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Preface

Cyber Physical Systems are characterized by their ability to adapt and to learn.
They analyze their environment, learn patterns, and they are able to generate
predictions. Typical applications are condition monitoring, predictive mainte-
nance, image processing and diagnosis. Machine Learning is the key technology
for these developments.

The fourth conference on Machine Learning for Cyber-Physical-Systems and
Industry 4.0 - ML4CPS - was held at the Fraunhofer IOSB in Karlsruhe, on
October 23.77 and 24.%" 2018. The aim of the conference is to provide a forum
to present new approaches, discuss experiences and to develop visions in the
area of data analysis for cyber-physical systems. This book provides the pro-
ceedings of sclected contributions presented at the MLACPS 2018.

The cditors would like to thank all contributors that led to a plecasant and
rewarding conference. Additionally, the editors would like to thank all reviewers
for sharing their time and expertise with the authors. It is hoped that these
proceedings will form a valuable addition to the scientific and developmental
knowledge in the research fields of machine learning, information fusion, system
technologies and industry 4.0.

Prof. Dr.-Ing. Jitrgen Beyerer
Dr.-Ing. Christian Kihnert
Prof. Dr.-Ing. Oliver Niggemann
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Abstract. The proliferation of cyber-physical systems and the advance-
ment of Internet of Things technologies have led to an explosive digiti-
zation of the industrial sector. Driven by the high-tech strategy of the
federal government in Germany, many manufacturers across all indus-
try segments are accelerating the adoption of cyber-physical system and
Internet of Things technologies to manage and ultimately improve their
industrial production processes. In this work, we are focusing on the
EU funded project MONSOON, which is a concrete example where pro-
duction processes from different industrial sectors are to be optimized
via data-driven methodology. We show how the particular problem of
waste quantity reduction can be enhanced by means of machine learn-
ing. The results presented in this paper are useful for researchers and
practitioners in the field of machine learning for cyber-physical systems
in data-intensive Industry 4.0 domains.

Keywords: Machine Learning - Prediction Models - Cyber-physical Sys-
tems - Internet of Things - Industry 4.0

1 Introduction

The proliferation of cyber-physical systems and the advancement of Internet
of Things technologies have led to an explosive digitization of the industrial
sector. Driven by the high-tech strategy of the federal government in Germany,
many manufacturers across all industry segments are accelerating the adoption
of cyber-physical system and Internet of Things technologies to manage and
ultimately improve their industrial production processes.

The EU funded project MONSOON* — MOdel-based coNtrol framework for
Site-wide OptimizatiON of data-intensive processes — is a concrete example
where production processes from different industrial sectors, namely process

4 http://www.spire2030.eu/monsoon
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Fig. 1. Parts and periphery of an injection molding machine (KIMW) [2].

industries from the sectors of aluminum and plastic, are to be optimized via
data-driven methodology.

In this work, we are focusing on a specific use case from the plastic industry.
We use sensor measurements provided by the cyber-physical systems of a real
production line producing coffee capsules and aim to reduce the waste quantity,
i.e., the number of low-quality production cycles, in a data-driven way. To this
end, we model the problem of waste quantity reduction as a two-class classifica-
tion problem and investigate different fundamental machine learning approaches
for detecting and predicting low-quality production cycles. We evaluate the ap-
proaches on a data set from a real production line and compare them in terms
of classification accuracy.

The paper is structured as follows. In Section 2, we describe the production
process and the collected sensor measurements. In Section 3, we present our
classification methodology and discuss the results. In Section 4, we conclude this
paper with an outlook on future work.

2 Production Process and Sensor Measurements

One particular research focus in the scope of the project MONSOON lies on the
plastic sector, where the manufacturing of polymer materials (coffee capsules) is
performed by the injection molding method. Injection molding is a manufactur-
ing process that produces plastic parts by injecting raw material into a mold.
The process first heats the raw material, then closes the mold and injects the
hot plastic. After the holding pressure phase and the cooling phase the mold
is opened again and the plastic parts, i.e., coffee capsules in our scenario, are
extracted. In this way, each injection molding cycle produces one or multiple



parts. Ideally, the defect rate of each cycle tends toward zero with a minimum
waste of raw material. In fact, only cycles with a defect rate below a certain
threshold are acceptable to the manufacturer. In order to elucidate the man-
ufacturing process, we schematically show the parts and periphery of a typical
injection molding machine in Figure 1. As can be seen in the figure, the injection
molding machine comprises different parts, among which the plastification unit
builds the core of the machine, and controllers that allow to steer the production
process.

The MONSOON Coffee Capsule and Context data set [2] utilized in this
work comprises information about 250 production cycles of coffee capsules from
a real injection molding machine. It contains 36 real-valued attributes reflecting
the machine’s internal sensor measurements for each cycle. These measurements
include values about the internal states, e.g. temperature and pressure values,
as well as timings about the different phases within each cycle. In addition, we
also take into account quality information for each cycle, i.e., the number of non-
defect coffee capsules which changes throughout individual production cycles. If
the number of produced coffee capsules is larger than a predefined threshold,
we label the corresponding cycle with high.quality, otherwise we assign the label
low.quality. The decision about the quality labels was made by domain experts.

Based on this data set, we benchmark different fundamental machine learning
approaches and their capability of classifying low-quality production cycles based
on the aforementioned sensor measurements. The methodology and results are
described in the following section.

3 Application of Machine Learning in Plastic Industry

By applying machine learning to the sensor measurements gathered from a pro-
duction line of coffee capsules equipped with cyber-physical systems, we aim
at detecting and predicting low-quality production cycles. For this purpose, we
first preprocess the data by centering and scaling the attributes and additionally
excluding attributes with near zero-variance. Preprocessing was implemented in
the programming language R based on the CARET package [7].

Based on the preprocessed data set, we measured the classification perfor-
mance in terms of balanced accuracy, precision, recall, and F1 via k-fold cross
validation, where we set the number of folds to a value of 5 and the number of
repetitions to a value of 100. That is, we used 80% of the data set as training
data and the remaining 20% as testing data for predicting the quality of the
production cycles. We averaged the performance over 100 randomly generated
training sets and test sets.

We investigated the following fundamental predictive models, all implemented
via the CARET package in R:

— k-Nearest Neighbor [4]: A simple non-parametric and thus model-free classi-
fication approach based on the Euclidean distance.

— Naive Bayes [5]: A probabilistic approach that assumes the independence of
the attributes.



— Classification and Regression Trees [9]: A decision tree classifier that hierar-
chicaly partitions the data.

— Random Forests [3]: A combination of multiple decision trees in order to
avoid over-fitting.

— Support Vector Machines [11]: An approach that aims to separate the classes
by means of a hyperplane. We investigate both linear SVM and SVM with
RBF kernel function.

We evaluated the classification performance of the predictive models de-
scribed above based on the injection molding machine’s internal states which
are captured by the sensor measurements. The corresponding classification re-
sults are summarized in Table 1.

Table 1. Classification results of different predictive models.

balanced accuracy |precision|recall| F1
k-NN 0.697 0.638 |0.686 [0.657
Naive Bayes 0.643 0.604 |0.563 [0.578
CART 0.637 0.595 |0.566 [0.573
Random Forest 0.653 0.619 ]0.570(0.589
SVM (linear) 0.632 0.626 | 0.488 |0.540
SVM (RBF) 0.663 0.643 0.563 [0.594

As can be seen from the table above, all predictive models reach a clas-
sification accuracy of at least 63%, while the highest classification accuracy of
approximately 69% is achieved by the k-Nearest Neighbor classifier. For this clas-
sifier, we utilized the Euclidean distance and set the number of nearest neighbors
k to a value of 7. In fact, the k-Nearest Neighbor classifier is able to predict the
correct quality labels for 172 out of 250 cycles on average.

It is worth nothing that this rather low classification accuracy (69%) might
have a high impact on the real production process, since in our particular domain
hundreds of coffee capsules are produced every minute such that even a small
enhancement in waste quantity reduction will lead to a major improvement in
production costs reduction. In addition, we have shown that the performance of
the k-Nearest Neighbor classifier can be improved to value of 72% when enriching
the sensor measurements with additional process parameters [2].

To conclude, the empirical results reported above indicate that even a simple
machine learning approach such as the k-Nearest Neighbor classifier is able to
predict low-quality production cycles and thus to enhance the waste quantity
reduction. Although the provided sensor measurements are of limited extent
regarding the number of measurements, we believe that our investigations will be
helpful for further data-driven approaches in the scope of the project MONSOON
and beyond.



4 Conclusions and Future Work

In this work, we have focused on the EU funded project MONSOON, and have
shown how the particular problem of waste quantity reduction can be enhanced
by means of machine learning. We have applied fundamental machine learning
methods to the sensor measurements from a cyber-physical system of a real
production line in the plastic industry and have shown that predictive models
are able to exploit optimization potentials by predicting low-quality production
cycles. Among the investigated predictive models, we have empirically shown
that the k-Nearest Neighbor classifier yields the highest prediction performance
in terms of accuracy.

As future work, we aim at investigating different preprocessing methods and
ensemble strategies in order to improve the overall classification accuracy. We
also intend to evaluated different distance-based similarity models [1] for improv-
ing the performance of the k-Nearest Neighbor classifier. In addition, we intend
to extend our performance analysis to other industry segments, for instance the
production of surface-mount devices [10], and to investigate metric access meth-
ods [8,12] as well as ptolemaic access methods [6] for efficient and scalable data
access.
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Abstract. With the onset of ICT and big data capabilities, the physical asset and
data computation is integrated in manufacturing through Cyber Physical Sys-
tems (CPS). This strategy also denoted as Industry 4.0 will improve any kind of
monitoring for maintenance and production planning purposes. So-called big-
data approaches try to use the extensive amounts of diffuse and distributed data
in production systems for monitoring based on artificial neural networks
(ANN). These machine learning approaches are robust and accurate if the data
base for a given process is sufficient and the scope of the target functions is cur-
tailed. However, a considerable proportion of high-performance manufacturing
is characterized by permanently changing process, workpiece and machine con-
figuration conditions, e.g. machining of large workpieces is often performed in
batch sizes of one or of a few parts. Therefore, it is not possible to implement a
robust condition monitoring based on ANN without structured data-analyses
considering different machine states — e.g. a certain machining operation for a
certain machine configuration. Fuzzy-clustering of machine states over time
creates a stable pool representing different typical machine configuration clus-
ters. The time-depending adjustment and automatized creation of clusters ena-
bles monitoring and interpretation of machine tool characteristics independently
of single machine states and pre-defined processes.

Keywords: Fuzzy logic, Machine tool, Machine learning, Clustering.

1 Introduction

Technological value adding by extracting of CPS-capabilities is acting as selective
pressure not only at academicals levels but already on the shop floor [1-3]. Integrally
modules are predictive maintenance and cloud-based monitoring of production sys-
tems [4-6]. In [7] and [8] the authors introduced an approach to overcome limits in
condition monitoring of large and special-purpose machine tools. The core challenge
to address is the time-based change in nearly every internal and external constrain-
parameter (Fig. 1).

© The Author(s) 2019
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Fig. 1. Challenges in deduction of limits based on measuring data

This results in difficulties to correlate any kind of measuring data with the health
state of the machine and its components. Measures to address these challenges are:

1. Definition of Machine States (MSs) based on trigger parameters (TPs) (Table 1).
2. Deduction and comparison of Characteristic Values (CVs) is only carried out
a. for the same machine state
b. Gradually for a cluster resulting from the fuzzy-clustering (see 5 below)
. Deduction of dynamic limits for the CVs over time
4. Fuzzy-based interpretation of the current CV-values regarding their expectation
values (see section 5, Fig. 5)
5. Fuzzy-Clustering of MSs to create a stable pool including a broad range of charac-
teristically configurations of the machine tool

w

1.1  Limits of cluster analyses based on pre-defined machine states

The fuzzy clustering of pre-defined MSs can be adequate for monitoring of compo-
nents with clear objectives, e.g. the health state. Essential basis is a balanced defini-
tion of MSs by a maintenance expert. Therefore the pre-definition of MSs is prone to
an unexperienced workforce. More challenging is the altering of processes and work-
piece batches which leads to a decay of the initial defined MSs. The expert therefore
needs to define new relevant MSs and exclude old ones from the “pool” (see Fig. 9 in
[8).

Further potentials can be obtained if the pre-definition of MSs is replaced by an au-
to-derivation of MSs and a subsequent fuzzy clustering of these MSs with the objec-
tive of a broad characterization of the machine tool configurations over time. For this
purpose, a tree-step machine-learning cycle is introduced subsequently and described
in the following sections:

1. Auto-definition of MS by segmentation of MS parameters (section 2)

2. Deriving of Characteristic Values (CVs) for every state as described in [8]

3. MS-TP-reduction: Correlation analyses between MSs, CVs, parameter reduction
and exclusion of non-significant MSs (section 3 and 4)

4. Fuzzy-clustering of MSs including derivation of Cluster-CVs (section 5)

5. Deriving of machine-characterizing Clusters which represent concrete categories of
machine tools, e.g. heavy machining for certain feed axes configuration.



2 Auto-definition of MSs by segmentation of TPs for different
parameter numbers

A typical pre-defined MS is characterized by a subset of TPs as presented in [7]

(Table 1). The MSs depict in Table 1 are represented by using different TPs for an

axis stroke (see Fig. 2).

Table 1. Normalized data of MSs using the relative normalization of TP, overall cycle.

MS 1 2 3 4 5 6 7 8 9
TP

1.1 Automatic mode 1 1 1 1 1 1 1 1 1
3.1 x-pos. 1 1 1 1 1 1 1 1 1
4.1 y-pos. 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
4.2 y-pos. (A) 0 0 0 0 0 0 0
5.1 z-pos. 0.5 0.86 041 0.14  0.05 0.55 0.95

6.1 Jerk
7.1 Acceleration 0.5 0.5 0 0.75 0.75 0.75
0 0.67 0.83 0.67 1 1

6 081 096 091 1 0.71 0.70

8.1 Feed rapid traverse

S = = _— o
—

9.1 Temperature of y2
ball-screw nut

TPs can vary in a broad range, e.g. the current position of an axis or the feed. A
combination that doesn’t occur in praxis — e.g. a stroke between 0 and 1 mm for a
given axis — is not detectable and therefore it does not increase the complexity. How-
ever an axis stroke of 1000 mm could be divided from any numerical integer between
2 and oo in principle. Thus it is still necessary to have an upfront definition of TPs
ranges. A practical solution for dynamic TPs like the jerk, the acceleration or the feed
consists in definition of altering-constrains to intersect a MS in sub-phases.

A MS is not a singular event but a process which is characterized by a given
timespan. Real-life processes of machine tools are continuous and can be fragmented
in several sub-phases by various measures. An example would be a boring operation
with a specific tool. Another one could be the stroke of a single axis as depicted in
Table 2 and Fig. 2.

The definition of an overall process is complex and may vary depending on the de-
sired application or monitoring object. This process would be the highest level of a
MS as depict in Table 1. The y-axis executes a stroke from 300 mm up to 2400 mm
and back, therefor representing a complete cycle. This overall stroke can consequently
be divided into several sup-phases which can be treated as discrete MS. These “sub-
MS” can be identified in dependence of the altering of dynamic parameters as de-
scribed in Table 2. To distinguish them from each other every sub-MS is described by
numerical values depending on the level of the dynamic parameter (Table 2, left).
Alternative identifications are also conceivable. However the introduced description
based on levels links physical parameters directly to the sub-MSs.
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Table 2. Levels of MSs in dependence of the dynamic y-axis stroke.

Level L. . Length  Number of
Description (numbers in [mm])
1 2 3 4 5 6 [mm]  MS per level
0 0 0 0 0 O O Overallstroke 2x2100 1
1 0 0 0 0 O O Forwardstroke (FS) 2100 5
2 0 0 0 0 0 O Backwardstroke (BS) 2100
1 1 1 0 0 0 O FS,dynamic phase (DP),300-500 200
1 1 2 0 0 0 0 FS,DP,1250-1450 200
1 1 3 0 0 0 0 FS,DP,2200-2400 200
1 2 1 0 0 0 O FS,positioning (PO), 500-1250 750 10
1 2 2 0 0 0 0 FS,PO,1450-2200 750
2 1 1 0 0 0 0 BS,DP,2400-2200 200
2 2 2 0 0 BS, PO, 1250-500 750
1 1 1 0 0 FS,DP,acceleration (AC), 300-(~)375 75
1 1 2 1 2 0 0 FSDP,AC,1250-(~)1325 75
30

1 1 1 2 1 0 0 FS,DP,constant feed (CF), (~)375-(~)425 170

1 1 1 1 1 1 1 FS,DP,AC,positivejerk (PT), 300-(~)304 3,33 (theor.) %

If the lowest possible level is defined by the direction of the jerk, a maximum of 50
sub-phases can be identified based on path dynamics. We divide the overall stroke in
12 sub-phases based on the identification levels 1-3 of Table 2 for demonstration
purposes as depicted in Fig. 2. Practically other TPs like the dynamic path of a second
axis as well as process parameters could also vary in parallel.

f [ms) A ams]

— a (dynamic) feed
0.25)1
a (positioning) |

(4]
s
0 3 ‘
-+ ¢ |
2 |
Elhe g 2
0.25[1 I8 2 £ = gy
— w w wr
Lo T S - o !
osslT L5 3 £ 3 &
o 15 & £ g g
2 a a &
g |
0 @ |
I
: l Ll |
: o
(=}
B r
-0.251+1

—
Y

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Fig. 2. Test cycle used in [8] including sub-phases of MSs
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Obviously the auto-detection of any possible MS based on time-dependent changes
of any considered TP is not a practicable solution. Therefore a parallelization ap-
proach is suggested, where MPs based on different TPs for different sub-phases —
down until the level where the TPs still vary — are created, CVs derived and correla-
tion analyses between MSs and TPs carried out. This overall approach is depicted in
Fig. 3.

o Definition of machine states Regression analysis for correlation-based
machine state and parameter reduction
Parameter A
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Fig. 3. Suggested approach for automatic MS- and TP reduction

3 Regression analysis for correlation-based machine state and
parameter reduction

The fuzzy clustering of MSs, as presented in [8] can be exercised without any consid-
eration of possible correlations between TPs and CVs. This is possible for a limited
number of pre-defined MSs based on practical considerations about components of
interest and — heuristically anticipated — correlations between CVs and TPs. If a broad
range of TPs is combined with a variable resolution of TP sections as well as time
spans the clustering of all combinations — for every CV — becomes unpractical, statis-
tically challenging and the information content decays. Therefore a reduction of sig-
nificant MS and TPs for these states is necessary. This task can be addressed by the
usage of an artificial neural network (ANN), but the robustness and accuracy of such
depends heavily on the quantity of training data. This means that every relevant MS
has to occur several times before the ANN can play off its strength. This is not a giv-
en in non-serial machine tool applications as described in section 1.

For this purpose, regression analysis between the TPs and the CVs can be em-
ployed as suggested in this paper. Based on the introduced cycle, a regression analysis
was carried out. The input variables (TPs) and the responses (CVs) used in the regres-
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sion analysis are shown in Table 8. This includes all varying parameters of the MS.
The considered MS regression analysis does not aim to a quantification of the regres-
sion function between the input variables and the responses but it should statistical
validate the significance of the input variables (for more detail see [9]). Thus, a linear
function without any interactions is chosen for the regression analysis.

Table 3. Defined input variables and responses in the regression analysis

Input variables = TPs Responses = CVs
z-position Effective vibration level
Acceleration Frequency of the highest peak

Feed rapid traverse
Temperature of the ball-screw nut

The included MSs are 10 sub-phases of Fig. 2 for every TP-combination of Table
1. Sup-phases 113 and 213 (Fig. 2) are not considered due to their corrupted meas-
urement data. It should be noted the TPs 4.1 and 4.2 vary in accordance to the sub-
phases. Therefore 90 different — but related — MS are taken into account.

4 Practical example

The test cycle of Fig. 2 was derived for the 9 MS in Table 1 (Fig. 4). 51 cycles were
successively executed for each MS, resulting in an overall time of 2550s. Every cycle
includes all sub-phase (“sub-MS”) of Fig. 2.

<
[
3
G
4

Fig. 4. UNION PCR130 machine; y- and z-axis used for the test cycles

Based on these cycles, a linear regression analyses was derived for the sub-phases
using the commercial software Cornerstone®. The aim of the regression analyses is
not to derive a quantitative model with the aim to predict the CVs based on the TPs.
The data available is not sufficient for such a purpose. The regression model is only
linear and not representative for the TPs as well as the CVs overall range. However,
the regression analysis deducts significance terms for every input-parameter (= TP),
therefore distinguishing the relevant TPs for a given CV (responses in Table 4) from
the irrelevant ones. Furthermore, when comparing the significance terms of the TPs
with the adjusted R-Square value of the correlation analysis we obtain an assessment
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to define adequate sub-phases. Additionally the correlation between the significant
TPs (Covariance matrix) is checked to exclude TPs with high covariance’s. For ex-
ample the temperature has an even higher significance-term in sub-phase 112 than the
feed. However the Covariance matrix indicates that the temperature is highly correlat-
ed to the Temperature (-0,9861) and should therefor excluded for the subsequent clus-
tering for the CV fmax. Successively the number of relevant MSs is significantly
reduced. The number of relevant TPs is simultaneously reduced. Table 4 depicts the
overall result for all 10 sub-phases and 4 inputs, carried out separately for each of the
9 MSs from Table 1.

Table 4. Correlation analysis results for the sub phases of MS 1-9 and both CVs.

Correlation analysis Significance Terms (of inputs/TPs) Quality of Regression

Levels of sub = - - o T e
phases Responses| £ 2 5 & = £ E g 3 = s
= N g © & 8 b5y =y R=Rc) =
(=CVs) 8 g § 5 = QV,: 3 QV,: /M

Ist 2nd 3rd

0 : Peff 0.010 0,043 0.054 0.011 | 0.790 = 0.664 0,067
fimax 0.277  0.008 0.095 0.818  0.757 4,541
! Peff 2e-05 0.005 1e-05 | 0.966 = 0954 0.028
i fmax 3e-09 0 0 8.054
| ) Peff le-04 0.052 0.011 9e-05 [ 0934 0913 0.035
fmax 3e-05 2e-4  2e-05 | 0960 0947 2.366
Peff 0.014 = 0.061 0.013 | 0.677 0.569 0.029
2 ! fmax 6e-05  0.088 0.359 | 0.267 9.828
) Peff 0.011 = 0.052 0.010 | 0.698  0.597 0.039
fmax 9¢-06  0.095 0.347 | 0.254 7.248
B 0 Peff 0.059 0.051 0.071 | 0.548 | 0398 | 0.114
fmax 0.023  0.047 0.001 0.032 | 0921 0873 4527
| Peff 0.001 0.013 0.001 | 0.845 0.793  0.038
fmax 0.519 0.002 0.517 | 0.770 ~ 0.738  3.076
) ! ) Peff 2e-04 0.002 1e-04 | 0.926 = 0902 0.054
fmax 0.550 0.001 0.806 ~ 0.778  2.903
1 Peff 3e-05 3e-05 | 0931 0921 0.009
) fmax le-04 0.041 0471 | 0396 | 9.440
) Peff 0.002  0.004 0.006 0.829  0.772  0.015
fmax 5e-05 0.047 0452 | 0373 8336

significant Semi-significant Non-significant

Several important conclusions can be detracted from the results of the correlation
analysis and the subsequent survey of Covariance matrix of the significant TPs:

e The most promising sub-phases with the best correlations are the dynamic phases
in the middle of the axis stroke; the auto-definition detects this sub-phase MSs

e The effective vibration level is clearly correlated to the temperature of the nut

e The ball pass frequency of the ball-screw nut outer ring is clearly correlated to the
feed (the frequency can be calculated based on geometric parameters)
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e The quality of regression for the effective Vibration level (Peff) is significant in
more sub-phases and therefore more generally usable than the ball pass frequency
of the ball-screw (Y2)nut (fmax)

Therefore the auto detection mechanism would choose sub-phases 112 and 212 as
most relevant for monitoring. In regard to the CVs, the temperature remains the only
relevant TP for the effective Vibration level while the feed remains the only relevant
TP for the outer ring frequency of the ball-screw nut.

5 Deduction of machine characteristics based on clustering

The clustering was deducted solely on base of the two relevant TPs for each of the
two CVs as described in section 4. The algorithm is described in detail in [8] based on
[9]. Every MS is gradually attributed to the cluster centres. The relevant TP 8.1 and
9.1 do not vary in accordance to the sub-phases, so the clustering solely depends on
the (average) TP of the 9 MS. We obtain cluster centres at 0.71/0.99/0.00 for TP 8.1
(feed rapid traverse) respectively 0.09/0.92/0.64 for TP 9.1 (temperature of y2 ball
screw nut). Table 5 depicts the TP-values for each MS and their affiliation rate.

Table 5. Normalized TP and affiliation rates per cluster for all MS; optimization cycle nopt =
100; fuzzifierw = 1.5

Maschine states

Relevant TPs
f:.\l/;eed rapid traverse (for 1 1 | 0 067 083 067 1 1
gc'i;/enmlie(rfa;;‘rce\‘,’f)yz ball- 0 040 066 081 096 091 1 071 070
Cluster Affiliation rates per cluster
| TP 8.1 1 0 0 0 1 0.732 1 0 0
TP 9.1 1 0.273 0 0 0 0 0 0 0
) TP 8.1 0 1 1 0 0 0.268 0 1 1
TP 9.1 0 0.034 0 0.857 1 1 0.997 0.013 0.06
TP 8.1 0 0 0 1 0 0.000 0 0 0
} TP 9.1 0 069 1 0143 0 0 0003 0987 0994

Based on the affiliation rates of each MS the clusters represent typical
CV-progressions as depicted in Fig. 5 for CV1 (effective vibration level). We obtain
several alarms for cluster 1 (Fig. 5 left) with limits corresponding to a band in the +/-
3o range. This is due to the fact that cluster 1 represents the head-up of the machine
tool representing an unsettled pool of MSs (essentially MS 1). Alternatively a band of
+/- 66 for limit calculation can be used.

The auto-reduction of relevant TP and MS generates clusters which represent typi-
cal conditions of a machine tool. When combined with CV-information’s and by sub-
sequent structure-attribution the gathering of machine tool characteristics over time is
achievable.
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A possible example includes the CV1 (effective vibration level) which represents
“undesired system energy” and causes wear. Therefore the CV1-level should be ob-
served. The number and range of MS will gradually improve over time for a given
machine tool. Therefore more and more clusters arise. Some of these clusters repre-
sent high wear-proceeding defined by high CVl1-levels and caused by higher-than-
average bearing temperatures while others won’t. Consequently machining operations
as well as manufactured parts can be categorized and evaluated regarding their wear-
processing characteristics. While some correlations may state the obvious — e.g. heavy
machining — the overall load-wear correlation of the machine tool becomes more
transparent. Furthermore measurements like switching of an axis position for high
wear-processing manufactured parts became practicable.

i Vibration level [20-120 Hz] - Cluster 1 % Vibration level [20-120 Hz] - Cluster 2 Vibration level [20-120 Hz] - Cluster 3
T 1
= = =Cluster 1, expectancy value I= = =Cluster 2, expectancy value 1= = ~Cluster 3, expectancy value '
& Cluster 1, lower limit (3/6std) i 5 | Cluster 2, lower limit (3/6std) - , - o oE h Cluster 3, lower limit (3/6std)
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AR : i -
6 - L ( Vj e
@ H L) - T |
z B RO R E : A
Vall A you Su - )
I
i
raf
i
i
i
0
0 500 1000 1500 2000 2500 o 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
time [s] time [s] time [s]
100 Fuzzification - Cluster 1 0 Fuzzification - Cluster 2 o Fuzzification - Cluster 3
o y T T T 10 T T 10 T T
E ER O
@ 10 g 107 3 10°
= c 5
2 2 S
g 8 El
102 3102 3 102
e [ [
107 107 10°?
0 500 1000 1500 2000 2500 L] 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
time [s] time [s] time [s]

Fig. 5. Cluster-CV progress including Fuzzification ; CV1: Peff of ball-screw nut of Y2 axis

6 Conclusion

The auto-definition of relevant MS is crucial for addressing the ongoing changes in
internal and external conditions of large and special purpose machine tools. By using
a linear regression a significant reduction on the number of MS is possible. This in-
cludes the distinction between relevant and irrelevant sub-phases. Furthermore the
regression analysis also enables to reduce the number of relevant input TPs (e.g.
measuring parameters) per CV.

Based on a subsequent clustering of the machine states these clusters represent a
more stable base than a single MS. Their specific TP-ranges in context of specific
CVs (e.g. a ball-pass frequency) represent machine tool characteristics. A categoriza-
tion of processes and manufactured parts — regarding their wear-processing as well as
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quality stability — becomes possible when combined with structural information’s and
a process-evaluation regarding their cluster attribution.

Further research is necessary due to different clustering approaches as well as more
complex regression model approaches (e.g. quadratic). Furthermore, the deduction of
complex Characteristic values for entire structural components using several CVs
based on different algorithms will be investigated.
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Abstract. With an ongoing digital transformation towards industry 4.0
and the corresponding growth of collected sensor data based on cyber-
physical systems, the need for automatic data analysis in industrial pro-
duction lines has increased drastically. One relevant application scenario
is the usage of intelligent approaches to anticipate upcoming failures for
maintenance. In this paper, we present a novel approach for anomaly de-
tection regarding predictive maintenance in an industrial data-intensive
environment. In particular, we are focusing on historical sensor data from
a real reflow oven that is used for soldering surface mount electronic com-
ponents to printed circuit boards. The sensor data, which is provided
within the scope of the EU-Project COMPOSITION (under grant no.
723145), comprises information about the heat and the power consump-
tion of individual fans inside a reflow oven. The data set contains time-
annotated sensor measurements in combination with additional process
information over a period of more than seven years.

Keywords: Unsupervised Learning, Industry 4.0, Anomaly Detection

1 Introduction

In the last couple of years, the importance of cyber-physical systems in order to
optimize industry processes, has led to a significant increase of sensorized pro-
duction environments. Data collected in this context allows for new intelligent
solutions to e.g. support decision processes or to enable predictive maintenance.
One problem related to the latter case is the detection of anomalies in the behav-
ior of machines without any kind of predefined ground truth. This fact is further
complicated, if a reconfiguration of machine parameters is done on-the-fly, due
to varying requirements of multiple items processed by the same production
line. As a consequence, a change of adjustable parameters in most cases directly
leads to divergent measurements, even though those observations should not be
regarded as anomalies.

In the scope of the EU-Project COMPOSITION (under grant no. 723145), the
task of detecting anomalies for predictive maintenance within historical sensor
data from a real reflow oven was investigated. While the oven is used for soldering
surface mount electronic components to printed circuit boards based on contin-
uously changing recipes, one related problem was the unsupervised recognition
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of potential misbehaviors of the oven resulting from erroneous components. The
utilized data set comprises information about the heat and power consumption
of individual fans. Apart from additional machine parameters like a predefined
heat value for each section of the oven, it contains time-annotated sensor ob-
servations and process information recorded over a period of more than seven
years.

As one solution for this problem, in the upcoming chapters we will present our ap-
proach named Generic Anomaly Detection for Production Lines, short GADPL.
After a short introduction on related approaches, in the upcoming chapters we
will focus on a description of the algorithm. Afterwards we outline the evaluation
carried out on the previously mentioned project data, followed by a concluding
discussion on the approach and future work.

2 Related Work

While the topic of anomaly detection and feature extraction is covered by a broad
amount of literature, in the following we will focus on a selection of approaches
that led to the here presented algorithm. Recently, the automatic description
of time series, in order to understand the behavior of data or to perform sub-
sequent operations has drawn the attention of many researchers. One idea in
this regard is the exploitation of Gaussian processes [3,5] or related structural
compositions [4]. Here, a time series is analyzed using a semantically intuitive
grammar consisting of a kernel alphabet. Although corresponding evaluations
show impressive results, they are rather applicable to smaller or medium sized
historical data, since the training of models is comparatively time consuming.
In contrast, other approaches exist, which focus on the extraction of well-known
statistical features, further optimized by means of an additional feature selec-
tion in a prior stage [2]. However, the selection of features is evaluated based on
already provided knowledge and thus not applicable in unsupervised use-cases.
A last approach discussed here, uses the idea of segmented self-similarity joins
based on raw data [7]. In order to decrease the complexity, segments of a time
series are compared against each other in the frequency domain. Even though
this idea provides an efficient foundation for many consecutive application sce-
narios, it lacks the semantic expressiveness of descriptive features as it is the
case for the already mentioned methods.

In the upcoming chapter we consequently try to deal with those challenges, while
presenting our approach for unsupervised anomaly detection.

3 Approach

The hereafter presented description of GADPL is based on the stage-wise imple-
mentation of the algorithm. After an initial clustering of similar input parameters
(3.1) and a consecutive segmentation (3.2), we will discuss the representation of
individual segments (3.3) and the corresponding measurement of dissimilarity
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(3.4). GADPL is also summarized in figure Algorithm 1, at the end of this chap-
ter.

3.1 Configuration Clustering

In many companies, as well as in the case of COMPOSITION, a single production
line is often used to produce multiple items according to different requirements.
Those requirements are in general defined by varying machine configurations
consisting of one or more adjustable parameters, which are changed ’on-the-fly’
during runtime. For a detection of deviations with respect to some default be-
havior of a machine, this fact raises the problem of invalid comparisons between
sensor measurements of dissimilar configurations. If a measurement or an inter-
val of measurements is identified as an anomaly, it should only be considered
as such, if this observation is related to the same configuration as observations
representing the default behavior. In other words:

If Cp = {z; ;= N|1 <1 < M} is a configuration with M parameters x; of value
Ar, then for the dissimilarity 0 of two measurement representations y; ; and y2 j
with associated configurations C; and Cj, it holds that:

(Y1, y2,5) is defined iff. ==

Therefore in advance to all subsequent steps, at first all sensor measurements
have to be clustered according to their associated configuration.

For simplicity, in the following subsections we are only discussing the process
within a single cluster, although one has to keep in mind, that each step is done
for all clusters in parallel.

3.2 Segmentation

As a result of the configuration-based clustering, the data is already segmented
coarsely. However, since this approach describes unsupervised anomaly detec-
tion, the idea of a further segmentation is, to create some kind of ground truth,
which reflects the default behavior of a machine. In subsection 3.4 we will see,
how the segmentation is utilized to implement this idea. In an initial step, a max-
imum segmentation length is defined, in order to specify the time horizon, after
which an anomaly can be detected. Assuming a sampling rate of 5mins per sen-
sor, the maximum length of a segment would consequently be (60 - 24)/5 = 288
to describe the behavior on a daily basis. Although a decrease of the segment
length implies a decrease of response time, it also increases the computational
complexity and makes the detection more sensitive to invalid sensor measure-
ments. In this context, it needs to be mentioned that in this stage segments
are also spitted, if they are not continuous with respect to time as a result of
missing values. Another fact that has to be considered is the transition time of
configuration changes. While the input parameters associated with a configu-
ration change directly, the observations might adapt more slowly and therefore
blur the expressiveness of the new segment. To prevent this from happening,
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the transition part of all segments, which have been created due to configu-
ration changes, gets truncated. If segments become smaller than a predefined
threshold, they can be ignored in the upcoming phases.

3.3 Feature Extraction

Having a set of segments for each configuration, the next step is to determine the
characteristics of all segments. While the literature presents multiple approaches
to describe the behavior of time series, we will focus on common statistical fea-
tures extracted from each segment. Nonetheless, the choice of features is not
fixed, which is why any feature suitable for the individual application scenario
can be used. One example for rather complex features could be the result of a
kernel fitting in the context of Gaussian processes, accepting a decrease in per-
formance. Since the goal is to capture comparable characteristics of a segment,
we compute different real-valued features and combine them in a vectorized rep-
resentation. In the case of COMPOSITION, we used the mean to describe the
average level, the variance as a measure of fluctuation and the lower and upper
quartiles as a coarse distribution-binning of values. Due to the expressiveness
of features being dependent from the actual data, one possible way to optimize
the selection of features is the Principal Component Analysis [6]. Simply using
a large number of features to best possibly cover the variety of characteristics
might have a negative influence on the measurement of dissimilarity. The reason
for this is the partial consideration of irrelevant features within distance compu-
tations.

Moreover, since thresholds could be regarded as a more intuitive solution com-
pared to additionally extracted features, this replacement would lead to a signif-
icant decrease in the number of recognized anomalies. Apart from the sensitivity
to outliers, the reason is a neglect of the inherent behavior of a time series. As an
example consider the measurements of an acoustic sensor attached to a motor
that recently is sending fluctuating measurements, yet within the predefined tol-
erance. Although the recorded values are still considered as valid, the fluctuation
with respect to the volume could already indicate a nearly defect motor. Finally,
one initially needs to evaluate appropriate thresholds for any parameter of each
configuration.

3.4 Dissimilarity Measurement

For now we discussed the exploitation of inherent information, extracted from
segmented time series. The final step of GADPL is to measure the level of dis-
similarity for all obtained representatives. Since no ground truth is available to
define the default behavior for a specific configuration, the algorithm uses an
approximation based on the given data. One problem in this regard is the vari-
ability of a default behavior, consisting of more than one pattern. Therefore,
a naive approach as choosing the most occurring representative, would already
fail for a time series consisting of two equally appearing patterns captured by
different segments, where consequently half of the data would be detected as
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Algorithm 1 GADPL

Require: Time series T', Machine parameters M, Configuration transition time p,
Segment length (limin, lmaz), Number of nearest neighbors k,
Dissimilarity threshold Ay,qz

C' = cluster_configurations(T, M)
R = {R1, . R\C/l}
for all configuration segments C; in C’ do
for all segments s; in C; do
s; = truncate_transitions(s;, p)
if |s;| < lmin then
Ci =Ci\s;
else if |s;| > lmae then
s = split_segments(s;, lmaz)
C;i=C; U S;
Ci =Ci\s;
end if
R; = R; U extract_features(s})
end for
end for
for all configuration representatives R; in R’ do
for all representatives r; in r; do
NNy, = query_index(r;, k)
if A(rj, NNi) > Amasz then
emit_anomaly (i, j)
end if
end for
end for

anomalous behavior.

As one potential solution GADPL instead uses the mean over a specified size
of nearest neighbors, depicting the most similar behavior according to each seg-
ment. The idea is that even though there might multiple distinct characteristics
in the data, at least a predefined number of elements represent the same be-
havior compared to the processed item. Otherwise, this item will even have a
high average dissimilarity with respect to the most similar observations and can
therefore be classified as anomaly.

Let r; be the representative vector of the i-th segment obtained by feature ex-
traction and let NNy (r;) be the according set of k nearest neighbors. The dis-
similarity measure A for r; is defined as:

Alry, NNi(r;)) = £ 5% 6(ri, NN{ (1))

where NN, ,i (r;) corresponds to the j-th nearest neighbor and § to a ground dis-
tance defined on R™.

Here, for the vectorized feature representations, any suitable distance function
0 is applicable. In the context of COMPOSITION we decided to use the Eu-
clidean distance for a uniform distribution of weights, applied to normalized
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Fig. 1. Application of GADPL: The upper part shows the segmentation of time anno-
tated power consumption data in percent. The lower part illustrates the result of the
dissimilarity measurement, where the red rectangle indicates classified anomalies.

feature values. To further increase the performance of nearest neighbor queries,
we exploited the R*-tree [1] as a high-dimensional index structure.

Given the dissimilarity for each individual representative together with a prede-
fined anomaly threshold, GADPL finally emits potential candidates having an
anomalous behavior.

4 Evaluation

In this section we will discuss the evaluation performed on a historical data
set, provided in the scope of COMPOSITION. While in future, the algorithm
should be applied to continuously streamed sensor data, the initial evaluation
was performed on recorded data, captured over a period of seven years. The
data consists of machine parameters (already classified by recipe names) and
time-annotated sensor measurements including temperature value and power
consumption, based on a sampling rate of 5 minutes. In addition, a separate
maintenance log covers the dates of previous fan exchanges. However, malfunc-
tions only occurred two times during runtime and are therefore comparatively
rare. A confirmation of results due to actual defect components is consequently
restricted to some extent. Since this project and the here presented approach
are regarded as ongoing work, the outlined evaluation is continued likewise.

Figure 1 illustrates the application of GADPL, including segmentation (upper
part) and dissimilarity measurement (lower part), for the time around one fan
failure. Here, differently colored circles represent slices of the time series after
segmentation, describing the percentage power consumption of a fan. Using the
features mentioned in section 3.3, we intended to perceive deviating values and
untypical fluctuations within the data, without being sensitive to outliers aris-
ing from single incorrect sensor measurements. Having one of the recorded fan
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exchanges at the end of February 2012, the result of the algorithm clearly shows
significantly higher values for the dissimilarity (red rectangle) prior to the event.
Even though increased dissimilarity values at the end of May 2011 and around
September 2011 can be be explained by analyzing the original data, yet there
were no recordings for a defect component at those times. However this does not
automatically imply incorrect indications, since defect machine parts are not the
only reasoning for anomalous characteristics in the data. An appropriate choice
for the value of a maximal dissimilarity, defining the anomaly threshold, can
therefore highly influence the accuracy.

Both cases of a defect fan behavior were clearly captured by the algorithm and
emphasized by a high dissimilarity.

5 Conclusion

With GADPL we introduced a solution to the relevant topic of unsupervised
anomaly detection in the context of configuration-based production lines. After
a short outline on the topic and related work, we discussed the algorithm and
the associated intention of our approach, before briefly showing the evaluation
results based on the project data.

Since the approach is ongoing work, in the future we will primarily extend our
evaluation based on streaming data. Although we described the algorithm us-
ing historical data, the procedure for streaming data is carried out analogous.
Another point in the scope of future evaluations is the choice of more complex
features and a related automated feature selection. Another idea to further im-
prove the approach is a semantic segmentation of the time series. While currently
a time series is segmented exploiting domain knowledge, a segmentation based
on characteristics in the data might potentially increase the accuracy. This would
also prevent from an unappropriated choice of the maximal segmentation length,
which could result in a split of data within a potential motif.

Finally, we plan to investigate the correlation of anomalies within multivariate
data. If GADPL in its current state is used for multivariate time series data, each
dimension is processed independently. Combining inter-dimensional information
within a single dissimilarity measure to cover anomalies would therefore be a
useful functionality to further optimize the approach.
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Abstract. This paper presents an application of a random forest based
classifier that aims at recognizing flawed products in a highly automated
production environment. Within the course of this paper, some data
set and application features are highlighted that make the underlying
classification problem rather complex and hinders the usage of machine
learning algorithms straight out-of-the-box. The findings regarding these
features and how to treat the concluded challenges are highlighted in a
abstracted and generalized manner.

Keywords: random forest classifier, imbalanced data, complex tree-
based models, high peculiarity of data

1 Introduction

In a manufacturing process with highly individual products like ophthalmic
lenses, which are produced according to personalized prescriptions, it is difficult
to identify orders that are likely to fail within the production process already in
advance. These products might fail due to their difficult and diverse parameter
combinations. The parameters cover raw material characteristics, lens design,
geometry and manufacturing parameters (i.e., machine setting values). Even
such individual, prescribed products are not excluded from hard market compe-
titions. Accordingly, avoiding waste of material and working time is an emerging
problem. Obviously, since such customer-specific, individual products are not
interchangeable or replaceable by other products (like in case of on-stock prod-
ucts), it is highly valuable to avoid any kind of scrap / failure already beforehand
the production. Summing up, it is becoming more and more useful to analyze
product (order) parameters and find features and feature correlations in order
to predict (potential) failures already prior to the start of any manufacturing
process.

In our case, we are confronted with a rather hard problem since the products
can not be perfectly discriminated into good or bad ones solely based on their
product characteristics (which are given by individual prescription and design
in our case) and their corresponding target processing parameters. Therefore, it
is a challenging machine learning (ML) task to remedy this problem within an
advance distinction between good and potential faulty products, while, at the
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same time, avoiding ML pitfalls like over-fitting. Furthermore, the pure number
of features is high and the data set is quite imbalanced, hampering the straight
forward exploitation of ML models.

Until now, ML is used for error detection in different manufacturing areas
(e.g., [1-3]), but due to the domain-specific data (highly individualized) and
fully-automated and very standardized manufacturing processes, the gap be-
tween different parameter combinations and the resulting processing steps is an
open challenge for applying ML technologies and assessing their benefits accord-
ingly.

We present a random forest classifier for error prediction that resulted from
a deep analysis of different ML algorithms, which has been used to train various
models. These models are evaluated in terms of their classification quality. The
best model is presented in detail. Interestingly, doubts (like difficult distinction)
and findings (like important features) of the domain experts form the manufac-
turing division were confirmed by the model. Finally, we give an argumentation
why the random forest model outperforms other (rather complex) models like
Neural Networks and Support Vector Machines (SVM) within this particular use
case.

2 Background

This section shortly outlines background information on a particular studied use
case, followed by some principles on machine learning.

I. Use Case: Error Recognition and Prediction. For an ordered product,
we focus on the relevant product features and the according machine setting
parameters. Summing up to 130 features that describe the product, i.e., lens in
our case by data on geometry, shape, target prescriptions, coatings and tinting
values. We removed identifiers like order number and dates. In the used data set,
we have about 560000 entries in total (i.e., products), covering those products
without errors and such cases, where the first production was erroneous and a
further (second) production cycle was necessary.

As we train, test and evaluate our model with historical data, for each prod-
uct there is the corresponding characteristic whether it is an error or a non-error
(binary classification). Since we are interested in an advance classification of
products (and their corresponding to-be processing parameters), we neglect in
the historic data those errors that were cased by operators, by unexpected ma-
chine failures or by other arbitrary circumstances. The remaining proportion of
(final) errors is about 5.4 %.

IT. Machine Learning (in Practice). Based on the use case, we are faced
with a binary classification problem (i.e., we distinguish — at least in a first step
— between good and potential bad products). This problem (classification) con-
stitutes one group of algorithms in the realm of supervised machine learning,
while the second group of algorithms of supervised learning is referred to as a
regression problem, where instead of discrete categories (as in our case) a con-
tinuous value is the target output of a model. Among classifications, there are
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a variety of algorithms (cf. [4-6]), ranging from rather basic ones like regression
and Naive Bayes, to more difficult algorithms (in terms of setting-up and compu-
tation) like artificial neural networks (ANN), support vector machines (SVM),
decision trees and extensions of them like random forests classifiers (RFCs) and
boosted decision trees. Boosted decision trees and random forests belong to the
so-called ensemble algorithms, i.e., a set of trees or a forest is built by an en-
semble of decision trees. Ensemble algorithms implement methods to generate
multiple classifiers and then aggregate their results (cf. [16]). Boosted decision
tree algorithms apply a strategy of state-wise optimization of trees (measured
in terms of loss functions) [14, 15]. Trees within the ensemble of random forests
are built by randomly selecting the input features. Each tree in the ensemble is
obtained by randomly selecting the input features. Within each tree, each node
is still split by using the best feature (measured in terms of cost functions). The
final result of the forest is obtained by unit votes from the trees for the most
popular class.

3 Characteristics of the Data Set and the Application
Scope

The data set is obtained from a rather dedicated domain, following a production
process for highly individualized products, there are some essential key charac-
teristics that are comparable and transferable to different problems in completely
other domains. Therefore, we have to tackle challenges to cope with the following
data and application characteristics.

The data set is highly imbalanced, which is actually in the nature of error and
non-error classification problems. As already mentioned, we have a relationship
of roughly 5.4 % belonging to the minority class (error case), while slightly
more than the remaining 94.6 % of the data samples belong to the majority
class (non-error case). It is well known that the best classification results can be
achieved on balanced data sets (cf. [11-13]). Furthermore, in our case, we are not
only interested in the correct classification, we also want to know which are the
most influential features for ending-up in one of these two classes. Thus, a sound
prediction model that is able to do a proper classification (i.e., a non-guessing
solution!) is needed.

A further property is the complexity of the model. The pure number of sam-
ples (roughly 560000 entries in the data set) is a decent size, but the compared
amount of features (about 130) is rather high. In particular, not only the number
itself is an issue, it is rather the feature characteristic that counts for complexity,
as we will see later. There are no dominating single features and the number of
influential features is high, ending up with models that need a deep consideration
of feature manifestation and combinations, as demonstrated in the next section.

Finally, the third characteristic is the vague discriminability, which is the
most difficult one to handle in our case. Given all the features of a particularly
ordered product of an error case, the manufacturing process at the first time
has failed, while the second run with quite similar or even the same features (in-
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cluding machine setting parameters) ended-up with a good quality. Accordingly,
such a concrete characteristic of product attributes is not able to determine in
advance whether an error or a non-error case is given.

4 A Random Forest Model for Error Prediction

This section presents the set-up of the model training, starting with the neces-
sary data preparation steps, the part of algorithm set-up and result comparison,
followed by the evaluation and an discussion of the design decisions and the
achieved results.

4.1 Data Preparation and Preprocessing

After the basic step of creating a data model within a database and cleaning
tasks like dealing with outliers and missing values, we applied several feature
engineering steps. We have to deal with various categorical values. Even if some
algorithms are able to directly handle them, we applied a general encoding of
all categorical features. We use the established one-hot-encoding method for
this step. Furthermore, for some parameters with different values within the pro-
duction steps (steps in the production process), the results improved by adding
aggregations of these parameters like average values to the data set.

4.2 Features and Feature Distribution

Among the features (independent variables) there is a clear ordering regarding
feature importance, but there is no clear dominance of a single feature or of
a small group of features. For instance, the relative importance of the most
important feature is about 0.0383, the 10th important feature still reaches a
relative importance of roughly 0.0302.

Figure 3 shows the distribution of the first and the tenth important feature.
The features are renamed here, param. 1 refers to the first / most important
feature (Figure 1) and param. 2 to the tenth important feature (Figure 2). We
added suffixes in the plots to show the distribution of the error and non-error case
separately. The plots depict the distribution of the whole data set (i.e, including
data of the train and test part). The left box (i.e., the suffix “majority”) refers to
the values of the majority class (i.e., non-error case), while the suffix “minority”
refers to the values of the minority class (i.e., error case)).

4.3 Algorithm Comparison and Selection

We built all models by training with several algorithms, using the Python pro-
gramming language and libraries like the Scikit-learn library! in Python.

The data set is split up into training (0.7) and test (0.3) data. The results
show that the data contains rather complex interactions among the most relevant

L Scikit-learn: http://scikit-learn.org/stable/
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Fig. 3. Box plots for the distribution of two features.

features. Moreover, the discrimination between error and non-error (if possible
at all) requires the comprehensive consideration of various features and their
relations, which has been outlined in our comparison. For instance, less-complex
algorithms like Naive Bayes and regressions are not able to do a decent classifica-
tion. Algorithms known as complex and partially hard to initialize like support
vector machines (SVM) and artificial neural networks (ANN) are able to make
proper binary classifications, but with a low F1 score. Tree-based algorithms out-
perform all others. The best results are obtained by boosted trees and, slightly
better, by random forest classifiers.

Table 1 shows an excerpt of an algorithm comparison. The first column de-
scribes the used algorithm to train the model. Column two gives the setting pa-
rameters of the algorithm. If no parameter is given, the default values are taken
(from Scikit learn). The presented setting parameters are those which ended up
in the best results, mainly received by several trials and applying cross-validation
strategies (We used a 5-fold cross validation on the training data set).

The third column describes the performance in terms of precision, followed by
the recall in column four and the summarized F1 score in column five, concluded
by the ROC-AUC value (area under the ROC curve). All models where trained
with these algorithms from the Scikit learn package in Python.

For the random forest classifier (RFC), we explicitly parametrized the algo-
rithm with the minimum number of samples for a split to 3, and no limit of the
maximum depth of the branches in a tree. The quality of a split is measured by
the Gini impurity. This measure judges the quality of a selected target variable,
which is used to split a node, i.e., reflecting the importance or “best split criteria”
in a tree. The Gini impurity measures how often an element is wrongly classified
(i.e., assigned to a subset (bin)), if the “correct” label reflects the random label
assignment of the distribution of labels within the subset.

The boosted decision tree (implemented by AdaBoost in Scikit learn) has
been constituted within a rather similar setting. The tree properties are set to
the minimum number of samples for a split to three, no limitation on the depth
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and also the Gini impurity is used to assess the split quality. The learning rate
shrinks the contribution of a single classifier within the ensemble. We use the
default boosting algorithm (SAMME.R), which aims at converging faster than
the other options.

The artificial neural network (ANN) (also referred to as multi-layer percetron
- MLP - classifier) uses an adaptive learning rate, which means that the learning
rate is reduced (divided by five) as far as in two successive runs the training
loss does not decrease. The parameter alpha represents the regulation of the
L2 penalty (i.e., Ridge penalty). The value is higher than the default, implying
smaller coefficients (weights). The parameter on the hidden layers defines the
number of hidden layers (five in our case) and also the number of nodes (neurons)
in each layer.

For the support vector machines (SVM) (or support vector classifier), we use
the rbf (radial basis function) kernel. (The rbf kernel uses a squared Euclidean
distance as measurement for data (point) separation. The gamma coefficient
is set to auto, which meas that the quotient from one and the number (n) of
features. The penalty parameter for errors (C) is five. This parameter is balancing
between errors in training compared to errors in testing, i.e., it influences the
generalization of a classifier to unseen data.

Table 1. Comparison of Model Performance.

Algorithm  |Parameter Performance
Precision|Recall|F1 Score]ROC-AUC
RFC criterion: Gini 0.74 0.4 0.52 0.72

min-sample-split: 3
max-depth (tree): none
Boosted Tree|criterion: Gini 0.72 0.39 |0.51 0.71
(AdaBoost) |min-sample-split: 3
max-depth (tree): none
learning rate: 0.4
ANN learning rate: adaptive 0.59 0.24 10.34 0.55
(MLP) alpha (L2 penalty): 0.1
hidden layer sizes:
(70,70,50,40,40)
SVM kernel: rbf 0.55 0.19 10.28 0.52
gamma (coef.): auto (=1/n)
C (penalty for error): 5%

The random forest classifier was set up by using a 5-fold cross validation
(grid search with parameter alternatives) in order to find the best parameter
combinations (e.g., the minimum samples within a leaf). We need very deep
trees (setting no depth limitation) and a very low splitting rate in the nodes
(best results are achieved with three sample splits). The average tree depth is
51. A further interesting finding is the distance between precision and recall.
While the precision is about 0.74, recall ended up with 0.4 (F1 score is 0.52).
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Fig. 4 depicts the ROC curve (Receiver-Operating-Characteristic curve) for
the random forest classifier. The true positive rate (i.e., the recall rate or also
referred to as sensitivity) is depicted on the y-axis, the x-axis shows the false
positive rate.

ROC-AUC

True positive rate - tpr
) =
o o

0.0 02 04 06 08 10
False positive rate - fpr

Fig. 4. The ROC curve of the random forest classifier.

4.4 Algorithm Comparison and Selection

While it is often argued that both described tree algorithms (i.e., boosted deci-
sion trees and random forests) tend to perfectly adapt their feature values and
thus suffer often from overfitting, Breimann [5] showed that random forests are
robust against overfitting, providing (among others) possibilities to set regular-
ization parameters.

4.5 Evaluation, Results and Design Decision Revisited

It is worth to notice that due to the rather low ratio of the error samples (so-called
minority class), we applied re-sampling methods [7, 8] to obtain a more balanced
data set. The best results were achieved by down-sampling (i.e., reducing the
data set size) in combination with a slight up-sampling, such that the error
ratio raises up to nearly 18 %. There is no dominating feature among the most
important features.

While several practical comparisons (e.g., [19]) show that the complex ANN
outperforms random forests, the variety of important (but not dominating fea-
tures) combined with their different results of interactions and the threat of
overfitting might cause the predominance of random forests in our case.

Nevertheless, we stress that the best results of the random forests is based on
the underlying data set and application use case with no indication as a general
superiority of random forest classifiers to other classification algorithms, which
was for instance argued in [18], but later contradicted (in terms of generalizabil-
ity) in [17].
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It is definitely hard (or even impossible) to explain why a certain algorithm
(like random forests in our case) provide the best results compared to other
algorithm. We will follow some discussions like on KDnuggets?, on blocks like
Towards Data Science® as well as in a work on energy consumption analysis [19].

The models built by random forests are known as rather robust models, i.e.,
they are able to better handle outliers, missing data or just weird values. We
realize a slight overfitting, which is a well-known problem of random forests
(especially with deep trees), but it is minor and negligible in our case.

Neural networks (and also SVM) are more difficult to parametrize. Although
we applied various training iterations with different parameter settings (always
including default parameters), it is still imaginable that a better parameter com-
bination for the algorithms exists and the resulting model would outperform our
current best random forest solution. Furthermore, our model covers very complex
interactions among features, which is shown by the very deep trees (compared
to the total number of features). However, all features are numerical values or
categorical values, there are no images and we are not in the realm of image
or speech processing, which are known areas where neural networks and SVM
(especially for text data) mostly outperform other algorithms.

5 Summary and Outlook

In this paper, we presented a study for in-advance error classification in a highly
individualized production environment. The best predictions are achieved by
tree-based algorithm, in particular by a random forest classifier that achieves
a rather decent precision rate to forecast whether a particular ordered product
is likely to fail or not. However, the recall is comparable low. As the data set
is highly imbalanced, we used sampling strategies to slightly improve the ratio
between errors and non-errors in our data set.

As future work, we train our models with an updated (newer) data set,
containing more data in both dimensions, i.e., for data entities samples, but also
slightly more features. The expectation is that this will increase the algorithm
performance.
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Abstract. Modern water system infrastructures are equipped with a large amount
of sensors. In recent years machine-learning (ML) algorithms became a promis-
ing option for data analysis. However, currently ML algorithms are not frequently
used in real-world applications. One reason is the costly and time-consuming in-
tegration and maintenance of ML algorithms by data scientists. To overcome this
challenge, this paper proposes a generic, adaptable platform for real-time data
analysis in water distribution networks. The architecture of the platform allows
to connect to different types of data sources, to process its measurements in real-
time with and without ML algorithms and finally pushing the results to different
sinks, like a database or a web-interface. This is achieved by a modular, plugin
based software architecture of the platform. As a use-case, a data-driven anomaly
detection algorithm is used to monitor the water quality of several water treat-
ment plants of the city of Berlin.

Keywords:, Machine-learning; water quality monitoring; anomaly detection;
plugin architecture; data fusion.

1 Introduction

In recent years, a large number of new water quality and hydraulic sensors in water
distribution networks and water treatment plants have been installed. Reasons for this
trend are (1) a lot of new sensor companies and corresponding new sensors appeared
on the market which means decreasing costs and increasing performance of the sensor
units; (2) due to wireless communication technologies (e.g. GSM) the installation costs
are drastically decreasing. Hence, there is a need for the development of integrated
platforms for the storage, visualisation and enhanced data analysis of these data. The
benefit of advanced data analysis in water infrastructures has been already investigated
for different scenarios, e.g. monitoring of drinking water quality 4, forecasting of the
water consumption 6 or the modelling of sediment transport 1. However, different data
suppliers and old plants containing an outdated IT-infrastructure still complicate the
integration of state-of-the-art data analysis algorithms. In spite of the fact that many
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IoT and data analysis platforms are available nowadays the effort for the integration of
these platforms in the IT infrastructure of water utilities and the implementation of ML
algorithms is still very high. To overcome some of these challenges, this paper presents
a generic data fusion and analysis platform with the focus on condition monitoring of
the WDN with machine learning algorithms. The platform follows a plug-in based ar-
chitecture, which means that depending on the specific needs of the current use case
(e.g. saving data in a database, performing anomaly detection) different software com-
ponents can be installed. As a use case, the platform is used to perform the condition-
monitoring of nine water quality measuring stations in parallel with a combination of
Principal Component Analysis (PCA) 2 and Gaussian Mixture Models (GMMs) 9. The
results of the machine learning algorithms, comprising the learned process map, the
state trajectory and the anomaly index, are visualized for all stations in a web-interface.

2 Platform Architecture

The architecture of the proposed platform consists in three main parts shown in figure
1: (1) the platform core, (2) a plugin structure and (3) a web-interface. The platform
core is responsible for the management of the different software modules and data han-
dling and described in section 2.1; the plugins provide the required use case specific
application functionality (e.g. analysis algorithms; connection to data source) and are
described in section 2.2. Finally, the web-interface, used to give a feed-back to the user,
is explained in section 2.3.

Web interface

} I |

Platform Core

Manager Cache

Plug-in 1 Plug-in n

Fig 1: Plug-in architecture of the platform for real-time data analysis applications

2.1 Platform Core

The platform core’s purpose is to provide the stability to allow communication between
all components - no matter their purpose, data rate or lifetime. Its main purpose is to
act as information hub providing a standard interface for all plugins. Therefore, the
platform core utilizes the mediator design pattern 3 to decouple all plugins from each
other. The resulting communication topology of plugins and core is a star network with
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the core as central component, thus preventing any plugin to plugin communication.
The core itself uses the Model-View-Controller (MVC) pattern 3.

The core manager is the controller of the platform. It is the owner of all plugins as well
as the core cache and responsible for their creation and destruction. Since it is also the
facade for the whole core, it is known by reference by all plugins, which need to request
access for each core cache entry they want to access.

The core cache acts as model to separate the core’s data from its logic. In order to
establish either a read only or read/write connection to the core cache, a plugin has to
be granted permission by the core logic. Once a connection is established, the plugin
receives a local copy of the requested core cache data which stays in sync with the
cache via the observer pattern 3.

2.2 Plugins

To maintain the maximum amount of flexibility, the platform follows a plugin based
architecture. This means that depending on the specific needs of the current use case
different software components can be integrated into the platform. Basically, a plugin
represents a software module fulfilling a specific task. Examples are the connection to
the SCADA system of the water utility; the implementation of an event detection algo-
rithm or the automated generation of a daily, weekly or monthly report. Plugins employ
the factory pattern 3 to allow creating several instances which can be configured started
and stopped individually.

2.3 Web interface

A web interface is provided to offer a cross device interface for different operating
systems to access and interpret the data. Therefore, the main aim of the interface is to
provide the users a quick overview of the results of the data analysis algorithms. Since
it is implemented as a homepage, it can be accessed with any device with an internet
connection from anywhere from multiple concurrent clients. Data is transferred to the
web-client by using web sockets.

3 Data-driven Condition-Monitoring

In literature numerousness approaches for data-driven condition-monitoring have been
proposed. Among them, 10 or 11 provide good overviews of this topic. The in this paper
used method for data-driven condition-monitoring of the measuring stations is covers
several steps and is sketched in Fig 2. Initially, a z-score normalization 2 of the meas-
urements is performed. Next, the initial data is reduced down to two dimensions using
as principal component analysis (PCA) 8. Finally, using the first two principal compo-
nents, a Gaussian Mixture model 9 is used for the detection of anomalies. All steps are
described in the following sections
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Fig 2: Work-flow for data-driven condition-monitoring on measurement stations

3.1 7Z-score normalization

It is assumed that x[k] € R with k = 1 ... K is the time series of a process variable with
mean value u and standard deviation o. Hence, the set of all process variables is de-
scribed as

X = [xi[K] 2 K], . K] M
With p being the number of process variables resulting in the matrix X eR**P)_ Fi-
nally, the z-score normalization is defined as

z="24 @)

g
With = 1... P . As mentioned, the PCA is calculated using the matrix Z containing the
normalized process variables.

3.2 Principal Component Analysis

The principal component analysis (PCA) is a procedure of multivariate statistics to
structure large data sets. In that case it is used for model reduction. The main concept
is to perform an orthogonal transformation to map the set of correlated variables into a
set of linear, uncorrelated ones. Mathematically, the principal components then cover
the variance accounted for in the data set. The calculation of the principal components
is carried out by computing the eigenvectors of the covariance matrix being defined as:

2 2 2
[011 Oip 01p]
2 2 2
o . . O
e 3
2 2 2 J
[olp O3p = Oy

with O'l-zj being the covariance of the two standardized variables z;[k] and z;[k] in the

variable set. Next, the eigenvalues 4 of the covariance matrix are calculated and sorted
in ascending order. This results in the final diagonal matrix Ae RP*F defined as

4 0 0
A= |0 ~ 0fwithd, > > 2, “
0 0 2,

In a next step, the corresponding eigenvectors of the eigenvalue matrix A are calculated
and summarized in columns. This results in the matrix ['e RP*P
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Finally, the matrix T is used to perform the linear transformation Z — ¥ = I'TZ, while
Y contains the principal components. For example, y; [k] = y11 z1[k] + -+ + vp12,[K]
corresponds to the first principal component.

3.3 Gaussian Mixture Models

A Gaussian Mixture Model (GMM) is a parametric statistical model, which assumes
that the data comes from several Gaussian sources. In detail, a GMM is defined as:
p(x]0) = X, wpi(x|py, 2) (6)
With K being the number of density components, w;, with w; = 0 and XX, w; = 1, the
mixture weight and p; (x|u;, Z;) the individual Gaussian distributions being defined as

_ 1 ET/OR .)’Zi_l(x—ﬂi)
pi(x|py, X)) = oz 2l ]

(7
with p; the mean vector and X; the covariance matrix. The log-probability of a sample
x eR¥™P is then determined as

a=Yp_1log X w; p(xlu;, Z) (®)

with @ € R.. The training of the GMM means to estimate the weights w;, the mean p;
and the covariance , X;. Therefore, an usually an Expectation Maximization (EM) algo-
rithm is used 9. The EM algorithms tries to increase the expected log-likelihood of the
complete training data set by iteratively changing the GMM parameters until they con-
verged. In this paper, for training the GMM, the first two principal components from
the initial training set are used.

3.4  Process mapping and trajectory

A process map of a measuring station from Berliner Wasserbetriebe is shown in Fig 3.
For the generation of the process map, the x-axis represents the first, the y-axis the
second principal component. The trained Gaussian Mixture Model is visualized in
terms of isobars, while red represents a cluster center and blue areas without data. New
measurements are transferred into principal component space and, using the first two
components, is mapped into the process map. If the measurements are mapped into the
blue area, this indicates a possible anomaly. Fig 3 on the right side shows an example
of an anomaly, resulting from a sudden reduction of the redox-potential at one of the
measuring stations in Berlin. The trajectory is moving away from the GMM cluster
center.

Finally, the log-probability from the GMM for a measurement can be used as anomaly
index which defines if a system is running in normal or abnormal state. A low value of
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a indicates a not normal state, while a good practice for a threshold selection is to take
the lowest value of @ resulting from the training data.

Normal State Detected Anomaly

e

Principal component 2
Principal component 2

5 : : & 2 3 : ;

Principal component 1 Principal component 1

Fig 3: (Left) Visualization of the calculated GMM and the trajectory of a measuring
station from Berliner Wasserbetriebe in normal state. (Right) The same map with a
detected anomaly, namely a reduction of the redox-potential in the measurements.

4 Use case: Water quality Monitoring of Water Treatment
Plants in Berlin

Within the French-German research project ResiWater 7 a monitoring of the water
quality parameters of nine water treatment plants of the city of Berlin has been built up.
At each water treatment plant the parameters pH, turbidity, redoxpotential, oxygen and
conductivity are measured. The analysis chain consists in these steps: (1) Data fetching
from BWB’s SCADA system and storing in a local database for analyses, (2) using the
in section 3 described data-driven condition-monitoring algorithm for each monitoring
station, (3) generate graphs compromising the results of the condition-monitoring sys-
tem over the last couple weeks; (4) pushing results to a web-client for visualization and
interpretation of the event. All developed plugins are briefly described in the following
section.

4.1  Plugins

For the use case of water quality monitoring, the following plugins are implemented.

= Data polling and parsing plugin (1): The measurements from the water quality
monitoring stations are exported by the SCADA system as chunked .csv files on a
secure FTPS server with a sample time of a few minutes. A plugin cyclically polls
to the FTPS server and checks if new data is available. In this case the correspond-
ing files are downloaded, parsed and written into the cache. From the cache, they
are analyzed by the condition-monitoring plugin.
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= Condition-Monitoring plugin (2): The in section 3 described approach for data-
driven condition monitoring has been implemented in this plug-in. For each meas-
uring station (in total nine stations are monitored), data representing the normal
state has been selected and used for training the PCA and GMM. New acquired
sensor data is evaluated by the event detection module. If the log-probability for a
new measurement is below the predefined threshold, an alarm is raised by the plug-
in which sends this information to the platform cache.

= Graph generation plugin (3): This plugin generates graphics containing the results
of the event detection modules as well as the corresponding measurements. These
graphics can be accessed from the web-client and provide a long term overview of
the detected events in the network.

= Realtime-web plugin (4): This plugin pushes the online-measurements as well as
the current results of the event detection module via web sockets to the web-clients.
To avoid too much network traffic, values are only pushed on change and not on a
fixed time stamp.

Fig 4, upper side, shows the plug-in manager with the loaded plug-ins. The lower plot
gives a screenshot of the real-time data cache containing results from the different plug-
ins

(O} PLUG-IN MANAGER

Data Cache
VALUEID T SOURCE ™
Friedrichshain116 GMMBWS /1=
Friednchshain16_Alarmindex GMMEBWS 10/11
New Data Polling R A GPlugincf656¢61-2191-4923-b1d9-TaBdf4950749 10/1€
New GMM data analysis Re gPlugs 61f-2b6e-282¢-b687-0d2Ta92b8aes 10/7¢
New Graphic Generation ReswaterPlotterPlugin5b135050-ce9-437b-b8c5-2052483M0787 10/1¢
S‘Yut-n FtpsTofolderWorkera3cd6219-65¢f-2e3d-b674-dccal3ddal?6 ‘IU/:( v

(O} PLUG-IN MANAGER

Processes
NAME DESCRIPTION KEYID

ResiWater Eurometropole cyclic .csv importer Cyclically checks if new data amrived and imports into  33cd6219-65¢f- Bxi Cni

Resi¥ E pole cyclic graphic Cyclically checks if new plots can be generated from ¢ 5b13505a-ce9f- Bxs Cn

ResiWater DB To Cache Writer Plugin Cyciically pushes new values from the dB to Cache  ¢1656f61-2191- Exi Cn

ResiWater PCA-GMM Montonng Cychcally evaluates new data n dB <bbach1f-2bbe Ex Cnn

SignalRworker Pushes messages on SignalRHub 660d507-cf21- Ex Cn
Ftps to Folder Importer - Cyclically imports data from fip Server - v = Create Instance -

Fig 4: (Upper plot) Plug-in manager with loaded plug-ins for monitoring; (lower plot)
real-time data cache

4.2 Web-interface

The web-interface provides an overview of the current state of the monitored measure-
ment stations, the process map with the trajectory, as well as information about the
historic results from the condition-monitoring algorithms. Furthermore, the complete
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website is kept responsive, which means that the results can be visualized on a tablet or

smartphone as well. In summary the interface covers the following main features:

= Dashboard: The dashboard consists of a set of tiles and deals as a summary of the
current states of each measuring station. Basically, tiles can be in green (normal
state) and in red color (anomaly detected), depending on the value of the anomaly
index (see section 3.3). If the index falls below a predefined threshold, the color
changes from green to red. A screenshot of the dashboard is shown in Fig 5 left
side.

= Process map and trajectory visualization: The calculated map as well as the tra-
jectory and the anomaly index, described in section 3, are visualized in the web-
client. This gives an overview of the current state of the process and shows if it is
in normal or abnormal state. A screenshot of the process map is given in Fig 6.

= Time series visualization: The web-client provides the possibility to give historic
and real-time access to the anomaly indices (Fig 5 middle). Additionally, in a pre-
defined time-frame, a plot of the alarm index with the corresponding measurements
is generated. A screenshot is shown in Fig 5 on the right hand side.

A

1
L b
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=
Fig 5: (Left) Screenshot of the Dashboard; (middle) exemplary anomaly indices for
measuring stations; (right) graph covering GMM scoring results with the corresponding
measurements of the last month for a measuring station

[___SEERN

Fig 6: Visualization of the process map and trajectory within the web-client
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5 Conclusion

This paper presents a generic platform for data analysis with a focus on data-driven
condition-monitoring in water distribution. Therefore, a plugin based software archi-
tecture is proposed, which can be used to collect data from different sources, treat data
with different analysis algorithms and provide the results by a web-based user interface.
Due to the plugin structure, the platform provides a large flexibility and can be adapted
for very complex scenarios. For data analyses, a data-driven condition-monitoring ap-
proach based on a combination of Principal Component Analysis and Gaussian Mixture
Models was realized. Within this approach, the original input data is reduced down to
two dimension to generate a map of the process. Next, this map is used in combination
with the calculated process trajectory to visualize if the process is close to a cluster
center, meaning in a normal state. Furthermore, an anomaly index is calculated, which
defines if the process is in normal or abnormal state. As a use-case, the results of the
monitoring of the water quality parameters in the city of Berlin has been presented.
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Abstract. Due to the increase in digitalization Machine Learning (ML)-
algorithms bare high potentials for process optimization in the production qual-
ity-domain. Nowadays, ML-algorithms are hardly implemented in the production
environment. In this paper, we present a tangible use case in which ML-
algorithms are applied for predicting the quality of products in a process chain
and present the lessons learned we extracted from the application. In the de-
scribed project, the process of choosing ML-algorithms was a bottleneck. There-
fore we describe a promising approach how a decision making tool can help se-
lecting ML-algorithms problem-specifically.

1 Data-Driven Modeling in the Production Quality

Digitalization has led to a steady increase in data in recent years. Through higher
computing power, it is possible to process the large amount of data [1]. Analyzing the
acquired data can enhance both the understanding and the process efficiency - or to
describe it in the words of Peter Sondergaard: “Information is the oil of the 21st century,
and analytics is the combustion engine” [2]. Especially sectors like the financing-do-
main or the marketing-domain are leading when it comes to generate value from data
[3]. In particular, the use of Machine Learning (ML)-algorithms increased over the last
decade. The main reasons for this trend, apart from the higher computing power and
data input mentioned above, are the increasing reliability of the algorithms, the simpler
implementation of the algorithms as well as the easier data acquisition. [1]

Even though the application of ML-algorithms is well established in other domains,
it is not common in the context of production quality. For process optimization in the
production quality-domain, physically based modeling (PBM) is commonly used.
While PBM offers the advantage of describing the current and future state of a system
by physical dependencies, data-driven models use the information from observed data
to identify current system characteristics and to predict the future state without requir-
ing a deeper understanding of the physical interdependencies of the process. [4] The
development of data-driven models thus shows a high potential for even further opti-
mization of production processes. In the presented case we chose to transform the data
into a data-driven model by applying ML-algorithms.
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2 Application of Machine Learning in the Production Quality

2.1  Prediction of Product Quality in a Process Chain

In the following, we want to show in a tangible use case at a German manufacturing
company that the application of ML-algorithms is worthwhile and to encourage com-
panies to use ML-algorithms for process optimization. To introduce data-driven mod-
eling for process optimization, the Cross-industry standard process for data mining
(CRISP-DM) procedure can generally be used [5]. The first step is to understand the
corresponding business in more detail. After an initial data acquisition, the characteris-
tics of the data are determined in order to understand the data. The data is subsequently
prepared for the application of a suitable ML-algorithm. Based on the data preparation,
the implementation of the selected ML-algorithm is described. Finally, the results of
the model are evaluated, whereby various criteria are taken into account. Tangible les-
sons learned will be presented extensively.

The first step of the CRISP-DM is the Business Understanding. The company in this
specific use case aims to enhance the efficiency of a process chain, which consists of
six different processes. Each product runs through every process sequentially with
some processes taking several hours or even days. In order to get a better understanding
of the process chain and the corresponding data, we conducted several workshops and
web conferences with the company’s process engineers. The process chain is depicted
in Fig. 1.

QA: QA: QA: QA: QA: QA: QA:
Quality Assurance In-spec or In-spec or In-spec or In-spec or In-spec or In-spec or
Off-spec Off-spec Off-spec Off-spec Off-spec Off-spec

U HIE BB B R ©

VA—
-' Product runs sequentially through the process chain

Fig. 1. Illustration of the process chain

Whether a product is an in-spec product can be determined after the completion of
each process. Since the cycle time of the entire process chain takes several days, it
would be useful to predict whether a product will run out of specification in a process
already in earlier stages. If it can accurately predicted that a product will run out of
specification, the machines could be equipped with other products. This leads to higher
efficiency as well as flexibility of the entire process chain.

Data Understanding as the second step of the CRISP-DM process shows a strong
relation to the Business Understanding to the effect that both steps require multiple
loops and iterations. The acquired data is stored in separate product-related databases
for each of the six processes as semi-structured CSV-files. Due to acquiring a large
number of measuring values, there are more than 500 values per process for each prod-
uct. Different data types like integer, float or string parameters characterize this high
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amount of dimensions. Besides a multitude of missing values, the data set is also im-
balanced. In this context, an imbalanced dataset means that more products are in-spec
than off-spec.

To predict the product quality it is necessary to trace the product data throughout the
entire process chain. For that reason, the six different CSV-files need to be linked. This
link is created using a product identification number. Since the CSV-files are not uni-
formly structured, the files need to be transformed multiple times. After the product-
related link, the data is cleaned by deleting empty values, apparent correlations as well
as by reducing dimensions. Overall, the process of data understanding and preparation
took about 80 % of the time regarding the entire CRISP-DM procedure.

In the beginning of the modeling step, a suitable approach how to create a model
needs to be selected. Due to the time it takes to learn a data-driven model with an ML-
algorithm, only a small number of algorithms can be applied. The process of selecting
ML-algorithms depends highly on the use case, the appearance of the data set and the
personal experience of the involved data scientists. In this specific case, we interpret
the prediction whether a product will be in-spec or off-spec as a classification problem.
One class includes all products that run through the process chain being in-spec. Since
the quality of the product is measured after each process, the product can become off-
spec after each process resulting in six additional classes. Because we are able to label
the data set, this multiclass classification problem can be solved using supervised learn-
ing algorithms. Fig. 2 shows a visualization of the processes and the even classes.

Class 7:
In-Spec
—
Class 1: Class 2: | Class 3: Class 4: Class 5: Class 6:
Off=spec Off-spec Off-spec Off-spec Off-spec Off-spec
Process 1 Process 2 | Process 3 Process 4 Process 5 Process 6

‘::> I;‘} Process [:> [> Process [:> Process [:> Process ‘:\’>
e | e Y e e

] =
-' Product runs sequentially

through the process chain

Fig. 2. Visualization of the processes as well as the seven classes

The characteristics of the data set result in the requirements for the algorithm that
has to deal with an imbalanced data set, few samples as well as many dimensions. Best
practices in other sectors with similar problems are taken from the literature. Besides
the results of the literature research, own experiences show beneficial results when de-
cision tree algorithms are applied. Considering the mentioned explanations, the deci-
sion tree algorithm Classification and Regression Tree (CART) is selected for this use
case [6]. CART can handle high dimensional data sets and has the further advantage
that process owners can understand the results of the analysis very quickly and intui-
tively. The localization, in which the prediction states that the product will run out of
tolerance, can be easily detected. Furthermore, the implementation and validation of
the decision tree algorithm is simple.

There exist many different platforms for Data Mining as well as ML-algorithm im-
plementation [7]. These platforms can be divided in “Data Science and Machine Learn-
ing platforms” like Matlab or RapidMiner and “open source platforms” like Python and
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R. Data Science and Machine Learning platforms are characterized by easy handling
and fast model development [8]. Nevertheless, operating the platform can result in high
licensing costs [9]. Open source platforms like Python and R play an increasingly im-
portant role in the data science market because they are free of charge and are the most
common programming languages for ML-implementation [§]. We decided to use the
“open source platform” Python because the libraries that can be called, such as Tensor-
Flow and scikit-learn, are undergoing strong development. The algorithm is imple-
mented in Python by calling the decision tree algorithm via the scikit-learn library.
Scikit-learn uses an optimized version of the CART algorithm [10].

To achieve betters performances of the ML-algorithm, hyperparameter must be set.
Hyperparameters are the configuration that is external to the model and whose values
cannot be estimated from the data set [11]. They are initially set when the algorithm is
called by scikit-learn and need to be optimized. Hyperparameters of the decision tree
algorithm are e.g. the maximum depth and the minimum size of the tree. There are
different approaches to optimize hyperparameters. For this use case, the basic approach,
called random search, is applied on the decision tree algorithm. Random search ran-
domly selects any combination of the hyperparameters to be set within an interval of
possible hyperparameters. If this combination of hyperparameters lead to better results,
the parameters are updated. Basic approaches to set and tune hyperparameters are grid-
search and random-search. Over the last years, other tuning approaches like Bayesian
Optimization and Gradient Descent became popular [12]. In addition to these advanced
approaches, research institutes try to apply heuristics to the hyperparameter tuning-
problem. These academic approaches include metaheuristics like Particle Swarm Opti-
mization, Ant Colony Optimization and Harmony Search [13].

After running, the performance of the model can be evaluated by a multitude of met-
rics. The basis of measuring the performance of a classification model is the confusion
matrix. The rows of the 2x2 confusion matrix represent the instances in a predicted
class while the columns represent the instances in an actual class [ 14]. If the classifica-
tion model correctly classifies the input as positive (in-spec) or negative (off-spec), they
are considered as true positives (TP) or true negatives (TN). Classifying products
falsely as positive or negative counts as false positive (FP) or false negative (FN). Based
on the confusion matrix, we can derive different metrics.

Metrics that can be easily derived from the confusion matrix are accuracy and error
rate. Other single-value metrics like the F1-Score and Mathew Correlation Coefficient
(MCC) are more complex to set up but can still be derived from the confusion matrix.
In order to evaluate the performance of the CART algorithm in this specific use case,
the MCC is selected. MCC considers imbalanced data sets more efficiently than accu-
racy and error rate [14]. The mathematical relationship can be taken from equation (1).

_ TP-TN-FP-FN |
= /(TP+FP)-(TP+FN)-(TN+FP)-(TN+FN) (1

MCC

The MCC considers both mutual accuracies and error rates on both classes. Further-
more, the MCC is a coefficient between the observed and predicted classifications and
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returns a value between and “+1”. A coefficient of “+1” represents a perfect pre-
diction, “0” no better than random prediction and “—1” indicates total disagreement
between prediction and observation. [14]

In order to predict the product quality after each process, different CART-algorithms
need to be trained because at each process, different amount of data is available to train
the CART-algorithm. This leads to four different CART-algorithms, whose perfor-
mances are depicted in Fig. 3. The results include the decision trees that were created
after the hyperparameter tuning. By applying random search, the results could be im-
proved by 30% which can be observed in other cases as well [15]. Since no new data is
generated in the fourth process, no new decision tree was learned for the change from
the fourth to the fifth process.
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Fig. 3. Performance of the decision tree algorithm

The metric MCC shows the performance of the algorithm in predicting the actual
classes of the process. For the first process step the metric is MCC = 0.21. This means
that there is a match between predicted and actual class, which is relatively low, but
better than random prediction. The MCC increases the more processes are accom-
plished and the fewer processes have to be carried out. The quality of the model im-
proves when more data points are used for the learning task. In addition, less processes
and results need to be predicted for the future. After the completion of the fifth process,
the metric value is MCC = 0.70, which means that the decision tree is a suitable algo-
rithm to predict the product quality sufficiently [16].

2.2 Lessons Learned

In the following, tangible lessons learned are presented, starting with the manage-
ment level. Then, there will be a focus on the lessons learned for project managers as
well as for computer scientists and developers. Two central research needs result from
the presented method.

Lessons learned from the managers’ perspective:

e In principle, only available data can be analyzed. Big data only leads to
beneficial results if the quality of acquired data is acceptable.
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e  Managers need to have a precise idea, which results are to be achieved by
the analysis of data. Expectations for initial projects must be appropriate.

e Data science projects should start at small scales. As mentioned, simple
algorithms like the decision tree can already lead to beneficial results. If the
first projects proceed favorable, the projects can be scaled up.

Lessons learned from the project managers’ perspective:

e  Understanding the business goals and formulating precise objectives is es-
sential when ML-algorithms are implemented.

e A very close collaboration between process engineers and data scientists is
unalterable.

e It is natural that many iterations are necessary to get to know technical in-
terdependencies and the characteristics of the data set. The processes of
data understanding and data preparation takes a long time compared to the
implementation of the ML-algorithm in the end.

e A project manager should be aware of whether it is a quick-win project,
low complexity project or long-term commitment.

Lessons learned from the computer scientists and developers’ perspective:

e  Python notebooks like Jupyter are able to segment the entire code in sensi-
ble parts [17]. With Python notebooks, the code can be sequentially up-
dated, which makes coding easier and faster. Introduced variables should
still be readable and understandable at the very end of the project.

e  Since the selection of a suitable ML-algorithm depends highly on the use
case, the appearance of the data set and the personal experience of the in-
volved data scientists, the choice for the ML-algorithm is difficult and so-
phisticated.

e The hyperparameter tuning is unalterable to solve the classification prob-
lem optimally. An optimization based on random search was successful,
but advanced optimizations can lead to better solutions.

Overall, we recommend that companies should start with the first data science pro-

jects and make their own experiences. Based on first it can be obtained what specific
challenges will happen. To describe it in other words - practice makes it perfect!
In addition to the lessons learned, we can derive two central research needs from the
presented procedure and the lessons learned. First, it should be evaluated whether more
complex hyperparameter optimization methods are capable of outperforming basic ap-
proaches like random search and grid search. Second, the procedure of selecting the
suitable ML-algorithm was built up on the experiences we had and by comparing the
learning task with the literature. A tool supporting us in selecting an appropriate ML-
algorithm would have made the process more transparent and reproducible. In the fol-
lowing, we propose a concept how such a tool can function.

3 Selection of Machine Learning-Algorithms

The use of methodologies to solve a specific task creates comprehensible and repro-
ducible results. Therefore, methodologies were developed especially for data mining
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and knowledge discovery [18]. Due to the mentioned benefits, they are used in the ma-
jority of corresponding projects [3].

CRISP-DM, SEMMA (Sample, Explore, Modify, Model, and Assess) and KDD
(Knowledge Discovery in Databases) as the top three methodologies all include a phase
specifically designated to create the model for the problem [19]. Due to the generic
nature of the three methodologies, the activities in the phase of “Modeling” can be on
a different level of complexity ranging from the application of linear regression up to
deep learning. Therefore, a data scientist has to decide how to conduct the phase of
“Modeling” e.g. by applying an ML-algorithm. Normally the following three aspects
are included in this decision: Personal experience, appearance of the data set and liter-
ature review. [20]

The problems and corresponding data sets that need to be tackled are domain-spe-
cific. Tools that support the data scientist in selecting an ML-algorithm are mostly so
called “cheat sheets” [21]. Team members solely bring domain-specific knowledge into
the solution. The process of choosing the ML-algorithm is therefore highly dependent
on the expertise of the data scientist. Since neither methodologies nor tools include this
domain-specific knowledge, the process of selecting the ML-algorithm is not reproduc-
ible. Not all domain-specific knowledge can be integrated into a tool. The process of
selecting the ML-algorithm stands out by the required creativity of the data scientist.
Therefore a decision making tool cannot dismiss the data scientist from his responsi-
bility, but can serve as a support in fulfilling that task. In the following, we present a
concept how to set up such a domain-specific decision making tool.

4 Decision Making Tool for Production Quality

The decision making tool (DMT) works as a domain-specific support for the data
scientist in selecting an appropriate ML-algorithm to create a model that fulfils prob-
lem-specific requirements. This is done by including three main aspects as depicted in
Fig. 4: Appearance of the data input, requirements of the model to be created and do-
main-specific knowledge regarding the considered use case. All three factors are in-
cluded when providing the user a recommendation.

ance of
the data input
D e cision
Do Tool e
1'ekmwlccl:gc ofthe model to
mns.dmngereduse be created

Fig. 4. Factors to be considered when selecting an ML-algorithm
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The data scientist interacts with the DMT over a user interface (UI), which he utilizes
to describe the specific case he wants to model applying ML-algorithms. The DMT
compares the input with historical assessments and problems, including their evalua-
tion. Afterwards the DMT provides the data scientist a list of ML-algorithms probably
suitable for the specific use case and additional information about the corresponding
selection process. The concept of the DMT is depicted in Fig. 5 and described in detail
in the following.

Problem type-specific characteristics of ML-algorithms

Domain-specific characteristics of ML-algorithms
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Fig. 5. General Concept of the Decision Making Tool

Using the Ul, the data scientist loads the characteristics of the data set, the require-
ments of the model to be created and a description of the use case into the DMT. Char-
acteristics of the data set are for example the dimensionality of the data, number of
features, number of data points, data quality, data distribution or data noise. Require-
ments of the model to be created are for instance the learning time, performance of the
model or transparency of the model. The description of the use case includes infor-
mation about the type of the use case, e.g. predictive maintenance or product quality
prediction. Characteristics like the dimensionality or the maximum running time are
quantitative and can directly be loaded into the DMT. Others like the transparency of
the model need to be transformed from their qualitative state into a measurable form
using for example goal question metrics [22]. This influences the degree of automation
to which the characteristics can be loaded into the DMT.

Two main databases function as the backbone of the DMT: A database that includes
the domain-specific characteristics of ML-algorithms and a database that stores prob-
lem-specific characteristics of ML-algorithms.
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The domain-specific characteristics include the attributes of ML-algorithms that are
important in the context of the production quality-domain. This includes characteristics
and an assessment to which degree the algorithms resp. the learned models meet these
characteristics such as interpretability, decomposability, speed, accuracy or learning
time. The database is set up and maintained by data scientists working in the production
quality-domain.

The problem-specific characteristics are structured by the different types of prob-
lems occurring in the production quality-domain such as machine downtime prediction
or product failure prediction. For each type of problem, the corresponding description
and attributes are available, so that the use case provided by the user can be matched to
the most-fitting problem-type in the database. For each problem type from the produc-
tion quality-domain, different ML-algorithms have been implemented in the past. The
information, which algorithms are suitable for the problem-type and the evaluation of
their performance is stored accordingly. This is realized by using algorithm maps also
known as optimization maps . Each time new types of problems or new evaluations are
created, responsible data scientists update the database consequently. This ensures that
the specific demands of the production quality-domain and the problem-specific eval-
uations are considered in the selection process.

The DMT creates a list of algorithms that are promising for the use case by compar-
ing the characteristics of the data set, the requirements of the model to be created and
the description of the use case with the historical information stored in the two data
bases.

5 Conclusion

In this paper, we presented how ML-algorithms can be applied in a tangible use case
from the production quality-domain. In a process chain consisting of six processes, it
should be predicted after completion of each individual process whether the product
would be off-spec in the following processes. In order to achieve beneficial results, the
methodology CRISP-DM was followed. After focusing on the process understanding,
data was initially acquired. Afterwards, formats as well as characteristics of the data set
has been explored. The preparation of the data comprised the cleaning, transforming
and dimensionality reduction in order to apply the ML-algorithm sufficiently. Since we
have a multiclass classification problem, the decision tree algorithm CART was se-
lected. The evaluation of the CART algorithm showed that both the methodology and
the application of ML-algorithms could lead to beneficial results. On the basis of the
mentioned use case, tangible lessons learned could be derived and were divided into
lessons learned on the management, project and technology level.

Based on the variety of ML-algorithms, it is difficult to determine, which ML-
algorithm is the most suitable for predicting the product quality. In this use case, we
compared the performance of different algorithms. These algorithms were selected by
the character of the problem, by analyzing the data, by reviewing literature and by the
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authors own experience. This process of choosing the ML-algorithm is highly depend-
ent on the expertise of the involved team members. Therefore, a tool that supports the
user selecting the ML-algorithm could help in making the process more reliable.

We explained why methodologies are widely used in data mining-projects but why
they are just a footnote when choosing ML-algorithm for a specific problem. A concept
how a DMT can support data scientists in selecting ML-algorithms for a specific prob-
lem was presented. The DMT takes domain-specific demands into account and charac-
terizes ML-algorithms accordingly. Problem type-specific evaluations of ML-
algorithms are included in the recommendations. Nevertheless, domain-specific
knowledge, expertise regarding selection and implementation of ML-algorithms and
the creativity of data scientists will not become obsolete.
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Abstract. Small humps on the floor go beyond the detectable scope of
laser scanners and are therefore not integrated into SLAM based maps of
mobile robots. However, even such small irregularities can have a tremen-
dous effect on the robot’s stability and the path quality. As a basis to
develop anomaly detection algorithms, kinematics data is collected ex-
emplarily for an overrun of a cable channel and a bulb plate. A recur-
rent neuronal network (RNN), based on the autoencoder principle, could
be trained successfully with this data. The described RNN architecture
looks promising to be used for realtime anomaly detection and also to
quantify path quality.

Keywords: neural networks, DL4J, anomaly detection, inertial sensor
data, mobile robotics, deep learning

1 Introduction

The navigation of mobile robots typically relies on laser scanner data. Small
humps on the floor, e.g. cable channels, doorsills, floor unevenness or other envi-
ronmental anomalies go beyond its detectable scope. Typically only a 2D map of
the environment e.g. 10cm over ground can be established. However, even such
small irregularities can have a tremendous effect on the robot’s stability and the
path quality. Induced vibrations can impact cargo or can reduce the storage life
of the robot or its mechanical components.

The new idea of our project is to seek to integrate the detection of small
anomalies into dynamic adaptation during the execution of a path and into path
planning itself. This should be done based on acceleration data, which can be
collected simple and inexpensive by inertial sensors.

Commercial mobile platforms like the Mir-100 allow the definition of driving
routes by defining manually a few target points in the map. Then, subsequent
path planning is done automatically considering several boundary conditions,
e.g. distances to walls. Such a map based path planning can be extended by
dynamic path planning in order to adjust to temporary changes in the environ-
ment [1]. By driving around or stopping in front of unpredicted and potentially
dynamic obstacles collisions can be avoided.
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2 Methodology

In robotics typically high-dimensional sensory data with application specific con-
figurations are in use. To make an anomaly detection component reusable with-
out expensive adaptions from specialists, it is desirable to base on a flexible
architecture (one or many input channels) and not to use much domain knowl-
edge about the data. This and the need to work with streaming data to find
anomalous subsequences instead only single outliers, quantifiable by a score,
exclude many anomaly detection methods available in the literature.

On the other side, artificial neuronal networks in general have been used to
solve a large range of problems in the field of robotics processing [2] particularly,
deep-learning networks are identifyed as the leading breakthrough technique
in the field of mobile robots [3]. They might be used to overcome important
challenges in perception and control of mobile robots. For example in [5,6] a
novelty detection in visual data to analyze the robot’s environment is described.

In [13] we have shown that a specific deep neural network (DNN) based
autoencoder allow for a robust and easily expandable implementation of anomaly
detection in kinematic data but which architecture should we use?

There are several approaches. A common way is to train a neuronal network
with non anomalous data to be able to predict the next few time frames in the
timeseries, based on the current and past values. Then the test data can be
compared with the predicted data and the prediction error gives an indication
of anomaly [4].

A further class of unsupervised methods combines recurrent neural networks
with an encoder/ decoder used as a reconstruction model, where some form
of reconstruction error is used, as a score measure of anomaly. The so called
autoencoders are trained to reconstruct the normal time-series and it is assumed,
that such a model would do badly to reconstruct anomalies, having not seen
during training [4].

A newer variant of the autoencoder architecture is the variational autoen-
coder (VAE) introduced in [7, 8] and amongst others used for anomaly detection
[9]. Tt is based on a reconstruction probability instead a reconstruction error,
which should be a more objective anomaly measure. To take into account the
temporal structure of timeseries in such an architecture, an additional LSTM
[11] layer can be preceded.

3 Concept

The bigger aim of the project behind this paper is to make the usage of mo-
bile robots more robust and flexible by dynamic adaptions to a changing en-
vironment. This paper extends the work in [13], which describes in detail the
kinematics of the commercially available mobile platform Mir-100 during over-
run of a cable channel as a model for an environmental anomaly. Takeoffs are
happening particular strong for the rear wheels as a product of the front and
the drive wheels already past the cable channel and therefore pulling is more
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Fig. 1. Commercially available MiR-100 mobile platform.

effectively. To avoid a damage of the platform or its cargo the idea is to detect
the overrun of the front wheels as an anomaly in realtime and to slow down the
mobile platform before the rear wheels reach the cable channel.

The measurements described in [13] are done with high precision by a marker
based optical system to have a ”gold standard”. This dataset is also used to train
the DNNs presented in this paper.

4 Experiments

Two DNNs are implemented based on DL4J, an open sourced, industry-focused,
commercially supported distributed deep-learning framework, which supports
multiple CPUs and GPUs.

Furthermore architectures based on a convolutional layer to extract features
along the time axis and fed them into a recurrent or dense layer are tried.

The first tested architecture consists of a sequence of four network layers,
three of type LSTM [12] with 64, 256 and 100 nodes and hyperbolic tangent
as activation function, followed by a dense layer with 100 nodes and linear ac-
tivation. For fitting the weights, mean squared error is chosen as loss function
and RMSPROP, which keeps a moving average of the squared gradient for each
weight, as optimizer.

The second architecture consists of six network layers. The first of type LSTM
[12] with one input node and 100 output nodes, followed by an variational autoen-
coder (VAE) introduced in [7, 8] and amongst others used for anomaly detection
[9]. It has two encoder- and two decoder-layers, 256 nodes each. The end of the
sequence builds a dense output layer.

Both DNNs are trained with vertical acceleration data from the reference
dataset which was collected in high precision by a marker based optical system
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during driving a mobile platform Mir-100 (Fig. 1) in a gait- and motion analysis
lab. Details of the dataset and its aquisition is described in [13]. Three trials are
arbitrary chosen to build a validation set.

The DNNs are trained with the remaining 24 example trials with about 15000
time frames each. Only the sections of the trial without the overruns of the cable
channel are included in the training set. Over each trial a time window of width
100 frames is moved step by step and the resulting 100 * trial length sequences
are mixed up to build the training sequence. To normalize the data and make
it more suitable as input for the DNN the mean is subtracted and a division by
the standard deviation is done.

Fig. 2. Inertial measurement unit MPU 9250 + Onion Omega2.

Further three test trials with acceleration data (sampling rate 120Hz) are
collected from an inertial measurement unit MPU 9250 (Inven Sense) connected
via I12C to a Omega2 module (Onion, Fig. 2) and mounted on the mobile plat-
form. To test the DNNs the data is saved in csv files. In principle the data can
be streamed via WiF1i to an external laptop, which also collects the position data
of the mobile platform via the MiRs REST-API.

Vertical acceleration data is collected for three test trials during driving the
robot in a corridor with full speed. A cable channel (Fig. 3) is overrun in the
middle of the trial.

5 Results

Training of LSTM based autoencoder and the VAE (4) both converges well with a
batch size of 50 and a learning rate of 0.2. Loss function values after training with
1 and after 5 epochs are 4.686 and 1.154 for the LSTM layers based autoencoder
and 0.619 and 0.039 for the VAE. The values show no differences between the
three test trials (optical marker based measurements) for the shown digits.
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Fig. 3. A cable channel as an anomaly model.

Reconstructed non anomalous data looks very similar in both cases and the
overruns of the cable channels are detected clearly as anomaly in all (validation-
an inertial sensor based test trials) cases. Fig. 5 shows the difference between
original and the predicted /reconstructed data for non anomalous data. The data
was normalized to one for the complete trial inclusive anomalous data. That is
why the values for non anomalous data in Fig. 5 are so small. Fig. 6 shows a
part of the same trial with anomalous data. The three peaks correspond with
the overrun of the front-, drive- and rear-wheels. The detections work fine too for
inertial sensor based test trials although the DNNs are trained with the marker
based optical high precision lab data only.

The approach with a convolutional layer based architecture has no success
until now.

I score

100 200 300 400 500

Fig. 4. Score (value of the loss function) over the current minibatch (x-axis), during
training of the VAE.

6 Discussion

Anomaly detection works fine for both tested DNN architectures but training of
the VAE converges faster and to smaller loss function values which can be an
advantage.
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Fig. 5. Normalized anomaly score (predicted minus original acceleration in z-direction)
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Fig. 6. Normalized anomaly score (predicted minus original acceleration in z-direction)
of the VAE based autoencoder; overrun of a cable channel. The three peaks correspond
with the overrun of the front-, drive- and rear-wheels. The peak corresponding to the
rear-wheels is the biggest one.
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These positive results should not hide the fact that a neural net application
often needs more care and expenditure in its configuration than an explicit for-
mulated algorithm. Neural nets always come along with the risk to learn hidden
but unwanted rules by so called overfitting. In practice you can meet this by
a number of arrangements. Carfully choosen architecture details, e.g. for the
variational autoencoder used for this project the count of hidden nodes is set
higher than the count of input/output nodes. This helps a lot against overfitting.
Furthermore you can use so called data augmentation techniques, if the training
data set is not divers enough or too small. To be sure that the DNN learns the
concrete paths of the training data as normal, we cut the complete movement
paths into pieces and create the training set with an random sequence of these
pieces.

If the configuration is such sensitive, why to use a neural net et all? The
overrun of the cable channel produces a time window with spikes. With a simple
threshold spike detector anomaly detection could be achieved with less effort.
Furthermore, this could have the additional advantage that the time threshold
for spiky data considered as anomalous, can be defined explicitly, so that the
concrete mobil platform is meaningful affected. If only 1D acceleration data is
available this can be the better approach.

However, if multichannel data is available e.g. from multiple 3d-acceleration
and other sensors in combination and if the algorithm should be robust against
single sensor dropouts, the DNN approach is more flexible. It is much easier
to train a DNN with a different sensor configuration than to adjust thresholds
for multiple sensors and to implement a configuration specific logic to make the
system robust against dropouts.

The failure of our convolutional layer approach seems to be caused by a too
small training data set.

7 Conclusion and Future Work

The DL4J and its VAE implementation has proved in our project as a production
ready framework for anomaly detection in mobile platforms acceleration data.
This motivates to implement the newer so called variational recurrent autoen-
coder (VRAE) [10] based on DL4J. The VRAE extends the VAE and takes into
account the dynamic temporal behaviour from the scratch.

The next step is to establish a multichannel approach with three or more
3D acceleration sensors and an optimization of the hyper parameters. For this
purpose the DL4J provides the the promising so called Arbiter API.
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Abstract. Deep learning (DL) is one of the key technologies in the ar-
tificial intelligence (AI) domain Deep learning neural networks (DLNN)
profit a lot from the overall exponential data growth while on the other
hand the computational effort for training and inference strongly in-
crease. Most of the computational time in DLNN is consumed by the con-
volution step, which is based on a general matrix multiplication (GEMM).
In order to accelerate the computational time for DLNN different highly
optimized GEMM implementations for Graphic Processing Units (GPUs)
have been presented in the last years [1] most of these approaches are
GPU hardware specific implementations of the GEMM software kernel
and do not incorporate the performance dependency of the training data
layout . In order to achieve a maximum performance the parameters of
the GEMM algorithm have to be tuned for the different GPU hardware
and specific data layout of the training task. In this paper we present a
two step autotuning approach for GPU based GEMM algorithms. In the
first step the kernel parameter search space is pruned by several perfor-
mance criteria and afterwards further processed by a modified Simulated
Annealing in order to find the best kernel parameter combinations with
respect to the GPU hardware and the task specific data layout. Our re-
sults were carried out on 160 different input problems with the proposed
approach an average speedup against the state of the art implementation
from NVIDIA (cuBLAS) from around 12 on a NVIDIA GTX 1080 Ti
accelerator card can be achieved.

Keywords: GPU, Matrix Multiplication, Autotuning, automatic gerneration,
acceleration, CUDA, BLAS

1 Introduction

1.1 Motivation

Deep learning (DL) is one of the key technologies in the artificial intelligence
(AI) domain Deep learning neural networks (DLNN) profit a lot from the over-
all exponential data growth while on the other hand the computational effort for
training and inference strongly increase. Machine learning applications profit a
lot from that overall data growth, since the models can be trained more precise.
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However, those algorithms runtime depend heavily on the input data. Most of
the computational time in DLNN is consumed by the convolution step, which
is based on a general matrix multiplication (GEMM). In order to accelerate
the computational time for DLNN different highly optimized GEMM implemen-
tations for Graphic Processing Units (GPUs) have been presented in the last
years [1]. In order to achieve a high computational throughput, most of these
approaches are based on a hardware specific software kernel implementation
of the GEMM algorithm. Usually the different hardware dependent kernel pa-
rameters are tuned manually, which involves expertise about the specific GPU
architecture. Furthermore the performance of the GEMM kernel is strongly af-
fected by the shape of the input data processed different data sizes have a huge
impact on the computational runtime of the GEMM kernel due to the different
memory layouts of the GPU accelerators.

In order to achieve a maximum performance the parameters of the GEMM al-
gorithm have to be tuned hardware and task specific. In the last years, several
autotuning approaches of GEMM kernel parameters have been proposed [2] -
the basic idea is to automatically tune a limited number of essential GPU kernel
parameters in order to achieve a maximum performance. Usually the approaches
do not take into account the size and shape of the given input data, which yields
to varying computational runtimes.

The motivation of the presented work is to develop an autotune procedure for
GPU based GEMM kernels, which takes into account a comprehensive set of
kernel parameters and varying shapes of the data in the input task.

Proposed autotuning solutions such as [2] usually require a lot of computational
runtime to find an optimal kernel parameter set. The kernel parameter space
e.g. in the MAGMA GEMM kernel [4] is very large and therefore restrictions
are made to reduce the search space for the kernel parameters followed by a
brute search mechanism. This usually results in high search times for the kernel
parameters to be set.

1.2 Related Work

Well known autotuning concepts like the Automated Tuned Linear Algebra Soft-
ware Project (ATLAS) [5] or the Optimized Sparse Kernel Interface (OSKI) [6]
focus on the optimization of CPU calculations. There are only a few approaches,
which introduce concepts for autotuning GPU kernel parameters [7] the ap-
proaches focus only on a small number of tuning parameters and therefore the
achieved performance cannot be compared reasonable to the proposed approach
in this work. In order to achieve optimal performance a comprehensive set of
GPU kernel parameters have to be taken into account.

In literature there are several more autotuning approaches such as [8,9] . While
the work presented in [8] focuses on 3D TFT, the approach in [9] focuses on
sparse matrices and optimizing the GPU kernel based on a statistical model.
The concepts presented in [10] and [11] focus on automatic generating GPU
kernel code and autotune over different generated kernels. Since the generated
code is not optimized with respect to the underlying GPU architecture, usually
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the performance of these concepts is not optimal. The presented work in this
contribution is based on the well-known MAGMA GEMM kernel. The software
implementation is characterized by an extensive GPU kernel parameter space.
The MAGMA GEMM Kernel, has already been investigates in several autotun-
ing approaches [2,12-16]. The original kernel implementation has been described
in [12] and a first autotune concept [13]. With the introduction of the NVIDIA
Fermi GPU architecture, the kernel implementation has been revised [14] and an
autotuning procedure has been presented in [2]. The approach is characterized
by a huge search space for the GPU kernel parameters in conjunction with a
brute-force parameter search mechanism, which leads to a high computational
effort for finding optimal kernel parameters. With respect to small GEMM oper-
ations in [15,16] approaches for batched GEMM operations have been presented
and [17] describes the utilization of the Magma GEMM kernel in machine learn-
ing procedures. The autotuning approach presented in [18] focuses on energy
efficiency of the GPU while processing GEMM operations.

Most of the presented state-of-the-art work is based on a brute-force approach
for determining the optimal GEMM kernel parameters. This usually yields to
a huge parameter search space and therefore most of the approaches use a pa-
rameter combination pre-elimination step in order to reduce the computational
effort. The different heuristics for reducing the search space can possibly dismiss
optimal kernel parameter combinations. With respect to this suppositions, the
presented work focuses on defining optimal heuristics to reduce the search space
in combination with a Simulated Annealing(SA) procedure to find efficiently
optimal performing GEMM kernel parameters.

2 Solution

Optimal GPU kernel parameters strongly rely on the underlying GPU hard-
ware architecture, the memory layout and the input data size different settings
lead to different optimal parameter combinations. Therefore the resulting search
space for finding the optimal parameter combination can be enormous. Tuning
the parameters by hand is impractical, since it has to be redone for every GPU
architecture and every set of input data size again. With respect to these sup-
positions in the following sections we present a two step autotuning approach
for GPU-based GEMM algorithms. In the first step the kernel parameter search
space is pruned by several heuristic performance criteria, keeping good perform-
ing parameter combinations for a set of different use cases. In the second step
based on a modified Simulated Annealing (SA) algorithm the remaining pa-
rameter sets are further processed in order to find the best kernel parameter
combinations with respect to the GPU architecture and task specific data lay-
out.

In the following sections, the proposed autotuning approach is presented in sec-
tion 2.1 a short overview of the MAGMA GEMM kernel is given, in section 2.2
we explain the developed heuristics for reducing the search space and in section
2.3 the SA approach is introduced.



69

2.1 Magma GEMM Stencil structure

The developed autotuning approach is based on the well-known MAGMA GEMM
kernel. The original kernel implementation has been described in [12] and is char-
acterized by an extensive GPU kernel parameter space. Algorithm 1 shows the
pseudo-code of the kernel. The kernel has 11 parameters - two of the kernel pa-
rameters are only relevant for calculations in complex number space. Therefore
the kernel parameter space is reduced to nine relevant kernel parameters - the
parameters are described in the following:

Blocksizes The Blocksizes BLK_M, BLK_N and BLK_K define how many ele-
ments a Threadblock will calculate.

Threadblock dimensions The Threadblock dimensions DIM_X and DIM_Y deter-
mine the size of the Threadblock, which calculates a block on the result matrix.

Subdimensions The Subdimensions DIM_XA, DIM_XB, DIM_YA and DIM_YB
determine how the Shared Memory(SMEM) is filled.

Algorithm 1: GEMM Kernel Algorithm (simplified)

Data: Matrix A [M x K], Matrix B [K x N], Matrix C [M x NJ, alpha,
beta
Result: C=A x B * alpha C + beta * B
load A; and B; to SMEM;
for i + 0 to KstepBLK_K do
A¢yr1 and By to regs;
for i <+ 0 to BLK_K do
L load A; and B; to REG;
Ctemp:At * Bt
load Ayy1 and Byq to SMEM;
C = Ciemp * alpha + beta

2.2 Reducing search space

To reduce the search time for finding optimal kernel parameter sets in the first
step it is necessary to eliminate parameter sets, which with respect to the un-
derlying GPU hardware layout are not possible and possibly lead to an unstable
behaviour of the kernel execution. The following parameters are reduced:

prelimitations

We started with reducing the viable threadcounts respectively the threadblock
dimensions. The threadblock dimensions(DIM_X, DIM_Y) can only be 8, 16 or
32 resulting in 64, 256, 512 or 1024 threads. The GPU manufacturer NVIDIA
recommends using a minimum of 64 threads [20], which is the lower limit we
are applying, the upper limit is given by the hardware specification of the GPU.
Other configurations will not map onto the GPU hardware.
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utilization criteria

The idea behind this approach is to make use of the Latency Hiding Principle
of the GPU explained in [21]. Basically when the GPU chip loads data from the
off-chip Global Memory (GMEM), it will pause the corresponding warp, which
is a bundle of 32 threads. The GPU will schedule another warp, while previous
one is waiting. Typically loading data from GMEM takes many hundred GPU
cycles so Latency Hiding this is essential for performance. To enable Latency
Hiding it is essential GPU kernels keep enough warps available and the GPU
can switch between contexts while loading data.

The number of available warps on the GPU is described by the utilization. The
utilization is limited by the available SMEM and number of Registers (REG)
used by the GPU kernel itself. Based on these resources the upper limit of
the achievable utilization can be calculated. The resource consumption and the
maximum utilization can be determined by analysing the kernel source code
- a similar approach can be found in [2]. Important to note is, that the pre-
sented work measures the utilization in Warps per Streaming Multiprocessor
(SM). The GPU schedules everything in Warps so this seems to be a reasonable
approach. Furthermore we are forcing similar utilization levels of SMEM and
REG. This constraint avoids parameter combinations, which heavily utilize one
resource while barely utilizing the other one. Parameter combinations, which
are heavily limited in utilization due to REG suffer from poor performance as
well as those, which are heavily limited through SMEM. Those parameter com-
binations, which are heavily limited in utilization due to SMEM, are keeping to
few entries from the result matrix, for the utilization they achieve. Therefore,
data has to be loaded more frequently from GMEM than necessary. Parameter
combinations, which are highly restricted with REG, are keeping to less data
to read for achieving faster times. Therefore, they have to load and wait more
frequently.

efficiency criteria

The presented work introduces a further criteria for finding optimal kernel pa-
rameters: The efficiency criteria describes how long a parameter combination
can work, until data has to be reloaded from GMEM. The efficiency criteria is
calculated based on the kernel source code by the equations given in 1 to 3.

e Equation 1 describes how often data is loaded from SMEM, minus how often
data is loaded from GMEM.

e Equation 2 describes how often data is read from SMEM compared to load-
ing data from GMEM.

e Equation 3 describes the size of workload per thread.
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Equation 1 and 2 prefer combination with high SMEM consumption. Equation
3 prefers squared fields, which are not proven to be better.

SMEM Accessdiferenz (SMRW) = BLK_ K *
((BLK.M / DIM_X) +(BLK_N / DIM.Y)) -
BLK K / DIM_YA * BLK-M / DIM_XA -
BLK.N / DIM_YB * BLK_K / DIM_XB

SMEM Reuse (SMR) = BLK K *

((BLKM / DIM_X) + (BLK.N / DIM.Y)) /
(BLK_K / DIM_YA * BLK.M / DIM_XA +
BLK.N / DIM_YB * BLK_K / DIM_XB)

Work per Thread (WpT) = (BLK.M / DIMX) * (BLK.N / DIM.Y)  (3)

Because of the contradictory definition of the efficiency criteria and the utiliza-
tion criteria, it is not possible to optimize both at once. The efficiency criteria will
force contexts, which will reduce the reload operations from GMEM and there-
fore enforce higher resource consumption. On the other hand, the utilization cri-
teria will favour shorter working times for the contexts by consuming less SMEM
and REG resources. The approach of this work is to use those parametrizations
for the subsequent SA autotuning step, which forces to achieve the highest ef-
ficiency criteria on a specific utilization level. This ensures long living contexts
on a specific utilization level with respect to the latency hiding principle from
Paragraph 2.2. With respect to these suppositions, the resulting search space
reduces to 84 meaningful parameter combinations.

2.3 Simulated Annealing

Simulated annealing (SA) is a probabilistic technique for finding optimal param-
eter combinations in a given search space - a detailed overview of the concept
is given in [22]. For our approach SA is fitting, because of its ability to ignore
local minima and converge to the global one. Sorting the search space after dif-
ferent criteria enforces grouping of parameter combinations with similar runtime
on similar problems in the search space, resulting in faster convergence of SA.
The parameter combinations found in Paragraph 2.1 are sorted according to
their achieved utilization on the GPU and processed in the SA step. It should
be noted, that other possible criteria for SA could be the blocksizes (BLK_M *
BLK_N) or the leading dimension (DIM _X) from Paragraph 2.1.

3 Performance Evaluation

The performance evaluation of the proposed work is based on a NVIDIA Pascal
GPU (MSI Geforce GTX 1080 Ti Aero 11G OC) in combination with a Intel
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Xeon E5-1620 with 96 GB Memory host system. The operating system is Win-
dows 64 Bit with NVIDIA Driver Version is 390.65 and CUDA 8. To evaluate
the performance of the proposed approach different data sets are used - Table
1 gives on overview of the different matrix shapes for evaluation. These matrix
shapes have been chosen, because cuBLAS proven to perform very well. An eval-
uation test consists of three Matrices A,B and C with format M x K, K x N and
M x N € N. Additionally in order to illustrate the flexibility of the proposed
approach, several other matrix shapes have been evaluated. The results of the
performance evaluation are shown in Figure 1 and Table 2. Figure 1 shows the
achieved speedups with respect to the matrix shapes compared to cuBLAS. It
can be seen, that the larger N the lower the performance speedup. In the worst
case the achieved result of the proposed approach is 1.3 times faster than the
highly optimized cuBLAS routine, in the best case the speedup is 187 times
faster than cuBLAS.

Table 1 shows a comparison between the best-found solutions with a standard
the brute-force approach to the proposed approach based on SA proposed in
this work. The speedup for finding optimal kernel parameters with the proposed
SA approach is nearly five to six times faster than the standard brute force
approach, while the performance loss for GEMM kernel execution is maximum

10%.

Algorithm 2: Procedure for proving performance capability of this
work. The algorythm generates examples in the form of three matrices
A, B and C with the formats M x K, K x N and M x N € N. After 152
generated examples the process terminates.

for M = 25; M < 1000000; M = M + 25 do
for K = 25; K < 1000000: K = K + 25 do
if M * K = 6250000 or 25000000 or between 2000 and 1000
then
N = 25;

Brute-force search space (M,N,K);

Simulated Annealing (M,N,K);

N = 0.5 * M;

Brute-force search space (M,N,K);

Simulated Annealing (M,N,K);

N =M;

Brute-force search space (M,N,K);

Simulated Annealing (M,N,K);

N=5%*M;

Brute-force search space (M,N,K);

Simulated Annealing (M,N,K);
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Matrix Entries Matrix Number Matrix Entries Matrix Number
M K N M K N

10000 25 10000 1 1250 5000 1250 5

10000 200 10000 2 25 1000000 25 6

5000 500 5000 3 4000 50000 25 7

2500 2500 2500 4 25 10000 2000 8

Table 1. Data Matrix sizes for performance evaluation.

1000,0

100,0 }

| =

M=25 M=0,5*N M=N M=5*N
Format of the matrices form [M x K, K x N, M x N]

Speedup

=

Fig. 1. Comparison of the speedup times against cuBLAS with the brute-force ap-
proach on the examples from Algorythm 2. The minimum Speedup was 1,3, the max-
imum was 187 times as fast as cuBLAS. The average was 12.3 compared to 11.9 in
the Simulated Annealing approach. The figure shows, that with an increasing size of
N compared to M the speedup reduces. But there was no negative speedup in this test
so the results are always faster than the calculation with cuBLAS.

Matrix Format brute-force
Speedup against Simulated Annealing (%)
N=25 10,0
N=M/2 8,4
N=M 3,7
N=5M 4,3
average 5,8

Table 2. Comparison between the best achieved brute-force solution in comparison
to the found solution with the Simulated Annealer on examples in the form of three
matrices A, B and C with the formats M x K, Kx Nand M x N € N
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4 Conclusion

The computational throughput of Machine Learning algorithms is limited by the
available computational power of the underlying hardware. Most of the compu-
tation power in DLNN is consumed by the convolution step, which is based on
a general matrix multiplication (GEMM). To accelerate the computational time
in Machine Learning applications different highly optimized GEMM implemen-
tations for GPUs have been presented in the last years - usually these software
libraries have been optimized for a specific GPU version and a specific layout of
the data to be processed.

In order to achieve a maximum performance the kernel parameters of the GEMM
algorithm have to be tuned hardware and learning task specific. With respect
to these suppositions, we have presented a two-step autotuning approach for
GPU-based GEMM algorithms: In the first step, the kernel parameter search
space is pruned by analysing the kernel source code with several developed per-
formance metrics. In the second step a modified Simulated Annealing algorithm
is utilized, which enables a fast searching process for performance optimal ker-
nel parameters, while maintaining search runtimes lower than state of the art
brute-force implementations. We have shown that the proposed approach for
autotuning MAGMA-GEMM kernels yields high performance and adapts to the
GPU hardware and the data layout. Our results have been carried out base on
160 different input problems - we get an average speed up against the state of the
art GEMM implementation from NVIDIA (cuBLAS) from around 12 on Pascal
based NVIDIA accelerator cards. The key concepts of this contribution can be
generalized, to autotune the kernel parameters of other performance sensitive
GPU kernels.
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Abstract. Today, the optimization of the press hardening process is still
a complex and challenging task. This report describes the combination
of linear regression with least squares optimization to adjust the process
parameters of this process for quality improvement. The FE simulation
program AutoForm was used to model the production line concerned and
various process and quality parameters were measured. The proposed
system is capable of automatically adjusting the process parameters of
following process steps based on the quality estimate at each step of
the production line. An additional benefit is the identification of likely
defective parts early in the production process. Based on the results
derived from 1000 observations a better understanding of the process
was obtained and in the future the combined regression and optimization
approach can be extended to more complex production lines.

Keywords: linear regression, least squares optimization, production line,
press hardening, process control

1 Introduction

One of the goals of Industry 4.0 is the optimization and customization of pro-
duction processes through digitization with algorithms, big data approaches and
high technologies [1]. Currently, machine learning (ML) approaches support mon-
itoring, diagnosis and (off-line) system optimization for fault detection, mainte-
nance, decision support and product quality improvement [2,3]. The field of ML
is manifold and various different methods are available. However, in manufac-
turing and other fields of application the complexity of ML methods can hinder
their adoption even though the data acquisition for many production processes
is possible and a sufficient data base is available or can be obtained. Therefore,
this work aims to implement a simplistic ML and optimization approach for a
production line. The paper starts with a discussion of work related to ML and
process control in Section 2, followed by the presentation of the methodology in
Section 3, that includes a description of the data sets, the data preparation, and
the estimation techniques. The results of the analysis are described in Section 4.
Section 5 presents the conclusions and discussion of practical implications.
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2 State of the Art

First approaches for process control based on ML were conducted by Oh and
co-workers [4] who apply Neural Network/Partial Least Squares to model the
relationship between multiple process parameters and multiple quality param-
eters in the production process of metal plates of a complex structure. Senn
and co-workers [5] use Principal Component Analysis and Artificial Neural Net-
works to model the relation between observed quantities and state variables for
a deep drawing process. However, comprehensive studies for ML based process
control within production lines are still sparse. In order to contribute to fill this
gap we propose an intuitive approach to intelligently control the process pa-
rameters within a production line for quality improvement of the final product.
The introduced intelligent system is based on linear regression and least squares
optimization.

3 Data and Methods

We consider a production line for the press hardening of sheet metal in order
to produce center pillars, which are ultra-high-strength car body parts. Here,
we will focus on the three process steps warming, handling and quenching, see
Figure 1. The process involves inserting sheets, which have been heated beyond
the austenitizing temperature of about 900°C, into a cooled forming tool, in
which they are then quenched. The thermal integrated processing produces press-
hardened parts with an extremely high tensile strength of up to 1,500 MPa for
the ultra-high-strength steel 22MnB5. The handling of the sheets is done by
robots.

— Ly o3 Pl
| ] [
Warming  Handling Quenching

Fig. 1. Production line for the press hardening of sheet metal focusing on the three
steps: (1) warming in a furnace unit, (2) handling with a robot system with grippers,
and (3) quenching.

Similar to Oh et al. [4] each process can be described by its

— uncontrollable factors (initial conditions of materials or processes; and fix
variables),

— controllable factors (adjustable variables) and

— quality variables (response variables representing the final product quality).
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Figure 2 shows the parameters we considered in our case study. Uncontrollable
input variables are the sheet thickness (ST) and the tool temperature during
quenching (ToTemp). Controllable input variables are sheet temperature after
warming (STemp), transfer time between warming and quenching (TT), quench-
ing force (QF), quenching time (QT) and spacing (Sp). Quality variables are the
output variables hardness at a critical point P1 on the finished part (P1H) and
sheet thickness at another critical point P2 (P2ST). The ML method proposed
in the next section then correlates input and output variables and allows process
intervention for quality improvement. Data were acquired using the sheet metal
forming software AutoForm [6], similar to [7]. The whole data set consists of
1000 observations which were achieved by variation of the input parameters as
shown in Table 1.

INPUT VARIABLES
Uncontrollable variables  Controllable variables

Sheet thickness

5T
Sheet temperature Processstep 1
Siemp Warming
A
Transfer time Process step 2
- L Handling
B
Spacing - Sp Process step 3
= 3 Tool temperature | Quenching time - QT . P
2 N RIRiE Quenching force - QF Qu enchlng
¥
E
=
g OUTPUT VARIABLES
§ Quality criteria
[+4]
E Sheet Press-hardened
g Hard;;'ss thickness part
= fm at P2
P25T
Linear regression T T

Fig. 2. Production line with three process steps and their respective controllable and
uncontrollable variables. Linear regression is conducted based on the existing database.
After the warming process is finished, parameter optimization for the process steps
handling and quenching is possible.

3.1 Data Preparation

The open source statistical programming tool R [8,9] was used to evaluate the
data generated by AutoForm. The aim of this study was to find an appropriate
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ML model to describe the relationship between the input and output param-
eters. Upper and lower boundaries for the allowed input parameter variations
are defined as stated in Table 1. Boundaries for the quality criteria have to be
defined as well. These depend on the type of component that is produced. The
focus can be on maximum component hardness or for example on the maximum
thickness of the finished component. As we focus on a part from the automotive
industry we want to maximize/increase both, the sheet thickness and hardness
at critical points which are prone to tearing. Thus, no upper boundaries for P1H
and P2ST were defined.

Table 1. Process parameters, quality criteria, and regression coefficients for the esti-
mation of P1H and P2ST.

Variable lower upper default|| coefficients coefficients
boundary boundary P1H P2ST

ST [mm] 1.45 1.55 1.5 -l 9.4x107!
STemp [°C] 900 950 900 1.1 -
TT [s] 5 55 5 —6.2| 49x107*
ToTemp [°C] 80 300  190||-7.4 x 107%|=5.3 x 107
QF [kN] 500 2,500 2,000|| 3.5 x 107%—1.3 x 107°
QT [3] 2 65 2| 3.3x107'-1.2x107*
Sp [mm] 0.1 2 1.05 1.1] 24x1073
Intercept —4.5 x 10*| 6.2 x 1072
P1H [HV] 390
P2ST [mm] 1.43

3.2 Linear Regression for Quality Prognosis

Description of the Model Ultimately, we aim for on-line process control which
makes the application of high speed models and fast predictions necessary. As
a first step — conducted off-line — we need to describe the relationship between
input and output variables in a distinguishable way. A general linear model which
accounts for the single parameters linear effects was considered. In general, a
linear regression equation has the following form

DepVar = a + (by x IndepVar,) + ... + (b, x IndepVar,,).

Where a, by, ...,b, are unknown parameters, DepVar stands for dependent vari-
able and represents the qualities P1H and P2ST, respectively. IndepVar’s are
the independent variables, such as the process parameters.

The analysis is carried out in R using the lm() function for fitting linear mod-
els independently for the two quality parameters P1H and P2ST. The resulting
regression coefficients are shown in Table 1.
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Validation of the Model The regression analysis indicates that STemp, TT,
ToTemp, QF, QT and Sp had significant influence on P1H, which is confirmed by
the p-values (no significant influence of ST). The overall suitability of a linear
regression approach is supported by an adjusted R? of 0.90 which describes
the percentage of the dependent variable variation by the model. P2ST can be
thoroughly described by linear combinations of ST, TT, ToTemp, QF, QT and

Sp (no significant influence of STemp) with an adjusted R? of 0.99.
Since the total number of observations is limited and a partition into training

and test data is not sensible without loosing significant modeling capability the
models were validated with K-fold cross-validation. For K = 5, the overall mean
square of prediction error is 97.6 for the linear model (compared to 102 for the
complete model with all variables) to predict P1H and 3.87 x 10~° for the predic-
tion of P2ST (compared to 6.14 x 107° for the complete model). This indicates
reasonably good linear models despite the limited number of observations which
will be increased in the future.

3.3 Least Squares Optimization with Constraints

Set-up of the Optimization Problem After each step in the production line
the qualities P1H and P2ST are estimated using the variables already measured
in combination with assumptions for variables of the process steps not yet per-
formed (default values in Table 1). These assumptions are based on technological
expert knowledge. After the warming process, we know the ST and the STemp.
In order to get a first estimate for the expected quality P1H and P2ST we use
the linear regression model established in 3.2 with the measured ST and STemp
and default values for TT, ToTemp, Sp, QT and QF as stated in Table 2. If the
estimated quality is below the predefined threshold, also stated in Table 2, the
controllable variables in following process steps have to be adjusted in order to
bring the quality back into its desirable interval. An optimization process was
established, which calculates the necessary adjustments. Least squares are ap-
plied to solve the emerging inhomogeneous linear system with constraints after
every process step. With each step the accuracy of the model improves as less
and less process estimates have to be used to predict the quality.

In order to solve the optimization problem least squares with equality and
inequality constraints is performed. The function from the R-package limSolve
is called lsei() and solves

min ||Az — b|| subject to Ex = f,Gz > h.

For the optimization after process step 1 (warming) the matrix A is the
unity matrix with dimension 4 because there are four subsequently determinable
variables left in the manufacturing process. The vector b contains the default
values / desirable process values for the 4 adjustable variables. The objective
function tries to find a solution for the 4 adjustable variables which is as close
as possible to the desired default values. Since our optimization problem does
not have equalities, E is a zero matrix of the dimension 4 and f is a vector
of zeros. The inequality constraint Gx > h is constructed from the upper and



82

lower boundaries of the adjustable variables and the linear regression equations
combined with the quality boundaries. The optimization after process step 2 is
conducted in a similar way but only 4 adjustable variables are remaining.

Weighting of Parameters Since an adjustment of some parameters is easier
than others, e.g. TT or QT, weighted least squares can be used to improve the
efficiency of parameter optimization. The weighting vector W, as an additional
input for the Isei() optimization function is defined to prefer changes on easily
adjustable variables such as TT and QT. Thus the weighting coefficients for TT
and QT were chosen 1 while they are 100 for QF and Sp. By giving each variable
its proper amount of influence on the resulting quality a more realistic image of
the real press hardening process is established. The weight for each variable is
given relative to the weights of the other variables.

4 Results and Discussion

In order to show the versatility of the approach four different scenarios are
presented in the following.

The type of component to be produced has an immediate impact on the
optimization problem. The system can be optimized towards the hardness of the
produced component, process velocity (usually as fast as possible to be cost-
effective), geometric accuracy or other objectives. In the production industry
the overall equipment effectiveness (OEE) is a relevant and popular indicator
for a machine or production line. Thus, we want to focus on a process as fast as
possible which correlates directly with the maximization of the number of cycles
in a production line. For this purpose, the default setting for TT is the smallest
possible value of 5 s, similar to a minimum QT of 2 s. The QF has to be as
high as possible in order to allow the quenching process to be fast. Thus, a QF
of 2,000 kN is chosen as default allowing slight upward adjustment with a total
maximum of 2,500 kN. The Sp default is 1.05 mm.

The quality control of the production line can return an “accepted part” for
parts meeting both quality criteria as defined in Table 1 and “defective part”
otherwise.

4.1 No Parameter Adjustment Necessary

In the majority of cases a production line should produce high quality parts when
working with feasible process parameter intervals. One example for a process
cycle resulting in an accepted part is shown in Table 2. The warming process is
conducted with a ST of 1.5 mm and a resulting STemp of 900°C. Both P1H and
P2ST are estimated with the linear regression approach described in section 3.2
with default values for TT, QF, QT and Sp (see Table 1). The predicted P1H
and P2ST imply a qualitatively accepted part. Even with a longer than targeted
TT of 10 s instead of 5 s the quality at the end of the process is still within range
(Table 2, row 3) and no parameter adjustment is necessary (Table 2, row 4).
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Table 2. No adjustment necessary. Highlighted in gray are the process parameters
already known.

process 1 |process 2 process 3 quality
process step ST STemp TT| QF QT Sp| P1H P2ST
mm]  [C] )| [kN)_[s] [mm]| [HV] [mm]
process 1 - default 1.5 900 5(2,000 2 1.05483.8 1.47
process 1 - adjusted| 1.5 900 5/2,000 2 1.05|483.8 1.47
process 2 - start 1.5 900 10(2,000 2 1.05|452.3 1.47
process 2 - adjusted| 1.5 900 10/2,000 2 1.05(452.3 1.47

4.2 Parameter Adjustment

If the ST is 1.45 mm instead of 1.5 mm with an identical STemp of 900°C the
estimated P2ST is too low. If the process is not adjusted, this cycle will likely
produce a rejected part. However, the proposed approach allows an adjustment
of the parameters in process step 2 and 3 in order to produce an accepted part.
The model suggests a TT of 19.8 s instead of 5 s, a maximum QF of 2,500 kN
and a slightly increased Sp of 1.2 mm in order to obtain a part with the required
sheet thickness (Table 3, row 2). If the suggested TT of 19.8 s is slightly longer
with 20.5 s, P1H is outside the feasible interval and an adjustment in process 3
is necessary (Table 3, row 3). Here, the QT is increased to 12.8 s and the Sp is
increased to 1.71 mm in order to obtain a part with accepted quality (Tabe 3,
row 4).

Table 3. Parameter adjustment. Written in bold are violated quality criteria.

process 1 process 2 process 3 quality
process step ST STemp TT| QF QT Sp| P1H P2ST
[mm] _ ['C] [s]] (kN] [s] [mm]| [HV] [mm]
process 1 - default | 1.45 900 5(2,000 2 1.05| 480.8 1.42

process 1 - adjusted| 1.45 900 19.8/2,500 2 1.2| 390.0 1.43
process 2 - start 1.45 900 20.5(2,500 2 1.2|385.9 1.43
process 2 - adjusted| 1.45 900 20.5/2,500 12.8 1.71] 390.0 1.43

4.3 Limited Adjustment

For an even lower sheet thickness of 1.44 mm and STemp of 900°C the quality
criterion P2ST is violated with 1.41 mm instead of 1.43 mm. An adjustment of
the process parameters of process 2 and 3 is not possible without violating some
of the constraints as the optimization approach aims for keeping both quality
criteria within their intervals and at the same time all process parameters within
their boundaries. Thus, a limited adjustment is performed in order to obtain a
part as close as possible to accepted quality (Table 4, row 2). The parameters of
process 2 and 3 are altered such that P1H is just at the lower limit and P2ST
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is improved as much as possible (1.423 mm instead of 1.41 mm and close to
accepted quality). For this purpose, TT is increased from 5 s to 19.8 s, QF is at
its maximum and Sp is increased to 1.99 mm.

Table 4. Limited adjustment / no adjustment possible. Again, violated quality criteria
are written in bold. Marked with a star are improved by still violated qualities.

process 1 process 2| process 3 quality
process step ST STemp TT| QF QT Sp| P1H P2ST
mm]  [°C] js)| [KN] 5] [mm]| [HV] [mm)]
process 1 - default | 1.44 900 5(2,000 2 1.05| 480.2 1.41
process 1 - adjusted| 1.44 900 19.8/2,500 2 1.99| 390.0 1.423*
process 2 - start 1.45 900 20.5(2,500 2 1.99|385.4 1.423
process 2 - adjusted| 1.45 900 20.5(2,500 2 1.99|385.4 1.423

4.4 No Adjustment Possible

Sometimes the quality prognosis after process step 1 indicates that the produced
part will not meet the final product quality requirements. Given the fact, that
the prognosis is accurate, this is a very valuable information this early on in a
production line because defective parts can be removed early in the production
process with the additional benefit of cost and energy savings. Table 4 shows an
example where after process step 2 no parameter adjustment is possible without
violating the constraints. HP1 and P2ST will both be too low no matter how
the process parameters in process 3 are altered.

5 Discussion and Conclusions

A combination of linear regression and least squares optimization can be em-
ployed to reproduce a bidirectional relation between process parameters and
quality parameters in a fast and reliable manner. The proposed system is capa-
ble of estimating the quality outcome at any step of a production line. It allows
adjustment of the controllable variables one or more process steps further on
and identifies defective parts early in the production process.

If more than one quality criterion is considered, conflicting relations between
them have to be expected. The goal of the parameter optimization is that pa-
rameter adjustments are found such that all quality criteria are satisfied. This
constraint may result in an unsolvable optimization problem. The unsolvability
of the problem after the first production step (or later in the process) indicates
that the final product might not satisfy at least one quality criterion. The quality
prognosis this early on in the production process is a valuable information, as
potentially defective parts can be sorted out early. This saves resources, machine
time and energy.
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The accuracy of the quality prognosis is mainly driven by the accuracy of
the regression model. Therefore, a sufficiently large database is necessary. In the
future, we plan to increase the data volume for a higher prognosis accuracy.
The simulated data should be as close as possible to reality. Typically, the pa-
rameters of the press-hardening cycles follow a normal distribution and most
of these cycles produce accepted parts. However, in the AutoForm software, a
mesh is placed over the boundaries of the process parameters and the parameter
variations are evenly distributed over the mesh. How this affects the regression
model remains to be investigated. A validation of the ML approach with FEM
simulations is under way. Once the extended simulation based regression and
optimization approach works we will move on to experimental data and other
more complex production lines.

Acknowledgments. This work was supported by the Fraunhofer-Gesellschaft
with the funding of the lead project “ML4P — Machine Learning 4 Production”.
Furthermore we thank the European Union, the Free State of Saxony as well
as the Fraunhofer-Gesellschaft for the funding of the High Performance Center
Smart Production. Many thanks to Thomas Lieber for acquiring the simulation
data.

References

1. Lu, Y.: Industry 4.0: a survey on technologies, applications and open research issues.
Journal of Industrial Information Integration 6, 1-10 (2017)

2. Harding, J.A., Shahbaz, M., Kusiak, A.: Data mining in manufacturing: a review.
Journal of Manufacturing Science and Engineering 128.4, 969-976 (2006)

3. Niggemann, O., Stein, B., Maier, A.: Solving Modeling Problems with Machine
Learning A Classification Scheme of Model Learning Approaches for Technical
Systems. In Model-Based Development of Embedded Systems (MBEES), Dagstuhl
(2012)

4. Oh, S., Han, J., Cho, H.: Intelligent process control system for quality improvement
by data mining in the process industry. Data mining for design and manufacturing.
Springer US, 289-309 (2001)

5. Senn, M., Link, N.: A universal model for hidden state observation in adaptive

process controls. International Journal on Advances in Intelligent Systems 4(3-4),

245-255 (2012)

AutoForm, url: https://www.autoform.com/

7. Neugebauer, R., Schieck, F., Polster, S., Mosel, A., Rautenstrauch, A., Schénherr, J.,
Pierschel, N.: Press hardening An innovative and challenging technology. Archives
of civil and mechanical engineering 12(2), 113-118 (2012)

8. Thaka, R., Gentleman, R.: R: A language for data analysis and graphics. Journal of
Computational and Graphical Statistics 5(3), 299 — 314 (1996)

9. R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria, https://www.R-project.org/
(2017)

o



Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence
and indicate if changes were made

The images or other third party material in this chapter are included in the chapter’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder.



A Process Model for Enhancing Digital Assistance in
Knowledge-Based Maintenance

Klaudia Kovacs'?*, Fazel Ansari'?, Claudio Geisert’, Eckart Uhlmann®*,
Robert Glawar?, Wilfried Sihn!?

'Vienna University of Technology (TU Wien), Institute of Management Science
Fraunhofer Austria, Division of Production & Logistics Management, Vienna, Austria
3Fraunhofer Institute for Productions Systems and Design Technology IPK, Berlin, Germany
“Institute for Machine Tools and Factory Management, TU Berlin, Berlin, Germany
klaudia.kovacs@tuwien.ac.at

Abstract. Digital transformation and evolution of integrated computational and vis-
ualisation technologies lead to new opportunities for reinforcing knowledge-based
maintenance through collection, processing and provision of actionable information
and recommendations for maintenance operators. Providing actionable information re-
garding both corrective and preventive maintenance activities at the right time may lead
to reduce human failure and improve overall efficiency within maintenance processes.
Selecting appropriate digital assistance systems (DAS), however, highly depends on
hardware and IT infrastructure, software and interfaces as well as information provision
methods such as visualization. The selection procedures can be challenging due to the
wide range of services and products available on the market. In particular, underlying
machine learning algorithms deployed by each product could provide certain level of
intelligence and ultimately could transform diagnostic maintenance capabilities into
predictive and prescriptive maintenance. This paper proposes a process-based model to
facilitate the selection of suitable DAS for supporting maintenance operations in man-
ufacturing industries. This solution is employed for a structured requirement elicitation
from various application domains and ultimately mapping the requirements to existing
digital assistance solutions. Using the proposed approach, a (combination of) digital
assistance system is selected and linked to maintenance activities. For this purpose, we
gain benefit from an in-house process modeling tool utilized for identifying and relating
sequence of maintenance activities. Finally, we collect feedback through employing the
selected digital assistance system to improve the quality of recommendations and to
identify the strengths and weaknesses of each system in association to practical use-
cases from TU Wien Pilot-Factory Industry 4.0.

Keywords: Maintenance, Digital Assistance Systems, Process Model, Industry 4.0.
1 Introduction

1.1  Digital Assistance in Knowledge-Based Maintenance

Maintenance is a knowledge-intensive process in which the process participants (or-
ganizations or (group of) individuals involved in the maintenance process and sub-pro-
cess(es) either as internal or external stakeholders) create, (re)use, and share specialized
professional knowledge, while enriching their implicit and experiential knowledge.
Considering maintenance organization as a learnable unit, it encompasses the creation,
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acquisition, extraction, storage, retrieval, discovery, application, review, sharing and
transfer of the knowledge captured from/within maintenance processes. To this end,
Knowledge-Based Maintenance (KBM) continuously supports value generation and fa-
cilitates developing and protecting maintenance collective knowledge across mainte-
nance organization, which is enhanced by a variety of data-driven, digital technologies
and artificial intelligence (Al) techniques, including advanced statistics, stochastics,
real-time computing and analytics, machine learning algorithms, static rule-based or
dynamic model-based analytics, and sematic modelling and representations [1],[2].
From a practical point of view, maintenance operators and engineers are frequently
associated with a wide range of difficulties due to the increasing complexity of manu-
facturing systems, in terms of products, processes and systems, namely: i) a wide range
of maintenance tasks from diagnosis to repair, ii) increasing complexity of maintenance
requirements and iii) a large number of equipment types to maintain [3],[4]. Addition-
ally, they are constantly confronted with situations in which the experiential knowledge
of other employees is needed, particularly in the confrontation with new or rarely oc-
curring tasks and circumstances. The challenge that arises with increasing complexity
is a shortage of skilled workers and the time required to build up relevant experience
[5]-

With the digitization of the industry and the recent technological advancements of
computing and visualization technologies, the opportunity to access actionable infor-
mation for maintenance operators and engineers provides additional benefits. The in-
creasing integration of ICT technologies in classical automation as well as a constantly
increasing digital database enable them to capture information through a real time in-
teraction [6], [7]. According to our experiential knowledge, almost 90% of maintenance
practitioners use a notebook as a tool to obtain information for their maintenance tasks.
Nevertheless, hardcopies build the second most common information source. The study
participants consider the active support of the diagnosis as well as the availability of
information and checklists for the respective process steps to be the most helpful
measures during the service visit [8]. Digital assistance systems (DAS) can enhance
human performances, depending the degree of digitization, by providing relevant in-
formation for a given specific task [9]. Maintenance operators and engineers can cap-
ture information through the used device more quickly and more precisely, while they
are performing maintenance, inspection or repair tasks [10]. Recent studies show that
DAS can increase maintenance practitioners” productivity by 8.5% [3]. However, the
reason for selecting a device rather than another is not always trivial and relates to con-
text of application, environmental conditions, the user and the process related require-
ments [11]. In order to select and make decision on an appropriate device to assist
maintenance operators, organisations need to take multiple decision criteria and pref-
erences into account [13]. Research surveys show that companies confront major chal-
lenges in implementing digital assistance solutions due to high investment costs and
technological issues such as: 1) choosing the right hardware, ii) development of a soft-
ware and realizing a suitable visualisation method and iii) supplying adequate infor-
mation to improve human performances by providing relevant information regarding
both corrective and preventive maintenance [11], [12], [14]. The selection procedures
can be challenging due to the wide choice of services (options) available on the market.
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Considering the discussion above, this paper presents an approach to improve the
maintenance efficiency through DAS using a morphological approach for the proper
hardware selection combined with a process-modeling tool providing the adequate in-
formation to fulfill the needed maintenance task. The goal of the proposed process
model is to systematically identify functionalities of the emerging technologies on the
market and apply the functionalities to requirements in order to find appropriate assis-
tance systems for various industrial applications. Therefore, an overview on present
digital assistance solutions is given and a morphological approach for the elicitation of
derived requirements on digital assistance solutions is presented.

1.2  Digital Assisted Maintenance (DAM)

The emergence of novel wearable technologies (in this paper referred to as a type of
DAS) such as smart glasses, smart watches and tablets spurred new concepts of service
support systems [9]. DAS combined with Cloud manufacturing concepts provide an
opportunity to deal with the increasingly complex maintenance procedures [3], [9].
DAS create the potential to shape new working environments in which modern tech-
nology is used to assist workers in activities that are challenging in terms of their cog-
nitive complexity [14]. Via interfaces, corresponding process data are processed and
visualized by software components embedded into assistance system to support mainte-
nance operators with relevant information, e.g. by means of head-mounted displays or
portable devices. A strong focus of literature is the exploration and identification of
application areas for implementing and deploying DAS [5]. To implement DAS, the
service-oriented architecture approach has become established. Although innovative
technologies, e.g. web services, have already been employed in industrial applications
[15], [16], their usage in maintenance support has not been sufficiently well empha-
sized. A preliminary chronological market and literature analysis with regard to suita-
bility and industrial applicability (i.e. technology readiness) of DAS, in particular wear-
able devices, is shown in Fig.1.
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Fig. 1. Overview of digital assistance systems on the market and their market entrance.
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As a result, the four most common DAS in industrial application are: industrial tab-
lets, smart watches, smart phones and head mounted displays [12], [17], [18], [19].
While the pros and cons of handheld devices (industrial tablets, smart watches, smart
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phones) are well known and elaborated in literature, the potential of head-mounted dis-
plays are disputed. The most value-creating functionalities of head mounted displays
lie in information provision, environmental identification and tracking [6]. The oppor-
tunity to access information hands free provides additional benefits. However, due to
various technical limitations and challenges, such as wear comfort or poor wireless net-
work connections, the question of usefulness in maintenance still arises.

2 Selection Methodology

This section explains the methodology of the developed model to select proper DAS
for maintenance tasks. The proposed model builds on three integrated elements (see
Fig. 2): i) Morphological Approach, ii) Application Layer and iii) Device Selection
Layer.
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Fig. 2 3-layer model for selecting proper digital assistance systems

The first element represents a morphological box, which has been developed to fa-
cilitate and optimize the selection of suitable DAS. The second element represents the
application domain. The application layer provides the individual user-specific system
requirements as well as application scenarios (i.e. describing and representing mainte-
nance activities). Subsequently, the system and hardware requirements resulting from
i) the predefined parameters of the requirement morphology and ii) from the application
level are evaluated and, according to their overall systemic meaning, compared with
the potential technology solutions. Algorithms and correlation-analyses within this sys-
tem are used to ultimately map the requirements to existing digital assistance solutions.
Using the proposed approach, a (combination of) DAS is selected and linked to mainte-
nance activities. Finally, we collect feedback through employing the selected digital
assistance system to improve the quality of recommendations and to identify the
strengths and weaknesses of each system in association to practical use-cases.

2.1 Morphological approach

In order to facilitate and optimize the selection of suitable DAS for supporting
maintenance operations in manufacturing industry, a morphological approach has been
developed. A Morphological Analysis (MA) represents a method for systematically
structuring and analyzing a set of relationships contained in multi-dimensional, non-
quantifiable problem complexes [20], [21]. MA usually consists of three steps. First,
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the problem complexity is categorized into several dimensions. Second, all possible
conditions (also referred to as parameters) to each dimension are identified. These pa-
rameters represent the characteristics of each dimension. Finally, a morphological ma-
trix is developed based on the identified dimensions and their assigned condition pa-
rameters [22]. Figure 3 depicts a morphological matrix, which contains a collection of
identified features that are critical to selecting an assistance system. Key features for an
adequate assistance system can be categorized into three groups: i) requirements re-
garding the application (software): How and to what extent maintenance information is
presented to maintenance operators and engineers towards increasing their performance
in an affordable manner? ii) requirements regarding the information system: How and
to what extent maintenance information is tailored to the application? iii) requirements
regarding the hardware: which hardware should be applied for the selected case?
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Fig. 3 Morphological Matrix with defined dimensions and parameters

Based on a literature review and collection of manufacturers” data, we derived and
determined 20 relevant criteria to assess the digital assistance system requirements.
These requirements represent the dimensions within the morphological matrix. To fur-
ther systematize the requirement analysis, the requirement elements are classified be-
low using a morphological matrix in Fig. 3. This morphological matrix contains a col-
lection of general condition parameters of the presented requirements. Based on the
individual user-specific system requirements and the application scenario, the charac-
teristic parameters can be identified. Thereby, the requirements are highlighted in color
and optional requirements are shaded in color. It should be noticed that each answer
can affect more than one choice regarding the hardware, software and visualization
method. For the selection of a suitable digital assistance system a decision hierarchy
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needs to be constructed [22]. The underlying algorithm is based on Analytic Hierarchy
Process (AHP) and fuzzy TOPSIS method principles [22]. An AHP method was applied
to calculate the criteria priority weights, while fuzzy TOPSIS is used to evaluate and
select a proper (combination of) digital assistance system(s).

2.2 Device Selection Layer

The Device selection layer represents the technology database and includes hard-
ware and authoring software solutions. Due to the novelty of the topic, we had access
to only a few practitioners with real-life implementations of DAS, especially smart
glasses in this matter. For this reason, we have decided to elicit the functionalities from
systematic literature review and market analysis. Based on ISO16290 the Technology
Readiness Level of the emerging technologies on the market has been rated (see Fig.

1.
3 Case Study: An Explanatory Process Model for DAM

To reveal the functionality of the developed process model a maintenance scenario
has been developed within the TU Wien Pilot-Factory Industry 4.0. Up to now, mainte-
nance processes on the Universal Robot (URS laboratory robot) have only been carried
out by experts. A proper DAS should guide workers step by step through the mainte-
nance activities on the machine. Based on the developed selection model (cf. Section
2), the use of smart glasses is recommended. The chosen underlying software tool is
called MO?GO, a Process Modeling Tool developed by the Fraunhofer Institute for
Production Systems and Design Technology IPK.

) — ¢so o — (5]
= B — e

—_—
SOAP RESTful
MOGO Server JBoss Server NODEJS Server

Sm
—— .

Databases Files Automation
Variables

Fig. 5. Schematic software architecture for a context sensitive digital assistance system.

To model business processes, the method of integrated enterprise modeling (IEM)
was developed in the 1990s at the Fraunhofer IPK [23]. The application of the IEM
supports the description of business processes and their interactions with description
elements of companies, such as organization, system, product or control. It is compati-
ble with DIN EN ISO 19440 "Enterprise Integration - Constructs for Enterprise Mod-
elling" and describes four element classes that can be related by five connection types.
Table 1 shows a selection of element classes and connection types which are needed to
model maintenance processes. The graphical modeling tool MO*GO[24], also devel-
oped at Fraunhofer IPK, is well suited to model the maintenance processes and forms
the basis for the implementation of DAS[25]. MO?GO supports the XML (eXtensible
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Markup Language) exchange format, which is suitable for exchanging data between
different applications. For the process step representation in a graphical user interface
(GUI) of a digital assistance system, MO*GO offers an interface to provide the XML
format of the process model as a JAVA object representation. The elements and their
connections are then converted to JSON format and interpreted by an application inter-
face (API) to link resources, generate context sensitive instructions and to initialize
support functions on the maintained system during the various process steps. This
JSON representation is then transformed to the web-capable HTMLS5 format in which
JAV A Script is embedded to realize human-machine-interaction.

Table 1. Excerpt of IEM classes and connection types used for maintenance process modeling.

Objects and linkage types Description
Product All objects that are changed by activities during a field service deploy-
= ment, e. g. the product “machine tool with failure” (start condition) is

changed by the activity “performing service deployment” towards the
product “machine tool without failure” (final condition)

Activity Changes the condition of a product
Resource All needed objects necessary to perform an activity, e. g. web service call
I to invoke a test routine on the machine tool
Sequence Activities are performed successively
Parallel branching Activities are performed parallel; parallel activities have to be completed
% before the next activity can be started
Loop The activity in the loop will be performed until the condition for starting

| . T | the next activity is met

Figure 6 shows a scenario for the exchange of gripper jaws.

Grper Protsction [eTyepe e o =TTy
of Copanmmrono Hteteiy 4 e .
o & s
" |

Fig. 6 Pictorial representation of a need for action and textual explanation of the activity com-
bined with a pictorial representation of the tool and the object to be exchanged.

The maintenance operator is assisted by step-by-step instructions through virtual in-
formation directly on the work object. The user interface has been kept simple i.e. users
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see a complete virtual model of the equipment and the needed information to fullfil the
maintenance task to the right. The MO?GO model is used to provide logic and infor-
mation for the augmented reality (AR) based assistance system and to guide the worker
through eight process steps.

4 Conclusion and Outlook

The presented approach can serve as guidance for the strategic evaluation of digital
assistance solutions supporting maintenance processes. Combined with the proposed
process-modeling tool the assistance system can provide the needed information to im-
prove the maintenance efficiency. Since the proposed approach is currently a prototype,
it encompasses some limitations that necessitate further research. First, the underlying
decision hierarchy is based on experimental knowledge of experts and has been only
validated through the proposed use case. In order to improve the quality of recommen-
dations we need to collect feedback through employing the proposed approach to fur-
ther practical use-cases. Second, the key information regarding hard- and software of
the DAS on the market is extracted manually. By using various web crawling and web
analytic techniques, including automated text- and web-mining methods, information
can be extracted from documents such as product manuals and patent documents dy-
namically to identify the key features of existing products and technologies.
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Abstract. Industrial plants usually consist of different process units
which are strongly cross-linked to each other. This leads to the point
that a voluntary or involuntary change in one unit (e.g. changing some
process control parameter or having a malfunctioning value) can lead to
unexpected results in another process unit. Hence, knowing which are the
causing and which are the effecting process variables is of great interest.
Still, depending on the underlying process and the characteristics of the
excitation signal, directed connectivities can or can not be detected.
Therefore, in this paper several types of dynamic SISO systems and
excitation signals are defined for which a directed connectivity from input
to output signal should be detected and from output to input should not
be detected. As a method for the detection of directed influences Spectral
Granger Causality is used, which has been extended with a surrogate-
based significance test. This test is used to define if a directed influence
exists from one process variable to another.

Keywords: Spectral Granger Causality - Detection of Directed Con-
nectivities - Time Series Analysis.

1 Introduction

Process control systems at production plants usually consist of a large number
of process variables, while the interconnectivity of the variables is not always
directly evident. Hence, due to the interconnectivity, if some change, voluntary
or on purpose is performed on one unit, this can lead to unwanted effects at
another unit. Therefore, it is of great interest to understand which variable has
a significant influence on another variable.

For the automatic detection of directed connectivities in time series exists al-
ready a wide variety of methods, which are mainly developed for the use in
neuroscience (e.g. [3] or [1] for reviews) or for the analysis of econometric data
[9]. One of the first methods developed, was done by Granger [8], being called
the Granger Causality. This method uses two vector autoregressive functions
and, by comparing their residual sum of squares, the method tells if one variable
causes the other or not. The original approach, taking place in the time domain,
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was extended by Geweke [7] into the spectral domain, having the advantage to
select specific frequencies for analysis. In 2000 Schreiber [14] developed a method
called Transfer Entropy, which measures the amount of information transferred
from one random process to another. In recent research, Transfer Entropy has
been extended by contains several extensions like Partial Transfer Entropy [11]
or Symbolic Entropy [13]. Bauer [2] proposes a Nearest-Neighbor approach for
cause-effect analysis. In [12] different methods for the detection of significant
directed influences were developed and compared on several benchmarks, con-
sisting of simulated dynamic systems data, biosignals and on disturbances from
a glass forming process. Kaminski [10] proposes the estimation of directed trans-
fer functions.

This aim of this paper to investigate under which circumstances it is possible
to detect directed influences in measurements, depending on the excitation sig-
nal as well as the underlying dynamic systems. As specific detection method
Spectral Granger Causality [7] is used, which is extended with a surrogate-based
significance test. In difference to [12], which already defines benchmark processes
for the detection of causal dependencies, the current paper focuses more on the
excitation signal characteristics.

The paper is structured as follows: Section 2 introduces how directed connectivi-
ties can be detected in time series and how Spectral Granger Causality is applied.
Additionally, the surrogate-based calculation of the significance threshold is ex-
plained. Section 3 describes the defined input signals and dynamic systems for
benchmarking, while section 4 discusses the results. Finally, section 5 gives a
summary and some ideas for future research.

2 Detecting directed connectivities in time series

2.1 Bivariate Spectral Granger Causality

The concept of Granger causality (GC) has been originally introduced in the
field of economics by Clive Granger in 1969 [8] who used it to determine the
relationships of different econometric models. The basic concept of bivariate GC
can be explained by assuming the two time series u[k] € R and y[k] € R with
k =1,..., K samples. In that case, the causal connectivity u — y is assumed
to exist if past values from wu[k] and y[k] result in a higher forecast accuracy
for y[k] than using only past values from y[k]. Mathematically, this is evaluated
by comparing two linear vector autoregressive models, while the first one only
contains past values of y[k], called the restricted model, and the other one con-
taining past values of u[k] and y[k], called the unrestricted model.
Furthermore, Granger Causality can be easily extended into the multivariate
case, while good explanations can be found e.g. in [16] or [4]. Since the devel-
oped benchmarks in section 3 compare always one input against one output, for
simplicity, multivariate GC will not be explained in this paper.

GC in the time domain: Checking if u causes y or y causes u, is in the time
domain is done by comparing two linear vectorautoregressive (VAR) models.
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The two VAR models are defined as

ulk] = D awuli] - ulk = g1+ 3 awyli] - ylk = 5] + ealk], (1)
ylk] = 3 ayylil - ylk =31+ > ayuli] - ulk = 5] + e, [k] (2)

containing the residual covariance matrix being defined as
D X
= uu uy 3

(5 5) @
In 1, 2 n is the model order, ayu, Guy, Gyu, Gyy € R™ contain the model coefficients
and e, [k], ey[k] € R define the residuals. Finally GC checks the coefficients in
ayy (respectively a,,). If these are significantly different from zero, it is assumed
that u causes y (respectively y causes u). Usually, this is done by comparing the

squared-sum of residuals of e, (respectively e,) with and without taking into
account the influencing variable y (respectively ).

GC in the frequency domain The advantage when working in the frequency
domain compared to the time domain is that causal connectivities can be tied to
specific frequency bands and one gets better insights in the data. The method-
ology has been explained in detail in [7] and the main steps are given here for
completeness. The Fourier Transformation of the equations 1 and 2 can be writ-
ten in the following set of equations:

(et i) Gn) = (60) W
with u(f) and y(f) are the Fourier transformed time series from u[k] and y[k] and

eu(f),ey(f) are the Fourier transformations of e, [k] and e, [k]. The components
of A are then transformed as

Avu(f) =1~ i GUU(n)e(_iQﬁfn) (5)
=1
Auy(f) = = auy(n)e =™ (6)
i=1

which counts analogous for Ay, (f) and A, (f). Finally, equation 4 can be rewrit-

ten as
(W0) = (e ) (1) "
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with H(f) defining the transfer function matrix. Following Geweke [7], under
the assumption that the covariance X, = 0, the auto spectrum S, (f) for the
time series u[k] can be derived as

The asterisk in equation 8 defines the transposed and complex conjugated trans-
fer function. According to Seth [15], equation 8 can finally be divided into an in-
trinsic part, namely Hy,, (f) XyuHuu (f)* and a causal part, namely H,,, 2, H,,, (f)*.
Hence, the Granger Causality for each frequency can be calculated as

|Suu(f)] >

Finally, the causal strength F,_,, is calculated by integrating over the complete
frequency spectrum being defined as

1
2T

fumn(7) =

A”mﬁﬁﬂ# (9)

‘Fu—>y:

2.2 Threshold

The in equation 9 defined causal strength F,_,, is not bounded, meaning that
from the bare value it is not possible to tell if a causal dependency is really sig-
nificant or not. Therefore, a threshold needs to be calculated each time an input
u is tested against a possible output y. Following Choudhury [5] a surrogate time
series needs to calculated for w, while surrogate means that the phase coupling
is removed but the signal keeps the same power spectrum. In other words, all
causal information is removed from the signal. To calculate the surrogate of u
the following steps need to be performed

uppr = FFT(u)
uppT K] k=1,N/2+1
uppt = upprlkle’®1 k=2,... N/2
uppr[k]e’®-1 k= (N/2+2),...,N
wT = IFFT (uppr)
with FFT being the Fourier and IFFT being the Inverse Fourier Transform.
In that case NV describes the number of samples and @,, € 0,...,27 with k =

1,...,(IN/2—1) is a random phase value. The final threshold is derived in terms
of a 30 test being defined as

fThreshold _ lusurr + 3gSur

u—y
with
1 1 &
Iusurr _ Z ]:usurr_}y, oSWT — - Z (-Fusu”'—>y _ ‘usurr)Q'
M k=1 M m=1
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and M being the number of surrogate trials. If the outcome indicates F, ., >

fgﬁry"ShOId, the found causal dependency is defined as being significant.

3 Benchmarks

For the detection of directed connectivities in time series two things are impor-
tant, namely the characteristics of the excitation signal and the underlying pro-
cess behavior. Hence, this section proposes several possible input signals (section
3.1) and several dynamic SISO systems (section 3.2). Next, the Spectral Granger
Causality is used to detect the input and output signal for each pair.

3.1 Analyzed Excitation Signals

As excitation signals white noise, a sinusoid, the sawtooth wave, an impulse
train and a time series based on a random walk are used. All signals are shown
in figure 1 in the time domain as well as its power spectrum. For analysis, each
signal consists in summary of N = 1000 samples. The details of the excitation
signals are as follows:

White Noise - A time series that consists of white noise means to have a sequence
of uncorrelated random variables with constant mean p and variance 2. In the
following, the input time series uyn[k] € R is modeled as a stochastic process
with g =0 and ¢2 = 1.

Sinusoid - A sinusoid can be seen as a prototype of a periodic disturbance,
resulting e.g. from poorly tuned PI-controllers. For the input series a sinusoid of
the form ugy [k] = sin(w-k) € R is used with an angular frequency of w = 27-0.1.

Sawtooth Wave - This time series can be interpreted as some sort of a drift
e.g. when sensors are slowly polluting. For the sawtooth wave the input series
Ugw [k] € R is defined as ugy[k] = frac(£ + @) with a period of 7' = 100 and the
phase @ = 0 and frac being the fractional part defined as frac = x — |z].

Impulse train - Having so-called impulse or spike train means that e.g. an inert

gas or fluid injection into a process at a predefined cycle occurs. Therefore, the
N _

input time series ui;[k] € R is defined as wu[k] = Z,fzol d[n — kK] with N|K,

¢ being a Dirac impulse, N € R representing the length of the time series and

K € R the period. In the following the period K is set to 100.

Random Walk - The time series of a random walk is defined as a process where
the value at sample point [k] is composed of the past value [k — 1] plus an error
term defined as white noise. In this paper the random walk is used to investigate
how used methods behave on low-frequent changes in a process e.g. when having
a fluctuation of some concentration in a fluid. Therefore, the input time series
urw k] € R is defined as urw[k] = urw[k — 1] + €[k] where €[k] is a white-noise
sequence with 4 = 0 and o2 = 0.1.
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Fig. 1. Investigated excitation signals in the time domain and their corresponding
power spectra.

3.2 Dynamic systems

Figure 2 shows the selected dynamic systems which are tested in combination
with the prior shown excitation signals. In detail, the systems consist of a dead
time, a low-pass filter, a nonlinearity and finally a resonant second order system.
In detail, the systems are described as follows:

Dead Time - In this benchmark, the excitation signal is shifted by 10 samples. No
dynamic system is added between input and output signal. Hence, this responds
to the most simple case for the detection of directed connectivities from one
signal to another.

Low-pass filter - The low pass filter with the time constant T' = 1s represents
the most basic system for the detection of input and output signal. In process
technology low-pass filter are e.g. fluid tanks or pipes which tend to attenuate
a disturbance and hence making in sometimes complicated to track back the
disturbance propagation path. This benchmark is mainly used to investigate the
behavior regarding the defined input signals in section 3.1.
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Nonlinear system - In this process a sinusoid is taken from the intermediate
output signal y;(t). Depending on the amplitude of the excitation signal, the
sinusoid will have a strong impact on the resulting output signal. The main
purpose is to determine for which input signals the methods can still determine
the input and output signals and their parameters.

Resonant system - This benchmark represents a classic mass-spring-damper sys-
tem. Like for the other systems the time constant is set to T" = 1s, while the
dimensionless damping ratio is set to & = 0.05.

Dead time Nonlinear system

RNy u, = | s P

Low-pass filter Resonance
m 1 Y u 1 Yy
> 1+s 1+0.1s+s2

Fig. 2. Used transfer functions for the validation of the detection of directed influences.

4 Results

For analysis, each dynamic systems wax excited with the different input signals
and the spectral Granger causality was used for the detection of directed influ-
ences from u — y, with results shown in figure 4, and from y — u, where the
results are shown in figure 4. If a directed influence has been found, the corre-
sponding box contains a checkmark, elsewise it contains a cross. In the following
a summary is given by following corresponding to the defined benchmarking
dynamic systems.

Dead time: In that use case, consisting of a simple time shift, for all input
signals, the directed dependencies from u — y are detected and defined as being
significant. Nevertheless, for the input signal g, and uimp a false positive di-
rected influence has been found pointing from y — w. The explanation is straight
forward, since the impulse train as well as the sinusoid are cyclic excitations sig-
nals, hence having only a time shift in the signals, it is not possible to distinguish
input from output signal .
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Dead time Nonlinear System

Your | V|V V|V Y X |V XV
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Low-pass filter Resonance
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Fig. 3. Results of the benchmarks when testing for directed influences Fy—y
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Fig. 4. Results of the benchmarks when testing for directed influences Fy_.

Low-pass filter: Regarding the low pass filter, twn,usin and uimp detect the
correct directed connectivity. The saw tooth and random walk, both having a
similar power spectrum (see figure 1) are not detected. The reason is that the
low-pass filter has to too much attenuation, resulting in an output signal which
has already too much information about itself in past values. Hence, in terms
of Granger Causality, this results in a non-significant information gain for ;..
The only excitation signal leading to a connectivity from y — u is the sinusoid.
Like for the dead time benchmark, the reason is that the sinusoid is cyclic.

Nonlinear system: Adding an additional sinusoid as a non-linearity to the low-
pass filter in the prior benchmark changes the results of the detected directed
influences significantly. uy, does no longer detect the connectivity u — y, while
the upy is detecting it. The two excitation signals ugn and uimp behave like
without non-linearity. Regarding the directed, causal wrong influence y — wu the
excitation signals Uwn,us; and ., detect this influence. Only the ugn and uimp
correctly define the influence as not significant.
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Resonance: Detecting u — y in the spring-mass-damper benchmark is only
possible with Uy, Usin and u,. When having as excitation the signals i, and
ust, spectral Granger Causality assumes that there is neither a directed influence
from v — y nor from y — u. Furthermore, except for u, none of the excitation
signals detect in a wrong causal influence y — u.

5 Summary

The results showed when using spectral Granger Causality, the detection of di-
rected influences in time series depends the excitating signal as well as on the
underlying dynamic system. Regarding the excitation signals, for none of the sig-
nals it was possible to detect for all four dynamic systems the correct directed
influence u — y, while at the same time never detecting a wrong influence y — u.
Hence, when using Granger Causality, detected or not detected directed influ-
ences in data always need to be questioned in terms of the excitation as well as
in terms of the underlying process behavior. Still, this method can be of great
help to generate first a understanding of the influences variables have onto each
other in a data set, since no always, but most of the times Granger Causality
detected the correct dependency.

In terms of the development of benchmarks, there is a variety of future research.
Questions that arise are the impact of noise in the data or how a directed in-
fluence can still be detected if variables having a common cause. Regarding
Granger Causality, it can be evaluated, in which cases it is possible to differ-
enciate between direct and indirect influences, e.g. when using the multivariate
Granger Causality. Additionally, the benchmarks should be used to compare
several methods like Transfer Entropy with its extensions or the estimation of
Directed Transfer Functions.
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Abstract. This paper shows how automation components can be enhanced with
self-monitoring capabilities, which are more effective than traditional rule-based
methods, by using Industrial Analytics approaches. Two application examples
are presented to show how this approach allows the realization of a predictive
maintenance strategy, while drastically reducing the realization effort. Further-
more, the benefits of a flexible architecture combining edge- and cloud-compu-
ting for the realization of such monitoring system are discussed.

Keywords: Industrial Analytics, Predictive Maintenance, Machine Learning,
Edge Computing, Feature Engineering, Self-Monitoring.

1 Motivation and Application Areas

The realization of predictive maintenance strategies in nowadays production facili-
ties is a complex endeavor. Given the rather heterogeneous landscape of typical pro-
duction facilities, where machines at different stages of their life cycle and from differ-
ent vendors are combined for a single production line, this situation is even more chal-
lenging. In many cases, unplanned downtime is caused by components lacking moni-
toring capabilities (e.g., dedicated monitoring sensors), which force plant operators to
increase the maintenance efforts to guaranty a steady operation. One promising way to
drastically reduce the costs of maintenance is the use of Industrial Analytics ap-
proaches. Here, the use of data from the production system combined with machine
learning methods and domain knowledge leads to the realization of monitoring systems
able to automatically detect changes in the behavior of a machine or a component dur-
ing operation or to predict undesirable situations.

There is a need for flexibility in the realization of Industrial Analytics functions to
address the long range of industry applications. For machinery applications, data sets
are generated from control systems operating in real time. The applied algorithms need
to operate with short reaction times to avoid critical failures or to decrease quality prob-
lems resulting on the production of scrap. In these kind of applications, the required
sensor data is rather small and the sensor signals are highly correlated to each other.
Therefore, an implementation of industrial analytics functions using edge devices alone
or in combination with cloud computing brings many advantages, such as short reaction
times and decreasing network traffic.
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This paper shows the use of Industrial Analytics as means of enabling a condition
based- or even a predictive maintenance strategy for simple automation components
lacking dedicated monitoring resources. It is shown in section 2 how a flexible archi-
tecture combining edge and cloud computation enables the realization of such monitor-
ing system. The process to develop an Industrial Analytics solution is then explained in
section 3. Two practical use cases are then presented in section 4, disclosing the poten-
tial of this approach to reduce maintenance costs while increasing its effectiveness.

2 Development process of Industrial Analytics solutions

Industrial analytics functions are typically composed of different tasks, as shown in
Figure . The figure shows the typical workflow of an industrial analytics application,
where data from the different devices are first consolidated in a single data source (data
storage). The next step is to pre-process the data as preparation for the learning process
(preprocessing). In this step, relevant features are extracted from the raw data signals,
involving the combination of statistical methods with domain-knowledge to select
meaningful features.

Figure 1: Typical workflow of an industrial analytics system.

The next step is the selection, training and tuning of machine learning algorithms to
derive a model from the selected features (model learning). Again, the combination of
analytics expertise and domain knowledge is key to develop an efficient model. Once
developed, the model can be used at runtime to monitor the machine or process (model
execution). To be useful the results need to be properly visualized (visualization). The
kind of visualization should be selected according to the role of the person who shall
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use this information, e.g., the machine operator, the maintenance manager, etc. The
integration of an industrial analytics function in an automation system can be done at
different levels, for instance at the machine, or using a cloud platform. These possibil-
ities are explored in the next section.

3 A flexible automation system architecture for Industrial
Analytics

In a typical automation system, the continuous stream of heterogeneous data created
by machines, actuators and sensors can be used as input for industrial analytic applica-
tions such as predictive maintenance. As more and more smart components from the
Internet of Things (IoT) domain enter the production facilities, this flood of data will
grow dramatically and will become increasingly difficult to manage utilizing a central-
ized Cloud-based data collection and processing approach. The concept of Edge Com-
puting has recently been proposed to overcome this limitation by providing a distrib-
uted computing model where data is processed at the "edge" of a network, i.e., near
field devices [SD2016, GJFVR2016].

The core benefit of this approach is to allow for low latency by computing the data
where it is created without incurring network latencies, which is essential for real-time
condition monitoring applications. Another benefit is scalability: while a traditional
centralized approach will no longer be feasible with an increasing number of communi-
cating devices, Edge Computing provides a linear scalability and is needed as augmen-
tation to reduce pressure on network infrastructure. Furthermore, storage and operation
cost can be reduced by processing time-sensitive data locally and significantly reducing
raw data before being sent to the Cloud. This technique can also be used to preserve
privacy by ensuring that sensitive data is pre-processed on-premise so that only privacy-
complaint data is transferred to the Cloud. Following the steps from data acquisition to
analytics processing and to the visualization of meaningful machine information, vari-
ous processing steps at different system components are involved. Figure 1 illustrates
an example of a flexible automation system architecture implementing Industrial Ana-
lytics at Edge-, on-premise- and Cloud levels.

Raw data are acquired by Remote Terminal Units (RTUs) from machines, and pro-
cess-relevant actuators and sensors over a fieldbus, e.g. PROFIBUS, depicted by green
bus connections. An initial pre-processing stage such as filtering can be implemented
on these devices. The signals are then collected by a Programmable Logic Controller
(PLC) and used to control the system. Additional process-independent components like
smart temperature-, vibration- or pressure sensors are typically connected to an Indus-
trial IoT (IIoT) gateway via Bluetooth, WiFi, Ethernet or the emerging 5G
[PLZW2015]. These components play an important role in the process of retrofitting
and enabling Industrial Analytics services on older machines. Monitoring systems for
important control parts that usually don’t offer data interfaces by design (i.e. electro-
mechanical relays or solenoid valves) can ideally be connected to an IloT Gateway. We
present two practical use cases for these systems in the following section of this paper.
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Figure 2: A flexible automation system architecture for Industrial Analytics.

Low latency Edge Analytics functions can be implemented in both, modern PLCs
and IIoT gateways. While the PLC can only monitor the devices connected to it, the
IIoT gateway typically can access the PLC data in addition to the process-independent
component data to generate a larger machine learning model. If necessary, the data
density can be further decreased at the Edge level. In addition to data storage and visu-
alization, more complex analytics functions over multiple machines or devices can be
performed on-premise by an Industrial PC (IPC) or in the Cloud at the cost of higher
latency and increased network traffic. Rich and detailed visualization functions are of-
fered by the Supervisory Control and Data Acquisition (SCADA) or Manufacturing
Execution System (MES).

4 Use Cases

In this section two use cases are presented, which show the benefits of enabling sim-
ple automation devices with self-monitoring capabilities: Monitoring of electrome-
chanical relays and solenoid valves.

Monitoring of Electromechanical Relays
Electromechanical relays are electrically operated switches that use an electromagnet
to mechanically operate a switch to control a circuit by a separate low-power signal.
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They are widely used in industrial areas such as plant construction, mechanical engi-
neering or shipbuilding for switching inductive loads, e.g. for controlling solenoid
valves.
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Figure 3: Cross section of a typical electromechanical relay

A simple electromechanical relay consists of an electromagnetic coil, a movable ar-
mature and contacts. The armature is attached with a spring so that under normal work-
ing conditions it comes back to its original position. If the coil is supplied by the source,
a magnetic field causes to attract the armature towards the electromagnet so that the
normally open contact (NO) and common terminal contact (COM) connect. This state
is shown in Figure 3. When the coil is not supplied by the source, there is no magnetic
flux production and the spring draws the armature to its original position so that the
normally closed contact (NC) and COM connect. The heavy load on the relay contacts
NC and NO that repeatedly occurs while switching inductive DC loads causes prema-
ture failure of the relay. Depending on the application, downtime, equipment damage
or personal injury can result from component failure. For this reason, it is important to
replace damaged relays in time.

In this use case, electromechanical relays were tested for inductive load over their
lifetime to develop Industrial Analytics methods for failure detection. In the experi-
mental setup, relays were tested by switching on and off repeatedly under a high DC
load. An inductive load was connected to the contact side of the relays, causing an arc
between the opening contact surfaces at the moment of switch-off and damaging the
relay contacts. This process was repeated until failure of the relay.

A combination of features based on the electric current flow through the relay coil
in combination with a Kullback-Leibler divergence-based classifier [KL1951] has been
found which allows for a prediction of imminent failure and predictive maintenance. In
this study, only features that can be directly measured in the relay without additional
sensors were considered. Figure 3 shows an example plot of the classification output.
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Figure 4: Example classification output of the relay condition monitoring method

Here, the relays were classified into three categories: healthy (green), damaged (or-
ange) and possible failure (red). With the method presented in this paper it is possible
to detect an imminent failure due to welding of the relay contacts with high accuracy.
In this case, a condition monitoring system can trigger a warning and initiate a predic-
tive maintenance measure before actual damage has occurred. The time remaining in a
concrete use case scenario to respond to the imminent failure depends heavily on the
switching frequency of the relay being monitored. Based on our experiments, the
method presented here allows enough reaction time for applications having high
switching frequencies (10 operations per second) or low switching frequencies (1 op-
eration per hour). For this kind of applications, analytics

Monitoring of solenoid valves

Solenoid valves are among the most important control units in today's industry. Espe-
cially in the process industry, solenoid valves play an important role because they con-
trol the media flow of gases and liquids.

When a current is applied to the magnet winding, the movable magnet armature is
attracted, thus releasing the valve plug from the valve seat (see Figure 5). A medium
can flow. When switching off the current, the return spring ensures the lowering of the
magnet armature and thus the closure of the valve seat by the valve plug. Mechanical
loads on the moving parts and the permanent flow of media cause signs of wear inside
the solenoid valve. Also, the continuous use under difficult operating conditions, such
as high temperatures and vibrating environments, can cause additional wear. Since so-
lenoid valves are often used in safety-critical applications, malfunctions can have cata-
strophic economic consequences and, above all, put in danger human lives. Not only is
wear within a solenoid valve a safety hazard, errors in the signal line (e.g., wire break,
short circuit) to the solenoid valve can also cause failures and thus pose a high risk.
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Figure 5: Schematic of a solenoid valve

To prevent premature wear due to wear, the valve or drain in the solenoid valve and
the signal line to the valve must be monitored. Four error classes dominate the reports
[NRC1987]:

e  Foreign matter in the valve (16%)

e  Burnt coil / short circuit (15%)

e  Worn or defective valve parts (11%)
e Open circuit in coil (9%)

When monitoring solenoid valves, there are two different approaches. The first
approach is a rule based approach. During operation, the load current is monitored by
means of an electronic component. If the current falls below or exceeds the set limits,
the block sends a signal to the controller.
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Figure 6: A significant shift in the curves indicates signs of wear on the valve mechanism
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With this method, events such as wire breakage, short circuit or overvoltage and
undervoltage can be detected and reported. However, changes in the dynamics of the
system inside the defined boundaries are not detected.

The second approach pursues the goal of early detection of valve failure. Here, the
current waveforms of switching cycles are recorded and compared (see Figure 6). This
approach enables device- and application-specific monitoring, because the reference
model is created or parameterized during operation. Deviations to a certain extent may
indicate a near defect and thus initiate the timely replacement of the valve (see Figure
6). As in the previous case, the realization of this monitoring strategy does not require
the use of dedicated sensors, because features extracted from already existing signals
are used. This enables the realization of such strategy also for low cost applications.

5 Summary and Conclusions

This paper has shown the use of Industrial Analytics as means of enabling a predictive
maintenance strategy. It is shown how a flexible architecture for the realization of data-
driven monitoring enables the realization of such monitoring system also for simple
automation devices. This is demonstrated by two practical use cases, disclosing the po-
tential of this approach to reduce maintenance costs while increasing its effectiveness.
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Abstract. In this contribution, we give an insight in our experiences in the
technical and organizational realization of industrial analytics. We address chal-
lenges in implementing industrial analytics in real-world applications and dis-
cuss aspects to consider when designing a machine learning solution for pro-
duction. We focus on technical and organizational aspects to make industrial
analytics work for real-world applications in factory automation. As an exam-
ple, we consider a machine learning use case in the area of industry compres-
sors. We discuss the importance of scalability and reusability of data analytics
pipelines and present a container-based system architecture.

Keywords: Industrial Analytics, Anomaly Detection, Development Process.

1 Introduction

In factory automation maintainers and operators constantly ask themselves if their
assets are operating well or what measures they should take to keep up a good opera-
tion and to avoid unforeseen downtimes. Classical condition monitoring approaches,
such as signal tracing and threshold mechanisms, only apply for a reactive mainte-
nance scenario, where machine operators usually get informed, when it is already too
late to avoid a machine failure. Inspired from recent advance in other areas such as e-
commerce and finance, industrial analytics based on machine learning algorithms is
gaining attention as a mean to get a deeper insight into the current state of machines
or plants. Machine learning is promised to be the key technology to deliver a glimpse
into the future of the machine behavior, predicting if and when components are sup-
posed to fail from a statistical point of view under the current operational conditions.
In the context of factory automation, machine learning is a relatively new topic, such
that the know-how and experience of machinery experts in implementing data analyt-
ics pipelines is still limited. Adapting machine learning in the field of factory automa-
tion requires not only a sound understanding of the underlying mechanisms of the
various algorithms, but also software engineering skills to implement suitable data
analytics pipelines for the target machine. Working examples of machine learning
implementations at a production level are still rare [1].

This paper gives an overview of the experiences we have gained in creating indus-
trial analytics solutions in the area of machinery and factory automation. The focus of
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this paper is more on the challenges in implementing these solutions. Section 2 gives
a high-level overview over the functionality of the industrial analytics pipeline, which
was considered in the implementations. This pipeline describes the data flow starting
from the raw data created by the target machine to the visualization of the analytics
results. Section 3 covers the main scope of this contribution by highlighting the chal-
lenges, which are a) design considerations to allow for scalability of the solution, b)
our underlying process from the first idea of the solution to the final production-ready
software, and c) a continuous integration (CI) and continuous delivery (CD) pipeline
for automatically building the software solution. In Section 4 we give an overview
over an example application, which we have implemented the industrial analytics
solution for.

2 Overview of the Industrial Analytics Pipeline

The core concept of the analytics pipeline is present in Fig. 1. Collecting machine
data is highly use case dependent and requires to be tailored according to the given
data sources and accessibilities of the target machine. To simplify the data processing
of the following analytics steps the raw data requires being collected and stored cen-
tralized if the target architecture allows. Having a single data source for further data
operations of the pipeline, such as a centralized data base, greatly simplifies the data
handling.

Preprocessing of the data is a key step to filter out data that has little or even no
impact on the modeling success and to create relevant features that represent the actu-
al state of the target machine. As described in the context of data dependencies in [2]
the quality of the result of an analytics model greatly depends on the given input fea-
tures. Besides statistical and data centric approaches, we consider domain knowledge
provided by the machine user in the creation of features. Thus we combine expert
know-how from the industry application domain and from the data science domain.

User |A Expert Team

Data Acquisition Preprocessing Model Execution Visualisation

Model Learning

Fig. 1 Industrial Analytics Pipeline
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The selected features are used in the two branches model learning and model exe-
cution. The selection of the underlying machine learning algorithm highly depends on
the target application. Once a model is created it can be used in the model execution
branch to compute analytics results. These can be numerical indicators for anomaly
detection or contextual information reflecting the current state of the machine. For the
scenario of predictive maintenance the output of the model can be e.g. the likelihood
of a failure in a given future time interval. This information is finally visualized to
support the user in taking decisions for optimizing the efficiency of the machine and
for avoiding unplanned down-times.

3 Challenges in implementing Industrial Analytics

In the context of machinery and factory automation industrial analytics is a relatively
new topic, where experiences in the technical and organization realization are still
rare. In this section we provide an insight into our experiences in implementing indus-
trial analytics in real world applications and discuss aspects to consider when design-
ing a machine learning solution for production.

3.1  Scalability and reusability of data analytics pipelines

In contrast to classical big data application such as natural language processing or
image classification, machinery applications typically suffer from little amount of
historic data. On the one hand automation technology for collecting machine data at
high sampling rates needed for machine learning applications was hardly available.
On the other hand there was simply no need to store large amounts of machine data
for the given automation application. With the growing awareness of the value of
historic data, machine builders and operators start to implement more and more sensor
technology to improve the data quality. Thus the amount of data generated by ma-
chines will increase in the future as the cost for implementing sensor and storage
technology decrease. However, in the current machinery applications, data sets tend
to be in the Mega-Byte to Giga-Byte range, allowing for applying small data pro-
cessing architectures, which should be prepared for scalability to allow for processing
larger data sets in the future. To achieve that, we designed a container-based architec-
ture, where the key functions such as the analytics pipeline, frontend user interface,
etc. are implemented in separate software containers as shown in Fig. 2.
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Fig. 2 Container-based Industrial Analytics Architecture

The fronted user interface holds different functionality, which is described in the
following: Status monitoring is used to track the state of the analytics pipeline and to
inform the user about abnormal behavior. The analytics architecture is designed to
handle different users and to provide authentication and user grouping functionalities.
Analytics functions, such as model scoring or model learning can be executed in dif-
ferent time intervals, which can be configured in a scheduler. The user can select
different models out of the ones given in the model data base and configure and tune
the models according to the target machine. The plot creation container is used to
generate user-defined plots based on the resulting analytics data.

The machine data is collected and stored in a corresponding data base, which is
used as source for the data analytics pipeline container. Besides the machine data the
architecture additionally comprises a model data base, where different machine learn-
ing models with its pre-processing pipelines are stored.

In a typical flow of the analytics functionality the scheduler triggers the execution
of the analytics pipeline, which loads the selected model from the database and ap-
plies the model to the specified input machine data. For model scoring the resulting
data are written to the analytics result data base, which holds the data for result visual-
ization. For a model learning scenario, the result of the analytics pipeline is a new or
updated machine model, which is stored in the model data base, and which can be
used for scoring in the future.

The architecture is designed for horizontal scalability and platform independence.
Instead of using a single analytics pipeline, the architecture allows for running several
analytics pipelines at the same time, which can be used to speed up the execution, or
to run different models concurrently. Its container-based implementation allows the
architecture to be deployed locally on a single PC (with reasonable amount of availa-
ble resources) as well as on virtual environments in the cloud.
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3.2 Process from idea to production

The industrial analytics solution touches various fields, such as data engineering,
machine learning, Ul design and systems engineering. Covering the variety of these
topics requires an interdisciplinary development team. Typical roles are:

e Application Engineer: They cover the domain knowledge required to get a
deep understanding of the target machine application.

e Data Scientist: The data scientist is developing the analytics pipeline from an
algorithmic point of view. This involves the feature preparation and selec-
tion, as well as the algorithm selection and tuning.

e System Architect: System architects are required to help in defining a layout
of the system architecture best suited for the target analytics application.

e Full-Stack SW-Developer: The SW developer implements the selected ana-
lytics pipeline to the target system architecture, which can e.g. be an IPC on
machine level up to a cloud or hybrid solution.

e UX/Ul-Designer: The user interface requires being designed for ease of use
providing analytics result information at the right level of detail prepared for
the target user group. The UX/UI designer creates the expected Ul features
and designers the

All project management related tasks are realized by a corresponding project manag-
er. As shown in Fig. 3, we follow a development process, which is inspired by the
CRISP-DM process [3]. We tailored the process to meet the special requirements of
industrial analytics. Starting from the target definition of the machine learning appli-
cation, we investigate the quality and quantity of data of the given application and
prepare suitable analytics models in the proof of concept phase. In the pilot phase, the
model is implemented on the target platform and in the final development phase the
missing software features, such as Ul functionality and interoperability features are
finalized.

T?‘Q?‘ Data Exploration Proof of Concept Pilot Development for Production
Definition

Fig. 3 Development process for data analytics solutions

3.3 CI/CD Pipeline

The development of the proposed container-based analytics solution is realized by a
development team consisting of data scientist, data engineers and application engi-
neers. One of the key challenges is to maintain team efficiency in such an interdisci-
plinary team. A challenge in the development process of an industrial analytics appli-
cation is the implementation effort for migrating the selected machine learning model
from the proof of concept phase to the final software solution in a production envi-
ronment. A means to reduce this effort is to automate the software build process by
continuous integration and continuous delivery (CI/CD). We have implemented a
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CI/CD pipeline for the industrial analytics solution and were able to significantly
reduce the development effort.

4 Practical Example

To discuss these aspects on a practical example, we consider a real-world machine
learning use case in the area of industry compressors. There, we used machine learn-
ing algorithms to automatically learn the sensor data distributions of a normal behav-
ing compressor. Consecutively, our models detect deviations from these data distribu-
tions and label them as specific anomalies. These anomalies are then predicted by an
additional machine learning model to forecast component failures and to prevent un-
foreseen downtimes.

5 Summary

In this contribution, we focus on technical and organizational aspects to make indus-
trial analytics work for real-world applications in factory automation. As an example,
we consider a machine learning use case in the area of industry compressors. We
discuss the importance of scalability and reusability of data analytics pipelines and
present a container-based system architecture. Furthermore, we share the experience
of our development process to bring industrial analytics solutions from idea to pro-
duction. Based on that process, we present a suitable CI/CD pipeline, which supports
our development team to easily bring a machine learning model from the proof of
concept phase to production.
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Abstract. Cyber Physical Production Systems (CPPS) provide a huge amount
and variety of process and production data. Simultaneously, operational decisions
are getting ever more complex due to smaller batch sizes (down to batch size
one), a larger product variety and complex processes in production systems. Pro-
duction engineers struggle to utilize the recorded data to optimize production
processes effectively.

In contrast, CPPS promote decentralized decision-making, so-called intelligent
agents that are able to gather data (via sensors), process these data, possibly in
combination with other information via a connection to and exchange with oth-
ers, and finally take decisions into action (via actors). Modular and decentralized
decision-making systems are thereby able to handle far more complex systems
than rigid and static architectures.

This paper discusses possible applications of Machine Learning (ML) algo-
rithms, in particular Reinforcement Learning (RL), and the potentials towards an
production planning and control aiming for operational excellence.

Keywords: Production planning and control; Order dispatching; Maintenance
management; Artificial intelligence; Reinforcement Learning.

1 Introduction

The productivity of manufacturing systems and thus their economic efficiency depends
on the performance of production control mechanisms. Because of an increasing global
competition and high customer demands, the optimal use of existing resources is ever
more important. Optimizing production control is hence a central issue in the manufac-
turing industry.

Companies are additionally facing complex manufacturing processes due to high
product diversity, lot size reduction and high quality requirements. In the herein con-
sidered real-world example of the semiconductor industry, complexity arises through a
high number of manufacturing processes and their precision on a nanometer level [1].
Planning and coordinating processes is a challenging task and requires appropriate con-
trol methods and decision support systems.
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Moreover, production control has to deal with a dynamic and non-deterministic system
inside a volatile environment and thus has to handle uncertainty and unexpected inci-
dents [2]. Currently, production planning and control systems such as mathematical
programming, heuristics and rule-based approaches are highly centralized and mono-
lithic and not able to meet these needs [3]. Therefore, the dynamic characteristics of
production systems are poorly met.

Through the integration of manufacturing components, enhanced process monitor-
ing and data collection, Cyber Physical Production Systems (CPPS) provide real-time
data such as order tracking, machine breaks and inventory levels. This makes it possible
to apply data-driven techniques, such as Machine Learning (ML) algorithms. Addition-
ally, these are able to adjust to the current system state by analyzing the available data
in real-time. This paper shows the successful implementation of a decentral production
control system that is based on ML algorithms. The system focuses on the following
two use cases: order dispatching and maintenance management. As performance bench-
mark an existing rule-based heuristic is considered. The real-world use case is taken
from a semiconductor manufacturing company that is regarded as a highly suitable ex-
ample of a cyber physical and digitized production system.

2 Fundamentals and literature review

2.1 Requirements within the semiconductor industry

The semiconductor manufacturing is classically divided into two parts: the front-end,
before splitting the wafers, and the subsequent back-end. The front-end comprises all
processing steps before cutting the silicon wafer. It consists of several thousand indi-
vidual processes and lasts between 11 and 20 weeks. Generally, semiconductor manu-
facturing is considered as one of the most complex manufacturing processes in discrete
manufacturing [4]. Between the actual manufacturing processes, control and cleaning
processes are required repeatedly. Many of these processes are also performed several
times on a wafer so that in general the entire process is not linear. Certain processes are
recurrent to build up layers in and on the silicon wafer. Moreover, there are time re-
strictions between process steps as wafers contaminate quickly when not processed fur-
ther [1].

2.2 Order dispatching and maintenance management

The assignment of orders to machines for processing is addressed in the so-called order
dispatching. Dispatching is an optimization problem that aims to assign orders to re-
sources and hence determines the sequence and schedule of orders. It directly influ-
ences the objectives utilization, throughput time (TPT) and work-in-process (WIP).

Next to an optimal order assignment, the robustness of each resource of the system
to failures is crucial and has a high influence on these objectives. Therefore, the goal of
maintenance management is to maintain availability at minimal cost. Reactive mainte-
nance, i.e. repairs, is balanced with inspection and preventive maintenance measures
with the goal to achieve the highest possible uptime of the resources.
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Given the challenges of wafer fabrication, order dispatching and maintenance man-
agement becomes crucial. Based on real-time process and product data the dispatching
and maintenance decisions can be enhanced by ML algorithms in order to optimally
match the current manufacturing situation and objectives.

2.3 ML in production planning and control

ML refers to a subsection of artificial intelligence. Many other disciplines of artificial
intelligence, such as the processing of natural language or robotics, whose intelligent
behavior presupposes a broad knowledge base, are based on this.

There are various industrial applications where ML algorithms are applied with
promising results [5]: In [6] an ML algorithm is implemented to control the process
parameter power in a laser welding process. The experimental results for a particular
setup show that the algorithm generates stable solutions and is suitable for a real-time
and dynamic control mechanism. In the context of production control, other authors
investigated the usage of ML for order scheduling. The scheduling approaches differ in
their overall architecture. The system proposed in [2] and [3], for example, focuses on
a highly distributed form, where each resource and each order are considered as intel-
ligent agents. In this kind of architecture resources bid for the allocation of an order
depending on the estimated processing cost when being selected. To reduce computa-
tional complexity a ML-based solution is presented to estimate the benefit of allocating
a job to a specific resource. The implemented ML algorithm uses a table representation
in a single objective problem. The work of [7] applies Q-learning to a single-machine
scheduling problem and a layout with a few process steps. The order scheduling at each
machine and the order release are performed by ML-based agents.

These examples demonstrate the wide range and successful application of ML algo-
rithms in the domain of production engineering. Based on this research the broader
application of ML in production planning and control is considered in this paper.

3 Application of reinforcement learning in CPPS

Reinforcement Learning (RL) as one subcategory of ML algorithms addresses the ques-
tion of how an autonomous, intelligent program (from hereon also named agent) ob-
serves and acts in its environment, learning to choose optimal actions in order to achieve
a certain goal defined in the beginning. For this, every action of the agent in the envi-
ronment is rewarded or punished via a scalar number that indicates the desirability of
the action, with respect to the overall objectives. The goal of the agent is to maximize
this positive feedback [8]. Thereby, the agent explores its environment and learns the
optimal connection between the input signal, i.e. the current state of the system, and the
action without having to rely on any previous training [9].
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3.1  Agent definition

Agents are an essential concept of not only RL but intelligent computing and distributed
system design in general [5]. On a functional level, an agent is a computational system
that (i) interacts with a dynamic environment, (ii) is able to perform autonomous actions
and (iii) acts with regard to a specific objective [5]. To achieve this behavior an agent
architecture that has three key components is proposed [10]: For the interaction with its
environment the agent needs sensors to perceive relevant aspects of its surrounding and
actuators to execute actions. To generate objective-driven actions, a third component,
the so-called agent function is required. These characteristics are in line with the general
characteristics of CPPS.

In this model, the agent function is the key component for defining the agent’s be-
havior. It determines how the perceived information is processed to decide on actions
that lead to a “good” performance with regard to the overall objectives. At the same
time, it needs to compromise the agent’s experiences. This is crucial to learn the con-
sequences of the agent’s decisions. Eventually, the agent function represents a learned
model of the environment. The system can consist of several agents with overlapping
environments. In that case it is called a multi-agent system [3].

3.2  Reinforcement Learning algorithm

RL applies the ideas of a learning agent-based approach to optimization problems. Be-
cause the learning capability is based on repeated interaction with the environment it is
often referred to as “trial and error” learning [11]. Despite the existence of many dif-
ferent RL algorithms that vary in the concrete realization of the learning functionality,
they follow the same steps in the agent-environment interaction shown in Fig. 1.
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1
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Fig. 1. Agent-environment interaction, derived from [11]

The agent perceives the actual state of the environment as a vector S;. In order to
decide on an action 4, the information is processed in the agent function that stores the
current policy . (a|s) = P(A; = a |S; = s). After the action is performed in the en-
vironment the agent perceives the new state S;+; and a reward signal R;+; Note that the
environmental transformation is closely linked to the concepts of Markov Decision Pro-
cesses (MDP). According to the received feedback, the agent adapts its policy. [11]

These steps are repeated in an iterative procedure. As a result, the agent optimizes
its behavior in a way to find a policy m maximizing the long-term reward — and therefore
a policy that corresponds best to the agent’s objectives. [11]

Finding an optimal policy is a iterative process. In each iteration, the current policy
m, is adapted depending on the latest experiences. There are two main techniques to
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determine the new policy: (i) value-based and (ii) policy-based approaches. The main
difference between both approaches is that value approximation learns the action-value
function during the interaction instead of directly learning a policy 7. The value func-
tion gn(s,a) defines the expected long-term return when choosing an action « in state s
following policy 7. The policy is then derived from the estimated value of all possible
actions in each state. Policy approximation, on the other hand, directly updates the pol-
icy function m, = m.(als) .

Most real-world problems deal with continuous action and state spaces. Storing and
updating the policy or value function in a table is therefore computationally inefficient
and requires lots of memory space. One possibility is to store the original policy or
value function approximatively. Artificial neural networks are widely used for that pur-
pose, as they are capable of approximating complex functional relationships via multi-
ple weights connecting the neurons within the network and allow the adaption of those
weights dynamically during the learning process [11]. As a result, neural networks re-
duce the computational effort by updating a set of weight parameters instead of the
values for each state-action pair in each iteration. A dense fully connected feed-forward
network is considered in this paper.

Depending on the dimension and the characteristics of the problem, different learn-
ing approaches lead to good results. In recent years, new kinds of RL algorithms such
as PPO [12], TRPO [13] and DQN [14] were developed to deal with complex problems
in different domains. They can be regarded as advanced policy or value approximation
algorithms that are optimized with regard to an efficient and stable learning process.
The results of this paper are based on these RL algorithms.

4 Case study and experiment results

4.1 Case study setup and description

The considered production system is the production area for wafer implantation. The
layout of the production area is illustrated in Fig 2. It consists of three sections with in
total eight machines and one entrance and exit lift per section. Regardless of the sec-
tions, the machines are grouped according to the principle of job shop production,
which can perform the same processing steps. Processing begins with incoming orders
at the lifts and the distribution to the respective, pre-defined machines and ends after
the order has been processed on the machine and is transported back to the lift. When
unloading orders from the lift, access to the first element is always possible. One worker
does the transportation between the resources manually. The worker receives the infor-
mation which order to transport from a central control system. Intermediate storage
does not exist, however the machines have a limited buffer in which order batches can
be stored before and after processing. The unprocessed batches in the input buffer are
automatically fed by the machine according to the FIFO principle and, after complete
processing, automatically put into the output buffer.

For this real-world system, a virtual simulation model has been implemented to de-
rive the computational results and evaluate the performance of the RL algorithm. Both,
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the simulation model and the RL algorithm, are implemented in Python to be able to
implement the bidirectional interaction of the RL agent with the production system.

=
=1

Fig. 2. Layout of production area.

4.2  Intelligent order dispatching

Due to multiple stochastic influences, such as volatile processing times, changing prod-
uct variants, dysfunctional manufacturing resources and the limited number of trans-
portation resources (just one worker), the system demands a highly flexible order dis-
patching system. So, the RL-based agent, that decides which order to dispatch next,
needs to consider the state of the CPPS in real-time, e.g. the location of all unprocessed
and processed batches, tool state information and remaining processing time.

However, it considers just the information that is relevant for the optimal behavior.
Just the following state information is taken into account: First, the location of the
worker. Second, for each machine one variable for the machine’s current availability
and the buffer filling state to indicate whether an action ending at a specific machine is
possible or not. A second variable based on the existence of a processed order in the
machine buffer indicating whether an action starting at a specific machine is possible
or not. Two variables for the sum of processing times of unprocessed orders and waiting
times of processed orders at each machine. Third, for each entered order one variable
for the longest waiting order. A second variable indicates on which machine the longest
waiting order has to be processed.

There are three types of possible actions for the agent. Standing at a certain location
(machine or lift), the agent can either dispatch an unprocessed order to one out of the
eight machines, bring a processed order back to a lift or change its location by moving
empty-handed. Additionally, there is the possibility to wait in case there is no order to
be dispatched. Moreover, it might be beneficial to wait voluntarily knowing that a batch
is available at this location soon.

Objective-driven actions require a feedback from the environment to the agent. This
feedback has to be a numeric signal that is transferred to the agent after each action. In
this use case a reward of zero is given when the agent decides on an action that cannot
be executed by the worker, for example due to machine failure or a buffer overflow. A
low value indicates that the agent should avoid such kind of actions, whereas a high
value makes the agent behave similarly in the future.
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It can be shown that the RL algorithm improves its performance over time, proving
that it can be applied as flexible order dispatching control that continuously learns the
optimal behavior. Fig. 3 shows the development of the reward signal starting from the
initial state where the agent’s behavior is completely random. The agent successfully
learns a high performance behavior, however not losing the desired flexible behavior.
The reward fluctuation points out that the agent is adaptive enough to react to changing
conditions of the production system (e.g. disturbances, demand fluctuations). The
benchmark FIFO-heuristic approach is based on a set of if-then-rules, e.g. “take the
longest waiting batch next” and “first dispatch all batches in one area and move to an-
other area afterwards” (to minimize time consuming area changes). According to Fig.
3 the RL-based algorithm yields a superior performance behavior. After the first itera-
tions the utilization drops to a bottom value. In the end, an overall machine utilization
of above 90% is achieved, comparing to a utilization of far below 90% for the heuristic.
The same applies for the TPT. Moreover, the heuristic results show an almost stable
performance that is not able to adapt to changing conditions. [15]
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Fig. 3. Reward signal (left), utilization (middle) and throughput time (right); moving average
values for 1000 iterations

4.3 Intelligent maintenance management

The aim of the maintenance approach presented in this paper is to predict machine fail-
ures and based on this prediction perform the most appropriate maintenance action at
the optimal time, which is characterized by a low load of incoming orders, i.e. when
the opportunity cost of maintenance are low.

The above presented use case is abstracted and considered as a system that consists
of a set of parallel machines, each with a buffer, which receives the orders according to
the dispatching. A machine then processes the available orders. The state of each ma-
chine is monitored and the state directly affects the performance of the machine, e.g.
the operating speed is linked to the achieved output and in case of a failure the machine
might only run at a low speed. Initially, the machines operate in a normal mode, where
the performance is on the highest level. Each machine fails stochastically. If a critical,
failure-initiating value is exceeded, a malfunction begins that ends with the failure after
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a certain period. If a machine breaks, a maintenance engineer who is responsible for all
machines repairs it and afterwards the machine is back in the desired mode.

In this use case the intelligent maintenance agent is responsible for the decision when
and which maintenance action to take. The goal is to reduce the opportunistic mainte-
nance cost, i.e. the optimal action considering the current system load of incoming or-
ders, the cost of the action and the cost of a machine breakdown.

Fig. 4 illustrates the remaining time to failure of a critical state machine at the time
the agent performs the action over the learning phase iterations. The agent learns to
follow a strategy that brings the action closer to the failure. Additionally, the results
proves that the algorithm is able to implicitly learn the prediction and, based on this,
perform a suitable preventive action.

Fig. 4 also proves that conducting maintenance as late as possible is able to increase
the overall output of the system and comes at lower total cost, since fewer maintenance
actions are carried out. The results are compared to two benchmarks: a reactive and a
time-base maintenance strategy. The numbers do not take into account the further ex-
ploited wear rate of the machine components at the latest possible maintenance time,
which is why the actual value tends to be underestimated.

3000 Intelligent Reactive Time-based
mainte- mainte- mainte-
% 2500 nance nance nance
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Fig. 4. Remaining time to failure (left, moving average values for 1000 iterations) and cost
comparison with benchmark maintenance strategies (right, average values of 40 runs)

5 Conclusion, discussion and outlook

This research has shown that CPPS providing real-time data pave the way for the ap-
plication of data-driven algorithms to enhance the operational efficiency of production
planning and control. RL algorithms are successfully implemented for order dispatch-
ing and maintenance management outperforming existing rule-based approaches.

However, ML algorithms are not favorable for all industrial applications. The fol-
lowing properties are advantageous: (i) applications with a limited scope in terms of
the number of states and actions (the learning period is dependent on these dimensions),
(ii) responsive real-time decision systems (computing the output of a ML algorithm
requires just linear operations), (iii) “cheap” training data (the trial-and-error approach
is intensively data-driven) and (iv) complex environments that can hardly be described
in detail (ability to generalize) [15].
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This work brings the application of ML algorithms and the transition towards auton-
omous production systems one step closer to reality. However, the limitations of ML
algorithms and RL in particular still prevail, e.g. in terms of solution robustness. Further
research in the area of designing RL algorithms is needed to achieve a broad application
also in other areas of production control such as employee allocation and capacity con-
trol. Furthermore, research on multi-agent systems is required to broaden the scope of
applications.
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Water distribution systems (WDSs) are large complex infrastructures made from
pipes, valves, pumps, tanks and other elements designed and erected to transport water
of sufficient quality from water sources to consumers. The amount of the above ele-
ments, which can reach up to tens of thousands of links and junctions, their frequently
wide spatial dispersion and the WDS characteristic of being very dynamic structures
make the management of real WDSs a complex problem [1-4]. However, although the
main objective is to supply water in the quantity and quality required, other require-
ments are essential, namely maintaining conditions far from failure scenarios [5,6],
ability to quickly detect sources of contamination intrusion [7,8], minimization of leaks
[9-10], etc.

Advances in low powered sensors and data transmission are making their way on the
creation of smarter water networks. Despite prices are getting attractive, the return on
investment is far from being clear for many water company managers in the water dis-
tribution industry. To be prepared to arouse in these managers a real interest in the need
for the implementation of an adequate lattice of sensors in their water distribution net-
works, and to provide them with convincing arguments for their rapid implementation
three important questions should be first answered that should be clearly perceived as
main support elements in ad hoc decision-making: firstly, how many sensors are
needed; secondly, where sensors should be located in order to get the most out of them,;
and, finally, what to do with the measurements in terms of improving operation and
customer services. This contribution addresses the third of these questions without for-
getting the other two and present a pilot project at early stage.

There are three aspects crucially important for water utilities and where the correct
use of measurements makes the difference on what the company can achieve: reduction
of non-revenue water, network operation optimization and provisioning of a quality
service. This contribution presents the development of a platform for Smarter Water
Network Operation and Management specifically aimed to support the three mentioned
aspects. It uses a water network analysis engine to estimate the state of the water net-
work based on measurements taken from the field combined with a mathematical model
of the water distribution network. The estimation of the network state is done starting
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from the current moment of the analysis and looking 24 hours ahead. This makes pos-
sible to optimize the operation of pumps for the next 24 hours considering the price of
energy, the expected demands and the available tank capacity in the network. The op-
eration decision of pumps is corrected every hour and can be directly transmitted to the
pump station or introduced there by an operator depending on the technology available.

A sensible element in the mathematic modelling of water networks is the estimation
of demands. Sub-estimating demands when optimizing the operation of the network
can result on a lower quality of the service. Overestimating the demand would result on
over costs. The platform developed includes the possibility to receive the consumption
measurements directly from water meters installed at the client side or at different in-
terest points of the network. This way, demand values and forecasting algorithms will
be periodically getting updated based on the information received. Measuring demand
will help in this case not only to improve the results of the operation optimization but
also to create a water balance between the water volume supplied and consumed in the
network. Water balance is the first analytic step to start estimating non-revenue water
in a distribution system. Running water balances for subregions or sectors of the net-
work can help to locate zones with a higher leak impact. Identifying these zones and
eliminating their leaks will improve the levels of non-revenue water at utilities. The
effect of leaks and as consequence the non-revenue water volume can be also improved
by managing properly the pressure of the network based on a robust mathematical
model of the distribution system. Additionally, consumption measurements will also
help to achieve a better quality in the service: the platform checks the plausibility of
consumption and inform both the utility and the client about potential leaks at the client
side. Discovering leaks at the client side will avoid the surprise of receiving an expen-
sive invoice with a high consumption due to undetected leaks.

The development of the platform described here is the result of a collaboration be-
tween the group Fluing of the Polytechnic University of Valencia, Aguas Bixquert S.L.
and Ingeniousware GmbH. This collaboration has resulted in a pilot project developed
at a water distribution system managed by the company Aguas Bixquert S.L. For in-
strumenting the water network, it was considered convenient to use high energy-effi-
cient sensor nodes, preferable battery based and able to communicate across long dis-
tance. These characteristics motivated the use of Low-Power Wide Area Networks
(LPWAN) [11] technologies for supporting measurements in the pilot project. A Lo-
raWan [11] antenna was installed at a high point of the zone and it redirects all meas-
urement data to the servers of Ingeniousware where the platform for smarter water net-
work is running. About 30 water meters transmitting consumption via LoraWan has
been already installed at different part of the network. Installation directly at clients will
happen in the next phase of the project. A first version of the mathematic model of the
water network has been developed and can be visualized directly from the platform.
Consumption at all water meters installed can also be visualized as well as transmission
statistics. Installed water meters has a temperature sensor integrated and transmit also
the temperature value at the installation point. Temperature is a factor that improve
significantly the estimation of the water consumption in the network.

The coverage of the data transmission, its stability and the accuracy of the received
consumption measurements compared to manual reading of the water meter has been
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evaluated. A water meter test bank has been created for these purposes. The most im-
portant conclusion of our evaluation is that certification authorities should include an
additional error produced at water meters when converting the mechanical movement
of the device into a digital signal. Differences from up to 18% where obtained when
comparing transmitted values with values read directly from the water meter. It makes
think about the necessity of extending the certification of metering devices that consider
the maximum error they can have depending on the existing flow. This certification
that defines the class of the device and the range of flow where it may work should also
consider the potential errors happening when converting the mechanical movement of
the water meter into a digital signal. Note that all water meter installed until now in the
pilot project are mechanical. A different situation may happen in the case of water mater
based on different measurement technology like the ultrasonic but it is still to be tested.
At the current stage of the project water meters from only one company has been tested
and it is expected to include at least two additional water meters providers for compar-
ison purposes.
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