d, d′) = d � d′.

The soundness of {←−
δ under

l,l′ | l, l′ ∈ L} is written as: ∀d, d′ ∈ D, ∀ρ ∈ γD(d), ρ′ ∈
γD(d′), ρ ∈ γD(

←−
δ l,l′(d, d′)) =⇒ (l, ρ) −→ (l′, ρ′).

The backward sufficient condition interpreters are defined as:
←−
F #under = λ(I, F).λ(l ∈ L). �under

D
{←−

δ under
l,l′ (I(l), F (l′)) | l′ ∈ L}

such that results of backward analyzers are: ←−
C #under

sat = gfp#under
(−→I #,F sat

D
)

←−
F #under

and ←−
C #under

viol = gfp#under
(−→I #,F viol

D
)

←−
F #under. The sufficient preconditions that the final

assertion is satisfied and violated are dsat,under
input = ←−

C #under
sat (linput) and dviol,under

input =
←−
C #under

viol (linput), respectively. We can now compute the under-approximated sets
E

#under
sat and E

#under
viol of input environments Esat and Eviol that definitely lead to

satisfaction and violation of the final assertion as:

E
#under
sat = E∩γD(dsat,under

input), E
#under
viol = E∩γD(dviol,under

input)

such that E
#under
sat ⊆ Esat and E

#under
viol ⊆ Eviol.

Computing Program Reliability 193

Computing success and failure probabilities. As before, we instantiate D with
the polyhedra numeric abstract domain, since all under-approximating sound
backward operators for it have been implemented in the APRON library [26]. The
sufficient preconditions dsat,under

input and dviol,under
input are under-approximations of Esat

and Eviol respectively, so #(dsat,under
input) ≤ #(Esat) and #(dviol,under

input) ≤ #(Eviol).
Moreover, the input environments which are not in γD(dsat,under

input), that is they are
in E\γD(dsat,under

input), may lead to the violation of the assertion. Therefore, we have
#(dviol,under

input) ≤ #(Eviol) ≤ #(E) − #(dsat,under
input). By similar reasoning, we can

also establish that: #(dsat,under
input) ≤ #(Esat) ≤ #(E) − #(dviol,under

input). We calculate
the success and failure probability of a program P as follows:

#(dsat,under
input)
#(E) ≤ Prs(P) = #(Esat)

#(E) ≤ #(E)−#(dviol,under
input)

#(E)
#(dviol,under

input)
#(E) ≤ Prf (P) = #(Eviol)

#(E) ≤ #(E)−#(dsat,under
input)

#(E)

(2)

Example 3. Consider the program P3 from the beginning of this section. Using
two backward sufficient condition analyses, we obtain dsat,under

input = (0 ≤ j ≤ 5)
and dviol,under

input = (⊥D), and so #(dsat,under
input) = 6 and #(dviol,under

input) = 0. Thus, the
success and failure probabilities are:

(60%) 6
10 ≤ Prs(P3) ≤ 1 (100%) and (0%) 0 ≤ Prf (P1) ≤ 4

10(40%) ��

6 Implementation

We now describe the implementation and evaluation of the ideas presented so
far. The evaluation aims to show the following objectives:

O1: The probabilistic analysis can be used to analyze the behaviour of various
interesting programs;

O2: The probabilistic analysis gives exact results (with no precision loss) in many
cases, especially for deterministic programs;

O3: The performance time of probabilistic analysis is largely insensitive to domain
sizes of input variables;

O4: We can find practical application scenarios of using our probabilistic analysis
to efficiently analyze C programs.

Implementation. We have implemented a prototype probabilistic static analyzer
that accepts programs written in a subset of C. It does not support struct and
union types, and provides only a limited support of arrays and pointers. The only
basic data types considered are integers. As output, the tool reports the upper
and lower bounds of probabilities that the target assertion is satisfied or violated.
The prototype tool is written in OCaml. As the abstract analysis domain D for
encoding program properties, we use the polyhedra numeric abstract domain [10].
All abstract operators and sound transfer functions for the polyhedra domain

194 A. S. Dimovski and A. Legay

are provided by the APRON library [21,26]. The tool performs one forward
reachability analysis and two backward necessary/sufficient condition analyses
(one for satisfaction and one for violation of the assertion). The tool calls a
model counter, LattE [1], to determine the number of solutions to discovered
preconditions for satisfaction or violation of the assertion. Note that if an input
state satisfies the discovered precondition for satisfaction (resp., violation) of
the assertion, then all program executions branching from that state will satisfy
(resp., violate) the given assertion. The analysis proceeds by structural induction
on the program syntax, iterating while-s until a fixed point is reached. They
compute the unique solution which to every program point assigns an element
from the abstract domain D.

Experimental setup and benchmarks. All experiments are executed on a 64-
bit Intel�CoreT M i5 CPU, Lubuntu VM, with 8 GB memory. The reported
times represent the average runtime of five independent executions. We report
Timean to perform all static analyses tasks (one forward plus two backward static
analyses), Timepr to compute the needed probability bounds (call to LattE
plus additional calculations), and Time to complete the overall probabilistic
analysis task. The implementation, benchmarks, and all results obtained are
available from: https://aleksdimovski.github.io/probab-analysis.html (or, https:
//github.com/aleksdimovski/probab analyzer).

For our experiment, we use a dozen of C programs taken from several
folders (categories) of the 8th International Competition on Software Verification
(SV-COMP 2019) 6, as well as from the abstract interpretation community
[26,30]. The folders from SV-COMP 2019 we consider are: loops, loop-lit,
termination-crafted (which is denoted ter-crafted for short), as well as
termination-restricted-15 (which is denoted ter-restricted for short). We
have selected some numeric programs with integers that our tool can handle.
We have manually added input sections, and in some of the programs we have
also defined target assertions. Then, we have analyzed those programs using
our prototype static analyzer. Table 1 summarizes relevant characteristics for
each benchmark: the folder (source) where it is taken from, the number of lines
of code (LOC), and the number of integer variables (#var). There are two
classes of benchmarks in Table 1 separated by a double horizontal line. The
first (upper) class of benchmarks consists of deterministic programs for which
backward necessary condition analysis is performed, while the second (lower)
class of benchmarks are non-deterministic programs for which backward sufficient
condition analysis is performed.

Performances Table 1 shows the performance of our technique on a set of small
and compelling examples (addresses Objective (O1)). We can note that for most
of our deterministic benchmarks, the technique gives exact results without any
approximation (which are marked with � in the Exact column of Table 1).
This means that the lower and upper bounds for success and failure probabilities
6 https://sv-comp.sosy-lab.org/2019/

Computing Program Reliability 195

coincide. This is due to the fact that we use the expressive and very precise
polyhedra abstract domain (addresses Objective (O2)). For the remaining cases,
the technique gives approximate results (which are marked with ≈ in the Exact
column of Table 1), since the abstraction was too coarse to calculate exact results.
We can also see that the time for static analysis Timean dominates in the overall
probabilistic analysis time Time, whereas the probability computation time
Timepr is a smaller fraction of the total time. The small probability computation
times indicate that preconditions obtained from our analyses are relatively simple,
and so LattE can handle them very efficiently. We have also experimented with
different domain sizes n of input variables (for n = 10 and n = 1000). Thus, n
denotes the number of possible values per input variable. We observe that we
obtain similar time performance results for n = 10 and n = 1000, which means
that the performance is not affected by the fact that inputs come from a bigger
pool of possible values. This is mostly due to the fact that LattE and APRON
are largely insensitive to those values in terms of time (addresses Objective (O3)).
In general, the obtained probability bounds provide non-trivial information about
the behaviour of these programs and are quite hard to estimate by hand even if
the programs in question are small.

Application scenarios. Consider the following program (called Waldkirch.c from
termination-crafted folder of SV-COMP 2019):

1© : int x:=[−5, 4]; linput :
2© : while (x ≥ 0) {
3© : x:=x-1; }

lfinal : assert (x ≥ −1);

We want to prove this assertion, since, for example, later on in the program there
are references to an array using the index x+1 (e.g. a[x+1]:=0). In this way, we
want to verify that there are no array-out-of-bounds references. The tool will find
that the necessary precondition for assertion satisfaction is: −1 ≤ x ≤ 4, thus
computing the success probability of 60%. The found necessary precondition for
assertion violation is: −5 ≤ x ≤ −2, so the failure probability is 40% (addresses
Objective (O4)).

Approximate results We now give an example where we obtain a precision loss in
practice due to the approximation inherent in abstract analyses. Consider the
following program (taken from [30]):

1© : int x:=[0, 9], y:=[0, 9]; linput :
2© : int s:=x-y;
3© : if (s ≥ 2) y:=y+2;

lfinal : assert (y > 3);

The forward analysis will infer that the program can both satisfy and violate the
assertion. The backward necessary condition analysis for assertion satisfaction
will discover the constraint: x + 2y ≥ 8 ∧ 0 ≤ x ≤ 9 ∧ 2 ≤ y ≤ 9, thus we

196 A. S. Dimovski and A. Legay

Table 1: Experimental evaluation for probabilistic static analyses of C programs.
This table contains the following columns: (1) benchmark - the name of the
analyzed program; (2) source - the source (folder) where the benchmark is taken
from; (3) LOC - the number of lines of code; (4) #var - the number of integer
variables; (5) Time10

an - the static analysis time in seconds for input domains of size
10; (6) Time10

pr - the probability computation time in seconds for input domains
of size 10; (7-8) Time10 and Time1000 - the overall times in seconds required
to completely analyze a benchmark which has input domain of size 10 and size
1000, respectively; (9) Exact - the preciseness of the reported result (� - result is
exact, ≈ - result is approximate). Benchmarks above the double horizontal line
are deterministic programs, while those below are non-deterministic programs.

Bench. source LOC#var Time10
an Time10

pr Time10 Time1000 Exact

count up down*.c loops 20 3 0.043 0.001 0.004 0.049 �
hhk2008.c loop-lit 20 4 0.103 0.001 0.104 0.113 �
gsv2008.c loop-lit 20 2 0.027 0.001 0.028 0.030 �

Log.c ter-restricted 30 4 0.194 0.001 0.195 0.197 ≈
Mono3-1.c loops-crafted-1 15 2 0.044 0.001 0.045 0.046 ≈

Waldkirch.c ter-crafted 20 1 0.010 0.001 0.011 0.012 �
bwd-loop1a.c [26] 15 1 0.008 0.001 0.009 0.010 �
bwd-loop2.c [26] 15 2 0.020 0.002 0.022 0.022 �
example1a.c [30] 10 1 0.008 0.001 0.009 0.008 �
example7a.c [30] 15 2 0.023 0.001 0.024 0.026 �

for-bounded*.c loops 30 4 0.049 0.002 0.051 0.053 ≈
bwd-loop7.c [26] 15 2 0.027 0.001 0.029 0.030 ≈
bwd-loop10.c [26] 20 2 0.046 0.001 0.047 0.048 ≈
example7b.c [30] 15 2 0.039 0.001 0.040 0.048 ≈

find that the upper bound probability for assertion satisfaction is 74%. The
backward necessary condition analysis for assertion violation will discover the
constraint: x + 5y ≤ 23 ∧ 0 ≤ x ≤ 9 ∧ 0 ≤ y ≤ 3, thus we find that the upper
bound probability for assertion violation is 32%. In this way, we conclude that
the success probability is between 68% and 74%, while the failure probability is
between 26% and 32%. On the other hand, we can calculate by hand that the
success probability is exactly 71%, while the failure probability is exactly 29%.

7 Related work

Probabilistic analysis of imperative programs based on symbolic execution has
been introduced before [18,17,3,29]. They calculate path probabilities by counting
the number of solutions to a path condition, which represents a constraint on
inputs. The analyses in [18,17] address programs with integer domains and

Computing Program Reliability 197

linear constraints, whereas the analyses in [3] address programs with linear and
complex floating-point computations. While the previous analyses are restricted
to discrete, uniform random variables that take on a finite set of values, the
probabilistic analysis in [29] can also handle non-uniform distributions over the
reals and integers using a branch-and-bound technique over polyhedra. However,
in presence of loops all above analyses based on symbolic execution lose precision,
since they cannot enumerate all program paths. The solution is to consider
bounded exploration of loops and only a finite number of feasible program paths.
Thus, they also define a measure of confidence on the obtained probabilistic
estimations in order to take into account the contribution from the unexplored
feasible paths. For example, if we set the exploration bound of the loop of program
P2 in Fig. 2 to any number less than 100, both success and failure probabilities
will be 0% and the confidence will be also 0. This is due to the fact that the
while loop in Fig. 2 has to be unrolled at least 100 times in order to obtain a
feasible path on which it can be decided whether the assertion at point lfinal is
satisfied or violated. In this work, instead of symbolic execution we use abstract
interpretation to analyze programs and infer preconditions for success and failure.
Thus, our approach for computing program reliability represents one of the
pioneering works that provides a complete and fast treatment of while loops. In
particular, the strength of our approach is being an abstract interpretation of
a complete semantics for computing program reliability. This is stronger than
fixing a priori an incomplete reasoning approach that can miss some feasible
program paths (executions). The work [13] performs a probabilistic analysis of
open programs using symbolic game semantics [12] and model counting. It uses
game semantics to model open programs with undefined identifiers (e.g. calls to
library functions), such that the model takes into account all possible contexts
in which those programs can be placed. In the presence of loops and undefined
functions, bounded exploration in the model is also used to obtain a feasible
analysis. Probabilistic model checking [2] is yet another approach to perform
probabilistic analysis on a high-level design of software. However, such high-level
models are difficult to maintain and may abstract important details that impact
the chance of property satisfaction. So the goal is to do probabilistic analysis
directly on source code as here, not on high-level models.

Backward precondition analyses by abstract interpretation have also been
used in practice for a long time [4,9,26,28]. Sufficient preconditions have been
first introduced by Bourdoncle [4] in his work on abstract debugging of deter-
ministic programs. He uses a combination of forward-backward analyses to find
preconditions for invariant and intermittent assertions to always hold. Cousot et.
al. [9] propose a method for automatically inferring contract preconditions for in-
termittent assertions. The preconditions extracted by their method are necessary
preconditions, i.e. they do not exclude unsafe executions. Mine [26] presents a
method for automatically inferring sufficient preconditions of non-deterministic
programs by using a polyhedral backward analysis. The under-approximating
sound abstract operators for this backward analysis are implemented as part of
the APRON library. Rival [28] uses forward-backward analysis to inspect more

198 A. S. Dimovski and A. Legay

closely reported alarms by ASTREE, which are then classified as true errors (bugs)
or false alarms. Urban and Mine [30] use forward-backward analysis for the auto-
matic inference of sufficient preconditions for program termination. The elements
of the analysis domain are decision trees, where decision nodes are labeled with
linear numerical constraints and leaf nodes are affine ranking functions for proving
program termination. Forward-backward analysis schemes have been used in [20]
for the inference of safety properties of declarative synchronous programs. In this
work, for the first time we employ forward-backward precondition analysis for
estimating program reliability.

Static analysis of probabilistic programs by abstract interpretation has also
been a topic of research [27,11]. Monniaux [27] proposes a probabilistic analysis
that annotates abstract domains with upper bounds on the probability measure
associated with abstract objects. However, the measure bound is associated
with the entire abstract object, without tracking how it is distributed amongst
the individual states present in the concretization. This restriction makes the
analysis quite conservative. Cousot and Monerau [11] provide a general framework
that encompasses a variety of probabilistic interpretation schemes. However, no
concrete implementation of the above probabilistic abstract interpretations is
provided yet. A backward abstract interpretation for probabilistic programs
[23] uses expectations that are real-valued functions of the program state and
quantitative loop invariants. The automatic inference of such quantitative loop
invariants was proposed in the recent work of Katoen et al [22].

8 Conclusion

We have presented a new static, abstract interpretation-based approach for com-
puting program reliability, which allows to calculate upper and lower bounds of
probabilities that a given assertion is satisfied or violated. We construct a combi-
nation of forward-backward abstract analyses, in order to find an approximation
of a set of input states which lead to definite satisfaction (resp., violation) of
the given assertion. Our approach to calculating program reliability is semantics-
based and approximate in a provably sound way. Still, it often yields very precise
results, especially for deterministic programs.

We currently support only uniform distribution of input values within their
finite discrete domains. In future, we plan to model imprecision in the input
by different non-uniform distributions, such as Binomial, Poisson, etc [29]. The
current implementation of LattE is limited in handling non-uniform distributions,
so we will explore the use of statistical sampling techniques in those cases. Our
focus here is on estimating probability for safety properties. We also plan to
consider liveness properties (such as termination) and expectation queries [30]. An
interesting direction for future work would also be to consider general probabilistic
programs [19], as well as program families implemented with #ifdef-s from the
C-preprocessor where we can use lifted static analyses to efficiently analyze all
variants of the family simultaneously at once [14,24,15,16].

Computing Program Reliability 199

References
1. Latte integrale. UC Davis, Mathematics.
2. Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,

2008.
3. Mateus Borges, Antonio Filieri, Marcelo d’Amorim, Corina S. Pasareanu, and

Willem Visser. Compositional solution space quantification for probabilistic software
analysis. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI’14, page 15. ACM, 2014.

4. François Bourdoncle. Abstract debugging of higher-order imperative languages.
In Proceedings of the ACM SIGPLAN’93 Conference on Programming Language
Design and Implementation (PLDI), pages 46–55. ACM, 1993.

5. N. V. Chernikova. Algorithm for finding a general formula for the non-negative
solutions of a system of linear inequalities. USSR Computational Mathematics and
Mathematical Physics, 5(2):228—-233, 1965.

6. Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Conference Record of the Fourth ACM Symposium on Principles of Programming
Languages (POPL’77), pages 238–252. ACM, 1977.

7. Patrick Cousot and Radhia Cousot. Systematic design of program analysis frame-
works. In 6th Annual ACM Symposium on Principles of Programming Languages,
POPL ’79, pages 269–282, 1979.

8. Patrick Cousot and Radhia Cousot. Abstract interpretation and application to
logic programs. J. Log. Program., 13(2–3):103–179, 1992.

9. Patrick Cousot, Radhia Cousot, and Francesco Logozzo. Precondition inference
from intermittent assertions and application to contracts on collections. In Verifica-
tion, Model Checking, and Abstract Interpretation - 12th International Conference,
VMCAI 2011. Proceedings, volume 6538 of LNCS, pages 150–168. Springer, 2011.

10. Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Conference Record of the Fifth Annual ACM
Symposium on Principles of Programming Languages (POPL’78), pages 84–96.
ACM Press, 1978.

11. Patrick Cousot and Michael Monerau. Probabilistic abstract interpretation. In
Programming Languages and Systems - 21st European Symposium on Programming,
ESOP 2012, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2012. Proceedings, volume 7211 of LNCS, pages
169–193. Springer, 2012.

12. Aleksandar S. Dimovski. Program verification using symbolic game semantics.
Theor. Comput. Sci., 560:364–379, 2014.

13. Aleksandar S. Dimovski. Probabilistic analysis based on symbolic game semantics
and model counting. In Proceedings Eighth International Symposium on Games,
Automata, Logics and Formal Verification, GandALF 2017, Roma, Italy, 20-22
September 2017., volume 256 of EPTCS, pages 1–15, 2017.

14. Aleksandar S. Dimovski. Lifted static analysis using a binary decision diagram
abstract domain. In Proceedings of the 18th ACM SIGPLAN International Confer-
ence on Generative Programming: Concepts and Experiences, GPCE 2019, pages
102–114. ACM, 2019.

15. Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wasowski. Variability
abstractions: Trading precision for speed in family-based analyses. In 29th European
Conf. on Object-Oriented Programming, ECOOP 2015, volume 37 of LIPIcs, pages
247–270. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

200 A. S. Dimovski and A. Legay

16. Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wasowski. Finding suitable
variability abstractions for lifted analysis. Formal Asp. Comput., 31(2):231–259,
2019.

17. Antonio Filieri, Corina S. Pasareanu, and Willem Visser. Reliability analysis in
symbolic pathfinder. In 35th International Conference on Software Engineering,
ICSE’13, pages 622–631. IEEE / ACM, 2013.

18. Jaco Geldenhuys, Matthew B. Dwyer, and Willem Visser. Probabilistic symbolic
execution. In International Symposium on Software Testing and Analysis, ISSTA
2012, pages 166–176. ACM, 2012.

19. Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Rajamani.
Probabilistic programming. In Proceedings of the on Future of Software Engineering,
FOSE 2014, pages 167–181. ACM, 2014.

20. Bertrand Jeannet. Dynamic partitioning in linear relation analysis: Application to
the verification of reactive systems. Formal Methods in System Design, 23(1):5–37,
2003.

21. Bertrand Jeannet and Antoine Miné. Apron: A library of numerical abstract
domains for static analysis. In Computer Aided Verification, 21st International
Conference, CAV 2009. Proceedings, volume 5643 of LNCS, pages 661–667. Springer,
2009.

22. Joost-Pieter Katoen, Annabelle McIver, Larissa Meinicke, and Carroll C. Morgan.
Linear-invariant generation for probabilistic programs: - automated support for
proof-based methods. In Static Analysis - 17th International Symposium, SAS
2010. Proceedings, volume 6337 of LNCS, pages 390–406. Springer, 2010.

23. Annabelle McIver and Carroll Morgan. Abstraction, Refinement and Proof for
Probabilistic Systems. Monographs in Computer Science. Springer, 2005.

24. Jan Midtgaard, Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wasowski.
Systematic derivation of correct variability-aware program analyses. Sci. Comput.
Program., 105:145–170, 2015.

25. Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic Compu-
tation, 19(1):31–100, 2006.

26. Antoine Miné. Backward under-approximations in numeric abstract domains to
automatically infer sufficient program conditions. Sci. Comput. Program., 93:154–
182, 2014.

27. David Monniaux. An abstract monte-carlo method for the analysis of probabilistic
programs. In Conference Record of POPL 2001: The 28th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 93–101. ACM, 2001.

28. Xavier Rival. Understanding the origin of alarms in astrée. In Static Analysis, 12th
International Symposium, SAS 2005, Proceedings, volume 3672 of LNCS, pages
303–319. Springer, 2005.

29. Sriram Sankaranarayanan, Aleksandar Chakarov, and Sumit Gulwani. Static
analysis for probabilistic programs: inferring whole program properties from finitely
many paths. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’13, pages 447–458. ACM, 2013.

30. Caterina Urban and Antoine Miné. A decision tree abstract domain for proving
conditional termination. In Static Analysis - 21st International Symposium, SAS
2014. Proceedings, volume 8723 of LNCS, pages 302–318. Springer, 2014.

Computing Program Reliability 201

which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

202 A. S. Dimovski and A. Legay

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

Skill-Based Verification of
Cyber-Physical Systems

Alexander Knüppel1 , Inga Jatzkowski1 , Marcus Nolte1 , Thomas Thüm1,2,
Tobias Runge1, and Ina Schaefer1

1 TU Braunschweig, Braunschweig, Germany
{a.knueppel, tobias.runge, i.schaefer}@tu-bs.de

{jatzkowski, nolte}@ifr.ing.tu-bs.de
2 University of Ulm, Ulm, Germany

thomas.thuem@uni-ulm.de

Abstract. Cyber-physical systems are ubiquitous nowadays. However,
as automation increases, modeling and verifying them becomes increas-
ingly difficult due to the inherently complex physical environment. Skill
graphs are a means to model complex cyber-physical systems (e.g., vehi-
cle automation systems) by distributing complex behaviors among skills
with interfaces between them. We identified that skill graphs have a high
potential to be amenable to scalable verification approaches in the early
software development process. In this work, we suggest combining skill
graphs with hybrid programs. Hybrid programs constitute a program no-
tation for hybrid systems enabling the verification of cyber-physical sys-
tems. We provide the first formalization of skill graphs including a no-
tion of compositionality and propose Skeditor, an integrated frame-
work for modeling and verifying them. Skeditor is coupled with the
theorem prover KeYmaera X, which is specialized in the verification
of hybrid programs. In an experiment exhibiting the follow mode of a ve-
hicle, we evaluate our skill-based methodology with respect to savings in
verification effort and potential to find modeling defects at design time.
Compared to non-compositional verification, the initial verification effort
needed is reduced by more than 53%.

Keywords: Deductive verification, design by contract, formal methods,
theorem proving, KeYmaera X, hybrid systems, automated reasoning,
cyber-physical systems

1 Introduction

Cyber-physical systems combine digital computations and physical processes by
tightly integrating discrete and continuous dynamics [6]. The last decade has wit-
nessed an increase in the degree of automation in safety-critical cyber-physical
systems (e.g., such as self-driving cars and transportation in general). Further-
more, the complexity of formally modeling and verifying such systems (e.g., by
means of hybrid systems models [11, 19, 30]) to reason about safety increased
simultaneously. Although there is a clear desire for an early identification and

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 203–223, 2020.
https://doi.org/10.1007/978-3-030-45234-6_10

http://orcid.org/0000-0002-8804-7051
http://orcid.org/0000-0003-4127-3913
http://orcid.org/0000-0002-5136-917X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_10&domain=pdf

s1:
Keep distance

to leading

vehicle

s2:
Select target

object

s3:
Perceive

movable

objects

s4:
Radar

s5:
Camera

s6:
Control

longitudinal

dynamics

s11:
Estimate

motion

s12:
Intertial

sensors

s7:
Decelerate

s8:
Brake system

s10:
Powertrain

s9:
Accelerate

Obs.

Plan.

Perc.

Sensor Sensor

Action

Action

Actua.

Action

Actua.

Perc.

Sensor

φs1
= |xl − xh| > 10m

φs6 = vh ≤ 2.7m s−1

φs9 = ah ≤ 4m s−2

Fig. 1: Excerpt of a skill graph representing an operation to keep distance to a
leading vehicle. We illustrate informal safety guarantees for the three skills s1,
s6, and s9.

elimination of severe mistakes [9], there is still a remarkable lack of formal meth-
ods integrated in the software development cycle [16, 17]. The challenge is to
derive modeling and verification approaches that are applicable in the early de-
velopment stages (e.g., requirements analysis and design time). To address this
challenge, we present a model-based verification framework unifying the decom-
position and modeling of cyber-physical systems by means of skill graphs [33]
and a formal verifcation of these models by means of hybrid systems [2, 3, 5, 25].

A skill is a simple capability (e.g., acceleration in the context of a vehicle)
explicitly provided by a cyber-physical system. Skills exhibit specific behaviors
(i.e., control algorithms) by a mapping to some implementation unit (e.g., source
code or interacting software components). Skills are assigned to a specific cate-
gory (e.g., actuator, sensor, or observable behavior) with a defined hierarchy to
prevent modeling mistakes. This categorization follows the design principle of
separation of concerns [27], which ensures that skills only have single well-defined
responsibilities. Separation of concerns is known to have a positive effect on mod-
eling complexity, comprehensibility, functional reusability, fault localization, and
artifact traceability [15, 36]. Skills can be annotated with safety guarantees ob-
tained from a preceding requirements analysis, which enables the application of
verification techniques.

Skill graphs, informally introduced by Reschka et al. [32,33], are a promising
means to model complex actions of cyber-physical systems from an architectural
point of view. A skill graph [26,32,33,37] is a directed acyclic graph comprising
a set of skills (i.e., nodes) and dependencies between them (i.e., edges). To
describe the properties we want to verify in a skill graph, we illustrate a skill
graph representing a driving task in Figure 1. The task exhibits that a vehicle
autonomously tries to keep a distance of at least 10m to a leading vehicle. On the
top level, skill Keep distance to leading vehicle (s1) depends on two other
skills, namely (1) the planning skill Select target object (s2) and (2) the action

204 A. Knüppel et al.

skill Control the longitudinal dynamics (s6). Whereas sensor-dependent
skills are typically realized by software algorithms only (e.g., deep learning for
detecting an obstacle), actuator-dependent skills (highlighted with a dashed
border) also need to incorporate control theory, as the physical environment has
to be taken into account. Skills are annotated with safety requirements (e.g.,
maximum acceleration or minimum distance to other vehicles). Together with the
skill’s realization and its dependencies to other skills, this requirement expresses
the property we want to verify at design time. Successfully verifying all skills in
the context of a skill graph ensures that the represented task complies to the
complete set of safety requirements.

Conceptually, skill graphs as applied in this work are used for designing
and organizing the architecture of a cyber-physical system. First, they facili-
tate the modeling of complex maneuvers built from simpler skills, which inter-
act through explicit interfaces. Second, they advocate the systematic reuse of
ready-to-integrate skills for multiple skill graphs, which reduces maintenance
costs and increases software quality in general. Third, skill graphs are intuitive
and therefore accommodate good potential for communicating with stakehold-
ers and non-experts. Typically, skill graphs are supplied with performance mea-
surements with the goal to enforce safety requirements at run-time. We are the
first to exploit skill graphs to formally reason about the satisfiability of safety
requirements at design time. Both areas of application complement each other,
as they cover the full range from static analysis in the design phase to run-time
verification and monitoring during operation.

As the foundation for our model-based verification approach, we propose to
realize skills that interact with the physical environment by means of hybrid
systems based on the differential dynamic logic dL [28, 29, 31]. Hybrid systems
represent complex physical systems, typically modeled as automata, where states
are defined by continuous variables based on differential equations and transitions
between states are discrete. Differential dynamic logic enables the deductive
verification of hybrid systems, and as such is suitable for reasoning automatically
about the correctness of hybrid systems. The key step of our approach is to
decompose complex tasks of a cyber-physical system into skills connected by
means of a skill graph and to provide a translation of skills to hybrid systems.
The combination of skill graphs and hybrid systems allows the identification of
severe mistakes during early design phases and also – in case of success – to
generate correctness proofs, which increases trust that the system under design
behaves as intended. Moreover, we propose a notion of compositionality for skill
graphs, which is crucial to manage scalability during the verification phase. While
skill graphs may only model simple functional aspects, they can be assembled to
exhibit more complex behaviors, and verification results of skills can be reused.

We have implemented a prototype for modeling and verifying skill graphs
called Skeditor. Skeditor supports the graphical modeling of skill graphs,
allows to specify safety guarantees, and enables formal verification through a
mapping to hybrid programs [30] (i.e., a program notation for hybrid systems as
required by the theorem prover KeYmaera X [14]). In a case study exhibiting

Skill-Based Verification of Cyber-Physical Systems 205

s1 (Cruise)
ẋ = v

|x− xl| = D
|x− xl| = D

s2 (Accel)
ẋ = v
v̇ = a

|x− xl| ≥ D

s3 (Brake)
ẋ = v

v̇ = a, v ≥ 0
|x− xl| ≤ D

|x− xl| > D

|x− xl| = D

|x− xl| < D

|x− xl| > D

|x− xl| = D

|x− xl| < D

Fig. 2: Simplified hybrid system of a vehicle with automatic headway control.

the follow mode of an automated vehicle, we evaluate Skeditor with respect
to its potential to find modeling defects. In particular, Skeditor allowed us
to find conceptual defects of control algorithms early on in the design phase of
our case study. To summarize, the contribution of this work is threefold.

– Framework: We are the first to formalize skill graphs and propose skill-
based verification, a model-based verification technique allowing us to identify
poorly defined safety requirements in early design phases by combining skill
graphs with hybrid programs.

– Tool support: We implemented skill-based verification in a prototypical
open-source tool called Skeditor, which paves the way for users to model
and verify cyber-physical systems based on skill graphs.

– Evaluation: We demonstrate our approach on a realistic case study exam-
ining the follow mode of an automated vehicle. We show that skill-based ver-
ification decreases effort compared to monolithic modeling.

2 Background on Hybrid-System Modeling

A prominent mathematical foundation for cyber-physical systems is constituted
by hybrid systems [2, 11, 19, 30], which enable a mixed modeling of continuous
dynamics (expressed by differential equations) and discrete dynamics (expressed
by automata). The states change on the basis of flow conditions.

Example 1 Consider the example of an automatic headway control of a vehi-
cle depicted in Figure 2. Four variables exist: the host’s current position (x), the
current position of the leading vehicle (xl), the current velocity (v), and the cur-
rent acceleration (a). The headway control exhibits three states: (s1) the vehicle
is in cruise mode when the current distance to the leading vehicle is equal to a
defined constant D, (s2) the vehicle accelerates when the distance is greater than
D, and (s3) the vehicle decelerates when the distance is less than D, but only
until the vehicle comes to a full stop. The headway control ensures that the dis-
tance to the leading vehicle is approximately equal to D.

206 A. Knüppel et al.

Hybrid programs define an imperative-like program notation for hybrid sys-
tems [28], which support the definition of variables that evolve along a differen-
tial equation and are interpreted by tools such as KeYmaera X [14]. The
syntax of hybrid programs is as follows.

α ::= α;β |α ∪ β |α∗ |x := Θ |x := ∗ |x′ = Θ&H | ?H (1)

α;β represents the sequential composition of two hybrid programs. α∪β expresses
the non-deterministic choice between two hybrid programs. α∗ expresses that the
execution of α may be repeated zero or more times. The discrete assignment to
x is either a term Θ (possibly over x) or an arbitrary value represented by the
wildcard ∗. The continuous evolution of a variable x along a differential equation
is described by x′ = Θ&H, where H is an optional evolution domain. Finally,
?H describes a testable condition that aborts the evolution if H is false. For
instance, the program α=̇(v := ∗; a := ∗; ?(−ab ≤ a ≤ 0); {v′ = a& v ≥ 0}) sets
velocity v to an arbitrary value and acceleration a to a value between −ab (i.e.,
maximum braking force) and zero. The execution stops nondeterministically at
any time but at the latest before velocity v reaches a negative value.

Semantics of hybrid programs are based on differential dynamic logic dL [28,
29, 31] to specify and verify properties of hybrid programs associated with a
skill in a skill graph. Models specified in dL can be verified with KeYmaera
X, a matured open-source theorem prover for hybrid programs. The following
grammar describes all valid formulas of dL. Symbol ∼ is a placeholder for a
comparison operator (i.e., ∼∈ {<, ≤, >, ≥, =, �=}) between two terms Θ1 and
Θ2. Terms are polynomials with rational coefficients over the set of continuous
variables.

Φ ::= Θ1 ∼ Θ2 | ¬Φ |Φ ∧ Ψ |Φ ∨ Ψ |Φ → Ψ | ∀xΦ | ∃xΦ | [α]Φ (2)

The semantics of the logical connectives is defined as in first-order logic. Addi-
tionally, the modal formula [α]Φ holds if all runs of the hybrid program α end
in a state that satisfies the given condition Φ. Following the idea of Hoare-style
specification in classical deductive reasoning [1, 7, 10, 18, 34], we are particularly
interested to prove validity of the condition Ψ → [α]Φ with Ψ expressing assump-
tions we have and Φ expressing guarantees to meet by the hybrid program α.

3 A Formalization for Skill-Based Modeling

In this section, we propose the first formalization of modeling cyber-physical
systems based on skill graphs. First, we define the essence of a skill. Second,
we continue with the definition of a skill graph and what makes it well-formed.
Third, we define how to compose skill graphs to exhibit more complex behaviors.

3.1 Formalizing Skills

In the context of cyber-physical systems, skills describe fine-grained executable
activities inspired by human behaviors [32, 33]. For instance, a skill may repre-
sent longitudinal driving (i.e., driving with constant velocity) or even a more

Skill-Based Verification of Cyber-Physical Systems 207

complex combination of longitudinal and lateral maneuvers (i.e., following the
lane). To ensure that such maneuvers are executed safely, skills are associated
with so-called safety guarantees, which they must fulfill to be considered safe.
For example, a skill exhibiting the following of a leading vehicle should keep a
minimum distance of a specified constant D (cf. Fig. 2). Informal safety guaran-
tees are typically formulated by experts who identify numerous hazardous sce-
narios with respect to a maneuver and resolutions to prevent them.

The implementation of skills was only vaguely specified before. Typically,
skills are implemented by software components [33]. However, our goal of early
verification at design time requires to also consider a model of the physical en-
vironment. Therefore, we propose to implement skills by hybrid programs [28],
which already incorporate assumptions about the physical environment and en-
able the verification of implementation against safety guarantees at design time.

To separate concerns, a skill has an associated type. We define the set Type
= {observable behavior, action, perception, planning, sensor, actuator},
which categorizes the purpose of a skill. Moreover, a skill has dependency-
relationships with other skills. Informally, the idea is that a hybrid program of
a skill may introduce a set of continuous state variables, their computation, and
their valid domains (e.g., velocity v ∈ [0, 60] with v′ = a), but may also require
the presence of variables and their domains defined by other skills (e.g., accelera-
tion a ∈ [0, 4]). In the following, we formally define a skill. Let X denote the uni-
verse of continuous variables. The syntactic domain of a skill is defined as follows.

Definition 1 (Skill). A skill is a 5-tuple
〈
Xdef, Xreq, α, τ, Φ

〉
, where

• Xdef ⊆ X is a finite set of variables defined in the hybrid program α,
• Xreq ⊆ X is a finite set of variables required by the hybrid program α,
• α is the (possibly empty) hybrid program (cf. Eq. 1) over variables in Xdef∪
Xreq,

• τ ∈ Type is the associated type,
• Φ = {φ1, . . . , φm} is a finite set of safety guarantees in first-order logic over
variables in Xdef ∪Xreq (cf. Eq. 2).

To be well-formed, we require that the sets of defined and required variables of
a skill are disjoint (i.e., Xdef ∩Xreq = ∅). To access a skill’s attribute, we use
the ’.’ (dot) operator (e.g., s.τ expresses the type of skill s).

3.2 Formalizing Skill Graphs

We formalize skill graphs as directed acyclic graphs comprising a set of skills
(i.e., nodes), which are connected through directed edges representing their de-
pendencies. We denote by S the universe of all skills and define the syntactic
domain of skill graphs as follows.

Definition 2 (Skill Graph). A skill graph is given by G =̂ 〈S, r, E〉, where
• S ⊂ S is a finite set of skills,
• r ∈ S is the root skill,
• E ⊆ S × S is set of directed edges between skills. We denote (sc, sp) ∈ E as

sc ≺ sp meaning that sc is a child of sp.

208 A. Knüppel et al.

τs \ τt observable action actuator planning perception sensor

observable - -

action - -

planning - - - -

perception - - - -

Table 1: Valid types of a child skill t for a skill s (i.e., t ≺ s).

A skill graph is an acyclic directed graph with exactly one root skill r. To
guarantee that skill graphs are well-formed, we impose specific constraints. We
formally introduce the path between two skills as follows.

Definition 3 (Path). Let E be a set of edges and s1, . . . , sl ∈ S skills of a skill
graph. A path of length l−1 is a (possibly empty) sequence of l−1 edges (s1, s2),
(s2, s3), . . . , (sl−1, sl) ∈ E denoted by πs1→sl = [(s1, s2), (s2, s3), . . . , (sl−1, sl)].
We say that a path between skills s, s′ ∈ S exists if πs→s′ is non-empty, and does
not exists otherwise.

As mentioned before, each skill has an assigned type. Based on our definition of
a well-formed graph, we enforce that only skills with particular types can form
valid parent-child relationships (cf. Table 1). For instance, for two skills s, s′ ∈ S,
if s ≺ s′ holds and skill s′ is of type perception, then skill s is only allowed to
have type sensor or perception.

Definition 4 (Well-Formed Skill Graph). Let G = 〈S, r, E〉 be a skill graph.
G is well-formed if and only if

• each skill s ∈ S \ {r} in a skill graph has at least one parent skill s′ ∈ S
(i.e., {s′ ∈ S | s ≺ s′} �= ∅) and there exists at least one path from skill s to
root skill r,

• for each edge (s, s′) ∈ E, skills s, s′ satisfy the typing restriction depicted in
Table 1,

• for each skill s ∈ S and variable x ∈ s.Xreq there exists a path πs′→s′ from
a skill s′ ∈ S that introduces variable x (i.e., x ∈ s′.Xdef),

• for each pair of skills s, s′ ∈ S, the sets of defined variables are disjoint (i.e.,
s.Xdef ∩ s′.Xdef = ∅).

• for each skill s in G, formula
∧

φ∈s′.Φ∧s′≺s φ must be satisfiable.

Remark. Unlike behavioral models, skill graphs as defined here do not suggest an
execution order of skills on the same level (i.e., child skills). The reason is twofold.
First, the information needed for the scheduling may be incomplete at design
time (i.e., concrete hardware and scheduling parameters). Second, the intent of
skill graphs is to abstract away from implementation details, while providing
guarantees about the correctness of defined safety requirements. In Section 4.2,
we illustrate how to assemble the decomposed hybrid programs of a skill graph
to a complete hybrid program, while being safe with respect to our chosen level
of abstraction.

Skill-Based Verification of Cyber-Physical Systems 209

A

B

C

A

D

C

E

A

B

C

E

D◦ =πC→A

Fig. 3: Example of a composition of two skill graphs.

3.3 Composition of Skill Graphs

From the perspective of software engineering practices, an advantage of skill
graphs is their modular nature. Multiple skill graphs can be designed in isolation,
but may also share the same skills. To model and verify more complex skill graphs
and to prevent unnecessary redundancy, the idea is to adequately reuse previously
designed skill graphs and subsequently compose them together. This method
further supports the identification and location of design mistakes, maintenance
of skill graphs in general, and also enables the distribution of modeling tasks in
multi-team software development.

Our composition technique of skill graphs is inspired by superimposition [8],
a simple process that composes two graphs recursively together by merging their
substructures. Starting from the root skill of one of the skill graphs, skills at
the same level fulfilling defined criteria can then be composed to form a new
resulting skill. Starting from a joint root skill of two different skill graphs G1 =
〈S1, r, E1〉 and G2 = 〈S2, r, E2〉, two skills s1 ∈ S1 and s2 ∈ S2 are composed to
a new skill s if:

– both paths, πs1→s′1 and πs2→s′2 , exist and s′1, s
′
2 are already composed,

– s1 and s2 have an equal type and equal sets of defined and required variables,
– and either any of the two hybrid programs is empty or both are identical.

For illustration, Fig. 3 depicts an abstraction of the composition of two skill
graphs. Both skill graphs share the identical skills A and C. First, the root skill
A of both skill graphs is superimposed, and second, skill C is superimposed after
identifying that in both skill graphs there exists a path to a skill already subject to
composition (i.e., A). In the following, we call two skills from different skill graphs
composable if they are subject to the composition as explained here. The resulting
skill s receives all the properties (i.e., variables, type, and hybrid program) from
the composable skills and additionally the union of their safety guarantees:

Definition 5 (Composition of Skills). Let s1 ∈ S1 and s2 ∈ S2 be two
composable skills. The binary composition of s1 and s2 then produces the skill

s1 ⊕ s2 =
〈
s1.Xdef, s1.Xreq, s1.α, s1.τ, s1.Φ ∪ s2.Φ

〉
. (3)

The binary composition of two skill graphs is then formally defined as follows,
where M = {(s1, s2) ∈ S1 × S2 | s1 and s2 are composable} is the set of com-
posable skills and f is a function that maps every skill in (S1 ∪ S2) \ {s1, s2 ∈
S1 ∪ S2 | (s1, s2) ∈ M} to itself and maps all skills s1, s2 with (s1, s2) ∈ M to a
new skill s = s1 ⊕ s2.

210 A. Knüppel et al.

Definition 6 (Composition of Skill Graphs). Let G1 = 〈S1, r1, E1〉 and G2

= 〈S2, r2, E2〉 be two well-formed skill graphs with r2 ∈ S1. The composition of
G1 and G2 then produces the skill graph

G1 ◦G2 = 〈S, f(r1), E〉 (4)

where
– S = {f(s) | s ∈ S1 ∪ S2},
– for every s, s′ ∈ (S1 ∪ S2), there exists an edge (f(s), f(s′)) ∈ E if and only
if there exists an edge (s, s′) ∈ (E1 ∪ E2).

A mathematical convenience of our definition of composition is that it requires
the root skill of one skill graph to be present in the second skill graph. This is
not a severe limitation, as it is always possible to add an artificial root to one
skill graph (or both) with respect to well-formedness.

4 Compositional Verification of Skill Graphs

In this section, we formalize the generation of verification conditions to check
correctness of skills in the context of a skill graph, show how correctness results
transfer to the composition of skill graphs, and discuss how this methodology
can be integrated into the development process for cyber-physical systems.

4.1 Verification Condition Generation

Our verification procedure relies on assume-guarantee reasoning. Thus, to verify
whether a skill s in the context of a skill graph adheres to its safety guarantees
s.Φ, we have to construct two logical conditions: (1) necessary assumptions on
a skill’s behavior denoted by assumes and (2) the overall safety condition in the
context of the skill graph denoted by safes. For instance, assumes for leaf skills
valuates trivially to true, but child skills impose constraints on their parent skills
through their safety guarantees. Both conditions can be computed automatically
based on the skill’s dependencies and by the manually defined safety guarantees
s.Φ. The overall verification condition then becomes assumes → [s.α]safes (cf.
Sec. 2). In the following, we describe how both conditions are constructed.

In the context of a skill graph, a particularity to deal with is that a skill
may require variables introduced in a distant skill (i.e., path length greater than
one), possibly with numerous updates along the path. These variables may be
unknown in direct children, so it is not possible to only define the assumption (i.e.,
assumes) of a skill s as the conjunction of the safety guarantees of all children
(i.e.,

∧
safes′ with s′ ≺ s). In Fig. 4, we illustrate this problem and its solution

on a simple skill graph comprising three skills.
Skill #1 introduces variables A and B including safety guarantees on them

in φ1. Typical for assume-guarantee reasoning, φ1 becomes the assumption for
all parent skills (i.e., Skill #2 in this case). However, the safety guarantee of
Skill #2 (i.e., φ2) states only a modification of variable A and not B, but Skill

Skill-Based Verification of Cyber-Physical Systems 211

Skill #3

Skill #2

Skill #1assume1 ≡ true
safe1 ≡ A ≥ 0 ∧B ≤ 4

︸ ︷︷ ︸

φ1

assume2 ≡ A ≥ 0 ∧B ≤ 4
safe2 ≡ A ≥ 0 ∧A ≤ 4

︸ ︷︷ ︸

φ2

∧B ≤ 4

assume3 ≡ A ≥ 0 ∧A ≤ 4 ∧B ≤ 4
safe3 ≡ C = 7 ∧B ≥ 5

︸ ︷︷ ︸

φ3

∧A ≥ 0∧ ≤ 4

Fig. 4: Computation of assumet and safet.

#3 may indeed need the information of the current domain of variable B to be
verifiable. To keep assume-guarantee propagation intact, we resolve this issue by
additionally encoding all safety guarantees that remain valid for a skill in its
safety guarantee safes (highlighted in blue). In the following, we introduce our
formalization.

The definitions of both formulas, assumes and safes, are mutually recursive.
The logical formula assumes for a skill s results from the conjunction of the
overall safety guarantees safes′ of all children s′ ≺ s. The assumption for skills
with no children valuates trivially to true.

assumes ≡
∧
s′≺s

safes′ (5)

To compute the overall safety guarantee safes, we exploit that assumes exhibits
an overapproximation on the current state of the required variables for a skill s
prior to executing the hybrid program s.α. As the behavior of a skill may change
the initial state, we discard all clauses in assumes sharing a variable with one of
the user provided safety guarantees in s.Φ. The remaining clauses become part
of safes. For instance, in Fig. 4, Skill #3 guarantees a change of variable B in
φ1. Thus, only clauses of assume3 without mentioning B transfer to safe3. For
mathematical convenience, we denote the conjunction of all safety guarantees
of a skill by the logical formula φs ≡ ∧

φ∈s.Φ φ and the set of assumptions of a
skill in a skill graph by the set As = {ψ1, . . . , ψn | assumes ≡ ψ1 ∧ · · · ∧ ψn}.
Furthermore, set var(·) denotes the set of variables of a logical formula. The
overall safety guarantee of a skill is then computed as follows.

safes ≡ φs ∧ (
∧

ψ∈As∧
var(φs)∩var(ψ)=∅

ψ) (6)

We can now define the validity of a skill graph as follows.

Definition 7 (Valid Skill Graph). Let G = 〈S, r, E〉 be a well-formed skill
graph. We say that skill graph G is valid if and only if ∀s ∈ S formula assumes
is satisfiable and formula assumes → [s.α]safes is valid. We denote by s |=G s.Φ
the validity of a skill s in a skill graph G with respect to its safety guarantees
and by |= G the validity of the entire skill graph (i.e., |= G ≡ ∀s ∈ S, s |=G s.Φ).

The upcoming important theorem states that the individual validity of two
skill graphs also transfers to the validity of their composition. However, based on

212 A. Knüppel et al.

Def. 6, composition may also lead to an invalid skill graph if the assumption of
a skill in the new skill graph is not satisfiable (e.g., possible in case of diamond
structures). Therefore, we require satisfiability checks for the computed assump-
tions and define the compatibility between two skill graphs as follows.

Definition 8 (Compatible Skill Graphs). Let G1 and G2 be two well-formed
skill graphs. We say that G1 and G2 are compatible if the following holds.

– G1 ◦G2 is a well-formed skill graph,
– for each skill s in G1 ◦G2, formula assumes is satisfiable.

Theorem 1 (Composition of Skill Graphs Retains Validity). Let G1 and
G2 be two compatible skill graphs and G = G1 ◦G2 their composition. Then, G
is valid if G1 and G2 are valid (i.e., |= G if |= G1 and |= G2).

Proof. Let s1 and s2 be two composed skills and s = s1 ⊕ s2 their composition.
Following Def. 6, the verification condition for s becomes

(assumes1 ∧ assumes2) → [s.α](safes1 ∧ safes2).

Based on the semantics of dL [31], condition Ψ → [α]Φ1 ∧ Ψ → [α]Φ2 ↔ Ψ →
[α](Φ1 ∧Φ2) holds. As the hybrid programs of s1 and s2 are identical (or at least
one of them is empty), the resulting two conditions to check are the following:

(1) (assumes1 ∧ assumes2) → [s1.α](safes1)

(2) (assumes1 ∧ assumes2) → [s2.α](safes2)

Satisfiability of (assumes1 ∧assumes2) follows from Def. 8. Then, validity of both
conditions follow from Def. 7 and, consequently, |= G holds. ��

4.2 Assembling Hybrid Programs in a Skill graph

Skill graphs decompose the system into smaller parts. Likewise, the hybrid pro-
gram that represents the complete behavior is also distributed over the skill graph.
Now that we have defined the structure and behavior of single skills in the context
of a skill graph, we define how we can construct the complete behavior of a skill
as a single monolithic hybrid program. The resulting hybrid program is then a
complete representation of the skill’s behavior while also retaining all safety guar-
antees without the need of re-verifying skills or even entire skill graphs. We start
by giving a definition on how hybrid programs of skills are assembled together.

Definition 9 (Hybrid Program Assembly). Let G = 〈S, r, E〉 be a skill
graph, HP the set of all hybrid programs, and let s ∈ S denote an arbitrary
skill of G. A hybrid program assembly of s is a function ρ : S → HP , which is
recursively defined as follows.

ρ(s) =

{
s.α if s has no children (i.e., ¬∃s′ ∈ S : s′ ≺ s)

(
⋃

s′≺s ρ(s
′)); s.α otherwise

Skill-Based Verification of Cyber-Physical Systems 213

The motivation is that such assemblies are safe to be used in other contexts,
such as code generation for the validation of prototypes or monitor generation.
Assuming a valid skill graph G, the following theorem guarantees that any hybrid
program assembly over skills in G retains the respective safety guarantees.

Theorem 2 (Safety Compliance of Hybrid Program Assemblies). Let
G = 〈S, r, E〉 be a valid skill graph and let s ∈ S denote an arbitrary skill of G.
Then, formula [ρ(s)]safes is valid.

Proof. We proceed by induction on the skills of skill graph G. For the basis
step, we assume that s has no children (i.e., ¬∃s′ ∈ S : s′ ≺ s). Because
[ρ(s)]safes ≡ [s.α]safes and G is a valid skill graph, it follows from Def. 7
that formula [ρ(s)]safes is valid. From now on, we assume that s has children.
Our induction hypothesis is that if for each skill s′ ≺ s program assembly ρ(s′)
satisfies safes′ , then hybrid program assembly ρ(s) satisfies safes:

(IH) (
∧

s′≺s

[ρ(s
′
)]safes′) → [ρ(s)]safes

(1) ↔ (
∧

s′≺s

[ρ(s
′
)]safes′) → [

⋃
s′≺s

ρ(s
′
); s.α]safes

(2) ↔ (
∧

s′≺s

[ρ(s
′
)]safes′) → [

⋃
s′≺s

ρ(s
′
)][s.α]safes

(3) ↔ (
∧

s′≺s

[ρ(s
′
)]safes′) →

∧
s′≺s

[ρ(s
′
)][s.α]safes

(4) ↔ (
∧

s′≺s

safes′) → [s.α]safes

(5) ↔ assumes → [s.α]safes

Transformation step (1) follows from substituting ρ(s) with its definition given
in Def. 9. Steps (2)–(4) are again based on the semantics of dL [31]. Step (2)
follows from the sequential composition axiom [a; b]P ↔ [a][b]P , step (3) from
the nondeterministic choice axiom [a ∪ b]P ↔ [a]P ∧ [b]P , and step (4) from
monotonicity. Because G is a valid skill graph, validity of assumes → [s.α]safes
follows again from Def. 7. Consequently, [ρ(s)]safes is valid. ��

4.3 Integration into the Software Development Process

In Figure 5, we summarize the methodology for modeling and verifying skill
graphs. The main idea is that the safety verification of skill graphs modeled in
isolation transfers to the composition of compatible skill graphs. This (a) eases
the modeling process, as smaller models tend to be less complex and easier to
repair, (b) fosters reusability, which is known to be cost-effective and less error-
prone, and (c) is promising for scaling the verification to large skill graphs.

In particular, the methodology consists of five major parts. In the first
part (1), practitioners define and model skills together with their hybrid pro-
grams and relevant safety guarantees in isolation and subsequently connect them
to form well-formed skill graphs (if possible). In the second part (2), for each

214 A. Knüppel et al.

(1) Identify safety guarantees
and model skill graphs G1, . . . , Gn

(2) For each skill s in G,
identify the pair 〈assumes, safes〉

(3) For each skill s in G, verify validity of
assumes → [s.α]safes to establish |= G

and ∀s, |= ρ(s)safes

(4) To verify that Gj ◦ Gk is valid,
check compatibility of Gj and Gk

(5) Gj ◦ Gk is valid if
Gj and Gk are both valid

(6) Identify and
localize design flaws

Gj and Gk are
incompatible

G is invalid

Re-modeling

Fig. 5: Methodology of modeling and verifying skill graphs.

skill s in a skill graph, the assumption assumes and safety guarantee safes are
computed by evaluating the context of the skill in the skill graph. The third part
(3) uses the identified assumptions and the safety guarantee to validate each skill
in a skill graph individually. If each skill is proven valid (cf. Theorem 1), the com-
plete skill graph is proven valid and can be put into a repository to be reused.
Following Theorem 2, all program assemblies over skills in this skill graph retain
the respective safety guarantees. The fourth part (4) becomes relevant, if two
skill graphs are composed together to represent a more complex task of a cyber-
physical system. In this case, compatibility of the skill graphs is checked and, if
successful, the validity of the composed skill graph is established (5). The final
part (6) is relevant in the presence of unsuccessful proof attempts. If validity of
a skill graph or the composition of multiple skill graphs cannot be established,
practitioners need to identify and fix mistakes in their models. Typically, the
complexity of localizing design mistakes is reduced with our methodology, as it
is explicitly known which exact skills in a skill graph with respect to their safety
guarantees could not be verified.

5 Evaluation and Discussion

We evaluate our skill-based verification approach on a case study to answer the
following two research questions.

RQ-1 How does the skill-based methodology compare to monolithic modeling and
verification?

RQ-2 To what extent can skill-based compositional verification reduce the veri-
fication effort?

5.1 Open-Source Implementation

We implemented skill-based verification in a tool with the name Skeditor.
The implementation is written in Java as an Eclipse plug-in based on Graphiti [13],

Skill-Based Verification of Cyber-Physical Systems 215

root:

Follow mode

s1:
Keep distance

to leading

vehicle

s2:
Select target

object

s3:
Perceive

movable

objects

s4:
Radar

s5:
Camera

s6:
Control

longitudinal

dynamics

s11:
Estimate

motion

s12:
Intertial

sensors

s7:
Decelerate

s8:
Brake system

s10:
Powertrain

s9:
Accelerate

s13:
Follow hard

shoulder

s14:
Control

lateral

dynamics
s15:

Estimate

angle &

distance

to marking

s16:
Perceive

hard shoulder

marking

s17:
Yaw

s18:
Steering

system

Obs. Obs.

Plan.

Plan.

Perc.

Perc.

Perc.

Action

Action Action

Action

Action

Sensor Sensor

Sensor

Actua. Actua.
Actua.

Fig. 6: Complete skill graph expressing an automated vehicle follow mode.

a framework for developing diagram editors in the context of model-driven devel-
opment. The prototype allows practitioners to model and annotate well-formed
skill graphs with safety guarantees as described in Section 3.

Thereupon, we implemented our compositional verification approach as de-
scribed in Section 4. Skeditor allows to synthesize hybrid programs of spe-
cific skills with respect to their dependencies in the skill graph. Compliance
checks of the provided safety guarantees are performed by employing the deduc-
tive theorem prover KeYmaera X [14] in version 4.7.3. Skeditor and all
experimental results can be found online.3 We use the Skeditor to answer
research questions RQ-1 and RQ-2.

5.2 Case Study: Vehicle Follow Mode

To illustrate the practicality of our approach, we model and verify the vehicle fol-
low mode of an automated protective vehicle as adopted from Nolte et al. [26] and
depicted in Figure 6. The aim of was to develop an unmanned protective vehicle
which is able to drive on the hard shoulder autonomously (i.e., without any hu-
man interaction). On the lowest level, the skill graph consists of three sensors (i.e.,
Radar , Camera , and Inertial sensor) to perceive information from the envi-
ronment. Additionally, three actuators (i.e., Brake system , Powertrain , and
Steering system) represent concrete technical aspects. These skills propagate in-
formation about typical properties of a concrete model of a vehicle (e.g., the max-
imal deceleration). As highlighted with two shades of gray, this skill graph is divid-
able into two separate skill graphs, which we refer to as G1 and G2. G1 has Keep
distance to leading vehicle as the root skill, which is responsible for ensuring
a minimum distance to a leading vehicle. G2 has Follow hard shoulder as root
skill, which is responsible for ensuring the vehicle’s position inside the lane mark-
ings on a road. Skills shared by both skill graphs are highlighted with both shades.

3 https://github.com/TUBS-ISF/Skeditor

216 A. Knüppel et al.

Skill Requirement

Follow hard shoulder Vehicle deviates from the center of the lane by at most
half the lane width

Control lateral dynamics Lateral controller must guarantee overshoot of less than
25 cm

Yaw Vehicle yaw rate must not exceed 0.3 rad s−1

Control longitudinal dynamics Vehicle speed must not exceed 2.7m s−1

Accelerate Acceleration must not exceed 4m s−2

Decelerate Vehicle must at least provide a deceleration of 5m s−2

Keep distance to leading vehicle Vehicle must keep a minimum distance of 10m to leading
vehicle

Select target object Object recognition must always select an object of lateral
position of x > 10m

Perceive movable objects Object recognition must track vehicles of relative speeds
between 0 and 60m s−1

Estimate angle and distance to marking Angle to lanemarking must be extracted with maximum
error of ±0.5 degrees and distance to lanemarking must
be extracted with maximum error of ±3 cm

Perceive hard shoulder Image processing must extract right edge of shoulder
marking with a maximum error of 20 cm

Estimate motion Vehicle velocity must be estimated with a maximal error
of ±0.03m s−1

Table 2: Specified safety requirements for the vehicle follow mode as adopted
from Nolte et al. [26].

The overall procedure Follow mode (i.e., the composition G1 ◦G2) requires
a combination of autonomously following a leading vehicle (i.e., skill s1) and
following the lane marking (i.e., skill s13). The informal safety guarantees for the
skill graph of our case study are adopted from Nolte et al. [26] and illustrated in
Table 2. Requirements are typically given informally, which is why we translated
them to their formal counterpart. For our case study, we focus on four particular
skills, as these are the only non-trivial skills in our case study that comprise both,
the vehicle’s dynamics and a control algorithm. Namely, these skills are Control
longitudinal dynamics (s6), Control lateral dynamics (s14), Follow hard
shoulder (s13), and Keep distance to leading vehicle (s1).

Example 2 Consider skill Control longitudinal dynamics (s6) in the con-
text of the overall skill graph. Skill s6 comprises the dynamic system for the lon-
gitudinal motion of the vehicle while depending on skills Accelerate and Decel-
erate as well as the perception skill Estimate motion. The control algorithm
of this skill as part of the hybrid program complies with the safety requirements
as given in Table 2 (e.g., velocity (vs) must not exceed 2.7m s−1). Preconditions
for this skill are propagated from skills Estimate motion, Accelerate, and
Decelerate, and guarantee that the vehicle provides a maximal deceleration of
5m s−2 (B) and a maximal acceleration of 4m s−2 (A). Table 3 summarizes all
attributes of skill s6.

Skill-Based Verification of Cyber-Physical Systems 217

Xdef = {x, v, vmax}
Xreq = {a,A,B, ep, t}

α ::=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

init → [(ctrl; dyn)∗](guar)
init ≡ v ≥ 0 ∧ v ≤ vmax ∧ A > 0 ∧ A ≤ 4 ∧ B ≥ 5 ∧ vmax = 2.7

ctrl ≡ (?vmax − v ≤ margin); a = ∗;−B ≤ a ≤ 0;

∪?vmax − v ≥ margin); a = ∗;−B ≤ a ≤ A;)

margin ≡ ep ∗ A

dyn ≡ t := 0; x
′
= v, v

′
= a, t

′
= 1&v ≥ 0 ∧ t ≤ ep

guar ≡ v ≤ vmax

τ = action

Φ = {vs ≤ vmax (2.7m s−1)}

Table 3: Attributes for skill Control longitudinal dynamics (s6).

5.3 Results

All measurements were conducted on an Intel i7-6600U CPU @ 2.60GHz with
12 GB RAM and Z3 [12] in version 4.6.0 was used as the underlying solver for
KeYmaera X in version 4.7.3.

RQ-1: How does the skill-based methodology compare to monolithic
modeling and verification? We modeled the overall behavior of G1 ◦G2 as a
monolithic model (i.e., following the hard shoulder and following a leading vehicle
in concert) as described in Section 4.2. As mentioned before, the skill-based
approach has a high reuse potential. Each skill needs to be verified only once,
and the verification results can be reused in other skill graphs (cf. Theorem 1).
While in case of a change of parameters or an update of control algorithms
the monolithic model has to be re-modeled and re-verified completely, a change
impact analysis identifying only affected skills may reduce the re-verification
effort even further for the compositional approach. Importantly, skill s13 and
the monolithic model could only be verified interactively, whereas skills s1, s14,
and s6 were verified fully automatically with the automatic proof search of
KeYmaera X. Chances of an automatic re-verification are thus higher with
the skill-based methodology.

An important hypothesis of ours is that skill-based verification is more ef-
fective in discovering modeling defects compared to a monolithic model. To get
some insights into this hypothesis, we developed three initial experiments to ren-
der the verification attempt invalid. We (1) changed the safety guarantee of skills,
(2) changed the control algorithm of skills, and (3) did a combination of both
and compared these results to the same changes performed in the monolithic
model. Following our methodology helped to trace and resolve defects effectively
with respect to this case study, whereas identifying multiple modeling defects
in the monolithic model became quickly intractable. During the resolution of
Scenario 3, re-verification had to be performed several times for the monolithic
model (i.e., resolving one conflict at a time), which emphasizes the advantage of
our compositional approach over the monolithic modeling. However, we do not
want to overclaim the importance of our insights, as more complex experiments

218 A. Knüppel et al.

Verified Skill Proof steps

s1 s6 s13 s14 s1 s6 s13 s14 Σ Σreuse

G1 4,746 3,769 8,515 8,515

G2 3,769 16,924 7,223 27,916 24,147

G1 ◦ G2 4,746 3,769 16,924 7,223 32,662 0*

Σtotal 69,093 32,662

*No re-verification of skills with Theorem 1

Table 4: Comparison of the verification effort for skill-based compositional veri-
fication.

and a larger evaluation have to be conducted to adequately test whether our hy-
pothesis is significant.

RQ-2: To what extent can skill-based compositional verification reduce
the verification effort? To answer RQ-2, we measured the verification effort
in proof steps for each of the three skills mentioned before per skill graph. In
Table 4, we summarize the results. Column Verified Skill describes which skill is
part of which skill graph and column Proof steps compares the number of proof
steps needed for each skill individually. A common scenario is to model and
verify each maneuver individually (i.e., each skill graph). The total verification
effort Σtotal would then cumulate to 69,093 proof steps. Instead, our skill-based
approach allows to reuse verification results for skill s6 in skill graph G2 and per
Theorem 1 even the verification results for all skills in skill graph G1◦G2. Entries
highlighted in gray indicate that the respective skill could be reused instead of
re-verification. The compositional approach needs approximately 53% less proof
steps in our case study.

6 Related Work

Skill Graphs. Maurer [23] pioneered the concept of skills by introducing so-
called abilities in vehicle guidance systems. Abilities are similar to skills, as they
concisely describe the capabilites of a vehicle, and are intended to be perma-
nently monitored at run-time to enforce safety mechanics. Reschka et al. [32,33]
introduced skill graphs informally in their work giving definitions for skills and
abilities in relation to autonomous vehicles. Nolte et al. [26] built upon this ap-
proach by employing the informal concept of skill graphs for the development of
self-aware automated road vehicles. We adopted their case study to evaluate our
skill-based verification approach.

Hybrid Systems and Verification of Cyber-Physical Systems. Hybrid
systems [3] are a generalization of timed automata [4] and well-suited for mod-
eling and verifying cyber-physical systems. Krishna et al. [20] show that using
hybrid automata to model and verify cyber-physical systems is, in principle, fea-
sible. Typically, hybrid systems are verified employing reachability analyses and

Skill-Based Verification of Cyber-Physical Systems 219

model checking [2, 21, 22, 35]. However, these technqiues are not compositional
in general (i.e., modular verification of individual parts to establish correctness
of the entire systems is not possible). It is also not intended to generate and
reuse proofs to increase trust in the system’s correctness, as, for instance, possi-
ble with theorem proving. To address this issue, we built our methodology upon
the notion of hybrid programs [30] and the theorem prover KeYmaera X [14],
which helped us to also satisfy the important property of compositionality in the
modeling and formal verification of hybrid systems. We further extend this con-
cept with skill graphs by modularizing the verification of complex driving tasks,
such that the verification of the entire behavior is reduced to simpler sub-tasks
and compatibility checks.

Finally, there exists a seamless connection to the work conducted by Müller
et al. [24], who present a compositional component-based approach for the ver-
ification of hybrid systems based on hybrid programs. Skill graphs provide an
abstract and organized view of the system and are applied (1) in the verifica-
tion and validation phase of the requirements analysis and (2) the early stages
of the design phase. Subsequently, a skill may be implemented by a set of mul-
tiple interacting components to take more necessary specifics into account, such
as communication protocols and resource consumption. To conclude, the process
of refining skill graphs including their safety requirements to formally specified
component-based systems exhibits a high level of quality assurance at the level
of both, requirement engineers and software architects.

7 Conclusion and Future Work

In this work, we proposed skill-based verification of cyber-physical systems with
the notion of skill graphs that (1) encourages the modular development of small
and reusable actions in isolation, and (2) enables the identification of poorly
defined requirements in early software development processes by considering
formal verification of hybrid systems. We provide the first formalization of skill
graphs, showed how skill graphs and hybrid programs can be combined, and also
introduced a proved notion of compositionality for skills. The investigated case
study on a vehicle follow mode showcases that the compositionality property of
skill graphs is important for scaling, as the verification effort is reduced by more
than 53%. Compositionality is particularly important for model and software
evolution, as costly re-verification of a skill’s requirement can be minimized.

For the future, we want to enable the composition of skills with dissimilar
hybrid programs, for which the theoretical groundwork partially exists. Moreover,
our current focus is on the integration of skill graphs into software engineering
practices for cyber-physical systems to amplify the utilization of formal methods
from the start of new software projects.

Acknowledgements. We are grateful to Enis Belli and Arne Windeler for
their help with the implementation of Skeditor. This work was supported by
the DFG (German Research Foundation) under the Researcher Unit FOR1800:
Controlling Concurrent Change (CCC).

220 A. Knüppel et al.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.: De-
ductive Software Verification–The KeY Book: From Theory to Practice. Springer
(2016)

2. Alur, R.: Formal Verification of Hybrid Systems. In: Embedded Software (EM-
SOFT), 2011 Proceedings of the International Conference on. pp. 273–278. IEEE
(2011)

3. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid Automata: An
Algorithmic Approach to the Specification and Verification of Hybrid Systems. In:
Hybrid systems, pp. 209–229. Springer (1993)

4. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical computer science
126(2), 183–235 (1994)

5. Alur, R., Henzinger, T.A., Sontag, E.D.: Hybrid Systems III: Verification and
Control, vol. 3. Springer Science & Business Media (1996)

6. Baheti, R., Gill, H.: Cyber-physical Systems. The impact of control technology
12(1), 161–166 (2011)

7. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.:
Specification and Verification: The Spec# Experience. Communications of the
ACM 54, 81–91 (Jun 2011)

8. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE
Transactions on Software Engineering (TSE) 30(6), 355–371 (2004)

9. Broy, M.: Yesterday, Today, and Tomorrow: 50 Years of Software Engineering. IEEE
Software 35(5), 38–43 (2018)

10. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J., Leavens, G.T., Leino,
K.R.M., Poll, E.: An Overview of JML Tools and Applications 7(3), 212–232 (Jun
2005)

11. Cuijpers, P.J.L., Reniers, M.A.: Hybrid Process Algebra. The Journal of Logic and
Algebraic Programming 62(2), 191–245 (2005)

12. De Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Proceedings of the
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems. pp. 337–340. Springer (2008)

13. Foundation, T.E.: Graphiti - a Graphical Tooling Infrastructure, [Available at
https://www.eclipse.org/graphiti/; accessed 22-January-2018

14. Fulton, N., Mitsch, S., Quesel, J.D., Völp, M., Platzer, A.: KeYmaera X: An Ax-
iomatic Tactical Theorem Prover for Hybrid Systems. In: International Conference
on Automated Deduction. pp. 527–538. Springer (2015)

15. Garcia, A., Sant’Anna, C., Chavez, C., da Silva, V.T., de Lucena, C.J., von Staa,
A.: Separation of Concerns in Multi-agent Systems: An Empirical Study. In: Inter-
national Workshop on Software Engineering for Large-Scale Multi-agent Systems.
pp. 49–72. Springer (2003)

16. Gleirscher, M., Foster, S., Woodcock, J.: Opportunities for Integrated Formal Meth-
ods. CoRR abs/1812.10103 (2018), http://arxiv.org/abs/1812.10103

17. Gleirscher, M., Marmsoler, D.: Formal Methods: Oversold? Underused? A Survey.
arXiv preprint arXiv:1812.08815 (2018)

18. Hatcliff, J., Leavens, G.T., Leino, K.R.M., Müller, P., Parkinson, M.: Behavioral
Interface Specification Languages 44(3), 16:1–16:58 (Jun 2012)

19. Henzinger, T.A.: The Theory of Hybrid Automata. In: Verification of Digital and
Hybrid Systems, pp. 265–292. Springer (2000)

Skill-Based Verification of Cyber-Physical Systems 221

20. Krishna, S.N., Trivedi, A.: Hybrid Automata for Formal Modeling and Verification
of Cyber-Physical Systems (Mar 2015)

21. Lunze, J., Lamnabhi-Lagarrigue, F.: Handbook of Hybrid Systems Control: Theory,
Tools, Applications. Cambridge University Press (2009)

22. Maler, O.: Algorithmic Verification of Continuous and Hybrid Systems. arXiv
preprint arXiv:1403.0952 (2014)

23. Maurer, M.: Flexible Automatisierung von Straßenfahrzeugen mit Rechnersehen
(2000)

24. Müller, A., Mitsch, S., Retschitzegger, W., Schwinger, W., Platzer, A.: Tactical
Contract Composition for Hybrid System Component Verification. International
Journal on Software Tools for Technology Transfer 20(6), 615–643 (2018)

25. Nerode, A., Kohn, W.: Models for Hybrid Systems: Automata, Topologies, Con-
trollability, Observability. In: Hybrid systems, pp. 317–356. Springer (1993)

26. Nolte, M., Bagschik, G., Jatzkowski, I., Stolte, T., Reschka, A., Maurer, M.: To-
wards a Skill-and Ability-based Development Process for Self-aware Automated
Road Vehicles. In: Intelligent Transportation Systems (ITSC), 2017 IEEE 20th In-
ternational Conference on. pp. 1–6. IEEE (2017)

27. Parnas, D.L.: On the Criteria to be used in Decomposing Systems into
Modules. Communications of the ACM 15(12), 1053–1058 (Dec 1972).
https://doi.org/10.1145/361598.361623

28. Platzer, A.: Differential Dynamic Logic for Hybrid Systems. Journal of Automated
Reasoning 41(2), 143–189 (2008)

29. Platzer, A.: Logics of Dynamical Systems. In: Proceedings of the 2012 27th Annual
IEEE/ACM Symposium on Logic in Computer Science. pp. 13–24. IEEE Computer
Society (2012)

30. Platzer, A.: The Complete Proof Theory of Hybrid Systems. In: Proceedings of
the 2012 27th Annual IEEE/ACM Symposium on Logic in Computer Science. pp.
541–550. IEEE Computer Society (2012)

31. Platzer, A.: A Complete Uniform Substitution Calculus for Differential Dynamic
Logic. Journal of Automated Reasoning 59(2), 219–265 (2017)

32. Reschka, A.: Fertigkeiten- und Fähigkeitengraphen als Grundlage des sicheren Be-
triebs von automatisierten Fahrzeugen im öffentlichen Straßenverkehr in städtischer
Umgebung. Ph.D. thesis (Jul 2017)

33. Reschka, A., Bagschik, G., Ulbrich, S., Nolte, M., Maurer, M.: Ability and Skill
Graphs for System Modeling, Online Monitoring, and Decision Support for Vehicle
Guidance Systems. In: Intelligent Vehicles Symposium (IV), 2015 IEEE. pp. 933–
939. IEEE (2015)

34. Schumann, J.M.: Automated Theorem Proving in Software Engineering. Springer
Science & Business Media (2001)

35. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach.
Springer Science & Business Media (2009)

36. Tarr, P., Ossher, H., Harrison, W., Sutton, Jr., S.M.: N Degrees of Separation:
Multi-Dimensional Separation of Concerns. In: Proceedings of the International
Conference on Software Engineering (ICSE). pp. 107–119. ACM (1999)

37. Ulbrich, S., Reschka, A., Rieken, J., Ernst, S., Bagschik, G., Dierkes, F., Nolte, M.,
Maurer, M.: Towards a Functional System Architecture for Automated Vehicles.
arXiv preprint arXiv:1703.08557 (2017)

222 A. Knüppel et al.

which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

Skill-Based Verification of Cyber-Physical Systems 223

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

Generating Large EMF Models Efficiently

A Rule-Based, Configurable Approach�

Nebras Nassar1(�) , Jens Kosiol1 , Timo Kehrer2 , and Gabriele Taentzer1

1 Philipps-Universität Marburg, Marburg, Germany
{nassarn,kosiolje,taentzer}@informatik.uni-marburg.de

2 Humboldt-Universität zu Berlin, Berlin, Germany
timo.kehrer@informatik.hu-berlin.de

Abstract. There is a growing need for the automated generation of in-
stance models to evaluate model-driven engineering techniques. Depend-
ing on a chosen application scenario, a model generator has to fulfill
different requirements: As a modeling language is usually defined by a
meta-model, all generated models are expected to conform to their meta-
models. For performance tests of model-driven engineering techniques,
the efficient generation of large models should be supported. When gen-
erating several models, the resulting set of models should show some
diversity. Interactive model generation may help in producing relevant
models. In this paper, we present a rule-based, configurable approach
to automate model generation which addresses the stated requirements.
Our model generator produces valid instance models of meta-models with
multiplicities conforming to the Eclipse Modeling Framework (EMF). An
evaluation of the model generator shows that large EMF models (with up
to half a million elements) can be produced. Since the model generation
is rule-based, it can be configured beforehand or during the generation
process to produce sets of models that are diverse to a certain extent.

Keywords: Model generation · Model transformation · Eclipse Model-
ing Framework (EMF)

1 Introduction

The need for the automated generation of instance models grows with the steady
increase of domains and topics to which model-driven engineering (MDE) is
applied. In particular, there is a growing need for large instances of a given
meta-model [14,26]. As most of the available MDE tools are based on the Eclipse
Modeling Framework (EMF) [34], instances should be conformant to EMF.

Depending on the chosen application scenario, a model generator has to ful-
fill different requirements: As a modeling language is usually defined by a meta-
model, all generated models are expected to conform to their meta-models. For

� This work was partially funded by the German Research Foundation (DFG), projects
Generating Development Environments for Modeling Languages (TA294/13-2) and
Triple Graph Grammars (TGG) 2.0 (TA294/17-1).

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 224–244, 2020.
https://doi.org/10.1007/978-3-030-45234-6_11

http://orcid.org/0000-0002-0838-6513
http://orcid.org/0000-0003-4733-2777
http://orcid.org/0000-0002-2582-5557
http://orcid.org/0000-0002-3975-5238
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_11&domain=pdf

performance tests of model-driven engineering techniques, the efficient genera-
tion of large models should be supported. When several models are generated,
they should show some diversity. Interactive model generation may help in pro-
ducing relevant models. While there are several tools and approaches to instance
model generation in the literature, e.g. [15,16,30,32,36], we are not aware of any
tool satisfying all the requirements stated above. Two extreme approaches are
the following: The approach in [16] is very fast but does not address any mod-
eling framework and provides very few guarantees concerning the properties of
the generated output models. As EMF has developed to the de-facto standard
for modeling in MDE, respecting the EMF constraints is crucial to guarantee
the usability of the resulting models in practice for processing them by other
tools, e.g., for opening them in standard editors. On the contrary, solver-based
approaches such as [15,32,36] provide high guarantees by generating instance
models that even conform to additional well-formedness constraints (expressed
in, e.g., OCL [20]), but they suffer from severe scalability issues.

We suggest finding a good trade-off between having a scalable generation
process for models and generating well-formed models. In this paper, we pro-
pose a rule-based approach to the generation of models which has the following
distinguishing features: (i) To guarantee interchangeability, generated models
conform to the standards of EMF. In particular, this means that the contain-
ment structure of a generated model forms a tree. (ii) Generated models exhibit
a basic consistency in the sense that they conform to the structure and the mul-
tiplicities specified by the meta-model. (iii) The generation of models can be
configured to obtain models that are diverse to a certain extent. (iv) The im-
plementation is efficient in the sense that instance models with several hundred
thousand elements can be generated. (v) The approach is meta-model agnostic
and customizable to a given domain-specific modeling language (DSML) in a
fully automated way. (vi) It is possible to generate models in a batch mode or
interactively to somewhat guide the generation process towards relevant mod-
els. User interaction includes the setting of seed models as well as interactively
choosing between alternative generation strategies.

Our rule-based approach to model generation consists of two main tasks:
(1) The meta-model of a given modeling language is translated into a rule-
based model transformation system (MTS) containing rules for model genera-
tion. (2) These rules are consecutively applied to generate instance models. This
generation process may be further configured by the user. Especially, a poten-
tially inconsistent model may be used as a seed for generating valid models.

Our approach is implemented in two Eclipse plug-ins: A meta-tool, called
Meta2GR, automatically derives the MTS from a given meta-model. A second
plug-in, called EMF Model Generator, is automatically configured with the re-
sulting MTS. A modeler uses the configured model generator, which takes ad-
ditional user specifications and an optional seed EMF model as inputs and gen-
erates a valid EMF model. We argue for the soundness of our approach and
evaluate its scalability by generating large, valid EMF models (up to half a mil-

Generating Large EMF Models 225

lion elements). Furthermore, we show how to generate a set of models that are
diverse to some extent.

2 Related Work

In our discussion of related work, we focus on generic approaches and discern
between solver-based, tableaux-based and rule-based generic approaches. We omit
language- and application-specific approaches (like, e.g. [7,10]).

2.1 Solver-Based Approaches

Solver-based approaches generate models by (i) translating a meta-model into
a logical formula, (ii) using an off-the-shelf solver to find possible solutions,
and (iii) translating back the found solutions into instances of the meta-model.
In most cases, solver-based approaches are capable of generating models that
respect well-formedness constraints such as OCL constraints since these can be
translated into the logical formula as well. The approaches presented in [15,32,36]
use Alloy [12] for this purpose. Although we do not see any general limitation for
them to be applied to arbitrary meta-models, the translations to Alloy presented
in [15,36] target dedicated domain-specific languages. The language-independent
translation presented by Sen et al. [32] is not fully automated. Performed evalua-
tions show that the scalability of using an off-the-shelf solver is limited to pretty
small models.

2.2 A Tableaux-Based Approach

Schneider et al. [27] present an automated approach for the generation of sym-
bolic attributed typed graphs fulfilling a given set of first-order constraints. The
approach is based on a tableaux calculus for graph constraints. It produces min-
imal symbolic models encoding (infinitely) many instances that fulfill the set of
constraints. While this is highly desirable to get an overview of possible instance
structures, retrieving large graphs from symbolic instances is not directly sup-
ported. Moreover, the work does not aim at EMF; it is also not possible to add
the EMF constraints as not all of them are first-order. The authors extend their
work in [28] to be able to also repair given instances. This model repair can be
used to support the generation of instances from a given seed model. The applied
repair strategy does not incorporate any deletions of model elements.

2.3 Rule-Based Approaches

Ehrig et al. [9] present an approach for converting type graphs with restricted
multiplicity constraints into instance-generating graph grammars. Taentzer gen-
eralizes that approach in [37] to arbitrary multiplicity constraints. Both ap-
proaches are presented for typed graphs, which means that containment edge

226 N. Nassar et al.

types and other EMF constraints are not considered. Moreover, there is no im-
plementation of these approaches.

Radke et al. [24] present a translation of OCL constraints to graph constraints
which can be integrated as application conditions into a given set of transforma-
tion rules [17]. The resulting rules guarantee validity w.r.t. these constraints but
might be rendered inapplicable. The work is motivated by instance generation;
however, no dedicated algorithm is presented.

Another grammar-based approach is presented by Mougenot et al. [16]. By
reducing models to their containment structure, a tree grammar is derived from
that meta-model projection. For a given size (representing the number of nodes),
the method is capable of uniformly generating all tree structures of that size.
Similarly, the tool EMF random instantiator [11] considers containment edges
only. While both approaches are highly efficient, reducing models to their con-
tainment structure is a severe oversimplification in practice.

The frameworks RandomEMF presented by Scheidgen [26] and EMG pre-
sented by Popoola et al. [23] aid users to manually specify a generator that
automatically generates models. These frameworks do not offer any help, how-
ever, to ensure that the generated models conform to the meta-model and that
the generated models satisfy the required constraints.

The SiDiff model generator (SMG) has been proposed by Pietsch et al. [22].
It takes an existing model as input and manipulates it by applying model editing
operations, configured by a stochastic controller. On the meta-level, the SMG was
integrated into the approach and tool presented by Kehrer et al. [13,25], which
generates a complete set of consistency-preserving edit operations for a given
meta-model. It supports meta-models with somewhat restricted multiplicities,
however. Generated edit operations can be applied to valid models only. Its
stochastic controller has been designed to generate sequences of models that
mimic realistic model histories [38]. The generated models are, on purpose, very
similar to each other, i.e. they lack diversity.

2.4 A Hybrid Approach

A hybrid approach is implemented within the VIATRA Solver [29,30]: Rules
are used to generate an instance model from scratch or a seed model. A solver
is used to guarantee validity concerning additional well-formedness constraints.
During the generation process, a partial model is extended using rules. This
partial model is continuously evaluated w.r.t. the validity of these constraints
using a 3-valued logic [31]. By under-approximation, the search space is pruned
as soon as the partial model cannot be refined into a valid model. The evaluation
of constraints is performed with a specifically developed solver or an off-the-shelf
one. All resulting instance models fulfill the additional constraints and conform
to EMF. Moreover, the VIATRA Solver has been investigated successfully for
generating diverse and realistic models. While experimental results indicate that
the approach is 1–2 orders of magnitude better than existing approaches using
Alloy, the authors also mention that the scalability of their approach is not yet
sufficient [30,29].

Generating Large EMF Models 227

Table 1. Summary of selected generic approaches to model generation w.r.t. important
characteristics we aim at in this paper.

Input Output Algorithm

Category Approach impl. ex. seed EMF wf config. interact. scal.

Solver Sen et al. [32] + − ◦ +++ − − −
Tableaux Schneider et al. [27,28] + ◦ − +++ − − ?

Rule-based Taentzer [37] − − − ++ ◦ + ?
Mougenot et al. [16] ◦ − ◦ + ◦ − +
Pietsch et al. [22] + ◦ + + + + ◦

Hybrid Semeráth et al. [30] + ◦ + +++ + − ◦
Rule-based Our approach + + + ++ + + +

2.5 Need for Further Research

We summarize the related work through selected approaches from all categories
in Table 1 w.r.t. important characteristics. First, we indicate whether the ap-
proach is implemented in a tool (column 1). Second, we are interested in ma-
nipulating an existing seed model (column 2), e.g., for the sake of generating
model evolution scenarios. Here, ◦ indicates that only special kinds of seeds are
possible. Third, concerning the consistency level of generated output models, we
are interested in the conformance with EMF (column 3) and additional well-
formedness constraints, including multiplicities (column 4). Here, + indicates
partly and ++ full support of multiplicity constraints, whereas + + + means
support of more general well-formedness constraints. Fourth, we are interested
in the properties of the generation algorithm itself, which should be configurable
(column 5), offer interaction possibilities (column 6), and be scalable (column 7)
in order to support the generation of diverse and large instances, respectively.

None of the generic approaches to model generation fully meets all criteria.
Given a meta-model with multiplicities as the only well-formedness constraints,
we are heading towards a model generator that supports all quality attributes.

3 Running Example and Preliminaries

This section presents our running example and preliminaries. After introducing
the running example, we recall the Eclipse Modeling Framework (EMF), rule-
based model transformation and a rule-based approach to model repair that we
utilize for our approach to instance generation.

3.1 Running Example

As running example we use an excerpt of the GraphML meta-model [3] as shown
in Fig. 1. GraphML [6] is a file format for different kinds of graphs; it separates

228 N. Nassar et al.

Fig. 1. Excerpt of the GraphML meta-model

the graph structure from additional data. We use this example to illustrate how
our rule-based approach generates instances from a given meta-model.

3.2 The Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) [34] has evolved into a de-facto stan-
dard technology for defining models and modeling languages. In EMF, meta-
models are defined using Ecore, an implementation of the OMG’s EMOF stan-
dard [21]. Meta-models in Ecore prescribe the structures that instance models of
the modeled domain should exhibit. Concepts known from UML class diagrams
are used, namely the classification of objects and their attributes, references to
objects, and constraints on object structures. References may be opposite to each
other and constrained by multiplicities. A specific kind of references are contain-
ments. The conformance of an instance model to a meta-model can formally be
expressed using typed attributed graphs with inheritance [4]. EMF models have
to fulfill the following constraints:

– At-most-one-container: Each object must not have more than one container.
– No-containment-cycles: Cycles of containments must not occur.
– No-parallel-edges: There are no two references of the same type from the same

source to the same target object.
– All-opposite-edges: If reference types t1 and t2 are opposite to each other: For

each reference of type t1, there has to be a reference of type t2 linking the
same objects in the opposite direction.

– Rootedness (optional): There is an object, called root object, that contains all
other objects of a model directly or transitively.

In the sequel, we use the terms EMF model and instance model interchangeably.
Each model conforming to its meta-model and fulfilling the EMF constraints
listed above is called EMF model. If the meta-model’s multiplicities are fulfilled

Generating Large EMF Models 229

in addition, the model is called valid. Since we use a graph-based approach to
model transformation in the following, objects are often also called nodes and
object references are called edges.

3.3 Transformation Rules and Transformation Units

Our model generation approach is based on the application of transformation
rules to EMF models as implemented in the Eclipse plug-in Henshin [1,35]. This
approach is formally underpinned by typed attributed graph transformation as
presented in [4].

A (non-deleting) transformation rule consists of two model patterns, namely
a left-hand side L and a right-hand side R where L is a sub-pattern of R; we
denote such a rule by L ⇒ R. All elements in R \L shall be created. A rule can
be equipped with negative application conditions (NACs) [8]. Each NAC N is an
additional pattern that includes L. All elements in N \L are forbidden to exist.
An application of a transformation rule to a model M amounts to finding the
pattern L in M and, if such a match is found, creating a copy of R \L there. A
rule is applicable at a match only if this match cannot be extended to a match
for any of the NACs.

In Henshin, rules are specified in an integrated form where elements are an-
notated and colored according to their roles. While a created element is depicted
in green, a forbidden element is shown in blue. Besides, it may be equipped with
the name of the NAC it belongs to for distinguishing several NACs. For example,
the rule insert additionalEdge targetport in Fig. 7 matches nodes of types Edge

and Port and inserts an edge of type targetport between them but only if such
an edge does not already exist and the selected Edge does not already refer to
another Port.

To construct more complex transformations in Henshin, rules may be com-
posed in (transformation) units. Units may have parameters that can be passed
to contained units or rules. A ‘?’ indicates that the parameter may be randomly
chosen. We sketch the semantics of those units which we use in the following.
Note that each rule is already considered as a unit.

– An independent unit comprises an arbitrary number of sub-units that are
checked for applicability in a non-deterministic order. One applicable unit is
executed.

– A loop unit comprises one sub-unit and executes it as often as possible.
– A conditional unit comprises either two or three sub-units specifying the if-unit,

the then-unit, and optionally, the else-unit. If the if-unit is executed successfully,
the then-unit is executed. Otherwise, if defined, the else-unit is executed.

– A sequential unit comprises an arbitrary number of sub-units that are executed
in the given order. If a sub-unit is not applicable, it is skipped and the
execution continues with the next sub-unit.

– A priority unit comprises an arbitrary number of sub-units that are checked
for applicability in the defined order. If a sub-unit is executed successfully,
the check and execution of the following sub-units are skipped.

230 N. Nassar et al.

3.4 EMF Repair

Our generation process of instance models uses the repair process for EMF in-
stance models presented in [19]. The basic approach is to derive repair rules from
a given meta-model. The derived rules allow to first trim the model such that
no upper bound is violated any longer. Subsequently, it completes the model by
adding nodes and edges until no lower bound is violated. The rules are designed
such that, during the completion phase, no upper bound violation is introduced
and that both phases terminate only if no violation of multiplicities occurs any
longer. We formally proved these properties in [18]. While this process does not
necessarily terminate, its termination has been proven for instance models of
fully finitely instantiable meta-models. A meta-model is called fully finitely in-
stantiable (f.f.i.) if, for every given finite EMF-model M that instantiates it and
respects upper bounds but may violate lower bounds, there exists a finite and
valid EMF-model M ′ such that M is a submodel of M ′.

4 Rule-Based Instance Generation

We start this section with an overview of our approach to the generation of
valid EMF models. Thereafter, we present the kinds of generation rules that
are derived from a given meta-model, introduce four parametrization strategies
for generation processes, and show possibilities of user-interaction. Finally, we
discuss the limitations of our generation approach and the formal guarantees
that have been shown.

4.1 Overall Approach

Our overall approach to instance generation is depicted in Fig. 2. The funda-
mental idea behind our approach is to base model generation as far as possible
on rule-based model repair using the tool EMF Repair [19]. All rules needed
to perform model generation steps are automatically derived from the given
meta-model by the meta-tool Meta2GR. If a non-empty seed model is given,
the model generation process starts with checking it for upper bound violations
and potentially trimming it using EMF Repair (model trimming). Thereafter,
the EMF model is extended with object nodes and references without violating
upper bounds using the rules derived by Meta2GR (model increase). The result-
ing model shall meet user specifications w.r.t. its size which will be discussed in
more detail in Sect. 4.3 below. In the next step, the EMF model is completed to
a valid EMF model, again using EMF Repair (model completion). As this repair
process adds elements only, the user specifications are still met by the resulting
model. Moreover, the result is guaranteed to be a valid EMF model [18]. EMF
Repair is also used to set attribute values, either randomly or using user input
which is provided in a JSON-file.

Generating Large EMF Models 231

Fig. 2. Rule-based EMF Model Generator

4.2 Generated Rules for Model Generation

Given a meta-model, different kinds of rules are derived for generating EMF
models. They are listed in Table 2. The derived rules are needed to perform the
following tasks: (i) creation of nodes, (ii) insertion of non-containment edges,
and (iii) checking for the existence of source or target nodes for an edge of a
certain type. All rules that create model elements (i.e., the rules of kinds (i) and
(ii)) are generated with NACs to not introduce upper bound violations during
generation. Moreover, they all are consistent transformation rules in the sense
of [4]. This means that they preserve consistency w.r.t. the EMF constraints
including rootedness (compare [4, Theorems 1 and 2]). For example, our rules
cannot introduce containment cycles or parallel edges by design.

Table 2. Overview of rule kinds used for model generation

Role Kind Semantics

Create
node

Additional-node-creation
rules

Create a node of a certain type and insert it into
one of its direct containers

Transitive-node-creation
rules

Create a node of a certain type and insert it into
one of its transitive containers

Create
edge

Additional-edge-creation
rules

Create an edge of non-containment type be-
tween two nodes

Check
edge

Additional-edge-checking
rules

Check if possible source and target nodes exist
for an edge of a certain type

232 N. Nassar et al.

Fig. 3. Rule schema for transitive-node-creation rules (of length 2)

Node creation (i) is performed by two sets of rules, additional-node-creation
rules and transitive-node-creation rules. The latter ones are described as follows:
For every concrete node type in the meta-model, every possible incoming path
over containment edges is computed such that each containment type occurs
maximally once. For each such path, a rule is derived that matches the node
where this path starts and creates the rest of this path. Each rule is equipped
with a NAC ensuring that no upper bound violation can be introduced. An ex-
ample schema of length 2 for this kind of rule is depicted in Fig. 3. The lower part
of Fig. 6 depicts all transitive-node-creation rules that are derived for the type
port. Only one rule is equipped with a NAC as the edge type subgraph is the only
one with an upper bound (of 1). In EMF, if a containment edge has an opposite
edge, the upper bound of the opposite edge must be 1. If a containment edge is
created, the opposite edge is created automatically. Therefore, we do not repre-
sent it here. Additional-node-creation rules are transitive-node-creation rules of
length 1. We derive both kinds of rules for different parametrizations of our gen-
eration algorithm which are introduced in Sect. 4.3. The rule add in Node a Port
in Fig. 6 is an example derived for the containment edge type ports. It does not
have a NAC since the upper bound of ports is unlimited.

To create non-containment edges (ii), additional-edge-creation rules are gen-
erated. The general schema for these kinds of rules is depicted in Fig. 4. For each
non-containment edge type, a rule is derived that matches the source and the
target nodes suitable to this edge type and creates an edge of the corresponding
type. Again, a NAC prevents that an upper bound is violated (NACn). A second
NAC prevents that parallel edges are introduced (NACp). If the given edge type
has an opposite edge type, the opposite edge is created as well and its upper

Generating Large EMF Models 233

Fig. 4. Rule schema for additional-edge-creation rules

bound is considered accordingly (NACl). A concrete example for the edge type
targetport is the rule insert additionalEdge targetport as depicted in Fig. 7.

As non-containment edges may be added optionally according to user spec-
ifications (in Sect. 4.3), it is necessary to check if nodes of certain types exist
and can serve as source or target nodes of an additional edge without violat-
ing the upper bounds of the respective edge type (iii). This check is performed
with additional-edge-checking rules which are derived for non-containment edge
types. The general schema is depicted in Fig. 5. Such a rule is applicable if and
only if there exists a source node where the upper bound of the edge type is not
yet reached. The same kind of rule is derived for the target node type as well.
The rule check proper sourceNode for targetport in Fig. 7 is a concrete example
for the edge type targetport.

Fig. 5. Rule schema for additional-edge-checking rules

4.3 Generation Strategies: Parameterization

Since we use a rule-based approach, the model generator can be parameterized
w.r.t. a given user specification. In the following, we present four strategies for
generating models w.r.t. user specifications; they serve to specify the model
increase phase of the generation process. The models resulting from this phase
conform to EMF and meet the user specification but may violate lower bounds.

234 N. Nassar et al.

Fig. 6. Independent unit for randomly creating a containment tree containing a fixed
number of nodes of type Port

They are used as input for the model repair algorithm of EMF repair to obtain
a valid EMF model. The user may (1) specify the number of elements that is to
be created minimally, (2) specify a node type and the number of nodes of this
type that is to be created minimally, (3) specify an edge type and the number
of edges of this type that is to be created minimally, or (4) combine the above-
mentioned strategies sequentially in arbitrary order. If the user has not specified
any model as a seed, the generation is initialized by creating a root node.

Adding elements of arbitrary types. In this strategy, the user specifies the
minimum of model elements (i.e., nodes and edges) to be created. The idea
behind this strategy is to randomly execute a set of rules for adding nodes
and edges of arbitrary types without violating the corresponding upper bounds
and the EMF constraints. Hence, all rules of kinds additional-node-creation and
additional-edge-insertion are collected into an independent unit which is applied
as often as the user specification requires. While the independent unit is imple-
mented in Henshin using a uniform distribution, this strategy may also be per-
formed using other distributions by, e.g., leveraging a stochastic controller [38].

Adding nodes of a specific type. In this strategy, the user specifies a node
type and the minimum number of nodes of this type that shall be created. This
strategy is implemented as an independent unit containing all transitive-node-
creation rules for the specified node type being applied as often as the user has
specified. An example unit for the node type Port is given in Fig. 6.

Adding edges of a specific type. In this strategy, the user specifies a (non-
containment) edge type and the minimum number of edges that shall be created
of this type. This strategy is similar to the previous one, thus its basis is a unit
that contains the additional-edge creation rule for the specified type. If this rule
is not applicable, however, a source or a target node (or both) for an additional
edge of that type is missing. The additional-edge-checking rules for this edge type
are used to detect such situations. Then, corresponding transitive-node-creation
rules for the type of the missing node are used to create the missing source

Generating Large EMF Models 235

Fig. 7. Units for inserting a fixed number of edges of type targetport

and/or target node(s). This strategy is implemented as a priority unit where the
first contained unit is the additional-edge-insertion rule. Its second contained
unit is a sequential one with two conditional units checking for missing source
or target nodes, respectively, and creating corresponding nodes if needed.

Figure 7 presents a priority unit using this strategy at the example of
the targetport-edge. The first level contains the rule insert additionalEdge. . . .
The second level is the sequential unit add proper source target Node. . . :
The conditional unit check add proper sourceNode. . . uses the rule
check proper sourceNode. . . in the if-statement. The then-statement is set to true
whereas the else-statement is configured with a priority unit add treeNode Edge
which adds an Edge-node respecting upper bounds and the EMF constraints.
The conditional unit adding a missing target node is defined analogously.

Sequential combination of strategies. As our approach allows for an arbi-
trary seed model as input, the result of applying one strategy can be used as
input for applying the second one. This allows for arbitrary sequential combina-
tions of strategies.

4.4 User Interaction

Since our approach is rule-based, it is also possible to allow for user interaction.
Instead of random rule applications at random matches, the available rules and
matches can be presented to the user for selecting at which match a rule has
to be applied and how many times. That is promising for generating different
tree structures of various weights. While it may not desirable to completely
generate large models in such a way, a hybrid strategy can be applied to utilize
the selection process, e.g., by employing heuristic data. EMF Repair already
supports this kind of user interaction.

236 N. Nassar et al.

4.5 Limitations and Formal Guarantees

Limitations. A user may only specify the minimum number of desired elements;
the specification of a maximum number is not yet supported within our ap-
proach. Although the generation process applies the respective rules exactly as
often as specified during the model increase phase, some of the rules create more
than one element and additional model elements may be created to repair viola-
tions of lower bounds during the consecutive model repair. Moreover, we cannot
guarantee that the user specification is fully met since necessary rules may not
be applicable as often as specified and backtracking is not used. Even if the
specification could be met in principle, it may happen that the specific selection,
order, and matches of rules do not succeed as they are randomly chosen in the
current version of the approach. By counting created elements, it can always
be decided whether a user specification has been met, and thus, the user can
be informed. In our experiments (in Sect. 6), every generated output meets the
selected specifications. Thus, while more research is needed to precisely evaluate
the severity of our limitations, the performed experiments are positive evidence
that these limitations are rather small even for reasonably complex meta-models.

Formal guarantees. In case of termination, our approach guarantees a valid EMF
model as output: All generation rules conform to a design that is proven to
preserve EMF constraints in [4]. Moreover, applications of these rules cannot
introduce violations of upper bounds as they are equipped with corresponding
NACs. So each strategy mentioned above is guaranteed to result in an instance
model that conforms to EMF and does not violate any upper bounds. Moreover,
it is ensured by the finite number of rule calls specified in each strategy that the
increase phase terminates. Thus, suitable input for the model completion process
of EMF Repair [19] is ensured after finitely many steps. For model completion,
termination was proven in the case of f.f.i. meta-models while correctness was
proven in all cases in [18]. If the user specification is met after a model has been
increased, it is met after model completion as well since no deletion takes place
during model completion. Even an increased model that does not meet the user
specification is an EMF model and hence a suitable input for EMF Repair. Thus,
it can be completed and returned to the user as a valid EMF model. The given
user specification, however, is only partly satisfied in this case.

5 Tooling

We have developed two Eclipse plug-ins that are available for download.3 The
first plug-in is a meta-tool, called Meta2GR. It takes a domain meta-model as
input and derives an MTS in Henshin. This is achieved by applying the meta-
patterns that are depicted in Figs. 3 to 5 to the given domain meta-model. These
meta-patterns are specified as rules typed over the Ecore meta-metamodel. Based
on their matches, domain-specific model generation rules of different kinds are

3 https://github.com/RuleBasedApproach/EMFModelGenerator/wiki

Generating Large EMF Models 237

created. For a given meta-model, the MTS has to be generated only once. The
second Eclipse plug-in, called EMF Model Generator, is a modeling tool that
uses the derived MTS to generate instance models. Given a user specification
and, optionally, one or more seed EMF models, this model generator creates
valid EMF models in batch mode or incrementally.

6 Evaluation

Next to the formal guarantees which are provided by construction, we empirically
evaluate our approach w.r.t. the following research questions:

RQ 1: How fast can instance models of varying sizes be generated?
RQ 2: Does the use of parametrization help to increase the diversity?

All experiments were performed on a desktop PC, Intel Core i7, 16 GB RAM,
Windows 7 x64 using Eclipse Oxygen. Our Eclipse-based tool was configured
to use the default settings, e.g., the heap size was limited to 1 GB. All the
evaluation artifacts are available for download.3

6.1 Scalability Experiments

To answer RQ 1, we conducted two scalability experiments. We used 8 meta-
models taken from the literature and projects, namely the Statechart meta-model
of Magicdraw [13], Web model [5], Car Rental and Class model [2], Bugzilla,
Latex, Warehouse, and GraphML (GML) [3]. The average size of the meta-
models is 44 elements (16 nodes, 17 edges, 11 attributes) and the number of
multiplicity bounds is 24 on average. The overhead for generating the needed
transformation rules and units was, on average, less than 5 seconds, and we will
thus focus on the run-time of the model generation in the sequel.

Experiment 1. In the first experiment, we randomly generated valid EMF models
of varying sizes up to 10 000 elements (counting nodes and edges) for each meta-
model using Strategy (1) (in Sect. 4.3). For each size category, we generated
10 valid EMF models and calculated the average run-time. Table 3 presents the
results of this experiment. Considering all the meta-models and generated models
of varying sizes, our tool always generates a valid EMF model with at least
10 000 elements. Generation times were fastest for the Bugzilla meta-model and
slowest for the GraphML one. To assess how robust the times are, we measured
the time for generating a seed and for the subsequent repair separately. For each
one, we also computed the corrected standard deviation (which is presented
for model size 10 000 only). Generating the seed is generally faster than the
subsequent repair, except for the StateChart and Warehouse meta-models. If
the standard deviation is rather high, this tends to be the case for both, the
seed generation and the repair (as for GraphML, Web Model, and Class Model).
A closer inspection of the meta-models shows that higher run-times, as well as
higher deviations of run-times, are caused by larger meta-model sizes (and hence
larger sizes of derived MTSs) and higher numbers of interrelated multiplicity
constraints.

238 N. Nassar et al.

Table 3. Average run-time (in seconds) for generating valid EMF models of varying
sizes for 8 meta-models (MM) using Strategy (1); for size 10 000, run-time is split into
the generation of seed and subsequent repair where the corrected standard deviation
is added in brackets, respectively.

MM\Model Size 1 000 3 000 5 000 8 000 10 000

Bugzilla 0.05 0.1 0.1 0.1 0.08 (0.006) + 0.04 (0.01)
Car Rental 0.27 5 17.9 72.3 65.5 (7.2) + 78.1 (4)
Class Model 0.16 1.7 9.4 61.5 13.2 (14.2) + 85 (113.8)
CoreWarehouse 0.81 4.5 18.9 67.9 0.4 (0.02) + 131 (10.9)
GraphML 0.4 2.6 16.7 79.2 39.3 (56) + 168.1 (119.6)
Latex 1.27 1.3 1.3 1.5 0.7 (0.01) + 0.8 (0.03)
StateChart 0.55 1.7 5.5 18.7 35.8 (3.9) + 1 (0.3)
Web Model 0.16 1.4 5.1 14.6 18.7 (18.8) + 6.2 (2.6)

Table 4. Average run-time and standard deviation (in minutes) for generating valid
EMF models of varying huge sizes for the GraphML meta-model using Strategy (3).
The standard deviations are presented in brackets.

Model Size 200 000 300 000 400 000 half a million

Average Time (Min.) 6 (1.4) 11.4 (2.6) 23.3 (5.7) 32.5 (6.5)

Experiment 2. The second experiment is dedicated to generating huge models for
a complex meta-model which would lead to complex model repair processes. The
meta-model GraphML is right for this purpose as its number of lower bounds
being non-zero is above the average. Fulfilling these bounds renders model repair
into a complex process. We expect the generation of models to become faster
when using Strategy (3), i.e., when specifying a minimal number of edge occur-
rences of a certain type. In this case, nodes are introduced together with incident
edges; this generation behavior should reduce the number of repairs needed to
take place for fixing lower bound violations. Models of an average size of between
200 000 and 500 000 elements are generated in 6 to 32.5 minutes on average. Each
generation process was repeated five times. The standard deviation was between
1.4 to 6.5 minutes, i.e., the run-times for the generation of these huge models
are pretty stable. Table 4 presents the experiment results. Moreover, to give an
impression of the tool performance for simple meta-models, we applied it to the
Bugzilla meta-model. It is considered as simple since it consists of unrestricted
containment edges only. The tool needed 1.2 minutes only to generate a valid
EMF model with a minimum of 500 000 elements.

6.2 Diversity Experiment

To test if the parametrization of our algorithm has some effect on the diver-
sity of generated models, we conducted the following experiment. We took the
GraphML meta-model and chose Strategy (1) to randomly create 10 instance

Generating Large EMF Models 239

Table 5. Diversity of randomly generated instance models parametrized by node types
of the GraphML meta-model (EL = Element, K = Key, etc.; compare Fig. 1)

Str. 1) Str. 2)

Specified Type All EL. K. G. E. H.E. N. P. E.P. D.

Shannon Index 3 2.12 0.82 0.76 0.94 0.92 0.99 1.57 1.48 2.06

models containing about 2 000 elements. For each node type as parameter, we
created 10 instance models containing about 2 000 elements according to Strat-
egy (2) which specifies that this node type has to occur at least 500 times. For
each of the resulting sets of model instances we calculated the Shannon index [33],
∑9

i=1
ni

N · lg ni

N , an established diversity measure. Here, N is the total number
of nodes in the given set, i ranges over the 9 non-abstract node types in the
GraphML meta-model, and ni is the number of nodes of that type in the given
set. The resulting indices are presented in Table 5. Considering Strategy (1), the
types of occurring elements show nearly uniform distribution as the maximal
possible Shannon index is lg 9 ≈ 3.17. The indices for Strategy (2) show that
the distribution of elements significantly differs, depending on the selected node
type.

To assess that even the sets with similar Shannon indexes differ from one
another, we checked for the types actually occurring in each set and compared
them. The results are depicted in Fig. 8. For example, 66% of the nodes are of
type HyperEdge if HyperEdge (H.E.) is chosen as type parameter, and 68% of the
nodes are of type Edge if Edge (E.) is chosen as parameter, even though both sets
of models exhibit almost the same Shannon index.

74.07

36.2 57.45 25.93 33.69 79.26 52.3 18.23 31.42 28.89

68.31

66.31 32.85

27.09 42.55 20.74

36.71

48.73

40.36

Element

Key

Graph

Edge

HyperEdge

Node

Port

EndPoint

Data

0% 100% 200% 300%

Parameters
EL.
K.
G.
E.
H.E.
N.
P.
E.P.
D.

Fig. 8. Relative number of occurrences (x-axis) of node types (y-axis) in all the instance
models generated using Strategy (2); results obtained for different parameter settings
are encoded in colors and each color indicates one instance model. For example, 79.26%
nodes of type Graph and 20.74% nodes of type Node are created in an instance model
for parameter Graph (G.).

240 N. Nassar et al.

To answer RQ 2, choosing different node types as parameter leads to signif-
icantly different distributions of the node types of occurring elements. Hence,
Strategy (2) can be used to introduce a certain diversity.

6.3 Threats to Validity

In our evaluation, we selected 8 meta-models. Evaluation results might differ
when choosing others. We are confident, however, that our results are represen-
tative as we selected meta-models from diverse backgrounds, with reasonable
sizes, and with varying numbers and forms of multiplicities. The used metric
to measure diversity completely abstracts from details of the underlying graph
structures of generated instance models. On the one hand, abstracting from such
details typically underrates diversity rather than overrating it. On the other
hand, we have to acknowledge that the form of diversity we show in our experi-
ments is limited to the distribution of types.

7 Conclusion and Future Work

We developed a rule-based approach for generating valid models w.r.t. arbitrary
multiplicities and EMF constraints. Since we use a rule-based approach, our
generator is configurable to support user specifications and to allow user inter-
action. Several parameterization strategies are presented to generate different
sets of valid EMF models. Two Eclipse plug-ins have been developed: Meta2GR
automatically translates the meta-model of a given DSML to an MTS and the
EMF Model Generator uses the derived MTS to generate valid EMF models.
We evaluated the scalability of our approach by generating large instances of
several meta-models of different domains and showed that models with 10 000
elements can be generated in about a minute on average. Furthermore, our tool
can generate valid EMF models of 500 000 elements in less than 2 minutes for
a meta-model with largely unrelated multiplicity constraints and in about 30
minutes for a meta-model with closely interrelated ones. Moreover, we showed
that a certain form of diversity between the generated models can be achieved
by configuration. As future work, we intend to support meta-models with OCL
constraints, at least partly: Integrating the constraints as application conditions
into rules [17,24] is a promising basis to extend our approach in this direction.
Besides, we want to support further configuration facilities which allow us to
generate realistic models by leveraging a stochastic controller [38].

References

1. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced
Concepts and Tools for In-Place EMF Model Transformations. In: Proc. MODELS.
pp. 121–135. Springer (2010)

2. Arendt, T., Taentzer, G.: A tool environment for quality assurance based on
the eclipse modeling framework. Automated Software Engineering 20(2), 141–184
(2013)

Generating Large EMF Models 241

3. Atlantic Zoo. http://web.imt-atlantique.fr/x-info/atlanmod/index.php?title=Zoos
(2019)

4. Biermann, E., Ermel, C., Taentzer, G.: Formal Foundation of Consistent EMF
Model Transformations by Algebraic Graph Transformation. SoSyM 11(2), 227–
250 (2012)

5. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in
Practice. Morgan & Claypool Publishers (2012)

6. Brandes, U., Eiglsperger, M., Herman, I., Himsolt, M., Marshall, M.S.: GraphML
Progress Report: Structural Layer Proposal. In: Graph Drawing. pp. 501–512.
Springer (2002)

7. Brottier, E., Fleurey, F., Steel, J., Baudry, B., Le Traon, Y.: Metamodel-based
test generation for model transformations: an algorithm and a tool. In: Symp. on
Software Reliability Engineering. pp. 85–94 (2006)

8. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer (2006)

9. Ehrig, K., Küster, J.M., Taentzer, G.: Generating instance models from meta mod-
els. SoSyM 8(4), 479–500 (2009)

10. Fleurey, F., Steel, J., Baudry, B.: Validation in model-driven engineering: testing
model transformations. In: Proc. Intl. Workshop on Model, Design and Validation.
pp. 29–40. IEEE (2004)

11. Gómez, A., AtlanMod Team: EMF random instantiator (2015), https:
//github.com/atlanmod/mondo-atlzoo-benchmark/tree/master/fr.inria.
atlanmod.instantiator, (visited on 2020-02-18)

12. Jackson, D.: Alloy: A lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11(2), 256–290 (2002)

13. Kehrer, T., Taentzer, G., Rindt, M., Kelter, U.: Automatically Deriving the Spec-
ification of Model Editing Operations from Meta-Models. In: Proc. ICMT. pp.
173–188 (2016)

14. Kolovos, D.S., Rose, L.M., Matragkas, N., Paige, R.F., Guerra, E., Cuadrado, J.S.,
De Lara, J., Ráth, I., Varró, D., Tisi, M., et al.: A research roadmap towards
achieving scalability in model driven engineering. In: Workshop on Scalability in
Model Driven Engineering. ACM (2013)

15. McGill, M.J., Stirewalt, R.K., Dillon, L.K.: Automated test input generation for
software that consumes ORM models. In: OTM Confederated Intl. Conferences.
pp. 704–713. Springer (2009)

16. Mougenot, A., Darrasse, A., Blanc, X., Soria, M.: Uniform random generation
of huge metamodel instances. In: European Conf. on Model Driven Architecture-
Foundations and Applications. pp. 130–145. Springer (2009)

17. Nassar, N., Kosiol, J., Arendt, T., Taentzer, G.: OCL2AC. Automatic Translation
of OCL Constraints to Graph Constraints and Application Conditions for Trans-
formation Rules. In: Proc. ICGT 2018. pp. 171–177. Springer (2018)

18. Nassar, N., Kosiol, J., Radke, H.: Rule-based Repair of EMF Models: Formal-
ization and Correctness Proof. In: Electronic Pre-Proc. Intl. Workshop on Graph
Computation Models (2017)

19. Nassar, N., Radke, H., Arendt, T.: Rule-based repair of EMF models: An auto-
mated interactive approach. In: Proc. ICMT. pp. 171–181 (2017)

20. OMG: Object Constraint Language. (2014), http://www.omg.org/spec/OCL/
21. OMG: OMG Meta Object Facility (MOF). Version 2.5.1 (11 2016), http://www.

omg.org/spec/MOF/
22. Pietsch, Pit and Yazdi, Hamed Shariat and Kelter, Udo: Generating realistic test

models for model processing tools. In: Proc. ASE. pp. 620–623. IEEE CS (2011)

242 N. Nassar et al.

23. Popoola, S., Kolovos, D.S., Rodriguez, H.H.: EMG: A domain-specific transfor-
mation language for synthetic model generation. In: Proc. ICMT. vol. 9765, pp.
36–51. Springer (2016)

24. Radke, H., Arendt, T., Becker, J.S., Habel, A., Taentzer, G.: Translating Essential
OCL Invariants to Nested Graph Constraints for Generating Instances of Meta-
models. Science of Computer Programming 152, 38–62 (2018)

25. Rindt, M., Kehrer, T., Kelter, U.: Automatic generation of consistency-preserving
edit operations for mde tools. Demos @ MoDELS 14 (2014)

26. Scheidgen, M.: Generation of large random models for benchmarking. In: Big-
MDE@ STAF. pp. 1–10 (2015)

27. Schneider, S., Lambers, L., Orejas, F.: Automated reasoning for attributed graph
properties. Intl. Journal on Software Tools for Technology Transfer 20(6), 705–737
(2018)

28. Schneider, S., Lambers, L., Orejas, F.: A logic-based incremental approach to
graph repair. In: Fundamental Approaches to Software Engineering. pp. 151–167.
Springer (2019)

29. Semeráth, O., Babikian, A.A., Pilarski, S., Varró, D.: Viatra solver: a framework
for the automated generation of consistent domain-specific models. In: Proc. ICSE.
pp. 43–46. IEEE/ACM (2019)

30. Semeráth, O., Nagy, A.S., Varró, D.: A Graph Solver for the Automated Generation
of Consistent Domain-specific Models. In: Proc. ICSE. pp. 969–980. ACM (2018)

31. Semeráth, O., Varró, D.: Graph constraint evaluation over partial models by con-
straint rewriting. In: Proc. ICMT. pp. 138–154 (2017)

32. Sen, S., Baudry, B., Mottu, J.M.: Automatic model generation strategies for model
transformation testing. In: Proc. ICMT. pp. 148–164 (2009)

33. Shannon, C.E.: A Mathematical Theory of Communication. SIGMOBILE Mob.
Comput. Commun. Rev. 5(1), 3–55 (2001), reprint

34. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework. Addison Wesley, Upper Saddle River, NJ, 2 edn. (2008)

35. Strüber, D., Born, K., Gill, K.D., Groner, R., Kehrer, T., Ohrndorf, M., Tichy, M.:
Henshin: A Usability-Focused Framework for EMF Model Transformation Devel-
opment. In: Proc. ICGT. pp. 196–208 (2017)

36. Svendsen, A., Haugen, Ø., Møller-Pedersen, B.: Synthesizing software models:
generating train station models automatically. In: Intl. SDL Forum. pp. 38–53.
Springer (2011)

37. Taentzer, G.: Instance generation from type graphs with arbitrary multiplicities.
ECEASST 47 (2012)

38. Yazdi, H.S., Angelis, L., Kehrer, T., Kelter, U.: A framework for capturing, statisti-
cally modeling and analyzing the evolution of software models. Journal of Systems
and Software 118, 176–207 (2016)

Generating Large EMF Models 243

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

244 N. Nassar et al.

Family-Based SPL Model Checking
Using Parity Games with Variability

Maurice H. ter Beek1 , Sjef van Loo ,2 2 , and
2

1 ISTI–CNR, Pisa, Italy
2 TU Eindhoven, Eindhoven, The Netherlands

Abstract. Family-based SPL model checking concerns the simultaneous
verification of multiple product models, aiming to improve on enumera-
tive product-based verification, by capitalising on the common features
and behaviour of products in a software product line (SPL), typically
modelled as a featured transition system (FTS). We propose efficient
family-based SPL model checking of modal μ-calculus formulae on FTSs
based on variability parity games, which extend parity games with con-
ditional edges labelled with feature configurations, by reducing the SPL
model checking problem for the modal μ-calculus on FTSs to the vari-
ability parity game solving problem, based on an encoding of FTSs as
variability parity games. We validate our contribution by experiments on
SPL benchmark models, which demonstrate that a novel family-based
algorithm to collectively solve variability parity games, using symbolic
representations of the configuration sets, outperforms the product-based
method of solving the standard parity games obtained by projection with
classical algorithms.

1 Introduction

Software product line engineering (SPLE) is a software engineering method for
cost-effective and time-efficient development of a family of software-intensive
configurable systems, according to which individual products (system variants)
can be distinguished by the features they provide, where a feature is typically
understood as some user-aware (difference in) functionality [1, 2]. The intrinsic
variability of SPLs challenges formal methods and analysis tools, because the
number of possible products may be exponential in the number of features and
each product may moreover exhibit a large behavioural state space.

The SPL model checking problem, first recognised in the seminal paper [3],
generalises the classical model checking problem in the following way: given a
formula, determine for each product whether it satisfies the formula (and, ideally,
provide a counterexample for each product that does not satisfy the formula). A
straightforward way to solve this problem is to provide a model for each product
and apply classical model checking. This enumerative, product-based method has
several drawbacks. Most importantly, the state-space explosion problem –typical
of model checking– is amplified with the number of products, while products of a
product line usually have a large amount of features and behaviour in common.

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 245–265, 2020.
https://doi.org/10.1007/978-3-030-45234-6_12

Erik P. de Vink
Tim A. C. Willemse

http://orcid.org/0000-0002-2930-6367
http://orcid.org/0000-0001-9514-2260
http://orcid.org/0000-0003-3049-7962
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_12&domain=pdf

Therefore, Classen et al. have extended labelled transition systems (LTSs)
with features to concisely describe and analyse the combined behaviour of a fam-
ily of models [3–5]. Concretely, transitions in the resulting featured transition
systems (FTSs) are labelled with actions and feature expressions. Given a prod-
uct, a transition can be executed if the product fulfills the feature expression.
Hence, an FTS incorporates all eligible product behaviour, and each individual
product’s behaviour can be obtained as an LTS. Moreover, FTSs cater for the si-
multaneous verification of multiple products, known as family-based analysis [6].

Properties of behavioural models for SPLs such as FTSs can be verified with
dedicated SPL model checkers like SNIP [7], ProVeLines [8], VMC [9], Pro-
Feat [10,11], or QFLan [12,13], or with classical model checkers like NuSMV [14,
15], SPIN [16], Maude [17], or mCRL2 [18, 19]. The advantage of using estab-
lished off-the-shelf model checkers for SPL analysis is obvious: it lifts the burden
of maintaining dedicated model checkers in favour of highly optimised tools with
a broad user base. In [19], it was shown how to perform family-based SPL model
checking with mCRL2 [20, 21] of properties of FTSs expressed in a feature-
oriented variant of the modal μ-calculus to deal with transitions labelled with
feature expressions [22]. However, this approach is based on a decision procedure
for the binary partitioning of the product space into products that do and those
that do not satisfy a given formula, and it is underlined that computing suitable
partitionings for the conducted experiments is a largely manual activity.

In this paper, we present efficient family-based SPL model checking of modal
μ-calculus formulae on FTSs based on parity games with variability. Years after
its introduction [3, 14], family-based model checking of SPLs or program fam-
ilies is still a popular topic [10, 16, 19, 23–26], including a few game-theoretic
approaches based on solving (3-valued) model checking games on featured sym-
bolic automata and on modal transition systems. A parity game is a 2-player
turn-based graph game. It is well known that the model checking problem for
modal μ-calculus formulae on LTSs is equivalent to parity game solving, for which
Zielonka defined a recursive algorithm that performs well in practice [27–29].

Here we introduce variability parity games as a generalisation of parity games
with conditional edges labelled with feature configurations. We then show how
the SPL model checking problem for modal μ-calculus formulae on FTSs can be
reduced to the variability parity game solving problem based on an encoding of
FTSs as variability parity games. Finally, we show the results of implementing
two different methods, product-based and family-based, to solve variability par-
ity games and of experimenting with them on two well-known SPL case studies,
the minepump and the elevator. The product-based method simply projects a
variability parity game to the different configurations and independently solves
all resulting parity games with existing algorithms. The family-based method, in-
stead, is based on a novel algorithm to collectively solve variability parity games,
using symbolic representations of sets of configurations. The experiments clearly
show that the family-based method outperforms the product-based method.

Outline. After defining some preliminary notions in Section 2, we introduce
SPL model checking in Section 3. In Section 4, we introduce variability parity
games and show how they can be used to solve the SPL model checking problem.

246 M. H. ter Beek et al.

In Section 5, we present a family-based, collective strategy for recursively solving
variability parity games, which we experiment with on two SPL case studies in
Section 6. Section 7 concludes the paper and provides directions for future work.
Relevant related work other than the above is mentioned throughout the paper.

2 Preliminaries

We give a brief overview of labelled transition systems and the modal μ-calculus.

Definition 1. A labelled transition system or LTS L over a non-empty set of
actions Act is a triple L = (S,→, s0), where S is the set of states with s0 ∈ S
and → ⊆ S ×Act× S is the transition relation.

The modal μ-calculus is an expressive logic, subsuming LTL and CTL, for rea-
soning about the behaviours of LTSs, among others.

Definition 2. Formulae in the modal μ-calculus are given by the following (min-
imal) grammar.

φ ::= true | false | X | φ ∧ φ | φ ∨ φ | 〈a〉φ | [a]φ | μX.φ | νX.φ

where a ∈ Act is an action and X ∈ X is some propositional variable taken from
a sufficiently large set of variables X .

Next to the Boolean constants and the propositional connectives, the modal μ-
calculus contains the existential diamond operator 〈 〉 and its dual universal box
operator [] of modal logic as well as the least and greatest fixed point operators
μ and ν that provide recursion used for ‘finite’ and ‘infinite’ looping, respectively.

Given a formula φ, an occurrence of a variable X in φ is said to be bound
iff this occurrence is within a formula ψ, where μX.ψ or νX.ψ is a subformula
of φ; an occurrence of a variable is free otherwise. A formula φ is closed iff all
variables occurring in φ are bound; here we only consider closed formulae. For
simplicity, we assume that the formulae that we consider are well-named, i.e.,
formulae do not contain two fixed point subformulae binding the same variable.

Given an LTS, the semantics of a μ-calculus formula is the set of states of
the LTS that satisfy the formula. Since we focus on games in this paper, we
introduce two auxiliary concepts, viz. the Fischer-Ladner closure of a formula
and the alternation depth of a formula. The Fischer-Ladner closure FL(φ) of a
formula φ is the smallest set of formulae satisfying
– φ ∈ FL(φ);
– if φ1 ∧ φ2 ∈ FL(φ) or φ1 ∨ φ2 ∈ FL(φ) then φ1, φ2 ∈ FL(φ);
– if 〈a〉φ1 ∈ FL(φ) or [a]φ1 ∈ FL(φ) then φ1 ∈ FL(φ);
– if σX.φ1 ∈ FL(φ) then φ1[X :=σX.φ1] ∈ FL(φ).

Note that for a closed formula φ, the set FL(φ) contains no variables.
The complexity of a μ-calculus formula is given by its alternation depth; the

larger the alternation depth, the harder the formula is to solve (and, incidentally,
also to understand). The alternation depth of a formula φ is defined as the largest
alternation depth of the bound propositional variables in φ, defined as follows.

Family-Based SPL Model Checking with Variability Parity Games 247

Definition 3. The dependency order on bound variables of a formula φ is the
smallest partial order ≤φ satisfying X≤φY if X occurs free in σY.ψ. The alter-
nation depth of a μ-variable X in φ, denoted ADφ(X), is the maximal length of a
chain X1 ≤φ · · · ≤φ Xn, where X1=X, variables X1, X3, . . . are μ-variables and
X2, X4, . . . are ν-variables. Analogously for the alternation depth of a ν-variable.

Definition 4. A parity game is a tuple G = (V,E, p, (V0, V1)) where

– V is a finite set of vertices, partitioned into a set V0 of vertices owned by
player 0 and a set V1 of vertices owned by player 1;

– E ⊆ V × V is the edge relation;
– p : V → N is the priority function.

We depict parity games as graphs in which diamond-shaped vertices represent
vertices owned by player 0 and box-shaped vertices represent vertices owned by
player 1. Edges are annotated with configurations while priorities are typically
written inside vertices.

We write v→w instead of (v, w) ∈ E and let α range over the set of players,
i.e. α ∈ {0, 1}. For a given vertex v, we write vE to denote the set {w ∈ V |
v→w} of successors of v. Likewise, Ev denotes the set {w ∈ V | w→ v} of
predecessors of v. A sequence of vertices v1 · · · vn is a path if for all 1 � m < n
we have vm+1 ∈ vmE. Infinite paths are defined in a similar way. We write πn to
denote the n-th vertex in a path π and π�n to indicate the prefix π1 · · ·πn of π.

A play, starting in a vertex v ∈ V , starts by placing a token on that vertex.
Players then move the token according to a single simple rule: if a token is on
a vertex u ∈ Vα and uE
= ∅, player α pushes it to some successor vertex w ∈
uE. The finite and infinite paths thus constructed are referred to as plays. For
an infinite play, and the infinite sequence of priorities it induces, the parity of
the highest priority that occurs infinitely often on that play defines its winner :
player 0 wins if this priority is even; player 1 wins otherwise. A finite play is won
by the player that does not own the vertex on which the token is stuck.

The moves of players 0 and 1 are determined by their respective strategies.
Informally, a strategy for a player α determines, for a vertex πi ∈ Vα the next
vertex πi+1 that will be visited if a token is on πi, provided πi has successors.
In general, a strategy is a partial function σ : V ∗Vα → V which, for a given
history of vertices of the locations of the token and a vertex on which the token
currently resides, determines the next vertex by selecting an edge to that vertex.
A finite or infinite path π conforms to a given strategy σ if for all prefixes π�i

for which σ is defined, we have πi+1 = σ(π�i).
A strategy σ for player α is winning from a vertex v iff α is the winner

of every play starting in v that conforms to σ. Parity games are known to be
positionally determined [30]. This means that a vertex is won by player α iff α
has a winning strategy that does not depend on the history of vertices visited by
the token. Such strategies can be represented by partial functions σ : Vα → V .
Note that every vertex in a parity game is won by one of the two players.

Closed modal μ-calculus formulae can be interpreted by associating a game
semantics to these formulae. The definition we provide below is adopted from [30].

248 M. H. ter Beek et al.

Table 1. The game semantics for a closed modal μ-calculus formula φ: vertex v (1st
column), its owner α (2nd column), its successors (if any) w ∈ vE (3rd column),
and priority p(v) (4th column). Vertices of the form (s, 〈a〉ψ) and (s, [a]ψ) have no
successors when s has no a-successors.

Vertex Owner Successor(s) Priority
(s, true) 1 0
(s, false) 0 0
(s, ψ1 ∧ ψ2) 1 (s, ψ1) and (s, ψ2) 0
(s, ψ1 ∨ ψ2) 0 (s, ψ1) and (s, ψ2) 0
(s, [a]ψ) 1 (t, ψ) for every s

a−→ t 0
(s, 〈a〉ψ) 0 (t, ψ) for every s

a−→ t 0
(s, νX.ψ) 1 (s, ψ[X := νX.ψ]) 2�ADφ(X)/2	
(s, μX.ψ) 1 (s, ψ[X := μX.ψ]) 2�ADφ(X)/2	 + 1

Definition 5. Let L = (S,→, s0) be an LTS and φ be a closed modal μ-calculus
formula. A state s ∈ S satisfies formula φ, denoted by L, s |= φ, iff vertex (s, φ)
is won by player 0 in the game GL,φ = (V,E, p, (V0, V1)), where V = S×FL(φ),
and the sets E, V0, and V1 and priority function p are given by Table 1.

If the context is such that no confusion can arise, we write s |= φ for L, s |= φ.
For a more in-depth treatment of the modal μ-calculus, we refer to [30].

Here, we finish by illustrating the game semantics on a small example, drawing
inspiration from an example in [19].

Example 1. Consider the LTS L depicted in the bottom-left corner of Fig. 1,
modelling a coffee machine that after inserting one or two units of some currency
(indicated by action ins) can dispense a standard regular coffee (indicated by
action std) or an extra large coffee (indicted by action xxl), respectively.

The LTL-type formula φ, depicted in the top-left corner of Fig. 1, asserts that
on all infinite runs of the coffee machine, it infinitely often dispenses a regular
coffee. (Note, nothing is required to hold on finite runs.) The parity game that
can answer whether s0 |= φ holds is depicted on the right in Fig. 1. Each node
is annotated with a pair consisting of a state of the LTS and a (sub)formula
of φ. Note that the references to φ1, φ2, and φ3 are meant as an indication and
not to be interpreted exactly, since they lack the substitution that needs to be
carried out. We remark that the parity game is solitair : only one player can make
decisions. Vertex (s0, φ) is won by player 1 by enforcing a 1-dominated infinite
play, bypassing the vertex with priority 2 on the loop. Consequently, s0
|= φ. �

3 Software Product Lines Model Checking

Software products with variability can be modelled effectively using so-called
featured transition systems or FTSs [3]. Fix a finite non-empty set F of features,
with f as typical element. Let B[F] denote the set of Boolean expressions over F .
Elements χ and γ of B[F] are referred to as feature expressions. A product P is
a set of features, P denotes the set of products, thus P ⊆ 2F.

Family-Based SPL Model Checking with Variability Parity Games 249

s0 s1 s2

φ
︷ ︸︸ ︷

νX. μY.

φ2
︷ ︸︸ ︷

([ins]Y ∧ [xxl]Y
︸ ︷︷ ︸

φ3

∧[std]X)

︸ ︷︷ ︸

φ1

L

ins

std

ins

xxl

2
(s0, φ)

1
(s0, φ1)

0
(s0, φ2)

0(s0, [std]φ)

0
(s0, φ3)

0 (s0, [xxl]φ1)

0
(s0, [ins]φ1)

1 (s1, φ1)

0 (s1, φ2)0
(s1, [std]φ)

0 (s1, φ3)

0(s1, [xxl]φ1)

0
(s1, [ins]φ1)

1
(s2, φ1)

0
(s2, φ2)

0 (s2, [std]φ)

0(s2, φ3)

0(s2, [ins]φ1)

0 (s2, [xxl]φ1)

Fig. 1. Parity game encoding the model checking problem s0 |= φ

A feature expression γ, as Boolean expression over F , can be interpreted as
a set of products Pγ , viz. all products P for which the induced truth assignment
(true for f ∈ P, false for f /∈ P) validates γ. Reversely, for each family P ⊆ P we
fix a feature expression γP to represent it. The constant � denotes the feature
expression that is always true. We now recall FTSs from [4] as a model for
software product lines, using the notation of [19,22].

Definition 6. An FTS F over Act and F is a triple F = (S, θ, s0), where S
is the set of states with s0 ∈ S and θ : S ×Act× S → B[F] is the transition
constraint function.

For states s, t ∈ S, we write s
a|γ−−→F t if θ(s, a, t) = γ and γ
= ⊥. The projection

of F onto a product P ∈ P is the LTS F |P = (S, →F |P, s0) over Act with
s

a→F |P t iff P ∈ Pγ for a transition s
a|γ−−→F t of F .

Example 2. Assume that the coffee machine from Example 1 is to model a family
of coffee machines for different countries, depending on whether a coffee machine
accepts the insertion of dollars or euros, or both. Let P be a product line of coffee
machines, with the independent features $ and e, representing the presence of a
coin slot accepting dollars or euros, respectively, leading to a set of four products:
{∅, {$}, {e}, {$,e}}. The FTS F below models the family behaviour of P .

s0 s1 s2

F

ins|

std|e

ins|$

xxl|

s0 s1 s2

F |P1

ins ins

xxl

s0 s1 s2

F |P2

ins

std

xxl

The idea is that extra large coffee is exclusively available for 2 dollars, whereas
1 euro or dollar suffices for a standard regular coffee. The behaviour of products
P1 = {$} and P2 = {e} is modelled by the LTSs F |P1 and F |P2 depicted above.

250 M. H. ter Beek et al.

Note that coffee machine F |P1 accepting only dollars lacks the transition from
s1 to s0 requiring feature e, while coffee machine F |P2 accepting only euros lacks
the one from s1 to s2 requiring feature $. The behaviour of product P3 = {$,e}
is modelled by the LTS L = F |{$,e} depicted in Fig. 1. Finally, the product
without any features is not depicted, but it deadlocks at state s1. �
Definition 7. The SPL model checking problem is to compute, for a given
FTS F =(S, θ, s0) and closed modal μ-calculus formula φ, the largest subsets P+

and P− of P such that F |P, s0 |= φ for all P∈P+ and F |P, s0
|= φ for all P∈P−.

Sets P+ and P− partition P: a formula either does or does not hold in a state.

Example 3. It is not difficult to see that the formula φ from Example 1 does
not hold for all products. In fact, P+ = {∅, {e}} and P− = {{$}, {$,e}}. For
products with feature $, there is an infinite run that avoids action std altogether,
whereas for products not containing feature $, either all runs are finite, or all
infinite runs contain an infinite number of std actions. �

4 Variability Parity Games and SPL Model Checking

In practice, the model checking problem for LTSs, yielding a yes/no answer,
can efficiently be decided using parity game solving algorithms [27,30]. The SPL
model checking problem can be solved in a similar fashion by constructing parity
games associated with the formula and with each individual product separately.
Such an approach, however, does not take full advantage of the efficient, compact
representation of the variation points in the individual product LTSs represented
by an FTS. The variability parity games we introduce in Section 4.1, exploit
constructs similar to those in FTSs to compactly encode variation points in
the parity games they represent. We show in Section 4.2 that the SPL model
checking problem can be solved by solving such variability parity games.

4.1 Variability Parity Games

A variability parity game is a generalisation of a parity game. It is a two-player
game, again played by players odd, denoted by 1, and even, denoted by 0, on a
finite directed graph. Contrary to parity games, an edge in a variability parity
game is associated with a set of configurations.

Definition 8 (Variability Parity Game). A variability parity game G is a
sextuple G = (V,E,C, p, θ, (V0, V1)), where

– V is a finite set of vertices, partitioned into sets V0 and V1 of vertices owned
by player 0 and player 1, respectively;

– E ⊆ V × V is the edge relation;
– C is a finite set of configurations;
– p : V → N is the priority function that assigns priorities to vertices;
– θ : E → 2C \ {∅} is the configuration mapping.

Family-Based SPL Model Checking with Variability Parity Games 251

In line with our depiction of parity games, we visualise variability parity games
as graphs with diamond-shaped and box-shaped vertices, and directed edges
connecting vertices. Moreover, edges are annotated with configurations. A vari-
ability parity game G = (V,E,C, p, θ, (V0, V1)) is called total if, for all u ∈ V , it
holds that

⋃{ θ(u, v) | v ∈ V, (u, v) ∈ E } = C.
As before, we write v→w for (v, w) ∈ E, and we use α to range over {0, 1}.

We use v
c−→ w to denote v→w and c ∈ θ(v, w) and say that the edge between v

and w is compatible with c. The notions of a finite and infinite path from parity
games carry over to variability parity games, and we use similar notation to
denote the prefixes of a path and the vertices along a path. A finite path v1 · · · vn
is admitted for a configuration c ∈ C iff for all m < n, c ∈ θ(vm, vm+1). In a
similar vein, an infinite path can be said to be admitted for a given configuration.

A play starts by placing a configured token c ∈ C on vertex v ∈ V . The
players move configured token c in the game according to the following rule: if
token c ∈ C is on some vertex v ∈ Vα, player α pushes c, if possible, to some
adjacent vertex w along an edge compatible with c, i.e. c ∈ θ(v, w). The finite
and infinite paths thus constructed are admitted by c, and are again referred to
as plays ; the conditions for players 0 and 1 for winning such plays are identical
to those for parity games.

For a configuration c ∈ C, a strategy is a partial function σc : V ∗Vα → V
which, when defined for π�i, yields a vertex πi+1 that is reachable from πi via an
edge that is compatible with c. A path π, admitted by configuration c, conforms
to a given strategy σc iff for all prefixes π�i for which σ is defined, we have
πi+1 = σc(π

�i). Strategy σc for player α and configuration c is winning from a
vertex v iff α is the winner of every play starting in v that conforms to σc.

Definition 9. The variability parity game solving problem for a vertex v is the
problem of computing the largest set of configurations C0, C1 ⊆ C such that:

– player 0 has a winning strategy for v for each c ∈ C0;
– player 1 has a winning strategy for v for each c ∈ C1.

For a given variability parity game G and a configuration c ∈ C, we define the
projection of G onto c, denoted G|c as the parity game obtained by retaining only
those edges from G that are compatible with c. We note that it follows rather im-
mediately that variability parity games are also positionally determined : player 0
(player 1, respectively) has a winning strategy σc for vertex v for configuration c
iff she has a winning strategy for v in the projection of the variability parity
game onto configuration c. Since parity games are positionally determined, so
are variability parity games. Consequently, the variability parity game solving
problem asks for the computation of a partition of the set of configurations C.

4.2 Solving SPL Model Checking Using Variability Parity Games

If we ignore the representation of the sets of configurations decorating the edges,
a variability parity game is a compact representation of a set of parity games. The

252 M. H. ter Beek et al.

Table 2. Transformation of the SPL model checking problem to the variability parity
game solving problem. For a given vertex v (1st column), its owner α (2nd column),
successors w ∈ vE (3rd column) and configuration mapping θ(v, w) (3rd column), and
priority p(v) (4th column) are given.

Vertex Owner Successor(s) | Configurations Priority
(s, true) 1 0
(s, false) 0 0
(s, ψ1 ∧ ψ2) 1 (s, ψ1) | P and (s, ψ2) | P 0
(s, ψ1 ∨ ψ2) 0 (s, ψ1) | P and (s, ψ2) | P 0

(s, [a]ψ) 1 (t, ψ) | Pγ for every s
a|γ−−−→F t 0

(s, 〈a〉ψ) 0 (t, ψ) | Pγ for every s
a|γ−−−→F t 0

(s, νX.ψ) 1 (s, ψ[X := νX.ψ]) | P 2�ADφ(X)/2	
(s, μX.ψ) 1 (s, ψ[X :=μX.ψ]) | P 2�ADφ(X)/2	 + 1

next definition shows how to exploit these configurations to efficiently encode the
SPL model checking problem as a variability parity game solving problem, based
on the game-based semantics of the modal μ-calculus we presented in Section 2.

Definition 10. Let F = (S, θF , s0) be an FTS, let P be the set of all products,
and let φ be a closed modal μ-calculus formula. The variability parity game Fφ =
(V,E,C, p, θ, (V0, V1)) associated with F and φ, with V = S×FL(φ) and C = P,
is defined by the rules given in Table 2.

Note that the size of the graph underlying variability parity game Fφ, measured
in terms of |V |+ |E|, is linear in the size of formula φ and the FTS F , measured
in terms of |S|+ |{(s, a, t) ∈ S ×Act× S | θ(s, a, t)
= ⊥}|. Hence, the structural
information in an FTS is compactly reflected in the variability parity game which
encodes the SPL model checking problem for the FTS. The correctness of the
encoding is expressed by the Theorem 1.

Theorem 1. For a given FTS F , a closed modal μ-calculus formula φ, and a
product P, we have F |P, s |= φ iff player 0 wins the vertex (s, φ) for configura-
tion P in the variability parity game Fφ associated to F and φ.

Proof (sketch). Fix an FTS F and a closed modal μ-calculus formula φ. Let P

be a product. It is not hard to show that the parity game we obtain by encoding
the model checking problem F |P, s |= φ (cf. Definition 5) is isomorphic to the
projection of Fφ onto P, viz. Fφ|P. �
We revisit the SPL model checking problem of Example 3, illustrating the encod-
ing of Definition 10. By abuse of notation, we write feature expressions instead
of sets of configurations in variability parity games associated to SPL model
checking problems.

Example 4. Consider the FTS F of Example 2 and the modal μ-calculus for-
mula φ of Example 1, both for convenience repeated in Fig. 2. The variability
parity game Fφ encoding the SPL model checking problem for F and φ is de-
picted on the right in Fig. 2 (ignoring all dashed self loops for now). We omitted
most state annotations to yield a more readable figure.

Family-Based SPL Model Checking with Variability Parity Games 253

s0 s1 s2

F

ins|

std|e

ins|$

xxl|

φ
︷ ︸︸ ︷

νX. μY.

φ2
︷ ︸︸ ︷

([ins]Y ∧ [xxl]Y
︸ ︷︷ ︸

φ3

∧[std]X)

︸ ︷︷ ︸

φ1

2
(s0, φ)

1 0

0

0

0

0
(s0, [ins]φ1)

1

00
(s1, [std]φ)

0

0

0
(s1, [ins]φ1)

10

0

0

0

0 (s2, [xxl]φ1)

¬e

e

¬$

$

Fig. 2. Variability parity game encoding the SPL model checking problem for F and φ.

Observe that the graph structure of the variability parity game Fφ is the same
as that of the parity game of Example 1 in Fig. 1. The construction leading to
the variability parity game only differs in the construction of the parity game
with respect to the edge annotations. Furthermore, note that vertex (s0, φ) is
won by player 0 for the set of configurations ¬$, whereas player 1 wins the
set of configurations $: for configurations containing the feature $, player 1 can
essentially reuse the strategy of Example 1, avoiding the vertex with priority 2.
For configurations not containing the feature $, this option is not available, since
the vertex (s1, [ins]φ1) is a sink. For products with feature e but not $, the only
infinite play infinitely often visits vertex (s0, φ). For products without features
e and $ all plays starting in (s0, φ) are finite. Hence, by Theorem 1, the solution
to the SPL model checking problem is the pair (¬$, $), as expected. �

5 Recursively Solving Variability Parity Games

Given a variability parity game G and a vertex v of G, a straightforward way
of solving the variability parity game problem for v is by simply solving the
standard parity game problem G|c for every c ∈ C. In doing so, however, we ignore
that players can potentially use (parts of) a single strategy for possibly many
different configurations. As opposed to the above solving strategy, to which we
refer as the individual solving strategy, we investigate an alternative for variability
parity games, called the collective solving strategy.

We provide an algorithm, Algorithm 1, for solving variability parity games
inspired by the classical recursive algorithm for solving parity games [27]. The
recursive algorithm is, despite its unappealing theoretical worst-case complexity,
in practice one of the most effective algorithms for solving parity games [28,29].
It is a divide-and-conquer algorithm that relies on two building blocks, viz. the

254 M. H. ter Beek et al.

concept of a subgame computation and of an attractor computation. We generalise
and adapt these concepts to the setting of variability parity games.

Fix a variability parity game G = (V,E,C, p, θ, (V0, V1)). For simplicity we
assume that G is total. This is not a limitation; any variability parity game can
be turned into a total one. The auxiliary notion of a restriction is a mapping
� : V → 2C which, for a variability parity game G, indicates which configurations
are under consideration for a vertex. Given such a restriction �, we say that a
vertex v for configuration c ∈ C is won by player α in the game G restricted to �
iff c ∈ �(v) and the winning strategy for α only passes through vertices v′ for
which c ∈ �(v′). We say that G is total with respect to � iff for all v ∈ V and all
c ∈ �(v), there is a vertex w such that w ∈ vE and c ∈ θ(v, w) ∩ �(w).

Let U,U ′ : V → 2C be arbitrary mappings. The union of U and U ′, denoted
U ∪ U ′, is defined point-wise, i.e. (U ∪ U ′)(v) = U(v) ∪ U(v′). We say that
mapping U is a sub-mapping of � iff for all v ∈ V we have U(v) ⊆ �(v). The
reduction of � with respect to a sub-mapping U , denoted �\U , is a new restriction
defined as (�\U)(v) = �(v)\U(v).

For a given sub-mapping U : V → 2C of a restriction �, the α-attractor
towards U is a sub-mapping of � which assigns those configurations to a vertex
for which player α can force the play to reach some vertex v for which that
configuration belongs to U(v). Formally, we define Attrα(U), in the context of �
and G, as Attrα(U)(v) =

⋃
i≥0 Attr iα(U)(v), where

Attr0α(U)(v) = U(v)

Attr i+1
α (U)(v) = Attr iα(U)(v) ∪
{ c ∈ �(v) | v ∈ Vα ∧ ∃w ∈ vE : c ∈ θ(v, w) ∩ �(w) ∩ Attr iα(U)(w) } ∪

{ c ∈ �(v) | v ∈ Vᾱ ∧ ∀w ∈ vE : c ∈ (C\(θ(v, w) ∩ �(w))) ∪ Attr iα(U)(w) }

Thus, in case v ∈ Vα and c ∈ �(v), configuration c is in Attr i+1
α (U)(v) if for a

move by player α to some vertex w allowed for configuration c, the sub-attractor
Attr iα(U)(w) can be reached. In case v ∈ Vᾱ and c ∈ �(v), configuration c is in
Attr i+1

α (U)(v) if all moves for player ᾱ are not allowed for configuration c or lead
to a vertexw in the sub-attractor Attr iα(U)(w) for playerα forA.

Example 5. Reconsider the variability parity game of Example 4. First, observe
that it is not total. In this case, the variability parity game can be made total
without changing the solution by taking into account also the dashed self loops.

Let �(v) = C and define U(s0, φ) = C and U(v) = ∅ for all v
= (s0, φ).
For vertex (s0, φ) we have Attr0(U)(s0, φ) = {∅, {$}, {e}, {$,e}}. All vertices v
on the (single) path starting in (s0, [ins]φ1) and ending in (s1, [std]φ) satisfy
Attr0(U)(v′) = {{$,e}}. The remaining vertices v′ satisfy Attr0(U)(v′) = ∅.
Note that for no configuration the immediate predecessor of (s0, [ins]φ1) is at-
tracted to U because of the escape to the sink that player 1 can use. �

We have the following result, which can be proven by induction on i following
the definition of Attrα(U)(v) =

⋃
i≥0 Attr iα(U)(v).

Family-Based SPL Model Checking with Variability Parity Games 255

Algorithm 1 Recursive Algorithm for a fixed variability parity game G =
(V,E,C, p, θ, (V0, V1)). Given a restriction � : V → 2C, the algorithm returns
a pair of functions (W0,W1) where W0,W1 : V → 2C denote, for each vertex,
which set of configurations is won by player 0 (player 1, respectively).
1: function Solve(�)
2: if � = λv ∈ V. ∅ then
3: (W0,W1) ← (λv ∈ V. ∅, λv ∈ V. ∅)
4: else
5: m ← max{ p(v) | v ∈ V ∧ �(v) �= ∅ }
6: α ← m mod 2
7: U ← λv ∈ V. {�(v) | p(v) = m}
8: A ← Attrα(U)
9: (W ′

0,W
′
1) = Solve(�\A)

10: if Wᾱ′ = λv ∈ V. ∅ then
11: Wα ← W ′

α ∪A
12: Wᾱ ← W ′

ᾱ

13: else
14: B ← Attrᾱ(W ′

ᾱ)
15: (W ′′

0 ,W
′′
1) = Solve(�\B)

16: Wα ← W ′′
α

17: Wᾱ ← W ′′
ᾱ ∪B

18: end if
19: end if
20: return (W0,W1)
21: end function

Lemma 1. Let G = (V,E,C, p, θ, (V0, V1)) be a variability parity game, let � :
V → 2C a restriction, and let α be an arbitrary player. Then for all sub-
mappings U of �, also Attrα(U) is a sub-mapping of �. �
Totality of a game is preserved for the complements of attractors of sub-mappings.

Lemma 2. Let G = (V,E,C, p, θ, (V0, V1)) be a variability parity game and let
� : V → 2C be a restriction such that G is total with respect to �. Then G is total
with respect to �\Attrα(U) for all sub-mappings U of � and each player α.

Proof. Let G and � be as stated. Consider an arbitrary mapping U : V → 2C, and
let A = Attrα(U) be the α-attractor towards U . By Lemma 1, A is a sub-mapping
of �. Towards a contradiction, assume that G is not total with respect to �\A.
Then there is some vertex v ∈ V and some configuration c ∈ (�\A)(v) such
that for all w ∈ vE, if c ∈ θ(v, w) then c /∈ (�\A)(w). Pick such a vertex v and
configuration c. Since G is total with respect to �, we know that there is at least
one w ∈ vE with c ∈ θ(v, w) and c ∈ �(w). Let w ∈ vE be such that c ∈ θ(v, w)
and c ∈ �(w). It then follows that c /∈ (�\A)(w), and, hence, c ∈ A(w). So, for
all w ∈ vE for which c ∈ θ(v, w) and c ∈ �(w) we have c ∈ A(w). But then, by
definition of α-attractor, also c ∈ A(v). Contradiction, since c ∈ (�\A)(v). �
We proceed with the following result regarding the propagation of winning with
respect to a sub-mapping along an attractor.

256 M. H. ter Beek et al.

Lemma 3. Let G = (V,E,C, p, θ, (V0, V1)) be a variability parity game and let
� : V → 2C be a restriction. Let α be an arbitrary player and suppose U is a
sub-mapping of �. If for all v ∈ V , player α wins vertex v for all configurations
c ∈ U(v), then α wins vertex v for all configurations c ∈ Attrα(U)(v).

Proof. Let �, α and U be as stated. We proceed by induction on i with respect
to the definition of Attr iα(U).

Base case (i = 0): Follows by assumption. Induction step (i > 0): Suppose
player α wins vertex v for all configurations c ∈ Attr iα(U)(v). Pick an arbitrary
vertex v′ and configuration c′ ∈ Attr i+1

α (U)(v′). Since c′ ∈ Attr i+1
α (U)(v′), we

have c′ ∈ �(v). If c′ ∈ Attr iα(U)(v′), the result follows instantly by induction. If
c′ /∈ Attr iα(U)(v′), then we distinguish two cases.

Case v′ ∈ Vα: Then there must be some w ∈ v′E such that c′ ∈ θ(v′, w) and
c′ ∈ Attr iα(U)(w). Let w be such. Then player α can play a c′-configured token
from v′ to w and, by induction, win vertex w for configuration c′. But then she
also wins vertex v′ for configuration c′.

Case v′ ∈ Vᾱ. Then, for all w ∈ v′E such that c′ ∈ θ(v′, w), also c′ ∈
Attr iα(U)(w). Since regardless of how player ᾱ moves the c′-configured token
from v′ along an edge admitting c′, she will end up in a vertex that, by induction,
is won by α for configuration c′. �
The next theorem captures the correctness of Algorithm 1.

Theorem 2. Let G = (V,E,C, p, θ, (V0, V1)) be a variability parity game and
let � : V → 2C be a restriction such that G is total with respect to �. Then
Solve(�) returns the mappings W0,W1 : V → 2C such that for all v ∈ V ,
W0(v) ∪W1(v) = C and both for player 0 and 1, for each c ∈ Wα(v), player α
wins vertex v for configuration c.

Proof. Fix a total variability parity game G = (V,E,C, p, θ, (V0, V1)). We prove a
slightly stronger property, viz. for all restrictions � : V → 2C such that G is total
with respect to �, procedure Solve(�) returns mappings W0,W1 : V → 2C that
are sub-mappings of � such that for all v ∈ V it holds that W0(v)∪W1(v) = �(v)
and player α wins vertex v for each configuration c ∈ Wα(v). Let us define
|�| = ∑

v∈V |�(v)|. The proof will proceed by induction on |�| and closely follows
the standard proofs of correctness for parity games.

Base case: We have �(v) = ∅ for all v ∈ V . Consequently, the algorithm
returns the functions W0 and W1 satisfying W0(v) = W1(v) = ∅ for all v ∈ V .
Trivially W0 and W1 satisfy the statement.

Induction step: Let � be a restriction such that G is total with respect to �.
As our induction hypothesis, assume that the statement holds for all �′ such that
|�′| < |�|. Let m be the maximal priority among those vertices in G for which �
yields a non-empty set of configurations, and let α be m mod 2. Let U be the
sub-mapping of � for which U(v) = �(v) if p(v) = m, and U(v) = ∅ otherwise,
and let A be the sub-mapping Attrα(U). By Lemma 2, G is total with respect
to �\A, and hence, by induction, the functions W ′

0, W
′
1 returned by Solve(�\A)

satisfy the statement. Next, we distinguish two cases.

Family-Based SPL Model Checking with Variability Parity Games 257

Case W ′
ᾱ(v) = ∅ for all v. Then, by our induction hypothesis, player α wins all

vertices v for configurations c ∈ W ′
α(v) in the game restricted to �\A. Regarding

the remaining vertices, note that for vertices v∈Vᾱ and configurations c∈W ′
α(v)

with an edge to a vertex w with c∈A(w), player ᾱ may escape to such vertices.
However, then α can force the play to visit a vertex with priority m. Remaining
in vertices with priority m means losing for ᾱ. Playing to any vertex other than
those in U leads to a play that remains either in Wα or infinitely often revisits U .
In either case, α wins such plays. For vertices v∈Vα and configurations c∈�(v),
player α either follows the winning strategy in W ′

α or the attractor strategy for A
towards a vertex in U . Consequently, α wins all vertices v for all configurations
c∈�(v), which is consistent with Wα and Wᾱ as returned by Solve.

Case W ′
ᾱ(v)
= ∅ for some v. Since player ᾱ wins any vertex v for configuration

c ∈ W ′
ᾱ(v) in the game restricted to �\A, and player α cannot force the play

to a vertex w for which c ∈ A(w), player ᾱ also wins all such vertices and
configurations in G restricted to �. By Lemma 3, ᾱ thus also wins all vertices v
for configurations c ∈ B = Attrᾱ(W ′

ᾱ)(v). By Lemma 2, G is total with respect
to �\B, and hence, by induction, the functions W ′′

0 ,W
′′
1 returned by the call

Solve(�\B) satisfy the statement. It then follows that player α wins all vertices v
for configurations c ∈ W ′′

α (v) and player ᾱ wins all vertices v for configurations
c ∈ (Wᾱ ∪B)(v) as set by Solve. �
Algorithm 1 requires that the attractor Attrα(U) for a sub-mapping U can be
computed (cf. line 8 of the algorithm). To cater for this, the attractor com-
putation for sub-mappings can be implemented following the pseudo-code of
Algorithm 2, the correctness of which is claimed by Lemma 4.

Lemma 4. For a restriction � : V → 2C, a sub-mapping U : V → 2C of � and
a player α, Attr(α,U) terminates and returns a sub-mapping A of � satisfying
A = Attrα(U). �
Algorithm 2 is actually a straightforward implementation of the definition of
the attractor set computation following the high-level structure of the attractor
computation for standard parity games. We forego a detailed proof of Lemma 4,
which, for soundness, uses an invariant stating that the computed sub-mapping
A under-approximates Attrα(U) and for completeness uses an invariant that
asserts for all configurations c∈Attrα(U)(v) either c∈A(v) or there is a vertex
v′ ∈ Q and attractor strategy underlying Attrα(U)(v) inducing a play for c,
starting in v, visiting v′ and not visiting vertices v′′ with c∈A(v′′) in between.

Instead, we briefly explain the underlying intuition. It conducts a typical
backwards reachability analysis, maintaining a queue Q of vertices that are at
the frontier of the search for at least some configurations. For each vertex w in
this frontier, its predecessors v ∈ Ew are inspected in a for-loop. Either such a
predecessor is owned by player α, in which case all configurations that can reach
w in one step are added to the attractor set for v, or such a predecessor is owned
by player ᾱ, in which case all v’s successors must be inspected, and only those
configurations c of v for which all their successor options are to move to some
vertex w′ already satisfying c ∈ A(w′) are added to its attractor.

258 M. H. ter Beek et al.

Algorithm 2 Attractor computation. Given a variability parity game G =
(V,E,C, p, θ, (V0, V1)), a restriction � : V → 2C and a sub-mapping U of �,
the algorithm computes the α-attractor towards U .

1: function Attr(α,U)
2: Queue Q ← { v ∈ V | U(v) �= ∅ }
3: A ← U
4: while Q is not empty do
5: w ← Q.pop()
6: for every v ∈ Ew such that �(v) ∩ θ(v, w) ∩A(w) �= ∅ do
7: if v ∈ Vα then
8: a ← �(v) ∩ θ(v, w) ∩A(w)
9: else

10: a ← �(v)
11: for w′ ∈ vE such that �(v) ∩ θ(v, w′) ∩ �(w′) �= ∅ do
12: a ← a ∩ (C \ (θ(v, w′) ∩ �(w′)) ∪A(w′))
13: end for
14: end if
15: if a \A(v) �= ∅ then
16: A(v) ← A(v) ∪ a
17: if v /∈ Q then Q.push(v)
18: end if
19: end for
20: end while
21: return A
22: end function

6 Implementation and Experiments

As an initial validation of our approach we experimented with two SPL examples,
viz. the well-known minepump and elevator case studies first recognised as SPLs
in [3, 14], modelled for the mCRL2 toolset [20,21].

A prototype for solving variability parity games connecting to the mCRL2
toolset was implemented in C++ using the BuDDy package [31, 32] for BDD
operations. The prototype uses BDDs to represent product families; parity games
are represented as graphs with adjacency lists for incoming and outgoing edges.
For the recursive algorithm, bit vectors are used to represent sets of vertices
sorted by parity then by priority. All experiments were run on a standard Linux
desktop with Intel i5-4570 3.20Hz processor and 8GB DDR3 internal memory.3

6.1 Minepump Case Study

The minepump example of [33], in the SPL variant of [4], describes a configurable
software system coordinating the sensors and actuators of a pump for mine
drainage. The purpose of the system is to keep a mine shaft free from water.

3 Solvers and experiments: https://github.com/SjefvanLoo/VariabilityParityGames

Family-Based SPL Model Checking with Variability Parity Games 259

A controller operates a pump that may not start nor continue running in the
presence of dangerously high levels of methane gas. To this end, it needs to
communicate with sensors that measure the water and methane levels. The SPL
model has 11 features and 128 products; the resulting FTS consists of 582 states
and 1376 transitions. The mCRL2 code of this model, developed for [19], closely
follows the fPROMELA code of [4] (also used in [16]) that is distributed with [8].

We verified nine properties, ϕ1 to ϕ9, for the minepump case study, examined
also elsewhere in the SPL literature (cf., e.g. [3, 4, 7, 16, 19, 24, 34–36]). These
induce variability parity games consisting of approximately 3000 to 9200 vertices
and 2 to 4 different priorities. Specifically, for properties ϕ1, ϕ4, and ϕ7, we used
the following formulae, expressed in the mCRL2 variant of the modal μ-calculus,
which allows to mix fixed points, regular expressions, and first-order constructs.

Property ϕ1. Absence of deadlock: [true*] <true> true

Property ϕ4. The pump cannot be switched on infinitely often:
(mu X. nu Y. ([pumpStart] [!pumpStop*] [pumpStop] X &&

[!pumpStart] Y)) && ([true*] [pumpStart] mu Z. [!pumpStop] Z)

Property ϕ7. The controller can always eventually receive/read a message, i.e.
return to its initial state from any state: [true*] <true*> <receiveMsg> true

While ϕ4 is a common LTL-type formula, ϕ7 is typical for CTL. Table 3 provides
the running times for verification of properties ϕ1 to ϕ9 via variability parity
games, and the sizes of classes (P+, P−) partitioning P. The results show that
the collective solving strategy for family-based SPL model checking outperforms
the individual solving strategy for product-based SPL model checking.

While a full baseline comparison with other SPL model checking algorithms
was not performed, our approach promises to be at least as efficient as related
approaches. This conjecture is based on the running times reported for properties
ϕ1, ϕ4, and ϕ6 in [4, 16,19] (all verified with standard computers of that time).

Table 3. Running times (in ms) for experiments for the product-based and family-
based SPL model checking of the minepump and elevator case studies using recursive
algorithm for variability parity games.

Minepump SPL Elevator SPL
Property product family |P+| / |P−| Property product family |P+| / |P−|

ϕ1 28.88 3.92 128/0 ψ1 14335 5409 2/30

ϕ2 54.79 6.76 0/128 ψ2 14988 5744 4/28

ϕ3 184.7 24.70 0/128 ψ3 16045 5020 4/28

ϕ4 145.0 37.46 96/32 ψ4 16865 5272 4/28

ϕ5 144.5 12.19 96/32 ψ5 8954 3013 16/16

ϕ6 242.9 42.79 112/16 ψ6 4252 772 32/0

ϕ7 134.3 11.71 128/0 ψ7 4171 765 32/0

ϕ8 17.44 1.058 128/0

ϕ9 110.0 6.853 0/128

260 M. H. ter Beek et al.

6.2 Elevator Case Study

The other configurable system we considered is the elevator example of [37] of a
lift travelling between five floors. A product in the elevator system may or may
not provide the features of parking, load and overload detection, cancelling on
emptiness, and priority for specific floors. Absence or presence of specific features
in a system configuration generally leads to different behaviour. The behaviour of
the lift itself is governed by the so-called single button collective control strategy,
deciding which floor is visited next. Roughly speaking, and dependent on the
specific feature setting, the lift operates in sweeps, only changing direction if
there are no outstanding calls in the current direction. The FTS implementation
in mCRL2 underlying the experiments is derived from the 120 lines of SMV code
presented in [37]. Although the number of features in this SPL example is small,
viz. only 5 independent features resulting in 32 different configurations, the FTS
consists of 95591 states and 622265 transitions.

The seven properties, ψ1 to ψ7 for the elevator case study, also examined
elsewhere in the literature (cf., e.g. [10–12, 14, 15, 25, 26, 35, 38]), which we ex-
perimented with were adapted from [37]. These induce variability parity games
consisting of approximately 440000 to 18500000 vertices with 2 to 3 different
priorities. The properties cover a proper handling of requests, correct behaviour
with respect to the control strategy, proper behaviour when idling, and the pos-
sibility to stop at floors while passing. By way of illustration, properties ψ2, ψ3,
and ψ5 are expressed as follows in the mCRL2 variant of the modal μ-calculus.

Property ψ2. Invariantly, if a lift button is pressed for a floor, the lift will even-
tually open its doors on this floor:

[true*] forall i:Floor. [liftButton(i)]
(mu X. ([!open(i)] X && <true> true))

Property ψ3. Invariantly, if the lift is travelling up while there are calls above
the lift will not change direction:

[true*] (([direction(up).
(!(direction(down) || exists k:Floor. open(k)))*]

forall i:Floor. val(1 <= i && i <= 5) =>
[open(i)] forall j:Floor. val(i < j && j <= 5) =>

[liftButton(j)] mu Y. ([!open(j)] Y &&
[direction(down)] false && < true > true)))

Property ψ5. Invariantly, if the lift is idling, it does not change floors:

(forall i:Floor. val(1 <= i && i <= 5) =>
<true*.idling(i)> true) &&

([true*] forall i:Floor. val(1 <= i && i <= 5) =>
[idling(i)] nu Y. <idling(i)> Y)

Family-Based SPL Model Checking with Variability Parity Games 261

It is noted, in particular with regard to property ψ5, that unlike the original SMV
elevator system, our lift idles with its doors open, to prevent the situation where
someone in the lift infinitely often presses the landing button for the current
floor, keeping the process busy without the lift making any movement.

Also in the case of the elevator system we notice a significant difference in
performance when doing product-based model checking calling the individual
solving strategy or family-based model checking calling the collective solving
strategy. The difference is, however, not that striking compared to the minepump
case study, which, we believe, is due to the small number of different features.

As said, a full baseline comparison with other SPL model checking algorithms
was not performed. For one, the efficiency of our approach with respect to related
approaches is not easily measured with the elevator case study. While properties
ψ2 and ψ5 were verified also in [14,15,25,26,35,38], not much can be concluded
from the reported running times. First, our model’s mCRL2 code was developed
from scratch, following the SMV code from [37], and not the fPROMELA code
of [14, 15, 25, 26, 35, 38]. Moreover, the number of floors in these models ranges
from 4 to 6. In [10–12], finally, the models are probabilistic, the number of floors
ranges from 2 to 40, and different (probabilistic) properties were verified.

7 Conclusions

We have introduced variability parity games as a generalisation of parity games,
reflecting the generalisation by FTSs of LTSs, and have defined the SPL model
checking problem of modal μ-calculus formulae on FTSs as a variability parity
game solving problem, for which we have provided a recursive algorithm based
on a collective, family-based solving strategy. To illustrate the efficiency of the
approach, we have applied it to two classical examples from the SPL literature,
viz. the minepump and the elevator case studies. The experiments show that the
collective, family-based strategy of solving variability parity games typically out-
performs the individual, product-based strategy of solving the standard parity
games obtained by projection from the variability parity games

Further experiments are needed to measure and pinpoint the differences in
efficiency. One direction for future work is to generate a sufficient number of
random variability parity games to this aim. In particular, the configuration sets
that label the edges of the variability parity games for the minepump and elevator
case studies obey a very specific distribution, typically admitting either 100%
or 50% of the configurations. It would be interesting to see how our approach
behaves in case of SPLs with more complexly structured feature diagrams.

There is a wealth of different algorithms available for parity games, of which
the recursive algorithm that we have here lifted to variability parity games is one
of the most competitive ones in practice. Nevertheless, we think it pays to study
other algorithms and lift these to variability parity games, too. Finally, we believe
that variability parity games have applications beyond SPL model checking; e.g.
in (parameter) synthesis problems. We leave these topics for future research.

Acknowledgements Work partially supported by the MIUR PRIN 2017FTXR7S
project IT MaTTerS (Methods and Tools for Trustworthy Smart Systems).

262 M. H. ter Beek et al.

References

1. A. Classen, P. Heymans, and P.-Y. Schobbens. What’s in a Feature: A Require-
ments Engineering Perspective. In J.L. Fiadeiro and P. Inverardi, editors, FASE’08,
volume 4961 of LNCS, pages 16–30. Springer, 2008.

2. S. Apel, D. Batory, C. Kästner, and G. Saake. Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer, 2013.

3. A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin. Model
Checking Lots of Systems: Efficient Verification of Temporal Properties in Software
Product Lines. In Proc. ICSE’10, pages 335–344. ACM, 2010.

4. A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay, and J.-F. Raskin.
Featured Transition Systems: Foundations for Verifying Variability-Intensive Sys-
tems and their Application to LTL Model Checking. IEEE Trans. Softw. Eng.,
39(8):1069–1089, 2013.

5. M. Cordy, X. Devroey, A. Legay, G. Perrouin, A. Classen, P. Heymans, P.-Y.
Schobbens, and J.-F. Raskin. A Decade of Featured Transition Systems. In M.H.
ter Beek, A. Fantechi, and L. Semini, editors, From Software Engineering to Formal
Methods and Tools, and Back, volume 11865 of LNCS, pages 285–312. Springer,
2019.

6. T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake. A Classification and
Survey of Analysis Strategies for Software Product Lines. ACM Comput. Surv.,
47(1):6:1–6:45, 2014.

7. A. Classen, M. Cordy, P. Heymans, A. Legay, and P.-Y. Schobbens. Model checking
software product lines with SNIP. Int. J. Softw. Tools Technol. Transf., 14(5):589–
612, 2012.

8. M. Cordy, A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay. ProVeLines:
a product line of verifiers for software product lines. In Proc. SPLC’13, volume 2,
pages 141–146. ACM, 2013.

9. M.H. ter Beek, F. Mazzanti, and A. Sulova. VMC: A Tool for Product Variability
Analysis. In D. Giannakopoulou and D. Méry, editors, Proc. FM’12, volume 7436
of LNCS, pages 450–454. Springer, 2012.

10. P. Chrszon, C. Dubslaff, S. Klüppelholz, and C. Baier. Family-Based Modeling
and Analysis for Probabilistic Systems – Featuring ProFeat. In P. Stevens and
A. Wąsowski, editors, Proc. FASE’16, volume 9633 of LNCS, pages 287–304, 2016.

11. P. Chrszon, C. Dubslaff, S. Klüppelholz, and C. Baier. ProFeat: feature-oriented
engineering for family-based probabilistic model checking. Form. Asp. Comp.,
30(1):45–75, 2018.

12. M.H. ter Beek, A. Legay, A. Lluch Lafuente, and A. Vandin. A framework for
quantitative modeling and analysis of highly (re)configurable systems. IEEE Trans.
Softw. Eng., 2018.

13. A. Vandin, M.H. ter Beek, A. Legay, and A. Lluch Lafuente. QFLan: A Tool
for the Quantitative Analysis of Highly Reconfigurable Systems. In K. Havelund,
J. Peleska, B. Roscoe, and E. de Vink, editors, Proc. FM’18, volume 10951 of
LNCS, pages 329–337. Springer, 2018.

14. A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay. Symbolic Model Checking
of Software Product Lines. In Proc. ICSE’11, pages 321–330. ACM, 2011.

15. A. Classen, M. Cordy, P. Heymans, A. Legay, and P.-Y. Schobbens. Formal se-
mantics, modular specification, and symbolic verification of product-line behaviour.
Sci. Comput. Program., 80(B):416–439, 2014.

Family-Based SPL Model Checking with Variability Parity Games 263

16. A.S. Dimovski, A.S. Al-Sibahi, C. Brabrand, and A. Wąsowski. Family-Based
Model Checking Without a Family-Based Model Checker. In B. Fischer and
J. Geldenhuys, editors, Proc. SPIN’15, volume 9232 of LNCS, pages 282–299.
Springer, 2015.

17. M. Lochau, S. Mennicke, H. Baller, and L. Ribbeck. Incremental model checking of
delta-oriented software product lines. J. Log. Algebr. Meth. Program., 85(1):245–
267, 2016.

18. M.H. ter Beek and E.P. de Vink. Using mCRL2 for the Analysis of Software
Product Lines. In Proc. FormaliSE’14, pages 31–37. IEEE, 2014.

19. M.H. ter Beek, E.P. de Vink, and T.A.C. Willemse. Family-Based Model Checking
with mCRL2. In M. Huisman and J. Rubin, editors, Proc. FASE’17, volume 10202
of LNCS, pages 387–405. Springer, 2017.

20. S. Cranen, J.F. Groote, J.J.A. Keiren, F.P.M. Stappers, E.P. de Vink, W. Wes-
selink, and T.A.C. Willemse. An Overview of the mCRL2 Toolset and Its Recent
Advances. In N. Piterman and S.A. Smolka, editors, Proc. TACAS’13, volume
7795 of LNCS, pages 199–213. Springer, 2013.

21. O. Bunte, J.F. Groote, J.J.A. Keiren, M. Laveaux, T. Neele, E.P. de Vink, W. Wes-
selink, A. Wijs, and T.A.C. Willemse. The mCRL2 Toolset for Analysing Con-
current Systems: Improvements in Expressivity and Usability. In T. Vojnar and
L. Zhang, editors, Proc. TACAS’19, volume 11428 of LNCS, pages 21–39. Springer,
2019.

22. M.H. ter Beek, E.P. de Vink, and T.A.C. Willemse. Towards a Feature mu-Calculus
Targeting SPL Verification. Electr. Proc. Theor. Comput. Sci., 206:61–75, 2016.

23. A.S. Dimovski. Symbolic Game Semantics for Model Checking Program Families.
In D. Bošnački and A. Wijs, editors, Proc. SPIN’16, volume 9641 of LNCS, pages
19–37. Springer, 2016.

24. A.S. Dimovski and A. Wąsowski. Variability-Specific Abstraction Refinement
for Family-Based Model Checking. In M. Huisman and J. Rubin, editors, Proc.
FASE’17, volume 10202 of LNCS, pages 406–423. Springer, 2017.

25. A.S. Dimovski. Abstract Family-Based Model Checking Using Modal Featured
Transition Systems: Preservation of CTL∗. In A. Russo and A. Schürr, editors,
Proc. FASE’18, volume 10802 of LNCS, pages 301–318. Springer, 2018.

26. A.S. Dimovski, A. Legay, and A. Wąsowski. Variability Abstraction and Refine-
ment for Game-Based Lifted Model Checking of Full CTL. In R. Hähnle and
W. van der Aalst, editors, Proc. FASE’19, volume 11424 of LNCS, pages 192–209.
Springer, 2019.

27. W. Zielonka. Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theor. Comput. Sci., 200(1-2):135–183, 1998.

28. O. Friedmann and M. Lange. Solving Parity Games in Practice. In Z. Liu and A.P.
Ravn, editors, Proc. ATVA’09, volume 5799 of LNCS, pages 182–196. Springer,
2009.

29. T. van Dijk. Oink: An Implementation and Evaluation of Modern Parity Game
Solvers. In D. Beyer and M. Huisman, editors, Proc. TACAS’18, volume 10805 of
LNCS, pages 291–308. Springer, 2018.

30. J.C. Bradfield and I. Walukiewicz. The mu-calculus and model checking. In E.M.
Clarke, T.A. Henzinger, H. Veith, and R. Bloem, editors, Handbook of Model Check-
ing, chapter 26, pages 871–919. Springer, 2018.

31. J. Lind-Nielsen. BuDDy: A Binary Decision Diagram package. Technical Report
IT-TR 1999–028, IT University of Copenhagen, 1999.

32. H. Cohen, J. Whaley, J. Wildt, and N. Gorogiannis. BuDDy: A Binary Decision
Diagram library. http://sourceforge.net/p/buddy/. Last visited October 18, 2019.

264 M. H. ter Beek et al.

33. J. Kramer, J. Magee, M. Sloman, and A. Lister. CONIC: an integrated approach
to distributed computer control systems. IEE Proc. E, 130(1):1–10, 1983.

34. X. Devroey, G. Perrouin, M. Papadakis, A. Legay, P.-Y. Schobbens, and P. Hey-
mans. Featured Model-based Mutation Analysis. In Proc. ICSE’16, pages 655–666.
ACM, 2016.

35. A.S. Dimovski, A.S. Al-Sibahi, C. Brabrand, and A. Wąsowski. Efficient family-
based model checking via variability abstractions. Int. J. Softw. Tools Technol.
Transf., 19(5):585–603, 2017.

36. M.H. ter Beek, F. Damiani, M. Lienhardt, F. Mazzanti, and L. Paolini. Static
Analysis of Featured Transition Systems. In Proc. SPLC’19, pages 39–51. ACM,
2019.

37. M. Plath and M. Ryan. Feature integration using a feature construct. Sci. Comput.
Program., 41(1):53–84, 2001.

38. A.S. Dimovski. CTL∗ family-based model checking using variability abstractions
and modal transition systems. Int. J. Softw. Tools Technol. Transf., 22(1):35–55,
2020.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

Family-Based SPL Model Checking with Variability Parity Games 265

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 266–272, 2020.
https://doi.org/10.1007/978-3-030-45234-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_13&domain=pdf

Model-based tool support for Service Design 267

268 F. J. Pérez-Blanco et al.

Model-based tool support for Service Design 269

270 F. J. Pérez-Blanco et al.

Model-based tool support for Service Design 271

272 F. J. Pérez-Blanco et al.

Incremental Concurrent Model Synchronization using

Triple Graph Grammars�

Fernando Orejas1 , Elvira Pino1 , and Marisa Navarro2

1 Universitat Politècnica de Catalunya Barcelona, Spain
{orejas,pino@cs.upc.edu}

2 Universidad del País Vasco, San Sebastián, Spain
marisa.navarro@ehu.es

Abstract. In the context of software model-driven development, artifacts are
specified by several models describing different aspects, e.g., different views,
dynamic behavior, structure, distributed information, etc. Then, maintaining and
repairing consistency of the whole specification are crucial issues if the models
can be separately developed and updated. Model Synchronization is the process
of restoring consistency after the update of one or several of the models. In the
present work, we approach the case when conflicts may arise due to concurrently
updating different models. Specifically, based on the Triple Graph Grammar ap-
proach, we propose an incremental algorithm CSynch for solving conflicts and
repairing consistency. In addition, we identify and formalize when a synchroniz-
ing solution can be considered adequate and show that our procedure CSynch is
sound and complete.

1 Introduction

In the context of model-driven development, artifacts are specified by several models
describing different aspects, e.g., different views, dynamic behaviour, structure, interac-
tions, etc. Moreover, a given set of models is said to be consistent if they describe some
software artifact. Along the process of designing and implementing an artifact, and also
after the artifact is implemented, it is common to modify or update some aspects of a
given model, or of several models. These changes may cause inconsistencies between
the given set of models. To restore consistency, we have to propagate these modifica-
tions to the rest of the models. This process is called model synchronization. If at each
time, we just propagate the updates on one model, synchronization is said sequential,
but if we propagate simultaneously updates on several models, synchronization is called
concurrent. Most existing work on model synchronization deals with the sequential
case, which is simpler than the concurrent one, since in the latter case we have to deal
with possible inconsistencies between the modifications applied to different models,
implying that in the synchronization process we may need to backtrack some updates.
Moreover, the existing approaches to concurrent synchronization [37,38,14,11,34,35]

� This work has been partially supported by funds from the Spanish Research Agency (AEI) and
the European Union (FEDER funds) under grant GRAMM (ref. TIN2017-86727-C2-1-R and
TIN2017-86727-C2-2-R)

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 273–293, 2020.
https://doi.org/10.1007/978-3-030-45234-6_14

http://orcid.org/0000-0002-3023-4006
http://orcid.org/0000-0003-3376-5096
http://orcid.org/0000-0002-7937-0236
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_14&domain=pdf

are based on sequentializing the process, i.e., on combining in some way propagation
procedures defined in sequential synchronization. For this reason, these approaches are
called propagation-based in [24], where it is shown that they have important limitations.

When the given concurrent updates are inconsistent among themselves, the syn-
chronization procedure must backtrack some of these updates to restore consistency.
However, in this case, not all synchronizing solutions are adequate. For instance, a pos-
sible inadequate solution could be backtracking all updates. None of the approaches
considering conflict resolution [14,11,34,35] define any form of adequacy, other than
consistency of the given result. Moreover, these approaches return only one possible
solution, which may not coincide with the user wishes.

A simple but powerful way of describing a class of consistent (synchronized) mod-
els is by using a Triple Graph Grammar (TGG) [27,28], since this approach provides
techniques and tools that allow the general formulation and resolution of problems as-
sociated with synchronization. In these years these techniques have had considerable
success, producing a large number of contributions of proven utility.

In [10], it is claimed that synchronization procedures should be incremental, mean-
ing that their execution cost should not depend on the size of the models, but on the
size of the update, so that the final consistent models must not be rebuilt from scratch.
Other approaches that propose incremental sequential synchronization procedures are
[22,12,25]. In contrast, none of the existing approaches to concurrent synchronization
is incremental.

The main contributions of this paper are:

– The definition of properties, other than consistency, to ensure the adequacy of con-
current synchronization solutions.

– The definition of a non-deterministic incremental algorithm for concurrent syn-
chronization, that is not propagation-based, whose solutions satisfy our adequacy
properties. The algorithm is nondeterministic to consider the possible choices of
conflict resolution. In particular, the algorithm is shown to be complete, in the sense
that it finds all adequate solutions to the synchronization problem.

The rest of the paper is organized as follows. In Sect. 2, we summarize the basic and
preliminary notions and terminology required in the rest of the paper, and we introduce
a running example. In Sect. 3 we introduce and formalize the properties that should be
satisfied by the synchronizing solutions in order to be considered adequate. In Sect. 4,
we propose our synchronizing algorithm which is proven to find all solutions that satisfy
the properties mentioned above. Finally, in Sections 5 and 6 we present related work,
conclude and describe future work.

2 Preliminaries

In this section, we describe some basic notions and terminology concerning model
transformation and model synchronization by Triple Graph Grammars (TGGs). More-
over, we introduce the example that we will use in the paper.

274 F. Orejas et al.

2.1 Triple Graph Grammars

TGGs are a formalism developed by Schürr ([27]) to specify and implement model
transformations. They are based on three main ideas:

– Models can be represented by some kind of graphs.
– Instead of representing a consistent pair of models by two graphs, it is better to do

it by a triple graph ([27]) which, in addition, includes the correspondence between
the elements of the two models.

– To specify the class of consistent triple graphs we use a (triple graph) grammar, i.e.,
a triple graph is consistent if it can be generated from a given start graph (typically,
the empty graph) using the production rules of the grammar.

More precisely, a triple graph G = (GS sG← GC tG→ GT) consists of a source graph
GS and a target graph GT , which are related via the correspondence graph GC and two
mappings (graph morphisms) sG :GC→GS and tG :GC→GT specifying how source ele-
ments correspond to target elements3. For simplicity, we use the notation 〈GS,GT 〉 whe-

the explicit correspondence graph can be omitted.

L

m
��

� � �� R

m′
��

G1
� � �� G2

Then, a TGG G consists of a start triple graph4, SG, and a set
of production rules of the form r : L→R, where L and R are triple
graphs and L ⊆ R. Then, L(G) = {G | SG ∗⇒G} is called the class
of consistent models and D(G) = {SG ∗⇒G} is the set of deriva-
tions defined by G , where ∗⇒ is the reflexive and transitive closure
of the one step transformation relation ⇒ defined as follows: G1⇒G2 if there is a pro-
duction rule r : L→R in G and a matching monomorphism m : L→G1 such that G2
can be obtained by replacing (the image of) L in G1 by (a corresponding image of) R.
Formally, this means that the diagram above on the right is a pushout in the category of
triple graphs. In this case, we write G1

r,m⇒G2, or just G1⇒G2 if r and m are implicit.
For instance, in Fig.1 we depict the graph grammar that we use as a running example

to illustrate our techniques. It is a simplified, and slightly modified, version of the well-
known transformation between class diagrams and relational schemas.

The graphs considered in this example are typed, which means that a type graph
describes the different classes of nodes and edges of our triple graphs, in a similar way
as a metamodel describes the kinds of elements that we have in a model. In particular,
the type graph of our example is depicted on the left of Fig.1. Source models, whose
type graph is depicted on the left, consist of three kinds of nodes: classes, attributes and
sub-attributes5, and three kinds of edges: A (thick) edge between two classes represents
a subclass relationship between them; attributes are bound to their associated classes
and sub-attributes to their associated attribute, respectively, by the second and third kind
of (thin) edges. Similarly, the type graph of target models is depicted on the right of the

3 In the context of this paper, it does not make too much sense to speak about source and target
models. Nevertheless, we have kept this terminology to simplify the notation for referring to
each of the two models involved.

4 As said above, without loss of generality, we consider that SG is always the empty triple graph.
5 It is not necessary to associate any semantics to sub-attributes and sub-columns since we just

use them to introduce a bit more complexity to the example.

Incremental Concurrent Model Synchronization 275

never

Fig. 1. Type graph, four rules for class-to-table transformations

type triple graph, consisting of tables, columns and sub-columns, together with edges
between them. Finally, in the middle, there is the type graph of the correspondence
models, consisting of three kinds of nodes: square nodes to bind classes with their
associated tables, round nodes to bind attributes with their associated columns, and
triangle nodes to bind sub-attributes with their associated sub-columns.

The rules of the TGG defining the consistent transformations between class dia-
grams and relational schemas are depicted on the right of Fig. 1. Rule r1, Class2Table,
creates a new class and its corresponding table, together with the correspondence ele-
ment that relates the class and the table. Rule r2, Attribute2Column, given a class and a
corresponding table, creates an attribute of that class, a related column of the table, and
their associated correspondence element. Rule r3, Subclass2Table, given a class and a
corresponding table, creates a new subclass. In this case, the subclass is related to the ta-
ble through a new correspondence element. Finally, rule r4, SubAttribute2SubColumn,
creates a new sub-attribute together with its corresponding sub-column.

On the left of Fig. 2 we depict a triple graph generated by this grammar. For in-
stance, it could have been created from the empty graph, firstly, applying twice rule
Class2Table to create classes c1 and c2 together with their associated tables t1 and t2 and
correspondence elements; next, applying rule Subclass2Table, to create c3 as a subclass
of c2, together with a correspondence element that specifies that t2 is the table associated
to c3; finally, applying three times the rule Attribute2Column, to create attributes a1, a2
and a3, together with their associated columns, the associated edges binding attributes
and columns to their classes and tables, and their correspondence elements.

2.2 Model Update and Model Synchronization

For different reasons, given a consistent model G, we may perform some modifications
or updates in it producing a model G′ that is not consistent anymore. Then the synchro-
nization problem consists of repairing that model, so that it becomes consistent.

For instance, in our running example, we assume given the consistent model on the
left of Fig. 2, and that two updates are defined on that consistent model: removing the
subclass relation between c2 and c3 in the source model, and adding a new sub-column

276 F. Orejas et al.

sco3 to the column co3 in the target model. In the middle of the figure some elements of
the triple graph have been marked. These marks ({+,x, !,?}) represent possible actions
to be taken on the elements (adding, deleting or keeping them) as the result of the
analysis performed in our algorithm, which we describe in the paper. Some elements
have several marks that are contradictory. This tells us that some conflicting situations
may arise when defining a repair. Finally, on the right of the figure, there is one possible
repair of the marked triple graph that avoids conflicts and restores consistency. As we
will see, this repair can be made incrementally, acting only on some elements (grey
area) without having to rebuild the whole triple graph.

Fig. 2. Concurrent update, marked affected area with conflict and possible repair

Formally, an update or modification [8] u on a graph G is a span of inclusions
u :G←K→G′ for some graph K. Intuitively, the elements in G that are not in K are the
elements deleted by u, and the elements in G′ that are not in K are the elements added
by u. So, K consists of all the elements in G that remain invariant after the modification.
When K may remain implicit we will denote the update u :G←K→G′ by u :G =⇒ G′.

G K1�� �� X K2�� �� H

K

�� ��
(1)

Updates can be composed and de-
composed [24]. Given two updates v :
G←K1 → X and w : X ←K2 →H, the
composition of v and w is the update u=
w ◦ v : G←K→H such that, roughly, K
is the intersection of K1 and K2, i.e. K includes all the elements of G that are neither
deleted by v nor by w. In addition, we say that u decomposes into v and w if u = w ◦ v
and moreover no element added by v is deleted by w. Roughly this means that X is the
union of K1 and K2 with respect to the common part K. If u decomposes into v and w,
we also say that v is a subupdate of u, which we denote by v�u, since in this case, v
adds and deletes less elements than u.

Incremental Concurrent Model Synchronization 277

In the non-concurrent case, given a triple graph G and an update wS :GS =⇒ HS on
the source graph, the synchronization problem [16] is to find an update wT :GT =⇒ HT ,
such that H is consistent. In this case, we say that wT is the propagation of wS.

G

u
��

w
�� H

H0

v

		
In contrast, in the concurrent case, given updates

uS :GS =⇒ HS
0 and uT :GT =⇒ HT

0 , or equivalently the
triple graph update 〈uS, id,uT 〉 : G =⇒ H0, also called
a concurrent update, the concurrent synchronization
problem is to find a concurrent update w : G =⇒ H,
such that u = 〈uS, id,uT 〉 is a subupdate of w and H is
consistent. Previous work on this problem is based on building concurrent solutions by
combining (in some way) vS and vT , where vS (respectively, vT) is the propagation of uT

(respectively, of uS). For this reason, in [24] these approaches are called propagation-
based. However, as we pointed out in the introduction, in that paper it is shown that
propagation-based approaches have important limitations.

A main problem in concurrent synchronization is that the given updates uS and uT

may be in conflict. For instance, uS may delete a node n in GS and uT may add an edge
whose source-node is in correspondence to n in GS. When a concurrent update is in
conflict it will be impossible to solve the synchronization problem, so we will have to
backtrack (or to ignore) some of the deletions or additions in u to eliminate that conflict.
In these situations, the concurrent synchronization problem needs to be reformulated. If
u is in conflict, we would look for an update w such that a subupdate u′ of u (i.e., some
part of u not in conflict) is also a subupdate of w. This is equivalent to saying that there
is an update v such that v◦u = w, where v backtracks some conflicting updates included
in u. We must note that detecting conflicts is in general not an easy task, since uS and uT

modify different models, so they do not directly interfere, which means that conflicts
are never explicit. We may also note that, according to this definition, id : G =⇒ G,
i.e., the identity modification that changes nothing, would always be a solution to the
concurrent synchronization problem (in this case v would be the inverse of u, so we
would completely backtrack u). Obviously, this is not the kind of solution that we want.

2.3 Dependency Relations

Incrementality of (sequential or concurrent) model synchronization requires two con-
ditions for any given approach: to be able to identify what part of the given model is
affected by an update, so that the rest can remain unchanged and we can concentrate
on the affected part to build a solution; and that we can do this identification without
having to fully analyze the given consistent model. Otherwise, the computational cost
of a synchronization algorithm will always depend on the size of the given models.

Our approach to incrementality, which follows the ideas introduced in [25] for se-
quential synchronization, is based on the idea that the structure of a given consistent
model depends essentially on the derivation that was used to create it. We mean that if
we perform any update on the model, we just have to care about the parts of that deriva-
tion that are affected by the update. For instance, if the update consists of the deletion of
some element, then the application of the rule that created that element in the original
derivation and the further application of other rules that depend on that creation, will be

278 F. Orejas et al.

considered the affected part of the derivation. It must be clear that this does not mean
that, if SG ⇒ G1 ⇒ ·· · ⇒ Gk ⇒ ·· · ⇒ G is the derivation used to create G, the deletion
of an element in Gk will affect all the rule applications in the derivation Gk ⇒ ··· ⇒ G,
because some of these rule applications may be independent of that deletion. For in-
stance, in our example, if the deleted element is a class, the creation of other classes,
attributes or subattributes that are not related to that class would be independent of that
deletion. Technically, the reason would be that the application of these rules is sequen-
tially independent ([6]) of the application of the rule that created the class. In what
follows we will denote by dG the derivation6 used to create G.

Since in the synchronization algorithm we need to know which is the derivation used
to create the given consistent model and storing and analyzing that derivation may be
costly, the second idea of our approach is to define some dependency relations between
the elements of G that allow us to know if the application of some rule depends on the
application of another rule. We assume that these relations are stored together with G.
The first relation, called strict dependency, denoted e1�

Ge2, holds if e1 is matched by
the left-hand side of the rule that created e2. For instance, in the triple graph on the
left of Fig. 2, we have c2�

Gc3 and t2�Gc3, since the application of rule Subclass2Table
that creates c3 has to match its left hand side to c2 and t2. The second relation, called
interdependency, denoted e1 ��

G e2, holds if e1 and e2 are created by the same rule. For
instance, in Fig. 2, c2 ��

G t2, since they are both created by the same application of the
Class2Table rule in dG. Finally, dependency, denoted �G, is the reflexive and transitive
closure of the union of �G and ��G.

Definition 1 (Dependency Relations [25]). Given a TGG G and a derivation dG :
SG ∗⇒G, we define the following relations on elements of G:

L

m
��

� � �� R

m′
��

Gi−1
� � �� Gi

1. Strict dependency: �G is the smallest relation satisfying that
if dG includes the transformation step depicted on the right,
then for every e in L and e′ in R\L, m(e)�Gm′(e′).

2. Strict interdependency: ��G is the smallest relation satisfying
that if dG includes the transformation step depicted on the
right, then for every e,e′ in R\L, m′(e)��G m′(e′).

3. Dependency: �G= (�G∪ ��G)∗.

It may be noticed that there is a bijective correspondence between derivations (up to
permutation equivalence) and their associated relations. This means that storing these
relations together with a model is equivalent to storing the derivation used to create it.

3 Synchronizing Solutions for Concurrent Updates

According to what we discussed in the previous section, we consider the general prob-
lem of concurrent synchronization when there may be conflicts in the given concur-
rent update. Moreover, we assume that we are only interested in incremental solutions,

6 It may be noted that there may be many derivations that lead to G, here we assume that dG is
the one chosen to generate it.

Incremental Concurrent Model Synchronization 279

which means that our solutions are assumed to preserve a certain triple subgraph of the
given consistent model7. Finally, to avoid having to mention explicitly the TGG of the
given synchronization problem, we will consider that we are working with a fixed TGG,
G , which has been given a priori.

Definition 2 (Incremental Synchronizing Solutions). Given a concurrent update u :
G =⇒ H0, such that G is a consistent model, and given a submodel G0 ⊆ G, a concur-
rent incremental solution of u with respect to G0 is an update w :G =⇒ H such that H
is consistent and dH includes the derivation dG0

. Then, SynchSol(G,G0,u) is the set of
all concurrent incremental solutions of u with respect to G0.

In general, a concurrent synchronization problem may have several possible solu-
tions especially if it has some conflicts, because in this case there may be different op-
tions of backtracking to eliminate the conflicts. To decide which solutions are “better”,
we may use different criteria but, unfortunately, these criteria may be contradictory. For
this reason, we believe that it should be the user who decides which is the preferred
solution. Nevertheless, there are solutions which may be considered inadequate or not
fully adequate. For instance, backtracking all updates, so that the final outcome is the
original consistent model, would technically be a correct solution, but we can not con-
sider that it is adequate. The adequacy criteria that we consider are the following:

– Maximal covering: When u has conflicts, we would like that our solution back-
tracks as few as possible additions and deletions in u, because users decided these
additions and deletions. In this sense, the solution w has a maximal covering if H
contains as many as possible elements that are added by u and as few as possible el-
ements that are deleted by u. In this case, a solution would be optimal if H includes
all the elements added by u and no elements deleted by u.

– Minimal information loss: The addition or deletion of an element in u may force
the deletion of other elements from G. Since these elements may include some
information, their deletion will cause an information loss in the model, which we
would like to minimize. In this sense, the solution w has minimal information loss
if H cannot be extended to a solution that contains more elements from G without
having more additions than H.

– Minimal unrelated additions: The addition or deletion of an element in u may cause
the addition of other elements in w. For instance, if in our example we add a table
the synchronization procedure will need to add its associated class. However, a
solution may include other added elements that are not required by the given update.
We consider that we should minimize this kind of additions.

Definition 3 (Properties of Synchronizing Solutions). Given a derivation d = SG ∗⇒
G∈D(G) and a concurrent update u :G←K0→H0, we say that a consistent incremen-
tal solution w :G←K→H ∈SynchSol(G,G0,u) has:

1. Maximal covering: if there does not exist any other solution v ∈SynchSol(G,G0,u),
such that w′ � v′, where v′ is the largest common subupdate of v and u, and w′ is the

7 We may notice that if that subgraph is the empty graph then we would be looking for all
possible solutions.

280 F. Orejas et al.

largest common subupdate of w and u, i.e., v′ (resp. w′) consists of all the additions
and deletions that are both in u and v (resp. w).

2. Minimal information loss: if there is no other update v ∈SynchSol(G,G0,u), with
v = G←K′→H ′, such that H ∗⇒ H ′, K ⊂ K′ and (H ′\K′) = (H\K).

3. Minimal unrelated additions: if for any element x ∈ H added by w, there is an
element y ∈ H ∩G, such that x �H y.

For instance, on the right of Fig. 2 we can see an example of a consistent solution
which has maximal covering, minimal information loss and no unrelated additions. In
contrast, in Fig. 3 neither the solution on the left nor the one in the middle have maximal
covering, even though both of them are consistent. The solution on the right of Fig. 3
has maximal covering, minimal information loss, and no unrelated additions, but it is
not comparable with the one in Fig. 2.

Fig. 3. Other three consistent solutions for example in Fig. 2.

4 An Incremental Procedure CSynch

In this section we propose a two-step nondeterministic incremental algorithm CSynch

that allow us to find all solutions to the concurrent synchronization problem that are
minimal, in the sense that they do not have unrelated additions, and that, moreover,
have maximal covering and minimal information loss. More precisely, depending on
the choices made we will get a different solution.

The algorithm is not based on propagation, but on using rules derived from the given
TGG which allow us to identify which elements are affected by the update, to identify
and solve possible conflicts, and to restore consistency. This identification is done by
a marking algorithm CMark that simulates the addition and deletion of elements by
applying these derived rules on the model such that some of its elements have being

Incremental Concurrent Model Synchronization 281

decorated with some marks from the set {+,x, !,?}. If an element e is marked with any
of these marks, it means that e has been added or deleted by a user (+ or x, respectively),
it is required for an addition (!), or it is affected by a deletion (?). Technically, this means
that every element of the model has an attribute called marks⊆ {+,x, !,?} that denotes
the set of marks that an element has at a given moment. Initially, before starting the
synchronization process, it is assumed that marks= /0 for every element of the model.
If it happens that, at certain point, an element is marked with different marks, it may
denote an apparent conflict8, which may need to be solved.

Since we need to know the dependencies between the marked elements, we will
build extensions of the dependency relations of the given model G. This extended rela-
tions are denoted �′, �′, and ��′, i.e., �G⊆�′, �G ⊆ �′, and ��G⊆��′. In addition, using
these relations, CMark computes G0, the submodel of G not affected by the update.

Once the model is marked, an algorithm CRepair detects and solves conflicts and
repairs the model. This process removes the marks of some elements and deletes the
rest of them, in such a way that the final outcome is a consistent triple graph.

4.1 Marking

Before defining the marking algorithm that we use in the first step of our synchroniza-
tion procedure, let us first explain how we deal with additions and deletions.

In our running example, let us suppose that the user has added an edge between
the attribute a1 and the class c2 (perhaps to apply a refactoring to the given system).
We know that in consistent models an edge between an attribute and a class is added
when applying rule r2 : L → R, Attribute2Column. This rule, given a class and a table,
adds to a given model an attribute, a column, edges between the attribute and the class,
and between the column and the table, and a correspondence element that relates the
attribute to the column. So, the idea is that in the synchronization algorithm, we are
going to “simulate” the application of that rule to create the edge between a1 and c2,
and to do this, we are going to apply a rule r′2 : L′ → R′, derived from r2, but before
describing this rule, we have to take into account two questions:

1. Some of the elements that are created by r2 may be already in the model. So, instead
of creating them again, we include them in the left-hand side L′ of the derived rule.
Similarly, some other elements created by r2 may coincide with other elements
added by u, then we will consider that r′2 creates also these elements. For instance,
if u would create an attribute a and an edge associating a to a class c, in this case,
the associated marking rule would create simultaneously the attribute and the edge.
But this is not enough to ensure that the final outcome is consistent, we need to
be sure that all the elements in L′ are in the final result. Otherwise, these elements
could be deleted as a consequence of some other addition or deletion in the given
update u. For this reason, r′2 will mark the elements in L′\L with !, expressing that
they are required for the correctness of the result. In addition, the rule will also
mark the elements created by the rule, i.e. in R′\L′, with the mark +. This includes
the elements added by u, but also some other elements created by the rule. For

8 As we will see, not all apparent conflicts are real conflicts.

282 F. Orejas et al.

instance, if we want to add the edge from a1 to c2 to the model, we must also add
the edge from co1 to t2. Following these ideas, rule r′2 is depicted on the left of Fig.
4. Moreover, on the right of that figure we also show which would be the associated
marking rule, when we add an attribute to a class in a given model.

2. Since in the resulting model, H, we assume that this edge from a1 to c2 is created
using r2, this means that we assume that in H, the edge was created together with
the attribute a1, the corresponding column co1, the edge between a1 and c2, the edge
between co1 and t2, and the correspondence element between a1 and co1. However,
in the original model G these elements were created using a different application of
r2, and together with them, some other elements were also created (in this case, the
edges between a1 and c1 and between co1 and t1), that are still part of the model.
So if we want H to be consistent, we will need to delete these elements from the
model. As a consequence, we will mark them with ?, denoting that in principle,
we have to delete them, and we will say that they have been revoked. Finally, if
some elements are revoked, we may need to delete all the elements in the model
that depend on them. So we will mark all these other elements with ?, expressing
that they may need to be deleted too.

The case of marking the deletions in the update u is simpler. If an element x in G
is deleted by u, we will just mark it with x, denoting that x has to be deleted and, as
before, we will mark all the elements that depend on x with ?.

Finally, if we call G0 the graph consisting of all elements that have not been marked
with +, x, or ? then, as a consequence of the way that the marking algorithm works,
we can be sure that G0 is consistent (as shown in Thm. 1), since all elements in G0
were already in G and they are not dependent of any element that is not in G0. Hence,
building our solution by adding to G0 some of the marked elements, using rules from
the given TGG, ensures that the final result is consistent. Moreover, the algorithm would
be incremental with respect to G0, since its elements will not be processed by CRepair

(except for deleting some ! marks).

Definition 4 (Derived Marking Rules). We say that a triple graph G is decorated with
marks if each of its elements has a marking attribute marks⊆ {+,x, !,?}. Let us denote
as RemAttr(G) the triple graph resulting from removing from G the attribute marks.

Given the rule r :L→R, we say that r′ :L′→R′ is a derived marking rule from r for
adding a set of elements X, if L′ and R′ are two decorated triple graphs such that:

1. L ⊆ RemAttr(L′
)⊆ R, RemAttr(R′

) = R, and X ⊆ R′\L′.
2. All elements in RemAttr(L′

)\L are included in R′ with the mark !.
3. All elements in R′\L′ are included in R′ with the mark +.

For instance, the rule on the left of Fig. 4 is derived from the rule r2 Attribute2Column
to add a new arrow from an already existing attribute to an already existing class in the
model. Notice that the elements that are really new, i.e., produced by the application
of r2, are marked with +, while the ones produced by r2 but reused from the model
by the derived rule, are marked with !. The rule on the right is also derived from At-
tribute2Column but now to add a new attribute to an existing class. As a consequence,
there are not reused elements that should be marked with !.

Incremental Concurrent Model Synchronization 283

Fig. 4. Examples of derived marking rules

Now we can introduce the marking algorithm CMark following the explanations
given above. A and D will be the set of elements that have to be added or deleted,
respectively. Initially, we assume that A and D consist of the elements added and deleted
by u, and that the sets of marks are empty for all the elements in the model. Then:

Algorithm 1 (CMark Algorithm)

Initialize relations �′=�, �′ = �, and ��′=��.

1. Addition and revocation: For every element x∈A, select a marking rule r′ :L′→R′

derived from r :L→R that may be used to create x, and let X ⊆A be a set of elements
that can also be created by r′:

– Eliminate from A the elements in {x}∪X.
– Apply r′ :L′→R′.
– Add ? to the attribute marks of every element which is not in RemAttr(L′

)\L
but it is strictly interdependent with an element matched to RemAttr(L′

)\L.
– Add ? to the attribute marks of every element which is dependent on a ?-marked

element.
2. Update the dependency relations adding the new dependencies and interdependen-

cies defined by the application of the original rules used in 1. to relations �′, �′,
and ��′; and computing the new transitive closure.

3. Deletion:

– Add x to the attribute marks of every element intended to be deleted.
– Add ? to the attribute marks of every element that is dependent of an x-marked

element.
4. Computing G0: Delete from �, �, and �� all elements marked with +, ?, or x. Then

G0 would be the model generated by the derivation associated to the dependency
relations.

For instance, in the middle of Fig. 2 and Fig. 5 we can see examples of a marked
model following the above algorithm. In the case of the example in Fig. 5, the concur-
rent update would consist of adding a subclass relation between classes c1 and c2, in the
source; and, adding a new sub-column sco3 to the column co2 in the target. Again, in
the model of the middle, some elements are marked with contradictory marks. Notice

284 F. Orejas et al.

that now, possible conflicts arise because of trying to integrate concurrent additions. In
fact, this example serves to illustrate that some additions may imply the deletion of el-
ements created by the original derivation, for instance, it is the case of the table t2. That
is, some additions may imply revocation of original derivation steps.

Fig. 5. Other example of concurrent updated, marked and possible repair

We must note that this algorithm is nondeterministic since, when we want to add an ele-
ment x to the model there may be more than one rule that can be used to create x. Then,
choosing different rules will lead to different results of our synchronizing procedure.

4.2 Repairing and Conflict-Solving

The first idea underlying our repair algorithm, used as a second step of our synchroniza-
tion procedure, is to extend the model G0, represented by the dependency relations �,
�, and ��, using rules from the given TGG, to include the elements that the user asked
to add to the model (i.e. added by the given update u) and to reduce the information
loss. In particular, if in the marking process we decided to use a rule r :L → R to create
an element x required by u (i.e., to create x we used a marking rule r′′ associated to r),
we will use another rule also derived from r, r′ : L′ →R, where L ⊆ RemAttr(L′

) = R
that unmarks all the elements that we marked with + or !, i.e., if we remove all marks
in L′ we get R. We call these rules derived recreating rules, because they create again
(by reusing them) some elements that were originally in G. We must note that, using
the information in the dependence relations �′, �′, and ��′, we may know which is the
rule r. In particular, L would consist of x and all the elements y such that x ��′ y, and R
would consist of all the elements z such that x�′ z.

This idea for reusing elements from the original model has already been used in
[12,25]. Notice that these rules eliminate the marks from the recreated elements, and as
a consequence, the recreated elements will be now part of the solution.

The second idea for our repair algorithm is that we can also use derived recreation
rules for reducing the information loss, including in the solution elements that were

Incremental Concurrent Model Synchronization 285

removed from the given model because they depended on elements that could have
been deleted.

Finally, the third idea in which our algorithm is based is that, if we try to create
an added element x using the derived rule r′ : L′ → R, if an element of L′ is matched
to an element y of the model having the mark x, this means that we have discovered a
conflict, because we have a conflict between the deletion of y and the addition of x. As a
consequence, we have two options, either we do not apply that rule, which is equivalent
to backtrack the addition of x, or we do apply the rule, which would be equivalent to
backtrack the deletion of the element including the mark x.

Definition 5 (Derived Recreating Rules). Given a rule r :L→R, we say that r′ :L′→R
is a derived recreating rule9 from r if L ⊆ RemAttr(L′

) = R, such that

1. The elements in L′ from L must be matched to elements without marks.
2. The elements in L′ not in L can be matched to elements with any mark.

For instance, in Fig. 6 we can see some examples of some derived recreating rules.

Fig. 6. Examples of derived recreating rules

9 To be precise, recreating rules are like standard DPO rules, i.e. of the form L′←R→R, which
means that the rule does not add anything, since it just deletes the marks from the given ele-
ments. We may note that an unmarking rule is always applicable, since the gluing conditions
always hold. For details, we may look at [17,15].

286 F. Orejas et al.

1. Recreating and conflict solving: While there is a recreation rule that can be ap-
plied:

– If there is an element marked + by a marking rule associated to a rule r :L→R
and when trying to apply the associated recreating rule r′ :L′→R, no element
in L′ is matched to an element including the x mark, then apply r′ and modify
accordingly the dependency relations of the solution, adding to � and �� the
dependency and interdependency relations between the elements matched by
elements in L and R; and computing the new transitive closure for �.

– In the same situation as in the previous case, but where there is an element in L′

that is matched to an element marked x, choose between applying r′ modifying
accordingly the dependency relations of the solution, or replacing the mark +
by the mark x for all elements matched by L′ that include the mark +.

– Otherwise, apply a recreating rule r′ : L′ → R such that no element in L′ is
matched to an element marked x and modify accordingly the dependency rela-
tions of the solution.

2. Removing: Delete every marked element.

That is, in step 1. of CRepair, we first try to recreate every + or ! element and to
reduce information loss as much as possible. However, when we detect a conflict when
trying to recreate an element marked +, it is nondeterministically chosen between ap-
plying the addition or the deletion. And in step 2 all elements still marked are removed
from the model, because they needed to be deleted or because it was not possible to
recreate them.

Algorithm 3 (CSynch)

1. Apply CMark.
2. Apply CRepair

The resulting update is w :G =⇒ H, where H is the result obtained by CSynch.

4.3 Properties of CSynch

In this subsection we prove the properties that our algorithm satisfies. Firstly, we will
prove that all solutions obtained by CSynch are consistent, incremental and they have
no unrelated additions. We will also prove that CSynch can compute all incremental so-
lutions that, in addition, have maximal covering and minimal information loss, provided
that the right choices are made.

Theorem 1. Given a consistent model G and an update u : G =⇒ H ′ if the update w :
G =⇒ H is a solution obtained by CSynch, then:

1. H is consistent.
2. w is incremental with respect to the triple graph G0 computed by CMark.
3. w has no unrelated additions
4. w has minimal information loss.

Incremental Concurrent Model Synchronization 287

Algorithm 2 (CRepair)

Proof. The last three properties are just a consequence of how CSynch is defined. Let
us prove that H is consistent, but before we will prove that G0 is consistent.

Let SG ⇒ G1 ⇒ ·· · ⇒ Gk ⇒ ·· · ⇒ G be the derivation used to create G and let
SG ⇒ G1 ⇒ ··· ⇒ Gi be its longest subderivation such that Gi ⊆ G0, let us show that
Gi = G0, which implies the consistency of G0.

Suppose that there is an element x∈G0, which means that x is not marked with +, ?,
or x and it does not depend on any marked element, such that x /∈Gi. Let k be the earliest
derivation step Gk ⇒ Gk+1, with i < k, where an element x ∈ (G0\Gi) was generated
i.e., x ∈ (Gk+1\Gk). By definition of ��, we know that x �� y for every y ∈ Gk+1\Gk,
and according to the definition of CMark, if x has not any of those marks, then y has
not either. This means that Gk+1\Gk ⊆ G0. Now, if r : L → R is the rule applied in the
derivation step Gk ⇒ Gk+1 then there are two possibilities:

1. If the elements matched by L in Gk are already in Gi, it would mean that this
derivation step is sequentially independent from all derivation steps Gi ⇒ ·· ·⇒ Gk

and we would have Gi
r⇒ Gi+1, with Gi+1 ⊆ G0, contradicting the hypothesis that

SG ⇒ G1 ⇒ ·· · ⇒ Gi was the longest subderivation such that Gi ⊆ G0.
2. If the elements matched by L in Gk are not in Gi, it would mean that x depends on

elements added in the derivation Gi ⇒ ··· ⇒ Gk. Moreover, we know that all the
elements y generated in that derivation such that y � x are unmarked with +, ?, or x
and therefore they are included in G0, because otherwise would not be in G0. But
this contradicts the hypothesis that x was an element in G0\Gi added in the earliest
possible derivation step.

To prove that H is consistent, it is enough to notice that, because of how recreation
rules are defined, if Gi is a consistent unmarked subgraph of a marked graph G′

i, and

r′ : L′ → R is a recreating rule associated to the rule r : L → R, then if G′
i

r′⇒G′
i+1, we

have that Gi
r⇒Gi+1 such that Gi+1 is a consistent subgraph of G′

i+1. In particular, if G′
0

is the result obtained by applying the marking algorithm to G and G0 is its unmarked
consistent subgraph, then applying the first step of CRepair leads to a sequence of
recreation transformations G′

0
∗⇒G′

k. This means that given the associated sequence of
transformations G0

∗⇒Gk, we have that Gk is a consistent subgraph of G′
k. Finally the

second step of CRepair leads to H = Gk, which is the final result of CSynch.

Before showing the rest of the properties of CSynch, we must first define which
is the subgraph G0 such any solution of CSynch is incremental with respect to it. In
general, depending on the choices of CSynch, the consistent model G0 computed by
CMark may be different, because the choice of rules used to add to G the elements
added by u defines different markings. So, if we want that all solutions of CSynch are
incremental over the same graph, we can take the intersection of all these G0.

Definition 6 (Set of Computed Solutions). Given a consistent model G∈L(G) and a
concurrent update u : G←K →H0, we denote by CSynch(G,u) the set of all possible
solutions computed by the algorithm CSynch when G and u are given.

If for every w :G←K→H, we denote by Gw the subgraph of G computed by CMark,
then we define M(G,u) as: M(G,u) = ∩w∈CSynch(G,u)Gw.

288 F. Orejas et al.

x

Obviously, if w is incremental over Gw, then w is also incremental with respect to
any submodel of Gw.

Proposition 1. If w ∈ CSynch(G,u) then w is incremental over M(G,u).

Finally, we can show that our algorithm is complete, i.e., that any consistent update
that is incremental over M(G,u), and satisfies the required properties, can be found by
CSynch.

Theorem 2. Given a consistent model G and an update u : G =⇒ H ′, if w : G←K →
H is consistent, it has no unrelated additions, it has maximal covering and minimal
information loss, and it is incremental over M(G,u) then w ∈ CSynch(G,u).

Proof. If w :G←K→H is a consistent update, such that it has no unrelated additions, it
has maximal covering and minimal information loss, and it is incremental over M(G,u)
this means that there is a derivation d = SG ⇒ H1 ⇒ ··· ⇒ Hk ⇒ ··· ⇒ H such that
M(G,u)⊆Hk for some k Then, if we make the right choices in CSynch we will compute
the solution w. In particular, if CMark uses the same rule applications that are used in d
to generate the additions in u, on the one hand, it will compute a model Gw that will be
preserved by CRepair and that includes CSynch(G,u). On the other hand, CMark will
mark the model in such a way that if CRepair chooses the same rule applications (and
in the same order) as in d, it will compute H.

5 Related Work

The concurrent synchronization problem can be considered as a special case of the
general problem of model (or graph) repair. In particular, in our case, a triple graph can
be easily represented by a single graph, so the consistency problem for triple graphs can
be seen as a special case of the consistency problem for graphs. The literature on model
repair is quite large (see [23] for an excellent survey on this topic), so it does not make
much sense to review all the existing approaches.

Concentrating on the problem of concurrent model synchronization, to our knowl-
edge, the only works addressing the general problem10 of concurrent synchronization
are [38,14,11,24,34,35]. All these approaches are propagation-based, which means that
synchronization is performed, first, propagating the updates in one model to the other
model, then checking if there is any conflict between the propagated updates and the
ones previously applied to that model and, if there are, solving the conflicts in some
given way, and finally, propagating back the updates in the second model to the first
one. That is, sequentializing concurrent synchronization. In all cases it is shown that
the result obtained is correct, but no other properties are shown. In particular, in all
these approaches, except in [38] the trivial solution obtained by backtracking all the up-
dates would be considered a valid solution. On the other hand, the approach presented

10 There is some work considering this problem in a more restrictive setting. For instance, in
[26] models are restricted to tree-like structures and the target model is an abstract view of the
source; and in [36] updates must be defined in terms of a given set of operations.

Incremental Concurrent Model Synchronization 289

.

in [38] may be unable to find some existing solutions, as shown in [24]. Actually, that
paper shows that propagation-based approaches have important limitations.

Our approach to incrementality is based on the ideas presented in [25], for the se-
quential synchronization case. Other approaches based on TGGs that propose incremen-
tal solutions to sequential model synchronization are [10,16,12,22] (and some variations
on them) but all of them are, in our opinion, not completely satisfactory. In particular,
even if the construction of the solution does not start from scratch but from the given
consistent model G, the approaches in [16,12,22] have to analyze the whole model G
(for instance, to know what parts of G must be modified) so their cost depends on the
size of the given model. This is not the case of [10], but their approach only works for
the case when source and target models are bijective, which excludes the case where
source models are views of target models (or vice versa). In addition, in [10,16,22] there
may be information loss, which we avoid using the approach developed in [12] and also
used in [25].

6 Conclusion

In this paper we have presented some properties that ensure the adequacy of solu-
tions for a concurrent synchronization problem, together with an incremental non-
deterministic algorithm that is able to return all possible sound solutions that, in ad-
dition, satisfy these properties.

Most existing algorithms for model synchronization return just one solution. We
believe that this is not adequate, especially in the case of concurrent synchronization. In
that context, one concrete solution corresponds to a specific way of solving the existing
conflicts, which may not be the way that the user would have preferred. For this reason,
we decided that completeness of the algorithm was an important issue. It is clear that,
in practice, delivering to a user a relatively large set of solutions is not very convenient.
However, we think that this is something to take into account at the implementation
level, for instance, by showing conflicts in a stepwise way and, then, showing the dif-
ferent ways of solving each conflict.

From a theoretical viewpoint, our algorithm works for any kind of graphs. However,
in practice, if the models have attributes, our algorithm would not be adequate. For
example, let us suppose that we are working with a class of models where a certain
attribute a1 must be equal to the addition of attributes a2 and a3 and let us suppose that
we are trying to synchronize a model G, where a1 has some given value v1, but a2 and
a3 have no value, i.e., the synchronization algorithm should provide values to a2 and a3,
such that their addition equals v1. In this context, our algorithm would deliver infinite
solutions, assigning to a2 and a3 all possible values v2 and v3 such that 1 = 2+ 3. In
general, dealing with attributed graphs in the context of sequential or concurrent model
synchronization poses problems that are described in [1,21].

As future work, on the one hand, we plan to address the case of attributed models
and, on the other hand, to extend our results to the multimodel case, i.e. when synchro-
nizing more than two models. This case has specific complications, see, for instance
[32,4]. It has already been approached in [34,35], but just as a straightforward general-
ization of [14], which means that it shares its limitations.

v v

290 F. Orejas et al.

v

References

1. Anjorin, A., Varró, G., Schürr, A.: Complex Attribute Manipulation in TGGs with
Constraint-Based Programming Techniques. ECEASST 49 (2012)

2. Dayal, U., Bernstein, P.A.: On the Correct Translation of Update Operations on Relational
Views. ACM Trans. Database Syst. 7(3), 381–416 (1982)

3. Diskin, Z.: Model Synchronization: Mappings, Tiles, and Categories. In: Generative and
Transformational Techniques in Software Engineering III, vol. 6491, pp. 92–165. Springer
(2011)

4. Diskin, Z., König, H., Lawford, M.: Multiple Model Synchronization with Multiary Delta
Lenses. In: Fundamental Approaches to Software Engineering, 21st International Confer-
ence, FASE 2018. Lecture Notes in Computer Science, vol. 10802, pp. 21–37. Springer
(2018)

5. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Orejas, F.: From State- to
Delta-Based Bidirectional Model Transformations: The Symmetric Case. In: Model Driven
Engineering Languages and Systems, MODELS 2011. Lecture Notes in Computer Science,
vol. 6981, pp. 304–318. Springer (2011)

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transfor-
mation. EATCS Monographs of Theoretical Comp. Sc., Springer (2006)

7. Ehrig, H., Ehrig, K., Hermann, F.: From Model Transformation to Model Integration based
on the Algebraic Approach to Triple Graph Grammars. ECEASST 10 (2008)

8. Ehrig, H., Ermel, C., Taentzer, G.: A Formal Resolution Strategy for Operation-Based Con-
flicts in Model Versioning Using Graph Modifications. In: FASE 2011. Lecture Notes in
Computer Science, vol. 6603, pp. 202–216. Springer (2011)

9. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Quasi-inverses of schema mappings. ACM
Trans. Database Syst. 33(2) (2008)

10. Giese, H., Wagner, R.: From model transformation to incremental bidirectional model syn-
chronization. Software and System Modeling 8(1), 21–43 (2009)

11. Gottmann, S., Hermann, F., Nachtigall, N., Braatz, B., Ermel, C., Ehrig, H., Engel, T.:
Correctness and Completeness of Generalised Concurrent Model Synchronisation Based
on Triple Graph Grammars. In: AMT@MoDELS. Lecture Notes in Computer Science,
vol. 1077. Springer (2013)

12. Greenyer, J., Pook, S., Rieke, J.: Preventing Information Loss in Incremental Model Syn-
chronization by Reusing Elements. In: ECMFA 2011. Lecture Notes in Computer Science,
vol. 6698, pp. 144–159. Springer (2011)

13. Hearnden, D., Lawley, M., Raymond, K.: Incremental Model Transformation for the Evo-
lution of Model-Driven Systems. In: MoDELS 2006. Lecture Notes in Computer Science,
vol. 4199, pp. 321–335. Springer (2006)

14. Hermann, F., Ehrig, H., Ermel, C., Orejas, F.: Concurrent Model Synchronization with Con-
flict Resolution Based on Triple Graph Grammars. In: FASE 2012. Lecture Notes in Com-
puter Science, vol. 7212, pp. 178–193. Springer (2012)

15. Hermann, F., Ehrig, H., Golas, U., Orejas, F.: Formal Analysis of Model Transformations
based on Triple Graph Grammars. Math. Struct. in Comp. Sc. 24 (2014)

16. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y.: Correctness of Model
Synchronization Based on Triple Graph Grammars. In: MODELS 2011. Lecture Notes in
Computer Science, vol. 6981, pp. 668–682. Springer (2011)

17. Hermann, F., Ehrig, H., Orejas, F., Golas, U.: Formal Analysis of Functional Behaviour for
Model Transformations Based on Triple Graph Grammars. In: ICGT 2010. Lecture Notes in
Computer Science, vol. 6372, pp. 155–170. Springer (2010)

Incremental Concurrent Model Synchronization 291

18. Hofmann, M., Pierce, B.C., Wagner, D.: Symmetric lenses. In: POPL 2011. pp. 371–384.
ACM (2011)

19. Hofmann, M., Pierce, B.C., Wagner, D.: Edit lenses. In: Field, J., Hicks, M. (eds.) POPL’12.
pp. 495–508. ACM (2012)

20. Lack, S., Sobocinski, P.: Adhesive and quasiadhesive categories. Theor. Inf. App. 39, 511–
545 (2005)

21. Lambers, L., Hildebrandt, S., Giese, H., Orejas, F.: Attribute Handling for Bidirectional
Model Transformations: The Triple Graph Grammar Case. ECEASST 49 (2012)

22. Lauder, M., Anjorin, A., Varró, G., Schürr, A.: Efficient Model Synchronization with
Precedence Triple Graph Grammars. In: ICGT 2012. Lecture Notes in Computer Science,
vol. 7562, pp. 401–415. Springer (2012)

23. Macedo, N., Tiago, J., Cunha, A.: A Feature-Based Classification of Model Repair Ap-
proaches. IEEE Trans. Software Eng. 43(7), 615–640 (2017)

24. Orejas, F., Boronat, A., Ehrig, H., Hermann, F., Schölzel, H.: On Propagation-Based Con-
current Model Synchronization. In: BX 2013. Electronic Communications of the EASST,
vol. 57, pp. 1–20. European Association of Software Science and Technology (2013)

25. Orejas, F., Pino, E.: Correctness of Incremental Model Synchronization with Triple Graph
Grammars. In: ICMT 2014. Lecture Notes in Computer Science, vol. 8568, pp. 74–90.
Springer (2014)

26. Pierce, B.C.: Harmony: The Art of Reconciliation. In: TGC 2005. Lecture Notes in Computer
Science, vol. 3705, p. 1. Springer (2005)

27. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In: WG ’94.
Lecture Notes in Computer Science, vol. 903, pp. 151–163. Springer (1994)

28. Schürr, A., Klar, F.: 15 Years of Triple Graph Grammars. In: ICGT 2008. pp. 411–425 (2008)
29. Stevens, P.: Towards an Algebraic Theory of Bidirectional Transformations. In: ICGT’08.

Lecture Notes in Computer Science, vol. 5214, pp. 1–17. Springer (2008)
30. Stevens, P.: Bidirectional model transformations in QVT: semantic issues and open ques-

tions. Software and System Modeling 9(1), 7–20 (2010)
31. Stevens, P.: Observations relating to the equivalences induced on model sets by bidirectional

transformations. ECEASST 49 (2012)
32. Stevens, P.: Towards sound, optimal, and flexible building from megamodels. In: Proceedings

of the 21th ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems, MODELS 2018. pp. 301–311. ACM (2018)

33. Terwilliger, J.F., Cleve, A., Curino, C.: How Clean Is Your Sandbox? - Towards a Unified
Theoretical Framework for Incremental Bidirectional Transformations. In: ICMT 2012. Lec-
ture Notes in Computer Science, vol. 7307, pp. 1–23. Springer (2012)

34. Trollmann, F., Albayrak, S.: Extending Model to Model Transformation Results from Triple
Graph Grammars to Multiple Models. In: ICMT 2015. Lecture Notes in Computer Science,
vol. 9152, pp. 214–229. Springer (2015)

35. Trollmann, F., Albayrak, S.: Decision Points for Non-determinism in Concurrent Model Syn-
chronization with Triple Graph Grammars. In: ICMT 2017. Lecture Notes in Computer Sci-
ence, vol. 10374, pp. 35–50. Springer (2017)

36. Xiong, Y., Hu, Z., Zhao, H., Song, H., Takeichi, M., Mei, H.: Supporting automatic model
inconsistency fixing. In: ESEC/FSE 2009. pp. 315–324 (2009)

37. Xiong, Y., Song, H., Hu, Z., Takeichi, M.: Supporting Parallel Updates with Bidirectional
Model Transformations. In: ICMT 2009. Lecture Notes in Computer Science, vol. 5563, pp.
213–228. Springer (2009)

38. Xiong, Y., Song, H., Hu, Z., Takeichi, M.: Synchronizing concurrent model updates based
on bidirectional transformation. Software and System Modeling 12, 89–104 (2013)

292 F. Orejas et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which per-
mits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not

use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

included in the chapter’s Creative Commons license and your intended

Incremental Concurrent Model Synchronization 293

Statistical Model Checking for
Variability-Intensive Systems

Maxime Cordy1 , Mike Papadakis1, and Axel Legay2

1 SnT, University of Luxembourg, Luxembourg
{maxime.cordy,michail.papadakis}@uni.lu
2 Université Catholique de Louvain, Belgium

axel.legay@uclouvain.be

Abstract. We propose a new Statistical Model Checking (SMC) method
to discover bugs in variability-intensive systems (VIS). The state-space
of such systems is exponential in the number of variants, which makes
the verification problem harder than for classical systems. To reduce ver-
ification time, we sample executions from a featured transition system –
a model that represents jointly the state spaces of all variants. The com-
bination of this compact representation and the inherent efficiency of
SMC allows us to find bugs much faster (up to 16 times according to our
experiments) than other methods. As any simulation-based approach,
however, the risk of Type-1 error exists. We provide a lower bound and
an upper bound for the number of simulations to perform to achieve the
desired level of confidence. Our empirical study involving 59 properties
over three case studies reveals that our method manages to discover all
variants violating 41 of the properties. This indicates that SMC can act
as a low-cost-high-reward method for verifying VIS.

1 Introduction

We consider the problem of bug detection in Variability Intensive Systems (VIS).
This category of systems encompasses any system that can be derived into multi-
ple variants (differing, e.g., in provided functionalities), including software prod-
uct lines [12] and configurable systems [32]. Compared to traditional (“single”)
systems, the complexity of bug detection in VIS is increased: bugs can appear
only in some variants, which requires analysing the peculiarities of each variant.

Among the number of techniques developed for bug detection, one finds test-
ing and model checking. Testing [6] executes particular test inputs on the sys-
tem and checks whether it triggers a bug. Albeit testing remains widely used
in industry, the rise of concurrency and inherent system complexity has made
system-level test case generation a hard problem. Also, testing is often limited
to bounded reachability properties and cannot assess liveness properties.

Model checking [2] is a formal verification technique which checks that all
behaviours of the system satisfy specified requirements. These behaviours are
typically modelled as an automaton, whose each node represents a state of the

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 294–314, 2020.
https://doi.org/10.1007/978-3-030-45234-6_15

http://orcid.org/0000-0001-8312-1358
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_15&domain=pdf

system (e.g. a valuation of the variables of a program and a location in this pro-
gram’s execution flow) and where each transition between two states expresses
that the program can move from one state to the other by executing a sin-
gle action (e.g. executing the next program statement). Requirements are often
expressed in temporal logics, e.g. the Linear Temporal Logic (LTL) [31].

Such logics capture both safety and liveness properties of system behaviours.
As an example, consider the LTL formula �(command sleep ⇒ ♦system sleep).
command sleep and system sleep are logic atoms and represent, respectively, a
state where the sleep command is input and another state where the system
enters sleep mode. The symbols � and ♦ means always and eventually, respec-
tively. Thus, the whole formula expresses that “it is always the case that when
the sleep command is input, the system eventually enters sleep mode”.

Contrary to testing, model checking is exhaustive: if a bug exists then the
checking algorithm outputs a counterexample, i.e. an execution trace of the sys-
tem that violates the verified property. Exhaustiveness makes model checking
an appealing solution to obtain strong guarantees that the system works as in-
tended. It can also nicely complement testing (whose main advantage remains
to be applied directly on the running system), e.g. by reasoning over liveness
properties or by serving as oracle in test generation processes [1]. Those bene-
fits, however, come at the cost of scalability issues, the most prominent being
the state explosion problem. This term refers to the phenomenon where the state
space to visit is so huge that an exhaustive search is intractable. As an illustration
of this, let us remark that the theoretical complexity of the LTL model-checking
problem is PSPACE-complete [37].

Model checking complexity is further exacerbated when it comes to VIS. In-
deed, in this case, the model-checking problem requires verifying whether all
the variants satisfy the requirements [11]. This means that, if the VIS comprises
n variation points (n features in a software product line or n Boolean options
in a configurable system), the number of different variants to represent and to
check can reach 2n. This exponential factor adds to the inherent complexity of
model checking. Thus, checking each variant (or models thereof) separately –
an approach known as enumerative or product-based [34] – is often intractable.
To alleviate this, variability-aware models and companion algorithms were pro-
posed to represent and check efficiently the behaviour of all variants at once. For
instance, Featured Transition Systems (FTS) [11] are transition systems where
transitions are labelled with (a symbolic encoding of) the set of variants able to
exercise this transition. The structure of FTS, if well constructed, allows one to
capture in a compact manner commonalities between states and transitions of
several variants. Exploiting that information, family-based algorithms can check
only once the executions that several variants can execute and explore the state
space of an individual variant only when it differs from all the others. In spite
of positive improvements over the enumerative approach, state-space explosion
remains a major challenge.

In this work, we propose an alternative technique for state-space exploration
and bug detection in VIS. We use Statistical Model Checking (SMC) [26] as a

Statistical Model Checking for Variability-Intensive Systems 295

trade-off between testing and model checking to verify properties (expressed in
full LTL) on FTS. The core idea of SMC is to conduct some simulations (i.e.
sample executions) of the system (or its model) and verify if these executions
satisfy the property to check. The results are then used together with statistical
tests to decide whether the system satisfies the property with some degree of
confidence. Of course, in contrast with an exhaustive approach, a simulation-
based solution does not guarantee a result with 100% confidence. Still, it is
possible to bound the probability of making an error. Simulation-based methods
are known to be far less memory- and time-consuming than exhaustive ones, and
are sometimes the only viable option. Over the past years, SMC has been used
to, e.g. assess the absence of errors in various areas from aeronautic to systems
biology; measure cost average and energy consumption for complex applications
such as nanosatellites; detect rare bugs in concurrent systems [10,21,25].

Given an LTL formula and an FTS, our family-based SMC method samples
executions from all variants at the same time. Doing so, it avoids sampling twice
(or more) executions that exist in multiple variants. Merging the individual state
spaces biases the results, though, as it changes the probability distribution of the
executions. This makes the problem different from previous methods intended
for single systems (e.g. [20]) and obliges us to revisit the fundamentals of SMC in
the light of VIS. In particular, we want to characterize the number of execution
samples required to bound the probability of Type-1 error by a desired degree
of confidence. We provide a lower bound and an upper bound for this number
by reducing its computation to particular instances of the coupon problem [4].
We implemented our method within ProVeLines [17], a model checker for VIS.
We provide empirical evidence, based on 3 case studies totalling 59 properties
to check, that family-based SMC is a viable approach to verify VIS. Our study
shows that our method manages to find all buggy variants in 41 properties and
does so up to 16 times faster than state-of-the-art model-checking algorithms
for VIS [11]. Moreover, our approach can achieve a median bug detection rate 3
times higher than classical SMC applied to each variant individually. The hardest
cases arise when the state space of some variant is substantially smaller than the
other. This leads to a reduced probability to find a bug in those variants.

2 Background on Model Checking

In model checking, the behaviour of the system is often represented as a transi-
tion system (S,Δ,AP,L) where S is a set of states, Δ ⊆ S × S is the transition
relation, AP is a set of atomic propositions3 and L : S → 2AP labels any state
with the atomic propositions that the system satisfies when in such a state.

2.1 Linear Temporal Logic

LTL is a temporal logic that allows specifying desired properties over all future
executions of some given system. Given a set AP of atomic propositions, an LTL

3 Atomic propositions can be seen as basic observable properties of the system state.

296 M. Cordy et al.

formula φ is formed according to the following grammar: φ ::= � | a | φ1 ∧ φ2 |
¬φ1 | ©φ1 | φ1Uφ2 where φ1 and φ2 are LTL formulae, a ∈ AP , © is the next
operator and U is the until operator. We also define ♦φ (“eventually” φ) and
�φ (“always” φ) as a shortcut for �Uφ and ¬♦¬φ, respectively.

Vardi and Wolper have presented an automata-based approach for checking
that a system – modelled as a transition system ts – satisfies an LTL formula
φ [37]. Their approach consists of, first, transforming φ into a Büchi automaton
B¬φ whose language is exactly the set of executions that violate φ, that is, those
that visit infinitely often a so-called accepting state. Such execution σ takes the
form of a lasso, i.e. σ = q0 . . . qn with qj = qn for some j and where qi is accepting
for some i : j ≤ i ≤ n. We name accepting any such lasso whose cycle contains
an accepting state.

The second step is to compute the synchronous product of ts and B¬φ, which
results in another Büchi automaton Bts⊗¬φ. Any accepting lasso in Bts⊗¬φ rep-
resents an execution of the system that violates φ. Thus, Vardi and Wolper’s
algorithm comes down to checking the absence of such accepting lasso in the
whole state space of Bts⊗¬φ. The size of this state space is O(|ts| × |2|φ||) and
the complexity of this algorithm is PSPACE-complete.

2.2 Statistical Model Checking

Originally, SMC was used to compute the probability to satisfy a bounded LTL
property for stochastic system [39]. The idea was to monitor the properties on
bounded executions represented by Bernoulli variables and then use Monte Carlo
to estimate the resulting property. SMC also applies to non-stochastic systems
by assuming an implicit uniform probability distribution on each state successor.

Grosu and Smolka [20] lean on this and propose an SMC method to address
the full LTL model-checking problem. Their sampling algorithm walks randomly
through the state space of Bts⊗¬φ until it finds a lasso. They repeat the process
M times and conclude that the system satisfies the property if and only if none
of the M lassos is accepting. They also show that, given a confidence ratio δ and
assuming that the probability p for an execution of the system exceeds an error
margin ε, setting M = δ

1−ε bounds the probability of a Type-1 error (rejecting
the hypothesis that the system violates the property while it actually violates it)
by δ. Thus, M can serve as a minimal number of samples to perform. Our work
extends theirs in order to support VIS instead of single systems. Other work on
applying SMC to the full LTL logic can be found in [18,38].

2.3 Model Checking for VIS

Applying classical model checking to VIS requires iterating over all variants,
construct their corresponding automata Bts⊗¬φ and search for accepting lasso
in each of these. This enumerative method (also named product-based [34]) fails
to exploit the fact that variants have behaviour in common.

As an alternative, researchers came up with models able to capture the be-
haviour of multiple variants and distinguish between the unique and common

Statistical Model Checking for Variability-Intensive Systems 297

Fig. 1: An example of FBA with two variants.

behaviour of those variants [3, 8, 11]. Among such models, we focus on featured
transition systems [11] as those can link an execution to the variants able to
execute it more directly than the alternative formalisms. In a nutshell, FTS ex-
tend the standard transition system by labelling each transition with a symbolic
encoding of the set of variants able to exercise this transition. Then, the set of
variants that can produce an execution π is the intersection of all sets of variants
associated with the transitions in π.

To check which variants violate a given LTL formula φ, one can adapt the
procedure of Vardi andWolper and build the synchronous product of the featured
transition system with B¬φ [11]. This product is similar to the Büchi automaton
obtained in the single system case, except that its transitions are also labelled
with a set of variants.4 Then, the buggy variants are those that are able to
execute the accepting lassos of this automaton. This generalized automaton is
the fundamental formalism we work on in this paper.

Definition 1 Let V be a set of variants. A Featured Büchi Automaton (FBA)
over V is a tuple (Q, Δ, Q0, A,, Θ, γ) where Q is a set of states, Δ ⊆ Q × Q
is the transition relation, Q0 ⊆ Q is a set of initial states, A ⊆ Q is the set of
accepting states, Θ is the whole set of variants, and γ : Δ → 2Θ associates each
transition with the set of variants that can execute it.

Figure 1 shows an FBA with two variants and eight states. State 5 as the
only accepting state. Both variants can execute the transition from State 3 to
State 4, whereas only variant v2 can move from State 3 to State 6.

The Büchi automaton corresponding to one particular variant v is derived by
removing the transitions not executable by v. That is, we remove all transitions
(q, q′) ∈ Δ such that v
∈ γ(q, q′). The resulting automaton is named the projec-
tion of the FBA onto v. For example, one obtains the projection of the FBA in

4 Those labels are equal to those found in the corresponding transitions of the featured
transition system.

298 M. Cordy et al.

Figure 1 onto v2 by removing the transition from State 3 to State 7 and those
between State 7 to State 8.

2.4 Other Related Work

Recent work has applied SMC in the context of VIS. In [36], the authors pro-
posed an algebraic language to describe (quantitative) behavioural variability in
a dynamic manner. While their work shares some similarities with ours, there
are fundamental differences. First, we seek for guaranteeing the absence of bugs
in all variants of the family (applying family-based concepts), while they focus
on dynamic feature interactions (on a product-based basis). The second differ-
ence is that they consider quantitative bounded properties, while we support the
entire LTL verification problem by extending the multi-lasso concept of [20,28].

Another related, yet different area is the sampling of VIS variants (e.g. [27,
30]). Such work considers the problem of sampling uniformly variants in order to
study their characteristics (e.g. performance [22] and other quality requirements
[15]) and infers those of the other variants. Recently, Thüm et al. [35] survey
different strategies for the performance analysis of VIS, including the sampling
of variants and family-based test generation, which is based on the same idea of
executing test cases common to multiple variants. Contrary to us, such works
do not consider temporal/behavioural properties and most of them perform the
sampling based on a static representation of the variant space (i.e. a feature
model [23]). An interesting direction for future work is to combine our family-
based SMC with sampling techniques to check only representative variants of
the family.

3 Family-Based Statistical Model Checking

The purpose of SMC is to reduce the verification effort (when visiting the state
space of the system model) by sampling a given number of executions (i.e. lassos).
This gain in efficiency, however, comes at the risk of Type-1 errors. Indeed, while
the discovery of a counterexample leads with certainty to the conclusion that the
variants able to execute it violate the property φ, the fact that the sampling did
not find a counterexample for some variant v does not entail a 100% guarantee
that v satisfies φ. The more lassos we sample, the more confident we can get that
the variants without counterexamples satisfy φ. Thus, designing a family-based
SMC method involves answering three questions: (1) how to sample executions;
(2) how to choose a suitable number of executions; (3) what is the associated
probability of Type-1 error.

3.1 Random Sampling in Featured Büchi Automata

One can sample a lasso in an FBA by randomly walking through its state space,
starting from a randomly-chosen initial state and ending as soon as a cycle is
found. A particular restriction is that this lasso should be executable by at least

Statistical Model Checking for Variability-Intensive Systems 299

Input: fba = (Q, Δ, Q0, A, Θ, γ)
Output: (σ, Θσ, accept) where σ is a lasso of fba and Θσ is the set of the

variants able to execute σ and accept is true iff σ is accepting.

1 q0 ← pick from Q0 with probability 1
|Q0| ;

2 q ← q0; σ ← q0; Θσ ← Θ; depth ← 0; a ← 0;
3 while hash(q) =⊥ do
4 depth ← depth+ 1;
5 hash(q) ← depth;
6 if q ∈ A then
7 a ← depth;
8 end
9 Succσ ← {q′ ∈ Q|(q, q′) ∈ Δ ∧ (γ(q, q′) ∩Θσ) �= ∅};

10 q′ ← pick from Succσ with probability 1
|Succσ| ;

11 σ ← σq′;
12 Θσ ← Θσ ∩ γ(q, q′);
13 q ← q′;
14 end
15 return (σ,Θσ, hash(q) ≤ a)

Algorithm 1: Random Lasso Sampling

one variant; otherwise, we would sample a behaviour that does not actually exist.
The set of variants able to execute a given lasso are those that can execute all
its transitions, i.e. the intersection of all γ(q, q′) met along the transitions of this
lasso. More generally, we define the lasso sample space of an FBA as follows.

Definition 2 Let fba = (Q, Δ, Q0, A, Θ, γ) be a featured Büchi automaton.
The lasso sample space L of fba is the set of executions σ = q0 . . . qn such that
q0 ∈ Q0, (qi, qi+1) ∈ Δ for all 0 ≤ i ≤ n−1, (

⋂
0≤i≤n−1 γ(qi, qi+1))
= ∅, qj = qn

for some 0 ≤ j ≤ n− 1 and a
= b ⇒ qa
= qb for all 0 ≤ a, b ≤ n− 1. Moreover,
σ is said to be an accepting lasso if ∃qa ∈ A for some j ≤ a ≤ n.

Algorithm 1 formalizes the sampling of lassos in a deadlock-free FBA.5 After
randomly picking an initial state (Line 1), we walk through the state space by
randomly choosing, at each iteration, a successor state among those available
(Line 7–18). Throughout the search, we maintain the set of variants Θσ that
can execute σ so far (Line 16). Then, we use this set as a filter when selecting
successor states, so as to make sure that σ remains executable by at least one
variant. At Line 13, Succσ is the set of successors q′ of q (last state of σ) that can
be reached. We stop the search as soon as we reach a state that was previously
visited (Line 7). If this state was visited before the last accepting state, it means
that the sampled lasso is accepting (Line 19).

5 We assume that no variant may remain stuck in a state without outgoing transition
that this variant can execute. Should this happen, we assume that the variant self-
loops in the state wherein it is stuck, yielding an immediate lasso.

300 M. Cordy et al.

A motivated criticism [28] of the use of random walk to sample lasso is that
shorter lassos receive a higher probability to be sampled. To counterbalance
this, we implemented a heuristic named multi-lasso [20]. It consists of ignoring
backward transitions that do not lead to an accepting lasso if there are still
forward transitions to explore. This is achieved by modifying Line 13 such that
backward transitions leading to a non-accepting lasso are not considered in the
successor set.

Assuming a uniform selection of outgoing transitions from each state, one
can compute the probability that a random walk samples any given lasso from
the sample space.

Definition 3 The probability P (σ) of a lasso σ = q0 . . . qn is inductively defined
as follows: P [q0] = |Q0|−1 and P [q0 . . . qj] = P [q0 . . . qj−1]× |Succq0...qj−1 |−1.

In the absence of deadlock, (L,P(L), P) defines a probability space. Proba-
bility spaces on infinite executions are by no means a trivial construction (see
e.g. [9]). Nevertheless, the proof of this proposition is similar to its counterpart
in Büchi automata [20] and is therefore omitted. It derives from the observation
that the lasso sample space is composed of non-subsuming finite prefixes of all
infinite paths of the automaton.

Let us consider an example. In the FBA from Figure 1, there are two non-
accepting lassos (l1 = (1, 2, 1) and l2 = (1, 3, 7, 8, 7)) and two accepting lassos
(l3 = (1, 3, 4, 5, 3) and l4 = (1, 3, 6, 5, 3)). Both variants can execute lassos l3,
while only v1 can execute l2 and only v2 can execute l1 and l4. The probability
of sampling l1 is 1

2 , whereas P [l2] = P [l3] = P [l4] =
1
6 . Thus, the probability of

sampling a counterexample executable by v2 is 1
3 , whereas it is only

1
6 for v1.

Next, we characterize the relationship between this probability space and any
individual variant v. Let Lv be the set of lassos executable by v. Since Lv ⊆ L,
the probability pv to sample such a lasso is

∑
σv∈Lv

P (σ). Note that pv can
be different from the probability p̂v of sampling an accepting lasso from the
automaton modelling the behaviour of v only (i.e. the projection of the FBA
onto v). This is because, in the FBA, the probability of selecting an outgoing
transition from a given state is assigned uniformly regardless of the number of
variants able to execute that transition. This balance-breaking effect increases
more as the variants have different numbers of unique executions.

Let σ = q0 . . . qn be a lasso in Lv. Then Pv(σ) is inductively defined as follows:
Pv[q0] = P [q0] and Pv[q0 . . . qj] = Pv[q0 . . . qj−1] × |{(qj−1, q) ∈ Δv : q ∈ Q}|−1

where Δv = {(q, q′) ∈ Δ : v ∈ γ(q, q′)}. In our example, Pv1 [l3] =
1
2 , as opposed

to P [l3] =
1
6 . This implies that it is more likely to sample an accepting lasso

executable by v1 from its projection in one trial than it is from the whole FBA
in two trials. This illustrates the case where merging the state spaces of the
variants can have a negative impact on the capability to find bugs specific to
one variant.

Thus, sampling lassos from the FBA allows finding one counterexample exe-
cutable by multiple products but it introduces a bias. Overall, it tends to decrease
the probability of sampling lassos from variants that have a smaller state space.

Statistical Model Checking for Variability-Intensive Systems 301

This can impact the results and parameter choices of SMC, like the number of
samples required to get confident results and the associated Type-1 error.

3.2 Hypothesis Testing

Remember that addressing the model checking problem for VIS requires to find
a counterexample for every buggy variant v. Thus, one must sample a number
M of lassos such that one gets an accepting lasso for each such buggy variant
with a confidence ratio δ. Let fba be a featured Büchi automaton, v be a variant
and pv =

∑
σ ∈ Lω

vP (σ) where Lω
v is the set of accepting lasso executable by v.

Let Zv denote a Bernoulli random variable such that Zv = 1 with probability
pv and Zv = 0 with probability qv = 1 − pv. Now, let Xv denote the geometric
random variable with parameter pv that encodes the number of independent
samples required until Zv = 1. For a set of variants V = {v1 . . . v|V |}, we have
that Xv1

. . . Xv|V | are not independent since one may sample a lasso executable
by more than one variant.

We define X = maxi=1..|V | Xvi . We aim to find a number of sample M such
that P [X ≤ M] ≥ 1 − δ for a confidence ratio δ. This is analogous to the
coupon collector’s problem [4], which asks how many boxes are needed to collect
one instance of every coupon placed randomly in the boxes. It differs from the
standard formulation in that the probability of occurrence of coupons are neither
independent nor uniform, and a single box can contain 0 to |V | coupons. Even
for simpler instances of the coupon problem, computing P [X ≤ M] analytically
is known to be hard [33]. Thus, existing solutions rather characterise a lower
bound and an upper bound. We follow this approach as well.

3.3 Lower Bound (Minimum Number of Samples)

To compute a lower bound for the number of samples to draw, we transform the
family-based SMC problem to a simpler form (in terms of verification effort).
We divide our developments into two parts. First, we show that assigning equal
probabilities pvi

to every variant vi (obtained by averaging the original probabil-
ity values) reduces the number M of required samples. As a second step, we show
that assuming that all variants share all their executions also reduces M . Doing
so, we reduce the family-based SMC problem to its single-system counterpart,
which allows us to obtain the desired lower bound.

Averaged probabilities. Let pavg = 1
|V |

∑
v=1..|V | pv and Xeven be the coun-

terpart of X where all probabilities pvi
have been replaced by pavg .

Lemma 4 For any number N , it holds that P [Xeven ≤ N] ≥ P [X ≤ N].

Intuitively, the value of X depends mainly on the variants whose accepting lassos
are rarer. By averaging the probability of sampling accepting lassos, we raise the
likelihood to get those rarer lassos and, thus, the number of samples required
to get an accepting lasso for all variants. Shioda [33] proves a similar result

302 M. Cordy et al.

for the coupon collector problem. He does so by showing that the vector peven

majorizes p = {pv1 . . . pv1} and that the ccdf 6 of X is a Schur-concave function
of the sampling probabilities. Even though our case is more general than the non-
uniform coupon collector’s problem, the result of Lemma 4 still holds. Indeed, we
observe that the theoretical proof of [33] (a) does not assume the independence
of the random variables Zvi ; (b) still applies to the dependent case; and (c)
supports the case where the sum of the probability values pvi is less than one.

Maximized commonalities. Next, let Xall be the particular case of Xeven

where all accepting lassos are executable by all variants and are sampled with
probability pavg . Thus, the number of samples to find an accepting lasso for
every variant is reduced to the number of samples required to find any accepting
lasso.

Lemma 5 It holds that P [Xall ≤ N] ≥ P [Xeven ≤ N].

Moreover, let us note thatXall is a geometric random variable with parameter
pavg . This reduces our problem to sampling an accepting lasso in a classical Büchi
automaton and allows us to reuse the results of Grosu and Smolka [20].

Lemma 6 For a confidence ratio δ and an error margin ε, it holds that

pavg ≥ ε ⇒ P [Xall ≤ M] ≥ P [Xall ≤ N] = 1− δ

where M = ln(δ)
ln(1−ε) and N = ln(δ)

ln(1−pavg)
.

This leads us to the central result of this section.

Theorem 7 Assuming that pavg ≥ εavg for a given error margin εavg, a lower
bound for the number of samples required to find an accepting lasso for each

buggy variant is M = ln(δ)
ln(1−εavg)

with a Type-1 error bounded by δ.

3.4 Upper Bound (Maximum Number of Samples)

We follow a similar two-step process to characterise an upper bound for M . In the
first step, we replace the probabilities pvi of every variant by their minimum.
In the second step, we alter the model so that the variants have no common
behaviour. Then we show that, given a desired degree of confidence, the obtained
model requires a higher number of samples than the original one.

Minimum probability. Let pmin = minv=1..|V | pv and Xmin be the coun-
terpart of X where all probabilities pvi have been replaced by pmin. The ccdf
of X being a decreasing function of the sampling probabilities, we have that
P [Xmin ≤ N] ≤ P [X ≤ N].

6 ccdf stands for complementary cumulative distribution function

Statistical Model Checking for Variability-Intensive Systems 303

No common counterexamples. Let {(Xindep)vi
} be a set of independent geo-

metric random variables with parameters pmin and let Xindep = max(Xindep)vi
.

Xindep actually encodes the number of samples required to get a counterexample
for all buggy variants when those have no common counterexamples. We have
that P [Xindep ≤ N] ≤ P [Xmin ≤ N], since the number of samples to perform
cannot be reduced by sampling a counterexample executable by multiple vari-
ants. Now, let us note that Xindep is an instance of the uniform coupon problem
with |V | coupons to collect. A lower bound for P [Xindep ≤ M] is known to
be 1 − |V | × (1 − pmin)

M [33]. Assuming pmin greater than some error margin
εmin, we have P [Xindep ≤ M] ≥ 1 − |V | × (1 − εmin)

M . Setting a confidence
ratio δ, we want to find a M such that P [Xindep ≤ M] ≥ 1 − δ. By solving

1 − |V |(1 − εmin)
M = 1 − δ, we obtain M = ln(δ)−ln(|V |)

ln(1−εmin)
, which we can use as

the upper bound for the number of samples to perform.

Theorem 8 Assuming that pmin ≥ εmin for a given error margin εmin, an
upper bound for the number of samples required to find an accepting lasso for

each buggy variant is M = ln(δ)−ln(|V |)
ln(1−εmin)

with a Type-1 error is bounded by δ.

4 Empirical Study

4.1 Objectives and Methodology

One can regard SMC as a means of speeding up verification while risking miss-
ing counterexamples. Our first question studies this trade-off and analyses the
empirical Type-1 error rate. More precisely, we compute the detection rate of
our family-based SMC method, expressed as the number of buggy variants that
it detects over the total number of buggy variants.

RQ1 What is the empirical buggy variant detection rate of family-based SMC?

We compute the detection rate for different numbers M of samples lying between
the lower and upper bounds as characterised in Section 3. To get the ground
truth (i.e. the true set of all buggy variants), we execute the exhaustive LTL
model checking algorithms for FTS designed by Classen et al. [11]. For the lower
bound, we assume that the average probability to sample an accepting lasso for
any variant is higher than εavg = 0.01. Setting a confidence ratio δ = 0.05 yields
ln(0.05)
ln(0.99) = 298. We round up and set M = 300 as our lower bound. For the higher

bound, we assume that the minimum probability to sample a counterexample in
a buggy variant is higher than εmin = 3.10−4 and also set δ = 0.05. For a model

with 256 variants7, this yields M = ln(0.05)−ln(256)
ln(0.9997) = 18478. For convenience,

we round it up to 19, 200 = 300 · 26. In the end, we successively set M to
300, 600, . . . , 19200 and observe the detection rates.

Next, we investigate a complementary scenario where the engineer has a
limited budget of samples to check. We study the smallest budget required by

7 256 is the maximum number of variants in our case studies

304 M. Cordy et al.

SMC to detect all buggy variants (in the cases where it can indeed detect all of
them) and what is the incurred computation resources compared to an exhaus-
tive search of the state space. Thus, our second question is:

RQ2 How much efficient is SMC with a minimal sample budget compared to an
exhaustive search?

Finally, we compare family-based SMC with the alternative of sampling in
each variant’s state space separately. We name this alternative method enumer-
ative SMC. Hence, our last research question is:

RQ3 How does family-based SMC compares with enumerative SMC?

As before, we compare the two techniques w.r.t. detection rate. We set M to
the same values as in RQ1. In enumerative SMC, this means that each variant
receives a budget of samples of M

|V | where M is the number of samples used in

family-based SMC and V is the set of variants.

4.2 Experimental Setup

Implementation. We implemented our SMCalgorithms (family-based and enumerative-
based) in a prototype tool. The tool takes as input an FTS, an LTL formula and
a sample budget. Then it performs SMC until all samples are checked or until
all variants are found to violate the formula. To compare with the exhaustive
search we use ProVeLines [17], a state-of-the-art model checker for VIS.

Dataset. We consider three systems that were used in past research to evaluate
VIS model checking algorithms [11,14,16]. Table 1 summarizes the characteristics
of our case studies and their related properties. The first system is a minepump
system [11,24] with 128 variants. The underlying FTS comprises 250,561 states,
while the state space of all variants taken individually reaches 889,124 states.
The second model is an elevator model inspired by Plath and Ryan [29]. It is
composed of eight configuration options, which can be combined into 256 differ-
ent variants, and its FTS has 58,945,690 states to explore. The third and last is
a case study inspired by the CCSDS File Delivery Protocol (CFDP) [13], a real-
world configurable spacecraft communication protocol [5]. The FTS modelling
the protocol consists of 1,732,536 states to explore and 56 variants (individually
totalling 2,890,399 states). We discarded the properties that are satisfied by all
variants. Those are: Minepump #17, #33, #40; Elevator #13, CFDP #5. In-
deed, these properties are not relevant for RQ1 and RQ3 since SMC is trivially
correct in such cases. As for RQ2, any small sample budget would return correct
results while being more efficient than the exhaustive search. This leaves us with
59 properties.

Infrastructure and repetitions. We run our experiments on a MacBook Pro 2018
with a 2.9 GHz Core-i7 processor and macOS 10.14.5. To account for random
variations in the sampling, we execute 100 runs of each experiment and compute
the average detection rates for each property.

Statistical Model Checking for Variability-Intensive Systems 305

Table 1: Models and LTL formulae used in our experiments.
Minepump (250,561 FTS states, 128 valid variants)

#1 ¬(�♦(stateReady ∧ highWater ∧ userStart))
#2 ¬(�♦stateReady)
#3 ¬(�♦stateRunning)
#4 ¬(�♦stateStopped)
#5 ¬(�♦stateMethanestop)
#6 ¬(�♦stateLowstop)
#7 ¬(�♦readCommand)
#8 ¬(�♦readAlarm)
#9 ¬(�♦readLevel)

#10 ¬((�♦readCommand) ∧ (�♦readAlarm) ∧ (�♦readLevel))
#11 ¬(�♦pumpOn)
#12 ¬(�♦¬pumpOn)
#13 ¬((�♦pumpOn) ∧ (�♦¬pumpOn))
#14 ¬(�♦methane)
#15 ¬(�♦¬methane)
#16 ¬((�♦methane) ∧ (�♦¬methane))
#17 �(¬pumpOn ∨ stateRunning)
#18 �(methane ⇒ (♦stateMethanestop))
#19 �(methane ⇒ ¬(♦stateMethanestop))
#20 �(pumpOn ∨ ¬methane)
#21 �((pumpOn ∧methane) ⇒ ♦¬pumpOn)
#22 ((�♦readCommand) ∧ (�♦readAlarm) ∧ (�♦readLevel)) ⇒ �((pumpOn ∧methane) ⇒ ♦¬pumpOn)
#23 ¬♦�(pumpOn ∧methane)
#24 ((�♦readCommand) ∧ (�♦readAlarm) ∧ (�♦readLevel)) ⇒ ¬♦�(pumpOn ∧methane)
#25 �((¬pumpOn ∧methane ∧ ♦¬methane) ⇒ ((¬pumpOn)U¬methane))
#26 �((highWater ∧ ¬methane) ⇒ ♦pumpOn)
#27 ¬(♦(highWater ∧ ¬methane))
#28 ((�♦readCommand) ∧ (�♦readAlarm) ∧ (�♦readLevel)) ⇒ (�((highWater ∧ ¬methane) ⇒ ♦pumpOn))
#29 �((highWater ∧ ¬methane) ⇒ ¬♦pumpOn)
#30 ¬♦�(¬pumpOn ∧ highWater)
#31 ((�♦readCommand) ∧ (�♦readAlarm) ∧ (�♦readLevel)) ⇒ (¬♦�(¬pumpOn ∧ highWater))
#32 ¬♦�(¬pumpOn ∧ ¬methane ∧ highWater)
#33 ((�♦readCommand) ∧ (�♦readAlarm) ∧ (�♦readLevel)) ⇒ (¬♦�(¬pumpOn ∧ ¬methane ∧ highWater))
#34 �((pumpOn ∧ highWater ∧ ♦lowWater) ⇒ (pumpOnUlowWater))
#35 ¬♦(pumpOn ∧ highWater ∧ ♦lowWater)
#36 �(lowWater ⇒ (♦¬pumpOn))
#37 ((�♦readCommand) ∧ (�♦readAlarm) ∧ (�♦readLevel)) ⇒ (�(lowWater ⇒ (♦¬pumpOn)))
#38 ¬♦�(pumpOn ∧ lowWater)
#39 ((�♦readCommand) ∧ (�♦readAlarm) ∧ (�♦readLevel)) ⇒ (¬�♦(pumpOn ∧ lowWater))
#40 �((¬pumpOn ∧ lowWater ∧ ♦highWater) ⇒ ((¬pumpOn)UhighWater))
#41 ¬♦(¬pumpOn ∧ lowWater ∧ ♦highWater)

Elevator (58,945,690 FTS states, 256 valid variants)

#1 ¬�♦progress
#2 ¬�♦f0 ∨ ¬�♦f1 ∨ ¬�♦f2 ∨ ¬�♦f3
#3 ¬�♦p0at0 ∨ ¬�♦p0at1 ∨ ¬�♦p0at2 ∨ ¬�♦p0at3
#4 �(fb2 ⇒ (♦f2))
#5 �♦progress ⇒ (�(fb2 ⇒ (♦f2)))
#6 �♦progress ⇒ (�(fb2 ⇒ (♦(f2 ∧ dopen))))
#7 �♦progress ⇒ (¬♦�f2)
#8 �♦(progress ∨ waiting) ⇒ (¬♦�f2)
#9 �♦(progress ∨ waiting) ⇒ (¬♦�f0)

#10 ¬♦((cb0 ∨ cb1 ∨ cb2 ∨ cb3) ∧ ¬(p0in ∨ p1in) ∧ dclosed)
#11 �♦progress ⇒ (¬♦�dclosed)
#12 �♦progress ⇒ (¬♦�(p0to3 ∧ dclosed))
#13 �♦progress ⇒ (¬♦�dopen)
#14 �♦(progress ∨ waiting) ⇒ (¬♦�dopen)
#15 ((�♦(progress ∨ waiting)) ∧ (�♦(fb0 ∨ fb1 ∨ fb2 ∨ fb3))) ⇒ (¬♦�dopen)
#16 ¬♦(p0in ∧ p1in ∧ dclosed)
#17 ¬♦�(p0in ∧ dclosed)
#18 �♦progress ⇒ (¬♦�(p0in ∧ dclosed))

CFDP (1,801,581 FTS states, 56 valid variants)

#1 ♦fileReceived
#2 (♦eofReceived) ⇒ ♦fileReceived
#3 ((♦eofReceived) ∧ (♦nakReceived)) ⇒ ♦fileReceived
#4 ((♦eofReceived) ∧ (�♦nakReceived)) ⇒ ♦fileReceived
#5 �(finSend ⇒ fileReceived)

306 M. Cordy et al.

(a) Minepump (family-based SMC) (b) Elevator (family-based SMC)

(c) CFDP (family-based SMC)

Fig. 2: Detection rate of the buggy variants achieved by our SMC method, in the
three case studies and using different sample sizes. In each figure, the x-axis is
the number of samples.

5 Results

5.1 RQ1: Detection Rate

Figure 2 shows as boxplots, for each case study and over all checked properties,
the percentage of buggy variants for which family-based SMC found a counterex-
ample. We provide those boxplots for different number M of samples.

In the case of Minepump and Elevator, the median detection percentage is
100% starting from M = 1200 and M = 600, respectively. Further increasing the
number of samples raises the 0.25 percentile. In Minepump and for M = 1200,
there are 18/41 properties for which SMC could not detect all buggy variants.
IncreasingM improves significantly the percentage of buggy variants detected by
SMC for all these properties, although there remain undetected variants in 15
of them even with M = 19, 200. This illustrates that our assumption regarding

Statistical Model Checking for Variability-Intensive Systems 307

pmin was inappropriate for those properties: counterexamples are rarer than
we imagined. The elevator study yields even better results: at M = 600, SMC
detects all buggy variants for 10/18 properties; this number becomes 14/18 at
M = 2, 400 and 17/18 at M = 9, 600. As for the remaining property, SMC with
M = 19, 200 detects 50% of the variants on average and we observe that this
percentage consistently increases as we increase M .

The results for CFDP are mixed: while the median percentage goes beyond
80% as soon as M = 1, 200, it tends to saturate when increasing the number of
samples. The 0.25 percentile still increases but also seems to reach an asymp-
totic behaviour in the trials with the highest M . A detailed look at the results
reveals that for M ≥ 1, 200, SMC cannot identify all buggy variants for only two
properties: #3 (9 buggy variants) and #4 (4 buggy variants). At M = 19, 200,
SMC detects 5.43 and 3.14 buggy variants for those two properties, respectively.
Further doubling M raises these numbers to 6.36 and 3.26. This indicates that
the non-detected variants have few counterexamples, which are rare due to the
tinier state space of those variants. The computation resources required by SMC
to find such rare counterexamples with high confidence are higher than model-
checking the undetected variants thoroughly. An alternative would be to direct
SMC towards rare executions, leaning on techniques such as [10, 21].

SMC can detect all buggy variants for 41 properties out of 59. For the re-
maining properties, however, SMC was unable to find the rare counterex-
amples of some buggy variants. This calls for new dedicated heuristics to
sample those rare executions.

5.2 RQ2: Efficiency

Next, we check how much execution time SMC can spare compared to the ex-
haustive search. Results are shown in Table 2. Overall, we see that SMC holds
the potential to greatly accelerate the discovery of all buggy variants, achieving
a total speedup of 526%, 1891% and 356% for Minepump, Elevator and CFDP,
respectively. For more than half of the properties, the smallest number of sam-
ples we tried (i.e. 300) was sufficient for a thorough detection. Those properties
are actually satisfied by all variants. The fact that SMC requires such a small
number of samples means that the same bug lies in all the variants (as opposed to
each variant violating the property in its own way). On the contrary, Minepump
property #31 is also violated by all variants but requires a much higher sample
number, which illustrates the presence of variant-specific bugs.

Interestingly, the benefits of SMC are higher in the Elevator case (the largest
of the three models), achieving speedups of up to 16,575%. A likely explana-
tion is that the execution paths of the Elevator model share many similarities,
which means that a single bug can lead to multiple failed executions. By sam-
pling randomly, SMC avoids exploring thoroughly a part of the state space that
contains no bug and, instead, increases the likelihood to move to interesting

308 M. Cordy et al.

Table 2: Least numbers of samples (in our experiments) that allowed detecting all
buggy variants and corresponding execution time. Full refers to an exhaustive
search of the search space. Only properties that are violated by at least one
variant and for which SMC found all buggy variants are shown.

SMC Full
Property # Samples # States Time # States Time Speedup

Minepump #1 600 25332 0.18 92469 1.33 739%
Minepump #2 300 12553 0.10 24908 1.06 1060%
Minepump #4 300 2383 0.03 103933 3.10 10333%
Minepump #5 1200 48714 0.32 76040 1.03 322%
Minepump #7 300 2469 0.03 18482 0.21 700%
Minepump #8 300 2757 0.03 4646 0.05 167%
Minepump #9 300 2758 0.03 8263 0.08 267%

Minepump #10 600 15191 0.11 55936 0.58 527%
Minepump #12 300 2356 0.03 811 0.02 67%
Minepump #14 300 2915 0.04 989 0.02 50%
Minepump #15 300 2389 0.03 2673 0.05 167%
Minepump #16 300 4102 0.04 1917 0.03 75%
Minepump #18 300 2604 0.03 125 0.01 33%
Minepump #19 600 25027 0.18 143540 2.69 1494%
Minepump #20 300 3864 0.03 40 0.01 33%
Minepump #25 2400 67620 0.50 346935 6.12 1224%
Minepump #26 300 2708 0.03 4382 0.05 167%
Minepump #27 300 2450 0.03 3702 0.04 133%
Minepump #28 2400 58382 0.43 99780 1.28 298%
Minepump #30 300 300 0.03 3648 0.05 167%
Minepump #31 9600 165802 1.29 61185 1.03 80%
Minepump #32 300 2684 0.03 4110 0.05 167%
Minepump #41 300 5732 0.05 3886 0.04 80%

Total 461092 3.60 1062400 18.93 526%

Elevator #1 300 4371 0.03 105883 0.52 1733%
Elevator #2 600 226813 1.14 437252 2.48 218%
Elevator #3 4800 1736781 7.67 14822853 103.22 1346%
Elevator #4 300 4403 0.04 1194568 6.63 16575%
Elevator #5 300 7719 0.05 1305428 7.76 15520%
Elevator #6 300 7061 0.05 1202204 6.89 13780%
Elevator #7 600 25021 0.12 732684 4.33 3608%
Elevator #8 600 26120 0.13 204934 1.19 915%
Elevator #9 300 3142 0.03 39086 0.28 933%

Elevator #11 300 3278 0.03 91 0.02 67%
Elevator #12 9600 1502419 6.53 1954924 11.12 170%
Elevator #14 2400 141753 0.61 7889584 52.88 8669%
Elevator #15 2400 142405 0.69 7889753 57.64 8354%
Elevator #16 2400 955206 4.02 28551923 182.25 4534%
Elevator #17 1200 100755 0.38 516230 3.53 929%
Elevator #18 4800 510145 1.94 486694 3.00 155%

Total 5397392 23.46 67334091 443.74 1891%

CFDP #1 300 50206 0.20 87937 1.71 855%
CFDP #2 1200 117897 0.52 102842 0.85 163%

Total 168103 0.72 190779.00 2.56 356%

Statistical Model Checking for Variability-Intensive Systems 309

(a) Minepump (enumerative SMC) (b) Elevator (enumerative SMC)

(c) CFDP (enumerative SMC)

Fig. 3: Detection rate of the buggy variants achieved by classical SMC applied
variant by variant, in the three case studies and using different sample sizes. In
each figure, the x-axis is the number of samples.

(likely-buggy) parts. A striking example is property #16 (satisfied by half of the
variants), where SMC reduces the verification time from 3 minutes to 4 seconds.

Where SMC can detect all buggy variants, it can do so with more ef-
ficiency compared to exhaustive search, for 33/41 properties, achieving
speedups of multiple orders of magnitude.

5.3 RQ3: Family-based SMC versus Enumerative SMC

Figure 3 shows the detection rate achieved the enumerative SMC for the three
case studies and different numbers of samples, while the results of the family-
based SMC were shown in Figure 2. In the Minepump and Elevator cases, enu-
merative SMC achieves a lower detection rate than family-based SMC. In both

310 M. Cordy et al.

cases, a Student t-test with α = 0.05 rejects, with statistical significance, the
hypothesis that the two SMC methods yield no difference in error rate. One can
observe, for instance, that, with 600 samples, enumerative SMC achieves a me-
dian detection rate of 31.13%, while family-based SMC achieved 99.86%. This
tends to validate our hypothesis that family-based SMC is more effective as the
variants share more executions. Indeed, on average, one state of the Minepump
is shared by 3.55 variants.

In the case of CFDP, however, enumerative SMC performs systematically
better (up to 13.95% more). Still, the difference in median detection rate tends
to disappear as more executions are sampled. Nevertheless, CFDP illustrates the
main drawback of family-based SMC: it can overlook counterexamples in vari-
ants with fewer behaviours. In such cases, enumerative SMC might complement
family-based SMC by sampling from the state space of specific variants.

Family-based SMC can detect significantly more buggy variants than enu-
merative SMC, especially when few lassos are sampled. Yet, enumerative
SMC remains useful for variants that have a tiny state space compared
to the others and can, thus, complement the family-based method.

6 Conclusion

We proposed a new simulation-based approach for finding bugs in VIS. It applies
statistical model checking to FTS, an extension of transition systems designed to
model concisely multiple VIS variants. Given an LTL formula, our method results
in either collecting counterexamples for multiple variants at once or proving the
absence of bugs. The algorithm always converges, up to some confidence error
which we quantify on the FTS structure by relying on results for the coupon
collector problem. After implementing the approach within a state-of-the-art
tool, we study empirically its benefits and drawbacks. It turns out that a small
number of samples is often sufficient to detect all variants, outperforming an
exhaustive search by an order of magnitude. On the downside, we were unable to
find counterexamples for some faulty variants and properties. This calls for future
research, exploiting techniques to guide the simulation towards rare bugs/events
[7,10,21] or towards uncovered variants relying, e.g., on distance-based sampling
[22] or light-weight scheduling sampling [19]. Nevertheless, the positive outcome
of our study is to show that SMC can act as a low-cost-high-reward alternative
to exhaustive verification, which can provide thorough results in a majority of
cases.

References

1. Ammann, P.E., Black, P.E., Majurski, W.: Using model checking to generate tests
from specifications. In: Proceedings Second International Conference on Formal
Engineering Methods (Cat.No.98EX241). pp. 46–54 (1998)

Statistical Model Checking for Variability-Intensive Systems 311

2. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
3. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Modelling and analysing

variability in product families: Model checking of modal transition systems with
variability constraints. Journal of Logical and Algebraic Methods in Programming
85(2), 287 – 315 (2016)

4. Boneh, A., Hofri, M.: The coupon-collector problem revisited — a survey of en-
gineering problems and computational methods. Communications in Statistics.
Stochastic Models 13(1), 39–66 (1997)

5. Boucher, Q., Classen, A., Heymans, P., Bourdoux, A., Demonceau, L.: Tag and
prune: A pragmatic approach to software product line implementation. In: ASE’10.
pp. 333–336. ACM (2010)

6. Broy, M., Jonsson, B., Katoen, J., Leucker, M., Pretschner, A. (eds.): Model-Based
Testing of Reactive Systems, Advanced Lectures [The volume is the outcome of
a research seminar that was held in Schloss Dagstuhl in January 2004], Lecture
Notes in Computer Science, vol. 3472. Springer (2005)

7. Budde, C.E., D’Argenio, P.R., Hermanns, H.: Rare event simulation with fully au-
tomated importance splitting. In: Beltrán, M., Knottenbelt, W.J., Bradley, J.T.
(eds.) Computer Performance Engineering - 12th European Workshop, EPEW
2015, Madrid, Spain, August 31 - September 1, 2015, Proceedings. Lecture Notes
in Computer Science, vol. 9272, pp. 275–290. Springer (2015)

8. Chechik, M., Devereux, B., Easterbrook, S.M., Gurfinkel, A.: Multi-valued sym-
bolic model-checking. ACM Trans. Softw. Eng. Methodol. 12(4), 371–408 (2003)

9. Cheung, L., Stoelinga, M., Vaandrager, F.W.: A testing scenario for probabilistic
processes. J. ACM 54(6), 29 (2007)

10. Chockler, H., Ivrii, A., Matsliah, A., Rollini, S.F., Sharygina, N.: Using cross-
entropy for satisfiability. In: Shin, S.Y., Maldonado, J.C. (eds.) Proceedings of
the 28th Annual ACM Symposium on Applied Computing, SAC ’13, Coimbra,
Portugal, March 18-22, 2013. pp. 1196–1203. ACM (2013)

11. Classen, A., Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A., Raskin, J.F.:
Featured transition systems: Foundations for verifying variability-intensive systems
and their application to LTL model checking. Transactions on Software Engineering
pp. 1069–1089 (2013)

12. Clements, P.C., Northrop, L.: Software Product Lines: Practices and Patterns. SEI
Series in Software Engineering, Addison-Wesley (August 2001)

13. Consultative Committee for Space Data Systems (CCSDS): CCSDS File Delivery
Protocol (CFDP): Blue Book, Issue 4. NASA (2007)

14. Cordy, M., Heymans, P., Legay, A., Schobbens, P.Y., Dawagne, B., Leucker, M.:
Counterexample guided abstraction refinement of product-line behavioural models.
In: FSE’14. ACM (2014)

15. Cordy, M., Legay, A., Lazreg, S., Collet, P.: Towards sampling and simulation-based
analysis of featured weighted automata. In: Proceedings of the 7th International
Workshop on Formal Methods in Software Engineering, FormaliSE@ICSE 2019,
Montreal, QC, Canada, May 27, 2019. pp. 61–64 (2019)

16. Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A.: Beyond Boolean product-line
model checking: Dealing with feature attributes and multi-features. In: ICSE’13.
pp. 472–481. IEEE (2013)

17. Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A.: Provelines: A product-line of
verifiers for software product lines. In: SPLC’13. pp. 141–146. ACM (2013)

18. Daca, P., Henzinger, T.A., Kret́ınský, J., Petrov, T.: Faster statistical model check-
ing for unbounded temporal properties. ACM Trans. Comput. Log. 18(2), 12:1–
12:25 (2017)

312 M. Cordy et al.

19. D’Argenio, P.R., Hartmanns, A., Sedwards, S.: Lightweight statistical model check-
ing in nondeterministic continuous time. In: Margaria, T., Steffen, B. (eds.) Lever-
aging Applications of Formal Methods, Verification and Validation. Verification -
8th International Symposium, ISoLA 2018, Limassol, Cyprus, November 5-9, 2018,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 11245, pp. 336–353.
Springer (2018)

20. Grosu, R., Smolka, S.A.: Monte Carlo model checking. In: Halbwachs, N., Zuck,
L.D. (eds.) Tools and Algorithms for the Construction and Analysis of Systems.
pp. 271–286. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

21. Jégourel, C., Legay, A., Sedwards, S.: Importance splitting for statistical model
checking rare properties. In: Sharygina, N., Veith, H. (eds.) Computer Aided Veri-
fication - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July
13-19, 2013. Proceedings. Lecture Notes in Computer Science, vol. 8044, pp. 576–
591. Springer (2013)

22. Kaltenecker, C., Grebhahn, A., Siegmund, N., Guo, J., Apel, S.: Distance-based
sampling of software configuration spaces. In: Atlee, J.M., Bultan, T., Whittle, J.
(eds.) Proceedings of the 41st International Conference on Software Engineering,
ICSE 2019, Montreal, QC, Canada, May 25-31, 2019. pp. 1084–1094. IEEE / ACM
(2019)

23. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-oriented domain
analysis (FODA) feasibility study. Tech. Rep. CMU/SEI-90-TR-21 (1990)

24. Kramer, J., Magee, J., Sloman, M., Lister, A.: Conic: an integrated approach to
distributed computer control systems. Computers and Digital Techniques, IEE
Proceedings E 130(1), 1–10 (1983)

25. Larsen, K.G., Legay, A.: Statistical model checking the 2018 edition! In: Margaria,
T., Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verification and
Validation. Verification - 8th International Symposium, ISoLA 2018, Limassol,
Cyprus, November 5-9, 2018, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 11245, pp. 261–270. Springer (2018)

26. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview.
In: Runtime Verification - First International Conference, RV 2010, St. Julians,
Malta, November 1-4, 2010. Proceedings. pp. 122–135 (2010)

27. Oh, J., Gazzillo, P., Batory, D.S.: t-wise coverage by uniform sampling. In: Berger,
T., Collet, P., Duchien, L., Fogdal, T., Heymans, P., Kehrer, T., Martinez, J.,
Mazo, R., Montalvillo, L., Salinesi, C., Tërnava, X., Thüm, T., Ziadi, T. (eds.)
Proceedings of the 23rd International Systems and Software Product Line Confer-
ence, SPLC 2019, Volume A, Paris, France, September 9-13, 2019. pp. 15:1–15:4.
ACM (2019)

28. Oudinet, J., Denise, A., Gaudel, M., Lassaigne, R., Peyronnet, S.: Uniform Monte-
Carlo model checking. In: Giannakopoulou, D., Orejas, F. (eds.) Fundamental Ap-
proaches to Software Engineering - 14th International Conference, FASE 2011,
Held as Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011. Proceedings.
Lecture Notes in Computer Science, vol. 6603, pp. 127–140. Springer (2011)

29. Plath, M., Ryan, M.: Feature integration using a feature construct. SCP 41(1),
53–84 (2001)

30. Plazar, Q., Acher, M., Perrouin, G., Devroey, X., Cordy, M.: Uniform sampling of
SAT solutions for configurable systems: Are we there yet? In: 12th IEEE Conference
on Software Testing, Validation and Verification, ICST 2019, Xi’an, China, April
22-27, 2019. pp. 240–251. IEEE (2019)

Statistical Model Checking for Variability-Intensive Systems 313

31. Pnueli, A.: The temporal logic of programs. In: FOCS’77. pp. 46–57 (1977)
32. Sabin, D., Weigel, R.: Product configuration frameworks-a survey. IEEE Intelligent

Systems and their Applications 13(4), 42–49 (Jul 1998)
33. Shioda, S.: Some upper and lower bounds on the coupon collector problem. Journal

of Computational and Applied Mathematics 200(1), 154 – 167 (2007)
34. Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A classification and survey

of analysis strategies for software product lines. ACM Comput. Surv. 47(1), 6:1–
6:45 (2014)

35. Thüm, T., van Hoorn, A., Apel, S., Bürdek, J., Getir, S., Heinrich, R., Jung, R.,
Kowal, M., Lochau, M., Schaefer, I., Walter, J.: Performance analysis strategies
for software variants and versions. In: Managed Software Evolution., pp. 175–206
(2019)

36. Vandin, A., ter Beek, M.H., Legay, A., Lluch-Lafuente, A.: Qflan: A tool for the
quantitative analysis of highly reconfigurable systems. In: Havelund, K., Peleska, J.,
Roscoe, B., de Vink, E.P. (eds.) Formal Methods - 22nd International Symposium,
FM 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK,
July 15-17, 2018, Proceedings. Lecture Notes in Computer Science, vol. 10951, pp.
329–337. Springer (2018)

37. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: LICS’86. pp. 332–344. IEEE CS (1986)

38. Younes, H.L.S., Clarke, E.M., Zuliani, P.: Statistical verification of probabilistic
properties with unbounded until. In: Davies, J., Silva, L., da Silva Simão, A. (eds.)
Formal Methods: Foundations and Applications - 13th Brazilian Symposium on
Formal Methods, SBMF 2010, Natal, Brazil, November 8-11, 2010, Revised Se-
lected Papers. Lecture Notes in Computer Science, vol. 6527, pp. 144–160. Springer
(2010)

39. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event sys-
tems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) Computer
Aided Verification, 14th International Conference, CAV 2002,Copenhagen, Den-
mark, July 27-31, 2002, Proceedings. Lecture Notes in Computer Science, vol. 2404,
pp. 223–235. Springer (2002)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

314 M. Cordy et al.

Schema Compliant Consistency Management via
Triple Graph Grammars and Integer Linear

Programming ∗

Nils Weidmann1 and Anthony Anjorin1

Paderborn University, Paderborn, Germany,
{nils.weidmann, anthony.anjorin}@upb.de

Abstract. Triple Graph Grammars (TGGs) are a declarative and rule-
based approach to bidirectional model transformation. The key feature
of TGGs is the automatic derivation of various operations such as unidi-
rectional transformation, model synchronisation, and consistency check-
ing. Application conditions can be used to increase the expressiveness of
TGGs by guaranteeing schema compliance, i.e., that domain constraints
are respected by the TGG. In recent years, a series of new TGG-based
operations has been introduced leveraging Integer Linear Programming
(ILP) solvers to flexible consistency maintenance even in cases where no
strict solution exists. Schema compliance is not guaranteed, however, as
application conditions from the original TGG cannot be directly trans-
ferred to these ILP-based operations. In this paper, we extend ILP-based
TGG operations so as to guarantee schema compliance. We implement
and evaluate the practical feasibility of our approach.

Keywords: Application conditions, Triple graph grammars, Integer lin-
ear programming

1 Introduction

In the context of Model-Driven Engineering (MDE), software systems are rep-
resented as a collection of different models. Often several semantically related
models are involved and therefore have to be kept consistent to each other. The
process of maintaining consistency among multiple models is called consistency
management and involves various operations including (unidirectional) trans-
formation, synchronisation, and consistency checking. Practical applications of
consistency checking occur in the industry automation domain, where multiple
domain-specific languages (DSLs) are used to describe complex systems [4].

Triple Graph Grammars (TGGs) are a declarative rule-based approach to
specifying a bidirectional consistency relation between two modelling languages.
The main advantage of TGGs is the possibility to derive multiple consistency
management operations from the same formal specification. In their roadmap for

∗ This work was partially supported by the German Federal Ministry of Education

and Research (BMBF) through the SPEAR project (01IS17024I).

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 315–334, 2020.
https://doi.org/10.1007/978-3-030-45234-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_16&domain=pdf

future research on TGGs [2], Anjorin et al. name the expressiveness of the TGG
language in use as one research dimension. One way of increasing the expres-
siveness [25] of TGGs is to ensure the satisfaction of certain constraints, such as
multiplicities with lower and upper bounds, which are typically posed by each
domain and should be respected by consistency maintainers. Using terminology
from Ehrig et. al [9], so called graph constraints consist of a premise (if), and a
set of conclusions (then). They are powerful enough to forbid certain situations
(negative constraints), demand certain conditions (positive constraints), and en-
force implications. One possible approach to handling constraints in the context
of TGGs is the use of application conditions (ACs) to restrict the applicability
of rules. The subset of ACs supported for operationalised TGGs is, however, still
quite restricted. All approaches we are aware of only handle a subset of Negative
Application Conditions (NACs) and mostly focus on model transformation and
synchronisation rather than consistency checking.

Recent work [17,18,20,24] has introduced TGG operations based on Integer
Linear Programming (ILP). Such operations are advantageous because they im-
plement a flexible and generic strategy for multiple consistency management
operations, while still providing acceptable scalability for growing model sizes.
Flexibility here means that the consistency management operations are able to
handle cases where no strict solution exists by providing “optimal” partial re-
sults. Graph constraints, however, have not yet been integrated in this hybrid
ILP-TGG framework and only basic TGG language features [25] are currently
supported. We extend this line of work by the notion of schema compliance for
TGGs, i.e., that all derived operations respect a set of constraints, as introduced
by Anjorin et al. [3]. Instead of trying to integrate ACs into TGG rules, we
propose to handle domain constraints directly in the ILP-based operations, thus
achieving schema compliance in this manner. By directly encoding graph con-
straints as ILP constraints, we are able to handle a larger class of constraints
than in previous work on schema compliance [3]. We apply our approach to con-
sistency checking with given correspondence links: a basic operation that must
be both flexible and efficient as it is often used as a “cheap” check in order to
avoid unnecessary work and ensure hippocraticness [6]. An extension to other
operations such as unidirectional transformation is straightforward and sketched
at the end of this paper. Our approach can be regarded as a step towards toler-
ant consistency management, as the largest consistent sub-triple is computed in
case of inconsistent input models. In this case, checking all domain constraints
in advance is not helpful as the user is only informed about the violation of
constraints and is not provided with a partial but optimal result.

The rest of the paper is organised as follows: Section 2 introduces a running
example, which is used to explain the main ideas on an intuitive level in Sect. 3.
Our contribution is compared with related work in Sect. 4. Basic definitions are
provided in Sect. 5, and used to express the formal concepts in Sect. 6. A reference
implementation together with an experimental evaluation is described in Sect. 7,
before discussing extensions towards other operations in Sect. 8. Finally, Sect. 9
concludes the paper and provides some directions for future work.

316 N. Weidmann and A. Anjorin

2 Running Example

To illustrate our approach, a consistency rela-

Fig. 1. Triple of Metamodels

tion between simplified data models of the so-
cial networks Facebook and Instagram is used
as a running example. The respective meta-
models are depicted in Fig. 1. A Facebook-

Network consists of multiple FacebookUsers,
who can share Friendships with each other.
Similarly, an InstagramNetwork is made up
of arbitrarily many InstagramUsers. In con-
trast to the Facebook metamodel, the social
interaction is not expressed via Friendship nodes but by a follows relation
between InstagramUsers. To complete the triple, a correspondence metamodel
connects the network and user classes of the two metamodels via correspondence
types, depicted as hexagons. In the following diagrams, the prefixes Facebook

and Instagram are abbreviated with F and I, respectively. A triple graph typed
according to Fig. 1 is consistent if (1) the correspondence links form a bijec-
tion between all networks and users of the two networks, and (2) the following
additional graph constraints are satisfied:
– We forbid two or more Friendship nodes connecting the same two Facebook-

Users as depicted in Fig. 2. This is denoted as a negative constraint.
– There should be a Friendship between two FacebookUsers if the corre-

sponding InstagramUsers follow each other. This means if the premise that
two InstagramUsers follow each other holds, the conclusion that there is
a corresponding Friendship on Facebook should also hold. The combina-
tion of premise and (possibly multiple) conclusions is denoted as positive
constraint (as depicted in Fig. 3).

Fig. 2. NoDoubleFriendship Fig. 3. EnforceFriendship

3 Main Ideas

In this section, we demonstrate our approach by formalising the consistency
relation from the running example as a TGG and deriving a consistency checker.
The novelty of our approach is that we are able to guarantee schema compliance,
i.e., that all additional graph constraints (two from the running example) are
respected by the consistency checker.

Schema Compliant Consistency Management via TGGs and ILP 317

The consistency relation can be defined by four TGG rules depicted in
Fig. 4, 5, 6, and 7. Nodes and edges required as context (i.e., they have to
be matched to apply the rule) are depicted in black, while elements created
by the rule are depicted in green and are annotated with a ++-markup. Ac-
cordingly, the rule NetworkToNetwork creates a FacebookNetwork and a corre-
sponding InstagramNetwork, whereas UserToUser creates corresponding users,
requiring corresponding networks as context. The other two rules add relation-
ships between two users in the two social networks. RequestFriendship cre-
ates a follows edge in the Instagram model, while the Facebook model re-
mains unchanged. A follows edge in the opposite direction is added between
two InstagramUsers and a Friendship node is created for the corresponding
FacebookUsers when the rule AcceptFriendship is applied. A triple graph is
consistent if it can be generated using the four rules of the TGG and if it fulfils
the two graph constraints.

Fig. 4. Rule NetworkToNetwork Fig. 5. Rule UserToUser

Fig. 6. Rule RequestFriendship Fig. 7. Rule AcceptFriendship

To determine if a given triple is contained in the language of a TGG and
fulfils all additional graph constraints, we try to find a set of rule applications
that marks the input triple entirely while fulfilling all generated ILP constraints.
If this is impossible, we conclude that the given triple is inconsistent and pro-
vide a consistent sub-triple with maximum number of elements as result. Five
constraint types and the construction of the objective function are briefly intro-
duced using the example instance depicted in Fig. 8 which can be generated by
the TGG but violates the constraint NoDoubleFriendship. The elements are an-
notated with variables which correspond to those rules that potentially mark the
respective element, i.e. NetworkToNetwork (d1), UserToUser (d2, d3), Request-
Friendship (d4, d5) and AcceptFriendship (d6, d7). A variable is set to 1 if
the associated rule application is chosen to be applied to create the solution

318 N. Weidmann and A. Anjorin

graph. Furthermore, Fig. 8 also depicts all matches for NoDoubleFriendship

(p8), the premise of EnforceFriendship (p9)
1 and the conclusion for Enforce-

Friendship (c10, c11). To allow for uniform handling, negative constraints are
represented as graph constraints with a premise but no conclusions.

Context for rules: The applicability of rules that require elements as context
depends on previous rule applications that have created these elements. In the
example instance, the application of UserToUser (d2, d3) implies that the rule
NetworkToNetwork (d1) was applied already, because the INetwork is required
as context. ILP implication constraints of the form di =⇒ (dj1∨· · ·∨djm)∧· · ·∧
(dk1∨· · ·∨dkn) are thus created for all rules applications di with required context
elements j, . . . , k, and rule applications (dj1 , . . . , djm , . . . , dk1

, . . . dkn
) that can

mark these elements.

Exclusions for rules: As elements should only be marked once, multiple rule
applications that mark the same element exclude each other. The follows

edges between two InstagramUsers can be marked both by applications of
RequestFriendship (d4, d5) and AcceptFriendship (d6, d7). For each element
that can be marked by multiple rule applications di, . . . , dj , an ILP exclusion
constraint di ⊕ · · · ⊕ dj is created.

Context for premises: Similar to ILP implication constraints for rules, matches
for the premises of graph constraints also depend on context provided by other
rule applications (whereas no elements are marked by those matches, so there
are no context dependencies among them). However, as soon as the context is
provided completely, the premise is fulfilled. The implication constraint is thus
in the opposite direction: Choosing a subset of rule applications di, . . . , dj that
is sufficient to create the context for a premise match pk implies that pk has to
be chosen.

Context for conclusions: For a conclusion of a graph constraint to hold, all
required elements have to be marked, which is reflected in a constraint similar to
the context constraint for rules. In the concrete example, there are two matches
(c10, c11) for the conclusion of EnforceFriendship (differing in F1 and F2 as
Friendship nodes).

Implications for graph constraints: The semantics of premise and conclu-
sion(s) is reflected in the implications for graph constraints, which define that
the presence of a premise match implies the existence of a corresponding con-
clusion match. p8 as a negative constraint is represented as a graph constraint
with a premise but no conclusions, whereas p9 implies c10 or c11 to be satisfied.

Objective function: In order to find a consistent solution for the given input,
it is necessary to find a set of rule applications that marks the input models
entirely. The objective function maximizes the number of marked elements, i.e.
each variable associated with a rule application is weighted with the number of
elements it marks, and the weighted sum is maximised. Variables associated with
constraints need not be taken into account because they do not create elements.

1 To simplify the solution, we omit symmetric matches that lead to more ILP con-
straints but neither change the result nor provide additional insight.

Schema Compliant Consistency Management via TGGs and ILP 319

Context for rules:

– d2 =⇒ d1
– d3 =⇒ d1
– d4 =⇒ d1 ∧ d2 ∧ d3
– d5 =⇒ d1 ∧ d2 ∧ d3
– d6 =⇒ d1 ∧ d2 ∧ d3 ∧ d5
– d7 =⇒ d1 ∧ d2 ∧ d3 ∧ d4

Exclusions for rules:

– d4 ⊕ d6
– d5 ⊕ d7

Context for premises:

– d2 ∧ d3 ∧ d6 ∧ d7 =⇒ p8
– d2 ∧ d3 ∧ (d4 ∨ d6) ∧ (d5 ∨ d7) =⇒ p9

Context for conclusions:

– c10 =⇒ d2 ∧ d3 ∧ (d4 ∨ d6) ∧ (d5 ∨ d7) ∧ d6
– c11 =⇒ d2 ∧ d3 ∧ (d4 ∨ d6) ∧ (d5 ∨ d7) ∧ d7

Implications for graph constraints:

– p8 =⇒ false
– p9 =⇒ c10 ∨ c11

Objective Function: max. 3d1 + 5d2 + 5d3 + d4 + d5 + 4d6 + 4d7

Fig. 8. Example instance with annotations for rule applications and constraint matches

All context elements in the example instance can be marked setting d1, d2,
d3, d6 and d7 to 1 and d4 and d5 to 0, leading to an objective function value
of 21 equal to the total number of elements. This marking would however vi-
olate the constraint NoDoubleFriendship, as U1 and U2 are connected by two
Friendship nodes. This violation is reflected in the ILP constraints as well: The
first context constraint for premises enforces setting p8 to 1, which immediately
contradicts the first implication for graph constraints. As no other subset of rule
applications is able to mark the input triple entirely, the consistency check fails.
The optimal solution, representing the maximal consistent sub-triple, is achieved
either by exchanging d4 and d6 or d5 and d7 in the set of chosen rule applications,
decreasing the objective function value to 18 and leaving one Friendship node
and the two connecting friends edges unmarked. Note that for this example,
the objective function and hard constraints contradict each other, emphasising
the fact that constraints must be taken into account when computing optimal
partial solutions.

320 N. Weidmann and A. Anjorin

4 Related Work

Our contribution builds upon and extends the existing work on combining TGGs
and ILP [17, 18, 20, 24]. This previous work covers the basic idea of modelling
consistency checking without correspondence links as a search problem [17, 20],
a proof for correctness and completeness [18], and a generalisation to include
other operations such as unidirectional transformation and consistency checking
with correspondence links [24]. Only basic TGG rules without graph constraints
or ACs are handled, meaning that schema compliance cannot be guaranteed.

To the best of our knowledge, all existing TGG-based approaches ensure
schema compliance by enriching a provided TGG with suitable ACs. Ehrig et al.
introduce NACs to TGG and prove correctness and completeness for unidirec-
tional model transformation [10]. Golas et al. [13] extend these results to more
general ACs for TGGs but only cover the direct application of TGG rules, i.e.,
model triple generation. In both cases, the runtime efficiency and thus practical
feasibility of the derived operations is beyond scope. With a focus on guaran-
teeing polynomial runtime, Klar et al. [16] present a translation algorithm with
polynomial runtime for correct and complete TGG-based unidirectional model
transformation. Klar et al. restrict the class of supported NACs to NACs that
are only used to guarantee schema compliance, arguing that (i) such NACs can
be supported efficiently, (ii) are still very useful in practice to guarantee schema
compliance, and (iii) can also be efficiently supported by model synchronisa-
tion algorithms (as later demonstrated [19]). Anjorin et al. [3] show that this
restricted class of “schema compliance” NACs can be automatically generated
from negative constraints and is thus equivalent to providing negative constraints
together with a TGG. All these approaches, however, can only handle negative
constraints that are contained in a single domain, as the derivation of forward
and backward transformations can only handle “domain separable” NACs.

Similar to our hybrid TGG/ILP-approch, Callow and Kalawski [5] combine
model transformation and Mixed Integer Linear Programming (MILP) optimiza-
tion techniques but focus on model compliance for forward transformations and
not on deriving multiple consistency management operations. Xiong et al. [26]
solve consistency management tasks using the Haskell-based language Beanbag.
The approach considers implicit constraints and correspondences and is tailored
to the application to Unified Modeling Language (UML) structures, though.

There are also purely constraint-based approaches [11, 14, 21] that encode
both model structure and consistency relation into constraints and can easily
handle schema compliance. This comes at a price, however, as the underlying
constraint solvers do not scale with model-size and cannot compete with other
approaches [1]. Our hybrid TGG/ILP approach is a compromise that leverages
the flexibility of constraint solvers but still scales reasonably well [24] as the
variables of the ILP problem are matches and not model elements.

There are also various constraint-based approaches that use bio-inspired
meta-heuristics and could also handle schema compliance. The tool MOMoT [12]
realises model transformation based on evolutionary algorithms as a search strat-
egy for rule orchestration. Similarly, the multi-objective optimisation technique

Schema Compliant Consistency Management via TGGs and ILP 321

Design Space Exploration (DSE) is used by Denil et al. [7] in combination with
the T-core transformation framework [23]. In their tool MOTOE [15], Kessen-
tini et al. extract transformation blocks from examples and use Particle Swarm
Optimisation (PSO) as a search technique. In general, approaches that use meta-
heuristics can potentially scale better than exact search-based approaches, but
have to sacrifice hard guarantees of correctness, completeness, and optimality of
partial solutions.

5 Preliminary Definitions

Our basic definitions are adapted from Ehrig et al. [9], supplemented by the
definition of schema compliance [3]. TGGs are a declarative rule-based approach
which describes a language of triples of graphs. For that, we use the categorical
definition of graphs, treating graphs as objects and graph morphisms as arrows,
injectively mapping elements of one graph to those of another.

Definition 1 (Graph (Morphism)).
A graph G = (V,E, src, trg) consists of a set V of nodes (vertices), a set E of
edges, and two functions src, trg : E → V that assign each edge a source and
target node, respectively. The set elem(G) = V ∪E denotes the union of vertices
and edges. Given graphs G = (V,E, src, trg), G′ = (V ′, E′, src′, trg′), a graph
morphism f : G → G′ consists of two functions fV : V → V ′ and fE : E → E′

such that src ; fV = fE ; src′ and trg ; fV = fE ; trg′. The ; operator denotes
the composition of functions: f ; g(x) := g(f(x)).

Based on Def. 1 triple graphs and triple morphisms can also be defined cate-
gorically. A triple graph consists of a correspondence graph with a unique mor-
phism to a source graph and a target graph each. An example for such a triple
graph is depicted in Fig. 8. Source and target graph are interchangeable, such
that the choice for source and target between the Facebook model and the
Instagram model is just a question of design.

Definition 2 (Triple Graph (Morphism)).

A triple graph G = GS
γS← GC

γT→ GT consists of graphs GS , GC , GT and graph
morphisms γS : GC → GS and γT : GC → GT . elem(G) denotes the union
elem(GS) ∪ elem(GC) ∪ elem(GT). A triple morphism f : G → G′ with

G′ = G′
S

γ′
S← G′

C

γ′
T→ G′

T , is a triple f = (fS , fC , fT) of graph morphisms where
fX : GX → G′

X , X ∈ {S,C, T}, γS ; fS = fC ; γ′
S and γT ; fT = fC ; γ′

T .

In this setting, we introduce typing by demanding a type (triple) morphism
to a chosen type (triple) graph. In Fig. 5, network nodes and user nodes can be
distinguished by typing information, for instance. The language of a type (triple)
graph TG is the set of (triple) graphs typed over TG.

Definition 3 (Typed Triple Graph (Morphism)).
A typed triple graph (G, type) is a triple graph G together with a triple mor-
phism type : G → TG to a distinguished type triple graph TG. A typed triple

322 N. Weidmann and A. Anjorin

morphism f : Ĝ → Ĝ′ is a triple morphism f : G → G′ with type = f ; type′,
where Ĝ = (G, type), Ĝ′ = (G′, type′). L(TG) := {G | ∃ type : type(G) = TG}
denotes the set of all triple graphs of type TG.

In the following, all (triple) graphs and (triple) morphisms are assumed to
be typed unless explicitly stated otherwise. A (triple) graph morphism can be
viewed as a monotonic (triple) rule, such as depicted in Fig. 4, 5, 6 or 7 of the
running example. By applying a (triple) rule on a concrete host graph, nodes
and edges can be added to produce a new triple. (Triple) rules are applied by
constructing a pushout, which can be interpreted as a generalised union of (triple)
graphs R and G over a common sub-(triple)graph L:

Definition 4 (Triple Rule (Application)).

A triple rule r : L → R is a monomorphic (injective) triple

morphism. A direct derivation G
r@m
=⇒ G′ via a triple rule r, is

constructed as depicted to the right by building a pushout over
r and a triple monomorphism m : L → G called a match. A

derivation D : G
∗

=⇒ Gn = G
r1@m1=⇒ G1

r2@m2=⇒ · · · rn@mn=⇒
Gn is a sequence of direct derivations. We denote by D =
{d1, . . . , dn} the underlying set of direct derivations included in D.

Starting off with the empty triple graph, all triples that can be produced by
finitely many rule applications form the language of a TGG.

Definition 5 (Triple Graph Grammar (Language)).
A triple graph grammar TGG = (G, R) consists of a triple graph G, and a
finite set R of triple rules. The triple graph language of TGG is defined as
L(TGG) = {G∅}∪{G | ∃ D : G∅

∗
=⇒ G}, where G∅ is the empty triple graph.

While the formal definition of rule-based triple graph generation is completed
at this point, we want to pose further restrictions on triples by introducing
domain constraints. Therefore, we introduce graph conditions for triple graphs
and graph constraints as a context-independent form of graph conditions. A
graph constraint is either satisfied trivially, if there does not exist a match for
the premise P , or if there exists at least one match for a conclusion Ci.

Definition 6 (Graph Constraint).
A graph constraint is a pair gc = (p∅ : G∅ → P, {ci : P → Ci | i ∈ I}), for
some index set I. P is referred to as the premise and {Ci | i ∈ I} as the
conclusions of the graph constraint gc. A triple graph G satisfies gc, denoted
by G |= gc, iff ∀mp : P → G, ∃ i ∈ I ∃mci : Ci → G, [mp = ci;mci], where
mp, (mci)i∈I are monomorphisms.

A type graph TG along with a set of graph constraints is denoted as schema
for graphs. In the running example, the schema consist of the metamodel (Fig. 1)
and the graph constraints depicted in Fig. 2 and 3. A (triple) graph complies to
a schema if it is typed over TG and fulfils all graph constraints.

Schema Compliant Consistency Management via TGGs and ILP 323

Definition 7 (Schema Compliance).
A schema is a pair (TG,GC) of a type triple graph TG and a set GC ⊆ L(TG)
of graph constraints. Let L(TG,GC) := {G ∈ L(TG) | ∀gc ∈ GC, G |= gc}
denote the set of all schema-compliant triple graphs.

Finally, a triple graph is denoted as consistent with respect to a schema and
a TGG if it is schema-compliant and contained in the language of the TGG.

Definition 8 (Consistency).
Given a triple graph grammar TGG and a schema (TG,GC), a triple graph G
is said to be consistent iff G ∈ L(TGG) ∩ L(TG,GC).

6 Correctness and Completeness

We now formalise our approach to guarantee correctness and completeness, i.e.,
the consistency check succeeds if and only if the input model is consistent. As our
approach extends seminal work by Leblebici et al. [20], [18] and Weidmann et
al. [24] towards graph constraints, large parts of the formalisation originate from
these sources in an adapted version. The novelty of this section is the integration
of graph constraints into this formal framework (Def. 10, 12, 15, 18), as well as
showing that formal properties still hold in a setting with graph constraints
(Def. 21 ff.), assuming that the TGG at hand is progressive (Def. 23), i.e. each
rule application marks at least one element.

In the original definition of TGGs (Def. 5), triples are generated by creating
elements in source, correspondence and target graph simultaneously. For con-
sistency checking, a TGG can be operationalised to check if a given triple is
contained in the language of a TGG. In this case, elements are marked by rule
applications instead of being created. To determine if a concrete triple graph is a
member of the language of a TGG, one searches for a derivation sequence start-
ing with the empty triple graph (cf. Def. 5) and producing the triple graph. The
consistency checking operation derived from a TGG does not modify the input
triple but instead marks this graph by successive rule applications in the course
of a derivation sequence. An operational rule, derived from a corresponding triple
rule, requires its context elements to be marked already.

Definition 9 (Operational Rule and Marking Elements).

Given a triple rule r : L → R, the op-
erational rule cr : CL → CR for r is
constructed as depicted to the right. It
holds CL = CR = R, and cr : CL →
CR = idCR. An element e ∈ elem(R)
is a marking element of cr iff �e′ ∈
elem(L) with rS(e

′) = e or rC(e
′) = e

or rT (e
′) = e.

324 N. Weidmann and A. Anjorin

For operational rules, elements can be partitioned into those which are cre-
ated by the original TGG rule (marked elements) and those which must be pro-
vided as context (required elements). Graph constraints do not mark elements
and therefore, only a set for the elements required by premise and conclusion,
respectively, are defined.

Definition 10 (Marked and Required Elements).

For a direct derivation d : G
cr@cm
=⇒ G via an operational rule cr : CL → CR, the

following sets are defined:

– mrk(d) = {e ∈ elem(G) | ∃ e′ ∈ elem(CL), cm(e′) = e where e′ is a marking
element of cr}

– req(d) = {e ∈ elem(G) | ∃ e′ ∈ elem(CL), cm(e′) = e where e′ is not a
marking element of cr}

For a graph constraint gc = (p∅ : G∅ → P, {ci : P → Ci | i ∈ I}), we define:

– req(p∅) = {e ∈ elem(G) | e′ ∈ elem(P),mp(e
′) = e}

– req(ci) = {e ∈ elem(G) | e′ ∈ elem(Ci),mci(e
′) = e}, i ∈ I

All candidate rule applications are associated with a binary variable which
indicates by its value (0 or 1) whether the candidate is considered within the final
solution. To determine the variable assignment, all candidates are collected and
handed over to an ILP solver to determine the optimal subset of rule applications
(cf. Sect. 2) respecting all linear constraints.

Definition 11 (Constraints for Derivations).

Given a triple graph G, let D : G
∗

=⇒ G be a derivation via operational rules with
the underlying set D of direct derivations. For each direct derivation d1, . . . , dn ∈
D, respective binary variables δ1, . . . , δn with δ1, . . . , δn ∈ {0, 1} are defined. A
linear constraint LC for D is a conjunction of linear inequalities which involve
δ1, . . . , δn. A set D′ ⊂ D fulfils LC, denoted as D′ � LC, iff LC is satisfied for
variable assignments δi = 1 if di ∈ D′ and δi = 0 if di /∈ D′, 1 ≤ i ≤ n.

Graph constraints are also associated to binary variables to ensure that only
schema-compliant triples pass the consistency check, while premises and each of
the corresponding conclusions are split into separate constraints. In contrast to
the binary variables for rule applications, the value assignment cannot be chosen
by the ILP solver. Instead, any variable assignment which does not violate the
linear constraints is fine, as they ensure schema-compliance by the interrelations
of rule applications and graph constraints.

Definition 12 (Constraints for Graph Constraints).
Let GC = {(p∅ : G∅ → P, {ci : P → Ci | i ∈ I})} be a set of graph con-
straints. For each graph constraint gc ∈ GC, respective binary variables π1 . . . πn

for the premises and γ1,1 . . . γ1,m1 . . . γn,1 . . . γn,mn for the conclusions are de-
fined. A linear constraint LC for GC is a conjunction of linear inequalities which

Schema Compliant Consistency Management via TGGs and ILP 325

involve π1 . . . πn and γ1,1 . . . γ1,m1
. . . γn,1 . . . γn,mn

. A triple graph G fulfils LC,
denoted as G |= LC, iff LC is satisfied for any variable assignment {π1 . . . πn} →
{0, 1}, {γ1,1 . . . γ1,m1 . . . γn,1 . . . γn,mn} → {0, 1}.

As the operational rules reflect the behaviour of the original rules of the
underlying TGG, multiple markings for the same elements must be prohibited
as this would mean that an element is created multiple times. For each node
and edge, a linear constraint is created that ensures that this element is marked
at most once in order to guarantee schema compliance and containment in the
language of the TGG later on.

Definition 13 (Sum of Alternative Markings for an Element).

Given a triple graph G, let D : G
∗

=⇒ G be a derivation via operational rules
with the underlying set D of direct derivations. For each element e ∈ elem(G),
let E(e) = {d ∈ D | e ∈ mrk(d)}. The integer mrkSum(e) denotes the sum of the
associated variable assignments for each d ∈ E:

mrkSum(e) =
∑

di∈E(e)
δi

Definition 14 (Constraint 1: Mark Elements at Most Once).

Given a triple graph G, let D : G
∗

=⇒ G be a derivation via operational rules:

markedAtMostOnce(G) =
∧

e∈elem(G)

[mrkSum(e) ≤ 1]

The reason for the sum of marked elements not being strictly equal to 1 is the
desired treatment of inconsistent inputs: The system should still be feasible in
case of inconsistent inputs and a maximal consistent sub-triple should be the
result of the optimisation step.

The following constraint ensures that the required context elements for oper-
ational rule applications as well as premises and conclusions are provided in the
final solution, such that the original TGG rule is guaranteed to be applicable in
this situation and the marked part of the triple graph is schema-compliant.

Definition 15 (Constraint 2: Guarantee Context).

Given a triple graph G and a schema (TG,GC), let D : G
∗

=⇒ G be a deriva-
tion via operational rules with the underlying set D of direct derivations. For
each direct derivation d ∈ D and each graph constraint gc ∈ GC, the following
constraints are defined:

con(d) =
∧

e∈req(d)

[δ ≤ mrkSum(e)]

con(p∅) =
∨

e∈req(p∅)
[mrkSum(e) ≤ π]

con(ci) =
∧

e∈req(ci)

[γi ≤ mrkSum(e)], i ∈ I

context(D) =
∧

d∈D
con(d) ∧ ∧

gc∈GC
[con(p∅) ∧

∧

i∈I

con(ci)]

326 N. Weidmann and A. Anjorin

There are constellations in which rule application candidates mutually pro-
vide context for each other in a dependency cycle, such that parts of the graph
could be potentially marked by these rules, but none of them can ever be applied
first because the necessary context is not yet there. Therefore, we introduce a
relation � among rule applications to arrange them in a proper order.

Definition 16 (Dependency Cycles).

Let D : G
∗

=⇒ G be a derivation via operational rules with the underlying set
D of direct derivations. A relation �⊆ D × D between di, dj ∈ D is defined as
follows:

di � dj iff req(di) ∩ mrk(dj) �= ∅

A set cy ⊆ D with cy = {d1, . . . , dn} of direct derivations is a dependency
cycle iff d1 � · · · � dn � d1.

The following constraint breaks dependency cycles by forbidding to choose
all of its member rule applications for the final solution.

Definition 17 (Constraint 3: Forbid Dependency Cycles).

Given a triple graph G, let D : G
∗

=⇒ G be a derivation via operational rules with
the underlying set D of direct derivations, and let CY be the set of all dependency
cycles cy ∈ D. A linear constraint acyclic(D) is defined as follows:

acyclic(D) =
∧

cy∈CY,cy={d1,...,dn}

n∑

i=1

δi < n

While the previous constraint types guarantee containment in the language
of the TGG at hand as well as context constraints for premises and conclusions,
Constraint 4 expresses the semantics of graph constraints to achieve schema-
compliance. Thereby, the linear constraint is very similar to the definition for
satisfaction of graph constraints (Def. 6). It is possible to formulate this con-
straint independent of the concrete rule application because only graph con-
straints are supported instead of arbitrary graph conditions.

Definition 18 (Constraint 4: Satisfy Graph Constraints).
Let (TG, C = {(p∅ : G∅ → P, {ci : P → Ci | i ∈ I})}) be a schema. A linear
constraint sat(G) expressing that G fulfils all graph constraints of C is defined
as follows:

sat(G) =
∧

C∈C
[¬π ∨ ∨

i∈I

γi]

Finally, the objective function can be defined to maximize the number of
markings over the entire input triple, while ensuring that no correctness con-
straints are violated and the result is schema-compliant according to Def. 7.

Schema Compliant Consistency Management via TGGs and ILP 327

Definition 19 (Optimisation Problem).

Given a triple graph G and a schema (TG, C), let D : G
∗

=⇒ G be a derivation
via operational rules. The ILP to be optimised is constructed as follows: max.
∑

d∈D

|mrk(d)| s.t. markedAtMostOnce(G) ∧ context(D) ∧ acyclic(D) ∧ sat(G)

The remainder of this section provides a proof sketch showing that the consis-
tency check always terminates, and succeeds iff the input triple graph is con-
sistent with respect to Def. 8. It is an extension of the proof for correctness
and completeness in a setting without graph constraints [18, 24], such that the
focus of this version is set on schema compliance. In the following, let a TGG
TGG = (G∅,R), a schema (TG,GC), a triple graph G, and a derivation via op-

erational rules D : G
∗

=⇒ G with underlying set of direct derivations D be given
for all definitions, lemmas and theorems.

First, we define a proper subset of operational rule applications as a set which
is associated to a feasible solution for the ILP (Def. 14, 15, 17 and 18).

Definition 20 (Proper Subset of Rule Applications).
A subset D′ ⊆ D is a proper subset of D iff D′ � markedAtMostOnce(G) ∧
context(D) ∧ acyclic(D) ∧ sat(G).

Next, it is shown that there exists a sequence of the rule applications of a
proper subset, such that the marked elements of the graph form a consistent
triple. Furthermore, the marked part of the graph is schema-compliant.

Lemma 1 (Consistent Portions of a Triple Graph).
∃ proper subset D′ ⊆ D ⇐⇒ ∃G′ ∈ L(TGG) ∩ L(TG,GC) such that:

elem(G′) =
⋃

d′∈D′
mrk(d′)

Proof (Sketch). When all direct derivations d ∈ D′ are sequenced over the �
relation (Def. 16), a proper subset according to Def. 20 is formed, resulting in a
triple graph G′ ∈ L(TGG) consisting of the elements marked by D′. At the same
time, G′ will be schema-compliant iff D′ � sat(G′) as this predicate ensures that
all given graph constraints are satisfied.

We demand the property of maximality to avoid trivial solutions such as the
empty triple graph:

Definition 21 (Maximal Proper Subset of Rule Applications).
A proper subset D′ of D is maximal if there does not exist any other proper
subset D′′ of D with a greater objective function value (cf. Def. 19).

The application of a sequenced maximal proper subset of rule applications
on the empty triple graph is denoted as maximally marked triple graph.

Definition 22 (Maximally Marked Triple Graph).
Let D′ be a maximal, proper subset of D. The triple graph G′ identified with
D′ according to Lemma 1 is denoted as a maximally marked triple graph with
respect to D.

328 N. Weidmann and A. Anjorin

Theorem 1 guarantees that a triple graph that can be completely marked by
rule applications of a maximal proper subset is indeed consistent.

Theorem 1 (Correctness).
For a maximally marked triple graph G′ with respect to D, it holds:

⋃

d∈D
mrk(d) = elem(G) =⇒ G′ is consistent

Proof (Sketch). G′ ∈ L(TGG) immediately follows from Lemma 1: As D is a
maximal proper subset, G′ ∈ L(TGG) holds, and the rule applications of D can
be sequenced, such that they can mark G′ entirely according to the premise of
this theorem. G′ ∈ L(TG,GC) holds as well because the choice of any d ∈ D′

leading to a violation of any gc ∈ GC would make sat(G′) false. Therefore, G′ is
consistent according to Def. 8.

To guarantee completeness, it remains to show that the process of construct-
ing the ILP terminates, which requires the set of possible rule applications to
be finite. As all possible derivation sequences are collected, the ILP solver ter-
minates with an optimum solution iff one exist. We therefore demand the un-
derlying TGGs to be progressive, i.e., each operational rule is required to mark
at least one element. In fact, operational rules that do not mark elements cor-
respond to TGG rules that do not have any effect on the host graph they are
applied on because they cannot add any elements, and are therefore irrelevant
for practical use.

Definition 23 (Progressive TGGs).
TGG is progressive if each of its operational rules has at least one marking
element.

Demanding the TGG at hand to be progressive, completeness can be con-
cluded by showing that the consistency check cannot cycle.

Theorem 2 (Completeness).
Let TGG be progressive. A maximally marked triple graph G′ with respect to D
exist such that:

G′ is consistent =⇒ ⋃

d∈D
mrk(d) = elem(G)

Proof (Sketch). As Lemma 1 guarantees the existence of a derivation D, and
ILP solving always produces a maximally marked triple graph G′, we only need
to show the implication (equivalence follows from Thm. 1). To derive a con-
tradiction, we now assume that G′ is consistent, but that G′ either contains
unmarked elements or violates any constraint gc ∈ GC. From G′ being consis-
tent, it follows from the decomposition and composition theorem for TGGs and
operational rules [8, 18] that there exists a derivation sequence D′ : G ∗

=⇒ G′

with operational rules. This means that at least one rule application of D′ is not
contained in D or G′ violates any gc ∈ GC. The latter is impossible, as it would
contradict to the assumption that G′ is consistent. The former implies that the
objective function value could be increased by using D′ for marking G, which
contradicts the optimality of the result found by ILP solving.

Schema Compliant Consistency Management via TGGs and ILP 329

7 Implementation and Experimental Evaluation

We investigate the impact of graph constraints on runtime performance, con-
sidering scalability of consistency checking for growing model sizes with and
without taking graph constraints into account, by two research questions:

(RQ1) By which factor does the number of variables and ILP constraints increase
when introducing graph constraints to the ILP? How does this influence the
runtime of pattern matching, ILP construction, and ILP solving?

(RQ2) How does the runtime performance relate to model size (number of nodes
and edges) for consistency checking with and without graph constraints?

Setup:We implemented our approach within the tool eMoflon2 using Neo4J3

as an underlying graph pattern matcher and database for querying and stor-
ing the models. As a test example, we took the FacebooktoInstagram TGG
as described in Sect. 2. To obtain synthetic models, we used the derived TGG-
based model generator to produce random models with 1078 to 226,988 elements
(roughly the same number of nodes and edges). We then executed the derived
TGG-based consistency checker, once taking the negative graph constraint from
Sect. 2 into account, and once without any graph constraints. For each configu-
ration, the number of variables and constraints of the ILP, as well as the time
needed for pattern matching, ILP construction, and ILP solving were measured
for 10 repeated runs. As final values, the medians of the 10 test runs were taken
to minimize the bias introduced by outliers. All performance tests were executed
on a standard notebook with an Intel Core i7 (1.80 GHz), 16GB RAM, and Win-
dows 10 64-bit as operating system. An installation of Eclipse IDE for Java and
DSL Developers, version 2019-09 with Java Development Kit (JDK) version 13
was used. The JVM running the tests was allocated a maximum of 4GB memory,
and 8GB were allocated to the graph database Neo4J.

Results:4 Figure 9 shows the time needed for pattern matching, ILP con-
struction, and ILP solving for different model sizes. One can observe that for
both configurations (with and without graph constraints), the runtime of all
components depends linearly on the number of model elements. Taking graph
constraints into account for the consistency check makes the ILP construction
roughly 20% - 40% slower. This is to be expected as the ILP problem is simply
larger. For similar reasons, a difference can also be observed for the ILP solving
step, whose runtime is negligible without constraints, but increases by a factor
of 10 when including graph constraints. While this increase is substantial, ILP
solving does not have a large overall impact on the runtime performance even for
200k elements. Interestingly, pattern matching gets faster when the additional
negative graph constraint is included. This is surprising as additional pattern
matching is required to determine matches of the negative constraint. The un-
derlying graph database is heuristic-based, however, and also uses caching strate-
gies to decide what data to keep in memory. Apparently the pattern matching
strategy applied for the collection of patterns including the negative constraint
seems to scale better for model sizes greater than 130k.

2 github.com/eMoflon/emoflon-neo 3 neo4j.com 4 bit.ly/2BFAutd

330 N. Weidmann and A. Anjorin

Fig. 9. Runtime Measurements Fig. 10. #Variables and #Constraints

The number of binary variables and constraints grows linearly with model size
for both settings, involving slightly more variables than constraints (cf. Fig. 10).
With the negative graph constraint, this number increases by about 25%-50%.

Summary: Revisiting our research questions, one can state that the number
of binary variables and constraints increases by a constant factor when introduc-
ing (negative) graph constraints, resulting in a constant increase of the overall
runtime for consistency checking. While the ILP solving step increases substan-
tially and could become problematic for large models, our measurements indicate
that the ILP solving step is probably not the bottle neck for our example (RQ1).
In both settings (with and without the negative graph constraint), the runtime
for consistency checking increases linearly with growing model size (RQ2).

Threats to validity: The evaluation was performed with only one TGG
consisting of only four rules, only the consistency checker (of all operations) was
run on randomly generated synthetic instances, and we measured the additional
price of taking only the negative graph constraint from Sect. 2 into account.
While our initial results are positive and indicate that the additional price of
guaranteeing schema compliance as we propose does not render the ILP-based
TGG operations infeasible due to an explosion in runtime, extensive bench-
marking with multiple TGGs, multiple graph constraints, larger model sizes,
and multiple consistency management operations is required to transfer these
results to practical, real-world applications.

8 Extension to Other Operations

The presented concepts are tailored to consistency checking with correspon-
dences, i.e. source, target and correspondence model are given as inputs and are
marked by operational rule applications, whereas all three models are simulta-
neously created by the original rule applications. There are also other operations
which use a mixture of creating and marking elements to complement given in-
put models to a complete triple. Figure 11 depicts the example instance of Fig. 8
annotated with the operations which require the respective model(s) as input.
The previously presented CO (check only) operation gets all three models as
input, whereas CC (correspondence creation) checks for consistency by building

Schema Compliant Consistency Management via TGGs and ILP 331

up the correspondence model for given source and target models. FWD OPT
and BWD OPT are operations for unidirectional transformation, i.e. either the
source or the target model is given and a consistent transformation to the re-
spective other domain is computed. A formal specification of the operations was
introduced by Weidmann et al. [24].

All these operations are based on

Fig. 11. Input models per operation

a common formalism that expresses
dependencies between rule applications
as ILP constraints, while in contrast
to the definitions of this paper, de-
pendencies between created elements
are also taken into account. As con-
straints for marked and created parts
of the triple are formed almost the
same way, it is possible to transfer
the results for consistency checking
respecting graph constraints to the other operations as well. However, the formal
proof which guarantees the operations’ correctness and completeness [18,24] has
to be extended to take graph constraints into account.

9 Conclusion and Future Work

We presented an extension of a seminal approach to combining TGGs and ILP
by supporting graph constraints. For consistency checking with given correspon-
dence links, we have shown correctness and completeness of the approach. The
results can be generalised towards other operations such as unidirectional trans-
formations as well. Additionally, the approach was implemented in a TGG tool,
and an experimental evaluation indicated that the scalability of the approach is
sufficient for practical use. For future work, we plan to extend the approach to
cope with general AC as well, increasing the expressive power of the supported
class of TGGs. As a proof of concept, we only implemented negative constraints
until now, which should be extended towards general graph constraints. Using
an incremental pattern matcher with extensible matches, it should be possible
to collect matches for the premise and corresponding conclusions at once, which
would keep the implementation efficient. Further performance tests with other
(industrial) examples will also be necessary to underpin the validity of the evalu-
ation results with respect to runtime performance, as both the metamodels and
the rule set are very restricted, whereas the considered model sizes are realistic.
Generating consistent models first and then mutate them slightly would further
lead to a smaller and therefore more reasonable number of inconsistencies.

Acknowledgements

We like to thank Surbhi Verma, Shubhangi Salunkhe and Darya Zarkalam for
contributing to large parts of the implementation.

332 N. Weidmann and A. Anjorin

References

1. Anjorin, A., Buchmann, T., Westfechtel, B., Diskin, Z., Ko, H.S., Eramo, R.,
Hinkel, G., Samimi-Dehkordi, L., Zündorf, A.: Benchmarking bidirectional trans-
formations: theory, implementation, application, and assessment. Software and Sys-
tems Modeling (Sep 2019). https://doi.org/10.1007/s10270-019-00752-x

2. Anjorin, A., Leblebici, E., Schürr, A.: 20 Years of Triple Graph Grammars: A
Roadmap for Future Research. ECEASST 73 (2015)

3. Anjorin, A., Schürr, A., Taentzer, G.: Construction of integrity preserving triple
graph grammars. In: Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.)
ICGT 2012. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33654-6 24

4. Anjorin, A., Yigitbas, E., Leblebici, E., Schürr, A., Lauder, M., Witte, M.: De-
scription Languages for Consistency Management Scenarios Based on Examples
from the Industry Automation Domain. Programming Journal 2(3), 7 (2018)

5. Callow, G., Kalawsky, R.: A Satisficing Bi-Directional Model Transformation En-
gine using Mixed Integer Linear Programming. Journal of Object Technology
12(1), 1:1–43 (2013). https://doi.org/10.5381/jot.2013.12.1.a1

6. Cheney, J., Gibbons, J., McKinna, J., Stevens, P.: On principles of least change
and least surprise for bidirectional transformations. Journal of Object Technology
16(1), 3:1–31 (2017)

7. Denil, J., Jukss, M., Verbrugge, C., Vangheluwe, H.: Search-Based Model Optimiza-
tion Using Model Transformations. In: Amyot, D., Fonseca i Casas, P., Mussbacher,
G. (eds.) SAM 2014. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11743-0 6

8. Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information Preserving
Bidirectional Model Transformations. In: Dwyer, M.B., Lopes, A. (eds.) FASE
2007. Springer (2007)

9. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer-Verlag Berlin Heidelberg (2006)

10. Ehrig, H., Hermann, F., Sartorius, C.: Completeness and Correctness of Model
Transformations based on Triple Graph Grammars with Negative Application Con-
ditions. ECEASST 18 (2009)

11. Eramo, R., Pierantonio, A., Tucci, M.: Enhancing the JTL tool for bidirectional
transformations. In: Marr, S., Sartor, J.B. (eds.) Programming 2018, Nice, France,
April 09-12, 2018. ACM (2018)

12. Fleck, M., Troya, J., Wimmer, M.: Search-Based Model Transformations with MO-
MoT. In: Van Gorp, P., Engels, G. (eds.) ICMT 2016. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-42064-6 6

13. Golas, U., Ehrig, H., Hermann, F.: Formal Specification of Model Transformations
by Triple Graph Grammars with Application Conditions. ECEASST 39 (2011)

14. Horn, T.: Solving the TTC Families to Persons Case with FunnyQT. In: Garćıa-
Domı́nguez, A., Hinkel, G., Krikava, F. (eds.) TTC 2017. CEUR Workshop Pro-
ceedings, vol. 2026. CEUR-WS.org (2017)

15. Kessentini, M., Sahraoui, H., Boukadoum, M.: Model Transformation as
an Optimization Problem. In: Czarnecki, K., Ober, I., Bruel, J.M., Uhl,
A., Völter, M. (eds.) MoDELS 2008. Springer, Berlin, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-87875-9 12

16. Klar, F., Lauder, M., Königs, A., Schürr, A.: Extended Triple Graph Grammars
with Efficient and Compatible Graph Translators, pp. 141–174. Springer, Berlin,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17322-6 8

Schema Compliant Consistency Management via TGGs and ILP 333

17. Leblebici, E.: Towards a graph grammar-based approach to inter-model consis-
tency checks with traceability support. In: Anjorin, A., Gibbons, J. (eds.) Bx 2016.
CEUR-WS.org (2016)

18. Leblebici, E.: Inter-Model Consistency Checking and Restoration with Triple
Graph Grammars. Ph.D. thesis, Darmstadt University of Technology, Germany
(2018)

19. Leblebici, E., Anjorin, A., Fritsche, L., Varró, G., Schürr, A.: Leveraging incremen-
tal pattern matching techniques for model synchronisation. In: de Lara, J., Plump,
D. (eds.) ICGT 2017, Marburg, Germany, July 18-19, 2017, Proceedings (2017)

20. Leblebici, E., Anjorin, A., Schürr, A.: Inter-model Consistency Checking Us-
ing Triple Graph Grammars and Linear Optimization Techniques. In: Huis-
man, M., Rubin, J. (eds.) FASE 2017. Springer, Berlin, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54494-5 11

21. Macedo, N., Cunha, A.: Implementing QVT-R Bidirectional Model Transforma-
tions Using Alloy. In: Cortellessa, V., Varró, D. (eds.) FASE 2013. Springer, Berlin,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37057-1 22

22. Nierstrasz, O., Gray, J., d. S. Oliveira, B.C. (eds.): SLE 2019, Athens, Greece,
October 20-22, 2019, Proceedings. ACM (2019)

23. Syriani, E., Vangheluwe, H., Lashomb, B.: T-Core: A Framework for Custom-built
Model Transformation Engines. Softw. Syst. Model. 14(3), 1215–1243 (2015)

24. Weidmann, N., Anjorin, A., Leblebici, E., Schürr, A.: Consistency management via
a combination of triple graph grammars and linear programming. In: Nierstrasz
et al. [22], pp. 29–41. https://doi.org/10.1145/3357766.3359544

25. Weidmann, N., Oppermann, R., Robrecht, P.: A feature-based classifica-
tion of triple graph grammar variants. In: Nierstrasz et al. [22], pp. 1–14.
https://doi.org/10.1145/3357766.3359529

26. Xiong, Y., Hu, Z., Zhao, H., Song, H., Takeichi, M., Mei, H.: Supporting automatic
model inconsistency fixing. In: van Vliet, H., Issarny, V. (eds.) Proceedings of the
7th joint meeting of the European Software Engineering Conference and the ACM
SIGSOFT International Symposium on Foundations of Software Engineering, 2009,
Amsterdam, The Netherlands, August 24-28, 2009. pp. 315–324. ACM (2009)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/

4.0/), which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

334 N. Weidmann and A. Anjorin

Towards Multiple Model Synchronization with
Comprehensive Systems

Patrick Stünkel1 , Harald König2 , Yngve Lamo1, and Adrian Rutle1

1 Høgskulen på Vestlandet, Bergen, Norway {past,yla,aru}@hvl.no
2 University of Applied Sciences, FHDW, Hannover, Germany

Harald.Koenig@fhdw.de

Abstract. Model management is a central activity in Software Engineer-
ing. The most challenging aspect of model management is to keep models
consistent with each other while they evolve. As a consequence, there
has been increasing activity in this area, which has produced a number
of approaches to address this synchronization challenge. The majority of
these approaches, however, is limited to a binary setting; i.e. the synchro-
nization of exactly two models with each other. A recent Dagstuhl seminar
on multidirectional transformations made it clear that there is a need for
further investigations in the domain of general multiple model synchro-
nization simply because not every multiary consistency relation can be
factored into binary ones. However, with the help of an auxiliary artifact,
which provides a global view over all models, multiary synchronization
can be achieved by existing binary model synchronization means. In this
paper, we propose a novel comprehensive system construction to produce
such an artifact using the same underlying base modelling language as the
one used to define the models. Our approach is based on the definition
of partial commonalities among a set of aligned models. Comprehensive
systems can be shown to generalize the underlying categories of graph
diagrams and triple graph grammars and can efficiently be implemented
in existing tools.

Keywords: Model Synchronization · Multimodelling · Multidirectional
Transformations (MX) · Inter-Model Consistency · Model Merging ·
Graph Diagrams · Triple Graph Grammars · Category Theory

1 Introduction

Conceptual models, i.e. abstract specifications of the system under development,
are recognized to be of major importance in software engineering [52]. Repre-
senting the whole system in a single global model is generally unfeasible, hence,
different teams design and maintain several models which focus on different
aspects of the system. This collection of inter-related models is often referred to
as a multimodel. A rigorous use of these models within the engineering process
eventually requires consistency management of multimodels. This is because
the collection of models must obey global consistency rules and as models are
inevitably subject to change, global consistency becomes an issue [16].

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 335–356, 2020.
https://doi.org/10.1007/978-3-030-45234-6_17

http://orcid.org/0000-0002-0537-295X
http://orcid.org/0000-0001-6304-6311
http://orcid.org/0000-0002-4158-1644
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_17&domain=pdf

Model Synchronization represents a means to maintain global consistency of
inter-related models by combining consistency verification with (semi-)automatic
consistency restoration. The cross-disciplinary research field Bidirectional Trans-
formations (BX) [8] investigates such means within different communities and
it provides a number of theoretical and practical results (see [2] for a recent
survey). However, the majority of these approaches is limited to a binary setting,
i.e. keeping pairs of models consistent. Stevens [44] recognized this limitation
in her outreach to the modelling community that lead to an increased momen-
tum in this area as evident from a recent Dagstuhl seminar on Multidirectional
Transformations (MX) [7].

Fig. 1. Inconsistent
class diagrams

One way to address multiary synchronization is to con-
sider it as a network of well-understood binary synchroniza-
tion problems. However, not every multiary consistency
rule can be factored into binary ones [9]; e.g. the class
diagrams A1, A2 and A3 in fig. 1 are pairwise consistent
but not altogether—since class inheritance is acyclic. Thus,
multiary model synchronization is needed to keep global
consistency. Another approach to global consistency man-
agement is the model merge approach [6]: It constructs
the union of all models wherein the related elements are
identified, see lower half of fig. 1 (inter-relations given by
sameness of class’ names). Thus, global consistency can
be verified within a single artifact, the merge. However,
the major drawback of this approach, apart from requiring
additional computational overhead, is that it forgets the
origin of elements; e.g. that class C was contained in A1 and
A2 but not in A3. This is a problem if global consistency
rules depend on this containment information.

The most important information in multiary model synchronization are the
inter-relations between models and their elements. We call the latter common-
alities and cannot generally assume that they are always given by equality of
names as it was the case in fig. 1. Thus, multimodels must be extended with such
commonality information, which allows element traceability and global consis-
tency verification. Aligning models via an additional commonality structure has
some tradition, e.g. it is the foundation of Triple Graph Grammars (TGGs) [40],
a formal and mature BX approach with a focus on Model Driven Engineering
(MDE). In the TGG approach, models are considered to have a graph based
structure, i.e. there is a common underlying base modelling language and we will
also stick to this idea of a common base language.

In this paper, we propose a novel construction called comprehensive system
which serves as a foundation for various ways of multiary model management.
It is based on a simple, non-intrusive and easy-to-handle linguistic extension of
the base modelling language with commonality specifications, which allows to
work with an arbitrary number n ≥ 2 of heterogeneously typed (local) models as
one single (global) model. Moreover, we will show that we are still able to apply

336 P. Stünkel et al.

mature methods for model verification and restoration in the same way as for
single local models. Furthermore, we show that this approach is more expressive
than, and overcomes the obstacles of, the model merge approach, and that it
generalizes TGGs and graph diagrams [48] – a recent generalization of TGGs.

Before defining comprehensive systems and their properties (sect. 5 and 6),
we clarify terminology (sect. 2), introduce of a running example (sect. 3), and
provide an overview of the state of the art (sect. 4). An extended version of the
proofs in sect. 6 is given in the technical report [47].

2 Preliminaries: Multimodelling

Every fast moving research field is prone to produce separate terms for the same
concepts. Thus, we begin with a short definition of the most important terms in
multi-model consistency management. We will stick to the imperative of MDE
[42] and consider all Software Engineering (SE) artifacts as models:

Model A model is an abstract specification of the system (or parts of it) under
development. Models are atomic elements in the multimodel consistency
management process. To be amenable for electronic processing, we assume
them to be formal, i.e. following the format of a specific modelling language.
We denote models by capital letters A,A′, A1, A2 etc.

Metamodel and Conformance Every modelling language is specified by an
artifact called metamodel. We denote metamodels by capital letters M,M ′,M1,
M2 etc. Models must conform to their respective metamodel, i.e. the model
must be well-structured w.r.t. the metamodel and fulfill all constraints im-
posed on the metamodel, thus further narrowing admissible model structure.
The model is then called an instance of the metamodel. Conformance is
also called local or intra-model consistency. We denote a single constraint by
lowercase φ and a set of constraints by uppercase Φ. A metamodel with a set
of constraints Φ imposed on it will be written MΦ.

Correspondence is a relation among a set of models. It is a consequence of
commonalities (common concepts) shared by these models. A collection of
models together with a correspondence among them is called a multimodel. In
the similar way as for local models, global consistency rules can be imposed
on a multimodel. It is considered (globally) consistent, if all local constraints
and global consistency rules are fulfilled. Consistency of a multimodel is also
referred to as inter-model consistency.

Model Space A model space is a set of models together with changes among
them. In an MDE setting it can be considered to be given by a metamodel M :
The set of all instances of M together with M -respecting instance changes,
which describe how an instance A′ is the result of edits on A. We write
Mod(MΦ) to denote the respective model space.

Towards Multiple Model Synchronization with Comprehensive Systems 337

3 Use Case

We depict a collaborative modelling example within healthcare. More concretely,
the task is to develop ICT support for a patient referral process. A referral is
“the act of sending a patient to another physician for ongoing management of a
specific problem with the expectation that the patient will continue seeing the
original physician for co-ordination of total care” [41]. It is an important and
recurring process in the healthcare domain. Hence, ICT-support is desirable [51].

At the same time, development remains tricky since it requires multiple actors
(software vendors, government officials, hospitals and physicians) to agree on
common data structures, processes and interfaces. For our example, let us assume
that the design of the system follows a model-based approach and there are three
different models, each covering a different aspect of the system: There is a process
model A1 denoted in Business Process Model and Notation (BPMN) [30], a data
model A2 denoted as a Unified Modelling Language (UML) class diagram [32],
and a decision model A3 denoted in Decision Model and Notation (DMN) [33].

These three models are depicted in fig. 2 (ignore the cyan lines for the moment).
The central ingredient is the process model A1. It represents a simplified version
of the process developed in [51]. The process is triggered by a patient’s appeal
beginning with an introductory consultation. Afterwards the main part of the
process begins: Information about the patient and its medical history is extracted
while in parallel a consultant is selected via a business-rule activity. The
patient information is then sent to the consultant. The consultant can either
approve the referral or reject it. In the latter case, another consultant has to be
found. If a consultant accepts the referral, the process is finished.

Fig. 2. Example models A1, A2 and A3 and their commonalities

338 P. Stünkel et al.

The other models in fig. 2 contain the respective data types (A2) and specify
the domain-specific behaviour of the “Select Consultant” activity (A3). The
latter is depicted as a table that assigns, for a given combination of values in
input side columns, a combination of values in output side columns, i.e. based on
diagnosis and urgency, an appropriate consultant is selected (which is identified
by a practicionerId and specialization).

All models could be edited completely independent of each other would there
not be a correspondence between them. It arises from the existence of abstractly
“the same” information simultaneously contained in multiple models. Consider
e.g. the column called diagnosis in A3, which is reflected by a process variable
in A1 (visualized by a file symbol) and an attribute named description in A2.
We call these relations commonalities and depict them via cyan lines in fig. 2.

But the arising multimodel (models A1, A2, A3 plus their commonalities) un-
derlies consistency rules [11] (see sect. 2) which define consistency of a multimodel.
For our example, assume the following consistency rules:

CR1 For every business-rule activity in A1, there must exist a corresponding
decision table in A3 and vice versa.

CR2 Every column type in A3 must refer to an existing data type in A2 with
the same name.

CR3 Every column in A3 must have a corresponding public attribute (denoted
by +) in A2 and should be reflected by a process variable in A1.

CR4 Every process variable in A1 must either be reflected by a class or an
attribute in A2.

To actually maintain consistency of A1, A2 and A3, w.r.t. CR1-CR4, we begin
by a review of the state of the art how commonalities are identified, consistency
is verified and if needed restored.

4 State of the Art

A seminal exposition of the process of multimodel consistency management is
already given in [43]. It comprises four phases: (i) Detection of overlaps (we call
them commonalities, see sect. 3, (ii) Detection of inconsistencies, (iii) Diagnosis of
inconsistencies, and (iv) Handling of inconsistencies. The first step is also called
model alignment. Many approaches do not consider an explicit diagnosis stage
and combine (iii) and (iv) into a phase called consistency restoration a.k.a. model
repair [28]. Hence, existing work can be grouped into these three categories:

Alignment The goal of model alignment is to identify relations between
models, i.e. finding their commonalities. This procedure, a.k.a. model matching,
has been studied in several domains: databases [35], ontologies [15], MDE [23],
graph transformation [14] and software product lines [53]. Automatic model
matching, in general, is NP-hard [36]. However, there may be domain-specific
heuristics [53] which exploit underlying global identification mechanisms, e.g.
social security numbers for persons or the ICD-10 ontology [54] for diseases.
Surveys on this topic can be found in [15] (focus on ontologies), [35] (focus on

Towards Multiple Model Synchronization with Comprehensive Systems 339

databases) and [23] (focus on MDE). Further, it is important to note that model
element matching requires that elements are transferable between models. This
is e.g. directly given within the UML or multi-viewpoint modelling as there is
a single underlying metamodel [3]. If this is not given a priori, matching on the
level of metamodels [38,10] has to preceed the matching of model elements.

Verification The goal of consistency verification is to find all consistency
violations. A recent survey on this topic is found in [22]. The focus of the
authors is on UML but the results are universal. They present four categories
to classify verification approaches: system model (SMV), universal logic (ULV),
heterogeneous transformation (HTV) and dynamic metamodelling (DMV). In
the SMV approach every model is translated into a comprehensive artifact where
the verification is executed. ULV is a variant of the former where the translation
is executed on the level of an underlying logic. HTV define translations between
each pair of models and DMV considers extensions of each metamodel with
elements from other metamodels or models to express global consistency.

Restoration A comprehensive survey about model repair approaches is
found in [28], whereas [2] is a recent survey about BX based approaches. Insights
from these surveys show that there are basically three categories of consistency
restoration approaches: programming based (PBR) approaches where consistency
and its restoration is explicitly defined simultaneously, solver based (SBR) ap-
proaches where consistency is abstractly posed as logic formula and restoration
is implemented using a solver or search-based algorithm, and finally, grammar
based (GBR) approaches such as TGGs [19], which place themselves somewhere
in between. The big majority of these approaches, however, considers binary
synchronization only. There are only few notable exceptions, e.g. the solver based
Echo [29] and the graph diagram framework [48,49].

Architecture Analyzing the underlying system architecture of these ap-
proaches, there are, in principal, two designs: We call them the network design
and the span design. Consider the multimodel as a graph where nodes repre-
sent models and edges represent correspondences (for alignment), consistency
relations (for verification) or repair functions (for restoration). In the network
design there are edges between each pair of models. In the span design the graph
has a hub-and-spoke layout, i.e. there is an additional hub-node that has an
edge towards every model. Approaches in the categories SMV, ULV and SBR
are associated with a span design since they perform a translation into a an
intermediate model, while approaches in the categories HTV, DMV and PBR are
associated with the network design because they directly act on a pair of models.
GBR approaches have used either of them.

Comparing the architecture, the network design puts the complexity on the
edges whereas the span design puts complexity on the nodes (more specifically on
a single node: the hub). The drawback of the network design is that the number
of edges grows quadratically with the number of participating models and if
consistency relations cannot be factored into binary relations, hyperedges are
required, which further increase the complexity. Another issue with this design is
the coordination of concurrent changes. The drawback of the span design is the

340 P. Stünkel et al.

additional overhead of the hub-node model, however, the hub-node provides a
means to coordinate concurrent changes.

5 Comprehensive Systems

In this section, we introduce comprehensive systems (sect. 5.1 to 5.3), which follow
a SMV-approach and mitigate the drawbacks of the span design. We will show in
sect. 5.4 that comprehensive systems are a foundation for the PBR restoration
approach and we conjecture that the same is true for SBR, because they do not
fundamentally differ from the structure of local models, such that they can be
fed into existing means for model verification and restoration. Moreover, sect. 5.5
shortly reports why our approach eliminates the model merge obstacles (see the
discussion in the introduction and fig. 1).

Before introducing comprehensive systems concretely, we want to illustrate
where they occur in typical conceptual workflows for multimodel consistency
management. Fig. 3 depicts such a workflow which is more or less informally used
in many approaches of multimodel management, e.g. [16]. It comprises the phases
mentioned in sect. 4: alignment, verification and restoration. The result of the
first stage are the comprehensive metamodel and global consistency rules imposed
upon it, and metamodel element commonalities, which are stored persistently to
avoid expensive re-computation and possible information loss, cf. motivation in
[25]. These commonalities are then used to compute the comprehensive system
under consideration, e.g. a model merge. It can be used in the subsequent phases
shown in fig. 3.

In contrast to this additional computation, our definition of comprehensive
system is based on a non-intrusive extension of existing models by commonalities
without extensive computations. Furthermore, it enables natural internalizations of
inter-relations between different local models into a single artifact. Our intention
is to demonstrate this internalization informally in this section and formalize
it in sect. 6, where we will also state that the resulting structure generalizes
triple graphs [40] and graph diagrams [48]; hence it is ready to be used in GBR
approaches, too.

Fig. 3. General Multimodel Consistency Management Process

Towards Multiple Model Synchronization with Comprehensive Systems 341

Fig. 4. Metamodel Example and Base Language

5.1 Typed Local Models

We begin on the level of metamodels: Fig. 4a depicts a simplified metamodel M1

of BPMN for our example. We do not endorse any specific MDE-framework and
denote metamodels in a UML class diagram-like style. Metamodels M2 and M3

for UML class diagram and DMN models can be defined in the same way as
metamodel M1 (excerpts of them are shown in fig. 5). E-graphs [12] (see fig. 4b)
give a formal interpretation to the class diagram syntax, which may serve as an
appropriate base modelling language B for our purposes, i.e. a shared linguistic
(meta-)metamodel [26]. It consists of Graph Nodes GN and Data Nodes DN
(complex and primitive types in the UML terminology), as well as Graph Edges
GE (associations) and Node Attribute Edges NAE (attributes) together with
appropriate owner and target functions. For the sake of simplicity we omitted
edge attribute edges, which are usually included in E-graphs. Every model A
must conform to a metamodel M . Since models and metamodels can be depicted
as E-Graphs, the conformance relation is a typing homomorphisms t : A → M
between the E-Graphs A and M . If, e.g. a is a flow node in A1, see fig. 2, then
t(a) = FlowNode ∈ M1. Hence, model space Mod(M) is the category of E-graphs
typed over M . E-graphs are only one possible base language and we will work
with arbitrary base languages in sect. 6. Nevertheless will we use the term “graph”
to subsume all artifacts under consideration (models and metamodels). Thus, we
will use the terms (graph- and data-) “nodes” and (graph- and node attribute-)
“edges” for the contents of these graphs, see [12] for the original terminology.

If a set Φ of constraints (e.g. a set of formulas given in a specific logic) is
imposed on M , then the space is reduced to the full subcategory Mod(MΦ) of all
consistent models typed over M w.r.t. Φ. Besides UML-internal constraints (e.g.
the 1..1-multiplicity on src and tgt in fig. 4a) given in the modelling technique,
there are often attached constraints φ ∈ Φ. An example for an attached constraint
is φ :=control_flow, see the note at FlowNode in fig. 4a. This constraint defines
that every Start Event must not have any incoming SequenceFlow [30, p. 237],

342 P. Stünkel et al.

whereas an End Event must not have any outgoing SequenceFlow [30, p. 245].
Listing 1.1 shows an Object Constraint Language (OCL) [31] formulation of this
constraint.

Listing 1.1. Constraint φ:=control_flow formulated in OCL
context FlowNode inv:

self.oclIsTypeOf(Event) and self.eventType=EventType ::START) implies
self.incoming ->count () = 0

and (self.oclIsTypeOf(Event) and self.eventType=EventType ::END) implies
self.outgoing ->count () = 0

OCL is just an example of a possible means for defining attached constraints.
As we do not endorse a specific metamodelling framework and thus also not
endorse a specific technique for the definition of attached constraints, we treat
all constraints uniformly and assume that all internal and external constraints
can be modelled as diagrammatic constraints [37]. A diagrammatic constraint
φ imposed on a metamodel M possesses an “arity graph” Sφ and is imposed on
M by a scope dφ : Sφ → M (a homomorphism). The semantics is provided by a
predicate checkφ : Mod(Sφ) → Bool, which verifies whether a given structure
typed over the arity fulfills this constraint. The scope highlights a fragment (the
image of d) of metamodel M , e.g. the blue coloured fragment in fig. 4a is the
scope of the constraint φ from listing 1.1. For a typed graph t : A → M , the
verification procedure verify(t) = checkφ(query(t)) comprises two steps: First,
query forgets all elements of A not typed over the scope, then it retypes the
remaining elements w.r.t. d such that they are typed over Sφ. That is, query
implements the pullback of d and t. Finally, checkφ is invoked on the pullback
result.

5.2 Extending the Base Language

As seen in sect. 3, consistency rules play a major role in multimodelling. However,
we cannot directly formalize them via the diagrammatic constraints described
above since their definition involves elements spanning multiple models. Note
that inter-relations between models arise from models sharing abstractly the
“same” real-world concepts (see the intuitive cyan lines in fig. 2). We name these
structural relations commonalities and they are also well-known in practice
as traceability links [16,39,1]. There are different interpretations of what such
a link can mean, e.g. identity, subset, extension? etc. [16]. In our framework
commonality semantics are kept abstract, i.e. considering them as any kind of
structural relation allowing us to define diagrammatic constraints in multimodels.

For example, in order to formalize CR2, we need to declare a commonality
between the terms DataType (in M2) and ColumnType in M3. In addition to
these binary commonalities in which only two terms are matched, there are
also ternary commonalities, e.g. String occurs in all three metamodels and it is
necessary to relate BPMN-term ProcessVariable with UML-term Attribute
and DMN-term Column together with their respective name- and type-features to
express CR3. These declarations may be formulated in an intuitive domain-specific
language (DSL) shown in listing 1.2.

Towards Multiple Model Synchronization with Comprehensive Systems 343

Listing 1.2. Type Commonalities

1 commonalities (BPMN ,UML ,DMN) {
2 relate(BPMN.String ,UML.String ,DMN.String) as String;
3 relate(BPMN.Activity ,DMN.Table) as Decision;
4 relate(BPMN.ProcessVariable ,UML.Attribute ,DMN.Column)
5 as Var with {
6 relate(BPMN.name ,UML.name ,DMN.name) as name;
7 relate(DMN.type ,UML.type) as type; };
8 relate(UML.DataType ,DMN.ColumnType) as Type
9 with { relate{UML.name ,DMN.name} as name; };

10 relate(BPMN.ProcessVariable ,UML.Class) as Entity; }

The specification in listing 1.2 extends the modelling artifacts M1,M2 and M3

and we call its syntax a linguistic extension. Each relate-statement translates
to an object, which is identified by an alias (keyword as) and which reifies the
“tupling” of terms it relates. E.g. the object Var in lines 4-7 specifies a commonality
of the triple ProcessVariable (M1), Attribute (M2), and Column (M3). Var
is an object in its own right and we call it a (commonality) representative.

However, not only the nodes (of the graphs) should be related: In listing
1.2 we see that the keyword with defines the two features, i.e. edges, type and
name of the respective graphs to be related as well. Common edges require
that their respective source and target nodes are also related, e.g. the type-
commonality entails commonality of Attribute and Column, which is already
given by the surrounding relate-statement, as well as commonality of DataType
and ColumnType (see lines 8-9). Hence, commonality specifications must preserve
edge-node-incidences.

Consequently, it is reasonable to use the same language B for commonality
representatives. In such a way, a commonality specification is itself an E-graph:
The semantic interpretation of listing 1.2 is depicted in cyan in fig. 5. The proper
linguistic extension further comprises mappings, which assign to each commonality
representative w the elements it relates. E.g. Decision is mapped to Activity
and to Table in the respective metamodels. Since the assignment syntax in the
above DSL also contains the target metamodel of the related elements (e.g. BPMN
in relate(BPMN.Activity...)), these mappings decompose into 3 projection
mappings pj : M

0 → M j (j ∈ {1, 2, 3}), depicted by dotted arrows in fig. 5, e.g.
p1(Decision) = Activity ∈ M1, as well as p2(Type) = DataType ∈ M2, the
target metamodel now encoded in p’s index. Since the corresponding tuples can
be of arbitrary arity, these mappings may be partial:

p1(w
′) =⊥, p2(w

′) = DataType, p3(w′) = ColumnType

if w′ = Type. Finally, the above required edge-node-incidence means that defined-
ness of pj(e) entails definedness of pj(v), where v is the source of e, and

pj(v) = source of pj(e) (1)

for all edges e in M0 (and likewise for targets).

344 P. Stünkel et al.

� �� � � �

� �

��

��

��

�� �� ��

��

��

��

��

��

Fig. 5. Commonality representative metamodel M0

5.3 Metamodel and Model Commonalities

The previous section showed that a linguistic extension of the base language
with projection functions between commonality representatives and the elements
they relate yields an alignment of metamodels M1, . . . ,Mn. The result is a
comprehensive metamodel, in which commonalities are accurately specified with
the help of (a graph of) commonality representatives. Formally, we obtain a new
graph M0 and partial projections

M0 pM
i⇀ M i. (2)

for all i ∈ {1, . . . , n}. Since all artifacts under consideration (models and meta-
models) conform to the base B, see sect. 5.1, commonalities among models
A1 ∈ Mod(M1), . . . , An ∈ Mod(Mn) can be encoded in the same way, i.e. there
is a graph A0 of commonality representatives together with partial projections

A0 pA
i⇀ Ai. (3)

for all i ∈ {1, . . . , n}. Again they can be specified in the same language as in
listing 1.2, and can be stored physically, given that the modelling technique offers
means to identify elements, e.g. primary keys in a database, position in an XML
document, Uniform Resource Identificators (URIs) [5], etc.

The alignment of models A1, A2, and A3 together with their commonalities
is shown in fig. 2. Each cyan line represents a commonality representative and
each line ends at the value under the respective projection. Some of the lines
are binary, some ternary. In general, we would expect any arity, especially when
the number n of model spaces increases. The complete contents of fig. 2 is called
a comprehensive system: the cyan connections its commonalities and models
A1, . . . , An its components.

Towards Multiple Model Synchronization with Comprehensive Systems 345

Models Ai are typed over their metamodels, i.e. there are typing morphisms
ti : A

i → M i which can be combined to one big typing of all components. This
typing extends to A0 as well because elements aj and ak (j �= k) of model
components Aj and Ak are relatable only if their types tj(aj) and tk(ak) are
related via a representative w ∈ M0. Hence, a natural typing t0 of a commonality
representative v of aj and ak is t0(v) := w, such that

pMj (t0(v)) = pMj (w) = tj(aj) = tj(p
A
j (v)), (4)

which shows that the typing extension t0 integrates smoothly (respecting com-
monalities) into a typing of all parts of the comprehensive model, such that we
end up with a single typed comprehensive system: t : A → M .

5.4 Reusing Methods of Local Model Management

Consider the OCL example and its generalization in terms of diagrammatic
constraints in sect. 5.1. Theorem 1 in sect. 6 will show that comprehensive systems
constitute a category basically with the same properties as the base language B.
Especially, pullbacks can be computed in a similar way, see Corollary 1 in sect. 6.
Thus, we can define the consistency rules CR1-CR4 from sect. 3 as diagrammatic
constraints (φi)i∈{1,...,4}, now imposed on the comprehensive metamodel, which
treat the commonality witnesses and projections as regular nodes and edges.
Local constraints can be encoded as global constraints as well [24], such that
we obtain comprehensive system MΦ with a set Φ of constraints spanning
local model elements but also elements of the linguistic extension. Any typed
system t : A → M can then be checked against a constraint φ imposed via
scope d : Sφ → M by pullback of d and t in the category of comprehensive
systems, see Theorem 1 in sect. 6. Hence, query implementation by pullbacks
carries over from local models to comprehensive systems and we can reuse the
theory of diagrammatic constraints to verify global consistency, which e.g. can
be implemented by a straightforward translation of a respective model fragment
and constraint to Alloy [20]. This can be used to formally verify that Fig. 2 is
consistent w.r.t. CR1-CR4.

5.5 Advantages over Model Merge

A merged model is an artifact which is computed additionally from local models
Ai. Basically, it is the union of all elements of the Ai’s modulo their commonalities,
see fig. 1. E.g. in the merge of models A1, A2, A3 in fig. 2 there remains a single
node, say Diag/descr of type Var (a type in M0, see fig. 5), which represents
sameness of Diagnosis ∈ A1, description ∈ A2 and diagnosis ∈ A3.

We could implement global consistency rules on the merge by including
the merge computation in the check-function as described in the algorithm in
[24]. However, this leads to problems if the verification of a global constraint
depends on the knowledge of containment in local models. This can be seen with
consistency rule CR3 which relies om the containment of elements (in this case

346 P. Stünkel et al.

containment in A2 and A3). After merging Diagnosis and description into the
single node Diag/descr, distinguishing its original local model would no longer
be possible. In contrast, we do not loose this differentiation in comprehensive
systems and can successfully check the validity of this constraint.

6 Categorical Formalization

This section is devoted to the formalization of comprehensive systems from sect. 5.
In order to relate comprehensive systems to the TGG framework we need to
employ category theory (CT) because TGGs are usually formulated in terms of
CT. We recall the central terminology in the following section and refer to the
introductory textbooks [4,34,50] for further references about CT.

6.1 Theoretical Background and Notation

A category C is a collection of mathematical objects and of morphisms, which
are means to compare objects. For a category C, the set of objects is denoted
|C| and for each pair A,B ∈ |C| the (hom-)set of morphisms from A to B is
denoted by ArrC(A,B). For each object A ∈ |C| there exists a special identity
morphism idA : A → A. Moreover there is a neutral and associative composition
operation ◦ : ArrC(A,B)×ArrC(B,C) → ArrC(A,C) for all A,B,C ∈ |C|. The
most prominent example is the base language of mathematics: Set, the category
of sets and total mappings. A category C is said to be small, if |C| is itself a set.
Equivalence of two categories C and D, written C ∼= D, means that the network
of objects and morphisms in C is identical to the one in D up to isomorphisms
(e.g. bijections in Set) between objects.

A functor provides the means to compare two categories C and D: It is
denoted F : C → D and maps objects of C to objects of D and morphisms
of each set ArrC(A,B) to ArrD(F(A),F(B)). Moreover, it preserves identities
and composition. F is called an embedding, if it is injective on objects of C

and injective on ArrC(A,B) for all A,B ∈ |C|. For fixed categories C and D

and functors F,F′ : C → D, a natural transformation n : F � F′ is a family
(nA : F(A) → F′(A))A∈|C| of D-morphisms compatible with images of F and F′,
i.e. for all C-arrows f : A → B: nB ◦ F(f) = F′(f) ◦ nA. In such a way we get
a new category, the functor category D

C with objects all functors from C to D

and arrows the natural transformations. Functors F : C → Set where C is small
play a special role: F assigns to each S ∈ |C| a (carrier) set F(S) and for every
op ∈ ArrC(S, S

′) a mapping F(op) : F(S) → F(S′), i.e. C is a signature (think
metamodel) that is interpreted by F (think instantiated). Hence, this is also called
functorial or indexed semantics and SetC corresponds to the class of algebras
for a signature C (instance worlds for a metamodel). E.g. objects of G := SetB

are E-Graphs, if B is the category depicted in fig. 4b (identities are omitted) and
E-Graph-homomorphisms are exactly the natural transformations. For set-based
structures, we use the notation A ↪→ B to indicate included structures (A in B)
such as subsets or subgraphs.

Towards Multiple Model Synchronization with Comprehensive Systems 347

Universal constructions in categories have proven to be of importance in
many software theoretical methods. Intuitively universal constructions can be
described as a generalization of meets and joins in a preorder. Some well known
examples for universal constructions in Set are cartesian products or disjoint
unions (coproduct). It is important to note that Set possesses all these universal
constructions and thus every category SetC does as well, where the computation
of universal constructions is carried out “pointwise”.

6.2 Comprehensive System

We begin the formalization of comprehensive systems by fixing a sufficiently
large natural number n and considering a synchronization scenario with model
spaces (Mod(M j

Φj
))j∈{1,...,n}. E.g. UML class diagrams, BPMN process models

and DMN tables.

Definition 1 (Base Modelling Language). The base modelling language is
a small category B.

In order to distinguish between the different system components, we will work
with copies Bj of B. We let |Bj | = {sj | s ∈ |B|} and similarly opj : sj → s′j be
an arrow in ArrBj , if op : s → s′ is an arrow of ArrB.1

Definition 2 (Comprehensive Systems, Components, Commonalities).
A comprehensive system C consists of

– Functors Cj : Bj → Set for each j ∈ {1, . . . , n}, called Components
– A functor C0 : B0 → Set determining the Commonality representatives, and
– A collection of partial functions (C0(s)

pj,s
⇀ Cj(s))s∈|B|,1≤j≤n, called projec-

tions, establishing the commonalities of C,

such that for all op : s → s′ ∈ B and 1 ≤ j ≤ n the following statement holds:

If pj,s(x) is defined, then pj,s′(C0(op0)(x)) is defined (5)
and pj,s′(C0(op0)(x)) = Cj(opj)(pj,s(x)). (6)

Note that (5) and (6) generalize the edge-node-incidences, see sect. 5.2, which
we already semi-formalized in (1). In the sequel, the index of functors Ci will
be omitted, since it can be derived from the domain of definition. Hence, a
comprehensive system is a single functor C with domain the n+ 1 copies of B
and (n+ 1)b carrier sets, if b is the cardinality of |B|: In view of the introductory
remarks on functors in sect. 6.1, C0, . . . , Cn can be seen as n+ 1 instance worlds
for metamodel B, e.g. E-Graphs, each with b = 4 carrier sets.

The fundamental linguistic extension are the partial functions. They act
according to our example in sect. 5.2: In the tuple (p1(w), . . . , pn(w)) the pj
determine sameness of its components based on representative w.
1 The abbreviation “op” for arrows of the base shall indicate that B-arrows are certain

operations constituting the structure of the base language, such as source and target
operations of edges in graphs.

348 P. Stünkel et al.

The next definition deals with different comprehensive systems. In this case,
it is necessary to tell the respective partial mappings apart, such that we write
pCj,s, if we depict the mappings in the particular system C.

Definition 3 (Homomorphisms between Comprehensive Systems). Let
C,C ′ be comprehensive systems as defined in Def.2. A homomorphism between
comprehensive systems is a family

(fi,s : C(si) → C ′(si))s∈|B|,0≤i≤n

of mappings compatible with arrows, i.e. ∀i ∈ {0, . . . , n}, ∀op : s → s′ ∈ ArrB:
f ◦ C(opi) = C ′(opi) ◦ f , and compatible with partial mappings: For all j ∈
{1, . . . , n}, s ∈ |B| and x ∈ C(s0):

If pCj,s(x) is defined, then pC
′

j,s(f(x)) is defined and pC
′

j,s(f(x)) = f(pCj,s(x)) (7)

where we write f instead of fj,s, if the indexing becomes clear from the context.

A typical example is a typing morphism t : A → M for two comprehensive
systems A and M . Then equation (7) reflects property (4), i.e. compatibility of
commonalities and typing. This can be seen in fig. 2: The complete contents of it
is a comprehensive system A typed over the comprehensive metamodel M partly
depicted in fig. 5. A0 consists of all cyan (binary or ternary) lines and pj,s assigns
to a line its line end in model Aj , where s is the respective element type (node
or edge).

Proposition 1. Comprehensive Systems together with homomorphisms between
them constitute a category CS.

Proof. An identity is a family of identities, composition is composition of map-
pings fj,s. This yields neutrality and associativity. Moreover, composed homo-
morphisms are still compatible with arrows. Whereas this follows in the usual
way for op : s → s′, transitivity of the definedness implication in (7) also yields
compatibility with partial functions. ��

6.3 Multimodel Equivalence

An alternative but closely related approach to our construction is to consider
commonalities, i.e. commonality representatives A0 together with projections
(pAj)1≤j≤n, not represented internally by means of the modelling technique but
externally as n spans of morphisms [24,46]. Let for this G := SetB, see the remarks
on functor categories in sect. 6.1. The resulting artifacts of the category in [46] is a
subcategory M of the functor category G

I, where I is defined as in fig. 6 (identity
arrows of I are again omitted). It is a subcategory, because it only consists of
those functors M : I → G, for which the images M(−j) of the top arrows in fig. 6
are monic (i.e. are monomorphisms).

Towards Multiple Model Synchronization with Comprehensive Systems 349

0

−1

−1
��

1
��

· · · −n

−n
��

n
��

1 · · · n

Fig. 6. Category I

The proof of the following theorem relies mainly on
cartesian closedness of the category of small categories,
i.e. GI ∼= SetB×I (internalization) and the fact that spans
with one monic leg represent partial mappings, the middle
object of the span being the domain of definition of the
partial map. A detailed proof of the theorem is given in
[47].

Theorem 1 (Equivalence of Categories). CS ∼= M.

Corollary 1. CS possesses all pullbacks and they are computed separately for
the commonality representatives and for each component.

Proof. Follows from Theorem 1 and the fact that functor categories possess all
pullbacks, their pointwise construction guaranteeing that spans with one monic
leg are preserved, because pullbacks preserve monomorphisms. ��

Auxiliary commonality structures have been used for model synchronization
in the TGG framework [40]: Consistency relations between two model spaces
are defined declaratively by a grammar. The grammar rules are defined over
triple graphs, i.e. pairs of graphs connected by special correspondence-graphs,
which resemble structural commonalities. From the grammar rules, procedures for
consistency verification [27], model transformation [13] and (concurrent) model
synchronization [19,18] can automatically be derived. The solution space, however,
is limited to binary scenarios. Trollmann and Albayrak [48,49] generalized the
TGG framework to cope with multiple models within a graph diagram (GD)
framework. If we assume that the involved models are also objects of the graph-
like category G (see above), then graph diagrams are the objects of a functor
category G

X, but with a different schema category X: It has objects |X| = R �N
and all non-identity morphisms connect a source from R (relations) to a target
from N (models). There is at most one arrow in ArrX(r,m) for fixed r ∈ R and
m ∈ N . In such a way graph diagrams, i.e. functors D : X → G can specify
relations of different arities.

They are, however, static: If r ∈ R has k outgoing morphisms with targets
m1, ...,mk ∈ N , D(r) is a k-ary correspondence relation with representatives
which relate exactly one element in each of the k models D(mj). Consequently,
the schema category has to change each time a new relation is added!

Graph diagrams (GD) subsume TGGs, which have schema XTGG := 1
s←

0
t→ 2, i.e. R = {0} and N = {1, 2}. Computations of triple graphs (and graph

diagrams) during rule application as well as decomposing GD rules for forward
and backward transformations are based on pushout constructions in G

X. In
the rest of the section we show that our framework is more general than graph
diagrams in that there is an embedding functor T : GX → CS, the translation
functor, which preserves pushouts and hence is able to replay all GD computations
in our framework, yet being able to cope with new relations without changing
the schema category.

350 P. Stünkel et al.

We use the following notations: For a morphism f : A → B in a category C we
write A = dom(f) and B = codom(f) for its domain and codomain and we use
the shorthand notation ArrC(_, B) := {f ∈ ArrC | codom(f) = B}. We write∐

i∈I Di to depict the coproduct of a collection (Di)i∈I of G-objects. Note that a

collection (Di
fi→ D)i∈I of morphisms yields the morphism

∐
i∈I fi :

∐
i∈I Di → D

by the universal property of coproducts, i.e. the morphism, which acts as fi on
each Di.

By Theorem 1, it suffices to define a functor from G
X to M. The composition

of this functor with the equivalence will yield the desired result. This functor
will also be called T. Let a schema category X for graph diagrams be given with
|X| = R �N and let n be the cardinality of N . Without loss of generality, we
assume N = {1, . . . , n}. Let D be a graph diagram, then we define a multimodel
M := T(D) intuitively as follows (recall the multimodel schema in fig. 6): The
model components of N are the same as those of D, the commonality specification
M(0) is the disjoint union of all relations in D, the middle objects M(−j) are
the union of those relations, the model D(j) participates in:

M(j) := D(j) (Models are untouched)
M(0) :=

∐
r∈R D(r) (Coproduct of all relations)

M(−j) :=
∐

f∈ArrX(_,j) D(dom(f)) (Participating Relations of D(j))

for all j ∈ {1, . . . , n}. Furthermore,

M(j) =
∐

f∈ArrX(_,j) D(f) (Projections)
M(−j) :

∐
f∈ArrX(_,j) D(dom(f)) ↪→ ∐

r∈R D(r) (Domains)

Hence projections M(j) are the unions of the domains of those relating morphisms
that have target D(j) and inclusions arise from the fact that coproducts in the
above definition of M(−j) (taken over some relations) are always subgraphs of
the complete coproduct M(0) (which is taken over all relations).

M0 ν ��

μ

��

M1

μ′

��
M2 ν′

�� M3

Fig. 7. Pushout in M

The definition of T on arrows is straightforward
and we give it only informally: If n : D � D′ is an
arrow between graph diagrams, then (1) T(n)i is a
morphism which acts in the same way as ni on D(i), if
i > 0, (2) it amalgamates the actions of n on relations,
if i = 0, which (3) naturally restricts to the respective
actions, if i < 0. It is then easy to see, that ν := T(n)
is again a natural transformation.

Theorem 2. Functor T : GX → CS is an embedding and preserves pushouts.

For a detailed proof of this theorem consult [47]. To sketch the idea, note
that we cannot rely on pointwise pushout construction alone: Given a span (ν, μ)
in M as in fig. 7, pointwise pushout construction may fail to belong to M! E.g.
if ν and μ are arbitrarily given, then M3 in fig. 7 may not be admissible for M

because the mapping M3(−j) may fail to be monic, an effect already studied in
[25, Example 6]

Towards Multiple Model Synchronization with Comprehensive Systems 351

Instead the proof uses the fact that naturality squares in ν are pullbacks, if ν
is in the image of T. Then hereditariness [17] of pushouts in G yields admissibility
of M3 and nevertheless allows for pointwise pushout construction. We obtain as
a consequence:

Corollary 2. Every sequence of rule applications in G
X has a unique represen-

tation of corresponding rule applications in CS and hence can be replayed in the
general framework of comprehensive systems. ��

7 Conclusion, Related Work and Future Plans

Our work can be summarized by the slogan “from many models to one model”:
Multimodelling is addressed by a construction that yields a single artifact, where
existing means for consistency verification and restoration can be reused. Over
many years such global artifacts were computed via merging [38,6,36,10], which
poses several difficulties especially if the verification of a global constraint de-
pends on the knowledge of which local model the elements came from. Hence,
we proposed comprehensive systems that mitigate issues with the former and
represent a generalization of graph diagrams and triple graphs—alternatives to
our approach. Comprehensive systems stress the utility of partial mappings in
commonality specifications, which have been promoted in [46] and were also
picked up in [25].

Related work on multimodel consistency management was surveyed in sect. 4.
Thus, at this point we mainly want to place our contribution in this landscape.
Our approach can be considered as a structural one and is in tradition with other
approaches based on traceability links. Recent other representatives in this line
are [16], which uses binary links to relate different artifacts in a practical scenario,
and [21], which develops a language, similar to ours, for expressing commonalities
for global consistency restoration. All these works share the requirement for a
common meta-metalanguage: In our case, given by graph-like structures (presheaf
topoi). A rather different approach is the framework proposed by Stevens [45]:
It considers consistency restoration to be performed locally by a builder. The
concrete implementation of the builder is up to the user and thus there is
no requirement for a common meta-metalanguage. The global coordination of
multiple builder is handled by the framework, controlled by an orientation model.
Comparing Stevens approach to structural approaches, the former is more abstract
and thus allows more directions for tooling implementation, whereas structural
approaches allow formal analysis of the nature of consistency rules. It will be
worthwile to investigate the relationship between both approaches in the future.

This paper provides the framework for performing multi model consistency
management by reusing existing restoration techniques. We plan to address the
momentary lack of practical evidence by investigating model repair [28] as the
next step. Being conceptually close to TGGs, grammar-based approaches seem
a natural fit but we plan to experiment with solver-based approaches as well,
further taking into account: Human interaction and learning.

352 P. Stünkel et al.

References

1. Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.: Model traceability.
IBM Systems Journal 45(3), 515–526 (2006). https://doi.org/10.1147/sj.453.0515

2. Anjorin, A., Buchmann, T., Westfechtel, B., Diskin, Z., Ko, H.S., Eramo, R., Hinkel,
G., Samimi-Dehkordi, L., Zündorf, A.: Benchmarking bidirectional transforma-
tions: theory, implementation, application, and assessment. Software and Systems
Modeling (Sep 2019). https://doi.org/10.1007/s10270-019-00752-x

3. Atkinson, C., Stoll, D., Bostan, P.: Orthographic Software Modeling: A Practical
Approach to View-Based Development. In: Maciaszek, L.A., González-Pérez, C.,
Jablonski, S. (eds.) Evaluation of Novel Approaches to Software Engineering. pp.
206–219. Communications in Computer and Information Science, Springer Berlin
Heidelberg (2010)

4. Barr, M., Wells, C.: Category theory for computing science. Prentice Hall (1990)
5. Berners-Lee, T., Fielding, R.T., Masinter, L.: Uniform resource identifiers (uri):

Generic syntax. RFC 2396, IETF (August 1998), https://www.ietf.org/rfc/rfc2396.
txt

6. Brunet, G., Chechik, M., Easterbrook, S., Nejati, S., Niu, N., Sabetzadeh, M.: A
Manifesto for Model Merging. In: GaMMa ’06 Workshop Proceedings. pp. 5–12.
ACM, New York, NY, USA (2006). https://doi.org/10.1145/1138304.1138307

7. Cleve, A., Kindler, E., Stevens, P., Zaytsev, V.: Multidirectional Transformations
and Synchronisations (Dagstuhl Seminar 18491). Dagstuhl Reports 8(12), 1–48
(2019). https://doi.org/10.4230/DagRep.8.12.1

8. Czarnecki, K., Foster, N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.F.: Bidirec-
tional Transformations: A Cross-Discipline Perspective. In: ICMT’09 Proceedings.
pp. 193–204 (2009)

9. Diskin, Z., König, H., Lawford, M.: Multiple Model Synchronization with Multiary
Delta Lenses. In: Russo, A., Schürr, A. (eds.) FASE’18 Proceedings. pp. 21–37.
LNCS, Springer International Publishing (2018)

10. Diskin, Z., Xiong, Y., Czarnecki, K.: Specifying Overlaps of Heterogeneous Models
for Global Consistency Checking. In: MDI@MODELS 2010. pp. 165–179 (2011)

11. Egyed, A.: Fixing inconsistencies in UML design models. Proceedings
- International Conference on Software Engineering pp. 292–301 (2007).
https://doi.org/10.1109/ICSE.2007.38

12. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of algebraic graph
transformation. Springer (2006)

13. Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information Preserving
Bidirectional Model Transformations. In: Dwyer, M.B., Lopes, A. (eds.) FASE’07
Proceedings. pp. 72–86. LNCS, Springer Berlin Heidelberg (2007)

14. Ehrig, H., Ehrig, K., Hermann, F.: From Model Transformation to Model Integration
based on the Algebraic Approach to Triple Graph Grammars. Electronic Communi-
cations of the EASST 10(0) (Jun 2008). https://doi.org/10.14279/tuj.eceasst.10.154

15. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer-Verlag, Berlin Heidelberg, 2
edn. (2013)

16. Feldmann, S., Kernschmidt, K., Wimmer, M., Vogel-Heuser, B.: Managing inter-
model inconsistencies in model-based systems engineering: Application in automated
production systems engineering. Journal of Systems and Software 153, 105–134
(Jul 2019). https://doi.org/10.1016/j.jss.2019.03.060

17. Hayman, J., Heindel, T.: On pushouts of partial maps. In: ICGT’14 Proceedings.
pp. 177–191 (2014). https://doi.org/10.1007/978-3-319-09108-2_12

Towards Multiple Model Synchronization with Comprehensive Systems 353

18. Hermann, F., Ehrig, H., Ermel, C., Orejas, F.: Concurrent Model Synchronization
with Conflict Resolution Based on Triple Graph Grammars. In: de Lara, J., Zisman,
A. (eds.) FASE’12 Proceedings. pp. 178–193. LNCS, Springer Berlin Heidelberg
(2012)

19. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y.: Correctness
of model synchronization based on triple graph grammars. In: Whittle, J., Clark, T.,
Kühne, T. (eds.) MODELS’11 Proceedings. pp. 668–682. Springer Berlin Heidelberg,
Berlin, Heidelberg (2011)

20. Jackson, D.: Alloy: A Lightweight Object Modelling Notation. ACM Trans. Softw.
Eng. Methodol. 11(2), 256–290 (Apr 2002)

21. Klare, H., Gleitze, J.: Commonalities for Preserving Consistency of Mul-
tiple Models. In: MODELS 2019 Companion. pp. 371–378 (Sep 2019).
https://doi.org/10.1109/MODELS-C.2019.00058

22. Knapp, A., Mossakowski, T.: Multi-view Consistency in UML: A Survey. In: Graph
Transformation, Specifications, and Nets, pp. 37–60. LNCS 10800, Springer, Cham
(2018)

23. Kolovos, D.S., Ruscio, D.D., Pierantonio, A., Paige, R.F.: Different mod-
els for model matching: An analysis of approaches to support model dif-
ferencing. In: CVSM@ICSE’09 Workshop Proceedings. pp. 1–6 (May 2009).
https://doi.org/10.1109/CVSM.2009.5071714

24. König, H., Diskin, Z.: Efficient Consistency Checking of Interrelated Models. In:
ECMFA 2017 Proceedings. pp. 161–178 (2017)

25. Kosiol, J., Fritsche, L., Schürr, A., Taentzer, G.: Adhesive Subcategories of Functor
Categories with Instantiation to Partial Triple Graphs. In: Guerra, E., Orejas, F.
(eds.) ICGT’19 Proceedings. pp. 38–54. LNCS, Springer International Publishing
(2019)

26. Kühne, T.: Matters of (Meta-) Modeling. Software & Systems Modeling 5(4),
369–385 (Dec 2006). https://doi.org/10.1007/s10270-006-0017-9

27. Leblebici, E., Anjorin, A., Fritsche, L., Varró, G., Schürr, A.: Leveraging incremental
pattern matching techniques for model synchronisation. In: ICGT’17 Proceedings.
pp. 179–195 (2017). https://doi.org/10.1007/978-3-319-61470-0_11

28. Macedo, N., Jorge, T., Cunha, A.: A Feature-Based Classification of Model Repair
Approaches. IEEE Transactions on Software Engineering 43(7), 615–640 (Jul 2017).
https://doi.org/10.1109/TSE.2016.2620145

29. Macedo, N., Cunha, A.: Least-change bidirectional model transformation with
QVT-R and ATL. Software & Systems Modeling 15(3), 783–810 (Jul 2016).
https://doi.org/10.1007/s10270-014-0437-x

30. OMG: Business Process Model And Notation (BPMN) v.2.0 (2011), http://www.
omg.org/spec/BPMN

31. OMG: Object Constraint Language (OCL) v.2.3.1 (2012), http://www.omg.org/
spec/OCL/2.3.1/

32. OMG: Unified Modeling Language (UML) v.2.4.1 (2015), http://www.omg.org/
spec/UML

33. OMG: Decision Model and Notation (DMN) v.1.2 (2019), https://www.omg.org/
spec/DMN/About-DMN/

34. Pierce, B.C.: Basic Category Theory for Computer Scientists. MIT Press, Cambridge,
MA, USA (1991)

35. Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Matching.
The VLDB Journal 10(4), 334–350 (2001)

354 P. Stünkel et al.

36. Rubin, J., Chechik, M.: N-way Model Merging. In: ESEC/FSE’13
Proceedings. pp. 301–311. ACM, New York, NY, USA (2013).
https://doi.org/10.1145/2491411.2491446

37. Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A Diagrammatic Formalisation of
MOF-Based Modelling Languages. In: TOOLS EUROPE 2009, pp. 37–56. Springer,
Berlin, Heidelberg (2009)

38. Sabetzadeh, M., Easterbrook, S.: An Algebraic Framework for Merging Incomplete
and Inconsistent Views. In: RE 2005 Proceedings. pp. 306–315 (2005)

39. Samimi-Dehkordi, L., Zamani, B., Kolahdouz-Rahimi, S.: EVL+Strace: a novel
bidirectional model transformation approach. Information and Software Technology
100, 47–72 (Aug 2018). https://doi.org/10.1016/j.infsof.2018.03.011

40. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
WG ’94. pp. 151–163 (1994)

41. Segen, J.C.: The Dictionary of Modern Medicine. CRC Press (Feb 1992)
42. Rodrigues da Silva, A.: Model-driven engineering: A survey supported by the unified

conceptual model. Computer Languages, Systems & Structures 43, 139–155 (Oct
2015)

43. Spanoudakis, G., Zisman, A.: Inconsistency Management in Software
Engineering: Survey and Open Research Issues. In: Handbook of Soft-
ware Engineering and Knowledge Engineering. pp. 329–380 (2000).
https://doi.org/10.1142/9789812389718_0015

44. Stevens, P.: Bidirectional Transformations In The Large. In: MODELS
2017 Proceedings. pp. 1–11. IEEE Press, Piscataway, NJ, USA (Jun 2017).
https://doi.org/10.1109/MODELS.2017.8

45. Stevens, P.: Towards Sound, Optimal, and Flexible Building from Megamodels.
In: MODELS ’18 Proceedings. pp. 301–311. ACM, New York, NY, USA (2018).
https://doi.org/10.1145/3239372.3239378

46. Stünkel, P., König, H., Lamo, Y., Rutle, A.: Multimodel correspondence through
inter-model constraints. In: BX@<Programming>2018. ACM (2 2018)

47. Stünkel, P., König, H., Lamo, Y., Rutle, A.: Towards multiple model synchronization
with comprehensive systems: Extended version. Tech. Rep. 1, Fachhochschule für die
Wirtschaft (FHDW) Hannover, https://fhdwdev.ha.bib.de/public/papers/02020-01.
pdf (2020)

48. Trollmann, F., Albayrak, S.: Extending model to model transformation results from
triple graph grammars to multiple models. In: ICMT ’15 Proceedings. pp. 214–229
(2015)

49. Trollmann, F., Albayrak, S.: Extending Model Synchronization Results from Triple
Graph Grammars to Multiple Models. In: Van Gorp, P., Engels, G. (eds.) ICMT’16
Proceedings. pp. 91–106. LNCS (2016)

50. Walters, R.F.C.: Categories and Computer Science. Cambridge University Press,
New York, NY, USA (1992)

51. Weber, J.H., Kuziemsky, C.: Pragmatic Interoperability for Ehealth Systems: The
Fallback Workflow Patterns. In: SEH ’19. pp. 29–36. IEEE Press, Piscataway, NJ,
USA (2019). https://doi.org/10.1109/SEH.2019.00013

52. Whittle, J., Hutchinson, J., Rouncefield, M.: The State of Practice
in Model-Driven Engineering. IEEE Software 31(3), 79–85 (may 2014).
https://doi.org/10.1109/MS.2013.65

53. Wille, D., Wehling, K., Seidl, C., Pluchator, M., Schaefer, I.: Variability Mining of
Technical Architectures. In: SPLC ’17 Proceedings. pp. 39–48. ACM, New York,
NY, USA (2017). https://doi.org/10.1145/3106195.3106202

Towards Multiple Model Synchronization with Comprehensive Systems 355

54. World Health Organization: ICD-10 : international statistical classification of
diseases and related health problems : tenth revision (2004)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

356 P. Stünkel et al.

Analysis and Refactoring of Software Systems
Using Performance Antipattern Profiles�

Radu Calinescu1 , Vittorio Cortellessa2 ,
Ioannis Stefanakos1 , and Catia Trubiani3

1 University of York, York, United Kingdom
{radu.calinescu,is742}@york.ac.uk

2 University of L’Aquila, L’Aquila, Italy
vittorio.cortellessa@univaq.it

3 Gran Sasso Science Institute, L’Aquila, Italy
catia.trubiani@gssi.it

Abstract. Refactoring is often needed to ensure that software systems
meet their performance requirements in deployments with different oper-
ational profiles, or when these operational profiles are not fully known or
change over time. This is a complex activity in which software engineers
have to choose from numerous combinations of refactoring actions. Our
paper introduces a novel approach that uses performance antipatterns
and stochastic modelling to support this activity. The new approach
computes the performance antipatterns present across the operational
profile space of a software system under development, enabling engineers
to identify operational profiles likely to be problematic for the analysed
design, and supporting the selection of refactoring actions when per-
formance requirements are violated for an operational profile region of
interest. We demonstrate the application of our approach for a software
system comprising a combination of internal (i.e., in-house) components
and external third-party services.

1 Introduction

Performance antipatterns [8,31] and stochastic modelling (e.g., using queueing
networks, stochastic Petri nets, and Markov models [7,16,33]) have long been
used in conjunction, to analyse performance of software systems and to drive sys-
tem refactoring when requirements are violated. End-to-end approaches support-
ing this analysis and refinement processes have been developed (e.g., [4,9,20]),
often using established tools for the simulation or formal verification of stochastic
models of the software system under development (SUD).

While these approaches can significantly speed up the development of sys-
tems that meet their performance requirements, they are only applicable when
the SUD operational profile is known and does not change over time. Both of
these are strong assumptions. In practice, software systems are often used in

� This work has been partially supported by the PRIN project “SEDUCE” n.
2017TWRCNB and by Microsoft Research through its PhD Scholarship Programme.

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 357–377, 2020.
https://doi.org/10.1007/978-3-030-45234-6_18

http://orcid.org/0000-0002-2678-9260
http://orcid.org/0000-0002-4507-464X
http://orcid.org/0000-0003-3741-252X
http://orcid.org/0000-0002-7675-6942
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_18&domain=pdf

applications affected by uncertainty, due both to incomplete knowledge of and
to changes in workloads, availability of shared resources, etc.

In this paper, we introduce a novel performance analysis and refactoring
approach that addresses this significant limitation of current solutions. The new
approach considers the uncertainty in the SUD operational profile by identifying
the performance antipatterns present in predefined operational profile regions.
These regions capture aleatoric and epistemic operational profile uncertainties
due to unavoidable changes in the environment (e.g., workload variations) and to
insufficiently measured environment properties (e.g., CPU speed), respectively.

A few existing solutions [2,11,19] employ sensitivity analysis to assess the
robustness of software to variations in its operational profile. However, these so-
lutions are not interested in major operational profile changes like our approach,
and therefore focus on establishing the effect of small operational profile varia-
tions on the performance of the SUD. In contrast, our new approach provides a
global perspective on the performance antipatterns associated with a wide range
of operational profiles. This perspective enables software engineers to identify
operational profile regions in which their SUD is likely to require refactoring,
and supports the selection of suitable refactoring actions for such regions. The
main contributions of this paper are:

1. We introduce the concept of a performance antipattern profile (i.e., a “map”
showing the antipatterns present in different regions from the operational
profile space of a SUD), and a method for synthesising such profiles for
systems comprising a mix of internal and external software components.

2. We present a tool-supported approach that uses our performance antipattern
profile synthesis method, and we define best practices for refactoring the
architecture of a SUD using performance antipattern profiles.

3. We demonstrate the application of our approach for a software system com-
prising a combination of internal (i.e., in-house) components and external
(i.e., third-party) services.

The remainder of the paper is organized as follows. Section 2 introduces a
software system that we use to illustrate the application of our approach through-
out the paper. Section 3 presents the new approach for the performance analysis
and refactoring of software systems, and Section 4 describes its application to
the service-based system from our motivating example. Section 5 compares our
solution with existing approaches. Finally, Section 6 summarises the benefits and
limitations of our approach, and suggests directions for future work.

2 Running Example

To illustrate the application of our approach, we consider a heterogeneous soft-
ware system comprising both internal components and external services. We
assume that the internal components are deployed on the private servers of the
organisation that owns the system. As such, the architecture and resources of
these components can be modified if needed. In contrast, the external services

358 R. Calinescu et al.

are accessed remotely from third-party providers and cannot be modified. These
services can only be replaced with (or can be used alongside) other services that
are functionally equivalent but may induce different performance.

2.1 System description

Order

normal modeexpert mode

objectives
satisfied

error

objectives
not met

Notification

Alarm

Market
Watch

Analysis
FundamentalTechnical

Analysis

end

perform
transaction

Fig. 1. Workflow of the foreign currency
trading system (FOREX)

The system we use as a running ex-
ample is adapted from [14], and comes
from the foreign currency trading do-
main. The workflow implemented by
this “FOREX” system is shown in
Figure 1, and involves handling re-
quests sent by currency traders. Two
types of requests are possible: requests
that must be handled in a so-called
“expert” mode, and requests handled
in a “normal” mode. The request type
determines whether the system starts
with a “fundamental analysis” opera-
tion or a “market watch” operation.
Both of these operations use exter-
nal services. “Technical analysis” is
an operation provided by an inter-
nal component. This operation fol-
lows the market watch, and deter-
mines whether the trader’s objectives
(specified in the request) are satisfied
or not. If there is a conflict between these objectives and the results of the tech-
nical analysis, then the market watch is re-executed. Furthermore, the technical
analysis may return an error, i.e., an internal “alarm” operation is triggered
to inform the user about the erroneous result. The optimal results of either
technical or fundamental analysis (satisfied objectives/trade acceptance) lead to
the execution of an external “order” operation that completes the trade, and
is followed by an internal “notification” operation that confirms the successful
completion of the workflow.

2.2 External services

For the operations executed using external services, multiple services can be used
as equivalent alternatives or in some combination deemed suitable. Given n > 1
functionally equivalent services, three options for combining them are possible:

– Sequential (SEQ): first invoke service 1; if the invocation succeeds, use its
response; if it fails, then invoke service 2, etc., until service n is invoked, if
needed.

Analysis and Refactoring of Software Systems Using Antipattern Profiles 359

– Parallel (PAR): invoke all n services at once, and use the first result that
comes back.

– Probabilistic (PROB): invoke one of the n available services, selected based
on a discrete probability distribution.

Therefore, we need to choose a “good” option (i.e., one that enables the system
to satisfy its performance requirements) starting from information about the
performance characteristics shown by each of these services, which we assume
known from either the service-level agreement (SLA) published by the providers
of these services, from our observations, or from both. Additionally, we assume
that all these services already satisfy the functional requirements.

2.3 Internal components

The internal operations are executed by software components belonging to the
organisation that “owns” the system, and running on their private hardware
nodes/servers. We assume that technical analysis (TA) has a much more signif-
icant impact on the performance of the system compared to the other two in-
house components (alarm and notification), which require only modest resources.
Consequently, it is necessary to identify possible antipattern-driven refactoring
actions for the TA component, to ensure that the system operates with an op-
timal performance. If and when needed, the refactoring actions we consider are:
(i) duplicate the TA software component and load balance the incoming requests
among the two TA instances; or (ii) replace the TA instance with a faster one.
These actions will increase the cost, but may be needed to satisfy the perfor-
mance requirements of the system.

2.4 Operational profile parameters

Several parameters of the system are outside the control of its developers. These
parameters represent the operational profile of the system. For our FOREX sys-
tem, they include the probability that a user request needs expert-mode han-
dling, and the probability of a transactions being performed after the execution
of the fundamental analysis operation (cf. Figure 1). The choice of these param-
eter ranges reflects, for instance, the engineers’ expectation about a particular
deployment of the system, numerical values will be provided in Section 4.

3 Approach

3.1 Overview

As shown in Figure 2, our approach to performance analysis and system refac-
toring comprises five steps. Starting for an initial system design proposed by
a software engineer, step 1 involves modelling the performance characteristics
of the system across its entire operational profile space (i.e., for all possible

360 R. Calinescu et al.

Performance
indices

Performance
antipattern
profiles

4. Antipattern
profile

generation

5. Refactoring
(if required)

1. Modelling
Parametric
performance

models

2. Model
instantiation

Performance
models

System
design

3. Model
analysis

Operational
profile
space

Portfolio of
antipattern

detection rules

Portfolio of
refactoring
actions

Fig. 2. Performance analysis and refactoring using antipattern profiles

values of the operational profile parameters). As such, the performance mod-
els produced by the modelling step are parametric models—models containing
(uninstantiated) parameters like the probabilities of receiving different types of
user requests. Our approach is not prescriptive about the type of performance
models that can be used in its modelling step. However, these models must
be able to capture the uncertainty associated with the operational profile of
the system. Therefore, in this paper we will use parametric discrete-time and
continuous-time Markov chains (parametric DTMCs and CTMCs).

Step 2 of the approach instantiates the parametric performance models for
combinations of parameter values covering the entire operational profile space.
A suitable discretization of the continuous parameters is used for this purpose.

The performance models are then analysed in step 3 to compute the perfor-
mance indices corresponding to all considered combinations of operational profile
parameter values. Existing analysis tools suitable for the adopted type of perfor-
mance models need to be used in this step—in the case of our DTMC and CTMC
models, a probabilistic model checker such as PRISM [24] or Storm [18](1).

Step 4 of the approach is using the performance indices and a portfolio of an-
tipattern detection rules to identify the performance antipatterns that occur for
different combinations of parameter values. This step produces a series of maps
that show the distribution of such antipatterns across the operational profile
space, thus to highlight problematic (from a performance viewpoint) areas.

Finally, step 5 assesses whether refactoring actions are required, because
performance antipatterns occur in regions of the operational profile space where
the deployed system is expected to operate. When refactoring is required, suit-
able refactoring actions (selected from a repository of such actions) are used to
update the system design. Updated system designs are then further evaluated
through re-executing the five steps of the approach, until a design with suitable
performance antipattern profiles is obtained.

1 An estimation of the effort required to create and solve performance models is out
of this paper scope, as it may depend on the application domain complexity and the
analysts’ expertise.

Analysis and Refactoring of Software Systems Using Antipattern Profiles 361

Table 1. Detection rule parameters.

Variable Scope Description

InvReq EXT/INT Number of invocations per request

AvgInvReq EXT/INT Average number of invocations per request

InvTime EXT/INT Number of invocations per time unit

AvgInvTime EXT/INT Average number of invocations per time unit

ServRate INT Service rate

Util INT Utilization

AvgUtil INT Average utilization

UtilThresh INT Fixed utilization threshold

RespTime EXT Response time

AvgRespTime EXT Average response time

PathProb EXT/INT Probability of path execution

AvgPathProb EXT/INT Average probability of path execution

PathProbThresh EXT/INT Fixed threshold for probability of path execution

3.2 Detection rules

The concept of Performance Antipattern has been introduced several years ago
[31] to define bad design practices that can induce performance problems in soft-
ware systems. This concept has been later formalized in First-Order Logics [17]
and then employed, in the context of Software Performance Engineering pro-
cesses, for the purpose of automating the detection and solution of performance
problems [29].

Inspired from the formalization provided in [17], we have here bounded the
detection rules of three performance antipatterns to the modeling and analy-
sis context of this paper. This binding is indeed required for any context, due
to specificities and possible limitations of the notations adopted. In our case,
Markov models of service-based software systems, on one side, offer the advan-
tage of easy deduction of stochastic indices and, on the other side, suffer of lack
of separation between software and hardware parameters. The latter are in fact
implicitly taken into account in execution rates of operations.

Hereafter we report the formalization of the performance antipattern detec-
tion rules that we have used in this paper, while their parameters are defined in
Table 1, where we also specify whether each parameter is available for external
services (‘EXT’), for internal components (‘INT’), or for both (‘EXT/INT’).

- BLOB
General description

It occurs when a component performs most of the work of an appli-
cation, thus resulting in excessive components’ interactions that can
degrade performance.

Internal components

(InvReq > AvgInvReq) ∧ (Util > UtilThresh) ∧ (Util > AvgUtil)
External components

InvReq > AvgInvReq

362 R. Calinescu et al.

- CONCURRENT PROCESSING SYSTEMS (CPS)
General description

It occurs either when too many resources are dedicated to a compo-
nent (MAX) or when a component does not make use of available
resources (MIN).

Internal components
MAX - (Util > UtilThresh) ∧ (Util > AvgUtil)
MIN - (Util < UtilThresh) ∧ (Util < AvgUtil)

External components
MAX - PAR pattern ∧ (RespT ime > AvgRespT ime)
MIN - PAR pattern ∧ (RespT ime < AvgRespT ime)

- PIPE AND FILTER (P&F)
General description

It occurs when the slowest filter in a “pipe and filter” architecture
causes the system to have unacceptable throughput.

Internal and External components
(InvT ime > AvgInvT ime) ∧ (PathProb > PathProbThresh) ∧
∧ (PathProb > AvgPathProb)

We remark that, in our context, the rules for detecting a specific antipattern
on internal components may differ from the ones defined for external services.
This is because the parameters available for external services are obviously more
limited than those of the internally developed components. For example, the
whole response time (i.e., service plus waiting time) of an external service is
usually negotiated in a service-level agreement, but it is difficult to isolate the
net service time contribution to it, due to lack of control on the execution plat-
form and the amount of resources dedicated to the service by the provider. Both
indices can instead be estimated for internal components. As a consequence,
wherever the service time (or any derived index like utilization) appears in a
detection rule, the corresponding predicate has to be skipped/modified for ex-
ternal services. For this reason, in our case BLOB and CPS antipatterns present
different rules when applied to internal components or external services because,
as reported in Table 1, utilization cannot be estimated for the latter ones. In
the BLOB case, the predicates including utilization for internal components are
simply skipped in the external service formulation, because no other predicate
would make sense there. Instead, in the CPS case, the predicates on utiliza-
tion have been replaced with similar ones on response time for external services,
because the CPS definition is compliant with this modification.

We highlight that all predicates include parameters that evidently change
across different areas of the system operational profile (e.g., InvReq, Util),
hence we expect that the occurrences of the corresponding antipatterns vary
consequently. The only exceptions are the CPS rules for external services, be-
cause their parameters and thresholds do not depend on the operational profile.
Such rules refer to the response time that, for these components, is based on ser-
vice level agreement, and thus it cannot vary with the operational profile. This
will evidently reflect on our experimental results, where CPS on external services
will appear either everywhere or nowhere in the operational profile space.

Analysis and Refactoring of Software Systems Using Antipattern Profiles 363

3.3 Synthesis of antipattern profiles

The more software applications are being used worldwide from different types
of users, the more difficult is to estimate a representative average behavior of
users that induces a specific operational profile. In fact, not only users can have
different operational profiles depending on their locations [15], but even in the
same area the users behavior can (sometime radically) change over time [23].

Nevertheless, applications should show acceptable performance across differ-
ent operational profiles. A motivation for our work is that different operational
profiles can induce various performance problems, for example because a higher
execution frequency of a path can overload components involved in that path.
Hence, the idea is that, in order to identify the most appropriate refactoring
actions to apply for overcoming performance problems, these problems must be
identified across different operational profiles.

0 .2 .4 .6 .8 1
op. profile param1

.2

.4

.6

.8

1
op

. p
ro
fil

e
pa

ra
m

2

Fig. 3. Example of antipattern profile

In this paper, we introduce the con-
cept of Performance Antipattern Pro-
file, which is a representation of per-
formance antipattern occurrences while
varying operational profile parameters.
As discussed above, different antipat-
tern occurrences are expected to ap-
pear in different areas of an operational
profile, as shown in Figure 3, where
two operational profile parameters vary
(from 0 to 1) on the axes, and differ-
ent coloured shapes in the graph in-
dicate the occurrences of different an-
tipatterns. Only with this information in hand, the performance experts can
suggest appropriate refactoring actions when the system falls within a certain
operational profile area, or even (in a proactive way) when the system is expected
to enter a specific operational profile area.

3.4 Refactoring

The notational aspects outlined in the previous section for antipattern detection
obviously reflect in the portfolio of refactoring actions aimed at removing per-
formance antipatterns. In general, a refactoring action modifies some available
architectural knob (e.g., the number of messages exchanged between two com-
ponents, the list of operations provided by a component) to remove a source of
the antipattern causes. The type and number of knobs depend on the adopted
notation, so the portfolio of refactoring actions does the same.

Our notation distinguished between internal components and external ser-
vices. The two types of system elements are characterized by a few common
parameters and by parameters specific to each type (see Table 1). Therefore,
our portfolio of refactoring actions is partitioned in two sets, as detailed below.

364 R. Calinescu et al.

Actions for internal components

– Change service rate - The modification of a component service rate can
be induced by several actions on the system, which could act on the hardware
platform or on the software architecture, such as: (i) redeploy the component
to a platform node with different hardware characteristics, (ii) replace some
devices of the platform node where the component is currently allocated,
(iii) redesign the software component so that its resource requests change,
(iv) split a component into two (or more) components and re-deploy them.

– Change number of threads - This action is always possible where the con-
trol on the number of threads is on the designer’s hands, and indeed for
internal components this is guaranteed.

Actions for external services

– Change pattern - We have considered three combination patterns for ex-
ternal services, that are: SEQ, PAR, and PROB (see Section 2.2). They are
used to combine (a subset of) the available instances of a certain external
service. This action requires to modify the combination pattern, by keeping
unchanged the set of combined services.

– Change the pattern parameters - Some patterns are regulated by param-
eters, in particular: PROB has a probability of each instance invocation, and
SEQ has a failure probability for each instance. A change in the PROB prob-
abilities is always feasible, because they are under full control of the designer.
Instead, a change in the failure probabilities within a SEQ pattern implies
that the designers are enabled for deeper modifications in the involved in-
stances that can induce different reliability, and this is not often the case.

– Change combination of service instances - This action requires to re-
place some (or all) of service instances that are combined to provide a certain
operation, by keeping unchanged the combination pattern.

Of course, the above actions can be combined together to study their joint
effects on the performance improvement.

4 Evaluation

In this section, we first introduce the research questions that we intend to ad-
dress (see Section 4.1). Thereafter, we describe the experimental scenarios (see
Section 4.2) and discuss the obtained results (see Section 4.3). We finally re-
port the threats to validity in Section 4.4. The implemented tool, the mod-
els and the experimental results are available at: https://github.com/Fase20/
automated-antipattern-detection.

4.1 Research questions

The detection and solution of performance antipatterns largely depends on the
operational profile, which is determined by the end-users behaviour, thus it can

Analysis and Refactoring of Software Systems Using Antipattern Profiles 365

only be known after the system deployment. Naturally, some antipatterns are
more affected than others by the operational profile that can have a considerable
influence on the software system and, consequently, on its performance charac-
teristics. Through our experimentation, we aim at answering the following two
research questions:

– RQ1: Does our approach provide insights on the performance antipattern
profile of a specific design?

– RQ2: Does our approach support performance-driven refactoring decisions
on the basis of the performance antipattern profile?

In order to answer these questions, we apply our approach to the running
example introduced in Section 2.

4.2 Experimental scenarios

Table 2. System parameters.

Parameter Values

ExtReqs-rate 10s−1

QueueSize 10

TA-rate 3s−1

Alarm-rate 40s−1

Notif-rate 55s−1

MW-rate 19.92s−1

FA-rate 24.99s−1

Order-rate 19.09s−1

TA-threads 1

Table 2 reports the system parameters of
the default configuration we have used for
our experiments. It is structured in three
different groups. First, system settings, i.e.,
ExtReqs-rate (rate of external requests in-
coming to the system), and QueueSize (max-
imum number of queueing requests). These
values are both set to 10. Second, the rate
of internal components and external services,
e.g., TA-rate = 3 is the execution rate of the
Technical Analysis (TA) internal component.
For external services, this rate corresponds to
the inverse of the response time (as explained
in Section 3.2), and it was obtained through
the analysis of discrete-time Markov chain (DTMC) models of the service com-
binations (i.e., SEQ, PAR or PROB) used for the external operations of the
system. The model checker Storm was used to perform this analysis. Third, TA
(as internal component) has a number of threads that is initially set to 1, but
we provide a refactoring action that can change such number to modify the
parallelism degree for such component.

The operational profile space of our running example (see Figure 1) is fully de-
fined by the following branching point probabilities: (i) pExpertMode (pEM), i.e.,
the probability of executing the workflow in expert mode; (ii) pPerformTransac-
tion (pPT), i.e., the probability of successfully performing a transaction; (iii)
pObjectivesSatisfied (pOS) and pObjectivesNotMet (pON), i.e., the proba-
bilities of satisfying or not the objectives, respectively. As a consequence, 1 −
(pOS + pON) is the resulting probability of an error occurring.

The experimental scenarios that we analyze in the next section include the
variations of pEM and pPT within their full range [0, 1] with a 0.1 step. Given

366 R. Calinescu et al.

the space constraints, we decided to bind (pOS , pON) to three scenarios, namely:
{(0.21, 0.78), (0.48, 0.01), (0.98, 0.01)}, which in the following we call scenarioA,
scenarioB , and scenarioC , respectively.

We have considered the following design changes for refactoring purposes:
(R1) - the service rate of the TA internal component can be modified from 3
to 6 jobs per second (i.e., it becomes faster when performing computations)
when TA is detected as an instance of a BLOB performance antipattern; (R2)
- a further thread of the TA component can be added to split the incoming
load and manage users’ requests, again as a solution of a BLOB performance
antipattern on TA; (R3) - change pattern (from SEQ to PAR) and service rate
(from 50.21 to 500) of the MW external service, when MW has been detected as
part of a Pipe and Filter antipattern; (R4) - change service rate (from 40.02 to
400) of the FA external service while keeping the same pattern (i.e., PAR), and
this is suggested as a solution of a Pipe and Filter antipattern that involves FA.

The results presented in the next section were obtained using the tool we
developed to implement the analysis and refactoring process from Figure 2.
This tool generates antipattern profiles using the antipattern detection rules
from Section 3.2 and performance indices computed through the probabilistic
model checking of a continuous-time Markov chain (CTMC) model of the entire
FOREX system from Figure 1. The model checker Storm is automatically in-
voked by the tool for this purpose. The tool and the parametric CTMC models
we used are available in our project’s GitHub repository.

4.3 Experimental Results

In order to answer RQ1, we have investigated the occurrence of performance
antipatterns across different operational profiles, so to obtain performance an-
tipattern profiles. Figures 4, 5, and 6 report the BLOB, CPS, and P&F detected
antipatterns, respectively, across the operational profile space. Each figure shows
the three considered scenarios for pOS and pON and, for each scenario, pEM varies
from 0 to 1 (with a step size of 0.1) on the x-axis , while pPT varies in the same
range on the y-axis. Antipatterns occurring in each operational profile point are
denoted by specific symbols.

We have here considered full ranges of the operational profile parameters,
even though, in each instant of its runtime, the system will fall in a single point
of the profile. Therefore, suitable refactoring actions depend on the area where
the running system profile falls in the considered time. In particular, if it runs in
an area where antipatterns do not occur, then no refactoring action is suggested.

In Figure 4(a) we can notice that in scenarioA (i.e., pOS = 0.21 and pON =
0.78) four different components are detected as BLOB antipatterns, specifically:
(i) BLOB(FA) occurs for low values of pEM only (i.e., up to 0.2); as opposite,
(ii) BLOB(TA) occurs for larger values of pEM ; (iii) BLOB(MW) shows a very
similar behaviour with respect to BLOB(TA) except in two corner cases where
it occurs alone; (iv) BLOB(Order) occurs for low values of pEM and high values
of pPT only.

Analysis and Refactoring of Software Systems Using Antipattern Profiles 367

BLOB(FA) BLOB(Order) BLOB(MW) BLOB(TA)

0 .2 .4 .6 .8 1
pEM

.2

.4

.6

.8

1

pP
T

0 .2 .4 .6 .8 1
pEM

.2

.4

.6

.8

1

pP
T

0 .2 .4 .6 .8 1
pEM

.2

.4

.6

.8

1

pP
T

(a) scenarioA (b) scenarioB (c) scenarioC

Fig. 4. BLOB antipattern instances while varying operational profiles.

CPS(TA)max CPS(TA)min

0 .2 .4 .6 .8 1
pEM

.2

.4

.6

.8

1

pP
T

0 .2 .4 .6 .8 1
pEM

.2

.4

.6

.8

1

pP
T

0 .2 .4 .6 .8 1
pEM

.2

.4

.6

.8

1

pP
T

(a) scenarioA (b) scenarioB (c) scenarioC

Fig. 5. CPS antipattern instances while varying operational profiles.

Figure 4(b) interestingly shows that in scenarioB (i.e., pOS = 0.48, and
pON = 0.01), BLOB(TA) and BLOB(MW) occur in a smaller portion of the
operational profile space, i.e., the right-most side (starting when pEM= 0.7).
Also the other antipatterns are subject to the probability changes, in fact both
BLOB(FA) and BLOB(Order) occur in a larger portion of the space, i.e., the
left-most side (up to pEM=0.5). This is because scenarioB moves a consistent
part of the workload far from the MW-TA loop, with respect to scenarioA.

Figure 4(c) illustrates the case of scenarioC (i.e., pOS = 0.98, and pON =
0.01), where further differences appear. In particular, BLOB(TA) antipattern
does not occur anymore since the higher value of pOS induces less computation
in TA. BLOB(MW) is confined to three cases of large pEM values and low pPT

values. This is because the major load is going here to FA and Order that in
fact more widely are detected as BLOB antipatterns.

Figure 5 depicts the CPS antipattern profile that, as compared to the BLOB
one, does not considerably vary across different scenarios. For readability reasons,
CPS(FA)min is not reported in this figure, although it occurs across the whole
operational space for all the three scenarios. We recall that this is due to the CPS
detection rule that takes into account the response time for external services,
which does not change with users’ behaviour since it is a fixed value outcoming
from service-level agreements. CPS(TA)min is not affected at all by the scenario
variations, as it always occurs in the same operational profile area. Instead,
the CPS(TA)max instances progressively decrease when increasing pOS . A pOS

368 R. Calinescu et al.

P&F(FA/FAOrNo) P&F(Order/FAOrNo) P&F(MW/MWTAOrNo) P&F(TA/MWTAOrNo) P&F(Order/MWTAOrNo)

0 .2 .4 .6 .8 1
pEM

.2

.4

.6

.8

1

pP
T

0 .2 .4 .6 .8 1
pEM

.2

.4

.6

.8

1

pP
T

0 .2 .4 .6 .8 1
pEM

.2

.4

.6

.8

1

pP
T

(a) scenarioA (b) scenarioB (c) scenarioC

Fig. 6. P&F antipattern instances while varying operational profiles.

0 .2 .4 .6 .8 1
pEM

.2

.4

.6

.8

1

pP
T

0 .2 .4 .6 .8 1
pEM

.2

.4

.6

.8

1

pP
T

0 .2 .4 .6 .8 1
pEM

.2

.4

.6

.8

1

pP
T

(a) Initial system (b) R1 refactoring (c) R2 refactoring

0 .2 .4 .6 .8 1
pEM

.2

.4

.6

.8

1

pP
T

0 .2 .4 .6 .8 1
pEM

.2

.4

.6

.8

1

pP
T

BLOB(FA)

BLOB(Order)

BLOB(MW)

BLOB(TA)

(d) R3 refactoring (e) R4 refactoring

Fig. 7. BLOB antipattern instances across different refactorings - scenarioA.

growth, in fact, relieves the MW-TA loop, thus inducing less unbalancing in its
components.

Figure 6 shows the P&F antipattern profile, where the antipattern instances
obviously refer to execution paths instead of single components/services. Hence,
different symbols represents different paths where one of the components/services
is the slowest filter. For example, MW/MWTAOrNo means that MW is the slow-
est filter of the MW-TA-Order-Notification path. Interesting variations of this
antipattern profile appear across scenarios, again driven by variations in the
operational profile parameter values.

Summary for RQ1: Our approach provides insights on the performance an-
tipattern profile of a specific design. In fact, we are able to identify considerable
variations in the detected antipattern instances while varying the operational
profile parameters.

In order to answer RQ2, we have investigated the occurrence of performance
antipatterns after applying refactoring actions that we have defined in Section

Analysis and Refactoring of Software Systems Using Antipattern Profiles 369

0 .2 .4 .6 .8 1
pEM

.2

.4

.6

.8

1

pP
T

0 .2 .4 .6 .8 1
pEM

.2

.4

.6

.8

1

pP
T

0 .2 .4 .6 .8 1
pEM

.2

.4

.6

.8

1

pP
T

(a) Initial system (b) R1 refactoring (c) R2 refactoring

0 .2 .4 .6 .8 1
pEM

.2

.4

.6

.8

1

pP
T

0 .2 .4 .6 .8 1
pEM

.2

.4

.6

.8

1

pP
T

BLOB(FA)

BLOB(Order)

BLOB(MW)

BLOB(TA)

(d) R3 refactoring (e) R4 refactoring

Fig. 8. BLOB antipattern instances across different refactorings - scenarioB .

4.2, across the operational profile space. The most interesting cases are discussed
hereafter, and specifically: (i) Figures 7 and 8 report the BLOB refactoring effects
on scenarioA and scenarioB , respectively; (ii) Figure 9 illustrates refactorings
for the CPS antipattern in scenarioA; (iii) Figure 10 shows the P&F refactoring
effect on scenarioC .

In Figure 7, we can notice the following effects of refactorings actions. Upon
(R1) application, as expected, less BLOB(TA) instances appear because this
refactoring consists of doubling the TA computation speed, while all other in-
stances remains unvaried. (R2) introduces a further TA thread and, in this case,
this induces less BLOB (TA) because more quickly requests are processed by
these two threads, and realistically FA becomes the overloaded one thus induc-
ing more BLOB(FA) instances to appear. (R3) modifies the rate of MW and
makes it much slower, thus inducing the side effect of providing much less load
to TA; in fact all the BLOB(TA) instances disappear, and all the other instances
remain unvaried. (R4) decreases the rate of FA and, similarly to above, it has the
effect of providing less load to TA, in fact the number of BLOB(TA) instances
decreases.

Figure 8 illustrates the effect of BLOB refactorings on scenarioB . (R1)
refactoring consists of making the TA component two times faster, hence the
BLOB(TA) instance completely disappears from the operational space, while all
the other antipatterns are not affected. (R2), introduces a further TA thread, but
in this case it occurs in a quite less stressed context with respect to scenarioA.
This aspect, together with the fact that two threads allow to drop less re-
quests, given that the queue length remains unvaried, in practice does not relieve
TA itself. This is the reason for BLOB(TA) to not disappear. The decrease of
BLOB(Order) instances is very likely due to the fact that, if performance in-
dices change for some components/services, then their calculated average value
change as well, hence inequalities in detection rules can change their results due

370 R. Calinescu et al.

0 .2 .4 .6 .8 1
pEM

.2

.4

.6

.8

1

pP
T

0 .2 .4 .6 .8 1
pEM

.2

.4

.6

.8

1

pP
T

0 .2 .4 .6 .8 1
pEM

.2

.4

.6

.8

1

pP
T

(a) Initial system (b) R1 refactoring (c) R2 refactoring

0 .2 .4 .6 .8 1
pEM

.2

.4

.6

.8

1

pP
T

0 .2 .4 .6 .8 1
pEM

.2

.4

.6

.8

1

pP
T CPS(TA)max

CPS(TA)min

(d) R3 refactoring (e) R4 refactoring

Fig. 9. CPS antipattern instances across different refactorings - scenarioA.

to changes in the right-hand-side targets. (R3), similarly to Figure 7, modifies
the MW rate and makes it much slower, thus having the effect of providing much
less load to TA, in fact all BLOB(TA) instances disappear. Also (R4) behaves
similarly to Figure 7.

Figure 9 depicts scenarioA (i.e., the pOS = 0.21 and pON = 0.78 case) when
considering CPS antipattern instances. We recall that the detection rule for CPS
on external services operates on response time values that do not change with the
operational profile. This leads that CPS(FA)min occurs in the whole operational
space (not only for the initial system, but also after R1, R2, and R3 refactorings).
Instead, for R4 refactoring, we found CPS(FA)max always occurring, and this is
due to nature of this refactoring that modifies the FA rate. For R3 refactoring,
besides CPS(FA)min, we also found CPS(MW)max always occurring, and this
is again due to the fact that R3 modifies the MW rate.

In addition to this, we can make the following specific considerations. (R1),
makes the TA component two times faster, hence less CPS(TA)max instances
appear, as expected. (R2) introduces a further TA thread but it is not beneficial
for the system, in fact the number of CPS(TA)max instances increase in the oper-
ational profile space. This effect is again very likely due to the fact that, with two
threads, less requests are dropped than in the one thread case. Hence the work
on TA in practice increases. This apparent anomaly would be mitigated whether,
in the analysis, the number of dropped requests would be considered. (R3), de-
creases the MW rate, so it has the effect of providing less load to TA; in fact
CPS(TA)max instances disappear, and (as mentioned above) a CPS(MW)max
instance appears in the whole operational profile space. (R4) decreases the FA
rate, thus having the effect of increasing the number of CPS(TA)min instances
and decreasing the CPS(TA)max ones.

Figure 10 illustrates scenarioC (i.e., the pOS = 0.98 and pON = 0.01 case)
when considering P&F antipattern instances. Quite small variations can be ob-

Analysis and Refactoring of Software Systems Using Antipattern Profiles 371

0 .2 .4 .6 .8 1
pEM

.2

.4

.6

.8

1

pP
T

0 .2 .4 .6 .8 1
pEM

.2

.4

.6

.8

1

pP
T

0 .2 .4 .6 .8 1
pEM

.2

.4

.6

.8

1

pP
T

(a) Initial system (b) R1 refactoring (c) R2 refactoring

0 .2 .4 .6 .8 1
pEM

.2

.4

.6

.8

1

pP
T

0 .2 .4 .6 .8 1
pEM

.2

.4

.6

.8

1

pP
T

P&F(FA/FAOrNo)

P&F(Order/FAOrNo)

P&F(MW/MWTAOrNo)

P&F(TA/MWTAOrNo)

P&F(Order/MWTAOrNo)

(d) R3 refactoring (e) R4 refactoring

Fig. 10. P&F antipattern instances across different refactorings - scenarioC .

served here, as compared to other antipatterns and scenarios, always limitedly
to single points of the operational profile space. Some specific comments follow.
(R1) induces less P&F instances where TA is the slowest filter and, on the same
path, introduces more instances where Order is the slowest filter. This is an ex-
pected behavior due to the refactoring action that makes TA faster. (R2) has no
effect at all. (R3) modifies the rate of MW component and makes it much slower,
thus inducing less load to TA. The effect on the P&F antipattern is minimal and
coherent, because one more P&F(MW) instance and one less P&F(TA) instance
occur in the same path. (R4) only introduces one more P&F(MW) on the same
path as above, and this could be a side effect of changing the average values of
performance indices.

Summary for RQ2: The approach supports performance-driven refactoring de-
cisions based on antipattern profiles, in that refactorings determine different
effects on different regions of the operational profile space.

4.4 Threats to validity

Internal validity. In order to spot internal errors in our implementation for au-
tomatically detecting multiple performance antipatterns, we have thoroughly
tested it. We verified that the detected performance antipatterns follow the given
rules defined in their specification, along with the expected performance indica-
tors. Note that the detection and solution of performance antipatterns relies on
our previous experience in this domain [17], but in the future we are interested
to involve external users that will be enabled to add their own rules for detection
and refactoring.

External validity. We are aware that one case study is not enough to thor-
oughly validate the effectiveness of our approach. Nevertheless, several experi-

372 R. Calinescu et al.

ments have been performed beside the proposed experimental scenarios, in order
to inspect the large number of variabilities in the operational profile space that
may affect performance characteristics in unexpected ways. As future work, we
would like to better investigate the effectiveness of our approach by applying it
to further case studies (including industrial applications).

5 Related Work

In literature, the operational profile has been recognized as a very relevant
factor in many domains, such as software reliability [27] and testing [30]. In
the context of performance analysis of software systems, there are many tech-
niques developed to act at: (i) design-time, i.e., providing model-based predic-
tions [6,12,32]; (ii) run-time, i.e., actual measurements derived from system mon-
itoring [10,13,35]. The refactoring, instead, is a more recent research direction,
and many issues arise when modifying different system abstractions [3,26,5].
This paper contributes in demonstrating that both performance analysis and
refactoring are affected by operational profiles, and in the following we review
the related work aimed at pursuing this research direction.

In [22], a method for uncertainty analysis of the operational profile is pre-
sented, and the perturbation theory is used to evaluate how the execution rates
of software components are affected by changes in the operational profile. Our
approach also considers execution rates, but it is intended to support designers
in the task of identifying performance-critical scenarios (i.e., when antipatterns
occur and their evolution when refactoring actions are applied). In [34], perfor-
mance antipatterns are used to isolate the problems’ root causes, and facilitating
their solutions; the TPC-W benchmark showed a relevant increase in the max-
imum throughput, thus to assess the usefulness of performance antipatterns.
However, the choice of representative usage profiles is recognized by the authors
as a limitation of the approach, since no directives are given for this scope. Our
approach, instead, is intentionally focused on exploiting the performance an-
tipatterns while considering the operational profile space as a first-class citizen
of the conducted analysis.

The static technique proposed in [25] detects and fixes performance bugs
(i.e., break out of the loop when a given condition becomes true). It is applied to
real-world Java and C/C++ applications, and it resulted very promising since a
large number of new performance bugs are discovered. Like [34], this approach
neglects the operational profile that instead may trigger the presence of further
performance problems. As opposite, our goal is to shed the light on the impor-
tance of the operational profile space, and our experimentation demonstrates
that performance problems and solutions indeed vary across such a space.

In [21], performance anomalies in testing data are detected through a new
metric, namely the transaction profile (TP), that is inferred from the testing
data along with the queueing network model of the testing system. The key in-
tuition is that TP is independent from the workload, it is sensitive to variations
caused by software updates only. Our approach also investigates what are the

Analysis and Refactoring of Software Systems Using Antipattern Profiles 373

refactorings that are more responsible of performance issues, along with the char-
acteristics of the operational profile. In fact, refactorings produce regions of the
operational profile space that are differently affected, and these differences can
be used by the designers in the task of understanding the suitability of a specific
design. The work more related to our approach is [28] where sequences of code
refactorings (for Java-like programs) are driven by the avoidance of antipatterns
(i.e., the BLOB only) and aimed at improving the system security. These refac-
torings consider the attack surface (i.e., how users/attackers access to software
functionalities) as an additional optimization objective. Our approach shares the
intuition that antipattern-based refactorings are beneficial for software quality
(i.e., performance in our case) and that the operational profile needs to be part
of the evaluation, but unlike [28] we target software design abstractions, and we
provide a global view of the antipatterns encountered by software systems across
their entire operational profile space. A systematic literature review on software
architecture optimization methods is provided in [1], but users’ operational pro-
files are neglected. This further motivates our work as promoter of a research
line that should foster more attention on the role of users and their effects on
the available software resources.

Summarizing, to the best of our knowledge, there is no approach that focuses
on how the operational profile affects the performance analysis and refactoring
of software systems, and the idea of adopting performance antipatterns for this
scope seems to be promising according to our experimentation.

6 Conclusion

We presented a novel approach that considers the operational profile space of a
system under development as a first class citizen in performance-driven analysis
and refactoring of software systems. Performance antipatterns profiles have been
used to support designers in the nontrivial task of identifying problematic (from
a performance perspective) areas of the operational profile space, and refactoring
actions are applied to improve the system performance in such areas. Experi-
mental results confirm the usefulness of the approach, and show how it can be
used to evaluate the suitability of a specific design in different regions of the
operational profile space.

In addition to the areas of future work mentioned in Section 4.4, we plan to
extend our approach with the ability to handle reliability and costs constraints,
and thus to support trade-off analysis among multiple quality attributes. Finally,
the applicability of the approach could be extended by a portfolio of generic
refactoring actions (which need to be feasible with our modelling and analysis
techniques), and methods that automate the selection of suitable actions from
this portfolio.

References

1. Aldeida Aleti, Barbora Buhnova, Lars Grunske, Anne Koziolek, and Indika Mee-
deniya. Software architecture optimization methods: A systematic literature re-

374 R. Calinescu et al.

view. IEEE Transactions on Software Engineering, 39(5):658–683, 2012.

2. Aldeida Aleti, Catia Trubiani, André van Hoorn, and Pooyan Jamshidi. An efficient
method for uncertainty propagation in robust software performance estimation.
Journal of Systems and Software, 138:222–235, 2018.

3. Vahid Alizadeh and Marouane Kessentini. Reducing interactive refactoring effort
via clustering-based multi-objective search. In ASE’18, pages 464–474, 2018.

4. Davide Arcelli, Vittorio Cortellessa, and Catia Trubiani. Antipattern-based model
refactoring for software performance improvement. In QoSA’12, pages 33–42, 2012.

5. Gabriele Bavota, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, and
Fabio Palomba. An experimental investigation on the innate relationship between
quality and refactoring. Journal of Systems and Software, 107:1–14, 2015.

6. Simona Bernardi, José Merseguer, and Dorina C. Petriu. Dependability model-
ing and analysis of software systems specified with UML. ACM Comput. Surv.,
45(1):2:1–2:48, 2012.

7. Gunter Bolch, Stefan Greiner, Hermann De Meer, and Kishor S Trivedi. Queueing
networks and Markov chains: modeling and performance evaluation with computer
science applications. John Wiley & Sons, 2006.

8. William H Brown, Raphael C Malveau, Hays W McCormick, and Thomas J Mow-
bray. AntiPatterns: refactoring software, architectures, and projects in crisis. John
Wiley & Sons, 1998.

9. Axel Busch, Dominik Fuchss, and Anne Koziolek. Peropteryx: Automated im-
provement of software architectures. In ICSA-C’19, pages 162–165, 2019.

10. Radu Calinescu, Carlo Ghezzi, Marta Z. Kwiatkowska, and Raffaela Mirandola.
Self-adaptive software needs quantitative verification at runtime. Commun. ACM,
55(9):69–77, 2012.

11. Radu Calinescu, Milan Ceska Jr., Simos Gerasimou, Marta Kwiatkowska, and
Nicola Paoletti. Efficient synthesis of robust models for stochastic systems. Journal
of Systems and Software, 143:140–158, 2018.

12. Radu Calinescu and Shinji Kikuchi. Formal methods @ runtime. In Monterey
Workshop, pages 122–135. Springer, 2010.

13. Radu Calinescu and Marta Kwiatkowska. CADS*: Computer-aided development
of self-* systems. In FASE’09, pages 421–424. Springer, 2009.

14. Radu Calinescu, Danny Weyns, Simos Gerasimou, Muhammad Usman Iftikhar,
Ibrahim Habli, and Tim Kelly. Engineering trustworthy self-adaptive software
with dynamic assurance cases. IEEE Transactions on Software Engineering,
44(11):1039–1069, 2018.

15. Xi Chen, Zibin Zheng, Qi Yu, and Michael R. Lyu. Web service recommendation
via exploiting location and qos information. IEEE Trans. Parallel Distrib. Syst.,
25(7):1913–1924, 2014.

16. Vittorio Cortellessa, Antinisca Di Marco, and Paola Inverardi. Model-Based Soft-
ware Performance Analysis. Springer, 2011.

17. Vittorio Cortellessa, Antinisca Di Marco, and Catia Trubiani. An approach for
modeling and detecting software performance antipatterns based on first-order
logics. Software and Systems Modeling, 13(1):391–432, 2014.

18. Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk.
A storm is coming: A modern probabilistic model checker. In Computer Aided
Verification, pages 592–600. Springer International Publishing, 2017.

19. Michalis Famelis and Marsha Chechik. Managing design-time uncertainty. Software
and Systems Modeling, 18(2):1249–1284, 2019.

Analysis and Refactoring of Software Systems Using Antipattern Profiles 375

20. Simos Gerasimou, Radu Calinescu, and Giordano Tamburrelli. Synthesis of prob-
abilistic models for quality-of-service software engineering. Autom. Softw. Eng.,
25(4):785–831, 2018.

21. Shadi Ghaith, Miao Wang, Philip Perry, Zhen Ming Jiang, Patrick O’Sullivan, and
John Murphy. Anomaly detection in performance regression testing by transaction
profile estimation. Softw. Test., Verif. Reliab., 26(1):4–39, 2016.

22. Sunil Kamavaram and Katerina Goseva-Popstojanova. Sensitivity of software usage
to changes in the operational profile. In Annual Workshop of NASA Goddard
Software Engineering, pages 157–164, 2003.

23. Arijit Khan, Xifeng Yan, Shu Tao, and Nikos Anerousis. Workload characterization
and prediction in the cloud: A multiple time series approach. In NOMS’12, pages
1287–1294, 2012.

24. M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of proba-
bilistic real-time systems. In CAV’11, volume 6806 of LNCS, pages 585–591, 2011.

25. Adrian Nistor, Po-Chun Chang, Cosmin Radoi, and Shan Lu. Caramel: Detecting
and fixing performance problems that have non-intrusive fixes. In ICSE’15, pages
902–912, 2015.

26. Ali Ouni, Marouane Kessentini, Mel Ó Cinnéide, Houari A. Sahraoui, Kalyanmoy
Deb, and Katsuro Inoue. MORE: A multi-objective refactoring recommendation
approach to introducing design patterns and fixing code smells. Journal of Soft-
ware: Evolution and Process, 29(5), 2017.

27. Süleyman Özekici and Refik Soyer. Reliability of software with an operational
profile. European Journal of Operational Research, 149(2):459–474, 2003.

28. Sebastian Ruland, Géza Kulcsár, Erhan Leblebici, Sven Peldszus, and Malte
Lochau. Controlling the attack surface of object-oriented refactorings. In FASE’18,
pages 38–55, 2018.

29. Martina De Sanctis, Catia Trubiani, Vittorio Cortellessa, Antinisca Di Marco, and
Mirko Flamminj. A model-driven approach to catch performance antipatterns in
ADL specifications. Information & Software Technology, 83:35–54, 2017.

30. Carol Smidts, Chetan Mutha, Manuel Rodŕıguez, and Matthew J Gerber. Soft-
ware testing with an operational profile: Op definition. ACM Computing Surveys
(CSUR), 46(3):39, 2014.

31. Connie U. Smith and Lloyd G. Williams. Software performance antipatterns for
identifying and correcting performance problems. In CMG’12, 2012.

32. Mirco Tribastone, Stephen Gilmore, and Jane Hillston. Scalable differential anal-
ysis of process algebra models. IEEE Trans. Software Eng., 38(1):205–219, 2012.

33. Kishor S. Trivedi and Andrea Bobbio. Reliability and Availability Engineering -
Modeling, Analysis, and Applications. Cambridge University Press, 2017.

34. Alexander Wert, Jens Happe, and Lucia Happe. Supporting swift reaction: au-
tomatically uncovering performance problems by systematic experiments. In
ICSE’13, pages 552–561, 2013.

35. Xiao Yu, Shi Han, Dongmei Zhang, and Tao Xie. Comprehending performance
from real-world execution traces: A device-driver case. In ACM SIGPLAN Notices,
volume 49, pages 193–206, 2014.

376 R. Calinescu et al.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Analysis and Refactoring of Software Systems Using Antipattern Profiles 377

Business Process Compliance using Reference
Models of Law

Hugo A. López1,3 , Søren Debois2 , Tijs Slaats1 , and Thomas T.
Hildebrandt1

1 Software, Data, People & Society Section
Department of Computer Science
Copenhagen University, Denmark
{hala,slaats,hilde}@di.ku.dk

2 Computer Science Department, IT University of Copenhagen, Denmark
debois@itu.dk

3 DCR Solutions A/S, Denmark

Abstract. Legal compliance is an important part of certifying the cor-
rect behaviour of a business process. To be compliant, organizations
might hard-wire regulations into processes, limiting the discretion that
workers have when choosing what activities should be executed in a case.
Worse, hard-wired compliant processes are difficult to change when laws
change, and this occurs very often. This paper proposes a model-driven
approach to process compliance and combines a) reference models from
laws, and b) business process models. Both reference and process models
are expressed in a declarative process language, The Dynamic Condition
Response (DCR) graphs. They are subject to testing and verification,
allowing law practitioners to check consistency against the intent of the
law. Compliance checking is a combination of alignments between events
in laws and events in a process model. In this way, a reference model
can be used to check different process variants. Moreover, changes in
the reference model due to law changes do not necessarily invalidate
existing processes, allowing their reuse and adaptation. We exemplify
the framework via the alignment of laws and business rules and a real
contract change management process, Finally, we show how compliance
checking for declarative processes is decidable, and provide a polynomial
time approximation that contrasts NP complexity algorithms used in
compliance checking for imperative business processes. All-together, this
paper presents technical and methodological steps that are being used
by legal practitioners in municipal governments in their efforts towards
digitalization of work practices in the public sector.

Keywords: Formal Models of Law, Dynamic Condition Response (DCR)
graphs, Compliance Checking, Process Calculi, Refinement

1 Introduction

Ensuring that business processes comply with applicable laws and regulations
has been a central concern with the arrival of regulatory technologies (RegTech),

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 378–399, 2020.
https://doi.org/10.1007/978-3-030-45234-6_19

http://orcid.org/0000-0001-5162-7936
http://orcid.org/0000-0002-4385-1409
http://orcid.org/0000-0001-6244-6970
http://orcid.org/0000-0002-7435-5563
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_19&domain=pdf

and bring together different disciplines ranging from legal theory to computer
science. We understand compliance as the “act/process to ensure that business
operations, processes, and practices are in accordance with prescriptive (often
legal) documents" [15]. Checking compliance requires ways to compare artefacts
coming from very different domains: the legal domain and the process domain.
On the one hand, business processes have as a main criteria the fulfilment of a
business goal. On the other hand, processes operate within a regulated context,
that sets certain limitations on how to achieve the goals, and defines responsi-
bilities for actors involved. In the public sector, being non-compliant is not an
option, as regulations determine the rights and obligations of their citizens. In
the private sector, the risk of being non-compliant equates to possible hefty fines
for the organization4.

Linking laws and processes have several challenges: First, how can we formally
interpret ambiguous regulations written in natural language? Second, how to pair
that formal interpretation of the law against a business process? Third, how to
reuse legal specifications in different process domains?, and fourth, what will
happen with compliance when the laws change? Compliance checking refers to
the verification procedure that compares regulations and processes: In its most
simple form, compliance checking can be expressed as the following problem:
given a formal specification of a law L and a business process P , we say that
the process is compliant if 1. Every action that P does is in accordance to the
permissions allowed by L, and 2. Every execution of P meets the set of obligations
established by L, and 3. Executions of P don’t do anything prohibited by L. In
any other case we will say that the process is not compliant.

In this paper we focus on the compliance checking problem from a mod-
elling/programming language perspective. First, we explore how declarative pro-
cess languages can describe the set of requirements expressed in legal documents.
The challenge is both at the level of language expressiveness (can the language
express the intended semantics of a legal text?), as well as understandability
(can a non-expert understand the specification?). Second, we look at the process
dimension: can we have a general framework that considers different process
artefacts? Third, we look at the alignment between the legal and the process
dimension: Can we provide an efficient algorithm to compute whether a process
is compliant with the legislation?

In [20], a taxonomy of the requirements needed to formally express laws was
presented. Overall, a formal language that expresses legal requirements should
be able to describe what can be done (permissions), what must be done (obli-
gations), and what should not happen (violations). Moreover, these so-called
deontic constraints are effectful (e.g.: an obligation might grant certain permis-
sions, e.g. “you must pay for delivery, but when you do so, you may decide
whether to pay now or upon delivery" and vice-versa, a permission may impose
certain obligations, e.g. “you may park here if you pay later"). The content of
the laws might also influence the choice of the language. Laws might describe

4 https://www.theverge.com/2019/1/21/18191591/google-gdpr-fine-50-million-
euros-data-consent-cnil

Business Process Compliance using Reference Models of Law 379

constraints related to the control flow, temporal information, data, or resource
constraints [39]. Finally, the language of choice should be able to describe defea-
sible conditions [18], that is, when parts of the law become irrelevant, and are
superseded by other parts.

Compliance checking requires a formal representation of business goals and
processes. Such a representation traditionally takes the shape of traces (c.f.:
event-logs) at run-time, and of imperative process models at design-time. In the
imperative paradigm, languages such as BPMN [35] and UML Activity Dia-
grams [34] describe processes as activities and composition operators that pre-
scribe how the flow in the activities executed in the process. Rules and laws
are not first-class citizens in imperative models, and they need to be encoded as
annotations in the process language [13], or paired with additional languages,
such as BPMN-Q [4]. In contrast, declarative process models focus in the de-
scription of circumstantial information of processes (e.g.: the why of the pro-
cess). Languages such as Declare [37] and Dynamic Condition Response (DCR)
Graphs [10, 22] are some exponents of these types of languages. They describe
a process as a set of constraints between activities which can be translated to
specific business rules or goals. Their semantics is usually characterised by either
mapping the declarative model to a flow-based model (e.g. transition systems),
or by introducing an operational semantics that reasons over the state of the
different constraints and/or activities of the model.

The objective of this paper is two-fold. First, it explores whether existing
declarative process languages are expressive enough to formalise regulations;
second, it introduces compliance checking via declarative processes. The DCR
graphs process notation has been developed for the formalisation and digitalisa-
tion of collaborative, adaptive case management processes. The visual notation is
both supported by a range of formal techniques, and serves as the formal base for
the industrial (www.dcrgraphs.net) modelling and simulation tool. In contrast
to Declare, the DCR graphs technology has been succesfully employed in major
industrial case management systems, and at the moment it supports 70% of the
Danish Central Government institutions5. DCR graphs have been extended to
include both data [43], time [5, 24], sub-processes [10], and choreographies [25].
In the present paper we consider the core notation with time, which is expres-
sive enough to represent both regular and omega-regular languages [10] as well
as so-called true concurrency [9]. In this work we only focus on laws describ-
ing control-flow and temporal constraints, leaving data, resource constraints or
inter-law dependencies for future work.

Our approach for process compliance can be summarised as follows: both the
legal domain and the business/organisational domain are defined as independent
DCR graphs, and compliance checking is reduced to process refinement. These
two independent models allow for a separation of concerns on what is legal and
what is business/organisational requirements and goals, and it eases compliance
checking when either laws or organisational processes change. It is worth to point
out that at its core, the choice of a process language can be replaced to any

5 https://www.kmd.dk/indsigter/fleksibilitet-og-dynamisk-sagsbehandling-i-staten

380 H. A. López et al.

existing process language (including imperative ones), as compliance checking is
mainly defined over traces. Changes in regulations might affect existing running
processes: the typical example is governmental case work, where processes need
to be revised every time a new regulation is signed. In addition, organisational
changes or process optimisation efforts might modify a business process in a
way that stops being compliant with existing laws. Finally, the separation of the
legal and business domains supports different stages of the compliance life cycle:
designing new processes that are compliant with the laws (e.g.: Compliance-
by-Design (CbD) [14]), as well as the verification of existing or mined process
models [33] becomes possible.

Contributions This paper presents the first compliance framework for declar-
ative process models that 1) can represent safety and omega-regular liveness
properties, 2) is supported by industrial design and simulation tools, and 3)
is currently in use in the digitalization strategies of municipal governments,
and 4) allows for a separation of concerns between what is legal and what is
process-specific. Thanks to having the same formal language for laws and busi-
ness processes, we can use efficient verification techniques based on process re-
finement, This comes in contrast to approaches based in annotated imperative
business processes, where the complexity of compliance checking belongs to the
non-polynomial complexity class [45].

Document Structure Section 2 introduces the compliance framework. Sec-
tion 3 presents DCR graphs, and illustrates its use on a case study. Section 4
explains the construction of reference models. Section 5 describes our compliance
checking technique. Results from validation with organizations are documented
in Section 6. Related work is compared in 7. We conclude in Section 8.

2 Regulatory Compliance Framework

The overall components of our compliance framework are described in Fig. 1.
It shows the interactions between two different type of roles: The compliance
officer, with a background in law, identifies the applicable regulations, and for
each law she generates a reference model. Laws might be abstract, e.g.: “Any in-
formation relating to an identified or identifiable natural person (‘data subject’)”
(Art. 4 in GDPR [7]). Consequently, the officer might need to combine the law
with implementation acts (e.g. the Danish Data Protection Act [8]). In this way,
the specification must narrow down ambiguities such as: “What corresponds to
any information”?, “in which ways will the process identify a person"? or “who
constitutes a natural person”? While the disambiguation process is mostly a man-
ual processes that depends on the expertise of the compliance officer, computer
support might provide help in the elicitation phase. Dual-coding tools support
lawyers in the generation of formal specifications [29], and NLP techniques can
be used to speedup the identification of process-related information [30]. The
output will be a collection of reference models, each of them describing a law.
Each model describe roles, rights, obligations, and the relations between them.

Business Process Compliance using Reference Models of Law 381

Fig. 1. Compliance Framework

Compliance checking assumes the existence of a process. This can be elicited
from stakeholders via standard techniques [12] or, if the process already exists,
via process mining [33]. Process models contain the activities performed, roles,
and resource information (time & data) used. Alternatively, one can consider
disregarding process discovery and perform compliance checking directly over
event logs, as in classical process conformance approaches [1].

Both models and process models are subject to verification and validation
phases. Scenario replays, reachability and deadlock-livelock checkers provide
guarantees that both structural properties of the models are preserved.

The last dimension revolves compliance, and it constitutes the core of this
paper. Since reference models are specific to a given regulation, they need to
be instantiated in terms of the business process. This requires the alignment
between events identified in the reference model, and activities in the business
process. Compliance checking is then reduced to trace refinement: all traces in
the process model are a subset of the traces in the reference model.

The separation between reference and compliance models allows for modu-
lar verification. When laws and processes change, their models can be changed
separately, only needing to revise the alignment between events and activities.

382 H. A. López et al.

T,U ::= e
t0−→•f condition | e• tω−→f response

| e→+f inclusion | e→%f exclusion
| e→�f milestone | T ‖ U parallel composition
| 0 unit

M,N ::= M, e : Φ | ε marking Φ ::= (h, i, p) event state
λ ::= λ, e : l | ε labelling h ::= f | t0 (h)appened t0 ticks in the past

P,Q ::= [M] λT process i ::= f | t (i)ncluded
p ::= f | 0 | tω (p)ending deadline

t0 ∈ N ∪ {0} 0-time tω ∈ N ∪ {ω} ω-time

Fig. 2. DCR Processes Syntax.

3 DCR Graphs

In this section, we recall the syntax and semantics of Dynamic Condition Re-
sponse (DCR) processes. We use the core term-based definition with time, with-
out bound events and subprocesses, following the original presentation in [5].

We assume a fixed universe of events E ranged over by e, f with a special
symbol tick �∈ E . A DCR process [M] T comprises a marking M , a term T . Its
syntax is given in Figure 2.

A term represents a process model consisting of events (which may be ac-
tivities, tasks, or the identification of the state of affairs) and their relations.
In a DCR graph, events are the nodes and relations are the arcs. A marking
represents the current state of a process by specifying for every event the event
state (whether the event previously happened, is currently included, and/or is
pending). A process is then represented by the process model (a term) and its
current state (a marking). Relations can take the following shape:

– Condition e
t−→•f : It defines a prohibition, or a precondition for f . Before f

can occur, e must have happened at least t time units ago, or e must have
been excluded. In the case that t = 0, we simply write e→•f .

– Response e• t−→f : It defines an obligation for e. If e has happened, then f
must occur within t time units, or be excluded. In the case t = ω, this will
be treated as eventually in LTL, that is, not bounded by any time constraint.
For such a case we can simply write e•−→f .

– Dynamic Inclusion e→+f : It defines relevance of an event. After executing
event e, event f is included among the possible actions to take. Notice that
the inclusion of f does not deem its necessity (captured by a response).

– Dynamic Exclusion e→%f : It defines irrelevance of an event. The result of
executing e is that event f becomes excluded. Moreover, all conditions f→•g
and milestones f→�g are ignored (unless f is included again).

– Milestone e→�f : A reaction chain. Initially f is included among the possible
actions, but if e becomes pending, then f cannot occur until e has occurred.

Business Process Compliance using Reference Models of Law 383

Finally, term 0 denotes the null process. Note that it is possible to specify a
relation twice, e.g., e→%f ‖ e→%f ; this duplication has no additional effect.

All relations refer to a marking M , a finite map from events to triples of
variables (h, i, p), referred to as the event state and indicating whether or not
the event previously (h)appened, is currently (i)ncluded, and/or is (p)ending.
A pending event represents an unfulfilled obligation, and the values it can take
denote whether the event is not pending (p = f), it has a finite deadline (p ∈
N∪{0}), or it should be eventually executed (p = ω). We write markings as finite
lists of pairs of events and event states, e.g. e1 : Φ1, . . . , ek : Φk but treat them
as maps, writing dom(M) and M(e), and understand M, e : Φ to be undefined
when e ∈ dom(M). The free events fe(T) of a term T is simply the set of events
appearing in it.

With respect to the original presentation [5], our syntax extends the process
definition with labels. Labelling λ defines a total function from events to labels.
However, we often omit the labelling function, as it rarely changes, writing [M] T
instead of [M] λT . We assume that event labels are unique, e.g.: if e, f ∈ fe(T)
then λ(e) �= λ(f) or e = f , therefore, λ has an inverse, which we will denote by
λ−1. A substitution σ = {e1, . . . , en/f1, . . . , fn} maps each event ei and replaces
it with fi, being 1 ≤ i ≤ n and ei pairwise distinct. The application of σ to a
process term T is denoted by Tσ, and it applies similarly for markings and for
processes, being ([M] T)σ = [Mσ] Tσ. We require of a process P = [M] λT
that fe(T) ⊆ dom(M) = dom(λ), and so define fe(P) = dom(M). The alphabet
alph(P) is the set of labels of its free events.

Example 3.1. We use a contract change management process from the construc-
tion industry as our running example. The process model in Fig. 3 has been ex-
tracted from structured interviews with domain specialists, and then validated
in a workshop. We will focus on the most salient aspects of the process, and
direct to [2] for the complete specification. The process includes three significant
roles: a subcontractor, a project manager and a trade package manager (TPM)
–external to the organization–, collaborating via a document management sys-
tem. The process starts when the subcontractor notices that additional work
is required compared to an original construction contract. To be paid for the
extra work, it is their responsibility to justify using supportive documentation
(A1). Hence, the subcontractor submits a change management request on the
platform (A2). Further, the TPM must notify the subcontractor that his request
has been initiated (A5), as well as checking the request specifications against the
initial contract requirements and the technical documentation (A4). Once the
request is checked, the TPM can decide whether to accept the change request
(A7), to reject the request (A8) or to ask for additional documents that sup-
port the subcontractors’ claim (A6). If the TPM decides to reject the claim, she
must attach reasoning for the decision and communicate it to the subcontrac-
tor. Next, the subcontractor can evaluate the rejection (A16). If there is need
for further documentation to support the claim, the TPM must send a request
for additional information (A1). If the TPM agrees with the change, she must
forward documentation describing what changes from the initial contract to the

384 H. A. López et al.

Fig. 3. Contract Change Management Process Pspec

project manager. The project manager must evaluate the request (A10). He is
responsible for taking the final decision, whether to accept (A11) or reject (A12)
the request. In case of rejection, the project manager must notify the subcon-
tractor about the decision and substantiate with reasoning (A14). Besides, if the
answer is an acceptance, the project manager is responsible for sending an up-
dated contract form (A13). Once the new contract is received, the subcontractor
must attach it to the old contract (A15). As part of the DMS capabilities, the
subcontractor is allowed to cancel the change request (A3) at any point after
submission, with the effects of deleting the application (A17).

The diagram in Fig. 3 provides a visual representation of process Pspec de-
scribed above6. Events are denoted via boxes, and arrows describe the relations
introduced in the previous section. Each event has a label presenting its descrip-
tion, as well as the role of the agent(s) that can execute the event. An included
event is represented with a solid border, with a dashed line if it is excluded.
Included events can be executed at any time (unless they become excluded),
and, unless preceded by a response relation, they can also be left unexecuted.
Relations can point to events or to events “collections” (boxes marked with “n”).
As formalised in [23], such collections are referred to as “nestings” and are just
a visual shorthand, understanding arrows to (from) nestings to represent arrows
to (from) every event inside the nesting.

6 The process is available for simulation and execution at https://www.dcrgraphs.net/
tool/main/Graph?id=43ea382d-de1b-4278-8eff-591426244d90

Business Process Compliance using Reference Models of Law 385

i ⇒ h ≥ k

[M, e : (h, i,_), f : (_, t,_)] e
k−→•f 	 f : (∅, ∅, ∅) [M, e : (_, t,_)] e• k−→f 	 e : (∅, ∅, {f : k})

i ⇒ (p = f)

[M, e : (_, i, p), f : (_, t,_)] e→�f 	 f : (∅, ∅, ∅) [M, e : (_, t,_)] e→+f 	 e : (∅, {f}, ∅)

[M, e : (_, t,_)] e→%f 	 e : ({f}, ∅, ∅) [M, e : (_, t,_)] 0 	 e : (∅, ∅, ∅)
e �= f ′ R∈ { k−→•,→�}

[M, e : (_, t,_)] f R f ′ 	 e : (∅, ∅, ∅)
e �= f R∈ {• k−→,→+,→%}

[M, e : (_, t,_)] f R f ′ 	 e : (∅, ∅, ∅)
[M] Ti 	 e : (Exi, Ini,Pei) i = {1, 2}

[M] T1 ‖ T2 	 e : (Ex1 ∪ Ex2, In1 ∪ In2,Pe1 ∪ Pe2)

Fig. 4. Enabling & effects. We write “_” for “don’t care”, i.e., either true t or false f

We point to some of the behavioural aspects in the model. The condition
relation between A1 and A2 forbids the subcontractor to perform a submission
without documentation. The exclusion relation to itself in A1 says that such
activity can be done once per case, and it will cease to be available until it
is included again (via the execution of A6). The response between “Decide on
change request" and “Take action” says that once the activities A11 or A12 have
been performed, it is obligatory to execute the included activities in the take
action part. Only one decision can be taken per round, as the execution of A11
and A12 exclude each other. The chain of milestones and responses between A10
and A15 ensures that the attached copy only corresponds to the most updated
decision: every time a project manager executes A10, the activities inside “de-
cide on change request" become pending. This will inhibit any action until the
decision has been revised. Finally, the timed response between A4 and A5 says
that notification must be done within 30 time units of the execution of A4.

3.1 Semantics

We first define when an event is enabled and what effects it has if executed. The
judgement [M] T
 e : (Exc, Inc, Pen), defined in Figure 4, should be read: “in
the marking M , the term T allows the event e to happen, with the effects of
excluding events Exc, including events Inc, and making events Pen pending.”

The first rule says that if e is a condition for f , then f can happen only if (1)
it is itself included, and (2) if e is included, then e happened at least k steps ago.
The second rule says that if e is a milestone for f , then f can happen only if (1) it
is itself included, and (2) if e is included, then e must not be pending. The third
rule says that if f is a response to e and e is included, then e can happen with the
effect of making f pending with a deadline of k. The fourth (respectively fifth)
rule says that if f is included (respectively excluded) by e and e is included,
then e can happen with the effect of including (respectively excluding) f . The
sixth rule says that for an unconstrained process 0, an event e can happen if
it is included. The seventh rule says that a relation allows any included event
e to happen without effects when e is not the relation’s right-hand–side event.

386 H. A. López et al.

[M] T 	 e : δ

T 	 M
e−→ δ〈e〈M〉〉

[Event]
deadline〈M〉 > 0

T 	 M
tick−−−→ tick〈M〉

[Time]

Fig. 5. Transition semantics.

Finally, the last rule says that enabledness for parallel composition depends on
its constituents (we omit symmetric rules for sake of clarity).

Given enabling and effects of events, we define the action of respectively an
event e and an effect δ = (Ex, In,Pe) on a marking M pointwise by the action
on individual event states f : (h, i, r) as follows. Assume e is enabled in the
process [M] T with effect δ = (Ex, In,Pe). The state of e tracks that the event
has happened now, setting its executed flag to 0. Similarly, we say that it is
not longer pending. The effect of executing e in a marking M , written e〈M〉, is
inductively defined as follows:

e〈M〉 =
⎧⎨
⎩

ε if M = ε
e〈N〉, f : (0, i, f) if M = N, f : (_, i,_) ∧ e = f
e〈N〉, f : (h, i, r) if M = N, f : (h, i, r) ∧ e �= f.

The application of effect δ = (Ex, In,Pe) over a marking M , denoted δ〈M〉, is
inductively defined as follows:

δ〈M〉 =
⎧⎨
⎩

ε if M = ε
δ〈N〉, f :

(
h, (i ∧ f �∈Ex) ∨ f ∈ In︸ ︷︷ ︸

included?

, r′
)

if M = N, f : (h, i, r)

Where r′ = min{d | (f, d) ∈ Pe} if (f, d) ∈ Pe and r′ = r otherwise. That is, the
event only stays included (second component) if f �∈ Ex (it is not excluded) or
f ∈ In (it is included). The pending flag takes the minimal deadline for which
f : d ∈ Pe, otherwise, it keeps the flag unchanged. Note that an event can be
both excluded and included by the effect, conceptually the exclusion happens
first, followed by the inclusion.

The transition semantics requires us to account for the time that has passed
between events. The deadline function is inductively defined over markings:

deadline〈M〉 =
{
ω if M = ε
min{p′, deadline〈M ′〉} if M = M ′, e : (h, i, p)

With p′ taking the value of p if i = t, otherwise p′ = ω. Basically, only deadlines
of included events are considered. The deadline function sets a lower limit for
events to happen. Moreover, we need to update the marking by incrementing
the time after an event has fired. The tick function is inductively defined over
markings with such purpose:

tick〈M〉 =
{
ε if M = ε
tick〈M ′〉, e : (h+ 1, i,max{0, p− 1}) if M = M ′, e : (h, i, p)

Extending the + and − operators such that f + 1 = f and f − 1 = f, and
ω − 1 = ω.

Figure 5 introduces the transition semantics of processes. In rule [Event],
the marking M fires an enabled event e, generating as a result a marking M ′.

Business Process Compliance using Reference Models of Law 387

Note that transitions are non-deterministic: more than one event can be enabled
in M . In rule [Time], the marking M is updated in one unit, generating M ′.
Intuitively, a transition T
 M

e−→ M ′ expresses that process [M] λT fires an
event e and modifies its marking to M ′. As customary, we denote with e−→∗

the transitive closure of e−→. Moreover, we define the state space of [M] T as
P([M] T) = {[M ′] T | T
 M

e−→∗
M ′}. Event transitions give rise to a labelled

transition system lts([M] λT) = 〈P(M), [M] T, E ′,−→, Σ, λ′〉, where [M] T ∈
P([M] T) is the initial state, E ′ = E∪{tick} is the set of labels, −→⊆ P([M] T)×
E ′×P([M] T), Σ is an alphabet, and a labelling function λ′ ⊆ E ×Σ defined by
λ(e) = λ(e) for e ∈ E , and λ′(tick) = tick.

We equip with the LTS with notions of accepting runs, incorporating similar
notions defined for DCR Graphs [6, 32] to their timed setting:

Definition 1 (Runs, Accepting Runs). A run of [M] T is a finite or infinite
sequence of transitions [M] T = [M0] T0 −→ e0 · · · . A run is accepting iff for
every state [Mi] Ti, when Mi(e) = (_, t, t) then there exists j ≥ i s.t. either
Mj(e) = (_, f,_) or [Mj] Tj

e−→ [Mj+1] Tj+1.

In other words, an accepting run consider transitions that either execute
pending events, or excludes them. Note that since an event e may happen more
than once, even processes with only finitely many events may have infinite runs.
Having defined the LTS and runs we can define the language defined by a DCR
process to be its set of accepting runs.

Definition 2 (Traces). A trace of a process [M] λT is a possibly infinite
string s = (si)i∈I s.t. [M] T has an accepting run [Mi] Ti

ei−→ [Mi+1] Ti+1

with si = λ(ei). Finally, the process [M] T has the language lang([M] λT) =
{s | s is a trace of [M] λT}.

4 Compliance Rules

Not all law paragraphs are created equal. Different articles describe definitions,
commencement periods, amendments, and other provisions. We focus on self-
contained procedural articles, those paragraphs that do not depend on the state
of affairs of events described in other paragraphs. One example is GDPR Art.
21 §1:

(Right to Object) §1. The data subject shall have the right to object, on grounds re-
lating to his or her particular situation, at any time to processing of personal data
concerning him or her [. . .]. The controller shall no longer process the personal data
unless the controller demonstrates compelling legitimate grounds for the processing
which override the interests, rights and freedoms of the data subject or for the estab-
lishment, exercise or defence of legal claims.

388 H. A. López et al.

Legal Text Policy Compliance Rule

GDPR Art. 21 §1.

If the subcontractor
submits a change re-
quest, he may cancel
it afterwards. Af-
ter cancellation, the
project manager must
eventually delete the
request.

RC1 = [e1 : (f, t, f), e2 : (f, t, f), e3 : (f, t, f)] λ1T1

T1 = e1→•e2 ‖ e2→•e3 ‖ e2•→e3
λ1(e1) = “A2: submit a change request”
λ1(e2) = “A3: cancel change request”
λ1(e3) = “A17: delete the request”

95/46/EC. Sect IV,
Art. 11. §1. [. . .] The
controller [. . .] must at
the time of undertaking
the recording of per-
sonal data [. . .] provide
the data subject with
at least the following
information [. . .].

After the subcontrac-
tor submits a change
request, eventually the
TPM will notify the
subcontractor about
the processing of re-
quest, including the
personal data used.

RC2 = [e4 : (f, t, f), e5 : (f, t, f)] λ2T2

T2 = e4•→e5 ‖ e4→•e5
λ2(e4) = “A2: Submit change

request
λ2(e5) = “A5: Notifies processing

to subcontractor”

Organization KPI.
A change request
should take a maxi-
mum amount of time,
otherwise it becomes
invalid.

The change request is
valid for 60 working
days and afterwards it
is closed.

RC3 = [e6 : (f, t, f), e7 : (f, f, f), e8 : (f, t, f)] λ3T3

T3 = e6→+e7 ‖ e6• 60−−→e7 ‖ e6
60−−→•e8 ‖ e8→%e7

λ3(e6) = “A2: Submit change request”
λ3(e7) = “Finish Processing request”
λ3(e8) = “Cancel Processing”

Fig. 7. Elicitation of Compliance Rules

Event in Legislation Activity/event in
Process Model

B1: Process personal
data

A2: Submit change re-
quest

B2: Right to object A3: Cancel request
B3: Stop processing A17: Delete request

Fig. 6. Instantiation of Art 21. GDPR for
process in Fig. 3

We observe dependencies between
two events, (B1) processing of per-
sonal data, and (B2) the right to ob-
ject. We also observe the consequences
of applying B2. For the sake of clarity
we assume “no longer process personal
data” as the event (B3) “stop process-
ing”. The process for Art. 21 §1 is:

RF1 = [B1 : (f, t, f), B2 : (f, t, f), B3 : (f, t, f)] B1→•B2 ‖ B2•→B3

The reference model requires a mapping from abstract rights such as “right
to object” into activities/events in the business process. Further knowledge from
implementation guidelines is used to determine the proper mapping for concepts
such as “data subject”, “controller” or “personal data”. Fig. 6 presents a mapping
between events Art. 21 §1 and and events in Pspec in Fig. 3.

The result of combining the dependencies from laws and business process
information gives rise to compliance policies that are specific to the domain. A
natural language policy such as “in case (the subcontractor) submits a change
request, (the subcontractor) may cancel the change request. If (the subcontractor)
cancels the request, (the project manager) must eventually delete the request".
These policies are formalized in terms of DCR processes. Fig. 7 present some
exemplary policies. We will refer as compliance rules to the resulting DCR pro-
cesses in this stage.

We capture event dependencies by relying on test-driven development [42,
46], which serves as means of validation when introducing constraints in the
model. Interestingly, test-driven development aligns with current practices when
introducing changes in a law. Scenarios correspond to legal precedents [27]. In

Business Process Compliance using Reference Models of Law 389

common law, a legal precedent corresponds to a previous case that establishes
a principle or rule. This principle is then used by judicial bodies when deciding
later cases with similar issues or facts. Compliance rules can be tested against
scenarios representing legal precedents, where valid rules should at least be able
to reach the same decisions from earlier precedents.

The last step in the elicitation of compliance rules is the alignment between
the compliance rules and the process model.

Definition 3 (Term Alignment & Target events). Let L,L′ ⊆ L.
A term alignment is the total function g : L → L′. If P,Q are DCR processes

with labels L,L′ respectively, we say that g is a term alignment from P to Q if
g is a term alignment from L to L′. Moreover, we define the target events of g
for e in P as tg(g, e, P) = λ−1(g(λ(e))).

Although term alignment is an arbitrary function defined by the compliance
officer, we require for simplicity of the exposition that there is exactly a single
target event for each event.

Note that more than one g can be defined if the rules in the law applies to
more than one set of events in the process. Also, g will typically be non-surjective
since the business process might contain activities that do not map to any legal
requirement.

Definition 4 (Instances of a Compliance Rule). Let G = {g1, . . . , gn} be
a set of term alignments from P to Q. An instance of P under g in Q, written
P↓gQ for g ∈ G, is Pσ with labelling λ′(e) = g(λ(e)), such that σ = {f1, . . . , fn/
e1, . . . , en} where fi = tg(g, ei, P). We denote by Inst(P,G,Q) = {P↓gQ | g ∈
G} the set of all instances of P under G in Q.

Example 4.2. The term alignments g1, g2 are built from the obvious maps from
events in RC1 and RC2 to events with same labels in Pspec in Fig. 3. Two term
alignments are required for RC3:

Term
Alignment Label Reference Model Event

Pspec

Label Process Model

g3 A2: submit a change request f1 A2: submit a change request
Finish Processing request f2 A15: Amend initial contract
Cancel Processing f3 A3: Delete request

g4 A2: submit a change request f1 A2: submit a change request
Finish Processing request f4 A16: Receive reason for change rejection
Cancel Processing f3 A15: Delete request

The set of term alignments for each compliance rule is respectively G1 =
{g1}, G2 = {g2}, and G3 = {g3, g4}. As can be seen from Def. 4, the set of
instances substitute the events for the corresponding ones in Pspec, so

Inst(RC3, G3, Pspec) ={
[f1 : (f, t, f), f2 : (f, f, f), f3 : (f, t, f)] λ3f1→+f2 ‖ f1• 60−→f2 ‖ f1

60−→•f3 ‖ f3→%f2,

[f1 : (f, t, f), f4 : (f, f, f), f3 : (f, t, f)] λ3f1→+f4 ‖ f1• 60−→f4 ‖ f1
60−→•f3 ‖ f3→%f4

}

Moreover, labels have also changed, being λ3(f2) = “A15: Amend initial contract
with approved change", and λ3(f4) = “A16: Receive reason for change rejection”.

390 H. A. López et al.

5 Compliance Checking by Refinement

In previous sections we showed how to use DCR processes for the specification of
declarative workflows (c.f. Section 3), and the generation of compliance rules (c.f.:
Section 4). In this section, we will consider compliance as a particular instance
of DCR process refinement [10], between each of the instances generated by a
compliance rule, and the process specification.

Abstractly, we take refinement to be just inclusion of languages (trace sets).
Given a sequence s, write si for the i-th element of s, and s|Σ for the largest
sub-sequence s′ of s such that s′i ∈ Σ for 0 < i ≤ |s|; e.g, if s = AABC then
s|A,C = AAC. We lift projection to sets of sequences point-wise.

Definition 5 (Refinement [11]). Let P,Q be processes. We say that Q is a
refinement of P iff lang(Q)|alph(P) ⊆ lang(P). We will write R�P whenever R
is a refinement of P .

In practice, we will use a notion of refinement by composition, as introduced
in [11] to define a "refines" relation between a process and an instance of a
compliance rule. To define composition, we need to merge parallel markings and
effects. Merge on markings is partial, since it is only defined on markings that
agree on their overlap:

(M1, e : m)⊕ (M2, e : m) = (M1 ⊕M2), e : m

(M1, e : m)⊕M2 = (M1 ⊕M2), e : m when e �∈ dom(M2)

M1 ⊕ (M2, e : m) = (M1 ⊕M2), e : m when e �∈ dom(M1).

The merge of effects δ is defined as the pointwise union of each of the sets of
excluded/included/pending events: (Exc1, Inc1, P en1) ⊕ (Exc2, Inc2, P en2) =
(Exc1 ∪ Exc2, Inc1 ∪ Inc2, P en1 ∪ Pen2).

Definition 6 (Merge & Marking Compatibility). The merge of processes
[M] λ1 T and [N] λ2 U is defined if the merge of markings M ⊕ N is defined
and the labelling functions agree as well, in which case [M] λ1 T ⊕ [N] λ2 U =
[M ⊕N] (λ1 ∪ λ2) (T ‖ U). If the merge of two processes is defined, we say that
they are marking compatible.

We can now define the refines relation between an instance P of a compliance
rule and a marking compatible process Q (i.e.: the process model) as follows.

Definition 7 (Refines). Let P,Q be marking compatible processes. We say that
Q refines P iff P ⊕Q�P .

Note that even though P⊕Q = Q⊕P , it may still be the case that P⊕Q�P
but not of P ⊕Q ��Q.

Definition 8 (Compliance). Let P,R be DCR processes, and G be a set of
term alignments from R to P . We say that P is strongly (resp. weakly) compliant
with R under G, written P ≤ s

GR (resp. P ≤w
GR) if ∀Ri ∈ Inst(R,G, P), P

refines Ri (resp. if ∃Ri ∈ Inst(R,G, P), P refines Ri).

Business Process Compliance using Reference Models of Law 391

That is, take rule R, a process P and a term alignment mapping labels in
R to P . (Strong) compliance requires us to 1) generate all instances of R in P
and 2) check whether the merge of each instance with the P is compatible (i.e.
refines) the instance. Notice that while instances and the process will have their
merge defined, P might have different constraints that might affect refinement.

We close this section stating results regarding the decidability and tractability
of compliance checking for DCR processes.

Theorem 1 (Compliance checking is decidable). Let P,R be DCR pro-
cesses, and let G be a set of term alignments from R to P . Then checking P ≤w

GR
and P ≤ s

GR is decidable.

Proof. We know from [11] that refinement of DCR processes is known to be
decidable; this fact relies on the state space of a DCR process being finite. Time
does not change this; see [24] for details. It is therefore sufficient to prove that for
any R and G, the set Inst(R,G, P) is finite. By Definition 3, this set is bounded
by the size of G and the number of possible substitutions σ. But G is finite by
definition, and σ is clearly uniquely determined given a g ∈ G. ��

While generally checking refinement for DCR processes is NP-hard already
in the absence of time, [11] showed that the refines relation can be approximated
by a static property, the non-invasiveness on the graphs recalled below.

Definition 9 (Non-invasiveness [11]). Let P = [MP] λP TP and R be mark-
ing compatible processes. We say that P is non-invasive for R iff

1. For every context C[−], such that TP = C[e →% f] or TP = C[e →+ f],
f �∈ fe(R); and

2. For every label l ∈ alph(P)∩alph(R), if e ∈ fe(P) is labelled l, then e ∈ fe(R).

.

That is, a process P is non-invasive for a process R if it does not introduce
inclusion or exclusion relations on the events of R. We note that this property
can straightforwardly be determined in polynomial time.

Lemma 1. Non-invasiveness is decidable in polynomial time.

Proof. Follows from Definition 9: an algorithm only needs to check for each
inclusion and exclusion relation in P if the target event exists in R.

In [11] it was also shown that non-invasiveness guarantees the refine relation.
This can be extended to timed processes.

Theorem 2. If P is non-invasive for R then P refines R.

Proof (sketch). We need to extend the proof in [11] to timed processes observing
the following: 1) in the case of conflicting deadlines the most strict deadlines
always take precedence, 2) therefore after composition of a R and P which
share a timed relation with a different deadline, the most strict deadline will
be followed, and 3) the composed process will not allow for traces which were
forbidden under the strictest deadline. ��

392 H. A. López et al.

We can apply this result to compliance, and show that a process is compliant
with a compliance rule, if it is non-invasive for all term alignments.

Lemma 2. Let P,R be DCR processes, and G be a set of term alignments
from R to P , P is strongly (resp. weakly) compliant with R under G if ∀Ri ∈
Inst(R,G, P), P is non-invasive for Ri.

Proof. Follows directly from Definition 8 and Theorem 2.

Correspondingly, this means that compliance checking is a polynomial time
task if P is non-invasive for R for all term alignments.

Theorem 3. If P is non-invasive ∀Ri ∈ Inst(R,G, P), then checking P ≤w
GR

and P ≤ s
GR is polynomial in R,G, P .

Proof. Follows directly from Lemmas 1 and 2.

We conclude that through careful construction of the process model, in partic-
ular by avoiding the unnecessary introduction of exclusion and inclusion relations
on events which may be governed by compliance rules, we can significantly reduce
the time complexity of checking the compliance of the process. This comes in
contrast to approaches based in annotated imperative business processes, which
to a great extent belong to the non-polynomial complexity class [45].

Corollary 1. Pspec ≤G1
RC1, Pspec ≤G2

RC2, and Pspec �≤G3
RC3

6 Adoption considerations

We describe two uses of the compliance framework: one at the municipality of
Syddjurs (DK), and another at the municipality of Genoa (IT). The municipal-
ities selected processes in different domains: the provision of benefits offered to
young persons with special needs (DK), and the release of construction permits
(IT). They were regulated by different laws, for which reference models of se-
lected articles were created by compliance specialists. The reference models of
articles in the Danish Consolidation for Social Services [44] and the Construc-
tion Law of the Liguria region [40] vary on size and complexity, ranging from a
minimum of 4 events and 12 relations, up to 86 events and 125 relations in a
single article. The intended use of the framework varied: while Syddjurs aims at
driving a new implementation of their processes, Genoa wanted to verify their
current implementations with respect to the law. The work was carried out by
case workers within the municipality (DK), and a consultancy house (IT). We
collected feedback from users generating reference models of law about their use,
benefits and challenges. Both organisations commented that the pairing of laws
and models provide them traceability, and allowed lawyers to be part in the co-
creation of process implementations using their domain knowledge. Moreover,
law-process pairings helped them to understand the legislation, making evident
bottlenecks in a process (an activity that for which many other events depend

Business Process Compliance using Reference Models of Law 393

on), and showed them previously unknown paths for achieving goal, while still
be in accordance to the law. This aligns with previous studies on comprehension
of hybrid artefacts combining texts and declarative models [3]. On their use,
both organisations agreed that some laws are too general, and they required
implementation guidelines to complete their models. A challenge concerned the
writing style of the guidelines: if guidelines have been written in an impera-
tive style, there is a risk of over-constraining the model. When asked about the
understandability of the models, they reported that after an initial training, gen-
erated models were understandable for compliance specialist, and they could be
used as communication artefacts. However, they also reported challenges on the
understandability of large models, and suggested the inclusion of abstractions to
increase model comprehension. With respect to compliance, the main challenge
concerned term alignment, as it currently needs to be hard-coded (no tool sup-
port). In some cases, an event in the law had a 1-to-many correspondence with
the process. Another suggestion was to extend feedback support to reasons for
non-compliance, rather than yes/no outputs.

7 Related Work

We can divide related approaches into four categories:
Model Checking techniques : Most model checking techniques for compliance

[19] represent the process as a finite state machine and the laws in a temporal
logic. We differ from such approaches in that we use a declarative process lan-
guage both for defining the process and laws. The reasons are threefold: First, it
is known that some of these languages present technical difficulties when mod-
elling permissions, obligations and defeasible (i.e.: exceptional) conditions [16].
These concepts are straightforward in DCR graphs: permissions are encoded as
enabled events, obligations are the composition of events using a response re-
lation, and defeasible conditions are represented by mutual exclusion relations
between events. The second advantage is the possibility of combining process
narratives and visual notations: our work puts forward the recommendations
from [36] that states that higher cognitive loads can be achieved when combin-
ing process descriptions with graphical notations. This is particularly important
in our case, as compliance specialists in local governments do not have prior
training in using verification techniques using temporal logics. Finally, verifica-
tion is efficient: it relies on refinement of transition systems with responses [6,28],
and although the complexity process refinement belongs to the category of NP-
hard problems [11], we have shown that we can use syntactic restrictions to check
compliance in polynomial time.

Compliance Refinement : Seaflows [31] proposes an alignment of compliance
requirements into business processes. Laws are modelled in terms of constraints
over event traces that can be verified at design-time and monitored at run-time.
However, no specific constraint specification language is provided. The work
in [41] presents a refinement-based approach where abstract business processes
representing laws are incrementally refined until executable processes can be

394 H. A. López et al.

generated. The nature of such abstract business processes is imperative, given
in BPMN diagrams, which imposes rigidity on how to achieve certain rights.

Compliance-by-design (CbD): FCL/PCL & Regorous [13,14,17,18,21] treats
compliance as a property of the process to execute while not violating the laws
in a regulation. Compliance checking requires to 1. identify the deontic effects
of the set of modelled regulations, 2. determine the tasks and the obligations
in force for each task, and 3. check whether the obligations have been fulfilled
or postponed after the execution of a task. While we subscribe to CbD as a
methodology, our approach differs in the fact that there is no need to map a
declarative language (such as PCL and FCL) into an imperative specification.

Visual Languages for Compliance: The work in [26] introduces eCRG, a vi-
sual modelling notation for compliance rules including control flow, interaction,
time, data, and resource perspectives. eCRG rules are then paired with event
logs to determine whether completed or running process instances are compliant.
While our approach is mostly tailored to design stages, [26] focuses on after-the-
fact compliance. Finally, the BPMN-Q language [4] provides a visual notation
to CTL, and the language describes compliance rules including control and data
flow aspects, that are later model-checked against BPMN models. Declare [38]
is LTL based and in principle, the compliance checking approach presented here
could also be used. However, its LTL-semantics has been shown to present tech-
nical difficulties when modelling obligations and defeasible conditions [16].

8 Concluding Remarks

We presented a verification framework for the design of process models that
are compliant with regulations. This work exploits the similarities of declarative
process languages with logical languages to be able to express models of law.
In this manner, both process models and models of law are described in the
same declarative notation, and it becomes straightforward to verify whether
compliance is achievable. We show that compliance can be checked efficiently in
polynomial time, given careful construction of the models.

While the focus of this paper is centred on CbD approaches, it accommo-
dates after-the-fact compliance. In future work we will explore other variants of
compliance, such as process conformance based on event logs. Our results rely
on the choice of DCR as language for reference and process models, and in this
paper we have restricted ourselves to a version of DCR graphs without subpro-
cesses and locality. The decidability results in Thm. 1 will not hold with the
inclusion of these operators. We have not needed to consider such constructs in
the construction of compliance rules so far, but it would be interesting to revisit
them in future work, as well as multi-dimensional compliance policies [39].

Acknowledgments: Thanks to Nicklas Healy from Syddjurs Kommune,
and Paolo Gangemi from MAPS Group for their evaluations on the compli-
ance framework. This work has been financially supported by the Innovation
Fund Denmark project EcoKnow.org (7050-00034A), and the European Union
Marie Sklodowska-Curie grant agreement BehAPI No.778233.

Business Process Compliance using Reference Models of Law 395

References

1. Aalst, van der, W.: Process mining: discovery, conformance and enhancement of
business processes. Springer, Germany (2011). https://doi.org/10.1007/978-3-642-
19345-3

2. Agafitei, S.: Usability and understandability studies of business process notations
within the construction industry. Master’s thesis, IT University of Copenhagen
(August 2019)

3. Andaloussi, A.A., Buch-Lorentsen, J., López, H.A., Slaats, T., Weber, B.: Explor-
ing the modeling of declarative processes using a hybrid approach. In: Laender,
A.H.F., Pernici, B., Lim, E.P. (eds.) Intl. Conference on Conceptual Modelling
(ER). Lecture Notes in Computer Science, vol. 11788. Springer (4 2019)

4. Awad, A., Weidlich, M., Weske, M.: Visually specifying compliance rules and ex-
plaining their violations for business processes. Journal of Visual Languages &
Computing 22(1), 30–55 (Feb 2011)

5. Basin, D.A., Debois, S., Hildebrandt, T.T.: In the nick of time: Proactive pre-
vention of obligation violations. In: IEEE 29th Computer Security Foundations
Symposium, CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016. pp. 120–134.
IEEE Computer Society (2016). https://doi.org/10.1109/CSF.2016.16

6. Carbone, M., Hildebrandt, T.T., Perrone, G., Wasowski, A.: Refinement for
transition systems with responses. In: Bauer, S.S., Raclet, J. (eds.) Pro-
ceedings Fourth Workshop on Foundations of Interface Technologies, FIT
2012, Tallinn, Estonia, 25th March 2012. EPTCS, vol. 87, pp. 48–55 (2012).
https://doi.org/10.4204/EPTCS.87.5

7. Council of European Union: Regulation (eu) 2016/679 of the european parliament
and of the council of 27 april 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of such data.
https://publications.europa.eu/s/llVw (May 2016)

8. Danish Parliament (Folketinget): Act on supplementary provisions to the regula-
tion on the protection of natural persons with regard to the processing of personal
data and on the free movement of such data (the data protection act). https:
//www.datatilsynet.dk/media/6894/danish-data-protection-act.pdf (May 2018)

9. Debois, S., Hildebrandt, T., Slaats, T.: Concurrency and asynchrony in declarative
workflows. In: Business Process Management (BPM). LNCS, vol. 9253. Springer,
Cham (2016)

10. Debois, S., Hildebrandt, T.T., Slaats, T.: Safety, liveness and run-time refinement
for modular process-aware information systems with dynamic sub processes. In:
Bjørner, N., de Boer, F.S. (eds.) FM. LNCS, vol. 9109, pp. 143–160. Springer
(2015). https://doi.org/10.1007/978-3-319-19249-9_10

11. Debois, S., Hildebrandt, T.T., Slaats, T.: Replication, refinement & reachabil-
ity: complexity in dynamic condition-response graphs. Acta Informatica pp. 1–32
(2017). https://doi.org/10.1007/s00236-017-0303-8

12. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A., et al.: Fundamentals of
business process management, vol. 1. Springer (2013)

13. Governatori, G.: The regorous approach to process compliance. In: Proceedings
of the 2015 IEEE 19th International Enterprise Distributed Object Computing
Conference Workshops and Demonstrations, EDOCW 2015. pp. 33–40 (2015)

14. Governatori, G., Sadiq, S.: The journey to business process compliance.
Handbook of Research on Business Process Modeling pp. 426–454 (2009).
https://doi.org/10.4018/978-1-60566-288-6.ch020

396 H. A. López et al.

15. Governatori, G.: Representing business contracts in ruleml. International Journal
of Cooperative Information Systems 14(02n03), 181–216 (2005)

16. Governatori, G.: Thou shalt is not you will. In: Proceedings of the 15th Interna-
tional Conference on Artificial Intelligence and Law. pp. 63–68. ICAIL ’15, ACM,
New York, NY, USA (2015). https://doi.org/10.1145/2746090.2746105

17. Governatori, G., Rotolo, A.: How do agents comply with norms? In: Proceedings
of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence
and Intelligent Agent Technology-Volume 03. pp. 488–491. IEEE Computer Society
(2009)

18. Governatori, G., Rotolo, A.: Norm Compliance in Business Process Modeling. In:
Semantic Web Rules. pp. 194–209. Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg (Oct 2010). https://doi.org/10.1007/978-3-642-16289-3_17

19. Hashmi, M., Governatori, G., Lam, H.P., Wynn, M.T.: Are we done with busi-
ness process compliance: state of the art and challenges ahead. Knowledge and
Information Systems pp. 1–55 (2018)

20. Hashmi, M., Governatori, G., Wynn, M.T.: Normative requirements for business
process compliance. In: Australian Symposium on Service Research and Innovation.
pp. 100–116. Springer (2013)

21. Hashmi, M., Governatori, G., Wynn, M.T.: Normative requirements for regulatory
compliance: An abstract formal framework. Information Systems Frontiers 18(3),
429–455 (2016)

22. Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as dis-
tributed dynamic condition response graphs. In: PLACES. vol. 69, pp. 59–73 (2010)

23. Hildebrandt, T.T., Mukkamala, R.R., Slaats, T.: Nested dynamic condition re-
sponse graphs. In: FSEN. LNCS, vol. 7141, pp. 343–350. Springer (2011)

24. Hildebrandt, T.T., Mukkamala, R.R., Slaats, T., Zanitti, F.: Contracts for cross-
organizational workflows as timed dynamic condition response graphs. Journal of
Logic and Algebraic Programming 82(5-7), 164–185 (2013)

25. Hildebrandt, T.T., Slaats, T., López, H.A., Debois, S., Carbone, M.: Declarative
choreographies and liveness. In: Formal Techniques for Distributed Objects, Com-
ponents, and Systems, FORTE. LNCS, Springer, Accepted for Publication (Febru-
ary 2019)

26. Knuplesch, D., Reichert, M.: A visual language for modeling multiple perspectives
of business process compliance rules. Software & Systems Modeling 16(3), 715–736
(2017)

27. Legal Information Institute, Cornell Law School: Stare decisis. https://www.law.
cornell.edu/wex/stare_decisis (May 2019)

28. López, H.A.: Foundations of Communication-Centred Programming. Ph.D. thesis,
IT University of Copenhagen (2012)

29. López, H.A., Debois, S., Hildebrandt, T.T., Marquard, M.: The process high-
lighter: From texts to declarative processes and back. In: BPM (Disserta-
tion/Demos/Industry). CEUR Workshop Proceedings, vol. 2196, pp. 66–70.
CEUR-WS.org (2018)

30. López, H.A., Marquard, M., Muttenhaler, L., Strømsted, R.: Assisted declarative
process creation from natural language descriptions. In: Franke, U., Kornyshova, E.,
Lê, L.S. (eds.) 23rd IEEE International Enterprise Distributed Object Computing
(EDOC). vol. 2325-6605, pp. 96–99. IEEE (10 2019)

31. Ly, L.T., Rinderle-Ma, S., Göser, K., Dadam, P.: On enabling integrated process
compliance with semantic constraints in process management systems. Information
Systems Frontiers 14(2), 195–219 (Apr 2012). https://doi.org/10.1007/s10796-009-
9185-9

Business Process Compliance using Reference Models of Law 397

32. Mukkamala, R.R., Hildebrandt, T.T., Slaats, T.: Towards trustworthy adaptive
case management with dynamic condition response graphs. In: EDOC. pp. 127–
136. IEEE Computer Society (2013)

33. Nekrasaite, V., Parli, A.T., Back, C.O., Slaats, T.: Discovering responsibilities
with dynamic condition response graphs. In: Conference on Advanced Information
Systems Engineering (CAiSE) (2019)

34. Object Management Group UML Technical Committee: Unified Modeling Lan-
guage, version 2.5.1 (2017), http://www.omg.org/spec/UML/2.5.1/

35. OMG: Business Process Model and Notation (BPMN), Version 2.0 (January 2011),
http://www.omg.org/spec/BPMN/2.0

36. Ottensooser, A., Fekete, A., Reijers, H.A., Mendling, J., Menictas, C.: Making
sense of business process descriptions: An experimental comparison of graphical
and textual notations. Journal of Systems and Software 85(3), 596 – 606 (2012).
https://doi.org/https://doi.org/10.1016/j.jss.2011.09.023, novel approaches in the
design and implementation of systems/software architecture

37. Pesic, M., van der Aalst, W.: A Declarative Approach for Flexible Business Pro-
cesses Management. Lecture Notes in Computer Science 4103, 169 (2006)

38. Pesic, M., Schonenberg, H., Aalst, W.M.P.v.d.: DECLARE: Full Sup-
port for Loosely-Structured Processes. In: EDOC. pp. 287–287 (Oct 2007).
https://doi.org/10.1109/EDOC.2007.14

39. Ramezani, E., Fahland, D., Aalst, W.M.P.v.d.: Where Did I Misbehave? Diagnostic
Information in Compliance Checking. In: Business Process Management. pp. 262–
278. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (Sep 2012).
https://doi.org/10.1007/978-3-642-32885-5_21

40. Regione Liguria: Legge regionale n.16 del 6 giugno 2008 e successive modifiche
(2008),
https://www.regione.liguria.it/components/com_publiccompetitions/includes/
download.php?id=9145:legge-regionale-n-16-del-6-giugno-2008-e-successive-
modifiche.pdf

41. Schleicher, D., Anstett, T., Leymann, F., Schumm, D.: Compliant Business Process
Design Using Refinement Layers. In: On the Move to Meaningful Internet Systems:
OTM 2010. pp. 114–131. Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg (Oct 2010). https://doi.org/10.1007/978-3-642-16934-2_11

42. Slaats, T., Debois, S., Hildebrandt, T.T.: Open to change: A theory for iterative
test-driven modelling. In: BPM. Lecture Notes in Computer Science, vol. 11080,
pp. 31–47. Springer (2018)

43. Strømsted, R., López, H.A., Debois, S., Marquard, M.: Dynamic evaluation
forms using declarative modeling. In: BPM (Dissertation/Demos/Industry). CEUR
Workshop Proceedings, vol. 2196, pp. 172–179. CEUR-WS.org (2018)

44. The Danish Ministry of Social Affairs and the Interior: Consolidation Act on So-
cial Services (Sep 2015), http://english.sm.dk/media/14900/consolidation-act-on-
social-services.pdf, Executive Order no. 1053 of 8 September 2015; File no. 2015-
4958

45. Tosatto, S.C., Governatori, G., van Beest, N.: Checking regulatory compliance: Will
we live to see it? In: International Conference on Business Process Management.
pp. 119–138. Springer (2019)

46. Zugal, S., Pinggera, J., Weber, B.: Creating declarative process models using test
driven modeling suite. In: International Conference on Advanced Information Sys-
tems Engineering. pp. 16–32. Springer (2011)

398 H. A. López et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

Business Process Compliance using Reference Models of Law 399

Algorithmic Analysis of Blockchain Efficiency
with Communication Delay

Carlos Pinzón, Camilo Rocha, Jorge Finke

Pontificia Universidad Javeriana, Cali, Colombia

Abstract. A blockchain is a distributed hierarchical data structure.
Widely-used applications of blockchain include digital currencies such
as Bitcoin and Ethereum. This paper proposes an algorithmic approach
to analyze the efficiency of a blockchain as a function of the number of
blocks and the average synchronization delay. The proposed algorithms
consider a random network model that characterizes the growth of a tree
of blocks by adhering to a standard protocol. The model is paramet-
ric on two probability distribution functions governing block production
and communication delay. Both distributions determine the synchroniza-
tion efficiency of the distributed copies of the blockchain among the so-
called workers and, therefore, are key for capturing the overall stochastic
growth. Moreover, the algorithms consider scenarios with a fixed or an
unbounded number of workers in the network. The main result illustrates
how the algorithms can be used to evaluate different types of blockchain
designs, e.g., systems in which the average time of block production can
match the average time of message broadcasting required for synchro-
nization. In particular, this algorithmic approach provides insight into
efficiency criteria for identifying conditions under which increasing block
production has a negative impact on the stability of a blockchain. The
model and algorithms are agnostic of the blockchain’s final use, and they
serve as a formal framework for specifying and analyzing a variety of
non-functional properties of current and future blockchains.

1 Introduction

A blockchain is a distributed hierarchical data structure that cannot be modified
(retroactively) without alteration of all subsequent blocks and the consensus of a
majority. It was invented to serve as the public transaction ledger of Bitcoin [22].
Instead relying on a trusted third party, this digital currency is based on the
concept of ‘proof-of-work’, which allows users to execute payments by signing
transactions using hashes through a distributed time-stamping service. Resis-
tance to modifications, decentralized consensus, and robustness for supporting
cryptocurrency transactions, unleashes the potential of blockchain technology
for uses in various industries, including financial services [12,26,3], distributed
data models [5], markets [25], government systems [15,23], healthcare [13,1,18],
IoT [16], and video games [21].

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 400–419, 2020.
https://doi.org/10.1007/978-3-030-45234-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_20&domain=pdf

Technically, a blockchain is a distributed append-only data structure com-
prising a linear collection of blocks, shared among so-called workers, also re-
ferred often as miners. These miners generally represent computational nodes
responsible for working on extending the blockchain with new blocks. Since the
blockchain is decentralized, each worker possesses a local copy of the blockchain,
meaning that two workers can build blocks at the same time on unsynchronized
local copies of the blockchain. In the typical peer-to-peer network implementa-
tion of blockchain systems, workers adhere to a consensus protocol for inter-node
communication and validation of new blocks. Specifically, workers build on top
of the largest blockchain. If they encounter two blockchains of equal length,
then workers select the chain whose last produced block was first observed. This
protocol generally guarantees an effective synchronization mechanism, provided
that the task of producing new blocks is hard to achieve in comparison to the
time it takes for inter-node communication. The effort of producing a block rel-
ative to that of communicating among nodes is known in the literature as ‘proof
of work’. If several workers extend different versions of the blockchain, the con-
sensus mechanism enables the network to eventually select only one of them,
while the others are discarded (including the data they carry) when local copies
are synchronized. The synchronization process persistently carries on upon the
creation of new blocks.

The scenario of discarding blocks massively, which can be seen as an efficiency
issue in a blockchain implementation, is rarely present in “slow” block-producing
blockchains. The reason is that the time it takes to produce a new block is
long enough for workers to synchronize their local copies of the blockchain. Slow
blockchain systems avert workers from wasting resources and time in producing
blocks that are likely to be discarded in an upcoming synchronization. In Bitcoin,
for example, it takes on average 10 minutes for a block to be produced and only
12.6 seconds to communicate an update [8]. The theoretical fork-rate of Bitcoin
in 2013 was approximately 1.78% [8]. However, as the blockchain technology
finds new uses, it is being argued that block production needs to be faster [6,7].
Broadly speaking, understanding how speed-ups in block production can neg-
atively impact blockchains, in terms of the number of blocks discarded due to
race conditions among the workers, is important for designing new fast and yet
efficient blockchains.

This paper introduces a framework to formally study blockchains as a particu-
lar class of random networks with emphasis in two key aspects: the speed of block
production and the network synchronization delays. As such, it is parametric on
the number of workers under consideration (possibly infinite), the probability
distribution function that specifies the time for producing new blocks, and the
probability distribution function that specifies the communication delay between
any pair of randomly selected workers. The model is equipped with probabilistic
algorithms to simulate and formally analyze blockchains concurrently produc-
ing blocks over a network with varying communication delays. These algorithms
focus on the analysis of the continuous process of block production in fast and
highly distributed systems, in which inter-node communication delays are cru-

Algorithmic Analysis of Blockchain Efficiency with Communication Delay 401

cial. The framework enables the study of scenarios with fast block production,
in which blocks tend to be discarded at a high rate. In particular, it captures the
trade-off between speed and efficiency. Experiments are presented to understand
how this trade-off can be analyzed for different scenarios. As fast blockchain
systems tend to spread to novel applications, the algorithmic approach provides
mathematical tools for specifying, simulating, and analyzing blockchain systems.

It is important to highlight that the proposed model and algorithms are ag-
nostic of the concrete implementation and final use of the blockchain system.
For instance, the ‘rewards’ for mining blocks such as the ones present in the
Bitcoin network are not part of the model and are not considered in the analy-
sis algorithms. On the one hand, this sort of features can be seen as particular
mechanisms of a blockchain implementation that are not explicitly required for
the system to evolve as a blockchain. Thus, including them as part of the frame-
work can narrow its intended aim as a general specification, design, and analysis
tool. On the other hand, such features may be abstracted away into the proposed
model by tuning the probability distribution functions that are parameters of
the model, or by considering a more refined base of choices among the many
probability distribution functions at hand for a specific analysis. Therefore, the
proposed model and algorithms are general enough to encompass a wide variety
of blockchain systems and their analysis.

The contribution of this work is threefold. First, a random network model
is introduced (in the spirit of, e.g., Barabasi-Albert [4] and Erdös-Renyi [9]) for
specifying blockchains in terms of the speed of block production and communica-
tion delays for synchronization among workers. Second, exact and approximation
algorithms for the analysis of blockchain efficiency are made available. Third,
based on the proposed model and algorithms, empirical observations about the
tensions between production speed and synchronization delay are provided.

The remaining sections of the paper are organized as follows. Section 2 sum-
marizes basic notions of proof-of-work blockchains. Sections 3 and 4 introduce
the proposed network model and algorithms. Section 5 presents experimental re-
sults on the analysis of fast blockchains. Section 6 relates these results to existing
research, and draws some concluding remarks and future research directions.

2 An Overview of Proof-of-work Blockchains

This section overviews the concept of proof-of-work distributed blockchain sys-
tems and introduces basic definitions, which are illustrated with the help of an
example.

A blockchain is a distributed hierarchical data structure of blocks that cannot
be modified (retroactively) without alteration of all subsequent blocks and the
consensus of the network majority. The nodes in the network, called workers,
use their computational power to generate blocks with the goal of extending the
blockchain. The adjective ‘proof-of-work’ comes from the fact that producing a
single block for the blockchain tends to be a computationally hard task for the
workers, e.g., a partial hash inversion.

402 C. Pinzón et al.

Definition 1. A block is a digital document containing: (i) a digital signature
of the worker who produced it; (ii) an easy to verify proof-of-work witness in the
form of a nonce; and (iii) a hash pointer to the previous block in the sequence
(except for the first block, called the origin, that has no previous block and is
unique).

Technical definitions of blockchain as a data structure have been proposed
by different authors (see, e.g., [27]). Most of them coincide on it being an im-
mutable, transparent, and decentralized data structure shared by all workers
in the network. For the purpose of this paper, it is important to distinguish
between the local copy, independently owned by each worker, and the abstract
global blockchain, shared by all workers. The latter holds the complete history
of the blockchain.

Definition 2. The local blockchain of a worker w is a non-empty sequence of
blocks stored in the local memory of w. The global blockchain (or, blockchain)
is the minimal rooted tree containing all workers’ local blockchains as branches.

Under the assumption that the origin is unique (Definition 1), the (global)
blockchain is well-defined for any number of workers present in the network.
If there is at least one worker, then the blockchain is non-empty. Definition 2
allows for local blockchains to be either synchronized or unsynchronized. The
latter is common in systems with long communication delays or in the presence
of anomalous situations (e.g., if a malicious group of workers is holding a fork
intentionally). As a consequence, the global blockchain cannot simply be defined
as a unique sequence of blocks, but rather as a distributed data structure against
which workers are assumed to be partly synchronized to.

Figure 1 presents an example of a blockchain with five workers, where blocks
are represented by natural numbers. On the left, the local blockchains are de-
picted as linked lists; on the right, the corresponding global blockchain is depicted
as a rooted tree. Some of the blocks in the rooted tree representation in Figure 1
are labeled with the identifier of a worker, which indicates the position of each
worker in the global blockchain. For modeling, the rooted tree representation of
a blockchain is preferred. On the one hand, it can reduce the amount of memory
needed for storage and, on the other hand, it visually simplifies the inspection
of the data structure. Furthermore, storing a global blockchain with m workers
containing n unique blocks as a collection of lists requires in the worst-case sce-
nario O(mn) memory (i.e., with perfect synchronization). In contrast, the rooted
tree representation of the same blockchain with m workers and n unique blocks
requires O(n) memory for the rooted tree (e.g., using parent pointers) and an
O(m) map for assigning each worker its position in the tree, totaling O(n+m)
memory.

A blockchain tends to achieve synchronization among the workers due to the
following reasons. First, workers follow a standard protocol in which they are
constantly trying to produce new blocks and broadcasting their achievements to
the entire network. In the case of cryptocurrencies, for instance, this behavior
is motivated by paying a reward. Second, workers can easily verify (i.e., with

Algorithmic Analysis of Blockchain Efficiency with Communication Delay 403

w0 : 0 1�� 5�� 0 1�� 5w0��

w1 : 0 2�� 3�� 6�� 2

��
3w3�� 6w1,w4��

w2 : 0 2�� 4�� 4w2

��

w3 : 0 2�� 3��

w4 : 0 2�� 3�� 6��

Fig. 1: A blockchain network of five workers with their local blockchains (left) and
the corresponding global blockchain (right); blocks are represented by natural
numbers. Workers w0, w2, and w3 are not yet synchronized with the longest
sequence of blocks.

a fast algorithm) the authenticity of any block. If a malicious worker (i.e., an
attacker) changes the information of one block, that worker is forced to repeat
the extensive proof-of-work process for that block and all its subsequent blocks
in the blockchain. Otherwise, its malicious modification cannot become part of
the global blockchain. Since repeating the proof-of-work process requires that
the attacker spends a prohibitively high amount of resources (e.g., electricity,
time, and/or machine rental), such a situation is unlikely to occur. Third, the
standard protocol forces any malicious worker to confront the computational
power of the whole network, assumed to have mostly honest nodes.

Algorithm 1 presents a definition of the above-mentioned standard protocol,
which is followed by each worker in the network. When a worker produces a new
block, it is appended to the block it is standing on, moves to it, and notifies the
network about its current position and new distance to the root. Upon reception
of a notification, a worker compares its current distance to the root with the
incoming position. Such a worker switches to the incoming position whenever
it represents a greater distance. To illustrate the use of the standard protocol
with a simple example, consider the blockchains depicted in figures 1 and 2. In
the former, either w1 or w4 produced block 6, but the other workers are not yet
aware of its existence. In the latter, most of the workers are synchronized with
the longest branch, which is typical of a slow blockchain system, and results in
a tree with few and short branches.

0 1�� 2�� 4�� 5w7�� 6w0,...,w6��

3
��

Fig. 2: Example of a typical slow system with few and short branches.

Some final remarks on inter-node communication and implementations for
enforcing the standard protocol are due. Note that message communication in the
standard protocol is required to include enough information about the position of
a worker to be located in the tree. The detail degree of this information depends,
generally, on the design of the particular blockchain system. On the one hand,

404 C. Pinzón et al.

Algorithm 1: Standard protocol for each worker wi in a blockchain.
1 Bi ← [origin]
2 do forever
3 do in parallel, stop on first to occur
4 Task 1: b ← produce a subsequent block for Bi

5 Task 2: B′ ← notification from another worker
6 end
7 if Task 1 has been completed then
8 append b to Bi

9 notify workers in the network about Bi

10 else if B′ is longer than Bi then
11 Bi ← B′

12 endif

sending the complete sequence from root to end as part of such a message is an
accurate, but also expensive approach, in terms of bandwidth, computation, and
time. On the other hand, sending only the last block as part of the message is
modest on resources, but can represent a communication conundrum whenever
the worker being notified about a new block x is not yet aware of the parent
block of x. In contrast to slow systems, this situation may frequently occur in fast
systems. The workaround is to use subsequent messages to query the previous
blocks of x, as needed, thus extending the average duration of inter-working
communication.

3 A Random Network Model for Blockchains

The network model generates a rooted tree representing a global blockchain
from a collection of linked lists representing local blockchains (see Definition 2).
It consists of three mechanisms, namely, growth, attachment, and broadcast. By
growth it is meant that the number of blocks in the network increases by one
at each time step. Attachment refers to the fact that new blocks connect to an
existing block, while broadcast refers to the fact that the newly connected block
is announced to the entire network. The model is parametric in a natural number
m specifying the number of workers, and two probability distributions α and β
governing the growth, attachment, and broadcast mechanisms. Internally, the
growth mechanism creates a new block to be assigned at random among the m
workers by taking a sample from α (the time it takes to produce such a block)
and broadcasts a synchronization message, whose reception time is sampled from
β (the time it takes the other workers to update their local blockchains with the
new block).

A network at a given discrete step n is represented as a rooted tree
Tn = (Vn, En), with nodes Vn ⊆ N and edges En ⊆ Vn × Vn, and a map
wn : {0, 1, . . . ,m− 1} → Vn. A node u ∈ Vn represents a block u in the network
and an edge (u, v) ∈ En represents a directed edge from block u to its parent

Algorithmic Analysis of Blockchain Efficiency with Communication Delay 405

block v. The assignment wn(w) denotes the position (i.e., the last block in the
local blockchain) of worker w in Tn.

Definition 3. (Growth model) Let α and β be positive and non-negative prob-
ability distributions. The algorithm used in the network model starts with V0 =
{b0}, E0 = {} and w0(w) = b0 for all workers w, being b0 = 0 the root block
(origin). At each step n > 0, Tn evolves as follows:

Growth. A new block bn (or, simply, n) is created with production time αn sam-
pled from α. That is, Vn = Vn−1 ∪ {n}.

Attachment. Uniformly at random, a worker w ∈ {0, 1, . . . ,m − 1} is chosen
for the new block to extend its local blockchain. A new edge appears so that
En = En−1 ∪{(wn−1(w), n)}, and wn−1 is updated to form wn with the new
assignment w �→ n, that is, wn(w) = n and wn(z) = wn−1(z) for any z �= w.

Broadcast. Worker w broadcasts the extension of its local blockchain with the
new block n to any other worker z with time βn,z sampled from β.

The rooted tree generated by the model in Definition 3 begins with block 0
(the root) and adds new blocks n = 1, 2, . . . to some of the workers. At
each step n > 0, a worker w is selected at random and its local blockchain,
0 ← · · · ← wn−1(w), is extended to 0 ← · · · ← wn−1(w) ← n = wn(w). This re-
sults in a concurrent random global behavior, inherent to distributed blockchain
systems, not only because the workers are chosen randomly due to the proof-
of-work scheme, but also because the communication delays bring some workers
out of sync. It is important to note that the steps n = 0, 1, 2, . . . are logical time
steps, not to be confused with the sort of time units sampled from the variables
α and β. More precisely, although the model does not mention explicitly the time
advancement, it assumes implicitly that workers are synchronized at the corre-
sponding point in the logical future. For instance, if w sends a synchronization
message of a newly created block n to another worker z, at the end of logical
step n and taking βn,z time, the message will be received by z during the logical
step n′ ≥ n that satisfies

∑n′

i=n+1 αi ≤ βn,z <
∑n′+1

i=n+1 αi.
Another two reasonable assumptions are implicitly made in the model,

namely: (i) the computational power of all workers is similar; and (ii) any broad-
casting message includes enough information about the new and previous blocks,
so that no re-transmission is required to fill block gaps (or, equivalently, that
these re-transmission times are included in the delay sampled from β). Assump-
tion (i) justifies why the worker producing the new block is chosen uniformly at
random. Thus, instead of simulating the proof-of-work of the workers to know
who will produce the next block and at what time, it is enough to select a worker
uniformly and take a sample time from α. Assumption (ii) helps in keeping the
model description simple. Without Assumption (ii), it would be mandatory to
explicitly define how to proceed when a worker is severely out of date and re-
quires several messages to get synchronized.

In practice, the distribution α that governs the time it takes for the network,
as a single entity, to produce a block is exponential with mean ᾱ. Since proof-
of-work is based on finding a nonce that makes a hashing function fall into a

406 C. Pinzón et al.

specific set of targets, the process of producing a block is statistically equivalent
to waiting for a success in a sequence of Bernoulli trials. Such waiting times
would correspond –at first– to a discrete geometric distribution. However, be-
cause the time between trials is very small compared to the average time between
successes (usually fractions of microseconds against several seconds or minutes),
the discrete geometric distribution can be approximated by a continuous expo-
nential distribution function. Finally, note that the choice of the distribution
function β that governs the communication delay, and whose mean is denoted
by β̄, heavily depends on the system under consideration and its communication
details (e.g., its hardware and protocol).

4 Algorithmic Analysis of Blockchain Efficiency

This section presents an algorithmic approach to the analysis of blockchain effi-
ciency. The algorithms are used to estimate the proportion of valid blocks that
are produced during a fixed number of growth steps, based on the network model
introduced in Section 3, for blockchains with fixed and unbounded number of
workers. In general, although presented in this section for the specific purpose of
measuring blockchain efficiency, these algorithms can be easily adapted to com-
pute other metrics of interest, such as the speed of growth of the longest branch,
the relation between confirmations of a block and the probability of being valid
in the long term, or the average length of forks.

Definition 4. Let Tn = (Vn, En) be a blockchain that satisfies Definition 3. The
proportion of valid blocks pn in Tn is defined as the random variable:

pn =
max{dist(0, u) | u ∈ Vn}

|Vn| .

The proportion of valid blocks p produced for a blockchain (in the limit) is defined
as the random variable:

p = lim
n→∞ pn.

Their expected values are denoted with p̄n and p̄, respectively.

Note that p̄n and p̄ are random variables particularly useful to determine
some important properties of blockchains. For instance, the probability that a
newly produced block becomes valid in the long run is p̄. The average rate at
which the longest branch grows is approximated by p̄/ᾱ. Moreover, the rate at
which invalid blocks are produced is approximately (1− p̄)/ᾱ and the expected
time for a block to receive a confirmation is ᾱ/p̄. Although pn and p are random
for any single simulation, their expected values p̄n and p̄ can be approximated
by averaging several Monte Carlo simulations.

The three algorithms presented in the following subsections are sequential
and single threaded1, designed to compute the value of pn under the standard
1 This would be mitigated by the fact that parallelization may be available for the

Monte-Carlo simulations.

Algorithmic Analysis of Blockchain Efficiency with Communication Delay 407

protocol (Algorithm 1). They can be used for computing p̄n and, thus, for ap-
proximating p̄ for large values of n. The first and second algorithms compute the
exact value of pn for a bounded number of workers. While the first algorithm
simulates the three mechanisms present in the network model (i.e., growth, at-
tachment, and broadcast –see Definition 3), the second one takes a more time-
efficient approach for computing pn. The third algorithm is a fast approximation
algorithm for pn, useful in the context of an unbounded number of workers. It is
of special interest for studying the efficiency of large and fast blockchain systems
because its time complexity does not depend on the number of workers in the
network.

4.1 Network Simulation with a Priority Queue

Algorithm 2 simulates the model with m workers running concurrently under the
standard protocol for up to n logical steps. It uses a list B of m block sequences
that reflect the local copy of each worker. The sequences are initially limited to
the origin block 0 and can be randomly extended during the simulation. Each
iteration of the main loop consists of four stages: (i) the wait for a new block to
be produced, (ii) the reception of messages within a given waiting period, (iii) the
addition of a block to the blockchain of a randomly selected worker, and (iv) the
broadcasting of the new position of the selected worker in the shared blockchain
to the other workers. The priority queue pq is used to queue messages for future
delivery, thus simulating the communication delays. Messages have the form
(t′, i, B′), where t′ represents the arrival time of the message, i is the recipient
worker, and B′ the content that informs that a (non-specified) worker has the
sequence of blocks B′. The statements α() and β() draw samples from α and β,
respectively.

The overall complexity of Algorithm 2 depends, as usual, on specific assump-
tions on its concrete implementation. First, let the time complexity to query
α() and β() be O(1), which is a reasonable assumption in most computer pro-
gramming languages. Second, note that the following time complexity estimates
may be higher depending on their specific implementations (e.g., if a histogram
is used instead of a continuous function for sampling these variables). In par-
ticular, consider two implementation variants. For both variants, the average
length of the priority queue with arbitrarily large n is expected to be O(m),
more precisely, mβ̄/ᾱ. Consider a scenario in which the statement Bi ← B′ is
implemented by creating a copy in O(n) time and the append statement is O(1)
time. The overall time complexity of the algorithm is O(mn2). Now consider a
scenario in which Bi ← B′ merely copies the list reference in O(1) time and the
append statement creates a copy in O(n) time. For the case where n � m, under
the assumption that the priority queue has log-time insertion and removal, the
time complexity is brought down to O(n2). In either case, the spatial complexity
is O(mn).

A key advantage of Algorithm 2 is that with a slight modification it can
return the blockchain s instead of the proportion pn, which enables a richer
analysis in the form of additional metrics different than p. For example, assume

408 C. Pinzón et al.

Algorithm 2: Simulation of m workers using a priority queue.
1 t ← 0
2 B ← [[0], [0], ..., [0]] (m block sequences, 0 is the origin)
3 pq ← empty priority queue
4 for k ← 1, ..., n− 1 do
5 t ← t+ α()
6 for (t′, i, B′) ∈ pq with t′ < t do (receive notifications)
7 pop (t′, i, B′) from pq
8 if B′ is longer than Bi then Bi ← B′ endif
9 end

10 j ← random_worker() (block producer)
11 append a new block (k) to Bj

12 for i ∈ {0, ...,m− 1} \ {j} do (publish notifications)
13 push (t+ β(), i, Bj) to pq
14 end
15 end
16 s ← argmax

s∈B
|s| (longest sequence)

17 return |s|/n

that I denotes the random variable that describes the quantity of invalid blocks
that are created between consecutive blocks. The expected value E[I] can be
estimated from p̄ as E[I] ≈ (1 − p̄)/ᾱ. Building a complete blockchain can be
used to estimate not only E[I], but also a complete histogram of I and various
properties it may possess.

4.2 A Faster Simulation Algorithm

Algorithm 3: Simulation of m workers using a matrix d

1 t0, h0, z0 ← 0, 1, 0
2 d0 ← 〈0, 0, ..., 0〉 (m elements)
3 for k ← 1, ..., n− 1 do
4 j ← random_worker()
5 tk ← tk−1 + α()
6 hk ← 1 + max {hi | i < k ∧ ti + di,j < tk} (Algorithm 4)
7 zk ← max(zk−1, hk)
8 dk ← 〈β(), ..., β(), 0, β(), ..., β()〉

︷ ︸︸ ︷

j’th position
9 end

10 return zn−1

Algorithmic Analysis of Blockchain Efficiency with Communication Delay 409

Algorithm 3 is a faster alternative to Algorithm 2. It uses a different encoding
for the collection of local blockchains. In particular, Algorithm 3 stores the length
of the blockchains instead of the sequences themselves. Thereby, it suppresses
the need for a priority queue. Algorithm 4 offers an optimized routine that can
be called from Algorithm 3.

Algorithm 4: Fast computation of hk given ti, zi, hi and di for all i < k

1 x, i ← 1, k − 1
2 while i ≥ 0 and x < zi do
3 if ti ≤ tk − di,j and hi > x then
4 x = hi

5 endif
6 i ← i− 1

7 end
8 return 1 + x (compute hk := 1 + max {hi | i < k ∧ ti + di,j < tk} ∪ {1})

Let tk represent the (absolute) time at which block k is created, hk the length
of the local blockchain after being extended with block k, and zk the cumulative
maximum given by

zk := max {hi | i ≤ k} .
The spatial complexity of Algorithm 3 is O(mn) due to the computation of

matrix d and its time complexity is O(nm+ n2) when Algorithm 4 is not used.
Note that there are n iterations, each requiring O(n) and O(m) time for com-
puting hk and dk, respectively. However, if Algorithm 4 is used for computing
hk, the average overall complexity is reduced. In the worst-case scenario, the
complexity of Algorithm 4 is O(k). However, the experimental evaluations sug-
gest an average below O(β̄/ᾱ) (constant with respect to k). Thus, the average
runtime complexity of Algorithm 3 is bounded by O

(
nm+min{n2, n+ nβ̄/ᾱ}),

and this corresponds to O(nm), unless the blockchain system is extremely fast
(β̄ � ᾱ).

4.3 An Approximation Algorithm for Unbounded Number of
Workers

Algorithms 2 and 3 compute the value of pn for a fixed number m of workers.
Both algorithms can be used to compute pn for different values of m. However,
the time complexity of these two algorithms heavily depends on the value of m,
which presents a practical limitation when faced with the task of analyzing large
blockchain systems. This section introduces an algorithm for approximating pn
for an unbounded number of workers. It also presents formal observations that
support the proposed approximation.

Recall that pn can be used as a measure of efficiency in terms of the pro-
portion of valid blocks that have been produced up to step n in the blockchain

410 C. Pinzón et al.

Tn = (Vn, En). Formally:

pn =
max{dist(0, u) | u ∈ Vn}

|Vn| .

This definition assumes a fixed number of workers. That is, pn can be written as
pm,n to represent the proportion of valid blocks in Tn with m workers. For the
analysis of large blockchains, the challenge is to find an efficient way to estimate
pm,n for large values of m and n. In other words, to find an efficient algorithm
for approximating the random variables p∗n and p∗ defined as:

p∗n = lim
m→∞ pm,n and p∗ = lim

n→∞ p∗n = lim
m,n→∞ pm,n.

The proposed approach modifies Algorithm 3 by suppressing the matrix d. The
idea is to replace the need for computing di,j by an approximation based on
the random variable β and the length of the blockchain hk in each iteration
of the main loop. Note that the first row can be assumed to be 0 wherever it
appears because d0,j = 0 for all j. For the remaining rows, an approximation is
introduced by observing that if an element Xm is chosen at random from the
matrix d of size (n − 1) × m (i.e., matrix d without the first row), then the
cumulative distribution function of Xm is given by

P (Xm ≤ r) =

{
0 , r < 0
1
m + m−1

m P (β() ≤ r) , r ≥ 0,

where β() is a sample from β. This is because the elements Xm of d are either
samples from β, whose domain is R≥0, or 0 with a probability of 1/m since there
is one zero per row. Therefore, given that the following functional limit converges
uniformly (see Theorem 1 below),

lim
m→∞

(
r

fm�→ P (Xm ≤ r)
)
=

(
r

f�→ P (β() ≤ r)
)
,

each di,j can be approximated by directly sampling the distribution β. As a
result, Algorithm 4 can be used for computing hk by replacing di,j with β().

Theorem 1. Let fk(r) := P (Xk ≤ r) and g(r) := P (β() ≤ r). The functional
sequence {fk}∞k=1 converges uniformly to g.

Proof. Let ε > 0. Define n :=
⌈

1
2ε

⌉
and let k be any integer k > n. Then

sup |fk − g| =sup

{∣∣∣∣1k +

(
k − 1

k
− 1

)
P (β() ≤ r)

∣∣∣∣ : r ≥ 0

}

≤1

k
+

1

k
sup {P (β() ≤ r) : r ≥ 0}

=
1

k
+

1

k

<
2

n
≤ ε.

�

Algorithmic Analysis of Blockchain Efficiency with Communication Delay 411

Using Theorem 1, the need for the bookkeeping matrix d and the selection of
a random worker j are discarded from Algorithm 3, resulting in Algorithm 5. The
proposed algorithm computes p∗n, an approximation of limm→∞ pm,n in which
the matrix entries di,j are replaced by samples from β, each time they are needed,
thus ignoring the arguably negligible hysteresis effects.

Algorithm 5: Approximation for limm→∞ pm,n simulation
1 t0, h0, z0 ← 0, 0, 0
2 for k ← 1, ..., n− 1 do
3 tk ← tk−1 + α()
4 hk ← 1 + max {hi | i < k ∧ ti + β() < tk} ∪ {1} (Algorithm 4*)
5 zk ← max(zk−1, hk)

6 end
7 return zn−1

Algorithm 4* stands for Algorithm 4 with β() instead of di,j (approximation)

The time complexity of Algorithm 5 implemented by using Algorithm 4 with
β() instead of di,j is O(n2) and its space complexity is O(n). If the pruning
algorithm is used, the time complexity drops below O(n+ nβ̄/ᾱ)) according to
experimentation. This complexity can be considered O(n) as long as β̄ �� ᾱ.

5 Empirical Evaluation of Blockchain Efficiency

This section presents an experimental evaluation of blockchain efficiency in
terms of the proportion of valid blocks produced by the workers for the global
blockchain. The model in Section 3 is used as the mathematical framework,
while the algorithms in Section 4 are used for experimental evaluation on that
framework. The main claim is that, under certain conditions, the efficiency of a
blockchain can be expressed as a ratio between ᾱ and β̄. Experimental evalu-
ations provide evidence on why Algorithm 5 –the approximation algorithm for
computing the proportion of valid blocks in a blockchain system with an un-
bounded number of workers– is an accurate tool for computing the measure of
efficiency p∗.

Note that the speed of a blockchain can be characterized by the relationship
between the expected values of α and β.

Definition 5. Let α and β be the distributions according to Definition 3. A
blockchain is classified as:

– slow if ᾱ � β̄,
– chaotic if ᾱ � β̄, and
– fast if ᾱ ≈ β̄.

412 C. Pinzón et al.

Definition 5 captures the intuition about the behavior of a global blockchain
in terms of how alike are the times required for producing a block and for local
block synchronization. Note that the Bitcoin implementation is classified as a
slow blockchain system because the time between the creation of two consecutive
blocks is much larger than the time it takes for local blockchains to synchronize.
In chaotic blockchains, a dwarfing synchronization time means that basically no
(or relatively little) synchronization is possible, resulting in a blockchain in which
rarely any block would be part of “the” valid chain of blocks. A fast blockchain,
however, is one in which both the times for producing a block and broadcasting
a message are similar. The two-fold goal of this section is first, to analyze the
behavior of p̄∗ for the three classes of blockchains, and second, to understand
how the trade-off between production speed and communication time affects the
efficiency of the data structure by means of a formula.

In favor of readability, the experiments presented next identify algorithms 3
and 5 as Am and A∞, respectively. Furthermore, the claims and experiments
assume that the distribution α is exponential, which holds true for proof-of-work
systems.

Claim 1 Unless the system is chaotic, the hysteresis effect of the matrix entries
di,j in Am is negligible. Moreover, limm→∞ Am(n) = A∞(n).

Note that Theorem 1 implies that if the hysteresis effect of the random vari-
ables di,j is negligible, then Algorithm 5 is a good enough approximation of
Algorithm 3. However, it does not prove that this assertion holds in general. Ex-
perimental evaluation suggests that this is indeed the case, as stated in Claim 1.

(a) Evolution of Am to A∞ as m grows.
Simulation runs contain at least 100 sam-
ples per point.

(b) High similarity between the p.d.f. of
A100 and A∞. Simulation runs contain at
least 1000 samples in total.

Fig. 3: Algorithmic simulation of n = 1000 blocks with ᾱ = 1, β̄ = 0.1, and β
exponential. The number of samples and the size of the blockchain n are chosen
such that the execution time on a standard cpu lies below a few seconds.

Algorithmic Analysis of Blockchain Efficiency with Communication Delay 413

Figure 3 summarizes the average output of Am and the region that contains
half of these outputs, for several values of m. All outputs seem to approach that
of A∞, not only for the expected value (Figure 3.(a)), but also in terms of the
generated p.d.f. (Figure 3.(b)). Similar results were obtained with several distri-
bution functions for β. In particular, the exponential, chi-squared, and gamma
probability distribution functions were used (with k ∈ {1, 1.5, 2, 3, 5, 10}), all
with different mean values. The resulting plots are similar to the ones depicted
in Figure 3.

As the quotient β̄/ᾱ grows beyond 1, the convergence of Am becomes much
slower and the approximation error is noticeable. An example is depicted in Fig-
ure 4, where a blockchain system produces on average 10 blocks during the trans-
mission of a synchronization message (i.e., the system is classified as chaotic).
Even after considering 1000 workers, the shape of the p.d.f. is shifted consider-
ably. The error can be due to: (i) the hysteresis effect that is ignored by A∞; or
(ii) the slow rate of convergence. In any case, the output of this class of systems
is very low, making them unstable and useless in practice.

Fig. 4: For chaotic systems, the convergence is slow and the approximation error
is large: with 1000 workers there is still an average output shift of around 0.005.

An intuitive conclusion about blockchain efficiency and speed of block pro-
duction is that slower systems tend to be more efficient than faster ones. That
is, faster blockchain systems have a tendency to overproduce blocks that will not
be valid.

Claim 2 If the system is either slow or fast, then

p̄∗ =
ᾱ

ᾱ+ β̄
.

Figure 5 presents an experimental evaluation of the proportion of valid blocks
in a blockchain in terms of the ratio β̄/ᾱ. For the left and right plots, the
horizontal axis represents how fast blocks are produced in comparison with how
slow synchronization is achieved. If the system is slow, then efficiency is high
because most newly produced blocks tend to be valid. If the system is fast,

414 C. Pinzón et al.

however, then efficiency is balanced because the newly produced blocks are likely
to either become valid or invalid with equal likelihood. Finally, note that for fast
and chaotic blockchains, say for 10−1 ≤ β̄/ᾱ, there is still a region in which
efficiency is arguably high. As a matter of fact, even if synchronization of local
blockchains takes on average a tenth of the time it takes to produce a block, in
general, the proportion of blocks that become valid is almost 90%. In practice,
this observation can bridge the gap between the current use of blockchains as
slow systems and the need for faster blockchains.

Fig. 5: Effect of speed on the proportion of valid blocks.

6 Related Work and Concluding Remarks

A comprehensive account of the vast literature on complex networks is beyond
the scope of this work. The aim here is more modest, namely, the focus is on re-
lated work proposing and using formal and semi-formal algorithmic approaches
to evaluate properties of blockchain systems. There are a number of recent stud-
ies that focus on the analysis of blockchain properties with respect to meta-
parameters. Some of them are based on network and node simulators. Other
studies conceptualize different metrics and models that aim to reduce the anal-
ysis to the essential parts of the system.

In [10], A. Gervais et al. introduce a quantitative framework to analyze the
security and performance implications of various consensus and network param-
eters of proof-of-work blockchains. They devise optimal adversarial strategies
for several attack scenarios while taking into account network propagation. Ulti-
mately, their approach can be used to compare the tradeoffs between blockchain
performance and its security provisions. Y. Aoki et al. [2] propose SimBlock, a
blockchain network simulator in which blocks, nodes, and the network itself can
be instantiated by using a comprehensive collection of parameters, including the
propagation delay between nodes. Towards a similar goal, J. Kreku et al. [19]
show how to use the Absolut simulation tool [28] for prototyping blockchains
in different environments and finding optimal performance, given some param-
eters, in constrained platforms such as Raspberry Pi and Nvidia Jetson Tk1.

Algorithmic Analysis of Blockchain Efficiency with Communication Delay 415

R. Zhang and B. Preneel [29] introduce a multi-metric evaluation framework to
quantitatively analyze proof-of-work protocols. Their systemic security analysis
in seven of the most representative and influential alternative blockchain designs
concludes that none of them outperforms the so-called Nakamoto Consensus in
terms of either the chain quality or attack resistance. All these efforts have in
common that simulation-based analysis is used to understand non-functional re-
quirements of blockchain designs such as performance and security, up to a high
degree of confidence. However, in most of the cases the concluding results are
tied to a specific implementation of the blockchain architecture. The model and
algorithms presented in this work can be used to analyze each of these scenarios
in a more abstract fashion by using appropriate parameters for simulating the
blockchain growth and synchronization.

An alternative approach for studying blockchains is through formal seman-
tics. G. Rosu [24] takes a novel approach to the analysis of blockchain systems
by focusing on the formal design, implementation, and verification of blockchain
languages and virtual machines. His approach uses continuation-based formal se-
mantics to later analyze reachability properties of the blockchain evolution with
different degrees of abstraction. In this direction of research, E. Hildenbrandt et
al. [14] present KEVM, an executable formal specification of Ethereum’s virtual
machine that can be used for rapid prototyping, as well as a formal interpreter of
Ethereum’s programming languages. C. Kaligotla and C. Macal [17] present an
agent-based model of a blockchain systems in which the behavior and decisions
made by agents are detailed. They are able to implement a generalized simu-
lation and a measure of blockchain efficiency from an agent choice and energy
cost perspective. Finally, J. Göbel et al. [11] use Markov models to establish
that some attack strategies, such as selfish-mine, causes the rate of production
of orphan blocks to increase. The research presented in this manuscript uses ran-
dom networks to model the behavior of blockchain systems. As future work, the
proposed model and algorithms can be specified in a rewrite-based framework
such as rewriting logic [20], so that the rule-based approach in [24,14] and the
agent-based approach in [17] can both be extended to the automatic analysis of
(probabilistic) temporal properties of blockchains. Moreover, as it is usual in a
random network approach, topological properties of blockchain systems can be
studied with the help of the model proposed in this manuscript.

In general, this paper differs from the above studies in the following aspects.
The proposed analysis is not based on an explicit low-level simulation of a net-
work or protocol; it does not explore the behavior of blockchain systems under
the presence attackers. Instead, this work simulates the behavior of blockchain
efficiency from a meta-level perspective and investigates the strength of the sys-
tem with respect to shortcomings inherent in its design. Therefore, the proposed
analysis differs from [10,2,19,29] and is rather closely related to studies which
consider the core properties of blockchain systems prior to attacks [17,29]. The
bounds for the meta-parameters are more conservative and less secure, compared
to scenarios in which the presence of attackers is taken into account. Finally, with
respect to studying blockchains through formal semantics, the proposed analysis

416 C. Pinzón et al.

is able to consider an artificial but convenient scenario of having an infinite num-
ber of concurrent workers. Formal semantics, as well as other related simulation
tools, cannot currently handle such scenarios.

This paper presented a network model for blockchains and showed how the
proposed simulation algorithms can be used to analyze the efficiency (in terms of
production of valid blocks) of blockchain systems. The model is parametric on:
(i) the number of workers (or nodes); and (ii) two probability distributions gov-
erning the time it takes to produce a new block and the time it takes the workers
to synchronize their local copies of the blockchain. The simulation algorithms
are probabilistic in nature and can be used to compute the expected value of
several metrics of interest, both for a fixed and unbounded number of workers,
via Monte Carlo simulations. It is proven, under reasonable assumptions, that
the fast approximation algorithm for an unbounded number of workers yields ac-
curate estimates in relation to the other two exact (but much slower) algorithms.
Claims –supported by extensive experimentation– have been proposed, including
a formula to measure the proportion of valid blocks produced in a blockchain in
terms of the two probability distributions of the model. The model, algorithms,
and experiments provide insights and useful mathematical tools for specifying,
simulating, and analyzing the design of fast blockchain systems in the years to
come.

Future work on the analytic analysis of the experimental observations con-
tributed in this work should be pursued. This includes proving the two claims
in Section 5. First, that hysteresis effects are negligible unless the system is ex-
tremely fast. Second, that the expected proportion of valid blocks in a blockchain
system is given by ᾱ/(ᾱ + β̄), being ᾱ and β̄ the mean of the probability dis-
tributions governing block production and communication times, respectively.
Furthermore, the generalization of the claims to non-proof-of-work schemes, i.e.
to different probability distribution functions for specifying the time it takes to
produce a new block may also be considered. Finally, the study of different forms
of attack on blockchain systems can be pursued with the help of the proposed
model.

Acknowledgments. This research was supported by the Center of Excellence
and Appropriation in Big Data and Data Analytics (CAOBA), founded by
the Ministry of Information Technologies and Telecommunications of Colombia
(MinTIC) and the Colombian Administrative Department of Science, Technol-
ogy and Innovation (COLCIENCIAS) under grant no. FP44842-anex46-2015.

References

1. Z. Alhadhrami, S. Alghfeli, M. Alghfeli, J. A. Abedlla, and K. Shuaib. Intro-
ducing blockchains for healthcare. In International Conference on Electrical and
Computing Technologies and Applications (ICECTA), pages 1–4. IEEE, 2017.

2. Y. Aoki, K. Otsuki, T. Kaneko, R. Banno, and K. Shudo. Simblock: A blockchain
network simulator. In IEEE INFOCOM 2019-IEEE Conference on Computer Com-
munications Workshops (INFOCOM WKSHPS), pages 325–329. IEEE, 2019.

Algorithmic Analysis of Blockchain Efficiency with Communication Delay 417

3. T. Aste, P. Tasca, and T. Di Matteo. Blockchain technologies: The foreseeable
impact on society and industry. Computer, 50(9):18–28, 2017.

4. A.-L. Barabasi and R. Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

5. T. Bui and T. Aura. Application of public ledgers to revocation in distributed
access control. In International Conference on Information and Communications
Security, pages 781–792. Springer, 2018.

6. U. W. Chohan. The limits to blockchain? Scaling vs. Decentralization. 2019.
7. K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller, P. Sax-

ena, E. Shi, E. G. Sirer, et al. On scaling decentralized blockchains. In International
Conference on Financial Cryptography and Data Security, pages 106–125. Springer,
2016.

8. C. Decker and R. Wattenhofer. Information propagation in the Bitcoin network.
In P2P, pages 1–10. IEEE, 2013.

9. P. Erdö and A. Rényi. On random graphs. Publicationes Mathematicae, 6:290–297,
1959.

10. A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Capkun. On
the security and performance of proof of work blockchains. In SIGSAC conference
on computer and communications security, pages 3–16. ACM, 2016.

11. J. Göbel, H. P. Keeler, A. E. Krzesinski, and P. G. Taylor. Bitcoin blockchain
dynamics: The selfish-mine strategy in the presence of propagation delay. Perfor-
mance Evaluation, 104:23–41, 2016.

12. Y. Guo and C. Liang. Blockchain application and outlook in the banking industry.
Financial Innovation, 2(1):24, 2016.

13. O. Gutiérrez, J. J. Saavedra, P. M. Wightman, and A. Salazar. Bc-med: Plataforma
de registros médicos electrónicos sobre tecnología blockchain. In Colombian Con-
ference on Communications and Computing (COLCOM), pages 1–6. IEEE, 2018.

14. E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth, B. Moore,
D. Park, Y. Zhang, A. Stefanescu, et al. KEVM: A complete formal semantics
of the Ethereum virtual machine. In Computer Security Foundations Symposium
(CSF), pages 204–217. IEEE, 2018.

15. H. Hou. The application of blockchain technology in E-government in China. In
International Conference on Computer Communication and Networks (ICCCN),
pages 1–4. IEEE, 2017.

16. S. Huh, S. Cho, and S. Kim. Managing IoT devices using blockchain platform.
In International Conference on Advanced Communication Technology (ICACT),
pages 464–467. IEEE, 2017.

17. C. Kaligotla and C. M. Macal. A generalized agent based framework for modeling
a blockchain system. In 2018 Winter Simulation Conference (WSC), pages 1001–
1012. IEEE, 2018.

18. E. Karafiloski and A. Mishev. Blockchain solutions for big data challenges: A
literature review. In 17th International Conference on Smart Technologies, pages
763–768. IEEE, 2017.

19. J. Kreku, V. A. Vallivaara, K. Halunen, J. Suomalainen, M. Ramachandran,
V. Muñoz, V. Kantere, G. Wills, and R. Walters. Evaluating the efficiency of
blockchains in iot with simulations. In IoTBDS, pages 216–223, 2017.

20. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96:73–155, 1992.

21. S. Munir and M. S. I. Baig. Challenges and security aspects of blockchain based
on online multiplayer games, 2019.

418 C. Pinzón et al.

22. S. Nakamoto et al. Bitcoin: A peer-to-peer electronic cash system. 2008.
23. S. Ølnes, J. Ubacht, and M. Janssen. Blockchain in government: Benefits and

implications of distributed ledger technology for information sharing, 2017.
24. G. Rosu. Formal design, implementation and verification of blockchain languages.

In International Conference on Formal Structures for Computation and Deduction,
2018.

25. J. J. Sikorski, J. Haughton, and M. Kraft. Blockchain technology in the chemical
industry: Machine-to-machine electricity market. Applied Energy, 195:234–246,
2017.

26. A. Tapscott and D. Tapscott. How blockchain is changing finance. Harvard Busi-
ness Review, 1(9):2–5, 2017.

27. H. Treiblmaier. Toward more rigorous blockchain research: Recommendations for
writing blockchain case studies. Frontiers in Blockchain, 2:3, 2019.

28. J. Vatjus-Anttila, J. Kreku, J. Korpi, S. Khan, J. Saastamoinen, and K. Tien-
syrjä. Early-phase performance exploration of embedded systems with ABSOLUT
framework. Journal of Systems Architecture, 59(10, Part D):1128 – 1143, 2013.

29. R. Zhang and B. Preneel. Lay down the common metrics: Evaluating proof-of-work
consensus protocols’ security. In Symposium on Security and Privacy (SP), pages
175–192. IEEE, 2019.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

Algorithmic Analysis of Blockchain Efficiency with Communication Delay 419

Holistic Specifications for Robust Programs

Sophia Drossopoulou13 , James Noble2 ,
Julian Mackay2 , and Susan Eisenbach1

1 Imperial College London, United Kingdom
{scd,susan}@imperial.ac.uk

2 Victoria University of Wellington, New Zealand
{julian.mackay,kjx}@ecs.vuw.ac.nz

3 Microsoft Research Cambridge

Abstract Functional specifications describe what program components can do:
the sufficient conditions to invoke components’ operations. They allow us to
reason about the use of components in a closed world setting, where compon-
ents interact with known client code, and where the client code must establish the
appropriate pre-conditions before calling into a component.
Sufficient conditions are not enough to reason about the use of components in an
open world setting, where components interact with external code, possibly of
unknown provenance, and where components may evolve over time. In this open
world setting, we must also consider the necessary conditions, i.e.what are the
conditions without which an effect will not happen.
In this paper we propose the Chainmail specification language for writing hol-
istic specifications that focus on necessary conditions (as well as sufficient condi-
tions). We give a formal semantics for Chainmail, and discuss several examples.
The core of Chainmail has been mechanised in the Coq proof assistant.

1 Introduction

Software guards our secrets, our money, our intellectual property, our reputation [47].
We entrust personal and corporate information to software which works in an open
world, where it interacts with third party software of unknown provenance, possibly
buggy and potentially malicious.

This means we need our software to be robust: to behave correctly even if used by
erroneous or malicious third parties. We expect that our bank will only make payments
from our account if instructed by us, or by somebody we have authorised, that space on
a web page given to an advertiser will not be used to obtain access to our bank details
[43], or that a concert hall will not book the same seat more than once.

While language mechanisms such as constants, invariants, object capabilities [40],
and ownership [14] make it possible to write robust programs, they cannot ensure that
programs are robust. Ensuring robustness is difficult because it means different things
for different systems: perhaps that critical operations should only be invoked with the
requisite authority; perhaps that sensitive personal information should not be leaked;
or perhaps that a resource belonging to one user should not be consumed by another.
To ensure robustness, we need ways to specify what robustness means for a particular

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 420–440, 2020.
https://doi.org/10.1007/978-3-030-45234-6_21

http://orcid.org/0000-0002-1993-1142
http://orcid.org/0000-0001-9036-5692
http://orcid.org/0000-0003-3098-3901
http://orcid.org/0000-0001-9072-6689
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_21&domain=pdf

class Safe{
field treasure
field secret
method take(scr){

if (secret==scr) then
{
t=treasure
treasure = null
return t } }

}

class Safe{
field treasure
field secret
method take(scr){

...as version 1 ...
}
method set(scr){

secret=scr }
}

Figure 1. Two Versions of the class Safe

program, and ways to demonstrate that the particular program adheres to its specific
robustness requirements.

Consider the code snippets from Fig. 1. Objects of class Safe hold a treasure
and a secret, and only the holder of the secret can remove the treasure from the safe.
We show the code in two versions; both have the same method take, and the second
version has an additional method set. We assume a dynamically typed language (so
that our results are applicable to both statically and dynamically typed settings)4; that
fields are private in the sense of Java (i.e. only methods of that class may read or write
these fields); and that addresses are unforgeable (so there is no way to guess a secret).
A classical Hoare triple describing the behaviour of take would be:

(ClassicSpec) �
method take(scr)
PRE: this:Safe
POST: scr=this.secretpre −→ this.treasure=null

∧
scr �=this.secretpre −→ ∀s:Safe.s.treasure=s.treasurepre

(ClassicSpec) expresses that knowledge of the secret is sufficient to remove the
treasure, and that take cannot remove the treasure unless the secret is provided. But
it cannot preclude that Safe – or some other class, for that matter – contains more
methods which might make it possible to remove the treasure without knowledge of the
secret. This is the problem with the second version of Safe: it satisfies (ClassicSpec),
but is not robust, as it is possible to overwrite the secret of the Safe and then use
it to remove the treasure. To express robustness requirements, we introduce holistic
specifications, and require that:

(HolisticSpec) �
∀s.[s : Safe ∧ s.treasure �= null ∧ will〈s.treasure = null 〉

−→ ∃o.[external〈o 〉 ∧ 〈o accesss.secret 〉]]

(HolisticSpec) mandates that for any safe s whose treasure is not null, if some
time in the future its treasure were to become null, then at least one external object
(i.e. an object whose class is not Safe) in the current configuration has direct access

4 We do not depend on the additional safety static typing provides, so we assume only a dynam-
ically typed language.

Holistic Specifications for Robust Programs 421

to s’s secret. This external object need not have caused the change in s.treasure
but it would have (transitively) passed access to the secret which ultimately did cause
that change. Both classes in Fig. 1 satisfy (ClassicSpec), but the second version does
not satisfy (HolisticSpec).

In this paper we propose Chainmail, a specification language to express holistic
specifications. The design of Chainmail was guided by the study of a sequence of
examples from the object-capability literature and the smart contracts world: the mem-
brane [17], the DOM [20,59], the Mint/Purse [40], the Escrow [18], the DAO [12,15]
and ERC20 [61]. As we worked through the examples, we found a small set of language
constructs that let us write holistic specifications across a range of different contexts.
Chainmail extends traditional program specification languages [31,37] with features
which talk about:

Permission: Which objects may have access to which other objects; this is central
since access to an object grants access to the functions it provides.

Control: Which objects called functions on other objects; this is useful in identifying
the causes of certain effects - eg funds can only be reduced if the owner called a
payment function.

Time: What holds some time in the past, the future, and what changes with time,
Space: Which parts of the heap are considered when establishing some property, or

when performing program execution; a concept related to, but different from, memory
footprints and separation logics,

Viewpoint: Which objects and which configurations are internal to our component,
and which are external to it; a concept related to the open world setting.

While many individual features of Chainmail can be found in other work, their
power and novelty for specifying open systems lies in their careful combination. The
contributions of this paper are:

– the design of the holistic specification language Chainmail,
– the semantics of Chainmail,
– a Coq mechanisation of the core of Chainmail.

The rest of the paper is organised as follows: Section 2 gives an example from
the literature which we will use to elucidate key points of Chainmail. 3 presents the
Chainmail specification language. Section 4 introduces the formal model underlying
Chainmail, and then section 5 defines the semantics of Chainmail’s assertions. Sec-
tion 6 discusses our design, 7 considers related work, and section 8 concludes. We
relegate key points of exemplar problems and various details to appendices which are
available at [1].

2 Motivating Example: The Bank

As a motivating example, we consider a simplified banking application taken from
the object capabilities literature [41]: Accounts belong to Banks and hold money
(balances); with access to two Accounts of the same Bank one can transfer any

422 S. Drossopoulou et al.

amount of money from one to the other. This example has the advantage that it requires
several objects and classes.

We will not show the code here (see appendix C), but suffice it to say that class
Account has methods deposit(src, amt) and makeAccount(amt) (i.e. a
method called deposit with two arguments, and a method called makeAccount
with one argument). Similarly, Bank has method newAccount(amt). Moreover,
deposit requires that the receiver and first argument (this and src) are Accounts
and belong to the same bank, that the second argument (amt) is a number, and that
src’s balance is at least amt. If this condition holds, then amt gets transferred from
src to the receiver. The function makeNewAccount returns a fresh Account with
the same bank, and transfers amt from the receiver Account to the new Account.
Finally, the function newAccount when run by a Bank creates a new Account with
corresponding amount of money in it.5 It is not difficult to give formal specifications
of these methods in terms of pre- and post-conditions.

However, what if the bank provided a steal method that emptied out every ac-
count in the bank into a thief’s account? The critical problem is that a bank implement-
ation including a stealmethod could meet the functional specifications of deposit,
makeAccount, and newAccount, and still allow the clients’ money to be stolen.

One obvious solution would be to adopt a closed-world interpretation of specifica-
tions: we interpret functional specifications as exact in the sense that only implementa-
tions that meet the functional specification exactly, with no extra methods or behaviour,
are considered as suitable implementations of the functional specification. The prob-
lem is that this solution is far too strong: it would for example rule out a bank that
during software maintenance was given a new method count that simply counted the
number of deposits that had taken place, or a method notify to enable the bank to
occasionally send notifications to its customers.

What we need is some way to permit bank implementations that send notifications
to customers, but to forbid implementations of steal. The key here is to capture the
(implicit) assumptions underlying the design of the banking application. We provide
additional specifications that capture those assumptions. The following three informal
requirements prevent methods like steal:

1. An account’s balance can be changed only if a client calls the deposit method
with the account as the receiver or as an argument.

2. An account’s balance can be changed only if a client has access to that particular
account.

3. The Bank/Account component does not leak access to existing accounts or banks.

Compared with the functional specification we have seen so far, these requirements
capture necessary rather than sufficient conditions: Calling the deposit method to
gain access to an account is necessary for any change to that account taking place.
The function steal is inconsistent with requirement (1), as it reduces the balance
of an Account without calling the function deposit. However, requirement (1) is
not enough to protect our money. We need (2) to avoid an Account’s balance getting
5 Note that our very limited bank specification doesn’t even have the concept of an account
owner.

Holistic Specifications for Robust Programs 423

modified without access to the particular Account, and (3) to ensure that such accesses
are not leaked.

We can express these requirements through Chainmail assertions. Rather than spe-
cifying the behaviour of particular methods when they are called, we write assertions
that range across the entire behaviour of the Bank/Account module:

(1) � ∀a.[a : Account ∧ changes〈a.balance 〉 −→
∃o.[〈o callsa.deposit(_, _) 〉 ∨ 〈o calls _.deposit(a, _) 〉]]

(2) � ∀a.∀S : Set. [a : Account ∧ 〈will〈 changes〈a.balance 〉 〉 inS 〉
−→ ∃o. [o ∈ S ∧ external〈o 〉 ∧ 〈o accessa 〉]]

(3) � ∀a.∀S : Set. [a : Account ∧
〈will〈 ∃o.[external〈o 〉 ∧ 〈o accessa 〉] 〉 inS 〉
−→ ∃o′. [o′ ∈ S ∧ external〈o′ 〉 ∧ 〈o′ accessa 〉]]

In the above and throughout the paper, we use an underscore (_) to indicate an existen-
tially bound variable whose value is of no interest.

Assertion (1) says that if an account’s balance changes (changes〈a.balance 〉),
then there must be some client object o that called the deposit method with a as a
receiver or as an argument (〈o calls _.deposit(_) 〉).

Assertion (2) similarly constrains any possible change to an account’s balance. If at
some future point the balance changes (will〈 changes〈 ... 〉 〉), and if this future change
is observed with the state restricted to the objects from S (i.e. 〈 ... inS 〉), then at least
one of these objects (o ∈ S) is external to the Bank/Account system (external〈o 〉)
and has direct access to that account object (〈o accessa 〉). Notice that while the change
in the balance happens some time in the future, the external object o has access to
a in the current state. Notice also that the object which makes the call to deposit
described in (1), and the object which has access to a in the current state described in
(2), need not be the same: it may well be that the latter passes a reference to a to the
former (indirectly), which then makes the call to deposit.

It remains to think about how access to an Account may be obtained. This is the
remit of assertion (3), which says that if at some time in the future of the state restricted
to S, some object o which is external has access to some account a, and if a exists in
the current state, then in the current state some object from S has access to a. Where
o and o′ may, but need not, be the same object. And where o′ has to exist and have
access to a in the current state, but o need not exist in the current state – it may be
allocated later. Assertion (3) thus gives essential protection when dealing with foreign,
untrusted code. When an Account is given out to untrusted third parties, assertion (3)
guarantees that this Account cannot be used to obtain access to further Accounts.

A holistic specification for the bank account, then, would be a sufficient functional
specification plus the necessary specifications (1)-(3) from above. This holistic specific-
ation permits an implementation of the bank that also provides count and notify
methods, even though the specification does not mention either method. Critically,
though, the holistic Chainmail specification does not permit an implementation that
includes a steal method.

424 S. Drossopoulou et al.

3 Chainmail Overview

In this Section we give a brief and informal overview of some of the most salient fea-
tures of Chainmail– a full exposition appears in Section 5.

Example Configurations We will illustrate these features using the Bank/Account
example from the previous section. We use the runtime configurations σ1 and σ2 shown
in the left and right diagrams in Figure 2. In both diagrams the rounded boxes de-
pict objects: green for those from the Bank/Account component, and grey for the
“external”, “client” objects. The transparent green rectangle shows which objects are
contained by the Bank/Account component. The object at 1 is a Bank, those at 2,
3 and 4 are Accounts, and those at 91, 92, 93 and 94 are “client” objects which
belong to classes different from those from the Bank/Account module.

Each configuration represents one alternative implementation of the Bank object.
Configuration σ1 may arise from execution using a module MBA1, where Account
objects have a field myBank pointing to their Bank, and an integer field balance –
the code can be found in appendix C Fig. 3. Configuration σ2 may arise from execution
using a module MBA2, where Accounts have a myBank field, Bank objects have a
ledger implemented though a sequence of Nodes, each of which has a field point-
ing to an Account, a field balance, and a field next – the code can be found in
appendix C Figs. 6 and 4.

σ1

1:Bank
91 : …

92 : …

2:Acc 3:Acc 4:Acc

94 : …

93: …

σ2

1:Bank
91 : …

92 : …

2:Acc 3:Acc 4:Acc

94 : …

93: …

10:Nd 12:Nd11:Nd

Figure 2. Two runtime configurations for the Bank/Account example.

For the rest, assume variable identifiers b1, and a2–a4, and u91–u94 denoting objects
1, 2–4, and 91–94 respectively for both σ1 and σ2. That is, for i=1 or i=2, σi(b1)=1,
σi(a2)=2, σi(a3)=3, σi(a4)=4, σi(u91)=91, σi(u92)=92, σi(u93)=93, and σi(u94)=94.

Classical Assertions talk about the contents of the local variables (i.e. the topmost stack
frame), and the fields of the various objects (i.e. the heap). For example, the assertion
a2.myBank=a3.myBank, says that a2 and a3 have the same bank. In fact, this asser-
tion is satisfied in both σ1 and σ2, written formally as

..., σ1 |= a2.myBank = a3.myBank

..., σ2 |= a2.myBank = a3.myBank.

Holistic Specifications for Robust Programs 425

The term x:ClassId says that x is an object of class ClassId. For example
..., σ1 |= a2.myBank : Bank.

We support ghost fields [11,31], e.g.a1.balance is a physical field in σ1 and a
ghost field in σ2 since in MBA2 an Account does not store its balance (as can be
seen in appendix C Fig. 6). We also support the usual logical connectives, and so, we
can express assertions such as

∀a.[a : Account −→ a.myBank : Bank ∧ a.balance ≥ 0] .

Permission: Access Our first holistic assertion, 〈x accessy 〉, asserts that object x has
a direct reference to another object y: either one of x’s fields contains a reference to y,
or the receiver of the currently executing method is x, and y is one of the arguments or
a local variable. For example:

..., σ1 |= 〈a2 accessb1 〉
If σ1 were executing the method body corresponding to the call a2.deposit(a3,360),
then we would have

..., σ1 |= 〈a2 accessa3 〉,
That is, during execution of deposit, the object at a2 has access to the object at a3,
and could, if the method body chose to, call a method on a3 , or store a reference to a3

in its own fields. Access is not symmetric, nor transitive:
..., σ1 �|= 〈a3 accessa2 〉,
..., σ2 |= 〈a2 access

∗ a3 〉, ..., σ2 �|= 〈a2 accessa3 〉.
Control: Calls The assertion 〈x callsm.y(zs) 〉 holds in configurations where a method
on object x makes a method call y.m(zs) — that is it calls method m with object y as
the receiver, and with arguments zs. For example,

..., σ3 |= 〈x callsa2.deposit(a3,360) 〉.
means that the receiver in σ3 is x, and that a2.deposit(a3,360) is the next state-
ment to be executed.

Space: In The space assertion 〈A inS 〉 establishes validity of A in a configuration
restricted to the objects from the set S. For example, if object 94 is included in S1 but
not in S2, then we have

..., σ1 |= 〈 (∃o. 〈o accessa4 〉) inS1 〉

..., σ1 �|= 〈 (∃o. 〈o accessa4 〉) inS2 〉.
The set S in the assertion 〈A inS 〉 is therefore not the footprint of A; it is more like
the fuel [2] given to establish that assertion. Note that ..., σ |= 〈A inS 〉 does not
imply ..., σ |= A nor does it imply ..., σ |= 〈A inS ∪ S′ 〉. The other direction of the
implication does not hold either.

Time: Next, Will, Prev, Was We support several operators from temporal logic: (next〈A 〉,
will〈A 〉, prev〈A 〉, andwas〈A 〉) to talk about the future or the past in one or more steps.
The assertionwill〈A 〉 expresses thatAwill hold in one or more steps. For example, tak-
ing σ4 to be similar to σ2, the next statement to be executed to be a2.deposit(a3,360),
and MBA2 � ..., σ4 |= a2.balance = 60, and that MBA2 � ..., σ4 |= a4.balance ≥
360, then

MBA2 � ..., σ4 |= will〈a2.balance = 420 〉.
The internal module, MBA2 is needed for looking up the method body of deposit.

426 S. Drossopoulou et al.

Viewpoint: – External The assertion external〈x 〉 expresses that the object at x does
not belong to the module under consideration. For example,

MAB2 � ..., σ2 |= external〈u92 〉, MAB2 � ..., σ2 �|= external〈a2 〉,
MAB2 � ..., σ2 �|= external〈b1.ledger 〉

The internal module, MBA2, is needed to judge which objects are internal or external.

Change and Authority: We have used changes〈 ... 〉 in our Chainmail assertions in
section 2, as in changes〈a.balance 〉. Assertions that talk about change, or give con-
ditions for change to happen are fundamental for security; the ability to cause change is
called authority in [40]. We can encode change using the other features of Chainmail,
namely, for any expression e:

changes〈e 〉 ≡ ∃v.[e = v ∧ next〈 ¬(e = v) 〉].
and similarly for assertions.

Putting these together We now look at some composite assertions which use several
features from above. For example, the assertion below says that if the statement to be
executed is a2.deposit(a3,60), then the balance of a2 will eventually change:

MBA2�..., σ2 |= 〈 .. callsa2.deposit(a3,60) 〉 −→ will〈 changes〈a2.balance 〉 〉.
Now look deeper into space assertions, 〈A inS 〉, which allow us to characterise

the set of objects which have authority over certain effects (here A). In particular, the
assertion 〈will〈A 〉 inS 〉 requires two things: i) that A will hold in the future, and ii)
that all the objects which cause the effect which will make A valid are included in S.
Knowing who has, and who has not, authority over properties or data is a fundamental
concern of robustness [40]. Notice that the authority is a set, rather than a single object:
quite often it takes several objects in concert to achieve an effect.

Consider assertions (2) and (3) from the previous section. They both have the form
“will〈 〈A inS 〉 〉 −→ P (S)”, where P is some property over a set. These assertions
say that if ever in the future A becomes valid, and if the objects involved in making A
valid are included in S, then S must satisfy P . Such assertions can be used to restrict
whether A will become valid. If we have some execution which only involves objects
which do not satisfy P , then we know that the execution will not ever make A valid.

In summary, in addition to classical logical connectors and classical assertions over the
contents of the heap and the stack, our holistic assertions draw from some concepts from
object capabilities (〈 _ access _ 〉 for permission; 〈 _ calls _._(_) 〉 and changes〈 _ 〉 for
authority) as well as temporal logic (will〈A 〉, was〈A 〉 and friends), and the relation of
our spatial connective (〈A inS 〉) with ownership and effect systems [60,14,13].

The next two sections discuss the semantics of Chainmail. Section 4 contains an
overview of the formal model and section 5 focuses on the most important part of
Chainmail: assertions.

4 Overview of the Formal foundations

We now give an overview of the formal model for Chainmail. In section 4.1 we intro-
duce the shape of the judgments used to give semantics to Chainmail, while in section

Holistic Specifications for Robust Programs 427

4.2 we describe the most salient aspects of an underlying programming language used
in Chainmail.

4.1 Chainmail judgments

Having outlined the ingredients of our holistic specification language, the next question
to ask is: When does a module M satisfy a holistic assertion A? More formally: when
does M |= A hold?

Our answer has to reflect the fact that we are dealing with an open world, where
M, our module, may be linked with arbitrary untrusted code. To model the open world,
we consider pairs of modules, M � M′, where M is the module whose code is supposed to
satisfy the assertion, and M′ is another module which exercises the functionality of M.
We call our module M the internal module, and M′ the external module, which represents
potential attackers or adversaries.

We can now answer the question: M |= A holds if for all further, potentially ad-
versarial, modules M′ and in all runtime configurations σ which may be observed as
arising from the execution of the code of M combined with that of M′, the assertion A is
satisfied. More formally, we define:

M |= A if ∀M′.∀σ ∈ Arising(M � M′).[M � M′, σ |= A].
Module M′ represents all possible clients of M. As it is arbitrarily chosen, it reflects the
open world nature of our specifications.

The judgement M � M′, σ |= A means that assertion A is satisfied by M � M′ and σ. As
in traditional specification languages [31,37], satisfaction is judged in the context of a
runtime configuration σ; but in addition, it is judged in the context of the internal and
external modules. These are used to find abstract functions defining ghost fields as well
as method bodies needed when judging validity of temporal assertions such as will〈 _ 〉.

We distinguish between internal and external modules. This has two uses: First,
Chainmail includes the “external〈o 〉” assertion to require that an object belongs to the
external module, as in the Bank Account’s assertion (2) and (3) in section 2. Second, we
adopt a version of visible states semantics [45,25,38], treating all executions within a
module as atomic. We only record runtime configurations which are external to module
M, i.e. those where the executing object (i.e. the current receiver) comes from module
M′. Execution has the form

M � M′, σ � σ′

where we ignore all intermediate steps with receivers internal to M. In the next section
we shall outline the underlying programming language, and define the judgment M �

M′, σ � σ′ and the set Arising(M � M′).

4.2 An underlying programming language, Loo

The meaning of Chainmail assertions is parametric with an underlying object-oriented
programming language, with modules as repositories of code, classes with fields, meth-
ods and ghostfields, objects described by classes, a way to link modules into larger ones,
and a concept of program execution6.

6 We believe that Chainmail can be applied to any language with these features.

428 S. Drossopoulou et al.

We have developed Loo, a minimal such object-oriented language, which we out-
line in this section. We describe the novel aspects of Loo, and summarise the more
conventional parts, relegating full, and mostly unsurprising, definitions to Appendix A.

Modules are central to Loo, as they are to Chainmail. As modules are repositories
of code, we adopt the common formalisation of modules as maps from class identifiers
to class definitions, c.f. Appendix, Def. 1. We use the terms module and component in
an analogous manner to class and object respectively. Loo is untyped for several reas-
ons. Many popular programming languages are untyped. The external module might be
untyped, and so it is more general to consider everything as untyped. Finally, a solu-
tion that works for an untyped language will also apply to a typed language, while the
converse is not true.

Class definitions consist of field, method and ghost field declarations, c.f. Appendix,
Def. 2. Method bodies are sequences of statements, which can be field reads or field
assignments, object creation, method calls, and return statements. Fields are private in
the sense of C++: they can only be read or written by methods of the current class. This
is enforced by the operational semantics, c.f. Fig. 1. We discuss ghost fields in the next
section.

Runtime configurations, σ, contain all the usual information about execution snap-
shots: the heap, and a stack of frames. Each frame consists of a continuation, contn,
describing the remaining code to be executed by the frame, and a map from variables
to values. Values are either addresses or sets of addresses; sets are needed to deal with
assertions which quantify over sets of objects, such as assertions (1) and (2) from sec-
tion 2. We define one-module execution through a judgment of the form M, σ � σ′ in
the Appendix, Fig. 1.

We define a module linking operator ◦ so that M◦M′ is the union of the two modules,
provided that their domains are disjoint, c.f. Appendix, Def. 8. As we said in section 4.1,
we distinguish between the internal and external module. We consider execution from
the view of the external module, and treat execution of methods from the internal mod-
ule as atomic. For this, we define two-module execution based on one-module execution
as follows:

Definition 1. Given runtime configurations σ, σ′, and a module-pair M � M′ we define
execution where M is the internal, and M′ is the external module as below:

– M � M′, σ � σ′ if there exist n ≥ 2 and runtime configurations σ1, ... σn,
such that
• σ=σ1, and σn = σ′.
• M◦M′, σi � σ′

i+1, for 1 ≤ i ≤ n−1

• Class(this)σ �∈ dom(M), and Class(this)σ′ �∈ dom(M),
• Class(this)σi

∈ dom(M), for 2 ≤ i ≤ n−2

In the definition above, Class(x)σ looks up the class of the object stored at x, c.f.
Appendix, Def. 5. For example, for σ4 as in Section 3 whose next statement to be ex-
ecuted is a2.deposit(a3,360), we would have a sequence of configurations σ41,
... σ4n, σ5 so that the one-module execution gives MBA2, σ4 � σ41 � σ42... �

Holistic Specifications for Robust Programs 429

Figure 3. Two Module Execution (Def. 1). a) M1◦M2 b) M1 � M2 c) M2 � M1

σ4n � σ5. This would correspond to an atomic evaluation in the two-module exe-
cution: MBA2 � M′, σ4 � σ5 (see Fig.3; where blue stands for σ(this) ∈ M1,and
orange for σ(this)∈M2).

Two-module execution is related to visible states semantics [45] as they both filter
configurations, with the difference that in visible states semantics execution is unfiltered
and configurations are only filtered when it comes to the consideration of class invari-
ants while two-module execution filters execution. The lemma below says that linking
is associative and commutative, and preserves both one-module and two-module exe-
cution.

Lemma 1 (Properties of linking). For any modules M, M′, M′′, and M′′′ and runtime
configurations σ, and σ′ we have:

– (M◦M′)◦M′′ = M◦(M′◦M′′) and M◦M′ = M′◦M.
– M, σ � σ′, and M◦M′ is defined, implies M◦M′, σ � σ′.
– M � M′, σ � σ′ implies (M◦M′′) � (M′◦M′′′), σ � σ′.

We can now answer the question as to which runtime configurations are pertinent
when judging a module’s adherence to an assertion. Initial configurations are those
whose heap have only one object, of class Object, and whose stack have one frame,
with arbitrary continuation. Arising configurations are those that can be reached by
two-module execution, starting from any initial configuration.

Definition 2 (Initial and Arising Configurations). are defined as follows:

– Initial〈(ψ, χ)〉, if ψ consists of a single frame φ with dom(φ) = {this},
and there exists some address α, such that �this�φ=α, and dom(χ)=α, and
χ(α) = (Object, ∅).

– Arising(M � M′) = { σ | ∃σ0. [Initial〈σ0〉 ∧ M � M′, σ0 �∗ σ] }

5 Assertions

Chainmail assertions (details in appendix B.3) consist of (pure) expressions e, com-
parisons between expressions, classical assertions about the contents of heap and stack,
the usual logical connectives, as well as our holistic concepts. In this section we fo-
cus on the novel, holistic, features of Chainmail (permission, control, time, space, and
viewpoint), as well as our wish to support some form of recursion while keeping the
logic of assertions classical.

430 S. Drossopoulou et al.

5.1 Satisfaction of Assertions - Access, Control, Space, Viewpoint

Permission expresses that an object has the potential to call methods on another object,
and to do so directly, without help from any intermediary object. This is the case when
the two objects are aliases, or the first object has a field pointing to the second object, or
the first object is the receiver of the currently executing method and the second object
is one of the arguments or a local variable. Interpretations of variables and paths, �...�σ ,
are defined in the usual way (appendix Def. 5).

Definition 3 (Permission). For any modules M, M′, variables x and y, we define

– M � M′, σ |= 〈x accessy 〉 if �x�σ and �y�σ are defined, and
• �x�σ=�y�σ , or
• �x.f�σ=�y�σ , for some field f, or
• �x�σ=�this�σ and �y�σ=�z�σ , for some variable z and z appears in

σ.contn.

In the last disjunct, where z is a parameter or local variable, we ask that z appears in the
code being executed (σ.contn). This requirement ensures that variables which were
introduced into the variable map in order to give meaning to existentially quantified
assertions, are not considered.

Control expresses which object is the process of making a function call on another
object and with what arguments. The relevant information is stored in the continuation
(cont) on the top frame.

Definition 4 (Control). For any modules M, M′, variables x , y, z1, ...zn, we define:

– M � M′, σ |= 〈x callsy.m(z1, ...zn) 〉 if �x�σ , �y�σ , �z1�σ , ... �zn�σ are
defined, and
• �this�σ=�x�σ , and
• σ.contn=u.m(v1, ..vn); _, for some u,v1,... vn, and
• �y�σ=�u�σ , and �zi�σ=�vi�σ , for all i.

Thus, 〈x callsy.m(z1, ...zn) 〉 expresses the call y.m(z1, ...zn) will be executed next,
and that the caller is x.

Viewpoint is about whether an object is viewed as belonging to the internal mode; this
is determined by the class of the object.

Definition 5 (Viewpoint). For any modules M, M′, and variablex, we define

– M � M′, σ |= external〈x 〉 if �x�σ is defined and Class(�x�σ)σ /∈ dom(M)
– M � M′, σ |= internal〈x 〉 if �x�σ is defined and Class(�x�σ)σ ∈ dom(M)

Space is about asserting that some property A holds in a configuration whose objects
are restricted to those from a given set S. This way we can express that the objects from
the set S have authority over the assertion A. In order to define validity of 〈A inS 〉 in a
configuration σ, we first define a restriction operation, σ↓S which restricts the objects
from σ to only those from S.

Holistic Specifications for Robust Programs 431

Definition 6 (Restriction of Runtime Configurations). The restriction operator ↓
applied to a runtime configuration σ and a variable S is defined as follows:

– σ↓S � (ψ, χ′), if σ=(ψ, χ), dom(χ′) = �S�σ , and ∀α∈dom(χ′).χ(α) = χ′(α).

For example, if we take σ2 from
Fig. 2 in Section 2, and restrict it
with some set S4 such that �S4�σ2

=
{91, 1, 2, 3, 4, 11}, then the restriction
σ2↓S4

will look as on the right.

1:Bank
91 : …

2:Acc 3:Acc 4:Acc

11:Nd

Note in the diagram above the dangling pointers at objects 1, 11, and 91 - remin-
iscent of the separation of heaps into disjoint subheaps, as provided by the ∗ operator
in separation logic [53]. The difference is that in separation logic, the separation is
provided through the assertions, where A ∗A′ holds in any heap which can be split into
disjoint χ and χ′ where χ satisfiesA and χ′ satisfiesA′. That is, inA∗A′ the split of the
heap is determined by the assertions A and A′ and there is an implicit requirement of
disjointness, while in σ↓S the split is determined by S, and no disjointness is required.

We now define the semantics of 〈A inS 〉.
Definition 7 (Space). For any modules M, M′, assertions A and variable S, we define:

– M � M′, σ |= 〈A inS 〉 if M � M′, σ↓S |= A.

The set S in the assertion 〈A inS 〉 is related to framing from implicit dynamic
frames [57]: in an implicit dynamic frames assertion accx.f ∗ A, the frame x.f
prescribes which locations may be used to determine validity of A. The difference is
that frames are sets of locations (pairs of address and field), while our S-es are sets of
addresses. More importantly, implicit dynamic frames assertions whose frames are not
large enough are badly formed, while in our work, such assertions are allowed and may
hold or not, e.g.MBA2 � M′, σ |= ¬ 〈 (∃n.a2.balance = n) inS4 〉.

5.2 Satisfaction of Assertions - Time

To deal with time, we are faced with four challenges: a) validity of assertions in the
future or the past needs to be judged in the future configuration, but using the bindings
from the current one, b) the current configuration needs to store the code being executed,
so as to be able to calculate future configurations, c) when considering the future, we
do not want to observe configurations which go beyond the frame currently at the top of
the stack, d) there is no "undo" operator to deterministically enumerate all the previous
configurations.

Consider challenge a) in some more detail: the assertion will〈x.f = 3 〉 is satisfied
in the current configuration σ1, if in some future configuration σ2, the field f of the
object that is pointed at by x in the current configuration (σ1) has the value 3, that is, if
��x�σ1

.f�σ2
= 3, even if in that future configuration x denotes a different object (i.e. if

�x�σ1
�= �x�σ2

). To address this, we define an auxiliary concept: the operator�, where

432 S. Drossopoulou et al.

σ1� σ2 adapts the second configuration to the top frame’s view of the former: it returns
a new configuration whose stack comes from σ2 but is augmented with the view from
the top frame from σ1 and where the continuation has been consistently renamed. This
allows us to interpret expressions in σ2 but with the variables bound according to σ1;
e.g.we can obtain that value of x in configuration σ2 even if x was out of scope in σ2.

Definition 8 (Adaptation). For runtime configurations σ1, σ2.:

– σ1�σ2 � (φ3 · ψ2, χ2) if
• φ3 = (contn2[zs2/zs′], β2[zs′ �→ β2(zs2)][zs1 �→ β1(zs1)]), where
• σ1 = (φ1 · _, _), σ2 = (φ2 ·ψ2, χ2), φ1=(_, β1), φ2=(contn2, β2), and
• zs1=dom(β1), zs2=dom(β2), and
• zs′ is a set of variables with the same cardinality as zs2, and all variables in
zs′ are fresh in β1 and in β2.

That is, in the new frame φ2 from above, we keep the same continuation as from
σ2 but rename all variables with fresh names zs′, and combine the variable map β1

from σ1 with the variable map β2 from σ2 while avoiding names clashes through the
renaming [zs′ �→ β2(zs2)]. The consistent renaming of the continuation allows the
correct modelling of execution, as needed for the semantics of nested time assertions,
as e.g. in will〈x.f = 3 ∧ will〈x.f = 5 〉 〉.

Having addressed challenge a) we turn our attention to the remaining challenges:
We address challenge b) by storing the remaining code to be executed in cntn in each
frame. We address challenge c) by only taking the top of the frame when considering
future executions. Finally, we address challenge d) by considering only configurations
which arise from initial configurations, and which lead to the current configuration.

Definition 9 (Time Assertions). For any modules M, M′, and assertion A we define

– M � M′, σ |= next〈A 〉 if ∃σ′. [M � M′, φ � σ′ ∧ M � M′, σ�σ′ |= A],
and where φ is so that σ=(φ · _, _).

– M � M′, σ |= will〈A 〉 if ∃σ′. [M � M′, φ �∗ σ′ ∧ M � M′, σ�σ′ |= A],
and where φ is so that σ=(φ · _, _).

– M � M′, σ |= prev〈A 〉 if ∀σ1, σ2.[Initial〈σ1〉 ∧ M � M′, σ1 �∗ σ2

∧ M�M′, σ2 � σ −→ M�M′, σ�σ2 |= A]
– M � M′, σ |= was〈A 〉 if ∀σ1.[Initial〈σ1〉 ∧ M � M′, σ1 �∗ σ −→

(∃σ2.M � M′, σ1 �∗ σ2 ∧ M � M′, σ2 �∗ σ ∧ M � M′, σ�σ2 |= A)]

In general, will〈 〈A inS 〉 〉 is different from 〈will〈A 〉 inS 〉. In the former assertion,
S must contain the objects involved in reaching the future configuration as well as
the objects needed to then establish validity of A in that future configuration. In the
latter assertion, S need only contain the objects needed to establish A in that future
configuration. For example, revisit Fig. 2, and take S1 to consist of objects 1, 2, 4, 93,
and 94, and S2 to consist of objects 1, 2, 4. Assume that σ5 is like σ1, that the next
call in σ5 is a method on u94, whose body obtains the address of a4 (by making a call
on 93 to which it has access), and the address of a2 (to which it has access), and then
makes the call a2.deposit(a4, 360). Assume also that a4’s balance is 380. Then

MBA1 � ..., σ5 |= 〈will〈 changes〈a2.balance 〉 〉 inS1 〉
MBA1 � ..., σ5 �|= 〈will〈 changes〈a2.balance 〉 〉 inS2 〉
MBA1 � ..., σ5 |= will〈 〈 changes〈a2.balance 〉 inS2 〉 〉

Holistic Specifications for Robust Programs 433

5.3 Properties of Assertions

We define equivalence of assertions in the usual way: assertionsA andA′are equivalent
if they are satisfied in the context of the same configurations and module pairs – i.e.

A ≡ A′ if ∀σ. ∀M,M′. [M � M′, σ |= A if and only if M � M′, σ |= A′].
We can then prove that the usual equivalences hold, e.g. A ∨ A′ ≡ A′ ∨ A, and
¬(∃x.A) ≡ ∀x.(¬A). Our assertions are classical, e.g.A ∧ ¬A ≡ false, and
M � M′, σ |= A and M � M′, σ |= A → A′ implies M � M′, σ |= A′. This desirable property
comes at the loss of some expected equivalences, e.g. , in general, e = false and ¬e
are not equivalent. More in Appendix B.

5.4 Modules satisfying assertions

Finally, we define satisfaction of assertions by modules: a module M satisfies an asser-
tionA if for all other potential modules M′, in all configurations arising from executions
of M � M′, the assertion A holds.

Definition 10. For any module M, and assertion A, we define:

– M |= A if ∀M′. ∀σ∈Arising(M � M′). M � M′, σ |= A

6 Examplar Driven Design

Examplars The design of Chainmail was guided by the study of a sequence of exem-
plars taken from the object-capability literature and the smart contracts world:

1. Bank [49] - Bank and Account as in Section 2 with two different implementations.
2. ERC20 [61] - Ethereum-based token contract.
3. DAO [12,15] - Ethereum contract for Decentralised Autonomous Organisation.
4. DOM [20,59] - Restricting access to browser Domain Object Model

We present these exemplars as appendices [1]. Our design was also driven by work on
other examples such as the membrane [17], the Mint/Purse [40], and Escrow [18,24].

Model We have constructed a Coq model7 [23] of the core of the Chainmail specifica-
tion language, along with the underlying Loo language. Our formalism is organised as
follows:

1. TheLoo Language: a class based, object oriented language with mutable references.
2. Chainmail: The full assertion syntax and semantics defined in Definitions 1, 2, 3,

4, 5, 6, 7, 8, 9 and 10.
3. Loo Properties: Secondary properties of the loo language that aid in reasoning about

its semantics.
4. Chainmail Properties: The core properties defined on the semantics of Chainmail.

7 A current model can be found at: https://github.com/sophiaIC/HolisticSpecifications

434 S. Drossopoulou et al.

In the associated appendix (see Appendix G) we list and present the properties of
Chainmail we have formalised in Coq. We have proven that Chainmail obeys much of
the properties of classical logic. While we formalise most of the underlying semantics,
we make several assumptions in our Coq formalism: (i) the law of the excluded middle,
a property that is well known to be unprovable in constructive logics, and (ii) the equal-
ity of variable maps and heaps down to renaming. Coq formalisms often require fairly
verbose definitions and proofs of properties involving variable substitution and renam-
ing, and assuming equality down to renaming saves much effort.

More details of the formal foundations of Chainmail, and the model, are also in
appendices [1].

7 Related Work

Behavioural Specification Languages Hatcliff et al. [26] provide an excellent survey
of contemporary specification approaches. With a lineage back to Hoare logic [28],
Meyer’s Design by Contract [38] was the first popular attempt to bring verification
techniques to object-oriented programs as a “whole cloth” language design in Eiffel.
Several more recent specification languages are now making their way into practical
and educational use, including JML [31], Spec	 [4], Dafny [32] and Whiley [51]. Our
approach builds upon these fundamentals, particularly Leino & Shulte’s formulation
of two-state invariants [33], and Summers and Drossopoulou’s Considerate Reason-
ing [58]. In general, these approaches assume a closed system, where modules can be
trusted to coöperate. In this paper we aim to work in an open system where modules’
invariants must be protected irrespective of the behaviour of the rest of the system.

Defensive Consistency In an open world, we cannot rely on the kindness of strangers:
rather we have to ensure our code is correct regardless of whether it interacts with
friends or foes. Attackers “only have to be lucky once” while secure systems “have
to be lucky always” [5]. Miller [39,40] defines the necessary approach as defensive

consistency: “An object is defensively consistent when it can defend its own invariants
and provide correct service to its well behaved clients, despite arbitrary or malicious
misbehaviour by its other clients.” Defensively consistent modules are particularly hard
to design, to write, to understand, and to verify: but they make it much easier to make
guarantees about systems composed of multiple components [46].

Object Capabilities and Sandboxes. Capabilities as a means to support the develop-
ment of concurrent and distributed system were developed in the 60’s by Dennis and
Van Horn [19], and were adapted to the programming languages setting in the 70’s [44].
Object capabilities were first introduced [40] in the early 2000s, and many recent stud-
ies manage to verify safety or correctness of object capability programs. Google’s Caja
[42] applies sandboxes, proxies, and wrappers to limit components’ access to ambient
authority. Sandboxing has been validated formally: Maffeis et al. [35] develop a model
of JavaScript, demonstrate that it obeys two principles of object capability systems and
show how untrusted applications can be prevented from interfering with the rest of the
system. Recent programming languages [27,10,54] including Newspeak [9], Dart [8],
Grace [7,30] and Wyvern [36] have adopted the object capability model.

Holistic Specifications for Robust Programs 435

Verification of Object Capability Programs Murray made the first attempt to formalise
defensive consistency and correctness [46]. Murray’s model was rooted in counterfac-
tual causation [34]: an object is defensively consistent when the addition of untrust-
worthy clients cannot cause well-behaved clients to be given incorrect service. Murray
formalised defensive consistency very abstractly, over models of (concurrent) object-
capability systems in the process algebra CSP [29], without a specification language
for describing effects, such as what it means for an object to provide incorrect service.
Both Miller and Murray’s definitions are intensional, describing what it means for an
object to be defensively consistent.

Drossopoulou and Noble [21,48] have analysed Miller’s Mint and Purse example
[40] and discussed the six capability policies as proposed in [40]. In [22], they sketched
a specification language, used it to specify the six policies from [40], showed that sev-
eral possible interpretations were possible, and uncovered the need for another four fur-
ther policies. They also sketched how a trust-sensitive example (the escrow exchange)
could be verified in an open world [24]. Their work does not support the concepts of
control, time, or space, as in Chainmail, but it offers a primitive expressing trust.

Devriese et al. [20] have deployed powerful theoretical techniques to address sim-
ilar problems: They show how step-indexing, Kripke worlds, and representing objects
as state machines with public and private transitions can be used to reason about object
capabilities. Devriese have demonstrated solutions to a range of exemplar problems, in-
cluding the DOM wrapper (replicated in our section F) and a mashup application. Their
distinction between public and private transitions is similar to the distinction between
internal and external objects.

More recently, Swasey et al. [59] designed OCPL, a logic for object capability pat-
terns, that supports specifications and proofs for object-oriented systems in an open
world. They draw on verification techniques for security and information flow: separ-
ating internal implementations (“high values” which must not be exposed to attacking
code) from interface objects (“low values” which may be exposed). OCPL supports de-
fensive consistency (they use the term “robust safety” from the security community [6])
via a proof system that ensures low values can never leak high values to external at-
tackers. This means that low values can be exposed to external code, and the behaviour
of the system is described by considering attacks only on low values. They use that lo-
gic to prove a number of object-capability patterns, including sealer/unsealer pairs, the
caretaker, and a general membrane.

Schaefer et al. [55] have recently added support for information-flow security us-
ing refinement to ensure correctness (in this case confidentiality) by construction. By
enforcing encapsulation, all these approaches share similarity with techniques such as
ownership types [14,50], which also protect internal implementation objects from ac-
cesses that cross encapsulation boundaries. Banerjee and Naumann demonstrated that
by ensuring confinement, ownership systems can enforce representation independence
(a property close to “robust safety”) some time ago [3].

Chainmail differs from Swasey, Schaefer’s, and Devriese’s work in a number of
ways: They are primarily concerned with mechanisms that ensure encapsulation (aka
confinement) while we abstract away from any mechanism via the external〈 〉 predic-
ate. They use powerful mathematical techniques which the users need to understand in

436 S. Drossopoulou et al.

order to write their specifications, while Chainmail users only need to understand first
order logic and the holistic operators presented in this paper. Finally, none of these sys-
tems offer the kinds of holistic assertions addressing control flow, change, or temporal
operations that are at the core of Chainmail’s approach.

Scilla [56] is a minimalistic typed functional language for writing smart contracts
that compiles to the Ethereum bytecode. Scilla’s semantic model is restricted, assuming
actor based communication and restricting recursion, thus facilitating static analysis of
Scilla contracts and ensuring termination. Scilla is able to demonstrate that a number of
popular Ethereum contracts avoid type errors, out-of-gas resource failures, and preser-
vation of virtual currency. Scilla’s semantics are defined formally, but have not yet been
represented in a mechanised model.

Finally, the recent VerX tool is able to verify a range of specifications for solidity
contracts automatically [52]. Similar to Chainmail, VerX has a specification language
based on temporal logic. VerX offers three temporal operators (always, once, prev) but
only within a past modality, while Chainmail has two temporal operators, both existen-
tial, but with both past and future modalities. VerX specifications can also include pre-
dicates that model the current invocation on a contract (similar to Chainmail’s “calls”),
can access variables, and compute sums (only) over collections. Chainmail is strictly
more expressive as a specification language, including quantification over objects and
sets (so can compute arbitrary reductions on collections) and of course specifications
for permission (“access”), space (“in”) and viewpoint (“external”) which have no ana-
logues in VerX. Unlike Chainmail, VerX includes a practical tool that has been used
to verify a hundred properties across case studies of twelve Solidity contracts.

8 Conclusions

In this paper we have motivated the need for holistic specifications, presented the spe-
cification language Chainmail for writing such specifications, and outlined the formal
foundations of the language. To focus on the key attributes of a holistic specification
language, we have kept Chainmail simple, only requiring an understanding of first
order logic. We believe that the holistic features (permission, control, time, space and
viewpoint) are intuitive concepts when reasoning informally, and were pleased to have
been able to provide their formal semantics in what we argue is a simple manner.

9 Acknowledgments

This work is based on a long-standing collaboration with Mark S. Miller and Toby
Murray. We have received invaluable feedback from Alex Summers, Bart Jacobs, Chris
Hawblitzel, Michael Jackson, Lucius G. Meredith, Mike Stay, Shuh Peng Loh, Emil
Klasan, members of WG 2.3, and the FASE 2020 reviewers. The work has been sup-
ported by the Royal Society of New Zealand (Te Apārangi) Marsden Fund (Te Pūtea
Rangahau aMarsden) grants VUW-1318 and VUW-1815, and research gifts fromAgoric,
the Ethereum Foundation, and Facebook.

Holistic Specifications for Robust Programs 437

References

1. Holistic specifications paper with appendices. https://arxiv.org/abs/2002.08334, accessed:
2020-02-21

2. Ahmed, A., Dreyer, D., Rossberg, A.: State-dependent representation independence. In:
POPL (2009)

3. Banerjee, A., Naumann, D.A.: Ownership confinement ensures representation independence
for object-oriented programs. J. ACM 52(6), 894–960 (Nov 2005)

4. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An overview. In:
CASSIS. pp. 49–69. LNCS, Springer (2005)

5. BBC: On This Day: 1984: Tory cabinet in Brighton bomb blast (2015), [Online; accessed
15-October-2015]

6. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.: Refinement types for
secure implementations. ACM Trans. Program. Lang. Syst. 33(2), 8:1–8:45 (Feb 2011)

7. Black, A., Bruce, K., Homer, M., Noble, J.: Grace: the Absence of (Inessential) Difficulty.
In: Onwards (2012)

8. Bracha, G.: The Dart Programming Language (Dec 2015)
9. Bracha, G.: The Newspeak language specification version 0.1 (Feb 2017), newspeaklan-

guage.org/
10. Burtsev, A., Johnson, D., Kunz, J., Eide, E., van der Merwe, J.E.: Capnet: security and least

authority in a capability-enabled cloud. In: Proceedings of the 2017 Symposium on Cloud
Computing, SoCC 2017, Santa Clara, CA, USA, September 24 - 27, 2017. pp. 128–141
(2017)

11. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: Advanced specification
and verification with JML and esc/java2. In: Formal Methods for Components and Objects,
4th International Symposium, FMCO 2005, Amsterdam, The Netherlands, November 1-4,
2005, Revised Lectures. pp. 342–363 (2005), https://doi.org/10.1007/11804192_16

12. Christoph Jentsch: Decentralized autonomous organization to automate governance (Mar
2016), https://download.slock.it/public/DAO/WhitePaper.pdf

13. Clarke, D., Drossopoulou, S.: Ownership, encapsulation and the disjointness of type and
effectr. In: OOPSLA. ACM (2002)

14. Clarke, D.G., Potter, J.M., James Noble: Ownership types for flexible alias protection. In:
OOPSLA. ACM (1998)

15. Coindesk: Understanding the DAO attack (2016), www.coindesk.com/understanding-dao-
hack-journalists/

16. Community, S.: Solidity, https://solidity.readthedocs.io/en/develop/
17. van Cutsem, T.: Membranes in Javascript (2012), available from prog.vub.ac.be/

~tvcutsem/invokedynamic/js-membranes
18. Cutsem, T.V., S, M.: Trustworthy proxies: Virtualizing objects with invariants. In: ECOOP

(2013)
19. Dennis, J.B., Horn, E.C.V.: Programming Semantics for Multiprogrammed Computations.

Comm. ACM 9(3) (1966)
20. Devriese, D., Birkedal, L., Piessens, F.: Reasoning about object capabilities with lo-

gical relations and effect parametricity. In: IEEE EuroS&P. pp. 147–162 (2016). ht-
tps://doi.org/10.1109/EuroSP.2016.22

21. Drossopoulou, S., Noble, J.: The need for capability policies. In: (FTfJP) (2013)
22. Drossopoulou, S., Noble, J.: Towards capability policy specification and verification (May

2014), ecs.victoria.ac.nz/Main/TechnicalReportSeries
23. Drossopoulou, S., Noble, J., Mackay, J., Eisenbach, S.: Holisitic Specifications for Robust

Programs - Coq Model (2020). https://doi.org/10.5281/zenodo.3677621

438 S. Drossopoulou et al.

24. Drossopoulou, S., Noble, J., Miller, M.: Swapsies on the internet: First steps towards reason-
ing about risk and trust in an open world. In: (PLAS) (2015)

25. Guttag, J.V., Horning, J.J.: Larch: Languages and Tools for Formal Specification. Springer
(1993)

26. Hatcliff, J., Leavens, G.T., Leino, K.R.M., Müller, P., Parkinson, M.J.: Behavioral interface
specification languages. ACM Comput.Surv. 44(3), 16 (2012)

27. Hayes, I.J., Wu, X., Meinicke, L.A.: Capabilities for Java: Secure access to resources. In:
APLAS. pp. 67–84 (2017)

28. Hoare, C.A.R.: An axiomatic basis for computer programming. Comm. ACM 12, 576–580
(1969)

29. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)
30. Jones, T., Homer, M., James Noble, Bruce, K.B.: Object inheritance without classes. In:

ECOOP. pp. 13:1–13:26 (2016)
31. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D.R., Müller, P., Kiniry, J.,

Chalin, P.: JML Reference Manual (February 2007), iowa State Univ. www.jmlspecs.org
32. Leino, K.R.: Dafny: An automatic program verifier for functional correctness. In: LPAR16.

Springer (April 2010)
33. Leino, K.R.M., Schulte, W.: Using history invariants to verify observers. In: ESOP (2007)
34. Lewis, D.: Causation. Journal of Philosophy 70(17) (1973)
35. Maffeis, S., Mitchell, J., Taly, A.: Object capabilities and isolation of untrusted web applic-

ations. In: Proc of IEEE Security and Privacy (2010)
36. Melicher, D., Shi, Y., Potanin, A., Aldrich, J.: A capability-based module system for author-

ity control. In: ECOOP. pp. 20:1–20:27 (2017)
37. Meyer, B.: Eiffel: The Language. Prentice Hall (1992)
38. Meyer, B.: Object-Oriented Software Construction, Second Edition. Prentice Hall, second

edn. (1997)
39. Miller, M.S., Cutsem, T.V., Tulloh, B.: Distributed electronic rights in JavaScript. In: ESOP

(2013)
40. Miller, M.S.: Robust Composition: Towards a Unified Approach to Access Control and Con-

currency Control. Ph.D. thesis, Baltimore, Maryland (2006)
41. Miller, M.S., Morningstar, C., Frantz, B.: Capability-based Financial Instruments: From Ob-

ject to Capabilities. In: Financial Cryptography. Springer (2000)
42. Miller, M.S., Samuel, M., Laurie, B., Awad, I., Stay, M.: Safe active content in sanitized

JavaScript (2008), code.google.com/p/google-caja/
43. Mitre Organisation: CWE-830: Inclusion of Web Functionality from an Untrusted Source

(2019), https://cwe.mitre.org/data/definitions/830.html
44. Morris Jr., J.H.: Protection in programming languages. CACM 16(1) (1973)
45. Müller, P., Poetzsch-Heffter, A., Leavens, G.T.: Modular invariants for layered object struc-

tures. Science of Computer Programming 62, 253–286 (2006)
46. Murray, T.: Analysing the Security Properties of Object-Capability Patterns. Ph.D. thesis,

University of Oxford (2010)
47. Murray, T., Sison, R., Engelhardt, K.: COVERN: A logic for compositional verification of

information flow control. In: EuroS&P (2018)
48. Noble, J., Drossopoulou, S.: Rationally reconstructing the escrow example. In: FTfJP (2014)
49. Noble, J., Potanin, A., Murray, T., Miller, M.S.: Abstract and concrete data types vs object

capabilities. In: Müller, P., Schaefer, I. (eds.) Principled Software Development (2018)
50. Noble, J., Potter, J., Vitek, J.: Flexible alias protection. In: ECOOP (Jul 1998)
51. Pearce, D., Groves, L.: Designing a verifying compiler: Lessons learned from developing

Whiley. Sci. Comput. Prog. (2015)
52. Permenev, A., Dimitrov, D., Tsankov, P., Drachsler-Cohen, D., Vechev, M.: VerX: Safety

verification of smart contracts. In: IEEE Symp. on Security and Privacy (2020)

Holistic Specifications for Robust Programs 439

53. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: LICS. pp.
55–74. IEEE Computer Society (2002)

54. Rhodes, D., Disney, T., Flanagan, C.: Dynamic detection of object capability violations
through model checking. In: DLS. pp. 103–112 (2014)

55. Schaefer, I., Runge, T., Knüppel, A., Cleophas, L., Kourie, D.G., Watson, B.W.: Towards
confidentiality-by-construction. In: Leveraging Applications of Formal Methods, Verific-
ation and Validation. Modeling - 8th International Symposium, ISoLA 2018, Limassol,
Cyprus, November 5-9, 2018, Proceedings, Part I. pp. 502–515 (2018)

56. Sergey, I., Nagaraj, V., Johannsen, J., Kumar, A., Trunov, A., Chan, K.: Safer smart contract
programming with Scilla. In: OOPSLA (2019)

57. Smans, J., Jacobs, B., Piessens, F.: Implicit Dynamic Frames. ToPLAS (2012)
58. Summers, A.J., Drossopoulou, S.: Considerate Reasoning and the Composite Pattern. In:

VMCAI (2010)
59. Swasey, D., Garg, D., Dreyer, D.: Robust and Compositional Verification of Object Capabil-

ity Patterns. In: OOPSLA (2017)
60. Talpin, J.P., Jouvelot, P.: The Type and Effect Discipline. In: LICS. pp. 162–173 (1992)
61. The Ethereum Wiki: ERC20 Token Standard (Dec 2018), https://theethereum.wiki/w/index.

php/ERC20_Token_Standard

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which per-
mits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not in-
cluded in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

440 S. Drossopoulou et al.

Automated Generation of Consistent Graph
Models with First-Order Logic Theorem Provers

Aren A. Babikian1 , Oszkár Semeráth2,3 , and Dániel Varró1,2,3

1 McGill University, Montreal, Canada
2 MTA-BME Lendület Cyber-Physical Systems Research Group, Budapest, Hungary

3 Budapest University of Technology and Economics, Budapest, Hungary
aren.babikian@mail.mcgill.ca, semerath@mit.bme.hu, daniel.varro@mcgill.ca

Abstract. The automated generation of graph models has become an
enabler in several testing scenarios, including the testing of modeling
environments used in the design of critical systems, or the synthesis of
test contexts for autonomous vehicles. Those approaches rely on the au-
tomated construction of consistent graph models, where each model sat-
isfies complex structural properties of the target domain captured in
first-order logic predicates. In this paper, we propose a transformation
technique to map such graph generation tasks to a problem consisting of
first-order logic formulae, which can be solved by state-of-the-art TPTP-
compliant theorem provers, producing valid graph models as outputs.
We conducted performance measurements over all 73 theorem provers
available in the TPTP library, and compared our approach with other
solver-based approaches like Alloy and VIATRA Solver.

Keywords: Domain-Specific Modeling Languages · Model Generation ·
Theorem Provers

1 Introduction

Motivation. Synthetic graph models have been in use for many challenges of
software engineering including the testing of object-oriented programs [18, 20],
quality assurance of domain-specific languages [28], validation of model transfor-
mations [7] or performance benchmarks of model repositories [5]. In particular,
various lines of research in model-driven engineering rely upon such graph mod-
els. Network science also heavily depends on the availability of graph models
with designated distribution of nodes and edges.

Active research in automated graph model generation [10,25,30,31] has been
focusing on deriving graphs with desirable properties like consistency, diversity,
scalability or realistic nature [37]. A particularly challenging task of domain-
specific model generators is to ensure consistency, i.e. to guarantee that synthetic
models are not only compliant with the metamodel of the domain, but they
also satisfy additional well-formedness constraints captured in popular high-level
languages like OCL or graph patterns.

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 441–461, 2020.
https://doi.org/10.1007/978-3-030-45234-6_22

http://orcid.org/0000-0002-8108-0043
http://orcid.org/0000-0002-3592-5105
http://orcid.org/0000-0002-8790-252X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_22&domain=pdf

Problem statement. Consistent graph generators frequently rely on back-
end solvers by mapping model generation problems into logic formulae with dif-
ferent levels of expressiveness. For example, SAT-solvers are used by Kodkod [34]
that map high-level languages to propositional logic, CSP-solvers are exploited
in EMF2CSP [10], while SMT-solvers were applied in [12, 15, 28]. Consistent
model generators may rely on custom search-based techniques [31], symbolic
techniques [25] or custom decision procedures [9, 30] to improve scalability.

Automated theorem proving techniques have been developed within the au-
tomated reasoning community for decades with a wide range of supporting tools
such as HOL [11] and Vampire [19]. In particular, first-order theorem provers
have an extensive tool competition where each participating tool takes logic
problems using a unified representation of first-order logic (FOL) formulae. This
suggests that, despite not being designed for model generation, theorem provers
may provide interesting results within the domain considering the success of
other general-purpose approaches.

Interestingly, while theorem provers have been used in model-driven engi-
neering to prove the consistency specifications (e.g. HOL-OCL [6], Maude, KeY),
their performance has not been investigated in depth for model generation pur-
poses. Since FOL theorem provers already have to face undecidability issues, they
are typically optimized to quickly find inconsistencies in formal specifications,
while generating a model as a proof of consistency may be less of a priority. As
such, existing mappings to FOL formulae may not be reusable in their entirety
when theorem provers are used for consistent model generation.

Objectives. In this paper, we aim to systematically investigate and evalu-
ate the use of first-order logic theorem provers for model generation purposes.
In particular, we present a mapping of domain specifications consisting of a
metamodel, well-formedness constraints and an optional initial seed model to
FOL formulae. Using the standard Thousands of Problems for Theorem Provers
(TPTP) format for representing FOL formulae, we used 73 different theorem
provers and solvers in a total of 87 different configurations to generate instance
models of various size in the context of an industrial domain-specific modeling
tool (Yakindu Statecharts) for a scalability evaluation of those solvers. Finally,
model results can be transformed to instance models of the domain that can be
opened in their native editor - although implementing this step turned out to be
solver-specific.

Added value. While various back-end solvers have been used in related
mappings, the integration and inclusion of an entire family of first-order logic
theorem provers is a novel practical result. Furthermore, our paper provides the
first evaluation of a wide range of theorem provers for model generation purposes.
As an important technical side effect, thanks to a novel use of constants as
object identifiers incorporated in the mapping to FOL formulae, we managed to
significantly improve the scalability of the Z3 SMT-solver for model generation
purposes compared to existing approaches [28,32], which relied upon the native
support of decision procedures in SMT-solvers.

442 A. A. Babikian et al.

Fig. 1: Metamodel extract of Yakindu Statecharts

2 Preliminaries

The core concepts of domain-specific languages (DSL) and tools are illustrated in
the context of Yakindu Statecharts [39], which is an industrial DSL for developing
reactive, event-driven systems, and supports validation and code generation.

2.1 Models and metamodels

In this paper we use EMF as a metamodeling technique which is widely used in
the modeling community. Formally [28], an (EMF) metamodel defines a vocabu-
lary Σ = {C1, . . . , Cn, R1, . . . , Rm, c1, . . . , co}, where a unary predicate symbol Ci
is defined for each EClass and EDataType (like EInteger or EEnums), a binary
predicate symbol Rj is derived for each EReference and EAttribute, and constant
symbols ck for EEnum literals.

Example 1. A simplified metamodel for Yakindu Statecharts is illustrated in
Figure 1. A Statechart consists of Regions, which contain states (Vertex) and
Transitions. The abstract state Vertex is further refined into RegularStates

(like State or FinalState) and PseudoStates (like Entry, Exit or Choice).
Entry states have a Type attribute of type EntryType.

Additionally, a metamodel also imposes several structural constraints :

1. Type Hierarchy (TH) expresses the correct combination of classes (e.g. if an
object is an Entry then it must be a Vertex, but it cannot be a Region);

2. Type Compliance (TC) requires that for any relation R(o, t), its source and
target objects o and t must have compliant types (e.g. the target of a refer-
ence target must be an instance of Vertex);

3. Abstract (ABS): If a class is defined as abstract, it is not allowed to have
direct instances (like CompositeElement);

4. Multiplicity (MUL) of structural features can be limited with upper and
lower bound in the form of “lower..upper” (e.g. 1..1 for reference target);

5. Inverse (INV) states that two parallel references of opposite direction always
occur in pairs (e.g. outgoingTransitions and source).

6. Containment (CON): Instance models in EMF are expected to be arranged
into a containment hierarchy, which is a directed tree along relations marked
in the metamodel as containment (e.g., vertices or outgoingTransitions).

Automated Generation of Consistent Graph Models with Theorem Provers 443

Fig. 2: Sample Yakindu Statechart instance models

An instance model can be represented as a logic structure M = 〈OM , IM 〉, where
OM is the finite set of objects, and IM provides interpretation for all predicate
symbols in Σ as follows:

– The interpretation of a unary predicate symbol Ci is defined in accordance
with the types of the EMF model: IM (Ci) : OM → {1, 0}. An object o ∈ OM

is an instance of (more precisely, conforms to) a class Ci in a model M if
IM (Ci)(o) = 1. It is possible for an object to conform to multiple types, e.g.
in case of inheritance or abstract classes.

– The interpretation of a binary predicate symbol Rj is defined in accordance
with the links in the EMF model: IM (Rj) : OM ×OM → {1, 0}. There is a
reference Rj between o1, o2 ∈ OM in model M if IM (Rj)(o1, o2) = 1.

– The interpretation assigns each constant symbol ck: IM : ck → OM .

Example 2. Figure 2a illustrates an instance model M with objects OM =
{sc1, r1, s1, t1, e1}. Classes of the object are added as labels (e.g. label sc1:
Statechart denotes IM (Statechart)(sc1) = 1), attribute values are illustrated
as attribute=value labels (e.g. Type = Normal as IM (Type)(e1, Normal) = 1),
and reference predicates as labelled edges (e.g. regions edge from sc1 to r1 as
IM (regions)(sc1, r1) = 1).

2.2 Model predicates and Well-formedness constraints

In many industrial modeling tools, domain-specific WF constraints are defined by
error predicates captured either as OCL constraints [24] or as graph patterns [35].
A major practical subclass of such constraints can be formalized using first-order
logic predicates [28].

A graph predicate ϕ is defined inductively over a vocabulary Σ of a
metamodel and an infinite set of (object) variables {v1, v2, . . .} and the con-
stant symbols as seen in Figure 3a. A graph predicate ϕ with free variables
param = {v1, . . . , vn} can be evaluated over a model M with variable binding

Z : param → OM (denoted with [[ϕ(v1, . . . , vn)]]
M
Z) using the rules of Figure 3b.

Therefore, if a domain defines error patterns ϕ1, . . . , ϕn, a model is consid-
ered consistent (valid), if it does not satisfy any error predicates ϕi(v1, . . . , vm)
(1 ≤ i ≤ n), i.e. ∀v1, . . . , vm : ¬ϕi(v1, . . . , vm). Since a formalization of these
structural restrictions as WF constraints is provided in [28], the predicate lan-
guage of Figure 3b can uniformly be used for both kinds of structural constraints.

Example 3. Figure 4 illustrates three graph patterns defined in both graph-
ical and textual syntax. Pattern transition(t,src,trg) defines a relation

444 A. A. Babikian et al.

Logic Syntax TPTP Syntax

ϕ := c c constant
| C(v) C(v) type predicate
| R(v1, v2) R(v1,v2) reference predicate
| v1 = v2 v1=v2 equivalence
| dist(v1, ..., vn) v1!=v2 &. . . &vn-1!=vn n-ary inequality (distinctness)
| ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 ∼ p | p1&p2 | p1|p2 logic connectives
| ∃v : ϕ | ∀v : ϕ ?[v]:p | ![v]:p quantified expression

(a) Syntax of graph predicates

[[c]]MZ := IM (c)

[[C(v)]]MZ := IM (C)(Z(v))

[[R(v1, v2)]]
M
Z

:= IM (R)(Z(v1), Z(v2))

[[v1 = v2]]
M
Z

:= Z(v1) = Z(v2)

[[¬ϕ]]MZ := 1− [[ϕ]]MZ

[[ϕ1 ∧ ϕ2]]
M
Z

:= min([[ϕ1]]
M
Z , [[ϕ2]]

M
Z)

[[ϕ1 ∨ ϕ2]]
M
Z

:= max ([[ϕ1]]
M
Z , [[ϕ2]]

M
Z)

[[∃v : ϕ]]MZ := max o∈OM {[[ϕ1]]
M
Z,v �→o}

[[∀v : ϕ]]MZ := mino∈OM {[[ϕ1]]
M
Z,v �→o}

(b) Semantic rules for graph predicates

Fig. 3: Syntax and semantics for graph predicates

pattern transition(t,src ,trg) {
Transition.source(t,src);
Transition.target(t,trg); }

transition(t, src, trg) = source(t, src) ∧ target(t, trg)

@Constraint
pattern incomingToEntry(t, e:Entry) {

find transition(t,_,e); }

ite(t, e) = ∃s : transition(t, s, e) ∧ Entry(e)

@Constraint
pattern noOutgoing(e:Entry) {

neg find transition(_,e,_); }

no(e) = ∀t, trg : ¬transition(t, e, trg) ∧ Entry(e)

Fig. 4: Example graph patterns defined with graphical and VIATRA syntax

between two Vertices which are connected via a Transition using source

and target references. Reusing this pattern, two WF constraints are defined
concerning Entry states: if any of them has a match, then the model is mal-
formed. First, incomingToEntry(t, e) selects invalid Transitions that are
leading to an Entry (by reusing the previously defined transition pattern).
Next, noOutgoingTransitionFromEntry(e) matches to Entry states that does
not have any outgoing Transition (by negatively using transition pattern).

2.3 First-Order Logic Theorem Provers

Our approach to model generation involves using a back-end FOL theorem prover
to generate finite models according to input constraints. The theorem prover is
treated as a black-box component in our model generation workflow, thus it takes
input formulae and generates an output formula. Logic formulae are given using
the TPTP Syntax [33] as it is a standard within the theorem prover community.

Automated Generation of Consistent Graph Models with Theorem Provers 445

Fig. 5: Overview of our model generation approach

The TPTP syntax defines multiple forms of logic formulae, such as Full First-
order Form (FOF) and Typed Higher-order Form (THF). Our mapping derives
FOF formulae defined by a subsyntax that can handle standard FOL statements.
This is sufficient for modeling most aspects of EMF andWF constraints. Omitted
aspects include containment cycle avoidance and numeric attributes

Regarding the output of TPTP-compliant theorem provers, there does not
seem to be a standard. Provers may output FOF formulae, other TPTP formu-
lae, or TPTP non-compliant formulae. This is not surprising, as many TPTP-
compliant solvers also handle various other syntaxes. As a result, in order to in-
terpret the output of TPTP-compliant provers, one must create a custom parser
for each prover, which is laborious. However, despite syntactic differences, prover
outputs are structurally similar: in most cases, the output contains a list of graph
nodes, where each node is associated to corresponding types and graph edges.

3 Overview of the Approach

Our approach (summarized in Figure 5) aims to generate graph models that
are consistent with respect to WF constraints of a domain-specific modeling
environment using theorem provers as back-end solvers. For this purpose, we
map the high-level specifications of the input DSL into equivalent FOL formulae
written in TPTP-compliant syntax [33]. We implement our approach as part of
the VIATRA Model Generation Framework [1].

The specification of the DSL (or modeling environment) consists of a meta-
model specified in EMF augmented with well-formedness constraints captured
by model queries (using the VIATRA framework [36]). Additionally, our gener-
ator can take an optional initial instance model that acts as a seed for model
generation. Our model generation framework can also take various search pa-
rameters such as type scope (requested size) and containment cycle avoidance
specifications as input to guide model generation towards desired characteristics.

The input modeling environment and the search parameters are mapped to
FOL formulae using the novel ME2TPTP model-to-text transformation detailed
in section 4. The FOL-formula is then fed into a TPTP-compliant theorem prover
(TPTP Solver). The solver may output a valid model if all input constraints
are satisfiable. In this case, the output is transformed into a domain-compliant
instance model through a TPTP2ME backwards mapping. Otherwise, if input
constraints are inconsistent, the solver can either identify its inconsistency, or

446 A. A. Babikian et al.

provides an undefined output (if it cannot decide by its decision procedures or
due to lack of computational resources).

Our approach is designed to generate a finite model rather than a finite
counterexample of the input specifications. Such a task is facilitated by including
size requirements for the desired model a priori. However, if size requirements
are not provided, the theorem prover could easily check for inconsistencies in the
input formulae due to the small-model theorem [14].

In addition to generating graph models from scratch, our approach is also
capable of completing initial seed models. An initial model may be inconsistent
(i.e. it may violate some metamodel or WF constraints), thus it is the task of
the TPTP solver to extend the input model into a consistent instance model.
Another use case is to validate the consistency of DSLs and modeling environ-
ments [16, 28]. Our approach is capable of detecting when constraints derived
from a modeling environment are contradictory with each other. In this case,
our approach can prove the unsatisfiability of the input constraints.

4 From Domain-Specific Languages to First-Order Logic

We discuss how the various components of a modeling language are mapped into
a set ϕ = ϕMM ∧ ϕIM ∧ ϕWF of TPTP-compliant FOL formulae. The formula
ϕMM is derived from the metamodel types (in section 4.1) and relations (in
section 4.2) , as defined in section 2.1 , along with additional constraints and
search parameters. ϕIM describes the mapping for initial instance models (in
section 4.3). Finally, ϕWF describes how additional WF constraints defined as
VIATRA queries are mapped into FOL formulae (in section 4.4). All components
of our mapping with the exception of lower multiplicities and WF constraints
output Essentially Propositional Logic formulae. Proof systems for such formulae
[23] do exist, but cannot be fully exploited on the output of our mapping.

4.1 Mapping Types in the Metamodel

The various types in the input EMF metamodel are mapped to FOL formulae
as described below.

Objects: A key idea in our mapping is that we use FOL constants (instead of
other data types such as TPTP distinct objects) to represent the generated graph
nodes. Constants are preferred due to their compatibility with our presented
encoding (distinct objects cannot be used as arguments for FOL predicates).

These constants are separated into two categories: first, nodes defined prior
to theorem proving are denoted with a set of constant symbols ObjO =
{old1, . . . , oldn}. This set includes known objects such as enum literals and el-
ements of the initial partial model. Additionally, the logic solver will add new
objects to the generated model, some of which are denoted with constant sym-
bols ObjN = {new1, . . . , newm}. We also introduce a unary predicate object(o)
that selects all nodes of the graph model (including attribute values, enum liter-
als and objects). The object(o) predicate holds for all constants o in ObjO and
for some in ObjN .

Automated Generation of Consistent Graph Models with Theorem Provers 447

Fig. 6: Mapping type hierarchy

Type Hierarchy (TH): To handle complex generalization relations (e.g
multiple inheritance) in the type hierarchy, we introduce formulae to control the
potential combinations of the type predicates. For this purpose, we map each
EClass of the input metamodel to a FOL predicate Ci(o). A sample mapping is
shown in Figure 6 for an extract of the domain metamodel.

To express the mutual exclusiveness of (non-abstract) classes in the type
hierarchy, we construct a formula d0 =

∨
Ci∈sna

ti(Ci) in disjunctive normal form
(DNF) for the set sna of all non-abstract classes in the metamodel. For each
non-abstract type Ci, a conjunction ti(Ci) is created for all class predicates such
that a predicate Cj is positive if and only if it is a member of set s(Ci) containing
Ci and its superclasses, formally ti(Ci) =

∧
Cj∈s(Ci)

Cj(o) ∧
∧

Cj /∈s(Ci)
¬Cj(o). We

must ensure that any constant satisfying the object(o) predicate also satisfies the
type hierarchy described in d0. Thus, we generate the following FOL formula:
ϕMM
TH1 = ∀o : object(o) ⇒ d0. This is a filtered-types approach to type hierarchy

transformations used in the context of Object-Relation Mapping [17].

We also generate a formula to handle the negative case for the object pred-
icate. We specify that any constants o that is not compliant with the object(o)
predicate must not be an instance of any class in the metamodel. Formally,
the negation of object(o) implies a conjunction tno of the negations of all class
predicates Ci in the metamodel (MM): tno =

∧
Ci∈MM ¬Ci. The generated FOL

formula is as follows: ϕMM
TH2 = ∀o : ¬object(o) ⇒ tno.

Enumerations and Literals (EN) Mapping for enumerations is carried
out similarly to that of types. A unary predicate is created for each enum class
Ei(o) in the input metamodel, and a distinct unary predicate li(o) is created for
each literal of the enum class. The mapping of an enum class creates a disjunction
d1 =

∨
li
ti(li). For each literal li, a conjunction ti is created, where only the

predicate corresponding to li is positive and all others are negative, formally
ti(li) = li(o)∧

∧
lj �=li

¬lj(o). To ensure that generated enum instances are part
of the output model and that each literal is unique, a FOL constraint is generated
for each enum class stating that objects satisfy the corresponding predicate Ei
if and only if they also satisfy the object(o) predicate and the disjunction d1:

ϕMM
EN1 = ∀o : Ei(o) ⇔ object(o) ∧

∨
li

⎛
⎝li(o) ∧

∧
lj �=li

¬lj(o)
⎞
⎠

448 A. A. Babikian et al.

EN1:
∀o : EntryType(o) ⇔ (object(o)∧

((Normal(o) ∧ ¬History(o)) ∨ (¬Normal(o) ∧ History(o))))
EN2-N: ∀o : (o = eo1 ⇔ Normal(o))
EN2-H: ∀o : (o = eo2 ⇔ History(o))

Fig. 7: Mapping enumerations

Each enum literal is also transformed into an individual FOL constraint that
instantiates a constant eoi to define an enum object for each li that is associated
with Ei. The generated FOL constraint ensures that the output model contains a
constant eoi corresponding to each enum literal: ϕMM

EN2 = ∀o : (o = eoi ⇔ li(o)).

Example 4. To better understand this mapping, we consider the EntryType

enum in Figure 1. We omit the DeepHistory literal for the sake of conciseness.
This enum is mapped into the 3 FOL statements shown in Figure 7.

Model Scope: Our mapping also allows for users to specify a scope (size) for
the generated model as a search parameter. A scope may contain an upper bound
u and a lower bound l for the number of generated objects in the output model.
For an upper bound specification u, we define ObjN = {new1, . . . , newu−|ObjO|},
where ObjO is the set of nodes defined prior to theorem proving. If u−|ObjO| is
negative then the problem is surely inconsistent. We then generate a FOL expres-
sion which specifies that any constant o satisfying object(o) must be contained
in either ObjO or ObjN , to ensure that the theorem prover does not generate
any further constants (that satisfy object(o)) as part of the output finite model.

ϕMM
MUB = ∀o : object(o) ⇒

⎛
⎝ ∨

oldi∈ObjO

(o = oldi) ∨
∨

newi∈ObjN

(o = newi)

⎞
⎠

For a lower bound specification l, we define m′ = l − |ObjO| and we create
a set ObjNlb ⊆ ObjN containing m′ constants that are also in ObjN . In the case
where ObjN is not defined (an upper bound value has not been specified), we
define ObjNlb = {new1, . . . , new l−|ObjO|}. We then generate a FOL formula to

specify that any object o that is either in ObjO or in ObjNlb must also satisfy
object(o) to ensure that these constants are part of the output finite model:

ϕMM
MLB = ∀o :

⎛
⎝ ∨

oldi∈ObjO

(o = oldi) ∨
∨

newi∈ObjN
lb

(o = newi)

⎞
⎠ ⇒ object(o)

Example 5. To generate a model that contains from 4 to 6 objects, 2 of which are
already defined (e.g. enum literals), the following FOL statements are derived:

MUB: ∀o : object(o) ⇒ ((o = old1) ∨ (o = old2) ∨ (o = new1)∨
(o = new3) ∨ (o = new4) ∨ (o = new2))

MLB: ∀o : ((o = old1) ∨ (o = old2) ∨ (o = new1) ∨ (o = new2)) ⇒ object(o)

Automated Generation of Consistent Graph Models with Theorem Provers 449

Fig. 8: Mapping relations

Type Scope: A scope may be specified for each particular type C. In the
case of an upper bound ut, we define a set ObjNut such that ut = |ObjNut|. If a
model upper bound has been defined, then ObjNut ⊆ ObjN holds, and we specify
that any constant o satisfying object(o) and Ci(o) must be contained in ObjNut:

ϕMM
TUB = ∀o : (object(o) ∧ Ci(o)) ⇒

∨
newi∈ObjNut

(o = newi)

In case of a lower bound lt, we select a set ObjNlt ⊆ ObjNut (if ObjNut is defined)
such that lt = |ObjNlt |. We then generate a FOL expression which specifies that
all constants in ObjNlt must also satisfy object(o) and Ci(o):

ϕMM
TLB = ∀o :

∨
newi∈ObjN

lt

(o = newi) ⇒ (object(o) ∧ Ci(o))

Uniqueness: For every model object mapped to a FOL constant ci, we
must generate formulae to ensure that it is distinct from other objects. These
formulae are only generated in the case where a scope is defined. Assuming that
an ordering is defined for all n constants ci, we generate n− 1 FOL constraints
with increasing value of j < n: ϕMM

Un (j, n) =
∧n

ci:i=j+1 cj �= ci.

4.2 Mapping Relations Between Metamodel Types

Once type-related constraints are mapped into FOL formulae, relations between
these types are mapped as binary predicates.

Type Compliance (TC) Relations between classes and class attributes are
mapped into FOL in the same way (see section 2). Each relation and attribute
is mapped to a FOL predicate Ri(o1, o2). When mapping relations, we must
ensure that the endpoint objects are type-compliant with the metamodel: for
each Ri(o1, o2) that points from a class C1 to a type C2, we generate a formula

ϕMM
TC = ∀o1, o2 : Ri(o1, o2) ⇒ (C1(o1) ∧ C2(o2)).

Note that for the purpose of this specific mapping, inverse relations are con-
sidered as two separate unidirectional relations. Figure 8 contains an example of
such a case, with the corresponding TC mapping.

450 A. A. Babikian et al.

Multiplicities (MUL) As the multiplicity of a unidirectional relation has a
lower and an upper bound, at most two FOL formulae will be generated. Lower
multiplicities of 0 and upper multiplicities of ∗ do not generate any formulae.

Lower Multiplicity : Consider the relation Ri(a, b) from Ci(a) to Cj(b) which
has a lower multiplicity m �= 0. We generate the constraint that for all objects a
of type Ci(a), there must exist at least m unique constants b0 . . . bm connected
to Ci(a) through a Ri(a, bi) relation. The generated FOL constraint is:

ϕMM
MUL = ∀a :

⎛
⎝Ci(a) ⇒

⎛
⎝∃b0 . . . bm :

⎛
⎝

m∧
bi:i=0

Ri(a, bi)

⎞
⎠ ∧ distinct(b0 . . . bm)

⎞
⎠
⎞
⎠

Upper Multiplicity : Given the relation Ri(a, b) introduced previously, let us
consider an upper multiplicity of n �= ∗. We generate the constraint that if there
are n+1 objects b0 . . . bn+1 connected to an object a through Ri(a, bi) relations,
then there are at least 2 identical bi constants among b0 . . . bn+1. This means
that b0 . . . bn+1 are not pairwise distinct, formally ¬distinct(b0 . . . bn+1).

ϕMM
MUU = ∀a, b0 . . . bn+1 :

⎛
⎝

n+1∧
bi:i=0

Ri(a, bi)

⎞
⎠ ⇒ ¬distinct(b0 . . . bn+1)

Multiplicity formulae derived from a relation in Figure 1 are shown in Figure 8.
Note the asymmetric nature of the two formulae: lower multiplicities are more
difficult to satisfy for the prover as that might introduce an infinite model.

Inverse Relations (INV) As mentioned earlier, we consider inverse re-
lations as two separate (unidirectional) relations. The bidirectional nature of
such relations implies that both of their corresponding unidirectional relations
cannot exist without each other. Thus, we must ensure that for two objects
a and b are connected by inverse relations Ri(a, b) and Rj(b, a) simultaneously:
ϕMM
INV = ∀a, b : Ri(a, b) ⇔ Rj(b, a). An example can be seen in Figure 8.
Containment Hierarchy (CON) Containment hierarchy is enforced by

the following constraints (see Figure 8 for examples):

– Union of containment edges: We first define a disjunction contains(o1, o2) of
all containment relations Rc−i(o1, o2) in the metamodel. The generated FOL
formula is ϕMM

CO1 = ∀o1, o2 : contains(o1, o2) ⇔
∨

Rc−i
Rc−i(o1, o2).

– Existence of a unique root constant: We define a unique constant root as an
object that is not contained: ϕMM

CO2 = ∀r, o : (r = root ⇔ ¬contains(o, r)).
– Container Object: We must ensure that every non-root object in the gener-

ated model is contained by another object. Thus, any constant o that satisfies
object(o) is either the root constant root or is contained by another constant.
Formally, ϕMM

CO3 = ∀o : object(o) ⇒ (o = root ∨ ∃p : contains(p, o)).
– Single Container: We must also ensure that any constant o is contained by at

most one other constant. Thus, if o is contained by two constants p1 and p2,
then p1 and p2 are identical. Formally, ϕMM

CO4 = ∀o, p1, p2 : (contains(p1, o)∧
contains(p2, o)) ⇒ (p1 = p2).

Automated Generation of Consistent Graph Models with Theorem Provers 451

Fig. 9: Mapping instance models

Avoidance of Cyclic Containment (CYC) Unfortunately, FOL is not
expressive enough to capture formulae required to avoid cyclic containment re-
lations (an example is shown in Figure 2b) in the output models. Therefore, we
generate approximated constraints to avoid cycles up to length n given as an
input parameter. For that purpose, we derive separate formulae for each length x
(with 0 < x ≤ n) using the contains(o1, o2) predicate defined in ϕMM

CO1. Formally,

ϕMM
CYC(x) = ¬∃o1 . . . ox :

(∧x−1
i=0 contains(oi, oi+1)

)
∧ contains(ox, o0).

4.3 Instance model mapping

When mapping an instance model P = 〈OP , IP 〉 as a partial snapshot, we
transform its objects OP = {o1, . . . , on} to a set of constants ConstP =
{old1, . . . , oldn} while maintaining a trace map t : OP → ConstP . Addition-
ally, all classes C which have an instance in the instance model are split into
two categories: CO and CN that differentiate the old (i.e. old1, . . . , oldn) and new
objects (generated by the solver). Finally, if a class predicate Ci is true in the
partial model IP (Ci)(o) = 1, then it must be true in the generated model too,
which is enforced by formula COi (t(o)). Similarly, if a reference predicate Rj is
true in the partial model IM (Rj)(o1, o2) = 1, then it also must be true in the
generated model, which is enforced by formula Rj(t(o1), t(o2)).

A sample generated FOL formulae for an instance model is shown in Figure 9.

4.4 Mapping additional constraints

The modeling environment of our approach may contain additional FOL patterns
and WF constraints defined in the Viatra Query Language (VQL). The header
of each VQL pattern taking n parameters as input is mapped to a predicate
phi(v1 . . . vn). The pattern body is mapped into a FOL statement ϕpci(v1 . . . vn)
according to its FOL content such that if a set of n variables satisfy the associated
pattern header predicate, it must also satisfy the specifications described in
ϕpci(v1 . . . vn): ϕ

WF
WF1 = ∀v1 . . . vn : phi(v1 . . . vn) ⇒ ϕpci(v1 . . . vn).

For patterns that are specified as WF constraint, an additional FOL for-
mula is generated to ensure that such patterns does not matching in the gen-
erated model. Structurally, the corresponding FOL formula checks that no
objects v1 . . . vn satisfies the condition of the pattern: ϕWF

WF2 = ∀v1 . . . vn :
¬phi(v1 . . . vn). Figure 10 shows the mapping for patterns specified in Figure 4.

452 A. A. Babikian et al.

Fig. 10: Mapping VQL patterns and WF constraints

5 Evaluation

We conduct several measurements to address the following research questions:

RQ1: Which TPTP-compliant theorem provers are most scalable wrt. model
size and runtime of model generation?

RQ2: How do theorem provers scale compared to other logic solvers for a model
generation scenario?

Target domain: To address these questions, we perform model generation sce-
narios and analyze the results in the context of the Yakindu Statecharts industrial
modeling environment introduced in section 2.1. We use the metamodel shown
in Figure 1, which contains 13 classes, including an enum class, and 6 refer-
ences. Moreover, the Yakindu metamodel covers all mapping rules introduced
in section 4. We also formalize 17 WF constraints as graph predicates to fur-
ther restrict the model generation scope. Finally, we provide an initial instance
model as a seed for model generation which contains only a single root node,
thus the underlying solvers have full responsibility in model generation. Exam-
ples of input and output files as well as our measurement results are on GitHub4.
Altogether, Yakindu Statecharts provide a sufficiently complex case to assess the
proposed mapping and the underlying theorem provers, and it has been used as
a case study in existing papers of model generation [27,30].

5.1 Research Question 1 (RQ1)

Measurement setup: We compare the scalability of all TPTP-compliant the-
orem provers available on the System on TPTP5 website, which is the official
TPTP web interface for solving FOL problems for theorem proving competi-
tions. System on TPTP lists 73 solvers and 87 different solver configurations
that can be called directly on their servers6 through HTTP requests.

Our experimentation consists of three phases. For all three phases, we gen-
erate constraints to avoid containment cycles of up to 5 objects, which is a
parameter used in existing research such as [28].

Phase I: As a preliminary step, we attempt to generate a small model con-
taining 9-10 nodes within a time limit of 1 minute with each listed TPTP-prover.

4 https://github.com/ArenBabikian/publication-pages/wiki/
Automated-Generation-of-Consistent-Graph-Models-with-Theorem-Provers

5 http://tptp.cs.miami.edu/cgi-bin/SystemOnTPTP
6 Intel Xeon CPU E5-4610 2.40GHz, 128GB RAM, Linux 3.10.0

Automated Generation of Consistent Graph Models with Theorem Provers 453

Note that from the 9-10 output nodes, 3 nodes are enforced by the enum map-
ping, 1 node is defined in the initial model and 5-6 nodes must be generated
by the theorem prover. We perform this experimentation three times and we
manually analyze the output. If a theorem prover is unable to read the input
TPTP problem or is incapable of generating a finite model according to the
specifications, it is disqualified for the subsequent two steps of our workflow.

Phase II: This phase involves small-size model generation to further elim-
inate weak TPTP solvers. For each qualified solver, we generate finite models
with increasing size (starting from 5 objects as a lower bound, with a step size of
5 objects). We set a timeout of 1 minute for each generation run. We execute each
generation run 10 times and take the median of the execution times of successful
runs (i.e. that provide a finite model as result within the given timeout).

We also measure the ratio of failed runs for each model size. We end the
sequence of model generations for a given solver if all 10 runs at a same size
specification fail to output a finite model. Considering that we are running the
measurements on a server, we cannot influence warm-up effects and memory
handling. After this second phase, we keep the (four) best performing solvers.

Phase III: We complete our experimentation by performing large-scale
model generation. For this phase, we perform the same data collection as for
Phase II. However, we begin model generation at a size of 30 objects and use
step size of 10 objects. Furthermore, we use a timeout of 5 minutes and we
perform each generation run 20 times.

Scalability in model size: We compare model size derived by TPTP solvers.

Phase I: Among the 87 prover configurations provided on the TPTP server,
only 8 configurations were able to generate models with 9-10 objects, namely
CVC4 (SAT-1.7), DarwinFM (1.4.5), E-Darwin (1.5), Geo-III (2018C), iProver (SAT-

3.0), Paradox (4.0), Vampire (SAT-4.4) and Z3 (4.4.1). The MACE2 (2.2) prover also
claimed generating a finite model for the given inputs. However, after manual
analysis of the output, no generated finite model was found. As a result, we
decided to drop MACE2 from the following measurement phases.

Phase II: Figure 11a presents the complete measurements for scalability
analysis of the 4 least scalable remaining solver configurations. Phase II results
for the 4 more scalable solver configurations are included in Figure 11b, along
with their results for Phase III. Figure 11a contains the median runtime (as
provided by the server) of successful model generations wrt the size of the gen-
erated model while the runtime required for the mapping itself is excluded (as
it is negligible). Measurements for Phase II are performed for models of up to
25 objects, while measurements for larger models correspond to Phase III.

Figure 11c presents the ratio of failed model generation runs wrt. model
size. When all runs fail in generating models, the failure ratio becomes 1 and
no further model generation runs are performed. Notice that solvers CVC4, Dar-
winFM, E-Darwin and Geo-III are unable to generate models of 30 objects within
the 1-minute timeout period, thus they are excluded from further experiments.

Phase III: Figure 11b shows that iProver and Z3 dominate in terms of scala-
bility. There exists a steady increase in runtime with respect to generated model

454 A. A. Babikian et al.

Fig. 11: Results of Phase II and Phase III measurements (incl. failure rates)

size, however, we notice certain inconsistencies when failure rates increase as
the generated models become larger. Both solvers can generate models of 140
objects: iProver can do so at a faster rate, however, Z3 does so more consistently
with respect to failures. Moreover, it is interesting to see that existing model gen-
eration approaches that used Z3 as an underlying solver [28, 32] report inferior
results with respect to the size of generated (fully connected) models.

The Paradox solver provides very fast model generation for models of up to
110 objects. Although failure rates are high for large models, by inspecting the
measurement data, we notice that Paradox explicitly reports (within timeout)
that it is unknown if a model can be generated for the given input.

Scalability of the Vampire solver lacks in comparison to the other solvers. We
observe an interesting pattern in failure rates for Vampire: the solver fails often
when generating not only large models, but also very small models. In fact,
analysis of measurement data shows that in these cases, Vampire states that the
input constraints are satisfiable, but it does not generate a finite model. This
behavior is similar to that of Paradox, since failures are not caused by timeouts.

Runtime of solvers: Runtime differences between solvers are negligible for
generated models of size 20 and under. For models larger than 20 nodes, Paradox
was the fastest solver as highlighted in Figure 11b. For models with 120 objects
or more, iProver is slightly faster than Z3. However, increased failure rates for
iProver make the measured median values less reliable than those of Z3.
RQ1: Only 9% (8/87) of theorem prover configurations presented in the Sys-
tem on TPTP website are able to generate small models. Only 4 configurations
can generate larger models containing 30 nodes. iProver and Z3 are the most
scalable provers and are able to generate models of 140 nodes, while Paradox is
significantly faster than other solvers for models of up to 110 nodes.

Automated Generation of Consistent Graph Models with Theorem Provers 455

Fig. 12: Results of RQ2 measurements, including failure rates.

5.2 Research Question 2 (RQ2)

Measurement setup: We compare the model generation scalability of the Vam-

pire (4.4) theorem prover to that of two other approaches that use Alloy (4.2) [13]
and VIATRA Solver [27, 30] as back-end solvers, respectively. We select Vampire

for our experimentation as it is the most scalable theorem prover that we are
able to run locally using generated TPTP files as input. We use the most recent
stable releases of the solvers to generate graphs of increasing size (starting from
models with exactly 20 objects, and an increment of exactly 20 objects).

We generate constraints to avoid containment cycles of up to 5 objects and
we set a timeout of 5 minutes. We execute 20 runs per generated graph size and
take the median of the execution times of successful runs (i.e. that provide a
finite model as result within the given timeout). To account for warm-up effects
and memory handling of the Java 8 VM, we add an extra 5 runs before the
actual measurements and call the garbage collector explicitly between runs. We
perform measurements on an average personal computer7 with local installation
of solvers. We end the sequence of model generations if none of the 20 runs at a
same size specification provide a generated finite model.

Scalability in model size: Figure 12a presents the scalability measurements
for the Vampire, Alloy and VIATRA solvers. Figure 12b presents the corresponding
failure rates. VIATRA was able to generate models of up to 1380 objects, but data
points are shown in Figure 12a and Figure 12b for models only up to 180 nodes.
We notice that our mapping using the Vampire solver slightly outperforms Alloy,
but both approaches are significantly outperformed by the VIATRA-solver, which
is coherent with previous research results [30]. The variation in Vampire perfor-
mance (cf. Figure 11b and Figure 12a) is attributed to the different measurement
environments and Vampire versions used to assess each research question.
RQ2: Using Vampire as a back-end solver, our approach scales for 20% larger
models with less failures compared to an Alloy-based approach, but it is outper-
formed by the VIATRA-based approach.

7 Intel Core i7-8550U CPU@1.80GHz, 16 GB RAM, Windows 10, Java 1.8, 8 GB Heap

456 A. A. Babikian et al.

5.3 Threats to validity

Internal Validity: The measurements for RQ1 are performed on a server
that acts as a black box with regards to our experimentation. We mitigate this
threat by using the same server for the entirety of RQ1 experimentation. Nev-
ertheless, we take the server runtime output as is for our experimentation. We
cannot perform further analysis regarding potential warm-up time and garbage
collection, which is mitigated for the experimentation of RQ2. Furthermore, we
make comparison between our approach and others that use the same back-end
solvers (namely, Z3) for model generation. However, we must be aware of the
different measurement setups used for each implementation.

External Validity: Our approach is limited to a single domain selected
based on its past use in related lines of existing research [27, 29, 30, 37]. The
domain of Yakindu Statecharts is sufficiently complex to cover all features of
our mapping, thus we expect similar scalability results in other domains.

Construct Validity: For RQ1, we specify a scope ranging from 9 to 10
objects for Phase I, while we only provide a lower-bound scope specification for
the other phases. As for RQ2, we ask for an exact number of generated objects.
These scope specifications may be disadvantageous for certain solvers (e.g. Alloy,
if no upper bound is specified). We mitigate this threat by staying consistent in
scope specifications throughout a research question or phase.

6 Related work

We provide an overview of various graph generation approaches that derive con-
sistent graphs.

Model generators using back-end logic solvers: These approaches trans-
late graphs and WF constraints into logic formulae and use a logic solver to gen-
erate graphs that satisfy them. EMF2CSP/UML2CSP [8, 10] translates model
generation to a constraint programming problem, and solves it by use of an
underlying CSP solver. ASMIG [38] uses the Z3 SMT solver [22] to generate
typed and attributed graphs with inheritance. An advanced model generation
approach is presented in the Formula framework [15] also using the Z3 SMT
solver. AutoGraph [26] generates consistent attributed multidimensional graphs
by separating the generation of the graph structure and the attributes. Graph
generation is driven by a tableau approach, while attribute handling uses the
Z3 SMT-solver. [28] proposes a mapping of EMF models enriched with derived
features for the formal validation of DSLs. Model generation for this purpose is
performed by using Z3 and Alloy as backend solvers.

Logic-solver based generators do ensure consistency and they can also detect
inconsistencies in a specification. However, their scalability is comparable to
our approach. In fact, we managed to improve scalability of model generation
compared to results reported in [28] using Z3 as a back-end solver.

Custom consistent model generators: Cartesian genetic programming
(CGP) [21] encodes graphs with linear or grid-based genotypes and produces new

Automated Generation of Consistent Graph Models with Theorem Provers 457

ones by evolving the initial graph, originally used to produce electronic circuits.
Recent work [3, 4] introduces evolving graphs by graph programming, CGP’s
generalization to arbitrary graphs. However, consistency of models is addressed
only on a best-effort basis, i.e. there is no formal guarantee of consistency.

SDG [31] proposes an approach that uses a search-based custom OCL solver
to generate synthetic data for statistical testing. Generated models are multi-
dimensional and consistent. The study claims scalability by generating a large
set of small models. Research in [32] proposes a hybrid approach that uses both
a meta-heuristic search-based OCL solver [2] for structural constraints and an
SMT solver for attribute constraints, based on the snapshot generator of the
USE framework [9]. Generated typed models are (locally) consistent and large,
but not fully connected (a large family of small models are generated). The VIA-
TRA graph solver [30] is able to generate large and consistent (fully connected)
models by lifting SAT solving algorithms to the level of graphs, and exploiting
partial modeling techniques.

Custom approaches are more scalable than our approach, but the incon-
sistency of a DSL specification cannot be detected, thus, there is no graceful
degradation in the case when no consistent models can be derived.

7 Conclusion and Future Work

In this paper, we provided a mapping of DSL specifications consisting of an EMF
metamodel and well-formedness constraints into first-order logic formulae to be
fed into TPTP-compliant theorem provers. As such, we successfully integrated
more than 70 different theorem provers for model generation purposes. However,
our scalability evaluation of these theorem provers carried out in the scope of
an industrial DSL tool revealed that most of those provers cannot be effectively
used for model generation purposes – not even for very small models. While
these solvers can potentially be efficient in detecting inconsistencies of FOL
specifications, our experiments revealed that a different solver profile would be
beneficial for model generation purposes despite the similarity in the underlying
logic formalization. On the positive side, our mapping improved scalability when
using Z3 as a back-end theorem prover for model generation purposes.

As we obtained negative scalability results for the vast majority of theorem
provers, we believe that our case study can serve as an interesting benchmark
case for future TPTP competitions as part of future work. Moreover, we plan
to better exploit that theorem provers when no models can exist due to in-
consistencies regardless of model size by combining calls to TPTP solvers with
custom graph model generation techniques. In this case, TPTP solvers may be
able to highlight a minimal set of unsatisfiable elements, which can be checked
subsequently during the exploration to prevent inconsistent dead ends.

Acknowledgements The first author was partially supported by the Fonds de
recherche du Québec - Nature et technologies (FRQNT) B1X scholarship (file
number: 272709). This paper is partially supported by MTA-BME Lendület Re-
search Group on Cyber-Physical Systems, and NSERC RGPIN-04573-16 project.

458 A. A. Babikian et al.

References

1. Viatra solver project. https://github.com/viatra/VIATRA-Generator

2. Ali, S., Iqbal, M.Z., Khalid, M., Arcuri, A.: Improving the performance of
OCL constraint solving with novel heuristics for logical operations: a search-
based approach. Empirical Software Engineering 21(6), 2459–2502 (Dec 2016).
https://doi.org/10.1007/s10664-015-9392-6

3. Atkinson, T., Plump, D., Stepney, S.: Evolving graphs by graph programming.
In: Genetic Programming - 21st European Conference, EuroGP 2018, Parma,
Italy, April 4-6, 2018, Proceedings. LNCS, vol. 10781, pp. 35–51. Springer (2018).
https://doi.org/10.1007/978-3-319-77553-1 3

4. Atkinson, T., Plump, D., Stepney, S.: Evolving graphs with horizontal gene trans-
fer. In: Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO 2019, Prague, Czech Republic, July 13-17, 2019. pp. 968–976. ACM
(2019). https://doi.org/10.1145/3321707.3321788

5. Bagan, G., Bonifati, A., Ciucanu, R., Fletcher, G.H.L., Lemay, A., Advokaat, N.:
gmark: Schema-driven generation of graphs and queries. IEEE Trans. Knowl. Data
Eng. 29(4), 856–869 (2017). https://doi.org/10.1109/TKDE.2016.2633993

6. Brucker, A.D., Wolff, B.: HOL-OCL: A formal proof environment for UML/OCL.
In: Fiadeiro, J.L., Inverardi, P. (eds.) Fundamental Approaches to Software Engi-
neering. pp. 97–100. Springer, Berlin, Heidelberg (2008)

7. Büttner, F., Egea, M., Cabot, J., Gogolla, M.: Verification of ATL transformations
using transformation models and model finders. In: ICFEM. pp. 198–213. Springer
(2012)

8. Cabot, J., Clarisó, R., Riera, D.: On the verification of UML/OCL class dia-
grams using constraint programming. Journal of Systems and Software (Mar 2014).
https://doi.org/10.1016/j.jss.2014.03.023

9. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based specification environ-
ment for validating UML and OCL. Science of Computer Programming 69(1), 27
– 34 (2007). https://doi.org/10.1016/j.scico.2007.01.013

10. González Pérez, C.A., Buettner, F., Clarisó, R., Cabot, J.: EMFtoCSP: A Tool
for the Lightweight Verification of EMF Models. In: Formal Methods in Software
Engineering: Rigorous and Agile Approaches (FormSERA). Zurich, Switzerland
(Jun 2012), https://hal.inria.fr/hal-00688039

11. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge University Press, New York, NY,
USA (1993)

12. Hao, W.: Automated metamodel instance generation satisfying quantitative con-
straints. Ph.D. thesis, National University of Ireland Maynooth (2013)

13. Jackson, D.: Alloy: a lightweight object modelling notation. Trans. Softw. Eng.
Methodol. 11(2), 256–290 (2002). https://doi.org/10.1145/505145.505149

14. Jackson, D.: Software Abstractions: logic, language, and analysis. MIT press (2012)

15. Jackson, E.K., Levendovszky, T., Balasubramanian, D.: Reasoning about meta-
modeling with formal specifications and automatic proofs. In: Model Driven Engi-
neering Languages and Systems, pp. 653–667. Springer (2011)

16. Jackson, E.K., Sztipanovits, J.: Towards a formal foundation for domain specific
modeling languages. In: EMSOFT. pp. 53–62. ACM, New York, NY, USA (2006)

17. Juneau, J.: Object Relational Mapping and JPA, pp. 55–72. Apress, Berkeley, CA
(2013)

Automated Generation of Consistent Graph Models with Theorem Provers 459

18. Khurshid, S., Marinov, D.: Testera: Specification-based testing of java
programs using SAT. Autom. Softw. Eng. 11(4), 403–434 (2004).
https://doi.org/10.1023/B:AUSE.0000038938.10589.b9

19. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Proceed-
ings of the 25th International Conference on Computer Aided Verification - Volume
8044. pp. 1–35. CAV 2013, Springer-Verlag, New York, NY, USA (2013)

20. Milicevic, A., Misailovic, S., Marinov, D., Khurshid, S.: Korat: A tool for generating
structurally complex test inputs. In: ICSE. pp. 771–774. IEEE Computer Society
(2007). https://doi.org/10.1109/ICSE.2007.48

21. Miller, J.F.: Cartesian genetic programming: its status and future. Genetic Pro-
gramming and Evolvable Machines (2019). https://doi.org/10.1007/s10710-019-
09360-6

22. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Tools and Algo-
rithms for the Construction and Analysis of Systems, 14th International Confer-
ence, TACAS 2008, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.
Proceedings. pp. 337–340 (2008). https://doi.org/10.1007/978-3-540-78800-3 24

23. Navarro, J.A., Voronkov, A.: Proof systems for effectively propositional logic. In:
Armando, A., Baumgartner, P., Dowek, G. (eds.) Automated Reasoning. pp. 426–
440. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

24. The Object Management Group: Object Constraint Language, v2.4 (February
2014)

25. Schneider, S., Lambers, L., Orejas, F.: Symbolic model generation for graph prop-
erties. In: Fundamental Approaches to Software Engineering - 20th International
Conference, FASE 2017, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings. pp. 226–243 (2017). https://doi.org/10.1007/978-3-662-54494-5 13

26. Schneider, S., Lambers, L., Orejas, F.: Automated reasoning for attributed graph
properties. STTT 20(6), 705–737 (2018). https://doi.org/10.1007/s10009-018-
0496-3

27. Semeráth, O., Babikian, A.A., Pilarski, S., Varró, D.: VIATRA Solver: a framework
for the automated generation of consistent domain-specific models. In: ICSE. pp.
43–46 (2019), https://dl.acm.org/citation.cfm?id=3339687

28. Semeráth, O., Barta, Á., Horváth, Á., Szatmári, Z., Varró, D.: For-
mal validation of domain-specific languages with derived features and well-
formedness constraints. Software and Systems Modeling pp. 357–392 (2017).
https://doi.org/10.1016/j.entcs.2008.04.038

29. Semeráth, O., Farkas, R., Bergmann, G., Varró, D.: Diversity of graph mod-
els and graph generators in mutation testing. STTT 22(1), 57–78 (2020).
https://doi.org/10.1007/s10009-019-00530-6

30. Semeráth, O., Nagy, A.S., Varró, D.: A graph solver for the automated genera-
tion of consistent domain-specific models. In: ICSE. pp. 969–980. ACM (2018).
https://doi.org/10.1145/3180155.3180186

31. Soltana, G., Sabetzadeh, M., Briand, L.C.: Synthetic data generation for statistical
testing. In: ASE. pp. 872–882 (2017). https://doi.org/10.1109/ASE.2017.8115698

32. Soltana, G., Sabetzadeh, M., Briand, L.C.: Practical model-driven data generation
for system testing. CoRR abs/1902.00397 (2019)

33. Sutcliffe, G.: The TPTP problem library and associated infrastructure. Journal of
Automated Reasoning 59(4), 483–502 (Dec 2017). https://doi.org/10.1007/s10817-
017-9407-7

460 A. A. Babikian et al.

34. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: TACAS. LNCS,
vol. 4424, pp. 632–647. Springer (2007). https://doi.org/10.1007/978-3-540-71209-
1 49

35. Ujhelyi, Z., Bergmann, G., Hegedüs, Á., Horváth, Á., Izsó, B., Ráth, I.,
Szatmári, Z., Varró, D.: EMF-IncQuery: An integrated development envi-
ronment for live model queries. Sci. Comput. Program. 98, 80–99 (2015).
https://doi.org/10.1016/j.scico.2014.01.004

36. Varró, D., Bergmann, G., Hegedüs, Á., Horváth, Á., Ráth, I., Ujhelyi, Z.: Road
to a reactive and incremental model transformation platform: three generations of
the VIATRA framework. Software and Systems Modeling 15(3), 609–629 (2016)

37. Varró, D., Semeráth, O., Szárnyas, G., Horváth, Á.: Towards the automated gener-
ation of consistent, diverse, scalable and realistic graph models. In: Graph Transfor-
mation, Specifications, and Nets - In Memory of Hartmut Ehrig. LNCS, vol. 10800,
pp. 285–312. Springer (2018). https://doi.org/10.1007/978-3-319-75396-6 16

38. Wu, H., Monahan, R., Power, J.F.: Exploiting attributed type graphs to generate
metamodel instances using an SMT solver. In: TASE. pp. 175–182 (July 2013).
https://doi.org/10.1109/TASE.2013.31

39. Yakindu Statechart Tools: Yakindu (2019), http://statecharts.org/

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Automated Generation of Consistent Graph Models with Theorem Provers 461

Combining Partial Specifications using
Alternating Interface Automata�

Ramon Janssen

Radboud University, Nijmegen, the Netherlands
ramonjanssen@cs.ru.nl

Abstract. To model real-world software systems, modelling paradigms
should support a form of compositionality. In interface theory and model-
based testing with inputs and outputs, conjunctive operators have been
introduced: the behaviour allowed by composed specification s1 ∧ s2 is
the behaviour allowed by both partial models s1 and s2. The models
at hand are non-deterministic interface automata, but the interaction
between non-determinism and conjunction is not yet well understood.
On the other hand, in the theory of alternating automata, conjunction
and non-determinism are core aspects. Alternating automata have not
been considered in the context of inputs and outputs, making them less
suitable for modelling software interfaces. In this paper, we combine the
two modelling paradigms to define alternating interface automata (AIA).
We equip these automata with an observational, trace-based semantics,
and define testers, to establish correctness of black-box interfaces with
respect to an AIA specification.

1 Introduction

The challenge of software verification is to ensure that software systems are cor-
rect, using techniques such as model checking and model-based testing. To use
these techniques, we assume that we have an abstract specification of a system,
which serves as a description of what the system should do. A popular approach
is to model a specification as an automaton. However, the huge number of states
in typical real-world software systems quickly makes modelling with explicit au-
tomata infeasible. A form of compositionality is therefore usually required for
scalability, so that a specification can be decomposed into smaller and under-
standable parts. Parallel composition is based on a structural decomposition of
the modelled system into components, and it thus relies on the assumption that
components themselves are small and simple enough to be modelled. This as-
sumption is not required for logical composition, in which partial specification
models of the same component or system are combined in the manner of log-
ical conjunction. Formally, for a composition to be conjunctive, the behaviour
allowed by s1 ∧ s2 is the behaviour allowed by both partial specifications s1 and

� Funded by the Netherlands Organisation of Scientific Research (NWO-TTW),
project 13859: SUMBAT - SUpersizing Model-BAsed Testing

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 462–481, 2020.
https://doi.org/10.1007/978-3-030-45234-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_23&domain=pdf

s2. Such a composition is important for scalability of modelling, as it allows
writing independent partial specifications, sometimes called view modelling [3].
On a fundamental level, specifications can be seen as logical statements about
software, and the existence of conjunction on such statements is only natural.
Conjunctive operators have been defined in many language-theoretic modelling
frameworks, such as for regular expressions [12] and process algebras [5].

1.1 Conjunction for Inputs and Outputs

A conjunctive operator ∧ has also been introduced in many automata frame-
works for formal verification and testing, such as interface theory [8], ioco the-
ory [3] and the theory of substitutivity refinement [7]. Within these theories,
systems are modelled as labelled transition systems [15] or interface automata [1]
(IA), and actions are divided into inputs and outputs.

An informal example of some (partial) specification models, as could be ex-
pressed in these theories, is shown by the automata in Figure 1, in which inputs
are labelled with question marks, and outputs with exclamation marks. The
specifications represent a vending machine with two input buttons (?a and ?b),
which provides coffee (!c) and tea (!t) as outputs, optionally with milk (!c+m
and !t+m). The first model, p, specifies that after pressing button ?a, the ma-
chine dispenses coffee. The second model, q, specifies that after pressing button
?b, the machine has a choice between dispensing tea, or tea with milk. The third
model, r, is similar, but uses non-determinism to specify that button ?b results
in coffee with milk or tea with milk.

The fourth model, p∧q∧r, states that all former three partial models should
hold. Here, we use the definition of ∧ from [3], but the definition from [7] is
similar. An input is specified in the combined model if it is specified in any
partial model, making both buttons ?a and ?b specified. Additionally, an output
is allowed in the combined model if it is allowed by all partial models, meaning
that after button ?b, only tea with milk is allowed.

p

?a

!c

q

?b

!t !t+m

r

?b ?b

!c+m !t+m

p ∧ q ∧ r

?a

!c

?b

!t+m

Fig. 1. Three independent specifications for a vending machine, and their conjunction.

1.2 Conjunctions of states

This form of conjunctive composition acts as an operator on entire models.
However, a partial specification could also describe the expected behaviour of

Combining Partial Specifications using Alternating Interface Automata 463

a particular state of the system, other than the initial state. For example, sup-
pose that the input ?on turns the vending machine on, after which the machine
should behave as specified by p, q and r from Figure 1. This, by itself, is also a
specification, illustrated by s in Figure 2. However, the formal meaning of this
model is unclear: transitions connect states, whereas p ∧ q ∧ r is not a state but
an entire automaton. A less trivial case is partial specification t, also in Figure 2:
after obtaining any drink by input ?take, we should move to a state where we
can obtain a drink as described by specifications p, q, r and t. Thus, we combine
conjunctions with a form of recursion. This cannot easily be formalized using ∧
as an operator on automata, like in [3,7,8]. Defining conjunction as a composition
on individual states would provide a formal basis for these informal examples.

s

p ∧ q ∧ r

?on

t

p ∧ q ∧ r ∧ t

?b?a

!c
!c+m

!t
!t+m

?take

Fig. 2. Two specifications with transitions to a conjunction.

Conjunctions of states are a main ingredient of alternating automata [6], in
which conjunctions and non-determinism alternate. Here, non-determism acts as
logical disjunction, dually to conjunction. Because of this duality, both conjunc-
tion and disjunction are treated analogously: both are encoded in the transition
relation of the automaton. This contrasts the approach of defining conjunction
directly on IAs, where non-determinism is encoded in the transition relation of
the IA, whereas conjunction is added as an operator on IAs, leaving the duality
between the two unexploited. In fact, the conjunction-operator in [3] even re-
quires that any non-determinism in its operands is removed first, by performing
an exponential determinization step. For example, model r in Figure 1 is non-
deterministic, and must be determinized to the form of model q before p∧ q ∧ r
is computed. This indicates that it is hard to combine conjunction and non-
determinism in an elegant way, without understanding their interaction.

Despite their inherent support for conjunction, alternating automata are not
entirely suitable for modeling the behaviour of software systems, since they lack
the distinction between inputs and outputs. In this respect, alternating automata
are similar to deterministic finite automata (DFAs). Distinguishing inputs and
outputs in an IA allows modelling of software systems in a less abstract way than
with the homogeneous alphabet of actions of DFAs and alternating automata.

464 R. Janssen

1.3 Contributions

We combine concepts from the worlds of interface theory and alternating au-
tomata, leading to Alternating Interface Automata (AIAs), and show how these
can be used in the setting of a trace semantics for observable inputs and outputs.
We provide a solid formal basis of AIAs, by

– combining alternation with inputs and outputs (Section 3.1),
– defining a trace semantics for AIAs (Section 3.2), by lifting the input-failure

refinement semantics for non-deterministic interface automata [11] to AIAs,
– providing insight into the semantics of an AIA, by defining a determiniza-

tion operator (Section 3.3) and a transformation between IAs and AIAs
(Section 3.4), and

– defining testers (Section 4), which represent practical testing scenarios for
establishing input-failure refinement between a black-box implementation IA
and a specification AIA, analogously to ioco test case generation [15].

The definition of input-failure refinement [11] is based upon the observation
that, for a non-deterministically reached set of states Q, the observable outputs
of that set are the union of the outputs of the individual states in Q, whereas the
specified inputs for Q are the intersection of the inputs specified in individual
states in Q. For conjunction, we invert this: outputs allowed by a conjunction
of states are captured by the intersection, whereas specified inputs are captured
by the union. In this way, our AIAs seamlessly combine the duality between
conjunction and non-determinism with the duality between inputs and outputs.

Proofs can be found in the extended technical report [10].

2 Preliminaries

We first recall the definition of interface automata [1] and input-failure refine-
ment [11]. The original definition of IAs [1] allows at most one initial state, but
we generalize this to sets of states. Moreover, [1] supports internal actions, which
we do not need. Transitions are commonly encoded by a relation, whereas we
use a function.

Definition 1. An Interface Automaton (IA) is a 5-tuple (Q, I,O, T,Q0), where

– Q is a set of states,
– I and O are disjoint sets of input and output actions, respectively,
– T : Q × (I ∪ O}) → P(Q) is an image-finite transition function (meaning

that T (q, �) is finite for all q and �), and
– Q0 ⊆ Q is a finite set of initial states.

The domain of IAs is denoted IA. For s ∈ IA, we refer to its respec-
tive elements by Qs, Is, Os, Ts, Q

0
s. For s1, s2, . . . , sA, sB , . . . a family of IAs,

we write Qj, Ij, Oj, Tj and Q0
j to refer to the respective elements, for j =

1, 2, . . . , A,B,

Combining Partial Specifications using Alternating Interface Automata 465

In examples, we represent IAs graphically as in Figure 1. For the remainder
of this paper, we assume fixed input and output alphabets I and O for IAs, with
L = I ∪ O. For (sets of) sequences of actions, ∗ denotes the Kleene star, and ε
denotes the empty sequence. We define auxiliary notation in the style of [15].

Definition 2. Let s ∈ IA, Q ⊆ Qs, q, q
′ ∈ Qs, � ∈ L and σ ∈ L∗. We define

q
ε−→s q

′ ⇔ q = q′ q
σ�−→s q

′ ⇔ ∃r ∈ Qs : q
σ−→s r ∧ q′ ∈ Ts(r, �)

q
σ−→s ⇔ ∃r ∈ Qs : q

σ−→s r q
 σ−→s ⇔ ¬(q σ−→s)

tracess(q) = {σ ∈ L∗ | q σ−→s} Q afters σ = {r ∈ Qs | ∃r′ ∈ Q : r′ σ−→s r}

traces(s) =
⋃

q∈Q0
s

tracess(q) s after σ = Q0
s afters σ

outs(Q) = {x ∈ O | ∃q ∈ Q : q
x−→s} ins(Q) = {a ∈ I | ∀q ∈ Q : q

a−→s}

q is a sink-state of s ⇐⇒ ∀� ∈ L : Ts(q, �) ⊆ {q}
s is input-enabled ⇐⇒ ∀q ∈ Qs : ins(q) = I

s is deterministic ⇐⇒ ∀σ ∈ L∗, |s after σ| ≤ 1

We omit the subscript for interface automaton s when clear from the context.
We use IAs to represent black-box systems, which can produce outputs, and

consume or refuse inputs from the environment. This entails a notion of observ-
able behaviour, which we define in terms of input-failure traces [11].

Definition 3. For any input action a, we denote the input-failure of a as a.
Likewise, for any set of inputs A, we define A = {a | a ∈ A}. The domain of
input-failure traces is defined as FT I,O = L∗ ∪ L∗ · I. For s ∈ IA, we define

Ftraces(s) = traces(s) ∪ {σa | σ ∈ L∗, a ∈ I, a
∈ in(s after σ)}

Thus, a trace σa indicates that σ leads to a state where a is not accepted,
e.g. a greyed-out button which cannot be clicked.

Any such set of input-failure traces is prefix-closed. Input-failure traces are
the basis of input-failure refinement, which we will now explain briefly. This
refinement relation was introduced in [11] to bridge the gap between alternating
refinements [1,2] and ioco theory [15]. Similarly to normal trace inclusion, the
idea is that an implementation may only show a trace if a specification also
shows this trace. Moreover, the most permissive treatment of an input is to fail
it, so if a specification allows an input failure, then it also must allow acceptance
of that input, as expressed by the input-failure closure.

Definition 4. Set S ⊆ FT I,O of input-failure traces is input-failure closed if,
for all σ ∈ L∗, a ∈ I and ρ ∈ FT I,O, σa ∈ S =⇒ σaρ ∈ S. The input-
failure closure of S is the smallest input-failure closed superset of S, that is,
fcl(S) = S ∪ {σaρ | σa ∈ S, ρ ∈ FT I,O}.

466 R. Janssen

Input-failure refinement and input-failure equivalence on IAs are respectively
defined as

s1 ≤if s2 ⇐⇒ Ftraces(s1) ⊆ fcl(Ftraces(s2)), and

s1 ≡if s2 ⇐⇒ s1 ≤if s2 ∧ s2 ≤if s1.

The input-failure closure of the Ftraces serves as a canonical representation
of the behaviour of an IA. That is, two models are input-failure equivalent if
and only if the closure of their input-failure traces is the same, as stated in
Proposition 5.

Proposition 5. [11] Let s1, s2 ∈ IA. Then

s1 ≤if s2 ⇐⇒ fcl(Ftraces(s1)) ⊆ fcl(Ftraces(s2))

s1 ≡if s2 ⇐⇒ fcl(Ftraces(s1)) = fcl(Ftraces(s2))

Proposition 5 implies that relation ≤if is reflexive (s ≤if s) and transitive
(s1 ≤if s2 ∧ s2 ≤if s3 =⇒ s1 ≤if s3). Formally, it is thus a preorder, making it
suitable for stepwise refinement.

3 Alternating Interface Automata

Real software systems are always in a single state, but the precise state of a sys-
tem cannot always be derived from an observed trace. Due to non-determinism,
a trace may lead to multiple states. In IAs, this is modelled as a set of states,
such as the set of initial states, the set T (q, �) for state q and action �, and the
set s after σ for IA s and trace σ. The domain of such non-deterministic views
on an IA with states Q is thus the powerset of states, P(Q). In set of states Q,
traces from any individual state in Q may be observed.

3.1 Alternation

Alternation generalizes this view on automata: a system may not only be non-
deterministically in multiple states, but also conjunctively. When conjunctively
in multiple states, only traces which are in all these states may be observed.
Alternation is formalized by exchanging the domain P(Q) for the domain D(Q).
Formally, D(Q) is the free distributive lattice, which exist for any set Q [14].

Definition 6. For any set Q, D(Q) denotes the free distributive lattice gener-
ated by Q. That is, D(Q) is the domain of equivalence classes of terms, induc-
tively defined by the the grammar

e = � | ⊥ | 〈q〉 | e1 ∨ e2 | e1 ∧ e2 with q ∈ Q,

where equivalence of terms is completely defined by the following axioms:

Combining Partial Specifications using Alternating Interface Automata 467

e1 ∨ e2 = e2 ∨ e1 e1 ∧ e2 = e2 ∧ e1 [Commutativity]

e1 ∨ (e2 ∨ e3) = (e1 ∨ e2) ∨ e3 e1 ∧ (e2 ∧ e3) = (e1 ∧ e2) ∧ e3 [Associativity]

e1 ∨ (e1 ∧ e2) = e1 e1 ∧ (e1 ∨ e2) = e1 [Absorption]

e ∨ e = e e ∧ e = e [Idempotence]

e1 ∨ (e2 ∧ e3) = (e1 ∨ e2) ∧ (e1 ∨ e3) e1 ∧ (e2 ∨ e3) = (e1 ∧ e2) ∨ (e1 ∧ e3)

[Distributivity]

e ∨ � = � e ∧ ⊥ = ⊥ [Identity]

In short, (D(Q), ∨, ∧, ⊥, �) forms a distributive lattice. Expression 〈q〉 is
named the embedding of q in D(Q), and operators ∨ and ∧ are named disjunc-
tion and conjunction, respectively. For the remainder of this paper, we make no
distinction between expressions and their equivalence classes.

For finite n, we introduce the shorthand n-ary operators
∨

and
∧
, as follows:∨

{e1, e2, . . . en} = e1 ∨ e2 ∨ . . . en
∨

∅ = ⊥∧
{e1, e2, . . . en} = e1 ∧ e2 ∧ . . . en

∧
∅ = �

We distinguish the embedding 〈q〉 ∈ D(Q) from q itself. We require this
distinction only in Definition 18, where we will point this out. Otherwise, we do
not need this distinction, so we write q instead of 〈q〉.

Intuitively, disjunction q1∨q2 replaces the non-deterministic set {q1, q2}. This
is formalized by extending IAs with alternation.

Definition 7. An alternating interface automaton (AIA) is defined as a 5-tuple
(Q, I,O, T, e0) where

– Q is a set of states, and elements of D(Q) are referred to as configurations,
– I and O are disjoint sets of input and output actions, respectively,
– T : Q × (I ∪ O) → D(Q) is a transition function, with T (q, a)
= ⊥ for all

a ∈ I, and
– e0 ∈ D(Q) is the initial configuration.

The domain of AIAs is denoted by AIA. Notations for IAs are reused for
AIAs, if this causes no ambiguity. For � ∈ L, we define T� : Q → D(Q) by
T�(q) = T (q, �).

Configurations � and ⊥ are analogous to the empty set of states in an IA
s: if Ts(q, �) = ∅, this means that state q does not have a transition for �. In
terms of input-failure refinement, not having a transition for an input means
that the input is underspecified, whereas not having a transition for an output
means that the output is forbidden. This distinction is made explicit in AIA by
using � to represent underspecification and ⊥ to represent forbidden behaviour.
We will formalize this in Section 3.2. Definition 7 also allows output transitions
to �, meaning that the behaviour is unspecified after that output. Automata
models which do not allow distinct configurations � and ⊥ commonly represent
such underspecified behaviour with an explicit chaotic state [3,4] instead.

468 R. Janssen

We graphically represent AIAs in a similar way as IAs, with some additional
rules. A transition T (q0, �) = 〈q1〉 is represented by a single arrow from q0 to q1.

We represent T (q0, �) = q1 ∨ q2 by two arrows q0
�−→ q1 and q0

�−→ q2, analogous
to non-determinism in IAs. Conjunction T (q0, �) = q1∧q2 is shown by adding an
arc between the arrows. Nested expressions are represented by successive splits,
as shown in Example 8. A state q without outgoing arrow for an output � ∈ O
represents T (q, �) = ⊥, and a state without input transitions for input � indicates
T (q, �) = �. For � ∈ O, a transitions T (q, �) = � is shown with an arrow to �,
denoting underspecification, but note that � is a configuration, not a state.

Example 8. Figure 3 shows AIA sA, with QA = {q0A, q1A, q2A}, I = {?a, ?b},
O = {!x, !y}, e0A = q0A and T given by the following table:

state
action

?a ?b !x !y

q0A q0A ∧ (q1A ∨ q2A) � q0A q0A
q1A � � � ⊥
q2A � q0A ⊥ q2A

Moreover, AIA sB combines the partial specifications from Section 1.

q0A
sA

q1A

q2A

�

?a

!x!y !x

!y
?b

q0B
sB

q1B

q2B

�

?a

!c

q3B

q4B

� �

?b

!t !t+m

q5B

q6B q7B

� �

?b ?b

!c+m !t+m

q8B

q9B

q10B

?b?a

!c
!c+m

!t
!t+m

?on

?take

Fig. 3. Example AIAs sA and sB .

Before defining trace semantics for AIAs, we extend the transition function
from single actions to sequences of actions, by defining an after-function on AIAs.
This function transforms configurations by substituting every state according to
the transition function, similarly to the approach for alternating automata in [6].

Combining Partial Specifications using Alternating Interface Automata 469

Definition 9. Let f : Q → D(Q) and e ∈ D(Q). Then substitution e[f] is equal
to e with all atomic propositions replaced by f(e). Formally, [f] : D(Q) → D(Q)
is a postfix operator defined by
(e1 ∨ e2)[f] = e1[f] ∨ e2[f] (e1 ∧ e2)[f] = e1[f] ∧ e2[f]

�[f] = � ⊥[f] = ⊥ 〈q〉[f] = f(q)

Definition 10. Let s ∈ AIA. We define after: D(Qs)× L∗ → D(Qs) as

e afters ε = e e afters (� · σ) = e[T�] afters σ

Like before, we omit the subscript if clear from the context. We also define
(s after σ) = e0s afters σ.

Example 11. Consider sB in Figure 3. We evaluate sB after ?on ?b !t, as follows:

q0B after ?on ?b !t = q0B [T?on] after ?b !t = T (q0B , ?on) after ?b !t

= (q1B ∧ q3B ∧ q5B ∧ q8B) after ?b !t = (q1B ∧ q3B ∧ q5B ∧ q8B)[T?b] after !t

= (� ∧ q4B ∧ (q6B ∨ q7B) ∧ q9B) after !t = (q4B ∧ (q6B ∨ q7B) ∧ q9B)[T!t]

= (� ∧ (⊥ ∨⊥) ∧ q10B) = ⊥

Intuitively, this means that giving a tea without milk after ?on ?b is forbidden.
In contrast, tea with milk is allowed, and leads to configuration q10B :

q0B after ?on ?b !t+m = (q4B ∧ (q6B ∨ q7B) ∧ q9B)[T!t+m] = � ∧ (⊥ ∨�) ∧ q10B = q10B

3.2 Input-Failure Semantics for AIAs

IAs are equipped with input-failure semantics, based on the traces and under-
specified inputs of the IA. We lift this to AIAs via the after-function, using that
⊥ indicates forbidden behaviour, and � indicates underspecified behaviour.

Definition 12. Let s, s′ ∈ AIA, and e ∈ D(Qs). Then we define

Ftracess(e) = {σ ∈ L∗ | (e afters σ)
= ⊥} ∪ {σa ∈ L∗ · I | (e afters σa) = �}
Ftraces(s) = Ftracess(e

0
s)

s ≤if s
′ ⇐⇒ Ftraces(s) ⊆ Ftraces(s′)

s ≡if s
′ ⇐⇒ Ftraces(s) = Ftraces(s′)

Compare Definition 4 and Definition 12 for input-failure refinement for IAs
and for AIAs. For AIAs, refinement is defined directly over their Ftraces, whereas
for IA, the input-failure closure of the Ftraces is used for the right-hand model
(and optionally for the left-hand model, according to Proposition 5). In this
regard, AIAs are a more direct and natural representation of input-failure traces,
since the input-failure closure is not needed.

Proposition 13. For s ∈ AIA, Ftraces(s) is input-failure closed.

470 R. Janssen

Another motivation to represent input-failure traces with AIAs is the connec-
tion between the distributive lattice D(Q) and the lattice of sets of input-failure
traces: ∧ and ∨ are connected to intersection and union of input-failure traces, re-
spectively, and � and ⊥ represent the largest and smallest possible input-failure
trace sets.

Proposition 14. Let s ∈ AIA, and e, e′ ∈ D(Qs). Then

1. Ftraces(e ∧ e′) = Ftraces(e) ∩ Ftraces(e′)
2. Ftraces(e ∨ e′) = Ftraces(e) ∪ Ftraces(e′)
3. Ftraces(⊥) = ∅
4. Ftraces(�) = FT I,O

5. Ftraces(e) = {ε} ∪ {a ∈ Is | e after a = �}
∪ (

⋃
�∈Ls

� · Ftraces(e after �)) if e
= ⊥

Propositions 14.3 and 14.5 show why Definition 7 does not allow transitions
to T (q, a) = ⊥ for an input a: in that case, Ftraces(q) would contain trace ε, but
it would not contain extension a nor a of ε, meaning that after trace ε it is not
allowed to accept nor to refuse a.

We can lift configurations � and ⊥, as well as ∧ and ∨, to the level of AIAs.
This provides the building blocks to compose specifications. Specifications s�
and s⊥ can be used to specify that any or no behaviour is considered correct,
respectively. The operators ∧ and ∨ on specifications fulfill the same role as
existing operators in substitutivity refinement [7], and have similar properties,
described in Proposition 14.

Definition 15. Let s1, s2 ∈ AIA. Without loss of generality1, assume that Q1

and Q2 are disjoint. We define

s� = (∅, I, O, ∅,�) s1 ∧ s2 = (Q1 ∪Q2, I, O, T1 ∪ T2, e
0
1 ∧ e02)

s⊥ = (∅, I, O, ∅,⊥) s1 ∨ s2 = (Q1 ∪Q2, I, O, T1 ∪ T2, e
0
1 ∨ e02)

Proposition 16. Let i, i′, s, s′ ∈ AIA. Then

i ≤if s and i ≤if s
′ ⇐⇒ i ≤if (s ∧ s′)

i ≤if s or i ≤if s
′ =⇒ i ≤if (s ∨ s′)

i ≤if s and i′ ≤if s ⇐⇒ (i ∨ i′) ≤if s

i ≤if s or i′ ≤if s =⇒ (i ∧ i′) ≤if s

i ≤if s�
i
≤if s⊥ if e0i
= ⊥

The converse of statement (2) does not hold. As a counter-example, choose
Ftraces(i) = {ε, x, y}, Ftraces(s1) = {ε, x} and Ftraces(s2) = {ε, y}. In that
case, i ≤if s1 ∨ s2 holds, but i
≤if s1 and i
≤if s2. The converse of statement (4)
can be disproven similarly.

1 If Q1 and Q2 are not disjoint, the disjoint union Q1 � Q2 can be used instead of
Q1∪Q2. The transition functions of s1∧s2 and s1∨s2 should be adjusted accordingly.

Combining Partial Specifications using Alternating Interface Automata 471

3.3 AIA Determinization

In case of nestings of ∧ and ∨, the after-set s after σ may not be clear im-
mediately, so a transition function producing configurations without ∧ and ∨
is easier to interpret. For this reason, we lift the notions of determinism and
determinization from IAs [11] to the alternating setting.

Definition 17. Let s ∈ AIA and e ∈ D(Qs). Then e is deterministic if e = �
or e = ⊥ or e = 〈q〉 for some q ∈ Qs. Furthermore, s is deterministic if for all
σ ∈ L∗, configuration s after σ is deterministic.

Compare the notions of determinism for IAs and AIAs. For every trace σ, a
deterministic IA s is in a singleton state (s after σ) = {q}, unless (s after σ) = ∅
(that is, σ is not a trace of s). For AIAs, this singleton set {q} is replaced by
the embedding 〈q〉, and ∅ is replaced by � or ⊥, depending on whether this set
was reached by an undespecified action or a forbidden action.

We now define determinization, where we require the distinction between 〈q〉
and q to avoid ambiguity.

Definition 18. Let s ∈ AIA. We define det : D(Qs) → D(D(Qs) \ {�,⊥}) as

det(e) =

⎧⎪⎨
⎪⎩
� if e = �
⊥ if e = ⊥
〈e〉 otherwise

The determinization of s, or det(s) ∈ AIA, is defined as

det(s) = (D(Qs) \ {�,⊥}, I, O, Tdet(s), det(e
0
s)), with

Tdet(s)(e, �) = det(e afters �) for � ∈ L

Proposition 19. For s ∈ AIA, det(s) is deterministic.

Example 20. Figure 4 shows (the reachable part of) the determinizations of sA
and sB from Figure 3. In det(sA), state q0A ∧ q2A has no outgoing !x-transition.
This expresses Tdet(sA)(q

0
A∧q2A, !x) = ⊥, which is because q2A has no x-transition,

so TA(q
0
A, !x) = ⊥. In contrast, state q0A ∧ q2A has an outgoing ?a-transition,

Tdet(sA)(q
0
A ∧ q2A, ?a)
= �, because q0A has an ?a-transition, TA(q

0
A, ?a)
= �.

Example 20 shows that an input is specified by a conjunction of states in
the determinization if any of the individual state specify this input, whereas an
output is allowed by a conjunction of states only if all of the individual state allow
this output. In the setting of IA, [11] already established that this works in a
reversed way for non-determinism, following their definition of determinization:
all individual states of a disjunction should specify an input to specify it in
the determinization, and any individual state should allow an output to allow
it in the determinization. Their so-called input-universal determinization is an
instance of the determinization from Definition 18, using only disjunctions.

472 R. Janssen

q0A

det(sA)

q0A ∧ (q1A ∨ q2A)

q0A ∧ q2A

?a

!x
!y

?a

!x

!y?a

!y

?b

q0B

det(sB)

q1B ∧ q3B ∧ q5B ∧ q8B

q2B ∧ q9B q4B ∧ (q6B ∨ q7B) ∧ q9B

q10B

?on

?a ?b

!c !t+m

?take

Fig. 4. Examples of determinization.

This duality arises from Definition 10 of after, since the determinization
directly represents the after-function: the determinizations in Example 20 corre-
spond to the after-sets such as those derived in Example 11. This correspondence
is formalized in Proposition 21.

Proposition 21. Let s ∈ AIA and σ ∈ L∗. Then

(det(s) after σ) = det(s after σ).

Proposition 22. Let s ∈ AIA. Then Ftraces(s) = Ftraces(det(s)).

Corollary 23. Let s ∈ AIA. Then s ≡if det(s).

A known result [6] is that alternating automata are exponentially more suc-
cinct than non-deterministic automata, and double exponentially more succinct
than deterministic automata. Although alternating automata are not a special
case of AIAs (as AIAs lack the accepting and non-accepting states of alternating
automata), we expect AIAs to be exponentially more succinct than IAs, as well.

3.4 Connections between IAs and AIAs

IAs and AIAs are used to represent sets of input-failure traces, and are in that
sense interchangeable. First, we show that any IA can be translated to an AIA.

Definition 24. For s ∈ IA, the AIA induced by s is defined as AIA(s) =
(Qs, Is, Os, T,

∨
Q0

s) ∈ AIA, where for all q ∈ Qs and � ∈ L:

T (q, �) =

{
� if � ∈ I and q ��

�−→∨
Ts(q, �) otherwise

Proposition 25. Let s ∈ IA. Then Ftraces(AIA(s)) = fcl(Ftraces(s)).

Corollary 26. Let s1, s2 ∈ IA. Then s1 ≤if s2 ⇐⇒ AIA(s1) ≤if AIA(s2)

Combining Partial Specifications using Alternating Interface Automata 473

Definition 29 formalizes how disjunction in an AIA corresponds to non-
determinism in IA. Specifically, if no transitions are present for some output
in an IA, then the transition function of the corresponding AIA gives

∨
∅ = ⊥

for this output, analogous to the explicit case � for inputs. Note that the graph-
ical representation of an IA and that of its induced AIA are the same.

The translation from AIAs to IAs is more involved. For disjunctions of states
(q after �) = q1 ∨ q2, the translation of Definition 24 can simply be inverted, but
this is not possible for conjunctions. As such, we represent any configuration by
its unique disjunctive normal form.

Definition 27. Let e ∈ D(Q). Then DNF(e) is the smallest set in P(P(Q))
such that e =

∨
{
∧
Q′ | Q′ ∈ DNF(e)}.

The set DNF(e) can be constructed by using the axioms from Definition 6.

Example 28. To find DNF(q1 ∨ (q2 ∧ (q1 ∨ q3))), we first rewrite the expression
by using distributivity, associativity, commutativity and absorbtion, as follows:

q1 ∨ (q2 ∧ (q1 ∨ q3)) = q1 ∨ (q2 ∧ q1) ∨ (q2 ∧ q3) = q1 ∨ (q2 ∧ q3)

So we find DNF(q1 ∨ (q2 ∧ (q1 ∨ q3))) = {{q1}, {q2, q3}}. Two other examples
are DNF(⊥) = DNF(

∨
∅) = ∅ and DNF(�) = DNF(

∨
{
∧
∅}) = {∅}.

Definition 29. Let s ∈ AIA. Then the induced IA of s is defined as

IA(s) =(P(Qs), I, O, T,DNF(e0s)) ∈ IA, with for Q ⊆ Qs and � ∈ L:

T (Q, �) =

{
DNF((

∧
Q)[Ts�]) \ {∅} if � ∈ I

DNF((
∧
Q)[Ts�]) if � ∈ O

A state of IA(s) acts as the conjunction of the corresponding states in s. In
particular, a singleton state {q} in IA(s) acts as the contained state q in s, and
state ∅ in IA(s) acts as a chaotic state, having FtracesIA(s)(∅) = FT I,O.

Proposition 30. Let s ∈ AIA. Then Ftraces(s) = fcl(Ftraces(IA(s))).

Corollary 31. Let s1, s2 ∈ AIA. Then s1 ≤if s2 ⇐⇒ IA(s1) ≤if IA(s2)

4 Testing Input-Failure Refinement

So far, we have introduced refinement as a way of specifying correctness of one
model with respect to another. Often, a specification is indeed a model, but we
use it to ensure correctness of a real-world software implementation. To this end,
we assume that this implementation behaves like a IA. We cannot see the actual
states and transitions of this IA, but we can provide inputs to it and observe its
outputs. We assume that this IA must have an initial state, i.e. it is non-empty.

Definition 32. [1] An IA i is empty if Q0
i = ∅.

474 R. Janssen

In this section, we introduce a basis for model-based testing with AIAs, anal-
ogously to ioco test case generation [15]. Given a specification AIA, we derive
a testing experiment on non-empty implementation IAs, in order to observe
whether input-failure refinement holds with respect to the specification. This
requires an extension of input-failure refinement to these domains.

Definition 33. Let i ∈ IA and s ∈ AIA. Then

i ≤if s ⇐⇒ Ftraces(i) ⊆ Ftraces(s).

4.1 Testers for AIA Specifications

From a given specification AIA, we derive a tester. We model this tester as an
IA as well, which can communicate with an implementation IA through a form
of parallel composition. The tester eventually concludes a verdict, indicating
whether the observed behaviour is allowed. To communicate, the inputs of the
implementation must be outputs for the tester, and vice versa (note that I and O
denote the inputs and outputs for the implementation, respectively). The tester
should not block or ignore outputs from the implementation, meaning that the
tester should be input-enabled. If the tester intends to supply an input to the
implementation, it should also be prepared for a refusal of that input. A verdict
is given by means of special states pass or fail. Lastly, to give consistent verdicts,
a tester should be deterministic. This leads to the following definition of testers.

Definition 34. A tester for (an IA or AIA with) inputs I and outputs O is a
deterministic, input-enabled IA t = (Qt, O, I ∪ I, T, q0t) with pass, fail ∈ Qt,
such that pass and fail are sink-states with out(pass) = out(fail) = ∅, and
a ∈ out(q) ⇐⇒ a ∈ out(q) for all q ∈ Qt and a ∈ I.

Testing is performed by a special form of parallel composition of a tester and
an implementation. If the tester chooses to perform an input while the imple-
mentation also chooses to produce an output, this results in a race condition. In
such a case, both the input or the output can occur during test execution. We
assume a synchronous setting, in which the implementation and specification
agree on the order in which observed actions are performed (in contrast to e.g. a
queue-based setting [13], in which all possible orders are accounted for). These
assumptions are in line with the assumptions in e.g. ioco-theory [15], and lead
to the following definition of test execution.

Definition 35. Let i ∈ IA be non-empty, and let t be a tester for i. We write
qt �| qi for (qt, qi) ∈ Qt ×Qi. Then test execution of i against t, denoted t �| i, is
defined as (Qt ×Qi, ∅, I ∪ I ∪O, T, q0t �| q0i) ∈ IA, with

T (qt �| qi, �) = {q′t �| q′i | qt �−→ q′t, qi
�−→ q′i} for � ∈ L

T (qt �| qi, a) = {q′t �| qi | qt a−→ q′t, qi

a−→} for a ∈ I

We say that i fails t if q0t �| q0i
σ−→ fail �| qi for some σ and qi, and i passes t

otherwise.

Combining Partial Specifications using Alternating Interface Automata 475

We reuse the notions of soundness and exhaustiveness from [15], to express
whether a tester properly tests for a given specification.

Definition 36. Let s ∈ AIA and let t be a tester for s. Then t is sound for s
if for all i ∈ IA with inputs I and outputs O, i fails t implies i
≤if s. Moreover,
t is exhaustive for s if for all i ∈ IA, i passes t implies i ≤if s.

A simple attempt to translate specification AIA s to a sound and exhaustive
tester would be similar to the determinization of s, but replacing every occurence
of ⊥ and � by fail and pass, respectively.

ft(e) =

⎧⎪⎨
⎪⎩
fail if e = ⊥
pass if e = �
e otherwise

Taking special care of input failures, the function ft then induces a tester
(D(Qs) ∪ {pass, fail}, O, I ∪ I, T, ft(e

0
s)), with

T (e, �) = {ft(e afters �)} for e ∈ D(Qs), � ∈ L

T (v, �) =

{
{v} if � ∈ O

∅ if � ∈ I
for v ∈ {pass, fail}

T (e, a) =

{
{pass} if (e afters a) = �
{fail} otherwise

for e ∈ D(Qs), a ∈ I

This tester is sound and complete for s: each possible input-failure trace is in
Ftraces(s) if and only if it does not lead to fail, by construction. Here, we
make use of the fact that Ftraces(⊥) = ∅, meaning that ⊥ cannot be imple-
mented correctly by a non-empty IA and can thus be replaced by fail. Likewise,
Ftraces(�) = FT I,O means that � is always implemented correctly, and can be
replaced by pass.

However, this tester is quite inefficient. If a tester reaches pass after both σa
and σa, then this input a does not need to be tested after σ. Specifically, this is
the case if and only if trace σa leads to specification configuration �. We thus
improve the tester for a given specifications as follows.

Definition 37. Let s ∈ AIA. Then tester(s) ∈ IA is defined as

tester(s) = (D(Qs) ∪ {pass, fail}, O, I ∪ I, T, ft(e
0
s)), with ft as before, and

T (e, �) =

{
{ft(e afters �)} if � ∈ O, or � ∈ I and (e afters �)
= �
∅ if � ∈ I and (e afters �) = �

for � ∈ L

T (e, a) =

{
∅ if (e afters a) = �
{fail} otherwise

for e ∈ D(Qs), a ∈ I

T (v, �) =

{
{v} if � ∈ O

∅ if � ∈ I
for v ∈ {pass, fail}, � ∈ L

476 R. Janssen

Example 38. The tester for sB in Figure 3 is shown in Figure 5.

q0B
tester(sB)

q1B ∧ q3B ∧ q5B ∧ q8B

q2B ∧ q9B (q4B ∧ (q6B ∨ q7B) ∧ q9B

q10B

fail

!on

!A !B

?c ?t+m

!take
?O
!on

?O
!A

!B

?t
?c
?c+m

?O
!take

?t
?t+m
?c+m

?O

Fig. 5. The tester for the vending machine. The label ?O denotes a transition for every
label in O. Remark that inputs for sB are outputs for tester(sB), and vice versa.

Theorem 39 shows that soundness and exhaustiveness of a tester corresponds
to refinement of the corresponding AIA.

Theorem 39. Let s1, s2 ∈ AIA. Then

1 tester(s1) is sound and exhaustive for IA(s1)

2 tester(s1) is sound for s2 ⇐⇒ s2 ≤if s1

3 tester(s1) is exhaustive for s2 ⇐⇒ s1 ≤if s2

4.2 Test Cases for AIA Specifications

In [15], an algorithm was introduced to generate test cases. These are testers
as in Definition 34 with additional restrictions, so that they can be used as
unambiguous instructions to test a system. In particular, states of a test case
should have at most one outgoing input transition. This ensures that no choice
between different inputs has to be resolved during test execution. Additionaly,
all paths of a test case lead to pass or fail in a finite number of steps, to ensure
that test execution terminates with a verdict.

Definition 40. A tester t for I and O is a test case if

Combining Partial Specifications using Alternating Interface Automata 477

– for all qt ∈ Qt, | out(qt)| ≤ 1, and
– there are no infinite sequences q0t , q

1
t , . . . for q0t , q

1
t , . . . ∈ Qt \ {pass, fail}

such that q0t
�0−→ q1t

�1−→ . . .

The test case generation algorithm of [15] is non-deterministic, since it must
choose at most one inputs in every state, and it must choose when to stop testing.
We avoid defining a separate test case generation algorithm, and instead use
Theorem 39 to obtain sound test cases. If specification s1 is weakened to s2, such
that tester(s2) is a test case, then soundness of tester(s2) for s1 is guaranteed
by the theorem. Such a weakened singular specification s2 describes a finite,
tree-shaped part of the original specification s1.

Definition 41. Let s1, s2 ∈ AIA. Then s2 is a singular specification for s1 if
Q2 is a finite subset of L∗, with e02 ∈ {ε,�,⊥}, e01 = � =⇒ e02 = � and
e02 = ⊥ =⇒ e01 = ⊥, and having that for every σ ∈ Q2, the following holds:

1. T2(σ, �) = ⊥ =⇒ (s1 after σ�) = ⊥ for � ∈ L,
2. (s1 after σ�) = � =⇒ T2(σ, �) = � for � ∈ L
3. T2(σ, �) is either ⊥ or � or σ� for � ∈ L, and
4. there is at most one a ∈ I with T (σ, a)
= �.

It can be created from s1 similarly to test case generation in [15]. In every
state σ of the tree s1, we either decide to pick one input specified in s1 and also
specify that in s2; or we do not specify any input, but only outputs; or we leave
any successive behaviour unspecified (�).

Test cases based on singular specifications are inherently sound, and for any
incorrect implementation, it is possible to find a singular specification which
induces a test case to detects this incorrectness.

Theorem 42. If s2 is a singular specification for s1, then tester(s2) is a sound
test case for s1.

Theorem 43. Let i ∈ IA and s1 ∈ AIA. If i
≤if s1, then there is a singular
specification s2 for s1 such that i fails tester(s2).

Example 44. Specification sB in Figure 3 can be weakened to singular specifi-
cation sC shown in Figure 6. Indeed, sB ≤if sC holds, which can be established
by comparing sC with det(sB) in Figure 4. Therefore tester(sC) is a sound test
case for sB .

5 Conclusion and Future Work

Alternating interface automata serve as a natural and direct representation for
sets of input-failure traces, and therefore also for refinement of systems with
inputs, outputs, non-determinism and conjunction. We have used the observa-
tional nature of input-failure traces to define testers, describing an experiment
to observationally establish refinement of a black-box system.

478 R. Janssen

sC

�

?on

?a

!c

?take

?b

!t+m

tester(sC)

pass

fail

!on

!a

?c

!take

!b

?t+m

!on
?O

!a ?O

?t ?t+m
?c+m

!take ?O

!b ?O

?t ?c
?c+m

?O

?O

Fig. 6. A weakened version sC of the vending machine, and the test case tester(sC).
Question and exclamation marks are interchanged in tester(sC) to indicate that the
input and output alphabets have been interchanged with respect to sC .

The disjunction and conjunction of alternation brings interface automata
specifications closer to the realm of logic and lattice theory. On the theoretical
side, a possible direction is to extend configurations from distributive lattices to
a full logic. On the practical side, classical testing techniques acting on logical
expressions, such as combinatorial testing, could be translated to our black-box
configurations of states.

Possible criticism on our running example of a vending machine sB in Figure 3
may be that its representation as an AIA is not concise, since the determinization
det(sB) is much smaller and more understandable than sB itself. This is because
the individual specifications offer a choice between outputs, such as tea with
or without milk, whereas the intersection of all choices is singleton. A more
natural encoding for this example is to express the types of drink with data data
parameters, and the restrictions on them by logical constraints. This requires
an automaton model in style of symbolic transition systems [9], which could be
enriched with the concepts of alternation of AIAs.

Interface automata typically contain internal transitions, and the interaction
between internal behaviour and alternation is not immediately clear. A possible
approach to extend AIAs with internal behaviour is to lift the ε-closure of [1],
the set of states reachable via internal transitions, to the level of configurations.

Acknowledgement.

We thank Jan Tretmans and Frits Vaandrager for their valuable feedback.

Combining Partial Specifications using Alternating Interface Automata 479

References

1. Alfaro, L.d., Henzinger, T.: Interface Automata. In: Gruhn, V. (ed.) Joint 8th Eur.
Softw. Eng. Conf. and 9th ACM SIGSOFT Symp. on the Foundation of Softw. Eng.
– ESEC/FSE-01. SIGSOFT Softw. Eng. Notes, vol. 26, pp. 109–120. ACM Press
(2001). https://doi.org/10.1145/503271.503226

2. Alur, R., Henzinger, T., Kupferman, O., Vardi, M.: Alternating Refinement
Relations. In: Sangiorgi, D., Simone, R, d. (eds.) 9th Int. Conf. on Concur-
rency Theory – CONCUR’98. LNCS, vol. 1466, pp. 163–178. Springer (1998).
https://doi.org/10.1007/BFb0055622

3. Beneš, N., Daca, P., Henzinger, T., Křet́ınskỳ, J., Ničković, D.: Complete composi-
tion operators for ioco-testing theory. In: Kruchten, P., Becker, S., Schneider, J.G.
(eds.) Proc. 18th Int’l ACM SIGSOFT Symp. on Comp.-Based Softw. Eng. pp.
101–110. ACM (2015). https://doi.org/10.1145/2737166.2737175

4. Bijl, M.v.d., Rensink, A., Tretmans, J.: Compositional Testing with ioco. In:
Petrenko, A., Ulrich, A. (eds.) Formal Approaches to Software Testing. LNCS,
vol. 2931, pp. 86–100. Springer (2004). https://doi.org/10.1007/978-3-540-24617-
6 7

5. Brinksma, E.: Constraint-Oriented Specification in a Constructive Formal Descrip-
tion technique. In: de Bakker, J., Roever, W.P.d., Rozenberg, G. (eds.) Stepwise
Refinement of Distributed Systems Models, Formalisms, Correctness: REX Work-
shop, Mook, The Netherlands. pp. 130–152. Springer Berlin Heidelberg (1990).
https://doi.org/10.1007/3-540-52559-9 63

6. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–
133 (Jan 1981). https://doi.org/10.1145/322234.322243

7. Chilton, C., Jonsson, B., Kwiatkowska, M.: An algebraic theory of in-
terface automata. Theoretical Computer Science 549, 146–174 (2014).
https://doi.org/10.1016/j.tcs.2014.07.018

8. Doyen, L., Henzinger, T.A., Jobstmann, B., Petrov, T.: Interface theories with
component reuse. In: Proceedings of the 8th ACM International Conference on
Embedded Software. pp. 79–88. EMSOFT ’08, ACM, New York, NY, USA (2008).
https://doi.org/10.1145/1450058.1450070

9. Frantzen, L., Tretmans, J.: Model-based testing of environmental conformance
of components. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.
(eds.) Formal Methods for Components and Objects. pp. 1–25. Springer (2007).
https://doi.org/10.1007/978-3-540-74792-5 1

10. Janssen, R.: Combining partial specifications using alternating interface automata.
Report, Radboud University, Nijmegen (2020), https://arxiv.org/abs/2002.

08754

11. Janssen, R., Vaandrager, F., Tretmans, J.: Relating alternating relations for confor-
mance and refinement. In: Ahrendt, W., Tapia Tarifa, S. (eds.) Integrated Formal
Methods. pp. 246–264. LNCS, Springer (2019). https://doi.org/10.1007/978-3-030-
34968-4 14

12. McNaughton, R., Yamada, H.: Regular expressions and state graphs for au-
tomata. IRE Transactions on Electronic Computers EC-9(1), 39–47 (1960).
https://doi.org/10.1109/TEC.1960.5221603

13. Petrenko, A., Yevtushenko, N., Huo, J.L.: Testing transition systems with input
and output testers. In: Hogrefe, D., Wiles, A. (eds.) Testing of Communicat-
ing Systems. pp. 129–145. Springer Berlin Heidelberg, Berlin, Heidelberg (2003).
https://doi.org/10.1007/3-540-44830-6 11

480 R. Janssen

14. Priestly, H., Davey, B.: Introduction to lattices and order. Cambridge University
Press, England (1990)

15. Tretmans, J.: Model Based Testing with Labelled Transition Systems. In: Hierons,
R., Bowen, J., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol. 4949,
pp. 1–38. Springer (2008). https://doi.org/10.1007/978-3-540-78917-8 1

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/

4.0/), which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Combining Partial Specifications using Alternating Interface Automata 481

Revisiting Semantics of Interactions for Trace
Validity Analysis

Erwan Mahe1 , Christophe Gaston2 , and Pascale Le Gall1

1 Laboratoire de Mathématiques et Informatique pour la Complexité et les Systèmes
CentraleSupélec - Plateau de Moulon

9 rue Joliot-Curie, F-91192 Gif-sur-Yvette Cedex
2 CEA, LIST, Laboratory of Systems Requirements and Conformity Engineering,

P.C. 174, Gif-sur-Yvette, 91191, France

Abstract. Interaction languages such as MSC are often associated with
formal semantics by means of translations into distinct behavioral for-
malisms such as automatas or Petri nets. In contrast to translational
approaches we propose an operational approach. Its principle is to iden-
tify which elementary communication actions can be immediately exe-
cuted, and then to compute, for every such action, a new interaction
representing the possible continuations to its execution. We also define
an algorithm for checking the validity of execution traces (i.e. whether or
not they belong to an interaction’s semantics). Algorithms for semantic
computation and trace validity are analyzed by means of experiments.

Keywords: Interaction Language · Scenario · Sequence Diagram · Se-
mantics · Causal Order · Trace Analysis

1 Introduction

(a) Default sequencing

i = seq(a!m1, a!m2)

(b) Uncorrelated instants

i = seq(a!m, b?m)

(c) Message passing

i = strict(a!m, b?m)

Fig. 1: UML-SD style

Interaction Languages (IL) are powerful mechanisms to
express behavioral requirements in the form of scenarios
called interactions. ILs include several recognized stan-
dards such as MSC and LSC [6], HMSC [25], MSD
[13], UML-Sequence Diagrams [21] (UML-SD), etc. These
graphical languages represent parts involved in a commu-
nication scheme as vertical lines, called lifelines. Each one
highlights a succession of instants where actions (emissions
or receptions of messages) may occur. These instants are
conventionally ordered from top to bottom as illustrated
(in the style of UML-SD) in Fig.1-a, where the emission
of m1 occurs before that of m2. However, this sequencing
does not order actions occurring on different lifelines; in
Fig.1-b, even though the reception of m occurs graphically
below the emission of m, no order is enforced. As such, this
specificity is called ’weak sequencing’. In order to enforce
a causality relation between such uncorrelated actions, we

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 482–501, 2020.
https://doi.org/10.1007/978-3-030-45234-6_24

http://orcid.org/0000-0002-5322-4337
http://orcid.org/0000-0001-6865-5108
http://orcid.org/0000-0002-8955-6835
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_24&domain=pdf

use a different ’strict sequencing’ operator. In Fig.1-c, it is used to express a
message m passing between lifelines a and b. Here, m cannot be received before
being emitted; the origin of the arrow denoting an instant preceding the one
depicted by its target. Additional operators (e.g. UML-SD combined fragments)
enable the expression of various concepts to order actions such as parallelisation,
repetition, alternatives (illustrated in Fig.2), etc. They structure interactions and
specify relative scheduling for subscenarii.

seq

alt

a!m1 b?m2

a!m3

whole interaction i = i|ε
subinteraction i|1 in blue

Fig. 2: Syntax and Positions

When ILs are fitted with formal se-
mantics, requirements can be processed
using formal techniques, such as model-
checking [1] or model-based testing [19].
As pointed out earlier, the key seman-
tic concept here is the causality rela-
tion between actions that the interac-
tion’s structure induce. Valid traces are
those respecting the subsequent partial
order [27,19]. The authors of [17] define
a simple IL as a set of terms built above
basic actions and provide it with a deno-
tational semantics which associates each

interaction term with a set of traces. This kind of formal framework can serve
as a reference for stating theorems about interactions (e.g. the ’satisfaction con-
dition’ proven in [17]).

In this paper, we consider an IL which includes several distinct loop operators
and provide it with a denotational semantics, directly comparable to that given
by [17]. The semantics of an interaction with loops is defined by considering any
finite number of loop unfolding combinations. Then, we introduce a second se-
mantics, which can be qualified as operational, as we aim at presenting it in the
style advocated in [24]. Here, accepted traces of an interaction i are defined by
identifying its initial actions act, and for each of those the subsequent interaction
i′ that will express the remainder of the trace. This operational semantics can
therefore be thought of as a set of rules of the form i

act−−→ i′. Doing so is how-
ever challenging as we need to keep track of possible conflicts between actions
occurring on the same lifeline. While the operational semantics is particularly
suitable to be adapted into concrete trace analysis algorithms, the denotational
semantics serves as a mathematical foundation, revealing interesting algebraic
properties. Both semantics have been implemented for semantic computation
and conducted experiments indicate identical results. A trace analysis tool has
also been adapted from the operational semantics and experimented on for cor-
rectness and performances.

The paper is organized as follows: Sec.2 introduces the IL and the denota-
tional semantics. Sec.3 and Sec.5 resp. introduce the operational semantics and
the subsequent trace analysis algorithm while Sec.4 reports experimental results
about the consistency of both semantics w.r.t. one another. Finally, Sec.6 and
Sec.7 resp. discuss related works and provide concluding remarks.

Revisiting Semantics of Interactions for Trace Validity Analysis 483

2 Interaction language and denotational semantics

2.1 Base syntax

This section provides a textual denotation of our basic IL (i.e. without loops).
Interactions are defined up to a given signature (L,M) where L and M resp.
are sets of lifelines and messages. Their base building blocks are a set of com-
munication actions (actions) over L and M : Act(L,M) = {lΔm|l ∈ L,Δ ∈
{!, ?},m ∈ M} where l!m (resp. l?m) designates the emission (resp. reception)
of the message m from (resp. on) the lifeline l. For any action act in Act(L,M)
of the form lΔm, Θ(act) denotes the lifeline l. Actions can be composed using
different binary operators that introduce an order of execution between them
(weak or strict sequentiality, parallelism, mutual exclusivity).

Definition 1 (Basic Interactions). The set B(L,M) of basic interactions
over L and M is inductively defined as follows:

– ∅ ∈ B(L,M) and Act(L,M) ⊂ B(L,M),
– ∀(i1, i2) ∈ B(L,M)2 and ∀f ∈ {strict, seq, alt, par}, f(i1, i2) ∈ B(L,M).

The empty interaction ∅ and actions of Act(L,M) are elementary interac-
tions. The strict and seq operators are sequential operators: in strict(i1, i2),
all the actions in i1 must take place before any action in i2 while in seq(i1, i2)
sequentiality is only enforced between actions that share the same lifeline. In
Fig.1-b, b?m may precede3 a!m (because a �= b) while in Fig.1-c b?m cannot
precedes a!m. Hence we use strict to encode the emission and reception of the
same message object e.g. strict(a!m, b?m) on Fig.1-c4. In alt(i1, i2), the behav-
iors specified by i1 and i2 are both acceptable albeit mutually exclusive5. In
Fig.2 if a!m1 happens then b?m2 cannot happen and vice-versa. In par(i1, i2),
the executions of i1 and i2 are interleaved. For instance, in par(a!m1, a!m2),
actions a!m1 and a!m2 can happen in any order.

Interactions being defined as usual terms, we use positions expressed in
Dewey decimal notation to refer to subinteractions [7]. A position p of i is a
sequence of positive integers denoting a path leading from the root node of i to
the subterm of i at position p. Interactions are defined with operations whose
arity is at most 2. Hence, positions are words of {1, 2}∗ i.e. words built over the
empty word ε, the words 1 and 2 and the concatenation law ".". In the following,
we will use simplified notations without dots, e.g. "11" for the position "1.1".

In Def.2, the functions ST and pos resp. associate to any interaction the set
of all its subinteractions and the set of its positions. Moreover, we use the usual
notation i|p [7] to designate unambiguously the subinteraction of i at position p
for p ∈ pos(i) (cf. example in Fig.2).

3 Note that we omit depicting seq on diagrams as is classically done in UML-SD.
4 drawn by convention as a plain arrow between a and b
5 note that we handle the UML-SD opt operator as opt(i) = alt(i,∅) = alt(∅, i)

484 E. Mahe et al.

Definition 2 (Positions and subinteractions of a basic interaction). We
define ST : B(L,M) → P(B(L,M)), pos : B(L,M) → P({1, 2}∗) and6 _|_ :
B(L,M)× {1, 2}∗ → B(L,M) such that ∀i ∈ B(L,M):

– if i = ∅ or i ∈ Act(L,M) then ST (i) = {i}, pos(i) = {ε} and i|ε = i
– if i = f(i1, i2) with f ∈ {strict, seq, par, alt} then:

• ST (i) = {i} ∪ ST (i1) ∪ ST (i2)
• pos(i) = {ε} ∪ 1.pos(i1) ∪ 2.pos(i2)
• i|ε = i and for p = 1.p′ (resp. 2.p′) in pos(i), i|p = i1|p′ (resp. i2|p′).

2.2 Denotational semantics for basic interactions

As explained in Sec.2.1, operators occurring in an interaction induce relations
of precedence between the actions of the interaction. In the example of Fig.2,
if the left branch of the alt is chosen (i.e. a!m1 at position 11) then the action
a!m3 at position 2 must occur after it. However if the other branch were chosen
(i.e. b?m2 at position 12), there would be no precedence order between actions
b?m2 and a!m3 as their common ancestor is a seq operator which only orders
actions sharing the same lifeline. As a result, several orderings can be defined,
depending, among others, on the choice of alt branches. These possible orderings
can be encoded as a set ord(i) (defined in Def.4) which contains elements of
the form (e, o) where e is the set of positions of the involved actions and o
reflects the precedence relations between those. In the example of Fig.2, we have
ord(i) = {({11, 2}, {(11, 2)}), ({12, 2}, ∅)}. Indeed, as explained earlier, if the
11 branch is chosen then the only two actions to be considered are a!m1 and
a!m3 on resp. positions 11 and 2 (therefore e = {11, 2}) and they are ordered
because of both the seq operator and their common lifeline, so that the associated
precedence relation is modelled by o = {(11, 2)} meaning that a!m1 at position
11 should occur before a!m3 at position 2. The only other possible ordering
occurs when branch 12 is chosen and likewise we would have e = {12, 2} with
o = ∅ because the seq does not constrain the order of actions b?m2 and a!m3

with different lifelines.

Definition 3 (Ordering type). Given i in B(L,M). The set O(i) of candidate
orderings of i contains all couples (e, o) such that (1) e ⊆ pos(i), (2) for any p
in e, i|p ∈ Act(L,M) and (3) o ⊆ e× e. O is then the set

⋃
i∈B(L,M) O(i).

In Def.4, for a given interaction i, ord(i) precisely defines which order-
ings are to be considered among the candidate orderings O(i). For an order-
ing (e, o) in O and p ∈ {1, 2}, we use the notation p.e = {p.p′|p′ ∈ e}, p.o =
{(p.p1, p.p2)|(p1, p2) ∈ o} and p.(e, o) = (p.e, p.o). The notation is canonically
extended to any set O of orderings, by p.O = {p.(e, o)|(e, o) ∈ O}.

For the interaction ∅, there is no associated action and therefore we have a
single (e, o) = (∅, ∅). For a ∈ Act(L,M), there is a single action a (at position
ε) and as a result, ord(a) contains a single (e, o) = ({ε}, ∅). For i = alt(i1, i2),
6 _|_ is a partial function so that i|p is only defined for positions occurring in pos(i).

Revisiting Semantics of Interactions for Trace Validity Analysis 485

either i1 or i2 is executed. Thus any ordering in ord(i) is simply an ordering
from ord(i1) or from ord(i2) but correctly prefixed. Concretely, for any orderings
(e1, o1) ∈ ord(i1) and (e2, o2) ∈ ord(i2), ord(i) contains both 1.(e1, o1) and
2.(e2, o2). For i = par(i1, i2), both i1 and i2 have to be executed but no order is
enforced between actions of either child branch. Thus, for any ordering (e1, o1) ∈
ord(i1) and (e2, o2) ∈ ord(i2), ord(i) contains (1.e1 ∪ 2.e2, 1.o1 ∪ 2.o2). For i =
strict(i1, i2) both i1 and i2 have to be executed and all actions from i1 must occur
before actions from i2. Thus for any orderings (e1, o1) ∈ ord(i1) and (e2, o2) ∈
ord(i2), ord(i) contains an ordering (e, o) that concerns all actions from both
children i.e. e = 1.e1 ∪ 2.e2 and such that o keeps track of all initial precedence
relations while incorporating those induced by the strict operator i.e. o = 1.o1∪
2.o2 ∪ {(p1, p2)|p1 ∈ 1.e1, p2 ∈ 2.e2}. For i = seq(i1, i2) the same reasoning can
be applied, with the exception that additional precedence relations only concern
actions that share the same lifelines. Using the same notations, e = 1.e1 ∪ 2.e2
and o = 1.o1 ∪ 2.o2 ∪ {(p1, p2)|p1 ∈ 1.e1, p2 ∈ 2.e2, Θ(i|p1

) = Θ(i|p2
)}.

Definition 4 (Orderings of a basic interaction). We define the function
ord : B(L,M) → P(O) as follows:

ord(∅) = ∅ and ∀ act ∈ Act(L,M), ord(act) = {({ε}, ∅)}

For any i1 and i2 in B(L,M):

ord(alt(i1, i2)) = 1.ord(i1) ∪ 2.ord(i2)

ord(par(i1, i2)) =
⋃

(e1,o1)∈ord(i1)
(e2,o2)∈ord(i2)

{(1.e1 ∪ 2.e2, 1.o1 ∪ 2.o2)}

ord(strict(i1, i2)) =
⋃

(e1,o1)∈ord(i1)
(e2,o2)∈ord(i2)

{
(e, o)

∣∣∣∣ e = (1.e1 ∪ 2.e2) , o = 1.o1 ∪ 2.o2 ∪ o′

o′ = {(p1, p2) | p1 ∈ 1.e1 , p2 ∈ 2.e2}
}

ord(seq(i1, i2)) =
⋃

(e1,o1)∈ord(i1)
(e2,o2)∈ord(i2)

⎧⎨
⎩(e, o)

∣∣∣∣∣∣
e = (1.e1 ∪ 2.e2) , o = 1.o1 ∪ 2.o2 ∪ o′

o′ =
{
(p1, p2)

∣∣∣∣p1 ∈ 1.e1 , p2 ∈ 2.e2
Θ(i|p1

) = Θ(i|p2
)

}
⎫⎬
⎭

A given ordering (e, o) with e = {e1, ..., en} characterizes a set of behaviors
that expresses every action whose position belongs to e exactly once. Such a
behavior is thus given under the form of an execution trace i|eα(1)

...i|eα(n)
where α

is a permutation of [1, n]. Obviously, not all of those permutations are acceptable
as they must not contradict the partial order specified by o. If we note pj = eα(j)
for j in [1, n], we have ∀j, k ∈ [1, n]2 j > k ⇒ (pj , pk) �∈ o.

The semantics σ(i) of an interaction i then comes naturally as the union
of all sets sem(i, e, o) of execution traces of i compatible with (e, o) ∈ ord(i).
When considering the example from Fig.2, we have sem(i, {11, 2}, {(11, 2)}) =
{a!m1.a!m3} and sem(i, {12, 2}, ∅) = {b?m2.a!m3, a!m3.b?m2}.

486 E. Mahe et al.

Definition 5 (Denotational semantics for basic interactions). For i ∈
B(L,M) and (e, o) ∈ ord(i) with n ∈ N being the cardinal of e, we note:

sem(i, e, o) =
{
i|p1

...i|pn

∣∣∀(pj , pk) ∈ e2, j > k ⇒ pj �= pk ∧ (pj , pk) �∈ o
}

σ : B(L,M) → P(Act(L,M)∗) is s. t. ∀i ∈ B(L,M), σ(i) =
⋃

(e,o)∈ord(i)

sem(i, e, o)

2.3 Extension of the language with loops

A loop is a repetition operator. Its content can be instantiated any finite number
of times i.e multiple copies of it are inserted into the interaction. For UML-SD,
the norm [23] states that "the loop construct represents a recursive application
of the seq operator where the loop operand is sequenced after the result of earlier
iterations". The UML-SD loop is hence associated with the seq operator. When
instantiated, the loop content is ordered using seq this means for example that
loop(a!m) becomes seq(a!m, loop(a!m)) then seq(a!m, seq(a!m, loop(a!m))) and
so on. In line with this explanation, let’s consider the 4 types of loops that
can be characterized according to the operator ordering the instantiated content
(seq, strict, par or alt). We can discard alt as instantiating loop(i) would lead
to alt(i, loop(i)) meaning that the content can be read at most once and is
therefore equivalent to opt(i) (i.e. alt(i,∅)). We will here consider 3 operators
denoted loopseq (the classical loop), loopstrict and looppar.

(a-i) ia (a-ii) ia after a!m (b-i) ib (b-ii) ib after a!m1

Fig. 3: Examples showcasing the pertinence of loopstrict and looppar

In Fig.3-a-i, ia|11 = a!m is the only immediately executable action and its ex-
ecution leads to the interaction i′a = strict(b?m, ia) drawn on Fig.3-a-ii. Because
of the strict operator, i′a|211 = a!m is not immediately executable (preceded by
i′a|1 = b?m). As a result ta = a!m.a!m.b?m.b?m is not an accepted trace for
ia. However, if there was a seq operator instead of the strict, i′a|211 would be
immediately executable and ta an accepted trace.

Similarly, in Fig.3-b-i, ib|11 = a!m1 is the only immediately executable action
and its execution leads to i′b = par(a!m2, ib) drawn on Fig.3-b-ii. Because of
the par operator, i′b|211 = a!m1 is immediately executable. As a result tb =
a!m1.a!m1.a!m2.a!m2 is an accepted trace for ib. However, if there was a seq

Revisiting Semantics of Interactions for Trace Validity Analysis 487

instead of the par, i′b|211 would not be immediately executable and tb not an
accepted trace.

Consequently, considering looppar and loopstrict in addition to the classic
loopseq improves expressiveness. In rough terms, looppar always allows new in-
stantiations as each instance is executed in parallel w.r.t each others and the
loop itself. loopstrict on the contrary does not allow new instantiations as long as
the previous instance has not been entirely executed. The behavior of loopseq is
somewhat in the middle, instantiations being allowed depending on the current
structure of actions preceding and within the loop.

In the following, we’ll extend our IL to loops and adapt previous definitions
(from B(L,M) to I(L,M)). As in Def.6, any time we do so, we will only define
the missing cases concerning loop terms.

Definition 6 (Interactions). The set I(L,M) of interactions over L and M
is inductively defined as follows:

– ∅ ∈ I(L,M) and Act(L,M) ⊂ I(L,M),
– ∀(i1, i2) ∈ I(L,M)2 and ∀f ∈ {strict, seq, alt, par}, f(i1, i2) ∈ I(L,M),
– ∀i ∈ I(L,M) and ∀f ∈ {strict, seq, par}, loopf (i) ∈ I(L,M).

The functions ST : I(L,M) → P(I(L,M)), pos : I(L,M) → P({1, 2}∗)
and _|_ : I(L,M) × {1, 2}∗ → I(L,M) are defined by extending to loop terms
the corresponding functions of Def.2:
For all i in I(L,M) of the form loopf (i

′) with f ∈ {strict, seq, par}:
– ST (i) = {i} ∪ ST (i′)
– pos(i) = {ε} ∪ 1.pos(i′),
– i|ε = i and for p = 1.p′ in pos(i), i|p = i′|p′ .

(a) i = loopseq(i|1)

with i|1 = strict(a!m, b?m)

(b) i′ = seq(i|1, i)

Fig. 4: Unfolding

In order to define the semantics of interactions, we
use the notion of term replacement [7]: the notation t[s]p
denotes the term t where its subterm at position p is re-
placed by the term s. For instance with i = seq(a!m, b?m),
we have i[c?m]2 = seq(a!m, c?m). This notation is con-
venient to represent terms obtained by loop unfolding.
For example let us consider an interaction i ∈ I(L,M)
with a loopseq at a position p ∈ pos(i), that is, such that
i|p = loopseq(i|p.1). The interaction is then obtained from i
by unfolding once the loop at position p is i[seq(i|p.1, i|p)]p.
In Def.7, the set Υ (i, n) of all n-unfoldings of an interac-
tion i (i.e. the set of all interactions resulting from n in-
stantiations of any loop from i) is defined recursively. On
Fig.4 loop unfolding is illustrated with Υ (i, 0) = {i} and Υ (i, 1) = {i′}.
Definition 7 (n-unfoldings). We define Υ : I(L,M) × N → P(I(L,M)) such
that ∀i ∈ I(L,M) Υ (i, 0) = {i} and ∀n ∈ N

+:

Υ (i, n) =
⋃

p∈pos(i) s.t. i|p=loopf (i|p.1)

Υ (i[f(i|p.1, i|p)]p, n− 1)

488 E. Mahe et al.

We define a function F : I(L,M) → B(L,M) that flattens interactions with
loops i.e. that replaces all loop subterms with the empty interaction ∅. For
instance, in Fig.4 we have F (i) = ∅ and F (i′) = seq(i|1,∅). As F (I(L,M)) ⊂
B(L,M), we can define an unfolding-based semantics7 for i ∈ I(L,M) by simply
considering the union of semantics obtained from flattened unfoldings of i.

Definition 8 (Denotational semantics for interactions).
We define σu : I(L,M) → P(Act(L,M)∗) such that for all i in I(L,M):

σu(i) =
⋃
n∈N

⋃
i′∈Υ (i,n)

σ(F (i′))

3 Operational Semantics

We aim to define algorithms that can determine whether or not a trace t is ac-
cepted by an interaction i. This amounts to ascertaining whether or not t ∈ σu(i).
Naturally, being able to do so without having to compute σu(i) is preferable. In
the following we’ll refer to this problem as ’trace analysis’.

Fig. 5: Operational Semantics

As per Sec.2.3, asserting t ∈ σu(i) equates
to finding a combination of loop unfoldings i� ∈⋃∞

k=0 Υ (i, k) such that t ∈ σ(F (i�)). Even if fea-
sible, this would be time and space consuming8.
As for non acceptation, it equates to proving
that ∀i� ∈ ⋃∞

k=0 Υ (i, k) we have t �∈ σ(F (i�)).
In this case, a termination in finite time would
not even be guaranteed and would require defin-
ing some stopping criterion on the unfolding.

Consequently, we investigate another ap-
proach, in which traces are analyzed action by
action. Here, instead of systematically unfolding
loops, we do so on demand (when executing an
act that is found within a loop). This approach
is based on a different semantics (σo) whose de-
scription is the purpose of Sec.3.

σo is presented in the style of operational se-
mantics, i.e. consisting in: (1) identifying from
the structure of i which act can be immediately
executed (coined ’frontier actions’) and (2) de-
riving for each such act a new interaction i′ spec-

ifying all the possible continuations of act within the set of execution traces
specified by i (noted as i

act−−→ i′).
Intuitively, an action is in the frontier iff no structural operators (parent

nodes) coerce it to be preceded by another action (sibling leaf). Accepted traces
7 coined σu, u standing for ’unfolding-based’
8 and would not be adaptable if one considers an extension to monitoring as new

combinations i� may be needed every time a new action is observed

Revisiting Semantics of Interactions for Trace Validity Analysis 489

are then built recursively through the successive consumption of actions. Let’s
consider a trace t = act1.(...).actn with ∀k ∈ [1, n] ik−1

actk−−−→ ik and such that
i0 = i (by extension we may note i

t−→ in).
• If the last interaction in can express the empty trace ε (i.e. ε ∈ σu(in)) - which
can be statically analysed - then t is accepted by i i.e. t ∈ σo(i).
• In any case, for all frontier actions actn+1 of in, we have in

actn+1−−−−→ in+1, meaning
that t can be extended by actn+1 and is a prefix of given trace(s) accepted by i.

To illustrate this, let’s consider the example from Fig.5. The initial interaction
is i = seq(alt(a!m1, b?m2), a!m3). There are 3 frontier actions that may play the
role of act: i|11 = a!m1, i|12 = b?m2 and i|2 = a!m3. The interactions remaining
after the execution of i|11 and i|12 (resp. referred to as i′1 and i′2), which happen
to be the same, are depicted below on the left, while the one remaining after the
execution of i|2 (noted i′3) is depicted on the right. The cases leading to i′1 and i′2
are self-evident. As for the one leading to i′3, the execution of a!m3 is contingent
to the choice of the branch 12 of the alt hence the elimination of branch 11 in
the remaining interaction. Indeed, if branch 11 were to be chosen, the execution
of a!m3 would not be possible as a!m1 should have been executed before. This
illustrates that a!m3 is a frontier action up to the choice of the right branch of the
alt operator. Let us remark that b?m2 may indeed happen after a!m3 as those
two actions occur on different lifelines and the top seq operator structuring them
does not constrain their order of execution. Finally, we conclude by defining the
operational semantics as σo(i) = a!m1.σo(i

′
1) ∪ b?m2.σo(i

′
2) ∪ a!m3.σo(i

′
3).

3.1 Frontier actions

In this section we explain how to identify frontier actions. Our notion of frontier
differs slightly from that of [4], where it refers to the set of positions p such
that ∀j ∈ {1, 2}∗, p.j �∈ pos(i) (i.e. positions of leaf nodes). Indeed, our frontiers
contain only leaves that are immediately executable actions.

Any ordering as defined in Def.4 provides a partial order relation for the set
of (positions of) actions of a basic interaction. A frontier action act on position
p is then simply a minimal element given such a relation (e, o), i.e. s.t. ∀p′ ∈ e
we have (p′, p) �∈ o i.e. act does not have to be preceded by any other action. The
frontier of an interaction i is then defined as the union of such p, considering all
the orderings from ord(i). As Def.4 did not include loop operators, we extend it
in the following definition, in which the empty ordering (∅, ∅) corresponds to the
case where the loop has not unfolded. According to this, the frontier of i from
Fig.5 is then front(i) = {11, 12, 2}.
Definition 9 (Ordering). We define ord : I(L,M) → P(O) as an extension
to I(L,M) of its counterpart from Def.4. For all f in {strict, seq, par}:

∀i ∈ I(L,M), ord(loopf (i)) = 1.ord(i) ∪ {(∅, ∅)}
Definition 10 (Frontier). front : I(L,M) → P({1, 2}∗) is the function s.t.:

∀i ∈ I(L,M), front(i) =
⋃

(e,o)∈ord(i)

{p ∈ e | ∀p′ ∈ e, (p′, p) �∈ o}

490 E. Mahe et al.

3.2 Pruning

The design of the rules i
act−−→ i′ hinted at earlier is made operational thanks to

2 mechanisms: pruning and execution. Given an action act ∈ front(i), branches
preventing its execution are detected and eliminated with pruning. However, this
is not done on the whole interaction i but rather on specific neighboring (w.r.t.
act) subinteractions. Execution orchestrates the calls to pruning, eliminates act
and constructs the remaining interaction i′.

(a) i

seq

loopseq

strict

a!m1 b?m1

seq

loopseq

alt

a!m2 b?m3

a!m4

(b)
red - action to execute

green - neighbors to prune
blue - pruning

(c) effect of pruning

(d) after executing i|22 = a!m4

Fig. 6: Example showcasing pruning

We first define the pruning mechanism which consists in removing from an
interaction all the actions which occur on a given lifeline. For instance, on Fig.6-
b, let us consider the interactions i1 = i|1 = loopseq(strict(a!m1, b?m1)) and
i2 = i|21 = loopseq(alt(a!m2, b?m3)) highlighted in green. We want to remove
actions occurring on the lifeline a (so as to allow the execution of i|22 = a!m4).
We find that i1|11 = a!m1 (resp. i2|11 = a!m2) needs to be removed from i1 (resp.
i2). If we do not want to get an interaction which is inconsistent or outwardly
contradicts the original semantics, we can only prune subinteractions at positions
where branching choices are made i.e. in alt and loop nodes. Indeed, by definition,
eliminating a subinteraction at one such node would lead to a semantics that is
included in the original.

In i2, eliminating i2|11 is easily done given that its parent node is an alt
and that its brother node does not need to be eliminated. Indeed, it suffices to
operate the replacement i2[i2|12]1 i.e. replacing the alt node with its right child
b?m3.

In i1, eliminating i1|11 is more delicate: its parent node is a strict and as
such, behaviors from its left and right children must both happen (there is no
branching choice). Thus, if we want to eliminate i1|11 we must also eliminate
the whole i1|1. The problem is hence forwarded upwards in the syntax. The
parent i1|ε is a loop operator, which characterizes a branching choice. We can
eliminate the problematic branch by choosing not to instantiate the loop i.e. via
the replacement i1[∅]ε.

Revisiting Semantics of Interactions for Trace Validity Analysis 491

The pruning mechanism is given in Def.11 as the recursive prune function,
which takes as arguments an interaction i and a lifeline l. prune eliminates from
i branching choices hosting actions that occur on l.

In a first descending phase, prune goes down the syntax of i through recursive
calls (from root to leaves). When reaching a leaf, prune returns an interaction
i′ and a boolean b. b = � signifies that the current branch needs to be elimi-
nated (pruned) while i′ is the interaction that will be used to reconstruct i in
the ascending phase (only used if b = ⊥). Leaves are either actions or empty
interactions. For an action act, if Θ(act) = l, the current branch must be pruned
so prune(act, l) = (∅,�): the value of the returned interaction i′ has no im-
portance here because a parent will be pruned anyway. If Θ(act) �= l we have
prune(act, l) = (act,⊥) because there is nothing to prune here. Similarly, we
have prune(∅, l) = (∅,⊥).

In the second, ascending phase, the pruned interaction is reconstructed ac-
cording to the values of i′ and b returned from child branches. If at any point
b = �, this value is forwarded upwards until an expendable branching choice is
reached.

prune(i, l) is recursively called on the child nodes of i. Depending on the
operator in i, the return values of prune(i|1, l) = (i′1, b1) (and also prune(i|2, l) =
(i′2, b2) for binary operators) will be used differently to determine i′ and b.

For the operators f ∈ {strict, seq, par}, if any one child must be pruned
(b1 ∨ b2) then the whole branch must also be pruned and otherwise a recon-
structed f(i′1, i

′
2) is returned. For the exclusive alternative alt, if no branch needs

pruning, alt(i′1, i′2) is returned; if any single branch needs pruning, prune returns
the one that does not need to be pruned and if both branches need pruning, then
the whole interaction is pruned. For the repetition operators, if the loop con-
tent needs pruning then the choice of ’never taking the loop’ is made meaning
that ∅ is returned with b = ⊥, signifying a successful pruning. If there is no
needed pruning, it simply returns the loop with an already pruned loop content
loopf (i

′
1).

Definition 11 (Pruning). prune : I(L,M)×L → I(L,M)×bool is the function
such that for all i ∈ I(L,M) and l ∈ L:

– prune(∅, l) = (∅,⊥)
– for act ∈ Act(L,M): if Θ(i|p) = l then prune(act, l) = (∅,�) (else (act,⊥))
– if i = f(i1, i2) with f ∈ {strict, seq, par}, given prune(i1, l) = (i′1, b1) and

prune(i2, l) = (i′2, b2):
if b1 ∨ b2 then prune(i, l) = (∅,�) (else (f(i′1, i

′
2),⊥))

– if i = alt(i1, i2), given prune(i1, l) = (i′1, b1) and prune(i2, l) = (i′2, b2):
• if b1 ∧ b2 then prune(i, l) = (∅,�)
• if b1 ∧ ¬b2 then prune(i, l) = (i′2,⊥)
• if ¬b1 ∧ b2 then prune(i, l) = (i′1,⊥)
• if ¬b1 ∧ ¬b2 then prune(i, l) = (alt(i′1, i

′
2),⊥)

– if i = loopf (i1) with f ∈ {strict, seq, par}, given prune(i1, l) = (i′1, b1):
if b1 then prune(i, l) = (∅,⊥) (else (loopf (i

′
1),⊥))

492 E. Mahe et al.

3.3 Execute function and operational semantics

Let us consider the example i from Fig.6. We wish to execute the frontier action
i|22 = a!m4 (highlighted in red). To allow this execution we need at first to
remove the actions occurring on the same lifeline (i.e. on a) from the neighbors
highlighted in green. To do so, we use the prune function from Def.11. More
generally, the nature of our syntax is such that, for the execution of a frontier
action at position p, we only need to prune subinteractions at positions p0.1 s.t.
∃p′ ∈ {1, 2}∗ s.t. p = p0.2.p

′ and s.t. i|p0
= seq(i|p0.1, i|p0.2). Those are exactly

the left cousins of i|p that are scheduled sequentially (i.e. with seq) w.r.t. i|p.
We now define the execution function χ (Def.12), which takes as arguments

an interaction i and a frontier position p and returns the remaining interaction
i′. As explained earlier, χ orchestrates the use of prune. In the example from
Fig.6 this first cleaning feature would result in the transformation of i from the
diagram on Fig.6-a to the one on Fig.6-c. The only thing left to do is then to
remove the executed action s.t. the result is the interaction from Fig.6-d.

χ is defined inductively on both the structure of the interaction i and the
position p = d1...dn ∈ {1, 2}n. The execution of χ(i, p) traverses recursively the
syntactic structure of i guided by the path defined by the position p, that is,
from χ(i|ε, d1...dn) (root node), ..., up to χ(i|p, ε) (target action leaf to execute).
Here, χ(i|p, ε) = ∅ constitutes the stopping criterion and i′ is then constructed
when the algorithm goes back up through the syntactic structure of i. Assigning
∅ to χ(i|p, ε) ensures that the action i|p is removed in the construction of i′.

When a par node is encountered during the upward traversal, i.e. for j ∈
[1, n], i|d1...dj

= par(i|d1...dj .1, i|d1...dj .2) then χ(i|d1...dj
, dj+1...dn) is simply:

par(χ(i|d1...dj .1, dj+2...dn), i|d1...dj .2) if dj+1 = 1 or,
par(i|d1...dj .1, χ(i|d1...dj .2, dj+2...dn)) if dj+1 = 2.

Indeed, as par specifies parallel executions, there is no need for pruning.
When an alt node is reached, using the same notations, we would have:
χ(i|d1...dj

, dj+1...dn) = χ(i|d1...dj+1
, dj+2...dn).

Indeed, we can ’skip’ the alt node itself and replace it directly with the interaction
resulting from the execution of the chosen branch.

When a loop is reached, i.e. i|d1...dj
= loopf (i|d1...dj .1) (with a mandatory

dj+1 = 1), we have :
χ(i|d1...dj

, dj+1...dn) = f(χ(i|d1...dj+1
, dj+2...dn), i|d1...dj

).
Indeed, the execution is done on a copy of the loop content that precedes (with
f operator) the loop i|d1...dj

itself, that is, on an unfolding of the loop.
For the sequential operators, pruning needs to be considered only if the ex-

ecuting action is situated on the right branch of the seq or strict node (if the
action is on the left branch, we have the same transformation as in the par
case). Given i|d1...dj

= seq(i|d1...dj .1, i|d1...dj .2) and dj+1 = 2, when construct-
ing χ(i|d1...dj

, dj+1...dn) we must prune in i|d1...dj .1 all the actions that could
interfere with i|p i.e. those taking place on Θ(i|p). As such, given (i′1, b1) =
prune(i|d1...dj .1, Θ(i|p)), we’ll replace the left branch of the seq with i′1 and re-
construct:

χ(i|d1...dj
, dj+1...dn) = seq(i′1, χ(i|d1...dj+1

, dj+2...dn)).

Revisiting Semantics of Interactions for Trace Validity Analysis 493

Given that the strict operator won’t allow any action from the left branch to
occur after an action on the right has occurred, we can simply prune the whole
left branch i.e. given i|d1...dj

= strict(i|d1...dj .1, i|d1...dj .2) and dj+1 = 2:
χ(i|d1...dj

, dj+1...dn) = χ(i|d1...dj+1
, dj+2...dn).

Definition 12 (Execution). The function χ : I(L,M)× {1, 2}∗ → I(L,M) is
defined for couples (i, p) with i ∈ I(L,M) and p ∈ front(i) as follows:

– if p = ε then χ(i, p) = ∅

– if p = 1.p1 then
• if i = f(i1, i2) with f ∈ {strict, seq, par} then χ(i, p) = f(χ(i1, p1), i2)
• if i = alt(i1, i2) then χ(i, p) = χ(i1, p1)
• if i = loopf (i1) with f ∈ {strict, seq, par} then χ(i, p) = f(χ(i1, p1), i)

– if p = 2.p2 then
• if i = seq(i1, i2) then χ(i, p) = seq(i′1, χ(i2, p2))

where prune(i1, Θ(i|p)) = (i′1, b)• if i = strict(i1, i2) then χ(i, p) = χ(i2, p2)
• if i = par(i1, i2) then χ(i, p) = par(i1, χ(i2, p2))
• if i = alt(i1, i2) then χ(i, p) = χ(i2, p2)

In Def.13 below, we now define the operational semantics. Note that interac-
tions that can express the empty trace ε are identified with the predicate expε.
This semantics expresses rules of the form i

i|p−−→ χ(i, p) where p ∈ front(i).

Definition 13 (Operational semantics for interactions).
We define σo : I(L,M) → P(Act(L,M)∗) as:

σo(i) = empty(i) ∪
⋃

p∈front(i)

i|p.σo(χ(i, p))

with empty(i) = {ε} (resp.∅) if expε(i) = � (resp. ⊥)
where expε : I(L,M) → bool is defined as:

– expε(∅) = �
– expε(lΔm) = ⊥
– expε(f(i1, i2)) = expε(i1) ∧ expε(i2) for f ∈ {strict, seq, par}
– expε(alt(i1, i2)) = expε(i1) ∨ expε(i2)
– expε(loopf (i1)) = � for f ∈ {strict, seq, par}

4 Back-to-back comparison of both semantics

Dataset. The recursive definition of interactions as syntactic terms allows to
characterize them by their depth. Interactions of depth 1 include the empty
interaction ∅ and all actions from Act(L,M). Depending on the cardinals nl =
Card(L) and nm = Card(M), those interactions can all be enumerated and
computed. Given a signature, interactions of depth 2 can be deduced from those
of depth 1 and exhaustively computed via the application of the binary and unary
operators (e.g. seq(∅, a!m)). Likewise, interactions of depth 3 can be computed
from those of depths 1 and 2 and so on. To illustrate this, Fig.7 presents for each
couple (nl, nm) the numbers of interactions of depths 1, 2 and 3 in each cell. For
instance, we have 3 interactions of depth 1 for nl = nm = 1.

494 E. Mahe et al.

�����
nm nl 1 2 3

1
3
45

9315

5
115

57845

7
217

201159

2
5

115
57845

9
351

519129

13
715

2121405

3
7

217
201159

13
715

2121405

19
1501

9244659

Fig. 7: Numbers of
interactions per nl, nm and d

Experiments. We implemented both semantics
(σu from Def.8 and σo from Def.13) and com-
pared the set of traces σu(i) and σo(i) they gen-
erate (with a stopping criterion on the maximum
number of loop unfolding - 4 in our experiments)
on a significant set of interactions of depth 3 with
nl = nm = 3. For all of the 234175 selected inter-
actions i from our dataset, the tests systematically
concluded on the equality σu(i) = σo(i). Although
not a proof, our successful back-to-back compari-
son comforts our confidence in both semantics, all
the more so because of the exhaustivity of the subject data set up to maximum
numbers of lifelines, messages types, interaction depth (up to 3), number of loop
unfolding (up to 4), allowing covering all 2 by 2 combinations of operators.

5 Trace analysis

Fig. 8: Application of ω

The definition of the execution function χ (Def.12)
that comes with the operational nature of the σo se-
mantics (Def.13) allows us to solve the ’trace anal-
ysis’ problem hinted at earlier. Indeed, analysing a
trace t = act1...actn w.r.t. an interaction i0 equates
to verifying whether or not there exists transformations
i0

act1−−−→ χ(i0, p1) = i1, ..., in−1
actn−−−→ χ(in−1, pn) = in s.t. in

accepts the empty trace.
We define an ω function (Def.14) which takes as

arguments an interaction i and a trace t and checks
whether or not t is a trace of i. Additional traceabil-
ity information is provided using four distinct verdicts:
• Covered is returned when t is a trace of i i.e. t ∈ σo(i);
• TooShort is returned when t �∈ σo(i) is a strict prefix
of a trace of i i.e. ∃t′ ∈ Act(L,M)∗ s.t. t.t′ ∈ σo(i);
• TooLong is returned when neither Covered nor
TooShort can be, and given t = act1...actn ∃k < n
s.t. act1...actk ∈ σo(i) i.e. t extends a trace of i;
• Out is returned when none of the others can be.

We define the enumerated type V erdict and provide
it with a total order Out ≺ TooLong ≺ TooShort ≺
Covered.
• If t is empty then: either i accepts the empty trace in
its semantics and in this case ω(i, t) returns Covered, or it returns TooShort.
• If t is of the form act.t′ (i.e. not empty and starts with act) then, for all match-
ing actions i|p in the frontier of i, recursive calls are performed on ω(χ(i, p), t′)
and ω(i, t) returns the strongest (max≺ function) verdict among those and either
TooLong if i expresses the empty trace ε or Out if not.

Revisiting Semantics of Interactions for Trace Validity Analysis 495

Definition 14 (Trace Analysis). We define ω : I(L,M) × Act(L,M)∗ →
V erdict such that ∀i, t ∈ I(L,M)×Act(L,M)∗:

– ω(i, ε) = Covered (resp. TooShort) if expε(i) = � (resp. ⊥)
– if t is of the form act.t′ then:

ω(i, t) = max≺

(
outε(i) ∪

{
ω(χ(i, p), t′)

∣∣∣∣p ∈ front(i)
i|p = act

})

with outε(i) = {TooLong} (resp. {Out}) if expε(i) = � (resp. ⊥)

Fig.8 is a graphical representation of the ω process when applied to the
interaction from Fig.6-a and the trace a!m4.b?m3.

T
ot

al
15

62
76

tr
c

ac
t

pr
f

ad
d

re
p

32
31

18
00

0
46

18
50

60
0

79
82

7

co
v

co
v

sh
or

t
lo

ng
ou

t
sh

or
t

sh
or

t
or lo
ng

sh
or

t
or lo
ng

ou
t

or
sh

or
t

32
31

35
2

17
05

86
4

15
07

9
46

18
50

60
0

10
94

8
68

87
9

C
O

V
35

83
32

31
35

2
0

0
0

0
0

0
0

SH
O

R
T

99
27

0
0

17
05

0
0

46
18

35
8

50
5

27
41

LO
N

G
61

54
9

0
0

0
86

4
0

0
50

24
2

10
44

3
0

O
U

T
81

21
7

0
0

0
0

15
07

9
0

0
0

66
13

8

Fig. 9: Correctness of ω
experiments

Fig.9 presents a synthesis of experiments conducted
to assess the correctness of ω and of our implementation
of it. We randomly sampled 1000 interactions from the
set of 234175 interactions mentioned in Sec.4. Each of
them were tested with the 18 single action traces from
Act(L,M) and we sampled 15 traces from their seman-
tics (computed with 3 loop unfolds). Each of those traces
were tested as well as a random selection of their prefixes
and of interesting mutants. Addition (resp. replacement)
mutants consists in adding an action to a trace (resp.
prefix). By construction we could classify all those traces
according to the verdicts they are expected to obtain.
Fig.9 details those results, showing a systematic con-
cordance between the expected and obtained verdicts.
Those results reinforce our confidence on ω, the more so
that they were done on a panel of traces and interactions
which covers all 2 by 2 combinations of operators.

To provide an evaluation of performances (plotting
time vs. length), we needed a large model and long cor-
rect traces. Indeed, the time required by the analysis is
not always correlated to trace length e.g. an arbitrar-
ily long trace starting with an action act of position
p �∈ front(i) is analyzed immediately, whatever length

it may be. There is however a correlation for correct traces and their prefixes.
We defined a partial high-level model of the MQTT [22] telecommunication pro-
tocol (see Fig.10-a). This model states that a communication session between a
client and a broker starts (resp. ends) with a sequential connection (resp. dis-
connection) phase. In between, at any time, any number of instances of one of
the 5 proposed subinteractions can be run concurrently. Hence, we used a multi-
threaded Python script to generate 100 traces, each of those corresponding to
the concurrent activation and execution at random time intervals of 20 instances
of the looppar from Fig.10-a. All those traces (resp. prefixes) have the verdict
Covered (resp. TooShort); we evaluated computation times and plotted some
of them on Fig.10-b.

496 E. Mahe et al.

(a) mqtt model (b) time vs. trace length

Fig. 10: Performances

The linear regression shows
curves with a great variability
(some traces need 4 seconds while
others only 0.06). In this precise
model, it is explained by the pres-
ence of par (via looppar) opera-
tors and by the fact that messages
are not uniquely identified. For
instance analyzing t = a!m.b?m
on i = par(a!m, strict(a!m, b?m))
would give rise to 2 branches:
i′ = strict(a!m, b?m) (resp.
i′ = par(a!m, b?m)) with t′ =
b?m which ends with Out (resp.
Covered) because m is not
uniquely identified. This number
of branches can quickly explode
when par operators are stacked
which happens when the trace de-
scribes an execution where many
loop content instances overlap. An applicable solution is to treat message
data arguments, given that communication protocols provide unique ids e.g.
m(id1) �= m(id2). In Fig.10-b, on the plot below, we magnified on traces 9, 34
& 61 which have a very short analysis time. We can surmise here that minimal
(perhaps no) loop overlap occurred as the derivatives are almost constants (es-
pecially for trace 61). In conclusion, performance highly depends on the model
and input trace, but treating data which specifies unique ids for messages would
generalize the best case scenario. In this case, the algorithm could be applied to
monitoring within the limits of an input frequency that is inferior to the time
required to analyze a trace of length 1.

6 Related work

For classical IL such as UML-SD or HMSC, many authors have proposed their
own takes on formal semantics (see the survey [21] for UML-SD).
Denotational Semantics. Most existing semantics based on term interpreta-
tions are given in a denotational style [27,14,3,17] and do not follow-up with
algorithmic tools. In [27], the authors propose a denotational semantics similar
to ours (Def.5) as far as the strict, alt and par operators are concerned. [14]
proposes a semantics that is a detailed version of the one from [27]. In [17] there
is a distinction (snd(s, r,m)|snd(s,m)|rcv(s, r,m)|rcv(r,m)) between basic ac-
tions whether or not the intended receiver or original sender is the environment.
Apart from that, and the absence of loops, the denotational semantics proposed
by [17] is similar to ours. In [3], an institutional approach, likened to that of [17]
is proposed. However it includes loops and deals with modalities associated to

Revisiting Semantics of Interactions for Trace Validity Analysis 497

the neg and assert operators [23] by separating the semantics in sets of accepted
and refused traces. This issue of modality is also raised in [21] and [13] but it is
out of the scope of this paper.

Translations based approaches. Most other approaches rely on translations
that map concepts of the given IL into a target formal framework, most often
based on automata [11,2,28,19] or Petri nets [8,5,10]. Albeit those translations
allow reusing advantageously the target framework’s tools, relying on them to
capture semantics leads to reasoning on foreign concepts. In [11], UML-SDs
are translated into timed automata, which are then verified with the UPPAAL
tool [18]. The translation mechanisms only concern models with synchronous
communications. An observer automaton has to be designed so as to intercept
communications between automata, make them observable, and enter an error
state if other events are observed. In [2], each lifeline is translated into a timed
input output symbolic transition system (TIOSTS) and message passing relies
on some synchronous product. In order to cope with asynchronism, FIFO based
communication schema have been introduced to ensure the consistency of exe-
cutions on different lifelines. Also, dedicated variables have to be introduced to
keep track of branching choices specified by alt or loop operators. In [28], a sym-
bolic automaton is built from UML-SD specifications in the goal of analyzing
traces by means of valid, invalid or inconclusive verdicts. [19] focuses on how
to test Message Sequence Charts when the system is only partially observed.
A translation into a network of asynchronous concurrent automata allows to
define semantics through a product automaton as in [2]. In [8], UML-SD speci-
fications are translated into multivalued nets (M-nets). The translation is com-
positional, entry and exit places of the M-nets corresponding to subinteractions
being connected differently according to the parent combined fragment. However
this process is complicated by the tracking of actions that are completely un-
ordered w.r.t. one another. [8] also treats data in the form of variables, message
parameters and guards. In [5], the authors propose an approach to automatically
translate UML-SDs designed with the Papyrus tool [12] to Coloured Petri Nets
(CPNs) in a format compatible with CPNTools [16]. CPNs come with an exe-
cution semantics that is particularly adapted for the description and analysis of
distributed and concurrent systems. In [5], the translation revolves around a list
of 11 rules with different priorities and which are applied to translate different
concepts (lifelines, message occurrences, combined fragments, etc.) while iterat-
ing sequentially through the UML-SD’s elements. In [10] a set of UML-SDs are
translated into Extended Petri Nets. Input execution traces can then be checked
against the EPNs.

Operational approach. The literature contains few attempts at defining op-
erational semantics for ILs. In [26], the authors build formal expressions over a
process algebra signature. Starting from axioms such as ε ↓ (the empty process
ε terminates) and a

a−→ ε (a being an atomic action), an expression describing
a MSC is build using rules such as (x

a−→ x′) ∧ (y � a−→) ⇒ (x∓ y
a−→ x′). Such an

expression is then associated with a transition graph. The contribution in [26]
does not however deal with loop operator and it is quite different from ours as

498 E. Mahe et al.

the proposed transformations operate on process-algebraic expressions and not
on syntactic terms. In contrast, the semantics proposed in [20] relies on syn-
tactic term transformations. Still, it also requires a communication medium as
it is defined as the output of a combination of two transitions systems: an ex-
ecution system which keeps track of communications, and a projection system
which selects the next action to execute and provide the resulting interaction.
As explained in [9], communication models keep track of emitted messages and
messages pending receptions. They can for instance take the form of a set of
dedicated buffers (e.g. FIFO). Our approach has the advantage of making such
communication models implicit.
Discussions. Despite interaction languages specifying no synchronisation mech-
anisms between lifelines, several approaches that aim to implement tools, impose
synchronisation points when entering and exiting combined operators and at de-
cision points (alt, opt, loop) [28,2,8,21] (although more recent works such as
[10,20] do not). Although translation-based approaches have the benefit of al-
lowing the use of the many existing analysis tools (UPPAAL [18], DIVERSITY
[15], CPNTools [16] etc.) we postulate that direct operational approaches such
as ours facilitate features such as animation and debugging, becoming for the
most part free-of-charge by-products of the analysis process.

7 Conclusion

In this paper we proposed an operational semantics for ILs, aimed at trace valid-
ity analysis. This semantic is built upon a formal syntax for interaction terms and
validated back-to-back w.r.t. a reference denotational semantics. Our semantics
is built on partial order relations induced on messages by the syntax. Those re-
lations allow the identification of immediately executable actions. Pruning tech-
niques then ensure a consistent semantics based on successive transformations of
the form i

act−−→ i′. On this principle, we have defined and implemented algorithms
to compute semantics and to analyze the validity of traces. Experiments were
successfully conducted in order to evaluate the correctness of each.

We intend to enrich our formalism: (1) by expanding trace analysis to a
distributed context, where a set of traces (multi-trace) may be analyzed concur-
rently on a subset of observed lifelines; (2) by investigating whether or not our
algorithmic treatments are fast enough to deal with traces on-the-fly so as to
adapt them to monitoring. (3) by extending our IL to include modality oper-
ators such as assert or negate. (4) by allowing the use of message arguments,
variables, clocks and constraints within models.

Additionally, it would be interesting to perform a comparison with translation-
based approaches. This may consist in a comparison of formal semantics and/or
in benchmarking implementations according to a certain performance metric.

Revisiting Semantics of Interactions for Trace Validity Analysis 499

References

1. Alur, R., Yannakakis, M.: Model checking of message sequence charts. In: CON-
CUR ’99: Concurrency Theory. Lecture Notes in Computer Science, vol. 1664, pp.
114–129. Springer (1999)

2. Bannour, B., Gaston, C., Servat, D.: Eliciting unitary constraints from timed se-
quence diagram with symbolic techniques: Application to testing. In: 2011 18th
Asia-Pacific Software Engineering Conference. pp. 219–226 (2011)

3. Cengarle, M., Knapp, A.: An institution for uml 2.0 interactions (01 2008)
4. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,

Tison, S., Tommasi, M.: Tree automata techniques and applications (10 2007)
5. Custódio Soares, J.a.A., Lima, B., Pascoal Faria, J.a.: Automatic model

transformation from uml sequence diagrams to coloured petri nets. In:
Proceedings of the 6th International Conference on Model-Driven En-
gineering and Software Development. p. 668–679. MODELSWARD 2018,
SCITEPRESS - Science and Technology Publications, Lda, Setubal, PRT (2018).
https://doi.org/10.5220/0006731806680679

6. Damm, W., Harel, D.: Lscs: Breathing life into message sequence charts. Formal
Methods in System Design 19(1), 45–80 (2001)

7. Dershowitz, N., Jouannaud, J.P.: Handbook of theoretical computer science (vol.
b). chap. Rewrite Systems, pp. 243–320. MIT Press, Cambridge, MA, USA (1990)

8. Eichner, C., Fleischhack, H., Meyer, R., Schrimpf, U., Stehno, C.: Compositional
semantics for uml 2.0 sequence diagrams using petri nets. In: Prinz, A., Reed, R.,
Reed, J. (eds.) SDL 2005: Model Driven. pp. 133–148. Springer Berlin Heidelberg,
Berlin, Heidelberg (2005)

9. Engels, A., Mauw, S., Reniers, M.: A hierarchy of communication models for mes-
sage sequence charts. Science of Computer Programming 44(3), 253 – 292 (2002).
https://doi.org/10.1016/S0167-6423(02)00022-9

10. Faria, J.P., Paiva, A.C.R.: A toolset for conformance testing against uml sequence
diagrams based on event-driven colored petri nets. International Journal on Soft-
ware Tools for Technology Transfer 18(3), 285–304 (2016)

11. Firley, T., Huhn, M., Diethers, K., Gehrke, T., Goltz, U.: Timed sequence dia-
grams and tool-based analysis - A case study. In: UML’99: The Unified Modeling
Language - Beyond the Standard. Lecture Notes in Computer Science, vol. 1723,
pp. 645–660. Springer (1999)

12. Gérard, S., Dumoulin, C., Tessier, P., Selic, B.: Papyrus: A UML2 Tool for Domain-
Specific Language Modeling, pp. 361–368. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-16277-0_19

13. Harel, D., Maoz, S.: Assert and negate revisited: Modal semantics for UML se-
quence diagrams. Software and Systems Modeling 7(2), 237–252 (2008)

14. Haugen, O., Husa, K.E., Runde, R.K., Stølen, K.: STAIRS towards formal design
with sequence diagrams. Software and Systems Modeling 4(4), 355–367 (2005)

15. Hussein, M., Nouacer, R., Radermacher, A., Puccetti, A., Gaston, C., Rapin, N.:
An end-to-end framework for safe software development. Microprocessors and Mi-
crosystems 62, 41 – 49 (2018). https://doi.org/10.1016/j.micpro.2018.07.004

16. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN
Tools for modelling and validation of concurrent systems. International Jour-
nal on Software Tools for Technology Transfer 9(3), 213–254 (Jun 2007).
https://doi.org/10.1007/s10009-007-0038-x

500 E. Mahe et al.

17. Knapp, A., Mossakowski, T.: UML Interactions Meet State Machines - An Insti-
tutional Approach. In: 7th Conf. on Algebra and Coalgebra in Computer Science
(CALCO 2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 72,
pp. 15:1–15:15. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2017)

18. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Jour-
nal on Software Tools for Technology Transfer 1(1), 134–152 (Dec 1997).
https://doi.org/10.1007/s100090050010

19. Longuet, D.: Global and local testing from message sequence charts. In: Proceed-
ings of the ACM Symposium on Applied Computing, SAC 2012. pp. 1332–1338.
ACM (2012)

20. Lund, M.S., Stølen, K.: A fully general operational semantics for uml 2.0 sequence
diagrams with potential and mandatory choice. In: Misra, J., Nipkow, T., Sekerin-
ski, E. (eds.) FM 2006: Formal Methods. pp. 380–395. Springer Berlin Heidelberg,
Berlin, Heidelberg (2006)

21. Micskei, Z., Waeselynck, H.: The many meanings of uml 2 sequence diagrams: a
survey. Software & Systems Modeling 10(4), 489–514 (2011)

22. OASIS: Mqtt version 3.1.1 (12 2015)
23. OMG: Unified Modeling Language v2.5.1 (12 2017)
24. Plotkin, G.D.: An operational semantics for CSP. In: Formal Description of Pro-

gramming Concepts : Proceedings of the IFIP Working Conference on Formal
Description of Programming Concepts- II. pp. 199–226. North-Holland (1983)

25. S., M., M. A., R.: High-level message sequence charts. In: SDL ’97 Time for Testing,
SDL, MSC and Trends - 8th International SDL Forum, Proceedings. pp. 291–306.
Elsevier (1997)

26. S., M., M. A., R.: Operational semantics for msc. Computer Networks 31(17),
1785–1799 (1999)

27. Storrle, H.: Semantics of interactions in uml 2.0. In: IEEE Symposium on Human
Centric Computing Languages and Environments, 2003. Proceedings. 2003. pp.
129–136 (Oct 2003). https://doi.org/10.1109/HCC.2003.1260216

28. Waeselynck, H., Micskei, Z., Rivière, N., Hamvas, Á., Nitu, I.: Termos: A for-
mal language for scenarios in mobile computing systems. In: Sénac, P., Ott, M.,
Seneviratne, A. (eds.) Mobile and Ubiquitous Systems: Computing, Networking,
and Services. pp. 285–296. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

Revisiting Semantics of Interactions for Trace Validity Analysis 501

Test-Comp Contributions

Second Competition on Software Testing:
Test-Comp 2020

Dirk Beyer

LMU Munich, Germany

Abstract. This report describes the 2020 Competition on Software
Testing (Test-Comp), the 2nd edition of a series of comparative evaluations
of fully automatic software test-case generators for C programs. The
competition provides a snapshot of the current state of the art in the area,
and has a strong focus on replicability of its results. The competition
was based on 3 230 test tasks for C programs. Each test task consisted
of a program and a test specification (error coverage, branch coverage).
Test-Comp 2020 had 10 participating test-generation systems.

Keywords: Software Testing · Test-Case Generation · Competition ·
Software Analysis · Software Validation · Test Validation · Test-Comp ·
Benchmarking · Test Coverage · Bug Finding · BenchExec · TestCov

1 Introduction

Software testing is as old as software development itself, because the most straight-
forward way to find out if the software works is to execute it. In the last few
decades the tremendous breakthrough of fuzzers 1, theorem provers [40], and
satisfiability-modulo-theory (SMT) solvers [21] have led to the development of
efficient tools for automatic test-case generation. For example, symbolic execution
and the idea to use it for test-case generation [33] exists for more than 40 years,
yet, efficient implementations (e.g., Klee [16]) had to wait for the availability of
mature constraint solvers. Also, with the advent of automatic software model
checking, the opportunity to extract test cases from counterexamples arose (see
Blast [9] and JPF [41]). In the following years, many techniques from the areas
of model checking and program analysis were adapted for the purpose of test-case
generation and several strong hybrid combinations have been developed [24].

There are several powerful software test generators available [24], but they
were difficult to compare. For example, a recent study [11] first had to develop a
framework that supports to run test-generation tools on the same program source
code and to deliver test cases in a common format for validation. Furthermore,
there was no widely distributed benchmark suite available and neither input pro-
grams nor output test suites followed a standard format. In software verification,
the competition SV-COMP [3] helped to overcome the problem: the competition
community developed standards for defining nondeterministic functions and a
1 http://lcamtuf.coredump.cx/afl/

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 505–519, 2020.
https://doi.org/10.1007/978-3-030-45234-6_25

https://orcid.org/0000-0003-4832-7662
http://lcamtuf.coredump.cx/afl/
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_25&domain=pdf

language to write specifications (so far for C and Java programs) and established
a standard exchange format for the output (witnesses). A competition event with
high visibility can foster the transfer of theoretical and conceptual advancements
in the area of software testing into practical tools.

The annual Competition on Software Testing (Test-Comp) [4, 5] 2 is the
showcase of the state of the art in the area, in particular, of the effectiveness
and efficiency that is currently achieved by tool implementations of the most
recent ideas, concepts, and algorithms for fully automatic test-case generation.
Test-Comp uses the benchmarking framework BenchExec [12], which is already
successfully used in other competitions, most prominently, all competitions that
run on the StarExec infrastructure [39]. Similar to SV-COMP, the test generators
in Test-Comp are applied to programs in a fully automatic way. The results are
collected via BenchExec’s XML results format, and transformed into tables and
plots in several formats.3 All results are available in artifacts at Zenodo (Table 3).

Competition Goals. In summary, the goals of Test-Comp are the following:

• Establish standards for software test generation. This means, most promi-
nently, to develop a standard for marking input values in programs, define
an exchange format for test suites, and agree on a specification language for
test-coverage criteria, and define how to validate the resulting test suites.

• Establish a set of benchmarks for software testing in the community. This
means to create and maintain a set of programs together with coverage
criteria, and to make those publicly available for researchers to be used in
performance comparisons when evaluating a new technique.

• Provide an overview of available tools for test-case generation and a snapshot
of the state-of-the-art in software testing to the community. This means to
compare, independently from particular paper projects and specific techniques,
different test-generation tools in terms of effectiveness and performance.

• Increase the visibility and credits that tool developers receive. This means
to provide a forum for presentation of tools and discussion of the latest
technologies, and to give the students the opportunity to publish about the
development work that they have done.

• Educate PhD students and other participants on how to set up performance
experiments, packaging tools in a way that supports replication, and how to
perform robust and accurate research experiments.

• Provide resources to development teams that do not have sufficient computing
resources and give them the opportunity to obtain results from experiments
on large benchmark sets.

Related Competitions. In other areas, there are several established competi-
tions. For example, there are three competitions in the area of software verification:
(i) a competition on automatic verifiers under controlled resources (SV-COMP [3]),
(ii) a competition on verifiers with arbitrary environments (RERS [27]), and
(iii) a competition on interactive verification (VerifyThis [28]). An overview of

2 https://test-comp.sosy-lab.org
3 https://test-comp.sosy-lab.org/2020/results/

506 D. Beyer

16 competitions in the area of formal methods was presented at the TOOLympics
events at the conference TACAS in 2019 [1]. In software testing, there are several
competition-like events, for example, the DARPA Cyber Grand Challenge [38] 4,
the IEEE International Contest on Software Testing 5, the Software Testing
World Cup 6, and the Israel Software Testing World Cup 7. Those contests are
organized as on-site events, where teams of people interact with certain testing
platforms in order to achieve a certain coverage of the software under test. There
are two competitions for automatic and off-site testing: Rode0day 8 is a com-
petition that is meant as a continuously running evaluation on bug-finding in
binaries (currently Grep and SQLite). The unit-testing tool competition [32] 9 is
part of the SBST workshop and compares tools for unit-test generation on Java
programs. There was no comparative evaluation of automatic test-generation
tools for whole C programs in source-code, in a controlled environment, and
Test-Comp was founded to close this gap [4]. The results of the first edition
of Test-Comp were presented as part of the TOOLympics 2019 event [1] and
in the Test-Comp 2019 competition report [5].

2 Definitions, Formats, and Rules

Organizational aspects such as the classification (automatic, off-site, reproducible,
jury, traning) and the competition schedule is given in the initial competi-
tion definition [4]. In the following we repeat some important definitions that
are necessary to understand the results.

Test Task. A test task is a pair of an input program (program under test) and
a test specification. A test run is a non-interactive execution of a test generator
on a single test task, in order to generate a test suite according to the test
specification. A test suite is a sequence of test cases, given as a directory of
files according to the format for exchangeable test-suites.10

Execution of a Test Generator. Figure 1 illustrates the process of executing
one test generator on the benchmark suite. One test run for a test generator gets as
input (i) a program from the benchmark suite and (ii) a test specification (find bug,
or coverage criterion), and returns as output a test suite (i.e., a set of test cases).
The test generator is contributed by a competition participant. The test runs are
executed centrally by the competition organizer. The test validator takes as input
the test suite from the test generator and validates it by executing the program
on all test cases: for bug finding it checks if the bug is exposed and for coverage
it reports the coverage. We use the tool TestCov [14] 11 as test-suite validator.
4 https://www.darpa.mil/program/cyber-grand-challenge/
5 http://paris.utdallas.edu/qrs18/contest.html
6 http://www.softwaretestingworldcup.com/
7 https://www.inflectra.com/Company/Article/480.aspx
8 https://rode0day.mit.edu/
9 https://sbst19.github.io/tools/

10 https://gitlab.com/sosy-lab/software/test-format/
11 https://gitlab.com/sosy-lab/software/test-suite-validator

Second Competition on Software Testing: Test-Comp 2020 507

Test
Generator

Program
under Test

Test
Specification

Test Suite
(Test Cases)

Test
Validator

Bug
Report

Coverage
Statistics

Fig. 1: Flow of the Test-Comp execution for one test generator

Table 1: Coverage specifications used in Test-Comp 2020 (same as in 2019)
Formula Interpretation

COVER EDGES(@CALL(__VERIFIER_error)) The test suite contains at least one test
that executes function __VERIFIER_error.

COVER EDGES(@DECISIONEDGE) The test suite contains tests such that
all branches of the program are executed.

Test Specification. The specification for testing a program is given to the
test generator as input file (either properties/coverage-error-call.prp or
properties/coverage-branches.prp for Test-Comp 2020).

The definition init(main()) is used to define the initial states of
the program under test by a call of function main (with no parame-
ters). The definition FQL(f) specifies that coverage definition f should
be achieved. The FQL (FShell query language [26]) coverage definition
COVER EDGES(@DECISIONEDGE) means that all branches should be covered,
COVER EDGES(@BASICBLOCKENTRY) means that all statements should be cov-
ered, and COVER EDGES(@CALL(__VERIFIER_error)) means that calls to func-
tion __VERIFIER_error should be covered. A complete specification looks like:
COVER(init(main()), FQL(COVER EDGES(@DECISIONEDGE))).

Table 1 lists the two FQL formulas that are used in test specifications of
Test-Comp 2020; there was no change from 2019. The first describes a formula
that is typically used for bug finding: the test generator should find a test case
that executes a certain error function. The second describes a formula that is
used to obtain a standard test suite for quality assurance: the test generator
should find a test suite for branch coverage.

License and Qualification. The license of each participating test generator
must allow its free use for replication of the competition experiments. Details on
qualification criteria can be found in the competition report of Test-Comp 2019 [5].

508 D. Beyer

3 Categories and Scoring Schema

Benchmark Programs. The input programs were taken from the largest and
most diverse open-source repository of software verification tasks 12, which is
also used by SV-COMP [3]. As in 2019, we selected all programs for which the
following properties were satisfied (see issue on GitHub 13 and report [5]):

1. compiles with gcc, if a harness for the special methods 14 is provided,
2. should contain at least one call to a nondeterministic function,
3. does not rely on nondeterministic pointers,
4. does not have expected result ‘false’ for property ‘termination’, and
5. has expected result ‘false’ for property ‘unreach-call’ (only for category Error

Coverage).

This selection yielded a total of 3 230 test tasks, namely 699 test tasks for category
Error Coverage and 2 531 test tasks for category Code Coverage. The test tasks
are partitioned into categories, which are listed in Tables 6 and 7 and described in
detail on the competition web site.15 Figure 2 illustrates the category composition.

Category Error-Coverage. The first category is to show the abilities to dis-
cover bugs. The programs in the benchmark set contain programs that contain a
bug. Every run will be started by a batch script, which produces for every tool
and every test task (a C program together with the test specification) one of
the following scores: 1 point, if the validator succeeds in executing the program
under test on a generated test case that explores the bug (i.e., the specified
function was called), and 0 points, otherwise.

Category Branch-Coverage. The second category is to cover as many branches
of the program as possible. The coverage criterion was chosen because many
test-generation tools support this standard criterion by default. Other coverage
criteria can be reduced to branch coverage by transformation [25]. Every run will
be started by a batch script, which produces for every tool and every test task
(a C program together with the test specification) the coverage of branches of
the program (as reported by TestCov [14]; a value between 0 and 1) that are
executed for the generated test cases. The score is the returned coverage.

Ranking. The ranking was decided based on the sum of points (normalized for
meta categories). In case of a tie, the ranking was decided based on the run time,
which is the total CPU time over all test tasks. Opt-out from categories was
possible and scores for categories were normalized based on the number of tasks
per category (see competition report of SV-COMP 2013 [2], page 597).

12 https://github.com/sosy-lab/sv-benchmarks
13 https://github.com/sosy-lab/sv-benchmarks/pull/774
14 https://test-comp.sosy-lab.org/2020/rules.php
15 https://test-comp.sosy-lab.org/2020/benchmarks.php

Second Competition on Software Testing: Test-Comp 2020 509

Arrays

BitVectors

ControlFlow

ECA

Floats

Heap

Loops

Recursive

Sequentialized

Cover-Error

Arrays

BitVectors

ControlFlow

ECA

Floats

Heap

Loops

Recursive

Sequentialized

BusyBox

DeviceDriversLinux64

SQLite

MainHeap

Cover-Branches

C-Overall

Fig. 2: Category structure for Test-Comp 2020

510 D. Beyer

(a) Test-Generation Tasks

(e) Test-Generation Run

(b) Benchmark Definitions (c) Tool-Info Modules (d) Tester Archives

(f) Test Suite

Fig. 3: Test-Comp components and the execution flow

Table 2: Publicly available components for replicating Test-Comp 2020

Component Fig. 3 Repository Version

Test-Generation Tasks (a) github.com/sosy-lab/sv-benchmarks testcomp20
Benchmark Definitions (b) gitlab.com/sosy-lab/test-comp/bench-defs testcomp20
Tool-Info Modules (c) github.com/sosy-lab/benchexec 2.5.1
Tester Archives (d) gitlab.com/sosy-lab/test-comp/archives-2020 testcomp20
Benchmarking (e) github.com/sosy-lab/benchexec 2.5.1
Test-Suite Format (f) gitlab.com/sosy-lab/software/test-format testcomp20

4 Reproducibility

In order to support independent replication of the Test-Comp experiments,
we made all major components that are used for the competition available in
public version repositories. An overview of the components that contribute to
the reproducible setup of Test-Comp is provided in Fig. 3, and the details are
given in Table 2. We refer to the report of Test-Comp 2019 [5] for a thorough
description of all components of the Test-Comp organization and how we ensure
that all parts are publicly available for maximal replicability.

In order to guarantee long-term availability and immutability of the test-
generation tasks, the produced competition results, and the produced test suites,
we also packaged the material and published it at Zenodo. The DOIs and
references are listed in Table 3. The archive for the competition results includes
the raw results in BenchExec’s XML exchange format, the log output of the test
generators and validator, and a mapping from files names to SHA-256 hashes.
The hashes of the files are useful for validating the exact contents of a file, and
accessing the files inside the archive that contains the test suites.

To provide transparent access to the exact versions of the test generators that
were used in the competition, all tester archives are stored in a public Git reposi-
tory. GitLab was used to host the repository for the tester archives due to its gen-
erous repository size limit of 10GB. The final size of the Git repository is 1.47GB.

Second Competition on Software Testing: Test-Comp 2020 511

Table 3: Artifacts published for Test-Comp 2020

Content DOI Reference

Test-Generation Tasks 10.5281/zenodo.3678250 [7]
Competition Results 10.5281/zenodo.3678264 [6]
Test Suites (Witnesses) 10.5281/zenodo.3678275 [8]

Table 4: Competition candidates with tool references and representing jury members

Participant Ref. Jury member Affiliation

CoVeriTest [10, 31] Marie-Christine Jakobs TU Darmstadt, Germany
Esbmc [22, 23] Lucas Cordeiro U. of Manchester, UK
HybridTiger [15, 37] Sebastian Ruland TU Darmstadt, Germany
Klee [17] Martin Nowack Imperial College London, UK
Legion [36] Gidon Ernst LMU Munich, Germany
LibKluzzer [34] Hoang M. Le U. of Bremen, Germany
PRTest [35] Thomas Lemberger LMU Munich, Germany
Symbiotic [18, 19] Marek Chalupa Masaryk U., Czechia
TracerX [29, 30] Joxan Jaffar Nat. U. of Singapore, Singapore
VeriFuzz [20] Raveendra Kumar M. Tata Consultancy Services, India

5 Results and Discussion

For the second time, the competition experiments represent the state of the
art in fully automatic test-generation for whole C programs. The report helps
in understanding the improvements compared to last year, in terms of effec-
tiveness (test coverage, as accumulated in the score) and efficiency (resource
consumption in terms of CPU time). All results mentioned in this article were
inspected and approved by the participants.

Participating Test Generators. Table 4 provides an overview of the participat-
ing test-generation systems and references to publications, as well as the team rep-
resentatives of the jury of Test-Comp 2020. (The competition jury consists of the
chair and one member of each participating team.) Table 5 lists the features and
technologies that are used in the test-generation tools. An online table with infor-
mation about all participating systems is provided on the competition web site.16

Computing Resources. The computing environment and the resource limits
were mainly the same as for Test-Comp 2019 [5]: Each test run was limited to
8 processing units (cores), 15 GB of memory, and 15 min of CPU time. The test-
suite validation was limited to 2 processing units, 7 GB of memory, and 5 h of CPU
time (was 3 h for Test-Comp 2019). The machines for running the experiments are
part of a compute cluster that consists of 168 machines; each test-generation run
was executed on an otherwise completely unloaded, dedicated machine, in order
16 https://sv-comp.sosy-lab.org/2020/systems.php

512 D. Beyer

Table 5: Technologies and features that the competition candidates offer

Participant B
ou

n
d
ed

M
od

el
C

h
ec

ki
n
g

C
E
G

A
R

E
vo

lu
ti

on
ar

y
A

lg
or

it
h
m

s

E
xp

li
ci

t-
V

al
u
e

A
n
al

ys
is

F
lo

at
in

g-
P
oi

nt
A

ri
th

m
et

ic
s

G
u
id

an
ce

by
C

ov
er

ag
e

M
ea

su
re

s

P
re

d
ic

at
e

A
b
st

ra
ct

io
n

R
an

d
om

E
xe

cu
ti

on

S
ym

b
ol

ic
E
xe

cu
ti
on

T
ar

ge
te

d
In

p
u
t

G
en

er
at

io
n

CoVeriTest � � � �

Esbmc � �

HybridTiger � � � �

Klee � �

Legion � � � �

LibKluzzer � � �

PRTest �

Symbiotic � � �

TracerX � � �

VeriFuzz � � � � �

to achieve precise measurements. Each machine had one Intel Xeon E3-1230 v5
CPU, with 8 processing units each, a frequency of 3.4GHz, 33GB of RAM,
and a GNU/Linux operating system (x86_64-linux, Ubuntu 18.04 with Linux
kernel 4.15). We used BenchExec [12] to measure and control computing resources
(CPU time, memory, CPU energy) and VerifierCloud 17 to distribute, install,
run, and clean-up test-case generation runs, and to collect the results. The values
for time and energy are accumulated over all cores of the CPU. To measure the
CPU energy, we use CPU Energy Meter [13] (integrated in BenchExec [12]).
Further technical parameters of the competition machines are available in the
repository that also contains the benchmark definitions. 18

One complete test-generation execution of the competition consisted of
29 899 single test-generation runs. The total CPU time was 178 days and the
consumed energy 49.9 kWh for one complete competition run for test-generation
(without validation). Test-suite validation consisted of 29 899 single test-suite

17 https://vcloud.sosy-lab.org
18 https://gitlab.com/sosy-lab/test-comp/bench-defs/tree/testcomp20

Second Competition on Software Testing: Test-Comp 2020 513

Table 6: Quantitative overview over all results; empty cells mark opt-outs

Participant

C
ov

er
-E

rr
or

69
9

ta
sk

s

C
ov

er
-B

ra
n
ch

es
25

31
ta

sk
s

O
ve

ra
ll

32
30

ta
sk

s

CoVeriTest 405 1412 1836
Esbmc 506
HybridTiger 394 1351 1772
Klee 502 1342 2017
Legion 302 1257 1501
LibKluzzer 630 1597 2474
PRTest 66 545 500
Symbiotic 435 849 1548
TracerX 373 1244 1654
VeriFuzz 636 1577 2476

validation runs. The total consumed CPU time was 632 days. Each tool was
executed several times, in order to make sure no installation issues occur dur-
ing the execution. Including preruns, the infrastructure managed a total of
401 156 test-generation runs (consuming 1.8 years of CPU time) and 527 805
test-suite validation runs (consuming 6.5 years of CPU time). We did not
measure the CPU energy during preruns.

Quantitative Results. Table 6 presents the quantitative overview of all tools
and all categories. The head row mentions the category and the number of test
tasks in that category. The tools are listed in alphabetical order; every table
row lists the scores of one test generator. We indicate the top three candidates
by formatting their scores in bold face and in larger font size. An empty table
cell means that the tester opted-out from the respective main category (perhaps
participating in subcategories only, restricting the evaluation to a specific topic).
More information (including interactive tables, quantile plots for every category,
and also the raw data in XML format) is available on the competition web site 19

and in the results artifact (see Table 3). Table 7 reports the top three testers for
each category. The consumed run time (column ‘CPU Time’) is given in hours
and the consumed energy (column ‘Energy’) is given in kWh.

Score-Based Quantile Functions for Quality Assessment. We use score-
based quantile functions [12] because these visualizations make it easier to
understand the results of the comparative evaluation. The web site 19 and the
19 https://test-comp.sosy-lab.org/2020/results

514 D. Beyer

Table 7: Overview of the top-three test generators for each category (measurement
values for CPU time and energy rounded to two significant digits)

Rank Verifier Score CPU Energy
Time
(in h) (in kWh)

Cover-Error
1 VeriFuzz 636 17 .22
2 LibKluzzer 630 130 1.3
3 Esbmc 506 9.5 .11

Cover-Branches
1 LibKluzzer 1597 540 5.6
2 VeriFuzz 1577 590 7.5
3 CoVeriTest 1412 430 4.4

Overall
1 VeriFuzz 2476 610 7.7
2 LibKluzzer 2474 670 6.9
3 Klee 2017 460 5.2

Fig. 4: Quantile functions for category Overall. Each quantile function illustrates
the quantile (x-coordinate) of the scores obtained by test-generation runs below a
certain number of test tasks (y-coordinate). More details were given previously [5].
A logarithmic scale is used for the time range from 1 s to 1000 s, and a linear
scale is used for the time range between 0 s and 1 s.

Second Competition on Software Testing: Test-Comp 2020 515

Table 8: Alternative rankings; quality is given in score points (sp), CPU time in
hours (h), energy in kilo-watt-hours (kWh), the rank measure in joule per score
point (J/sp); measurement values are rounded to 2 significant digits

Rank Verifier Quality CPU CPU Rank
Time Energy Measure

(sp) (h) (kWh) (J/sp)

Green Testers
1 Symbiotic 1 548 41 0.50 1.2
2 Legion 1 501 160 1.8 4.4
3 TracerX 1 654 310 3.8 8.3
worst 53

results artifact (Table 3) include such a plot for each category; as example, we
show the plot for category Overall (all test tasks) in Fig. 4. A total of 9 testers
(all except Esbmc) participated in category Overall, for which the quantile plot
shows the overall performance over all categories (scores for meta categories
are normalized [2]). A more detailed discussion of score-based quantile plots for
testing is provided in the previous competition report [5].

Alternative Ranking: Green Test Generation — Low Energy Con-
sumption. Since a large part of the cost of test-generation is caused by the
energy consumption, it might be important to also consider the energy efficiency
in rankings, as complement to the official Test-Comp ranking. The energy is mea-
sured using CPU Energy Meter [13], which we use as part of BenchExec [12].
Table 8 is similar to Table 7, but contains the alternative ranking category
Green Testers. Column ‘Quality’ gives the score in score points, column ‘CPU
Time’ the CPU usage in hours, column ‘CPU Energy’ the CPU usage in kWh,
column ‘Rank Measure’ uses the energy consumption per score point as rank
measure: total CPU energy

total score , with the unit J/sp.

6 Conclusion

Test-Comp 2020, the 2nd edition of the Competition on Software Testing, attracted
10 participating teams. The competition offers an overview of the state of the art in
automatic software testing for C programs. The competition does not only execute
the test generators and collect results, but also validates the achieved coverage
of the test suites, based on the latest version of the test-suite validator TestCov.
The number of test tasks was increased to 3 230 (from 2 356 in Test-Comp 2019).
As before, the jury and the organizer made sure that the competition follows the
high quality standards of the FASE conference, in particular with respect to the
important principles of fairness, community support, and transparency.

516 D. Beyer

References

1. Bartocci, E., Beyer, D., Black, P.E., Fedyukovich, G., Garavel, H., Hartmanns, A.,
Huisman, M., Kordon, F., Nagele, J., Sighireanu, M., Steffen, B., Suda, M., Sutcliffe,
G., Weber, T., Yamada, A.: TOOLympics 2019: An overview of competitions in
formal methods. In: Proc. TACAS (3). pp. 3–24. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_1

2. Beyer, D.: Second competition on software verification (Summary of SV-
COMP 2013). In: Proc. TACAS. pp. 594–609. LNCS 7795, Springer (2013).
https://doi.org/10.1007/978-3-642-36742-7_43

3. Beyer, D.: Automatic verification of C and Java programs: SV-COMP
2019. In: Proc. TACAS (3). pp. 133–155. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_9

4. Beyer, D.: Competition on software testing (Test-Comp). In: Proc. TACAS (3). pp.
167–175. LNCS 11429, Springer (2019). https://doi.org/10.1007/978-3-030-17502-
3_11

5. Beyer, D.: First international competition on software testing (Test-Comp 2019).
Int. J. Softw. Tools Technol. Transf. (2020)

6. Beyer, D.: Results of the 2nd International Competition on Software Testing (Test-
Comp 2020). Zenodo (2020). https://doi.org/10.5281/zenodo.3678264

7. Beyer, D.: SV-Benchmarks: Benchmark set of the 2nd Intl. Competition on Software
Testing (Test-Comp 2020). Zenodo (2020). https://doi.org/10.5281/zenodo.3678250

8. Beyer, D.: Test suites from Test-Comp 2020 test-generation tools. Zenodo (2020).
https://doi.org/10.5281/zenodo.3678275

9. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Gener-
ating tests from counterexamples. In: Proc. ICSE. pp. 326–335. IEEE (2004).
https://doi.org/10.1109/ICSE.2004.1317455

10. Beyer, D., Jakobs, M.C.: CoVeriTest: Cooperative verifier-based testing. In: Proc.
FASE. pp. 389–408. LNCS 11424, Springer (2019). https://doi.org/10.1007/978-3-
030-16722-6_23

11. Beyer, D., Lemberger, T.: Software verification: Testing vs. model checking. In:
Proc. HVC. pp. 99–114. LNCS 10629, Springer (2017). https://doi.org/10.1007/978-
3-319-70389-3_7

12. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements
and solutions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019).
https://doi.org/10.1007/s10009-017-0469-y

13. Beyer, D., Wendler, P.: CPU Energy Meter: A tool for energy-aware algorithms
engineering. In: Proc. TACAS (2). LNCS 12079, Springer (2020)

14. Beyer, D., Lemberger, T.: TestCov: Robust test-suite execution and
coverage measurement. In: Proc. ASE. pp. 1074–1077. IEEE (2019).
https://doi.org/10.1109/ASE.2019.00105

15. Bürdek, J., Lochau, M., Bauregger, S., Holzer, A., von Rhein, A., Apel, S., Beyer, D.:
Facilitating reuse in multi-goal test-suite generation for software product lines. In:
Proc. FASE. pp. 84–99. LNCS 9033, Springer (2015). https://doi.org/10.1007/978-
3-662-46675-9_6

16. Cadar, C., Dunbar, D., Engler, D.R.: Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proc. OSDI. pp. 209–224.
USENIX Association (2008)

17. Cadar, C., Nowack, M.: Klee symbolic execution engine (competition contribution).
Int. J. Softw. Tools Technol. Transf. (2020)

Second Competition on Software Testing: Test-Comp 2020 517

18. Chalupa, M., Vitovska, M., Jašek, T., Šimáček, M., Strejček, J.: Symbiotic 6:
Generating test-cases (competition contribution). Int. J. Softw. Tools Technol.
Transf. (2020)

19. Chalupa, M., Strejcek, J., Vitovská, M.: Joint forces for memory safety checking.
In: Proc. SPIN. pp. 115–132. Springer (2018). https://doi.org/10.1007/978-3-319-
94111-0_7

20. Chowdhury, A.B., Medicherla, R.K., Venkatesh, R.: VeriFuzz: Program-aware
fuzzing (competition contribution). In: Proc. TACAS (3). pp. 244–249. LNCS 11429,
Springer (2019). https://doi.org/10.1007/978-3-030-17502-3_22

21. Cok, D.R., Déharbe, D., Weber, T.: The 2014 SMT competition. JSAT 9, 207–242
(2016)

22. Gadelha, M.R., Menezes, R., Monteiro, F.R., Cordeiro, L., Nicole, D.: Esbmc:
Scalable and precise test generation based on the floating-point theory (competition
contribution). In: Proc. FASE. LNCS 12076, Springer (2020)

23. Gadelha, M.Y., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model
checking of C programs via k -induction. Int. J. Softw. Tools Technol. Transf. 19(1),
97–114 (Feb 2017). https://doi.org/10.1007/s10009-015-0407-9

24. Godefroid, P., Sen, K.: Combining model checking and testing. In: Handbook of
Model Checking, pp. 613–649. Springer (2018). https://doi.org/10.1007/978-3-319-
10575-8_19

25. Harman, M., Hu, L., Hierons, R.M., Wegener, J., Sthamer, H., Baresel, A., Roper,
M.: Testability transformation. IEEE Trans. Software Eng. 30(1), 3–16 (2004).
https://doi.org/10.1109/TSE.2004.1265732

26. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: How did you
specify your test suite. In: Proc. ASE. pp. 407–416. ACM (2010).
https://doi.org/10.1145/1858996.1859084

27. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D., Păsăreanu,
C.S.: Rigorous examination of reactive systems. The RERS challenges 2012
and 2013. Int. J. Softw. Tools Technol. Transfer 16(5), 457–464 (2014).
https://doi.org/10.1007/s10009-014-0337-y

28. Huisman, M., Klebanov, V., Monahan, R.: VerifyThis 2012: A program verification
competition. STTT 17(6), 647–657 (2015). https://doi.org/10.1007/s10009-015-
0396-8

29. Jaffar, J., Maghareh, R., Godboley, S., Ha, X.L.: TracerX: Dynamic symbolic exe-
cution with interpolation (competition contribution). In: Proc. FASE. LNCS 12076,
Springer (2020)

30. Jaffar, J., Murali, V., Navas, J.A., Santosa, A.E.: Tracer: A symbolic execution
tool for verification. In: Proc. CAV. pp. 758–766. LNCS 7358, Springer (2012).
https://doi.org/10.1007/978-3-642-31424-7_61

31. Jakobs, M.C.: CoVeriTest with dynamic partitioning of the iteration time limit
(competition contribution). In: Proc. FASE. LNCS 12076, Springer (2020)

32. Kifetew, F.M., Devroey, X., Rueda, U.: Java unit-testing tool com-
petition: Seventh round. In: Proc. SBST. pp. 15–20. IEEE (2019).
https://doi.org/10.1109/SBST.2019.00014

33. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394
(1976). https://doi.org/10.1145/360248.360252

34. Le, H.M.: Llvm-based hybrid fuzzing with LibKluzzer (competition contribution).
In: Proc. FASE. LNCS 12076, Springer (2020)

35. Lemberger, T.: Plain random test generation with PRTest (competition contribu-
tion). Int. J. Softw. Tools Technol. Transf. (2020)

518 D. Beyer

36. Liu, D., Ernst, G., Murray, T., Rubinstein, B.: Legion: Best-first concolic testing
(competition contribution). In: Proc. FASE. LNCS 12076, Springer (2020)

37. Ruland, S., Lochau, M., Jakobs, M.C.: HybridTiger: Hybrid model checking
and domination-based partitioning for efficient multi-goal test-suite generation
(competition contribution). In: Proc. FASE. LNCS 12076, Springer (2020)

38. Song, J., Alves-Foss, J.: The DARPA cyber grand challenge: A competi-
tor’s perspective, part 2. IEEE Security and Privacy 14(1), 76–81 (2016).
https://doi.org/10.1109/MSP.2016.14

39. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: A cross-community infrastructure
for logic solving. In: Proc. IJCAR, pp. 367–373. LNCS 8562, Springer (2014).
https://doi.org/10.1007/978-3-319-08587-6_28

40. Sutcliffe, G.: The CADE ATP system competition: CASC. AI Magazine 37(2),
99–101 (2016)

41. Visser, W., Păsăreanu, C.S., Khurshid, S.: Test-input generation
with Java PathFinder. In: Proc. ISSTA. pp. 97–107. ACM (2004).
https://doi.org/10.1145/1007512.1007526

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution, and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

Second Competition on Software Testing: Test-Comp 2020 519

HybridTiger: Hybrid Model Checking and
Domination-based Partitioning for Efficient

Multi-Goal Test-Suite Generation
(Competition Contribution)

Sebastian Ruland1 , Malte Lochau1 , and Marie-Christine Jakobs2

1 Technical University of Darmstadt, Department of Electrical Engineering and
Information Technology, Real-Time Systems Lab, Darmstadt, Germany

{sebastian.ruland,malte.lochau}@es.tu-darmstadt.de
2 Technical University of Darmstadt, Department of Computer Science, Semantics

and Verification of Parallel Systems, Darmstadt, Germany
jakobs@cs.tu-darmstadt.de

Abstract. In theory, software model checkers are well-suited for auto-
mated test-case generation. The idea is to perform (non-)reachability
queries for the test goals and extract test cases from resulting counter-
examples. However, in case of realistic programs, even simple coverage
criteria (e.g., branch coverage) force model checkers to deal with sev-
eral hundreds or even thousands of test goals. Processing each of these
test goals in isolation with model checking techniques does not scale.
Therefore, our tool HybridTiger builds on recent ideas on multi-property
verification. However, since every additional property (i.e., test goal) re-
duces the model checker’s abstraction possibilities, we split the set of
all test goals into different partitions. In Test-Comp 2019, we applied
a random partitioning strategy and used predicate analysis as model
checking technique. In Test-Comp 2020, we improved our technique in
two ways. First, we exploit domination information among control-flow
locations in our partitioning strategy to group test goals being located
on (preferably) similar paths. Second, we account to inherent weaknesses
of the predicate analysis by applying a hybrid software model-checking
approach that switches between explicit model checking and predicate-
based model checking on-the-fly. Our tool HybridTiger is integrated into
the software analysis framework CPAchecker.

Keywords: CPAchecker · Test-Goal Set Partitioning · Hybrid Model-
Checking Cooperation

1 Software Architecture

The HybridTiger algorithm is implemented within the software verification
frameworkCPAchecker [4].CPAchecker utilizes the Eclipse CDT C-parser3.

3 https://www.eclipse.org/cdt/

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 520–524, 2020.
https://doi.org/10.1007/978-3-030-45234-6_26

http://orcid.org/0000-0003-2542-9754
http://orcid.org/0000-0002-8404-753X
https://www.eclipse.org/cdt/
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_26&domain=pdf

Fig. 1. C Program to calculate the Fibonacci number of n and corresponding CFA

CPAchecker allows developers to easily integrate new algorithms like Hybrid-
Tiger, which may use other algorithms implemented in CPAchecker, such as
counterexample-guided abstraction refinement (CEGAR) [5]. Additionally, new
reachability analyses can be integrated as Configurable Program Analyses
(CPAs) [2]. Each CPA consist of an abstract domain with the operators post,
merge, and stop. Multiple CPAs can also be combined into one CPA.

HybridTiger uses the CoVeriTest [3] algorithm to sequentially combine
test-case generation runs utilizing different verification techniques. Each test-case
generation run applies the CPA/Tiger-MGP4(Tiger Multi-Goal-Partitioning)
algorithm, which utilizes the CEGAR algorithm.

2 Test-Generation Approach

HybridTiger first extracts test goals from input programs and repeatedly exe-
cutes reachability analyses provided by CPAchecker until every reachable test
goal is covered by at least one test case. To this end, test goals are encoded into
(non-)reachability properties. If a test goal has been reached, CPAchecker thus
returns a counterexample and HybridTiger extracts a test case (i.e., a vector of
input values), writes the test case to disk and marks the test goal as covered.

Hybrid Test-Case Generation. HybridTiger receives as inputs a C program and
a property specification (i.e., a set of test goals). Next, HybridTiger transforms
the C program into a control-flow automaton (CFA) [1]. Figure 1 shows an
example C program and the corresponding CFA. After CFA generation, the
CoVeriTest algorithm as configured in HybridTiger (see Fig. 2) is executed.
In every new iteration, each analysis of our configuration first (re-)partitions
the set of uncovered test goals (e.g., partitions P1, P2, P3 and P4 for CPA/-
Tiger-MGP-Value and P1 and P2 for CPA/Tiger-MGP-Predicate in Fig. 2). In
each iteration, CPA/Tiger-MGP-Value is performed first using explicit model
checking and is stopped after 120s. After that, CPA/Tiger-MGP-Predicate is

4 https://www.es.tu-darmstadt.de/es/team/sebastian-ruland/testcomp19/

HybridTiger 521

Fig. 2. Overview of HybridTiger

executed using predicate model checking for 780s, where the overall iteration
stops after reaching the global time limit.

Partitioning. HybridTiger utilizes domination information of test-goal locations
according to the respective CFA paths. This meta-information is retrieved from
the generated CFA: each CFA node (i.e., basic block of program locations) in
Fig. 1 is annotated with a post-order ID such that a node will only be reached
after all nodes on the same path with a larger ID have been reached at least
once. Hence, we use the IDs of predecessor nodes related to the CFA edges of
test goals as sorting criterion for the overall set of test goals before splitting
this set into partitions of predefined sizes. In this way, test goals sharing similar
paths are more likely to be assigned to the same partition thus facilitating reuse
potentials of reachability-information during reachability analysis.

3 Strengths and Weaknesses

HybridTiger has three main strengths. First, the directed generation of test cases
aiming at covering particular test goals significantly reduces the overall number
of test cases. Additionally, most test cases produced by HybridTiger effectively
increase the overall coverage (i.e., HybridTiger produces mostly correct and non-
redundant test cases). Second, HybridTiger uses control-flow information to par-
tition test goals which potentially enhances efficiency of test-case generation due
to information reuse among similar test goals. Lastly, HybridTiger uses combina-
tions of different analysis strategies (i.e., value analysis and predicate analysis) to
cope with structural diversity of input programs. One weakness of HybridTiger
is that the partitioning approach does not improve performance of a goal-by-goal
approach if being applied to programs with a small number of test goals (e.g.,
reaching one single error location as demanded in the Cover-Error category).

522 S. Ruland et al.

Results. In Test-Comp 2020, HybridTiger has participated in all categories and
managed to reach the 4th rank in Code Coverage and the 6th rank in Finding
Bugs, where HybridTiger performed better on tasks with many test goals.

4 Setup and Configuration

The version of HybridTiger submitted to Test-Comp 2020 is built from the
tigerIntegration25 branch revision 32283 of the CPAchecker repository and is
archived at https://gitlab.com/sosy-lab/test-comp/archives-2020. HybridTiger
can be applied to a single file using the command

1 s c r i p t s /cpa . sh −benchmark −heap 10000M −t i ge r t e s t comp20
−spec spec . prp f i l e

where spec is the property file (e.g., coverage-error-call or coverage-branches)
and file is the input C program. Statistics of the analyses are printed to console
and meta data on generated test cases as well as the test suite are written to
files in the output folder. In order to run HybridTiger for the Test-Comp 2020
benchmarks a Linux system with Java 8, BenchExec6 and the SV-benchmarks7

is required. Finally, run BenchExec with:

– the benchmark definition cpa-tiger.xml (archived at https://gitlab.com/sosy-
lab/test-comp/bench-defs/tree/master/benchmark-defs), and

– the tool-info module cpachecker.py (archived at https://github.com/sosy-
lab/benchexec/tree/master/benchexec/tools).

5 Project and Contributors

CPAchecker is maintained by the Software Systems Lab at LMU Munich
as open-source project, contributed by an international group of researchers
from LMU Munich, University of Passau, Technical University of Darmstadt and
the Institute for System Programming of the Russian Academy of Sciences.The
branch tigerIntegration2 from which HybridTiger is built is mainly developed
at the Technical University of Darmstadt. Additional information is available
at https://cpachecker.sosy-lab.org/.

Acknowledgement. This work was funded by the Hessian LOEWE initiative
within the Software-Factory 4.0 project.

5 https://svn.sosy-lab.org/software/cpachecker/branches/tigerIntegration2
6 https://github.com/sosy-lab/benchexec
7 https://github.com/sosy-lab/sv-benchmarks

HybridTiger 523

References

1. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M., Sebastiani, R.: Software model
checking via large-block encoding. In: 2009 Formal Methods in Computer-Aided
Design. pp. 25 – 32 (12 2009)

2. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable Software Verification: Con-
cretizing the Convergence of Model Checking and Program Analysis. In: Proc. CAV,
LNCS 4590. pp. 504–518. Springer Berlin Heidelberg (2007)

3. Beyer, D., Jakobs, M.C.: CoVeriTest: Cooperative Verifier-Based Testing. In: Proc.
FASE. pp. 389–408. Springer International Publishing (2019)

4. Beyer, D., Keremoglu, M.E.: CPAchecker: A Tool for Configurable Software Verifi-
cation. In: Proc. CAV, LNCS 6806. pp. 184–190. Springer Berlin Heidelberg (2011)

5. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided Ab-
straction Refinement for Symbolic Model Checking. J. ACM 50(5), 752–794 (2003)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

524 S. Ruland et al.

ESBMC: Scalable and Precise Test Generation
based on the Floating-Point Theory

(Competition Contribution)

Mikhail R. Gadelha1 , Rafael Menezes2 , Felipe R. Monteiro2 ,
Lucas C. Cordeiro3 �, and Denis Nicole4

1 SIDIA Instituto de Ciência e Tecnologia, Manaus, Brazil
2 Federal University of Amazonas, Manaus, Brazil

3 University of Manchester, Manchester, UK
lucas.cordeiro@manchester.ac.uk

4 University of Southampton, Southampton, UK

Abstract. ESBMC is an SMT-based bounded model checker for real-
world C programs. Such programs often represent real numbers using
the floating-points, most commonly, the IEEE floating-point standard
(IEEE 754-2008). Thus, ESBMC now includes a new floating-point arith-
metic encoding layer in our SMT backend, that encodes floating-point
operations into bit-vector operations. In particular, ESBMC can use off-
the-shelf SMT solvers that offer support for bit-vectors only to encode
floating-point arithmetic.

Keywords: Automated Test Generation · Bounded Model Checking ·
Software Testing · Satisfiability Modulo Theories.

1 Test Generation Approach

ESBMC [3,7] is an SMT-based bounded model checker for the verification of
safety properties and assertions in both sequential and multi-threaded C pro-
grams. ESBMC primarily aims to help software developers by finding subtle
bugs in their code (e.g., array bounds violation, null-pointer dereference, arith-
metic overflow, and deadlock). It also implements k -induction [5,10] and can
be used to prove the absence of property violations, i.e., program correctness.
In Test-Comp’20 [1], ESBMC produces test cases using the falsification mode,
which is an iterative bounded model checking (BMC) approach that repeatedly
unwinds the program until it either finds a property violation or exhausts time
or memory limits. Intuitively, ESBMC aims to find a counterexample with up
to k loop unwindings. The algorithm relies on the symbolic execution engine to
increasingly unwind the loop after each iteration. ESBMC uses the falsification
mode because it is known that there exist property violations in all programs
in the Test-Comp, so there exists no need to prove correctness. From the coun-
terexample produced by ESBMC, we define the test specification required by
the competition using an external Python script.

� Jury member

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 525–529, 2020.
https://doi.org/10.1007/978-3-030-45234-6_27

http://orcid.org/0000-0001-6540-6587
http://orcid.org/0000-0002-6102-4343
http://orcid.org/0000-0001-9420-9056
http://orcid.org/0000-0002-6235-4272
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_27&domain=pdf

ESBMC runs with an improved SMT backend for test-case generation, which
includes a floating-point encoding layer that converts all floating-point opera-
tions into bit-vector operations (a process called bit-blasting) when encoding the
program into an SMT formula. Previous ESBMC versions [8] were only able to
encode and verify programs using a fixed-point representation for floating-points.
This particular encoding is a valid approximation since fixed-points are used in
a large number of applications in the embedded world; however, it restricted
ESBMC from verifying the broad set of programs that relied on processors that
implement floating-point arithmetic.

There exist various strategies to solve SMT formulae with floating-point
arithmetic. It is tempting to use a real arithmetic strategy to tackle these for-
mulae; however, the floating-point arithmetic is an approximation of the real
one and introduces a new set of values (e.g., NaNs). ESBMC follows the same
approach as CBMC [2] and 2LS [15], which also bit-blast all operations, includ-
ing floating-point operations, before checking satisfiability using SAT solvers.
The bit-blasting algorithm in ESBMC is based on the bit-blasting performed
by Z3, which is an improved version of the algorithms described by Muller et
al. [12]. A floating-point is encoded into SMT using a single bit-vector and fol-
lows the IEEE–754 [11] standard for the size of the exponent and significand.
For instance, a half-precision floating-point (16 bits) has 1 bit for the sign, 5
bits for the exponent and 11 bits for the significand (1 hidden bit) [11]. Thus,
the floating-point encoding layer in ESBMC performs the operations in the bit-
vectors representing the floating-points, e.g., the formula to check if a bit-vector
is a NaN checks if the exponent is all 1’s and if the significand is not zero.
The resulting SMT formulae are the translation of the floating-point arithmetic
digital circuits to SMT [12].

The improved SMT backend is an extension of our previous work on floating-
point arithmetic encoding [9]. Previously, we extended ESBMC to encode floating-
point arithmetic into SMT, however, we were restricted to SMT solvers that
supported the FP theory natively (i.e., Z3, MathSAT and CVC4) [9]. Now, the
floating-point encoding layer extends the FP theory support to all solvers sup-
ported by ESBMC, including Boolector [13] and Yices [4], which do not natively
support that FP theory. In Test-Comp’20, ESBMC uses Boolector 3.0.1 and
produces 470 confirmed test specifications. In particular, ESBMC achieved the
the highest score in the ReachSafety-Floats, a category focused on programs
with floating-point arithmetics, correctly verifying 30 out of the 32 test cases
and outperforming all other tools in this category. The results in this category
demonstrates the effectiveness of the floating-point bit-blasting: Boolector does
not support the FP theory natively and yet was able to reason about almost all
the test cases in the competition that involved floating-point arithmetic.

2 Strengths and Weaknesses

The falsification mode allows ESBMC to keep unwinding the program until a
property violation is found, or until it exhausts time or memory limits. Its BMC
approach, however, stops after it has found a property violation and prevents

526 M. R. Gadelha et al.

the generation of tests specifications for multiple property violations or coverage
testing. This approach, however, is an advantage in the Cover-Error category
as finding one error is the primary goal.

Encoding programs using the SMT FP theory has several advantages over the
fixed-point approach. ESBMC can now accurately model C programs that use
the IEEE floating-point arithmetic [11]. In particular, ESBMC ships with models
for most of the current C11 standard functions. Furthermore, the floating-point
encoding layer in ESBMC extends the support for the SMT FP theory to solvers
that do not support it natively. ESBMC can verify programs with floating-point
arithmetic using all currently supported solvers – including Boolector and Yices,
which do not support the SMT FP theory.

In Test-Comp’20 results, 470 tests were confirmed while 13 tests were uncon-
firmed, where 11 were due to bugs in the script that generates the test specifica-
tion (e.g., non-deterministic unions or duplication of non-deterministic values)5,
1 was due to a bug in ESBMC that caused the tool to fail6, and 1 was due to unde-
fined behavior in the test case7. We chose Boolector for the competition because
it outperforms all other SMT solvers supported by ESBMC. In the ReachSafety-
Floats category, Boolector even outperforms all other SMT solvers that natively
support FP theory. We believe that Boolector employs more abstract and less ex-
pensive techniques (e.g., algebraic reduction rules and contextual simplification)
before bit-blasting SMT formulae into SAT.

The drawback of the floating-point encoding is that they are very complex;
it is not uncommon to see the SMT solvers struggling to support every corner
case [6,14]. The maintenance of our floating-point encoding layer is hard, and we
do not yet have proof that it is entirely correct, even though empirical evidence [9]
points in that direction and suggests that the approach is efficient in finding bugs
as shown by Test-Comp’20 results. The complex bit-vector formulae also prevent
high-level reasoning about the problem by the SMT solver, however, this is not a
significant issue for ESBMC as all high-level simplifications are performed before
encoding the program into SMT formulae.

3 Tool Setup and Configuration

In order to run our esbmc-wrapper.py script8, one must set the architecture
(i.e., 32 or 64-bit), the competition strategy (i.e., k -induction, falsification, or
incremental BMC), the property file path, and the benchmark path, as:

esbmc-wrapper.py [-a {32, 64}] [-p PROPERTY_FILE]

[-s {kinduction,falsi,incr,fixed}]

[BENCHMARK_PATH]

5 https://github.com/esbmc/esbmc/issues/142
6 https://github.com/esbmc/esbmc/issues/143
7 https://github.com/sosy-lab/sv-benchmarks/pull/1073
8 https://gitlab.com/sosy-lab/test-comp/archives-2020/blob/master/2020/
esbmc-falsi.zip

Scalable and Precise Test Generation based on the Floating-Point Theory 527

where -a sets the architecture, -p sets the property file path, and -s sets the
strategy (e.g., kinduction, falsi, incr, or fixed). In Test-Comp’20, ESBMC
uses falsi for falsification.

Internally, by choosing the falsification strategy, the following options are
set when executing ESBMC: --no-div-by-zero-check, disables the division
by zero check (required by Test-Comp); --force-malloc-success, sets that
all dynamic allocations succeed (a Test-Comp requirement); --floatbv, en-
ables floating-point SMT encoding; --falsification, enables the falsification
mode; --unlimited-k-steps, removes the upper limit of iteration steps in
the falsification algorithm; --witness-output, sets the witness output path;
--no-bounds-check and --no-pointer-check disable bounds check and pointer
safety checks, resp., since we are only interested in finding reachability bugs;
--k-step 5, sets the falsification increment to 5; --no-allign-check, disables
pointer alignment checks; and --no-slice, disables slicing of unnecessary in-
structions. The Benchexec tool info module is named esbmc.py and the bench-
mark definition file is esbmc-falsi.xml.

4 Software Project

The ESBMC source code is written in C++ and it is available for downloading at
GitHub9, which include self-contained binaries for ESBMC v6.1 64-bit. ESBMC
is publicly available under the terms of the Apache License 2.0. Instructions for
building ESBMC from the source code are given in the file BUILDING (including
the description of all dependencies). ESBMC is an international-joint project
with the SIDIA Instituto de Ciência e Tecnologia, Federal University of Ama-
zonas, University of Southampton, University of Manchester, and the University
of Stellenbosch.

References

1. Beyer, D.: Second competition on software testing: Test-comp 2020. In: Proc.
FASE. LNCS , Springer (2020)

2. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Tools And Algorithms For The Construction And Analysis Of Systems. LNCS,
vol. 2988, pp. 168–176 (2004)

3. Cordeiro, L.C., Fischer, B.: Verifying multi-threaded software using SMT-based
context-bounded model checking. In: International Conference on Software Engi-
neering. pp. 331–340 (2011)

4. Dutertre, B.: Yices 2.2. In: Computer-Aided Verification. LNCS, vol. 8559, pp.
737–744 (2014)

5. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electronic
Notes in Theoretical Computer Science 89(4), 543–560 (2003)

6. Erkk, L.: Bug in floating-point conversions. https://github.com/Z3Prover/z3/
issues/1564 (2018), [Online; accessed January-2020]

9 https://github.com/esbmc/esbmc

528 M. R. Gadelha et al.

7. Gadelha, M.R., Monteiro, F., Cordeiro, L., Nicole, D.: ESBMC v6.0: Verifying C
programs using k-induction and invariant inference. In: Tools And Algorithms For
The Construction And Analysis Of Systems. LNCS, vol. 11429, pp. 209–213 (2019)

8. Gadelha, M.R., Monteiro, F.R., Morse, J., Cordeiro, L.C., Fischer, B., Nicole, D.A.:
ESBMC 5.0: An industrial-strength C model checker. In: Automated Software
Engineering. pp. 888–891 (2018)

9. Gadelha, M.Y.R., Cordeiro, L.C., Nicole, D.A.: Encoding floating-point numbers
using the SMT theory in ESBMC: An empirical evaluation over the SV-COMP
benchmarks. In: Simpósio Brasileiro De Métodos Formais. LNCS, vol. 10623, pp.
91–106 (2017)

10. Gadelha, M.Y.R., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model
checking of C programs via k-induction. Software Tools for Technology Transfer
19(1), 97–114 (2017)

11. IEEE: IEEE Standard For Floating-Point Arithmetic (2008), IEEE 754-2008
12. Muller, J.M., Brisebarre, N., Dinechin, F., Jeannerod, C.P., Lefe, V., Melquiond,

G., Revol, N., Stehl., Torres, S.: Handbook of Floating-Point Arithmetic. Birkher
Boston, 1st edn. (2010)

13. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0 system description. Journal on
Satisfiability, Boolean Modeling and Computation 9, 53–58 (2014)

14. Noetzli, A.: Failing precondition when multiplying 4-bit significand/4-bit ex-
ponent floats. https://github.com/CVC4/CVC4/issues/2182 (2018), [Online; ac-
cessed January-2020]

15. Schrammel, P., Kroening, D., Brain, M., Martins, R., Teige, T., Bienmüller, T.:
Incremental bounded model checking for embedded software (extended version).
Formal Aspects of Computing 29(5), 911–931 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Scalable and Precise Test Generation based on the Floating-Point Theory 529

TracerX: Dynamic Symbolic Execution with
Interpolation (Competition Contribution)

Joxan Jaffar , Rasool Maghareh , Sangharatna Godboley , and
Xuan-Linh Ha

National University of Singapore, Singapore, Singapore
{joxan,rasool,sanghara,haxl}@comp.nus.edu.sg
http://www.springer.com/gp/computer-science/lncs

Abstract. Dynamic Symbolic Execution (DSE) is an important method
for testing of programs. An important system on DSE is KLEE [1] which
inputs a C/C++ program annotated with symbolic variables, compiles
it into LLVM, and then emulates the execution paths of LLVM using
a specified backtracking strategy. The major challenge in symbolic ex-
ecution is path explosion. The method of abstraction learning [7] has
been used to address this. The key step here is the computation of an
interpolant to represent the learned abstraction.
TracerX, our tool, is built on top of KLEE and it implements and uti-
lizes abstraction learning. The core feature in abstraction learning is sub-
sumption of paths whose traversals are deemed to no longer be necessary
due to similarity with already-traversed paths. Despite the overhead of
computing interpolants, the pruning of the symbolic execution tree that
interpolants provide often brings significant overall benefits. In particu-
lar, TracerX can fully explore many programs that would be impossible
for any non-pruning system like KLEE to do so.

Keywords: Dynamic Symbolic Execution, Interpolation, Testing, Code
Coverage

1 Overview and Software Architecture

Symbolic execution has emerged as an important method to reason about pro-
grams, in both verification and testing. By reasoning about inputs as symbolic
entities, its fundamental advantage over traditional black-box testing, which uses
concrete inputs, is simply that it has better coverage of program paths. In par-
ticular, dynamic symbolic execution (DSE), where the execution space is ex-
plored path-by-path, has been shown effective in systems such as DART [4] and
KLEE [1]. A key advantage of DSE is that by examining a single path, the anal-
ysis can be both precise, and efficient. However, the key disadvantage of DSE is
that the number of program paths is in general exponential in the program size,
and most available implementations of DSE do not employ a general technique
to prune away some paths.

In TracerX, our primary objective is to address the path explosion problem in
DSE. More specifically, we wish to perform path-by-path exploration of DSE to

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 530–534, 2020.
https://doi.org/10.1007/978-3-030-45234-6_28

http://orcid.org/0000-0001-9988-6144
http://orcid.org/0000-0002-8147-6590
http://orcid.org/0000-0002-6169-6334
http://orcid.org/0000-0003-1916-6812
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_28&domain=pdf

enjoy its benefits, but we include a pruning mechanism so that a generated path
can be eliminated if it is guaranteed not to violate the stated safety conditions.
Toward this goal, we employ the method of abstraction learning [7], which is
more popularly known as lazy annotations [8,9].

Fig. 1. TracerX Framework

The software ar-
chitecture of TracerX
is presented in Fig.
1. The core feature
of TracerX is the use
of interpolation, which
serves to generalize the
context of a node in
the symbolic execution
tree (SET) with an approximation of the weakest precondition of the node. This
method was implemented in the TRACER system [6], which was the first system
to demonstrate DSE with pruning. TRACER was primarily used to evaluate new
algorithms in verification, analysis and testing, e.g., [2,3,5]. While TRACER was
able to perform bounded verification and testing on many examples, it could not
accommodate industrial programs which often dynamically manipulate the heap
memory. TracerX combines the state-of-the-art DSE technology used in KLEE
with the pruning technology in TRACER to address this issue.

x = 0;

if (b1) x += 12;

if (b2) x += 15;

assert (x != 28);

Fig. 2. A Sample Program

Now we explain interpolation in more detail.
While exploring the SET, an interpolant of a state
is an abstraction of it which ensures the safety of the
subtree rooted at that state. In other words, if we
continue the execution with the interpolant instead
of the state we will not reach any error. Thus, upon
encountering another state of the same program point, if the context of the
state implies the interpolant formula, then continuing the execution from the
new state will not lead to any error. Consequently, we can prune the subtree
rooted at the new state.

Fig. 3. SET with Interpolation of Program
in Fig. 2

Example 1. Consider the program
in Fig. 2 and its SET explored by
SE with interpolation in Fig. 3.
The variables b1, b2 are symbolic
and all combinations of the boolean
conditions are satisfiable. The final
statement assert(x �= 28) is the tar-
get. The path condition for every
path is shown in the set in black
color.

We traverse the SET in a left-
right depth-first manner. In the end
of the first path x = 27 which does
not violate the assertion. Consider-

TracerX: Dynamic Symbolic Execution with Interpolation 531

ing the target and the update on variable x between 〈5a〉 and 〈7a〉, we generate
an interpolant which store the weakest precondition at 〈5a〉: x �= 13 (Shown in
purple color). Similarly, an interpolant is also computed at 〈6a〉: x �= 28.

Now, combining these two interpolants, we generate an interpolant for the
node 〈4a〉. Note that the weakest precondition here is b2 −→ (x �= 13) ∧ !b2 −→
(x �= 28). We approximate this formula with the conjunction (x �= 13) ∧ (x �=
28). Next, moving to 〈2a〉, the interpolant at 〈4a〉 is received and considering
the update on variable x between 〈2a〉 and 〈4a〉, an interpolant is generated at
〈2a〉: x �= 1 ∧ x �= 16. Now moving to 〈4b〉, we check if the path condition
at 〈4b〉 (x = 0∧!b1 ∧ skip) implies the interpolant that was generated at 〈4a〉
(x �= 13 ∧ x �= 28). Since the implication holds, node 〈4b〉 is subsumed with
node 〈4a〉 (indicated by orange arrow) and the subtree below 〈4b〉 is pruned. The
SET traversal continues by computing the interpolant at 〈3a〉 which is computed
from x �= 13 ∧ x �= 28 subsuming 〈4b〉 and the updates between 〈3a〉 and 〈4b〉
(which is skip). The interpolants at 〈2a〉 and 〈3a〉 are then combined to generate
an interpolant at 〈1a〉: x �= 1 ∧ x �= 16 ∧ x �= 13 ∧ x �= 28. Note that KLEE
would explore the 4 paths in the SET while TracerX explores only two paths to
the end. ��

2 Discussion on Strengths and Weaknesses

In Test-Comp 2020, TracerX stood at 6th rank in overall. Inspecting the results,
TracerX was one of the teams having the highest score in: cover-branches.BitVec-
tors and cover-error.ControlFlow. Moreover, TracerX was one of the top 3 scor-
ers in: cover-branches.DeviceDriversLinux64, cover-branches.ControlFlow, and
cover-error.BitVectors.

TracerX also accomplished more tasks by a meaningful margin compared to
KLEE in: cover-branches.BusyBox and cover-branches.MainHeap. On the other
hand, TracerX performed poorly in 3 sub-categories: cover-error.ReachSafety-
ECA, ReachSafety-Sequentialized (both branches) and cover-error.Floats1.

We should emphasize that TracerX in general requires symbolic execution
trees to be bounded. Otherwise, interpolants cannot be computed. Moreover,
TracerX is a heavy-weight approach and the overhead pays off as the problems
gets harder. As a result it is expected for other light-weight approaches to have
better results compared to TracerX in short timeout and memory limits.

Moreover, it appears that the configuration we used to explore unbounded
programs (max-depth=1000) and also in the benchexec tool-info (wrongly run-
ning TracerX with the default memory (2GB) instead of 15GB RAM) might
have had a profound effect in reaching timeout on the test programs.

1 TracerX does not support symbolic expressions over floating point arithmetic.

532 J. Jaffar et al.

3 Tool Setup and Configuration

The TracerX version used in TEST-COMP 2020 is available at https://gitlab.
com/sosy-lab/test-comp/archives-2020/blob/testcomp20/2020/tracerx.zip2. The
configuration/setting and running of TracerX is similar to KLEE. TracerX has
some extra command line arguments. Firstly, the argument “solver-backend=z3”
should be provided to run TracerX with interpolation. Without this option Trac-
erX will run similar to KLEE. TracerX can do exploration in both the Random
and DFS modes. However, the DFS exploration mode (using “-search=dfs”) is
preferred since it naturally increases the chance of generating interpolants. Fur-
thermore, the option “-subsumed-test” should be used to generate a test-case
from the subsumed nodes. This option is required for the coverage competi-
tion. The following is a sample full command line after compiling and running
tracerx.py:
“../tracerx-svcomp/bin/../tracerx build/Release+Asserts/bin/klee -max-

memory=14305 -output-dir=../tracerx-svcomp/bin/../test-suite -search=dfs

-solver-backend=z3 -write-xml-tests -tc-orig=s3 clnt 3.BV.c.cil-2a.c -tc-

hash=acd2272114f13977ea7bdc712c7567ec2e43dc8e07ef033eb67487bab7f66d59 -

-dump-states-on-halt=false -exit-on-error-type=Assert -max-depth=1000

-max-time=900 /tmp/tmpvwkb459r/s3 clnt 3.BV.c.cil-2a.c.bc”
The two command line options, “-max-memory” and “-max-time” are used

to set the maximum memory and time budget. The options “-write-xml-tests”,
“-tc-orig”, and “-tc-hash” are to record the test input information. Once the
halt instruction is invoked, “-dump-states-on-halt” creates a test case from all
active states3. The option “-exit-on-error-type=Assert” terminates the search as
soon as a bug is found (used only for coverage categories). The command line
option “-max-depth=1000” is used to bound the maximum number of branches
explored in unbounded paths.

4 Software Project and Contributors

The information about TracerX with self-contained binary is publicly available at
https://www.comp.nus.edu.sg/∼tracerx/. Also, the source code can be accessed
at https://github.com/tracer-x/klee repository. Authors of this paper and other
colleagues have contributed and developed TracerX at National University of
Singapore, Singapore. The authors of this paper acknowledge the direct and
indirect support of their students, former researchers, and colleagues.

2 The benchexec tool-info file is https://github.com/sosy-lab/benchexec/blob/master/
benchexec/tools/tracerx.py and the benchmark description file is https://gitlab.
com/sosy-lab/test-comp/bench-defs/blob/master/benchmark-defs/tracerx.xml.

3 This was disabled to save execution time. However, it would have been better to
enable this option for maximum coverage.

TracerX: Dynamic Symbolic Execution with Interpolation 533

References

1. Cadar, C., Dunbar, D., Engler, D.R., et al.: KLEE: unassisted and automatic gen-
eration of high-coverage tests for complex systems programs. In: Proceedings of the
8th OSDI. pp. 209–224 (2008)

2. Chu, D.H., Jaffar, J.: A complete method for symmetry reduction in safety verifi-
cation. In: 24th International Conference on Computer Aided Verification (CAV).
pp. 616–633, USA. Springer (2012)

3. Chu, D.H., Jaffar, J., Maghareh, R.: Precise cache timing analysis via symbolic
execution. In: 22nd IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). pp. 1–12 (2016)

4. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automated random testing.
In: Proceedings of the 2005 ACM SIGPLAN conference on Programming language
design and implementation (PLDI). pp. 213–223 (2005)

5. Jaffar, J., Murali, V., Navas, J.A.: Boosting concolic testing via interpolation. In:
Proceedings of the 9th Conference on Foundations of Software Engineering (FSE).
pp. 48–58 (2013)

6. Jaffar, J., Murali, V., Navas, J.A., Santosa, A.E.: TRACER: a symbolic execution
tool for verification. In: 24th International Conference on Computer Aided Verifica-
tion (CAV). pp. 758–766. Springer (2012)

7. Jaffar, J., Santosa, A.E., Voicu, R.: An interpolation method for CLP traversal. In:
15th International Conference on Principles and Practice of Constraint Program-
ming (CP). pp. 454–469. Springer (2009)

8. McMillan, K.L.: Lazy annotation for program testing and verification. In: 22nd In-
ternational Conference on Computer Aided Verification (CAV). pp. 104–118 (2010)

9. Mcmillan, K.L.: Lazy annotation revisited. In: 26th International Conference on
Computer Aided Verification (CAV). pp. 243–259 (2014)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

534 J. Jaffar et al.

LLVM-based Hybrid Fuzzing with LibKluzzer
(Competition Contribution)

Hoang M. Le

Insitute of Computer Science
University of Bremen, Germany

hle@uni-bremen.de

Abstract. LibKluzzer is a novel implementation of hybrid fuzzing, which
combines the strengths of coverage-guided fuzzing and dynamic symbolic
execution (a.k.a. whitebox fuzzing). While coverage-guided fuzzing can
discover new execution paths at nearly native speed, whitebox fuzzing
is capable of getting through complex branch conditions. In contrast
to existing hybrid fuzzers, that operate directly on binaries, LibKluzzer
leverages the LLVM compiler framework to work at the source code
level. It employs LibFuzzer as the coverage-guided fuzzing component
and KLUZZER, an extension of KLEE, as the whitebox fuzzing compo-
nent.

Keywords: Hybrid Fuzzing · Coverage-guided Fuzzing · Symbolic Ex-
ecution · LLVM.

1 Test Generation Approach

LibKluzzer is based on hybrid fuzzing which tries to combine the strengths of
coverage-guided fuzzing and whitebox fuzzing. Most existing advanced hybrid
fuzzers, e.g. [6,7,8], employ coverage-guided fuzzing as the main search algorithm
and only apply whitebox fuzzing selectively on the most promising inputs. While
such advanced approach is also being under development and evaluation for
LibKluzzer, for simplicity and given the short time frame available for adapting
to Test-Comp, the participating version of LibKluzzer combines coverage-guided
fuzzing and whitebox fuzzing in a very simple way. Without any intrinsic inte-
gration, multiple instances of coverage-guided fuzzing and whitebox fuzzing are
scripted to run in parallel in their own OS process. They operate on a common
corpus to enable sharing the individual progresses. Each instance keeps an in-
memory set of inputs it has generated, together with the code coverage achieved
so far. Whenever an instance discovers an input that covers new code, it writes
this input as a file to the common corpus. The corpus is scanned periodically
by the instances to check for newly added files. Despite of (or thanks to) its
simplity, LibKluzzer managed to perform very well in Test-Comp 2020.

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 535–539, 2020.
https://doi.org/10.1007/978-3-030-45234-6_29

http://orcid.org/0000-0002-8957-4144
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_29&domain=pdf

2 Software Architecture

Two major components of LibKluzzer are LibFuzzer [1] for coverage-guided
fuzzing and KLUZZER [5] for whitebox fuzzing. As mentioned earlier, KLUZZER
is an extension of KLEE [2]. While it uses most of the KLEE infrastructure in-
cluding the underlying SMT solver STP [3], KLUZZER provides several signicant
enhancements that make it more suitable for hybrid fuzzing (see [5] for more de-
tails). For Test-Comp, both LibFuzzer and KLUZZER have been extended to
support its specific requirements. The extension involves writing test cases in
XML format, glue logic to convert the random byte array needed for the fuzzers
into a sequence of calls to nondet functions, and implementing a fuzzing target
as described later.

Workflow First, the C program under test undergoes a set of source-to-source
program transformations to enable in-process coverage-guided fuzzing. The trans-
formed program is then compiled using Clang to create an LLVM bitcode file
and an executable. The compilation involves, among others, code coverage in-
strumentation and linking with LibFuzzer. Finally, the LLVM bitcode file is fed
to KLUZZER to perform whitebox fuzzing, while the executable is started in
two instances to perform coverage-guided fuzzing. These three fuzzing instances
run concurrently until terminated by the Test-Comp BenchExec runner due to
time limit exceeded. They share generated inputs via a common corpus of files
as mentioned earlier and write XML test cases to the test suite on-the-fly.

Transformations for in-process fuzzing While the main components of
LibKluzzer are implemented in C++, the program transformations, that are
required to enable in-process coverage-guided fuzzing, consist of a set of Bash
and Python scripts. This form of fuzzing is much faster than traditional out-
of-process fuzzing, which forks a new process for each execution of the main
function, but requires the global state of the fuzzing target to remain largely un-
changed or to be resetted between executions. The transformations esssentially
perform the following steps for each benchmark:

1. rename the existing main function to FuzzMe;
2. identify and duplicate global variables;
3. insert additional functions: FuzzerSaveCtx to capture the initial global state

into the duplicated variables and FuzzerRestoreCtx to restore this state be-
fore each new execution of the FuzzMe function;

4. redirect calls to exit and abort to custom functions to prevent unwanted
early exit from the fuzzing loop.

The current script-based implementation of these transformations is very
fragile and might not work out-of-the-box for non-Test-Comp benchmarks. The
next version of LibKluzzer will replace these with proper Clang-based source-to-
source transformations.

536 H. M. Le

int nondet_int() {

int Value = 0;

if (Used + 4 <= Size) {

memcpy(&Value, Data + Used, 4);

Used += 4;

}

return Value;

}

int LLVMFuzzerTestOneInput(

uint8_t *Data, size_t Size) {

FuzzerRestoreCtx();

MakeGlobalCopy(Data, Size);

Used = 0;

FuzzMe();

}

Fig. 1. Implementation of nondet functions and fuzzing target for Test-Comp

Test-Comp fuzzing target and nondet functions Both KLUZZER and
LibFuzzer require the definition of a fuzzing target, i.e. an implementation of
the declared LLVMFuzzerTestOneInput function. The main function provided
by the fuzzers will repeatedly call LLVMFuzzerTestOneInput with fuzz inputs
in a loop to perform fuzzing. Each fuzz input consists of an array of random
bytes and its size. Fig. 1 shows a conceptual implementation of LLVMFuzzerTe-
stOneInput on the right hand side. First, the initial global execution state is
restored. Then, the given fuzz input is copied into a global array and the number
of bytes already consumed for fuzzing is set to zero; Finally, FuzzMe is invoked.
During its execution, each time a nondet function is called to provide input, a
corresponding number of bytes from the global byte array will be consumed to
create the requested value, as exemplarily shown on the left hand side of Fig. 1
for int. With this conversion from random bytes, no changes are needed in the
core algorithms of KLUZZER and LibFuzzer for Test-Comp.

3 Strengths and Weaknesses

The main strength of LibKluzzer lies in achieving high code coverage as demon-
strated by winning the branch coverage category of Test-Comp. Multiple factors
contribute to this success including the extremely high throughput of in-process
coverage-guided fuzzing implemented by LibFuzzer and the use of generational
search in KLUZZER, a coverage-maximizing search heuristic for dynamic sym-
bolic execution/whitebox fuzzing first proposed by SAGE [4]. The individual
contribution of each single component is to be analyzed more thoroughly in a
further detailed study.

The main conceptual weakness of LibKluzzer is that the same coverage-
maximizing search strategy is used for reaching error calls. It is a big surprise
that LibKluzzer has still achieved the second place in the corresponding category.
We expect that adapting the search heuristics of both LibFuzzer and KLUZZER
to be directed by the distance to the location of error calls should improve the
performance significantly.

Especially, the big ECA benchmarks have proven to be problematic for both
LibFuzzer and KLUZZER and hence also for LibKluzzer. The sequence of nondet
values required to reach the error calls is very specific and nearly impossible to
find with coverage-guided fuzzing, while KLUZZER suffers from path explosion.

LLVM-based Hybrid Fuzzing with LibKluzzer (Competition Contribution) 537

In addition to error-directed search, path/state merging might be required to
efficiently deal with these benchmarks.

A further weakness is that LibKluzzer makes little effort on minimizing the
test suite with respect to both the size of the test suite and the size of each
test case. Too many redundant test cases might cause the validator to timeout.
Furthermore, some produced test cases are too big hitting a corner case in the
validator and forcing it to exceed the given memory limit. In these cases, the
validator crashes prematurely, leaving the remaining test cases uncounted.

4 Tool Setup and Configuration

Installation The LibKluzzer archive submitted to Test-Comp 2020 (version 0.6)
can be downloaded from https://gitlab.com/sosy-lab/test-comp/archives-2020/
blob/testcomp20/2020/libkluzzer.zip. After unpacking, the main executable script
LibKluzzer can be found in the bin folder.

Configuration The main script has been configured to reflect the resource
restrictions of Test-Comp 2020. LibKluzzer treats every benchmark as 64-bit
and always tries to maximize code coverage, and thus is agnostic to the property
and architecture specification. The only meaningful parameter is the path to the
source code file of the benchmark.

Participation LibKluzzer participates in both available categories of Test-
Comp 2020: Finding Bugs and Code Coverage.

5 Software Project and Contributors

LibKluzzer and KLUZZER are being developed by the author at University of
Bremen, Germany. This research and development are supported by the Central
Research Development Fund, University of Bremen, Germany within the project
SYMVIR. The source code of LibKluzzer will be made available at https://
github.com/hoangmle/LibKluzzerTestComp2020Submission. Much of the cred-
its should go to the respective development teams of LibFuzzer and KLEE, which
lay the foundation for LibKluzzer.

References

1. LibFuzzer - a library for coverage-guided fuzz testing. Available at https://llvm.
org/docs/LibFuzzer.html.

2. C. Cadar, D. Dunbar, and D. R. Engler. KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In USENIX OSDI, pages 209–
224, 2008.

3. V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and arrays. In CAV,
pages 519–531, 2007.

538 H. M. Le

4. P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated whitebox fuzz testing.
In NDSS, 2008.

5. H. M. Le. KLUZZER: Whitebox fuzzing on top of LLVM. In ATVA, pages 246–252.
6. N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshi-

taishvili, C. Kruegel, and G. Vigna. Driller: Augmenting fuzzing through selective
symbolic execution. In NDSS, 2016.

7. I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim. QSYM : A practical concolic execution
engine tailored for hybrid fuzzing. In USENIX Security, pages 745–761, 2018.

8. L. Zhao, Y. Duan, H. Yin, and J. Xuan. Send hardest problems my way: Proba-
bilistic path prioritization for hybrid fuzzing. In NDSS, 2019.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

LLVM-based Hybrid Fuzzing with LibKluzzer (Competition Contribution) 539

CoVeriTest with Dynamic Partitioning
of the Iteration Time Limit�

(Competition Contribution)

Marie-Christine Jakobs��

Technical University of Darmstadt, Department of Computer Science,
Darmstadt, Germany

Abstract. Our CoVeriTest submission, which is implemented in the
analysis framework CPAchecker, uses verification techniques for automatic
test-case generation. To this end, it checks the reachability of every test
goal and generates one test case per reachable goal. Instead of checking
the reachability of every test goal individually, which is too expensive,
CoVeriTest considers all test goals at once and removes already covered
goals from future reachability queries. To deal with the diverse set of
Test-Comp tasks, CoVeriTest uses a hybrid approach that interleaves
value and predicate analysis. In contrast to Test-Comp’19, the time limit
per iteration is no longer fixed for an analysis. Instead, we fix the iteration
time limit and split it dynamically among the analyses, rewarding analyses
that previously covered more test goals per time unit.

Keywords: Test-case generation · Cooperative verification · CPAchecker

1 Test-Generation Approach

Test-case generation approaches have different strengths and weaknesses. To deal
with the diverse Test-Comp benchmark, we therefore use an hybrid approach.
More concrete, our Test-Comp’20 submission CoVeriTest combines different
verification approaches using the idea of cooperative, verifier-based testing [6].

Figure 1 shows the workflow of our CoVeriTest submission. Like in Test-
Comp’19, CoVeriTest iteratively combines a value analysis [5], which only
tracks the explicit values of those variables stored in its precision, and a predicate
analysis, which applies adjustable block encoding [4] and abstracts at loop heads
only. Both analyses use counterexample-guided abstraction refinement [8] to
adjust their precision (the set of tracked variables or the set of predicates) and
check which open test goals can be reached. Whenever one analysis reaches a test
goal, i.e., it finds a real counterexample, a test case adhering to the Test-Comp
exchange format1 is constructed from that counterexample [1] and the test goal
� This work was funded by the Hessian LOEWE initiative within the Software-Factory

4.0 project.
�� jury-member
1 https://gitlab.com/sosy-lab/software/test-format/tree/master

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 540–544, 2020.
https://doi.org/10.1007/978-3-030-45234-6_30

https://gitlab.com/sosy-lab/software/test-format/tree/master
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_30&domain=pdf

is removed from the set of open test goals. Depending on the Test-Comp’20
property, the set of test goals is initialized to the set of all __VERIFIER_error()
calls or the set of all branches.

Value
analysis [5] Test suiteTest suite

Predicate
analysis [4]

Time limit adaption

(20 s, 80 s)

Program

covered

open

Test specification

Test goals
specification ϕ specification ϕ

cove
red

goal
covered goal

test case test case

init

limitV

progress pV

limitP

progre
ss pP

Fig. 1: CoVeriTest workflow for Test-Comp’20

Like in Test-Comp’19,
both analyses resume
their exploration from the
previous round and do
not exchange any further
information. The novelty
for Test-Comp’20 is the
dynamic adjustment of
the analyses’ time limits.
To better adjust to the
program, we redistribute
the iteration time limit
among the analyses after
each iteration round.
Initially, we grant the
value analysis 20 s and the predicate analysis 80 s. Thereafter, we use the
normalized progresses pV and pP reported by the analyses to compute the new
time limits. The normalized progress is the number of test goals covered by the
analysis in the round divided by the total number of test goals. If no analysis
made progress (pV ≤ 0 and pP ≤ 0), we will reuse the time limits from the
current round. Otherwise, we adjust the limits according to Eq. 1 (i ∈ {V, P}).
Each analysis gets at least 10 s to avoid to turn it off. The remaining 80 s of the
iteration limit are redistributed according to the relative contribution of each
analysis. The relative contribution of an analysis is its progress per time limit
related to the sum of the progresses per time limit.

limitnew
i = 10 s +

pi
limiti

pV
limitV

+
pP

limitP

∗ 80 s (1)

The main differences to HybridTiger [11], which also applies cooperative, verifier-
based testing, are that HybridTiger uses multi-goal partitioning [10] and that
HybridTiger uses fixed time limits 120 s and 720 s for value and predicate analysis.

2 Tool Architecture

CoVeriTest is implemented within the Java-based software-analysis framework
CPAchecker [3], which uses the Eclipse CDT parser2 and integrates different
SMT solvers via the JavaSMT [9] interface. For Test-Comp’20, we rely on
CPAchecker’s default SMT solver MathSAT5 [7].

2 https://www.eclipse.org/cdt/

CoVeriTest with Dynamic Partitioning of the Iteration Time Limit 541

CPAchecker’s core is the configurable program analysis framework [2], which
defines the basis for the verification approaches. The framework consists of two
parts: configurable program analyses (CPAs) and the CPA algorithm. CPAs like
the value and predicate analysis used by CoVeriTest describe program analyses.
Therefore, they define the abstract domain and the analysis operators. The CPA
algorithm performs the reachability analysis for a given CPA and program.

To integrate further verification techniques, the CPA framework is enhanced
with algorithms like counterexample-guided abstraction refinement [8], the circular
algorithm, which performs a continuous iteration over a set of analyses, or the
test-case generation algorithm. To produce test cases, the test-case generation
algorithm wraps and runs another analysis, generates test cases from counter-
examples [1] returned by the wrapped analysis, updates the analysis specification
(i.e., removes covered goals), and thereafter continues the wrapped analysis.

3 Strengths and Weaknesses

CoVeriTest won the third place in the category Cover-Branches and in contrast
to Test-Comp’19, became better than KLEE in this category.

The major change of CoVeriTest from Test-Comp’19 to Test-Comp’20
is the dynamic adjustment of the iteration time limits. Thus, many strength
and weaknesses are still the same as in Test-Comp’19. CoVeriTest’s iterative
combination of predicate and value analysis helped to adapt to the diverse set
of Test-Comp tasks and its direct search of the test goals lead to few test cases.
Also, CoVeriTest has still problems with tasks that contain large arrays because
these are not supported by the underlying analyses. Furthermore, CoVeriTest
has problems with the new subcategory BusyBox-Memsafety and fails to parse
the programs in the new subcategory SQLite-MemSafety.

Now, let us discuss the effect of the adjustment of the time limits. For the
time limit adjustment, we use the progress of the analyses measured in number
of covered goals. Since there only exists one (reachable) test goal per task in
the Cover-Error category, either both analyses make no progress in an iteration
(pV ≤ 0 and pP ≤ 0) or one analysis covered the goal and CoVeriTest stops.
Thus, the time limit adjustment has no effect on the Cover-Error category.

Next, let us consider the Cover-Branches category. Our own comparison of
the CoVeriTest submissions for Test-Comp’19 and Test-Comp’20 revealed that
the time limit adjustment mainly affects tasks of the ECA subcategory. In total,
the coverage value for 320 tasks decreased and the coverage value for 591 tasks
increased. Moreover, the increase is typically significantly larger than the decrease
(on average 6.3 percent points increase compared to 1.5 percent points decrease).
Furthermore, most of the tasks with a difference in the coverage value belong to
the ECA subcategory. Therefore, the time limit adjustment pays off. Nevertheless,
CoVeriTest could still perform better on the ECA subcategory. We believe that
one problem in the ECA subcategory are redundant test goals, which lead to the
same or similar test case generated multiple times and, thus, a waste of time.

542 M.-C. Jakobs

4 Setup and Configuration

CoVeriTest is distributed as part of CPAchecker3, which requires a Java 8
runtime environment. Our Test-Comp’20 submission, with which we participated
in all categories, uses CPAchecker in revision 32236. After the environmental
setup, one can run CoVeriTest on program program.i with the following
command. The file property.prp is a placeholder for the test specification, either
coverage-error-call.prp or coverage-branches.prp.

scripts/cpa.sh -testcomp20 -benchmark -heap 10000m
-spec property.prp program.i

The command above assumes that program.i runs in a 32-bit environment.
When requiring a 64-bit environment, one needs to add the parameter -64 to the
above command. Moreover, if the machine has not enough RAM to handle the
specified Java heap memory, one can decrease the value passed with -heap.

The test suite generated during the execution of CoVeriTest is written to
the directory test-suite, which is a subdirectory within the output directory
of CPAchecker. As defined by the Test-Comp rules, the test suite contains a
metadata file and test-case files adhering to the required XML format.

5 Project and Contributors

CoVeriTest is a component of the open-source project CPAchecker 3, which is
hosted by Dirk Beyer’s group at LMU Munich under Apache 2.0. Currently, also
members of the Institute for System Programming of the Russian Academy of
Sciences, Masaryk University, and Technical University of Darmstadt contribute
to CPAchecker. We would like to thank all contributors.

References

1. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating
tests from counterexamples. In: Proc. ICSE. pp. 326–335. IEEE (2004)

2. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification:
Concretizing the convergence of model checking and program analysis. In: Proc.
CAV. pp. 504–518. LNCS 4590, Springer (2007)

3. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software
verification. In: Proc. CAV. pp. 184–190. LNCS 6806, Springer (2011)

4. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Proc. FMCAD. pp. 189–197. FMCAD (2010)

5. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR and
interpolation. In: Proc. FASE. pp. 146–162. LNCS 7793, Springer (2013)

6. Beyer, D., Jakobs, M.: CoVeriTest: Cooperative verifier-based testing. In: Proc.
FASE. pp. 389–408. LNCS 11424, Springer (2019)

3 https://cpachecker.sosy-lab.org

CoVeriTest with Dynamic Partitioning of the Iteration Time Limit 543

7. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Proc. TACAS. pp. 93–107. LNCS 7795, Springer (2013)

8. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

9. Karpenkov, E.G., Friedberger, K., Beyer, D.: JavaSMT: A unified interface for
SMT solvers in Java. In: Proc. VSTTE. pp. 139–148. LNCS 9971, Springer (2016)

10. Ruland, S., Lochau, M., Fehse, O., Schürr, A.: Configurable test-goal set partitioning
for multi-goal test-suite generation. STTT Competitions and Challenges Track -
Test-Comp 2019 To appear

11. Ruland, S., Lochau, M., Jakobs, M.C.: HybridTiger: Hybrid model checking and
domination-based partitioning for efficient multi-goal test-suite generation (compe-
tition contribution). In: Proc. FASE. LNCS, Springer (2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

544 M.-C. Jakobs

Legion: Best-First Concolic Testing
(Competition Contribution)

Dongge Liu�1, Gidon Ernst��2, Toby Murray1, and Benjamin I.P. Rubinstein1

1 University of Melbourne, Australia
donggel@student.unimelb.edu.au

2 LMU Munich, Germany
gidon.ernst@lmu.de

Abstract. Legion is a grey-box coverage-based concolic tool that aims
to balance the complementary nature of fuzzing and symbolic execution
to achieve the best of both worlds. It proposes a variation of Monte Carlo
tree search (MCTS) that formulates program exploration as sequential
decision-making under uncertainty guided by the best-first search strat-
egy. It relies on approximate path-preserving fuzzing, a novel instance of
constrained random testing, which quickly generates many diverse inputs
that likely target program parts of interest. In Test-Comp 2020 [1], the
prototype performed within 90% of the best score in 9 of 22 categories.

Keywords: Symbolic Execution, Fuzzing, Monte Carlo Search

1 Test-Generation Approach

Coverage testing aims to traverse all execution paths of the program under test
to verify its correctness. Two traditional techniques for this task, symbolic exe-
cution [6] and fuzzing [7] are complementary in nature [5].

Consider exploring the program Ackermann02 in Fig. 1 from the Test-Comp
benchmarks as an example. Symbolic execution can compute inputs to penetrate
the choke point (line 10) to reach the “rare branch” (lines 14/15), but then
becomes unnecessarily expensive in solving the exponentially growing constraints
from repeatedly unfolding the recursive function ackermann. By comparison, even
though very few random fuzzer-generated inputs pass the choke point, the high
speed of fuzzing means the “rare branch” will be quickly reached.

The following research question arises when exploring the program space in
a conditional branch: Will it be more efficient to focus on the space under the
constraint, or to flood both branches with unconstrained inputs, to target the
internals of log(m,n) in line 11 at the same time?

Legion3 introduces MCTS-guided program exploration as a principled an-
swer to this question, tailored to each program under test. For a program like
� This research was supported by Data61 under the Defence Science and Technology

Group’s Next Generation Technologies Program.
�� Jury Member
3 The name Legion comes from the Marvel fictional character who changes personal-

ities for different needs, to reflect the strategy adaption depending on the program.

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 545–549, 2020.
https://doi.org/10.1007/978-3-030-45234-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_31&domain=pdf

1 int ackermann(int m, int n) {
2 if (m==0) return n+1;
3 if (n==0) return ackermann(m-1,1);
4 return ackermann(m-1,ackermann(m,n-1));
5 }
6
7 void main() {
8 int m = input(), n = input();
9 // choke point

10 if (m < 0 || m > 3) || (n < 0 || n > 23) {
11 log(n,m); // common branch
12 return;
13 } else {
14 int r = ackermann(m,n); // rare branch
15 assert(m < 2 || r >= 4);
16 }
17 }

Fig. 1: Ackermann02.c

Program entry state

Program path
selected for fuzzing

...
......

Unknown paths

Observed paths
...

...

Score: estimate the likelihood of finding new paths

A
co

nc
re

te
ex

ec
ut

io
n

tr
ac

e

Fig. 2: MCTS-guided fuzzing in Legion

Fig. 2, Legion estimates the expectation of finding new paths by the UCT score
(upper confidence bound for trees), a successful approach for games [3], aiming
to balance exploration of program space (where success is still uncertain) against
exploitation of partial results (that appear promising already). Code behind rare
branches is targeted by approximate path-preserving fuzzing to efficiently gener-
ate diverse inputs for a specific sub-part of the program.

Legion’s MCTS iteratively explores a tree-structured search space, whose
nodes represent partial execution paths. On each iteration, Legion selects a
target node by recursively descending from the root along the highest scoring
child, stopping when a parent’s score exceeds its childrens’. A node’s score is
based on the ratio of the number of distinct vs. all paths observed passing through
it, but nodes selected less often in the past are more likely to be chosen. Then,
approximate path-preserving fuzzing is applied to explore the target node. The
resulting execution traces are recorded and integrated into the tree.

Approximate path-preserving fuzzing (APPF) quickly generates inputs that
likely follow the target program path, and therefore is crucial for Legion’s ef-
ficiency. Legion’s APPF implementation extends the QuickSampler [4] tech-
nique, which is a recent mutation-based algorithm that expands a small set of
constraint solutions to a larger suite of likely solutions. Legion extends Quick-
Sampler from propositional logic to bitvector path constraints.

2 Tool Description & Configuration

We implemented Legion as a prototype in Python3 on top of the symbolic
execution engine angr [8]. We have extended its solver backend, claripy, by
the approximate path-preserving fuzzing algorithm, relying on the optimizer
component of Z3 [2]. Binaries are instrumented to record execution traces.

Installation. Download and unpack the competition archive (commit b2fc8430):
https://gitlab.com/sosy-lab/test-comp/archives-2020/blob/master/2020/legion.zip

Legion requires Python3 with python-setuptools installed, and gcc-multilib

for the compilation of C sources. Necessary libraries compiled for Ubuntu 18.04

546 D. Liu et al.

are included in the subfolder lib (modified versions of angr, claripy and their
dependencies). The archive contains the main executable, Legion.py, and a
wrapper script, legion-sv that includes lib into PYTHONPATH. The version tag
is 0.1-testcomp2020, options can be shown with python3 ./Legion.py --help.
Configuration. In the competition, we ran ./legion-sv with these parameters:

--save-tests save test cases as xml files in Test-Comp format
--persistent keep running when no more symbolic solutions are found

(mitigates issue with dynamic memory allocations)
--time-penalty 0 do not penalise a node for expensive constraint-solving

(experimental feature, not yet evaluated)
--random-seed 0 fix the random seed for deterministic result
--symex-timeout 10 limit symbolic execution and constraint solving to 10s
--conex-timeout 10 limit concrete binary execution to 10s

In the category cover-branches, we additionally use this flag:
--coverage-only don’t stop when finding an error

Finally, -32 and -64 indicate whether to use 32 or 64 bits (this affects binary
compilation and the sizes for nondeterministic values of types int, . . .).

Participation. Legion participates in all categories of Test-Comp 2020.
Software Project and Contributors. Legion is principally developed by
Dongge Liu, with technical and conceptual contributions by all authors of this
paper. Legion will be made available at https://github.com/Alan32Liu/Legion.

3 Discussion

Legion is competitive in many categories of Test-Comp 2020, achieving within 90%
of the best score in 2 of 9 error categories and 7 of 13 coverage categories.

1 void main() {
2 int N=100000, a1[N], a2[N], a3[N], i;
3 for (i=0; i<N; i++)
4 a1[i] = input(); a2[i] = input();
5 for(i=0; i<N; i++) a3[i] = a1[i];
6 for(i=0; i<N; i++) a3[i] = a2[i];
7 for(i=0; i<N; i++) assert(a1[i] == a3[i]);
8 }

Fig. 3: standard_copy2_ground-1.c

Legion’s instrumentation and explo-
ration algorithm can accurately model
the program. Consider the benchmark
standard_copy2_ground-1.c in Fig. 3.
With a single symbolic execution through
the entire program over a trace found
via initial random inputs, Legion under-
stands that all guards of the for loops can

only evaluate in one way, and so omits them from the selection phase. It does
discover that the assertion inside the last loop contributes interesting decisions,
however, and will come up with two different ways to evaluate the comparison
a1[i] == a3[i], one of which triggers the error. With such an accurate model in
combination with its principled MCTS search strategy, Legion is particularly
good at covering corner cases in deep loops: All other tools failed to score full
marks in standard_copy*_ground-*.c benchmarks, but Legion succeeded in 9
out of 18. We can furthermore solve benchmarks where pure constraint solving
fails, e.g., when the solver times out on hard constraints of complex paths we
label the respective branches for pure random exploration.

Legion: Best-First Concolic Testing (Competition Contribution) 547

While instrumentation provides accurate information on the program, its
currently naive implementation significantly slows down the concrete execution
of programs with long execution traces. We mitigate this weakness by setting a
time limit on the concrete executions. As a consequence, inputs that correspond
to long concrete execution are not saved. In the future, we plan to explore Intel’s
PIN tool, which offloads binary tracing into the CPU with negligible overhead.

Legion inherits some limitations from angr as a symbolic execution back-
end. Some benchmarks, such as array-tiling/mbpr5.c, dynamically allocate
memory with a symbolic size that depends on the input. angr eagerly con-
cretises this value, producing unsatisfiable path constraints for a feasible ex-
ecution path. Legion detects this inconsistency as soon as it encounters the
feasible path and omits the erroneous node from selection. This helps e.g. on
bubblesort-alloca-1.c where Legion achieved full coverage (in contrast to most
other participants) despite the dynamic allocations.

Legion performed poorly on benchmark sets bitvector and ssh-simplified.
These programs have long sequences of equality constraint that are hard to
satisfy with fuzzing. This happens to be an extreme example of the parent-
child trade-off that Legion intends to balance where fuzzing the parent gives
nearly no reward. This could potentially be mitigated by decreasing Legion’s
exploration ratio in the UCT score, but we have not attempted such fine-tuning.

Another problem is allocations when loop counters or array sizes are ran-
domly chosen very large in 64 bit mode, leading to excessively long concrete
execution traces that cause timeouts or memory exhaustion. We plan to period-
ically prune the in-memory representation of the tree in the future.

References

1. Beyer, D.: Second competition on software testing: Test-comp 2020. In: Proc.
of Fundamental Aspects of Software Engineering (FASE). LNCS, Springer
(2020), https://www.sosy-lab.org/research/pub/2020-FASE.Second_Competition_on_
Software_Testing_Test-Comp_2020.pdf

2. Bjørner, N., Phan, A.D., Fleckenstein, L.: νZ-an optimizing SMT solver. In: Proc.
of Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
LNCS, vol. 9035, pp. 194–199. Springer (2015). https://doi.org/10.1007/978-3-662-
46681-0_14

3. Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen,
P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of monte carlo tree
search methods. IEEE Transactions on Computational Intelligence and AI in Games
4(1), 1–43 (2012). https://doi.org/10.1109/TCIAIG.2012.2186810

4. Dutra, R., Laeufer, K., Bachrach, J., Sen, K.: Efficient sampling of SAT solutions for
testing. In: Proc. of the International Conference on Software Engineering (ICSE).
pp. 549–559. ACM (2018). https://doi.org/10.1145/3180155.3180248

5. Godefroid, P., Levin, M.Y., Molnar, D.A., et al.: Automated whitebox fuzz testing.
In: Proc. of Network and Distributed Systems Security (NDSS). vol. 8, pp. 151–166.
The Internet Society (2008)

6. King, J.C.: Symbolic execution and program testing. Communications of the ACM
19(7), 385–394 (1976). https://doi.org/10.1145/360248.360252

548 D. Liu et al.

7. Takanen, A., Demott, J.D., Miller, C., Kettunen, A.: Fuzzing for software security
testing and quality assurance. Artech House (2018)

8. Wang, F., Shoshitaishvili, Y.: Angr - the next generation of binary analy-
sis. In: Proc. of Cybersecurity Development (SecDev). pp. 8–9. IEEE (2017).
https://doi.org/10.1109/SecDev.2017.14

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

Legion: Best-First Concolic Testing (Competition Contribution) 549

Author Index

Anjorin, Anthony 315

Babikian, Aren A. 441
Bagheri, Hamid 29
Bagherzadeh, Mehdi 97
Bernasconi, Anna 53
Beyer, Dirk 505

Calinescu, Radu 357
Clun, Donato 3
Cordeiro, Lucas C. 525
Cordy, Maxime 294
Cortellessa, Vittorio 357

De Castro, Valeria 266
de Lara, Juan 161
de Vink, Erik P. 245
Debois, Søren 378
Diamantopoulos, Themistoklis 119
Dimovski, Aleksandar S. 182
Drossopoulou, Sophia 420

Eisenbach, Susan 420
Ernst, Gidon 545

Filieri, Antonio 3
Finke, Jorge 400

Gadelha, Mikhail R. 525
Gall, Pascale Le 482
Gaston, Christophe 482
Godboley, Sangharatna 530
Gómez, Cristian 266
Guerra, Esther 161

Ha, Xuan-Linh 530
Hildebrandt, Thomas T. 378

Jaffar, Joxan 530
Jakobs, Marie-Christine 520, 540
Janssen, Ramon 462
Jatzkowski, Inga 203
Jiao, Jiao 75
Johnsen, Einar Broch 140

Kehrer, Timo 224
Khatchadourian, Raffi 97
Knüppel, Alexander 203
König, Harald 335
Kosiol, Jens 224

Lamo, Yngve 335
Le, Hoang M. 535
Legay, Axel 182, 294
Lin, Shang-Wei 75
Liu, Dongge 545
Lochau, Malte 520
López, Hugo A. 378

Mackay, Julian 420
Maghareh, Rasool 530
Mahe, Erwan 482
Marcos, Esperanza 266
Menezes, Rafael 525
Menghi, Claudio 53
Monteiro, Felipe R. 525
Murray, Toby 545

Nassar, Nebras 224
Navarro, Marisa 273
Nicole, Denis 525
Noble, James 420
Nolte, Marcus 203

Oikonomou, Nikolaos 119
Orejas, Fernando 273

Papadakis, Mike 294
Pérez-Blanco, Francisco J. 266
Pino, Elvira 273
Pinzón, Carlos 400

Ray, Baishakhi 97
Rizzi, Alessandro Maria 53
Rocha, Camilo 400
Rothermel, Gregg 29
Rubinstein, Benjamin I. P. 545

Ruland, Sebastian 520
Runge, Tobias 203
Rutle, Adrian 335

Schaefer, Ina 203
Schlatte, Rudolf 140
Semeráth, Oszkár 441
Slaats, Tijs 378
Stefanakos, Ioannis 357
Stünkel, Patrick 335
Sun, Jun 75
Symeonidis, Andreas 119

Taentzer, Gabriele 224
Tang, Yiming 97
ter Beek, Maurice H. 245

Thüm, Thomas 203
Trubiani, Catia 357
Tveito, Lars 140

van Heerden, Phillip 3
van Loo, Sjef 245
Vara, Juan M. 266
Varró, Dániel 441
Visser, Willem 3

Wang, Jianghao 29
Weidmann, Nils 315
Willemse, Tim A. C. 245

Zheng, Guolong 29

552 Author Index

	ETAPS Foreword
	Preface
	Organization
	Contents
	Part 1 Invited Talk
	1 Improving symbolic automata learningwith concolic execution
	1 Introduction
	2 Preliminaries
	2.1 Symbolic finite state automata
	2.2 Active learning and minimally adequate teachers
	2.3 Concolic execution
	2.4 From path conditions to SFA

	3 Active learning for SFA
	3.1 Learning using observation tables
	3.2 Learning using discrimination trees

	4 Active learning with concolic execution
	5 Experimental evaluation
	6 Related work
	7 Conclusions
	References

	Part 2 FASE Contributions
	2 Platinum: Reusing Constraint Solutions in BoundedAnalysis of Relational Logic
	1 Introduction
	2 Illustrative Example
	3 Approach
	3.1 Slicing
	3.2 Canonicalization
	3.3 Storing and Reuse

	4 Empirical Study
	4.1 Objects of Analysis
	4.2 Variables and Measures
	4.3 Study Operation
	4.4 Threats to Validity
	4.5 Results for RQ1 (Small Changes
	4.6 Results for RQ2(Successive Changes)
	4.7 Results for RQ3 (Scope Changes)
	4.8 Results for RQ4 (Overhead)
	4.9 Results for RQ5 (Real-World Specifications)

	5 Related Work
	6 Conclusions
	Acknowledgment
	References

	3 Integrating Topological Proofs with ModelChecking to Instrument Iterative Design
	1 Introduction
	2 TOrPEDO
	3 Background
	4 Revising models
	5 TOrPEDO automated support
	6 Evaluation
	7 Related work
	8 Conclusions
	References

	4 A Generalized Formal Semantic Framework forSmart Contracts
	1 Introduction
	2 Preliminaries
	2.1 Smart Contracts
	2.2 The K-framework

	3 A General Semantic Model
	3.1 Syntax
	3.2 Configuration
	3.3 Semantics of the Core Features

	4 Direct Semantics Generation
	5 Evaluation
	6 Conclusion
	References

	5 An Empirical Study on the Use and Misuse ofJava 8 Streams
	1 Introduction
	2 Motivating Example and Conceptual Background
	3 Study Subjects
	4 Stream Characteristics
	4.1 Methodology
	4.2 Results
	4.3 Discussion

	5 Stream Usage
	6 Stream Misuses
	7 Threats to Validity
	8 Related Work
	9 Conclusion & Future Work
	References

	6 Extracting Semantics from Question-AnsweringServices for Snippet Reuse
	1 Introduction
	2 Related Work
	3 StackSearch: A Semantic-aware Snippet Recommender
	4 Evaluation
	5 Conclusion
	Acknowledgements
	References

	7 Global Reproducibility through Local Controlfor Distributed Active Objects
	1 Introduction
	2 Motivating Example
	3 A Formal Model of Reproducibility
	4 Global Reproducibility with Local Traces
	5 Extensions for Richer Active Object Languages
	6 Implementing Record & Replay for Real-Time ABS
	7 Related Work
	8 Conclusion and Future Work
	References

	8 Multi-level Model Product LinesOpen and closed variability for modelling language families
	1 Introduction
	2 Multi-level modelling: intuition and challenges
	3 A formal foundation for multi-level modelling
	4 Multi-level model product lines
	5 Tool support
	6 Related work
	7 Conclusions and future work
	Appendix
	References

	9 Computing Program Reliability usingForward-Backward Precondition Analysis andModel Counting
	1 Introduction
	2 Motivating Examples
	3 Forward-Backward Precondition Analyses
	4 Computing Success and Failure Probabilities
	5 Extension to non-deterministic programs
	6 Implementation
	References

	10 Skill-Based Verification ofCyber-Physical Systems
	1 Introduction
	2 Background on Hybrid-System Modeling
	3 A Formalization for Skill-Based M
	4 Compositional Verification of Skill Graphs
	5 Evaluation and Discussion
	6 Related Work
	7 Conclusion and Future Work
	References

	11 Generating Large EMF Models EfficientlyA Rule-Based, Configurable Approach�
	1 Introduction
	2 Related Work
	3 Running Example and Preliminaries
	4 Rule-Based Instance Generation
	5 Tooling
	6 Evaluation
	7 Conclusion and Future Work
	References

	12 Family-Based SPL Model Checking Using Parity Games with Variability
	1 Introduction
	2 Preliminaries
	3 Software Product Lines Model Checking
	4 Variability Parity Games and SPL Model Checking
	5 Recursively Solving Variability Parity Games
	6 Implementation and Experiments
	7 Conclusions
	References

	13 Model-based tool support for Service Design
	1 Motivation
	2 Technological Solution
	3 Related Works
	4 Acknowledgement
	References

	14 Incremental Concurrent Model Synchronization using Triple Graph Grammars�
	1 Introduction
	2 Preliminaries
	3 Synchronizing Solutions for Concurrent Updates
	4 An Incremental Procedure CSynch
	5 Related Work
	6 Conclusion
	References

	15 Statistical Model Checking for Variability-Intensive Systems
	1 Introduction
	2 Background on Model Checking
	3 Family-Based Statistical Model Checking
	4 Empirical Study
	5 Results
	6 Conclusion
	References

	16 Schema Compliant Consistency Management via Triple Graph Grammars and Integer Linear Programming ∗
	1 Introduction
	2 Running Example
	3 Main Ideas
	4 Related Work
	5 Preliminary Definitions
	6 Correctness and Completeness
	7 Implementation and Experimental Evaluation
	8 Extension to Other Operations
	9 Conclusion and Future Work
	Acknowledgements
	References

	17 Towards Multiple Model Synchronization with Comprehensive Systems
	1 Introduction
	2 Preliminaries: Multimodelling
	3 Use Case
	4 State of the Art
	5 Comprehensive Systems
	6 Categorical Formalization
	7 Conclusion, Related Work and Future Plans
	References

	18 Analysis and Refactoring of Software Systems Using Performance Antipattern Profiles�
	1 Introduction
	2 Running Example
	3 Approach
	4 Evaluation
	5 Related Work
	6 Conclusion
	6 Conclusion
	References

	19 Business Process Compliance using Reference Models of Law
	1 Introduction
	2 Regulatory Compliance Framework
	3 DCR Graphs
	4 Compliance Rules
	5 Compliance Checking by Refinement
	6 Adoption considerations
	7 Related Work
	8 Concluding Remarks
	References

	20 Algorithmic Analysis of Blockchain Efficiency with Communication Delay
	1 Introduction
	2 An Overview of Proof-of-work Blockchains
	3 A Random Network Model for Blockchains
	4 Algorithmic Analysis of Blockchain Efficiency
	5 Empirical Evaluation of Blockchain Efficiency
	6 Related Work and Concluding Remarks
	References

	21 Holistic Specifications for Robust Programs
	1 Introduction
	2 Motivating Example: The Bank
	3 Chainmail Overview
	4 Overview of the Formal foundations
	5 Assertions
	6 Examplar Driven Design
	7 Related Work
	8 Conclusions
	9 Acknowledgments
	References

	22 Automated Generation of Consistent Graph Models with First-Order Logic Theorem Provers
	1 Introduction
	2 Preliminaries
	3 Overview of the Approach
	4 From Domain-Specific Languages to First-Order Logic
	5 Evaluation
	6 Related work
	7 Conclusion and Future Work
	References

	23 Combining Partial Specifications using Alternating Interface Automata�
	1 Introduction
	2 Preliminaries
	3 Alternating Interface Automata
	4 Testing Input-Failure Refinement
	5 Conclusion and Future Work
	References

	24 Revisiting Semantics of Interactions for Trace Validity Analysis
	1 Introduction
	2 Interaction language and denotational semantics
	3 Operational Semantics
	4 Back-to-back comparison of both semantics
	5 Trace analysis
	6 Related work
	7 Conclusion
	References

	Part 3 Test-Comp Contributions
	25 Second Competition on Software Testing: Test-Comp 2020
	1 Introduction
	2 Definitions, Formats, and Rules
	3 Categories and Scoring Schema
	4 Reproducibility
	5 Results and Discussion
	6 Conclusion
	References

	26 HybridTiger: Hybrid Model Checking and Domination-based Partitioning for Efficient Multi-Goal Test-Suite Generation (Competition Contribution)
	1 Software Architecture
	2 Test-Generation Approach
	3 Strengths and Weaknesses
	4 Setup and Configuration
	5 Project and Contributors
	References

	27 ESBMC: Scalable and Precise Test Generation based on the Floating-Point Theory (Competition Contribution)
	1 Test Generation Approach
	2 Strengths and Weaknesses
	3 Tool Setup and Configuration
	4 Software Project
	References

	28 TracerX: Dynamic Symbolic Execution with Interpolation (Competition Contribution)
	1 Overview and Software Architecture
	2 Discussion on Strengths and Weaknesses
	3 Tool Setup and Configuration
	4 Software Project and Contributors
	References

	29 LLVM-based Hybrid Fuzzing with LibKluzzer (Competition Contribution)
	1 Test Generation Approach
	2 Software Architecture
	3 Strengths and Weaknesses
	4 Tool Setup and Configuration
	5 Software Project and Contributors
	References

	30 CoVeriTest with Dynamic Partitioning of the Iteration Time Limit* (Competition Contribution)
	1 Test-Generation Approach
	2 Tool Architecture
	3 Strengths and Weaknesses
	4 Setup and Configuration
	5 Project and Contributors
	References

	31 Legion: Best-First Concolic Testing (Competition Contribution)
	1 Test-Generation Approach
	2 Tool Description & Configuration
	3 Discussion
	References

	Author Index

