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Preface

The challenges in and solutions for cryptography are the core subject of this book. 
Core security concepts and solutions were proposed decades ago. However, mainly
due to technology advancements, the increase of data transmission volume and the
evolving of Internet infrastructure, challenges to cryptography systems have been
found, calling for adjustments and solutions. In this book, we start with improve-
ments proposed to symmetric cryptography by construction of Boolean functions
for generating orthogonal variable spreading factor codes used in cryptographic
applications. We proceed with asymmetric cryptography by outlining RSA volun-
taries followed by ECC performance improvements of its Fast Scalar Multiplication
and improved performance of the encryption used in numerical problem applica-
tions. We conclude the book with two proposals to cope with the quantum comput-
ing challenge to Internet security. One approach uses a combination of overlay
security, Blockchain, and Merkle trees to provide a quantum safe Internet. The
second employs the MOR cryptosystem in a asymmetric cryptography, by general-
izing the discrete logarithm problem from a cyclic group to an arbitrary group.

I would like to acknowledge AAC for its help and Mrs. Nina Kalinic Babic for her
assistance as the Author Service Manager of this project.

Menachem Domb
Ashkelon Academy College,

Ashkelon, Israel
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Chapter 1

Implementing Symmetric
Cryptography Using Sequence
of Semi-Bent Functions
Samed Bajrić

Abstract

Symmetric cryptography is a cornerstone of everyday digital security, where
two parties must share a common key to communicate. The most common
primitives in symmetric cryptography are stream ciphers and block ciphers that
guarantee confidentiality of communications and hash functions for integrity.
Thus, for securing our everyday life communication, it is necessary to be convinced
by the security level provided by all the symmetric-key cryptographic primitives.
The most important part of a stream cipher is the key stream generator, which
provides the overall security for stream ciphers. Nonlinear Boolean functions were
preferred for a long time to construct the key stream generator. In order to resist
several known attacks, many requirements have been proposed on the Boolean
functions. Attacks against the cryptosystems have forced deep research on Boolean
function to allow us a more secure encryption. In this work we describe all main
requirements for constructing of cryptographically significant Boolean functions.
Moreover, we provide a construction of Boolean functions (semi-bent Boolean
functions) which can be used in the construction of orthogonal variable spreading
factor codes used in code division multiple access (CDMA) systems as well as in
certain cryptographic applications.

Keywords: symmetric cryptography, Boolean functions, Walsh spectrum,
nonlinearity, resiliency, (fast) algebraic attack

1. Introduction

Cryptography has become a branch of information theory and is used within a
mathematical approach to study the transmission of information from place to
place. In a modern society, exchange and storage of information in an efficient,
reliable, and secure manner are of fundamental importance. Applications of cryp-
tography are present in many aspects of our society, and they include authentica-
tion and encryption (bank cards, wireless telephone, e-commerce), access control
(car lock systems, ski lifts), and payment (prepaid telephone cards, e-cash). Behind
all the previously mentioned applications, an underlying cryptographic system has
to satisfy a number of security goals. Some important aspects in information secu-
rity are data confidentiality, data integrity, authentication, and non-repudiation,
and some of these goals will be elaborated later in the framework of Boolean
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functions. Therefore, cryptography is evermore important for business and
industry as well as for society at large.

A classic example of a cryptosystem is depicted in Figure 1. Such a cryptosystem
primitive is also called symmetric-key encryption algorithm, since the transmitted
message (plaintext) is encrypted (into ciphertext) and decrypted with the same
secret key which is shared between both sender and recipient. Symmetric cryptog-
raphy is best introduced with an easy-to-understand problem: There are two users,
Alice and Bob, who want to communicate over an insecure channel. The actual
problem starts with the bad guy, Oscar, who has access to the channel, for instance,
by hacking into an Internet router or by listening to the radio signals of a Wi-Fi
communication. This type of unauthorized listening is called eavesdropping. Obvi-
ously, there are many situations in which Alice and Bob would prefer to communi-
cate without Oscar listening. For instance, if Alice and Bob represent two offices of
a car manufacturer, and they are transmitting documents containing the business
strategy for the introduction of new car models in the next few years, these docu-
ments should not get into the hands of their competitors or of foreign intelligence
agencies for that matter. In this situation, symmetric cryptography offers a power-
ful solution: Alice encrypts her message m using a symmetric algorithm, yielding
the ciphertext c. Bob receives the ciphertext and decrypts the message. Decryption
is, thus, the inverse process of encryption. What is the advantage? If we have a
strong encryption algorithm, the ciphertext will look like random bits to Oscar and
will contain no information whatsoever that is useful to him.

Symmetric-key cryptography comprises two large families of cryptographic
primitives, namely, block and stream ciphers (see Figure 2). Since both block and
stream ciphers provide significant performance improvement compared to public-
key encryption techniques, they are commonly used as encryption schemes in
practice. However, the design rules for these two primitives are quite different.

In general, symmetric-key cryptography is much more computationally efficient
than public-key cryptography (approximately 1000 faster), and it requires shorter
key length to ensure the same level of security. On the other hand, every pair of
users that wants to communicate using symmetric encryption must share a com-
mon secret key. If n users want to ensure a pairwise secure communication, a total
of n n�1ð Þ

2 secret keys need to be exchanged, and every user must store and keep safe
n� 1 different secret keys, which is in many cases highly impractical. In compari-
son, public-key cryptography offers a functionality of only keeping a single private
key secret.

The security of symmetric cryptosystems is strongly influenced by Boolean
functions. They are often used as nonlinear combining functions in stream ciphers
based on linear feedback shift register. Those functions allow making the relation-
ship between the plaintext and the ciphertext as complex as possible. More pre-
cisely, a bit of the ciphertext is obtained from a bit of the plaintext by adding

Figure 1.
Model of classic cryptosystem.
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bitwise a key digit (the output of the Boolean function) whose dependence upon the
LFSR entries (the secret information) is nonlinear. Thus, the security of such
cryptosystems deeply relies on the choice of the Boolean function because the
complexity of the relationship between the plaintext and the ciphertext depends
entirely on the Boolean function. Indeed, some properties of the Boolean function
can be exploited to gain access to the contents of encrypted messages, even if the
key is unknown. Therefore, Boolean functions need to have some important char-
acteristics that are called security criteria to resist several types of attacks (see
Section 3). Furthermore, the research fields of Boolean functions regarding the
cryptography include the design and implementation, the properties of Boolean
functions, the construction and counting of Boolean functions with certain
properties, the trade-off between different properties, and the properties
according to new attacks.

A special class of Boolean functions defined as semi-bent function has been
introduced in 1994, by scientists Chee, Lee, and Kim [1]. The motivation for their
study is firstly related to their use in cryptography (in the design of cryptographic
functions). Indeed, semi-bent functions can be balanced and resilient. They also
possess various desirable characteristics such as low autocorrelation, a maximal

Figure 2.
Symmetric-key encryption schemes. (a) Stream cipher using algorithmic bit stream generator. (b) Block cipher.
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nonlinearity among balanced plateaued functions, but they cannot have high alge-
braic degree. In terms of linear feedback shift-register synthesis, they are usually
generated by certain power polynomials over a finite field and in addition are
characterized by a low cross-correlation and high nonlinearity. Besides their practi-
cal use in cryptography, they are also widely used in code division multiple access
(CDMA) communication systems for sequence design [2, 3]. In this context, fami-
lies of maximum length linear feedback shift-register sequences having three-
valued cross-correlation are used. Such sequences have received a lot of attention
since the late 1960s and can be generated by a semi-bent function. Even though a lot
of work has been done on semi-bent functions, there are a few generic methods of
constructing semi-bent functions that can be found in the literature. The classifica-
tion of these functions is still elusive, especially their construction are challenging
problems. Some open problems and an overview of the known construction related
on semi-bent functions can be found in the book of Mesnager [4]. The rest of this
chapter is organized as follows. In Section 2 the essential background on Boolean
functions is given. Some main requirements for constructing significant Boolean
function are given in Section 3. An infinity class of semi-bent function specified by
employing some sufficient conditions is given in Section 4. Some concluding
remarks are given in Section 5.

2. Useful definitions and terms

Let Fn
2 denote the n-dimensional vector space over the prime field F2. Let

x ¼ x1;…; xnð Þ be a vector over F2 of length n.
A Boolean function f x1;…; xnð Þ in n-variables is an arbitrary function from Fn

2 to
F2. It can also be interpreted as the output column of its truth table, i.e., a binary
string of length 2n,

f ¼ f 0;0;…;0ð Þ; f 1;0;…;0ð Þ;…; f 1; 1;…; 1ð Þ½ �: (1)

An n-variable function f is said to be balanced if its output column in the truth
table contains equal number of 1’s and 0’s.

Any Boolean function has a unique representation as a multivariate polynomial
over Galois field of two elements, called algebraic normal form (ANF),

f x1;…; xnð Þ ¼ a0 þ ∑
1≤ i≤n

aixi þ ∑
1≤ i< j≤ n

aijxixj þ…þ a12…nx1x2…xn (2)

where the coefficients a0, aij,…, a12…n belong to 0; 1f g.
The algebraic degree, denoted by deg fð Þ, is the number of variables in the

highest order monomial with nonzero coefficient. A Boolean function with deg fð Þ≤ 1
is said to be affine, and the set of all n-variable affine functions is denoted by An.
An affine function with the constant term equal to zero is called a linear function.

The nonlinearity of an n-variable function f is Nf ¼ ming ∈An d f ; gð Þ, which
measures the minimum distance between f and all n-variable affine functions.

Many properties of Boolean function can be deduced from its Walsh spectra.
The Walsh transform of f xð Þ in point ω∈Fn

2 is an integer-valued function over Fn
2

defined by

Wf ωð Þ ¼ ∑
x∈Fn

2

�1ð Þf xð Þþx�ω, (3)

where x � ω ¼ x1ω1 þ…þ xnωn is the inner product of two vectors over Fn
2 . The

set {Wf ωð Þ : ω∈Fn
2g is called the Walsh spectrum of f .

4
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A Boolean function f xð Þ is called plateaued if its Walsh spectrum only takes three
values, 0 and �2λ, where λ is some positive integer.

Two Boolean functions f xð Þ, g xð Þ are said to be a pair of disjoint spectra
functions if

Wf ωð Þ �Wg ωð Þ ¼ 0: (4)

for all ω∈Fn
2 :

In terms of Walsh spectra, the nonlinearity of f is given by

Nf ¼ 2n�1 � 1
2
max
ω∈Fn

2

Wf ωð Þ�� ��: (5)

A function is balanced if and only if Wf 0ð Þ ¼ 0, i.e., # x f xð Þ ¼ 0j g ¼f
# x f xð Þ ¼ 1j gf .

An n-variable Boolean function f is said to be bent if its Walsh transform takes
only two values �2n

2. Moreover, f is said to be semi-bent function if for all ω∈Fn
2

Wf ωð Þ∈
0;�2nþ1

2

n o
, if n is odd

0;�2nþ2
2

n o
, if n is even

:

8><
>:

(6)

The derivative of f xð Þ at a∈Fn
2 , denoted by Daf xð Þ, is a Boolean function defined

by Daf xð Þ ¼ f xþ að Þ þ f xð Þ, for all x∈Fn
2 . The notion of the derivative of a Boolean

function is extended to higher orders as follows.
Suppose a1;…; akf g is a basis of a k dimensional subspace V of Fn

2 . The k-th
derivative of f with respect to V, denoted by DVf xð Þ, is a Boolean function
defined by

DVf xð Þ ¼ DakDak�1…Da1 f xð Þ, (7)

for all x∈Fn
2 :

3. Cryptographic requirements for constructing Boolean functions

One of the fundamental research topics in cryptography is the construction of
cryptographically significant Boolean functions, that is, a function which possesses
some of the following properties:

1. High algebraic degree aims to increase the linear complexity in ciphers. Using
Boolean functions of high degree in block ciphers leads to more complicated
systems of equations describing the cipher and hence makes cryptanalysis of
the cipher more difficult. All cryptosystems using Boolean functions for
confusion can be attacked if the functions have relatively low algebraic degree,
i.e., the Berlekamp-Massey attack [5] or the Ronjom-Helleseth attack [6] can
be applied. Note that the algebraic degree of a Boolean function in n-variables
is at most n.

2. In order to prevent the system from leaking statistical dependence between the
input and output, the concept of balancedness implies that a given Boolean
function outputs equally many zeros and ones over all possible input values. To
avoid distinguishing attacks [7], cryptographic function must be balanced.
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measures the minimum distance between f and all n-variable affine functions.

Many properties of Boolean function can be deduced from its Walsh spectra.
The Walsh transform of f xð Þ in point ω∈Fn

2 is an integer-valued function over Fn
2

defined by

Wf ωð Þ ¼ ∑
x∈Fn

2

�1ð Þf xð Þþx�ω, (3)

where x � ω ¼ x1ω1 þ…þ xnωn is the inner product of two vectors over Fn
2 . The

set {Wf ωð Þ : ω∈Fn
2g is called the Walsh spectrum of f .
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A Boolean function f xð Þ is called plateaued if its Walsh spectrum only takes three
values, 0 and �2λ, where λ is some positive integer.

Two Boolean functions f xð Þ, g xð Þ are said to be a pair of disjoint spectra
functions if

Wf ωð Þ �Wg ωð Þ ¼ 0: (4)

for all ω∈Fn
2 :

In terms of Walsh spectra, the nonlinearity of f is given by

Nf ¼ 2n�1 � 1
2
max
ω∈Fn

2

Wf ωð Þ�� ��: (5)

A function is balanced if and only if Wf 0ð Þ ¼ 0, i.e., # x f xð Þ ¼ 0j g ¼f
# x f xð Þ ¼ 1j gf .

An n-variable Boolean function f is said to be bent if its Walsh transform takes
only two values �2n

2. Moreover, f is said to be semi-bent function if for all ω∈Fn
2

Wf ωð Þ∈
0;�2nþ1

2

n o
, if n is odd

0;�2nþ2
2

n o
, if n is even

:

8><
>:

(6)

The derivative of f xð Þ at a∈Fn
2 , denoted by Daf xð Þ, is a Boolean function defined

by Daf xð Þ ¼ f xþ að Þ þ f xð Þ, for all x∈Fn
2 . The notion of the derivative of a Boolean

function is extended to higher orders as follows.
Suppose a1;…; akf g is a basis of a k dimensional subspace V of Fn

2 . The k-th
derivative of f with respect to V, denoted by DVf xð Þ, is a Boolean function
defined by

DVf xð Þ ¼ DakDak�1…Da1 f xð Þ, (7)

for all x∈Fn
2 :

3. Cryptographic requirements for constructing Boolean functions

One of the fundamental research topics in cryptography is the construction of
cryptographically significant Boolean functions, that is, a function which possesses
some of the following properties:

1. High algebraic degree aims to increase the linear complexity in ciphers. Using
Boolean functions of high degree in block ciphers leads to more complicated
systems of equations describing the cipher and hence makes cryptanalysis of
the cipher more difficult. All cryptosystems using Boolean functions for
confusion can be attacked if the functions have relatively low algebraic degree,
i.e., the Berlekamp-Massey attack [5] or the Ronjom-Helleseth attack [6] can
be applied. Note that the algebraic degree of a Boolean function in n-variables
is at most n.

2. In order to prevent the system from leaking statistical dependence between the
input and output, the concept of balancedness implies that a given Boolean
function outputs equally many zeros and ones over all possible input values. To
avoid distinguishing attacks [7], cryptographic function must be balanced.
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Note that the algebraic degree of a Boolean balanced function in n-variables is
at most n� 1.

3.High nonlinearity is one of the most important properties in the design of
symmetric-key cryptosystems, since it directly affects the resistance of the
cipher to majority of cryptanalytic techniques. The nonlinearity simply
measures the Hamming distance to the set of all affine functions. Therefore, a
high nonlinearity implies a better resistance to affine approximation attacks
[8]. According to the definition of nonlinearity, all affine functions have zero
nonlinearity. On the other hand, a Boolean function having nonzero
nonlinearity implies the function is not affine. Thus, the nonlinearity of a
nonlinear Boolean function cannot exceed 2n�1. On an even size Boolean space,
there is a class of Boolean functions, called bent functions, that have maximum
nonlinearity (2n�1 � 2

n
2�1). In general, it is not an easy problem to identify all

Boolean functions with high nonlinearity. However, this problem has been
completely solved for quadratic Boolean functions (Boolean functions with the
algebraic degree 2).

4.In order to avoid correlation attack [9], the concept of correlation immune of
order m implies that any sub-function deduced from a given Boolean function
by fixing at most m inputs has the same output distribution as a given Boolean
function. Correlation immune has long been recognized as one of the critical
indicators of nonlinear combining functions of shift registers in stream
generators. Moreover, if a balanced Boolean function f is correlation immune
of orderm, then f is said to bem-resilient. When used in stream cipher systems,
a Boolean function is required to have high nonlinearity and resiliency for
protection against correlation attacks. It is actually very difficult to find a
balanced Boolean function which has a high correlation immunity order and at
the same time has a high nonlinearity.

5. Optimal algebraic immunity aims to provide resistance against algebraic
attack. The algebraic immunity is the minimum value of d such that a given
Boolean function f or its complement 1þ f admits an annihilator (a nonzero
Boolean function g such that fg ¼ 0) of algebraic degree d. In ciphers, Boolean
functions with high algebraic immunity should be used in order to avoid the
application of algebraic cryptanalysis [10]. Recall that algebraic attacks recover
the secret key, or at least the initialization of the system, by solving a system of
multivariate algebraic equations that describes a cipher. Although a high
algebraic immunity is the necessary cryptographic requirement, it is not
sufficient, because of a more general kind of attack introduced by Courtois [11]
in 2003 called fast algebraic attack. It is well-known that maximum algebraic
immunity of n-variable Boolean function is n

2

� �
. The problem of efficiently

constructing balanced Boolean functions with optimal algebraic immunity is
thus of great significance. Moreover, several examples of functions having
optimal algebraic immunity could be found but no example of correlation
immune Boolean function with optimal algebraic immunity.

However, the major problem in construction of cryptographically strong func-
tions is that the multiple criteria mentioned above have to be satisfied at the same
time, while there exist intrinsic trade-offs between them. Such properties allow the
system designer to quantify the level of resistance of the system to attacks. Since the
number of Boolean functions in n-variables is 22

n
, an exhaustive search of functions
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which satisfy some of the properties above is practically impossible (unless the
input variable space n is quite small). Indeed, the difficulty precisely lies in finding
the best trade-offs between all criteria and proposing concrete constructions of
functions achieving them. Thus, bringing new construction methods of these func-
tions is still a vivid research activity.

By n;m; d;Nf
� �

function we specify an n-variable, m-resilient Boolean function
f , algebraic degree d, and nonlinearity Nf . Siegenthaler [9] proved that
mþ d≤ nþ 1 ifm≤ n� 2. The exact nature of trade-offs among order of correlation
immunity, nonlinearity, and algebraic degree has also been investigated, for
instance, ([12, 13]. Using the above bounds, one may naturally try to provide the
construction of an n;m; d;Nf

� �
function for any given n and m while at the same

time attempting to optimize d and Nf . This optimization can be efficiently done for
a small number of variables n≤ 5, but even some interesting open problems for n>5,
related to the existence of 8; 1; 6; 116ð Þ and 7; 2;4; 56ð Þ functions, were settled using
some sophisticated computer search and theoretical results [14]. The importance
of finding these optimized functions in small number of variables lies in the fact
that one can use these functions recursively to obtain new instances of optimal
functions in larger number of variables. For instance, Tarannikov [15] has provided
a construction technique of optimized resilient Boolean functions with maximum
possible nonlinearity. Basically Tarannikov’s construction is a recursive one, and
using this technique and taking an n;m; d;Nf

� �
optimized function, such as the

7; 2;4; 56ð Þ function, one can generate a sequence of optimal plateaued
7 þ 3i; 2þ 2i;4þ i; 27þ3i�1 � 22þ2iþ1
� �

functions, 10;4; 5;480ð Þ, 13; 6; 6; 3968ð Þ,
16; 8; 7; 32256ð Þ, etc: A modified version of Tarannikov’s construction was presented
in [16]. A construction of Boolean functions with maximum nonlinearity and small
order of resiliency has also been considered in [17]. Later, Carlet [18] proposed a
general framework for these iterative concatenation methods, unifying most of
these techniques into a single method called “indirect sum.” This construction leads
to a multiple branching infinite tree of functions, but in order to employ this
construction in the design of optimal plateaued functions in an iterative manner,
there are certain conditions imposed on the initial pairs of disjoint spectra functions.

A recursive construction method of optimal plateaued functions (the functions
of the form n;m; n�m� 1; 2n�1 � 2mþ1

� �
and for m> n

2 � 2) is given in [19]. The
iteration once again employs a 7; 2;4; 56ð Þ function, whose 6-variable sub-functions
have disjoint spectra, to construct a sequence of 7 þ 4i; 2þ 3i;4þ i; 27þ4i�1 � 22þ3iþ1

� �
optimal plateaued functions (whose 7 þ 4i� 1ð Þ-variable sub-functions are again
disjoint spectra functions). Nevertheless, this iterative method generates the
functions with relatively large order of resiliency ( 11; 5; 5; 964ð Þ, 15; 8; 6; 15872ð Þ,
19; 11; 7; 258048ð Þ, etc:), and in addition it only gives one infinite sequence of opti-
mal plateaued functions. For instance, in the first step of iteration, an optimal
plateaued 11; 5; 5; 964ð Þ function is generated whose 10-variable sub-functions are
again disjoint spectra functions (two 10; 5;4;452ð Þ disjoint spectra functions), thus
leaving some open slots concerning the construction of optimal plateaued functions
when n ¼ 8, 9, 10. On the other hand, a modified Tarannikov construction has a
slightly different effect, since the resiliency is increased by two at each step of
iteration (but the degree is also increased by one) and the iteration step is three
instead of four. Still, optimal plateaued functions cannot be generated for n ¼ 8 or
n ¼ 9 using the particular 7; 2;4; 56ð Þ function.

The idea of employing a set of disjoint spectra functions in construction of
highly nonlinear resilient functions was firstly elaborated in [16]. Later, the sets of
disjoint spectra functions were successfully used in constructions of almost optimal
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Note that the algebraic degree of a Boolean balanced function in n-variables is
at most n� 1.

3.High nonlinearity is one of the most important properties in the design of
symmetric-key cryptosystems, since it directly affects the resistance of the
cipher to majority of cryptanalytic techniques. The nonlinearity simply
measures the Hamming distance to the set of all affine functions. Therefore, a
high nonlinearity implies a better resistance to affine approximation attacks
[8]. According to the definition of nonlinearity, all affine functions have zero
nonlinearity. On the other hand, a Boolean function having nonzero
nonlinearity implies the function is not affine. Thus, the nonlinearity of a
nonlinear Boolean function cannot exceed 2n�1. On an even size Boolean space,
there is a class of Boolean functions, called bent functions, that have maximum
nonlinearity (2n�1 � 2
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protection against correlation attacks. It is actually very difficult to find a
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thus of great significance. Moreover, several examples of functions having
optimal algebraic immunity could be found but no example of correlation
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However, the major problem in construction of cryptographically strong func-
tions is that the multiple criteria mentioned above have to be satisfied at the same
time, while there exist intrinsic trade-offs between them. Such properties allow the
system designer to quantify the level of resistance of the system to attacks. Since the
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which satisfy some of the properties above is practically impossible (unless the
input variable space n is quite small). Indeed, the difficulty precisely lies in finding
the best trade-offs between all criteria and proposing concrete constructions of
functions achieving them. Thus, bringing new construction methods of these func-
tions is still a vivid research activity.

By n;m; d;Nf
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function we specify an n-variable, m-resilient Boolean function
f , algebraic degree d, and nonlinearity Nf . Siegenthaler [9] proved that
mþ d≤ nþ 1 ifm≤ n� 2. The exact nature of trade-offs among order of correlation
immunity, nonlinearity, and algebraic degree has also been investigated, for
instance, ([12, 13]. Using the above bounds, one may naturally try to provide the
construction of an n;m; d;Nf

� �
function for any given n and m while at the same

time attempting to optimize d and Nf . This optimization can be efficiently done for
a small number of variables n≤ 5, but even some interesting open problems for n>5,
related to the existence of 8; 1; 6; 116ð Þ and 7; 2;4; 56ð Þ functions, were settled using
some sophisticated computer search and theoretical results [14]. The importance
of finding these optimized functions in small number of variables lies in the fact
that one can use these functions recursively to obtain new instances of optimal
functions in larger number of variables. For instance, Tarannikov [15] has provided
a construction technique of optimized resilient Boolean functions with maximum
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functions, 10;4; 5;480ð Þ, 13; 6; 6; 3968ð Þ,
16; 8; 7; 32256ð Þ, etc: A modified version of Tarannikov’s construction was presented
in [16]. A construction of Boolean functions with maximum nonlinearity and small
order of resiliency has also been considered in [17]. Later, Carlet [18] proposed a
general framework for these iterative concatenation methods, unifying most of
these techniques into a single method called “indirect sum.” This construction leads
to a multiple branching infinite tree of functions, but in order to employ this
construction in the design of optimal plateaued functions in an iterative manner,
there are certain conditions imposed on the initial pairs of disjoint spectra functions.

A recursive construction method of optimal plateaued functions (the functions
of the form n;m; n�m� 1; 2n�1 � 2mþ1

� �
and for m> n

2 � 2) is given in [19]. The
iteration once again employs a 7; 2;4; 56ð Þ function, whose 6-variable sub-functions
have disjoint spectra, to construct a sequence of 7 þ 4i; 2þ 3i;4þ i; 27þ4i�1 � 22þ3iþ1
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optimal plateaued functions (whose 7 þ 4i� 1ð Þ-variable sub-functions are again
disjoint spectra functions). Nevertheless, this iterative method generates the
functions with relatively large order of resiliency ( 11; 5; 5; 964ð Þ, 15; 8; 6; 15872ð Þ,
19; 11; 7; 258048ð Þ, etc:), and in addition it only gives one infinite sequence of opti-
mal plateaued functions. For instance, in the first step of iteration, an optimal
plateaued 11; 5; 5; 964ð Þ function is generated whose 10-variable sub-functions are
again disjoint spectra functions (two 10; 5;4;452ð Þ disjoint spectra functions), thus
leaving some open slots concerning the construction of optimal plateaued functions
when n ¼ 8, 9, 10. On the other hand, a modified Tarannikov construction has a
slightly different effect, since the resiliency is increased by two at each step of
iteration (but the degree is also increased by one) and the iteration step is three
instead of four. Still, optimal plateaued functions cannot be generated for n ¼ 8 or
n ¼ 9 using the particular 7; 2;4; 56ð Þ function.

The idea of employing a set of disjoint spectra functions in construction of
highly nonlinear resilient functions was firstly elaborated in [16]. Later, the sets of
disjoint spectra functions were successfully used in constructions of almost optimal
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resilient functions. The generalized Maiorana-McFarland (GMM) construction
method for obtaining the almost optimal resilient functions has been proposed in
[20]. Namely, this construction generates the functions with relatively large num-
ber of variables and small order of resiliency. The resulting functions cannot be
viewed as a pair of disjoint spectra almost optimal resilient functions. Recently,
Zhang and Pasalic used GMM technique to obtain the strictly optimal resilient
functions with high nonlinearity and good algebraic properties [21]. The design of
some balanced functions that also achieve currently best known nonlinearity can be
found in [22]. Although these construction methods achieve currently the best
nonlinearity for a given function, these methods are only efficient for relatively
large input space of variables.

4. A construction of semi-bent Boolean functions

As it is described in the previous section, in the design of cryptographic func-
tions, there is a need to consider various nonlinear characteristics simultaneously.
But some characteristics restrict each other. Bent functions, for example, have
maximum nonlinearity and satisfy the propagation criteria with respect to every
nonzero vector over the Boolean spaces on which they are defined. However, bent
functions are not balanced and exist only on even size Boolean spaces. Furthermore,
bent functions are not correlation immune, and they are not suitable for use in
cryptosystems. Partially bent functions are highly nonlinear and can be balanced.
However, except for bent functions, partially bent functions have nonzero linear
structures that are cryptographically undesirable. For these reasons, people study
other classes of Boolean functions to try to overcome the disadvantage of bent
functions or partially bent functions. The class of plateaued Boolean functions is one
candidate that is defined by a series of inequalities and examines the critical case of
each inequality. Compared with other functions, plateaued functions may reach the
upper bound on nonlinearity given by the inequalities.

In what follows we specify a simple generic method for deriving semi-bent
functions. This method is deduced from two bent functions whose derivatives differ
by a constant one. It should be noticed that there are strong connections behind the
concepts of bentness and semi-bentness though many questions remain unan-
swered. In particular, it is not settled how the cardinality of the whole class of bent
functions relates to the class of semi-bent functions. Most notably, it appears that
certain classes of semi-bent functions derived in [23] defined for even n are not
extendable to bent functions in nþ 2 variables. In [24] and recently in [25], a
sufficient condition on two bent functions g and h used in the construction of
semi-bent functions was given as the following theorem.

Theorem 1. Let n be even, and suppose that f and g are two bent Boolean
functions in n-variables. If there exists an a∈Fn

2 such that Daf xð Þ ¼ Dag xð Þ þ 1, then
the function

h xð Þ ¼ f xð Þ þ g xð Þ þDaf xð Þ þDa f xð Þg xð Þ½ � (8)

is a semi-bent function in even number of variables.
This condition immediately implies the possibility of constructing infinite clas-

ses of semi-bent functions using known classes of quadratic bent functions. Notice
that all quadratic Boolean functions (including bent and semi-bent functions) are
classified up to equivalence and any quadratic bent function is affine equivalent to
the canonical form given by ∑n=2

i¼1x2i�1x2i.
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One may define a Boolean function f with n even to be a quadratic bent function
of the form f xð Þ ¼ ∑n

i¼1bixi þ∑1≤ i< j≤ n ci, jxixj for suitably chosen bi, ci, j ∈F2. Fur-
thermore, let g be a Boolean function defined as g xð Þ ¼ f xð Þ þ∑n

i¼1αixi, where
αi ∈F2. Then, if a∈Fn

2 is such that a � α ¼ 1, it can be shown that the function

h xð Þ ¼ f xð Þ þ g xð Þ þDaf xð Þ þDa f xð Þg xð Þ½ �

is a quadratic semi-bent Boolean function.
Another related approach, though without restriction on the degree of a single

bent function used, is given by the following result.
Theorem 2. Let f be bent Boolean function in even number of variables. For a, α∈Fn

2
such that a � α ¼ 1 define the function g as either

g xð Þ ¼ f xð Þ þ α � xþ d
f xþ að Þ þ α � xþ d

,
�

(9)

where d∈F2. Then, the function

h xð Þ ¼ f xð Þ þ g xð Þ þDaf xð Þ þDa f xð Þg xð Þ½ �

is a semi-bent function.
Proof. Obviously, in both cases g is also a bent function, and if

g xð Þ ¼ f xð Þ þ αxþ d, we have

Daf xð Þ þDag xð Þ ¼ f xð Þ þ f xþ að Þ½ � þ g xð Þ þ g xþ að Þ½ �
¼ f xð Þ þ f xþ að Þ½ � þ f xð Þ þ αxþ dþ f xþ að Þ þ αxþ aαþ d½ �
¼ a � α ¼ 1:

A similar calculation gives that

Daf xð Þ þDag xð Þ ¼ 1 if g xð Þ ¼ f xþ að Þ þ αxþ d:

By Theorem 1 we deduce that h xð Þ ¼ f xð Þ þ g xð Þ þDaf xð Þ þDa f xð Þg xð Þ½ � is a
semi-bent function. q.e.d.

This result enables us to construct, for even n, an infinite sequence of semi-bent
functions from bent functions. It would be of interest to find other examples or
classes of bent functions g1, g2, apart from using affine equivalent functions g1 and
g2, satisfying Dag1 xð Þ ¼ Dag2 xð Þ þ 1. This appears to be a nontrivial task since apart
from establishing the fact that the used bent functions are indeed affine
inequivalent, at the same time, their derivatives need to satisfy the condition in
Theorem 1.

Example 1. Let f x1; x2; x3; x4; x5; x6ð Þ ¼ x1x3x4 þ x2x3x4 þ x1x5x6 þ x2x5x6
þx1x2 þ x3x5 þ x4x6 þ x5x6 be a bent function of degree 3 over F6

2. Take
a ¼ 0;0; 1;0;0;0ð Þ and α ¼ 1;0; 1;0;0;0ð Þ such that a � α ¼ 1. Define the function g
as either

g xð Þ ¼
f xð Þ þ x1 þ x3

f xþ að Þ þ x1 þ x3
¼

f xð Þ þ x1 þ x3

f xð Þ þ x1x4 þ x2x4 þ x1 þ x3 þ x5
,

8<
:

8<
:

where d ¼ 0∈F2.
Let us take g xð Þ ¼ f xð Þ þ x1 þ x3. We have
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resilient functions. The generalized Maiorana-McFarland (GMM) construction
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viewed as a pair of disjoint spectra almost optimal resilient functions. Recently,
Zhang and Pasalic used GMM technique to obtain the strictly optimal resilient
functions with high nonlinearity and good algebraic properties [21]. The design of
some balanced functions that also achieve currently best known nonlinearity can be
found in [22]. Although these construction methods achieve currently the best
nonlinearity for a given function, these methods are only efficient for relatively
large input space of variables.

4. A construction of semi-bent Boolean functions
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is a semi-bent function.
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Daf xð Þ þDag xð Þ ¼ f xð Þ þ f xþ að Þ½ � þ g xð Þ þ g xþ að Þ½ �
¼ f xð Þ þ f xþ að Þ½ � þ f xð Þ þ αxþ dþ f xþ að Þ þ αxþ aαþ d½ �
¼ a � α ¼ 1:

A similar calculation gives that

Daf xð Þ þDag xð Þ ¼ 1 if g xð Þ ¼ f xþ að Þ þ αxþ d:

By Theorem 1 we deduce that h xð Þ ¼ f xð Þ þ g xð Þ þDaf xð Þ þDa f xð Þg xð Þ½ � is a
semi-bent function. q.e.d.

This result enables us to construct, for even n, an infinite sequence of semi-bent
functions from bent functions. It would be of interest to find other examples or
classes of bent functions g1, g2, apart from using affine equivalent functions g1 and
g2, satisfying Dag1 xð Þ ¼ Dag2 xð Þ þ 1. This appears to be a nontrivial task since apart
from establishing the fact that the used bent functions are indeed affine
inequivalent, at the same time, their derivatives need to satisfy the condition in
Theorem 1.

Example 1. Let f x1; x2; x3; x4; x5; x6ð Þ ¼ x1x3x4 þ x2x3x4 þ x1x5x6 þ x2x5x6
þx1x2 þ x3x5 þ x4x6 þ x5x6 be a bent function of degree 3 over F6

2. Take
a ¼ 0;0; 1;0;0;0ð Þ and α ¼ 1;0; 1;0;0;0ð Þ such that a � α ¼ 1. Define the function g
as either

g xð Þ ¼
f xð Þ þ x1 þ x3

f xþ að Þ þ x1 þ x3
¼

f xð Þ þ x1 þ x3

f xð Þ þ x1x4 þ x2x4 þ x1 þ x3 þ x5
,

8<
:

8<
:

where d ¼ 0∈F2.
Let us take g xð Þ ¼ f xð Þ þ x1 þ x3. We have
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Daf xð Þ ¼ f xð Þ þ f xþ að Þ ¼ f xð Þ þ f xð Þ þ x1x4 þ x2x4 þ x5 ¼ x1x4 þ x2x4 þ x5,

so that

f xð Þ þ g xð Þ þDaf xð Þ ¼ x1x4 þ x2x4 þ x1 þ x3 þ x5:

Then, using the idempotent property of Boolean ring,

f xð Þg xð Þ ¼ f xð Þ f xð Þ þ x1 þ x3ð Þ ¼ f xð Þ 1þ x1 þ x3ð Þ
¼ x1x3x4 þ x2x3x4 þ x1x5x6 þ x2x5x6 þ x1x2 þ x3x5 þ x4x6 þ x5x6ð Þ 1þ x1 þ x5ð Þ
¼ x1x2x3x4 þ x1x2x5x6 þ x2x3x4x5 þ x1x2x5 þ x1x3x4 þ x1x3x5 þ x1x4x6

þ x2x3x4 þ x4x5x6 þ x4x6:

f xþ að Þg xþ að Þ ¼ f xþ að Þ f xþ að Þ þ x1 þ x3 þ 1ð Þ ¼ f xþ að Þ x1 þ x3ð Þ
¼ f xð Þ þ x1x4 þ x2x4 þ x5ð Þ x1 þ x3ð Þ
¼ f xð Þ x1 þ x3ð Þ þ x1x4 þ x2x4 þ x5ð Þ x1 þ x3ð Þ:

After some simplification, we get

Da f xð Þg xð Þ½ � ¼ f xð Þg xð Þ þ f xþ að Þg xþ að Þ
¼ f xð Þ þ x1x4 þ x2x4 þ x5ð Þ x1 þ x3ð Þ
¼ x1x5x6 þ x2x5x6 þ x1x2 þ x1x4 þ x1x5 þ x2x4 þ x4x6 þ x5x6:

Finally,

h xð Þ ¼ f xð Þ þ g xð Þ þDaf xð Þ þDa f xð Þg xð Þ½ �
¼ x1x5x6 þ x2x5x6 þ x1x2 þ x1x5 þ x4x6 þ x5x6 þ x1 þ x3 þ x5:

It is easy to compute theWalsh spectrum of function h xð Þ, i.e.,Wh ωð Þ ¼ 0;�16f g,
which means that h xð Þ is a semi-bent function.

Notice that the standard derivation rule for multiplication does not apply for our
definition of derivatives. Indeed, the derivative Da f xð Þg xð Þ½ � ¼ f xð Þg xð Þþ
f xþ að Þg xþ að Þ is different from g xð ÞDaf xð Þ þ f xð ÞDag xð Þ ¼ f xþ að Þg xð Þþ
f xð Þg xþ að Þ: Furthermore, using the fact that DaDaf xð Þ ¼ 0 for any Boolean
function f , we have

Dah xð Þ ¼ h xð Þ þ h xþ að Þ
¼ f xð Þ þ g xð Þ þDaf xð Þ þDa f xð Þg xð Þ½ � þ f xþ að Þ þ g xþ að Þ
þDaf xþ að Þ þDa f xþ að Þg xþ að Þ½ �

¼ Daf xð Þ þDag xð Þ þDaDaf xð Þ þDaDa f xð Þg xð Þ½ �
¼ Daf xð Þ þDag xð Þ ¼ 1:

Thus, the element a is always a linear structure of h xð Þ. Nevertheless, we show
that under certain sufficient conditions, a is the only linear structure of h xð Þ. We
have the following theorem.

Theorem 3. Let h be defined as in Theorem 2, and assume that a bent function f xð Þ is
such that deg Dbf xð Þð Þ>1, for any b∈Fn

2∖ 0f g: Then h has a single linear structure, that
is, Dbh xð Þ ¼ h xð Þ þ h xþ bð Þ is a constant function only for b ¼ a.
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Proof. Assume that g xð Þ ¼ f xþ að Þ þ αxþ d. Without loss of generality, we can
take d ¼ 0: Then,

Dbf xð Þ þDbg xð Þ ¼ f xð Þ þ f xþ bð Þ½ � þ g xð Þ þ g xþ bð Þ½ �
¼ f xð Þ þ f xþ bð Þ½ � þ f xþ að Þ þ α xþ að Þ þ dþ f xþ aþ bð Þ þ α xþ aþ bð Þ þ d½ �
¼ DbDaf xð Þ þ αb,

where DbDaf xð Þ ¼ f xð Þ þ f xþ að Þ þ f xþ bð Þ þ f xþ aþ bð Þ, and therefore

Dbh xð Þ ¼ DbDaf xð Þ þ αbþDbDaf xð Þ þDbDa f xð Þg xð Þ½ � ¼ DbDa f xð Þg xð Þ½ � þ αb:

Hence, Dbh xð Þ is constant if and only if DbDa f xð Þg xð Þ½ � is constant. But,

DbDa f xð Þg xð Þ½ � ¼ Db f xð Þg xð Þ þ f xþ að Þg xþ að Þ½ �

¼ Db f xð Þ f xþ að Þ þ αxð Þ þ f xþ að Þ f xð Þ þ α xþ að Þð Þ½ �

¼ Db αx f xð Þ þ f xþ að Þð Þ þ αaf xþ að Þ½ �

¼ Db αx f xð Þ þ f xþ að Þð Þ þ f xþ að Þ½ �

¼ αxDbDaf xð Þ þ αb f xþ bð Þ þ f xþ aþ bð Þ½ � þ f xþ að Þ þ f xþ aþ bð Þ:

Thus, if αb ¼ 0, then Dbh xð Þ is constant if and only if

αxDbDaf xð Þ ¼ f xþ að Þ þ f xþ aþ bð Þ
αx f xð Þ þ f xþ að Þ þ f xþ bð Þ þ f xþ aþ bð Þ½ � ¼ f xþ að Þ þ f xþ aþ bð Þ

αxþ 1ð Þ f xþ að Þ þ f xþ aþ bð Þ½ � þ αx f xð Þ þ f xþ bð Þ½ � ¼ 0

αxþ 1ð ÞDbf xþ að Þ þ αxDbf xð Þ ¼ 0

αxDbf xþ að Þ þ αxDbf xð Þ þDbf xþ að Þ ¼ 0:

There are four possible cases:

1. αxDbf xþ að Þ ¼ αxDbf xð Þ ¼ Dbf xþ að Þ ¼ 0, i.e.,
Dbf xþ að Þ ¼ 0⇔ f xþ að Þ ¼ f xþ aþ bð Þ ) b ¼ 0: A contradiction.

2.αxDbf xþ að Þ ¼ αxDbf xð Þ ¼ 1∧Dbf xþ að Þ ¼ 0, i.e.,
Dbf xþ að Þ ¼ 0) b ¼ 0: A contradiction.

3.αxDbf xþ að Þ ¼ 0∧ αxDbf xð Þ ¼ Dbf xþ að Þ ¼ 1, i.e.,
Dbf xþ að Þ ¼ 0) b ¼ 0: A contradiction.

4.αxDbf xþ að Þ ¼ Dbf xþ að Þ ¼ 1∧ αxDbf xð Þ ¼ 0, i.e.,
Dbf xþ að Þ ¼ 0) b ¼ 0: A contradiction.

On the other hand, if αb ¼ 1, then Dbh xð Þ is constant if and only if

αxDbDaf xð Þ ¼ f xþ að Þ þ f xþ bð Þ
αx f xð Þ þ f xþ að Þ þ f xþ bð Þ þ f xþ aþ bð Þ½ � ¼ f xþ að Þ þ f xþ bð Þ

αxþ 1ð Þ f xþ að Þ þ f xþ bð Þ½ � þ αx f xð Þ þ f xþ aþ bð Þ½ � ¼ 0:
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Daf xð Þ ¼ f xð Þ þ f xþ að Þ ¼ f xð Þ þ f xð Þ þ x1x4 þ x2x4 þ x5 ¼ x1x4 þ x2x4 þ x5,

so that

f xð Þ þ g xð Þ þDaf xð Þ ¼ x1x4 þ x2x4 þ x1 þ x3 þ x5:

Then, using the idempotent property of Boolean ring,

f xð Þg xð Þ ¼ f xð Þ f xð Þ þ x1 þ x3ð Þ ¼ f xð Þ 1þ x1 þ x3ð Þ
¼ x1x3x4 þ x2x3x4 þ x1x5x6 þ x2x5x6 þ x1x2 þ x3x5 þ x4x6 þ x5x6ð Þ 1þ x1 þ x5ð Þ
¼ x1x2x3x4 þ x1x2x5x6 þ x2x3x4x5 þ x1x2x5 þ x1x3x4 þ x1x3x5 þ x1x4x6

þ x2x3x4 þ x4x5x6 þ x4x6:

f xþ að Þg xþ að Þ ¼ f xþ að Þ f xþ að Þ þ x1 þ x3 þ 1ð Þ ¼ f xþ að Þ x1 þ x3ð Þ
¼ f xð Þ þ x1x4 þ x2x4 þ x5ð Þ x1 þ x3ð Þ
¼ f xð Þ x1 þ x3ð Þ þ x1x4 þ x2x4 þ x5ð Þ x1 þ x3ð Þ:

After some simplification, we get

Da f xð Þg xð Þ½ � ¼ f xð Þg xð Þ þ f xþ að Þg xþ að Þ
¼ f xð Þ þ x1x4 þ x2x4 þ x5ð Þ x1 þ x3ð Þ
¼ x1x5x6 þ x2x5x6 þ x1x2 þ x1x4 þ x1x5 þ x2x4 þ x4x6 þ x5x6:

Finally,

h xð Þ ¼ f xð Þ þ g xð Þ þDaf xð Þ þDa f xð Þg xð Þ½ �
¼ x1x5x6 þ x2x5x6 þ x1x2 þ x1x5 þ x4x6 þ x5x6 þ x1 þ x3 þ x5:

It is easy to compute theWalsh spectrum of function h xð Þ, i.e.,Wh ωð Þ ¼ 0;�16f g,
which means that h xð Þ is a semi-bent function.

Notice that the standard derivation rule for multiplication does not apply for our
definition of derivatives. Indeed, the derivative Da f xð Þg xð Þ½ � ¼ f xð Þg xð Þþ
f xþ að Þg xþ að Þ is different from g xð ÞDaf xð Þ þ f xð ÞDag xð Þ ¼ f xþ að Þg xð Þþ
f xð Þg xþ að Þ: Furthermore, using the fact that DaDaf xð Þ ¼ 0 for any Boolean
function f , we have

Dah xð Þ ¼ h xð Þ þ h xþ að Þ
¼ f xð Þ þ g xð Þ þDaf xð Þ þDa f xð Þg xð Þ½ � þ f xþ að Þ þ g xþ að Þ
þDaf xþ að Þ þDa f xþ að Þg xþ að Þ½ �

¼ Daf xð Þ þDag xð Þ þDaDaf xð Þ þDaDa f xð Þg xð Þ½ �
¼ Daf xð Þ þDag xð Þ ¼ 1:

Thus, the element a is always a linear structure of h xð Þ. Nevertheless, we show
that under certain sufficient conditions, a is the only linear structure of h xð Þ. We
have the following theorem.

Theorem 3. Let h be defined as in Theorem 2, and assume that a bent function f xð Þ is
such that deg Dbf xð Þð Þ>1, for any b∈Fn

2∖ 0f g: Then h has a single linear structure, that
is, Dbh xð Þ ¼ h xð Þ þ h xþ bð Þ is a constant function only for b ¼ a.
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Proof. Assume that g xð Þ ¼ f xþ að Þ þ αxþ d. Without loss of generality, we can
take d ¼ 0: Then,

Dbf xð Þ þDbg xð Þ ¼ f xð Þ þ f xþ bð Þ½ � þ g xð Þ þ g xþ bð Þ½ �
¼ f xð Þ þ f xþ bð Þ½ � þ f xþ að Þ þ α xþ að Þ þ dþ f xþ aþ bð Þ þ α xþ aþ bð Þ þ d½ �
¼ DbDaf xð Þ þ αb,

where DbDaf xð Þ ¼ f xð Þ þ f xþ að Þ þ f xþ bð Þ þ f xþ aþ bð Þ, and therefore

Dbh xð Þ ¼ DbDaf xð Þ þ αbþDbDaf xð Þ þDbDa f xð Þg xð Þ½ � ¼ DbDa f xð Þg xð Þ½ � þ αb:

Hence, Dbh xð Þ is constant if and only if DbDa f xð Þg xð Þ½ � is constant. But,

DbDa f xð Þg xð Þ½ � ¼ Db f xð Þg xð Þ þ f xþ að Þg xþ að Þ½ �

¼ Db f xð Þ f xþ að Þ þ αxð Þ þ f xþ að Þ f xð Þ þ α xþ að Þð Þ½ �

¼ Db αx f xð Þ þ f xþ að Þð Þ þ αaf xþ að Þ½ �

¼ Db αx f xð Þ þ f xþ að Þð Þ þ f xþ að Þ½ �

¼ αxDbDaf xð Þ þ αb f xþ bð Þ þ f xþ aþ bð Þ½ � þ f xþ að Þ þ f xþ aþ bð Þ:

Thus, if αb ¼ 0, then Dbh xð Þ is constant if and only if

αxDbDaf xð Þ ¼ f xþ að Þ þ f xþ aþ bð Þ
αx f xð Þ þ f xþ að Þ þ f xþ bð Þ þ f xþ aþ bð Þ½ � ¼ f xþ að Þ þ f xþ aþ bð Þ

αxþ 1ð Þ f xþ að Þ þ f xþ aþ bð Þ½ � þ αx f xð Þ þ f xþ bð Þ½ � ¼ 0

αxþ 1ð ÞDbf xþ að Þ þ αxDbf xð Þ ¼ 0

αxDbf xþ að Þ þ αxDbf xð Þ þDbf xþ að Þ ¼ 0:

There are four possible cases:

1. αxDbf xþ að Þ ¼ αxDbf xð Þ ¼ Dbf xþ að Þ ¼ 0, i.e.,
Dbf xþ að Þ ¼ 0⇔ f xþ að Þ ¼ f xþ aþ bð Þ ) b ¼ 0: A contradiction.

2.αxDbf xþ að Þ ¼ αxDbf xð Þ ¼ 1∧Dbf xþ að Þ ¼ 0, i.e.,
Dbf xþ að Þ ¼ 0) b ¼ 0: A contradiction.

3.αxDbf xþ að Þ ¼ 0∧ αxDbf xð Þ ¼ Dbf xþ að Þ ¼ 1, i.e.,
Dbf xþ að Þ ¼ 0) b ¼ 0: A contradiction.

4.αxDbf xþ að Þ ¼ Dbf xþ að Þ ¼ 1∧ αxDbf xð Þ ¼ 0, i.e.,
Dbf xþ að Þ ¼ 0) b ¼ 0: A contradiction.

On the other hand, if αb ¼ 1, then Dbh xð Þ is constant if and only if

αxDbDaf xð Þ ¼ f xþ að Þ þ f xþ bð Þ
αx f xð Þ þ f xþ að Þ þ f xþ bð Þ þ f xþ aþ bð Þ½ � ¼ f xþ að Þ þ f xþ bð Þ

αxþ 1ð Þ f xþ að Þ þ f xþ bð Þ½ � þ αx f xð Þ þ f xþ aþ bð Þ½ � ¼ 0:
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It is obvious that f xþ að Þ ¼ f xþ bð Þ is equivalent to f xð Þ ¼ f xþ aþ bð Þ. Thus,
the above equation is constant if and only if f xþ að Þ ¼ f xþ bð Þ, which implies
that a ¼ b. The sufficiency of this condition is obvious. For the necessity, we first
observe that for a 6¼ b the functions f xþ að Þ þ f xþ bð Þ and f xð Þ þ f xþ aþ bð Þ
being derivatives of a bent function f are both nonconstant. Then, assuming that

DbDaf xð Þ ¼ f xð Þ þ f xþ að Þ þ f xþ bð Þ þ f xþ aþ bð Þ ¼ 0,

it would imply that f xþ að Þ þ f xþ bð Þ is constant, a contradiction. On the
other hand, the function αxDbDaf xð Þ cannot be balanced, unless DbDaf xð Þ ¼ αx.
Because of the assumption, deg f xþ að Þ þ f xþ bð Þð Þ>1 and therefore cannot be
equal to αx.

The proof for the case g xð Þ ¼ f xð Þ þ αxþ d is similar as above, and it is omitted
here. q.e.d.

Notice the condition in Theorem 3 that deg Dbf xð Þð Þ>1 is sufficient but may not
be necessary. An analysis of other cryptographic criteria appears to be difficult due
to the dependency of h on the choice of a bent function f and the use of the
derivative Da f xð Þg xð Þ½ � in its definition, which is illustrated in the following
example.

Example 2. Let n be even and f x; yð Þ ¼ x � y, where x, y∈Fk
2 is a bent function and

belongs to the Maiorana-McFarland class. Then, defining
g x; yð Þ ¼ f xþ a; yþ bð Þ þ α; βð Þ � x; yð Þ for a nonzero a; bð Þ∈Fk

2 � Fk
2 such that

α; βð Þ � a; bð Þ ¼ 1, we have

g x; yð Þ ¼ x � yþ αþ bð Þ � xþ aþ βð Þ � yþ a � b,

which is clearly a bent function obtained by adding an affine function to f .
Similarly,

D a;bð Þ f x; yð Þ ¼ x � bþ a � yþ a � b, so that

f x; yð Þ þ g x; yð Þ þD a;bð Þf x; yð Þ ¼ α � xþ β � y:

Then, using the idempotent property of Boolean ring,

f x; yð Þ � g x; yð Þ ¼ x � yð Þ x � yþ αþ bð Þ � xþ aþ βð Þ � yþ a � bð Þ
¼ 1þ a � bð Þ x; yð Þ þ αþ bð Þ � xþ aþ βð Þ � yð Þ x � yð Þ:

Note that the first term is a quadratic function and the second term is cubic.
After some simplifications we have

D a;bð Þ f x; yð Þg x; yð Þ½ � ¼ x � yþ b � xþ a � yþ a � bð Þ 1þ a � bþ α � xþ α � aþ b � xð
þa � bþ a � yþ β � yþ β � bÞ
¼ x � yþ b � xþ a � yþ a � bð Þ α � xþ b � xþ a � yþ β � yþ a � bþ β � bð Þ
¼ x � yþ b � xþ a � yþ a � bð Þ αþ bð Þ � xþ β þ að Þ � yþ a � bþ β � bð Þ:

Finally,

h x; yð Þ ¼ f x; yð Þ þ g x; yð Þ þD a;bð Þ f x; yð Þ þD a;bð Þ f x; yð Þg x; yð Þ½ �

¼ x � yþ α � xþ β � yð Þ b � xþ a � yþ a � bþ 1ð Þ þ b � xþ a � yþ a � bð Þ 1þ β � bð Þ:

More precisely, it can be illustrated using Example 1.
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Example 3. Let
f x1; x2; x3; x4; x5; x6ð Þ ¼ x1x3x4 þ x2x3x4 þ x1x5x6 þ x2x5x6 þ x1x2 þ x3x5þ
x4x6 þ x5x6 be a bent function of degree 3 over F6

2. Take a ¼ 0;0; 1;0;0;0ð Þ and
α ¼ 1;0; 1;0;0;0ð Þ such that a � α ¼ 1. Define the function g as g xð Þ ¼ f xð Þþ x1 þ x3:
By Example 1 we have

h xð Þ ¼ x1x5x6 þ x2x5x6 þ x1x2 þ x1x5 þ x4x6 þ x5x6 þ x1 þ x3 þ x5:

Moreover, by Theorem 2 h has a single linear structure only for b ¼ a. Indeed,

Dah xð Þ ¼ h xð Þ þ h xþ að Þ
¼ x1x5x6 þ x2x5x6 þ x1x2 þ x1x5 þ x4x6 þ x5x6 þ x1 þ x3 þ x5þ
þx1x5x6 þ x2x5x6 þ x1x2 þ x1x5 þ x4x6 þ x5x6 þ x1 þ x3 þ 1þ x5

¼ 1:

5. Conclusions

The need for the most possible secure cryptographic primitives in cipher sys-
tems is of great importance. In the case of stream ciphers, most of the reliability and
security lies in the Boolean functions. For the cryptographic point of view to be
good, a Boolean function should possess several cryptographic properties men-
tioned in this work. Very often such properties contradict each other. Therefore, the
problem of constructing Boolean functions with stronger cryptographic properties
is still a vivid research activity. We may also require new properties because attacks
never stop. On the other hand, semi-bent functions are interesting for defending
against the so-called soft output joint attack on pseudorandom generators, which
are used in the IS-95 standard of code division multiple access technology. In this
work we present an infinite sequence of semi-bent functions using known classes of
quadratic bent functions. The construction of other classes of infinite sequences of
semi-bent functions is an interesting research challenge.
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It is obvious that f xþ að Þ ¼ f xþ bð Þ is equivalent to f xð Þ ¼ f xþ aþ bð Þ. Thus,
the above equation is constant if and only if f xþ að Þ ¼ f xþ bð Þ, which implies
that a ¼ b. The sufficiency of this condition is obvious. For the necessity, we first
observe that for a 6¼ b the functions f xþ að Þ þ f xþ bð Þ and f xð Þ þ f xþ aþ bð Þ
being derivatives of a bent function f are both nonconstant. Then, assuming that

DbDaf xð Þ ¼ f xð Þ þ f xþ að Þ þ f xþ bð Þ þ f xþ aþ bð Þ ¼ 0,

it would imply that f xþ að Þ þ f xþ bð Þ is constant, a contradiction. On the
other hand, the function αxDbDaf xð Þ cannot be balanced, unless DbDaf xð Þ ¼ αx.
Because of the assumption, deg f xþ að Þ þ f xþ bð Þð Þ>1 and therefore cannot be
equal to αx.

The proof for the case g xð Þ ¼ f xð Þ þ αxþ d is similar as above, and it is omitted
here. q.e.d.

Notice the condition in Theorem 3 that deg Dbf xð Þð Þ>1 is sufficient but may not
be necessary. An analysis of other cryptographic criteria appears to be difficult due
to the dependency of h on the choice of a bent function f and the use of the
derivative Da f xð Þg xð Þ½ � in its definition, which is illustrated in the following
example.

Example 2. Let n be even and f x; yð Þ ¼ x � y, where x, y∈Fk
2 is a bent function and

belongs to the Maiorana-McFarland class. Then, defining
g x; yð Þ ¼ f xþ a; yþ bð Þ þ α; βð Þ � x; yð Þ for a nonzero a; bð Þ∈Fk

2 � Fk
2 such that

α; βð Þ � a; bð Þ ¼ 1, we have

g x; yð Þ ¼ x � yþ αþ bð Þ � xþ aþ βð Þ � yþ a � b,

which is clearly a bent function obtained by adding an affine function to f .
Similarly,

D a;bð Þ f x; yð Þ ¼ x � bþ a � yþ a � b, so that

f x; yð Þ þ g x; yð Þ þD a;bð Þf x; yð Þ ¼ α � xþ β � y:

Then, using the idempotent property of Boolean ring,

f x; yð Þ � g x; yð Þ ¼ x � yð Þ x � yþ αþ bð Þ � xþ aþ βð Þ � yþ a � bð Þ
¼ 1þ a � bð Þ x; yð Þ þ αþ bð Þ � xþ aþ βð Þ � yð Þ x � yð Þ:

Note that the first term is a quadratic function and the second term is cubic.
After some simplifications we have

D a;bð Þ f x; yð Þg x; yð Þ½ � ¼ x � yþ b � xþ a � yþ a � bð Þ 1þ a � bþ α � xþ α � aþ b � xð
þa � bþ a � yþ β � yþ β � bÞ
¼ x � yþ b � xþ a � yþ a � bð Þ α � xþ b � xþ a � yþ β � yþ a � bþ β � bð Þ
¼ x � yþ b � xþ a � yþ a � bð Þ αþ bð Þ � xþ β þ að Þ � yþ a � bþ β � bð Þ:

Finally,

h x; yð Þ ¼ f x; yð Þ þ g x; yð Þ þD a;bð Þ f x; yð Þ þD a;bð Þ f x; yð Þg x; yð Þ½ �

¼ x � yþ α � xþ β � yð Þ b � xþ a � yþ a � bþ 1ð Þ þ b � xþ a � yþ a � bð Þ 1þ β � bð Þ:

More precisely, it can be illustrated using Example 1.
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Example 3. Let
f x1; x2; x3; x4; x5; x6ð Þ ¼ x1x3x4 þ x2x3x4 þ x1x5x6 þ x2x5x6 þ x1x2 þ x3x5þ
x4x6 þ x5x6 be a bent function of degree 3 over F6

2. Take a ¼ 0;0; 1;0;0;0ð Þ and
α ¼ 1;0; 1;0;0;0ð Þ such that a � α ¼ 1. Define the function g as g xð Þ ¼ f xð Þþ x1 þ x3:
By Example 1 we have

h xð Þ ¼ x1x5x6 þ x2x5x6 þ x1x2 þ x1x5 þ x4x6 þ x5x6 þ x1 þ x3 þ x5:

Moreover, by Theorem 2 h has a single linear structure only for b ¼ a. Indeed,

Dah xð Þ ¼ h xð Þ þ h xþ að Þ
¼ x1x5x6 þ x2x5x6 þ x1x2 þ x1x5 þ x4x6 þ x5x6 þ x1 þ x3 þ x5þ
þx1x5x6 þ x2x5x6 þ x1x2 þ x1x5 þ x4x6 þ x5x6 þ x1 þ x3 þ 1þ x5

¼ 1:

5. Conclusions

The need for the most possible secure cryptographic primitives in cipher sys-
tems is of great importance. In the case of stream ciphers, most of the reliability and
security lies in the Boolean functions. For the cryptographic point of view to be
good, a Boolean function should possess several cryptographic properties men-
tioned in this work. Very often such properties contradict each other. Therefore, the
problem of constructing Boolean functions with stronger cryptographic properties
is still a vivid research activity. We may also require new properties because attacks
never stop. On the other hand, semi-bent functions are interesting for defending
against the so-called soft output joint attack on pseudorandom generators, which
are used in the IS-95 standard of code division multiple access technology. In this
work we present an infinite sequence of semi-bent functions using known classes of
quadratic bent functions. The construction of other classes of infinite sequences of
semi-bent functions is an interesting research challenge.
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Chapter 2

Survey of RSA Vulnerabilities
Anthony Overmars

Abstract

Rivest et al. patented (US) RSA. RSA forms the basis of most public encryption
systems. It describes a public key encryption algorithm and certification process,
which protects user data over networks. The patent expired in September 2000 and
now is available for general use. According to Marketsandmarkets.com, the global
network encryption market size is expected to grow from USD 2.9 billion in 2018 to
USD 4.6 billion by 2023, at a compound annual growth rate (CAGR) of 9.8%. Major
growth drivers for the market include increasing adoption of optical transmission,
an increasing demand to meet various regulatory compliances and a growing focus
on shielding organizations from network security breaches. In short, RSA forms the
basis of almost all public encryption systems. This, however, is not without risk.
This chapter explores some of these vulnerabilities in a mathematical context and
provides the reader with an appreciation of the strength of RSA.

Keywords: survey, public keys, vulnerability

1. Introduction

Rivest et al. patented (US) RSA, which forms the basis for most public encryp-
tion systems. RSA describes a public key encryption algorithm and certification
process, which protects user data over networks. The patent expired in September
2000 and now is available for general use. According to Marketsandmarkets.com
[1], the global network encryption market size is expected to grow from USD
2.9 billion in 2018 to USD 4.6 billion by 2023, at a compound annual growth rate
(CAGR) of 9.8%. Major growth drivers for the market include increasing adoption
of optical transmission, an increasing demand to meet various regulatory compli-
ances and a growing focus on shielding organizations from network security
breaches. In short, RSA forms the basis of almost all public encryption systems.
This, however, is not without risk. This chapter explores some of these vulner-
abilities in a mathematical context and provides the reader with an appreciation of
the strength of RSA.

RSA is secure and difficult to factorize in polynomial time. Conventional
sequential computing machines, running in polynomial time, take an unfeasible
amount of CPU cycles to find factorization solutions to RSA keys. Quantum
computing holds great promise; this, however, is realistically still some way off.
Opportunities exist using conventional computing (sequential and parallel) using
better mathematical techniques. A discussion on exploiting implementation flaws is
also considered.

Of keen interest is our lack of understanding of prime numbers and their struc-
ture. The current perception is that there appears to be some underlying structure,
but essentially, primes are randomly distributed. This is explored in Sections 8 and 12.
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sequential computing machines, running in polynomial time, take an unfeasible
amount of CPU cycles to find factorization solutions to RSA keys. Quantum
computing holds great promise; this, however, is realistically still some way off.
Opportunities exist using conventional computing (sequential and parallel) using
better mathematical techniques. A discussion on exploiting implementation flaws is
also considered.
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ture. The current perception is that there appears to be some underlying structure,
but essentially, primes are randomly distributed. This is explored in Sections 8 and 12.
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Vulnerabilities in the selection of primes are exploited in Section 5 using Euler’s
factorization.

Poor RSA key design and their exploits are considered in Section 6 using
Wiener’s method and in Sections 15–17 using a combination of LLL, Coppersmith
and Pohlig-Hellman. All of these attacks can be mitigated by designing the RSA keys
with these exploits in mind. RSA key design (Section 2) consists of two parts, a
private key N;dð Þ and a public key N; eð Þ. A composite number N, is derived from
two prime numbers. The d; eð Þ numbers are selected in an ad hoc manner using
Euler’s totient.

Development of quantum computing is continuing at breakneck speed; however
useful machines are yet to appear. Parallel computing however is here and now, and
whilst factorizing RSA keys is not achievable on conventional computers in
polynomial time, parallel computing has allowed for multiple solutions to be tested
simultaneously. This is an area where research continues and new algorithms as
shown in Sections 20 and 14 lend themselves well to GPU parallel processing
systems.

2. Structure of RSA numbers

Consider RSA100 challenge number

RSA� 100 ¼ 152260502792253336053561837813263742971806811496138

0688657908494580122963258952897654000350692006139

¼ 37975227936943673922808872755445627854565536638199

�40094690950920881030683735292761468389214899724061

RSA100 is a 100 binary bit number made up of two 50 binary bit prime num-
bers. The motivation in breaking this composite number allows us to find the Euler’s
totient number φn. Once this is known, using the public key PU ¼ N; eð Þ, it is
possible to derive the private key PR ¼ N; dð Þ, and hence all cypher-text encrypted
(e) messages can thus be decrypted back to plain text, using (d).

3. A simple RSA encryption/decryption example

Using two primes P1 and P2 to generate a composite number N,

N ¼ P1P2 ¼ 1462001� 1462009ð Þ ¼ 2137458620009

Totient φ (Euler’s totient function)
Calculate totient φn = (P1 � 1) (P2 � 1) = (1462001 � 1) (1462009 � 1) =

2137455696000
Arbitrarily choose a public key such that e is an integer, not a factor of mod N,

and 1, e,φ, e = 13
The public key is made up of N and e, such that

PU ¼ N; eð Þ ¼ 2137458620009; 13ð Þ. A private key is made up of N and d, such that
PR ¼ N; dð Þ ¼ 2137458620009; dð Þ.

d, is determined using the extended Euclidean algorithm.
e d mod φn ¼ 113 d mod 2137455696000 ¼ 1) d ¼ 1973036027077.

Therefore, private key, PR ¼ N1; dð Þ ¼ 2137458620009; 1973036027077ð Þ.
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Encrypt a message m, into cipher text C, with public key PU. Let the message
m = 1461989. C ¼ memod N ¼ 14619891313mod 2137458620009ð Þ ¼
1912018123454. To recover the original message, decrypt using Private Key,
PR= (N, d) = (1912018123454, 1973036027077) m ¼ Cdmod
N ¼ 19120181234541973036027077mod 2137458620009ð Þ ¼ 1461989:

From this simple example, consider the following: How can we use a known
public key PU = (N,e) to decrypt the original message? To decrypt the message, the
private key is used: PR ¼ N; dð Þ. How can d, be discovered? d is derived using
Euler’s totient function [φn = (P1 – 1) (P2 – 1)], and the extended Euclidean algo-
rithm ed mod φn ¼ 1. However when a public key is transmitted, the totient φn and
the two primes P1 and P2 remain secret. If φn, P1 or P2 can be determined, the
private key will be compromised and the cypher-text will no longer be secure.

When the totient φn is known, d can be determined through the normal key
generation processes, so the determination of the two primes (P1, P2) is not required
to recover the message from the cypher-text. The following proof is provided for
completeness and shows how the two primes P1, P2 can be recovered if the com-
posite N and the totient φn are known.

4. If the composite N and the totient φn are known, the original primes
can be recovered

The quadratic formula can be used to find P1 and P2
φn ¼ P1 � 1ð Þ P2 � 1ð Þ, N ¼ P1, P2. General quadratic form: ax2 þ bxþ c ¼ 0 ¼.
x ¼ �b�

ffiffiffiffiffiffiffiffiffiffiffi
b2�4ac
p
2a

φn ¼ P1 � 1ð Þ P2 � 1ð Þ ¼ P1 P2 � P1 � P2 þ 1 recalling N ¼ P1 P2¼)φn ¼ N � P1 � P2 þ 1

Express primes in terms ofN, φn P1 = N�φn�P2 + 1, P2 =N�φn�P1 + 1N ¼ P1 P2

substitute for P2 ¼) N = P1 (N�φn�P1 + 1) = P1 N�P1 φn – P1
2 + P1

P1
2 þ P1 φn �N � 1ð Þ þN ¼ 0 ax2 þ bxþ c ¼ 0 : a ¼ 1, b ¼ φn–N � 1ð Þ, c ¼ N, x ¼ �b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a

P1, P2 ¼
� φn �N � 1ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φn �N � 1ð Þ2 � 4 1ð ÞN

q

2 1ð Þ ¼
� φn �N � 1ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φn �N � 1ð Þ2 � 4N

q

2

When N and φn are known: N = 2137458620009, φn = 2137455696000

P1, P2 ¼ 2924010� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8549834480100 � 8549834480036
p

2
¼ 2924010� ffiffiffiffiffiffi

64
p

2
¼ 1462005� 4

P1, P2 ¼ 1462001; 1462009ð Þ

Using the quadratic formula, P1 and P2 can be recovered if the composite N and
the totient φn are known.

5. Fermat’s factorization method

N ¼ a2 � b2 ¼ a� bð Þ aþ bð Þ is the difference of two squares.

P1 ¼ a� b, P2 ¼ aþ b, P1 þ P2 ¼ 2a, P2 � P1 ¼ 2b; a ¼ P2 þ P1

2
, b ¼ P2 � P1

2
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Vulnerabilities in the selection of primes are exploited in Section 5 using Euler’s
factorization.

Poor RSA key design and their exploits are considered in Section 6 using
Wiener’s method and in Sections 15–17 using a combination of LLL, Coppersmith
and Pohlig-Hellman. All of these attacks can be mitigated by designing the RSA keys
with these exploits in mind. RSA key design (Section 2) consists of two parts, a
private key N;dð Þ and a public key N; eð Þ. A composite number N, is derived from
two prime numbers. The d; eð Þ numbers are selected in an ad hoc manner using
Euler’s totient.

Development of quantum computing is continuing at breakneck speed; however
useful machines are yet to appear. Parallel computing however is here and now, and
whilst factorizing RSA keys is not achievable on conventional computers in
polynomial time, parallel computing has allowed for multiple solutions to be tested
simultaneously. This is an area where research continues and new algorithms as
shown in Sections 20 and 14 lend themselves well to GPU parallel processing
systems.

2. Structure of RSA numbers

Consider RSA100 challenge number

RSA� 100 ¼ 152260502792253336053561837813263742971806811496138

0688657908494580122963258952897654000350692006139

¼ 37975227936943673922808872755445627854565536638199

�40094690950920881030683735292761468389214899724061

RSA100 is a 100 binary bit number made up of two 50 binary bit prime num-
bers. The motivation in breaking this composite number allows us to find the Euler’s
totient number φn. Once this is known, using the public key PU ¼ N; eð Þ, it is
possible to derive the private key PR ¼ N; dð Þ, and hence all cypher-text encrypted
(e) messages can thus be decrypted back to plain text, using (d).

3. A simple RSA encryption/decryption example

Using two primes P1 and P2 to generate a composite number N,

N ¼ P1P2 ¼ 1462001� 1462009ð Þ ¼ 2137458620009

Totient φ (Euler’s totient function)
Calculate totient φn = (P1 � 1) (P2 � 1) = (1462001 � 1) (1462009 � 1) =

2137455696000
Arbitrarily choose a public key such that e is an integer, not a factor of mod N,

and 1, e,φ, e = 13
The public key is made up of N and e, such that

PU ¼ N; eð Þ ¼ 2137458620009; 13ð Þ. A private key is made up of N and d, such that
PR ¼ N; dð Þ ¼ 2137458620009; dð Þ.

d, is determined using the extended Euclidean algorithm.
e d mod φn ¼ 113 d mod 2137455696000 ¼ 1) d ¼ 1973036027077.

Therefore, private key, PR ¼ N1; dð Þ ¼ 2137458620009; 1973036027077ð Þ.
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Encrypt a message m, into cipher text C, with public key PU. Let the message
m = 1461989. C ¼ memod N ¼ 14619891313mod 2137458620009ð Þ ¼
1912018123454. To recover the original message, decrypt using Private Key,
PR= (N, d) = (1912018123454, 1973036027077) m ¼ Cdmod
N ¼ 19120181234541973036027077mod 2137458620009ð Þ ¼ 1461989:

From this simple example, consider the following: How can we use a known
public key PU = (N,e) to decrypt the original message? To decrypt the message, the
private key is used: PR ¼ N; dð Þ. How can d, be discovered? d is derived using
Euler’s totient function [φn = (P1 – 1) (P2 – 1)], and the extended Euclidean algo-
rithm ed mod φn ¼ 1. However when a public key is transmitted, the totient φn and
the two primes P1 and P2 remain secret. If φn, P1 or P2 can be determined, the
private key will be compromised and the cypher-text will no longer be secure.

When the totient φn is known, d can be determined through the normal key
generation processes, so the determination of the two primes (P1, P2) is not required
to recover the message from the cypher-text. The following proof is provided for
completeness and shows how the two primes P1, P2 can be recovered if the com-
posite N and the totient φn are known.

4. If the composite N and the totient φn are known, the original primes
can be recovered

The quadratic formula can be used to find P1 and P2
φn ¼ P1 � 1ð Þ P2 � 1ð Þ, N ¼ P1, P2. General quadratic form: ax2 þ bxþ c ¼ 0 ¼.
x ¼ �b�

ffiffiffiffiffiffiffiffiffiffiffi
b2�4ac
p
2a

φn ¼ P1 � 1ð Þ P2 � 1ð Þ ¼ P1 P2 � P1 � P2 þ 1 recalling N ¼ P1 P2¼)φn ¼ N � P1 � P2 þ 1

Express primes in terms ofN, φn P1 = N�φn�P2 + 1, P2 =N�φn�P1 + 1N ¼ P1 P2

substitute for P2 ¼) N = P1 (N�φn�P1 + 1) = P1 N�P1 φn – P1
2 + P1

P1
2 þ P1 φn �N � 1ð Þ þN ¼ 0 ax2 þ bxþ c ¼ 0 : a ¼ 1, b ¼ φn–N � 1ð Þ, c ¼ N, x ¼ �b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a

P1, P2 ¼
� φn �N � 1ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φn �N � 1ð Þ2 � 4 1ð ÞN

q

2 1ð Þ ¼
� φn �N � 1ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φn �N � 1ð Þ2 � 4N

q

2

When N and φn are known: N = 2137458620009, φn = 2137455696000

P1, P2 ¼ 2924010� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8549834480100 � 8549834480036
p

2
¼ 2924010� ffiffiffiffiffiffi

64
p

2
¼ 1462005� 4

P1, P2 ¼ 1462001; 1462009ð Þ

Using the quadratic formula, P1 and P2 can be recovered if the composite N and
the totient φn are known.

5. Fermat’s factorization method

N ¼ a2 � b2 ¼ a� bð Þ aþ bð Þ is the difference of two squares.

P1 ¼ a� b, P2 ¼ aþ b, P1 þ P2 ¼ 2a, P2 � P1 ¼ 2b; a ¼ P2 þ P1

2
, b ¼ P2 � P1

2
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N ¼ a2 � b2 ¼ P2 þ P1

2

� �2

� P2 � P1

2

� �2

¼ 1
4

P2 þ P1ð Þ2 � P2 � P1ð Þ2
� �

¼ P1P2

As the first trial for a, a1 ¼
ffiffiffiffiffiffiffi
N,
p

then check if Δa1 ¼ a21 �N is a square number.
There are only 22 combinations of which the last two digits are a square number.

The other 78 can be eliminated.
If Δa1 is not a square number, then a2 : a2 ¼ a1 þ 1.
Now Δa2 ¼ a22 �N ¼) a1 þ 1ð Þ2 �N ¼ a21 �N þ 2a1 þ 1 ¼ Δa1 þ 2a1 þ 1

Δa3 ¼ a23 �N¼) a2 þ 1ð Þ2 �N ¼ a22 �N þ 2a2 þ 1 ¼ Δa2 þ 2 a1 þ 1ð Þ þ 1 ¼ Δa2 þ 2a1 þ 3

Δa4 ¼ a24 �N¼) a3 þ 1ð Þ2 �N ¼ a23 �N þ 2a3 þ 1 ¼ Δa3 þ 2 a1 þ 2ð Þ þ 1 ¼ Δa3 þ 2a1 þ 5

so the subsequent differences are obtained by adding two.
Consider the example N = 2137458620009.

a1 ¼
ffiffiffiffiffiffiffi
N,

p
a1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2137458620009
p

) a1 ¼ 1462005

Check if Δa1 ¼ a21 �N is a square number.

Δa1 ¼ a21 �N ¼ 14620052 � 2137458620009 ¼ 2137458620025 � 2137458620009 ¼ 16 ¼ 42

N ¼ 14620052 � 42 ¼ 1462005� 4ð Þ 1462005þ 4ð Þ ¼ 1462001ð Þ 1462009ð Þ

Maurice Kraitchik, a Belgian mathematician, considered only values of a and
b : a2 � b2 mod N.

a2 � b2 mod N¼)Δ 14620052 mod 2137458620009 � 16

6. Euler’s factorization method

Gaussian primes are of the form 4x� 1, and primes of the form 4xþ 1 are
Pythagorean. Fermat’s Christmas theorem on sum of two squares states that an odd
prime can be expressed as P ¼ x2 þ y2 iff P � 1 mod 4.

Gaussian primes are of the form P � 3 mod 4 and are not representable as the
sum of two squares.

Consider a composite number N: N = P1P2 and P1: P1 ¼ a2 þ b2,
P2: P2 ¼ c2 þ d2.

N ¼ P1P2 ¼ a2 þ b2
� �

c2 þ d2
� � ¼ acð Þ2 þ bcð Þ2 þ adð Þ2 þ bdð Þ2

let A2 ¼ acð Þ2 þ adð Þ2,B2 ¼ bcð Þ2 þ bdð Þ2,C2 ¼ acð Þ2 þ bcð Þ2,D2 ¼ adð Þ2 þ bdð Þ2
N ¼ P1P2 ¼ a2 þ b2

� �
c2 þ d2� � ¼ acð Þ2 þ bcð Þ2 þ adð Þ2 þ bdð Þ2 ¼ A2 þ B2 ¼ C2 þD2

N ¼ A2 þ B2 ¼ C2 þD2 ) A2 � C2 ¼ D2 � B2

A2 � C2 ¼ D2 � B2 ) A� Cð Þ Aþ Cð Þ ¼ D� Bð Þ Dþ Bð Þ
P1 ¼ gcd A�C;D�Bð Þ

2

� �2
þ gcd AþC;DþBð Þ

2

� �2
,

P2 ¼ gcd AþC;D�Bð Þ
2

� �2
þ gcd A�C;DþBð Þ

2

� �2
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Consider the example N = 2137458620009; find the factorization values of
P1 and P2.

Using the sum of squares, N ¼ 2137458620009 ¼ 3244032 þ 14255602 ¼
6436032 þ 13127202.

Combining the even and odds: 14255602-13127202 = 6436032-3244032.

A2 � C2 ¼ D2 � B2 ) A� Cð Þ Aþ Cð Þ ¼ D� Bð Þ Dþ Bð Þ ¼ 968006ð Þ 319200ð Þ ¼ 2738280ð Þ 112840ð Þ

Using the greatest common divisor (gcd):

gcd A� C;D� Bð Þ
2

¼ gcd 968006; 2738280ð Þ
2

¼ 1201,
gcd Aþ C;Dþ Bð Þ

2
¼ gcd 319200; 112840ð Þ

2
¼ 140

gcd Aþ C;D� Bð Þ
2

¼ gcd 319200; 2738280ð Þ
2

¼ 1140,
gcd A� C;Dþ Bð Þ

2
¼ gcd 968006; 112840ð Þ

2
¼ 403

P1 ¼ gcd A�C;D�Bð Þ
2

� �2
þ gcd AþC;DþBð Þ

2

� �2
¼ 12012 þ 1402 ¼ 1462001

P2 ¼ gcd AþC;D�Bð Þ
2

� �2
þ gcd A�C;DþBð Þ

2

� �2
¼ 11402 þ 4032 ¼ 1462009

7. Wiener attack

Wiener’s theorem. Let N ¼ P1P2 and P1 ,P2 , 2P1 and a private key PR ¼ N; dð Þ
and a public key PU ¼ N; eð Þ: Let d, 1

3N
1
4, given a public key PU ¼ N; eð Þ, with

e d � 1 mod φn. The attacker can efficiently recover d [2]. The attack uses the
continued fraction method to expose the private key d, when d is small. It
assumes e

N ≈ k
d) φn ¼ ed�1

k . Consider a public key PU ¼ N; eð Þ : PU ¼
2137458620009; 1973036027077ð Þ

Continued fraction 1973036027077
2137458620009 ¼ 0; 1; 11; 1;4684; 1; 125; 1; 10; 1; 2; 1; 1; 1; 1; 2; 3; 7; 1; 17½ � ¼

e
N

≈
k
d
:
e
N
¼ 1973036027077

2137458620009
¼ 1

1þ 1

11þ 1 ∗
1
1

¼ 12
13
¼ k

d

φn ¼
ed� 1

k
¼ 1973036027077 ∗ 13� 1

12
¼ 25649468352000

12
¼ 2137455696000

As per Section 2, if the composite N and the totient φn are known, the original
primes P1 and P2 can be recovered.

21

Survey of RSA Vulnerabilities
DOI: http://dx.doi.org/10.5772/intechopen.84852



N ¼ a2 � b2 ¼ P2 þ P1

2

� �2

� P2 � P1

2

� �2

¼ 1
4

P2 þ P1ð Þ2 � P2 � P1ð Þ2
� �

¼ P1P2

As the first trial for a, a1 ¼
ffiffiffiffiffiffiffi
N,
p

then check if Δa1 ¼ a21 �N is a square number.
There are only 22 combinations of which the last two digits are a square number.

The other 78 can be eliminated.
If Δa1 is not a square number, then a2 : a2 ¼ a1 þ 1.
Now Δa2 ¼ a22 �N ¼) a1 þ 1ð Þ2 �N ¼ a21 �N þ 2a1 þ 1 ¼ Δa1 þ 2a1 þ 1

Δa3 ¼ a23 �N¼) a2 þ 1ð Þ2 �N ¼ a22 �N þ 2a2 þ 1 ¼ Δa2 þ 2 a1 þ 1ð Þ þ 1 ¼ Δa2 þ 2a1 þ 3

Δa4 ¼ a24 �N¼) a3 þ 1ð Þ2 �N ¼ a23 �N þ 2a3 þ 1 ¼ Δa3 þ 2 a1 þ 2ð Þ þ 1 ¼ Δa3 þ 2a1 þ 5

so the subsequent differences are obtained by adding two.
Consider the example N = 2137458620009.

a1 ¼
ffiffiffiffiffiffiffi
N,

p
a1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2137458620009
p

) a1 ¼ 1462005

Check if Δa1 ¼ a21 �N is a square number.

Δa1 ¼ a21 �N ¼ 14620052 � 2137458620009 ¼ 2137458620025 � 2137458620009 ¼ 16 ¼ 42

N ¼ 14620052 � 42 ¼ 1462005� 4ð Þ 1462005þ 4ð Þ ¼ 1462001ð Þ 1462009ð Þ

Maurice Kraitchik, a Belgian mathematician, considered only values of a and
b : a2 � b2 mod N.

a2 � b2 mod N¼)Δ 14620052 mod 2137458620009 � 16

6. Euler’s factorization method

Gaussian primes are of the form 4x� 1, and primes of the form 4xþ 1 are
Pythagorean. Fermat’s Christmas theorem on sum of two squares states that an odd
prime can be expressed as P ¼ x2 þ y2 iff P � 1 mod 4.

Gaussian primes are of the form P � 3 mod 4 and are not representable as the
sum of two squares.

Consider a composite number N: N = P1P2 and P1: P1 ¼ a2 þ b2,
P2: P2 ¼ c2 þ d2.

N ¼ P1P2 ¼ a2 þ b2
� �

c2 þ d2
� � ¼ acð Þ2 þ bcð Þ2 þ adð Þ2 þ bdð Þ2

let A2 ¼ acð Þ2 þ adð Þ2,B2 ¼ bcð Þ2 þ bdð Þ2,C2 ¼ acð Þ2 þ bcð Þ2,D2 ¼ adð Þ2 þ bdð Þ2
N ¼ P1P2 ¼ a2 þ b2

� �
c2 þ d2� � ¼ acð Þ2 þ bcð Þ2 þ adð Þ2 þ bdð Þ2 ¼ A2 þ B2 ¼ C2 þD2

N ¼ A2 þ B2 ¼ C2 þD2 ) A2 � C2 ¼ D2 � B2

A2 � C2 ¼ D2 � B2 ) A� Cð Þ Aþ Cð Þ ¼ D� Bð Þ Dþ Bð Þ
P1 ¼ gcd A�C;D�Bð Þ

2

� �2
þ gcd AþC;DþBð Þ

2

� �2
,

P2 ¼ gcd AþC;D�Bð Þ
2

� �2
þ gcd A�C;DþBð Þ

2

� �2
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Consider the example N = 2137458620009; find the factorization values of
P1 and P2.

Using the sum of squares, N ¼ 2137458620009 ¼ 3244032 þ 14255602 ¼
6436032 þ 13127202.

Combining the even and odds: 14255602-13127202 = 6436032-3244032.

A2 � C2 ¼ D2 � B2 ) A� Cð Þ Aþ Cð Þ ¼ D� Bð Þ Dþ Bð Þ ¼ 968006ð Þ 319200ð Þ ¼ 2738280ð Þ 112840ð Þ

Using the greatest common divisor (gcd):

gcd A� C;D� Bð Þ
2

¼ gcd 968006; 2738280ð Þ
2

¼ 1201,
gcd Aþ C;Dþ Bð Þ

2
¼ gcd 319200; 112840ð Þ

2
¼ 140

gcd Aþ C;D� Bð Þ
2

¼ gcd 319200; 2738280ð Þ
2

¼ 1140,
gcd A� C;Dþ Bð Þ

2
¼ gcd 968006; 112840ð Þ

2
¼ 403

P1 ¼ gcd A�C;D�Bð Þ
2

� �2
þ gcd AþC;DþBð Þ

2

� �2
¼ 12012 þ 1402 ¼ 1462001

P2 ¼ gcd AþC;D�Bð Þ
2

� �2
þ gcd A�C;DþBð Þ

2

� �2
¼ 11402 þ 4032 ¼ 1462009

7. Wiener attack

Wiener’s theorem. Let N ¼ P1P2 and P1 ,P2 , 2P1 and a private key PR ¼ N; dð Þ
and a public key PU ¼ N; eð Þ: Let d, 1

3N
1
4, given a public key PU ¼ N; eð Þ, with

e d � 1 mod φn. The attacker can efficiently recover d [2]. The attack uses the
continued fraction method to expose the private key d, when d is small. It
assumes e

N ≈ k
d) φn ¼ ed�1

k . Consider a public key PU ¼ N; eð Þ : PU ¼
2137458620009; 1973036027077ð Þ

Continued fraction 1973036027077
2137458620009 ¼ 0; 1; 11; 1;4684; 1; 125; 1; 10; 1; 2; 1; 1; 1; 1; 2; 3; 7; 1; 17½ � ¼

e
N

≈
k
d
:
e
N
¼ 1973036027077

2137458620009
¼ 1

1þ 1

11þ 1 ∗
1
1

¼ 12
13
¼ k

d

φn ¼
ed� 1

k
¼ 1973036027077 ∗ 13� 1

12
¼ 25649468352000

12
¼ 2137455696000

As per Section 2, if the composite N and the totient φn are known, the original
primes P1 and P2 can be recovered.
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8. Sum of squares

Overmars [3] showed that all Pythagorean triples could be represented as
N ¼ n2 þ nþ 2m� 1ð Þ2. If the composite number N, is constructed using two
Pythagorean primes (4x + 1) then two representations as the sum of two squares
can be found. Euler’s Factorization Method (Section 4) can be applied. Finding
these two representations is non-trivial and CPU-intensive. The equation
N m; nð Þ ¼ n2 þ nþ 2m� 1ð Þ2 provides a course search using increments of n and
fine convergence using m. In this way n is incremented and m is decremented about
N to find the two solutions along the diagonal of a field of N m; nð Þ≈N.

Consider the example, N ¼ 2137458620009.

N m1; n1ð Þ ¼ n21 þ n1 þ 2m1 � 1ð Þ2 ¼ 3244032 þ 324403þ 2 550579ð Þ þ 1ð Þ2 ¼ 3244032 þ 14255602

N m2; n2ð Þ ¼ n22 þ n2 þ 2m2 � 1ð Þ2 ¼ 6436032 þ 643603þ 2 334559ð Þ þ 1ð Þ2 ¼ 6436032 þ 13127202

N1 324403; 550579ð Þ ¼ N2 643603; 334559ð Þ ¼ 2137458620009

For completeness N can be represented as two Pythagorean triangles as shown
[3] Δ(m,n)=Δ(a,b,c).

a m; nð Þ ¼ 2n nþ 2m� 1ð Þ, b m; nð Þ ¼ 2m� 1ð Þ 2nþ 2m� 1ð Þ, c m:nð Þ ¼ n2 þ nþ 2m� 1ð Þ2
Δ m1; n1ð Þ ¼ Δ a1; b1; c1ð Þ : Δ 324403; 550579ð Þ ¼ Δ 28197495801360; 8357740887191; 29410042540009ð Þ
Δ m2; n2ð Þ ¼ Δ a2; b2; c2ð Þ : Δ 643603; 334559ð Þ ¼ Δ 1689741060320; 1309008976791; 29410042540009ð Þ

Once the two sum of two squares has been found, Euler’s factorization method
(Section 4), can be used to find the prime constructions of N : N ¼ P1P2.

If the composite number (N) is constructed using Pythagorean primes (4xþ 1),
then a solution exists as two sums of two squares and Euler’s factorization method
can be applied.

9. Gaussian and Pythagorean primes

As shown in Section 4, if Pythagorean primes (4xþ 1 � 4x� 3) are used to
construct the composite number (N), a solution exists as two sums of two squares.
However, if N is constructed using Gaussian primes (4x� 1 � 4xþ 3), then Euler’s
sum of two squares method cannot be used. Is there a test that we can use to see if
the composite has been constructed using Pythagorean primes? (Table 1)

Consider the following composite constructions:

i.N ¼ 4xþ 1ð Þ 4yþ 1ð Þ using Pythagorean primes

ii.N ¼ 4x� 1ð Þ 4y� 1ð Þ using Gaussian primes

iii.N ¼ 4xþ 1ð Þ 4y� 1ð Þ using a mix of Pythagorean and Gaussian primes

i. Pythagorean prime construction
N ¼ 4xþ 1ð Þ 4yþ 1ð Þ ¼ 16xyþ 4 xþ yð Þ þ 1 Two sum of two squares
representations exist and Euler’s factorization can be used. 1 � P mod 4.
9 � P mod 16. See Section 4. 793 ¼ 13 ∗ 61 ¼ 32 þ 282 ¼ 82 þ 272

ii. Gaussian prime construction
N ¼ 4x� 1ð Þ 4y� 1ð Þ ¼ 16xy� 4 xþ yð Þ þ 1 � 4m� 3 � 4nþ 1 Sums of
three squares exist. 1 � P mod 4. 9 � P mod 16.
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649 ¼ 11 ∗ 59 ¼ 12 þ 182 þ 182 ¼ 32 þ 82 þ 242 ¼ 62 þ 172 þ 182 ¼
82 þ 122 þ 212 ¼ 102 þ 152 þ 182 ¼ 122 þ 122 þ 192 Legendre’s three-square
theorem can test the composite: N ¼ x2 þ y2 þ z2 true if N 6¼ 4a 8bþ 7ð Þ
a, b∈Z,

iii. Mixed Pythagorean-Gaussian prime construction
N ¼ 4xþ 1ð Þ 4y� 1ð Þ ¼ 16xy� 4 x� yð Þ � 1,
N ¼ 4x� 1ð Þ 4yþ 1ð Þ ¼ 16xyþ 4 x� yð Þ � 1: Sums of four squares exist.
3 � P mod 4. 13 ∗ 59 ¼ 767

12 þ 12 þ 62 þ 272 ¼ 12 þ 12 þþ182 þ 212 ¼ 12 þ 32 þ 92 þ 262 ¼ 12 þ 62 þ 172 þ 212

¼ 12 þ 92 þ 182 þ 192 ¼ 12 þ 102 þ 152 þ 212 ¼ 22 þ 32 þ 52 þ 272 ¼ 22 þ 32 þ 152 þ 232

¼ 32 þ 62 þ 192 þ 192 ¼ 32 þ 72 þ 152 þ 222 ¼ 32 þ 112 þ 142 þ 212 ¼ 52 þ 62 þ 92 þ 252

¼ 62 þ 92 þ 112 þ 232 ¼ 62 þ 92 þ 172 þ 192 ¼ 62 þ 112 þ 132 þ 212

¼ 72 þ 92 þ 142 þ 212 ¼ 72 þ 132 þ 152 þ 182 ¼ 92 þ 92 þ 112 þ 222

¼ 92 þ 102 þ 152 þ 192 ¼ 112 þ 142 þ 152 þ 152

In summary, a composite whose construction is based upon both Pythagorean
and Gaussian primes can easily be identified when P mod 4 � 3 is true. However,
sums of four squares exist and Euler’s factorization cannot be used. When
P mod 4 � 1 is true, the composite could be constructed using Pythagorean primes
or Gaussian primes. Use the Legendre test to further discriminate. When the
Pythagorean construct is confirmed, the two sums of two squares can be found, and
Euler’s factorization can be used. If the composite construction is both Pythagorean
and Gaussian, sums of three squares exist and Euler’s factorization cannot be used.

10. Overmars factorization method

Another classification of the composite number uses a different construct for
primes and seeks to define the composite number as follows: Let N ¼ P1P2 and test
N : N � 1ð Þmod4 ¼ 0. Two cases are considered in the classification, and this deter-
mines the constructs of the primes used. Note the sign of �1 determines the case
used, and the test is both simple and concise [4].

Case (1) ⊕⊝  N þ 1ð Þmod4 ¼ 0, P1 ¼ 2 m� nð Þ þ 1, P2 ¼ 2 mþ nð Þ � 1

1. Let m0 ≥
ffiffiffi
N
p
2 , m∈Nþ

2. Let n0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4m2

0�N
p

þ1
2 , n∈Nþ?, n∉Nþ ) mx ¼ m0 þ 1

3. Let n ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4m2

x�N
p

þ1
2 , n∉Nþ,mx ¼ mx þ 1) n : n∈Nþ

4.P1 ¼ 2 m� nð Þ þ 1, P2 ¼ 2 mþ nð Þ � 1

4x � 1 4x + 1 x, y ¼ 3, 15 11 13

4y – 1 16xy� 4 xþ yð Þ þ 1 16xy� 4 x� yð Þ � 1 59 649 767

4y + 1 16xy� 4 y� xð Þ � 1 16xyþ 4 xþ yð Þ þ 1 61 671 793

Table 1.
Possible composite constructs using Pythagorean and Gaussian primes.
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8. Sum of squares

Overmars [3] showed that all Pythagorean triples could be represented as
N ¼ n2 þ nþ 2m� 1ð Þ2. If the composite number N, is constructed using two
Pythagorean primes (4x + 1) then two representations as the sum of two squares
can be found. Euler’s Factorization Method (Section 4) can be applied. Finding
these two representations is non-trivial and CPU-intensive. The equation
N m; nð Þ ¼ n2 þ nþ 2m� 1ð Þ2 provides a course search using increments of n and
fine convergence using m. In this way n is incremented and m is decremented about
N to find the two solutions along the diagonal of a field of N m; nð Þ≈N.

Consider the example, N ¼ 2137458620009.

N m1; n1ð Þ ¼ n21 þ n1 þ 2m1 � 1ð Þ2 ¼ 3244032 þ 324403þ 2 550579ð Þ þ 1ð Þ2 ¼ 3244032 þ 14255602

N m2; n2ð Þ ¼ n22 þ n2 þ 2m2 � 1ð Þ2 ¼ 6436032 þ 643603þ 2 334559ð Þ þ 1ð Þ2 ¼ 6436032 þ 13127202

N1 324403; 550579ð Þ ¼ N2 643603; 334559ð Þ ¼ 2137458620009

For completeness N can be represented as two Pythagorean triangles as shown
[3] Δ(m,n)=Δ(a,b,c).

a m; nð Þ ¼ 2n nþ 2m� 1ð Þ, b m; nð Þ ¼ 2m� 1ð Þ 2nþ 2m� 1ð Þ, c m:nð Þ ¼ n2 þ nþ 2m� 1ð Þ2
Δ m1; n1ð Þ ¼ Δ a1; b1; c1ð Þ : Δ 324403; 550579ð Þ ¼ Δ 28197495801360; 8357740887191; 29410042540009ð Þ
Δ m2; n2ð Þ ¼ Δ a2; b2; c2ð Þ : Δ 643603; 334559ð Þ ¼ Δ 1689741060320; 1309008976791; 29410042540009ð Þ

Once the two sum of two squares has been found, Euler’s factorization method
(Section 4), can be used to find the prime constructions of N : N ¼ P1P2.

If the composite number (N) is constructed using Pythagorean primes (4xþ 1),
then a solution exists as two sums of two squares and Euler’s factorization method
can be applied.

9. Gaussian and Pythagorean primes

As shown in Section 4, if Pythagorean primes (4xþ 1 � 4x� 3) are used to
construct the composite number (N), a solution exists as two sums of two squares.
However, if N is constructed using Gaussian primes (4x� 1 � 4xþ 3), then Euler’s
sum of two squares method cannot be used. Is there a test that we can use to see if
the composite has been constructed using Pythagorean primes? (Table 1)

Consider the following composite constructions:

i.N ¼ 4xþ 1ð Þ 4yþ 1ð Þ using Pythagorean primes

ii.N ¼ 4x� 1ð Þ 4y� 1ð Þ using Gaussian primes

iii.N ¼ 4xþ 1ð Þ 4y� 1ð Þ using a mix of Pythagorean and Gaussian primes

i. Pythagorean prime construction
N ¼ 4xþ 1ð Þ 4yþ 1ð Þ ¼ 16xyþ 4 xþ yð Þ þ 1 Two sum of two squares
representations exist and Euler’s factorization can be used. 1 � P mod 4.
9 � P mod 16. See Section 4. 793 ¼ 13 ∗ 61 ¼ 32 þ 282 ¼ 82 þ 272

ii. Gaussian prime construction
N ¼ 4x� 1ð Þ 4y� 1ð Þ ¼ 16xy� 4 xþ yð Þ þ 1 � 4m� 3 � 4nþ 1 Sums of
three squares exist. 1 � P mod 4. 9 � P mod 16.
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649 ¼ 11 ∗ 59 ¼ 12 þ 182 þ 182 ¼ 32 þ 82 þ 242 ¼ 62 þ 172 þ 182 ¼
82 þ 122 þ 212 ¼ 102 þ 152 þ 182 ¼ 122 þ 122 þ 192 Legendre’s three-square
theorem can test the composite: N ¼ x2 þ y2 þ z2 true if N 6¼ 4a 8bþ 7ð Þ
a, b∈Z,

iii. Mixed Pythagorean-Gaussian prime construction
N ¼ 4xþ 1ð Þ 4y� 1ð Þ ¼ 16xy� 4 x� yð Þ � 1,
N ¼ 4x� 1ð Þ 4yþ 1ð Þ ¼ 16xyþ 4 x� yð Þ � 1: Sums of four squares exist.
3 � P mod 4. 13 ∗ 59 ¼ 767

12 þ 12 þ 62 þ 272 ¼ 12 þ 12 þþ182 þ 212 ¼ 12 þ 32 þ 92 þ 262 ¼ 12 þ 62 þ 172 þ 212

¼ 12 þ 92 þ 182 þ 192 ¼ 12 þ 102 þ 152 þ 212 ¼ 22 þ 32 þ 52 þ 272 ¼ 22 þ 32 þ 152 þ 232

¼ 32 þ 62 þ 192 þ 192 ¼ 32 þ 72 þ 152 þ 222 ¼ 32 þ 112 þ 142 þ 212 ¼ 52 þ 62 þ 92 þ 252

¼ 62 þ 92 þ 112 þ 232 ¼ 62 þ 92 þ 172 þ 192 ¼ 62 þ 112 þ 132 þ 212

¼ 72 þ 92 þ 142 þ 212 ¼ 72 þ 132 þ 152 þ 182 ¼ 92 þ 92 þ 112 þ 222

¼ 92 þ 102 þ 152 þ 192 ¼ 112 þ 142 þ 152 þ 152

In summary, a composite whose construction is based upon both Pythagorean
and Gaussian primes can easily be identified when P mod 4 � 3 is true. However,
sums of four squares exist and Euler’s factorization cannot be used. When
P mod 4 � 1 is true, the composite could be constructed using Pythagorean primes
or Gaussian primes. Use the Legendre test to further discriminate. When the
Pythagorean construct is confirmed, the two sums of two squares can be found, and
Euler’s factorization can be used. If the composite construction is both Pythagorean
and Gaussian, sums of three squares exist and Euler’s factorization cannot be used.

10. Overmars factorization method

Another classification of the composite number uses a different construct for
primes and seeks to define the composite number as follows: Let N ¼ P1P2 and test
N : N � 1ð Þmod4 ¼ 0. Two cases are considered in the classification, and this deter-
mines the constructs of the primes used. Note the sign of �1 determines the case
used, and the test is both simple and concise [4].

Case (1) ⊕⊝  N þ 1ð Þmod4 ¼ 0, P1 ¼ 2 m� nð Þ þ 1, P2 ¼ 2 mþ nð Þ � 1

1. Let m0 ≥
ffiffiffi
N
p
2 , m∈Nþ

2. Let n0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4m2

0�N
p

þ1
2 , n∈Nþ?, n∉Nþ ) mx ¼ m0 þ 1

3. Let n ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4m2

x�N
p

þ1
2 , n∉Nþ,mx ¼ mx þ 1) n : n∈Nþ

4.P1 ¼ 2 m� nð Þ þ 1, P2 ¼ 2 mþ nð Þ � 1

4x � 1 4x + 1 x, y ¼ 3, 15 11 13

4y – 1 16xy� 4 xþ yð Þ þ 1 16xy� 4 x� yð Þ � 1 59 649 767

4y + 1 16xy� 4 y� xð Þ � 1 16xyþ 4 xþ yð Þ þ 1 61 671 793

Table 1.
Possible composite constructs using Pythagorean and Gaussian primes.
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Case (2) ⊝⊝ N � 1ð Þmod4 ¼ 0, P1 ¼ 2 m� nð Þ � 1, P2 ¼ 2 mþ nð Þ � 1

1. Let m0 ≥
ffiffiffi
N
p þ1

2 , m∈Nþ

2. Let n0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m0�1ð Þ2�N

p
2 , n∈Nþ?, n∉Nþ ) mx ¼ m0 þ 1

3. Let n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mx�1ð Þ2�N

p
2 , n∉Nþ,mx ¼ mx þ 1) n : n∈Nþ

4.P1 ¼ 2 m� nð Þ � 1, P2 ¼ 2 mþ nð Þ � 1

Example N ¼ 5959

1. Test N � 1ð Þmod4 ¼ 0 : 5959þ 1ð Þ mod 4 ¼ 0) case 1ð Þ⊕⊝

2.m0 ≥
ffiffiffi
N
p
2 ) m0 ¼

ffiffiffiffiffiffiffi
5959
p

2 ) m0 ¼ 39, n ¼ 6:09, n∉Nþ

3.m1 ¼ m0 þ 1 ¼ 39þ 1 ¼ 40

4.n ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4m2

1�N
p

þ1
2 ) n1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 40ð Þ2�5959
p

þ1
2 ¼ 11, n1 ∈Nþ

5. P1 ¼ 2 m� nð Þ þ 1) P1 ¼ 2 40� 11ð Þ þ 1 ¼ 59, P2 ¼ 2 mþ nð Þ � 1) P_2 ¼ 2 40þ 11ð Þ � 1 ¼ 101

N ¼ P1P2 ¼ 59 x 101 ¼ 5959

This method is reasonable for small composites but becomes computationally
unfeasible for large composites.

11. Extensions of the Overmars factorization method

Case (1) ⊕⊝ N þ 1ð Þmod a2 ¼ 0, P1 ¼ a m� nð Þ þ 1, P2 ¼ a mþ nð Þ � 1

N ¼ a m� nð Þ þ 1½ � a mþ nð Þ � 1½ � ¼ a2 m2 � n2
� �þ 2an� 1

N ¼ amð Þ2 � anð Þ2 � 2anþ 1
h i

¼ amð Þ2 � an� 1ð Þ2

Case (2) ⊝⊕ N þ 1ð Þmod a2 ¼ 0, P1 ¼ a m� nð Þ � 1, P2 ¼ a mþ nð Þ þ 1

N ¼ a m� nð Þ � 1½ � a mþ nð Þ þ 1½ � ¼ a2 m2 � n2
� �� 2an� 1

N ¼ amð Þ2 � anð Þ2 þ 2anþ 1
h i

¼ amð Þ2 � anþ 1ð Þ2

Case (1, 2) Nþ1
a ¼ a m2 � n2ð Þ � 2n a : a is a factor of N þ 1

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
amð Þ2 �N

q
� 1

a
,m≥

ffiffiffiffi
N
p

a
m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ an� 1ð Þ2

a2

s
,

Case (3) ⊝⊝ N � 1ð Þmod a2 ¼ 0, P1 ¼ a m� nð Þ � 1, P2 ¼ a mþ nð Þ � 1
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N ¼ a m� nð Þ � 1½ � a mþ nð Þ � 1½ � ¼ a2 m2 � n2
� �� 2amþ 1

N ¼ amð Þ2 � 2amþ 1� anð Þ2 ¼ am� 1ð Þ2 � anð Þ2

Case (4) ⊕⊕ N � 1ð Þmod a2 ¼ 0, P1 ¼ a m� nð Þ þ 1, P2 ¼ a mþ nð Þ þ 1

N ¼ a m� nð Þ þ 1½ � a mþ nð Þ þ 1½ � ¼ a2 m2 � n2
� �þ 2amþ 1

N ¼ amð Þ2 þ 2amþ 1� anð Þ2 ¼ amþ 1ð Þ2 � anð Þ2

Case (3, 4) N�1
a ¼ a m2 � n2ð Þ � 2m a : a is a factor of N � 1

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
am� 1ð Þ2 �N

a2

s
, m≥

ffiffiffiffi
N
p

∓ 1
a

,m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ anð Þ2

q
� 1

a

a: a ¼ gcd m; nð Þ for all cases. Choosing the largest value of a ensures a rapid
convergence to the solution. This is illustrated by example.

Consider N ¼ 211276133

Factors of N þ 1ð Þ ) 211276133þ 1 ¼ 2ð Þ 33� �
881ð Þ 4441ð Þ possible values for a

Factors of N � 1ð Þ ) 211276133� 1 ¼ 22
� �

52819033ð Þ possible values for a

Case (3) ⊝⊝ N � 1ð Þmod a2 ) 211276133� 1ð Þmod4 ¼ 0) a ¼ 2

2 m� nð Þ � 1½ � 2 mþ nð Þ � 1½ � ¼ 211276133, m ¼ 10247, n ¼ 7223) gcd 10247; 7223ð Þ ¼ 1

P1 ¼ 2 10247 � 7223ð Þ � 1 ¼ 6047, P2 ¼ 2 10247 þ 7223ð Þ � 1 ¼ 34939

Case (2) ⊝⊕ N þ 1ð Þmod a2 ) 211276133þ 1ð Þmod9 ¼ 0) a ¼ 3

3 m� nð Þ � 1½ � 3 mþ nð Þ � 1½ � ¼ 211276133, m ¼ 6831, n ¼ 4815) gcd 6831;4815ð Þ ¼ 9

27 m� nð Þ � 1½ � 27 mþ nð Þ � 1½ � ¼ 211276133, m ¼ 759, n ¼ 535) gcd 759; 535ð Þ ¼ 1

P1 ¼ 27 759� 535ð Þ � 1 ¼ 6047, P2 ¼ 27 759þ 535ð Þ þ 1 ¼ 34939

Consider N ¼ 5959 (Section 8)

Factors of N � 1ð Þ ) 5959� 1 ¼ 2ð Þ 32� �
331ð Þ possible values for a

P1 ¼ 3 m� nð Þ � 1, P2 ¼ 3 mþ nð Þ � 1, m ¼ 27, n ¼ 7, gcd 27; 7ð Þ ¼ 1

Factors of N þ 1ð Þ ) 5959þ 1 ¼ 23
� �

5ð Þ 149ð Þ possible values for a

P1 ¼ 20 m� nð Þ þ 1, P2 ¼ 20 mþ nð Þ � 1, m ¼ 4, n ¼ 1, gcd 4; 1ð Þ ¼ 1

Consider RSA100

P1 ¼ 37975227936943673922808872755445627854565536638199

P2 ¼ 40094690950920881030683735292761468389214899724061

P1 ¼ 2ð Þ 3167ð Þ 3613ð Þ 1659412543822590349622856694449324700910569ð Þ þ 1

P1 ¼ 23
� �

3ð Þ 52� �
109ð Þ 409ð Þ 20839813ð Þ 60236089ð Þ 49147216823ð Þ 23011759155976667ð Þ � 1

P2 ¼ 22
� �

5ð Þ 41ð Þ 2119363ð Þ 602799725049211ð Þ 38273186726790856290328531ð Þ þ 1

P2 ¼ 2ð Þ 3ð Þ 11ð Þ 59ð Þ 10296530804037206222569012658644444886804031773ð Þ � 1
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Case (2) ⊝⊝ N � 1ð Þmod4 ¼ 0, P1 ¼ 2 m� nð Þ � 1, P2 ¼ 2 mþ nð Þ � 1

1. Let m0 ≥
ffiffiffi
N
p þ1

2 , m∈Nþ

2. Let n0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m0�1ð Þ2�N

p
2 , n∈Nþ?, n∉Nþ ) mx ¼ m0 þ 1

3. Let n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mx�1ð Þ2�N

p
2 , n∉Nþ,mx ¼ mx þ 1) n : n∈Nþ

4.P1 ¼ 2 m� nð Þ � 1, P2 ¼ 2 mþ nð Þ � 1

Example N ¼ 5959

1. Test N � 1ð Þmod4 ¼ 0 : 5959þ 1ð Þ mod 4 ¼ 0) case 1ð Þ⊕⊝

2.m0 ≥
ffiffiffi
N
p
2 ) m0 ¼

ffiffiffiffiffiffiffi
5959
p

2 ) m0 ¼ 39, n ¼ 6:09, n∉Nþ

3.m1 ¼ m0 þ 1 ¼ 39þ 1 ¼ 40

4.n ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4m2

1�N
p

þ1
2 ) n1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 40ð Þ2�5959
p

þ1
2 ¼ 11, n1 ∈Nþ

5. P1 ¼ 2 m� nð Þ þ 1) P1 ¼ 2 40� 11ð Þ þ 1 ¼ 59, P2 ¼ 2 mþ nð Þ � 1) P_2 ¼ 2 40þ 11ð Þ � 1 ¼ 101

N ¼ P1P2 ¼ 59 x 101 ¼ 5959

This method is reasonable for small composites but becomes computationally
unfeasible for large composites.

11. Extensions of the Overmars factorization method

Case (1) ⊕⊝ N þ 1ð Þmod a2 ¼ 0, P1 ¼ a m� nð Þ þ 1, P2 ¼ a mþ nð Þ � 1

N ¼ a m� nð Þ þ 1½ � a mþ nð Þ � 1½ � ¼ a2 m2 � n2
� �þ 2an� 1

N ¼ amð Þ2 � anð Þ2 � 2anþ 1
h i

¼ amð Þ2 � an� 1ð Þ2

Case (2) ⊝⊕ N þ 1ð Þmod a2 ¼ 0, P1 ¼ a m� nð Þ � 1, P2 ¼ a mþ nð Þ þ 1

N ¼ a m� nð Þ � 1½ � a mþ nð Þ þ 1½ � ¼ a2 m2 � n2
� �� 2an� 1

N ¼ amð Þ2 � anð Þ2 þ 2anþ 1
h i

¼ amð Þ2 � anþ 1ð Þ2

Case (1, 2) Nþ1
a ¼ a m2 � n2ð Þ � 2n a : a is a factor of N þ 1

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
amð Þ2 �N

q
� 1

a
,m≥

ffiffiffiffi
N
p

a
m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ an� 1ð Þ2

a2

s
,

Case (3) ⊝⊝ N � 1ð Þmod a2 ¼ 0, P1 ¼ a m� nð Þ � 1, P2 ¼ a mþ nð Þ � 1

24

Modern Cryptography – Current Challenges and Solutions

N ¼ a m� nð Þ � 1½ � a mþ nð Þ � 1½ � ¼ a2 m2 � n2
� �� 2amþ 1

N ¼ amð Þ2 � 2amþ 1� anð Þ2 ¼ am� 1ð Þ2 � anð Þ2

Case (4) ⊕⊕ N � 1ð Þmod a2 ¼ 0, P1 ¼ a m� nð Þ þ 1, P2 ¼ a mþ nð Þ þ 1

N ¼ a m� nð Þ þ 1½ � a mþ nð Þ þ 1½ � ¼ a2 m2 � n2
� �þ 2amþ 1

N ¼ amð Þ2 þ 2amþ 1� anð Þ2 ¼ amþ 1ð Þ2 � anð Þ2

Case (3, 4) N�1
a ¼ a m2 � n2ð Þ � 2m a : a is a factor of N � 1

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
am� 1ð Þ2 �N

a2

s
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ffiffiffiffi
N
p

∓ 1
a

,m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ anð Þ2

q
� 1

a

a: a ¼ gcd m; nð Þ for all cases. Choosing the largest value of a ensures a rapid
convergence to the solution. This is illustrated by example.

Consider N ¼ 211276133

Factors of N þ 1ð Þ ) 211276133þ 1 ¼ 2ð Þ 33� �
881ð Þ 4441ð Þ possible values for a

Factors of N � 1ð Þ ) 211276133� 1 ¼ 22
� �

52819033ð Þ possible values for a

Case (3) ⊝⊝ N � 1ð Þmod a2 ) 211276133� 1ð Þmod4 ¼ 0) a ¼ 2

2 m� nð Þ � 1½ � 2 mþ nð Þ � 1½ � ¼ 211276133, m ¼ 10247, n ¼ 7223) gcd 10247; 7223ð Þ ¼ 1

P1 ¼ 2 10247 � 7223ð Þ � 1 ¼ 6047, P2 ¼ 2 10247 þ 7223ð Þ � 1 ¼ 34939

Case (2) ⊝⊕ N þ 1ð Þmod a2 ) 211276133þ 1ð Þmod9 ¼ 0) a ¼ 3

3 m� nð Þ � 1½ � 3 mþ nð Þ � 1½ � ¼ 211276133, m ¼ 6831, n ¼ 4815) gcd 6831;4815ð Þ ¼ 9

27 m� nð Þ � 1½ � 27 mþ nð Þ � 1½ � ¼ 211276133, m ¼ 759, n ¼ 535) gcd 759; 535ð Þ ¼ 1

P1 ¼ 27 759� 535ð Þ � 1 ¼ 6047, P2 ¼ 27 759þ 535ð Þ þ 1 ¼ 34939

Consider N ¼ 5959 (Section 8)

Factors of N � 1ð Þ ) 5959� 1 ¼ 2ð Þ 32� �
331ð Þ possible values for a

P1 ¼ 3 m� nð Þ � 1, P2 ¼ 3 mþ nð Þ � 1, m ¼ 27, n ¼ 7, gcd 27; 7ð Þ ¼ 1

Factors of N þ 1ð Þ ) 5959þ 1 ¼ 23
� �

5ð Þ 149ð Þ possible values for a

P1 ¼ 20 m� nð Þ þ 1, P2 ¼ 20 mþ nð Þ � 1, m ¼ 4, n ¼ 1, gcd 4; 1ð Þ ¼ 1

Consider RSA100

P1 ¼ 37975227936943673922808872755445627854565536638199

P2 ¼ 40094690950920881030683735292761468389214899724061

P1 ¼ 2ð Þ 3167ð Þ 3613ð Þ 1659412543822590349622856694449324700910569ð Þ þ 1

P1 ¼ 23
� �

3ð Þ 52� �
109ð Þ 409ð Þ 20839813ð Þ 60236089ð Þ 49147216823ð Þ 23011759155976667ð Þ � 1

P2 ¼ 22
� �

5ð Þ 41ð Þ 2119363ð Þ 602799725049211ð Þ 38273186726790856290328531ð Þ þ 1

P2 ¼ 2ð Þ 3ð Þ 11ð Þ 59ð Þ 10296530804037206222569012658644444886804031773ð Þ � 1
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N ¼ P1P2

¼ 23
� �

3ð Þ 52� �
109ð Þ 409ð Þ 20839813ð Þ 60236089ð Þ 49147216823ð Þ 23011759155976667ð Þ � 1

� �

      ∗ 22
� �

5ð Þ 41ð Þ 2119363ð Þ 602799725049211ð Þ 38273186726790856290328531ð Þ þ 1
� �

factors of N þ 1 ¼ 22
� �

5ð Þ 7ð Þ 132� �
63421ð Þ 83694613ð Þ

 ð121238883482226494959007093210067761113089
 3465646351221267386320068406978173999673Þ

factors of N � 1 ¼ 2ð Þ 32� �
210974974123ð Þ

 ð400944086233670527306310281636760087998315
 351567377660286363410284049027879820778576767Þ

N + 1 is the better candidate, as it has more factors to try. So cases (1,2) are
considered.

Case (2) N ¼ a m� nð Þ � 1½ � a mþ nð Þ þ 1½ � ¼ a2 m2 � n2ð Þ � 2an� 1 Nþ1
a ¼

a m2 � n2ð Þ � 2n Try a : a ¼ 2ð Þ 5ð Þ : Nþ1a ¼ a m2 � n2ð Þ � 2n,
Nþ1
10 ¼ 10 m2 � n2ð Þ � 2n ¼ Nþ1

20 ¼ 5 m2 � n2ð Þ � n

m≥
ffiffiffi
N
p
a ¼ 3902057185540126551228957333948437101890500690019

N þ 1
a
¼ 15226050279225333605356183781326374297180681149613806886ð

57908494580122963258952897654000350692006139Þ þ 1=20

¼ 76130251396126668026780918906631871485903405748069034

432895424729006148162947644882700017534600307

a ¼ 10) m ¼ 3903495944393227747674630402410354812189021818113,
n ¼ 105973150698860355393743126865792026732468154293gcd m; nð Þ ¼ 1

P1 ¼ 10 m� nð Þ þ 1 ¼ 37975227936943673922808872755445627854565536638199,
P2 ¼ 10 mþ nð Þ � 1 ¼ 40094690950920881030683735292761468389214899724061

When a is small, this method becomes computationally unfeasible.

12. Overmars factorization using smooth factors

Consider the construction of primes (Sections 8 and 9), P ¼ a m� nð Þ � 1. More
generally, P : P ¼ a m� nð Þ � x Consider N ¼ P1P2 ) 8079781 ¼ 1249� 6469
(Table 2).

Case (1) ⊕⊝ N þ x2ð Þmod a2 ¼ 0, P1 ¼ a m� nð Þ þ x, P2 ¼ a mþ nð Þ � x

N ¼ a m� nð Þ þ x½ � a mþ nð Þ � x½ � ¼ a2 m2 � n2
� �þ 2anx� x2

N ¼ amð Þ2 � anð Þ2 � 2anxþ 1
h i

¼ amð Þ2 � an� xð Þ2

Case (2) ⊝⊕ N þ x2ð Þmod a2 ¼ 0, P1 ¼ a m� nð Þ � x, P2 ¼ a mþ nð Þ þ x

N ¼ a m� nð Þ � 1½ � a mþ nð Þ þ 1½ � ¼ a2 m2 � n2
� �� 2anx� x2

N ¼ amð Þ2 � anð Þ2 þ 2anxþ 1
h i

¼ amð Þ2 � anþ xð Þ2
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Case (1,2) Nþx2
a ¼ a m2 � n2ð Þ � 2nx a : a is a factor of N þ x2

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
amð Þ2 �N

q
� x

a
,m≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ a∓ xð Þ2

q

a
,m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ an� xð Þ2

a2

s

Case (3) ⊝⊝ N � x2ð Þmod a2 ¼ 0, P1 ¼ a m� nð Þ � x, P2 ¼ a mþ nð Þ � x

N ¼ a m� nð Þ � x½ � a mþ nð Þ � x½ � ¼ a2 m2 � n2
� �� 2amxþ x2

N ¼ amð Þ2 � 2amxþ x2 � anð Þ2 ¼ am� xð Þ2 � anð Þ2

Case (4) ⊕⊕ N � x2ð Þmod a2 ¼ 0, P1 ¼ a m� nð Þ þ x, P2 ¼ a mþ nð Þ þ x

N ¼ a m� nð Þ þ x½ � a mþ nð Þ þ x½ � ¼ a2 m2 � n2
� �þ 2amxþ x2

N ¼ amð Þ2 þ 2amxþ x2 � anð Þ2 ¼ amþ xð Þ2 � anð Þ2

Case (3,4) N�x2
a ¼ a m2 � n2ð Þ � 2mx a : a is a factor of N � x2

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
am� xð Þ2 �N

a2

s
, m≥

ffiffiffiffi
N
p

∓ x2

a
,m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ anð Þ2

q
� x2

a

N ¼ 90 43� 29ð Þ � 11½ � 90 43þ 29ð Þ � 11½ � ¼ 1249� 6469

When a smooth x can be found, larger a values allow for faster convergence to a
solution. The selection of x and a is somewhat arbitrary and prime constructs are a
modification of Fermat’s a2 � b2. Smooth factors of N � x2 produce larger a values
and convergence faster to a solution.

13. Primes

The current state of the art in prime number generation is Atkin’s sieve [5, 6].
The algorithm completely ignores any numbers with remainder mod 60 that is

divisible by 2, 3 or 5, since numbers with a mod 60 remainder divisible by one of

x N � x2 �x a m n gcd(m,n) Smoothness

1 22 3 5 311 433 ⊝⊝ 10 386 261 1 5-smooth

3 22 479 4217 ⊝⊝ 2 1931 1305 1

5 22 3 673313 ⊝⊝ 6 644 435 1

7 22 32 103 2179 ⊕⊕ 18 214 145 1 3-smooth

11 22 32 5 44887 ⊝⊝ 90 43 29 1 5-smooth

13 22 3 211 3191 ⊕⊕ 6 641 435 1

17 22 3 673291 ⊝⊝ 6 646 435 1

19 22 3 5 17 892 ⊕⊕ 30 128 87 1 5-smooth

23 22 3 673271 ⊝⊝ 6 647 435 1

29 22 34 5 4987 ⊝⊝ 18 216 145 1 5-smooth

Table 2.
N � x2.
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N ¼ P1P2

¼ 23
� �

3ð Þ 52� �
109ð Þ 409ð Þ 20839813ð Þ 60236089ð Þ 49147216823ð Þ 23011759155976667ð Þ � 1

� �

      ∗ 22
� �
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� �

factors of N þ 1 ¼ 22
� �

5ð Þ 7ð Þ 132� �
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When a is small, this method becomes computationally unfeasible.

12. Overmars factorization using smooth factors

Consider the construction of primes (Sections 8 and 9), P ¼ a m� nð Þ � 1. More
generally, P : P ¼ a m� nð Þ � x Consider N ¼ P1P2 ) 8079781 ¼ 1249� 6469
(Table 2).

Case (1) ⊕⊝ N þ x2ð Þmod a2 ¼ 0, P1 ¼ a m� nð Þ þ x, P2 ¼ a mþ nð Þ � x

N ¼ a m� nð Þ þ x½ � a mþ nð Þ � x½ � ¼ a2 m2 � n2
� �þ 2anx� x2

N ¼ amð Þ2 � anð Þ2 � 2anxþ 1
h i

¼ amð Þ2 � an� xð Þ2

Case (2) ⊝⊕ N þ x2ð Þmod a2 ¼ 0, P1 ¼ a m� nð Þ � x, P2 ¼ a mþ nð Þ þ x
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Case (1,2) Nþx2
a ¼ a m2 � n2ð Þ � 2nx a : a is a factor of N þ x2
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Case (3) ⊝⊝ N � x2ð Þmod a2 ¼ 0, P1 ¼ a m� nð Þ � x, P2 ¼ a mþ nð Þ � x
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Case (3,4) N�x2
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n ¼
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N
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N þ anð Þ2

q
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a

N ¼ 90 43� 29ð Þ � 11½ � 90 43þ 29ð Þ � 11½ � ¼ 1249� 6469

When a smooth x can be found, larger a values allow for faster convergence to a
solution. The selection of x and a is somewhat arbitrary and prime constructs are a
modification of Fermat’s a2 � b2. Smooth factors of N � x2 produce larger a values
and convergence faster to a solution.

13. Primes

The current state of the art in prime number generation is Atkin’s sieve [5, 6].
The algorithm completely ignores any numbers with remainder mod 60 that is

divisible by 2, 3 or 5, since numbers with a mod 60 remainder divisible by one of

x N � x2 �x a m n gcd(m,n) Smoothness

1 22 3 5 311 433 ⊝⊝ 10 386 261 1 5-smooth

3 22 479 4217 ⊝⊝ 2 1931 1305 1

5 22 3 673313 ⊝⊝ 6 644 435 1

7 22 32 103 2179 ⊕⊕ 18 214 145 1 3-smooth

11 22 32 5 44887 ⊝⊝ 90 43 29 1 5-smooth

13 22 3 211 3191 ⊕⊕ 6 641 435 1

17 22 3 673291 ⊝⊝ 6 646 435 1

19 22 3 5 17 892 ⊕⊕ 30 128 87 1 5-smooth

23 22 3 673271 ⊝⊝ 6 647 435 1

29 22 34 5 4987 ⊝⊝ 18 216 145 1 5-smooth

Table 2.
N � x2.
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these three primes are themselves divisible by that prime. Atkin stated three theo-
rems given below:

1. All numbers n with mod 60 remainder 1, 13, 17, 29, 37, 41, 49 or 53 are
mod 4 � 1. These numbers are prime if the number of solutions to 4x2 + y2 = n
is odd and the number is squarefree.

2. All numbers n with mod 60 remainder 7, 19, 31 or 43 have a mod 6 � 1.
These numbers are prime if and only if the number of solutions to 3x2 + y2 = n
is odd and the number is squarefree.

3.All numbers n with mod 60 remainder 11, 23, 47 or 59 have a mod 12 � 11.
These numbers are prime if and only if the number of solutions to 3x2 � y2 = n
is odd and the number is squarefree.

None of the primes are divisible by 2, 3 or 5 and are not divisible by their squares
(22, 32, and 52). For a thorough analysis of “primes of the Form x2 + ny2” the reader
is referred to a text by Cox [7].

The often overlooked works of Dubner, who is credited with the term
“primorial” [8] are now considered [9, 10]. The primorial is a factorial of primes:
1# ¼ 2, 2# ¼ 2x3 ¼ 6, 3# ¼ 2x3x5 ¼ 30,4# ¼ #3x7 ¼ 210 and so on. 0# ¼ 1. The
primorial is by definition squarefree.

The nth primorial is the product of n primes, where π nð Þ is the prime counting
function.

n# ¼
Yπ nð Þ

i¼1
pi ¼ pπ nð Þ#

Using this structure, Dubner was able to create series of primes in a particular
primorial.

It can be shown that the structure of primes is palindromic in the primorials [11].
For example, in Figure 1, take the discrete derivative of the numbers in the third

primorial, 3#. The following palindromic sequence can be added to #3 ¼ 30 and
subtracted from #4 ¼ 210 to determine all of the primes in that primorial:

30 þ 1, 10, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2
210� 1, 10, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2

This describes the second table in Figure 1. All of the primes in the third
primorial can be found using 24 small numbers. Mod 7 is used to sieve and eliminate
composite multiples of 7. Mod 11 and 13 are used to highlight further composites,
but these are kept and used to generate primes in the next primorial.

Modulo testing: P mod m ¼ 0, Pk,m,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 1ð Þ#p

For k ¼ 3, Pk : P3 ¼ 5, Pkþ1 : P4 ¼ 7, #3 ¼ 30,#4 ¼ 210,
ffiffiffiffiffiffiffiffi
210
p

≈ 14,
m ¼ 7, 11, 13, eliminate Pkþ1 ¼ 7

As shown in Figure 2, 24 small numbers are used to derive 482 new values. This
uses 10 modulo tests to identify composites and 1 modulo test to eliminate factors of
11 (Figure 3).

Pn#, ΔPn�1# Current primorial and the difference between primes from the
previous. Simple array descriptor provides rich prime fields of higher densities.
Small numbers describe primes of higher magnitude. Large arrays of primes can be
stored in much less memory.
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14. Number systems

Conventional numbering systems consist of a base (or radix).
The primorial number system is said to be ‘primoradic’; having a primorial base.

The primorial number system is a mixed radix numeral system adapted to the
numbering of the primorials (Table 3).

Figure 1.
Creating primes using primorials.

Figure 2.
Primes in the 4th primorial.

Figure 3.
Gaps between primes of each successive primorial.
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primorial can be found using 24 small numbers. Mod 7 is used to sieve and eliminate
composite multiples of 7. Mod 11 and 13 are used to highlight further composites,
but these are kept and used to generate primes in the next primorial.

Modulo testing: P mod m ¼ 0, Pk,m,
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kþ 1ð Þ#p

For k ¼ 3, Pk : P3 ¼ 5, Pkþ1 : P4 ¼ 7, #3 ¼ 30,#4 ¼ 210,
ffiffiffiffiffiffiffiffi
210
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≈ 14,
m ¼ 7, 11, 13, eliminate Pkþ1 ¼ 7

As shown in Figure 2, 24 small numbers are used to derive 482 new values. This
uses 10 modulo tests to identify composites and 1 modulo test to eliminate factors of
11 (Figure 3).

Pn#, ΔPn�1# Current primorial and the difference between primes from the
previous. Simple array descriptor provides rich prime fields of higher densities.
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14. Number systems

Conventional numbering systems consist of a base (or radix).
The primorial number system is said to be ‘primoradic’; having a primorial base.

The primorial number system is a mixed radix numeral system adapted to the
numbering of the primorials (Table 3).
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General properties of mixed radix number systems apply to the base primorial
system. The primorial number system OEIS A000040 is denoted by a subscript “

Q
”.

Consider the following example:
Primorial to decimal, BaseQ to Base10
3 4 1 0 1Q stands for 3443120110, whose value is

¼ 3� p4#þ 4� p3#þ 1� p2#þ 0� p1#þ 1� p0# ¼ 3� 210þ 4� 30þ 1� 6þ 0� 2þ 1� 1

¼ 3� 7 þ 4ð Þ � 5þ 1ð Þ � 3þ 0ð Þ � 2þ 1ð Þ � 1 ¼ 75710:

Decimal to primorial, Base10 into BaseQ

75710 into a primorial representation by successive divisions:
757 ÷ 2 = 231, remainder 1
378 ÷ 3 = 126, remainder 0
126 ÷ 5 = 25, remainder 1
25 ÷ 7 = 3, remainder 4
3 ÷ 11 = 3, remainder 3 => 3 4 1 0 1Q

15. RSA100 factorization using primorials

N ¼ P1ð Þ P2ð Þ ¼ aPk#þ cð Þ aPk#þ dð Þ ¼ aPk#ð Þ2 þ cþ dð ÞaPk#þ cd

Pk#2 ≤N 1522605027922533360535618378132637429718068114961380688657908⋱

494580122963258952897654000350692006139=p31#
2

aPk#ð Þ2 ≤N 1522605027922533360535618378132637429718068114961380688657908⋱

494580122963258952897654000350692006139= 9p31#
2

� �

N ¼ aPk#þ cð Þ aPk#þ dð Þ ¼ aPk#þ cPk�1#þ eð Þ aPk#þ dPk�1#þ fð Þ

Pk# ¼ Pk Pk�1#ð Þ

N ¼ aPk Pk�1#ð Þ þ cPk�1#þ eð Þ aPk Pk�1#ð Þ þ dPk�1#þ fð Þ

¼ ð aPk þ cÞPk�1#þ eð Þ aPk þ dð ÞPk�1#þ fð Þ

N ¼ aPk þ cð Þ aPk þ dð Þ Pk�1#ð Þ2 þ ð f aPk þ cÞ þ e aPk þ dð ÞÞðPk�1#ð Þ þ ef

aPk þ cð Þ aPk þ dð Þ Pk�1#ð Þ2 ≤N ) aPk þ cð Þ aPk þ dð Þ ¼ N �Nmod Pk�1#ð Þ2
Pk�1#ð Þ2

N ¼ 1523830x2 þ 27406046005166967437863263040740903499726862x
þ 12231378224719217781270707850591564671548897759

n … 7 6 5 4 3 2 1

pn n… 17 13 11 7 5 3 2

n# … 510510 30030 2310 210 30 6 2

highest Pnþ1 � 1 18 16 12 10 6 4 1

Table 3.
Primorial radix number system.
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1523830 ¼ 2� 5� 7� 11� 1979 ¼ 770ð Þ 1979ð Þ¼ 1234�464ð Þ 1234þ745ð Þ
Not symmetrical about square root [12]

1522868 ¼ 22 � 317� 1201 ¼ 1201ð Þ 1268ð Þ ¼ 1234� 33ð Þ 1234þ 34ð Þ
Symmetrical about square root.

N ¼ aPk þ cð Þ aPk þ dð Þ Pk�1#ð Þ2 þ ð f aPk þ cÞ þ e aPk þ dð ÞÞðPk�1#ð Þ þ ef

aPk þ cð Þ aPk þ dð Þ Pk�1#ð Þ2 ≤N ) aPk þ cð Þ aPk þ dð Þ ¼ N �Nmod Pk�1#ð Þ2
Pk�1#ð Þ2

1521642935492617539765579106664136748401379615914⋱

312169315386041883234627722692028711378934397966⋱

800=p30#
2

Consider each congruency and look for a factorization that is symmetrical about
the square root.

In this case 1234 + 34 =1268, 1234 – 33 = 1201.

N ¼ aPk þ cð Þ aPk þ dð Þ Pk�1#ð Þ2 þ f aPk þ cð Þ þ e aPk þ dð Þð Þ Pk�1#ð Þ þ ef

30431475913593577738588710930551227419722971658953xþ
151816659580901664885523419281115998823527019067345405631⋱

401183567090345342039152734187917869,

N ¼ aPk þ cð ÞPk�1#þ eð Þ aPk þ dð ÞPk�1#þ fð Þ
k ¼ 31, P31 ¼ 127, aPk þ cð Þ ¼ 1201, aPk þ dð Þ ¼ 12
a ¼ 9, c ¼ 58, d ¼ 125, P31 ¼ 127

N ¼ 9P31#þ 58P30#þ eð Þ 9P31#þ 125P30#þ fð Þ
N ¼ 1201ð Þ 1268ð ÞP2

30 þ 1201f þ 1268eð ÞP30 þ ef

N ¼ a2 þm
� �

P2
31 þ a cþ dð Þ þ nð ÞP31 þ cd

a2 þm ¼ N �NmodP2
k#

P2
k#

¼ 94 ) a ¼ 9, m ¼ 13

a2P2
k# þ a cþ dð Þ þmPk#½ �Pk#þ nPk#þ cdð Þ

Pk# ¼ Pk Pk�1#ð Þ ) N ¼ 1201ð Þ 1268ð ÞP2
30#þ 1201f þ 1268eð ÞP30

# þ ef

N ¼ 9P31#þ 58P30#þ eð Þ 9P31#þ 125P30#þ fð Þ

Repeat these steps for P29# and so on… (Table 4)

N ¼ 9P31#þ 58P30#þ 41P29#þ gð Þ 9P31#þ 125P30#þ 46P29#þ hð Þ

k 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 … 1

Pk 127 113 109 107 103 101 97 89 83 79 73 71 67 61 59 53 2

P1 9 58 41 32 43 101 13 14 60 50 54 33 3 32 12 12 1

P2 9 125 46 106 75 95 71 79 21 3 19 58 23 32 30 13 1

Table 4.
P1 and P2 as base Primorial numbers.
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General properties of mixed radix number systems apply to the base primorial
system. The primorial number system OEIS A000040 is denoted by a subscript “

Q
”.

Consider the following example:
Primorial to decimal, BaseQ to Base10
3 4 1 0 1Q stands for 3443120110, whose value is

¼ 3� p4#þ 4� p3#þ 1� p2#þ 0� p1#þ 1� p0# ¼ 3� 210þ 4� 30þ 1� 6þ 0� 2þ 1� 1

¼ 3� 7 þ 4ð Þ � 5þ 1ð Þ � 3þ 0ð Þ � 2þ 1ð Þ � 1 ¼ 75710:

Decimal to primorial, Base10 into BaseQ

75710 into a primorial representation by successive divisions:
757 ÷ 2 = 231, remainder 1
378 ÷ 3 = 126, remainder 0
126 ÷ 5 = 25, remainder 1
25 ÷ 7 = 3, remainder 4
3 ÷ 11 = 3, remainder 3 => 3 4 1 0 1Q

15. RSA100 factorization using primorials

N ¼ P1ð Þ P2ð Þ ¼ aPk#þ cð Þ aPk#þ dð Þ ¼ aPk#ð Þ2 þ cþ dð ÞaPk#þ cd

Pk#2 ≤N 1522605027922533360535618378132637429718068114961380688657908⋱

494580122963258952897654000350692006139=p31#
2

aPk#ð Þ2 ≤N 1522605027922533360535618378132637429718068114961380688657908⋱

494580122963258952897654000350692006139= 9p31#
2

� �

N ¼ aPk#þ cð Þ aPk#þ dð Þ ¼ aPk#þ cPk�1#þ eð Þ aPk#þ dPk�1#þ fð Þ

Pk# ¼ Pk Pk�1#ð Þ

N ¼ aPk Pk�1#ð Þ þ cPk�1#þ eð Þ aPk Pk�1#ð Þ þ dPk�1#þ fð Þ

¼ ð aPk þ cÞPk�1#þ eð Þ aPk þ dð ÞPk�1#þ fð Þ

N ¼ aPk þ cð Þ aPk þ dð Þ Pk�1#ð Þ2 þ ð f aPk þ cÞ þ e aPk þ dð ÞÞðPk�1#ð Þ þ ef

aPk þ cð Þ aPk þ dð Þ Pk�1#ð Þ2 ≤N ) aPk þ cð Þ aPk þ dð Þ ¼ N �Nmod Pk�1#ð Þ2
Pk�1#ð Þ2

N ¼ 1523830x2 þ 27406046005166967437863263040740903499726862x
þ 12231378224719217781270707850591564671548897759

n … 7 6 5 4 3 2 1

pn n… 17 13 11 7 5 3 2

n# … 510510 30030 2310 210 30 6 2

highest Pnþ1 � 1 18 16 12 10 6 4 1

Table 3.
Primorial radix number system.

30

Modern Cryptography – Current Challenges and Solutions

1523830 ¼ 2� 5� 7� 11� 1979 ¼ 770ð Þ 1979ð Þ¼ 1234�464ð Þ 1234þ745ð Þ
Not symmetrical about square root [12]

1522868 ¼ 22 � 317� 1201 ¼ 1201ð Þ 1268ð Þ ¼ 1234� 33ð Þ 1234þ 34ð Þ
Symmetrical about square root.

N ¼ aPk þ cð Þ aPk þ dð Þ Pk�1#ð Þ2 þ ð f aPk þ cÞ þ e aPk þ dð ÞÞðPk�1#ð Þ þ ef

aPk þ cð Þ aPk þ dð Þ Pk�1#ð Þ2 ≤N ) aPk þ cð Þ aPk þ dð Þ ¼ N �Nmod Pk�1#ð Þ2
Pk�1#ð Þ2

1521642935492617539765579106664136748401379615914⋱

312169315386041883234627722692028711378934397966⋱

800=p30#
2

Consider each congruency and look for a factorization that is symmetrical about
the square root.

In this case 1234 + 34 =1268, 1234 – 33 = 1201.

N ¼ aPk þ cð Þ aPk þ dð Þ Pk�1#ð Þ2 þ f aPk þ cð Þ þ e aPk þ dð Þð Þ Pk�1#ð Þ þ ef

30431475913593577738588710930551227419722971658953xþ
151816659580901664885523419281115998823527019067345405631⋱

401183567090345342039152734187917869,

N ¼ aPk þ cð ÞPk�1#þ eð Þ aPk þ dð ÞPk�1#þ fð Þ
k ¼ 31, P31 ¼ 127, aPk þ cð Þ ¼ 1201, aPk þ dð Þ ¼ 12
a ¼ 9, c ¼ 58, d ¼ 125, P31 ¼ 127

N ¼ 9P31#þ 58P30#þ eð Þ 9P31#þ 125P30#þ fð Þ
N ¼ 1201ð Þ 1268ð ÞP2

30 þ 1201f þ 1268eð ÞP30 þ ef

N ¼ a2 þm
� �

P2
31 þ a cþ dð Þ þ nð ÞP31 þ cd

a2 þm ¼ N �NmodP2
k#

P2
k#

¼ 94 ) a ¼ 9, m ¼ 13

a2P2
k# þ a cþ dð Þ þmPk#½ �Pk#þ nPk#þ cdð Þ

Pk# ¼ Pk Pk�1#ð Þ ) N ¼ 1201ð Þ 1268ð ÞP2
30#þ 1201f þ 1268eð ÞP30

# þ ef

N ¼ 9P31#þ 58P30#þ eð Þ 9P31#þ 125P30#þ fð Þ

Repeat these steps for P29# and so on… (Table 4)

N ¼ 9P31#þ 58P30#þ 41P29#þ gð Þ 9P31#þ 125P30#þ 46P29#þ hð Þ

k 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 … 1

Pk 127 113 109 107 103 101 97 89 83 79 73 71 67 61 59 53 2

P1 9 58 41 32 43 101 13 14 60 50 54 33 3 32 12 12 1

P2 9 125 46 106 75 95 71 79 21 3 19 58 23 32 30 13 1

Table 4.
P1 and P2 as base Primorial numbers.
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N ¼ 1522868x2þ
3043147581359377738588710930551227419722971658953xþ
151816659580901664885523419281115998823527019067345405631⋱

401183567090345342039152734187917869:

N ¼ 1268xþ 13141666871354355315613715084104347742596620741ð Þ
1201xþ 11552313802126969246479999301689200142637563209ð Þ, x ¼ p30#Þ

N ¼ 9P31#þ 58P30#þ eð Þ 9P31#þ 125P30#þ fð Þ
N ¼ 9P31#þ 58P30#þ 11552313802126969246479999301689200142637563209ð Þ ∗

9P31#þ 125P30#þ 13141666871354355315613715084104347742596620741ð Þ
N ¼ 9P31#þ 58P30#þ 41P29#þ gð Þ 9P31#þ 125P30#þ 46P29#þ hð Þ
N ¼ 9P31#þ 58P30#þ 41P29#þ 83178932594916863170676664934419945962676779ð Þ ∗

9P31#þ 125P30#þ 46P29#þ 273857017733028251413011637989228497546748161ð Þ

The conversion to a decimal from the base primorial (Section 12) provides P1

and P2

P1 ¼ 37975227936943673922808872755445627854565536638199ð Þ10
P2 ¼ 40094690950920881030683735292761468389214899724061ð Þ10

16. Lenstra-Lenstra-Lavász lattice reduction (LLL)

The (LLL) forms the basis of the Coppersmith attack (Section 15), and a brief
explanation is given here with further reading and references for the reader. The
Lenstra-Lenstra-Lavász (LLL) lattice basis reduction algorithm [13] calculates an
LLL-reduced, short, nearly orthogonal lattice basis, in time O d5n log 3B

� �
, where B

is the largest length of bi under the Euclidean norm, given a basis B ¼ b1; b2;…; bdf g
with n-dimensional integer coordinates, for a lattice L (a discrete subgroup of Rn)
with d≤ n and giving polynomial-time factorization of polynomials with rational
coefficients.

A thorough explanation is given by Bosma [14], and a summary of the example
contained in the reference is given below.

INPUT: Let lattice basis b1, b2, b3 ∈Z3 be given by the columns of

1 �1 3

1 0 5

1 2 6

2
64

3
75

OUTPUT: LLL-reduced basis

0 1 �1
1 0 0

0 1 2

2
64

3
75

Using the Lenstra-Lenstra-Lavász lattice reduction (LLL), the short vectors in a
lattice can be found. This is used by the Coppersmith attack. Coppersmith's algo-
rithm uses the LLL to construct polynomials with small coefficients that all have the
same root modulo. When a linear combination is found to meet inequality condi-
tions, standard factorization methods can find the solutions over integers.
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17. Coppersmith attack

When d is small and e is large;via the Euler totient rule
� �

, the Wiener attack
(Section 5) can be used. Conversely, when d is large, e is small. Particular applica-
tions of the Coppersmith method for attacking RSA include cases when the public
exponent e is small or when partial knowledge of the secret key is available
(Section 13) [15].

A small public exponent e, reduces the encryption time. Common choices for e
are 3, 17 and 65537 216þ1� �

[16]. These are Fermat primes Fx : Fx ¼ 22
x þ 1 and are

chosen because the modular exponent derivation is faster. The Coppersmith
method reduces the solving of modular polynomial equations to solving polynomial
equations over integers.

Let F xð Þ ¼ xn þ an�1xn � 1þ…þ a1xþ a0 and F x0ð Þ � 0mod M for an integer
x0j j,M

1
n. Coppersmith can find the integer solution for x0 by finding a different

polynomial f related to F that has the root x0 mod M but only has small coefficients.
The small coefficients are constructed using the LLL (Section 14). Given F, the LLL
constructs polynomials p1 xð Þ,p2 xð Þ,…pn xð Þ that all have same root
x0mod Ma, a∈Z: a depends on the degree of F and the size of x0. Any linear
combination has the same root x0mod Ma.

The next step is to use LLL to construct a linear combination f xð Þ ¼ ∑cipi xð Þ of
the pi xð Þ so that the inequality f x0ð Þj j,Ma holds. Then standard factorization
provides the zeroes of f xð Þ over Z.

Let N be an integer and f ∈Z x½ � be a monic polynomial of degree d, over integers
such that xd þ cn�1xd�1 þ…þ c2x2 þ c1xþ c0. Set X ¼ N

1
d�∈ for 1

d . ∈ .0. Given
N; fð Þ then all integers x0 ,X : f x0ð Þ � 0 mod N can now be found. All roots of
f mod N, smaller than X ¼ N

1
d can be found.

18. Pohlig-Hellman

The Pohlig-Hellman [17] algorithm is a method to compute a discrete logarithm
(which is a difficult problem) on a multiplicative group. The order of which is a
smooth number (also called friable), meaning its order can be factorized into small
primes. A positive integer is called B-smooth if none of its prime factors is greater
than B. For example, 1620 has prime factorization 22 � 34 � 5; therefore 1620 is 5-
smooth because none of its prime factors are greater than 5. This is similar to that of
the Overmars factorization method (Section 10). The Pohlig-Hellman [17] algo-
rithm applies to groups whose order is a prime power. The basic idea is to iteratively
compute the p-adic digits of the logarithm by repeatedly “shifting out” all but one
unknown digit in the exponent and computing that digit by elementary methods.
This is a similar idea to Section 13.

INPUT: A cyclic group G of order n with a generator g, an element h∈G, and a
prime factorization n ¼ Qr

i¼1 p
ei
i OUTPUT: The unique integer

x∈ 0;…;n� 1f g : gx ¼ h
Example: Let p ¼ 41,α ¼ 7, β ¼ 12 solve 12 ¼ 7x mod 41

1. Find the prime factors of p� 1 ) 41� 1 ¼ 40 ¼ 235) gs ¼ 2, 5. Find one x
for each g.

2. For g ¼ 2, x ¼ 20x0 þ 21x1 þ 22x2 23 ) cubic! three terms
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N ¼ 1522868x2þ
3043147581359377738588710930551227419722971658953xþ
151816659580901664885523419281115998823527019067345405631⋱

401183567090345342039152734187917869:

N ¼ 1268xþ 13141666871354355315613715084104347742596620741ð Þ
1201xþ 11552313802126969246479999301689200142637563209ð Þ, x ¼ p30#Þ

N ¼ 9P31#þ 58P30#þ eð Þ 9P31#þ 125P30#þ fð Þ
N ¼ 9P31#þ 58P30#þ 11552313802126969246479999301689200142637563209ð Þ ∗

9P31#þ 125P30#þ 13141666871354355315613715084104347742596620741ð Þ
N ¼ 9P31#þ 58P30#þ 41P29#þ gð Þ 9P31#þ 125P30#þ 46P29#þ hð Þ
N ¼ 9P31#þ 58P30#þ 41P29#þ 83178932594916863170676664934419945962676779ð Þ ∗

9P31#þ 125P30#þ 46P29#þ 273857017733028251413011637989228497546748161ð Þ

The conversion to a decimal from the base primorial (Section 12) provides P1

and P2

P1 ¼ 37975227936943673922808872755445627854565536638199ð Þ10
P2 ¼ 40094690950920881030683735292761468389214899724061ð Þ10

16. Lenstra-Lenstra-Lavász lattice reduction (LLL)

The (LLL) forms the basis of the Coppersmith attack (Section 15), and a brief
explanation is given here with further reading and references for the reader. The
Lenstra-Lenstra-Lavász (LLL) lattice basis reduction algorithm [13] calculates an
LLL-reduced, short, nearly orthogonal lattice basis, in time O d5n log 3B

� �
, where B

is the largest length of bi under the Euclidean norm, given a basis B ¼ b1; b2;…; bdf g
with n-dimensional integer coordinates, for a lattice L (a discrete subgroup of Rn)
with d≤ n and giving polynomial-time factorization of polynomials with rational
coefficients.

A thorough explanation is given by Bosma [14], and a summary of the example
contained in the reference is given below.

INPUT: Let lattice basis b1, b2, b3 ∈Z3 be given by the columns of

1 �1 3

1 0 5

1 2 6

2
64

3
75

OUTPUT: LLL-reduced basis

0 1 �1
1 0 0

0 1 2

2
64

3
75

Using the Lenstra-Lenstra-Lavász lattice reduction (LLL), the short vectors in a
lattice can be found. This is used by the Coppersmith attack. Coppersmith's algo-
rithm uses the LLL to construct polynomials with small coefficients that all have the
same root modulo. When a linear combination is found to meet inequality condi-
tions, standard factorization methods can find the solutions over integers.
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17. Coppersmith attack

When d is small and e is large;via the Euler totient rule
� �

, the Wiener attack
(Section 5) can be used. Conversely, when d is large, e is small. Particular applica-
tions of the Coppersmith method for attacking RSA include cases when the public
exponent e is small or when partial knowledge of the secret key is available
(Section 13) [15].

A small public exponent e, reduces the encryption time. Common choices for e
are 3, 17 and 65537 216þ1� �

[16]. These are Fermat primes Fx : Fx ¼ 22
x þ 1 and are

chosen because the modular exponent derivation is faster. The Coppersmith
method reduces the solving of modular polynomial equations to solving polynomial
equations over integers.

Let F xð Þ ¼ xn þ an�1xn � 1þ…þ a1xþ a0 and F x0ð Þ � 0mod M for an integer
x0j j,M

1
n. Coppersmith can find the integer solution for x0 by finding a different

polynomial f related to F that has the root x0 mod M but only has small coefficients.
The small coefficients are constructed using the LLL (Section 14). Given F, the LLL
constructs polynomials p1 xð Þ,p2 xð Þ,…pn xð Þ that all have same root
x0mod Ma, a∈Z: a depends on the degree of F and the size of x0. Any linear
combination has the same root x0mod Ma.

The next step is to use LLL to construct a linear combination f xð Þ ¼ ∑cipi xð Þ of
the pi xð Þ so that the inequality f x0ð Þj j,Ma holds. Then standard factorization
provides the zeroes of f xð Þ over Z.

Let N be an integer and f ∈Z x½ � be a monic polynomial of degree d, over integers
such that xd þ cn�1xd�1 þ…þ c2x2 þ c1xþ c0. Set X ¼ N

1
d�∈ for 1

d . ∈ .0. Given
N; fð Þ then all integers x0 ,X : f x0ð Þ � 0 mod N can now be found. All roots of
f mod N, smaller than X ¼ N

1
d can be found.

18. Pohlig-Hellman

The Pohlig-Hellman [17] algorithm is a method to compute a discrete logarithm
(which is a difficult problem) on a multiplicative group. The order of which is a
smooth number (also called friable), meaning its order can be factorized into small
primes. A positive integer is called B-smooth if none of its prime factors is greater
than B. For example, 1620 has prime factorization 22 � 34 � 5; therefore 1620 is 5-
smooth because none of its prime factors are greater than 5. This is similar to that of
the Overmars factorization method (Section 10). The Pohlig-Hellman [17] algo-
rithm applies to groups whose order is a prime power. The basic idea is to iteratively
compute the p-adic digits of the logarithm by repeatedly “shifting out” all but one
unknown digit in the exponent and computing that digit by elementary methods.
This is a similar idea to Section 13.

INPUT: A cyclic group G of order n with a generator g, an element h∈G, and a
prime factorization n ¼ Qr

i¼1 p
ei
i OUTPUT: The unique integer

x∈ 0;…;n� 1f g : gx ¼ h
Example: Let p ¼ 41,α ¼ 7, β ¼ 12 solve 12 ¼ 7x mod 41

1. Find the prime factors of p� 1 ) 41� 1 ¼ 40 ¼ 235) gs ¼ 2, 5. Find one x
for each g.

2. For g ¼ 2, x ¼ 20x0 þ 21x1 þ 22x2 23 ) cubic! three terms
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i. x0 : β
p�1
g0 ¼ α

p�1
g X0 ) 12

40
2 ¼ 7

40
2

� �x0 � 1 mod41 ¼ �1ð Þx0mod 41 test for x0 : x0 ¼ 0, 1, 2,…

�1mod 41=� �1ð Þ0 mod 41� 1mod 41=� �1ð Þ1mod 41 hence x0 ¼ 1

ii. x1 : β1 ¼ β0 α� x0ð Þ ¼ 12 7ð Þ� 1ð Þ ¼ 31mod 41

β
p�1
g1
1 ¼ α

p�1
g X1 , g1 ¼ 2231

40
4 ¼ 7

40
2

� �x1 ) 3110 ¼ 720
� �x1 3110 ) 1 mod41ð Þ hence x1 ¼ 0

iii. x2 : β2 ¼ β1 α
� x1ð Þ ¼ 31ð Þ 7� 0ð Þ� � ¼ 31mod 41

β
p�1
g2
2 ¼ α

p�1
g X2 , g2 ¼ 23 31

40
8 ¼ 7

40
2

� �x2 ) 315 ¼ 720
� �x2 � 1 mod 41 ¼ �11

2 mod 41 hence x2 ¼ 1

Recall: X ¼ 20x0 þ 21x1 þ 22x2 so X ¼ 1:1þ 2:0þ 4:1 ¼ 5
x ¼ 5mod 23 ¼ 5mod 8. Now we need another x from the other g

3. For g ¼ 5,x ¼ 50x0 only one 5, only one term:

i.x0 : β
p�1
g0 ¼ α

p�1
g X0 ) 12

40
5 ¼ 7

40
5

� �x0 ) 128 ¼ 78
� �x0 ) 18 � 37x0 mod 41

x0 6¼ 0, 1 try x0 ¼ 2 18=� 372 mod 41 18 � 373 mod 41 hence x ¼ 50x0 ¼ 1ð Þ 3ð Þ ¼ 3

Hence x ¼ 3 mod 5, so x ¼ 5mod 8 and x ¼ 3mod 5

By the Chinese remainder theorem, x ¼ 13mod 40 since the exponents
are p� 1 ¼ 41� 1 ¼ 40 hence 12 � 713 mod41: So the solution to 12 ¼ 7x

mod 41) x ¼ 13.

19. Shor’s algorithm

Shor’s algorithm [18], factors composite numbers, N ¼ P1P2, consisting of two
primes in polynomial time using quantum computing techniques. The algorithm
evaluates the period of ax mod n where gcd a;nð Þ ¼ 1: This is inefficient using
sequential computing on a conventional computer. When run on a quantum com-
puter, a congruence of squares with probability 0.5 occurs in polynomial time. For
two co-prime sinusoids of period P1 and P2, at what point do they zero-cross each
other? The phase of each sinusoid at any given point is observed, and if they are

Figure 4.
N as a composite of two Sinusoids P1 and P2 [19].
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factors of N then the phase of P1 and P2 is zero. Shor’s algorithm tests the phase of
P1 ¼ P2 ¼ N ¼ 0 (Figure 4).

Phase estimation is well suited to quantum computers and hence this factoriza-
tion technique produces solutions in polynomial time. For further information on
quantum phase estimation, the reader is directed to WIKI [20]. The impact of this
type of attack is discussed in detail by Mosca [21].

1. Choose a,N

2. Find the period r of an mod N (using Quantum computing)

3.Check r is even : a
r
2þ1 � 0mod N

4.P1 ¼ gcd a
r
2 � 1; N

� �
,P2 ¼ gcd a

r
2 þ 1;N

� �

Consider N ¼ 35,

1. a : a,N, choose a ¼ 8

2. Find the period r of an mod N

a. 81mod 35 ¼ 8

b.82mod 35 ¼ 29

c. 83mod 35 ¼ 22

d.84mod 35 ¼ 1

e. 85mod 35 ¼ 8) period r ¼ 4

3. r : r even, r ¼ 4 is even

4.P1 ¼ gcd a
r
2 � 1;N

� � ¼ gcd 8
4
2 � 1; 35

� �
¼ gcd 63; 35ð Þ ¼ 7

P2 ¼ gcd a
r
2 þ 1;N

� � ¼ gcd 65; 35ð Þ¼5
Euler’s factorization (Section 6) cannot be used because 7 has no sum of squares nor
does 35.

Fermat’s factorization (Section 5)

N ¼ a� bð Þ aþ bð Þ ¼ a2 � b2 ¼ 36� 1¼62 � 12¼ 6� 1ð Þ 6þ1ð Þ¼ 5ð Þ 7ð Þ¼35

Overmars factorization (Section 10)

N ¼ a m� nð Þ þ 1½ � a mþ nð Þ þ 1½ �¼ 2 4�2ð Þþ1½ � 2 4þ2ð Þþ1¼ 5½ � 7½ �½

Overmars triangles (Section 8) Δ(m,n) = Δ(a,b,c): Δ(3,1)=Δ
(12,35,37)Recalling b m; nð Þ ¼ 2m� 1ð Þ 2nþ 2m� 1ð Þ ) b 3; 1ð Þ ¼ 5ð Þ 7ð Þ
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i. x0 : β
p�1
g0 ¼ α

p�1
g X0 ) 12

40
2 ¼ 7

40
2

� �x0 � 1 mod41 ¼ �1ð Þx0mod 41 test for x0 : x0 ¼ 0, 1, 2,…

�1mod 41=� �1ð Þ0 mod 41� 1mod 41=� �1ð Þ1mod 41 hence x0 ¼ 1

ii. x1 : β1 ¼ β0 α� x0ð Þ ¼ 12 7ð Þ� 1ð Þ ¼ 31mod 41

β
p�1
g1
1 ¼ α

p�1
g X1 , g1 ¼ 2231

40
4 ¼ 7

40
2

� �x1 ) 3110 ¼ 720
� �x1 3110 ) 1 mod41ð Þ hence x1 ¼ 0

iii. x2 : β2 ¼ β1 α
� x1ð Þ ¼ 31ð Þ 7� 0ð Þ� � ¼ 31mod 41

β
p�1
g2
2 ¼ α

p�1
g X2 , g2 ¼ 23 31

40
8 ¼ 7

40
2

� �x2 ) 315 ¼ 720
� �x2 � 1 mod 41 ¼ �11

2 mod 41 hence x2 ¼ 1

Recall: X ¼ 20x0 þ 21x1 þ 22x2 so X ¼ 1:1þ 2:0þ 4:1 ¼ 5
x ¼ 5mod 23 ¼ 5mod 8. Now we need another x from the other g

3. For g ¼ 5,x ¼ 50x0 only one 5, only one term:

i.x0 : β
p�1
g0 ¼ α

p�1
g X0 ) 12

40
5 ¼ 7

40
5

� �x0 ) 128 ¼ 78
� �x0 ) 18 � 37x0 mod 41

x0 6¼ 0, 1 try x0 ¼ 2 18=� 372 mod 41 18 � 373 mod 41 hence x ¼ 50x0 ¼ 1ð Þ 3ð Þ ¼ 3

Hence x ¼ 3 mod 5, so x ¼ 5mod 8 and x ¼ 3mod 5

By the Chinese remainder theorem, x ¼ 13mod 40 since the exponents
are p� 1 ¼ 41� 1 ¼ 40 hence 12 � 713 mod41: So the solution to 12 ¼ 7x

mod 41) x ¼ 13.

19. Shor’s algorithm

Shor’s algorithm [18], factors composite numbers, N ¼ P1P2, consisting of two
primes in polynomial time using quantum computing techniques. The algorithm
evaluates the period of ax mod n where gcd a;nð Þ ¼ 1: This is inefficient using
sequential computing on a conventional computer. When run on a quantum com-
puter, a congruence of squares with probability 0.5 occurs in polynomial time. For
two co-prime sinusoids of period P1 and P2, at what point do they zero-cross each
other? The phase of each sinusoid at any given point is observed, and if they are

Figure 4.
N as a composite of two Sinusoids P1 and P2 [19].
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factors of N then the phase of P1 and P2 is zero. Shor’s algorithm tests the phase of
P1 ¼ P2 ¼ N ¼ 0 (Figure 4).

Phase estimation is well suited to quantum computers and hence this factoriza-
tion technique produces solutions in polynomial time. For further information on
quantum phase estimation, the reader is directed to WIKI [20]. The impact of this
type of attack is discussed in detail by Mosca [21].

1. Choose a,N

2. Find the period r of an mod N (using Quantum computing)

3.Check r is even : a
r
2þ1 � 0mod N

4.P1 ¼ gcd a
r
2 � 1; N

� �
,P2 ¼ gcd a

r
2 þ 1;N

� �

Consider N ¼ 35,

1. a : a,N, choose a ¼ 8

2. Find the period r of an mod N

a. 81mod 35 ¼ 8

b.82mod 35 ¼ 29

c. 83mod 35 ¼ 22

d.84mod 35 ¼ 1

e. 85mod 35 ¼ 8) period r ¼ 4

3. r : r even, r ¼ 4 is even

4.P1 ¼ gcd a
r
2 � 1;N

� � ¼ gcd 8
4
2 � 1; 35

� �
¼ gcd 63; 35ð Þ ¼ 7

P2 ¼ gcd a
r
2 þ 1;N

� � ¼ gcd 65; 35ð Þ¼5
Euler’s factorization (Section 6) cannot be used because 7 has no sum of squares nor
does 35.

Fermat’s factorization (Section 5)

N ¼ a� bð Þ aþ bð Þ ¼ a2 � b2 ¼ 36� 1¼62 � 12¼ 6� 1ð Þ 6þ1ð Þ¼ 5ð Þ 7ð Þ¼35

Overmars factorization (Section 10)

N ¼ a m� nð Þ þ 1½ � a mþ nð Þ þ 1½ �¼ 2 4�2ð Þþ1½ � 2 4þ2ð Þþ1¼ 5½ � 7½ �½

Overmars triangles (Section 8) Δ(m,n) = Δ(a,b,c): Δ(3,1)=Δ
(12,35,37)Recalling b m; nð Þ ¼ 2m� 1ð Þ 2nþ 2m� 1ð Þ ) b 3; 1ð Þ ¼ 5ð Þ 7ð Þ
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20. Attacking public key infrastructure

Public infrastructure cryptographic hardware uses a library RSALib. This is
found in both NIST FIPS 140-2 and CC EAL 5+. These are certified devices for use
in identity cards, passports, Trusted Platform Modules, PGP and tokens for
authentication and software signing. This is in use in tens of millions of devices
worldwide. Nemec et al. [22] have identified a vulnerability that allows for the
factorization of 1024 and 2048 bit keys in less than 3 CPU months.

RSALib primes are of the form p ¼ k ∗M þ 65537amod Mð Þ.
These can be fingerprinted using the discrete logarithm log 65537N mod M.

N ¼ P1P2 ¼ k ∗M þ 65537amod Mð Þ l ∗M þ 65537bmod M
� �

) N � 65537aþb � 65537c mod M

The public modulus N is generated by 65537 in the multiplicative group Z ∗

M. The
public modulus of RSALib can thus be fingerprinted with the discrete logarithm
c ¼ log 65537N mod M. This can be factorized using Pohlig-Hellman (Section 16).
The group G ¼ 65537 is smooth Gj j ¼ 24 ∗ 34 ∗ 52 ∗ 7 ∗ 11 ∗ 13 ∗ 17 ∗ 23 ∗ 29 ∗ 37 ∗
41 ∗ 53 ∗ 83 for RSA512 keys. The smoothness of G is due to the smoothness of M
being Primorial.

Factorization is achieved using the Coppersmith algorithm with a known
p mod M : 65537amod M. Nemec et al used the Howgrave-Graham[23] implemen-
tation of the Coppersmith’s algorithm to find a small solution x0 of:

f xð Þ ¼ xþ Mp�1mod N
� �

∗ 65537a
0
mod M0

� �
mod Nð Þ

A summary of RSALib vulnerability and its impact is now given and the reader
is directed to Memec et al. [22] for further detail. eIDs used in passports for citizens
are affected. Code signing is vulnerable. Twenty-four percent of TPMs used in
laptops are affected (sample size 41). A third of PGP, used in email systems could be
factorizable. There was no observable impact on TLS/HTTPS. One hundred percent
of SCADA systems sampled were affected (sample 15). E-health and EMV payment
cards were also likely to be susceptible.

Mitigating the impact of the RSALib vulnerability requires changing the algo-
rithm. This requires a firmware replacement which is not possible in already
deployed devices such as smartcards and TPMs whose code is stored in read-only
memory. Key lengths not of 512, 1024, 2048 and 4096, such as RSA3936 appear to be
resilient. The use of key pairs outside of vulnerable devices could be deployed using
another library. Changes to RSALib are required so that proveable safe primes are
constructed not using the vulnerability.

21. Overmars factorization, bringing it together

Section 11 considered the following cases. The following discussion generalizes
these cases and provides the structure for algorthmic solutions to be found. The
palindromic nature of primes (Section 12) can be exploited further to explore
solutions in a particular Primorial range. Recall;

Case 1⊕⊝; 2⊝⊕ð Þ N þ x2
� �

mod a2 ¼ 0, P1 ¼ a m� nð Þ � x, P2 ¼ a mþ nð Þ∓x

N ¼ a m� nð Þ � x½ � a mþ nð Þ∓x½ � ¼ a2 m2 � n2ð Þ∓ 2anx� x2 ¼ amð Þ2 � an∓xð Þ2

N þ x2

a
¼ a m2 � n2� �� 2nx a : a is a smooth factor of N þ x2
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n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
amð Þ2 �N

q
� x

a
,m :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ a∓xð Þ2

q

a
≤m,∞m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
þ an∓ xð Þ2

q

a

P1 ¼ a m� nð Þ∓ x ¼ am�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
amð Þ2 �N

q
N mod am�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
amð Þ2 �N

q� �
� 0

Case 3⊝⊝; 4⊕⊕ð Þ N � x2ð Þmod a2 ¼ 0, P1 ¼ a m� nð Þ∓ x, P2 ¼ a mþ nð Þ∓ x

N ¼ a m� nð Þ∓ x½ � a mþ nð Þ∓ x½ � ¼ a2 m2 � n2ð Þ∓ 2amxþ x2 ¼ am∓ xð Þ2 � anð Þ2
N � x2

a
¼ a m2 � n2

� �
∓ 2mx a : a is a smooth factor of N � x2

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
am∓ xð Þ2 �N

q

a
,m :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ a2
p � x2

a
≤m,∞, m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ anð Þ2

q
� x2

a

P1 ¼ a m� nð Þ∓ x ¼ am∓ x�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
am∓ xð Þ2 �N

q
N mod am∓ xð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
am∓ xð Þ2 �N

q� �
� 0

Now we need to develop the methodology for finding (selecting) a and x. This
brings together the concepts of primorials [9], Smooth [24], small factors [17],
factorization (Fermat), modulo testing as per Atkin’s Sieve [5] and the structure of
primes (Sections 12 and 18), to find as large an a as possible so that Overmars
Factorization [4] converges more rapidly to a solution.

Recall the following (Section 12). Primes are of the form P ¼ 4x� 1 and
P ¼ 6x� 1. Composite numbers, constructed from these primes: N ¼ P1P2 ,
are a combination of Pythagorean and Gaussian primes. The following test
N � 1ð Þmod 4 � 0 can be used to determine which combination of primes was used
to construct the composite. If N þ 1ð Þmod 4 � 0 is true a mix of Pythagorean and
Gaussian primes was used. If N � 1ð Þmod 4 � 0 is true then the composite consists
of only Gaussian or only Pythagorean primes. The Sieve of Atkin [5] uses
mod12 � 0 and mod 60 � 0. This is now applied as per Overmars [4] in the
following manner, if mod 12 � 0 is true then a ¼ 6, if mod 60 � 0 is true let
a ¼ 30. The ideas of Atkin are further extended in both directions:
mod 4 � 0) a ¼ 2, mod 420 � 0) a ¼ 210, mod 4620 � 0) a ¼ 2310,
mod 60060 � 0) a ¼ 30030…

This is Primorial, Pk# : Pk#, kth Primorial is”Smooth”. The general form (Sec-
tion 19) is now given: Case (1 ⊕⊝, 2 ⊝⊕) Nþx2

a ¼ a m2 � n2
� �� 2nx,

N þ x2
� �

mod a � 0, a : a ¼ 2Pk#, x : 1≤x≤
ffiffiffi
N
p
a Case (3 ⊝⊝, 4 ⊕⊕)

N�x2
a ¼ a m2 � n2

� �
∓ 2mx, N � x2

� �
mod a � 0, a : a ¼ 2Pk#, x : 1≤ x≤

ffiffiffi
N
p
a

If a : a ¼ 2Pk# can be choosen, then we search x in the primes to find solutions
to N � x2
� �

mod 2Pk#ð Þ � 0 A solution is found for P1 mð Þ, when P1 ∈Z. Case

(1 ⊕⊝, 2 ⊝⊕) N mod P1½ � � 0, P1 : P1 ¼ am�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
amð Þ2 �N

q
Case (3 ⊝⊝,4⊕⊕)

N mod P1½ � � 0, P1 : P1 ¼ am∓ x�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
am∓xð Þ2 �N

q

Consider Section 11 example, N ¼ P1P2 ) 8079781 ¼ 1249 ∗6469
Integer solutions x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N � 2bPk#
p

. From Table 5, determining which x value
should be used is not clear. Whilst x ¼ 1 should work, no solutions will be found if
a : a ¼ 30: From Table 5 only when x ¼ 11 or 19 do we find solutions. Ranking
the possible solutions in terms of factors 29 (8) would be first, 19 (7) second and 11
(6) third.

Based upon low order factors the rankings would be 29 22 34
� �

first and 11
22 32
� �

second. Setting a ¼ 30, x ¼ 29 will not find solutions for m, n. Setting
a ¼ 30, x ¼ 11) m ¼ 129, n ¼ 57, gcd 129; 57ð Þ ¼ 3, so the optimal value for
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20. Attacking public key infrastructure

Public infrastructure cryptographic hardware uses a library RSALib. This is
found in both NIST FIPS 140-2 and CC EAL 5+. These are certified devices for use
in identity cards, passports, Trusted Platform Modules, PGP and tokens for
authentication and software signing. This is in use in tens of millions of devices
worldwide. Nemec et al. [22] have identified a vulnerability that allows for the
factorization of 1024 and 2048 bit keys in less than 3 CPU months.

RSALib primes are of the form p ¼ k ∗M þ 65537amod Mð Þ.
These can be fingerprinted using the discrete logarithm log 65537N mod M.

N ¼ P1P2 ¼ k ∗M þ 65537amod Mð Þ l ∗M þ 65537bmod M
� �

) N � 65537aþb � 65537c mod M

The public modulus N is generated by 65537 in the multiplicative group Z ∗

M. The
public modulus of RSALib can thus be fingerprinted with the discrete logarithm
c ¼ log 65537N mod M. This can be factorized using Pohlig-Hellman (Section 16).
The group G ¼ 65537 is smooth Gj j ¼ 24 ∗ 34 ∗ 52 ∗ 7 ∗ 11 ∗ 13 ∗ 17 ∗ 23 ∗ 29 ∗ 37 ∗
41 ∗ 53 ∗ 83 for RSA512 keys. The smoothness of G is due to the smoothness of M
being Primorial.

Factorization is achieved using the Coppersmith algorithm with a known
p mod M : 65537amod M. Nemec et al used the Howgrave-Graham[23] implemen-
tation of the Coppersmith’s algorithm to find a small solution x0 of:

f xð Þ ¼ xþ Mp�1mod N
� �

∗ 65537a
0
mod M0

� �
mod Nð Þ

A summary of RSALib vulnerability and its impact is now given and the reader
is directed to Memec et al. [22] for further detail. eIDs used in passports for citizens
are affected. Code signing is vulnerable. Twenty-four percent of TPMs used in
laptops are affected (sample size 41). A third of PGP, used in email systems could be
factorizable. There was no observable impact on TLS/HTTPS. One hundred percent
of SCADA systems sampled were affected (sample 15). E-health and EMV payment
cards were also likely to be susceptible.

Mitigating the impact of the RSALib vulnerability requires changing the algo-
rithm. This requires a firmware replacement which is not possible in already
deployed devices such as smartcards and TPMs whose code is stored in read-only
memory. Key lengths not of 512, 1024, 2048 and 4096, such as RSA3936 appear to be
resilient. The use of key pairs outside of vulnerable devices could be deployed using
another library. Changes to RSALib are required so that proveable safe primes are
constructed not using the vulnerability.

21. Overmars factorization, bringing it together

Section 11 considered the following cases. The following discussion generalizes
these cases and provides the structure for algorthmic solutions to be found. The
palindromic nature of primes (Section 12) can be exploited further to explore
solutions in a particular Primorial range. Recall;

Case 1⊕⊝; 2⊝⊕ð Þ N þ x2
� �

mod a2 ¼ 0, P1 ¼ a m� nð Þ � x, P2 ¼ a mþ nð Þ∓x

N ¼ a m� nð Þ � x½ � a mþ nð Þ∓x½ � ¼ a2 m2 � n2ð Þ∓ 2anx� x2 ¼ amð Þ2 � an∓xð Þ2

N þ x2

a
¼ a m2 � n2� �� 2nx a : a is a smooth factor of N þ x2
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n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
amð Þ2 �N

q
� x

a
,m :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ a∓xð Þ2

q

a
≤m,∞m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
þ an∓ xð Þ2

q

a

P1 ¼ a m� nð Þ∓ x ¼ am�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
amð Þ2 �N

q
N mod am�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
amð Þ2 �N

q� �
� 0

Case 3⊝⊝; 4⊕⊕ð Þ N � x2ð Þmod a2 ¼ 0, P1 ¼ a m� nð Þ∓ x, P2 ¼ a mþ nð Þ∓ x

N ¼ a m� nð Þ∓ x½ � a mþ nð Þ∓ x½ � ¼ a2 m2 � n2ð Þ∓ 2amxþ x2 ¼ am∓ xð Þ2 � anð Þ2
N � x2

a
¼ a m2 � n2

� �
∓ 2mx a : a is a smooth factor of N � x2

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
am∓ xð Þ2 �N

q

a
,m :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ a2
p � x2

a
≤m,∞, m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ anð Þ2

q
� x2

a

P1 ¼ a m� nð Þ∓ x ¼ am∓ x�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
am∓ xð Þ2 �N

q
N mod am∓ xð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
am∓ xð Þ2 �N

q� �
� 0

Now we need to develop the methodology for finding (selecting) a and x. This
brings together the concepts of primorials [9], Smooth [24], small factors [17],
factorization (Fermat), modulo testing as per Atkin’s Sieve [5] and the structure of
primes (Sections 12 and 18), to find as large an a as possible so that Overmars
Factorization [4] converges more rapidly to a solution.

Recall the following (Section 12). Primes are of the form P ¼ 4x� 1 and
P ¼ 6x� 1. Composite numbers, constructed from these primes: N ¼ P1P2 ,
are a combination of Pythagorean and Gaussian primes. The following test
N � 1ð Þmod 4 � 0 can be used to determine which combination of primes was used
to construct the composite. If N þ 1ð Þmod 4 � 0 is true a mix of Pythagorean and
Gaussian primes was used. If N � 1ð Þmod 4 � 0 is true then the composite consists
of only Gaussian or only Pythagorean primes. The Sieve of Atkin [5] uses
mod12 � 0 and mod 60 � 0. This is now applied as per Overmars [4] in the
following manner, if mod 12 � 0 is true then a ¼ 6, if mod 60 � 0 is true let
a ¼ 30. The ideas of Atkin are further extended in both directions:
mod 4 � 0) a ¼ 2, mod 420 � 0) a ¼ 210, mod 4620 � 0) a ¼ 2310,
mod 60060 � 0) a ¼ 30030…

This is Primorial, Pk# : Pk#, kth Primorial is”Smooth”. The general form (Sec-
tion 19) is now given: Case (1 ⊕⊝, 2 ⊝⊕) Nþx2

a ¼ a m2 � n2
� �� 2nx,

N þ x2
� �

mod a � 0, a : a ¼ 2Pk#, x : 1≤x≤
ffiffiffi
N
p
a Case (3 ⊝⊝, 4 ⊕⊕)

N�x2
a ¼ a m2 � n2

� �
∓ 2mx, N � x2

� �
mod a � 0, a : a ¼ 2Pk#, x : 1≤ x≤

ffiffiffi
N
p
a

If a : a ¼ 2Pk# can be choosen, then we search x in the primes to find solutions
to N � x2
� �

mod 2Pk#ð Þ � 0 A solution is found for P1 mð Þ, when P1 ∈Z. Case

(1 ⊕⊝, 2 ⊝⊕) N mod P1½ � � 0, P1 : P1 ¼ am�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
amð Þ2 �N

q
Case (3 ⊝⊝,4⊕⊕)

N mod P1½ � � 0, P1 : P1 ¼ am∓ x�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
am∓xð Þ2 �N

q

Consider Section 11 example, N ¼ P1P2 ) 8079781 ¼ 1249 ∗6469
Integer solutions x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N � 2bPk#
p

. From Table 5, determining which x value
should be used is not clear. Whilst x ¼ 1 should work, no solutions will be found if
a : a ¼ 30: From Table 5 only when x ¼ 11 or 19 do we find solutions. Ranking
the possible solutions in terms of factors 29 (8) would be first, 19 (7) second and 11
(6) third.

Based upon low order factors the rankings would be 29 22 34
� �

first and 11
22 32
� �

second. Setting a ¼ 30, x ¼ 29 will not find solutions for m, n. Setting
a ¼ 30, x ¼ 11) m ¼ 129, n ¼ 57, gcd 129; 57ð Þ ¼ 3, so the optimal value for
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a ¼ 90: P1 ¼ 30m� 11�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30m� 11ð Þ2 �N

q
. Look for solutions to

30m� 11ð Þ2 �N which are a perfect square. In this case,
m ¼ 129) 30 ∗ 129� 11ð Þ2 � 8079781 ¼ 6812100 ¼ 26102.

Recall that the starting value for m :
ffiffiffiffiffiffiffiffiffi
Nþa2p �x2

a ≤m, N�1
2a ) 99≤m, 134663, 30

iterations.
Whilst this is quite a good result the first failure needs also to be taken into

account. This would be bound by the Primorial and

P1: 1,P1 ,
ffiffiffiffi
N
p

: am�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
amð Þ2 �N

q
¼ 1) m, Nþ1

2a

Here m :
ffiffiffiffiffiffiffiffiffi
Nþa2p �x2

a ≤m, Nþ1
2a ≤ 123≤m, 134663) 134540 iterations.

This can be further bound by the Primorial. In the case of RSA numbers, the
binary bits available to represent a particular prime number range can also be used
to bound the range (Table 6).

Consider N ¼ 23852269081.
In this case, solutions using modulo testing generate good candidates to solve for

(m, n), however for a ¼ 30030, three of the candidates have no solution. Using
sequential programing, each possible candidate is considered one after another,
until the maximum m value. However, using parallel programing techniques on
GPUs (such as nVIDIA P100s), all of the candidates can be tested simultaneously
and the processes are all terminated when one of the processes finds a solution. This
is very efficient and effective in finding P1, P2. Once these are known, along with
the public key Pu ¼ N; eð Þ, using Euler’s totient, the private key PR ¼ N; dð Þ can be
determined. Once the private key is known the cypher-text is no longer secure.

x mod60 mod180 mod1620 N � x2 �x b a m n gcd(m,n) Smoothness

1 0 22 3 5 311 433 ⊝⊝ 10 386 261 1 5-smooth

1 0 22 3 5 311 433 ⊕⊕ 6 643 435 1 5-smooth

11 0 0 22 32 5 44887 ⊝⊝ 3 90 43 29 1 5-smooth

19 0 22 3 5 17 892 ⊕⊕ 1 30 128 87 1 5-smooth

29 0 0 0 22 34 5 4987 ⊝⊝ 18 216 145 1 5-smooth

Table 5.
Smooth candidates of the factors of N � x2.

x Modulo testing N � x2 a m n gcd(m,n) Smoothness

60 420 4620 60060

1 0 23 32 5 101 461 1423 30 5-smooth

11 0 25 3 5 13 97 157 251 30 5524 2002 2 5-smooth

19 0 0 24 33 5 7 1577531 210 789 286 1 7-smooth

61 0 0 0 24 3 5 7 113 10667 2310 11-smooth

401 0 0 0 0 23 3 5 7211 13 19 1493 30030 13-smooth

1601 0 0 0 0 23 335 7 11 132 1697 30030 13-smooth

45281 0 0 0 0 23 3 5 7 11 13 181501 30030 13-smooth

45589 0 0 0 0 25 3 5 7 11 13 45317 30030 4 2 2 13-smooth

Table 6.
Smooth candidates of the factors of N � x2.

38

Modern Cryptography – Current Challenges and Solutions

22. Conclusion

In short RSA is secure and difficult to factorise. Conventional sequential com-
puting machines, running in polynomial time, take an infeasible amount of CPU
cycles to find factorization solutions to RSA keys. Quantum computing holds great
promise and Shor’s algorithm [18] demonstrates how this can be achieved. How-
ever, quantum computing is realistically still some way off. Opportunities exist
using conventional computing (sequential and parallel) with better mathematical
techniques. Section 18 showed how implementation vulnerabilities are introduced
when “clever” low cost (CPU cycles) are implemented. The case in point showed
methods for signature identification, upon which tailored targeted attacks could be
launched against infrastruture FIPS140-2 devices, such as cryptographic routers.
These sorts of attacks can be deployed in polynomial time using sequential pro-
graming techniques. Section 20, Overmars shows how factorization can be
implemented using parellel processing techniques.

There is still much to be done and areas of further interest are a better under-
standing of the structure of primes. This will lead to faster prime number generat-
ing algorithms and hence faster solutions to the factorization problem. This will also
lead to the generation of more robust primes that are less susceptible to factoriza-
tion methods. An example of this is the use of non-Pythagorean primes. Section 5
showed how Euler’s factorization could be used to attack such composite numbers.
Hence a simple method to thwart this would be to use a mix of Pythagorean and
Gaussian primes. Section 6 showed how small d values in the RSA private key
PR ¼ N;dð Þ could be attacked using Wiener’s method. Small e values in the public
key PU ¼ N; eð Þ can be attacked using a combination of LLL, Coppersmith and
Pohlig-Hellman (Sections 15–17). All of these attacks can be mitigated by choosing
d and e carefully and ensuring that both are sufficiently large.

Development of quantum computing is continuing at break-neck speed, however
useful machines are yet to appear. Parallel computing however is here and now and
whilst factorizing RSA keys is not achievable on conventional computers in polyno-
mial time, parallel computing has allowed for multiple solutions to be tested simulta-
neously. This is an area where research continues and new algorithms such as shown
in Sections 20 and 14 lend themselves well to GPU parallel processing systems.

“There are known knowns. These are things we know that we know. There are
known unknowns. That is to say, there are things that we know we don't know.
But there are also unknown unknowns. There are things we don't know we don't
know” [25].
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22. Conclusion
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Chapter 3

A Survey of Fast Scalar
Multiplication on Elliptic Curve
Cryptography for Lightweight
Embedded Devices
Youssou Faye, Hervé Guyennet and Ibrahima Niang

Abstract

Elliptic curve cryptography (ECC) is one of the most famous asymmetric cryp-
tographic schemes which offers the same level of security with much shorter keys
than the other widely used asymmetric cryptographic algorithm, Rivest, Shamir,
and Adleman (RSA). In ECC, the main and most heavily used operation is the scalar
multiplication kP, where the scalar value k is a private integer and must be secured.
Various methods for fast scalar multiplication are based on the binary/ternary
representation of the scalar. In this chapter, we present various methods to make
fast scalar multiplication on ECC over prime field for lightweight embedded devices
like wireless sensor network (WSN) and Internet of Things (IoT).

Keywords: elliptic curve cryptography, fast scalar multiplication,
wireless sensor network, IoT

1. Introduction

Nowadays WSNs become a part of the Internet; the integration of WSNs into
the Internet of Things (IoT) must involve new security issues. Symmetric cryptog-
raphy can be the best solution in a constrained platform and embedded devices such
as sensor. For a large number of nodes, the asymmetric key cryptography is the
widely used algorithm because of its scalability. Elliptic curve cryptography (ECC)
is one of the most famous asymmetric cryptographic schemes, which offers the
same level of security with much shorter keys than the other widely used asym-
metric cryptographic algorithm, Rivest, Shamir, and Adleman (RSA) [1]. Scalar
multiplication is denoted by kP (where P is a point on an elliptic curve and k
represents a scalar). The scalar multiplication is the recurrent and most heavily used
operation in ECC because it is used for key generation, encryption/decryption of
data, and signing/verification of digital signatures. The mathematics of an elliptic
curve implies three arithmetic levels: scalar arithmetic, point arithmetic, and field
arithmetic [2]. To make fast computation of scalar multiplication, which is the
major computation involved in ECC, many works are devoted to the point arith-
metic and scalar arithmetic. Point operations mean point addition and doubling,
tripling, or quadrupling (or similar operation). In the framework of this chapter, we
will concisely examine various researchers on the scalar arithmetic level.
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The discussion on this chapter proceeds as follows: In Section 2, we start with the
background on ECC over prime fields. Section 3 gives works on fast scalar multi-
plication on scalar arithmetic, followed by Section 4 which describes works on
parallelization of scalar multiplication on scalar arithmetic. The conclusion and
perspectives are given in the last section.

2. Overview on ECC over finite prime fields

2.1 Preliminaries

In this section, we give a brief overview on ECC over finite prime fields. By
definition, an elliptic curve E over finite field F (of order n) denoted by E(F) can be
described by the Weierstrass Eq. [3]:

E : y2 ¼ x3 þ axþ b (1)

where a and b ∈ Fp and Fp is a prime field. Most important finite fields used to
date to implement cryptosystem have been binary, prime, and extension fields. In
this chapter, we work in the context of prime field Fp, where p > 3 and p = qr, with
r = 1 and q a prime number called the characteristic of Fp.

Before it can be used for cryptography, the necessary condition is the discrimi-
nant of polynomial:

F xð Þ¼x3þaxþb,Δ ¼ 4a3 þ 27b2 6¼ 0 (2)

The set of pairs (x, y) solves (1), where x,y ∈ Fp and the point at infinity
(denoted ∞) forms an abelian group. The scalar multiplication directly depends on
two basic operations over points on an elliptic curve: point doubling (2P) and point
addition (P + Q) where P and Q are two different points on the elliptic curve. If
P = (xp,yp) and Q = (xq,yq), two points ( 6¼∞) on the elliptic curve over Fp denoted
by E(Fp), then point addition P + Q = (xpq,ypq) or point doubling 2P = P + Q =
(xpq,ypq) if P = Q can be calculated as

xpq ¼ λ2 � xp � xq
ypq ¼ λ xp � xpþq

� �� yp

(
(3)

λ ¼
yq � yp
xq � xp

if P 6¼ Q

λ ¼ 3x2p þ a

2yp
if P ¼ Q

8>>><
>>>:

(4)

The negative of point P = (xp,yp) is point -P (xp,-yp), where P and -P are two
points on the elliptic curve (Figure 1).

2.2 Encryption/decryption with ECC

The security of ECC relies on the difficulty of solving the elliptic curve discrete
log problem (ECDLP). Let E be an elliptic curve over finite field F and P ∈ E(F),
given a multiple Q of P, the elliptic curve discrete log problem is to find d ∈ F such
that dP = Q. For example, if P = (2, 2) and Q = (0, 6), then 3P = Q, so d=3 is a
solution to the discrete logarithm problem. Three operations are very much
required to formulate a valid cryptosystem in ECC: key generation, encryption, and
decryption.
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2.2.1 Key generation with ECC

Public and private keys are associated with public parameters (p, E, P, n)
where P is the generator point, with order n. n is always equal to the order of the
elliptic curve group E and nP=∞. The private key d is randomly selected in the
interval [1, n � 1], and the corresponding public key is Q=dP. The ECDLP consists
in determining d from public parameters (p, E, P, n).

2.2.2 Encryption with ECC

For encryption, the message m is mapped to a valid point M on the curve and is
encrypted by point addition with kQ where k is a random positive integer chosen by
the sender and Q = dP represents the public key of receiver. The random k makes
sure that even for a same message, the cipher text generated is different each time.
The sender then sends the pair of cipher point C2=M+kQ and C1=kP to the receiver.
The receiver, upon receiving the cipher point pair C1 and C2, computes dC1=d(k)
P=k(dP)= kQ by its own private key d and subtracts the result from the second
point: m=C2 -kQ.

Figure 1.
Point addition in ECC.

Algorithm 1. Keys generation

Input: p, E, P, n // public parameters generated
Output: Public key (Q) and private key d generated
begin
1. Select randomly d in interval [1, n-1]
2. Compute Q=dP
3. Return(Q , d)
end

Algorithm 2. Encryption.

Input: (p, E, P, n), Q and m //public parameters,public key and plaintext message m
Output: (C1,C2) // encrypted text
begin
1. Mapping message m to a point M ∈ E(Fp)
2. Select k ∈[1, n-1]
3. Compute C1=kP
4. Compute C2=M+kQ
5. Return(C1, C2)
end
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2.2.1 Key generation with ECC

Public and private keys are associated with public parameters (p, E, P, n)
where P is the generator point, with order n. n is always equal to the order of the
elliptic curve group E and nP=∞. The private key d is randomly selected in the
interval [1, n � 1], and the corresponding public key is Q=dP. The ECDLP consists
in determining d from public parameters (p, E, P, n).

2.2.2 Encryption with ECC

For encryption, the message m is mapped to a valid point M on the curve and is
encrypted by point addition with kQ where k is a random positive integer chosen by
the sender and Q = dP represents the public key of receiver. The random k makes
sure that even for a same message, the cipher text generated is different each time.
The sender then sends the pair of cipher point C2=M+kQ and C1=kP to the receiver.
The receiver, upon receiving the cipher point pair C1 and C2, computes dC1=d(k)
P=k(dP)= kQ by its own private key d and subtracts the result from the second
point: m=C2 -kQ.

Figure 1.
Point addition in ECC.

Algorithm 1. Keys generation

Input: p, E, P, n // public parameters generated
Output: Public key (Q) and private key d generated
begin
1. Select randomly d in interval [1, n-1]
2. Compute Q=dP
3. Return(Q , d)
end

Algorithm 2. Encryption.

Input: (p, E, P, n), Q and m //public parameters,public key and plaintext message m
Output: (C1,C2) // encrypted text
begin
1. Mapping message m to a point M ∈ E(Fp)
2. Select k ∈[1, n-1]
3. Compute C1=kP
4. Compute C2=M+kQ
5. Return(C1, C2)
end
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2.2.3 Decryption with ECC

The process of mapping a plaintext message m to point M on the curve is
important in ECC. There are several mapping schemes that are used to map a
plaintext message to a point on the elliptic curve [3–7]. A good mapping scheme
must follow several guidelines:

• Mapped points should be on the elliptic curve. If G is the mapping function, G
(m) �! (x,y) ∈ Ep(a,b).

• Mapping should always be invertible so that the receiver after decryption can
reverse map the points to original plain text: m = G�1(x,y).

• Message mapping in ECC also plays a significant role as it decides how
vulnerable the encrypted message is to attacks.

• A good message mapping scheme must reduce the use of unnecessary
bandwidth.

• A good mapping scheme should not take much time to map the message to
points on the map.

There are several mapping schemes using different approaches: maps each char-
acter in the plaintext to a point on the elliptic, maps each sequence of characters in
the plaintext to a point on the elliptic, maps the full plaintext to a point on the
elliptic, etc. For example, as in [8], if we use 192 bit key length, the National
Institute of Standards and Technology (NIST) recommended elliptic curve with the
following parameters:

a=�3.
b =245,515,554,600,894,381,774,029,391,519,745,178,476
9,108,058,161,191,238,065.

Prime p = 6,277,101,735,386,680,763,835,789,423,176,059,013,767,194,773,
182,842,284,081.

Point P ={60,204,628,237,568,865,675,821,348,058,752,611,191,669,876,636,
884,684,818,174,050,332,293,622,031,404,857,552,280,219,410,364,023,488,
927,386,650,641}.

d = 28,186,466,892,849,679,686,038,856,807,396,267,537,577,176,687,
436,853,369.

Q ={2,803,000,786,541,617,331,377,384,897,435,095,499,124,748,881,890,727,
495,642, 4,269,718,021,105,944,287,201,929,298,168,253,040,958,383,009,
157,463,900,739}.

A plaintext message “National Institute of Technology” is taken as input.

Algorithm 3. Decryption.

Input: (p, E, P, n), d, C1, C2 //public parameters, private key encrypted message
Output: m// plaintext message
Begin
1. Compute M =C2 - dC1,
2. Reverse mapping to retrieve m from M
3. Return (m)
end
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1. Encryption process

• Convert the text to ASCII values.

• Partition the ASCII value as group size of 11 ASCII values.

• Its equivalent ASCII values are {78,97,116, 105, 111, 110, 97, 108, 32, 73,
110},{115, 116, 105, 116, 117, 116, 101, 32, 111, 102, 32}, and{84, 101,
99,104,110, 111, 108, 111, 103,121, 44}.

• Each group is converted into big integers using FromDigits function (in
Mathematica) with base 65,536. The values for “National Institute”
corresponding to the two first groups are as follows: {113,999,290,923,
567,984,853,125,612,857,907,836,245,105,850,253,422} and {168,075,
275,215,227,115,988,112,137,860,778,550,742,826, 363,519,008}.

• A sends National Institute to B and computes scalar multiplication kP = C1

= {95,058,406,573,787,743,380,879,387,493 754,072,690,640,209,963,
862,157,133, 5,437,547,807,282,051,947,615, 392,556,992,837,333,921,930,
872,121,480,709,807}.

• A computes point addition M+kQ = C2 ={5,357,129,649,847,875,387,947,
498,550,298,509,562,929,834,704 857,479,081,282,775,001,499,802,
163,650,458,076,998,673,808,830,204,345,207,458,648,302,309},
{6,179,418,438,352,156,963, 426,038,838,668,574,778,107,168,582,
785,759,775,636,5,950,440,184,023,478,909,084,289,343,254,
612,149,604,486,787,772,222,099,923}.

2.Decryption process

• B receives C1 =kP and C2=M+kQ values.

• Using the private key d, B performs scalar multiplication dC1.

• Convert the subtraction operation to addition format: �dC1 = �kQ =
3,141,192 528,502,843,791,482,798,499,504,492,303,369,782,687,173,
663,895,377, � 2,544,834 938,121,667,890,493,126,265,872,103,594,
828,330,153,127,462,384,491}.

• B performs point addition operation with -kQ: M =
{113,999,290,923,567,984,853 125,612,857,907,836,245,105,850, 253,422,
16,807,527,521,522,711,598,811,213,786,077 8,550,742,826,363, 519,008},
{122,768,389,944,749,391,054,808,248,629,988,098,406, 227,392,397,356,
46,769,769,584,977,140,992,804,375,150,062, 379,259,053,557,678,135}.

• Convert each bloc into ASCII values using IntegerDigits function (in
Mathematica) with base 65,536, and retrieve ASCII values.

3. Fast scalar multiplication on scalar arithmetic

On a scalar arithmetic level, the double-and-add (DA) technique is the tradi-
tional binary algorithm, which is used and based on point operation, namely,
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2.2.3 Decryption with ECC

The process of mapping a plaintext message m to point M on the curve is
important in ECC. There are several mapping schemes that are used to map a
plaintext message to a point on the elliptic curve [3–7]. A good mapping scheme
must follow several guidelines:

• Mapped points should be on the elliptic curve. If G is the mapping function, G
(m) �! (x,y) ∈ Ep(a,b).

• Mapping should always be invertible so that the receiver after decryption can
reverse map the points to original plain text: m = G�1(x,y).

• Message mapping in ECC also plays a significant role as it decides how
vulnerable the encrypted message is to attacks.

• A good message mapping scheme must reduce the use of unnecessary
bandwidth.

• A good mapping scheme should not take much time to map the message to
points on the map.

There are several mapping schemes using different approaches: maps each char-
acter in the plaintext to a point on the elliptic, maps each sequence of characters in
the plaintext to a point on the elliptic, maps the full plaintext to a point on the
elliptic, etc. For example, as in [8], if we use 192 bit key length, the National
Institute of Standards and Technology (NIST) recommended elliptic curve with the
following parameters:

a=�3.
b =245,515,554,600,894,381,774,029,391,519,745,178,476
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884,684,818,174,050,332,293,622,031,404,857,552,280,219,410,364,023,488,
927,386,650,641}.
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Q ={2,803,000,786,541,617,331,377,384,897,435,095,499,124,748,881,890,727,
495,642, 4,269,718,021,105,944,287,201,929,298,168,253,040,958,383,009,
157,463,900,739}.

A plaintext message “National Institute of Technology” is taken as input.

Algorithm 3. Decryption.

Input: (p, E, P, n), d, C1, C2 //public parameters, private key encrypted message
Output: m// plaintext message
Begin
1. Compute M =C2 - dC1,
2. Reverse mapping to retrieve m from M
3. Return (m)
end
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1. Encryption process
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110},{115, 116, 105, 116, 117, 116, 101, 32, 111, 102, 32}, and{84, 101,
99,104,110, 111, 108, 111, 103,121, 44}.

• Each group is converted into big integers using FromDigits function (in
Mathematica) with base 65,536. The values for “National Institute”
corresponding to the two first groups are as follows: {113,999,290,923,
567,984,853,125,612,857,907,836,245,105,850,253,422} and {168,075,
275,215,227,115,988,112,137,860,778,550,742,826, 363,519,008}.

• A sends National Institute to B and computes scalar multiplication kP = C1

= {95,058,406,573,787,743,380,879,387,493 754,072,690,640,209,963,
862,157,133, 5,437,547,807,282,051,947,615, 392,556,992,837,333,921,930,
872,121,480,709,807}.

• A computes point addition M+kQ = C2 ={5,357,129,649,847,875,387,947,
498,550,298,509,562,929,834,704 857,479,081,282,775,001,499,802,
163,650,458,076,998,673,808,830,204,345,207,458,648,302,309},
{6,179,418,438,352,156,963, 426,038,838,668,574,778,107,168,582,
785,759,775,636,5,950,440,184,023,478,909,084,289,343,254,
612,149,604,486,787,772,222,099,923}.

2.Decryption process

• B receives C1 =kP and C2=M+kQ values.

• Using the private key d, B performs scalar multiplication dC1.

• Convert the subtraction operation to addition format: �dC1 = �kQ =
3,141,192 528,502,843,791,482,798,499,504,492,303,369,782,687,173,
663,895,377, � 2,544,834 938,121,667,890,493,126,265,872,103,594,
828,330,153,127,462,384,491}.

• B performs point addition operation with -kQ: M =
{113,999,290,923,567,984,853 125,612,857,907,836,245,105,850, 253,422,
16,807,527,521,522,711,598,811,213,786,077 8,550,742,826,363, 519,008},
{122,768,389,944,749,391,054,808,248,629,988,098,406, 227,392,397,356,
46,769,769,584,977,140,992,804,375,150,062, 379,259,053,557,678,135}.

• Convert each bloc into ASCII values using IntegerDigits function (in
Mathematica) with base 65,536, and retrieve ASCII values.

3. Fast scalar multiplication on scalar arithmetic

On a scalar arithmetic level, the double-and-add (DA) technique is the tradi-
tional binary algorithm, which is used and based on point operation, namely,

47

A Survey of Fast Scalar Multiplication on Elliptic Curve Cryptography for Lightweight…
DOI: http://dx.doi.org/10.5772/intechopen.86584



doubling of a point and addition of points. Well-known algorithms, such as
nonadjacent form (NAF), window NAF, and sliding window [3, 9, 10], can reduce
effectively the number of point operations. Some other algorithms, such as double-
base chains, have been developed to compute faster scalar multiplication by using
binary and ternary representation [11–15]. Algorithms, based on the aforemen-
tioned algorithms, optimize faster scalar multiplication [16–18]. Optimization is
done by some approaches, which also use the binary representation of the scalar k
[19–21]. For other solutions, optimization is based on selecting a set of elliptic
curves for cryptography (Weierstrass curve, twisted Edwards curve) on which
scalar multiplication is faster than the recent implementation record on the
corresponding NIST curve.

3.1 Double-and-add algorithm

The double-and-add technique is the traditional binary algorithm, which is
based on point operations, namely, doubling of a point and addition of points. The
double-and-add algorithm is an additive representation of the algorithms used for
exponentiation. As shown on Algorithm 4, the scalar is represented in binary on
l bits: ∑l�1

i¼0ki2
i, where ki ∈ {0, 1}. The binary method i=0 scans the bits of scalar

k½ �P ¼ Pþ Pþ Pþ……þ Pð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k times

either from left to right or right to left. A doubling

operation is done for each scanned bit ki of k, followed by a point addition if the
scanned bit is non-zero (ki 6¼ 0).

For a given scalar k, the number of point doubling operation is (l-1), and those
of point addition operation is equal to the number of non-zero bits (denoted by
hamming weight h) -1. The cost of multiplication depends on the length of the
binary representation of k and the number of Harming weight (the number of 1’s)
of scalar in this representation. The average Harming weight on all scalar k of length
l bits is approximately l/2. Thus, in an average, binary Algorithm 4 requires (l-1)
doublings and (l-1)/2 additions.

For example, k = 379 = (101111011)2, l=9, and the number of non-zero bits h is
equal to 7. So computation 379P requires 8 doublings and 5 additions.

The double-and-add method can be generalized by using fixed or variable size
windows. The scalar k is divided into m blocks of w bit(s) (w an integer of variable
size), for each block corresponds to a number Vi.

As in DA where bits are scanned one by one, and if the scanned bit is equal to 0,
Q=21Q (point doubling) is performed; if not (scanned bit equal to 1 > 0), Q=21Q
(point doubling) and Q=Q + 1P (point addition) are performed. In window

Algorithm 4. Double-and-add LSB/MSB.

Input: k=(kl-1,……….., k1,k0)2, P ∈ E (Fp)
Output: Q=[k]P
Begin
Q  ∞

for i 0 to l� 1 do
if ki ¼ 1 then

Q  Q þ Pj
end

P 2P

������������
end

return Qð Þ

����������������������
end

// begin scanning bits from right-to-left.

// an addition operation is performed

// a doubling operation is performed
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algorithm where blocks are scanned one by one, and if the value of the block is
equal to 0, we perform Q=2wQ; if not (values of blocks w bits performed =Vi), we
performed Q=2wQ and Q=Q+ViP as shown in Algorithm 5.

For example, k = 379 = (101111011)2 partitioned into blocks1011|ffl{zffl}
w¼4

110|{z}
w¼3

11|{z}
w¼2

, so,

Vi is, respectively, equal to 3, 6, and 11 corresponding, respectively, to precomputed
points 3P, 6P, and 11P. Thus, for this example, the scalar multiplication from
block (m-1) to block 0 can be done as follows: [11]P!23. [11]P(3 repeated
doublings) + [6]P(addition)! 22, and [94]P(2 repeated doublings) + [3]P
(addition)! [379]P. Thus, five point doubling operations and two point addition
operations are calculated.

However, this algorithm involves precomputed points whose number depends on
the size of the blocks. If the blocks have a fixed-size w bits, the number of
precomputed points is (2w �2) where �2 represents the blocks for Vi= 0 or 1. If the
blocks have variable size, as, for example, with three blocks of w1 bits, w2 bits, and
w3 bits, the number of precomputed points p is (2w�2). It should be noted that using
the windowmethod reduces the computation time and increases the memory storage
and calculation time of precomputed points. If the size of the blocks increases, the
number of precomputed points increases exponentially, and the number of
performed operations decreases. Thus, the selection of the window size implies the
computation time. A compromise is needed between the size of the blocks and the
computation time related to precomputed points. According to NIST recommenda-
tions, the best window length is w=4. To reduce the number of precomputed points,
the sliding window method of variable size with maximum digits equal to w can be
used. For this method, the values Vi of blocks are odd; consecutive zeroes are taken
into account. Therefore, a window starts and ends with a non-zero number.

For example, scalar k = 379 = (101111011)2 is partitioned into blocks
1|{z}

w¼4
1111|ffl{zffl}
w¼3

11|{z}
w¼2

, so, Vi values are, respectively, 1, 15, and 3 corresponding, respec-

tively, to precomputed points 1P, 15P, and 3P. The scalar multiplication from block
(m-1) to block 0 can be performed as follows: P! [2]P(1 point doubling)! 24[62]
P(4 repeated point doublings) + [15]P(point additions)! 2.[47]P(1 point doubling)
! 22[94]P(2 repeated point doublings)+ [3]P(point addition)! [379]P. The result
is eight point doublings and two additions.

Optimization can be done by finding a representation with a minimum zero bits
in order to reduce the number of addition operations: this is the objective of the
solutions described in the next section.

Algorithm 5. Windows algorithm.

Input: k ¼ kl�1kl�2kl�3kl�4|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
block m�1ð Þ

; ::…; k5k4k3|fflfflffl{zfflfflffl}
block 1

; k2k1k0|fflfflffl{zfflfflffl}
block 0

0
B@

1
CA2, P ∈ E (Fp)

Output: Q=[k]P
Begin

Q  ∞

for i m� 1 to l� 1 do

Q ¼ 2wQ

if Vi .0 then

Q  Q þ ViPj
end

����������������
end

return Qð Þ

��������������������������
end

// begin scanning block by block.

// compute repeated point doublings w times

// compute addition with precomputed point ViP
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doubling of a point and addition of points. Well-known algorithms, such as
nonadjacent form (NAF), window NAF, and sliding window [3, 9, 10], can reduce
effectively the number of point operations. Some other algorithms, such as double-
base chains, have been developed to compute faster scalar multiplication by using
binary and ternary representation [11–15]. Algorithms, based on the aforemen-
tioned algorithms, optimize faster scalar multiplication [16–18]. Optimization is
done by some approaches, which also use the binary representation of the scalar k
[19–21]. For other solutions, optimization is based on selecting a set of elliptic
curves for cryptography (Weierstrass curve, twisted Edwards curve) on which
scalar multiplication is faster than the recent implementation record on the
corresponding NIST curve.

3.1 Double-and-add algorithm

The double-and-add technique is the traditional binary algorithm, which is
based on point operations, namely, doubling of a point and addition of points. The
double-and-add algorithm is an additive representation of the algorithms used for
exponentiation. As shown on Algorithm 4, the scalar is represented in binary on
l bits: ∑l�1

i¼0ki2
i, where ki ∈ {0, 1}. The binary method i=0 scans the bits of scalar
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operation is done for each scanned bit ki of k, followed by a point addition if the
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For a given scalar k, the number of point doubling operation is (l-1), and those
of point addition operation is equal to the number of non-zero bits (denoted by
hamming weight h) -1. The cost of multiplication depends on the length of the
binary representation of k and the number of Harming weight (the number of 1’s)
of scalar in this representation. The average Harming weight on all scalar k of length
l bits is approximately l/2. Thus, in an average, binary Algorithm 4 requires (l-1)
doublings and (l-1)/2 additions.

For example, k = 379 = (101111011)2, l=9, and the number of non-zero bits h is
equal to 7. So computation 379P requires 8 doublings and 5 additions.

The double-and-add method can be generalized by using fixed or variable size
windows. The scalar k is divided into m blocks of w bit(s) (w an integer of variable
size), for each block corresponds to a number Vi.

As in DA where bits are scanned one by one, and if the scanned bit is equal to 0,
Q=21Q (point doubling) is performed; if not (scanned bit equal to 1 > 0), Q=21Q
(point doubling) and Q=Q + 1P (point addition) are performed. In window

Algorithm 4. Double-and-add LSB/MSB.

Input: k=(kl-1,……….., k1,k0)2, P ∈ E (Fp)
Output: Q=[k]P
Begin
Q  ∞

for i 0 to l� 1 do
if ki ¼ 1 then

Q  Q þ Pj
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P 2P

������������
end

return Qð Þ

����������������������
end

// begin scanning bits from right-to-left.

// an addition operation is performed

// a doubling operation is performed
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algorithm where blocks are scanned one by one, and if the value of the block is
equal to 0, we perform Q=2wQ; if not (values of blocks w bits performed =Vi), we
performed Q=2wQ and Q=Q+ViP as shown in Algorithm 5.

For example, k = 379 = (101111011)2 partitioned into blocks1011|ffl{zffl}
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, so,

Vi is, respectively, equal to 3, 6, and 11 corresponding, respectively, to precomputed
points 3P, 6P, and 11P. Thus, for this example, the scalar multiplication from
block (m-1) to block 0 can be done as follows: [11]P!23. [11]P(3 repeated
doublings) + [6]P(addition)! 22, and [94]P(2 repeated doublings) + [3]P
(addition)! [379]P. Thus, five point doubling operations and two point addition
operations are calculated.

However, this algorithm involves precomputed points whose number depends on
the size of the blocks. If the blocks have a fixed-size w bits, the number of
precomputed points is (2w �2) where �2 represents the blocks for Vi= 0 or 1. If the
blocks have variable size, as, for example, with three blocks of w1 bits, w2 bits, and
w3 bits, the number of precomputed points p is (2w�2). It should be noted that using
the windowmethod reduces the computation time and increases the memory storage
and calculation time of precomputed points. If the size of the blocks increases, the
number of precomputed points increases exponentially, and the number of
performed operations decreases. Thus, the selection of the window size implies the
computation time. A compromise is needed between the size of the blocks and the
computation time related to precomputed points. According to NIST recommenda-
tions, the best window length is w=4. To reduce the number of precomputed points,
the sliding window method of variable size with maximum digits equal to w can be
used. For this method, the values Vi of blocks are odd; consecutive zeroes are taken
into account. Therefore, a window starts and ends with a non-zero number.

For example, scalar k = 379 = (101111011)2 is partitioned into blocks
1|{z}

w¼4
1111|ffl{zffl}
w¼3

11|{z}
w¼2

, so, Vi values are, respectively, 1, 15, and 3 corresponding, respec-

tively, to precomputed points 1P, 15P, and 3P. The scalar multiplication from block
(m-1) to block 0 can be performed as follows: P! [2]P(1 point doubling)! 24[62]
P(4 repeated point doublings) + [15]P(point additions)! 2.[47]P(1 point doubling)
! 22[94]P(2 repeated point doublings)+ [3]P(point addition)! [379]P. The result
is eight point doublings and two additions.

Optimization can be done by finding a representation with a minimum zero bits
in order to reduce the number of addition operations: this is the objective of the
solutions described in the next section.

Algorithm 5. Windows algorithm.

Input: k ¼ kl�1kl�2kl�3kl�4|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
block m�1ð Þ

; ::…; k5k4k3|fflfflffl{zfflfflffl}
block 1

; k2k1k0|fflfflffl{zfflfflffl}
block 0

0
B@

1
CA2, P ∈ E (Fp)

Output: Q=[k]P
Begin

Q  ∞

for i m� 1 to l� 1 do

Q ¼ 2wQ

if Vi .0 then

Q  Q þ ViPj
end

����������������
end

return Qð Þ

��������������������������
end

// begin scanning block by block.

// compute repeated point doublings w times

// compute addition with precomputed point ViP
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3.2 Nonadjacent form

Like addition, point subtraction on an elliptic curve is also effective especially
when it comes to computing easily the opposite of a point on which we only change
a coordinate: P (x, y) to -P(x,-y). We can use a signed representation of bits of the
integer k. One of the particularly interesting representations is the nonadjacent
form which uses {�1, 0, 1}: ∑l�1

i¼0ki2
i, where ki ∈ {�1, 0, 1}. To compute scalar

multiplication [k]P by NAF, digits on NAF representation of scalar k are scanned
from most significant digit to last significant digit. For each digit, a point doubling
operation is performed, and point addition is computed when the digit is equal to 1
or a point subtraction when the digit is equal to �1. The advantage of this repre-
sentation is that it possesses the following properties:

1. k has a unique NAF denoted NAF (k).

2.NAF(k) has the fewest non-zero digits of any signed digit representation of k.

3. The length of NAF(k) is at most one more than the length of binary k.

For example, for k = 2552 = (11111111)2 where the density of non-zero digits is
maximum, the computation of 255P implies seven point additions. But if we trans-
form it into 256P -P which is equal to (10000000–1)P, only one addition is needed.
Thus, the NAF kð Þ ¼ ð100000001Þ2where 1 representes �1. The NAF(k) can be
generated by dividing successively k by 2. If k is odd, the rest r ∈ {�1, 1} is chosen
so that the quotient (k-r)/2 is even. Thus, the next digit of NAF representation will
be equal to 0.

Based on DA algorithm from left to right, Algorithm 6 computes scalar multi-
plication by using NAF(k).

Thus, the average density of non-zero digits (�1 or 1) for all NAF (k) with
length (l-1) digits is approximately (l-1)/3. The average computation of Algorithm 7
is (l-1) point doublings and (l-1)/3 point additions. However, it requires a scalar
conversion time from k to NAF(k) (see Algorithm 6). The NAF method can be
generally used for a set of digits C2w ¼ �2w�1;…::2w�1

� �� �
to represent the scalar

k: That’s equivalent to split it into fixed� size windows w: For example,

Algorithm 6. Computing NAF for scalar k.

Input: k ¼ the scalar k integerð Þ
Output: NAF(k),
Begin

i 0

while k≥ 1ð Þdo
if ki oddð Þthen

ki  2� kmod4ð Þ;

k ¼ ki;

������

end

else

ki  0j
end

ki¼ k
2
;

i iþ 1;

�������������������������������
end

return ki�1 ; ki;…………:k1 ; k0ð Þ

������������������������������������������
end
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C23 ¼ �4;�3;�2;�1;0; 1; 2; 3; 4f g:We can define NAFw kð Þ as follows :ð
NAF kð Þw ¼ ∑l

i¼0ki2
iP,with kij j, 2w�1.

For example, if the scalar k = 379 = (101111011)2, so NAF2(k), NAF3(k), and
NAF4(k) can be computed (with �1= 1):

1.NAF2(k)=(1 0 1 0 0 0 01 0 1)

2.NAF3(k)=(3 0 0 0 01 0 0 3)

3.NAF4(k) =(3 0 0 0 0 0 05)

Algorithm 8 presents DA method using NAF of scalar k on fixed-size windows.

Algorithm 7. NAF method.

Input: NAF(k), P ∈ E (Fp)
Output: Q= [k]P
Begin

Q  ∞

for i l� 1 to 0ð Þdo
Q  2Q

if ki ¼ 1ð Þthen
Q  Q þ Pj

end

if ki ¼ �1ð Þ then

Q  Q � Pj
end

�����������������������
end

return Qð Þ

����������������������������������
end

//scan from most significant digit to less significant

// compute point doubling

// compute point addition

//compute point substraction

Algorithm 8. NAF method with fixed size windows.

Input: NAF(k), P ∈ E (Fp), precomputed points [j]P
Output: Q= [k]P
Begin

Q  ∞

for i l� 1 to 0ð Þdo
Q  2Q

if ki 6¼ 0ð Þ then

if ki .0ð Þ then

Q  Q þ ki½ �P;j

end

else

Q  Q � ki½ �Pj ;

end

����������������������

end

��������������������������������
end

return Qð Þ

�������������������������������������������
end

for j ={1, 3,..., (2w�1-1)}

//begin scanning from most significant digit to last
significant digit.
// compute point doubling

// compute point addition

//compute point substraction
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������
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2
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������������������������������������������
end

50

Modern Cryptography – Current Challenges and Solutions
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iP,with kij j, 2w�1.

For example, if the scalar k = 379 = (101111011)2, so NAF2(k), NAF3(k), and
NAF4(k) can be computed (with �1= 1):
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3.NAF4(k) =(3 0 0 0 0 0 05)

Algorithm 8 presents DA method using NAF of scalar k on fixed-size windows.

Algorithm 7. NAF method.

Input: NAF(k), P ∈ E (Fp)
Output: Q= [k]P
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�����������������������
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return Qð Þ

����������������������������������
end

//scan from most significant digit to less significant

// compute point doubling

// compute point addition

//compute point substraction

Algorithm 8. NAF method with fixed size windows.

Input: NAF(k), P ∈ E (Fp), precomputed points [j]P
Output: Q= [k]P
Begin

Q  ∞

for i l� 1 to 0ð Þdo
Q  2Q

if ki 6¼ 0ð Þ then

if ki .0ð Þ then
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else
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����������������������

end

��������������������������������
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return Qð Þ

�������������������������������������������
end

for j ={1, 3,..., (2w�1-1)}

//begin scanning from most significant digit to last
significant digit.
// compute point doubling

// compute point addition

//compute point substraction
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The average density of non-zero digits for all NAF (k) with length l digits is
approximately l/(w+1). Thus, Algorithm 8 performs on average (l-1) point dou-
blings and l/(1+w) point additions. However, this method generates precomputed
points [j]P for j=1, 3, . . ., 2w�1 � 1: Despite the cost of precomputed points
1 point doublingþ 2w�2

��
-1) point additions), the usage of NAFw(k) with win-

dows remains more interesting than the one without window.
A last generalization of this method is to useNAFw(k)with variable window size

(or sliding) lengths with a maximum number of digits. These windows begin and
end with a non-zero. If we take the example of NAF2(k) =(1 0 1 0 0 0 0 1 0 1) with
sliding windows having a maximum length of three digits, these windows begin and
end with non-zero digits. We thus obtain

NAF2 kð Þ ¼ 1 0 1 0 0 0 0 1 0 1

The precomputed points are [3]P and [5]P; the scalar multiplication is as follows:
[3]P! [6]P(point doublings)! [12]P(point doublings)! [24]P(point doublings)
! [48]P(point doublings)! [96]P(point doublings)! [192]P(point doublings)!
[384]P(point doublings)! [379]P(point subtraction of -[5]P). Thus, we perform 8
point operations, against 12 in the case where the windows are fixed.

3.3 Mutual opposite form (MOF) algorithm

More recent mechanisms like the mutual opposite form (MOF) [22] and
the complementary recoding algorithm [23] used signed representation digits
{�1, 0, 1}.

In MOF, the representation of the scalar k is obtained by subtracting each ki�1
bit from that of ki. The most significant bit is 1 and the least significant digit is �1.
Its output is comparable to that of NAF.

For example, if the scalar k = 379 = (101111011)2, then MOF (k) = 1 1 1 0 0 0 1 1
0 1 can be calculated. The conversion is simpler than that of NAF because it only
requires subtraction operations. In addition MOF can scan bits or digits from left to
right or vice versa, which is more flexible.

3.4 One’s complementary recoding algorithm (CR1)

In one’s complementary recoding method, the representation of the scalar k is
obtained through its complement k : ∑l�1

i¼0ki2
i ¼ 2l � k� 1: The k

complement is obtained by inverting each bit of the k scalar: For example,
if the scalar k ¼ 379 ¼ 101111011ð Þ2 , then it can be computed : k ¼ 29� k� 1 ¼
1000000000–010000100 � 1ð Þ2 ¼ 10100001

�
00–1)2. Thus, we can see that the

density of the non-zero bits is reduced from 7 to 4. However, if the number of 1 in
the original k scalar is greater than l/2, the method is not more interesting because
the goal is to have the least 1 in the final representation.

3.5 Double-base number system

In the methods discussed above, the scalar is represented in a single base; the
double-base numbering system (DBNS) offers a representation in two bases [11].
The scalar k is represented as a sum of combined powers of 2 and 3: k=∑l

i¼1ki2
ai3bi ,

where ki ∈ {�1, 1} and ai, bi ≥ 0. The direct usage of this system can induce a high
computational cost: ∑bitriples,∑aidoublings. Significant improvement can reduce
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costs by reusing all intermediate calculations. We keep the initial representation of
k with the additional constraint that the exponents form two decreasing sequences:
amax ≥ a1 ≥ a2 ≥ ........ athe and bmax ≥ b1 ≥ b2 ≥ .....athe. This formulation makes it
possible to calculate only amax doublings, bmax triplements, and (lt - 1) additions.
For example, 752= 23�34 + 22�33–22.

The scalar multiplication is as follows: 22 (33 (2 � 3P + P) -P). Thus, the cost of
scalar multiplication is 4 triplements + 3 doublings + 2 additions. This approach has
been generalized using a slightly larger number space requiring pre-calculated
points [24]. In this case the values of ki are prime numbers other than 3: {�1, �5,
�7, �11}.

3.6 Comparison

If memory storage is available, the precomputed points can be used to decrease
the computation time. The window method or block can be used differently on
signed representations such as NAF, MOF, complement coding, or unsigned repre-
sentations such as double-and-add. If we are interested in sliding window repre-
sentation, the number of precomputed points varies according to the methods. Take
the example of variable windows size (sliding) having a maximum number of five
digits.

For the double-and-add method, we will have all the odd combinations of the
maximum of 5 bits, that is, which begin and end with a 1. We will thus have at most
15 precomputed points: [3]P, [5]P, [7]P, [9]P, [11]P, [13]P, [15]P, [17]P, [19]P, [21]
P, [23]P, [25]P, [27]P, [29]P, and [31]P.

For wNAF method, the blocks are processed through variable windows size (or
sliding) having a maximum number of five digits. These windows begin and end
with a non-zero digit. As a result, the value Vi of each block of the scalar k is odd
and is less than 2w. There are no two consecutive non-zero digits, so the number of
zeros is at least equal to the number of zero digits in the �1 block. The maximum
number of precomputed points required is (2w�2) - 1. If the maximum length of the
window is 5 bits, the largest corresponding precomputed point is 10101|fflffl{zfflffl}

w¼5
= 21P, and

possible combinations for precomputed points are the following:

Note that the negative points are the symmetrical positive points, they are
neither stored nor computed, and they are obtained almost free. For windows with
a maximum size of 5 bits, the number of precomputed points is 10.

MOF uses a signed representation just like NAF, but there can be two
consecutive non-zero digits. For windows with a maximum of 5 bit length, the
derivation of the computed points is done by subtracting each bit ki�1 from the
block with that of ki.

w=3bits w=4bits w=5bits w=5bits

1 0 1=5P 1 0 0 1= 9P 1 0 1 0 1= 21P 1 0 1 0 1=-21P

1 0 1=3P 1 0 01 = 7P 1 0 1 0 1= 19P 1 0 1 0 1=-19P

1 0 1=-3P 1 0 0 1= -7P 1 0 0 0 1= 17P 1 0 0 0 1=-17P

1 0 1=-5P 1 0 0 1= -9P 1 0 0 01 = 15P 1 0 0 0 1=-16P

1 0 1 0 1= 13P 1 0 1 0 1=-13P

1 0 1 0 1= 11P 1 0 1 0 1=-13P
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The average density of non-zero digits for all NAF (k) with length l digits is
approximately l/(w+1). Thus, Algorithm 8 performs on average (l-1) point dou-
blings and l/(1+w) point additions. However, this method generates precomputed
points [j]P for j=1, 3, . . ., 2w�1 � 1: Despite the cost of precomputed points
1 point doublingþ 2w�2

��
-1) point additions), the usage of NAFw(k) with win-

dows remains more interesting than the one without window.
A last generalization of this method is to useNAFw(k)with variable window size
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bit from that of ki. The most significant bit is 1 and the least significant digit is �1.
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�
00–1)2. Thus, we can see that the

density of the non-zero bits is reduced from 7 to 4. However, if the number of 1 in
the original k scalar is greater than l/2, the method is not more interesting because
the goal is to have the least 1 in the final representation.
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In the methods discussed above, the scalar is represented in a single base; the
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The scalar k is represented as a sum of combined powers of 2 and 3: k=∑l
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where ki ∈ {�1, 1} and ai, bi ≥ 0. The direct usage of this system can induce a high
computational cost: ∑bitriples,∑aidoublings. Significant improvement can reduce
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costs by reusing all intermediate calculations. We keep the initial representation of
k with the additional constraint that the exponents form two decreasing sequences:
amax ≥ a1 ≥ a2 ≥ ........ athe and bmax ≥ b1 ≥ b2 ≥ .....athe. This formulation makes it
possible to calculate only amax doublings, bmax triplements, and (lt - 1) additions.
For example, 752= 23�34 + 22�33–22.

The scalar multiplication is as follows: 22 (33 (2 � 3P + P) -P). Thus, the cost of
scalar multiplication is 4 triplements + 3 doublings + 2 additions. This approach has
been generalized using a slightly larger number space requiring pre-calculated
points [24]. In this case the values of ki are prime numbers other than 3: {�1, �5,
�7, �11}.

3.6 Comparison

If memory storage is available, the precomputed points can be used to decrease
the computation time. The window method or block can be used differently on
signed representations such as NAF, MOF, complement coding, or unsigned repre-
sentations such as double-and-add. If we are interested in sliding window repre-
sentation, the number of precomputed points varies according to the methods. Take
the example of variable windows size (sliding) having a maximum number of five
digits.

For the double-and-add method, we will have all the odd combinations of the
maximum of 5 bits, that is, which begin and end with a 1. We will thus have at most
15 precomputed points: [3]P, [5]P, [7]P, [9]P, [11]P, [13]P, [15]P, [17]P, [19]P, [21]
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For wNAF method, the blocks are processed through variable windows size (or
sliding) having a maximum number of five digits. These windows begin and end
with a non-zero digit. As a result, the value Vi of each block of the scalar k is odd
and is less than 2w. There are no two consecutive non-zero digits, so the number of
zeros is at least equal to the number of zero digits in the �1 block. The maximum
number of precomputed points required is (2w�2) - 1. If the maximum length of the
window is 5 bits, the largest corresponding precomputed point is 10101|fflffl{zfflffl}

w¼5
= 21P, and

possible combinations for precomputed points are the following:

Note that the negative points are the symmetrical positive points, they are
neither stored nor computed, and they are obtained almost free. For windows with
a maximum size of 5 bits, the number of precomputed points is 10.

MOF uses a signed representation just like NAF, but there can be two
consecutive non-zero digits. For windows with a maximum of 5 bit length, the
derivation of the computed points is done by subtracting each bit ki�1 from the
block with that of ki.

w=3bits w=4bits w=5bits w=5bits

1 0 1=5P 1 0 0 1= 9P 1 0 1 0 1= 21P 1 0 1 0 1=-21P

1 0 1=3P 1 0 01 = 7P 1 0 1 0 1= 19P 1 0 1 0 1=-19P

1 0 1=-3P 1 0 0 1= -7P 1 0 0 0 1= 17P 1 0 0 0 1=-17P

1 0 1=-5P 1 0 0 1= -9P 1 0 0 01 = 15P 1 0 0 0 1=-16P

1 0 1 0 1= 13P 1 0 1 0 1=-13P

1 0 1 0 1= 11P 1 0 1 0 1=-13P
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For example, for some values (16–31) of 5-bit blocks, we have:

The remaining combinations give the same negative values. Thus, the number of
precomputed points is 7: [3]P, [5]P, [7]P, [9]P, [11]P, [13]P, and [15]P.

Complement recoding uses the same representation of MOF, but for the deriva-
tion of precomputed points, it takes all combinations of up to 5 bits, beginning and
ending with a non-zero number, i.e., (2w�1 - 1) = 15 precomputed points: [3]P, [5]P,
[7]P, [9]P, [11]P, [13]P, [15]P, [17]P, [19]P, [21]P, [23]P, [25]P, [27]P, [29]P, and
[31]P. Table 1 presents a comparison between different methods.

3.7 Scalar reduction method

We have developed a scalar reduction (SR) algorithm; its main advantage is that
it can be easily applied to almost all existing fast scalar multiplication methods
described in previous sections. This scalar reduction scheme is an improvement
based on the negative of a point. Through this, it makes a specific reduction of the
scalar in a selected interval. Using negation is a well-known trick in cryptanalysis as
well as in cryptography for computation of scalar multiplication with addition-
subtraction chains [25, 26]. This scheme replaces point kP by an equivalent repre-
sentation of another point tP in the scalar multiplication operation where k and t are
scalars and k > t. This technique is applied in the interval [⌊n/2⌋+1, n-1], where ⌊n/2⌋
is the integer part function of n/2. As the negative of a point is obtained almost free,
we have used it to make fast computation. Given point P=(xp, yp) in affine coordi-
nates, the negative of point kP=(xkp, ykp) can be computed as kP=(xkp, ykp), and
then change the sign on the y-coordinate (ykp). Thus, by kP the scalar reduction
technique gets equivalent point tP through Eq. (5).

10000:

:10000

11000! P

10001:

:10001

110011 ! 9P

10010:

:10010

110110! 9P

10011:

:10011

110101 ! 5P

10100:

:10100

111100! 5P

10101:

:10101

111111 ! 11P

10110:

:10110

111010! 11P

10111:

:10111

111001 ! 3P

11000:

:11000

101000! 3P

11001:

:11001

101110! 13P

11010:

:11010

101011 ! 13P

11011:

:11011

101101 ! 7P

11100:

:11100

100100! 7P

11101:

:11101

100111 ! 15P

11110:

:11110

100010! 15P

11111:

:11111

100001 ! P

Methods Cost Precomputed points W = 5 Directions

DA (l-1)D+ l�1ð Þ
2 A 0 …. ⇆

NAF (l-1)D+ l�1ð Þ
3 A 0 …. !

MOF (l-1)D+ l�1ð Þ
2 A 0 …. ⇆

RC1 <(l-1)D+ l�1ð Þ
3 A 0 …. ⇆

wNAF (l-1)D+ l
wþ1A < 2w�1-1 10 !

wMOF (l-1)D+ l
wþ1A <= 2w�1-1 7 ⇆

wRC1 <(l-1)D+ l
wþ1A 2w�1 -1 15 ⇆

Table 1.
Cost for computation and memory storage.
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1: If k∈ � nb c,n� 1½, kP ¼ tP where t ¼ k� nð Þ

2: If k∈ �0 n
2

j k
, , kP ¼ tP where t ¼ k½

8><
>:

(5)

For example, p =23 is a prime number, just to better explain this technique, but
in reality p is much bigger than this. For an elliptic E over F23 defined by E(F23),
y2=x3+x+1, then # E(F23)=28, E(F23) is a cyclic group, and P(0, 1) is a generator
point. SR makes an equivalent representation on the set of points in [⌊n/2⌋+1, n-1],
so that computing points 16P, 22P, and 27P can be, respectively, replaced by -12P,
-7P, and -P. In this case, the computation of 27P is replaced by the calculation of
-P and is almost free. For WSN or IoT embedded devices, replacing the calculation
of kP by tP using Eq. (5.1) in [⌊n⌋+1, n-1] can significantly accelerate scalar multi-
plication. From Eq. (6), all scalars can be scanned: In the interval [⌊n⌋+1, n-1], for
this example we have the following equivalence representations.

• [15]P = [13]P + 2([1]P)

• [16]P = [12]P + 2([2]P)

• [17]P = [11]P + 2([3]P)

• .........= .........+……….

• .........= .........+……….

• [26]P = [2]P + 2([12]P)

• [27]P = [1]P + 2([13]P)

It can be inferred that ∑n�1
k¼ n=2b cþ1kP ¼ ∑ n=2b c�1

k¼1 kPþ 2∑ n=2b c�1
1 kP. Thus

∑
n�1

k¼1
kP ¼ 2 ∑

n=2b c�1

k¼1
kPþ n

2

j k
Pþ ∑

n=2b c�1

1¼1
kP (6)

In SR technique, [15]P, [16]P, ........., [26]P, [27]P] can be replaced, respectively,
by [�13]P, [�12]P,........., [�2]P, [�1]P in interval [⌊n⌋+1, n-1]. The
expression ∑n�1

k¼ n=2b cþ1kP can be replaced by

∑
n�1

k¼1
kP ¼ 2 ∑

n=2b c�1

k¼1
kPþ ∑

n=2b c�1

k¼1
kj jPþ n

2

j k
P (7)

The complexity of scalar multiplication can be determined by the bit length of k
which is equal to ⌊log2(k)⌋+1, or log2(k) if k=2

x, where x is an integer. In binary
representation, log2(k) can be replaced in scalar reduction technique by

log 2 k� 2 k� n
2

� �� �
¼ log 2kþ log 2 1þ n� 2k

k

� �
(8)

Thus, the gain α in bit length is α ¼ log 2 1þ n� 2k
k

� �����
���� ¼ log 2

tj j
k

� �����
����: (9)
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For example, for some values (16–31) of 5-bit blocks, we have:

The remaining combinations give the same negative values. Thus, the number of
precomputed points is 7: [3]P, [5]P, [7]P, [9]P, [11]P, [13]P, and [15]P.

Complement recoding uses the same representation of MOF, but for the deriva-
tion of precomputed points, it takes all combinations of up to 5 bits, beginning and
ending with a non-zero number, i.e., (2w�1 - 1) = 15 precomputed points: [3]P, [5]P,
[7]P, [9]P, [11]P, [13]P, [15]P, [17]P, [19]P, [21]P, [23]P, [25]P, [27]P, [29]P, and
[31]P. Table 1 presents a comparison between different methods.

3.7 Scalar reduction method

We have developed a scalar reduction (SR) algorithm; its main advantage is that
it can be easily applied to almost all existing fast scalar multiplication methods
described in previous sections. This scalar reduction scheme is an improvement
based on the negative of a point. Through this, it makes a specific reduction of the
scalar in a selected interval. Using negation is a well-known trick in cryptanalysis as
well as in cryptography for computation of scalar multiplication with addition-
subtraction chains [25, 26]. This scheme replaces point kP by an equivalent repre-
sentation of another point tP in the scalar multiplication operation where k and t are
scalars and k > t. This technique is applied in the interval [⌊n/2⌋+1, n-1], where ⌊n/2⌋
is the integer part function of n/2. As the negative of a point is obtained almost free,
we have used it to make fast computation. Given point P=(xp, yp) in affine coordi-
nates, the negative of point kP=(xkp, ykp) can be computed as kP=(xkp, ykp), and
then change the sign on the y-coordinate (ykp). Thus, by kP the scalar reduction
technique gets equivalent point tP through Eq. (5).

10000:

:10000

11000! P

10001:

:10001

110011 ! 9P

10010:

:10010

110110! 9P

10011:

:10011

110101 ! 5P
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11000:
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11001:

:11001

101110! 13P

11010:

:11010

101011 ! 13P

11011:

:11011

101101 ! 7P

11100:

:11100

100100! 7P

11101:

:11101

100111 ! 15P

11110:

:11110

100010! 15P

11111:

:11111

100001 ! P

Methods Cost Precomputed points W = 5 Directions

DA (l-1)D+ l�1ð Þ
2 A 0 …. ⇆

NAF (l-1)D+ l�1ð Þ
3 A 0 …. !

MOF (l-1)D+ l�1ð Þ
2 A 0 …. ⇆

RC1 <(l-1)D+ l�1ð Þ
3 A 0 …. ⇆

wNAF (l-1)D+ l
wþ1A < 2w�1-1 10 !

wMOF (l-1)D+ l
wþ1A <= 2w�1-1 7 ⇆

wRC1 <(l-1)D+ l
wþ1A 2w�1 -1 15 ⇆

Table 1.
Cost for computation and memory storage.
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1: If k∈ � nb c,n� 1½, kP ¼ tP where t ¼ k� nð Þ

2: If k∈ �0 n
2

j k
, , kP ¼ tP where t ¼ k½

8><
>:

(5)

For example, p =23 is a prime number, just to better explain this technique, but
in reality p is much bigger than this. For an elliptic E over F23 defined by E(F23),
y2=x3+x+1, then # E(F23)=28, E(F23) is a cyclic group, and P(0, 1) is a generator
point. SR makes an equivalent representation on the set of points in [⌊n/2⌋+1, n-1],
so that computing points 16P, 22P, and 27P can be, respectively, replaced by -12P,
-7P, and -P. In this case, the computation of 27P is replaced by the calculation of
-P and is almost free. For WSN or IoT embedded devices, replacing the calculation
of kP by tP using Eq. (5.1) in [⌊n⌋+1, n-1] can significantly accelerate scalar multi-
plication. From Eq. (6), all scalars can be scanned: In the interval [⌊n⌋+1, n-1], for
this example we have the following equivalence representations.

• [15]P = [13]P + 2([1]P)

• [16]P = [12]P + 2([2]P)

• [17]P = [11]P + 2([3]P)

• .........= .........+……….

• .........= .........+……….

• [26]P = [2]P + 2([12]P)

• [27]P = [1]P + 2([13]P)

It can be inferred that ∑n�1
k¼ n=2b cþ1kP ¼ ∑ n=2b c�1

k¼1 kPþ 2∑ n=2b c�1
1 kP. Thus

∑
n�1

k¼1
kP ¼ 2 ∑

n=2b c�1

k¼1
kPþ n

2

j k
Pþ ∑

n=2b c�1

1¼1
kP (6)

In SR technique, [15]P, [16]P, ........., [26]P, [27]P] can be replaced, respectively,
by [�13]P, [�12]P,........., [�2]P, [�1]P in interval [⌊n⌋+1, n-1]. The
expression ∑n�1

k¼ n=2b cþ1kP can be replaced by

∑
n�1

k¼1
kP ¼ 2 ∑

n=2b c�1

k¼1
kPþ ∑

n=2b c�1

k¼1
kj jPþ n

2

j k
P (7)

The complexity of scalar multiplication can be determined by the bit length of k
which is equal to ⌊log2(k)⌋+1, or log2(k) if k=2

x, where x is an integer. In binary
representation, log2(k) can be replaced in scalar reduction technique by

log 2 k� 2 k� n
2

� �� �
¼ log 2kþ log 2 1þ n� 2k

k

� �
(8)

Thus, the gain α in bit length is α ¼ log 2 1þ n� 2k
k

� �����
���� ¼ log 2

tj j
k

� �����
����: (9)
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SR technique is tested in affine coordinates. The scalars are in binary and NAF
form combined with the scalar reduction scheme. The gain rate depends on the
value of k. For comparison, if (αrs/da), (αrs/naf), and (αrs�naf/da) define, respectively,
the gain rate of the scalar reduction (SR) method compared to double-and-add
(DA), NAF and SR combined with NAF are compared to DA. The results are given
in Table 2.

4. Parallelization of scalar multiplication on scalar arithmetic

Parallel computing is another choice for accelerating computation and balancing
workload. For distributed system, a task can be divided into smaller ones which are
then carried out simultaneously by different processors. The parallel computing for
accelerating computation of scalar multiplication is a very hot research topic in
cryptography. It can be also achieved through one or more arithmetic levels: on the
formulas of operations such as addition and doubling, between the operations
themselves, or on the scalar by partitioning it. In most current works, various
solutions have been proposed in literature, but in this chapter we present works
based on scalar arithmetic.

4.1 Efficient elliptic curve exponentiation

The efficient elliptic curve exponentiation based on point precomputation is
proposed in [24]. To calculate Q = kP where Q and P are 2 points represented in
Jacobian coordinates and k is a positive integer of 160 bits, a precomputed table
which consists of 62 points is prepared.

A s½ � ¼ ∑4
j¼0as, j

232jG3 and B s½ � ¼ ∑4
j¼0as, j

216þ32jG3 where 1≤ s≤ 31 and

as,0…,as,0 is a binary representation of s ¼ ∑4
j¼0as, j2

j. Then calculation of kP is
done by Algorithm 9.

Since this method is based on precomputation, a precomputed table is prepared,
and the exponentiation loop can be performed separately by different processors.

4.2 Parallel scalar multiplication on two processors

In [27], two processors and a circular buffer are used to perform parallel scalar
multiplication. A buffer acts as a communication channel between the two

NAF SR DA Gain n
6

n
3

n
2

2n
3

5n
6

n-1

√ 6579 6572 7604 6555 6931 7471

√ 6282 6326 5317 6239 6698 5114

√ 6578 6573 7600 6416 6600 27

√ √ 6279 6325 5320 6100 6556 27

√ √ α (sr/da) 2.12% 4.77% 99.63%

√ √ α (sr/naf) 1.46% 99.47%

√ √ √ α (sr-naf/da) 6.94% 5.41% 99.63%

SR, scalar reduction.

Table 2.
Running times (ms) using affine coordinates.
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processors to reduce the average time of the scalar multiplication. As in the
producer-consumer problem, the first processor initially reads P and then keeps
scanning ki and computing point doubling. It writes 2iP into the buffer whenever a
non-zero ki is detected. The second processor reads 2iP from the buffer and per-
forms additions. The computation is terminated when there is no more 2iP in the
buffer.

4.3 Parallelization by partitioning the scalar

For other schemes, this technique of parallelization consists in partitioning the
scalar k (represented on l bits) into m fixed-size blocks on SIMD architectures [28].
This partitioning generates precomputed points that need to be calculated and
stored prior to starting parallel calculations.

Recent work [29], inspired by [30], uses this technique in m blocks of length v
bits in wireless sensor networks. The scalar is represented on l bits and is divided
into m blocks Bi of length vb =l/m according to m sensors chosen to participate in
the computation.

kP ¼ B020vPþ B121vPþ B222vPþ………:þ Bm�12 m�1ð ÞvP (10)

where Bi=∑
ivþv�1
iv li2jP with lj the bit on position j on the binary sequence of

length l.
This partitioning generates precomputed points Pi = 2ibP. For example, consider

a scalar k of 160 bits and point P; we want to compute kP on four sensors. The scalar
k is broken down into four blocks of 40 bits:

kP ¼ B0:0B0:1……B0:39ð Þ2:20P|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
blockB0

þ B1:40B1:41……B1:79ð Þ2:240P|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
blockB1

þ

B2:80B2:81……B2:119ð Þ2280P|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
blockB2

þ B3:120B3:121……B3:159ð Þ22159P|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
blockB3

Precomputed points are 240P, 280P, and 2120P. Note that all parallelism tech-
niques based on scalar partitioning generate pre-calculated points, which must first

Algorithm 9. Elliptic curve exponentiation based on precomputation.

Input: Data k ¼ ∑l�1
i¼0ki2

iP
Output: kP,
Begin

for 0≤ j≤ 15 do

ui¼∑4
i¼0k32iþjþ2i

vi¼∑4
i¼0k32iþ16þjþ2i

A 0½ � ¼ ∞

B 0½ � ¼ ∞

T ¼ ∞

����������������
end

for i from 15 to 0 do
T 2T

T 2Tþ A ui½ � þ B vi½ �

�����
end

Return T

�������������������������������������
end
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SR technique is tested in affine coordinates. The scalars are in binary and NAF
form combined with the scalar reduction scheme. The gain rate depends on the
value of k. For comparison, if (αrs/da), (αrs/naf), and (αrs�naf/da) define, respectively,
the gain rate of the scalar reduction (SR) method compared to double-and-add
(DA), NAF and SR combined with NAF are compared to DA. The results are given
in Table 2.

4. Parallelization of scalar multiplication on scalar arithmetic

Parallel computing is another choice for accelerating computation and balancing
workload. For distributed system, a task can be divided into smaller ones which are
then carried out simultaneously by different processors. The parallel computing for
accelerating computation of scalar multiplication is a very hot research topic in
cryptography. It can be also achieved through one or more arithmetic levels: on the
formulas of operations such as addition and doubling, between the operations
themselves, or on the scalar by partitioning it. In most current works, various
solutions have been proposed in literature, but in this chapter we present works
based on scalar arithmetic.

4.1 Efficient elliptic curve exponentiation

The efficient elliptic curve exponentiation based on point precomputation is
proposed in [24]. To calculate Q = kP where Q and P are 2 points represented in
Jacobian coordinates and k is a positive integer of 160 bits, a precomputed table
which consists of 62 points is prepared.

A s½ � ¼ ∑4
j¼0as, j

232jG3 and B s½ � ¼ ∑4
j¼0as, j

216þ32jG3 where 1≤ s≤ 31 and

as,0…,as,0 is a binary representation of s ¼ ∑4
j¼0as, j2

j. Then calculation of kP is
done by Algorithm 9.

Since this method is based on precomputation, a precomputed table is prepared,
and the exponentiation loop can be performed separately by different processors.

4.2 Parallel scalar multiplication on two processors

In [27], two processors and a circular buffer are used to perform parallel scalar
multiplication. A buffer acts as a communication channel between the two
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√ 6579 6572 7604 6555 6931 7471

√ 6282 6326 5317 6239 6698 5114

√ 6578 6573 7600 6416 6600 27

√ √ 6279 6325 5320 6100 6556 27

√ √ α (sr/da) 2.12% 4.77% 99.63%

√ √ α (sr/naf) 1.46% 99.47%

√ √ √ α (sr-naf/da) 6.94% 5.41% 99.63%

SR, scalar reduction.
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Running times (ms) using affine coordinates.
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processors to reduce the average time of the scalar multiplication. As in the
producer-consumer problem, the first processor initially reads P and then keeps
scanning ki and computing point doubling. It writes 2iP into the buffer whenever a
non-zero ki is detected. The second processor reads 2iP from the buffer and per-
forms additions. The computation is terminated when there is no more 2iP in the
buffer.

4.3 Parallelization by partitioning the scalar

For other schemes, this technique of parallelization consists in partitioning the
scalar k (represented on l bits) into m fixed-size blocks on SIMD architectures [28].
This partitioning generates precomputed points that need to be calculated and
stored prior to starting parallel calculations.

Recent work [29], inspired by [30], uses this technique in m blocks of length v
bits in wireless sensor networks. The scalar is represented on l bits and is divided
into m blocks Bi of length vb =l/m according to m sensors chosen to participate in
the computation.

kP ¼ B020vPþ B121vPþ B222vPþ………:þ Bm�12 m�1ð ÞvP (10)

where Bi=∑
ivþv�1
iv li2jP with lj the bit on position j on the binary sequence of

length l.
This partitioning generates precomputed points Pi = 2ibP. For example, consider

a scalar k of 160 bits and point P; we want to compute kP on four sensors. The scalar
k is broken down into four blocks of 40 bits:

kP ¼ B0:0B0:1……B0:39ð Þ2:20P|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
blockB0

þ B1:40B1:41……B1:79ð Þ2:240P|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
blockB1

þ

B2:80B2:81……B2:119ð Þ2280P|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
blockB2

þ B3:120B3:121……B3:159ð Þ22159P|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
blockB3

Precomputed points are 240P, 280P, and 2120P. Note that all parallelism tech-
niques based on scalar partitioning generate pre-calculated points, which must first

Algorithm 9. Elliptic curve exponentiation based on precomputation.

Input: Data k ¼ ∑l�1
i¼0ki2

iP
Output: kP,
Begin

for 0≤ j≤ 15 do

ui¼∑4
i¼0k32iþjþ2i

vi¼∑4
i¼0k32iþ16þjþ2i

A 0½ � ¼ ∞

B 0½ � ¼ ∞

T ¼ ∞

����������������
end

for i from 15 to 0 do
T 2T

T 2Tþ A ui½ � þ B vi½ �

�����
end

Return T

�������������������������������������
end
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be calculated and stored, thus leading to additional memory and energy
consumption.

In [31], a parallel computation of kP between N sensor nodes is presented by
partitioning the scalar k to m blocks of length v = k/N bits, and each block is
computed by one sensor node. A distributed algorithm (double-and-add, NAF, etc.)
composed of m blocks is also proposed, and each block mi of the distributed
algorithm operates on one block mi of the scalar. Algorithms 10 and 11 show,
respectively, block i for double-and-add and NAF algorithms.

So as not to compromise security when partitioning scalar, the reliability and
efficiency are taken into account. They demonstrate that after partitioning the
scalar k to m blocks of length v, the node which leads calculation keeps one of the m
blocks into its local memory and distributes (m-1)blocks to others nodes. In this
case, a possibility is to send the (m-1) blocks securely by symmetric encryption. If
blocks are sent randomly without encryption, the intruder, after gaining (m-1)
blocks of the m blocks, must perform (m!2v)P to find the private scalar k. More-
over, if the intruder gains the (m-1) results sent by other nodes, security is not
compromised; it has to deal against the ECDLP. So, it is as difficult to find k from kP

Algorithm 10. Double-And-Add for node i

Input: d=(dv-1,……….., d1,d0)2, P ∈ E (Fp)
Output: Q=[d]P
Begin
Q  ∞

forj 0 to v� 1 do

ifdj ¼ 1 then

Q  Q þ 2viP
��

end

P 2P

������������
end

return Qð Þ

�����������������������
end

// begin scanning bits from right-to-left.

//2viP is the pre-computed point

Algorithm 11. NAF method for i.

Input: NAF(d)= (dv-1,……….., d1,d0), P ∈ E (Fp)
Output: Q= [d]P
Begin

Q  ∞

for j 0 to v� 1 do

P 2Q

if dj ¼ 1
� �

then

Q  Q þ 2viP
��

end

if dj ¼ �1
� �

then

Q  Q � 2viP
��

end

�����������������������
end

return Qð Þ

����������������������������������
end

// begin scan from right to left step by step

// compute point doubling

// 2viP is the pre-computed point

58

Modern Cryptography – Current Challenges and Solutions

as k from the (m-1) points derived from calculation of scalar multiplication on
(m-1) blocks. For each block diP, it needs to find di. And then after, it also needs to
perform (m!2v)P before getting scalar k.

4.4 Performance measurement

The predominance of scalar multiplication in all operations makes the perfor-
mance of the cryptosystem relatively based on this scalar operation. Theoretically,
the efficiency of the formula using Jacobian coordinates can be determined by the
number of multiplication (M) and of square (S) operations which compose it.
Operations like addition, subtraction denoted by A, and multiplication with a con-
stant are negligible when faced with square and multiplication of two variables. It is
widely accepted that the cost of square is equivalent to 0.6–1 of the cost of multi-
plication [32–34]. Hence, for a scalar multiplication with a scalar of length of n bits,
we can determine the ratio (r=S/M) from which each approach justifies better
performance.

5. Conclusion

To perform fast computation of scalar multiplication, which is the major com-
putation involved in ECC, much research has been devoted to the point arithmetic
level and the scalar arithmetic. In this chapter, we have presented only works on
scalar arithmetic level. All the methods studied are almost based on scanning bits or
digits of the scalar with a scan step. In the comparative studies, we found that
calculations can be faster if the number of bits scanned is higher. However, scan-
ning a number of bits greater than 1 results in precomputed points that need to be
computed or stored before. In future works, we can explore mechanisms for accel-
erating calculation of precomputed points in order to avoid storing them. Like
computing point doubling formula, we can consider effective point operation for-
mulas which should allow to increase the scan step.
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be calculated and stored, thus leading to additional memory and energy
consumption.
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Q  ∞

forj 0 to v� 1 do

ifdj ¼ 1 then

Q  Q þ 2viP
��

end

P 2P

������������
end

return Qð Þ

�����������������������
end
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Q  ∞
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P 2Q

if dj ¼ 1
� �

then

Q  Q þ 2viP
��

end

if dj ¼ �1
� �

then

Q  Q � 2viP
��

end

�����������������������
end

return Qð Þ

����������������������������������
end
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Chapter 4

Numerical Problem Encryption for
High-Performance Computing
Applications
Riccardo Bernardini

Abstract

Recent years witnessed the diffusion of cloud-based services. Cloud services
have the interesting advantage that they can provide resources (CPU, disk space,
etc.) that would be too expensive to deploy and maintain in-house. A major draw-
back of cloud-based services is the problem of handling private data and—possibly
—intellectual property to a third party. With some service (e.g., data storage),
cryptography can provide a solution; however, there are some services that are
more difficult to protect. An example of such services is the renting of CPU to carry
out numerical computation such as differential equation solving. In this chapter, we
discuss the problem of encrypting numerical problems so that their solution can be
safely outsourced. The idea is to transform (encrypt) a given numerical problem into
a different one whose solution can be mapped back to the solution of the original
problem if the key used at the encryption stage is known.

Keywords: HPC, numerical analysis, security, cloud

1. Introduction

The rise of cloud computing has made it possible for SMEs to procure, on a pay-
per-use basis, resources that until few years ago they had to acquire themselves.
Although cloud computing offers interesting opportunities, it has some drawbacks
too. One important drawback is the lack of data privacy: as soon as the SME hands
its data to the cloud provider, there is the risk that the data could be exposed to
third parties. Privacy protection in cloud services is indeed one of the key challenges
highlighted by the Public Consultation on Cloud Computing and Software [1].

In some cases, the SME can take some simple countermeasures to mitigate privacy
risks. For example, the SME can send to the provider an encrypted version of the data
in the case of storage service (see Figure 1a). This is possible since the cloud provider
can store the data just as a “binary blob” without the need to understand them.

However, there are some services where simple solutions are not feasible, for
example, the procurement of high-performance computing (HPC) resources on the
cloud. It is a fact that many potential users are not eager to employ cloud HPC
services because of the risk of data disclosure. In fact, simple data encryption
mechanisms are not sufficient to deal with security and privacy protection in data
centric environments, and even “the right to be forgotten” does not cover indirect
security and privacy aspects [2].
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Ideally, we would like a solution reminiscent of what is done for storage: encrypt
the computation before sending it to the cloud and decrypt what we receive from
the cloud. Figure 1b shows a graphical representation of this idea: on the left hand
side, we see a user that needs to compute the airflow around a new wing in an
aerodynamic application. In order to outsource that aerodynamic problem, the user
processes it with a secret key in the block ENC with the aim of transforming it into a
different numerical problem that is uploaded to the cloud. A number of HPC pro-
viders collaborating on the cloud may be needed to solve this computation-intensive
problem. The encrypted solution is then synthesized and sent back to the user (wing
designer) that processes it with DEC in order to get the final answer. Standard
cryptography techniques (e.g., RSA, AES, etc.) in this context provide only limited
result. The question is if the user uploads their data in encrypted form to the cloud,
how can the cloud process it?

At a first glance, this seems an unsolvable problem, but recent developments in
the field of theoretical cryptography can address this apparent paradox using a set
of secure techniques belonging to the family of secure multiparty computation
(SMPC). Some efficient SMPC solutions, such as additive homomorphic encryption
or garbled circuit, allow evaluating particular functions on encrypted data, but
unfortunately they require interaction with the user, often making the cooperation

Figure 1.
(a) Using safely storage on networks and (b) renting safely CPU on network.
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more expensive than the direct solution. On the other hand, fully homomorphic
encryption (FHE) allows evaluating functions on encrypted binary data, without
decrypting it nor interacting with the client. This implies that the cloud can com-
pute any function of the data uploaded by the user (without learning anything
about the plain-text data) and return the encrypted answer.

Even more recent developments in the field of cryptography show that even
cryptographic obfuscation can be achieved (under strong but plausible assump-
tions): using obfuscation, one can upload a piece of software to the cloud, which
now can be run on any input data without learning anything about the proprietary
code—think of a researcher who find a new algorithm to diagnose some diseases.
Now the researcher can sell diagnosis as an external service on a cloud provider,
without fearing that the cloud can steal or leak his proprietary methods.

While SMPC and FHE provide wonderful theoretical results, they will have little
or no practical impact in the way users work with the cloud. The computational
overhead introduced by FHE is huge, and an obfuscated version of even a simple
function (a point function with few bit inputs) requires gigabytes of memory.

2. The setup

2.1 The basic setup

Figure 2 shows a more detailed setup with two possible scenarios. We have,
with reference to Figure 2a, an original problem that we will call the engineering
problem; for example, determine drag and lift of a new innovative wing profile or
the electronic configuration of a new molecule. The first step in the solution of the
engineering problem is its transformation into a numerical problem (typically a
linear system or an eigenvalue problem) that is solved by means of a well-known
numerical algorithm in order to obtain a numerical solution. The final step is to use
the numerical solution to obtain the engineering solution, that is, the values that are
of interest for us (e.g., drag and lift in the wing problem). It is worth to discuss in
some details the three steps.

2.1.1 From the engineering problem to the numerical problem

Many engineering problems require the solution of differential equations that
when discretized give rise, usually, to a linear system or an eigenvalue problem. The
matrices obtained with the discretization can be quite large but (usually) sparse.
Note that instead the engineering problem has usually a relatively compact descrip-
tion; in the example at hand, it would be a description of the geometry of the wing
(by means of 3D model format) together with a description of the air flow [3–5]; in
the case of the molecule, it could be a description of the configuration of the
molecule (e.g., by means of its structural formula).

Although intuitively one can imagine that the solution of the numerical problem
is the heaviest part, even the discretization step can be nontrivial. For example,
some discretization technique—e.g., the popular finite element method (FEM)—
requires to partition the space using a grid whose generation can be fairly complex
[6]. Finally, it is worth observing that with large problems, not only the required
CPU time can be a problem but also the amount of memory required that can
become readily prohibitive because of the “dimension curse.” Indeed many engi-
neering problems involve at least four dimensions: one for time and three for space.
This suggests that working with very sparse matrices (and preserving their sparse
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Figure 1.
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requires to partition the space using a grid whose generation can be fairly complex
[6]. Finally, it is worth observing that with large problems, not only the required
CPU time can be a problem but also the amount of memory required that can
become readily prohibitive because of the “dimension curse.” Indeed many engi-
neering problems involve at least four dimensions: one for time and three for space.
This suggests that working with very sparse matrices (and preserving their sparse
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structure) is of utmost importance. This will be important in the following when
talking about some proposals found in the literature.

Finally, it is worth observing that there is a good degree of arbitrary in the
discretization step: if a grid is used, it is not uniquely determined; in finite differ-
ence method (FDM), the ordering used to map the grid points to matrix coordinates
is arbitrary; in methods based on function space discretization (e.g., Galerkin-like

Figure 2.
(a) Typical scenario: an engineering problem is converted to a numeric problem that is solved to derive the
desired engineering solution, (b) outsourcing by encrypting the engineering problem and (c) outsourcing by
encrypting the numerical problem.
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methods), there is a wide freedom in the choice of basis functions. This implies that
while it is known how to go from an engineering problem to its numerical counter-
part, it is not clear how (or “if”) it is possible to go in the other direction. This is
important in our context since we can expect that the opponent will be interested in
the engineering problem rather than in the numerical one.

2.1.2 Numerical solution

In this step the numerical problem (typically, a linear system or an eigenvalue
problem) is solved to give the numerical solution (typically, a vector). If the prob-
lem is very large, this step can be very CPU-consuming. Algorithms used for the
solution typically exploit the very sparse structure of the matrices involved. For
example, in the solution of a linear system, usually an iterative procedure is pre-
ferred, since the iterative procedure exploits more easily any sparsity (the cost of a
product matrix-vector is proportional to the number of non-zero elements), while
the inverse of a sparse matrix is not necessarily sparse, requiring much more
memory and CPU time to be handled.

This suggests that if the encryption is applied at the numerical problem level
(see Section 3 in the following), care must be exercised in order not to spoil the
sparsity, although this goes against with the requirement—sometimes stated—of
hiding the number of zeros (see Section 4.1.1).

2.1.3 From the numerical solution to the engineering solution

This step usually is not as computationally demanding as the previous ones. It
amounts to extract from the numerical solution the values of interest (e.g., drag and
lift in the wing example) or producing suitable visualizations of the data (e.g., in the
electronic distribution of a molecule example).

3. Encrypting the problem

There are two possibilities, shown in Figure 2, of encrypting the problem: in a
case (see Figure 2b) the original problem is directly encrypted and outsourced,
leaving both discretization and numerical solution to the cloud; we will call this
solution the engineering problem encryption (EPE). In the other case (see in
Figure 2c), the discretization step is done on the client computer, and only the
numerical problem (e.g., solution of linear system) is encrypted and outsourced; we
will call this solution the numerical problem encryption (NPE). Pros and cons of the
two solutions are as follows.

EPE: From the point of view of the work to be done on the client, this solution is
preferable since the possibly large cost of the discretization step is outsourced to the
cloud. This solution, however, requires a different encryption technique for every
problem (e.g., an encryption technique suitable for aerodynamic problems cannot
be used for computational chemistry problems). To the best of our knowledge,
there is currently no proposal working at the EPE level.

NPE: On the one hand, this solution requires that the client does the
discretization step and the computational cost of this step cannot be negligible; on
the other hand, many engineering problems reduce to a just few numerical prob-
lems when discretized. This means that a procedure to encrypt, say, a linear system
can be applied in many engineering problems that require the solution of differen-
tial equations.
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Note that in both cases the key remains in the client, similarly to what happens
in the case of remote storage. This implies that the client can employ very long
keys, maybe as long as the data to be encrypted, since there is not a problem of
distributing the key.

3.1 Numerical issues

Since we are interested in numerical problems, the issue of the impact of the
encryption/decryption on the precision of the result needs to be taken into account.
For example, consider the following protocol, similar to many techniques proposed
for protecting a linear system [7–9]:

Ax ¼ b (1)

with A∈ IRn�n and x,b∈ IRn. System (1) is protected by randomly generating
two permutation matrices P,Q ∈ IRn�n and a diagonal matrix D∈ IRn�n and
replacing A and b with, respectively,

Â ¼ PAQD (2)

b̂ ¼ Pb (3)

and sending the problem

Âx̂ ¼ b̂ (4)

to the cloud. It is immediate to check that the solutions of (1) and (4) are related by

x ¼ QDx̂ (5)

Eq. (5) can be considered as the decryption algorithm. This looks fine, but the
value returned for x̂ usually has some error ε. It is immediate to verify that this
induces an error QDε on the decrypted value. If D has some large entries, this will
amplify the noise that affects the decrypted value. Moreover, right multiplication
by D can affect the condition number of A, worsening the conditioning of the
system. Figure 3 shows the result of a numerical experiment demonstrating this
problem: we generated 5000 symmetric matrices A and 5000 diagonal matrices D
of sizes ranging from 10� 10 to 200� 200, and for every iteration, we computed
the condition number amplification

ρ ¼ cond ADð Þ=cond Að Þ (6)

where cond Að Þ ¼ j Ajk k2jkA�1jk2 is the 2-norm condition number of A. Entries of
A were Gaussian with zero mean and unit variance, while entries of D have been
generated using a variety of distributions: Gaussian as the entries of A, uniform in
0; 1½ �, uniform in 1=2; 3=2½ �, and uniform in [1,2].

The right hand column of Figure 3 shows the histogram of ρ in logarithmic scale
for 100 � 100 matrices; Figure 3b shows the minimum, maximum, and average
values of ρ as function of the matrix size. Different rows of Figure 3 are relative to
different ways of generating D. Although from Figure 3 one can see that sometimes
the conditioning can improve (ρ < 1), it is clear that there is a non-negligible
probability of worsening the condition number of several orders of magnitude,
especially if the entries of D can go near to zero (first two rows of Figure 3 relative
to the cases Gaussian and uniform in [0,1]).
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Figure 3.
(a) Histogram of the condition number amplification ρ ¼ cond ADð Þ=cond Að Þ in logarithmic scale for
100� 100 matrices; matrix entries of both A and D are Gaussian with mean zero and unitary variance; (b)
minimum, maximum, and average values of ρ as a function of the matrix size; (c) and (d) like (a) and (b),
but the entries of D are uniformly distributed in [0,1]; (e) and (f) like (c) and (d), but the entries of D are
uniformly distributed in 1=2; 3=2½ �; (g) and (h) like (c) and (d), but the entries of D are uniformly distributed
in [1,2].
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4. The adversary model

In the literature, two kinds of “bad behavior” can be present together or not in a
specific opponent:

Honest but curious: In this case all the parties follow correctly the protocol, and
the computed result is correct, but the cloud tries to learn the protected secret. Note
that it is reasonable to expect that the opponent is interested in the engineering
problem or the corresponding solution rather than in the numerical counterparts.
The numerical problem/solution can be seen as a mean to find out the engineering
problem/solution. Note that the freedom that one has in the discretization step can
potentially be used to make it more difficult to invert it.

Malicious: The cloud does not follow correctly the protocol and, in particular, could
try to “cut some corners” returning results that are not correct. In many cases, this
attack can be easily counteracted by checking the result returned by the cloud; this is
possible since many problems can be computationally heavy to solve, but it is fairly
easy to check if a solution is correct; think, for example, the case of a linear system.

In some cases, even a full check can be quite demanding; in those cases, a
random selection of checks to be done can give a fairly good assurance that the
result is correct. For example, in the case of a linear system, a random subset of the
equations can be checked. The probability of a false positive (an uncorrected result
is accepted) decreases exponentially with the number of checks, while the compu-
tational cost grows only linearly. Indeed, many check techniques proposed in the
literature can be reduced to this idea.

Remark 4.1
It is worth observing that since we are talking about floating point computation,

we need to take into account numerical noise that results from computation. For
example, if a numerical system is solved with an iterative approach, the returned
solution will differ from the “true” solution by a, hopefully, small error. This needs
to be taken into account when checking if the solution is correct.

In a typical context the adversary is interested in getting the original problem or
the solution. It is worth observing that while in the classical cryptography setup, the
opponent recovers completely the message or nothing at all; in this case, there is the
possibility that the adversary recovers an approximate version of the problem/
solution. Observe also that the setup of Figure 2c makes the problem for the
adversary more difficult since after recovering the numerical problem there is the
problem of doing the inverse of discretization.

Finally, it is worth observing that the encryption/decryption steps could amplify
the numerical noise introduced by the solution algorithm.

4.1 Security criterion

A major difference between traditional cryptography and cryptography of
numerical problems is the information that an opponent can gain about the secret.
In the most typical case, in a practical application of classical cryptography, two
cases are possible: (i) the opponent succeeds in the attack and learns the whole
secret and (ii) the attack is unsuccessful and very little, or nothing is learned about
the secret; the case where a partial success can be achieved is quite uncommon.
Suitable security criterion in this kind of application is information-theoretical
criterion (where the adversary has unlimited computational power) or based on
computational indistinguishably (where we admit that the computational power of
the adversary can grow only polynomially).

In the context of encryption of numerical problems instead, it is possible that the
opponent gains some partial or low-resolution information. For example, in the case
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of a new wing, the adversary is interested in learning the profile of the wing; the
adversary has a strong a priori information about the profile, and only some detail
information to integrate such a priori are needed. Depending on the specific
encryption technique, it could be possible for the adversary to find said details but
only up to a resolution. The ambiguity could be “unsolvable” even with infinite
computational power (more or less the equivalent of information-theoretical secu-
rity), or maybe it could be that the amount of computation required to improve the
resolution increases more than the polynomial with the required resolution (this
would be the equivalent of classical computational indistinguishably).

There is also the possibility that the encryption technique leaks some invariant of
the problem. For example, if linear system Ax ¼ b is encrypted by applying two
orthogonal matrices U,V as in

UAV|fflffl{zfflffl}
Â

Vtx|{z}
x̂

¼ Ub|{z}
b̂

, (7)

matrix Â preserves the singular values of A. Is this a problem? Most probably, it
depends on the specific underlining engineering problem. As in another example,
consider the encryption protocol described in (2). In this case, Â preserves not the
singular values of A but its sparsity (i.e., the number of non-zero entries). Again,
if this is a problem or not probably depends on the corresponding engineering
problem.

To the best of our knowledge, most of the literature consider the classical
cryptography criterion of computational indistinguishably, and more research
about criterion specific for numerical problem could prove useful.

4.1.1 About sparsity preservation

As said before, many discretization techniques produce matrices that are very
sparse. This is very important from the viewpoint of computational efficiency since
there are algorithms that are able to exploit the sparseness, working only with the
non-zero entries of the matrix. This suggests that the encryption should preserve
the sparseness or, at least, not reduce it in a significant way. However, some
researchers raise the concern that even the fraction of non-zero entries can be
private information. This would suggest that the encryption step should not pre-
serve matrix sparsity.

It is also worth observing that in some application, the number of non-zero
entries is known a priori with good precision. For example, in FDM/FEM
discretization methods for differential equations, the fraction of non-zero entries
depend on the structure of the grid employed which can be considered known with
good precision. A quantitative and objective approach to the importance of pre-
serving or hiding the sparsity can be an interesting field for future research activity.

5. Existing techniques

The field of encrypting numerical problems is relatively new, and there is not a
huge variety of encryption algorithms proposed; many of them are just variations of
some basic scheme. To the best of our knowledge, no algorithm found in the
literature tries to encrypt the engineering problem; it rather tackles the numerical
problem. Also, it is very difficult to find some discussion about the numerical
stability of the proposed scheme.

71

Numerical Problem Encryption for High-Performance Computing Applications
DOI: http://dx.doi.org/10.5772/intechopen.85565



4. The adversary model

In the literature, two kinds of “bad behavior” can be present together or not in a
specific opponent:

Honest but curious: In this case all the parties follow correctly the protocol, and
the computed result is correct, but the cloud tries to learn the protected secret. Note
that it is reasonable to expect that the opponent is interested in the engineering
problem or the corresponding solution rather than in the numerical counterparts.
The numerical problem/solution can be seen as a mean to find out the engineering
problem/solution. Note that the freedom that one has in the discretization step can
potentially be used to make it more difficult to invert it.

Malicious: The cloud does not follow correctly the protocol and, in particular, could
try to “cut some corners” returning results that are not correct. In many cases, this
attack can be easily counteracted by checking the result returned by the cloud; this is
possible since many problems can be computationally heavy to solve, but it is fairly
easy to check if a solution is correct; think, for example, the case of a linear system.

In some cases, even a full check can be quite demanding; in those cases, a
random selection of checks to be done can give a fairly good assurance that the
result is correct. For example, in the case of a linear system, a random subset of the
equations can be checked. The probability of a false positive (an uncorrected result
is accepted) decreases exponentially with the number of checks, while the compu-
tational cost grows only linearly. Indeed, many check techniques proposed in the
literature can be reduced to this idea.

Remark 4.1
It is worth observing that since we are talking about floating point computation,

we need to take into account numerical noise that results from computation. For
example, if a numerical system is solved with an iterative approach, the returned
solution will differ from the “true” solution by a, hopefully, small error. This needs
to be taken into account when checking if the solution is correct.

In a typical context the adversary is interested in getting the original problem or
the solution. It is worth observing that while in the classical cryptography setup, the
opponent recovers completely the message or nothing at all; in this case, there is the
possibility that the adversary recovers an approximate version of the problem/
solution. Observe also that the setup of Figure 2c makes the problem for the
adversary more difficult since after recovering the numerical problem there is the
problem of doing the inverse of discretization.

Finally, it is worth observing that the encryption/decryption steps could amplify
the numerical noise introduced by the solution algorithm.

4.1 Security criterion

A major difference between traditional cryptography and cryptography of
numerical problems is the information that an opponent can gain about the secret.
In the most typical case, in a practical application of classical cryptography, two
cases are possible: (i) the opponent succeeds in the attack and learns the whole
secret and (ii) the attack is unsuccessful and very little, or nothing is learned about
the secret; the case where a partial success can be achieved is quite uncommon.
Suitable security criterion in this kind of application is information-theoretical
criterion (where the adversary has unlimited computational power) or based on
computational indistinguishably (where we admit that the computational power of
the adversary can grow only polynomially).

In the context of encryption of numerical problems instead, it is possible that the
opponent gains some partial or low-resolution information. For example, in the case

70

Modern Cryptography – Current Challenges and Solutions

of a new wing, the adversary is interested in learning the profile of the wing; the
adversary has a strong a priori information about the profile, and only some detail
information to integrate such a priori are needed. Depending on the specific
encryption technique, it could be possible for the adversary to find said details but
only up to a resolution. The ambiguity could be “unsolvable” even with infinite
computational power (more or less the equivalent of information-theoretical secu-
rity), or maybe it could be that the amount of computation required to improve the
resolution increases more than the polynomial with the required resolution (this
would be the equivalent of classical computational indistinguishably).

There is also the possibility that the encryption technique leaks some invariant of
the problem. For example, if linear system Ax ¼ b is encrypted by applying two
orthogonal matrices U,V as in

UAV|fflffl{zfflffl}
Â
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stability of the proposed scheme.
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5.1 Basic techniques

There are few basic techniques used in the literature to encryptmatrices and vectors.
Addition: To matrix A a matrix K is added to obtain Â ¼ Aþ K. This approach is

not widely used, probably because sum does not “propagate” nicely in usual linear
algebra operations (e.g., linear systems, eigenvalue problems, determinants, singu-
lar value decomposition). Moreover, in the case of linear systems, it is not obvious
how to choose K in order to have Â invertible.

Product by a diagonal matrix: Matrix A is multiplied (on the left, on the right, or
both) by a diagonal matrix D. The effect on problems like linear systems is quite
easy to describe, and it suffices that all the diagonal entries are not zero in order to
guarantee the invertibility of Â, but, as shown in Section 3.1, if D is randomly
chosen, the condition number of A can increase by several orders of magnitude.

Product by a permutation: Matrix A is multiplied (on the left, on the right, or

both) by a permutation matrix P. This grants that cond Â
� �

¼ cond Að Þ (therefore
also invertibility is preserved). A product by a permutation requires no floating
point multiplications, although the cost of data movement (especially if A is very
large) is not necessarily small. Sparsity is preserved, and this can be seen either as an
advantage or as a drawback (see Section 4.1.1). Some characteristic values such as
determinant and singular values are preserved.

Product by a unitary matrix: Matrix A is multiplied (on the left, on the right, or

both) by a matrix R such that RtR ¼ I. This grants that cond Â
� �

¼ cond Að Þ.
Product by R does not necessarily preserve sparsity. If R is generated as a sequence
of planar rotations, product by R (stored as sequence of rotation, not as a full
matrix) can be more efficient than usual matrix product. Singular values and deter-
minant are preserved.

5.2 Brief literature review

Maybe the numerical problem most frequently addressed is the problem of
solving linear systems. Lei et al. [7] proposed a scheme similar to (2) where A is
both left and right multiplied by a diagonal matrix and a permutation. The proposal
of Wang et al. [10] is one of the few that proposes to use classical homomorphic
encryption together with an iterative algorithm; the approach of Wang et al.
requires to use matrices with integer entries (eventually by rescaling the system)
and a continuous exchange between the cloud and the user. Chen et al. in [11]
pointed out a weakness of [10] and proposed a variation to solve the problem.
Another solution based on matrix pre- and post-multiplication is suggested in [8].

A problem similar to linear system is linear regression. Chen et al. in [9] used
pre- and post-multiplication approaches with two diagonal matrices. Zhou et al. in
[12] pointed out a possible weakness (in the hypothesis of an integer problem).
Similar approaches, still based on matrix pre- and post-multiplication, can be found
also for matrix product [13, 14], determinant computation [15], and singular value
decomposition [16].

6. Conclusions

We analyzed the problem of outsourcing safely numerical and engineering
problems to the cloud. It turns out that the field is still in an evolving phase. Many
approaches are different instances of pre- and post-multiplication masking
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techniques; security criterion is a reformulation of criterion from classical cryptog-
raphy and does not address the peculiarities of numerical problem protections;
finally, the problem of how the encryption/decryption impacts on issue such as
numerical conditioning of the problem is usually not addressed. Future research
directions will aim to cover such still open areas.
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Chapter 5

Overlay Security: Quantum-Safe 
Communication over the Internet 
Infrastructure
Shlomi Dolev

Abstract

The need for a quantum-safe Internet is emerging, and this is a great oppor-
tunity to re-examine the legacy of public key infrastructure. There is a need for 
perspective on the evolution of cryptography over the years, including the perfect 
information-theoretical secure schemes and the computationally secure schemes, 
in particular. There is also a need to examine the evolving Internet infrastructure 
to identify efficient design and secure cryptographic schemes over the existing 
Internet infrastructure. A combination of overlay security, blockchain, and Merkle 
trees with Lamport’s signatures offers just such an easily implementable quantum-
safe Internet.

Keywords: public key infrastructure, post-quantum cryptography, secret sharing, 
blockchain, Lamport signatures

1. Introduction

Securing the digital world is essential as critical infrastructures are based on 
communicating with remote computers. The trust in the computer network is based 
on having a secure and authenticated communication. The change in social activ-
ity, where the big four companies Google, Amazon, Facebook, and Apple (GAFA) 
influence many aspects in modern society implies the need for secure computer 
and network infrastructures. The past interest in quantum cryptography has grown 
significantly in recent years. National Institute of Standards and Technology (NIST) 
authors wrote an overview on the subjects in 2009 [25], and the activity expanded 
dramatically, having dedicated conferences on the subject [27]. The most challeng-
ing component of Internet security that needs to be considered is the replacement 
of the existing asymmetric encryption scheme, namely, to replace an RSA [29]. 
For this there are several candidates: lattice-based cryptography (e.g., shortest 
vector problem, closest vector problem), code-based cryptography (e.g., McEliece, 
Niederreiter), and more (see, e.g., [24]). The second challenging task is a replace-
ment for signature scheme; here hash-based Lamport’s one-time signature together 
with the Merkle tree is believed to address that need (see [39] for an overview). The 
integration of the post-quantum cryptographic ingredients into a complete infra-
structure is also challenging (as we detail in the sequel).

We present a design for quantum-safe communication over the existing Internet 
infrastructure. No hardware changes are required, only software updates over the 
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with the Merkle tree is believed to address that need (see [39] for an overview). The 
integration of the post-quantum cryptographic ingredients into a complete infra-
structure is also challenging (as we detail in the sequel).

We present a design for quantum-safe communication over the existing Internet 
infrastructure. No hardware changes are required, only software updates over the 
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heterogeneous Internet architecture. Different aspects of the solution are presented 
in the sequel.

2. Quantum computing today

The emergence of quantum computers is a fact [12]; beyond the commercial 
non-universal commercial quantum computer of several thousand qubits (quantum 
bits) of D-Wave [10], IBM commercializes 50 qubits quantum computers [18]. The 
quantum computer race leads to exponential growth in the number of qubits, where 
in 2018 Intel presented 49 qubits quantum computer [19] and Google announced 72 
qubits computers [16]. In addition, several startups including Rigetti announced a 
36 qubits quantum computer [28] and a quantum processing unit (QPU) (see also 
Ion Q [20] and QCI [32]).

Many quantum computers restrict the qubits that participate as inputs for 
quantum gate operations and employ qubit teleportation to allow quantum gate 
operations over non-neighboring quantum bits, e.g., [36, 8]. The advance in tech-
niques for producing entangled qubits and teleportation [37, 38] may assist in using 
several quantum computers to cooperate on a task by teleporting qubits from one to 
another, thus building a virtual quantum computer with the needed qubits for the 
task. In particular, for breaking the asymmetric encryption schemes in use almost 
immediately, much earlier than estimated.

3. Quantum algorithms

Shor’s algorithm [35], designed for quantum computers, changed the way mod-
ern cryptography and Internet security are captured. New algorithms for quantum 
computers are frequently invented [31, 4].

Computationally secure cryptography is based on the unproven assumption of 
the existence of one-way function, a function that can be computed easily but is 
hard to be inverted. The risk that an algorithm that breaks a considered one-way 
function will be found always exists, e.g., [1]. Even one-way functions proposed for 
post-quantum cryptosystems are at risk of the discovery of new efficient inverse 
algorithms. One famous example of an open problem for decades is the primality 
test that had no polynomial deterministic algorithm, until just such an algorithm 
was found [2].

4. Perspective on encryption

The asymmetric encryption schemes, proposed by Merkle [23], Diffie and 
Hellman [9], and Rivest et al. [29], revolutionized cryptography. The idea to use 
computational tasks in order to establish a symmetric key started with the sugges-
tion of Merkle to use computation puzzles. Merkle’s puzzle scheme started with 
Alice choosing at random many computation puzzles, possibly hashed random 
numbers (with tuned lengths) each concatenated with a sequence number, such 
that Bob is able to randomly choose one of the puzzles and reverse this number in 
reasonable time. Then, Bob sends a few of the bits of the revealed random number 
back to Alice, identifying the puzzle Bob decided to solve. Both Alice and Bob will 
be using the unrevealed bits of the solved puzzle as their symmetric key. Eve on the 
other hand will not know which of the puzzles was chosen by Bob, will likely have 
to solve many puzzles before identifying the puzzle randomly chosen by Bob, and 
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revealing the symmetric key they use. Later Diffie and Helman and then Rivest, 
Shamir and Adelman suggested more efficient schemes based on number theory 
assumptions.

Asymmetric encryption enabled the creation of a symmetric key among com-
municating parties over tapped communication links [23, 9] and is even able to 
identify the intervention of malicious parties in the communication [29]. The 
identification of such malicious parties was due to the capability of [29] to sign cer-
tificates that monolithically associated a public key with the entity identity descrip-
tion to which the public key belongs. The signature was issued by a trusted third 
party, the certificate authority. This public key infrastructure is the de facto security 
infrastructure today, securing Internet activity, including military, governmental, 
social, financial, and, in fact, all activities in the Internet.

Thus, the appearance of quantum computers and fitting quantum algorithms, 
which may break the basic mathematical foundations of [9, 29], has great implica-
tions. Post-quantum cryptosystems [26] are examined, e.g., [15], replacing the 
believed to be one-way functions that are currently used by other functions, which 
are also believed to be one-way functions. Provable perfect encryption does exist, 
namely, encryption based on the classical one-time pad [34], as long as the one-
time pad is a true random sequence. True random sequences are possibly produced 
by the use of quantum effects, e.g., [17].

Another difficulty in using one-time pad is the need to share the one-time pad 
prior to communication. The one-time pad can be shared prior to communication 
by physically delivering a copy of the one-time pad. Distribution of a one-time pad 
to many users may risk the loss or duplication of one copy of the one-time pad, 
nullifying the secrecy of the encryption.

Quantum key distribution [3] suggests using quantum bits superposition for 
detecting a tapper in the communication of random bits; however this scheme can 
only be used in direct links of at most 100 km. Recently, [22, 30] succeeded in using 
satellites and quantum bits entanglement to share a key over longer distances. This 
key can be viewed as a short one-time pad, as the rate of the received random bits is 
limited. One difficulty is the need to mobilize the symmetric key received from the 
satellite in one satellite receiver to the actual place the key should be used and the 
fact that the key authenticates the satellite receiver, but may not yield the identifica-
tion of other users.

5. Overlay security

Occasionally, one needs to send a credit number electronically, sending one 
email with the first digits of the credit card and then another email with the rest. 
Still, the email servers and the Internet server providers may act as a man in the 
middle and tap in, capturing part or all of the digits of the credit card. It is possible 
to send a random string (one-time pad) via WhatsApp (owned by Facebook) and 
the bitwise x-or of the credit card with the random string via Gmail. On one hand, 
this resembles sending entangled bits in two channels. On the other hand, just like 
content distribution networks (CDN), e.g., Akamai, that uses overlay network of 
the Internet ISPs as their source for extra reliability and services, overlay security 
uses the accumulated secrecy, authenticity, and identification of the diverse capa-
bilities of the communication channels, applications, and protocols.

The maturity and evolvement of the Internet technology enabled the CDN 
company to use the Internet infrastructure as a playground for delivering contents 
at will. In the last decades, more and more communication channels identify, 
authenticate, and secure the communication between entities. Email, SMS, push 
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fact that the key authenticates the satellite receiver, but may not yield the identifica-
tion of other users.
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Occasionally, one needs to send a credit number electronically, sending one 
email with the first digits of the credit card and then another email with the rest. 
Still, the email servers and the Internet server providers may act as a man in the 
middle and tap in, capturing part or all of the digits of the credit card. It is possible 
to send a random string (one-time pad) via WhatsApp (owned by Facebook) and 
the bitwise x-or of the credit card with the random string via Gmail. On one hand, 
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notifications, and messengers (WhatsApp, Facebook Messenger, Skype, Snapchat, 
LINE, LinkedIn, Telegram, Weibo, Slack, etc.) form logical secured channels. Each 
of the channels, even if they use the same physical channel, implies already built 
trust in the identification and authentication of the entity communicated through 
the channel. Moreover, the maintenance and repair of the security of each channel 
are guaranteed by the channel supplier. Still, each channel may act as a man-in-the-
middle accumulating the communications transmitted through the channel servers. 
The use of a random one-time pad over channels nullifies information accumulated 
by the server of each channel.

This is the current playground suggested to be used by the overlay security con-
cept, to create a symmetric key based on perfectly secure information-theoretical 
secure scheme, namely, quantum-safe replacements for asymmetric encryption. In 
addition, the security of new channels can be obtained inductively by the security 
of existing channels, employing them to create a random shared key for the new 
channel.

6. Redundancy and secret sharing

Overlay security uses several channels and random numbers to obtain a high 
level of confidence in identification, authentication, and secrecy, a level implied 
by all the used channels. However, if one of the channels, say Android push noti-
fication, is not available (possibly in China), then the communication is blocked. 
Secret sharing [33, 5] schemes imply a tunable threshold for the number of channels 
needed to reconstruct the secret. Shamir secret sharing is based on polynomials 
over a finite field, where each participant, in our case channel, receives one point 
of the polynomial and the secret is the free coefficient of the polynomial. For 
example, if the polynomial is a random linear function with the secret being the 
free coefficient, any two participants/channels can reveal the secret, but a single 
participant/channel has absolutely no information on the secret. Polynomials with 
greater degrees used over many channels may imply more trust in the aggregated 
identification, authentication, and secrecy while allowing several of the channels to 
be blocked or even to corrupt the information conveyed through them.

7. Authentication bay

Identifying and authenticating an entity in the physical world by the digital 
world are the biggest challenges in information security. Having secured robust 
and reliable identification and authentication of a person, an institute, a company, 
or a device are the first chain in securing digital representation and processing of 
information. For example, a bank client needs to be identified and authenticated for 
performing digital operations on their account. The linkage between the physical 
entity and the digital representation of an entity allows processing of digital and 
physical assets in the computers and the Internet.

The need for identification and authentication of an entity started before com-
puters exist. Certificates signed by trusted authorities were used by governments 
to monitor the activity of the society, to enable law and order. Certificates used to 
authenticate entities were and are part of business infrastructure. The procedures 
used to authenticate an entity were and are defined by societies. A newborn child 
does not need a certificate to be born, obviously when the child is born at home. 
Moreover, a newborn may not have a certificate with identifying details, including 
identifying number, without enforcing society’s regulations. Some societies pay 
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parents of newborns when they register the child, an attractive payment that almost 
ensures that newborn will be registered.

In the scope of people, biometric identifications, by using fingerprints, face 
recognition, iris, and palm, are becoming standard. The identification starts with 
the registration process in which there is a need to identify and link the person 
with the biometric information recorded during the registration process. This is an 
error-prone process that encapsulates the challenge in the authentication bay. There 
is a need for a trusted authority (e.g., government, banks) or trusted manufacturer 
(e.g., Apple, Samsung) to collect biometric samples while authenticating the person 
by other means (e.g., driving license, passport) and digitally link them in a digital 
record. The actual biometric sampling would be better stored in a form of one-way 
hash, just like passwords; otherwise, they can be copied and used without the 
actual involvement of the biometric identification device (e.g., fingerprint reader, 
camera). Keeping the biometric database private and secure is another challenging 
task, as once a biometric data is leaked to untrusted entities, the search for confus-
ing biometric data to fake identification can be feasible.

Moreover, current technologies for identifying a person biometrically are not 
perfect. Biometric identifications have false positives, when a non-authorized 
person is identified as another authorized person and performs an action they are 
not allowed to perform. Biometric identifications also have false negatives, when 
a person is not correctly identified as the person registered and cannot perform 
actions they are authorized to take. DNA identification will also be possible in the 
near future; still identical twins share the same DNA.

Having unique attributes is only one facet of the identification and authentica-
tion process, as there should be trust in the digital identification and authorization 
process. For example, consider a program identifying a person having DNA linked 
to the registered digital record of a person with a certain identity number, and then 
send an approval on the check. There are several questions to ask on the program 
actions. Does the program have the means to verify that the input device (e.g., 
fingerprint, camera) observed the person, or is it a mock-up? Were the input device 
compromised and a replay attack performed? Another question is whether the 
program verified the collected data from the input device against the right registra-
tion record or was maybe hacked to output approval with no actual checking. This 
chain of trust is yielded from the trust in the biometric device producer.

In the framework of the Internet of Things (IoT), the identification of things is 
even more challenging, as devices and items tend to be produced identically. Vehicle 
networking is now emerging, and the means to identify a car (by another car) is one 
of the basic ingredients that the trust vehicles have in inter-vehicle communication. 
Recent works suggested to monolithically sign the car description (e.g., driving 
license, color, and brand) and the public key associated with the car description in 
one monolithically signed certificate. The signing authority can be the governmen-
tal vehicle registration [10]. The car description should allow for a unique identifi-
cation by means of an out-of-band channel such as a camera. Note that the identity 
of a device can be challenging; for example, consider two cars of the same model; if 
one exchanges the doors of these cars, does that alter the identity of the car? What 
about changing the engine? And so on.

Another possibility for identifying IoT devices requires trust in the producer, 
which embeds a unique serial identification number, A unique identifying numbers 
in unaltered barcode, QR code, RFID, and ROM that can be used as part of the 
identification and authentication process.

The cloud and blockchain infrastructures enable a new opportunity for repre-
senting each person, entity, and organization by a digital avatar. The avatar, being a 
digital historical record of events, digital assets, and procedures/functions defined 
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record. The actual biometric sampling would be better stored in a form of one-way 
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actual involvement of the biometric identification device (e.g., fingerprint reader, 
camera). Keeping the biometric database private and secure is another challenging 
task, as once a biometric data is leaked to untrusted entities, the search for confus-
ing biometric data to fake identification can be feasible.
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a person is not correctly identified as the person registered and cannot perform 
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chain of trust is yielded from the trust in the biometric device producer.
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even more challenging, as devices and items tend to be produced identically. Vehicle 
networking is now emerging, and the means to identify a car (by another car) is one 
of the basic ingredients that the trust vehicles have in inter-vehicle communication. 
Recent works suggested to monolithically sign the car description (e.g., driving 
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one exchanges the doors of these cars, does that alter the identity of the car? What 
about changing the engine? And so on.
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in unaltered barcode, QR code, RFID, and ROM that can be used as part of the 
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to be executed upon given events. The identity linkage between the avatar and the 
physical entity accumulates trust over time, letting the physical entity monitor the 
possibility of identity theft, as recorded actions for the avatar can be examined by 
the actual entity represented by the avatar.

Fake avatars already exist, and they are represented by profiles in social net-
works, Facebook, LinkedIn, etc., and may interact with persons as bots do. This 
is one light form of identity theft where there may be no real entity linked to the 
avatar. Identity theft has been a trust problem in societies from the years of the bible 
where Jacob represented himself as Esav to Itzhak. Nowadays, the remote actions 
enabled in the digital interaction make the identity theft phenomena a major 
concern.

In some cases, e.g., cryptocurrency, anonymity is an important aspect, as cash 
money, or digital money, appearing in an account had better not carry its history. 
Thus every coin or bill having an identical value. Blockchain associates an account 
with a public key, where the matching private key is held by the owner of a wallet. 
This somewhat anonymous linkage between an entity and digital assets is only by 
the means of the private key. The vulnerability of such a solution erases the famous 
cases of lost/stolen private keys.

Private keys are also a means to sign transactions binding the holder (even 
in court) to the transaction; thus, the way to secure the private key, possibly in 
enclaved memory, is very important. Moreover, having a quantum-safe signature 
is a must, as the bidding is a very important aspect of the trust infrastructure, and 
if the bidding is broken, deniability of actions is possible. A client that transferred 
a million dollars from their account may rightly claim that someone else preformed 
the transfer to this account on their behalf, with no permission.

Another aspect of the authentication bay is the usage of passwords. The illusion 
that passwords can contribute to the security of the communication is misleading. 
Many of the passwords are subject to dictionary attacks. Users tend to forget and 
manage passwords in vulnerable storage, leading to many password lists being 
sold on the black net. The typical password renewal procedure involves password 
reset invocation and a temporal password sent through email. Such single channel 
security is another weak chain in the security infrastructure, a weak chain that may 
dramatically benefit using the multichannel security and authenticity yielded from 
the overlay security concept.

8. Distributed trust, blockchain, beyond social identity

Certificate authorities are a major source of trust for the public key infrastruc-
ture. The certificate authority identifies an entity and signs a certificate that associ-
ates a public key with the entity description. The history of the Internet testifies to 
examples of the vulnerability of the trust associated with certificate authorities. For 
example, private keys that were used to sign certificates were stolen, and significant 
percentage of the Internet were not secure [7, 37]. Recently, Estonia, Canada, and 
other countries started to use distributed trust among several trusted and hetero-
geneous entities as a source for identification. Such distributed trust is enabled by 
blockchain technology [14]. Identity, verified by several trusted entities, possibly 
including governmental, financial, and notary entities, among others, is logged in a 
distributed fashion.

To communicate with an entity, a search of several participants in the distrib-
uted ledger returns contact information for the entity. Using the communication 
channels in the contact information and secret sharing enables the creation of a 
symmetric key. The newly created random symmetric key may, in turn, be used in 

81

Overlay Security: Quantum-Safe Communication over the Internet Infrastructure
DOI: http://dx.doi.org/10.5772/intechopen.86179

employing efficient advanced encryption standard (AES) over a single communi-
cation link. Unlike the functions used in asymmetric encryption, AES is crafted, 
rather than relying on number theory challenge, and believed to imply quantum-
safe encryption. The key length should still be carefully selected to accommodate 
the quadratic speedup of search of Grover’s algorithm [13]. Note that secure hash 
algorithms (SHA) are crafted, similarly to AES, and are also believed to be quantum 
safe, reducing the risk of finding an efficient number theory solution for a natural 
problem, such as discrete logarithm.

9. Quantum-safe signatures

The ability to perform a transaction in an undeniable fashion over the Internet is 
important, especially when financial transactions are executed. Lamport’s one-
time signature [21] is not tied to a particular one-way function. Thus, Lamport’s 
signature can employ secure hash function, such as SHA. The use of Merkle trees 
with multiple private keys in the leaves (leaves that can also be produced by several 
nested hash functions) and the root of the tree serving as the public key yields an 
efficient, quantum-safe signature scheme.

In greater detail, the private key is an array of pairs of random numbers. The first 
random number pair is used to sign the first bit of the message; the second random 
number pair is used to sign the second bit of the message and so on. Note that, for 
reasons of efficiency, typically, the hash of the message is signed instead of signing 
the longer original message. Each random number in each pair is hashed (in fact, 
any other one-way functions can be used instead of hash), and the resulting array 
of hashed values serve as the public key. Once the public key is published in a way 
that links the signing entity to the public key, the construction can serve in signing 
any single binary string, a string that may be the hash of the original message to be 
signed. The actual signature is a sequence of random numbers from the private key, 
one from each pair, attached to the message to be signed. The first random number 
in the signature is the first (second) random number in the first pair if the first bit 
to be signed is zero (one, respectively). Similarly, the second random number in the 
signature is the first (second) random number in the second pair if the first bit to be 
signed is zero (one, respectively) and so on. Since the array of numbers in the public 
key are results of one-way hash function, no one but the producer of the public key 
is able (under standard computation assumptions) to know and expose the right 
portions of the private key. Hence, the signature is binding.

Still, the need to identify an entity and associate the entity to the public key 
is the most challenging stage in authentication. Lamport’s signature essentially 
requires such an identification process for each signature. Fortunately, many of 
Lamport’s signatures may share a single public key, which consists of the roots 
of Merkle tree, one tree for each position of a random number in each pair of the 
private keys. The first positions, representing the private keys used to sign a zero 
value of the strings, consist of random numbers, such that such numbers belonging 
to the first two private keys are concatenated and hashed to yield the value of their 
common parent in the first Merkle tree. Similarly, for the second positions, the two 
random numbers are concatenated and hashed to yield the value of their parent in a 
second Merkle tree and so on. The parent of any such two leaves is concatenated to 
the hash obtained from the next two random numbers that reside in the same posi-
tions in the next two private keys and hashed yielding the value of the grandparent 
of these four values and so on.

A signature will use one of the leaves, where each leaf is connected by a path to 
the roots of Merkle trees, one tree for each random number in the leaf. When using 
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a leaf to sign, the appropriate random number in each pair of the leaf is exposed 
together with the missing hash values that are concatenated in each level of the tree. 
Thus allowing the verifier to check that indeed any revealed random number leads 
to the corresponding value of the Merkle tree root public value.

The root value may be stored with the contact information that resides in the 
blockchain. The contact information with the public value of the root will be added 
to the distributed ledger after the blockchain participants verify and approve the 
identity of the contact information and root value owner.

10. Conclusion

Overlay security combined with distributed trust forms an immediate quantum-
safe alternative to the public key infrastructure. The existing technologies enable 
(1) the use of multi-logical/multi-physical channels to create a random secret at 
will, (2) use of the blockchain distributed ledger as a replacement for single point of 
failure trusted authority, and to (3) produce quantum-safe signatures.

The suggested changes can gradually, seamlessly, and smoothly emerge over 
the existing infrastructure without the need to restructure any component of the 
Internet.

Author details

Shlomi Dolev
Ben-Gurion University of the Negev & Secret Double Octopus Ltd, Israel

*Address all correspondence to: dolev@cs.bgu.ac.il

83

Overlay Security: Quantum-Safe Communication over the Internet Infrastructure
DOI: http://dx.doi.org/10.5772/intechopen.86179

References

[1] Adrian D, Bhargavan K, Durumeric Z, 
Pierrick G, Green M, Halderman JA, et al. 
Imperfect forward secrecy: How Diffie-
Hellman fails in practice. In: CCS’15. 2015

[2] Agrawal M, Kayal N, Saxena N.  
PRIMES is in P. Annals of Mathematics. 
2004;160(2):781-793

[3] Bennett CH, Brassard G. Quantum 
cryptography: Public key distribution 
and coin tossing. In: Proceedings of IEEE 
International Conference on Computers, 
Systems and Signal Processing. Vol. 175. 
New York; 1984. p. 8

[4] Bernstein JB, Heninger N, Lou P,  
Valenta L. Post-Quantum RSA. 
International Workshop on Post-
Quantum Cryptography. 2017. 
pp. 311-329. A Preview of Bristlecone, 
Google’s New Quantum Processor. 
Available from: https://ai.googleblog.
com/2018/03/a-preview-of-bristlecone-
googles-new.html

[5] Blakley GR. Safeguarding 
cryptographic key. In: Managing 
Requirements Knowledge, International 
Workshop on (AFIPS). Vol. 48. 1979. 
pp. 313-317

[6] Canada’s New Partnership with 
Estonia is a Major Digital Government 
Milestone 28/5/18 Max Greenwood More 
can be found here at Techvibs: https://
techvibes.com/2018/05/29/canadas-new-
partnership-with-estonia-is-a-major-
digital-government-milestone

[7] News article, the real security issue 
behind the Comodo hack. CSO from 
IDG By Roger A. Grimes. Available 
from: https://www.csoonline.com/
article/2623707/hacking/the-real-security-
issue-behind-the-comodo-hack.html

[8] Center for quantum computation & 
communication technology, Australian 
research council center of excellence. 
Available from: http://www.cqc2t.org

[9] Diffie W, Hellman ME. New 
directions in cryptography. IEEE 
Transactions on Information Theory. 
1976;22(6):644-654

[10] Dolev S, Panwar N, Segal M.  
Certificating vehicle public key 
with vehicle attributes. 2014. US 
US9769658B2

[11] D-wave the quantum computing 
company. Available from: https://www.
dwavesys.com/d-wave-two-system

[12] Fedorov AK, Kiktenko E, 
Lvovsky AI. Quantum computers put 
blockchain security at risk. Nature. 
2018;7732(465):563-663

[13] Grover LK. A fast quantum 
mechanical algorithm for database 
search. In: STOC. 1996. pp. 212-219

[14] Gheorghiu V, Gorbunov S, Mosca 
M, Munson M. Quantum Proofing 
the Blockchain. Blockchain Research 
Institute: University of Waterloo; 2017

[15] Google Tests Post-Quantum Crypto 
Quantum Computing Will Shred Current 
Crypto Systems, Experts Warn Jeremy 
Kirk • July 11, 2016. Available from: 
https://www.bankinfosecurity.com/
google-adds-quantum-computing-
armor-to-chrome-a-9253

[16] Available from: https://
ai.googleblog.com/2018/03/a-preview-
of-bristlecone-googles-new.html

[17] Herrero-Collantes M, Garcia-
Escartin JC. Quantum random number 
generators. Reviews of Modern Physics. 
2017;89(1):015004

[18] IBM Raises the Bar with a 
50-Qubit Quantum Computer. MIT 
technology review. Available from: 
https://www.technologyreview.
com/s/609451/ibm-raises-the-bar-
with-a-50-qubit-quantum-computer



Modern Cryptography – Current Challenges and Solutions

82

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

a leaf to sign, the appropriate random number in each pair of the leaf is exposed 
together with the missing hash values that are concatenated in each level of the tree. 
Thus allowing the verifier to check that indeed any revealed random number leads 
to the corresponding value of the Merkle tree root public value.

The root value may be stored with the contact information that resides in the 
blockchain. The contact information with the public value of the root will be added 
to the distributed ledger after the blockchain participants verify and approve the 
identity of the contact information and root value owner.

10. Conclusion

Overlay security combined with distributed trust forms an immediate quantum-
safe alternative to the public key infrastructure. The existing technologies enable 
(1) the use of multi-logical/multi-physical channels to create a random secret at 
will, (2) use of the blockchain distributed ledger as a replacement for single point of 
failure trusted authority, and to (3) produce quantum-safe signatures.

The suggested changes can gradually, seamlessly, and smoothly emerge over 
the existing infrastructure without the need to restructure any component of the 
Internet.
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Abstract

In this chapter, we study the MOR cryptosystem with symplectic and orthogonal
groups over finite fields of odd characteristics. There are four infinite families of
finite classical Chevalley groups. These are special linear groups SL(d, q), orthogo-
nal groups O(d, q), and symplectic groups Sp(d, q). The family O(d, q) splits into
two different families of Chevalley groups depending on the parity of d. The MOR
cryptosystem over SL(d, q) was studied by the second author. In that case, the
hardness of the MOR cryptosystem was found to be equivalent to the discrete
logarithm problem in Fqd . In this chapter, we show that the MOR cryptosystem over
Sp(d, q) has the security of the discrete logarithm problem in Fqd . However, it seems
likely that the security of the MOR cryptosystem for the family of orthogonal
groups is Fqd2 . We also develop an analog of row-column operations in symplectic

and orthogonal groups which is of independent interest as an appendix.
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1. Introduction

Public-key cryptography is the backbone of this modern society. However with
recent advances in quantum computers and its possible implication to factoring
integers and solving the discrete logarithm problems, it seems that we are left with
no secure cryptographic primitive. So it seems prudent that we set out in search for
new cryptographic primitives and subsequently new cryptosystems. The obvious
question is: how to search and where to look? One can look into several well-known
hard problems in Mathematics and hope to create a trap-door function, or one can
try to generalize the known, trusted cryptosystems.

This chapter is in the direction of generalizing a known cryptosystem with the
hope that something practical and useful will come out of this generalization. A new
but arbitrary cryptosystem might not be considered by the community as a secure
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question is: how to search and where to look? One can look into several well-known
hard problems in Mathematics and hope to create a trap-door function, or one can
try to generalize the known, trusted cryptosystems.
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hope that something practical and useful will come out of this generalization. A new
but arbitrary cryptosystem might not be considered by the community as a secure
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cryptosystem for decades. So our approach is conservative but practical. Several
such approaches were earlier made by many eminent mathematicians. To name a
few, Maze et al. [1, 2] developed SAP and Shpilrain and Zapata developed CAKE,
both work in non-abelian structures. There is an interesting cryptosystem in the
work of Climent et al. [3]. We further recommend the work of Grogoriev et al. [4]
and Roman’kov [5].

The cryptosystem that we have in mind is the MOR cryptosystem [6–9]. In Section
2, we describe the MOR cryptosystem in details. It is a simple but powerful gener-
alization of the well-known and classic ElGamal cryptosystem. In this cryptosys-
tem, the discrete logarithm problem works in the automorphism group of a group
instead of the group. As a matter of fact, it can work in the automorphism group of
most algebraic structures. However, we will limit ourselves to finite groups. One
way to look at the MOR cryptosystem is that it generalizes the discrete logarithm
problem from a cyclic (sub)group to an arbitrary group.

The MOR cryptosystem over SL(d, q) was studied earlier [6] and cryptanalyzed
by Monico [10]. It became clear that working with matrix groups of size d over Fq

and with automorphisms that act by conjugation, like the inner automorphisms,
there are two possible reductions of the security to finite fields. It is the security of
the discrete logarithm problem in Fqd or Fqd2 ([6], Section 7). This reduction is

similar to the embedding of the discrete logarithm problem in the group of rational
points of an elliptic curve to a finite field; the degree of the extension of that field
over the field of definition of the elliptic curve is called the embedding degree. In the
case of SL(d, q), it became the security of Fqd . The reason that we undertook this
study is to see if the security in other classical Chevalley groups is Fqd or Fqd2 .

In cryptography, it is often hard to come up with theorems about security of a
cryptosystem. However, at this moment it seems likely that the security of the
MOR cryptosystem in orthogonal groups O(d, q) is Fqd2 . The way we implement this

cryptosystem is by solving the word problem in generators. It presents no
advantage to small characteristic. In the light of Joux’s [11] improvement of the
index-calculus attack in small characteristic, this contribution of the MOR
cryptosystem is remarkable.

In summary, the proposed MOR cryptosystem is totally different from the
known ElGamal cryptosystems from a functional point of view. Its implementation
depends on Gaussian elimination and substitutions (substituting a matrix for a
word in generators). However, we do have a concrete and tangible understanding of
its security. It is clear from this work that the MOR cryptosystem over classical
groups is not quantum-secure. However, for other groups like solvable groups, the
answer is not known and could be a topic of further research.

1.1 Structure of the chapter

This chapter is an interplay between computational group theory and public-key
cryptography, in particular the MOR cryptosystem, and is thus interdisciplinary in
nature. In this chapter, we study the MOR cryptosystem using the orthogonal and
symplectic groups over finite fields of odd characteristic.

In Section 2, we describe the MOR cryptosystem in some details. We
emphasize that the MOR cryptosystem is a natural generalization of the classic
ElGamal cryptosystem. In Section 3, we describe the orthogonal and symplectic
groups and their automorphisms. In Appendix A, we describe few new
algorithms. These algorithms use row-column operations to write an element in
classical groups as a word in generators. This is very similar to the Gaussian
elimination algorithm for special linear groups. These algorithms are vital to the
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implementation of the MOR cryptosystem. These algorithms are also of independent
interest in computational group theory.

1.2 Notations and terminology

It was bit hard for us to pick notations for this chapter. The notations used by a
Lie group theorist is somewhat different from that of a computational group theo-
rist. We tried to preserve the essence of notations as much as possible. For example,
a Lie group theorist will use SLlþ1 qð Þ to denote what we will denote by SL lþ 1; qð Þ or
SL d; qð Þ. We have used TX to denote the transpose of the matrix X. This was
necessary to avoid any confusion that might arise when using X�1 and TX simulta-
neously. In this chapter, we use K and Fq interchangeably, while each of them is a
finite field of odd characteristic. However, in the appendix the field k is
unrestricted. The matrix teij is used to denote the matrix unit with t in the i; jð Þth
place and zero everywhere else. We will often use xr tð Þ as generators, a notation
used in the theory of Chevalley groups. Here r is a short hand for i; jð Þ and xr tð Þ are
defined in Tables A1, A3, A5, and A7. We often refer to the orthogonal group as
O d; qð Þ, specifically, the split orthogonal group as Oþ 2l; qð Þ or Oþ 2lþ 1; qð Þ and the
twisted orthogonal group as O� 2l; qð Þ. All other notations used are standard.

2. The MOR cryptosystem

The MOR cryptosystem is a natural generalization of the classic ElGamal cryp-
tosystem. It was first proposed by Paeng et al. [9]. To elaborate the idea behind a
MOR cryptosystem, we take a slightly expository route. For the purpose of this
exposition, we define the discrete logarithm problem. It is one of the most com-
mon cryptographic primitive in use. It works in any cyclic (sub)group G ¼ gh i but
is not secure in any cyclic group.

Definition 2.1 (The discrete logarithm problem). The discrete logarithm problem
in G ¼ gh i, given g and gm, find m.

The word “find” in the above definition is bit vague, in this chapter we mean
compute m. The hardness to solve the discrete logarithm problem depends on the
presentation of the group and is not an invariant under isomorphism. It is believed
that the discrete logarithm problem is secure in the multiplicative group of a finite
field and the group of rational points of an elliptic curve.

A more important cryptographic primitive, related to the discrete logarithm
problem, is theDiffie-Hellman problem, also known as the computational Diffie-
Hellman problem.

Definition 2.2 (Diffie-Hellman problem). Given g, gm1 , and gm2 , find gm1m2 .
It is clear; if one solves the discrete logarithm problem, then the Diffie-Hellman

problem is solved as well. The other direction is not known.
The most prolific cryptosystem in use today is the ElGamal cryptosystem. It uses

the cyclic group G ¼ gh i. It is defined as follows:

2.1 The ElGamal cryptosystem

A cyclic group G ¼ gh i is public.

• Public-key: Let g and gm be public.

• Private-key: The integer m be private.
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ElGamal cryptosystem. In Section 3, we describe the orthogonal and symplectic
groups and their automorphisms. In Appendix A, we describe few new
algorithms. These algorithms use row-column operations to write an element in
classical groups as a word in generators. This is very similar to the Gaussian
elimination algorithm for special linear groups. These algorithms are vital to the
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implementation of the MOR cryptosystem. These algorithms are also of independent
interest in computational group theory.

1.2 Notations and terminology

It was bit hard for us to pick notations for this chapter. The notations used by a
Lie group theorist is somewhat different from that of a computational group theo-
rist. We tried to preserve the essence of notations as much as possible. For example,
a Lie group theorist will use SLlþ1 qð Þ to denote what we will denote by SL lþ 1; qð Þ or
SL d; qð Þ. We have used TX to denote the transpose of the matrix X. This was
necessary to avoid any confusion that might arise when using X�1 and TX simulta-
neously. In this chapter, we use K and Fq interchangeably, while each of them is a
finite field of odd characteristic. However, in the appendix the field k is
unrestricted. The matrix teij is used to denote the matrix unit with t in the i; jð Þth
place and zero everywhere else. We will often use xr tð Þ as generators, a notation
used in the theory of Chevalley groups. Here r is a short hand for i; jð Þ and xr tð Þ are
defined in Tables A1, A3, A5, and A7. We often refer to the orthogonal group as
O d; qð Þ, specifically, the split orthogonal group as Oþ 2l; qð Þ or Oþ 2lþ 1; qð Þ and the
twisted orthogonal group as O� 2l; qð Þ. All other notations used are standard.

2. The MOR cryptosystem

The MOR cryptosystem is a natural generalization of the classic ElGamal cryp-
tosystem. It was first proposed by Paeng et al. [9]. To elaborate the idea behind a
MOR cryptosystem, we take a slightly expository route. For the purpose of this
exposition, we define the discrete logarithm problem. It is one of the most com-
mon cryptographic primitive in use. It works in any cyclic (sub)group G ¼ gh i but
is not secure in any cyclic group.

Definition 2.1 (The discrete logarithm problem). The discrete logarithm problem
in G ¼ gh i, given g and gm, find m.

The word “find” in the above definition is bit vague, in this chapter we mean
compute m. The hardness to solve the discrete logarithm problem depends on the
presentation of the group and is not an invariant under isomorphism. It is believed
that the discrete logarithm problem is secure in the multiplicative group of a finite
field and the group of rational points of an elliptic curve.

A more important cryptographic primitive, related to the discrete logarithm
problem, is theDiffie-Hellman problem, also known as the computational Diffie-
Hellman problem.

Definition 2.2 (Diffie-Hellman problem). Given g, gm1 , and gm2 , find gm1m2 .
It is clear; if one solves the discrete logarithm problem, then the Diffie-Hellman

problem is solved as well. The other direction is not known.
The most prolific cryptosystem in use today is the ElGamal cryptosystem. It uses

the cyclic group G ¼ gh i. It is defined as follows:

2.1 The ElGamal cryptosystem

A cyclic group G ¼ gh i is public.

• Public-key: Let g and gm be public.

• Private-key: The integer m be private.
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Encryption:
To encrypt a plaintext M∈G, get an arbitrary integer r∈ 1; jGj½ � and compute gr

and grm. The ciphertext is gr;M grmð Þ.
Decryption:
After receiving the ciphertext gr;M grmð Þ, the user uses the private-key m. So she

computes gmr from gr and then computes M.
It is well known that the hardness of the ElGamal cryptosystem is equivalent to

the Diffie-Hellman problem ([12], Proposition 2.10).

2.2 The MOR cryptosystem

In the case of the MOR cryptosystem, one works with the automorphism group
of a group. An automorphism group can be defined on any algebraic structure, and
subsequently a MOR cryptosystem can also be defined on that automorphism
group; however, in this chapter we restrict ourselves to finite groups. Furthermore,
we look at classical groups defined by generators and automorphisms that are
defined as actions on those generators.

Let G ¼ g1; g2;…; gs
� �

be a finite group. Let ϕ be a non-identity automorphism.

• Public-key: Let ϕ gi
� �� �s

i¼1 and ϕm gi
� �� �s

i¼1 be public.

• Private-key: The integer m is private.

Encryption:
To encrypt a plaintext M∈G, get an arbitrary integer r∈ 1; jϕj½ � and compute ϕr

and ϕrm. The ciphertext is ϕr;ϕrm Mð Þð Þ.
Decryption:
After receiving the ciphertext ϕr;ϕrm Mð Þð Þ, the user knows the private-key m.

So she computes ϕmr from ϕr and then computes M.

Theorem 2.1 The hardness to break the above MOR cryptosystem is equivalent to the
Diffie-Hellman problem in the group ϕh i.

Proof. It is easy to see that if one can break the Diffie-Hellman problem, then one
can compute ϕmr from ϕm in the public-key and ϕr in the ciphertext. This breaks the
system.

On the other hand, observe that the plaintext is ϕ�mr ϕmr Mð Þð Þ. Assume that
there is an oracle that can break the MOR cryptosystem, i.e., given ϕ,ϕm and a
plaintext ϕr; gð Þ will deliver ϕ�mr gð Þ. Now we query the oracle s times with the
public-key and the ciphertext ϕr; gi

� �
for i ¼ 1, 2,…, s. From the output, one can

easily find ϕmr gi
� �

for i ¼ 1, 2,…, s. So we just witnessed that for ϕm and ϕr, one can
compute ϕmr using the oracle. This solves the Diffie-Hellman problem.

In a practical implementation of a MOR cryptosystem, there are two things that
matter the most.

a: The number of generators. As we saw that the automorphism ϕ is presented
as action on generators. Larger the number of generators, bigger is the size of
the public key.

b: Efficient algorithm to solve the word problem. This means that given
G ¼ g1; g2;…; gs

� �
and g∈G, is there an efficient algorithm to write g as word in

g1, g2,…, gs? The reason of this importance is immediate—the automorphisms
are presented as action on generators, and if one has to compute ϕ gð Þ, then the
word problem must be solved.
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The obvious question is: what are the right groups for the MOR cryptosystem? In
this chapter, we pursue a study of the MOR cryptosystem using finite Chevalley
groups of classical type, in particular, orthogonal and symplectic groups.

3. Description of automorphisms of classical groups

This chapter studies the MOR cryptosystem for orthogonal and symplectic
groups over a field of odd characteristics. As we discussed before, MOR cryptosys-
tem is presented as action on generators of the group. Then to use an automorphism
on an arbitrary element, one has to solve the word problem in that group with
respect to that set of generators.

The generators and the Gaussian elimination algorithm to solve the word prob-
lem are described in Appendix A. We will be very brief here.

Let V be a vector space of dimension d over a field K of odd characteristic. Let
β : V � V ! K be a bilinear form. By fixing a basis of V, we can associate a matrix
to β. We shall abuse the notation slightly and denote the matrix of the bilinear form
by β itself. Thus β x; yð Þ¼Txβy, where x, y are column vectors. We will work with
non-degenerate bilinear forms and that means detβ 6¼ 0. A symmetric or skew-
symmetric bilinear form β satisfies β¼Tβ or β ¼ �Tβ, respectively.

Definition 3.1 (Orthogonal group). A square matrix X of size d is called orthogonal
if TXβX ¼ β, where β is symmetric. It is well known that the orthogonal matrices form a
group known as the orthogonal group.

Definition 3.2 (Symplectic group). A square matrix X of size d is called symplectic
if TXβX ¼ β, where β is skew-symmetric. And the set of symplectic matrices form a
symplectic group.

We write the dimension of V as d ¼ 2lþ 1 or d ¼ 2l for l≥ 1. We fix a basis and
index it by 0, 1,…, l, � 1,…, � l in the odd dimension, and in the case of even
dimension where there are two non-degenerate symmetric bilinear forms up to
equivalence, we index the bases by 1, 2,…, l, � 1, � 2,…, � l and
1, � 1, 2,…, l, � 2,…, � l for split and twisted forms, respectively. We consider the
non-degenerate bilinear forms β on V given by the following matrices:

a: The odd-orthogonal group. The form β is symmetric with d ¼ 2lþ 1 and

β ¼
2 0 0

0 0 Il
0 Il 0

0
B@

1
CA.

b: The symplectic group. The form β is skew-symmetric with d ¼ 2l and

β ¼ 0 Il
�Il 0

� �
.

c: The split orthogonal group. The form β is symmetric with d ¼ 2l and

β ¼ 0 Il
Il 0

� �
.

c0: The twisted orthogonal group. The form β is symmetric with d ¼ 2l and

β ¼
β0 0 0

0 0 Il�1
0 Il�1 0

0
B@

1
CA,

where Il is the identity matrix of size l over K and for a fixed non-square ϵ∈K,

β0 ¼
1 0

0 ϵ

� �
.
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Encryption:
To encrypt a plaintext M∈G, get an arbitrary integer r∈ 1; jGj½ � and compute gr

and grm. The ciphertext is gr;M grmð Þ.
Decryption:
After receiving the ciphertext gr;M grmð Þ, the user uses the private-key m. So she

computes gmr from gr and then computes M.
It is well known that the hardness of the ElGamal cryptosystem is equivalent to

the Diffie-Hellman problem ([12], Proposition 2.10).

2.2 The MOR cryptosystem

In the case of the MOR cryptosystem, one works with the automorphism group
of a group. An automorphism group can be defined on any algebraic structure, and
subsequently a MOR cryptosystem can also be defined on that automorphism
group; however, in this chapter we restrict ourselves to finite groups. Furthermore,
we look at classical groups defined by generators and automorphisms that are
defined as actions on those generators.

Let G ¼ g1; g2;…; gs
� �

be a finite group. Let ϕ be a non-identity automorphism.

• Public-key: Let ϕ gi
� �� �s

i¼1 and ϕm gi
� �� �s

i¼1 be public.

• Private-key: The integer m is private.

Encryption:
To encrypt a plaintext M∈G, get an arbitrary integer r∈ 1; jϕj½ � and compute ϕr

and ϕrm. The ciphertext is ϕr;ϕrm Mð Þð Þ.
Decryption:
After receiving the ciphertext ϕr;ϕrm Mð Þð Þ, the user knows the private-key m.

So she computes ϕmr from ϕr and then computes M.

Theorem 2.1 The hardness to break the above MOR cryptosystem is equivalent to the
Diffie-Hellman problem in the group ϕh i.

Proof. It is easy to see that if one can break the Diffie-Hellman problem, then one
can compute ϕmr from ϕm in the public-key and ϕr in the ciphertext. This breaks the
system.

On the other hand, observe that the plaintext is ϕ�mr ϕmr Mð Þð Þ. Assume that
there is an oracle that can break the MOR cryptosystem, i.e., given ϕ,ϕm and a
plaintext ϕr; gð Þ will deliver ϕ�mr gð Þ. Now we query the oracle s times with the
public-key and the ciphertext ϕr; gi

� �
for i ¼ 1, 2,…, s. From the output, one can

easily find ϕmr gi
� �

for i ¼ 1, 2,…, s. So we just witnessed that for ϕm and ϕr, one can
compute ϕmr using the oracle. This solves the Diffie-Hellman problem.

In a practical implementation of a MOR cryptosystem, there are two things that
matter the most.

a: The number of generators. As we saw that the automorphism ϕ is presented
as action on generators. Larger the number of generators, bigger is the size of
the public key.

b: Efficient algorithm to solve the word problem. This means that given
G ¼ g1; g2;…; gs

� �
and g∈G, is there an efficient algorithm to write g as word in

g1, g2,…, gs? The reason of this importance is immediate—the automorphisms
are presented as action on generators, and if one has to compute ϕ gð Þ, then the
word problem must be solved.
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The obvious question is: what are the right groups for the MOR cryptosystem? In
this chapter, we pursue a study of the MOR cryptosystem using finite Chevalley
groups of classical type, in particular, orthogonal and symplectic groups.

3. Description of automorphisms of classical groups

This chapter studies the MOR cryptosystem for orthogonal and symplectic
groups over a field of odd characteristics. As we discussed before, MOR cryptosys-
tem is presented as action on generators of the group. Then to use an automorphism
on an arbitrary element, one has to solve the word problem in that group with
respect to that set of generators.

The generators and the Gaussian elimination algorithm to solve the word prob-
lem are described in Appendix A. We will be very brief here.

Let V be a vector space of dimension d over a field K of odd characteristic. Let
β : V � V ! K be a bilinear form. By fixing a basis of V, we can associate a matrix
to β. We shall abuse the notation slightly and denote the matrix of the bilinear form
by β itself. Thus β x; yð Þ¼Txβy, where x, y are column vectors. We will work with
non-degenerate bilinear forms and that means detβ 6¼ 0. A symmetric or skew-
symmetric bilinear form β satisfies β¼Tβ or β ¼ �Tβ, respectively.

Definition 3.1 (Orthogonal group). A square matrix X of size d is called orthogonal
if TXβX ¼ β, where β is symmetric. It is well known that the orthogonal matrices form a
group known as the orthogonal group.

Definition 3.2 (Symplectic group). A square matrix X of size d is called symplectic
if TXβX ¼ β, where β is skew-symmetric. And the set of symplectic matrices form a
symplectic group.

We write the dimension of V as d ¼ 2lþ 1 or d ¼ 2l for l≥ 1. We fix a basis and
index it by 0, 1,…, l, � 1,…, � l in the odd dimension, and in the case of even
dimension where there are two non-degenerate symmetric bilinear forms up to
equivalence, we index the bases by 1, 2,…, l, � 1, � 2,…, � l and
1, � 1, 2,…, l, � 2,…, � l for split and twisted forms, respectively. We consider the
non-degenerate bilinear forms β on V given by the following matrices:

a: The odd-orthogonal group. The form β is symmetric with d ¼ 2lþ 1 and

β ¼
2 0 0

0 0 Il
0 Il 0

0
B@

1
CA.

b: The symplectic group. The form β is skew-symmetric with d ¼ 2l and

β ¼ 0 Il
�Il 0

� �
.

c: The split orthogonal group. The form β is symmetric with d ¼ 2l and

β ¼ 0 Il
Il 0

� �
.

c0: The twisted orthogonal group. The form β is symmetric with d ¼ 2l and

β ¼
β0 0 0

0 0 Il�1
0 Il�1 0

0
B@

1
CA,

where Il is the identity matrix of size l over K and for a fixed non-square ϵ∈K,

β0 ¼
1 0

0 ϵ

� �
.
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We now describe the automorphism group of the orthogonal and symplectic
groups. This helps us in picking the right set of automorphisms for the MOR
cryptosystem.

Definition 3.3 (Orthogonal similitude group). The orthogonal similitude group is
defined as the set of matrices X of size d as

GO d; qð Þ ¼ X ∈GL d; qð ÞjTXβX ¼ μβ; μ∈F�q
n o

,

where d ¼ 2lþ 1 or 2l and β is of type a, c, or c0, respectively.
Definition 3.4 (Symplectic similitude group). The symplectic similitude group is

defined as

GSp 2l; qð Þ ¼ X ∈GL 2l; qð ÞjTXβX ¼ μβ; μ∈F�q
n o

,

where β is of type b.
Here μ depends on the matrix X and is called the similitude factor. The simili-

tude factor μ defines a group homomorphism from the similitude group to F�q , and
the kernel is the orthogonal group O d; qð Þ when β is symmetric and symplectic
group Sp 2l; qð Þ and when β is skew-symmetric, respectively ([13], Section 12). Note
that scalar matrices λI for λ∈F�q belong to the center of similitude groups. The
similitude groups are analog of what GL d; qð Þ is for SL d; qð Þ. For a discussion of the
diagonal automorphisms of Chevalley groups, we need the diagonal subgroups of
the similitude groups.

Definition 3.5 (Diagonal group). The diagonal groups are defined to be the group of
non-singular diagonal matrices in the corresponding similitude group and are as follows:
in the case of GO 2lþ 1; qð Þ, it is

diag α; λ1;…; λl; μλ
�1
1 ;…; μλ�1l

� �jλ1;…; λl; α
2 ¼ μ∈F�q

n o
,

and in the case of GO 2l; qð Þ and GSp 2l; qð Þ, it is

diag λ1;…; λl; μλ
�1
1 ;…; μλ�1l

� �jλ1;…; λl; μ∈F�q
n o

:

Conjugation by these diagonal elements produces diagonal automorphisms in
the respective Chevalley groups. To build a MOR cryptosystem, we need to work
with the automorphism group of Chevalley groups. In this section we describe the
automorphism group of classical groups following Dieudonne [14].

Conjugation automorphisms: If N is a normal subgroup of a group G, then the
conjugation maps n↦gng�1 for n∈N and g∈G are called conjugation automor-
phisms of G. In particular, both inner automorphisms and diagonal automorphisms
are examples of conjugation automorphisms.

Central automorphisms: Let χ : G! Z Gð Þ be a homomorphism to the center of
the group. Then the map g↦χ gð Þg is an automorphism of G, known as the central
automorphism. There are no nontrivial central automorphisms for perfect groups,
for example, the Chevalley groups SL lþ 1;Kð Þ and Sp 2l;Kð Þ, ∣K∣ ≥ 4, and l≥ 2. In
the case of orthogonal group, the center is of two elements I;�If g, where I is the
identity matrix. This implies that there are at most four central automorphisms in
this case.

Field automorphisms: Let f ∈Aut Kð Þ. In terms of matrices, field automor-
phisms amount to replacing each term of the matrix by its image under f.
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Graph automorphisms: A symmetry of Dynkin diagram induces such auto-
morphisms. This way we get automorphisms of order 2 for SL lþ 1;Kð Þ and l≥ 2 and
Oþ 2l;Kð Þ and l≥4. We also get an automorphisms of order 3 for Oþ 4;Kð Þ.

In the case of SL(d, q) for d≥ 3, the map x↦A�1Tx�1A, where

A ¼

0 ⋯ 0 0 0 1

0 ⋯ 0 0 �1 0

0 ⋯ 0 1 0 0

0 ⋯ �1 0 0 0

⋮ ⋰ ⋮ ⋮ ⋮ ⋮
�1ð Þl�1 ⋯ 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA

explicitly describes the graph automorphism.
In the case of O(2l, q) for l≥ 5, the graph automorphism is given by x↦B�1xB

where B is a permutation matrix obtained from identity matrix of size 2l� 2l
by switching the lth row and �lth row. This automorphism is a conjugating
automorphism.

Theorem 3.1 (Dieudonne). Let K be a field of odd characteristic and l≥ 2.
1. For the group SL lþ 1;Kð Þ, any automorphism is of the form ιγθ where ι is a

conjugation automorphism defined by elements of GL lþ 1;Kð Þ and γ is a graph
automorphism for the special linear group.

2. For the group Oþ d;Kð Þ, any automorphism is of the form cχιθ where cχ is a
central automorphism and ι is a conjugation automorphism by elements of
GOþ d;Kð Þ (this includes the graph automorphism of even-orthogonal groups).

3. For the group O� d;Kð Þ, any automorphism is of the form ιθ, where ι is a
conjugation automorphism by elements of GO� d;Kð Þ.

4. For the group Sp 2l;Kð Þ, any automorphism is of the form ιθ where ι is a
conjugation automorphism by elements of GSp 2l;Kð Þ.

In all cases θ denotes a field automorphism.
For a proof of the above theorem, see [26], Theorems 30 and 36. In the above

theorem, conjugation automorphisms are given by conjugation by elements of a
larger group, and it includes the group of inner automorphisms. We introduce
diagonal automorphisms to make it more precise. The conjugation automorphisms ι
can be written as a product of ιg and η where ιg is an inner automorphism and η is a
diagonal automorphism.

Diagonal automorphisms: In the definition of the conjugating automorphism,
when the conjugating element is from the similitude group but not in the group we
get a diagonal automorphism. In the case of special linear groups, diagonal auto-
morphisms are given by conjugation by diagonal elements of PGL(l + 1, q) on
PGL(l + 1, q). In the case of symplectic and orthogonal groups, diagonal automor-
phisms are given by conjugation by corresponding diagonal group elements defined
in Definition 3.5.

4. Security of the proposed MOR cryptosystem

The purpose of this section is to show that for a secure MOR cryptosystem over
the classical Chevalley and twisted orthogonal groups, we have to look at automor-
phisms that act by conjugation like the inner automorphisms. There are other
automorphisms that also act by conjugation, like the diagonal automorphism and
the graph automorphism for odd-order orthogonal groups. Then we argue what is
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We now describe the automorphism group of the orthogonal and symplectic
groups. This helps us in picking the right set of automorphisms for the MOR
cryptosystem.

Definition 3.3 (Orthogonal similitude group). The orthogonal similitude group is
defined as the set of matrices X of size d as

GO d; qð Þ ¼ X ∈GL d; qð ÞjTXβX ¼ μβ; μ∈F�q
n o

,

where d ¼ 2lþ 1 or 2l and β is of type a, c, or c0, respectively.
Definition 3.4 (Symplectic similitude group). The symplectic similitude group is

defined as

GSp 2l; qð Þ ¼ X ∈GL 2l; qð ÞjTXβX ¼ μβ; μ∈F�q
n o

,

where β is of type b.
Here μ depends on the matrix X and is called the similitude factor. The simili-

tude factor μ defines a group homomorphism from the similitude group to F�q , and
the kernel is the orthogonal group O d; qð Þ when β is symmetric and symplectic
group Sp 2l; qð Þ and when β is skew-symmetric, respectively ([13], Section 12). Note
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similitude groups are analog of what GL d; qð Þ is for SL d; qð Þ. For a discussion of the
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Definition 3.5 (Diagonal group). The diagonal groups are defined to be the group of
non-singular diagonal matrices in the corresponding similitude group and are as follows:
in the case of GO 2lþ 1; qð Þ, it is

diag α; λ1;…; λl; μλ
�1
1 ;…; μλ�1l

� �jλ1;…; λl; α
2 ¼ μ∈F�q

n o
,

and in the case of GO 2l; qð Þ and GSp 2l; qð Þ, it is

diag λ1;…; λl; μλ
�1
1 ;…; μλ�1l

� �jλ1;…; λl; μ∈F�q
n o

:

Conjugation by these diagonal elements produces diagonal automorphisms in
the respective Chevalley groups. To build a MOR cryptosystem, we need to work
with the automorphism group of Chevalley groups. In this section we describe the
automorphism group of classical groups following Dieudonne [14].

Conjugation automorphisms: If N is a normal subgroup of a group G, then the
conjugation maps n↦gng�1 for n∈N and g∈G are called conjugation automor-
phisms of G. In particular, both inner automorphisms and diagonal automorphisms
are examples of conjugation automorphisms.

Central automorphisms: Let χ : G! Z Gð Þ be a homomorphism to the center of
the group. Then the map g↦χ gð Þg is an automorphism of G, known as the central
automorphism. There are no nontrivial central automorphisms for perfect groups,
for example, the Chevalley groups SL lþ 1;Kð Þ and Sp 2l;Kð Þ, ∣K∣ ≥ 4, and l≥ 2. In
the case of orthogonal group, the center is of two elements I;�If g, where I is the
identity matrix. This implies that there are at most four central automorphisms in
this case.

Field automorphisms: Let f ∈Aut Kð Þ. In terms of matrices, field automor-
phisms amount to replacing each term of the matrix by its image under f.
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where B is a permutation matrix obtained from identity matrix of size 2l� 2l
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2. For the group Oþ d;Kð Þ, any automorphism is of the form cχιθ where cχ is a
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theorem, conjugation automorphisms are given by conjugation by elements of a
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morphisms are given by conjugation by diagonal elements of PGL(l + 1, q) on
PGL(l + 1, q). In the case of symplectic and orthogonal groups, diagonal automor-
phisms are given by conjugation by corresponding diagonal group elements defined
in Definition 3.5.

4. Security of the proposed MOR cryptosystem

The purpose of this section is to show that for a secure MOR cryptosystem over
the classical Chevalley and twisted orthogonal groups, we have to look at automor-
phisms that act by conjugation like the inner automorphisms. There are other
automorphisms that also act by conjugation, like the diagonal automorphism and
the graph automorphism for odd-order orthogonal groups. Then we argue what is
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the hardness of our security assumptions. We denote the split orthogonal group by
Oþ 2l; qð Þ and twisted orthogonal group by O� 2l; qð Þ. Now onwards O(2l,q) means
either split or twisted orthogonal group and we will specify whenever required.

Let ϕ be an automorphism of one of the classical Chevalley groups G:
SL lþ 1; qð Þ,O 2lþ 1; qð Þ, Sp 2l; qð Þ, or O 2l; qð Þ. From Theorem 3.1, we know that
ϕ ¼ cχιηγθ where cχ is a central automorphism, ι is an inner automorphism, η is a
diagonal automorphism, γ is a graph automorphism, and θ is a field automorphism.

The group of central automorphisms are too small and the field automorphisms
reduce to a discrete logarithm in the field Fq. So there is no benefit of using these in
a MOR cryptosystem. Also there are not many graph automorphisms in classical
Chevalley and twisted orthogonal groups other than special linear groups and odd-
order orthogonal groups. In the odd-order orthogonal groups, these automorphisms
act by conjugation. Recall here that our automorphisms are presented as action on
generators. It is clear ([6], Section 7) that if we can recover the conjugating matrix
from the action on generators, the security is a discrete logarithm problem in Fqd , or
else the security is a discrete logarithm problem in Fqd2 .

So from these we conclude that for a secure MOR cryptosystem, we must look at
automorphisms that act by conjugation, like the inner automorphisms. Inner auto-
morphisms form a normal subgroup of Aut Gð Þ and usually constitute the bulk of
automorphisms. If ϕ is an inner automorphism, say ιg : x↦gxg�1, we would like to
determine the conjugating element g. For the special linear group, it was done in [6].
We will follow the steps there for the present situation too. However, before we do
that, let us digress briefly to observe that G! Inn Gð Þ given by g↦ιg is a surjective
group homomorphism. Thus if G is generated by g1, g2,…, gs, then Inn Gð Þ is gener-
ated by ιg1 ,…, ιgs . Let ϕ∈ Inn Gð Þ. If we can find gj, j∈ 1; 2;…; sf g generators, such
that ϕ ¼ Qj ιgj , then ϕ ¼ ιg where g ¼Qj gj. This implies that our problem is equiv-
alent to solving the word problem in Inn Gð Þ. Note that solving word problem
depends on how the group is presented and it is not invariant under group homo-
morphisms. Thus the algorithm described earlier to solve the word problem in the
classical Chevalley and twisted orthogonal groups does not help us in the present
case.

In what follows, we will use generators xr tð Þ, where r ¼ i; jð Þ; i 6¼ j, 1≤ i, j≤ d
for the special linear group. For symplectic group r ¼ i; jð Þ; i, j∈ �1;�2;…;�lf g. For
the even-orthogonal group, r ¼ i; jð Þ; i, j∈ �1;�2;…;�lf g; � i 6¼ �j. For the odd-
orthogonal group r ¼ i; jð Þ; � l≤ i≤ l  and  j∈ �1;�2;…� lf g; � i 6¼ �j. These are
the Chevalley generators for the Chevalley groups we are dealing with and are
described in details in Tables A1, A5, A3, and A7 in the Appendix.

4.1 Reduction of security

In this subsection, we show that for special linear and symplectic groups, the
security of the MOR cryptosystem is the hardness of the discrete logarithm problem
in Fqd . This is the same as saying that we can find the conjugating matrix up to a
scalar multiple. We further show that the method that works for special linear and
symplectic groups does not work for orthogonal groups.

Let ϕ be an automorphism that works by conjugation, i.e., ϕ ¼ ιg, for some g, and
we try to determine g.

Step 1: The automorphism ϕ is presented as action on generators xr tð Þ.
Thus ϕ xr tð Þð Þ ¼ g I þ terð Þg�1 ¼ I þ tger g

�1. This implies that we know ger g
�1 for

all possible r. We first claim that we can determineN = gDwhereD is sparse, in fact,
diagonal in the case of special linear and symplectic groups.
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In the case of special linear groups, write g ¼ G1;…;Gi;…;Gd½ �, where Gi are
column vectors of g. Then gei, j ¼ G1;…;Gd½ �ei, j ¼ 0;…;0;Gi;0…;0½ � where Gi is at

the jth place. Multiplying this with g�1 on the right, i.e., computing gei, j g
�1, deter-

mines Gi up to a scalar multiple di (say). Thus, we know N ¼ gD where
D ¼ diag d1;…; dlþ1ð Þ.

For the symplectic groups, we do the similar computation with the generators
I þ tei,�i and I þ te�i, i. Write g in the column form as G1;…Gl;G�1;…;G�l½ �. Now,

1. G1;…Gl;G�1;…;G�l½ �ei,�i ¼ 0;…;0;Gi;0;…;0½ � where Gi is at �ith place.
Multiplying this further with g�1 gives us scalar multiple of Gi, say diGi.

2. G1;…Gl;G�1;…;G�l½ �e�i, i ¼ 0;…;0;G�i;0;…;0½ � where G�i is at ith place.
Multiplying this with g�1 gives us scalar multiple of G�i, say d�iGi.

Thus we get N ¼ gD where D is a diagonal matrix diag d1;…; dl; d�1;…; d�lð Þ.
Step 2: Compute N�1ϕ xr tð Þð ÞN ¼ D�1g�1 gxr tð Þg�1

� �
gD ¼ I þD�1erD which is

equivalent to computing D�1erD.
In the case of special linear groups, we have D a diagonal. Thus by computing

D�1ei, jD, we determine d�1i dj for i 6¼ j and form a matrix diag 1; d�12 d1;…; d�1l d1
� �

,
and multiplying this to N, we get d1 g. Hence we can determine g up to a scalar
matrix.

For symplectic groups, we can do similar computation as D is diagonal. First
compute D�1 ei, j � e�j,�i

� �
D to get d�1i dj and d�1�i d�j for i 6¼ j. Now compute

D�1ei,�iD,D�1e�i, iD to get did
�1
�i , d�id

�1
i . We form a matrix

diag 1; d�12 d1;…; d�1l d1; d
�1
�1d�2:d

�1
�2d2:d

�1
2 d1;…; d�1�l d�1:d

�1
�1d1

� �

and multiply it to N ¼ gD to get d1g. Thus we can determine g up to a scalar
multiple say ag. Similarly we can determine gm up to a scalar multiple say bgm. Now,
compute agð Þq�1 ¼ gq�1 and bgmð Þq�1 ¼ gmð Þq�1, and then we can recover m by
solving the discrete logarithm in the matrices using Menezes and Wu’s idea [15].
However, if we choose g such that gq�1 ¼ 1, then it seems that we might avoid this
line of attack. We can bypass this argument by recovering the scalars a and b, and
then to determine m, we compute the discrete logarithm in gh i using Menezes and
Wu’s idea. We prove the following proposition.

Proposition 4.1 Given any g∈ Sp d; qð Þ up to scalar multiple ag, a∈Fq. If
gcd d; q� 1ð Þ ¼ 1, we can determine the scalar a. Otherwise one can find the scalar a by
solving a discrete logarithm problem in Fq.

Proof. We can recover the scalar a as follows: Let λ1;…; λdf g be a set of eigen-
values of g, and then the eigenvalues of ag are aλ1;…; aλdf g. Set α ¼ aλ1⋯aλd and
thus α ¼ ad as λ1⋯λd ¼ det gð Þ ¼ 1. Suppose gcd d; q� 1ð Þ ¼ ζ, using extended
Euclidean algorithm, we find u and v such that udþ v q� 1ð Þ ¼ ζ. Next, computing
αu, we get aud ¼ aζ�v q�1ð Þ ¼ aζ. Thus, if gcd d; q� 1ð Þ ¼ 1, then we have recovered
the scalar a; otherwise we can recover the scalar by solving the discrete logarithm
problem in Fq.

Thus, if gcd d; q� 1ð Þ ¼ 1, then using the above proposition, we can recover the
scalars a and b from ag and bgm, respectively. Otherwise one needs to solve discrete
logarithm problem in Fq to recover the scalars. Now, we can recover g and gm from
ag and bgm just by multiplying with scalar matrices a�1I and b�1I, respectively.
Finally, we recover m using Menezes and Wu’s idea. Thus, if we choose g such that
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the hardness of our security assumptions. We denote the split orthogonal group by
Oþ 2l; qð Þ and twisted orthogonal group by O� 2l; qð Þ. Now onwards O(2l,q) means
either split or twisted orthogonal group and we will specify whenever required.

Let ϕ be an automorphism of one of the classical Chevalley groups G:
SL lþ 1; qð Þ,O 2lþ 1; qð Þ, Sp 2l; qð Þ, or O 2l; qð Þ. From Theorem 3.1, we know that
ϕ ¼ cχιηγθ where cχ is a central automorphism, ι is an inner automorphism, η is a
diagonal automorphism, γ is a graph automorphism, and θ is a field automorphism.

The group of central automorphisms are too small and the field automorphisms
reduce to a discrete logarithm in the field Fq. So there is no benefit of using these in
a MOR cryptosystem. Also there are not many graph automorphisms in classical
Chevalley and twisted orthogonal groups other than special linear groups and odd-
order orthogonal groups. In the odd-order orthogonal groups, these automorphisms
act by conjugation. Recall here that our automorphisms are presented as action on
generators. It is clear ([6], Section 7) that if we can recover the conjugating matrix
from the action on generators, the security is a discrete logarithm problem in Fqd , or
else the security is a discrete logarithm problem in Fqd2 .

So from these we conclude that for a secure MOR cryptosystem, we must look at
automorphisms that act by conjugation, like the inner automorphisms. Inner auto-
morphisms form a normal subgroup of Aut Gð Þ and usually constitute the bulk of
automorphisms. If ϕ is an inner automorphism, say ιg : x↦gxg�1, we would like to
determine the conjugating element g. For the special linear group, it was done in [6].
We will follow the steps there for the present situation too. However, before we do
that, let us digress briefly to observe that G! Inn Gð Þ given by g↦ιg is a surjective
group homomorphism. Thus if G is generated by g1, g2,…, gs, then Inn Gð Þ is gener-
ated by ιg1 ,…, ιgs . Let ϕ∈ Inn Gð Þ. If we can find gj, j∈ 1; 2;…; sf g generators, such
that ϕ ¼ Qj ιgj , then ϕ ¼ ιg where g ¼Qj gj. This implies that our problem is equiv-
alent to solving the word problem in Inn Gð Þ. Note that solving word problem
depends on how the group is presented and it is not invariant under group homo-
morphisms. Thus the algorithm described earlier to solve the word problem in the
classical Chevalley and twisted orthogonal groups does not help us in the present
case.

In what follows, we will use generators xr tð Þ, where r ¼ i; jð Þ; i 6¼ j, 1≤ i, j≤ d
for the special linear group. For symplectic group r ¼ i; jð Þ; i, j∈ �1;�2;…;�lf g. For
the even-orthogonal group, r ¼ i; jð Þ; i, j∈ �1;�2;…;�lf g; � i 6¼ �j. For the odd-
orthogonal group r ¼ i; jð Þ; � l≤ i≤ l  and  j∈ �1;�2;…� lf g; � i 6¼ �j. These are
the Chevalley generators for the Chevalley groups we are dealing with and are
described in details in Tables A1, A5, A3, and A7 in the Appendix.

4.1 Reduction of security

In this subsection, we show that for special linear and symplectic groups, the
security of the MOR cryptosystem is the hardness of the discrete logarithm problem
in Fqd . This is the same as saying that we can find the conjugating matrix up to a
scalar multiple. We further show that the method that works for special linear and
symplectic groups does not work for orthogonal groups.

Let ϕ be an automorphism that works by conjugation, i.e., ϕ ¼ ιg, for some g, and
we try to determine g.

Step 1: The automorphism ϕ is presented as action on generators xr tð Þ.
Thus ϕ xr tð Þð Þ ¼ g I þ terð Þg�1 ¼ I þ tger g

�1. This implies that we know ger g
�1 for

all possible r. We first claim that we can determineN = gDwhereD is sparse, in fact,
diagonal in the case of special linear and symplectic groups.
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In the case of special linear groups, write g ¼ G1;…;Gi;…;Gd½ �, where Gi are
column vectors of g. Then gei, j ¼ G1;…;Gd½ �ei, j ¼ 0;…;0;Gi;0…;0½ � where Gi is at

the jth place. Multiplying this with g�1 on the right, i.e., computing gei, j g
�1, deter-

mines Gi up to a scalar multiple di (say). Thus, we know N ¼ gD where
D ¼ diag d1;…; dlþ1ð Þ.

For the symplectic groups, we do the similar computation with the generators
I þ tei,�i and I þ te�i, i. Write g in the column form as G1;…Gl;G�1;…;G�l½ �. Now,

1. G1;…Gl;G�1;…;G�l½ �ei,�i ¼ 0;…;0;Gi;0;…;0½ � where Gi is at �ith place.
Multiplying this further with g�1 gives us scalar multiple of Gi, say diGi.

2. G1;…Gl;G�1;…;G�l½ �e�i, i ¼ 0;…;0;G�i;0;…;0½ � where G�i is at ith place.
Multiplying this with g�1 gives us scalar multiple of G�i, say d�iGi.

Thus we get N ¼ gD where D is a diagonal matrix diag d1;…; dl; d�1;…; d�lð Þ.
Step 2: Compute N�1ϕ xr tð Þð ÞN ¼ D�1g�1 gxr tð Þg�1

� �
gD ¼ I þD�1erD which is

equivalent to computing D�1erD.
In the case of special linear groups, we have D a diagonal. Thus by computing

D�1ei, jD, we determine d�1i dj for i 6¼ j and form a matrix diag 1; d�12 d1;…; d�1l d1
� �

,
and multiplying this to N, we get d1 g. Hence we can determine g up to a scalar
matrix.

For symplectic groups, we can do similar computation as D is diagonal. First
compute D�1 ei, j � e�j,�i

� �
D to get d�1i dj and d�1�i d�j for i 6¼ j. Now compute

D�1ei,�iD,D�1e�i, iD to get did
�1
�i , d�id

�1
i . We form a matrix

diag 1; d�12 d1;…; d�1l d1; d
�1
�1d�2:d

�1
�2d2:d

�1
2 d1;…; d�1�l d�1:d

�1
�1d1

� �

and multiply it to N ¼ gD to get d1g. Thus we can determine g up to a scalar
multiple say ag. Similarly we can determine gm up to a scalar multiple say bgm. Now,
compute agð Þq�1 ¼ gq�1 and bgmð Þq�1 ¼ gmð Þq�1, and then we can recover m by
solving the discrete logarithm in the matrices using Menezes and Wu’s idea [15].
However, if we choose g such that gq�1 ¼ 1, then it seems that we might avoid this
line of attack. We can bypass this argument by recovering the scalars a and b, and
then to determine m, we compute the discrete logarithm in gh i using Menezes and
Wu’s idea. We prove the following proposition.

Proposition 4.1 Given any g∈ Sp d; qð Þ up to scalar multiple ag, a∈Fq. If
gcd d; q� 1ð Þ ¼ 1, we can determine the scalar a. Otherwise one can find the scalar a by
solving a discrete logarithm problem in Fq.

Proof. We can recover the scalar a as follows: Let λ1;…; λdf g be a set of eigen-
values of g, and then the eigenvalues of ag are aλ1;…; aλdf g. Set α ¼ aλ1⋯aλd and
thus α ¼ ad as λ1⋯λd ¼ det gð Þ ¼ 1. Suppose gcd d; q� 1ð Þ ¼ ζ, using extended
Euclidean algorithm, we find u and v such that udþ v q� 1ð Þ ¼ ζ. Next, computing
αu, we get aud ¼ aζ�v q�1ð Þ ¼ aζ. Thus, if gcd d; q� 1ð Þ ¼ 1, then we have recovered
the scalar a; otherwise we can recover the scalar by solving the discrete logarithm
problem in Fq.

Thus, if gcd d; q� 1ð Þ ¼ 1, then using the above proposition, we can recover the
scalars a and b from ag and bgm, respectively. Otherwise one needs to solve discrete
logarithm problem in Fq to recover the scalars. Now, we can recover g and gm from
ag and bgm just by multiplying with scalar matrices a�1I and b�1I, respectively.
Finally, we recover m using Menezes and Wu’s idea. Thus, if we choose g such that
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gq�1 ¼ 1 and gcd d; q� 1ð Þ 6¼ 1, then to solve the discrete logarithm in ϕh i, one needs
to solve the discrete logarithm in Fq and Fqd .

However, in the case of orthogonal groups, we show that one cannot recover g
up to a diagonal matrix using the above approach, and hence the above reduction
attack does not work.

Theorem 4.1 Let g∈GO d; qð Þ. Consider the conjugation automorphism
ϕ : O d; qð Þ ! O d; qð Þ. Let xrf g be a set of Chevalley generators of O(d,q) described in
Appendix A. Suppose that the public-key is presented as an action of ϕ on xrf g, then it is
impossible to recover a matrix gD, where D is a diagonal matrix using the above
reduction.

Proof. We prove the theorem for Oþ d; qð Þ, d even, and the theorem follows for
other cases similarly. Let d ¼ 2l and we write g in columns form as
g ¼ C1;…;Cl;C�1;…;C�l½ �. We compute gerg

�1 which gives the following equations:

1. Note that g ei, j � e�j,�i
� �

g�1 ¼ 0;…;0;Ci;0;…;0;C�j;0;…;0
� �

g�1, where Ci is at
jth place and C�j is at �ith place. After multiplying by g�1, we get a matrix
whose all columns are linear combinations of columns Ci and C�j.

2.Note that g ei,�j � ej,�i
� �

g�1 ¼ 0;…;0;Ci;0;…;0;Cj;0;…;0
� �

g�1, where Ci is at
�jth place and Cj is at �ith place. After multiplying by g�1, we get a matrix
whose all columns are linear combinations of columns Ci and Cj.

3.Note that g e�i, j � e�j, i
� �

g�1 ¼ 0;…;0;C�i;0;…;0;C�j;0;…;0
� �

g�1, where C�i
is at jth place and C�j is at ith place. After multiplying by g�1, we get a matrix
whose all columns are linear combinations of columns C�i and C�j.

Suppose one can construct a matrix B from columns obtained above such that
B ¼ gD, where D is diagonal, then we can see that diCi ¼ aiCj þ bjCk for some i, j, k
which is a contradiction as det gð Þ 6¼ 0. Thus, it is not possible to construct a matrix
B such that B ¼ gD, where D is diagonal.

This conclusively proves that the attack on the special linear groups and
symplectic groups will not work for most orthogonal groups.

For orthogonal groups, the best we can do is the following: We can construct N
such that N ¼ g D1 þ PD2ð Þ, where D1 and D2 are diagonal and P is a permutation
matrix. We demonstrate the construction of N in the case of a split orthogonal
group Oþ 2l; qð Þ; similar construction works for other cases as well. Computing
gerg

�1 gives the following equations:

1. G1;…Gl;G�1;…;G�l½ � ei, j � e�j,�i
� �

g�1 ¼ 0;…;0;Gi;0;…;0;G�j;0;…;0
� �

g�1,
where Gi is at jth place and G�j is at �ith place. This gives us a linear
combination of the columns Gi and G�j.

2. G1;…Gl;G�1;…;G�l½ � ei,�j � ej,�i
� �

g�1 ¼ 0;…;0;Gi;0;…;0;Gj;0;…;0
� �

g�1,
where Gi is at �jth place and Gj is at �ith place. This will give us a linear
combination of the columns Gi and Gj.

3. G1;…Gl;G�1;…;G�l½ � e�i, j � e�j, i
� �

g�1 ¼ 0;…;0;G�i;0;…;0;G�j;0;…;0
� �

g�1,
where G�i is at jth place and G�j is at ith place. This will give us a linear
combination of the columns G�i and G�j.
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We construct a matrix N as follows: For each i ¼ 1,…, l� 1, compute
g I þ ei, iþ1 � e� iþ1ð Þ,�i
� �

g�1 � I whose each column is a linear combination of Ci and
C� iþ1ð Þ. Choose one of its column say riCi þ siC� iþ1ð Þ for each i ¼ 1,…, l� 1. Simi-
larly compute g I þ eiþ1, i � e�i,� iþ1ð Þ

� �
g�1 � I and choose r�iC�i þ s�iC iþ1ð Þ for each

i ¼ 1,…, l� 1. Further, we compute g I þ e1,�l � el,�1ð Þg�1 � I to get rlCl þ slC1 and
g I þ e�1, l � e�l,1ð Þg�1 � I to get r�lC�l þ s�lC�1. We set N ¼ r1C1 þ s1C�2;…; rl�1½
Cl�1 þ sl�1C�l; rlCl þ slC1; r�1C�1 þ s�1C2;…; r� l�1ð ÞC� l�1ð Þ þ s� l�1ð ÞCl; r�lC�lþ s�lC�1�.
Now it is easy to note that N ¼ g D1 þ PD2ð Þ, where D1 ¼ diag r1;…; rl; r�1;…; r�lð Þ,
D2 ¼ diag s1;…; sl; s�1;…; s�lð Þ, and P are permutation matrix corresponding to the
permutation of indexing set 1! �2! 3! �4! ⋯! l� 1! �l! �1! 2!
�3! 4! ⋯! � l� 1ð Þ ! l! 1:

Thus we get N ¼ g D1 þ PD2ð Þ, where D1 and D2 are diagonal and P is a permu-
tation matrix. This is not a diagonal matrix. One can do a similar computation for
the odd-orthogonal group and twisted orthogonal group as well.

Remark 4.1 An observant reader would ask the question: why does this attack works
for the special linear and symplectic groups but not for orthogonal groups? The answer lies
in a closer look at the generators (elementary matrices) for these groups.

In the special linear groups, the generators are the elementary transvections of
the form I þ tei, j where i 6¼ j and t∈Fq. Then the attack goes on smoothly as we saw
earlier. However, when we look at generators of the form I þ tei, j � te�j,�i, where
t∈Fq and i 6¼ j, conjugating by them, it gets us a linear sum of the ith and jth
column, not scalar multiple of one particular column. This stops the attack from
going forward. However in the symplectic groups, there are generators of the form
I þ ei,�i and I þ e�i, i for 1≤ i≤ l. These generators make the attack possible for the
symplectic groups. However there are no such generators for orthogonal groups,
and so this attack turns out to be impossible for orthogonal groups.

5. The case for two-generators and prime fields

One serious objection against a MOR cryptosystem is the size of the key ([10],
Section 7). The reason is that in a MOR cryptosystem, the automorphisms are
presented as action on generators. Now the bigger the number of generators, the
larger the key-size.

On the other hand, many of the finite simple groups can be generated by two
elements. However, a set of generators is not enough. We must be able to compute
the image of an arbitrary element. When the automorphism is presented as action
on generators, we need an efficient solution to the word problem in order to do that.
We have demonstrated in Appendix A that there is one set of generators, the
elementary matrices, for which the word problem is easy.

The theme of this section is that for symplectic and even-order split orthogonal
groups, there are two generators and for the odd-orthogonal group there are three
generators. Over the prime field of odd characteristic, one can easily compute the
word corresponding to the elementary matrices for these generators.

So one can present the automorphisms ϕ and ϕm as action on these few genera-
tors and then compute the action of these automorphisms on the elementary matri-
ces later. This substantially reduces the key-size. To do this we use the technique of
straight line programs, which is popular in computational group theory. These are
programs, but in practice are actually easy to use formulas. Say, for example, we
want to compute xi, j tð Þ for some t∈Fq. We have loaded matrices wi�1x1,2 �ð Þw i�1ð Þ in
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gq�1 ¼ 1 and gcd d; q� 1ð Þ 6¼ 1, then to solve the discrete logarithm in ϕh i, one needs
to solve the discrete logarithm in Fq and Fqd .

However, in the case of orthogonal groups, we show that one cannot recover g
up to a diagonal matrix using the above approach, and hence the above reduction
attack does not work.

Theorem 4.1 Let g∈GO d; qð Þ. Consider the conjugation automorphism
ϕ : O d; qð Þ ! O d; qð Þ. Let xrf g be a set of Chevalley generators of O(d,q) described in
Appendix A. Suppose that the public-key is presented as an action of ϕ on xrf g, then it is
impossible to recover a matrix gD, where D is a diagonal matrix using the above
reduction.

Proof. We prove the theorem for Oþ d; qð Þ, d even, and the theorem follows for
other cases similarly. Let d ¼ 2l and we write g in columns form as
g ¼ C1;…;Cl;C�1;…;C�l½ �. We compute gerg

�1 which gives the following equations:

1. Note that g ei, j � e�j,�i
� �

g�1 ¼ 0;…;0;Ci;0;…;0;C�j;0;…;0
� �

g�1, where Ci is at
jth place and C�j is at �ith place. After multiplying by g�1, we get a matrix
whose all columns are linear combinations of columns Ci and C�j.

2.Note that g ei,�j � ej,�i
� �

g�1 ¼ 0;…;0;Ci;0;…;0;Cj;0;…;0
� �

g�1, where Ci is at
�jth place and Cj is at �ith place. After multiplying by g�1, we get a matrix
whose all columns are linear combinations of columns Ci and Cj.

3.Note that g e�i, j � e�j, i
� �

g�1 ¼ 0;…;0;C�i;0;…;0;C�j;0;…;0
� �

g�1, where C�i
is at jth place and C�j is at ith place. After multiplying by g�1, we get a matrix
whose all columns are linear combinations of columns C�i and C�j.

Suppose one can construct a matrix B from columns obtained above such that
B ¼ gD, where D is diagonal, then we can see that diCi ¼ aiCj þ bjCk for some i, j, k
which is a contradiction as det gð Þ 6¼ 0. Thus, it is not possible to construct a matrix
B such that B ¼ gD, where D is diagonal.

This conclusively proves that the attack on the special linear groups and
symplectic groups will not work for most orthogonal groups.

For orthogonal groups, the best we can do is the following: We can construct N
such that N ¼ g D1 þ PD2ð Þ, where D1 and D2 are diagonal and P is a permutation
matrix. We demonstrate the construction of N in the case of a split orthogonal
group Oþ 2l; qð Þ; similar construction works for other cases as well. Computing
gerg

�1 gives the following equations:

1. G1;…Gl;G�1;…;G�l½ � ei, j � e�j,�i
� �

g�1 ¼ 0;…;0;Gi;0;…;0;G�j;0;…;0
� �

g�1,
where Gi is at jth place and G�j is at �ith place. This gives us a linear
combination of the columns Gi and G�j.

2. G1;…Gl;G�1;…;G�l½ � ei,�j � ej,�i
� �

g�1 ¼ 0;…;0;Gi;0;…;0;Gj;0;…;0
� �

g�1,
where Gi is at �jth place and Gj is at �ith place. This will give us a linear
combination of the columns Gi and Gj.

3. G1;…Gl;G�1;…;G�l½ � e�i, j � e�j, i
� �

g�1 ¼ 0;…;0;G�i;0;…;0;G�j;0;…;0
� �

g�1,
where G�i is at jth place and G�j is at ith place. This will give us a linear
combination of the columns G�i and G�j.
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We construct a matrix N as follows: For each i ¼ 1,…, l� 1, compute
g I þ ei, iþ1 � e� iþ1ð Þ,�i
� �

g�1 � I whose each column is a linear combination of Ci and
C� iþ1ð Þ. Choose one of its column say riCi þ siC� iþ1ð Þ for each i ¼ 1,…, l� 1. Simi-
larly compute g I þ eiþ1, i � e�i,� iþ1ð Þ

� �
g�1 � I and choose r�iC�i þ s�iC iþ1ð Þ for each

i ¼ 1,…, l� 1. Further, we compute g I þ e1,�l � el,�1ð Þg�1 � I to get rlCl þ slC1 and
g I þ e�1, l � e�l,1ð Þg�1 � I to get r�lC�l þ s�lC�1. We set N ¼ r1C1 þ s1C�2;…; rl�1½
Cl�1 þ sl�1C�l; rlCl þ slC1; r�1C�1 þ s�1C2;…; r� l�1ð ÞC� l�1ð Þ þ s� l�1ð ÞCl; r�lC�lþ s�lC�1�.
Now it is easy to note that N ¼ g D1 þ PD2ð Þ, where D1 ¼ diag r1;…; rl; r�1;…; r�lð Þ,
D2 ¼ diag s1;…; sl; s�1;…; s�lð Þ, and P are permutation matrix corresponding to the
permutation of indexing set 1! �2! 3! �4! ⋯! l� 1! �l! �1! 2!
�3! 4! ⋯! � l� 1ð Þ ! l! 1:

Thus we get N ¼ g D1 þ PD2ð Þ, where D1 and D2 are diagonal and P is a permu-
tation matrix. This is not a diagonal matrix. One can do a similar computation for
the odd-orthogonal group and twisted orthogonal group as well.

Remark 4.1 An observant reader would ask the question: why does this attack works
for the special linear and symplectic groups but not for orthogonal groups? The answer lies
in a closer look at the generators (elementary matrices) for these groups.

In the special linear groups, the generators are the elementary transvections of
the form I þ tei, j where i 6¼ j and t∈Fq. Then the attack goes on smoothly as we saw
earlier. However, when we look at generators of the form I þ tei, j � te�j,�i, where
t∈Fq and i 6¼ j, conjugating by them, it gets us a linear sum of the ith and jth
column, not scalar multiple of one particular column. This stops the attack from
going forward. However in the symplectic groups, there are generators of the form
I þ ei,�i and I þ e�i, i for 1≤ i≤ l. These generators make the attack possible for the
symplectic groups. However there are no such generators for orthogonal groups,
and so this attack turns out to be impossible for orthogonal groups.

5. The case for two-generators and prime fields

One serious objection against a MOR cryptosystem is the size of the key ([10],
Section 7). The reason is that in a MOR cryptosystem, the automorphisms are
presented as action on generators. Now the bigger the number of generators, the
larger the key-size.

On the other hand, many of the finite simple groups can be generated by two
elements. However, a set of generators is not enough. We must be able to compute
the image of an arbitrary element. When the automorphism is presented as action
on generators, we need an efficient solution to the word problem in order to do that.
We have demonstrated in Appendix A that there is one set of generators, the
elementary matrices, for which the word problem is easy.

The theme of this section is that for symplectic and even-order split orthogonal
groups, there are two generators and for the odd-orthogonal group there are three
generators. Over the prime field of odd characteristic, one can easily compute the
word corresponding to the elementary matrices for these generators.

So one can present the automorphisms ϕ and ϕm as action on these few genera-
tors and then compute the action of these automorphisms on the elementary matri-
ces later. This substantially reduces the key-size. To do this we use the technique of
straight line programs, which is popular in computational group theory. These are
programs, but in practice are actually easy to use formulas. Say, for example, we
want to compute xi, j tð Þ for some t∈Fq. We have loaded matrices wi�1x1,2 �ð Þw i�1ð Þ in
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the memory in such a way that this formula takes as input t and put it in the (1, 2)
position of the matrix x1,2 �ð Þ and do the matrix multiplication. This is one straight
line program. Since these programs are loaded in the memory, computation is much
faster. This is somewhat similar to a time-memory trade-off. We have built a series
of these straight line programs, where one straight line program can use other
straight line programs and have written down the length of these programs. The
length is nothing but the number of matrices in the formula.

Using the symplectic group in the MOR cryptosystem is straightforward. How-
ever, using orthogonal groups is little tricky because of the presence of λ in the
output of the Gaussian elimination algorithm (see Section A.2.3). It is well known
that the elementary matrices, without wi—the row interchanges matrices and gen-
erates Ω, the commutator subgroup of a orthogonal group. However in between the
commutator and the whole group, there is another important subgroup,
WΩ ¼ Ω;wih i for some i. From the algorithmic point of view, it is the subgroup of
all the matrices for which the λ is a square. Now once the λ is a square and we can
efficiently compute the square root, we can write this matrix down as product of
elementary matrices, and it is easy to implement in the MOR cryptosystem. It is well
known that if p � 3 mod4ð Þ, then it is easy to compute the square root. Only for this
reason, in the latter part of this section and for orthogonal groups, we concentrate
on p � 3 mod4ð Þ.

5.1 Symplectic group Sp (2l, p)

Let p be an odd prime. It is known [16] that the group Sp(2l,p) is generated by
two elements:

x ¼ x1,2 1ð Þ (1)

w ¼ 0 1

�I2l�1 0

� �
(2)

We will refer these two elements as Steinberg generators. However in the
context of the MOR cryptosystem, we need to know how to go back and forth
between these two generating sets—Steinberg generators and elementary matrices
(see Table A3). To write w as a product of elementary matrices is easy, just put this
generator through our Gaussian elimination algorithm. Here we demonstrate the
other way round, that is, how to write elementary matrices as a product of x and w.
In what follows, we denote the length of SLPs by L δ; ið Þ, where δ ¼ j� i and
1≤ i, j≤ l.

δ ¼ 1, xi, j tð Þ ¼ wi�1x1,2 tð Þw� i�1ð Þ,

δ ¼ 2, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ
� �

,

δ ¼ 3, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ
� �

,

⋮ ⋮ ⋮

δ ¼ l� 1, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ
� �

:

Here

L δ; ið Þ ¼ 2i� 1 for δ ¼ 1,
2L δ� 1ð Þ þ 4 iþ δð Þ � 6 for δ ¼ 2, 3,…, l� 1:

�
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Now wl ¼ �1ð Þl�1 0 Il
�Il 0

� �
and xj, i tð Þ ¼ wlxi, j �tð Þw�l, so length of this SLP is

L δ; ið Þ þ 2l. Hence we get all xi, j tð Þ for 1≤ i 6¼ j≤ l. Number of SLP is l. Next observe
the following:

Elements Indices Equation Length

x1,�l tð Þ wxl�1, l tð Þw�1 2l� 1

x1,�i tð Þ 2≤ i≤ l� 1 xi, l tð Þ; x1,�l 1ð Þ½ � 2 L l� i; ið Þ þ 2l� 1ð Þ

xi,�j tð Þ 2≤ i≤ l� 1

iþ 1≤ j≤ lð Þ
xi,1 tð Þ; x1,�j 1ð Þ
� �

2 L i� 1; 1ð Þ þ 4l� 1ð Þ
2 L i� 1; 1ð Þ þ 2L l� j; jð Þ þ 6l� 2ð Þ

j ¼ l
j 6¼ l

xi,�i tð Þ i ¼ 1, 2,…, l� 1 xi, iþ1 t
2

� �
; xi,� iþ1ð Þ 1ð Þ

� �
2 2L l� 2; 1ð Þ þ 10l� 5ð Þ
2ðL 1; ið Þ þ 2L i� 1; 1ð Þþ

4L l� iþ 1ð Þ; iþ 1ð Þ þ 12l� 4Þ

i ¼ l� 1

i 6¼ l� 1

xl,�l tð Þ xl, l�1 t
2

� �
; xl�1,�l 1ð Þ

� �
2 2L l� 2; 1ð Þ þ 12l� 5ð Þ

So we generate all xi,�j tð Þ for 1≤ i, j≤ l and xi,�i tð Þ for 1≤ i≤ l. Now
wlxi,�j tð Þw�l ¼ x�i, j tð Þ for 1≤ i, j≤ l and wlxi,�i tð Þw�l ¼ x�i, i tð Þ for 1≤ i≤ l,
then we get x�i, j tð Þ and x�i, i tð Þ. Total number of SLPs is lþ 3þ 1ð Þ þ 2þ 1ð Þ
¼ lþ 7. Hence we generate all the elementary matrices (Table A3) using only
two generators x and w. Hence Sp(2l, p) is generated by only two generators x
and w.

5.2 Split orthogonal group O+(2l, p)

Let p � 3 mod4ð Þ be a prime. It is known [16] that the group O+(2l,p) is gener-
ated by two elements:

x ¼ x1,2 1ð Þ, (3)

ð4Þ

We will refer these two elements as Steinberg generators. As we discussed
earlier, in context of the MOR cryptosystem, we need to know how to go back and
forth between these two generating sets—Steinberg generators and elementary
matrices (Table A1). To write w as a product of elementary matrices is easy, just
put this generator through our Gaussian elimination algorithm. Here we demon-
strate the other way round, that is, how to write elementary matrices as a product of
x and w. In what follows, we denote the length of SLPs by L δ; ið Þ, where δ ¼ j� i
and 1≤ i, j≤ l.
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the memory in such a way that this formula takes as input t and put it in the (1, 2)
position of the matrix x1,2 �ð Þ and do the matrix multiplication. This is one straight
line program. Since these programs are loaded in the memory, computation is much
faster. This is somewhat similar to a time-memory trade-off. We have built a series
of these straight line programs, where one straight line program can use other
straight line programs and have written down the length of these programs. The
length is nothing but the number of matrices in the formula.

Using the symplectic group in the MOR cryptosystem is straightforward. How-
ever, using orthogonal groups is little tricky because of the presence of λ in the
output of the Gaussian elimination algorithm (see Section A.2.3). It is well known
that the elementary matrices, without wi—the row interchanges matrices and gen-
erates Ω, the commutator subgroup of a orthogonal group. However in between the
commutator and the whole group, there is another important subgroup,
WΩ ¼ Ω;wih i for some i. From the algorithmic point of view, it is the subgroup of
all the matrices for which the λ is a square. Now once the λ is a square and we can
efficiently compute the square root, we can write this matrix down as product of
elementary matrices, and it is easy to implement in the MOR cryptosystem. It is well
known that if p � 3 mod4ð Þ, then it is easy to compute the square root. Only for this
reason, in the latter part of this section and for orthogonal groups, we concentrate
on p � 3 mod4ð Þ.

5.1 Symplectic group Sp (2l, p)

Let p be an odd prime. It is known [16] that the group Sp(2l,p) is generated by
two elements:

x ¼ x1,2 1ð Þ (1)

w ¼ 0 1

�I2l�1 0

� �
(2)

We will refer these two elements as Steinberg generators. However in the
context of the MOR cryptosystem, we need to know how to go back and forth
between these two generating sets—Steinberg generators and elementary matrices
(see Table A3). To write w as a product of elementary matrices is easy, just put this
generator through our Gaussian elimination algorithm. Here we demonstrate the
other way round, that is, how to write elementary matrices as a product of x and w.
In what follows, we denote the length of SLPs by L δ; ið Þ, where δ ¼ j� i and
1≤ i, j≤ l.

δ ¼ 1, xi, j tð Þ ¼ wi�1x1,2 tð Þw� i�1ð Þ,

δ ¼ 2, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ
� �

,

δ ¼ 3, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ
� �

,

⋮ ⋮ ⋮

δ ¼ l� 1, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ
� �

:

Here

L δ; ið Þ ¼ 2i� 1 for δ ¼ 1,
2L δ� 1ð Þ þ 4 iþ δð Þ � 6 for δ ¼ 2, 3,…, l� 1:

�
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Now wl ¼ �1ð Þl�1 0 Il
�Il 0

� �
and xj, i tð Þ ¼ wlxi, j �tð Þw�l, so length of this SLP is

L δ; ið Þ þ 2l. Hence we get all xi, j tð Þ for 1≤ i 6¼ j≤ l. Number of SLP is l. Next observe
the following:

Elements Indices Equation Length

x1,�l tð Þ wxl�1, l tð Þw�1 2l� 1

x1,�i tð Þ 2≤ i≤ l� 1 xi, l tð Þ; x1,�l 1ð Þ½ � 2 L l� i; ið Þ þ 2l� 1ð Þ

xi,�j tð Þ 2≤ i≤ l� 1

iþ 1≤ j≤ lð Þ
xi,1 tð Þ; x1,�j 1ð Þ
� �

2 L i� 1; 1ð Þ þ 4l� 1ð Þ
2 L i� 1; 1ð Þ þ 2L l� j; jð Þ þ 6l� 2ð Þ

j ¼ l
j 6¼ l

xi,�i tð Þ i ¼ 1, 2,…, l� 1 xi, iþ1 t
2

� �
; xi,� iþ1ð Þ 1ð Þ

� �
2 2L l� 2; 1ð Þ þ 10l� 5ð Þ
2ðL 1; ið Þ þ 2L i� 1; 1ð Þþ

4L l� iþ 1ð Þ; iþ 1ð Þ þ 12l� 4Þ

i ¼ l� 1

i 6¼ l� 1

xl,�l tð Þ xl, l�1 t
2

� �
; xl�1,�l 1ð Þ

� �
2 2L l� 2; 1ð Þ þ 12l� 5ð Þ

So we generate all xi,�j tð Þ for 1≤ i, j≤ l and xi,�i tð Þ for 1≤ i≤ l. Now
wlxi,�j tð Þw�l ¼ x�i, j tð Þ for 1≤ i, j≤ l and wlxi,�i tð Þw�l ¼ x�i, i tð Þ for 1≤ i≤ l,
then we get x�i, j tð Þ and x�i, i tð Þ. Total number of SLPs is lþ 3þ 1ð Þ þ 2þ 1ð Þ
¼ lþ 7. Hence we generate all the elementary matrices (Table A3) using only
two generators x and w. Hence Sp(2l, p) is generated by only two generators x
and w.

5.2 Split orthogonal group O+(2l, p)

Let p � 3 mod4ð Þ be a prime. It is known [16] that the group O+(2l,p) is gener-
ated by two elements:

x ¼ x1,2 1ð Þ, (3)

ð4Þ

We will refer these two elements as Steinberg generators. As we discussed
earlier, in context of the MOR cryptosystem, we need to know how to go back and
forth between these two generating sets—Steinberg generators and elementary
matrices (Table A1). To write w as a product of elementary matrices is easy, just
put this generator through our Gaussian elimination algorithm. Here we demon-
strate the other way round, that is, how to write elementary matrices as a product of
x and w. In what follows, we denote the length of SLPs by L δ; ið Þ, where δ ¼ j� i
and 1≤ i, j≤ l.
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δ ¼ 1, xi, j tð Þ ¼ wi�1x1,2 tð Þw� i�1ð Þ,
δ ¼ 2, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ

� �
,

δ ¼ 3, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ
� �

,
⋮ ⋮ ⋮

δ ¼ l� 1, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ
� �

:

Here

L δ; ið Þ ¼ 2i� 1 for δ ¼ 1,
2L δ� 1ð Þ þ 4 iþ δð Þ � 6 for δ ¼ 2, 3,…, l� 1:

�

Now wl ¼ �1ð Þl 0 Il
Il 0

� �
and xj, i tð Þ ¼ wlxi, j �tð Þw�l, so length of this SLP is

L δ; ið Þ þ 2l. Hence we get all xi, j tð Þ for 1≤ i 6¼ j≤ l. The number of SLPs is l. Next
observe the following:

Elements Indices Equation Length

x1,�l tð Þ wxl�1, l tð Þw�1 2l� 1

x1,�i tð Þ 2≤ i≤ l� 1 xi, l tð Þ; x1,�l 1ð Þ½ � 2 L l� i; ið Þ þ 2l� 1ð Þ
xi,�j tð Þ 2≤ i≤ l� 1

iþ 1≤ j≤ lð Þ
xi,1 tð Þ; x1,�j 1ð Þ
� �

2 L i� 1; 1ð Þ þ 2L l� j; jð Þ þ 6l� 2ð Þ
2 L i� 1; 1ð Þ þ 4l� 1ð Þ

j 6¼ l
j ¼ l

So we generate all xi,�j tð Þ for i. j. Now wlxi,�j tð Þw�l ¼ x�i, j tð Þ, and we get
x�i, j tð Þ and the total number of SLPs is lþ 4. It is shown by Ree [17] that elementary
matrices xi, j tð Þ generate Ω 2l; pð Þ, the commutator subgroup of O(2l, p). Hence we
generate Ω 2l; pð Þ, using only two elements x and w. Since we generate xi, j tð Þ and wi, j

as a product of xi, j tð Þ and w ¼ w1,2 1ð Þw2,3 1ð Þ⋯wl�1, l 1ð Þwl, so we are able to generate
wl. Here wi, j tð Þ ¼ xi, j tð Þxj, i �t�1ð Þxi, j tð Þ for i 6¼ j and wl ¼ I � el, l � e�l,�l þ el,�lþ
e�l, l. Now we know wl�1 ¼ wlwl, l�1 1ð Þwl�1,�l 1ð Þ, so we generate wl�1. Hence by
induction, we generate wi ¼ wiþ1wiþ1, i 1ð Þwi,� iþ1ð Þ 1ð Þ for i ¼ l� 1,…, 1. Here
wi,�j tð Þ ¼ xi,�j tð Þ 1ð Þx�i, j t�1ð Þxi,�j tð Þ, for i, j. Hence we generate all the elementary
matrices (Table A1) using only two generators x and w. So we generate a new
subgroup WΩ 2l; pð Þ of O(2l,p), which is a normal subgroup of O(2l, p). Our algo-
rithm output matrix is d λð Þ ¼ diag 1; 1;…; λ; 1; 1;…; λ�1

� �
. If λ∈F�2p , say

λ � t2 mod pð Þ, then t � λ
pþ1
4 mod pð Þ, since p � 3 mod 4ð Þ. Then

d λð Þ ¼ diag 1;…; t2; 1;…; ; t�2
� �

¼ wl�1, l 1ð Þdiag 1;…; t2; 1; 1;…; ; t�2; 1
� �

wl�1, l �1ð Þ

¼ wl�1, l 1ð Þwl�1, l tð Þwl�1, l �1ð Þwl�1,�l tð Þwl�1,�l �1ð Þwl�1, l �1ð Þ:
Hence we generate WΩ 2l; pð Þ using only two generators x and w.

5.3 Orthogonal group O(2l+1, p)

Let p � 3 mod4ð Þ be a prime. It is known [16] that the group O(2l+1, p) is
generated by these elements:
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x ¼ x0,1 1ð Þ, (5)

w ¼
�1 0 0

0 0 �1
0 �I2l�1 0

0
B@

1
CA, (6)

wl ¼ I � el, l � e�l,�l þ el,�l þ e�l, l: (7)

We will refer these three elements as Steinberg generators. However in context
of the MOR cryptosystem, we need to know how to go back and forth between
these two generating sets—Steinberg generators and elementary matrices
(Table A5). To write w as a product of elementary matrices is easy, just put this
generator through our Gaussian elimination algorithm. Here we demonstrate the
other way round, that is, how to write elementary matrices as a product of w and x.
First we compute, x0, i tð Þ ¼ wi�1x0,1 1ð Þw� i�1ð Þ which is of length 2i� 1 for 1≤ i≤ l.
Now

wl ¼ �1ð Þl
1 0 0

0 0 Il
0 Il 0

0
B@

1
CA

and xi,0 tð Þ ¼ wlx0, i �tð Þw�l for 1≤ i≤ l, and length of this SLP is 2lþ 2i� 1. So
we get xi,0 tð Þ and x0, i tð Þ for i ¼ 1, 2,…, l. Again we have x1,2 tð Þ ¼ x1,0 t

2

� �
; x0,2 1ð Þ� �

and length of this SLP is 4lþ 8. In what follows, we denote the length of SLPs by
L δ; ið Þ, where δ ¼ j� i and 1≤ i, j≤ l.

δ ¼ 1, xi, j tð Þ ¼ wi�1x1,2 tð Þw� i�1ð Þ,
δ ¼ 2, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ

� �
,

δ ¼ 3, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ
� �

,
⋮ ⋮ ⋮

δ ¼ l� 1, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ
� �

:

Here

L δ; ið Þ ¼ 2iþ 4lþ 6 for δ ¼ 1,
2L δ� 1; ið Þ þ 4 iþ δþ 2lþ 2ð Þ for δ ¼ 2, 3,…, l� 1:

�

As xj, i tð Þ ¼ wlxi, j �tð Þw�l, so the length of this SLP is L δ; ið Þ þ 2l. Hence we
generate all xi, j tð Þ for 1≤ i 6¼ j≤ l and the number of SLPs is 3þ l� 1ð Þ þ 1 ¼ lþ 3.
Next observe the following:

Elements Indices Equation (SLP) Length

x1,�l tð Þ wxl�1, l tð Þw�1 6lþ 6

x1,�i tð Þ 2≤ i≤ l� 1 xi, l tð Þ; x1,�l 1ð Þ½ � 24lþ 20
2L l� i; ið Þ þ 12 lþ 1ð Þ

i ¼ l� 1
i 6¼ l� 1

xi,�j tð Þ 2≤ i≤ l� 1

iþ 1≤ j≤ lð Þ
xi,1 tð Þ; x1,�j 1ð Þ
� �

2L i� 1; 1ð Þ þ 4L l� j� δ; j� δð Þ þ 4 7lþ 6ð Þ
2L i� 1; 1ð Þ þ 4 7lþ 5ð Þ
2L i� 1; 1ð Þ þ 10lþ 6

j, l� 1

j ¼ l� 1

j ¼ l
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δ ¼ 1, xi, j tð Þ ¼ wi�1x1,2 tð Þw� i�1ð Þ,
δ ¼ 2, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ

� �
,

δ ¼ 3, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ
� �

,
⋮ ⋮ ⋮

δ ¼ l� 1, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ
� �

:

Here

L δ; ið Þ ¼ 2i� 1 for δ ¼ 1,
2L δ� 1ð Þ þ 4 iþ δð Þ � 6 for δ ¼ 2, 3,…, l� 1:

�

Now wl ¼ �1ð Þl 0 Il
Il 0

� �
and xj, i tð Þ ¼ wlxi, j �tð Þw�l, so length of this SLP is

L δ; ið Þ þ 2l. Hence we get all xi, j tð Þ for 1≤ i 6¼ j≤ l. The number of SLPs is l. Next
observe the following:

Elements Indices Equation Length

x1,�l tð Þ wxl�1, l tð Þw�1 2l� 1

x1,�i tð Þ 2≤ i≤ l� 1 xi, l tð Þ; x1,�l 1ð Þ½ � 2 L l� i; ið Þ þ 2l� 1ð Þ
xi,�j tð Þ 2≤ i≤ l� 1

iþ 1≤ j≤ lð Þ
xi,1 tð Þ; x1,�j 1ð Þ
� �

2 L i� 1; 1ð Þ þ 2L l� j; jð Þ þ 6l� 2ð Þ
2 L i� 1; 1ð Þ þ 4l� 1ð Þ

j 6¼ l
j ¼ l

So we generate all xi,�j tð Þ for i. j. Now wlxi,�j tð Þw�l ¼ x�i, j tð Þ, and we get
x�i, j tð Þ and the total number of SLPs is lþ 4. It is shown by Ree [17] that elementary
matrices xi, j tð Þ generate Ω 2l; pð Þ, the commutator subgroup of O(2l, p). Hence we
generate Ω 2l; pð Þ, using only two elements x and w. Since we generate xi, j tð Þ and wi, j

as a product of xi, j tð Þ and w ¼ w1,2 1ð Þw2,3 1ð Þ⋯wl�1, l 1ð Þwl, so we are able to generate
wl. Here wi, j tð Þ ¼ xi, j tð Þxj, i �t�1ð Þxi, j tð Þ for i 6¼ j and wl ¼ I � el, l � e�l,�l þ el,�lþ
e�l, l. Now we know wl�1 ¼ wlwl, l�1 1ð Þwl�1,�l 1ð Þ, so we generate wl�1. Hence by
induction, we generate wi ¼ wiþ1wiþ1, i 1ð Þwi,� iþ1ð Þ 1ð Þ for i ¼ l� 1,…, 1. Here
wi,�j tð Þ ¼ xi,�j tð Þ 1ð Þx�i, j t�1ð Þxi,�j tð Þ, for i, j. Hence we generate all the elementary
matrices (Table A1) using only two generators x and w. So we generate a new
subgroup WΩ 2l; pð Þ of O(2l,p), which is a normal subgroup of O(2l, p). Our algo-
rithm output matrix is d λð Þ ¼ diag 1; 1;…; λ; 1; 1;…; λ�1

� �
. If λ∈F�2p , say

λ � t2 mod pð Þ, then t � λ
pþ1
4 mod pð Þ, since p � 3 mod 4ð Þ. Then

d λð Þ ¼ diag 1;…; t2; 1;…; ; t�2
� �

¼ wl�1, l 1ð Þdiag 1;…; t2; 1; 1;…; ; t�2; 1
� �

wl�1, l �1ð Þ

¼ wl�1, l 1ð Þwl�1, l tð Þwl�1, l �1ð Þwl�1,�l tð Þwl�1,�l �1ð Þwl�1, l �1ð Þ:
Hence we generate WΩ 2l; pð Þ using only two generators x and w.

5.3 Orthogonal group O(2l+1, p)

Let p � 3 mod4ð Þ be a prime. It is known [16] that the group O(2l+1, p) is
generated by these elements:
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x ¼ x0,1 1ð Þ, (5)

w ¼
�1 0 0

0 0 �1
0 �I2l�1 0

0
B@

1
CA, (6)

wl ¼ I � el, l � e�l,�l þ el,�l þ e�l, l: (7)

We will refer these three elements as Steinberg generators. However in context
of the MOR cryptosystem, we need to know how to go back and forth between
these two generating sets—Steinberg generators and elementary matrices
(Table A5). To write w as a product of elementary matrices is easy, just put this
generator through our Gaussian elimination algorithm. Here we demonstrate the
other way round, that is, how to write elementary matrices as a product of w and x.
First we compute, x0, i tð Þ ¼ wi�1x0,1 1ð Þw� i�1ð Þ which is of length 2i� 1 for 1≤ i≤ l.
Now

wl ¼ �1ð Þl
1 0 0

0 0 Il
0 Il 0

0
B@

1
CA

and xi,0 tð Þ ¼ wlx0, i �tð Þw�l for 1≤ i≤ l, and length of this SLP is 2lþ 2i� 1. So
we get xi,0 tð Þ and x0, i tð Þ for i ¼ 1, 2,…, l. Again we have x1,2 tð Þ ¼ x1,0 t

2

� �
; x0,2 1ð Þ� �

and length of this SLP is 4lþ 8. In what follows, we denote the length of SLPs by
L δ; ið Þ, where δ ¼ j� i and 1≤ i, j≤ l.

δ ¼ 1, xi, j tð Þ ¼ wi�1x1,2 tð Þw� i�1ð Þ,
δ ¼ 2, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ

� �
,

δ ¼ 3, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ
� �

,
⋮ ⋮ ⋮

δ ¼ l� 1, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ
� �

:

Here

L δ; ið Þ ¼ 2iþ 4lþ 6 for δ ¼ 1,
2L δ� 1; ið Þ þ 4 iþ δþ 2lþ 2ð Þ for δ ¼ 2, 3,…, l� 1:

�

As xj, i tð Þ ¼ wlxi, j �tð Þw�l, so the length of this SLP is L δ; ið Þ þ 2l. Hence we
generate all xi, j tð Þ for 1≤ i 6¼ j≤ l and the number of SLPs is 3þ l� 1ð Þ þ 1 ¼ lþ 3.
Next observe the following:

Elements Indices Equation (SLP) Length

x1,�l tð Þ wxl�1, l tð Þw�1 6lþ 6

x1,�i tð Þ 2≤ i≤ l� 1 xi, l tð Þ; x1,�l 1ð Þ½ � 24lþ 20
2L l� i; ið Þ þ 12 lþ 1ð Þ

i ¼ l� 1
i 6¼ l� 1

xi,�j tð Þ 2≤ i≤ l� 1

iþ 1≤ j≤ lð Þ
xi,1 tð Þ; x1,�j 1ð Þ
� �

2L i� 1; 1ð Þ þ 4L l� j� δ; j� δð Þ þ 4 7lþ 6ð Þ
2L i� 1; 1ð Þ þ 4 7lþ 5ð Þ
2L i� 1; 1ð Þ þ 10lþ 6

j, l� 1

j ¼ l� 1

j ¼ l
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So we generate all xi,�j tð Þ for i, j. Now wlxi,�j tð Þw�l ¼ x�i, j tð Þ, and we have
x�i, j tð Þ. The total number of SLPs is lþ 7. It is shown in Ree [17] that elementary
matrices xi, j tð Þ generate Ω 2lþ 1; pð Þ, the commutator subgroup of O 2lþ 1; pð Þ
which is of index 4. So we generate Ω 2lþ 1; pð Þ, using only two generators x and
w. Now we know wl�1 ¼ wlwl, l�1 1ð Þwl�1,�l 1ð Þ, so we generate wl�1. Hence
inductively we can generate wi ¼ wiþ1wiþ1, i 1ð Þwi,� iþ1ð Þ 1ð Þ for i ¼ l� 1,…, 1. Here
wi, j tð Þ ¼ xi, j tð Þxj, i �t�1ð Þxi, j tð Þ for i 6¼ j and wi,�j tð Þ ¼ xi,�j tð Þx�i, j t�1ð Þxi,�j tð Þ for
i, j. Hence we generate all the elementary matrices (Table A5) using only two
generators x and w and an extra element wl. Hence we generate a new subgroup
WΩ 2lþ 1; pð Þ of the orthogonal group O 2lþ 1; pð Þ, containing Ω, which is indeed
a normal subgroup of O 2lþ 1; pð Þ. In our algorithm the output matrix is

d λð Þ ¼ diag 1; 1;…; λ; 1;…; λ�1
� �

. If λ∈F�2p , say λ � t2 modpð Þ, here t � λ
pþ1
4 modpð Þ,

since p � 3 mod4ð Þ. Then

d λð Þ ¼ diag 1; 1;…; t2; 1;…; ; t�2
� �

¼ wl�1, l 1ð Þdiag 1; 1;…; t2; 1; 1;…; ; t�2; 1
� �

wl�1, l �1ð Þ

¼ wl�1, l 1ð Þwl�1, l tð Þwl�1, l �1ð Þwl�1,�l tð Þwl�1,�l �1ð Þwl�1, l �1ð Þ:
Hence we generate WΩ 2lþ 1; pð Þ using x,w and wl.
Remark 5.1 Let d ζð Þ ¼ diag 1; 1;…; ζ; 1;…; ζ�1

� �
, where ζ is non-square in F�p . The

group WΩ; d ζð Þh i is the orthogonal group.

5.4 Twisted orthogonal group O� 2l;pð Þ

We use the following generators which we refer as Steinberg generators.

x ¼ x1,2 1ð Þ,

x0 ¼ x�1,2 1ð Þ,

w ¼
�I2 0 0

0 0 �1
0 �I2l�3 0

0
B@

1
CA,

wl ¼ I � el, l � e�l,�l � el,�l � e�l, l,

x1 t; sð Þ, where t∈F�p , s∈Fp and x2:

In the context of MOR cryptosystem, we need to know how to go back and forth
between these generators and elementary matrices (Table A7). The procedure is
almost similar to the case of O+(2l,p). Again, note that x ¼ x1,2, x0 ¼ x�1,2, x1 t; sð Þ,
and x2 are elementary matrices. Thus, we just need to write w as a product of
elementary matrices. However, computing w is fairly easy, just put this generator
through our Gaussian elimination algorithm in Appendix A. Here we demonstrate
the other way round, that is, how to write elementary matrices as a product of w, x,
and x0. First, we compute x1, i tð Þ ¼ wi�1x1,2 1ð Þw� i�1ð Þ which is of length 2i� 1 for
2≤ i≤ l. Now we compute xi,1 tð Þ using the relation xi,1 tð Þ ¼ wl�1x1, i �tð Þw� l�1ð Þ for
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2≤ i≤ l, where wl�1 ¼ �1ð Þl�1
I2 0 0

0 0 Il�1
0 Il�1 0

0
B@

1
CA and length of this SLP is

2 l� 1ð Þ þ 2i� 1. Thus, we get xi,1 tð Þ and x1, i tð Þ, for i ¼ 2,…, l. Similarly we compute
xi,�1 tð Þ and x�1, i tð Þ using the relations x�1, i tð Þ ¼ wi�1x�1,2 1ð Þw� i�1ð Þ and
xi,�1 tð Þ ¼ wl�1x�1, i �tð Þw� l�1ð Þ for 2≤ i≤ l, and length of this SLP are 2i� 1 and
2 l� 1ð Þ þ 2i� 1, respectively. Next, we compute x2,3 tð Þ using the commutator for-
mula x2,3 tð Þ ¼ x2,1 t

2

� �
; x1,3 1ð Þ� �

, and length of this SLP is 4 l� 1ð Þ þ 8. In what fol-
lows, we denote the length of SLPs by L δ; ið Þ, where δ ¼ j� i and 2≤ i, j≤ l.

δ ¼ 1, xi, j tð Þ ¼ wi�1x2,3 tð Þw� i�1ð Þ,
δ ¼ 2, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ

� �
,

δ ¼ 3, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ
� �

,
⋮ ⋮ ⋮

δ ¼ l� 1, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ
� �

:

Here

L δ; ið Þ ¼ 2iþ 4 l� 1ð Þ þ 6 for δ ¼ 1,
2L δ� 1; ið Þ þ 4 iþ δþ 2 l� 1ð Þ þ 2ð Þ for δ ¼ 2, 3,…, l� 2:

�

As xj, i tð Þ ¼ wl�1xi, j �tð Þw� l�1ð Þ, so length of this SLP is L δ; ið Þ þ 2 l� 1ð Þ. Hence,
we get all xi, j tð Þ for 2≤ i 6¼ j≤ l and the number of SLPs is lþ 2. Next, we compute
the remaining elementary matrices using the commutator formula and are listed in
the table; let r ¼ l� 1.

Elements Indices Equation (SLP) Length

x1,�l tð Þ wxl�1, l tð Þw�1 6 l� 1ð Þ þ 6

x1,�i tð Þ 2≤ i≤ l� 1 xi, l tð Þ; x1,�l 1ð Þ½ � 24 l� 1ð Þ þ 20

2L r � i; ið Þ þ 12 r þ 1ð Þ
i ¼ l� 1

i 6¼ l� 1

xi,�j tð Þ 2≤ i≤ r � 1

iþ 1≤ j≤ lð Þ
xi,1 tð Þ; x1,�j 1ð Þ
� �

2L i� 1; 1ð Þ þ 4 7r þ 6ð Þ þ 4L r� j� δ; j� δð Þ
2L i� 1; 1ð Þ þ 4 7r þ 5ð Þ
2L i� 1; 1ð Þ þ 10r þ 6

j, l� 1

j ¼ l� 1
j ¼ l

Thus, we have generated all xi,�j tð Þ for i, j. Now, using the formula
wlxi,�j tð Þw�l ¼ x�i, j tð Þ, we get x�i, j tð Þ and the total number of SLPs required is
lþ 6. Now we know wl�1 ¼ wlwl, l�1 1ð Þwl�1,�l 1ð Þ, so we generate wl�1. Hence by
induction we can generate wi ¼ wiþ1wiþ1, i 1ð Þwi,� iþ1ð Þ 1ð Þ, for i ¼ l� 1,…, 2. Here
wi, j tð Þ ¼ xi, j tð Þxj, i �t�1ð Þxi, j tð Þ, for i 6¼ j, and wi,�j tð Þ ¼ xi,�j tð Þx�i, j t�1ð Þxi,�j tð Þ, for
i, j. Hence we generate all the elementary matrices defined in Table A7 using
generators x, x0, x1 t; sð Þ, x2, and w and an extra element wl. In our algorithm the
output matrix is d λð Þ ¼ diag 1; 1; 1;…; λ; 1;…; λ�1

� �
. If λ∈F�2p , say λ � t2 mod pð Þ,

here t � λ
pþ1
4 mod pð Þ, since p � 3 mod 4ð Þ.

Then d λð Þ ¼ diag 1; 1; 1;…; t2; 1;…; ; t�2
� �

¼ wl�1, l 1ð Þdiag 1; 1; 1;…; t2; 1; 1;…; ; t�2; 1
� �

wl�1, l �1ð Þ
¼ wl�1, l 1ð Þwl�1, l tð Þwl�1, l �1ð Þwl�1,�l tð Þwl�1,�l �1ð Þwl�1, l �1ð Þ:
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So we generate all xi,�j tð Þ for i, j. Now wlxi,�j tð Þw�l ¼ x�i, j tð Þ, and we have
x�i, j tð Þ. The total number of SLPs is lþ 7. It is shown in Ree [17] that elementary
matrices xi, j tð Þ generate Ω 2lþ 1; pð Þ, the commutator subgroup of O 2lþ 1; pð Þ
which is of index 4. So we generate Ω 2lþ 1; pð Þ, using only two generators x and
w. Now we know wl�1 ¼ wlwl, l�1 1ð Þwl�1,�l 1ð Þ, so we generate wl�1. Hence
inductively we can generate wi ¼ wiþ1wiþ1, i 1ð Þwi,� iþ1ð Þ 1ð Þ for i ¼ l� 1,…, 1. Here
wi, j tð Þ ¼ xi, j tð Þxj, i �t�1ð Þxi, j tð Þ for i 6¼ j and wi,�j tð Þ ¼ xi,�j tð Þx�i, j t�1ð Þxi,�j tð Þ for
i, j. Hence we generate all the elementary matrices (Table A5) using only two
generators x and w and an extra element wl. Hence we generate a new subgroup
WΩ 2lþ 1; pð Þ of the orthogonal group O 2lþ 1; pð Þ, containing Ω, which is indeed
a normal subgroup of O 2lþ 1; pð Þ. In our algorithm the output matrix is

d λð Þ ¼ diag 1; 1;…; λ; 1;…; λ�1
� �

. If λ∈F�2p , say λ � t2 modpð Þ, here t � λ
pþ1
4 modpð Þ,

since p � 3 mod4ð Þ. Then

d λð Þ ¼ diag 1; 1;…; t2; 1;…; ; t�2
� �

¼ wl�1, l 1ð Þdiag 1; 1;…; t2; 1; 1;…; ; t�2; 1
� �

wl�1, l �1ð Þ

¼ wl�1, l 1ð Þwl�1, l tð Þwl�1, l �1ð Þwl�1,�l tð Þwl�1,�l �1ð Þwl�1, l �1ð Þ:
Hence we generate WΩ 2lþ 1; pð Þ using x,w and wl.
Remark 5.1 Let d ζð Þ ¼ diag 1; 1;…; ζ; 1;…; ζ�1

� �
, where ζ is non-square in F�p . The

group WΩ; d ζð Þh i is the orthogonal group.

5.4 Twisted orthogonal group O� 2l;pð Þ

We use the following generators which we refer as Steinberg generators.

x ¼ x1,2 1ð Þ,

x0 ¼ x�1,2 1ð Þ,

w ¼
�I2 0 0

0 0 �1
0 �I2l�3 0

0
B@

1
CA,

wl ¼ I � el, l � e�l,�l � el,�l � e�l, l,

x1 t; sð Þ, where t∈F�p , s∈Fp and x2:

In the context of MOR cryptosystem, we need to know how to go back and forth
between these generators and elementary matrices (Table A7). The procedure is
almost similar to the case of O+(2l,p). Again, note that x ¼ x1,2, x0 ¼ x�1,2, x1 t; sð Þ,
and x2 are elementary matrices. Thus, we just need to write w as a product of
elementary matrices. However, computing w is fairly easy, just put this generator
through our Gaussian elimination algorithm in Appendix A. Here we demonstrate
the other way round, that is, how to write elementary matrices as a product of w, x,
and x0. First, we compute x1, i tð Þ ¼ wi�1x1,2 1ð Þw� i�1ð Þ which is of length 2i� 1 for
2≤ i≤ l. Now we compute xi,1 tð Þ using the relation xi,1 tð Þ ¼ wl�1x1, i �tð Þw� l�1ð Þ for
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2≤ i≤ l, where wl�1 ¼ �1ð Þl�1
I2 0 0

0 0 Il�1
0 Il�1 0

0
B@

1
CA and length of this SLP is

2 l� 1ð Þ þ 2i� 1. Thus, we get xi,1 tð Þ and x1, i tð Þ, for i ¼ 2,…, l. Similarly we compute
xi,�1 tð Þ and x�1, i tð Þ using the relations x�1, i tð Þ ¼ wi�1x�1,2 1ð Þw� i�1ð Þ and
xi,�1 tð Þ ¼ wl�1x�1, i �tð Þw� l�1ð Þ for 2≤ i≤ l, and length of this SLP are 2i� 1 and
2 l� 1ð Þ þ 2i� 1, respectively. Next, we compute x2,3 tð Þ using the commutator for-
mula x2,3 tð Þ ¼ x2,1 t

2

� �
; x1,3 1ð Þ� �

, and length of this SLP is 4 l� 1ð Þ þ 8. In what fol-
lows, we denote the length of SLPs by L δ; ið Þ, where δ ¼ j� i and 2≤ i, j≤ l.

δ ¼ 1, xi, j tð Þ ¼ wi�1x2,3 tð Þw� i�1ð Þ,
δ ¼ 2, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ

� �
,

δ ¼ 3, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ
� �

,
⋮ ⋮ ⋮

δ ¼ l� 1, xi, j tð Þ ¼ xi, j�1 tð Þ; xj�1, j 1ð Þ
� �

:

Here

L δ; ið Þ ¼ 2iþ 4 l� 1ð Þ þ 6 for δ ¼ 1,
2L δ� 1; ið Þ þ 4 iþ δþ 2 l� 1ð Þ þ 2ð Þ for δ ¼ 2, 3,…, l� 2:

�

As xj, i tð Þ ¼ wl�1xi, j �tð Þw� l�1ð Þ, so length of this SLP is L δ; ið Þ þ 2 l� 1ð Þ. Hence,
we get all xi, j tð Þ for 2≤ i 6¼ j≤ l and the number of SLPs is lþ 2. Next, we compute
the remaining elementary matrices using the commutator formula and are listed in
the table; let r ¼ l� 1.

Elements Indices Equation (SLP) Length

x1,�l tð Þ wxl�1, l tð Þw�1 6 l� 1ð Þ þ 6

x1,�i tð Þ 2≤ i≤ l� 1 xi, l tð Þ; x1,�l 1ð Þ½ � 24 l� 1ð Þ þ 20

2L r � i; ið Þ þ 12 r þ 1ð Þ
i ¼ l� 1

i 6¼ l� 1

xi,�j tð Þ 2≤ i≤ r � 1

iþ 1≤ j≤ lð Þ
xi,1 tð Þ; x1,�j 1ð Þ
� �

2L i� 1; 1ð Þ þ 4 7r þ 6ð Þ þ 4L r� j� δ; j� δð Þ
2L i� 1; 1ð Þ þ 4 7r þ 5ð Þ
2L i� 1; 1ð Þ þ 10r þ 6

j, l� 1

j ¼ l� 1
j ¼ l

Thus, we have generated all xi,�j tð Þ for i, j. Now, using the formula
wlxi,�j tð Þw�l ¼ x�i, j tð Þ, we get x�i, j tð Þ and the total number of SLPs required is
lþ 6. Now we know wl�1 ¼ wlwl, l�1 1ð Þwl�1,�l 1ð Þ, so we generate wl�1. Hence by
induction we can generate wi ¼ wiþ1wiþ1, i 1ð Þwi,� iþ1ð Þ 1ð Þ, for i ¼ l� 1,…, 2. Here
wi, j tð Þ ¼ xi, j tð Þxj, i �t�1ð Þxi, j tð Þ, for i 6¼ j, and wi,�j tð Þ ¼ xi,�j tð Þx�i, j t�1ð Þxi,�j tð Þ, for
i, j. Hence we generate all the elementary matrices defined in Table A7 using
generators x, x0, x1 t; sð Þ, x2, and w and an extra element wl. In our algorithm the
output matrix is d λð Þ ¼ diag 1; 1; 1;…; λ; 1;…; λ�1

� �
. If λ∈F�2p , say λ � t2 mod pð Þ,

here t � λ
pþ1
4 mod pð Þ, since p � 3 mod 4ð Þ.

Then d λð Þ ¼ diag 1; 1; 1;…; t2; 1;…; ; t�2
� �

¼ wl�1, l 1ð Þdiag 1; 1; 1;…; t2; 1; 1;…; ; t�2; 1
� �

wl�1, l �1ð Þ
¼ wl�1, l 1ð Þwl�1, l tð Þwl�1, l �1ð Þwl�1,�l tð Þwl�1,�l �1ð Þwl�1, l �1ð Þ:
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Remark 5.2 Let d ζð Þ ¼ diag 1; 1; 1;…; ζ; 1;…; ζ�1
� �

, where ζ is non-square in F�p .
Then as a consequence of our Gaussian elimination algorithm in Appendix A, we can see
that x, x0, x1 t; sð Þ, x2,w and wl along with d ζð Þ generate the twisted orthogonal group.

6. Conclusion

This section is similar to ([6], Section 8). A useful public-key cryptosystem is a
delicate dance between speed and the security. So one must talk about speed along
with security.

The implementation of the MOR cryptosystem that we have in mind uses the
row-column operations. Let g1; g2;…; gs

� �
be a set of generators for the orthogonal

or symplectic group as described before. As is the custom with a MOR cryptosys-
tem, the automorphisms ϕ and ϕm are presented as action on generators, i.e., we
have ϕ gi

� �
and ϕm gi

� �
as matrices for i ¼ 1, 2,…, s.

To encrypt a message in this MOR cryptosystem, we compute ϕr. We do that by
square-and-multiply algorithm. For this implementation, squaring and multiplying
is almost the same. So we will refer to both squaring and multiplication as multipli-
cation. Note that multiplication is composed of automorphisms.

The implementation that we describe in this chapter can work in parallel. Each
instance computes ϕr gi

� �
for i ¼ 1, 2,…, s. First thing that we do is write the matrix

of ϕ gi
� �

as a word in generators. So essentially the map ϕ becomes a map gi↦wi

where wi is a word in generators of some fixed length. Then multiplication
becomes essentially a replacement, replace all instances of gi by wi. This can be done
very fast. However, the length of the replaced word can become very large. The
obvious question is how soon are we going to write this word as a matrix. This is
a difficult question to answer at this stage and depends on available computational
resources.

Once we decide how often we change back to matrices, how are we going to
change back to matrices? There can be a fairly easy time-memory trade-offs. Write
all words up to a fixed length and the corresponding matrix as a pre-computed table
and use this table to compute the matrices. Once we have matrices, we can multiply
them together to generate the final output. There are also many obvious relations
among the generators of these groups. One can just store and use them. The best
strategy for an efficient implementation is yet to be determined. It is clear now that
there are many interesting and novel choices.

The benefits of this MOR cryptosystem are:
This can be implemented in parallel easily.
This implementation does not depend on the size of the characteristic of the
field. This is an important property in light of Joux’s recent improvement of the
index-calculus attacks [11].

For parameters and complexity analysis of this cryptosystem, we refer to ([6],
Section 8). Assume that we take a prime of size 2160 and we are using two generators
presentation of ϕ for the even-orthogonal group. Then the security is the discrete
logarithm problem in Fpd2 . Now if we take d ¼ 4, then the security is better than

F22560 . Our key-size is about 8000 bits. Comparing with Monico ([10], Section 7),
where he says an ElGamal will have about 6080 bits, our system is quite
comparable. Moreover, the MOR cryptosystem is better suited to handle large
primes and can be easily parallelized.
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Appendix A. Solving the word problem in G

In computational group theory, one is always looking for algorithms that solve
the word problem. When G is a special linear group, one has a well-known algo-
rithm to solve the word problem—the Gaussian elimination algorithm. One
observes that the effect of multiplying an element of the special linear group by an
elementary matrix (also known as elementary transvection) from left or right is
either a row or a column operation, respectively. Using this algorithm one can start
with any matrix g∈ SL lþ 1; kð Þ and get to the identity matrix, thus writing g as a
product of elementary matrices ([18], Proposition 6.2). One of the objective of this
appendix is to discuss a similar algorithm for orthogonal and symplectic groups,
with a set of generators that we will call elementary matrices in their respective
groups. Similar algorithms can be found in the works of Brooksbank [19, 20] and
Costi [21]. However, we have no restrictions on the cardinality or characteristic of
the field k.

We first describe the elementary matrices and the row-column operations for
the respective groups. These row-column operations are nothing but multiplication
by elementary matrices from left and right, respectively. Here elementary matrices
used are nothing but Chevalley generators which follows from the theory of
Chevalley groups.

The basic idea of the algorithm is to use the fact that multiplying any orthogonal
matrix by any one of the generators enables us to perform row or column opera-
tions. The relation Tgβg ¼ β gives us some compact relations among the blocks of g
which can be used to make the algorithm faster. To make the algorithm simple, we
will write the algorithm for O 2lþ 1; kð Þ, Oþ 2l; kð Þ, and O� 2l; kð Þ separately.

A.1 Groups in which Gaussian elimination works

• Symplectic groups: Since all non-degenerate skew-symmetric bilinear forms
are equivalent ([22], Corollary 2.12), we have a Gaussian elimination algorithm
for all symplectic groups over an arbitrary field.

• Orthogonal groups:

• Since non-degenerate symmetric bilinear forms over a finite field of odd
characteristics are classified ([22], p. 79) according to the β (see Section
3), we have a Gaussian elimination algorithm for all orthogonal groups
over a finite field of odd characteristics.

• Since non-degenerate quadratic forms over a perfect field of even
characteristics can be classified ([23], p. 10) according to quadratic forms
Q(x) defined in ([24], Section 4.2), we have a Gaussian elimination
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field. This is an important property in light of Joux’s recent improvement of the
index-calculus attacks [11].
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product of elementary matrices ([18], Proposition 6.2). One of the objective of this
appendix is to discuss a similar algorithm for orthogonal and symplectic groups,
with a set of generators that we will call elementary matrices in their respective
groups. Similar algorithms can be found in the works of Brooksbank [19, 20] and
Costi [21]. However, we have no restrictions on the cardinality or characteristic of
the field k.

We first describe the elementary matrices and the row-column operations for
the respective groups. These row-column operations are nothing but multiplication
by elementary matrices from left and right, respectively. Here elementary matrices
used are nothing but Chevalley generators which follows from the theory of
Chevalley groups.

The basic idea of the algorithm is to use the fact that multiplying any orthogonal
matrix by any one of the generators enables us to perform row or column opera-
tions. The relation Tgβg ¼ β gives us some compact relations among the blocks of g
which can be used to make the algorithm faster. To make the algorithm simple, we
will write the algorithm for O 2lþ 1; kð Þ, Oþ 2l; kð Þ, and O� 2l; kð Þ separately.

A.1 Groups in which Gaussian elimination works

• Symplectic groups: Since all non-degenerate skew-symmetric bilinear forms
are equivalent ([22], Corollary 2.12), we have a Gaussian elimination algorithm
for all symplectic groups over an arbitrary field.

• Orthogonal groups:

• Since non-degenerate symmetric bilinear forms over a finite field of odd
characteristics are classified ([22], p. 79) according to the β (see Section
3), we have a Gaussian elimination algorithm for all orthogonal groups
over a finite field of odd characteristics.

• Since non-degenerate quadratic forms over a perfect field of even
characteristics can be classified ([23], p. 10) according to quadratic forms
Q(x) defined in ([24], Section 4.2), we have a Gaussian elimination
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algorithm for all orthogonal groups over a perfect field of even
characteristics.

• Furthermore, we have Gaussian elimination algorithm for orthogonal
groups that are given by the above bilinear forms or quadratic forms over
arbitrary fields. This algorithm also works for bilinear or quadratic forms
that are equivalent to the above forms.

A.2 Gaussian elimination for matrices of even size—orthogonal group
Oþ d; kð Þ and symplectic group

Recall that the bilinear forms β are the following:

• For symplectic group, Sp d; kð Þ, d ¼ 2l, and β ¼ 0 Il
�Il 0

� �
.

• For orthogonal group, Oþ d; kð Þ, d ¼ 2l, and β ¼ 0 Il
Il 0

� �
.

Note that any isometry g satisfies Tgβg ¼ β. The main reason our algorithm

works is the following: Recall that a matrix g ¼ A B
C D

� �
, where A, B, C, and D are

matrices of size l, is orthogonal or symplectic if Tgβg ¼ β for the respective β. After
some usual calculations, for orthogonal group it becomes

TCAþTAC TCBþTAD
TDAþTBC TDBþTBD

� �
¼ 0 Il

Il 0

� �
(A.1)

The above equation implies among other things, TCAþTAC ¼ 0. This implies
that TAC is skew-symmetric. In an almost identical way, one can show, if g is
symplectic, TAC is symmetric. The working principle of our algorithm is simple—
use the symmetry of TAC. The problem is, for arbitrary A and C, it is not easy to use
this symmetry. In our case we were able to reduce A to a diagonal matrix, and then
it is relatively straightforward to use this symmetry. We will explain the algorithm
in details later. First of all, let us describe the elementary matrices and the row-
column operations for orthogonal and symplectic groups. The genesis of these
elementary matrices lies in the Chevalley basis of simple Lie algebras. We will not
go into details of Chevalley’s theory in this appendix. Furthermore, we do not need
to, the algorithm that we produce will show that these elementary matrices are
generators for the respective groups.

Next we present the elementary matrices for the respective groups and then the
row-column operations in a tabular form.

A.2.1 Elementary matrices (Chevalley generators) for orthogonal group
Oþ d; kð Þ of even size

Following the theory of root system in a simple Lie algebra, we index rows by
1, 2,…, l, � 1, � 2,…, � l. For t∈ k, the elementary matrices are defined as follows
(Tables A1 and A2):

Let us note the effect of multiplying g by elementary matrices. We write
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g∈Oþ 2l; kð Þ as g ¼ A B
C D

� �
, where A, B, C, and D are l� l matrices.

A.2.2 Elementary matrices (Chevalley generators) for symplectic group

For t∈ k, the elementary matrices are defined as follows (Table A3):
Let us note the effect of multiplying g by elementary matrices. We write

g∈ Sp 2l; kð Þ as g ¼ A B
C D

� �
, where A, B, C, and D are l� l matrices (Table A4).

A.2.3 Gaussian elimination for Sp 2l; kð Þ and Oþ 2l; kð Þ

Step 1: Use ER1 and EC1 to make A into a diagonal matrix. This makes A into a
diagonal matrix and changes other matrices A, B, C, and D. For the sake of
notational convenience, we keep calling these changed matrices as A, B, C, and
D as well.

Char(k) Elementary matrices

xi, j tð Þ I þ t ei, j � e�j,�i
� �

i 6¼ j

Both xi,�j tð Þ I þ t ei,�j � ej,�i
� �

i, j

x�i, j tð Þ I þ t e�i, j � e�j, i
� �

i, j

wi I � ei, i � e�i,�i þ ei,�i þ e�i, i 1≤ i≤ l

Table A1.
Elementary matrices for Oþ 2l; kð Þ.

Row operations Column operations

ER1 ith↦ithþ tjth row EC1 jth↦jthþ tith column

�jth↦� jth� t �ið Þth row �ith↦� ith� t �jð Þth column

ER2 ith↦ithþ t �jð Þth row EC2 �ith↦� ith� tjth column

jth↦jth� t �ið Þth row �jth↦� jthþ tith column

ER3 �ith↦� ith� tjth row EC3 jth↦jthþ t �ið Þth column

�jth↦� jthþ tith row ith↦ith� t �jð Þth column

wi Interchange ith and �ið Þth row Interchange ith and �ið Þth column

Table A2.
The row-column operations for Oþ 2l; kð Þ.

Char(k) Elementary matrices

xi, j tð Þ I þ t ei, j � e�j,�i
� �

i 6¼ j

Both xi,�j tð Þ I þ t ei,�j þ ej,�i
� �

i, j

x�i, j tð Þ I þ t e�i, j þ e�j, i
� �

i, j

xi,�i tð Þ I þ tei,�i 1≤ i≤ l

x�i, i tð Þ I þ te�i, i 1≤ i≤ l

Table A3.
Elementary matrices for Sp 2l; kð Þ.
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algorithm for all orthogonal groups over a perfect field of even
characteristics.

• Furthermore, we have Gaussian elimination algorithm for orthogonal
groups that are given by the above bilinear forms or quadratic forms over
arbitrary fields. This algorithm also works for bilinear or quadratic forms
that are equivalent to the above forms.

A.2 Gaussian elimination for matrices of even size—orthogonal group
Oþ d; kð Þ and symplectic group

Recall that the bilinear forms β are the following:

• For symplectic group, Sp d; kð Þ, d ¼ 2l, and β ¼ 0 Il
�Il 0

� �
.

• For orthogonal group, Oþ d; kð Þ, d ¼ 2l, and β ¼ 0 Il
Il 0

� �
.

Note that any isometry g satisfies Tgβg ¼ β. The main reason our algorithm

works is the following: Recall that a matrix g ¼ A B
C D

� �
, where A, B, C, and D are

matrices of size l, is orthogonal or symplectic if Tgβg ¼ β for the respective β. After
some usual calculations, for orthogonal group it becomes

TCAþTAC TCBþTAD
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� �
¼ 0 Il

Il 0

� �
(A.1)

The above equation implies among other things, TCAþTAC ¼ 0. This implies
that TAC is skew-symmetric. In an almost identical way, one can show, if g is
symplectic, TAC is symmetric. The working principle of our algorithm is simple—
use the symmetry of TAC. The problem is, for arbitrary A and C, it is not easy to use
this symmetry. In our case we were able to reduce A to a diagonal matrix, and then
it is relatively straightforward to use this symmetry. We will explain the algorithm
in details later. First of all, let us describe the elementary matrices and the row-
column operations for orthogonal and symplectic groups. The genesis of these
elementary matrices lies in the Chevalley basis of simple Lie algebras. We will not
go into details of Chevalley’s theory in this appendix. Furthermore, we do not need
to, the algorithm that we produce will show that these elementary matrices are
generators for the respective groups.

Next we present the elementary matrices for the respective groups and then the
row-column operations in a tabular form.

A.2.1 Elementary matrices (Chevalley generators) for orthogonal group
Oþ d; kð Þ of even size

Following the theory of root system in a simple Lie algebra, we index rows by
1, 2,…, l, � 1, � 2,…, � l. For t∈ k, the elementary matrices are defined as follows
(Tables A1 and A2):

Let us note the effect of multiplying g by elementary matrices. We write

Modern Cryptography – Current Challenges and Solutions

104

g∈Oþ 2l; kð Þ as g ¼ A B
C D
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i 6¼ j
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Step 2: There are two possibilities. One, the diagonal matrix A is of full rank,
and two, the diagonal matrix A is of rank r less than l. This is clearly
identifiable by looking for zeros in the diagonal of A.

Step 3: Make r rows of C, corresponding to the non-zero entries in the diagonal
of A zero by using ER3. If r ¼ l, we have C as zero matrix. If not let us assume
that ith row is zero in A. Then we interchange the ith row with the �ith row in
g. We do this for all zero rows in A. The new C is a zero matrix. We claim that
the new A must have a full rank. This follows from Equation A.1; in particular
TCBþTAD ¼ Il. If C is zero matrix, then A is invertible. Now make A a
diagonal matrix by using Step 1. Then one can make A a matrix of the form
diag 1;…; 1; λð Þ, where λ∈ k� using ER1 ([18], Proposition 6.2). Once A is
diagonal and C a zero matrix, the equation TCBþTAD ¼ Il makes D a diagonal
matrix of full rank.

Step 4: Use ER2 to make B a zero matrix. The matrix g becomes a diagonal
matrix of the form

diag 1;…; 1; λ; 1;…; 1; λ�1
� �

, where λ∈ k�.
Step 5: (Only for symplectic groups) Reduce the λ to 1 using Lemma A.1.

Lemma A.1 For Sp 2l; kð Þ, the element diag 1;…; 1; λ; 1;…; 1; λ�1
� �

is a product of
elementary matrices.

Proof. Observe that
I þ λel,�lð Þ I � λ�1e�l, l

� �
I þ λel,�lð Þ ¼ I � el, l � e�l,�l þ λel,�l � λ�1e�l, l and denote it

by wl λð Þ, and then the diagonal element is wl λð Þwl �1ð Þ.
Remark A.1 As we saw in the above algorithm, we will have to interchange ith and

�ith rows for i ¼ 1, 2,…, l. This can be done by pre-multiplying with a suitable matrix.
Let I be the 2l� 2l identity matrix over k. To swap ith and �ith row in Oþ 2l; kð Þ,

swap ith and �ith rows in the matrix I. We will call this matrix wi. It is easy to see
that this matrix wi is in Oþ 2l; kð Þ and is of determinant �1. Pre-multiplying with wi

does the row interchange we are looking for.
In the case of symplectic group Sp 2l; kð Þ, we again swap two rows ith and�ith in

I. However we do a sign change in the ith row and call it wi. Simple computation
with our chosen β shows that the above matrices are in Oþ 2l; kð Þ and Sp 2l; kð Þ,
respectively.

Row operations Column operations

ER1 ith↦ithþ tjth row EC1 jth↦jthþ tith column

�jth↦� jthþ t �ið Þth row �ith↦� ithþ t �jð Þth column

ER2 ith↦ithþ t �jð Þth row EC2 �ith↦� ithþ tjth column

jth↦jthþ t �ið Þth row �jth↦� jthþ tith column

ER3 �ith↦� ithþ tjth row EC3 jth↦jthþ t �ið Þth column

�jth↦� jthþ tith row ith↦ithþ t �jð Þth column

ER1a ith↦ithþ t �ið Þth row EC1a �ith↦� ithþ tith column

ER2a �ith↦� ithþ tith row EC2a ith↦ithþ t �ið Þth column

wi Interchange ith and (�i)th rows Interchange ith and (�i)th columns

with a sign change in the ith row with a sign change in the ith column

Table A4.
The row-column operations for symplectic groups.
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However there is one difference between orthogonal and symplectic groups. In
symplectic group, wi can be generated by elementary matrices because
wi ¼ xi,�i 1ð Þx�i, i �1ð Þxi,�i 1ð Þ. In the case of orthogonal groups, that is not the case.
This is clear that the elementary matrices come from the Chevalley generators and
those generates Ω, the commutator of the orthogonal group. All matrices in Ω have
determinant 1. However wi has determinant �1. So we must add wi as an elemen-
tary matrix for Oþ 2l; kð Þ.

Remark A.2 This algorithm proves every element in the symplectic group is of
determinant 1. Note the elementary matrices for the symplectic group are of determinant
1, and we have an algorithm to write any element as product of elementary matrices. So
this proves that the determinant is 1.

Remark A.3 This algorithm proves if X is an element of a symplectic group then so is
TX. The argument is similar to the above; here we note that the transpose of an elementary
matrix in symplectic groups is an elementary matrix.

A.3 Gaussian elimination for matrices of odd size—the odd-orthogonal
group

In this case, matrices are of odd size and there is only one family of group to
consider; it is the odd-orthogonal group O 2lþ 1; kð Þ. This group will be referred to
as the odd-orthogonal group.

A.3.1 Elementary matrices (Chevalley generators) for O 2l þ 1; kð Þ

Following the theory of Lie algebra, we index rows by 0, 1,…, l, � 1,…, � l.
These elementary matrices are listed in Table A5.

Elementary matrices for the odd-orthogonal group in even characteristics differ
from that of odd characteristics. In above table we made that distinction and listed
them separately in different rows according to the characteristics of k. If char(k) is
even, we can construct the elements wi, which interchanges the ith row with �ith
row as follows:

wi ¼ I þ e0, i þ e�i, ið Þ I þ e0,�i þ ei,�ið Þ I þ e0, i þ e�i, ið Þ ¼ I þ ei, i þ e�i,�i þ ei,�i þ e�i, i:

Otherwise, we can construct wi, which interchanges the ith row with �ith row
with a sign change in ith, � ith and 0th row in odd-orthogonal group as follows:

Char(k) Elementary matrices

Both xi, j tð Þ I þ t ei, j � e�j,�i
� �

i 6¼ j

xi,�j tð Þ I þ t ei,�j � ej,�i
� �

i, j

x�i, j tð Þ I þ t e�i, j � e�j, i
� �

i, j

Odd xi,0 tð Þ I þ t 2ei,0 � e0,�ið Þ � t2ei,�i 1≤ i≤ l

x0, i tð Þ I þ t �2e�i,0 þ e0, ið Þ � t2e�i, i 1≤ i≤ l

Even xi,0 tð Þ I þ te0,�i þ t2ei,�i 1≤ i≤ l

x0, i tð Þ I þ te0, i þ t2e�i, i 1≤ i≤ l

Table A5.
Elementary matrices for O 2lþ 1; kð Þ.
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Step 2: There are two possibilities. One, the diagonal matrix A is of full rank,
and two, the diagonal matrix A is of rank r less than l. This is clearly
identifiable by looking for zeros in the diagonal of A.

Step 3: Make r rows of C, corresponding to the non-zero entries in the diagonal
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that ith row is zero in A. Then we interchange the ith row with the �ith row in
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the new A must have a full rank. This follows from Equation A.1; in particular
TCBþTAD ¼ Il. If C is zero matrix, then A is invertible. Now make A a
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diag 1;…; 1; λð Þ, where λ∈ k� using ER1 ([18], Proposition 6.2). Once A is
diagonal and C a zero matrix, the equation TCBþTAD ¼ Il makes D a diagonal
matrix of full rank.

Step 4: Use ER2 to make B a zero matrix. The matrix g becomes a diagonal
matrix of the form

diag 1;…; 1; λ; 1;…; 1; λ�1
� �

, where λ∈ k�.
Step 5: (Only for symplectic groups) Reduce the λ to 1 using Lemma A.1.

Lemma A.1 For Sp 2l; kð Þ, the element diag 1;…; 1; λ; 1;…; 1; λ�1
� �

is a product of
elementary matrices.
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I þ λel,�lð Þ I � λ�1e�l, l

� �
I þ λel,�lð Þ ¼ I � el, l � e�l,�l þ λel,�l � λ�1e�l, l and denote it

by wl λð Þ, and then the diagonal element is wl λð Þwl �1ð Þ.
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Row operations Column operations

ER1 ith↦ithþ tjth row EC1 jth↦jthþ tith column

�jth↦� jthþ t �ið Þth row �ith↦� ithþ t �jð Þth column

ER2 ith↦ithþ t �jð Þth row EC2 �ith↦� ithþ tjth column

jth↦jthþ t �ið Þth row �jth↦� jthþ tith column

ER3 �ith↦� ithþ tjth row EC3 jth↦jthþ t �ið Þth column

�jth↦� jthþ tith row ith↦ithþ t �jð Þth column

ER1a ith↦ithþ t �ið Þth row EC1a �ith↦� ithþ tith column

ER2a �ith↦� ithþ tith row EC2a ith↦ithþ t �ið Þth column

wi Interchange ith and (�i)th rows Interchange ith and (�i)th columns

with a sign change in the ith row with a sign change in the ith column

Table A4.
The row-column operations for symplectic groups.
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However there is one difference between orthogonal and symplectic groups. In
symplectic group, wi can be generated by elementary matrices because
wi ¼ xi,�i 1ð Þx�i, i �1ð Þxi,�i 1ð Þ. In the case of orthogonal groups, that is not the case.
This is clear that the elementary matrices come from the Chevalley generators and
those generates Ω, the commutator of the orthogonal group. All matrices in Ω have
determinant 1. However wi has determinant �1. So we must add wi as an elemen-
tary matrix for Oþ 2l; kð Þ.

Remark A.2 This algorithm proves every element in the symplectic group is of
determinant 1. Note the elementary matrices for the symplectic group are of determinant
1, and we have an algorithm to write any element as product of elementary matrices. So
this proves that the determinant is 1.

Remark A.3 This algorithm proves if X is an element of a symplectic group then so is
TX. The argument is similar to the above; here we note that the transpose of an elementary
matrix in symplectic groups is an elementary matrix.

A.3 Gaussian elimination for matrices of odd size—the odd-orthogonal
group

In this case, matrices are of odd size and there is only one family of group to
consider; it is the odd-orthogonal group O 2lþ 1; kð Þ. This group will be referred to
as the odd-orthogonal group.

A.3.1 Elementary matrices (Chevalley generators) for O 2l þ 1; kð Þ

Following the theory of Lie algebra, we index rows by 0, 1,…, l, � 1,…, � l.
These elementary matrices are listed in Table A5.

Elementary matrices for the odd-orthogonal group in even characteristics differ
from that of odd characteristics. In above table we made that distinction and listed
them separately in different rows according to the characteristics of k. If char(k) is
even, we can construct the elements wi, which interchanges the ith row with �ith
row as follows:

wi ¼ I þ e0, i þ e�i, ið Þ I þ e0,�i þ ei,�ið Þ I þ e0, i þ e�i, ið Þ ¼ I þ ei, i þ e�i,�i þ ei,�i þ e�i, i:

Otherwise, we can construct wi, which interchanges the ith row with �ith row
with a sign change in ith, � ith and 0th row in odd-orthogonal group as follows:

Char(k) Elementary matrices

Both xi, j tð Þ I þ t ei, j � e�j,�i
� �

i 6¼ j

xi,�j tð Þ I þ t ei,�j � ej,�i
� �

i, j

x�i, j tð Þ I þ t e�i, j � e�j, i
� �

i, j

Odd xi,0 tð Þ I þ t 2ei,0 � e0,�ið Þ � t2ei,�i 1≤ i≤ l

x0, i tð Þ I þ t �2e�i,0 þ e0, ið Þ � t2e�i, i 1≤ i≤ l

Even xi,0 tð Þ I þ te0,�i þ t2ei,�i 1≤ i≤ l

x0, i tð Þ I þ te0, i þ t2e�i, i 1≤ i≤ l

Table A5.
Elementary matrices for O 2lþ 1; kð Þ.

The MOR Cryptosystem in Classical Groups with a Gaussian Elimination Algorithm…

DOI: http://dx.doi.org/10.5772/intechopen.84663

107



wi ¼ x0, i �1ð Þxi,0 1ð Þx0, i �1ð Þ ¼ I � 2e0,0 � ei, i � e�i,�i � ei,�i � e�i, i:

The Gaussian elimination algorithm for O 2lþ 1; kð Þ follows the earlier algorithm
for symplectic and even-orthogonal group closely, except that we need to take care
of the zero row and the zero column. We write an element g∈O 2lþ 1; kð Þ as

g ¼
α X Y
E A B
F C D

0
B@

1
CA, where A, B, C, and D are l� l matrices, X and Y are 1� l matri-

ces, E and F are l� 1 matrices, α∈ k and β ¼
2 0 0

0 0 Il
0 Il 0

0
B@

1
CA. Then from the condi-

tion Tgβg ¼ β, we get the following relations:

2TXXþTACþTCA ¼ 0 (A.2)

2αTXþTAFþTCE ¼ 0 (A.3)

2αYþTEDþTFB ¼ 0 (A.4)

2TXYþTADþTCB ¼ Il (A.5)

Let us note the effect of multiplying g by elementary matrices (Table A6).

Row operations Column operations

ER1 ith↦ithþ tjth row EC1 jth↦jthþ tith column

(both) �jth↦� jth� t �ið Þth row (both) �ith↦� ith� t �jð Þth column

ER2 ith↦ithþ t �jð Þth row EC2 �ith↦� ith� tjth column

(both) jth↦jth� t �ið Þth row (both) �jth↦� jthþ tith column

ER3 �ith↦� ith� tjth row EC3 jth↦jthþ t �ið Þth column

(both) �jth↦� jthþ tith row (both) ith↦ith� t �jð Þth column

ER4 0th↦0th� t �ið Þth row EC4 0th↦0thþ 2tith column

(odd) ith↦ithþ 2t0th� t2 �ið Þth row (odd) �ið Þth↦ �ið Þth� t0th� t2ith column

ER5 0th↦0thþ tith row EC5 0th↦0th� 2t �ið Þth column

(odd) �ið Þth↦ �ið Þth� 2t0th� t2ith row (odd) ith↦ithþ t0th� t2 �ið Þth column

ER6 0th↦0thþ t �ið Þth row EC6 �ið Þth↦ �ið Þthþ t0thþ t2ith column

(even) ith↦ithþ t2 �ið Þth row (even)

ER7 0th↦0thþ tith row EC7 ith↦ithþ t0thþ t2 �ið Þth column

(even) �ið Þth↦ �ið Þthþ t2ith row (even)

wi Interchange ith and �ið Þth rows wi Interchange ith and �ið Þth column

(odd) with a sign change in ith, � ith and 0th
rows

(odd) with a sign change in ith, � ith and 0th
columns

wi

(even)
Interchange ith and �ið Þth row wi

(even)
Interchange ith and �ið Þth column

Table A6.
The row-column operations for O 2lþ 1; kð Þ.

Modern Cryptography – Current Challenges and Solutions

108

A.3.2 Gaussian elimination for O 2l þ 1; kð Þ

Step 1: Use ER1 and EC1 to make A into a diagonal matrix, but in the process, it
changes other matrices A, B,C,D, E, F, X, and Y. For the sake of notational
convenience, we keep calling these changed matrices as A, B, C,D, E, F, X, and
Y as well.

Step 2: Now there will be two cases depending on the rank r of matrix A. The
rank of A can be easily determined using the number of non-zero diagonal
entries. Use ER3 and non-zero diagonal entries of A to make corresponding r
rows of C zero.

1. If r ¼ l then C becomes zero matrix.

2. If r, l then interchange all zero rows of A with corresponding rows of C
using wi so that the new C becomes a zero matrix.

Once C becomes zero, note that Relation A.2 if char(k) is odd or Relation
Q g vð Þð Þ ¼ Q vð Þ if char(k) is even guarantees that X becomes zero. Relation A.5
guarantees that A has full rank lwhich also makesD a diagonal with full rank l.
Thus Relation A.3 shows that F becomes zero as well. Then use Step 1 to reduce
A ¼ diag 1;…; 1; λð Þ, where λ∈ k�.

Step 3: Now if char(k) is even, then Relation A.4 guarantees that E becomes
zero as well. If char(k) is odd, then use ER4 to make E a zero matrix.

Step 4: Use ER2 to make B a zero matrix. For char(k) even the relation
Q g vð Þð Þ ¼ Q vð Þ guarantees that Y is a zero matrix, and for char(k) odd
Relation A.4 implies that Y becomes zero.

Thus the matrix g reduces to diag �1; 1;…; λ; 1;…; λð Þ, where λ∈ k�.
Remark A.4 Let k be a perfect filed of characteristics 2. Note that we can write the

diagonal matrix diag 1;…; 1; λ; 1;…; 1; λ�1
� �

as a product of elementary matrices as fol-
lows:

diag 1;…; 1; λ; 1;…; 1; λ�1
� � ¼ xl,�l tð Þx�l, l �t�1ð Þxl,�l tð Þ, where t2 ¼ λ,

and hence we can reduce the matrix g to identity.

A.4 Gaussian elimination in twisted orthogonal groups

In this section we present a Gaussian elimination algorithm for twisted orthogo-
nal groups. The size of the matrix is even; the bilinear form used is c0 from Section 3.

A.4.1 Elementary matrices (Chevalley generators) for twisted orthogonal
groups O� 2l; kð Þ

In this section, we describe row-column operations for twisted Chevalley
groups. These groups are also known as the Steinberg groups. An element

g∈O� 2l; kð Þ is denoted as g ¼
A0 X Y
E A B
F C D

0
B@

1
CA, where A, B,C, and D are

l� 1ð Þ � l� 1ð Þ matrices, X and Y are 2� l� 1ð Þmatrices, E and F are l� 1ð Þ � 2
matrices, and A0 is a 2� 2 matrix. In the Gaussian elimination algorithm that we
discuss, we reduce X, Y, E, F, B, and C to zero and A and D to diagonal matrices.
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wi ¼ x0, i �1ð Þxi,0 1ð Þx0, i �1ð Þ ¼ I � 2e0,0 � ei, i � e�i,�i � ei,�i � e�i, i:

The Gaussian elimination algorithm for O 2lþ 1; kð Þ follows the earlier algorithm
for symplectic and even-orthogonal group closely, except that we need to take care
of the zero row and the zero column. We write an element g∈O 2lþ 1; kð Þ as

g ¼
α X Y
E A B
F C D

0
B@

1
CA, where A, B, C, and D are l� l matrices, X and Y are 1� l matri-

ces, E and F are l� 1 matrices, α∈ k and β ¼
2 0 0

0 0 Il
0 Il 0

0
B@

1
CA. Then from the condi-

tion Tgβg ¼ β, we get the following relations:

2TXXþTACþTCA ¼ 0 (A.2)

2αTXþTAFþTCE ¼ 0 (A.3)

2αYþTEDþTFB ¼ 0 (A.4)

2TXYþTADþTCB ¼ Il (A.5)

Let us note the effect of multiplying g by elementary matrices (Table A6).

Row operations Column operations

ER1 ith↦ithþ tjth row EC1 jth↦jthþ tith column

(both) �jth↦� jth� t �ið Þth row (both) �ith↦� ith� t �jð Þth column

ER2 ith↦ithþ t �jð Þth row EC2 �ith↦� ith� tjth column
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ER3 �ith↦� ith� tjth row EC3 jth↦jthþ t �ið Þth column

(both) �jth↦� jthþ tith row (both) ith↦ith� t �jð Þth column

ER4 0th↦0th� t �ið Þth row EC4 0th↦0thþ 2tith column

(odd) ith↦ithþ 2t0th� t2 �ið Þth row (odd) �ið Þth↦ �ið Þth� t0th� t2ith column

ER5 0th↦0thþ tith row EC5 0th↦0th� 2t �ið Þth column
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(even) ith↦ithþ t2 �ið Þth row (even)

ER7 0th↦0thþ tith row EC7 ith↦ithþ t0thþ t2 �ið Þth column

(even) �ið Þth↦ �ið Þthþ t2ith row (even)

wi Interchange ith and �ið Þth rows wi Interchange ith and �ið Þth column

(odd) with a sign change in ith, � ith and 0th
rows

(odd) with a sign change in ith, � ith and 0th
columns

wi

(even)
Interchange ith and �ið Þth row wi

(even)
Interchange ith and �ið Þth column

Table A6.
The row-column operations for O 2lþ 1; kð Þ.
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Step 1: Use ER1 and EC1 to make A into a diagonal matrix, but in the process, it
changes other matrices A, B,C,D, E, F, X, and Y. For the sake of notational
convenience, we keep calling these changed matrices as A, B, C,D, E, F, X, and
Y as well.

Step 2: Now there will be two cases depending on the rank r of matrix A. The
rank of A can be easily determined using the number of non-zero diagonal
entries. Use ER3 and non-zero diagonal entries of A to make corresponding r
rows of C zero.

1. If r ¼ l then C becomes zero matrix.

2. If r, l then interchange all zero rows of A with corresponding rows of C
using wi so that the new C becomes a zero matrix.

Once C becomes zero, note that Relation A.2 if char(k) is odd or Relation
Q g vð Þð Þ ¼ Q vð Þ if char(k) is even guarantees that X becomes zero. Relation A.5
guarantees that A has full rank lwhich also makesD a diagonal with full rank l.
Thus Relation A.3 shows that F becomes zero as well. Then use Step 1 to reduce
A ¼ diag 1;…; 1; λð Þ, where λ∈ k�.

Step 3: Now if char(k) is even, then Relation A.4 guarantees that E becomes
zero as well. If char(k) is odd, then use ER4 to make E a zero matrix.

Step 4: Use ER2 to make B a zero matrix. For char(k) even the relation
Q g vð Þð Þ ¼ Q vð Þ guarantees that Y is a zero matrix, and for char(k) odd
Relation A.4 implies that Y becomes zero.

Thus the matrix g reduces to diag �1; 1;…; λ; 1;…; λð Þ, where λ∈ k�.
Remark A.4 Let k be a perfect filed of characteristics 2. Note that we can write the

diagonal matrix diag 1;…; 1; λ; 1;…; 1; λ�1
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as a product of elementary matrices as fol-
lows:

diag 1;…; 1; λ; 1;…; 1; λ�1
� � ¼ xl,�l tð Þx�l, l �t�1ð Þxl,�l tð Þ, where t2 ¼ λ,

and hence we can reduce the matrix g to identity.

A.4 Gaussian elimination in twisted orthogonal groups

In this section we present a Gaussian elimination algorithm for twisted orthogo-
nal groups. The size of the matrix is even; the bilinear form used is c0 from Section 3.

A.4.1 Elementary matrices (Chevalley generators) for twisted orthogonal
groups O� 2l; kð Þ

In this section, we describe row-column operations for twisted Chevalley
groups. These groups are also known as the Steinberg groups. An element

g∈O� 2l; kð Þ is denoted as g ¼
A0 X Y
E A B
F C D

0
B@

1
CA, where A, B,C, and D are

l� 1ð Þ � l� 1ð Þ matrices, X and Y are 2� l� 1ð Þmatrices, E and F are l� 1ð Þ � 2
matrices, and A0 is a 2� 2 matrix. In the Gaussian elimination algorithm that we
discuss, we reduce X, Y, E, F, B, and C to zero and A and D to diagonal matrices.
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However, unlike the previous cases, we were unable to reduce A0 to an identity
matrix. However, for odd characteristics we were able to reduce A0 to a two-
parameter subgroup.

We now talk about the output of the algorithm. In the output we will have a

2� 2 block (also called A0) which will satisfy TA0β0A0 ¼ β0, where β0 ¼
1 0

0 ϵ

� �

for odd characteristics and ε is a non-square. Then A0 is a orthogonal matrix given

by the bilinear form β0. Now if we write A0 ¼
a b
c d

� �
, then we get the following

equations:

a2 þ c2ϵ ¼ 1, abþ cdϵ ¼ 0, b2 þ d2ϵ ¼ ϵ:

Considering the fact that det A0ð Þ ¼ �1, one more equation ad� bc ¼ �1 and
this leads to two cases either a ¼ d and b ¼ �cϵ or a ¼ �d and b ¼ cϵ. Recall that,
since ϵ is not a square, d 6¼ 0. Then if c ¼ 0, then there are four choices for A0 and

these are A0 ¼
�1 0

0 �1

� �
.

To summarize, the output of the algorithm A0 will have one of the following
forms

t �sϵ
s t

� �
or

t sϵ
s �t

� �
,where t2 þ s2ϵ ¼ 1, (A.6)

and t∈ k�, s∈ k, and ϵ are non-square. There are now two ways to describe the
algorithm: one is to leave A0 as it is in the output of the algorithm, and the other is to
include these matrices as generators. For the purpose of uniform exposition, we
chose the latter and included the following two generators

Char(k) Elementary matrices

xi, j tð Þ I þ t ei, j � e�j,�i
� �

i 6¼ j

Both xi,�j tð Þ I þ t ei,�j � ej,�i
� �

i, j

x�i, j tð Þ I þ t e�i, j � e�j, i
� �

i, j

wi I � ei, i � e�i,�i þ ei,�i þ e�i, i 2≤ i≤ l

xi,1 tð Þ I þ t e1, i � 2e�i,1ð Þ � t2e�i, i 2≤ i≤ l

x1, i tð Þ I þ t �e1,�i þ 2ei,1ð Þ � t2ei,�i 2≤ i≤ l

xi,�1 tð Þ I þ t e�1, i � 2εe�i,�1ð Þ � εt2e�i, i 2≤ i≤ l

Odd x�1, i tð Þ I þ t �e�1,�i þ 2εei,�1ð Þ � εt2ei,�i 2≤ i≤ l

x1 t; sð Þ I þ t � 1ð Þe1,1 � t þ 1ð Þe�1,�1 þ s e�1,1 þ εe1,�1ð Þ t2 þ εs2 ¼ 1

x2 I � 2e�1,�1

x1,�i tð Þ I þ te1,�i þ tei,�1 þ αt2ei,�i 2≤ i≤ l

Even x�1,�i tð Þ I þ te�1,�i þ tei,1 þ αt2ei,�i 2≤ i≤ l

xA0 I þ t � 1ð Þe1,1 þ s� 1ð Þe�1,�1 þ pe1,�1 þ re�1,1 tsþ pr ¼ 1

Table A7.
Elementary matrices for O� 2l; kð Þ.
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x1 t; sð Þ ¼ I þ t� 1ð Þe1,1 � tþ 1ð Þe�1,�1 þ s e�1,1 þ ϵe1,�1ð Þ; t2 þ ϵs2 ¼ 1,
x2 ¼ I � 2e�1,�1,

in the list of elementary matrices in Table A7. In the case of even characteristics,

no such reduction is possible, and we included the matrix
t p
r s

� �
in the list of

generators with the condition that the determinant is 1.
The elementary matrices for O� 2l; kð Þ depend on the characteristics of k. We

describe them separately in the following table. Let α be an Arf-invariant, 2≤ i, j≤ l
and t∈K and ξ∈ k�.

Let us note the effect of multiplying g by elementary matrices. Elementary
matrices for the twisted orthogonal group in even characteristics differ from that
of odd characteristics, so in the following tables (Tables A8 and A9), we made
that distinction and listed them separately in different rows according to the
characteristics of k.

Row operations

ER1 (both) ith↦ithþ tjth row and �jth↦� jth� t �ið Þth row

ER2 (both) ith↦ithþ t �jð Þth row and jth↦jth� t �ið Þth row

ER3 (both) �ith↦� ith� tjth row and �jth↦� jthþ tith row

ER4 (odd) 1st↦1st� t �ið Þth row and ith↦ithþ 2t1st� t2 �ið Þth row

ER5 (odd) 1st↦1stþ tith row and �ið Þth↦ �ið Þth� 2t1st� t2ith row

ER6 (odd) �1ð Þth↦ �1ð Þth� t �ið Þth row and ith↦ithþ 2εt �1ð Þth� εt2 �ið Þth row

ER7 (odd) �1ð Þth↦ �1ð Þthþ tith row and �ið Þth↦ �ið Þth� 2εt �1ð Þth� εt2ith row

ER8 (even) 1st↦1stþ t �ið Þth row and ith↦ithþ t �1ð Þthþ αt2 �ið Þth row

ER9 (even) �1ð Þth↦ �1ð Þthþ t �ið Þth row and ith↦ithþ t1stþ αt2 �ið Þth row

wi (both) Interchange ith and �ið Þth row

Table A8.
The row operations for O� 2l; kð Þ.

Column operations

EC1(both) jth↦jthþ tith column and �ith↦� ith� t �jð Þth column

EC2 (both) �ith↦� ith� tjth column and �jth↦� jthþ tith column

EC3 (both) jth↦jthþ t �ið Þth column and ith↦ith� t �jð Þth column

EC4 (odd) 1st↦1stþ 2tith column and �ið Þth↦ �ið Þth� t1st� t2ith column

EC5 (odd) 1st↦1st� 2t �ið Þth column and ith↦ithþ t1st� t2 �ið Þth column

EC6 (odd) �1ð Þth↦ �1ð Þthþ 2εtð Þith column and �ið Þth↦ �ið Þth� t �1ð Þth� εt2ith column

EC7 (odd) �1ð Þth↦ �1ð Þth� 2εt �ið Þth column and ith↦ithþ t �1ð Þth� εt2 �ið Þth column

EC8 (even) �1ð Þth↦ �1ð Þthþ tith column and �ið Þth↦ �ið Þthþ t1stþ αt2ith column

EC9 (even) 1st↦1stþ tith column and �ið Þth↦ �ið Þthþ t �1ð Þthþ αt2ith column

wi (both) Interchange ith and (�i)th column

Table A9.
The column operations for O� 2l; kð Þ.
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However, unlike the previous cases, we were unable to reduce A0 to an identity
matrix. However, for odd characteristics we were able to reduce A0 to a two-
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We now talk about the output of the algorithm. In the output we will have a

2� 2 block (also called A0) which will satisfy TA0β0A0 ¼ β0, where β0 ¼
1 0

0 ϵ

� �

for odd characteristics and ε is a non-square. Then A0 is a orthogonal matrix given

by the bilinear form β0. Now if we write A0 ¼
a b
c d

� �
, then we get the following

equations:
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these are A0 ¼
�1 0

0 �1

� �
.
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t �sϵ
s t

� �
or

t sϵ
s �t

� �
,where t2 þ s2ϵ ¼ 1, (A.6)

and t∈ k�, s∈ k, and ϵ are non-square. There are now two ways to describe the
algorithm: one is to leave A0 as it is in the output of the algorithm, and the other is to
include these matrices as generators. For the purpose of uniform exposition, we
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Char(k) Elementary matrices
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� �

i 6¼ j

Both xi,�j tð Þ I þ t ei,�j � ej,�i
� �

i, j

x�i, j tð Þ I þ t e�i, j � e�j, i
� �

i, j
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x1 t; sð Þ I þ t � 1ð Þe1,1 � t þ 1ð Þe�1,�1 þ s e�1,1 þ εe1,�1ð Þ t2 þ εs2 ¼ 1

x2 I � 2e�1,�1

x1,�i tð Þ I þ te1,�i þ tei,�1 þ αt2ei,�i 2≤ i≤ l

Even x�1,�i tð Þ I þ te�1,�i þ tei,1 þ αt2ei,�i 2≤ i≤ l

xA0 I þ t � 1ð Þe1,1 þ s� 1ð Þe�1,�1 þ pe1,�1 þ re�1,1 tsþ pr ¼ 1

Table A7.
Elementary matrices for O� 2l; kð Þ.
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x2 ¼ I � 2e�1,�1,

in the list of elementary matrices in Table A7. In the case of even characteristics,

no such reduction is possible, and we included the matrix
t p
r s

� �
in the list of

generators with the condition that the determinant is 1.
The elementary matrices for O� 2l; kð Þ depend on the characteristics of k. We

describe them separately in the following table. Let α be an Arf-invariant, 2≤ i, j≤ l
and t∈K and ξ∈ k�.

Let us note the effect of multiplying g by elementary matrices. Elementary
matrices for the twisted orthogonal group in even characteristics differ from that
of odd characteristics, so in the following tables (Tables A8 and A9), we made
that distinction and listed them separately in different rows according to the
characteristics of k.

Row operations

ER1 (both) ith↦ithþ tjth row and �jth↦� jth� t �ið Þth row

ER2 (both) ith↦ithþ t �jð Þth row and jth↦jth� t �ið Þth row

ER3 (both) �ith↦� ith� tjth row and �jth↦� jthþ tith row

ER4 (odd) 1st↦1st� t �ið Þth row and ith↦ithþ 2t1st� t2 �ið Þth row

ER5 (odd) 1st↦1stþ tith row and �ið Þth↦ �ið Þth� 2t1st� t2ith row

ER6 (odd) �1ð Þth↦ �1ð Þth� t �ið Þth row and ith↦ithþ 2εt �1ð Þth� εt2 �ið Þth row

ER7 (odd) �1ð Þth↦ �1ð Þthþ tith row and �ið Þth↦ �ið Þth� 2εt �1ð Þth� εt2ith row

ER8 (even) 1st↦1st þ t �ið Þth row and ith↦ithþ t �1ð Þthþ αt2 �ið Þth row

ER9 (even) �1ð Þth↦ �1ð Þthþ t �ið Þth row and ith↦ithþ t1stþ αt2 �ið Þth row

wi (both) Interchange ith and �ið Þth row

Table A8.
The row operations for O� 2l; kð Þ.

Column operations

EC1(both) jth↦jthþ tith column and �ith↦� ith� t �jð Þth column

EC2 (both) �ith↦� ith� tjth column and �jth↦� jthþ tith column

EC3 (both) jth↦jthþ t �ið Þth column and ith↦ith� t �jð Þth column

EC4 (odd) 1st↦1stþ 2tith column and �ið Þth↦ �ið Þth� t1st� t2ith column

EC5 (odd) 1st↦1st� 2t �ið Þth column and ith↦ithþ t1st� t2 �ið Þth column

EC6 (odd) �1ð Þth↦ �1ð Þthþ 2εtð Þith column and �ið Þth↦ �ið Þth� t �1ð Þth� εt2ith column

EC7 (odd) �1ð Þth↦ �1ð Þth� 2εt �ið Þth column and ith↦ithþ t �1ð Þth� εt2 �ið Þth column

EC8 (even) �1ð Þth↦ �1ð Þthþ tith column and �ið Þth↦ �ið Þthþ t1stþ αt2ith column

EC9 (even) 1st↦1stþ tith column and �ið Þth↦ �ið Þthþ t �1ð Þthþ αt2ith column

wi (both) Interchange ith and (�i)th column

Table A9.
The column operations for O� 2l; kð Þ.
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Note that any isometry g satisfies Tgβg ¼ β. The main reason the following
algorithm works is the closed condition Tgβg ¼ β which gives the following
relations:

TA0β0A0þTFEþTEF ¼ β0, (A.7)

TA0β0XþTFAþTEC ¼ 0, (A.8)

TA0β0YþTFBþTED ¼ 0, (A.9)

TXβ0XþTCAþTAC ¼ 0, (A.10)

TXβ0YþTCBþTAD ¼ Il�1: (A.11)

A.4.2 The Gaussian elimination algorithm for O� 2l; kð Þ

Step 1: Use ER1 and EC1 to make A into a diagonal matrix, but in the process, it
changes other matrices A0, A, B, C,D, E, F, X, and Y. For the sake of notational
convenience, we keep calling these changed matrices as A0, A, B, C,D, E, F, X,
and Y as well.

Step 2: Now there will be two cases depending on the rank r of the matrix A.
The rank of A can be easily determined by the number of non-zero diagonal
entries.

Step 3: Use ER3 and non-zero diagonal entries of A to make corresponding r
rows of C zero.
• If r ¼ l� 1 then C becomes zero matrix.

• If r, l� 1 then interchange all zero rows of A with corresponding rows of C
using wi, so that the new C becomes a zero matrix.

• Once C becomes zero one, can note that the relation TXβ0XþTCAþTAC ¼ 0
if char kð Þ is odd or the relation Q g vð Þð Þ ¼ Q vð Þ and the fact that αt2 þ tþ α
is irreducible when char kð Þ is even guarantees that X becomes zero. Then
the relation TXβ0YþTCBþTAD ¼ Il�1 guarantees that A has full rank l� 1
which also makes D a diagonal with full rank, and the relation
TA0β0XþTFAþTEC ¼ 0 shows that F is zero. Now we diagonalize A again
to the form diag 1;…; 1; λð Þ, where λ∈ k� as in Step 1.

Step 4: Use EC4 and EC6 when char kð Þ is odd or use EC8 and EC9 when char kð Þ
is even to make E zero. Note that the relation TA0β0A0þTFEþTEF ¼ β0 shows
that A0 is invertible. Thus the relation TA0β0YþTFBþTED ¼ 0 guarantees that
Y becomes zero.

Step 5: Use ER2 to make B a zero matrix. Thus the matrix g reduces to
g ¼ diag A0; 1;…; λ; 1;…; λ�1

� �
. Now if char kð Þ is odd, then go to Step 6;

otherwise go to Step 7.
Step 6: Using the relation TA0β0A0 ¼ β0, it is easy to check that A0 has the form

t �ϵs
s t

� �
or

t ϵs
s �t

� �
. If the determinant of A0 is �1, multiply g by x2 to get

new g of the above form such that A0 has determinant 1. Now using the
elementary matrix x1 t; sð Þ, we can reduce g to diag I2; 1;…; λ; 1;…; λ�1

� �
.

Modern Cryptography – Current Challenges and Solutions

112

Step 7: Using elementary matrix xA0 , we can reduce g to
diag I2; 1;…; λ; 1;…; λ�1

� �
.

Lemma A.2 Let k be a field of characteristics 2 and let g ¼
A0 X Y
E A B
F 0 D

0
B@

1
CA, where

A ¼ diag 1; 1;…; 1; λð Þ, be an element of O� 2l; kð Þ then X ¼ 0.
Proof. Let e1; e�1; e2;…; el; e�2;…; e�lf g be the standard basis of the vector space V.

Recall that for a column vector x ¼ x1; x�1; x2;…; xl; x�2;…; x�lð Þt, the action of the
quadratic form Q is given by Q xð Þ ¼ α x21 þ x2�1

� �þ x1x�1 þ…þ xlx�l, where
αt2 þ tþ α is irreducible over k t½ �. By definition, for any g∈O� 2l; kð Þ, we have

Q g xð Þð Þ ¼ Q xð Þ for all x∈V. Let X ¼ x11⋯x1 l�1ð Þ
x21⋯x2 l�1ð Þ

 !
be a 2� l� 1ð Þmatrix. Com-

puting Q g eið Þð Þ ¼ Q eið Þ for all 2≤ i≤ l, we can see that α x21i þ x22i
� �þ x1ix2i ¼ 0. If

x2i ¼ 0 then we can see that x1i ¼ 0. Suppose x2i 6¼ 0 for some i, then we rewrite the

equation by dividing it by x2i as α x1i
x2i

� �2
þ x1i

x2i
þ α ¼ 0, which is a contradiction to the

fact that αt2 þ tþ α is irreducible over k t½ �. Thus, x2i ¼ 0 for all 2≤ i≤ l and hence
X ¼ 0. •

A.5 Time complexity of the above algorithms

We establish that the worst-case time complexity of the above algorithm is
O l3
� �

. We mostly count the number of field multiplications.
Step 1: We make A a diagonal matrix by row-column operations that has
complexity O l3

� �
.

Step 2: In making both C and B zero matrix, we multiply two rows by a field
element and additions. In the worst case, it has to be done O lð Þ times and done
O l2
� �

many times. So the complexity is O l3
� �

.
Step 3: In odd-orthogonal group and twisted orthogonal group, we clear
X, Y, E, F, this clearly has complexity O l2

� �
.

Step 4: This step has only a few operations that is independent of l.

Then clearly, the time complexity of our algorithm is O l3
� �

.
We have implemented the above algorithms in Magma [25]. For details of that

implementation along with performance analysis of our algorithm, we refer to
Bhunia et al. ([24], Section 8).
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TA0β0XþTFAþTEC ¼ 0, (A.8)

TA0β0YþTFBþTED ¼ 0, (A.9)

TXβ0XþTCAþTAC ¼ 0, (A.10)

TXβ0YþTCBþTAD ¼ Il�1: (A.11)

A.4.2 The Gaussian elimination algorithm for O� 2l; kð Þ

Step 1: Use ER1 and EC1 to make A into a diagonal matrix, but in the process, it
changes other matrices A0, A, B, C,D, E, F, X, and Y. For the sake of notational
convenience, we keep calling these changed matrices as A0, A, B, C,D, E, F, X,
and Y as well.

Step 2: Now there will be two cases depending on the rank r of the matrix A.
The rank of A can be easily determined by the number of non-zero diagonal
entries.

Step 3: Use ER3 and non-zero diagonal entries of A to make corresponding r
rows of C zero.
• If r ¼ l� 1 then C becomes zero matrix.

• If r, l� 1 then interchange all zero rows of A with corresponding rows of C
using wi, so that the new C becomes a zero matrix.

• Once C becomes zero one, can note that the relation TXβ0XþTCAþTAC ¼ 0
if char kð Þ is odd or the relation Q g vð Þð Þ ¼ Q vð Þ and the fact that αt2 þ tþ α
is irreducible when char kð Þ is even guarantees that X becomes zero. Then
the relation TXβ0YþTCBþTAD ¼ Il�1 guarantees that A has full rank l� 1
which also makes D a diagonal with full rank, and the relation
TA0β0XþTFAþTEC ¼ 0 shows that F is zero. Now we diagonalize A again
to the form diag 1;…; 1; λð Þ, where λ∈ k� as in Step 1.

Step 4: Use EC4 and EC6 when char kð Þ is odd or use EC8 and EC9 when char kð Þ
is even to make E zero. Note that the relation TA0β0A0þTFEþTEF ¼ β0 shows
that A0 is invertible. Thus the relation TA0β0YþTFBþTED ¼ 0 guarantees that
Y becomes zero.

Step 5: Use ER2 to make B a zero matrix. Thus the matrix g reduces to
g ¼ diag A0; 1;…; λ; 1;…; λ�1

� �
. Now if char kð Þ is odd, then go to Step 6;

otherwise go to Step 7.
Step 6: Using the relation TA0β0A0 ¼ β0, it is easy to check that A0 has the form

t �ϵs
s t

� �
or

t ϵs
s �t

� �
. If the determinant of A0 is �1, multiply g by x2 to get

new g of the above form such that A0 has determinant 1. Now using the
elementary matrix x1 t; sð Þ, we can reduce g to diag I2; 1;…; λ; 1;…; λ�1
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Step 7: Using elementary matrix xA0 , we can reduce g to
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1
CA, where

A ¼ diag 1; 1;…; 1; λð Þ, be an element of O� 2l; kð Þ then X ¼ 0.
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x2i ¼ 0 then we can see that x1i ¼ 0. Suppose x2i 6¼ 0 for some i, then we rewrite the

equation by dividing it by x2i as α x1i
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þ α ¼ 0, which is a contradiction to the

fact that αt2 þ tþ α is irreducible over k t½ �. Thus, x2i ¼ 0 for all 2≤ i≤ l and hence
X ¼ 0. •

A.5 Time complexity of the above algorithms
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. We mostly count the number of field multiplications.
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.
Step 3: In odd-orthogonal group and twisted orthogonal group, we clear
X, Y, E, F, this clearly has complexity O l2

� �
.
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