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Preface

This book presents an overview of some geospatial analyses carried out by using 
Earth Observation (EO) data and terrestrial measurement campaigns. The chapters 
cover different aspects related to: (1) the monitoring and investigation of lands and 
subsurface, (2) the study of atmospheric processes, (3) the investigation of water 
colour as revealed from satellites, (4) the physical characteristics of an ancient 
meteorite that impacted on Earth, and (5) the study of spatial coordinate trans-
formations to correctly represent geospatial data in georeferenced systems in the 
presence of noise.

Chapter 1 addresses the problem of detecting the landscape topography of areas 
on Earth and its potential modifications over the time. Detecting Earth’s surface 
topography is also important for mapping spatial patterns of soil properties. The 
chapter provides an overview of the impacts of topographic heterogeneity on 
the spatial variability in soil properties and presents topography-based models 
commonly used in soil science. A large-scale soil property map is obtained based 
on topographic information derived from high-resolution remotely sensed data. 
The authors show how Remote Sensing (RS) technology enables to obtain valuable 
information, and this is particularly important in areas with limited data accesses 
or when it is needed to extrapolate findings from representative sites to larger 
regions.

Chapter 2 discusses methods for mapping subsurface clay minerals, which is an 
important issue in terms of mechanics and hydrology. As a matter of fact, clayed 
soils have a direct impact on ground stability as well as constrain infiltration pro-
cesses during flooding. The main goal of detecting and characterizing clay minerals 
in soils is to serve urban planning issues and improve risk reduction by predicting 
impacts of subsidence on houses and infrastructures. Some recent results are shown 
in Chapter 2 to characterize clay species and their abundances from spectrometry, 
used either from a ground spectrometer or from hyper-spectral cameras. The 
most performing methodology is identified after adequate pre-processing algo-
rithms, coupled with un-mixing methods evaluated from laboratory and real case 
measurements.

Chapter 3 shows the land use and land cover (LULC) changes over a 26-year period 
in the middle Shire River catchment, Malawi, Southern Africa, as assessed by 
using Geographical Information Systems (GIS) and RS techniques. High rate of 
deforestation averaging 4.3% per annum was observed. Rapid population growth 
and increase in gross domestic product (GDP) were identified as the major drivers 
of deforestation and forest degradation due to clearing of vast fields for agriculture, 
land expansion for urban settlement, and cutting down of trees for wood fuel 
energy. Combined techniques such as GIS, RS, and socio-economic factors are 
used. The authors of this investigation provide a clear indication on the potential 
extension of the proposed methods to other places on Earth where similar chal-
lenges occur.
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XIV

Chapter 4 provides readers with a study on bio-aerosols in the environment. 
The dynamics and, therefore, the effects on atmospheric processes and the bio-
sphere are often underestimated, or have not yet been sufficiently investigated. 
Atmospheric models such as FLEXPART and HYSPLIT enable researchers to 
simulate the transport of particles in the atmosphere and provide information 
on where air-parcels come from. The chapter shows two methods for combining 
results of these models with spatial information (e.g., about the vegetation). The 
former method shows how spatial CORINE land cover distribution can be analysed 
within the boundaries of HYSPLIT trajectories. The latter proposes FLEXPART 
simulations that are used in combination with COSMO rain data and tree maps to 
generate maps that indicate the potential origin of bio-aerosols for selected periods 
of time.

Chapter 5 addresses RS techniques of water. In particular, it focuses on the monitor-
ing of lakes, which represent inestimable renewable natural resources that are under 
significant pressure by human activities. RS by satellite sensors offers a significant 
opportunity to increase the spatial-temporal coverage of environmental monitor-
ing programs for inland waters. Water colour is a water quality attribute that can 
be remotely sensed and is independent of the sensor specifications and water type. 
The authors of this investigation used the Multispectral Imager on two Sentinel-2 
satellites to determine the water colour of 170 Italian lakes during two periods in 
2017. As a result, they found most of the lakes appeared blue in spring and green-
yellow in late summer and, in particular, they confirmed a blue-water status of the 
largest lakes in the subalpine eco-region. They also suggest that information about 
the colour of the lakes can significantly contribute to the synoptic assessments of 
the trophic status of lakes.

Chapter 6 analyses the hidden signs of the Bacubirito meteorite impact in Mexico 
over the areas of its crater. The Bacubirito meteorite is the largest meteorite found 
in Mexico, the second largest in the Americas, and the fifth largest in the world. It 
was found in 1863 by the geologist Gilbert Ellis Bailey in the village of Ranchito. It is 
an iron meteorite weighing between 20 and 22 tonnes; it measures 4.25 meters long, 
2 meters wide, and 1.75 meters high. Although largely forgotten by the scientific 
community after its excavation in 1902, it remains an incredible artifact that has 
inspired generations of Mexican scientists. Using the Monte Carlo method, an 
innovative geometrical model and scanner, the authors calculate the precise dimen-
sions and mass (21 tons) of the Bacubirito meteorite’s complex structure and provid 
additional insights into the measurement campaigns and the importance of the 
meteorite for the cultural heritage of Mexico.

Chapter 7 provides some theoretical insights on the geospatial coordinate trans-
formation to correctly represent geodetic data in noisy environments. The chapter 
explains the drawbacks of the commonly used approaches and then presents an 
alternative scheme for spatial coordinate transformations that improves the classic 
stepwise solution when using noisy coordinates of known stochastic structure. The 
proposed methodology relies on the joint least squares adjustment of the observed 
coordinates using their full stochastic model over all points of interest. The math-
ematical framework and the related properties of this “stacking” approach are 
presented in detail, along with a numerical example that demonstrates its feasibility 
for practical problems in geospatial applications.

V

This book has been made possible by the great work done by the authors and the
professional assistance of Publishing Process Manager, Ms. Sara Bacvarova, during 
all phases of editing.
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Chapter 1

Application of Topographic
Analyses for Mapping Spatial
Patterns of Soil Properties
Xia Li and Gregory W. McCarty

Abstract

Landscape topography is a key parameter impacting soil properties on the earth
surface. Strong topographic controls on soil morphological, chemical, and physical
properties have been reported. This chapter addressed applications of topographical
information for mapping spatial patterns of soil properties in recent years. Objec-
tives of this chapter are to provide an overview of (1) impacts of topographic
heterogeneity on the spatial variability in soil properties and (2) commonly used
topography-based models in soil science. A case study was provided to demonstrate
the feasibility of applying topography-based models developed in field sites to
predict soil property over a watershed scale. A large-scale soil property map can be
obtained based on topographic information derived from high-resolution remotely
sensed data, which would benefit studies in areas with limited data accesses or
needed to extrapolate findings from representative sites to larger regions.

Keywords: DTM-based model, high-resolution remotely sensed data, soil carbon,
principal component analysis, factor analysis

1. Introduction

Landscape topography is a key parameter influencing biogeochemical processes
that occur in the near-surface layer of the earth [1]. In particular, the topography
plays an important role in soil formation through regulating soil hydrological
regimes and controlling the gravity-driven soil movements [2–6].

Quantitative and qualitative topographic information is essential in understand-
ing the heterogeneity of soil chemistry and physics. Before the 1990s, geographic
maps were the main source to quantify landscape topography in soil science [7].
Topographic variables, such as slope and plan and profile curvatures, were calcu-
lated manually from these maps to investigate their relationships with soil proper-
ties and to generate soil maps [8–10].

Along with the development in computer, aerial, space, and geographic tech-
nologies, the availability of high-resolution digital elevation models (DEMs) intro-
duces a new technique in deriving digital terrain models (DTMs) and has been the
main source for topographic information extraction in soil biogeochemical studies
since the 1990s [7]. A DEM is a digital representation of the terrain surface elevation
referenced to a vertical datum. A DTM is an enhanced DEM that has been
augmented with breaklines and other observations to describe the land surface
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geometry [1, 11, 12]. The application of DTMs enables effectively reconstruct topo-
graphic landscape over a large scale. Recently, there are two main applications of
DTMs in soil science. One is analyses of topographic influences on soil formation
and movement, which would be introduced in Section 2. The other is modeling of
relations between soil properties and topography and using the results to predict
soil properties, which would be discussed in Section 3.

The objective of this chapter is to provide an overview of how topographic
heterogeneity causes the spatial variability in soil properties. This chapter starts
with an introduction of DTMs applications, which is then followed by reviews of
investigations on topographic impacts on soil formation and movements and
modeling of soil morphological, chemical, physical properties based on DTMs. The
last section presents a case study of DTM-based analysis on how land topography
affects soil carbon (C) dynamics.

2. Impacts of topography on soil properties

DTMs are functions of morphometric variables that digitally represent the
geometry of the land surface. Various techniques have been developed to generate
different DTMs such as topographic metrics of slope, aspect, and curvature. Fifteen
topographic metrics that have been reported to be highly correlated with soil prop-
erties, including slope gradient, slope aspect, profile curvature, plan curvature,
general curvature, flow accumulation, topographic relief, topographic openness,
upslope slope, flow path length, downslope index, catchment area, topographic
wetness index, stream power index, and slope length factor, are introduced in this
section (Table 1). Based on the spatial scope, the topographic metrics can be
grouped into three main categories [7]:

1. Local topographic metrics: variables describe the surface geometry at a given
point on the land surface. Slope gradient, slope aspect, and curvature related
(plan, general and profile curvatures) metrics belong to this category.

2.Nonlocal topographic metrics: variables consider relative positions of a selected
point, including catchment area, upslope slope, downslope index, flow path
length, flow accumulation, topographic relief, and topographic openness.

3.Combined topographic metrics: variables integrate local and nonlocal
topographic metrics considering both local surface geometry and relative
positions of a point on the land surface. This group of metrics includes
topographic wetness index, stream power index, and slope length factor.

These nonlocal and combined topographic metrics often reflect important phys-
ics involved in water and soil mass transfer processes considered to have important
impacts on soil property patterns.

2.1 Local topographic metrics

Slope gradient indicates the steepness of a line which directly influences the
velocity of a gravity-driven flow [2]. For example, a steep area drains quickly and
retains less soil than a flat area [4, 13]. Therefore, negative soil redistribution rates
with high erosion possibilities are often observed in steep areas. The erosion pro-
cesses tend to remove fine particles which are usually enriched in soil organic
carbon (SOC), leading to low SOC content in a steep area [4, 14]. Meanwhile, the
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slope gradient can impact soil water content [2, 7]. For relatively flat areas, soil
water content commonly decreases with slope gradient due to increased lateral flow
and depositional crusts that decrease infiltration; while as slope steepens, rills may
occur that can disrupt the crusts and favor greater infiltration, and therefore lead to
a positive relationship between soil water content and slope gradient [15–18].

Slope aspect shows the direction that a slope faces. This metric influences soil-
water balance by affecting insolation and evapotranspiration [19]. Soil temperature
and evapotranspiration tend to be lower, and soil water content tends to be higher
in shady aspect areas. These environmental conditions can be favorable for slow
decompositions of organic matter and high accumulations of soil C and nitrogen
(N) content [20–22]. Soil water content impacted by slope aspect can further

Variables Definition and formula

Slope gradient, G (radian) An angular measure of the relation between a tangent plane and a
horizontal plane

G ¼ arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p

Slope aspect, A (radian) Direction of slope measured clockwise with north as 0

A ¼ arctan q
p

� �

Profile curvature, P_Cur (1/m) Slope change rates in the vertical plane

P_Cur ¼ � p2rþ2pqsþp2t

p2þq2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þp2þq2

p

Plan curvature, Pl_Cur (1/m) Curvature in a horizontal plane

Pl_Cur ¼ � q2r�2pqsþq2t

p2þq2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þp2þq2

p

General curvature, G_Cur (1/m) Curvature of the surface itself
G_Cur ¼ �2 r þ tð Þ

Catchment area, CA (m2) Upslope area contributing runoff to a given point on the land
surface

Upslope slope, Upsl (radian) Mean slope of upslope area

Downslope index, DI (radian) Head differences along a flow path
DI ¼ arctan h Ld= Þ�

Flow path length, FPL (m) Maximum distance of water flow to a location in the catchment

Flow accumulation, FA (m2) Land area that contributes surface water to an area in which water
accumulates
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Angular measure describing the relationship between surface relief
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SPI ¼ CAs Pl_Curð Þ tan Gð Þ

Slope length factor, LS Distance from flow origin to a point where deposition begins
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Ld is the horizontal distance to a point with an hmeter elevation below the starting cell. CAs is specific catchment area.
p, q, r, t, and s are partial derivatives of elevation (h), h ¼ f x; yð Þ:
p ¼ δh

δx q ¼ δh
δy r ¼ δ2h

δx2 t ¼ δ2h
δy2 s ¼ δ2h
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Table 1.
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geometry [1, 11, 12]. The application of DTMs enables effectively reconstruct topo-
graphic landscape over a large scale. Recently, there are two main applications of
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and movement, which would be introduced in Section 2. The other is modeling of
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soil properties, which would be discussed in Section 3.

The objective of this chapter is to provide an overview of how topographic
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with an introduction of DTMs applications, which is then followed by reviews of
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influence vegetation density, which may have impacts on runoff velocities and soil
erosion rates [23].

Profile, plan, and general curvatures are important topographic factors control-
ling patterns of overland flow and soil water content. Profile curvature shows
upwardly concave with positive values and upwardly convex with negative values
(Figure 1a). This variable affects flow acceleration and deceleration and therefore
influences soil redistribution and distribution patterns of SOC content [24–26]. A
positive plan curvature value indicates a laterally convex surface and a negative
value indicates a laterally concave surface [24] (Figure 1b). Water accumulates and
soil water content decrease when flow diverges (positive plan curvature) and
increase when flow converges (negative plan curvature) [7]. General curvature is
the curvature of the land surface and describes peaks with positive values and
valleys with negative values. This metric enables more accurate estimation of over-
land flow paths than plan and profile curvatures, and can significantly correlate
with patterns of soil erosion and deposition [4, 27].

2.2 Nonlocal topographic metrics

Catchment area and slope related nonlocal topographic metrics (upslope slope
and downslope index) affect soil properties mainly through regulating soil water
content. At a location, increases in water amount from upslope areas can increase
water supply to the location and affect the water accumulation [28]. Therefore,
positive correlations have been observed between the catchment area and soil water
content [7]. Furthermore, as the catchment area increases, the chance for sediment
deposition increases, and thus affects the soil C stocks [29]. The upslope slope
relates to slopes in upslope contributing areas. Overland flow velocities are usually
less at positions with lower values of upslope slope [1, 30]. The downslope index is a
metric including dispersal (downslope) controls on drainage [31]. Since the drain-
age of a location is the balance between the water from a specific upslope contrib-
uting area and to a downslope area, this index usually shows a better representation
of groundwater gradients and soil water content than slope gradient [31, 32].

Figure 1.
Diagrammatic illustration of (a) profile and (b) plan curvatures.
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The two flow-related nonlocal topographic metrics (flow path length and flow
accumulation) reflect the impacts of soil hydrology on soil properties. The longer
flow path length decreases overland flow velocity and increases infiltration [33, 34].
Increased erosion of fine particles can also be observed when flow path length
increases [35, 36]. This metric has been widely used in soil erosion models, describ-
ing soil loss under flow divergence and convergence conditions [37, 38]. Flow
accumulation mainly influences water conditions in soils. Flow volume and soil
water content response positively to this metric, which in turn can influence the soil
C stocks [39, 40].

For topographic relief, higher values suggest larger differences from the highest
points, which would stimulate flow velocity, leading to more rapid downslope soil
transport from low relief areas [4, 41]. Moreover, topographic relief influences
landscape drainage characteristics. Tucker and Bras [42] found that drainage den-
sity was positively correlated with relief in semiarid and low-relief landscapes but
negative related to relief in humid or high-relief landscapes. Areas with a broad
range of relief may cover several altitudinal climatic zones with differences in
vegetation types, further influencing weathering and denudation processes [43].

Topographic openness describes the distinction between relief and surrounding
topographic features [44]. Convex landforms often exhibit high positive topo-
graphic openness values, whereas concave landforms typically have high negative
topographic openness values (Figure 2) [44, 45]. Therefore, soil water content may
change with this variable [46]. The low positive openness areas are more likely to be
depressional areas with high soil water contents that provide suitable anaerobic
environments for denitrification but impede aerobic SOC decomposition [4, 46].

2.3 Combined topographic metrics

Topographic wetness index combines a local topographic metric (slope) and a
nonlocal topographic metric (upslope contributing area) [47]. It is considered as an
indicator effectively reflecting the spatial distribution of wetness conditions as the
upslope contributing area would impact groundwater level and soil water content,
and the slope would influence drainage processes [3]. Areas with higher wetness
index tend to be wetter. The topographic wetness index has been used to estimate
the spatial distribution of hydrological and geochemical properties of soil, and
significant correlations have been observed between this metric and soil C and N
content [3, 4, 32, 46, 48, 49].

Stream power index takes into account both specific contributing area and slope.
This metric is useful for characterizing potential erosive power of water flow [1].
When the slope gradient and catchment area increase, the amount of water from
contributing area and the velocity of water flow increase, and consequently

Figure 2.
Positive (α) and negative (β) topographic openness along two profiles.
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enhancing the erosive power of water [50]. Therefore, areas with larger stream
power index values have greater potential to be erosive regions [4, 51]. Due to its
impacts on erosive power, this metric can also be useful in understanding erosion-
induced soil C and N dynamics [14, 52, 53].

Slope length factor includes the length and steepness of a slope and thus reflects
the topographic impacts on erosion [54, 55]. As the slope length increases, the soil
loss per unit area usually increases due to a greater runoff accumulation on a longer
slope length that increases transport capacity of runoff; as slope steepness increases,
soil loss also generally increases [54, 56]. This factor is essential in estimating soil
transport and erosion by runoff [37, 38, 50, 56, 57].

3. DTM-based soil property prediction

In a DTM-based soil property model, the predictive variable could be the mor-
phological, chemical, or physical property of soil. Development of DTM-based
models follows two assumptions including that (1) the controls of topography on
soil properties can be found through a relatively small set of soil samplings and
topographic metrics, and (2) the statistical correlations between topography and
soil properties are often strong. In this case, soil properties can be predicted based
on the topographic metrics [7]. Due to the recent availability of large-scale, high-
resolution DEMs, DTMs over large-scales can be derived. The DTM-based models
benefit investigations in regions with limited observations and can generate spa-
tially continuous soil property maps based on extrapolation.

Methods of DTM-based soil property prediction could be grouped into two
categories [7]:

1. DTM-based models to predict quantitative soil properties based on statistical
analyses. Multiple regression analysis, regression kriging, cokriging, and
kriging with external drift are the widely used methods to predict quantitative
soil properties.

2.DTM-based models to predict categorical soil properties. Statistical methods
such as classification tree model, fuzzy logic, and discriminant analysis are
usually employed in this category.

3.1 DTM-based methods to predict quantitative soil properties

Multiple linear regression (MLR) simulates relationships between two or more
independent variables and a dependent soil property variable by fitting to a linear
equation. The DTM-based MLR models have been applied to study spatial patterns
of soil structures, horizonation, and soil water content [12, 39, 58–65], to explore
spatial variability of cation exchange capacity and pH [62, 65–67], and to derive
continuous quantitative maps of SOC, C isotopes, and nutrients over large spatial
scales [4, 6, 12, 14, 46, 52, 68, 69]. In some modeling investigations, Hybrid regres-
sion methods were used to improve the efficiency of soil property prediction. Li
et al. [4] combined stepwise MLRs with principal component analysis (PCA) for
SOC mapping. Results suggested that the combination of DTM-based MLRs with
PCA outperformed regular stepwise MLRs in the prediction of SOC and soil redis-
tribution rates at a watershed scale.

Regression kriging (RK) is a spatial prediction combining an MLR with kriging
of the regression residuals. The RK acts as a MLR model if the data used in the
model have low spatial structure, and the method reduces to Ordinary kriging (OK)
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if there are no linear statistic correlations between the dependent variable and the
ancillary variables [64]. Based on topographic and other environmental variables,
numerous studies have applied RK for predicting spatial patterns of soil properties,
such as soil horizon thickness [70, 71], soil structures [63, 70, 71], soil water content
[72, 73], soil C content [63, 69, 74, 75], cation exchange capacity [66, 76], and soil
hydraulic properties [77, 78]. Generally, this method is more accurate in soil prop-
erty estimations than the OK, Cokriging, or MLR because residual values from
kriging analysis were added to the regression [63, 70, 71, 73, 76, 77]. However, Zhu
and Lin [72] reported that the RK performed worse than the OK for soil property
prediction in relatively low relief areas.

Cokriging (CK) and kriging with external drift (KED) are also popular and
practical spatial predicting techniques in digital soil mapping. The CK calculates soil
properties by investigating topographic metrics in the kriging procedure and KED
uses external ancillary topographic variables as kriging weights. Various studies
have employed CK and KED to derive continuous maps of soil physical and chem-
ical properties [65, 66, 70, 71, 76–80]. Some of these studies were also suggested
that these techniques would be superior to OK in soil property estimation when the
selected topographic metrics are highly correlated with the dependent variables
[79, 81].

3.2 DTM-based methods to predict categorical soil properties

Classification tree models (CTMs) are a major type of Decision Tree method
used in soil science, in which the target variable is a categorical soil variable.
This model applies a set of rules that use explanatory variables to split data into
homogeneous subsets. The explanatory variables can be either categorical, such as
geological unit number, soil unit, etc., or continuous, such as slope, elevation,
topographic wetness index, etc., [82, 83]. Compared to mathematic functions, the
tree structure can provide a more visualized explanation of relationships between
explanatory variables and the target variable. The CTMs can be used to derive
efficient predictions of soil taxonomic classes from local to large spatial scales
[82–91]. Soil drainage can also be effectively classified using the CTMs with soil
profiles and topographic metrics as predictors [92–96].

The basic idea of fuzzy logic (FL) is to show “degrees of truth” for a variable.
Soils are continuums in both geographic and attribute spaces. As a result, using 0
and 1 or discrete categories cannot provide sufficient information about soil prop-
erties. The FL overcomes the limitation. If a variable belongs to a set, the model
would take a value between 0 to 1 instead of 0 or 1. Several studies have used the
DTM-based FL to improve soil taxonomic classes in soil mapping [97–101], soil
texture and soil horizonation prediction [98, 102–105], and soil vulnerability
classification [106]. Qi et al. [102] found that using the FL the accuracy of soil series
name prediction increased 17% compared to the conventional soil survey. The FL
was also combined with maximum likelihood regression to derive the prediction of
some continuous soil properties [97].

Discriminant analysis (DA) is a type of supervised classification to assign
objects to the most likely group among a lot of groups. It uses some observations
(training dataset) to classify others. This method is applicable when correlations
between soil property variables and independent variables are high [107]. It has
been applied to differentiate soil taxonomic classes and to generate soil texture
maps using multiple ancillary variables including topographic metrics [107–110].
Several studies also demonstrated the feasibility of using DA in deriving soil drain-
age classes based on its relationships to topography and soil electrical conductivity
[111–114].
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3.3 New emerging methods to predict soil properties

Artificial intelligence (AI) or machine learning gives computers a degree of
sophistication to act intelligently [115]. Therefore, to be intelligence, computers
should be able to learn from training datasets, correctly interpret external data, and
apply learned knowledge to achieve specific goals. With increased computing
power, massive sets of labeled data, and developed pre-trained models, increasingly
researchers have applied AI to fields such as speech recognition, objective detection,
visualization, machine translation, image processing and others [116]. However, it
is not until the recent decade that the potential applications of AI on soil property
prediction have come into more common awareness by scientists.

Artificial neural networks (ANNs) are a representative AI technique that has
been applied to solve complex machine learning problems (Figure 3a). The method
has similar data processes as a biological neural with nonlinear mapping structures,
which consists of a set of interconnected units (neurons) [117]. The input neurons
are predictors, linking to one layer of hidden neurons and finally linking to the
output variables [118]. To obtain accurate prediction results, the network model is
trained first by a set of observations. The weights that connect neurons are adjusted
iteratively using the training dataset. After training, the model is applied to predict
areas with the same input variables. ANNs outperform traditional statistics in han-
dling large datasets even when the input data are noisy with low levels of precision
due to the ability to reduce bias by evenly distributing training data across classes
[119]. Various researchers have employed ANNs for efficient prediction of quanti-
tative soil chemical and hydrological properties [118, 120, 121] and adequate map-
ping categorical soil taxonomic classes [122–129] based on DTMs and
environmental variables. Zhao et al. [93] also tested the feasibility of using ANNs
for soil drainage classification and found an accuracy of 52% between field obser-
vations and digital classification.

Deep learning (DL) is considered as an advanced ANN (Figure 3b) that has
been facilitated by recent advances in technology for highly parallel computing. In
contrast to single hidden layer ANNs, DL algorithms allow the computer to learn on
its own by multi-layer nonlinear transformations of the input training data [130].
For instance, such algorithms can define edges within images by training on multi-
ple examples and perform automatic feature extraction without human interven-
tion. Therefore, massive quantities of representative learning data are the
prerequisite for effective estimation from DL. The architectures of DL include
Convolutional Neural Networks (CNNs), Deep Belief Networks (DBNs), and

Figure 3.
Architectures of the (a) artificial neural networks and (b) deep learning.
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Recurrent Neural Networks (RNNs). CNNs are classic feedforward networks in
which the hidden layers consist of convolutional layers, pooling layers, and fully-
connected layers. The convolutional layers apply different convolution operations
(filters) to pass results from local patches in the feature maps of the input or the
previous layers to the next layers, enhancing certain features in the output. Neurons
in the same convolutional layer share the same weight. The pool layers merge
similar feature together, improving the robustness of features against noise and
distortion. The convolutional and pooling layers are finally stacked to a fully-
connected layer. The local connectivity in a convolution layer allows CNNs to
achieve a better generation in output analysis and the shared weights increase the
possibility to extract information of high complexity [131]. Padarian et al. [132]
applied CNNs to predict SOC at multiple depths using elevation, slope, topographic
wetness index, temperature and rainfall as input data. The results suggested that the
CNNs reduced errors by 25% for SOC predictions than the conventional Cubist
model. The DBNs are considered as a composition of unsupervised sub-networks,
which are trained to maximize the likelihood of training data. Each sub-network
serves as a visible layer used for unsupervised training of the next layer [133]. Song
et al. [134] demonstrated the usefulness of DBNs in predicting soil water content in
highly nonlinear forms over an irrigated field. RNNs have a “memory” called
hidden state to remember all information that has been calculated, so the output of
RNN loops connect to their past decision nodes based on the hidden state. The
networks process an input sequence at one time, preserving the sequential infor-
mation in the hidden state and producing the output sequence. Therefore, this
model is especially useful for tasks containing sequential input [131]. Researchers
have demonstrated the feasibility of using RNNs for hydrological study, although
no reports were found using this approach to map soil properties based on
topography [135, 136].

Random forest (RF) is another emerging method of AI and consists of an
ensemble of classification and regression trees for prediction (Figure 4). Each tree
is a random subset of features and uses a random set of the training data (about 2/3
of the available observations), which increases the diversity of the forest and
decreases the correlation of individual trees. RF commonly has high efficiency and

Figure 4.
Architectures of the random forest model.
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low bias and variance since the output is the average or majority voting of a large
number of trees [137]. The method has been proved to be resistance to over-fitting
because each tree is trained on a unique bootstrap subset and provide a reliable error
estimate using Out-Of-Bag data (the remaining one-third of the observations) [138].
Because of the above advantages, increasing scientists have used RF in soil mapping.
Combining topographic metrics, environmental variables, climate variables, or/and
land cover as input, RF can predict quantitative and category soil properties. For
quantitative soil property prediction, the output is the average of individual tree
outputs. RF has been successfully applied to investigate spatial patterns of soil organic
matters [139–142] and to estimate soil texture [143]. Guo et al. [144] further devel-
oped soil organic matter prediction by combining RF with Residuals Kriging, for
which the prediction accuracy increased dramatically (R2 = 0.86) compared to the
method using RF only (R2 = 0.65). For categorical soil property classification, the
output is obtained from voting by the majority on the correct classification. Several
studies have demonstrated the feasibility of using RF for updating soil survey maps
[145] and predicting soil classes in unmapped regions [146–148].

4. Case study: DTM-based models on SOC dynamics

4.1 Introduction

In this section, a case study about DTM-based modeling of SOC and soil redis-
tribution (SR) was discussed to understand the impacts of topography on SR and
SOC dynamics. We also compared efficiencies of three types of DTM-based models
in predicting the soil properties. Cesium-137 (137Cs) was used to trace the SR
process, and high-resolution light detection and ranging (LiDAR) data were applied
to derive DEMs for DTM extraction. Based on the DEM-derived topographic infor-
mation and field measured SOC density and SR rates, the multiple linear regression
(MLR), MLR combined with principal component analysis (MLR-PCA), and MLR
combined with factor analysis (MLR-FAn) were developed and discussed.

The study was carried out in Walnut Creek watershed (WCW), which is located
in Boone and Story counties, Iowa, USA (Figure 5a, 41°550–42°000N; 93°320–93°
450W). It has a humid continental climate. The landscape of this watershed is
relatively flat with a low topography relief (2.03 � 1.62 m). The typical soils are
poor-drained Nicollet andWebster soils in the lowlands and well-drained Clarion in
the uplands. More than 86% area of the watershed is cropland. Chisel plowing in
autumn and spring disking are the current primary tillage operations. Directions of
tillage practices in the WCW are mostly north-south or east-west, depending on the
management and field configurations. Detailed information on climate, soils, and
farming practices can be found in Hatfield et al. [149].

Two field sites were selected for intensive sampling investigation. Each site is
approximately 15 ha. Site 1 is in the WCW (Figure 5b) and Site 2 is located between
Boone and Ames (Figure 5c), which is within 10 km of the closest watershed
boundary. Similar to the WCW, low reliefs (<4.6 m) were observed for both sites.
Tillage practices at these two sites were along the north-south direction.

4.2 Materials and methods

4.2.1 Field sampling and laboratory analyses

The SOC and 137Cs data used in this section have been reported in Ritchie et al.
[25] and Li et al. [4, 52]. A total of 460 locations were randomly selected for WCW
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and 230 locations were selected for each site of Sites 1 and 2 (Figure 5). Topography
information was extracted for all locations using the LiDAR-derived DEMs. For the
watershed, 100 out of the 460 locations, including two 300-m transects, were
chosen for field estimations of SOC content and 137Cs inventory in 2006. The field
samplings for Sites 1 and 2 were collected in 2003. A 25 � 25 m grid was created for
each site of Sites 1 and 2. The 230 samplings were obtained at grid nodes. At each
location, we collected three samples that were located within a 1 m � 1 m quadrat
from top 30 cm of soil using a push probe (3.2 cm diameter). At locations where
sediment depositions were observed, deeper soils from the 30 to 50 cm layer were
collected. Four reference soil samples for estimation of the baseline 137Cs inventory
were collected from a local cemetery inWCWwhere no apparent soil redistribution
had occurred from the 1950s. Trimble RTK 4700 global positioning system (GPS)
was used to record the locations of sampling.

During laboratory analyses, bulk density was calculated after drying soil at 90°C
for 48 hours based on the soil volume and dry mass weight. Then, the three
samplings were mixed and sieved through a 2 mm screen. We ground subsamples
that were taken from the composite soils to fine power with a roller mill and
measured soil total C content by dry combustion at a temperature of 1350°C using
an elemental analyzer (LECO CNS 2000, LECO Crop., St. Joseph, MI). Then, C
content in CaCO3 was analyzed by dry combustion after the soil sample was baked
in a furnace at 420°C for 16 hours. Estimates of SOC content (SOCcontent, %) were
obtained from the differences between total C content and C content in CaCO3.

Figure 5.
Location of a) Walnut Creek watershed (WCW), b) Site 1 and c) Site 2 (z-axis 15� elevation).
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SOC density (ρSOC, kg m�2) of the top 30 cm layer was calculated from the bulk
density (ρbulk) and SOC content using the equation of ρSOC = SOCcontent � ρbulk� 0.3.

Measurement of 137Cs inventory used another subsample of the sieved soil
sample and placed and sealed in a Marinelli beaker. The 137Cs concentration was
estimated by Canberra Genie-2000 Spectroscopy System that receives input from
Canberra high purity coaxial germanium crystals (HpC > 30% efficiency) into three
8192-channel analyzers through gamma-ray analysis. Analytic mixed radionuclide
standard (10 nuclides) that follows the U.S. National Institute of Standards and
Technology was applied for calibration the Spectroscopy System. The measurement
precision is between �4 and � 6%. Unit of 137Cs concentration is in Becquerels per
gram (Bq g�1) and was converted to 137Cs inventory in Becquerels per square meter
(Bq m�2) using soil bulk density.

Calculation of SR rates based on 137Cs inventories was carried out by applying a
Mass Balance Model II in a spreadsheet Add-in program [150]. Before running the
model, parameters of tillage depth, proportion factor, and relaxation depth were set
to 0.25 m, 0.5, and 4 kg m�2, respectively. The baseline 137Cs inventory estimated
from the mean of 137Cs inventory in Ref. sites was 2657 Bq m�2 for Sites 1 and 2 in
2003 and 2526 Bq m�2 for the WCW in 2006. Positive SR rates were obtained when
137Cs inventories were higher than the baseline and the sites were referred as
depositional sites; while eroded sites were considered when negative soil SR rates
were estimated under conditions of lower 137Cs inventories than the baseline.
Details of soil sampling and laboratory analyses can be found in Ritchie et al. [25]
and Li et al. [4].

4.2.2 Topographical analysis

Fifteen topographic metrics that were discussed previously were used as ancil-
lary variables for the development of the DTM-based SOC and SR models. All
metrics were derived from DEMs generated from high resolution (1 m horizontal
and 0.1 m vertical resolutions) LiDAR data [48]. Before generation of topographic
metrics, inverse distance weighted interpolation was applied to produce 3 m spatial
resolution DEMs after converting the raw LiDAR data to LAS files.

Topographicmetricswere derivedbased on the 3mDEMsafter filtering twice by a 3-
kernel low pass filter. Modules in an open-access software of the System for Automated
Geoscientific Analysis (SAGA) v. 2.2.5 were applied to generated 14 of the selected
topographicmetrics including slope gradient (G), aspect (A), profile curvature (P_Cur),
plan curvature (Pl_Cur), general curvature (G_Cur), flow accumulation (FA), positive
topographic openness (PTO), upslope slope (Upsl), flow path length (FPL), downslope
index (DI), catchment area (CA), topographic wetness index (TWI), stream power
index (SPI), and slope length factor (LS). Topographic relief (TR)was calculated by the
difference between amaximumelevationmapwithin a specific area and the filtered 3m
DEMs. In order to reduce errors due to an arbitrary selection of the radius of the specific
area, a series ofmaximumelevationmapswithmultiple radiuses including 7.5, 15, 30, 45,
60, 75, and 90m, were used to generate TRmaps with different spatial scales. Principal
component analysis (PCA) and varimax rotated Factor Analysis (FAn)were used and
converted the TRmaps into twomain topographic relief components (TRPC1 and
TRPC2) and two topographic factors (TRFA1 and TRFA2). The detailed topographic
metric processing can be found in Li et al. [52].

4.2.3 Statistical analysis

Spearman’s rank analysis was applied to understand the impacts of topographic
metrics on SR and SOC distribution patterns. Due to high correlations between
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some of the topographic metrics, PCA and varimax rotated FAn were used to limit
errors caused by collinearity between topographic variables. The PCA analyzed
topographic metrics from the 460 locations of the WCW. Loadings for the first
eight components that explained 90% of the variance of all metrics were selected
and used to calculate topographic principal components (TPCs) at the field Sites 1
and 2. Similarly, eight topographic factors (TFAs) at field sites were also estimated
based on loadings from the watershed using FAn with varimax rotation.

4.2.4 Model calibration and evaluation

The stepwise linear regression with “leave-one-out” cross-validation was applied
for MLR, MLR-PCA, and MLR-FAn model development using the topographic
metrics from two field sites. Akaike Information Criterion was used to select vari-
ables contained in each model. The SOC density and SR rates were log-transformed
to meet the assumption of residual normality. Model efficiencies were assessed with
the following three criteria. The first one is the adjusted coefficient of determination
(R2

adj), which adjusts coefficient of determination based on the number of predictors
in the model. The second one is Nash-Sutcliffe efficiency (NSE). Ranging from �∞
to 1.0, the NSE estimates the ratios of residual variance to measured variance. The
model performance was considered acceptable when the NES is in a positive value.
The third one is the ratio of the root mean square error (RMSE) to the standard
deviation of measured data (RSR). It standardizes RMSE. The smaller the RSR value
is, the higher efficiency it indicates. Usually, the model performance is considered as
satisfactory if the NSE value is larger than 0.5 and the RSR is <0.7 [151].

4.3 Results and discussion

4.3.1 Topographic impacts on soil properties

The high-resolution topographic metrics derived from LiDAR data presented
detailed topographic information in the WCW. Take field Site 1 as an example,
Figure 6 exhibited characteristics of each topographic metric in response to the
elevation. Seven topographic metric maps, including catchment area (CA, Figure 6f),
downslope index (DI, Figure 6h), flow path length (FPL, Figure 6i), flow accumu-
lation (FA, Figure 6j), topographic relief component 1 (TRPC1, Figure 6k), topo-
graphic relief factor 1 (TRFA1, Figure 6m), and topographic wetness index (TWI,
Figure 6p), showed high values in depressional areas and low values in sloping and
ridge areas. Positive topographic openness (PTO, Figure 6o) had a reverse pattern
compared to the above seven metrics. It showed high values in ridge areas where a
wider view of a landscape can be seen. For slope gradient (G, Figure 6a), upslope
slope (Upsl, Figure 6g), topographic relief component 2 (TRPC2, Figure 6l),
topographic relief factor 2 (TRFA2, Figure 6n), stream power index (SPI, Figure 6q),
and slope length factor (LS, Figure 6r), high values were observed in sloping areas,
but low values were found in ridges and depressional areas.

Most topographic metrics showed significant correlations with SOC density and
SR rates except A. The A was slightly correlated with SOC density (r = �0.097;
P = 0.02) and insignificantly correlated with 137Cs inventory (P > 0.05) and SR rates
(P > 0.05). Generally, stronger topographic controls on SOC density than 137Cs
inventory and SR rates were observed (Table 2). TWI, TRFA1, TRPC1, CA, FPL,
DI, FA, SPI, and TRFA2 were significantly positively correlated with SOC density
and G, LS, PTO, Upsl, Pl_Cur, G_Cur, TRPC2, and P_Cur were significantly nega-
tively correlated with SOC density. For both 137Cs inventory and SR rates, similar
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errors caused by collinearity between topographic variables. The PCA analyzed
topographic metrics from the 460 locations of the WCW. Loadings for the first
eight components that explained 90% of the variance of all metrics were selected
and used to calculate topographic principal components (TPCs) at the field Sites 1
and 2. Similarly, eight topographic factors (TFAs) at field sites were also estimated
based on loadings from the watershed using FAn with varimax rotation.

4.2.4 Model calibration and evaluation

The stepwise linear regression with “leave-one-out” cross-validation was applied
for MLR, MLR-PCA, and MLR-FAn model development using the topographic
metrics from two field sites. Akaike Information Criterion was used to select vari-
ables contained in each model. The SOC density and SR rates were log-transformed
to meet the assumption of residual normality. Model efficiencies were assessed with
the following three criteria. The first one is the adjusted coefficient of determination
(R2

adj), which adjusts coefficient of determination based on the number of predictors
in the model. The second one is Nash-Sutcliffe efficiency (NSE). Ranging from �∞
to 1.0, the NSE estimates the ratios of residual variance to measured variance. The
model performance was considered acceptable when the NES is in a positive value.
The third one is the ratio of the root mean square error (RMSE) to the standard
deviation of measured data (RSR). It standardizes RMSE. The smaller the RSR value
is, the higher efficiency it indicates. Usually, the model performance is considered as
satisfactory if the NSE value is larger than 0.5 and the RSR is <0.7 [151].

4.3 Results and discussion

4.3.1 Topographic impacts on soil properties

The high-resolution topographic metrics derived from LiDAR data presented
detailed topographic information in the WCW. Take field Site 1 as an example,
Figure 6 exhibited characteristics of each topographic metric in response to the
elevation. Seven topographic metric maps, including catchment area (CA, Figure 6f),
downslope index (DI, Figure 6h), flow path length (FPL, Figure 6i), flow accumu-
lation (FA, Figure 6j), topographic relief component 1 (TRPC1, Figure 6k), topo-
graphic relief factor 1 (TRFA1, Figure 6m), and topographic wetness index (TWI,
Figure 6p), showed high values in depressional areas and low values in sloping and
ridge areas. Positive topographic openness (PTO, Figure 6o) had a reverse pattern
compared to the above seven metrics. It showed high values in ridge areas where a
wider view of a landscape can be seen. For slope gradient (G, Figure 6a), upslope
slope (Upsl, Figure 6g), topographic relief component 2 (TRPC2, Figure 6l),
topographic relief factor 2 (TRFA2, Figure 6n), stream power index (SPI, Figure 6q),
and slope length factor (LS, Figure 6r), high values were observed in sloping areas,
but low values were found in ridges and depressional areas.

Most topographic metrics showed significant correlations with SOC density and
SR rates except A. The A was slightly correlated with SOC density (r = �0.097;
P = 0.02) and insignificantly correlated with 137Cs inventory (P > 0.05) and SR rates
(P > 0.05). Generally, stronger topographic controls on SOC density than 137Cs
inventory and SR rates were observed (Table 2). TWI, TRFA1, TRPC1, CA, FPL,
DI, FA, SPI, and TRFA2 were significantly positively correlated with SOC density
and G, LS, PTO, Upsl, Pl_Cur, G_Cur, TRPC2, and P_Cur were significantly nega-
tively correlated with SOC density. For both 137Cs inventory and SR rates, similar
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high related topographic metrics (|r| > 0.5) were observed, including TRPC1, TWI,
TRFA1, G, and CA.

Topographic wetness index (TWI) was the most influential topographic factor
with a correlation coefficient up to 0.735. The finding is consistent with the high
TWI impacts on SOC in previous studies. The high impact of TWI suggests that soil
water content distribution was an important driver of SOC dynamics in the WCW.
In areas with high TWI and possibly elevated water content, litter decomposition
rates decrease and plant productions increase, which increases SOC input and
accumulations and results in high SOC density in the soil; while low soil water
content areas provide an adequate environment for rapid aerobic decomposition of
soil C, leading to a negative correlation between SOC and TWI [3, 4, 32, 46, 152].

Topographic relief (TR) was found to be the most important factor for 137Cs
inventory and SR rates with correlation coefficients of 0.686 and 0.687, respec-
tively. This metric was also highly correlated with SOC density. The strong effects
of TR on soil properties may be due to its influence on flow velocity. The flow
velocity reflects runoff shear stress, which would impact the sediment transport
capacity of the runoff [153, 154]. Thus, as the TR increases, the flow velocity and

Figure 6.
Topograhic metrics of Site 1 (z-axis 15� elevaton). The metrics include a) slope gradient (G), b) aspect (A),
c) profile curvature (P_Cur), d) plan curvature (Pl_Cur), e) general curvature (G_Cur), f) catchment area
(CA), g) upslope slope (Upsl), h) downslope index (DI), i) flow path length (FPL), j) flow accumulation
(FA), k) topographic relief principal component 1 (TRPC1), l) topographic relief principal component 2
(TRPC2), m) topographic relief factor 1 (TRFA1), n) topographic relief factor 2 (TRFA2), o) positive
topographic openness (PTO), p) topographic wetness index (TWI), q) stream power index (SPI),
and r) slope length factor (LS).
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high related topographic metrics (|r| > 0.5) were observed, including TRPC1, TWI,
TRFA1, G, and CA.

Topographic wetness index (TWI) was the most influential topographic factor
with a correlation coefficient up to 0.735. The finding is consistent with the high
TWI impacts on SOC in previous studies. The high impact of TWI suggests that soil
water content distribution was an important driver of SOC dynamics in the WCW.
In areas with high TWI and possibly elevated water content, litter decomposition
rates decrease and plant productions increase, which increases SOC input and
accumulations and results in high SOC density in the soil; while low soil water
content areas provide an adequate environment for rapid aerobic decomposition of
soil C, leading to a negative correlation between SOC and TWI [3, 4, 32, 46, 152].

Topographic relief (TR) was found to be the most important factor for 137Cs
inventory and SR rates with correlation coefficients of 0.686 and 0.687, respec-
tively. This metric was also highly correlated with SOC density. The strong effects
of TR on soil properties may be due to its influence on flow velocity. The flow
velocity reflects runoff shear stress, which would impact the sediment transport
capacity of the runoff [153, 154]. Thus, as the TR increases, the flow velocity and

Figure 6.
Topograhic metrics of Site 1 (z-axis 15� elevaton). The metrics include a) slope gradient (G), b) aspect (A),
c) profile curvature (P_Cur), d) plan curvature (Pl_Cur), e) general curvature (G_Cur), f) catchment area
(CA), g) upslope slope (Upsl), h) downslope index (DI), i) flow path length (FPL), j) flow accumulation
(FA), k) topographic relief principal component 1 (TRPC1), l) topographic relief principal component 2
(TRPC2), m) topographic relief factor 1 (TRFA1), n) topographic relief factor 2 (TRFA2), o) positive
topographic openness (PTO), p) topographic wetness index (TWI), q) stream power index (SPI),
and r) slope length factor (LS).
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runoff shear stress increases, leading to enhance in sediment transport capacity,
which increases the transports of 137Cs and SOC-enriched fine fraction of sediments
from low TR areas to the high TR areas.

Slope gradient (G) was another important factor for SOC density, 137Cs inven-
tory, and SR rates with absolute correlation coefficients larger than 0.6. Our find-
ings are consistent with those of other researches, reporting high erosion rates in
areas with relatively steep slopes [151, 155]. In agricultural fields, the main erosion
processes include both water and tillage erosion [156–158]. Soil and associated SOC
are transported to downslope due to gravity-driven lateral transport by overland
and concentrated flows. Tillage operations would also cause redistribution of soil by
small downslope movements of soil associated with each operation. Furthermore, as
discussed in Section 2, G increase could enhance runoff and decrease infiltration,
reducing water content in soil in the flat watershed area [15, 17, 18]. The controls of
G on water and tillage erosion and water content could be related to the high slope
impacts on soil properties in agricultural areas.

4.3.2 DTM-based models on soil property predictions

Since slope aspect (A) showed a weak correlation with SOC and no significant
correlations with 137Cs inventory and SR rate, we removed the A for the following
DTM-based model development. Therefore, 17 topographic metrics, including slope
gradient (G), curvature related metrics (P_Cur, Pl_Cur, and G_Cur), catchment
area (CA), upslope slope (Upsl), downslope index (DI), flow path length (FPL),
flow accumulation (FA), topographic relief principal components 1 and 2 (TRPC1
and TRPC2), topographic relief factors 1 and 2 (TRFA1 and TRFA2), positive
topographic openness (PTO), topographic wetness index (TWI), stream power
index (SPI), and slope length factor (LS) were used for building the MLR models.
We only used TRPC1 and TRPC2 to represent topographic relief for MLR-PCA
development and TRFA1 and TRFA2 for MLR-FAn.

The MLR, MLR-PCA, and MLR-FAn models were developed based on topo-
graphic and soil property data at the two field sites (Table 3). The MLR models
showed the best simulations of SOC and SR rates with the highest R2

adj and NSE values
and the lowest RSR values over the three types of models. The two MLR models
contained more than 7 predictors. The MLR-PCA model had a slightly lower effi-
ciency than MLR-FAn model in simulating SOC density, but exhibited similar per-
formance compared to the MLR-FAn model in SR rate simulations. The predictors
included in the MLR-FAn were more than the MLR-PCA models. There were 6 and 5
factors included in MLR-FAn SOC and SR models, respectively; while only 4 and 5
components were contained in the MLR-PCA SOC and SR models, respectively.

Although the MLR showed the best simulation performance for the two field
sites, the MLR-PCA had the highest prediction efficiency when applying models to
predict the spatial patterns of SOC and SR rate over the watershed (Figure 7a). The
SOC predictions by MLR-PCA explained 60% of the variability in observed SOC in
the WCW. The NSE value was larger than 0.5 (0.591) and RSR value was <0.7
(0.639), which suggested a satisfactory performance of SOC prediction by the
MLR-PCA model. The prediction efficiencies of MLR and MLR-FAn models were
lower than the MLR-PCA model with correlation coefficients of 0.39 and 0.49,
respectively. Based on these results, the SOCmap over the watershed was generated
based on the MLR-PCA model (Figure 8). The derived SOC map captured the
majority spatial variability in SOC density as reflected by consistent spatial patterns
between observed and simulated SOC density. High values of SOC density were
observed in depressions and low values were found in ridges and sloping areas.
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runoff shear stress increases, leading to enhance in sediment transport capacity,
which increases the transports of 137Cs and SOC-enriched fine fraction of sediments
from low TR areas to the high TR areas.

Slope gradient (G) was another important factor for SOC density, 137Cs inven-
tory, and SR rates with absolute correlation coefficients larger than 0.6. Our find-
ings are consistent with those of other researches, reporting high erosion rates in
areas with relatively steep slopes [151, 155]. In agricultural fields, the main erosion
processes include both water and tillage erosion [156–158]. Soil and associated SOC
are transported to downslope due to gravity-driven lateral transport by overland
and concentrated flows. Tillage operations would also cause redistribution of soil by
small downslope movements of soil associated with each operation. Furthermore, as
discussed in Section 2, G increase could enhance runoff and decrease infiltration,
reducing water content in soil in the flat watershed area [15, 17, 18]. The controls of
G on water and tillage erosion and water content could be related to the high slope
impacts on soil properties in agricultural areas.

4.3.2 DTM-based models on soil property predictions

Since slope aspect (A) showed a weak correlation with SOC and no significant
correlations with 137Cs inventory and SR rate, we removed the A for the following
DTM-based model development. Therefore, 17 topographic metrics, including slope
gradient (G), curvature related metrics (P_Cur, Pl_Cur, and G_Cur), catchment
area (CA), upslope slope (Upsl), downslope index (DI), flow path length (FPL),
flow accumulation (FA), topographic relief principal components 1 and 2 (TRPC1
and TRPC2), topographic relief factors 1 and 2 (TRFA1 and TRFA2), positive
topographic openness (PTO), topographic wetness index (TWI), stream power
index (SPI), and slope length factor (LS) were used for building the MLR models.
We only used TRPC1 and TRPC2 to represent topographic relief for MLR-PCA
development and TRFA1 and TRFA2 for MLR-FAn.

The MLR, MLR-PCA, and MLR-FAn models were developed based on topo-
graphic and soil property data at the two field sites (Table 3). The MLR models
showed the best simulations of SOC and SR rates with the highest R2

adj and NSE values
and the lowest RSR values over the three types of models. The two MLR models
contained more than 7 predictors. The MLR-PCA model had a slightly lower effi-
ciency than MLR-FAn model in simulating SOC density, but exhibited similar per-
formance compared to the MLR-FAn model in SR rate simulations. The predictors
included in the MLR-FAn were more than the MLR-PCA models. There were 6 and 5
factors included in MLR-FAn SOC and SR models, respectively; while only 4 and 5
components were contained in the MLR-PCA SOC and SR models, respectively.

Although the MLR showed the best simulation performance for the two field
sites, the MLR-PCA had the highest prediction efficiency when applying models to
predict the spatial patterns of SOC and SR rate over the watershed (Figure 7a). The
SOC predictions by MLR-PCA explained 60% of the variability in observed SOC in
the WCW. The NSE value was larger than 0.5 (0.591) and RSR value was <0.7
(0.639), which suggested a satisfactory performance of SOC prediction by the
MLR-PCA model. The prediction efficiencies of MLR and MLR-FAn models were
lower than the MLR-PCA model with correlation coefficients of 0.39 and 0.49,
respectively. Based on these results, the SOCmap over the watershed was generated
based on the MLR-PCA model (Figure 8). The derived SOC map captured the
majority spatial variability in SOC density as reflected by consistent spatial patterns
between observed and simulated SOC density. High values of SOC density were
observed in depressions and low values were found in ridges and sloping areas.
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Lower efficiencies were observed for SR rate than SOC density when compared
the model predictions in the WCW (Figure 7b). The MLR-PCA SR model showed
the highest correlation coefficient. However, the low NSE and high RSR values
indicated that the model could not well predict SR rates when applying a model
developed at field-scale for predictions at watershed-scale.

The better performance of MLR-PCA models relative to MRL models may be
due to the exclusion of multicollinearity by PCA. High correlations (|r| > 0.8) were
observed for some of topographic metrics, such as G and Upsl, and G_Cur and
Pl_Cur. Uncertainty increases due to the high collinearity because models can be
significantly influenced by small changes in the high collinearity predictors [159].
Thus, the MLR models were less stable with lower efficiencies in predicting SOC
density and SR rates when applying to different spatial scales. The use of PCA could
eliminate the multicollinearity and increase the stability of model since the PCA
converted the 15-dimension topographic dataset to eight mutually independent
combinations (TPCs) [159, 160].

Furthermore, by analysis of TPC loadings, hidden relationships between topo-
graphic metrics were uncovered, which could be another advantage of using the
PCA [160]. For example, in this study, we selected TPCs 1, 2, 3, 6, and 7 for model
development (Table 4). The high loading (|loading| > 0.35) topographic metric in
TPC1 was G_Cur (�0.353), and thus, this component was associated with runoff
divergence. G (0.475), TWI (�0.465), Upsl (0.419), and LS (0.396) were the high
loading metrics for TPC2, which indicated that TPC2 was associated with soil water
content. TPC3 were associated with runoff volume since the high loading metrics
were FA (0.482), SPI (0.460), and CA (0.400). TPCs 6 and 7 were associated with

Figure 7.
Comparison of (a) soil organic carbon (SOC) density (kg m�2) and (b) soil redistribution (SR) rate
(t ha�1 year�1) simulations to observations over the Walnut Creek watershed.

Figure 8.
Soil organic carbon (SOC) map obtained from the MLR-PCA model (a) within the Walnut Creek watershed
and (b) along two transects.
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runoff velocity and flow acceleration, respectively. Based on the TPCs, we can
obtain a better understanding of the controlling components for SOC distribution
and SR. For the low-relief agriculture watershed under study, the spatial patterns of
SOC and SR rate were mainly impacted by soil water content (TPC2) and runoff
divergence (TPC1), respectively, according to the priority of TPCs used in model
development. This conclusion is also consistent with findings by Fox and
Papanicolaou [161] that indicated flow divergence significantly influenced soil
erosion from uplands in a low-relief watershed.

The lower efficiencies of MLR-FAn than MLR-PCA may be because the latter
approach diminishes the risk of over-fitting the models. The difference between
PCA and FAn is that PCA considers all of the variance in the matrix, including
unique, error and shared variance; while FAn extracts and exhibits shared variance
only. Although some studies were preferable to FAn because of its ability to under-
stand the underlying structure by extracting latent shared variance [162, 163],
others also proved that there were almost no practical differences between the two
methods [164, 165]. In this study, we found that both methods had similar perfor-
mance during model calibration in small-scales. However, including more predic-
tors in MLR-FAn models may enhance the instability of models and increase
uncertainties during extrapolating prediction points over a large-scale [159, 166].

This case study demonstrated the importance of topography on soil properties in
the low-relief watershed. DTM-based models are feasible for SOC predictions at
different spatial scales. By combining MLR with PCA, the model efficiencies
increased during soil property prediction. The DTM-based mapping techniques can
be improved by further refinement remotely sensed data, improvement of the

TPC1(25%) TPC2(24%) TPC3(14%) TPC6(5%) TPC7(4%)

G 0.062 0.475 �0.035 �0.013 �0.183

P_Cur �0.290 0.000 0.346 �0.070 �0.002

Pl_Cur �0.283 0.107 �0.001 0.485 0.383

G_Cur �0.353 0.054 0.275 0.025 0.100

FA 0.297 �0.042 0.482 0.179 0.131

TRPC1 0.309 �0.193 �0.237 0.113 �0.116

TRPC2 0.234 0.266 �0.118 0.084 0.597

PTO �0.330 0.092 0.258 �0.292 0.217

Upsl 0.187 0.419 �0.143 �0.066 0.012

FPL 0.147 �0.168 �0.088 �0.703 0.407

DI 0.103 �0.220 �0.164 0.184 0.435

CA 0.326 �0.128 0.400 �0.160 �0.092

TWI 0.053 �0.465 �0.067 0.185 �0.047

SPI 0.345 �0.014 0.460 0.169 0.080

LS 0.256 0.396 0.050 0.011 �0.072

G is slope gradient; P_Cur, Pl_Cur, and G_Cur are profile curvature, plan curvature and general curvature,
respectively; TRPC1 and TRPC2 are topographic relief components 1 and 2, respectively; PTO is positive topographic
openness; Upsl is upslope slope; FPL is flow path length; DI is downslope index; CA is catchment area; TWI is
topographic wetness index; SPI is stream power index; and LS is slope length factor.
The values in bold indicate loadings > 0.35.

Table 4.
Loadings in the selected topographic principal components (TPCs) calculating based on topographic metrics at
the two field sites.
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Lower efficiencies were observed for SR rate than SOC density when compared
the model predictions in the WCW (Figure 7b). The MLR-PCA SR model showed
the highest correlation coefficient. However, the low NSE and high RSR values
indicated that the model could not well predict SR rates when applying a model
developed at field-scale for predictions at watershed-scale.

The better performance of MLR-PCA models relative to MRL models may be
due to the exclusion of multicollinearity by PCA. High correlations (|r| > 0.8) were
observed for some of topographic metrics, such as G and Upsl, and G_Cur and
Pl_Cur. Uncertainty increases due to the high collinearity because models can be
significantly influenced by small changes in the high collinearity predictors [159].
Thus, the MLR models were less stable with lower efficiencies in predicting SOC
density and SR rates when applying to different spatial scales. The use of PCA could
eliminate the multicollinearity and increase the stability of model since the PCA
converted the 15-dimension topographic dataset to eight mutually independent
combinations (TPCs) [159, 160].

Furthermore, by analysis of TPC loadings, hidden relationships between topo-
graphic metrics were uncovered, which could be another advantage of using the
PCA [160]. For example, in this study, we selected TPCs 1, 2, 3, 6, and 7 for model
development (Table 4). The high loading (|loading| > 0.35) topographic metric in
TPC1 was G_Cur (�0.353), and thus, this component was associated with runoff
divergence. G (0.475), TWI (�0.465), Upsl (0.419), and LS (0.396) were the high
loading metrics for TPC2, which indicated that TPC2 was associated with soil water
content. TPC3 were associated with runoff volume since the high loading metrics
were FA (0.482), SPI (0.460), and CA (0.400). TPCs 6 and 7 were associated with
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(t ha�1 year�1) simulations to observations over the Walnut Creek watershed.
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Soil organic carbon (SOC) map obtained from the MLR-PCA model (a) within the Walnut Creek watershed
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runoff velocity and flow acceleration, respectively. Based on the TPCs, we can
obtain a better understanding of the controlling components for SOC distribution
and SR. For the low-relief agriculture watershed under study, the spatial patterns of
SOC and SR rate were mainly impacted by soil water content (TPC2) and runoff
divergence (TPC1), respectively, according to the priority of TPCs used in model
development. This conclusion is also consistent with findings by Fox and
Papanicolaou [161] that indicated flow divergence significantly influenced soil
erosion from uplands in a low-relief watershed.

The lower efficiencies of MLR-FAn than MLR-PCA may be because the latter
approach diminishes the risk of over-fitting the models. The difference between
PCA and FAn is that PCA considers all of the variance in the matrix, including
unique, error and shared variance; while FAn extracts and exhibits shared variance
only. Although some studies were preferable to FAn because of its ability to under-
stand the underlying structure by extracting latent shared variance [162, 163],
others also proved that there were almost no practical differences between the two
methods [164, 165]. In this study, we found that both methods had similar perfor-
mance during model calibration in small-scales. However, including more predic-
tors in MLR-FAn models may enhance the instability of models and increase
uncertainties during extrapolating prediction points over a large-scale [159, 166].

This case study demonstrated the importance of topography on soil properties in
the low-relief watershed. DTM-based models are feasible for SOC predictions at
different spatial scales. By combining MLR with PCA, the model efficiencies
increased during soil property prediction. The DTM-based mapping techniques can
be improved by further refinement remotely sensed data, improvement of the

TPC1(25%) TPC2(24%) TPC3(14%) TPC6(5%) TPC7(4%)

G 0.062 0.475 �0.035 �0.013 �0.183

P_Cur �0.290 0.000 0.346 �0.070 �0.002

Pl_Cur �0.283 0.107 �0.001 0.485 0.383

G_Cur �0.353 0.054 0.275 0.025 0.100

FA 0.297 �0.042 0.482 0.179 0.131

TRPC1 0.309 �0.193 �0.237 0.113 �0.116

TRPC2 0.234 0.266 �0.118 0.084 0.597

PTO �0.330 0.092 0.258 �0.292 0.217

Upsl 0.187 0.419 �0.143 �0.066 0.012

FPL 0.147 �0.168 �0.088 �0.703 0.407

DI 0.103 �0.220 �0.164 0.184 0.435

CA 0.326 �0.128 0.400 �0.160 �0.092

TWI 0.053 �0.465 �0.067 0.185 �0.047

SPI 0.345 �0.014 0.460 0.169 0.080

LS 0.256 0.396 0.050 0.011 �0.072

G is slope gradient; P_Cur, Pl_Cur, and G_Cur are profile curvature, plan curvature and general curvature,
respectively; TRPC1 and TRPC2 are topographic relief components 1 and 2, respectively; PTO is positive topographic
openness; Upsl is upslope slope; FPL is flow path length; DI is downslope index; CA is catchment area; TWI is
topographic wetness index; SPI is stream power index; and LS is slope length factor.
The values in bold indicate loadings > 0.35.
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Loadings in the selected topographic principal components (TPCs) calculating based on topographic metrics at
the two field sites.
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topographic dataset, and development of modeling techniques such as including
Hybrid Regression and Artificial Intelligence techniques. The large-scale soil prop-
erty maps can provide a more sound scientific basis for understanding of the
mechanisms underlying the topographic impacts on soil movement in agricultural
landscapes and the fate of SOC at the watershed and regional scales.
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Chapter 2

Clay Minerals Mapping from 
Imaging Spectroscopy
Gilles Grandjean, Xavier Briottet, Karine Adeline, 
Anne Bourguignon and Audrey Hohmann

Abstract

Mapping subsurface clay minerals is an important issue because they have 
particular behaviors in terms of mechanics and hydrology that directly affects 
assets laid at the surface such as buildings, houses, etc. They have a direct impact 
in ground stability due to their swelling capacities, constraining infiltration 
processes during flooding, especially when moisture is important. So detecting 
and characterizing clay mineral in soils serve urban planning issues and improve 
the risk reduction by predicting impacts of subsidence on houses and infrastruc-
tures. High-resolution clay maps are thus needed with accurate indications on 
mineral species and abundances. Clay minerals, known as phyllosilicates, are 
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in their structure as in their composition [1]. They provide essential services to 
humanity such as water storage and filtration, agriculture support, storage carbon 
to regulate the climate, and physical support of buildings. So, soil knowledge, in 
particular their clay mineral composition and their mapping, is necessary for the 
decision-making on the management of many human activities. The study of clay 
minerals is most of the time motivated by the assessment of the risk associated to 
shrinkage-swelling phenomenon that affects building; sometimes, they are also 
taken into consideration in flooding/infiltrating effects and in the evaluation of the 
vehicles’ mobility. It is important to specify that the term “clay” may correspond 
to two distinct definitions in geology. From a physical point of view, clay minerals 
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assets laid at the surface such as buildings, houses, etc. They have a direct impact 
in ground stability due to their swelling capacities, constraining infiltration 
processes during flooding, especially when moisture is important. So detecting 
and characterizing clay mineral in soils serve urban planning issues and improve 
the risk reduction by predicting impacts of subsidence on houses and infrastruc-
tures. High-resolution clay maps are thus needed with accurate indications on 
mineral species and abundances. Clay minerals, known as phyllosilicates, are 
divided in three main species: smectite, illite, and kaolinite. The smectite group 
highly contributes to the swelling behavior of soils, and because geotechnical 
soil analyses are expensive and time-consuming, it is urgent to develop new 
approaches for mapping clays’ spatial distribution by using new technologies, 
e.g., ground spectrometer or remote hyperspectral cameras [0.4–2.5 μm]. These 
technics constitute efficient alternatives to conventional methods. We present in 
this chapter some recent results we got for characterizing clay species and their 
abundances from spectrometry, used either from a ground spectrometer or from 
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soils. In that classification, gravels are defined as elements larger than 2 mm, sands 
have a grain size of between 2 mm and 50 μm, silts have grain size between 50 and 
2 μm, and clays have grain size lower than 2 μm.

From a mineralogical point of view, montmorillonite (i.e., the smectite group), 
illite, kaolinite, and interstratified minerals are the most common clay species that 
are commonly involved in swelling and shrinking processes. In the following, clays 
refer to this last mineralogical definition.

The shrinkage-swelling effect of soils is a phenomenon causing numerous 
damages on houses when built on soils containing smectite minerals. Indeed, 
these so-called swelling clays are sensitive to soil moisture content, since they 
shrink during periods of drought and swell after rain. The presence of water 
variations causes changes in volumes producing cracks in the soil structures and 
therefore vertical differential movements at the surface. In France, these dam-
ages reach 38% of natural disaster compensation costs after the floods. For the 
period 1990–2014, this overall cost represents a little more than 9 billion euros or 
370 million euros per year [2]. In Great Britain, the association of insurers British 
estimated the cost of shrinkage-swelling to more than 400 million pounds each 
year [3]. In the USA, the economic cost of these claims is $15 billion annually [4]. 
As far as we know, population increase as well as projections of climate change 
should increase this risk at temperate latitudes, which in the future will affect 
areas previously untouched by drought. Identification of soils impacted by this 
phenomenon is currently based on specific mineral identifications, e.g., using 
X-ray diffraction (XRD) techniques, carried out on soil samples and difficult to 
implement at large scale. At the same time, some hazard maps (1:50000) were 
produced from geological data to identify clayed formations [5]. Unfortunately, 
these maps cannot consider local spatial heterogeneities, from one to hundreds 
of meters. In addition, mapping clay texture is not sufficient to evaluate the 
swelling capacity of clayed soils. To solve this issue, in situ and/or proximal sen-
sors can be used.

Several authors have successfully quantified mineral clays in soils [6–8] 
by field spectroscopy and laboratory spectral measurements. In these stud-
ies, measurements were generally carried out on dry soils for avoiding spectral 
perturbations due to moisture, and under ideal conditions of illumination, away 
from real cases contexts found in the field. Airborne hyperspectral imagery has 
also been successfully used to detect clays [9–11], despite low spatial resolution 
offered by sensors and low signal-to-noise ratio in the spectral range affected by 
clays (1000–2500 nm). Recent advances in UAV-type platforms for hyperspectral 
imaging are expected to remove some of these limitations by a better spatial 
resolution of acquired images, moving from meters for airborne to centimeters 
for UAV [12, 13]. These advances must offer more pixels of pure soils and thus 
improve the quantification of clay minerals. Indeed, quantifying clay species from 
spectral data needs taking into account mixing spectral signatures of minerals, 
simply because they are mixed in the soil. Some studies hypothesize a linear mix-
ture of soil mineral spectra (or “patchwork”). That means each component will 
have its spectral signature mixed in proportion to its abundance in the soil [6–8], 
which is an approximation because the diffusion of light induces nonlinearities 
on the spectral behavior of the reflectance present in an intimate mixture [14]. 
The impact of this phenomenon needs to be clearly assessed in order to correctly 
quantify clay species.

In the following, we propose a review on these different issues and describe the 
different approaches able to quantify clay species from hyperspectral data. This 
overview is based on different pieces of works realized in lab but also on the field, 
with different instrumental devices and several processing techniques.
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2. Spectrometry experiments and data processing

The principle of spectrometry is based on the measurement of the interaction 
between an electromagnetic radiation and a given material at different frequencies. 
Applied to mineral characterization, this technique gives crystallo-chemical infor-
mation on the material from its interaction with the incident radiation. Depending 
on the selected frequency of the radiation (ultraviolet, visible, infrared, etc.), the 
interaction produces various types of energy. This response is represented as a 
spectrum that is an intrinsic characteristic of the material [15]. The infrared radia-
tion (IR) is an electromagnetic radiation, corresponding to the spectrum between 
12,800 and 10 cm−1 (0.78–1000 μm). Figure 1 shows the infrared electromagnetic 
spectrum that can be decomposed in three parts: the near, the middle, and the far 
IR. For mineral characterization, the domains of interest are the near-infrared 
(NIR) and the shortwave infrared (SWIR), which extend, respectively, from 0.75 to 
1 μm and from 1 to 2.5 μm.

When an IR radiation interacts with a molecule, it can absorb partially and 
selectively this radiation, leading to modifications of the vibrational and rotational 
energy of the molecule. These energy losses lead to the presence of absorption 
bands at specific wavelengths corresponding to the frequencies at which the 
molecule is excited. The absorbed energy is therefore characteristic of each of the 
chemical bonds of the molecule. In the case of clay minerals, absorption bands are 
mostly visible in the SWIR domain. The complexity of working with absorption 
bands comes from the presence of water that also produces numerous absorption 
phenomena masking large parts of the spectrum (Figure 2). To predict soil proper-
ties related to the presence of clay minerals, intensive research has been carried out 
in reflectance spectroscopy in the visible near-infrared (VNIR; 300–1100 nm) and 
SWIR wavelength domains [16].

Interpreting correctly the spectrums resulting from interactions between SWIR 
irradiations and clayed soils is thus no straightforward, due to the noise coming 
from atmosphere, the presence of water molecules and the complexity of soils 
mineralogical composition.

Various approaches can be used to predict the clay mineralogical compositions 
of soils from measured spectra when the sample number is sufficiently high, e.g., 

Figure 1. 
Infrared domains expressed in terms of wavelengths.



Geospatial Analyses of Earth Observation (EO) Data

34
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are commonly involved in swelling and shrinking processes. In the following, clays 
refer to this last mineralogical definition.

The shrinkage-swelling effect of soils is a phenomenon causing numerous 
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shrink during periods of drought and swell after rain. The presence of water 
variations causes changes in volumes producing cracks in the soil structures and 
therefore vertical differential movements at the surface. In France, these dam-
ages reach 38% of natural disaster compensation costs after the floods. For the 
period 1990–2014, this overall cost represents a little more than 9 billion euros or 
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should increase this risk at temperate latitudes, which in the future will affect 
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produced from geological data to identify clayed formations [5]. Unfortunately, 
these maps cannot consider local spatial heterogeneities, from one to hundreds 
of meters. In addition, mapping clay texture is not sufficient to evaluate the 
swelling capacity of clayed soils. To solve this issue, in situ and/or proximal sen-
sors can be used.

Several authors have successfully quantified mineral clays in soils [6–8] 
by field spectroscopy and laboratory spectral measurements. In these stud-
ies, measurements were generally carried out on dry soils for avoiding spectral 
perturbations due to moisture, and under ideal conditions of illumination, away 
from real cases contexts found in the field. Airborne hyperspectral imagery has 
also been successfully used to detect clays [9–11], despite low spatial resolution 
offered by sensors and low signal-to-noise ratio in the spectral range affected by 
clays (1000–2500 nm). Recent advances in UAV-type platforms for hyperspectral 
imaging are expected to remove some of these limitations by a better spatial 
resolution of acquired images, moving from meters for airborne to centimeters 
for UAV [12, 13]. These advances must offer more pixels of pure soils and thus 
improve the quantification of clay minerals. Indeed, quantifying clay species from 
spectral data needs taking into account mixing spectral signatures of minerals, 
simply because they are mixed in the soil. Some studies hypothesize a linear mix-
ture of soil mineral spectra (or “patchwork”). That means each component will 
have its spectral signature mixed in proportion to its abundance in the soil [6–8], 
which is an approximation because the diffusion of light induces nonlinearities 
on the spectral behavior of the reflectance present in an intimate mixture [14]. 
The impact of this phenomenon needs to be clearly assessed in order to correctly 
quantify clay species.

In the following, we propose a review on these different issues and describe the 
different approaches able to quantify clay species from hyperspectral data. This 
overview is based on different pieces of works realized in lab but also on the field, 
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from atmosphere, the presence of water molecules and the complexity of soils 
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of soils from measured spectra when the sample number is sufficiently high, e.g., 
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Infrared domains expressed in terms of wavelengths.
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multivariable regression analysis (MRA) or partial least square regression (PLSR). 
For example, [17] have successfully estimated the smectite content of soils in the 
Colorado Front range by using a PLSR analysis of second derivative reflectance 
spectra measured in the field. MRA was also successfully used to quantify clay 
content in soil, independently of the nature of clay minerals [18, 19]. However, 
such approaches required a large number of observation samples to carry out the 
analysis but also to validate the regression accuracy. They are also site dependent, 
meaning that the calibration-validation processes need to be performed specifi-
cally for the studied sites. To tackle this issue with minimal uncertainties, we 
propose to start with simple experimental setups by analyzing in the laboratory 
the spectral responses of pure clays and mixtures of two or three species of clays.

2.1  Making and testing a spectral database from synthetic mixtures and a 
spectrometer

The objective of this first approach consists in preparing simple mixtures 
composed by pure clay minerals. They were prepared by [20] using the most com-
mon clays: montmorillonite, illite, and kaolinite, each of them provided by material 
sellers. The particle sizes of the minerals were measured with a VASCO-2 laser grain 
size analyzer and estimated to be about ~450 nm for the illite and the kaolinite and 
about ~475 nm for the smectite. The pure clay minerals were mixed using an agate 
mortar to produce mixed powders. A total of 27 binary mixtures of 10/90, 20/80, 
30/70, 40/60, 50/50, 60/40, 70/30, 80/20, and 90/10 mass-percent ratios of kaolin-
ite/illite, illite/montmorillonite, and montmorillonite/kaolinite were produced, as 
well as 19 ternary mixtures of kaolinite/illite/montmorillonite [20] (Figure 3).

All samples were dried and brought to humidity conditions of the laboratory. 
The reflectance spectra were measured in the laboratory using an ASD FieldSpec 
Pro. This spectrometer is portable and able to probe from 350 to 2500 nm in the 
electromagnetic spectrum. Its spectral resolution ranges from 10 nm with a 2 nm 
sampling interval in the SWIR. The mixtures were placed into Petri boxes, in 
contact with the probing system. A standard white Spectralon (Labsphere) was 
used to calibrate the reflectance reference. To increase the signal-to-noise ratio, the 
resulting spectrum was computed as the average of 10 spectral measurements [6].

As soon as the spectra are available for all the mixtures, a comparative analysis is 
used to relate a set of parametric observables derived from the spectrum morphology 

Figure 2. 
Atmosphere and water absorption bands affecting the irradiated spectrum.
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and the mineralogical composition of mixtures. Before this step, and in order to 
remove the large wavelength effects from each spectrum, a continuum-removal is 
applied as shown in Figure 4 [14]. This processing leads to normalize the reflec-
tance spectra and highlights absorption bands. The principle consists in connecting 
local maxima of the spectrum to obtain a good fit across the 350–2500 nm spectral 
domain [19]. After this processing, the continuum-removed spectrum has values 
ranging between 0 and 1 [18]. After this step, various geometrical parameters can 
be measured on the spectral curve as suggested by [21]. Indeed, this approach has 
the advantage to manipulate a few set of value to characterize a specific absorption 
band rather that considering overall values of the curve. The considered geometrical 
parameters are the following:

• The wavelength position corresponding to the minimum reflectance of the 
absorption band. In Figure 4, it corresponds to values around 1400 nm 
(P1400), 1900 nm (P1900), and 2200 nm (P2200).

• The depth, which is the length of the absorbing pattern along the reflectance 
axis. In Figure 4, the depth is estimated around 1400 nm (D1400), 1900 nm 
(D1900), and 2200 nm (D2200).

• The asymmetry of absorption band, calculated from the ratio between the 
right width and the left width measured at the half depth of the absorp-
tion band. In Figure 4, the asymmetry is about 1400 nm (A1400), 1900 nm 
(A1900), and 2200 nm (A2200).

• The width of the absorption band, measured at half depth. In Figure 4, the 
width is estimated to be around 1400 nm (W1400), 1900 nm (W1900), and 
2200 nm (W2200).

As already mentioned by [21] or [22], the geometry of absorption bands around 
1900 or 2200 nm is directly linked to the clay mineralogical composition. In par-
ticular, these studies show that the depth parameter can be efficiently used to assess 

Figure 3. 
Ternary diagram of kaolinite-illite-montmorillonite synthetic mixtures, modified from [20].



Geospatial Analyses of Earth Observation (EO) Data

36
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and the mineralogical composition of mixtures. Before this step, and in order to 
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applied as shown in Figure 4 [14]. This processing leads to normalize the reflec-
tance spectra and highlights absorption bands. The principle consists in connecting 
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domain [19]. After this processing, the continuum-removed spectrum has values 
ranging between 0 and 1 [18]. After this step, various geometrical parameters can 
be measured on the spectral curve as suggested by [21]. Indeed, this approach has 
the advantage to manipulate a few set of value to characterize a specific absorption 
band rather that considering overall values of the curve. The considered geometrical 
parameters are the following:

• The wavelength position corresponding to the minimum reflectance of the 
absorption band. In Figure 4, it corresponds to values around 1400 nm 
(P1400), 1900 nm (P1900), and 2200 nm (P2200).

• The depth, which is the length of the absorbing pattern along the reflectance 
axis. In Figure 4, the depth is estimated around 1400 nm (D1400), 1900 nm 
(D1900), and 2200 nm (D2200).

• The asymmetry of absorption band, calculated from the ratio between the 
right width and the left width measured at the half depth of the absorp-
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(A1900), and 2200 nm (A2200).
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width is estimated to be around 1400 nm (W1400), 1900 nm (W1900), and 
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the clay composition. If we plot the distribution of mixtures along 3 axes represent-
ing the depth parameter for 1400, 1900, and 2200 nm positions, we can identify 
regions where kaolinite, illite, and montmorillonite are particularly predominant, 
forming 3 corners of a triangular 3D shape. Elsewhere, kaolinite, illite, and mont-
morillonite contents in the mixtures decrease from their corner toward the opposite 
sides of the triangular shape [6] (Figure 5).

Even if these results are promising, they are not enough accurate to be exploited 
in real conditions. In particular, the development of a methodology able to sta-
tistically invert the abundance of clay species composing the mixtures from the 
absorption band parameters still needs to be tested. Such a study was carried out by 
[23], working with a higher complexity in preprocessing spectral data and trying to 
identify a robust unmixing method to estimate the clay abundances in the mixtures.

2.2  Processing laboratory hyperspectral images of synthetic mixtures, 
unmixing issues

To have a statistical assessment of the spectral response measured on the 
mixtures, the spectrometer was replaced by a hyperspectral optical sensor. This 
device is similar to that used by [24], with two cameras, located 1 m from the 
sample, and a lamp for each camera inclined to 35°. The reflected signal is recorded 
by two hyperspectral cameras (HySpex—Norsk Elektro Optikk—VNIR-1600 and 
SWIR-320 m-e). Only SWIR camera data is used, with 256 spectral bands and a 
spectral resolution of 6 nm in the range 1000–2500 nm. The camera has a measur-
ing field of 240 mm (FOV 13.5°) and a spatial resolution of 0.75 mm. Between 
measurements, a white reference Spectralon R® is used to overcome any possible 
drift of instruments. Raw images highlight a nonuniformity of the illumination 
due to side effects. Experimental variograms realized on each band of reflectance 
images allowed to analyze this effect and to propose a masking protocol to remove 

Figure 4. 
Continuum-removal applied to a mixture spectrum of 30% montmorillonite and 70% illite. (a) spectrum 
before Continuum-removal, (b) Geometrical parameters used to characterize the absorption bands: location of 
the minimum (black circles), depth (blue line), left width at half depth (green line), and right width at half 
depth (red line).
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pixels too far from the homogeneous behavior observed at the center of images. The 
following methodological chain is based on (i) spectral preprocessing to transform 
reflectance spectra in a standardized form and (ii) linear and nonlinear unmixing 
algorithms to derive mineral abundance for each mixture (Figure 6). Preprocessing 
techniques were selected from the literature and concern:

• Standard normal variate (SNV) consists in applying a translation and a 
homothety of the spectrum using its mean and standard deviation [25].

• Continuum-removal (CR) deletes the continuum to normalize the reflectance 
spectrum [26].

• Continuous wavelet transform (CWT) splits the signal into a wavelet sum 
of Gaussian function (e.g., “Mexican Hat”). The signal is broken down into 
10 scales, the first one (corresponding to the noise) and scales higher than 5 
(global variations of the spectrum-continuum) are suppressed [27].

• Hapke’s model [28] estimates the single diffusion albedo considering that the 
medium is an isotropic mixture with the same particle size for all components.

• First derivative (1St SGD) calculated according to [29].

Figure 5. 
3D-diagram showing the distribution of the synthetic mixtures according to the depth parameter. From [6].
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forming 3 corners of a triangular 3D shape. Elsewhere, kaolinite, illite, and mont-
morillonite contents in the mixtures decrease from their corner toward the opposite 
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in real conditions. In particular, the development of a methodology able to sta-
tistically invert the abundance of clay species composing the mixtures from the 
absorption band parameters still needs to be tested. Such a study was carried out by 
[23], working with a higher complexity in preprocessing spectral data and trying to 
identify a robust unmixing method to estimate the clay abundances in the mixtures.

2.2  Processing laboratory hyperspectral images of synthetic mixtures, 
unmixing issues

To have a statistical assessment of the spectral response measured on the 
mixtures, the spectrometer was replaced by a hyperspectral optical sensor. This 
device is similar to that used by [24], with two cameras, located 1 m from the 
sample, and a lamp for each camera inclined to 35°. The reflected signal is recorded 
by two hyperspectral cameras (HySpex—Norsk Elektro Optikk—VNIR-1600 and 
SWIR-320 m-e). Only SWIR camera data is used, with 256 spectral bands and a 
spectral resolution of 6 nm in the range 1000–2500 nm. The camera has a measur-
ing field of 240 mm (FOV 13.5°) and a spatial resolution of 0.75 mm. Between 
measurements, a white reference Spectralon R® is used to overcome any possible 
drift of instruments. Raw images highlight a nonuniformity of the illumination 
due to side effects. Experimental variograms realized on each band of reflectance 
images allowed to analyze this effect and to propose a masking protocol to remove 

Figure 4. 
Continuum-removal applied to a mixture spectrum of 30% montmorillonite and 70% illite. (a) spectrum 
before Continuum-removal, (b) Geometrical parameters used to characterize the absorption bands: location of 
the minimum (black circles), depth (blue line), left width at half depth (green line), and right width at half 
depth (red line).
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pixels too far from the homogeneous behavior observed at the center of images. The 
following methodological chain is based on (i) spectral preprocessing to transform 
reflectance spectra in a standardized form and (ii) linear and nonlinear unmixing 
algorithms to derive mineral abundance for each mixture (Figure 6). Preprocessing 
techniques were selected from the literature and concern:

• Standard normal variate (SNV) consists in applying a translation and a 
homothety of the spectrum using its mean and standard deviation [25].

• Continuum-removal (CR) deletes the continuum to normalize the reflectance 
spectrum [26].

• Continuous wavelet transform (CWT) splits the signal into a wavelet sum 
of Gaussian function (e.g., “Mexican Hat”). The signal is broken down into 
10 scales, the first one (corresponding to the noise) and scales higher than 5 
(global variations of the spectrum-continuum) are suppressed [27].

• Hapke’s model [28] estimates the single diffusion albedo considering that the 
medium is an isotropic mixture with the same particle size for all components.

• First derivative (1St SGD) calculated according to [29].

Figure 5. 
3D-diagram showing the distribution of the synthetic mixtures according to the depth parameter. From [6].
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• Transformation into pseudo-absorbance (Log (1/R)) based on the correlation 
between the bands of spectral absorption and concentration of compounds [25].

Once spectra are preprocessed, several unmixing techniques can be tested to 
determine abundances. Before, it is necessary to compare observed spectrum to 
reference spectrum, i.e., spectrum of pure minerals (end-members) present in 
the mixture. On the one hand, if all the minerals present are known, one can use 
spectral libraries existing in the literature. Otherwise, algorithms able to determine 
in the observed data those which represent the most pure end-members can be used 
such as SISAL [30] or minimum volume [31]. Four linear and nonlinear unmix-
ing algorithms were used to estimate abundances in clay minerals from mixtures 
described in the previous chapter (Figure 7):

• FCLS is the most popular linear unmixing method and has nonnegativity 
constraints (abundances must be equal or higher than 0), and the sum of 
abundances of each end-member must equal to one [32].

• MESMA, similar to FCLS, takes into account the intra-class variability of each 
mixing pole.

• The GBM method [33] can take into account nonlinear effects by the way of an 
additional parameter.

• The multilinear model (MLM) method [34] uses a parameter to manage 
nonlinearity; for zero, the model becomes linear.

The results show that the unmixing method performance depends on the 
mineralogy of the mixture, the difficulty arising when clay species have very similar 
spectrum in the considered wavelengths. We can also note that the linear and 
nonlinear methods have similar performances on these mixtures, the recommended 
method being in fact the simplest to use, i.e., FCLS. Finally, the benefit brought by 

Figure 6. 
Mean spectra of hyperspectral images after continuum-removal correction for different montmorillonite/
kaolinite abundances.
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spectral preprocessing is very important. CWT and first SGD give one of the best 
performances on unmixing quality by decreasing the intra-sample variability [35].

2.3 From lab measurements to field observations

A good example of validation and comparison between lab models and field 
observations is given by [36]. The sampling area is located close to Orleans city 
(France) along the Loire River. The fluvial deposits are mainly composed of sandy 
materials contained in a clay matrix, containing also pebbles and boulders. In 
this study, 332 samples of soil were collected, spread over the various geological 
formations where swelling risk is present. As in [6], spectrum where decomposed 
in geometrical parameters, more suitable for quantitative analyses. As shown in 
Figure 8a, the ratios of the depth parameters for different absorption bands (D1400 
over D2200 vs. D1900 over D2200) demonstrate that the montmorillonite and illite 
end-members appear in the scattered plot. This approach could be used to roughly 
evaluate the content of these clay species in the soil samples.

Figure 7. 
Variability of abundances predictions decreases with MESMA and FCLS, where I stands for illite, K for 
kaolinite, and M for montmorillonite.

Figure 8. 
(a) Scattered plot of studied samples represented according to two ratios of depth parameters; (b) correlation 
between montmorillonite content measured from XRD and estimated from spectroscopy [36].
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To evaluate the uncertainties related to this approach, 31 samples of the dataset 
were analyzed using X-ray diffraction, and comparison were carried out between 
montmorillonite content measured from XRD and montmorillonite content 
estimated from spectroscopy. Although the distribution of points presents a certain 
dispersion, the correlation ratio, close to 0.84, confirms the potential of using geo-
metrical characteristics of spectra to assess the abundance of clay species.

3. Conclusion

The geotechnical issues raised by swelling clays need to be addressed to evaluate 
the vulnerability of buildings and houses lying on clayed soils geological environ-
ment. To reduce costs of analyses, classically consisting in lab measurements (e.g., 
XRD), methodologies based on spectroscopy can be used. This chapter shows last 
advances in evaluating clay species abundances, in particular for montmorillonite, 
from spectroscopy or hyperspectral approaches in the SWIR domain.

A first step was the development of metrics to discriminate clay minerals from 
their spectral response. For this purpose, mixtures were realized from pure clay 
minerals, and their spectra were systematically analyzed using geometrical param-
eter such as the depth of the different absorbing band patterns. From this database, 
we showed that a discrimination was possible, at least to have a qualitative estima-
tion of the swelling capacities of concerned soils. This result was validated from 
the field by comparing the abundances estimated coming from spectroscopy and 
from XRD techniques. Another approach based on hyperspectral image processing 
was presented. Different preprocessing algorithms and unmixing techniques were 
applied to the mixture dataset for performance evaluation. The results are also 
very conclusive since RMS values between estimated and observed abundances are 
satisfactory.

This overview gives important perspective in the domain. If spectroscopy can 
evaluate clay mineral abundances in soils and in particular those who have swelling 
capacities, the possibility to use remote hyperspectral camera for this purpose could 
be considered. The next perspective are thus to test this probing technique to field 
data in real condition. The heterogeneous solar lightning; the presence of vegeta-
tion, calcite, or quartz pebbles; and possibility of moisture variations in soils are, 
for instance, the next issues to work on. Due to recent developments in UAV, new 
possibilities could be found for carrying hyperspectral cameras in SWIR domain 
and reaching information with higher signal-to-noise ratio and better resolution. 
These advances should open new perspectives for accurate and less expensive 
productions of clay maps.
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The Impact of Land Use and Land
Cover Changes on the Nkula Dam
in the Middle Shire River
Catchment, Malawi
Maureen Kapute Mzuza, Weiguo Zhang, Fanuel Kapute
and Xiaodao Wei

Abstract

Land use and land cover changes over a 26-year period for the middle Shire
River catchment, Malawi, in southern Africa, were assessed using geographic
information systems (GIS) and remote sensing techniques. The catchment area
under study was divided into two sections, western and eastern sides of the Shire
River. High rate of deforestation averaging 4.3% per annum was observed and more
pronounced in the western side of the river. Rapid population growth and increase
in gross domestic product (GDP) are identified as the major drivers of deforestation
and forest degradation due to clearing of vast fields for agriculture, land expansion
for urban settlement, and cutting down of trees for wood fuel energy. Deforestation
in the middle Shire River catchment has resulted into increased soil loss through
erosion causing huge accumulation of sediment at the Nkula B Hydroelectric Power
Dam downstream and, consequently, causing serious problems with generation of
hydroelectricity. Frequent droughts and floods in the area have drastically affected
crop production forcing people into cutting down of trees for charcoal as a liveli-
hood strategy. Combined techniques such as GIS, remote sensing, and socioeco-
nomic factors used in this study could be applied in other places where similar
challenges occur.

Keywords: LUCC, GIS, remote sensing, soil, Malawi

1. Introduction

Land use and land cover changes have significant environmental consequences
at local, regional, and global scales. These changes have intense implications at the
regional and global scales for global loss of biodiversity, distresses in hydrological
cycles, increase in soil erosion, and sediment loads [1]. At the local level, changes in
the use of land and its cover affect watershed runoff, microclimatic resources,
processes of land degradation and landscape-level biodiversity, soil erosion, and
sediment loads [2]. All these have direct impacts on livelihoods of local societies.

The Shire River in Malawi, southern Africa, is among the areas where land use
land cover change (LUCC) has become more prevalent in recent years resulting into
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severe soil erosion and causing heavy siltation downstream [3–9]. The river is an
important source of livelihood to many people, using the water for agriculture,
domestic purposes, and the generation of electricity [6, 8, 10]. One of the most
important structures across the Shire River is the Nkula B Hydroelectric Power
Station situated in the middle section of the river. The dam at Nkula Falls that
supplies water into the power station has, in recent times, been threatened with
massive siltation, some studies attributing this to increased human population and
agricultural activities [5, 6, 8]. The conceptual setting of this study originates from a
strong link that exists between land use change and soil erosion [8, 11–15]. Land use
and management practices are important factors in determining the extent of soil
erosion [8, 15]. Good vegetation cover promotes infiltration of water into the
ground and soil retention, while deforestation results into increased runoff than
infiltration occurring during periods of more precipitation [16–18]. Increased run-
off consequently leads to stronger soil erosion usually in areas with poor vegetation
cover [8, 19–20]. Erosion of soil under continuous cultivation is the most serious
form of resource degradation occurring in Malawi [3, 8, 19, 21–23]. The rate of soil
loss in Malawi is currently estimated at 29 t/ha/year [24], which is higher than the
previously reported 20 t/ha/year [21]. In the middle Shire River, estimated soil loss
between the year 2000 and 2014 ranged from 0.1 to 21.1 t/ha/year [24, 25].
According to the Malawi Government Report (2015), the middle Shire River catch-
ment has many bright spots (areas experiencing high soil loss but declining trends
over time), for example, Neno and Ntcheu in the west and Zomba and Chiradzulu
in the eastern side of the river.

The question regarding land use changes over time, and its driving forces in the
middle Shire River catchment nevertheless remain unresolved [4, 6]. Such knowl-
edge is critical to the development of policies and action plans necessary for chang-
ing current LUCC trends in the area as it has been observed in other places [26–30].
Furthermore, problems of LUCC are global and serious in many developing coun-
tries where increasing population has resulted into excessive pressure on natural
resources [8, 30].

The study was carried out to understand the impact of land use and land cover
changes on the Nkula Dam in the middle Shire River catchment, Malawi. The LUCC
drivers analyzed in this study include biophysical changes (e.g., climate change)
and human activities (e.g., population, poverty, land policies, and GDP growth)
[3, 4, 6]. Climate and socioeconomic data were compiled to analyze the drivers of
LUCC in the study area. Geographic information systems (GIS) and remote sensing
techniques which are gaining increased recognition globally as rapid methods of
acquiring and analyzing up-to-date information over a large geographical area were
used in the study [30–33].

2. Study area and methods

2.1 Description of the study area

The Shire River is the largest river in Malawi, originating from Lake Malawi which
supports vast agricultural and socioeconomic activities in its catchment (Figure 1)
[34]. The river is divided into three sections, namely, the upper, middle, and lower
Shire [34, 35]. This study focused on the catchment of the middle section of the river
which includes the Shire Plain which is bounded by mountains on both sides and the
Nkula Dam downstream [34, 36]. The plain is more extensive to the west of the river
than it is to the east (Figure 1). The middle section of the Shire River has eight
administrative districts, supporting a population of about 5 million people (Figure 1).
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Climate in the middle Shire River catchment area varies due to differences in
altitude with annual average precipitation ranging from 750 to 2500 mm [35, 37].
Highlands receive more rain which begins in November and ends late in April
[6, 37]. Annual average temperature of the area is around 23°C, with highlands in
the east experiencing cooler temperatures than plains in the west [6, 35]. The rocks
in the study area are mainly composed of Precambrian basement complex and
igneous rocks [37]. Amphibolite and granulite facies are dominant in the western
and eastern side of the Shire River, respectively, while soils in the river’s catchment
are dominated by Cambisols [6, 24, 37].

2.2 Data collection procedure

The following procedures were followed in order to answer the study questions:
firstly, six Landsat images for the dry seasons (to avoid cloud cover effects) of 1989,
1993, 2000, 2006, 2011, and 2015 were downloaded from the United States Geo-
logical Survey (USGS, http://glovis.usgs.gov/) at Level 1 T using different paths and
rows (167/070, 167/071, 168/070, and 168/071). All images had a spatial resolution
of 30 m which is large enough to visualize changes in land use [38] from Landsat 5,
7, and 8. Secondly, meteorological, topographical, and socioeconomic data from
1989 to 2015 were collected from the Malawi Department of Meteorological Services
and Statistics [24, 36]. The third stage was the processing of the Landsat images
and, finally, classification of land use which was followed by analysis of different
land covers. Statistical analysis was done on data for the topography of the catch-
ment area, temperature, rainfall, population, and GDP in order to determine drivers
of LUCC.

Figure 1.
Map of Malawi (left) showing the middle Shire River and its catchment (right). Eight administrative districts
are located in the study area.
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2.2.1 Remote sensing image processing

Landsat images were processed using ENVI 5.1 Software to study information on
the types of land use and their spatial patterns. To analyze these spatial patterns, the
following steps were followed: firstly, relative radiometric correction was done on
each band to eliminate errors arising from radiation caused by weather conditions;
secondly, multiband combination of Landsat images was done in preparation for
research spectral characteristics of various types of land use; thirdly, geometric
correction of remote sensing images was done using Malawi DEM, Universal
Transverse Mercator Projection, Arc 1960, and UTM Zone 36S, based on 1:50,000
topographic map scale so that it fits with the Landsat images [38, 39]. This helps to
eliminate position errors of Landsat images which the terrain, position of the sun,
and angle sensor may produce. A mosaic of required images was prepared and a
single image generated. Atmospheric Landsat images were then corrected by ENVI
5.1 FLAASH module.

2.2.2 Land use classification

After processing the Landsat images, identification of different land use classes
was done where some visual designs like texture, tone, and the effect zones were
used [38]. The land in the study area was classified according to its use or descrip-
tion such as cultivated land, water, forest (indigenous and plantations were com-
bined), etc. When identifying the training sites, the spectral signatures separability
of all the eight land use classes presented in Table 1 were verified including control
fields in situ that were also set for validation of each classified image [38]. Land use
types were classified by supervised classification maximum likelihood method since
it’s among the broadly used methods in the scientific literature in addition to it
being the fastest and easy to use and giving a perfect interpretation of the outcomes
[38–44]. In addition, the method is able to accommodate covarying data which is
common with satellite image data [41, 45]. Representative zones for each desired
class were located in the image with adequate number of pixels covering the known
classes to reduce the image noise [38]. Secondly, training area number and per-
centage were identified in order to classify several training and test areas. These
results were compared with supporting ground data so that the new training statis-
tics could be derived. Thirdly, a statistical file known as spectral signature was
created by the image processing software for each class because each and every
pixel can only be assigned to one spectral class. Lastly, each pixel was allocated to
the most likely class based on the maximum likelihood algorithm where each pixel is
assigned to the spectral class that has the greatest probability density function for
the multispectral values of the pixel. Maximum likelihood algorithm is the most
commonly used algorithm in which a pixel is classified into the corresponding class
[38, 43, 46]. Land cover types were then classified into the following eight main
classes according to Anderson et al. [47]: (1) forest, (2) shrubland, (3) grassland,
(4) cultivated land, (5) bare land, (6) water bodies, (7) wetland, and (8) artificial
surfaces (Table 1).

A total of 165 training sites (sampled portions of the scene, purposely selected,
for the derivation of the training statistics) were chosen for each image to ensure
that all spectral classes constituting each land use and land cover categories were
adequately represented in the training statistics to classify the entire scene [48].
Classification was done using ground checkpoints, digital topographic maps, vege-
tation cover map, and the researchers’ knowledge of the study area [49, 50]. A total
of 156 sampling points (GPS + photograph) were collected out of the 165 training
sites during the dry season to avoid cloud cover effects which is more common in
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rainy season. Land use types at the sampling sites were evaluated according to field
surveys (photographs + GPS) where photographs were taken using a camera and
coordinates of the spot were taken using GPS. Accuracy of the supervised
classification methods was checked by a confusion matrix of accuracy (Table 2)
[38, 44, 51] to ensure that various measures, such as error-rate, accuracy,
specificity, sensitivity, and precision, were checked.

Landsat image classified type results were compared with the field survey results
to evaluate their accuracy and then calculated using confusion matrix evaluation
table (Table 2).

2.2.3 Statistical analysis

LUCC drivers were mainly analyzed using descriptive methods due to
inavailability of spatial socioeconomic data from the government database. Pearson
correlation coefficients between socioeconomic data and land use types were ana-
lyzed in SPSS for Windows version 10.

3. Results

3.1 Land use and land cover changes over the past 26 years

The overall classification accuracy ranged from 82 to 94% (Table 2). The west-
ern side of the Shire River covers an area of approximately 3353 km2, while the
eastern side is 2770 km2 comprising 55 and 45% of the total area, respectively.
Regions were defined by slope of less than 10o as plain/flat area. According to
Table 3, total plain/flat area covers 2417 km2 which is lesser compared to highlands

No. Land cover
class

Description

1 Forest Woodland open general (15–65%) with herbaceous layer. Broadleaved deciduous
trees, closed >(70–60)%. Vegetative cover is in balance with the abiotic and biotic
forces of its biotope

2 Shrubland Closed to open (thicket) (15–100%) scattered trees

3 Grassland Herbaceous closed vegetation (15–100%) with some trees, shrub Savannah, and
permanent marsh

4 Cultivated
land

Areas where the natural vegetation has been removed or modified and replaced by
other types of vegetative cover of anthropogenic origin. All vegetation that is
planted or cultivated with intent to harvest is included in this class

5 Bare land Bare rock and/or coarse fragments. Areas that do not have an artificial cover as a
result of human activities. These areas include areas with less than 4% vegetative
cover

6 Water
bodies

This class refers to areas that are naturally covered by water, such as lakes, rivers,
snow, or ice

7 Wetlands Areas that are transitional between pure terrestrial and aquatic systems and where
the water table is usually at or near the surface or the land is covered by shallow
water

8 Artificial
surfaces

Areas that have an artificial cover as a result of human activities, such as
construction (cities, towns, and transportation), extraction (open mines and
quarries), or waste disposal

Table 1.
Land cover classes considered and their description [71].
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rainy season. Land use types at the sampling sites were evaluated according to field
surveys (photographs + GPS) where photographs were taken using a camera and
coordinates of the spot were taken using GPS. Accuracy of the supervised
classification methods was checked by a confusion matrix of accuracy (Table 2)
[38, 44, 51] to ensure that various measures, such as error-rate, accuracy,
specificity, sensitivity, and precision, were checked.

Landsat image classified type results were compared with the field survey results
to evaluate their accuracy and then calculated using confusion matrix evaluation
table (Table 2).

2.2.3 Statistical analysis

LUCC drivers were mainly analyzed using descriptive methods due to
inavailability of spatial socioeconomic data from the government database. Pearson
correlation coefficients between socioeconomic data and land use types were ana-
lyzed in SPSS for Windows version 10.

3. Results

3.1 Land use and land cover changes over the past 26 years

The overall classification accuracy ranged from 82 to 94% (Table 2). The west-
ern side of the Shire River covers an area of approximately 3353 km2, while the
eastern side is 2770 km2 comprising 55 and 45% of the total area, respectively.
Regions were defined by slope of less than 10o as plain/flat area. According to
Table 3, total plain/flat area covers 2417 km2 which is lesser compared to highlands

No. Land cover
class

Description

1 Forest Woodland open general (15–65%) with herbaceous layer. Broadleaved deciduous
trees, closed >(70–60)%. Vegetative cover is in balance with the abiotic and biotic
forces of its biotope

2 Shrubland Closed to open (thicket) (15–100%) scattered trees

3 Grassland Herbaceous closed vegetation (15–100%) with some trees, shrub Savannah, and
permanent marsh

4 Cultivated
land

Areas where the natural vegetation has been removed or modified and replaced by
other types of vegetative cover of anthropogenic origin. All vegetation that is
planted or cultivated with intent to harvest is included in this class

5 Bare land Bare rock and/or coarse fragments. Areas that do not have an artificial cover as a
result of human activities. These areas include areas with less than 4% vegetative
cover

6 Water
bodies

This class refers to areas that are naturally covered by water, such as lakes, rivers,
snow, or ice

7 Wetlands Areas that are transitional between pure terrestrial and aquatic systems and where
the water table is usually at or near the surface or the land is covered by shallow
water

8 Artificial
surfaces

Areas that have an artificial cover as a result of human activities, such as
construction (cities, towns, and transportation), extraction (open mines and
quarries), or waste disposal

Table 1.
Land cover classes considered and their description [71].
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(with slope ranging from 10o to 90o) covering 3706 km2. Eastern and western
plain/flat areas cover 988 and 1429 km2, representing 41 and 59% of the total plain/
flat area of the study area, respectively (Table 3).

The middle Shire River catchment is dominated by shrubland, grassland, culti-
vated land, and forestland, which accounted for 36, 28, 22, and 12% in 1989,
respectively (Figure 2).

Findings (Table 4) show significant land use and land cover changes in the
middle Shire River catchment over the 26-year period.

Artificial and cultivated land increased by 65 and 52%, respectively, in the 26-
year period, while forest cover, grass, and shrubland decreased by 35, 27, and 7%,
respectively. Other land classes such as wetlands and water bodies show

Area/coverage Plain (≤10°) Highlands (10–90°)

Area (km2) Percentage (%) Area (km2) Percentage (%)

Western side 1429 59 1075 29

Eastern side 988 41 2631 71

Total catchment area 2417 100 3706 100

Table 3.
Distribution of plains and highlands in eastern and western side of the middle Shire River.

Figure 2.
Land use and land cover changes from 1989 to 2015.
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(with slope ranging from 10o to 90o) covering 3706 km2. Eastern and western
plain/flat areas cover 988 and 1429 km2, representing 41 and 59% of the total plain/
flat area of the study area, respectively (Table 3).

The middle Shire River catchment is dominated by shrubland, grassland, culti-
vated land, and forestland, which accounted for 36, 28, 22, and 12% in 1989,
respectively (Figure 2).

Findings (Table 4) show significant land use and land cover changes in the
middle Shire River catchment over the 26-year period.

Artificial and cultivated land increased by 65 and 52%, respectively, in the 26-
year period, while forest cover, grass, and shrubland decreased by 35, 27, and 7%,
respectively. Other land classes such as wetlands and water bodies show

Area/coverage Plain (≤10°) Highlands (10–90°)

Area (km2) Percentage (%) Area (km2) Percentage (%)

Western side 1429 59 1075 29

Eastern side 988 41 2631 71

Total catchment area 2417 100 3706 100

Table 3.
Distribution of plains and highlands in eastern and western side of the middle Shire River.

Figure 2.
Land use and land cover changes from 1989 to 2015.

53

The Impact of Land Use and Land Cover Changes on the Nkula Dam in the Middle Shire River…
DOI: http://dx.doi.org/10.5772/intechopen.86452



L
an

d
co

ve
r
ty
pe

Y
ea
r

19
89

19
93

20
00

20
06

20
11

20
15

A
re
a
(k

m
2 )

%
A
re
a
(k

m
2 )

%
A
re
a
(k

m
2 )

%
A
re
a
(k

m
2 )

%
A
re
a
(k

m
2 )

%
A
re
a
(k

m
2 )

%

Fo
re
st

73
9

12
.0
7

67
9

11
.0
8

54
5

8.
90

47
9

7.
82

48
1

7.
86

66
2

10
.8
0

Sh
ru
bl
an

d
22
01

35
.9
5

19
86

32
.4
4

22
64

36
.9
7

20
43

33
.3
7

18
35

31
.8
5

20
40

32
.9
7

G
ra
ss
la
nd

17
19

28
.0
7

18
38

30
.0
2

14
51

23
.6
9

16
92

27
.6
3

16
17

24
.5
3

12
55

20
.5
2

C
ul
ti
va

te
d
la
nd

13
67

22
.3
3

15
38

25
.1
2

17
45

28
.5
0

18
14

29
.6
4

20
67

33
.7
6

20
73

34
.0
9

A
rt
if
ic
ia
ls
ur
fa
ce
s

26
0.
43

28
0.
45

33
0.
54

37
0.
60

39
0.
64

43
0.
71

W
et
la
nd

35
0.
57

23
0.
38

56
0.
91

19
0.
31

38
0.
63

20
0.
34

W
at
er

bo
di
es

31
0.
51

30
0.
49

20
0.
33

30
0.
49

36
0.
58

22
0.
44

B
ar
e
la
nd

4
0.
06

2
0.
03

9
0.
15

9
0.
15

9
0.
15

8
0.
13

T
ab

le
4.

A
re
a
(k
m

2
)
an

d
pe
rc
en
ta
ge
s
of

di
ff
er
en
t
la
nd

co
ve
r
ty
pe
s
fr
om

th
e
ye
ar

19
89

to
20

15
.

54

Geospatial Analyses of Earth Observation (EO) Data

fluctuations (Figure 2 and Table 4). Spatially, in 1989, total cultivated land in the
western side was 694 km2 which increased to 1226 km2 by the year 2015,
representing 21 and 37% of the total land in the western side, respectively
(Table 5).

This suggests an increase of 16% of cultivated land in the western side between
1989 and 2015. In the eastern side, cultivated land increased from 673 to 862 km2

within the same period, representing 24 and 31%, respectively, of the total land area
indicating a 7% change. In 1989, the western side of the Shire River catchment
mainly consisted of shrubland, grassland, and forestland which accounted for 35,
33, and 10%, respectively. In the eastern side, shrubland, grassland, and forestland
accounted for 37, 22, and 15%, respectively. The western side (Balaka, Neno, and
Ntcheu) and eastern side (Zomba) are the main districts where forest, shrubland,
and grassland decreased the most. For example, in Balaka District, forest area
reduced from 11% in 1989 to 2% in 2011 before increasing to 3% in 2015, while
shrubland decreased from 38% in 1989 to 18% in 2011 and then increased to 23% in
2015. Forestland in Neno District decreased from 10% in 1989 to 1% in 2011 and
then increased up to 5% in 2015, while shrubland decreased from 35% in 1989 to
19% in 2015 and grassland from 27% in 1989 to 17% in 2015 with some fluctuations
in between the years. In Ntcheu District, grassland decreased from 35% in 1989 to
15% in 2015. Forest cover in Zomba district declined from 19% in 1989 to 7% in
2006 and then started to increase from 2011 reaching 12% in 2015. Shrubland
decreased from 41% in 1989 to 27% in 2015 in the same district.

3.2 Changes in climate, population, and GDP

Results indicate some fluctuations in the amount of rainfall received in the area
within the 26-year period that might be due to climate change as a result of land use
and land cover changes due to human activities (Figure 3).

Rainfall in the catchment area declined continuously from 1989 to 1993, culmi-
nating into the drought of 1992 and 1993 (Figure 3) [52, 53]. Malawi is regularly
affected by drought and floods [53]. The country (including the study area) was
affected by heavy floods in 1989, 1998, 2000, 2001, and 2015, destroying crops and
displacing many people (Figure 3) [53]. Earlier studies indicate that rainy season in
Malawi is dominated by tropical and extratropical influences with links to the El

Location/district Year

1989 1993 2000 2006 2011 2015

Western side Balaka 335 556 627 655 688 853

Mangochi 59 51 41 80 47 91

Neno 25 41 49 38 28 53

Ntcheu 275 298 219 226 219 228

Total area 694 946 935 999 982 1226

Eastern side Blantyre 359 264 362 381 244 278

Chiradzulu 33 9 19 17 18 23

Machinga 184 247 264 263 135 368

Zomba 96 71 165 155 122 194

Total area 673 591 810 816 520 862

Table 5.
Changes in cultivated land area (km2) in districts of the middle Shire River catchment.
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fluctuations (Figure 2 and Table 4). Spatially, in 1989, total cultivated land in the
western side was 694 km2 which increased to 1226 km2 by the year 2015,
representing 21 and 37% of the total land in the western side, respectively
(Table 5).

This suggests an increase of 16% of cultivated land in the western side between
1989 and 2015. In the eastern side, cultivated land increased from 673 to 862 km2

within the same period, representing 24 and 31%, respectively, of the total land area
indicating a 7% change. In 1989, the western side of the Shire River catchment
mainly consisted of shrubland, grassland, and forestland which accounted for 35,
33, and 10%, respectively. In the eastern side, shrubland, grassland, and forestland
accounted for 37, 22, and 15%, respectively. The western side (Balaka, Neno, and
Ntcheu) and eastern side (Zomba) are the main districts where forest, shrubland,
and grassland decreased the most. For example, in Balaka District, forest area
reduced from 11% in 1989 to 2% in 2011 before increasing to 3% in 2015, while
shrubland decreased from 38% in 1989 to 18% in 2011 and then increased to 23% in
2015. Forestland in Neno District decreased from 10% in 1989 to 1% in 2011 and
then increased up to 5% in 2015, while shrubland decreased from 35% in 1989 to
19% in 2015 and grassland from 27% in 1989 to 17% in 2015 with some fluctuations
in between the years. In Ntcheu District, grassland decreased from 35% in 1989 to
15% in 2015. Forest cover in Zomba district declined from 19% in 1989 to 7% in
2006 and then started to increase from 2011 reaching 12% in 2015. Shrubland
decreased from 41% in 1989 to 27% in 2015 in the same district.

3.2 Changes in climate, population, and GDP

Results indicate some fluctuations in the amount of rainfall received in the area
within the 26-year period that might be due to climate change as a result of land use
and land cover changes due to human activities (Figure 3).

Rainfall in the catchment area declined continuously from 1989 to 1993, culmi-
nating into the drought of 1992 and 1993 (Figure 3) [52, 53]. Malawi is regularly
affected by drought and floods [53]. The country (including the study area) was
affected by heavy floods in 1989, 1998, 2000, 2001, and 2015, destroying crops and
displacing many people (Figure 3) [53]. Earlier studies indicate that rainy season in
Malawi is dominated by tropical and extratropical influences with links to the El

Location/district Year

1989 1993 2000 2006 2011 2015

Western side Balaka 335 556 627 655 688 853

Mangochi 59 51 41 80 47 91

Neno 25 41 49 38 28 53

Ntcheu 275 298 219 226 219 228

Total area 694 946 935 999 982 1226

Eastern side Blantyre 359 264 362 381 244 278

Chiradzulu 33 9 19 17 18 23

Machinga 184 247 264 263 135 368

Zomba 96 71 165 155 122 194

Total area 673 591 810 816 520 862

Table 5.
Changes in cultivated land area (km2) in districts of the middle Shire River catchment.
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Niño-Southern Oscillation (ENSO) [54, 55]. Actually, this is reported for the whole
of Southern Africa [56].

The population of Malawi which includes districts under study on the western
(Mangochi, Balaka, Ntcheu, and Neno) and eastern sides of the middle Shire River
(Blantyre, Zomba, Machinga, and Chiradzulu) has been increasing steadily since
the 1980s (Figure 4).

Increased population is more pronounced in urban areas. For example, in 2015,
Blantyre and Zomba cities had 3006 and 2240 people per km2, respectively [34, 53,
57]. There has been a general increase in the GDP over the past 26 years especially
between 2006 and 2011 and falling between 1993 and 2003 (Figure 4).

Figure 3.
Annual rainfall and temperature for the middle Shire River catchment from 1989 to 2015. Circles represent
flood years, while rectangles represent drought years (Source: Malawi Meteorological Department).

Figure 4.
Population of districts in the middle Shire River catchment area and GDP (US$) for Malawi from 1989 to
2015 [53].
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4. Discussion

4.1 Drivers of LUCC in the middle Shire River catchment

Rainfall affects LUCC in the middle Shire River catchment. Drought and floods
in the western side of the river, therefore, have resulted into low crop yield. As a
survival mechanism, people resort to cutting down of trees to earn income, causing
forest degradation [58, 59]. This may, therefore, explain the concurrent low
rainfall received against a sharp decline in forest areas between 2006 and 2011
(Figures 2 and 3). Results in this study agree with an earlier report for the upper
Shire River catchment [60] indicating a direct link between poor rainfall (drought/
floods) and cutting down of trees.

Rapid population growth is one of the drivers of LUCC in the western side of the
middle Shire River earlier reported by [60, 61]. Population increase in the western
part of the middle Shire River is mainly attributed to the influx of refugees fleeing
the civil war from Mozambique from the 1990s. Population growth leads to urban-
ization, increase in cultivated land, and residential area [3, 8]. The high population
density in Malawi with an estimated growth rate of 2.8% is putting increasing
pressure on its natural resources, leading to expansion of farming on marginal lands
and forests as well as encroachment into protected forest reserves/parks. Results in
this study show a transition of land use from forest, shrubland, and grassland to
cultivated land and buildup areas (Tables 4 and 5). These changes mainly occurred
between 1989 and 2011 (Figure 2 and Table 4) probably due to increasing anthro-
pogenic pressure on natural forests. Results also show a drastic change in forest/
grassland/shrubland between 1989 and 2011 in three out of the four districts
(Balaka, Neno, and Ntcheu) in the western side of the middle River Shire. Large
proportion of shrubland, grassland, and forestland (84%) in the western part of the
river were converted to cultivated land, buildup areas, and/or bare land. This
confirms earlier assertion that increasing population results into a decrease in forest
area (Figure 5).

The rate of forest decline experienced by Malawi [61] and the Shire River
catchment in particular [59], due to heavy dependency on wood for energy, is
alarming. Most people around the middle Shire River catchment rely on firewood

Figure 5.
Changes in forest, cultivated land in the catchment area, and siltation volume in the Nkula Dam from 1989 to
2015.
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Rainfall affects LUCC in the middle Shire River catchment. Drought and floods
in the western side of the river, therefore, have resulted into low crop yield. As a
survival mechanism, people resort to cutting down of trees to earn income, causing
forest degradation [58, 59]. This may, therefore, explain the concurrent low
rainfall received against a sharp decline in forest areas between 2006 and 2011
(Figures 2 and 3). Results in this study agree with an earlier report for the upper
Shire River catchment [60] indicating a direct link between poor rainfall (drought/
floods) and cutting down of trees.

Rapid population growth is one of the drivers of LUCC in the western side of the
middle Shire River earlier reported by [60, 61]. Population increase in the western
part of the middle Shire River is mainly attributed to the influx of refugees fleeing
the civil war from Mozambique from the 1990s. Population growth leads to urban-
ization, increase in cultivated land, and residential area [3, 8]. The high population
density in Malawi with an estimated growth rate of 2.8% is putting increasing
pressure on its natural resources, leading to expansion of farming on marginal lands
and forests as well as encroachment into protected forest reserves/parks. Results in
this study show a transition of land use from forest, shrubland, and grassland to
cultivated land and buildup areas (Tables 4 and 5). These changes mainly occurred
between 1989 and 2011 (Figure 2 and Table 4) probably due to increasing anthro-
pogenic pressure on natural forests. Results also show a drastic change in forest/
grassland/shrubland between 1989 and 2011 in three out of the four districts
(Balaka, Neno, and Ntcheu) in the western side of the middle River Shire. Large
proportion of shrubland, grassland, and forestland (84%) in the western part of the
river were converted to cultivated land, buildup areas, and/or bare land. This
confirms earlier assertion that increasing population results into a decrease in forest
area (Figure 5).

The rate of forest decline experienced by Malawi [61] and the Shire River
catchment in particular [59], due to heavy dependency on wood for energy, is
alarming. Most people around the middle Shire River catchment rely on firewood
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Changes in forest, cultivated land in the catchment area, and siltation volume in the Nkula Dam from 1989 to
2015.
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and charcoal for their daily living [58, 62, 63]. Malawi’s forest cover loss is estimated
at 2.6% per annum [64]. The middle Shire River catchment lost, on average, about
4.3% of its forest and shrubland annually between 1989 and 2011 (Table 4),
suggesting a negative relationship between population increase and the decline in
forest coverage (Figures 4 and 5). Results, nevertheless, showed a recovery in
forest cover from 2011 to 2015 (Tables 4 and 5), likely attributed to interventions
by the government of Malawi and nongovernmental organizations in strengthening
natural resource management policies that started around 2008 up to date [5, 65].

Macroeconomic activities such as increase in manufacturing industries and other
businesses which contribute to the growth of GDP often require large areas, which
also contributed to the transition of forest/shrubland/grassland into buildup areas.
Some of such economic activities include opening of new farms which also require
clearing of forest areas (Figures 4 and 5).

National policies in the past have failed to effectively enforce ban of unabated
harvesting of forest resources until recently with the introduction of community-
based natural resource management groups and intervention of some
nongovernmental organizations in afforestation programs. This may explain the
increase in forest cover from 2011 to 2015 as earlier indicated (Figure 2 and
Table 4). Globally, large expanses of forests are being converted into bare land for
domestic purposes and, principally, due to harvesting of timber [66]. In a study
carried out between 1989 and 2002 in the upper section of the Shire River, [60]
reported impacts of LUCC on the river’s catchment hydrological regime which
includes increase in soil erosion. It is reported that agricultural land increased by
18% between 1989 and 2002 [60]. In another LUCC assessment study for Likangala
River catchment (a stream from Zomba Mountain which is also a source of several
rivers draining into the eastern side of the middle Shire River), woodlands
decreased from 135.3 km2 in 1984 to 15.5 km2 in 2013 [67]. These results agree with
the present study confirming negative impacts of LUCC. Agriculture is the main
source of employment to about 92% of the population in Malawi which lives in rural
areas [61, 68]. Increase in agricultural activities leads to cultivated land expansion.
Cash crops (e.g., tea, coffee, tobacco, and cotton), subsistence crops (e.g., maize
and groundnuts), and animal rearing contribute to the increase in agricultural GDP.
Results in the present study agree with a report for the region in which land use
change (increase in farming activities) contributed to increase in GDP. Similar
findings have also been reported correlating land use to increase in income [67]. The
increase in cultivated land and artificial surfaces resulted into a decline in forest and
shrubland (Tables 4 and 5).

Furthermore, the country loses about 1.7% of its GDP on average annually due to
the combined effects of droughts and floods [69]. Heavy rains received during the
1989 season in the country (Figure 3) were associated with devastating floods that
drastically affected the GDP due to crop failure and loss of property as well as
human life in the same period but increased in the subsequent year (Figure 4).
Although the devastating rainfall in the 1989 season played a role in influencing the
GDP, other factors could also be at play due to the fact that drivers of economic
growth are diverse and vary in the magnitude of influence. For example, in 1989,
Malawi’s economy was associated with high fuel prices due to the war in Mozam-
bique. All fuel transportation routes from the Indian Ocean ports in Mozambique
were blocked, and consequently, there was a collapse in commodity prices [68].
Poor sales of tobacco which is the country’s major foreign exchange earner also
affected the GDP in 1989 [68]. Increased GDP between 2005 and 2009 has been
attributed to stabilization and enhanced income growth, which increased income
per capita due to the new economic policies and a stable political environment in
2004 [68].
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4.2 Consequences of forest decline

These study findings show a decline in forests and then an increase over the past
26 years (Figures 2 and 5 and Table 4). Clearing of forests from the catchment of
the middle Shire River has subjected the bare soil to erosion which finds its way into
the Shire River downstream to the Nkula Dam as a sink. This, thus, may explain the
heavy siltation at the Dam which has reduced the volume of water causing problems
with normal generation of electricity (Figures 4 and 5). The volume of the Dam at
Nkula Falls, which was 3 million m3 at its construction in the 1980s, has recently
dropped to nearly half of its original size due to massive siltation which conse-
quently resulted in low production of hydroelectricity, now failing to meet the
country’s demand for power. Nkula B Hydroelectric Power Station is the main
electricity generation plant in Malawi producing about 124 MW of electricity [70].
The electricity-providing company—the Electricity Supply Commission of Malawi
(ESCOM)—is now implementing involuntary power load shedding programs
resulting into national frequent blackouts. Consumers now resort to excessive use of
firewood/charcoal in place of electricity for cooking and other domestic chores
creating a heavy dependency on forest resources.

High soil losses in Ntcheu and Neno Districts could be due to increased popula-
tion as a result of the refugees’ long time settlement in these areas resulting into
removal of forests. The expansion of cultivated land could thus be the cause for
increased soil erosion and sediment transport downstream, which consequently
accumulate in the Nkula Dam in the middle Shire River (Figure 5). These findings
agree with a recent study [6] which confirmed that most of the sediments going into
the Shire River and finally depositing at the Nkula Dam originate from the western
side of the Shire River. Several studies elsewhere [20, 66] also report the same,
linking increased population to deforestation and soil. Loss of forests coupled with
agriculture are cause for rapid land use change resulting into increased soil erosion
and siltation in the middle Shire River catchment [4, 6, 8] (Figure 5). Malawi, and
the middle Shire River in particular, is therefore locked up in a cycle where anthro-
pogenic activities in the river’s catchment meant for a survival alternative to lack of
electricity have become a cause for soil erosion and siltation in the river, conse-
quently hampering the generation of the needed electricity.

5. Conclusions

Findings in this study show significant land use and land cover changes that
have occurred in the middle Shire River catchment over the past 26 years which
have also affected the Nkula Dam. Forestland and shrubland have declined, while
cultivated land and artificial surfaces have increased in the area, and deforestation
appears to be more pronounced in the western side of the middle Shire River.
Severe siltation downstream in the Nkula Dam appears to be strongly linked to
increased soil erosion as a result of land use and land cover change. Notable drivers
for LUCC include rapid population growth and GDP, macroeconomic activities
occurring especially in the western part of the river such as manufacturing indus-
tries, and poor national policies that have failed to effectively enforce ban of
uncontrolled harvesting of forest resources.

To solve these problems, there is a need to review and amend weak policies that
encourage noncompliance to regulations of managing forests. For example, all
policies that may encourage or result in soil erosion such as river bank cultivation
must be amended. Powers should be invested in local authorities to take part in
protecting the environment and/or in planting trees, and the government should be
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2004 [68].

58

Geospatial Analyses of Earth Observation (EO) Data

4.2 Consequences of forest decline

These study findings show a decline in forests and then an increase over the past
26 years (Figures 2 and 5 and Table 4). Clearing of forests from the catchment of
the middle Shire River has subjected the bare soil to erosion which finds its way into
the Shire River downstream to the Nkula Dam as a sink. This, thus, may explain the
heavy siltation at the Dam which has reduced the volume of water causing problems
with normal generation of electricity (Figures 4 and 5). The volume of the Dam at
Nkula Falls, which was 3 million m3 at its construction in the 1980s, has recently
dropped to nearly half of its original size due to massive siltation which conse-
quently resulted in low production of hydroelectricity, now failing to meet the
country’s demand for power. Nkula B Hydroelectric Power Station is the main
electricity generation plant in Malawi producing about 124 MW of electricity [70].
The electricity-providing company—the Electricity Supply Commission of Malawi
(ESCOM)—is now implementing involuntary power load shedding programs
resulting into national frequent blackouts. Consumers now resort to excessive use of
firewood/charcoal in place of electricity for cooking and other domestic chores
creating a heavy dependency on forest resources.

High soil losses in Ntcheu and Neno Districts could be due to increased popula-
tion as a result of the refugees’ long time settlement in these areas resulting into
removal of forests. The expansion of cultivated land could thus be the cause for
increased soil erosion and sediment transport downstream, which consequently
accumulate in the Nkula Dam in the middle Shire River (Figure 5). These findings
agree with a recent study [6] which confirmed that most of the sediments going into
the Shire River and finally depositing at the Nkula Dam originate from the western
side of the Shire River. Several studies elsewhere [20, 66] also report the same,
linking increased population to deforestation and soil. Loss of forests coupled with
agriculture are cause for rapid land use change resulting into increased soil erosion
and siltation in the middle Shire River catchment [4, 6, 8] (Figure 5). Malawi, and
the middle Shire River in particular, is therefore locked up in a cycle where anthro-
pogenic activities in the river’s catchment meant for a survival alternative to lack of
electricity have become a cause for soil erosion and siltation in the river, conse-
quently hampering the generation of the needed electricity.

5. Conclusions

Findings in this study show significant land use and land cover changes that
have occurred in the middle Shire River catchment over the past 26 years which
have also affected the Nkula Dam. Forestland and shrubland have declined, while
cultivated land and artificial surfaces have increased in the area, and deforestation
appears to be more pronounced in the western side of the middle Shire River.
Severe siltation downstream in the Nkula Dam appears to be strongly linked to
increased soil erosion as a result of land use and land cover change. Notable drivers
for LUCC include rapid population growth and GDP, macroeconomic activities
occurring especially in the western part of the river such as manufacturing indus-
tries, and poor national policies that have failed to effectively enforce ban of
uncontrolled harvesting of forest resources.

To solve these problems, there is a need to review and amend weak policies that
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able to provide seedlings for the operation. This should be done in a competition
manner that the village which will perform well should be given some incentives.
There is also need to increase fertilizer use so that land expansion for farming is
curbed and yields are improved. In addition to that, population growth can be
controlled through increase use of family planning. Encouraging children to go to
school to avoid early marriages might also help to reduce poverty which will help to
avoid cutting down of trees careless. Deliberate programs should be instituted by
the government to curb further effects of climate variability such as droughts and
floods. Such programs may include good agricultural practices that conserve soil
and protect it from water erosion, discourage river bank cultivation, intensify
afforestation programs, and ban the burning of charcoal. Findings in this study and
the combination of methods used (application of GIS, remote sensing, and analysis
of socioeconomic factors) can possibly be applied in areas where similar environ-
mental problems have occurred. It is preferable to include a conclusion(s) section
which will summarize the content of the book chapter.
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Transport Processes
Daniel A. Pickersgill, Hartmut Müller  
and Viviane R. Després

Abstract

Research on bioaerosol is still in its infancy. The dynamics and, therefore, the 
effects on atmospheric processes and the biosphere are often underestimated, or 
have not yet been sufficiently investigated. Atmospheric models such as FLEXPART 
and HYSPLIT enable researchers to simulate the transport of particles in the 
atmosphere and provide information on where air-parcels originate from. In the fol-
lowing, we present two methods for combining results of these models with spatial 
information, e.g., about vegetation. The first method shows how spatial CORINE 
land cover distribution can be analyzed within the boundaries of HYSPLIT trajec-
tories. In a second method, FLEXPART simulations are used in combination with 
COSMO rain data and tree maps to generate maps that indicate the potential origin 
of bioaerosol for selected periods of time.

Keywords: bioaerosol, wind trajectories, FLEXPART, GIS, ArcPy

1. Introduction

Bioaerosol, more precisely primary biological aerosol particles (PBAP), are 
particles of biological origin, smaller than 100 μm, that are released into the 
atmosphere. These include viruses, bacteria, pollen and fungal spores, small and 
cell fragments, and excrements from organisms [1]. The diameter of PBAP ranges 
from a few nanometers, such as cell fragments, proteins and viruses, to the upper 
size boundary seen for many plant pollen [2].

PBAPs emitted into the atmosphere are subject to many physical factors result-
ing in a considerable influence on the atmospheric residence time. Many meteoro-
logical factors such as wind speed, wind direction, convection, temperature and 
relative humidity influence the residence time which can result in PBAP covering 
long distances in the atmosphere. In addition, the residence time depends strongly 
on the aerodynamic diameter of the particles [3]. Removal from the atmosphere can 
happen by dry and wet deposition. For dry deposition, the PBAPs are removed by 
sedimentation, while for wet deposition they are washed out by precipitation. PBAP 
have a direct influence on humans when they act as allergens or pathogens [4, 5]. As 
an increasing proportion of the population suffers from allergies, the importance 
of accurate pollen prediction increases. Predictions are currently generated by the 
Deutscher Wetterdienst DWD (German Weather Service), which issues warnings 
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lowing, we present two methods for combining results of these models with spatial 
information, e.g., about vegetation. The first method shows how spatial CORINE 
land cover distribution can be analyzed within the boundaries of HYSPLIT trajec-
tories. In a second method, FLEXPART simulations are used in combination with 
COSMO rain data and tree maps to generate maps that indicate the potential origin 
of bioaerosol for selected periods of time.
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1. Introduction

Bioaerosol, more precisely primary biological aerosol particles (PBAP), are 
particles of biological origin, smaller than 100 μm, that are released into the 
atmosphere. These include viruses, bacteria, pollen and fungal spores, small and 
cell fragments, and excrements from organisms [1]. The diameter of PBAP ranges 
from a few nanometers, such as cell fragments, proteins and viruses, to the upper 
size boundary seen for many plant pollen [2].

PBAPs emitted into the atmosphere are subject to many physical factors result-
ing in a considerable influence on the atmospheric residence time. Many meteoro-
logical factors such as wind speed, wind direction, convection, temperature and 
relative humidity influence the residence time which can result in PBAP covering 
long distances in the atmosphere. In addition, the residence time depends strongly 
on the aerodynamic diameter of the particles [3]. Removal from the atmosphere can 
happen by dry and wet deposition. For dry deposition, the PBAPs are removed by 
sedimentation, while for wet deposition they are washed out by precipitation. PBAP 
have a direct influence on humans when they act as allergens or pathogens [4, 5]. As 
an increasing proportion of the population suffers from allergies, the importance 
of accurate pollen prediction increases. Predictions are currently generated by the 
Deutscher Wetterdienst DWD (German Weather Service), which issues warnings 
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for very large areas if a certain pollen concentration in the air is present. The pollen 
concentration is determined by the German Pollen Information Service Foundation 
(http://www.pollenstiftung.de) through microscopic analysis. The DWD processes 
these data using weather models and produces warning maps for pollen. Due to the 
long processing path and the small number of pollen collecting stations, large inac-
curacies occur. A more precise knowledge of the emission and transport processes 
could lead to considerably improved pollen predictions and thus help patients to be 
better prepared.

The analysis of PBAP, especially concerning their origin, poses special chal-
lenges for science. Atmospheric transport is a highly complex issue. The composi-
tion of emissions, strongly depend on the biotope, which is highly variable in space, 
and in time, dependent on the season. Figure 1 shows an example of the proportion 
of Alnus sp. (alder) DNA sequences in the total number of isolated plant sequences 
found on analyzed weekly air sample filters in spring 2006. As can be seen, the pro-
portion decreases from sample B to C from ~70 to 0% and increases from sample D 
to E from 0 to ~30%. These results raise the question whether such high variances in 
such a short time frame can be explained by air movement.

In the following sections we will describe methods to identify potential areas 
of origin of PBAP starting from a firmly defined sampling location and using 
Lagrangian back-trajectory transport model. By using two-dimensional raster data 
containing information on potential emission sources we will show methods to 
identify correlations with observed PBAP data by modelling the potential transport 
processes of the particles in the atmosphere.

2. Data

2.1 PBAP data

The aerosols were collected on glass fiber filters for over a year. The data col-
lection station was established at about 20 m height above ground, on the roof of 

Figure 1. 
Proportion of Alnus sp. (alder) DNA sequences in the total number of isolated plant sequences collected 
between March and June 2006 in Mainz, Germany (49°59′31.36"N 8°14′15.22"E). In addition to the percentage 
(y-axis) the time period of the individual air samples is visualized by the column width (x-axis).
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the old Max Planck Institute for chemistry, located at the campus of the Johannes 
Gutenberg University Mainz (49°59′31.36"N, 8°14′15.22"E). An air volume of 
0.3 m3 min−1 was filtered by a high-volume sampler. The operating time was 
between 1 and 7 days, which was equivalent to an air volume of about 430–3000 m3. 
The DNA was extracted from the air filter samples, the plant DNA isolated and 
taxonomically identified. The previously unpublished data were kindly provided 
by Isabell Müller-Germann [6]. In pollen flight periods a large percentage of plant 
bioaerosol are formed by pollen. In the following, therefore, the simplified term 
pollen is used, even though other plant particles may have been measured. An exact 
description of the methodology can be found in Fröhlich-Nowoisky et al. [7], with 
the modification that plant-specific primers were used.

2.2 HYSPLIT

HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) [8] has 
been used for about 30 years by the atmospheric science community to calculate 
atmospheric transport, dispersion, chemical transformation and deposition. A 
major task of the system is the calculation of backward trajectories to determine the 
origin of air masses. This makes it possible to establish cause-effect relationships. 
Forward trajectories, on the other hand, are used to predict the propagation of, e.g., 
volcanic ash or radioactive particles. HYSPLIT uses a hybrid calculation approach 
and uses both Lagrangian and Eulerian methods [9]. By using the READY system 
(http://ready.arl.noaa.gov/index.php), HYSPLIT calculations can even be per-
formed online. The meteorological basis of the calculations is the globally available 
“Global Data Assimilation System” (GDAS) provided by the National Oceanic and 
Atmospheric Administration NOAA with an area resolution of 1 × 1 and a vertical 
subdivision into 23 layers reaching a height of 26.5 km above ground. The results of 
a back trajectory calculation are single line features obtained for each start time of 
the calculation. The line feature contains the four-dimensional information (place 
and time) on the origins of an air-parcel that was measured at a defined point in 
time t0. The result of the calculation can be generated in zipped Keyhole Markup 
Language (.kmz) or Shapefile (.shp) format, which easies further processing in 
Geographic Information Systems.

2.3 FLEXPART

FLEXible PARTicle dispersion model (FLEXPART) [10] is a Lagrangian particle 
dispersion model for calculating the propagation of air masses over long distances. 
The results are obtained in the multidimensional Network Common Data Form 
(NetCDF) format which is often used in meteorology [11]. The result files contain 
spatial information for five air layers and two particle types (tracer). One particle 
type has an atmospheric half-life of 12 hours, which approximately is equal to the 
average atmospheric retention time for PBAP of pollen size, when considering dry 
and wet deposition. For comparison reasons, no half-life parameter was set for the 
second particle type. It thus represents a so-called air tracer. For every single day of a 
10 weeks’ period a simulation was performed with a spatial resolution of 10 × 10 km.

The FLEXPART model calculation is based on four-dimensional meteorologi-
cal raster data sets, which define the level of resolution for the results. The DWD 
used analysis data from the COSMO-EU model [12] for this purpose (http://www.
dwd.de). The data resolution is 0.0625° (~7 km) in horizontal direction. In vertical 
direction, the raster cells are ordered into 40 layers reaching a height of 22.5 km 
above ground. The raster grid is rotated against the north direction, with the North 
Pole at 40° latitude and −170° longitude.
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0.3 m3 min−1 was filtered by a high-volume sampler. The operating time was 
between 1 and 7 days, which was equivalent to an air volume of about 430–3000 m3. 
The DNA was extracted from the air filter samples, the plant DNA isolated and 
taxonomically identified. The previously unpublished data were kindly provided 
by Isabell Müller-Germann [6]. In pollen flight periods a large percentage of plant 
bioaerosol are formed by pollen. In the following, therefore, the simplified term 
pollen is used, even though other plant particles may have been measured. An exact 
description of the methodology can be found in Fröhlich-Nowoisky et al. [7], with 
the modification that plant-specific primers were used.

2.2 HYSPLIT

HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) [8] has 
been used for about 30 years by the atmospheric science community to calculate 
atmospheric transport, dispersion, chemical transformation and deposition. A 
major task of the system is the calculation of backward trajectories to determine the 
origin of air masses. This makes it possible to establish cause-effect relationships. 
Forward trajectories, on the other hand, are used to predict the propagation of, e.g., 
volcanic ash or radioactive particles. HYSPLIT uses a hybrid calculation approach 
and uses both Lagrangian and Eulerian methods [9]. By using the READY system 
(http://ready.arl.noaa.gov/index.php), HYSPLIT calculations can even be per-
formed online. The meteorological basis of the calculations is the globally available 
“Global Data Assimilation System” (GDAS) provided by the National Oceanic and 
Atmospheric Administration NOAA with an area resolution of 1 × 1 and a vertical 
subdivision into 23 layers reaching a height of 26.5 km above ground. The results of 
a back trajectory calculation are single line features obtained for each start time of 
the calculation. The line feature contains the four-dimensional information (place 
and time) on the origins of an air-parcel that was measured at a defined point in 
time t0. The result of the calculation can be generated in zipped Keyhole Markup 
Language (.kmz) or Shapefile (.shp) format, which easies further processing in 
Geographic Information Systems.

2.3 FLEXPART

FLEXible PARTicle dispersion model (FLEXPART) [10] is a Lagrangian particle 
dispersion model for calculating the propagation of air masses over long distances. 
The results are obtained in the multidimensional Network Common Data Form 
(NetCDF) format which is often used in meteorology [11]. The result files contain 
spatial information for five air layers and two particle types (tracer). One particle 
type has an atmospheric half-life of 12 hours, which approximately is equal to the 
average atmospheric retention time for PBAP of pollen size, when considering dry 
and wet deposition. For comparison reasons, no half-life parameter was set for the 
second particle type. It thus represents a so-called air tracer. For every single day of a 
10 weeks’ period a simulation was performed with a spatial resolution of 10 × 10 km.

The FLEXPART model calculation is based on four-dimensional meteorologi-
cal raster data sets, which define the level of resolution for the results. The DWD 
used analysis data from the COSMO-EU model [12] for this purpose (http://www.
dwd.de). The data resolution is 0.0625° (~7 km) in horizontal direction. In vertical 
direction, the raster cells are ordered into 40 layers reaching a height of 22.5 km 
above ground. The raster grid is rotated against the north direction, with the North 
Pole at 40° latitude and −170° longitude.
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In addition, rain areas (see Section 3.2.3) were extracted from the COSMO-EU 
model. These areas contain information about location, quantity and type of rain 
(convective or scalar), given in the form of total hourly rainfall accumulated to daily 
sums in mm.

2.4 Tree species maps for European forests

The “Tree species maps for European forests” published by the European Forest 
Institute [13] were used as a data source for potential pollen emission sites. These 
maps were generated using statistical methods such as logistic regression and 
Kriging and differ according to region and national forest inventory methodology. 
The resulting data sets represent the only European-wide mapping of tree species 
to date. The data for each recorded tree species is provided in the form of a GeoTiff 
raster layer with a resolution of 1 × 1 km per grid cell. The numerical value of each 
grid cell is the percentage coverage of the cell with the respective tree species.

The tree species maps are available in the spatial reference system ETRS89/
ETRS-LAEA (EPSG:3035). For the processing discussed here they were trans-
formed into the geodetic reference system WGS84.

2.5 CORINE land cover

Another used data source is the land use map published by the European 
Environment Agency’s “CORINE Land Cover” project [14]. Updates to the CORINE 
Land Cover (CLC) inventory, dating from1985, are available for 2000, 2006, 
2012, and 2018. The 2006 version best fit the time frame of the PBAP data and was 
therefore used. The map shows the type of land use for the participating 39 EU 
countries in 100 × 100 m grid cell resolution, subdivided into 44 different land-use 
classes. The map is available in the spatial reference system ETRS89/ETRS-LAEA 
(EPSG:3035) and, therefore, was also transformed into WGS84 for processing.

3. Methodology

3.1 Land use analyses based on trajectories (HYSPLIT)

Trajectories give information about height, direction and residence time of an 
air parcel. The used backward trajectories show which ground areas have been over 
flown before an air parcel reached the measuring point in Mainz. The area composi-
tion has a decisive influence on the composition of the collected bioaerosol.

The trajectories calculated with HYSLPIT are only available as line-features 
and do not provide information that could serve as a basis for area-related calcula-
tion. To solve this problem area-buffers were created for the line features. In a 
second step, these buffers were used to calculate the composition of the underlying 
CORINE land use areas by polygon overlay (Figure 2). The resulting area clips of 
the data set could then be used to statistically evaluate the pollen values.

3.2 Potential maps of pollen origin

Both FLEXPART and HYSPLIT simulations generate information on the resi-
dence time of air parcels arriving at specific points of measurement. However, 
FLEXPART performs not only line calculations for individual points in time of the 
residence time as HYSPLIT trajectories do, but can generate grids of air parcel resi-
dence time for entire time periods. Therefore, in addition to location and time, one 
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gets the area-related information on how long air parcels have resided in defined 
areas. Thus, different weights are assigned to areas dependent on the influence on 
the air parcels that reach the point of measurement.

As discussed in Section 2, the FLEXPART day simulation results for the study 
periods are available in multidimensional NetCDF format, the format frequently 
used in meteorology. Due to the high number of possible two-dimensional raster 
representations the interpretation of the results in view of the transport of air 
parcels to the point of measurement is very time-consuming. It therefore makes 
sense to automate the processing steps. Processing steps to be automated include 
the export of information from NetCDF files into a raster format suited for further 
processing in a GIS, the subsequent processing of the raster grids including remov-
ing days of rain, and the concatenation of this information with tree cover gradi-
ents (see Section 2). The aim is to create maps which, by combining the residence 
time of air parcels with the tree population, lead to new insights into the potential 
origin of bioaerosol.

The FLEXPART results (see Figure 3) are extracted by using ArcPy, a Python 
library that provides tools for the analysis and conversion of geographical data 
[15]. Using tools from the “Multidimension toolbox,” the spatial information for 
all required combinations of time period, height of the air parcels and tracer is 
extracted and saved as a raster file in GeoTiff format. Defining the required dimen-
sions for NetCDF files with massive content is often a complex task. Therefore, an 
ArcGIS tool was developed that considerably simplifies the handling of dimensions 
for NetCDF files and data export [16]. The generated raster layers contain the 
residence time of the air parcels per day in a resolution of 10 × 10 km.

The individual layers created for each time step must be further processed. For 
the following steps only the two bottom air mass layers are considered. It is assumed 
that the so-called atmospheric boundary layer air is a homogeneously mixed in 
respect to the contained particles [17]. Solar radiation causes the boundary layer to 
build up during the course of the day. Depending on the conditions, the height of 
the boundary layer varies, but should normally be higher than 500 m above ground. 
Consequently, the two bottom air layers (height above ground 0–100 m, and height 
above ground 100–500 m) are merged into on single layer.

The tree species coverage data are available in a different projection system and 
at a higher resolution (1 × 1 km). Therefore, the FLEXPART grids are re-projected 

Figure 2. 
HYSPLIT trajectories (lines) and their buffers superimposed on the CORINE land cover map.
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and resampled according to the daily residency time. Re-projection eliminates pixel 
inconsistencies between different projection systems and thus prevents errors in 
raster operations such as multiplication. Although the resampling does not improve 
the FLEXPART data resolution, the resampled data can be used for subsequent 
analysis with tree species coverage data.

The temporal resolution of the pollen data analysis is usually 7 days; therefore, 
the daily residence times must also be averaged. Before doing so, days with rain are 
identified and excluded from the means formation to eliminate the influence of 
such days on the distribution of pollen in the air due to wet deposition [18].

For this purpose, hour values of rain fields which are available in grid format in 
the COSMO model are used (see Section 2). The data is provided in COSMO’s native 
model grid and must first be rotated spatially to match the spatial reference system 
used in this study. In order to avoid the processing of uninvolved areas the rain 
grids are clipped to the spatial extent of the FLEXPART data sets for the considered 
periods, day sums are formed for the remaining rain cells. If the value of a day 
sum exceeds 2 mm per day, the air residency time for this day is removed, i.e., not 
considered in the week average value calculation.

The weekly average is the mean residence times of the remaining days. Figure 4 
shows examples of results for two different weeks. The figure illustrates the differ-
ence of these 2 weeks; as already mentioned, only dry days were taken into account.

A first attempt was made to derive land cover statistics for the areas under the air 
parcels, in analogy to the trajectory method. However, due to the large spatial extent 
following from the calculation of week average values, the statistics generated were 
not significant. Therefore, it was not possible to confine areas of potential origin of 
pollen with sufficient probability. A further attempt to produce significant statistics 
was made by extracting only areas with 99 and 95 percentile values, but with the 
persistent problem that all extracted areas had the same weight.

Figure 3. 
Schematic representation of the most relevant processing steps.
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In a second approach, the weekly residence times of the air parcels was mul-
tiplied by the percentage of individual tree species coverage such as Alnus sp. or 
Betula sp. This approach yields high values for areas characterized by long residency 
periods and high coverage rates, low values for areas with short residency periods 

Figure 4. 
Comparison of 2 weeks. The difference of residency time in hours per week is shown. A predominance of the 
first week is shown with a red color, the second in blue color.

Figure 5. 
Potential map. Red: high potential, yellow: low potential, transparent: no potential, because of no tree 
population or no residency time of an air parcel. Values result from multiplication of tree species coverage in 
percent and average residency time of air in hours per week.
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percent and average residency time of air in hours per week.
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and low coverage rates. This approach not only suppresses areas with a short 
residency time of an air parcel, which does not significantly affect the air composi-
tion at the point of measurement, but also areas with a long residency time of an 
air parcel, in areas without population of the respective tree species. The resulting 
potential maps show tree species populations that could be potential sources of 
detected pollen at the point of measurement in a given week (see Figure 5).

The resulting weekly potential maps can now be visually interpreted. Due to 
the large number of possible potential grids, however, it is useful to determine a 
numerical value for the purpose of automated evaluation. Summing up all grid cell 
values should result in high values for weeks with a high pollen volume.

4. Results and discussion

The described methods open up new possibilities for the analysis of long-distance 
transport processes in bioaerosol research. The research question was to establish a 
quantifiable link between temporally dynamic PBAP data, which are sampled at a spa-
tially static point, and the spatially dynamic but temporally constant GIS raster maps. 
Both the temporally and the spatially resolved dispersion models function as connect-
ing elements. The observation of near-ground air movements makes it possible to 
strongly limit the potential emission areas. Flexible calculations with high temporal 
resolution for each sampling period can be carried out on the basis of raster maps.

In contrast to HYSPLIT trajectories, the residence times of air parcels generated 
by FLEXPART is not specified at individual points in time, but for entire periods—
instead of line features, grids are generated. This makes it possible to assign lower 
weights to areas with a short residence time of air parcel. In addition, FLEXPART 
takes the air movements in the near-ground layers of the atmosphere into account in 
a more realistic manner. Another advantage over HYSPLIT is the higher spatial and 
temporal resolution of the underlying data set (GDAS vs. COSMO-EU).

By multiplying by the percentage of tree species coverage, potential emission 
areas can be emphasized or omitted, depending on the occurrence of observed tree 
species. Consequently, only tree species populations that could be potential sources 
for pollen deposition within a given week are present in the resulting potential maps. 
Another advantage is the consideration of rain; it can be assumed that convective 
and continuous scalar showers efficiently remove aerosols at the point of origin.

The used greatly simplified filtering of rain events is still a source of uncertainty. 
If the amount of rain on a day exceeded the threshold value, the residence time 
of all air parcels for that day is not taken into account when calculating the aver-
age week value. A fixed threshold value is used and the temporal distribution and 
the type of precipitation are not considered. A short period of strong convective 
precipitation with a total of more than 2 mm is equal to a scalar precipitation spread 
over several hours. In addition, the spatial distribution of precipitation is not taken 
into account. Although only rain events within significant air parcels are consid-
ered, the same weight is assigned to all locations within these areas. Given the large 
spatial extent of the air masses, locations with substantially different distances to 
the point of measurement are equally weighted. Likewise, if a precipitation event is 
locally limited, all non-influenced air parcels for this day are removed.

5. Conclusions and outlook

Atmospheric convection and transport processes are highly complex issues for 
which many new insights have been gained in recent years. Hence, highly complex 
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interactions, such as the transport of bioaerosol in the atmosphere including its 
physical and biological effects on different areas of the ecosystem, can be studied 
and evaluated.

The presented methods allow the confinement of potential emission sources 
of bioaerosol and could aid in assessing the contribution of long-range-transport 
to the locally measured bioaerosol. This, in a simpler first approach can be used 
to calculate the relative contribution of different potential emission areas, such as 
the presented land cover maps. This allows the search for correlations between a 
specific land-type with the occurrence of specific PBAP. Moreover, by combining 
the residence time of air-masses with rasterized coverage data, such as the discussed 
tree species maps, more accurate predictions on the potential contribution of 
certain areas can be made. This allows the analysis of the atmospheric transport of 
specific species or groups of species.

However, the developed methods are limited to the extent that it is not yet 
possible to adequately describe or simulate real conditions in several respects. A 
clear improvement would result from a trajectory-level consideration of rain events, 
which effectively remove bioaerosol from the atmosphere. For this purpose, it 
would be necessary to investigate each air parcel at all time-points to assess whether 
it is located in a rain event. If an air parcel crosses a rain event, the trajectory could 
be removed and thus not used for the calculation of the total residency time.

In all respects, the temporal and/or spatial resolution of the PBAP data, meteo-
rological data, therefore the accuracy of model predictions, and the rasterized 
potential emission source maps, are key for a successful application of the methods. 
Constantly improving methods of bioaerosol monitoring, more detailed computa-
tional models, better computational performances and more accurate geographical 
data, will lead to more accurate analyses of PBAP transport processes in the atmo-
sphere. Predicting bioaerosol composition and concentrations with a high spatial 
and temporal resolution would provide an excellent basis for assessing the impacts 
of bioaerosol on humans, the ecosystems and the climate and ultimately allow the 
implementation of accurate early-warning systems to minimize negative potential 
impacts on, e.g., allergy sufferers or agriculture.
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Abstract

Lakes are inestimable renewable natural resources that are under significant 
pressure by human activities. Monitoring lakes regularly is necessary to understand 
their dynamics and the drivers of these dynamics to support effective management. 
Remote sensing by satellite sensors offers a significant opportunity to increase the 
spatiotemporal coverage of environmental monitoring programs for inland waters. 
Lake color is a water quality attribute that can be remotely sensed and is independent 
of the sensor specifications and water type. In this study we used the Multispectral 
Imager (MSI) on two Sentinel-2 satellites to determine the color of water of 170 
Italian lakes during two periods in 2017. Overall, most of the lakes appeared blue in 
spring and green-yellow in late summer, and in particular, we confirm a blue-water 
status of the largest lakes in the subalpine ecoregion. The color and its seasonality are 
consistent with characteristics determined by geomorphology and primary driv-
ers of water quality. This suggests that information about the color of the lakes can 
contribute to synoptic assessments of the trophic status of lakes. Further ongoing 
research efforts are focused to extend the mapping over multiple years.

Keywords: chromaticity, multispectral sensors, optical remote sensing, inland 
waters, mapping, Sentinel-2, Italy, lakes

1. Introduction

Freshwater constitutes only 3% of the Earth’s water resource, but only 1% is 
available as surface water in lakes and rivers, while the remainder is frozen in glaciers 
and ice caps or stored underground. Lakes represent a valuable source of water for 
consumption and irrigation and provide a variety of key services such as food provi-
sion, energy generation, transportation, recreation, and tourism. Lakes are essential 
components of the hydrological and biogeochemical cycles due to their basic ability 
to store, retain, clean, and provide water [1]. Lake waters also contribute to support 
the agricultural sector and livestock to feed the 7 billion of people on our planet [2].

Lake ecosystems are under pressure from various human impacts as well 
as climate change [3]. They are sensitive to a range of stressors operating at 
global, regional, and local scales [4] whose impacts manifest in eutrophication, 
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proliferation of toxic algae, increase in turbidity, loss of aquatic benthos, and 
harmful effects on health for both animals and humans [5]. Significant effort is 
often devoted to monitor for changes, to the restoration of impacted systems, and to 
the preservation of healthy lakes. For example, in Europe, the need for having “[...] 
a coherent and comprehensive overview of water status within each river basin 
district” was defined by the Water Framework Directive (WFD) [6], setting out 
the requirements for the monitoring of the status of surface waters with the main 
objective of maintaining “good” and non-deteriorating status for all waters.

Earth observation (EO) techniques with optical sensors have been used for many 
decades to support timely and frequent acquisition of synoptic lake water quality 
information [7 and reference herein]. In recent years, EO has become an operational 
tool to support traditional measurements providing, at a relatively low cost and for 
some bio-geophysical parameters, information on surface water status to support a 
variety of applications [e.g., 8, 9]. EO systems measuring water quality typically are 
multispectral radiometers which might be grouped by their characteristic spatial 
and spectral resolution. Spatial resolution (the area on the ground covered by each 
pixel) is of particular importance for remote sensing of inland waters [10] as it 
determines the minimum size of lakes visible by each satellite. Four groupings of 
satellite sensors can currently be distinguished: ocean color (e.g., Sentinel-3 OLCI 
or MODIS, with pixels of about 300–1000 m), multispectral sensors (e.g., Landsat 
or Sentinel-2, with pixels of 10–30 m), imaging spectrometers (e.g., Hyperion or 
PRISMA, with a pixel size of 30 m, but coverage is not global unlike the previous 
missions), and geostationary platforms (e.g., GOCI, with a 500 m pixel size). Ocean 
color sensors provide better data for aquatic applications because they have more 
and narrower spectral bands and higher signal-to-noise ratios, but multispectral 
sensors are often the only choice for inland water applications because their finer 
spatial resolution can resolve smaller water bodies [10]. Multiple sensors might be 
used for improving the resolutions as in [11].

After processing of the light measured by a satellite sensor at the top of the 
atmosphere by removing light scattered by the atmosphere, stray light from adja-
cent pixels and specular reflection from the water surface physical and biochemical 
parameters of lakes can be estimated using several methods. Parameters that can 
be estimated include turbidity, photosynthetic biota (e.g., phytoplankton, macro-
phytes, and cyanobacteria), colored dissolved organic matter (CDOM, e.g., humic 
and fulvic substances), and suspended non-algal particulate matter (e.g., detritus 
from land). Lakes are complex ecosystems relative to oceanic waters due to the large 
variety and range of concentrations of living and nonliving material [12]. This 
complexity also applies to the optical properties, i.e., the spectral characteristics of 
absorption and scattering of light, of the constituents of lake water [13, 14], and, 
therefore, their estimation in lakes is extremely challenging. For example, if one 
component (e.g., CDOM) dominates the others (e.g., phytoplankton), it may mask 
the signature of the other components in the reflectance spectrum and reduce the 
accuracy of determining their concentrations. Due to this optical complexity, most 
algorithms for the retrieval of biogeochemical parameters are tailored to specific 
lakes and are not applicable to systems with optical properties different to those 
used for their development [e.g., 15, 16].

When research activities are focusing on mapping water quality in lakes from 
national to global scales, simpler yet robust approaches might be therefore strategi-
cally adopted. Among those, the methods estimating the color of water as perceived 
by the human eye show promise, because it does not rely on knowledge on inherent 
optical properties and concentrations of water components. Although perceived 
color is not unambiguously related to quantitative water quality attributes such as 
clarity, the phytoplankton, suspended matter, and CDOM, the color of water can 
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be seen as a water quality attribute in its own right with the advantage of intuitive 
meaning in public perception.

The Commission Internationale de l’Éclairage (CIE) [17] mathematically defines 
color by weighting the reflectance spectrum of an object with three mixing curves, 
or chromaticity curves, each specifying the respective sensitivity of the human 
eye to one of the primary colors. To adapt this definition to the spectral bands of 
satellite sensors, several methods have been developed starting from the use of 
Forel-Ule (FU) scale, a historical standard recently recalibrated [18]. More recently, 
van der Woerd and Wernand [19] developed an algorithm to derive the hue angle 
consistently from different ocean color and multispectral sensors. Hue angle can be 
thought of as the pure color most closely resembling the true color of natural waters.

Several studies have used color analysis for a variety of applications in dif-
ferent aquatic ecosystems, including oceans and lakes. For example, [20] used 
chromaticity coordinates to prove the capability of Landsat-5 in assessing water 
quality changes from the pelagic to the coastal zone in Lake Garda (Italy). Wang 
et al [21] assessed the trophic state of global inland waters using a MODIS-derived 
Forel-Ule index finding that oligotrophic large lakes are concentrated in plateau 
regions in central Asia and South America, while eutrophic large lakes are con-
centrated in central Africa, eastern Asia, and mid-northern and southeast North 
America. In New Zealand, [22] calculate the color of water on almost 45,000 
observations from 1486 lakes over 4 years. A preliminary exploratory analysis 
suggests that both geophysical and anthropogenic factors, such as catchment land 
use, provide environmental control of lake color and are promising avenues for 
future analysis. Lastly, [23] revealed that subtropical oceans will get bluer as fewer 
phytoplanktons are able to survive in its waters, while green regions at the poles 
will turn greener as warming waters become more habitable for them.

In this study, the method developed in [24] is adopted to calculate the color of 
Italian lakes based on multispectral Sentinel-2 images, whose 10-m spatial resolu-
tion allowed us to observe 170 lakes of the country. We follow [22] to analyze and 
classify lake colors from two different periods in 2017 for seasonal variations and 
patterns related to geomorphology and other primary drivers of water quality.

2. Materials and methods

2.1 Study area

About 2000 lakes are known in Italy, and ~500 of those have a surface area 
greater than 0.2 km2 (400 of which are freshwater bodies and 100 brackish water 
bodies) [25]. The lakes are diverse systems with a plethora of values, including 
biodiversity, water provision, recreation, and landscape. For example, the volcanic-
lake district located between Lazio and Basilicata administrative regions has 80% of 
the deep lakes within the Mediterranean coastal region holding 94% of the freshwa-
ter in central and southern Italy [26].

Lakes in Italy have different origins and features. Alpine lakes are generally 
small, fed by meltwater, and are normally located at altitudes above 2000 m a.s.l. 
where they occupy basins carved by glaciers. The deep subalpine lakes—the largest 
in Italy—occupy deep elongated valleys shaped by the erosive action of glaciers 
during the last glacial period. The debris left by ice on the edge of the plain forms 
the so-called morainic amphitheaters that, like the case of Lake Garda, still mark 
the southern limit of these water basins. The moraine lakes are entirely enclosed by 
hills formed by glacial deposits on the border between the Prealps and the Po Plain 
(e.g., lakes Viverone, Varese, Pusiano). The barrier lakes are formed following the 
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proliferation of toxic algae, increase in turbidity, loss of aquatic benthos, and 
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obstruction of a river valley due to a landslide or the accumulation of alluvial sedi-
ments; examples are Lake Alleghe (landslide) and Lake Levico (accumulation of 
sediments). Volcanic lakes, mainly found in central Italy, feature an almost circular 
shape. Their formation is mainly related to subsidence and caldera formation dur-
ing the final stages of volcanic activity [27]; examples are Lake Bolsena and Lake 
Bracciano. Alluvial lakes located in Central Apennines are formed by the filling of 
depressions originated by the raising of the Apennine chain (e.g., Lake Trasimeno). 
Other types of lakes include coastal and artificial ones.

Italy’s overall lacustrine water volume is about 146 billion m3, with seven large 
lakes (Garda, Maggiore, Como, Bolsena, Iseo, Bracciano, and Monte Cotugno) 
representing more than 97% of this amount. A major part of these lakes is located 
in the northern sector of the Italian Peninsula (along the Alpine range), although 
the Mediterranean regions are characterized by a high number of artificial lakes 
mainly supporting drinking or irrigation purposes. The morphology of the lakes 
is diverse with surface areas ranging between 3.4 and 370 km2 (lakes Comabbio 
and Garda, respectively), maximum depths ranging between 2 and 410 m (Lesina 
and Como), and altitudes ranging between 0 and 507 m a.s.l. (lakes Lesina and 
Varano, and Vico).

Since 1997, a systematic investigation of morphological, physical, chemical, and 
biological features of the main lakes (with areas >0.2 km2) has been implemented 
under the Project LIMNO. This project has the objective of developing a territorial 
information system for the interdisciplinary study of Italian lake environments. It 
consists of a database focused on morphometric, chemical, and biological data of 
water and sediments and the geographic information system tool (GIS LIMNO), 
which also includes thematic information on land use.

A major outcome of this project is the ability to analyze the physical and chemi-
cal variables for time trends in many lakes, especially the subalpine ones. For Lake 
Pusiano, it was revealed that the total phosphorus (TP) concentration, after having 
increased up to 200 μg/L (i.e., hypereutrophic) around the middle of the 1980s of 
the last century, has undergone a constant decline, down to the value of 58 μg/L 
in 2004. In other cases, however, opposite trends were observed. For example, 
Lake Garda exhibited TP concentrations in the range of 15 (1990s) to 34 μg/L 
during the 2004 circulation. In general, TP concentration shows higher values in 
lakes located at altitudes lower than 1000 m a.s.l. (median = 43 μg/L), while, for 
high-altitude lakes, this value never exceeds 4 μg/L. A similar trend has been also 
detected for total alkalinity (TAlk), with the highest values at low-altitude lakes 
(TAlk = 2.65 meq/L) and lowest values at high-altitude lakes (TAlk = 0.40 meq/L). 
This trend is also reflected by pH, which shows the minimum values at the highest 
altitudes. To sum up, the collected evidence has confirmed a considerable reduction 
in the maximum values of nutrients and contaminants even if data has often veri-
fied an increase in their basal levels.

2.2 Sentinel-2 data and processing

Sentinel-2 is a multispectral imaging mission of the Copernicus program. The 
mission that is funded by ESA Member States and the European Commission 
consists of twin satellites, the Sentinel-2A and Sentinel-2B, launched on 23 June 
2015 on 7 March 2017, respectively.

Sentinel-2A and Sentinel-2B carry the Multispectral Imager (MSI), a 
push-broom sensor designed and built by Airbus Defense and Space, France. 
MSI has 13 spectral bands, ranging from the visible to the shortwave infrared 
(443–2190 nm) [28], with a swath width of 290 km and spatial resolutions of 
10, 20, and 60 m (Table 1).
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By providing spatial resolution on the order of tens of meters and spectral bands 
comparable to the Operational Land Imager on Landsat 8 (and imagers on previous 
Landsat missions back to Landsat-5), Sentinel-2 is becoming to be considered as a 
key sensor for mapping lakes [10], which are often too small for ocean color sensors 
largely used in water quality studies [e.g., 21]. Then, considering the capacity of 
revisiting the same area every 5 days (2–3 days toward mid to high latitudes because 
of the overlap of the paths), Sentinel-2 is also useful for tracking changes over time 
scales of weeks. Therefore, in the last years, a number of lake studies have been 
developed with Sentinel-2 [e.g., 29–34].

In our study, 45 Sentinel-2A and Sentinel-2B MSI images were chosen, 22 during 
the spring (end of March to end of May) and the remaining acquired between 
late August and the end of September (late summer). Images were selected based 
on clear sky conditions and low glint contamination. Level-2C standard products 
were downloaded via the Copernicus Open Access Hub. The level-2C standard 
product is atmospherically corrected using the Sen2Cor [35]. Although the level-2C 
products rely on an atmospheric correction scheme not specifically designed for 
retrieving water leaving reflectance, it was recently demonstrated that its accuracy 
was better for inland than for coastal waters [36]; moreover level-2C MSI data have 
been used both in lake [37] and shallow water [38] applications. The MSI bands 
1–5 were resampled at 10 m and then converted into remote sensing reflectance 
(Rrs) by dividing level-2C reflectance by π. The remaining spectral bands were not 
used as chromaticity which is entirely determined by light in the visible part of the 
spectrum. Finally, imagery data in Rrs units were imported into a GIS environment 
for clipping to vector outlines of the lakes listed in the geodatabase of the Italian 
Institute for Environmental Protection and Research (ISPRA). The 10-m spatial 
resolution of Sentinel-2 allowed us to consider 170 lakes down to a minimum size 
of 0.3 km2. For each lake, the Rrs values were extracted from a square area avoiding 

S2A S2B

Band 
number

Central 
wavelength 

(nm)

Bandwidth 
(nm)

Central 
wavelength 

(nm)

Bandwidth 
(nm)

Spatial 
resolution (m)

b1 442.7 21 442.2 21 60

b2 492.4 66 492.1 66 10

b3 559.8 36 559.0 36 10

b4 664.6 31 664.9 31 10

b5 704.1 15 703.8 16 20

b6 740.5 15 739.1 15 20

b7 782.8 20 779.7 20 20

b8 832.8 106 832.9 106 10

b8a 864.7 21 864.0 22 20

b9 945.1 20 943.2 21 60

b10 1373.5 31 1376.9 30 60

b11 1613.7 91 1610.4 94 20

b12 2202.4 175 2185.7 185 20

Table 1. 
Nominal settings of Sentinel-2A/Sentinel-2B MSI with band number, central wavelength, band width, and 
pixel size/resolution (source ESA).
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islands and shallow waters, thus reducing the chance for mixed land-water pixels 
and bottom effects. The area used corresponds to a pixel window ranging from 
3-by-3 to 90-by-90 and from smaller to larger lakes.

The chromaticity coordinates x, y, and z from MSI-derived Rrs data were com-
puted by normalizing the individual tristimulus values X, Y, and Z:

	​ x = ​  X ______ X + Y + Z ​;  y = ​  Y ______ X + Y + Z ​;  z = ​  Z ______ X + Y + Z ​; with x + y + z = 1​	 (1)

X, Y, and Z were computed as a linear weighted sum of MSI’s five Rrs bands in 
the visible part of the spectrum (cf. Table 1) according to [24] (Eqs. (2)-(5)):

	​ X = 8.356 Rrs​(b1)​ + 12.040 Rrs​(b2)​ + 53.696Rrs​(b3)​ + 32.087Rrs​(b4)​  
                    + 0.487Rrs​(b5)​​		

(2)

	 Y​= 0.993 Rrs​(b1)​ + 23.122 Rrs​(b2)​ + 65.702Rrs​(b3)​ + 16.830Rrs​(b4)​ 
                    + 0.177Rrs​(b5)​​		

(3)

	​ Z = 43.487 Rrs​(b1)​ + 61.055 Rrs​(b2)​ + 1.778Rrs​(b3)​ + 0.015Rrs​(b4)​​	 (4)

The x and y pairs were then plotted in the typical horseshoe-shaped chromatic-
ity diagram (locus), where the center of the chromaticity diagram is the “white 
point” at which x = y = z = 1/3.

Any pair of x and y coordinates was then converted to hue angle (α). This is 
the angle between the line drawn from the white point to the x, y coordinate and 
the x-axis in anticlockwise direction. α was computed by using the four-quadrant 
arctangent function atan2 in MATLAB according to [22] (Eq. (5)):

	​ α = arctan ​(y − ​1 ⁄ 3​, x − ​1 ⁄ 3​)​modulus2π​	 (5)

The final step was the computation of dominant wavelength (λd). λd is the 
wavelength marked along the locus, and it is found as the intersection of the line 
drawn from the white point through the x, y coordinates.

3. Results and discussion

For each lake, x and y are plotted in the chromaticity diagram, commonly used to 
illustrate the color space and the range of colors in the sample. Figure 1 depicts the 
natural color of our 170 lakes for each acquisition period in 2017. In spring, the colors of 
lakes are aligned elongated to a region spanning from blue toward green-orange; in late 
summer, the extent of the point cloud is greater and extends further into orange-red.

The optical properties of clean water are dominated by absorption and scat-
tering by water molecules whose spectral dependence produces a blue reflectance 
spectrum. Therefore, the common perception that blue is “clean” is often true, 
while moving toward green, yellow, orange, and red, the optical effects of the other 
water components, such as phytoplankton, CDOM, and non-algal particle, become 
predominant. However, a simple back calculation from color to the direct causes 
of color change, e.g., proliferating phytoplankton or increasing sediment resus-
pension, is not possible. Nevertheless, any changes from blue can be reasonably 
attributed to decreasing water purity and is often also associated with a reduction in 
water clarity.
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The frequency distribution of the dominant wavelength for the 170 lakes for 
both periods is plotted in Figure 2. Both histograms show a bimodal frequency 
distribution. In spring, most observations are in the blue-green part of the spec-
trum, with a secondary mode at green-yellow wavelengths. Vice versa, in late 
summer, most observations are in the green-yellow part of the spectrum and the 
secondary mode in the blue-green. To explain these changes, the lakes have been 
clustered according to three λd classes, defined as follows: blue (λd < 495 nm), green 
(495 nm < λd < 560 nm), and yellow (λd > 560 nm). In spring, 43% of lakes were 
classified as blue, 35% as green, and the last 22% as yellow. Moving toward late 
summer, most of the lakes were green (42%), then yellow (33%), and the remaining 
25% as blue.

Of the 170 lakes, 96 did not show any transition from one color class to another, 
while 13 lakes moved from blue to yellow, showing a major change of optical prop-
erties also likely associated with a reduction in water clarity. The remaining 61 lakes 
showed smaller transitions to the neighboring color: 45 from blue to green or from 
green to yellow. The other 16 lakes showed transitions in the opposite direction, 
from green to blue or from yellow to green, suggesting improving water clarity from 
spring to late summer.

The geographic distribution of the three color classes is presented in Figure 3. 
Subalpine lakes in the northern part of the country including the largest lakes 
of the country (lakes Garda and Maggiore of 370 and 210 km2, respectively) are 
distinctly blue in the spring. This lake district represents more than 80% of the 
total Italian lacustrine volume and is therefore of great interest. Moving from 
spring to late summer, a change of color toward green and yellow was observed 
in many of these lakes. Notably, the largest of these lakes, e.g., Lake Garda, 
remained blue.

A similar change is occurring in Sardinia, the second largest island of the 
country. Blue lakes turn yellow and green from spring to late summer. In contrast, 
only few lakes in Sicily show color transitions, and green and yellow colors prevail. 
Along the peninsula, more lakes are also blue during the spring than in late summer. 
However, a geographic gradient is seen in that summertime greening or yellowing is 
more common in the southern half of the peninsula.

Figure 1. 
Chromaticity diagram showing the color of water of 170 lake observations determined from Sentinel-2A/
Sentinel-2B MSI data of 2017. Data related to spring are shown on the left, whereas those observed in late 
summer are shown on the right. The white point (WP: x = y = 1/3) is indicated as reference.
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To investigate these trends further, the lakes were split into four clusters 
according to latitude: northern (with latitudes >44°N), central (with latitudes in 
the range 44–41°N), southern lakes (with latitudes <44°N), and separately the 
lakes of Sardinia (Figure 4). Similar to general trends observed at the national 
scale, a progressive increase in λd was recorded moving from north to south in 
both the seasons. This is not surprising as the wide latitudinal range of Italy 
(~38–47°N) encompasses marked climatic, geological, topographic, and land 
use gradients.

A possible explanation, regardless of physical and chemical differences between 
lakes, is that the Mediterranean lakes are characterized by an advance of the grow-
ing season compared to northern ones. This may translate into an early start of the 
algal growth with significant effects on the color of the water. Consequently, it is 
quite natural to guess higher levels of productivity (colors basically more green-
yellow) for southern lakes, as described by [39] at a global scale. Additionally, the 
differences between the two main Mediterranean and Italian islands, Sicily and 
Sardinia, are probably due to the geological and climatic differences between the 
two islands [40] and are likely exacerbated by the fact that their lakes are largely 
artificial reservoirs with site-specific trophic drivers.

Figure 2. 
Frequency histogram of dominant wavelength for the 170 lakes: on top, spring data; on bottom, late summer 
data.
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4. Conclusion

In this study, the color of water, a simple and straightforward water quality 
attribute quantitatively described in terms of dominant wavelength, was retrieved 
from Sentinel-2A and Sentinel-2B MSI data. The method allowed us to map the 
color of 170 Italian lakes in two periods during 2017.

The results revealed a general increase in λd moving from north to south (in the 
range ~38–47°N) and from spring to late summer. This could be put in relation to 
the macroclimatic differences associated with the latitudinal gradient under inves-
tigation. Moreover, the observed trends suggest that the investigation of drivers 
of water chromaticity can contribute to fundamental understanding of lake water 
quality. This represents an opportunity for water managers who have to act under 
the dramatic effects of climate change on water availability and quality.

Figure 3. 
Geographic distribution of lakes, colored according to their dominant wavelength: on left, spring observations; 
on right, summer observations. The latitudes in degrees are indicated as reference.

Figure 4. 
Box plot depicting dominant wavelengths for spring (white) and autumn (gray) periods for northern (>44°N), 
central (44–41°N), Sardinian, and southern (<41°N) lakes.
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Our work shows that color observations are an efficient means to capture an 
intuitive water quality attribute at spatial and temporal scales practically impossible 
to achieve using ground-based observations. Further investigations are required to 
relate color of water to trophic status and traditional water quality metrics such as 
chlorophyll a concentration and suspended particulate matter. Such relationships 
most likely require the classification of lakes into bio-optical types [14, 16] which 
can also be assisted by remote sensing observations. Such knowledge would help 
to better understand and disentangle the main determinants of lake productivity 
such as the role of physical, chemical, and morphometric traits that are generally 
acknowledged as pivotal drivers of primary production [26].

For more than four decades, satellite sensors have been used for lake monitoring, 
and since 2015, Sentinel-2 MSI provides free and open data at a spatial resolution 
suitable for small- to medium-sized lakes (down to 0.3 km2). MSI has similar spectral 
and spatial resolution as the Landsat series of satellites which allows the new data to 
be analyzed in continuity with historical imagery spanning back four decades. The 
color of water as calculated in this work is a promising water quality attribute for time 
series analysis as it does not rely on algorithms depending on inherent optical proper-
ties that have to be calibrated with field observations. While the present study only 
looked at two seasons in the same year, a long-term analysis could investigate the tim-
ing of summertime greening of the lakes in response to climatic forcing mechanism.

Ongoing research is focused on extending the color mapping over past observa-
tions. Future applications of chromaticity analysis are promising as each Sentinel-2 
satellite has a 7-year lifetime design, and they are planned to be replaced in the 
framework of ESA’s Copernicus Program in 2022–2023 by new identical missions. 
This ensures continuity of the data record to 2030 and provides the opportunity for 
lake water quality monitoring for decades from now.
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Chapter 6

Bacubirito: An Outstanding 
Cosmic Sample on Earth
Emiliano Terán

Abstract

The Bacubirito meteorite, although largely forgotten by the scientific commu-
nity after its excavation in 1902, remains an incredible artifact and inspired gen-
erations of Mexican scientists. It is the fifth largest meteorite in the world and the 
longest with a length of 4.16 m. Using the Monte Carlo method, an innovative geo-
metrical model and scanner, we have been the first to calculate the precise dimen-
sions and mass (21 tons) of Bacubirito meteorite’s complex structure. Moreover, we 
are advocating that it be added to the list of world heritage sites due to its scientific, 
cultural, and historical significance in Mexico and the world.

Keywords: Bacubirito, iron meteorites, anomalous meteorite, tridimensional model, 
volume, mass

1. Introduction

Meteorites have provided tremendous amounts of information about the 
planetary system and the cores of planets or star while fascinating societies for 
centuries. These pieces of asteroids or fragmented planets are composed of rock, 
iron, or a mixture of both. Iron meteorites were part of the nucleus of planetoids 
or asteroids, rock from the surface and the rock-iron from the intermediate zone. 
Mexico’s large surface area contains a considerable number of valuable meteorites, 
and in the last 100 years, scientific research has evolved to study them. For instance, 
the Mexican Allende meteorite was used to calculate the age of our solar system [1].

The Bacubirito meteorite is a famous Mexican meteorite found in a small town 
named Camichín in the mountain range of Sinaloa in Northwestern Mexico, see 
Figure 1. The name comes from the closest town Bacubirito, and it has been the 
source of scientific research in Mexico for the last century. This enormous meteorite 
has an outstanding length of 4.16 m and a mass close to 20 tons.

We hope that the research presented here will also support our case for the 
meteorite’s inclusion in the list of Heritage Sites in the United Nations Educational, 
Scientific, and Cultural Organization (UNESCO) and demonstrate its value to 
Mexican scientific research and the world’s knowledge of meteorites. From our 
point of view, it meets the following criteria [2]:

“VII Containing extreme natural phenomena or areas of exceptional natural 
beauty or esthetic importance; VIII To be one of the representative examples of 
important historical stages of the history of the earth including testimonies of life, 
geological processes creating geological formations, or significant physiographic or 
geomorphic characteristics.”
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Further arguments for its significance will appear in this chapter, and we will 
also discuss its impact on Mexican science in addition to the innovative method 
utilized to determine its mass.

2. Mexican scientific interest in meteorites

The magnitude of the surface of Mexico (1,964,375 km2) allowed the discovery 
of a great number of meteorites. We can calculate the probability of meteorite 
impacts [3] on the Mexican territory with the cumulative distribution N(d) of 
diameters of Earth-Crossing Asteroids (ECAs) derived by Poveda et al. in order to 
estimate the frequency of collisions of meteoroids with cars and aircraft. A mete-
orite with a 9-cm diameter strikes a car with an expected frequency of once every 
5 years according to the available data for meteorite strikes. Mexico’s large surface 
area also increases the frequency of meteorite strikes, although the correlation of 
meteorite impact and geographical location remains unclear. Even so, iron mete-
orites can have catastrophic effects on Earth. However, they were once the main 
source of metal for tools and weapons in ancient times [3], and in spite of the great 
amount of metallic metals in Mexico, there is no record of these tools in museums, 
perhaps taken during the Spanish conquest [2].

The early Mexican Scientific Community advocated the study and the catalog of 
meteorites and other geological features, and they successfully petitioned the govern-
ment to protect and categorize them as a national heritage. For this reason, any of 
these objects appear in museums or public institutions. The field of geology and the 
mining industry promoted scientific development in Mexico in the nineteenth century. 
Scientists trained in these disciplines began to dedicate themselves to the study of the 
earth and established the procedures to protect, study, and catalog the meteorites.

Two mining engineers [4], Antonio Del Castillo (1820–1895) and Mariano 
Santiago de Jesús de la Bárcena y Ramos (Mariano Barcenas for future reference) 
(1842–1899) featured prominently in the initial study of meteorites in Mexico and 
guaranteed legal protection for these objects while advancing research in the field. 
Castillo, an outstanding academic, created schools and institutes about geology and 

Figure 1. 
Map of México with the state of Sinaloa in detail. Culiacán the capital city of Sinaloa and the town of 
Bacubirito are shown as well. The meteorite is currently located in Culiacán.
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geography (Escuela Practica de Minas and Consejo de Minería y obras Publicas and 
Colegio de Mineria). He also wrote the Catalogue descriptif des météorites du Mexique 
de 1889 (a 200-page work discussing meteorites in Mexico), and he published his 
excavations of Chihuahua’s meteorites (displayed in the entrance of the National 
School of Engineers in 1893). Although Castillo describes the Bacubirito meteorite 
in this work, he did excavate or visit it, and thus, he relied on an estimation to 
calculate its mass. Moreover, he was a member of the federal congress, and in a 
letter sent on May 7, 1889, he proposed legislation to protect all Mexican celestial 
objects, including meteorites, from private ownership and prohibited their destruc-
tion, exportation, alienation, and required their conservation. Thus, Bacubirito is 
the property of the Republic of Mexico and cannot be exported or sold, the current 
constitution of Mexico still contains this legislation. Moreover, he influenced the 
interest of other scientists to study meteorites, particularly in his former students.

Mariano Barcenas was one of the most internationally well-known Mexican 
scientists and one of the most prominent students of Del Castillo. He combined an 
outstanding academic career with a successful public life as an entrepreneur and 
politician. In the congress of the Academy of Natural Sciences in Philadelphia in 
1876 [5], he made the Bacubirito meteorite internationally known. Barcenas stud-
ied this meteorite by means of a sample that the governor of the state, Eustaquio 
Buelna-Perez from 1871 to 1875. Afterward, he obtained the composition of the 
meteorite and gave a mass estimation, though not precisely, since no other informa-
tion was available without excavation. Despite the interest around meteorite, it 
remained buried for many more years, mainly due to the difficulty in arriving to the 
Camichin.

Professor Henry Augustus Ward (1834–1906), from the Rochester Academy of 
Science of New York and meteorite collector, excavated the meteorite in 1902 in 
Mexico [6, 7]. He describes in detail the hard work to arrive to Bacubirito and 
how the 20 individuals were required to unearth this enormous celestial piece, see 
Figure 2. He also reported the object’s dimensions: 13 feet, 1-inch length (3.96 m), 
6 feet, 2 inches wide (1.8 m), and 5 feet, 4 inches in depth (1.52 m) and mass of 
50 tons. He estimated the object’s mass assuming a cubic shape (although the mete-
orite is highly irregularly shaped). Despite of the affection that Camichin’s popula-
tion had for the meteorite, it was moved to Constitution Civic Center in Culiacan 
(see Figure 3), the capital of the state of Sinaloa in 1959, a 245.5-km route, in order 
to facilitate the object’s study.

Figure 2. 
Unearthing of the specimen in 1902 by local individual.
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Science of New York and meteorite collector, excavated the meteorite in 1902 in 
Mexico [6, 7]. He describes in detail the hard work to arrive to Bacubirito and 
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Figure 2. He also reported the object’s dimensions: 13 feet, 1-inch length (3.96 m), 
6 feet, 2 inches wide (1.8 m), and 5 feet, 4 inches in depth (1.52 m) and mass of 
50 tons. He estimated the object’s mass assuming a cubic shape (although the mete-
orite is highly irregularly shaped). Despite of the affection that Camichin’s popula-
tion had for the meteorite, it was moved to Constitution Civic Center in Culiacan 
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Figure 2. 
Unearthing of the specimen in 1902 by local individual.
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Professor Vagn Fabritius Buchwald (1929–current) from the Department of 
Mechanical Engineering in the Technical University of Denmark visited the mete-
orite in 1978. He evaluated the physical properties of Bacubirito meteorite and 
determined its volume and mass. He described the width, which varied between 
100 and 185 cm and a depth between 30 and 75 cm. The intricate shape and 
ear-like curve made it difficult to calculate the exact volume. However, he used a 
photographical method to arrive at a volume of 2.80 m3 ± 10%, corresponding to a 
weight of 22 tons: a good approximation with the tools available at the time. In 1993, 
the meteorite was relocated to its current position in Science Center of Sinaloa in 
Culiacan (Figure 4).

A new generation of scientist in Mexico is analyzing and promoting Bacubirito 
meteorite [8, 9]. They have obtained new measurements that place it as the longest 
in the world (4.1 m). They have also promoted it in the State Congress of Sinaloa in 
2018 and declared that the meteorite should be considered a cultural and historical 
patrimony of the state. This was achieved with the support of Dr. Victor Antonio 
Corrales-Burgueño (1954–today), a congressman and former Head Dean of the 
Autonomous University of Sinaloa (UAS). Thus, with this legislation, we hope to 

Figure 4. 
Photograph of the meteorite in Culiacan in 2018 [8].

Figure 3. 
Photograph of the former location of the meteorite in the constitution Civic Park (Parque Civico Constitución) 
in 1959.
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have the meteorite declared to Human Heritage, so that it will be included in this 
esteemed list and take place as an “exceptional and universal value.”

One of the strongest arguments to promote this initiative is the studies that 
we have achieve to measure the weight of this metal giant. As we have seen 
in its description, its size has made this difficult to establish with accuracy. 
Notwithstanding, advances in techniques and methods have enabled us to establish 
the final weight of this specimen. In the following section, we explain this in detail.

3. Geometrical model of Bacubirito to assess its mass

As stated formerly, the meteorite has suffered classification changes in size over 
time and is considered anomalous in density, which may be due to a lack of detailed 
investigations. Back in 1975, Buchwald indicated that only a few studies existed on 
the meteorite, and little has been done 40 years later. There have only been rough 
estimates of properties, such as its mass, dimensions, and densities, as noted from 
the large mass variations reported. Moreover, for most of the estimations, uncer-
tainties have not been provided. Accurate measures of geometrical parameters, the 
mass, and statistics of the regmaglypts were determined from the elaboration of a 
three-dimensional model of Bacubirito.

The importance of studying this meteorite can be understood in terms of the 
role it plays on the entry dynamics of the object. If we consider the theoretical 
prediction for speed given by Regan and Anandakrishnan [10], two important 
variables appear namely the drag coefficient Cd and cross-sectional area A that 
are determined by its geometry. Another important dynamic variable that can be 
investigated is the mass using the ablation model in Revelle [11], and from the two 
parameters just mentioned, an estimate of the object mass can be obtained before 
entry. Finally, given that the meteorite shape is nonspherical and assuming that it 

Figure 5. 
Perspectives of the Bacubirito meteorite.
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was not greatly modified during entrance, we can use our geometrical model and 
study the drag force for an asymmetrical object as in Leith [12]. However, these 
studies are beyond the scope of the present investigation, and for this research, we 
will limit ourselves with the model acquisition and parameters previously cited.

The Bacubirito meteorite has a rather complex shape (see Figure 5) and large 
weight (Tables 1 and 2), and thus, determining the surface shape of Bacubirito 
can be used to infer important information about its passage through the atmo-
sphere and learn more about the meteorite itself. The geometric model can also 
provide reliable classification for meteorites, and comparisons between this and 
other recovered pieces contain additional details [9]. This model allowed us to 
calculate some of its important features: geometric parameters, mass, and statistics 
of regmaglypts. First, we generated the model, and we defined and calculated 
the geometric features. An analysis of reported densities to obtain a precise mass 
estimate was performed. Then, we reported the size and depth of the regmaglypts, 
and finally, we obtained a precise geometrical model of the meteorite.

Under these restrictions, we have chosen to use a portable scanner to determine 
the model. This instrument allows for a vastly accurate estimation of the relative 
positions of surface points on a rigid object and is highly suited from a practical 
perspective—the outdoor location of the meteorite and its resting on a high position 
are benefits in this case. This device has been used in civil engineering applications, 
where detailed, precise and three-dimensional representations are required. Being a 
highly characterized instrument, it allows us to reduce the uncertainty of our results.

The scanner used was the Leica Nova MS50. This equipment radiates and col-
lects a laser beam, which can either directly interact with the object to measure it or 
by means of a prism. The direct operation mode is mostly employed since it offers a 
higher resolution and precision to acquire the 3-d points. According to an extensive 
characterization from the manufacturer (see Leica Nova MS50 Datasheet), it has 
an angular accuracy of =1″ in horizontal and vertical angular measurements, a 

Author Year Mass [tons]

Ward 1902 50

Angerman 1903 25

Merrill 1929 20

La Paz 1973 27

Buchwald 1975 22 ± 10%

Sanchez-Rubio 2001 19

Table 2. 
Reported Bacubirito meteorite mass estimates until year 2001 (see Refs.).

Meteorite Country Dimensions [m × m × m] Mass [tons]

Hoba Africa 2.7 × 2.7 × 0.9 60

Campo del Cielo (El Chaco) Argentina – 31

Cape York (Ahnighito) Greenland 3.25 × 2.1 × 1.6 30.88

Cape York (Agpalilik) Greenland 2.1 × 2.0 × 1.5 20.14

Bacubirito México 4.1 × 1.8 × 0.2* 19.43±0.51*

Revised table from Buchwald [13].*Our measurement.

Table 1. 
List of the largest meteorites of the world.
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linear precision of l = 2–3 mm + 2 ppm, and collects up to 1000 pts./s. The scanner 
can measure objects up 1 km away. Our measurements, however, were conducted 
at distances of about 15 m (see Figure 2). We placed the scanner in five different 
positions around the meteorite in order to reach every spot on its surface. For the 
inaccessible regions, a prism was employed. We finished with a model of 1,812,875 
points on the meteorite’s surface.

Before proceeding to computing the geometric parameters, we propose a 
Monte Carlo simulation to obtain even more precise positions and evaluate the 
uncertainty of our results from the single series of measurements. A classical 
reference to the Monte Carlo method and its applications in many areas is found 
in Rubinstein and Kroese [14]. With this goal in mind, we first develop a simple 
probabilistic model and later explain its practical implementation. We start 
assuming that the uncertainties in our measured positions are random, namely, 
that our calibrated instrument presents negligible systematic deviations as sup-
ported by the small parts per million on its linear accuracy. Furthermore, both 
distance and angle measurements present systematic-free errors that follow a 
Gaussian distribution. Now, the propagation error in position due to the angular 
uncertainty is negligible (≪1 mm) for our short separation distances and angular 
precision, and we conclude that this will follow a Gaussian distribution. From this 
discussion, the deviation      ⟶ δ r  i     of a measured position with respect to the instru-
ment    

  →  r  i     can be written as      ⟶ δ r  i    =     ⟶  𝜆𝜆r  i     , with      → 
 r  i  

   a unit vector (see Figure 6), where the  λ  
parameter k is the random variable in the Monte Carlo simulation with a Gaussian 
distribution centered at zero and  σ = 6 mm / 2 . This information is valid for both the 
characterization provided by the manufacturer (see datasheet) and the measure-
ment technique in which the instrument was positioned in different locations with 
uncertainties lower than 4 mm.

The application of the method consists of taking the ith position measurement  
     → 
 r  i  

   and then, a particular value for  λ  is generated based on the distribution described 
above. We then add      ⟶ δ r  i     and repeat the process for each of the measurements. These 
amounts are obtained from one experiment from which the desired parameters can 
be extracted. The experiment is repeated many times for a simulation and is aver-
aged over the intermediate results leading to a convergence.

Figure 6. 
Angular and linear deviations of the surface points due to intrinsic measurements uncertainty.
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points on the meteorite’s surface.

Before proceeding to computing the geometric parameters, we propose a 
Monte Carlo simulation to obtain even more precise positions and evaluate the 
uncertainty of our results from the single series of measurements. A classical 
reference to the Monte Carlo method and its applications in many areas is found 
in Rubinstein and Kroese [14]. With this goal in mind, we first develop a simple 
probabilistic model and later explain its practical implementation. We start 
assuming that the uncertainties in our measured positions are random, namely, 
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Gaussian distribution. Now, the propagation error in position due to the angular 
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Finally, we start determining Bacubirito’s dimensions. We define its length as the 
separation between the two farthest-apart points and fix an axis onto these points. 
We next define the width as the distance between the two farthest-away points that 
are both perpendicular to the axis and lie on a plane containing the axis. Similarly, the 
thickness is defined as the largest distance between the two points that define a line 
orthogonal to that plane and that pass through the axis. A sketch is shown in Figure 7.

In the next step of experiment, we estimate the meteorite volume by combining 
the Monte Carlo simulation with Gauss’ Theorem. A Monte Carlo experiment is 
first employed. Gauss’ Theorem is then used to estimate the volume enclosed by 
the simulated surface defined by a Delaunay triangulation. Thus, we obtained the 
associated volumes for each simulation run.

We continued with the analysis of the meteorite’s densities reported so far 
and its mass determination. The percentages of its chemical elements are shown 
in Table 3 (see Ref. [9]). Those values were measured in different samples from 
Bacubirito. On average, the measurements should be an approximation of the 
full meteorite’s concentrations and densities. We obtained the average density of 
7.7250 ± 0.2061 g/cm3 from the mentioned table and with the aid of the volume 
calculated the mass.

The diameter and depth of the regmaglypts were the next determined quantities 
using the model. We defined a regmaglypt’s diameter as that of the best-fit circle 
for the corresponding pit mouths. The depth is the difference between the bottom 
and the top. In order to characterize the distribution of regmaglypts, three zones 
around the meteorite were selected for presenting contrasting structures as shown in 
Table 1. The diversity in structures was assessed statistically using the Kolmogorov-
Smirnov test for a thorough and rigorous treatment of the technique. To this end, 

(see Refs.) Year Chemical elements of the meteorite [%] ρ [g/cm3]

Fe Ni Co P Ga* Ge* Ir*

Hildehrand 1905 9.4 0.98 0.18 7.58a

Moore & Lewis 1968 9.78 0.76 0.16 17.7 31.9 4.9 7.97

Scott 1973 9.62 17.7 31.9 4.9 7.62

Wasson, pers. 
comm.

1968 9.62 17.7 31.9 4.9 7.62

La Paz 1973 88.94 6.98 0.21 0.15 7.64

Average ± std. dev. 7.7250 ± 0.2061
aQuantity determined by Cohen according to La Paz (La Paz 1973).
*Gallium, Germanium and Iridium are presented in a ppm scale.

Table 3. 
Reports of elements concentrations for the Bacubirito meteorite.

Figure 7. 
Sketch of the Bacubirito meteorite and its dimensions.
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we retrieved diameters and depths for each region from the model and took each as 
a random variable. The null hypothesis that any two of the regions originate from a 
same distribution for either variable was then evaluated.

3.1 Results and discussion

Renders of our tridimensional model are given in Figure 8 and can be observed 
in a high level of detail. A precise retrieval of any geometrical parameters and its 
derivatives is also possible. We focus in this section on the dimensions, mass, and 
statistics of the regmaglypts.

The basic defining parameters of Bacubirito are the dimensions and their 
uncertainties depicted in the last column of Table 4. Contrasting differ-
ences are observed with respect to one of the first studies performed by Ward 
and the latest one by Buchwald. While estimates of geometric parameters of 
Bacubirito have been reported previously, different studies exhibited notice-
able changes. We made the formal definition for consistency among studies and 
determine them precisely from the model. Therefore, we can confirm the old 
claim that Bacubirito is the longest meteorite in the world, with a total length of 
4.130 ± 0.005 m (see Table 4).

The previous estimate of volume was based on photographs by Buchwald [13] 
resulting in 2.8 ± 10% m3. This was very good approximation considering the 
prevalent instrumentation and data analysis techniques of the time. The volume 
calculated from a number of simulations through the Monte Carlo method is:

  V = 2.5151 ± 0.0005  m   3   (1)

This represents a novel rigorous calculation of the volume of the meteorite. The 
remaining two parameters give the reader the idea of the aspect ratio of the body 
and its importance among meteorites in the world.

Figure 8. 
Renders of the Bacubirito meteorite model.

Dimensions Ward [m] Buchwald [m] This work [m]

Width 1.88 1.00–1.85 2.053 ± 0.005

Thickness 1.63 0.30–0.75 0.911 ± 0.005

Length 3.99 4.25 4.130 ± 0.005

Table 4. 
Geometrical parameters of the Bacubirito meteorite.
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We emphasize that the density of points considered here (a total of 1,812,875) 
reflects an upper bound for an instrument with uncertainties in the millimeter 
range. An increase in the number of points would result in separation distances 
along the meteorite surface in the range of 𝜇𝜇m, which is well beyond the maximum 
precision of the device.

The mass is calculated from averaging the densities in Table 3 and our volume 
estimation.

  m = 19.429 ± 0.51 tons  (2)

We obtained a mass uncertainty of around 3%, and this was consistent with the 
estimations made by Buchwald and Sanchez-Rubio et al. [15]. Furthermore, we can 
note that these densities represent the main uncertainty, and hence, we recommend 
improving their estimation.

Finally, an important feature of iron meteorites is their regmaglypts (Figure 9). 
Those meteorite traits provide important information related to its fall. For example, 
according to Lin and Qun [16], larger pits correspond to zones where the surface 
vector is more aligned with the meteorite velocity vector. The statistics of the 
regmaglypts are depicted in Table 5, which demonstrates different areas on the 
meteorite that exhibit contrasting average diameters and depths. To confirm those 
differences, a Kolmogorov-Smirnov test shows a p value of <0.01 among the regions. 
Consequently, each region has a characteristic structure and implies different origins.

These data obtained from Bacubirito distinguish it from other meteorites in 
the world in length and size and for previous generations of scholars presented a 
significant challenge.

4. Conclusions

In this work, we obtained a geometrical model that determined the mass of the 
Bacubirito meteorite and its other geometrical features. Our results are listed as follows:

Figure 9. 
(a) Render and (b) photography of Bacubirito.

Region Diameter [cm] Depth [cm]

Front 8.0 ± 2.3 1.0 ± 0.3

Rear 12.6 ± 2.6 1.4 ± 0.3

Below 10.9 ± 2.6 2.2 ± 0.4

Table 5. 
Diameter and depth of the meteorite’s regmaglypts.
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1. The mass has a value of 19.43 ± 0.51 tons. The results are both the geometric 
dimensions and mass. These were achieved through state-of-the-art analysis 
techniques and equipment, considerable improvement on previous estima-
tions.

2. The volume of the meteorite is 2.5151 ± 0.0005 m3. We utilized the Monte Carlo 
method to simulate a series of measurements for a tridimensional rigid object 
in order to reduce time and expenses related to the repetition of in-field mea-
surements.

3. The maximum length of the Bacubirito is 4.130 ± 0.005 m—the longest known 
in the world, and we also obtained estimations of the meteorite’s main dimen-
sions.

4. The depth and width of the regmaglypts of three regions were retrieved. The 
regions were found to exhibit different structures. The zone labeled as below 
is most likely to have been exposed directly to the atmosphere in the ablation 
altitudes.

The study also supports our proposal to include the Bacubirito meteorite on 
the list of the World Heritage Sites for its tremendous impact on culture, science, 
history, and geological studies. In addition to the impressive physical characteristics, 
mass, and length of the meteorite, the early Mexican scientific community devel-
oped through its research of the object and developed a series of legislative initiatives 
to conserve celestial objects. Moreover, local residents of Bacubirito and Sinaloa 
believe that the object represents national heritage and is a source of local pride.
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Chapter 7

Spatial Coordinate
Transformations with Noisy Data
Christopher Kotsakis

Abstract

The parametric transformation of spatial coordinates between different refer-
ence frames is traditionally dealt with a stepwise approach which imposes a
suboptimal treatment in the presence of noisy data. The chapter explains briefly the
drawbacks of this approach and then presents an alternative scheme for spatial
coordinate transformations that improves the classic stepwise solution when using
noisy coordinates of known stochastic structure. The proposed methodology is
simple in principle, although its numerical implementation with nonlinear para-
metric models is a bit more involved and it relies on the joint least squares adjust-
ment of the observed coordinates using their full stochastic model over all points of
interest. The mathematical framework and the related properties of this “stacking”
approach are presented in detail, along with a numerical example that demonstrates
its feasibility for practical problems in geospatial applications.

Keywords: spatial adjustment, coordinate transformation, reference frames,
nonlinear least squares, stacked Gauss-Helmert model, noise filtering

1. Introduction

Spatial coordinate-based positions often need to be transformed from their own
reference frame to another reference frame by an analytic parametric model. This is
a standard problem in several fields of geosciences and engineering, including
geodesy [11, 18, 19, 30, 33], land surveying and cadastral planning [2, 8, 16, 32],
cartography and digital mapping [1, 5, 28, 38], photogrammetry and remote sensing
[22, 25, 39], robotics and computer vision [7, 13, 31], among others.

Spatial coordinate transformations (SCTs) are utilized in practice either explic-
itly for determining the unknown coordinates of scattered points in a desired frame
from their observed coordinates in a different frame or implicitly in the context of
more composite procedures such as the self-calibration of terrestrial laser scanners
[20, 23, 26], the conflation of digital maps and geographical databases [2, 4, 6, 27],
the reconstruction of 3D models from multi-sensor data [9, 29, 35], and the inte-
gration of aerial or satellite images in ground-based systems of geographic coordi-
nates [14, 15, 21]. Various technical terms have actually been used with regard to
SCTs in practical problems, for instance, spatial adjustment, image registration,
absolute orientation, geo-referencing, and frame transformation, to name a few. Despite
their linkage to different application fields, all these terms refer, more or less, to the
same archetypical problem, that is, the optimal fusion of partially overlapping
configurations of spatial points using their coordinate-based representations in
separate frames and an application-specific model to describe their systematic
differences. Although this general viewpoint includes also cases with raster-type
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The parametric transformation of spatial coordinates between different refer-
ence frames is traditionally dealt with a stepwise approach which imposes a
suboptimal treatment in the presence of noisy data. The chapter explains briefly the
drawbacks of this approach and then presents an alternative scheme for spatial
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differences. Although this general viewpoint includes also cases with raster-type
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and/or vector-type data in multiple frames, the present chapter is confined to the
vectorized version of SCT problems between two different frames.

2. Problem statement and research motivation

The transformation of spatial coordinates between different reference frames
using a parametric model is traditionally resolved via a two-step procedure. Firstly,
the parameters of the adopted model are estimated by least squares adjustment
(LSA) techniques on the basis of control points with known coordinates in both
frames of interest. The estimated parameters are then used to transform any set of
known coordinates from the original frame (also called source or initial frame) to
the desired target frame. The second step is applied not only to control points but
also to additional points whose spatial coordinates are originally known only in the
initial frame. Their transformed coordinates are often the primary objective in
many practical applications, whereas the post-fit residuals at control points are
commonly used as quality metrics of the transformation process.

Despite its rational character, the stepwise methodology imposes a suboptimal
treatment in the presence of noisy data. The reason is that the accuracy of the
original coordinates in the initial frame is ignored during their transformation to the
target frame. Indeed, the second step entails only the forward implementation of
the parametric model without attempting to minimize or, at least, reduce the
propagated random errors of the original coordinates. As shown in [18], the
stepwise procedure may actually enhance the data noise into the final results, in
the sense that the transformed coordinates in the target frame could become less
accurate than the original coordinates in the initial frame.

An additional weakness of the traditional stepwise procedure is that the control and
non-control points (abbreviated hereafter as CPs and NPs) are handled independently
throughout the transformation process. Yet, the initial coordinates of these points are
usually acquired from the same pre-analysis phase or observational procedure (e.g.,
geodetic network adjustment, map digitization, etc.), and therefore they are affected
by common error sources. Due to their separate treatment, the cross-correlated part of
the initial coordinate errors at CPs and NPs is always ignored, a fact that may weaken
the accuracy of the transformed coordinates in the target frame.

The focus of the present research is the formulation of a single-stage
estimation scheme that can improve the classic stepwise solution in SCT problems.
The proposed scheme is based on a properly weighted least squares adjustment of all
observed coordinates, using their known variances and covariances (CV) in
the entire group of transformation points. This stacking approach permits the rigor-
ous treatment of intra-frame error correlations among CPs and NPs, and it generally
leads to higher-accuracy results for the transformed coordinates. Our contribution
provides easy-to-use optimal estimators for the transformed coordinates under any
parametric model, regardless of the structure of the error covariance matrices of the
input data. A numerical example is also given at the end of the chapter to demon-
strate the feasibility of the proposed methodology for practical applications.

3. The stepwise approach in spatial coordinate transformations

3.1 Preamble

The mathematical setting is based on the general case of nonlinear transforma-
tion models, in accordance to the vectorized expression:
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X ¼ f X0; θð Þ (1)

where X0 and X contain the Cartesian coordinates for the same group of physical
points (or homologous groups of points) in different reference frames. The spatial
dimensionality does not need to be specified here, and it can refer to any case that
occurs in practice. The vector θ represents the parameters of the transformation model
which enable the coordinate mapping from the initial frame to the target frame.

In the following, Eq. (1) is considered as an exact formula for noise-free coordi-
nates and provides the general framework for the LSA of observed coordinates in
the involved frames. Simpler types of transformation models with joint or marginal
linearity in X0 and θ (e.g., errors-in-variables models, differential or close-to-iden-
tity models) can be also analyzed under the previous setting.

For the purpose of this contribution, the user’s data shall consist of:

a. the observed coordinates for CPs and NPs in the initial frame (denoted by X0

and Z0, respectively);

b. the observed coordinates for CPs in the target frame (denoted by X); and

c. the error CV matrices of the previous vectors (denoted by ΣX0 , ΣZ0 , ΣX).

An additional matrix of special importance is the cross-CV matrix ΣX0Z0 which
reflects the intra-frame error correlation between CPs and NPs, and it is totally
ignored in the traditional stepwise procedure.

3.2 Estimation of transformation parameters

The first step refers to the estimation of the transformation parameters using a
sufficient number of known CPs. Following a statistical estimation perspective, the
optimal parameter values are obtained by solving the nonlinear LSA problem

min
θ

vTXΣ
�1
X vX þ vTX0Σ�1

X0 vX0
� �

(2)

subject to

X þ vX ¼ f X0 þ vX0 ; θð Þ (3)

where the vectors vX and vX0 represent the zero-mean random errors in the
observed coordinates. After appropriate linearization, the above problem can be
reduced to a linear LSA problem for the so-called Gauss-Helmert (GH) model
[12, 17], and it leads to an iterative solution via successive refinements of the
preliminary estimate:

θ̂ ¼ θo þ JTθWJθ
� ��1

JTθW X � f X0; θoð Þð Þ (4)

W ¼ ΣX þ JX0ΣX0JTX0
� ��1

(5)

where θo contains approximate values for the transformation parameters. The
recursive updating of the previous solution is performed by the Newton-Gauss
iteration algorithm in accordance to a more complex expression that will be
presented later in this chapter. The matrices JX0 and Jθ are the Jacobians with respect
to the initial frame coordinates and the transformation parameters, that is,
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JX0 ¼ ∂f X0; θð Þ
∂X0 , Jθ ¼

∂f X0; θð Þ
∂θ

(6)

and they need to be re-evaluated at each iteration step using the adjusted values
from the previous step. For more details on nonlinear least squares adjustment and
iterative computational algorithms, the reader should consult the excellent treatise
in [24] (see also [3, 10, 34]).

3.3 Determination of transformed coordinates

After estimating the transformation parameters, an additional step is required to
complete the solution of the problem at hand, that is, the computation of the
transformed coordinates in the target frame. This is performed by a simple forward
evaluation of the transformation model at the CPs and NPs, using the respective
nonlinear formulae:

X̂ ¼ f X0; θ̂
� �

(7)

Ẑ ¼ f Z0; θ̂
� �

: (8)

Note that θ̂ corresponds to the estimated parameters from the first step, whereas
X0 and Z0 refer to the observed coordinates in the initial frame. The following
Jacobian matrices are also defined here (to be used later on):

JZ0 ¼ ∂f Z0; θð Þ
∂Z0 , ~Jθ ¼

∂f Z0; θð Þ
∂θ

(9)

which differ from their previous counterparts in Eq. (6) as they refer to a
separate group of points (NPs).

3.4 Deficiency of the stepwise approach

A number of drawbacks exist in the stepwise approach for SCT problems with
noisy data. More specifically, (a) the noise of the original coordinates remains
unfiltered during their transformation to the target frame, (b) the correlated
errors in the original coordinates between CPs and NPs are not taken into account,
and (c) the accuracy of the transformed coordinates is not optimized under any
statistical principle. All these drawbacks relate to the same modeling deficiency that
is summarized as follows: the observed coordinates in the initial frame are contam-
inated by random errors which remain uncontrolled during the second step of the
transformation process, and they are fully absorbed by the transformed coordinates
of CPs and NPs.

The aforesaid deficiency is irrelevant for practical applications only in two cases:

• if the sole objective is to determine a set of transformation parameters between
different frames, without the need to perform any coordinate transformation
at specific points; or

• if spatial objects (e.g., point cloud, network, digitized map) need to be
transferred from an initial frame to another frame, without any “quality
improvement” of their transformed coordinates.
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However, if the user’s goal is the optimal referencing of spatial objects with
respect to a target frame, then the unfiltered data noise becomes a critical error
source for SCT problems. This does not mean that the stepwise approach leads
to wrong results, but it signifies that the composite estimators in Eqs. (7) and (8)
do not provide an optimal solution of maximum accuracy for the transformed
coordinates.

It is worth noting that the stepwise approach is not compelled to reproduce the
prior reference coordinates of CPs in the target frame, that is, X̂ 6¼ X, even if these
coordinates are perfectly known without any errors!

3.5 Best-fitting transformation solutions

In some cases, the estimation of transformation parameters is performed via the
alternative nonlinear least squares principle [36, 37]:

min
θ

X � f X0; θð Þk k2 (10)

where �k k denotes the standard form of the Euclidean vector norm. The rationale
of the above principle is to bring in the best alignment two different coordinate sets
over a group of CPs, and it does not lead to the same parameter estimates as the
statistical least squares formulation of Section 3.2. Their formal equivalency occurs
if the known coordinates in the initial frame are treated as noiseless quantities and
the respective coordinates in the target frame are affected by uncorrelated random
errors of equal variance. Nevertheless, Eq. (10) has a strong geometrical signifi-
cance, and it is often used in practice regardless of the noise characteristics of the
available data.

If the transformation parameters are obtained by the alternative principle of
Eq. (10), then it obviously holds that

X � X̂
�� ��2 ! min (11)

which implies that the transformed coordinates of CPs will be optimally
fitted, in a least squares sense, to their prior known values in the target frame.
This best-fitting property does not enforce statistical optimality to the accuracy of
the transformed coordinates—the latter will still absorb the entire observation
noise according to Eqs. (7) and (8). Therefore, the point to be stressed here is that a
high-quality transformation solution should not just rely on the fitting performance
at CPs, but it has to exploit in an optimal sense the stochastic error model of the
observed coordinates over all points of interest.

4. The stacking approach in spatial coordinate transformations

4.1 Theoretical aspects

A unified optimal solution for SCT problems can be obtained in a single stage
through the rigorous combination of all available data. This requires the joint LSA of
the nonlinear transformation equations:

X ¼ f X0; θð Þ (12)

Z ¼ f Z0; θð Þ (13)
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inated by random errors which remain uncontrolled during the second step of the
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source for SCT problems. This does not mean that the stepwise approach leads
to wrong results, but it signifies that the composite estimators in Eqs. (7) and (8)
do not provide an optimal solution of maximum accuracy for the transformed
coordinates.

It is worth noting that the stepwise approach is not compelled to reproduce the
prior reference coordinates of CPs in the target frame, that is, X̂ 6¼ X, even if these
coordinates are perfectly known without any errors!

3.5 Best-fitting transformation solutions

In some cases, the estimation of transformation parameters is performed via the
alternative nonlinear least squares principle [36, 37]:

min
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where �k k denotes the standard form of the Euclidean vector norm. The rationale
of the above principle is to bring in the best alignment two different coordinate sets
over a group of CPs, and it does not lead to the same parameter estimates as the
statistical least squares formulation of Section 3.2. Their formal equivalency occurs
if the known coordinates in the initial frame are treated as noiseless quantities and
the respective coordinates in the target frame are affected by uncorrelated random
errors of equal variance. Nevertheless, Eq. (10) has a strong geometrical signifi-
cance, and it is often used in practice regardless of the noise characteristics of the
available data.

If the transformation parameters are obtained by the alternative principle of
Eq. (10), then it obviously holds that

X � X̂
�� ��2 ! min (11)

which implies that the transformed coordinates of CPs will be optimally
fitted, in a least squares sense, to their prior known values in the target frame.
This best-fitting property does not enforce statistical optimality to the accuracy of
the transformed coordinates—the latter will still absorb the entire observation
noise according to Eqs. (7) and (8). Therefore, the point to be stressed here is that a
high-quality transformation solution should not just rely on the fitting performance
at CPs, but it has to exploit in an optimal sense the stochastic error model of the
observed coordinates over all points of interest.

4. The stacking approach in spatial coordinate transformations

4.1 Theoretical aspects

A unified optimal solution for SCT problems can be obtained in a single stage
through the rigorous combination of all available data. This requires the joint LSA of
the nonlinear transformation equations:
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Z ¼ f Z0; θð Þ (13)
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which should be performed in a linearized context via the Newton-Gauss
iteration method [3, 24, 34]. The algebraic setup of this stacking adjustment and the
basic properties of the resulting estimators for the transformed coordinates are
presented in this section.

4.1.1 Linearization

At first, we need to approximate the nonlinear Eqs. (12) and (13) by the trun-
cated multivariate Taylor’s series expansions:

X ¼ f X0
o; θo

� �þ JX0 X0 �X0
o

� �þ Jθ θ� θoð Þ (14)

Z ¼ f Z0
o; θo

� �þ JZ0 Z0 � Z0
o

� �þ ~Jθ θ� θoð Þ (15)

where θo is a vector of approximate values for the transformation parameters and
X0

o, Z
0
o are vectors of approximate coordinates for the respective points in the initial

frame. Taking into account that the observables correspond to the coordinate vec-
tors X, X0, and Z0, the previous formulae should be further augmented as follows:

X þ vX ¼ f X0
o; θo

� �þ JX0 X0 þ vX0 �X0
o

� �þ Jθ θ� θoð Þ (16)

Z ¼ f Z0
o; θo

� �þ JZ0 Z0 þ vZ0 � Z0
o

� �þ ~Jθ θ� θoð Þ (17)

where the added vectors vX, vX0 , vZ0 denote the zero-mean random errors of the
observed coordinates. The linearized expressions (16) and (17) can be equivalently
written in the block-matrix form:

�Jθ 0
�~Jθ I

� �
θ� θo
Z

� �
þ I �JX0 0

0 0 �JZ0

� � vX
vX0

vZ0

2
64

3
75þ X � f X0

o; θo
� �� JX0 X0 �X0

o

� �

�f Z0
o; θo

� �� JZ0 Z0 � Z0
o

� �
" #

¼ 0
0

� �

(18)

which conforms to the usual structure of Gauss-Helmert linear models of statis-
tical estimation theory [12, 17, 24]. Our objective here is to invert the above stacked
system of the general form Ax þ Bv þ w = 0 using the general least squares
principle vTP v ¼ min, in conjunction with the data weight matrix:

P ¼ Σ�1 ¼
ΣX 0 0
0 ΣX0 ΣX0Z0

0 ΣZ0X0 ΣZ0

2
64

3
75
�1

(19)

which reflects the total statistical accuracy of the observables. Note that the
inter-frame correlations of the observed coordinates are assumed to be zero,
whereas the intra-frame correlations between CPs and NPs are taken into account
by the cross-CV matrix ΣZ0X0 ¼ ΣT

X0Z0
� �

.
If applied under a proper iterative setting, the LSA of Eq. (18) leads to the

sought optimal solution of the problem at hand. Specifically, the transformation
parameters and the coordinates of NPs in the target frame are both contained into
the “parameter vector” of the stacked GH-type model, and they can be directly
obtained via the respective least squares estimator (see next section). On the other
hand, the estimated coordinates of CPs in the target frame shall be deduced in an
implicit way by correcting the observed values X for the effect of their random
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errors (vX) which are also estimable from the iterative least squares inversion
of Eq. (18).

4.1.2 Optimal least squares estimators

By applying the general LSA solution of linear GH models (see [12, 17]) to the
stacked system of Eq. (18) and after some extra lengthy derivations using analytic
inversions of 2 � 2 block matrices, we obtain the explicit estimators for the trans-
formation parameters:

θ̂ ¼ θo þ JTθ WJθ
� ��1

JTθ W X � f X0
o; θo

� �� JX0 X0 �X0
o

� �� �
(20)

and for the coordinates of NPs in the target frame

Ẑ ¼ f Z0
o; θo

� �þ JZ0 Z0 � Z0
o

� �þ ~Jθ θ̂ � θo
� �

þ JZ0ΣZ0X0JTX0 W X � f X0
o; θo

� �� JX0 X0 �X0
o

� �� Jθ θ̂ � θo
� �� � (21)

whereas the estimated errors for each subset of observed coordinates are given
by the equation

v̂X

v̂X0

v̂Z0

2
64

3
75 ¼

�ΣX

ΣX0JTX0

ΣZ0X0JTX0

2
64

3
75 W X � f X0

o; θo
� �� JX0 X0 �X0

o

� �� Jθ θ̂ � θo
� �� �

(22)

The auxiliary matrix W that appears in the previous equations was defined
earlier in Section 3.2. Finally, if we combine the first error component from Eq. (22)
with the basic formula X̂ ¼ X þ v̂X, we get the estimated coordinates of CPs in the
target frame:

X̂ ¼ f X0
o; θo

� �þ JX0 X0 �X0
o

� �þ Jθ θ̂ � θo
� �

þ JX0ΣX0JTX0 W X � f X0
o; θo

� �� JX0 X0 �X0
o

� �� Jθ θ̂ � θo
� �� � (23)

To facilitate a comprehensive analysis of the stacking approach, it is useful to
rewrite Eqs. (21) and (23) in the combined Kalman-like form:

X̂
Ẑ

" #
¼ X

_

Z
_

" #
þ JX0ΣX0JTX0

JZ0ΣZ0X0JTX0

" #
ΣX þ JX0ΣX0JTX0
� ��1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
W

X� X
_� �

(24)

where the auxiliary terms X
_

and Z
_
are strictly given by the expressions

X
_

Z
_

" #
¼

f X0
o; θo

� �þ JX0 X0 �X0
o

� �þ Jθ θ̂ � θo
� �

f Z0
o; θo

� �þ JZ0 Z0 � Z0
o

� �þ ~Jθ θ̂ � θo
� �

2
64

3
75 (25)

which, to a first-order approximation, mimic the result of the traditional step-
wise approach, that is,
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which should be performed in a linearized context via the Newton-Gauss
iteration method [3, 24, 34]. The algebraic setup of this stacking adjustment and the
basic properties of the resulting estimators for the transformed coordinates are
presented in this section.

4.1.1 Linearization

At first, we need to approximate the nonlinear Eqs. (12) and (13) by the trun-
cated multivariate Taylor’s series expansions:
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which conforms to the usual structure of Gauss-Helmert linear models of statis-
tical estimation theory [12, 17, 24]. Our objective here is to invert the above stacked
system of the general form Ax þ Bv þ w = 0 using the general least squares
principle vTP v ¼ min, in conjunction with the data weight matrix:

P ¼ Σ�1 ¼
ΣX 0 0
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3
75
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which reflects the total statistical accuracy of the observables. Note that the
inter-frame correlations of the observed coordinates are assumed to be zero,
whereas the intra-frame correlations between CPs and NPs are taken into account
by the cross-CV matrix ΣZ0X0 ¼ ΣT

X0Z0
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.
If applied under a proper iterative setting, the LSA of Eq. (18) leads to the

sought optimal solution of the problem at hand. Specifically, the transformation
parameters and the coordinates of NPs in the target frame are both contained into
the “parameter vector” of the stacked GH-type model, and they can be directly
obtained via the respective least squares estimator (see next section). On the other
hand, the estimated coordinates of CPs in the target frame shall be deduced in an
implicit way by correcting the observed values X for the effect of their random

110

Geospatial Analyses of Earth Observation (EO) Data

errors (vX) which are also estimable from the iterative least squares inversion
of Eq. (18).

4.1.2 Optimal least squares estimators

By applying the general LSA solution of linear GH models (see [12, 17]) to the
stacked system of Eq. (18) and after some extra lengthy derivations using analytic
inversions of 2 � 2 block matrices, we obtain the explicit estimators for the trans-
formation parameters:

θ̂ ¼ θo þ JTθ WJθ
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and for the coordinates of NPs in the target frame
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� �
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o

� �� Jθ θ̂ � θo
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whereas the estimated errors for each subset of observed coordinates are given
by the equation

v̂X

v̂X0

v̂Z0

2
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3
75 ¼

�ΣX

ΣX0JTX0

ΣZ0X0JTX0

2
64

3
75 W X � f X0

o; θo
� �� JX0 X0 �X0

o

� �� Jθ θ̂ � θo
� �� �

(22)

The auxiliary matrix W that appears in the previous equations was defined
earlier in Section 3.2. Finally, if we combine the first error component from Eq. (22)
with the basic formula X̂ ¼ X þ v̂X, we get the estimated coordinates of CPs in the
target frame:

X̂ ¼ f X0
o; θo

� �þ JX0 X0 �X0
o
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� �

þ JX0ΣX0JTX0 W X � f X0
o; θo

� �� JX0 X0 �X0
o

� �� Jθ θ̂ � θo
� �� � (23)

To facilitate a comprehensive analysis of the stacking approach, it is useful to
rewrite Eqs. (21) and (23) in the combined Kalman-like form:
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" #
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_

Z
_

" #
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JZ0ΣZ0X0JTX0

" #
ΣX þ JX0ΣX0JTX0
� ��1
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W
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where the auxiliary terms X
_

and Z
_
are strictly given by the expressions
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Z
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f Z0
o; θo

� �þ JZ0 Z0 � Z0
o

� �þ ~Jθ θ̂ � θo
� �

2
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3
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which, to a first-order approximation, mimic the result of the traditional step-
wise approach, that is,
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X
_

Z
_

" #
≃

f X0; θ̂
� �

f Z0; θ̂
� �

2
64

3
75 (26)

All previous estimators refer to a single execution of the weighted LSA in the
linearized system of Eq. (18). Their use in practical applications with nonlinear
transformation models requires a recursive algorithm, as explained in more detail in
Section 4.2.

4.1.3 Basic features of the stacking approach

Compared to the traditional stepwise methodology, the stacking approach
leads to the same least squares estimate for the transformation parameters but to
different values for the estimated coordinates in the target frame. This partial
equivalency is expected since the inclusion of NPs into the adjustment procedure
does not contribute additional information for the transformation parameters. On
the other hand, the estimated coordinates contain extra corrections which are

derived from stochastic filtering of the coordinate residuals X� X
_

and kriging-like
prediction over all points of interest [see Eq. (24)]. Loosely speaking, the effect of
those corrections resembles a rubber-sheeting process in the sense of “stretching”
the classic stepwise solution to counteract the propagated data noise in the entire set
of transformed coordinates.

The stacking approach permits also the exact fit over all CPs regardless of the
noise level in the initial frame. This essential property is easily verified by Eq. (24)
which implies that

ΣX ¼ 0 ! X̂ ¼ X (27)

or in a loosened version

ΣX ≪ JX0ΣX0JTX0 ! X̂ ≃X (28)

The first condition dictates that the transformed coordinates of CPs will match
their prior values, if the latter are assumed to be of perfect quality. The second
condition is also useful for practical applications, as it allows the users to improve
the fitting performance of the transformation results via a simple tuning of the CV
matrix ΣX. This last option is essentially equivalent to stochastic constraining of the
prior coordinates of CPs in the target frame.

As a final note, let us point out that both approaches give similar results in the
presence of noiseless data in the initial frame. In such case the least squares estima-
tors of the previous section admit the conditional behavior:

ΣX0 ¼ 0 ! v̂X0 ¼ 0 ! X̂ ¼X
_

≃ f X0; θ̂
� �

(29)

ΣZ0X0 ¼ 0 ! v̂Z0 ¼ 0 ! Ẑ ¼Z
_

≃ f Z0; θ̂
� �

: (30)

Interestingly, the CV matrix ΣZ0 does not play an active role within the stacking
approach, in contrast to the cross-CV matrix ΣZ0X0 which is of crucial importance
for the optimal transformation at the NPs [see Eq. (22)]. In Table 1 all relevant
cases that can appear in SCT problems are classified with regard to the stochastic
model of the observed coordinates in the respective frames.
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4.2 Computational aspects

The numerical computation of the stacking solution in nonlinear SCT problems
requires a recursive implementation of the least squares estimators given in Section
4.1.2. The Newton-Gauss iteration method is suitable for this purpose and entails
the updating of the approximate vectors X0

o, Z
0
o, θo at each step by their adjusted

values from the previous step until sufficient convergence is achieved in all esti-
mated quantities of interest [3, 24, 34].

The aforesaid procedure should be applied for computing both the transforma-
tion parameters and the coordinates of CPs/NPs in the target frame, based on the
following algorithm:

θ̂
kð Þ ¼ θ kð Þ

o þ JTθ WJθ
� ��1

JTθ W X � f X0 kð Þ
o ; θ kð Þ

o

� �
� JX0 X0 �X0 kð Þ

o

� �� �
(31)

X
_ kð Þ

Z
_ kð Þ

2
64

3
75 ¼

f X0 kð Þ
o ; θ kð Þ

o

� �
þ JX0 X0 �X0 kð Þ

o

� �
þ Jθ θ̂

kð Þ � θ kð Þ
o

� �

f Z0 kð Þ
o ; θ kð Þ

o

� �
þ JZ0 Z0 � Z0 kð Þ

o

� �
þ ~Jθ θ̂

kð Þ � θ kð Þ
o

� �

2
664

3
775 (32)

v̂ kð Þ
X0

v̂ kð Þ
Z0

2
4

3
5 ¼

ΣX0JTX0

ΣZ0X0JTX0

" #
ΣX þ JX0ΣX0JTX0
� ��1

X �X
_ kð Þ� �

(33)

X̂ kð Þ

Ẑ
kð Þ

" #
¼ X

_ kð Þ

Z
_ kð Þ

2
4

3
5þ

JX0 v̂ kð Þ
X0

JZ0 v̂ kð Þ
Z0

2
4

3
5 (34)

where the index k ¼ 1, 2,… denotes the LSA iteration step. All Jacobian matrices
shown in these equations should be re-evaluated at each step as follows:

JX0 ¼ ∂f X0; θð Þ
∂X0

����
θ kð Þ
o ,X0 kð Þ

o

, JZ0 ¼ ∂f Z0; θð Þ
∂Z0

����
θ kð Þ
o ,Z0 kð Þ

o

(35)

Jθ ¼
∂f X0; θð Þ

∂θ

����
θ kð Þ
o ,X0 kð Þ

o

, ~Jθ ¼
∂f Z0; θð Þ

∂θ

����
θ kð Þ
o ,Z0 kð Þ

o

: (36)

CV matrices of observed
coordinates

Does data noise filtering occur in the
transformation process ?

Initial frame Target
frame

Control points ΣX0 6¼ 0 ΣX 6¼ 0 Yes

ΣX0 6¼ 0 ΣX ¼ 0 Yes—perfect fit to prior values

ΣX0 ¼ 0 ΣX 6¼ 0 No

Non-control
points

ΣZ0 6¼ 0 ΣZ0X0 6¼ 0 Yes

ΣZ0 6¼ 0 ΣZ0X0 ¼ 0 No

ΣZ0 ¼ 0 ΣZ0X0 ¼ 0 No

Table 1.
Different cases in the stacking approach with regard to the stochastic model of the observed coordinates.
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All previous estimators refer to a single execution of the weighted LSA in the
linearized system of Eq. (18). Their use in practical applications with nonlinear
transformation models requires a recursive algorithm, as explained in more detail in
Section 4.2.

4.1.3 Basic features of the stacking approach

Compared to the traditional stepwise methodology, the stacking approach
leads to the same least squares estimate for the transformation parameters but to
different values for the estimated coordinates in the target frame. This partial
equivalency is expected since the inclusion of NPs into the adjustment procedure
does not contribute additional information for the transformation parameters. On
the other hand, the estimated coordinates contain extra corrections which are

derived from stochastic filtering of the coordinate residuals X� X
_

and kriging-like
prediction over all points of interest [see Eq. (24)]. Loosely speaking, the effect of
those corrections resembles a rubber-sheeting process in the sense of “stretching”
the classic stepwise solution to counteract the propagated data noise in the entire set
of transformed coordinates.

The stacking approach permits also the exact fit over all CPs regardless of the
noise level in the initial frame. This essential property is easily verified by Eq. (24)
which implies that

ΣX ¼ 0 ! X̂ ¼ X (27)

or in a loosened version

ΣX ≪ JX0ΣX0JTX0 ! X̂ ≃X (28)

The first condition dictates that the transformed coordinates of CPs will match
their prior values, if the latter are assumed to be of perfect quality. The second
condition is also useful for practical applications, as it allows the users to improve
the fitting performance of the transformation results via a simple tuning of the CV
matrix ΣX. This last option is essentially equivalent to stochastic constraining of the
prior coordinates of CPs in the target frame.

As a final note, let us point out that both approaches give similar results in the
presence of noiseless data in the initial frame. In such case the least squares estima-
tors of the previous section admit the conditional behavior:

ΣX0 ¼ 0 ! v̂X0 ¼ 0 ! X̂ ¼X
_

≃ f X0; θ̂
� �

(29)

ΣZ0X0 ¼ 0 ! v̂Z0 ¼ 0 ! Ẑ ¼Z
_

≃ f Z0; θ̂
� �

: (30)

Interestingly, the CV matrix ΣZ0 does not play an active role within the stacking
approach, in contrast to the cross-CV matrix ΣZ0X0 which is of crucial importance
for the optimal transformation at the NPs [see Eq. (22)]. In Table 1 all relevant
cases that can appear in SCT problems are classified with regard to the stochastic
model of the observed coordinates in the respective frames.
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4.2 Computational aspects

The numerical computation of the stacking solution in nonlinear SCT problems
requires a recursive implementation of the least squares estimators given in Section
4.1.2. The Newton-Gauss iteration method is suitable for this purpose and entails
the updating of the approximate vectors X0

o, Z
0
o, θo at each step by their adjusted

values from the previous step until sufficient convergence is achieved in all esti-
mated quantities of interest [3, 24, 34].

The aforesaid procedure should be applied for computing both the transforma-
tion parameters and the coordinates of CPs/NPs in the target frame, based on the
following algorithm:

θ̂
kð Þ ¼ θ kð Þ

o þ JTθ WJθ
� ��1

JTθ W X � f X0 kð Þ
o ; θ kð Þ

o

� �
� JX0 X0 �X0 kð Þ

o

� �� �
(31)

X
_ kð Þ

Z
_ kð Þ

2
64

3
75 ¼

f X0 kð Þ
o ; θ kð Þ

o

� �
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� �
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� �
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� �
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� �
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� �

2
664

3
775 (32)
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where the index k ¼ 1, 2,… denotes the LSA iteration step. All Jacobian matrices
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����
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Note that the auxiliary weight matrix W that appears in Eq. (31) depends on JX0

[see Eq. (5)] and it is also required to be updated at each step.
To initialize the Newton-Gauss iteration process, a simple choice is to set the

approximate coordinates equal to the observed values (X0
o ¼ X0, Z0

o ¼ Z0), while
the approximate transformation parameters are typically obtained via empirical
procedures. The initial computation of θ̂ is thus reduced to the simpler form given
already in Section 3.2, whereas for subsequent iterations the rigorous expression of
Eq. (31) should be used. The updating of all approximate vectors at each step should
be performed by the following equations:

θ kð Þ
o ¼ θ̂

k�1ð Þ
(37)

X0 kð Þ
o ¼ X0 þ v̂ k�1ð Þ

X0 (38)

Z0 kð Þ
o ¼ Z0 þ v̂ k�1ð Þ

Z0 (39)

Special cases with noise-free coordinates in the initial frame (ΣX0 ¼ 0) and/or
uncorrelated coordinates between CPs and NPs (ΣZ0X0 ¼ 0) can be easily treated
under the previous framework, and they lead to identical results as the traditional
stepwise approach.

4.3 Statistical accuracy assessment in SCT solutions

The error CV matrices of θ̂, X̂, and Ẑ are the fundamental elements for the
formal quality assessment in SCT solutions. Their rigorous expressions are obtained
by covariance propagation to the respective estimators given in previous sections,
and they are presented here without their full mathematical proofs.

Both the stepwise and the stacking approach lead to the same optimal estimate
for the transformation parameters, whose error CV matrix is given by the formula:

Σθ̂ ¼ JTθ ΣX þ JX0ΣX0JTX0
� ��1

Jθ
� ��1

: (40)

Regarding the accuracy assessment of the transformed coordinates by the
stepwise approach, the following expressions should be used:

ΣX̂ ¼ JθΣθ̂J
T
θ þ JX0ΣX0JTX0 � JθΣθ̂J

T
θ

� �
ΣX þ JX0ΣX0JTX0
� ��1

JX0ΣX0JTX0
� �

� JX0ΣX0JTX0
� �

ΣX þ JX0ΣX0JTX0
� ��1

JθΣθ̂J
T
θ

� � (41)

ΣẐ ¼ ~JθΣθ̂
~J
T
θ þ JZ0ΣZ0JTZ0 � ~JθΣθ̂J

T
θ Þ ΣX þ JX0ΣX0JTX0
� ��1

JX0ΣX0Z0JTZ0
� ��

� JZ0ΣZ0X0JTX0
� �

ΣX þ JX0ΣX0JTX0
� ��1

JθΣθ̂
~J
T
θ

� � (42)

which refer to the CPs and NPs, respectively. The overbar symbol is used to
distinguish the above error CV matrices from the respective expressions that apply
in the stacking approach. The latter are given by the general formulae:

ΣX̂ ¼ ΣX̂ � KΣeKT (43)

ΣẐ ¼ ΣẐ �QΣeQ
T (44)
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where the auxiliary matrices K and Q are defined as

K ¼ JX0ΣX0JTX0
� �

ΣX þ JX0ΣX0JTX0
� ��1

(45)

Q ¼ JZ0ΣZ0X0JTX0
� �

ΣX þ JX0ΣX0JTX0
� ��1

(46)

and Σe is the CV matrix of the coordinate residuals X � f X0; θ̂
� �

, that is,

Σe ¼ ΣX þ JX0ΣX0JTX0 � JθΣθ̂J
T
θ : (47)

Equations (43) and (44) reveal the expected improvement of the statistical
accuracy in the SCT solution by the stacking approach. The diagonal elements
(i.e., coordinate error variances) of ΣX̂ and ΣẐ are always smaller than the respec-
tive elements of ΣX̂ and ΣẐ , a fact that is attributed to the noise filtering of the
observed coordinates during the transformation process.

5. Numerical example

To demonstrate the potential of the stacking approach in practical transforma-
tion problems, a simple example is given here for a simulated 2D network with
seven CPs and four NPs. The true coordinates of all network points are listed in
Table 2, and they are related by a second-order polynomial transformation:

xi ¼ ao þ a1 x0i þ a2 y0i þ a3 x0iy
0
i þ a4 x0

2
i þ a5 y0

2
i (48)

yi ¼ bo þ b1 x0i þ b2 y0i þ b3 x0iy
0
i þ b4 x0

2
i þ b5 y0

2
i (49)

whose associated parameters are provided in Table 3.
The observed coordinates for our experiments stem by adding simulated

Gaussian noise to the true values of Table 2. The known coordinates of NPs in

Initial frame Target frame

x0 (m) y0 (m) x (m) y (m)

CP1 100.000 250.000 146.000 287.000

CP2 200.000 423.205 210.768 467.597

CP3 286.602 373.205 239.979 435.802

CP4 157.735 150.000 181.119 177.203

CP5 125.000 200.000 159.250 231.438

CP6 225.000 250.000 222.875 294.188

CP7 250.000 400.000 226.250 452.750

NP1 200.000 300.000 209.250 342.500

NP2 159.000 230.000 184.574 264.665

NP3 220.000 340.000 217.850 386.660

NP4 170.000 270.000 192.750 308.030

Table 2.
True coordinates of CPs and NPs in the simulated test network with respect to the initial and target frame.
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Note that the auxiliary weight matrix W that appears in Eq. (31) depends on JX0

[see Eq. (5)] and it is also required to be updated at each step.
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o ¼ X0, Z0

o ¼ Z0), while
the approximate transformation parameters are typically obtained via empirical
procedures. The initial computation of θ̂ is thus reduced to the simpler form given
already in Section 3.2, whereas for subsequent iterations the rigorous expression of
Eq. (31) should be used. The updating of all approximate vectors at each step should
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The error CV matrices of θ̂, X̂, and Ẑ are the fundamental elements for the
formal quality assessment in SCT solutions. Their rigorous expressions are obtained
by covariance propagation to the respective estimators given in previous sections,
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Jθ
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: (40)

Regarding the accuracy assessment of the transformed coordinates by the
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which refer to the CPs and NPs, respectively. The overbar symbol is used to
distinguish the above error CV matrices from the respective expressions that apply
in the stacking approach. The latter are given by the general formulae:

ΣX̂ ¼ ΣX̂ � KΣeKT (43)
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the target frame are not included in the observables, but they were used only for
cross-validation of the transformation results. The generated random errors at the
CPs in the target frame are uncorrelated with a common standard deviation of 0.1 cm
for the x and y coordinates. On the other hand, the generated random errors at the
CPs/NPs in the initial frame are spatially correlated in terms of the simplified
Gaussian-type covariance model:

σx0ix0k ¼ σy0iy0k ¼ σ2e�A x0i�x0kð Þ2�B y0i�y0kð Þ2 (50)

σx0iy0k ¼ ρ σ2e�A x0i�x0kð Þ2�B y0i�y0kð Þ2 (51)

ao a1 a2 a3 a4 a5

10.25 1.20 0.20 �0.0013 �0.0008 0.0001

bo b1 b2 b3 b4 b5

18.50 �0.25 1.20 �0.0002 0.0011 �0.0002

Table 3.
True parameter values of the second-order polynomial transformation model.

Figure 1.
Differences between the true and the transformed coordinates at two CPs over 1000 Monte Carlo sampling
experiments in the simulated network. The point error ellipses (99% confidence level) by each transformation
approach are also shown in red color. The scaling of the horizontal axes is in meters.
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where σ is the common error standard deviation for the x0 and y0 coordinates (set
equal to 5 cm) and ρ is their error correlation coefficient at each point (set equal to
�0.2). The values of the auxiliary parameters A and B were fixed to 6 � 10�7 and
7 � 10�6, respectively, which ensure the positive definiteness of the resulting CV
matrix for the observed coordinates in the initial frame.

Using a Monte Carlo sampling scheme and a Cholesky-based algorithm for the
stochastic simulation of correlated random vectors, a total of 1000 noisy ensembles
were produced for the triplet of coordinate vectors X, X0, and Z0. These synthetic
datasets were used with the stepwise and stacking approach to determine the
transformed coordinates and their associated accuracy, over all points of the simu-
lated network.

The differences between the true and the transformed coordinates in the
target frame, as obtained by all data ensembles under each approach, are shown in
Figures 1 and 2. The cloud plots in these figures refer only to a subset of the
CPs/NPs, yet similar results are acquired at all other network points. It is clear that
the stacking approach yields significantly better results than the traditional stepwise
approach, and it effectively filters the existing noise of the initial coordinates.
The accuracy improvement ranges from 88 to 92% at the CPs, while it is a bit lower
(63–78%) at the NPs (see detailed results in Table 4).

Figure 2.
Differences between the true and the transformed coordinates at two NPs over 1000 Monte Carlo sampling
experiments in the simulated network. The point error ellipses (99% confidence level) by each transformation
approach are also shown in red color. The scaling of the horizontal axes is in meters.
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It should be emphasized that the stochastic model of the observed coordinates
plays a key role in the performance of the stacking approach. This means that the
results shown here may exhibit different behavior—displaying either insignificant
or even more profound accuracy improvement for the transformed coordinates—
for varied choices of the CV matrices ΣX, ΣX0 , ΣZ0 , and ΣX0Z0 .
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Stepwise approach Stacking approach Accuracy improvement (%)

σx̂ σŷ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x̂ þ σ2ŷ

q
σx̂ σŷ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x̂ þ σ2ŷ

q

CP1 0.6 0.7 0.9 0.1 0.1 0.1 89

CP2 0.3 0.9 0.9 0.1 0.1 0.1 89

CP3 0.3 0.7 0.7 0.1 0.1 0.1 86

CP4 0.6 1.0 1.2 0.1 0.1 0.1 92

CP5 0.6 0.8 1.0 0.1 0.1 0.1 90

CP6 0.4 0.6 0.8 0.1 0.1 0.1 88

CP7 0.3 0.8 0.8 0.1 0.1 0.1 88

NP1 0.5 0.7 0.8 0.2 0.2 0.3 63

NP2 0.5 0.7 0.9 0.1 0.1 0.2 78

NP3 0.4 0.7 0.8 0.2 0.3 0.3 63

NP4 0.5 0.7 0.8 0.2 0.2 0.3 63

All values given in cm.

Table 4.
Standard deviations of the transformed coordinates in the simulated network by different approaches.
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It should be emphasized that the stochastic model of the observed coordinates
plays a key role in the performance of the stacking approach. This means that the
results shown here may exhibit different behavior—displaying either insignificant
or even more profound accuracy improvement for the transformed coordinates—
for varied choices of the CV matrices ΣX, ΣX0 , ΣZ0 , and ΣX0Z0 .
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Stepwise approach Stacking approach Accuracy improvement (%)

σx̂ σŷ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x̂ þ σ2ŷ

q
σx̂ σŷ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x̂ þ σ2ŷ

q

CP1 0.6 0.7 0.9 0.1 0.1 0.1 89

CP2 0.3 0.9 0.9 0.1 0.1 0.1 89

CP3 0.3 0.7 0.7 0.1 0.1 0.1 86

CP4 0.6 1.0 1.2 0.1 0.1 0.1 92

CP5 0.6 0.8 1.0 0.1 0.1 0.1 90

CP6 0.4 0.6 0.8 0.1 0.1 0.1 88

CP7 0.3 0.8 0.8 0.1 0.1 0.1 88

NP1 0.5 0.7 0.8 0.2 0.2 0.3 63

NP2 0.5 0.7 0.9 0.1 0.1 0.2 78

NP3 0.4 0.7 0.8 0.2 0.3 0.3 63

NP4 0.5 0.7 0.8 0.2 0.2 0.3 63

All values given in cm.

Table 4.
Standard deviations of the transformed coordinates in the simulated network by different approaches.
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