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Preface

Macrophages are an essential player of the immune system and have been 
extensively studied and written about. Many aspects of macrophage biology 
have been discussed in recent works; however, the field is evolving at such a 
rapid pace that keeping up with the latest information is a challenging task. The 
current book is therefore intended to provide the reader with an account of the 
latest knowledge and developments in the field of macrophage biology. Ever 
since their discovery by lya Ilyich Mechnikov in 1882, these cells have intrigued 
the scientific community and provided fascinating insights in understanding 
general immunobiology as well as presented efficient therapeutic targets to 
translational research scientists. Macrophages represent an efficient homeostatic 
and protective system that evolved early in the evolution process. As a first line 
of defence they not only provide protection from pathogens but also play a role 
in the development and regulation of the immune system. They process and 
present the antigenic determinants to adaptive immune system to initiate a long-
lasting memory against the encountered insult. In addition to this, macrophages 
possess a memory of their own which, though short lived, is included in their 
genetic makeup.

Macrophages are heterogenous in their function as well as phenotypes. Although 
they are endowed with a repertoire of receptors and efficient metabolic machin-
ery, in response to environmental cues, macrophages adjust their expression 
patterns to efficiently clear the pathogenic microbes and dead materials as well 
as remodel the tissues to initiate the regeneration process. The phenomenon has 
been termed macrophage plasticity and is discussed in a few chapters in differ-
ent contexts. Macrophage plasticity has been associated with many pathologi-
cal conditions and is therefore an attractive target for drug development and 
therapeutic interventions. Macrophages play a critical role in development and 
dissemination of cancer. On one hand, they provide a suitable environment for 
angiogenesis and development of tumours and on the other hand they help in 
the dissemination of the cancerous cells to healthy parts of the body. Given our 
current knowledge about the macrophages associated with various pathologi-
cal conditions like tumours, infectious diseases, autoimmune and metabolic 
disorders, we can develop efficient therapeutic interventions targeting macro-
phage activation and polarization. In addition to conventional pharmacological 
approaches, many traditional approaches like Chinese medicine are being used 
to modulate the macrophage plasticity for a favourable outcome. Some remark-
ably promising results have been reported, few of which have been discussed in 
this book.

This book covers a broad array of topics from reputed biologists from different 
parts of the World and from varied fields of research. Emphasis has been given to 
the current developments in the field and an in-depth analysis has been provided 
for each topic discussed. The scope of the topics covered encompass the basic as well 
as applied areas of macrophage research.
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Chapter 1

Macrophages: The Potent
Immunoregulatory Innate
Immune Cells
Vijay Kumar

Abstract

Macrophages are ubiquitously present innate immune cells in humans and ani-
mals belonging to both invertebrates and vertebrates. These cells were first recog-
nized by Elia Metchnikoff in 1882 in the larvae of starfish upon insertion of thorns
of tangerine tree and later in Daphnia magna or common water flea infected with
fungal spores as cells responsible for the process of phagocytosis of foreign particles.
Elia Metchnikoff received the Noble prize (Physiology and Medicine) for his
discovery and describing the process of phagocytosis in 1908. More than 130 years
have passed and different subtypes and roles of macrophages as innate immune
cells have been established by the researchers. In addition to their immunoregula-
tory role in immune homeostasis and pathogenic infection, they also play a crucial
role in the pathogenesis of sterile inflammatory conditions including autoimmunity,
obesity, and cancer. The present chapter describes the immunoregulatory role
of macrophages in the homeostasis and inflammatory diseases varying from
autoimmunity to metabolic diseases including obesity.

Keywords: macrophages, monocytes, innate immunity, inflammation, cytokines,
pathogens

1. Introduction

The innate immune system evolved to protect the host from invading foreign
pathogens, allergens, and different xenobiotics. The system comprises of both its
cellular and humoral (circulating complement proteins, defensins, certain cytokines
and chemokines secreted by innate immune cells) components. The innate immune
cells comprise of epithelial cells, endothelial cells (ECs), the granulocytes (i.e.
neutrophils, basophils, eosinophils, and mast cells (MCs), monocytes, macro-
phages, natural killer (NK) cells, dendritic cells (DCs), invariant NKT cells (iNKT
cells), γδT cells, and newly described innate immune T cells called mucosal invari-
ant T cells (MAIT) cells and innate lymphoid cells (ILCs) [1–9] (Figure 1). These
innate immune cells are crucial to maintain the immune homeostasis and regulate
adaptive immune system via acting as antigen presenting cells (APCs) along with
providing other signaling molecules/factors required in the effective adaptive
immune response in response to infection or other sterile chronic inflammatory
diseases including, allergy, autoimmunity, cancer, and metabolic diseases including
type 1 diabetes mellitus (T1DM), and obesity etc.
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Macrophages are type of innate immune cells that were first described by Elia
Metchnikoff in 1882 in larvae of starfish upon the insertion of thorns of tangerine
tree and later on in Daphnia magna or common water flea infected with fungal
spores as cells responsible for the process of phagocytosis of foreign particles. Elia
Metchnikoff received the Noble prize (Physiology and Medicine) for this discovery
in the year 1908. Thus macrophages are first innate immune cells described almost
130 years ago. The continuous development in the field of immunology has
established their role in various immunological and non-immunological processes
including embryonic development. Along with acting as potential phagocytic cells
involved in the phagocytosis of pathogens, xenobiotics, these cells also secrete
various cytokines, chemokines, and growth factors including TNF-α, TGF-β,
platelet-derived growth factor (PDGF), endothelial growth factor (EGF), and vas-
cular endothelial growth factor (VEGF) [10–12]. Thus macrophages are very potent
innate immune cells with diverse functions. The present chapter is intended to
describe the immunoregulatory role of macrophages in the maintenance of immune
homeostasis in the normal and disease stage.

2. Development of macrophages

Macrophages are the cells of the mononuclear phagocyte system (MPS) that was
previously considered as reticuloendothelial system (RES), a system associated with
the clearance and phagocytosis of dead cells [13]. They were included in the RES in
1924 to show their origin, residency, and renewal within RES. The RES was
renamed to the MPS system in 1968 by Ralf van Furth, Zanvil Cohn and colleagues
to distinguish them from polymorphonuclear leukocytes (PMNLs) or neutrophils
and to show that all macrophages originate via terminal differentiation blood
monocytes into different macrophages including pulmonary macrophages, liver
macrophages (or Kupffer cells), and peritoneal macrophages etc. [14, 15]. The MPS
comprises of monocytes, macrophages, and DCs involved in the maintenance of
tissue and organismal homeostasis, the pathogenesis of inflammation, cancer,

Figure 1.
Schematic representation of cellular components of innate immune system. Macrophages also comprise a very
important component of innate immune system along with other innate immune cells mentioned in the figure
and text.

2

Macrophage Activation - Biology and Disease



autoimmune diseases, infection and the generation of immune response associated
with the organ transplantation [16, 17].

Macrophages are developed during very early phase of embryogenesis called
primitive hematopoiesis occurring at embryonic day 6.5 [E6.5]-E8.5 from precursor
cells present in the extraembryonic yolk sac [18, 19]. The process of hematopoiesis
in line with ontogeny progresses towards fetal liver at the beginning of E10.5
and finally to the bone marrow in the adult animal including humans [18, 19]
(Figure 2). The primitive hematopoiesis occurring in the yolk sac of human
embryos comprises of about 70% macrophages of the total nucleated blood cells at
4 weeks of gestational age, while in mice embryos macrophages predominate in the
early stage of primitive hematopoiesis taking place in the yolk sac with the absence

Figure 2.
Schematic representation of production of macrophages in various organs throughout the mammalian (mouse
and human) development. For example, at embryonic day 6.5 [E6.5]-E8.5 macrophages develop in the
extraembryonic yolk sac from precursor cells, thereafter at E10.5 they develop in fetal liver, and in neonates and
adults they develop in bone marrow as mentioned in the text.
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of monocytic cells [20, 21]. From embryonic day 8.5 [E8.5]-E10.5, the aorta-gonad-
mesonephros give rise to hematopoietic stem cells (HSCs) giving birth to all
immune lineages [19]. The cells committed to become macrophages within the
mononuclear phagocyte lineage pass through morphologically-different but defined
developmental stages including common myeloid progenitors (CMPs), shared with
granulocytes giving rise to monoblasts, promonocytes and then monocytes that
migrate to different tissues [22]. The differentiation of HSCs or hematopoietic
progenitors (HPs) into different cell lineages including CMPs is governed by the
activation of highly regulated gene expression programs integrated by different
lineage-determining transcription factors (TFs) [23–25].

Pu.1 serves as an essential factor to reconstitute the myeloid cell lineage and for
the development of macrophages and monocytes in concentration-dependent man-
ner [24, 26, 27]. A high concentration of the TF called PU.1 promotes the macro-
phage development whereas a low level of PU.1 supports the B cell development
due to the presence of many low- and high-affinity PU.1 binding sites in the genome
[28, 29]. PU.1 is regulated by Runt-related transcription factor 1 (RUNX1) or Acute
myeloid leukemia 1 protein (AML1) or Core-binding factor subunit-alpha 2
(CBFA2) that are members of core-binding factor family of TFs [30]. The gene
Csf1r encoding the receptor for the cytokine IL-34 and monocyte-colony stimulat-
ing factor (MCSF) is one of the major targets of PU.1 in macrophage development
[31, 32] Cebp-α, -β, and -ε are important towards the development of different
myeloid cell types primarily including granulocytes, macrophages, and monocytes
[33, 34]. Irf8 also serves as a crucial TF for monocyte lineage along with DC lineage
by establishing monocyte- and DC-specific enhancers [35–38]. The TF called ZEB2
is essential for the maintenance of tissue-specific macrophages and its loss causes
tissue-specific changes in different macrophage populations including KCs and
their subsequent loss [39]. Thus these lineage-determining TFs, establish the central
macrophage program during the pre-macrophage stage. This core macrophage pro-
gram includes the expression of CX3CR1, pattern-recognition receptors (PRRs),
phagocytic receptors (PRs), FcγRs including FcγR1 or CD64 and various other
genes including Sirpα, Iba1,Mertk and Adgre1 (F4/80) expressed by almost all types
of macrophages [40, 41]. A bZip TF called MAFB (c-Maf) regulates the self-
renewal of macrophages and its induction is a specific and crucial determinant of
monocytic program in hematopoietic cells [42, 43].

There are two principal subtypes of monocytes in mice (Figure 3): (1) classical
Ly6chi monocytes (also called inflammatory monocytes expressing high levels of
CC-chemokine receptor 2 (CCR2) but low levels of CX3C-chemokine receptor 1
(CX3CR1)) that descend directly from Ly6c+ monocyte progenitors [44], and (2)
Ly6clow non-classical monocytes expressing high levels of CX3CR1 and low levels of
CCR2 that differentiate from Ly6chi monocytes through an Nr4a1 (nuclear receptor
subfamily 4 group A member 1 or Nur77)-dependent transcriptional program and
are less prevalent in blood [44–47]. The Ly6chi monocytes in mice represent
approximately 2–5% population of the circulating white blood cells (WBCs) in a
normal laboratory mouse without any infection and rapidly migrate towards the site
of infection and inflammation [48]. However the deficiency of CCR2 significantly
reduces the migration of Ly6chi monocytes at the site of infection and inflammation
indicating the importance of CCR2 in the trafficking of these monocytes [49–51].
These Ly6clow non-classical monocytes develop primarily to function within the
vasculature and patrol the vasculature by crawling over the resting endothelium
in an Lymphocyte function-associated antigen 1 (LFA-1) integrin and CXCR3-
dependent manner [19, 52].

The non-classical monocytes patrol the vasculature to clear the damaged
endothelial cells (ECs) for maintaining the integrity of endothelium, and thus the
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Figure 3.
Schematic representation of developmental stages of macrophages. HSCs, in the presence of TFs including PU.1
develop into CMP that further differentiates into promonocytes by undergoing different developmental stages.
The promonocytes in fetal liver develop into monocytes that further differentiate into macrophages. Whereas in
bone marrow promonocytes develop into Ly6C+ inflammatory monocytes also called classical monocytes.
However, in peripheral blood circulation they are further differentiated into Ly6C+ inflammatory monocytes
and Ly6C� resident monocytes or non-classical monocytes residing in the blood and patrolling the vasculature.
On the other hand Ly6C+ inflammatory monocytes or classical monocytes migrate to different organs and
develop into different tissue/organ specific macrophages as described in the figure.
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vasculature during homeostasis and inflammatory conditions [53, 54]. Thus, these
Nr4a1-dependent non-classical monocytes serve as housekeepers for the endothelial
vasculature and orchestrate the necrosis by neutrophils due to damaged ECs induc-
ing the TLR7 signaling via in situ phagocytosis of cell debris derived from damaged
ECs [53]. Hence these non-classical monocytes play a crucial role in the pathogene-
sis of various diseases associated with vasculature along with the process of wound
healing and the resolution of the inflammation [54]. This patrolling nature of the
monocytes distinguishes them from macrophages as macrophages have a very lim-
ited capacity to emigrate from their site of location. In humans monocytes are
differentiated into two subsets on the basis of expression of surface expression of
CD14 and CD16 [55]. In humans the CD14++CD16� monocytes are known as clas-
sical monocytes and are most prevalent monocyte subset in the blood [56, 57]. Like
mice Ly6chi monocytes they also express CCR2 [58]. The CD14+CD16+ monocytes
are considered as intermediate monocytes and CD14lowCD16+ monocytes are called
non-classical monocytes in humans [56].

The CD14lowCD16+ monocytes in humans are similar to mice Ly6clow monocytes
and patrol the vasculature or endothelium along with sensing the nucleic acids and
virus via TLR7 and TLR8 receptors [59]. These monocytes have weak phagocytic
potential and do not produce ROS and cytokines in response to cell-surface TLRs.
However they produce TNF-α, IL-1β, and CCL3 in response to viruses and immune
complexes containing nucleic acids due to the activation of TLR7 and TLR8 signal-
ing pathways [59]. Thus it can be inference that mice and human monocytes do not
precisely overlap in terms of their receptor expression including PPAR-γ (peroxi-
some proliferator-activated receptor-γ) that is signature for mouse monocytes but
absent in humans, however, the process of their differentiation and the function in
immune defense is apparently similar [60–62]. For example, approximately 270
genes in humans and 550 genes in mice monocytes (both types including classical or
non-classical one) are expressed differentially and more than 130 of these gene
expressions are conserved between mouse and human monocyte subsets [62]. Thus
this difference between human and mouse monocytes should be kept in mind when
developing and studying human diseases in mice.

The development of mononuclear phagocytes from monocyte/macrophage pro-
genitor cells is directed by colony stimulating factors (CSFs) including M-CSF,
granulocyte-monocyte colony-stimulating factor (GM-CSF), and fms-like tyrosine
kinase 3 ligand (Flt3-ligand) [63–65]. The number of various tissue and organ
monocytes/macrophages are regulated by M-CSF without any alteration in their
activation stage [64]. However, GM-CSF is involved in the activation of both
monocytes and macrophages along with its participation in the differentiation into
DCs. The mature cells developed during fetal development and later in life are
distributed accordingly as sinus-lining and interstitial resident macrophages in
lymphohematopoietic and other organs including lungs, liver, spleen, gut, skin and
brain. Major tissue-resident macrophages, including liver KCs, lung alveolar,
splenic, and peritoneal macrophages, are established prior to birth and their main-
tenance starts subsequently by themselves independent of replenishment of blood
monocytes during adulthood [47]. The macrophages present in endocrine and
reproductive organs including testes, adipose, vascular, musculoskeletal and con-
nective tissues are less well characterized.

3. Macrophage polarization

The polarization of macrophages gives a diverse heterogenic function and
phenotypes to them depending on their activation in respect to their duration of
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stimulation and spatial localization [66]. The macrophage polarization is not a fixed
process due the plasticity of the macrophages to integrate multiple signals (different
pathogens and their PAMPs, DMAPs, and normal tissue environment). Thus mac-
rophage polarization occurs in response to cell-cell interaction and cell-molecule
interaction within the host tissues or organs to maintain the homeostasis or during
different pathological conditions [67, 68]. Thus macrophage polarization is regu-
lated by at least three different mechanisms: (1) epigenetic and cell survival mech-
anisms, (2) external stimuli (pathogens, PAMPs, and allergens), and (3) tissue
environment including DAMPs [66]. The inflammation and associated immune
response is a good pathogenic condition to study the macrophage polarization as
this process impacts the inflammation from its initiation to the resolution phase.
The details of macrophage polarization are discussed elsewhere [66, 67, 69].

Depending on their polarization status the macrophages can be categorized in to
M0, M1 (classically activated macrophages (CAMs) or pro-inflammatory), and M2
(alternatively activated macrophages (AAMs) or anti-inflammatory) macrophages
(Figure 4). M0 macrophages can be considered as naïve macrophages that have not
been exposed to any pro- or anti-inflammatory stimuli or environment. M1 or
CAMs are developed when M0 macrophages are exposed to bacterial moieties
including LPS and Th1 cytokines including IFN-γ, IL-2, IL-12, IL-18 and TNF-β
(lymphotoxin β (LT-β)) etc., whereas M2 or AAMs are developed upon exposure to
Th2 cytokines including IL-4, IL-5, IL-6, and IL-10 [70, 71]. The M2 macrophages
can further be divided into M2a, M2b, and M2c depending on their stimulus for the
activation. The M2 macrophages induced by IL-4 or IL-13 are called M2a (a stands
for alternative), M2b macrophages are induced by poly I:C or TLR or IL-1R ago-
nists, and M2c are induced by IL-10 and glucocorticoids [72]. M2 macrophages
exhibit a higher phagocytic activity, higher expression of scavenging, mannose and
galactose receptors, produce higher concentration of ornithine and polyamines due
to high arginase pathway, secrete high amount of IL-10 and express higher levels of
the IL-1 decoy receptor and IL-1RA [40]. Thus, M2 macrophages in general exert an
anti-inflammatory action and play a crucial role in anti-parasitic immune response
required for parasite clearance, promote tissue remodeling, vasculogenesis, tumor
progression [70, 72, 73]. The M1 macrophages express Th1 cell-attracting
chemokines including CCL5 or regulated upon activation, normal T cells expressed,
and secreted (RANTES), CXCL9 and CXCL10, whereas M2 macrophages express
the chemokines CCL17, CCL22 and CCL24 [74].

The M1 macrophages highly express cyclo-oxygenase 2 (COX 2) enzyme,
inducible nitric oxide synthase (iNOS or NOS2) involved in nitric oxide (NO.)
synthesis, whereas M2 macrophages express COX 1 and arginase is expressed in
M2a and M2c required to synthesize ornithine and polyamines but not in M2b
macrophages activated by Poly I:C and LPS [72, 74, 75]. The metabolic process of
macrophages governing their pro-inflammatory and anti-inflammatory action also
differs in M1 and M2 macrophages. M1 macrophages exhibit a shift from normal
oxidative phosphorylation (OXPHOS) to increased glycolysis, increased release of
lactate, a decreased oxygen consumption and glutaminolysis. On the other hand M2
macrophages are dependent on fatty acid oxidation (FAO) as a major source of
energy along with the mitochondrial OXPHOS. The detailed description of macro-
phage (both M1 and M2) immunometabolism is beyond the scope of the chapter
and described elsewhere [76, 77]. Succinate (a signaling metabolite) regulates the
macrophage polarization via succinate receptor 1 (SUCNR1) and regulates the pro-
cess of inflammation [78]. The myeloid-specific deficiency of SUCNR1 promotes a
local pro-inflammatory or M1 phenotype among macrophages, disrupts glucose
homeostasis in mice, exacerbates the metabolic effects of diet-induced obesity and
impairs the browning of the adipose-tissue under cold conditions [78]. On the other
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hand SUCNR1 via succinate binding stimulates the anti-inflammatory (M2) pheno-
type among macrophages as indicated by the release of type 2 or anti-inflammatory
cytokines including IL-4. Thus succinate exerts the anti-inflammatory action via
SUCNR1 on macrophages via controlling their polarization [78]. The macrophages

Figure 4.
Schematic representation of macrophage polarization. Naïve or M0 macrophages upon different stimulation as
describe in the figure and the text differentiate into pro-inflammatory M1 macrophages or classically activate
macrophages (CAMs) and anti-inflammatory macrophages called alternatively activated macrophages
(AAMs) or M2 macrophages. These M2 macrophages are further differentiated into M2a, M2b, and M2c
macrophages depending on the stimulus as mentioned in the figure and the text.
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involved in the resolution of inflammation are called resolution-phase macrophages
(rMs). The rMs differ from both M1 and M2 macrophages in terms that they have
weak bactericidal properties and express an alternatively activated phenotype along
with higher expression of markers of M1 macrophages (i.e. inducible cyclooxygen-
ase (COX 2) and nitric oxide synthase (iNOS)) [79]. This phenotype of rMs is
controlled by cyclic adenosine monophosphate (cAMP) as its inhibition converts
rMs into M1 macrophages [79]. On the other hand the upregulation of cAMP in M1
macrophages converts them in rMs. Although rMs are nonessential to clear neutro-
phils during self-limiting inflammation but are required for the initiation of post
resolution lymphocyte repopulation signaling event via COX 2 lipids. Thus, rMs are
the hybrid of both M1 and M2 macrophages and play an important role in the post
resolution innate-lymphocyte repopulation and the restoration of tissue/organ
homeostasis. Table 1 is showing the major differences between M1 and M2 macro-
phages. The detailed mechanism of macrophage polarization (M1 and M2), its

M1 macrophages M2 macrophages

1. Phenotype Express high levels of MHC-II, CD68,
and CD80 and CD86 costimulatory
molecules

Express higher levels of CD206,
CD200R, CD163 and transcription factor
called CMAF (musculoaponeurotic
fibrosarcoma) and response gene to
complement 32 (RGC-32)

2. Upregulated
genes

Suppressor of cytokine signaling 3
(SOCS3), iNOS or NOS2, Macrophage
receptor with collagenous structure
(Marco), Il12B, Il23a (Il23p19) and Ptgs2
(Cox2)

Arg1, MMR (Mrc1), resistin-like
molecule α (FIZZ1) or Relma or Retnla,
Ym1, Irf4, Cxcl12, Cxcl13, Ccl24 and
Klf4

3. Action Pro-inflammatory Anti-inflammatory

4. Cytokines and
chemokines
produced

IFN-γ, IL-8, TNF-α, IL-1β, RANTES
(CCL5), CXCL10

IL-13, IL-10, CCL17, CCL18, CCL22

5. Metabolic
pathway

Glycolysis and glutaminolysis FAO and OXPHOS

6. HIF-1α
expression

High Low

7. Inducers or
stimuli

IFN-γ, PAMPs (i.e. LPS), GM-CSF Glucocorticoids, IL-10, IL-4, IL-13 and
M-CSF

8. ROS and RNS
production

High ROS and NO. production Low ROS and NO. production

9. Rate of
acidification

Low High

10.
Antimicrobial
action

High Low

11. Glucose
uptake

Mainly depends on HIF-1α and Akt/
mTORC1 activation

Mainly depends on Akt/mTORC1
activation

12. Macrophage
galactase-type
C-type lectins

Low High

13. Autophagy Induce autophagy during tuberculosis
(TB) infection

Decrease autophagy during TB infection

Table 1.
Differences between M1 and M2 macrophages.
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regulation and impact on inflammatory process including in cancer are described
somewhere else [66, 70–73, 75, 80, 81].

4. Role of monocytes and macrophages in host defense

Macrophages are present in almost every tissue or organ system including the
barriers system comprising of respiratory tract (pulmonary alveolar and interstitial
macrophages), skin, gastrointestinal tract (GIT), and reproductive tract [82–91].
Thus their presence in the every organ system along with the mucosal sites serving
as potential sites for the entry of pathogens, toxins, allergens and xenobiotics makes
them first line of defense.

Monocytes/macrophages are one of the major innate immune cells involved in
the process of recognition of pathogens and the cell debris originated as a result of
apoptosis and their engulfment by the process of phagocytosis. Thus along with
other innate immune cells including neutrophils, dendritic cells (DCs), mast cells,
monocytes, and macrophages are considered as ‘professional’ phagocytes. The pro-
fessional phagocytes are differentiated from non-professional phagocytes on the
basis of their effectiveness in mediating the phagocytosis [92]. The major factor
contributing to the effectiveness of the phagocytosis and characteristic of profes-
sional phagocytes is the expression of various receptors on their cell surface
involved in the recognition of molecules or ligands that are not normally expressed
by normal and healthy cells [93]. For example, scavenger receptors (SRs) play
important role in the recognition and binding of apoptotic and necrotic cells,
opsonized pathogens (i.e. pathogens opsonized by complement protein C5a and
C3a), and cell debris. The scavenger receptor-A1 (SR-A1)-mediated phagocytosis of
low density lipids (LDLs) or oxidized lipids causes the formation of foam cells and
this phenomenon is involved in the pathogenesis of atherosclerosis [94]. The
absence of SR-A1 in macrophages increase their pro-inflammatory action due to the
increased p42/44 mitogen-activated protein kinase (MAPK) phosphorylation,
interferon regulatory factor-3 (IRF-3) and NF-κB nuclear translocation and
increased production and secretion of TNFα, IL-6 and IFN-β due to the increased
activation of TLR4 signaling pathway [95]. Thus SR-A1 antagonizes the TLR4-
mediated phagocytosis and pro-inflammatory immune response of macrophages in
the presence of LPS and gram-negative bacteria in a competitive manner [95].

Additionally, alveolar macrophages expressing SR-A1 and class A scavenger
receptors (SRAs) called macrophage receptor with collagenous structure (MARCO)
protect the host from inhaled toxicant and pathogens by phagocytosing the oxidized
lipids and decreasing the inflammatory damage [96]. The detailed information of
scavenger receptors is beyond the scope of the chapter and is described elsewhere
[97–101]. In addition, professional phagocytes including monocytes and macro-
phages express various Toll-like receptors (TLRs) [93]. However the interplay
between phagocytic receptors (which initiate and assist in the mechanics of phago-
cytosis) and pattern recognition receptors (PRRs, such as TLRs, which detect
PAMPs or DAMPs) is complex. The interplay between these receptors may involve
both synergistic and antagonistic interactions, including downstream signaling
mechanisms within the phagocytic cell that remain largely unknown [102, 103].

During and following phagocytosis, PRRs (including TLRs, C-type lectin recep-
tors (CLRs), scavenger receptors, retinoic acid-inducible gene 1 (RIG1)-like
helicase receptors (RLRs) and NOD-like receptors (NLRs)) recognize different
PAMPs and DAMPs along with different xenobiotics including silica or asbestos
[104, 105]. Some PRRs including mannose receptor, DC-specific ICAM3-grabbing
non-integrin (DC-SIGN) and MARCO are also involved in the process of pathogen
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recognition and phagocytosis, whereas signaling PRRs (which include the TLRs,
NLRs and RLRs) sense microbial products and aberrant self-molecules on the cell
surface or in the cytoplasm of cells and activate transcriptional mechanisms that
lead to phagocytosis, cellular activation and the release of cytokines, chemokines
and growth factors [106–109]. During phagocytosis of the pathogens, the TLR2
recruits into the phagosome and discriminates between pathogens along with
initiating the pro-inflammatory immune response [110]. The TLR-induced phago-
cytosis of bacteria is reliant on MyD-88-dependent signaling via interleukin-1
receptor-associated kinase-4 (IRAK-4) and p38 MAP kinase causing an up-
regulation of SRs [111]. TLR9 is the strongest inducer of phagocytosis among all the
TLRs, whereas TLR3 is the weakest inducer of the process [111]. However, TLR4-
stimulated phagocytosis also requires the activation of MyD-88-independent actin-
Cdc42/Rac pathway [112, 113].

Macrophages also express various complement receptors (CRIg, C1qR, CR3,
C5aR, C5L2 or C5bR, etc.) and Fc receptors on their cell surface that bind and
phagocytose the opsonized pathogens or other molecules and activate the comple-
ment system (CS)-mediated immune response for increasing the process of phago-
cytosis [114–116]. CRIg is a member of complement receptor of the
immunoglobulin superfamily that binds to complement fragments C3b and iC3b
opsonizing the pathogens to initiate their phagocytosis [115]. The expression of
CRIg on macrophages increases in the presence of dexamethasone and IL-10, but
decreases in the presence of IFN-γ, IL-4, TGF-β1, arachidonic acid (AA) [117]. AA
decreases the expression of CRIg on macrophages by activating the protein kinase
C (PKC) independent of its metabolism via cyclooxygenase and lipoxygenase path-
way [117]. The CR3-mediated phagocytosis of the pathogens is mediated by the
activation of Syk-kinase that becomes tyrosine-phosphorylated and accumulates
around the nascent phagosomes [114]. However, it also negatively regulates the
phagocytosis of degenerated myelin sheath by activating Syk-kinase and cofilin
(an actin-depolymerizing protein controlling F-actin remodeling) in microglia and
macrophages [118]. C1q component of the CS plays a crucial role in the process of
phagocytosis by triggering the rapid enhancement of the phagocytosis independent
of its role in direct activation of the classical complement pathway [119]. The
engulfment of the membrane attack complex (MAC) deposited on pathogens by the
macrophages during the process of phagocytosis activates the NALP3 (NACHT,
LRR and PYD domains-containing protein 3 or cryopyrin) inflammasome via
inducing K+ efflux and ROS generation [120]. The NALP3 activation activates
caspase 1 (CASP1) to cause the maturation and release of IL-1β and IL-18 [120].
This also induces the differentiation of T cells into Th17 cells when these macro-
phages are used as antigen presenting cells (APCs). Thus, macrophages use various
surface receptors and secreted molecules to monitor and respond to changes in the
vicinity of their tissue environment.

5. Role of macrophages in homeostasis (angiogenesis, wound repair,
and regeneration) and diverse inflammatory conditions (metabolic
diseases and autoimmunity)

5.1 Macrophages in angiogenesis

Macrophages play a crucial role in the immune homeostasis via regulating the
process of inflammation under both sterile and infectious inflammatory conditions.
In addition to this they also play a crucial role in the process of angiogenesis
(Figure 5), metabolism, and salt and water balance [121]. For example, myeloid
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cells including monocytes and neutrophils are the first innate immune cells migrat-
ing through post capillary venules (PEVs) at the site of inflammation and tissue
injury or tissues requiring microvascular growth and remodeling including several
tumors due to the expression of CCR2 that binds to the chemokine called CCL2
[122, 123]. Furthermore an inhibition in the chemo-attraction and migration of
monocytes at the site of tissue ischemia causes a flap necrosis due to impaired
neovascularization [124]. Macrophages also synthesize, release, and respond (or
reprogram themselves) to various pro- and anti-angiogenic factors including vas-
cular endothelial growth factor-A (VEGF-A), and several angiopoietins including
angiopoietin (ANG) 1 and ANG 2 [125–127]. Thus these recruited monocytes or
tissue macrophages reprogram themselves in the presence of theses angiogenic
factors to serve as angiogenic and arteriogenic professional cells (APCs) [125]. For
example, ANG1 exerts its angiogenic action on macrophages via repressing the
expression of prolyl hydroxylase domain protein 2 (PHD2) through angiopoietin
(ANG)-TIE2 (angiopoietin-1 receptor or CD202B) signaling that supports their
reprograming into angiogenic and APCs [127, 128]. ANG2-dependent TIE2-signal-
ing in macrophages plays a crucial role in the induction of angiogenesis during
inflammation and tumor growth as both condition are associated with increased
hypoxia causing an induction of hypoxia inducible factors (HIFs) including HIF-1α
and HIF-2α enhancing the generation of tumor and angiogenesis promoting mole-
cules and cytokines (CXCR4, GLUT1 (glucose transporter 1), VEGF A, IL-1β, IL-8,
adrenomedullin, and ANG 2) [129–131].

These angiogenesis supportive macrophages exhibit the similarity with M2 mac-
rophages and in tumor environment they are called tumor-associated macrophages

Figure 5.
Macrophages play important role in host defense, immune homeostasis, regeneration, and inflammation. The
detailed mechanisms of macrophages impact on the processes mentioned in the figure are described in the text.
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(TAMs) with higher levels of IL-6, iNOS, and TIE2 [132]. These M2 macrophages
and TAMs support the growth, proliferation, and migration of endothelial cells
(ECs) and blood vessel formation or sprouting by releasing VEGF-A as well as
promoting the synthesis and release of VEGF-A and fibroblast growth factor-2
(FGF-2) or basic-FGF (b-FGF) from the tissue or tumor microenvironment cells
[133]. The TAM-mediated support of angiogenesis and tumor growth is determined
by TIMP-1 (tissue-inhibitor of matrix metalloproteinase-1) levels free of or
complexed with pro-MMP-9 (matrix metalloproteinase-9) [134]. For example,
MMP-9 null macrophages are non-angiogenic. In addition to secreting the angio-
genic factors, macrophages also interact with cells including pericytes, ECs, and
vascular smooth muscle cells for regulating angiogenesis observed during embry-
onic development, adult responses to injury, and in tumor microenvironment [135].
Furthermore the depletion of macrophages disrupts the process of vascular pat-
terning in response to insufficient vascular pruning due to decreased phagocytosis
of endothelial cells and pericytes during both embryonic and postnatal development
of organs [135–137].

5.2 Macrophages in wound repair

Macrophages also serve as crucial immune cells involved in the process of
wound repair in response to stimuli generated in the local tissue milieu [138, 139].
The phenomenon of wound repair is mainly regulated by AAMs or M2 macrophages
due to their anti-inflammatory action, induction of angiogenesis, and decreased
apoptosis that induces the extracellular matrix remodeling and the process of
wound repair and regeneration [138, 139]. These wound repair macrophages are
characterized by the higher production of various growth factors including platelet-
derived growth factor (PDGF), insulin-like growth factor-1 (IGF-1), transforming
growth factor-α (TGF-α), TGF-β, and VEGF-A causing angiogenesis and
supporting cell proliferation to alleviate the hypoxia caused by the inflammatory
tissue insult [140]. The TGF-β stimulates the differentiation of the local and
recruited tissue fibroblasts into myofibroblasts facilitating the contraction and clo-
sure of the wound area along with the synthesis of the extracellular matrix (ECM)
components [141]. Additionally macrophages also release amphiregulin (AREG)
that serves as an epidermal growth factor receptor ligand (EGFRL) to play a role in
the restoration of tissue homeostasis after injury or wound healing [142, 143]. The
wound healing or repair mechanism by AREG involves the release of TGF-β from
latent complexes via integrin-αV activation that induces the differentiation of mes-
enchymal stromal cells (pericytes) into myofibroblasts to restore the vascular bar-
rier function within injured tissue during the process of wound healing [142].

These wound repair macrophages also augment the proliferation and expansion
of many neighboring parenchymal and stromal cells along with activating stem cells
and local progenitor cells to participate actively in tissue repair response during
chronic or severe injury [144]. Hence, the disruption of monocyte recruitment and
the inhibition of local macrophages and their conversion into M2 or AAMs may
dampen the process of wound repair. For example, in some cases the disruption in
the process of wound repair may lead to the development of tissue or organ fibrosis
or scarring due to the overactivation of wound repair macrophages that can further
impair organ’s normal function causing ultimate organ failure and death of the
patient [145, 146]. For example, idiopathic pulmonary fibrosis (IPF), hepatic fibro-
sis and systemic sclerosis, are tightly regulated by ‘pro-fibrotic’ macrophages pro-
ducing PDGF, IGF-1, TGF-β1 (induces myofibroblast transdifferentiation and
promotes matrix accumulation), and directly activating fibroblasts [93, 147–150].
These pro-fibrotic macrophages also secrete pro-inflammatory cytokines including
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IL-1β that stimulates Th17 cells to secrete IL-17 involved in the bleomycin pulmo-
nary fibrosis, MMPs and TIMPs that regulate the inflammatory cell recruitment and
the ECM turnover [146, 151–154]. Hence macrophages are involved in the process
of wound repair and the impairment in their function may lead to the poor wound
healing and the development of fibrosis causing organ failure and the death of the
patient. Therefore targeting of the pulmonary macrophages and their mediators
play a crucial role in the process of pulmonary fibrosis [155].

5.3 Macrophages in regeneration

Macrophages also play a crucial role in the process of tissue and organ regener-
ation that refers to the process of proliferation of cells and tissues to replace the
damaged and lost structures [156]. The organs and tissues including skeletal mus-
cles and liver exhibit a higher degree of regenerative capacity through the regener-
ation of parenchymal cells involving monocytes and hepatocytes [157]. In most
tissues the complete regeneration of intact tissues is not achieved and results in the
formation of scar [158]. Macrophages play a very important role in the regeneration
process of skeletal muscle by coordinating the inflammation and regeneration [157].
They act as essential immune cells for the recovery of tissue integrity and function
following the injury [150]. The macrophages involved in the process of regeneration
of skeletal muscle are located in the interstitial space between myofibers, specifi-
cally in the perimysium (the connective tissue surrounding muscle fascicles), epi-
mysium, (the connective tissue surrounding the whole muscle), and perivascular
space that recruit circulating neutrophils and monocytes following the muscle
injury to initiate the process of inflammation [157]. The monocytes infiltrated into
the damaged skeletal muscle undergo the process of in situ transition to develop into
Ly6Chi (inflammatory) and Ly6Clow (regenerative or repair) macrophages that is
independent of NR4A1 (nuclear receptor subfamily 4 group Amember 1) or NUR77
or nerve growth factor IB (NGFIB) [159]. The NUR77 belongs to the family of the
Nur nuclear receptors acting as intracellular transcription factors and plays a crucial
role in the macrophage-mediated inflammatory immune response generation [160].
The transition of monocytes into Ly6Chi (inflammatory) and Ly6Clow (regenerative
or repair) macrophages plays a crucial role in the process of muscle regeneration
[161]. The Ly6Clow macrophages in the skeletal muscle exhibit a distinct pro-
resolving signature [specialized pro-resolving lipid mediators (SPMs), including
resolvins (for example, RvD1, RvD2, RvE1)] that helps in the functional improve-
ment in the process of muscle regeneration [162]. On the other hand Ly6Chi

inflammatory monocytes further differentiate into skeletal tissue macrophages
(both M1 and M2) and secrete pro-inflammatory cytokines (i.e. FN-γ, TNF-α, IL-
1β, and IL-6) that are also integral component of myogenic precursor cells (MPCs)
or myoblasts. The M2 macrophages on the other hand promote the differentiation
and maturation of MPCs [157, 163, 164]. In addition macrophages are also shown to
involve in the process of regeneration of heart/cardiomyocytes in different animals
(Zebra fish, Salamander, and the laboratory mouse) [165–167]. Even studies have
also shown the involvement of macrophages in the regeneration of spinal cord and
tail fin of Zebra fish [168, 169]. Wnt signaling in macrophages plays a critical role in
driving parenchymal regeneration in animal models of liver injury [170]. After the
death of hepatocytes phagocytic uptake of the cell debris by macrophages synthe-
sizes Wnt3a that in nearby hepatic progenitor cells (HPCs) induces the canonical
Wnt signaling cascade facilitating their specification to hepatocytes [171]. Even the
regeneration of hair follicles also involves the macrophage-mediated key signals to
local stem cells facilitating the regeneration of hair follicles upon plucking of hairs
[172]. The plucking of hairs causes the local generation of CCL2 that promotes
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pro-inflammatory TNF-α generating macrophages and initiates the process of hair-
follicle regeneration [172]. Thus the fine tuning of macrophages is essential for their
protective function during would healing or repair, regeneration or the induction of
fibrosis due to the loss of this fine tuning leading to the organ damage and failure.

5.4 Macrophages in autoinflammation and autoimmunity

The uncontrolled activation of macrophages in response to DAMPs recognized by
various PRRs and apoptotic cells (uncontrolled phagocytosis) may lead to chronic and
uncontrolled inflammation that may induce autoinflammation and autoimmune dis-
eases including severe autoimmune anemia, systemic lupus erythematosus (SLE),
and chronic arthritis [173–176]. The increased infiltration of macrophages into the
brain (i.e., in meninges surrounding the CNS, the perivascular space, and the choroid
plexus) is also reported in experimental autoimmune encephalitis (EAE), an animal
model for multiple sclerosis (MS) [177, 178]. The chronic up-regulation of CCR2,
CCL2, CCL3, CCL4, and CCL22 stimulates the process of macrophage accumulation
at the sites of the brain affected during EAE [179, 180]. Both M1 andM2macrophages
play a crucial role in the pathogenesis of EAE orMS [180, 181]. Macrophages also play
a very important role in the pathogenesis of rheumatoid arthritis (RA) by secreting
various pro-inflammatory cytokines, controlling the generation and function of reg-
ulatory T cells (Tregs) via binding and release of transforming growth factor-β (TGF-
β), and their therapeutic targeting proves beneficial to the patients [182–185].
Sjogren’s syndrome (SS), a chronic autoimmune disease of exocrine glands specifi-
cally salivary glands and lacrimal glands causing also systemic autoimmune lesions
also shows the accumulation of monocytes and macrophages in the inflamed lesions
[185–187]. In addition to these autoimmune diseases, both M1 and M2 macrophages
also play a crucial role in the pathogenesis of type 1 diabetes mellitus by contributing
to the destruction of β cells of the pancreas through controlling the generation of Th1
cells and acting as antigen presenting cells (APCs) to stimulate cytotoxic CD8+ T cells
(T1DM) [188–190].

5.5 Macrophages in metabolic diseases

Obesity is an altered stage of metabolism originating due to the increased avail-
ability of nutrients (except in the genetically impaired conditions causing the depo-
sition of the white adipose tissue (WAT)) [191]. However, both obesity caused by
the genetic factors or due to the increased food intake and sedentary life style cause
a low-grade systemic chronic inflammation that may lead to the development of
type 2 diabetes mellitus (T2DM) and atherosclerosis [192–194]. The death of adi-
pocyte serves as a major trigger for the recruitment of inflammatory LY6ChiCCR2+

monocytes and the accumulation of macrophages in the WAT as more than 90% of
the macrophages in WAT are localized to the dead adipocytes [195, 196]. These
macrophages then fuse to form syncytia sequestering and scavenging the residual
“free” adipocyte lipid droplets and ultimately forming the multinucleate giant cells
that serve as a hallmark of chronic inflammation. Furthermore, these macrophages
recognize fatty acids (FAs) as potential inflammogens and reprogram themselves
into classical macrophages (M1 macrophages) during obesity [104, 197, 198]. For
example, saturated but not unsaturated fatty acids promote the inflammatory acti-
vation of macrophages via the activation of TLR4 as TLR4 is essential for high-fat
diet-induced insulin resistance in adipose tissue and liver [199–203]. Additionally,
Fetuin A (FetA or AHSG, a secreted glycoprotein) serves as an endogenous ligand
for TLR4 for promoting the lipid-induced insulin resistance, lipotoxicity in β cells of
the pancreas, and T2DM [204, 205]. However, M2 macrophages generated in the
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environment promote the health of the WAT and the insulin sensitivity by an
unknown mechanism in a lean state [206]. It can be hypothesized that the M2
macrophages via maintaining the health of adipocytes in WAT prevent the genera-
tion of signals including the death of adipose tissue that chemo-attract the pro-
inflammatory monocytes reprogramming later into classical M1 macrophages. The
genetic depletion of the M2 gene or M2 macrophages cause the induction of meta-
bolic diseases upon high-fat-diet [206]. IL-6 promotes the generation of AAMs or
M2 macrophages in adipose tissue environment during obesity [207]. The depletion
of CD11b also increases the number of AAMs in adipose tissue during obesity and
prevents the development of obesity-induced insulin resistance [208]. Thus
targeting CD11b during obesity may prevent obesity-induced insulin resistance.
Recently, a population of sympathetic neuron-associated macrophages (SAMs) has
been identified controlling the obesity by engulfing and clearing norepinephrine
(NE) [209].

6. Conclusion and future perspective

Macrophages are innate immune cells that serve as a first line of defense against
invading pathogens almost in every organ system including lungs, liver, intestine,
kidneys, and brain. Along with acting as first line of defense against pathogens,
PAMPs, DAMPs, and other xenobiotics they act as antigen presenting cells (APCs)
and provide processed antigens to activate the adaptive immune response compris-
ing of B and T cells. Thus macrophages are sentinel innate immune cells taking part
in the generation of both acute and chronic inflammation induced during both
sterile and infectious tissue damaging conditions via controlling the migration and
activation of other innate immune cells including neutrophils and dendritic cells
(DCs) as well as cells of the adaptive immune system. In addition to their role in
controlling the process of inflammation they are also involved in the process of
wound repair and regeneration, autoimmunity, obesity and associated insulin tol-
erance, angiogenesis and embryonic development of the fetus. Thus macrophage
are the potent immunoregulatory cells of the innate immune system involved in
host defense against infections and other inflammatory diseases including cancer
and autoimmunity along with the maintenance of immune homeostasis involving
the process of resolution phase during inflammation [210–212]. Hence macrophages
are very important innate immune cells with immune regulatory function
depending on their fine tuning or polarization during diverse inflammatory condi-
tions as described here in the chapter.

Although macrophages have been discovered a century ago and revolutionized
the immunology research and opened the road to the branch of immunology called
innate immunity but much more is still remaining to explore in macrophage biology
and their role in the regulation of development, homeostasis, immune homeostasis,
inflammation, and disease pathogenesis. For example, macrophage immunome-
tabolism and epigenetic mechanisms regulating their polarization and pro-and anti-
inflammatory phenotype and action have started to answer the several previously
unknown questions that may influence the future immunotherapeutics and immu-
nomodulatory approaches to target several immune-based diseases varying from
autoimmune diseases to several cancers to metabolic diseases.
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Chapter 2

The Pivotal Role of Macrophages 
in Metabolic Distress
Joseph Roberts, Padraic G. Fallon and Emily Hams

Abstract

Obesity is a prevalent condition with several associated co-morbidities including 
the development of metabolic diseases. In obesity there is immune cell infiltration 
into the white adipose tissue and this is associated with the generation of inflam-
mation and insulin resistance (IR). A large majority of the infiltrating leukocytes 
in obese adipose tissue are pro-inflammatory macrophages, which upon activation 
induce a switch in metabolism from oxidative phosphorylation, as is utilised by 
macrophages in lean adipose tissue, towards aerobic glycolysis. The signalling path-
ways evoked in the recruited macrophages induce the release of pro-inflammatory 
cytokines, in signalling pathways which directly interfere with insulin signalling 
and thus induce a state of IR. As macrophages appear to play such a pivotal role in 
the generation of IR and are the largest leukocyte population in the adipose tissue, 
they provide a promising therapeutic target. Indeed, there are several strategies 
currently being studied to induce a ‘switch’ in macrophages associated with obese 
adipose tissue, towards the phenotype of those associated with lean adipose tissue, 
with arguably the most promising being those strategies designed to target the 
metabolic pathways within the macrophages. This chapter will discuss the polarisa-
tion and activation of macrophages within lean and obese adipose tissue and how 
these cells can be targeted therapeutically.

Keywords: macrophage, obesity, metabolism, inflammation

1. Introduction

Obesity is defined as abnormal or excessive fat accumulation and is linked with 
increased risk of development of multiple co-morbidities, including cardiovascular 
disease, type 2 diabetes, musculoskeletal disorders and certain cancers. Obesity and 
its associated co-morbidities are a significant health concern facing the global popu-
lation. Worldwide obesity has tripled since 1975, with 39% of adults considered 
overweight and 13% considered obese [1]. This situation is prominent in childhood, 
with 41 million of the global under five population overweight or obese [1].

Obesity induces a state of low-grade systemic inflammation, characterized by 
increased serum levels of pro-inflammatory mediators, including C Reactive Protein 
(CRP), Tumour Necrosis Factor (TNF)-α, Interleukin (IL)-1β and IL-6, which 
contributes to metabolic dysfunction and insulin resistance (IR) [2]. Although the 
mechanisms underlying this inflammatory response are not fully understood, activa-
tion of adipose tissue macrophages (ATM) contributes to this inflammatory state, 
and therefore to the development of insulin resistance (IR) [3, 4]. Conversely, in lean 
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individuals the immune repertoire constitutes a more anti-inflammatory phenotype, 
with ATM alongside regulatory T cells (Tregs) releasing cytokines such as IL-10 
and transforming growth factor (TGF)-β, which increase insulin sensitivity [5]. 
Therefore, the role of ATM in metabolic function is clearly an area of interest, indeed 
transcriptional profiling has identified how quickly macrophages can respond and 
adapt to alterations in their microenvironment [6]. This chapter will focus on the 
role macrophages play in the pathogenesis of metabolic disorders and explore if re-
education of these cells provides a target for therapeutic intervention in obesity and 
its related co-morbidities.

2.  The microenvironment of the adipose tissue in lean  
and obese individuals

Obesity historically was believed to be due to a combination of genetic predis-
position and environmental factors, however, more recently it has been recognised 
that immunological factors can also contribute to the pathogenesis of obesity. 
Indeed, while over 30 gene loci combinations have been associated with the devel-
opment of obesity and metabolic disease, these loci are only associated with 2–3% 
of the incidence of these conditions [7]. Further the energy-dense modern Western 
diet combined with a sedentary lifestyle undoubtedly adds to the obesity epidemic. 
Recent work has identified the links between dysbiosis in the intestinal microbiome 
and immune cell activation, linked to the ingestion of high-fat, low-fibre diets, and 
the development of obesity [8].

2.1 The role of the microbiome

The intestinal microbiome is essential for processing dietary polysaccharides 
and has been identified as a key regulator of systemic inflammation in obesity 
[9]. Mouse studies are routinely used to study the mechanisms underlying obesity 
and metabolic disease. Due to the nature of obesity being largely related to diet, 
diet-induced models are often favoured over genetic models (for example, leptin 
deficient ob/ob mice). Indeed, studies using a high-fat diet (HFD; equivalent to 
60% animal-derived fats in the diet) have been used to study the potential implica-
tions of alteration in the microbiome related to diet as well as other obesity-related 
pathogenesis. It has been shown that the microbiome in obese mice has an increased 
capacity to harvest energy from the diet compared to the microbiome from lean 
mice [10]. Microbiome transfer studies, in which intestinal microbiota from mice 
raised in conventional housing was transferred into germ-free mice, induced a 60% 
increase in body fat and IR within 14 days, despite a reduction in food consumption 
[11]. The transfer of microbiota-derived products such as lipopolysaccharides and 
peptidoglycans, have shown to promote metabolic endotoxemia, which induces pro-
inflammation in adipose tissue [12]. In contrast, the microbiota of the gut bacterial 
fermentation of dietary fibre was shown to have anti-inflammatory effects [12]. 
Indeed, it was shown that the transfer of intestinal microbiota from lean donors 
increased the insulin sensitivity in individuals with metabolic syndrome [13].

2.2 Adipose tissue

Adipose tissue (AT) is an important metabolic organ, which helps orchestrates 
metabolic and endocrine functions as well as immune responses [12]. AT functions 
to store excess nutrients as triacylglycerides and releases fatty acids in the fasted 
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state, provide cold insulation and protection of vital organs. In the AT of obese 
individuals, there is significant adipocyte hyperplasia and adipose tissue hypertro-
phy [14]. AT consists of mature adipocytes, pre-adipocytes, fibroblasts, endothelial 
cells, histocytes and populations of immune cells including monocytes, macro-
phages, natural killer (NK) cells, innate lymphoid cells (ILCs) and lymphocytes. AT 
is classified into three categories, namely white (WAT), beige or ‘brite’ (beige/brite) 
and brown (BAT). WAT accounts for approximately 50% of body mass and can 
release free fatty acids (FFA) into circulation when glucose levels are low. Whilst 
BAT plays an important role in thermogenesis and the production of heat [15].

The AT of obese individuals is in a state of chronic low-grade inflammation 
with marked infiltration various pro-inflammatory immune cells such as CD8 
cells, NK cells, ILC1, Th1 cells, neutrophils and pro-inflammatory macrophages 
[16]. Conversely, the immune repertoire of AT from lean individuals comprises 
anti-inflammatory cell populations, including eosinophils, ILC2, Tregs, Th2 cells 
and anti-inflammatory macrophages [16] (Figure 1). In lean mice, ATM consti-
tutes approximately 5% of cells, conversely in obese mice ATM can account for 
up to 50% of the cells [3]. Whilst in lean human AT, ATM comprises 4% of cells 
compared to 12% in excess adiposity [17]. In addition to macrophages, lymphocytes 
and ILCs also play roles in the regulation of AT inflammation, the roles of which 
seem to largely involve supporting the polarisation state of the ATM populations. 
For example, eosinophils provide a source of IL-4 promoting an M2 phenotype. 
In obese mice adipose eosinophils are decreased, whilst depletion of eosinophils 
results in increased M1 ATM, weight gain and systemic IR [18]. Furthermore, ILC2 

Figure 1. 
Immune cell composition of adipose tissue in a lean and obese state. In the lean state, eosinophils and type 
2 innate lymphoid cells (ILC2s) produce Th2 cytokines (IL-4, IL-5 and IL-13), which promotes eosinophil 
recruitment and anti-inflammatory polarisation of macrophages towards an M2 phenotype, which is 
supported in the normoxic state of lean adipose tissue. In turn, M2 macrophages secrete anti-inflammatory 
cytokines such as IL-10. In the obese state, adipocyte hypertrophy, hyperplasia and hypoxia cause necrotic 
adipocytes, resulting in pro-inflammatory state and macrophage recruitment, forming crown like structures 
(CLS) surrounding the adipocytes. These macrophages are polarised towards an M1 phenotype and secrete the 
pro-inflammatory cytokines IL-6, IL-1β and TNF-α.
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have been identified as a source of IL-5, a key cytokine in eosinophil recruitment. 
Thus, accumulation of eosinophils and maintenance of M2 ATM relies on ILC2 [19].

2.3 The role of the adaptive immune system in obesity

The adaptive immune system also plays an important role in obesity and meta-
bolic disease. B cells have been shown to be involved in obesity induced inflam-
mation and IR [20]. In obese mice, there was an identified increased in IgG+B cells 
and IgG production, associated with activation of M1 ATM, increased Th1 cells 
and conversely, attrition of Treg cells [21]. In addition, transferring B cells into B 
cell deficient mice induced IR [20]. Furthermore, in obese mice, there is increased 
CD8+ effector T cell recruitment in epididymal AT. Interestingly, it is reported that 
CD8+ T cells precede macrophage infiltration and deletion of CD8+ T cells resulted 
in reduced macrophage infiltration and AT inflammation whilst improving IR [22]. 
Conversely, both Treg cells and iNKT cells are negatively associated with obesity-
induced inflammation and are enriched in lean AT. Indeed, both these immune cells 
are known to secrete IL-10 which promotes M2 macrophage polarisation [23, 24].

2.4 Adipose tissue macrophages

ATMs appear to play a major role in the regulation of obesity-related inflamma-
tion, with different macrophage phenotypes associated with divergent roles in the 
AT. In lean animals, ATM function to maintain the homeostatic micro-environment 
in AT by taking up excess lipids and phagocytosing dead adipocytes. Broadly 
speaking macrophages present in lean AT are of an M2 phenotype, which have 
been shown to suppress inflammation in AT [25]. Furthermore, M2 macrophages 
in lean AT have been associated with brown fat activation and ‘beiging’ of WAT in 
mouse models of obesity, via expression of tyrosine hydroxylase, which induces 
thermogenesis [26, 27]. However, this process has recently been queried, with 
IL-4-stimulated macrophages failing to generate sufficient levels of catecholamines 
to contribute to adipose tissue adaptive thermogenesis [28]. Conversely, excess lipid 
uptake in obese AT, induces M1 polarisation and along with excess lipid droplets, 
immune cells and necrotic adipocytes this forms a component called ‘crown-like’ 
structures (CLS) [29, 30]. Indeed, it has been shown that more than 90% of all 
macrophages in WAT of obese mice and humans are localized to dead adipocytes 
[31]. This metabolic activation of M1 macrophages in obese AT is associated with 
increased pro-inflammatory cytokines in the AT and recruitment and activation of 
M1 macrophages in the AT [32].

ATM in lean AT is considered a resident macrophage population, which origi-
nates from yolk-sac progenitors and self-renews via proliferation under homeostatic 
conditions. Over time into adulthood resident ATMs are replaced with circulating 
monocytes derived from bone marrow [33]. Using mouse bone marrow chimera 
experiments, following transplanting donor CD45.1+ bone marrow into recipient 
CD45.2+ mice, and maintenance on obesity-inducing HFD, 85% of the ATM were 
donor-derived compared to 15% that were recipient-derived [3]. Interestingly, the 
polarization of macrophages in obesity from an M2 to an M1 phenotype has been 
mainly attributed to the recruitment of monocytes to AT, rather than the conver-
sion of tissue resident M2 macrophages [34]. Murine monocytes can be classified 
through the expression of Ly6C, with Ly6Chi monocytes considered inflammatory. 
In the steady state Ly6Chi monocytes differentiate into Ly6Clo monocytes in the 
circulation, which are believed to differentiate into M2 macrophages in the tissue. 
However, in obese AT in response to inflammatory stimuli such as the monocyte 
chemoattractant CCL2, Ly6Chi macrophages are recruited to the AT where they 
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differentiate to M1-like ATM [25]. Indeed, in absence of Ccl2 expression macro-
phages expressed an M2 gene profile [35].

ATM represents the largest population of leukocytes within the AT and plays 
many vital homeostatic roles including tissue remodelling and insulin sensitivity. 
However, with progressive obesity ATM are the key mediators of inflammation, IR 
and the impairment of adipocyte function.

3. Polarization of ATM and the link to IR

Macrophages are extremely heterogenic in function and phenotype, and have his-
torically been characterized into two phenotypes; M1 and M2. M1 macrophages are 
often defined as ‘classically activated’ and are generally pro-inflammatory in func-
tion, with a vital role in eliminating pathogens and virus-infected cells. Whereas, M2 
macrophages and termed ‘alternatively activated’ are anti-inflammatory in function 
and promote tissue repair and wound healing. This is very simplified and dated 
model however, evidence now suggests that ATMs include highly plastic cell popu-
lations, with their phenotype largely dependent on the microenvironment of the 
AT. Whilst the exact number and function of ATM in the AT is evolving, it is clear 
there are distinct populations in the lean and obese AT, with unique tissue distribu-
tion, marker expression, transcriptional profiles and functions. Indeed, obese ATM 
display markers that are largely induced by their metabolic state rather than cytokine 
stimuli that classically polarise M1 and M2 cells [32].

3.1 M1 and M2 macrophage phenotypes

M1 macrophages are activated by signals associated with infection such as 
IFN-ɣ as well as bacterial-derived products such lipopolysaccharide (LPS) and free 
fatty acids (FFA). M1 macrophages are loosely identified by surface expression 
of F4/80+CD11C+ with high levels of MHC-II, CD68, CD80 and CD86 costimula-
tory molecules in addition to release of TNF-α and inducible nitric oxide synthase 
(iNOS) [36]. M2 macrophages are activated via Th2 cytokines, IL-4 and IL-13 as 
well as by parasitic products. M2 macrophages are loosely identified as F4/80+CD2
06+CD301+CD11C− and express genes encoding anti-inflammatory proteins such as 
Chil3, Arg1 and Il10 in mice [34]. A crucial transcription factor in M2 macrophage 
polarisation is peroxisome proliferator-activated receptor (PPAR-γ/δ), which can be 
driven by adipocyte derived IL-4 and IL-13 [37–39] (Figure 2). Some markers vary 
between mice and human macrophages. For example, there are no human homo-
logues of the M2-associated genes Chil3, Arg1 and Fizz1, with human M2 identified 
based on expression of tranglutaminase-2 (TGM2) and CD68 [40].

3.2 MMe and Mox macrophage phenotypes

Macrophages with a phenotype associated with obesity are induced by several 
metabolic stimuli such as FFA, high insulin and glucose, oxidised phospholipids and 
low-density lipoproteins. These macrophages display surface markers that are neither 
representative of typical M1 or M2 macrophages and give rise to a population of meta-
bolic activated (MMe) and oxidised (Mox) macrophages [41, 42] (Figure 2). Both 
these macrophage phenotypes are associated with a state of IR. MMe macrophages cell-
surface markers express ABCA1, CD36 and PLIN2 and are involved in the clearance of 
dead adipocytes through lysosomal exocytosis as well as potentiating inflammation. 
NADPH-oxidase-2 (NOX2) has been identified as a key driver of the functions of MMe 
macrophages, with Nox2-deficient mice displaying attenuated ATM inflammation 
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and improved glucose sensitivity in a model of diet-induced obesity, when compared 
to WT animals [41]. Mox macrophages are driven by oxidised phospholipids derived 
from oxidised low density lipoproteins (LDL) [43] and express surface markers Srnx-1 
and Txnrd-1 [42]. Mox macrophages have been studied primarily in the context of 
atherosclerosis, where the oxidation of accumulated LDL leads to enrichment of 
the tissue with oxidised lipids, causing the polarisation of macrophages towards a 
phenotype dependent on the transcription factor Nrf2 [43]. However, a recent paper 
identified that ATM with a Mox phenotype (CX3CR1negF4/80lowTxnrd1+HO1+) are the 
predominant phenotype present the AT of lean mice, driven by individual oxidised 
phospholipids in the AT [44]. It will be an interesting further area study to appraise the 
role of these novel macrophage phenotypes within the context of obesity and IR.

3.3 Regulators of macrophage polarization

Macrophage polarization has been well studied over the past decade leading to 
the discovery of several key regulators which orchestrate macrophage polarization, 
such as the Signal Transducer and Activator of Transcription (STAT) family, inter-
ferons, regulators of lipid metabolism, transcription factor families, microRNAs 
(miRNAs) and long non-coding RNAs [45] (Figure 3).

3.3.1 STAT family members

The Janus Kinase (JAK)/STAT signalling pathway transmits signals from extra-
cellular cytokines into the nucleus. Indeed, JAK/STATs are arguably the most widely 
studied pathway within the context of macrophage polarisation, with IFNɣ binding 

Figure 2. 
Adipose tissue macrophage (ATM) polarisation in lean and obese state. ATM originate from polarisation of 
‘M0’ macrophages. Depending on the stimuli and local environment facilitates the macrophage polarisation. 
Th1 cytokines, LPS, IFN-ɣ, TNF-α and IL-1β promote a M1 macrophage that is characterised by 
F4/80+CD11c+. In contrast, Th2 cytokines, IL-4 and IL-13 promote an M2 macrophage that is characterised 
by F4/80+CD206+CD301+CD11c−. Interestingly, in an obese state, the hypoxic environment and metabolic 
cues such as excess free fatty acids, high insulin and glucose, oxidised phospholipids and low-density 
lipoprotein, which promotes a metabolic activated (MME) or oxidised (MOX) macrophage. In the obese state, 
macrophages promote inflammation, IR and tissue damage. In contrast, in the lean state, macrophages promote 
ant inflammation, insulin sensitivity and tissue repair.
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to its receptor triggering activation of JAK1/2-mediated tyrosine phosphorylation 
and subsequent dimerization of STAT1 one of the first pathways to M1 polarisa-
tion identified [46]. In addition, LPS binding to TLR4 induces autocrine produc-
tion of IFN-ß that activates the type 1 IFN receptor triggering STAT1 and STAT2 
phosphorylation and heterodimerisation [47]. STAT3 has a dichotomous role in 
macrophage polarisation, it is the key transcriptional regulator in the production 
of the anti-inflammatory cytokine IL-10, which can drive an anti-inflammatory 
macrophage phenotype, however, STAT3 can also be activated by IL-6 and IFN-ß, 
inducing a pro-inflammatory phenotype [48]. Conversely, IL-4 and IL-13 induces 
M2 macrophage polarisation largely through induction of STAT6 and KLF4 via the 
dual catalytic activities of MCP-1-induced protein and inducing PPAR-ɣ [49–51].

3.3.2 Interferon regulatory factors

Interferon regulatory factors (IRFs) are intracellular proteins that regulate 
immune cell maturation and play a pivotal role in macrophage polarization. Two 
key and opposing IRFs in macrophage polarisation are IRF4 and IRF5, which 
directly compete for binding to MyD88 and subsequent transcription factors such 
as NFκB. Interestingly, IRF5 was shown to promote M1 macrophages, while IRF5 
expression was upregulated in obese individuals compared to lean individuals at 
both the mRNA and protein levels and is negatively associated with insulin sen-
sitivity [52–54]. It was also shown that IRF5 promotes inflammatory macrophage 
polarization by activating the transcription of IL-12 and repressing IL-10 [55]. 
Conversely, IRF4 acts as an antagonist of M1 macrophage polarisation, promot-
ing M2 macrophages [53, 54, 56]. In the context of obesity, macrophage-specific 
knockout of IRF4 resulted in significant IR and an increase in expression of 
pro-inflammatory genes [57]. Furthermore, IRF6 has also been implicated in 

Figure 3. 
Intracellular signalling of M1 and M2 macrophage polarisation. Respective intracellular key regulators of M1 
and M2 macrophage polarisation. Signal transducer and activator of transcription (STAT) family, interferons 
(IRFs) and microRNA (miRNAs).
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macrophage polarisation, promoting M1 macrophages due to suppression of PPARɣ 
expression, a critical regulator of M2 macrophages. Overexpression of IRF6 reduced 
M2 activation, whilst IRF6 knockdown enhanced M2 macrophage activation [58]. 
The impact of IRFs on macrophage polarisation and plasticity is clearly quite com-
plex and further studies will hopefully provide information on how IRFs function 
in different microenvironments, for example, in lean versus obese AT.

3.3.3 MicroRNAs

miRNA are short inhibitory non-coding RNAs (~22 nucleotides) that degrade 
specific mRNA targets or block RNA translation, and have also been implicated in 
driving macrophage polarisation. Indeed, miR-125b expression was shown to be 
upregulated in murine macrophages following IFN-ɣ stimulation and was identi-
fied to promote M1 macrophage polarisation, while suppressing IRF4, an important 
M2 transcription factor [59]. Additionally, miR-155 was also shown to promote M1 
polarisation with expression in murine macrophages increased upon TLR activation 
or stimulation with pro-inflammatory cytokines (TNF-α, IFN-β or IFN-ɣ) [45]. 
Whilst in human macrophages, miR-155 was shown to target IL-13Rα1 and inhibit 
STAT6 activation, thus inhibiting M2 macrophage polarisation [60]. Additionally, 
miR-9 enhances M1 macrophage polarisation by suppressing PPARδ [61]. Whilst 
miR-127 suppresses B-Cell lymphoma protein (Bc6), which promotes M1 polarisa-
tion [62]. Conversely, miR-124 promotes M2 polarisation via LPS-induced cytokine 
production by targeting STAT3 to decrease IL-6 production and reduce TNF-α [63]. 
Furthermore, miR-132, miR-146a and miR-223 induce M2 macrophages by inhibiting 
NF-κB [64–66].

3.4 Hypoxia and macrophage polarisation

Of interest in the context of obesity is the potential for hypoxia to influence 
macrophage polarisation of macrophages (Figure 2). Indeed, hypoxic areas in adi-
pose tissue occur in obese individuals when rapid tissue expansion occurs without 
sufficient accompanying blood flow to these areas. M1 macrophages display high 
expression levels of Hypoxia-related genes including Hif1α, which has been shown 
to induce a pro-inflammatory phenotype in macrophages via TLR4 activation, 
involving the PI3K/Akt signalling pathway [67, 68]. TLR4 expression in macro-
phages was shown to increase in a hypoxic environment [69]. Hif1α enhances the 
transcriptional activity of NF-κB, driving production of pro-inflammatory cyto-
kines and decreasing the induction of immune regulatory mediators [70]. In con-
trast, M2-like macrophages in obese individuals express Hif2α [71]. Indeed, HIF-2α 
is also upregulated under low oxygen levels [5]. It was shown that HIF-2α over-
expressing macrophages suppressed pro-inflammatory responses and improved 
IR. Whilst knockdown of HIF-2α in macrophages induced pro-inflammatory gene 
expression in adipocytes [71]. Thus, it was suggested that HIF-2α counteracts the 
pro-inflammatory responses to relieve obesity induced IR in AT [71].

3.5 IR and macrophage polarisation

Insulin acts in the adipose tissue to promote uptake and storage of fatty acids, 
stored as triglycerides, and inhibits the lipolysis of stored triglycerides. IR is a 
reduced response to insulin in the liver, muscle and AT, due to an impairment in the 
insulin-signalling pathway, leading to hyperglycaemia [72]. In obesity, the increased 
recruitment of macrophages to AT positively correlates with IR [4]. Indeed, 
obese mice show increased macrophage-mediated inflammation that resulted in 
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long-term IR [73], with elevated levels of FFA which activated CD36 expressing 
macrophages and adipocytes, inducing inflammation and impairing insulin signal-
ling [74]. In AT from lean states, the presence of M2 macrophages maintains insulin 
sensitivity via anti-inflammatory actions of IL-10 and STAT3 [25]. In obese individ-
uals, there is a change in adipocyte metabolism and gene expression. Consequently, 
there is increased lipolysis and release of FFA which can lead to TLR4 activation 
of M1 macrophages [75]. Indeed, TLR4 expression is increased on macrophages 
in obese individuals. In co-culture studies, it was shown that macrophage activa-
tion through TLR4 signalling increased secretion of pro-inflammatory cytokines, 
blocking the insulin signalling cascade [76, 77]. In obese individuals, the IκB kinase 
(IKK) complex is activated in macrophages resulting in phosphorylation of IκBα 
on Ser32 and 36, degrading IκBα and allowing NF-κB to translocate to the nucleus 
and upregulated target genes such as pro-inflammatory cytokines including TNF-α, 
IL-1β and IL-6 [78].

Increased expression of pro-inflammatory cytokines negatively affects insulin 
signalling pathways [79]. The effect of these cytokines on IR are seen locally in 
AT, but also systemically as they are released into circulation [76]. TNF-α phos-
phorylates insulin receptor substrates (IRS), consequently preventing downstream 
signalling via inhibiting IKK, c-Jun n-terminal kinase (JNK) and atypical protein 
kinase C (aPKC) [80]. Interestingly, males have been shown to have increased 
TNF-α plasma concentration compared to females, leading to the suggestion that 
obese males are more susceptible to develop IR [81]. IL-6 is increased in the serum 
of obese individuals and mice, with weight loss reducing circulating IL-6, which 
improves insulin sensitivity [82]. Systemic IR has also observed during pregnancy, 
puberty and during infection such as sepsis driven by TNF-α and IL-6 [83]. It is 
clear from such studies that the presence of pro-inflammatory cells and the release 
of pro-inflammatory cytokines lead to a loss of sensitivity to insulin and a state of 
IR. This is possibly the biggest incentive to therapeutically target the macrophages 
in cases of metabolic disease.

4. The metabolic signature of macrophages

Metabolism is a series of highly interconnected pathways that generate 
metabolic products such as energy and macromolecules from nutrients in the 
microenvironment. Whilst the metabolic pathways are plastic, cells, in particu-
lar macrophages, tend to utilise a pathway that suits their immediate energy 
requirements. M1 macrophages have huge metabolic demands, and rely largely 
on glycolysis, conversely, M2 macrophages meet their energy requirements using 
oxidative phosphorylation (OXPHOS) pathways. During glycolysis, extracellular 
glucose is taken up by the cell and converted to two molecules of pyruvate and ATP; 
NAD+ is converted to NADH+H+ regenerated through the breakdown of pyruvate 
to lactate. Glycolysis also provides the first molecule in the pentose-phosphate 
pathway, glucose-6-phosphate, which provides NADPH to maintain the cellular 
redox balance and the production of fatty acids. In M1 macrophages, the increased 
glucose consumption is associated with the capacity for rapid cytokine production 
and antimicrobial activity through ROS generation [84, 85]. Conversely, in the 
presence of oxygen cells produce ATP via the electron transport chain (ETC), which 
is linked to the tricarboxylic acid (TCA) cycle. The TCA cycle uses carbon sources, 
such as Acetyl CoA, glutamine or fatty acids to fuel a cycle which generates the 
reducing agents NADH and FADH2 that serve as electron carriers for the ETC for 
OXPHOS. Glycolysis is a poor producer of energy, with only two molecules of ATP 
per glucose molecule, compared to 36 molecules produced by OXPHOS. However, 
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the use of each pathway will depend on the environment and functional require-
ments of the cells, as glycolysis provides energy rapidly.

The TCA cycle is truncated in M1 macrophages, resulting in a reduced production 
of alpha-ketoglutarate (α-KG) and accumulation of citrate and succinate metabolites 
[86]. The accumulation of citrate leads to the production of the macrophage specific 
metabolite itaconic acid, which is a major feature of LPS stimulated macrophages 
[86]. The build-up of itaconic acid has been identified as a driver for succinate 
accumulation, through its ability to inhibit succinate dehydrogenase [87, 88]. The 
excess succinate leads to the induction of IL-1β through the stabilization of HIF-1a 
further enhancing inflammation in the macrophages [89]. Indeed, blocking glycoly-
sis reduces release of CCL2 from TNF-a or LPS stimulated adipocytes, providing 
further evidence for a link between metabolism and inflammation [90] (Figure 4).

Macrophage polarization is also influenced by the metabolism of arginine. 
M1 macrophages upregulated nitric oxide synthase (iNOS), which catabolize 
arginine to citrulline and nitric oxide (NO). This NO is important for intracellular 
killing of pathogens. In addition, M1 macrophages use the pentose phosphate 
pathway, which generates NADPH for the NADPH oxidase, which produces ROS 
and NO. Consequently, these metabolic pathways provide M1 macrophages with 
rapid energy. Conversely, in M2 macrophages, arginase-1 (Arg1) is induced which 
produces urea, ornithine and polyamines which are key in tissue repair [36, 91].

The metabolic profile of ATM alters dependent on the microenvironment of the 
AT. In mice, transcriptome and extracellular flux analysis have shown that in lean AT 
fatty acid oxidation, glycolysis and glutaminolysis all participate in cytokine release 
by ATM [92]. In obese AT, both glycolysis and OXPHOS are utilised, however gly-
colysis takes precedence, potentially due to the hypoxic environment in the AT [92].

Figure 4. 
Immunometabolic differences in M1 and M2 macrophages. M2 macrophages use OXPHOS and the TCA 
cycle to produce energy. They have increased ability to uptake free fatty acid (FFA) and fatty acid oxidation 
(FAO) to facilitate the TCA cycle. In contrast, M1 macrophages increase energy production oxidative glycolysis. 
M1 macrophages also have a ‘broken’ TCA cycle, resulting in accumulate of citrate and succinate. Increased 
succinate results in secretion of pro-inflammatory cytokine IL-1β via HIF-1α. TCA, tricarboxylic acid; 
HIF-1a, hypoxia-inducible factor-1a; a-KG, alpha-ketoglutarate.
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5.  Could targeting macrophages provide a therapeutic strategy in 
metabolic disorders?

As described above, as macrophages play a significant role in obesity and other 
metabolic disorders they are an attractive therapeutic target. The therapeutic strate-
gies that target macrophages look to re-educate polarized macrophages, depletion 
of polarized macrophages or silencing macrophages. Additionally, the link between 
macrophage polarization and cellular metabolism suggests a potential therapeutic 
strategy by modulating the macrophage metabolic state. There are several therapeu-
tic strategies commonly used to target macrophages such as depletion, proliferation, 
inflammation and gene silencing.

5.1 Macrophage depletion

It was shown that macrophages could be depleted in vivo by inducing apoptosis 
following accumulation of toxic particles [93]. Interesting, it was shown that by 
depletion of pro-inflammatory macrophages resulted in normalizing insulin sensi-
tivity in IR obese mice [94]. Furthermore, in obese mice, the depletion of visceral 
adipose tissue macrophages (VATMs) by Intraperitoneal injection of clodronate 
liposomes, results in improved systemic insulin sensitivity, glucose homeostasis 
and further blocked high-fat diet-induced weight gain [95, 96]. Consequently, 
depletion of VATMs also resulted in prevention of CLS in WAT and a low level of 
blood TNF-α [96]. However, liposomes treatment as a therapy is prone to degrada-
tion and significant risks of potential off-target effects. An alternative approach 
is altering macrophage proliferation, such as using a nanoparticle-based delivery 
of simvastatin, which may provide therapeutic benefit for atherosclerosis [97]. 
However, as previously mentioned, in obesity, macrophages are recruited from 
circulating monocytes, so reducing proliferation may not provide therapeutic 
benefit for IR [98].

5.2 Biological therapeutics

There are several orally active synthetic ligands for PPARɣ which are used to 
treat IR in patients with T2D. It has been shown in vivo that pioglitazone, belong-
ing to the chemical class thiazolidinediones, reduces LPS induced TLR2 and TLR4 
expression on peritoneal macrophages. Whilst in vitro, pioglitazone reduces the 
synthesis and gene expression of TLR2, TLR4, IL-1β, TNF-α, IL-6 and MCP-1 in 
human blood monocytes [99]. However, the use of thiazolidinediones like pio-
glitazone in clinical studies to treat T2D has resulted in increased cardiovascular 
events and death [100].

Clinical studies have shown that anti-inflammatories are efficacious in patients 
with systemic IR. Members of the interferon family have been used to suppress the 
release of pro-inflammatory cytokines, however, the use of type 1 interferons, as 
well as other anti-inflammatory strategies, is associated with cell toxicity in long-
term use. Recently studies using interferon tau (IFNT), an alternative member 
of the type 1 interferon family, in mice with diet-induced obesity show enhanced 
insulin sensitivity when compared to untreated mice. There was also a significant 
decrease in secretion of pro-inflammatory cytokines and increased M2 macro-
phages in AT, suggesting IFNT as a novel bio-therapeutic agent for treating obesity-
associated disorders [101].

Interestingly, yeast-derived β-glucans (Y-BGs) have been shown to be beneficial 
in models for obesity. In obese humans, Y-GBs administered orally increased AT 
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expression of anti-inflammatory cytokine IL-10 and serum IL-10 [102]. In addition, 
macrophages uptake of Y-GBs increased reactive oxygen species (ROS) formation, 
phagosomal maturation and induction of autophagy [103].

5.3 RNA interference

Another attractive therapeutic approach in targeting macrophage polarisation 
would be to use RNA interference (RNAi), which reduces gene expression. This 
approach could target the inflammatory mediators such as TNF-α, IL-6 and IL-1β 
[98]. Indeed, it was shown that intraperitoneal (i.p.) administration of small inter-
fering RNA (siRNA) selectively silenced genes such as TNF-α in epididymal ATM 
of obese mice and improved glucose tolerance [7]. Additionally, it was shown that 
i.p. administration of a rabies virus glycoprotein-derived acetylcholine receptor-
binding peptide delivers siRNA into ATM and peritoneal macrophages in HFD 
mice. This resulted in inhibition of ATM infiltration and reduced pro-inflammatory 
cytokines, thus improving glucose tolerance and insulin sensitivity [104].

5.4 Metabolic reprogramming

As stated previously, macrophage phenotypes have distinct metabolism path-
ways. Therefore, altering the metabolic state of macrophages provides a potential 
therapeutic approach to metabolic disorders. Indeed, the strong link between 
macrophage polarization and cellular metabolism makes altering the metabolic 
state of the cells an attractive therapeutic prospect. To prove this principle, inducing 
oxidative metabolism in M1 macrophages has been shown to shift the phenotype to 
an M2 profile [105], while blocking oxidative metabolism in macrophages inhibits 
the M2 phenotype and drives the M1 macrophage phenotype. Furthermore, it was 
shown that by driving macrophage metabolism with glucose, insulin and fatty acids 
resulted in an increased pro-inflammatory ATM phenotype in obese mice [32].

Modulation of the metabolic pathways in macrophages has been studied 
extensively in recent years to assess the extent to which inflammatory status can 
be influenced by the metabolic profile of the cells. Glucose transporter (GLUT)-1 
is upregulated in macrophages localised to the CLS in inflamed obese AT. In vitro 
studies show that overexpression of GLUT1 increases glucose uptake in the cells and 
induces release of pro-inflammatory cytokines, linking the metabolic phenotype 
with the inflammatory function of the cells [106]. Furthermore, knockout of fatty 
acid transporter protein (FATP)-1 expression, which is elevated in M2 macrophages, 
is associated with priming of macrophages towards an M1 phenotype, upregulating 
expression of NOS1 [107]. Further pathways of current interest to therapeutically 
target include Notch, carbohydrate kinase-like protein (CARKL), mammalian target 
of rapamycin (mTOR), IL-4 and IL-10, all of which show intricate links between the 
metabolic and inflammatory pathways in macrophages [108–112].

6. Conclusions

Obesity has long been considered a low-grade systemic inflammatory condi-
tion, which appears to be mediated largely through the prominent populations of 
ATM. Alterations in environmental cues, including changes in metabolites, the 
microbiota and inflammatory stimuli act to influence the ATM, coordinating the 
recruitment of pro-inflammatory monocytes and altering the metabolic state of 
ATM. While in lean individuals the resident ATM function to clear dead adipocytes 
and sequester excess lipids from the AT to maintain homeostasis within the AT, 
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the recruited inflammatory ATM release pro-inflammatory cytokines to induce 
inflammation within the AT and are involved in the pathogenic remodelling of 
the AT. This state of inflammation within the ATM is largely associated with IR 
and metabolic dysfunction through interference with insulin signalling pathways. 
Macrophages are heterogenous and extremely plastic and as such it has historically 
been difficult to define subsets. With the use of transcriptional and metabolic 
profiling it is now becoming possible to appraise the full role of ATM in obesity. 
This knowledge will aid the search for novel therapeutics targeting the metabolic 
capacity and inflammatory potential of ATM, restoring the homeostatic functions 
of resident lean ATM, to modulate obesity.
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Wnt Signaling Regulates 
Macrophage Mediated Immune 
Response to Pathogens
Suborno Jati and Malini Sen

Abstract

Infection with pathogenic microbes is a global threat. Macrophages play a 
fundamental role in promoting host resistance to deadly infections from pathogenic 
microbes by virtue of a well-orchestrated immune defense system. Phagocytosis 
and obliteration of invading pathogens by macrophages are an innate immune func-
tion that not only sustains immune homeostasis but also bolsters adaptive immune 
response through antigen processing and presentation. Wnt signaling, where Wnt, a 
secreted glycoprotein which interacts with Frizzled and ROR cell surface receptors 
to initiate cellular interactions, could be vital for the immune response executed 
and propagated by macrophages in both innate and adaptive immune responses. 
The goal of this chapter is to describe how Wnt signaling influences phagocytosis, 
autophagy, and transcriptional activation to enable the macrophage to exercise its 
immune response program to resist infection.

Keywords: macrophage, Wnt, phagocytosis, actin cytoskeleton, transcription, 
immunity

1. Introduction

1.1 Macrophages: innate and adaptive immunity

Macrophages are present as crucial members of a multitude of specialized cells 
that fortify our immune system by fighting against infection caused by pathogens 
[1]. Macrophages differentiate from tissue-infiltrated circulating monocytes, which 
originate from bone marrow resident myeloid precursors [2, 3]. All tissue macro-
phages, however, do not originate from monocytes. Although some macrophage 
origins have been studied carefully, the detailed molecular mechanisms toward the 
differentiation of different macrophage types remain mostly uncharacterized [4–7]. 
Irrespective of their origin, most macrophages eliminate encountered pathogens 
through phagocytosis (element of innate immunity) and additionally present the 
foreign antigens derived from pathogens via major histocompatibility complex 
(MHC) molecules to lymphocytes leading to lymphocyte activation (element of 
adaptive immunity) [2, 8]. Cytoskeletal modulations and transcriptional activation 
programs intrinsically associated with macrophage-mediated immune functions 
(e.g. phagocytosis, autophagy/xenophagy) conform to the in-built maneuvering of 
macrophages as they confront with different kinds of pathogens. Several lines of 
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evidence substantiate that Wnt signaling is important for the transcriptional 
programs and cytoskeletal modulations inherent to macrophages during immune 
surveillance and response to different kinds of infection [9–13].

1.2 Wnt signaling

Wnt signaling is an integral theme of tissue/organ morphogenesis, repair, and 
maintenance. Thus, it is not surprising that this central premise of life is also an 
important component of macrophage function [9–16]. Wnts constitute a large 
family of secreted glycoprotein ligands, which bind to Frizzled and/or ROR cell 
surface receptors during various phases of tissue and organ development, morpho-
genesis, and homeostasis. Frizzleds are seven transmembrane-spanning receptors 
bearing homology to heterotrimeric G protein-coupled receptors, and RORs bear 
homology to tyrosine kinase receptors [17–20]. Based on the gene database, there 
are about 19 Wnt ligands and about 12 and 2 Frizzled and ROR receptors, respec-
tively [21, 22]. Whether all these gene products are expressed and functional in our 
system in different cellular contexts is unclear at this stage. Although there is evi-
dence of co-receptor function by the ROR subtype receptors during Wnt-Frizzled 
signaling [22, 23], the degrees of coordination between the Frizzled and ROR 
receptors under different physiological conditions are yet to be characterized at the 
molecular level. Given the considerable homology among the respective members 
of the Wnt and Frizzled families, any one Wnt ligand may interact with multiple 
Frizzled receptors. Thus, the outcome of Wnt-Frizzled signaling in a particular cell 
type under a certain condition could be dependent precisely on the existing profile 
of Wnt-Frizzled stoichiometry [20].

Wnt signaling is broadly classified into two types—canonical or β-catenin-
dependant and noncanonical or β-catenin-independent (Figure 1). The tran-
scriptional coactivator β-catenin promotes gene expression by LEF/TCF family 
transcription factors in response to canonical Wnt signaling, and transcriptional 
activators such as NFκB, NFAT, and AP1 are associated with noncanonical Wnt sig-
naling. Even though the ligands Wnt3A and Wnt5A are mostly considered as repre-
sentatives of the canonical and noncanonical modes of Wnt signaling, respectively 
[21, 24], the mode of signaling is in reality governed by the receptor(s) receiving 
the Wnt signal as mentioned above and the associated adaptor molecule(s) trans-
mitting it. Thus, some level of crosstalk between the two modes of signaling would 
not be uncommon. Interestingly, the intracellular adaptor molecule Disheveled acts 
as a mediator of both β-catenin-dependant and β-catenin-independent Wnt signal-
ing. Heterotrimeric G proteins, which have been reported to couple with Frizzled 
receptors, add to the complexity of Wnt signaling [18, 25]. Whether heterotrimeric 
G proteins cooperate with Disheveled during canonical and noncanonical Wnt 
signaling is not known clearly. Although there is some evidence of the involvement 
of lipid molecules such as cholesterol in switching Disheveled between the canoni-
cal and noncanonical modes of Wnt signaling [25], the molecular details of such 
presumed conformational switches remain largely undefined. The reason behind 
the preference of cell surface coactivator receptors such as lipoprotein receptor-
like protein (LRP) 5/6 for the canonical mode of Wnt signaling as opposed to the 
noncanonical mode also remains unclear (Figure 1).

1.3 Wnt signaling in immune system

Given that host cytoskeletal rearrangements encompassing phagocytosis and 
autophagy/xenophagy and transcriptional regulation of immune defense genes 
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come into the direct line of control of pathogenic incursions and immune homeo-
stasis [9–12, 26], Wnt signaling aptly associates with host-pathogen interactions 
of macrophages at the crossroads of innate and adaptive immunity. The attributes 
of Wnt signaling and the microbe world being diverse, their mutual interactions 
in the various host defense programs are expected to be manifold. Although 
Wnt3A and Wnt5A are often represented as the prototypes for the two differ-
ent modes of Wnt signaling (canonical and noncanonical) in the regulation of 
immune response, several molecular details of the balancing act of the Wnts 
in relation to the interactions of macrophages with different microbes remain 
unclear.

The primary objective of this chapter is to briefly summarize the conceptual 
advancement in the context of Wnt signaling and immune defense by macro-
phages, focusing mainly on transcriptional activation and the actin cytoskeleton-
associated phagocytosis and autophagy machineries. Our aim is to also address 
unanswered questions, which may prove instrumental in bridging existing 
gaps in our evaluation of the Wnts in the context of macrophage host defense 
programs.

Figure 1. 
An overview of Wnt signaling cascade: in canonical mode of signaling, the association of Wnt-Fz and LRP 
activates a signaling cascade through Dvl and/or G-proteins that leads to inactivation of a GSK3 associated 
destruction complex which in the absence of Wnt would phosphorylate β-catenin for terminal destruction by 
proteasome. Via GSK3 inactivation, β-catenin gets stabilized and translocates to the nucleus where it acts as a 
co-activator of LEF/TCF (transcription factor). In the non-canonical mode of Wnt signaling (often β-catenin 
independent) the signaling cascade through Dvl and/or G-protiens leads to activation of Ca2+ mediated 
signaling where protein kinase C (PKC) and CaMKII gets activated and leads to translocation of NFκB, NFAT 
to the nucleus. Wnt also binds to ROR leading to activation of AP1. A crosstalk between the pathways is not 
uncommon.
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2.  Sustenance of immune defense by macrophages through a steady  
state of transcriptional activation by Wnt signaling

2.1  Significance of constitutive transcriptional activation in macrophages  
by Wnt signaling

Macrophages have long been acknowledged for executing immune defense 
against microbial pathogens through diverse means of signaling that include several 
transcription factors including NFκB, AP1, and NFAT [27–30]. The ability of mac-
rophages to recognize and engulf pathogens, deliberate NADPH oxidase activity, 
and process antigens for presentation to MHC molecules and T cell activation place 
macrophages quite aptly at the crossroad of innate and adaptive immune defense 
programs [31–33]. Surely, macrophages have in-built mechanisms to execute innate 
immunity and translate it to adaptive immune response. However, not much is 
known about the molecular details of how macrophages are naturally geared to 
operate in such innate and adaptive modes of immune defense. We recently demon-
strated that NF-κB (p65) [34], a transcription factor functioning at the core of our 
immune system, remains activated at a basal level in macrophages through a steady 
state of Wnt5A signaling. Administration of inhibitor of Wnt production2 (IWP2) 
to macrophages in culture or depletion of Wnt5A or Frizzled5 (putative Wnt5A 
receptor) gene expression in macrophages by silencing gene transcription through 
small interfering RNA blocks constitutive p65 activation and the steady-state 
immune activity of macrophages [10]. Sustained presence of the Wnt5A-p65 axis 
can potentially bridge innate and adaptive immune responses through regulation of 
the expression of immune response genes, such as CD14, interferons (IFN)s, and 
MHC, and elaboration of immune signaling networks that involve major immune 
response molecules such as the Toll-like receptors (TLR) and nucleotide-binding 
oligomerization domain-containing proteins (NOD) during challenge by pathogens 
[13, 35, 36]. The interrelation of this basal level Wnt5A-p65 signaling with other 
major transcription factors and coactivators of Wnt signaling that mediate immune 
response by macrophages remains to be deciphered at the molecular level.

2.2 NF-κB transcription factors

NF-κB transcription factors comprise a family of five members: p52, p50, p65 
(RelA), c-Rel, and RelB, which regulate gene transcription as combinatorial dimers 
[34, 37, 38]. These dimers remain or become activated through different modes 
depending on the physiological context of cell signaling. In the classical mode of acti-
vation, the homo and heterodimers are translocated to the nucleus for gene expres-
sion after being released from the IκB-bound states in the cytoplasm in response to 
different stimuli that lead to proteasome-assisted IκB degradation through activation 
of the IκB kinase IKK2/β [34]. The p65 homo and heterodimers while being responsi-
ble for inflammatory gene expression are also significantly involved in the sustenance 
of innate immune response gene expression in a context-dependent manner [10]. 
Some of the NF-κB (p65) responsive immune response genes include CD14, MHC, 
and IFNs. A schematic of NF-κB activation is shown in Figure 2.

2.3 Wnt5A signaling-mediated activation of transcription

As mentioned earlier in this chapter, Wnt5A is one of several members of the large 
family of Wnt glycoprotein ligands. Frizzled-5, Frizzled-4, and ROR1 are putative 
receptors for Wnt5A. It is to be noted that although modified versions of selective 
Wnt-Frizzled complex structures have been solved [39], none of the ligand-receptor 
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complexes have been truly biochemically characterized in their physiological con-
texts. In the noncanonical mode of Wnt signaling of which Wnt5A is a representative, 
Wnt5A-Frizzled-ROR or Wnt5A-Frizzled-initiated signaling alters the activity of 
Rho/Rac family GTPases through differential activation of Disheveled [10, 40]. 
Within the Frizzled family of cell surface receptors, Frizzled2, Frizzled5, and 
Frizzled4 are some of the putative receptors for Wnt5A [17, 41, 42]. It is not known 
if Disheveled activation by Wnt5A signaling acts in concert with or is regulated by 
heterotrimeric G proteins, given that Frizzled receptors are homologous to heterotri-
meric G protein-coupled receptors. The involvement of β-catenin by Wnt5A signaling 
is governed by the availability of receptors and cytoplasmic signaling intermediates 
[20, 43]. The subsequent activation of transcription factors such as AP1, NFAT, 
and NF-κB through complex signaling networks and crosstalk, either dependent or 
independent of nuclear translocation of β-catenin (explained in Figures 1 and 2), 
could lead to elaboration of context-dependent immune responses (Figure 3).

The basal Wnt5A-Frizzled5 signaling-dependent NF-κB (p65) activity in macro-
phages that we observed is at least partly accountable for the steady-state expression 
of CD14/IFNβ, the promoter sequence of which at the genome level contains p65 
binding elements [10, 13] (Figure 3). The constitutive p65 activity in the nucleus also 
contributes to sustaining Wnt5A expression [10]. Accordingly, the self-sustaining 
Wnt5A-p65 axis responsive CD14 and IFNβ expression helps to initiate and coor-
dinate several aspects of macrophage function including interaction of pathogen 
recognition with TLR signaling, thus enabling adaptation to protective immune 
responses to bacteria, bacterial LPS (lipopolysaccharide), and virus as explained 
in Figure 3. The Wnt5A-NF-κB (p65) responsive gene expression declines upon 

Figure 2. 
An overview of NFKB activation pathway in the macrophage: During steady state a basal level of stimulus 
by Wnt signaling keeps IKK enough activated to result in inactivation of IκB and translocation of a certain 
pool of NFκB transcription factor (p65 homodimer) to the nucleus. A minimum pool of transcription factors 
contributes to survival and vigilance for immune response. In the activated state, during inflammation and 
chronic infection, stimuli (TNFα, LPS, IL1β) lead to an increase in NFκB combinatorial dimers in the nucleus.
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exposing macrophages to an IKK2-specific inhibitor [10]. Wnt5A signaling is also 
responsible for a basal level of secretion of IFN-γ, another important regulator of 
innate immune signaling in macrophages. The steady-state Wnt5A signaling and 
NF-κB activity also promote macrophage survival through the expression of NF-κB-
responsive survival genes such as Bcl2 [10]. These data are consistent with the dearth 
of survival of NF-κB-deficient mice due to different kinds of infection and apoptotic 
cell death [44]. The Wnt5A-Frizzled5 signaling-assisted constitutive p65 activity is 
dependent on Rac1 activation, which lies upstream of IKK2 activity [10]. The detailed 
mechanism of how the Rac1 GTPase activates IKK in a Wnt5A signaling-dependent 
mode is yet to be explored. It also remains to be tested how Wnt5A-responsive innate 
immune functions in macrophages relating to pathogen recognition and activation 
of several intracellular signaling pathways translate to adaptive immune responses 
encompassing antigen processing/presentation and lymphocyte activation.

2.4 Signaling and transcriptional activation by other Wnts

In light of the fact that Wnts comprise a large family of glycoprotein ligands 
sharing considerable amino acid sequence homology and bind to cell surface recep-
tors that are equally homologous [21], the schemes of regulation and sustenance 
of immune responses in macrophages by Wnt signaling are likely to be manifold. 
Several reports have outlined the importance of canonical Wnt signaling and 
β-catenin in the development, sustenance, and elaboration of memory and effector 
T cells that comprise a crucially important component of immunity to infectious 
pathogens [45]. The role of the TCF family of transcription factors in this respect 
has generated considerable interest in our understanding of the importance of 
Wnt signaling in immune homeostasis. However, the precise role of canonical Wnt 
signaling by β-catenin and TCF transcription factors in macrophages in the genera-
tion and sustenance of T cell-mediated immunity remains unclear.

Figure 3. 
A schematic of Wnt5A-p65 axis: Wnt5A binds with it’s putative receptor Frizzled5 (FZ) and transmits signal 
through intermediates like Disheveled (Dvl), trimeric G-proteins (Gα, β, ƴ ) activating Rac1. Activated Rac1 
helps in translocation of NFκB from cytosol to nucleus via activation of IKK and proteasomal degradation 
of IKK-phosphorylated IκB. The translocated p65 in the nucleus helps to maintain expression of proteins 
such as CD14, IFNƴ, IFNb, MHC, needed for pathogen detection and clearance, and Bcl2, needed for cell 
survival. Amplification of signals by CD14-assisted molecules such as TLRs facilitate pathogen recognition and 
clearance.



57

Wnt Signaling Regulates Macrophage Mediated Immune Response to Pathogens
DOI: http://dx.doi.org/10.5772/intechopen.86433

3.  Role of Wnt signaling in macrophage phagocytosis: involvement  
of the actin cytoskeleton

3.1 Significance of phagocytosis

Phagocytosis of pathogens is one of the most important features of the host-
pathogen communications and interactions mediated by macrophages. This ele-
ment of host defense by macrophages not only operates toward host protection at 
the onset of infection but also makes room for the initiation and amplification of 
intracellular signals that can potentially mature to the generation of antigen-specific 
T cell responses and creation of immunological memory (explained in Figure 4).

As described earlier in this chapter, Wnt5A signaling aids in maintaining a 
steady-state expression of CD14 and IFNβ, two of the many molecules involved in 
innate immune defense. Although it is not exactly clear how CD14 and IFNβ fit into 
the program of phagocytosis in exact molecular terms, it is documented that while 
CD14 is instrumental in the recognition of structural motifs like lipopolysaccharide 
(LPS) intrinsic to certain pathogens, both CD14 and IFNβ facilitate pathogen clear-
ance through the initiation and propagation of macrophage TLR signaling during 
phagocytosis and activation of immune responses [10, 13] (Figure 3). Following 
pathogen engulfment and phagosome formation during phagocytosis, macrophages 
rely mostly on endosomal and lysosomal proteases and NADPH oxidase-generated 
reactive oxygen species for both pathogen clearance as well as processing and 
presentation of antigenic peptides to MHC molecules for presentation to T lympho-
cytes [31, 46] and translation to memory.

3.2 Need for Wnt5A signaling-assisted actin rearrangement/assembly

At the core of all phagocytosis-related processes lies the involvement of the actin 
cytoskeleton through its influence on protein sorting/trafficking and intracellular 
organelle fusions that are crucial for the activation of phagosomal enzymes such as 

Figure 4. 
A schematic of maturation of pathogen containing vesicle and its outcome: After phagocytosis of pathogen 
there is fusion of early endosome and endoplasmic reticulum (ER) with the phagosome which helps in the 
maturation of the phagosome and fusion with lysosome. This is important for both innate and adaptive 
immunity.
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NADPH oxidase and phagosome maturation [31, 47]. Several cytoskeletal GTPases 
such as Rac1 and Disheveled, lipid rafts, and actin-nucleating proteins such as Arp2/3 
and formins partake of the cytoskeletal actin modulations that accompany macro-
phage phagocytosis and phagosome maturation [47–50]. There is evidence that Wnt5A 
signaling is important for such rearrangements of the actin cytoskeleton. Accordingly, 
Wnt5A signaling facilitates Rac1- Disheveled-lipid raft-dependent phagocytosis of 
bacteria and other foreign matter through modulations of the actin cytoskeleton [9]. 
Blockers of any of the cytoskeletal actin-associated signaling intermediates—Rac1, 
Disheveled, or lipid raft and cytochalasin-D, an inhibitor of actin assembly—are 
antagonistic to the effect of Wnt5A signaling on phagocytosis [9]. The influence of 
Wnt5A signaling on phagocytic uptake is usually dependent on the microbe under 
consideration, because while most bacterial species tested undergo facilitated phago-
cytic uptake by Wnt5A signaling in macrophages, phagocytic uptake of Leishmania 
donovani remains unaffected by it [11]. Perhaps Wnt5A-facilitated internalization 
encompasses distinct membranous domains depending on the availability of cognate 
receptors, which are not equally compatible with all microbes. That Wnt5A signaling 
also facilitates phagosome-lysosome fusion during phagosome maturation which is 
evident from the augmented appearance of lysosomal markers such as cathepsins in 
Wnt5A-induced phagosomes of bacteria-infected macrophages [12]. Wnt5A-facilitated 
alteration in cytoskeletal actin assembly that correlates with phagosome-lysosome 
fusion is concomitant with the killing of several microbes including bacterial patho-
gens (Pseudomonas aeruginosa, Streptococcus pneumoniae, etc.) and even Leishmania 
donovani, although it gets internalized independent of Wnt5A signaling [11, 12]. The 
mechanism of microbial killing is discussed at greater length in the following sec-
tion of this chapter. Microbial killing is furthermore facilitated by Wnt5A-responsive 
NADPH oxidase activity, which is associated with cytoskeletal actin-dependent 
assembly of NADPH oxidase subunits [11]. Interestingly, nonpathogenic laboratory 
strains of bacteria that are engulfed by macrophages in increased numbers by Wnt5A 
signaling are not necessarily killed by it like the pathogenic bacterial strains [9, 12]. 
Such discrepancy in the fate of internalized microbes may be an outcome of notable 
differences in the interaction of different microbial components with Wnt5A-regulated 
cytoskeletal actin rearrangements. The interrelation between Wnt5A signaling and 
Ehrlichia infection is especially noteworthy in this context [51].

In light of the fact that the cytoskeletal actin-assisted phagosome is the 
originator and communicator of many signals generated by phagocytozed cargo-
recognizing molecules such as TLR, NOD1, and NOD2 [35, 52, 53] (Figure 4), it is 
quite likely that the consequences of Wnt5A-assisted phagocytosis are numerous. 
Association of Wnt5A signaling with TLRs has already been reported [54]. Careful 
analysis of the consequences of such associations is important.

3.3 Role played by other Wnts and costimulatory molecules of Wnt signaling

Wnts other than Wnt5A are known to regulate macrophage phagocytosis as well. 
For example, the Drosophila Wnt has been reported to stimulate phagocytic uptake 
in the S2 cell, a macrophage-like line [55]. Moreover, Wnt1, Wnt7A, and Wnt3A 
have been reported as phagocytic modulators [56, 57]. The association or relation 
of these different modes of phagocytosis with Wnt5A signaling and cytoskeletal 
actin rearrangements is yet to be explored. At this point of our understanding of 
Wnt signaling with respect to phagocytosis, regulatory roles played by LRP5/6 and 
ROR, which act as co-receptors to Wnts [22, 58], remain unclear. It also remains to 
be seen if the influence of Wnt5A signaling on phagocytosis is in the canonical or 
noncanonical mode or is in fact an intermediary between the two depending on the 
context of infection, the available receptors, and coactivators.
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4.  Wnt signaling-induced actin-dependent autophagy-assisted 
xenophagy by macrophages and the potential link with antigen 
processing/presentation

4.1 Autophagy-assisted xenophagy

Several pathogenic microorganisms try to adapt to the intracellular milieu of 
macrophage creating a niche for their survival [59–61]. Nevertheless, as described 
earlier in this chapter, the host macrophage tries maneuvering elimination of 
infection by pathogens by several means. It has been reported that following 
phagocytosis of microbes by macrophages, the host autophagy machinery comes 
into play in the ultimate event of clearance of bacteria and other engulfed microbes 
(xenophagy) through coordinated alterations of the actin cytoskeleton. Autophagy 
involves the turnover and clearance of damaged organelles and proteins by the cell 
under both normal conditions as well as under stress in the maintenance of cellular 
homeostasis [62, 63]. During infection with pathogens, the autophagy program is 
often utilized for the incapacitation and eradication of engulfed pathogens [26, 64].

4.2 Role of Wnt signaling and cytoskeletal actin in autophagy-assisted xenophagy

Wnt signaling has been reported to play a significant role in the autophagy-
assisted xenophagy of engulfed microbes by macrophages. Wnt5A signaling, for 
instance, has been documented to be an integral component of this theme in the 
killing of several bacterial pathogens through utilization of a Rac1-Disheveled-actin 
cytoskeleton circuit that involves interactions among several autophagy-associated 
proteins like microtubule-associated protein 1B-light chain 3B (LC3B), autophagy-
related 5 (ATG5), ATG7, and Unc-51-like autophagy-activating kinase 1 (ULK1) [12]. 
The different nuances of Wnt5A signaling in connection with the actin cytoskeleton 
are depicted in Figure 5. Pathogen killing through autophagy machinery is blocked 
with the use of cytochalasin-D, an inhibitor of actin assembly as well as with inhibi-
tors to Rac1 and Disheveled [12]. Although Wnt5A-assisted killing of L. donovani 
in macrophages has not been shown to directly involve autophagy, electron micro-
graphs of L. donovani harboring parasitophorous vacuoles, which display distinct 
membranous aggregates, suggest that L. donovani containing parasitophorous 
vacuoles may be subjected to lysis by the host autophagy circuit activated by Wnt5A 
signaling [11]. The inactivation or lysis of microbe-carrying vacuoles, which hap-
pens in due course through fusion of autophagy-destined phagosome or autophago-
some with the lysosome, may also be facilitated by Wnt5A signaling [12]. Although 
cholesterol and other lipids are known to partake of both Wnt5A signaling and actin 
dynamics [65, 66], at this stage much remains unknown about the specific roles of 
cholesterol and other lipids in the process of actin modulation during phagocytosis 
and autophagic clearance of bacteria and other microbes. It also remains to be seen 
if Wnt5A signaling during autophagy belongs strictly to the noncanonical mode or 
canonical mode based on the involvement of β-catenin.

4.3 Potential link with antigen presentation/adaptive immunity

In view of the fact that the autophagic or rather xenophagic removal of patho-
gens by macrophages involves reorganization and fusion of intracellular vesicles 
associated with at least partial lysis of pathogens, the processing and presentation 
of pathogen antigens to MHC molecules are a likely event during xenophagy in 
infected macrophages [67, 68]. Thus, autophagosome formation, autophagosome 
lysosome fusion, and T cell activation by the presentation of processed pathogenic 
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antigens may prevail as a continuum during immune defense depending on the 
nature and degree of the infection. Given the intrinsic association of Wnt signaling 
with cytoskeletal dynamics and autophagy [11, 12], it is quite likely that Wnt signal-
ing will influence the antigen processing and presentation linked with autophagy in 
infected macrophages. Detailed investigation in this respect, although important, 
remains to be documented.

5. Concluding remarks

Given the important role played by Wnt ligands in the transmission of signals 
associated with cytoskeletal modulation and transcriptional regulation which are 
part and parcel of host-pathogen communications [27–29, 69], a combination of 
Wnt signal transduction cascades is expected to hold a fundamental standing in the 
immune defense program operated by macrophages in both innate and adaptive 
immunity. Phagocytosis, autophagy/xenophagy (intracellular microbial killing), 
and a steady-state expression of immune defense molecules through transcriptional 
regulation appear as some of the major players of the immune defense program 
operated by Wnt signaling.

In respect of transcriptional regulation of immune defense molecules by steady-
state Wnt5A-signaling as described in this chapter [10], it is not understood exactly 
what dictates the nuclear translocation of p65 and not the other NFκB isoforms for 
specific modes of gene expression. Additionally, how this regulation fits in with the 
activity of other major transcription factors like NFAT and AP1 in the macrophage 
is also not clearly understood. Moreover, details of the context dependence of 

Figure 5. 
Schematic of Wnt5A signaling aided bacterial killing: Both autocrine and paracrine modes of Wnt5A signaling 
can lead to increase in phagocytosis of pathogenic bacteria. After phagocytosis, the Wnt5A mediated cytoskeletal 
modulation leads to fusion of early endosome and lysosome with the pathogen containing phagosome. Wnt5A 
signaling also activates Rac1 and Unc like kinase 1 (Ulk1) for initiation of autophagy. The subsequent steps of 
maturation lead to killing of pathogen in an autophagy dependent process (xenophagy).
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Wnt5A signaling, wherein a certain level and mode of signal transmission will be 
beneficial for immune response, but excess will cause inflammation and disorder 
[70–72], remain largely unclear. Besides, a clear concept of how actin cytoskeleton-
associated proteins such as Rac1 promote both NFκB activity as well as cytoskeletal 
rearrangements for phagocytosis and autophagy is yet to be achieved [10, 12]. 
Whether nuclear translocation of NFκB is a natural function of actin assembly or is 
executed by a separate pool of Rac1 associated cytoskeletal proteins is an important 
matter that deserves investigation.

With regard to phagocytosis and autophagy-assisted xenophagy, the molecular 
details of the actin rearrangements with actin binding proteins and the processing 
and presentation of antigens remain to be deciphered. This brings into question how 
different host-pathogen interactions within macrophages are guided by modulations 
of the actin cytoskeleton. Of special interest in this context is the interaction of the 
actin cytoskeleton with pathogenic mycobacteria, which thrive in self-generated 
niches within macrophages [60, 73]. The interrelation between different modes of 
Wnt signaling and mycobacterial infection, although much studied [74, 75], needs 
to be better understood with respect to actin dynamics. Now that Wnt5A signaling 
has been shown to play a major role in the regulation of actin cytoskeletal modula-
tion and autophagy [11, 12, 76], future experiments addressing whether this can also 
facilitate the adaptive immune response through antigen processing and presenta-
tion may prove fruitful.

At this juncture of our understanding of Wnt signaling and immune response 
by macrophages, it is important to know how the different Wnt ligands operate 
in the regulation of immune response by the different types of macrophages that 
are distributed in different tissues under the varied conditions of intracellular 
milieu and infection. Macrophages (microglia) present in the brain and spinal cord 
maintain an active immune defense scheme against pathogens that affect the central 
nervous system. Alveolar and airway macrophages likewise protect the respiratory 
tract and lungs from the toxic effect of infectious agents. Peritoneal macrophages of 
the peritoneum and Kupffer cells of the liver also encounter and confront infectious 
agents for host protection. Quite naturally, the roles played by Wnt signaling in the 
combat mechanism of each macrophage type in its paradigm of immune defense is 
expected to be different at least to some extent on account of potential variations in 
cellular environmental cues and modes of host-pathogen interactions.
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Abstract

Leprosy is a chronic infectious disease caused by the intracellular pathogen 
Mycobacterium leprae. The disease may present different clinical forms depending 
on the immunological status of the host. M. leprae may infect macrophages and 
Schwann cells, and recent studies have demonstrated that macrophages are funda-
mental cells for determining the outcome of the disease. Skin lesions from patients 
with the paucibacillary form of the disease present a predominance of macrophages 
with a pro-inflammatory phenotype (M1), whereas skin lesions of multibacillary 
patients present a predominance of anti-inflammatory macrophages (M2). More 
recently, it was shown that autophagy is responsible for the control of bacillary 
load in paucibacillary macrophages and that the blockade of autophagy is involved 
in the onset of acute inflammatory reactional episodes in multibacillary cells. So, 
strategies that aim to induce autophagy in infected macrophages are promising 
not only to improve the efficacy of multidrug therapy (MDT) but also to avoid the 
occurrence of reactional episodes that are responsible for the disabilities observed 
in leprosy patients.

Keywords: macrophages, leprosy, innate immunity, scavenger receptors, autophagy

1. Introduction

Macrophages are highly plastic and heterogeneous in several aspects, present-
ing a spectrum of distinct phenotypes according to the microenvironment [1–3]. 
During mycobacterial infection, its membrane components have the ability to 
induce polarization and interaction with this type of cell [4]. The cell wall of M. 
leprae consists of lipids and contains large amounts of phthiocerol dimycocerosate 
and phenolic glycolipid-1 (PGL-1) [5, 6]. PGL-1 has been identified as an important 
antigen and virulence factor, which has also been shown to be a promising diagnos-
tic molecule by inducing the production of IgM class antibodies [7, 8]. Interestingly, 
the presence of lipids and sugars in the cell wall also induces an increase in phago-
cytosis [9], both by macrophages and by other cell types. Besides that, the presence 
of M. leprae-PGL-1 interacting with resident macrophages is able to lead to the 
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production of nitric oxide, thus causing peripheral nerve damage characteristic 
of patients with leprosy [10]. Other studies have shown the ability of M. leprae to 
induce the production of oxidative mediators and their products, peroxynitrite and 
nitrotyrosine [11–14].

Studies have demonstrated the ability of M. leprae to interact with a range 
of scavenger receptors of macrophages culminating in a tolerogenic response 
profile. The scavenger receptors are membrane receptors whose main function 
is the removal of molecules and cellular debris from the body, binding through a 
variety of polyanions, leading to phagocytosis of the target, being found in several 
cell types such as macrophages [15]. The ability of M. leprae to interact with the 
CD163 receptor, a scavenger receptor, which, during this interaction, can act as a 
co-receptor for M. leprae entry in macrophages, has been described [16]. It is known 
that activation of this receptor is related to the activation of the transcription factor 
nuclear factor erythroid 2-related factor 2 (NRF2), leading to the synthesis and 
increase of the activity of the enzyme heme oxygenase-1 (HO-1), which, through 
anti-inflammatory and antioxidant pathways, releases interleukin (IL)-10 and 
generates carbon monoxide, contributing to the polarization of these cells [17–19]. 
Bonilla and colleagues [20] demonstrated that autophagy, a mechanism of meta-
bolic control, regulates the expression of scavenger receptors macrophage receptor 
with collagenous structure (MARCO) and scavenger receptor type A (SRA-I) that 
increase phagocytosis and NRF2 activity during Bacillus Calmette-Guérin (BCG) or 
M. tuberculosis (H37Rv) infection.

M. leprae is able to induce macrophage SRA-I and CD36 expression [6] that 
contributes to the uptake of lipids, culminating in an increase in the uptake and 
accumulation of oxidized lipids within the macrophages, leading to a foamy cell 
phenotype, associated with an inhibition of the pro-inflammatory response with 
downregulation of major histocompatibility complex (MHC) II and toll-like recep-
tor (TLR) 2 [21, 22]. Dendritic cell-specific intercellular adhesion molecule-3-grab-
bing non-integrin (DC-SIGN or CD209) is another scavenger receptor present in 
macrophages that interacts with M. leprae, and it is involved in the phagocytosis of 
the bacilli [23, 24]. Other receptors have been described with great importance in 
the initial interaction and polarization of the response of macrophages to bacteria. 
It has recently been observed that M. leprae is able to activate innate receptors such 
as TLR4 [25], through PGL-1 that induces the irregular production of interferon 
(IFN)-β, chemokine (C-X-C motif) ligand (CXCL)-10/interferon gamma-induced 
protein 10 (IP-10), and inducible nitric oxide synthase (iNOS), thus decreasing the 
production and activation via tumor necrosis factor (TNF) [26].

The persistence of M. leprae infection depends on the type of the host immune 
response. Macrophages are crucial modulators of innate and adaptive immune 
responses are the main cell types directly infected by the bacillus, and can lead to 
different immune responses. The initial interaction of the macrophage with M. lep-
rae is essential for the polarization of the response toward a susceptible phenotype, 
favoring the survival of the bacilli. In this way, studies that elucidate this contact 
may favor the protective response against infection, thus contributing to strategies 
of control of the disease.

2. Macrophage polarization and M. leprae infection

Macrophages are specialized cell types present in most mammalian tissue. 
Recently, many studies have been highlighting the “general” and “tissue-specific” 
functions of macrophages, including their roles in systemic metabolism, fibrosis, 
development, cancer, and tissue homeostasis [27]. However, these cells are best 
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known for their role in the innate immunity, which was first addressed by Ilya 
Metchnikoff in 1884 in his work describing the “phagocytes” [28]. Several subsets 
of macrophages were described in different pathological conditions and tissues of 
humans and mice based on their phenotype and biological functions [1, 29–31]. 
Despite their high plasticity, macrophages are classically described in two main 
functionally distinct phenotypes—classically activated or inflammatory macro-
phages (M1) and alternatively activated or healing macrophages (M2)—reflecting 
the T helper type (Th) 1 and Th2 response profiles [2, 3, 30].

In summary, M1 macrophages are induced by lipopolysaccharide and IFN-γ in a 
pro-inflammatory environment promoting a microbicidal and inflammatory phe-
notype, while polarization to M2 macrophages, induced in response to IL-4 (M2a), 
immune complexes (M2b) or IL-13 and IL-10 (M2c), is rather anti-inflammatory 
and associated with healing and tumor progression. In addition, granulocyte 
and macrophage colony-stimulating factor (GM-CSF) and macrophage colony-
stimulating factor (M-CSF) induce the differentiation of macrophages into, respec-
tively, M1 and M2 phenotypes [2, 3, 32, 33]. Previously, it was demonstrated that 
macrophages differentiated with GM-CSF or M-CSF were able to phagocytose M. 
leprae [34]. Despite this, only GM-CSF-differentiated M1 cells were able to stimu-
late T cells to produce IFN-γ, after treatment of the macrophages with IFN-γ and 
CD40 ligand; furthermore, this treatment induced expression of major membrane 
protein (MMP)-II on the macrophage cell surface, suggesting its ability to process 
the phagocytosed bacteria [34]. In addition, M. leprae was able to induce IL-10 
production in M-CSF-differentiated M2 cells, but not in GM-CSF-differentiated M1 
macrophages.

In 2016, the protein jagged 1 (JAG1) was identified as a potential regulator of 
macrophage polarization in leprosy [35]. While unstimulated endothelial cells lead 
to M2 macrophage polarization, in the presence of IFN-γ, endothelial cells induce 
the differentiation to M1 macrophages. JAG1 is preferentially expressed in the vas-
cular endothelium in skin lesions of paucibacillary tuberculoid patients, stimulating 
the differentiation of M1 antimicrobial macrophages by the IFN-γ-JAG1 axis [35].

Due to increased systemic pro-inflammatory mediators, a higher frequency of 
apoptosis was described in paucibacillary tuberculoid patients [36]. Curiously, the 
phagocytosis of apoptotic cells in the presence of M. leprae induces a shift from M1 
to M2 phenotype in GM-CSF-differentiated macrophages with increased expres-
sion of scavenger receptors as SRA-I, production of IL-10 and transforming growth 
factor beta (TGF-β) anti-inflammatory cytokines, and decreased levels of pro-
inflammatory IL-15 and IL-6 by a mechanism mediated by arginase [37] (Figure 1). 
Based on those results, it was suggested that in paucibacillary tuberculoid skin 
lesions, the phagocytosis of apoptotic cells would induce an M2 phenotype in some 
macrophages, explaining the persistence of the disease besides the ability to mount 
an effective cellular immune response to M. leprae infection [37].

Analysis of paucibacillary tuberculoid and reversal reaction (an acute inflammatory 
clinical condition associated with increased levels of IFN-γ in leprosy patients) patients’ 
skin lesions demonstrated that macrophage subtypes with microbicidal and homeo-
static functions are spatially distributed in tuberculoid granulomas according to the 
specific microenvironments [38]. The center of the tuberculoid granulomas appears to 
be populated by pro-inflammatory CD68+ CD163− M1 macrophages, responsible for 
containing the infection, while the periphery is composed of anti-inflammatory CD68+ 
CD163+ M2 macrophages, tasked with limiting tissue damage caused by the M1 macro-
phage antimicrobial activity [39]. Accordingly, Montoya and colleagues [22] proposed 
two different macrophage functional programs for the polar clinical forms of leprosy. 
They suggested that in tuberculoid paucibacillary patients, IL-15 induces the vitamin 
D-mediated antimicrobial program in the macrophages, resulting in killing of the 
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mycobacteria, while in multibacillary lepromatous patients, the higher levels of IL-10 
would induce the phagocytic pathway by increasing the expression of CD209 and scav-
enger receptors as CD163 in the macrophage cell surface, resulting in phagocytosis of 
M. leprae and oxidized low-density lipoproteins (LDL) favoring the formation of foam 
cells and persistence of the infection [22]. In addition, antimicrobial M1 macrophages 
differentiated with IL-15 could be repolarized into the phagocytic M2 phenotype after 
treatment with IL-10, while phagocytic IL-10-differentiated M2 macrophages could 
only be repolarized into the M1 phenotype after co-stimulation with TLR2/1 ligand and 
IFN-γ or TLR2/1 ligand and anti-IL-10-neutralizing antibodies, but not IL-15 or IFN-γ 
alone, suggesting that production IL-10 by M2 macrophages might create a barrier for 
M1 reprogramming [39].

M. leprae infection of IL-10-differentiated M2 cells results in induction of 
type I IFN and suppression of the vitamin D directed pathway, suggesting that 
M. leprae evades the intrinsic capacity of human cells to activate the vitamin 

Figure 1. 
Macrophage plasticity in tuberculoid skin cells. M1 phenotype prevails in tuberculoid cells. The pro-
inflammatory cytokines present in the tissue may contribute to increased host cell apoptosis, and the removal of 
the apoptotic cells may contribute to changes in macrophage plasticity. M1 macrophages that uptake M. leprae 
and apoptotic cells have an increase in the percentage of M2 markers CD163 and SRA-I that is dependent 
on arginase production, since the arginase inhibitor N-hydroxy-nor-L-arginine (nor-NOHA) blocks these 
phenotype changes. In addition, the stimuli with M. leprae and apoptotic cells induce an increase in the 
production of IL-10 and TGF-β that contributes for inducing the secretion of IL-4 and IL-13 by Th2 cells that 
sustain some M2 cells in tuberculoid lesions.
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D-mediated antimicrobial pathway via the induction of type I IFN [40]. Although 
previous studies have demonstrated the activation of antimicrobial pathways in 
IL-15-differentiated macrophages, there is no study demonstrating how vitamin D 
status modulates IL-15-differentiated macrophage phenotype and function. More 
recently, it was demonstrated that the presence of vitamin D during macrophage 
differentiation bestows the capacity of human macrophages to mount an antimicro-
bial response against M. leprae [41]. However, more studies are needed to evaluate if 
the plasma levels of vitamin D could be a predictor of the outcome of the disease.

Several studies demonstrated the predominance of M2 markers like CD68, 
CD209, CD163, SRA-I, HO-1, arginase-1, IL-10, IL-13, TGF-β, and basic fibroblast 
growth factor in multibacillary lepromatous patients’ skin lesion macrophages [16, 
22, 37, 42–44]. In the same way, CD163, the hemoglobin (Hb) scavenger receptor, 
might contribute to the polarization of multibacillary lepromatous macrophages to 
an anti-inflammatory profile by increasing the expression of indoleamine 2,3-diox-
ygenase (IDO) and IL-10, in addition to increasing the internalization of M. leprae 
and iron, contributing to the mycobacterial persistence [16, 45]. The increase in the 
internalization of Hb-haptoglobin (Hp) complex by CD163 contributes to the acti-
vation of the enzyme HO-1 via IL-10 [46]. de Mattos Barbosa and colleagues [42] 
proposed that M. leprae-infected skin macrophages would increase the acquisition 
of iron both by transferrin and heme-bound, via transferrin receptor 1 and CD163, 
activating the enzyme HO-1 that catalyzes heme into carbon monoxide, biliverdin, 
and free iron, increasing the intracellular iron pool and the iron storage in the 
protein ferritin (Ft), due to a reduction in expression of the sole iron exporter, 
ferroportin 1 (Fpn-1) [42] (Figure 2). Iron retention via Ft and reduced secretion 
of iron by Fpn-1 are classical traits of microbicidal inflammatory M1 macrophages, 
while tissue repair-associated M2 are characterized by enhanced HO-1-mediated 
heme catalysis and increased iron exportation via Fpn-1 [46]. Even though there is 
a prevalence of M1 or M2 markers in the polar clinical forms of leprosy, skin lesion 
macrophages present themselves in a spectrum of heterogeneous phenotypes shar-
ing characteristics of both subtypes, and more than one specific population can be 
present at the same time [38, 42, 47].

A different subset of macrophages, known as M4, was described in skin lesions 
from lepromatous patients. M4 macrophages in lepromatous skin lesions were 
described as CD68-positive cells that express myeloid-related protein 8 (MRP8) 
and matrix metalloproteinase (MMP)-7 [48]. This particular subset of macro-
phages is differentiated with the platelet chemokine CXCL4 and is mostly related 
to the formation of foamy cells present on atherosclerotic lesions due to increased 
expression of LDL receptors. Macrophages differentiated with this chemokine 
present a functionally distinct phenotype characterized by increased expression 
of CD206, CD68, IL-6, TNF, MRP8, MMP7, and MMP12, suppressed phagocytic 
capacity, and the complete lack of CD163 accompanied by the inability to induce 
HO-1 in response to Hb-Hp complexes, which is irreversible even after removal of 
CXCL4 and stimulation with M-CSF or IL-10 [32, 48, 49]. Expression of IL-6 and 
TNF, cytokines associated with the promotion of microbicidal M1 macrophages 
responses, was increased on skin lesions of paucibacillary tuberculoid patients 
[48]. Additionally, in vitro exposure to M. leprae or PGL-1 impairs the capacity of 
healthy donor’s monocytes to differentiate to M1 macrophages, reducing the cell 
surface expression of M1 markers and the production of M1-associated chemo-
kines and cytokines [50]. It was hypothesized that previous contact with M. leprae 
might limit the functional capacity of monocytes, reducing the ability to mount 
an effective immune response in a secondary contact [50]. Together, these data 
support the idea that an anti-inflammatory regenerative environment restrictive of 
microbicidal response is promoted in lepromatous patient’s skin lesions, leading to 
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differentiation of a heterogeneous subset of highly phagocytic iron and lipid-loaded 
foamy macrophages that create an ideal environment for survival and vast propaga-
tion of the M. leprae infection and consequently the increase in the number of skin 
lesion in this pole of the disease [16, 22, 37, 42–44, 48].

3. The role of macrophages in the immune response to M. leprae

One of the most crucial steps in a human innate immune response is how the 
host cells recognize a microbial pathogen. The TLR family has a vital role in the 

Figure 2. 
Lepromatous leprosy macrophage iron metabolism. Skin lesion macrophages of lepromatous patients present 
high expression of M2 markers as CD163, a scavenger receptor that recognizes hemoglobin-haptoglobin 
(Hb-Hp) complex and was previously implied in M. leprae internalization. The heme molecules are degraded 
by heme oxygenase-1 (HO-1) that catalyzes heme in free iron, carbon monoxide (CO), and biliverdin that is 
converted to bilirubin by the enzyme biliverdin reductase; these are classically upregulated in M2 macrophages. 
Transferrin receptor 1 (TfR1) is also increased in lepromatous macrophages. This receptor recognizes 
iron-bound transferrin, which is endocytosed, and the iron is later liberated to the cytoplasm. Lepromatous 
macrophages also present a lower expression of ferroportin 1, the iron cellular exporter, characteristic from 
M1 macrophages, contributing to increasing the cellular iron pool. The free iron present in the cytoplasm is 
quickly stored in the form of ferritin but can also be available for M. leprae use and increased growth in the 
phagosomes, as observed in this clinical form. Natural resistance-associated macrophage protein 1 (NRAMP1) 
is also increased in lepromatous macrophages, but its role in M. leprae-infected cells is still to be determined.
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mycobacterial recognition and subsequently induction of antimicrobial defenses 
and adaptive immune response [51]. Recognition of M. leprae pathogen-associated 
molecular patterns (PAMPs) occurs through the TLR2/1 heterodimer to the tri-acyl-
ated lipopeptides, leading to the differentiation of monocytes into macrophages and 
dendritic cells and triggering the production of TNF as part of an acute inflamma-
tory response [52]. The tissue expression of TLRs correlated with the immunologi-
cal spectrum of the disease, once both TLR1 and TLR2 were prominently observed 
in the self-limited tuberculoid lesions when compared to the disseminated leproma-
tous lesions [53]. Another pattern recognition receptor (PRR) involved in M. leprae 
detection is nucleotide-binding oligomerization domain-containing 2 (NOD2). 
Human NOD2 receptor recognizes structurally unique muramyl dipeptides from 
M. leprae, triggering an IL-32-mediated innate immune response that induces the 
differentiation of monocytes into dendritic cells [54, 55]. Interestingly, activation 
of monocytes via NOD2 agonist was more efficient in the induction of dendritic cell 
differentiation than TLR2/1 ligand treatment [54].

The activation of PRR can induce the antimicrobial autophagy pathway, a 
biological process regulated by multiple specialized proteins known as autophagy-
related proteins (ATG), and can be started in response to various cellular stresses 
and signals such as nutrient withdrawal, growth factor deprivation, and cytokine 
stimulation and also by pathogen infection [47]. In addition to the role of autophagy 
in the elimination of potentially toxic protein aggregates and in the prevention of 
neurodegeneration [56], autophagy plays a key role in the host’s response to myco-
bacterial infection, because it is able to reverse the blockade of phagosome matura-
tion, inhibiting the intracellular survival of the pathogen [57]. It has been shown 
that autophagy is an important innate mechanism associated with leprosy immuno-
pathogenesis [58]. Recently, it was demonstrated that autophagy enhances the ability 
of M. leprae-infected Langerhans cells to present antigens to CD1a T cells [59].

As mentioned earlier, the paucibacillary tuberculoid skin macrophages activate 
the vitamin D pathway and produce antimicrobial peptides that could be involved 
in autophagy induction. In addition, Silva and colleagues [58] demonstrated that 
autophagy is differentially regulated between leprosy polar forms. In paucibacillary 
tuberculoid skin lesion macrophages, IFN-γ/beclin 1-induced autophagy contrib-
utes for M. leprae control, whereas in lepromatous macrophages B cell lymphoma 2 
(BCL2)-mediated blockade of beclin 1 autophagic pathway promotes mycobacterial 
persistence [58]. Indeed, the M. leprae can take advantage of host antiviral protein 
2′-5′-oligoadenylate synthetase like (OASL) to inhibit autophagy and promote its 
own survival through a stimulator of interferon genes (STING)-mediated type I 
IFN response [60]. Furthermore, the autophagy levels were restored in leproma-
tous patients undergoing reversal reaction episodes [57]. More recently, de Mattos 
Barbosa et al. [61] elegantly demonstrated a role for autophagy in the development 
of reversal reaction. This study showed a downregulation of autophagy associ-
ated with inflammasome activation in skin lesion macrophages of multibacillary 
leprosy patients who developed reversal reaction episodes in the future. Thus, 
the autophagic pathway is a key factor in multibacillary leprosy patients to avoid 
exacerbated inflammasome activation and the onset of reversal reaction. A newly 
published study showed that Th17-derived cytokine IL-26 has a direct bind capac-
ity and antimicrobial effect against mycobacteria in cell-free cultures [62]. In M. 
leprae-infected macrophages, IL-26 treatment was associated with autophagy 
induction via STING (probably due to its ability to bind DNA) as well targeting of 
mycobacteria to lysosomal compartments [62]. Curiously, it has been shown in M. 
tuberculosis-infected macrophages that the cytosolic DNA sensor cyclic GMP-AMP 
synthase (cGAS), an upstream receptor to STING, controls both pro-mycobacterial 
type I IFN production and the activation of antimycobacterial selective autophagy 
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Figure 3. 
Targeting M. leprae to autophagy (xenophagy) in macrophages of leprosy patients. (Left) After phagocytosis, 
M. leprae causes phagosome maturation arrest and phagosomal permeabilization through the bacterial 
ESX-1 secretion system, which allows the detection of extracellular mycobacterial DNA by the cGAS/STING-
sensing cytosolic surveillance pathway that licenses the ubiquitination of mycobacteria and recognition by 
the ubiquitin-binding autophagy adaptors p62 and NBR1 (and probably NDP52 and OPTN), which finally 
interact with LC3, allowing the mycobacterial phagosome to become sequestered within an autophagosome. 
The autophagosome-sequestered phagosome maturates in a degradative autophagolysosome (which also 
contains antimicrobial peptides) by fusing with a lysosome and leads to the pathogen destruction and antigen 
presentation. Other molecules such as TBK1, IRF3, DRAM1, UBQLN1, PARKIN, and SMURF1 might be 
also involved in this process. Microbial invasion can be also detected and targeted to autophagy pathway by 
galectins that act as a receptor for vacuole-damaging pathogens or by TRIM-mediated precision autophagy, 
which can directly recognize the bacterial target without required intermediary autophagic tags such as 
ubiquitin and galectins. TRIMs and galectins also cooperate during selective autophagy. TRIM proteins use 
galectins and ubiquitins to detect and tag damaged mycobacteria-containing phagosomes and promote the 
assembly of autophagic machinery via MTOR inhibition and AMPK activation. IFN-γ-mediated autophagy 
requires IRGM, which interacts with ULK1 and BECN1 and dissociates BCL2 from BECN1-PIK3C3 complex, 
thus governing the assembly of autophagy initiation complexes that will further promote the incorporation of 
mycobacterial phagosomes into autophagosomes. Autophagy initiation step is amplified by the detection of M. 
leprae-derived MDP by NOD2, which enhances NOD2-IRGM interaction and induces IRGM ubiquitination. 
IRGM can also activate BECN1 via AMPK induction. IFN-γ can also induce autophagy through the IL-15/
VD3/cathelicidin pathway. IL-26 is reported to activate autophagy via STING. M. leprae can dampen 
autophagy initiation by increasing the BCL2 levels and its interaction with BECN1 or by induction of type I 
IFN signaling pathway (which includes OASL) that inhibits the VD3-dependent autophagy. M. leprae can 
also hamper the autophagy maturation step by an unknown mechanism, which might involve the BECN1-
BCL2 association. Autophagy activating pathways are prominently observed in tuberculoid macrophages, 
whereas autophagy inhibition processes are predominantly found in lepromatous macrophages. (Right) Another 
possible pathway is that right after phagocytosis, M. leprae is incorporated into phagolysosomes but avoids 
lysosomal degradation via translocation from the phagolysosomes to the cytosol by using the ESX-1 secretion 
system. The M. leprae cytosolic entry is followed by ubiquitin-mediated autophagy recognition and degradation 
into mature autolysosomes. Green arrows indicate steps activating autophagy. Red arrows and inhibition bars 
represent steps inhibiting autophagy.
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pathway, which can be uncoupled from intracellular immune responses mediated 
by NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome 
activation [63–65].

Galectins are a family of β-galactoside-binding cytosolic lectins that monitors 
endosomal and lysosomal integrity. These danger receptors can detect bacterial 
invasion by detecting unusual exposure of glycans to the cytosol and activate 
antibacterial autophagy [66–68]. Immunohistochemistry analysis of leprosy lesions 
revealed a higher expression of galectin-3 protein on lepromatous macrophages 
than tuberculoid cells. The increased galectin-3 expression in lepromatous cells was 
associated with the reduction of dendritic cell differentiation and T-cell antigen 
presentation [69]. Interestingly, galectin-3 was associated with both bacterial 
control and survival, as well as autophagy activation and inhibition [66, 68], 
whereas galectin-8 was related to antibacterial autophagy activation [67, 68]. The 
underlying cellular mechanisms of target M. leprae as an autophagic cargo destina-
tion in human macrophages are still not fully understood; some of them displayed 
in Figure 3 are insights from M. tuberculosis infection model.

Although the innate activation of macrophages orchestrates antimicrobial 
responses that contribute to host defense against intracellular pathogens such as M. 
leprae, those responses have been also implicated in the initiation of nerve damage 
in leprosy. The axonal damage is not directly mediated by M. leprae itself, but by 
M. leprae-specific PGL-1 induction of nitric oxide synthase in infected macro-
phages, which leads to axon damage by injuring their mitochondria and inducing 
demyelination [10]. Taken together, these findings illustrate the plasticity of human 
macrophages and how they deploy different strategies to fight against mycobacte-
rial infections. Most of the time, these approaches begin with microbe sensing and 
culminate in the targeting of the pathogen for destruction in the autolysosomal 
pathway (Figure 3), the tuberculoid leprosy macrophages being more efficient than 
the lepromatous ones in these processes. Hence macrophages are essential compo-
nents of mammalian tissues in which they perform a variety of biologic functions; 
understanding their difference is an essential step toward the development of innate 
immune countermeasures.

4. Macrophage autophagy as a target for the control of the disease

Leprosy remains a major global problem. Early detection of cases and immediate 
treatment with multidrug therapy (MDT) remain the main intervention strategies 
[70]. Despite the effectiveness of MDT in controlling the polar forms of the disease, 
limitations in terms of persistent activity in paucibacillary patients, in combination 
with the persistence of live and/or dead bacilli in multibacillary patients, have been 
observed, which has repercussions on the frequency of relapses and reactional 
episodes after treatment [71, 72]. Recent studies have demonstrated that autophagy 
is an important molecular mechanism for controlling the viability of mycobacteria 
in the host cell and of the bacillary load in patients with leprosy [58–60]. Autophagy 
can be induced by oxidative stress or by an infectious agent and is closely associated 
with the immune response and host defense [73, 74]. In addition to its homeostatic 
role, the autophagic degradation pathway is involved in several human diseases, 
including metabolic disorders, neurodegenerative diseases, cancer, and infectious 
diseases. Given these observations, pharmacological approaches to regulate posi-
tively or negatively this pathway are receiving considerable attention. For example, 
positive regulation of autophagy may be of therapeutic benefit in certain neuro-
degenerative diseases (e.g., Huntington’s disease), while inhibition of autophagy is 
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being investigated as a strategy for treatment of some cancers [75, 76]. The molecu-
lar regulators interconnecting autophagy and apoptosis, including BCL2, BCL2-
associated X protein (BAX), and beclin 1, have been suggested to act as switching 
points that are critical for the outcome of tumor cells, and lysosomes have been 
reported to initiate the cell death pathway in autophagic cells [77, 78]. Regarding 
leprosy, it was observed that in skin cells of patients with the lepromatous form of 
the disease there is a blockade of the autophagic flux that can be attributed to the 
increased expression of the antiapoptotic protein BCL2, which inhibits autophagy 
mediated by beclin 1 [58]. Blockade of the autophagic machinery in lepromatous 
cells may contribute to the persistence of mycobacteria in host cells. Genetic studies 
on leprosy have shown that several polymorphisms in genes associated with the 
control of autophagic pathways such as IFN, immunity-related GTPase family 
M protein (IRGM), NOD, and TLR play a prominent role in susceptibility to the 
disease, thus demonstrating the importance of understanding, inducing, and 
controlling this biological process in leprosy [79–85].

When the initial studies aiming at induction of autophagy were conducted, 
the only known drug capable of inducing autophagy chronically was rapamycin. 
However, the adverse effects of rapamycin (which were not associated with 
the induction of autophagy) made this drug unattractive to use. Several drugs 
and nutritional supplements can induce autophagy, such as verapamil, statins, 
metformin, resveratrol, vitamin D, and omega 3 [86]. Although it is not known 
whether these agents exert their beneficial clinical effects through the induction 
of autophagy or other pathways, there is a considerable overlap between diseases 
occurring in an environment of poor autophagy and diseases that respond to drugs 
that may induce autophagy. With regard to infectious diseases, there are limited 
data on the usefulness of autophagy-inducing pharmaceutical agents as potential 
therapeutics against human pathogens. Drug screening studies that aim to identify 
molecules with pro-autophagic effects have been performed, and promising results 
demonstrated a pro-autophagic effect of drugs capable of inhibiting the growth of 
M. tuberculosis in human macrophages in vitro [87–89]. In addition, the antibiotics 
isoniazid and pyrazinamide, two first-line cocktail drugs used to treat tuberculosis, 
exert their antimycobacterial activity through autophagy [90]. The treatment with 
statins, drugs that inhibit cholesterol synthesis, reduces the bacillary load of M. 
tuberculosis in human macrophages and mice by increasing autophagy and phago-
some maturation [91]. Furthermore, statins also have an antimicrobial effect against 
M. leprae and potentiate the antimycobacterial effect of rifampicin, a first-line 
cocktail drug used in leprosy treatment [92]. Vitamin D3, which activates autoph-
agy, has been successfully used in the treatment of patients with tuberculosis and 
could be one of the components of an ideal treatment for leprosy and other chronic 
infectious diseases in which the cellular immune response is deregulated [93–96].

Activation of autophagy by verapamil has been demonstrated by several groups. 
Initial studies evaluating the effect of verapamil and its analogs on macrophages 
infected with M. tuberculosis showed an association between the induction of 
autophagy and inhibition of intracellular replication of mycobacteria, and one of 
the structural analogs had an additive effect on the inhibitory antimicrobial activity 
of isoniazid and rifampicin [97, 98]. Metformin is an antidiabetic of the biguanide 
class. Mechanisms of autophagy induction by metformin are known, but no rela-
tionship with infectious processes caused by mycobacteria has been described so far. 
Similarly, resveratrol has also been studied for its autophagy-inducing role, and no 
studies in the literature have been found correlating with the mycobactericidal role.

Together, these data show the importance of autophagy in the pathogenesis of 
leprosy, contributing to a better understanding of the mechanisms of mycobacte-
rial control associated with the lepromatous and tuberculoid leprosy poles, which 
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may lead to the establishment of new targets and therapeutic strategies to control 
leprosy. Moreover, the identification of autophagy as an important factor during 
the establishment of resistant and susceptible forms of the disease opens the door 
for the development of new therapeutic strategies of disease control through the 
modulation of autophagy.

5. Conclusion

Considering the aspects observed during the course of this chapter, macro-
phages have a crucial role in inducing the immune response to M. leprae, and 
their uptake capacity, phagocytosis, and microbicidal activity may depend 
on the microenvironment. Macrophages, after the interacting with either the 
bacilli or its wall components, are able to induce oxidative stress [10–14] and to 
induce various receptors as scavenger receptors [6, 16, 23, 24, 34, 42–44] and 
PRR [53–55, 69], leading to the polarization of their response. In an anti-inflam-
matory profile (M2), this cell induces increased uptake of lipids [21, 22] and 
Hb-haptoglobin [16, 42], which aid the growth of M. leprae by the activation of 
the enzymes IDO [42, 45], HO-1 [42] and arginase [37]. On the other hand, in a 
pro-inflammatory and microbicidal profile (M1), the macrophage produces TNF 
[26, 48], IL-6 [37, 48, 49], and IL-15 [22, 37, 39] besides being able to stimulate T 
cells to produce IFN-γ [34]. In addition, these M1 macrophages induce autophagy 
[57, 58], an important process of homeostatic regulation recently described with 
the immunological role [56], which acts on infection control. Several drugs have 
been described as autophagy inducers and have been studied as treatment for 
neurodegenerative diseases [76] and to control of M. tuberculosis infection [89]. 
Autophagy-inducing drugs are promising targets as adjuvants to MDT.
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Abstract

Macrophages are the special cells of the immune system and play both immu-
nological and physiological role. One of the peculiar characteristics of macro-
phages is that they are double-edged and highly plastic component of immune 
system. Due to this characteristic, they are responsible for both progressions as 
well control of a variety of inflammatory, infectious and metabolic diseases and 
cancer. These are found in the body in three major phenotypes, which are known 
as M0 (also known as naïve); M1 (classically activated macrophages); and/or M2 
(alternatively activated macrophages) at normal physiological conditions. We 
have been exploring macrophages in context of bacterial infection and previ-
ously demonstrated that M2 polarization of M1 effector alveolar macrophages 
during chronic/persistent Chlamydia pneumonia, Mycobacterium tuberculosis and 
Helicobacter pylori pathogens are decisive for the infection induced cancer develop-
ment in host. Since chronic infection with these pathogens has been associated 
with adenocarcinoma, therefore, we feel that disruption of macrophage plasticity 
plays crucial role in the host for the development of cancer. On the basis of this, we 
propose that in such pathological conditions, management of M1/M2 imbalance is 
paramount for minimizing the risk of developing cancer by chronic and persistent 
infection.

Keywords: macrophages, immuno-epigenetics, metabolic programming, 
sterile inflammation, cancer

1. Introduction

Recent studies have demonstrated that macrophages display high grade of 
phenotypic plasticity due to which they can both enhance and inhibit immune 
response. This phenotypical plasticity of macrophages enables them to contribute 
to pathogenesis of large variety of diseases as well as homeostasis mechanisms. 
Due to this characteristic, these cells are now known as double-edge component 
of immunity as well. Many studies have demonstrated that these cells can enhance 
the progression as well as control many infectious and tumor [1] diseases. Both 
peripheral and tissue macrophages together constitute the reticuloendothelium 
system which plays a major role in both sensing microbial antigens and their 
subsequent eradication [2]. Macrophages are recruited to the inflamed/infected 
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tissues, react to a variety of stimuli, and acquire either classical phenotype also 
known as M1 or alternative phenotype also known as (AAM, M2). Classically 
activated macrophages are immunostimulatory in nature and have Th1-orienting 
capacity while M2 are immunoregulatory in nature and have Th2 programming 
capacity [3]. The latter ones are anticipated to support the survival of various 
intracellular pathogens during persistency and believed to promote neoplastic 
transformation of infected tissue micromilieu (Figure 1). AAM accumulation in 
majority of adenocarcinoma (around 10% cases) confers poor prognosis during 
microbial persistency. Therefore in such abnormal pathological conditions, selec-
tive elimination of macrophages by ablating colony-stimulating factor 1(CSF-1) 
in LySMcre and op/op mouse model [4] or by the use of pharmacological drugs 
such as clodronate liposomes [5], which are among few possible modalities for 
mitigating macrophage-associated neoplasia. Within the frame of the above 
mentioned, this chapter will discuss various strategies to repolarize tumor-
associated macrophages (TAM) during cancer development and uncover how 
selective activation of M1 macrophages could control infection-induced cancer 
but also existing anti-tumor immune therapies in both mouse and human model 
of tumors with special emphasis on gastric and lung tumors and inflammatory 
diseases like inflammatory bowel disease (IBD), which are responsible for global 
mortality. This may be achieved by targeting the major intracellular signaling 
component such as sphingolipids and Th2/Th17 responses, which promote M2 
phenotype during persistent infection and potentially involve in the development 
of cancer.

Figure 1. 
Schematic representation of various approaches by which persistent infection with human pathogens disrupts 
functional plasticity of effector macrophages and promote cancer progression. The figure depicts how 
certain pathogens exploit various cellular and genetic mechanisms and promote M2 polarization of iNOS+ 
effector macrophages which are the special and double-edge component of the immune system. Phenotypic 
and functional polarization of effector macrophage is decisive event and anticipated to escort pathogens for 
neoplastic transformation of infected tissues during latent infections.
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2.  Pathogens disrupt macrophage plasticity and effector  
response during persistency

Recent study has demonstrated that a bacterial product known as trabectedin is 
toxic to macrophages. This product inhibits NF-Y and KLF-2/4 which is important 
for the differentiation of macrophages in tumor micromilieu [6]. Similarly mitigat-
ing NF-κB, STAT3 and HIF-1 are involved in the activation of naïve macrophage to 
M1 effector phenotype and hold tremendous therapeutic option for modulating mac-
rophages activation. Histopathological analysis of persistently infected lungs reveals 
the infiltration by specialized macrophage known as foamy macrophages. These are 
lipid-loaded macrophages and quite refractory in their nature. These macrophages 
behave more like AAM and are actively involved in the clearance of cellular debris 
and dead bacteria containing neutrophils and DC [7]. In some cases of coronary 
atheroma patients, these macrophages acquire phenotype similar to TAM (tumor-
associated macrophages) and harbor dead bacteria in their endosome [8]. The pres-
ence of these macrophages thus promotes non-immunogenic inflammation which 
is similar to cancer-associated inflammation and supports opportunistic survival of 
deadly pathogens. Both phenotypic and functional polarizations of M1/M2 effector 
phenotype of macrophages are believed to be one of the prognostic factors contribut-
ing to the development of tumor during persistent/latent infections (Figure 1) in 
host. Once infiltrated in the infected lungs, these AAM/foamy macrophages poten-
tially modify effector T cells and predispose them also as refractory which are other-
wise proficient in the killing of infected cells. These macrophages secrete a plethora 
of cytokines/growth factors like VEGF-β, TGF-β, hypoxia-inducible factor, and 
sphingolipids which altogether contribute to neoplastic transformation of infected 
tissue. High gradient of VEGF and TGF-β promotes the differentiation of regula-
tory T cells [9] and inhibits the effector response of CD8+ T cells [10]. On the other 
hand, sphingolipids particularly S-1P/ceramide (either host or pathogen-derived) 
are known to promote mitophagy [11], M2 polarization of infiltrating M1, or naïve 
monocyte/macrophage populations [12]. In view of this, and to restore Th1 effector 
immune response during latent infection, reactivation of M1 effector phenotype of 
macrophage thus represents the most suitable therapeutic interventions. Apart from 
this, modulating the cytokine network also seems to be the most effective strategy 
for boosting immunity for the management of latent/persistent infections.

3.  Bacterial persistency hijacks programmed cell death and autophagy 
and promotes immune metabolic reprogramming

Pathogenic bacteria have evolved several ways to survive efficiently in the 
phagocytes during their dissemination across the lymphatic system. Various patho-
gens adapt various strategies to this purpose which range from conferring resistance 
to the apoptosis [13], immune evasion [14], and metabolic programming of myeloid 
cells [15] as shown in Figure 2. Of these, conferring resistance and insensitivity for 
cell death in the infected cell seems to be one of the most fundamental processes. 
A range of bacterial pathogens like Chlamydia trachomatis (C. tr), Chlamydia 
pneumonia (C. pn), and Helicobacter pylori (H. pylori) which are associated with the 
pathogenesis of lung [16] and stomach cancer [17] respectively, exploit death and 
immune signaling for surviving in the hostile environment of antigen presenting 
(Figure 2) and effector cells. We [18, 19] and others [20] have demonstrated that 
C. pn and C. tr increase the stability of various endogenous regulators of apoptosis 
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proteins called IAP and inhibit the activity of both apoptotic and inflammatory 
Caspases 3, 8, and 11 during latent infection. Upregulation of CIAP2 and XIAP 
proteins [19] during acute and persistent/latent infection has shown the increase in 
noncanonical signaling of NF-κB which is a master transcription factor involved in 
both cell death inhibition and inflammatory programming and autophagy for Th1 
effector response during infection. Our recent study has shown that C. pneumonia 
potentially interfere with M1 programming of infected macrophages [21] when 
stimulated with their cognate innate and inflammatory stimuli which is due to 
increased expression of HIF-1 and p38MAPK proteins [22] which are known to 
promote unfolded proteins response (UPR) in the infected macrophages [23] which 
in turn predispose macrophages refractory to immune stimulation. Within mac-
rophages, mitochondria is potentially involved in the innate immune response of 
macrophages against a variety of successful intracellular pathogens mainly by flush-
ing catatonic peptides like LL37, CAP 12, and CAP 18 to cytoplasmic compartment 
for efficient capture and killing of pathogen in mature phagolysosomes [24]. Recent 
studies have amply demonstrated that most of the opportunistic pathogens inter-
fere in the mitochondrial physiology by promoting mitophagy which jeopardizes 
innate immune defense of macrophages against pathogens. In such cases, tweaking 
mitochondria by using Smac mimetic-based interventions holds promises in the 
management of persistent infection. Although we have recently demonstrated that 
Smac mimicry [21] is capable of mounting an efficient immune response against 
mild pathogens, it fails to do so against pathogenic microbes like Leishmania 
donovani. Since pathogenic microbes enhance the expression of p38MAPK/HIF-1 
pathways [25] for sabotaging macrophages functions, therefore we feel that at the 
moment targeting p38MAPK/HIF-1 in conjunction to Smac mimetics would be 
paramount for controlling pathogenic microbes. This is a quite intriguing aspect of 

Figure 2. 
Bacterial pathogens potentially exploit and interfere in various pathways in committed macrophage for 
subverting effector mechanisms during latency. Pathogenic bacteria interfere with various key signaling 
pathways which are important for the effector responses, e.g., recognition by receptors, uptake, and phagocytosis, 
lysosomal degradation, and alter signaling pathways and secretion of Th1 cytokines for establishing Th2 bias.
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the field and needs further in-depth investigation. In the same line, many patho-
gens are known to interfere with autophagy process which is yet another potential 
mechanism which influences antigen presentation by APC to T cells for the clear-
ance of pathogens. Many pathogens attack mTORc1 complex and disrupt the 
autophagosome apparatus [26, 27] and inhibit their presentation by APC to T cells 
for immune surveillance during latent phase. Therefore pharmacological tweaking 
of autophagy may offer one potential strategy for clearing dead pathogens effec-
tively from the lung tissue. Irrespective of acute or persistent phase, all pathogens 
utilize host metabolism for their survival inside the host. During persistency, many 
pathogens consume carbohydrate and protein reservoir of infected macrophages 
and alter their metabolic rates. l-Tryptophan [28] and glucose are critical for 
macrophages, and their fluctuation largely dictates the effector response of infected 
macrophages as well as the fate of pathogen in APC/phagocytes. During persistent 
infection, Chlamydia sp. utilize cellular depot of l-tryptophan amino acid by acti-
vating IDO gene and metabolize it to l-kynurenine which impedes glycolysis [29] 
in the macrophages. M1 effector macrophages rely on cellular depot of glucose for 
both activation and differentiation into effector phenotype; therefore, during latent 
infection, pathogens disrupt in the glucose metabolism and promote hypoglycemia 
rendering them refractory for optimum defense against pathogens.

4.  Human pathogens promote epigenetic changes in macrophages  
during persistency

At genome level, C. tr infection causes global hypoacetylation and hypermeth-
ylation of lysine residues on core histones which alter histone post-translational 
modifications which differ between acute and persistent infections. Upregulation of 
pH2AX (Ser139) and H3K9me3 which are hallmarks of DNA double-strand breaks 
(DSBs) and senescence-associated heterochromatin foci (SAHF), respectively, dur-
ing Chlamydophila trachomatis [30] infection suggested teratogenic manifestation 
of Chlamydia persistency. This is largely due to increasing levels of reactive oxygen 
species (ROS) which is produced during latent infection. ROS contribute to DNA 
double-stranded breaks leading to persistent DNA damage, which in turn triggers 
SAHF formation in an ERK-dependent manner [30]. CPAF and CADD proteins 
from Chlamydophila pathogens are known to perturb host cell cycle machinery 
and inhibit recruitment of the DNA damage response proteins pATM and 53BP1 
to damaged sites interfering with DNA repair mechanisms [30]. Despite impaired 
DNA repair, infected cells continue to proliferate which are in turn supported 
by enhanced oncogenic signals such as ERK, CyclinE, and SAHF. These changes 
altogether lead to the malignant transformation of infected tissue. Similarly, other 
pathogens like Campylobacter rectus [31], which is associated with oral cancer, 
downregulate Igf2 gene and enhance DNA methylation at its promoter which can be 
attributed to bacteria-mediated epigenetic modifications to the host genome. Other 
pathogens like Salmonella enterica serovar Typhi, which is one of the prognostic 
factors for the susceptibility for gallbladder carcinoma, exploit MAPK and AKT 
pathways [32] which initiate and sustain neoplastic transformation of infected host. 
Macrophages sense and trigger immune response against pathogens via TLR-linked 
signaling cascade. Under normal circumstance, almost all pathogens trigger TLR 
signaling pathways for activating macrophages; however, only few obligate intracel-
lular pathogens, in hitherto, interfere with TLR signaling directly or indirectly and 
limit defense mechanisms [33] of effector macrophage like pattern of cytokines 
secretions, their uptake, and phagocytosis by macrophages. Although there are mul-
tiple ways how a pathogen can interfere with TLR signaling, so far TLR2/4 triggered 
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hypoxia and associated sterile inflammatory response, and/or TLR masking/
shedding mechanisms have been identified and proposed [34, 35]. Yersinia entero-
colitica and Candida albicans are known to induce immunosuppression through 
TLR2-mediated IL-10 release and differentiation of T-helper cells to CD4+CD25+ 
regulatory T cells [36]. Yersinia species secrete a virulence (V) antigen, LcrV, which 
binds to CD14 and TLR2, trigger IL-10 secretion, and mediate immunosuppression. 
It has recently been shown that a particular residue in the N-terminal region of LcrV 
targets TLR2 and is required for altering IL-10 induction via TLR2 [37]. Likewise, 
H. pylori escapes from recognition by the TLRs due to the removal of phosphate 
groups from the 1′ to 4′ positions of lipid A in LPS, which confers low negative 
charge to this molecule and increases the chance of escaping TLR recognition. The 
recognition of non-LPS ligands by TLR2 leads to anti-inflammatory responses that 
are associated with IL-10 production [38]. Flagellin of H. pylori is one of the PAMP 
which potentially modifies the N-terminal recognition domain of TLR5 and helps 
in escaping the innate immune responses. Manipulation of amino acid 89–96 of 
the recognition domain of TLR5 results in low affinity to flagellin binding [39]. 
Under recurrent/latent infection state, TLR2-mediated signaling, hitherto, inhibits 
IFN-γ response and hijacks Th1 programming of macrophages. A pathogen like M. 
avium inhibits IFN-γ signaling in TLR2-dependent manner where it enhances the 
expression of dominant-negative STAT1b. Similarly, 19KD protein of Mycobacterium 
tuberculosis inhibits IFN-γ-induced expression of HLA-DR and FcγR1 expression on 
human macrophages [40]. In addition to the induction of anti-inflammatory signals 
by TLRs, certain pathogenic microbes have developed strategies to either block or 
avoid their recognition by TLRs and subsequent activation of the innate defense. 
According to one recent study, phospholipids and Ypk protein of Treponema 
pallidum interfere in TLRs (TLR3, TLR4, and TLR9) signaling [41] by blocking 
the function of LPS-binding protein and CD14. Several bacterial pathogens have 
altered specific PAMP structures to circumvent recognition by TLR4 or TLR5; 
pathogens, such as Porphyromonas gingivalis or Leptospira, which have specialized 
LPS structures that only interact with TLR2; likewise, in Helicobacter pylori, the 
flagellin [39, 42] is not appropriately recognized by TLR5, approving the survival 
of the bacteria without loss of virulence. Virulent strains of Salmonella typhi escape 
from their recognition by host PRR by various mechanisms, which predominately 
include modifying their lipid A by various mechanisms including deacylation, 
palmitoylation, and the addition of aminoarabinose [43]. Pathogens have evolved 
in several ways of avoiding NO-mediated killing that plays a central role in effector 
response in phagocytes. Salmonella typhi reside in a specialized membrane compart-
ment called the Salmonella-containing vacuole (SCV), which is similar to inclusion 
in the case of Chlamydia sp. in macrophages, and use a T3SS called Salmonella 
pathogenicity island 2 (Spi2), which protects them from reactive nitrogen inter-
mediates. Spi2-deficient strains of S. typhi get colonized in iNOS+ compartment 
efficiently [44] with the intracellular organisms in the SCV. Intracellular organisms 
have also developed mechanisms to detoxify NO-mediated effects. These include the 
ability to repair damage caused by reactive nitrogen intermediates and to detoxify 
these molecules. Pathogens have evolved the strategies of inhibiting iNOS activity 
which is the characteristic feature of M1 effector macrophages. Mucosal pathogen 
Citrobacterro dentium causes a marked reduction in the level of iNOS activity in 
macrophages [45]. There are many reported examples of bacterial pathogens 
altering inflammatory cytokines related to signaling. Staphylococcus aureus pro-
teins A and M bind directly to the TNF-α receptor 1, on respiratory epithelium, 
which then potentiates a chemokine and cytokine cascade and subsequent disease 
[46]. Similarly, Shigella flexneri, through exploring type III effector, OspG, which 
is a protein kinase, activates ubiquitin-conjugated enzymes, thereby affecting 
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phospho-ikBα degradation and subsequent NF-κB activation. Both Chlamydia 
pneumonia and Chlamydia trachomatis promote shedding of TNF receptor 1 by 
activating TACE activity and shunt TNF signaling though TNFR2 [47] and resist 
antibacterial and inflammatory action of TNF which is major component of effector 
macrophages.

5.  Potential interventions for reactivating refractory macrophages  
for therapy outcome

While the application of antibiotics is sufficient to control acute infection 
however during persistent infection, the outcome of treatment mostly remains 
refractory. This is due to increased density of refractory macrophages in various 
affected tissues which resists many therapies as seen in many similar diseases like 
cancer and metabolic disease which is mediated with tissue accumulation of type 2 
or tumor-associated macrophages. It is now well accepted by medical community 
that increased densities of these macrophages are associated with poor prognosis 
in many infectious, tumor, and metabolic disease. In such conditions antibiotics 
and/or chemotherapy would require an additional regimen for effective treatment. 
During past decades, the growing evidence suggested that TAMs clearly play an 
important role in tumor progression, metastasis, and resistance to available che-
motherapies by modulating the microenvironment inside the tumor mass as well as 
in the stoma. Therefore, it is important to reeducate or target the TAMs (M2-like) 
to antitumor M1-like macrophage phenotype for successful treatment of several 
human malignancies. In the remaining sections of this chapter, we have discussed 
various macrophage-specific and nonspecific interventions for reactivating refrac-
tory population of macrophages for improving existing therapies.

5.1 Neoadjuvant for retuning refractory macrophages

Many interventions have been made to reactivate or retune the TAM, but most of 
them could not influence the disease outcome profoundly. In this context our recent 
studies have shown neoadjuvant impact of low-dose radiation for retuning TAM, 
T cell-aided therapy [48], and subsequent normalization of vasculature in solid 
tumor-bearing animals. Since infection induced adenocarcinoma is manifested with 
high grade infiltration of foamy macrophages, which are like M2 TAM, therefore, on 
the basis of our tumor studies, we propose low dose gamma irradiation as one of the 
non-specific therapeutic interventions for the management of persistent infection-
induced tumor development.

5.2 Nanomedicine as immune adjuvant for refractory macrophages

Nanomedicine has emerged as one of the new modalities for reprogramming of 
both naïve as well as refractory macrophages toward their effector phenotype and 
thus represents one potential intervention for the management of latent infectious 
disease. We and others have recently demonstrated that due to their size and unspe-
cific adjuvant properties, nanocarriers/nanocapsules can penetrate inflamed tissue 
microenvironment effectively and deliver drug in controlled and sustained rate for 
exerting adjuvant actions on macrophages in the inflamed and fibrotic lesions of 
infected tissue. Nanomedicine-based approaches may impact refractory macrophages 
at various levels, namely, (i) enhanced infiltration of fresh monocyte/macrophages, 
(ii) direct killing, and (iii) in situ polarization of AAM/foamy-like macrophages 
during chronic infection to assist clearing of infection. One of the interesting 
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mechanisms by which nanoparticle may improve the therapy outcome is to control 
the differentiation of naive monocytes toward iNOS+ M1 effector macrophages and 
replace CD11b+/iNOS-/Arginase-1+ AAM during chronic infections. In this context, 
our recent work has shown that a certain biodegradable amino acid-based pNAPA 
nanocapsule can potentially stimulate naïve macrophage to the M1 effector pheno-
type. On the basis of these merits, the nanocapsules may be used as adjuvant for acti-
vating innate immune system for the management of infectious diseases and cancer. 
Another potential application of nanoparticles is to deliver drugs or biopharmaceuti-
cals for preventing differentiation of effector phenotype of macrophage to refectory. 
In this context one study has shown that delivery of CCR2 and CCR5 siRNA-loaded 
nanoparticles was able to reduce the recruitment of monocytes to inflamed tissue 
[49]. Nanocarrier-based approaches can be used for the direct killing of the refractory 
macrophages as well. For instance, liposomal formulations have been developed for 
the delivery of bisphosphonates such as zoledronates and clodronates. Subcutaneous/
orthotropic injections of these nanocarriers result in the depletion of AAM accom-
panied with impaired angiogenesis and reduction in metastasis. Nonspecific target-
ing is the major issue with nanocarriers which can be addressed by tagging these 
nanocapsules with specific ligands such as LyP1 and mannose receptors (e.g., CD206) 
which are highly expressed by TAM/AAM [50] for effective targeting of macrophages. 
PLA-PEG nanoparticles, cyclodextrin nanoparticles, and liposomal formulations have 
been developed for loading drug cargoes such as sunitinib, IL-12 plasmids, TGF-β 
inhibitors, and VEGF siRNA for reprogramming of refractory macrophages for skew-
ing in situ Th1 effector immune response against latent infections [51–54].

5.3 Immunotherapeutics are the next-generation treatment modalities

One of the key characteristics of both AAM and TAM is to restrict Th1 immune 
response/T-cell programming by virtue of their releasing of Th2 cytokines and 
growth factors, which stimulate the neoplastic differentiation of inflamed fibroblast 
in tissue [55]. One of the major mechanisms by which these cells limit effector 
T-cell response is to engage programmed cell death ligands 1 and 2 (PD-L1, PD-L2) 
[56] which are expressed by the AAM/TAMs. Pulmonary infiltration of lipid rich 
foamy macrophages is a typical evidence of persistent infection-induced non-
immunogenic/sterile inflammatory immune response during persistent/latent C. 
pn and M. tb infections. Foamy macrophages are special kinds of AAMs which have 
poor antibacterial defense mechanisms and serve as carriers of many pathogens 
during dissemination. These macrophages inhibit Th1 programming of CD4/8+ T 
cells and promote Th2 bias by secreting IL-4 and IL-13 in infected tissue micromilieu 
and help these bacteria in immune escape. These macrophages are known to express 
PD-1L which after binding to PD-1 T cells drives anergy in T cells. Binding of PD-1L 
to PD-1 receptor triggers functional anergy in cytotoxic T lymphocytes (CTL) which 
are otherwise effective in eradicating persistently infected dead cells. Many patho-
gens exploit these pathways as a major immune evasion mechanism for securing 
their opportunistic survival. For example, Chlamydia sp., H. pylori, and Leishmania 
donovani pathogens are known to modulate the expression of PD-L1 on macrophages 
[57–59] for dumping adaptive immune responses. In such conditions, blocking 
PD-L1 pathway by monoclonal antibody against PD-1/PD-L1 has been found to be 
effective in restoring phagocytic potential of macrophages for dead cell clearance 
and subsequent control of tumor in mice models. For this study, it is anticipated that 
co-administration of antibody against PD-1/checkpoint inhibitors (CTLA4) along 
with antibiotics would be beneficial for the management of latent infectious diseases. 
In the same line, vascular endothelial growth factor (VEGF), transforming growth 
factor (TGF-β), fibroblast growth factor (FGF), and platelet-derived growth factor 
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(PDGF), which are potentially secreted by AAM and promote sterile inflammation, 
also represent potential pharmacological targets for enhancing immunogenic death 
of cells during latent phase. Colony-stimulating factor 1 receptor (CSF1R) represents 
yet another promising target for therapeutic interventions because CSF1R signaling 
is crucial for differentiation, recruitment, and survival of TAMs [60].

5.4 Antibody/small molecule inhibitor targeting polarization of refractory 
macrophages

Intracellular pathogens, during both acute and latent infection, fiddle with vari-
ous signaling pathways which range from receptor-associated cell death and innate 
immune signaling, antigen presentation, vesicular transport, and phagocytosis 
pathways. Although we have disused these in earlier section, here we will discuss 
the pharmacological and clinical significance of various approaches which may 
be decisive for mitigating cellular perturbations in the host for restoring immune 
defenses of macrophage during persistency. In this context, our recent study [21] 
has proposed that Smac mimetic (IAP-specific inhibitors)-based strategy has 
potential for enhancing immunogenic cell death of infected cells and reactivating 
refractory macrophages for improved clearance. Due to these virtues, several Smac 
mimetics have entered in the second-phase clinical trial against cancer, and we 
anticipate that the same is expected to help immune system for the management 
of persistent bacterial infection as well. Other than this, many pathogens exploit 
MAPK pathways [61] for their benefits and induce production of IL-10 cytokines in 
the macrophages which further inhibits T-cell programming mainly by promoting 
T-cell exhaustion [62]. Other than this, elevated levels of p38MAPK promote sterile/
anti-inflammatory response, which supports opportunistic survival of pathogen 
inside macrophages. Likewise, many pathogens exploit cAMP/PKA pathways and 
acquire Th2 bias during their persistency [63] for securing their survival; TNF-α 
is a major and key cytokine responsible for receptor-mediated killing of infected 
cells. We (unpublished data) and others have shown that many intracellular patho-
gens, during persistency, potentially target this cytokine and inactivate cell death 
pathways in TACE- or ADAM-dependent manner. Pathogens like Chlamydia sp. 
secrete CPAF, CADD, and hsp60 exerting TACE activity and cause shedding of 
TNFR1 [21], which actually induces cell death. Interestingly these proteins which 
are secreted by chlamydial pathogens require MAPK activation for efficient shed-
ding of TNFR1 [64]. Therefore on the basis of the above observations, designing 
a suitable MAPK/phosphodiesterase 4 (PDE4) inhibitors [65] thus represents a 
compelling approach for controlling bacterial persistency and associated immune 
evade mechanism. Sphingolipids are yet another dual-specific cellular targets [66] 
of many pathogens for deviating Th1 effector immune response [67]. We have 
recently demonstrated that S1P/ceramide rheostat is an important parameter which 
can largely dictate whether pathogen would undergo persistency or not [66]. In this 
direction, we have recently demonstrated that the gain of S-1P during acute M. tb 
infection affords protective immunity in host for controlling pathogen burden; 
however, the same is anticipated to promote mycobacterial persistency and thus in 
such conditions, employment of sphingolipid-based inhibitors, in hitherto, would 
favor host for breaking persistency and induction of protective immune responses.

5.5 Future perspectives: macrophage-based palliative strategies for tissue 
homeostasis post-antibiotic purging

Successful therapy post-antibiotic treatment infection should normalize the tis-
sue microenvironment and restore homeostasis. This could be achieved by chelating 
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oxidative stress and remnants of inflammatory response for the replenishment 
of tissue mass, which normally gets lost during various therapeutic procedures. 
Management of M1/M2 imbalance is believed to be the key for minimizing the risk 
of having cancer by chronic and persistent infection with intracellular pathogens. 
In the clinics, this can be achieved by exchanging refractory populations of macro-
phage with effector ones which can control the sterile reactions and tumorigenesis. 
However, due to the pro-inflammatory nature of iNOS+ effector macrophages, 
this may elicit another sequence of destruction, which alone may not be beneficial. 
Therefore in such delicate conditions, co-administration of M1 macrophage with 
mesenchymal stem cell regenerative approach seems to be optimum for reconstitut-
ing the affected tissues and organs. The potential inclusion of macrophage-mesen-
chymal cell-based therapeutic intervention could be categorized under prospective 
palliative therapies for restoration of physiological function post-treatment.

6. Conclusion

Since chronic infection with bacterial pathogens has been associated with 
adenocarcinoma, therefore, we believe that the management of M1/M2 imbalance is 
paramount for minimizing the risk of developing cancer by chronic and persistent 
infection of the lung, stomach, and cervix. This may be achieved by targeting major 
signaling pathways such as sphingolipids and Th2/Th17 responses which drive M2 
phenotype and which are potentially involved in the development of cancer. In the 
light of the above, we propose that selective activation of M1 macrophages could 
improve existing antitumor immune therapies in both mouse and human models of 
tumors with special emphasis on gastric and lung tumors and inflammatory diseases 
like inflammatory bowel disease (IBD) which are responsible for global mortality.
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Applications
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Abstract

Macrophage polarization is a spectrum of phenotypes and generally can be 
classified into two states: (1) classically activated or M1 macrophages, which can 
be driven by lipopolysaccharide (LPS) alone or in association with Th1 cytokines 
and produce pro-inflammatory cytokines such as TNF-α, IL-6 and, IL-12, and (2) 
alternatively activated M2 macrophages, which can be promoted by Th2 media-
tors IL-4 and IL-13 and produce anti-inflammatory cytokines such as TGF-β and 
IL-10. Current studies have found that the phenotypic switch between M1 and M2 
macrophages governs the fate of an organ in inflammation or injury. The imbalance 
of M1/M2 polarization is closely involved in various pathological processes and is 
becoming a potential target for therapeutic strategies. Traditional Chinese medicine 
is an integrated healthcare system composed of many practices and is characterized 
by multi-target, multi-level, and coordinated intervention effects. Chinese medi-
cines nowadays are applied to regulate phenotype polarization of macrophages to 
improve the microenvironment, thus ameliorating or even eliminating the symp-
toms. In this chapter, we will discuss the molecular mechanisms of macrophage 
polarization, their roles in health and disease, and the intervention with Chinese 
medicines to modulate the polarization of macrophages in tumor microenviron-
ment (TME) for therapeutic purpose.

Keywords: tumor microenvironment, tumor-associated macrophage, polarization, 
Chinese medicine

1. Introduction

Primary and metastatic tumors are generally known as a complex ecosystem 
containing tumor cells and the surrounding environment, called tumor micro-
environment (TME). Apart from autonomous changes by genetic alteration of 
tumor cells, the dynamic changes of TME progress the tumor progression [1]. 
TME is a multifaceted pool that consists of various cell types including neoplastic 
cells, stromal cells, and immune cells that interact with one another via numerous 
secreted cytokines, growth factors, and chemokines. Tumor-associated macro-
phages (TAMs) take up a large portion of recruited immune cells and constitute up 
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to 50% of the tumor mass. It was reported that the high level of TAMs is associated 
with poor prognosis and decreasing overall survival in many cancers, such as liver, 
breast, gastric, and thyroid cancers, suggesting that TAMs certainly play essential 
roles during tumor development [2–6].

TAM recruitment and accumulation are regulated by various cytokines and 
chemokines, such as CCL2, CCL5, CCL7, CXCL12, etc., and growth factors includ-
ing VEGF, PDGF, and CSF1, as well as other factors such as fibronectin and 
fibrinogen [7–10]. CSF1 is the major regulator for monocyte proliferation and 
differentiation. CCL2 is a dominant attractant in many tumors. Since monocytes 
highly expressed the receptor of CCL2 (CCR2), most of tumors produced a high 
level of CCL2 that can intensely attract monocytes migrating toward CCL2-CCR2 
axis [11–17]. However, CCL2 inhibition studies show that it could not completely 
suppress TAM accumulation, indicating that other factors affect this process [7, 
17–21]. The CCL12-CXCR4 axis is reported to promote TAM regional accumulation 
under therapeutic treatments. In mice model, breast cancer highly expressed CCL20 
and CCL5; Either inhibited CCL20 expression or treated with CCR5 antagonist, 
the number of TAMs was significantly reduced within tumors. These studies have 
shown that in breast cancer, CCL20-CCR6 and CCL5-CCR5 axes contribute to TAM 
accumulation. Another chemokine CCL11 can be induced under hypoxia condition 
and subsequently recruit TAMs to the hypoxic region.

In turn, TAMs can produce different molecules to remodel TME and influence 
fundamental aspects of tumor pathology. For instance, TAMs secrete endothelial 
growth factor (EGF) to increase neoplastic proliferation directly [22]; TAMs release 
vascular endothelial growth factors (VEGF) [23], angiogenic factor thymidine 
phosphorylase, and other chemokines including CCL2 and CXCL8 to enhance 
angiogenesis; TAMs produce metalloproteases (MMPs) to change TME matrix 
architecture for tumor metastasis [24]; and TAMs express immune regulatory mol-
ecules such as arginase-1 (ARG1), IL-10, and IL12 to modulate immune response 
[2]. The role of TAMs is accomplished by their phenotypic plasticity, either pro-
inflammatory or anti-inflammatory phenotype, in response to the complex stimuli 
in TME. The double-edged sword feature of TAM polarization makes them as a 
novel and potent target for cancer prevention and treatments.

Traditional Chinese medicine is an integrated healthcare system composed of 
many practices that were rooted in China for over 5000 years. Due to its multi-
target, multi-level, and coordinated intervention effects, Chinese medicine is 
widely used for therapeutic strategies. Recent studies reported that some of the 
Chinese herbal medicines have beneficial effects on cancer therapy via modulating 
TAM polarization, indicating a new mechanism for Chinese medicine treatment. 
In this chapter, we will explore the molecular mechanisms of TAM polarization and 
their roles in health and disease, and we will review the intervention by some of the 
Chinese herbal medicines on TAM polarization.

2. TAM polarization and molecular mechanisms

2.1 TAM polarization

It is widely accepted that the majority of TAMs are derived from circulat-
ing monocytes via cytokine recruitment and then differentiate to macrophages. 
And those at the metastatic sites are called metastatic-associated macrophages 
(MAMs) according to their location [25]. While recent studies have shown that 
the tissue-resident macrophages also contribute to TAM population [26, 27], these 
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progenitors, also called embryonic macrophages, are derived from the yolk sac or 
fetal liver-derived progenitors, and they can maintain themselves by local prolif-
eration in a hematopoietic system-independent way [28]. The selective depletion 
studies found that only the tissue-resident macrophages support the established 
tumor growth. Therefore, TAMs are heterogeneous cell populations from both 
tissue-resident macrophages and monocyte-derived macrophages and assist TME 
remodeling.

Besides their heterogeneity, TAMs are also characterized by high plasticity. In 
the general regard, macrophages can be overgeneralized to two extreme subsets 
based on the stimuli, surface markers, and secreted molecules, as well as functional 
properties: the classically activated M1 and alternatively activated M2 macro-
phages. The M1 phenotype is induced by the Th1 cytokine interferon-γ (IFN-γ), 
bacterial moieties such as lipopolysaccharide (LPS), and Toll-like receptor (TLR) 
agonists. The M1 macrophages are characterized by their capacity to produce 
inflammatory cytokines (e.g., IL-6, IL-1, IL-12, IL-23, and TNF-α) and stimulate 
immune response, express reactive oxygen species (ROS) and inducible nitric oxide 
synthase (iNOS), and have a cytotoxic effect toward neoplastic cells and phago-
cytic microorganisms [29–34]. Generally, the M1-like macrophages act as sentries 
and display tumoricidal function, antimicrobial activity, and tissue destruction 
effect [33, 35].

In contrast, the M2 phenotype is promoted by Th2 mediators and produces 
immunosuppressive factors (e.g., IL-10, TGF-β) and growth factors (e.g., VEGF) 
and exerts anti-inflammatory and pro-tumorigenic activities [34, 36, 37]. Moreover, 
the M2-like macrophages can be further subdivided into three categories, M2a, 
M2b, and M2c, based on the type of stimuli. The M2a macrophages are driven by 
type II cytokines including IL4 and IL13 and expressed a high level of arginase-1; 
M2b macrophages are activated by immune complexes/TLR, while M2c macro-
phages by anti-inflammatory cytokines (e.g., IL-10) and glucocorticoids [38]. The 
M2-like macrophages promote angiogenesis, wound repair, and tumor growth, as 
well as resistance to parasitic infection. Many studies reported that TAMs mostly 
represent M2-like macrophages and play pro-tumoral roles.

2.2 Molecular mechanisms in regulating TAM polarization

2.2.1 The JNK signaling pathway

The c-Jun N-terminal kinase (JNK) proteins are a group of stress-activated 
serine threonine protein kinases of the MAPK and can be activated by various 
external stimuli including inflammatory cytokines, environmental stresses, growth 
factors, and GPCR agonists. The outside signals can be transduced by small GTPase 
to MAP3Ks and further activate MKK4/7. The MAP3Ks play key roles in the JNK 
pathway and affect tremendous downstream transcription factors including AP-1, 
Smad3, and STAT3, thus controlling many biological processes [39]. The studies 
on adipose tissue macrophages (ATMs) have demonstrated that the JNK pathway 
is indispensable in regulating M1/M2 phenotype formation. In HFD-/NAFLD-
induced inflammation and obesity, the activated JNK pathway can promote the 
expression of the M1-associated genes via CCR2 and NF-κB signaling. The M1-like 
ATMs are related to the resistance to insulin [40, 41]. Recent studies found that nor-
mal adipocytes produce Th2 cytokines, such as IL-13 and IL-4 which can enhance 
M2-like macrophage polarization via activating STAT6 and PPAR𝛿𝛿/𝛽𝛽, as well as ACE 
to block the JNK pathway-induced M1-like phenotype [42]. Studies also found that 
vigorous exercise can promote M2 state through decrease phosphor-JNK [43].
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2.2.2 The PI3K/Akt signaling pathway

Among different pathways, the PI3K/Akt pathway is playing a central role in 
regulating polarized phenotype alteration. It can be activated by many stimuli such 
as TLR4, PRRs, FcRs, and cytokines and modify downstream cytokine production 
[44–47]. In turn, the PI3K/Akt pathway can affect the expression of stimuli and 
form a feedback loop. For example, the activated PI3K/Akt pathway can inhibit 
the transcription factors of TLR4 including TRAF6 and FOXO1 either directly or 
indirectly to suppress TLR4 stimulation. The PI3K has two transducers PIP2 and 
PIP3 which exert opposite functions during stimulation. It has been reported that 
PIP2 can enlarge LPS-induced M1-like macrophage polarization, while PIP3 can 
target mTORC2 via Akt recruitment and promote M2-like macrophage polariza-
tion. Other studies found that PTEN and SHIP play an inhibitory effect on PI3K/
Akt transduction by transforming PIP3 to PIP2. The downstream signals mTORC1 
and mTORC2 also participate in regulating M1/M2 alteration. Deletion of TSC1 can 
promote LPS-induced M1 polarization and inhibit IL-4-triggered M2 polarization 
via inhibiting mTORC1-induced Akt signaling, while the deletion of TSC2 gives an 
opposite response. Furthermore, the isoforms of Akt also contribute to influence 
the M1-/M2-polarized phenotype transformation in the opposite way. In knocked 
out Akt1, the expressions of iNOS and IL-12 were enhanced which is a hallmark of 
M1-like macrophages, and the transcription factor C/EBPβ of M2-related genes was 
decreased. The deletion of Akt2 led to C/EBPβ and M2 markers enhanced, includ-
ing Arg1, Fizz1, and Ym1 [48].

2.2.3 The JAK/STAT signaling pathway

The JAK/STAT pathway is one of the principle regulators for transducing 
different signals and affects various gene expressions. The JAK family consists of 
JAK1–3 and TYK2 and can be recruited and bind to the intracellular domains of 
activated receptors. JAKs will subsequently become dimers after autophosphory-
lation and then phosphorylate their downstream STAT family which has seven 
members including STAT1–4, STAT5A/B, and STAT6. The activated STAT family 
will translocate to the nucleus and modulate the expression of their target genes 
[49]. Increasing evidence found that the JAK/STAT pathway is closely related to 
M1/M2 phenotypic polarization. Among different stimuli of JAK/STAT signaling 
pathway, the IFN-γ has been known as a strong inducer of M1 phenotype through 
STAT1 activation [50]. It is controlled by IRF5 and IRF4 which exert promotive 
and inhibitory effects, respectively [51]. The IL-4 and IL-10 can activate STAT3 
and STAT6 to program the M2-like phenotype and also have cross talk with JNK 
pathway as mentioned in the JNK signaling pathway. The IL-13 can activate both 
M1- and M2-associated genes through STAT1, STAT3, and STAT6 activation [52]. 
There are two regulators of JAK/STAT pathway that affect M1/M2 reprogram-
ming, SOCS1 and SOCS3. The SOCS1 exhibits a suppressive function on STAT1, 
thus leading to the M1-like phenotype inhibition, while activating STAT6 to 
induce M2 polarization. The SOCS3 can activate STAT1 activity to contribute M1 
polarization [53, 54].

2.2.4 The Notch signaling pathway

The Notch pathway is generally known to play a fundamental role in regulating 
development and assist to govern the fate in response to different stimuli. There are 
four members of transmembrane receptors including Notch1–4. When the Notch 
receptors bind to their ligand family, such as Delta-like proteins (DLLs) and Jagged 
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proteins, the Notch intracellular domain (NICD) receptors will be released into the 
cell nucleus and binds to RBP-J to form a transcription complex, thus driving the 
target gene expression [55]. For example, LPS stimulation can upregulate DLL4 
which is one of the DLLs in the TLR4/NF-κB-dependent way. The increased DLL4 
can lead to activated Notch signaling and induce pro-inflammatory genes, such as 
IL-12 and iNOS [56]. Apart from the direct function of RBP-J, it can also positively 
regulate IRF8 activation to promote pro-inflammatory cytokine production. And 
this regulation is associated with PI3K/Akt and TLR4/NF-κB pathways [57].

2.2.5 Other molecular mechanisms

Apart from the signaling pathways mentioned above, there are many other path-
ways involving in M1/M2 reprogramming. For example, the TLR/NF-κB pathway is 
important in regulating the innate immune response. TLRs can sense the microbial 
components and transduce signals to affect NF-κB activity. When the NF-κB is 
formed as p50/p65, it promotes M1-associated gene expression, while p50/p50 form 
has beneficial effects on M2-associated gene expression [58, 59]. It is worth noting 
that the hypoxia-dependent pathway also participates in M1/M2 phenotypic switch. 
The HIF-1α is induced under hypoxia condition and serves as a transcription factor 
to regulate protein production. It has been reported that HIF-1α promotes M1-like 
polarization by enhancing iNOS production and HIF-2α promotes M2 phenotype 
via increasing Arg-1 expression [60].

3. Roles of TAM polarization and Chinese medicine intervention

The roles of TAMs under physiological and pathological conditions depend on 
their dichotomic polarization. Generally, when infection of tissue or damage occurs, 
The first-responding TAMs show M1-like phenotype and secrete pro-inflammatory 
cytokines to defend against invading pathogens and eliminate necrotic cells. And at 
the latter stage, the M2-like macrophages have shown as a compensation mechanism 
to prohibit extensive inflammation and assist in wound healing. In cancers, the 
M1-like TAMs predominantly exert cytotoxicity effect on cancer cells, while the 
M2-like TAMs assist in modulating immunosuppressive and pro-tumoral TME for 
cancer progression. Nowadays, TAMs are becoming promising targets for thera-
peutic strategies [61, 62]. Many Chinese herbal medicines have been identified to 
have anti-microbial, anti-inflammatory, immune regulatory, and antitumor effects. 
It would be interesting to review the intervention of Chinese medicines on TAM 
polarization in different cancers and diseases. Here, we select some of the Chinese 
medicines to describe as examples.

3.1 Baicalein

Baicalein (5,6,7-trihydroxyflavone) is isolated from the Chinese herb Scutellaria 
baicalensis root and has many beneficial effects on antitumor, anti-inflammation, 
anti-fibrosis, and antimicrobial [63, 64]. The treatment of baicalein in breast cancer 
is the first to explain its effect on TAM regulation. In breast cancer, TAMs showed 
M2-like phenotype that produced TGF-β1 and enhanced tumor growth and EMT 
process via PI3K/Akt signaling pathway. In turn, the tumor cells secreted TGF-β1 to 
maintain TAMs in M2-like phenotype. The positive feedback loop between tumor 
cells and M2-like macrophages was formed and further contributed to tumor metas-
tasis in the lung. Baicalein administration could block TGF-β1 via inhibiting PI3K/
Akt pathway. Besides, instead of altering the population of TAMs, baicalein could 
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drive M2-like macrophages to M1-like macrophage differentiation, with M1 markers 
increased. Therefore, the application of baicalein in regulating TAM polarization in 
breast cancer may provide a new understanding of other cancer treatments [65].

3.2 Panax notoginseng

The root of Panax notoginseng (PN) (Burk.) F.H. Chen is one of the popular 
Chinese herbs also known as sanqi, tianqi, or sanchi in Asia [66]. It has been widely 
used in many disorders for over 400 years due to its anticancer, anti-inflammatory, 
antiatherosclerotic, and hemostatic properties [67, 68]. Recent studies have shown 
that PN not only has cytotoxicity on cancer cells but also can redirect TAM polariza-
tion. It is commonly known that M2-like macrophages exert pro-tumorigenic effects 
on cancer, and to redirect M2 phenotype to antitumor M1 phenotype would be one 
of the promising strategies in cancer treatment. In many lung cancer studies, it has 
been reported that high doses of PN administration have direct cytotoxic effects 
on cancer cells, while the lower dose of PN still have inhibitory effects on tumor 
growth, suggesting there are other regulatory mechanisms. The in vitro study found 
that a lower dose of PN did not affect cancer cells, but it could reeducate M2-like 
macrophages toward M1 phenotypic differentiation [69]. It would help to better 
explain the pharmacological mechanism of PN.

3.3 Osthole

Osthole [7-methoxy-8-(3-methyl-2-butenyl)-2H-1-benzopyran-2-one] is isolated 
from Cnidium monnieri (Fructus Cnidii) and belongs to coumarin family, which is a 
benzopyrone and used as tumor-target drug carrier [70]. Osthole not only has cyto-
toxicity to cancer cells, such as breast cancer, lung cancer, HCC, and nasopharyngeal 
cancer (NPC) [71–73], but also has immunomodulatory effects on different tumors. 
In pancreatic tumors, osthole decreased M2-like macrophage population both in 
tumor site and spleen. But it did not affect M1-like macrophages. An in vitro study 
found that osthole could significantly inhibit STAT6 pathway and p-ERK1/2-C/EBP 
β signal, thus further inhibiting the M2-like macrophage polarization [74].

3.4 Emodin

Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a natural anthraquinone 
derivative from many Chinese herbs, and it has multiple pharmacological effects 
[75]. One study focused on the effects of emodin on macrophage polarization has 
shown that it could bidirectionally regulate both M1 and M2 phenotype programs 
via different signaling pathways, as well as participated in the epigenetic modifica-
tion. It seems like that emodin can restrain excessive M1- or M2-like macrophages 
and assist in maintaining homeostasis in different pathologies. For example, in 
breast cancer, emodin decreased TAM infiltration and inhibited M2-polarized phe-
notype by suppressing STAT6 and C/EBPβ signaling pathway. Moreover, it could 
increase H3K27m3 to downregulate M2-related genes.

3.5 Other Chinese medicine

Many other Chinese medicines have protective functions on different diseases 
through regulating M1/M2 phenotypic switch (as shown in Table 1). For example, 
curcumin can promote macrophages toward M2-like phenotype to ameliorate 
liver fibrosis, and it also assists wound healing [76]. Smiglaside A and Ginsenoside 
Rb3 have protective functions against acute lung injury via inducing M2-like 
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macrophage polarization [77, 78]. These findings may throw a new light for the 
regulatory mechanisms of Chinese medicines and promote their applications in 
health and diseases.

Chinese medicine M1/M2 phenotype 
switch

Disease Reference

Angelica sinensis M2 Cardiac fibrosis [79]

Baicalein M1 Breast cancer [65]

Berberine M2 Colitis; insulin resistance [80, 81]

Bergenin M2 Colitis [82]

Celastrol M2 Diet-induced obesity; acute 
ischemic stroke

[83, 84]

Corilagin M1 Schistosome egg-induced 
hepatic fibrosis

[85]

Crocin M2 Atherosclerosis [86]

Curcumin M2 Liver fibrosis; wound healing [76, 87]

Dioscin M1 Melanoma [88]

Diosgenin glucoside M2 Neuroinflammatory diseases [89]

Emodin M1 Breast cancer [90]

Ganoderma lucidum Karst M1 Inflammation [91]

Gastrodin M2 Cerebral palsy [92]

Ginkgolide B M2 Ischemic stroke [93]

Ginsenoside Rb1 M2 Atherosclerosis [94]

Ginsenoside Rb3 M2 Acute lung injury [78]

Isoliquiritigenin M2 Acute kidney injury [95]

Kumatakenin M1 Ovarian cancer [96]

Magnesium lithospermate 
B

M2 Neuronal injury [97]

Mylabris phalerata M1 Lung carcinoma [98]

Osthole M1 Pancreatic cancer [74]

Paeoniflorin M2 Neuronal injury [99]

Panax notoginseng M1 Lung carcinoma; influenza A 
virus infection

[69, 100]

Pentacyclic triterpene 
Lupeol

M2 Inflammatory bowel disease [101]

Pterostilbene M1 Lung cancer [102]

Punicalagin M2 Inflammation [103]

Saponin M2 Intestinal polyps [104]

Smiglaside A M2 Acute lung injury [77]

Tanshinone IIA M2 Acute kidney injury
Inflammation

[105]

Timosaponin AIII M2 Colitis [106]

Trichosanthes Kirilowii 
lectin

M2 Streptozocin-induced kidney 
injury

[107]

Table 1. 
The intervention of Chinese medicine on M1/M2 switch in different diseases.
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4. Conclusions

Current studies have described the heterogeneity and adaptive plasticity of TAMs 
in the intrinsic and dynamic TME. They are composed of both tissue-resident macro-
phages and monocyte-derived macrophages and interplay with TME. The latter one is 
attracted and recruited to the tumor site via various signals in TME, while TAMs can 
produce different molecules to remodel TME. In response to different stimuli, TAMs 
can differentiate into either classically activated/M1 macrophages or alternatively 
activated/M2 macrophage which involves multiple signaling pathways. The role of 
TAMs depends on their dichotomic polarization in health and disease. Therefore, they 
are becoming potential targets for many therapeutic strategies. Chinese medicine 
has been widely used in a long history of Asia and shows multiple effects on different 
diseases. Knowing the intervention of Chinese medicine on TAMs polarization may 
help to better understand the principle of Chinese medicine and contribute to the 
comprehensive applications in many diseases.
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MAM metastatic-associated macrophage
MAPK mitogen-activated protein kinase
MMP metalloprotease
mTOR mammalian target of rapamycin
NAFLD nonalcoholic fatty liver disease
NICD intracellular domain of notch receptor
NPC nasopharyngeal cancer
PDGF platelet-derived growth factor
PI3K phosphoinositide-3-kinase
PIP2 phosphatidylinositol 4,5-bisphosphate
PIP3 phosphatidylinositol 3,4,5-trisphosphate
PN Panax notoginseng
PPAR peroxisome proliferator-activated receptor
PRR pattern recognition receptor
RBP-J recombination signal binding protein for immunoglobulin Kappa J 

region
ROS reactive oxygen species
Smad3 SMAD family member 3
SOCS suppressor of cytokine signaling
STAT signal transducer and activator of transcription
TAM tumor-associated macrophages
TGF transforming growth factor
Th1 type 1 T helper
Th2 type 2 T helper
TLR Toll-like receptor
TME tumor microenvironment
TRAF TNF receptor-associated factor
VEGF vascular endothelial growth factor
Ym1 chitinase-like 3
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