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Foreword

It is a great honor and pleasure for me to write some words for the book of extended
abstracts of “International Symposium on Mathematics, Quantum Theory, and
Cryptography (MQC 2019)”.

I am currently supervising the CREST program “Modeling Methods allied with
Modern Mathematics” funded by Japan Science and Technology Agency (JST).
This program has 11 research teams, and Professor Tsuyoshi Takagi is directing one
of them, the CREST CRYPTO-MATH team with the project titled “Mathematical
Modelling for Next-Generation Cryptography”. Hereby, we are pleased to support
this symposium partly through the project of Professor Takagi. We are also happy to
find speakers from several other teams of our CREST program.

Nowadays, it is a common understanding that cryptography is very important for
sustaining society. And, as we all know, the modern cryptography is based on
mathematics. Here “we” includes of course all the participants of this symposium,
and I sincerely hope that “we” becomes most of the population partly through the
activity of our program.

I am a geometer working on the structures on manifolds, but I gave from time to
time lectures on the RSA cryptosystem to high school students. It was always easy
to get the students excited about the beautiful mathematics used in the RSA
cryptosystem.

I learned from the CREST CRYPTO-MATH team, however, that cryptography
based on hardness of the integer factorization problem or the discrete logarithm
problem faces a probable crisis because of advances in quantum computing. In fact,
in these years there are already several companies planning to realize executing the
quantum-based algorithm to attack the actual system of cryptography. They seem to
demonstrating some part.

Of course, there are always questions on the cost and we should not overestimate
or underestimate the probable effect which will happen in the next decade because
of quantum computing. After all, it is really necessary to understand scientifically
current theoretical achievement as well as current technical achievement. Here, I
would like to share with all the participants from a vast area of research fields the
fact that mathematics is the key for understanding.
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As I learned that this symposium deals with all technical aspects of mathematical
cryptography secure in the era of quantum computers, I sincerely hope that the
participants would share the achievement from multiple aspects and would have the
advantage to progress their research from this base. I strongly believe these research
efforts will help people to enjoy a safer and sustainable society, not only at the
national level, but also in the global prospective as well.

I hope to see a lot of exciting presentations as well as extensive and fruitful
discussions where this book of extended abstracts would help, which will contribute
to the success of this symposium.

Fukuoka, Japan
September 2019

Takashi Tsuboi
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Preface

MQC 2019, the International Symposium on Mathematics, Quantum Theory, and
Cryptography, was held at the IMI auditorium of Kyushu University in Fukuoka,
Japan, during September 25–27, 2019. The symposium was organized by the
CREST CRYPTO-MATH Project: “Mathematical Modelling for Next-Generation
Cryptography”, which was supported by Japan Science and Technology Agency
(JST) to construct mathematical modeling of next-generation cryptography using
wide-range mathematical theories. This symposium was held to mainly express the
culmination of our project for these five years.

The symposium introduced new mathematical results in order to strengthen
information security, simultaneously making fresh insights and developing the
respective areas of mathematics. The symposium consists of 3 keynote addresses
and 16 invited talks. The keynote addresses were given by Daniel Braak (Max
Planck Institute), Johannes Buchmann (Technische Universitat Darmstadt), and
Kouichi Semba (National Institute of Information and Communications
Technology, NICT).

These proceedings consist of the papers/surveys selected from the talks of MQC
2019. Original research papers/surveys on all technical aspects of mathematical
cryptography secure in the era of quantum computers were solicited. The topics
include: (1) Mathematics and quantum theory for the next-generation cryptography
such as number theory, algebraic geometry, lattice theory, representation theory,
multivariate polynomial theory, quantum computation, mathematical physics, and
probability theory; (2) Cryptosystems that have the potential to be safe against
quantum computers such as hash-based signature schemes, lattice-based cryp-
tosystems, multivariate cryptosystems, and quantum cryptographic schemes. There
were 13 papers selected for publication. In addition, these proceedings contain 5
resumes corresponding to the remaining talks.

Many people contributed to the success of MQC 2019. We are very grateful to
all of the Program Committee members as well as the external reviewers for their
fruitful comments and discussions on their areas of expertise. We would also like to
thank the students who supported to hold MQC 2019 smoothly.
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Finally, we would like to express our gratitude to our partners and sponsors:
JST CREST (Grant Number JPMJCR14D6), Kyushu University, Tokyo Institute of
Technology, The University of Tokyo, and Advanced Innovation powered by
Mathematics Platform (AIMaP).

Fukuoka, Japan Tsuyoshi Takagi
September 2019 Masato Wakayama

Keisuke Tanaka
Noboru Kunihiro
Kazufumi Kimoto
Yasuhiko Ikematsu
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Sustainable Cryptography

Johannes Buchmann

Abstract Cryptography is a fundamental tool for cybersecurity and privacy which
must be protected for long periods of time. However, the security of most crypto-
graphic algorithms relies on complexity assumptions that may become invalid over
time. In this talk I discuss how sustainable cybersecurity and privacy can be achieved
in this situation.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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What Kind of Insight Provide Analytical
Solutions of Quantum Models?

Daniel Braak

Abstract There are several concepts of what constitutes the analytical solution of a
quantummodel, as opposed to themere “numerically exact” one. This applies even if
one considers only the determination of the discrete spectrum of the corresponding
Hamiltonian, setting aside such important questions as the asymptotic dynamics
for long times. In the simplest case, the spectrum can be given in closed form,
the eigenvalues E j , j = 0, . . . , N ≤ ∞ read E j = f ( j, {pk}), where f is a known
function of the label j ∈ N0 and the {pk} are a set of numbers parameterizing the
Hamilton operator. This kind of solution exists only in cases where the classical
limit of the model is Liouville-integrable. Some quantum-mechanical many-body
systems allow the determination of the spectrum in terms of auxiliary parameters
[{k j }, {nl}] as E({nl}) = f ({k j ({nl})}) where the {k j ({nl})} satisfy a coupled set
of transcendental equations, following from a certain ansatz for the eigenfunctions.
These systems (integrable in the sense of Yang-Baxter (Eckle 2019)) may have a
Hilbert space dimension growing exponentially with the system size L, i.e., N ∼ eL .
The simple enumeration of the energieswith the label j is replaced by themulti-index
{nl}. Although no priori knowledge about the spectrum is available, its statistical
properties can be computed exactly (Berry andTabor 1977).Other integrable and also
non-integrable models exist where N depends polynomially on L and the energies
E j are the zeroes of an analytically computable transcendental function, the so-called
G-function G(E, {pk}) (Braak 2013a, 2016), which is proportional to the spectral
determinant. Although no closed formula for E j as function of the index j exists,
detailed qualitative insight into the distribution of the eigenvalues can be obtained
(Braak 2013b). Possible applications of these concepts to information compression
and cryptography are outlined.

D. Braak (B)
Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
e-mail: d.braak@fkf.mpg.de
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Emerging Ultrastrong Coupling Between
Light and Matter Observed in Circuit
Quantum Electrodynamics

Kouichi Semba

Abstract The strength of the coupling between an atom and a single electromag-
netic field mode is defined as the ratio of the vacuum Rabi frequency to the Larmor
frequency, and is determined by a small dimensionless physical constant, the fine
structure constant α = Zvac/2RK . On the other hand, the quantum circuit includ-
ing Josephson junctions behaving as artificial atoms and it can be coupled to the
electromagnetic field with arbitrary strength (Devoret et al. 2007). Therefore, the
circuit quantum electrodynamics (circuit QED) is extremely suitable for studying
much stronger light-matter interaction.

We have used a Josephson junction atom, a flux qubit, harmonic oscillator coupled
system. This circuit is well described by the Hamiltonian shown in Eq. (1).

Htotal = −�

2
(�σx + εσz) + �ωo(â

†â + 1

2
) + �gσz(â + â†). (1)

The first, second, and third terms represent the energy of the qubit, the energy of the
harmonic oscillator, and the interaction energy, respectively. If the coupling strength
g becomes as large as the atomic and cavity frequencies (� andωo, respectively), the
energy eigenstates including the ground state are predicted to be highly entangled
(Hepp and Lieb 1973; Ashhab and Nori 2010). We have experimentally achieved
this deep strong coupling using a superconducting-flux-qubit LC-oscillator system
(Yoshihara et al. 2017). By carefully designing a superconducting persistent-current
qubit interacting with an LC harmonic oscillator that has a large zero-point fluctua-
tion current via a large shared Josephson inductance, we have realized circuits with
g
ωo

ranging from 0.72 to 1.34 and g
�

� 1. From the transmission spectroscopy, we
have observed unconventional transition spectra and selection rules which can be
interpreted using predicted energy levels which are well described by Schrödinger-
cat-like entangled states between persistent-current states and displaced vacuum or
Fock states of the oscillator (Yoshihara et al. 2017). By using two-tone spectroscopy,
the energies of the six lowest levels of each circuit have been determined. We have

K. Semba (B)
National Institute of Information and Communications Technology,
4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan
e-mail: semba@nict.go.jp
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8 K. Semba

observed huge light shifts, i.e., Lamb shifts, qubit energy shift due to coupling to
vacuum field, that exceed 90% of the bare qubit frequencies and Stark shifts, inver-
sions of the qubits’ ground and excited states when there are only a few photons
in the oscillator (Yoshihara et al. 2018). We have also observed collective coupling
between an engineered 4300 ensemble of flux qubits and a superconducting resonator
(Kakuyanagi et al. 2016), and considered the condition for observing generation of
superradiant ground state in the presence of parameter fluctuations (Ashhab and
Semba 2017).
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Verified Numerical Computations
and Related Applications

Shin’ichi Oishi

Abstract The author has been engaged in the study of numerical computations with
result verification starting from 1990.

Summary
The author has been engaged in the study of numerical computations with result
verification starting from 1990. As a result, the following results have been obtained:

1. We have proposed a concept of error-free transformations for calculating not only
approximate values of numerical evaluations of certain arithmetic expressions
consisting of additions, subtractions and multiplications, but also exact error of
such numerical evaluations. Using this concept, we have established the way of
getting numerical solutions for various problems in numerical linear algebra with
required accuracy. Especially, we have established the verified numerical methods
for the following problems:

a. Finite dimensional linear equations including extremely ill-conditioned prob-
lems.

b. Matrix eigenvalue problems.

2. We have proposed various verified numerical methods for various problems
including

a. Calculation of ill-conditioned definite integrals.
b. Boundary value problems for nonlinear differential equations based on inven-

tion of methods for eigenvalue evaluation of associated linearized problems.

In this talk, we will review some of these results and will mention possible applica-
tions for cryptography.
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A Review of Secret Key Distribution
Based on Bounded Observability

Jun Muramatsu

Abstract Secret key distribution is a technique for a sender and a receiver to share
a secret key, which is not known by any eavesdropper, when they share no common
secret information in advance. By using this technique, the sender and the receiver
can transmit a message securely in the sense that the message remains secret from
any eavesdropper. We introduced a secret key distribution based on the Bounded
Observability (Muramatsu et al. 2010, 2013, 2015), which provides a necessary
and sufficient condition for the possibility of secret key distribution. This condition
describes limits on the information obtained by observation of a random object, and
models the practical difficulty of completely observing random physical phenomena.

Keywords Secret key distribution · Information-theoretic security · Secret key
agreement · Bounded observability
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Quantum Random Numbers Generated
by a Cloud Superconducting Quantum
Computer

Kentaro Tamura and Yutaka Shikano

Abstract Acloud quantumcomputer is similar to a randomnumber generator in that
its physical mechanism is inaccessible to its users. In this respect, a cloud quantum
computer is a black box. In both devices, its users decide the device condition from the
output. A framework to achieve this exists in the field of random number generation
in the form of statistical tests for random number generators. In the present study,
we generated random numbers on a 20-qubit cloud quantum computer and evaluated
the condition and stability of its qubits using statistical tests for random number
generators. As a result, we observed that some qubits were more biased than others.
Statistical tests for random number generators may provide a simple indicator of
qubit condition and stability, enabling users to decide for themselves which qubits
inside a cloud quantum computer to use.

Keywords Cloud quantum computer · Random number generator · NIST SP
800-22 · Stability

1 Introduction

Given a coin with an unknown probability distribution, there are two approaches to
decide whether the coin is fair (Tamura and Shikano 2019). The first approach is to
examine the coin itself; one expects an evenly shaped coin to yield fair results. The
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second approach is to actually toss the coin a number of times to see if the output is
sound. In this approach, the coin is treated as a black box.A randomnumber generator
is similar to a coin in that it is expected to produce unbiased and independent 0s and
1s. Unlike a coin, however, the physical mechanism of a random number generator
is often inaccessible to its users. Therefore, users rely on statistical tests to decide
the fairness of the device from its output.

Random number generators play an important role in cryptography, particularly
in the context of key generation. For example, the security of the RSA cryptosystem
is based on keys that are determined by random choices of two large prime num-
bers (Boneh 1999). If the choices of prime numbers are not random, an adversary
could predict future keys and hence compromise the security of the system. Ran-
domness in cryptography derives from what is called the seed. The seed is provided
by physical random number generators (Schindler and Killmann 2003; Ugajin et al.
2017). It is required that the physical mechanism of a physical random number gener-
ator remains a black box for the seed to be unpredictable. Given that themeasurement
outcomes are theoretically unpredictable in quantum mechanics, random number
generators based on quantum phenomena are a promising source of unpredictabil-
ity (Pironio et al. 2010;Ma et al. 2016; Herrero-Collantes and Garcia-Escartin 2017).

Cloud quantum computers are quantum computers that are accessed online (Sri-
vastava et al. 2016; Gibney 2017; Castelvecchi 2017; Xin et al. 2018; Yamamoto
et al. 2019; National Academies of Sciences, Engineering, and Medicine 2019). In
order to use a cloud quantum computer, users are required to send programs specify-
ing the quantum circuit to be executed and the number of times the circuit should be
run (LaRose 2019). When a user’s turn arrives, the quantum computer executes the
program and returns the results (Preskill 2018). A similarity between random number
generators and cloud quantum computers is that its users do not have direct access to
the physical mechanism of the device. So, as far as the users are concerned, both ran-
dom number generators and cloud quantum computers are black boxes. In the field
of random number generation, much research has been done on how to characterize
the device from its output. This leads to the creation of statistical tests for random
number generators. The present study aims to introduce the idea of statistical tests
for random number generators to the field of cloud quantum computing. This aim
is supported by three points. Firstly, the cloud quantum computer is a black box to
its users, which is also the case with random number generators. Secondly, quantum
computers become random number generators when given certain programs. Finally,
the cloud quantum computer lacks a simple benchmark that would enable its users
to decide the condition of the device.

The rest of this article is organized as follows. In Sect. 2, statistical tests for random
number generators are generally explained. InSect. 3, a groupof statistical tests called
the NIST SP 800-22 is reviewed. In Sect. 4, we present the results of the statistical
analysis of random number samples obtained from the cloud quantum computer,
IBM 20Q Poughkeepsie, and the test results of the eight statistical tests from the
NIST SP 800-22. Finally, Sect. 5 is devoted to the conclusion. In the appendix, a
measure of uniformity often employed in the field of cryptography, the min-entropy,
is explained.
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2 Statistical Tests for Random Number Generators

Statistical tests for random number generators are necessary to confirm that a random
number generator is suitable for use in encryption processes (Demirhan and Bitirim
2016). Random number generators used in this context are required to have unpre-
dictability. This means that given any subset of a sequence produced by the device,
no adversary can predict the rest of the sequence, including the output from the past.
Statistical tests aim to detect random number generators that produce sequences with
a significant bias and/or correlation.

When subjected to statistical tests, a random number generator is considered a
black box. This means that the only information available is its output. Under the null
hypothesis that the generator is unbiased and independent, one expects its output to
have certain characteristics. The characteristics of the output are quantified by the test
statistic, whose probability distribution is known. From the test statistic, the probabil-
ity that a true random number generator produces an output with a worse test statistic
value is calculated. This probability is called the p-value. If the p-value is below the
level of significance α, the generator fails the test, and the null hypothesis that the
generator is unbiased and independent is rejected. Since statistical tests for random
number generators merely rule out significantly biased and/or correlated generators,
these tests do not verify that a device is the ideal random number generator. Never-
theless, a generator that passes the tests is more reliable than a generator that doesn’t.
This is why statistical tests are usually organized in the form of test suites, so as to
be comprehensive. Some well known test suites are the NIST SP 800-22 (Bassham
2010), TestU01 (L’ecuyer and Simard 2007), and the Dieharder test.

Because statistical tests are designed to check for statistical anomalies under the
hypothesis that the generator is unbiased, a biased random number generator would
naturally fail the tests. This can be a problem when testing quantum random number
generators, as they can be biased and unpredictable at the same time. Given that
statistically faulty generators can still be unpredictable, the framework of statistical
tests fails to capture the essence of randomness: unpredictability. There have been
attempts to assure the presence of unpredictability by exploiting quantum inequali-
ties, but they have not reached the point of replacing statistical tests altogether.

3 NIST SP 800-22

The NIST SP 800-22 is a series of statistical tests for cryptographic random number
generators provided by the National Institute of Standards and Technology (Bassham
2010). Random number generators for cryptographic purposes are required to have
unpredictability, which is not strictly necessary in other applications such as simu-
lation and modeling, but is a crucial element of randomness. The test suite contains
16 tests, each test with a different test statistic to characterize deviations of binary
sequences from randomness. The entire testing procedure of the NIST SP 800-22 is
divided into three steps. The first step is to subject all samples to the 16 tests. For each
sample, each test returns the probability that the sample is obtained from an unbiased
and independent RNG. This probability, which is called the p-value, is then compared
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Table 1 The minimum length n required for each test in order to obtain meaningful results. The
tests not employed in the present study are shaded in gray. Note that the tests will be referred to by
their test number in Sect. 4

to the level of significance α = 0.01. If the p-value is under the level of significance,
the sample fails the test. The second step involves the proportion of passed samples
for each test. Under the level of significance α = 0.01, 1% of samples obtained from
an unbiased and independent RNG is expected to fail each test. If the proportion of
passed samples is too high or too low, the RNG fails the test. Finally, p-value unifor-
mity is checked for each test. Suppose one tested 100 binary samples. This yields 100
p-values per test. If the samples are independent, the p-values should beuniformlydis-
tributed for all tests. The distribution of p-values is checked via the chi-squared test.

In the following sections, eight tests from the NIST SP 800-22 are explained
(Table1). The input sequence will be denoted by ε=ε1ε2 · · · εn , and the i th ele-
ment by εi .

3.1 Frequency Test

The frequency test aims to test whether a sequence contains a reasonable proportion
of 0s and 1s. If the probability of obtaining the sequence from an independent and
unbiased random number generator is lower than 1%, it follows that the random
number generator is not “independent and unbiased”. The minimum sample length
required for this test is 100.

Test Description
1. Convert the sequence into ±1 using the formula: Xi = 2εi − 1.
2. Add the elements of X together to obtain Sn .
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3. Compute test statistic: sobs = |Sn|/√n.
4. Compute p-value = erfc(sobs/

√
2) using complementary error function

shown as

erfc(z) = 2√
π

∫ ∞

z
e−u2du. (1)

5. Compare p-value to 0.01. If p-value ≥ 0.01, then the sequence passes the
test. Otherwise, the sequence fails.

Example: ε = 1001100010, length n = 10.
1. 1, 0, 0, 1, 1, 0, 0, 0, 1, 0 → +1,−1,−1,+1,+1,−1,−1,−1,+1,−1.
2. S10 = 1 − 1 − 1 + 1 + 1 − 1 − 1 − 1 + 1 − 1 = −2.
3. sobs = | − 2|/√10 ≈ 0.632455.
4. P-value = erfc(sobs/

√
2) ≈ 0.527089.

5. P-value = 0.527089 > 0.01 → the sequence passes the test.

This test is equivalent to testing the histogram for bias. Because the test only
considers the proportion of 1s, sequences such as 0000011111 or 0101010101 would
pass the test. Failing this test means that the sample is overall biased.

3.2 Frequency Test Within a Block

Firstly, the sequence is divided into N blocks of size M . The frequency test is then
applied to the respective blocks. As a result, one obtains N p-values. The second
part of this test aims to check whether the variance of the p-values is by chance or
not. This is called the chi-squared (χ2) test. For meaningful results, a sample with a
length of at least 100 is required. The following is the test description.

Test Description
1. Divide the sequence into N = � n

M � non-overlapping blocks of size M .
2. Determine the proportion of 1s in each block using

πi =
∑M

j=1 ε(i−1)M+ j

M
. (2)

3. Compute χ2 statistic χ2
obs = 4M

∑N
i=1

(
πi − 1

2

)2
.
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4. Compute p-value = 1 − igamc
(

N
2 ,

χ2
obs
2

)
. Note that igamc stands for the

incomplete gamma function.

�(z) =
∫ ∞

0
t z−1e−t (3)

igamc(a, x) ≡ 1

�(a)

∫ x

0
e−t t (a−1)dt (4)

5. Compare p-value to 0.01. If p-value ≥ 0.01, then the sequence passes the
test. Otherwise, the sequence fails.

Example: ε = 1001100010, length: n = 10.
1. If M = 3, then N = 3 and the blocks are 100, 110, 001. The final 0 is

discarded.
2. π1 = 1/3, π2 = 2/3, π3 = 1/3.
3. χ2

obs = 4M
∑N

i=1(πi − 1
2 )

2.
4. χ2

obs = 4 × 3 × {
( 13 − 1

2 )
2 + ( 23 − 1

2 )
2 + ( 13 − 1

2 )
2
} = 1.

5. P-value = 1 − igamc( 32 ,
1
2 ) = 0.801252.

6. P-value = 0.801252 > 0.01 → the sequence passes the test.

This test divides the sequence into blocks and checks each block for bias. Depend-
ing on the block size, samples such as 001100110011 or 101010101010 could pass
the test. Failing this test means that certain sections of the sequence are biased.

3.3 Runs Test

The proportion of 0s and 1s does not suffice to identify a random sequence. A run,
which is an uninterrupted sequence of identical bits, is also a factor to be taken into
account. The runs test determines whether the lengths and oscillation of runs in a
sequence are as expected from a random sequence. A minimum sample length of
100 is required for this test. The following is the test description.

Test Description

1. Compute proportion of ones π =
(∑

j ε j

)
/n.

2. If the sequence passes frequency test, proceed to next step. Otherwise, the
p-value of this test is 0.

3. Compute test statistic Vn(obs) = ∑n−1
k=1(εk ⊕ εk+1) + 1, where ⊕ stands

for the XOR operation.
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4. Compute p-value = erfc
(

|Vn(obs)−2nπ(1−π)|
2
√
2nπ(1−π)

)
.

5. Compare p-value to 0.01. If p-value ≥ 0.01, then the sequence passes the
test. Otherwise, the sequence fails.

Example: ε = 1010110001, length n = 10.
1. π = 5

10 = 0.5.
2. |π − 0.5| = 0 < 2√

n
= 2√

10
= 0.63 → test is applicable.

3. V10(obs) = (1 + 1 + 1 + 1 + 0 + 1 + 0 + 0 + 1) + 1 = 7.

4. P-value = erfc
(

|7−2×10×0.5×(1−0.5)|
2×√

2×10×0.5×(1−0.5)

)
= 0.21.

5. P-value = 0.21 ≥ 0.01, so sequence passes the test.

3.4 The Longest Run of Ones Within a Block Test

This test determines whether the longest runs of ones 111 · · · within blocks of size
M is consistent with what would be expected in a random sequence. The possible
values of M for this test are limited to three values, namely, 8, 128, and 10,000,
depending on the length of the sequence to be tested.

Table 2 Choices of M for the longest runs of ones within a block test

Minimum length n M

128 8

6,272 128

750,000 10000

Table 3 Classifications of each block

Classes vi M ≥ 8 M ≥ 128 M ≥ 100000

v0 ≤1 ≤4 ≤10

v1 2 5 11

v2 3 6 12

v3 ≥4 7 13

v4 8 14

v5 ≥9 15

v6 ≥16
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Test Description
1. Divide the sequence into blocks of size M. The choices of M and N are

determined in regard to the length of the sequence. N denotes the number
of blocks, and the elements exceeding the number of blocks are discarded.
The possible choices of n and M provided by NIST are shown in Table 2.

2. Classify eachblock into the following categories regardingM and the length
of the longest run in each block. See Table 3.

3. Computeχ2(obs) = ∑K
i=0

(vi−Nπi )
2

Nπi
. Note that K , N , andπi are determined

by M . See Tables 4 and 5.

4. Compute p-value = 1 − igamc
(

K
2 ,

χ2(obs)
2

)
.

5. Compare p-value to 0.01. If p-value ≥ 0.01, then the sequence passes the
test. Otherwise, the sequence fails.

Example: n = 10000
1. M = 128 and N = 49. The remaining 3728 elements are discarded.
2. The counts for the longest run of ones are v0 = 6, v1 = 10, v2 = 10, v3 = 7,

v4 = 7, and v5 = 9.

Table 4 Values of K and N corresponding to M

M K N

8 3 16

128 5 49

10000 6 75

Table 5 Values of πi corresponding to K and M

Classes πi

K = 3, M = 8 K = 5, M = 128 K = 6, M = 10000

v0 0.2148 0.1174 0.0882

v1 0.3672 0.2430 0.2092

v2 0.2305 0.2493 0.2483

v3 0.1875 0.1752 0.1933

v4 0.1027 0.1208

v5 0.1124 0.0675

v6 0.0727
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3.

χ2(obs) = (6 − 49 × 0.1174)2

49 × 0.1174
+ (10 − 49 × 0.2430)2

49 × 0.2430

+ (10 − 49 × 0.2493)2

49 × 0.2493
+ (7 − 49 × 0.1752)2

49 × 0.1752

+ (7 − 49 × 0.1027)2

49 × 0.1027
+ (9 − 49 × 0.1124)2

49 × 0.1124
= 3.994459.

4. P-value = 1 − igamc
(
5
2 ,

3.994459
2

) = 0.550214.
5. P-value = 0.550214 ≥ 0.01, so the sequence passes the test.

3.5 Discrete Fourier Transform Test

This test checks for periodic patterns in the sequence by performing a discrete Fourier
transform (DFT). The minimum sample length required for this test is 1000. The
following is the test description.

Test Description
1. Convert the sequence ε of 0s and 1s into a sequence X of −1s and +1s.
2. Apply aDFTonX: S = DFT (X). This should yield a sequence of complex

variables representing the periodic components of the sequence of bits at
different frequencies.

3. Compute M = modulus(S′) ≡ |S′|, where S′ is the first n
2 element of S.

This produces a sequence of peak heights.

4. Compute T =
√(

loge
1

0.05

)
. This is the 95 % peak height threshold value.

95 % of the values obtained by the test should not exceed T for a random
sequence.

5. Compute N (ideal) = 0.95n
2 , which is the expected theoretical number of

peaks that are less than T .
6. Compute N (obs), which is the actual number of peaks in M that are less

than T .
7. Compute d = N (ideal)−N (obs)√

n·0.95·0.05· 14
.

8. Compute p-value = erfc
(

|d|√
2

)
.

9. Compare p-value to 0.01. If p-value ≥ 0.01, then the sequence passes the
test. Otherwise, the sequence fails.
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This test checks for periodic features. Sampleswith periodic featuresmay look like
0110011001100110 or 010010100101001 among various other possibilities. Failing
this test suggests that the sample has periodic patterns. It is noted that the probability
distribution of the test statistic d should be rectified as it does not converge to the
standard normal distribution (Hamano 2005).

Example: ε = 1001010011, length n = 10.
1. X = 2ε1 − 1, 2ε2 − 1, . . . , 2εn − 1 = 1,−1,−1, 1,−1, 1,−1,−1, 1, 1.
2. N (ideal) = 4.75.
3. N (obs) = 4.
4. d = (4.75−4)√

10·0.95·0.05· 14
= 2.147410.

5. P-value = erfc
(

|2.147410|√
2

)
= 0.031761.

6. P-value = 0.031761 ≥ 0.01, so the sequence passes the test.

3.6 Approximate Entropy Test

The approximate entropy test compares the frequency of m-bit overlapping patterns
with that of (m + 1)-bit patterns in the sequence. It checks whether the relation of
two frequencies is what is expected from an unbiased and independent RNG. The
level of significance is α = 0.01. This test can be applied to samples with lengths
equal to or larger than 64. The test description is below.

Test Description
1. Append the first m − 1 bits of the sequence to the end of the sequence.
2. Divide the sequence into overlapping blocks with a length of m.
3. There are 2m possiblem-bit blocks. Count howmany of each possiblem-bit

block there are in the sequence.
4. Compute count

n loge(
count
n ) for each count.

5. Compute the sum of all counts ϕm .
6. Replace m with m + 1 and repeat steps 1 through 5 to obtain ϕm+1.
7. Calculate test statistic obs = 2n(loge(n) − (ϕm − ϕm+1)).
8. Derive p-value = 1 − igamc(2(m−1), obs/2).
9. Compare p-value with level of significance α = 0.01. If p-value ≥ 0.01,

the result is pass. Otherwise, the sequence fails the test.



Quantum Random Numbers Generated by a Cloud … 27

Example: ε = 1011010010, length n = 10, m = 3.
1. ε = 1011010010 → 101101001010.
2. 101101001010 → 101, 011, 110, 101, 010, 100, 001, 010, 101, 010.
3. “000” : 0, “001” : 1,

“010” : 3, “011” : 1, “100” : 1, “101” : 3, “110” : 1, “111” : 0.
4. “000” : 0, “001” : 0.1loge(0.1), “010” : 0.3 loge(0.3),

“011” : 0.1loge(0.1), “100” : 0.1loge(0.1), “101” : 0.3loge(0.3),
“110” : 0.1loge(0.1), “111” : 0.

5. ϕ3 = −1.643418
6. ϕ3+1 = −2.025326.
7. obs = 2 × 10 × (loge(10) − (−1.643418 − (−2.025326))) = 6.224774.
8. P-value = 1 − igamc(2(3−1), 6.224774/2) = 0.622069.
9. P-value = 0.622069 ≥ 0.01. The sequence passes the test.

The approximate entropy test checks for correlation between the number of m-
bit patterns and (m + 1)-bit patterns in the sequence. The difference between the
number of possible m-bit patterns and the number of possible (m + 1)-bit patterns
in the sequence is computed, and if this difference is too small or too large, the two
patterns are correlated.

3.7 Cumulative Sums Test

The cumulative sums test is basically a random walk test. It checks how far from
0 the sum of the sequence in terms of ±1 reaches. For a sequence that contains
uniform and independent 0s and 1s, the sum should be close to 0. This test requires
a minimum sample length of 100.

Test Description
1. Convert 0 to −1 and 1 to +1.
2. In forward mode, compute the sum of the first i elements of X . In backward

mode, compute the sum of the last i elements of X .
3. Find the maximum value z of the sums.
4. Compute the following p-value. � is the cumulative distribution function

for the standard normal distribution.

P-value = 1−
( n

z −1)/4∑
k=( −n

z +1)/4

[
�

(
(4k + 1)z√

n

)
− �

(
(4k − 1)z√

n

)]
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+
( n

z −1)/4∑
k=( −n

z −3)/4

[
�

(
(4k + 3)z√

n

)
− �

(
(4k + 1)z√

n

)]
. (5)

5. Compare p-value to α = 0.01. If p-value ≥ 0.01, the result is pass. Other-
wise, the sequence fails the test.

Example: ε = 1011010010, length n = 10.
1. ε = 1011010010 → X = 1,−1, 1, 1,−1, 1,−1,−1, 1,−1.
2. Forward mode: S1 = 1, S2 = 1 + (−1) = 0, S3 = 1 + (−1) + 1 = 2,

S4 = 1 + (−1) + 1 + 1, S5 = 1 + (−1) + 1 + 1 + (−1) = 1,
S6 = 1 + (−1) + 1 + 1 + (−1) + 1 = 2, S7 = 1 + (−1) + 1 + 1 + (−1) +
1 + (−1) = 1, S8 = 1 + (−1) + 1 + 1 + (−1) + 1 + (−1) + 1 = 2,
S9 = 1 + (−1) + 1 + 1 + (−1) + 1 + (−1) + 1 + (−1) = 1.

3. In forward mode, the maximum value is z = 2.
4. P-value = 0.941740 for both forward and backward.
5. P-value = 0.941740 ≥ 0.01. The sequence passes the test.

Once the p-value has been calculated for all tests and samples, the proportion of
samples that passed the test is computed for each test. Let us consider a case where
1000 samples were subjected to each of the 15 tests. This results in 1000 p-values
per test. For example, if 950 out of 1000 samples passed the frequency test, the
proportion of passed samples is 0.95. If the proportion of passed samples falls within
the following range for all 15 tests, the samples pass the second step of the NIST SP
800-22. The acceptable range of proportion is calculated with

(1 − α) ± 3

√
α(1 − α)

m
, (6)

where α stands for the level of significance and m the sample size. It is noted that it
is controversial whether the coefficient should be 3.A suggestion that the coefficient
should be 2.6 exists (Marek et al. 2015). In the case of the current example, Eq. (6)
can be calculated using α = 0.01 and m = 1000 as

(1 − 0.01) ± 3

√
0.01(1 − 0.01)

1000
= 0.99 ± 0.0094. (7)

From the fact that 0.95 is not within the acceptable range, it follows that the samples
fail the frequency test. The same process is done with all 16 tests, and unless the
samples pass all tests, the result is that the hypothesis that the RNG is unbiased and
independent is rejected.
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The final step of the NIST SP 800-22 is to evaluate the p-value uniformity of
each test. In order to perform the chi-squared (χ2) test, the p-value is divided into
10 regions: [k, k + 0.1) for k = 0, 1, . . . , 9. The test statistic is given by

χ2 =
10∑
i=1

(number of samples in ith region − sample size/10)2

sample size/10
. (8)

When the number of samples in each region is 2, 8, 10, 13, 17, 17, 13, 10, 8, 2, the
test statistic (8) is calculated as χ2 = 25.200000. From χ2, the p-value is

p-value = igamc

(
9

2
,
χ2

2

)
. (9)

Therefore, in the current example where χ2 = 25.200000, the p-value is 0.002758.
The level of significance for the p-value uniformity is α = 0.0001. So when the p-
value is 0.002758, it follows that the p-value distribution is uniform. The p-value
uniformity test requires at least 55 samples. As mentioned before, it is remarked that
passing the NIST SP 800-22 does not ensure a sequence to be truly random (Kim
et al. 2020; Fan et al. 2014; Haramoto and Matsumoto 2019).

4 Quantum Random Number Generation on the Cloud
Quantum Computer

According to quantum mechanics, the measurement outcomes of the superposition
state (|0〉 + |1〉)/√2 along the computational basis ideally form random number
sequences. This means that the resulting sequences are expected to pass the statistical
tests for RNGs explained previously. Here, the computational basis, |0〉 and |1〉,
spans the two-dimensional Hilbert space. In a quantum computer, the desired state
(|0〉 + |1〉)/√2 is generated from the initial state |0〉 by applying the Hadamard gate
to a single quantum bit (qubit). Note that in this process, the initial state is always
the same. Unlike classical random number generators and pseudorandom number
generators that require random seeds to produce independent sequences, quantum
random number generators are capable of producing independent sequences with the
same seed. This reduces the risk of the output of a random number generator being
predicted from the seed, because all possible outputs come from the same seed.

In the present study, the cloud superconducting quantum computer, IBM 20Q
Poughkeepsie, was used. The device was given the circuit in Fig. 1a and was repeat-
edly instructed to execute the circuit 8192 timeswithout interruption from2019/05/09
11:24:27 GMT. Because the quantum computer has multiple users across the globe,
interruption between jobs occur (Aleksandrowicz et al. 2019). 8192 is the maximum
number of uninterrupted executions (shots) available. Running the circuit with 8192
shots yields a binary sequence with a length of 8192 per qubit. This process was
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Fig. 1 a: QRNG quantum circuit using the Hadamard gate. b: Device topology of IBM 20Q
Poughkeepsie provided by Qiskit

Table 6 The correspondence between calibration start/end time and time of job sent. All dates and
times are in GMT

Start time (GMT) End time (GMT)

1 2019/05/08 23:34:19 2019/05/09 05:10:24

2 2019/05/09 21:58:54 2019/05/10 06:23:42

3 2019/05/10 23:07:22 2019/05/11 02:48:12

4 2019/05/11 20:59:21 2019/05/11 23:33:42

5 2019/05/12 20:50:41 2019/05/12 23:24:58

automatically repeated across calibrations. The device goes through calibration once
in a day as seen in Table6.

As a result, 579 samples were obtained from the IBM 20Q Poughkeepsie device.
Note that each qubit produced 579 samples, each with a length of 8192. The samples
were subjected to the eight tests from the NIST SP 800-22, which are: the frequency
test, frequency within a block test, runs test, longest runs within a block test, DFT
test, approximate entropy test, and the cumulative sums test (forward, backward).
The p-value of each test corresponding to the respective samples was computed. For
each test, the proportion of passed samples was checked. The acceptable range of
the proportion of passed samples for 579 samples under the level of significance
α = 0.01 is >0.977595.

By constantly running the IBM 20Q Poughkeepsie device for five days, we
obtained 579 samples for each of the 20 qubits. In theory, these samples should
qualify as the output of an ideal random number generator. In random number gener-
ation, the output sequences are checked for two properties: bias and patterns. When
the sequences show signs of bias or patterns, the device is not in ideal condition.
The same logic applies to the cloud quantum computer. We also simulated the same
quantum circuit on the simulator with the obtained noise parameters such as the T1
and T2 time, the coherent error, the single-qubit error, and the readout error, all of
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which are updated. The simulator is referred to as the noisy simulator in the follow-
ing. The noisy simulator program was also provided by IBM (Aleksandrowicz et al.
2019).

In the present section, the random number output of each qubit inside the IBM
20Q Poughkeepsie device is analyzed. The qubits that are connected by arrows in
Fig. 1b represent the pairs of qubits on which the controlled NOT gate can operate.
The controlled NOT gate is a two-qubit gate.

The min-entropy, whose definition and properties are seen in the Appendix, was
computed for each qubit from the 579 samples. This resulted in 579 min-entropy
transition plots for 20 qubits. Figure2 is organized to form the topology of the IBM
20Q Poughkeepsie. The min-entropy takes values from 0 to 1 depending on the high-
est probability of the probability distribution. When the probability distribution is
uniform, the min-entropy is 1. Figure2 shows how each qubit has a unique tendency
for min-entropy. Qubit [17], for example, shows a sudden drop in min-entropy at
around 60h. This does not occur in simulation. A sudden drop in min-entropy sug-
gests that the measurement results can vary depending on when the cloud quantum
computer executes a circuit. Overall, the noisy simulator tends to have a higher min-
entropy compared to the actual device. According to Aleksandrowicz et al. (2019),
the readout error that IBM provides does not reflect the asymmetry between the error
output 1 on the state |0〉 and the error output 0 on the state |1〉. The discrepancy
between the min-entropy of the actual device and the simulator suggests that readout
asymmetry exists.

Next, the samples were checked for bias. Each qubit produced 579 samples with
a length of 8192, which form 4,743,168-bit sequences when chronologically con-
nected. Figure2 demonstrates the proportion of 1s in the entire sequence output
by each qubit. Under the level of significance α = 0.01, the proportion of 1s of a
4,743,168-bit sequence should fall between the red lines. The result is that none of
the qubits produced acceptable proportions of 1s as seen in Fig. 3. Furthermore, Fig. 4
shows that the actual device failed to pass the eight statistical tests, which indicates
that the current quantum computing device does not have the statistical properties of
a uniform random number generator.

The problem with histograms as seen in Fig. 3 is that they fail to detect certain
anomalies. For example, a sequence consisting of all 0s for the former half and all 1s
for the latter half yields a perfect histogram. However, such a sequence is clearly not
random. To compensate for this flaw, we focused on the transition of the number of
1s in the sequence. Ideally, the number of 1s in a random number sequence should
always be roughly half of the sequence length. The difference between the ideal
number of 1s and the observed number of 1s for the 4,743,168-bit sequence of each
qubit is examined in Fig. 5. Note that here, too, the figures are aligned topologically.
Figure5 shows the stability of each qubit in terms of the proportion of 1s in its output;
a linear plot suggests that the qubit is being stably operated. While qubit[7] is more
biased than qubit[17] overall, the line representing qubit[7] shows more stability
than that of qubit[17]. Furthermore, the noisy simulator does not capture the trend of
the qubits. Therefore, the discrepancy between the output of the actual device and the
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Fig. 3 The proportion of 1s
of qubit[0]∼[19]. The
acceptable range under the
level of significance
α = 0.01 is between the two
dotted lines. The blue bars
are the experimental results
and the red plots the noisy
simulation results

noisy simulator may not only be a result of readout asymmetry, but also time-varying
parameters.

5 Conclusion

We characterized the qubits in a cloud quantum computer by using statistical tests for
random number generators to provide a potential indicator of the device’s condition.
The IBM 20Q Poughkeepsie device was repeatedly run for a period of five days,
and 579 samples with a length of 8192 were obtained for each of the 20 qubits.
For comparison, the noise parameters obtained in the experiment were used to run
the noisy simulator. Samples from both the actual device and the simulator were
statistically analyzed for bias and patterns. To evaluate the uniformity of each sample,
the min-entropy was computed. The transition of min-entropy showed that the qubits
have unique characteristics.We identified a sudden drop ofmin-entropy in qubit [17].
The histogram of the proportion of 1s in the 4,743,168-bit sequences produced by
each qubit revealed that, overall, none of the qubits produced acceptable proportions
of 1s. However, we evaluated each qubit’s stability from the time-series data of the
proportion of 1s and found that qubits [0] and [12] were relatively stable. Finally,
eight tests from theNIST SP 800-22were applied to the 529 samples of the 20 qubits.
None of the qubits cleared the standards of the test suite. However, the test results
showed that qubits [0] and [12]were the closest to the ideal in terms of the proportion
of passed samples for each test.

As is the case with random number generators, a cloud quantum computer is a
black box to its users. Therefore, users are required to decide for themselves when
to use a cloud quantum computer and which qubits to choose. Statistical tests for
random number generators are a potential candidate for a simple indicator of qubit
condition and stability inside a cloud quantum computer (Shikano et al. 2020).
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Fig. 6 Relation between
Shannon’s entropy and
min-entropy

Research “Mathematics for quantum walks as quantum simulators”. The results presented in this
paper were obtained in part using an IBM Q quantum computing system as part of the IBM Q
Network. The views expressed are those of the authors and do not reflect the official policy or
position of IBM or the IBM Q team.

Appendix: Min-entropy

Among various entropy measures for uniformity, the min-entropy is often used in
the context of cryptography. The min-entropy for a random variable X is defined as
follows:

H∞(X) = − log2

(
max
x∈{0,1}Pr [X = x]

)
. (10)

On the other hand, Shannon’s entropy, which is also a measure for uniformity, is
defined as follows:

Hsh(X) = −
∑

x∈{0,1}
Pr [X = x] log2 Pr [X = x]. (11)

Both measures (10) and (11) take values ranging from 0 to 1 for a random variable
on {0, 1}. The reason why the min-entropy is more appropriate in the context of
cryptography is that it ismore sensitive than Shannon’s entropy. This is apparent from
Fig. 6. Figure6 compares the min-entropy and Shannon’s entropy corresponding to
the probability of X yielding 1. The min-entropy provides a clearer distinction of
probability distributions close to uniform than Shannon’s entropy.

The min-entropy also indicates the probability that an adversary with knowledge
of the probability distribution of X predicts the outcome of X correctly (Zhang et al.
2016).Here, the adversary predicts the value that appearswith the highest probability.
For this reason, the min-entropy considers the maximum probability of X .
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Quantum Factoring Algorithm: Resource
Estimation and Survey of Experiments

Noboru Kunihiro

Abstract It is known that Shor’s algorithm can break many cryptosystems such as
RSA encryption, provided that large-scale quantum computers are realized. Thus
far, several experiments for the factorization of the small composites such as 15 and
21 have been conducted using small-scale quantum computers. In this study, we
investigate the details of quantum circuits used in several factoring experiments. We
then indicate that some of the circuits have been constructed under the condition that
the order of an element modulo a target composite is known in advance. Because
the order must be unknown in the experiments, they are inappropriate for designing
the quantum circuit of Shor’s factoring algorithm. We also indicate that the circuits
used in the other experiments are constructed by relying considerably on the target
composite number to be factorized.

Keywords RSA · Quantum computer · Shor’s quantum factoring algorithm ·
Oversimplified Shor’s algorithm · Physical experiment

1 Introduction

It is crucial to evaluate the security of cryptosystems in order to securely use crypto-
graphic technology. The security of RSA cryptosystems (Rivest et al. 1977), which
are currently used widely, is based on the difficulty of factoring problem, and the
evaluating the difficulty of the factoring problem is essential. Based on the security
analysis, a 2048-bit composite number is widely used as a standard at present. It
is known that prime factorization is possible in quantum polynomial time on the
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bit length of the composite number using the Shor’s algorithm (Shor 1997). Hence,
almost all the currently used public-key cryptosystems will be broken if large-scale
quantum computers are realized. Therefore, to prepare for the realization of quantum
computers, quantum-resistant cryptography is researched actively at present (NIST
2020).

From the theoretical viewpoint, it has been evaluated how much resources are
needed for the prime factorization of composite number of the currently used sizes
(1024-bit, 2048-bit) (Häner 2017; Kunihiro 2005). However, from the experimental
viewpoint, several experiments have been performed for the prime factorization of
small composite numbers such as 15 and 21 (Lucero et al. 2012; Martin-Lopez et al.
2012; Monz et al. 2016; Politi 2009; Vandersypen 2001). In addition, commercial
services for small-scale quantum computers such as IBM Q (2020) are beginning to
be launched, and it is expected that the Noisy Intermediate-Scale Quantum (NISQ)
technology might be available in the near future (Preskill 2018).

This paper presents a detailed survey of actual quantum experiments for prime
factorization based onShor’s algorithm (Lucero et al. 2012;Martin-Lopez et al. 2012;
Monz et al. 2016; Politi 2009; Vandersypen 2001). We give a detailed explanation
of the circuits used in the experiments. We also indicate that some of them are
problematic because they use a secret information in the circuit construction.

2 Outline of Shor’s Quantum Factoring Algorithm (Shor
1997)

2.1 Quantum Computation

This subsection provides the basic facts about quantum gates (Nielsen and Chuang
2000). For the other information about quantum gates and circuits, refer to Nielsen
and Chuang (2000).

Wefirst explain a quantumbit, or qubit. A qubit has two possible states |0〉 and |1〉.
We represent a single-qubit state as α |0〉 + β |1〉, where α, β ∈ C and |α|2 + |β|2 =
1.Thegate thatmaps this state intoα |1〉 + β |0〉 is called theNOTgate. The following
matrix form is convenient for representing the NOT gate. Let a matrix X be

X =
(
0 1
1 0

)
.

Suppose that the quantum state α |0〉 + β |1〉 is written in the vector form as

(
α

β

)
,
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where the first entry corresponds to the amplitude for |0〉 and the second entry to the
amplitude for |1〉. The corresponding output from the NOT gate is given by

X

(
α

β

)
=

(
β

α

)
.

The quantum gates on a single qubit can be described, in general, using 2 × 2
matrices. Furthermore, the matrix must be unitary. In fact, X†X = I should hold,
where X† denotes the adjoint of X and I an identity matrix.

We then show the other important single-qubit gates, namely, the Z and H gates,
in addition to the NOT gate. The matrix forms for the Z and H gates are given as
follows.

Z =
(
1 0
0 −1

)
, H = 1√

2

(
1 1
1 −1

)

The H gate is usually referred to as the Hadamard gate. The Hadamard gate turns
the state |0〉 into (|0〉 + |1〉)/√2 and the state |1〉 into ( |0〉 − |1〉)/√2 because

H

(
1
0

)
=

(
1/

√
2

1/
√
2

)
and H

(
0
1

)
=

(
1/

√
2

−1/
√
2

)
.

Furthermore, employing the Hadamard gate, we can construct the flat superposition
from the state |0〉.

We now discuss multiple-qubit gates. The first gate is the Controlled-NOT (C-
NOT)gate,whichhas two input qubits. The actionof theC-NOTgate canbedescribed
as

|0〉 |0〉 → |0〉 |0〉, |0〉 |1〉 → |0〉 |1〉, |1〉 |0〉 → |1〉 |1〉, and |1〉 |1〉 → |1〉 |0〉.

Equivalently, we can describe the action as

|a〉|b〉 → |a〉|b ⊕ a〉,

where ⊕ denotes the exclusive OR.
The second one is the Toffoli gate, which has three input qubits. The action of the

Toffoli gate can be described as

|a〉|b〉|c〉 → |a〉|b〉|c ⊕ (a ∧ b)〉,

where∧ denotes the logical operator AND. The first two qubits are the control qubits
and the third one is the target qubit.

We can consider the generalized version of the Toffoli gate as follows.

|c1〉|c2〉 · · · |cn〉|t〉 → |c1〉|c2〉 · · · |cn〉|t ⊕ (c1 ∧ c2 ∧ · · · ∧ cn)〉.
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In this case, the first n qubits are the control qubits, and the last qubit is the target
qubit. It is well known that the generalized Toffoli gate can be decomposed into
several Toffoli gates (Nielsen and Chuang 2000).

We then explain the controlled circuit. We denote a unitary operation by U . The
action of the control-U circuit (C-U circuit) is described as

|0〉 |x〉 → |0〉 |x〉, |1〉|x〉 → |1〉U |x〉.

Or, equivalently, the action can be described as

|c〉|x〉 → |c〉Uc|x〉.

We explain the Quantum Fourier Transformation (QFT). The QFT on a basis
|0〉, |1〉, . . . , |N − 1〉 is defined to be a linear operation with the following action on
the states:

| j〉 → 1√
N

N−1∑
k=0

exp

(
2π i jk

N

)
|k〉.

The circuit for the QFT is constructed with the Hadamard gates and the controlled
rotation gates. For the details, see the Sect. 5 in Nielsen and Chuang (2000). The
inverse QFT is defined to be the inverse operation of QFT.

2.2 Shor’s Quantum Factoring Algorithm

Let N denote a target composite to be factored, and n denote a bit length of N . To
simplify the discussion, hereafter, we assume that p are q are distinct prime integers
and that N is the product of p and q. Let a denote a positive integer coprime to N .
The final goal of Shor’s algorithm is to find the prime factors p and q. However,
before doing so, the algorithm will find a positive integer r such that ar mod N = 1
as a subgoal. This positive integer r is called an order. If we know the order r , we
can easily find the prime factors p and q of N with high probability.

We will now explain Shor’s factoring algorithm in detail. Lettingm = 2n, we first
prepare the initialized state as follows:

|0〉︸︷︷︸
m-qubit

|1〉︸︷︷︸
n-qubit

,

where the first register (referred to as the control register in Martin-Lopez et al. 2012
or the period register in Monz et al. 2016) is of m qubits and the second register
(referred to as the work register in Martin-Lopez et al. 2012 or the computational
register in Monz et al. 2016) is of n qubits. We may use ancilla in the calculation if
required. Applying the Hadamard gate to the first register, we obtain the flat super-
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Fig. 1 Shor’s quantum factoring algorithm for the case of m = 4

position as follows:

1

2m/2

2m−1∑
x=0

|x〉︸︷︷︸
m-qubit

|1〉︸︷︷︸
n -qubit

.

Subsequently, we apply the modular exponentiation to this superposition to obtain
the following state:

1

2m/2

2m−1∑
x=0

|x〉︸︷︷︸
m-qubit

|ax mod N 〉︸ ︷︷ ︸
n -qubit

.

We then apply the inverse of the Quantum Fourier Transformation to this state. At the
last step, we obtain some value by measuring the first register. Using the measured
value, we calculate the order r with the help of the continued fraction algorithm and
then we find the prime factors of N by classical computers.

Here, the modular exponentiation is operated by sequentially applying C–Ua , C–
Ua2 , C–Ua4 , C–Ua2 j , and C–Ua2m−1 circuits, as shown in Fig. 1. Note that the action
of the Ub operator is described as |x〉 → |bx mod N 〉.

Suppose that we can find the order r of a modulo N . For simplicity, let us assume
r to be even. By computing gcd(ar/2 − 1 mod N , N ), we can find the prime factors
of N with high probability.

Hereafter, we do not discuss the part of the Hadamard transformation and the part
of the inverse of Quantum Fourier Transformation because the circuit complexity of
both these parts can be ignored compared with that of the modular exponentiation
part. Hereafter, we focus on the discussion of the resources necessary for modular
exponentiation.
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Table 1 Number of qubits and elementary gates (Kunihiro 2005)

The number of qubits The number of gates

R-ADD 3n + 2 270n3 + O(n2)

GT-ADD 2n + 4 → 2n + 2 (Häner
2017)

16
3 n

5 + O(n4)

Q-ADD 2n + 3 → 2n + 2 (Takahashi
and Kunihiro 2006)

97n4 + O(n4)

2.3 Circuit Construction and Resource Estimation for Shor’s
Quantum Factoring Algorithm

The modular exponentiation can be executed by performing O(n3) gate operations
for the standard construction of circuit. Kunihiro gave three construction types for
modular exponentiation (Kunihiro 2005). These constructions adopt different types
of addition circuits. In Kunihiro (2005), the number of qubits and the number of gates
for Shor’s factoring circuit were evaluated precisely. It was also shown that 3n + 2
qubits and 270n3 + O(n2) Toffoli gates are required for modular exponentiation if
the addition circuit similar to the classical addition is adapted. This result implies
that we require 6146 qubits and 3.04 × 1012 Toffoli gates for factoring a 2048-bit
composite. Table1 presents the resource estimation of n-bit composite for quantum
factoring. Table2 shows those of 768-bit composite and 2048-bit composite. Note
that the current world record for factoring is 768-bit composite (Kleinjung 2010) and
the current recommendation of RSA composite is with 2048-bit.

In addition to the classical addition-based circuits (referred to as R-ADD in
Table1), (Kunihiro 2005) also gave a resource estimation, which was derived from
both the circuits based on the Generalized Toffoli gate and circuits based on the
Quantum Addition (referred to as GT-ADD and Q-ADD in Table1, respectively).
The circuits based on the Generalized Toffoli gate require 2n + 4 qubits and 16

3 n
5

Toffoli gate and those based on the Quantum Addition requires 2n + 3 qubits and
20n4 C–NOTgates and 37n4 single-qubit gates. Takahashi andKunihiro proposed the
circuit construction that works even for 2n + 2 qubits for the necessary qubits (Taka-
hashi and Kunihiro 2006). Häner et al. also presented a similar result (Häner 2017).

The resource estimation for solving the elliptic curve discrete logarithm problem
was presented in Roetteler et al. (2017), and further improvement is provided in
Kurama and Kunihiro (2019).

2.4 Survey of Quantum Experiments for Factoring

In 2001, a research group of IBM performed an experiment for factoring 15 by
implementing Shor’s algorithm by using NuclearMagnetic Resonance (NMR) (Van-
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Table 2 Number of qubits and elementary gates for 768 and 2048 bits (Kunihiro 2005)

World record (n = 768) Recommended (n = 2048)

Qubits # of gates Qubits # of gates

R-ADD 2306 1.22 × 1011 6146 3.04 × 1012

GT-ADD 1540 4100

Q-ADD 1539 8.68 × 1011 4099 1.22 × 1013

Table 3 Summary of quantum experiments for factoring

Device Research group Year Target # of qubits Embedding
of order
informa-
tion

NMR IBM (Vandersypen
2001)

2001 15 6 ✓

Photonic chip U. of Bristol (Politi
2009)

2009 15 4 ✗(used)

Superconductivity UCSB (Lucero et al.
2012)

2012 15 3 ✓

Ion trap U. Innsbruck (Monz
et al. 2016)

2016 15 6 ✓

Photon U. of
Bristol (Martin-
Lopez et al.
2012)

2012 21 1 + log2 3 ✗(used)

dersypen 2001). Since the group’s pioneering work, several experiments based on
Shor’s algorithm have been conducted. Table3 summarizes five of these experiments,
of which four experiments dealt with the factorization of 15, and the fifth one with
the factorization of 21.

Because the bit length of composite 15 is 4, it requires at least 14 qubits with
standard construction based on the usual addition (R-ADD) and 10 qubits with the
construction based on Takahashi and Kunihiro (2006) to factorize 15. As can be seen,
all of the experiments employed fewer qubits than those in the above-mentioned
construction for general composites. We can say that the circuits for factoring are
customized to factor the target composites such as 15 and 21, and are not based on the
general construction. In Sect. 3, we describe the detailed circuits without using the
order information based on Lucero et al. (2012),Monz et al. (2016), andVandersypen
(2001). Though their circuits do not use any secret information, they are applicable
to specific composite such as 2n − 1 for an even integer n, which are never used
for RSA composite. In Sect. 4, we describe the detailed circuits by using the order
information based on Martin-Lopez et al. (2012) and Politi (2009). These circuit
constructions are inappropriate since the order information must be secret.
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Fig. 2 Shor’s factoring algorithm for N = 15

3 Quantum Circuits Without Using the Order Information

Before describing the details of each quantum circuits for factoring 15, we explain a
common strategy for factoring 15. The positive integers relatively coprime to 15 are
given by 2, 4, 7, 8, 11, 13, and 14. Their order modulo 15 are given by 4, 2, 4, 4, 2, 4,
and 2, respectively. Clearly, the elements with order 4 are 2, 7, 8, and 13. In many
cases, we consider using them as a. Note that a2 mod 15 = 4 for a = 2, 7, 8, and
13.

For the element a with the order 4, a2
k
mod 15 is always 1 for integers k ≥ 2.

Hence, Ua2k for k ≥ 2 becomes an identity operation and they can be ignored in
the calculation. On the basis of the above-mentioned observation, it is sufficient to
implement C–Ua and C–Ua2 mod 15 circuits for the modular exponentiation. Here,
a2 mod 15 = 4 and the necessary operation can be simplified into C–Ua and C–
U4. Hence, while constructing the quantum circuits, it is sufficient to consider a
multiplication circuit by employing a as a = 2, 4, 7, 8, and 13. From the above-
mentioned discussion, the general form for factoring N = 15 is given by Fig. 2 under
the condition that the element of order 4 element is used.

3.1 Quantum Factoring Experiment Shown in Vandersypen
(2001)

The literature (Vandersypen 2001) shows an experiment of factoring N = 15 using
NMR. The experiment uses a = 7 as a chosen element. The order of 7 modulo 15 is
given by 4.

As described previously, it is sufficient to construct multiplication circuits with
7 and 4. The multiplication circuit with 4 will be constructed by using the fol-
lowing strategy. Here, we denote a 4-bit nonnegative integer by (y3y2y1y0)2. By
multiplying it with 4, we have (y3y2y1y000)2. By calculating the residue by 15, we
have (y1y0y3y2)2. In summary, the multiplication of (y3y2y1y0)2 by 4 modulo 15
is given by (y1y0y3y2)2. It is sufficient to construct a circuit transferring |y3y2y1y0〉
into |y1y0y3y2〉 instead of directly implementing the multiplication circuit. From the
above-mentioned discussion, it is sufficient to swap the first and the third qubits and
swap the second and the fourth qubits for multiplication with 4 and taking modulo
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x1
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x3
y0

y1y2
y3

x7 x4

Fig. 3 Quantum Circuit for Factoring 15 in Vandersypen (2001)

x1

y0
y1

Fig. 4 Experiment for a = 4 and N = 15 in Lucero et al. (2012)

15. The swap operation can be executed without using ancilla qubits. Furthermore,
the controlled–SWAP can be divided into one Toffoli gate and two C–NOT gates.

Subsequently, we explain the multiplication circuit with 7. Their shown circuit
does not directly implement the multiplication with 7. We can easily verify that
it is sufficient that |0〉 |1〉 is mapped to |0〉 |1〉 and |1〉 |1〉 is mapped to |1〉|7〉 for
multiplication with 7 in this situation. This operation can be executed via controlled-
addition with 6. In this experiment, the controlled-addition with 6 is implemented
by using two controlled-NOT gates.

On the basis of the above-mentioned idea, the authors of Vandersypen (2001)
implemented the circuit as depicted in Fig. 3. Note that no ancilla qubit was used in
applying Ua and U4, and consequently only six qubits were involved in the imple-
mentation.

3.2 Quantum Factoring Experiment Shown in Lucero et al.
(2012)

This experiment involves the factorization of 15 and uses a = 4 as the chosen ele-
ment. Note that the order of 4 is 2. Hence, it is sufficient to implement U4 for the
experiment. In the circuit shown in Lucero et al. (2012), the circuit for multiplica-
tion with 4 is not implemented directly. It is sufficient to implement the circuit that
transforms |0〉 |1〉 → |0〉 |1〉 and |1〉 |1〉 → |1〉|4〉. This operation can be executed
via controlled-addition with 3. In this experiment, the controlled-addition with 3 is
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implemented by using two C-NOT gates. Summing up the above discussion, the
authors in Lucero et al. (2012) presented the circuit depicted in Fig. 4.

Note that no ancilla qubit was used in applying U4 and consequently only three
qubits were involved in the implementation.

3.3 Quantum Factoring Experiment Shown in Monz et al.
(2016)

The authors presented the circuits not only for a = 7 but also for several other a’s
in the experiments. Concretely, the authors showed the circuit for a = 2, 7, 8, 11,
and 13, and a2 mod 15 = 4 for these a’s. Hence, it is sufficient to construct the Ua

circuit andU4 circuits. As shown in Sect. 3.1, theU4 circuit can be constructed using
SWAP. In Monz et al. (2016), the authors showed that the multiplication circuit Ua

can also be constructed using SWAP and NOT gate.
We first present the multiplication circuit for a = 2. We denote the binary repre-

sentation of a by (a3a2a1a0)2 as previously. The double of a modulo 15 is given by
(a2a1a0a3)2 in the binary representation. The state |a2a1a0a3〉 can be obtained from
|a3a2a1a0〉 using the following three sequential SWAP operations: SWAP between
the first and second qubits, SWAP between the second and third qubits, and then
SWAP between the third and fourth qubits. We can verify its correctness by follow-
ing transition: |a3a2a1a0〉 → |a2a3a1a0〉 → |a2a0a3a0〉 → |a2a0a0a3〉.

We then consider the multiplication circuit for a = 8. The multiplication of a
with 8 is given by (a0a3a2a1)2 in the binary representation. The state |a0a3a2a1〉 can
be obtained from |a3a2a1a0〉 using the following three sequential SWAP operations:
SWAP between the third and fourth qubits, SWAP between the second and third
qubits, and then SWAP between the first and second qubits.

We, thus, know that we can implement the multiplication with 2, 4, and 8 by using
only the SWAP circuit.

We then implement themultiplicationwith a = 7, 11, and 13; the values of 15 − a
for them are given by a = 8, 4, and 2, respectively. To construct the multiplication
circuits with 7, 11, and 13, we will use the above-mentioned property. For the mul-
tiplication with a = 13, we first apply the multiplication with 2, and we then apply
the NOT gate for all of the four qubits. Figure5 depicts the concrete multiplication
circuit with them. We can also obtain the multiplication circuits for a = 7, 11 in a
similar manner.
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Fig. 5 Unitary operations U2,U13 and the circuit for C–SWAP

4 Quantum Circuits with Explicitly Using the Order
information

This section presents two experiments that explicitly use the order information. We
want to emphasize that these experiments are inappropriate for employing in factoring
algorithms because the purpose of Shor’s algorithm is to find the order of a given
element.

4.1 Quantum Factoring Experiment of N = 15 Shown in
Politi (2009)

The authors of Politi (2009) conducted an experiment that factorized 15 with an
element a = 7. The order of a = 7 is given by 4. Because the order is 4, the only
four values, namely, 1, 7, 4, and 13 can appear in the second register, and the authors
utilized this property. The authors represented these four values by using two bits.
Concretely speaking, they adopted the following encoding: 1 → 0(= 00)2, 7 → 1(=
01)2, 4 → 2(= 10)2, 13 → 3(= 11)2.

As described previously, it is sufficient to implement the multiplication circuits
with 7 and 4. The multiplication with 7 corresponds to the addition with +1 under
the encoding and the multiplication with 4 corresponds to addition with +2. These
operations can be implemented using only one C–NOT gate. Summing up the above-
mentioned discussion, the entire circuit is depicted in Fig. 6.
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x1
x2

y0
y1

Fig. 6 Quantum circuit for N = 15 in Politi (2009)
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x 4
x 16

|0>

|1> |2>

U+

U-

Fig. 7 Unitary operations U+ and U−

4.2 Quantum Factoring Experiment of N = 21 Shown in
Martin-Lopez et al. (2012)

The target of this experiment is 21. In this experiment, a is set to a = 4. Because
a3 mod 21 = 1, the order of a modulo 21 is given by 3. Note that the purpose of
Shor’s algorithm is to obtain the order 3. The only three elements, namely, 1, 4, and
16 can appear in the second register.

It is sufficient to construct the quantum circuits U42k mod 21 for k = 0, 1, 2, . . . for
the modular exponentiation. Note that 42

k
mod 21 = 4 for even k and 42

k
mod 21 =

16 for odd k. Then, it is sufficient to apply the unitary operation U4 for even k and
U16 for odd k.

In the experiment ofMartin-Lopez et al. (2012), the following encoding is adapted
as in the case of N = 15.

1 → 0, 4 → 1, 16 → 2

We consider the multiplication with 4 and 16 under the aforementioned encoding.
The multiplication with 4 is mapped into addition with +1, and the multiplication
with 16 is mapped into addition with +2 or, equivalently, −1.

The experiment in Martin-Lopez et al. (2012) utilized a qutrit, which takes three
quantum states instead of qubits, as the second register. We denote the unitary oper-
ations by

U+ : |x〉 	→ |x + 1 mod 3〉, U− : |x〉 	→ |x − 1 mod 3〉.

The operations U+ and U− act on the quantum states as depicted in Fig. 7.
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Fig. 8 Quantum circuit for N = 21 in Martin-Lopez et al. (2012)

Using the above-mentioned notation, Fig. 8 depicts the quantum circuit for factor-
ing N = 21 described inMartin-Lopez et al. (2012). Here, in the circuit construction,
the so-called qubit-recycling technique is employed to reduce the number of qubits.
For the details of the qubit-recycling technique, refer to Martin-Lopez et al. (2012).

4.3 Oversimplified Shor’s Algorithm (Smolin et al. 2013)

As described previously, the purpose of Shor’s algorithm is to find the order of a
given element. Hence, the circuit that explicitly utilizes the order information is
inappropriate for (even the simplified version of) Shor’s factoring algorithm. If we
can use the order information, we can, in principle, factorize any large composite.We
will explain the details of this fact by following the description provided in Smolin
et al. (2013).

The modular exponentiation part in Shor’s algorithm constructs the quantum
superposition as follows:

1

2m/2

2m−1∑
x=0

|x〉|ax mod N 〉

from the flat superposition 1
2m/2

∑2m−1
x=0 |x〉 |1〉.

However, the circuits described in this section constructs the quantum superposi-
tion as follows:

1

2m/2

2m−1∑
x=0

|x〉|x mod r〉

from the flat superposition 1
2m/2

∑2m−1
x=0 |x〉 |0〉.

In this discussion, the following encoding is employed:

ax mod N 	→ x mod r.

This encoding includes the encodings described in Sects. 4.1 (r = 4) and 4.2 (r = 3)
as a special case. This discussion is mathematically correct, but, it is inappropriate
from the computational viewpoint because finding the order r is strongly believed to
be infeasible in the classical polynomial time.
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Fig. 9 Oversimplified
factoring algorithm

|0>
|0> H H

This circuit is constructed on the basis of the knowledge of the order r . Under
this encoding, the operation Ua2 j is transformed into the addition operation with
2 j mod r . Assume that r = 4. The unitary operation Ua2 j for j = 0 corresponds to
the addition with 1; that for j = 1 corresponds to the addition with 2; that for j ≥ 2
corresponds to an identity operation. Next, we assume that r = 3. The unitary oper-
ation Ua2 j for even j corresponds to the addition with 1; that for odd j corresponds
to the addition with 2 or, equivalently, −1. Note that all the addition is performed
under the modulo 3.

To indicate that this kind of circuit that explicitly utilizes the order information
is meaningless for the implementations of Shor’s factoring algorithm, Smolin et al.
(2013) presented the factoring circuits by using an element with order 2. Because
the order r is 2, it is sufficient to construct the superposition as follows:

1√
2

1∑
x=0

|x〉 |0〉 	→ 1√
2

1∑
x=0

|x〉|x〉 = 1√
2
(|00〉 + |11〉).

Figure9 depicts the entire circuit described in Smolin et al. (2013).
We can find the element with order 2 for a large composite N using the following

algorithm.

Input: k ∈ Z

Output: a 2k-bit composite N and an element a with order 2 modulo N
Step1: Find two distinct k-bit primes p and q. Compute N = pq.
Step2: Find a such that a = +1 mod p and a = −1 mod q. Concretely, perform

the following procedures to compute a.

Step2-1: Calculate q̄ = q−1 mod p.
Step2-2: Calculate a = −1 + 2q̄q.

Furthermore, we provide a SageMath (2020) code for the above-mentioned algo-
rithm with 2048-bit RSA.

1 k=1024
2 p=random_prime(2^k-1, false, 2^(k-1))
3 q=random_prime(2^k-1, false, 2^(k-1))
4 N=p*q
5 a= crt(1, -1, p, q)

Wecan easily verify that it holds that a = +1 mod p and a = −1 mod q. Because
a2 ≡ 1 (mod p) and a2 ≡ 1 (mod q), we have a2 ≡ 1 (mod N ), and the order of
a is a divisor of 2, implying that the order is 1 or 2. Because a �≡ 1 (mod N ), we
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Table 4 Level of quantum experiments for factoring

Research Group Year Target Level

IBM (Vandersypen 2001) 2001 15 Level 2

U. of Bristol (Politi 2009) 2009 15 Level 1

UCSB (Lucero et al. 2012) 2012 15 Level 2

U. Innsbruck (Monz et al. 2016) 2016 15 Level 2

U. of Bristol (Martin-Lopez et al. 2012) 2012 21 Level 1

can assert that the order of a is exactly 2. Furthermore, as gcd(a2/2 − 1, N ) = p, we
can find a prime factor p of N .

In Smolin et al. (2013), the authors presented the prime factorization of a 20, 000-
bit composite, showing that this kind of oversimplification is meaningless for the
implementation of Shor’s factoring algorithm.

5 Summary and Concluding Remarks

We reviewed the resource estimation of quantum factoring based on Shor’s algo-
rithm. We then presented a survey of the state-of-the-art circuit construction. We
also indicated some of them as inappropriate for factoring circuits because the order
information was embedded in the circuits (Sect. 4). The others considerably utilized
the property of the target composite, and hence, they have no extensibility to the
general composite (Sect. 3).

More experiments on factoring based on Shor’s algorithmwill be conducted using
various devices. As we mentioned in this paper, we have to carefully analyze the
circuit construction.

Based on the current status of quantum experiments for factoring, we introduce
the following three levels of circuit construction for quantum factoring.

Level 1 Quantum factoring: The order information is embedded in the circuit.
The experiment under Level 1 cannot be considered as a quantum experiment for
factoring.

Level 2 Quantum factoring: The circuit relies considerably on the property of a
target composite. The experiment under Level 2 can be considered as a quantum
experiment for factoring, meaning that the compiled version of the circuits is
acceptable. However, we cannot apply this circuit construction to the general
composite, and hence, this circuit construction has no scalability.

Level 3 Quantum factoring: The circuit does not use any specific property of the
target composite. The circuit under Level 3 is desirable.

Table4 presents the levels for quantum factoring circuits shown in this paper. As
can be seen, there is no experiment with Level 3.
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Towards Constructing Fully
Homomorphic Encryption without
Ciphertext Noise from Group Theory
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Abstract InCRYPTO2008, 1 year earlier thanGentry’s pioneering “bootstrapping”
technique for the first fully homomorphic encryption (FHE) scheme, Ostrovsky and
Skeith III had suggested a completely different approach towards achieving FHE.
They showed that the NAND operator can be realized in some non-commutative
groups; consequently, homomorphically encrypting the elements of the group will
yield an FHE scheme, without ciphertext noise to be bootstrapped. However, no
observations on how to homomorphically encrypt the group elements were presented
in their paper, and there have been no follow-up studies in the literature. The aim
of this paper is to exhibit more clearly what is sufficient and what seems to be
effective for constructing FHE schemes based on their approach. First, we prove
that it is sufficient to find a surjective homomorphism π : ˜G → G between finite
groups for which bit operators are realized in G and the elements of the kernel
of π are indistinguishable from the general elements of ˜G. Secondly, we propose
new methodologies to realize bit operators in some groups G. Thirdly, we give an
observation that a naive approach using matrix groups would never yield secure FHE
due to an attack utilizing the “linearity” of the construction. Then we propose an idea
to avoid such “linearity” by using combinatorial group theory. Concretely realizing
FHE schemes based on our proposed framework is left as a future research topic.
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1 Introduction

Until the pioneeringwork byGentry (2009) in 2009, it had been a long-standing open
problem to construct fully homomorphic encryption (FHE) that enables arbitrary
“computation on encrypted data” via “homomorphic” operations on the ciphertexts.
After Gentry’s work, studies of FHE to improve the efficiency (e.g. Chillotti et al.
2016; Ducas andMicciancio 2015; Gentry et al. 2012; Stehlé and Steinfeld 2010) and
to give various frameworks of construction (e.g. Brakerski and Vaikuntanathan 2011;
Cheon and Stehlé 2015; van Dijk et al. 2010; Gentry and Halevi 2011; Nuida and
Kurosawa 2015) have been one of the main research topics in cryptology (see, e.g.
Silverberg 2013 for a survey). Here we emphasize that all the previous FHE schemes
in the literature rely on Gentry’s “bootstrapping” framework. Namely, ciphertexts
for these FHE schemes involve “noise” terms to conceal plaintexts, and the noise
is increased by homomorphic operations and will finally collapse the ciphertext;
hence the increased noise must be cancelled before the collapse. The bootstrapping,
which is the additional procedure for noise cancellation, is a major bottleneck for
efficiency improvement, makes the syntax of FHE less analogical to the classical
homomorphic encryption, and causes somewhat unclear treatments regarding so-
called circular security.

On the other hand, in 2008 (1 year earlier thanGentry 2009), Ostrovsky and Skeith
III (2008) had suggested a completely different, group-theoretic approach towards
achieving FHE. Namely, they showed that the NAND operator (which is sufficient
for constructing arbitrary bit operators) can be realized (in a certain suitable sense)
in some non-commutative groups. Consequently, if the elements of the underlying
group can be homomorphically encrypted, then it will yield an FHE scheme where
the ciphertexts involve no noise terms; hence, the bootstrapping procedure will no
longer be required. However, no observations on how to homomorphically encrypt
the group elements were presented in their paper and, to the author’s best knowledge,
there have been no follow-up studies in the literature based on their approach. The
aim of this paper is to exhibit more clearly what is sufficient and what seems to be
effective for constructing “noise-free” FHE schemes based on their approach.

1.1 Our Contributions

In Sect. 3, we revisit the approach towards constructing FHE suggested in Ostrovsky
and Skeith (2008).We give a formalization of “realizations of bit operators in groups”
in a slightly generalized manner (e.g. our formalization can also handle probabilistic
realizations of bit operators, which were not considered in Ostrovsky and Skeith
2008). Then we reduce the problem of “homomorphically encrypting the elements
of a group G” to finding a surjective homomorphism π : ˜G → G from another finite
group ˜G (which plays the role of the ciphertext space) satisfying certain conditions
and prove that the resulting FHE scheme is CPA-secure if the elements of the kernel
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ofπ (ker π ) are indistinguishable from the general elements of ˜G evenwhen a certain
generating set of ker π is publicly given. This clarifies the problem to be solved from
a group-theoretic viewpoint.

In Sect. 4, we propose new methodologies to realize bit operators in some groups,
which are different from the previous methodology in Ostrovsky and Skeith (2008)
analogous to Barrington’s theorem (Barrington 1986) (recalled in Sect. 4.1). Our
result enlarges the possibility of the underlying group G to find a suitable construc-
tion.

Finally, in Sect. 5, we give some observations and discussions on how to find a
suitable homomorphism π : ˜G → G. In Sect. 5.2, we give an observation that a naive
approach to construct the group ˜G by using embedding of a matrix group G into a
larger matrix group and then taking its random conjugate would never yield a secure
FHE scheme, due to the existence of a kind of “linear” constraint that separates
the elements of ker π from general elements of ˜G (where the “linearity” causes
that such a constraint does not disappear even by taking random conjugate). This
observation shows an importance of finding a homomorphism π : ˜G → G onto a
given underlying group G without linear constraints for elements of ker π . Towards
constructing such a homomorphism π , in Sect. 5.3, we propose another approach
using combinatorial group theory, i.e. the properties of presentations of groups in
terms of generators and fundamental relations. Then, in Sect. 5.4, we discuss several
problems to be resolved in order to realize our proposed approach, many of which
would be of independent interest from mathematical viewpoints.

2 Preliminaries

Let a ← X mean that a random variable X takes a value a. Let a ←R X mean that
an element a is chosen uniformly at random from a finite set X . The statistical
distance between two probability distributions X,Y over a finite set A is defined
by �(X,Y) = (1/2)

∑

z∈A |Pr[z ← X] − Pr[z ← Y]|. For ε ≥ 0, we say that X is
ε-close to Y, if �(X,Y) ≤ ε. We say that a function ε = ε(λ) ≥ 0 is negligible, if
ε = λ−ω(1). We say that ε ∈ [0, 1] is overwhelming, if 1 − ε is negligible; and ε is
noticeable, if there exist integers n ≥ 1 and λ0 > 0 for which we have ε > λ−n for
every λ > λ0.

A public-key encryption (PKE) scheme consists of the following three algorithms.
The key generation algorithmGen(1λ) outputs a pair of a public key pk and a secret
key sk. The encryption algorithm Enc(m) = Encpk(m) outputs a ciphertext for a
plaintextm. The decryption algorithmDec(c) = Decsk(c) for a ciphertext c outputs
either a plaintext or a “failure” symbol ⊥. The correctness of a PKE scheme means
that, for any plaintext m, the probability Pr[Decsk(Encpk(m)) �= m] (taken over the
internal randomness for the algorithms) is negligible.

For a finite setM, we say that a set F of operators onM is functionally complete,
if any (multivariate) function with inputs and outputs inM can be computed by com-
bining operators in F . We say that a PKE scheme with plaintext space M is a fully
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homomorphic encryption (FHE) scheme, if there exist a functionally complete set
F of operators onM and an efficient homomorphic evaluation algorithm Eval with
the property that, for each, say n-ary operator f ∈ F ( f : Mn → M) and for given
ciphertexts ci for plaintexts mi (i = 1, . . . , n), the algorithm Evalpk( f ; c1, . . . , cn)
outputs a ciphertext for plaintext f (m1, . . . ,mn) ∈ Mwith overwhelming probabil-
ity.

We say that a PKE scheme with plaintext spaceM is CPA-secure, if for any prob-
abilistic polynomial-time (PPT) adversary A, the advantage AdvA(λ) = |Pr[b =
b∗] − 1/2| ofA is negligible, where Pr[b = b∗] is the probability that b = b∗ holds
in the following game:

(pk, sk) ← Gen(1λ) ; (m0,m1, st) ← A(submit, 1λ,pk) ;
b∗ ←R {0, 1} ; c∗ ← Encpk(mb∗) : b ← A(guess, 1λ,pk, st, c∗) .

The reader may refer to a textbook of group theory (e.g. Robinson 1996) for
definitions and basic facts for groups mentioned without explicit references.

3 Our Framework for FHE

In this section, we describe our framework towards constructing FHE free from
ciphertext noise. This can be seen as formalizing a framework suggested in Kham-
semanan et al. (2016) and Ostrovsky and Skeith (2008).

3.1 Group-Theoretic Realization of Functions

Roughly speaking, a group-theoretic realization of a function in a group is emulat-
ing the function “by using the group operators only”. To formalize it, we prepare
some definitions. Let w = w(x1, . . . , xn) be a sequence of finite length over alpha-
bet {x1, x−1

1 , . . . , xn, x−1
n }, called a group word with variables x1, . . . , xn . Then one

can substitute given elements g1, . . . , gn of a group into the variables x1, . . . , xn in
w(x1, . . . , xn) to yield an element of the same group, denoted by w(g1, . . . , gn).

Then we define a group-theoretic realization of functions as follows. In compari-
son to a similar definition in Khamsemanan et al. (2016) that was deterministic with
a single component, our formulation here also covers probabilistic situations with
multiple components.

Definition 1 Let G be a group and M be a set. Let F be a set of functions of the
form f : M� f → Mwith � f ≥ 1.We define a group-theoretic realization (or simply
a realization) of F in G to be a collection of the following objects:

• a polynomially bounded integer n ≥ 1, which we call the degree of the realization;
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• non-empty and mutually disjoint subsets Xm ⊆ Gn for all m ∈ M;
• for f ∈ F , a collection �w f (�x1, . . . , �x� f , �y) of n group words w f,i (�x1, . . . , �x� f , �y)
(i = 1, . . . , n) of polynomially bounded lengths, where �x j = (x j,1, . . . , x j,n) for
j = 1, . . . , � f and �y = (y1, . . . , yk);

• a collection �r = (r1, . . . , rk) of polynomial-time samplable random variables on
G;

satisfying the following condition, where negl is some negligible value: For any
f ∈ F , anym1, . . . ,m� f ∈ M, and any �gi = (gi,1, . . . , gi,n) ∈ Xmi (i = 1, . . . , � f ),
the probability Pr[ �w f (�g1, . . . , �g� f , r1, . . . , rk) /∈ X f (m1,...,m� f )

] taken over the random
choices of values of r1, . . . , rk ∈ G is not larger than negl.

For each f ∈ F ,wedenote byA f an algorithm that, for given inputs �g1, . . . , �g� f ∈
Gn , outputs �w f (�g1, . . . , �g� f , r1, . . . , rk) ∈ Gn where the values of random variables
r1, . . . , rk are sampled according to the specified distributions.

We note that, in the formulation above, some of the random variables rh may take
a constant value in G. When all the random variables appearing in a realization are
constant, we call the realization deterministic, or else call it probabilistic.

3.2 Lift of Realization of Functions

Given a group homomorphism ˜G → G and a realization of functions in the target
group G, the notion of a “lift” of the realization up to the source group ˜G defined
below plays a role of homomorphic operations in our proposed framework for FHE.
We note that such a notion was not introduced in the previous work (Khamsemanan
et al. 2016; Ostrovsky and Skeith 2008).

Definition 2 We suppose that a set F of functions on M has a realization in a
group G as in Definition 1. Let π : ˜G → G be a surjective group homomorphism.
We define a lift of the realization up to ˜G to be a collection of polynomial-time
samplable randomvariables r̃1, . . . , r̃k on ˜G with the property that each valueπ(̃rh) ∈
G has the same probability distribution as rh . Then for each f ∈ F , we denote by
˜A f an algorithm that outputs �w f (�̃g1, . . . , �̃g� f

, r̃1, . . . , r̃k) ∈ (˜G)n for given inputs
�̃g1, . . . , �̃g� f

∈ (˜G)n where the values of random variables r̃1, . . . , r̃k are sampled
according to the specified distributions.

In the following, we also write as π the map (˜G)n → Gn with π(g̃1, . . . , g̃n) =
(π(g̃1), . . . , π(g̃n)).

Lemma 1 In the situation of Definition 2, let f ∈ F , m1, . . . ,m� f ∈ M, and

let �̃gi ∈ (˜G)n satisfy π(�̃gi ) ∈ Xmi for each i = 1, . . . , � f . Then the probability
Pr[π(˜A f (�̃g1, . . . , �̃g� f

)) /∈ X f (m1,...,m� f )
] is bounded by the same negligible value

negl as in Definition 1.
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Proof As π : ˜G → G is a group homomorphism, we have

π(w f,i (�̃g1, . . . , �̃g� f
, r̃1, . . . , r̃k)) = w f,i (π(�̃g1), . . . , π(�̃g� f

), π(̃r1), . . . , π(̃rk))

for any i = 1, . . . , � f and any values of the random variables r̃h . By Definition 1, the
claim follows from the fact that the probability distribution for each π(̃rh) is identical
to rh . �

3.3 The Proposed Framework

Based on the definitions above, here we describe our proposed framework for con-
structing FHE:

Gen(1λ): Choose the following objects according to the security parameter λ,
whereM is the set of plaintexts and F is a functionally complete set of operators
on M:

• a group-theoretic realization (of some degree n) of F on a group G;
• a surjective group homomorphism π : ˜G → G and a lift of the realization of F
up to ˜G;

• a polynomial-time samplable random variable rker on the kernel ker π of π ;
• for each m ∈ M, a tuple �genm = (genm,1, . . . ,genm,n) ∈ (˜G)n with π( �genm) ∈

Xm .

Then output a public key pk consisting of ˜G, rker, �genm for all m ∈ M, and the
algorithms ˜A f for all f ∈ F appearing in the lift of the realization of F ; and output
a secret key sk consisting of G, π , and Xm for all m ∈ M.

Encpk(m) for m ∈ M: Sample n values �rker = (rker,1, . . . , rker,n) of the random
variable rker independently, and then output �c = (c1, . . . , cn) ← �genm · �rker ∈
(˜G)n .

Decsk(c) for �c ∈ (˜G)n: Compute π(�c) ∈ Gn , and if π(�c) ∈ Xm for an m ∈ M,
then output the m. If no such m exists, then output ⊥.

Evalpk( f ; �c1, . . . , �c� f ) for f ∈ F and �c1, . . . , �c� f ∈ (˜G)n: Output ˜A f (�c1, . . . ,
�c� f ) ∈ (˜G)n .

The correctness of Enc is obvious; when �c = �genm · �rker ← Encpk(m), we have

π(�c) = π( �genm) · (π(rker,1), . . . , π(rker,n)) = π( �genm) · (1G , . . . , 1G) = π( �genm) ∈ Xm

as rker,i ∈ ker π for each i . The correctness of Eval is just a restatement of Lemma
1. On the other hand, for the security, we have the following result:

Theorem 1 In the setting above, suppose that ˜G is a finite group with polynomial-
time computable group operators, and suppose either n = 1 or that the uniform
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distribution over ˜G is polynomial-time samplable. Then, our proposed FHE scheme
is CPA-secure if the subgroup membership problem for ker π ⊆ ˜G with respect to
the random variable rker with auxiliary input pk is computationally hard, that is, for
any PPT adversaryA†, the advantage AdvA†(λ) = |Pr[b = b†] − 1/2| ofA† in the
following game is negligible:

(pk, sk) ← Gen(1λ) ; b† ←R {0, 1} ;
{

g† ←R ˜G (b† = 1)

g† ← rker (b† = 0)
: b ← A†(1λ,pk, g†) .

Proof LetA be anyPPTCPAadversary for our scheme. Thenwe define an adversary
A† for the subgroup membership problem specified in the statement as follows:

1. Given inputs 1λ, pk, and g† chosen according to the random bit b†, the adversary
A† chooses i ←R {1, . . . , n} and executes A(submit, 1λ,pk) to obtain a tuple
(m0,m1, st).

2. The adversaryA† choosesb∗ ←R {0, 1} and executesA(guess, 1λ,pk, st, cb
∗,b†,i )

to obtain a bit b′, where

cb
∗,b†,i

= (genmb∗ ,1ρ1, . . . ,genmb∗ ,i−1ρi−1,genmb∗ ,i g
†,genmb∗ ,i+1ui+1, . . . ,genmb∗ ,nun)

with independent random values ρ1, . . . , ρi−1 of rker and ui+1, . . . , un ←R ˜G.
3. The adversary A† outputs b = XOR(b∗, b′).

Note that this adversary A† is PPT as well as A. Now we have

AdvA† (λ) = |Pr[b = b†] − 1/2| = 1

2

∣

∣Pr[b = 0 | b† = 0] + Pr[b = 1 | b† = 1] − 1
∣

∣

and

Pr[b = 0 | b† = 0] = Pr[b′ = b∗ | b† = 0]

=
n

∑

i=1

1

n
Pr[b∗ ← A(guess, 1λ,pk, st, cb

∗,0,i )] ,

while

Pr[b = 1 | b† = 1] = 1 − Pr[b′ = b∗ | b† = 1]

= 1 −
n

∑

i=1

1

n
Pr[b∗ ← A(guess, 1λ,pk, st, cb

∗,1,i )] .

By the choice of g†, for each i = 1, . . . , n − 1 and any choice of b∗, the two tuples
cb

∗,0,i and cb
∗,1,i+1 follow an identical probability distribution. Therefore, we have
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Pr[b = 0 | b† = 0] + Pr[b = 1 | b† = 1] − 1

= 1

n
Pr[b∗ ← A(guess, 1λ,pk, st, cb

∗,0,n)] − 1

n
Pr[b∗ ← A(guess, 1λ,pk, st, cb

∗,1,1)] .

Now we have

cb
∗,1,1 = (genmb∗ ,1g

†,genmb∗ ,2u2, . . . ,genmb∗ ,nun)

and the element g† when b† = 1 is a uniformly random and independent element
of ˜G as well as u2, . . . , un . This implies that cb

∗,1,1 is uniformly random over (˜G)n

regardless of the choice of b∗; therefore, we have

Pr[b∗ ← A(guess, 1λ,pk, st, cb
∗,1,1) = 1

2

and

AdvA†(λ) = 1

2n

∣

∣

∣

∣

Pr[b∗ ← A(guess, 1λ,pk, st, cb
∗,0,n)] − 1

2

∣

∣

∣

∣

.

Moreover, we have

cb
∗,0,n = (genmb∗ ,1ρ1, . . . ,genmb∗ ,n−1ρn−1,genmb∗ ,ng

†)

and the element g† when b† = 0 is a random value of rker as well as ρ1, . . . , ρn−1.
This implies that cb

∗,0,n follows the same probability distribution as Encpk(mb∗);
therefore, we have

AdvA† (λ) = 1

2n

∣

∣

∣

∣

Pr[b∗ ← A(guess, 1λ,pk, st,Encpk(mb∗ ))] − 1

2

∣

∣

∣

∣

= 1

2n
AdvA(λ) .

As the adversaryA† is PPT, the assumption in the statement implies that AdvA†(λ)

is negligible; therefore, AdvA(λ) is also negligible as n is polynomially bounded.
This completes the proof of Theorem 1. �

4 Examples of Realizations of Functions in Groups

4.1 Deterministic Case: Known Result

The following result (which is restated according to our terminology here)was proved
in the previous work (Khamsemanan et al. 2016; Ostrovsky and Skeith 2008) (see,
e.g. Theorem 2.1 of Ostrovsky and Skeith 2008).
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Proposition 1 (Khamsemanan et al. 2016; Ostrovsky and Skeith 2008) Let G be
any non-commutative finite simple group. Then there exists a deterministic, degree-1
group-theoretic realization of NAND in G.

We note that its proof, utilizing the commutators [g, h] = ghg−1h−1 in a way
analogous to Barrington’s theorem (Barrington 1986), is in general not constructive.
A concrete construction was given in Sect. 6 of Khamsemanan et al. (2016) only for
the smallest case G = A5, where the group word has a length 65.

4.2 Deterministic Case: Proposed Constructions

Here, we propose a completely different approach, which we call approximate-then-
adjust method, to obtain deterministic realizations of operators in some small groups.
An intuitive explanation is as follows. For example, the operations b1 OR b2 and b1 +
b2 mod 3have equal outputs for all but one input pairs (b1, b2) �= (1, 1) in {0, 1}2, and
1 + 1 mod 3 = 2 (instead of 1OR 1 = 1) is “overflowed” from the correct output set
{0, 1}. As the operation b1 + b2 mod 3 is easily realizable by using a cyclic subgroup
of order 3, the problem has been reduced to realize the “adjusting function” 0 
→ 0,
1 
→ 1, 2 
→ 1 in a group.

In fact, by putting σb = (1, 2, 3)b ∈ S5 for b ∈ {0, 1, 2} (where Sk denotes the
symmetric group on k letters) and identifying each σb with b, the adjusting function
mentioned above can be realized by a group word

wout(g) = (1, 5)(2, 3, 4)g(2, 3, 4)g(3, 4)g2(2, 3)(4, 5)g(2, 3, 4)g(3, 4)g2(1, 4, 2, 5)

(formally, the left-hand side is an abbreviation of wout(g, �y) where the variables in
�y take constant values over G = S5 appearing in the right-hand side). This adjusting
function defined by wout is also applicable to other operations NAND, XOR, and
EQ (= NOT ◦ XOR). Namely, by putting

win
OR(g1, g2) = g1g2 , win

NAND(g1, g2) = g−1
1 g−1

2 σ 2
1 ,

win
XOR(g1, g2) = g−1

1 g2 , win
EQ(g1, g2) = g1g2σ

−1
1 ,

an output of each win
f for inputs in {σ0, σ1} becomes either equal (via the iden-

tification σb ↔ b) to f , or σ2 (↔ 2) instead of σ1 (↔ 1). Hence, the composi-
tion wout(win

f (g1, g2)) gives a correct group word to realize the operator f with
X0 = {σ0 = 1S5} and X1 = {σ1}. We also note that NOT is easily realized with the
same X0 and X1 by wNOT(g) = g−1σ1.

This method is also applicable to realizing arithmetic operations for F3. We put
σb = (1, 2, 3)b ∈ S5 for b ∈ {0, 1, 2} again, and set Xb = {σb} for each b. Then the
addition + is easily realized by w+(g1, g2) = g1g2. For the multiplication ×, the
following group word
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win
×(g1, g2) = g1((1, 4)(2, 3, 5))

−1g2(1, 4)(2, 3, 5)

satisfies that win×(σb1 , σb2) ∈ X ′
b1×b2 mod 3 for any b1, b2 ∈ {0, 1, 2}, where

X ′
0 = {1S5 , (2, 4, 5), (2, 5, 4), (1, 2, 3), (1, 3, 2)} ,

X ′
1 = {(1, 2, 4, 5, 3), (1, 3, 2, 5, 4)} ,

X ′
2 = {(1, 2, 5, 4, 3), (1, 3, 2, 4, 5)} .

On the other hand, by putting

w′
1(g) = g3 , w′

2(g) = w′
3(g) = (2, 3, 4)−1g−1(3, 4, 5)g2(3, 4, 5)−1g(2, 3, 4) ,

w′
4(g) = g(1, 5, 3, 4, 2)g−1(1, 5, 3, 4, 2)−1g(1, 4, 2, 3, 5)g−1(1, 4, 2, 3, 5)−1 ,

the composed group word wout(g) = w′
4(w

′
3(w

′
2(w

′
1(g)))) satisfies that wout(g) =

σb for any b ∈ {0, 1, 2} and any g ∈ X ′
b. Hence, the group word w×(g1, g2) =

wout(win×(g1, g2)) realizes the operator × for F3, as desired. We note that the group
words in the arguments above are found by heuristic searches; a systematic method
to find such group words is a future research topic.

4.3 Preliminaries: On Random Sampling of Group Elements

In the probabilistic constructions described below, the following result by Dixon
(2008) on almost uniform sampling over any finite groupG would be useful in imple-
mentation.We introduce a notation: for any g1, . . . , gL ∈ G, letSample[g1, . . . , gL ]
denote the random variable that takes the value ge11 · · · geLL ∈ G with e1, . . . , eL ←R

{0, 1}.
Proposition 2 (Dixon 2008, Theorem 3) Let G be a finite group, let 0 ≤ ε < 1, and
let U be a random variable over G that is ε-close to the uniform random variable
on G. Let L be a positive integer, and let h, k ≥ 0. If

L ≥ log2 |G| + h + 2k − 2

log2(2/(1 + ε))
,

then we have Pr
g1,...,gL←U

[Sample[g1, . . . , gL ] is not 2−k-close to uniform ] < 2−h.

4.4 Probabilistic Case: “Commutator-Separable” Groups

We propose a degree-2 probabilistic realization of {NOT,AND} in the following
class of groups.
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Definition 3 Let ε > 0. We say that a finite group G is ε-commutator-separable, if
there exists a non-empty subset Y of G \ {1G} satisfying

Pr
u←RG

[ [ugu−1, g′] /∈ Y ] ≤ ε for any g, g′ ∈ Y . (1)

Moreover, we say that a family of finite groups G = Gλ indexed by the security
parameter λ is commutator-separable, if there exists a negligible function ε = ε(λ)

for which G is ε-commutator-separable for any λ.

Let G be an ε-commutator-separable group. We put

X0 = {(g1, g2) ∈ G2 | g1 ∈ Y , g2 = 1G}, X1 = {(g1, g2) ∈ G2 | g1 ∈ Y , g2 = g1} ,

where Y ⊆ G \ {1G} is as in Definition 3. Then NOT is easily realized by the group
words (where �g = (g1, g2))

�wNOT(�g) = (wNOT,1(�g),wNOT,2(�g)) = (g1, g
−1
2 g1) .

On the other hand, we define the (probabilistic) group words for AND by

�wAND(�g, �g′) = (wAND,1(�g, �g′),wAND,2(�g, �g′))

= ([ug1u−1, g′
1], [ug2u−1, g′

2]) with u ←R G .

For any �g, �g′ ∈ X0 ∪ X1, the condition (1) implies that Pr[wAND,1(�g, �g′) /∈ Y ] ≤ ε

where the probability is taken over the random choice of u in �wAND(�g, �g′). Moreover,
when �g ∈ X0 or �g′ ∈ X0, we have g2 = 1G or g′

2 = 1G ; therefore, wAND,2(�g, �g′) =
1G . On the other hand, when �g, �g′ ∈ X1, we have g2 = g1 and g′

2 = g′
1; therefore,

wAND,2(�g, �g′) = wAND,1(�g, �g′). Summarizing, �wAND(�g, �g′) is a realization of AND
with error probability ≤ ε.

Remark 1 Although only the existence of such a subset Y is concerned in Definition
3, the efficient samplability of an element of Y is needed to be used as a part of our
proposed framework for FHE. In general, this is at least probabilistically achievable
if the ratio |G \ Y |/|G| is negligible; now a uniformly random element of G is also
an element of Y except for a negligible probability.

From now, we show that the groups SL2(Fq) and PSL2(Fq) = SL2(Fq)/{±I } are
commutator-separable if the order q of the coefficient field Fq satisfies that 1/q is
negligible. In the following, let ZH (g) = {h ∈ H | gh = hg} denote the centralizer
of g in a group H . We note that |ZH (g)| = |H |/|gH | for any g ∈ H , where gH =
{hgh−1 | h ∈ H} denotes the conjugacy class of g in H .

Lemma 2 Let H be a finite group, and let X ⊆ H. Then for any x1, x2 ∈ H, we
have

Pr
g←R H

[ [gx1g−1, x2] ∈ X ] ≤ |X | · |ZH (x1)| · |ZH (x2)|
|H | .



68 K. Nuida

Proof For y ∈ X , we have [gx1g−1, x2] = y if and only if (gx1g−1)x2(gx1g−1)−1 =
yx2. As the mapping h 
→ hzh−1 is a |ZH (z)|-to-1 mapping for any z ∈ H , there
are at most |ZH (x2)| possibilities of the value of gx1g−1 to satisfy the condition
(gx1g−1)x2(gx1g−1)−1 = yx2; and for each of them, there are at most |ZH (x1)|
possibilities of the value of g. This completes the proof. �

Lemma 3 Letϕ : H1 → H2 be a surjective group homomorphismbetween two finite
groups, and let x ∈ H1. Then we have |ZH2(ϕ(x))| ≤ |ZH1(x)|.
Proof As ϕ is a surjective homomorphism, it is a (|H1|/|H2|)-to-1 mapping and
we haveϕ(xH1) = ϕ(x)H2 . Therefore |xH1 | ≤ (|H1|/|H2|) · |ϕ(x)H2 |, or equivalently
|H2|/|ϕ(x)H2 | ≤ |H1|/|xH1 |. Hence the claim holds. �

Lemma 4 For any A =
(

a b
c d

)

∈ SL2(Fq) with A �= ±I , we have |ZSL2(Fq )(A)| ≤
2q if b �= 0 or c �= 0, and |ZSL2(Fq )(A)| = q − 1 if b = c = 0.

Proof Let A =
(

a b
c d

)

∈ SL2(Fq) with A �= ±I , and let X =
(

x y
z w

)

∈ ZSL2(Fq )

(A); therefore, det(X) = 1 and X A = AX . Then we have

xw − yz = 1 , cy = bz , bx + dy = ay + bw , az + cw = cx + dz .

First, suppose that b �= 0. Then we have z = b−1cy and w = x + b−1(d − a)y,
therefore x2 + b−1(d − a)xy − b−1cy2 = 1. Now for each y ∈ Fq , the quadratic
equation in x has at most two solutions, and z and w are uniquely determined from
x and y by the relations above. This implies that the number of the possible X is at
most 2q. The argument for the case c �= 0 is similar; x and y are linear combinations
of z and w, and w satisfies a quadratic equation when an element z ∈ F is fixed;
therefore, the number of the possible X is at most 2q.

On the other hand, suppose that b = c = 0. By the condition det(A) = 1, we have
ad = 1; therefore, a �= 0 and d �= 0. Now we have dy = ay and az = dz, while
the condition A �= ±I implies that a �= d. Therefore, we have y = 0 and z = 0.
This implies that xw = 1; therefore, w �= 0 and x = w−1. Hence, the number of the
possible X is q − 1. This completes the proof of Lemma 4. �

Corollary 1 We have |ZPSL2(Fq )(A)| ≤ 2q for any non-identity element
A ∈ PSL2(Fq).

Proof Apply Lemma 3 to the natural projection SL2(Fq) → PSL2(Fq) and use
Lemma 4. �

Theorem 2 If
8q

q2 − 1
≤ ε, or equivalently q ≥ 4 + √

16 + ε2

ε
≈ 8

ε
, then SL2(Fq)

and PSL2(Fq) are ε-commutator-separable with Y = SL2(Fq) \ {±I } and Y =
PSL2(Fq) \ {1PSL2(Fq )}, respectively.
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Proof Let H ∈ {SL2(Fq),PSL2(Fq)}. First, it is known that |H | = q(q2 − 1)/η,
where η = 1 if H = SL2(Fq) and η = 2 if H = PSL2(Fq). We also note that
|H \ Y | = 2/η. Now for any x1, x2 ∈ Y , Lemma 4 and Corollary 1 imply that
|ZH (x1)|, |ZH (x2)| ≤ 2q. Therefore, by Lemma 2, we have

Pr
g←R H

[ [gx1g−1, x2] /∈ Y ] ≤ (2/η) · 2q · 2q
q(q2 − 1)/η

= 8q

q2 − 1
≤ ε

by the condition for q in the statement. This completes the proof. �

4.5 Probabilistic Case: Simple Groups

We also give a variant of the probabilistic realization described in Sect. 4.4. Although
the correctness below relies on a heuristic assumption, the underlying group G for
the realization can be taken as any sufficiently large non-commutative finite simple
group.

The realization of NOT is similar to Sect. 4.4. Namely, we put

X0 = {(g1, g2) ∈ G2 | g1 �= 1G , g2 = 1G}, X1 = {(g1, g2) ∈ G2 | g1 �= 1G , g2 = g1}

and, for �g = (g1, g2),

�wNOT(�g) = (wNOT,1(�g),wNOT,2(�g)) = (g1, g
−1
2 g1) .

From now, we consider the realization of AND. First we note that, for any g ∈
G \ {1G}, the normal closure of {g} in G is equal to the whole G as G is simple;
hence, G is generated by the set gG . Keeping this property in mind, we put the
following heuristic assumption:

Assumption 1 Let ε > 0 be a negligible value, and let L be a sufficiently large
parameter. We assume that, for any g ∈ G \ {1G}, the probability distribution of
the element u1gu

−1
1 · · · uLgu

−1
L , where u1, . . . , uL ←R G, is ε-close to the uniform

distribution over G.

Now we define �wAND(�g, �g′) = (wAND,1(�g, �g′),wAND,2(�g, �g′)) by

wAND,i (�g, �g′) = [r1gir−1
1 · · · rLgir−1

L , rL+1g
′
i r

−1
L+1 · · · r2Lg′

i r
−1
2L ] for i = 1, 2

where r1, . . . , r2L ←R G are common to both i = 1, 2. Then an argument similar
to Sect. 4.4 implies that, for �g ∈ Xb and �g′ ∈ Xb′ , we have �wAND(�g, �g′) ∈ XbAND b′

provided wAND,1(�g, �g′) �= 1G . To evaluate the latter probability, we use the following
result by Guralnick and Robinson (Guralnick and Robinson 2006):
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Proposition 3 (Guralnick andRobinson2006,Theorem9)Foranynon-commutative
finite simple group H, we have

Pr
h1,h2←R H

[ [h1, h2] = 1H ] ≤ |H |−1/2 .

Then we have the following result, implying that �wAND realizes AND:

Theorem 3 Assume that Assumption 1 holds. Then for any �g, �g′ ∈ X0 ∪ X1, we
have

Pr
r1,...,r2L←RG

[wAND,1(�g, �g′; r1, . . . , r2L) = 1G] ≤ |G|−1/2 + 2ε ,

which is negligible when both 1/|G| and ε are negligible.

Proof First, if h1 = r1g1r
−1
1 · · · rLg1r−1

L and h2 = rL+1g′
1r

−1
L+1 · · · r2Lg′

1r
−1
2L were

uniformly random overG, then we would havewAND,1(�g, �g′; r1, . . . , r2L) = [h1, h2]
= 1G with probability at most |G|−1/2 by Proposition 3. Now note that g1, g′

1 �= 1G
as �g, �g′ ∈ X0 ∪ X1; therefore Assumption 1 implies that the probability distributions
of h1 and h2 are independent and both ε-close to the uniform distribution over G.
Hence, in fact, we have wAND,1(�g, �g′; r1, . . . , r2L) = 1G with probability at most
|G|−1/2 + 2ε. This completes the proof. �

5 Towards Achieving Secure Lift of Realization

In this section, we give some observations towards constructing a lift of a realization
of operators that will yield a secure FHE scheme based on our framework in Sect. 3;
concrete candidates for the secure construction are not yet obtained and are an open
problem.

5.1 A Remark on the Choice of Random Variables

Here, we give a remark on random variables r̃h involved in a lift of a realization
of functions. First, for realizations of functions using a uniform random variable
on a given target group G, such as those in Sects. 4.4 and 4.5, it may happen that
sampling a uniformly random element of the source group ˜G is not easy even if
uniformly random sampling on G is easy. In such a case, owing to Proposition 2, a
uniform random variable on G may be approximated as follows: random elements
g1, . . . , gL ofG are chosen at the beginning, and each random sampling onG is done
by taking ge11 · · · geLL with e1, . . . , eL ←R {0, 1}. Provided L is sufficiently large,
this approximation will work well except for a negligible probability in choosing
g1, . . . , gL . Then the corresponding random variable on ˜G is easily obtained by
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first taking elements g̃1, . . . , g̃L of ˜G with π(g̃i ) = gi for each i and then, for each
sampling, generating g̃1e1 · · · g̃L eL with e1, . . . , eL ←R {0, 1}.

On the other hand, for the random variable rker used by the algorithmGen, it may
also happen that uniformly random sampling over the subgroup ker π ⊆ ˜G seems
not easy. In this case, wemay choose a large number of elements g′

1, . . . , g
′
L ′ of ker π

first and then sample an element of ker π by randomly multiplying elements from
g′
1, . . . , g

′
L ′ . It is naively expected that the probability distribution of the resulting

element of ker π will be significantly random if L ′ is sufficiently large.

5.2 Insecurity of a Matrix-Based Naive Construction

In order to exhibit the difficult point in the problem, here we show an example of
an insecure construction of a lift of a realization of functions and explain why the
resulting FHE scheme based on this construction is not secure.

We start with the realization of AND and NOT in G = SL2(Fq) proposed in
Sect. 4.4. We define the corresponding group ˜G by

˜G =
{

T

(

A B
0 C

)

T−1 | A ∈ SL2(Fq), B ∈ M2,k(Fq),C ∈ GLk(Fq)

}

,

where k is a parameter and T ∈ GLk+2(Fq) is a fixed, randomly chosen matrix that
must be secret. Then the group homomorphism π : ˜G → G is defined as follows:
for g ∈ ˜G, π(g) is obtained by first computing the (k + 2) × (k + 2) matrix T−1gT
and then extracting the upper left 2 × 2 block of T−1gT (i.e. A in the description of
˜G above). The conjugation by the random T in the definition of ˜G intends to hide
the internal block upper triangular structure of elements of ˜G.

However, this construction is not secure by the following reason (this attack was
pointed out by an anonymous reviewer in a previous submission of this work). First,

any matrix of the form

(

A B
0 C

)

with A = I ∈ SL2(Fq) satisfies a constraint “the

(2, 1)-component is zero”,which is a linear constraint in termsofmatrix components.
By taking conjugation by T , this constraint is changed to another one, which is
unknown but still a linear constraint in terms of matrix components. We denote
the resulting constraint by “F(g) = 0”, namely, any element g of ker π satisfies
F(g) = 0.

Nowwe consider the linear subspace span(ker π) generated by the set ker π in the
matrix ring Mk+2,k+2(Fq). By the choice of the linear constraint F , span(ker π) is a
linear subspace of the spaceV = {g ∈ Mk+2,k+2(Fq) | F(g) = 0}.Nowbycollecting
sufficiently many elements h1, . . . , hL of ker π , it is expected that span(ker π) is
generated by these h1, . . . , hL . In this case, for a given element g ∈ ˜G, if g ∈ ker π ,
then adding g to the subspace span(h1, . . . , hL) (which is now equal to span(ker π))
does not increase the dimension of the subspace. On the other hand, if g /∈ ker π , then
the constraint F(g) = 0 is not satisfied with high probability, and now the dimension
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is increased when g is added to span(h1, . . . , hL), as span(h1, . . . , hL) ⊆ V and
g /∈ V . This yields a way for an adversary to decide whether a given g ∈ ˜G belongs
to ker π or not (hence to break the proposed FHE) by only comparing the dimensions
of span(h1, . . . , hL) and span(h1, . . . , hL , g), even if the actual constraint F is not
known to the adversary. This example suggests that the existence of a non-trivial
linear constraint for the set ker π will yield a powerful tool for the adversary.

5.3 Observation for Avoiding Linear Constraints

In order to realize group homomorphisms in our frameworkwithout linear constraints
for the kernel discussed inSect. 5.2, our idea here is to utilize combinatorial group the-
ory.Roughly speaking,we say that a group H has apresentation 〈X | R〉, if X is a gen-
erating set of H , R is a set of groupwordswith variables in X , and H is (isomorphic to)
the quotient group of the free group generated by X modulo the relations “r(�x) = 1”
for all words r(�x) ∈ R. See, e.g. Johnson (1997) for basics in combinatorial group
theory. For example, it is well known that the symmetric group Sn on n letters admits
a presentation of the form 〈s1, . . . , sn−1 | (si s j )�(i, j) (i, j = 1, . . . , n − 1) 〉 where
each si is the adjacent transposition (i, i + 1) and � is a matrix given by �(i, i) = 1,
�(i, i + 1) = �(i + 1, i) = 3, and �(i, j) = 2 when |i − j | ≥ 2. (This is actually
the Coxeter group of type An−1; see, e.g. Humphreys 1990 for basic theory of the
Coxeter groups.) On the other hand, it is known that for any prime p > 3, the groups
SL2(Fp) and PSL2(Fp) admit “compact” presentations with four generators and
eight relations of lengths O(log p); see Theorem 3.6 and Remark 3.7 of Guralnick
et al. (2008).

Our idea is based on the following fact implied by the fundamental theorem on
homomorphisms for groups; if two groups H1 and H2 have presentations 〈X | R1〉
and 〈X | R2〉 with the same generating set X , and if every r ∈ R1 is also equal to
the unit element in H2, then the identity map X → X induces a surjective group
homomorphism H1 → H2. As this kind of group homomorphism is obtained by a
mechanism completely different from linear algebra, it is (naively) expected that such
an approach would yield a desired group homomorphism without linear constraints.

Based on the argument above, we propose the following approach towards con-
structing a secure group homomorphism for our framework for FHE:

1. Take the group G associated to a realization of operations for plaintexts.
2. Take a semidirect product H � G with a certain (possibly trivial) finite group

H . Here, we require that a presentation of H � G is efficiently computable.
For example, when it is the direct product H × G and presentations for G and
H are known, a presentation of H × G is obtained by introducing additional
relations “generators of G and generators of H are mutually commutative” (see,
e.g. Johnson 1997).
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3. Let 〈X | R2〉 be the presentation of H � G. Then find a finite group ˜G0 with pre-
sentation of the form 〈X | R1〉 and the associated surjective group homomorphism
˜G0 → H � G as above.

4. Finally, randomly choose a group isomorphism from another group ˜G to ˜G0

in a certain way, subject to the condition that the group ˜G admits a “compact”
expression that yields efficient group operators for ˜G. Then the composition ˜G

∼→
˜G0 → H � G → G (where the last mapping is the natural projection) gives a
candidate of the surjective homomorphism π : ˜G → G.

In Step 4 of the approach described above, an easiest candidate of the “compact”
expressions for the groups ˜G0 and ˜G is matrix expressions, i.e. embedding these
groups into somematrix group.Nowa candidate of the random isomorphismbetween
them is taking the conjugation by a random secret matrix, just as in Sect. 5.2. In this
case, due to the argument in Sect. 5.2, the kernel of the homomorphism ˜G0 → H � G
must avoid a linear constraint. Here we note that, even though the homomorphism
from ˜G0 = 〈X | R1〉 to H � G = 〈X | R2〉 is based on the mechanism of combina-
torial group theory, this does not always guarantee that the resulting homomorphism
is free from linear constraints.

For example, let ˜G0 be the Coxeter group of type Bn , with presentation

〈s1, . . . , sn | (si s j )
�′(i, j) (i, j = 1, . . . , n) 〉,

where �′(i, j) = �(i, j) for i, j ∈ {1, . . . , n − 1}, �′(n, n) = 1, �′(n, n − 1) =
�′(n − 1, n) = 4, and �′(n, i) = �′(i, n) = 2 for 1 ≤ i ≤ n − 2. If the value of
�′(n, n − 1) = �′(n − 1, n) is changed from 4 to 2, then it results in the direct
product Sn × H with H = 〈sn〉 being the cyclic group of order two. This implies
that there is a natural surjective homomorphism ˜G0 → Sn × H ; hence, we obtain a
surjective homomorphism ˜G0 → Sn × H → Sn = G. Now by using the expression
of ˜G0 as a “signed” permutation group (see, e.g. Humphreys 1990), it can be proved
that the kernel of ˜G0 → G is an elementary abelian 2-group generated by the ele-
ments s j s j+1 · · · sn−1snsn−1 · · · s j+1s j with j = 1, . . . , n. Moreover, in the standard
matrix representation for the Coxeter groups (see, e.g. Humphreys 1990), these ele-
ments s j s j+1 · · · sn−1snsn−1 · · · s j+1s j are all expressed as lower triangular matrices.
Hence, the kernel of the homomorphism above has a linear constraint “upper tri-
angular components are 0”, which is not desirable. We also note that, owing to the
classification result on finite Coxeter groups (see, e.g. Humphreys 1990), the group
of type Bn mentioned above is essentially (i.e. without using direct products) the
unique choice for a surjective, but not bijective, homomorphism from a finite Cox-
eter group onto the group Sn with n ≥ 5. Consequently, the candidates for the group
˜G0 in the case G = Sn should be searched from outside the class of the Coxeter
groups. Finding a concrete candidate for ˜G0 in this case is left as an open problem.
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5.4 Another Trial Using Tietze Transformations

Another trial for realizing the approach in Sect. 5.3 is as follows. Recall that, we
are supposing that the group H � G has a presentation of the form 〈X | R2〉. When
the presentation is constructed naively, it might happen that the natural projection
H � G → G is easy to compute by using the presentation of the group. Now the
idea is choosing ˜G0 = H � G and constructing the isomorphic group ˜G by randomly
rewriting the original presentation 〈X | R2〉 while keeping the isomorphic class of
groups. By letting the rewriting process be a part of the secret key, it is expected to
be difficult to compute the map ˜G

∼→ H � G → G without the secret key, while the
secret key enables to compute the map by reversing the rewriting process above.

Such a rewriting of presentations that keeps the group isomorphic can be per-
formed by using Tietze transformation. Namely, the following fact is known:

Lemma 5 (see, e.g. Johnson 1997) Given a presentation 〈X | R〉 of a group, let
w be a group word with variables in X and let y be a symbol not belonging to
X. Then, the group 〈X ∪ {y} | R ∪ {wy−1}〉 is isomorphic to 〈X | R〉 where each
element of X in the group 〈X | R〉 corresponds to the same element in the group
〈X ∪ {y} | R ∪ {wy−1}〉.

We also have the following result, which utilizes presentations of the trivial group:

Lemma 6 Given a presentation 〈X | R〉 of a group, let 〈Y | T 〉 be a presentation of
the trivial group (i.e. the group with a single element), and for each y ∈ Y , choose an
element ry of R. Let T (ry | y ∈ Y ) denote the set of words of the form t (ry | y ∈ Y )

with t (�y) ∈ T , where t (ry | y ∈ Y ) denotes the group word with variables in X
obtained by substituting the word ry into the variable y in the word t (�y) for each
y ∈ Y . Then the subsets R and R′ = (R \ {ry | y ∈ Y }) ∪ T (ry | y ∈ Y ) have the
same normal closure in the free group Free(X) generated by X; therefore, 〈X | R′〉
is isomorphic to 〈X | R〉.
Proof The definition of the words t (ry | y ∈ Y ) implies that R′ is a subset of the nor-
mal closure 〈R〉normal of R. To prove the opposite relation R ⊆ 〈R′〉normal, it suffices
to show that ry ∈ 〈R′〉normal for each y ∈ Y . Now as 〈Y | T 〉 is a trivial group, y is the
product of words of the form u(�y)t (�y)u(�y)−1 with u(�y) ∈ Free(Y ) and t (�y) ∈ T .
By substituting the word ry′ into the variable y′ for each y′ ∈ Y , it follows that ry
is the product of words of the form u(ry′ | y′ ∈ Y )t (ry′ | y′ ∈ Y )u(ry′ | y′ ∈ Y )−1

with u(ry′ | y′ ∈ Y ) ∈ Free(X) and t (ry′ | y′ ∈ Y ) ∈ T (ry′ | y′ ∈ Y ). This implies
that ry ∈ 〈R′〉normal, as desired. This completes the proof. �

We note that the current idea of randomly rewriting the presentation of the group
H � G has (at least) one unsolved problem from the viewpoint of efficiency and
two from the viewpoint of security. For the efficiency, we recall that the expression
of the resulting group ˜G should enable efficient computation for group operators.
However, with a randomly chosen presentation 〈X | R〉 of ˜G, in general, it seems
not easy to compute the product of two elements. More precisely, each element
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of ˜G is now expressed as a group word on X , and the product corresponds to the
concatenation of the two words. This concatenation of words increases the length of
the word; therefore, the word has to be replaced with a shorter equivalent word by
using relations in R before the word length becomes too long. However, this process
of reducing the word length by using the relations in R is not efficient in general.
It is an open problem to develop rewriting methods for group presentations while
keeping efficiency of group operations.

From the viewpoint of security, first, it has not been evaluated how many random
rewriting steps for the presentation of the group are sufficient to securely conceal
the structure of the group. On the other hand, even if the sufficient number of the
rewriting steps has been estimated, it may still happen that the resulting FHE scheme
is not secure when the component H in H � G is not appropriately chosen.

Namely, let E = E(g) be a (deterministic) group word, which we call an “equa-
tion” over groups. We suppose that both of the probabilities Pru←R H [E(u) = 1] and
Pru←R H�G[E(u) �= 1] are non-negligible and at least one of them is noticeable. Then
an adversary can distinguish a random element of ker π � H (where π : ˜G → G)
from a random element of ˜G � H � G by checkingwhether a given random element
u satisfies E(u) = 1 or not. Hence, it should be difficult to find a non-trivial equation
E for which Pru←R H [E(u) = 1] is non-negligible.

For example, when the underlying group is the direct product H × G, it should not
be feasible to find a non-identity element w of the group for which its H -component
is an identity element. Indeed, for any such “target” element w, it commutes with
every element of H ⊆ H × G, while it is likely not commutative with a random
element of H × G. Hence, the equation E(g) = [w, g] will satisfy the attacking
condition above. In particular, H should satisfy |H | ≥ 22λ for security parameter λ

due to Birthday Paradox, as a collision in the H -components of two elements yields
a target element. Moreover, the center of H should not be large, as otherwise the
commutator [w1,w2] for random elements w1,w2 will yield a target element with
high probability.

For a general case of the semidirect product H � G, a candidate of such an
equation E is E(g) = gk for some fixed value k; therefore, it is important to study the
distribution of the orders of elements in H . For example, suppose that H = A� with
� ≥ 4. Let p be the largest odd prime with p ≤ �. Then the number of elements of A�

that are cyclic permutations on p letters is

(

�

p

)

(p − 1)! = 2

p · (� − p)! · |A�|. This

implies that Pr
u←R H

[u p = 1] = 2

p · (� − p)! + 1

|H |! . As � − p is small for reasonable

choices of � (e.g. � − p ≤ 6 for � ≤ 80), the probability above is significantly high,
which is not desirable to avoid the attack above.

On the other hand, we consider the choice H = SL2(Fq) for an odd prime q
for which 1/q is negligible, and study the element orders in the group. Following
the argument in Sect. 5.2 of Fulton and Harris (1991), we choose a generator ζ of

the cyclic group (Fq)
×. Put Ai =

(

ζ i 0
0 ζ−i

)

for i = 0, 1, . . . , q − 2. On the other

hand, by considering the quadratic extension field Fq2 of Fq , ζ has a square root
√

ζ
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Table 1 The conjugacy classes in SL2(Fq ) for odd prime q > 3 (see the text for notations)

Type Representative x in
the class

Cardinality Order of x

1

(

1 0

0 1

)

1 1

2

(

−1 0

0 −1

)

1 2

3

(

1 1

0 1

)

q2 − 1

2
q

4

(

1 ζ

0 1

)

q2 − 1

2
q

5

(

−1 1

0 −1

)

q2 − 1

2
2q

6

(

−1 ζ

0 −1

)

q2 − 1

2
2q

7-i Ai (1 ≤ i <
q − 1

2
) q2 + q

q − 1

gcd(q − 1, i)

8-i B(q−1)i

(1 ≤ i <
q + 1

2
)

q2 − q
q + 1

gcd(q + 1, i)

in (Fq2)× \ (Fq)
× (as q is odd). This yields a bijection Fq × Fq → Fq2 , (a, b) 
→

a + b
√

ζ . Choose a generator υ of the cyclic group (Fq2)×. For i = 0, 1, . . . , q2 − 2,

put Bi =
(

a b
bζ a

)

where a, b satisfyυ i = a + b
√

ζ . By using these notations, the list

of conjugacy classes in SL2(Fq) is obtained as in Table1, where the second and the
third columns are quoted (with slightly different notations) from Sect. 5.2 of Fulton
and Harris (1991).

In Table1, the ratio to |H | of the cardinality of each conjugacy class of type 1 to

6 is at most a negligible value
(q2 − 1)/2

q(q2 − 1)
= 1

2q
; therefore, these conjugacy classes

can be ignored. On the other hand, for each divisor k of q − 1, an element x of the
conjugacy class of type 7-i satisfies xk = 1 if and only if i is a multiple of (q − 1)/k.

Therefore, the number of such elements x is at most
(q − 1)/2

(q − 1)/k
(q2 + q) = k

2
(q2 +

q), whose ratio to |H | = q(q2 − 1) is
k

2(q − 1)
. To make the ratio non-negligible,

onemust find a divisor k of q − 1which is almost as large as q − 1; this is expected to
be difficult provided the size q of the coefficient field Fq is not known. The same also
holds for conjugacy classes of type 8. Summarizing, the attack using the equations
of the form E(g) = gk will be not effective for the group H = SL2(Fq) provided the
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size of the coefficient field Fq is appropriately concealed by the random rewriting
of the presentation of the group. A further analysis of attacks using other kind of
equations will be a future research topic.
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From the Bloch Sphere to Phase-Space
Representations with the
Gottesman–Kitaev–Preskill Encoding

L. García-Álvarez, A. Ferraro, and G. Ferrini

Abstract In this work, we study the Wigner phase-space representation of qubit
states encoded in continuous variables (CV) by using theGottesman–Kitaev–Preskill
(GKP) mapping. We explore a possible connection between resources for universal
quantum computation in discrete-variable (DV) systems, i.e. non-stabilizer states,
and negativity of the Wigner function in CV architectures, which is a necessary
requirement for quantum advantage. In particular, we show that the lowest Wigner
logarithmic negativity corresponds to encoded stabilizer states, while the maximum
negativity is associated with the most non-stabilizer states, H -type and T -type quan-
tum states.

Keywords Continuous variables quantum computation · Quantum advantage ·
Wigner function ·Wigner logarithmic negativity · Gottesman–Kitaev–Preskill code

1 Introduction

Quantum computers, i.e. quantum devices in which information can be encoded, pro-
cessed, and read out, are predicted to solve certain computational problems faster than
classical computers Shor (1999). Specifically, a problem is said to be hard to solve
if its solution requires a number of steps exponential in the size of the input, while
polynomial time solutions are called efficient. An example of a problem believed to
be hard to solve classically that can be efficiently solved by a quantum computer is
factorization. While known classical algorithms factorize integer numbers in a time
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which scales exponentially with the size of the integer to factor, a quantum algorithm
exists that only requires a polynomial time.

This technologically appealing property is referred to as quantum advantage, and
has recently motivated the undertaking of a global effort toward building a quantum
computer. However, a conclusive experimental evidence of quantum advantage for
computation is still lacking, since it has not yet been possible to build a quantum
computerwith enough elementary components to practically beat classicalmachines.
Furthermore, the ultimate origin of quantum advantage is still unclear.

The traditional approach to encode information in quantum systems, based on
two-level quantum systems with finite-dimensional Hilbert spaces, i.e. qubits, is
an example of the discrete-variable (DV) approach. An alternative approach for
information encoding uses continuous variables (CVs), i.e. quantized variables with
a continuous spectrum, such as the amplitude (q) and phase (p) quadratures of the
quantized electromagnetic field, defined in an infinite-dimensional Hilbert space.
Within this approach, one million optical modes have been entangled Yoshikawa
et al. (2016), Chen et al. (2014). Beyond the optical realm, new CV implementations
are studied in opto-mechanicsAspelmeyer et al. (2014) andwithmicrowaves coupled
to superconducting devices Ofek et al. (2016),Wilson et al. (2011), where high-order
nonlinearities can be engineered.

A fundamental tool for studying a classical dynamical system is the probability
distribution on a phase space inwhich all possible states of the systemare represented.
Similarly, quantum systems can be conveniently and unambiguously described with
quasi-probability distributions defined on the classical phase space Wigner (1932),
Hillery et al. (1984), Gibbons et al. (2004). Although these useful mathematical
constructs, such as theWigner function, retain someproperties of classical probability
distributions, they can take negative values for quantum states.

A series of theorems has progressively narrowed down the characteristics that
both DV and CV quantum computing architectures must possess in order to dis-
play quantum advantage. In DV quantum information processors, the Gottesman–
Knill theorem states that the so-called Clifford circuits, which are composed, for
example, of Hadamard, π/2-phase, and CNOT gates, when acting on stabilizer
states, i.e. those generated with Clifford gates acting on the initial n-qubit register
|0〉1 ⊗ |0〉2 ⊗ · · · ⊗ |0〉n , and followed by a Pauli measurement, can be efficiently
simulated on a classical computer Gottesman (1999), Aaronson and Gottesman
(2004). Non-stabilizer pure states are called magic, and are hence necessary to yield
quantum advantage when acted on by Clifford circuits with Pauli measurements
Bravyi et al. (2005). In CV quantum computation, it has been shown firstly that cir-
cuits with input, evolution, and measurements solely described by Gaussian Wigner
functions are efficiently simulatable by classical computers Bartlett et al. (2002).
Later it was shown that negativity of the Wigner function is a necessary requirement
for quantum advantage, since quantum states and operations with positive Wigner
functions (strictly including Gaussian circuits) can be classically efficiently simu-
latedMari and Eisert (2012).Minimal extensions of positiveWigner function circuits
that exhibit quantum advantage, where either the input, or the evolution, or the mea-
surement are described by negative Wigner functions, have been studied Chabaud
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et al. (2017), Douce et al. (2017), Hamilton et al. (2017), Chakhmakhchyan and Cerf
(2017), Douce et al. (2019). Finally, the criteria for efficient classical simulatability
have been extended by using other phase-space representations, namely Husimi and
Glauber–Sudarshan Rahimi et al. (2016).

A bridge between the DV and the CVworlds is provided by CV-codes, i.e. by sets
of CV states that allow for encoding DV states such that orthogonal wavefunctions
represent different DV states. One such example is the Gottesman–Kitaev–Preskill
(GKP) code, where the qubit logical states are encoded in trains of delta functions at
different locations Gottesman et al. (2001). The encoding of discrete quantum infor-
mation into infinite-dimensional quantum systems is used to get a high-quality qubit
protected from environmental noiseMenicucci (2014). The GKP code is particularly
suitable for our analysis since Clifford gates on the qubit encoded states are given
by Gaussian operations, which in principle lead us to an analogy between DV and
CV requirements for classical efficient simulatability of quantum operations.

In this manuscript, we analyze the negativity of the Wigner function for any
single-qubit state mapped in CV architectures with the GKP code, with the aim of
establishing a relation betweenDVandCV criteria for quantum advantage. In Sect. 2,
we review in detail the GKP code that we use in our work. In Sect. 3, we compute the
Wigner function of any single-qubit GKP encoded state, and we compare the results
for encoded stabilizer and non-stabilizer states. In Sect. 4, we quantify the negativity
of the Wigner function for both cases, and we observe that stabilizer encoded states
saturate the lower bound of negativity, while the most non-stabilizer states, also
known as magic states, show the maximum amount of negativity. We conclude in
Sect. 5 with our final remarks.

2 GKP Encoding of Qubit States

The formal GKP encoding maps a qubit into an oscillator using non-normalizable
superpositions of infinitely squeezed states in the positionq andmomentum p quadra-
tures of the oscillator Gottesman et al. (2001). We review the GKP qubit states used
in this work, which are defined as

|0〉 =
∞∑

s=−∞
|q = 2

√
πs〉

|1〉 =
∞∑

s=−∞
|q = √

π(1 + 2s)〉, (1)

for which the wavefunction �(q) = 〈q|�〉 is a sum of delta functions, since 〈q|q =
x〉 = δ(x).

In practice, the qubit states must be normalizable, and thus are defined approx-
imating the previous expression with finitely squeezed states, and weighting the
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infinite sum of squeezed states by a Gaussian envelope. The approximated states are
quasi-orthogonal states given by

|0̄〉 ∝
∞∑

s=−∞

∫ ∞

−∞
e−2πκ2s2e− (q−2

√
πs)2

2σ2 |q〉dq

|1̄〉 ∝
∞∑

s=−∞

∫ ∞

−∞
e−2πκ2s2e− (q−(2s+1)

√
π)2

2σ2 |q〉dq, (2)

with κ−1, the width of the Gaussian envelope, and σ , the width of the Gaussian
peaks substituting the delta functions. These imperfect GKP states are suitable for
numerical computations but introduce a probability of error in the identification of
|0̄〉 and |1̄〉. In our calculations, we use the perfect GKP states given in Eq. (1) for
obtaining analytical results, and imperfect GKP states in Eq. (2) for numerical results.

3 Phase-Space Wigner Representation of GKP Encoded
States

The Wigner function of a pure state |�〉 is defined as

W (q, p) ≡ 1

2π

∫ ∞

−∞
dxeipx�

(
q + x

2

)∗
�

(
q − x

2

)
, (3)

with �(x) = 〈x |�〉 the wavefunction of the quantum system.
We consider infinitely squeezed GKP states, that is, the ideal logical qubit GKP

states | j〉 with j = 0, 1 given in Eq. (1). The corresponding Wigner function reads
Gottesman et al. (2001)

Wj (q, p) = 1

4
√

π

∑

st

(−1)stδ
(
p −

√
π

2 s
)

δ
(
q − √

π j − √
π t

)
. (4)

We now take into account arbitrary pure qubit states given by superpositions of
GKP states as |�〉 = cos θ

2 |0〉 + eiφ sin θ
2 |1〉, which can be represented in the surface

of the Bloch sphere as shown in Fig. 1. TheWigner function for a qubit state depends
consequently on the the angles θ, φ of its Bloch sphere representation. It reads

W (θ, φ; q, p) = 1

2π

∫ ∞

−∞
dxeipx

[
cos2 θ

2�0
(
q + x

2

)∗
�0

(
q − x

2

)

+ sin2 θ
2�1

(
q + x

2

)∗
�1

(
q − x

2

)

+ cos θ
2 sin

θ
2 e

iφ�0
(
q + x

2

)∗
�1

(
q − x

2

)

+ cos θ
2 sin

θ
2 e

−iφ�1
(
q + x

2

)∗
�0

(
q − x

2

) ]
, (5)
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Fig. 1 Geometrical
representation of pure qubit
states in the Bloch sphere

with �i , i = 0, 1, the wavefunctions corresponding to the GKP states |i〉, i = 0, 1.
A detailed derivation can be found in Appendix 1. Explicitly, we have

W (θ, φ; q, p) = cos2 θ
2W0(q, p) + sin2 θ

2W1(q, p)

+ sin θ

4
√

π

∑

st

(−1)st cos
(
φ + s π

2

)
δ
(
q −

√
π

2 (1 + 2t)
)

δ
(
p − s

√
π

2

)
, (6)

which can be pictured in a grid of square cells of 	q = 	p =
√

π

2 . By analyzing
Eqs. (4) and (6), we thus observe that the Wigner function consists of a sum of delta
functions positioned at all the sites of the lattice in phase space with coordinates
(l,m) ≡ (q = l

√
π

2 , p = m
√

π

2 ) for l and m integer numbers. The coefficients for
each site are given by

wlm(θ, φ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4
√

π

(
cos2 θ

2 + sin2 θ
2

)
for l even, m even

1
4
√

π

(
cos2 θ

2 − sin2 θ
2

)
for l = 4u, m odd

1
4
√

π

(
sin2 θ

2 − cos2 θ
2

)
for l = 4u + 2, m odd

1
4
√

π
sin θ cosφ for

{
l = 4u + 3, m = 4v
l = 4u + 1, m = 4v

−1
4
√

π
sin θ cosφ for

{
l = 4u + 3, m = 4v + 2
l = 4u + 1, m = 4v + 2

−1
4
√

π
sin θ sin φ for

{
l = 4u + 3, m = 4v + 3
l = 4u + 1, m = 4v + 1

1
4
√

π
sin θ sin φ for

{
l = 4u + 3, m = 4v + 1
l = 4u + 1, m = 4v + 3

(7)

with u and v integer numbers.
In particular, we consider the six single-qubit stabilizer pure states, corresponding

to the eigenvectors of the Pauli matrices σx , σy , and σz ,
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σx : |+〉 = 1√
2
(|0〉 + |1〉) |−〉 = 1√

2
(|0〉 − |1〉),

σy : |i〉 = 1√
2
(|0〉 + i |1〉) | − i〉 = 1√

2
(|0〉 − i |1〉),

σz : |0〉 |1〉. (8)

The Wigner functions of single-qubit stabilizer states mapped in CV via the GKP
code are shown in Fig. 2. We observe a similar pattern repeated periodically and
isotropically in the whole phase space, with one quarter of negative delta functions
with respect to the total amount of peaks. It is possible to obtain from the initial
state |0〉 all stabilizer states with Clifford operations, which for a single qubit are
generated in DV by the Hadamard H , and π

2 -phase gates R π
2
,

H : |0〉 → |+〉, |1〉 → |−〉,
R π

2
: |0〉 → |0〉, |1〉 → ei

π
2 |1〉. (9)

With the GKP encoding, these gates in CV correspond to the Fourier transform
F , and the π/2-phase gate P , which are the symplectic transformations

F : q → p, p → −q,

P : q → q, p → p − q. (10)

Let us consider now the single-qubit magic states |T 〉 and |H〉,

|T 〉 = cos θ
2 |0〉 + sin θ

2 e
i π
4 |1〉 with θ = arccos

(
1√
3

)

|H〉 = 1√
2

(|0〉 + ei
π
4 |1〉) , (11)

which are the maximal non-stabilizer states in the Bloch sphere and in the equatorial
plane of the Bloch sphere, respectively Bravyi et al. (2005). There are 8 T -typemagic
states and 12 H -type magic states, which can be obtained from the states in Eq. (11)
with Clifford transformations (see Fig. 4).

The Wigner function of the quantum states |T 〉 and |H〉 mapped in CV via the
GKP code are shown in Fig. 3. Both the numerical computations and the analytical
expression indicate that the number of negative peaks increases with respect to the
Wigner function of stabilizer states, although the proportion remains as before: one
quarter of negative delta functions and three quarters of positive ones. As one can
observe comparing Figs. 2 and 3, it is not possible to obtain a non-stabilizer Wigner
function pattern from a stabilizer one with single-qubit Clifford GKP encoded oper-
ations as those given in Eq. (10).
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Fig. 2 Wigner function of qubit GKP encoded stabilizer states. The function acquires nonzero
values on the dark and white peaks, where it has a negative value (dark) and positive value (white),
respectively. We consider finitely squeezed states as in Eq. (2), with σ = κ = 0.2
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Fig. 3 Wigner function of qubit GKP encoded magic states. The function acquires nonzero values
on the dark and white peaks, where it has a negative value (dark) and positive value (white),
respectively. We consider finitely squeezed states as in Eq. (2), with σ = κ = 0.2. a |H〉 state, and
b |T 〉 state, both given in Eq. (11)

4 Quantification of Negativity of the Wigner Function
for GKP Encoded States

We now aim at quantifying the volume of the negative part of the Wigner function
for the different types of states that we have introduced. The quantification of the
volume of the negative part of the Wigner function in CV is related to the monotone
Wigner logarithmic negativity (WLN) Kenfack et al. (2004), Albarelli et al. (2018),
defined as

W (ρ) = log2

(∫
dqdp|W (q, p)|

)
, (12)

with W (q, p) the Wigner function of the state or operator ρ. The WLN has allowed
for the derivation of a bound in the number of necessary copies of an input state for
the conversion to a target state Albarelli et al. (2018).

As we have already mentioned, the proportion of negative delta functions com-
pared to positive ones in the Wigner function of both stabilizer and magic encoded
states is one quarter. However, we observe in Figs. 2 and 3 that the Wigner function
of non-stabilizer states is composed of more peaks in the phase space, resulting in
a higher number of negative delta peaks. We now use the WLN for analyzing the
differences in both kinds of states, since it tracks the amount of negativity instead of
the proportion.

We consider the Wigner function of perfect GKP states in Eq. (6). The negativity
takes an infinite value since theWigner function has support in the whole phase space
R

2, but the delta functions are periodically arranged following symmetric patterns
that are repeated along the two axes in a similar way for each qubit superposition
state. Therefore,wemay consider the same square unit cell of dimension (	q,	p) =
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(2
√

π, 2
√

π) for all cases, and compare the negativity within the same finite area in
phase space. We choose the unit cell corresponding to s = t = 0 in Eq. (7), which
contains sixteen delta functions given by l and m with values in the set {0, 1, 2, 3}.

Explicitly, the Wigner function in the unit cell domain q ∈ [0, 2√π) and p ∈
[0, 2√π) is given by

Wcell(θ, φ; q, p) =
3∑

l,m=0

wlm(θ, φ)δ
(
q − l

√
π

2

)
δ
(
p − m

√
π

2

)
, (13)

where the coefficients correspond to those defined in Eq. (7). The absolute value
of the Wigner function for the unit cell can be taken as the absolute value of the
summands, since for any coordinate (qi , pi ) in the domain only one of the terms is
different from zero due to the properties of the delta functions. Thus,

|Wcell(θ, φ; q, p)| =
3∑

l,m=0

|wlm(θ, φ)|δ
(
q − l

√
π

2

)
δ
(
p − m

√
π

2

)
. (14)

As a result, the WLN corresponding to a unit cell in the phase space for any pure
qubit GKP encoded state |�〉 = cos θ

2 |0〉 + eiφ sin θ
2 |1〉 characterized in the Bloch

sphere by angles (θ, φ) is given by

Wcell(θ, φ) = log2

(∫
dqdp|Wcell(θ, φ; q, p)|

)

= log2

3∑

l,m=0

|wlm(θ, φ)|
(∫

dqdpδ
(
q − l

√
π

2

)
δ
(
p − m

√
π

2

))

= log2

3∑

l,m=0

|wlm(θ, φ)|. (15)

Explicitly, the WLN per cell of a qubit state is then given by

Wcell(θ, φ) = log2

[
1√
π

[
1 + ∣∣cos2 θ

2 − sin2 θ
2

∣∣ + |sin θ cosφ| + |sin θ sin φ| ]
]
.

(16)
Now, we compare the finiteWLN per cell,Wcell, for different magic and stabilizer

states by analyzing for simplicity the integral over a unit cell of the absolute value of
theWigner function

∫
dqdp|Wcell|, i.e. the argument of the logarithm in Eq. (15). The

corresponding values are provided in Table1. We observe that the WLN per cell for
GKP encoded qubit stabilizer states is lower than for non-stabilizer states. Since all
GKPencoded qubit states have a proportion of one quarter of negative delta functions,
the WLN is different from zero for all of them. This Wigner negativity is intrinsic
to the use of the GKP encoding, that is, it is only attributed to the fact that we are
using an encoding where even the stabilizer states are represented by non-Gaussian
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Table 1 Integral over a unit cell of the absolute value of the Wigner function for stabilizer states
and magic states

θ φ
√

π
∫ |Wcell|

|0〉 0 0 2

|+〉 π/2 0 2

|i〉 π/2 π/2 2

|H〉 π/2 π/4 1 + √
2 ≈ 2.41

|T 〉 arccos
(
1/

√
3
)

π/4 1 + √
3 ≈ 2.73

wavefunctions exhibitingWigner negativity. This intrinsicWigner negativity in GKP
states might be sufficient to promote Gaussian quantum circuits to universal quantum
computation Baragiola et al. (2019).

We now compute the lower bound of this intrinsic negativity by considering

∫
dqdp|Wcell(θ, φ; q, p)| ≥

∣∣∣∣
∫

dqdpWcell(θ, φ; q, p)

∣∣∣∣ = 2√
π

. (17)

We observe that stabilizer states saturate the lower bound of the integral over a unit
cell of the absolute value of the Wigner function,

∫ |Wcell|, and therefore they are the
least negative qubit GKP encoded states.

We show in Fig. 4 the function
√

π
∫ |Wcell(θ, φ; q, p)|dqdp, which is propor-

tional to the argument of the logarithm in theWLN. It is computed for all qubit states,
characterized in the Bloch sphere with (θ, φ), with θ ∈ [0, π) and φ ∈ [0, 2π). We
observe that the stabilizer states are the least negative, whereas the maxima appears
for |T 〉 qubit states, which are the most non-stabilizer single-qubit states. On the
equatorial plane of the Bloch sphere (see Fig. 1), θ = π

2 , the maxima appears for |H〉
states, which are the most non-stabilizer states on that plane.

5 Conclusions

In this work, we use CV tools as the Wigner phase-space representation for studying
DV single-qubit states encoded in infinite Hilbert spaces with the GKP mapping.
We give an analytical expression for the Wigner function of any GKP encoded qubit
state, and quantify the amount of negativity with the WLN. All qubit states have
nonzero WLN, and therefore we cannot distinguish which states and processes are
classically efficiently simulatable with current criteria for quantum advantage in
CV systems. On the other hand, our quantitative analysis of the WLN for GKP
encoded states shows differences for stabilizer and non-stabilizer states, since the first
ones are the least negative, saturating the lower bound of negativity. The most non-
stabilizer states, H -type and T -type quantum states, reach the maximum negativity.
Our results suggest a possible connection between aDV characterization of resources
for universal quantumcomputation andCVnecessary criteria for quantumadvantage.
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Fig. 4 a Representation of single-qubit states on the Bloch sphere. Stabilizer states correspond
to the vertices of an octahedron embedded in the sphere. The most non-stabilizer states are those
projected on the surface of the sphere from the middle points of the edges of the octahedron, H -
type magic states (circle), and perpendicularly from the center of the faces, T -type magic states
(diamond), as indicated by the arrows (Bravyi et al. 2005). b Quantification of negativity of the
Wigner function of qubit GKP encoded states with

√
π

∫ |Wcell|. We consider all qubit states,
described by the angles (θ, φ), with θ ∈ [0, π) and φ ∈ [0, 2π)

A natural perspective stemming from this work is to explore the relation between
different states with nonzero WLN and the computational complexity of quantum
circuits including these states.
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Appendix 1

A detailed derivation of Eq. (6) is provided here. Firstly, we can conveniently rewrite
the Wigner function in Eq. (5) as follows:

W (θ, φ; q, p) = 1

2π

∫ ∞

−∞
dxeipx

[
cos2 θ

2�0
(
q + x

2

)∗
�0

(
q − x

2

)

+ sin2 θ
2�1

(
q + x

2

)∗
�1

(
q − x

2

)

+ cos θ
2 sin

θ
2 e

iφ�0
(
q + x

2

)∗
�1

(
q − x

2

)
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+ cos θ
2 sin

θ
2 e

−iφ�1
(
q + x

2

)∗
�0

(
q − x

2

) ]

= cos2 θ
2W0(q, p) + sin2 θ

2W1(q, p) + 1

2π
cos θ

2 sin
θ
2 e

iφW̃01(q, p)

+ 1

2π
cos θ

2 sin
θ
2 e

−iφW̃10(q, p), (18)

where we have defined the cross terms as follows:

W̃ jk(q, p) ≡
∫ ∞

−∞
dxeipx� j

(
q + x

2

)∗
�k

(
q − x

2

)
. (19)

We simplify the cross terms as follows:

W̃ jk(q, p) =
∫

dxeipx
[ ∑

s

δ
(
q − √

π( j + 2s) + x
2

) ][ ∑

t

δ
(
q − √

π(k + 2t) − x
2

) ]

=
∑

st

ei2p[q−√
π(k+2t)]δ

(
q −

√
π

2 ( j + k + 2s + 2t)
)

=
∑

st

ei2p[q−√
π(k+2t−2s)]δ

(
q −

√
π

2 ( j + k + 2t)
)

=
∑

st

ei2p
√

π2seip
√

π( j−k−2t)δ
(
q −

√
π

2 ( j + k + 2t)
)

=
√

π

2

∑

st

eip
√

π( j−k−2t)δ
(
p − s

√
π

2

)
δ
(
q −

√
π

2 ( j + k + 2t)
)

=
√

π

2

∑

st

(−1)
s
2 ( j−k−2t)

δ
(
p − s

√
π

2

)
δ
(
q −

√
π

2 ( j + k + 2t)
)

. (20)

Now, combining Eqs. (18) and (20), we have

W (θ, φ; q, p) = cos2 θ
2W0(q, p) + sin2 θ

2W1(q, p) + 1
4
√

π
cos θ

2 sin
θ
2

×
[
eiφ

∑

st

(−1)
s
2 (−1−2t)

δ
(
p − s

√
π

2

)
δ
(
q −

√
π

2 (1 + 2t)
)

+ e−iφ
∑

st

(−1)
s
2 (1−2t)

δ
(
p − s

√
π

2

)
δ
(
q −

√
π

2 (1 + 2t)
) ]

= cos2 θ
2W0(q, p) + sin2 θ

2W1(q, p)

+ 1
8
√

π
sin θ

∑

st

(−1)st
(
eiφ(−1)

s
2 + e−iφ(−1)−

s
2

)

× δ
(
q −

√
π

2 (1 + 2t)
)

δ
(
p − s

√
π

2

)
. (21)

Then, it follows that the Wigner function for arbitrary superpositions of GKP states
is given by Eq. (6) in the main text.
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Appendix 2

The table below summarizes the estimated climate footprint of this work, including
air travel for collaboration purposes. Estimations have been calculated using the
examples of ScientificCO2nduct https://scientific-conduct.github.io/.

Transport
Total CO2-Emission For Transport (kg) 6645
Were The Emissions Offset? No
Total CO2-Emission (kg) 6645
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Abstract The quantum interaction models, with the quantum Rabi model as a dis-
tinguished representative, are recently appearing ubiquitously in various quantum
systems including cavity and circuit quantum electrodynamics, quantum dots and
artificial atoms, with potential applications in quantum information technologies
including quantum cryptography and quantum computing (Haroche and Raimond
2008; Yoshihara et al. 2018). In this extended abstract, based on the contents of the
talk at the conference, we describe shortly certain number theoretical aspects aris-
ing from the non-commutative harmonic oscillators (NCHO: see Parmeggiani and
Wakayama 2001; Parmeggiani 2010) and quantum Rabi model (QRM: see Braak
2011 for the integrability) through their respective spectral zeta functions.

The quantum interaction models, with the quantum Rabi model as a distin-
guished representative, are recently appearing ubiquitously in various quantum sys-
tems including cavity and circuit quantum electrodynamics, quantum dots and artifi-
cial atoms, with potential applications in quantum information technologies includ-
ing quantum cryptography and quantum computing (Haroche and Raimond 2008;
Yoshihara et al. 2018). In this extended abstract, based on the contents of the talk at
the conference, we describe shortly certain number theoretical aspects arising from
the non-commutative harmonic oscillators (NCHO: see Parmeggiani andWakayama
2001; Parmeggiani 2010) and quantum Rabi model (QRM: see Braak 2011 for the
integrability) through their respective spectral zeta functions.

In physics, given a quantum interactionmodel, one of themain interests is to know
the heat kernel (or equivalently the evolution operator) since, among other reasons,
the heat kernel gives the partition function by taking the trace.With partition function
of the model, we may also get the analytic properties of the spectral zeta function
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by means of the Mellin transform. A spectral zeta function is defined, in general,
as the Dirichlet series formed by the spectrum (eigenvalues) of the corresponding
Hamiltonian (Ichinose and Wakayama 2005; Sugiyama 2018). Notice that knowing
the spectral zeta function is essentially equivalent to knowing the partition function
in any quantum system.

In the case of the NCHO, the Hamiltonian is given by

Q =
(

α 0
0 β

) (
−1

2

d2

dx2
+ 1

2
x2

)
+

(
0 −1
1 0

) (
x

d

dx
+ 1

2

)
,

with α, β > 0 and αβ > 1 (the condition for having only a discrete spectrum with
positive eigenvalues), and the spectral zeta function by

ζQ(s) :=
∞∑

n=1

λ−s
n (�(s) > 1),

where (0 <)λ1 < λ2 ≤ λ3 ≤ . . . (↗ ∞) are the eigenvalues of NCHO. Note that the
lowest eigenstate is multiplicity free (Hiroshima and Sasaki 2014) and the multiplic-
ity of general eigenstate is less than or equal to two (Wakayama 2016). The function
ζQ(s) is meromorphically continued to the whole complex plane with a unique sim-
ple pole at s = 1 and has trivial zeros at the even non-positive integers (Ichinose
and Wakayama 2005). Although our study is very much influenced by the classical
algebro-geometric work onApéry numbers for the Riemann zeta function in Beukers
(1987) and its subsequent developments, since the family of generating functions for
Apéry-like numbers (Kimoto and Wakayama 2006) arising via the NCHO possesses
a remarkable hierarchical structure, there is a decisive difference between these two
(Ichinose and Wakayama 2005; Kimoto and Wakayama 2019).

For instance, there are congruence properties of the (normalized) Apéry-like num-
bers that have arisen naturally from the special values ζQ(2) at s = 2. This can be seen
by the same idea that guided the studies for the Apéry numbers for ζ(2)(= π2/6)
in Beukers (1985). These congruence properties led us further to observe that the
generating function w2 of the Apéry-like numbers for ζQ(2) is interpreted as a �(2)-
modular form of weight 1 (Kimoto and Wakayama 2007) in the same way as in
a pioneering study by Beukers (1983, 1987) for the Apéry numbers. It is worth
mentioning that the recurrence equation of these Apéry-like numbers defined in
Kimoto and Wakayama (2006) provides one of the particular examples listed in
Zagier (2009) (it gives #19 in the list).1 Also, recently, certain congruence rela-
tions among these Apéry-like numbers conjectured in Kimoto andWakayama (2006)
resembling Rodriguez–Villegas type congruences (Mortenson 2003) were proved in
Long et al. (2016). It is, however, hard in general to obtain precise information, in
the same level of ζQ(2), of the higher special values of ζQ(n) (n > 2). Thus, we
introduce the Apéry-like numbers Jk(n) (k = 0, 1, 2, . . .) for each n defined through

1Although the terminology “Apéry-like” is the identical, the usage/definition of the name in the
current paper is different from the one in the title of Zagier (2009).
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the first anomaly of ζQ(n) (n > 2) (Kimoto and Wakayama 2019) (see also Kimoto
(2016)). These Apéry-like numbers share the properties of the one for ζQ(2), e.g.
satisfy a similar recurrence relation as in the case of ζQ(2) and hence the ordinary
differential equation satisfied by the generating function follows from the recurrence
relation. Remarkably, the homogeneous part of each of the differential equations is
identifiedwith a (n dependent) power of the homogeneous part of the one correspond-
ing to ζQ(2). Further, we observe that the meta-generating functions of Apéry-like
numbers Jk(n) are described explicitly by the modular Mahler measures studied
by Rodriguez–Villegas in Rodriguez (1999). Through this relation, we may find an
interesting aspect of a discrete dynamical system behind NCHO defined by a cer-
tain limit of finite abelian group via (weighted) Cayley graphs studied in Dasbach
and Lalin (2009). Moreover, we note here (Kimoto and Wakayama 2012, 2019)
that the generating function w2n of Apéry-like numbers corresponding to the first
anomaly in ζQ(2n) when n = 2 is given by an automorphic integral with a rational
period function in the sense of Knopp (1978). This is obviously a generalization of
our earlier result (Kimoto and Wakayama 2007) showing that w2 is interpreted as a
�(2)-modular form of weight 1.

Furthermore, we show certain congruence relations among these normalized
Apéry-like numbers which are the generalization of the results in Kimoto and
Wakayama (2006). A possible generalization of the results in Liu (2018) seems very
interesting.Wealso conjecturemuch stronger results based onnumerical experiments
in Kimoto and Wakayama (2019).

The Hamiltonian HRabi of the QRM is precisely given by

HRabi := ωa†a + 	σz + g(a + a†)σx .

Here, a† and a are the creation and annihilation operators of the single bosonic mode
([a, a†] = 1), σx , σz are the Pauli matrices (sometimes written as σ1 and σ3, but since
there is no risk of confusion with the variable x to appear below in the heat kernel,
we use the usual notations), 2	 is the energy difference between the two levels,
and g denotes the coupling strength between the two-level system and the bosonic
mode with frequency ω (subsequently, we set ω = 1 without loss of generality).
The integrability of the QRMwas established in Braak (2011) using the well-known
Z2-symmetry of the Hamiltonian HRabi, usually called parity.

In the case of QRM, we recently obtained the (analytic formula of) heat kernel
(Reyes and Wakayama 2019) using the Trotter–Kato product formula by extensive
discussions of combinatorics and graph theory including quantum Fourier transform.

Concretely, the heat kernel KRabi(t, x, y) of the QRM is given by

KRabi(t, x, y) = K̃0(x, y, g, t)
∞∑

λ=0

(t	)λ�λ(x, y, g, t).

Here the 2 × 2 matrix-valued function �λ(g, t) for λ ≥ 0 is given by
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Fig. 1 From the NCHO to QRM (Heun’s Pictures)

�λ(x, y, g, t) =
∫

· · ·
∫

0≤μ1≤···≤μλ≤1

eφ(μλ,t)+ξλ(μλ,t)

[
(−1)λ cosh (−1)λ+1 sinh

− sinh cosh

]

× (θλ(x, y,μλ, t)) dμλ,

where μλ = (μ1, μ2, · · · , μλ) and dμλ = dμ1dμ2 · · · dμλ with μ0 = 0 and dμ0 =
1. For the definition of the functions φ, ξλ, θλ and K̃0, (Mehler’s kernel) the reader
is directed to Reyes and Wakayama (2019).

This is the first time an explicit determination of the heat kernel is obtained for an
interacting system (though certain partial results have been discussed, e.g. in Legget
1987 for the Spin-Boson model and Anderson et al. 1970; Chakravarty 1995 for the
Kondo effect using the Feynman–Kac formula.) The heat kernel formula allows us
to have the contour integral representation of the spectral zeta function of the QRM
(Sugiyama 2018) and open the study of the special values of negative integral points
using it (Reyes and Wakayama 2019).

Further, although NCHO is not confirmed as a practical physical model, it may
be considered as a “covering” model of QRM through the respective Heun ODE
pictures (Wakayama 2016) (Fig. 1). Thus, in addition to the study of the respective
number theoretical aspects of the models independently, the comparison of the num-
ber theoretic objects appearing from each model is an interesting and significant
problem.

In addition to the number theoretic structure described above, we remark here that
there appear certain algebraic curves, including elliptic and super elliptic curves, in
the description of degenerations of the eigenstates for the asymmetric QRM with
an integral perturbation parameter (Wakayama 2017; Kimoto et al. 2020; Reyes and
Wakayama 2017). This shows anothermathematical structure behind the asymmetric
and symmetric QRM.

The following figure (Fig. 2) illustrates the position of this extended abstract from
our whole interest. Particularly, the talk focused on the special values of such zeta
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Fig. 2 Non-commutative harmonic oscillator and (asymmetric and symmetric) quantumRabimod-
els

functions (Ichinose andWakayama 2005;Ochiai 2008;Kimoto andWakayama 2006,
2007, 2012; Long et al. 2016; Liu 2018; Kimoto andWakayama 2019). We note that
special values of zetas may be considered as the moments of the partition function
of the corresponding model.
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A Data Concealing Technique with
Random Noise Disturbance and a
Restoring Technique for the Concealed
Data by Stochastic Process Estimation

Tomohiro Fujii and Masao Hirokawa

Abstract We propose a technique to conceal data on a physical layer by disturbing
them with some random noises, and moreover, a technique to restore the concealed
data to the original ones by using the stochastic process estimation. Our concealing-
restoring system manages the data on the physical layer from the data link layer. In
addition to these proposals, we show the simulation result and some applications of
our concealing-restoring technique.

Keywords Concealing-restoring system · OSI · Physical layer · Data link layer ·
Noise-disturbance · Stochastic process estimation · Noise-filtering · Kalman
filter · Particle filter

1 Introduction

Micro-device technology in the near future realizes the remote control of micropro-
cessor chips in several things such as household electric appliances, information-
processing equipment, and even brain–computer/brain–machine interfaces from the
outside through wireless communications or the so-called IoT (i.e., Internet of
Things). Moreover, it enables the automatic operation of such things with the re-
mote control. They are going to infiltrate society and play several important roles in
every area of society. We then have to establish the data security for them (Youm
2017; Román-Castro et al. 2018; Lin et al. 2018; Clausen et al. 2017). In particular,
we have to stem the hacking of the remote control and the wiretapping of the data of
communication. We are interested in a data concealing technique with disturbance
on a physical layer and a restoring technique for those concealed data. Here, the
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physical layer is the lowest layer of the open systems interconnection (OSI) (Kain
and Agrawala 1992) (see Fig. 1). OSI is a reference model to grasp and analyze how
data are sent and received over a computation or communication network. Some
methods using disturbance have been presented to conceal data for storage and com-
munication. For instance, chaotic cryptology (Cuomo and Oppenheim 1993; Grassi
andMascolo 1999; Lenug and Lam 1997;Wu andChua 1993) uses chaos tomake the
disturbance. The method using cryptographic hash functions for the disturbance has
lately been gaining a practical position (Merkle 1979, 1989;Damgård 1989; Schneier
2015). There have been some endeavors for the concealing technique on physical lay-
ers: the chaos multiple-input multiple-output (Okamoto and Iwanami 2006; Zheng
2009; Okamoto 2011; Okamoto and Inaba 2015; Ito et al. 2019). Meanwhile, it is
noteworthy that the secured telecommunication using noises has been actively stud-
ied (Wyner 1975; Hero 2003; Goel and Negi 2008; Swindlehurst 2009; Mukherjee
and Swindlehurst 2011). In that technique, we send some noises from interference
antennas to the signal on a carrier wave sent from an antenna; we have the signal
interfering with the noises and make it an interference wave. There, however, may
be a way to remove the noises from the interference wave and to wiretap the original
signal (Ohno et al. 2012).

We take interest in how to conceal data on a physical layer using some random
noise disturbances and how to restore those concealed data applying a stochastic
filtering theory to maintain the safety of data over a proper period of time, which is
different from the interference wave method. Thus, our concealing-restoring system
should be installed on a data link layer above the physical layer (see Fig. 1). Although
we employ the disturbance by randomnoises instead of the chaotic one,we can design
our concealing-restoring system so that it includes the chaotic disturbance (Fujii
and Hirokawa 2020). The idea of the concealing-restoring system was primarily
originated in keeping security for the data processed on the physical layer of our
developing quantum-sensing equipment over a necessary period. This equipment
detects and handles some ultimate personal information. Since we must remove
several noises on the physical layer in any case, we make our concealing-restoring
system coexist with the denoising system of the equipment. We then consider the
information concealingmethod for qubits (i.e., quantumbits) using the randomnoises
in classical physics. The qubits |0〉 and |1〉 are represented by spin states |↑〉 and
|↓〉, namely, |0〉 = |↑〉 = (1, 0) and |1〉 = |↓〉 = (0, 1). A general qubit |q〉 can
be described with the superposition of the qubits |0〉 and |1〉: |q〉 = α|0〉 + β|1〉 for
some complex numbers α and β with |α|2 + |β|2 = 1. Thus, the qubit can have
the representation, |q〉 = (�α,�α,�β,�β), and an information sequence of qubits,
|q1〉, |q2〉, . . . , |qν〉, is expressed with a finite sequence,

�α1 �α1 �β1 �β1 �α2 �α2 �β2 �β2 . . . �αν �αν �βν �βν.

We transform it into an electrical signal Xt , 0 ≤ t ≤ 4ν, using linear interpolation.
We process the electrical signal in a microprocessor, made by some semiconductors,
of our quantum-sensing equipment. Since the microprocessor is for the conventional
computation (i.e., not quantum computation), we need to transport the electrical
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Fig. 1 The left picture shows that the OSI consists of 7 layers. The encryption and decryption are
usually done on one out of layers between Layer 3 and Layer 7, typically on the presentation layer.
The right picture shows what we aim our concealing-restoring system at

signal to memory or register according to a microarchitecture. To keep the security
for the electric signal Xt while processing, storing, and saving it, we employ a
mathematical idea to conceal it using thenoise disturbance. In this paper,we introduce
that mathematical idea for more general signals on the physical layer and more broad
applications.

As someapplications derive therefrom,wefirst establish amathematical technique
for concealing data by the disturbance with randomness of the noises, and moreover,
a mathematical technique for restoring the concealed data by the stochastic process
estimation. In addition to these establishments, we show the simulation result and
some applications for the two techniques. The idea of our method to conceal data
comes from an image of the scene when we conceal a treasure map, and it is so
simple as follows:

(c1) we plaster over the treasure map at random and make it messy;
(c2) we repeat c1 and plaster it over repeatedly.

In this paper, we mathematically realize c1 and c2, and make their implementation
on conventional computers. In addition to c1 and c2, we can consider that

(c3) we tear the muddled map by c1 and c2, and split it into several pieces, though
we do not make its implementation in this paper.

We are planning that we use the concealed data for saving them in memory or for
sending them for telecommunication. We expect to use our methods in the situation
where the physical layer is under restrictions in the implementation space due to a
small consumed electric power, a small arithmetic capacity, a small line capacity, and
a bad access environment. Concretely, we hope to apply the implementation of our
techniques to the remote control of drones and devices on them, and to the security
of some data sent from those devices. Moreover, we suppose the situation where it
is too harsh to make a remote maintenance of the physical layer, for example, in
outerspace development or seafloor development.
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2 Mathematical Setups

We first explain the outline of how to make our concealing-restoring system for data
Xt , t ∈ R. The concealing-restoring system is given by a simultaneous equation
system (SES). This SES consists of some stochastic differential equations (SDEs),
linear equations, and a nonlinear equation (NLE). The data Xt is input as the initial
data of the SES. We prepare N functionals Fi , i = 1, 2, . . . , N , making the SDEs.
We suppose that each form of the individual functional Fi is known only by those
who conceal the original data Xt and restore the concealed data. We use the forms of
the functionals as well as the composition of the SES for secret keys or common keys.
We prepare 2N random noises W j,i

t , j = 1, 2; i = 1, 2, . . . , N , for the SDEs, and
a nonlinear bijection f for the NLE. The SDEs for processes Xi

t , i = 1, 2, . . . , N ,
and the NLE for the process XN+1

t are used to introduce the noise disturbance in
our concealing-restoring system.We also use the means, variances, and distributions
of the random noises as well as the nonlinear bijection as secret keys. As shown
below, we obtain N + 1 concealed data, Ui

t , i = 1, 2, . . . , N , N + 1, using the
SDEs and the NLE. We use them as the data for saving in a digital memory such as
a semiconductor memory or an analog memory such as a magnetic tape. We may
also put the concealed data on a carrier wave and send them. This is the outline of
the data concealing. Meanwhile, the data restoration is done in the following. Using
the stochastic filtering theory and the inverse function f −1, we remove the random
noises from every concealed dataUi

t , and we estimate the process Xi
t . We denote the

estimate by ̂Xi
t , and call it estimated data for the process X

i
t . We regard the estimate

̂X1
t as the restoration of the original data Xt . We denote it by ̂Xt .
We here explain how to make the data Xt from binary data. We use the low/high-

signal for the binary data in this paper though there are many other ways. Thus,
we represent ‘low’ by 0 and ‘high’ by 1. For n + 1 bits, a0, a1, . . . , an ∈ {0, 1},
we concatenate them and make a word a0a1 . . . an . We employ the following linear
interpolation as a simple digital–analog (D/A) transformation. We first define Xi by

Xi =
{

+1 if ai = 1,

−1 if ai = 0,
i = 0, 1, . . . , n.

We connect Xi and Xi+1 with a straight line for each i = 0, 1, . . . , n−1, andwe have
a polygonal line Xt , 0 ≤ t ≤ n. When the data Xt are made from the binary word
a0a1 . . . an , we call Xt a binary pulse for the word a0a1 . . . an . As for the restoration
of the word, we use the simple analog–digital (A/D) transformation to seek the
character âi ∈ {0, 1} for each i = 0, 1, . . . , n, and make a word â0â1 . . . ân for
the original word a0a1 . . . an in the following. We determine a threshold in advance
between those who conceal the binary pulse and restore its concealed data to it. The
threshold is basically determined taking into account the mean and variance of the
random noises when used for concealing data. For each i = 0, 1, . . . , n, we define
the character âi by
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âi =
{

1 if ̂Xi > threshold,

0 if ̂Xi ≤ threshold.

We call the word â0â1 . . . ân restored word from ̂Xt . We note that the mean and
the variance play important roles to define a threshold between ‘low’ and ‘high’
of signals, in particular, when we use ν-adic numbers such as octal numbers and
hexadecimal numbers instead of binary numbers.

From now on, we explain mathematical details for our data concealing technique
and restoring technique. We give our secret SES by

Fi (X
i
t , Ẋ

i
t ,U

i
t ,W

1,i
t ) = 0, i = 1, 2, . . . , N , (1)

Xi+1
t = ci Xi

t + W 2,i
t , i = 1, 2, . . . , N , (2)

UN+1
t = f

(

XN+1
t

)

. (3)

In the above system, Ẋ i
t stands for the time derivative dXi

t /dt of the process Xi
t ,

and ci is a constant. The initial data X1
t is given by X1

t = Xt . The concealed data
Ui

t , i = 1, 2, . . . , N , N + 1, are directly defined by Eqs. (1) and (3), not Eq. (2).
That is, we can hide the linear part of our system because we do not have to make
an interference wave. This is the point of our method that is different from that
of telecommunication using noises (Wyner 1975; Hero 2003; Goel and Negi 2008;
Swindlehurst 2009;Mukherjee and Swindlehurst 2011). Introducing functionals,Gi ,
i = 1, 2, . . . , N , and using them for Eq. (2), we can introduce the chaotic disturbance
in our concealing-restoring system (Fujii and Hirokawa 2020).

Equations (1) and (3) are the mathematical realization of c1. The repetition of
Eq. (1) from i = 1 to i = N with the help of Eq. (2) is for the realization of c2. We
can mathematically realize c3 as follows: Take numbers r�, � = 1, 2, . . . , M , with
∑M

�=1 r� = 0, and define

U �
t = 1

M

(

Ui
t + r�U

j
t

)

, � = 1, 2, . . . , M,

where i 	= j . Then, we can split the data Ui
t into the data U �

t , � = 1, 2, . . . , M . In
the case M = 2, for instance, we generate a random number r with r 	= 0, and set
r1 and r2 as r1 = r and r2 = −r . From the split data, U �

t , � = 1, 2, . . . , M , we can
restore the data U �

t to the data Ui
t and U

j
t by

Ui
t =

M
∑

�=1

U �
t and U j

t = r−1
�

(

MU �
t −Ui

t

)

for an � satisfying r� 	= 0. We can also use the sequence, r1, r2, . . . , rM , as a secret
or common key.

We note that the last stochastic process appearing in Eq. (3) has the form,

XN+1
t = c1 · · · cN Xt +

N−1
∑

i=1

⎛

⎝

N
∏

j=i+1

c j

⎞

⎠W 2,i
t + W 2,N

t . (4)
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2.1 How to Conceal Data

We take the original data Xt as initial data,

X1
t = Xt .

Inputting it into Eq. (1) with the noise W 1,1
t , we conceal it by the SDE,

F1(X
1
t , Ẋ

1
t ,U

1
t ,W 1,1

t ) = 0.

We seek U 1
t in the above and obtain a concealed data U 1

t . By Eq. (2),

X2
t = c1X1

t + W 2,1
t ,

we have data X2
t for the next step. These data X2

t consist of the superposition (i.e.,
linear combination) of X1

t andW
2,1
t , and thus, there is a possibility that a wiretapper

removes the noise W 2,1
t and wiretap X1

t . Thus, to improve the security with another
noise-disturbance, we have the same procedure again. We input the data X2

t into
Eq. (1) with the noise W 1,2

t ,

F2(X
2
t , Ẋ

2
t ,U

2
t ,W 1,2

t ) = 0.

We then obtain the concealed data U 2
t . Repeating the same procedures, we obtain

the concealed data, U 1
t ,U 2

t , . . . ,UN
t , and hide the data, X1

t , X
2
t , . . . , X

N
t .

At last, input the concealed data XN
t into Eq. (2) and get the data XN+1

t . We input
this into Eq. (3) and hide it. We then obtain the last concealed dataUN+1

t . In this way,
the sequence of the concealed data, U 1

t ,U 2
t , . . . ,UN

t ,UN+1
t , is created.

In the case where the original data are digital, and they give the binary pulse
Xt , the concealed data, Ui

t , i = 1, 2, . . . , N , N + 1, merely become analog data.
So, a wiretapper has to know A/D transformation to obtain the original digital data
as getting the concealed data. Therefore, the D/A and A/D transformations play an
important role for the concealing-restoring system for some digital data. We can also
use them as secret or common keys.

2.2 How to Restore Data

Since the nonlinear function f is bijective, we can restore the concealed data UN+1
t

to the data XN+1
t by

XN+1
t = f −1

(

UN+1
t

)

.

In the light of the stochastic filtering theory, Eqs. (1) and (2) are the state equation
and the observation equation, respectively, and they make the system of the noise-
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filtering. Inputting the above XN+1
t into Eq. (2), and the concealed data UN

t into
Eq. (1), we have simultaneous equations to seek the data XN

t ,

FN (XN
t , Ẋ N

t ,UN
t ,W 1,N

t ) = 0,

XN+1
t = cN XN

t + W 2,N
t .

Since we cannot completely restore the noises to the original ones, W 1,N
t and W 2,N

t ,
we cannot completely seek the stochastic process XN

t . Thus, we estimate it with the
help of a proper stochastic filtering theory to remove the random noises. We then
obtain the estimated data ̂XN

t .
Inputting the estimated data ̂XN

t into the slot of XN
t of Eq. (2), and the concealed

data UN−1
t into Eq. (1), we reach simultaneous equations to seek the data XN−1

t ,

FN−1(X
N−1
t , Ẋ N−1

t ,UN−1
t ,W 1,N−1

t ) = 0,
̂XN
t = cN−1XN−1

t + W 2,N−1
t .

In the same way as in the above, the stochastic filtering theory gives us the next
estimated data ̂XN−1

t . We repeat this procedure, and obtain the estimated data,
̂XN
t , ̂XN−1

t , . . . , ̂X2
t ,

̂X1
t , by turns, and we pick up the last estimate ̂X1

t . This is the
restoration ̂Xt of the original data Xt .

3 Example of Functionals and Simulation

As for how to determine each functional, Fi , i = 1, 2, . . . , N , any definition of it
is fine so long as a noise-filtering theory is established for the system with Fi . To
restore the concealed data, U 1

t ,U 2
t , . . . ,UN

t ,UN+1
t , generally speaking, we have to

know the concrete forms of the functionals, and the noise-filtering theory. Therefore,
we must hide both for securing the original data. In this paper, however, we disclose
one of examples of the concrete definition of the functionals and one of examples
of the noise-filterings, which should actually be supposed to be in secret. We point
out that the example of concealing-restoring system introduced in this section is not
valid for other functionals. In particular, it is not tolerant of nonlinearity. See Sect. 5.

3.1 An Example of the Set of Functionals

We release an example of functionals in this section. We determine functions
Ai (t), vi (t), and non-zero constants biu, b

i in secret. Here vi (t) can be a random
noise. For instance, we often make vi (t) by the linear interpolation based on normal
random numbers. Namely, we first assign a normal random number with N (0, σ 2

v ) to
vi (k) for each i and k, and then, connect them by linear interpolation. Here, N (0, σ 2

v )
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means the normal distribution whose mean and standard deviation are, respectively,
0 and σv. We give each functional Fi such that it makes a SDE,

dXi
t = (

Ai (t) − 1
)

Xi
t dt + biuU

i
t dt + bivi (t)dt − biudB

i
t , (5)

for i = 1, 2, . . . , N . That is,

Ẋ i
t = (

Ai (t) − 1
)

Xi
t + biuU

i
t + bi vi (t) − biuW

1,i
t . (6)

Here, W 1,i
t and W 2,i

t are Gaussian white noises whose mean m j,i and variance V j,i

are, respectively, 0 and (σ i
j )
2. Bi

t is the Brownian motion given by W 1,i
t = dBi

t /dt ,

i = 1, 2, . . . , N . We assume that the noises W 1,i
t and W 2,i

t are independent for each
i = 1, 2, . . . , N , but the noises W 2,i

t , i = 1, 2, . . . , N , are not always independent.
Thus, in the case where they are not independent, the linear combination of white
noises appearing in Eq. (4) is not always white noise.

We regard the functions Ai (t), the constants biu, b
i , and themeanm j,i and variance

V j,i = (σ i
j )
2 of the white noises as secret keys which are known only by the admin-

istrator of our concealing-restoring system. We use functions vi (t) as common keys.
Since Eqs. (5) and (2), respectively, play the individual roles of the state equation and
observation equation in the stochastic filtering theory, we employ the linear Kalman
filtering theory (Kalman 1960; Kallianpur 1980; Bain and Crisan 2009; Grewal and
Andrews 2015) to obtain the restoration ̂Xt .

Using Eq. (6) we give the concealed data Ui
t , i = 1, 2, . . . , N , by

Ui
t = 1

biu

{

dXi
t + (

1 − Ai (t)
)

Xi
t − bivi (t)

} + dBi
t . (7)

In addition to these concealed data, we give the last concealed dataUN+1
t by Eq. (3).

Conversely, since we obtain the data XN+1
t by XN+1

t = f −1(UN+1
t ), we can estimate

the data, XN
t , X

N−1
t , . . ., X1

t , from the concealed data,UN
t ,UN−1

t , . . .,U 1
t , using the

linear Kalman filtering theory.

3.2 Simulation of Concealing and Restoring Data on
Physical Layer

In our simulation of concealing and restoring data on the physical layer, we employ
the message digest (Rivest 1991, 1992a, b; Suhaili and Watanabe 2017; MessageDi-
gest 2020) to check the coincidence of the original word a0a1 . . . an and its restored
word â0â1 . . . ân though the message digest works on upper layers. Moreover, we
can use the message digest to detect any falsification of the concealed data. We take
the original word a0a1 . . . an as a message, and then, produce its digest. We also
produce the digest for the restored word â0â1 . . . ân . Comparing hash values of the
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two digests, we can make the check of the coincidence and the detection of the fal-
sification at the same time. The check and detection should be performed on a layer
out of layers between Layer 3 and Layer 7. In our simulation, we employ SHA-256
to make the hash values (Secure Hash Standard 2015).

To make the estimation in the simulation, we employ the linear Kalman filtering
theory under the following conditions.Wemake Eqs. (1)–(3) for N = 2with Ai (t) =
0.1 (constant function), bi = 1, biu = 1, and ci = 1 for each i = 1, 2. We define
the common key vi (t) by the linear interpolation based on a normal random number
with N (0, 12). We assume that the means of white noises are all 0. The standard
deviation of the white noise W j,1

t is σ 1
j = 0.1, and that of the white noise W j,2

t is
σ 2
j = 1. The length of the word a0a1 . . . an is 100, and therefore, n = 99.
Our original word a1a2 . . . a99 is given by Eq. (8). We here note that we remove

the character a0 because we cannot estimate the first bit in our concealing-restoring
system.

00001100100111001000100000101110111111111001000110

1010011110111101100101010100010110111100110111001. (8)

Then, we get its binary pulse Xt as in Fig. 2. The hash value of the digest made from
the original word (8) is

979bca61579e002c9097c78088740e9fdaf21535d6a5c5876bd8623a86185292.

(9)

We make the concealed data, U 1
t and U 2

t , by Eq. (7) with the help of the linear
equation given in Eq. (2). We finally make the concealed dataU 3

t using the nonlinear
equation given in Eq. (3) with f (ξ) = ξ 3. Their graphs are in Figs. 3 and 4. Following
theKalmanfiltering theory,we remove thewhite noises, and estimate the binary pulse
Xt . Then, we obtain the restoration ̂Xt as in Fig. 5. The concrete algorithm to seek
the restoration ̂Xt comes out in Ref. Fujii and Hirokawa (2020). Let us take 0 as the

Fig. 2 The binary pulse Xt
transformed from the
original word (8)
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Fig. 3 The concealed data, U1
t (left) and U2

t (right), for the binary pulse Xt in Fig. 2

Fig. 4 The concealed data
U3
t for the binary pulse Xt in

Fig. 2

Fig. 5 The restoration ̂Xt
for the binary pulse Xt in
Fig. 2

threshold. Then, we obtain the restored word â1â2 . . . â99 and the hash value of its
digest made from the restoration ̂Xt . We can achieve positive results that they are the
same as Eqs. (8) and (9), respectively.

We note that the graphs in Figs. 3 and 4 say that the concealed data, U 1
t , U

2
t ,

and U 3
t , are merely analog data. If a wiretapper becomes aware that the concealed

data are for digital ones and knows our A/D transformation in some way, then the
wiretapper gets a binary word from the concealed data as follows:
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Fig. 6 Xt (Fig. 2) and ̂Xt (Fig. 5) from the above of the left 2 graphs. U1
t (Fig. 3), U2

t (Fig. 3), and
U3
t (Fig. 4) from the above of the right 3 graphs. Here t ∈ [0, 99]

00111011000111011000111000001001101011111001101100

11011111101001111000010111100101101011000111100110

for U 1
t ,

00011011000111011010110000100100111001111011001010

01011001001001111010010111110101000010001110110110

for U 2
t , and

10000000000010110101110000010001001100111100100100

00000101100111110101100010100010000001000111011001

forU 3
t . Here, since the wiretapper does not know that we removed the first bit, every

concealed data Ui
t makes the word consisting of 100 characters.

In Fig. 6 we show the comparison of the original binary pulse Xt , its restoration
̂Xt , and the concealed data Ui

t , i = 1, 2, 3.

4 Application to Data on Physical Layer and Presentation
Layer

4.1 Binary Data of Pictorial Image

We now apply the technology of our mathematical method to the binary data of a
pictorial image. We use digital data of a pictorial image in the ORL Database of



114 T. Fujii and M. Hirokawa

Fig. 7 The original pictorial image (left) with the digital data, and its binary pulse Xt (right) only
for t ∈ [0, 200]

Fig. 8 The concealed data, U1
t (left) and U2

t (right), for the binary pulse Xt in Fig. 7. Here t ∈
[0, 200] only

Faces, an archive of AT&T Laboratories Cambridge (The ORL Database of Faces
2020). The data have the grayscale value of 256 gradations (8bit/pixel). We set our
parameters as A = Ai = 0.1, b = bi = 1, bu = biu = 1, c = ci = 1, σ1 = σ i

1 = 0.1,
and σ2 = σ i

2 = 1.We determine the common key vi (t) in the sameway as in Sect. 3.2
with σv = 2. The original pictorial image and its binary pulse Xt are obtained as in
Fig. 7. Here, the upper bound of t is 92 × 112 = 10304 and t runs over [0, 10304].
We obtain the concealed data, U 1

t and U 2
t , by Eq. (7) as in Fig. 8, and the concealed

data U 3
t by Eq. (3) as in Fig. 9. The restoration ̂Xt and the restored pictorial image

from it are in Fig. 10.
If a wiretapper tries to get the original pictorial image from the concealed data

Ui
t , i = 1, 2, 3, since the concealed data are analog as in Figs. 8 and 9, the wiretapper

has to know our A/D transformation, and our transformation from the digital data
to a pictorial image as well as some keys used in SES. The latter transformation
should be done on upper layers. We now assume that the wiretapper can know the
transformations. Then, each pictorial image of the concealed data, Ui

t , i = 1, 2, 3,
is in Fig. 11. The format of the pictorial image of Fig. 7 is PGM (i.e., portable gray
map). In fact, we cannot restore the PGM header from the concealed data, that is,
the header of the PGM is completely broken. Thus, the wiretapper has to realize that
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Fig. 9 The concealed data U3
t for the binary pulse Xt in Fig. 7. Here t ∈ [0, 200] only

Fig. 10 The restoration ̂Xt for the binary pulse Xt in Fig. 7 only for t ∈ [0, 200] (right) and the
restored pictorial image (left) of ̂Xt

Fig. 11 From the left, pictorial images of the concealed data, U1
t ,U2

t in Fig. 8, and U3
t in Fig. 9,

for the binary pulse Xt in Fig. 7. Here (σv)
2 = 4

the concealed data are for PGM in some way, and he/she has to write the header by
himself/herself to restore the pictorial image.

As for the role of the common key vi (t), comparing Fig. 12 with Fig. 11, we can
realize the effect of the variance of the common key vi (t) and the nonlinear function
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Fig. 12 From the left, pictorial images of the concealed data, U1
t ,U2

t in Fig. 8, and U3
t in Fig. 9,

for the binary pulse Xt in Fig. 7. Here (σv)
2 = 1

Fig. 13 Xt (Fig. 7) and ̂Xt (Fig. 10) from the above of the left 2 graphs. U1
t (Fig. 8), U2

t (Fig. 8),
and U3

t (Fig. 9) from the above of the right 3 graphs. Here t ∈ [0, 200] only

f (ξ). The variance of the common key vi (t) is smaller in Fig. 12 than it is in Fig. 11,
that is, (σv)

2 = 4 for Fig. 11 and (σv)
2 = 1 for Fig. 12, though other parameters for

Fig. 12 are the same as for Fig. 11. The contour of the face in the pictorial image of
U 1

t in Fig. 12 stands out more clearly than in Fig. 11. Meanwhile, the nonlinearity
conceals the contour as in the pictorial image of U 3

t in Fig. 12.
In Fig. 13 we show the comparison of the original binary pulse Xt , its restoration

̂Xt , and the concealed data Ui
t , i = 1, 2, 3.

4.2 Analog Data of Pictorial Image

We use analog data of a pictorial image in the Olivetti faces database (The Olivetti
Faces Database 2020), where the data of pictorial images are transformed to analog
data from the original ones in the ORL Database of Faces, an archive of AT&T
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Fig. 14 The original pictorial image (left) with the analog data, and the analog data Xt only for
t ∈ [0, 200] (right)

Fig. 15 The concealed data, U1
t (left) and U2

t (right), for the analog data Xt in Fig. 14. Here,
t ∈ [0, 200] only

Laboratories Cambridge (The ORL Database of Faces 2020). The data have the
grayscale value of 256 gradations (8bit/pixel). Our parameters are A = Ai = 0.1,
b = bi = 1, bu = biu = 1, c = ci = 1, σ1 = σ i

1 = 0.1, and σ2 = σ i
2 = 1 again.

We also use the common key vi (t) in the same way as in Sect. 3.2 with σv = 2. The
original analog data Xt and their pictorial image are in Fig. 14. Here, the upper bound
of t is 64 × 64 = 4096 and t runs over [0, 4096]. The concealed data, U 1

t and U 2
t ,

defined by Eq. (7) are in Fig. 15, and the concealed data U 3
t defined by Eq. (3) are in

Fig. 16. We can restore the pictorial image with the restoration ̂Xt as in Fig. 17. If a
wiretapper becomes aware of our method tomake a pictorial image from analog data,
then the wiretapper gets pictorial images from the concealed data Ui

t , i = 1, 2, 3, as
in Fig. 18.

In Fig. 19 we show the comparison of the original binary pulse Xt , its restoration
̂Xt , and the concealed data Ui

t , i = 1, 2, 3.
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Fig. 16 The concealed data U3
t for the analog data Xt , t ∈ [0, 200] ⊂ [0, 4096], in Fig. 14

Fig. 17 The restoration ̂Xt (right) for the analog data Xt in Fig. 14 only for t ∈ [0, 200], and the
pictorial image (left) of ̂Xt

Fig. 18 From the left, pictorial images of the concealed data, U1
t (Fig. 15), U2

t (Fig. 15), and U3
t

(Fig. 16)
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Fig. 19 Xt (Fig. 14) and ̂Xt (Fig. 17) from the above of the left 2 graphs.U1
t (Fig. 15),U2

t (Fig. 15),
and U3

t (Fig. 16) from the above of the right 3 graphs. Here t ∈ [0, 200] only

5 Conclusion and Future Work

We have proposed a mathematical technique for concealing data on the physical
layer of the OSI reference model by using random noise disturbance, and moreover,
a mathematical technique for restoring the concealed data by using the stochastic
process estimation. In this concealing-restoring system, the functionals determining
SDEs play a role of secret or common keys. Then, the proper noise-filtering the-
ory forms a nucleus to restore the concealed data. In addition, we have showed the
simulation result for the data on physical layer and some applications of the two
techniques to the pictorial images. We have opened one of examples of the function-
als. Then, we have showed how to conceal the data by using the noise-disturbance,
and have demonstrated how to restore the data by removing the noises. Here, the
significant point to be emphasized is that any composition of the SES and any form
of the individual functional will do so long as a proper noise-filtering method is
established for them. We make briefly some comments about it at the tail end of this
section.

We have used the scalar-valued processes, and thus, prepared just one common
key for one SDE. We can prepare some common keys for one SDE by using the
vector-valued processes.

Although we have employed the message digest to make the check of the coinci-
dence of the binary word and the detection of the falsification at the same time, we
are now developing a method with low complexity so that we can make them for
data on the physical layer.
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Fig. 20 From the left, the original pictorial image, the individual pictorial images of the concealed
dataU1

t andU2
t , and the pictorial image of the restored data. The original pictorial image is a bitmap

image, and the parameter t of the original data Xt runs over [0, 90123byte]

Fig. 21 Comparison between the pictorial images ofU2
t with nonlinearity (left) and X

2
t = f −1(U2

t )

without nonlinearity (right)

According to our several experiments including the concrete examples in Sect. 4,
we think that the nonlinearity enhances the noise-disturbance. For instance, the pic-
torial images in Fig. 20 are the case N = 1. Comparing the pictorial images of U 2

t
and X2

t = f −1(U 2
t ) in Fig. 21, we can say that the enhancement of noise-disturbance

appears with the black color. We will study the roles of several parameters including
the nonlinearity. We here introduce the effect coming from the nonlinearity before-
hand. The state space determined by Eq. (5) is constructed by the linear Gaussian
model, and thus, we used the linear Kalman filtering theory in Sects. 3 and 4. We can
make it more general: nonlinear, non-Gaussian state space. Then, we should employ
another noise-filtering theory such as the particle filtering theory (Bain and Crisan
2009). In fact, putting a concrete nonlinearity NA or another nonlinearity NB in the
functional Fi of Eq. (1), we have concealed data U A,i

t or UB,i
t , i = 1, 2, 3, different

from those in this paper. Then, the linear Kalman filtering theory is not useful any
longer. For instance, we respectively conceal the data in Figs. 7 and 14 using such
functionals with the nonlinearity NA or NB . Then, we cannot estimate the data from
the concealed ones by the linear Kalman filter to our satisfaction. See Figs. 22, 23,
24, and 25. The difference between the restorations in Figs. 22 and 23 or between
those in Figs. 24 and 25 depends on the degree of nonlinearity. We show the restoring
system using the particle filter in Ref. Fujii and Hirokawa (2020).
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Fig. 22 The left graph is restoration ̂Xt , 0 ≤ t ≤ 200, from the concealed data, U A,i
t , i = 1, 2, 3,

with the nonlinearity NA using the Kalman filtering. The right picture is the pictorial image restored
from such a restoration ̂Xt

Fig. 23 The left graph is restoration ̂Xt , 0 ≤ t ≤ 200, from the concealed data, UB,i
t , i = 1, 2, 3,

with the nonlinearity NB using the linear Kalman filtering. The right picture is the pictorial image
restored from such a restoration ̂Xt

Fig. 24 The left graph is restoration ̂Xt , 0 ≤ t ≤ 200, from the concealed data, U A,i
t , i = 1, 2, 3,

with the nonlinearity NA using the linear Kalman filtering. The right picture is the pictorial image
restored from such a restoration ̂Xt
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Fig. 25 The left graph is restoration ̂Xt , 0 ≤ t ≤ 200, from the concealed data, UB,i
t , i = 1, 2, 3,

with the nonlinearity NB using the Kalman filtering. The right picture is the pictorial image restored
from such a restoration ̂Xt
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Quantum Optics with Giant Atoms—the
First Five Years

Anton Frisk Kockum

Abstract In quantumoptics, it is common to assume that atoms can be approximated
as point-like compared to the wavelength of the light they interact with. However,
recent advances in experiments with artificial atoms built from superconducting
circuits have shown that this assumption can be violated. Instead, these artificial
atoms can couple to an electromagnetic field at multiple points, which are spaced
wavelength distances apart. In this chapter, we present a survey of such systems,
which we call giant atoms. The main novelty of giant atoms is that the multiple
coupling points give rise to interference effects that are not present in quantum optics
with ordinary, small atoms. We discuss both theoretical and experimental results for
single andmultiple giant atoms, and showhow the interference effects can be used for
interesting applications. We also give an outlook for this emerging field of quantum
optics.

Keywords Quantum optics · Giant atoms · Waveguide QED · Relaxation rate ·
Lamb shift · Superconducting qubits · Surface acoustic waves · Cold atoms

1 Introduction

Natural atoms are so small (radius r ≈ 10−10 m) that they can be considered point-
like when they interact with light at optical frequencies (wavelength λ ≈ 10−6–
10−7 m) (Leibfried et al. 2003). If the atoms are excited to high Rydberg states, they
can reach larger sizes (r ≈ 10−8–10−7 m), but quantum-optics experimentswith such
atoms have them interact with microwave radiation, which has much longer wave-
length (λ ≈ 10−2–10−1 m) (Haroche 2013). It has thus been well justified in theoret-
ical treatments of quantum optics to assume r � λ, called the dipole approximation,
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which simplifies the description of the interaction between light and matter (Walls
and Milburn 2008).

In recent years, experimental investigations of quantum optics have expanded to
systems with artificial atoms, i.e., engineered quantum systems such as quantum
dots (Hanson et al. 2007) and superconducting quantum bits (qubits) (You and Nori
2011; Xiang et al. 2013; Gu et al. 2017; Kockum and Nori 2019), which emulate
essential aspects of natural atoms. The circuits making up superconducting qubits
can be large, reaching sizes up to r ≈ 10−4–10−3 m, but this is still small when
compared with the wavelength of the microwave fields they interact with.

In 2014, one experiment (Gustafsson et al. 2014) forced quantum opticians to
reconsider the dipole approximation. In that experiment, a superconducting transmon
qubit (Koch et al. 2007) was coupled to surface acoustic waves (SAWs) (Datta 1986;
Morgan 2007). Due to the low propagation velocity of SAWs, their wavelength
was λ ≈ 10−6 m, and the qubit, due to its layout with an interdigitated capacitance,
coupled to the SAWs at multiple points, which were spaced λ/4 apart.

Motivated by this experiment, theoretical investigations on giant atoms were ini-
tiated (Kockum et al. 2014). The main finding was that the multiple coupling points
lead to interference effects, e.g., the coupling of the giant atom to its environment
becomes frequency-dependent (Kockum et al. 2014).

These initial experimental and theoretical works on giant atoms were published
5 years ago, at the time of writing for this book chapter. In this chapter, we give a
brief survey of the developments in the field of quantum optics with giant atoms that
have followed since. We begin in Sect. 2 with theory for giant atoms, looking first
at the properties of a single giant atom (Sect. 2.1), including what happens when the
coupling points are extremely far apart (Sect. 2.2), and then at multiple giant atoms
(Sect. 2.3). In Sect. 3, we survey the different experimental systems where giant
atoms have been implemented or proposed. We conclude with an outlook (Sect. 4)
for future work on giant atoms, pointing to several areas where interesting results
can be expected.

2 Theory for Giant Atoms

The experimental setup where giant atoms were first implemented (Gustafsson et al.
2014) falls into the category of waveguide quantum electrodynamics (QED). In
waveguide QED (Gu et al. 2017; Roy et al. 2017), a continuum of bosonic modes
can propagate in a one-dimensional (1D) waveguide and interact with atoms coupled
to this waveguide. As reviewed in Gu et al. (2017), Roy et al. (2017), there is an
abundance of theoretical papers dealing with one, two, or more atoms coupled to a
1D waveguide, but they almost all assume that the dipole approximation is valid, or,
in other words, that the atoms are “small”.

The difference between small and giant atoms is illustrated in Fig. 1. While a
small atom, because of its diminutive extent, can be described as being connected to
the waveguide at a single point, a giant atom couples to the waveguide at multiple
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Fig. 1 The difference between a small atom and a giant atom. a A small atom (two levels) couples
to the 1D waveguide (grey) at a single point (red, coordinate x1). b A giant atom couples to the
waveguide at multiple points (labelled k, coordinates xk ). The distance between two coupling points
k and n, |xk − xn |, is not negligible compared to the wavelength of the modes in the waveguide that
the atom interacts with

points, and the distance between these points cannot be neglected in comparison to
the wavelength of the modes in the waveguide that couple to the atom. The relevant
wavelength λ to compare with is set by the (angular) transition frequency ωa of the
atom and the propagation velocity v in the waveguide: λ = 2πv/ωa.

2.1 One Giant Atom

Quantum optics with a single giant atom was first studied theoretically in Kockum
et al. (2014), prompted by the experiment in Gustafsson et al. (2014) (discussed
in Sect. 3.1). For a small atom coupled to a continuum of modes, like in Fig. 1a,
standard quantum-optics procedure is to derive amaster equationby assuming that the
coupling to themodes is relativelyweak and tracing out themodes (Carmichael 1999;
Gardiner and Zoller 2004; Walls and Milburn 2008). When considering whether the
same procedure can be applied to a giant atom, there is a new timescale to take into
account: the time it takes to travel in the waveguide between coupling points. In
Kockum et al. (2014), this time was assumed small compared to the time it takes
for an excitation in the atom to relax into the waveguide. With this assumption, the
system isMarkovian, i.e., the time evolution of the atom only depends on the present
state of the system, not on the past (for the non-Markovian case, see Sect. 2.2). Thus,
the standard master-equation derivation from quantum optics with small atoms can
be applied here as well.

2.1.1 Master Equation for a Giant Atom

The derivation of a master equation for a giant atom starts from the total system
Hamiltonian (we use units where � = 1 throughout this chapter),

H = Ha + Hwg + HI, (1)



128 A. Frisk Kockum

with the bare atomic Hamiltonian

Ha =
∑

m

ωm |m〉〈m| , (2)

the bare waveguide Hamiltonian

Hwg =
∑

j

ω j

(
a†R j aR j + a†L j aL j

)
, (3)

and the interaction Hamiltonian

HI =
∑

j,k,m

g jkm

(
σ

(m)
− + σ

(m)
+

)

×
(
aR j e

−iω j xk/v + aL j e
iω j xk/v + a†R j e

iω j xk/v + a†L j e
−iω j xk/v

)
. (4)

Here, the atomic levels are labelled m = 0, 1, 2, . . ., have energies ωm , and are
connected through lowering and raising operators σ

(m)
− = |m〉〈m + 1| and σ

(m)
+ =

|m + 1〉〈m|. The bosonic modes in the waveguide are labelled with indices j and
with an index R (L) for right-moving (left-moving) modes. The corresponding anni-
hilation and creation operators are a and a†, respectively. The difference to the case of
a small atom is the sumover coupling points labelled by k in Eq. (4). The phase factors
e±iω j xk/v are not present for a small atom. These phase factors give rise to interference
effects. Note that the coupling strengths g jkm can depend on both j , k, and m.

Following the standardmaster-equationderivationusing theBorn-Markovapprox-
imation, the resulting master equation becomes

ρ̇ = −i

[
∑

m

(ωm + �m) |m〉〈m| , ρ
]

+
∑

m

�m+1,mD
[
σ

(m)
−

]
ρ, (5)

where ρ is the density matrix for the atom, D [X ] ρ = XρX† − 1
2 X

†Xρ − 1
2ρX

†X
is the Lindblad superoperator describing relaxation (Lindblad 1976), and we have
assumed negligible temperature T , i.e., ωm � kBT . The relaxation rates for the
atomic transitions |m + 1〉 → |m〉 are

�m+1,m = 4π J
(
ωm+1,m

) ∣∣Am
(
ωm+1,m

)∣∣2 , (6)

whereωa,b = ωa − ωb, J (ω) is the density of states at frequencyω in the waveguide,
and we have defined

Am
(
ω j

) =
∑

k

g jkme
iω j xk/v. (7)

The frequency shifts �m of the atomic energy levels are Lamb shifts (Lamb and
Retherford 1947; Bethe 1947) given by
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�m = 2P
∫ ∞

0
dω

J (ω)

ω

( |Am(ω)|2 ωm+1,m

ω + ωm+1,m
− |Am−1(ω)|2 ωm,m−1

ω − ωm,m−1

)
. (8)

Both the relaxation rates and the Lamb shifts acquire a strong dependence on
the atomic transition frequencies, encoded in the factor Am

(
ω j

)
. For the case of a

small atom, Am
(
ω j

) = g jm , which is a constant provided that g jm does not depend
strongly on j . The effect of this frequency dependence for giant atoms can be seen
clearly if one considers the simple case of an atom with two coupling points x1
and x2 [compare Fig. 1b] having equally strong coupling to the waveguide. If the
two points are half a wavelength apart, i.e., |x1 − x2| = πv/ωm+1,m , there will be
destructive interference between emission from the two points, and the relaxation
for the corresponding atomic transition is completely suppressed: �m+1,m = 0. If the
two points are one wavelength apart, there is instead constructive interference and
the relaxation rate is enhanced.

2.1.2 Frequency-Dependent Relaxation Rate

To further understand the frequency-dependence of the relaxation rates and the Lamb
shifts, consider the case of a two-level atomcoupled to thewaveguide at N equidistant
pointswith equal coupling strength at each point. In this case, introducing the notation
ϕ = ω1,0(x2 − x1)/v, we obtain (Kockum et al. 2014)

�1,0 = γ
sin2

(
N
2 ϕ

)

sin
(
1
2ϕ

) = γ
1 − cos (Nϕ)

1 − cos (ϕ)
, (9)

�1 = γ
N sin (ϕ) − sin (Nϕ)

2 [1 − cos (ϕ)]
, (10)

where γ is the relaxation rate that the atom would have had if it was coupled to the
waveguide only at a single point. To obtain the Lamb shift, we have also made the
simplifying assumption that J (ω) is constant, that the lower limit of the integral in
Eq. (8) can be extended down to −∞, and that only the dominating second term in
that integral contributes. Since�0 = 0with these assumptions, Eq. (10) gives the full
frequency shift for the two-level atom. In fact, the relaxation rate and the Lamb shift
are related through a Hilbert transform due to Kramers–Kronig relations (Cohen-
Tannoudji et al. 1998).

The relaxation rates and Lamb shifts in Eqs. (9)–(10) are plotted for two val-
ues of N in Fig. 2. The central peak corresponds to the distance between neigh-
bouring coupling points being one wavelength. Note that the frequency dependence
becomes sharper when more coupling points are added; in frequency units, the width
of the central peak is approximately ω1,0/2πN . This sharpness can be used to deter-
mine when the Markovian approximation underlying the master-equation derivation
breaks down, which happens roughly when the relaxation rate changes noticeably
within the linewidth of the atom, i.e., when �1,0 ≈ ω1,0/2πN . Interestingly, this is
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Fig. 2 Relaxation rates and Lamb shifts for a giant two-level atom with symmetrically spaced
coupling points all having the same coupling strength. Red curves: N = 3 coupling points. Blue
curves: N = 10 coupling points. Solid curves: Relaxation rates �1,0. Dashed curves: Lamb shifts
�1. The relaxation rates and Lamb shifts are scaled to the maximum relaxation rate �max for each
N . Figure adapted from Kockum et al. (2014) with permission

approximately the same condition as when the travelling time between the outermost
couplingpoints, 2π(N − 1)/ω1,0, becomes comparable to the relaxation time1/�1,0.

An attractive feature of giant atoms is that the frequency-dependence of their relax-
ation rates (and Lamb shifts) can be designed (Kockum et al. 2014). The frequency
dependence is directly determined by Eq. (7), which simply is a discrete Fourier
transform of the coupling-point coordinates, weighted by the coupling strength in
each point. With N coupling points, an experimentalist thus has 2N − 1 knobs to
turn (the translational invariance of the setup removes one degree of freedom). With
enough coupling points, the curves in Fig. 2 can bemoulded into any shape. Note that
although the coupling-point coordinates and coupling strengths will be fixed in an
experiment, superconducting qubits offer the possibility to tune the atomic frequency
widely in situ (Gu et al. 2017; Kockum and Nori 2019), making it possible to move
between regions with high and low relaxation rates during an experiment.

If we consider more than two atomic levels, other interesting applications of the
frequency-dependent relaxation rate open up. As illustrated in Fig. 3, if the atomic
transition frequencies ω1,0 	= ω2,1, it is possible to engineer the relaxation rates such
that �2,1 is at a maximum when �1,0 is at a minimum. At that point, one can then
create population inversion, and thus lasing, by driving the transition from |0〉 to
|2〉 (Kockum et al. 2014). Recent experiments have been making use of this possi-
bility to control the ratio of relaxation rates to enable electromagnetically induced
transparency (EIT) (Andersson et al. 2020; Vadiraj et al. 2020).
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Fig. 3 Engineering population inversion in a giant atom. The blue curve and the red curve are
the relaxation rates �1,0 and �2,1, respectively, as a function of transition frequency ω1,0. The plot
assumes N = 10 equally spaced coupling points, with equal coupling strengths at all points, and
an anharmonicity ω2,1 − ω1,0 = −0.1 × 2πv/(x2 − x1). The inset shows the level structure with
the relaxation rates and a drive of strength �d on the |0〉 ↔ |2〉 transition. Figure adapted from
Kockum et al. (2014) with permission

2.1.3 Comparison with an Atom in Front of a Mirror

It is possible to engineer frequency-dependent relaxation rates and Lamb shifts also
for small atoms. This can be achieved by placing a small atom in front of a mirror
instead of in an open waveguide, a setup which has been considered in several
theoretical (Meschede et al. 1990; Dorner and Zoller 2002; Beige et al. 2002; Dong
et al. 2009; Koshino and Nakamura 2012; Wang et al. 2012; Tufarelli et al. 2013;
Fang and Baranger 2015; Shi et al. 2015; Pichler and Zoller 2016) and experimental
works (Eschner et al. 2001; Wilson et al. 2003; Dubin et al. 2007; Hoi et al. 2015;
Wen et al. 2018, 2019). Here, the atomic relaxation can be enhanced or suppressed
by interference with the mirror image of the atom. This setup is equivalent to a giant
atom with two coupling points in a unidirectional waveguide.

However, this is the limit with a small atom in front of amirror. In such a setup, it is
not possible to increase the number of coupling points, or to have different coupling
strengths at different coupling points, which means that the frequency dependence
cannot be designed like for a giant atom. Furthermore, since propagation is unidi-
rectional, it is not possible to have more advanced scattering, possible with a giant
atom, where both reflection and transmission are influenced by interference between
coupling points.
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2.1.4 Coupling a Giant Atom to a Cavity

By introducing reflective boundary conditions at both ends of thewaveguide in Fig. 1,
a multimode cavity will be formed. The coupling of a giant atom to such a cavity has
yet to be explored as thoroughly as the open-waveguide case. We can see that similar
interference effects as in the open waveguide will come into play. It will thus, for
example, be possible to arrange the coupling points such that the giant atom couples
strongly to some modes of the cavity and is decoupled from other modes. This can
to some extent already be achieved with a small atom, whose single coupling point
can be at a node for some modes and at an antinode for others. However, we note that
a recent theory proposal (Ciani and DiVincenzo 2017) uses a superconducting qubit
with tunable coupling connected at multiple points to two resonators to cancel certain
unwanted interaction terms while keeping desired interaction terms; it is shown that
this would not have been possible with a small atom.

2.2 One Giant Atom with Time Delay

Consider a giant atom with two coupling points spaced such that it takes a time τ

for light (or sound) to travel between them. In the previous section, it was assumed
that τ was small compared to the relaxation time 1/�. When this no longer is the
case, the giant atom enters the non-Markovian regime, where the time evolution of
the system can depend on what the system state was at an earlier time. In a giant
atom, this non-Markovianity can manifest itself in revivals of the atomic population
if energy is sent out from the atom at one coupling point and later is reabsorbed at
another coupling point.

Four theoretical studies (Guo et al. 2017; Ask et al. 2019a; Guo et al. 2019,
2020) have explored this regime (the latter three considering more than two coupling
points). In Ask et al. (2019a), it was shown that�τ = 1 constitutes a sharp border for
when time-delay effects become visible.When the system transitions from�τ < 1 to
�τ > 1, the response of the giant atom to a weak coherent probe goes from showing
one resonance to showing two. This is similar to the appearance of a vacuum Rabi
splitting when an atom becomes strongly coupled to a cavity (the mathematical
condition for the appearance of the splitting is actually exactly the same as for an
atom in a multimode cavity Ask et al. 2019a; Krimer et al. 2014). In the case of the
giant atom, the multiple coupling points act as a cavity when the coupling becomes
strong enough or the travelling time becomes long enough.

In Guo et al. (2017), the cases τ > � and τ � � were studied in more detail.
As τ increases, an initially excited giant atom exhibits more and more revivals of
its population. In the limit of large τ , it turns out that the total energy stored in the
giant atom and between its coupling points no longer decays exponentially with time
t , as for a small atom, but instead decays polynomially (∝ 1/

√
t). Furthermore, the

timescale for this decay is no longer set by the decay rate �, but by the travel time
τ . These predictions for a giant atom with time delay were recently confirmed in
an experiment (Andersson et al. 2019) (see Sect. 3.1 for more on the experimental
platform used).
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InGuo et al. (2019), it was shown that extending the setup fromGuo et al. (2017) to
more three or more coupling points enables qualitatively different phenomena: oscil-
lating bound states. These oscillating bound states do not decay into the waveguide,
but the energy oscillates persistently between the atom and the waveguide modes
in-between the outermost coupling points of the atom. This result appears connected
to that of Ask et al. (2019a) discussed above, and similar results have been obtained
in Guo et al. (2020).

There are similarities between a giant atom with time delay and the previously
studied (Dorner and Zoller 2002; Tufarelli et al. 2013; Pichler and Zoller 2016)
setup with a small atom placed far from a mirror. However, in the giant-atom case
scattering processes will involve both reflection and transmission, and the second-
order correlation functions for these signals, calculated in Guo et al. (2017), exhibit
oscillations between bunching and anti-bunching on a timescale set by τ .

2.3 Multiple Giant Atoms

When multiple small atoms are coupled to a waveguide, they can be spaced wave-
length distances apart, which leads to interference effects influencing the collective
behaviour of the atoms (Gu et al. 2017; Roy et al. 2017; Lehmberg 1970b, a; Lalu-
mière et al. 2013; Zheng and Baranger 2013). Well-known examples include super-
and sub-radiance (Dicke 1954; Lalumière et al. 2013), i.e., increased and decreased
emission rates due to collective decay, and an effective coupling (sometimes called
collective Lamb shift) between pairs of atoms, mediated by virtual photons in the
transmission line (Friedberg et al. 1973; Scully and Svidzinsky 2010; Wen et al.
2019). Given this, one might wonder whether there is something left to set multiple
giant atoms apart frommultiple small atoms. After all, it was mainly the interference
effects that separated a single giant atom from a single small atom.

In Kockum et al. (2018), the properties of multiple giant atoms were studied
thoroughly and compared to those of multiple small atoms. The simplest cases con-
sidered are pictured in Fig. 4. For each of these setups, a master equation of the same
form can be derived, assuming again that the travel time between coupling points is
negligible:

ρ̇ = −i

[
ω′
a

σ a
z

2
+ ω′

b

σ b
z

2
+ g

(
σ a

−σ b
+ + σ a

+σ b
−
)
, ρ

]

+�aD
[
σ a

−
]
ρ + �bD

[
σ b

−
]
ρ + �coll

[(
σ a

−ρσ b
+ − 1

2

{
σ a

+σ b
−, ρ

}) + H.c.

]
,

(11)

where ω′
j is the transition frequency of atom j (we label the left atom a and the right

atom b) including Lamb shifts, g is the strength of the exchange interaction mediated
by the waveguide between the atoms, � j is the individual relaxation rate of atom j ,
�coll is the collective relaxation rate, and H.c. denotes Hermitian conjugate.
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Fig. 4 Setups for two small and two giant atoms. a Two small atoms in an open waveguide. b Two
small atoms in a waveguide terminated by a mirror on the left. c Two “separate” giant atoms, where
the rightmost coupling point of the left atom is left of the leftmost coupling point of the right atom.
d Two “braided” giant atoms, where each atom has a coupling point that lies in between the two
coupling points of the other atom. e Two “nested” giant atoms, where the coupling points of one
atom all lie in-between the coupling points of the other atom. Figure adapted from Kockum et al.
(2018) with permission

Assuming that the atoms couple to the waveguide with equal strength at each
coupling point, and that the distances between neigbouring coupling points are equal,
corresponding to a phase shift ϕ, the coefficients g, � j , and �coll in Eq. (11) have
simple expressions as functions of ϕ (Kockum et al. 2018). These functions are
plotted in Fig. 5 for all the setups in Fig. 4. Looking at the individual relaxation
rates (dashed curves), we see that they are always non-zero for small atoms in an
open waveguide, but for setups with giant atoms there are points where � j = 0,
as we know from the discussion of single giant atoms in Sect. 2.1. Furthermore, at
the points where � j = 0, the collective relaxation rate �coll also goes to zero. It is
thus clear that setups with multiple giant atoms can be completely protected from
relaxation into the waveguide.

The most remarkable feature in Fig. 5 is found when looking at the behaviour
of the exchange interaction g at the points where the relaxation rates are zero. One
might think that since interference effects at these points prevent the atoms from
relaxing into the waveguide, it should not be possible for the waveguide to mediate
interaction between the atoms. However, it turns out that g can be non-zero here for
one of the three giant-atom setups: the braided giant atoms. This effect has recently
been confirmed in experiment (Kannan et al. 2020) (see Sect. 3.2 for more on the
experimental platform used).

One way to understand this protected interaction is to note that � j = 0 when the
phase between the coupling points of atom j is an odd integer multiple of π . The
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Fig. 5 Exchange interaction g (solid curves), individual relaxation rates � j (dashed curves), and
collective relaxation rates �coll (dotted curves) as a function of ϕ for the setups in Fig. 4. The
colours of the curves denote the ordering of coupling points: ab [small atoms, Fig. 4a, black], aabb
[separate giant atoms, Fig. 4c, blue], abab [braided giant atoms, Fig. 4d, green], and abba [nested
giant atoms, Fig. 4e, red]. The last case is qualitatively equivalent to small atoms in front of a mirror
[Fig. 4b]. For this case, there are two dashed curves (red), one for �a and one for �b. Figure adapted
from Kockum et al. (2018) with permission

collective relaxation is due to interference between emission from coupling points of
different atoms, but the sum total of these contributions is zero if the emissions from
the two coupling points of one of the atoms interfere destructively. The exchange
interaction arises due to emission from coupling points of one atom being absorbed
at coupling points of the other atom. If the giant atoms are in the separate or nested
configurations, the emissions from the twocoupling points of atomb cancel if�b = 0,
but in the case of braided giant atoms, the two inner coupling points are placed
in-between the coupling points of the other atom, so there is no condition forcing the
contributions from the two coupling points of the other atom to interfere destructively.

We note that the protected interaction with braided giant atoms is reminiscent of
the interaction between two small atoms in a waveguide with a bandgap (Kurizki
1990; Lambropoulos et al. 2000; Sundaresan et al. 2019). In that case, a bound state
of photons forms around each atom that has a frequency in the bandgap, where
propagation in the waveguide is impossible. The extension of these bound states
decays exponentially with distance, but if two bound states overlap, the atoms can
interact without decaying into the waveguide.

It is shown in Kockum et al. (2018) that the above conclusions about relations
between relaxation rates and exchange interactions in giant atoms remain true even
for the most general setups, with an arbitrary number of giant atoms, each having
an arbitrary number of coupling points at arbitrary coordinates and with different
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coupling strength at each coupling point. This opens up interesting possibilities for
constructing larger setups with protected exchange interaction between many giant
atoms (Kockum et al. 2018).

It is also interesting that the case of two small atoms in front of amirror, equivalent
to nested giant atoms (red curves in Fig. 5), allows interaction even if one (but not
both) of the atoms is prevented from relaxing into the waveguide. This has recently
been confirmed in an experiment (Wen et al. 2019) with superconducting qubits
in a transmission-line waveguide, and expanded upon in a connected theoretical
study (Lin et al. 2019).

Finally, we note that a recent theoretical study (Karg et al. 2019) extended the
treatment from giant atoms to arbitrary quantum systems, e.g., harmonic oscillators,
interacting with a waveguide at multiple points. The study took into account losses
in the waveguide and also considered the impact of time delays, and showed how
these factors can affect the protected interaction that is possible with a nested setup.

3 Experiments with Giant Atoms

Waveguide QED can be implemented in several experimental systems (Gu et al.
2017; Roy et al. 2017), e.g., with quantum dots coupled to photonic crystal waveg-
uides (Arcari et al. 2014), with quantum emitters coupled to plasmons in nanowires
(Akimov et al. 2007; Huck and Andersen 2016), and with natural atoms coupled
to optical fibres (Bajcsy et al. 2009), but the most versatile platform at the moment
appears to be superconducting qubits coupled to transmission lines (Gu et al. 2017;
Astafiev et al. 2010a, b; Hoi et al. 2011, 2012; van Loo et al. 2013; Hoi et al. 2013,
2015; Liu and Houck 2017; Forn-Díaz et al. 2017; Wen et al. 2018; Mirhosseini
et al. 2018, 2019; Sundaresan et al. 2019; Wen et al. 2019). There are thus many
systems where giant atoms could be implemented. So far, as reviewed in this section,
experiments have been conducted exclusively with superconducting qubits, coupled
to either surface acoustic waves (SAWs, Sect. 3.1) or transmission lines (Sect. 3.2). A
theoretical proposal exists for an implementation with cold atoms in optical lattices
(Sect. 3.3), and we expect that experiments will eventually be performed using more
platforms.

3.1 Superconducting Qubits and Surface Acoustic Waves

Superconducting qubits (You and Nori 2011; Xiang et al. 2013; Gu et al. 2017;
Kockum and Nori 2019) are electrical circuits with capacitances, inductances, and
Josephson junctions (which function as non-linear inductances) that can emulate
properties of natural atoms, e.g., energy-level structures and coupling to an electro-
magnetic field. These circuits usually have resonance frequencies ω on the order of
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Fig. 6 Experimental implementation of a giant atom with a superconducting qubit coupled to
SAWs. a Sketch of the experimental setup. The IDT on the left is used both to send out SAWs to
the right towards the qubit and to convert reflected SAW signals from the qubit into a voltage signal
that can be read out. The qubit on the right has its capacitance formed like an IDT to interact with
the SAWs. The two islands of the capacitance are also connected through two Josephson junctions
(boxes with crosses), which function as a non-linear inductance, making the qubit essentially an
anharmonic LC oscillator. The qubit can also be driven electrically through a gate on the top. b
False-colour image of the experimental sample. The blue parts are the IDT to the right and the qubit
to the left. The yellow parts are ground planes and the electrodes connecting to the IDT. The aspect
ratio of the IDT, with fingers being much longer than they are wide, collimates the SAW beam such
that it travels straight towards the qubit (and also in the opposite direction). Figure from Aref et al.
(2016) with permission

GHz and are cooled to low temperatures T � �ω/kB to prevent the thermal fluctu-
ations interfering with quantum properties.

In 2014, an experiment (Gustafsson et al. 2014) managed to couple a supercon-
ducting qubit of the transmon type (Koch et al. 2007) to SAWs, which are vibra-
tions that propagate on the surface of a substrate (Datta 1986; Morgan 2007). The
experimental setup is shown in Fig. 6. The substrate on which the SAWs propagate
is piezoelectric, which means that the vibrations acquire an electromagnetic com-
ponent. Vibrations can be induced by applying an oscillating voltage across two
electrodes, in the form of an interdigitated transducer (IDT), placed on the surface.
If the spacing between fingers in the electrode matches the wavelength of SAWs
at the frequency of the applied signal, the induced SAWs add up coherently. Con-
versely, propagating SAWs that arrive at the transducer induce charge on the fingers
such that the vibrations are converted into a voltage signal. The crucial invention in
Gustafsson et al. (2014) was to let the capacitance in the transmon qubit double as
an IDT to mediate a direct coupling between qubit and SAWs. Because of the slow
propagation speed of SAWs, v ≈ 3000m/s, the IDT finger spacing was on the order
of d ≈ 1µm to match the resonance frequency around ω ≈ 5GHz. As can be seen
in the figure, many fingers were used in the qubit IDT, which corresponded to tens
of wavelengths, making this a truly giant atom.

This first experiment with a giant atom could only probe the atom around a sin-
gle frequency, since the IDT used to convert signals had a narrow bandwidth. The
frequency-dependence of the qubit coupling (see Sect. 2.1.2) could therefore not
be tested. However, the experimental platform with SAWs and qubits, called cir-
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cuit quantum acoustodynamics (QAD) (Gustafsson et al. 2014; Aref et al. 2016;
Manenti et al. 2017), has been adopted in several research groups. In their experi-
ments (Manenti et al. 2017; Noguchi et al. 2017; Moores et al. 2018; Satzinger et al.
2018; Bolgar et al. 2018; Sletten et al. 2019; Bienfait et al. 2019), the qubit is coupled
to a resonator for the SAW modes. Since the resonator is long, it has a narrow free
spectral range, and the frequency-dependent coupling of the qubit is evident from
how it couples with different strength to different modes. This selective coupling to
modes has been used in a clever way to read out the number of phonons in a mode
via the qubit (Sletten et al. 2019).

A particular advantage of the SAWs is that their slow propagation speed makes it
possible to engineer a giant atom with a very long distance between coupling points.
In the experiment of Andersson et al. (2019), distances exceeding 400 wavelengths
were realized, corresponding to �τ ≈ 14, i.e., well in the non-Markovian regime
discussed in Sect. 2.2.

Another recent experiment (Andersson et al. 2020) with a superconducting trans-
mon qubit and SAWs used the possibility to engineer the relaxation rates of the first
two transitions of the transmon (see Sec. 2.1.2) to enable EIT. This appears to be the
first time that EIT of a propagating mechanical mode has been demonstrated.

3.2 Superconducting Qubits and Microwave Transmission
Lines

Superconducting qubits are usually coupled to microwave transmission lines, or LC
resonators, instead of SAWs. Also the setup with a transmission line can be used to
implement giant atoms, as proposed in Kockum et al. (2014). One simply couples
the transmission line to the qubit at one point, meanders the transmission line back
and forth on the chip until a wavelength distance has been reached, and then connects
the transmission line to the qubit once more. Due to size limitations, this approach
will not allow for distances between coupling points on the order of hundreds of
wavelengths or more, as is possible with SAWs. However, with the transmission line
it is possible to engineer the coupling at each point and the distance between coupling
points with great precision, which can be crucial for demonstrating the interference
effects that lie at the heart of giant atoms.

Two recent experiments have followed this approach to implement one (Vadiraj
et al. 2020) and two (Kannan et al. 2020) giant atoms. In the experiment with one
giant atom, the frequency-dependent coupling shown in Fig. 2 was measured and the
ability to manipulate the relaxation rates in a multilevel atom as in Fig. 3 was shown.
In the experiment with two giant atoms, the decoherence-free interaction discussed
in Sect. 2.3 was demonstrated.

This opens up interesting possibilities for preparing entangledmany-body states in
waveguide QEDwith many atoms, which otherwise is difficult due to the dissipation
into the waveguide which always is present for small atoms (Kannan et al. 2020).
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3.3 Cold Atoms in Optical Lattices

All experiments with giant atoms so far have taken place in 1D geometries at
microwave frequencies and used superconducting qubits. A recent theory pro-
posal (González-Tudela et al. 2019) shows how giant atoms instead could be imple-
mented in higher dimensions on another platform for quantum-optics simulation:
cold atoms in optical lattices. Here, one would use atoms with two internal states,
each of which couples to a different optical lattice, realized by counter-propagating
lasers. In one state, the atom mimics a photon moving in a lattice; in the other state,
the atommimics an atom trapped in a specific site. By rapidly modulating the relative
positions of the two lattices, it is possible to engineer an effective interaction where
the atomic state couples to the photonic state at multiple points (González-Tudela
et al. 2019). It may be possible to achieve a similar effect with superconducting
qubits coupled to several sites in a 2D lattice of superconducting resonators. While
such lattices have been analysed and realized previously (Koch et al. 2010; Houck
et al. 2012; Underwood et al. 2016), to the best of our knowledge it has not been
suggested previously to couple one qubit to several lattice sites in such a setup.

The proposed setup with cold atoms displays rich physics with the giant atoms
coupled to 2D photonic environments that have a band structure. It is possible to
construct interference such that a single giant atom relaxes by only emitting its
energy in certain directions. It is also possible to decouple giant atoms completely
from the environment, but still have them interact by exchange interactions, like in
Sect. 2.3.While this interference was possible with just two coupling points per atom
in 1D, the 2D case requires at least four coupling points.

4 Conclusion and Outlook

Giant atoms are emerging as a new, interesting field of quantum optics. Following
the first experimental realization and theoretical study in 2014, the field has grown
quickly in the past 5 years. Theoretical investigations have been extended from one
to multiple giant atoms, from 1D to higher-dimensional environments coupling to
the atoms, and from the Markovian to the non-Markovian regime, where time delays
between coupling pointsmatter. These investigations have revealed remarkable prop-
erties of giant atoms, including frequency-dependent couplings and decoherence-free
interactions, which are hard or impossible to realize with small atoms.

In parallel, the experimental platform for giant atoms, with SAWs coupled to
superconducting qubits, has been further developed. There are now also experi-
ments with superconducting qubits coupled to microwave transmission lines, and
an experimental platform with cold atoms in optical lattices has been proposed. The
experiments have confirmedmany of the theoretical predictions, and also contributed
with new ideas for applications of giant atoms.
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Looking towards the future, we can formulate a long research agenda for giant
atoms. At the heart of this agenda is the fact that giant atoms mainly differ from
small atoms by the interference effects introduced by the multiple coupling points,
which already has been shown to lead to new effects. It therefore seems prudent
to revisit many well-known quantum-optics phenomena to see if giant atoms can
enhance them or enable new physics. Below, we give a list of such projects:

• Superradiance: For multiple small atoms coupled to light, it is well known that
quantum interference effects can give rise to enhanced light emission, superradi-
ance, where N atoms emit light at an increased rate, proportional to N 2 (Dicke
1954; Shammah et al. 2018). The reverse process, “superabsorption”, is also pos-
sible (Higgins et al. 2014; Yang et al. 2019), and may be of importance in photo-
synthesis and future solar cells. It is thus highly relevant to see if giant atoms can
enhance superradiance and superabsorption.

• Ultrastrong coupling:When the strength of the coupling between light andmatter
starts to approach the bare resonance frequencies in the system, it is called ultra-
strong (Kockum et al. 2019; Forn-Díaz et al. 2019). In this regime, the rotating-
wave approximation breaks down and the number of excitations in the system is no
longer conserved in the absence of drives. For a giant atom ultrastrongly coupled to
an open waveguide, it would be interesting to map out the ground state of the sys-
tem, since results for a small atom indicates that it should contain virtual photons
clustered around each connection point (Sanchez-Burillo et al. 2014). However,
ultrastrong coupling with giant atoms comes with several theoretical challenges,
which make analytical results hard to achieve. For example, a giant atom with
ultrastrong coupling will inevitably be in a regime where the travel time between
coupling points is non-negligible (Ask et al. 2019a).

• Generating non-classical light: It has recently been shown that coherently driving
a small atom in front of a mirror can lead to the generation of non-classical states
of light with a negative Wigner function (Quijandría et al. 2018). Could a giant
atom do the same?

• Matryoshka atoms: The topology in Fig. 4e, nested atoms, is reminiscent of a
Russian matryoshka doll. Although it does not enable decoherence-free interac-
tion like braided atoms do, it seems to have other interesting properties. If the
distance between the coupling points of the outer atom is large, the outer atom
could effectively act as a cavity (Ask et al. 2019b), similar to what two small atoms
placed far away on either side of a central atom can do (Guimond et al. 2016).
Also, preliminary results indicate that two nested giant atoms can emulate electro-
magnetically induced transparency in a 
 system without any external drive (Ask
et al. 2019c). With many nested giant atoms, the situation is similar to having
many atoms in front of a mirror. Thus, for certain inter-coupling-point distances,
these giant atoms should be able to combine into fewer effective larger atoms, as
can happen in the mirror case (Lin et al. 2019).

• Chiral quantum optics: In some waveguide-QED setups with small atoms, it
is possible to realize chiral couplings, i.e., that the atoms only couple to one
propagation direction in the waveguide (Lodahl et al. 2017). Although it is not
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yet clear if this can be implemented in experiments with giant atoms, it seems
interesting to study chiral quantum optics with giant atoms theoretically. A related
question is whether interference between light propagating in a waveguide, and
light taking the “shortcut” between two coupling points through a giant atom, can
be used to realize an effective chiral coupling.

This was recently answered affirmatively for a setup with two atoms that are both
directly coupled to each other and each coupled at its own single point to a waveguide
(∼ λ/4 apart) (Guimond et al 2020).
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Extended Divisibility Relations for
Constraint Polynomials of the
Asymmetric Quantum Rabi Model

Cid Reyes-Bustos

Abstract The quantum Rabi model (QRM) is widely regarded as one of the fun-
damental models of quantum optics. One of its generalizations is the asymmetric
quantum Rabi model (AQRM), obtained by introducing a symmetry-breaking term
depending on a parameter ε ∈ R to the Hamiltonian of the QRM. The AQRM was
shown to possess degeneracies in the spectrum for values ε ∈ 1/2Z via the study
of the divisibility of the so-called constraint polynomials. In this article, we aim
to provide further insight into the structure of Juddian solutions of the AQRM by
extending the divisibility properties and the relations between the constraint poly-
nomials with the solution of the AQRM in the Bargmann space. In particular we
discuss a conjecture proposed by Masato Wakayama.

Keywords Quantum Rabi models · Degenerate eigenvalues · Constraint
polynomials · Juddian solutions

1 Introduction

The quantum Rabi model (QRM) is one of the basic models in quantum optics,
describing the interaction between a two-level atom and a light field. Its Hamiltonian
HRabi is given by

HRabi = ωa†a + g(a + a†)σx + �σz,

where a† and a are the creation and annihilation operators of the quantum harmonic
oscillator, σx , σz are the Pauli matrices
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σx =
[
0 1
1 0

]
, σz =

[
1 0
0 −1

]
,

ω > 0 is the classical frequency of light field (modeled by a quantum harmonic
oscillator), 2� > 0 is the energy difference of the two-level system and g > 0 is
the interaction strength between the two systems. In our discussion we have set
� = 1 with no loss of generality. The QRM has a Z/2Z-symmetry that allows a
decomposition HRabi = H+� ⊕ H−� for Hamiltonians H±� acting on appropriate
subspaces of the Hilbert space in which HRabi acts. Degeneracies are then found to
naturally appear between one eigenvalue of H+� and one eigenvalue of H−�. The
parameters (g,�, ω) of the QRM are classified into parameter regimes according to
the static and dynamic properties of the resulting energy levels and their solutions
(see Xie et al. 2017 for discussion on parameter regimes).

Recent developments in experimental physics (Maissen et al. 2014, Yoshi-
hara et al. 2017) have managed to realize parameter regimes (including the non-
perturbative ultrastrong coupling and the deep strong coupling regimes) where
approximated models, such as the Jaynes–Cummings model, can no longer describe
the physical properties of the QRM. These developments, along with the prospect
of applications to areas such as quantum information technologies (see Haroche and
Raimond 2008; Yoshihara et al. 2017) have made the study of the properties of the
QRM and its spectrum an important topic in physics. At the same time, there has
been interest in the research of the mathematical aspects of the QRM and its gen-
eralizations (see, for example, Reyes-Bustos and Wakayama 2017; Sugiyama 2018;
Wakayama 2017).

The asymmetric quantum Rabi model (AQRM) is one of these generalizations.
The Hamiltonian of the AQRM is obtained by introducing a nontrivial interaction
term that breaks the Z/2Z-symmetry in the Hamiltonian of the QRM. Concretely,
its Hamiltonian is given by

H ε
Rabi = ωa†a + �σz + gσx(a

† + a) + εσx ,

with ε ∈ R. In general, this model loses the Z/2Z-symmetry of the QRM making
the presence of degeneracies a nontrivial question and, in particular, there appears
to be no way to define invariant subspaces (called parity subspaces in the case of the
QRM) whose solutions constitute degeneracies (or crossings).

However, and contrary to this intuition, degenerate states were discovered in
numerical experiments for the case ε = 1

2 by Li and Batchelor in (2015). Later,
Masato Wakayama in (2017) proved the existence in general for the case ε = 1

2 and
conjectured the existence of degenerate states for the general half-integer ε case in
terms of divisibility of constraint polynomials. The conjecture was recently proved
affirmatively for the general case by Kazufumi Kimoto, Masato Wakayama and the
author in (2017). The presence of degenerate solutions for half-integer parameter
hints at the possibility of a hidden symmetry in the AQRM, as it has been discussed
in Semple and Kollar (2017), Wakayama (2017).
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In order to describe how the degeneracies in the spectrum of the AQRM appear,
we introduce the constraint polynomials.

Definition 1 Let N ∈ Z≥0. The polynomials P (N ,ε)
k (x, y) of degree k ∈ Z≥0 are

defined recursively by

P(N ,ε)
0 (x, y) = 1, P(N ,ε)

1 (x, y) = x + y − 1 − 2ε,

P(N ,ε)
k (x, y) = (kx + y − k(k + 2ε))P(N ,ε)

k−1 (x, y) − k(k − 1)(N − k + 1)x P(N ,ε)
k−2 (x, y).

The polynomial P (N ,ε)
N (x, y) is called constraint polynomial and its defining prop-

erty is that if the parameters g,� > 0 satisfy the constraint equation

P (N ,ε)
N ((2g)2,�2) = 0,

then λ = N + ε − g2 is an eigenvalue of H ε
Rabi. Any eigenvalue of the AQRMarising

from the zeros of the constraint polynomials in this way is called Juddian eigenvalue.
The original conjecture proposed in Wakayama (2017) is summarized in the fol-

lowing theorem.

Theorem 2 (Kimoto et al. 2017) For N , � ∈ Z≥0, we have

P
(N+�,− �

2 )

N+� (x, y) = A(�)
N (x, y)P

(N , �
2 )

N (x, y), (1)

for a polynomial A(�)
N (x, y) ∈ Z[x, y]. In addition, for �, N ∈ Z≥0 the polynomial

A(�)
N (x, y) has no zeros for x, y > 0.

In other words, since the constraint polynomials at both sides of (1) correspond to
the same eigenvalue, we see that any Juddian eigenvalue of the AQRM is degenerate
when the parameter ε is half-integer. The proof of Theorem 2 is done by studying
certain determinant expressions satisfied by the constraint polynomials.

In the same paper Wakayama (2017) (see also Reyes-Bustos and Wakayama
2017), a second conjecture was presented. This time the polynomials involved are
not the constraint polynomials, but the intermediate polynomials P (N ,ε)

k (x, y). Since
these polynomials are also related to solutions of the eigenvalue problemof theQRM,
the study of this conjecture may provide some new insight into the relation between
solutions of the QRM.

Conjecture 3 (Wakayama 2017) Let N , �, k ∈ Z≥0. There are polynomials
A(N ,�)
k (x, y) and B(N ,�)

k (x, y) in Z[x, y] such that

P
(N+�,− �

2 )

k+� (x, y) = A(N ,�)
k (x, y)P

(N , �
2 )

k (x, y) + B(N ,�)
k (x, y)

with B(N ,�)
N (x, y) = B(N ,�)

0 = 0. Furthermore, we have A(N ,�)
k (x, y) > 0 for x, y >

0.
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It is important to notice that the way it was described in Wakayama (2017), the
conjecture has not a unique solution.We discuss the issue in Sect. 3 and by extending
the divisibility properties of the constraint polynomials, we give a candidate solu-
tion to the conjecture above. In addition, we describe the relation of the constraint
polynomials with the coefficient solutions of the eigenvalue problem of AQRM in
the Bargmann space picture.

Finally, we remark that there have been recent efforts to define regime parameters
of the QRM using information from the energy levels of the solutions and not just
the dynamic properties (see Rossatto et al. 2017). This approach is based on knowl-
edge on the parameters for which exceptional solutions appear (for instance, the
zeros of constraint polynomials). We expect that the results given here for constraint
polynomials may provide some further insight for the studies in this direction.

2 The Confluent Picture of the Asymmetric Quantum Rabi
Model

In this section we introduce the asymmetric quantum Rabi model (AQRM) and the
realization of its eigenvalue problem in the Bargmann space, equivalent to a system
of linear confluent Heun differential equations. After that we see that the coefficients
of the solutions of the AQRM are expressed in terms of the constraint polynomials
and other related polynomials. A good reference for Bargmann space methods is
Schweber (1967).

The Bargmann spaceHB is the space of complex functions f : C → C holomor-
phic everywhere in the complex plane satisfying

‖ f ‖B =
(
1

π

∫
C

| f (z)|2e−|z|2dxdy
)1/2

< ∞

for z = x + iy and where dxdy is the Lebesgue measure in C � R
2.

An important property of the Bargmann space is that it contains entire functions
f having asymptotic expansion of the form

f (z) = eα1z z−α0(c0 + c1z
−1 + c2z

−2 + · · · ), (2)

as z → ∞ (see Braak 2011b). In particular, normal solutions of differential equations
having an unramified singular point of rank 2 at infinity are included.

The Bargmann space HB is seen to be a Hilbert space unitarily equivalent to
L2(R) and the realization of the creation and annihilation operators is given by

a → ∂z, a† → z,

where we use ∂z to denote ∂
∂z .
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Recall that the Hamiltonian H ε
Rabi of the AQRM is given by

H ε
Rabi = ωa†a + �σz + gσx(a

† + a) + εσx . (3)

Without loss of generality, we set ω = 1 for the remainder of the paper. Thus, when
H ε

Rabi is realized as an operator acting on HB ⊗ C
2, the Hamiltonian H ε

Rabi is given
by

H̃ ε
Rabi :=

[
z∂z + � g(z + ∂z) + ε

g(z + ∂z) + ε z∂z − �

]
.

Then, the time-independent Schrödinger equation H ε
Rabiϕ = λϕ (λ ∈ R) is equivalent

to the system of first-order differential equations

H̃ ε
Rabiψ = λψ, ψ =

[
ψ1(z)
ψ2(z)

]
,

where eigenfunctions of H ε
Rabi associated with a given eigenvalue λ ∈ R correspond

to solutions ψi ∈ HB, i = 1, 2.
The eigenvalue problem of the AQRM is then reduced to finding entire functions

ψ1, ψ2 ∈ HB, and real number λ satisfying

{
(z∂z + �)ψ1 + (g(z + ∂z) + ε)ψ2 = λψ1,

(g(z + ∂z) + ε)ψ1 + (z∂z − �)ψ2 = λψ2.

Now, by setting φ± = ψ1 ± ψ2, we get

⎧⎪⎪⎨
⎪⎪⎩

(z + g)
d

dz
φ+ + (gz + ε − λ)φ+ + �φ− = 0,

(z − g)
d

dz
φ− − (gz + ε + λ)φ− + �φ+ = 0.

(4)

We note that the system (4) is equivalent to a second-order confluent Heun dif-
ferential equation with an (unramified) irregular singular point at z = ∞ in addition
to regular singular points at z = ±g (c.f. Braak 2016). Therefore, by the discussion
above and (2), any entire solution ψ of (4) is actually ψ ∈ HB ⊗ C

2. This is a key
property used to prove the integrability in Braak (2011a).

Notice also that by applying the substitution z → −z, we obtain the alternative
system ⎧⎪⎪⎨

⎪⎪⎩
(z + g)

d

dz
φ̄− + (gz + ε − λ)φ̄− + �φ̄+ = 0,

(z − g)
d

dz
φ̄+ − (gz + ε + λ)φ̄+ + �φ̄− = 0

(5)
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where φ̄±(z) = φ±(−z). Furthermore, the two systems are equivalent under the trans-
formation ε → −ε.

Setting x = λ + g2, the solutions around the singularity z = g (for x ± ε /∈ Z)
are given by

φ+(z) = e−gz
∞∑
n=0

�K−
n

x − ε − n
(z + g)n, φ−(z) = e−gz

∞∑
n=0

K−
n (z + g)n, (6)

and by the symmetry mentioned above, the other set of solutions is given by

φ̄−(z) = egz
∞∑
n=0

�K+
n

x − ε − n
(z + g)n, φ̄+(z) = egz

∞∑
n=0

K+
n (z + g)n, (7)

related by φ+(z) = φ̄+(−z) and φ−(z) = φ̄−(−z). For n ∈ Z≥0, define the functions
f ±
n = f ±

n (x, g,�, ε) by

f ±
n (x, g,�, ε) = 2g + 1

2g

(
n − x ± ε + �2

x − n ± ε

)
. (8)

The coefficients K±
n (x) = K±

n (x, g,�, ε) are then given by the recurrence relation

nK±
n (x) = f ±

n−1(x, g,�, ε)K±
n−1(x) − K±

n−2(x) (n ≥ 1) (9)

with initial condition K±
−1 = 0 and K±

0 = 1.
The solutions (6) (resp. (7)) in general do not represent entire solutions. The

condition for the solutions to be entire is given by the G-function. Next, we recall
the definition of the G-function and refer the reader to Braak (2011a, 2011b) for the
full details.

Definition 4 The G-function for the Hamiltonian H ε
Rabi is defined as

Gε(x; g,�) := �2 R̄+(x; g,�, ε)R̄−(x; g,�, ε) − R+(x; g,�, ε)R−(x; g,�, ε)

where

R±(x; g,�, ε) =
∞∑
n=0

K±
n (x)gn and R̄±(x; g,�, ε) =

∞∑
n=0

K±
n (x)

x − n ± ε
gn,

(10)
whenever x ∓ ε /∈ Z≥0, respectively.

The main property of the G-function (see, for example, Braak 2011a) is that for
a fixed tuple of parameters (g,�, ε), the zeros xn of Gε(x; g,�) correspond to
eigenvalues λn = xn − g2 of H ε

Rabi with xn �= N ± ε for any integer N ∈ Z. Any
such eigenvalue is called a regular eigenvalue of the QRM. More precisely, if x
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is a zero of the G-function, the solutions (6) can be analytically continued to the
whole plane, and thus constitute solutions of the eigenvalue problem for the given
eigenvalue λ = x − g2.

In general, not every eigenvalue of the AQRM is regular. An eigenvalue that is not
regular is called exceptional eigenvalue. Equivalently, exceptional eigenvalues are
those of the form λ = N ± ε − g2. If the power series in the solution for an excep-
tional eigenvalue is terminating (i.e., is a polynomial), it is called Juddian, otherwise
it is called non-Juddian exceptional eigenvalue. We recall from the introduction that
Juddian eigenvalues are those that arise from zeros of the constraint polynomials.
We also remark that the exceptional eigenvalues are closely related to the poles of
the G-function, and refer the reader to Kimoto et al. (2017), Li and Batchelor (2015)
for more information on exceptional eigenvalues.

After the preparations, we relate the coefficients of the solutions (resp. the G-
function), with constraint polynomials. For brevity, we set c(ε)

k = k(k + 2ε) and
λk = k(k − 1)(N − k + 1). Then the polynomial P (N ,ε)

k (x, y) is the determinant of
a k × k tridiagonal matrix

P (N ,ε)
k (x, y) = det(Ik y + A(N )

k x + U(ε)
k ) (11)

where Ik is the identity matrix of size k and

A(N )
k = tridiag

[
i 0

λi+1

]
1≤i≤k

, U(ε)
k = tridiag

[−c(ε)
i 1
0

]
1≤i≤k

,

where we use the notation

tridiag

[
ai bi
ci

]
1≤i≤n

:=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1 0 0 · · · 0
c1 a2 b2 0 · · · 0
0 c2 a3 b3 · · · 0
...

. . .
. . .

. . .
. . .

...

0 · · · 0 cn−2 an−1 bn−1

0 · · · 0 0 cn−1 an

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The relation between the N th coefficient of the G-function and the constraint
polynomials is seen in the next lemma.

Lemma 5 (Kimoto et al. 2017) Let N ∈ Z≥0. For g > 0, the relation

(N !)2(2g)N K−
N (N + ε; g,�, ε) = P (N ,ε)

N ((2g)2,�2) (12)

holds. In addition, if ε = �/2 (� ∈ Z), it also holds that

((N + �)!)2(2g)N+�K+
N+�(N + �/2; g,�, �/2) = P (N+�,−�/2)

N+� ((2g)2,�2).
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From this point of view, the constraint polynomials aremultiples of the coefficients
of the solutions of the associated equation system of differential equations for x =
N + ε. This fact is important since it allows us to relate the residues at the poles of
the G-function with the presence or absence of exceptional solutions (see Kimoto
et al. 2017, Propositions 5.3, 5.5 and 5.6).

We proceed to generalize the result above to all the coefficients of theG-function.
First, we note a simple but important relation between the coefficients K−

n (N +
ε; g,�, ε) and K−

n (n + ε; g,�, ε)of theG-functions and the corresponding relation
between constraint polynomials.

Lemma 6 For N , n ∈ Z≥0 with n ≤ N,

K−
n (N + ε; g,�, ε) = K−

n (n + ε; g,�, ε) + q0(g,�, ε, n, N ),

where (2g)nq0(g,�, ε, n, N ) ∈ Z[g,�, ε, n, N ] and

q0(g,�, ε, N , N ) = q0(g,�, ε, n, n) = 0.

Moreover,
P (N ,ε)
k (x, y) = P (k,ε)

k (x, y) + q̄0(g,�, ε, n, N ),

where q̄0(g,�, ε, n, N ) ∈ Z[g,�, ε, n, N ] and q̄0(g,�, ε, N , N ) = q̄0
(g,�, ε, n, n) = 0.

Proof We give the proof for the polynomials P (N ,ε)
k (x, y) as the proof for the coeffi-

cients K−
n (N + ε; g,�, ε) is done in a completely analogousway. In the determinant

expression (11) for P (N ,ε)
k (x, y), in each term λi = i(i − 1)(N − i + 1), we write

N = k + (N − k) and then factor out the terms including N − k by themultilinearity
of the determinant. This gives the result. 
�

Next, we relate the coefficients of the solutions at x̄ = N + ε with the constraint
polynomials P (n,ε)

n (x, y). In the lemma below, for a ∈ C and n ∈ Z≥0, (a)n = a(a +
1) · · · (a + n − 1) is the Pochhammer symbol.

Lemma 7 For N , n ∈ Z≥0 with n ≤ N, we have

n!(N − n + 1)n(2g)
nK−

n (N + ε; g,�, ε) = P (n,ε)
n ((2g)2,�2) + q1(x, y; N , n, ε),

with q1(x, y; N , n, ε) ∈ Z[x, y, N , n, ε] such that q1(x, y; N , N , ε) = q1(x, y; n,

n, ε) = 0.

Proof For n ≤ N , define the auxiliary polynomials P (N ,n,ε)
k (x, y) by the three-term

recurrence relation

P(N ,n,ε)
k (x, y) =((N − n + k)x + y − (N − n + k)2 − 2(N − n + k)ε)P(N ,n,ε)

k−1 (x, y)

− (N − n + k)(N − n + k − 1)(n − k + 1)x P(N ,n,ε)
k−2 , (13)
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with initial conditions P (N ,n,ε)
0 (x, y) = 1 and

P (N ,n,ε)
1 (x, y) = (N − n + 1)x + y − (N − n + 1)2 − 2(N − n + 1)ε.

Note that setting n = N gives P (N ,N ,ε)
k (x, y) = P (N ,ε)

k (x, y).
Next, the determinant form (or continuant) of the three-term recurrence relation

for the coefficients K−
n (x; g,�, ε) is given by

K−
n (x; g,�, ε) = 1

n! det

⎛
⎜⎜⎜⎝

f −
n−1(x) 1 0 · · · 0 0
n − 1 f −

n−2(x) 1 · · · 0 0
...

...
. . . · · · ...

...

0 0 0 · · · 1 f −
0 (x)

⎞
⎟⎟⎟⎠ ,

where we factored 1
k from each of the rows. Next, we see that

f −
k (N + ε) = 2g + 1

2g

(
k − N − 2ε + �2

N − k

)

= 1

(2g)(N − k)

(
(2g)2(N − k) − (N − k)2 − 2ε(N − k) + �2

)

= 1

(2g)(N − k)
h(k, g,�),

with h(k, g,�) defined implicitly. Thus, we obtain the expression

K−
n (N + ε; g,�, ε) = 1

n!(2g)2(N − n + 1)n

× tridiag

[
h(n − i, g,�) (2g)2(N − n + i)(N − n + i + 1)(n − i)

1

]
1≤i≤n

,

and we verify that the three-term recurrence relation corresponding to this determi-
nant is exactly the one defining the polynomials P (N ,n,ε)

k (x, y) above, with x = (2g)2

and y = �2. Thus, we have proved that

n!(N − n + 1)n(2g)
nK−

n (N + ε; g,�, ε) = P (N ,n,ε)
n ((2g)2,�2).

The result then follows by factoring out the elements containing N − n from the
determinant associated with the three-term recurrence relation (13). 
�

From Lemmas 6 and 7, we immediately have the following Corollary giving
several expressions for the coefficients in terms of the polynomials P (N ,ε)

n (x, y).

Corollary 8 For N , n ∈ Z≥0 with n ≤ N, we have

P (N ,ε)
n ((2g)2,�2) = (n!)2(2g)nK−

n (N + ε; g,�, ε) + q2(g
2,�2, n, N ),



158 C. Reyes-Bustos

where q2(g2,�2, n, N ) ∈ Z[g2,�2, N , n, ε] such that

q2(g
2,�2, n, n) = q2(g

2,�2, N , N ) = 0.

Furthermore, we have

P (N ,ε)
n ((2g)2,�2) = (n!)2(2g)nK−

n (n + ε; g,�, ε) + q̄2(g
2,�2, n, N ),

with q̄2(g2,�2, n, N ) satisfying the same properties as q2(g2,�2, n, N )

Using the results above, we can give an expression of the solutions of the confluent
picture of the AQRM in terms of constraint polynomials. To see this, we notice that
for n ∈ Z≥0, the following identity holds

P(x,ε)
n ((2g)2,�2) = (n!)(x − n + 1)n(2g)

nK−
n (x + ε; g,�, ε) + (x − n)qn(g

2,�2, x), (14)

where x /∈ Z≥0 and qn(g2,�2, x) is a polynomial with integer coefficients.
Next, we see that the solutions (6), (7) or the functions R±, R̄± appearing in the

definition of theG-function can be expressed in terms of constraint polynomials. For
instance, we have

R−(x + ε; g,�, ε) =
∞∑
n=0

P (x,ε)
n ((2g)2,�2)

(n!)(x − n + 1)n(2g)n
+

∞∑
n=0

(x − n)qn(g2,�2, x)

(n!)(x − n + 1)n(2g)n
.

From this expression (and the corresponding ones for R+, R̄±) it is possible to give
an alternate method for computing the residues at the poles of the G-function to the
one in Kimoto et al. (2017).

3 Extended Divisibility Properties for Constraint and
Related Polynomials

In this section we return to Conjecture 3, originally presented in Wakayama (2017)
(see also Reyes-Bustos and Wakayama 2017). As mentioned in the introduction,
in its current form, the conjecture may not have a unique solution. Indeed, let
A(N ,ε)
k (x, y), B(N ,ε)

k (x, y) and Ā(N ,ε)
k (x, y), B̄(N ,ε)

k (x, y) be two pairs of polyno-
mials satisfying the conditions of the conjecture. Moreover, if the coefficients of
1
2

(
A(N ,ε)
k (x, y) + Ā(N ,ε)

k (x, y)
)
and 1

2

(
B(N ,ε)
k (x, y) + B̄(N ,ε)

k (x, y)
)
are integers,

then these polynomials also satisfy the conditions of the conjecture as long as the

polynomial 1
2

(
A(N ,ε)
k (x, y) + Ā(N ,ε)

k (x, y)
)
has the positivity condition.

To get a better understanding of the divisibility structure, we extend some of
the results given in Kimoto et al. (2017) and give a proposal for a solution of the
conjecture that is compatiblewith the case of the constraint polynomials. In particular,
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we show how to obtain a family of solutions to the conjecture by using a method
related to the one discussed above.

First, we recall a simple lemma on diagonalization that we use in the proofs below.

Lemma 9 (Kimoto et al. 2017) For 1 ≤ k ≤ N, the eigenvalues of A(N )
k are

{1, 2, . . . , k} and the eigenvectors are given by the columns of the lower triangu-
lar matrix E(N )

k given by

(E(N )
k )i, j = (−1)i− j

(
i

j

)
(i − 1)!(N − j)!
( j − 1)!(N − i)! ,

for 1 ≤ i, j ≤ k.

Proof Wehave to check that (A(N )
k E(N )

k )i, j = j (E(N )
k )i, j for every i, j . By definition,

we see that

(A(N )
k E(N )

k )i, j = j (E(N )
k )i, j ⇐⇒ ( j − i)(E(N )

k )i, j = λi (E
(N )
k )i−1, j

⇐⇒ ( j − i)

(
i

j

)
= −i

(
i − 1

j

)
,

and the last equality is easily verified. 
�
Next, we see that in general the polynomials P (N ,ε)

k (x, y) are expressed as the
determinant of a tridiagonal matrix plus a rank-one matrix.

Proposition 10 Let k ∈ Z≥0, then

P (N ,ε)
k (x, y) = det

(
Ik y + Dk x + C(N ,ε)

k + ek Tu
(N )
k

)
,

where Ik is the identity matrix, Dk = diag(1, 2, . . . , k), and C(N ,ε)
k is the tridiagonal

matrix given by

C(N ,ε)
k = tridiag

[−i(2(N − i) + 1 + 2ε) 1
i(i + 1)c(ε)

N−i

]
1≤i≤k

,

ek ∈ R
k is the kth standard basis vector, and u(N )

k ∈ R
k is given entrywise by

(
u(N )
k

)
j
= (−1)k− j+2

(
k + 1

j

)
k!(N − j)!

( j − 1)!(N − k − 1)! .

Proof By Lemma 9, the eigenvalues of A(N )
k are {1, 2, . . . , k} and the eigenvectors

are given by the columns of the lower triangular matrix E(N )
k given by

(E(N )
k )i, j = (−1)i− j

(
i

j

)
(i − 1)!(N − j)!
( j − 1)!(N − i)! .
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Then, it suffices to verify that

U(ε)
k E(N )

k = E(N )
k C(N ,ε)

k + E(N )
k ek Tu

(N )
k . (15)

Note that the kth column ofE(N )
k is ek , therefore the last summand reduces to ek Tu

(N )
k .

For i, j ≤ k, set

di j = (−1)i− j

(
i

j

)
(i − 1)!(N − j)!
( j − 1)!(N − i)! ,

then, by using the elementary identities

j ( j + 1)c(ε)
N− j di, j+1 = −(i − j)(N − j + 2ε)di j ,

di+1, j − di, j−1 = (i2 + j2 + i j − j − i N − j N )di j ,

we see that

− c(ε)
i di j + di+1, j + j (2(N − j) + 1 + 2ε)di j − di, j−1 − j ( j + 1)c(ε)

N− j di, j+1 = 0.
(16)

For i, j ≤ k, we have di j = (E(N,ε)
k )i, j and (16) directly gives (15) for 1 ≤ j ≤ k and

1 ≤ i ≤ k − 1. For i = k, equation (16) reads

(U(ε)
k E(N )

k − E(N )
k C(N ,ε)

k )k, j = −dk+1, j ,

and the right-hand side is equal to the i th entry of u(N )
k , as desired. 
�

Note that when k = N , by the definition of the entries, the vector u(N )
k is equal

to the zero vector, and the proposition above reduces to Proposition 4.2 of Kimoto
et al. (2017).

Corollary 11 Let k ∈ Z≥0, then

P (N ,ε)
k (x, y) = det

(
Ik y + Dk x + C(N ,ε)

k

)
+ R(N ,ε)

k (x, y),

for a polynomial R(N ,ε)
k ∈ R[x, y] with R(N ,ε)

N (x, y) = 0.

Note that the polynomial R(N ,ε)
k satisfies the condition expected to be satisfied by

the polynomial B(N ,�)
k (x, y) of the conjecture. Moreover, the polynomials described

by the determinant expression of a tridiagonal matrix

det
(
Ik y + Dk x + C(N ,ε)

k

)

are exactly the polynomials Q(N ,ε)
k (x, y) of Remark 3.6 of Kimoto et al. (2017).



Extended Divisibility Relations for Constraint Polynomials of the Asymmetric … 161

Proof It is well-known that if A is a square matrix, then

det(A + vTu(N )
k ) = det(A) + T v adj(A)u(N )

k ,

where adj(A) is the adjugate matrix, the transpose of the matrix of cofactors of A.
Applying this result along with Proposition 10, we get the determinant expression.
Furthermore, we see that

R(N ,ε)
k (x, y) = T ek adj

(
Ik y + Dk x + C(N ,ε)

k

)
u(N )
k

is a polynomial, since det
(
Ik y + Dk x + C(N ,ε)

k

)
is clearly a polynomial. As men-

tioned above, u(N )
k = 0 when N = k, and thus the second claim follows. 
�

Remark 12 The polynomial R(N ,ε)
k (x, y) is given explicitly by

R(N ,ε)
k (x, y) = −

k−1∑
j=0

(−1)k− j

(
k + 1

j + 1

)
k!(N − ( j + 1))!
j !(N − (k + 1))! P

(N ,ε)
j (x, y).

In particular, this expression can be interpreted as the Fourier expansion of the poly-
nomial R(N ,ε)

k (x, y)with respect to the family of generalized orthogonal polynomials{
P (N ,ε)
k (x, y)

}
k≥0

(compare with Remark 7.2 in Kimoto et al. 2017). Here, general-

ized orthogonal polynomials (with respect to the variable y) are used in the sense of
Brezinski (1980).

It also follows that

Q(N ,ε)
k (x, y) =

k∑
j=0

(−1)k− j

(
k + 1

j + 1

)
k!(N − ( j + 1))!
j !(N − (k + 1))! P

(N ,ε)
j (x, y), (17)

and since Q(N ,ε)
k (x, y) are polynomials given by the determinant of a tridiagonal

matrix, we immediately see that the right-hand side of (17) satisfy the three-term
recurrence relation

Q(N ,ε)
k (x, y) =(kx + y − k(2(N + 1 − k) − 1 + 2ε))Q(N ,ε)

k−1 (x, y)

− k(k − 1)(N + 1 − k)(N + 1 − k + 2ε)Q(N ,ε)
k−2 (x, y),

which should be contrasted with Definition 1.
We note one more interesting consequence of equation (17). Setting vectors

T P (N ,ε)
k (x, y) = (P (N ,ε)

0 (x, y), P (N ,ε)
1 (x, y), . . . , P (N ,ε)

k−1 (x, y))
T Q(N ,ε)

k (x, y) = (Q(N ,ε)
0 (x, y), Q(N ,ε)

1 (x, y), . . . , Q(N ,ε)
k−1 (x, y)),
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we verify that
Q(N ,ε)

k (x, y) = E(N )
k P (N ,ε)

k (x, y),

whereE(N )
k is thematrix ofLemma9.These identities and the relationwith orthogonal

polynomials are part of a forthcoming paper by the author Reyes-Bustos (2019).

For completeness, we note the case k = N of the corollary above, which reduces
to the result given in Kimoto et al. (2017), is used to show, among other things, that
for a fixed x ∈ R (resp. y ∈ R) all the roots with respect to y (resp. x) of the constraint
polynomial P (N ,ε)

N (x, y) are real when ε > −1/2 (see Theorem 3.6 of Kimoto et al.
2017).

Corollary 13 Let N ∈ Z≥0. We have

P (N ,ε)
N (x, y) = det

(
IN y + DN x + S(N ,ε)

N

)
,

whereDN is the diagonal matrix of Proposition 10 and S(N ,ε)
N is the symmetric matrix

given by

S(N ,ε)
N = tridiag

⎡
⎣−i(2(N − i) + 1 + 2ε)

√
i(i + 1)c(ε)

N−i√
i(i + 1)c(ε)

N−i

⎤
⎦

1≤i≤N

.

Proof Consider the case k = N in Proposition 10. Notice that the matrices IN y +
DN x + C(N ,ε)

N and IN y + DN x + S(N ,ε)
N are tridiagonal. By comparing the off diag-

onal elements, we see that the two determinants are equal. 
�
Similar to the case N = k, when the parameter ε is half-integer, we have special

divisibility properties for the polynomials P (N ,ε)
k (x, y) obtained by factoring the

determinant expression.

Proposition 14 Let �, k ∈ Z≥0, then

P
(N+�,− �+N−k

2 )

k+� (x, y) = Ā(N ,�)
k (x, y)P

(N , �+N−k
2 )

k (x, y) + B̄(N ,�)
k (x, y)

with B̄(N ,�)
N (x, y) = 0. Moreover, the polynomial Ā(N ,�)

k (x, y) is given by

Ā(N ,�)
k (x, y) = (k + �)!

k! det tridiag

[
x + y

k+i + 2i − 1 + k − N − � 1

c
( N+�−k

2 )

−i

]
1≤i≤�

.

As can be easily seen from the definition, and as we have already considered
above in (14), the variable N in the constraint polynomial can be taken to assume
real values, in other words, we can assume that it is a free variable. In this way,
this result, along with Theorem 16 below, can be interpreted as divisibility modulo
N − k, that is,
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P
(N+�,− �+N−k

2 )

k+� (x, y) ≡ Ā(N ,�)
k (x, y)P

(N , �+N−k
2 )

k (x, y) (mod N − k).

We make this assumption in the remainder of this section to simplify the proofs.

Proof We begin with the determinant expression of Corollary 11 for the polynomial

P
(N+�,− �+N−k

2 )

k+� (x, y), that is

P
(N+�,− �+N−k

2 )

k+� (x, y) = det
(
Ik+�y + Dk+�x + C

(N+�,− �+N−k
2 )

k+�

)
+ qk+�(x, y),

where qk+�(x, y) is a polynomial divisible by N − k. The tridiagonal matrix

C
(N+�,− �+N−k

2 )

k+� is given by

C
(N+�,− �+N−k

2 )

k+� = tridiag

[−i(−2i + 1 + � + N + k) 1
i(i + 1)(N + � − i)(k − i)

]
1≤i≤k+�

.

Note that when i = k, the off-diagonal element i(i + 1)(N + � − i)(k − i) vanishes

and det
(
Ik+�y + Dk+�x + C

(N+�,− �+N−k
2 )

k+�

)
can be computed as the product of the

determinant of a k × k matrix and the determinant of an � × � matrix.
Let us first consider the determinant of the � × �-matrix factor. It is given by

det tridiag

[
y + (k + i)x − (k + i)(−2(k + i) + 1 + � + N + k) 1

(k + i)(k + i + 1)(N + � − k − i)(−i)

]
1≤i≤�

which is easily seen to be equal to

Ā(N ,�)
k (x, y) = (k + �)!

k! det tridiag

[
x + y

k+i + 2i − 1 + k − N − �) 1

c
( N+�−k

2 )

−i

]
1≤i≤�

.

Let us denote by q(x, y; N , �, k) the remaining factor, that is,

q(x, y; N , �, k) = det tridiag

[
i x + y − i(−2i + 1 + � + N + k) 1

i(i + 1)(N + � − i)(k − i)

]
1≤i≤k

.

By Corollary 11, we have

P
(N , �+N−k

2 )

k (x, y)−R
(N , �+N−k

2 )

k

= det tridiag

[
i x + y − i(3N − 2i + 1 + � − k) 1
i(i + 1)(N − i)(2N − i + � − k)

]
1≤i≤k

,

the right-hand side can be written as
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det tridiag

[
i x + y − i(−2i + 1 + � + N + k + 2(N − k)) 1

i(i + 1)(k − i + (N − k))(N + � − i + (N − k))

]
1≤i≤k

,

and noticing that entrywise, the entries of the matrix of the determinant differ to
those in the determinant expression of q(x, y; N , �, k) only by factors of N − k, we
obtain

q(x, y; N , �, k) = P
(N , �+N−k

2 )

k (x, y) + q ′(x, y; N , �, k)

for a polynomial q ′(x, y; N , �, k) satisfying q ′(x, y; N , �, N ) = 0. This completes
the proof. 
�

In order to consider the result for the desired parameter ε = �/2, we need the
following lemma.

Lemma 15 Let k ∈ Z≥0 and δ ∈ R. Then, we have

P (N ,ε+δ)
k (x, y) = P (N ,ε)

k (x, y) + 2δq(N ,ε)
k (x, y)

for some polynomial q(N ,ε)(x, y) ∈ R[x, y].
Proof It is clear that q(N ,ε)

0 (x, y) = 0 and q(N ,ε)
1 (x, y) = 1. Then, assume that it

holds for all i ≤ k for some k ∈ Z≥0. We have,

P (N ,ε+a)
k (x, y) = (kx + y − c(ε+a)

k )P (N ,ε+a)
k−1 (x, y) − λk x P

((N ,ε+a))
k−2 (x, y)

= P (N ,ε)
k (x, y) − 2kaP (N ,ε)

k−1 (x, y) + 2a(kx + y − c(ε+a)
k )q(N ,ε)

k−1

− 2aλk x q
(N ,ε)
k−2 (x, y)

= P (N ,ε)
k (x, y) + 2aq(N ,ε)

k (x, y)

and the result follows by induction. 
�
Finally, we give a particular solution to Conjecture 3.

Theorem 16 Let �, k ∈ Z≥0, then

P
(N+�,− �

2 )

k+� (x, y) = A(N ,�)
k (x, y)P

(N , �
2 )

k (x, y) + B(N ,�)
k (x, y)

with B(N ,�)
N (x, y) = 0. Moreover, the polynomial A(N ,�)

k (x, y) is given by

A(N ,�)
k (x, y) = (k + �)!

k! det tridiag

[
x + y

k+i + 2i − 1 − � 1

c
( �
2 )

−i

]
1≤i≤�

.

Note that the polynomial A(N ,�)
k (x, y) does not depend on the parameter N .

Because of this, positivity follows trivially from the result for the polynomials
A(�)
k (x, y) given in Kimoto et al. (2017). That is, we have A(N ,�)

k (x, y) > 0 for
x, y > 0.
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Proof First, by using Lemma 15 above on the polynomials at both sides of Propo-
sition 14, it is easy to see that

P
(N+�,− �

2 )

k+� (x, y) = Ā(N ,�)
k (x, y)P

(N , �
2 )

k (x, y) + C̄ (N ,�)
k (x, y)

for some polynomial C̄ (N ,�)
k (x, y) satisfying C̄ (N ,�)

N (x, y) = 0. Note that the matrices
in the determinant expressions of Ā(N ,�)

k (x, y) and A(N ,�)
k (x, y) differ entrywise at

most by factor of N − k, therefore

A(N ,�)
k (x, y) = Ā(N ,�)

k (x, y) + (N − k)q(N ,�)(x, y)

for some polynomial q(N ,�)(x, y) ∈ Z[x, y] completing the proof. 
�
It is important to mention that Theorem 16 may be proved by defining directly

B(N ,�)
k (x, y) = P

(N+�,− �
2 )

k+� (x, y) − A(�)
k (x, y)P

(N , �
2 )

k (x, y),

and appealing to the results of Kimoto et al. (2017). However, in the proof above we
wanted to emphasize how the polynomial A(�)

k (x, y) appears naturally by extending
the main results of Kimoto et al. (2017).

Let us now return to the discussion on Conjecture 3 started at the beginning of
the section. For an arbitrary (nonzero) polynomial p(x, y), by setting

Â(�)
k (x, y) = A(�)

k (x, y) + k(N − k)p(x, y)

we verify the relation

P
(N+�,− �

2 )

k+� (x, y) = Â(N ,�)
k (x, y)P

(N , �
2 )

k (x, y) + B̂(N ,�)
k (x, y),

with
B̂(N ,�)
k (x, y) = B(N ,�)

k (x, y) − k(N − k)p(x, y)P
(N , �

2 )

k (x, y),

giving another solution to the conjecture as long as

Â(�)
k (x, y) > 0

for x, y > 0 and 0 ≤ k ≤ N . Therefore, this method gives a family of solutions of
the conjecture related to the particular solution A(�)

k (x, y). It would be desirable
to consider the problem of characterizing all the solutions to the problem posed
in Conjecture 3 or in other words to consider the problem of finding the solutions
with minimal degree for B̂(N ,�)

k (x, y) (or Â(�)
k (x, y)) while retaining the condition of

positivity of Â(�)
k (x, y). We note that the method for showing the positivity of the
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polynomial A(�)
k (x, y) in Kimoto et al. (2017) cannot be extended in general to the

polynomial Â(�)
k (x, y) described here.

As a conclusion, we leave the question of Conjecture 3 open, but change the
problem from one of existence to one of characterization of solutions according to
the discussion above.

Problem 17 Characterize all pairs of solutions A(N ,�)
k (x, y) and B(N ,�)

k (x, y) ofCon-
jecture 3. Alternatively, describe the “minimal” solutions according to certain criteria
(e.g., degree).

4 Open Problems

To complement Problem 17, in this section we describe some open problems related
with constraint polynomials and Juddian solutions of the AQRM and the QRM.

4.1 Number of Exceptional Solutions of the AQRM

For fixed � > 0 and N ∈ Z≥0, the number of values of g > 0 such that λ = N ±
ε − g2 is a Juddian solution is, by the results in Li and Batchelor (2015) (see also
Kimoto et al. 2017), exactly N − k, where k is the integer satisfying

k(k + 2ε) ≤ �2 < (k + 1)(k + 1 + 2ε).

This gives a complete answer to the problem of counting the number of Juddian
solutions for fixed�when g is allowed to vary. From theG-functions for non-Juddian
exceptional eigenvalues (called T -function in Kimoto et al. 2017), it is not difficult
to obtain a condition on � for the existence solution for non-Juddian exceptional
solutions for the case of the QRM, but such an estimate provides no information on
the exact number of non-Juddian exceptional solutions and no further results in this
direction are known.

A different problem in the same line is to determine, for a fixed g,� > 0, the
number of exceptional solutions present in the spectrum of H ε

Rabi. For the case of
Juddian eigenvalues, it corresponds to finding all the N ∈ Z≥0 such that

P (N ,ε)
N ((2g)2,�2) = 0,

for a given g,� > 0. We recall here that since the polynomials P (N ,ε)
N ((2g)2,�2)

do not constitute a family of orthogonal polynomials in the usual sense (i.e., with
respect to the variables x = (2g)2 or y = �2) with the exception of the case � = 0,
there is almost no information known about the relation between their zeros. The
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same problem can be posed for non-Juddian exceptional eigenvalues but as in the
Juddian case, there are no results in this direction.

4.2 Classification of Parameter Regimes

The parameter regimes for the QRM are defined according to different observed
properties of the QRM, specially its dynamic properties, and whether the model can
be approximated by simpler models (like the Jaynes–Cummings models). However,
as remarked in Rossatto et al. (2017), the characterization of the coupling regimes is
not universally agreed and there is a need for a more specific criterion.

In the same paper, the authors give a new proposal for characterization on the
coupling regimes of the QRM that depends not only on the parameters of the system
but also on the energy levels of the system. This new classification is based on the
study of approximate exceptional solutions of eigenvalue problem of the QRM. The
new classification has the advantage of giving precise differentiation between the
coupling regimes based on observations made by the authors on the statical and
dynamical properties of the QRM in these regimes.

For instance, in this proposal the perturbative ultrastrong coupling regime (pUSC)
roughly corresponds to combinations of parameters g, ω,� and eigenvalues λ lying
to the left of the first Juddian solution in the spectral curve graph. The perturbative
deep strong coupling regime (pDSC) is similarly defined by the combination of
parameters g, ω,� and eigenvalues λ lying past a boundary curve (in the (λ, g)-
plane) after the last Juddian solution (or the first non-Juddian solution). The non-
perturbative ultrastrong-deep strong coupling regime (npUSC-DSC) would then
correspond to the remaining region in the (λ, g)-plane.

Thus, it is important to estimate the parameters corresponding to the first and last
Juddian solution for each level N , and also the first non-Juddian exceptional solution
for the level N , in order to describe the boundaries between the parameter regimes in
an effective way. In a more general sense, it would be interesting to have an estimate
for the distribution of the zeros of constraint polynomials and constraint functions
for non-Juddian exceptional eigenvalues.
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Japan. The author would like to thank the anonymous referee for some crucial comments related to
the proposed solution of Conjecture 3.

References

D. Braak, Integrability of the Rabi Model. Phys. Rev. Lett. 107, 100401 (2011a)
D. Braak, Online Supplement of “Integrability of the Rabi Model” (2011b)
D. Braak, Analytical solutions of basic models in quantum optics, in Applications + Practical Con-
ceptualization + Mathematics = fruitful Innovation, Proceedings of the Forum of Mathematics



168 C. Reyes-Bustos

for Industry 2014, vol. 11, Mathematics for Industry, ed. by R. Anderssen, et al. (Springer, Berlin,
2016), pp. 75–92

C. Brezinski, Padé-Type Approximation and General Orthogonal Polynomials (Springer Basel AG,
Basel, 1980)

S. Haroche, J.M. Raimond, Exploring the Quantum - Atoms, Cavities and Photons (Oxford Uni-
versity Press, Oxford, 2008)

K. Kimoto, C. Reyes-Bustos, M. Wakayama, Determinant expressions of constraint polynomials
and degeneracies of the asymmetric quantum Rabi model. International Mathematics Research
Notices, Published Online: 20 April 2020. (2020)

Z.-M. Li, M.T. Batchelor, Algebraic equations for the exceptional eigen spectrum of the generalized
Rabi model. J. Phys. A: Math. Theor. 48, 454005 (13pp) (2015)

C.Maissen,G. Scalari, F.Valmorra,M.Beck, J. Faist, S. Cibella, R. Leoni, C.Reichl, C.Charpentier,
W. Wegscheider, Ultrastrong coupling in the near field of complementary split-ring resonators.
Phys. Rev. B 90, 205309 (2014)

C. Reyes-Bustos, Residual structure for the family of constraint polynomials for the quantum Rabi
model (In preparation)

C. Reyes-Bustos, M. Wakayama, Spectral degeneracies in the asymmetric quantum Rabi model, in
Mathematical Modelling for Next-Generation Cryptography, vol. 29, Mathematics for Industry,
ed. by T. Takagi, et al. (Springer, Berlin, 2017), pp. 117–137

D.Z. Rossatto, C.J. Villa-Bôas, M. Sanz, E. Solano, Spectral classification of coupling regimes in
the quantum Rabi model. Phys. Rev. A 96, 013849 (2017)

S. Schweber, On the application of Bargmann Hilbert spaces to dynamical problems. Ann. Phys.
41, 205–229 (1967)

J. Semple, M. Kollar, Asymptotic behavior of observables in the asymmetric quantum Rabi model.
J. Phys. A: Math. Theor. 51, 044002 (2017)

S. Sugiyama, Spectral zeta functions for the quantum Rabi models. Nagoya Math. J. 229, 52–98
(2018)

M.Wakayama, Symmetry of asymmetric quantumRabimodels. J. Phys.A:Math. Theor. 50, 174001
(22pp) (2017)

Q.-T. Xie, H.-H. Zhong,M.T. Batchelor, C.-H. Lee, The quantumRabimodel: solutions and dynam-
ics. J. Phys. A: Math. Theor. 50, 113001 (2017)

F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, K. Semba, Supercondunting qubit
oscillator circuit beyond the ultrastrong-coupling regime. Nat. Phys. 13, 44–47 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Generalized Group–Subgroup Pair
Graphs

Kazufumi Kimoto

Abstract A regular finite graph is called a Ramanujan graph if its zeta function
satisfies an analog of the Riemann Hypothesis. Such a graph has a small second
eigenvalue so that it is used to construct cryptographic hash functions. Typically,
explicit family of Ramanujan graphs are constructed by using Cayley graphs. In the
paper, we introduce a generalization of Cayley graphs called generalized group–
subgroup pair graphs, which are a generalization of group–subgroup pair graphs
defined by Reyes-Bustos. We study basic properties, especially spectra of them.

Keywords Cayley graphs · Spectra of graphs · Group–subgroup pair graphs ·
Group actions · Homogeneity · Representation theory · Characters

1 Introduction

A k-regular finite graph is called a Ramanujan graph if its zeta function satisfies
an analog of the Riemann hypothesis. This condition is equivalent to say that every
nontrivial (i.e. �= ±k) eigenvalue of the graph is less than or equal to 2

√
k − 1. Thus

the second largest eigenvalue in absolute value of a Ramanujan graph is small, and
this means that it has a large isoperimetric constant (i.e. it is an expander graph), so
that random walks on such a graph rapidly converge to the uniform distribution as
the number of walk steps tends to infinity. Consequently, as an application to cryp-
tography, Ramanujan graphs can be used to construct cryptographic hash functions
(see Charles et al. (2009), in which hash functions are constructed from LPS graphs
Lubotzky et al. (1988) and Pizer graphs (1990)).

In order to construct (a family of) Ramanujan graphs, the Cayley graphs are an
important tool; a Cayley graph is a graph whose vertex set is a finite group, and the
adjacency of vertices is described in terms of the multiplication of the group. In fact,
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most of the known explicit constructions of infinite families of Ramanujan graphs
are given as Cayley graphs, and the construction is based on deep results in number
theory associated with the group (for instance, the construction of the LPS graphs
due to Lubotzky et al. (1988) is based on the Ramanujan–Petersson conjecture on
automorphic forms).

Thus it is natural to consider the generalization of Cayley graphs to enlarge the
possibility to produce Ramanujan graphs and/or expander families.Group–subgroup
pair graphs (or pair graph for short) Reyes-Bustos (2016), which are defined for
a triplet (G, H, S) of a finite group G, a subgroup H ⊂ G and a suitable subset
S ⊂ G, are one of such attempts. A pair graph is regular in special cases and provides
interesting examples of Ramanujan graphs. However, we can construct regular pair
graphs only when [G : H ] ≤ 2. The purpose of this paper is to give a generalization
of group–subgroup pair graphs, which can provide Ramanujan graph even when
[G : H ] > 2. A generalized pair graph is a graph defined for a pair (G, H) of a
group and its subgroup together with a suitable family S of subsets in G. We study
basic properties, especially spectra of them.

Here is the brief description on the organization of the paper: In Sect. 2, we recall
basic conventions on graphs. In Sect. 3, we recall the definitions of Cayley graphs
and group–subgroup pair graphs, and give several examples of them. In Sect. 4, we
introduce the notion of homogeneity of a graph. In Sect. 5, we give a generalization
of group–subgroup pair graphs. In Sect. 6, we describe the spectra of generalized
group–subgroup pair graphs.

1.1 Conventions

For a matrix A, A∗ is the transposed complex conjugate of A, and Tr(A) is the trace
of A. The n by n identity matrix is denoted by In .

For a group G, we use the symbol e to indicate the identity element of G. We
denote by χρ the character of a given representation ρ of G: χρ(x) = Tr(ρ(x))

for x ∈ G. The unitary dual of G (i.e. the set of all equivalence classes of unitary
irreducible representations of G) is denoted by ̂G. The dual group of G is defined to
be G∗ = Hom(G, C

×). We often identify G∗ with the subset
{

π ∈ ̂G ∣

∣ degπ = 1
} ⊂ ̂G

consisting of 1-dimensional representations of G via the bijection π �→ χπ . When G
is abelian, we have G∗ = ̂G. We denote by 1 the trivial character of G (i.e. 1(x) = 1,
x ∈ G).
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2 Preliminaries

In what follows, a graph is always assumed to be finite, undirected and simple oth-
erwise stated.

Let X = (V, E) be a graph. The number of vertices |V | and edges |E | are called
the order and size of the graph, respectively. We often write x ∼ y to indicate that
two vertices x and y are adjacent, i.e. xy ∈ E . We denote byN(x) the neighborhood
of x : N(x) = {

y ∈ V
∣

∣ x ∼ y
}

. The degree deg(x) of a vertex x is the number of
edges incident to x . If X is simple, then deg(x) is equal to |N(x)|.

We call X a k-regular graph if deg(x) = k for every x ∈ V . We introduce two
generalizations of this notion for later use. Suppose that V has a partition V =
V1 � · · · � Vm .

(1) If the degree is constant on each subset Vi , say di , then we call X a (d1, . . . , dm)-
regular graph.

(2) If
di j := ∣

∣

{

y ∈ Vj

∣

∣ x ∼ y
}∣

∣ (x ∈ Vi )

depends only on i and j , then we say X is a D-regular graph, where D =
(di j )1≤i, j≤m . Notice that if

m
∑

i=1

dir =
m
∑

j=1

dr j =: dr (r = 1, . . . , m),

then X is (d1, . . . , dm)-regular (deg(x) = di for any x ∈ Vi ).

Numbering the vertices, say V = {v1, . . . , vN } (N = |V |), we define the adja-
cency matrix A = AX of X by

A = (ai j )1≤i, j≤N , ai j =
{

1 vi ∼ v j ,

0 otherwise.

A depends on the choice of numbering of V , however, it is uniquely determined up to
conjugation by permutation matrices. An eigenvalue of A is called an eigenvalue of
the graph X . We denote by Spec(X) the multiset consisting of eigenvalues of X . If
X is k-regular, then k is the largest eigenvalue of X , and every eigenvalue of X lies
in the interval [−k, k]. We put

λ(X) := max
{|λ| ∣∣ λ ∈ Spec(X), λ �= ±k

}

.

X is called a Ramanujan graph if

λ(X) ≤ 2
√

k − 1.
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Remark 1 This condition λ(X) ≤ 2
√

k − 1 is equivalent to the analog of the Rie-
mann hypothesis

ζX (q−s)−1 = 0 (q = k − 1) =⇒ Re(s) = 1

2

for the Ihara zeta function

ζX (u) =
∏

[P]
(1 − uν(P))−1

of X , where [P] runs over all the “primes” in X , and ν(P) is the “length” of P . See,
for example, Terras (2011) for detail.

Remark 2 It is known that the second largest eigenvalue λ1 of X satisfies

λ1 > 2
√

k − 1 − 2
√

k − 1 − 1

m

when diam(X) ≥ 2m + 2 ≥ 4, where diam(X) denotes the diameter of X Nilli
(1991).

Remark 3 The notion of Ramanujan graphs is extended to non-regular graphs in
several cases. For instance, a (p, q)-regular bipartite graph X is called Ramanujan
bigraph if

∣

∣

∣

√

p − 1 −√q − 1
∣

∣

∣ ≤ λ(X) ≤ √

p − 1 +√q − 1.

See, for example, Feng and Li (1996), Hashimoto (1989).

Example 1 The cycle graph Cn of order n is a 2-regular graph, and its eigenvalues
are given by 2 cos 2 jπ

n ( j = 0, 1, . . . , n − 1), which are all less than or equal to
2 = 2

√
2 − 1. Hence Cn is Ramanujan for any n ≥ 3.

3 Cayley Graphs and Group–Subgroup Pair Graphs

We briefly recall the basics of the Cayley graphs and group–subgroup pair graphs.
We refer to Fulton and Harris (1991) for basic facts on representation theory.

3.1 Cayley Graphs

Definition 1 Let G be a group and S ⊂ G be a symmetric generating set, that is,
S−1 = S and 〈S〉 = G. The Cayley graph Cay(G, S) is a graph whose vertex set is
G and two vertices x, y ∈ G are adjacent if and only if y = xs for some s ∈ S.
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Let R be the left regular representation of G, which is the permutation repre-
sentation induced from the left translation. Explicitly, if we index the elements in
G as G = {g1, . . . , gN } (N = |G|), then R(g) (g ∈ G) can be realized as a matrix
whose (i, j)-entry is δ(g−1

i gg j ), where δ(x) is 1 if x = e and 0 otherwise. Then the
adjacency matrix A of Cay(G, S) is given by

A =
∑

s∈S

R(s).

Since the irreducible decomposition of R is given by

R ∼
⊕

π∈̂G
π⊕ degπ ,

there exists a certain unitary matrix U such that

U ∗R(g)U =
⊕

π∈̂G
π(g)⊕ degπ .

It follows that

U ∗AU =
⊕

π∈̂G

(
∑

s∈S

π(s)
)⊕ degπ

,

and hence the characteristic polynomial of the adjacency matrix A is written as

det(x IN − A) =
∏

π∈̂G
det
(

x Idegπ −
∑

s∈S

π(s)
)degπ

.

When G is abelian, every irreducible representation of G is 1-dimensional and we
have

Spec(Cay(G, S)) =
{

∑

s∈S

ϕ(s)

∣

∣

∣

∣

ϕ ∈ G∗
}

.

Example 2 Let G = Dn = 〈s, t〉 be the dihedral group of degree 2n (sn = t2 = e,
tst = s−1). Take a symmetric generating subset S = {s, s−1, t}. Then the Cayley
graph Cay(G, S) is a 3-regular graph which is isomorphic to the Cartesian product
of the path graph P1 of length 1 and the cycle graph Cn of length n (Fig. 1). The
following are the pictures of Cay(G, S) for n = 5, 6, 7, 8:

The eigenvalues of Cay(G, S) are given by

2 cos
2 jπ

n
± 1 ( j = 0, 1, . . . , n − 1).

We see that Cay(G, S) is no longer Ramanujan if 2 cos 2π
n + 1 > 2

√
2 or n ≥ 16.



174 K. Kimoto

Fig. 1 Cay(Dn, S) for n = 5, 6, 7, 8

3.2 Group–Subgroup Pair Graphs

Definition 2 (Reyes-Bustos (2016)) Let G be a group, H a subgroup of G and
S ⊂ G such that S0 = S ∩ H is symmetric (i.e. S−1

0 = S0). The group–subgroup
pair graph (or pair graph for short) G(G, H, S) is a graph whose vertex set is G and
two vertices x, y ∈ G are adjacent if and only if there exist h ∈ H and s ∈ S such
that {x, y} = {h, hs}.
Remark 4 If G = H = 〈S〉, then G(G, G, S) = Cay(G, S). If [G : H ] = 2 and
S0 = ∅, then G(G, H, S) is bipartite.

Example 3 If H = {e} and S = G \ {e}, then G(G, H, S) is the star graph K1,k

(with |G| = k + 1). For instance, the pair graph for G = Z8 = Z/8Z, H = {0} and
S = Z8 \ {0} is

G(Z8, {0}, Z8 \ {0}) = K1,7 =

Here we summarize several elementary facts on pair graphs (see Reyes-Bustos
(2016) for the proof). Assume that H is a subgroup of G with index k + 1 and
order n. Put N = |G| = (k + 1)n for short. Fix a set {x0 = e, x1, x2, . . . , xk} of
representatives of the right cosets in G modulo H :

G =
k
⊔

i=0

Vi , Vi := H xi ,

and put Si = H xi ∩ S. We also put di = |Si | and d = |S|. We denote by A the
adjacency matrix for G(G, H, S), and by λi (i = 0, 1, . . . , N − 1) the eigenvalues
of G(G, H, S) which are ordered in decreasing order: λ0 ≥ λ1 ≥ · · · ≥ λN−1.

• We have

deg(v) =
{

d v ∈ V0 = H,

di v ∈ Vi (i = 1, . . . , k).
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In particular, G(G, H, S) is regular if and only if k = 0 or k = 1 and S0 = ∅.
• G(G, H, S) is a D-regular graph for

D =

⎛

⎜

⎜

⎜

⎝

d0 d1 . . . dk

d1
... O

dk

⎞

⎟

⎟

⎟

⎠

.

• G(G, H, S) is bipartite if and only if S0 = ∅. The bipartition of G is then given by
V0 and

⋃k
i=1 Vi .

• G(G, H, S) is connected if and only if Si �= ∅ for all i ≥ 1 and S0 ∪⋃k
i=1 Si S−1

i
generates H (Theorem 3.3 in Reyes-Bustos (2016)).

• G(G, H, S) has eigenvalues (called trivial eigenvalues; see Theorem 5.1 in Reyes-
Bustos (2016))

μ± = 1

2

(

d0 ± (d2
0 + 4

k
∑

i=1

d2
i

)1/2
)

.

μ+ is the largest eigenvalue, and it is simple if G(G, H, S) is connected. For any
eigenvalue λ of G(G, H, S) other than ±λ0, we have |λ| < λ0.

• When [G : H ] = 2, G(G, H, S) is Ramanujan if |S| ≥ n + 2 − 2
√

n.

When the subgroup H is abelian, the eigenvalues of G(G, H, S) can be expressed
in terms of group characters of H as follows.

Theorem 1 (Kimoto, 2018, Theorem 3) If H is abelian, then the eigenvalues of
G(G, H, S) are given by

λϕ,± = 1

2

(

∑

h∈H0

ϕ(h) ±
((
∑

h∈H0

ϕ(h)
)2 + 4

k
∑

j=1

∣

∣

∣

∑

h∈Hi

ϕ(h)

∣

∣

∣

2)1/2
)

(ϕ ∈ H∗)

and zeros whose multiplicity is at least (k − 1)n. Here Hi := Si x
−1
i ⊂ H.

4 Homogeneity

We introduce a simple notion concerning the symmetry of a graph. Let X = (V, E)

be a graph. Assume that a group G acts on V . We say that X is G-homogeneous if
x ∼ y implies gx ∼ gy for any g ∈ G. This is equivalent to say thatG is embedded in
the graph automorphism group Aut(X) of the graph X . We see thatN(gx) = gN(x)

and hence deg(x) = deg(gx) for any x ∈ V and g ∈ G. In particular, if G � V is
transitive (i.e. for any x, y ∈ V , we can find g ∈ G such that y = gx), then X is
regular.
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Remark 5 X is Aut(X)-homogeneous.

Remark 6 A G-homogeneous graph X is vertex-transitive (i.e. for any x, y ∈ V ,
there exists a graph isomorphism f such that y = f (x)) if G � V is transitive.

Example 4 A Cayley graph X = Cay(G, S) is G-homogeneous by the natural left
translation (g, x) �→ gx . X is G × G-homogeneous via ((g1, g2), x) �→ g1xg−1

2 if
and only if S is normal or G-conjugate invariant (i.e. gSg−1 = S for all g ∈ G) or
S is a union of several conjugacy classes of G. In such a case, we have

det(x IN − A) =
∏

π∈̂G

(

x − 1

degπ

∑

s∈S

χπ(s)
)(degπ)2

by Schur’s lemma since
∑

s∈S π(s) commutes with every π(g) (g ∈ G) for each
π ∈ ̂G. Here χπ is the character of π .

Example 5 A pair graph X = G(G, H, S) is H -homogeneous.

Proposition 1 Let X = (V, E) be a graph with a group action G � V which is
free (i.e. stabilizer of any v ∈ V is trivial) and transitive. Then X ∼= Cay(G, S) for
a certain S ⊂ G.

Proof We haveN(gv) = gN(v) for each g ∈ G and s ∈ S. There exists S ⊂ G such
that N(v) = {

sv
∣

∣ s ∈ S
}

. It is straightforward to check that X ∼= Cay(G, S). �

We roughly observe that the spectra Spec(X) of a graph X tends to be simple
if X is equipped with a large symmetry. Pair graphs can be regarded as a class of
graphs which have weakened but nontrivial symmetry (or homogeneity) compared
to Cayley graphs.

In the following section, we introduce a generalization of pair graphs, which are
free but non-transitive H -homogeneous graphs.

5 Generalized Group–Subgroup Pair Graph

5.1 Definition

Let G be a finite group and H its subgroup of index k + 1. For later use, we put
N = |G|, n = |H | (hencewe have N = (k + 1)n). Fix a collection of representatives
{x0 = e, x1, . . . , xk} of H\G and put Vi = H xi (i = 0, 1, . . . , k). Let S = {Si j }k

i, j=0
be a family of subsets in G such that

(1) Si j ⊂ V −1
i Vj = x−1

i H x j ,
(2) e /∈ Si j ,
(3) S−1

i j = Sji .
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For two vertices x, y ∈ G, we connect these two by an edge if and only if y = xs
for some s ∈ Si j when x ∈ Vi and y ∈ Vj (i, j = 0, 1, . . . , k). We denote this graph
by G(G, H, S), and call such a graph a generalized group–subgroup pair graph, or
simply generalized pair graph. Put

D =

⎛

⎜

⎜

⎜

⎝

d00 d01 . . . d0k

d10 d11 . . . d1k
...

...
. . .

...

dk0 dk1 . . . dkk

⎞

⎟

⎟

⎟

⎠

with di j = ∣

∣Si j

∣

∣. Notice that D is symmetric. We also put

ds =
k
∑

j=0

dsj =
k
∑

i=0

dis (s = 0, 1, . . . , k).

Then G(G, H, S) is a D-regular and (d0, d1, . . . , dk)-regular graph. Thus, if every
row sum and column sum of D is equal to d, then G(G, H, S) is d-regular. By the
definition, we readily see that the following lemma holds.

Lemma 1 G(G, H, S) is H-homogeneous, that is, x ∼ y implies hx ∼ hy for any
x, y ∈ G and h ∈ H.

When k = 1 or [G : H ] = 2, H is normal andG/H ∼= Z/2Z, and hence it follows
that

S00, S11 ⊂ V0, S01, S10 ⊂ V1.

In this case, G(G, H, S) is (d0, d1)-biregular, and it is regular if |S00| = |S11|.
Remark 7 When Sii = ∅ (i = 0, 1, . . . , k), then G(G, H, S) is a multi-partite
graph.

5.2 Examples

Example 6 Let X = (V, E) be a graph of order k + 1 with V = {0, 1, . . . , k}, and
A = (ai j )0≤i, j≤k be its adjacency matrix. Take a group G = {x0, x1, . . . , xk} of order
k + 1, and put H = {e} and

Si j =
{

∅ ai j = 0,

{x−1
i x j } ai j = 1.

Then G(G, H, S) ∼= X . Thus any finite graph is captured in the framework of gener-
alized pair graphs (with trivial symmetry).
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Example 7 Let G be a finite group, H its subgroup of index k + 1 and S ⊂ G
a subset such that S ∩ H is symmetric. Fix a collection of representatives {x0 =
e, x1, . . . , xk} of H\G and put Vi = H xi (i = 0, 1, . . . , k). Define

S0i = S ∩ Vi , Si0 = S−1
0i (i = 0, 1, . . . , k),

Si j = ∅ (i �= 0, j �= 0).

Then G(G, H, S) is reduced to the original group–subgroup pair graph G(G, H, S).

Example 8 Let G = Dn = 〈s, t〉 be the dihedral group of degree 2n. We take H =
〈s〉 and x0 = e, x1 = t . Put

S00 = {s, s−1}, S01 = S10 = {t}, S11 = {s2, s−2}.

Then G(G, H, S) is a

(

2 1
1 2

)

-regular graph (and hence it is 3-regular). The following

are the pictures of G(G, H, S) for n = 5, 6, 7, 8 (Fig. 2): when n = 5, G(G, H, S) is
isomorphic to the Petersen graph (the leftmost one in the picture above). These four
examples are Ramanujan graphs:

det(x I − A) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(x − 3)(x − 1)5(x + 2)4 n = 5,

(x − 3)(x − 1)x2(x + 2)2(x2 − 5)(x2 − 2)2 n = 6,

(x − 3)(x − 1)(x6 + 2x5 − 6x4 − 10x3 + 10x2 + 11x − 1)2 n = 7,

(x − 3)(x − 1)(x2 − 5)(x2 + 2x − 1)2(x4 − 4x2 + 1)2 n = 8

and

λ(X) ≈

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2 n = 5,

2.2361 n = 6,

2.3319 n = 7,

2.4142 n = 8,

which are less than 2
√
2 ≈ 2.8284. In general, the eigenvalues of G(G, H, S) are

given by

cos
2π j

n
+ cos

4π j

n
±
√

(

cos
2π j

n
− cos

4π j

n

)2 + 1 ( j = 0, 1, . . . , n − 1).

G(G, H, S) is Ramanujan whenever n ≤ 23, and is not Ramanujan when n ≥ 24.

Example 9 Let G = Dn be the dihedral group of degree 2n, and we take H = 〈s〉
and x0 = e, x1 = t . Put
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Fig. 2 G(G, H, S) for n = 5, 6, 7, 8

S00 = {s, s−1}, S01 = S10 = {st, s−1t}, S11 = {s2, s−2}.

Then G(G, H, S) is a

(

2 2
2 2

)

-regular graph (and hence it is 4-regular). The following

are the pictures of G(G, H, S) for n = 5, 6, 7, 8 (Fig. 3): these four examples are
Ramanujan graphs:

det(x I − A) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x(x − 4)(x4 + 2x3 − 4x2 − 5x + 5)2 n = 5,

x3(x − 4)(x + 2)2(x2 − 8)(x2 − 2)2 n = 6,

x(x − 4)(x6 + 2x5 − 8x4 − 15x3 + 14x2 + 28x + 7)2 n = 7,

x3(x − 4)(x + 2)2(x2 − 8)(x4 − 6x2 + 4)2 n = 8

and

λ(X) ≈

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2.4667 n = 5,

2.8284 n = 6,

2.6377 n = 7,

2.8284 n = 8,

which are less than 2
√
3 ≈ 3.4641. In general, the eigenvalues of G(G, H, S) are

given by

cos
2π j

n
+ cos

4π j

n
±
√

(

cos
2π j

n
− cos

4π j

n

)2 + 4 cos2
2π j

n
( j = 0, 1, . . . , n − 1).

G(G, H, S) is Ramanujan whenever n ≤ 15, and is not Ramanujan when n ≥ 16.

In general, when [G : H ] = 2, take S00 ⊂ H = H x0 such that S−1
00 = S00 and

S01 ⊂ H x1.We also take a nontrivial group automorphism f of H . Put S11 = f (S00)
and S10 = S−1

01 . Then we get a regular graph G(G, H, S).
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Fig. 3 G(G, H, S) for n = 5, 6, 7, 8

6 Spectra of G(G, H,S)

6.1 Adjacency Matrix of G(G, H,S)

Let A be the adjacency matrix of G(G, H, S). For a concrete description of A, we
write H = {h0, . . . , hn−1} with h0 = e, and put gni+ j = h j xi for i = 0, . . . , k and
j = 0, . . . , n − 1. Thus we have G = {g0, g1, . . . , gN−1}. Then A is of the form

A =

⎛

⎜

⎜

⎜

⎝

A00 A01 . . . A0k

A10 A11 . . . A1k
...

...
. . .

...

Ak0 Ak1 . . . Akk

⎞

⎟

⎟

⎟

⎠

,

where each block Apq (0 ≤ p, q ≤ k) is given by

(Apq)i j =
{

1 h−1
i h j ∈ Hpq := x p Spq x−1

q ,

0 otherwise.

We notice that we can express each Apq as

Apq =
∑

s∈Hpq

RH (s),

where RH is the left regular representation of H .

6.2 When H is abelian

If H is abelian, thenRH is a direct sumof all inequivalent 1-dimensional (irreducible)
representations of H , that is, there exists a certain unitary matrix U such that
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U ∗RH (h)U ∼
⊕

ϕ∈H∗
ϕ(h).

Hence
U ∗ApqU =

∑

s∈Hpq

⊕

ϕ∈H∗
ϕ(s).

Since {U ∗ApqU }p,q commutes with each other, we have the following theorem.

Theorem 2 Assume that H is an abelian subgroup of G. The adjacency matrix A

of the generalized pair graph G(G, H, S) is given by

det(x IN − A) =
∏

ϕ∈H∗
det(x Ik+1 − Aϕ),

where Aϕ with ϕ ∈ H∗ is given by

Aϕ =
(
∑

s∈Hi j

ϕ(s)
)

0≤i, j≤k
.

Remark 8 When H = {e}, we see that H∗ = {1} and A1 = A. Thus the theorem
above is trivial.

Remark 9 Notice thatA1 = D. It follows that the eigenvalues of D are also eigen-
values of G(G, H, S) if H is abelian. It is natural to ask the relation between Spec(A)

and Spec(D) when H is non-abelian. We leave this as a future problem.

Remark 10 When G(G, H, S) is a pair graph, that is, Ai j = O if i �= 0 and j �= 0,
we have

det(x IN − A) = x (k−1)n det
(

x2 In − x A00 −
k
∑

j=1

A0 jA j0

)

without any assumption on H . If H is abelian, then Theorem 1 follows immediately
from the equation above.

6.3 Petersen Extension

Let G be a group, H be a subgroup of G with index 2 and X := Cay(H, S) be
a k-regular Cayley graph. Assume that G = H ∪ Hw with w ∈ G. Take a group
endomorphism σ ∈ End(H). Notice that X ′ := Cay(H, σ (S)) ∼= X if σ is an auto-
morphism. Put

S00 = S, S11 = σ(S), S01 = {w}, S10 = {w−1}.
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Fig. 4 Cay(H, S) and its
Petersen extension
G(G, H, S)

Then ˜X = G(G, H, S) is a (k + 1)-regular H -homogeneous graph. We call this the
Petersen extension of Cay(H, S). The adjacency matrix ˜A of ˜X is given by

˜A =
(

A In

In A′

)

,

where A and A′ are the adjacency matrices of X and X ′, and it follows that

det(x I2n − ˜A) = det(x2 In − x(A + A′) + AA′ − In).

Example 10 WhenG = D5 = 〈s, t〉, H = 〈s〉, S = {s, s−1},w = t andσ ∈ Aut(H)

is given by σ(h) = h2 (h ∈ H), the Petersen extension G(G, H, S) of Cay(H, S) is
the Petersen graph (Fig. 4).

Remark 11 If σ is the identity map of H (i.e. X ′ = X ), then the Petersen extension
G(G, H, S) of Cay(H, S) is just a Cartesian product of Cay(H, S) and the path graph
P1 = .

In general, it is not true that the Petersen extension ˜X of X = Cay(H, S) is
Ramanujan when X is Ramanujan. Thus we propose the following problem.

Problem 1 Characterize the quintuple (G, H, S, w, σ ) such that both Cay(H, S)

and its Petersen extension with w and σ are Ramanujan.

6.3.1 Examples: Dihedral case

We look at the case where G = Dn = 〈s, t〉, H = 〈s〉 and w = t , for instance. In
this case, an endomorphism σ of H is given by σ(h) = hl for certain l ∈ Z, and
σ ∈ Aut(H) if and only if gcd(n, l) = 1. We also notice that wSw−1 = t St = S for
any symmetric generating subset S of H .

Let Xn,l := G(G, H, S) be the Petersen extension of Cay(H, S) defined by w and
σ : H � h �→ hl ∈ H . Then, the family S is given by

S00 = S, S01 = S10 = {t}, S11 = {

sl
∣

∣ s ∈ S
}

.
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For each character ϕ ∈ H∗, define

αϕ :=
∑

s∈S

ϕ(s), βϕ :=
∑

s∈S

ϕ(sl).

By Theorem 2, we see that

det(x I2n − A) =
∏

ϕ∈H∗
det(x I2 − Aϕ), Aϕ =

(

αϕ 1
1 βϕ

)

,

where A is the adjacency matrix of Xn,l . Hence the eigenvalues of Xn,l are given by

αϕ + βϕ ±√(αϕ − βϕ)2 + 4

2
(ϕ ∈ H∗).

Example 11 If n ≥ 3 and S = {s, s−1}, then

αϕ = e
2π i j

n + e− 2π i j
n = 2 cos

2π j

n
,

βϕ = e
2lπ i j

n + e− 2lπ i j
n = 2 cos

2lπ j

n

for ϕ ∈ H∗ given by ϕ(s) = e
2π i j

n . Thus the eigenvalues of Xn,l are calculated as

cos
2π j

n
+ cos

2lπ j

n
±
√

(

cos
2π j

n
− cos

2lπ j

n

)2 + 1 ( j = 0, 1, . . . , n − 1).

We can numerically check that

(1) if n ≤ 53 and n �= 48, then there exists l such that Xn,l is Ramanujan,
(2) if n ≥ 54 or n = 48, then Xn,l is not Ramanujan for any choice of l.

When n is odd and gcd(n, l) = 1 (i.e. σ ∈ Aut(H)), then we see that

(1) if n ≤ 53 and n �= 45, then there exists l such that Xn,l is Ramanujan,
(2) if n ≥ 55 or n = 45, then Xn,l is not Ramanujan for any choice of l.

Example 12 If n = 2m ≥ 4 is even and S = {s, sm, s−1}, then

αϕ = e
2π i j

n + e
2mπ i j

n + e− 2π i j
n = (−1) j + 2 cos

2π j

n
,

βϕ = e
2lπ i j

n + e
2lmπ i j

n + e− 2lπ i j
n = (−1)l j + 2 cos

2lπ j

n

for ϕ ∈ H∗ given by ϕ(s) = e
2π i j

n . We can numerically check that

(1) if m ≤ 29 (n ≤ 58), then there exists l such that Xn,l is Ramanujan,
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(2) if m ≥ 30 (n ≥ 60), then Xn,l is not Ramanujan for any choice of l.

Example 13 If n ≥ 5 and S = {s, s2, s−1, s−2}, then

αϕ = e
2π i j

n + e
4π i j

n + e− 2π i j
n + e− 4π i j

n = 2 cos
2π j

n
+ 2 cos

4π j

n
,

βϕ = e
2lπ i j

n + e
4lπ i j

n + e− 2lπ i j
n + e− 4lπ i j

n = 2 cos
2lπ j

n
+ 2 cos

4lπ j

n

for ϕ ∈ H∗ given by ϕ(s) = e
2π i j

n . We can numerically check that

(1) if n ≤ 33, then there exists l such that Xn,l is Ramanujan,
(2) if n ≥ 34, then Xn,l is not Ramanujan for any choice of l.

Remark 12 In the paper, we discuss the construction of graphs when a finite group
G and its subgroup H are given. It would be also interesting to consider the situation
where finite groups G, H and an epimorphism p : G � H are given (i.e. H is a
quotient group of G).
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Post-Quantum Cryptography



A Survey of Solving SVP Algorithms and
Recent Strategies for Solving the SVP
Challenge

Masaya Yasuda

Abstract Recently, lattice-based cryptography has received attention as a candidate
of post-quantum cryptography (PQC). The essential security of lattice-based cryp-
tography is based on the hardness of classical lattice problems such as the shortest
vector problem (SVP) and the closest vector problem (CVP). A number of algorithms
have been proposed for solving SVP exactly or approximately, and most of them are
useful also for solving CVP. In this paper, we give a survey of typical algorithms for
solving SVP from a mathematical point of view. We also present recent strategies
for solving the Darmstadt SVP challenge in dimensions higher than 150.

Keywords Shortest vector problem (SVP) · Enumeration · Sieve · Lattice basis
reduction · LLL · BKZ · Random sampling · Sub-sieving

1 Introduction

There has recently been a substantial amount of research for large-scale quantum
computers. On the other hand, if such computers were built, they could break cur-
rently used public-key cryptosystems such as the RSA cryptosystem and the elliptic
curve cryptography. (See Shor 1994 for Shor’s quantum algorithms.) In order to pre-
pare information security systems to be able to resist quantum computing, the US
National Institute of Standards and Technology (NIST) began a process to develop
new standards for PQC in 2015 and called for proposals in 2016. It has rapidly accel-
erated to research lattice-based cryptography as a candidate of PQC. Specifically, at
the submission deadline of the end of November 2017 for the call, NIST received
more than 20 proposals of lattice-based cryptosystems. Among them, more than 10
proposals were allowed for Round 2 submissions around the end of January 2019.
(See the web page of NIST 2016.) The security of such proposals relies on the hard-
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ness of cryptographic lattice problems such as learningwith errors (LWE) andNTRU.
Such problems are reduced to approximate-SVP or approximate-CVP. (For exam-
ple, see Albrecht et al. 2018 for details.) Therefore, it is becoming more important
to understand classical lattice problems for evaluating the security of lattice-based
PQC candidates.

For a positive integer n, a (full-rank) lattice L in Rn is the set of all integral linear
combinations of linearly independent vectors b1, . . . ,bn in R

n . (The set of the bi ’s
is called a basis of L .) Given a basis of a lattice L , SVP asks to find the non-zero
shortest vector in L . In this paper, we give a survey of typical algorithms for solving
SVP from a mathematical point of view. These algorithms can be classified into two
categories, depending on whether they solve SVP exactly or approximately. Exact-
SVP algorithms perform an exhaustive search for an integer combination of the basis
vectors bi ’s to find the non-zero shortest lattice vector v = ∑n

i=1 vibi ∈ L , and their
cost is expensive. In contrast, approximate-SVP algorithms are much faster than
exact algorithms, but they find short lattice vectors, not necessarily the shortest ones.
However, exact- and approximate-SVP algorithms are complementary. For example,
exact algorithms apply an approximation algorithm as a preprocessing to reduce
their expensive cost, while several approximate-SVP algorithms call many times an
exact algorithm in low dimension as a subroutine to find a very short lattice vector.
In this paper, we also introduce recent strategies for solving the Darmstadt SVP
challenge Darmstadt (2010), in which sample lattice bases are presented in order to
test algorithms solving SVP. In particular, these strategies combine approximate- and
exact-SVP algorithms to efficiently solve SVP in high dimensions such as n ≥ 150.

Notation. The symbols Z, Q, and R denote the ring of integers, the field of
rational numbers, and the field of real numbers, respectively. Let �z� denote the
rounding integer of an integer z. We represent all vectors in column format. For
a = (a1, . . . , an)

� ∈ R
n , let ‖a‖ denote its Euclidean norm. For a = (a1, . . . , an)

�
and b = (b1, . . . , bn)

�, let 〈a,b〉 denote the inner product
∑n

i=1 ai bi . Denote by
Vn(R) the volume of the n-dimensional ball of radius R > 0 centered at the origin. In
particular, we let νn = Vn(1) denote the volume of the unit ball. Then Vn(R) = νn Rn

and

νn = πn/2

�(1 + n/2)
∼ 1√

πn

(
2πe

n

)n/2

using Stirling’s formula, where �(s) = ∫ ∞
0 t s−1e−t dt denotes the Gamma function.

2 Mathematical Background

In this section, we introduce basic definitions and properties on lattices, and present
famous lattice problems whose hardness ensures the essential security of lattice-
based cryptography. (For example, see Galbraith 2012, Part IV or Nguyen 2009 for
more details.)
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2.1 Lattices and Their Bases

For a positive integer n, let b1, . . . ,bn be n linearly independent (column) vectors
in Rn . The set of all integral linear combinations of the bi ’s is a (full-rank) lattice

L = L(b1, . . . ,bn) =
{

n∑

i=1

vibi : vi ∈ Z for all 1 ≤ i ≤ n

}

of dimension n with basis B = (b1, . . . ,bn) ∈ R
n×n . (A basis is regarded not only

as a set of vectors, but also as a matrix whose column vectors span a lattice.) Every
lattice has infinitely many bases if n ≥ 2; if two bases B1 and B2 span the same
lattice, then there exists an n × n unimodular matrix U ∈ GLn(Z) with B1 = B2U.
The volume of L is defined as vol(L) = | det(B)|, independent of the choice of bases.

The Gram–Schmidt orthogonalization for an (ordered) basis B is the orthogonal
familyB∗ = (b∗

1, . . . ,b
∗
n) ∈ R

n×n , recursively defined by b∗
1 = b1 and for 2 ≤ i ≤ n

b∗
i = bi −

i−1∑

j=1

μi, jb∗
j , where μi, j = 〈bi ,b∗

j 〉
‖b∗

j‖2
for 1 ≤ j < i ≤ n.

Notice that the Gram–Schmidt vectors b∗
i ’s depend on the order of basis vectors inB.

For convenience, setμ = (μi, j ) ∈ R
n×n where letμi, j = 0 for all i < j andμk,k = 1

for all k. Then B = B∗μ, and thus vol(L) = ∏n
i=1 ‖b∗

i ‖ from the orthogonality of
Gram–Schmidt vectors. For 2 ≤ � ≤ n, let π� denote the orthogonal projection over
the orthogonal supplement of the R-vector space 〈b1, . . . ,b�−1〉R as

π� : Rn −→ 〈b1, . . . ,b�−1〉⊥R = 〈b∗
�, . . . ,b

∗
n〉R, π�(x) =

n∑

i=�

〈x,b∗
i 〉

‖b∗
i ‖2

b∗
i .

Every projection map depends on a basis. We also set π1 = id for convenience.

2.2 Successive Minima, Hermite’s Constants, and Gaussian
Heuristic

For every 1 ≤ i ≤ n, the i th successive minimum of an n-dimensional lattice L ,
denoted byλi (L), is defined as theminimumofmax1≤ j≤i ‖v j‖over all i linearly inde-
pendent vectors v1, . . . , vi ∈ L . In particular, the first minimum λ1(L) is the norm of
the shortest non-zero vector in L . We clearly have λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L) by
definition.Moreover, for any basisB = (b1, . . . ,bn) of L , its Gram–Schmidt vectors
satisfy λi (L) ≥ mini≤ j≤n ‖b∗

j‖ for every 1 ≤ i ≤ n. (See Bremner 2011, Proposition
3.14 for proof.)
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Hermite (1850) first proved that the quantity λ1(L)2

vol(L)2/n is upper bounded over all
lattices L of dimension n. Its supremum over all lattices of dimension n is calledHer-
mite’s constant of dimension n, denoted by γn . This implies λ1(L) ≤ √

γnvol(L)1/n

for any lattice L of dimension n. As its extension, it satisfies

(
r∏

i=1

λi (L)

)1/r

≤ √
γnvol(L)1/n for 1 ≤ r ≤ n.

This is known as Minkowski’s second theorem. (See Martinet 2013, Chap.2 for
proof.) It is important to know the value of γn in order to obtain an upper bound of
λ1(L); Minkowski’s convex body theorem implies γn ≤ 4ν−2/n

n . (SeeMartinet 2013,
Chap.2 for proof.) This shows that

λ1(L) ≤ 2ν−1/n
n vol(L)1/n (1)

for any lattice L of dimension n. Moreover, it satisfies γn ≤ 1 + n
4 from well-known

formulas for νn . It is very difficult to find the exact value of γn , and such values are
known for only a few integers n. However, every γn is known as essentially linear
in n. It also satisfies Mordell’s inequality γn ≤ γ

(n−1)/(k−1)
k for any n ≥ k ≥ 2. (See

Nguyen 2009 for more details on Hermite’s constants.)
Given a lattice L of dimension n and a measurable set S in R

n , the Gaus-
sian Heuristic predicts that the number of vectors in L ∩ S is roughly equal to
vol(S)/vol(L). By applying the ball of radius λ1(L) centered at the origin in R

n ,
it leads to the prediction of the norm of the shortest non-zero vector in L . Specifi-
cally, the expectation of λ1(L) according to the Gaussian Heuristic is given by

GH(L) = ν−1/n
n vol(L)1/n ∼

√
n

2πe
vol(L)1/n.

This is tight compared to Eq. (1). Note that this is only a heuristic. But for “random”
lattices,λ1(L) is asymptotically equal toGH(L)with overwhelming probabilityAjtai
(1996).

2.3 Introduction to Lattice Problems

The most famous lattice problem is given below.

•? The Shortest Vector Problem (SVP)

Given a basis B = (b1, . . . ,bn) of a lattice L , find the shortest non-zero vector in
L , that is, a vector s ∈ L such that ‖s‖ = λ1(L).
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It was proven by Ajtai (1996) that SVP is NP-hard under randomized reductions.
SVP can be relaxed by an approximate factor: Given a basis of a lattice L and an
approximation factor f ≥ 1, find a non-zero vector v in L such that ‖v‖ ≤ f λ1(L).
Approximate-SVP is exactly SVP when f = 1. It is unlikely that one can efficiently
solve approximate-SVP within quasi-polynomial factors in n, while approximate-
SVP within a factor

√
n/ log(n) is unlikely to be NP-hard. (See Nguyen 2009 for

more details.)
Another famous lattice problem is given below.

•? The Closest Vector Problem (CVP)

Given a basis B = (b1, . . . ,bn) of a lattice L and a target vector t, find a vector in
L closest to t, that is, a vector v ∈ L such that the distance ‖t − v‖ is minimized.

CVP is at least as hard as SVP. As in the case of SVP, we can define an approximate
variant of CVP by an approximate factor. Approximate-CVP is also at least as hard
as approximate-SVP with the same factor. From a practical point of view, both
are considered equally hard, due to Kannan’s embedding technique Kannan (1987)
which can transform approximate-CVP into approximate-SVP. (See also Galbraith
2012 for the embedding.)

The security of modern lattice-based cryptosystems is based on the hardness of
cryptographic lattice problems, such as the LWE and the NTRU problems. (For
example, see NIST 2016 for NIST post-quantum candidates.) Such lattice problems
are reduced to approximate-SVP or approximate-CVP. (For example, see Albrecht
et al. 2018 for details.)

3 Solving SVP Algorithms

In this section, we present typical algorithms for solving SVP. These algorithms
can be classified into two categories, depending on whether they solve SVP exactly
or approximately. However, both categories are complementary; exact algorithms
first apply an approximation algorithm as a preprocessing to reduce their cost, while
blockwise algorithms (e.g., the BKZ algorithm presented below) call many times an
exact algorithm in low dimension as a subroutine to find a very short lattice vector.

3.1 Exact-SVP Algorithms

Exact-SVPalgorithmsfind the non-zero shortest lattice vector, but they are expensive.
These algorithms perform an exhaustive search of all short vectors, whose number
is exponential in the dimension (in the worst case). These algorithms can be split in
two categories; polynomial-space algorithms and exponential-space algorithms.



194 M. Yasuda

3.1.1 Polynomial-Space Exact Algorithms: Enumeration

They are based on enumeration, which dates back to the early 1980s with work
by Pohst (1981), Kannan (1983), and Fincke–Pohst (1985). Enumeration is simply
an exhaustive search for an integer combination of the basis vectors such that the
lattice vector is the shortest. An enumeration algorithm takes as input an enumeration
radius R > 0 and a basis B = (b1, . . . ,bn) of a lattice L , and outputs all non-zero
vectors s in L such that ‖s‖ ≤ R (if exists). The radius R is taken as an upper bound
of λ1(L), like

√
γnvol(L)1/n , to find the shortest non-zero lattice vector. It goes

through the enumeration tree formed by all vectors in the projected lattices πn(L),
πn−1(L), · · · , π1(L) = L with norm at most R. More precisely, the enumeration
tree is a tree of depth n, and for each 1 ≤ k ≤ n + 1, the nodes at depth n + 1 − k
are all the vectors in the projected lattice πk(L) with norm at most R. In particular,
the root of the tree is the zero vector because πn+1(L) = {0}. The parent of a node
u ∈ πk(L) at depth n + 1 − k is the node πk+1(u) at depth n − k. The child nodes
are arranged in order of norms.

Here we introduce the basic idea of the Schnorr–Euchner algorithm Schnorr and
Euchner (1994), which is a depth first search of the enumeration tree to find all
leaves in practice. (cf. Kannan’s algorithm 1983 is asymptotically superior in the
running time, but it is not competitive in practice due to a substantial overhead of
recursive procedures. See also Micciancio and Walter 2014 for such discussion.)
We represent the shortest non-zero vector as s = v1b1 + · · · + vnbn ∈ L for some
unknown integers vi ’s. With Gram–Schmidt information of B, it is rewritten as

s =
n∑

i=1

vi

⎛

⎝b∗
i +

i−1∑

j=1

μi, jb∗
j

⎞

⎠ =
n∑

j=1

⎛

⎝v j +
n∑

i= j+1

μi, j vi

⎞

⎠b∗
j .

Due to the orthogonality of Gram–Schmidt vectors b∗
j ’s, the squared norms of pro-

jections of the vector s are given as for every 1 ≤ k ≤ n

‖πk(s)‖2 =
n∑

j=k

⎛

⎝v j +
n∑

i= j+1

μi, j vi

⎞

⎠

2

‖b∗
j‖2.

If s is a leaf of the enumeration tree, then its projections all satisfy ‖πk(s)‖2 ≤ R2 for
all 1 ≤ k ≤ n. These n inequalities together with above equations enable to perform
an exhaustive search for the integral coordinates vn, vn−1, . . . , v1 of s:

(

vk +
n∑

i=k+1

μi,kvi

)2

≤
R2 − ∑n

j=k+1

(
v j + ∑n

i= j+1 μi, j vi

)2 ‖b∗
j‖2

‖b∗
k‖2

(2)
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for every 1 ≤ k ≤ n. We start with k = n in Eq. (2), that is, 0 ≤ vn ≤ R
‖b∗

n‖ , because
we can restrict to “positive” nodes due to the symmetry of the enumeration tree.
Choosing a candidate of vn , we move to the next index k = n − 1 in Eq. (2), that

is, (vn−1 + μn,n−1vn)
2 ≤ R2−v2n‖b∗

n‖2
‖b∗

n−1‖2 to find a candidate of vn−1. By repeating this
procedure, assume that the integers vn, . . . , vk+1 are found for some 1 < k < n.
Then Eq. (2) enables to compute an interval Ik such that vk ∈ Ik , and thus to perform
an exhaustive search for the integer vk . A depth first search of the tree corresponds
to enumerating the interval from its middle, namely, a zig-zag search like

vk = �ck� , �ck� ± 1, �ck� ± 2, · · · ,

where ck = −∑n
i=k+1 μi,kvi . The basic Schnorr–Euchner enumeration algorithm

Schnorr and Euchner (1994) is as below (see Gama et al. 2010, Algorithm 2 for the
algorithm with some improvements).

Algorithm: The basic Schnorr–Euchner enumeration Schnorr and Euchner
(1994)

Input: A basis B = (b1, . . . ,bn) of a lattice L and a radius R with λ1(L) ≤ R
Output: The shortest non-zero vector s = ∑n

i=1 vibi in L
1: Compute Gram–Schmidt information μi, j and ‖b∗

i ‖2 of B
2: (ρ1, . . . , ρn+1)=0, (v1, . . . , vn)=(1, 0, . . . , 0), (c1, . . . , cn)=0, (w1, . . . , wn)=

0
3: k = 1, last_nonzero = 1 // largest i for which vi �= 0
4: while true do
5: ρk ← ρk+1 + (vk − ck)

2 · ‖b∗
k‖2 // ρk = ‖πk(s)‖2

6: if ρk ≤ R2 then
7: if k = 1 then R2 ← ρk , s ← ∑n

i=1 vibi ; // update the squared radius
8: else k ←k−1, ck ← −∑n

i=k+1 μi,kvi , vk ← �ck�, wk ← 1;
9: else
10: k ← k + 1 // going up the tree
11: if k = n + 1 then return s;
12: if k ≥ last_nonzero then last_nonzero ← k, vk ← vk + 1;
13: else
14: if vk > ck then vk ← vk − wk ; else vk ← vk + wk ; // zig-zag search
15: wk ← wk + 1
16: end if
17: end if
18: end while

The running time of the enumeration algorithm fully depends on the total num-
ber of tree nodes N . An estimate of N can be derived from the Gaussian Heuristic.
More precisely, the number of nodes at level � is exactly half the number of vectors
in the projected lattice πn+1−�(L) with norm at most R. Since vol(πn+1−�(L)) =
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∏n
i=n+1−� ‖b∗

i ‖, the Gaussian Heuristic predicts the number of nodes at level �

scanned by the Schnorr–Euchner algorithm to be close to

H� ≈ 1

2
· V�(R)
∏n

i=n+1−� ‖b∗
i ‖

.

Then N ≈ ∑n
�=1 H�. For a “good” basis (reduced by LLL or BKZ, introduced in

the next subsection), we have ‖b∗
i ‖/‖b∗

i+1‖ ≈ q for some constant q. This is called
the geometric series assumption (GSA),1 first introduced by Schnorr (2003). The
constant q depends on the reduction algorithm. For example, we experimentally have
q ≈ 1.04 by LLL and q ≈ 1.025 by BKZ with blocksize 20 for high-dimensional
lattices (see Gama and Nguyen 2008 for details.) Now we take the enumeration
radius R = √

γnvol(L)1/n , which is optimal in the worst case. With the constant q,
we estimate

H� ≈ q(n−�)(n−1)/2V�(
√

γn)

2q(n−�−1)(n−�)/2
= q�(n−�)/22O(n)

since we can roughly estimate V�(
√

γn) = 2O(n) from
√

γn = 	
(√

n
)
Gama et al.

(2010). The right-hand term is maximized for � = n
2 , and it is less than qn2/82O(n).

Thus the maximum of H� is super-exponential in n and is reached for � ≈ n
2 . (See

Gama et al. 2010, Fig. 1 for the actual number of nodes, which is very close to this
prediction.) Since smaller q is obtained for a more reduced basis, it shows that the
more reduced the input basis is, the less are the nodes in the enumeration tree, and
the cheaper the enumeration cost.

It is possible to obtain substantial speedups using pruning techniques by Gama
et al. (2010). Their idea is tempting not to enumerate all the tree nodes, by dis-
carding certain branches. (See Aono et al. 2018 for a lower bound of the time
complexity of pruned enumeration.) However, it decreases the success probabil-
ity to find the shortest non-zero lattice vector s. For instance, one might intu-
itively hope that ‖πn/2(s)‖2 � ‖s‖2/2, which is more restrictive than the inequality
‖πn/2(s)‖2 ≤ ‖s‖2. Formally, pruning replaces each of the n inequalities ‖πk(s)‖2 ≤
R2 by ‖πk(s)‖2 ≤ R2

n+1−k , where R1 ≤ · · · ≤ Rn = R are n real numbers defined
by a pruning strategy. A pruning parameter is set in the fplll library The FPLLL
development team (2016), and a pruning function for setting Ri ’s is implemented in
the progressive BKZ library Aono et al. (2016).

3.1.2 Exponential-Space Exact Algorithms: Sieve

These algorithms have a better asymptotic running time, but they all require exponen-
tial space 2	(n). The first algorithm of this kind is the randomized sieve algorithm
proposed by Ajtai, Kumar, and Sivakumar (AKS) Ajtai et al. (2001). The AKS

1This assumption states that for a reduced basis B = (b1, . . . ,bn), the plots of its Gram–Schmidt
log-norms log ‖b∗

i ‖ for 1 ≤ i ≤ n are on a straight line. (For example, see Schnorr 2003, Fig. 1.)
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algorithm outputs the shortest lattice vector with overwhelming probability, and its
asymptotic complexity is much better than deterministic enumeration algorithms
with 2O(n2) time complexity. The main idea is as follows (see also Nguyen 2008,
Sect. 3 or Nguyen 2009): Given a lattice L of dimension n, consider a ball S centered
at the origin and of radius r with λ1(L) ≤ r ≤ O(λ1(L)). Then #(L ∩ S) = 2O(n)

based on the Gaussian Heuristic. If we could perform an exhaustive search for all
vectors in L ∩ S, we could find the shortest lattice vector within 2O(n) polynomial-
time operations. Enumeration enables to perform an exhaustive search of L ∩ S,
but it requires to go through all the vectors in the union set S̃ = ⋃n

k=1 (πk(L) ∩ S),
whose total number is much larger than #(L ∩ S). In contrast, the AKS algorithm
performs a randomized sampling of L ∩ S, without going through the set S̃. If it
was uniformly sampled over L ∩ S, a short lattice vector would be included in N
samples with probability close to 1 for N � #(L ∩ S). Unfortunately, it is unclear
whether the uniform property is satisfied by the AKS sampling. However, it can be
shown that there exists a vector w ∈ L ∩ S such that w and w + s can be sampled
with non-zero probability for some shortest lattice vector s. Thus the shortest lattice
vector is obtained by computing the shortest difference of any pairs of the N sampled
vectors in L ∩ S.

There are several heuristic variants of the AKS algorithm with time complexity
2O(n) and space complexity exponential in n for an n-dimensional lattice L Baiet al.
(2016), Herold and Kirshanova (2017), Micciancio and Voulgaris (2010), Nguyen
(2008). Given a basis of L , these algorithms build databases of lattice vectors with
norms at most R · GH(L) for a small constant R > 0 such as R2 = 4

3 . In generic
sieves, it is checked whether the sum or the difference of any pair of vectors in
databases becomes shorter. The basic sieve algorithm is as below.

Algorithm: The basic sieve

Input: A basisB = (b1, . . . ,bn) of a lattice L and a size parameter N = (
4
3

)n/2+o(n)

Output: A database of N short vectors in L
1: Take a set D of N random vectors in L (with norm at most 2nvol(L)1/n)
2: while ∃(v,w) ∈ D2 such that ‖v + w‖ < ‖v‖ (resp., ‖v − w‖ < ‖v‖) do
3: v ← v + w (resp., v ← v − w) // update vectors in the database D
4: end while
5: return D

In Step 1 of the above algorithm, the initialization of the database D can be
performed by first computing an LLL-reduced basis (see the next subsection for
the LLL reduction), and taking random small integral combinations of the basis
vectors. (A natural idea is to use a stronger reduction algorithm such as BKZ in
order to generate shorter initial vectors.) The Nguyen–Vidick sieve (2008) finds
pairs of vectors (v1, v2) from D, whose sum or difference gives a shorter vector, that
is, ‖v1 ± v2‖ < maxv∈D ‖v‖. Once such a pair is found, the longest vector from the
database gets replaced by v1 ± v2. The database size is a priori fixed to the asymptotic



198 M. Yasuda

heuristic minimum 20.2075n+O(n) in order to find enough such pairs. The running time
is quadratic in the database size. The Gauss sieve (2010) is a variant of the Nguyen–
Vidick sieve with substantial improvements; the main improvement is to divide the
database into two parts, the so-called “list ” part and the “queue” part. Both parts
are separately sorted by Euclidean norm in order to make early reduction likely. In
updating vectors, the queue part enables to avoid considering the same pair several
times. The running time and the database size for the Gauss sieve are asymptotically
the same as for the Nguyen–Vidick sieve, but its performance is better in practice.
The 3-sieve Baiet al. (2016), Herold and Kirshanova (2017) searches for triples of
lattice vectors whose sum gives a shorter vector. (cf. the Nguyen–Vidick and the
Gauss algorithms are a kind of 2-sieve.) There are more possible triples than pairs to
shorten vectors in the database, but a search for such triples is more costly. (Filtering
techniques Herold and Kirshanova 2017 are required to speed up such a search.)
Several tricks and techniques have been proposed to improve sieve algorithms, such
as the SimHash technique Charikar (2002), Ducas (2018), Fitzpatrick et al. (2014).
Several practical sieve algorithms also have been implemented in the fplll library The
FPLLL development team (2016).

3.2 Approximate-SVP Algorithms

These algorithms are much faster than exact algorithms, but they output short lattice
vectors, not necessarily the shortest ones.

3.2.1 LLL Reduction

The first efficient approximate-SVP algorithm is the celebrated algorithm by Lenstra,
Lenstra, and Lovász (LLL) Lenstra et al. (1982). Nowadays it is known as the most
famous algorithm of lattice basis reduction, which finds a lattice basis with short
and nearly orthogonal basis vectors. Such a basis is called reduced or good. We
introduce the notion of LLL reduction. Let B = (b1, . . . ,bn) be a basis of a lattice
L , and B∗ = (b∗

1, . . . ,b
∗
n) its Gram–Schmidt vectors with coefficients μi, j . For a

parameter 1
4 < δ < 1, the basis B is called δ-LLL-reduced if it satisfies two condi-

tions: (i) (Size-reduction condition) |μi, j | ≤ 1
2 for all 1 ≤ j < i ≤ n. (ii) (Lovász’

condition) δ‖b∗
k−1‖2 ≤ ‖πk−1(bk)‖2 for all 2 ≤ k ≤ n. This can be rewritten as

‖b∗
k‖2 ≥ (δ − μ2

k,k−1)‖b∗
k−1‖2. Any δ-LLL-reduced basis satisfies the below proper-

ties (see Bremner 2011 for proof):

• ‖b1‖ ≤ α(n−1)/4vol(L)1/n , where α = 4
4δ−1 > 4

3 .
• ‖bi‖ ≤ α(n−1)/2λi (L) for 1 ≤ i ≤ n, and

∏n
i=1 ‖bi‖ ≤ αn(n−1)/4vol(L).

Given any basis of L , the LLL algorithm finds a δ-LLL-reduced basis of L . As seen
from the above second property, it can solve approximate-SVP with factor α(n−1)/2.
The basicLLLalgorithm is given below (see alsoGalbraith 2012,Chap. 17 orNguyen
2009).
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Algorithm: The basic LLL Lenstra et al. (1982)

Input: AbasisB = (b1, . . . ,bn) of a lattice L , and a reduction parameter 1
4 < δ < 1

Output: A δ-LLL-reduced basis B of L
1: Compute Gram–Schmidt information μi, j and ‖b∗

i ‖2 of the input basis B
2: k ← 2
3: while k ≤ n do
4: Size-reduce B = (b1, . . . ,bn) // At each k, we recursively change bk ← bk −

�μk, j�b j for 1 ≤ j ≤ k − 1 (e.g., see Galbraith 2012, Algorithm 24)
5: if (bk−1,bk) satisfies Lovász’ condition then
6: k ← k + 1
7: else
8: Swap bk with bk−1, and update Gram–Schmidt information of B
9: k ← max(k − 1, 2)
10: end if
11: end while

In the LLL algorithm, a pair of adjacent basis vectors (bk−1,bk) is swapped if
it does not satisfy Lovász’ condition. Thus the output basis is δ-LLL-reduced if the
algorithm terminates. The quantity Pot(B) = ∏n−1

i=1 ‖b∗
i ‖2(n−i) is called the potential

of a basis B. Every swap in the LLL algorithm decreases the potential of an input
basis by a factor at least δ < 1. (cf. the size-reduction procedure does not change
the potential.) This guarantees the termination of the LLL algorithm in polynomial
time in n. Furthermore, the LLL algorithm is applicable also for linearly dependent
vectors to remove their linear dependency. (See Bremner 2011, Chap. 6, Cohen 2013,
Sect. 2.6.4, Pohst 1987 or Sims 1994, Sect. 8.7 for details.)

3.2.2 Variants of LLL

LLL with Deep Insertions (DeepLLL)

This variant is a straightforward generalization of LLL, in which non-adjacent basis
vectors can be changed. Specifically, a basis vector bk is inserted between bi−1 and bi

as σi,k(B) = (. . . ,bi−1,bk,bi , . . . ,bk−1,bk+1, . . . ), called a deep insertion, if the
so-called deep exchange condition ‖πi (bk)‖2 < δ‖b∗

i ‖2 is satisfied for 1
4 < δ < 1.

In this case, the newGSO vector at the i th position is given by πi (bk), strictly shorter
than the old GSO vector b∗

i . A basis B = (b1, . . . ,bn) is called δ-DeepLLL-reduced
if it satisfies two conditions: (i) it is size-reduced, (ii) ‖πi (bk)‖2 ≥ δ‖b∗

i ‖2 for all 1 ≤
i < k ≤ n. (The case i = k − 1 is just Lovász’ condition.) Any δ-DeepLLL-reduced
basis satisfies the below properties Yasuda and Yamaguchi (2019), Theorem 1:

• ‖b1‖ ≤ α
n−1
2n

(
1 + α

4

) (n−1)(n−2)
4n vol(L)

1
n , where α is the same as in LLL.

• ‖bi‖ ≤ √
α

(
1+ α

4

) n−2
2 λi (L) for 1 ≤ i ≤ n, and

∏n
i=1 ‖bi‖ ≤ (

1 + α
4

) n(n−1)
4 vol(L).
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These properties are strictly stronger than the case of LLL. The basic DeepLLL algo-
rithm Schnorr and Euchner (1994) is given below (see also Bremner 2011, Fig. 5.1
or Cohen 2013, Algorithm 2.6.4).

Algorithm: The basic DeepLLL Schnorr and Euchner (1994)

Input: AbasisB = (b1, . . . ,bn) of a lattice L , and a reduction parameter 1
4 < δ < 1

Output: A δ-DeepLLL-reduced basis B of L
1: Compute Gram–Schmidt information μi, j and ‖b∗

i ‖2 of the input basis B
2: k ← 2
3: while k ≤ n do
4: Size-reduce B as in LLL
5: C ← ‖bk‖2, i ← 1
6: while i < k do
7: if C ≥ δ‖b∗

i ‖2 then
8: Compute C ← C − μ2

k,i‖b∗
i ‖2 and i ← i + 1 // C = ‖πi (bk)‖2

9: else
10: B ← σi,k(B) // a deep insertion
11: Update the Gram–Schmidt information of B, and k ← max(i, 2) − 1
12: end if
13: end while
14: k ← k + 1
15: end while

ComparedwithLLL, it is complicated to update theGram–Schmidt information of
B after every deep insertion. (SeeYamaguchi andYasuda 2017.) Every deep insertion
does not always decrease the potential of an input basis, and thus the complexity
of DeepLLL is no longer polynomial-time but potentially super-exponential in the
lattice dimension. However, DeepLLL often finds much shorter lattice vectors than
LLL in practice Gama and Nguyen (2008).

Block Korkine–Zolotarev (BKZ) Algorithm

Let us first introduce a strong notion of reduction: A basis B = (b1, . . . ,bn) of a lat-
tice L is called HKZ-reduced if it is size-reduced and it satisfies ‖b∗

i ‖ = λ1(πi (L))

for all 1 ≤ i ≤ n. For 1 ≤ i ≤ j ≤ n, denote by B[i, j] the local projected block
(πi (bi ), πi (bi+1), . . . , πi (b j )), and by L [i, j] the lattice spanned by B[i, j]. The notion
of BKZ-reduction is a local block version of HKZ-reduction Schnorr (1987),
Schnorr (1992), Schnorr and Euchner (1994). For a blocksize 2 ≤ β ≤ n, a basis
B = (b1, . . . ,bn) of a lattice L is called β-BKZ-reduced if it is size-reduced and
every local block B[ j, j+β−1] is HKZ-reduced for 1 ≤ j ≤ n − β + 1. The second
condition means ‖b∗

j‖ = λ1(L [ j,k]) for 1 ≤ j ≤ n − 1 with k = min( j + β − 1, n).

Every β-BKZ-reduced basis satisfies ‖b1‖ ≤ γ
(n−1)/(β−1)
β λ1(L) Schnorr (1992). The
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BKZalgorithmSchnorr andEuchner (1994) finds aβ-BKZ-reduced basis, and it calls
LLL to reduce every local block before finding the shortest vector over the block
lattice. (As β increases, a shorter lattice vector can be found, but the running time is
more costly.)

Algorithm: The basic BKZ Schnorr and Euchner (1994)

Input: A basis B = (b1, . . . ,bn) of a lattice L , a blocksize 2 ≤ β ≤ n, and a reduc-
tion parameter 1

4 < δ < 1 of LLL
Output: A β-DeepBKZ-reduced basis B of L
1: B ← LLL(B, δ) // Compute μi, j and ‖b∗

j‖2 of the new basis B together
2: z ← 0, j ← 0
3: while z < n − 1 do
4: j ← ( j mod (n − 1)) + 1, k ← min( j + β − 1, n), h ← min(k + 1, n)

5: Find v ∈ L such that ‖π j (v)‖ = λ1(L [ j,k]) by enumeration or sieve
6: if ‖π j (v)‖2 < ‖b∗

j‖2 then
7: z ← 0 and call LLL((b1, . . . ,b j−1, v,b j , . . . ,bh), δ) // Insert v ∈ L and

remove the linear dependency to obtain a new basis
8: else
9: z ← z + 1 and call LLL((b1, . . . ,bh), δ)

10: end if
11: end while

It is customary to terminate the BKZ algorithm after a selected number of calls
to an exact-SVP algorithm over block lattices. (See Hanrot et al. 2011 for analysis.)
Efficient variants such as BKZ 2.0 Chen (2011) have been proposed, and some of
them have been implemented in The FPLLL development team (2016). The Hermite
factor is a good index tomeasure the practical output quality of a reduction algorithm.
(See Gama and Nguyen 2008 for their experiments.) It is defined by γ = ‖v‖

vol(L)1/n ,
where v is the shortest basis vector output by a reduction algorithm for a basis of a
lattice L of dimension n. Under the Gaussian Heuristic and GSA, a limiting value of
the root Hermite factor of BKZ with blocksize β is predicted in Chen (2013) as

lim
n→∞ γ

1
n =

(

ν
− 1

β

β

) 1
β−1

∼
(

β

2πe
(πβ)

1
β

) 1
2(β−1)

.

There are experimental evidences to support this prediction for high blocksizes such
as β > 50. (Note that the Gaussian Heuristic holds in practice for random lattices
in high dimensions, but unfortunately it is violated in low dimensions.) In a simple
form based on the Gaussian Heuristic, the GSA shape of a β-BKZ-reduced basis of

volume 1 is predicted as ‖b∗
i ‖ ≈ α

n−1
2 −i

β , where αβ =
(

β

2πe

)1/β
. This is reasonably

accurate in practice for β > 50 and β � n. (See Chen 2013, 2011; Yu and Ducas
2017.) Other variants of BKZ have been proposed such as slide reduction Gama
and Nguyen (2008), self-dual BKZ Micciancio and Walter (2016), and progressive-
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BKZ Aono et al. (2016). As a mathematical improvement of BKZ, DeepBKZ was
recently proposed in Yamaguchi and Yasuda (2017), in which DeepLLL is called a
subroutine alternative to LLL. In particular, DeepBKZ finds a short lattice vector by
smaller blocksizes than BKZ in practice. (Dual and self-dual variants of DeepBKZ
were also proposed in Yasuda (2018), Yasuda et al. (2018).)

4 The SVP Challenge and Recent Strategies

To test algorithms solving SVP, sample lattice bases are presented in Darmstadt
(2010) for dimensions from 40 up to 200. (The lattices are random in the sense of
Goldstein and Mayer Goldstein and Mayer (2003).) For every lattice L , any non-
zero lattice vector with (Euclidean) norm less than 1.05GH(L) can be submitted to
the hall of fame in the SVP challenge. To enter the hall of fame, the lattice vector
is required to be shorter than a previous one in the same dimension (with possibly
different seed). Note that not all lattice vectors in the hall of fame are necessarily
the shortest. In this section, we introduce two recent strategies for solving the SVP
challenge in high dimensions such as n ≥ 150.

4.1 The Random Sampling Strategy

Early in 2017, a non-zero vector in a lattice L of dimension n = 150 with norm
less than 1.05GH(L) was first found by Teruya and Kashiwabara using many high-
performance servers. (See Teruya et al. 2018 for their large-scale experiments.) Their
strategy is based on the work of Fukase and Kashiwabara (2015), which is an exten-
sion of Schnorr’s random sampling reduction (RSR) Schnorr (2003). Here we review
random sampling (SA) and RSR. For a lattice L of dimension n, fix 1 ≤ u < n to
be a constant of search space bound. Given a basis B = (b1, . . . ,bn) of L , SA sam-
ples a vector v = ∑n

i=1 νib∗
i in L satisfying νi ∈ (−1/2, 1/2] for 1 ≤ i < n − u,

νi ∈ (−1, 1] for n − u ≤ i < n and νn = 1. Let Su,B denote the set of such lattice
vectors. Since the number of candidates for νi with |νi | ≤ 1/2 (resp. |νi | ≤ 1) is 1
(resp. 2), there are 2u lattice vectors in Su,B. By calling SA up to 2u times, RSR gen-
erates v satisfying ‖v‖2 < 0.99‖b1‖2 Schnorr (2003), Theorem 1. Two extensions
are proposed in Fukase and Kashiwabara (2015) for solving the SVP challenge;
the first one is to represent a lattice vector by a sequence of natural numbers via
the Gram–Schmidt orthogonalization, and to sample lattice vectors on an appropri-
ate distribution of the representation. The second one is to decrease the sum of the
squared Gram–Schmidt lengths SS(B) := ∑n

i=1 ‖b∗
i ‖2 to make it easier to sample

very short lattice vectors. The effectiveness of their extensions is guaranteed by their
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statistical analysis on lattices. Specifically, under the randomness assumption (RA),2

they roughly estimate that the distribution of the squared length of a sampled vector
‖v‖2 = ∑n

i=1 ν2
i ‖b∗

i ‖2 follows the normal distribution N (μ, σ 2) with

μ =
∑n

i=1 ‖b∗
i ‖2

12
and σ =

(∑n
i=1 ‖b∗

i ‖4
180

)1/2

.

This implies that shorter lattice vectors are sampled as the squared-sum SS(B)

becomes smaller. Then the basic strategy in Fukase and Kashiwabara (2015); Teruya
et al. (2018) consists of the following two steps: (i) We reduce an input basis so that
it decreases the sum of its squared Gram–Schmidt lengths as small as possible, by
using LLL and insertion of sampled lattice vectors like BKZ. (See also Yasuda et al.
2017 for such procedure). (ii) With such reduced basis B, we then find a short lattice
vector by randomly sampling v = ∑

i=1 νib∗
i .

As a sequential work, Aono and Nguyen (2017) introduced lattice enumeration
with discrete pruning to generalize random sampling, and also provided a deep anal-
ysis of discrete pruning by using the volume of the intersection of a ball with a box. In
particular, under RA, the expectation of the length of a short vector generated by lat-
tice enumeration with discrete pruning from the so-called tag t = (t1, . . . , tn) ∈ Z

n

is roughly given by E(t) = ∑n
i=1

(
t2i
4 + ti

4 + 1
12

)
‖b∗

i ‖2,which is a generalization of
the above mean μ. However, it is shown in Aono and Nguyen (2017) that the empir-
ical correlation between E(t) and the volume of ball-box intersection is negative.
This is statistical evidence why decreasing SS(B) is important instead of increas-
ing the volume of ball-box intersection. Furthermore, the calculation of the volume
presented in Aono and Nguyen (2017) is much less efficient than the computation
of SS(B). In 2018, Matsuda et al. (2018) investigated the strategy of Fukase and
Kashiwabara (2015) by the Gram–Charlier approximation in order to precisely esti-
mate the success probability of sampling short lattice vectors, and also discussed the
effectiveness of decreasing SS(B) for sampling short lattice vectors.

4.2 The Sub-Sieving Strategy

Around the end of August 2018, many records for the SVP challenge in dimensions
up to 155 had been found by the sub-sieving strategy of Ducas (2018). (See Albrecht
et al. 2019 for their experiments report.) The basic idea is to reduce SVP in high
dimensions to the bounded distance decoding (BDD) problem in low dimensions, a
particular case of CVP, in which the target vector is known to be somewhat close to
the lattice. It enforces us to find an enormous number of short vectors in projected

2RA states that the coefficients νi of v = ∑n
i=1 νib∗

i sampled by SA are uniformly distributed in
[−1/2, 1/2] for 1 ≤ i < n − u and in [−1, 1] for n − u ≤ i < n. It does not hold strictly in practice.
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lattices, and the sieve is useful to collect such vectors. In particular, the sieve is
performed in projected lattices instead of the full lattice.

The specific strategy is as follows Ducas (2018), Section3. Given a basis B =
(b1, . . . ,bn) of a lattice L of high dimension n, we fix an integer d with 1 ≤ d ≤ n,
and perform the sieve in the projected lattice πd(L) to obtain a list of short lattice
vectors

D :=
{

v ∈ πd(L) | v �= 0 and ‖v‖ ≤
√
4

3
GH (πd(L))

}

.

We hope that the desired shortest non-zero vector s in the full lattice L projects
to a vector in the above list D, that is, it satisfies πd(s) �= 0 and ‖πd(s)‖ ≤√

4
3GH(πd(L)). (Note that πd(s) = 0 means that the vector s is in the sub-lattice

L(b1, . . . ,bd−1) of L . Here we do not care about the case.) Since ‖πd(s)‖ ≤ ‖s‖ ≈
GH(L), the condition

GH(L) ≤
√
4

3
GH (πd(L)) (3)

is sufficient to satisfy our hope. This condition is not tight, since the projected vector
πd(s) becomes shorter than the full vector s as the index d increases. By exhaustive
search over the list D, we assume that the projected vector sd := πd(s) ∈ D is known.
We need to recover the full vector s from sd . Write s = Bx for some x ∈ Z

n , and split
x as (x1 | x2)with x1 ∈ Z

d−1 and x2 ∈ Z
n−d+1. Then sd = πd(Bx) = Bdx2 and hence

x2 is known, where Bd = (πd(bd), . . . , πd(bn)). Now we need to recover x1 so that
s = B1x1 + B2x2 is small (or the shortest),whereB = (B1 | B2). This is an easyBDD
instance over the d-dimensional lattice spanned by B1 for the target vector B2x2. A
sufficient condition to solve this problemusingBabai’s nearest plane algorithmBabai
(1986) is that |〈b∗

i , s〉| ≤ 1
2‖b∗

i ‖2 for all 1 ≤ i < d. (See also Galbraith 2012, Chap.
18 for Babai’s algorithms.) Since |〈b∗

i , s〉| ≤ ‖b∗
i ‖‖s‖, a further sufficient condition

is that GH(L) ≤ 1
2 mini<d ‖b∗

i ‖. This condition is far from tight, and it should not
be a serious issue in practice. Indeed, even for a strongly reduced basis, the d first
Gram–Schmidt lengthswon’t bemuch smaller thanGH(L), say bymore than a factor
2. (The BKZ-preprocessing with blocksize β = n

2 is assumed in Ducas (2018).) A
concrete maximal value of d satisfying the condition (3) depends on the shape of
a basis B. It is estimated in Ducas (2018) that d = 	(n/ log n) is suitable over a
quasi-HKZ-reduced basis.

In 2019, Albrecht et al. (2019) proposed the General Sieve Kernel (G6K), an
abstract stateful machine supporting a variety of advanced lattice reductions based
on sieving algorithms. They have provided a highly optimized, multi-threaded, and
tweakable implementation of G6K as an open-source C++ and Python library. A
number of records in the hall of fame for the SVP challenge were found by the
sub-sieving strategy on G6K. (In June 2019, the highest dimension to be solved in
the SVP challenge is 157, using G6K.) Specifically, their experiments imply that in
average d = 11.46 + 0.0757n is a suitable free dimension of the sub-sieving strategy
for the SVP challenge in high dimensions n. Furthermore, their solution for the SVP
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challenge in dimension 151 was found 400 times faster than the times reported for
the SVP challenge in dimension 150, which was solved early in 2017 by the random
sampling strategy.
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Recent Developments in Multivariate
Public Key Cryptosystems

Yasufumi Hashimoto

Abstract Themultivariate signature schemes UOV, Rainbow, and HFEv- have been
considered to be secure and efficient enough under suitable parameter selections.
In fact, several second round candidates of NIST’s standardization project of Post-
QuantumCryptography are based on these schemes. On the other hand, there are few
multivariate encryption schemes expected to be practical and despite that, various
new schemes have been proposed recently. In the present paper, we summarizemulti-
variate schemes UOV, Rainbow, and (variants of) HFE generating the second round
candidates and study the practicalities of several multivariate encryption schemes
proposed recently.

Keywords Multivariate public key cryptosystem (MPKC) · Post-quantum
cryptography

1 Introduction

In 2016, NIST launched the standardization project of Post-Quantum Cryptography
(NIST 2020). A lot of schemes were submitted to the first round of its project and 26
of them were chosen as the second round candidates in 2019 (NIST 2020). LUOV
(Beullens et al. 2020), Rainbow (Ding et al. 2020) andGeMSS (Casanova et al. 2020)
are multivariate signature schemes in the second round. These schemes are based
on UOV (Kipnis et al. 1999; Patarin 1997), Rainbow (Ding et al. 2005), and HFEv-
(Patarin et al. 2001), respectively, which were proposed before or around 2000 and
have been still considered to be secure and efficient enough under suitable parameter
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selections. On the other hand, there are few practicalmultivariate encryption schemes
and despite that, various new schemes have been proposed in this decade.

The aim of this paper is to describe recent developments ofmultivariate public key
cryptosystems, not yet presented in the previous paper (Hashimoto 2017). We first
summarize in Sect. 2 the schemes UOV (Kipnis et al. 1999; Patarin 1997), Rainbow
(Ding et al. 2005), and (variants of) HFE (Patarin 1996) with short surveys on the sec-
ond round candidates LUOV (Beullens et al. 2020), Rainbow (Ding et al. 2020), and
GeMSS (Casanova et al. 2020). Besides, we study in Sect. 3 the encryption schemes
HFERP (Ikematsu et al. 2018), ZHFE (Porras et al. 2020), EFC (Szepieniec et al.
2016), and ABC (Tao et al. 2013) proposed recently, and show that the practicalities
of these schemes are notmuch higher than theHFE variants for encryption, which are
already known to be not too practical. Remark that MQDSS (Chen et al. 2016, 2020)
is also a second round candidate and has been considered as a multivariate signature
scheme since a set of randomly chosen multivariate quadratic forms is used in key
generation, signature generation, and signature verification. However, it is based on
Fiat–Shamir’s transform of the 5-pass identification scheme (Sakumoto et al. 2011)
and is far from other multivariate schemes. We then avoid to study MQDSS in this
paper.

2 UOV, Rainbow, and Variants of HFE

In this section, we describe UOV (Kipnis et al. 1999; Patarin 1997), Rainbow (Ding
et al. 2005), and variants of HFE (Patarin 1996) and give short surveys on the second
round candidates LUOV (Beullens et al. 2020), Rainbow (Ding et al. 2020), and
GeMSS (Casanova et al. 2020) of NIST’s project (NIST 2020). We first propose the
basic constructions of multivariate public key cryptosystems (MPKCS).

2.1 Basic Constructions of Multivariate Public Key
Cryptosystems

Let n,m ≥ 1 be integers, q a power of prime, and Fq a finite field of order q. Most
MPKCs are described as follows.

Secret key. Two invertible affine maps S : Fn
q → Fn

q , T : Fm
q → Fm

q and a quadratic
map G : Fn

q → Fm
q to be inverted feasibly.

Public key. The quadratic map F := T ◦ G ◦ S : Fn
q → Fm

q .

F : Fn
q

S Fn
q

G Fm
q

T Fm
q

Encryption scheme.
Encryption. For a plaintext p ∈ Fn

q , the ciphertext is c = F(p) ∈ Fm
q .
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Decryption. For a given ciphertext c ∈ Fm
q , compute z := T−1(c) and find y ∈ Fn

q

with G(y) = z. Then the plaintext is p = S−1(y).

Signature scheme.
Signature generation. For a message m ∈ Fm

q , compute z := T−1(m) and find
y ∈ Fn

q with G(y) = z. Then the signature is s = S−1(y).
Signature verification. The signature s ∈ Fn

q is verified by m = F(s).

Efficiency. The encryption and signature verification are done by substituting p, s ∈
Fn
q into m quadratic forms of n variables. Their complexities are then O(n2m) for

most MPKCs under naive implementations. Furthermore, it is known (Hashimoto
2017) that the complexities of encrypting n plaintexts and of verifying n signatures
simultaneously are O(nwm), where 2 ≤ w < 3 is a linear algebra constant. The
complexities of decryption and signature generation depend mainly on how to invert
G. We will discuss them in the individual schemes.

Security. There are two types of attacks on MPKCs. One is the direct attack to
recover the plaintext p of a given ciphertext c directly by solving a system of m
quadratic equations F(x) = ( f1(x), . . . , fm(x)) = c of n variables. The Gröbner
basis attack is considered to be the most standard approach, and its complexity
depends on the degree dreg of regularity of the corresponding polynomial system
F(x) − c. In general, dreg is known to be smaller when the system is more over-
defined (m � n) (Bardet et al. 2005). Furthermore, if q is small, the attacker will
solve more efficiently by combining with the exhaustive search, which is called a
hybrid method (Bettale et al. 2012). We also note that, if the system is massively
under-defined (n � m), the attacker can find (at least) one of the solutions more
effectively than the case of n ∼ m (Cheng et al. 2014; Kipnis et al. 1999; Miura et al.
2013; Tomae and Wolf 2012).

The other type is to recover partial information of the secret key (S, T ) which
is enough to invert F . In most known key recovery attacks on MPKCs, the
attacker uses the property of the coefficient matrices of quadratic forms in G. Let
G1, . . . ,Gm, F1, . . . , Fm be the coefficientmatrices of g1(x), . . . , gm(x), f1(x), . . . ,
fm(x), respectively, i.e., gl(x) = txGlx + (linear form) and fl(x) = txFlx +
(linear form) for 1 ≤ l ≤ m. Since F(x) = T (G(S(x))), it holds

⎛
⎜⎝
F1
...

Fm

⎞
⎟⎠ = T

⎛
⎜⎝

tSG1S
...

tSGmS

⎞
⎟⎠ . (1)

This shows that, if G1, . . . ,Gm have special properties, partial information S, T
will be recovered by the public information F1, . . . , Fm . How to recover and the
complexity of the attack depend on G1, . . . ,Gm , and then we discuss them in the
individual schemes.
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2.2 UOV

Let o, v ≥ 1 be integers and put n := o + v, m := o. The quadratic map G : Fn
q →

Fm
q is defined by

g j (x) =
∑
1≤i≤o

xi · (linear form of xo+1, . . . , xn)

+ (quadratic form of xo+1, . . . , xn),

(2)

for 1 ≤ j ≤ o. UOV (Unbalanced Oil and Vinegar signature scheme, Patarin (1997),
Kipnis et al. (1999) is constructed as follows.

Secret key. An invertible affine map S : Fn
q → Fn

q and the quadratic map G : Fn
q →

Fm
q defined above.

Public key. The quadratic map F := G ◦ S : Fn
q → Fm

q .

Signaturegeneration.For amessagem = (m1, . . . ,mo) ∈ Fm
q , chooseu1, . . . , uv ∈

Fq randomly and find y1, . . . , yo ∈ Fq such that

g1(y1, . . . , yo, u1, . . . , uv) = m1, . . . , go(y1, . . . , yo, u1, . . . , uv) = mo. (3)

The signature is s = S−1(y1, . . . , yo, u1, . . . , uv).
Signature verification. The signature s ∈ Fn

q is verified bym = F(s).

Complexity of signature generation. Since (3) is a system of o linear equations of
o variables, we see that the complexity of signature generation of UOV is O(n3).

Security. The most important attack on UOV is Kipnis–Shamir’s attack (Kipnis
et al. 1999; Kipnis and Shamir 1998), which recovers an affine map S′ such that

SS′ =
(∗o ∗
0 ∗v

)
by using the fact that G1, . . . ,Gm are matrices having the forms of

(
0o ∗
∗ ∗v

)
. Its complexity is known to be O(qmax (v−o,0) · n4) (Kipnis et al. 1999), and

then the parameter v must be sufficiently larger than o, namely n must be sufficiently
larger than 2m. This causes two inconveniences on UOV; one is that the sizes of keys
are relatively large, and the other is that the approaches in Tomae and Wolf (2012),
Cheng et al. (2014) weakens the security against the direct attacks a little. The later
is easily covered by taking (n,m) a little larger. For the former, several approaches
have been given until now. However, since some of key reduction approaches yield
critical vulnerabilities (e.g., Hashimoto 2019; Peng and Tang 2018), the security of
such UOVs must be studied quite carefully.

LUOV. LUOV (Beullens et al. 2020) is a signature scheme based on UOV and is a
second round candidate of NIST’s project. It is constructed over a finite field of even
characteristic field and the components and coefficients in S,G, F are elements of
F2. The size of keys is smaller and the security against the direct attack is not too
less than the original UOV. Remark that the security against Kipnis–Shamir’s attack
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is O(2v−o · n4) and a new attack on LUOVwas quite recently proposed in Ding et al.
(2013). Then the parameters o, v should be taken larger than the original version.
See Beullens et al. (2020) for the latest version.

2.3 Rainbow

Rainbow (Ding et al. 2005) is amulti-layer version ofUOV.Wenowdescribe the two-
layer version. Let o1, o2, v ≥ 1 be integers and put n = o1 + o2 + v, m = o1 + o2.
Define the quadratic map G : Fn

q → Fm
q by

g1(x), . . . , go1(x) =
∑

1≤i≤o1

xi · (linear form of xo1+1, . . . , xn)

+ (quadratic form of xo1+1, . . . , xn),

go1+1(x), . . . , gm(x) =
∑

o1+1≤i≤m

xi · (linear form of xm+1, . . . , xn)

+ (quadratic form of xm+1, . . . , xn),

(4)

Rainbow is constructed as follows.

Secret key.Two invertible affinemaps S : Fn
q → Fn

q , T : Fm
q → Fm

q and the quadratic
map G : Fn

q → Fm
q defined above.

Public key. The quadratic map F := T ◦ G ◦ S : Fn
q → Fm

q .

Signaturegeneration.For amessagem ∈ Fm
q to be signed, compute z = t(z1, . . . , zm)

:= T−1(m) and choose u1, . . . , uv ∈ Fq randomly. Find yo1+1, . . . , ym ∈ Fq such
that

go1+1(y1, . . . , ym, u1, . . . , uv) = zo1+1, . . . , gm(y1, . . . , ym, u1, . . . , uv) = zm .

(5)

After that, find y1, . . . , yo1 ∈ Fq such that

g1(y1, . . . , ym, u1, . . . , uv) = z1, . . . , go1(y1, . . . , ym, u1, . . . , uv) = zo1 . (6)

The signature is s = S−1(y1, . . . , ym, u1, . . . , uv).
Signature verification. The signature s ∈ Fn

q is verified bym = F(s).

Complexity of signature generation. Since (5) is a system of o2 linear equations
of o2 variables and (6) is a system of o1 linear equations of o1 variables, we see that
the complexity of signature generation is O(n3).
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Security. Kipnis–Shamir’s attack and rank attacks are major attacks on Rain-

bow. Since G1, . . . ,Go1 =
(
0o1 ∗
∗ ∗o2+v

)
and Go1+1, . . . ,Gm =

⎛
⎝
0o1 0 0
0 0o2 ∗
0 ∗ ∗v

⎞
⎠, the

complexity of Kipnis–Shamir’s attack (Kipnis et al. 1999; Kipnis and Shamir
1998) on Rainbow is O(qmax(o2+v−o1,0) · n4). Furthermore, by checking the ranks
of G1, . . . ,Gm , we see that the complexities of min-rank attack and high-rank attack
are O(qo2+v · n4) and O(qo1 · n4), respectively (Yang and Chen 2005). Note that
there have been several approaches to improve the efficiency of Rainbow. However,
some of improvements are known to be insecure (e.g., Hashimoto 2019; Hashimoto
et al. 2018; Peng and Tang 2018; Shim et al. 2017) and then the security of such
efficient Rainbows must be studied carefully.

Rainbow on NIST’s project. Rainbow (Ding et al. 2020) in the second round of
NIST’s project includes three versions; the standard Rainbow, the cyclic Rainbow,
and the compressed Rainbow. The public keys and the numbers of arithmetics for
signature verification for the later two Rainbows are smaller than the standard Rain-
bow. However, it is reported (Ding et al. 2020) that the verifications of the latter
two versions are slower than the standard version. We consider that it is because the
algorithms for verifications of the latter two versions are more complicated than the
naive algorithm for the standard Rainbow. Better implementations are required for
these arranged versions.

2.4 HFE

Let n,m, d ≥ 1 be integers with n = m, d < n. Define G : Fqn → Fqn by

G (X) : =
∑

0≤i≤ j≤d

αi j X
qi+q j +

∑
0≤i≤d

βi X
qi + γ,

where αi j , βi , γ ∈ Fqn and G : Fn
q → Fn

q by G := φ−1 ◦ G ◦ φ where φ : Fn
q → Fqn

is an Fq -isomorphism. HFE (Patarin 1996) is constructed as follows.

Secret key. Two invertible affine maps S, T : Fn
q → Fn

q and G : Fqn → Fqn defined
above.
Public key. The quadratic map F := T ◦ G ◦ S = T ◦ φ−1 ◦ G ◦ φ ◦ S : Fn

q → Fn
q .

Encryption. For a plaintext p ∈ Fn
q , the ciphertext is c := F(p) ∈ Fn

q .
Decryption. For a given ciphertext c, compute z := T−1(c) and put Z := φ(z). Find
Y ∈ Fqn with G (Y ) = Z and put y := φ−1(Y ). The plaintext is p = S−1(z).

Complexity of decryption. Since G (Y ) = Z is a univariate polynomial equation of
degree at most 2qd over Fqn , the complexity of finding Y is

O((degG (X))3 + n(degG (X))2 log q) = O(q3d + nq2d log q)
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by the Berlekamp algorithm (Berlekamp 1967, 1970). Then the parameter d should
be d = O(logq n).

Security. Let {θ1, . . . , θn} be a basis of Fqn over Fq and Θ :=
(
θ
qi−1

j

)
1≤i, j≤n

. It is

easy to see that Θx = t(φ(x), φ(x)q , . . . , φ(x)q
n−1

) := t(X, Xq , . . . , Xqn−1
). Since

F = (T ◦ φ−1) ◦ G ◦ (φ ◦ S), we have

⎛
⎜⎝
F1
...

Fn

⎞
⎟⎠ = (T · Θ−1)

⎛
⎜⎝

t(ΘS)G (0)(ΘS)
...

t(ΘS)G (n−1)(ΘS)

⎞
⎟⎠ , (7)

where X̄ := Θx and G (i) is an n × n matrix over Fqn such that G (X)q
i = tX̄G (i) X̄ +

(linear form of X̄). This means that there exist a1, . . . , an ∈ Fqn such that

a1F1 + · · · + anFn = t(ΘS)G (0)(ΘS) = t(ΘS)

(∗d+1

0n−d−1

)
(ΘS), (8)

and then rank(a1F1 + · · · + anFn) ≤ d + 1.Themin-rank attack (Bettale et al. 2013;
Kipnis and Shamir 1999) is an attack to recover such (a1, . . . , an) and its complexity
is estimated by O(

(n+d+2
d+2

)w
) = O(n(d+2)w) under the assumption that a variant of

Fröberg conjecture holds, where 2 ≤ w ≤ 3 is a linear algebra constant. It is not diffi-
cult to check that the tuple (a1, . . . , an) gives partial information of TΘ−1 and, once
such a tuple is recovered, the attacker can recover partial information of ΘS, which
is enough to decrypt arbitrary ciphertexts by elementary linear algebraic approaches.
Since d = O(logq n), the security of HFE is nO(logq n). Then the original HFE has
been considered to be impractical. We also note that the security against Gröbner
basis attack has been studied well (see e.g., Ding et al. 2011; Dubois and Gamma
2020; Faugère 2003; Granboulan et al. 2020; Huang et al. 2018). It is known that
the rank condition (8) gives an upper bound of the degree dreg of regularity of the
polynomial system F(x) = c, in fact, dreg ≤ 1

2 (q − 1)(d + 2) holds for HFE (Ding
et al. 2011).

2.5 Variants of HFE

There have been various variants of HFE. In this subsection, we describe four major
variants “plus (+)”, “minus (–)”, “vinegar (v)”, and “projection (p)”.

Plus (+). The “plus (+)” is a variant to add several polynomials on G. Let
r+ ≥ 1 be an integer and h1(x), . . . , hr+(x) random quadratic forms of x. For the
map G : Fn

q → Fm
q of the original scheme, define G+ : Fn

q → Fm+r+
q by G+(x) :=

t(g1(x), . . . , gm(x), h1(x), . . . , hr+(x)). The public key F+ : Fn
q → Fm+r+

q of the plus
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is F+ := T+ ◦ G+ ◦ S where T+ : Fm+r+
q → Fm+r+

q is an invertible affine map. It is
mainly used for encryption when m ≥ n. The decryption is as follows.
Decryption. For the ciphertext c ∈ Fm+r+

q , compute z = (z1, . . . , zm+r+) := T−1
+ (c).

Find y ∈ Fn
q with G(y) = t(z1, . . . , zm) and verify whether t(h1(y), . . . , hu+(y)) =

t(zm+1, . . . , zm+r+). If it holds, the plaintext is p = S−1(y). If not, try it again by
another y.
Complexity of decryption. If m ≥ n, the number of y with G(y) = z is (probably)
small. Then the complexity of decryption of “plus” is notmuch larger than the original
scheme.
Security. It is easy to see that an equation similar to (8) holds for the “plus” of HFE.
Then the complexity of the min-rank attack on HFE+ is similar to the original HFE.

Minus (–). The “minus (–)” is to reduce several polynomials in F . Let r− ≥ 1 be
an integer. For the public key F : Fn

q → Fm
q of the original scheme, the public key

F− : Fn
q → Fm−r−

q of the minus is generated by F−(x) = t( f1(x), . . . , fm−r−(x)). It
is mainly used for the signature scheme when n ≥ m. The signature generation is as
follows.
Signature generation. For a messagem = t(m1, . . . ,mm−r−) ∈ Fm−r−

q to be signed,
choose u1, . . . , ur− ∈ Fq randomly and let m̄ := t(m1, . . . ,mm−r− , u1, . . . , ur−).
Find s ∈ Fn

q with F(s) = m̄. If there exists such an s, the signature is s. If not,
change u1, . . . , ur− and repeat until such an s appears.
Complexities of signature generation.When n ≥ m, the probability that s does not
exist is considered to be not large. Then the complexity of the signature generation
of the “minus” is not much larger than the original scheme.
Security. For the minus, it is easy to see that there exists an (n − r−) × n matrix T−
such that

⎛
⎜⎝

F1
...

Fn−r−

⎞
⎟⎠ = (T− · Θ−1)

⎛
⎜⎝

t(ΘS)G (0)(ΘS)
...

t(ΘS)G (n−1)(ΘS)

⎞
⎟⎠ . (9)

Then one can eliminate the contributions of n − r− − 1matrices in the right hand side
by taking a linear combination of F1, . . . , Fn−r− , namely there exist a1, . . . , an−r− ,

b0, . . . , br− ∈ Fqn such that

a1F1 + · · · + an−r− Fn−r− = b0
t(ΘS)G (0)(ΘS) + · · · + br−

t(ΘS)G (r−)(ΘS)

= t(ΘS)

(∗d+r−+1

0n−d−r−−1

)
(ΘS).

The min-rank attack is thus available on HFE- and its complexity can be estimated
by O(

(n+d+r−+2
d+r−+2

)w
) = O(n(d+r−+2)w). This means that the “minus” enhances the

security of HFE (see also Vates and Smith-Tone 2017).

Vinegar (v). The “vinegar (v)” is to add several variables on G. Let rv ≥ 1 be an
integer. For the map G : Fn

q → Fm
q of the original scheme, define Gv : Fn+rv

q → Fm
q
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such that Gv(x1, . . . , xn, u1, . . . , urv) is inverted similarly to G(x) for any (or most)
u1, . . . , urv ∈ Fq . For example, themapGv ofHFEv is given byGv := φ−1 ◦ Gv ◦ φv,
where φv : Fn+rv

q → Fqn × Frv
q is an Fq -isomorphism and Gv : Fqn × Frv

q → Fqn is
the following polynomial map.

Gv(X, xn+1, . . . , xn+rv ) =
∑

0≤i, j≤d

αi j X
qi+q j +

∑
0≤i≤d

Xqi · (linear form ofxn+1, . . . , xn+rv )

+ (quadratic form of xn+1, . . . , xn+rv ).

The public key Fv : Fn+rv
q → Fn

q of the vinegar is Fv := T ◦ Gv ◦ Sv where Sv :
Fn+rv
q → Fn+rv

q is an invertible affine map. It is mainly used for signature when
n ≥ m. The signature generation is as follows.
Signature generation. For a messagem ∈ Fm

q to be signed, compute z := T−1(m).
Choose u1, . . . , urv ∈ Fq randomly, and find y ∈ Fn

q with Gv(y, u1, . . . , urv) = z. If
such an y does not exist, change u1, . . . , urv and try again. The signature is s =
S−1
v (y, u1, . . . , urv).

Complexity of signature generation. Since y is found similarly to the original
scheme, the complexity of finding y is almost the same as the original scheme. If
n ≥ m, the probability that y does not exist is considered to be not too large. Then
the complexity of the “vinegar” is not too larger than the original scheme.

Security. For HFEv, we see that Gv(X, xn+1, . . . , xn+rv) = tX̄v

( ∗d+1 ∗
0n−d−1

∗ ∗rv

)
X̄v

+ (linear form of X̄v), where X̄v = t(X, . . . , Xqn−1
, xn+1, . . . , xn+rv). Then there

exist a1, . . . , an ∈ Fqn such that

a1F1 + · · · + anFn = t

((
Θ

Irv

)
Sv

) ⎛
⎝

∗d+1 ∗
0n−d−1

∗ ∗rv

⎞
⎠

((
Θ

Irv

)
Sv

)
.

Since the rank of the matrix in the right hand side above is at most d + rv + 1,
the security of HFEv against the min-rank attack is estimated by O(

(n+d+rv+2
d+r−+2

)w
) =

O(n(d+rv+2)w).

Projection (p). The “projection” is to reduce several variables of the polynomials
in F . Let rp ≥ 1 be an integer and u1, . . . , urp ∈ Fq . For the public key F : Fn

q →
Fm
q of the original scheme, the public key Fp : Fn−rp

q → Fm
q of the projection is

generated by Fp(x1, . . . , xn−rp) := F(x1, . . . , xn−rp , u1, . . . , urp). It is mainly used
for encryption when m ≥ n. The decryption is as follows.
Decryption. For the ciphertext c ∈ Fm

q , find p ∈ Fn
q with F(p) = c similarly to the

original scheme. If p = (∗, . . . , ∗, u1, . . . , urp), the plaintext is p̃ := (p1, . . . , pn−rp)

∈ F
n−rp
q . If not, try it again by another p.

Complexities of decryption. Ifm ≥ n, the number of pwith F(p) = c is (probably)
not too large. Then the complexity of decryption of the “projection” is notmuch larger
than the original scheme.
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Security. For the projection of HFE, we see that there exist a1, . . . , an ∈ Fqn such
that

a1F1 + · · · + anFn = t(Θ S̃)

(∗d+1

0n−d−1

)
(Θ S̃),

where S̃ is an n × (n − rp) matrix with S = (S̃, ∗). Then the min-rank attack is
available and its complexity is almost the same as the original scheme.

The most successful variant of HFE is probably the signature scheme HFEv-
(Patarin et al. 2001), a combination of “minus” and “vinegar” of HFE, since the
security against the min-rank attack is enhanced drastically without slowing down
the signature generation. In fact,GeMSS (Casanova et al. 2020) based onHFEv- was
chosen as a second round candidate of NIST’s project (NIST 2020). There are three
kinds of GeMSS, called GeMSS, BlueGeMSS, and RedGeMSS, The major differ-
ence among these three GeMSSs is the degree of Gv; the degrees are 513(= 29 + 1),
129(= 27 + 1), 17(= 24 + 1), i.e., d’s are 10, 8, 5, respectively. Of course, the signa-
ture generation ofRedGeMSS is fastest and theBlueGeMSS is the next. Furthermore,
the securities against the min-rank attack are enough if r−, rv are sufficiently large.
On the other hand, as pointed out in Hashimoto (2018) for HMFEv (Petzoldt et al.
2017) (the vinegar of multi-HFE (Chen et al. 2020), the minus and the vinegar do
not enhance the security against the high-rank attack. Though critical vulnerabilities
of HFE variants against the high-rank attack have not been reported until now, we
consider that an HFEv- with smaller d has a higher risk against the high-rank attack.

We recall that Sflash (Akkar et al. 2003) (a minus of Matsumoto–Imai’s scheme
(Matsumoto and Imai 1988) is a signature scheme selected byNESSIE (Preneel 2020)
and broken by a differential attack (Fouque et al. 2005). Recently, its projections
calledPflash (Cartor and Smith-Tone 2017; Smith-Tone et al. 2015) andEflash (Car-
tor and Smith-Tone 2018) were proposed. Pflash is a signature scheme with rp < r−
and Eflash is an encryption scheme with rp > r−. The complexities of signature gen-
eration and decryption are about qmin (rp,r−) times ofMatsumoto–Imai’s scheme (Mat-
sumoto and Imai 1988) and then we should take r−, rp by min (rp, r−) = O(logq n).
It has been considered that the differential attack is not available on these schemes,
and the security against the min-rank attack highly depends on r−. The security of
Eflash is thus nO(logq n). Similarly for the encryption scheme HFEp- with rp > r−, it
is easy to see that the complexity of decryption is about qr− times of the original HFE
and the complexity of the min-rank attack is roughly estimated by O(n(3d+r−+2)w).
Since 3d + r− = O(logq n), its security is also nO(logq n).
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3 New Encryption Schemes

In this section, we study the encryption schemes HFERP (Ikematsu et al. 2018),
ZHFE (Porras et al. 2020), EFC (Szepieniec et al. 2016), and ABC (Tao et al. 2013,
2015) proposed recently.

3.1 HFERP

HFERP (Ikematsu et al. 2018) is an encryption scheme constructed by a “plus" and
“projection" of a combination of HFE and Rainbow. We first describe a one-layer
version HFERP without “plus” and “projection”.

Let v, o, l, d0 ≥ 1 be integers, n := v + o and m := v + o + l. Define the map
G0 : Fqv → Fqv by

G0(X) :=
∑

0≤i≤ j≤d0

αi j X
qi+q j +

∑
0≤i≤d0

βi X
qi + γ,

where αi j , βi , γ ∈ Fqv . The quadratic map G : Fn
q → Fm

q is given as follows.

t(g1(x), . . . , gv(x)) = (φ−1
0 ◦ G0 ◦ φ0)(x0),

gv+1(x), . . . , gm(x) =
∑

v+1≤i≤n

xi · (linear form of x0) + (quadratic form of x0),

whereφ0 : Fv
q → Fqv is anFq -isomorphism and x0 = t(x1, . . . , xv). HFERP (without

“plus”, “projection”) is constructed as follows.

Secret key.Two invertible affinemaps S : Fn
q → Fn

q , T : Fm
q → Fm

q and the quadratic
map G : Fn

q → Fm
q .

Public key. The quadratic map F := T ◦ G ◦ S : Fn
q → Fm

q .

Encryption. For a plaintext p ∈ Fn
q , the ciphertext is c = F(p) ∈ Fm

q .
Decryption. For a given ciphertext c, compute z = t(z1, . . . , zm) := T−1(c). Let
Z0 := φ0(z1, . . . , zv) ∈ Fqv and find Y0 ∈ Fqv such that G0(Y0) = Z0. Put (y1, . . . ,
yv) := φ−1

0 (Y0) ∈ Fv
q and find yv+1, . . . , yn ∈ Fq with

gv+1(y1, . . . , yv, yv+1, . . . , yn) = zv+1, . . . , gm(y1, . . . , yv, yv+1, . . . , yn) = zm .

(10)

The plaintext is p = S−1(y1, . . . , yn).

Complexity of decryption.Since the degree ofG0(X) is atmost 2qd0 , the complexity
of finding Y0 is O(q3d0 + vq2d0 log q) by Berlekamp’s algorithm. We see that (10)
is a system of o + l linear equations of o variables. We thus conclude that the total
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complexity of decryption is O(q3d0 + vq2d0 log q + n3). The parameter d0 should be
taken by d0 = O(logq n).

Security. Let {θ1, . . . , θv} be a basis of Fqv over Fq andΘ0 :=
(
θ
qi−1

j

)
1≤i, j≤v

. By the

definition of G, F , we see that

⎛
⎜⎝
F1
...

Fm

⎞
⎟⎠ = T ·

(
Θ−1

0
Io+l

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

tS
(
tΘ0G

(0)
0 Θ0

0o

)
S

...

tS
(
tΘ0G

(v−1)
0 Θ0

0o

)
S

tS
(∗v ∗

∗ 0o

)
S

...

tS
(∗v ∗

∗ 0o

)
S

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and then there exist a1, . . . , am ∈ Fqv such that

a1F1 + · · · + am Fm = tS

(
tΘ0G

(0)
0 Θ0

0o

)
S = tSt

(
Θ0

Io

) (∗d0+1

0n−d0−1

) (
Θ0

Io

)
S.

The min-rank attack is thus available on HFERP and its complexity can be estimated
by O(

(m+d0+2
d0+2

)w
) = O(m(d0+2)w) (Ikematsu et al. 2018). This situation is similar for

its plus and projection. Since d0 = O(logq n), the security of HFERP is nO(logq n),
which is almost the same as HFE. For the minus, we can easily check that the
complexity of decryption is at most qr− times of the original HFERP and the security
against the min-rank attack is O(

(m+d0+2
d0+r−+2

)w
) = O(m(d0+r−+2)w). This means that the

security of HFERP- is also nO(logq n).

3.2 ZHFE

ZHFE (Porras et al. 2020) is an encryption scheme constructed by two univariate
polynomials over an extension field. In this subsection, we study the simplest version
of ZHFE since the structure of the original version is not far from the simplest version.

Let n,m, D ≥ 1 be integers with m = 2n and define the quadratic forms G1(X),

G2(X) of X̄ = t(X, Xq , . . . , Xqn−1
) such that the degree of Ψ (X) := Xq · G1(X) +

X · G2(X) is at most D. It is easy to see that the coefficient matrices G (0)
1 ,G (0)

2 of
G1(X),G2(X) as quadratic forms of X̄ are
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G (0)
1 =

⎛
⎜⎜⎜⎝

* d+1

∗ . . . ∗
0 · · · 0
0

∗ 0
.
.
.

.

.

. 0
∗ 0

0 n−d−1

⎞
⎟⎟⎟⎠, G (0)

2 =

⎛
⎜⎜⎜⎝

* d+1

0 · · · 0
∗ . . . ∗
0

0 ∗
.
.
.

.

.

. 0
0 ∗

0 n−d−1

⎞
⎟⎟⎟⎠, (11)

where d := �logq D−q
2 �. Denote byφ2 : Fm

q → F2
qn anFq -isomorphism andG (X) :=

(G1(X),G2(X)). ZHFE is constructed as follows.

Secret key.Two invertible affinemaps S : Fn
q → Fn

q , T : Fm
q → Fm

q and the quadratic

map G := φ−1
2 ◦ G ◦ φ : Fn

q → Fm
q .

Public key. The quadratic map F := T ◦ G ◦ S : Fn
q → Fm

q .

Encryption. For a plaintext p ∈ Fn
q , the ciphertext is c = F(p) ∈ Fm

q .
Decryption. For a given ciphertext c ∈ Fm

q , compute z := T−1(c). Let (Z1, Z2) :=
φ2(z) ∈ F2

qn , and find Y ∈ Fqn such that Ψ (Y ) − Y q · Z1 − Y · Z2 = 0. Verify
whether G1(Y ) = Z1, G2(Y ) = Z2 hold and put y := φ−1(Y ) ∈ Fn

q . The plaintext
is p = S−1(y).

Complexity ofdecryption.SinceΨ (Y ) − Y q · Z1 − Y · Z2 = Y q · (G1(Y ) − Z1) +
Y · (G2(Y ) − Z2), at least one of Y satisfies G1(Y ) = Z1, G2(Y ) = Z2 if z ∈ G(Fqn ).
The complexity of decryption is O(D3 + nD2 log q) = O(q3d + nq2d log q) by
Berlekamp’s algorithm. The parameter d should be d = O(logq n).

Security. Let {θ1, . . . , θn} be a basis of Fqn over Fq and Θ2 :=
(
θ
qi−1

j · I2
)
1≤i, j≤n

.

We can easily check that

⎛
⎜⎝
F1
...

Fm

⎞
⎟⎠ = TΘ−1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

t(ΘS)G (0)
1 (ΘS)

t(ΘS)G (0)
2 (ΘS)

t(ΘS)G (1)
1 (ΘS)
...

t(ΘS)G (n−1)
2 (ΘS)

⎞
⎟⎟⎟⎟⎟⎟⎠

and then there exist a1, . . . , am ∈ Fqn such that

a1F1 + · · · + amFm = t(ΘS)G (0)
1 (ΘS).

Since rankG (0)
1 ≤ d + 2 due to (11), the min-rank attack is available on ZHFE and its

complexity can be estimated by O(
(m+d+3

d+3

)w
) = O(m(d+3)w) (Cabarcas et al. 2017;

Perlne and Smith-Tone 2016). Since d = O(logq n), the security of ZHFE is also
nO(logq n).

We note that the plus and projection do not enhance the security. For the minus,
we see that there exist a1, . . . , am−r− , b0, . . . , br− ∈ Fqn such that
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a1F1 + · · · + am−r− Fm−r−

= b0
t(ΘS)G (0)

1 (ΘS) + b1
t(ΘS)G (0)

2 (ΘS) + · · · + br−
t(ΘS)G

(
r−/2�)
(r− mod 2)+1(ΘS)

= t(ΘS)

⎛
⎝

∗� r−
2 �+1 ∗ ∗

∗ ∗d−(r− mod 2) 0
∗ 0 0

⎞
⎠ (ΘS).

Since the rank of the matrix above is d + r− + 2, the complexity of the min-rank
attack is O(

(m+d+3
d+r−+3

)w
) = O((2n)(d+r−+3)w). However, the complexity of decryption

is at most qr− times of the original ZHFE, and then the security of ZHFE- is also
nO(logq n). Remark that (Perlne and Smith-Tone 2016) proposed a minus of ZHFE
without slowing down the decryption by using a singular-type ZHFE. However, by
studying the structure of such a ZHFE- carefully, we can easily check that such a
minus does not enhance the security against the min-rank attack at all.

3.3 EFC

EFC (Szepieniec et al. 2016) is an encryption scheme constructed from the fact that
an extension field can be expressed by a set of matrices.

Let n,m ≥ 1 be integers with m = 2n, h(t) an irreducible univariate polynomial
over Fq and H an n × n matrix whose characteristic polynomial is h(t). It is easy to
see thatH := {

a0 In + a1H + · · · + an−1Hn−1 | a0, . . . , an−1 ∈ Fq
}
is isomorphic

to Fq [t]/〈h(t)〉 � Fqn . Choose A1, . . . , Am ∈ H and define the map G : Fn
q → Fm

q
by

t(g1(x), g3(x), . . . , gm−1(x)) = (x1A1 + x2A3 + · · · + xm−1An) x,
t(g2(x), g4(x), . . . , gm(x)) = (x1A2 + x2A4 + · · · + xm An) x.

EFC (Szepieniec et al. 2016) is constructed as follows.

Secret key.Two invertible affinemaps S : Fn
q → Fn

q , T : Fm
q → Fm

q and the quadratic
map G : Fn

q → Fm
q (i.e., the matrices A1, . . . , Am) defined above.

Public key. The quadratic map F := T ◦ G ◦ S : Fn
q → Fm

q .

Encryption. For a plaintext p ∈ Fn
q , the ciphertext is c = F(p) ∈ Fm

q .
Decryption. For a given ciphertext c, compute z = t(z1, . . . , zm) := T−1(c). Solve
a system of linear equations given by

(x1A1 + x2A3 + · · · + xn Am−1)
t(z2, z4, . . . , zm)

= (x1A2 + x2A4 + · · · + xn Am) t(z1, z3, . . . , zm−1),
(12)

and find a solution y of (12) satisfying G(y) = z. The plaintext is p = S−1(y).

Complexity of decryption. Since H is commutative, it holds
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(x1A2 + x2A4 + · · · + xn Am) t(g1(x), g3(x), . . . , gm−1(x))

= (x1A1 + x2A3 + · · · + xn Am−1)
t(g2(x), g4(x), . . . , gm(x)).

Then at least one of solutions of (12) satisfies G(y) = z if z ∈ G(Fn
q). The equation

(12) is written by (z1B1 + · · · + zm Bm) x = 0 with n × n matrices B1, . . . , Bm are
n × n derived from A1, . . . , Am . The complexity of decryption is thus O(n3).

Note that, since the map G in EFC is over-defined, the complexity of the “plus”
and the “projection” is almost the same as the original EFC and that of the “minus”
is at most qr− times of the original EFC.

Security. It is already known that the original EFC is insecure against the lineariza-
tion attack (Szepieniec et al. 2016). We now study the security of EFC- against
the min-rank attack. Let θ ∈ Fqn be a root of h(t), choose a basis of Fqn over Fq

by {θ1, . . . , θn} = {1, θ, θ2, . . . , θn−1} and putΘ :=
(
θ
qi−1

j

)
1≤i, j≤n

. Suppose that H

is a companion matrix of h(t). Since A1, . . . , Am ∈ H , there exist linear forms
L1(x), . . . , Lm(x) of x over Fq such that

x1A1 + x2A3 + · · · + xn Am−1 = L1(x)In + L3(x)H + · · · + Lm−1(x)Hn−1,

x1A2 + x2A4 + · · · + xn Am = L2(x)In + L4(x)H + · · · + Lm(x)Hn−1.

Denote by

G1(X) : = g1(x)θ1 + g3(x)θ2 + · · · + gm−1(x)θn,

G2(X) : = g2(x)θ1 + g4(x)θ2 + · · · + gm(x)θn,

L1(X) : = L1(x)θ1 + L3(x)θ2 + · · · + Lm−1(x)θn,

L2(X) : = L2(x)θ1 + L4(x)θ2 + · · · + Lm(x)θn,

where X := φ(x) = x1θ1 + · · · + xnθn . It is easy to see that G1(X),G2(X) are
quadratic forms and L1(X),L2(X) are linear forms of X̄ = Θx = t(X, Xq , . . . ,

Xqn−1
). By the definition of G, we see that

Θ t(g1(x), g3(x), . . . , gm−1(x)) =
( ∑
1≤i≤n

L2i−1(x)(ΘHΘ−1)i−1

)
(Θx),

Θ t(g2(x), g4(x), . . . , gm(x)) =
( ∑
1≤i≤n

L2i (x)(ΘHΘ−1)i−1

)
(Θx).

(13)

Since ΘHΘ−1 = diag
(
θ, θq , . . . , θqn−1)

(e.g., Horn et al. 1985), we have G1(X) =
L1(X) · X , G2(X) = L2(X) · X due to (13). This means that the map G is written by
G = φ−1

2 ◦ G ◦ φ where G (X) = (G1(X),G2(X)) = (L1(X) · X,L2(X) · X), and it
holds
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⎛
⎜⎝
F1
...

Fm

⎞
⎟⎠ = TΘ−1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

t(ΘS)G (0)
1 (ΘS)

t(ΘS)G (0)
2 (ΘS)

t(ΘS)G (1)
1 (ΘS)
...

t(ΘS)G (n−1)
2 (ΘS)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Then, for EFC-, there exist a1, . . . , am−r− , b0, . . . , br− ∈ Fqn such that

a1F1 + · · · + am−r− Fm−r−

= b0
t(ΘS)G (0)

1 (ΘS) + b1
t(ΘS)G (0)

2 (ΘS) + · · · + br−
t(ΘS)G

(
r−/2�)
(r− mod 2)+1(ΘS)

= t(ΘS)

(∗1+
 r−
2 � ∗

∗ 0

)
(ΘS).

Since the rank of the matrix above is at most 2
 r−
2 � + 2, the min-rank attack is

available on EFC- and its complexity can be estimated by O(
(2n−r−+2
 r−

2 �+3

3+2
 r−
2 �

)w
) =

O((2n)(r−+3)w). Since r− = O(logq n), the security of EFC- is also nO(logq n). This
situation is similar to the “plus” and “projection” of EFC-.

3.4 ABC

ABC (Tao et al. 2013, 2015) is an encryption scheme constructed by three polyno-
mial matrices A, B,C . Let r, n,m ≥ 1 be integers with n = r2,m = 2r2. For x =
t(x1, . . . , xn), define the r × r matrices A(x), B(x),C(x), E1(x), E2(x) by A(x) :=(
x j+r(i−1)

)
1≤i, j≤r , B(x) := (

bi j (x)
)
1≤i, j≤r , C(x) := (

ci j (x)
)
1≤i, j≤r , E1(x) :=

A(x)B(x) and E2(x) := A(x)C(x), where bi j (x), ci j (x) are linear forms of x. The
quadratic map G : Fn

q → Fm
q is generated by E1(x) = (

g j+r(i−1)(x)
)
1≤i, j≤r

and

E2(x) = (
gn+ j+r(i−1)(x)

)
1≤i, j≤r . The encryption scheme ABC (Tao et al. 2013) is

constructed as follows.

Secret key.Two invertible affinemaps S : Fn
q → Fn

q , T : Fm
q → Fm

q and the quadratic
map G defined above.
Public key. The quadratic map F := T ◦ G ◦ S : Fn

q → Fm
q .

Encryption. For a plaintext p ∈ Fn
q , the ciphertext is c = F(p) ∈ Fm

q .
Decryption. For a given ciphertext c, compute z = t(z1, . . . , zm) := T−1(c) and put
Z1 := (

z j+r(i−1)
)
1≤i, j≤r , Z2 := (

zn+ j+r(i−1)
)
1≤i, j≤r . Find y ∈ Fn

q such that

B(y) = C(y)Z−1
2 Z1. (14)

If Z2 is not invertible, replace (14) into B(y)Z−1
1 Z2 = C(y). The plaintext is p =

S−1(y).
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Complexity of decryption.The equation (14) yields a systemof n linear equations of
n variables. Then the complexity of decryption is O(n3). Remark that the decryption
fails if A(S(p)) is not invertible and its probability is about q−1.

Security. It is easy to check that the coefficient matrix G1 of the first polynomial

g1(x) in G(x) is G1 =
(∗r ∗

∗ 0n−r

)
. Then the min-rank attack is available and its

complexity is O(q2r · n4) (Tao et al. 2013). Moody et. al. (Moody et al. 2014, 2017)
proposed an asymptotically optimal attack with the complexity O(qr+2 · n4) based
on the structure of subspace differential invariants. Recently, Liu (Liu et al. 2018)
proposed a key recovery attack by solving a system of linear equations derived from
the construction of the polynomials, and extended its key recovery attack to the
rectangular ABC (Tao et al. 2015) and Cubic ABC (Ding et al. 2014). They claimed
that the complexities of these attacks arewith the complexityO(n2w), which is critical
for the security of ABC schemes. On the other hand, one of the anonymous reviewers
on the present paper claimed in his/her report that its attack seems doubtful. He/She
may present his/her opinion somewhere in the near future.

Table 1 Signature schemes

#{var.} #{polyn.} Sig. gen. Security

UOV o + v o n3 qv−on4 (KS)

Rainbow o1 + o2 + v o1 + o2 n3 qmin(o2+v−o1,o1)n4

(KS, HR)

HFEv- n + rv n − r− q3d n(d+r−+rv+2)w

(MR)

Table 2 Encryption schemes

#{var.} #{polyn.}
Decrypt.

Security

HFE var. n − rp n + r+ − r− q3d+r− n(d+r−+2)w (MR)

Eflash n − rp n − r− qr−n3 n(r−+3)w (MR)

HFERP var. n − rp n + l + r+ − r− q3d0+r− (n + l)(d0+r−+2)w

(MR)

ZHFE var. n − rp 2n + r+ − r− q3d+r− (2n)(d+r−+3)w

(MR)

EFC var. n − rp 2n + r+ − r− qr−n3 (2n)(r−+3)w (MR)

ABC r2 2r2 n3 n2w (Liu et. al.)
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4 Conclusion

In Sect. 2, we describe the multivariate schemes UOV, Rainbow, HFE variants and
the corresponding second round candidates of NIST’s project. In Sect. 3, we discuss
the practicalities of several new multivariate encryption schemes proposed recently.
Tables1 and 2 are rough sketches of the complexities of decryption/signature gen-
eration and the major attacks for the corresponding schemes. Remark that there are
various other attacks concerned for implementations.

Table1 shows that practical signature schemes can be implemented easily since
signatures can be generated in polynomial time and the proposed attacks are in
exponential time. On the other hand, Table2 shows that the issues on the practicality
of HFE variants have not been eliminated on the new encryption schemes. While
selecting parameters for 80-, 100-, 120-bit securities on such encryption schemes
might be possible, they will not be able to follow the future inflation of security
levels. Further drastic approaches will be required to construct practical multivariate
encryption schemes.
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Ramanujan Graphs for Post-Quantum
Cryptography

Hyungrok Jo, Shingo Sugiyama, and Yoshinori Yamasaki

Abstract We introduce a cryptographic hash function based on expander graphs,
suggested by Charles et al. ’09, as one prominent candidate in post-quantum cryp-
tography. We propose a generalized version of explicit constructions of Ramanujan
graphs, which are seen as an optimal structure of expander graphs in a spectral sense,
from the previous works of Lubotzky, Phillips, Sarnak ’88 and Chiu ’92. We also
describe the relationship between the security of Cayley hash functions and word
problems for group theory. We also give a brief comparison of LPS-type graphs and
Pizer’s graphs to draw attention to the underlying hard problems in cryptography.

Keywords Ramanujan graphs · Quaternion algebras · Cayley hash functions ·
Group word problem

1 Introduction

In the era of post-quantum cryptography, there exist four dominant research areas:
Lattice-based, Code-based, Multivariate-based and Isogeny-based cryptography.
Specifically, studies in the area of Isogeny-based cryptography have been numer-
ous in the past decade, mainly due to the difficulty of finding a path in the Isogeny
graph of supersingular elliptic curves.
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In 2009, Charles et al. (2009a, 2009b) introduced cryptographic hash functions
from expander graphs and explained the hardness of problems behind those schemes.
They proposed two kinds of hash functions based on two families of Ramanujan
graphs. One of their proposals is based on Ramanujan graphs by Lubotzky et al.
(1988) (in short, LPS), which are Cayley graphs over the projective group with
respect to well-chosen generating sets. The other is based on Ramanujan graphs by
Pizer (1990),which are not (expected to be)Cayley graphs. So far, the variants of their
proposal still survive against a quantum attack except the only known exponential
complexity attack (Biasse et al. 2014).

In this article, we focus on not only the background of the families of LPS’s
graphs and their generalization (LPS-type Jo et al. 2020, 2018) with respect to the
security of their Cayley-based hash functions, but also on the relationship between
the families of LPS-type graphs and Pizer’s graphs.

This article is organized as follows: In Sect. 2, we present some required prelim-
inaries of expander graphs and Ramanujan graphs, and also of quaternion algebra
theory. We summarize the security on Cayley hash functions and their cryptanaly-
sis (variants of lifting attacks) related to solving word problems in group theory. In
Sect. 3, we explain a way to generalize the explicit constructions of LPS and Chiu’s
Ramanujan graphs, and give a proof of the Ramanujan-ness of our graphs in the spe-
cial case of “P = 13”. In Sect. 4, we describe the relationship between the families of
LPS-type graphs and Pizer’s graphs. In Sect. 5, we summarize the arguments in this
article and expound upon some unclarified problems and the relationships between
explicit families of Ramanujan graphs.

2 Ramanujan Graphs and Their Cryptographic
Applications

An expander graph is well known as a ubiquitous object in various research areas,
especially in computer science for designing communication networks. It is said to
be a sparse, but highly connected graph. The quality of the network on expander
graphs is considered as the expanding ratio. Throughout this article, we assume that
all graphs are finite, undirected, simple (i.e. no loops or multi-edges) and connected.
Suppose that X = (V, E) is a k-regular graph, composed of a vertex set V = V (X)

with n vertices and an edge set E = E(X). For a subset T of V , the boundary ∂T
of T is defined as

∂T = {(x, y) ∈ E |x ∈ T and y ∈ V \ T },

where V \ T is the complement of T in V . The expanding constant h(X) of X ,
which is defined as below, is a discrete analogue of the Cheeger constant in differ-
ential geometry (Lubotzky 1994):

h(X) = min
T⊂V

0<|T |≤n/2

|∂T |
|T | .

We give the definition of an expander graph.
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Definition 1 A family of k-regular graphs (X j ) j≥1 such that |V (X j )| → +∞ as
j → +∞ is called an expander family if there is an ε > 0 such that the expanding
constant h(X j ) satisfies h(X j ) ≥ ε for all j .

For analysis of graphs, the adjacency matrix A of the graph X plays an important
role; it is a square matrix indexed by pairs of vertices u, v whose (u, v)-entry Au,v is
the number of edges between u and v. Since we assume that X has n vertices, A is an
n-by-n, symmetric (0, 1)-matrix without diagonal entries (i.e. Au,u = 0). For such a
graph X , the adjacency matrix A of X has the spectrum k = λ0 > λ1 ≥ · · · ≥ λn−1.
It is known (Alon and Milman 1985; Dodziuk 1984) that

k − λ1

2
≤ h(X) ≤ √

2k(k − λ1).

If the spectral gap k − λ1 is larger, the quality of the network of X is getting better as
well. However, it is shown by Alon-Boppana as follows that it cannot be too large.

Theorem 1 Let (X j ) j≥1 be a family of k-regular graphs with |V (X j )| → +∞ as
j → +∞. Then

lim inf
j→+∞ λ1(X j ) ≥ 2

√
k − 1.

This fact motivates the definition of a Ramanujan graph.

Definition 2 A k-regular graph X is Ramanujan if, for every member λ of the
spectrum of the adjacency matrix of X other than ±k, one has |λ| ≤ 2

√
k − 1. We

call 2
√
k − 1 the Ramanujan bound (RB).

For a more detailed exposition of the theory, see Davidoff et al. (2003), Lubotzky
(1994), Terras (2010). In order to explain how to construct explicit Ramanujan graphs
in the style of LPS, Chiu, LPS-type and Pizer, we recall basic facts and terminologies
of quaternion algebras Vignéras (1980).

Let F be a field and F× its unit group. Let A = AF be a quaternion algebra
over F , i.e. a central simple algebra of dimension 4 over F . In this article, we
always assume that F is not of characteristic 2. Then, there exist a, b ∈ F× such
that it can be written asA = AF (a, b) = {α = x + yi + z j + wk | x, y, z,w ∈ F},
where i, j, k satisfy i2 = a, j2 = b and i j = − j i = k (and hence k2 = −ab). For
α = x + yi + z j + wk ∈ A, its conjugate, the reduced trace and the reduced norm
are defined by α = x − yi − z j − wk, T (α) = α + α = 2x ∈ F and N (α) = αα =
αα = x2 − ay2 − bz2 + abw2 ∈ F , respectively.

Quaternion algebras over Fq

Throughout this article, we denote by P the set of all prime numbers. For a prime p ∈
P andd ∈ N, letFpd be thefield of pd elements. Let usfixq ∈ P \ {2}. It is known that,
for any a, b ∈ F

×
q , the quaternion algebraA = AFq (a, b) is isomorphic to the matrix

algebra M2(Fq) of the 2-by-2 matrices over Fq . Let
( ·

·
)
be the Kronecker symbol.

When
(
a
q

) = (−b
q

) = 1, that is,
√
a,

√−b ∈ Fq , one has the following isomorphism.



234 H. Jo et al.

Lemma 1 Assume that
(
a
q

) = (−b
q

) = 1. Then, the map ψq : A → M2(Fq) defined
by

ψq(x + yi + z j + wk) =
[

x + y
√
a

√−b(z + w
√
a)

−√−b(z − w
√
a) x − y

√
a

]

is an isomorphism satisfying det(ψq(α)) = N (α) and ψq (α) = ψq(α) for α ∈ A.

Here,

[
s t
u v

]
=

[
v −t

−u s

]
for

[
s t
u v

]
∈ M2(Fq).

For a ring R, we denote by R× the group of units of R. Let GL2(Fq) =
M2(Fq)

× and SL2(Fq) = {A ∈ GL2(Fq) | det A = 1}. Moreover, let PGL2(Fq) =
GL2(Fq)/Z(GL2(Fq)) and PSL2(Fq) = SL2(Fq)/Z(SL2(Fq)). Here, for a group
G, we denote by Z(G) the center of G. We can naturally see that PSL2(Fq) is a
subgroup of PGL2(Fq) of index 2 because now q is odd. Additionally, we remark

that |PGL2(Fq)| = q(q2 − 1) and |PSL2(Fq)| = q(q2−1)
2 . Since A 	 M2(Fq), we

have A× 	 GL2(Fq) via (the restriction of) ψq and hence obtain the isomorphism
βq : A×/Z(A×) → PGL2(Fq).

We need the following lemma later.

Lemma 2 (Davidoff et al. 2003, Chap. 3) Assume that
(
a
q

) = (−b
q

) = 1. Let α ∈ A
with N (α) = p ∈ P \ {q}, which implies that α ∈ A×. Then, βq(αF

×
q ) ∈ PSL2(Fq)

if and only if
( p
q

) = 1.

Quaternion algebras over Q

Let a, b ∈ Z \ {0} and A = AQ(a, b) be a quaternion algebra over Q. A place v
of Q is said to be split in A if Av := A ⊗Q Qv 	 M2(Qv), where Qv is the v-adic
completion of Q and is said to be ramified if Av is a division algebra. We denote
by Ram(A) the set of all places which are ramified in A. Notice that Ram(A) is a
finite set, has an even cardinality, and determines an isomorphism class of quaternion
algebras over Q. The product of all primes (= finite places) in Ram(A) is called the
discriminant ofA and is denoted byD. From now on, we assume thatA is definite,
that is, the infinite place ∞ is ramified in A, whence there are an odd number of
primes which are ramified inA. Notice thatA = AQ(a, b) is definite if and only if
a < 0 and b < 0.

A lattice I ⊂ A is a free Z-submodule ofA of rank 4. A lattice O ⊂ A is called
an order if it is a ring with unity. In particular, it is calledmaximal if it is not properly
contained in any other order. Notice that, if O is an order of A, then O ⊗Z Zp is an
order ofAp for p ∈ P. Here,Zp is the ring of p-adic integers. LetO be an order ofA.
We call a latticeI ofA a left (resp. right)O- ideal ifOL(I) = O (resp.OR(I) = O),
where OL(I) = {α ∈ A | αI ⊂ I} (resp. OR(I) = {α ∈ A |Iα ⊂ I}). We say that
two left (resp. right) O-ideals I and J are equivalent, if there exists α ∈ A× such
that I = Jα (resp. I = αJ). This is an equivalence relation. We denote by H(O)

the number of equivalence classes, which is shown to be finite, independent on left
or right. We call H(O) the class number of O.
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We next give the definition of Eichler orders. To do that, we first recall the local
situations. If p ∈ P is ramified in A, then Ap is a division algebra which has a
maximal order Op = {α ∈ Ap | N (α) ∈ Zp}. On the other hand if p ∈ P is split in
A, thenAp is isomorphic to M2(Qp) and a maximal order ofAp is isomorphic to a

conjugate of the maximal order M2(Zp) =
[

Zp Zp

Zp Zp

]
of M2(Qp) by an element of

A×
p .
Let D be the discriminant of A, and M be a positive square-free integer which

is prime to D. An order O of A is called an Eichler order of level (D, M) if the
following local conditions are satisfied: For all p ∈ P being ramified in A (i.e.,
p |D),O ⊗Z Zp = Op. On the other hand, for all p ∈ P being split inA (i.e. p � D),

O ⊗Z Zp is isomorphic to a conjugate of the order

[
Zp Zp

MZp Zp

]
of M2(Qp) by an

element of A×
p . Remark that an Eichler order is maximal when M = 1. If p | M , in

this case we call p anEichler prime. Notice that an Eichler order can be characterized
as an orderwhich is the intersection of twomaximal orders. It is shown in Pizer (1976)
that the class number of an Eichler order depends only on its level. Hence, we write
H(O) as H(D, M)whenO is of level (D, M). Remark that H(D, 1) = 1 if and only
if D = 2, 3, 5, 7, 13.

Let G be a group and S a generating set, which is symmetric (i.e. S = S−1) and
does not contain the identity of G. A Cayley graph over G with respect to S is a
|S|-regular graph with a vertex set V and an edge set E , where V = G and E consists
of (g1, g2) ∈ G × G such that g1 = g2s for some s ∈ S.

The families of LPS’s graphs Let p and q (� 2
√
p) be distinct primes congru-

ent to 1 (mod 4). In Lubotzky et al. (1988), described how to construct a fam-
ily of Ramanujan graphs of degree p + 1 having O(q3) vertices as q → +∞.
These graphs are Cayley graphs over the groups G = PGL2(Fq) or PSL2(Fq)

with respect to the generating set SLPS defined as

SLPS =
{[

a0 + ia1 a2 + ia3
−a2 + ia3 a0 − ia1

] ∣∣∣∣a0
2 + a1

2 + a2
2 + a3

2 = p (1)

for odd a0 > 0 and even a1, a2, a3

}
,

where i ∈ Z such that i2 ≡ −1 (mod q). The diophantine Eq. (1) originally
comes from the norm of their based-algebra AQ(−1,−1), where i2 = −1,
j2 = −1 and i j = − j i = k, and is called the Hamiltonian quaternion algebra.
By Jacobi’s four-squares theorem Hirschhorn (1987), there are 8(p + 1) integer
solutions (a0, a1, a2, a3) ∈ Z

4 of (1). Since there are 8 units as ±1,±i,± j,±k,
we see |SLPS| = p + 1.

The families of Chiu’s graphs InMargulis (1988), independently ofLPS, alluded
to the existence of essentially the same graphs as shown by LPS, but without
an explicit description. In Chiu (1992), described how to construct a family of
Ramanujan graphs, and explicitly covered the case of p = 2. Since the Hamil-
tonian quaternion algebra is not split at p = 2, Chiu chose a specific quaternion
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algebraAQ(−2,−13), which is split at 2 and has amaximal order of class number
1. Take a prime q ∈ P \ {2, 13} such that

(−2
q

) = (
13
q

) = 1. Chiu’s cubic graphs
are also Cayley graphs over the groups G = PGL2(Fq) or PSL2(Fq) with respect
to the generating set SC defined as

SC =
{[

1 0
0 −1

]
,

[
2 + i ′ i ′ j ′
i ′ j ′ 2 − i ′

]
,

[
2 − i ′ j ′i ′
j ′i ′ 2 + i ′

] }
,

where i ′, j ′ ∈ Z such that i ′2 ≡ −2, j ′2 ≡ 13 (mod q), respectively.
The families of Morgenstern’s graphs InMorgenstern (1994), described how to

construct, for any prime power q, a family of Ramanujan graphs of degree q + 1.
These graphs are given as Cayley graphs over the groups G = PGL2(Fqd ) or
PSL2(Fqd ) for some d ∈ N with respect to the generating set SModd when q is odd
and SMeven whenq is even. For anoddprimepowerq, let ε be a non-square inFq . Let
g(x) ∈ Fq [x] be irreducible of even degree d.We realizeFqd asFq [x]/g(x)Fq [x].
Let i ∈ Fqd be such that i2 = ε. Then SModd is defined as

SModd =
{ [

1 a − ib
(a + ib)(x − 1) 1

] ∣∣∣∣ b
2ε − a2 = 1 for a, b ∈ Fq

}
.

For an even prime power q, let ε be a non-square in Fq . Let f (x) = x2 + x + ε

be irreducible in Fq [x]. Let g(x) ∈ Fq [x] be irreducible of even degree d. We
also realize Fqd as Fq [x]/g(x)Fq [x]. Let i′ ∈ Fqd be a root of f (x). Then SMeven

is defined as

SMeven =
{ [

1 a − i′b
(a + i′b + b)x 1

] ∣∣∣∣ a
2 + ab + b2ε = 1 for a, b ∈ Fq

}
.

2.1 Security on Cayley Hashes and Word Problems

A hash function is a function that accepts a message as an arbitrarily long string of
bits and outputs a hash value as a finite, fixed-length string of bits. An efficiency of
the hashing process is a basic requirement in a practical point. Such a function should
satisfy certain properties such as collision resistant, second preimage resistant and
preimage resistant.

Let n ∈ N and let H : {0, 1}∗ → {0, 1}n; m �→ h = H(m), where {0, 1}∗ is the
set of bit strings of arbitrary length and {0, 1}n is the set of bit strings of a fixed length
n. The function H is said to be

• Collision resistant if it is computationally infeasible to findm,m ′ ∈ {0, 1}∗,m �=
m ′, such that H(m) = H(m ′),

• Second preimage resistant ifm ∈ {0, 1}∗ is given, it is computationally infeasible
to find m ′ ∈ {0, 1}∗, m �= m ′, such that H(m) = H(m ′),



Ramanujan Graphs for Post-Quantum Cryptography 237

Fig. 1 Diffusion from the starting vertex gST along Cayley graphs over G with respect to S =
{s0, . . . , sr }

• Preimage resistant if h ∈ {0, 1}n is given, it is computationally infeasible to find
m ∈ {0, 1}∗ such that h = H(m).

Let G be a non-commutative group and S = {s0, . . . , sr } ⊂ G be a generating
set for the group G, symmetric and not having the identity. Charles et al. (2009a)
and Petit et al. (2007), Petit and Quisquater (2010b) described a definition of Cayley
hash functions, by which the input to hash is used as directions for walking around a
graph, and the ending vertex is the output of the hash function as depicted in Fig. 1.

A message m is given as a string m1 . . .m�, where mi ∈ {0, . . . , r}. Then the
resulting hashing value h of m will be obtained as a group product

h := H(m) = gST sm1sm2 . . . sm�
,

where gST is a fixed starting element in G. (We usually put gST as the identity in
G.) To dispose a proper sequence of hashing bits inductively, we define a choice
function π which assigns a next hashing bit with the bit of the message m and the
previous hashing bit, while avoiding a back-tracking (i.e. ss−1 or s−1s ). We choose
a function

π : {0, . . . , r} × S → S (2)

such that for any s ∈ S the set π({0, . . . , r} × {s}) is equal to S \ {s−1}.
The security of Cayley hash functions lies on the hardness of solving word prob-

lems for group theory (Lubotzky 1994; Meier 2008; Petit and Quisquater 2010b),
which are one of the most challenging open problems. There are three problems
(balance, representation and factorization problems), which are related to the three
properties of Cayley hash functions, respectively.

Let L ∈ N be small (approximately, log |G|). We denote the product of group
elements sm1 , sm2 , . . . , sm�

by
∏

smi = sm1sm2 . . . sm�
.
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Fig. 2 Relationship between the properties of Cayley hash functions and the hardness of Group
word problems

• Balance problem : Find an “efficient” algorithm that returns two wordsm1 . . .m�

and m ′
1 . . .m ′

�′ with �, �′ < L , mi ,m ′
i ∈ {0, . . . , r} and ∏

smi = ∏
sm ′

i
.

• Representation problem : Find an “efficient” algorithm that returns a word
m1 . . .m� with � < L , mi ∈ {0, . . . , r} and ∏

smi = 1.
• Factorization problem : Find an “efficient” algorithm that given any element
g ∈ G, returns a word m1 . . .m� with � < L , mi ∈ {0, . . . , r} and ∏

smi = g.

A Cayley hash function is collision resistant if and only if the balance problem is
hard; it is second preimage resistant only if the representation problem is hard; it is
preimage resistant if and only if the corresponding factorization problem is hard (as
described in Fig. 2).

The diameter of a Cayley graph over G with respect to S, which naturally
came up from the problems above, is defined as the smallest � such that every
element of G can be expressed as a word of length at most � in S. Babai and
Seress (1992) conjectured that the diameter of any Cayley graph over any non-
commutative simple group is polylogarithmic in the size of the group such as
exp ((|G| log |G|)1/2(1 + o(|G|))). Helfgott and Seress (2014) gave a quasipolyno-
mial upper bound exp (log log |G|)O(1), which is the best known upper bound for
permutation groups.

Even after more than two decades of research in various areas (pure mathematics,
computer sciences, cryptography, etc.), the hardness of the word problems is still
difficult to break. For example, since suggested in Petit and Quisquater (2010b)
as a challenge, it seems still open to solve the balance/representation/factorization
problems for G = SL2(F2n ) with some specific generating set, which is tweaked
from the generating set of Tillich and Zémor (1994). They also mentioned that it
is an important challenge that we identify groups and their corresponding specific
generating sets for the groups in which the balance, representation and factorization
problems are difficult.

2.2 Lifting Attacks

In Zémor (1991), proposed the first scheme of hash functions from Cayley graphs
upon SL2 over a finite field having a large girth, which is the length of a shortest
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cycle. Right after the advent, Tillich and Zémor found a way to break Zémor’s
scheme by a lifting attack and suggested its improved version with SL2 over a
finite field of characteristic 2. Tillich–Zémor’s scheme (Tillich and Zémor 1994)
in resisted being cryptanalyzed for a decade and a half until Grassl et al. (2010)
and Petit et al. (2009), Petit and Quisquater (2010a) found their collisions and even
preimages in practical. A critical observation for both attacks is that the hardness
of balance/representation/factorization problems does not change if we replace the
generators for SL2(F2n ) in order to use the Euclidean algorithm. Even Cayley hash
functions based on LPS Ramanujan graphs proposed from Charles et al. (2009a)
have been broken by Tillich and Zémor (2008) using a variant of a lifting attack.

In this subsection, we give a brief example of a lifting attack, which was used by
Tillich and Zémor (2008).We have conditions on distinct prime numbers p and q that
p and q satisfy p ≡ q ≡ 1 (mod 4) and

( p
q

) = 1. First, the elements of PSL2(Fq)

are lifted to elements of SL2(Z[i]), where i is the imaginary unit. Even though the
lifts of the generators do not generate the whole SL2(Z[i]) and only a subset 
 of
SL2(Z[i]) with specific conditions shown in Tillich and Zèmor (2008), the lifting
attack still works because 
 has a very simple nature as shown below.


 =
{[

x + iy z + iw
−z + iw x − iy

] ∣∣∣∣(x, y, z,w) ∈ E� for some integer � > 0

}
,

where E� is the set of 4-tuples (x, y, z,w) ∈ Z
4 such that

⎧
⎪⎨

⎪⎩

x2 + y2 + z2 + w2 = p�

x > 0, x ≡ 1 (mod 2)

y ≡ z ≡ w ≡ 0 (mod 2).

Tillich and Zémor solved the representation problem by lifting the identity to 
,
which amounts to solving the norm equation

(λ + xq)2 + 4(yq)2 + 4(zq)2 + 4(wq)2 = p� (3)

with λ, x, y, z,w ∈ Z and � ∈ N (Once the identity is lifted, reduction by q and
factoring become trivial). The equation is solved as follows: we arbitrarily fix � = 2�′
with p�′

> mq2 and λ + xq = p�′ − 2mq2 for some m. We substitute them for each
variable in the norm Eq. (3). The norm equation can be deformed by 4q2, resulting
in the equation of the form y2 + z2 + w2 = N := m(p�′ − mq2).

The last equation is solved by generating random variables for w, checking the
right parity to ensure that the resulting equation y2 + z2 = N ′ := N − w2 has a
solution, and we finally solve this equation with the continued fraction method (or
with the advanced Euclidean algorithm, Cornacchia’s algorithm, Pell’s equation).

Subsequently, most of the existing Cayley hash functions based on explicit
Ramanujan graphs Chiu (1988), Lubotzky (1994), Morgenstern (1992) have been
broken by variants of a lifting attack Jo et al. (2008), Petit et al. (2008), Tillich
and Zémor (2017) as lifting attacks are able to solve the factorization/representation
problems for each case. As we can see in Table1, when we attack Cayley hash func-
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Table 1 Norm equations and N to Euclidean algorithm for Cryptanalysis on Cayley hashes

Ramanujan graphs Norm equation and N for Euclidean algorithm

LPS’s Ramanujan graph (Lubotzky 1988) x2 + y2 + z2 + w2 = p�

N := p� − z2 − w2

Chiu’s Ramanujan graph (p = 2) (Chiu 1992) x2 + 2y2 + 13z2 + 26w2 = 2�

N := 2� − 13z2 − 26w2

LPS-type Ramanujan graph (Jo et al. 2020) x2 + Py2 + Qz2 + PQw2 = p�

N := p� − Qz2 − PQw2

tions, we can apply a lifting attack, which corresponds to a norm equation of their
base algebra with a Euclidean algorithm.

Thus, we want to make explicit Ramanujan graphs which have more various norm
equations that use P and Q as coefficients (P ∈ {2, 3, 5, 7, 13} and Q ∈ P satisfying
Q ≡ 3 (mod 8),

(−Q
P

) = −1 unless P = 2). At the very least, for applying variants
of a lifting attack, we should set up an attack corresponding to each norm equation.
It is also possible to put partial information (P , Q or both) unrevealed during the
process of hashing as a private key. From this, we can build the digital signature
schemes which mainly resist variants of a lifting attack. This motivates the study of
a generalization of LPS’s and Chiu’s Ramanujan graphs.

3 The Families of LPS-Type Graphs

Now we recall Ibukiyama’s construction (Ibukiyama 1982) of maximal orders of
definite quaternion algebras over Q which is ramified at given primes.

Proposition 1 (Ibukiyama 1982) Let r be an odd positive integer and P1, P2, . . . ,
Pr distinct prime numbers. Set M = P1P2 · · · Pr . Take a prime number Q such that
Q ≡ 3 (mod 8) and (−Q

Pi
) = −1 for all i except for i with Pi = 2. Moreover, take

an integer T such that T 2 ≡ −M (mod Q). Then, AQ(−M,−Q) is a definite
quaternion algebra which is ramified only at ∞, P1, P2, . . . , Pr . Moreover, let

ω1 = 1 + j

2
, ω2 = i + k

2
and ω3 = T j + k

Q
.

Then, O−M,−Q = Z + Zω1 + Zω2 + Zω3 is a maximal order ofAQ(−M,−Q).

In Jo et al. (2020, 2018) a specific recipe for constructing LPS-type graphs is
presented, and is shown below:
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1. Fix a p ∈ P.
2. Take P ∈ {2, 3, 5, 7, 13} such that P �= p.
3. We take a prime Q satisfying

Q ≡ 3 (mod 8),
(−Q

P

)
= −1 unless P = 2

and an integer T satisfying T 2 ≡ −P (mod Q). By Proposition 1,we have a defi-
nite quaternion algebraAQ(−P,−Q) (i.e., i2 = −P, j2 = −Q, i j = − j i = k)
and itsmaximal orderO = O−P,−Q = Z + Zω1 + Zω2 + Zω3 with class number
1, where

ω1 = 1 + j

2
, ω2 = i + k

2
and ω3 = T j + k

Q
.

4. Find all elements in O× = {α ∈ O | N (α) = 1}.
5. Find all elements in {α ∈ O | N (α) = p}. Moreover, seek a suitable complete

representative of {α ∈ O | N (α) = p}/O×. Define S by the suitable complete
representative. Then |S| is exactly equal to p + 1, which follows by the class
number 1 condition Chiu (1992, Proposition 3.4).

6. Take a q ∈ P \ {2} satisfying q �= p,
(−P

q

) = ( Q
q

) = 1 and
( p
q

) = 1.
7. Via the isomorphismψq in Lemma 1 and using Lemma 2, we realize S as a subset

of PSL2(Fq). Write SJ SY for the subset.
8. We have a Cayley graph X (p,q)

P,Q = Cay(PSL2(Fq), SJ SY ).

In Table2, we present some numerical results by Magma and MATLAB which
show the Ramanujan-ness of our constructions. Actually, we will show in the next
subsection that our LPS-type graphs are Ramanujan when P = 13, which is the
only choice of P ∈ {2, 3, 5, 7, 13} such that O× is equal to {±1}. For the cases of
P ∈ {2, 3, 5, 7}, at present,we have no ideas to prove or disprove theRamanujan-ness
of our graphs.

Table 2 Numerical results on the Ramanujan-ness of LPS-type graphs X = X (p,q)
P,Q

p Parameters
(P, Q, q, T )

λ1(X) 2
√
p (RB) |V (X)| =

q(q2 − 1)/2

2 (13, 11, 7, 3) 2.7253 2.8284 168

3 (2, 3, 11, 1) 3.3322 3.4641 660

5 (2, 3, 11, 1) 4.4718 4.4721 660

7 (5, 67, 3, 14) 3 5.2915 12

11 (13, 11, 7, 3) 6 6.6332 168
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3.1 Proof of the Ramanujan-Ness of Graphs X ( p,q)
P,Q when

P = 13

We show that our graph X (p,q)

P,Q constructed as above is Ramanujan when P = 13.
Let O = Z + Zω1 + Zω2 + Zω3 be the maximal order we constructed as above for
a fixed p, P , Q, T . Then, O has the class number 1.

Take a complete representative SJ SY = {α1, . . . , αs} ∪ {ᾱ1, . . . , ᾱs} ∪ {β1, . . . , βt }
of {α ∈ O | N (α) = p}/O× so that β̄ j = ε jβ j for some ε j ∈ O× for every j . In this
case, p + 1 = 2s + t . In the same way as Coan and Perng (2012, Theorem 4.8) and
Lubotzky (1988, Lemma 3.1), we have the following:

Lemma 3 Any α ∈ O with N (α) = pk for some k ∈ N is uniquely decomposed into
the product

α = εpr R(α1, . . . , αs, ᾱ1, . . . , ᾱs, β1, . . . , βt ),

where ε ∈ O×, r ∈ N and R(α1, . . . , αs, ᾱ1, . . . , ᾱs, β1, . . . , βt ) is a reduced word
of α1, . . . , αs, ᾱ1, . . . , ᾱs, β1, . . . , βt with length m = k − 2r .

The unit group O× is {±1} only when P = 13. In such a case, we can prove the
Ramanujan-ness of our graph X (p,q)

P,Q in the same way as Lubotzky (1988). For the
variable v = (x, y, z,w), we set

Qq(v) = x2 + qxy + q2

(
1 + Q

4

)
y2 + q2T yz

+ q2P

(
1 + Q

4

)
z2 + q2Pzw + q2

(
P + T 2

Q

)
w2.

It is a positive-definite quadratic form of order 4 corresponding to the reduced norm
on O. Let Aq be the symmetric matrix such that Qq(v) = 1

2
t vAqv, i.e.

Aq =

⎡

⎢⎢⎢
⎣

2 q 0 0

q q2(1+Q)

2 0 q2T

0 0 q2P(1+Q)

2 q2P
0 q2T q2P 2q2 P+T 2

Q

⎤

⎥⎥⎥
⎦

.

Hence, Aq is an even matrix, i.e. Aq ∈ M4(Z) and every diagonal component is
contained in 2Z. The level of Qq is defined as the smallest positive integer N such
that N A−1

q is an even matrix (cf. Schoeneberg 2012, Chap. IX). By det(Aq) = P2q6

and

A−1
q = 1

P2q6

⎡

⎢⎢⎢⎢
⎣

q6 1+Q
2 P( P+T 2

Q ) −q5P
(
P+T 2

Q + T 2
)

−q5PT q5PT 1+Q
2

−q5P
(
P+T 2

Q + T 2
)

2q4P( P+T 2

Q + T 2) 2q4PT −q4PT (1 + Q)

−q5PT 2q4PT 2q4P −PQq4

q5PT 1+Q
2 −q4PT (1 + Q) −PQq4 q4PQ (1+Q)

2

⎤

⎥⎥⎥⎥
⎦

,
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the level of Qq is equal to Pq2.
Set rQq (n) := |{α ∈ O |N (α) = n}| for n ∈ N. Then, the theta series �Qq (z) :=∑∞
n=0 rQq (n)e2π inz = ∑

v∈Z4 e2π i Qq (v)z for z ∈ C with Im(z) > 0 is absolutely and
locally uniformly convergent by Schoeneberg (2012, Chap. IX, Sect. 1.1). Referring
to Schoeneberg (2012, Chap. IX, Theorem 4) and Schoeneberg (2012, Chap. IX,
Theorem 5) for h = 0, the theta series �Qq (z) is a holomorphic modular form of
weight 2 and level 
0(Pq2) with trivial nebentypus. Here, 
0(Pq2) is the Hecke
congruence subgroup of level Pq2. We remark that Qq , Aq ,�Qq , are valid for a
general q ∈ N.

Assume P = 13. Let�′ be the set of all α ∈ O such that N (α) = pk for some k ∈
N. We define an equivalence relation on � so that α ∼ β means α = εpnβ for some
ε ∈ O× andn ∈ Z. SinceO× = {±1}holds, the quotient set� := �′/ ∼ = {[α] |α ∈
�′} has a natural group structure by [α][β] = [αβ]. By Lemma 3, it is generated by
SJ SY , a complete representative of {α ∈ O | N (α) = p}/O×, and Cay(�, SJ SY ) is a
(p + 1)-regular tree. The homomorphism � → PSL2(Fq) as a restriction of ψq of
Lemma 1 induces �/�(q) → PSL2(Fq) with �(q) = ker(ψq |�). This homomor-
phism �/�(q) → PSL2(Fq) is surjective as in the theory of quadratic diophantine
equations applied to the quadratic form Q1 (cf. Lubotzky et al. 1988, p. 267;Malishev
1962). Then our graph X (p,q)

13,Q = Cay(PSL2(Fq), SJ SY ) is identified with �/�(q) as
a graph.

For proving Ramanujan-ness, let λ0 = p + 1 > λ1 ≥ · · · ≥ λn−1 be the spectrum
of the adjacency matrix of X (p,q)

13,Q (so we set n = |X (p,q)

13,Q | = |PSL2(Fq)|). Then, we
have only to show θ j ∈ R for all j ∈ {1, . . . , n − 1}, where θ j ∈ C is taken so that
λ j = 2

√
p cos θ j for each j ∈ {0, . . . , n − 1}. By the trace formula for a regular

graph as in Lubotzky (1988, p. 270–272 and p. 274, Remark 2), we have the expres-
sion

rQq (p
k) = 2pk/2

n

n−1∑

j=0

sin(k + 1)θ j

sin θ j
.

Recall that this is the pk-th Fourier coefficient of the modular form �Qq . Since the
theta series is a sum of a linear combination of cuspidal Hecke eigenforms and that
of Eisenstein series of weight 2 and level 
0(Pq2), we may take a cusp form f1 and
a non-cusp form f2 of weight 2 so that �Qq = f1 + f2. Let a(m) and C(m) be the
m-th Fourier coefficients of f1 and f2 at the cusp ∞ for m ∈ N, respectively. Then,
rQq (p

k) has the following expression:

C(pk) + a(pk) = rQq (p
k) = 2pk/2

n

n−1∑

j=0

sin(k + 1)θ j

sin θ j
.

ByDeligne’s bound as a resolution of the Ramanujan–Petersson conjecture (Deligne
1969, 1974), we have |a(pk)| = Oε(pk(1/2+ε)). Due to the explicit nature of Fourier
coefficients of Eisenstein series, C(m) can be described as C(m) = ∑

d|m F(d) for
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a periodic function F : N → C (cf. Lubotzky 1988, p. 272). By
( p
q

) = 1 and θ0 =
i log

√
p, we have

C(pk) = 2

n

pk+1 − 1

p − 1
− a(pk) + o(pk) = 2

n

pk+1 − 1

p − 1
+ o(pk).

By the Deligne bound of a(pk) and Lubotzky (1988, Lemma 4.4), we have C(pk) =
2
n

pk+1−1
p−1 because of

( p
q

) = 1. As a consequence, for any ε > 0,

2

n

n−1∑

j=1

sin(k + 1)θ j

sin θ j
= 1

pk/2
Oε(p

k(1/2+ε)) = Oε(p
kε),

which leads us that every θ j for j ∈ {1, . . . , n − 1} is real. Therefore, we obtain
|λ j | ≤ 2

√
p for all j = 1, . . . , n − 1, which implies that X (p,q)

13,Q is a Ramanujan
graph.

We remark an adelic approach toward Ramanujan-ness. As we see Costache
et al. (2018, Sect. 7.2) (see also Lubotzky 1994, Theorem 7.1.1), we can prove the
Ramanujan-ness of X (p,q)

P,Q for P = 13 by using an adelic interpretation as well as by
using the Jacquet–Langlands correspondence between automorphic representations
of the adelic group GL2(AQ) and those of A×(AQ) = (A ⊗ AQ)×, which is the
adelization of the anisotropic inner formA× of GL2.

4 Relationship Between LPS-Type Graphs and Pizer’s
Graphs

While research in thefield ofCayley-based cryptographyhas been declining, research
in the field of Isogeny-based cryptography is quite robust, in part due to its key role
in post-quantum cryptography.

However, it is also natural to investigate whether attacks on group word problems
of Cayley hash functions based on LPS’s graphs are related to the problem of finding
a path in an isogeny graph of supersingular elliptic curves, which is explained in
detail in Charles et al. (2009b).

Costache et al. (2018) described a wide range of usage of Ramanujan graphs in
cryptography and also pointed out some different aspects of LPS’s graphs and Pizer’s
graphs with specific features. They presented the construction of LPS’s graphs as
Cayley graphs, in terms of local double cosets. They used strong approximation
(Costache et al. 2018, Sect. 7; Lubotzky 1994, Sect. 6.3) as a main tool to present
the connection between local and adelic double cosets for LPS’s and Pizer’s graphs.
They also compared the two types of graphs in an aspect of appearance by restricting
the degree of the graphs (i.e. p = 5).
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In this section, we give some comparisons between LPS-type graphs and Pizer’s
graphs as Costache et al. did. First, we describe Pizer’s Ramanujan graphs referred
to in Pizer (1990, 1998), Costache et al. (2018).

The families of Pizer’s graphs Pizer (1990, 1998) showed how to construct the
family of Ramanujan graphs as follows: Let A be the quaternion algebra over
Q that is ramified exactly at odd q ∈ P and ∞. We shall consider special orders,
which are generalizations ofEichler orders, of level L = (q, M) and L = (q2, M).
The vertex set of Pizer’s graph G(L , p) shall be in bijection with (a subset of)
the isomorphism classes of left ideals of an order. Since the class number of the
order depends only on its level, we may write H(L) for it, which is equal to the
size of such a graph. Notice that, by Pizer (1998, Proposition 4.4), we have

H(q, M) = q − 1

12
M

∏

d|M
(1 + 1/d) +

⎧
⎪⎨

⎪⎩

1
4

(
1 − (−4

q

)) ∏
d|M

(
1 + (−4

d

))
if 4 � M

0 4 | M

+

⎧
⎪⎨

⎪⎩

1
3

(
1 − (−3

q

)) ∏
d|M

(
1 + (−3

d

))
if 9 � M

0 if 9 | M

and

H(q2, M) = q2 − 1

12
M

∏

d|M
(1 + 1/d) +

⎧
⎪⎨

⎪⎩

0 if q ≥ 5

4
3

∏
d|M

(
1 + (−3

d

))
if q = 3.

Here, the product is over all primes d dividing M .

We give a definition of a Brandt matrix. Let {I1, I2, . . . , IH } with H = H(L) be
a complete representative of the left ideal classes of O. For each i ∈ {1, . . . , H},
let Oi be the right order of the ideal Ii , and ei be the number of O×

i . For n ∈ N,
the Brandt matrix B(L; n) = [

b(n)
i, j

]
associated to an order of level L is a square

matrix of size H(L) having (i, j)-entry

b(n)
i, j = e−1

j · |{α ∈ I−1
j Ii | N (α)N (I j )/N (Ii ) = n}|,

where N (I ) is the norm of an ideal I defined as the greatest common divisor
of the norms of its nonzero elements. Let p be a prime which is coprime to
qM . If we restrict the parameters p and q, the edge set of G(L , p) is given by
a Brandt matrix B(L; p), namely, the adjacency matrix of G(L , p) is given by
B(L; p). By Pizer (1998, Proposition 4.6), we see that G(L , p) is undirected (i.e.
B(L; p) is symmetric) when L = (q, M)with q ≡ 1 (mod 12) and L = (q2, M)

with q > 3. Moreover, it has no loops if trB(L; p) = 0 and no multiple edges if
trB(L; p2) = H(L) (Costache et al. 2018; Pizer 1998). The regularity p + 1
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Table 3 The families of Pizer’s graphs G(L , p)

Conditions \ Level L = (q, M) L = (q2, M)

Coprimality (p, qM) = 1

if
( p
q

) = −1 if
( p
q

) = 1

Bipartite-ness non-bipartite bipartite non-bipartite

# of vertices H(L) H(L) H(L)/2

Undirected-ness q ≡ 1 (mod 12) q > 3

No loops trB(L; p) = 0

No multiple edges trB(L; p2) = H(L)

Regularity (p + 1)-regular

of G(L , p) and its connectedness can be obtained from using B(L; p) as the
adjacency matrix, as shown in Pizer (1998, Proposition 5.1). We summarize the
necessary properties of the families of Pizer’s graphs G(L , p) in Table3.

4.1 Similarities and Differences

AsCostache et al. (2018) argued, we explicate the similarities and differences among
LPS, LPS-type and Pizer’s graphs from a number-theoretic perspective. These fam-
ilies can be viewed as sets of local double cosets, i.e. as graphs of the form


\PGL2(Qp)/PGL2(Zp),

where 
 is a discrete cocompact subgroup.

Discrete local double cosets (LPS-type) Let p be a split prime in A. For N ∈ N,
we set


(N ) := ker(A×(Z[p−1]) → Z[p−1]×\A×(Z[p−1]/NZ) ).

It is a discrete cocompact subgroup inA×
p . We have

Cay(PSL2(Fq), S) ∼= 
(q)\PGL2(Qp)/PGL2(Zp)

for some suitable S.
For LPS-type graphs, the local double cosets are also isomorphic to adelic double

cosets, but in this case the corresponding set of adelic double cosets is smaller relative
to the quaternion algebra and we do not have the same chain of isomorphisms as
shown below. On the other hand, Pizer’s graphs, via strong approximation (Costache
et al. 2018; Lubotzky 1994), can be viewed as graphs on adelic double cosets which
are in turn the set of classes of an order of A that is related to a discrete cocompact
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subgroup 
. Moreover, the class set Cl(O) of a maximal order O from Pizer’s graph
is in bijection with supersingular elliptic curves (Charles et al. 2009b, Sect. 5.3.1)
and offers convincing evidence that an isomorphism is obtained with a supersingular
isogeny graph (SSIG).

The chain of isomorphisms
(LPS)

Cay(PSL2(Fq), SLPS) ∼= 
(2q)\PGL2(Qp)/PGL2(Zp)

(LPS-type with P = 13)

Cay(PSL2(Fq), SJ SY ) ∼= 
(q)\PGL2(Qp)/PGL2(Zp)

(Pizer)

O[p−1]×\GL2(Qp)/GL2(Zp) ∼= Cl(O) ∼= SSIG

Each of the underlying quaternion algebras vary with their own choice of parameters.
In the case of LPS’s graphs, we use the Hamiltonian quaternion algebra, ramified at
2 and∞ and split at p. In the case of LPS-type graphs, we use the definite quaternion
algebra, ramified at 13 and ∞ and split at p. Varying the parameter q, we can have
different Ramanujan graphs of LPS and LPS-type, depending on the congruence
subgroup 
(2q) and 
(q), respectively, without changing each of their underlying
quaternion algebras. On the other hand, in the case of Pizer’s graphs, we use the
definite quaternion algebra, ramified at q and ∞.

5 Open Problems

It is unknown whether the link exists between the hardness of the path-finding prob-
lem in Supersingular Isogeny (Pizer) graphs and the the hardness of group word
problems in Cayley-type Ramanujan graphs. If it is possible to connect those two
problems theoretically or schematically, there are some expected ways to analyze the
hardness of the path-finding problem in Pizer’s graphs by employing the approach
previously used for Cayley graphs. As a part of these approaches, it is also important
to investigate much more general versions of explicit constructions of Ramanujan
graphs. It is in the process to construct the family of (2p + 1)-regular graphs, where
p is an Eichler prime based on the quaternion algebra with an explicit construc-
tion of Eichler order having class number 1 in Jo et al. (2020). We now study the
Ramanujan-ness of these graphs by similar arguments in LPS-type graphs.

Additionally, even though it is difficult to predict that Pizer’s graph can be rep-
resented as a Cayley graph over a group with respect to a suitable generating set
(actually, all graphs with a small number of vertices, suggested as examples in Pizer
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1998 are not Cayley graphs), it is not clear whether a Pizer’s graph with a sufficiently
large number of vertices is a Cayley graph or not.
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Post-Quantum Constant-Round Group
Key Exchange from Static Assumptions

Katsuyuki Takashima

Abstract We revisit a generic compiler from a two-party key exchange (KE) pro-
tocol to a group KE (GKE) one by Just and Vaudenay. We then give two families of
GKE protocols from static assumptions, which are obtained from the general com-
piler. The first family of the GKE protocols is a constant-round GKE by using secure
key derivation functions (KDFs). As special cases, we have such GKE from static
Ring-LWE (R-LWE), where “static” means that the parameter size in the R-LWE
does not depend on the number of group members, n, and also from the standard
SI-DDH and CSI-DDH assumptions. The second family consists of two-round GKE
protocols from isogenies, which are proven secure from new isogeny assumptions,
the first (resp. second) of which is based on the SIDH (resp.CSIDH) two-party KE.
The underlying new static assumptions are based on indistinguishability between a
product value of supersingular invariants and a random value.

Keywords Post-quantum cryptography · Constant-round group key exchange ·
Static assumptions · Lattice-based cryptography · Isogeny-based cryptography

1 Introduction

1.1 Background

It is well known that widely deployed cryptographic schemes (e.g., RSA and ECC)
can be broken by using a large-scale quantum computer (Shor 1997). Hence, we
should develop new cryptosystems based on quantum-resistant mathematical prob-
lems (called post-quantum cryptography (PQC)).

Group key exchange (GKE) is an important cryptographic primitive, and has been
studied for a long time (since the seminal two-party Diffie–Hellman key exchange).
InGKE, the number of rounds is a crucial measure for evaluating the efficiency and to
obtain a constant-round GKE protocol is considered as a minimum desirable require-
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ment. Traditionally, the Burmester and Desmedt (BD) KE protocol (Burmester and
Desmedt 1994) has been widely known from its simplicity and small round complex-
ity, just two rounds. Subsequently, Just and Vaudenay (JV) (1996) generalized the
BD construction in which any two-party KE can be used for obtaining GKE. How-
ever, their description was sketchy and a rigorous security proof was not presented
before (see Boyd and Mathuria 2003 also).

In the post-quantum setting, there exist two variants BD-type GKE protocols from
lattices (Apon et al. 2019) and isogenies (Furukawa et al. 2018).1 Apon et al. (2019)
proposed a lattice-based BD-type GKE from the Ring-LWE (R-LWE) assumption
(in the random oracle model), in which the authors elaborately adjusted the original
security proof to their new post-quantum setting. However, since the underlying
R-LWEassumption depends on the number of groupmembers, n, the size of data also
gets large depending on n. Furukawa et al. (2018) proposed an isogeny-based BD-
type GKE protocol called SIBD. However, the security proof of SIBD (Theorem 4 in
Furukawa et al. 2018) is imperfect, and several points remain unclear, for example,
on how to simulate some public variables. Applying the JV-type compiler to a post-
quantum two-party KE is also considered as a reasonable approach, however, we
should give a rigorous treatment on its (post-quantum) security proof.

As a result, we lack a post-quantum constant-round GKE protocol with a rigorous
and reasonable security proof. We next consider what are reasonable underlying
assumptions. The size of a problem instance in the above R-LWE setting is linear in
the number of group members, n. Traditionally, in pairing-based cryptography, such
linear-sized assumptions are called “non-static”, “dynamic”, or “q-type”, which are
not desirable from efficiency and security viewpoints. And, in a line of researches,
we succeeded to replace q-type ones to static ones (e.g., Kowalczyk and Wee 2019;
Okamoto and Takashima 2010; Takashima 2014) in paring cryptography. Hence, we
have the following problem as our target:

Can we obtain (provably secure) post-quantum constant-round group key
exchange from static assumptions ?

Recent cryptography research also considers tight security reduction (from a static
assumption). In fact, the original BD GKE is proven tightly secure from the standard
DDH assumption (Theorem6). For obtaining tight security proof, it is not enough
to employ a general form of the JV-type transformation which includes a general
KDF function to a cyclic group G (denoted KDFG). We need a construction without
using (general) KDFG functions for tight security since KDFG breaks mathematical
structures in the underlying two-party KE.

1Boneh et al. (2018) recently proposed a one-round GKE from isogenies. However, it has a crucial
mathematical difficulty so that it cannot be realized yet.
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1.2 Our Contributions

We revisit previous post-quantum BD-type GKE schemes (Apon et al. 2019;
Furukawa et al. 2018 and the JV compiler for GKE Boyd and Mathuria 2003; Just
and Vaudenay 1996, and reformulate them under a provably secure generic compiler.
We have two families of GKE protocols from static assumptions.

Thefirst family ofGKEprotocols obtained from the general compiler is a constant-
roundGKE (from a two-party KE protocol) by using a secure KDFG (Theorem3). As
special cases, we have such GKE from static Ring-LWE (R-LWE), where “static”
means that the parameter size in the R-LWE does not depend on the number of
groupmembers,n (Corollary1) and the standardSI-DDHandCSI-DDHassumptions
(Corollary2). The first family has a limitation that they cannot have a tight security
proof since a general KDFG is used.

The second family consists of two-round GKE protocols, which are proven secure
from new isogeny assumptions, the first (resp. second) of which is based on the SIDH
(resp.CSIDH) KE (Theorem4 (resp.Theorem5)). They are called SI-PBD and CSI-
PBD GKEs, respectively. The underlying new static assumptions are obtained from
indistinguishability between a random product value of supersingular invariants and
a random value (in some appropriate finite field), which seem to have independent
interests. They are called DSJP (Decisional Supersingular j-invariants Product) and
DSMP (Decisional Supersingular Montgomery coefficients Product) assumptions,
respectively. As the second family needs no KDFG’s, it may have some merits for
approaching to tightly secure GKE. (However, we do not yet succeed it.)

Note that we have the Katz–Yung (KY) generic compiler from KE to authenti-
cated KE (AKE) (Katz and Yung 2007), in which a signature scheme is required.
Very interestingly, the first practical isogeny-based signature scheme, CSI-FiSh, was
recently proposed (Beullens et al. 2019). Therefore, we have a practical authenticated
GKE (AGKE) by applying the KY compiler to our isogeny-based GKE and CSI-
FiSh, both of which are post-quantum from isogenies. (Refer to Bernstein et al.
2019; Peikert 2019 for recent estimates on post-quantum security of CSIDH and
CSI-FiSh.) Since we have several lattice-based signatures, e.g., Ducas et al. (2018),
Fouque et al. (2017), Akleylek et al. (2017), we also have lattice-based AGKE from
our lattice GKE.

1.3 Key Techniques

Hereafter, the user indices are taken in a cycle: for example, hn+1 := h1 and h0 := hn .
We first review the BD GKE protocol briefly. It is defined on a cyclic group G of a
prime order q and a generator g ∈ G as follows:

Round-1. Each user i generates ai ←R Z/qZ, hi := gai and broadcasts hi .
Round-2. Each user i calculates Ji−1,i := (hi−1)

ai , Ji,i+1 := (hi+1)
ai and ui :=

Ji,i+1 · J−1
i−1,i . User i broadcasts ui .

KeyComp. User i calculates Ki := J n
i−1,i · un−1

i · un−2
i+1 · · · ui−2. Then, K := Ki =

J1,2 · J2,3 · · · Jn,1 is the shared key among the n users.
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In the (tight) security proof of the BD key exchange protocol from DDH on G, we
should simulate broadcast values (hi , ui )i∈[n] as well as embed the DDH challenge
element into the challenge shared key K .

The SIBD protocol (Furukawa et al. 2018) is obtained from the above BDGKE by
replacing (hi , Ji )with invariants of supersingular elliptic curves. Since the invariants
are given by elements in finite fields, we also have

ui := Ji,i+1 · J−1
i−1,i , K := Ki := J n

i−1,i · un−1
i · un−2

i+1 · · · ui−2. (1)

We revisit the JV construction (Just and Vaudenay 1996), whose original descrip-
tion was sketchy and the security proof was not given there. Hence, we first give a
security proof for JV carefully. Based on the proof, we present our isogeny-based
GKE from newly proposed assumptions. Then, as is shown in the proof of Theo-
rem3, if Ji−1,i ’s are uniformly and independently distributed in G, the n elements
K , u1, . . . , ui−1, ui+1, . . . , un are also uniformly and independently distributed in
G for i ∈ [n] (and ui is given as ui = (u1 · · · ui−1 · ui+1 · · · un)−1). It means that
if Ji−1,i ’s are distributed uniformly and independently, the target shared key K is
changed to a random one just by using an information-theoretic game transforma-
tion. This is a key lemma on the BD-type encoding (Lemma6).

However, for the SIBD protocol (Furukawa et al. 2018), since Ji−1,i are given by
supersingular j-invariants, we have an efficient algorithm for distinguishing between
Ji−1,i and a uniformly random element in the finite field (see Sutherland 2012).
Hence, for fixing the situation, we introduce new decisional assumptions called d-
DSJP and d-DSMPones. For simplicity, herewe just show the 2-DSJP assumption, in
which a product of two j-invariants, J (1)

i−1,i and J (2)
i−1,i , that is, J

(1)
i−1,i · J (2)

i−1,i , should be
indistinguishable from a uniformly random variable. At present, we have no efficient
algorithm for the problems, and considered them as plausible assumptions.

According to the above ideas, in Sect. 4.1, we give a JV-type generic transforma-
tion from KE to GKE based on the BD-type encoding of (ui ) and K from (Ji−1,i )

given in Eq. (1). We then consider the following two approaches for obtaining uni-
formly random Ji−1,i ’s:

1. Using a secure KDFG function ϕ to obtain random Ji−1,i := ϕ(κi−1,i ) where
κi−1,i ’s are shared keys by secure two-party KE: By this approach, we obtain a
new GKE from the “static” R-LWE assumption (Sect. 4.2). We also obtain new
GKE protocols from SI-DDH and CSI-DDH assumptions.

2. Using new assumptions on supersingular invariants: By using new DSJP and
DSMP assumptions, the local outputs, (Ji−1,i ) and (Mi−1,i ), from two-party key
exchange can be computationally changed to random ones, and we obtain new
GKE from these post-quantum assumptions (Sects. 4.3 and 4.4) without KDFG.

1.4 Organization

In Sect. 2, we introduce several preliminary facts: definition of group key exchange,
supersingular invariants andunderlying assumptions for SIDHandCSIDH. InSect. 3,
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our new assumptions on supersingular invariants are presented. In Sect. 4, we propose
new PQ GKE, i.e., lattice-based and isogeny-based GKE from static assumptions.

Notations. When A is a set (resp. a random variable), y ←R A denotes that y
is uniformly generated from A (resp. randomly generated from A according to its
distribution).We denote the finite field of order q by Fq . We denote the set {1, . . . , n}
by [n].

2 Preliminaries

2.1 Group Key Exchange

We give definitions of group key exchange, its correctness and security.

Definition 1 (GroupKeyExchange (GKE))An algorithm� := �r,n(λ) is called as a
r -round n-party key exchange protocol if it is composed of probabilistic polynomial-
time algorithms (Setup, (Round-r ′)rr ′=1,KeyComp), where Setup takes a security
parameter λ as input, and outputs public parameters params�, Round-r

′ for each
user i takes previous all public variables and his/her own secrets and outputs (broad-
casts) the r ′th his/her public values, and KeyComp for each user i takes all public
variables and his/her own secrets and outputs the shared secret value Ki .

We call � is correct if all (shared) keys K1, . . . , Kn are the same values, i.e.,
K := K1 = · · · = Kn . The key space (or key set) is denoted by K := K(λ) whose
cardinality #K is exponentially large in λ (or has enough entropy).

For a GKE protocol �, we let Exec�(λ) denote an execution of the protocol,
resulting in a transcript � of all messages sent during the course of that execution,
along with the shared key K computed by the parties. We let Adv�

A (λ) denote the
advantage of a polynomial-time quantum adversary A in distinguishing between the
following two distribution ensembles:

{ (�, K ) : (�, K ) ←R Exec�(λ) }λ∈N and

{ (�, K ′) : (�, K ) ←R Exec�(λ), K ′ ←R K }λ∈N.

Protocol� is post-quantumly secure ifAdv�
A (λ) is negligible inλ for anypolynomial-

time quantum A .

2.2 SIDH and CSIDH Key Exchange

In this section, we introduce two efficient Diffie–Hellman-type key exchange pro-
tocols using isogenies of supersingular elliptic curves: SIDH (Feo et al. 2014) and
CSIDH (Castryck et al. 2018).
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2.2.1 Supersingular Isogenies and Invariants

We summarize facts about elliptic curves. For details, see Washington (2008), for
example.

Let p be a prime greater than 3 and Fp be the finite field with p elements. Let Fp

be its algebraic closure. Here, an elliptic curve E overFp is given by theMontgomery
normal form

E : δy2 = x3 + mx2 + x (2)

for m and δ ∈ Fp, where the discriminant of the RHS of Eq. (2) and δ are nonzero.
We denote the point at infinity on E by OE . Elliptic curves are endowed with a
unique algebraic group structure, with OE as a neutral element. The j-invariant and
Montgomery coefficient of E are given as j (E) := 256(m2−3)3

m2−4 , m(E) := m. Two

elliptic curves over Fp are isomorphic if and only if they have the same j-invariant.
For j ∈ Fp, E( j) denotes an elliptic curve whose j-invariant is j . For N ∈ Z>0, the
N -torsion points is E[N ] := {P ∈ E(Fp) | N P = OE }.

Given two elliptic curves E and E ′ over Fp, a homomorphism φ : E → E ′ is
a morphism of algebraic curves that sends OE to OE ′ . A nonzero homomorphism
is called an isogeny, and a separable isogeny with the cardinality 	 of the kernel is
called 	-isogeny. We consider only separable isogenies in this paper. We compute
the 	-isogeny by using Vélu’s formulas (Vélu 1971) for a small prime 	 = 2, 3, . . ..
For explicit formulas, see Jao et al. (2017) for SIDH and see Castryck et al. (2018)
for CSIDH.

An elliptic curve E over Fp is called supersingular if there are no points of order
p, i.e., E[p] = {OE }. The j-invariants of supersingular elliptic curves lie in Fp2 . We
define two sets as below, for SI-DDH and CSI-DDH assumptions.

Jp2 := { j-invariants of supersingular elliptic curves over Fp2}, (3)

Mp := {Montgomery coefficients of supersingular elliptic curves over Fp}. (4)

2.2.2 SIDH Key Exchange and SI-DDH Assumption (Feo et al. 2014)

The detailed description of SIDH key exchange, i.e., � := SIDH, is given in
Appendix 3.1. Here, we summarize necessary facts on SIDH for later sections. Pub-
lic parameters are given as paramsSIDH := (p, E; PA, QA, PB, QB). All the mes-
sages during an execution are also given as transcript �AB := (paramsSIDH, EA,

φA(PB), φA(QB), EB, φB(PA), φB(QA)). Alice’s andBob’s shared keys, i.e., KA :=
j (EAB) and KB := j (EBA), are equal, and the value is denoted by K .

Definition 2 (Supersingular Isogeny Decision Diffie–Hellman (SI-DDH) assump-
tion Feo et al. 2014; Fujioka et al. 2018) Let (�AB, j (EAB)) ←R ExecSIDH(λ),
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where�AB := (
paramsSIDH, EA, φA(PB), φA(QB), EB, φB(PA), φB(QA)).AnSI-

DDH problem instance is given as (�AB, Jβ), where

J0 := j (EAB), J1 ←R Jp2 , (5)

β ←R {0, 1}, andJp2 is defined inEq. (3). If | Pr[A(�AB, J0) = 1] − Pr[A(�AB, J1)
= 1] | < negl(λ) holds for any polynomial-time quantum algorithm A , we say that
the SI-DDH assumption holds.

Theorem 1 (Feo et al. 2014) The SIDH key exchange is post-quantumly secure
under the SI-DDH assumption.

2.2.3 CSIDH Key Exchange and CSI-DDH Assumption
(Castryck et al. 2018)

The detailed description of CSIDH key exchange, i.e., � := CSIDH, is given in
Appendix 3.2. Here, we summarize necessary facts on CSIDH. Public parameters
are given as params := (p, E). All the messages during a execution are also given
as transcript �AB := (paramsCSIDH, [a]E, [b]E). Alice’s and Bob’s shared keys,
i.e., KA := m([a][b]E) and KB := m([b][a]E), are equal, and the value is denoted
by K .

Definition 3 (Commutative Supersingular IsogenyDecisionalDiffie–Hellman (CSI-
DDH) assumption) Let (�AB,m([a][b]E)) ←R ExecCSIDH(λ) where �AB :=(
paramsCSIDH, [a]E, [b]E)

. A CSI-DDH problem instance is given as (�AB, Mβ),
where

M0 := m([a][b]E), M1 ←R Mp,

β ←R {0, 1}, and Mp is defined in Eq. (4). If | Pr[A(�AB, M0) = 1] − Pr[A(�AB,

M1) = 1] | < negl(λ) holds for any polynomial-time quantum algorithm A , we say
that the CSI-DDH assumption holds.

Theorem 2 (Castryck et al. 2018) The CSIDH key exchange is post-quantumly
secure under the CSI-DDH assumption.

3 New Assumptions on Supersingular Invariants

3.1 New Assumptions on Supersingular j-Invariants

Definition 4 (Decisional Supersingular j-Invariants Product (d-DSJP)Assumption)

Let
(
�

(μ)

AB , j
(
E (μ)

AB

))

μ∈[d]
be transcripts of d-time executions of SIDHwith the same

paramsSIDH, where �
(μ)

AB :=
(
paramsSIDH,

(
E (μ)

A , φ
(μ)

A (PB), φ
(μ)

A (QB), E (μ)

B ,
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φ
(μ)

B (PA), φ
(μ)

B (QA)
))

and �AB :=
(
�

(μ)

AB

)

μ∈[d]
. A d-DSJP problem instance is

given as (�AB, Jβ), where

J0 := ∏d
μ=1 j

(
E (μ)

AB

)
, J1 ←R Fp2 (6)

andβ ←R {0, 1}. For any adversaryB, the advantageofB is defined asAdvd-DSJPB (λ)

:= | Pr[B(�AB, J0) = 1] − Pr[B(�AB, J1) = 1] |, and thed-DSJPassumptionholds
if Advd-DSJPB (λ) is negligible in λ for any polynomial-time quantum adversary B.2

3.1.1 Progressive Weakness Among d-DSJP Assumptions

The next lemma shows that the (d + 1)-DSJP assumption is weaker than the d-DSJP
one. In otherwords, a security proof from the (d + 1)-DSJP assumption is considered
better than that from the d-DSJP one.

Lemma 1 The d-DSJP assumption is reduced to the (d + 1)-DSJP assumption.
For any adversary A , there is a probabilistic machine B, whose running time

is essentially the same as that of A , such that for any security parameter λ,
Adv(d+1)-DSJP

A (λ) ≤ Advd-DSJPB (λ).

Proof B receives a d-DSJP tuple (�AB, Jβ), where�AB is defined as in Definition4.

Jβ is
∏d

μ=1 j
(
E (μ)

AB

)
when β = 0 or a random element in Fp2 when β = 1. B gener-

ates a newSIDHpublic key pair
(
E (d+1)

A , φ
(d+1)
A (PB), φ

(d+1)
A (QB)

)
,
(
E (d+1)

B , φ
(d+1)
B

(PA), φ
(d+1)
B (QA)

)
and SIDH shared key j

(
E (d+1)

AB

)
, then constructs a new tuple

� ′
AB :=

(
params,

((
E (μ)
A , φ

(μ)
A (PB), φ

(μ)
A (QB)

)
,
(
E (μ)
B , φ

(μ)
B (PA), φ

(μ)
B (QA)

))

μ∈[d+1]

)
,

and J ′
β := Jβ · j

(
E (d+1)

AB

)
.B gives a (d + 1)-DSJP tuple (� ′

AB, J ′
β) toA , and outputs

β ′ when A outputs β ′. �

In fact, we show the 1-DSJP problem is efficiently solved (Lemma2 in Sect. 3.1.2)
and the 2-DSJP problem has a specific approach for solving it via modular polyno-
mials (Sect. 3.1.3).

3.1.2 Case d = 1: Relation Between SI-DDH and 1-DSJP Assumptions

While the value of J0 for SI-DDH in Eq. (5) is the same as that of the 1-DSJP
assumption in Eq. (6), the other J1’s in the two assumptions are distributed in different

2Its “sum” version (instead of “product”), Decisional Supersingular j-invariants Sum (d-DSJS)
assumption, seems to be reasonable for d ≥ 2, and can be used in security proofs for the “sum”
version SI-SBD GKE scheme of SI-PBD GKE in Sect. 4.3. This footnote comment is also applied
to the d-DSMP assumption and CSI-PBD GKE in Sect. 4.4 in a similar manner.
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manners. Namely, the first (resp. the second) is the uniform distribution over Jp2(�

Fp2) (resp.Fp2 ). As is shown below, the difference is important.

Lemma 2 The 1-DSJP problem can be solved in (deterministic) polynomial time
except with a negligible error probability.

Proof In the 1-DSJP problem, J0 (resp. J1) is uniformly distributed in Jp2 (resp.Fp2 ).
Therefore, by applying supersingular identifying algorithm, e.g., Sutherland (2012),
we can solve the problem. �

From the above fact, the direct assumption, decisional (1, 1)-SI-PBD assumption
in Definition6 picks up the target key κ1 (β = 1 instance) from a uniform distribution
in Jp2 instead of Fp2 .

3.1.3 Case d = 2: An Approach for 2-DSJP via Modular Polynomials

Lemma1 shows the 2-DSJP assumption is the strongest among the d-DSJP assump-
tions for d ≥ 2. In fact, we have some possible approaches for solving the problem
as indicated below. But, the attack is not yet effective at present.

Here, we introducemodular polynomials�N (X,Y ) := ∑
cik XiY k , which satisfy

that �N ( j, j ′) = 0 for two j-invariants j and j ′ such that there exists an N -isogeny
between the associated elliptic curves E( j) and E( j ′). From the above defining
property, it holds that�N (X,Y ) are symmetric polynomials w.r.t. X and Y . Hence, if
we set S := X + Y and T := XY ,�N (X,Y ) are given as�N (X,Y ) = �N (S, T ) :=∑

γik Si T k for a two-variable polynomial �N .
The output J0 of the 2-DSJP problem is given by the product of two supersingular

j-invariants, i.e., τ := j
(
E (1)

)
j
(
E (2)

)
. We substitute T := τ into�N (S, T ), which

we obtain a one-variable polynomial equation�N (S, τ ) = 0. If E (1) and E (2) are N -
isogenous, then σ := j

(
E (1)

) + j
(
E (2)

)
satisfies the equation, i.e., �N (σ, τ ) = 0.

Based on this fact, we obtain a possible cryptanalysis for the 2-DSJP problem
given as below. The input of the algorithm is a 2-DSJP instance (�AB, Jβ).

1. Set a set of (small) integers I := {N1, . . . , Nt }.
2. For each N ∈ I, solve a one-variable polynomial equation ξN (S) := �N (S, Jβ) =

0, and the set of zero points of ξN in Fp2 is denoted by Z ⊂ Fp2 .
For each z ∈ Z , solve the quadratic equation W 2 − zW + Jβ = 0.

a. If the roots w1 /∈ Fp2 or w2 /∈ Fp2 , quit this loop.
b. Check whether both of w1 and w2 are supersingular j-invariants or not. If

yes, output β ′ := 0.

3. Output β ′ := 1.

The degree of isogenous curves E (1) and E (2) above is usually large, therefore, if
the security parameter λ is set large, the attack is ineffective. But, the above scenario
shows some possible approach to this problem using a specific property on modular
polynomials when d = 2.
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3.2 New Assumptions on Supersingular Montgomery
Coefficients

Definition 5 (Decisional Supersingular Montgomery Coefficients Product

(d-DSMP) Assumption) Let
(
�

(μ)

AB ,m
(
E (μ)

AB

))

μ∈[d]
be transcripts of d-time exe-

cutions of CSIDH with the same paramsCSIDH, where �
(μ)

AB := (
paramsCSIDH,(

E (μ)

A , E (μ)

B

))
and �AB :=

(
�

(μ)

AB

)

μ∈[d]
, where E (μ)

A := [
a(μ)

]
E, E (μ)

B := [
b(μ)

]
E

and E (μ)

AB := [
a(μ)

] [
b(μ)

]
E . A d-DSMP problem instance is given as (�AB, Mβ),

where

M0 := ∏d
μ=1 m

(
E (μ)

AB

)
, M1 ←R Fp,

and β ←R {0, 1}. For any adversary B, the advantage of B is defined as Advd-DSMP
B

(λ) := | Pr[B(�AB, M0) = 1] − Pr[B(�AB, M1) = 1] |, and the d-DSMP assump-
tion holds if Advd-DSMP

B (λ) is negligible in λ for any polynomial-time quantum
adversary B.

For the DSMP assumptions, we have similar results for the DSJP. In particular,
we have the following lemmas.

Lemma 3 The d-DSMP assumption is reduced to the (d + 1)-DSMP assumption.

Lemma 4 The 1-DSMP problem can be solved in (deterministic) polynomial time
except with a negligible error probability.

4 Proposed Post-Quantum Group Key Exchange (GKE)

4.1 A Generic JV-Type Compiler for GKE from Two-Party
KE (Just and Vaudenay 1996)

We describe a generic BD-type GKE compiler from a two-party KE protocol �, and
the obtained GKE protocol is denoted as �BD. Such a generic compiler was first
proposed by Just and Vaudenay (1996), Boyd and Mathuria (2003), but, no formal
proof was attached yet. By describing the security proof carefully, we also give a
security proof for our proposal in Sects. 4.3 and 4.4, and we found a condition for the
compiler to work correctly. The number of group members is assumed to be n ≥ 3.
Assume that we have two-party key exchange � with shared keyspace K. We need a
map ϕ : K → G (called G-embedding map), where G is a cyclic group of order q in
the BD-type Encoding (BDEnc) as indicated below. We assume that gcd(n, q) = 1
for the number of group members n and the cyclic group order q. (Note that we do
not assume the intractability of discrete log in G.)

Exec-�. Each user i runs the protocol � with users i − 1 and i + 1, respectively,
and obtains keys κi−1,i and κi,i+1.



Post-Quantum Constant-Round Group Key Exchange … 261

BDEnc. User i sets Ji−1,i := ϕ(κi−1,i ) and Ji,i+1 := ϕ(κi,i+1), and broadcasts
ui := Ji,i+1 · J−1

i−1,i ∈ G.
KeyComp. User i calculates Ki := J n

i−1,i · un−1
i · un−2

i+1 · · · ui−2. Then, K := Ki =
J1,2 · J2,3 · · · Jn,1 is the shared key among the n users.

The correctness is shown as the same as the original BD key exchange. The security
depends on the map ϕ. Below, we show that it is proven secure assuming that ϕ is
a secure KDF (see Appendix 2 for its definition) and the underlying protocol � is
secure.

Theorem 3 The GKE protocol �BD is (post-quantumly) secure if � is (post-
quantumly) secure, ϕ is a (post-quantumly) secure KDF and gcd(n, q) = 1 where q
is the order of G.

For any (quantum) adversary A , there exist (quantum) machines Bl and Cl ,
whose running times are essentially the same as that of A , such that Adv�BD

A (λ) ≤
∑

l∈[2n]
(
Adv�

Bl
(λ) + AdvKDFCl

(λ)
)

+ ε(λ), where ε(λ) is a negligible function in λ.

Proof The view of A consists of (u1, . . . , un, K ). To prove Theorem3, we consider
the following 2n + 2 games. An underlined part indicates a variable that is changed
in a game from the previous one.

Game 0: Original game, which is the same as the first case in Definition1. The
values of Ji−1,i , ui , K are given as Ji−1,i := ϕ(κi−1,i ),

ui := Ji,i+1 · J−1
i−1,i for i ∈ [n], K := J1,2 · J2,3 · · · Jn−1,n · Jn,1, (7)

where κi−1,i is a shared key by running � between users i − 1 and i .

Game l (l ∈ [n]): The lth output of ϕ is Jl−1,l ←R G (for both of users l − 1 and
l), all the other Ji−1,i ’s for i 	= l are generated as in Game l − 1, and the view of A ,
i.e., (u1, . . . , un, K ), are generated as in Eq. (7) from all the Ji−1,i ’s for i ∈ [n].
Game n + 1: Same as Game n except that the shared key is K ←R G, and all the
other variables are generated as in Game n. Note that K is independent of all the
other variables.

Game n + 1 + l (l ∈ [n]): The lth output of ϕ is Jl−1,l := ϕ(κl−1,l) (for both of
users l − 1 and l), all the other Ji−1,i ’s for i 	= l are generated as in Game n + l, and
(u1, . . . , un) are generated as in Eq. (7) from all the Ji−1,i ’s for i ∈ [n] and K ←R G.
Here, note that Game 2n + 1 is the same as the second case in Definition1.

Let Adv(l)
A (λ) be the advantage of A in Game l, respectively.

We will show three lemmas (Lemmas5–7) that evaluate the gaps between pairs of
the advantages in Game 0, . . ., Game 2n + 1. From these lemmas,

weobtainAdv�BD

A (λ) ≤ ∑
l∈[2n+1]

∣∣∣Adv(l−1)
A (λ) − Adv(l)

A (λ)

∣∣∣ ≤ ∑
l∈[2n]

(
Adv�

Bl
(λ)+

AdvKDFCl
(λ)

)
+ε(λ) where ε(λ) := ∑

l∈[2n] εl(λ) is a negligible function. This com-

pletes the proof of Theorem3. �
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Lemma 5 For any (quantum) adversary A , there exist (quantum) machines Bl and
Cl , whose running times are essentially the sameas that ofA , such that |Adv(l−1)

A (λ) −
Adv(l)

A (λ)| ≤ Adv�
Bl

(λ) + AdvKDFCl
(λ) + εl(λ) for l ∈ [n], where εl(λ) are negligible

functions.

Proof For the proof, we define an intermediate game, i.e., Game l − 1/2, between
Games l − 1 and l. In Game l − 1/2, κl−1,l ←R K and Jl−1,l := ϕ(κl−1,l), and the
rest of variables are all generated in the same manner as in Game l − 1.

By the definition of two-partyKE, the difference of the advantages of Games l − 1
and l − 1/2 is bounded by the advantage against the KE protocol �, i.e., Adv�

Bl
(λ)

(except with negligible probability). Since the keyspace K has enough entropy, by
the definition of KDF, the difference of the advantages of Games l − 1/2 and l is
bounded by the advantage against KDF, i.e., AdvKDFCl

(λ) (except with negligible
probability). This completes the proof of Lemma5. �

Lemma 6 (BDEnc Information-Theoretic Security) For any (quantum) adversary
A , for any security parameter λ, Adv(n+1)

A (λ) = Adv(n)
A (λ).

Proof We can set Ji−1,i := gαi−1 for i ∈ [n], where g ∈ G is a generator and
αi ←R Z/qZ (which are independent fromeach other). Then, ui := Ji,i+1 · J−1

i−1,i =
gαi−αi−1 . First, we see that n elements ( α1, α2 − α1, α3 − α2, . . . , αn − αn−1 )

are uniformly and independently distributed. Since α1 + · · · + αn = nα1 + (n −
1)(α2 − α1) + (n − 2)(α3 − α2) + · · · + (αn − αn−1) and n mod q has an inverse
element (from the assumption gcd(n, q) = 1), n elements ( α1 + · · · + αn, α2 −
α1, α3 − α2, . . . , αn − αn−1 ) are also uniformly and independently distributed.
Since K = gα1+···+αn , K is independent of all the other variables, i.e., hi , ui . This
completes the proof of Lemma6. �

Lemma 7 For any (quantum) adversary A , there exists (quantum) machines Bn+l

and Cn+l , whose running times are essentially the same as that of A , such that for any
security parameter λ, |Adv(n+l)

A (λ) − Adv(n+l+1)
A (λ)| ≤ Adv�

Bn+l
(λ) + AdvKDFCn+l

(λ) +
εn+l(λ) for l ∈ [n], where εn+l(λ) are negligible functions.

Lemma7 is proven in a similar manner to Lemma5.

4.2 Constant-Round GKE from Static Standard Assumptions

We instantiate the above generic GKE by Apon et al.’s ring LWE based GKE (Apon
et al. 2019) by using a two-party KE � and some SHA-2 (or SHA-3) based KDF
ϕ, whose range is G := F

∗ for some finite field F. Therefore, we have the following
corollary.

Corollary 1 There exists a post-quantum constant-round GKE from two-party KE
� in Apon et al. (2019) and some standard KDF function ϕ under the static ring
LWE assumption.
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Apon et al.’s original GKE is based on the “non-static” or “dynamic” R-LWE
assumption. That is, the noise size depends on the number of group members n, then
the scheme itself gets to large sizes.

Corollary 2 There exists a post-quantum constant-round GKE from two-party
KE SIDH (resp.CSIDH) and some standard KDF function ϕ under the SI-DDH
(resp.CSI-DDH) assumption.

4.3 Two-Round Product-BD (PBD) GKE from d-DSJP
Assumption

We modify the SIBD Group Key Exchange proposed in Furukawa et al. (2018) to
a provably secure one, called Supersingular Isogeny Product-BD ((n, d)-SI-PBD)
protocol for n-parties. In other words, our general (n, d)-SI-PBDprotocol is obtained
via our generic compiler (in Sect. 4.1) from two-party (2, d)-SI-PBD protocol, where
a G-embedding map ϕ is given by the identity map ϕ := idG : G → G.

4.3.1 Construction

We consider n-party key exchange. Each user is indexed by 1, 2, . . . , n, where n
is supposed to be even for simplicity. Note that we can easily obtain the protocol
for odd n. The user indices are taken in a cycle: so Rn+1 := R1 and R0 := Rn . We
introduce the map ι(i) := i mod 2 and we will simply write ι instead of writing ι(i).

Setup. Takes a security parameter λ and the number of users n. The algorithm
outputs paramsSIDH := (p(= f 	e00 	

e1
1 ± 1), E, {P0, Q0}, {P1, Q1}) for SIDH.

Round-1. Takes the user index i and params as input. User i randomly chooses
k(μ)

i ∈ Z/	eι
ι Z and computes R(μ)

i := Pι + k(μ)

i Qι. User i then computes the
isogeny φ

(μ)

i and elliptic curve E (μ)

i := E/〈R(μ)

i 〉 such that φ
(μ)

i : E → E (μ)

i ,

where ker(φ(μ)

i )=〈R(μ)

i 〉. The user i then sets pk1i =
(
E (μ)

i , φ
(μ)

i (P1−ι),

φ
(μ)

i (Q1−ι)
)

μ∈[d]
and sk1i :=

(
k(μ)

i

)

μ∈[d]
. Finally, the user i broadcasts pk1i to

the other users.
Round-2. Takes the user index i,paramsSIDH,

(
pk1i−1,pk

1
i+1

)
, and sk1i . User i

executes SIDH key exchange with users i − 1 and i + 1 to obtain elliptic curves
E (μ)

i−1,i and E (μ)

i,i+1, respectively, and then computes

Ji−1,i := ∏d
μ=1 j

(
E (μ)

i−1,i

)
and Ji,i+1 := ∏d

μ=1 j
(
E (μ)

i,i+1

)
.

The user then computes ui := Ji,i+1 · J−1
i−1,i and set pk

2
i := ui . Finally, the user i

broadcasts pk2i to the other users.
KeyComp. User i collects

(
pk2i ′

)
i ′∈[n] and sk

1
i and computes Ki := J n

i−1,i · un−1
i ·

un−2
i+1 · · · · · u2i−3 · ui−2.
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We can easily verify that Ki = J1,2 · J2,3 · · · Jn−1,n · Jn,1 holds for any i .

4.3.2 Warm-Up: Security from a Nonstatic Assumption

We rephrase security of the (n, d)-SI-PBD protocol based on Definition1 as a form
of the following assumption (see Lemma8).

Definition 6 (Decisional SI-PBD ((n,d)-SI-PBD) Assumption) Let (�n,d , K ) ←R

Exec(n,d)-SI-PBD(λ), where Ji−1,i := ∏d
μ=1 j

(
E (μ)

i−1,i

)
, Ji,i+1 := ∏d

μ=1 j
(
E (μ)

i,i+1

)
,

ui := Ji,i+1 · J−1
i−1,i ,�n,d :=

(
paramsSIDH,

((
E (μ)
i , φ

(μ)
i (P1−ι) , φ

(μ)
i (Q1−ι)

)
, ui

)

i∈[n],μ∈[d]

)
,

and K:=∏n
i=1 Ji,i+1. An (n, d)-SI-PBD problem instance is given as (�n,d , κβ),

where

κ0 := K , κ1 ←R Fp2 ,

and β ←R {0, 1}. For any quantum algorithm B, the advantage of B is defined as
Adv(n,d)-SI-PBD

B (λ) := | Pr[B(�n,d , κ0) = 1] − Pr[B(�n,d , κ1) = 1] |, and the (n, d)-
SI-PBD assumption holds if Adv(n,d)-SI-PBD

B (λ)is negligible in λ for any polynomial-
time quantum adversary B.

Remark 1 We have better security proofs when d ≥ 2 for the (n, d)-SI-PBD GKE
(Theorem4). However, the above gives only security proofs for the d = 1 case, which
is based on nonstatic assumptions. Note that since n ≥ 3 and the key K is a n-time
product of j-invariants, then we have no efficient distinguishing algorithm between
κ0 and κ1.

Lemma 8 The (n, d)-SI-PBD key exchange among n-parties is post-quantumly
secure under the (n, d)-SI-PBD assumption.

Proof Lemma8 is trivially obtained from Definitions1 and 6. �
If the (n, d)-SI-PBD problem is quantum resistantly hard, the SI-PBD key

exchange among n-parties is also quantum resistant. Therefore, we should investigate
the post-quantum security of the (n, d)-SI-PBD assumption in the next section.

Moreover, as is shown in Lemma1 for the d-DSJP assumptions, the family of
(n, d)-SI-PBD assumptions also has natural sequential reductions among them.

Lemma 9 The (n, d)-SI-PBD assumption is reduced to the (n, d + 1)-SI-PBD
assumption.

For any adversary A , there is a (quantum) machine B, whose running time
is essentially the same as that of A , such that for any security parameter λ,
Adv(n,d+1)-SI-PBD

A (λ) ≤ Adv(n,d)-SI-PBD
B (λ).

Proof The proof of Lemma9 is similarly given to that of Lemma1. �
Lemma9 shows that (n, d + 1)-SI-PBD group key exchange is more secure than

(n, d)-SI-PBD one while the former is less efficient than the latter in terms of data
sizes and execution times.
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4.3.3 Security from d-DSJP Assumption for d ≥ 2

Theorem 4 The (n, d)-SI-PBD key exchange among n-parties is post-quantumly
secure under the d-DSJP assumption when d ≥ 2 and gcd(n, p2 − 1) = 1. (Note
that p2 − 1 is the order of cyclic group G := F

∗
p2 .)

For any quantum adversary A , there exist quantum machines Bl , whose run-
ning times are essentially the same as that of A , such that Adv(n,d)-SI-PBD

A (λ) ≤∑
l∈[2n] Adv

d-DSJP
Bl

(λ) when d ≥ 2.

Proof The view of A consists of (u1, . . . , un, K ). To prove Theorem4, we consider
the following 2n + 2 games. An underlined part indicates a variable that is changed
in a game from the previous one.

Game 0: Original game. That is, the values of Ji−1,i , ui , K are given as Ji−1,i :=
∏d

μ=1 j
(
E (μ)

i−1,i

)
,

ui := Ji,i+1 · J−1
i−1,i for i ∈ [n], K := J1,2 · J2,3 · · · Jn−1,n · Jn,1. (8)

Game l (l ∈ [n]): The lth output of ϕ is: Jl−1,l ←R Fp2 (for both of users l − 1 and
l), all the other Ji−1,i ’s for i 	= l are generated as in Game l − 1, and the view of A ,
i.e., (u1, . . . , un, K ), are generated as in Eq. (8) from all the Ji−1,i ’s for i ∈ [n].
Game n + 1: Same as Game n except that the shared key is K ←R Fp2 , and all
the other variables are generated as in Game n. Note that K is independent of all the
other variables.

Game n + 1 + l (l ∈ [n]): The lth output ofϕ is: Jl−1,l := ∏d
μ=1 j

(
E (μ)

l−1,l

)
(for both

of users l − 1 and l), all the other Ji−1,i ’s for i 	= l are generated as in Game n + l,
(u1, . . . , un), are generated as in Eq. (8) from all the Ji−1,i ’s for i ∈ [n] and K ←R

Fp2 . Here, note that Game 2n + 1 is the same as the β = 1 case in Definition6.

Let Adv(l)
A (λ) be the advantage of A in Game i , respectively.

We will show three lemmas (Lemmas10–12) that evaluate the gaps between pairs
of the advantages in Game 0, . . ., Game 2n + 1. From these lemmas, we obtain

Adv(n,d)-SI-PBD
A (λ) ≤ ∑

l∈[2n+1]
∣∣∣Adv(l−1)

A (λ) − Adv(l)
A (λ)

∣∣∣ ≤ ∑
l∈[2n] Adv

d-DSJP
Bl

(λ).

This completes the proof of Theorem4. �

Lemma 10 For any quantumadversaryA , there exists a quantummachineBl , whose
running time is essentially the same as that ofA , such that for any security parameter
λ, |Adv(l−1)

A (λ) − Adv(l)
A (λ)| ≤ Advd-DSJPBl

(λ) for l ∈ [n].
Proof B is given a d-DSJP instance (�AB, Jβ), where

�AB :=
(
params,

((
E (μ)
A , φ

(μ)
A (PB), φ

(μ)
A (QB)

)
,
(
E (μ)
B , φ

(μ)
B (PA), φ

(μ)
B (QA)

))

μ∈[d]

)
.
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B (implicitly) sets user l − 1 A and user l B, and their public keys
(
E (μ)

l−1,

φ
(μ)

l−1(Pι), φ
(μ)

l−1(Qι)
)

μ∈[d]
:=

(
E (μ)

A , φ
(μ)

A (PB), φ
(μ)

A (QB)
)

μ∈[d]
and

(
E (μ)
l , φ

(μ)
l (Pι−1),

φ
(μ)

l (Qι−1)
)

μ∈[d]
:=

(
E (μ)

B , φ
(μ)

B (PA), φ
(μ)

B (QA)
)

μ∈[d]
, respectively.

B generates randomly Ji−1,i ←R Fp2 for i < l, and sets (l − 1)th j-invariants
product as Jl−1,l := Jβ . B generates secret keys k(μ)

i ←R Z/	eτ
τ Z for all i ∈ [n] \

{l − 1, l}where τ := i mod n, and then his/her ownpublic keys
(
E (μ)

i , φ
(μ)

i (Pτ−1),

φ
(μ)
t (Qτ−1)

)

μ∈[d]
. SinceB has all secret keys except for users l − 1, l, he can compute

all correct j-invariant products Ji−1,i for i > l.
Using Ji−1,i for i ∈ [n] as defined above, B computes ui := Ji,i+1 · J−1

i−1,i and
K := ∏

i∈[n] Ji−1,i , and then sends A the public keys, (ui )i∈[n], and the challenge
value K .

IfA outputsβ ′, thenB also outputsβ ′.We easily see that the distribution generated
by B is that in Game l − 1 when β = 0 and that in Game i when β = 1.

This completes the proof of Lemma10. �

Lemma 11 For any (quantum) adversary A , for any security parameter λ,
Adv(n+1)

A (λ) = Adv(n)
A (λ).

Proof The proof of Lemma11 is the same as that of Lemma6 (BDEnc Information
Theoretic Security Lemma). �

Lemma 12 For any quantum adversary A , there exists a quantum machine B :=
Bn+l , whose running time is essentially the same as that of A , such that for any
security parameter λ, |Adv(n+l)

A (λ) − Adv(n+l+1)
A (λ)| ≤ Advd-DSJPBn+l

(λ) for l ∈ [n].
Lemma12 is proven in a similar manner to Lemma10.

4.4 Two-Round PBD GKE from d-DSMP Assumption

Setup. Takes a security parameter λ and the number of users n. The algorithm
outputs paramsCSIDH := (p(= 4 · 	1 · · · 	s − 1), E).

Round-1. Takes the user index i and paramsCSIDH as input. User i randomly

chooses e(μ)

i :=
(
e(μ)

i,1 , . . . , e(μ)

i,s

)
and defines

[
a

(μ)

i

]
:=

[
l
e(μ)

i,1

1 · · · le
(μ)

i,s
s

]
. User i

then computes elliptic curve E (μ)

i :=
[
a

(μ)

i

]
E and sets pk1i :=

(
E (μ)

i

)

μ∈[d]
:=

([
a(μ)

]
E

)
μ∈[d] and sk1i := (

e(μ)
)
μ∈[d]. Finally, the user i broadcast pk1i to the

other users.
Round-2. Takes the user index i,paramsCSIDH,

(
pk1i−1,pk

1
i+1

)
, and sk1i . User i

executes CSIDH key exchange with users i − 1 and i + 1 to obtain elliptic curves
E (μ)

i−1,i and E (μ)

i,i+1, respectively, and then computes

Mi−1,i := ∏d
μ=1 m

(
E (μ)

i−1,i

)
and Mi,i+1 := ∏d

μ=1 m
(
E (μ)

i,i+1

)
.
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The user then computes ui := Mi,i+1 · M−1
i−1,i and set pk

2
i := ui . Finally, the user

i broadcasts pk2i to the other users.
KeyComp. User i collects

(
pk2i ′

)
i ′∈[n] and sk

1
i and computes Ki := Mn

i−1,i · un−1
i ·

un−2
i+1 · · · · · u2i−3 · ui−2.

We can easily verify that Ki = M1,2 · M2,3 · · · Mn−1,n · Mn,1 holds for any i . We
have the following lemma and theorem as in the case of the SI-PBD key exchange.
The (n, d)-CSI-PBD assumption is defined in Definition7 in Appendix 4.

Lemma 13 The (n, d)-CSI-PBD key exchange among n-parties is secure under the
(n, d)-CSI-PBD assumption.

Theorem 5 The (n, d)-CSI-PBD key exchange among n-parties is post-quantumly
secure under the d-DSMP assumption when d ≥ 2 and gcd(n, p − 1) = 1. (Note
that p − 1 is the order of cyclic group G := F

∗
p.)

For any quantum adversary A , there exist quantum machines Bi , whose running
times are essentially the same as that of A , such that for any security parameter λ,
Adv(n,d)-CSI-PBD

A (λ) ≤ ∑
i∈[2n] Adv

d-DSMP
Bi

(λ).
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Appendix 1: BD Group Key Exchange (Burmester and
Desmedt 1994)

We describe the BD Key Exchange among n users on a cyclic group G of a prime
order q and a generator g.

Round-1. Each user i generates ai ←R Z/qZ, hi := gai and broadcasts hi .
Round-2. Each user i calculates Ji−1,i := (hi−1)

ai , Ji,i+1 := (hi+1)
ai and ui :=

Ji,i+1 · J−1
i−1,i . User i broadcasts ui .

KeyComp. User i calculates Ki := J n
i−1,i · un−1

i · un−2
i+1 · · · ui−2. Then, Ki = J1,2 ·

J2,3 · · · Jn,1 is the shared key among the n users.

Theorem 6 (Burmester and Desmedt 1994; Katz and Yung 2007) The BD group key
exchange is tightly secure under the DDH assumption. For any adversary A , there
is a probabilistic machine B, whose running time is essentially the same as that of
A , such that for any security parameter λ, AdvBDA (λ) ≤ AdvDDHB (λ).

Proof DDH solver B uses an attacker A against the BD protocol. Below, we prove
the case n is even for simplicity. B receives a DDH tuple (g, ga, gb, T ) where T
is gab or gc with random c, and should simulate public information (hi , ui )i∈[n]
and the shared key K . B implicitly sets a1 := a and a2 := b, and generates random
ã2, ã3, . . . , ãn−1 ← Z/qZ. B also implicitly sets relations
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ã2 = a2 − an, ã3 = a3 − a1, . . . , ãn−2 = an−2 − an−4, ãn−1 = an−1 − an−3, (9)

which determines a3, . . . , an−1 as linear combinations of a(= a1), b(= a2), ã3, . . . ,
ãn−1, that is, a3 := a1 + ã3, . . . , an−2 := an−4 + ãn−2 = b + ã4 + · · · + ãn−2,

an−1 := an−3 + ãn−1 = a + ã3 + · · · + ãn−1, an := a2 − ã2.
Therefore, B simulates hi as follows: h1 := ga, h2 := gb, h3 := ga1+ã3 = ga ·

gã3 , h4 := ga2+ã4 = gb · gã4 , . . . , hn−2 := gb+ã4+···+ãn−2 = gb · gã4+···+ãn−2 , hn−1 :=
ga+ã3+···+ãn−1 = ga · gã3+···+ãn−1 , hn := ga2−ã2 = gb · g−ã2 , andB also simulatesui as

followsusing relations (9),ui := hãi+1
i for i = 1, . . . , n − 2,un−1 := h

−∑
i=1,3,...,n−3 ãi+1

n−1 ,

un := h
−∑

i=2,4,...,n−2 ãi+1
n , where an − an−2 = (a2 − ã2) − (a2 + ã4 + · · · + ãn−2) =

−∑
i=1,3,...,n−3 ãi+1 and a1 − an−1 = −∑

i=2,4,...,n−2 ãi+1 hold. Here, B’s simula-
tions of hi and ui are perfect.

Since the correct K = K2 is K2 = J n
1,2 · un−1

2 · un−2
3 · · · un with J1,2 = gab, B

simulates shared key K as K := T n · un−1
2 · un−2

3 · · · un where T is given in the DDH
instance and ui are calculated as above, and then B give it to A . When A answers to
the question whether K is correct or random, B answers to his problem as the same
way as A .

If T = gab, then the simulation is the same as the real game, and if T = gc, then
K is uniformly random and independently distributed from other variables. �

Appendix 2: Key Derivation Function (KDF)

Let two-party key exchange denote�with shared key spaceK. Amap ϕ : K → G is
called key derivation function (with a rangeG) if two distributions {ϕ(κ) | κ ←R K }
and { J ←R G } are indistinguishable. Such a KDF function can be obtained from a
standard hash function, e.g., SHA-2 or SHA-3. For the details, see Abe et al. (2005),
for example.

Appendix 3: SIDH and CSIDH Key Exchange

Appendix 3.1: SIDH Key Exchange (Feo et al. 2014)

A supersingular elliptic curve E and generators of smooth order rank-2 torsion sub-
groups are taken as pubic parameters. Alice and Bob set random cyclic subgroups as
secret keys, respectively, and calculate isogenies whose kernels are the secret keys
by using Vélu’s formulas. They publish their public keys, range curves of the iso-
genies, and images of the generators, respectively. Finally, they calculate isogenies
from public keys. The range curves of the isogenies are isomorphic; therefore their
j-invariants become the same. The detailed protocol is given as follows.



Post-Quantum Constant-Round Group Key Exchange … 269

Setup. Let eA, eB ∈ Z, and 	A, 	B be small primes (e.g., 2, 3), where 	
eA
A and 	

eB
B

are close. Let p be a primewhich satisfies that p = 	
eA
A 	

eB
B f ± 1where f is a small

positive integer. Let E : δy2 = x3 + αx2 + x be a supersingular elliptic curve
defined over Fp2 , where the cardinality of E(Fp2) is (	

eA
A 	

eB
B f )2. Let PA, QA be

generators of E[	eAA ], and PB, QB are generators of E[	eBB ]. Let public parameters
be paramsSIDH := (p, E, PA, QA, PB, QB).

Round-1. Alice chooses random numbers kA ∈ (Z/	
eA
A Z)×, and calculates RA =

PA + kAQA. Here, an order of RA is 	
eA
A . Alice calculates an 	

eA
A -isogenyφA : E →

EA : = E/〈RA〉 and φA(PB), φA(QB) by using Vélu formulas.
Similarly, Bob chooses random numbers kB ∈ (Z/	

eB
B Z)×, and calculates RB =

PB + kBQB . Here, an order of RB is 	
eB
B . Bob calculates an 	

eB
B -isogeny φB : E →

EB : = E/〈RB〉 and φB(PA), φB(QA) by using Vélu formulas.
Alice sends EA, φA(PB), φA(QB) to Bob, and Bob sends EB , φB(PA), φB(QA)

to Alice.
KeyComp. Alice calculates R′

A = φB(PA) + kAφB(QA). Here, an order of R′
A is

	
eA
A . Alice calculates an 	

eA
A -isogeny φ′

A : EB → EAB : = EB/〈R′
A〉 and KA =

j (EAB) by using Vélu formulas.
Bob calculates R′

B = φA(PB) + kBφA(QB). Here, an order of R′
B is 	

eB
B . Bob

calculates an 	
eB
B -isogeny φ′

B : EA → EBA : = EA/〈R′
B〉 and KB = j (EBA) by

using Vélu formulas.

It holds that ker (φ′
A ◦ φB) = φB

−1(〈R′
A〉) = 〈RA〉 ⊕ 〈RB〉 and ker (φ′

B ◦ φA) =
φA

−1(〈R′
B〉) = 〈RB〉 ⊕ 〈RA〉. Hence, KA = KB holds; therefore, SIDH is correct.

The SI-DDH assumption is defined in Definition2.

Theorem 1 (Feo et al. 2014) The SIDH key exchange is post-quantumly secure
under the SI-DDH assumption.

Appendix 3.2: CSIDH Key Exchange (Castryck et al. 2018)

CSIDH (Commutative Supersingular IsogenyDiffie–Hellman)was proposed byCas-
tryck et al. in 2018 (Castryck et al. 2018).

Let a prime p := 4 · 	1 · · · 	s − 1, where 	1, . . . , 	s are small distinct odd primes.
Let O be an order in an imaginary quadratic field, π ∈ O, πp the pth power
Frobenius endomorphism and E		p(O, π) the set of Fp-isomorphism classes of Fp-
rational supersingular elliptic curves whose Fp-endomorphism ring is equal to O
and the Frobenius πp is given by π ∈ O. For CSIDH, we only consider the case
that O ∼= Z[πp]. CSIDH is based on the action of the ideal class group cl(O) on
E		p(O, π). Alice and Bob generate random elements in cl(O) for their secret keys,
and calculate the actions on E/Fp : y2 = x3 + x . They publish the obtained elliptic
curves as public keys. Finally, they calculate their secret key actions on the pub-
lic keys, respectively. The obtained elliptic curves are isomorphic over Fp, and the
Montgomery coefficients are the same. The detailed protocol is given as follows.
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Setup. Let p be a prime as p = 4 · 	1 · · · 	s − 1, where the 	1, . . . , 	s are small
distinct odd primes. Let E be the supersingular elliptic curve y2 = x3 + x and
public parameters paramsCSIDH := (p, E).

Round-1. One randomly chooses an integer vector (e1, . . . , es) from {−η, . . . , η}s .
Define [a] = [

le11 · · · less
] ∈ cl(O), where li = (	i , πp − 1), l−1

i = (	i , πp + 1),
and η is the smallest integer which satisfies that 2η + 1 ≥ s

√
#cl(O). One cal-

culates the action of [a] on E and the Montgomery coefficient m ∈ Fp of
[a]E : y2 = x3 + mx2 + x . Let the integer vector (e1, . . . , es) (or [a]) be the secret
key, and m ∈ Fp be the public key.

KeyComp. Alice (resp.Bob) has her (resp. his) secret key, [a] (resp. [b]). Alice
calculates the action [a]EB = [a][b]E , where EB : y2 = x3 + mBx2 + x . Bob
calculates the action [b]EA = [b][a]E , where EA : y2 = x3 + mAx2 + x . Define
shared keys KA := m([a][b]E), and KB := m([b][a]E).

By commutativity of cl(O) and the uniqueness of the Montgomery coefficient, it
holds that KA = KB ; therefore, CSIDH is correct.

The CSI-DDH assumption is defined in Definition3.

Theorem 2 (Castryck et al. 2018)TheCSIDHkey exchange is post-quantumly secure
under the CSI-DDH assumption.

Appendix 4: Decisional CSI-PBD ((n, d)-CSI-PBD)
Assumption

Definition 7 (Decisional CSI-PBD ((n, d)-CSI-PBD) Assumption)

Let (�n,d , K ) ←R Exec(n,d)-CSI-PBD(λ), where Mi−1,i := ∏d
μ=1 m

(
E (μ)

i−1,i

)
,

Mi,i+1 := ∏d
μ=1 m

(
E (μ)

i,i+1

)
, ui := Mi,i+1 · M−1

i−1,i , �n,d := (
paramsCSIDH,

(
E (μ)

i , ui
)

i∈[n],μ∈[d]

)
, and K := ∏n

i=1 Mi,i+1. An (n, d)-CSI-PBDproblem instance

is given as (�n,d , κβ) where κ0 := K , κ1 ←R Fp, and β ←R {0, 1}. For any
quantum algorithm B, the advantage of B is defined as Adv(n,d)-CSI-PBD

B (λ) :=
| Pr[B(�n,d , κ0) = 1] − Pr[B(�n,d , κ1) = 1] |, and the (n, d)-CSI-PBD assumption
holds if Adv(n,d)-CSI-PBD

B (λ) is negligible in λ for any polynomial-time quantum
adversary B.
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