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Preface

The subject of Hardy inequalities has now been a fascinating subject of continuous
research by numerous mathematicians for exactly! one century, 1918-2018.

It appears to have been inspired by D. Hilbert’s investigations in the theory
of integral equations where he came across a beautiful fact that the series

o0
Z A Gy
m—+n
m,n=1

0 2

with positive entries a, > 0 is convergent whenever ) ™, a7, is convergent.

In a few years period at least four different proofs of this fact have been
published: the original proof of Hilbert given by his doctoral student H. Weyl in
1908 in his Inaugural-Dissertation [Wey08a, Page 83] also appearing in [Wey08b], a
proof by F. Wiener [Wiel0] in 1910, and two proofs by I. Schur [Sch11] in 1911. All
these proofs including Wiener’s proof in the paper bearing the title “Elementarer
Beweis eines Reihensatzes von Herrn Hilbert” were still not considered elementary
enough by G.H. Hardy, so he came up in 1918 with yet another proof in [Har19]
which seemed to him “to lack nothing in simplicity”. In fact, there, he derived
Hilbert’s theorem as a simple 3-line corollary to the following statement: if the
series » 7, a2, is convergent and we set A,, := aj + - - - + ay,,, then also the series

(%)

is convergent. Thus, this moment could be considered as the birth of what is now
known as Hardy’s inequalities, although Hardy himself reservedly commented on
his theorem with “it seems to be of some interest in itself”.

After G.H. Hardy communicated his proof to Marcel Riesz, at once Riesz
came up with another argument leading to the following generalization of Hardy’s

IThe original inequality was published by G.H. Hardy in “Notes on some points in the inte-
gral calculus (51)”, Messenger of Mathematics, 48 (1918), pp. 107-112, see the note in [Har20,
Footnote 4] for a historic remark.

Xiii



xiv Preface

result: if c > 1 and > ~_, aZ is convergent, then also the series

> ()

n=1 n
is convergent. Thus, this can be also regarded as the birth of what is now known
as LP-Hardy’s inequalities (but should be probably then called Hardy—Riesz in-
equalities). The proof of Riesz and the historical account of this matter was then
published as a short note? by Hardy in [Har20]. Hardy also gave the exact value
of the best constant in the inequality, together with its extension to the integral
formulation in the form of

/:" (fffit)dt)ﬂdx < (}: 1)%/:0 7 (2)da,

where a and f are positive. Interestingly, Hardy called his own proof for the best
constant “unnecessarily complicated”, so in [Har20] he gave another simpler proof
that was “sent to him by Prof. Schur by letter”.

Over the last 100 years the subject of Hardy inequalities and related analysis
has been a topic of intensive research: currently MathSciNet lists more than 800
papers containing words ‘Hardy inequality’ in the title, and almost 3500 papers
containing words ‘Hardy inequality’ in the abstract or in the review. In view of
this wealth of information we apologize for the inevitability of missing to mention
many important contributions to the subject.

Nevertheless, the Hardy inequalities with many references have been already
presented in several monographs and reviews; here we can mention excellent pre-
sentations by Opic and Kufner [OK90] in 1990, Davies [Dav99] in 1999, Kufner
and Persson [KP03] (and with Samko [KPS17]), Edmunds and Evans [EE04] in
2004, part of Mazya’s books [Maz85, Maz11], Ghoussoub and Moradifam [GM13]
in 2013, and Balinsky, Evans and Lewis [BEL15] in 2015, as well as books on
different areas related to Hardy inequalities: Hardy inequalities on time scales
[AOS16], Hardy inequalities with general kernels [KHPP13], weighted Hardy in-
equalities [KP03], Hardy inequalities and sequence spaces [GE98]. The history and
prehistory of Hardy inequalities were discussed in [KMPO07] and in [KMPOG], re-
spectively, also with ‘what should have happened if Hardy had discovered this’
considerations [PS12].

However, all of these presentations are largely confined to the Euclidean part
of the available wealth of information on this subject.

At the same time there is another layer of intensive research over the recent
years related to Hardy and related inequalities in subelliptic settings motivated

21t seems Hardy liked publishing such notes as, according to MathSciNet, 51 of his papers start
with the words “A note on...”, together with papers titled “Additional note on...” or “A further
note on...”
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by their applications to problems involving sub-Laplacians. This is complemented
by the more general anisotropic versions of the theory.

In this direction, the subelliptic ideas of the analysis on the Heisenberg group,
significantly advanced by Folland and Stein in [FS74], were subsequently consis-
tently developed by Folland [Fol75] leading to the foundations for analysis on
stratified groups (or homogeneous Carnot groups). Furthermore, in their funda-
mental book [FS82] in 1982 titled “Hardy spaces on homogeneous groups”, Folland
and Stein laid down foundations for the ‘anisotropic’ analysis on general homoge-
neous groups, i.e., Lie groups equipped with a compatible family of dilations. Such
groups are necessarily nilpotent, and the realm of homogeneous groups almost ex-
hausts the whole class of nilpotent Lie groups including the classes of stratified,
and more generally, graded groups. Happily, the title of our monograph pays tribute
to G.H. Hardy as well as to Folland and Stein’s book.

Among many, one of the motivations behind doing analysis on homogeneous
groups is the “distillation of ideas and results of harmonic analysis depending only
on the group and dilation structures”.

The place where Hardy inequalities and homogeneous groups meet is a beau-
tiful area of mathematics which was not consistently treated in the book form. We
took it as an incentive to write this monograph to collect and deepen the under-
standing of Hardy inequalities and closely related topics from the point of view of
Folland and Stein’s homogeneous groups. While we describe the general theory of
Hardy, Rellich, Caffarelli-Kohn—Nirenberg, Sobolev, and other inequalities in the
setting of general homogeneous groups, a particular attention is paid to the special
class of stratified groups. In this setting the theory of Hardy inequalities becomes
intricately intertwined with the properties of sub-Laplacians and subelliptic partial
differential equations.

These topics constitute the core of this book with the material comple-
mented with additional closely related topics such as uncertainty principles, func-
tion spaces on homogeneous groups, the potential theory for stratified groups, and
elements of the potential theory and related Hardy—Rellich inequalities for general
Hormander’s sums of squares and their fundamental solutions.

We tried to make the exposition self-contained as much as possible, giving
relevant references for further material. In general, for an extensive discussion
of the background material related to the general theory of homogeneous and
stratified groups we can refer the reader to the monograph [FR16] of which the
current book is also a natural outgrowth.

The authors would like to thank our collaborators on different topics also
reflected in this book: Nicola Garofalo, Ari Laptev, Tohru Ozawa, Aidyn Kassy-
mov, Bolys Sabitbek and Nurgissa Yessirkegenov. In addition, we would like to
thank Aidyn Kassymov, Bolys Sabitbek and Nurgissa Yessirkegenov for helping
to proofread the preliminary version of the manuscript. We are also grateful to
Gerald Folland for a positive reaction and remarks.
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RPG-2017-151), and by the FWO Odysseus project at different stages of preparing
this monograph.
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Introduction

The present book is devoted to the exposition of the research developments at the
intersection of two active fields of mathematics: Hardy inequalities and related
analysis, and the noncommutative analysis in the setting of nilpotent Lie groups
of different types. Both subjects are very broad and deserve separate monograph
presentations on their own, and many good books are already available.

However, the recent active research in the area does allow one to make a
consistent treatment of ‘anisotropic’ Hardy inequalities, their numerous features,
and a number of related topics. This brings many new insights to the subject,
also allowing to underline the interesting character of its subelliptic features. The
progress in this field is facilitated by the rapid developments in both areas of Hardy
inequalities and related topics, and in the noncommutative analysis on Folland and
Stein’s homogeneous groups.

We will now give some short insights into both fields and into the scope of
this book. Here we only give a general overview, with more detailed references and
explanations of different features presented throughout the monograph.

Hardy inequalities and related topics

The classical L2-Hardy inequality in the modern literature in the Euclidean space
R™ with n > 3 can be written in the form

f

2
< . 1
‘«I‘E = _9 ||Vf||L2(R ) ( )

L2(R™)

where V is the standard gradient in R™,

olp = \fat+ a2

is the Euclidean norm, f € C§°(R™), and where the constant nEQ is known to be
sharp. In addition to references in the preface, the multidimensional version of the
Hardy inequality was proved by J. Leray [Ler33].

It has numerous applications in different fields, for example in the spec-
tral theory, leading to the lower bounds for the quadratic form associated to the

Laplacian operator. It is also related to many other areas and fields, notably to

© The Editor(s) (if applicable) and The Author(s) 2019 1
M. Ruzhansky, D. Suragan, Hardy Inequalities on Homogeneous Groups,
Progress in Mathematics 327, https://doi.org/10.1007/978-3-030-02895-4 1
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2 Introduction

the uncertainty principles. The uncertainty principle in physics is a fundamental
concept going back to Heisenberg’s work on quantum mechanics [Hei27, Hei85], as
well as to its mathematical justification by Hermann Weyl [Wey50]. In the simplest
Euclidean setting it can be stated as the inequality

(4JV¢%&><4nu@¢m%>sz(/n&¢ﬁ2’ @)

for all real-valued functions ¢ € C§°(R"™), where the constant ’f is sharp. It can
be shown to be a consequence of (1). There are good surveys on the mathematical
aspects of uncertainty principles by Fefferman [Fef83] and by Folland and Sitaram
[FS97]. We also note that the uncertainty principle can be also obtained without
Hardy inequalities, see, e.g., Ciatti, Ricci and Sundari [CRS07].

The inequality (1) can be extended to LP-spaces, taking the form

f

|z| 5

p
< Vf s N2>2, 1<p<mn, 3
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where f € C§°(R"), and where the constant ” is known to be sharp.

As mentioned in the preface, such inequalities go back to Hardy [Har19], and
have been evolving and growing over the years. In fact, the subject is so deep
and broad at the same time that it would be impossible to give justice to all the
authors who have made their contributions. To this end, we can refer to several
extensive presentations of the subject in the books and surveys and the references
therein: Opic and Kufner [OK90] in 1990, Davies [Dav99] in 1999, Edmunds and
Evans [EE04] in 2004, part of Mazya’s books [Maz85, Maz11], Ghoussoub and
Moradifam [GM13] in 2013, and the recent book by Balinsky, Evans and Lewis
[BEL15]. Hardy type inequalities have been very intensively studied, see, e.g., also
Davies and Hinz [DH98], Davies [Dav99] as well as Ghoussoub and Moradifam
[GM11] for reviews and applications.

One further extension of the Hardy inequality is the now classical result by
Rellich appearing at the 1954 ICM in Amsterdam [Rel56] with the inequality

f

|z/%

- 4
~ n(n—4)

[AflL2@ny, n =5, (4)
L2(R")

with the sharp constant. We can refer, for example, to Davies and Hinz [DH98|
(see also Brézis and Vézquez [BV97]) for further history and later extensions,
including the derivation of sharp constants.

Higher-order Hardy inequalities have been also intensively investigated. Some
of such results go back to 1961 to Birman [Bir61, p. 48] who has shown, for
functions f € C}(0,00), the family of inequalities

y £

xk

2k

< , keN, (5)
L) (2= 1)
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where (2k — 1)l = (2k—1)-(2k —3)---3-1. For k = 1 and k = 2 this reduces to
one-dimensional Hardy and Rellich inequalities, respectively. Such one-dimensional
inequalities have recently found new life and one can find their historical discussion
by Gesztesy, Littlejohn, Michael and Wellman in [GLMW17].

There is now a whole scope of related inequalities playing fundamental roles
in different branches of mathematics, in particular, in the theory of linear and
nonlinear partial differential equations. For example, the analysis of more general
weighted Hardy-Sobolev type inequalities has also a long history, initiated by
Caffarelli, Kohn and Nirenberg [CKN84] as well as by Brézis and Nirenberg in
[BN83], and then Brézis and Lieb [BL85] with a mixture with Sobolev inequalities,
Brézis and Vézquez in [BV97, Section 4], also [BM97], with many subsequent works
in this direction. We also refer to more recent paper of Hoffmann-Ostenhof and
Laptev [HOL15] on this subject and to further references therein. Many of these
inequalities will be also appearing in the present book.

Of course, there are many more aspects to Hardy inequalities. In particular,
working in domains, one can establish inequalities under certain boundary condi-
tions. For example, for Hardy inequalities for Robin Laplacians and p-Laplacians
see [KL12] and [EKL15], respectively, or [LW99, BLS04] for magnetic versions,
or [BM97, HOHOLO02] for versions involving the distance to the boundary. For
Hardy inequalities for discrete Laplacians see, e.g., [KL16], or [HOHOLTO08] for
many-particle versions.

Homogeneous groups of different types

The harmonic analysis on homogeneous groups goes back to 1982 to Folland and
Stein who in their book [FS82] laid down the foundations of ‘anisotropic’ harmonic
analysis, that is, the harmonic analysis that depends only on the group and dilation
structures of the group.

Such homogeneous groups are necessarily nilpotent, and provide a unified
framework including many well-known classes of (nilpotent) Lie groups: the Eu-
clidean space, the Heisenberg group, H-type groups, polarizable Carnot groups,
stratified groups (homogeneous Carnot groups), graded groups. All of these groups
are homogeneous and have the rational weights for their dilations.

The class of homogeneous groups is closer to the classical analysis than one
might first think: in fact, any homogeneous group can be identified with some space
R™ with a polynomial group law. The simplest examples are R™ itself, where the
group law is linear, or the Heisenberg group, where the group law is quadratic in
the last variable.

An important feature of homogeneous groups is that they do not have to
allow for homogeneous hypoelliptic left invariant partial differential operators. In
fact, if such an operator exists, the group has to be graded and its weights of
dilations are rational. The class of stratified groups is a particularly important
class of graded groups allowing for a homogeneous second-order sub-Laplacian. In
general, nilpotent Lie groups provide local models for many questions in subelliptic
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analysis and sub-Riemannian geometry, their importance widely recognized since
the essential role they played in deriving sharp subelliptic estimates for differential
operators on manifolds, starting from the seminal paper by Rothschild and Stein
[RS76] (see also [Fol77, Rot83]).

In order to facilitate the exposition in the sequel, in Chapter 1 we will recall
all the necessary facts needed for the analysis in this book.

We note, however, that the general scope of techniques available on such
groups is much more extensive than presented in Chapter 1. The fundamental
paper by Folland [Fol75] developed the rich functional analysis on stratified groups.
Further functional spaces (e.g., of Besov type) on stratified groups have been
analysed by Saka [Sak79]. There are many sources with rather comprehensive
and deep treatments of general nilpotent Lie groups, for example, the books by
Goodman [Goo76] or Corwin and Greanleaf [CG90]. Good sources of information
are the notes by Fulvio Ricci [Ric] and Folland’s books [Fol89, Fol95, Fol16].

As a side remark we can note that there is also a number of recent works
developing function spaces on graded groups extending Folland and Saka’s con-
structions in the stratified case, see [FR17] and [FR16] for Sobolev, and [CR16]
and [CR17] for Besov spaces, respectively.

In our presentation and approach to the basic analysis on homogeneous
groups of different types we mostly rely on the recent open access book [FR16].
Moreover, the exposition of the topics in this book is done more in the spirit
of the classical potential theory, without much reference to the Fourier analysis.
However, here we should mention that the noncommutative Fourier analysis on
nilpotent Lie groups is extremely rich, with many powerful approaches available,
such as Kirillov’s orbit method [Kir04], Mackey general description of the unitary
dual, or the von Neumann algebra approaches of Dixmier [Dix77, Dix81]. We can
refer to [FR16, Appendix B] for a workable summary of these methods.

The recently developed noncommutative quantization theories on nilpotent
Lie groups, in particular, the global theory of pseudo-differential operators on
graded groups, indeed heavily rely on such Fourier analysis. We refer the interested
reader to [FR16] for the thorough exposition and application of such methods. A
good exposition of the analysis of questions not requiring the Fourier analysis, in
the setting of stratified groups, can be found in the book [BLUO7] by Bonfiglioli,
Lanconelli and Uguzzoni.

Hardy inequalities and potential theory on stratified groups

The study of the subelliptic Hardy inequalities has also begun more than 40 years
ago due to their importance for many questions involving subelliptic partial differ-
ential equations, unique continuation, sub-Riemannian geometry, subelliptic spec-
tral theory, etc. Not surprisingly, here the work started with the most important
example of the Heisenberg group, where we can mention a fundamental contribu-
tion by Garofalo and Lanconelli [GL90].
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There is a deep link with the properties of the fundamental solutions for the
sub-Laplacian on stratified groups. In general, the understanding of the fundamen-
tal solutions of differential operators is one of the keys for solving boundary value
problems for differential equations in a domain, and this idea has a long history
dating back to the works of mathematicians such as Gauss [Gau77, Gau29] and
Green [Gre28].

In general, the sub-Laplacians on stratified (and on more general graded)
groups play important roles not only in theoretical settings (see, e.g., Gromov
[Gro96] or Danielli, Garofalo and Nhieu [DGNO7] for general expositions from
different points of view), but also in applications of mathematics, for example
in mathematical models of crystal material and human vision (see, for example,
[Chr98] and [CMS04]).

The fundamental solution for the sub-Laplacian on stratified groups behaves
well and was already understood by Folland [Fol75]. In particular, one always has
its existence and uniqueness, an advantageous feature when compared to higher-
order operators on stratified groups, or more general hypoelliptic operators on
graded groups, see Geller [Gel83], and an exposition in [FR16, Section 3.2.7].

Roughly speaking, there are three versions of Hardy type inequalities on
stratified groups available in the literature:

(A) Using the homogeneous quasi-norm, sometimes called the £-gauge, given by
the appropriate power of the fundamental solution of the sub-Laplacian L.
Thus, if d(z) is the £-gauge, then d(x)?~? is a constant multiple of Folland’s
[Fol75] fundamental solution of the sub-Laplacian £, with @ being the ho-
mogeneous dimension of the stratified group G; these will be discussed in
Chapter 7.

(B) Using the Carnot—Carathéodory distance, i.e., the control distance associated
to the sub-Laplacian.

(C) Using the Euclidean distance on the first stratum of the group.

One can note that if one is not interested in best constants in such inequalities
one can work with any of these equivalent quasi-norms. In fact, in such a case one
can also work with fractional-order derivatives expressed as arbitrary powers of the
sub-Laplacian, see, e.g., Ciatti, Cowling and Ricci [CCR15] for such an analysis on
stratified groups, as well as Yafaev [Yaf99] for some Euclidean considerations also
with best constants, or Hoffmann-Ostenhof and Laptev [HOL15] and references
therein.

However, the best constants in the corresponding inequalities in cases (A)-
(C) above may depend on the quasi-norm that one is using.

Thus, in the case (A) there is an extensive literature on Hardy inequalities
and related topics on stratified groups relating them to the fundamental solution to
the sub-Laplacian. Here we can briefly mention some papers [GL90, GKO08, Gri03,
NZWO01, HN03, D’A04b, WNO08, DGP11, Kom10, JS11, Lial3, Yan13, CCR15,
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Yenl6, GKY17], with more details and acknowledgements given throughout the
book. Here, the Hardy inequality typically takes the form

e

where @ is the homogeneous dimension of the stratified group G, Vg is the hor-
izontal gradient, and d(x) is the so-called L-gauge related to the fundamental
solution of the sub-Laplacian, and the constant is sharp. The analysis in the case
(A) in terms of the fundamental solution of the sub-Laplacian will be the subject
of Chapter 11 of this book.

The results on Hardy and other inequalities for the case (B) are less extensive,
mostly devoted to the case of the Heisenberg group. However, the case (C) has
recently attracted a lot of attention due to its geometrically clear nature and
importance for questions in partial differential equations, see, e.g., [BT02a] and
[D’A04Db]. A typical horizontal Hardy inequality would take the form

f
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p
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where N is the dimension of the first stratum, 2’ denotes the variables in the first
stratum of G, and

'] = \Ja oo o

is the Euclidean norm on the first stratum of G, which can be identified with RY.
The constant " in (7) is also sharp.

In Chapter 6 we aim at giving a comprehensive treatment of such horizontal
estimates based on the divergence relations and on the potential theory on the
stratified groups.

Another ingredient that we find to be missing in the literature in the setting
of stratified groups is the classical style potential theory working with layer po-
tential operators. Indeed, nowadays the appearing boundary layer operators and
elements of the potential theory serve as the main apparatus for the analysis and
construction of solutions to boundary value problems. That have led to a vast
literature concerning modern theory of boundary layer operators and potential
theory in R™ as well as their important applications. In the subelliptic setting we
can mention the works of Jerison [Jer81] and Romero [Rom91] on the Heisenberg
group. We refer to [GL03], [GN88], [GW92], [LU97], [RS17d] and [WN16] as well
as to references therein for more general Green function analysis of second order
subelliptic (and weighted degenerate) operators. In this book, we follow a more
geometric approach of our recent paper [RS17¢] to present such a subject in the
setting of general stratified groups, and to give its applications to several ques-
tions, such as boundary value problems for the sub-Laplacian, traces of Newton
potential operators, and Hardy inequalities with boundary terms. All these topics
will be the subject of discussions in Chapter 11.
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The boundary value problems in the subelliptic settings are substantially
more complicated than in the elliptic case due to the appearance of so-called
characteristic points at the boundary — some problems of such a type are well
explained, e.g., in [DGNO06]. However, there is still a particular type of boundary
conditions (Kac’ boundary value problem) which can be viewed as a subelliptic
version of M. Kac’s question: is there any boundary value problem for the Laplacian
which is explicitly solvable in the classical sense for any smooth domain?

An answer to M. Kac’s question was given in [RS16¢c| for the Heisenberg
group and in [RS17c] for general stratified groups. The appearing boundary condi-
tions are, however, nonlocal and the corresponding boundary value problem can be
called Kac’s boundary value problem. One interesting fact is that the explicit solu-
tions that one constructs for Kac’s boundary value problem for the sub-Laplacian
work also well in the presence of characteristic points on the boundary.

In Section 11.5 we also discuss another version of such a question: is there
a class of domains in which the Dirichlet boundary value problem for the sub-
Laplacian is explicitly solvable in the classical sense? This is discussed in the
setting of H-type groups following our recent paper [GRS17] with Nicola Garofalo.

Furthermore, in Chapter 12 we will give an exposition of the potential the-
ory and related Hardy—Rellich inequalities for more general Hormander’s sums of
squares, based on the properties of the fundamental solutions rather than those
of the L-gauge. This has a definitive advantage of eliminating the need to use
Folland’s formula relating the £-gauge with the fundamental solution. As a result,
we can extend the analysis to more general settings, also those without any group
structure, dealing with Hormander’s sums of squares beyond the setting of the
stratified groups.

In general, there are several ways to obtain improvements of Hardy inequal-
ities by including boundary terms. For the Laplacians such problems have been
considered in [ACRO02] by using variational method and in [WZ03] by using confor-
mal transformation method. The methods described in this book are based on the
potential theory and, compared to other approaches, do not rely so much on the
particular structure of the Euclidean space. Certain Hardy and Rellich inequalities
for sums of squares have been considered by Grillo [Gri03], compared to which our
approach provides refinements from several points of view, based on the general-
ized representation formulae (Green’s formulae) of non-subharmonic functions for
improved Hardy and Rellich type inequalities with boundary terms.

Hardy inequalities and related topics on homogeneous groups

The lack of homogeneous hypoelliptic left invariant differential operators on gen-
eral homogeneous groups is compensated by several other advantageous properties,
such as a good polar decomposition which, combined with dilations, still allows
one to explore the radial structure of the group. For this purpose, we extensively
work with the radial derivative operator R and the Euler operator E which we
describe in Section 1.3.
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This fits well with the structure of Hardy and other inequalities as their max-
imisers are often achieved on radial functions. An advantage of such an approach is
that one can also work with arbitrary quasi-norms and anisotropic structures still
yielding similar properties and best constants in the inequalities. In addition, in
Section 1.3.3 we demonstrate how the Hardy type inequalities for radial functions
often imply similar inequalities for functions of general (non-radial) type.

Thus, Chapter 2 is devoted to Hardy inequalities on homogeneous groups,
their weighted and critical versions, stability and remainder estimates. Further-
more, Chapter 3 is devoted to Rellich, Caffarelli-Kohn-Nirenberg and Sobolev
type inequalities on homogeneous groups. In Chapter 9 we present different ver-
sions of uncertainty principles on homogeneous groups. We follow an abstract
approach by defining abstract position and momentum operators satisfying min-
imal structural properties, already allowing one to establish a number of uncer-
tainty type relations. Consequently, different choices of such abstract position and
momentum operators are possible based on the additional structural properties
available on the group.

In Chapter 10 we discuss different function spaces on homogeneous groups,
with or without differentiability properties. The spaces involving radial deriva-
tives are the Euler-Hilbert—Sobolev and Sobolev—Lorentz—Zygmund spaces. We
investigate their basic properties and embeddings. The spaces not involving the
differentiable structure are the Morrey and Campanato spaces. There, we discuss
the boundedness of integral operators, namely, the Hardy-Littlewood maximal
operator, Bessel-Riesz operators, generalized Bessel-Riesz operators, generalized
fractional integral operators and Olsen type inequalities in generalized Morrey
spaces on homogeneous groups.

Incidentally, all these and other results on homogeneous groups in this book
give new statements already in the Euclidean setting of R™ when we are working
with anisotropic differential structure in view of the arbitrariness of the choice of
any homogeneous quasi-norm.

Let us consider, for instance, the following Bessel-Riesz operators

_ [z —ylg "
fof@ = [ LVE ©)

where f € LI (R"), p>1,~v >0 and 0 < a < n. Classical results on the Bessel-
Riesz operators are due to Hardy, Littlewood and Sobolev, precisely, the bound-
edness of the Bessel-Riesz operators on Lebesgue spaces was shown by Hardy
and Littlewood in [HL27], [HL32] and by Sobolev in [Sob38]. In the case of R™,
the Hardy-Littlewood maximal operator, the Riesz potential I, o = I,, the gen-
eralized fractional integral operators, which are a generalized form of the Riesz
potential I, o = I,, Bessel-Riesz operators and Olsen type inequalities are widely
analysed on Lebesgue spaces, Morrey spaces and generalized Morrey spaces. For
further discussions in this direction we refer to [Ada75, CF87, BNC14, Nak94,
ENO04, Eri02, KNS99, Nak01, Nak02, GE09, SST12, IGLE15, IGE16], as well as to
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[Burl3] for a recent survey. Morrey spaces for non-Euclidean distances find their
applications in many problems, see, e.g., [GS15a, GS15b] and [GS16]. A natural
analogue of the Bessel-Riesz operator (8) on homogeneous groups is the operator

7
Lot@= 7

In the setting of graded Lie groups the connections between these operators and the
Sobolev spaces have been investigated in [FR16, Chapter 4] using the heat kernel
methods. Here, in Chapter 10 we concentrate on the harmonic analysis aspects in
the framework of Morrey and Campanato spaces on homogeneous groups.

In addition, we can mention an overview of constructions for Morrey—Campa-
nato spaces in [RSS13] by Rafeiro, N. Samko and S. Samko, or in [RT15] by
Rosenthal and Triebel. It is worth noting that Morrey—Campanato spaces can
be interpolated [VS14]. One also considered variable exponent versions of Morrey
spaces and maximal and singular operators there, see [GS13, GS16] and references
therein.

In Chapter 4 we look at the Hardy inequalities from the point of view of
operators of fractional orders. Certainly, fractional powers of Laplacians and sub-
Laplacians can be defined in different ways, e.g., using the Fourier or spectral
analysis. However, here, we first adopt the integral representation that turns out
to make perfect sense on general homogeneous groups. More specifically, for p > 1
and s € (0,1), we consider the fractional p-sub-Laplacian (—A,)° on a general
homogeneous group G defined by the formula

(A u(s) o= 2 lim ju() = uly)P~*(u(z) - u(y)

dy, = € G,
N0 JG\ B(a,0) ly~ta|Qtsp

where B(z,0) = B.|(x,6) is a quasi-ball with respect to the quasi-norm |- |, with
radius ¢ centred at z € G. It turns out that this operator has many advantageous
properties similar to those exhibited by the usual p-Laplacians on the Euclidean
spaces, and in Chapter 4 we present their analysis and some applications to ‘partial
differential’ functional equations and related spectral questions. Consequently, we
look at operators of fractional orders from a different point of view, and in Section
4.7 we discuss the boundedness of the operator

Tof(2) = x|~ L™ f(2),

on LP-spaces on stratified Lie groups, where L is a sub-Laplacian. The analysis is
based on the Riesz kernel representation of such operators, and we also supplement
it with several versions of the Landau—Kolmogorov inequalities.

In Chapter 5 we discuss integral versions of Hardy inequalities. In fact, such
a point of view goes back to one of the original versions of such inequalities by
Hardy [Har20], where he has shown the inequality

/b"" (fbx fa:(t)dt>pdxé (pfl)p/:o o
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where p > 1, b > 0, and f > 0 is a non-negative function. It turns out that such
an inequality can be also put in the framework of general homogeneous groups,
especially since it does not involve derivatives, so that one does not need to specify
one’s analysis to a particular choice of the gradient. Thus, in Chapter 5 we present
inequalities of such a type in weighted and unweighted settings, actually providing
characterizations of weights for which integral Hardy inequalities hold true. We
also present inequalities in the convolution form which, in turn, can be used for
the derivation of Hardy—Littlewood-Sobolev and Stein—Weiss inequalities. The
latter can be then established both on general homogeneous groups as well as on
stratified/graded groups using Riesz kernels of hypoelliptic differential operators.

In Chapter 8 we discuss the so-called geometric versions of Hardy inequalities.
By this one usually means Hardy inequalities on domains when the distance to
the boundary enters the inequality as a weight. For example, if € is a convex open
set of the Euclidean space R", then a geometric version of the Hardy inequality

can take a form
/\v 2dz > 1/ wl*
w|“dx T
Q — 4 Q dlSt(l’,aQ)2 ’

for all u € C§°(€2), with the sharp constant 1/4. In the case of half-spaces and,
more generally, convex domains, in Chapter 8 we present such inequalities in the
setting of stratified groups.
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Chapter 1

Analysis on Homogeneous Groups

In this chapter we provide preliminaries for the analysis on homogeneous groups to
make the use of the monograph more self-sufficient. We make a selection of topics
which will be playing a role in the subsequent analysis. Thus, we first discuss
relevant properties of general Lie groups and algebras and then concentrate on
properties of homogeneous groups required for our further analysis. Lastly, we
introduce the notion of the Euler operator on homogeneous groups and establish
its main properties.

This chapter is not intended to be a comprehensive treatise of homogeneous
groups but rather a description of a collection of tools used throughout the book.
The theory of homogeneous groups for their use in analysis was developed by Fol-
land and Stein [FS82]. A recent rather comprehensive description of homogeneous
groups and their place among nilpotent Lie groups have appeared in [FR16]. We
refer to both books for the expositions devoted specifically to homogeneous groups.
For some related information we may also refer to Ricci’s notes [Ric].

There are many sources with rather comprehensive and deep treatments of
nilpotent Lie groups, for example the books by Goodman [Goo76] or Corwin and
Greanleaf [CG90]. There are also many books on groups or Lie groups, we can
refer for example to [RT10, Part ITI] for a basic introduction. Therefore, we assume
the reader to have some familiarity with the concepts of the Lie groups and Lie
algebras.

1.1 Homogeneous groups

In this section we discuss nilpotent Lie algebras and groups in the spirit of Folland
and Stein’s book [FS82] as well as introduce homogeneous (Lie) groups. For more
analysis and details in this direction we refer to the recent open access book [FR16].

Let g be a Lie algebra (always assumed real and finite-dimensional), and
let G be the corresponding connected and simply-connected Lie group. The lower

© The Editor(s) (if applicable) and The Author(s) 2019 11
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central series of g is defined inductively by

g01) =0,  8¢) = [0, 0G-1))-

If the lower central series of a Lie algebra g terminates at 0 in a finite number
of steps then this Lie algebra is called nilpotent. Moreover, if g(,;1) = {0} and
g(s) # 10}, then g is said to be nilpotent of step s. A Lie group G is nilpotent
(of step s) whenever its Lie algebra is nilpotent (of step s). If exp : g — G is
the exponential map, by the Campbell-Hausdorff formula for X, Y € g sufficiently
close to 0 we have

expXexpY =exp H(X,Y),

where H(X,Y), the Campbell-Hausdorff series, is an infinite linear combination
of X and Y and their iterated commutators and H is universal, i.e., independent
of g, and that

1
HX.Y)=X+Y + [X.Y]+ -,

where the dots indicate terms of order > 3.

If g is nilpotent, the Campbell-Hausdorff series terminates after finitely many
terms and defines a polynomial map from V x V to V', where V is the underlying
vector space of g.

Altogether, we have the following useful properties:

Proposition 1.1.1 (Exponential mapping and Haar measure). Let G be a connected
and simply-connected nilpotent Lie group with Lie algebra g. Then:

(i) The exponential map exp is a diffeomorphism from g to G. Moreover, if G
is identified with g via exp, then the group law (z,y) — xy is a polynomial
map.

1

(ii) If A denotes a Lebesque measure on g, then Aoexp~' is a bi-invariant Haar

measure on G.

Proof of Proposition 1.1.1. Part (i) is a direct consequence of the fact that G is
uniquely (up to isomorphism) determined by g, see, e.g., [FS82, Proposition 1.2],
[CGI0, Section 1.2] or [FR16, Proposition 1.6.6].

Let us give an argument for Part (ii). Let us denote the lower central series
for g by

8(1)» -+ 8(m)s O(m+1) = {0}
and denote
n:=dimg and n;:=dimg.
Let Xy, +1,---,Xn be a basis for g(,,), and we extend it to a basis
X, 141y Xn

for g(;m—1), and so forth obtaining eventually a basis X1,..., X, for g. Let {1,...,&,
be the dual basis for g*, and let 1, := &, o exp~'. These 11, ...,7, are a system
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of global coordinates on G. By using the Campbell-Hausdorff formula and the
construction of the 7;’s we obtain

ne(wy) = k() +nx(y) + Pr(z,y),

where Py (z,y) depends only on the coordinates n;(x), n;(y) with ¢ < k. Thus, with
respect to the coordinates 7, the differentials of the maps x — xy with fixed y and
y — xy with fixed = are given by lower triangular matrices with only 1 elements
on the diagonal, and therefore, each of the determinants is equal to one. This
implies that the volume form dn; - - - dn,, on G, which corresponds to the Lebesgue
measure on g, is left and right invariant. O

Definition 1.1.2 (Dilations on a Lie algebra). A family of dilations of a Lie algebra
g is a family of linear mappings

{0, :r >0}
from g to itself which satisfies:

e the mappings are of the form
0, = exp(Alogr),

where A is a diagonalisable linear operator on g with positive eigenvalues.

e In particular, 6,5 = 4,9 for all ;s > 0. If & > 0 and {0, } is a family of
dilations on g, then so is {4, }, where

0p := pa = exp (aAlogr).

By adjusting «@ we can always assume that the minimum eigenvalue of A is
equal to 1.

Let A be the set of eigenvalues of A and denote by W, C g the corresponding
eigenfunction space of A, where a € A. Then we have

06X =1r*X for X e W,.
If X e W, and Y € W, then
5, [X,Y] = [6,X,6,Y] = r*t°[X, Y]

and thus [W,, W] C Waip. In particular, since a > 1 for a € A, we see that
9(j) C D.>; Wa- Since the set A is finite, it follows that g(;) = {0} for j sufficiently
large. Thus, we obtain:

Proposition 1.1.3 (Lie algebras with dilations are nilpotent). If a Lie algebra g
admits a family of dilations then it is nilpotent.
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However, not all nilpotent Lie algebras admit a dilation structure: an example
of a (nine-dimensional) nilpotent Lie algebra that does not allow any compatible
family of dilations was constructed by Dyer [Dye70].

Definition 1.1.4 (Graded Lie algebras and groups). A Lie algebra g is called graded
if it is endowed with a vector space decomposition (where all but finitely many of
the V4’s are 0)

g=®52,V; suchthat [Vi,V;] C Viy;.

Consequently, a Lie group is called graded if it is a connected simply-connected
Lie group whose Lie algebra is graded.

Definition 1.1.5 (Stratified Lie algebras and groups). A graded Lie algebra g is
called stratified if V1 generates g as an algebra. In this case, if g is nilpotent of step
m we have

g:@;‘nzlvjv [Vj7Vl]:Vj+17

and the natural dilations of g are given by

Oy (Z Xk> = ZTka, (Xk S Vk).
k=1 k=1

Consequently, a Lie group is called stratified if it is a connected simply-connected
Lie group whose Lie algebra is stratified.

Definition 1.1.6 (Homogeneous groups). Let §, be dilations on G. We say that a
Lie group G is a homogeneous group if:

a. It is a connected and simply-connected nilpotent Lie group G whose Lie
algebra g is endowed with a family of dilations {4, }.

1

b. The maps expod, oexp™+ are group automorphism of G.

Since the exponential mapping exp is a global diffeomorphism from g to G
by Proposition 1.1.1, (i), it induces the corresponding family on G which we may
still call the dilations on G and denote by d,.. Thus, for z € G we will write o, (x)
or abbreviate it writing simply rz.

The origin of G will be usually denoted by 0.

Now let us give some well-known examples of homogeneous groups.

Example 1.1.7 (Abelian groups). The Euclidean space R™ is a homogeneous group
with dilation given by the scalar multiplication.

Example 1.1.8 (Heisenberg groups). If n is a positive integer, the Heisenberg group
H™ is the group whose underlying manifold is C™ x R and whose multiplication is
given by

n
(217"'aZn7t)(Z£""aZ7,17t,) = (Zl+Zi7"'azn+Z;’t+t/+21mzzk2;c> .
k=1
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The Heisenberg group H" is a homogeneous group with dilations
8r(21, ooy 2y t) = (121, ..., 720, T2).

Example 1.1.9 (Upper triangular groups). Let G be the group of all n x n real
matrices (a;;) such that a; =1 for 1 <¢ <n and a;; = 0 when ¢ > j. Then G is
a homogeneous group with dilations
(5T(aij) = Tjii(lij.
These Examples 1.1.7, 1.1.8 and 1.1.9 are all examples of the stratified groups.

It is also possible to define other families of dilations on these groups. For instance,
on R™ we can define

Or(x1y. .o y) = (rdlzl, . ,rd"zn),
where 1 =dy < dy <--- <d,, and on H" we can define
Or(z1 +iy1, .., Tp + iYn, t) = (r**ay + irblyl, I irb”yn, r°t),

where min{a1,...,an,b1,...,b,} =1 and a; + b; = c for all j. In general, these
dilations do not have to be stratified. However, when we refer to R” or H" we shall
assume that they are equipped with the natural dilations defined in Examples
1.1.7, 1.1.8 unless we state otherwise.

Let dy,...,d, be the eigenvalues of A, enumerated in nondecreasing or-
der according to their multiplicity, and let d = maxdj. The mappings {4, =
exp(Alogr)} give the dilation structure to an n-dimensional homogeneous group
G, with

1l=dy <dy<---<d, =d. (1.1)
Let us fix a basis { X} }}_; of the Lie algebra g of the Lie group G such that

AXk = dp X

for each k. Then one can define a standard Euclidean norm || - || on g by declaring
the X}’s to be orthonormal. This norm can be also considered as a function on G
by the formula

1

]l = [l exp™ |- (1.2)

The number

Q=Y dp =Tr(A) (1.3)
k=1

is called the homogeneous dimension of G. From now on @ will always denote the
homogeneous dimension of G.
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1.2 Properties of homogeneous groups

In this section we discuss properties of homogeneous groups that are important
for their understanding and that will be also useful for our further analysis. For
different further properties of homogeneous and graded groups we can refer the
reader to the open access book [FR16, Chapter 3].

1.2.1 Homogeneous quasi-norms

We start by the definition of a quasi-norm.

Definition 1.2.1 (Quasi-norms). Let us define a homogeneous quasi-norm on a
homogeneous group G to be a continuous function x — |z| from G to [0, 00) that
satisfies

(a) for all z € G and r > 0:

|7l = |z| and |rz| =7zl

(b) The non-degeneracy:

|| =0 if and only if =z =0.

Here and elsewhere we denote by rx = §,x the dilation of z induced by the
dilations on the Lie algebra through the exponential mapping.

There always exist homogeneous quasi-norms on homogeneous groups. More-
over, there always exist quasi-norms that are C*°-smooth on G\{0}. Let us give
such an example. Observe that

n n 1/2
X = chXk €g implies |6, X| = (Z C%,,,Qdk) ’

k=1 k=1

where || - || is the Euclidean norm from (1.2). We can notice that for X # 0 the
function |6, X || is a strictly increasing function of r, and it tends to 0 and oo as
r — 0 and r — oo, respectively. Now, for z = exp X, we can define a homogeneous
quasi-norm on G by setting

0]:=0 and |z|:=1/r for z#0,
where r = r(X) > 0 is the unique number such that
16-c) X = 1.

By the implicit function theorem and the fact that the Euclidean unit sphere is a
C'*° manifold we see that this function is C*> on G\{0}.
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If x € G and r > 0 we define the ball of radius r about x by
B(z,r) ={y € G: |z y| <r}.
It can be noticed that B(z,r) is the left translate by = of B(0,r), which in turn
is the image under 0, of B(0,1).

Lemma 1.2.2 (Closed quasi-balls are compact). B(x,r) is compact for any x € G
and r > 0.

Proof. Let us define

n

p(x) = Z ‘2’3 for z=exp (Z cka> ,

k=1 k=1

where dj, are as in (1.1). Then p satisfies all the properties of a homogeneous quasi-
norm. Obviously {z : p(x) = 1} is compact and does not contain 0, so the function
x +— |z| attains a positive minimum 7 on it. Since |rz| = r|z| and p(rz) = rp(x),
it follows that |z| > np(x) for all x and for some 1 > 0, and hence that

B(0,n) c{x:p(z) < 1}.

Thus, B(0,7n) is compact, and it follows by dilation and translation that B(z,r)
is compact for all 7 > 0, z € G. O

We can compare the quasi-norms with each other and with the Euclidean
norm (1.2).

Proposition 1.2.3 (Quasi-norms and the Euclidean norm). We have the following
properties:

(1) Any two homogeneous quasi-norms on a homogeneous group are equivalent.
(2) There are the constants C1,Co > 0 such that

Cyl|z]] < Jz| < Cg||x||1/d for all x| < 1.

Proof. Proof of Part (2). When y = exp(3_ ¢, Xz) we have |ry|| = (3 cir?dr)1/2
and hence
rlyll < eyl < 7yl

for 7 < 1. A positive maximum C; * and a positive minimum C; % on {y: |y| = 1}
are attained by the Euclidean norm ||y|| in view of the compactness in Lemma
1.2.2. Any 2 # 0 can be written as 2 = |z|y where |y| = 1, so that for |z <1,

lzll < felllyll < O al, N2l = J2l’llyl = C5 el

completing the proof of Part (2).
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Proof of Part (1). Let | - |; and | - |2 be two homogeneous quasi-norms. By a
similar argument to Part (2), we observe that since the ball B(0, 1) with respect
to |- |1 is compact by Lemma 1.2.2, and | - |2 is continuous, we have

x
<(C<

2

|z[1

for all 2 # 0. By homogeneity it follows that |z|s < C|x|; for all z € G. Switching
the roles of | - |; and | - |2 we obtain the statement. O

The reason why the homogeneous quasi-norms have the prefix ‘quasi’ be-
comes clear from the following proposition that shows that in general the triangle
inequality is satisfied only with some constant:

Proposition 1.2.4 (Triangle inequality with constant). Let G be a homogeneous
group. Then we have the following properties:

(1) If | - | is a homogeneous quasi-norm on G, there exists C > 0 such that for
every z,y € G, we have

zy| < C(lz] + ly]).

(2) There always exists a homogeneous quasi-norm | -| on G which satisfies the
triangle inequality (with constant C = 1):

|yl < [z[ + [y (1.4)
for all x,y € G.

Proof. Let us prove Part (1). The function (z,y) — |zy| attains a finite maximum
C' > 0 on the set {(z,y) € G x G : || + |y| = 1} which is compact by Lemma
1.2.2. Then, given any z,y € G, set r = |z| + |y|. It follows that

layl = rlr= (zy)| = r(r" 2) (0 y)| < Cr = C(lz] + Jy)),

completing the proof.
We leave Part (2) without proof, referring to [FR16, Proposition 3.1.38 and
Theorem 3.1.39] for the complete argument. 0

Proposition 1.2.5. There exists a constant C' > 0 such that for every x € G and
s €10,1], we have
| exp(slog(z))| < Cla|. (1.5)

Proof. Let x # 0, otherwise (1.5) is trivial. Using the fact that |- | is homogeneous
of degree 1, we have

| exp(s log(x))]

2] = [01/]2| (exp(slog(z))| = | exp(slog(d1 2| (z))]-
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With [4y4((z)| = 1, it follows that

|exp(slog(a))] _

1 =:C.
|| - €eG:|€|:1,se[0,1]’0(eXp(5 0g(£)))

Note that C' is finite, since the set {£ : |{] = 1} is compact (see Lemma 1.2.2) as
well as | - |, exp and log are all continuous functions. (]

The bi-invariant Haar measure on G comes from the Lebesgue measure on
g by Proposition 1.1.1. Fixing the normalisation of the Haar measure on G we
require that the Haar measure of B(0,1) is 1. (Thus, if G = R™ with the usual
Lebesgue measure, our Haar measure is T'((n + 2)/2)/7™/? times the Lebesgue
measure.) The measure of any measurable set E C G will be denoted by |E|, and
we shall denote the integral of a function f with respect to this measure by fG fdx

or by [ f(x)dz, or simply by [ f or by [ f(z)dx.

Recalling (1.3), the homogeneous dimension of G is

Q=Y dy="Tr(A),
k=1
and we have
16-(E)| = r®|E|, d(rz) =r9dz. (1.6)
In particular, we have |B(xz,r)| =79 for all 7 > 0 and z € G.

Definition 1.2.6 (Homogeneous functions and operators). A function f on G\{0}
is said to be homogeneous of degree X if it satisfies

fod,=r*f forall r>0.

We note that for f and g, we have the formula

/ f(2) (g 06,)(@)dz = @ / (f 0 810)(@)g(x)dr,
G G

given that the integrals exist. Hence we can extend the mapping f — f o d,
to distributions by defining, for any distribution f and any test function ¢, the
distribution f o, by

<f © 57‘7 ¢> = T_Q<f7 (b © 61/r>7
where (-,-) denotes the usual duality between functions and distributions. The
distribution f is called homogeneous of degree A if it satisfies

fod,=rf forall r>0.
Also, a linear operator D on G is called homogeneous of degree \ if it satisfies

D(fod,) =r*(Df)od, foral r>0,

for any f.If D is a linear operator homogeneous of degree A and f is a homogeneous
function of degree u, then D f is homogeneous of degree u—A\.
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The following extension of the reverse triangle inequality is often useful:

Proposition 1.2.7 (Reverse triangle inequality). Let f be a homogeneous function
of degree \ and of class C* on G\{0}. Then there is a constant C > 0 such that
we have

|[f(zy) = f@)] < Clyllal*™* forall  |y| <|a]/2.

Proof. Suppose that || = 1 and |y| < 1/2, and we use the fact that both sides
of the desired inequality are homogeneous of degree \. In this case x and zy are
bounded, and also bounded away from zero, and the map y — xy is C!, so by the
usual mean value theorem and Proposition 1.2.3, we obtain

[fzy) = f(2)] < Cliyll < C'ly| = C'lyllz*,

using that both sides of the desired inequality are homogeneous functions of the
same degree . 0

In particular, this proposition can be applied to C'' homogeneous quasi-
norms. Specifically, the combination of Proposition 1.2.4 and Proposition 1.2.7
leads to a constant v > 0 such that we have

lzyl < ~y(lz| +|y]) forall =z,y€G, (1.7)

llzy| — |z|| < ~ly| forall z,yeG with |y| < |z|/2. (1.8)

Henceforth, v will always be called the minimal constant satisfying (1.7) and (1.8).
Obviously, v > 1. We will be using (1.7) and (1.8) without comment in the sequel.
The following simple fact will also be useful later:

Lemma 1.2.8 (Peetre type inequality). For every x,y € G and s > 0, we have
L+ 2D+ 1y ™ <" A+ |y ~H)*
Proof. Because of |z| < y(|Jzy~! + |y|) we have
L+ |z < y(1+ |2y~ DA + [y,
and we obtain the needed inequality by raising both sides to the sth power. [

Let us now fix the notation for some common function spaces on G. Let 2 C
G, and let C(2) (Cp(£2)) be the space of continuous functions on G (continuous
functions with compact support, respectively). If € is open, then C'®)(Q) is called
the class of k times continuously differentiable functions on 2,

C(Q) and C§°(Q) = C=(Q) N Co().

DL

C=(Q) =

k=1
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When 2 = G we shall usually omit mentioning it. If 0 < p < oo, then LP will
denote the usual Lebesgue space on G. For 0 < p < oo we write

I i= ([ 156@)vae) "

despite the fact that this is not a norm for p < 1. However, the map (f,g) —
|f = gllb is a metric on LP for p < 1. We recall that if f is a measurable function
on G, its distribution function Ay : [0, 00] — [0, 00] is defined by

Ap(a) =z |f(z)] > o}, (1.9)

and its nonincreasing rearrangement f* : [0,00) — [0,00) is defined by

f7(t) =inf{a: A\p(a) <t} (1.10)

Moreover,

/G\f(w)\”dw = - /OOO oPd\s(a) =;o/00o o\ p(a)da = /OOO FH(t)Pdt.

For 0 < p < oo, the weak-LP is the space of functions f such that

[flp == sup a? Af(a) = supt /P f*(t) < oc.
a>0 >0

This [-], is not a norm but it defines a topology on the weak-LP space. A sub-
additive operator which is bounded from LP to weak L7 is said to be weak type

(p,q).

1.2.2 Polar coordinates

There is an analogue of polar coordinates on homogeneous groups. We start with
the following observation:

Proposition 1.2.9 (Polar decomposition: a special case). Let f be a locally integrable
function on G\{0} and assume that it is homogeneous of degree —Q). Then there is
a constant g (the ‘average value’ of f) such that for every g € L*((0,00),r~tdr),
we have

/f g(|z|) dx—uf/ g(ryr—tdr. (1.11)
Proof. Define Ly : (0,00) — C by

L ,_ f1§|a:|§r flz)dx it r>1,
1= - fT§|x|§1 flz)de if r<1.



22 Chapter 1. Analysis on Homogeneous Groups

By changing the variables © — sx and using the homogeneity of f, it can be
verified that
Ly(rs) = Ly(r) + L (s)
for all 7, s > 0. From the continuity of L, it then follows that
Ly=Ls(e)logr,

and we set py := L(e). Then equality (1.11) is obvious when g is the characteristic
function of an interval, and it follows in general by taking linear combinations and
limits of such functions. O

Proposition 1.2.10 (Polar decomposition). Let
p={rxeG:|z| =1} (1.12)

be the unit sphere with respect to the homogeneous quasi-norm |- |. Then there is
a unique Radon measure o on o such that for all f € LY(G),

/ flx)dx = / / Fry)r@Ydo(y)dr. (1.13)
G 0 ©
Proof. Let f € C(G\{0}) be the homogeneous extension of f € C(p) defined by

fla) = la| =@ f(l2] " a).

Then fsatisﬁes the hypotheses of Proposition 1.2.9. The map f +— u Fis clearly a
positive linear functional on C(g), so it is given by the integration against some
Radon measure o on p. If g € Cy(0,00) then we have

mflx x|)dx = ~x xQ zrl)dr = uy Ooerl r)dr
/Gf( a)g(|l)d /Gf( Y[z 9g (|l uf/O o(r)d
= /0 / Fy)g(r)yr9= do(y)dr.

Since linear combination of functions of the form f(|z|~tx)g(|x|) are dense in
LY(G), this completes the existence proof, and from the decomposition it follows
that such a measure is necessarily unique. O

Corollary 1.2.11. Let C := o(p). Then if 0 < a < b < 0o and o € C, we have
_ Ca 1(b* —a®) if a#0,
a<|z|<b Clog(b/a) if a=0.
Corollary 1.2.12. Let f be a measurable function on G such that
fl@) = 0(|z|*"9)

for some a € R. If &« > 0 then f is integrable near 0, and if « < 0 then f is
integrable near oo.

These two corollaries will be frequently used without comment in the sequel.
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1.2.3 Convolutions

Let f and g be two integrable function on G. Then their convolution f * g is well
defined by

(f % g)(z) = /G gy a)dy = /G Fay)g()dy.

The basic facts about convolution of LP and weak-L? functions can be for-
mulated in two propositions. For other properties of convolutions on groups we
can refer to [FR16, Sections 1.5 and 3.1.10].

Proposition 1.2.13 (Young’s inequality). Suppose
1<p,qg,r<o0 and + = +1

If fe LP and g € LY, then fxg € L" and

If * gllrc) < 1 flle@llgllza)-

Proof. First assuming r = oo, in this case p and ¢ are conjugate exponents and
the result follows from Hoélder’s inequality.

Second assuming r = ¢, p = 1, let ¢ be the conjugate exponent to ¢q. By
Holder’s inequality,

1 * @) < /G | F ey )| YO+ o)) dy

< ([ 15t iay) " ([ 1t sway) v
=1 [ st lgtieay "

Thus, by Fubini’s theorem, we obtain

/G 1+ gla@)tda < |17 /G /G ey lg(y) " dyde

’ +1
= 1 g,

so that || f = gllq < Ifll1llgllg- The rest follows by interpolation. O
Proposition 1.2.14 (Young’s inequality for weak-L? spaces). Suppose
1 1 1
g<p<oo, 1<gqr<oo, and + = +1
p q r

If f € LP and g € LY then [ x g € weak-L" and there exists C; = Ci(p,q) such
that

[f * glr < Cll fllplglq-
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Moreover, if p> 1 then g€ L" and there exists Cy = Ca(p,q) such that

1 *gllr < Cal| fllplglq-

Proof. By the Marcinkiewicz interpolation theorem one can notice that the strong
result for p > 1 follows from the weak result. Suppose then that f € LP and
g € L7, and (without loss of generality) that || f|l, = [¢]q = 1. Given a > 0 set

M = (a/2) /(g /ry 1,

where p’ is the conjugate exponent to p. Define g;(x) := g(x) if |g(z)] < M and
g1(x) := 0 otherwise, and set g := g — g1. Since

)‘f*g (a) S )‘f*!h (04/2) + )‘f*gz (a/2)7

it is enough to show that each term on the right side is bounded by Ca™", where
C depends only on p and g. On the one hand, since ¢~ — (p’)~t =771 > 0 we
have p’q > 0 and therefore

-

[e%s) M
[ln@rar=p [ o' @da <y [t (@)
0

0

M /
< p’/ o ada = Py =T e = (ag2)7
0 p—4q q

Thus, for every x € G, by Holder’s inequality (or by Proposition 1.2.13) we have
[f g1 (@) < ([ fllpllgrlly < a/2,
which implies that Af.g, (2/2) = 0. On the other hand, since ¢ > 1, we have
e M [e'S)
/ lg2(x)|dx = / Agy (@)daw = / Ag(M)de +/ Ag(a)da
G 0 0

M
[e'S)

gM-M‘q+/ alda = 1 Mi-q
M qg—1

and therefore by Proposition 1.2.13,

1F * g2llp < I flpllgallt < alq — 1) "M

But then

Aprgs(0/2) < 2|1 * g2llp/e]”

< 2)" q pM(lfq)p
T\« q—1
=C(p,q)a™".

This completes the proof. 0
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Now let us summarize some properties of approximations to the identity in
terms of the convolution. The following notation will be used throughout this
monograph: if ¢ is a function on G and ¢ > 0, we define ¢; by

¢r =t 9podyy, thatis, ¢u(z) =t 9e(z/t). (1.14)

We notice that if ¢ € L'(G) then f(G ¢¢(z)dz is independent of ¢.

Proposition 1.2.15 (Approximation of identity). Let ¢ € LY(G) and let a :=
f(G x)dx. Then we have the following properties:

(i) If f € LP(G) for 1 <p < oo, then || f* ¢ —af|, — 0 as t — 0.

(ii) If f is bounded and right uniformly continuous, then ||f % ¢ — af|lcoc — 0 as
t— 0.

(iil) If f is bounded on G and continuous on an open set Q C G, then fxdr—af —
0 uniformly on compact subsets of 2 as t — 0.

Proof. For a function f on G and y € G, let us define
fi@) = flay™).
If fe LP for 1 <p < oo, then it can be shown that
lfY—fll, =0 asy—0, (1.15)
for example, using the fact that Cj is dense in LP. If p = oo, property (1.15)

holds if and only if f is (almost everywhere equal to) a right uniformly continuous
function. We now observe that

f o 6u(w) —af( /f 2y Q(y/t)dy — af ()
/f (t2)"1)é(2)dz — af (z)
= [t - Flo()az.
Hence by Minkowski’s inequality,
1f * 60— aflly < /G 17 = Fllolé(2)ld=.

Since || f** — fl, < 2||f]|p, under the hypothesis of (i) or (ii) it follows from (1.15)
and the dominated convergence theorem that ||f * ¢+ — af|| — 0. The routine
modification of this argument (with p = 0o) needed to establish (iii) is left to the
reader. O
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1.2.4 Polynomials

The Lie algebra g of G can be understood from different prospectives:

e as tangent vectors at the origin,

e as left invariant (and right invariant) vector fields.

While in this book we will not make much use of the first interpretation, we will
need the second. Consequently, let us denote by g; and ggr the spaces of left
invariant and right invariant vector fields on G.

Let us fix a basis X1, ..., X, for g consisting of eigenvectors for the dilations

§, with eigenvalues 7%, ... r%" i.e., such that

5er = Tdek.

In other words, first, we consider X}, as left invariant differential operators on G
and we denote by Yij,...,Y, the corresponding basis for gg: that is, Y} is the
element of gr such that Yj|o = Xi|o and for f € C* we have

Xif(y) = ' £y xp(tX) =0,
V() = 5 Fexp(tXe) - y)limo

Then X and Y are the differential operators homogeneous of degree dj since

d
Xilf00)) = & F((ry) explr 1)) o
= 1 () exp(1 X))o
= ,,,dk (ka © 57‘)(2/)7
and similarly for Y. For I = (iy,...,i,) € N we use the notation

X' =XPXP X, Y=Yy v

n

According to the Poincaré-Birkhoff-Witt theorem, the operators X' give a ba-
sis for the algebra of left invariant differential operators on the Lie group G. In
addition, we also use the notations

|I| =11+ io+ -+ iy, d(I) = dyi1 + dois + - + dypip. (1.16)

Here |I| is called an order of the differential operators X and Y, and d([I) is
their degree of homogeneity or the homogeneous degree. If we denote by A the set
of all numbers d(I) as I ranges over N" then we have N C A as d; = 1.

There are two useful facts. On the one hand, left translations are isometries
on L?(G), and the operators X and Y}, are formally skew-adjoint. Therefore,

ey, — (I I Iy (_\] I
/G(X Do =(-1) /Gf<Xg>, /Gf(Yg) (-1) /G<Y .
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for all smooth functions f and g for which the integrands decay suitably at infinity.
On the other hand, the operators X! and Y/ interact with convolutions by the
formulae

X' (fxg)=f*(XTg), Yfxg)= "f)xg, (X flxg=[fx"g).

Except for the last one these equalities are direct consequences of differentiating,
and the third can be obtained by integration by parts:

(X' f)* gl /Xfxy Ndy = (- '”/fxy y~h)ldy
= [ Hen oy = £+ (Vg)(a).
Definition 1.2.16 (Polynomials on the homogeneous group G). A function P on G

will be called a polynomial if P o exp is a polynomial on g.

We can form a global coordinate system on G and generate the algebra of
polynomials on G by setting

Nk = Ep oexp

where 77, ...,n, are polynomials on G, and &1, ...,&, are the basis for the linear
forms on g dual to the basis X, ..., X, for g. Therefore, each polynomial on G
can be defined uniquely in the form

P=3 am',
I
where _ _
=gt
a; € C, and all but finitely many of the coefficients a; vanish. Since 1! is homo-

geneous of degree d(T), the set of possible homogeneous degrees for polynomials
coincides with the set A. The isotropic degree of a polynomial P is

max{|I| : ay # 0}.
And the homogeneous degree of a polynomial P is
max{d(I) : ar # 0}.

By ’PISO for N € N, we denote the space of polynomials of isotropic degree < N,
and by Pa, for a € A, we denote the space of polynomials of homogeneous degree
<a. Since 1 <di <dfor k=1,...,n, we observe that

Pn C PR C P,y

for N € N.
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There is a more explicit description of the group law in terms of the coordi-
nates 7y since the map

(z,y) = nk(zy)

is a polynomial on G x G. Thus, we have

i ((rz) (ry)) = r®%m(zy),

that is, it is jointly homogeneous of degree d; and, according to the Baker—
Campbell-Hausdorff formula, we have n;(zy) = ni(x) + nx(y) modulo terms of
isotropic degree > 2. It follows that

i (wy) = k() + ne(y) + > Ciln" (@)’ (y), (1.17)
1£0,J70,d(I)+d(J)=dy,

where C}7 are constants. It is easy to see that the monomials n’, 7’ can only
involve coordinates with homogeneous degree less than dy, since the multi-indices
I and J in (1.17) must satisfy d(I) < dj and d(J) < dj. In particular, only the
coordinates 71, ...,7n;-1 can be involved, for instance:

dp =1: ne(ry) =ne(x) +n(y),

de =20 me(zy) =me(@) + @)+ > Ciini@)m ().
dj=d;=1

Proposition 1.2.17 (Polynomials are translation invariant). For any a € A, P, is
left translation invariant.

Proof. According the formula (1.17), it is easy to see that n;(zy) is in Pg, (as a
function of x for each y, and also as a function of y for each x). On the other hand,

the n;’s generate all polynomials, therefore P, is left translation invariant for all
a € A. O

Definition 1.2.18 (Coordinate functions on the group). Forz € Gand k =1,...,n,
we can think of

xg = nk(x)

as the coordinates of the variable x. Thus, each z; becomes a polynomial of ho-
mogeneous degree k.

We now establish a link between left and right invariant differential operators
and derivatives with respect to coordinate functions on the group.

Proposition 1.2.19 (Formulae for invariant derivatives). We have

X =Y Pi(0/0x;), Yi=>_ Qu;(0/0x;), (1.18)

where Py, = Qre =1, Prj = Qirj =0 if dj < di orifdj = di, and j # k, and
Py;,Qr; are homogeneous polynomials of degree dy, — d; if dj > dj.
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Proof. Let us define the operator L, : G — G by L,(y) := ay for © € G. Then,
using the fact that X agrees with 9/dxy at 0, for each differentiable function f
on G and = € G, we have

Xif (@) = (Xif) 0 La(0) = Xi(f 0 L) (0) = (8/0xx)(f © L2)(0).

Therefore, by the chain rule, we obtain

B " of . Oz o L]
Xef) =32 7 @5 o

But by formula (1.17) it follows that

Olx; o L,
[ 3z }(0) = O; + Z C;[k]nl(ﬂ«%
k d(I)=d; —dy,

where [k] is the multi-index with 1 in the kth place and zeros elsewhere. The
desired result for X} follows from this, and for Y it can be proved in a similar
way. O

There are also similar expressions for 0/dzy, in terms of X; or Yj:

0f0z, = PLX;=> QY5

where Py ;, @}, are of the same form as Py;, Qg; in (1.18). Above formulae can
be directly obtained from (1.18) with j = n, that is, we have

X, = 0/0x,,
Xn1= a/8«1:77.71 + P(n—l)na/a'rﬂu
Xn—2=0/0xn_2+ Pp_2y(n-10/0Tpn-1+ Pl_2n0/0zn,

therefore, we obtain

0/0x, = X,
3/81:,1,1 = anl - P(n_l)na/&z:n,
8/a$n—2 =X, 2— P(n72)(n71)a/axn—l - P(n72)na/axn7

and so on. Similarly, one can obtain expressions for higher-order derivatives. For
instance,

X' = > Pry(8/0x)”, (1.19)

[J|<|1],d(J)=d(T)

where Pr; is a homogeneous polynomial of degree d(J) — d(I). Analogously, we
obtain formulae for Y! in terms of (9/0x)7 and for (9/0z)! in terms of X7 or
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Y/, that is,
Xt= %  pPyy’
<[], d(J)<d(I)
vi= > Qrs X7,

[J|<[I],d(J)<d(I)

where Pry and Q7 are homogeneous polynomials of degree d(J) — d(I).

Proposition 1.2.20 (Determination of invariant differential operators). Let a €
A and let p := dim P,. Then the following maps are linear isomorphisms from
P, to CH:

(i) P— ((9/02)! P(0))a(r)<a-
(ii) P — (XTP(0)ar)<a-
(lll) P — (YIP(O))d([)Sa.

Proof. Note that Case (i) is a simple consequence of Taylor’s theorem. Also, in
view of (1.19), since Pry is a constant function when d(I) = d(J) and Pr;(0) =0
when d(J) > d(I), we have

XI‘OZ Z ‘Pjt](a/al‘)‘]‘o7
[J|<|I],d(J)=d(I)

and similarly for the other formulae relating X!, Y1 and (9/0n)!. Cases (ii) and
(iii) follow easily from this observation together with Case (i). O

The properties above motivate the following:

Definition 1.2.21 (Taylor polynomials). Let x € G, a € A, and let f be a function
whose (distributional) derivatives X f (resp. Y!f) are continuous functions in a
neighborhood of x for d(I) < a. The left (resp. right) Taylor polynomial of f at x
of homogeneous degree a is the unique P € P, such that X' P(0) = X! f(z) (resp.
YIP(0) = Y!f(z)) for all I such that d(I) < a.

Now we provide simple proofs of an explicit expression of the Taylor formula
and the Taylor inequality in the spirit of [Bon09).

Let X € g be given, and suppose 7(t) is any integral curve of X i.e.
¥ =X((1)
for all t € R. If m € NU {0} and u € C"™"1(G) is real-valued, then since

dr &
L ) = (Xu)(0),
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for each k € NU{0}, by applying the usual Taylor formula (with integral reminder)
to t +— u(y(t)), we obtain

th 1/t
D=3 L &0ao)+ o[- X G 120)

m!

Moreover, it is easy to see that the integral curve v of logh starting at = is
s+ v(s) = vexp(slogh). With v(0) = z,v(1) = zh, we get

m

Z ((log h)*u)(z) + 7711! /0 (1 —8)™((log h)™ " u)(x exp(slog h))ds.

(1.21)
On the other hand, there always exist (polynomial) functions G > h —
¢i(h) € R such that

logh=CGM)X1+--+ (WX
for all h € G, where {X7,..., X,,} is a basis of the Lie algebra of G. Thus, we have

k n
IOg h (Z C'L Z> = Z Cil (h) e Cik (h)Xh T X’i}m

i1penin=1

for every k € N.
Therefore, (1.21) implies that

aem =@+ Y e m
k—

1 I:(i1,...,ik),il,...,ikgn

+ Z Giy (h) T Cim+1 (h)

T=(i1,. slm41),01,0 s p1<0

1 _gm
x/o (Xru) | xexp Zs(i(h)Xi (1—3) ds,

m!
i<n

(1.22)

where X7 = X;, -+ X, and I = (iy,...,45) with é1,...,9, € {1,...,n}.
For a multi-index o, we will be using the notations (1.16), i.e

|o¢|:0¢1+"'+04n7 d(a):d1a1+"'+dnan7

where d; is the homogeneous degree of Xj; these are called the Euclidean length
and the homogeneous length of «, respectively. One also sets

& :={d(a): a e (NU{O}H"}.

As usual, [3] below is the integer part of the real number 5. Now we are in a
position to state the Taylor formula on homogeneous groups.
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Theorem 1.2.22 (Taylor formula). Let G be a homogeneous group (identified with
R™ as a topological space). Suppose {X1,..., X} is the Jacobian basis for its Lie
algebra, m € & and u € C™*YG). Let also xg € G be fized. Then, for every
z € G we have

u(x) = Pp(u, 20)(x) + R (x, 20) (1.23)

[m]

:u(ﬂ;‘o) +Z Z XIU(J;O)CH( )Czk(xalm) +Rm($7$0)7

k=1 I=(i1,....,i),
01,05 <N,
d(I)<m

where the reminder term Ry, (z,x0) is given by

[m]

)=y 5 KU g g )

k=1 I=(i1,...,ix),
01,00 SN,

d(I)>m
+ Z Cil (xo_lm) e Ci[m]+1 (x(;lx)
I:(’il ..... i[n]+1)
i1, [m]+1<n
1
1—s)™
X / (Xru) | xoexp Zs(i(mglx)Xi ( [ Sﬁ ds.
0 m)!

i<n

Proof of Theorem 1.2.22. If x¢ € G is any fixed element, by replacing x and h in
the formula (1.22) by respectively z¢ and = L2, we obtain the following:

[m]
u)=uo) £y Y UG gt G )

d(f)>m
D Gal# ) Gy () (1.24)

I:(’il ..... i[m,]«l»l)
VLyeeny Z[,m]+1§’n

1

1 — g)m

x/ (Xru) | xoexp Zs(i(mglx)Xi ( [s])' ds.

0 my.

i<n

Since a polynomial (;(x) is homogeneous of degree o;, there exists C; > 0 such
that
n.

C’fl\x\ai <|Ci(x)] < Chlz]7", YxeG, i=1

PR

As a consequence, for every k € N, (;, - - - (;, is a homogeneous polynomial of degree
diy + -+ d;,. Similarly, G, -~ (i, is homogeneous of degree > [m] + 1 (since
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the d;’s are > 1) and, there appear only derivatives X;u with d(I) > [m]4+1>m
in the integral summands.

We restate (1.24) emphasizing out the polynomial of degree < m in the
right-hand side:

wo) =ue) + > 5 Gt 6 e

—1 —1
+ E Cil (370 l‘) U Ci[m]+1 (950 l‘)
I=(i1,yipm]+1),
U1, lm] 1S

X /1(X1u) . ZSC‘(@"fll‘)X‘ (1—s)lm n
0 i<n o ’ [m]!
=: Py, (u,20)(x) + R (2, x0).
By construction, P, (u,z¢)(z) is a polynomial of homogeneous degree < m. O

Theorem 1.2.23 (Taylor inequality). Assume the hypotheses of Theorem 1.2.22.
Then for every fixred homogeneous norm | -| on G and every m € &, there exists
C > 0 (depending on G and | - |) such that

[m]+1

ck - _
[ B (2, 20)| < W 2 et swp [Xpu(eg'y)l o (1.25)
R=l T T=(i k), lyI<Clay el
Zlgl.(..I,)lg’Tnn,

Moreover, an explicit formula for the Taylor polynomial Py, (u, zo) of degree m € &
related to u about xq is

P (u, z0)(x) = u(o)
[m]
X[’U,(l‘o) _ B
E=1I=(i1,...six)yi1,e.erix <n,d(I)<m :

Proof of Theorem 1.2.23. Since

n

Z sGi(x)X; = slog(x)

i=1
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by Proposition 1.2.5 we obtain
(Xru) | exp Z sGi(x) X; < sup | Xju(y)|
i<n [y|<Colz|

This implies that

Sak () G (o
R (2 2)| < Z Z sup |X1u(21361y)\<’1($0 x) " Gir (29 ")

k=1 I=(i1,....ip), [91<Colzg |

i1,..,15 SN,
d(I)>m
1 —1 I —1
< Z Kl Z |zq I‘U() Sup | Xru(zg y)l.
k=1 I=(i1,...,ix), ly|<Colxg x|
U100 SN,
d(I)>m

Choosing C' := max{Cy, Cy } we complete the proof of the Taylor inequality (1.25).

First, note that the above estimate of R, gives R,,(z) = O(p""¢(z)) as
x — 0, where

e:=  min  {d(I)—m:T=(i1,...,0), 01, -, ip <n,d(l) >m}. (1.27)
k=1,...,[m]+1

Thus, the Taylor formula (1.23) can be rewritten as u(z)= Py, (z)+O(|z|™"*)
as z — 0, with € > 0 as in (1.27).

Now let us see that there exists at most one polynomial function P on G,
with degree < m, such that, for some € > 0 (depending on P and m) it holds

u(w) = P&) + Opvsy (lg 2 ™). (1.28)

Indeed, suppose there are two such polynomials, A and B (with related 1,5 > 0).
Then setting € := min{ey, g2} we have

Qx)=B—-A= Ow—>xo(|$0_137‘m+8)-
Setting @(z) := Q(x02), this is equivalent to

Q(z) = O._o(|z|™9). (1.29)

The fact that @ is a polynomial of degree at most m and the ith component
function of xpz is a polynomial in z of degree at most d;, it follows that Q(zoz) is
a polynomial in z of degree at most m.

Therefore, (1.29) is valid if and only if Q = 0, that is, Q(xzpz) = 0 for all
z € G. This is in turn equivalent to @Q =0, i.e., A = B. Note that the equivalence
of all homogeneous norms (cf. Proposition 1.2.3) implies that a polynomial P as
in (1.28) is independent of | - |. Thus, P, is the Taylor polynomial of degree m
related to u, which has the explicit formula (1.26). O
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1.3 Radial and Euler operators

An important tool for working on homogeneous groups will be an extensive use of
radial and Euler operators. We now discuss them in some detail and establish a
number of properties used throughout the book.

1.3.1 Radial derivative

First we introduce a radial derivative (acting on a differentiable function f) on a
homogeneous group G by
_ df(x)

Ri(w) ="y,

where |z| is a homogeneous quasi-norm of G. Note that the homogeneous quasi-
norm |z| in the formula (1.30) can be arbitrary, that is, in general the radial
operator R depends on a chosen homogeneous quasi-norm.

Let {X1,...,X,} be a basis of the Lie algebra g of G such that we have

(1.30)

AXp =Xy  forevery k=1,...,n.

Then the matrix A can be taken to be A = diag(vy,...,v,) and each X} is
homogeneous of degree vi. By decomposing the vector exp(_;l(;v) in g with respect
to the basis {X1,..., X, }, we get the vector

e(x) = (er1(x),...,en(x))

given by the formula
expg(z) =e(z) - V=) e(2)X,,
where
V= (Xla"'7Xn)
is the full gradient. It gives the equality
x =expg (e1(2) X1+ +en(2)X,) . (1.31)

By homogeneity and denoting = = ry, with y € p being on the quasi-sphere (1.12),
we get
e(z) =e(ry) = (rMei(y),...,r" en(y)).

Indeed, since each X} is homogeneous of degree vy, from (1.31) we get that
re = expg (re1 (@) X1 + - +r"e,(2)X,),

and hence
e(ra) = (rteg(x),...,r"e,(x)).
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Thus, since r > 0 is arbitrary, without loss of generality taking |z| = 1, we can
write
f(rz) f( (rtei(x) "ren(2) X)) (1.32)
ry) = expg (rter(x) X1+ - +1r"me,(2)Xy)). .
d|rz| dr ¢ ! !

So, summarizing, one obtains

d d d
o D = 5 G00) = L (lexps (M) Xs -+ 7 eu (1) X))
(1.33)
Throughout this book we will be often abbreviate the notation by writing
d
R = 1.34
. (134)

meaning that the derivative is taken with respect to the radial direction with
respect to the quasi-norm | - |.
We can also observe that for any differentiable function f we have

4t df(””||x|) T =T Ve, (135)

dlz|” " dlx| \|2|™") T Ja] da 2]

since for z € G, we have that |i| does not depend on |z|, and where

0 0
Ve (0 e |

is an anisotropic (Euclidean) gradient on G consisting of partial derivatives with
respect to coordinate functions.
Although z; and 8?5 may have degrees of homogeneity depending on j, the

operator

2| dla]

R = (1.36)

is homogeneous of degree —1.

1.3.2 Euler operator

Given the radial derivative operator R, we define the Fuler operator on G by
E = |z|R. (1.37)

Since R is homogeneous of degree —1, the operator E is homogeneous of degree 0.

We can note the following useful property shedding some more light on the
link between the radial derivative and the Euler operators, also clarifying how to
take derivatives with respect to points that are not on the quasi-sphere p. Thus,



1.3. Radial and Euler operators 37

for x € G, we can write z = ry with y € p. Then, denoting p := elr for t € R, we
have

) = L) = § (Flon) = p . (Fow) = EF(pw) = Bf(e'a),

that is,

d ooy t
dtf(e x) =Ef(e'z). (1.38)

The Euler operator has the following useful properties, also justifying the
name of Euler associated to this operator.

Proposition 1.3.1 (Properties of the Euler operator). We have the following prop-
erties:

(i) Let v e R. If f : G\{0} — R is differentiable, then
E(f)=vf if and only if f(rz) =r"f(x) (Vr >0,z #0).
(ii) The formal adjoint operator of E has the form
E* — —QI —E, (1.39)

where 1 is the identity operator.
(iii) For all complez-valued functions [ € C§°(G\{0}) we have

IEFll 26y = IE* Fl 2 c - (1.40)
Proof. Part (i). If a function f is positively homogeneous of order v, that is, if
flra) =r"f(z)

holds for all » > 0 and = := py # 0, y € g, then using (1.30) for such an f, it
follows that

Ef =vf(x).
Conversely, let us fix z # 0 and define
g(r) := f(rz).
Using (1.30), the equality Ef(rz) = vf(rz) means that
d 1
g(r) = foa)= Eftra) =" f(ra)="g(r).

Consequently, g(r) = g(1)r¥, i.e., f(rz) = r” f(x) and thus f is positively homo-
geneous of order v.
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Part (ii). We can calculate the formal adjoint operator of E on C§°(G\{0})
as follows:

e d
/ Ef(x)g(z)dz = / / Fry)g(ry)r@do(y)dr
G 0 © dT’
> _ d
= —/ /f(ry) (QTQ tg(ry) +1¢ g(w)) do(y)dr
0 © r
- - [ 1)@+ D).
by the polar decomposition in Proposition 1.2.10 and the integration by parts

using formula (1.30).
Part (iii). By using the representation of E* in (1.39), we get

B £11% 26y = (—QL = E)fl|2g,

(1.41)
= Q[ fIa(e) + 2QRe /G F@ES (@)do + IES |2 (g, -
Then we have
QR [ fES @ =20Re [ [ 109) § sovr@doir
= e[ d 2do(y)d
@ [ L seurastar o
2 [ 2@ o (y)d
Q / /pf(ry) r91do (y)dr
= Q| fl72c) -
Combining this with (1.41) we obtain (1.40). O

Let us introduce the following operator that will be of importance in the
sequel,
A :=EE*.

It is easy to see that this operator is formally self-adjoint, that is,
A=EE* =E'E = A",
where we can use Proposition 1.3.1, Part (ii), to also write
EE* = E*E = —QE — E2.
Then by replacing f by Ef in (1.40), we obtain the equality

HAf”L?(G) - H]EQfHL?,(G) (143)



1.3. Radial and Euler operators 39

for all complex-valued functions f € C§°(G\{0}). Moreover, the operator A is
Komatsu-non-negative in L?(G), which means that (—oo,0) is included in the
resolvent set p(A) of A and we have the property

M >0, VA>0, |\ +A)71||L2(G)—>L2((G) < MAL

Indeed, and more precisely, we have the following:

Lemma 1.3.2 (A = EE* is Komatsu-non-negative). The operator A = EE* is
Komatsu-non-negative in L*(G):

H()\ +A)71||L2(G)—>L2(G) S )\71 fm" all A > 0. (144)

Proof. We start with f € C§°(G\{0}). Using Proposition 1.3.1, Part (ii), a direct
calculation shows that we have the equality

IAL+A) fl1Z2(6) = (AL - E(QT + E)) 72,

1.45
= 1Ry + IEQE+ )~ 23R [ f)QES + B2 )

Since

e [ s@r2pae=Te [ [ ) (8100t
= we [ [ @50 (1 w40 sGow) )ty

=~ I/ 1x0) — QRe [ Ef(@) /(@)
we have
—2)\Re/ [(2)QEf(z) + E2 f(x)dx
G
= QAQRe/Gf(m)]Ef(x)dx - 2/\Re/Gf(x)E2f(x)dx =2\ ||Ef||2LQ(G) . (1.46)
Combining (1.45) with (1.46), we obtain the equality
I = EQI+E)flIZ26) = X* 1 f[726) + 2 IES Iz2c) + [EQI+E)fll7a(e -
By dropping positive terms, it follows that
AL =~ E@QI+EDSllz2c) = X 1 72(c)
which implies (1.44). O

We can refer to [FR16, Section A.3] for more details on general further prop-
erties of Komatsu-non-negative operators and their use in the theory of fractional
powers of operators.
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1.3.3 From radial to non-radial inequalities

Now we show that the Euler operator and, consequently, also the radial derivative
operator, have a very useful property that in order to prove certain inequalities
on G is may be enough to prove them only for radially symmetric functions. We
summarize it in the following proposition. Such ideas will be of use, for example,
in the analysis of remainder estimates in Theorem 2.3.1 or in Theorem 3.2.6.

As usual, we will say that a function f = f(z) on G is radial, or radially
symmetric, if it depends only on |z|; clearly, this notion depends on the seminorm
that we are using.

Proposition 1.3.3 (Radialisation of functions). Let ¢1, ¢2, ¢3 € Li. .(G) be arbitrary
radially symmetric functions. For f € LI, (G), define its radial average by

e = (|} [ sl )) " (1.47)

Then for any f € L}, (G) and 1 < p < oo we have the equality

L@ |fal) o = [ or@) 5@ e (1.48)

Moreover, if ¢o, ¢3 > 0, we have the inequalities

[ 0ata) [E4Fjab| o < [ 620 [E* ()] o (1.49)
G G
and

| est@)|[REFaD] o < [ onta) RE @) d, (1.50

for alll < p < oo, any k € N and all f € LY (G) such that E*f € LY (G) or
REf € LY (G), respectively. The constants in these inequalities are sharp, and are

attained when [ = f.

Proof. Using definition (1.47) and the polar decomposition formula in Proposition
1.2.10, we have

/|f |2)|P 1 (x: dx—|p|/ )P ()@ L dr

= ry)|Pdo )@ tdr = x)|[Po1(x)dx
—|p|/0 m/plf( y)IPdo () ()@ d /Gm )P (a)d

which proves the identity (1.48).
To prove (1.49) let us show first that

(1.51)

k7 1 k P z .
B < (p / B* £(ry)| da<y>) r=lal. (1.52)
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holds for any k& € N. We use the induction. For £ = 1, by the Holder inequality we
obtain

8= (o) [ 1£0wPanty >)’1’1 :
< (1o [ rempasty ) o 1P s

< (i [ raraotn) : all oty ) ([ enrasty )
= (1o [P ary))’

For the induction step, we assume that for some ¢ € N we have

~ 1/p
27 () [ aw) (159
&

and we want to prove that it then follows that

0417 1 vl » 1/p
£ fé( [ ) do<y>) :
ol Jo
So, using (1.53), similarly to the case £ = 1 above, we calculate
<[e (o L1sonraon))
-1
= \/’EZ (ry)|" doy )
Eff(ry)|” do(y > < EIZ P ReH 20 do )
(m/' )l ol [, SOl B )] doty)
(3 o) 8 ([
(frroren)”
©
1 041
= (ot J, [T ow ety

Here in the last line we have used Hélder’s inequality. It proves (1.52).

[ 15w j )

do(y)

—1

d
rdrf(ry

[E“F ()

o JIE S B ) @ i)

IN
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Now (1.52) yields

[ [ onta dx—\p\/ B4 7

k r P er710 r
g\m/o p/p\E £ )| da(r)r@tdo(y)d

= / |Ekf(x) |p oo (x)dx
G

This completes the proof of (1.49). The proof of (1.50) is similar. O

(r)rtar

1.3.4 Euler semigroup e t*F

Here we will describe the operator semigroup {e‘ﬂE*E}DO associated with the
Euler operator on homogeneous groups.

Theorem 1.3.4 (Euler semigroup). Let G be a homogeneous group of homogeneous
dimension Q. Let x € G, x # 0, and let y := |i| , and t > 0. Then the semigroup

e R s given by

. —1Q*/4 ® (nlel-tno?
=@ =",  la™%"” / oI SO ()@ s, (154)
™ 0

Before we prove formula (1.54), let us introduce some notation that will be
useful in the sequel. Thus, let us define the map F : L*(G) — L?*(R x p) by the
formula

(Ff)(s,y) = e*2 f(ey), (1.55)

for y € p and s € R. Its inverse map F~1 : L?(R x p) — L?(G) can be given by
the formula
(F~'g)(@) =1~ g(Inr,y), (1.56)

and one can readily check that F' preserves the L? norm. The map F can be also
described as

(Ff)(s,9) = (U(s)f)(y)
for all y € p and s € R, with the dilation mapping U(¢) defined by
U(t)f(x) == !9 f(etx). (1.57)

We then immediately have

(EWU@N))(s,y) = UESUB ) = Uls +8)f)y) = (Ff)(s +t,y). (1.58)
The dilations U(t) can be linked to the Euler operator through the relation

d

dtf(etx) =Ef(e'z), x€G,
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see (1.38). It then follows that these dilations can be also seen as a group of unitary
operators U (t) = et with the generator

Af= LU0 | (B4 5 ) r=-mi-i5r )

Since E* = —QI — E by Proposition 1.3.1, Part (ii), the formula (1.59) implies
that

A:A*:—iE—ig, (1.60)
which yields the relation
2
A=FEE= (—iA—Cj) (iA—g) =A2+Cfl : (1.61)

The family U(¢) is mapped to the multiplication by exponents €™ through the
Mellin transformation M : L?(G) — L?(R x p) defined by the formula M = FoF,
where F is the Fourier transform on R, that is,

1 —1iST
M= [ D (1.62)

Indeed, using (1.58) and changing variables, we have

MU = o [ e E s+t

eitT

B Vor

Before finally proving Theorem 1.3.4, let us point out that it implies the

2

following representation of the semigroup e~*4".
—tAQ)

(1.63)
/Re—isT(Ff)(S’y)ds = eitT(Mf)(T, y)

Corollary 1.3.5 (Semigroup e . Let F and F~! be mappings as in (1.55) and

(1.56), respectively. Then we have

e = o [eo (<00 fmas e

Proof of Corollary 1.3.5. Setting e~*4" = e!@*/4¢~E"E a5 well as combining (1.55)
and (1.56), and using (1.54) we get

Fe " F1f(r,y)

Q2 /4-Q/2 oo g
:F(d‘f/‘*e \/4rt / e~ u )2sQ/Q‘l(s_Q”f(lns,y))dS)
s 0

—TQ/Z oo (a2 f(1 L[ e
= eTQ/2e / ef( bl f(ins,y) ds = / 67( & f(s1y)ds1,
\/47Tt 0 s \/47Tt —

which is (1.64), where we have used the new variable s = e®! in the last line. [
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Let us finally prove Theorem 1.3.4.

Proof of Theorem 1.3.4. Noting that from the definition we have i Ae'4 = 9,U (),

we can calculate
(MiAe M f)(r,y) = (MOU () f)(1,y) = (MU (1) f)(7,y)-
Now using (1.63) we get from above that
(MiAe A f)(r,y) = 0™ (M f)(1,y) = ire™ (M f)(1,y),
which (after setting ¢ = 0) implies
(MAf)(r,y) = (M [f)(7,y)

(1.65)

for f in the domain D(A). It follows that the condition f € D(A) can be described

by the property that the function (7,y) — 7(M f)(7,y) € L*(R x g).
So, first we prove that

(Me™ f)(r,y) = e~ (M f)(r,y).
‘We have
—tA2 N (_t)k 2k
(M )(ry)=>_ ", (MA™f)(7y).

k=0
Moreover, by iterating (1.65), it follows that

(MA?! f)(r,y) = 725 (M f)(r,y), k=0,1,2,....
Combining this with (1.67), we get

oo

2 — k 2
(e gy = 3 U 0 ) = 7 (0 ),

k=0
That is, we have showed that (1.66) holds. Thus, it follows that

e = M et M.
Here by using that M = F o F', we have
et = Flo .7-'_1(6_”2.7: o F).
Furthermore, we calculate

F e M\ y) = F e ' FoF)(\y)
o 1 AT —tT? —isT
= 271_/]R/]Re e T e T(Ff)(s,y)dsdr
1

o / (/ 6”2”“5)7617) (F)(s,y)ds

_ 1 / o (AZ:)2 (Ff)(87y)d8 —: th(>\7 y)7
R

(1.66)

(1.67)

(1.68)
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2y T (A=s)?
e tre+i(A S)Td,r _ e i
R t

From this and (1.68), using (1.55), (1.56) and M = F o F with z = |z|y, we
compute

since

(e F)(|ly) = (F’l%)(\fv\y) =1~ (Inz], y)

_ (nfz|—s)?
i o [ s

1]$7n22
= e e
0

where we have used the change of variables z = e® in the last line.
Since we have e 'E'E = ¢~1Q%/4¢—1A* Ly (1.61), we arrive at

_tE* o 2 B 5
(5 ey) =S )
Q/2 —tQ?/4 (nlzl-m2)?2 @ 4
¢4 t'””' e "L f ey
g 0

n|z|—In z)?
wﬂrtlwl @fremtai /0 e T f )29 e,

completing the proof of (1.54). O
Remark 1.3.6.

1. The representation of the Euler semigroup in Theorem 1.3.4 becomes in-
strumental in deriving several forms of the Hardy—Sobolev and Gagliardo—
Nirenberg type inequalities for the Euler operator, as we will show in the
sequel, see, e.g., Section 10.4.

2. In the Euclidean case R"™, the results of this section have been obtained in
[BEHLOS]. For general homogeneous groups, our presentation followed the
results obtained in [RSY18a).
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1.4 Stratified groups

An important special case of homogeneous groups is that of stratified groups
introduced in Definition 1.1.5. Because this is an important class that will be
analysed in Chapter 6 from the point of view of Hardy and other inequalities, here
we will provide more details on it and fix the corresponding notation.

1.4.1 Stratified Lie groups

We recall the definition of stratified groups.

Definition 1.4.1 (Stratified groups). A Lie group G = (R™,0) is called a stratified
group (or a homogeneous Carnot group) if it satisfies the following conditions:

(a) For some natural numbers N + N3 + --- + N, = n, that is N = Ny, the
decomposition R” = RY x - - x R is valid, and for every A > 0 the dilation
0y : R™ — R™ given by

oxn(z) = ox(z, 2@ M) = (!, A22P) L amz(™))

is an automorphism of the group G. Here z’ = z(V) € RN and 2*) € RV* for
k=2,...,r

(b) Let N be as in (a) and let X1q,..., Xn be the left invariant vector fields on
G such that X5 (0) = 82_ lo for k=1,...,N. Then

rank(Lie{X1,..., Xn}) =n,

for every z € R”, i.e., the iterated commutators of Xi,..., Xy span the Lie
algebra of G.

The number 7 is called the step of G and the left invariant vector fields
X1,..., X are called the (Jacobian) generators of G. The homogeneous dimension
of a stratified Lie group G is given by

Q=Y _kNy, Ni=N.
k=1

The second-order differential operator

N
L=Y X} (1.69)
k=1

is called the (canonical) sub-Laplacian on G. The sub-Laplacian £ is a left invariant
homogeneous hypoelliptic differential operator and it is elliptic if and only if the
step of G is equal to 1.
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The hypoellipticity of £ means that for a distribution f € D'(Q) in any open
set 0, if Lf € C*°(Q) then f € C>(). It is a special case of Hérmander’s sum
of squares theorem [Hor67].

The left invariant vector field X} has an explicit form given in Proposition
1.2.19, namely,

r N
X = 8, —|—Z Zla,(cl%(a?’,...,a:(l_l)) (‘9(1)7 (1.70)
axk =2 m=1 7 0 m

where ag)m is a homogeneous (with respect to d,) polynomial function of degree

I — 1. We will also use the following notation for the horizontal gradient
Vi = (X1,...,Xn),
for the horizontal divergence
divgv := Vg v,
and for the horizontal p-Laplacian (or p-sub-Laplacian)
L,f =divg(|[VaflP~2Vuf), 1<p<ooc. (1.71)

Denoting the Euclidean distance by
o = \fo 44

for the Euclidean norm on R¥ | the representation (1.70) for derivatives leads to
the identities

V|2’ =427, (1.72)
and
N N _
. a . Zj:l |x/|’ij33;‘ - Zj:l m;-’y|x/‘7 1Xj|x/| _ N-—v
leH |x/|7 = ‘LE"QV = |x/|7 (173)

for all v € R, |2/| # 0.
It was shown by Folland [Fol75] that the sub-Laplacian £ in (1.69) on a
general stratified group G has a unique fundamental solution €, that is,

Le =0, (1.74)

where ¢ is the delta-distribution at the unit element of G. Moreover, the function
€ is homogeneous of degree 2 — Q.

The function .
-Q f
d(z) = { S@e, forz#0, (1.75)
0, forx =0,
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is called the L-gauge on G. It is a homogeneous quasi-norm on G, that is, it is a
continuous function d : G — [0, 00), smooth away from the origin, which satisfies
the conditions

d(\x) = Md(z), d(z™') = d(z) and d(z) = 0 if only if z = 0. (1.76)

We refer to the original paper [Fol75] by Folland as well as to a recent pre-
sentation in [FR16, Section 3.2.7] for further details and properties of these fun-
damental solutions.

For future use, we record the action of £ on d and its powers. Since £Ld>~@ =0
in G\{0}, a straightforward calculation shows that for @ > 3 we have

2
Ld=(Q-1) Ivzd‘ in G\{0}, (1.77)
as well as, consequently, for all o € R,
Ld* = a(a+Q — 2)d* 2|V gd|* in G\{0}. (1.78)

1.4.2 Extended sub-Laplacians

In general, most of the results described in this book in the setting of stratified
groups can be extended to any second-order hypoelliptic differential operators
which are “equivalent” to the sub-Laplacian £. Let us very briefly discuss this
matter in the sprit of [BLUOT].

Let A = (akrj)1<k,j<n, be a positive-definite symmetric matrix. Consider
the following second-order hypoelliptic differential operator based on the matrix
A and the vector fields { X7, ..., Xy, } from the first stratum, given by

N
La= Y ar;XpX;. (1.79)
k,j=1

For instance, in the Euclidean case, that is, for G = (R, +) and N; = N, the
constant coefficients second-order elliptic operator

N

82
Aa= D ar;
k=1 3xk8xj
is transformed into the Laplacian
N g2
A= 5
P Oz},

under a linear change of coordinates in RY. Thus, the operator A 4 is “equivalent”
to the operator A by a linear change of the coordinate system.
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In general, to apply the above argument to transform L 4 to the sub-Laplacian
L it is not enough to change the basis by a linear transformation. However, it is
enough in the setting of free stratified groups. We say that a stratified group G is
a free stratified group if its Lie algebra is (isomorphic to) a free Lie algebra. For
instance, the Heisenberg group H' is a free stratified group. In this case we have
the following result.

Theorem 1.4.2 ([BLUO7]). Let G be a free stratified group and let A be a given

positive-definite symmetric matriz. Let X = {X1,..., Xn, } be left invariant vector
fields in the first stratum of the Lie algebra of G. Let
Ny
Yy = (A%) X5, k=1,...,N.
k ; ko K 1

Consider the related second-order differential operator

N1 N1
E : 2 E :

EA = Yk = a;wX;gX]
k=1 k,j=1

Then there exists a Lie group automorphism Ta of G such that
Yi(uoTs) = (Xgu)oTa, k=1,... Ny,
La(uoTy) = (Lu)o Ty,

for every smooth function v : G — R. Moreover, T4 has polynomial component
functions and commutes with the dilations of G.

Remark 1.4.3. The automorphism 7’4 may not exist when G is not a free stratified
group. However, for any stratified group G one can find a different stratified group
G. = (RY,,4)), that is, the stratified group with the same underlying manifold
RY and the same group of dilations 6y as G, and a Lie-group isomorphism from
G to G, turning the extended sub-Laplacian £4 on G into the sub-Laplacian £
on G., see [BLUO7, Chapter 16.3].

1.4.3 Divergence theorem

Here we discuss the divergence theorem on stratified Lie groups that will be useful
for our analysis at different places of the book.

Let dv denote the volume element on G corresponding to the first stratum
on G:

N
dv :=dv(z) = /\ dx;j. (1.80)

However, for simplicity of the exposition, we will mainly use the notation dx :=
dv(z). Regarding it as a differential form, let (X}, dv) denote the natural pairing
between vector fields and differential forms. As it will follow from the proof of The-
orem 1.4.5, using formula (1.70) for the left invariant operators X}, expressing them
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in terms of the Euclidean derivatives, the pairing (X}, dv) can be also expressed
in terms of the differential forms corresponding to the Euclidean coordinates in

the form
(X, dv(z /\ dz! /\ /\ 01, (1.81)
j=1,7#k =2 m=1
with
Ny
Om = — Z aﬁ)m(;l:(l), ce :v(lfl))dzvg) + dzl), (1.82)
forl =2,...,7rand m = 1,...,N;, where a,(cl%l is a homogeneous polynomial of

degree I — 1 from (1.70).

Definition 1.4.4 (Admissible domains). A bounded open set  C G will be called
an admissible domain if its boundary 0f) is piecewise smooth and simple, that is,
it has no self-intersections. The condition for the boundary to be simple amounts
to 0f) being orientable.

The following divergence theorem can be regarded as a consequence of the
abstract Stokes formula. However, we give a detailed local proof which will also
lead to the explicit representation formula (1.82) that will be of use in the sequel.

Theorem 1.4.5 (Divergence formula). Let Q@ C G be an admissible domain. Let
freCHQNCEK), k=1,...,Ny. Then for each k =1,..., Ny, we have

/kadeZ/ fk<Xk7dV>. (1.83)
Q o0

Consequently, we also have

N1
AZkakdu_/BQ];fk<Xk,du>. (1.84)

k=1

Proof of Theorem 1.4.5. Using (1.70), for any function f we obtain the following
differentiation formula

Ny 3]‘ r
¥=> w3 Z  dal)
k=1 k

!

=2 m= 16 W
N (1) Ni 7 N; (l) r
17
:Zkadxk D> a2 ) (z> ZZ <l>
k=1 1=2 m=1 1= m=10

r N1

_Zkadxk +Z Z o) (—Za,ﬁ%(m),...,m<1—1>)dx§€1) +da:7(fl)>
=2 m=1 k=1

- Zkadxk +> Z (l)elm,

lle
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where for each [ =2,...,7rand m=1,..., N,
N
=— Z a,(cl%l(a?(l), ce m(lfl))da?,(cl) + dz).

That is, we can write

df = Zkadxk +ZZ (l)al,m. (1.85)

=2 m= 1
It is simple to see that

0
3xgl)

where d,; is the Kronecker delta. Moreover, we have

(X,,dzi") = dz{V = 6,

<XS7 91,m>

: Ly
:< <1>+ZZa”” 21 (h)>

Ls h=2g=1 8379

N1
v < Sl (@M, 20 )aad) + dxglg)

Ny
- -y 9w =1y ) 7D
= — ap (@ ) | dx;;

1
k=1 oV
Ny
_ (0 (.(1) (1-1) 9 (1) 9 (1)
ay ., (@, ) dx,”’ + dzx,,)
Z k, (%cgl) i 8372”
Ny r Np a
— Z Z Z agffg (ﬂc(l), . 7x(h71)) ( ) ag%l(a?(l), . a:(ll))> dmg)
k=1h=2g=1 Oxg
N] r Nh a
_ l _ 1
- Z Z Zag{’;(x(l), L 1))a,(g,)m(a?(l), ol 1))6 ) dﬂc,(f )
k=1 h=2g=1 Lg
r Ny a
h)(.(1 h—1 l
+ZZag7g(I(),...,m( ))8 (h)dmfn)
h=2g=1 Lg

o 0 N1
= — Z ( a;(cl,)m(x(l)v . 735(1—1))) dzV — Zaz(f,)m(x(l)v Lz Dye
k=1

8372”

N] r Nh
0
fZZZaghg(I(l),...,x(h_l)) (h )a,(cl)m( W2 d;l:,(cl)
7 Oy

k=1h=2g=1
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(h_l))agméhl

yoeeey

Ny, P " N
== > > a2t (8 () ap) (M, ,:z:(ll))> da,
k=1 h=2g=1 xg
Ny P
! - 1
R <a (1 @i (@ 1))) ;!
k=1 Ts
N1 r N 5 .
- [Zzaﬁ’,’ﬂw“%n-,m(h—m (8 () ak,m(m(l),...w(“l)))
k=1 “h=2g=1 o
0w o (i1-1) (1)
+ al’gl) ak,m(m ) € ) dl’k .
That is, we have
(X, dafV) = 8,
for s,7=1,..., Ny, and
Xsaal m chd;v(l)
fors=1,...,N1, 1=2,...,r, m=1,...,N;. Here we used the notation
3 ()
= 30D Al a6 e )
h=2g=1 ox
0 .o ey (-1
_a(l)akm( gy L )

y (1.80) we hav,

dv = dv(z

[§]

/\dwa— /\dw A A s - /\dw‘”/\ A

so that we obtain

Therefore, using

d(fs(Xs, dv(z)))

[=2m=1 [=2m=1
T Nl
(X, dv(z /\ " N\ N\ O
j=1,7#k 1=2m=1
(1.85) we get
=dfs N X, dv(x))
N1 T
1
:;kasdx,y (X, dv(z +ZZ;Z1 (l)elm (X, dv(z))

= X fsdv(z),
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that is, we have
d((fk)andV(x») :kakdy(x)7 k= 17-~-7N1~

Now using the classical Stokes theorem (see, e.g., [DFN84, Theorem 26.3.1]) we
obtain (1.83). Taking a sum over k we also obtain (1.84). O

1.4.4 Green’s identities for sub-Laplacians

In this section we prove Green’s first and second formulae for the sub-Laplacian
on stratified groups. These formulae will be useful throughout the book when we
will be dealing with inequalities and with the potential theory on stratified groups.
We will formulate them in admissible domains in the sense of Definition 1.4.4.

Theorem 1.4.6 (Green’s first and second identities). Let G be a stratified group
and let QO C G be an admissible domain.

(1) Green’s first identity: Let v € CH(Q)NC(Q) and u € C*(Q) (N CH(Q). Then

/Q ((%v)u + vﬁu) dv = / v(Vu, dv), (1.86)

o0
where L is the sub-Laplacian on G and where the vector field Vu is defined by

N

Vu =Y (Xpu) Xp. (1.87)
k=1

(2) Green’s second identity: Let u,v € C%(Q) (N CY(Q). Then

/(uﬁv —vLu)dy = / (u(Vv, dv) — v(Vu, dv)). (1.88)
Q o9

Remark 1.4.7.

1. The definition (1.87) means that Vu is a vector field. Consequently, the
expression (Vov)u is a scalar, given by

Ny Ny
(61}) u = Vou = Z (Xpv) (Xpu) = ZkaXku.
k=1 k=1

At the same time the expression %(vu) is a vector field, also understood as
an operator.

2. Although we formulate Green’s identities in bounded domains, they are still
applicable in unbounded domains for functions with necessary decay rates at
infinity. It can be readily shown by the standard argument using quasi-balls
with radii R — oo.
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3. The version (1.86) of Green’s first identity was proved for the ball in [Gav77]
and for any smooth domain of the complex Heisenberg group in [Rom91].
Other analogues have been also obtained in [BLU07] and [CGNO08] but using
different terminologies. Also, the group structure is not needed for it, see
Proposition 12.2.1, with other versions also known, see, e.g., [CGL93]. The

version given in Theorem 1.4.6 was obtained in [RS17c|.

Proof of Theorem 1.4.6. Part (1). Let fi := vXju, so that

Ny
Z Xk fr = (Vv)u + vLu.
k=1

By using the divergence formula in Theorem 1.4.5 we obtain

A(%vu—&—vﬁu) dV:/Qikade:/BQIi(kak,dw

Ny
= Z(vXkuXk,dw :/ v(Vu,dv),
9 1.2 o0

yielding (1.86).
Part (2). Rewriting (1.86) we have

/Q ((%u)v + uﬁv) dv = /{m WV, dv),

/Q ((%)u + UEu) dv = /{m v(Vu, dv).

By subtracting the second identity from the first one and using
(Vu)v = (Vo)u,

we obtain (1.88).

O

Taking v = 1 in Theorem 1.4.6 we obtain the following analogue of Gauss’

mean value formula for harmonic functions:

Corollary 1.4.8 (Gauss’ mean value formula). If Lu = 0 in an admissible domain

Q C G, then
/ (Vu,dv) = 0.
o0

As in the classical theory, we can approximate functions with (weak) singu-
larities such as smooth functions because the Green formulae are still valid for
them. In this sense, without further justification and using these Green formulae,
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in particular, we apply them to the fundamental solution e of the sub-Laplacian
L as in (1.74). We define the function

e(z,y) == e(z™y). (1.89)

The properties of the £-gauge imply that e(x,y) = £(y, x).
Thus, for z € Q, taking v = 1 and u(y) = e(x, y) we can record the following
consequence of Theorem 1.4.6, (1):

Corollary 1.4.9. If Q C G is an admissible domain, and x € €2, then

/ (Ve(w, ). dv(y)) = 1,
oQ

where ¢ is the fundamental solution of the sub-Laplacian L.

Putting the fundamental solution e instead of v in (1.88) we obtain the
following representation formulae.

Corollary 1.4.10 (Representation formulae for functions on stratified groups). Let
G be a stratified group and let Q@ C G be an admissible domain.

(1) Let u € C?(Q)(CL(2). Then for x € Q we have

u(z) = / (2, y) Culy)dv(y)
i /a ) (Fe(o.g).dvla) - / () (Vuly), dv(y)).

o0

(2) Let ue C*(Q)NCHQ) and Lu =0 on 2, then for x € Q we have

u(z) = /a ) (Fe(o.g).dvla) - /8 (@, y) (Vuly), du(y)).

Q

(3) Letu e C?(Q)NCHQ) and u(z) =0, = € 99, then

u(z) = /ﬂew,y)cu(y)du(y)f / (@, y)(Vuly), dv(y)).

[219]

(4) Letu € C*(Q)NCH(Q) and Z;V:ll X;ju(X;,dv) =0 on 09, then

u(z) = /Q ez, y) Luly)du(y) + /8 u(y)(Ve(z, y), dv(y)).

Q
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1.4.5 Green’s identities for p-sub-Laplacians

In this section we show how Green’s first and second formulae for the sub-Laplacian
from Section 1.4.4 on stratified groups can be extended to the p-sub-Laplacian for
all 1 < p < oo. As before, we will formulate them in admissible domains in
the sense of Definition 1.4.4. We recall the definition of the p-sub-Laplacian from
(1.71) as

L,f =divg(|[VaflP2Vuf), 1<p<ooc.

Theorem 1.4.11 (Green’s first and second identities for p-sub-Laplacian). Let G
be a stratified group and let Q2 C G be an admissible domain. Let 1 < p < oc.

(1) Green’s first identity: Let v € CH(Q) (N C(Q) and u € C*(Q) N C*(Q). Then
/ ((\V(Gu\pﬂﬁv)u + UE,,u) dv = / IVeu|P~20(Vu, dv), (1.90)
Q o9

where
Ny

6’& == Z (Xku) Xk.
k=1

(2) Green’s second identity: Let u,v € C%(Q) (N C(Q). Then
/ (uﬁpv —vLyu+ ([Vgu[P~2 — |V¢;,u\p72)(%v)u) dv
@ N - (1.91)
:/ (VP 2u(Vv, dv) — |VgulP~*v(Vu, dv)).

[219]

Proof of Theorem 1.4.11. Part (1). Let fi := v|Vgu|P~?Xju, then

Ny
> Xife = (Veul>Vo)u + vLyu.
k=1

By integrating both sides of this equality over 2 and using Proposition 1.4.5 we
obtain

/((\vGu\p 2V0)u + vl u) dy_/gkixkfkdu_/ Z Fu X, dv)

/Z v|VgulP~ XkuXk,dV>:/ IVeu|P~20(Vu, dv),
00 T 20

showing (1.90).
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Part (2). Using (1.90) we have
/ ((|V¢;,v\p_26u)v + uﬁpv) dv = / IVeuv[P~2u(Vo, dv),
Q 09

/ ((|V¢;,u|p_2§v)u + vﬂpu) dv = / IVeulP~20(Vu, dv).
Q 29
By subtracting the second identity from the first one, the equality
(Vu)v = (Vo)u
implies (1.91). O
Taking v = 1 in Theorem 1.4.11 we get the following analogue of Gauss’
mean value formula for p-harmonic functions:

Corollary 1.4.12 (Gauss’ mean value formula for p-harmonic functions). If 1 <
p < oo and L,u = 0 in an admissible domain Q C G, then

/ VeulP~2(Vu, dv) = 0.
o9

1.4.6 Sub-Laplacians with drift

In this section we briefly describe the so-called sub-Laplacians with drift. While
such operators can be analysed on more general groups, we restrict our presen-
tation to stratified groups G only since this will be the setting where we will be
using these operators.

Definition 1.4.13 (Sub-Laplacian with drift). The (extended) positive sub-La-
placian with drift is defined on C§°(G) as the operator

N
Lx = — Z a;; X; X —vX, (192)

i,5=1

where v € R, the matrix (ai,j)%:l is real, symmetric, positive definite, and X € g
is a left invariant vector field on G.
Similar to Section 1.4.2 the operator (1.92) can be transformed to the (posi-
tive) sub-Laplacian with drift of the form
N
Lx=-Y X} —7X:=Lo—X, (1.93)

Jj=1

where Ly is the positive sub-Laplacian on G defined by
N
Lo=-) X (1.94)
j=1

The details of such a transformation can be found in [HMMO5] or [MOV17].
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. N o\ /2
If X =370, a;Xj, then we denote || X|| := (ijl aj) and
Xl

bX:27

(1.95)

where a; € R for j =1,...,N.

Let us collect the following spectral properties of (positive) sub-Laplacians
with drift (1.93) which are true on more general groups than the stratified ones. In
the case v = 1 this was shown in [HMMO05, Proposition 3.1] while here we follow
[RY18b] for general v € R:

Proposition 1.4.14 (Spectral properties of sub-Laplacians with drift). Let G be
a connected Lie group with unit e, Xq,..., Xy an algebraic basis of g and let
X € g\{0}. Let v € R. Then we have for the operator Lx, with domain C§°(G),
the following properties:

(i) the operator Lx is symmetric on L*(G, ) for some positive measure ji on
G if and only if there exists a positive character x of G and a constant C'
such that p = Cux and Vix|le = vX|e, where ux is the measure absolutely
continuous with respect to the Haar measure p with density x;

(ii) assume that Vgxle = vX|e for some positive character x of G. Then the
operator Lx is essentially self-adjoint on L*(G, ux) and its spectrum is con-
tained in the interval [y?b%,c0).

Proof of Proposition 1.4.14. Let p be a positive measure on G. Then for all test
functions ¢, 1 € C5°(G) we can calculate

N

[ exoyidn ==Y ( / <X§¢>wdu) — [ wxodn

J=1

- (/ X;0X,; wdu+/wx ¢Xgu> +7/¢deu+7/¢wXu

XJ_VZ( /cbX iy — 2/¢X]1/)X]M /Wxa )

L / X i+ / bv Xy

- / H(Lxth)du+ 2 / X bdyi — 2 / OV UV i+ / S(Lo + X )
G G G G

/G (L th)dp+ (6, 29(X ) — 2V 5V st + (Lo + 4 X))

- /@ LX)y + (&, 6, ), (1.96)
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where L is defined in (1.94), Vi = (X1,..., Xn) and (-, -) is the pairing between
distributions and test functions on G. From this we see that L£x is symmetric on
L?(G, p) if and only if J(¢, v, ) = 0 for all functions ¢ and ), that is,

(Lo +7X)p=0, ¥(XY)p—VuyVpu=0, ¥ € C5°(G). (1.97)

The vector fields Xi,..., Xy satisfy Hormander’s condition, so that Ly + vX
is hypoelliptic, which implies with the condition (Lo + vX)u = 0 that p has a
smooth density w with respect to the Haar measure. Then, as in [HMMO05, Proof
of Proposition 3.1], we show that

N
X => a;X;, (1.98)
j=1
for some coefficients a1, ...,ay. Using the fact that X1,..., X are linearly inde-

pendent and the second equation of (1.97), we obtain that
Xpw = yapw, (1.99)

where k= 1,..., N. The solution of (1.99) is given by

w(z) = w(e)exp (7/0 Zakﬁk(t)dt> ,

k=1

which is a positive and uniquely determined by its value at the identity, where
Vi (t) is the piecewise C'! path. By normalizing w, we get that w(e) = 1, and that
it is a character of G. Then, we see that the function  — w(zy)/w(y) is a solution
of (1.99) for any y in G. Since the value of this function at the identity is 1, we
have w(zy) = w(x)w(y) for any z,y € G, and w is a character of G. From (1.98)
and (1.99), we get Vi x|e = 7X|e with x = w. This proves Part (i) of Proposition
1.4.14.

As in the case 7 = 1 (see [HMMO5, Proposition 3.1]), by considering the
isometry Us f = x /2 f of L?*(G, ) onto L*(G, pux ), we have

X2Lx(x72f) = (Lo +720%)f, (1.100)

which is an essentially self-adjoint operator on L?(G, ), where by is defined in
(1.95). Since the spectrum of this operator is contained in [y2b%, 00), we obtain
that Ly is essentially self-adjoint on L?(G, jux) and its spectrum is contained in
[v2b%, 00).

This completes the proof of Proposition 1.4.14. O

As a corollary of Proposition 1.4.14 let us collect the properties that will be
important for us in the sequel.
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Corollary 1.4.15 (Transformation of sub-Laplacian with drift). Let G be a stratified
group and assume conditions of Proposition 1.4.14. Assume that there exists a
positive character x of G such that

Vixle =vX|e.

Then the operator Lx is formally self-adjoint with respect to the positive measure
x = XM, where p is the Haar measure of G. The operator Lx is self-adjoint on
L?(G, ux) and the mapping

LG, p) > f s x YV2f € L¥(G, px) (1.101)
s an isometric isomorphism.

For a detailed discussion about more properties of the sub-Laplacians with
drift we refer to [HMMO04], [HMMO05] and [MOV17].

1.4.7 Polarizable Carnot groups

In (1.74) we recalled the result of Folland that the sub-Laplacian £ on general
stratified groups always has a unique fundamental solution . The explicit formula
(1.75) relating the fundamental solution to the £-gauge turns out to be useful in
many explicit calculations.

In applications to nonlinear partial differential equations, a natural question
arises to express the fundamental solution of the p-sub-Laplacian (1.71) in terms of
the fundamental solution of the sub-Laplacian or, equivalently, in terms of the £-
gauge. One of the largest classes of stratified Lie groups, for which the fundamental
solution of the p-sub-Laplacian is known to be expressed explicitly in terms of the
L-gauge are the so-called polarizable Carnot groups which we now briefly discuss.

A Lie group G is called a polarizable Carnot group if the L-gauge d satisfies
the following co-sub-Laplacian equality

Lood = ;<VH(|de|2),de> =0 inG\{0}. (1.102)

It is known that the Euclidean space, the Heisenberg group H" and Kaplan’s
H-type groups are polarizable Carnot groups.

It was shown by Balogh and Tyson in [BT02b] that if G is a polarizable
Carnot group, then the fundamental solutions of the p-sub-Laplacian (1.71) are
given by the explicit formulae

p—Q .
o= wdrtifp#Q (1.103)
g —cologd, ifp=Q.

This class of groups also admits an advantageous version of the polar coor-
dinates decomposition. In particular, it can be shown (see [BT02b, Proposition
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2.20]) that (1.103) implies a useful identity

e ga
which can be also written as
ZN:quuXﬂvHu\ _ Q-1 (1100
= |V gul3 Q-2

It can be shown that the £-gauge d on polarizable Carnot groups satisfies a num-
ber of further useful relations. For example, the following formula established in
[BT02b] will be useful for some calculations in the sequel:

d .
Vu (|de|2de> —Q in G\Z, (1.105)

where the set
2 = {0} {z € G\{0} : Vyd =0}
has Haar measure zero, and we have Vyd # 0 for a.e. x € G.
As usual, the Green identities are still valid for functions with (weak) singu-
larities provided we can approximate them by smooth functions. Thus, for exam-

ple, for x € Q in a polarizable Carnot group, taking v = 1 and u(y) = &,(z,y) we
have the following corollary of Theorem 1.4.11 as an extension of Corollary 1.4.9:

Corollary 1.4.16. Let 2 be an admissible domain in a polarizable Carnot group G
and let x € Q). Then we have

[ 1V 2Ty o) dvty) = 1.
onN

Note that there are stratified Lie groups other than polarizable Carnot groups
where the fundamental solution of the sub-Laplacian can be expressed explicitly
(see, e.g., [BT02b, Section 6]).

In particular, since on the polarizable Carnot groups we have the fundamental
solution €,, putting it instead of v in (1.91) we get the following representation
type formulae extending those for p = 2 from Corollary 1.4.10:

Corollary 1.4.17 (Representation formulae for functions on polarizable Carnot
groups). Let Q be an admissible domain in a polarizable Carnot group G.

1. Let u € C*(Q) N CHQ). Then for x € Q we have
u(z) = / epLpt — (|Veey|P~2 — [VoulP~2) (Ve )udy
Q

+/ (IVaepP2u(Ve,, dv) — |[VoulP~2,(Vu, dv)).
00
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2. Letu € C?(Q)NCHQ) and L,u =0 on Q, then for x € Q we have
u(e) = [ (Veul?™? - |Voey ) (Ve udv
Q

+/ (|V¢;,€p\p_2u<§sp,dl/> - |VGu\p_2sp<€u,dy>).
o9

3. Letu e C?*(Q)NCYQ) and
u(z) =0, x € 09,
then
u(z) = / epLpu — (|VgepP™2 — |VGu\p_2)(§sp)udu
Q
- / |V¢;,u|p_2sp<6u,dy>.
o0
4. Letuw € C%2(Q)NCHQ) and Z;V:ll X;u(X;,dv) =0 on 0%, then
u(z) = / epLpu — (|VgepP™2 — |V¢;,u\p*2)(§sp)udu
Q

+ / IVeep P~ 2u(Vey, dv).
o0

1.4.8 Heisenberg group

One of the important examples of the stratified groups is the Heisenberg group that
was introduced in Example 1.1.8. Here we collect several of its basic properties that
will be of use later in the book. We will give both real and complex descriptions
of the Heisenberg group as both will be of use to us in the sequel.

Real description of the Heisenberg group. The Heisenberg group H" is the man-
ifold R2"*! but with the group law given by

(@D, y O 1022y 42))

— (x(n 4 2@y @ 1) 4 @) ;(m(n @ @), yu))) 7 (1.106)

for (™), yM +tM) () 42 t?)) € R* x R* x R ~ H"”, where ") - ¢y and
2z .y are the usual scalar products on R™. The canonical basis of the Lie
algebra h” of the Heisenberg group H"” is given by the left invariant vector fields

Xj:awj—y;at, n:ayﬁ”;jat, j=1,...,n, T =0, (1.107)
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It follows that the basis elements X;,Y;,T, j =1,...,n, have the following com-
mutator relations,
[X]7Y7]:T7 j:]‘7"'7n7

with all the other commutators being zero. The Heisenberg (Lie) algebra h™ is
stratified via the decomposition

h" =Vi @ Vs,

where V; is linearly spanned by the X;’s and Yj’s, and Vo = RT'. Therefore, the
natural dilations on h™ are given by

6-(X;) =7X;, 6.(Y;) =1Y;, 0,(T)=rT.
On the level of the Heisenberg group H" this can be expressed as
6p(2,y,t) = r(x,y,t) = (re,ry,r?t), (z,y,t) € H", r > 0.
Consequently, @ = 2n + 2 is the homogeneous dimension of the Heisenberg group

H". The (negative) sub-Laplacian on H" is given by

n

L:= Z(Xj2 +Yj2) = i (8%. - yzjat>2 + (8y]. + xzjat>2’

j=1 j=1
corresponding to the horizontal gradient

Vigi=X1,...,. X, Y1,...,Y,).
We can also write

|zf* + ly?

:AI
L vt 4

0} + Z0y,  with Z =" (x;0y, — y;0x,),
j=1

where A, , is the Euclidean Laplacian with respect to z,y, and Z is the tangential
derivative in the (x,y)-variables.

Complex description of the Heisenberg group. There is an alternative description
of the Heisenberg group using complex rather than real variables. It is easy to see
that both descriptions are equivalent.

The Heisenberg group H" is the space C™ x R with the group operation
given by

(¢,t)o(n,7)=(C+mn,t+7+2Im(n), (1.108)

for (¢,t), (n,7) € C" x R.

Comparing (1.106) with (1.108) we can note the change of the constant from

é to 2. As a result, we are getting different constants in the group law and in the
formulae for the left invariant vector fields. We chose to give two descriptions with
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different constants since the adaptation of such constants in real and complex de-
scriptions of the Heisenberg group seems to be happening in most of the literature.
As a result, it will make it more convenient to refer to the relevant literature when
needed. This should lead to no confusion since we will never be using these two
descriptions at the same time. We note that in general, one can put any constant
instead of 5 or 2, the appearing objects are all isomorphic. We can refer the reader
to [FR16, Section 6.1.1] for a detailed discussion on the choice of constants in the
descriptions of the Heisenberg group.

Writing ¢ = = + iy with z;, y;, 7 = 1,...,n, the real coordinates on H", the
left invariant vector fields

5 0 0
X»: 2 1 ‘:1...
J ax]—’_ y]at7 J ) 5 10,
~ 0 0
Y, = — 2z, =1,...
i 3y] $]3t7 J ) 5 10,
0
T —
ot’

form a basis for the Lie algebra h™ of H"; again, this can be compared to (1.107).
At the same time, H" can be seen as the boundary of the Siegel upper half-
space in C"*1!,

H" = {(¢, 2n+1) € C"M i Imzpir = [¢2 ¢ = (21, .-, 20) }-

Again, we can refer the reader, e.g., to [FR16, Section 6.1.1] for more details on
different descriptions of the Heisenberg group.

Parametrising H,, by z = ({,¢) where t = Re 2,41, a basis for the complex
tangent space of H,, at the point z is given by the left invariant vector fields

0 0
X; = j =1,.
We denote their conjugates by
0 .0
XjEXj:aZj—zzat, j=1,...,n.
The operator
Lop =Y (aX;X;+bX,X;), a+b=n, (1.109)

j=1
is a left invariant, rotation invariant differential operator that is homogeneous
of degree two. We can refer to the book of Folland and Kohn [FKT72] for fur-

ther properties of such operators. However, we can note that this operator is a
slight generalization of the standard sub-Laplacian or Kohn-Laplacian £; on the
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Heisenberg group H™ which, when acting on the coefficients of a (0, ¢)-form can

be written as
n

1
L:b = *n Z((n — q)Xij + quXj)

Jj=1

Folland and Stein [FS74] obtained the fundamental solution of the operator
L, as a constant multiple of the function

1
(£ + ¢ = ilc?)>
1

.- is the fundamental solution of L, since

cap(z) =e(z) =e((,t) = (1.110)
More precisely, the distribution
from (1.110) satisfies the equation

Lo.v€ = Cq,p0. (1.111)

The constant ¢ p is zero if a and b= —1,—-2,...,n,n+1,...,and ¢, #0if a or
b#—1,-2,....,n,n+1,.... In fact, then we can take
2(a® + b?)Vol(By) n! ‘
ab = 1-— —2 1.112
Ca,b (2Z)n+1 a(a _ 1) . (a _ n) ( G‘Xp( Zaﬂ-)) ( )
for a ¢ 7Z, see Romero [Rom91, Proof of Theorem 1.6]. We will use the above

description of the Heisenberg group and of the (rescaled) fundamental solution
(1.110) to L, in Section 11.3.3.

1.4.9 Quaternionic Heisenberg group

In this section we describe the basics of the quaternionic version of the Heisenberg

group. We start by recalling the notion of quaternions and summarizing their

main properties. As the space of quaternions is usually denoted by H, we keep this

notation here as well. There should be no notational confusion with the Heisenberg

group since the quaternionic notation will be mostly localized to this section only.
Let H be the set of quaternions

T 1= xo + T111 + T2lz + T313,

where (zo, 21,72, 73) € R* and 1,iy,1i2,43 are the basis elements of H with the
following rules of multiplication:

i1 = i3 = i3 = iyigiz = —1,
1112 = —igl1 = 13, 9213 = —i3ly = 41, 1311 = —i1i3 = 42.

The usual convention is that the real part of z € H is the real number zy and
its imaginary part is the point (21,72, 23) € R3. And so, the real and imaginary
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parts of x can be denoted by Rz and Sz, respectively. In addition, we use more
precise notations for the imaginary parts as

%11} =T, %21‘ =2, %31‘ = X3.
The conjugate of = is denoted by
r =9 — l‘lil — l‘zig - l‘gig,

and the modulus |z| is defined by

|z|? == zz = Zx?

The Grassmanian product (or the quaternion product) of x and y is defined by

xy = (zoyo — Sz - YY) + (2oSy + yoSz + Sz X Jy),

where
11 12 13
S x Jy:=det [ 1 22 a3
Yr Y2 Y3

Let us denote H, := H x R3, it is called the quaternion Heisenberg group. Then
H, becomes a non-commutative group with the group law

(I7t1at2at3) © (y7T17T27T3)
= (z+y,t1+ 11— 281 (yw), t2 + y2 — 280 (yx), t3 + 13 — 233(yx)),

for all (z,t), (y, ) € H,. We note that e = (0,0,0,0) is the identity element of H,
and the inverse of every element (x,t1,12,t3) € Hy is (—z, —t1, —t2, —t3).

The Haar measure on H, coincides with the Lebesgue measure on H x R?
which is denoted by dv = dxdt. Let b, be the Lie algebra of left invariant vector
fields on Hy. A basis of b, is given by {Xo, X1, X2, X3} and {T1,T», T3}, where

0 0 0 0
Xo = -2 -2 -2
0 3900 1 8t1 2 8t2 s 3t3’
0 0 0 0
X1 = 2 -2 2
L= gpy T 0y, T gy, T 2y
0 0 0 0
X2 = gy T 203y, T 2005, — 200,
0 0 0 0
X3 = -2 2 2
3 (933‘3 2 8t1 tim 6t2 + %0 8t37
and 9
T, = k=1,23.

oty’
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The Lie brackets of these vector fields are given by

[XOaXl] - [X3,X2] = 4T1,
(X0, Xo] = [X1, X3] = 4T3,
[X07X3] = [X2,X1] = 47T5.

Thus, the sub-Laplacian on H, is given by

0

3
L= X7=A, —4z[*A -4 (ira- V””)atk’

=0 k=1

(1.113)

where

Note that the fundamental solution of the sub-Laplacian £ on H, was found by
Tie and Wong in [TW09]. We restate their results in the following theorem.

Theorem 1.4.18 (Fundamental solutions for sub-Laplacian on quaternion Heisen-
berg groups). The fundamental solution T'(§) of the sub-Laplacian L on the quater-
nion Heisenberg group Hy, is given by

2 1
I(¢) =T (|z[,t) = (2m) /2] ? /SZ (lef? — it - )2 ™ (1.114)

where £ = (z,t) € Hy, n = (n1,n2,n3) is a point on the unit sphere S* in R® with
centre at the origin, and do is the surface measure on S%. That is,

LT: = —4, (1.115)
where T¢(€) =T(¢C71 0 &) and o¢ is the Dirac distribution at ¢ = (y,7) € H,.

The quaternion Heisenberg group is a special case of the model step two
nilpotent Lie group. It is a homogeneous group with respect to the dilation

Sy :RT 5 RT, 6y = (M, \%t).

Thus,

d(€) = Flé €= (z,t) € Hy, (1.116)

()’

is a homogeneous quasi-norm on H, with respect to the dilation dy (see, e.g.,
[Cyg81]).
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1.4.10 H-type groups

The H-type groups are a special family of stratified groups with a similar struc-
ture to that of the Heisenberg group; one of their important features is that the
fundamental solutions to the sub-Laplacian are known explicitly.

We briefly recall the main notions related to this family of groups adopting
the notation from [BLUOQ7]; we refer to it for further details.

Definition 1.4.19 (Prototype H-type groups). The space R™*" equipped with the
group law

. xr+yr, k=1,....m
(x7t) ° (y7T) o (tk+7k + ;<A(k)x7y>, k=1,....n (1.117)

and with the dilations
Sa(w,t) = (Az, A\%t)

is called a prototype H-type group. Here A% is an m x m skew-symmetric orthog-
onal matrix, such that,
AR A 4 AW AR —

for all k,1 € {1,...,n} with k # .

Clearly, the Euclidean (Abelian) group and the Heisenberg group are exam-
ples of prototype H-type groups.

We leave aside the general H-type groups since it can be shown that any (ab-
stract) H-type group is naturally isomorphic to a prototype H-group (see [BLUO7,
Theorem 18.2.1]).

It can be directly checked that prototype H-groups are two step nilpotent
Lie groups in which the identity of the group is the origin (0,0) and the inverse of
(z,t) is

(z,t)7! = (—ax, —t).

It can be also verified that the vector field in the Lie algebra g of G that agrees
at the origin with 8‘: ,j=1,...,m, is given by
J

Fo R Iy )
J— ¢ . 1.11
K= g 433 (St L1y

where a;ﬁi is the (j,4)th element of the matrix A,
The prototype H-type groups are stratified with a basis of the first stratum
given by these vector fields X1, ..., X,,. Thus, the (negative) sub-Laplacian on a

prototype H-type group G is given by

0

1.11
b (L119)

m 1 n
_ 2 _ 2 (k)
E—;Xj =As+ ] At+;<A z,Vy)
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where A and V are the Euclidean Laplacian and the Euclidean gradient, respec-
tively. There is no restriction to suppose that, if p is the centre of the Lie algebra
g of G, o* is the orthogonal complement of o and

m = dim(¢"), n = dim(p).

So, the R™-component of the prototype H-type group G ~ R™*" can be thought
of as of its centre.

We have that the homogeneous dimension of the group is
Q=m-+2n.

We note that since for H-type groups we have m > 2 and n > 1, we actually
always have @) > 4.

Now using a generic coordinate £ = (x,t), v € R™, t € R™, let us introduce
the following functions on G:

v:G o, w() =) (expg'(€), X;)X;,
j=1
where {X71,...,X,,} is an orthogonal basis of o=,

n

z2:G— o, z():= Z<€‘XP(§1(£)a Zj)Z;,

j=1

where {Z1,...,Z,} is an orthogonal basis of p. Thus, by the definition of v and
z, for any ¢ € G, one has

¢ =exp(v(é) +2(€), w(€) €0, z(§) €,

and by a direct calculation we have (see, e.g., [BLUO7, Proof of Remark 18.3.3])
that

(@] = lzl, [2(&)] = [¢].
The fundamental solutions for the sub-Laplacian on abstract H-type groups were
found by A. Kaplan in [Kap80]. Such results boil down to the following statement.

Theorem 1.4.20 (Fundamental solutions for sub-Laplacian on H-type groups).
There exists a positive constant ¢ such that

I(€) = e (Jaf* + 16]22) D"

1s the fundamental solution of the sub-Laplacian L, that is,
LI'c = —d¢, (1.120)

where T¢(€) =T(¢C 0 &) and &¢ is the Dirac distribution at ¢ = (y,7) € G.
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For future use in Section 11.5, we will prefer to have the appearing function
" positive, which leads to the appearance of the minus sign in (1.120).

For further details and analysis on H-type and related groups we may refer
the reader to Kohn-Nirenberg [KN65], Folland [Fol75], Kaplan [Kap80], as well as
to a more detailed exposition in [BLUOT].
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Chapter 2 )

Hardy Inequalities on Homogeneous Groups

This chapter is devoted to Hardy inequalities and the analysis of their remainders
in different forms. Moreover, we discuss several related inequalities such as Rellich
inequalities and uncertainty principles.

In this chapter we will use all the notations given in Chapter 1 concerning
homogeneous groups and the operators defined on it. In particular, G is always a
homogeneous group of homogeneous dimension @ > 1. Some statements will hold
for @ > 2 or for @ > 3 but we will be specifying this explicitly in formulations
when needed.

2.1 Hardy inequalities and sharp remainders

In this section we analyse the anisotropic version of the classical LP-Hardy in-
equality

f

|z| 5

p
< Villiomny, =2, 1<p<mn, 2.1
Loy M IV (R™) (21)

where V is the standard gradient in R, |z|g = /22 + - - + 22 is the Euclidean
norm, f € Cg°(R"), and the constant ” is known to be sharp. We also discuss
in detail its critical cases and remainder estimates. As consequences, we derive
Rellich type inequalities and the corresponding uncertainty principles.

2.1.1 Hardy inequality and uncertainty principle

First we establish the LP-Hardy inequality and derive a formula for the remainder
on a homogeneous group G of homogeneous dimension Q > 2. The radial operator
R from (1.30) is entering the appearing expressions.

Theorem 2.1.1 (Hardy inequalities on homogeneous groups). Let | - | be any ho-
mogeneous quasi-norm on G.
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(i) Let f € C§°(G\{0}) be a complez-valued function. Then we have

f

||

p
< Rll; oy, 1<p<Q@Q, 2.2
ey S @ p RI ) (2.2)

where the constant Iip is sharp. Moreover, the equality in (2.2) is attained
if and only if f =0.
(ii) For a real-valued function f € C§°(G\{0}) and with the notations

p

wimu@) =" Rf@),
vi=v(x) = f(;)7
we have
lullzo @) = 070 (e) = p/@lp(uu)\v — ul’da, (2.3)
where
1
heg) = (0=1) [ lgh+ (1= a2 (24
(ii) For Q > 3, for a complex-valued function f € C§°(G\{0}) we have
2 2 2
REIZ :<Q—2> f HR Q-2f (25
IRfIZ (G) 9 2] o) +|Rf + 2 | . (25)

that is, when p =2, (2.3) holds for complex-valued functions as well.

Remark 2.1.2.

1. In the case of G = R” and |z| = |2|p = /23 + - - + 22 the Euclidean norm,
we have ) = n and R = 0, is the usual radial derivative, and (2.2) implies the

classical Hardy inequality (2.1). Indeed, in this case for 1 < p < n inequality
(2.2) yields

f p p
< ||Rf||LP Rn) — ||8Tf||LP R™
/e || ey ~ =P E) " n—p (&)
Lr (&) (2.6)
p x p
= : < vf ny s
n—p ‘x‘E Lo®™) n—p || ||LP(R )

in view of the Cauchy-Schwarz inequality for the Euclidean norm.

An interesting feature of the Hardy inequality in Part (i) is that the
constant in (2.2) is sharp for any homogeneous quasi-norm | - |.

2. In the setting of Part 1 above the remainder formula (2.3) for the Euclidean
norm |- |p in R™ was analysed by Ioku, Ishiwata and Ozawa [I[1I017].
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3. In Theorem 2.1.1, Part (ii) implies Part (i). To show it one can notice that
the right-hand side of (2.3) is non-negative, which implies that

f

p
|I’| —p ||Rf||LP(G) ) 1 < p < Q7 (27)

Lr(G) - Q

for any real-valued f € C§°(G\{0}). Moreover, by using the following identity
we obtain the same inequality for all complex-valued functions: for all z € C
we have

T =1 i
|z|P = (/ | cos 9|pd9> / |Re(2) cos @ + Im(z) sin 0|” d6, (2.8)
which is a consequence of the decomposition of a complex number z =
r(cos ¢ + isin @).

That is, we obtain inequality (2.2), and also that the constant P is
sharp, in view of the remainder formula. Now let us show that this constant
is attained only for f = 0. Identity (2.8) says that it is sufficient to look only
for real-valued functions f. If the right-hand side of (2.3) vanishes, then we
must have u = v, that is,

p

) @)
0" R

T
This also means that Ef = — Q;p f. Lemma 1.3.1 implies that f is positively

homogeneous of order — Q;p , 1.e., there exists a function h : ¢ — C such that

_Q-p xT
fl@)y=|z|” » h < > , (2.9)
||
where g is the unit sphere for the quasi-norm | - |. It confirms that f cannot
be compactly supported unless it is identically zero.

4. The identity (2.8) has been often used in similar estimates for passing from
real-valued to complex-valued functions, see, e.g., Davies [Dav80, p. 176].

5. Let us denote by Hg (G) the functional space of the functions f € L?(G) with
Rf € L*(G). Then Theorem 2.1.1 can be extended for functions in H (G),
that is, the proof of (2.2) given above works in this case. As for the sharpness
and the equality in (2.2), having (2.9) also implies that fl(wzl) = |x|” Th (|i|>
is not in LP(G) unless h =0 and f = 0.

Remark 2.1.2, Part 2, shows that (2.3) implies Part (i) of Theorem 2.1.1, that
is, we only need to prove Parts (ii) and (iii). However, we now give an independent
proof of (2.2) for complex-valued functions without relying on the formula (2.8).
We see that this argument will be also useful in the proof of Part (ii).
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Proof of Theorem 2.1.1. Proof of Part (i). Using the polar decomposition from
Proposition 1.2.10, a direct calculation shows that

P gy [ [P 01y
0 © rP

c |zlP
=-,7 /wrQ-pRe [ renr=2ren Y aswyar

Q-p
[f(@)[P~2 f () df ()
dx. 2.10
A 210
Now by the Holder inequality with 11) + ; =1 we obtain
14 p 2
IO gy P g [ VIO,
c lzf? jzfp=t dlz|
1 1
p—2 q d p P
o ( [ ) ([0 )
@—p \Je |z c| dlz]
o ( |F@)l? dx>1 df ()
Q-p\Jg [zl d|z| L?(G)
This proves inequality (2.2) in Part (i).
Proof of Part (ii). Since
p f(z)
u:=u(r)=— Rf, and v:=wv(x
@=-5" @ =",
the formula (2.10) can be restated as
[0l 6) = Re [ 0P 2vud. (2.11)
G

For a real-valued f the formula (2.10) becomes

s@e, P2 ) i),
Q- p/ I

e lzlp~1 d|z|
and (2.11) becomes
ol ) = /@, w[P~vudz. (2.12)

Moreover, for any LP-integrable real-valued functions v and v, we have
lall ) = 0112 g, + P /G (o]? = [oP~2vou)da

(2.13)
= /(IU\” + (= Dl = ploP~?ou)dz :p/ (v, u)|v — ul*dz,
G G
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where .
I(v,u) = (p— 1) / €0+ (1— E)ulP¢de.

To show the last equality in (2.13), we observe the identity, for real numbers u # v,
1 1
a4 (1= 1Yol = oP~20u
p p
1
= (1= 0 ) o = ) = (P20~ =)
1
— (1) [ g0+ (1= QuP A eo+ (1= Yude (0 - w)
0
1
~-1) [ e+ (- Qul P uto - w)
0

— (1) / €0+ (1 — E)ulP26de (v — u)?,

using the integral expression for the remainder in the Taylor expansion formula.
Combining (2.13) with (2.12) we arrive at

e A RACRDIEETE
It completes the proof of Part (ii).

Proof of Part (iii). When p = 2, the equality (2.11) for complex-valued func-
tions reduces to

||11||%2(G) = Re/@vudw.

Then we have
||U||%2(<G,) - HUH%Z(G) = ||U||%2(G) - HUH%Z(G) + 2/@(7}2 — Revu)dzx

= /(|u\2 + [v]? — 2Revu)dz = / lu — v|*d,
G G
that is, (2.5) is proved. O

As a direct consequence of the inequality (2.2) we obtain the corresponding
uncertainty principle:

Corollary 2.1.3 (Uncertainty principle on homogeneous groups). For every com-
plez-valued function f € CG°(G\{0}) we have

d P 1/p 1/q _
(/ f() da:) (/ q:q|fqdﬂc> > @ p/ |f|?d. (2.14)
c| dlz| G p G
Here QQ > 2, |- | is an arbitrary homogeneous quasi-norm on G, 1 < p < @Q and
1,1
+l=1.
p T a
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Proof. The inequality (2.7) and the Hélder inequality imply that

([Jrra)’ (fomms)’
O ([ (L) =7 [

This shows (2.14). O

df (x

Remark 2.1.4. In the Abelian case G = (R",+) with the standard Euclidean
distance |x|g, we have ) = n, so that (2.14) with p = ¢ = 2 and n > 3 implies the
uncertainty principle

/Rn de/w |2 |% u(e)|*dz > (";2)2 (/ u(:l:)de>2, (2.15)

which in turn implies the classical uncertainty principle for G = R™:

| vu@pds [ jaliu)Pds > (" ) 2)2 (/ u(a?)2dx>2, 0> 3.

2.1.2 Weighted Hardy inequalities

x

-Vu(x)
ks

In this section G is a homogeneous group of homogeneous dimension ) > 3. Let
| - | be an arbitrary homogeneous quasi-norm on G. Here, we are going to discuss
weighted Hardy inequalities on G which are the consequences of exact equalities.

Theorem 2.1.5 (Weighted Hardy identity in L?(G)). Let G be a homogeneous group
of homogeneous dimension Q > 3 and let |- | be a homogeneous quasi-norm on G.
Then for every complex-valued function f € C§°(G\{0}) and for any o € R we
have the equality

= —
12(@) 2

The equality (2.16) implies many different inequalities. For instance, by tak-
ing o = 1 and simplifying its coefficient, for any @) > 3 we obtain the identity

i =%
|| G)_ 2

By dropping the last term in (2.16) which is non-negative we obtain:

1 2

||

f

‘x‘a—‘rl

1 Q—-2-2a

R R
y f+ 2|z|ot

] 12@)

(2.16)

L2(G)

2

f

|z[?

Q—4 |
2\x\2f

L2(G)

L rrot (2.17)

L2((G) ||
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Corollary 2.1.6 (Weighted Hardy inequality in L?(G)). Let Q > 3 and let a« € R be
such that Q —2 —2a # 0. Then for all complez-valued functions f € C5°(G\{0})

we have

f 2 1
< Rf (2.18)
2l L2y 1@ =2 =2a] [[lz[* 2

Here the constant |Q72272a| is sharp and it is attained if and only if f = 0.
Remark 2.1.7.

1. It is interesting to note that the constant |Q72272a| in (2.18) is sharp for any

homogeneous quasi-norm | - | on G.
2. When a = 1, (2.17) or (2.18) also imply that
f

, Q>5, (2.19)

|z[2 L2(G)

2 1
< Rf
L2(G) Q-4 H|x|

again with QQ_ 4, being the sharp constant.

3. If o = 0, the identity (2.16) recovers Part (iii) of Theorem 2.1.1. However,
we will use Part (iii) of Theorem 2.1.1 in the proof of Theorem 2.1.5.

4. In the Abelian case G = (R™,+), n > 3, we have Q) = n, so for any homoge-

neous quasi-norm | - | on R™ identity (2.16) implies the following inequality
with the optimal constant:
—2-2 1
i ol £+1 < o . -Vf for all & € R.
2 || L2(R™) |z|* || L2(R")

In the case of the Euclidean distance |z|z = /2?4 - - - + 22, by the Cauchy—
Schwarz inequality we obtain the following estimate:

—-2-2 1
In oAl 1 < H VS (2.20)
2 215" Wl L2y 2% L2(R™)

for all & €