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Preface

This book is an attempt to collect a number of properties emerging in recent research
describing certain features of the theory of partial differential equations that can be
attributed to the field of spectral geometry. Both being vast fields, our attempt is not
to give a comprehensive account of the whole theory, but to provide the reader with
a quick introduction to a number of its important aspects.

The topic of spectral geometry is a broad research area appearing in different
mathematical subjects. As such, it allows one to compare spectral information asso-
ciated with various objects over different domains with selected geometric properties.
For example, when the area of the domain is fixed, one often talks of the isoperimetric
inequalities in such context. The purpose of this book is to highlight one direction of
such research aimed at the understanding of spectral properties of partial differential
operators as well as of the related integral operators.

An indispensable language of the area is that of functional analysis and, aimed
also at the student readership, we give a basic introduction to the theory. In general,
the functional analysis can be viewed as a powerful collection of mathematical tools
allowing one to obtain significant generalisations of various effects detected in the
investigation of one concrete problem. At present, this is a vast mathematical field
with numerous investigations and excellent monographs readily available.

Thus, in the first chapters of this book we give a brief account of the basics of
functional analysis aiming at consequent applications in the theory of differential
equations. Chapter 1 deals with the basic notions of function spaces, Chapter 2 is
devoted to the foundation of the theory of linear operators, and Chapter 3 discusses
the basics of the spectral theory of differential operators. These are aimed to provide
the reader with a quick introduction to the subject. As there are many detailed and
comprehensive monographs already available, we omit many proofs of basic results
that can be easily found in a variety of sources. From this point of view, this book
is only a “guidebook” indicating the main directions and necessary basic facts. The
general course of the functional analysis contains a large number of various defi-
nitions and facts. It is clear that it is impossible to cover and understand all these
concepts even briefly. Therefore, in the present book we introduce only those con-
cepts which are necessary (but, of course, not sufficient) for a beginner wanting to do
research on spectral problems for the differential operators.

We introduce only the main concepts of the functional analysis, and only those
on which we will lean in the further exposition. This presentation is therefore far
from being complete, and there are many other concepts and ideas widely used in
the theory. We also do not dwell on detailed justifications of introduced concepts
and their general properties, as the proof of those (standard) facts goes beyond the

ix



x Preface

scope of the present book. The choice of the exposition objects is stipulated only by
opinions of the authors and their own experience in using the introduced concepts
of the functional analysis for analysing concrete problems appearing in the theory of
differential equations.

Surely, the functional analysis contains much more general concepts and has
numerous important methods successfully applied to a wide range of mathematical
problems. In this work we dwell only on the illustration of some concrete concepts
by means of the simplest examples related to the subject of differential operators.
Our first goal here is to provide a simplest exposition of the used concepts to move
on to the spectral geometry questions.

Thus, in our exposition we also provide the reader with a collection of concrete
examples of the simplest operators. Our goal is to demonstrate, on one side, advan-
tages appearing in using the general methods for solving concrete problems and, on
the other side, the fact that these methods are not complicated and very soon lead to
a number of concrete applications.

In Chapter 4 we review another important ingredient often playing a crucial role
in the subject of the spectral geometry of differential and integral operators: the sym-
metric decreasing rearrangement. This is a basic tool to allow one to compare integral
expressions over different domains provided the functions under the integral are also
rearranged in an appropriate way. Since this is a well-known subject already treated
in much detail in many excellent books, we touch upon it only briefly, emphasising
different applications of such methods, and preparing the scenery for the results in
the following chapter.

Finally, in Chapter 5 our exposition culminates in the core subject of this mono-
graph: geometric spectral inequalities for a collection of most important differential
and integral operators. Here is where the background material presented in previous
chapters comes into play, to allow one to compare spectral information for various
operators over different domains. In particular, we treat in detail the logarithmic,
Riesz and Bessel potential operators and the corresponding boundary value prob-
lems, also extending the analysis to the Riesz operators in spherical and hyperbolic
geometries.

Subsequently, we concentrate on several cases of non-selfadjoint operators, the
case that is much less understood. Here we discuss different versions of the isoperi-
metric inequalities for the singular numbers, for the heat operators of different types:
higher-order heat operators, as well as the heat operators with the Cauchy-Dirichlet,
Cauchy-Robin, Cauchy-Neumann and Cauchy-Dirichlet-Neumann boundary condi-
tions. Part of the presentation in this chapter is based on the authors’ recent research
in the area.

It is our pleasure to thank Junqing Huang for help in producing the picture for the
cover of the book in Mathematica, representing the ball with respect to the Carnot-
Carathéodory distance on the Heisenberg group.

Michael Ruzhansky
London (UK) & Ghent (Belgium)

Makhmud Sadybekov
Almaty (Kazakhstan)

Durvudkhan Suragan
Astana (Kazakhstan)
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Chapter 1
Functional spaces

This chapter contains a brief and basic introduction to the part of the functional anal-
ysis dealing with function spaces. This chapter, as well as the next two, are aimed to
serve as a “guidebook” indicating the main directions and necessary facts. As there is
a large variety of sources available, and as the material of the first three chapters can
be readily found in numerous monographs with much detail, we avoid giving techni-
cal proofs but restrict ourselves here to giving an exposition of main ideas, concepts,
and their main properties.

Thus, as a rule, main theorems are introduced without proofs, which can be found
in the extensive mathematical literature. Here, our goal is the explanation of intro-
duced concepts and properties in concrete simple examples.

There are numerous excellent books containing very detailed and rigorous expo-
sition of the material of the first two or three chapters on the basics of the functional
analysis. We can only mention a few, such as the books by Reed and Simon [93, 94],
Davies [32], Gohberg and Kreı̆n [44], Lax [72], and many others. For a more informal
introduction to basic and more advanced analysis and measure theory we can also
recommend [106], with the additional emphasis put on the Fourier analysis aspects
of the operator theory.

However, one distinguishing feature of our presentation is the particular emphasis
put on many examples related to the theory of differential equations.

The following conventions will apply to the material throughout the whole book.
New terms appearing in the text are in italics and in bold. For the convenience of
the reader, the logical completion of a separate idea, justification of an approval,
discussions of theorems, lemmas and remarks, consideration of an example, proofs,
etc., are denoted by the symbol �.

1.1 Normed spaces
We start with the concept of a linear space (or a vector space) which is the basic

notion of the (linear) functional analysis. A collection X of elements is called a linear
space if any linear combination of them still belongs to X . The rigorous definition of
this concepts looks like:

1



2 Spectral geometry of partial differential operators

Definition 1.1 A linear space over the field K (K= R or C), or a vector space, is a
nonempty set X 6= /0, equipped with two fixed operations:

(1) addition of set elements,

(2) multiplication of set elements by a scalar,

such that the following properties hold true:

• X is a group with respect to the addition, that is:

x+ y = y+ x ∀x,y ∈ X ;

(x+ y)+ z = x+(y+ z) ∀x,y,z ∈ X ;

∃0 ∈ X : x+0 = x ∀x ∈ X ;

∀x ∈ X ∃(−x) ∈ X : x+(−x) = 0;

• and also axioms for the scalar multiplication are satisfied:

(α β )x = α(βx), α(x+ y) = αx+αy, 1 · x = x, (α +β )x = αx+βx.

A rather general concept of spaces appearing in the functional analysis are linear
(vector) topological spaces. These spaces are linear spaces X over a field of complex
numbers C (or real numbers R) which are at the same time also topological spaces,
that is, the linear operations from Definition 1.1 are continuous in the topology of the
space.

A more particular, but very important setting appears when one can introduce a
norm (length) of vectors in the linear space X , with properties mimicking the length
properties of vectors in the standard Euclidean space. Namely, the norm of the ele-
ment x ∈ X is a real number ‖x‖ such that we always have

‖x‖ ≥ 0, and ‖x‖= 0 if and only if x = 0;

‖λx‖= |λ | · ‖x‖, ∀λ ∈ C, ∀x ∈ X ,

and “the triangle inequality” is satisfied:

‖x+ y‖ ≤ ‖x‖+‖y‖.

A linear space equipped with the norm introduced on it is called a normed space.
The convergence in X can be introduced as

xn→ x, if ‖xn− x‖→ 0 as n→ ∞.

Suppose we have two norms ‖x‖(1) and ‖x‖(2) in a normed space X . Then the
norms ‖ · ‖(1) and ‖ · ‖(2) are called equivalent, if there exist numbers α > 0, β > 0
such that for all elements x ∈ X we have

α‖x‖(1) ≤ ‖x‖(2) ≤ β‖x‖(1).
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It follows that two norms in a linear space are equivalent if and only if each of them is
subordinated to another. Thus, if for a linear space X two equivalent norms are given,
and we denote by X1 and X2 the corresponding normed spaces, then any sequence
converging in one of these spaces also converges in another, moreover, to the same
limit. This fact allows us to choose one of the equivalent norms, which may be more
convenient to work with in the linear space X .

In the case when the considered space X is finite-dimensional, it turns out that
any choice of a norm leads to an equivalent normed space. More precisely: In a
finite-dimensional linear space all the norms are equivalent.

Example 1.2 (Euclidean space Rn) Let En be a linear space consisting of n-
dimensional vectors x = (x1,x2, . . . ,xn), with xk ∈ R for all k = 1, . . . ,n. If in En

we introduce one of the following norms:

‖x‖∞ := max
1≤k≤n

|xk| or ‖x‖p :=

(
n

∑
k=1
|xk|p

) 1
p

, 1≤ p < ∞, (1.1)

then the obtained normed space is called the Euclidean space Rn. Checking the
axioms of the norm is straightforward. Here, the triangle inequality for the second
type of the p-norms is a consequence of the well-known Minkowski inequality for
finite sums: (

n

∑
k=1
|xk + yk|p

)1/p

≤

(
n

∑
k=1
|xk|p

)1/p

+

(
n

∑
k=1
|yk|p

)1/p

. (1.2)

If the “coordinates” of a vector are complex numbers, then the linear space consisting
of complex columns x = (x1,x2, . . . ,xn) with the norm (1.1) (where for a ∈ C, |a| =√
(Re(a))2 +(Im(a))2), is a normed space, denoted by Cn. �

A point x0 ∈ X is called a limit point (or a limiting point) of the set M ⊂ X , if any
neighbourhood of the point x0 has at least one point of the set M, different from x0.
In other words, x0 is a limit point of M, if in any ball Br(x0) = {x ∈ X : ‖x−x0‖< r}
there always exists some element x∈M, x 6= x0. A necessary and sufficient condition
for the point x0 ∈ X to be a limit point of the set M ⊂ X is the existence of a sequence
{xk} ⊂M converging to x0, where also xk 6= x0, k = 1,2, . . ..

Let M ⊂ X , and let M′ be the set of the limit points of M. Then the set

M = M
⋃

M′

is called the closure of the set M. In other words, M is the smallest set containing M
and all of its limit points. The set M, for which we have M = M, is called closed. In
other words, a set is closed if it contains all of its limit points.

A set X̃ in a linear space X is called a linear subspace, if for any x,y ∈ X̃ and
for any numbers α,β (from K), their linear combination satisfies αx+βy ∈ X̃ . Note
that since X̃ is a subset of the linear space X , it follows that X̃ is also a linear space.



4 Spectral geometry of partial differential operators

We should pay attention to the fact that, generally speaking, such a linear space X̃
need not be closed with respect to the norm of the normed space X .

A linear subspace X̃ of the normed space X (X̃ ⊂ X) is called dense in X , if for
any x ∈ X and any ε > 0 there exists an element x̃ ∈ X̃ such that ‖x− x̃‖< ε . Thus,
if X̃ is dense in X , then for any x ∈ X there exists a sequence {xk} ⊂ X̃ such that
xk→ x as k→ ∞.

Comparing the definitions of the closure and the density, we see that the assertion
“X̃ is dense in X”, X̃ ⊂ X , X̃ 6= X , means that the closure of the linear subspace X̃
with respect to the norm of X coincides with X . Then one also says that the space X
is the completion of the linear subspace X̃ with respect to the norm X . Each linear
normed space X has the completion and this completion is unique up to an isometric
(i.e. norm preserving) mapping, mapping X into itself.

Similar to linear subspaces, a general subset X̃ of the topological space X is called
dense (in X) if every point x ∈ X either belongs to X̃ or is a limit point of X̃ . That
is, for every point in X , the point is either in X̃ or it is arbitrarily “close” to some
element in X̃ . For instance, every real number is either a rational number or has one
arbitrarily close to it. Thus, the set of rational numbers is dense in the space of real
numbers.

A set X̃ is called dense everywhere (in X) if it is dense in X . It can be readily
seen that a set X̃ is dense in X if and only if its closure X̃ contains X , that is, X̃ ⊃ X .
In particular, X̃ is dense everywhere in X if X̃ = X .

One of the central questions of the spectral theory is the property of completeness
of the system of eigenfunctions (sometimes complemented by the so-called associ-
ated functions) in the linear space under consideration. In many cases the proof of
the completeness of a system {uk} in the space X is based on the density everywhere
in X of the linear subspace spanned by the vectors {uk}, that is, of the set of all linear
combinations of the vectors {uk}.

As a visual demonstration of how “frequent” or “rare” the elements must be in
order for their linear span to be dense in the space under consideration, we mention
the following theorem being, generally speaking, a generalisation of the Weierstrass
theorem on polynomial approximations of continuous functions.

Theorem 1.3 (Muntz) Let n0 = 0, n1 < n2 < .. . ∈ R. A linear span of power func-
tions {xnk}∞

k=0 is dense in C[a,b], b > a≥ 0, if and only if the series

∞

∑
k=1

1
nk

=+∞

diverges.

Thus, for example, the linear span of the system of the power functions {xn}∞

k=0

is dense in C[a,b], while the linear span of the functions
{

xn2
}∞

k=0
is not dense in

C[a,b].
The following lemma is useful for understanding the completeness of normed

spaces. For this, recall that a subsequence of the sequence {xk}∞

k=1 is a subset {xk j}
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such that k j+1 > k j, j = 1,2, . . ., that is, in {xk j} the sequential order of elements of
{xk}∞

k=1 is preserved.
A Cauchy sequence is a sequence whose elements become arbitrarily close to

each other as the sequence progresses. More precisely, given any positive ε > 0, all
but a finite number of elements of the sequence are at distance < ε from each other:
there exists N > 0 such that for all k,m > N we have ‖xk− xm‖< ε .

Lemma 1.4 (On convergence of sequences) Let X be a normed (not necessarily
complete) linear space. For any sequence {xk}∞

k=1, xk ∈ X, the following statements
are equivalent:

1) the sequence {xk}∞

k=1 converges;
2) any subsequence {xk j} of the sequence {xk}∞

k=1 converges;
3) the sequence {xk}∞

k=1 is a Cauchy sequence and any subsequence {xk j} con-
verges;

4) the sequence {xk}∞

k=1 is a Cauchy sequence and it has some converging sub-
sequence {xk j};

5) the series
∞

∑
k=1

(xk+1− xk) converges.

It is usual to define a complete normed space X by requiring the property that
every Cauchy sequence of points in X converges to some element of X .

1.2 Hilbert spaces
In a large number of problems one deals with a more particular case when in

the linear space X one can introduce an inner product which is a generalisation of
the ordinary inner product in the Euclidean space. Namely, the inner product of the
elements x,y ∈ X is a complex number denoted by 〈x,y〉, such that

• we always have 〈x,x〉 ≥ 0, and 〈x,x〉= 0 if and only if x = 0;

• 〈x,x〉= 〈x,x〉;

• 〈αx+βy,z〉= α〈x,z〉+β 〈y,z〉, for any numbers α,β ∈ C.

A real number
√
〈x,x〉 satisfies all axioms of the norm and, therefore, can be

chosen as a norm of the element x:

‖x‖ :=
√
〈x,x〉.

Such space is called a pre-Hilbert space. For developing rich functional analysis
it is important for spaces under consideration to be complete (that is, any Cauchy
sequence of elements of the space converges to some element of this space; in other
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words, from the fact that ‖xn− xm‖ → 0 as n,m→ ∞ for xm,xn ∈ X , it follows that
the limit lim

n→∞
xn = x exists and that x ∈ X).

Complete linear normed and complete pre-Hilbert spaces are called Banach and
Hilbert spaces, respectively. For non-complete spaces, the well-known completion
procedure of a metric space (analogous to the transition from rational numbers to
real ones) in the case of the linear normed (pre-Hilbert) space leads to the Banach
(Hilbert) space, respectively.

If in a linear space the norm is generated by an inner product ‖x‖=
√
〈x,x〉, then

the parallelogram law is valid:

‖x+ y‖2 +‖x− y‖2 = 2‖x‖2 +2‖y‖2. (1.3)

The ordinary Euclidean space is one of the simplest examples of the (real) Hilbert
space. The space of complex vectors Cn is also a Hilbert space, with the inner product
defined by the formula

〈x,x〉 :=
n

∑
k=1

xk yk, ∀x,y : x = (x1,x2, ...,xn) ∈ Cn, y = (y1,y2, ...,yn) ∈ Cn.

However, the infinite dimensional spaces, that is, the spaces having an infinite
number of linearly independent vectors, play the main role in the functional analysis.
In the next section we recall some examples of such spaces.

1.3 Examples of basic functional spaces
Thus, in this section we recall several examples of the most commonly encoun-

tered functional spaces.

Example 1.5 Consider the Banach space C[a,b], the space of all continuous
complex-valued (i.e. with values in C) functions f on the closed interval [a,b], with
the norm

‖ f‖∞ := max
x∈[a,b]

| f (x)|.

It is well-known from any general course of real analysis that the convergence in the
space C[a,b] with respect to this norm is the uniform convergence of functions.

Example 1.6 Consider the Banach space Ck[a,b] consisting of all complex-valued
functions f which are k-times continuously differentiable on the closed interval [a,b],
with the norm

‖ f‖Ck := max
x∈[a,b]

(
| f (x)|+ | f ′(x)|+ · · ·+ | f (k)(x)|

)
,
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where f (k)(x) is the derivative of the function f of order k. The convergence of
the sequence { f j} ⊂Ck[a,b] is the uniform convergence on [a,b] of the sequences
{ f (i)j }, i = 0,1, . . . ,k.

Example 1.7 Consider the Banach space Lp(a,b) (1 ≤ p < ∞) of all (measurable)
functions on (a,b) with the integrable p-th power, with the finite norm

‖ f‖p :=

 b∫
a

| f (x)|pdx

1/p

.

The convergence of a sequence in the norm of the space L1(a,b) is also called the
convergence in mean, and the convergence in the norm of the space L2(a,b) is some-
times called the mean-square convergence.

Example 1.8 Consider the Banach space `p (1 ≤ p < ∞) of all sequences {xk}k∈Z
such that ∑

k∈Z
|xk|p < ∞, with the norm

‖x‖p :=

(
∑
k∈Z
|xk|p

)1/p

,

where Z is the set of integers.

Example 1.9 In the case p = 2 the spaces `2 and L2(a,b) are Hilbert spaces. For
example, in L2(a,b) the inner product is defined by

〈 f ,g〉 :=
b∫

a

f (x)g(x)dx.

It is easy to see that the spaces `p and Lp(a,b) are not Hilbert spaces for p 6= 2,
since the parallelogram identity (1.3) is not satisfied for their norms. All these spaces
are infinite dimensional. It is most easily seen for `p: it is clear that the set consisting
of linearly independent vectors

e j = (0, ...,0︸ ︷︷ ︸
j−1

,1,0, ...)

is countable.

1.4 The concept of Lebesgue integral
Here and in the sequel, all integrals are understood in the Lebesgue sense. Only

in this case the spaces introduced above will be complete. But how to understand
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the Lebesgue integral? The general theory answers this question quite accurately and
in depth by using the notion of the Lebesgue measure. For beginners the following
simple understanding of such an integral is sufficient.

The set M ⊂ [a,b] has measure zero, if for every ε > 0 there exists a finite or
countable collection of the intervals [αn,βn], such that M ⊂

⋃
n
[αn,βn], and

∑
n
(βn−αn)< ε.

If for the sequence of functions { fn}n∈N there exists a limit equal to f everywhere on
[a,b] with a possible exception of a set of measure zero, then we say that fn converges
to f almost everywhere on [a,b], and this is written as

lim
n→∞

fn(x)
a.e.
= f (x).

The function f is called Lebesgue integrable on [a,b], if there exists a Cauchy
sequence with respect to the norm ‖ f‖L1 :=

∫ b
a | f (x)|dx of the functions { fn}n∈N,

continuous on the closed interval [a,b], such that

lim
n→∞

fn(x)
a.e.
= f (x)

exists. Here the integral in the definition of the norm is meant in the usual Riemannian
sense as the integral of the continuous function. Then the number∫ b

a
f (x)dx = lim

n→∞

∫ b

a
fn(x)dx

is called the Lebesgue integral of the function f over the interval [a,b].
Thus, in Example 1.7 the elements of the function space L1(a,b) are func-

tions for which the Lebesgue integral
∫ b

a | f (x)|dx < ∞ is finite, and the elements
of the space Lp(a,b) are measurable functions f (x), for which the Lebesgue integral∫ b

a | f (x)|p dx < ∞ is finite.

1.5 Lebesgue spaces
We will use the following result from the functional analysis.

Theorem 1.10 Any normed space X can be considered as a linear space which is
dense in some Banach space X̃. Then X̃ is called the completion of the space X.

By Lp(a,b) (1 ≤ p < ∞) we denote the Banach space of functions, obtained by
the completion of continuous functions on [a,b], with respect to the norm

‖ f‖Lp ≡ ‖ f‖p :=
(∫ b

a
| f (x)|pdx

)1/p

.
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Thus, the limits (with respect to the norm ‖ · ‖p) of the Cauchy sequences of contin-
uous functions on [a,b] are the elements of the space Lp(a,b).

For p = 2 the space becomes a Hilbert space with the inner product

〈 f ,g〉 :=
∫ b

a
f (x)g(x)dx. (1.4)

Remark 1.11 Let us consider a more general case of a measure space (X ,µ), which
is a set X with the measure µ such that µ > 0, µ is countably additive, Dom(µ)
is a σ -algebra subordinate to X , such that µ is complete in the following sense: if
E ∈Dom(µ) and µ(E) = 0, then ∀E ′ ⊆ E we have E ′ ∈Dom(µ). Then the Lebesgue
space Lp(X ,µ) is defined as the space{

[ f ]
∣∣ f : X → C, Re( f ) and Im( f ) are measurable ,

∫
X
| f |pdµ < ∞

}
,

where [ f ] is the equivalence class of functions coinciding with f almost everywhere.
Thus, since in the Lebesgue integration the sets of measure zero can be neglected,

the elements of the space Lp(X ,µ) are the classes of equivalent functions [ f ] differing
from each other on the sets of measure zero (that is, coinciding almost everywhere).

If now as a space X we choose the set of all integers Z, and the measure is defined
as

µ(E)
de f
= cardE, Dom(µ)

de f
= {E ⊂ Z},

then the space Lp(X ,µ) in this case will coincide with the space `p. Indeed, f :Z→R
is measurable if the integral∫

Z
| f |dµ = ∑

n∈Z

∫
{n}
| f |dµ = ∑

n∈Z
| f (n)|dµ({n}) = ∑

n∈Z
| f (n)|< ∞

is finite. Therefore, we have that

f ∈ Lp(X ,µ)⇐⇒ ∑
n∈Z
| f (n)|p < ∞⇐⇒{ f (n)}n∈Z ∈ `p.

That is, the space `p is a particular case of Lp.

This remark illustrates the initial depth of the general theory of the Lebesgue
integral and of the Lebesgue spaces with the general norm. However, in the majority
of applications a more simple Lebesgue measure allowing one to understand the
definition of the integral in the sense introduced in Section 1.4 is applied for dealing
with problems related to the differential equations.

Further, for simplicity, we will assume all the considered domains Ω⊂ Rn to be
bounded. The set of all functions measurable in Ω, whose modulus to the p-th degree
is integrable over Ω, will be denoted by Lp(Ω), 1≤ p < ∞. This set with the norm

‖ f‖Lp(Ω) :=
(∫

Ω

| f (x)|pdx
)1/p

(1.5)
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is a Banach space. Here the integral is meant in the Lebesgue sense. Moreover, we
identify the functions different from each other on the set of measure zero. That is,
the functions coinciding with each other almost everywhere will be assumed to be
the same element of the space Lp(Ω).

By L∞(Ω) we denote the Banach space of measurable functions with the norm
based on the essential supremum

‖ f‖L∞(Ω) := esssup
x∈Ω

| f (x)| ≡ inf
{

a > 0 : µ {| f (x)|> a}= 0
}
.

As in the one-dimensional case, the space Lp(Ω) can be obtained as the comple-
tion of functions continuous in Ω with respect to the norm (1.5). And this completion
can be carried out in a constructive way.

We now briefly review the averaging construction due to S. L. Sobolev. The func-
tion

ω1(t) :=

cn exp
{
− 1

1− t2

}
, |t|< 1,

0, |t| ≥ 1,

is called an “averaging kernel”, with the constant cn depending on the dimension of
the space Rn and computed from the condition∫

Rn
ω1(|x|)dx = 1.

Let h > 0. The function

ωh(|x|) :=
1
hd ω1(|x|/h), x ∈ Rn,

is also often called an “averaging kernel”. One can readily check that this kernel has
the following properties:

• ωh ∈C∞ (Rn) and ωh(|x|)≥ 0 in Rn;

• ωh(|x|)≡ 0 for |x| ≥ h;

•
∫
Rn ωh(|x|)dx = 1.

For a measurable function f , for any h > 0, the function

fh(x) :=
∫

Ω

f (ξ )ωh(|x−ξ |)dξ , x ∈ Rn,

is called an averaged function for the function f . It readily follows that fh ∈C∞ (Rn).
In the theory of Sobolev spaces the following result has an important value.

Theorem 1.12 If f ∈ Lp(Ω), then fh(x)→ f (x) in Lp(Ω) as h→ 0.

Consequently, as in the one-dimensional case, the space Lp(Ω) can be obtained
as the completion of continuous functions in Ω, with respect to the norm (1.5).
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Example 1.13 The set C∞
0 (Ω) of smooth compactly supported functions in Ω is

everywhere dense in Lp(Ω).
For the proof, first of all, we define the distance function to the boundary of the

domain ∂Ω: for each point x ∈Ω we set

r(x) := min
y∈∂Ω

|x− y|,

which is well-defined since Ω is bounded. For any δ > 0, by Ωδ we denote the set of
the points {x ∈Ω : r(x)> δ}.

Now, for each f ∈ Lp(Ω) we define the corresponding family of functions with
compact support in Ω by

f δ (x) :=

{
f (x), x ∈Ωδ ,

0, x /∈Ωδ .

It is clear that for any small ε > 0 there exists δ > 0 such that ‖ f − f δ‖Lp(Ω) < ε/2.
For small h < δ/2, the averaged function f δ

h will be a function with compact support
in Ω. That is, f δ

h ∈C∞
0 (Ω). In view of Theorem 1.12 for small enough h < δ/2, we

will have ‖ f δ
h − f δ‖Lp(Ω) < ε/2.

Thus, for each f ∈ Lp(Ω), for any small ε > 0 there exists a differentiable func-
tion f δ

h ∈ C∞
0 (Ω) with compact support in Ω such that ‖ f δ

h − f‖Lp(Ω) < ε . That is,
C∞

0 (Ω) is everywhere dense in Lp(Ω).

1.6 Sobolev spaces
In this section we recall the notion of Sobolev spaces.

Example 1.14 For 1≤ p < ∞ and k ∈N, we denote by Lp
k (a,b) the Banach space of

functions obtained by the completion of the set of k times continuously differentiable
functions on [a,b], with respect to the norm

‖ f‖=
(∫ b

a

[
| f (x)|p + | f (k)(x)|p

]
dx
)1/p

.

For p = 2, this space becomes a Hilbert space with the inner product

〈 f ,g〉=
∫ b

a

[
f (x)g(x)+ f (k)(x)g(k)(x)

]
dx.

In fact, while here the Lebesgue integral exists everywhere and it is not immedi-
ately clear what will happen after such a completion, these spaces do not contain too
“extravagant” functions. Thus, for example, elements composing the space L2

1(a,b)
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can be identified with absolutely continuous functions f on [a,b] (see Remark
1.15) having an ordinary derivative f ′(x) almost everywhere on [a,b], for which the
Lebesgue integral ∫ b

a
| f ′(x)|2 dx < ∞

is finite.
Here we must note that if the space dimension of variables is greater than one,

that is, x ∈Rn for n > 1, then this (absolute continuity) is not always true. Moreover,
the functions from the Sobolev space can be discontinuous. For example, in a two-
dimensional domain Ω = {x ∈R2 : |x|< 1/2} the function f (x) = ln

∣∣ ln |x|∣∣ belongs
to the space L2

1(Ω), but it has a discontinuity of the second kind at the point x. �

Remark 1.15 Since in the sequel we will often use the Sobolev spaces, let us discuss
in more detail the concept of absolutely continuous functions.

The function f is called absolutely continuous on the interval [a,b], if for every
ε > 0 there exists a number δ > 0 such that we have

m

∑
k=1
| f (x′k)− f (x

′′
k)|< ε

for any set of intervals [x
′
k,x

′′
k ]⊆ [a,b] of the total length less than δ :

m

∑
k=1
|x′k− x

′′
k |< δ .

If a function f is absolutely continuous on [a,b], then it is differentiable almost
everywhere and f ′ ∈ L1(a,b). An inverse statement is also true: if g ∈ L1(a,b), then

the function G(x) :=
x∫

a
g(t)dt is absolutely continuous on [a,b], and almost every-

where on this interval we have G′(x) = g(x). �

To consider the Sobolev space in multi-dimensional domains it is necessary to
explain the concept of a generalised derivative. Thus, let f be a function defined on
the set Ω⊂ Rn.

If f has a partial derivative fxi ≡ ∂xi f continuous at Ω, then for any g ∈ C1
0(Ω)

we have the equality ∫
Ω

f (x)gxi(x)dx =−
∫

Ω

fxi(x)g(x)dx. (1.6)

Moreover, this equality completely determines the derivative fxi of the function f .
Indeed, if for the function f ∈C1(Ω) there exists a function ϕ ∈C(Ω) such that for
any g ∈C1

0(Ω) we have∫
Ω

f (x)gxi(x)dx =−
∫

Ω

ϕ(x)g(x)dx,
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then comparing it with (1.6), we get∫
Ω

[ fxi(x)−ϕ(x)]g(x)dx = 0. (1.7)

Since C∞
0 (Ω) is everywhere dense in L1(Ω) (see Example 1.13), and C∞

0 (Ω)⊂C1
0(Ω),

then C1
0(Ω) is also everywhere dense in L1(Ω). Consequently, (1.7) implies that

fxi(x) = ϕ(x) for all x ∈ [a,b], since the functions are continuous.
If now in Eq. (1.6) we abandon the continuity of the involved functions, and

instead require their integrability, then we arrive at the concept of a generalised
derivative introduced by S. L. Sobolev.

Let α = (α1,α2, . . . ,αn) be a multi-index with nonnegative integer components,
and we denote |α| := α1+ · · ·+αn. For a function g ∈C|α|(Ω), by Dα we denote the
classical derivative

Dα g(x) :=
∂ |α|

∂xα1
1 ∂xα2

2 · · ·∂xαn
n

g(x).

The function, which (by analogue with the classical derivative) is denoted as
Dα f ∈ L1(Ω), is called a generalised derivative of order α of the function f ∈
L1(Ω), if the equality∫

Ω

Dα f (x)g(x)dx = (−1)|α|
∫

Ω

f (x)Dα g(x)dx (1.8)

holds for all g ∈C|α|0 (Ω).
As in the case with the continuous functions, it is easy to show that equality (1.8)

uniquely defines the generalised derivative (if it exists).
This definition of the generalised derivative is essentially the same as the defini-

tion of the derivative of a generalised function. Moreover, the definition above is a
particular case of the situation when both the function f and its derivative Dα f are
regular generalised functions.

Example 1.16 Let us compare the classical derivative, the generalised derivative,
and the derivative in the sense of generalised functions in an example. In the unit ball
Ω = {x ∈Rn : |x|< 1}, consider the function u(x) = |x1|. It is clear that the classical
derivative with respect to the variable x1 does not exist at x1 = 0.

At the same time u has the first generalised derivative with respect to any variable:
ux1 = sgnx1, and uxk = 0 for k = 2, . . . ,n. In turn, the function sgnx1 does not have the
generalised derivative with respect to the variable x1, but its generalised derivatives
with respect to other variables are all equal to zero.

If u(x) = |x1| is considered as a generalised function, then it has all derivatives
of any order. In particular, its second derivative with respect to the variable x1 gives
the Dirac delta function: ux1x1 = 2δ (x1). As is well-known, the Dirac delta function
is not a regular generalised function. Therefore, it cannot be taken as the generalised
derivative of the function u(x) = |x1|.

We must also note that unlike the classical derivative, the generalised derivative
Dα f is defined directly for the order α , without the assumption of the existence of
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corresponding lower-order derivatives. For example, for the function u(x) = sgnx1 +
sgnx2 the generalised derivatives of first order ux1 and ux2 in Ω do not exist. At the
same time, the second mixed generalised derivative does exist: ux1x2 = 0. �

Let us now move directly to the definition of the Sobolev space. The set of func-
tions f ∈ Lp(Ω), whose generalised derivatives up to k-th order inclusively belong
to the space Lp(Ω), form the Sobolev space Lp

k (Ω). Here, similar to the definition of
the space Lp(Ω), the functions from Lp

k (Ω) different on the set of measure zero, are
identified with each other. For p = 2, the notation Hk(Ω) is also used.

The space Lp
k (Ω), 1≤ p < ∞, is a Banach space with the norm

‖ f‖Lp
k (Ω) :=

(∫
Ω

∑
|α|≤k
|Dα f (x)|pdx

)1/p

≡

(
∑
|α|≤k
‖Dα f‖p

Lp(Ω)

)1/p

, (1.9)

and the space Hk(Ω) is a Hilbert space with the inner product

〈 f ,g〉Hk(Ω) :=
∫

Ω
∑
|α|≤k

Dα f (x)Dα g(x)dx≡ ∑
|α|≤k

(Dα f ,Dα g)L2(Ω).

For Lp
k (Ω) an analogue of Example 1.13 holds:

Theorem 1.17 Let ∂Ω ∈Ck for k ≥ 1. Then the set C∞
(
Ω
)

is everywhere dense in
Lp

k (Ω).

A function from Lp
k (Ω) for any p and k is defined up to an arbitrary set of measure

zero. It follows that each function from Lp
k (Ω) can be arbitrarily changed on any set

of measure zero still being the same element of this space. Since the boundary ∂Ω

has measure zero, a question arises: how can we understand the value of the functions
from Lp

k (Ω) on ∂Ω? The concept of a trace answers this question.
Without getting into too much detail, we introduce the general scheme of the

concept of the trace of functions from H1(Ω). First, we assume that f ∈C1
(
Ω
)
. For

such functions one can justify the inequality∫
∂Ω

| f (s)|2dS≤C‖ f‖2
H1(Ω), (1.10)

with the constant C independent of f .
Now let f ∈H1(Ω) with H1(Ω) = L2

1(Ω) being the Sobolev space of order 1 over
L2(Ω). In view of Theorem 1.17, there exists a sequence f1, f2, ... of the functions
from C1

(
Ω
)
, converging to f in the norm of H1(Ω). From (1.10), for the elements

of this sequence we have

‖ fk− f j‖2
L2(∂Ω) ≤C‖ fk− f j‖2

H1(Ω)→ 0, as k, j→ ∞.

This means that the sequence of values fk
∣∣
∂Ω

of the functions fk on the surface ∂Ω is
the Cauchy sequence with respect to the norm of L2(∂Ω). Consequently, there exists
a function f

∣∣
∂Ω
∈ L2(∂Ω), to which this sequence converges in the norm of L2(∂Ω).
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It can also be proved that the function f
∣∣
∂Ω

does not depend on the choice of the
sequence f1, f2, ..., approximating the function f . This function f

∣∣
∂Ω

is called the
trace on ∂Ω of the function f ∈ H1(Ω).

By the density of C1(Ω) in H1(Ω), inequality (1.10) remains true for all functions
f ∈ H1(Ω). Thus, we take f (s) = f

∣∣
∂Ω

(s) for s ∈ ∂Ω.

1.7 Subspaces
From the geometric point of view, the simplest functional spaces are the Hilbert

spaces H, because their properties resemble the properties of finite-dimensional
Euclidean spaces most. In particular, two vectors x,y ∈H are called orthogonal (this
is written as in the finite-dimensional case as x⊥y), if 〈x,y〉= 0.

Example 1.18 In the space L2(0,2π) with respect to the inner product

〈 f ,g〉=
∫ 2π

0
f (t)g(t)dt,

the functions ek =
1√
2π

eikt (k ∈ Z) are orthonormal, that is

(ek,e j) = δk j ≡
{

0, for k 6= j,
1, for k = j.

This fact is easily checked by a direct calculation. Here δk j is the so-called Kronecker
delta, i.e. a function of two variables k and j, usually defined for nonnegative integers
k and j. This function is equal to 1 if the variables are equal, and is 0 otherwise.

A closed linear subset of the space H is called its subspace. For any x∈H one can
define its projection to an arbitrary subspace F as the vector xF such that x− xF⊥ f
for any f ∈ F . Due to this fact, a large number of geometric constructions, holding
in the Euclidean space, is transferred to the abstract setting of Hilbert spaces, where
such constructions often take an analytical character.

So, for example, an ordinary procedure of orthogonalisation (for example, the
Gram-Schmidt orthogonalisation process in the proof of Theorem 1.24 in Section
1.9) leads to the existence of an orthonormal basis in H. That is, it leads to an infinite
sequence of the vectors {ek}k∈Z from H such that ‖ek‖= 1, ek⊥e j for k 6= j, and for
any element x ∈ H a “coordinate-wise” expansion is valid:

x = ∑
k∈Z

xkek. (1.11)

Here xk = 〈x,ek〉 and ‖x‖=
(
∑k∈Z |xk|2

)1/2 (for simplicity H is assumed to be sepa-
rable (see Section 1.7), that is, there exists a countable dense set in H).
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If we take H = L2(0,2π) and denote ek(t) := 1√
2π

eikt , k = 0,±1,±2, ..., then the

formula (1.11) gives an expansion of a function x ∈ L2(0,2π) into its Fourier series
converging in mean square:

x(t) =
1√
2π

∑
k∈Z

xkeikt , where xk =
1√
2π

∫ 2π

0
x(t)e−iktdt. (1.12)

Furthermore, the relation (1.11) shows the existence of a one-to-one correspon-
dence (bijection) between the abstract separable Hilbert spaces H and `2: to each ele-
ment x ∈H there corresponds a unique element x̂ ∈ `2, x̂ = {xk}k∈Z. And vice versa,
to each element x̂ ∈ `2, x̂ = {xk}k∈Z, there corresponds a unique element x ∈ H and
this element is given by the formula (1.11).

Example 1.19 The set of measurable functions f ∈ L2(a,b), for which
b∫
a

f (x)dx= 0,

forms a subspace of the space L2(a,b).
Taking into account the inner product (1.4), we can describe this subspace as the

functions f ∈ L2(a,b), for which f⊥1. Moreover, this subspace can be considered as
a linear space of functions with the finite norm

‖ f‖=

[∫ b

a
| f (x)|2dx+

∣∣∣∣∫ b

a
f (x)dx

∣∣∣∣2
]1/2

.

This space will be a Hilbert space with the inner product given by the formula

〈 f ,g〉=
∫ b

a
f (x)g(x)dx+

(∫ b

a
f (x)dx

)(∫ b

a
g(x)dx

)
.

Example 1.20 In the Hilbert space of Sobolev L2
1(a,b), with the inner product

〈 f ,g〉=
∫ b

a

[
f (x)g(x)+ f ′(x)g′(x)

]
dx, (1.13)

consider the linear space M0 of functions vanishing at some point x0 ∈ [a,b]:

M0 :=
{

f ∈ L2
1(a,b) : f (x0) = 0

}
. (1.14)

Let us show that M0 forms a linear subspace in L2
1(a,b), that is, a closed lin-

ear subset with respect to the norm of L2
1(a,b). For this it is sufficient to show the

existence of a function g ∈ L2
1(a,b) such that the linear space M0 coincides with a

subspace orthogonal to g, that is

∃g ∈ L2
1(a,b) : M0 ≡

{
f ∈ L2

1(a,b) : 〈 f ,g〉= 0
}
. (1.15)

Taking into account the representation of the inner product by the formula (1.13),
comparing (1.14) and (1.15), we obtain that for any f ∈ L2

1(a,b), we have the relation

f (x0) =

b∫
a

[
f (x)g(x)+ f ′(x)g′(x)

]
dx. (1.16)
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We will look for g in the class C[a,b]∩C2[a,x0]∩C2[x0,b], i.e. in the class of
more regular functions. Since it can still happen that the function g′ is not continu-
ously differentiable at the point x0 ∈ [a,b], in order to apply the integration by parts
to the second summand in (1.16) it is necessary to divide the interval into two parts:
[a,b] = [a,x0]∪ [x0,b]. Then

f (x0) =
∫ b

a

[
f (x)g(x)

]
dx−

∫ x0

a
f (x)g′′(x)dx−

∫ b

x0

f (x)g′′(x)dx (1.17)

+ f (b)g′(b)− f (a)g′(a)+ f (x0)[g′(x0−0)−g′(x0 +0)].

Therefore,

f (x0)
(

1−
[
g′(x0−0)−g′(x0 +0)

])
=
∫ x0

a
f (x)

[
g(x)−g′′(x)

]
dx

+
∫ b

x0

f (x)
[
g(x)−g′′(x)

]
dx+ f (b)g′(b)− f (a)g′(a).

(1.18)

It is easy to check that formula (1.18) will hold for any function f ∈ L2
1(a,b)

provided that the function g satisfies the following conditions:

1) the function belongs to the class

g ∈C[a,b]∩C2[a,x0]∩C2[x0,b]; (1.19)

2) on the intervals (a,x0) and (x0,b), the function is a solution of the differential
equation

g′′(x) = g(x), a < x < x0, x0 < x < b; (1.20)

3) the function satisfies the conditions

g′(a) = 0, g′(b) = 0, g′(x0−0)−g′(x0 +0) = 1. (1.21)

Let us show that such function g exists.
Thus, it is necessary to find a solution of the ordinary differential equation (1.20),

satisfying “the boundary conditions” (1.21). Although Eq. (1.20) is a second-order
differential equation, and the number of the boundary conditions equals three, this
problem is solvable. The point is that the last of the conditions (1.21) is not a bound-
ary condition in the usual sense, but is a so-called “internal” condition. Here, for
solving Eq. (1.20) one assumes a discontinuity of the first derivative (jump) at the
inner point x0 ∈ [a,b], and the solution itself is continuous, since it belongs to the
space L2

1(a,b). The condition of continuity can be written in the form

g(x0−0)−g(x0 +0) = 0. (1.22)

Thus, for Eq. (1.20) we have already obtained four boundary conditions: (1.21)
and (1.22). But this equation should be understood as two separate equations of the
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second order: one equation is on the interval (a,x0) and the second one is on (x0,b).
Therefore this problem is solvable.

Let us check this by a direct calculation.
The general solution of Eq. (1.20) in the class of functions (1.19) on each of the

intervals (a,x0) and (x0,b) has the form

g(x) =
{

C11ex +C12e−x, a≤ x≤ x0,
C21ex +C22e−x, x0 ≤ x≤ b, (1.23)

where Ci j, (i, j = 1,2) are arbitrary constants.
By the function (1.23) to satisfy the conditions (1.21) and (1.22) for defining the

constants Ci j we get the linear system of equations
C11ea −C12e−a = 0,

C21eb −C22e−b = 0,
C11ex0 +C12e−x0 −C21ex0 −C22e−x0 = 0,
C11ex0 −C12e−x0 −C21ex0 +C22e−x0 = 1.

(1.24)

The determinant of this system equals 4 = 2ea−b + 2eb−a > 0. Therefore, the
system (1.24) has the unique solution.

Since the function g is represented by the formula (1.23), it is clear that g ∈
L2

1(a,b). Thus, we have proved the existence of a function g, for which (1.15) holds.
Therefore, the linear space M0 is a (closed) subspace of L2

1(a,b).

Example 1.21 (The space H̊1(Ω)) Denote by H̊1(Ω) the set of functions from
H1(Ω) = L2

1(Ω) for which the trace to the boundary ∂Ω is equal to zero. It is clear
that H̊1(Ω) is a linear subset of the space H1(Ω). Therefore it is the Hilbert space
with respect to the inner product of the space H1(Ω).

Indeed, let us show that H̊1(Ω) is a (closed) subspace of H1(Ω). For this, we
need to show that the set H̊1(Ω) is closed with respect to the norm H1(Ω).

Consider a sequence f1, f2, ... of functions from H̊1(Ω), converging to f in the
norm of H1(Ω). Let us show that the trace of f on the boundary ∂Ω is equal to zero.
From (1.10), for the elements of this sequence we have

‖ f‖2
L2(∂Ω) ≤C‖ fk− f‖2

H1(Ω)→ 0, as k→ ∞.

Consequently, f
∣∣
∂Ω

= 0. Thus, the set H̊1(Ω) is closed with respect to the norm of
H1(Ω). Since in H1(Ω) there is an element f ≡ 1 not belonging to H̊1(Ω), it follows
that H̊1(Ω) is a proper closed subspace of H1(Ω).

1.8 Initial concept of embedding of spaces
The concept of embedding of linear spaces is helpful in situations when one

is using several spaces at the same time. A linear normed space X is said to be
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embedded into a linear normed space Y , if there exists a linear mapping J : X → Y ,
bijective on the domain of J, for which there exists a constant α > 0 such that for all
x ∈ X we have the inequality

‖Jx‖Y ≤ α‖x‖X ,

that is, the mapping J is bounded and the domain of J is D(J) = X . The mapping J is
called an embedding operator. It is clear that from the definition that an embedding
operator is always bounded. The fact of embedding is often indicated by the use of a
“hooked arrow”: X ↪→ Y .

Frequently one considers the embeddings when X is a subset of the space Y .
Then the identity mapping J(x) = x is often chosen as an embedding mapping. In
this case the normed linear space X is called embedded into the normed linear space
Y (indicated by X ↪→ Y ), if X is the subset of the space Y and the inequality

‖x‖Y ≤C‖x‖X

holds for all x ∈ X . Here the constant C should not depend on x ∈ X . In this case the
identity operator acting from the space X into the space Y , mapping each element
x ∈ X to the (same) element x of the space Y , is called the embedding operator. It
is clear that such an embedding operator is a bounded linear operator. The theorems
establishing the fact of an embedding of functional spaces are called embedding
theorems.

Example 1.22 The following simple embedding theorems hold (here for simplicity,
an interval [a,b] is considered to be finite −∞ < a < b < +∞ and the set Ω ⊂ Rn is
assumed to be bounded):

• En ↪→ Em for n≤ m, where Ed stands for the d-dimensional Euclidean space;

• Ck+1
(
Ω
)
↪→Ck

(
Ω
)

for all nonnegative integers k, for spaces of functions con-
tinuously differentiable in Ω up to the k-th order;

• Ck+ν
(
Ω
)
↪→Ck+µ

(
Ω
)

for all nonnegative integers k and ν > µ , for the spaces
Ck+µ

(
Ω
)

of functions satisfying together with all their derivatives up to the kth

order inclusively the Hölder condition with the index µ:

|Dα f (x)−Dα f (y)| ≤C|x− y|µ ∀x,y ∈Ω, ∀α : |α|= k;

• Ck+ν
(
Ω
)
↪→Ck(Ω) for any nonnegative integer k and any ν > 0;

• Lq(Ω) ↪→ Lp(Ω) for any q > p ≥ 1 for the Lebesgue space Lp(Ω) over a
bounded set Ω;

• C
(
Ω
)
↪→ Lp(Ω) for any p≥ 1;

• Lp
k+1(Ω) ↪→ Lp

k (Ω) for any n ≥ 0 and p ≥ 1, for the Sobolev spaces Lp
k (Ω)

of functions having all generalised derivatives up to the kth order inclusively
belonging to Lp(Ω);



20 Spectral geometry of partial differential operators

• Lq
k(Ω) ↪→ Lp

k (Ω) for any k ≥ 0 and q > p≥ 1;

• L1
n (Ω) ↪→C(Ω), if the set Ω is an n-dimensional parallelepiped.

For more complicated cases of embeddings we need several definitions. For some
x ∈ Rn, let B1 be an open ball with centre at the point x, and let B2 be an open ball
not containing x. The set

Cx = B1∩{(1−α)x+αy : ∀y ∈ B2,∀α > 0}

is called a finite cone with the top at the point x.
We say that the domain Ω ⊂ Rn has a cone property if there exists a finite cone

C such that each point x ∈ Ω is the top of some finite cone Cx congruent to C, and
completely contained in Ω. Roughly speaking, it means that at each point of the
boundary, we can fit in a cone of a fixed angle inside the domain.

Theorem 1.23 Let Ω ⊂ Rn be a bounded domain with the cone property, let p > 1
and m > 1. Then the embedding

Lp
m(Ω) ↪→ Lq(Ω)

holds for mp < n for all p≤ q≤ np
n−mp , while for mp = n it holds for all p≤ q.

For p = 1, the embedding

L1
n(Ω) ↪→CB(Ω)

holds true.
Under some additional assumptions on the smoothness of the boundary ∂Ω of

the domain Ω, the embedding

Lp
m(Ω) ↪→ Lq(∂Ω) (1.25)

for mp < n holds true for all p ≤ q ≤ (n−1)p
n−mp , while for mp = n it holds true for all

p≤ q < ∞.

Here CB(Ω) denotes the space of functions, continuous in Ω and bounded in Ω,
with the norm ‖ f‖= sup

x∈Ω

| f (x)|. Note that CB(Ω)⊂C(Ω) but the space CB(Ω) is not

contained in C
(
Ω
)
. So, for example, the function sin(1/x) belongs to CB(0,1), but

does not belong to C[0,1].
The embedding (1.25) is understood in the sense that the restriction operator to

the boundary ∂Ω is bounded from Lp
m(Ω) to Lq(∂Ω).

1.9 Separable spaces
Let X be an infinite-dimensional Banach space. A sequence {ek}∞

k=1 of elements
ek ∈ X is called a basis of the space X if every x ∈ X can be uniquely represented in
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the form of a converging series

x =
∞

∑
k=1

xkek. (1.26)

Here the numbers xk ∈C are called coordinates of the element x ∈ X with respect to
the basis {ek}.

Note that this definition has two conditions: first, any element can be represented
in the form of the series (1.26). And second, such representation must be unique, that
is, the set of the numbers xk ∈ C in such a representation must be unique.

The infinite system of elements {ek}∞

k=1 is called linearly independent if for any
n ∈ N the finite system {ek}n

k=1 is linearly independent.
In particular, it follows from the uniqueness of the representation (1.26) that

any finite set of elements of the basis will be a linearly independent system. Con-
sequently, any basis is a linearly independent system.

The concept of the basis of an infinite-dimensional space introduced in this way
is a natural generalisation of the same concept in the finite-dimensional case. The
majority of the spaces used in practice have a basis.

A normed space X is called separable if it contains a countable, everywhere
dense set. The majority of the spaces used in practice are separable.

In particular, a Banach space with a countable basis is separable. Indeed, if {ek}
is a basis of the space X , then the set of all possible linear combinations

n
∑

k=1
ξkek

(where n ∈ N, ξk ∈ C, Re(ξk) and Im(ξk) are rational numbers) forms a countable
and dense set in X .

The inverse statement is also true. It can be more simply formulated for the
Hilbert spaces.

Theorem 1.24 In any separable infinite-dimensional Hilbert space H there exists an
orthogonal basis of a countable number of elements.

Recall that a system {ek} in a Hilbert space H is called orthogonal if ek 6= 0
and 〈ek,e j〉 = 0 for k 6= j. Here one often uses the notation ek⊥e j. If additionally
〈ek,ek〉= 1 (that is, ‖ek‖= 1 for all k), then the system {ek} is called orthonormal.

Let us give a proof of Theorem 1.24 since there one can use an important process
of Gram-Schmidt orthogonalisation that will be useful also in the sequel.

Let H be a separable Hilbert space. Then it has a countable, everywhere dense set.
Let us take all nonzero elements from this set. Since this set is countable, its elements
can be numbered as {uk}∞

k=1. Since this set is numbered, it can be interpreted as a
sequence.

Let us extract from this sequence a linearly independent system {ωk}∞

k=1 in the
following way.

Let ω1 := u1.
Then let ω2 be the first element of the sequence {uk}∞

k=1 which is linearly inde-
pendent with ω1. Let it be the element u j. Then we set ω2 := u j.
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Consider now a sequence u j+1,u j+2,u j+3, ... and denote by ω3 the first element
from it that is linearly independent with ω1 and ω2.

Continuing this process, we get an infinite (since the space is infinite-
dimensional) system {ωk}∞

k=1 of linearly independent elements. Since its linear span

L (that is, the set of all possible finite linear combinations
n
∑

k=1
ckωk for various n∈N)

contains the system {uk}∞

k=1, the set L is dense in H.
We now show that given any linearly independent system {ωk}∞

k=1 one can con-
struct the orthogonal system {ek}∞

k=1 using the following so-called Gram-Schmidt
orthogonalisation process.

Let us assume e1 = ω1. Note that e1 6= 0 since the sequence {uk}∞

k=1 contains
only nonzero elements.

Further, we look for an element e2 in the form e2 =ω2−α21e1, where the number
α21 is chosen so that e1 and e2 are orthogonal, that is, so that 〈e1,e2〉= 0. From here
we get that (e1,ω2− α21e1) = 0. Therefore, α21 =

〈e1,ω2〉
〈e1,e1〉

. It is easy to see that e2 6= 0
since otherwise ω1 and ω2 would be linearly dependent.

Continuing this process further, we obtain at the kth step the orthogonal system
e1,e2, ...,ek−1 which has been already constructed. Then we look for the next element
ek in the form

ek = ωk−
k−1

∑
j=1

αk je j.

We are looking for the coefficients αk j to satisfy the orthogonality condition
ek⊥e j ( j = 1,2, ...,k−1). Since first k−1 of elements are already mutually orthog-

onal, we must have αk j =
〈e j ,ωk〉
〈e j ,e j〉 . Thus, ek 6= 0. Continuing this process we obtain

the orthogonal system {ek}∞

k=1.
Since the linear spans of the systems {ωk}∞

k=1 and {ek}∞

k=1 coincide (they coin-
cide with L), and L is dense in H, the system {ek}∞

k=1 is the required orthogonal basis
of the space H.

Note that if we take vk := ek
‖ek‖

, then the system {vk} will be an orthonormal basis
of the space H. Thus, we have shown that any separable infinite-dimensional Hilbert
space H has an orthonormal basis consisting of a countable number of elements,
completing the proof of the theorem. �

Let us give some examples of separable spaces:

• the real line R is separable since rational numbers form a countable and dense
set in R;

• any finite-dimensional space is separable since for an arbitrary basis it is suffi-
cient to consider the set of its linear combinations with rational coefficients;

• the space C
(
Ω
)

is separable since the set of polynomials with rational coeffi-
cients is dense in it;
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• the spaces Ck
(
Ω
)
, Lp(Ω), 1 ≤ p < ∞, and Lp

k (Ω), 1 ≤ p < ∞, k ≥ 1, are
separable.

Separability of a space is not applied just by itself. It is important that in a sep-
arable space (in view of Theorem 1.24) there is always an orthogonal (and even
orthonormal) basis. It is sufficient to understand once that the space under consider-
ation is separable, and then to use the possibilities of working with its basis.





Chapter 2
Foundations of the linear operator theory

The operator theory is the study of linear operators on functional spaces, beginning
with differential and integral operators. The operators may be presented abstractly by
their characteristics, such as bounded linear operators or closed operators, and con-
sideration may be given to nonlinear operators. The operator theory, which depends
heavily on the topology of the functional spaces, is a branch of the functional analy-
sis. In this chapter we review the basic notions of the theory of linear operators and
functionals, with the aim of discussing properties of the adjoint operators and adjoint
boundary value problems. The main emphasis in our exposition is the detailed treat-
ment of examples that show that there may be certain hidden obstacles when one is
dealing with different classes of boundary value problems, and we aim at showing
effective ways of overcoming them.

2.1 Definition of operator
Concept of an operator (one of the most general mathematical concepts) is a

particular case of the general concept of the mapping of one set into another.
Let A and B be two sets. Suppose that a definite element b contained in the set B,

by the rule
b = f (a)

is put into correspondence to each element a of the set A. In this case one says that it
defines the mapping f of the set A into the set B, which can be briefly written in the
following way:

f : A→ B.

Let X , Y be linear spaces. Let, further, a subset D ⊆ X be selected in X . If on the
space X there is given a mapping F , under which a definite element y ∈ Y is put into
correspondence to each element x ∈D, then one says that there is given an operator

y = F(x).

Herewith the set D is called a domain or domain of definition of the operator F and
is denoted as D(F). In turn, the set

R = R(F) = {y ∈ Y : y = F(x) for some x ∈ D}

is called the range or domain of values of the operator F .

25
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Schematically the correspondence given by the operator F can be demonstrated
as follows:

X ⊇ D(F)
F−→ R(F)⊆ Y,

or briefly F : X → Y.
Thus, for defining an operator A it is necessary to fix the spaces X and Y , to give

its domain D(A)⊂ X and the law under which its action on the elements x ∈D(A) is
defined.

The simplest example of an operator is an ordinary real function defined on the
space R with the domain of values in R.

When studying questions of a geometric nature, one usually uses the term “map-
ping” instead of “operator”. Due to this, one also uses the following “geometric”
terminology: the element y is called the image of the element x, and the element x is
called the preimage of the element y.

In a particular case when Y is a space of scalars (R or C), the operator F : X →Y
is called a functional.

2.2 Linear operators
An operator A : X → Y is called linear, if
1) its domain D(A) is a linear space (see Section 1.1),
2) for all x,y ∈ D(A), and all numbers α,β ∈ C the equality

A(αx+βy) = αAx+βAy (2.1)

holds.
Condition (2.1) is a combination of two conditions:

• additivity of the operator: A(x+ y) = Ax+Ay, ∀x,y ∈ D(A);

• homogeneity of the operator: A(αx) = αAx, ∀x ∈ D(A), where α ∈ C.

The concept of a linear operator generalises the concept of a linear function
y = ax defined on the real axis. We note that in the standard function theory, a
linear function usually means functions of the form y = ax+b. However, in the case
of operators it is necessary to have b = 0 in order for the second condition in the
definition of the linear operator to hold (see Example 2.2). In analogy to the theory
of functions, the notation Ax is usually used for linear operators instead of A(x).

We defined the range of the operator A as the set of its values:

R(A) := {Ax : x ∈ D(A)}. (2.2)



Foundations of the linear operator theory 27

Example 2.1 In the space C2[0,1] of twice continuously differentiable functions, we
consider an operator L : C2[0,1]→C2[0,1] with the domain

D(L) =
{

u ∈C2[0,1] : u(0) = a, u(1) = b
}
, (a,b are constants),

acting by
Lu(x) =−u′′(x)+q(x)u(x), q ∈C[0,1]. (2.3)

It is easy to see that this operator is defined on all functions u ∈ D(L). The
range R(L) does not coincide with the whole space C2[0,1]. For example, the func-
tion u0(x) = a+(b− a)

√
x5 belongs to the domain of the operator L, but its image

Lu0(x) =− 15
4 (b−a)

√
x+q(x)u0(x) does not have to be continuously differentiable.

This example shows that for the operators A : X → Y , the range R(A) does not
necessarily coincide with the whole space Y .

Let us now consider the question of the linearity of the operator L in (2.3). It
is easy to see that for the domain D(L) of the operator to be a linear space (see
Section 1.1) it is necessary and sufficient that a = b = 0. Indeed, if u1,u2 ∈ D(L),
then u= u1+u2 satisfies boundary conditions u(0) = 2a, u(1) = 2b, and for u∈D(L)
it is necessary and sufficient to have that a = b = 0.

Therefore, when studying boundary value problems by methods of the theory
of linear operators, mostly the problems with homogeneous boundary conditions
are considered. However, as is known from the general theory of linear differential
equations (or partial differential equations), a boundary value problem with inho-
mogeneous boundary conditions can be always reduced to studying a problem with
homogeneous boundary conditions. �

Example 2.2 In the space of continuous functions, consider an operator A : C[0,1]→
C[0,1] defined by

Au(x) = au(x)+b; (a,b are constants).

The domain of the operator A is the whole space, that is D(A) =C[0,1]. Therefore it
is a linear space.

Let us now check the second condition in the definition of linearity. For u1,u2 ∈
D(A), we have

A(αu1 +βu2) = a(αu1 +βu2)+b = αau1 +αb+βau2 +βb+b−αb−βb =

= αAu1 +βAu2 +b(1−α−β ).

In turn, it is easy to see that in order to satisfy condition (2.1) in the definition of a
linear operator for all α,β ∈ C, it is necessary and sufficient to have b = 0.

Thus, the operator A will be linear, if its action is given by the formula

Au(x) = au(x).

This example of an operator A is a direct generalisation of the notion of a linear
function y = ax defined on the real axis. However, in the theory of functions, the
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linearity of a function usually means that we have y = ax+ b. However, in the case
of operators, it is necessary to have b = 0 in order to fulfil condition (2.1) in the
definition of a linear operator. �

Example 2.3 In the space of continuous functions, consider an operator A : C[0,1]→
C[0,1] defined by

Au(x) = u(x), (2.4)

where the operation z = (Rez+ iImz) = Rez− iImz is the complex conjugation.
The domain of the operator A is the whole space, that is D(A) = C[0,1] and,

therefore, it is a linear space.
Let us check the second condition (2.1) in the definition of linearity. For u1,u2 ∈

D(A), we have

A(u1 +u2) = (u1 +u2) = u1 +u2 = Au1 +Au2,

and the operator A “looks like” a linear operator. More precisely, the operator A is
additive. However, for constants α,β ∈ C, we have

A(αu1 +βu2) = [αu1 +βu2] = αu1 +βu2 = α(u1)+β (u2) = αAu1 +βAu2,

which means that condition (2.1) is satisfied only for real numbers α,β ∈ R, which
is not sufficient for the linearity of the operator.

Thus, the operator A defined by formula (2.4) is not linear because it is not homo-
geneous. �

The general theory of operators is much more developed for the linear opera-
tors; therefore, in the sequel in this monograph we will suppose that all considered
operators are linear.

Two cases of linear operators are very important in practice and applications:

• the case when D(A) = X , that is, the operator A is defined on the whole space
X ;

• the case when D(A) = X , that is, the domain D(A) is dense in the space X .

We also note that for the linear operators the range R(A) is always a linear space.

2.3 Linear bounded operators
Let X , Y be Banach spaces. A linear operator A : X → Y with domain D(A) = X ,

is called continuous at the point x0 ∈ X , if

Ax→ Ax0 whenever x→ x0.
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Here and further such notation means that

‖Ax−Ax0‖Y → 0 for ‖x− x0‖X → 0.

From the linearity properties of an operator it follows that if the operator A is
continuous at the point 0 ∈ X , then it is continuous at every point x0 ∈ X . The linear
operator continuous at 0 ∈ X is called continuous.

A wide class of linear operators is the so-called bounded operators. In the theory
of functions, a function f = f (x) is called bounded on the interval [a,b], if there
exists a constant M such that | f (x)| ≤M ∀x ∈ [a,b]. However, in the theory of linear
operators it is not possible to draw such an analogy.

Indeed, in view of the linearity of the operator A, its domain D(A) is a linear
space, and along with each element x ∈ D(A) it contains also the element kx, for
an arbitrarily large number k. Therefore, even if the value of the operator A at the
element x ∈ D(A), that is, ‖Ax‖, is bounded by some constant M, if it is nonzero, we
can always choose the number k sufficiently large so that the value of the operator A
at the element kx ∈ D(A), that is, ‖kAx‖ = k‖Ax‖, exceeds M. Therefore, unlike in
the theory of functions, in the theory of operators the values of a bounded operator
are, generally speaking, not uniformly bounded.

A linear operator A : X →Y with domain D(A) = X is called bounded, if it maps
bounded sets from X into bounded sets in Y . Such operator A : X → Y , D(A) = X is
bounded if and only if there exists a constant M such that

‖Ax‖Y ≤M‖x‖X , ∀x ∈ X . (2.5)

The smallest constant M satisfying condition (2.5), is called the norm of the
operator and is denoted by ‖A‖. Therefore, the norm of the bounded operator is
expressed by the formula

‖A‖= sup
x∈X

‖Ax‖Y
‖x‖X

. (2.6)

Moreover, the norm of a bounded operator A : X → Y, D(A) = X (where X and
Y are normalised spaces) is “attained” on the unit sphere, that is,

‖A‖= sup
x∈X

‖Ax‖Y
‖x‖X

= sup
‖x‖≤1

‖Ax‖Y = sup
‖x‖X=1

‖Ax‖Y .

Indeed, this is the direct consequence of the chain of equalities

sup
x∈X

‖Ax‖Y
‖x‖X

= sup
x∈X

∥∥∥∥ Ax
‖x‖X

∥∥∥∥
Y
= sup

x∈X

∥∥∥∥A
(

x
‖x‖X

)∥∥∥∥
Y
= sup
‖x‖=1

‖Ax‖Y

and evident inequalities

sup
‖x‖=1

‖Ax‖Y ≤ sup
‖x‖≤1

‖Ax‖Y ≤ sup
‖x‖≤1

‖Ax‖Y
‖x‖X

≤ sup
x∈X

‖Ax‖Y
‖x‖X

.
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Here we must note that (since the concept “supremum” is used) the norm of an
operator is calculated on elements on the unit sphere ‖x‖= 1, but it is not necessarily
attained on some elements of this unit sphere.

We also note that if x = 0, we have ‖x‖X = 0 and ‖Ax‖Y = 0, so that in the
notation (2.6), in order to avoid adding x 6= 0 in too many formulae, one can agree to
consider that the quotient 0/0 is also 0, thus not contributing to taking the supremum.

The immediate consequence of formulae (2.5) and (2.6) is the inequality

‖Ax‖Y ≤ ‖A‖‖x‖X , ∀x ∈ X . (2.7)

The following theorem substantiates the equivalence of concepts of linear con-
tinuous and linear bounded operators.

Theorem 2.4 Let X and Y be Banach spaces and let A : X →Y be a linear operator
with domain D(A) = X. Then, for the operator A to be continuous it is necessary and
sufficient that it is bounded.

Moreover, the linear bounded operator is not only continuous but also satisfies an
analogue of the Lipshitz conditions from the theory of functions:

‖Ax−Ay‖Y ≤ ‖A‖ · ‖x− y‖X , ∀x,y ∈ X .

The linear operators acting in finite-dimensional spaces have the simplest general
form.

Example 2.5 Let X and Y be finite-dimensional spaces of dimensions n and m,
respectively. Let us denote by {u j}n

j=1 a basis of the space X . An arbitrary element
x ∈ X is represented in the form of a linear combination with respect to this basis:

x =
n

∑
j=1

x ju j, x = (x1,x2, ...,xn). (2.8)

If we denote by {vi}m
i=1 a basis in Y , then the image of an operator T acting on

the basis {u j}n
j=1 admits the expansion in Y :

Tu j =
m

∑
i=1

ai j vi, ∀ j = 1, . . . ,n. (2.9)

Then from (2.8) and (2.9), by the linearity of the operator T , we get

T x = T

(
n

∑
j=1

x j u j

)
=

n

∑
j=1

x jTu j =

=
n

∑
j=1

m

∑
i=1

x jai jvi =
m

∑
i=1

(
n

∑
j=1

x jai j

)
vi.

(2.10)
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In the space Y , any element y ∈ Y has “coordinate” expansion in the basis {vi}m
i=1:

y = (y1,y2, ...,ym) or y =
m
∑

i=1
yivi. Then for the image T x = y = (y1,y2, ...,ym) from

(2.10) we find that

yi =
n

∑
j=1

ai jx j, ∀i = 1, . . . ,m. (2.11)

Thus, the action of the linear operator T from the finite-dimensional space X
(of dimension n) into the finite-dimensional space Y (of dimension m) is completely
described with the help of a matrix (ai j) of the size m×n.

With this, the operator equation T x = y can be written in a matrix form
a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn




x1
x2
. . .
xn

=


y1
y2
. . .
ym

 . (2.12)

The elements of the matrix (ai j) for each operator are uniquely fixed by choosing
the bases in the spaces X and Y .

Note that all the above arguments are valid not only for ordinary Euclidean
spaces, but also for any finite-dimensional spaces.

From representations (2.10), (2.11) and (2.12), it is easily seen that all the linear
operators in the finite-dimensional spaces are bounded. Indeed, let us choose some
bases in the spaces X and Y to be normalised (i.e. ‖u j‖= ‖vi‖= 1). We will use the
norms given in the following way (this does not reduce the generality, since all the
norms in the finite-dimensional spaces are equivalent):

‖x‖=

(
n

∑
j=1
|x j|2

)1/2

, ∀x = (x1,x2, ...,xn) ∈ X ,

‖y‖=

(
m

∑
i=1
|yi|2

)1/2

, ∀y = (y1,y2, ...,ym) ∈ Y.

We use the well-known Hölder’s inequality for finite sums:

N

∑
k=1
|ξkηk| ≤

(
N

∑
k=1
|ξk|p

)1/p( N

∑
k=1
|ηk|q

)1/q

,

where p > 1, q > 1, 1
p +

1
q = 1. Then from (2.10) we calculate:

‖T x‖= ‖y‖=

(
m

∑
i=1
|yi|2

)1/2

=

 m

∑
i=1

∣∣∣∣∣ n

∑
j=1

ai jx j

∣∣∣∣∣
2
1/2

≤

 m

∑
i=1

(
n

∑
j=1
|ai jx j|

)2
1/2

≤

(
m

∑
i=1

n

∑
j=1
|ai j|2

n

∑
k=1
|xk|2

)1/2



32 Spectral geometry of partial differential operators

=

(
m

∑
i=1

n

∑
j=1
|ai j|2

)1/2

· ‖x‖.

Therefore, ‖T‖ ≤

(
m
∑

i=1

n
∑
j=1
|ai j|2

)1/2

.

Consequently, the operator T is bounded. �

The considered example demonstrates that all the linear operators acting in the
finite-dimensional spaces are bounded. In fact, there exists a more general fact that
any linear operator, acting from a finite-dimensional space X into a Banach space Y
(which can be infinite-dimensional) is bounded. This is the consequence of the fact
that in this case, even in the infinite-dimensional space Y , the image still will be a
finite-dimensional linear space.

The situation becomes significantly more complicated in the case of infinite-
dimensional spaces. One of the simplest operators in an infinite-dimensional space
is the operator of multiplication by a function.

Example 2.6 In the space C[a,b] with the norm ‖ f (x)‖ = max
x∈[a,b]

| f (x)|, consider an

operator defined on the whole space by the formula

T f (x) = G(x) · f (x), ∀ f ∈C[a,b],

where G(x) is a given function continuous on the closed interval [a,b].
Let us show that the operator T is bounded. Indeed, it is easily seen that for all

x ∈ [a,b] we have
|G(x) f (x)| ≤ ‖G‖ · | f (x)| ≤ ‖G‖ · ‖ f‖.

Consequently,
‖G f‖ ≤ ‖G‖ · ‖ f‖.

Therefore ‖T f‖ ≤ ‖G‖ · ‖ f‖ and by the definition of the operator norm we have

‖T‖ ≤ ‖G‖. (2.13)

On the other hand, consider an action of the operator T on a “test function”
f0(x) = 1. It is clear that f0 ∈C[a,b] and ‖ f0‖= 1.

Then

‖T‖= sup
‖ f‖=1

‖T f‖ ≥ ‖T f‖ f= f0 = ‖G‖, so that ‖T‖ ≥ ‖G‖.

Comparing the last inequality and (2.13), we obtain that the operator T : C[a,b]→
C[a,b] is bounded and its norm is ‖T‖= ‖G‖. �

Example 2.7 Now consider the same action of an operator given in the Banach space

Lp(a,b) with the norm ‖ f‖p =
(∫ b

a | f (x)|pdx
)1/p

.
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The action of the operator is given by the formula

T f (x) = G(x) · f (x), ∀ f ∈ Lp(a,b),

where G = G(x) is a given function continuous on the closed interval [a,b].
Let us show that the operator T : Lp(a,b)→ Lp(a,b) is bounded. Indeed, denoting

G0 = max
x∈[a,b]

|G(x)|, it is easy to see that for all x ∈ [a,b] we have

|G(x) f (x)| ≤ G0 · | f (x)|.

Then

‖T f‖p =

(∫ b

a
|G(x) f (x)|pdx

)1/p

≤ G0

(∫ b

a
| f (x)|pdx

)1/p

= G0‖ f‖p.

So we have ‖T f‖p ≤ G0 · ‖ f‖p for all f ∈ Lp(a,b). Therefore the operator T is
bounded in Lp(a,b) and, by the definition of the operator norm,

‖T‖ ≤ G0. (2.14)

On the other hand, since the function G = G(x) is continuous on the closed inter-
val [a,b], then there exists a point x0 ∈ [a,b] such that

G0 = max
x∈[a,b]

|G(x)|= |G(x0)|.

Now we choose a “test function”. Let for any 0 < ε ≤ 1, [aε ,bε ] ⊆ [a,b] be an
arbitrary interval of the length ε = bε −aε containing the point x0 ∈ [a,b]. Let us use
the function fε(x) given by the formula

fε(x) =
{

0, x /∈ [aε ,bε ],

ε−1/p, x ∈ [aε ,bε ].
(2.15)

The simple calculations show that fε ∈ Lp(a,b) and ‖ fε‖p = 1:

‖ fε‖p =

(∫ bε

aε

∣∣∣ε−1/p
∣∣∣p dx

)1/p

= ε
−1/p

(∫ bε

aε

dx
)1/p

= ε
−1/p(bε −aε)

1/p = 1.

Consider now the action of the operator T on the test function fε(x). We have

‖T fε‖p =

(∫ bε

aε

∣∣∣G(x)ε−1/p
∣∣∣p dx

)1/p

= ε
−1/p

(∫ bε

aε

|G(x)|pdx
)1/p

≥ ε
−1/p · min

[aε ,bε ]
|G(x)| ·

(∫ bε

aε

dx
)1/p

= min
[aε ,bε ]

|G(x)|.

Therefore from the definition of the operator norm we have

‖T‖= sup
‖ f‖=1

‖T f‖p ≥ ‖T fε‖ ≥ min
[aε ,bε ]

|G(x)|.
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From this and from (2.15) it follows that

min
[aε ,bε ]

|G(x)| ≤ ‖T‖ ≤ G0. (2.16)

Since G = G(x) is continuous on the closed interval [a,b], we have

lim
ε→0

min
[aε ,bε ]

|G(x)|= G(x0) = G0.

Therefore from (2.16), by the arbitrariness of ε > 0, it follows that ‖T‖= G0. �

The studied Examples 2.6 and 2.7 show that the operators given by the same
formula T f (x) = G(x) · f (x) but considered in different spaces C[a,b] and Lp(a,b),
turn out to be simultaneously bounded and even the norms of these operators turn
out to be equal. However, this is not true in general. That is, there exist the operators,
actions of which are given by the same formula, but (depending on the spaces in
which they are considered) they can be both bounded or unbounded. The following
example illustrates this fact.

Example 2.8 Consider an operator of taking a trace, acting by the formula

P f (x) = f (x0), (2.17)

where x0 ∈ [a,b] is some fixed point.
If we consider the operator P as acting by formula (2.17) in the space of continu-

ous functions P : C[a,b]→C[a,b], then it is easy to see that the operator is bounded.
Indeed, for all f ∈C[a,b] we have

‖P f‖= max
x∈[a,b]

|P f (x)| ≡ | f (x0)| ≤ max
x∈[a,b]

| f (x)|= ‖ f‖.

Hence we have ‖P‖ ≤ 1 and, consequently, the operator P : C[a,b] → C[a,b] is
bounded.

Consider now the operator P as acting by the same formula (2.17) in the Banach
space of functions P : Lp(a,b)→ Lp(a,b). We now show that in this case the opera-
tor is not bounded.

As a test function we take the function fε(x) from Example 2.7, defined by for-
mula (2.15). We can calculate the norm of the image P fε(x):

‖P fε‖p = ‖ fε(x0)‖p =
∥∥∥ε
−1/p

∥∥∥
p
=

(∫ b

a

∣∣∣ε−1/p
∣∣∣p dx

)1/p

=

= ε
−1/p · (b−a)1/p→ ∞, for ε → 0.

Since ‖ fε‖p = 1 and lim
ε→∞
‖P fε(x)‖p = ∞ , then from the definition of the operator

norm it follows that the norm of the operator P is not bounded and, consequently, P
is an unbounded operator in Lp(a,b). �
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The considered Example 2.8 illustrates that the operator, given by the same action
(by the same formula) in different normed spaces, can be bounded in one of them,
and can be unbounded in another space.

The same effect can occur if one considers an operator acting between different
spaces. Let us show this by the following examples.

Example 2.9 Let us consider an operator acting by the formula

L1u(x) =
d
dx

u(x), a < x < b. (2.18)

Let us look at the question of the boundedness of the operator L1 acting in different
spaces:

1) Consider the operator L1 as L1 : C1[a,b]→ C[a,b]. It is easy to see that in
this case the operator L1 is defined on the whole space, that is, D(L1) =C1[a,b] and
the operator is bounded. Indeed, recalling the formula by which we have defined
the norm in C1[a,b] (see Example 1.6), it is easy to see that for all u ∈ D(L1) the
inequality

‖L1u‖C[a,b] = max
x∈[a,b]

∣∣∣∣ d
dx

u(x)
∣∣∣∣≤ max

x∈[a,b]

(
|u(x)|+

∣∣∣∣ d
dx

u(x)
∣∣∣∣)= ‖u‖C1[a,b]

holds. Consequently, the operator L1 is bounded, and by the definition of the operator
norm we have ‖ L1‖C1[a,b]→C[a,b] ≤ 1.

2) Consider now the operator L1 defined by the same formula (2.18), acting in the
space of continuous functions C[a,b], that is, L1 : C[a,b]→ C[a,b]. Here, in order
to correctly define the operator (since its action by formula (2.18) is not well defined
for all functions from C[a,b]), we choose its domain D(L1)≡C1[a,b]⊂C[a,b]. Let
us show that in this case the operator L1 is unbounded. As a test function we take

uε(x) =

√
x−a+ ε

b−a+ ε
, ε > 0.

It is clear that for all ε > 0 the test function belongs to the domain of the operator:
uε ∈ D(L1) and

‖uε‖= max
x∈[a,b]

√
x−a+ ε

b−a+ ε
= 1, ∀ε > 0.

Let us calculate the norm of the image of this function:

‖L1uε‖=
∥∥∥∥ d

dx
uε

∥∥∥∥= ∥∥∥∥ d
dx

√
x−a+ ε

b−a+ ε

∥∥∥∥
= max

x∈[a,b]

∣∣∣∣∣ 1
2
√
(x−a+ ε)(b−a+ ε)

∣∣∣∣∣= 1
2
√

ε(b−a+ ε)
.

It is easily seen that for ε → 0 the norm ‖L1uε‖ becomes arbitrarily large while the
norm of the function itself is ‖uε‖= 1. That is, the operator L1 is unbounded.
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We can also mention here another, a more wide-spread in the literature example
of the test function for proving the unboundedness of the operator L1. Consider the
sequence of functions

uk(x) = sinkx, k = k0, k0 +1, . . . ,

where we choose the integer k0 large enough in order to have (b− a)k0 ≥ π . Then,
on the interval [a,b], for each k ∈ N, k ≥ k0, there exists at least one solution of the
equation |sinkx|= 1, and therefore ‖uk‖= 1.

Now we calculate the norm of the image of this test function:

‖L1uk‖=
∥∥∥∥ d

dx
uk

∥∥∥∥= ∥∥∥∥ d
dx

sinkx
∥∥∥∥= max

x∈[a,b]
|k coskx|= k, ∀k ≥ 2k0.

Now it is easily seen that for k→∞ the norm ‖L1uk‖ becomes arbitrarily large while
the norm of the function itself is ‖uk‖= 1, that is the operator L1 is unbounded. �

The considered example clearly illustrates that the linear operator given by for-
mula (2.18) turns out to be bounded, if it is considered as acting from C1[a,b] into
C[a,b], and turns out to be unbounded as the operator acting from C[a,b] into C[a,b].

The similar fact also holds in Lebesgue and Sobolev spaces:

Example 2.10 Let, as in Example 2.9, the action of an operator be given by formula
(2.18):

L1u(x) =
d
dx

u(x), a < x < b.

Let us consider the question of the boundedness of this operator in the Lebesgue and
Sobolev spaces.

1) Consider L1 as the operator acting as L1 : Lp
1(a,b)→ Lp(a,b). It is easy to

see that in this case the operator L1 is defined on the whole space, that is, we can
choose D(L1) = Lp

1(a,b), and the operator is bounded. Indeed, recalling the formula
by which we have defined the norm in Lp

1(a,b) (see Example 1.14), it is readily seen
that for all u ∈ D(L1) we have

‖L1u‖Lp(a,b) =

(∫ b

a

∣∣∣∣ d
dx

u(x)
∣∣∣∣p dx

)1/p

≤
(∫ b

a

[
|u(x)|p +

∣∣∣∣ d
dx

u(x)
∣∣∣∣p]dx

)1/p

= ‖u‖Lp
1 (a,b)

.

Consequently, the operator L1 is bounded and by the definition of the operator norm
we have ‖ L1‖Lp

1 (a,b)→Lp(a,b) ≤ 1.
2) Now consider the operator L1 defined by the same formula (2.18), as the oper-

ator in the space Lp(a,b), p ≥ 1, that is, L1 : Lp(a,b)→ Lp(a,b). Here, in order to
correctly define the operator (since its action by formula (2.18) is not well-defined on
all functions from Lp(a,b)), we choose its domain to be D(L1) = Lp

1(a,b)⊂ Lp(a,b).
Let us show that in this case the operator L1 is unbounded. As a test function

we take uε(x) = mε(x− a+ ε)1−1/p, ε > 0, where for short we have introduced
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the notation mε = p1/p[(b− a+ ε)p− ε p]−1/p. It is clear that for all ε > 0 the test
function belongs to the domain of the operator: uε ∈ D(L1) and

‖uε‖p =

(∫ b

a
|uε(x)|p dx

)1/p

= mε

(∫ b

a
(x−a+ ε)p−1dx

)1/p

= 1, ∀ε > 0.

Let us calculate the norm of the image of this test function:

L1uε(x) =
p−1

p
mε(x−a+ ε)−1/p,

‖Luε‖p =

(∫ b

a
|Luε(x)|p dx

)1/p

= mε

p−1
p

(∫ b

a
(x−a+ ε)−1dx

)1/p

= mε

p−1
p

(
ln

b−a+ ε

ε

)1/p

.

Now it is easily seen that for ε → 0 the norm ‖L1uε‖ becomes arbitrarily large
while the norm of the function itself is ‖uε‖= 1. That is, the operator L1 is unbounded
as the operator acting from Lp(a,b) into Lp(a,b). �

Examples 2.8, 2.9 and 2.10 show how important the choice of spaces is when we
define an operator and its domain.

Some of the important and widely used operators are integral operators. We now
consider the following simplest example.

Example 2.11 Let the action of an operator K be given by the formula

K f (x) =
∫ b

a
k(x, t) f (t)dt, (2.19)

where k = k(x, t) is a function on a closed rectangle [a,b]× [a,b]. The linear operators
given by a formula of the form (2.19) are called integral operators, and the function
k(x, t) is called a kernel of the integral operator. Let us look at the question of the
boundedness of the operator K in spaces C[a,b] and L2(a,b).

1) First, consider the operator in the space C[a,b] and let the kernel of the operator
K be a continuous function k = k(x, t)∈C([a,b]× [a,b]). Then there exists a constant
M such that |k(x, t)| ≤M for all x, t ∈ [a,b]. Therefore

‖K f‖= max
x∈[a,b]

∣∣∣∣∫ b

a
k(x, t) f (t)dt

∣∣∣∣≤ max
x∈[a,b]

∫ b

a
|k(x, t)|| f (t)|dt

≤M
∫ b

a
| f (t)|dt ≤M(b−a) max

t∈[a,b]
| f (t)|,

that is, ‖K f‖ ≤M(b−a)‖ f‖, ∀ f ∈C[a,b]. Consequently, the operator K is defined
on the whole space C[a,b], is bounded on it, and ‖K‖ ≤M(b−a).
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2) Now consider the integral operator K in the Hilbert space L2(a,b) and let
now the kernel k(x, t) of the integral operator K be a measurable function integrable
according to Lebesgue with a square: k = k(x, t) ∈ L2 ((a,b)× (a,b)). We will use
the integral Hölder inequality

∫ b

a
| f (t)g(t)|dx≤

(∫ b

a
| f (t)|p dt

)1/p(∫ b

a
|g(t)|q dt

)1/q

,

where
1
p
+

1
q
= 1. (2.20)

For the case p = q = 2, for all f ∈ L2(a,b) we easily obtain

‖K f‖2 =
∫ b

a

∣∣∣∣∫ b

a
k(x, t) f (t)dt

∣∣∣∣2 dx≤
∫ b

a

(∫ b

a
|k(x, t) f (t)|dt

)2

dx

≤
∫ b

a

((∫ b

a
|k(x, t)|2dt

)1/2(∫ b

a
| f (t1)|2dt1

)1/2
)2

dx

=
∫ b

a

∫ b

a
|k(x, t)|2dxdt ·

∫ b

a
| f (t1)|2dt1 =

∫ b

a

∫ b

a
|k(x, t)|2dxdt · ‖ f‖2.

Consequently, the operator K is defined on the whole space L2(a,b), is bounded on
it, and the norm of the operator can be estimated as

‖K‖ ≤ k0, where k0 =

(∫ b

a

∫ b

a
|k(x, t)|2dxdt

)1/2

.

One should pay attention to the fact that the considered operators are defined on
the whole space and are bounded. �

2.4 Space of bounded linear operators
Let X and Y be linear normed spaces (both are complex), and let A and B be

linear bounded operators defined on the whole space X with values in Y . In a natural
way we introduce the concept of addition of operators A and B by

(A+B)x = Ax+Bx, ∀x ∈ X ,

and the concept of multiplication of a linear operator by a scalar by ∀λ ∈ C:

(λA)x = λ (Ax), ∀x ∈ X .

It is clear that (A+ B) and λA are linear bounded operators and A+ B : X → Y ,
λA : X → Y.
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Thus, on the linear set of the bounded operators mapping the linear normed space
X into Y , we introduced operations of summation and multiplication by a scalar,
therefore, obtaining the space (elements of which are the linear bounded operators),
which is called the space of linear bounded operators and is denoted by L (X ,Y ).
This space becomes normed if as a norm of the space one takes the standard norm of
the bounded operator, and it will be a Banach space if the considered spaces X and Y
are Banach spaces.

In the same natural way we can introduce the concept of multiplication of oper-
ators. Let linear bounded operators A : X → Y and B : Y → Z be given. Then the
multiplication (or composition) of the linear bounded operators B and A is defined
according to the rule

(BA)x = B(Ax), ∀x ∈ X .

It is easy to see that the operator BA is a linear bounded operator BA : X → Z, and
‖BA‖ ≤ ‖B‖ ·‖A‖. One should pay attention to the fact that the operators BA and AB
do not necessarily coincide even in the case when all the spaces are equal, X =Y = Z.
The simplest examples of this fact are finite-dimensional operators A : Rn → Rn,
since the multiplication of matrices is not commutative.

Similar operations of addition, multiplication by a scalar, and multiplication of
operators are introduced in a natural way also for operators that are not necessarily
bounded. The only difference is that it is necessary to accurately combine required
domains and values of the operators. Considering that this procedure is natural, we
do not dwell on it in detail.

In a particular case when X = Y , the space L (X ,X) of the linear bounded oper-
ators in X becomes an algebra with a unit element, where the unit element is the
identity operator I : X → X , acting according to the formula

Ix = x, ∀x ∈ X .

Similarly in the space L (X ,Y ) we introduce concepts of limit and convergence
for sequences of the operators. We do not dwell on these concepts in detail, how-
ever, we discuss the important property of extention of the operators with respect to
continuity.

2.5 Extension of a linear operator with respect to continuity
Let X and Y be normed spaces, and let A : X → Y be a linear operator with the

domain D(A) 6= X , D(A) = X , which is dense in X . One says that the linear operator
A is bounded on D(A), if its norm is finite

‖A‖ := sup
x∈D(A),‖x‖≤1

‖Ax‖<+∞.

As in the case of the bounded linear operators defined on the whole space X , in
this case the norm of the operator is the least of all constants M > 0, satisfying the
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condition
‖Ax‖ ≤M‖x‖, ∀x ∈ D(A).

The following important statement is true.

Theorem 2.12 (On extension of a linear operator with respect to continuity) Let
X be a linear normed space and let Y be a Banach space. Let A : X → Y be a
linear operator with the domain D(A) 6= X which is dense in X, D(A) = X, and let
the operator A be bounded on D(A). Then there exists a linear bounded operator
Â ∈L (X ,Y ) such that Âx = Ax for all x ∈ D(A), and ‖Â‖= ‖A‖.

In other words, any linear bounded operator with values in the Banach space
Y , given on the linear space D(A) dense in the linear normed space X, can be
continued onto the whole space with preservation of the value of its norm.

The indicated process of continuation is called the extension with respect to con-
tinuity. If the operator is not bounded (this case is essentially more complicated), then
its continuation in the general case is one of the variants of extension of the operator.
The theory of extensions constitutes an independent and interesting part of the theory
of operators. The exact definition and some examples will be given later in Section
2.6.

The simplest examples of an extension of the operator with respect to continuity
are situations when the initial operator is given on a domain which is “unnatural” (so
to speak, too “narrow”) for it.

Example 2.13 In the space of continuous functions C[a,b], consider the operator of
taking a trace P : C[a,b]→ C[a,b], acting according to the formula P f (x) = f (x0)
(where x0 ∈ [a,b] is some fixed point), given on the domain D(P) =C1[a,b]. It is easy
to see that the operator P is bounded on its domain. Indeed, for all f ∈D(P)=C1[a,b]
we have

‖P f‖= max
x∈[a,b]

|P f (x)|= | f (x0)| ≤ max
x∈[a,b]

| f (x)|= ‖ f‖,

so that
‖P‖= sup

f∈D(P),‖ f‖≤1
‖P f‖ ≤ sup

f∈D(P),‖ f‖≤1
‖ f‖ ≤ 1.

We now consider the question of the density of the domain D(P) =C1[a,b] in the
space C[a,b] . From the course of analysis it is known that by the Weierstrass theorem
one can approximate any continuous function f = f (x) by a sequence of polynomials

fn(x) =
n
∑

k=1
ckxk. Since fn ∈C∞[a,b], then the density of the space C∞[a,b] in C[a,b]

follows. And since the space of infinitely differentiable on the closed interval [a,b]
functions is embedded in the space of continuous functions C[a,b], that is, C∞[a,b]⊂
C1[a,b] ⊂ C[a,b], then it is clear that C1[a,b] is also dense in C[a,b]. And this fact
proves that D(P) =C[a,b].



Foundations of the linear operator theory 41

Thus all the conditions of Theorem 2.12 are fulfilled. Consequently, there exists
the linear bounded operator P̂∈L (C[a,b],C[a,b]), such that P̂ f = P f , ∀ f ∈D(P) =
C1[a,b] and ‖P̂‖ = ‖P‖. Earlier, in Example 2.8, we have shown that the operator
P : C[a,b]→C[a,b] given on the whole space C[a,b] is bounded and ‖P‖ ≤ 1. That
is, as the continuous continuation in this case one can take an operator given by the
same formula but already on the whole space. In other words, in this case the action
of the operator can be continued onto the set C[a,b]\C1[a,b] not only preserving the
norm value but also “preserving” the formula. �

The cases of such continuation of the bounded operators are precisely the ones
most often encountered in practice. The following example also demonstrates this
fact.

Example 2.14 In the Hilbert space L2(a,b), consider the integral operator K :
L2(a,b)→ L2(a,b) given on the domain D(K) = C[a,b] by formula (2.19), as in
Example 2.11:

K f (x) =
∫ b

a
k(x, t) f (t)dt,

where the kernel k = k(x, t) of the integral operator K is a measurable Lebesgue
square integrable function k ∈ L2((a,b)× (a,b)). To apply Theorem 2.12 on contin-
uous extension it is necessary to show the density of the domain D(K) in L2(a,b),
and the boundedness of the operator on its domain.

From the course of Analysis (the theory of Fourier series, see also Example 1.18,
formula (1.12)) it is known that one can approximate any function f ∈ L2(a,b) in the
norm of L2(a,b) by a sequence of trigonometric polynomials fn = fn(x) being partial
sums of the trigonometric Fourier series. Since fn ∈ C[a,b], it is clear that C[a,b] is
dense in L2(a,b) and, consequently, D(K) = L2(a,b).

The boundedness of the operator K on D(K) is a consequence of the bound-
edness of the operator in L2(a,b), which we have shown in the second part of
Example 2.11. There we have also proved the estimate ‖K‖ ≤ k0, where k0 =(∫ b

a
∫ b

a |k(x, t)|2dtdx
)1/2

.

Thus all the conditions of Theorem 2.12 are satisfied. Consequently, there exists
the linear bounded operator K̂ ∈L (L2(a,b),L2(a,b)) such that both K̂ f = K f , ∀ f ∈
D(K) = C[a,b] and ‖K̂‖ = ‖K‖. Earlier, in Example 2.11, we have shown that the
operator K : L2(a,b)→ L2(a,b) given on the whole space L2(a,b) is bounded and
‖K‖ ≤ k0. That is, as the continuous extension in this case one can take the operator
given by the same formula but already on the whole space.

In other words, in this case the action of the operator can be extended onto the
set L2(a,b)\C[a,b] not only preserving the norm value but also “preserving” formula
(2.19). �
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2.6 Linear functionals
As mentioned at the end of Section 2.1, the functionals are a particular case of

the linear operators. They constitute a large and important class of operators. Let us
dwell on their properties in detail.

Let X be a linear normed space. Any linear operator F : X → Y , where Y = R or
Y = C, is called a linear functional. The value of the functional F on the element
x ∈ X is denoted by F(x). Thus the functional maps the linear space into a field of
coefficients, that is, the functional is a numerical function defined on the elements
x ∈ X .

Since a linear functional is a particular case of a linear operator, concepts of
the continuity, boundedness and norm, and also all other properties of the linear
operators remain valid for it.

The simplest examples of linear functionals are linear functions acting in a real
Euclidean space.

In particular, if we consider the operator from Example 2.8 as an operator acting
from C[a,b] into the field of complex numbers C by the formula

P f (x) = f (x0),where x0 ∈ [a,b] is some fixed point,

then the operator P is a functional, that is, an operator matching some complex num-
ber f (x0) to each function f ∈C[a,b]. �

As in the case of linear operators (see the beginning of Section 2.3), the image of
the linear functional (which is even bounded) is not a bounded set. More precisely,
if the not-identically-zero linear functional F : X → C is defined on the whole space
X , then the image of the functional F is all C.

The important fact in using the linear functionals is an opportunity of describing
their general form in specific spaces.

The general form of the linear functionals in Hilbert spaces is established by the
following

Theorem 2.15 (F. Riesz). Let H be a Hilbert space with the inner product 〈·, ·〉. For
any linear bounded functional F defined on the whole space H, there exists a unique
element σ ∈H such that F(x) = 〈x,σ〉 for all x ∈H. Then we also have ‖F‖= ‖σ‖.

This theorem establishes the general form of the linear bounded functional in a
Hilbert space. Let us consider this in a specific case.

Example 2.16 Let the Hilbert space be H = L2(a,b). The usual inner product in this
space is given by the formula

〈 f ,g〉=
∫ b

a
f (x)g(x)dx. (2.21)
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Taking this into account, by the Riesz theorem 2.15, if F is a linear bounded func-
tional defined everywhere on L2(a,b), then there exists a function σ = σ(x) ∈
L2(a,b) such that

F( f ) =
∫ b

a
f (x)σ(x)dx, ∀ f ∈ L2(a,b), (2.22)

with ‖F‖= ‖σ‖L2(a,b).
Formula (2.22) sets the general form of the linear bounded functional in the

space L2(a,b).�

The linear bounded functionals can be set by a formula analogous to (2.22) also
in other (not necessarily Hilbert) spaces.

Example 2.17 Let X = Lp(a,b), p > 1. On this space let us set a linear functional
by the formula

F( f ) =
∫ b

a
f (x)σ(x)dx, ∀ f ∈ Lp(a,b). (2.23)

Lemma 2.18 The linear functional F defined on the entire space Lp(a,b) by formula
(2.23) is bounded if and only if σ ∈ Lq(a,b), where 1

p +
1
q = 1, and we have

‖F‖= ‖σ‖Lq(a,b).

Let us show here only the sufficiency. Let σ ∈ Lq(a,b), where 1
p +

1
q = 1. Then

using the Hölder integral inequality (2.20), we get

|F( f )|=
∣∣∣∣∫ b

a
f (x)σ(x)dx

∣∣∣∣≤ ∫ b

a
| f (x)σ(x)|dx

≤
(∫ b

a
| f (x)|pdx

)1/p(∫ b

a
|σ(x)|qdx

)1/q

= ‖ f‖p · ‖σ‖q.

Therefore the functional is bounded and

‖F‖ ≤ ‖σ‖Lq(a,b). (2.24)

To prove that in fact in (2.24) the equality is achieved, assuming that σ 6≡ 0, as
a test function we take the function fσ (x) = σ(x) · | σ(x)|q−2 · ‖σ‖1−q. By a direct
calculation we obtain

‖ fσ‖p =

(∫ b

a
| fσ (x)|pdx

)1/p

=

(∫ b

a

∣∣|σ(x)|q−1 · ‖σ‖1−q∣∣p dx
)1/p

=

= ‖σ‖1−q
(∫ b

a
|σ(x)|p(q−1)dx

)1/p

.
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From this, taking into account that p(q−1) = q, 1−q+ q
p = 0, we have

‖ fσ‖p = ‖σ‖1−q
(∫ b

a
|σ(x)|qdx

)1/p

= ‖σ‖1−q+ q
p = ‖σ‖0 = 1.

Therefore, fσ ∈ Lp(a,b) and ‖ fσ‖p = 1 .
Consider now the action of the functional F on the test function fσ :

F( fσ ) =
∫ b

a
fσ (x)σ(x)dx =

∫ b

a
|σ(x)|2+q−2 · ‖σ‖1−qdx =

= ‖σ‖q+1−q = ‖σ‖.

Thus for the test function fσ we get

‖ fσ (x)‖p = 1 and F( fσ ) = ‖σ‖.

Then |F( fσ )|= ‖σ‖ and, consequently, ‖F‖ ≥ ‖σ‖Lq(a,b).
Comparing this inequality with (2.24), we obtain that ‖F‖= ‖σ‖Lq(a,b). The suf-

ficiency of the conditions of Lemma 2.18 is proved. We will not dwell on the proof
of necessity of the conditions. �

As already mentioned in Section 1.1, the proof of the completeness of the system
{uk} in X is substantiated by means of proving everywhere density in X of all linear
combinations of these vectors {uk}, that is, of the density in X of the linear space
spanned by the vectors {uk} .

The following theorem substantiates the research method of the density in X of a
linear subspace by using the linear functionals.

Theorem 2.19 For a linear subspace M to be dense in H, it is necessary and suf-
ficient that the linear functional F vanishing on all elements x ∈ M is identically
zero.

In the case when H is the Hilbert space, taking into account the Riesz theorem
2.15, we obtain the important corollary which is often used in the spectral theory of
operators.

Corollary 2.20 For the completeness of the system {uk} in the Hilbert space H (that
is, for the density in H of the linear space M spanned by the vectors {uk}), it is
necessary and sufficient that the equalities 〈uk,σ〉= 0, ∀uk ∈M, imply that σ = 0.

In other words, using the terminology of Section 1.6, for the completeness of the
system {uk} in the Hilbert space H (that is, for the density in H of the linear space M
spanned by the vectors {uk}), it is necessary and sufficient that σ = 0 follows from
the condition uk ⊥ σ ∀uk ∈M.

This means that the absence of the nonzero element in the Hilbert space H which
is orthogonal to all elements of the system {uk} is necessary and sufficient for the
completeness of the system {uk} in H. �



Foundations of the linear operator theory 45

2.7 Inverse operators
Generally speaking, the whole theory of operators is developed for “solving”

some equations (and for studying their various properties) which in the operator lan-
guage can be written in the form

Ax = y, x ∈ D(A), (2.25)

where A : X → Y is an operator, y is a given element from Y , and x is an unknown
desired element of the space X . Writing equations in the operator form (2.25) allows
one to detract from specific and partial difficulties inherent to each particular problem
by focussing on more general patterns.

If we somehow try to solve equation (2.25), then we get some mapping under
which some particular element x of the space X is put in correspondence to the
element y of the space Y . This mapping generates some operator called an inverse
operator.

More precisely, if to two different elements from D(A) the operator A : X → Y
puts in correspondence different elements from R(A), then A has an inverse operator,
which to the elements from R(A) puts in correspondence the elements from D(A).
The inverse operator is denoted by the symbol A−1.

Thus, the solution of Eq. (2.25) is written in the form x = A−1y, and herewith
D(A−1) = R(A) and R(A−1) = D(A).

The operator A having an inverse operator defined on R(A) is called invertible.
If this operator A is linear, then the inverse operator A−1 is also linear.
Thus, the question of the solvability of Eq. (2.25) reduces to finding conditions

under which the inverse operator A−1 exists, and the question of properties of solu-
tions to Eq. (2.25) reduces to studying the properties of the operators A and A−1.

Since A is an operator, to each element x ∈D(A) there corresponds some specific
element y ∈ R(A). For the inverse correspondence Y → X to be also an operator, it is
necessary that to each element y ∈ R(A) there corresponds the specific element x ∈
R(A). Thus, the existence of an inverse operator effectively means that the operator A
defines a one-to-one correspondence between D(A) and R(A). Therefore the inverse
operator is denoted by A−1, since AA−1 = I and A−1A = I, where I is the identity
operator acting in the first case from R(A) to R(A), and in the second case from D(A)
to D(A). Recall that the concept of multiplication of the operators has been discussed
earlier, at the beginning of Section 2.4.

Example 2.21 Consider the operator of “taking a trace” P : C[a,b] → C[a,b],
introduced in Example 2.8, acting according to the formula P f (x) = f (x0), where
x0 ∈ [a,b] is some fixed point. Here the domain of the operator coincides with the
whole space: D(P) =C[a,b], and the image coincides with the whole complex plane:
R(P) = C. It is easily seen that the operator P does not have an inverse operator,
since there is no one-to-one correspondence between D(P) and R(P). Indeed, to two
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various functions f1(x) 6= f2(x) there corresponds a single number in the image of
the operator P, as soon as these functions coincide at one point: f1(x0) = f2(x0). �

The question of when A defines a one-to-one correspondence between D(A) and
R(A) is answered by the following theorem.

Let us consider a linear space

ker(A) = {x ∈ D(A) : Ax = 0},

called a set of zeros or an (operator) kernel of the operator A. The kernel of the
operator is always nonempty, since 0 ∈ ker(A).

Theorem 2.22 The operator A is one-to-one from D(A) to R(A) if and only if
ker(A) = {0}, that is, if the kernel of the operator consists of only the element 0.

Corollary 2.23 An inverse operator A−1 defined on R(A) exists if and only if
ker(A) = {0}.

Let us return again to Example 2.21. It is easy to see that the kernel of the operator
P contains all functions vanishing at the point x0:

kerP = { f ∈C[a,b] : f (x0) = 0}.

Since this set consists of more than the single element 0, then by Theorem 2.22 the
inverse operator to P does not exist. �

As is known from the theory of linear equations (for example, linear differential
equations or integral equations), the proof of the uniqueness of solution is equivalent
to the proof of the absence of nonzero solutions of the corresponding homogeneous
equation. Thus, from the point of view of the operator equation (2.25), the existence
of the inverse operator A−1, defined on R(A), is equivalent to the uniqueness of the
equation’s solution, if it exists.

The question of the existence of a bounded inverse operator is answered by the
following:

Theorem 2.24 The operator A−1 exists and is bounded on R(A) if and only if for
some constant m > 0 and for all x ∈ D(A) the inequality

‖Ax‖ ≥ m‖x‖ (2.26)

holds.

Inequality (2.26) for Eq. (2.25) can be rewritten in the form

‖x‖ ≤C‖y‖,
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where the constant C does not depend on x and y. The inequalities of such type are
usually called a priori estimates. A priori is Latin for “from before” and refers to
the fact that the estimate for the solution is derived before the solution is known to
exist.

In solving Eq. (2.25), the “good” case is when the equation’s solution exists for
all y ∈ Y . An operator A : X → Y is called everywhere solvable (see also Example
2.21), if R(A) =Y . In the case when R(A) 6=Y , but the image R(A) of the operator A
is closed, the operator is called normally solvable (see also Example 2.37).

The operator A : X → Y is called well-posedly solvable, if it is invertible and
A−1 is bounded (see the first part of Example 2.27). If the operator is well-
posedly solvable, then for all y1,y2 ∈ R(A) there exist corresponding unique solu-
tions x1 = A−1y1, x2 = A−1y2 of Eq. (2.25) and (by the boundedness and linearity
of A−1) they satisfy the inequality ‖x1− x2‖ ≤ ‖A−1‖‖y1− y2‖. This means that a
slight change in the right-hand side y leads to a slight change in the solution x. In this
case one also says that the solution continuously depends on the right-hand side of
the equation.

The problem expressed by the operator equation (2.25) is called well-posed, if
its solution exists for any right-hand side y ∈Y , is unique, and continuously depends
on the right-hand side. Correspondingly, we can introduce a similar concept for the
operators. The operator A : X → Y is called well-posed, if the inverse operator A−1

exists, is defined on the whole space Y , and is bounded.
By using the earlier introduced terms we can say that the operator is well-posed,

if it is well-posedly and anywhere solvable. The well-posed operators are also called
continuously invertible. Taking into account this terminology, we have the following
consequence of Theorem 2.24:

Theorem 2.25 The operator A is continuously invertible (i.e. is well-posed) if and
only if R(A) = Y , and for some constant m > 0 and ∀x ∈ D(A) the inequality (2.26)
holds true:

‖Ax‖ ≥ m‖x‖.

Let us make up the table of correspondence for the terms of invertibility of the oper-
ator and the solvability of Eq. (2.25):

The solution of Eq. (2.25) is unique ⇔ The inverse operator A−1 exists, that is,
the operator A is invertible

The solution of Eq. (2.25) exists for
any right-hand side y ∈ Y

⇔ The image of the operator coincides
with the entire space: R(A) = Y , that is,
the operator A is everywhere solvable.
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The solution of Eq. (2.25) continu-
ously depends on the right-hand side
y ∈ Y

⇔ The operator A−1 is bounded on R(A).

The solution of Eq. (2.25) exists for
any right-hand side y ∈ Y , uniquely
and continuously depends on the
right-hand side y ∈ Y

⇔ The operator A is well-posed, that is, the
inverse operator A−1 exists, is defined
on the whole space Y , and is bounded.
It is also said that the operator A
is boundedly invertible on the whole
space Y .

Thus, to prove that the initial problem expressed in the form of the operator equa-
tion (2.25) is well-posed, it is necessary and sufficient to prove that the operator A
corresponding to it is well-posed, that is, the inverse operator A−1 exists, is defined
on the whole space Y , and is bounded.

Theorems 2.22, 2.24 and 2.25 formulated above hold for arbitrary linear oper-
ators. In the case when the operator A is defined on the whole space (D(A) = X)
and is bounded (‖A‖<+∞ ), a significant result in the well-posedness theory is the
Banach theorem on the inverse operator.

Theorem 2.26 (S. Banach) If a linear bounded operator A : X→Y maps the Banach
space X onto the Banach space Y and is one-to-one, then A has the inverse operator
A−1, and the operator A−1 is bounded.

In other words, the Banach theorem means that if one has the existence and
uniqueness of the solution to the equation

Ax = y

for any right-hand side y ∈ Y , then it implies also the continuous dependence of the
solution x = A−1y on the right-hand side y. We note that this fact is valid only for
the case of linear operators. Thus, the linear operator is well-posed⇔ the operator is
everywhere solvable and invertible.

2.8 Examples of invertible operators
We now consider some examples illustrating introduced terms and theorems.

Example 2.27 The inverse operator to the operator of multiplication by a function,
considered in Examples 2.6 and 2.7 can be constructed rather simply. Let the action
of an operator be defined by the formula
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T f (x) = G(x) · f (x),

where G = G(x) is a continuous function defined on the closed interval [a,b]. Con-
sider the question of the invertibility of this operator in the space C[a,b].

From the results of Example 2.6 it follows that the operator T : C[a,b]→C[a,b]
is defined on the whole space C[a,b] and is bounded. The invertibility of the operator
T is equivalent to the fact that the solution of the equation

G(x) · f (x) = F(x), a≤ x≤ b, (2.27)

exists for any function F ∈C[a,b], is unique, and depends continuously on F . For-
mally, the solution of Eq. (2.27) is the function

f (x) =
F(x)
G(x)

, a≤ x≤ b, (2.28)

and this solution is unique. It would seem that the solution is unique and exists for
any right-hand part F(x). However, we have to remember that the obtained solution
has to belong to the considered space. It is easy to see that the solution (2.28) of Eq.
(2.27) will belong to the space of continuous functions C[a,b] for any right-hand side
F ∈ C[a,b] if and only if

|G(x)|> 0, ∀x ∈ [a,b]. (2.29)

Now consider the same question but from the point of view of the operators.
According to the corollary from Theorem 2.22 for the existence of the inverse oper-
ator T−1, it is necessary and sufficient to show that the kernel of the operator T has
no nonzero elements. The kernel of the operator is the functions f = f (x) being the
solutions of the equation T f = 0, that is, the solution of the equation

G(x) · f (x) = 0, a≤ x≤ b. (2.30)

It is clear that Eq. (2.30) has the nonzero solution in the space of the continu-
ous functions C[a,b] if and only if there is an interval [a1,b1]⊆ [a,b] of the nonzero
length b1− a1 > 0 such that G(x) ≡ 0 for all a1 ≤ x ≤ b1. Then the solutions of
Eq. (2.30) will be all the continuous functions which are equal to zero outside of the
interval [a1,b1], and in this case the inverse operator T−1 does not exist. If such inter-
val [a1,b1] does not exist, then Eq. (2.30) has only zero solution and, consequently,
the kernel of the operator T consists only of the element 0. In this case the inverse
operator T−1 exists. In comparison with the solution of Eq. (2.27), the existence of
such interval [a1,b1] means that in this case the formal expression of the solution
by formula (2.28) is ill-posed for x ∈ [a1,b1], since, as one says, “one cannot divide
by zero”.
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Suppose now that such interval [a1,b1] does not exist. Then the operator T−1

exists, but is defined only on the range R(T ) of the operator T , so that its domain
does not necessarily coincide with the whole space C[a,b].

For example, for G(x) = (x−a)2 the image of the operator T contains only func-
tions vanishing at the point x = a and, consequently, cannot coincide with the whole
space C[a,b]. In this case condition (2.29) does not hold and it is easy to show that
the operator T−1 defined on R(T ) is not bounded. By the terminology introduced
earlier the operator T in such case is not well-posedly solvable.

If condition (2.29) holds, then there exists a number m > 0 such that

|G(x)| ≥ m ∀x ∈ [a,b].

Therefore, |T f (x)|= |G(x)|| f (x)| ≥ m| f (x)| ∀x ∈ [a,b]. By passing to maximum in
this inequality, we obtain

‖T f‖ ≥ m‖ f‖, m > 0, ∀ f ∈C[a,b].

This inequality is inequality (2.26) from Theorems 2.22 and 2.24. Consequently,
the inverse operator T−1 exists, is defined on the whole space C[a,b] and is bounded,
that is, the operator T is well-posed. �

Example 2.28 In the space of continuous functions C[a,b], consider the operator
acting by the formula

L1u(x) =
d
dx

u(x), a < x < b,

defined on the domain D(L1) =C1[a,b]⊂C[a,b]. We have considered this operator
in the second part of Example 2.9. Let us show that in this case the operator L1 is not
well-posed, since it does not have an inverse operator.

Let us describe the kernel of the operator L1. Its elements are all functions
u ∈ D(L1) = C1[a,b], for which L1u(x) = 0, that is, all solutions of the differential
equation u′(x) = 0, a < x < b. From the theory of ordinary differential equations it
is known that all continuously differentiable solutions of this equation have the form
u(x) =Const, a≤ x≤ b. Consequently, kerL1 = {u(x) : u(x) =Const ∀x ∈ [a,b]}. It
is clear that the kernel of the operator L1 consists not only of a zero element and,
consequently, according to the corollary from Theorem 2.22 the inverse operator to
the operator L1 does not exist.

The problem corresponding to finding an inverse operator in this case is the prob-
lem of finding a continuously differentiable solution to the differential equation

d
dx

u(x) = f (x). (2.31)

From the course on Ordinary Differential Equations it is known that all continu-
ously differentiable solutions of these equations have the form

u(x) =
∫ x

a
f (t)dt +Const, a≤ x≤ b.
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Consequently, the solution of Eq. (2.31) is not unique. According to the correspon-
dence table of the terms of the operator invertibility and the equation solvability this
means that the operator L1 does not have the inverse one. However from the previous
discussions it follows that the solution exists for any right-hand side f ∈C[a,b], that
is, R(L1) =C[a,b]. By the terminology introduced earlier this means that the operator
L1 is everywhere solvable.

Once more we pay attention to the fact that the operator can be everywhere solv-
able and does not have the inverse one. �

The considered example shows that the operator does not have the inverse one,
since the solution of the corresponding problem is not unique. In the course of dif-
ferential equations, additional conditions, for example boundary conditions, are set
for defining a unique solution of the differential equation. In the following example
we consider an operator corresponding to this problem.

Example 2.29 In the space of continuous functions C[a,b], consider the operator
acting by the formula

Lu(x) =
d
dx

u(x), a < x < b,

given on the domain D(L) = {u ∈C1[a,b] : u(a) = 0}.
Recall that in order for the operator L to be linear, we cannot consider boundary

conditions of the kind u(a) = u0, u0 6= 0 (see Example 2.1). This operator, in contrast
to the operator considered in Example 2.28, has a “smaller” domain.

Let us describe the kernel of the operator L. Its elements are all functions u ∈
D(L), for which Lu(x) = 0, that is, all continuously differentiable solutions of the
differential equation u′(x) = 0, a < x < b, for which u(a) = 0. All solutions of this
differential equation have the form u(x) = Const, a ≤ x ≤ b. Since u(a) = 0, then,
consequently, u(x) ≡ 0 and kerL = {0}. According to the corollary from Theorem
2.22, it means that the inverse operator to the operator L exists.

The problem corresponding to finding the inverse operator in this case is a prob-
lem of finding a continuously differentiable solution of the differential equation
u′(x) = f (x) satisfying the boundary condition u(a) = 0. Since all continuously dif-
ferentiable solutions of this equation have the form

u(x) =
∫ x

a
f (t)dt +Const, a≤ x≤ b, (2.32)

then, satisfying equality (2.32) with the boundary condition u(a) = 0, we find that
Const = 0. Consequently, the unique solution of the problem has the form

u(x) =
∫ x

a
f (t)dt, a≤ x≤ b, (2.33)

for all f ∈ C[a,b]. Formula (2.33) actually gives the representation of the inverse
operator as

L−1 f (x) =
∫ x

a
f (t)dt, ∀ f ∈C[a,b]. (2.34)
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It is clear that the operator L−1 is defined on the whole space C[a,b]. From (2.34) for
all f ∈C[a,b] we get

‖L−1 f‖= max
x∈[a,b]

|L−1 f (x)|= max
x∈[a,b]

∣∣∣∣∫ x

a
f (t)dt

∣∣∣∣≤ max
x∈[a,b]

∫ x

a
| f (t)|dt

≤ (b−a) max
x∈[a,b]

| f (t)|= (b−a)‖ f‖.

That is, the operator L−1 is bounded and ‖L−1‖ ≤ b−a .
Thus, we have shown that the inverse operator L−1 exists, is defined on the whole

space C[a,b] and is bounded, that is, the operator L is well-posed. �

Example 2.30 In the linear space of vectors Rn, consider a linear operator A : Rn→
Rn acting by the formula

A(x) = (ai j)x,

where (ai j) is a matrix of the size n× n. If the vector x has “coordinate” represen-
tation in the form of a column x = (x1,x2, . . . ,xn), then the image y = Ax also has
“coordinate” representation y = (y1,y2, . . . ,yn), and

yi =
n

∑
j=1

ai jx j, ∀i = 1, . . . ,n. (2.35)

From the theory of system of linear equations it is known that system (2.35) has
a unique solution if and only if the determinant of this system det(ai j) 6= 0. In this
case the solution of system (2.35) is given by the matrix

x = (ai j)
−1y

which is inverse to (ai j). In this case the inverse operator A−1 exists and is defined on
the whole space Rn. Since in the finite-dimensional space all operators are bounded
(see Example 2.5), the well-posedness of the operator A for det(ai j) 6= 0 follows. �

Example 2.31 In the space of continuous functions C[0,1], consider the integral
operator acting by the formula

Tu(x) = u(x)−
∫ 1

0
xt u(t)dt, 0 < x < 1.

The operator T is the sum of the identity operator I, Iu = u, ∀u ∈ C[0,1], and the
integral operator S is defined by

Su(x) =−
∫ 1

0
xt u(t)dt, ∀u ∈C[0,1].

Since the kernel of the integral operator S given by the formula k(x, t) = xt sat-
isfies the condition k ∈C([0,1]× [0,1]), then, as is shown in the first part of Exam-
ple 2.11, the operator S is bounded on the space C[0,1]. Consequently, the operator
T = I +S is also defined on the whole space C[0,1] and is bounded.
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The problem corresponding to finding an inverse operator T−1 in this case is the
problem of finding a continuous solution of the integral equation

u(x)−
∫ 1

0
xt u(t)dt = f (x), 0 < x < 1. (2.36)

Analysing Eq. (2.36), it is easy to see that all its solutions have the form

u(x) = f (x)+ cx, where c =
∫ 1

0
tu(t)dt. (2.37)

Multiplying this equality by x and integrating the obtained result over the interval
[0,1], we find

c =
∫ 1

0
xu(x)dx =

∫ 1

0
x f (x)dx+ c

∫ 1

0
x2dx =

∫ 1

0
x f (x)dx+

c
3
⇒ c =

3
2

∫ 1

0
t f (t)dt.

Consequently, the solution of Eq. (2.36) exists for any right-hand side f ∈C[0,1], is
unique, and is represented in the form

u(x) = f (x)+
3
2

∫ 1

0
xt f (t)dt.

In fact this formula proves the existence of the inverse operator and gives its repre-
sentation in an explicit form as

T−1 f (x) = f (x)+
3
2

∫ 1

0
xt f (t)dt.

Paying attention to the fact that T−1 = I+ 3
2 S , from the boundedness of the operator S

it follows that the inverse operator T−1 is defined on the whole space and is bounded.
Consequently, the operator T is well-posed. �

2.9 The contraction mapping principle
In all the considered Examples 2.27 - 2.31 the basis of the well-posedness proof

of the initial operator is the explicit construction of an inverse operator. There, for
proving the well-posedness of the problem we have not used any operator methods,
but made the conclusion on the well-posedness of the operator based on the well-
posedness of the corresponding problem. The following theorem allows us to make
the conclusion on the well-posedness of the operator without having an explicit solu-
tion of the corresponding problem.
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Theorem 2.32 (The contraction mapping principle) Let X be a Banach space and let
a bounded operator A : X→X satisfy ‖A‖< 1. Then the operator I−A is well-posed,
that is, is boundedly invertible on the whole space X, and the estimate

‖(I−A)−1‖ ≤ 1
1−‖A‖

is valid.

This theorem is also called the Banach Fixed Point Theorem.
A bounded operator having the property ‖A‖ < 1 is also called a contraction,

however this terminology is often also used in the theory of nonlinear operators.
The following example demonstrates one of the simplest applications of Theorem

2.32.

Example 2.33 Let us return to the integral operator case considered in Example
2.11. Let the action of an operator be given by formula (2.19):

K f (x) =
∫ b

a
k(x, t) f (t)dt,

where k = k(x, t) is a function defined on the closed rectangle [a,b]× [a,b]. We con-
sider the question of the well-posedness of the operator I−λK in spaces C[a,b] and
L2(a,b).

1) Case of the space C[a,b]. Let the kernel of the operator K be a continuous func-
tion k = k(x, t) ∈C([a,b]× [a,b]). Then, as is shown in Example 2.11, the operator
K if defined on the whole space C[a,b], is bounded on it, and

‖K‖ ≤M(b−a).

Here, as in Example 2.11, we used the notation M = max
x,t∈[a,b]

|k(x, t)|.

From this, Theorem 2.32 implies the well-posedness of the operator I − λK :
C[a,b]→ C[a,b] for all λ ∈ C such that

|λ |< 1
M(b−a)

. (2.38)

Indeed, if condition (2.38) holds, then the norm of the operator λK is less than one:

‖λK‖= |λ | · ‖K‖ ≤ |λ | ·M · (b−a)< 1,

which allows us to use Theorem 2.32.
From the well-posedness of the operator we can make the conclusion on the

unique solvability of the corresponding problem:

Conclusion 2.34 Under condition (2.38), the integral equation

f (x)−λ

∫ b

a
k(x, t) f (t)dt = F(x), a≤ x≤ b, (2.39)

with the continuous kernel k = k(x, t) ∈ C([a,b]× [a,b]) has a unique solution for
any right-hand side F ∈C[a,b]. This solution belongs to the space C[a,b] and con-
tinuously depends on the right-hand side of Eq. (2.39).
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2) Case of the space L2(a,b). Let now the kernel k(x, t) of the integral operator
K be a Lebesgue square integrable function, k = k(x, t) ∈ L2 ((a,b)× (a,b)). Then,
as shown in Example 2.11, the operator K is defined on the whole space L2(a,b),

is bounded on it, and ‖K‖ ≤ k0, where k0 =
(∫ b

a
∫ b

a |k(x, t)|2dtdx
)1/2

. As in the first
part of this example, by using Theorem 2.32, we conclude that the operator I−λK :
L2(a,b)→ L2(a,b) is well-posed for all λ ∈ C satisfying the inequality

|λ |< 1
k0
. (2.40)

From the well-posedness of the operator we can conclude the unique solvability
of the corresponding problem:

Conclusion 2.35 Under condition (2.40), the integral equation (2.39) with the kernel
k∈ L2 ((a,b)× (a,b)) has a unique solution for any right-hand side F ∈ L2(a,b). This
solution belongs to the space L2(a,b) and continuously depends on the right-hand
side of (2.39).

The above example is interesting in the sense that one can conclude the exis-
tence and uniqueness of the problem’s solution (in this case of the integral equation)
without resorting to specific calculations of solutions, only on the basis of the gen-
eral theorems of functional analysis. From this point of view, the specific form of
the integral kernel of the operator has no influence for conclusions; the main feature
is only its “size” (that is, the norm of the integral kernel k = k(x, t) in the spaces
C ([a,b]× [a,b]) or L2 ((a,b)× (a,b)), respectively). And if such norm of the inte-
gral kernel is finite, then the well-posedness of the operator I− λK can be always
ensured by choosing the number λ small enough.

Let us give now an example illustrating the terminology introduced earlier of the
normally solvable operator (see definitions after Theorem 2.24).

Example 2.36 In the space of square summable functions, consider the operator L :
L2(a,b)→ L2(a,b) defined by the differential expression

Lu(x) =
d
dx

u(x), a < x < b,

on the domain D(L) =
{

u ∈ L2
1(a,b) : u(a) = u(b) = 0

}
.

We have considered the similar operator in the Lebesgue spaces but with a larger
domain in Example 2.10. In this case, as in Example 2.10, it is easy to see that the
operator L is linear, is defined on all functions from its domain, and is bounded as
the operator from the space L2(a,b) into L2(a,b).

The problem corresponding to finding an inverse operator L−1 in this case is the
problem of finding a solution u ∈ L2

1(a,b) to the differential equation

u′(x) = f (x), a < x < b, f ∈ L2(a,b), (2.41)
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satisfying the boundary conditions

u(a) = 0 and u(b) = 0. (2.42)

A general solution of (2.41) in the class u ∈ L2
1(a,b) is represented in the form

u(x) =
∫ x

a
f (t)dt +C, C =Const, a≤ x≤ b.

This together with the first of conditions (2.42) implies C = 0. Consequently, any
solution of Eq. (2.41) in the class u ∈ L2

1(a,b) satisfying the first of the boundary
conditions (2.42) has the form

u(x) =
∫ x

a
f (t)dt, a≤ x≤ b. (2.43)

From this it is readily seen that in order for this solution to satisfy also the second
of the boundary conditions (2.42), it is necessary and sufficient that the condition∫ b

a
f (x)dx = 0 (2.44)

holds.
Thus, the range R(L) of the operator L coincides with the linear space of func-

tions from the space L2(a,b) satisfying condition (2.44). As it was shown earlier in
Example 1.19, this space is the subspace of the space L2(a,b), and, consequently,
is a closed set. That is, the range R(L) of the operator L is closed and therefore the
operator is normally solvable.

Thus, it is clear that the operator L is not well-posed since it is not everywhere
solvable, although the inverse operator exists and is bounded on R(L). �

2.10 Normally solvable operators
Recall that the operator A : X →Y is called everywhere solvable (see also Exam-

ple 2.21), if R(A) =Y . In the case when R(A) 6=Y , but the image R(A) of the operator
A is closed, the operator is called normally solvable (see also Example 2.37).

The normal solvability of an operator is a necessary condition for its well-
posedness. We should pay attention to the normal solvability when introducing an
operator corresponding to the problem. Conditionally saying, when introducing the
operator corresponding to the problem, its domain must be defined (given) in such a
correct way that the operator is normally solvable. That is, the image of the operator
must be a closed set.

Consider the following examples of operators with “unnatural” domains.
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Example 2.37 In the space of continuous functions C[a,b], consider the operator
defined by

Lu(x) =
d
dx

u(x), a < x < b,

given on the domain D(L) = {u ∈ C2[a,b] : u(a) = 0}. This operator differs from
the one considered in Example 2.29 by the property that the domain in the previous
example consisted of the continuously differentiable functions, but in this example
we require that any function from D(L) is twice continuously differentiable.

As in Example 2.29 it is easy to show that the kernel of the operator consists only
of the zero element 0, that is, kerL = {0}. It means that by the corollary of Theorem
2.22 the inverse operator to the operator L exists, that is, the operator L is invertible.
Its inverse operator L−1 is defined on R(L) and is expressed by the formula

u(x) = L−1 f (x) =
∫ x

a
f (t)dt, a≤ x≤ b, ∀ f ∈ R(L).

Further, for all f ∈ R(L) we get

‖L−1 f‖= max
x∈[a,b]

|L−1 f (x)|= max
x∈[a,b]

∣∣∣∣∫ x

a
f (t)dt

∣∣∣∣≤ max
x∈[a,b]

∫ x

a
| f (t)|dt

≤ (b−a) max
x∈[a,b]

| f (t)|= (b−a)‖ f‖,

that is, the inverse operator L−1 is bounded on R(L). Consequently, the operator L is
well-posedly solvable.

However, in spite of the fact that the operator L is invertible and well-posedly
solvable, it is not well-posed, since its image R(L) does not coincide with the whole
considered space C[a,b], since it contains only continuously differentiable functions
(the image of twice continuously differentiable functions after one differentiation).
That is, the operator L is not everywhere solvable.

Analysing the obtained result, we can come to the conclusion that the operator L
has, so to speak, “the unnatural domain”, which causes problems with the solvability
everywhere. As Example 2.29 shows, the most “natural” domain of this operator is

D(L) =
{

u ∈C1[a,b] : u(a) = 0
}
, (2.45)

that is, the domain consisting of functions of C1[a,b], but not of C2[a,b]. �

The following example shows that if we consider the same operator with the “nat-
ural” domain but already in another space, then it can again lead to the ill-posedness
of the operator.

Example 2.38 In the space of square integrable functions consider the operator L :
L2(a,b)→ L2(a,b) with the domain (2.45), given by

Lu(x) =
d
dx

u(x), a < x < b.
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As in the previous case it is easy to show that the kernel of the operator consists
only of the zero element 0, that is kerL = {0}. It means that by the corollary of
Theorem 2.22 an inverse operator to the operator L exists, that is, the operator L is
invertible. Its inverse operator L−1 is defined on R(L) and is expressed by the formula

u(x) = L−1 f (x) =
∫ x

a
f (t)dt, a≤ x≤ b, ∀ f ∈ R(L). (2.46)

Further, for all f ∈ R(L), as in Example 2.11, by using the integral Hölder inequality
we get

‖L−1 f‖2 =
∫ b

a

∣∣∣∣∫ x

a
f (t)dt

∣∣∣∣2 dx≤
∫ b

a

(∫ x

a
| f (t)|dt

)2

dx =
∣∣∣ f (t)≡ f (t) ·1

∣∣∣
≤
∫ b

a

[(∫ x

a
| f (t)|2dt

)1/2(∫ x

a
12dt

)1/2
]2

dx

≤
∫ b

a

[(∫ b

a
| f (t)|2dt

)1/2

(x−a)1/2

]2

dx =
(b−a)2

2

∫ b

a
| f (t)|2dt.

Therefore
‖L−1 f‖ ≤ b−a√

2
‖ f‖, ∀ f ∈ R(L), (2.47)

that is, the inverse operator L−1 is bounded on R(L). Consequently, the operator L is
well-posedly solvable.

Let us step back here a little from the main topic and show that inequality
(2.47) can be also obtained from more general facts. Earlier, in Example 2.11,
we have considered the integral operator (2.19) with the kernel of general kind
k = k(x, t) ∈ L2 ((a,b)× (a,b)). Assume that k(x, t) = θ(x− t), where θ(x) is the
Heaviside step function given by

θ(x) =
{

1, x≥ 0
0, x < 0.

It is easy to see that this k = k(x, t) = θ(x− t) ∈ L2([a,b]× [a,b]) and

k0 ≡
(∫ b

a

∫ b

a
|k(x, t)|2dtdx

) 1
2

≡
(∫ b

a

∫ b

a
|θ(x− t)|2dtdx

) 1
2

=

=

(∫ b

a

(∫ x

a
dt
)

dx
)1/2

=
b−a√

2
.

(2.48)

Therefore the operator given by formula (2.46) is a particular case of the gen-
eral integral equation of the type (2.19), and its boundedness in the space L2(a,b),
and also inequality (2.47), are consequences of the results of Example 2.11 and of
equality (2.48).
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However, in spite of the fact that the operator L is invertible and well-posedly
solvable, it is not well-posed, since its image R(L) does not coincide with the whole
considered space L2(a,b), since it contains only continuous functions (the image of
continuously differentiable functions constituting the domain of the operator, under
operation of one differentiation). That is, the operator L is not everywhere solvable.
It is caused, as in the previous example, by the fact that the operator L has an “unnat-
ural” domain. �

Let us compare now the results obtained in Example 2.36 with the results of
Examples 2.37 and 2.38. In all three cases the considered operators are not well-
posed. However, in the first case (Example 2.36) the image R(L) of the operator
L is closed and forms a closed subspace of the considered space. In the other two
cases (Examples 2.37 and 2.38) the image R(L) of the operator L is not closed
(the reader can easily see it) and constitutes a linear subspace which is dense in
the considered space. That is, one can say, in Example 2.36 the image R(L) of the
operator L is essentially “narrower” than the entire considered space, and in the last
two examples the image R(L) of the operator L “almost coincides” with the whole
space.

It makes one think that in Examples 2.37 and 2.38 the image of the operator
should be “slightly” extended so that it will coincide with the whole considered
space. This can be done only by “slightly” increasing the domain of the operator. For
example, “to extend” the domain of Example 2.37 to the domain of the form (2.45),
would lead (see Example 2.29) to the well-posedness of the considered operator.

Thus we come to the necessity of some (“natural”) extension of the domain of the
operator. Such operation is analogous to the closure operation for a set in the linear
normed space and, by analogy, is called a closure operation of the operator.

2.11 Restrictions and extensions of linear operators
Let us introduce new definitions which we will widely use in what follows.
If the domain D(A) of a linear operator A is wider than the domain D(B) of a

linear operator B (that is, D(B) ⊂ D(A) ) and on D(B) the actions of the operators
coincide (that is, Ax = Bx, ∀x ∈ D(B)), then the operator A is called an extension of
the operator B and we denote it by B⊂A. In turn, the operator B is called a restriction
of the operator A. In analogy with the embedding of sets, one says that the operator
B is embedded into the operator A.

Example 2.39 In the space of continuous functions C[0,1], consider the linear oper-
ator T0 : C[0,1]→C[0,1] on the domain

D(T0) = { f ∈C1[0,1] : f (0) = 0, f (1) = 0},
given by

T0 f (x) = a(x) f (x), ∀ f ∈ D(T0), (2.49)
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where a ∈ C[0,1] is some given function. It is easy to see that the operator T0 is
linear. Also note (though it is not important for further discussions) that the operator
is bounded.

To construct an extension of the operator, it is necessary to set an operator with a
wider domain, in a way that its action on D(T0) coincides with the action of T0, that
is, is expressed by formula (2.49). The set D(T0) can be extended by choosing a class
of functions wider than C1[0,1] (but, staying within the space C[0,1]); we can extend
this set by means of eliminating one (or all) of the boundary conditions.

The following operators are the extensions of the operator T0:

• T1 f (x) = a(x) f (x), D(T1) = { f ∈C[0,1] : f (0) = 0, f (1) = 0};

• T2 f (x) = a(x) f (x), D(T2) = { f ∈C1[0,1] : f (0) = 0};

• T3 f (x) = a(x) f (x), D(T3) =C[0,1];

• T4 f (x) = a(x) f (x), D(T4) = { f ∈C1[0,1] : α f (0)+β f (1) = 0}, α,β ∈ C;

• T5 f (x) = a(x) f (x)+b(x) f (1), D(T5) = { f ∈C[0,1] : f (0) = 0}, b ∈C[0,1];

• T6 f (x) = a(x) f (x)+b(x) f (1)+ c(x) f (0), D(T5) =C[0,1], b,c ∈C[0,1].

All the indicated operators are the extensions of the initial operator T0, that is
T0 ⊂ Tk, k = 1, . . . ,6.

Let us dwell on each of these extensions in detail:
• T0 ⊂ T1, since the actions of the operators coincide, and the domain T1 has

become wider by means of the class extension (lowering of required smoothness) of
the functions from the domain;
• T0 ⊂ T2, since the actions of the operators coincide, and the domain T2 has

become wider due to eliminating one of the boundary conditions in the domain;
• T0 ⊂ T3, since the actions of the operators coincide, and the domain T3 has

become wider both due to the lowering of the smoothness requirements for the func-
tions from the domain, and due to eliminating both boundary conditions;
• The fourth example shows that the boundary conditions in the domain can be

not just eliminated but can be also modified. It is easy to see that D(T0)⊂D(T4) and,
since the actions of the operators coincide, we have T0 ⊂ T4;
• In the fifth example the domain of the operator T5 is wider than that of the

operator T0, but their actions are already given by different formulae. In spite of this,
since on all the functions f ∈ D(T0) the actions of the operators T5 and T0 coincide
(due to f (1) = 0), we have T0 ⊂ T5;
• T0 ⊂ T6 is justified similarly to the previous one;
• By similar discussions we show the embedding of the operators between each

other: T1 ⊂ T3, T2 ⊂ T3, T4 ⊂ T3, T1 ⊂ T5, T1 ⊂ T6, T5 ⊂ T6.
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However, it is not always the case that one can have the embedding relations
between two operators. So, for example, neither is the operator T1 the extension of
T2, nor is the operator T2 the extension of T1, although their actions coincide. �

The introduced example shows that an extension of an operator, although having
something in common with the original operator, is actually a fundamentally dif-
ferent operator, which can differ both by the domain and by its action. Therefore,
an extension of the operator can have fundamentally different properties (including
well-posedness properties, spectral properties, etc.) which differ significantly from
the properties of the original operator.

Remark 2.40 By Theorem 2.12 (see Section 2.5), any linear bounded operator A
given on the linear space D(A) which is dense in the linear space X , with values
in a Banach space Y , can be extended to the whole space X with preservation of
its norm value. That is, there exists a linear bounded operator Â ∈ L (X ,Y ) such
that Âx = Ax ∀x ∈ D(A) and ‖Â‖= ‖A‖. With the newly introduced definitions, the
operator Â is an extension of the operator A. �

2.12 Closed operators
First of all we will need some definitions.
Let X and Y be Banach spaces with norms ‖ · ‖X and ‖ · ‖Y , respectively. Their

direct sum is defined as the Banach space (denoted by X ⊕Y , whose elements are
pairs z = (x;y), where x ∈ X ,y ∈ Y ), with operations

• addition: z1 + z2 = (x1 + x2;y1 + y2), where z1 = (x1;y1),z2 = (x2;y2);

• multiplication by a scalar: λ z = (λx;λy);

and the norm ‖z‖ := ‖x‖X +‖y‖Y .
The simplest example of the direct sum of two spaces is the finite-dimensional

space Rn+m = Rn⊕Rm, since in this space the operations of addition and multipli-
cation by a scalar are done “coordinate-wise”.

Another example is the space of polynomials of degree not larger than n, which
can be represented in the form of the direct sum

M0⊕M1⊕·· ·Mn−1⊕Mn,

where Mk is the space of homogeneous polynomials of degree k.
For the Banach spaces X and Y , let A : X → Y be a linear operator with the

domain D(A)⊂ X and the range R(A)⊂ Y . The collection of pairs

(x;Ax) ∈ Z = X⊕Y,
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where x runs along the whole domain is called the graph of the linear operator
A and is denoted by GA. Defining the graph of the operator in this way is in good
agreement with the usual definition of the graph of functions.

A linear operator A : X → Y is called closed, if its graph GA is a closed set in the
(normed) space X⊕Y . Recalling the definition of the closed set (see Section 1.1), we
see that the closedness of the operator A means:

if xk ∈ D(A) and (xk;Axk)→ (x;y) for k→ ∞, then x ∈ D(A) and Ax = y.

Since the convergence in X ⊕Y is given by the norm ‖z‖= ‖x‖X +‖y‖Y , the defini-
tion of closedness can be rewritten as:

for any sequence {xk}∞
k=1 ∈ D(A), the convergence of two sequences xk→ x and

Axk→ y implies that x ∈ D(A) and Ax = y.

Remark 2.41 Comparing the above definitions of the closedness and the definition of
continuity of an operator (see Section 2.3), we can make the following conclusion.
The difference between the closedness and the continuity is in the fact that if an
operator A is continuous, then the existence of the limit of the sequence {xk},(xk ∈
D(A)), necessarily implies the existence of the limit of the sequence {Axk}; if the
operator A is only closed, then from the convergence of the sequence

x1,x2,x3, ... (xk ∈ D(A)) (2.50)

the convergence of the sequence

Ax1,Ax2,Ax3, ... (2.51)

does not necessarily follow. The only thing is that two sequences of type (2.51) are
not allowed to converge to different limits, if the corresponding sequences (2.50)
converge to the same limit. �

An operator A is called the closure of the operator A, if its graph is the closure of
the graph of the operator A:

GA = GA.

Not all operators can have the closure. An operator having the closure is called
closeable or admitting the closure.

It would be natural to construct the closure of an operator by means of the closure
of its graph. However, the graph closure of a linear operator does not always produce
the graph of some operator. The following two examples illustrate this fact.

Example 2.42 In the Hilbert space `2 of all infinite square summable sequences
{xk}∞

k=1 we consider the linear subspace M of all finite sequences: {xk} ∈M, if ∃N :
xk = 0 for all k > N.

Let us denote by A the linear operator with the domain D(A) = M, the action of
which on basis elements (sequences)

ek = (0,0, ...,0,1︸ ︷︷ ︸
k

,0, ...), ‖ek‖= 1,



Foundations of the linear operator theory 63

is given by the formula Aek = k · e1.
It is clear that this operator is defined on all sequences from D(A) = M and is

linear. The range of this operator is the one-dimensional space of vectors of the kind
(x1,0,0, ...). The operator A transfers any element x = (x1,x2, ...,xN ,0,0,0, ...) from
the domain into the element Ax = (x1 + 2x2 + ...+NxN ,0,0, ...).

It is easy to see that the graph GA of the operator A contains points of the kind( 1
k ek;e1

)
for all k. Consequently, firstly, the graph GA of the operator A is not a closed

set and therefore the operator A is not closed.
Secondly, letting k→∞, we see that the point (0;e1) belongs to the graph closure

of the operator A: (0;e1) ∈ GA. Therefore, GA is not the graph of any operator, since
under linear mappings the zero element must be mapped into zero. It means that the
operator A does not admit a closure. �

Example 2.43 In the Hilbert space L2(0,1), consider the linear operator B with the
domain D(B) =C[0,1], defined by

B f (x) = x f (0), ∀ f ∈ D(B).

It is clear that this operator is defined for all functions from D(B) = C[0,1] and
is linear. The range of this operator is the one-dimensional space of functions of the
type ax, where a = const.

Let us show that the operator B is not closed and does not admit a closure. To do
this we construct a sequence of functions

fn(x) =
{

1−nx, for 0≤ x≤ 1/n,
0, for 1/n≤ x≤ 1.

It is clear that the function fn is continuous on the interval [0,1] and, consequently,
belongs to the domain of the operator B. Here, fn(0) = 1 and

‖ fn‖=
(∫ 1

0
| fn(x)|2dx

) 1
2

=

(∫ 1
n

0
|1−nx|2dx

) 1
2

=
1√
3n
→ 0, n→ ∞.

Consequently, the sequence of the functions fn converges to zero in the space
L2(0,1): fn→ 0, n→∞. However the sequence of images B fn(x) = x fn(0)≡ x does
not converge to zero as n→ ∞.

We choose the second sequence of functions gn ∈ D(B) as the zero sequence:
gn(x) ≡ 0 for ∀n. Here, the sequence of images Bgn(x) = xgn(x) ≡ 0 converges to
zero at n→ ∞.

Thus, we have two sequences of functions: fn→ 0, gn→ 0 converging in L2(0,1)
to zero as n→∞, for which the sequences of their images converge to different limits:
B fn(x)→ x and Bgn(x)→ 0, as n→ ∞. Therefore, by Remark 2.41, the operator B
is not closed.

The graph GB of the operator B contains points (functions) of the kind
( fn(x);x), ∀n ∈ N. Since the sequence of the functions fn(x) converges to zero in
L2(0,1): fn→ 0, n→ ∞, the closure GB of the graph of the operator B contains the
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point (function) (0,x). Therefore, GB cannot be the graph of any operator, since the
linear operator would map the zero element to the zero one. It means that the operator
B does not admit a closure. �

Since GA ⊂ GA, then, taking into account the terminology of Section 2.5, the
closure A is the extension of the operator A. Thus, the closure A (if it exists) is the
minimal closed extension of the operator A.

The following theorems indicate wide classes of closed operators and their basic
properties.

Theorem 2.44 If D(A) = X and the operator A is bounded (that is, A ∈L (X ,Y )),
then A is closed.

Theorem 2.45 If A is closed and A−1 exists, then A−1 is closed.

Corollary 2.46 If A ∈L (X ,Y ) and A−1 exists, then A−1 is closed.

Corollary 2.47 If A−1 exists and A−1 ∈L (X ,Y ), then A is closed.

Corollary 2.48 If R(A) = R(A) and there exists a number m > 0 such that

‖Ax‖ ≥ m‖x‖

for all x ∈ D(A), then the operator A is closed.

Corollary 2.49 If A−1 exists and R(A) = R(A), then A is closed.

It should be kept in mind that if an operator A is closed, then D(A) will not
necessarily be a closed set and R(A) will not necessarily be a closed set. However,
the following fact holds.

Theorem 2.50 If A is bounded, then it is closed if and only if D(A) is closed.

Remark 2.51 From these theorems we can make a conclusion which is important
for the theory of well-posedness of operators. Recall that the operator A is well-
posed, if the inverse operator A−1 exists, is defined on the whole space Y , and is
bounded. Thus, the closedness of the operator is the necessary condition for its
well-posedness. Consequently, if an operator is not closed, then it is automatically
not well-posed. Usually in such cases everyone immediately proceeds to investigat-
ing the well-posedness of the operator’s closure, if it exists. Therefore, when con-
structing an operator corresponding to the problem which is investigated for well-
posedness, it is necessary to correctly set up the operator in such a way that it is
closed. �

The following theorem belongs to S. Banach and is the converse to Theorem
2.44.
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Theorem 2.52 (Banach’s closed graph theorem) If A is a closed linear operator from
a Banach space X to a Banach space Y and D(A) = X, then A is bounded.

Thus, from Theorems 2.4, 2.44 and 2.52 it follows that the concepts of bound-
edness, continuity and closedness for operators defined (given) on the whole space,
coincide. Consequently, all the examples introduced above of the bounded operators
defined on the whole space are examples of closed operators.

However, we should not think that any closed operator will be automatically
bounded. From Corollary 2.47 of Theorem 2.45 it follows that the examples intro-
duced earlier of linear (unbounded) well-posed operators are examples of unbounded
closed operators. Consequently, the closed operators are not necessarily bounded.

The previous discussions have provided the closedness of an unbounded operator
based on the fact that it has a bounded inverse operator defined on the whole space.
However, we should not think that any closed operator is well-posed. The following
examples illustrate this.

Example 2.53 Let us show that there exist unbounded closed operators, whose
inverse operators are also closed and unbounded.

In the Banach space C[0,1], consider the operator A with the domain

D(A) =
{

u ∈C[0,1] :
u(x)

x
∈C[0,1]

}
,

given by

Au(x) =
1− x

x
u(x).

This operator is linear, and all functions from its domain satisfy the inequality

|u(x)| ≤Cx

for some C.
Note that the introduced operator A is one of the variants of the multiplication

operator by a function: T f (x) = G(x) · f (x), considered earlier in Example 2.6. But
in this case the function G(x) is not bounded, and has an essential discontinuity (first-
order singularity) for x→ 0.

First we show that the operator A is not bounded. Take the following sequence of
continuous functions uk(x) =

(1+k)x
1+kx , k = 1,2, .... It is clear that uk ∈ D(A), since for

any fixed k the function uk(x)
x = 1+k

1+kx is continuous on [0,1]. We estimate the norms
of these functions as

‖uk‖= max
0≤x≤1

|uk(x)|= max
0≤x≤1

(1+ k)x
1+ kx

=
1+ k
1+ k

= 1.

Calculating the norm of the images of functions uk, we get

‖Auk‖= max
0≤x≤1

(1+ k)(1− x)
1+ kx

= (1+ k) max
0≤x≤1

(1− x)
1+ kx

= 1+ k.
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Consequently,

‖A‖= sup
u∈D(A),‖u‖=1

‖Au‖ ≥ sup
k∈N
‖Auk‖=+∞.

Therefore the operator A is not bounded.
Let us show now that A is closed. Let uk be an arbitrary converging sequence

from the domain of the operator such that Auk also converges. That is, in C[0,1], we
have

uk(x)→ u(x), Auk(x) =
1− x

x
uk(x)→ υ(x), k→ ∞.

Summing these sequences, we get that

1
x

uk(x)→ u(x)+υ(x), k→ ∞.

The convergence is meant with respect to the norm of the space C[0,1]. Therefore,
for any ε > 0 there exists a number k0 such that

∥∥ 1
x uk− [u+υ ]

∥∥ < ε for all k ≥ k0.
Consequently, we have

∣∣ 1
x uk(x)− [u(x)+υ(x)]

∣∣< ε , for all x ∈ [0,1] and k ≥ k0.
Hence we easily get that

|uk(x)− x[u(x)+υ(x)]|< εx≤ ε, ∀k ≥ k0.

That is, the sequence uk(x) converges to x[u(x)+υ(x)].
But uk→ u, therefore, u(x) = x[u(x)+υ(x)]. Thus we have υ(x) = 1−x

x u(x), that
is,

υ(x) = Au(x). (2.52)

Since the sequence Auk converges in the space C[0,1], we have υ ∈C[0,1]. There-
fore, u(x)

x ∈C[0,1], which means that u∈D(A). This fact together with (2.52), taking
into account the arbitrariness of the sequence uk, proves the closedness of the oper-
ator A by one of the equivalent criteria formulated after the definition of a closed
operator.

For the invertibility of A, since from equality 1−x
x u(x) = 0 it follows that u(x)≡ 0,

the kernel of the operator A consists only of the zero element 0. Therefore, an inverse
operator A−1 exists. It is easy to see that its action is given by the formula

A−1
υ(x) =

x
1− x

υ(x),

and its domain is

D(A−1) =

{
υ ∈C[0,1] :

υ(x)
1− x

∈C[0,1]
}
.

The operator A−1 has the same structure as A, with changing the places of the
points x = 0 and x = 1. Therefore, it can be proved in a similar way that the operator
A−1 is closed, but not bounded. �
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The considered example shows that there exist unbounded closed operators, for
which the inverse operators are also closed and unbounded. Let us now also show
that there exist closed operators which are not invertible, that is, do not have an
inverse operator.

Example 2.54 Let us return to the differentiation operator L1 :C[a,b]→C[a,b], con-
sidered in Examples 2.9 and 2.28. The domain of this operator is D(L1) = C1[a,b],
and its action is given by the formula

L1u(x) =
d
dx

u(x), a < x < b.

In the second part of Example 2.9 we have shown that the operator L1 is
unbounded, and in Example 2.28 we have proved that it does not have the inverse
operator. Let us show that inspite of this fact, the operator is closed.

Let uk be an arbitrary converging sequence from the domain of the operator such
that L1uk converges. Since the convergence in the space C[a,b] is the uniform con-
vergence, then as k→ ∞ we have that

uk(x)→ u(x) uniformly on [a,b];

u′k(x)→ f (x) uniformly on [a,b].

From the basic course of Analysis, according to the well-known theorem on dif-
ferentiating uniformly converging sequence of functions, the function u must be con-
tinuously differentiable (that is, u∈D(L1)) and u′(x) = f (x) (that is, L1u(x) = f (x)).
Consequently, the operator L1 is closed. �

The considered example shows that there exist closed operators which are not
invertible, that is, they do not have the inverse operator. Let us show now that there
exist closed invertible operators, which are not everywhere solvable, that is, whose
range does not coincide with the whole space.

Example 2.55 Let us return to the differential operator L : L2(a,b)→ L2(a,b), con-
sidered in Example 2.36. The domain of this operator is

D(L) = {u ∈ L2
1(a,b) : u(0) = u(1) = 0},

and its action is given by the formula

Lu(x) =
d
dx

u(x), a < x < b.

In Example 2.36 we have shown that the operator L is linear, is defined on all
functions from its domain, is unbounded as the operator from L2(a,b) to L2(a,b), and
is not well-posed (since it is not everywhere solvable, although the inverse operator
exists and is bounded on R(L)). Let us now show that this operator is closed in the
space L2(a,b).
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In Example 2.9 we have shown that the inverse operator L−1 exists, is given by
formula (2.43):

u(x) = L−1 f (x) =
∫ x

a
f (t)dt, a≤ x≤ b, (2.53)

and is defined on all functions from the image of the operator L, forming a subspace
of the space L2(a,b):

R(L) =
{

f ∈ L2(a,b) :
∫ b

a
f (x)dx = 0

}
.

Consequently, the operator L is invertible (that is, ∃ L−1, defined on R(L)) and is
normally solvable (the image of the operator is closed: R(L) = R(L)). Therefore, by
Corollary 2.49 of Theorem 2.45, the operator L is closed in the space L2(a,b).

Note also that this result follows from Theorem 2.50. Indeed, since R(L) = R(L)
and the operator L−1 is bounded on R(L), then it is closed. Then by Theorem 2.45
the operator L = (L−1)−1 is also closed. �

The considered example shows that there exist invertible closed operators which
are not everywhere solvable. Let us now introduce another result which makes it
much easier to prove the closedness of a particular operator.

Theorem 2.56 Let A,B : X → Y be linear operators, moreover let A be closed, and
let B be bounded, and let D(A) ⊂ D(B). Then the operator A+B with the domain
D(A), given by the action

(A+B)x = Ax+Bx ∀x ∈ D(A),

is closed.

This theorem helps one to justify the closedness of an operator proving only
the closedness of its “main part”. Addition of “smaller terms” (such as the bounded
operator B), as a rule, does not destroy the closedness property.

Example 2.57 Consider the operator Lq : L2(a,b)→ L2(a,b) which is the generali-
sation of the operator L considered in the previous Example 2.55. The domain of this
operator is

D(Lq) = D(L)≡ {u ∈ L2
1(a,b) : u(0) = u(1) = 0},

and its action is given by the formula

Lqu(x) =
d
dx

u(x)+q(x)u(x), a < x < b,

where q(x) is a given continuous function on [a,b].
The operator Lq can be represented as a sum of two operators: Lq = L+Q, where

L is the operator considered in Example 2.55, and Q is the linear operator of the
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multiplication by a function, acting by the formula Qu(x) = q(x)u(x), defined in the
whole space L2(a,b). That is, D(Q) = L2(a,b).

The operator L is closed (see Example 2.55), the operator Q is bounded (see
Example 2.7) and D(L)⊂ D(Q). Consequently, by Theorem 2.56, the operator Lq is
closed. �

2.13 Closure of differential operators in L2(a,b)

When studying boundary value problems for differential equations by the oper-
ator methods, the first step is the construction of operators corresponding to the for-
mulated boundary value problems. As has been mentioned in Remark 2.51, when
constructing an operator corresponding to the problem and investigating its well-
posedness, it is necessary to set up an operator in a way that it is closed. Most con-
venient spaces to work in are the Hilbert spaces.

It would seem that it would be more convenient to consider differential operators
in high-order Sobolev spaces, in which they are bounded. However, as is shown
in Example 1.20, setting a boundary condition (the value of the unknown function
at some point), we get that the domain of the operator becomes not dense in the
considered Sobolev space.

As will be shown in what follows, the density of the domain of the operator is
one of necessary conditions for applying general methods of the theory of opera-
tors (for example, for the existence of the adjoint operator). Therefore, most con-
siderations for the differential operators are carried out in the Hilbert space L2(a,b)
(when dealing with problems in one dimension, and with natural extensions to higher
dimensions).

On the other hand, the spaces of continuous and differentiable (a number of
times) functions are more natural for the differential equations. The operation of
closure of the operator gives the possibility of passing from the consideration of
problems for the differential equations in the space of continuously differentiable
functions to the consideration of the differential operators in the Lebesgue spaces.

In itself, the proof of closedness of the operator and the construction of its clo-
sure is a procedure which is not complicated but rather cumbersome. The following
theorems give an opportunity to avoid this feature.

Theorem 2.58 If an operator A is densely defined, admits a closure and is invertible,
then the inverse operator A−1 also admits the closure and A−1 =

(
A
)−1 .
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This statement, which is useful in practice, is conveniently formulated by using
“algebraic” language. Let us draw the following diagram:

A closure⇒ A

⇓ inverse ↓ inverse

A−1 closure→ A−1

in which the horizontal lines represent the transition to the closure of an operator,
and the vertical ones represent the transition to the inverse operator.

Now we can reformulate the statement of the above theorem in the following
way: If for a given densely defined operator A the operations drawn in the above
diagram by double arrows are well-defined, then the single arrows are also well-
defined, and they complement the diagram to the commutative one.

Theorem 2.59 A continuous densely defined operator always admits a closure. This
closure is the extension with respect to the continuity on the entire space.

These theorems are especially useful in cases where the construction of the clo-
sure B−1 of the inverse operator B−1 is simpler than the construction of the closure
of an initial operator B; for example, when B is unbounded, and B−1 is the closed and
densely defined operator. In this case we need to apply Theorem 2.58 to the operator
A = B−1.

Let us demonstrate the use of these theorems in the following simple example.

Example 2.60 Let us return to the consideration of the operator introduced in Exam-
ple 2.38. In the space L2(a,b), consider the operator given by the differential expres-
sion

Lu(x) =
d
dx

u(x), a < x < b,

on the domain
D(L) =

{
u ∈C1[a,b] : u(0) = 0

}
.

This operator has been considered in Example 2.29 as acting in the space of
continuous functions C[a,b]. It has been shown there that the inverse operator L−1

exists, is defined on the whole space C[a,b], and is bounded, that is, L is a well-posed
operator in the space C[a,b].

Consider now the same operator in the space L2(a,b). It is clear that the range of
the operator is R(L) = C[a,b] and, consequently, does not coincide with the whole
space L2(a,b). Therefore, it is obvious that the operator L is not well-posed since
it is not everywhere solvable. However, as has been shown in Example 2.38, the
inverse operator L−1 exists, is defined on R(L) (that is, the operator L is well-posedly
solvable), is given by the formula

L−1 f (x) =
∫ x

a
f (t)dt, a≤ x≤ b, ∀ f ∈ R(L), (2.54)
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and admits the estimate (the corollary of formula (2.47) of Example 2.38):

‖L−1‖ ≤ b−a√
2
. (2.55)

Since the domain of the inverse operator D(L−1) = R(L) = C[a,b] is dense in
L2(a,b), according to Theorem 2.12 the operator L−1 can be continued onto the
whole space L2(a,b) with the value preservation of its norm (2.55). The continua-
tion of L−1 onto the whole space L2(a,b) is the operator bounded on L2(a,b), and
according to Theorem 2.44 it is a closed operator in L2(a,b). By Theorem 2.59 this
extension is the closure of the operator L−1.

The operator L−1 given by formula (2.54) is one of the particular cases of the
general integral operators considered in Example 2.14. Therefore, as has been shown
there, it can be extended onto the whole space not only with the preservation of the
norm value, but also with the “preservation of formula” (2.54). Thus, L−1 exists and
is given by the formula

L−1 f (x) =
∫ x

a
f (t)dt, a≤ x≤ b, ∀ f ∈ L2(a,b).

Now applying Theorem 2.58 to the operator A = L−1, we get that the operator L
is closeable and

(
L
)−1

= L−1. From this and from (2.47) we obtain the action of the
operator which is the inverse of the closure:(

L
)−1 f (x) =

∫ x

a
f (t)dt, a≤ x≤ b, ∀ f ∈ L2(a,b). (2.56)

Now using formula (2.56), we can describe exactly the domain of the operator L:

D
(
L
)
= R

((
L
)−1
)
.

When the function f varies in the entire space L2(a,b), we get

D
(
L
)
=
{

u ∈ L2
1(a,b) : u(0) = 0

}
. (2.57)

Since the closure L of the operator L is its extension, the actions of the operators
L and L on the functions u ∈ D(L) coincide and are given by the formula

Lu(x) =
d
dx

u(x), a < x < b. (2.58)

The same formula can be also applied for the action of the operator L on the function
u∈D(L), u /∈D(L). It is possible since there exists, almost everywhere, the derivative
of any function from the class L2

1(a,b).
Thus, we have constructed the closure L of the operator L. This is a linear differ-

ential operator given by expression (2.58) on domain (2.57). This operator is well-
posed, since

(
L
)−1 exists, is defined on the whole space L2(a,b), and is bounded.

�

The considered example shows that with the help of the closure operation of the
operator we have managed to pass from the ill-posed operator (the operator L) to the
well-posed operator (the operator L).
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2.14 General concept of strong solutions of the problem
In the considered Example 2.60, it turned out that the action L of the operator’s

closure coincides with the action of the original operator L. That is, the operator L
can be closed “with preservation of the action”. It turned out to be possible since
the operation of differentiation can be understood almost everywhere for all func-
tions from the domain of the operator’s closure. However, in the general case this
(“preservation of the action”) is not always possible. In applications of the closed
operators techniques to solving the problems for differential equations, there arises
a question of how one can understand the action of the closure of an operator. The
answer to this question is: understanding the action of the closure of an operator is,
generally speaking, impossible.

Let us explain this idea. For a better understanding, in subsequent discussions,
we can think of the operator L from Example 2.60 .

Let a linear (not closed) operator L be given, an action of which on functions
u∈D(L) can be understood in some way “in the ordinary sense”. From the definition
of the closure L of the operator L it follows that the graph of the operator L is the
closure of the graph of L. Consequently, for any pair (u;Lu) ∈ GL there exists a
sequence of pairs (uk;Luk) ∈ GL, converging to it with respect to the graph norm.
That is,

uk→ u, Luk→ Lu as k→ ∞.

With this, uk ∈ D(L), and the action Luk can be understood “in the ordinary sense”.
Then the action of the operator L on elements u ∈D(L), u /∈D(L) (that is, on ele-

ments on which the understanding “in the ordinary sense” is not possible) is defined
as

Lu := lim
k→∞

Luk. (2.59)

Formula (2.59) defines the action of the operator L and gives the answer to the
question posed in the beginning of this section.

However, one should not think that such “complications” as the use of formulae
of the form (2.59) always appear when using the concept of the operator’s closure.
As is shown in Example 2.54, the differential operator of that example is closed (that
is, there is no need in the closure operation), and its action on all functions from the
domain of the operator can be understood “in the ordinary sense” as the differenti-
ation operation of a continuous differentiable function. Therefore, the necessity of
the closure operation usually appears when investigating operators in the Lebesgue
space L2(Ω).

The concept of the operator’s closure is closely related with the concept of a
strong solution of a problem for a differential equation. The strong solution is one of
the variants of a generalised solution, which are introduced just in cases when the
ordinary classical solution (or, as one says, a regular solution) does not exist. Gen-
erally speaking, the definition of the strong solution is introduced for each problem
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under consideration based on its specific features. Here we will try to give only the
general understanding of this term.

For this, let us investigate the following boundary value problem for a linear
second-order differential equation in Ω⊂ Rn.

Problem. Find a solution for the equation

Lu = ∑
|α|≤2

aα(x)Dα u(x) = f (x), x = (x1,x2, ...,xn) ∈Ω, (2.60)

satisfying the boundary condition

Qu|∂Ω = 0, (2.61)

where Q is some linear boundary operator defined on traces of the function u and its
first derivatives on the boundary ∂Ω of the domain Ω.

Let us denote by M the linear space of twice continuously differentiable functions
in Ω, continuously differentiable including the boundary of Ω, and satisfying the
boundary conditions (2.61):

M :=
{

u ∈C2(Ω)∩C1 (
Ω
)

: Qu|∂Ω = 0
}
.

It is clear that for all functions from M the action of the differential expression
(2.60) and the boundary conditions (2.61) can be understood in the usual continuous
sense. Therefore, the function u = u(x) is called a regular solution (or a classi-
cal solution) of problem (2.60), (2.61), if u ∈ M and u satisfies Eq. (2.60) and the
boundary conditions (2.61).

It is clear that the differential expression (2.60) maps all functions from M to
the functions which are continuous in the domain Ω. Therefore, the regular solution
of the problem can exist only for the right-hand sides f of Eq. (2.60) which are
continuous in Ω. In the case when the right-hand side in Eq. (2.60) is not continuous,
it is necessary to introduce the concept of a generalised solution. By the generalised
solution of the problem we understand all solutions (introduced in some way) of the
problem that are not regular.

We should immediately indicate that one should not confuse the generalised solu-
tions of a problem with solutions in the sense of generalised functions, since the gen-
eralised functions are, generally speaking, distributions (that is, are linear continuous
functionals on the space of infinitely differentiable compactly supported functions),
and the generalised solutions are “ordinary” functions from the space L2(Ω).

One of the variants of the generalised solutions is a strong solution.
Let now f ∈ L2(Ω). A function u∈ L2(Ω) is called the strong solution of problem

(2.60), (2.61), if there exists a sequence uk ∈M such that uk→ u and Luk→ f in the
norm of the space L2(Ω) as k→∞. Consequently, the boundary value problem (2.60),
(2.61) is called strongly solvable, if the strong solution of the problem exists for any
right-hand side f ∈ L2(Ω), and is unique.

Generally speaking, the strong solutions belong to the space L2(Ω) and may
not have any differentiability. Then in what sense do the strong solutions satisfy
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Eq. (2.60)? The answer is that the strong solution u ∈ L2(Ω) satisfies Eq. (2.60) in
the sense that

Lu(x)≡ lim
k→∞

Luk(x) = f (x),

where the sequence uk ∈M is taken from the definition of the strong solution.
Consider now the operator corresponding to the boundary value problem (2.60),

(2.61). Thus, we denote by L the linear operator given on the domain D(L) = M by
the differential expression (2.60). It is clear that the domain of this operator consists
of all regular solutions of the problem (2.60), (2.61).

Assume now that this operator is closable. Then the domain D
(
L
)

of the closure
L of the operator L consists of those functions u ∈ L2(Ω), for which there exists
a sequence of pairs (uk;Luk) ∈ GL converging to (u;Lu) ∈ GL with respect to the
graph norm. That is, uk → u,Luk → Lu as k→ ∞, with respect to the norm of the
space L2(Ω).

Consequently, the domain of the operator’s closure consists of the strong solu-
tions of the corresponding boundary value problem. �

2.15 Compact operators
Let us now return to the consideration of the bounded operators. David Hilbert,

for the first time, paid attention to one important class of linear bounded operators,
which can be approximated with respect to the norm of the space L (X ,Y ) by finite-
dimensional operators. This is the class of compact operators, sometimes also called
the completely continuous operators.

Many problems lead to the necessity of studying the solvability of an equation of
the kind Ax = y, where A is some operator, y ∈Y is a given element, and x ∈ X is the
unknown element. For example, if X = Y = L2(a,b),

A = I−K,

where K is an integral operator, and I is the identity operator, then we obtain the
class of so-called Fredholm integral equation of second kind. If A= L is a differential
operator, then one has a differential equation, etc.

The class of compact operators appears as one of the important classes of oper-
ators resembling the operators acting on finite-dimensional spaces. For a compact
operator A, there is a well-developed theory of solvability of the equation x−Ax = y,
which is quite analogous to the finite-dimensional cases (containing, in particular,
the theory of integral equations).

To start, we need to introduce some definitions from the theory of sets.
A set M in a linear normed space X is called compact, if we can extract a Cauchy

sequence from any infinite sequence xk ∈M, k = 1,2, .... Note that if X is a Banach
space, then every such Cauchy subsequence (because of the completeness of X) must
converge to some element x0 ∈ X . However, it is a-priori unclear whether x0 ∈M.
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Not going into too many details for explaining this concept, we only say that if
the set is compact, then it is bounded and separable. (Separability of the set M, unlike
the separability of the space, means that: it contains at most a countable set, whose
closure contains M in the space X .) The inverse is true only for finite-dimensional
sets. The important fact is that in the infinite-dimensional space the unit ball is not a
compact set.

Let X and Y be linear normed spaces. An operator A ∈L (X ,Y ) is called com-
pletely continuous if it maps the closed unit ball of the space X into a compact set of
the space Y . The set of all completely continuous operators is denoted by

σ(X ,Y ).

The completely continuous operator maps any set bounded in X into a set which is
compact in Y . Therefore the completely continuous operators are often called com-
pact operators.

However, generally speaking, these concepts are different. The definitions of
completely continuous and of compact operators are equivalent in the case of a sepa-
rable reflexive Banach space. In the general case, the complete continuity implies the
compactness, but not vice versa. But since we consider only the separable reflexive
Banach spaces, then we will identify these concepts (the completely continuous and
compact operators).

Theorem 2.61 The compact operators have the following properties:

1. If A1 and A2 are compact operators, then for any scalars α1,α2 the operator
α1A1 +α2A2 is also a compact operator;

2. If A1 is a compact operator, and A2 is a bounded but not compact operator,
then an operator A1 +A2 is a bounded but not compact operator;

3. If A is a compact operator and B is a bounded operator, then the composed
operators AB and BA are compact operators;

4. If the spaces X or Y are finite-dimensional, then any bounded operator A ∈
L (X ,Y ) is a compact operator. In particular, in this case any linear bounded
functional is a compact operator;

5. σ(X ,Y ) is a subspace of L (X ,Y ). In particular, all compact operators are
bounded; and the operator being the limit (in the sense of convergence with
respect to the norm in the space L (X ,Y )) of the sequence of compact opera-
tors, is also a compact operator.

We now consider some examples of compact operators.

Example 2.62 In the space `2 of square summable infinite sequences x =
(x1,x2, ...) = {xk}∞

k=1 with the norm

‖x‖=

(
∞

∑
k=1
|xk|2

)1/2

<+∞,
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consider the operator A defined on the whole space `2 by the formula

Ax = y, where y = {yk}∞
k=1, yk =

∞

∑
j=1

ak jx j, k = 1,2, ... (2.62)

Let the entries of the matrix (ak j) be such that

‖A‖2 =

(
∞

∑
k=1

∞

∑
j=1
|ak j|2

)1/2

<+∞. (2.63)

The value of (2.63) is called the Hilbert-Schmidt norm of operator (2.62),
and operator (2.62) with the finite norm ‖A‖2 is called a matrix Hilbert-Schmidt
operator.

Linearity of operator (2.62) is clear. Let us show first its boundedness. Applying
the Cauchy-Schwarz inequality

∞

∑
k=1
|ξkηk| ≤

(
∞

∑
k=1
|ξk|2

)1/2(
∞

∑
k=1
|ηk|2

)1/2

,

we estimate the norm of the image:

‖y‖2 =
∞

∑
k=1
|yk|2 =

∞

∑
k=1

∣∣∣∣∣ ∞

∑
j=1

ak jx j

∣∣∣∣∣
2

≤
∞

∑
k=1

(
∞

∑
j=1
|ak j|2

∞

∑
m=1
|xm|2

)
= (‖A‖2)

2 ‖x‖2.

It means that ‖Ax‖≤ ‖A‖2‖x‖ for all x∈ `2. Consequently, the operator A is bounded.
Now we show that the operator A : `2→ `2 is a compact operator. We denote by

An the finite-dimensional operators given on the whole space `2 by the formula

Anx = y, where y =


∞

∑
j=1

ak jx j for k = 1, . . . ,n,

0 for k > n.

Thus, for each element x∈ `2, the operator An sets in correspondence the element
(y1,y2, . . . ,yn,0,0, . . .).

Since the image of each operator An is finite-dimensional, then according to The-
orem 2.61, Part 4, they are compact.

Let us now show that the operator A is a limit of the finite-dimensional operators
An. Indeed, since for all x ∈ `2 we have

‖(A−An)x‖2 =
∞

∑
k=n+1

|yk|2 =
∞

∑
k=n+1

∣∣∣∣∣ ∞

∑
j=1

ak jx j

∣∣∣∣∣
2

≤

≤
∞

∑
k=n+1

(
∞

∑
j=1
|ak j|2

∞

∑
m=1
|xm|2

)
=

∞

∑
k=n+1

∞

∑
j=1
|ak j|2‖x‖,
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it follows that

‖A−An‖ ≤

(
∞

∑
k=n+1

∞

∑
j=1
|ak j|2

)1/2

→ 0 as n→ ∞.

Now the compactness of the operator A follows from Theorem 2.61, Part 5. �

The considered example shows that a compact operator can be represented by a
limit of a converging sequence of finite-dimensional operators. This property distin-
guishes compact operators from the class of all other bounded operators.

Theorem 2.63 The identity operator

I : X → X , Ix = x, ∀x ∈ X ,

in an infinite-dimensional space X is a bounded but not compact operator.

Indeed, the linearity of the operator I is clear. Moreover, this operator maps the
closed unit ball of the space X to itself. But the unit ball is compact in normed spaces
only if the space is finite-dimensional. Therefore, I is a bounded but not compact
operator. �

Corollary 2.64 A compact operator in an infinite-dimensional space cannot have a
bounded inverse operator.

Indeed, if a compact operator A had a bounded inverse operator A−1, then their
composition AA−1 = I, according to Theorem 2.61, Part 3, would be a compact oper-
ator, which would contradict Theorem 2.63. �

Theorem 2.65 Let the spaces X and Y be Banach spaces. If A : X →Y is a compact
operator, then R(A) is not closed in Y .

Corollary 2.64 of Theorem 2.63 and Theorem 2.65 occur when investigating dif-
ferential operators. Indeed, if L : X→ X is an invertible operator, we apply Corollary
2.64 and Theorem 2.65 to the operator L−1. Then, if L−1 is compact, then the opera-
tor L is unbounded and its domain D(L) = R(L−1) cannot be closed in the space X .
And indeed, as the considered earlier examples have shown, the differential operators
are unbounded and their domains are dense in X . These facts confirm that expecting
the compactness of the inverse operator L−1 is often natural.

To prove the compactness of particular operators one uses various methods. Not
dwelling in detail on these methods, we now give some examples of compact and
non-compact operators which will be necessary for us for further discussions related
to the spectral theory.

Example 2.66 Consider the operator Lu(x) = d
dx u(x), acting in various spaces

below. Then for all integers k ≥ 0, we have:

• L : Ck[a,b]→Ck[a,b] is unbounded;
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• L : Ck+1[a,b]→Ck[a,b] is bounded, but not compact;

• L : Ck+2[a,b]→Ck[a,b] is compact;

• L : L2
k(a,b)→ L2

k(a,b) is unbounded;

• L : L2
k+1(a,b)→ L2

k(a,b) is bounded but not compact;

• L : L2
k+2(a,b)→ L2

k(a,b) is compact.

Example 2.67 Let us return to studying the integral operator considered in Example
2.11. Let the action of the operator be given by

K f (x) =
∫ b

a
k(x, t) f (t)dt,

where k = k(x, t) is a function on the closed rectangle [a,b]× [a,b].
In Example 2.11 it has been shown that if k = k(x, t) ∈C([a,b]× [a,b]), then the

operator K : C[a,b]→ C[a,b] is bounded. In fact, a more precise statement holds:
if k = k(x, t) ∈ C([a,b]× [a,b]), then the integral operator K : C[a,b]→ C[a,b] is
compact. �

In Example 2.62, a matrix Hilbert-Schmidt operator has been considered. This
concept can be extended to general operators in Hilbert spaces. Let us denote by
ek(k ∈ N) an orthonormal basis in the Hilbert space H. An operator A is called the
Hilbert-Schmidt operator, if

‖A‖2 :=

(
∞

∑
k=1
‖Aek‖2

H

)1/2

< ∞.

It can be shown that the value ‖A‖2 does not depend on the choice of the basis ek and
is called the Hilbert-Schmidt norm of the operator A. We always have ‖A‖ ≤ ‖A‖2,
that is, the Hilbert-Schmidt operators are bounded.

Moreover, any Hilbert-Schmidt operator is compact. The inverse is not true, that
is, there exist compact operators which are not Hilbert-Schmidt operators. If A is a
Hilbert-Schmidt operator and B is a bounded operator, then AB and BA are Hilbert-
Schmidt operators and

‖AB‖2 ≤ ‖A‖2‖B‖ and ‖BA‖2 ≤ ‖A‖2‖B‖.

Example 2.68 In the Hilbert space L2(a,b), consider the integral operator K given
by

K f (x) =
∫ b

a
k(x, t) f (t)dt, (2.64)

where k= k(x, t)∈ L2 ((a,b)× (a,b)). In this case the operator K : L2(a,b)→ L2(a,b)
is a Hilbert-Schmidt operator and therefore is called an integral Hilbert-Schmidt
operator.
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Earlier, in Example 2.11 it has been shown that this operator is bounded. It turns
out that it is a Hilbert-Schmidt operator and, as a consequence, it is a compact oper-
ator in L2(a,b).

The proof of the compactness of an integral operator in each particular case
is a rather cumbersome problem. However, in many cases the appearing integral
operators of the type (2.64) are Hilbert-Schmidt operators. Therefore, a sufficient
(and, actually, also necessary) condition for the compactness of the integral operator
K : L2(a,b)→ L2(a,b) is the convergence of the integral∫ b

a

∫ b

a
|k(x, t)|2dtdx < ∞. �

However, the compact operators are not at all exhausted by the Hilbert-Schmidt
operators. The size of the class of the Hilbert-Schmidt operators within the compact
operators can be demonstrated by the introduction of the following terminology.

In the class σ(H,H) of the compact operators on a Hilbert space H, we can
introduce the following parametrisation. One says that an operator A : H→H belongs
to the class Sp(H), if

‖A‖p :=

(
∞

∑
k=1
‖Aek‖p

H

)1/p

< ∞,

where ek(k ∈ N) is an orthonormal basis in H. The value ‖A‖p does not depend on
the choice of the orthonormal basis ek. These classes are called the Schatten-von
Neumann classes. They are nested:

Sp(H)⊂ Sq(H) for p≤ q.

The operators from the class S1(H) are called trace class operators. The operator
A : H → H will be trace class, if it can be represented in the form A = BC, where
B and C are Hilbert-Schmidt operators. In this sense, the trace class operator is “the
smallest” Schatten-von Neumann class among the compact operators. More details
about the Schatten-von Neumann classes and some of their properties will be given
in Section 3.9. �

In Section 1.8 we have given the general definition of embeddings of the spaces
and introduced some examples of embedding. In some cases this embedding is com-
pact, that is, the operator J : X → Y realising the embedding of the space X into Y is
compact.

Theorem 2.69 The following embeddings of the spaces are compact:

• the embedding of all spaces Rn in Rm for n < m;

• the embedding of all spaces Ck[a,b] in Cm[a,b] for any integers k > m≥ 0;

• the embedding of the space C[a,b] in Lp(a,b) for any p≥ 1;

• the embedding of the Sobolev spaces Lp
k (a,b) in Lp

m(a,b) for k > m, p≥ 1;
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• the embedding Lp
k (a,b) in C[a,b] for any p≥ 1, k ≥ 1.

The theorems on the compact embeddings of spaces are especially important for
the theory of differential operators. This is due to the fact that, as a rule, inverse
operators L−1 to the differential operators L have the property of “improving” the
smoothness. That is, for example, often they have the property that L−1 f ∈ L2

k for
f ∈ L2. And, accordingly, the estimate of the form ‖L−1 f‖L2

k
≤ ‖ f‖L2 holds. Then

L−1 can be represented as the composition of the bounded operator (L−1 : L2 →
L2

k) with a bounded operator (the embedding operator I : L2
k → L2). Therefore, the

compactness of the operator L−1 follows from the compactness of the embedding
operator I : L2

k → L2. That is, on the basis of the smoothness of the solution of a
problem one can conclude the compactness of the inverse operator. �

2.16 Volterra operators
An important class of the compact operators is the so-called Volterra operators.
A bounded operator A : X → X is called quasinilpotent, if

lim
k→∞
‖Ak‖1/k = 0, where Ak = A

(
Ak−1

)
.

A compact quasinilpotent operator is called a Volterra operator.
The Volterra operators are characterised by the fact that if A : X → X is Volterra,

then for any number λ ∈ C the operator I− λA is well-posed. Consequently, the
inverse operator (I−λA)−1 is compact. The compactness of the inverse operator is
explained by the fact that in this case the operator (I−λA)−1 can be represented in
the form of the limit of a sequence of compact operators:

S = lim
k→∞

Sk =
∞

∑
m=1

λ
mAm, (2.65)

where Sk =
k
∑

m=1
λ mAm is compact as a finite sum of compact operators. The conver-

gence of the series in the right-hand side (2.65) is ensured by the estimate

‖S f‖=

∥∥∥∥∥ ∞

∑
m=1

λ
mAm f

∥∥∥∥∥≤ ∞

∑
m=1
‖λ mAm f‖ ≤

(
∞

∑
m=1
|λ |m‖Am‖

)
· ‖ f‖

and the quasinilpotentness of the operator A, if the Cauchy criterion for the conver-
gence of the sequences is applied:

lim
m→∞

m
√
|am|= |λ | lim

m→∞
‖Am‖1/m = 0.
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Example 2.70 Let us return to the consideration of the integral operator already
repeatedly met in the examples. In the space L2(a,b), consider the integral operator

V f (x) =
∫ x

a
f (t)dt.

Note that here we choose the integral operator with a variable upper limit. The oper-
ator V is compact since it is a Hilbert-Schmidt operator (see Example 2.68). Let us
show that it is quasinilpotent. For the powers of this operator we have

V m f (x) =
∫ x

a

(
V m−1 f

)
(x1)dx1 =

∫ x

a
dx1

∫ x

a
dx2...

∫ xm−1

a
f (xm)dxm

=
∫ x

a

(x− xm)
m−1

(m−1)!
f (xm)dxm.

Therefore, for all f ∈ L2(a,b), applying the Hölder inequality (2.20), we get

‖V m f‖2 ≤
∫ b

a

(∫ x

a

∣∣∣∣ (x− t)m−1

(m−1)!
f (t)
∣∣∣∣dt
)2

dx

≤
∫ b

a

(∫ x

a

∣∣∣∣ (x− t)m−1

(m−1)!

∣∣∣∣2 dt

)(∫ x

a
| f (t)|2dt

)
dx

≤ ‖ f‖2

[(m−1)!]2

∫ b

a

(∫ x

a
(x− t)2m−2dt

)
dx =

(b−a)2m

[(m−1)!]22m(2m−1)
‖ f‖2.

Consequently,

‖V m‖ ≤ (b−a)m

(m−1)!
√

2m(2m−1)
.

If we now use the asymptotic Stirling’s formula (or Stirling’s approximation)

m! = mm
√

2πmexp
{
−m+

1
12m

+o
(

1
m2

)}
,

then it is easy to obtain that lim
m→∞
‖V m‖1/m = 0. Consequently, the operator V is

quasinilpotent and, therefore, is Volterra. �

In a more general case, the integral operator

K f (x) =
∫ x

a
k(x, t) f (t)dt, (2.66)

where k = k(x, t) ∈ L2((a,b)× (a,b)), is Volterra in L2(a,b). We will demonstrate
this in Example 2.72. Therefore, the integral equation

f (x)−λ

∫ x

a
k(x, t) f (t)dt = g(x),



82 Spectral geometry of partial differential operators

called the second kind integral Volterra equation, has a unique solution in L2(a,b)
for any λ ∈ C.

Unlike the integral operators of the general form (2.64), the operators of the form
(2.66) are called integral operators of a triangular kind. This is due to the fact
that on the coordinate plane (x, t), the support of the integral kernel of the integral
operator is contained in the triangle a≤ t ≤ x≤ b.

However, in general, the Volterra operators are not necessarily operators of the
triangular kind.

So, for example, the integral operator

Kα f (x) = α

∫ x

a
(x− t) f (t)dt− (1−α)

∫ 1

x
(x− t) f (t)dt (2.67)

is Volterra for all α ∈ C, although it does not have the triangular kind. We will
show the Volterra property of the operator (2.67) in the sequel, when considering
the spectral properties of well-posed problems for an ordinary differential equation
(see Example 3.102). �

For proving the Volterra property of a wide class of the integral operators we
may recommend the following criterion by A.B. Nersesyan [85] (1964). Although
its formulation is rather cumbersome we will show with the example of operator
(2.66) this criterion is quite operational.

To begin with, we introduce some definitions.
Let S⊂Ω×Ω (Ω⊂Rn) be an open set. A function K = K(x,y) of two variables

x,y ∈Ω is called an S-kernel if K ∈ L2(Ω×Ω) and K(x,y) = 0 for (x,y) /∈ S. Thus,
the function K ∈ L2(Ω× Ω) will be an S-kernel if it is equal to zero outside of the
domain S. The open set S ⊂ Ω×Ω is called a set of type V if any integral operator
with S-kernel is Volterra. That is, any integral operator K : L2(Ω)→ L2(Ω) of the
kind

K f (x) =
∫

Ω

K(x, t) f (t)dt, (2.68)

where K = K(x,y) is an S-kernel, will be Volterra. Moreover, the Volterra property
of the operator does not depend on a particular kind of the function K(x,y), but only
on the set S, more precisely, on the set on which K(x,y) = 0.

Let us introduce provisional notations:

• we will write x S−→ y if (x,y) ∈ S,

• we will write x S←− y if (x,y) /∈ S.

Theorem 2.71 (A.B. Nersesyan [85]) In order for the set S ⊂ Ω×Ω to be a set of
type V, it is necessary and sufficient that for all k ≥ 1, from the conditions

x1
S−→ x2

S−→ x3
S−→ ...

S−→ xk (2.69)

it follows that
xk

S←− x1. (2.70)
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In other words, the meaning of conditions (2.69) and (2.70) consists in the prop-
erty that from the conditions

(x1,x2) ∈ S, (x2,x3) ∈ S, ...,(xk−1,xk) ∈ S, (2.71)

one should get the condition
K(xk,x1) = 0. (2.72)

For demonstrating an application of Theorem 2.71 we will prove the Volterra
property of the integral operator (2.66). In Example 2.70, the Volterra property of
the operator V , being a particular case of operator (2.66), has been proved. There,
the representation of the operator V m has been obtained in an explicit form and the
estimate lim

m→∞
‖V m‖1/m = 0 has been obtained. But in the case of the general kind

of operator (2.66) it is impossible to calculate an explicit form of the operator Km.
Therefore, proving the Volterra property may be difficult if we rely on a direct esti-
mation of the norm of Km. However, Theorem 2.71 can make it easy to get around
these difficulties.

Example 2.72 In the space L2(a,b), consider the integral operator (2.66):

K f (x) =
∫ x

a
k(x, t) f (t)dt,

where k = k(x, t) ∈ L2 ((a,b)× (a,b)). As is shown in Example 2.68, this operator
is compact. The operator (2.66) is a particular case of the general integral operators
(2.64) and (2.68). The difference is that in (2.66) the integral is taken with the variable
upper limit. The operator K can be represented in a general form

K f (x) =
∫ b

a
K(x, t) f (t)dt, (2.73)

where

K(x, t) = θ(x− t)k(x, t) =
{

k(x, t), x≥ t,
0, x < t.

Let us describe the set S, for which the kernel K(x, t) of the integral operator
(2.73) will be an S-kernel. Firstly, the set S is two-dimensional, that is, S ⊂ R2.
Secondly, since a≤ x, t ≤ b, we have S⊂ [a,b]× [a,b]⊂R2. Thirdly, since K(x, t) =
0 for x < t, we choose as S the set

S := {(x,y) ∈ R2 : a < t < x < b}. (2.74)

This set S is the triangle in the plane R2.
Since K(x,y) = 0 for (x,y) /∈ S, for the set S chosen in this way, the integral kernel

(2.73) of the integral operator (2.66) will be the S-kernel.
Let us show now that S is a set of type V . Let us choose an arbitrary chain of

points from the set S satisfying (2.71):

(x1,x2) ∈ S, (x2,x3) ∈ S, ...,(xk−1,xk) ∈ S.
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In view of (2.74) this means that points x j are subject to the inequalities: x1 < x2 <
x3 < ... < xk−1 < xk. Hence x1 < xk and, therefore, the point (xk,x1) does not belong
to the set S. Consequently, K(xk,x1) = 0, that is, (2.72) holds. By Theorem 2.71 the
set S is then a set of type V . Therefore, the integral operator (2.66) will be Volterra
independently of a particular type of the function k = k(x, t) ∈ L2((a,b)× (a,b)).�

Note that Theorem 2.71 is a criterion in the sense that it provides the Volterra
property of an operator only in terms of the set on which K(x,y) = 0, independently
of the particular form of the function K = K(x,y). However, there exist integral ker-
nels K(x,y) of a special type, for which the operator (2.68) will be Volterra, although
its corresponding set S will not be a set of type V. An example of such an operator is
the Volterra operator (2.67).

2.17 Structure of the dual space
Let us return to the concept of a linear functional introduced in Section 2.6. As

we have shown, a functional is a particular case of an operator with the image being
the complex plane C. The value of a linear functional F on an element x ∈ X is
sometimes also denoted by 〈x,F〉.

Let X be a Banach space. Consider the space of linear bounded functionals
L (X ,C) defined from X to C. This space is called dual to X and is denoted by
X∗. Thus, X∗ = L (X ,C). The elements of the dual space X∗ are the linear bounded
functionals defined on X . The space X∗ is infinite-dimensional if X is infinite-
dimensional.

An important special case is the case of the Hilbert space H. In this case, by the
Riesz theorem (Theorem 2.15) on the general form of linear continuous functionals
in the Hilbert space, for any functional F there exists a unique element σ ∈ H, such
that

〈x,F〉= 〈x,σ〉 for all x ∈ H,

with ‖F‖ = ‖σ‖. This indicates the possibility of setting a one-to-one correspon-
dence between the spaces H and H∗ preserving the norm. We can identify H = H∗

up to this one-to-one correspondence. That is, the space dual to the Hilbert space
“coincides” with H. In this sense we can talk about self-duality of the Hilbert space.
This fact is especially important when considering later on the so-called adjoint oper-
ators.

If the space X is not a Hilbert space, then X 6= X∗. Since X∗ is also a Banach
space, one can introduce the space dual to X∗ and denote it by X∗∗ = (X∗)∗. An
important class of spaces is reflexive spaces, that is the spaces, for which X∗∗ = X .

The self-dual spaces are reflexive. The Banach space is reflexive if and only if
the space dual to it is reflexive.
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For example, the space Lp(a,b), p > 1, is reflexive. The space Lq(a,b), 1
p +

1
q =

1, is dual to it. Therefore,

(Lp(a,b))∗∗ =
(

L
p

p−1 (a,b)
)∗

= Lp(a,b).

In particular, from this the self-duality of the Hilbert space L2(a,b) also follows.

2.18 Adjoint to a bounded operator
The simplest way to introduce the concept of an adjoint operator is for the case

of bounded operators. Let X ,Y be Banach spaces. For a linear bounded operator
A ∈L (X ,Y ) for each fixed g ∈ Y ∗ we define a functional ϕ by the formula

ϕ( f ) := 〈A f ,g〉, ∀ f ∈ X . (2.75)

This functional has the properties:

• D(ϕ) = X ;

• the functional ϕ( f ) is linear since for any (complex) scalars α and β we have

ϕ(α f1 +β f2) = 〈A(α f1 +β f2),g〉= 〈αA f1 +βA f2,g〉

= α〈A f1,g〉+β 〈A f2,g〉= αϕ( f1)+βϕ( f2);

• the functional ϕ( f ) is bounded since

|ϕ( f )|= |〈A f ,g〉| ≤ ‖A f‖ · ‖g‖ ≤ ‖A‖ · ‖g‖ · ‖ f‖. (2.76)

Consequently, ϕ( f ) ∈ X∗.
Thus, to each element g ∈ Y ∗, we have put in correspondence the element

ϕ( f ) ∈ X∗. This element is uniquely defined by formula (2.75). This means that
we are actually obtaining an operator from the space Y ∗ to the space X∗, which we
denote by A∗. That is,

A∗ : Y ∗→ X∗, A∗g = ϕ.

This operator is linear since for all f ∈ X we have

〈 f ,A∗(αg1 +βg2)〉= 〈A f ,αg1 +βg2〉

= α〈A f ,g1〉+β 〈A f ,g2〉= 〈 f ,αA∗g1 +βA∗g2〉.

This operator is bounded in view of inequality (2.76).
So, we have obtained the linear bounded operator A∗g = ϕ . This operator A∗ ∈

L (Y ∗,X∗) is called the adjoint operator to the operator A. Here we note once again
that the adjoint operator exists for any linear bounded operator A ∈L (X ,Y ). In the
case of unbounded operators the adjoint operator does not always exist.
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The adjoint operators have equal norms:

‖A‖= ‖A∗‖.

Moreover, the adjoint operators have many identical properties.

Theorem 2.73 (Schauder’s theorem) Let A ∈L (X ,Y ). The operator A is compact
if and only if A∗ is compact.

Theorem 2.74 The operator A ∈L (X ,X) is Volterra if and only if A∗ is Volterra.

Theorem 2.75 Let A,B ∈L (X ,Y ), α,β ∈ C. Then (αA+ βB)∗ = αA∗+βB∗.

Theorem 2.76 If A,B ∈L (X ,X), then (AB)∗ = B∗A∗.

Theorem 2.77 Let A ∈L (X ,Y ). If A is a well-posed operator (that is, the inverse
operator A−1 exists, is defined on the whole space Y , and is bounded), then A∗ is
continuously invertible and (A∗)−1 = (A−1)∗.

Theorem 2.78 If X is a reflexive space, Y is a linear normed space, A ∈L (X ,Y ),
then (A∗)∗ = A.

The simplest way to understand the concept of the adjoint operator is in the
Hilbert spaces since they are self-adjoint.

According to the Riesz theorem 2.15, any linear bounded functional in the Hilbert
space is represented in terms of an inner product. And in this case (2.75) can be
written in the form

ϕ( f ) = 〈 f ,ϕ〉= 〈A f ,g〉, where f ∈ H, g ∈ H. (2.77)

For fixed g ∈ H the expression 〈A f ,g〉 is a linear functional applied to the element
f ∈ H. By (2.76) this functional is bounded. By the Riesz theorem there exists a
uniquely defined element g∗ ∈ H such that for any g ∈ H the representation

〈A f ,g〉= 〈 f ,g∗〉 (2.78)

holds. Thus, to each element g ∈ H one puts in correspondence the uniquely defined
element g∗ ∈ H. That is, in the space H there is an operator mapping g ∈ H into
g∗ ∈H. Denote it by A∗, so that A∗g= g∗. Substituting the obtained result into (2.78),
we have 〈A f ,g〉= 〈 f ,A∗g〉 for all f ∈H, g∈H. Thus we have come to the definition
of the adjoint operator in the Hilbert space:

The operator A∗ is called the adjoint operator to the linear bounded operator
A : H→ H, if for all f ,g ∈ H we have the equality

〈A f ,g〉= 〈 f ,A∗g〉. (2.79)

Theorems 2.73–2.78 remain true for the adjoint operator in the Hilbert space.
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An operator A∈L (H,H) in the Hilbert space H is called a self-adjoint operator,
if A∗ = A, that is, if A coincides with its adjoint. According to this definition, A is
self-adjoint if for all f ,g ∈ H the equality

〈A f ,g〉= 〈 f ,Ag〉

holds.
It is the possibility to “transfer” A from one entry to another in the inner product,

that allows one to study the self-adjoint operators in more detail; this finds very wide
application in various fields of mathematical sciences, in mechanics and in physics.

If A,B ∈L (H,H) are self-adjoint operators, then for any real numbers α,β ∈R
the operator αA+βB is self-adjoint in H.

An operator A ∈L (H,H) in the Hilbert space H is called normal, if

A∗A = AA∗,

that is, if A is commuting with its adjoint. It is clear that any self-adjoint operator is
normal.

Let us now give some examples of the adjoint operators.

Example 2.79 Let us return to the operator of multiplication by a function consid-
ered earlier in Examples 2.7 and 2.27. Let the operator T : L2(a,b)→ L2(a,b) be
defined on a whole space L2(a,b) by the formula

T f (x) = G(x) · f (x),

where G = G(x) is a given function continuous on the closed interval [a,b]. As has
been shown earlier, this operator is bounded in L2(a,b). Since D(T ) = L2(a,b), then
the adjoint operator exists. Let us find it.

For all f ∈ L2(a,b) and all g ∈ D(T ∗) we have 〈T f ,g〉= 〈 f ,T ∗g〉. That is,∫ b

a
G(x) f (x)g(x)dx =

∫ b

a
f (x)T ∗g(x)dx,

or ∫ b

a
f (x)

[
G(x)g(x)−T ∗g(x)

]
dx = 0,

this equality holds for all f ∈ L2(a,b). Then we obtain (e.g. by Theorem 2.19) that
G(x)g(x)−T ∗g(x) = 0 or, that is the same, T ∗g(x) = G(x)g(x). Since all the above
calculations are true for all g ∈ L2(a,b), we have D(T ∗) = L2(a,b).

So, to the operator T f (x) = G(x) · f (x) defined on the whole space L2(a,b) the
adjoint operator is the operator

T ∗g(x) = G(x)g(x),

which is also defined on the whole space L2(a,b).
It is clear that this operator is self-adjoint, if and only if G(x)=G(x), that is, when

G(x) is a real-valued function. However it is clear that for any G(x) the operator T
is normal. In particular, hence we also get an example of a non-self-adjoint operator
being normal. �
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Example 2.80 Let X =Y =Cn be the n-dimensional space of complex columns (see
Example 1.2). Consider the linear operator y = Ax given everywhere on Cn by the
square matrix A = (ai j)

n
i, j=1, where the coefficients ai j are complex numbers:

yi =
n

∑
j=1

ai jx j, i = 1, . . . ,n. (2.80)

Here x = (x1,x2, ...,xn) and y = (y1,y2, ...,yn).
Since the space Cn is a Hilbert space, it is self-dual: (Cn)∗ = Cn. Let z =

(z1,z2, ...,zn) be a linear functional on Cn. Since its action on the element Ax is
expressed by their inner product (the Riesz theorem), we get

〈Ax,z〉=
n

∑
i=1

yizi =
n

∑
i=1

(
n

∑
j=1

ai jx j

)
zi =

n

∑
j=1

x j

(
n

∑
i=1

ai jzi

)
= 〈x,A∗z〉.

This defines the adjoint operator ω = A∗z acting by the formula

ωi =
n

∑
j=1

a jiz j, i = 1, . . . ,n. (2.81)

Comparing (2.80) and (2.81), it is easy to see that the adjoint operator A∗ is given by
the matrix transposed to the matrix A, with complex-adjoint elements. It is clear that
A∗∗ = (A∗)∗ = A, which we already know from the general theory.

The operator A will be self-adjoint (that is, A∗ = A ) if and only if ai j = a ji for all
i, j = 1, . . . ,n. In particular, we would have aii = aii, that is, only real coefficients are
located on the main diagonal of the self-adjoint matrix. The rest (outside the main
diagonal) of the elements of the matrix can also be complex. So, for example, the
2×2 matrix

A0 =

(
1 i
−i 2

)
(2.82)

is self-adjoint.
Consider now the question of when will a matrix operator A be normal?
For simplicity of calculations consider the two-dimensional space C2 and matrix

operators in it, given by the square 2×2 matrices. Then

A =

(
a11 a12
a21 a22

)
, A∗ =

(
a11 a21
a12 a22

)
.

Calculate the multiplication of the matrices AA∗ and A∗A:

AA∗ =
(

a11 a12
a21 a22

)(
a11 a21
a12 a22

)
=

(
a11a11 +a12a12 a11a21 +a12a22
a21a11 +a22a12 a21a21 +a22a22

)
,

A∗A =

(
a11 a21
a12 a22

)(
a11 a12
a21 a22

)
=

(
a11a11 +a21a21 a11a12 +a21a22
a12a11 +a22a21 a12a12 +a22a22

)
.

The operator A will be normal if and only if A∗A = AA∗, that is, if the coefficients
of the matrices AA∗ and A∗A coincide. Comparing the above expressions for these
matrices, we obtain conditions of normality:
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(1) |a11|2 + |a12|2 = |a11|2 + |a21|2⇐⇒ |a12|= |a21|;

(2) a11a21 +a12a22 = a11a12 +a21a22;

(3) a21a11 +a22a12 = a12a11 +a22a21;

(4) |a21|2 + |a22|2 = |a12|2 + |a22|2 ⇐⇒ |a12|= |a21|.

One sees that conditions (1) and (4) above coincide, while equalities (2) and (3)
are complex-adjoint and, consequently, also coincide. Thus, the operator A will be
normal if and only if the following two conditions hold:

(a11−a22)a21 = (a11−a22)a12 and |a12|= |a21|. (2.83)

If the operator A is self-adjoint, that is, ai j = a ji , then conditions (2.83) automat-
ically hold.

However, the class of the normal operators is wider than the class of the self-
adjoint ones. So, for example, the operator given by the matrix

A1 =

(
i −1
1 2i

)
(2.84)

is normal (satisfies condition (2.83)), although it is not self-adjoint.
This example has the following generalisation. If a (nonzero) operator A is self-

adjoint, then the operator B = i ·A (where i is an imaginary unit) is not self-adjoint:

B∗ = (iA)∗ = ī ·A∗ =−i ·A∗ =−i ·A =−B 6= B,

although it is normal:

B∗B = (iA)∗(iA) = īA∗iA = A∗A = AA∗ = iAīA∗ = (iA)(iA)∗ = BB∗.

In the above example (2.84), the operator A1 is obtained from the self-adjoint
operator (2.82) by multiplying by the imaginary unit: A1 = i ·A0, and therefore is
normal, although it is not self-adjoint. �

Example 2.81 Let X = Y = L2(a,b). Consider the integral operator introduced ear-
lier in Examples 2.11 and 2.68:

K f (x) =
∫ b

a
k(x, t) f (t)dt, (2.85)

where k = k(x, t) ∈ L2 ((a,b)× (a,b)). As has been shown earlier, the operator K :
L2(a,b)→ L2(a,b) is a Hilbert-Schmidt operator and, therefore, it is defined on the
whole space L2(a,b) and is compact. We will now find the operator adjoint to the
operator K.

Since L2(a,b) is the Hilbert space, then for all f ,g∈ L2(a,b) we have the follow-
ing chain of equalities

〈K f ,g〉=
∫ b

a
K f (x)g(x)dx =

∫ b

a

{∫ b

a
k(x, t) f (t)dt

}
g(x)dx
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=
∫ b

a

{∫ b

a
k(x, t)g(x)dx

}
f (t)dt =

∫ b

a
f (t)
{∫ b

a
k(x, t)g(x)dx

}
dt = 〈 f ,K∗g〉 .

Consequently, the adjoint operator K∗ is also the integral operator defined on the
whole space L2(a,b) and is given by the formula

Kg(x) =
∫ b

a
k(t,x)g(t)dt.

Herewith the kernel of the integral operator K∗ is a function which is complex-
conjugate and transposed to the kernel of the operator K. It is easy to see that K∗, as
well as K, is the Hilbert-Schmidt operator. It is also clear that K∗∗ = (K∗)∗ = K, that
demonstrates the conclusions of the general theory.

The operator K is a self-adjoint operator if and only if

k(x, t) = k(t,x), ∀x, t ∈ [a,b].

Let us find normality conditions of the operator K. We calculate

K∗K f (x) =
∫ b

a
k(t,x)(K f )(t)dt =

∫ b

a
k(t,x)

(∫ b

a
k(t,s) f (s)ds

)
dt =

=
∫ b

a

(∫ b

a
k(t,x)k(t,s)dt

)
f (s)ds,

that is, the operator K∗K is also the integral operator

K∗K f (x) =
∫ b

a
k1(x,s) f (s)ds with the kernel k1(x,s) =

∫ b

a
k(t,x)k(t,s)dt.

Calculating similarly, we find

KK∗ f (x) =
∫ b

a
k∗1(x,s) f (s)ds, where k∗1(x,s) =

∫ b

a
k(x, t)k(s, t)dt.

The operator K is a normal operator if k1(x,s) ≡ k∗1(x,s), that is, we obtain the
normality condition of the operator K:∫ b

a
k(t,x)k(t,s)dt =

∫ b

a
k(x, t)k(s, t)dt, ∀x,s ∈ [a,b]. (2.86)

Condition (2.86) is satisfied for self-adjoint kernels k(x, t) = k(t,x). Therefore,
any self-adjoint integral operator is automatically normal, that confirms the general
theory. However not any normal operator is self-adjoint. A trivial example of this
fact is the integral operator K2 with the kernel k2(x, t) = i · k(t,x), where k(x, t) is a
self-adjoint kernel. It is easy to see that K2 is not self-adjoint, although it is a normal
operator.

As we see, the class of normal operators is wider than the class of the self-adjoint
ones. However these classes are sufficiently close to each other, which allows one
to transfer many properties of the class of the self-adjoint operators to the normal
operators. �
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Example 2.82 Consider a particular case of operator (2.85), when an integral oper-
ator in L2(a,b) is a Volterra operator of the triangular form:

K f (x) =
∫ x

a
k(x, t) f (t)dt, where k ∈ L2((a,b)× (a,b)). (2.87)

This operator has been considered earlier in Example 2.72. We have proved that it is
a Hilbert-Schmidt operator and a Volterra operator. Let us find the operator adjoint
to operator (2.87). Since this operator is represented by the integral with the upper
limit variable, then for this we need to bring it to the form (2.85). Let us introduce
notations

k1(x, t) = θ(x− t)k(x, t) =
{

k(x, t), x≥ t,
0, x < t. (2.88)

Then k1 ∈ L2((a,b)× (a,b)) and the operator K is represented in the form

K f (x) =
∫ b

a
k1(x, t) f (t)dt

corresponding to the form (2.85).
The operator adjoint to the operator K has the form

K∗g(x) =
∫ b

a
k1(t,x)g(t)dt.

Using representation (2.88), we find

k1(t,x) = θ(t− x)k(t,x) =
{

0, x≥ t,
k(x, t), x < t.

Therefore, the operator adjoint to the operator K has the form:

K∗g(x) =
∫ b

x
k(t,x)g(t)dt.

This operator as well as (2.87) is integral (note that it is with variable lower
limit), is defined on the whole space L2(a,b), and will be a Hilbert-Schmidt operator
(consequently, it is also compact). Unlike the operators of the general form (2.85), in
this case not only the kernel turns out to be complex conjugate and transposed, but
also integration limits change. �

All the theorems and examples considered above apply only to the bounded
operators defined on the whole space. The case when an operator is unbounded or
D(A) 6= X , turns out to be rather complicated and requires a separate exposition.

2.19 Adjoint to unbounded operators
For the simplicity of exposition further considerations will be held only in Hilbert

spaces. As has been indicated earlier, the Hilbert space is self-dual.
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So, let a linear (bounded or unbounded) operator A with a domain D(A)⊂ H be
given in a Hilbert space H. Assume that the domain of the operator is dense in the
space H, that is, D(A) = H. We will dwell on the importance of this a little later.

Fixing D(A), we introduce the set D∗ ⊂H consisting of such elements v ∈H, for
which there exists an element ϕ ∈ H such that the equality

〈Au,v〉= 〈u,ϕ〉, ∀u ∈ D(A) (2.89)

holds. It is clear that the set D∗ is not empty, since it contains at least the zero element.
Let us show that the set D∗ is a linear space in H. Indeed, if v1,v2 ∈D∗, then for

them there exist corresponding ϕ1,ϕ2 ∈ H such that (2.89) holds, that is,

〈Au,v1〉= 〈u,ϕ1〉, 〈Au,v2〉= 〈u,ϕ2〉, ∀u ∈ D(A).

Then any of their linear combinations v̂ = αv1 +βv2 also belong to D∗, since for v̂
there exists ϕ̂ ∈ H such that (2.89) holds. This element is ϕ̂ = αϕ1 +βϕ2:

〈Au,αv1+βv2〉=α〈Au,v1〉+β 〈Au,v2〉=α〈Au,ϕ1〉+β 〈Au,ϕ2〉= 〈Au,αϕ1+βϕ2〉.

Thus, we have shown that D∗ is indeed a linear space in H.
So, the linear space D∗ consists of those elements v ∈ H, for which there exists

the element ϕ ∈ H such that (2.89) holds.
Let us now show that if such element ϕ ∈ H exists, then it is defined uniquely.

Suppose the contrary: let there be two such elements ϕ1,ϕ2 ∈ H corresponding to
one element v ∈ H in equality (2.89), that is, 〈Au,v〉 = 〈u,ϕ1〉 = 〈u,ϕ2〉. But then
〈u,ϕ1−ϕ2〉= 0 for all u ∈ D(A). That is, the element ϕ1−ϕ2 ∈ H has turned out to
be orthogonal to all elements from D(A). Since D(A) = H, then by Theorem 2.19 we
have ϕ1−ϕ2 = 0, that is, ϕ1 = ϕ2.

Thus, the density in H of the domain of the operator provides the uniqueness of
the choice of the element ϕ ∈ H.

In the end we have got that equality (2.89) gives to each element from the linear
space D∗ a uniquely determined element ϕ ∈H. That is, in the space H some operator
A∗ : H→ H, ϕ = A∗v, with the domain D(A∗) = D∗ is given by equality (2.89). The
operator A∗ is called the adjoint operator to A and satisfies the equality

〈Au,v〉= 〈u,A∗v〉, ∀u ∈ D(A) and ∀v ∈ D(A∗). (2.90)

This operator is linear. Indeed, for any linear combination of elements v1,v2 ∈D∗

we have for all u ∈ D(A) that

〈u,A∗(αv1 +βv2)〉= 〈Au,αv1 +βv2〉

= α〈Au,v1〉+β 〈Au,v2〉= 〈u,αA∗v1 +βA∗v2〉,

so that
A∗(αv1 +βv2) = A∗v1 +βA∗v2.

All the above-mentioned properties can be summarised in the form of a theorem:
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Theorem 2.83 Let A be a linear operator in a Hilbert space H with the domain
D(A) dense in H. Then there exists a uniquely defined linear operator A∗ : H → H
adjoint to the operator A. For all u ∈D(A) and for all v ∈D(A∗), the equality (2.90)
holds.

An important difference in the definition of the adjoint operator in the general
case from the definition of the adjoint operator for a bounded operator, is that equality
(2.90) holds not for all u,v ∈ H, but only for all u ∈ D(A) and for all v ∈ D(A∗). The
domain D(A∗) should be understood as the largest possible linear space for which
(2.90) holds.

In the particular case when the operator A is bounded and D(A) = H, both above
definitions coincide. The definition of a self-adjoint operator has the same difference
for the general and bounded cases.

Consider a linear operator A with a domain dense in H. Consequently, an adjoint
operator A∗ exists. If

D(A)⊂ D(A∗) and Au = A∗u for all u ∈ D(A),

then the operator A is called symmetric. That is, the operator A is called symmetric
if A∗ is an extension of the operator A.

Since for the symmetric operator D(A) ⊂ D(A∗) and D(A) = H, we also have
D(A∗) = H. Consequently, by Theorem 2.83, there exists an operator adjoint to A∗,
that is, A∗∗ = (A∗)∗. This fact is especially important, for example, for the theory of
extensions of symmetric operators.

If A = A∗, then the operator A is called self-adjoint. Unlike in the bounded oper-
ators case, in the general case it is required to have not only the equality of actions
of the operators A and A∗, but also the equality of their domains:

D(A) = D(A∗).

We can also say that a symmetric operator will be self-adjoint if D(A) = D(A∗).
The following important property of the adjoint operator is its closedness.

Theorem 2.84 Let A be a linear operator with the domain dense in a Hilbert space
H. Then:

1. The operator A∗ adjoint to A is closed, although the operator A does not have
to be closed;

2. If the operator A admits a closure A, then (A)∗ = A∗, that is, adjoint operators
to the operator A and its closure coincide;

3. If the operator A∗∗ exists, then A⊂ A∗∗;

4. If the operator A admits a closure A, then the operator A∗∗ exists and is the
closure of the operator A: A∗∗ = A. In particular, if A is closed and D(A) = H,
then A∗∗ = A;
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5. If the operator A is invertible, D(A) and D(A−1) are dense in H (so that A∗

and (A−1)∗ exist), then (A∗)−1 = (A−1)∗.

In particular, from this theorem it follows that a self-adjoint operator is necessar-
ily closed and for all u,v ∈ D(A) the equality

〈Au,v〉= 〈u,Av〉

holds. �
The fifth point of Theorem 2.84 is very useful in practice and one conveniently

formulates it using the “algebraic” language. Let us draw the following diagram:

A ∗⇒ A∗

⇓ (−1) ↓ (−1)

A−1 ∗⇒ (A−1)∗

in which the horizontal lines represent the transition to the adjoint operator, and the
verticle ones represent the transition to the inverse operator.

Now the statement of Theorem 2.84, Part 5, can be reformulated in the following
way: If for a given operator A the operations drawn in the diagram by double arrows
are well-defined, then the single arrow complements the diagram to the commutative
one. �

The following theorem indicates the influence of the boundedness of the operator
on the domain of the adjoint one.

Theorem 2.85 The equality D(A∗) = H holds if and only if the operator A is
bounded on D(A). Then also A∗ ∈L (H,H) and ‖A∗‖= ‖A‖.

Indeed, in this case it follows from the results of Section 2.18, there exists the
operator adjoint to A∗, that is, A∗∗ = (A∗)∗ and A∗∗ ∈ L (H,H). However the oper-
ators A and A∗∗ cannot coincide, since A∗∗ is defined on the whole space H, and A is
given only on D(A). The thing is that the operator A∗∗ will be necessarily closed, and
the operator A (by virtue of the boundedness) will be closed if and only if D(A) = H.
This is the condition for the coincidence of A and A∗∗. �

Let us introduce some more facts which will be important in the sequel.

Theorem 2.86 Let A and B be linear operators in a Hilbert space H with domains
dense in H. Then operators A∗ and B∗ exist, and if B ⊂ A (that is, A is an extension
of B), then A∗ ⊂ B∗.

Theorem 2.87 If a linear operator A with a domain dense in H is well-posed (that
is, A−1 exists, is defined on the whole space H, and is bounded), then (A∗)−1 exists,
is defined on the entire space H, and is bounded. That is, the operator A∗ is also
well-posed. Then also (A∗)−1 = (A−1)∗.
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For practical applications in investigating particular operators it is rather useful
to introduce the following terminology.

Let an operator A with a domain dense in H be given in a Hilbert space H. An
operator A+ is called the formally adjoint operator to the operator A, if for all u ∈
D(A) and v ∈ D(A+) the equality

〈Au,v〉= 〈u,A+v〉

holds.
It is clear that the formally adjoint operator is not defined uniquely. Indeed, any

restriction of the operator A+ is also formally adjoint to the operator A. That is, the
domain of the formally adjoint operator can turn out to be smaller than the linear
space D∗ from the definition of the adjoint operator. Now it is clear that the (real)
adjoint operator A∗ to A is the maximal extension among all adjoint operators {A+}.

Since the operator A∗ is also formally adjoint to A, the (real) adjoint operator A∗

to A coincides with that formally adjoint operator which has a maximum domain.
Let us introduce now some examples of constructing adjoint operators to

unbounded ones.

Example 2.88 Let us return to the operator considered earlier in Example 2.43. In
the Hilbert space L2(0,1), consider the linear operator T , the action of which is given
on the whole space D(T ) =C[0,1] by the formula

T f (x) = x f (0), ∀ f ∈ D(T ).

As is shown in Example 2.43, this operator is not closed and does not admit a
closure. Let us find the operator adjoint to T . Since the domain D(T ) = C[0,1] is a
linear space dense in L2(0,1), the adjoint T ∗ exists.

By the definition of the adjoint operator for all functions f ∈D(T ) and g∈D(T ∗)
the equality 〈T f ,g〉= 〈 f ,T ∗g〉 holds, that is,

f (0)
∫ 1

0
xg(x)dx =

∫ 1

0
f (x)T ∗g(x)dx. (2.91)

This equality should hold for all f ∈ D(T ), including those f ∈ C[0,1], which
have f (0) = 0. Therefore for such f (x) from (2.91) we get∫ 1

0
f (x)T ∗g(x)dx = 0 (2.92)

for all g ∈ D(T ∗) and for all f ∈C[0,1]∩{ f (0) = 0}.
But the linear space C[0,1]∩ { f (0) = 0} is dense in L2(0,1). Therefore from

(2.92) we get
T ∗g(x) = 0 (2.93)

for all g ∈ D(T ∗). Thus, we have found the action of the operator T ∗. Let us now
define its domain.
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Taking into account (2.93), from (2.91) we obtain f (0)
∫ 1

0 xg(x)dx = 0 for all
f ∈ D(T ), including for f such that f (0) 6= 0 . Consequently,

∫ 1
0 xg(x)dx = 0 for all

g ∈ D(T ∗). That is, the domain of the adjoint operator is

D(T ∗) =
{

g ∈ L2(0,1) :
∫ 1

0
xg(x)dx = 0

}
. (2.94)

So, the operator T ∗g(x) = 0 with the domain (2.94) is adjoint to the operator
T f (x) = x f (0) with the domain D(T ) = C[0,1]. However the operator T ∗ is not
“zero” in the full sense of this word. Taking into account its domain, the action of the
operator can be also written in the form

T ∗g(x) =
∫ 1

0
xg(x)dx.

Note that the domain (2.94) of the adjoint operator T ∗ is not dense in the space
L2(0,1), since all functions g ∈ D(T ∗) are orthogonal to the element ϕ(x) = x ∈
L2(0,1), that is, g ⊥ ϕ . Therefore, an operator T ∗∗ does not exist. But it should not
exist, because, as shown in Example 2.43, the operator T is not closed and does not
admit the closure. This illustrates item (4) of Theorem 2.84. �

Example 2.89 Let us return to the differentiation operator L : L2(a,b)→ L2(a,b)
considered in Examples 2.36 and 2.55. The domain of the operator is

D(L) =
{

u ∈ L2
1(a,b) : u(a) = u(b) = 0

}
,

and its action is given by the formula

Lu(x) =
d
dx

u(x), a < x < b.

Earlier it has been shown that the operator L is linear, is defined on all functions
from its domain, is unbounded as an operator from the space L2(a,b) to L2(a,b), and
is not well-posed (since it is not everywhere solvable, although the inverse operator
exists and is bounded on R(L)), and also is closed in the space L2(a,b). Let us find
the operator adjoint to L.

It is clear that D(L) = L2(a,b) and, therefore, L∗ exists. Since for all u ∈ D(L)
and for all v ∈ L2

1(a,b) we have

〈Lu,v〉=
∫ b

a
u′(x)v(x)dx = u(b)v(b)−u(a)v(b)−

∫ b

a
u(x)v′(x)dx≡

〈
u,− d

dx
v
〉
,

any function v∈ L2
1(a,b) belongs to D(L∗), that is, L2

1(a,b)⊂D(L∗) and L∗v=− d
dx v.

Let us show that in fact L2
1(a,b) = D(L∗).

Let v ∈ D(L∗) be an arbitrary function. Denote L∗v = v∗. It is clear that for any
constant C the identity

v∗(x) =
d
dx

{∫ x

a
v∗(t)dt +C

}
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holds. Then for all u ∈ D(L) we have

〈Lu,v〉= 〈u,v∗〉=
∫ b

a
u(x)v∗(x)dx =

∫ b

a
u(x)

d
dx

{∫ x

a
v∗(t)dt +C

}
dx.

Integrating by parts and taking into account u(a) = u(b) = 0, we find

〈Lu,v〉=−
∫ b

a

{
d
dx

u(x)
}{∫ x

a
v∗(t)dt +C

}
dx.

Since Lu(x) = d
dx u(x), we get from this that

∫ b

a

{
d
dx

u(x)
}{

v(x)+
∫ x

a
v∗(t)dt +C

}
dx = 0 for ∀u ∈ D(L). (2.95)

Choose C such that ∫ b

a

{
v(x)+

∫ x

a
v∗(t)dt +C

}
dx = 0.

Then the function

u0(x) =
∫ x

a

{
v(s)+

∫ s

a
v∗(t)dt +C

}
ds

belongs to D(L).
Since (2.95) holds for all u ∈ D(L), then for the function u0(x), (2.95) takes the

form ∫ b

a

∣∣∣∣v(x)+∫ x

a
v∗(t)dt +C

∣∣∣∣2 dx = 0.

Consequently, v(x)+
∫ x

a v∗(t)dt +C = 0, that is,

v(x) =−
∫ x

a
v∗(t)dt−C. (2.96)

Therefore, any function v ∈ D(L∗) belongs to L2
1(a,b), that is L2

1(a,b) ⊃ D(L∗).
And since we have proved earlier that L2

1(a,b)⊂ D(L∗), we have L2
1(a,b) = D(L∗).

From (2.96) we have that almost everywhere on (a,b) we have d
dx v(x) =−v∗(x).

Therefore, L∗v =− d
dx v.

So, we have shown that the differential operator L∗v = − d
dx v with the domain

D(L∗) = L2
1(a,b) is adjoint to the differential operator Lu(x) = d

dx u(x) with the
domain D(L) =

{
u ∈ L2

1(a,b) : u(a) = u(b) = 0
}

.
According to Theorem 2.84, Part 4, there exists the operator L∗∗ = (L∗)∗, and

by the closedness of the operator L the equality L∗∗ = L holds. That is, the operator
Lu(x) = d

dx u(x) with the domain D(L) =
{

u(x) ∈ L2
1(a,b) : u(a) = u(b) = 0

}
is the

operator adjoint to the operator L∗v =− d
dx v with the domain D(L∗) = L2

1(a,b). �
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Here, a formally adjoint operator to the operator L will be, for example, any of
operators L+

j v =− d
dx v with the following domains:

• D(L+
1 ) =

{
v ∈ L2

1(a,b) : v(a) = v(b) = 0
}

;

• D(L+
2 ) =

{
v ∈ L2

1(a,b) : v(a) = 0
}

;

• D(L+
3 ) =

{
v ∈ L2

1(a,b) : αv(a)+βv(b) = 0
}

;

• D(L+
4 ) =

{
v ∈ L2

k(a,b)
}
, k ≥ 1.

This follows easily from the fact that D(L+
j )⊂ D(L∗), j = 1,2,3,4.

Example 2.90 Consider the operator L : L2(a,b)→ L2(a,b) obtained from the oper-
ator of the previous example by multiplying by the imaginary unit:

Lu(x) = i
d
dx

u(x),

with the domain

D(L) =
{

u(x) ∈ L2
1(a,b) : u(a) = u(b) = 0

}
.

Similarly to the previous example, it is easy to prove that the operator L∗v(x) =
i d

dx v(x) with the domain D(L∗) = L2
1 is the operator adjoint to the operator L.

It is easy to see that the actions of the operators L and L∗ coincide: Lu = L∗u
for all u ∈ D(L). Since D(L) ⊂ D(L∗), then the operator L is the restriction of L∗.
Consequently, the operator L is a symmetric operator. Since D(L) 6= D(L∗), L is not
a self-adjoint operator.

The considered example shows the difference between the concepts of symmetric
and self-adjoint operators. �

Example 2.91 Consider now the operator corresponding to a boundary value prob-
lem with general boundary conditions for the first-order differential equation:

Lu(x) = i
d
dx

u(x), D(L) =
{

u ∈ L2
1(a,b) : αu(a)+(1−α)u(b) = 0

}
,

where α ∈ C .
Since the domain of the operator is a linear space, and the action of the operator

is linear, the operator L is linear.
By constructing a test function, similar to Example 2.10, it is easy to show that

the operator L is unbounded as an operator on L2(a,b).
Let us find the operator adjoint to L. It is clear that D(L) = L2(a,b), therefore, L∗

exists. For all functions u,v ∈ L2
1(a,b), by integration by parts we get

〈Lu,v〉=
∫ b

a
Lu(x) · v(x)dx =

∫ b

a
iu′(x) · v(x)dx = iu(x)v(x)

∣∣∣ba
−
∫ b

a
iu(x) · v′(x)dx = u(b)v(b)−u(a)v(a)+

∫ b

a
u(x) · iv′(x)dx

= u(b)v(b)−u(a)v(a)+ 〈u, i d
dx

v(x)〉.

(2.97)
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Let us introduce the operator

L+v(x) = i
d
dx

v(x), D(L+) =
{

v ∈ L2
1(a,b) : (1−α)v(a)+αv(b) = 0

}
.

Since for all u ∈ D(L) and for all v ∈ D(L+) we have
αu(a)v(b)+(1−α)u(b)v(b) = 0,
αu(b)v(b)+(1−α)u(b)v(a) = 0,
−αu(a)v(a)− (1−α)u(b)v(a) = 0,
−αu(a)v(b)− (1−α)u(a)v(a) = 0,

then summing these equations, we get u(b)v(b)− u(a)v(a) = 0. Therefore, from
(2.97) it follows that 〈Lu,v〉= 〈u,L+v〉 for all u ∈ D(L) and for all v ∈ D(L+). That
is, the operators L and L+ are formally adjoint.

Let us show that L+ is really the adjoint, that is, L+ = L∗. To do this we show
that the operators L and L+ are well-posed and we will use Part 5 of Theorem 2.84.

A general solution of the differential equation

Lu(x) = i
d
dx

u(x) = f (x)

has the form

u(x) =−i
∫ x

a
f (t)dt +C, where C is some constant. (2.98)

Using formula (2.98) with the boundary condition

αu(a)+(1−α)u(b) = 0,

we obtain the equation

0 = αu(a)+(1−α)u(b) = αC+(1−α)

(
−i
∫ b

a
f (t)dt +C

)
,

to find the unknown constant C. Therefore, for any values of the complex coefficient
α we find

C = i(1−α)
∫ b

a
f (t)dt.

Hence and from (2.93) we find the explicit form of the inverse operator to the operator
L,

u(x) = L−1 f (x) =−iα
∫ x

a
f (t)dt + i(1−α)

∫ b

x
f (t)dt. (2.99)

Thus, we have shown that the operator L is well-posed and its inverse has the form
(2.99).

Since the operator L+ has the same structure as the operator L, then by the similar
calculations one easily obtains that L+ is well-posed and its inverse has the form

v(x) = (L+)−1g(x) =−i(1−α)
∫ x

a
g(t)dt + iα

∫ b

x
g(t)dt. (2.100)
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Analysing formulae (2.99) and (2.100), it is easy to note that the operator L−1 is an
integral operator with the integral kernel

k(x, t) =−iαθ(x− t)+ i(1−α)θ(t− x),

and the operator (L+)−1 is an integral operator with the kernel k(t,x). Therefore,
(L+)−1 = (L−1)∗. That is, the operators (L)−1 and (L+)−1 are adjoint.

Recall now the formulation of Part 5 of Theorem 2.84: “If an operator A is
invertible, and D(A) and D(A−1) are dense in H (so that A∗ and (A−1)∗ exist), then
(A∗)−1 = (A−1)∗”.

As the operator A we choose the operator (L)−1. Its domain coincides with the
whole space, the domain of its inverse operator (that is, of the operator L) is dense in
L2(a,b). Therefore from Part 5 of Theorem 2.84 it follows that (A∗)−1 = (A−1)∗, that
is, (L)∗ =

(
(L−1)∗

)−1
=
(
(L+)−1

)−1
= L+. Thus, we have shown that the formally

adjoint operator is really the adjoint, that is, L+ = L∗.
The operator (L∗)−1 has the same structure as the operator (L)−1. Therefore,

we can easily describe the action (differential expression) and the domain of the
operator L∗. Comparing (2.99) and (2.100), we see that D(L∗) is obtained from D(L)
by replacing α by (1−α). So, we have shown that the linear operator given by the
differential expression L∗v(x) = i d

dx v(x) on the domain

D(L∗) =
{

v ∈ L2
1(a,b) : (1−α)u(a)+αu(b) = 0

}
is adjoint to L.

Comparing now the boundary conditions of the domains of the adjoint operator,
it is easy to see that the operator L will be self-adjoint if and only if the equality

α +α = 1 or, which is the same, Re(α) = 1/2,

holds.
Note that a formally adjoint operator is defined in a non-unique way. The fact that

in our case the formally adjoint operator and the real adjoint operator have coincided
is caused by a special choice of the operator L+. Under another choice of the operator
L+, it does not necessarily coincide with the operator L∗. �

The example considered earlier demonstrates the possibility of constructing the
exact domain of the adjoint operator to a given well-posed operator. That is, in the
case when the operator is well-posed it is often easier to find its adjoint operator.
To do this, it is necessary to construct the inverse operator and to find the operator
adjoint to it. The following example will also demonstrate a similar approach.

Example 2.92 Consider now the operator corresponding to a boundary value prob-
lem with boundary conditions of Sturm type for the second-order differential operator

Lu(x) =− d2

dx2 u(x),
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with the domain

D(L) =
{

u ∈ L2
2(a,b) : a1u′(a)+a2u(a) = 0, b1u′(b)+b2u(b) = 0

}
,

where a1,a2,b1,b2 ∈ C. The boundary conditions of such kind are called conditions
of Sturm type, since in the first of conditions only values of the function and its
derivative at the point a participate, and in the second one only values of the function
and its derivative at the point b participate. Such boundary conditions are also called
separated boundary conditions.

Our goal now is to define the adjoint operator to the operator L. First, we note
that the adjoint operator exists, since the domain D(L) is dense in L2(a,b).

Second, we show that the operator is well-posed. A general solution of the dif-
ferential equation

Lu(x) =−u′′(x) = f (x)

has the form
u(x) =−

∫ x

a
(x− t) f (t)dt +C1(x−a)+C2, (2.101)

where C1, C2 are some (yet) arbitrary constants.
Combining formula (2.101) with the boundary conditions

a1u′(a)+a2u(a) = 0, b1u′(b)+b2u(b) = 0,

we obtain the system of linear equations{
a1C1 +a2C2 = 0,
[b1 +b2(b−a)]C1 +b2C2 =

∫ b
a [b1 +b2(b− t)] f (t)dt,

(2.102)

to find the unknown constants C1, C2. This system has a unique solution if and only
if its determinant is different from zero:

4=

∣∣∣∣ a1 a2
b1 +b2(b−a) b2

∣∣∣∣= a1b2−a2b1−a2b2(b−a) 6= 0. (2.103)

Condition (2.103) is a necessary and sufficient condition for the unique solvabil-
ity of the system of linear equations (2.102). Everywhere in what follows we assume
that this condition holds. Then the solution of system (2.102) can be written in the
form 

C1 =− a2
4

b∫
a
[b1 +b2(b− t)] f (t)dt,

C2 =
a1
4

b∫
a
[b1 +b2(b− t)] f (t)dt.

Substituting now the obtained result into formula (2.101), we get the explicit form of
the solution of our problem:

u(x) =−
∫ x

a
(x− t) f (t)dt− a2(x−a)−a1

4

∫ b

a
[b1 +b2(b− t)] f (t)dt.



102 Spectral geometry of partial differential operators

Consequently, the inverse operator has the form

L−1 f (x) =
∫ b

a
k(x, t) f (t)dt, (2.104)

where the kernel of the integral operator is given by the formula

k(x, t) =−(x− t)θ(x− t)− [a2(x−a)−a1][b1 +b2(b− t)]
4

. (2.105)

It is clear that the integral kernel (2.105) is a continuous and bounded function.
Therefore, the operator (2.104) is defined on the whole space L2(a,b) and is bounded,
that is, the operator L is well-posed.

Let us find the operator adjoint to the operator L−1. The operator (L−1)∗ will be
also the integral operator

(L−1)∗g(x) =
b∫

a

k(t,x)g(t)dt,

and its kernel is the function

k(t,x) =−(t− x)θ(t− x)−
[
b1 +b2(b− x)][a2(t−a)−a1

]
4

. (2.106)

Therefore, the operator (L−1)∗ is represented in the form

(L−1)∗g(x) =
∫ b

x
(x− t)g(t)dt−

[
b1 +b2(b− x)

]
4

∫ b

a
[a2(t−a)−a1]g(t)dt.

By Part 5 of Theorem 2.84 the operators (L−1)∗ and (L∗)−1 coincide. Consider
now the function v(x) which is an image under the action of the operator (L∗)−1:
v(x) = (L∗)−1g(x), that is,

v(x) =
∫ b

x
(x− t)g(t)dt−

[
b1 +b2(b− x)

]
4

∫ b

a
[a2(t−a)−a1]g(t)dt. (2.107)

Here, when the functions g(x) vary along the whole space L2(a,b), the functions
v(x) respectively vary along the whole range of the operator (L∗)−1, that is, the whole
domain of the operator L∗. Thus, to describe the operator L∗ it is necessary to study
the whole set of functions v(x), when g(x) varies over the whole space L2(a,b).

It is easy to see that the function v(x) satisfies the differential equation

− d2

dx2 v(x) = g(x). (2.108)

Therefore, the action of the adjoint operator L∗ is given by the differential expression

L∗v(x) =− d2

dx2 v(x).
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Let us describe the domain of the operator L∗. It is easy to see that v ∈ L2
2(a,b)

holds for all g ∈ L2(a,b). Therefore, D(L∗)⊂ L2
2(a,b).

Let us now find the boundary conditions for v(x). To do this, in the expression
(2.107) instead of the function g(x) we substitute its value from (2.108). Then by a
direct calculation we get

v(x) =
∫ b

x
(t− x)

d2

dt2 v(t)dt +
[b1 +b2(b− x)]

4

∫ b

a
[a2(t−a)−a1]

d2

dt2 v(t)dt

=
∫ b

x
d
[
(t− x)v′(t)− v(t)

]
+

[b1 +b2(b− x)]
4

∫ b

a
d
(
[a2(t−a)−a1]v′(t)−a2v(t)

)
= (b− x)v′(b)− v(b)+ v(x)+

[b1 +b2(b− x)]
4

{
[a2(b−a)−a1]v′(b)

−a2v(b)+a1v′(a)+a2v(a)
}
= v(x)+

{
bv′(b)− v(b)

+
[b1 +b2b]
4

[
[a2(b−a)−a1]v′(b)−a2v(b)+a1v′(a)+a2v(a)

]}
−x
{

v′(b)+
b2

4
[
[a2(b−a)−a1]v′(b)−a2v(b)+a1v′(a)+a2v(a)

]}
.

Note that in the obtained equality the function v(x) cancels from both sides, and
the remaining functions are first-order polynomials, so that the equality to zero for
them means the equality to zero of the coefficients. Therefore, the obtained equality
is equivalent to two equalities:

bv′(b)− v(b)+ [b1+b2b]
4

[
[a2(b−a)−a1]v′(b)−a2v(b)+a1v′(a)+a2v(a)

]
= 0,

v′(b)+ b2
4

[
[a2(b−a)−a1]v′(b)−a2v(b)+a1v′(a)+a2v(a)

]
= 0.

Multiplying both equations by 4 = a1b2−a2b1−a2b2(b−a) 6= 0, the system can
be written in the form a2[b1v′(b)+b2v(b)]−b2[a1v′(a)+a2v(a)] = 0,

(a1 +a2a)[b1v′(b)+b2v(b)]− (b1 +b2b)[a1v′(a)+a2v(a)] = 0.
(2.109)

If one considers the obtained system as a system of linear equations with respect to
unknowns

[
b1v′(b)+b2v(b)

]
and [a1v′(a)+a2v(a)], then its determinant coincides

with4:∣∣∣∣ a2 −b2
(a1 +a2a) −(b1 +b2b)

∣∣∣∣= a1b2−a2b1−a2b2(b−a) =4 6= 0.
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Therefore, the system (2.109) has only the zero solution, that is,

b1v′(b)+b2v(b) = 0, a1v′(a)+a2v(a) = 0. (2.110)

These are the required boundary conditions, which any function from the domain of
the operator L∗ satisfies.

Thus, we have obtained that

D(L∗)⊂
{

v ∈ L2
2(a,b) : a1v′(a)+a2v(a) = 0, b1v′(b)+b2v(b) = 0

}
. (2.111)

Let us show now that in fact in (2.111) the equality holds, not just an inclusion. To
do this, we show that the operator given on the domain coinciding with the right-hand
part (2.111), is the required operator L∗.

We denote by L+ the linear operator given by the differential expression

L+v(x) =− d2

dx2 v(x)

on the domain

D(L+) =
{

v ∈ L2
2(a,b) : a1v′(a)+a2v(a) = 0, b1v′(b)+b2v(b) = 0

}
.

In view of the embedding (2.111) it is clear that

L∗ ⊂ L+. (2.112)

That is, the operator L∗ is a restriction of the operator L+.
On the other hand, for all u ∈ D(L) and for all v ∈ D(L+) we have

〈Lu,v〉=
∫ b

a
Lu(x) · v(x)dx =−

∫ b

a
u′′(x) · v(x)dx =−

∫ b

a
d
[
u′(x) · v(x)

−u(x) · v′(x)
]
−
∫ b

a
u(x) · v′′(x)dx =−

[
u′(b) · v(b)−u(b) · v′(b)

]
+
[
u′(a) · v(a)−u(a) · v′(a)

]
+ 〈u,L+v〉 de f

= B+A+ 〈u,L+v〉.

(2.113)

Let us show that the term B+A in (2.113) is equal to zero.
First we consider B. In the case when b1 = 0, from the boundary conditions it

follows that u(b) = v(b) = 0 and, therefore, B = 0 . Let now b1 6= 0. The boundary
conditions at the point x = b have the form

b1u′(b)+b2u(b) = 0,

b1v′(b)+b2v(b) = 0 or b1v′(b)+b2v(b) = 0.

Multiplying the first equation by v(b), we subtract from it the second equation
multiplied by u(b). We get

b1[u′(b) · v(b)−u(b) · v′(b)] = 0.

Since b1 6= 0, we obtain B = 0.
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The equality A = 0 is proved similarly.
Thus, we have shown that B+A = 0 . Therefore, it follows from (2.113) that

〈Lu,v〉 = 〈u,L+v〉 holds for all u ∈ D(L) and for all v ∈ D(L+). That is, the opera-
tor L+ is formally adjoint to the operator L. Consequently, L∗ ⊃ L+. From this and
(2.111) we obtain the equality L∗ = L+. This is what we wanted to prove.

So, we have shown that the linear operator given by the differential expression
L∗v(x) =− d2

dx2 v(x) on the domain

D(L∗) =
{

v ∈ L2
2(a,b) : a1v′(a)+a2v(a) = 0, b1v′(b)+b2v(b) = 0

}
is adjoint to L.

Comparing now the boundary conditions in the domains of the adjoint operators,
it is easy to see that the operator L will be self-adjoint if and only if the equalities

b1b2−b2b1 = 0 and a1a2−a2a1 = 0

simultaneously hold. This alone ensures that the numbers b1b2 and a1a2 are real
numbers.

Consequently, the coefficients a1, a2, b1, and b2 can always be chosen as real
numbers. To do this, it suffices to multiply the first boundary condition by a1 or by
a2, and multiply the second boundary condition by b1 or by b2.

This case is exactly the problem that was first considered by Sturm for the more
general differential expression

Lu(x) =
d
dx

(
p(x)

d
dx

u(x)
)
+q(x)u(x).

Namely, from the property of the self-adjointness, obtained by Sturm, many fur-
ther spectral properties of the operator L follow. �

The above example is an explicit demonstration of the recipe for constructing the
adjoint operator. We have deliberately outlined this method in such detail to demon-
strate all the steps necessary for the construction of the adjoint operator in a simple
example. Exactly the same method does allow one to find the adjoint operators in
more complicated cases, when even the action and the form of boundary conditions
(and also the class of smoothness of the domain) of the adjoint operator are not clear.

2.20 Two examples of nonclassical problems
In the previous section we found the adjoint operators in problems that are, so to

speak, “classical”. We will now introduce two examples of operators corresponding
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to non-classical problems. And, as we see here, in these cases the adjoint operator
may have quite a different structure than the original operator. We will proceed fol-
lowing the same scheme as above: first we construct the inverse operator, then we
find its adjoint operator, and then we take the inverse again.

Example 2.93 Consider the operator corresponding to a problem with the so-called
“interior” conditions for the second-order differential operator

Lu(x) =− d2

dx2 u(x), D(L) =
{

u ∈ L2
2(0,1) : u(0) = 0, u(1/2) = 0

}
.

Boundary conditions of such form are called interior conditions, since values of the
function at the point x = 1/2 that is interior for the interval (0,1), take part in one of
them.

Our goal is to define the operator adjoint to the operator L. First, we immediately
note that the adjoint operator exists, since the domain D(L) is dense in L2(0,1).

Second, we show that the operator is well-posed. A general solution of the dif-
ferential equation

−u′′(x) = f (x)

has the form
u(x) =−

∫ x

0
(x− t) f (t)dt +C1x+C2, (2.114)

where C1,C2 are some arbitrary (so far) constants.
Combining the boundary conditions

u(0) = 0, u(1/2) = 0,

with the formula (2.114), for finding the unknown constants C1,C2, we obtain the
system of linear equations{

C2 = 0,
1/2C1 +C2 =

∫ 1/2
0 (1/2− t) f (t)dt.

This system has the unique solution

C1 =
∫ 1/2

0
(1−2t) f (t)dt, C2 = 0.

Substituting now the obtained result in formula (2.114), we obtain the explicit form
of the solution of our problem:

u(x) =−
∫ x

0
(x− t) f (t)dt +

∫ 1/2

0
x(1−2t) f (t)dt.

Consequently, the inverse operator has the form

L−1 f (x) =
∫ 1

0
k(x, t) f (t)dt, (2.115)
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where the integral kernel of the integral operator is given by the formula

k(x, t) =−(x− t)θ(x− t)+ x(1−2t)θ(1/2− t). (2.116)

It is clear that the integral kernel (2.116) is a continuous function. Therefore,
the operator L−1 exists, is given by formula (2.115), is defined on the whole space
L2(0,1), and is bounded, that is, the operator L is well-posed.

Let us find the operator adjoint to the operator L−1. The operator (L−1)∗ will also
be the integral operator

(L−1)∗g(x) =
∫ 1

0
k(x, t)g(t)dt,

and its integral kernel is the function

k(x, t) = (x− t)θ(t− x)+ t(1−2x)θ(1/2− x). (2.117)

Therefore, the operator (L−1)∗ has the form

(L−1)∗g(x) =
∫ 1

x
(x− t)g(t)dt +(1−2x)θ(1/2− x)

∫ 1

0
tg(t)dt.

By Part 5 of Theorem 2.84 the operators (L−1)∗ and (L∗)−1 coincide. Consider
now the function v(x) being the image in v(x) = (L∗)−1g(x), that is,

v(x) =
∫ 1

x
(x− t)g(t)dt +(1−2x)θ(1/2− x)

∫ 1

0
tg(t)dt =

=


∫ 1

x (x− t)g(t)dt +(1−2x)
∫ 1

0 tg(t)dt, for x≤ 1/2,

∫ 1
x (t− x)g(t)dt, for x≥ 1/2.

(2.118)

Here, when the functions g(x) vary along the whole space L2(0,1), the functions
v(x) correspondingly vary over the whole image of the operator (L∗)−1, that is, the
whole domain of the operator L∗. Thus, for describing the operator L∗ it is necessary
to investigate the whole set of the functions v(x), when g(x) varies along the whole
space L2(0,1).

From the analysis of formula (2.118) it follows that although the functions v(x)
from the domain of the operator L∗ are continuous for x = 1/2, generally speaking,
they are not continuously differentiable at the point x = 1/2. Obviously, the continu-

ity condition of the first derivative at the point x = 1/2 is
1∫
0

tg(t)dt = 0, that is the

orthogonality condition g(x)⊥x or 〈g(x),x〉= 0. Thus, already at this stage we see a
significant difference with respect to the class of smoothness between the domains of
the operators L and L∗ .

Further, it is easy to see that for x 6= 1/2 the function v(x) satisfies the differential
equation

−v′′(x) = g(x), x 6= 1/2. (2.119)
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Therefore, the action of the operator L∗ is given by the differential expression

L∗v(x) =
d2

dx2 v(x), x 6= 1/2.

Let us now describe the domain of the operator L∗. It is easy to see that v ∈
L2

2(0,1/2)∩L2
2(1/2,1) holds for all g ∈ L2(0,1). Therefore,

D(L∗)⊂ L2
2(0,1/2)∩L2

2(1/2,1).

Let us find boundary conditions satisfied by the functions v(x). To do this, instead
of the function g(x) we substitute its value from (2.119) into expression (2.118).
Then, by a direct calculation, for x < 1/2 we get (we should not forget here that Eq.
(2.119) holds only for x 6= 1/2):

v(x) =
∫ 1

x
(t− x)v′′(t)dt− (1−2x)

∫ 1

0
tv′′(t)dt

=
∫ 1/2

x
(t− x)v′′(t)dt− (1−2x)

∫ 1/2

0
tv′′(t)dt

+
∫ 1

1/2
(t− x)v′′(t)dt− (1−2x)

∫ 1

1/2
tv′′(t)dt

=
∫ 1/2

x
d
[
(t− x)v′(t)− v(t)

]
− (1−2x)

∫ 1/2

0
d
[
tv′(t)− v(t)

]
dt

+
∫ 1

1/2
d
[
(t− x)v′(t)− v(t)

]
− (1−2x)

∫ 1

1/2
d
[
tv′(t)− v(t)

]
dt

= (1/2− x)v′(1/2−0)− v(1/2)+ v(x)

−(1−2x)
{

1/2v′(1/2−0)v(1/2)− v(0)
}

+(1− x)v′(1)− v(1)− (1/2− x)v′(1/2+0)+ v(1/2)

−(1−2x)
{

v′(1)− v(1)−1/2v′(1/2+0)+ v(1/2)
}

= v(x)− v(0)+ x · {2v(0)−2v(1)+ v′(1)}.
Note that in the obtained equality the function v(x) cancels from both sides, and

the rest is a first-order polynomial in the variable x. Its equality to zero means the
equality to zero of its coefficients. Therefore, the obtained equality is equivalent to
the following two equalities:{

v(0) = 0,
v′(1)−2v(1)+2v(0) = 0. (2.120)

Similarly, for x > 1/2 we calculate

v(x) =
∫ 1

x
(t− x)v′′(t)dt =

∫ 1

x
d[(t− x)v′(t)− v(t)] =

= (1− x)v′(1)− v(1)+ v(x) = v(x)+
{

v′(1)− v(1)
}
− x · v′(1).
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As above, in the obtained equality the function v(x) cancels, and the rest is a
first-order polynomial, for which the equality to zero means the equality to zero of
its coefficients. Therefore, the obtained equality is equivalent to the following two
equalities: {

v′(1)− v(1) = 0,
v′(1) = 0. (2.121)

Considering systems (2.120) and (2.121) together, and taking into account the conti-
nuity of the function v(x) at the point x = 1/2, we get

v(0) = 0, v(1) = 0, v′(1) = 0, v(1/2−0) = v(1/2+0). (2.122)

These are the boundary conditions for all functions from the domain of the operator
L∗. Thus, we get that

D(L∗)⊂
{

v ∈ L2
2(0,1/2)∩L2

2(1/2,1) :
v(0) = 0, v(1) = 0, v′(1) = 0, v(1/2−0) = v(1/2+0)

}
. (2.123)

Let us show now that, in fact, we have the equality in (2.123). To do this, we show
that the operator given on the domain, coinciding with the right-hand side of (2.123),
is the required operator L∗.

Let us denote by L+ the operator given by the differential expression L+v(x) =
− d2

dx2 v(x) on the domain

D(L+) =

{
v ∈ L2

2(0,1/2)∩L2
2(1/2,1) :

v(0) = 0, v(1) = 0, v′(1) = 0, v(1/2−0) = v(1/2+0)

}
.

By the embedding (2.123) it is clear that

L∗ ⊂ L+. (2.124)

That is, the operator L∗ is a restriction of the operator L+.
On the other hand, for all u ∈ D(L) and for all v ∈ D(L+) we have

〈Lu,v〉=
∫ 1

0
Lu(x) · v(x)dx =−

∫ 1/2

0
u′′(x) · v(x)dx−

∫ 1

1/2
u′′(x) · v(x)dx

=−
∫ 1/2

0
d
[
u′(x) · v(x)−u(x) · v′(x)

]
−
∫ 1/2

0
u(x) · v′′(x)dx−

∫ 1

1/2
d[u′(x) · v(x)

+u(x) · v′(x)]−
∫ 1

1/2
u(x) · v′′(x)dx =−

[
u′(1/2) · v(1/2)−u(1/2)v′(1/2−0)

]
+
[
u′(0) · v(0)−u(0)v′(0)

]
−
[
u′(1) · v(1)−u(1)v′(1)

]
+
[
u′(1/2) · v(1/2)

+u(1/2)v′(1/2+0)
]
+ 〈u,L+v〉 de f

= A+B+C+D+ 〈u,L+v〉.
(2.125)
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Using the boundary conditions

u ∈ D(L) : u(0) = 0, u(1/2) = 0,

v ∈ D(L+) : v(0) = 0, v(1) = 0, v′(1) = 0, v(1/2−0) = v(1/2+0),

it is easy to show that the terms A+B+C+D in (2.125) are equal to zero.
Therefore, it follows from (2.125) that 〈Lu,v〉 = 〈u,L+v〉 holds for all u ∈ D(L)

and for all v ∈ D(L+). That is, the operator L+ is formally adjoint to the operator L.
Consequently, L+ ⊂ L∗. From this and (2.124), we obtain the equality L∗ = L+.

So, we have shown that the operator adjoint to L is the linear operator given by
the differential expression

L∗v(x) =
d2

dx2 v(x), x 6= 1/2,

on the domain

D(L∗) =
{

v ∈ L2
2(0,1/2)∩L2

2(1/2,1) :
v(0) = 0, v(1) = 0, v′(1) = 0, v(1/2−0) = v(1/2+0)

}
.

Comparing now the domains of the adjoint operators, it is easy to see that they
significantly differ both in the smoothness of the involved functions and in the quan-
tity of conditions which they satisfy. We must note that the problem adjoint to the
problem with “interior” conditions is the problem for which the domain contains
non-smooth functions (the function itself and its first derivative admit an interval
break at an interior point). �

In the following example we will construct the adjoint problem to one more non-
classical problem.

Example 2.94 Consider the operator corresponding to the problem with so-called
integral conditions for the second-order differential operator

Lu(x) =
d2

dx2 u(x),

D(L) =
{

u ∈ L2
2(0,1) : u(0) = 0, u(1) =

∫ 1

0
p(x)u(x)dx

}
,

where p ∈ L2(0,1) is a given real-valued function.
The boundary conditions of such kind are called integral conditions, since in

one of them not only the values of the function at a point, but also the values of the
integral of the unknown function on the whole interval (0,1) appear.

Our goal is to define the operator adjoint to the operator L. First of all, we imme-
diately note that the adjoint operator exists, since the domain is dense in the space
L2(0,1) (this is a consequence of p ∈ L2(0,1)).

Second, we show that the operator is well-posed. A general solution of the dif-
ferential equation

−u′′(x) = f (x),
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has the form
u(x) =−

∫ x

0
(x− t) f (t)dt +C1x+C2, (2.126)

where C1,C2 are some arbitrary (so far) constants.
Combining this formula with the boundary conditions

u(0) = 0, u(1) =
∫ 1

0
p(x)u(x)dx,

we obtain the system of equations for the unknown constants C1,C2:
C2 = 0,

C1

[
1−

1∫
0

sp(s)ds
]
+C2

[
1−

1∫
0

p(s)ds
]
= P,

where P =
1∫
0

[
(1− t)+

1∫
t
(t− s)p(s)ds

]
f (t)dt. This system has a unique solution

provided that ∫ 1

0
sp(s)ds 6= 1. (2.127)

Thus, everywhere in what follows we assume that condition (2.127) holds.
Then, the system for the unknown constants C1,C2 has the unique solution

C1 =
P

1−
∫ 1

0 sp(s)ds
, C2 = 0.

Now substituting this into formula (2.126), we get the explicit form of the solution
of our problem:

u(x) =−
∫ x

0
(x− t) f (t)dt +

∫ 1

0

x
[
(1− t)+

∫ 1
t (t− s)p(s)ds

]
1−

∫ 1
0 sp(s)ds

f (t)dt.

Consequently, the inverse operator has the form

L−1 f (x) =
∫ 1

0
k(x, t) f (t)dt, (2.128)

where the integral kernel of the integral operator is given by

k(x, t) =−(x− t)θ(x− t)+
x
[
(1− t)+

∫ 1
t (t− s)p(s)ds

]
1−

∫ 1
0 sp(s)ds

. (2.129)

Obviously, the kernel (2.129) is a continuous function. Therefore, the operator
(2.128) is defined on the whole space L2(0,1) and is bounded, that is, the operator L
is well-posed.
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Let us find the operator adjoint to the operator L−1. The operator (L−1)∗ will be
also the integral operator

(L−1)∗g(x) =
1∫

0

k(x, t)g(t)dt,

and its kernel is the function

k(x, t) = (x− t)θ(t− x)+
t
[
(1− x)+

∫ 1
x (x− s)p(s)ds

]
1−

∫ 1
0 sp(s)ds

. (2.130)

Therefore, the operator (L−1)∗ has the form

(L−1)∗g(x) =
∫ 1

x
(x− t)g(t)dt +

[
(1− x)+

∫ 1
x (x− s)p(s)ds

]
1−

∫ 1
0 sp(s)ds

∫ 1

0
tg(t)dt.

By Part 5 of Theorem 2.84 the operators (L−1)∗ and (L∗)−1 coincide. Consider now
the function v(x) which is the image in v(x) = (L∗)−1g(x), that is,

v(x) =
∫ 1

x
(x− t)g(t)dt +

[
(1− x)+

∫ 1
x (x− s)p(s)ds

]
1−

∫ 1
0 sp(s)ds

∫ 1

0
tg(t)dt. (2.131)

Here, when the functions g(x) vary along the whole space L2(0,1), the functions
v(x) correspondingly vary along the whole image of the operator (L∗)−1, that is, the
whole domain of the operator L∗. Thus, in order to describe the operator L∗ it is
necessary to investigate the whole set of the functions v(x), when g(x) varies along
the whole space L2(0,1).

First we find an equation to which the function (2.131) satisfies. To do this, we
calculate the first and second derivatives:

v′(x) =
∫ 1

x
g(t)dt−

[
1−

∫ 1
x p(s)ds

]
1−

∫ 1
0 sp(s)ds

∫ 1

0
tg(t)dt, (2.132)

v′′(x) =−g(x)+Ap(x), where A = const =−
∫ 1

0 tg(t)dt

1−
∫ 1

0 sp(s)ds
. (2.133)

From Eq. (2.132) it is easy to see that A= v′(1). Therefore, Eq. (2.133) can be written
in the form

−v′′(x)+ p(x)v′(1) = g(x). (2.134)

Unlike in the previous examples, Eq. (2.134) is not an entirely differential equa-
tion, since it contains the term v′(1). Such equations, which contain (except the func-
tion itself and its derivatives) also traces of the function and/or its derivatives at some
point, are called loaded differential equations.
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Thus, we have shown that the action of the adjoint operator L∗ is given by the
loaded differential expression

L∗v(x) =− d2

dx2 v(x)+ p(x)v′(1). (2.135)

Let us describe now the domain of L∗. It is easy to see that v ∈ L2
2(0,1) holds for

all g ∈ L2(0,1). Therefore, D(L∗)⊂ L2
2(0,1).

Let us find boundary conditions for the functions v ∈ D(L∗). To do this, instead
of the function g(x) we substitute its value from (2.134) into the expression (2.131).
Then, by a direct calculation we get

v(x) =
∫ 1

x
(t− x)[v′′(t)− p(t)v′(1)]dt

+

[
(x−1)+

∫ 1
x (s− x)p(s)ds

]
1−

∫ 1
0 sp(s)ds

∫ 1

0
t[v′′(t)− p(t)v′(1)]dt

=
∫ 1

x
d[(t− x)v′(t)− v(t)]− v′(1)

∫ 1

x
(t− x)p(t)dt

+

[
(x−1)+

∫ 1
x (s− x)p(s)ds

]
1−

∫ 1
0 sp(s)ds

{∫ 1

0
d[tv′(t)− v(t)]dt− v′(1)

∫ 1

0
t p(t)dt

}

= (1− x)v′(1)− v(1)+ v(x)− v′(1)
∫ 1

x
(t− x)p(t)dt

+

[
(x−1)+

∫ 1
x (t− x)p(t)dt

]
1−

∫ 1
0 t p(t)dt

{
v′(1)− v(1)+ v(0)− v′(1)

∫ 1

0
t p(t)dt

}

= v(x)− v(1)+

[
(x−1)+

∫ 1
x (t− x)p(t)dt

]
1−

∫ 1
0 t p(t)dt

{v(0)− v(1)}.

Note that in the obtained equality the function v(x) cancels out. Then, assuming
here first x = 1, and then x = 0, we get{

v(0) = 0,
v(1) = 0. (2.136)

These are indeed the required boundary conditions for functions in the domain of the
operator L∗. Thus, we get that

D(L∗)⊂ {v ∈ L2
2(0,1) : v(0) = 0, v(1) = 0}. (2.137)

Let us show now that, in fact, we have the equality in (2.137). To do this, we
show that the operator given on the domain, given by the right-hand side of (2.137),
is the required operator L∗.
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We denote by L+ the operator given by the expression

L+v(x) =− d2

dx2 v(x)+ p(x)v′(1),

on the domain
D(L+) = {v ∈ L2

2(0,1) : v(0) = 0,v(1) = 0}.
From the inclusion (2.137), it is clear that

L∗ ⊂ L+. (2.138)

That is, the operator L∗ is a restriction of the operator L+.
On the other hand, for all u ∈ D(L) and for all v ∈ D(L+) we have

〈Lu,v〉−〈u,L+v〉=
∫ 1

0
Lu(x) · v(x)dx−

∫ 1

0
u(x) ·L+v(x)dx

=
∫ 1

0

[
−u′′(x) · v(x)+u(x) · v′′(x)

]
dx−

∫ 1

0
u(x) · p(x)v′(1)dx

=
∫ 1

0
d
[
−u′(x) · v(x)+u(x) · v′(x)

]
− v′(1)

∫ 1

0
p(x)u(x)dx

=
[
−u′(1) · v(1)+u(1) · v′(1)

]
−
[
−u′(0) · v(0)+u(0) · v′(0)

]
− v′(1)

∫ 1

0
p(x)u(x)dx.

(2.139)

Taking into account the boundary conditions u ∈ D(L) and v ∈ D(L+):

u ∈ D(L) : u(0) = 0, u(1) =
∫ 1

0
p(x)u(x)dx,

v ∈ D(L+) : v(0) = 0, v(1) = 0,

from (2.137) it is easy to see that 〈Lu,v〉 = 〈u,L+v〉 for all u ∈ D(L) and for all
v ∈ D(L+).

That is, the operator L+ is formally adjoint to the operator L. Consequently, L∗ ⊃
L+. From this and (2.138), we obtain the equality L∗ = L+.

So, we have shown that the operator adjoint to L is the linear operator given by
the loaded differential expression (2.135) on the domain

D(L∗) =
{

v ∈ L2
2(0,1) : v(0) = 0, v(1) = 0

}
.

This example shows that in spite of the fact that the action of the initial operator
L is given by a seemingly self-adjoint expression, the action of the adjoint operator
is given by a different expression. The action is not even completely differential. �

The two considered examples illustrate the complexity of the question of finding
the actual adjoint operator. This is not so apparent if one only considers the classical
boundary value problems. However, when studying non-classical problems (as the
last two examples show) one should be rather careful in dealing with the justification
and the properties of the adjoint problems.



Chapter 3
Elements of the spectral theory of
differential operators

The aim of this chapter is to make a quick introduction to the basics of the spectral
theory of differential operators. We follow the informal style of the previous chapters,
aiming at explaining the main ideas rather than presenting the detailed proofs that can
be found in many excellent books on the subject.

Starting with the basic notions of spectra, we first present the basics of the gen-
eral theory in the case of bounded and unbounded self-adjoint operators. However,
the main further interest for us lies in the non-self-adjoint cases. Here, the notions
or associated eigenfunctions and root spaces naturally appear, also leading to dif-
ferent notions of bases in Hilbert spaces, such as Riesz bases, unconditional bases,
etc. Thus, we spend some time discussing general biorthogonal Riesz bases and the
associated Fourier analysis, and the notion of a convolution in Hilbert spaces. We
complement the abstract material by many examples showing a variety of interesting
phenomena that may appear in the analysis of non-self-adjoint problems.

3.1 Spectrum of finite-dimensional operators
The concept of the spectrum of a linear operator A acting in a Banach space X is

a generalisation of the concept of eigenvalues for ordinary matrices. As was shown
in Example 2.5, all linear operators in the finite-dimensional spaces are bounded
and can be represented in the form of a matrix. Therefore, the spectral theory of the
finite-dimensional operators is the spectral theory of matrices.

Consider the operator given by the square matrix

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
an1 an2 . . . ann

 , (3.1)

115
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acting on the space of n-dimensional vectors

x =


x1
x2
...

xn


with complex elements x j ∈ C. The elements of the matrix (ai j) are given complex
numbers.

A nonzero vector x 6= 0 is called an eigenvector of the matrix A, if there exists a
(complex) number λ such that

Ax = λx. (3.2)

Such λ is called an eigenvalue of the matrix A. It is evident that an eigenvector of the
matrix is not uniquely determined: if x is an eigenvector of the matrix A correspond-
ing to the eigenvalue λ , then for any constant a the vector ax is also an eigenvector
of the matrix A corresponding to the same eigenvalue λ . Often one fixes the number
a such that the obtained eigenvector has the norm equal to 1.

We rewrite Eq. (3.2) in the form (A−λ I)x = 0, where I is the identity matrix
(sometimes also called the unit matrix), that is the n×n square matrix with ones on
the main diagonal and zeros elsewhere. Then we have the system of linear equations

a11−λ a12 . . . a1n
a21 a22−λ . . . a2n
. . . . . . . . . . . .
an1 an2 . . . ann−λ




x1
x2
. . .
xn

=


0
0
. . .
0

 . (3.3)

It is well-known that this system of linear equations (3.3) has a unique solution
if and only if det(A− λ I) 6= 0. If this condition is satisfied, the unique solution of
system (3.3) will be the zero vector: x = 0.

Thus, for the nonzero solution of system (3.3) to exist, it is necessary and suffi-
cient that the number λ satisfies the equation

4(λ ) := det(A−λ I) = 0. (3.4)

Eq. (3.4) is called the characteristic equation for the matrix A.
It is easy to see that the left-hand side of Eq. (3.4) is a polynomial of order n in

the variable λ . It is called the characteristic polynomial of the matrix A. Therefore,
the eigenvalues of the matrix A are the roots of the polynomial4(λ ).

Moreover, the Cayley-Hamilton theorem asserts that every matrix A satisfies its
characteristic equation: if 4(λ ) is the characteristic polynomial of that matrix A,
then4(A) = 0.

A root of the polynomial4(λ ) is a solution of the equation4(λ ) = 0: that is, a
complex number λ j such that4(λ j) = 0. The fundamental theorem of algebra states
that every non-constant polynomial of order n in one variable with complex coeffi-
cients has exactly n complex roots λ j, taking into account the multiplicity. Therefore,
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the matrix A has exactly n complex eigenvalues λ j, taking into account the multiplic-
ity.

One says that the root λ j has multiplicity m, if the polynomial 4(λ ) under con-
sideration is divisible by (λ −λ j)

m and is not divisible by (λ −λ j)
m+1. For example,

the polynomial λ 2−2λ +1 has a unique root equal to 1, of multiplicity 2. If the mul-
tiplicity of the root is greater than 1, then one says that it is “a multiple root”.

Analogous to this, one says that the eigenvalue λ j has multiplicity m if λ j is a root
of the polynomial4(λ ) of multiplicity m. If m = 1, then one says that the eigenvalue
is simple; and for m > 1 one says that the eigenvalue is multiple. The number m is
called the multiplicity of the eigenvalue λ j.

Example 3.1 Let an operator A be given by the matrix

A =

2 1 0
0 1 α

0 0 1

 ,

where α is some number.
It is easy to calculate that the characteristic polynomial is

4(λ ) = (λ −2)(λ −1)2 = 0.

Therefore the eigenvalues of the matrix A will be: a simple eigenvalue λ1 = 2 and a
multiple eigenvalue λ2 = 1 of multiplicity 2.

To find an eigenvector corresponding to λ1 = 2, we look for a solution of the
system (A−λ1I)x = 0. We have0 1 0

0 −1 α

0 0 −1

 x1
x2
x3

=

 0
0
0

 or

 x2 = 0,
−x2 +αx3 = 0,

x3 = 0.

All solutions of this system have the form x = (x1, 0, 0), where x1 is an arbitrary
number. Let us choose x1 = 1. Then x(1) = (1, 0, 0) will be an eigenvector corre-
sponding to the eigenvalue λ1 = 2.

To construct an eigenvector corresponding to the second eigenvalue λ2 = 1, we
have 1 1 0

0 0 α

0 0 0

 x1
x2
x3

=

 0
0
0

 or

 x1 + x2 = 0,
αx3 = 0,

0 = 0.
(3.5)

First consider the case α = 0. Then system (3.5) has solutions of the form x =
(x1,−x1,x3), where x1 and x3 are arbitrary numbers. We see that the solutions of the
system (3.5) form a two-parametric family. Let us choose x1 and x3 so as to obtain
two linearly independent vectors. Then x(2) = (1,−1, 0) and x(3) = (0, 0, 1) will be
eigenvectors corresponding to the eigenvalue λ2 = 1.

Thus, in the case α = 0, the matrix A has two eigenvalues: a simple eigen-
value λ1 = 2 and a multiple eigenvalue λ2 = 1 of multiplicity 2. The eigenvec-
tor x(1) = (1, 0, 0) corresponds to the eigenvalue λ1 = 2. And two eigenvectors
x(2) = (1,−1, 0) and x(3) = (0, 0, 1) correspond to the multiple eigenvalue λ2 = 1.
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Now let α 6= 0. Then from the second equation (3.5) we have x3 = 0. Therefore
all the solutions of the system (3.5) have the form x = (x1,−x1,0), where x1 is an
arbitrary number. Let us choose x1 = 1. Then x(2) = (1,−1, 0) will be the eigenvector
corresponding to the eigenvalue λ2 = 1.

Note that although the multiplicity of the eigenvalue λ2 = 1 is equal to two, only
one eigenvector corresponds to this eigenvalue. The second (linearly independent)
eigenvector does not exist.

In such cases the system of eigenvectors is complemented by the so-called asso-
ciated vectors (we will give the exact definition below). Let us find a solution of the
equation

(A−λ2I)x = x(2). (3.6)

We obtain the system1 1 0
0 0 α

0 0 0

 x1
x2
x3

=

 1
−1
0

 or

 x1 + x2 = 1,
αx3 =−1,

0 = 0.
(3.7)

From the second equation, in view of α 6= 0 we have x3 = −1/α . Therefore all
the solutions of system (3.7) have the form x = (x1,1− x1,−1/α), where x1 is an
arbitrary number. It is easy to see that these solutions can be represented in the form

x = (0, 1,−1/α)+ x1 · x(2).

This vector is called an associated vector. It is not unique, up to a summand consist-
ing of an eigenvector multiplied by a constant.

Thus, in the case α 6= 0, the matrix A has two eigenvalues: a simple eigenvalue
λ1 = 2 and a multiple eigenvalue λ2 = 1 of multiplicity 2. The eigenvector x(1) =
(1, 0, 0) corresponds to the eigenvalue λ1 = 2. And one eigenvector x(2) = (1,−1, 0)
and one associated vector x(3) = (0, 1,−1/α) correspond to the multiple eigenvalue
λ2 = 1. �

In this example, the right-hand side of Eq. (3.6) is the eigenvector x(2). Therefore,
acting on (3.6) by the operator (A− λ2I), we obtain that the associated vector x(3)

satisfies the equation
(A−λ2I)2x(3) = 0. (3.8)

Thus, we come to a general definition of eigen- and associated vectors of an operator
A, as solutions of an equation of the form (3.8).

Thus, a nonzero vector x(0) satisfying the equation

Ax(0) = λx(0), or (A−λ I)x(0) = 0, (3.9)

is called an eigenvector of the operator A. The number λ , for which there exists a
nonzero solution of Eq. (3.9), is called an eigenvalue of the operator A.

It is evident that an eigenvector of the operator is not unique: if x is an eigenvector
of the operator A corresponding to the eigenvalue λ , then for any constant a the vector
ax is also an eigenvector of the operator A corresponding to the same eigenvalue λ .
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Usually, such number a is chosen in the most convenient way. For example, it is fixed
so that the obtained eigenvector has the norm equal to 1.

The vector x is called an associated vector of the operator A corresponding to
the eigenvalue λ if for some integer number m > 0 the following relations hold

(A−λ I)mx 6= 0, (A−λ I)m+1x = 0. (3.10)

The number m is called the order of the associated vector x. Thus, in Example 3.1
the vector x(3) is the associated vector of the first order. Sometimes an eigenvector is
also called an associated vector of zero order.

It is evident that the associated vectors are defined not uniquely. Indeed, if x(0)

is an eigenvector of the operator A corresponding to the eigenvalue λ and x(1) is an
associated vector of the operator A, then the vector x(1)+Cx(0) is also an associated
vector of the operator A for any choice of the constant C.

The eigen- and associated vectors are called root vectors of the operator A. The
linear space spanned by all eigenvectors corresponding to a given eigenvalue is
called an eigenspace of the linear operator A. The linear space spanned by all eigen-
and associated vectors of the operator A corresponding to the same eigenvalue is
called a root space.

In a root subspace of the operator A, the eigen- and associated vectors corre-
sponding to one eigenvalue can be organised in a chain as follows. Let x(0) be an
eigenvector of the operator A corresponding to the eigenvalue λ . By the associated
vector of the first order we call a vector x(1) satisfying the equation

(A−λ I)x(1) = x(0). (3.11)

Analogously to (3.11), other associated vectors of higher order can be found:

(A−λ I)x(2) = x(1),
· · · · · · · · ·

(A−λ I)x(m) = x(m−1).

(3.12)

The vectors x(0),x(1), · · · ,x(m) are called a chain of the eigen- and associated vectors
of the operator A corresponding to the eigenvalue λ .

The concept of a Jordan canonical form matrix is closely related to the concept
of the eigen- and associated vectors of the matrix.

Consider the k× k square matrix of the form

Jk (λ0) =


λ0 1 0 . . . 0 0
0 λ0 1 . . . 0 0
. . . . . . . . . . . . . . .
0 0 0 . . . λ0 1
0 0 0 . . . 0 λ0

 .

On the main diagonal here we have the same number λ0, above the main diagonal
there are ones, and the remaining elements are all zeros.
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The characteristic polynomial of this matrix is (λ − λ0)
k = 0. Therefore, λ0 is

an eigenvalue of the matrix Jk (λ0) of multiplicity k. To construct eigenvectors of the
matrix Jk (λ0) it is necessary to solve a homogeneous system of the linear equations

0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . .
0 0 0 . . . 0 1
0 0 0 . . . 0 0




x1
x2
. . .

xk−1
xk

=


0
0
. . .
0
0

 . (3.13)

It is easy to see that the rank of the matrix in (3.13) is equal to k− 1. Therefore
the system (3.13) has only a one-parametric family of solutions. Consequently, the
matrix Jk (λ0) has only one eigenvector x(0) = (1,0, . . . ,0,0), and the multiplicity of
the eigenvalue λ0 is equal to k.

The matrix Jk (λ0) has a chain of associated vectors of the form

x(1) = (0 1 0 . . . 0 0),
x(2) = (0 0 1 . . . 0 0),

. . . . . . . . . . . . . . .

x(k−1) = (0 0 0 . . . 0 1).

The matrix Jk (λ0) is called a Jordan block of order k corresponding to the eigen-
value λ0. As we have shown this matrix has one eigenvector and k− 1 associated
vectors.

From several Jordan blocks corresponding to one eigenvalue λ j one can construct
a matrix

A(λ j) =



J1 (λ j)

J2 (λ j)

. . .

Jk−1 (λ j)

Jk (λ j)


,

which is also called the Jordan block.

Theorem 3.2 Let a linear operator A act on a finite-dimensional space H of dimen-
sion n. Let its characteristic polynomial have the form

4(λ ) =
N

∏
j=1

(λ −λ j)
m j ,

where λ j 6= λk for j 6= k and m1 +m2 + . . .+mN = n. Then there exists a basis in the
space H consisting of eigen- and associated vectors of the operator A, in which the
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matrix of the operator has a block-diagonal form

J =



A(λ1)

A(λ2)

. . .

A(λN−1)

A(λN)


, (3.14)

where A(λ j) is a Jordan block corresponding to the eigenvalue λ j .

The matrix (3.14) is called the Jordan normal form of a matrix. The basis indi-
cated in Theorem 3.2 is called a Jordan basis.

Corollary 3.3 In order that a matrix could be represented in a diagonal form it is
necessary and sufficient that all its root subspaces consist only of eigenvectors.

In general, the construction of the Jordan normal form and the Jordan basis is
a quite complicated procedure. But the advantage of Theorem 3.2 is the fact that
besides the opportunity of representing a finite-dimensional operator in the Jordan
form, it indicates the method for obtaining such a representation. To do this it is
sufficient to construct eigen- and associated vectors of the matrix.

Besides the results of Theorem 3.2, Jordan showed that for an arbitrary square
matrix A over the field of complex numbers there always exists a square non-
degenerate (i.e. with the determinant different from zero) matrix P such that

A = PJP−1,

where J is the Jordan normal form matrix for A. That is, any square matrix A can
be reduced to its Jordan normal form by a non-degenerate transformation P by the
formula

J = P−1AP.

The matrix P consists of the columns being the vectors from the chain of the eigen-
and associated vectors of the matrix A.

3.2 The resolvent and spectrum of an operator
The spectral theory of operators in infinite-dimensional spaces is much richer:

while the spectrum of finite-dimensional operators consists only of eigenvalues, in
the infinite-dimensional spaces we have other variants of the spectrum.

Consider a linear operator A : X → X with the domain D(A) in a Banach space
X . For any fixed value of the complex parameter λ ∈ C four cases are possible:
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• The operator (A−λ I)−1 exists, is defined on the whole X and is bounded. In
this case the value λ is called regular, and the operator

Rλ := (A−λ I)−1

is called a resolvent of the operator A. The set of all the regular values λ is
called the resolvent set ρ(A), and the complement

σ(A) := C\ρ(A)

of the resolvent set is called the spectrum of the operator A.

• The operator (A−λ I)−1 does not exist, that is, there is no unique inverse solv-
ability. It means that there exists a nontrivial solution x 6= 0 of the equation

(A−λ I)x = 0. (3.15)

In this case λ is called an eigenvalue of the operator A, and the nontrivial
solution x of Eq. (3.15) is called an eigenvector of the operator A. The set of
all the eigenvalues forms the so-called point spectrum σp(A) of the operator A.

• The operator (A− λ I)−1 exists, is defined on a set everywhere dense in X
but is not bounded. The set of such values λ forms the so-called continuous
spectrum σc(A) of the operator A.

• The operator (A−λ I)−1 exists but is defined on a set which is not dense in X .
That is, the image of the operator A−λ I is not dense in X :

R(A−λ I) 6= X .

The set of such values λ forms the so-called residual spectrum σr(A) of the
operator A.

According to this classification, only the point spectrum and the resolvent set are
present in the finite-dimensional case. This follows from the fact that if an inverse
operator (A−λ I)−1 exists, then it is given by a matrix which is immediately defined
on the whole space X . Therefore in the finite-dimensional space the spectrum of an
operator is reduced to the point spectrum, that is, to the eigenvalues, that we have
discussed in detail in Section 3.1.

Example 3.4 In the space C[a,b], consider the operator defined on the whole space
by the formula

Tu(x) = α ·u(x), ∀u ∈C[a,b],

where α is a given number. A more general case of such operators was considered
in Example 2.6. From the results of Example 2.6 it follows that the operator T is
defined on the whole space C[a,b] and is bounded. As was shown in Example 2.27,
the operator T is invertible if and only if α 6= 0.
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Let us consider the spectral properties of the operator T . For our case, Eq. (3.15)
for finding eigenvalues and eigenvectors has the form

(T −λ I)u(x)≡ (α−λ )u(x) = 0.

It is easy to see that the value λ = α is an eigenvalue of the operator T . The corre-
sponding eigenfunctions are all functions from the space C[a,b].

For the other values λ 6= α we consider the resolvent. It can be found from a
solution of the equation

(T −λ I)u(x)≡ (α−λ )u(x) = f (x),

and has the form
(T −λ I)−1 f (x)≡ 1

α−λ
f (x).

Consequently, in this case the operator (T −λ I)−1 exists, is defined on the whole
space C[a,b] and is bounded. Therefore, all the values λ 6= α belong to the resolvent
set. �

Example 3.5 In the space C[a,b], consider the operator defined on the whole space
by the formula

Tu(x) = x ·u(x), ∀u ∈C[a,b].

From the results of Example 2.6 it follows that the operator T is defined on the
whole space C[a,b] and is bounded. From the results of Example 2.27 it follows that
the operator T is invertible if and only if 0 /∈ [a,b].

Let us consider the spectral properties of this operator T . Eq. (3.15) for finding
eigenvalues and eigenvectors is

(T −λ I)u(x)≡ (x−λ )u(x) = 0.

It is easy to see that this implies u(x) = 0. Therefore, any value λ ∈ C is not an
eigenvalue of the operator T , that is, the operator has no point spectrum.

The resolvent is constructed as a solution of the equation

(T −λ I)u(x)≡ (x−λ )u(x) = f (x).

So, we have

u(x) =
1

x−λ
f (x).

Therefore, if λ /∈ [a,b], then the resolvent (T − λ I)−1 exists, is defined on the
whole space C[a,b] and is bounded. Hence, the values λ /∈ [a,b] belong to the resol-
vent set ρ(T ) of the operator T .

For the values λ0 ∈ [a,b] the resolvent (T −λ0I)−1 exists, but is defined only for
those functions for which

f (λ0) = 0. (3.16)

Therefore the values λ ∈ [a,b] belong to the spectrum of the operator.
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In Example 2.8 we have shown that the linear functional given by the formula
P f (x) = f (x0) is bounded in the space C[a,b]. Therefore, by Theorem 2.19 the linear
space of functions satisfying condition (3.16) is not dense in C[a,b]. It means that all
the values λ ∈ [a,b] belong to the residual spectrum σr(T ). �

Example 3.6 Consider the operator from Example 3.5 but now acting in the Hilbert
space L2(a,b):

Tu(x) = x ·u(x), ∀u ∈ L2(a,b).

As in Example 3.5 it is easy to show that for λ /∈ [a,b] a resolvent (T −λ I)−1 exists,
is defined on the whole space L2(a,b) by the formula

(T −λ I)−1 f (x) =
1

x−λ
f (x),

and is bounded. Consequently, the values λ /∈ [a,b] belong to the resolvent set ρ(T )
of the operator T .

For the values λ ∈ [a,b] the resolvent (T −λ I)−1 exists, but is defined not on all
functions. For example, it is defined on all the functions f ∈C[a,b], for which (3.16)
holds.

As shown in Example 2.8 the linear functional given by the formula P f (x) =
f (x0) is unbounded in the space L2(a,b). Therefore, by Theorem 2.19 the linear
space of functions f ∈C[a,b] satisfying condition (3.16) is dense in L2(a,b). It means
that all the values λ ∈ [a,b] belong to the continuous spectrum σc(T ). �

The considered Examples 3.5 and 3.6 demonstrate that operators given by the
same formula can have different spectral properties depending on spaces in which
they are considered.

Example 3.7 In the space `2 of infinite square summable sequences, consider the
linear operator A given by the formula

A(x1,x2,x3, . . .) = (0,x1,x2, . . .).

As is easily seen, the number λ = 0 is not an eigenvalue of the operator A.
The set of values R(A) is not everywhere dense in `2: R(A) is orthogonal to the

nonzero element (1,0,0, . . .). Therefore, the number λ = 0 is a point of the residual
spectrum σr(A) of the operator A. �

Example 3.8 In the space of continuous functions C[a,b], consider the operator act-
ing by the formula

L1u(x) =
d
dx

u(x), a < x < b,

defined on the domain
D(L1) =C1[a,b]⊂C[a,b].

We have considered this operator in Examples 2.9 and 2.28. Let us show that any
value λ belongs to the point spectrum of the operator L1.
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Indeed, from the equation of finding the eigenfunctions

(L1−λ I)u(x)≡ d
dx

u(x)−λu(x) = 0, a < x < b,

we have u(x) = eλx for all values λ ∈ C. Therefore, a resolvent does not exist, and
any value λ belongs to the point spectrum of the operator L1. �

Example 3.9 In the space of continuous functions C[a,b], consider the operator act-
ing by the formula

L2u(x) =
d
dx

u(x), a < x < b,

given on the domain

D(L2) =
{

u ∈C1[a,b] : u(a) = 0
}
.

This operator in contrast to the operator considered in Example 2.28 (or in the
previous example) has a “smaller” domain.

We now consider the problem of eigenvalues for the operator L2. Eigenvectors of
the operator L2 are all functions u ∈D(L2), for which L2u(x)−λu(x) = 0, that is, all
continuously differentiable solutions of the differential equation

u′(x)−λu(x) = 0, a < x < b,

for which u(a) = 0. All solutions of this equation have the form u(x) = Ceλx, a ≤
x≤ b, where C is an arbitrary number. Since u(a) = 0, then, consequently, u(x)≡ 0.
And according to the corollary from Theorem 2.22 it means that the inverse operator
(L2− λ I)−1 to the operator L2 exists. That is, for all the values λ ∈ C a resolvent
exists.

This resolvent can be constructed in the explicit form

(L2−λ I)−1 f (x) =
∫ x

a
eλ (x−t) f (t)dt, a≤ x≤ b,

for all f ∈ C[a,b]. Earlier, in Example 2.11, we have shown that such operator is
defined on the whole space L2(a,b) and is bounded. Consequently, each value λ ∈C
belongs to the resolvent set ρ(L2) of the operator L2. �

Example 3.10 In the space of square integrable functions, consider the operator L :
L2(a,b)→ L2(a,b) given by the differential expression

L3u(x) =
d
dx

u(x), a < x < b,

on the domain
D(L3) =

{
u ∈ L2

1(a,b) : u(a) = u(b) = 0
}
.

We have considered the similar operator in Example 2.36. There, we have shown
that the operator L3 is not well-posed, since it is not everywhere solvable, though the
inverse operator exists and is bounded on R(L3).



126 Spectral geometry of partial differential operators

Let us consider the spectral properties of this operator L3. As in Example 3.9, it
is easy to show that any solution u ∈ D(L3) of the equation L3u(x)−λu(x) = 0 will
be equal to zero. That is, any value λ ∈ C is not an eigenvalue of the operator L3.
Consequently, the operator (L3−λ I)−1 exists. It can be constructed as a solution of
the differential problem

u′(x)−λu(x) = f (x), u(a) = u(b) = 0.

The solution of this problem has the form

(L3−λ I)−1 f (x) =
∫ x

a
eλ (x−t) f (t)dt, a≤ x≤ b,

and exists only for those functions f , for which∫ b

a
eλ (b−t) f (t)dt = 0.

That is, it exists only for the functions from the subspace of L2(a,b) that is
orthogonal to the function eλ (b−t). Therefore, the image of the operator (L3− λ I)
is not dense in L2(a,b). It means that any value λ ∈ C belongs to the residual spec-
trum σr(L3). �

Example 3.11 In L2(a,b), consider the operator given by the differential expression

L4u(x) =
d
dx

u(x), a < x < b,

on the domain
D(L4) =

{
u ∈ L2

1(a,b) : u(a) = u(b)
}
.

Note that unlike the previous example the domain of the operator is given with the
help of the nonlocal (and periodic) boundary condition u(a) = u(b).

Let us consider the problem of eigenvalues for the operator L4. Eigenvectors of
the operator L4 are all nonzero functions u ∈ D(L4), for which L4u(x)−λu(x) = 0,
that is, all continuously differentiable solutions of the differential equation u′(x) =
λu(x), a < x < b, for which u(a) = u(b).

All solutions of this differential equation have the form u(x) =Ceλx, a≤ x≤ b,
where C is an arbitrary number. Since u(a) = u(b), we get the equation

C
(

eλ (b−a)−1
)
= 0.

The eigenfunction is not an identical zero, so that we must have C 6= 0. Consequently,
we obtain the characteristic determinant

4(λ )≡ eλ (b−a)−1 = 0.
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Solutions of this equation are numbers

λk =
2

b−a
kπi, k = 0,±1,±2, . . . ,

involving the imaginary i with i2 = −1. Thus, the values λk are eigenvalues of the
operator L4, and

uk(x) = eλkx, k = 0,±1,±2, . . .

will be the eigenfunctions corresponding to them.
For the other values λ 6= λk a resolvent exists and can be constructed in the

explicit form:

(L4−λ I)−1 f (x) =−
∫ b

x
eλ (x−t) f (t)dt− 1

4(λ )

∫ b

a
eλ (x−t) f (t)dt, a≤ x≤ b.

Since this operator for 4(λ ) 6= 0 is defined on the whole space L2(a,b) and is
bounded, all the values λ 6= λk belong to the resolvent set ρ(L4) of the operator
L4. �

The considered Examples 3.8 - 3.11 demonstrate that for the operators given
by the same formula (in our case, by the same differential expressions) the spectral
properties can be absolutely different depending on the given domains of operators.

3.3 Spectral properties of bounded operators
In this section we briefly discuss the simplest properties of the spectrum for linear

bounded operators. Let us formulate them in the form of theorems with brief proofs.
We start with statements for general operators.

Theorem 3.12 The spectrum of an operator A is the union of the point spectrum
σp(A), the continuous spectrum σc(A) and the residual spectrum σr(A):

σ(A) = σp(A)∪σc(A)∪σr(A).

These spectra do not intersect:

σp(A)∩σc(A) = σc(A)∩σr(A) = σr(A)∩σp(A) =∅.

The proof of this theorem follows from definitions of different parts of the spec-
trum. �

The maximum of modules of elements of the spectrum of the operator A is called
the spectral radius of A and is denoted by r(A), so that

r(A) := sup{|λ | : λ ∈ σ(A)}.
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Theorem 3.13 The spectrum of an operator A is contained in the closed ball in the
complex plane of radius ‖A‖ and centre at zero. More precisely, we have that the
spectral radius of A satisfies the equality

r(A) = lim
n→∞
‖An‖1/n.

To prove this, we consider the equation

(A−λ I)u = f , (3.17)

and show that the values λ , for which |λ |> r(A), belong to the resolvent set. Indeed,
by the properties of limits of sequences of numbers, there exists a number n0 such
that |λ |> ‖An0‖1/n0 . Hence ∥∥∥∥( 1

λ
A
)n0
∥∥∥∥< 1. (3.18)

We rewrite Eq. (3.17) in the form

u−
(

1
λ

A
)n0

u =
1
λ

n0−1

∑
j=0

(
1
λ

A
) j

f .

We can apply Theorem 2.32 (the contraction mapping principle) to this equation
using Eq. (3.18). Thus, the operator (A−λ I) is invertible and, moreover, the inverse
operator is bounded and defined on the whole space. Consequently, all values λ

for which |λ | > r(A) belong to the resolvent set. It means that the spectrum of the
operator A is contained in the closed ball in the complex plane of the radius r(A) with
centre at zero. The theorem is proved. �

Corollary 3.14 The resolvent set of a bounded operator is nonempty.

The proof easily follows from the boundedness of the spectrum of the bounded
operator. �

In Section 2.16 we have considered the Volterra operators. Taking into account
the definition of the spectral radius, we can give the definition of a Volterra operator
as an operator whose spectral radius is equal to zero.

Theorem 3.15 The spectrum of an operator A is a closed set in the complex plane.
The resolvent set is open.

To prove this, we note that the first statement of the theorem follows from the
second one. Therefore, let us show the second statement. Let λ0 be a fixed point
from the resolvent set of the operator A. Then the operator (A−λ0I)−1 exists, is
defined on the whole space, and is bounded. Let us choose a small number ε > 0 so
that the inequality ε‖(A−λ0I)−1‖ < 1 holds. We rewrite the operator A−λ I in the
form of the product of two operators

A−λ I = (A−λ0I)
[
I− (λ −λ0)(A−λ0I)−1

]
.
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Here the first term is invertible since λ0 is from the resolvent set. For any complex
number λ satisfying the inequality |λ −λ0|< ε , the second term is also invertible by
Theorem 2.32 (the contracting mappings principle).

Consequently, the operator (A−λ I)−1 exists, is defined on the whole space, and
is bounded. That is, any point λ satisfying the inequality |λ −λ0|< ε belongs to the
resolvent set of the operator A. The theorem is proved. �

Note that from the proof of Theorem 3.15 it follows that the resolvent set of an
operator is always an open set regardless of whether the operator itself is bounded
or not.

Theorem 3.16 The spectrum of a bounded operator is nonempty.

To prove this, we suppose the opposite, that σ(A) =∅. It means that the spectral
radius of the operator is equal to zero: r(A) = 0. That is,

lim
n→∞
‖An‖1/n = 0.

Then the resolvent function (A−λ I)−1 is well-defined for all λ 6= 0 and can be
written in the form of the von Neumann series

(A−λ I)−1 =− 1
λ

(
I− 1

λ
A
)−1

=
∞

∑
n=0

(
A
λ

)n

.

As can be seen from here,
∥∥∥(A−λ I)−1

∥∥∥→ 0, as λ → ∞. If λ = 0 is also not
in the spectrum, then A is invertible. Thus for any vectors x,y ∈ H the function
f (λ ) =

〈
(A−λ I)−1 x,y

〉
is an analytic function tending to zero at infinity. Then by

the Liouville theorem from the complex analysis (A−λ I)−1 = 0, which is impossi-
ble. Thus the spectrum is not empty. The theorem is proved. �

3.4 Spectrum of compact operators
The so-called Fredholm alternative can be considered as a central result of the

theory of compact operators. The spectral theory of compact operators plays an
important role in the spectral theory of differential operators. This is due to the fact
that the operator inverses to the differential operators are compact in many cases.
Therefore, in this section we consider the spectral properties of compact operators.

Since in a finite-dimensional space all operators are compact (see Theorem 2.61),
the spectral properties of the compact operators in the finite-dimensional spaces have
been essentially presented in Section 3.1. Therefore, in this section we consider the
operators in infinite-dimensional spaces.
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Theorem 3.17 The point λ = 0 belongs to the spectrum of a compact operator A in
an infinite-dimensional space X. The range R(A) is not a closed set in X.

Indeed, if one assumes that λ = 0 belongs to the resolvent set of a compact oper-
ator A, then the operator A−1 exists, is defined on the whole space, and is bounded.
Then by Theorem 2.61 their composition AA−1 = I would be compact. But the iden-
tity operator I in an infinite-dimensional space is a bounded, but not compact opera-
tor. Therefore, λ = 0 must belong to the spectrum of a compact operator. �

Corollary 3.18 Let k = k(x,y) ∈ L2 (Ω×Ω). Then the integral equation∫
Ω

k(x,y)ϕ(y)dt = f (x), x ∈Ω,

is solvable not for all f ∈ L2(Ω).
If k = k(x,y) ∈C

(
Ω×Ω

)
, then this integral equation is solvable not for all f ∈

C(Ω).

The equations of such type are called Fredholm equations of the first kind, and
by Corollary 3.18 such equations are ill-posed.

Historically, in studying integral equations, E. Fredholm first obtained results
that did not hold for general operators. Later F. Riesz and J. Schauder showed that
his results were a consequence of the compactness of such integral operators, and
they developed the general theory of equations involving compact operators. One of
the main results in this theory is the theorem on the spectral properties of a compact
operator.

Theorem 3.19 (Riesz–Schauder) The spectrum of a compact operator consists of
zero and of a finite or countable set of eigenvalues of finite multiplicity. Moreover,
only zero can be a limiting point of the spectrum. This number zero can be an eigen-
value of finite or infinite multiplicity.

One can show that this theorem quickly implies the following well-known result:

Theorem 3.20 (Fredholm Alternative) Let A be a compact operator in a Banach
space X. Then there are only two alternatives:

• either the inhomogeneous equation

Au−λu = f

has a unique solution for an arbitrary f ∈ X;

• or the homogeneous equation

Au−λu = 0

has a nonzero solution.
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This theorem has a very fruitful extension for the case of operators in Hilbert
spaces.

Theorem 3.21 (Fredholm Alternative) Let A be a compact operator in a Hilbert
space H with inner product 〈u,v〉H . Then,

• either the equations
(A−λ I)u = f , (3.19)

(A∗−λE)v = g, (3.20)

are solvable for any right-hand sides f ,g∈H, and in this case the correspond-
ing homogeneous equations

(A−λ I)u = 0, (3.21)

(A∗−λE)v = 0 (3.22)

have only zero solutions;

• or these homogeneous equations (3.21) and (3.22) have the same (finite) num-
ber of linear independent solutions

u1,u2, . . . ,un; v1,v2, . . . ,vn.

In this case, for Eq. (3.19) to have a solution it is necessary and sufficient that

〈 f ,v j〉H = 0, j = 1,2, . . . ,n;

and for Eq. (3.20) to have a solution it is necessary and sufficient that

〈g,u j〉H = 0, j = 1,2, . . . ,n.

The Fredholm Alternative has very effective applications in the solvability the-
ory of boundary value problems for differential equations. It makes it possible to
conclude that there exists a solution of a boundary value problem only on the basis
of the proven fact of the uniqueness of its solution. The methods used in the next
example are quite universal and can be applied to a wide range of problems. There-
fore, the following analysis will be carried out in more detail.

Example 3.22 Consider the problem of finding a solution of the ordinary differential
equation

−u′′(x)+q(x)u(x) = f (x), 0 < x < 1, (3.23)

satisfying the boundary conditions

u(0) = 0, u(1) = 0. (3.24)
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Here q(x)≥ 0 is a given continuous function, and f ∈ L2(0,1) is a given function. A
function u ∈ L2

2(0,1) satisfying Eq. (3.23) (in the sense of almost everywhere) and
the boundary conditions (3.24) is called the solution of problem (3.23)-(3.24).

Let us multiply Eq. (3.23) by u(x) and integrate over the interval (0,1). Then,
integrating by parts, we get

u′(x)u(x)
∣∣1
0 +

∫ 1

0
|u′(x)|2dx+

∫ 1

0
q(x)|u(x)|2dx =

∫ 1

0
f (x)u(x)dx. (3.25)

Here the first term is equal to zero by the boundary conditions (3.24). Also, taking
these boundary conditions into account, we have

|u(x)|=
∣∣∣∣∫ x

0
u′(t)dt

∣∣∣∣≤ ∫ 1

0

∣∣u′(t)∣∣dt ≤
(∫ 1

0

∣∣u′(t)∣∣2 dt
)1/2

.

In the last inequality we have used the integral Hölder inequality (2.20). Hence we
have ∫ 1

0
|u(x)|2dx≤

∫ 1

0

∣∣u′(t)∣∣2 dt.

Since q(x)≥ 0, from this and from (3.25) we get∫ 1

0
|u(x)|2dx+

∫ 1

0

∣∣u′(t)∣∣2 dt ≤ 2
∫ 1

0

∣∣u′(t)∣∣2 dt ≤ 2
∫ 1

0
| f (x)u(x)|dx. (3.26)

For any number ε ∈ (0,1) we have an elementary inequality

2| f (x)u(x)| ≤ 1
ε
| f (x)|2 + ε|u(x)|2.

Then from (3.26) we have∫ 1

0
|u(x)|2dx+

∫ 1

0

∣∣u′(t)∣∣2 dt ≤ 1
ε(1− ε)

∫ 1

0
| f (x)|2dx,

or, in terms of norms of the Sobolev spaces,

‖u‖L2
1(0,1)

≤ 1√
ε(1− ε)

‖ f‖L2(0,1). (3.27)

Inequalities of the form (3.27) are called a priori estimates since they are
obtained a priori without having an explicitly constructed solution of the original
differential problem. A priori is Latin for “from before” and refers to the fact that the
estimate for the solution is derived before the solution is known to exist.

Let us show now that problem (3.23)-(3.24) cannot have more than one solution.
Suppose that there are two solutions of the problem (3.23)-(3.24): u1(x) and u2(x).
Denote

u(x) := u1 (x)−u2 (x) .

Then the function u(x) satisfies the homogeneous equation

−u′′(x)+q(x)u(x) = 0, 0 < x < 1,
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and the boundary conditions (3.24). Then, by the a priori estimate (3.27) we have
u(x)≡ 0, that is, u1(x) = u2(x).

Thus, inequality (3.27) provides the uniqueness of the solution of the problem
(3.23)-(3.24). Let us prove the existence of the solution.

Let us twice integrate Eq. (3.23) over the interval (0,x). Taking into account
u(0) = 0, we get

−u(x)+Cx+
∫ x

0
(x− t)q(t)u(t)dt =

∫ x

0
(x− t) f (t)dt, (3.28)

where C is an arbitrary constant. Let us find this constant satisfying the boundary
condition u(1) = 0:

C =−
∫ 1

0
(1− t)q(t)u(t)dt−

∫ 1

0
(1− t) f (t)dt.

Substituting the obtained result into (3.28), after elementary transformations, we
obtain

u(x)+
∫ x

0
(1− x)tq(t)u(t)dt +

∫ 1

x
x(1− t)q(t)u(t)dt = F(x), (3.29)

where

F(x) =
∫ x

0
(1− x)t f (t)dt +

∫ 1

x
x(1− t) f (t)dt.

It is obvious that F ∈ L2(0,1) for f ∈ L2(0,1). Denote

k(x, t) := θ(x− t)(1− x)tq(t)+θ(t− x)x(1− t)q(t),

and by A we denote an integral operator with the kernel k(x, t):

Au(x) :=
∫ 1

0
k(x, t)u(t)dt.

Since the function k(x, t) is continuous in the square 0≤ x, t ≤ 1, the operator A is a
compact operator in L2(0,1) (see Example 2.68).

Hence, Eq. (3.29) can be represented as an equation with the compact operator

(A+ I)u = F, (3.30)

to which one can apply the Fredholm Alternative. Therefore, from the uniqueness of
the solution one gets its existence.

Thus, for all F ∈ L2(0,1) there exists the unique solution of Eq. (3.30). Let us
show that it is the solution of the problem (3.23)-(3.24). From (3.29) it follows that
u(x) satisfies the boundary conditions (3.24).

By a direct calculation it is easy to make sure that F ∈ L2
2(0,1) for f ∈ L2(0,1)

and Aϕ ∈ L2
2(0,1) for ϕ ∈ L2(0,1). Then from (3.30) we obtain that u ∈ L2

2(0,1).
Therefore u′′(x) exists almost everywhere and any solution of Eq. (3.30) is the solu-
tion of the problem (3.23)-(3.24). Thus, we have proved
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Lemma 3.23 Let q(x)≥ 0 be a given continuous function. Then for any f ∈ L2(0,1)
there exists a unique solution of the problem (3.23)-(3.24).

The considered example shows how the application of the Fredholm Alternative
allows one to prove the existence of the solution to the differential problem by only
proving the uniqueness. �

Considering Example 3.22, we have applied the Fredholm Alternative to the par-
ticular integral equation (3.29). The following example demonstrates that the Fred-
holm Alternative can be applied to a wide class of the integral equations.

Example 3.24 (Fredholm integral equations) In L2(Ω), consider the following equa-
tions for the unknown functions ϕ and ψ:

ϕ(x)−
∫

Ω

k(x, t)ϕ(t)dt = f (x), x ∈Ω; (3.31)

ϕ(x)−
∫

Ω

k(x, t)ϕ(t)dt = 0, x ∈Ω; (3.32)

ψ(x)−
∫

Ω

k(t,x)ψ(t)dt = 0, x ∈Ω. (3.33)

Here k = k(x, t) ∈ L2 (Ω×Ω) is a given integral kernel of the integral equation, and
f ∈ L2(Ω) is a given function.

Equations of the form (3.31), unlike the equation from Corollary 3.18, are called
Fredholm integral equations of the second kind. Since the integral operator partici-
pating in these equations is compact in L2(Ω), for these equations Theorem 3.21 with
the Fredholm Alternative holds. Let us formulate this particular result in the form of
a lemma.

Lemma 3.25 (Fredholm Alternative for integral equations). The following state-
ments are true:

I. If Eq. (3.32) has only a trivial solution, then Eq. (3.31) has a unique solution
for any f ∈ L2(Ω). But if Eq. (3.32) has a non-trivial solution, then the solution
of Eq. (3.31) is not necessarily unique, and it is solvable not for all f ∈ L2(Ω).

II. Equations (3.32) and (3.33) have the same finite number of linearly indepen-
dent solutions.

III. Eq. (3.31) is solvable if and only if for any solution ψ of Eq. (3.33) the condi-
tion ∫

Ω

f (x)ψ(x)dx = 0 (3.34)

holds.

The consequence of this lemma is a classical Fredholm result on the solvability
of integral equations in the space of continuous functions C(Ω).
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Lemma 3.26 Let the integral kernel k = k(x, t) of the integral equation (3.31) be
continuous: k ∈C

(
Ω×Ω

)
. The following statements are true:

I. If Eq. (3.32) has only a trivial solution, then Eq. (3.31) has a unique solution
for any f ∈C(Ω). But if Eq. (3.32) has a non-trivial solution, then the solution
of Eq. (3.31) is not necessarily unique and it is solvable not for all f ∈C(Ω).

II. Equations (3.32) and (3.33) have the same finite number of linearly indepen-
dent solutions.

III. Eq. (3.31) is solvable if and only if for any solution ψ of Eq. (3.33) condition
(3.34) holds.

In Section 2.16 we have considered the Volterra operators, which are a particular
case of the integral operators, whose spectral radius is equal to zero. Therefore, for
such operators the corresponding homogeneous equation (3.32) has only the zero
solution. Then from Lemmas 3.25 and 3.26 we get

Lemma 3.27 Let D =
{
(x, t) ∈ R2 : a≤ t ≤ x≤ b

}
. Then

I. If k = k(x, t) ∈ L2(D), then the integral equation

ϕ(x)−
∫ x

a
k(x, t)ϕ(t)dt = f (x), a < x < b, (3.35)

has the unique solution ϕ ∈ L2(a,b) for any f ∈ L2(a,b).

II. If k = k(x, t) ∈C(D), then the integral equation (3.35) has the unique solution
ϕ ∈C[a,b] for any f ∈C[a,b].

Equations of the form (3.35) are called Volterra integral equations of the second
kind. By Lemma 3.27 such equations are always uniquely solvable. �

Let us consider one simple concrete example of an integral equation similar to
that considered in Example 2.31.

Example 3.28 In the space of continuous functions C[0,1], consider the integral
equation

ϕ(x)−
∫ 1

0
3xtϕ(t)dt = f (x), 0 < x < 1. (3.36)

Since the integral kernel of this integral operator given by k(x, t) = 3xt satisfies the
condition k ∈C([0,1]× [0,1]), one can apply Lemma 3.26 to it.

Consider the corresponding homogeneous integral equation

ϕ(x)−3
∫ 1

0
xtϕ(t)dt = 0, 0 < x < 1. (3.37)

Analysing Eq. (3.37), it is easy to see that all of its solutions have the form

ϕ(x) = cx, where c = 3
∫ 1

0
tϕ(t)dt.
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Multiplying this equality by 3x and integrating the obtained result over the interval
[0,1], we find the identity

c = 3
∫ 1

0
xϕ(x)dx = 3c

∫ 1

0
x2dx = c,

which is true for any c. Thus the homogeneous integral equation (3.37) has the
nonzero solution ϕ(x) = x. Eq. (3.37) has no other linearly independent solutions.

Therefore, by Lemma 3.26 the integral equation (3.36) is solvable not for all
f ∈C[0,1]. For the existence of a solution of Eq. (3.36) it is necessary and sufficient
that the condition ∫ 1

0
x f (x)dx = 0

is satisfied. If this condition holds, then the solution of Eq. (3.36) is not unique and
has the form

ϕ(x) = f (x)+Cx,

where C is an arbitrary constant. �

The Fredholm integral equations are particular cases from the general theory of
Noetherian operators.

In a Banach space X , a bounded operator T is called a Noetherian operator, if
dimkerT < ∞ and dimcokerT < ∞. In particular, by the Riesz–Schauder theorem
3.19, all operators of the form A− I with a compact operator A are Noetherian. In
finite-dimensional spaces any linear operator is Noetherian.

For the Noetherian operators one can introduce the concept of the index of the
operator:

indT := dimkerT −dimcokerT.

The Noetherian operators have the following properties:

• The adjoint operator to a Noetherian one is also Noetherian. Moreover,

indT ∗ =−indT.

• If the operators T and T1 are Noetherian, then the operator T T1 is also Noethe-
rian. Moreover,

indT T1 = indT + indT1.

• If the operator T is Noetherian and A is compact, then the operator T +A is
also Noetherian. Moreover, the index of the operator does not change:

ind(T +A) = indT.

A particular case of the Noetherian operator is the Fredholm operator. An oper-
ator T is called a Fredholm operator if indT = 0. The Fredholm operators have the
following properties:
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• The adjoint operator to the Fredholm one is also Fredholm.

• If the operators T and T1 are Fredholm, then the operator T T1 is also Fredholm.

• If the operator T is Fredholm and A is compact, then the operator T +A is also
Fredholm.

• The criterion of Nikolskii: an operator T is Fredholm if and only if it can be
represented as the sum of two operators T = S+A, where the operator S is
invertible and the operator A is compact.

An important subclass of the compact operators are self-adjoint compact opera-
tors. Let H be a separable Hilbert space and let A be an operator in H.

The linear bounded operator A is called a positive operator if 〈Ax,x〉 ≥ 0 for all
x ∈H. If A is a compact self-adjoint operator, then its spectrum consists of nonnega-
tive real numbers of finite multiplicity.

Theorem 3.29 Let A be a compact self-adjoint operator in a separable Hilbert space
H and assume that A 6= 0. Then there exists at least one nonzero eigenvalue λ 6= 0 of
the operator A.

A compact self-adjoint operator in an infinite-dimensional separable Hilbert
space has an infinite countable number of eigenvalues. To each eigenvalue λ 6= 0
there corresponds only a finite number of linearly independent eigenvectors. Such
operator has no associated vectors. The normed system of its eigenvectors forms a
complete orthonormal system in H.

Without dwelling on the proof of this theorem, we mention only a variational
method for constructing the eigenvalues. For simplicity we assume that λ = 0 is not
an eigenvalue of a compact self-adjoint operator A. By Theorem 3.29 there exists at
least one nonzero eigenvalue λ 6= 0.

Consider the linear functional Qx = 〈Ax,x〉 on elements of the unit sphere S⊂H:
S = {x ∈ H : ‖x‖= 1}. Then

|Qx|= |〈Ax,x〉| ≤ ‖Ax‖‖x‖ ≤ ‖A‖, ∀x ∈ S.

Since A 6= 0, there exists x ∈ S such that 〈Ax,x〉> 0.
By the variational method one proves that the largest eigenvalue of the positive

compact self-adjoint operator A is given by the formula

λ1 = sup
x∈S
〈Ax,x〉. (3.38)

Here the sup is achieved on an eigenvector x1 corresponding to λ1. Formula (3.38)
and its generalisations will be of great importance for the analysis in the following
chapters.

In the same way, one can consistently search for all the other eigenvalues. Let us
denote by S1 the subset of S orthogonal to the element x1. By variational discussions
one can show that there exists an element x2 ∈ S1 such that

〈Ax2,x2〉= λ2 = sup
x∈S1

〈Ax,x〉, Ax2 = λ2x2.

Here x2⊥x1 and λ2 ≤ λ1, since S1 ⊂ S and sup on S1 cannot be less than sup on S.
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Continuing this process, we obtain a nonincreasing sequence of eigenvalues of
the operator A: λ1 ≥ λ2 ≥ λ3 ≥ . . . > 0 and a corresponding sequence of eigenvectors
of the operator A: x1, x2, x3, . . ., which are pairwise orthogonal to each other. We can
summarise it as follows.

Theorem 3.30 Let A be a compact self-adjoint operator in an infinite-dimensional
separable Hilbert space H and assume that A 6= 0. Then A has an infinite countable
number of eigenvalues forming a nonincreasing sequence

λ1 ≥ λ2 ≥ λ3 ≥ . . . > 0, lim
n→∞

λn = 0.

The sequence of the corresponding normalised eigenvectors

x1,x2,x3, . . .

forms a complete orthonormal system in H.
For the first eigenvalue λ1 the formula

λ1 = max
x∈H:‖x‖=1

〈Ax,x〉= 〈Ax1,x1〉,

is valid, and also
λ1 = ‖A‖;

for the n-th eigenvalue λn we have the equality

λn = max
x∈H:‖x‖=1,〈x,x j〉=0,∀ j=1,...,n−1

〈Ax,x〉= 〈Axn,xn〉.

Note that according to Theorem 3.30 the functional 〈Ax,x〉 reaches its maximum
value on the unit sphere in the space H. This maximum is achieved on the first eigen-
vector and is equal to the first eigenvalue of the operator A.

If one considers the set S1 of elements of the unit sphere orthogonal to the first
eigenvector, then this functional also reaches its maximum value on S1. This max-
imum is achieved on the second eigenvector and is equal to the second eigenvalue
of the operator A. Continuing this procedure, one can construct all eigenvalues and
eigenvectors of the operator A.

However there is no need to act so consistently. The following theorem gives the
description for obtaining the n-th eigenvalue at once.

Theorem 3.31 (Courant minimax principle). Let A be a compact self-adjoint opera-
tor in an infinite-dimensional separable Hilbert space H and assume that A 6= 0. Let
x1, x2, . . ., xn−1 be an arbitrary system of n−1 linearly independent elements in H.
Denote by m(x1,x2, . . . ,xn−1) the following maximum

m(x1,x2, . . . ,xn−1) := sup
x∈H:〈x,x j〉=0,∀ j=1,...,n−1

〈Ax,x〉
〈x,x〉

.
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Then the n-th eigenvalue of the operator A is equal to the minimum among all these
maxima when this minimum is taken with respect to all linearly independent elements
x1, x2, . . ., xn−1 of the space H:

λn = inf
x j∈H,∀ j=1,...,n−1

m(x1,x2, . . . ,xn−1).

3.5 Hilbert-Schmidt theorem and its application
As we have shown in Section 3.1, for any finite-dimensional self-adjoint operator

there exists a basis (consisting of eigenvectors) in which the Hermitian matrix of this
self-adjoint operator has a diagonal form (see Theorem 3.2 and its Corollary). The
Hilbert-Schmidt theorem generalises this result to the case of infinite-dimensional
spaces.

Here and in the sequel we will say that the vector x in the Hilbert space is nor-
malised if its length is one: ‖x‖= 1.

Theorem 3.32 (Hilbert-Schmidt). Let A be a compact self-adjoint operator on a
Hilbert space H, and let ϕ be an arbitrary element of H. Then the element Aϕ ∈ H
decomposes as a converging Fourier series with respect to the system x j of nor-
malised eigenvectors of the operator A.

By the decomposition into a Fourier series we mean that we have

Aϕ =
∞

∑
j=1

λ j〈ϕ,x j〉x j, (3.39)

with the series convergent in H, and with λ j being the eigenvalues corresponding to
the eigenvectors x j.

To prove this theorem we take an eigenvalue of the operator A, λ1 = ‖A‖, which is
the greatest by module, and the corresponding normalised eigenvector x1. We denote
by L1 the one-dimensional subspace spanned by the eigenvector x1:

L1 := {x ∈ H : x =Cx1, where C is a constant}.

We denote by H1 the subspace orthogonal to x1: H1 = {x ∈ H : 〈x,x1〉 = 0}. Thus,
H = L1⊕H1. It is obvious that H1 is invariant with respect to A, that is, Ax ∈ H1
holds for all x ∈ H1.

Therefore, one can consider A as an operator acting on H1. And as in the previous
case, one can define subspaces

L2 = {x ∈ H1 : x =Cx2, where C is a constant}

and H2 = {x ∈ H1 : 〈x,x2〉= 0} such that H1 = L2⊕H2. Thus, H = L1⊕L2⊕H2.
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Continuing this process, at the n-th step we construct a subspace Ln generated by
the eigenvector xn and a subspace Hn = {x ∈ H : 〈x,x j〉 = 0, j = 1, . . . ,n−1}. We
also have H = L1⊕L2⊕ . . .⊕Ln⊕Hn.

Let us now first consider the case when Ax = 0, for all x ∈ Hn for some n. It
means that then

H = L1⊕L2⊕ . . .⊕Ln⊕kerA,

where kerA is the kernel of the operator A. In this case kerA is the set of all eigen-
vectors corresponding to the eigenvalue λn = 0.

Hence, any element ϕ ∈ H can be represented in the form

ϕ = x0 +
n

∑
j=1
〈ϕ,x j〉x j, x0 ∈ kerA.

Hence

Aϕ =
n

∑
j=1
〈ϕ,x j〉λ jx j, x0 ∈ kerA,

and in this case the theorem and formula (3.39) are proved.
It is easy to see that in this case the operator A is actually finite-dimensional: its

image is contained in the finite-dimensional subspace L1⊕L2⊕ . . .⊕Ln.
Now consider the other case. Here the process of constructing eigenvectors can

continue indefinitely. We have the estimate∥∥∥∥∥A

(
ϕ−

n

∑
j=1
〈ϕ,x j〉x j

)∥∥∥∥∥
2

≤ ‖A‖Hn

∥∥∥∥∥ϕ−
n

∑
j=1
〈ϕ,x j〉x j

∥∥∥∥∥
2

≤ λ
2
n+1

(
‖ϕ‖2−

n

∑
j=1

∣∣〈ϕ,x j〉
∣∣2)≤ λ

2
n+1‖ϕ‖2.

Then, since lim
n→∞

λn = 0 by Theorem 3.30, we have

Aϕ = lim
n→∞

A

(
n

∑
j=1
〈ϕ,x j〉x j

)
=

∞

∑
j=1
〈ϕ,x j〉λ jx j,

which proves the theorem. �
The second case considered in the proof of the theorem is possible, for example,

in the case when λ = 0 is not an eigenvalue of the operator A. From this we get the
following important corollary.

Corollary 3.33 If a compact self-adjoint operator A in a Hilbert space H is invert-
ible, then the system of its eigenvectors forms a basis of the space H. That is, any
element ϕ ∈ H decomposes into a converging Fourier series with respect to the sys-
tem x j of normalised eigenvectors of the operator A:

ϕ =
∞

∑
j=1
〈ϕ,x j〉x j, ‖ϕ‖2 =

∞

∑
j=1

∣∣〈ϕ,x j〉
∣∣2 .
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Here the second equality is called the Parseval’s identity. This is directly anal-
ogous to the Pythagorean theorem, which asserts that the sum of the squares of the
components of a vector in an orthonormal basis is equal to the squared length of the
vector.

Example 3.34 (Integral equations with symmetric kernel)
In the space L2(a,b), consider the Fredholm integral equation of the second kind

ϕ(x)−µ

∫ b

a
k(x, t)ϕ(t)dt = f (x), a < x < b, (3.40)

with the symmetric kernel k(x, t) = k(t,x) satisfying the condition k ∈ L2((a,b)×
(a,b)). Here µ is a complex spectral parameter.

The integral operator

Aϕ(x) =
∫ b

a
k(x, t)ϕ(t)dt

in this equation has been already considered in Examples 2.11 and 2.68. As we have
shown in Example 2.81, this operator is a self-adjoint compact operator in L2(a,b).
Therefore, one can apply the Hilbert-Schmidt theorem 3.32 to Eq. (3.40).

As follows from the already discussed results, the integral operator A has at least
one nonzero eigenvalue; all its eigenvalues λ j are real; the eigenfunctions ϕ j(x) cor-
responding to different eigenvalues λ j, are orthogonal to each other; to each eigen-
value there can correspond only a finite number of linearly independent eigenfunc-
tions.

Applying the Hilbert-Schmidt theorem 3.32 and formula (3.39), we decompose
the action of the operator A in a series with respect to an orthonormal basis of its
eigenfunctions

Aϕ(x) =
∞

∑
j=1

λ j〈ϕ,ϕ j〉ϕ j(x). (3.41)

Substituting this expression in Eq. (3.40), we get

ϕ(x)−µ

∞

∑
j=1

λ j〈ϕ,ϕ j〉ϕ j(x) = f (x). (3.42)

Taking the inner product with ϕi, we get

〈ϕ,ϕi〉−µ

∞

∑
j=1

λ j〈ϕ,ϕ j〉〈ϕ j,ϕi〉= 〈 f ,ϕi〉.

Then from the orthogonality of eigenfunctions we get

〈ϕ,ϕi〉−µλi〈ϕ,ϕi〉= 〈 f ,ϕi〉. (3.43)

Let first the number λ = 1/µ be not an eigenvalue of the operator A. Then from
(3.43) we find for all i ∈ N that

〈ϕ,ϕi〉=
1

1−λiµ
〈 f ,ϕi〉.
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Substituting the obtained values of Fourier coefficients in (3.42), we obtain a
solution of the original equation (3.40)

ϕ(x) = f (x)+µ

∞

∑
j=1

λ j

1−λ jµ
〈 f ,ϕ j〉ϕ j(x). (3.44)

Thus, in the case when the number λ = 1/µ is not the eigenvalue of the operator
A, the integral equation (3.40) with a symmetric kernel for any right-hand side f ∈
L2(a,b) has the unique solution (3.44).

Consider now the case when the number λ = 1/µ is an eigenvalue of the oper-
ator A. Let this eigenvalue have multiplicity m+ 1. This means that for some k the
eigenvalues λk = λk+1 = . . .= λk+m are the same.

Then from (3.43) one can define all coefficients except for m+1 of them, by

〈ϕ,ϕi〉=
1

1−λiµ
〈 f ,ϕi〉, i 6= k,k+1, . . . ,k+m.

And for the remaining indices i from (3.43), the coefficients 〈ϕ,ϕi〉 cannot be
defined. Instead, we obtain the condition

〈 f ,ϕi〉= 0, i = k,k+1, . . . ,k+m. (3.45)

Thus, in the case when the number λ = 1/µ is an eigenvalue of the operator A
of multiplicity m+1, the integral equation (3.40) with the symmetric kernel has the
solution only for those right-hand sides f ∈ L2(a,b), for which (3.45) hold. If this
condition holds, then the solution of Eq. (3.40) exists. In this case, it is not unique
and has the form

ϕ(x) = f (x)+µ

∞

∑
j=1, j 6=k,k+1,...,k+m

λ j

1−λ jµ
〈 f ,ϕ j〉ϕ j(x)+

k+m

∑
j=k

C jϕ j(x),

where C j are arbitrary constants. �

3.6 Spectral properties of unbounded operators
In the previous sections we have considered the bounded operators. Such opera-

tors are defined on all elements of the space under consideration. Now let us consider
unbounded linear operators. Such operators are defined not only by their action but
also by their domain. We will consider only closed linear operators (see the definition
in Section 2.12).

For the unbounded operators all definitions of the spectrum and the resolvent set
(see Section 3.2) are preserved. But for completeness of the exposition some concepts
will be explained again in this new context.
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Consider a linear and, generally speaking, unbounded operator A acting in a
Banach space X over the field of complex numbers. As we have shown in Section
3.1, the necessity of involving the complex numbers is caused by the fact that any
square n×n matrix (even with real entries) always has n eigenvalues, but in general
these eigenvalues will be complex.

As usual, by D(A) we denote the domain of the operator A. Then on this domain
D(A) one can define the family of operators

(A−λ I) : D(A)→ X ,

where I is the identity operator, and λ is a complex parameter called a spectral
parameter.

The value λ is called regular if the operator (A−λ I)−1 exists, is defined on the
whole X, and is bounded. In this case the operator

Rλ := (A−λ I)−1

is called a resolvent of the operator A. The set of all regular values λ is called the
resolvent set ρ(A), and the complement of the resolvent set (refers to values not in
ρ(A)) is called the spectrum of the operator σ(A).

If the operator (A−λ I)−1 does not exist, that is, there exists a nontrivial solution
x 6= 0 of the equation

(A−λ I)x = 0, (3.46)

then the number λ is called an eigenvalue of the operator A. For this value λ the
nontrivial solution x of Eq. (3.46) is called an eigenvector of the operator A. The set
of all eigenvalues forms the so-called point spectrum σp(A) of the operator A.

If the operator (A−λ I)−1 exists, is defined on a set everywhere dense in X but
is not bounded, then such values λ are said to belong to the so-called continuous
spectrum σc(A) of the operator A.

And if the operator (A−λ I)−1 exists but is defined on a set which is not dense in
X , then such λ are said to belong to the residual spectrum σr(A) of the operator A.

Due to this, note that if λ ∈ ρ(A), then the operator (A−λ I)−1 exists, is defined
on the whole space X , and is bounded. Therefore (see Theorem 2.44) the operator
(A− λ I)−1 is closed. Then (see Theorem 2.45) the operator A−λ I is also closed.
Namely, this fact requires considering the spectral properties only of the closed oper-
ators A, otherwise each value λ will belong to the continuous spectrum σc(A).

In the spectral theory of differential operators, in most cases one studies operators
that have a compact resolvent for some λ . Then the results of the previous Sections
3.4-3.5 can be applied to the resolvent.

In this direction, Hilbert’s identity (also called the resolvent identity) has an
important value.

Lemma 3.35 (Hilbert’s identity for the resolvent) Let λ ,µ ∈ ρ(A). Then for the
resolvent Rλ = (A−λ I)−1 of the operator A we have the identity

Rλ −Rµ = (λ −µ)Rλ Rµ . (3.47)
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To prove this, for an arbitrary f ∈ X we write two obvious identities

Rλ f = Rµ(A−µE)Rλ f ;

Rµ f = Rµ(A−λ I)Rλ f .

Now subtracting the second equality from the first one, by the arbitrariness of f ∈ X ,
we obtain (3.47). �

Corollary 3.36 Resolvents commute with each other

Rλ Rµ = Rµ Rλ , ∀λ ,µ ∈ ρ(A).

Corollary 3.37 The resolvent Rλ is a differentiable operator-valued function of the
parameter λ . We have

R′(λ ) = R2(λ ). (3.48)

To prove this, we use the definition of a derivative and the Hilbert’s identity (3.47),
yielding

R′(λ ) = lim
h→0

R(λ +h)−R(λ )
h

= lim
h→0

(λ +h−λ )R(λ +h)R(λ )
h

= R2(λ ).

Corollary 3.38 The resolvent Rλ is an infinitely differentiable operator-valued func-
tion which is analytic on the set of regular points λ ∈ ρ(A). That is, for all points
λ ∈ ρ(A) the operator Rλ is bounded and in the neighborhood of each point
λ0 ∈ ρ(A) the function Rλ admits the expansion into a power series (converging
with respect to the operator norm)

R(λ ) = R(λ0)+
∞

∑
k=1

(λ −λ0)
k Ck,

where Ck are bounded operators independent of λ .

The proof follows from the iteration of formula (3.48):(
d

dλ

)n

R(λ ) = n!Rn+1(λ ),

and the continuity of the resolvent Rλ with respect to the parameter λ in the neigh-
borhood of the point λ . �

Corollary 3.39 If the resolvent Rλ is compact for one value λ , then it is compact for
all other values λ ∈ ρ(A).

Theorem 3.40 The resolvent set is open.
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The proof is the same as the proof of Theorem 3.15 on the openness of the resol-
vent set for bounded operators. �

As we have shown in Theorem 3.16, the spectrum of a bounded operator is
nonempty. For the case of unbounded operators this is not so. In Example 3.9 we
have shown that there exists an unbounded operator (an ordinary differential oper-
ator of the first order) for which any value λ belongs to the resolvent set. Let us
now construct a more complicated example for the case of an ordinary differential
operator of the second order.

Example 3.41 In L2(0,1), consider the operator acting by the formula

Lα u(x) =− d2

dx2 u(x), 0 < x < 1,

given on the domain

D(Lα) =
{

u ∈ L2
2(0,1) : u(0) = αu(1), u′(0) =−αu′(1)

}
,

where α is a fixed number.
Let us first consider the case when α2 6= 1. By a direct calculation it is easy to

show that the operator Lα is invertible and its inverse operator can be written in the
form

u(x) = L−1
α f (x) =

x∫
0

(1+α)t−(1−α)x−α

1−α2 f (t)dt +
1∫
x

α(1+α)t+α(1−α)x−α

1−α2 f (t)dt.

From this representation it is easy to see that L−1
α is a compact operator in

L2(0,1). By the Riesz–Schauder Theorem 3.19 the spectrum of a compact opera-
tor consists of zero and eigenvalues of finite multiplicity. Therefore the spectrum of
the operator Lα can consist only of the eigenvalues.

Consider the problem of eigenvalues for the operator Lα . Eigenvectors of the
operator L2 are all functions u ∈ D(Lα), for which

Lα u(x)≡−u′′(x) = λu(x).

All solutions of this differential equation have the form

u(x) =C1 cos
(√

λx
)
+C2

1√
λ

sin
(√

λx
)
,

where C1 and C2 are arbitrary constants. Note that such representation of a solution
includes also the case λ = 0. Passing to the limit for λ → 0, we obtain u(x) =C1 +
C2x.

Satisfying the boundary conditions for the domain D(A) for finding C1 and C2,
we obtain the system of linear equations C1

(
1−α cos

√
λ

)
−C2α

1√
λ

sin
√

λ = 0,

C1
√

λα sin
√

λ −C2

(
1+α cos

√
λ

)
= 0.

(3.49)
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The characteristic determinant of the spectral problem will be the determinant of
this system. Calculating it, we have

4(λ ) = α
2−1.

Then, since α2 6= 1, we must have C1 = 0 and C2 = 0, that is, the operator Lα has
no eigenvalues. That is, for all values λ ∈ C the resolvent exists.

Since L−1
α is a compact operator, then by Corollary 3.45 the resolvent is compact

(and, consequently, is bounded) for all values λ ∈ C. Hence, for α2 6= 1 each value
λ ∈C belongs to the resolvent set ρ(Lα) of the operator Lα , and the spectrum of the
operator is empty.

Consider now the case α2 = 1. Then 4(λ ) = 0 for all values λ ∈ C and the
system (3.49) has the nonzero solution. Therefore, each value λ ∈C is an eigenvalue
of the operator Lα , and the resolvent set is empty. �

Let us consider now the relation between the spectra of the adjoint operators. Let
A be a linear (unbounded) operator with the domain D(A)⊂ H in a Hilbert space H.
Assume that the domain of the operator is dense in the space H, that is, D(A) = H.
Then, as we have shown in Section 2.19, the adjoint operator A∗ exists.

Lemma 3.42 If the adjoint operator A∗ exists, then the spectrum σ(A) of the oper-
ator A and the spectrum σ(A∗) of the operator A∗ are symmetric with respect to the
real axis, that is, if λ ∈ σ(A) then λ ∈ σ(A∗).

To prove this, it is sufficient to show that the resolvent sets have the same prop-
erty. Indeed, if λ ∈C belongs to the resolvent set ρ(A), then there exists the resolvent
Rλ = (A−λ I)−1 of the operator A which is defined and bounded on the whole space.
But then there exists the adjoint operator (Rλ )

∗, and applying Part 5 of Theorem 2.84,
we have (

(A−λ I)−1)∗ = (A∗−λ I)−1.

Hence, the point λ belongs to the resolvent set ρ(A∗). �
From the proof of this lemma we obtain the following important property.

Corollary 3.43 Let A be a closed linear operator in a Hilbert space H, with D(A) =
H. Then the resolvent set and the spectrum of the adjoint operator A∗ are given by

ρ(A∗) =
{

λ : λ ∈ ρ(A)
}
, σ(A∗) =

{
λ : λ ∈ σ(A)

}
.

Moreover, we have (Rλ (A))
∗ = R

λ
(A∗), that is,(

(A−λ I)−1)∗ = (A∗−λ I)−1.

Lemma 3.44 Let the point λ = 0 belong to the resolvent set of the operator A. If
the number λ0 is an eigenvalue of the operator A, then 1/λ0 is an eigenvalue of
the operator A−1. Moreover, the respective eigenvectors of the operators A and A−1

coincide.
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Indeed, let λ0 be an eigenvalue of the operator A, and let x0 be the corresponding
eigenvector:

Ax0 = λ0x0, x0 ∈ D(A), x0 6= 0.

In particular, we note that λ0 6= 0 since 0 is in the resolvent set. Since the operator
A−1 is defined on all elements of the space, then we can apply A−1 to this equality.
We obtain

x0 = λ0A−1x0, x0 6= 0,

so that 1/λ0 is an eigenvalue of the operator A−1, and x0 is the corresponding eigen-
vector. �

From this lemma we obtain the following important property.

Corollary 3.45 Let A be a closed linear operator in H, and assume that there exists
a point λ0 ∈ ρ(A) such that the resolvent Rλ0 = (A− λ0I)−1 is compact. Then the
spectrum σ(A) consists entirely of eigenvalues of A and is a countable set not having
finite limiting points. In addition, the resolvent Rµ = (A−µE)−1 is compact for each
µ ∈ ρ(A).

The important special case of unbounded operators is the self-adjoint operator.
Recall that the operator A is called self-adjoint if A = A∗ (with the equality of the
domains). Such operators have plenty of specific spectral properties.

Theorem 3.46 If a self-adjoint operator A has the inverse operator A−1, then the
range R(A) of the operator A is dense in H and A−1 is a self-adjoint operator on H.

Indeed, if R(A) was not dense in H, then there would exist z 6= 0, for which
〈Ax,z〉 = 0 for all x ∈ D(A). That is, 〈Ax,z〉 = 〈x,0〉 for all x ∈ D(A). This means
that z ∈ D(A∗) and A∗z = 0. But the operator A is self-adjoint. This means that we
have found z 6= 0, for which Az = 0. But this contradicts the existence of the inverse
operator A−1. �

As usual, we denote by R(A) the range of the operator A.

Corollary 3.47 If λ is not an eigenvalue of a self-adjoint operator A, then the range
of A−λ I is dense in H.

Corollary 3.48 A number λ is an eigenvalue of a self-adjoint operator A if and only
if the range of A−λ I is not dense in H: R(A−λ I) 6= H.

Corollary 3.49 For an arbitrary self-adjoint operator on H, the Hilbert space H can
be decomposed into the direct sum of the subspaces:

H = R(A−λ I)⊕ker(A−λE).

Theorem 3.50 Let λ = ξ + iη , where ξ = Re(λ ) and η = Im(λ ). If η 6= 0, then λ

belongs to the resolvent set ρ(A) of the self-adjoint operator A.
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Indeed, for arbitrary x ∈ D(A) we have

〈(A−λ I)x,(A−λ I)x〉= 〈Ax,Ax〉−2ξ 〈Ax,a〉+ |λ |2〈x,x〉

= 〈Ax,Ax〉−2ξ 〈Ax,x〉+ξ
2〈x,x〉+η

2〈x,x〉= 〈(A−ξ I)x,(A−ξ I)x〉+η
2〈x,x〉.

Hence we have
‖(A−λ I)x‖2 ≥ η

2‖x‖2. (3.50)

If we now assume that (A−λ I)x = 0, then from (3.50) we get that x = 0, that is,
the number λ = ξ + iη for η 6= 0 is not an eigenvalue.

Therefore, the operator (A−λ I)−1 exists. By inequality (3.50) we have

‖(A−λ I)−1x‖ ≤ 1
|η |
‖x‖

for all vectors x ∈D(A). Since the domain D(A) is dense in H, then by Theorem 2.12
the operator (A−λ I)−1 can be extended onto the whole space with preservation of
the value of its norm. But, since the operator A is closed, the operator (A−λ I)−1 is
also closed. Hence, the range of the operator (A−λ I)−1 is closed and coincides with
the whole space H. That is, the number λ = ξ + iη for η 6= 0 belongs to the resolvent
set. �

Corollary 3.51 All eigenvalues of a self-adjoint operator are real.

An operator A is called a positive operator if

〈Ax,x〉 ≥ 0 for all x ∈ D(A).

The operator A is called positive definite if there exists a number α > 0 such that

〈Ax,x〉 ≥ α〈x,x〉 for all x ∈ D(A).

Corollary 3.52 If A is a positive definite self-adjoint operator, then A−1 exists, is
defined on the whole space, and is bounded. That is, the number λ = 0 belongs to
the resolvent set of the operator A.

Indeed, from the definition of the positive definiteness by the Cauchy-Schwartz
inequality it follows that

‖x‖ ≤ 1
α
‖Ax‖ (3.51)

for all x ∈ D(A). Hence, the number λ = 0 is not an eigenvalue of the operator A
and A−1 exists. But, then by Corollary 3.49, H = R(A), so that A−1 is defined on the
whole space H. The boundedness A−1 follows from (3.51). �

One of the important theorems of the spectral theory of self-adjoint operators is
the analogue of the Hilbert-Schmidt theorem 3.32 for unbounded self-adjoint opera-
tors.
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Theorem 3.53 (Hilbert-Schmidt theorem for unbounded self-adjoint operators). Let
A be an unbounded self-adjoint operator in a Hilbert space H with a compact resol-
vent. Then the system of its normalised eigenvectors forms an orthonormal basis
of the space H. That is, any element ϕ ∈ H can be decomposed into a converging
Fourier series with respect to the system x j of the normalised eigenvectors of the
operator A:

ϕ =
∞

∑
j=1
〈ϕ,x j〉x j, (3.52)

and the Parseval’s identity

‖ϕ‖2 =
∞

∑
j=1

∣∣〈ϕ,x j〉
∣∣2

holds.

The proof of this theorem follows from Corollary 3.33 and from Lemma 3.44. �
This theorem allows one to construct by the spectral method a solution of the

operator equation
Aϕ = f , ϕ ∈ D(A), f ∈ H, (3.53)

for a self-adjoint unbounded operator A.
Indeed, by Theorem 3.53 the solution ϕ and the right-hand side f of Eq. (3.53)

can be written in the form of the converging series

ϕ =
∞

∑
j=1
〈ϕ,x j〉x j, f =

∞

∑
j=1
〈 f ,x j〉x j.

Therefore, ϕ is a limit of the sequence ϕn =
n
∑
j=1
〈ϕ,x j〉x j as n→ ∞. Here, ϕn is a

finite sum. Hence,

Aϕn =
n

∑
j=1

λ j〈ϕ,x j〉x j.

Since the operator A is closed, for any vector ϕ ∈ D(A) the sequence Aϕn con-
verges to f , that is,

Aϕ =
∞

∑
j=1

λ j〈ϕ,x j〉x j =
∞

∑
j=1
〈 f ,x j〉x j.

Since by Theorem 3.53 the system of the eigenfunctions x j is a basis in H, from this
we obtain

〈ϕ,x j〉=
〈 f ,x j〉

λ j
.

Therefore, for any f ∈ H the solution of Eq. (3.53) has the form

ϕ =
∞

∑
j=1

〈 f ,x j〉
λ j

x j. �

Simultaneously with solving Eq. (3.53) we have justified the following criterion.
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Theorem 3.54 Let ϕ ∈ H be an arbitrary vector, and let 〈ϕ,x j〉 be its Fourier coef-
ficient in the expansion (3.52) with respect to the system of eigenvectors x j of a self-
adjoint operator A with a compact resolvent. Then, in order that ϕ ∈ D(A) it is
necessary and sufficient that the following series converges

∞

∑
j=1

∣∣λ j
∣∣2 ∣∣〈ϕ,x j〉

∣∣2 < ∞.

If this condition holds, then

Aϕ =
∞

∑
j=1

λ j〈ϕ,x j〉x j.

3.7 Some ordinary differential operators and their spectrum
As in the finite-dimensional case (see Section 3.1), in addition to eigenvectors

the operators in infinite-dimensional spaces can also have associated vectors.
A vector x ∈H is called a root vector of an operator A : H→H corresponding to

an eigenvalue λ0 if x ∈ D(A) and

(A−λ I)m+1x = 0 (3.54)

for some integer number m > 0. It is obvious that any eigenvector of the operator is
its root vector. In addition to the eigenvectors, the associated vectors are also the root
vectors.

Here, a vector x is called an associated vector of the operator A corresponding to
the eigenvalue λ if for each integer number m > 0 the following relation holds

(A−λ I)mx 6= 0, (A−λ I)m+1x = 0. (3.55)

The number m is called the order of the associated vector x.
It is evident that the associated vectors are defined not uniquely. Indeed, if x(0)

is an eigenvector of the operator A corresponding to an eigenvalue λ , and x(1) is a
corresponding associated vector of the operator A, then the vector x(1)+Cx(0) is also
an associated vector of the operator A for any choice of the constant C.

The eigen- and associated vectors are called root vectors of the operator A. The
linear space spanned by all eigenvectors corresponding to a given eigenvalue is called
an eigenspace of the linear operator A. The linear space spanned by all eigen- and
associated vectors of the operator A corresponding to the same eigenvalue is called a
root space.

In the root space of the operator A corresponding to the same eigenvalue, the
eigen- and associated vectors can be organised in a chain. Let x(0) be an eigenvec-
tor of the operator A corresponding to the eigenvalue λ . A vector x(1) is called an
associated vector of the first order it it satisfies the equation

(A−λ I)x(1) = x(0). (3.56)
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Analogously to (3.56), other associated vectors of higher order are defined by

(A−λ I)x(2) = x(1),
· · · · · · · · ·

(A−λ I)x(m) = x(m−1).

(3.57)

Lemma 3.55 Elements of a chain of eigen- and associated vectors are linearly inde-
pendent.

Indeed, let a chain of eigen- and associated vectors be defined by formulae (3.56)-
(3.57). Consider their linear combination

C0x(0)+C1x(1)+ . . .+Cmx(m) = 0.

Applying the operator (A−λ I)m to this equality, we obtain

Cm(A−λ I)mx(m) =Cmx(0) = 0.

Then, since x(0) 6= 0, we have that Cm = 0. Continuing this procedure further, we
obtain that Ck = 0 for all k = 1,2, . . . ,m, which proves the linear independence of the
elements of the chain of the eigen- and associated vectors. �.

We now consider an example of an ordinary differential operator of the first order
having an associated vector.

Example 3.56 In L2(0,1), consider the operator given by the differential expression

Lα u(x) = i
d
dx

u(x), 0 < x < 1,

on the domain

D(Lα) =

u ∈ L2
1(0,1) : u(0)−u(1) = α

1∫
0

u(t)dt

 .

Here α ∈C is a fixed number. Note that unlike in the previous examples, the domain
of the operator is given by the nonlocal condition

u(0)−u(1) = α

∫ 1

0
u(t)dt, (3.58)

in which values of the function u at the interior points of the interval (0,1) take part.
Conditions of such type are no longer the classical boundary conditions.

In the special case of α = 0 this operator has been considered in Example 2.91.
There, we have shown that this operator L0 is self-adjoint. For α 6= 0 the structure of
the adjoint operator L∗α is more complicated. Such an example with the presence of
integral conditions in the domain of a differential operator of the second order has
been considered in Example 2.94.
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Not dwelling on detail, we note that the operator Lα has a compact resolvent.
Therefore, according to Corollary 3.45, the spectrum of the operator Lα can consist
only of eigenvalues.

We now look at the eigenvalues of the operator Lα . Eigenvectors of the operator
Lα are all nonzero vectors u ∈ D(Lα), for which Lα u−λu = 0, that is, all nonzero
solutions of the differential equation

iu(x)−λu′(x) = 0, 0 < x < 1,

for which (3.58) holds.
All solutions of this differential equation have the form u(x) =Ce−iλx, 0≤ x≤ 1,

where C is an arbitrary constant. Using condition (3.58), we get the equation

C
(

eiλ −1
)( iα

λ
+1
)
= 0.

The eigenfunction is not an identical zero. Therefore, C 6= 0. Then we obtain the
characteristic determinant

4(λ )≡ eiλ −1
λ

(iα +λ ) = 0.

Solutions of this equation are numbers

λ0 =−iα and λk = 2kπ, k =±1,±2, . . . .

Thus, if α 6= ±2kπi for all positive integers k, the values λk are eigenvalues of the
operator Lα , and

uk(x) = e−iλkx, k = 0,±1,±2, . . .

will be the eigenfunctions corresponding to them.
And if α = 2mπi for some integer m, then the eigenvalues λ0 and λm coincide.

This is caused by the fact that λ = λ0 is a multiple root of the characteristic determi-
nant

4(λ )≡
(

1− λ

λ0

)2

∏
k∈Z, k 6=m

(
1− λ

λk

)
.

To this double eigenvalue λ0 = −iα there corresponds only one eigenfunction
u0(x) = e−αx. Let us construct an associated function as a solution of the operator
equation Lα u−λ0u = u0, that is, as a solution of the differential equation

iu′(x)+ iαu(x) = e−αx, 0 < x < 1, (3.59)

satisfying condition (3.58).
A general solution of Eq. (3.59) has the form

u(x) =−ixe−αx +Ce−αx,

where C is an arbitrary constant. Then, as is easy to verify, conditions (3.58) hold for
any C.
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Thus, in the case when α = 2mπi for some integer m, the operator Lα has the
eigenvalues and eigenvectors

λk = 2kπ, uk(x) = e−iλkx, k =±1,±2, . . . .

Here all the eigenvalues, except λm, are simple. And the eigenvalue λm is double,
with one eigenvector um(x) = e−αx and one associated vector

um1(x) =−ixe−αx +Ce−αx

corresponding to it.
As we have noted earlier, an associated vector is defined not uniquely. The con-

stant C can be chosen in a way most convenient for further applications. �

As we have indicated earlier, the associated vector can arise in cases in which the
operator has multiple eigenvalues. However, the associated vectors for the multiple
eigenvalues do not necessarily arise.

Example 3.57 In L2(0,1), consider the operator

Lπ u(x) =− d2

dx2 u(x), 0 < x < 1,

given on the domain

D(Lπ) =
{

u ∈ L2
2(0,1) : u′(0) = u′(1), u(0) = u(1)

}
.

The boundary conditions

u′(0) = u′(1), u(0) = u(1) (3.60)

defining the domain of the operator Lπ are called periodic boundary conditions.
It is easy to see that λ0 = 0 is an eigenvalue of the operator Lπ , and u0(x) = 1 is

a corresponding eigenvector. Therefore, the operator L−1
π does not exist. This means

that to show the discreteness of the spectrum of the operator Lπ it is necessary to
show the compactness of its resolvent for another λ 6= λ0. Not going into too-detailed
calculations, we give the explicit form of the resolvent for λ =−1:

(Lπ + I)−1 f (x) =
∫ x

0

ex−t + e1+t−x

2(e−1)
f (t)dt +

∫ 1

x

e1+x−t + et−x

2(e−1)
f (t)dt. (3.61)

From this explicit representation of the resolvent it is easy to see its compactness
in L2(0,1). Therefore, according to Corollary 3.45, the spectrum of the operator Lπ

can consist only of the eigenvalues.
Let us now look for the eigenvalues of the operator Lπ . Eigenvectors of the opera-

tor Lπ are all nonzero vectors u∈D(Lπ), for which Lπ u−λu = 0, that is, all nonzero
solutions of the differential equation−u′′(x)−λu(x) = 0, 0< x< 1, for which (3.60)
holds.
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For λ 6= 0 all solutions of this differential equation have the form

u(x) =C1 cos
(√

λx
)
+C2

1√
λ

sin
(√

λx
)
,

where C1 and C2 are arbitrary constants.
Using the boundary conditions (3.60) for defining C1 and C2, we obtain the sys-

tem of linear equations C1

(
1− cos

√
λ

)
−C2

1√
λ

sin
√

λ = 0,

C1
√

λ sin
√

λ +C2

(
1− cos

√
λ

)
= 0.

(3.62)

The characteristic determinant of the spectral problem will be the determinant of
this system. Calculating it, we have

4(λ ) = 1− cos
√

λ .

Applying the trigonometric formulae, we rewrite this characteristic determinant in
the form

4(λ ) = 2

(
sin

√
λ

2

)2

.

From this representation it is obvious that all roots λk = (2kπ)2, k ∈ N, of the char-
acteristic determinant will be double.

For these values λ = λk the system (3.62) becomes an identity. Therefore, the
coefficients C1 and C2 are not defined and can be chosen arbitrarily. Thus all functions
of the form

C1 cos
(√

λkx
)
+C2

1√
λk

sin
(√

λkx
)

form an eigenspace corresponding to the eigenvalue λk. Since this family is two-
parametric, one can choose two linearly independent elements in it.

Summarising, the operator Lπ has one simple eigenvalue λ0 = 0, to which there
corresponds one eigenvector, and double eigenvalues λk = (2kπ)2, k ∈ N, to each of
which there correspond two eigenvectors

u0(x) = 1; uk1(x) = cos(2kπx) , uk2(x) = sin(2kπx) . (3.63)

As can be easily seen from the explicit representation (3.61) of the resolvent
(Lπ + I)−1, it is a self-adjoint operator. Therefore, the operator Lπ + I is also self-
adjoint. Consequently, the operator Lπ is also self-adjoint. By Theorem 3.53 (the
Hilbert-Schmidt theorem for unbounded self-adjoint operators) the system (3.63) of
the eigenfunctions of the operator Lπ forms a basis in L2(0,1). We also know this
fact from the general university course of Analysis: this system is a classical trigono-
metric system, and the expansion into the series with respect to this system is the
usual trigonometric Fourier series.

Thus, we have shown that the operator Lπ has only double eigenvalues (except
zero), to each of which there correspond two eigenvectors, and the corresponding
system of the eigenfunctions is the classical trigonometric system. �
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The fact that the operator Lα has an associated vector (see Example 3.56) is
caused not by the fact that one eigenvalue is multiple but is connected with the fact
that this operator is not self-adjoint.

Lemma 3.58 A self-adjoint operator cannot have associated vectors.

Indeed, assume that (A−λ0I)2 x = 0 holds for some x ∈ D(A). Denote x0 :=
(A−λ0I)x. Then x0 ∈ D(A) and x0 ∈ R(A−λ0I). Here, (A−λ0I)x0 = 0, that is, x0
is an eigenvector of the self-adjoint operator A, and λ0 is its eigenvalue.

Therefore, by Corollary 3.49, x0⊥R(A− λ0I). Since the eigenvalues of a self-
adjoint operator are real numbers, we have λ0 = λ0. Therefore, x0⊥R(A−λ0I). But
initially we have had that x0 ∈ R(A−λ0I). This is possible only for x0 = 0.

Hence, we have (A−λ0I)x = 0, that is, x is an eigenvector of the operator A. �
Let us give one more example of a differential operator having associated vectors.

Example 3.59 In L2(0,1), consider the operator

LSIu(x) =−
d2

dx2 u(x), 0 < x < 1,

with the domain

D(LSI) =
{

u ∈ L2
2(0,1) : u′(0) = u′(1), u(0) = 0

}
.

The boundary conditions

u′(0) = u′(1), u(0) = 0, (3.64)

defining the domain of the operator LSI are called the Samarskii-Ionkin boundary
conditions.

The problem with boundary conditions of such type was first proposed by A. A.
Samarskii in the 1970s in connection with the study of processes occurring in a para-
metrically unstable plasma. That problem was mathematically treated by N. I. Ionkin
[54]. Therefore, the boundary conditions of the type (3.64) are called the conditions
of the Samarskii-Ionkin type. The peculiarity of this problem is that it has an infinite
number of associated vectors.

It is easy to see that λ0 = 0 is an eigenvalue of the operator LSI , and u0(x) = x is
a corresponding eigenvector. Therefore, the operator L−1

SI does not exist. This means
that to show the discreteness of the spectrum of the operator LSI , one could show
the compactness of its resolvent for another λ 6= λ0. Not dwelling on too-detailed
calculations, we give an explicit form of the resolvent for λ =−1:

(LSI + I)−1 f (x) =
x∫

0

ex−t+e1+t−x

2(e−1) f (t)dt +
1∫
x

e1+x−t+et−x

2(e−1) f (t)dt

+
1∫
0

e1+x−t+ex+t

2(e−1)2 f (t)dt−
1∫
0

e2−x−t+e1+t−x

2(e−1)2 f (t)dt.
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From this explicit representation of the resolvent it is easy to see its compactness
in L2(0,1). Therefore, according to Corollary 3.45, the spectrum of the operator LSI
can consist only of the eigenvalues.

Let us look for the eigenvalues of the operator LSI . Eigenvectors of the operator
LSI are all nonzero vectors u ∈ D(LSI), for which LSIu−λu = 0, that is, all nonzero
solutions of the differential equation −u′′(x)− λu(x) = 0, 0 < x < 1, for which
(3.64) holds.

For λ 6= 0 all solutions of this differential equation have the form

u(x) =C1 cos
(√

λx
)
+C2

1√
λ

sin
(√

λx
)
,

where C1 and C2 are arbitrary constants.
Using the boundary conditions (3.64) for defining C1 and C2 we obtain the system

of linear equations {
C1 = 0,

C1
√

λ sin
√

λ +C2

(
1− cos

√
λ

)
= 0. (3.65)

The characteristic determinant of the spectral problem will be the determinant of
this system:4(λ ) = 1− cos

√
λ . Transforming it as in Example 3.57, we get

4(λ ) = 2

(
sin

√
λ

2

)2

.

All roots of this determinant, λk = (2kπ)2, k ∈ N, are double. But from the sys-
tem (3.65) we have C1 = 0. Therefore, the operator LSI cannot have two linearly
independent eigenfunctions.

To each eigenvalue λk = (2kπ)2, k ∈ N, there corresponds one eigenfunction

uk0(x) = sin(2kπx) .

We now look for associated functions as solutions of the operator equations
LSIu−λku = uk0, that is, the solutions of the differential equations

−u′′(x)− (2kπ)2u(x) = sin(2kπx) , 0 < x < 1, (3.66)

satisfying condition (3.64).
A general solution of Eq. (3.66) has the form

u(x) =
x

4kπ
cos(2kπx)+C1 cos(2kπx)+C2 sin(2kπx) ,

where C1 and C2 are arbitrary constants. Using the boundary conditions (3.64) for
defining C1 and C2, we obtain the system of linear equations{

C1 = 0,
C2−C2 = 0. (3.67)
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Hence C1 = 0, and C2 is an arbitrary constant. Therefore,

uk1(x) =
x

4kπ
cos(2kπx)+Ck sin(2kπx) ,

where Ck are arbitrary constants, will be the associated functions of the operator LSI
corresponding to the eigenvalues λk = (2kπ)2 and to the eigenfunctions uk0(x) =
sin(2kπx). �

The considered Examples 3.56 - 3.59 demonstrate that the spectral properties
of the differential operators can be rather complicated: some or all eigenvalues can
be multiple; the root subspaces corresponding to the multiple eigenvalues can con-
sist only of the eigenvectors or the associated vectors can participate; the general
number of the associated vectors can be finite or infinite. Such a variety does not
give an opportunity to make any conclusions and indicate the spectral properties for
the case of general operators. Therefore, there is a necessity of choosing a narrower
class of the differential operators. One of such classes is formed by the so-called
Sturm-Liouville operators.

3.8 Spectral theory of the Sturm-Liouville operator
One of the simplest ordinary differential operators which is frequently encoun-

tered in applications to many areas of different sciences is the Sturm-Liouville oper-
ator. The Sturm-Liouville operator is an operator corresponding to the boundary
value problem for an ordinary differential equations of the second order

Lu≡−u′′(x)+q(x)u(x) = f (x), 0 < x < 1, (3.68)

with the boundary conditions{
a1u′(0)+a0u(0) = 0,
d1u′(1)+d0u(1) = 0, (3.69)

where the coefficients a1, a0, d1, d0 of the boundary condition are fixed real numbers
(a2

1 + a2
0 6= 0, d2

1 + d2
0 6= 0); the coefficient q ∈ C[0,1] in the equation (sometimes

it is called a potential) is a real-valued function. As we will show later, this Sturm-
Liouville problem is a self-adjoint problem. Since all the coefficients (in the equation
and in the boundary conditions) are real, in this section all the considerations are
carried out over the field of real numbers. In particular, we will also use the real
inner product.

A principal difference between this boundary value problem and more general
problems is that in the boundary condition (3.69) one condition is set at the left
endpoint of the interval, and the second condition is set at the right endpoint. The
conditions of such kind are called separated boundary conditions. For comparison,
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the periodic boundary conditions (3.60) of the operator Lπ , considered in Example
3.57 are nonlocal (in one boundary condition the values of the solution simultane-
ously enter both at the left endpoint and at the right endpoint of the interval) and do
not belong to the class of separated boundary conditions.

Note that the more general equations of the second order

Lu≡−U ′′(t)+P(t)U ′(t)+Q(t)U(t) = F(t), a≤ t ≤ b,

can be reduced to (3.60) with the help of the so-called Liouville transformation:

x =
t−a
b−a

, U(t) = u(x)exp
{

1
2

∫ t

a
P(s)ds

}
.

Let us denote by L the closure in L2(0,1) of the linear operator

Ly =−u′′(x)+q(x)u(x)

given on the linear space of functions u ∈C2[0,1] satisfying the boundary conditions
(3.69). The spectrum and eigenfunctions of the boundary Sturm-Liouville problem
(3.68)-(3.69) will be the spectrum and the eigenvectors of the operator L.

To justify the discreteness of the spectrum of the Sturm-Liouville operator L we
will show that it has a compact resolvent. We will also show that the solution of the
problem can be constructed by means of Green’s function.

First we give a formal definition and its corollaries, and then we show how
Green’s function is constructed.

The Green’s function of the Sturm-Liouville boundary value problem (3.68)-
(3.69) is a function G = G(x, t) having the following properties:

1. The function G(x, t) is continuous with respect to x and to t for all x, t ∈ [0,1];

2. The first derivative with respect to x has a discontinuity at one point: for x = t.
There, the value of the jump is equal to

G′x(t−0; t)−G′x(t +0; t) = 1;

3. For x 6= t the function G(x, t) is twice continuously differentiable with respect
to the variable x, and satisfies the equation

LxG(x, t)≡−G′′xx(x, t)+q(x)G(x, t) = 0, x 6= t;

4. For all t ∈ (0,1) the function G(x, t) with respect to the variable x satisfies the
boundary conditions (3.69):

a1G′x(0, t)+a0G(0, t) = 0, d1G′x(1, t)+d0G(1, t) = 0.

Let us show that if such function G(x, t) exists, then the solution of the Sturm-
Liouville boundary value problem (3.68)-(3.69) is represented in the integral form

u(x) =
∫ 1

0
G(x, t) f (t)dt. (3.70)
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Indeed, the fulfilment of the boundary conditions (3.69) follows from the fourth
property of Green’s function. Further, by differentiating formula (3.69), we get

u′(x) =
∫ x

0
G′x(x, t) f (t)dt +

∫ 1

x
G′x(x, t) f (t)dt,

u′′(x) =
∫ x

0
G′′xx(x, t) f (t)dt +G′x(x,x−0) f (x)

+
∫ 1

x
G′′xx(x, t) f (t)dt−G′x(x,x+0) f (x).

Now using the second and third properties of Green’s function, it is easy to make
sure that function (3.70) satisfies Eq. (3.68). Thus, (3.70) is indeed the solution of
the boundary value Sturm-Liouville problem (3.68)-(3.69).

Furthermore, by the first property of Green’s function, the function (3.70) will
be continuous for any f ∈ L2(0,1). Therefore, from Eq. (3.68) we obtain that u′′ ∈
L2(0,1), that is, the constructed solution belongs to the Sobolev space L2

2(0,1).
Assume that λ = 0 is not an eigenvalue of the operator. That is, the problem for

the homogeneous equation

Ly =−u′′(x)+q(x)u(x) = 0 (3.71)

with the boundary conditions (3.69) has only a zero solution. Then Green’s function
is unique.

Indeed, if we suppose that there exist two different Green’s functions G1(x, t) and
G2(x, t), then we have two solutions to the boundary value problem (3.68)-(3.69):

u1(x) =
∫ 1

0
G1(x, t) f (t)dt, u2(x) =

∫ 1

0
G2(x, t) f (t)dt.

Then their difference

u1(x)−u2(x) =
∫ 1

0

{
G1(x, t)−G2(x, t)

}
f (t)dt

is the solution of the homogeneous problem (3.69), (3.71). Therefore, u1(x)−
u2(x) = 0. Consequently,∫ 1

0

{
G1(x, t)−G2(x, t)

}
f (t)dt = 0

for all f ∈ L2(0,1). Hence G1(x, t) = G2(x, t), which proves the uniqueness of
Green’s function.

Let us now show a method for constructing Green’s function.
Denote by u0(x) and u1(x) the solutions of the homogeneous equation (3.69)

satisfying, respectively, the initial conditions

u0(0) = a1, u′0(0) =−a0;
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u1(1) = d1, u′1(1) =−d0.

The existence and uniqueness of such functions follow from the well-posedness of
the Cauchy problem for a linear differential equation. It is obvious that the function
u0(x) satisfies the first boundary condition in (3.69) (the condition at the point x =
0), while the function u1(x) satisfies the second boundary condition in (3.69) (the
condition at the point x = 1).

Moreover, these functions are linearly independent. Indeed, if there was linear
dependence, that is, u0(x) =Cu1(x), then u0(x) would satisfy the boundary condition
from (3.69). That is, the homogeneous problem (3.69), (3.71) would have the zero
solution, which contradicts the assumption.

Therefore, the Wronskian of these two functions is different from zero:

W (x) = u0(x)u′1(x)−u′0(x)u1(x) 6= 0.

Moreover, since these functions are the solutions of the homogeneous equation
(3.71), we have

W ′(x) = u0(x)u′′1(x)−u′′0(x)u1(x) = u0(x)q(x)u1(x)−q(x)u0(x)u1(x) = 0.

That is, the Wronskian does not depend on x: W (x) =W .
Let us introduce the function

G(x, t) =

 −
1

W u0(t)u1(x), t ≤ x,

− 1
W u0(x)u1(t), x≤ t.

(3.72)

It can be readily verified that the function (3.72) satisfies all the properties of Green’s
function. Thus, the following theorem is proved.

Theorem 3.60 If the homogeneous problem (3.69), (3.71) has only a zero solution,
then the inhomogeneous Sturm-Liouville boundary value problem (3.68)-(3.69) is
uniquely solvable for any right-hand side f ∈ L2(0,1). The solution of the problem
belongs to the class u ∈ L2

2(0,1) and is represented by Green’s function by formula
(3.70). Moreover, Green’s function has the form (3.72).

From the representation of solution by formula (3.70) it follows that if λ = 0 is
not an eigenvalue of the Sturm-Liouville operator L, then the inverse operator L−1

exists, is defined on the whole space L2(0,1), and is bounded. This inverse operator
is an integral operator in L2(0,1),

L−1 f (x) =
∫ 1

0
G(x, t) f (t)dt,

with the continuous kernel G(x, t). Therefore, it is a Hilbert-Schmidt operator and,
as a consequence, it is a compact operator in L2(0,1) (see Section 2.16).

As it is easy to see from (3.72), Green’s function is a symmetric func-
tion: G(x, t) = G(t,x). Consequently, the operator L−1 is self-adjoint in L2(0,1).
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Therefore, the Sturm-Liouville operator L is also self-adjoint and all of its spectral
properties are described by the Hilbert-Schmidt theorem 3.53 for unbounded self-
adjoint operators, and also by Corollary 3.45 and Corollary 3.51. Let us formulate all
these properties in the form of one theorem.

Theorem 3.61 The Sturm-Liouville operator L is a self-adjoint linear operator in
L2(0,1). The spectrum σ(L) consists entirely of eigenvalues of L and is a countable
set not having any finite limiting points. All eigenvalues of L are real. The eigenspaces
corresponding to these eigenvalues consist only of eigenvectors (no associated
vectors). The system of normalised eigenvectors forms an orthonormal basis of
L2(0,1). That is, any element ϕ ∈ L2(0,1) can be decomposed into the converging
Fourier series with respect to the system u j(x) of the normalised eigenvectors of the
operator L:

ϕ(x) =
∞

∑
j=1
〈ϕ,u j〉u j(x).

Historically, in 1836, C. Sturm first formulated and investigated the spectral prob-
lem

−(p(x)u′(x))′+q(x)u(x) = λu(x); u(0) = u(`) = 0,

which occurs when investigating the heat diffusion in an inhomogeneous rod. He
constructed an analogue of the behavior of nonzero solutions to this problem (eigen-
functions) with classical trigonometric functions. The main attention was paid to the
description of oscillatory properties of the eigenfunctions (number of zeros, their
intermittency) and to the investigation of influence of coefficients of the equation
and constants from boundary conditions on the placement of the eigenvalues. Almost
immediately, J. Liouville, who was an expert in the theory expansions of functions
into trigonometric series, joined these investigations. He considered questions of the
expansion with respect to systems of the form {cos(ρnx)}, {sin(ρnx)}, where ρn are
roots of some transcendent equation.

The intersection of their scientific interests led to the development of the spectral
theory of the differential operator L, nowadays called the Sturm-Liouville opera-
tor. Significant results in this direction were obtained in works of H. Schwarz, E.
Picard and H. Poincare. Apparently, the spectral theory of the Sturm-Liouville oper-
ator acquired a final form after the works of V. A. Steklov during 1896–1912.

Although we have formulated the main spectral properties of the Sturm-Liouville
operator in Theorem 3.61 being a consequence of abstract results, let us also give
brief proofs using the concrete form of the differential operator. In this way, also
some of the spectral properties will be refined.

The spectral Sturm-Liouville problem is the problem of eigenfunctions and
eigenvalues for the equation

Lu≡−u′′(x)+q(x)u(x) = λu(x), 0 < x < 1, (3.73)
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with the boundary conditions (3.69), that is,{
a1u′(0)+a0u(0) = 0,
d1u′(1)+d0u(1) = 0, (3.69)

where the coefficients a1, a0, d1, d0 of the boundary condition (3.69) are fixed real
numbers (a2

1 +a2
0 6= 0, d2

1 +d2
0 6= 0); the coefficient q ∈C[0,1] is a real-valued func-

tion. Solutions of Eq. (3.73) depend on a spectral parameter λ . Therefore, it is con-
venient to denote these solutions by u(x,λ ).

If for some λk the boundary value problem (3.73), (3.69) has a nontrivial solu-
tion u(x,λk) 6≡ 0, then the number λk is called an eigenvalue, and the corresponding
function u(x,λk) is called an eigenfunction of the boundary value problem (3.73),
(3.69).

Lemma 3.62 The eigenfunctions u(x,λ1) and u(x,λ2) that corresponds to two differ-
ent eigenvalues λ1 6= λ2 of the boundary value problem (3.73), (3.69) are orthogonal:∫ 1

0
u(x,λ1)u(x,λ2)dx = 0.

Indeed, by integrating by parts, we easily get∫ 1

0

{
Lu(x,λ1) ·u(x,λ2)−u(x,λ1) ·Lu(x,λ2)

}
dx =

∫ 1

0

{
−u′(x,λ1)u(x,λ2)

+u(x,λ1)u′(x,λ2)
}′ dx =W {u(x,λ1),u(x,λ2)}(x)

∣∣1
0, (3.74)

where W {u(x,λ1),u(x,λ2)}(x) is the Wronskian of two functions u(x,λ1) and
u(x,λ2).

From the boundary conditions (3.69) we obtain that W {u(x,λ1),u(x,λ2)}(0) = 0
and W {u(x,λ1),u(x,λ2)}(1) = 0. Therefore, using Lu(x,λ j) = λ ju(x,λ j) in (3.74),
we get

(λ1−λ2)
∫ 1

0
u(x,λ1)u(x,λ2)dx = 0.

Thence, since λ1 6= λ2, we complete the proof of the lemma. �

Lemma 3.63 The eigenvalues of the boundary value problem (3.73), (3.69) are real.

Indeed, since q(x) and the coefficients of the boundary conditions are real, then if
λ1 is an eigenvalue of the boundary value problem (3.73), (3.69), and u(x,λ1) is a
corresponding eigenfunction, then the number λ1 will be also the eigenvalue, and the
function u(x,λ1) = u(x,λ1) will be an eigenfunction.

Then, as in the proof of Lemma 3.62, we get(
λ1−λ1

)∫ 1

0
|u(x,λ1)|2 dx =

(
λ1−λ1

)∫ 1

0
u(x,λ1)u(x,λ1)dx = 0.

So, if the number λ1 is not real, then u(x,λ1)≡ 0. �
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Since the function q(x), generally speaking, is not a constant, then solutions of
Eq. (3.73) cannot be written in an explicit form. The following well-known theo-
rem is important for further investigations of the spectral properties of the Sturm-
Liouville problem. We state it without proof.

Theorem 3.64 Let q ∈ C[0,1]. Then for any parameters a0 and a1 there exists a
unique solution u(x,λ ) of Eq. (3.73) satisfying the conditions

u′(0) = a0, u(0) =−a1.

This solution u(x,λ ) for each fixed λ belongs to the class u ∈C2[0,1], and for each
fixed x ∈ [0,1] it is an entire function of λ .

Although the result of the theorem on the existence of a solution is obvious
enough (since this is the Cauchy problem with initial data for a linear equation),
the important point is the fact that this solution is an entire function of λ , that is, a
function that is holomorphic on the whole complex plane.

The next important fact of the spectral theory of the Sturm-Liouville problem is
the asymptotics of eigenvalues λk and eigenfunctions u(x,λk) as k→ ∞. It turns out
that their asymptotics coincide with the asymptotics of eigenvalues and eigenfunc-
tions of the problem with q≡ 0.

For simplicity of the exposition we consider only the case a1 = d1 = 1. And,
as is customary in this theory we denote a0 = −h and d0 = H. Then the boundary
conditions (3.69) can be rewritten in the form

u′(0)−hu(0) = 0, u′(1)+Hu(1) = 0; h,H ∈ R. (3.75)

We denote by s(x,λ ) the solution of the differential equation (3.73) satisfying the
initial conditions

s′(0,λ ) = 1, s(0,λ ) = 0, (3.76)

and by c(x,λ ) the solution of the differential equation (3.73) satisfying the initial
conditions

c′(0,λ ) = h, c(0,λ ) = 1. (3.77)

The function s(x,λ ) is called a solution of sine type, and the function c(x,λ ) is
called a solution of cosine type.

Lemma 3.65 Denote λ = µ2. Then the following equalities are true:

s(x,λ ) =
sin(µx)

µ
+

1
µ

∫ x

0
sin(µ(x− t))q(t)s(t,λ )dt, (3.78)

c(x,λ ) = cos(µx)+h
sin(µx)

µ
+

1
µ

∫ x

0
sin(µ(x− t))q(t)c(t,λ )dt. (3.79)
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Let us prove only (3.78). Since s(x,λ ) satisfies Eq. (3.73), then
x∫

0

sin(µ(x− t))q(t)s(t,λ )dt =
x∫

0

sin(µ(x− t))s′′(t,λ )dt +µ
2

x∫
0

sin(µ(x− t))s(t,λ )dt.

We apply twice integration by parts in the first integral on the right-hand side, and
use the initial conditions (3.76). Then we get∫ x

0
sin(µ(x− t))q(t)s(t,λ )dt =−sin(µx)+µs(x,λ ),

that is, the formula (3.78). The equality (3.79) is proved in the same way. �
Note that equalities (3.78) and (3.79) are integral Volterra equalities of the second

kind. Therefore, the existence of such functions s(x,λ ) and c(x,λ ) follows from the
unique solvability of these equations. Moreover, by Theorem 3.64 these functions for
each fixed x ∈ [0,1] are the entire functions of λ .

Using these integral equations we get the following asymptotics of the functions
s(x,λ ) and c(x,λ ) for large values of |λ | which will be given without the proof. As
before, we denote λ = µ2.

Lemma 3.66 Denote µ = δ + it, where δ , t ∈ R. Then there exists a number µ0 > 0
such that for |µ|> µ0 we have

s(x,λ ) = O
(

1
|µ|

e|t|x
)
, c(x,λ ) = O

(
e|t|x
)
. (3.80)

More precisely, we have

s(x,λ ) =
sin(µx)

µ
+O

(
1
|µ|2

e|t|x
)
, c(x,λ ) = cos(µx)+O

(
1
|µ|

e|t|x
)
. (3.81)

These estimates are satisfied uniformly with respect to x ∈ [0,1].

According to Lemma 3.63, the eigenvalues of the boundary value problem (3.73),
(3.69) are real: Im(µ) = t = 0. Therefore, we obtain the following asymptotics for
the eigenfunctions of the Sturm-Liouville problem:

s(x,λ ) =
sin(µx)

µ
+O

(
1
|µ|2

)
, c(x,λ ) = cos(µx)+O

(
1
|µ|

)
. (3.82)

It is easy to see that the function c(x,λ ) satisfies the boundary condition on the
left boundary u′(0)−hu(0) = 0 for any λ . Therefore, the eigenvalues of the problem
will be determined if we substitute the function c(x,λ ) into the boundary condition
at the right boundary u′(1)+Hu(1) = 0. Then we obtain the equation

4(λ ) = c′(1,λ )+Hc(1,λ ) = 0. (3.83)

This equation is the equation for determining eigenvalues of the Sturm-Liouville
problem. By analogy with the previous sections, we denote it by 4(λ ) = 0 and call
it the characteristic determinant.
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By differentiating equality (3.79) and using the second equality in (3.82), we get

c′x(x,λ ) =−µ sin(µx)+hcos(µx)+O
(

1
|µ|

)
.

Substituting it and (3.82) into (3.83), we obtain the following equation

4(λ ) =−µ sin(µ)+(h+H)cos(µ)+O
(

1
|µ|

)
= 0. (3.84)

For large values of µ this equation has solutions, which lie near solutions of
the equation sin(µ̂) = 0, that is, near the points µ̂k = kπ . This immediately implies
the existence of an infinite set of eigenvalues of the Sturm-Liouville boundary value
problem (3.73), (3.69).

By Theorem 3.64 the determinant4(λ ) is an entire function of λ . Therefore, in
(3.84) the term O

(
1
|µ|

)
is also an analytic function of λ . Let us differentiate4(λ ):

4′(λ ) =−µ cos(µ)− sin(µ)− (h+H)sin(µ)+O(1) .

It is obvious that for sufficiently large k the term 4′(λ ) cannot vanish in the
neighborhood of the points µ̂k = kπ . This means that near each point µ̂k = kπ there
is only one root of Eq. (3.84). Consequently, the Sturm-Liouville boundary value
problem has no multiple eigenvalues.

For a more precise analysis we need the following well-known result.

Theorem 3.67 (Rouche theorem). For any two complex-valued functions f and g,
holomorphic inside some domain Ω with closed boundary ∂Ω, if |g(z)| < | f (z)| on
∂Ω, then f and f + g have the same number of zeros inside Ω, where each zero is
counted as many times as its multiplicity.

This theorem is usually used to simplify the problem of locating zeros, as follows.
Given an analytic function, we write it as the sum of two parts, one of which is
simpler and grows faster than (thus dominates) the other part. In this situation one
usually says that f is the dominating part. We can then locate the zeros by looking
only at the dominating part f .

In Eq. (3.84) the dominating part is f (z) = −zsin(z), and as we choose g(z) as
the remaining terms. It is obvious that conditions of the Rouche theorem hold if
Ω is chosen as a disk of sufficiently large radius. Therefore, all roots of Eq. (3.84)
starting from some number n0 will lie in the neighborhood of the roots of the equation
f (z) =−zsin(z) = 0, that is, in the neighborhood of the points µ̂k = kπ . Since all the
roots of the equation sin(z) = 0 are simple, all the roots of Eq. (3.84) starting from
some number n0 are simple.

Let us find asymptotics of the eigenvalues for k→ ∞. For this we denote µk :=
µ̂k +δk ≡ kπ +δk. Then Eq. (3.84) will have the form

−(kπ +δk)sin(δk)+(h+H)cos(δk)+O
(

1
k

)
= 0.
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Then sin(δk) = O
( 1

k

)
, that is, δk = O

( 1
k

)
. Thus, for sufficiently large k the eigenval-

ues of the Sturm-Liouville problem have the form

λk =

(
kπ +O

(
1
k

))2

. (3.85)

These asymptotics can be essentially refined under an assumption of higher
smoothness of the function q(x). For example, for q ∈C1[0,1] the following formula
for asymptotics is known:

λk =

(
kπ +

α1

k
+O

(
1
k3

))2

, where α1 = h+H +
∫ 1

0
q(t)dt.

Asymptotic formulae for the eigenvalues also hold in the case when a1 = 0 and/or
d1 = 0 in the boundary condition (3.69).

If a1 = 0, d1 = 1 and d0 = H or a1 = 1, a0 = H and d1 = 0, then instead of (3.85)
we have

λk =

(
kπ +

π

2
+O

(
1
k

))2

. (3.86)

We separately write out the case when a1 = 0 and d1 = 0. Here the boundary
conditions (3.69) will take the form

u(0) = u(1) = 0. (3.87)

Lemma 3.68 The asymptotics of eigenvalues of the Sturm-Liouville problem for Eq.
(3.73) with the boundary conditions (3.87) have the form

λk =

(
kπ +O

(
1
k

))2

. (3.88)

The asymptotics of normalised eigenfunctions have the form

uk(x) =
√

2sin(kπx)+O
(

1
k

)
.

Under an additional condition q ∈C1[0,1], the asymptotics (3.88) can be refined as

λk =

(
kπ +

α2

k
+O

(
1
k3

))2

, where α2 =
1
2

∫ 1

0
q(t)dt.

From (3.85), (3.86) and (3.88) it follows that the Sturm-Lioville problem cannot
have multiple eigenvalues starting from some number n0. In fact, no eigenvalues can
be multiple:

Lemma 3.69 Each eigenvalue of the Sturm-Lioville problem has the multiplicity 1.
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Indeed, assume that two linearly independent eigenfunctions u1 and u2 corre-
spond to some eigenvalue λ . These two functions are solutions of one differential
equation

−u′′(x)+q(x)u(x) = λu(x), 0 < x < 1. (3.89)

Therefore, their Wronskian differs from zero and does not depend on x:
W{u1,u2}(x) =W (0) 6= 0.

Let us write the boundary conditions (3.69) for these two functions in the form
a1u′1(0)+a0u1(0) = 0
a1u′2(0)+a0u2(0) = 0

d1u′1(1)+d0u1(1) = 0
d1u′2(1)+d0u2(1) = 0.

(3.90)

These equations can be considered as a system of homogeneous linear equations with
respect to unknowns a1, a0, d1, d0.

The determinant of the system (3.90) differs from zero:

4=W{y1,y2}(0) ·W{y1,y2}(1) =W 2(0) 6= 0.

Therefore, the system has only the zero solution a1 = a0 = d1 = d0 = 0 that contra-
dicts the condition a2

1 + a2
0 6= 0, d2

1 + d2
0 6= 0. This contradiction proves the impos-

sibility of having two eigenfunctions corresponding to one eigenvalue. Since a self-
adjoint operator cannot have associated vectors, it follows that all the eigenvalues of
the Sturm-Liouville problem are simple. �

For completeness of the exposition we give one more fundamental result of Sturm
on intermittency of solutions of various Sturm-Liouville equations.

Theorem 3.70 Let two equations be given:

−u′′(x)+g(x)u(x) = 0, 0 < x < 1,

−v′′(x)+h(x)v(x) = 0, 0 < x < 1.

If g(x)> h(x) on the whole interval [0,1], then between every two zeros of any non-
trivial solution u(x) of the first equation there is at least one zero of each solution
v(x) of the second equation.

From this theorem we obtain an interesting particular case.

Corollary 3.71 Any solution of the equation

−u′′(x)+q(x)u(x) = 0, 0 < x < 1,

for q(x)> m2 > 0, for some m, can not have more than one zero.

Indeed, the equation−v′′(x)+m2v(x) = 0 has the solution v(x) = emx which does
not vanish anywhere. Therefore, on the basis of Theorem 3.70 the solution u(x) can
have no more than one zero. �

Let us give without proof the most well-known Sturm theorem on the number of
zeros of eigenfunctions on an interval. Its proof is based on the result of Theorem
3.70.
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Theorem 3.72 (Sturm theorem on oscillation). There exists an unboundedly increas-
ing sequence of eigenvalues λ0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λ2 ≤ . . . of the Sturm-Liouville
boundary value problem (3.73), (3.69). Moreover, an eigenfunction corresponding to
the eigenvalue λk has exactly k zeros inside the interval 0 < x < 1.

Note that, originally, it is based on this theorem that C. Sturm drew conclusions
on the existence of an infinite number of eigenvalues of the Sturm-Liouville problem.

3.9 Spectral trace and Hilbert-Schmidt operators
To introduce the concept of the trace of an operator we return for a while to

considering finite-dimensional operators and their spectral properties, which have
been already partially described in Section 3.1.

Let X be an n-dimensional vector space and let an operator A : X → X in some
basis of X be given by the matrix

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
an1 an2 . . . ann

 . (3.91)

The sum of all diagonal elements of the matrix,

Tr A =
n

∑
i=1

aii,

is called the matrix trace.
It is well known that the multiplication of matrices, generally speaking, is not

commutative: AB 6= BA. But the matrix traces of these matrices coincide:

Lemma 3.73 Let A and B be n×n square matrices. Then

Tr AB = Tr BA.

Indeed, if the matrices A and B are given by the coefficients ai j and bi j, then

Tr AB =
n

∑
i=1

n

∑
j=1

ai jb ji, Tr AB =
n

∑
i=1

n

∑
j=1

bi ja ji,

which are equal. �
From this lemma one obtains a remarkable property of the invariance of Tr A

with respect to a chosen basis.

Theorem 3.74 The matrix trace of a finite-dimensional operator does not depend on
a basis in which the operator A is represented in the form of its matrix (3.91).
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Indeed, let P be the transformation matrix to a new basis. Then in the new basis
the operator A is represented by the matrix P−1AP. Applying Lemma 3.73 to the
matrices P−1AP and P, we get

Tr
(
P−1AP

)
= Tr

(
PP−1A

)
= Tr A.�

The spectral trace of a finite-dimensional operator A is the sum of all of its eigen-
values.

Theorem 3.75 The spectral trace of a finite-dimensional operator A coincides with
its matrix trace:

Tr A =
n

∑
i=1

aii =
n

∑
i=1

λi. (3.92)

To prove this fact we first show that the spectrum of a finite-dimensional operator
A does not depend on a basis in which the operator A is represented as matrix (3.91).
Indeed, let P be the transformation matrix to a new basis. Then in the new basis the
operator A is represented by the matrix P−1AP. The roots of the characteristic poly-
nomial 4(λ ) = det

(
P−1AP−λ I

)
give its spectrum. Since det

(
P−1

)
= (detP)−1,

we have

det
(
P−1AP−λ I

)
= det

(
P−1AP−λP−1IP

)
= det

(
P−1 (A−λ I)P

)
= det

(
P−1)det(A−λ I)det(P) = det(A−λ I) .

That is, the characteristic determinant of the operator A does not depend on a
basis in which the operator A is represented as matrix (3.91). Consequently, the spec-
trum also does not depend on the choice of this basis.

Since the matrix trace also does not depend on the choice of this basis, then
without loss of generality one can assume that the matrix A is represented in the
Jordan normal form (3.14). Since in the Jordan normal form the eigenvalues of the
matrix are diagonal elements: aii = λi, the equality (3.92) is proved. �

The following question arises naturally: is the fact of the coincidence of the
matrix and spectral traces true in other (not finite-dimensional) operators in Hilbert
spaces?

Consider a compact operator A acting in a (infinite-dimensional) Hilbert space
H. It is said that the operator A has a matrix trace if for any orthonormal basis ϕk
the series

Tr A =
∞

∑
k=1
〈Aϕk,ϕk〉 (3.93)

converges absolutely. In this case the sum of the series (3.93) is called the matrix
trace of the operator A. For self-adjoint operators having a matrix trace one has a
formula analogous to formula (3.92):

Lemma 3.76 Let A be a self-adjoint compact operator in a Hilbert space H, and let
λk be its eigenvalues. If the series (3.93) converges absolutely, then its sum does not
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depend on the choice of an orthonormal basis ϕk. Moreover, the matrix trace of the
operator coincides with its spectral trace:

Tr A =
∞

∑
k=1
〈Aϕk,ϕk〉=

∞

∑
k=1

λk. (3.94)

Indeed, let
{

ψ j
}

be an orthonormal basis consisting of eigenvectors of the self-
adjoint compact operator A corresponding to the eigenvalues λ j. Then, according to
Corollary 3.33, from the Hilbert-Schmidt theorem 3.32 we have the expansion

ϕk =
∞

∑
j=1
〈ϕk,ψ j〉ψ j, ψ j =

∞

∑
k=1
〈ψ j,ϕk〉ϕk. (3.95)

Moreover, since ‖ϕk‖= ‖ψ j‖= 1, by the Parseval’s identity we have
∞

∑
j=1
|〈ϕk,ψ j〉|2 = 1,

∞

∑
k=1
|〈ϕk,ψ j〉|2 = 1.

Applying the operator A to the expansion (3.95), we get

Aϕk =
∞

∑
j=1
〈ϕk,ψ j〉λ jψ j, 〈Aϕk,ϕk〉=

∞

∑
j=1

∣∣〈ϕk,ψ j〉
∣∣2 λ j.

Therefore, for the matrix trace we have
∞

∑
k=1
〈Aϕk,ϕk〉=

∞

∑
k=1

∞

∑
j=1
|〈ϕk,ψ j〉|2λ j =

∞

∑
j=1

λ j

∞

∑
k=1

∣∣〈ϕk,ψ j〉
∣∣2 = ∞

∑
j=1

λ j.

This proves the independence of the matrix trace of a self-adjoint operator on the
choice of a basis and gives the formula (3.94) for its equality with the spectral trace.
�

For arbitrary (not necessarily self-adjoint) operators having the trace one also has
the independence of the matrix trace on the choice of a basis.

Lemma 3.77 If the series (3.93) converges absolutely, then its sum does not depend
on the choice of an orthonormal basis ϕk.

Indeed, let us represent the operator A in the form of the sum of its real and
imaginary components:

A = AR +AI , where AR =
1
2
(A+A∗) , AI =

1
2i

(A−A∗) .

It is obvious that the operators AR and AI are self-adjoint. We also have
Re〈Aϕk,ϕk〉= 〈ARϕk,ϕk〉 and Im〈Aϕk,ϕk〉= 〈AIϕk,ϕk〉.

Therefore, by Lemma 3.76 for the self-adjoint operators the matrix traces of the
operators AR and AI do not depend on the choice of a basis. Since

∞

∑
k=1
〈Aϕk,ϕk〉=

∞

∑
k=1
〈ARϕk,ϕk〉+ i

∞

∑
k=1
〈AIϕk,ϕk〉 ,

the matrix trace of the operator A also does not depend on the choice of a basis. �
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One of the remarkable results for operators having a trace is the theorem of V. B.
Lidskii [74] from 1959, on the equality of matrix and spectral traces for arbitrary (not
necessarily self-adjoint) operators (having a trace). The operators having the trace are
called nuclear operators.

Let us consider the Schatten-von Neumann classes, whose definition has been
introduced in Section 2.15 and which we now briefly recall. In the class of compact
operators in a Hilbert space H we can introduce the following parametrisation. One
says that an operator A : H → H belongs to the class Sp(H), if the following value
is finite:

‖A‖p =

(
∞

∑
k=1
‖Aϕk‖p

H

)1/p

< ∞, (3.96)

where ϕk(k ∈ N) is an orthonormal basis in H. The value ‖A‖p does not depend on
the choice of the orthonormal basis ϕk. The classes Sp(H) are called the Schatten-
von Neumann classes. They are nested: Sp(H)⊂ Sq(H) for p≤ q.

Theorem 3.78 (V. B. Lidskii, [74]) Let A ∈ S1(H), that is, A is a nuclear operator.
Then its matrix trace coincides with its spectral trace:

Tr A =
∞

∑
j=1

λ j.

Let us describe the Schatten-von Neumann classes in terms of the eigenvalues.
For example, if A is a compact self-adjoint operator, then as the basis ϕk we can
choose the basis of its normalised eigenvectors. Then formula (3.96) has the form

‖A‖p =

(
∞

∑
k=1
|λk|p

)1/p

,

where λk are the eigenvalues of the operator A.
However, in the general case such substitution of definition (3.96) turns out to

be impossible when considering general compact (not self-adjoint) operators which
cannot have eigenvalues or can have associated vectors, or its system of eigenvectors
does not form an orthonormal basis. To do this we need to introduce the concept of
s-numbers of an operator.

Let A be an arbitrary compact operator in a Hilbert space H. Consider the operator
B = A∗A. This operator is defined on the whole space H and is compact. For arbitrary
vectors ϕ,ψ ∈ H we have

〈Bϕ,ψ〉= 〈A∗Aϕ,ψ〉= 〈Aϕ,Aψ〉= 〈ϕ,A∗Aψ〉= 〈ϕ,Bψ〉.

Hence the operator B is a self-adjoint operator.
We denote by µk the sequence of its nonzero eigenvalues, and let ϕk be the cor-

responding normalised eigenfunctions. Then

µk = µk 〈ϕk,ϕk〉= 〈Bϕk,ϕk〉= 〈A∗Aϕk,ϕk〉= 〈Aϕk,Aϕk〉= ‖Aϕk‖2 ≥ 0.
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Thus, the operator B = A∗A is a compact self-adjoint positive operator. We
denote its eigenvalues (numbered in ascending order) by s2

k (s2
k = µk). The num-

bers sk (we choose them as ≥ 0) are an important characteristic of the operator. They
are called s-numbers of the operator or the singular values of the operator.

Note that although a compact operator A itself may not have eigenvalues, its s-
numbers always exist. Let us give an example.

Example 3.79 In L2(0,1), consider the integral operator

V f (x) =
∫ x

0
f (t)dt.

We have considered this operator in Example 2.70, where we have shown that it is a
Volterra operator. That is, it is a compact operator not having eigenvalues.

Let us show that s-numbers of the operator V exist and let us calculate them. The
operator adjoint to the operator V is easily constructed:

V ∗g(x) =
∫ 1

x
g(τ)dτ.

The corresponding operator B =V ∗V has the form

B f (x) =V ∗V f (x) =
∫ 1

x
dτ

∫
τ

0
f (t)dt =

∫ x

0
(1− x) f (t)dt +

∫ 1

x
(1− t) f (t)dt.

This operator is self-adjoint as an integral operator with the symmetric kernel
k(x, t) = θ(x− t)(1− x)+θ(t− x)(1− t). This operator is compact since the kernel
k(x, t) is continuous. Let us find the eigenvalues of the operator B.

Denote

u(x) = B f (x) =
∫ x

0
(1− x) f (t)dt +

∫ 1

x
(1− t) f (t)dt. (3.97)

It is easy to see that u ∈ L2
2(0,1) and

−u′′(x) = f (x), (3.98)

that is, the operator B is inverse to an operator of some boundary value problem
for the equation of the second order (3.98). Let us find boundary conditions of this
problem. To do this, as in Example 2.93, instead of the function f (x) we substitute
its value from (3.98) into the expression (3.97). Then, by a direct calculation we get

u(x) =−(1− x)
∫ x

0
u′′(t)dt−

∫ 1

x
(1− t)u′′(t)dt = (1− x)u′(0)−u(1)+u(x)

for all elements from the range of the operator B. Hence we obtain the boundary
conditions

u′(0) = 0, u(1) = 0. (3.99)
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Let us find the eigenvalues and eigenfunctions of this boundary value problem
(3.98)-(3.99), that is, all nonzero solutions of the equation −u′′(x) = λu(x), 0 < x <
1, for which (3.99) holds.

It is easy to see that the number λ = 0 is not an eigenvalue. For λ 6= 0 all solutions
of this differential equation have the form

u(x) =C1 cos
(√

λx
)
+C2

1√
λ

sin
(√

λx
)
,

where C1 and C2 are arbitrary constants. Using the boundary conditions (3.99) for
defining C1 and C2, we obtain{

C2 = 0,
C1 cos

√
λ +C2

1√
λ

sin
√

λ = 0. (3.100)

Therefore, the eigenvalues of the problem are found from the equation

4(λ ) = cos
√

λ = 0,

and can be calculated in the explicit form λk =
(
kπ− π

2

)2, k = 1,2, . . .. The eigen-
functions corresponding to them are uk(x) = cos

((
kπ− π

2

)
x
)
.

The discovered eigenvalues λk are the eigenvalues of the operator B−1. Then by
Lemma 3.44 the operator B has the eigenvalues λ

−1
k .

Thus, the integral operator V does not have eigenvalues, but its s-numbers are

sk =
(

kπ− π

2

)−1
, k = 1,2, . . . . �

Thus, we have shown an example of a compact operator in a Hilbert space that has
s-numbers while not having any eigenvalues. The s-numbers allow one to introduce
the Schatten-von Neumann classes in terms of these s-numbers.

We say that an operator A : H→ H belongs to the class Sp(H), if

‖A‖p :=

(
∞

∑
k=1

sp
k

)1/p

< ∞, (3.101)

where sk(k ∈N) is a descending sequence of s-numbers of the operator A. The value
‖A‖p is called the Schatten-von Neumann norm of the operator A. They are nested:
Sp(H)⊂ Sq(H) for p≤ q.

The operators from the class S1(H) are called nuclear operators (or trace-class
operators), and the operators from the class S2(H) are called Hilbert-Schmidt oper-
ators.

For any compact positive self-adjoint operator A one can introduce operators Aα

called the power of an operator of order α . By xk we denote an orthonormal basis
of eigenvectors of the operator A corresponding to the eigenvalues λk ≥ 0. Then by
the Hilbert-Schmidt theorem 3.32 we have the spectral expansion

Aϕ =
∞

∑
k=1

λkϕkxk, where ϕk = 〈ϕ,xk〉. (3.102)
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The operator having the spectral expansion

Aα
ϕ =

∞

∑
k=1

λ
α
k ϕkxk, where ϕk = 〈ϕ,xk〉.

is called the power of the compact positive self-adjoint operator A of order α ≥ 0.
Since α ≥ 0, the convergence of this series follows.
In particular, one can define in this way the operator

√
A := (A)1/2

called the square root of the compact positive self-adjoint operator A. The square

root is defined uniformly. It is obvious that
(√

A
)2

= A.
In the same way we define the operator

|A| :=
√

A∗A = (A∗A)1/2

called the modulus of the compact operator A. We note that the operator A∗A is
automatically positive and self-adjoint. It is easy to see that nonzero eigenvalues of
the operator |A| are the s-numbers of the operator A.

Lemma 3.80 For any compact operator A the operator |A| is a compact positive
self-adjoint operator.

Indeed, let us first show the compactness of the operator |A|. Let { fk}∞

k=1 be an
arbitrary bounded (‖ fk‖ ≤ M) sequence of vectors from H. Let us show that one
can choose a convergent subsequence from the sequence of their images {|A| fk}∞

k=1.
Since the operator A is compact, then A∗A is also compact. Therefore, one can choose
a convergent subsequence from the sequence {A∗A fk}∞

k=1. Without loss of general-
ity, one can assume that the sequence {A∗A fk}∞

k=1 already is convergent and, conse-
quently, a Cauchy sequence.

By the boundedness of the sequence { fk}∞

k=1 we have∥∥|A| fk−|A| f j
∥∥2

=
〈
|A|( fk− f j) , |A|( fk− f j)

〉
=
〈
A∗A( fk− f j) ,( fk− f j)

〉
≤
∥∥A∗A fk−A∗A f j

∥∥‖ fk− f j‖ ≤ 2M
∥∥A∗A fk−A∗A f j

∥∥ .
Therefore, the sequence {|A| fk}∞

k=1 is also a Cauchy sequence and, therefore, con-
verges.

Hence the operator |A| maps an arbitrary bounded sequence into a convergent
one and, therefore, is compact. �

A unitary operator on a Hilbert space H is a bounded linear operator U : H→H
preserving the norm of the vectors:

‖Ux‖= ‖x‖, ∀x ∈ H.

The unitary operators are boundedly invertible and U−1 =U∗. Moreover, the opera-
tor U is unitary if and only if U−1 =U∗.
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Lemma 3.81 (Polar decomposition for operators) For any compact positive opera-
tor A one has a polar decomposition of the form

A =U |A|, (3.103)

where U is a unitary operator.

Indeed, let µk be the eigenvalues and let xk be the corresponding orthonormal
system of eigenvectors of the compact positive self-adjoint operator |A|. All nonzero
eigenvalues are s-numbers of the operator A. There can be zero eigenvalues among
µk. It is obvious that

A∗Axk = µ
2
k xk.

Denote by zk the result of the action of the operator A on the basis vector xk:

Axk = µkzk.

For those cases when µk = 0 we choose zk arbitrary but so that all such zk form a
basis in ker |A|. Thus, the system {zk}∞

k=1 is an orthonormal basis in H.
Consider the operator U acting on the basis vectors xk by the formula

Uxk = zk.

Let us show that this operator is unitary. We represent the action of this operator on
an arbitrary vector f ∈ H in the form of an expansion with respect to the basis xk:

U f =U
∞

∑
k=1
〈 f ,xk〉xk =

∞

∑
k=1
〈 f ,xk〉zk, where f =

∞

∑
k=1
〈 f ,xk〉xk.

Therefore, the adjoint operator U∗ has the representation

U∗g =
∞

∑
j=1
〈g,z j〉x j, where g =

∞

∑
j=1
〈g,z j〉z j.

Then we calculate

UU∗g =
∞

∑
k=1

〈
∞

∑
j=1
〈g,z j〉x j,xk

〉
zk =

∞

∑
k=1
〈g,zk〉zk = g,

that is, UU∗ = I. It means that the operator U is unitary.
Consider the action by the operator U |A| on the basis vectors xk:

U |A|xk =Uµkxk = µkUxk = µkzk = Axk.

This proves representation (3.103). The lemma is proved. �
By this lemma, one can apply the Hilbert-Schmidt theorem 3.32 to the operator

|A|, so that we have the spectral expansion

|A|ϕ =
∞

∑
k=1

skϕkuk, where ϕk = 〈ϕ,uk〉, (3.104)
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where sk are the eigenvalues, and uk are the normalised eigenvectors of the opera-
tor |A|.

Applying the unitary operator U to the equality (3.104) from Lemma 3.81, we
get

Aϕ =
∞

∑
k=1

sk〈ϕ,uk〉Uuk.

Note that the vectors vk = Uuk belong to the range of the unitary operator U .
Therefore, the system vk is also an orthonormal basis in H. Thus, we have proved the
following theorem which is an analogue of the Hilbert-Schmidt theorem for the case
of non-self-adjoint operators.

Theorem 3.82 (Schmidt representation). Let A be a compact operator in a Hilbert
space H. Then one can find orthonormal systems of the vectors uk and vk, and also a
non-increasing sequence of nonnegative numbers sk ≥ 0 such that

Aϕ =
∞

∑
k=1

sk〈ϕ,uk〉vk, ∀ϕ ∈ H. (3.105)

From the representation (3.105), since the sequence sk is non-increasing, we
obtain the estimate∥∥∥∥∥Aϕ−

n

∑
k=1

sk〈ϕ,uk〉vk

∥∥∥∥∥=
∥∥∥∥∥ ∞

∑
k=n+1

sk〈ϕ,uk〉vk

∥∥∥∥∥≤ sn+1‖ϕ‖.

This fact demonstrates the direct connection between the decay order of the sequence
of s-numbers of the operator A and the approximation order of the operator A by
finite-dimensional operators. �

The following properties of the trace of a nuclear operator also follow from the
representation (3.105). We give them without proof.

Theorem 3.83 The following properties of the nuclear operators hold:

1. if A and B are nuclear operators, then operators A+B and aA (where a ∈C is
a constant) are also nuclear. Moreover,

Tr (A+B) = Tr A+Tr B;

2. if A is a nuclear operator, then the adjoint operator A∗ is also nuclear and

Tr A = Tr A∗;

3. if A is a nuclear operator, then for any bounded operator B operators AB and
BA are nuclear. Moreover,

Tr (AB) = Tr (BA);
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4. if A and B are Hilbert-Schmidt operators, then operators AB and BA are
nuclear.

Let us demonstrate an application of formula (3.105) in a particular case of
L2(Ω).

Theorem 3.84 Let T be a compact operator in the Hilbert space L2(Ω). The oper-
ator T is a Hilbert-Schmidt operator if and only if it is an integral Hilbert-Schmidt
operator. That is, if and only if there exists a function k = k(x,y) ∈ L2(Ω×Ω) such
that

T ϕ(x) =
∫

Ω

k(x,y)ϕ(y)dy, ∀ϕ ∈ L2(Ω). (3.106)

Indeed, by the representation (3.105), in the case of the space L2(Ω) we get

T ϕ(x) =
∞

∑
k=1

sk

(∫
Ω

ϕ(y)uk(y)dy
)

vk(x) =
∫

Ω

(
∞

∑
k=1

skuk(y)vk(x)

)
ϕ(y)dy.

Denote

k(x,y) :=
∞

∑
k=1

skuk(y)vk(x).

Then, by the orthonormality of bases uk and vk, we obtain

‖k‖2
L2(Ω×Ω) =

∞

∑
k=1
|sk|2 .

The series in the right-hand part converges if and only if the operator T is a Hilbert-
Schmidt operator. The theorem is proved. �

3.10 Schatten-von Neumann classes
Recall that an operator A : H → H on a Hilbert space H belongs to the class

Sp(H), if

‖A‖p :=

(
∞

∑
k=1

sp
k

)1/p

< ∞, (3.107)

where sk(k ∈N) is a descending sequence of s-numbers of the operator A. The value
‖A‖p is called the Schatten-von Neumann norm of the operator A.

The operators from the class S1(H) are called nuclear operators, and the opera-
tors from the class S2(H) are called Hilbert-Schmidt operators; these have been con-
sidered in Section 3.9. Here we briefly discuss the other values of p for the classes of
integral operators, while referring to the abstract general theory to e.g. [49], [115],
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[44]. For the basic theory of Schatten classes we refer the reader to [93], [115], [113].
For the trace class, see also [72].

Note that from the definition of the Schatten classes it follows that they are
nested:

Sp(H)⊂ Sq(H) for p≤ q.

Moreover, they satisfy the important multiplication property

SpSq ⊂ Sr, where
1
r
=

1
p
+

1
q
, 0 < p < q≤ ∞. (3.108)

There arises an interesting question: under what additional conditions will an
operator of the form (3.106), that is, the operator

T ϕ(x) =
∫

Ω

k(x,y)ϕ(y)dy,

be nuclear or belong to Sp(H)? As T. Carleman showed in [28] in 1916, even in the
one-dimensional case just the continuity of the kernel k(x, t) on the whole square
[a,b]× [a,b] does not guarantee that the corresponding operator T is nuclear or that
T belongs to at least one of the classes Sp(H) (p < 2).

Example 3.85 (Carleman’s example, 1916) In [28], T. Carleman constructed a peri-

odic continuous function κ(x) =
∞

∑
k=−∞

cke2πikx for which the Fourier coefficients ck

satisfy
∞

∑
k=−∞

|ck|p = ∞ for any p < 2. (3.109)

Now, consider the normal operator

T f = f ∗κ (3.110)

acting on L2(T) (where T is the torus). The sequence (ck)k gives a complete system
of eigenvalues of this operator corresponding to the complete orthonormal system

φk(x) = e2πikx, T φk = ckφk.

The system φk is also complete for T ∗, T ∗φk = ckφk, so that the singular values of T
are given by sk(T ) = |ck|, and hence by (3.109) we have

∞

∑
k=−∞

sk(T )p = ∞ for any p < 2.

A wide class of sufficient conditions for an integral operator T to belong to one
of the classes Sp(H) was obtained by P. E. Sobolevskii [120] in 1967.
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Theorem 3.86 (P. E. Sobolevskii, [120], 1967). Let Ω ⊂ Rn be an open bounded
domain with a sufficiently smooth boundary ∂Ω, and let

T ϕ(x) =
∫

Ω

k(x,y)ϕ(y)dy.

If for some positive α > 0 and β > 0 the integral kernel has the smoothness

k = k(x,y) ∈W αβ
xy (Ω×Ω),

then the operator T belongs to the class Sp
(
L2(Ω)

)
for

p >
2n

n+2(α +β )
.

In this theorem W αβ
xy (Ω×Ω) is the Sobolev-Slobodetskii space obtained by the

closure with respect to the norm

‖k‖2
W αβ

xy
=
∫

Ω

∫
Ω

|k(x,y)|2dxdy

+ ∑
[α],[β ]

∫
Ω

∫
Ω

∫
Ω

∫
Ω

∣∣∣D[α]
x D[β ]

y
(
k(x1,y1)− k(x2,y1)− k(x1,y2)+ k(x2,y2)

)∣∣∣2
|x1− x2|n+2{α} |t1− y2|n+2{β} dx1dx2dy1dy2

of all functions k = k(x,y) which are smooth in Ω×Ω. Here [α] is the integer part of
the number α and {α} is its fractional part. The summation is taken with respect to
all partial derivatives of order [α] and [β ].

Theorem 3.86 clearly demonstrates that the increase in the smoothness of the ker-
nel k(x,y) of the integral operator (3.106) (with respect to even one of the variables
x or y) leads to the inclusion of this operator into a smaller class Sp(H).

The following condition was obtained in [34] for operators on closed manifolds,
that is, on compact manifolds without boundary.

Theorem 3.87 ([34]) Let M be a closed manifold of dimension n. Assume that k is
in the Sobolev space, k ∈Hµ(M×M), for some µ > 0. Then the integral operator T
on L2(M), defined by

(T f )(x) =
∫

M
k(x,y) f (y)dy,

is in the Schatten classes Sp(L2(M)) for

p >
2n

n+2µ
.

In particular, if µ > n
2 , then T is trace class.
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We refer to [34] for several more refined criteria, for example for the integral
kernels in the mixed Sobolev spaces Hµ1,µ2

x,y (M×M).
We will also briefly review it here, but first, let us mention one corollary of such

mixed Sobolev spaces criteria. We denote by Cα
x Cβ

y (M×M) the space of functions
of class Cβ with respect to y and Cα with respect to x.

Corollary 3.88 ([34]) Let M be a closed manifold of dimension n. Let k ∈
C`1

x C`2
y (M×M) for some even integers `1, `2 ∈ 2N0 such that `1 + `2 >

n
2 . Then the

integral operator T on L2(M), defined by

(T f )(x) =
∫

M
k(x,y) f (y)dy,

is in S1(L2(M)), and its trace is given by

Tr(T ) =
∫

M
k(x,x)dx. (3.111)

Let M be a closed manifold. In what follows, we will assume from the reader the
basic knowledge of the theory of pseudo-differential operators, referring e.g. to [106]
for the details.

Let P be an invertible first-order positive self-adjoint pseudo-differential operator
on M. For example, if ∆M denotes the positive Laplace operator on M, let us, for
simplicity, fix

P := (I +∆M)1/2.

For a function (or distribution) on M×M, we will use the notation Pyk(x,y) to indi-
cate that the operator P is acting on the y-variable, the second factor of the product
M×M, and similarly for Pxk(x,y) when it is acting on the x-variable.

We now define mixed Sobolev spaces Hµ1,µ2
x,y (M ×M), of mixed regularity

µ1,µ2 ≥ 0. To motivate the definition, we observe that for k ∈ L2(M×M), we have

‖k‖2
L2(M×M) =

∫
M×M

|k(x,y)|2dxdy =
∫

M

(∫
M
|k(x,y)|2dy

)
dx,

or we can also write this as

k ∈ L2(M×M)⇐⇒ k ∈ L2
x(M,L2

y(M)). (3.112)

In particular, this means that kx defined by kx(y) = k(x,y) is well-defined for almost
every x ∈M as a function in L2

y(M).
Let now k ∈ L2(M×M) and let µ1,µ2 ≥ 0. We say that K ∈ Hµ1,µ2

x,y (M×M) if
kx ∈ Hµ2(M) for almost all x ∈M, and if (I +Px)

µ1kx ∈ L2
x(M,Hµ2

y (M)). We set

‖k‖H
µ1 ,µ2
x,y (M×M)

:=
(∫

M
‖(I +Px)

µ1kx‖2
Hµ2 (M)dx

)1/2

.

In analogy to (3.112), we can also write this as

k ∈ Hµ1,µ2
x,y (M×M)⇐⇒ Pµ1

x Pµ2
y k ∈ L2(M×M). (3.113)
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We recall that by the elliptic regularity, the usual Sobolev space Hµ(M) can be
characterised as the space of all distributions f such that (I +P)µ f ∈ L2(M), and
this characterisation is independent of the choice of (an invertible first-order positive
self-adjoint pseudo-differential operator) P. Similarly, the space Hµ1,µ2

x,y (M×M) is
independent of the choice of a particular operator P as above.

One can show the following inclusions between the mixed and the standard
Sobolev spaces:

Hµ1+µ2(M×M)⊂ Hµ1,µ2
x,y (M×M)⊂ Hmin(µ1,µ2)(M×M), (3.114)

for any µ1,µ2 ≥ 0.
We will now give a condition for the integral operators to belong to the Schatten

classes.

Theorem 3.89 ([34]) Let M be a closed manifold of dimension n and let µ1,µ2 ≥ 0.
Let k ∈ L2(M×M) be such that k ∈Hµ1,µ2

x,y (M×M). Then the integral operator T on
L2(M), defined by

(T f )(x) =
∫

M
k(x,y) f (y)dy,

is in the Schatten classes Sr(L2(M)) for

r >
2n

n+2(µ1 +µ2)
.

For µ1,µ2 = 0 the conclusion is trivial and can be sharpened to include r = 2.
We also note that combining Theorem 3.89 with the inclusions (3.114), one

immediately obtains Theorem 3.87.

Corollary 3.90 We have the following two special cases of Theorem 3.89 when no
regularity is required in one of the variables. For example, for µ1 = 0, the condition
k ∈ L2(M,Hµ(M)) implies that the corresponding operator T satisfies T ∈ Sr for

r >
2n

n+2µ
.

In this case no regularity in the x-variable is imposed on the kernel.
The case µ2 = 0, imposing no regularity of K with respect to y, is dual to it. It

also follows directly from the first one by considering the adjoint operator T ∗ and
using the equality ‖T ∗‖Sr = ‖T‖Sr .

In fact, more abstract results have been obtained in [36], which we will now
briefly describe. They yield the aforementioned conclusions as special cases of the
general statement.

Let (X j,M j,µ j) ( j = 1,2) be measure spaces respectively endowed with
a σ -finite measure µ j on a σ -algebra M j of subsets of X j. We denote
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L2(µ j) := L2(X j,µ j) the complex Hilbert space of square integrable functions on
X j. Let us consider the integral operators

T f (x) =
∫

X1

k(x,y) f (y)dµ1(y) (3.115)

from L2(µ1) into L2(µ2). In analogy to (3.112) we observe that for k ∈ L2(µ2⊗µ1),
we have

‖k‖2
L2(µ2⊗µ1)

=
∫

X2×X1

|k(x,y)|2dµ2(x)µ1(y) =
∫

X1

(∫
X2

|k(x,y)|2dµ2(x)
)

dµ1(y),

or we can also write

k ∈ L2(µ2⊗µ1) ⇐⇒ k ∈ L2
y(µ1,L2

x(µ2)).

In particular, this also means that ky defined by ky(x) = k(x,y) is well-defined for
almost every y ∈ X1 as a function in L2

x(µ2).
For an operator E from L2(µ1) into L2(µ1) we will use the notation Exk(x,y) to

emphasise that the operator E is acting on the x-variable. Analogously, we will also
use the notation Eyk(x,y) for an operator E from L2(µ2) into L2(µ2) acting on the
y-variable.

The following statement asserts that if we know how some operators E1,E2 act
on the integral kernel k(x,y) of an operator T , and we know their spectral properties,
we can obtain the spectral properties of the operator T .

Theorem 3.91 ([36]) Let (X j,M j,µ j) ( j = 1,2) be σ -finite measure spaces. Let E j

( j = 1,2) be linear invertible operators on L2(µ j) such that E−1
j ∈ Sp j(L

2(µ j)) for
some p j > 0. Let k ∈ L2(µ2⊗µ1) and let T be the integral operator from L2(µ1) to
L2(µ2) defined by

(T f )(x) =
∫

X1

k(x,y) f (y)dµ1(y).

Then the following holds:

(i) If (E2)x(E1)yk ∈ L2(µ2⊗ µ1), then T belongs to the Schatten-von Neumann
classes Sr(L2(µ1),L2(µ2)) for all 0 < r < ∞ such that

1
r
≤ 1

2
+

1
p1

+
1
p2

.

Moreover,

‖T‖Sr ≤ 21+ 2
p1

+ 1
p2 ‖E−1

1 ‖Sp1
‖E−1

2 ‖Sp2
‖(E2)x(E1)yk‖L2(µ2⊗µ1)

. (3.116)

(ii) If (E2)xk ∈ L2(µ2⊗µ1), then T belongs to the Schatten-von Neumann classes
Sr(L2(µ1),L2(µ2)) for all 0 < r < ∞ such that

1
r
≤ 1

2
+

1
p2

.
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Moreover,
‖T‖Sr ≤ 2

1
2+

1
p2 ‖E−1

2 ‖Sp2
‖(E2)xk‖L2(µ2⊗µ1)

. (3.117)

(iii) If (E1)yk ∈ L2(µ2⊗µ1), then T belongs to the Schatten-von Neumann classes
Sr(L2(µ1),L2(µ2)) for all 0 < r < ∞ such that

1
r
≤ 1

2
+

1
p1

.

Moreover,
‖T‖Sr ≤ 2

1
2+

1
p1 |E−1

1 ‖Sp1
‖(E1)yk‖L2(µ2⊗µ1)

. (3.118)

The condition that K ∈ L2(µ2⊗ µ1) in Theorem 3.91 is not restrictive. Indeed,
conditions for T ∈ Sr(L2(µ1),L2(µ2)) for r > 2 do not require regularity of K and
are given, for example, in Theorem 3.94. The case 0 < r < 2 is much more subtle
(as the classes become smaller), but if T ∈ Sr(L2(µ1),L2(µ2)) for 0 < r < 2 then, in
particular, T is a Hilbert-Schmidt operator, and hence the condition k ∈ L2(µ2⊗µ1)
is also necessary.

The statement of Theorem 3.91 covers precisely the case 0 < r < 2. Indeed, for
example in Part (i), we have r = 2p1 p2

p1 p2+2(p1+p2)
and hence we have 0 < r < 2 since

in general 0 < p1, p2 < ∞. Thus, Theorem 3.91 provides a sufficient condition for
Schatten classes Sr for 0 < r < 2.

One can provide an alternative formulation in terms of the behaviour of the eigen-
value counting function of the operators E1,E2, also improving somewhat the decay
rate of the singular numbers of the operator T .

We recall that for a self-adjoint operator E with discrete spectrum {λ j} j its eigen-
value counting function is defined by

N(λ ) := #{ j : λ j ≤ λ},

where λ j’s are counted with their respective multiplicities.

Theorem 3.92 ([36]) Let (Xi,Mi,µi) (i = 1,2) be σ -finite measure spaces. For each
i = 1,2, let Ei be an (essentially) self-adjoint operator on L2(µi) such that the spec-
trum of its closure consists of a sequence of discrete and strictly positive eigenvalues
0 < λ1,i ≤ λ2,i ≤ ·· · , whose eigenvectors are a basis of L2(µi). Assume that for the
eigenvalue counting function Ni(λ ) of Ei (i = 1,2) there exist constants Ci, pi > 0
such that

Ni(λ )≤Ci(1+λ )pi for all λ > 0. (3.119)

Let k ∈ L2(µ2⊗µ1) and let T be the integral operator from L2(µ1) to L2(µ2) defined
by

(T f )(x) =
∫

X1

k(x,y) f (y)dµ1(y).

Then the following holds:
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(i) If (E2)x(E1)yk ∈ L2(µ2⊗ µ1), then T belongs to the Schatten-von Neumann
class Sr(L2(µ1),L2(µ2)) for all 0 < r < ∞ such that

1
r
<

1
2
+

1
p1

+
1
p2

,

and (3.116) holds.

Moreover, the sequence of singular values (s j(T )) j satisfies the following esti-
mate for the rate of decay:

s j(T ) = o( j−
(

1
2+

1
p1

+ 1
p2

)
).

(ii) Let E be a linear invertible operator on L2 as above such that its spectrum
satisfies (3.119) for some p > 0. If either Eyk ∈ L2(µ2⊗µ1) or Exk ∈ L2(µ2⊗
µ1), then T belongs to the Schatten-von Neumann class Sr(L2(µ1),L2(µ2)) for
all 0 < r < ∞ such that

1
r
<

1
2
+

1
p
,

and respectively (3.117) or (3.118) holds.

Moreover, the sequence of singular values (s j(T )) j satisfies the following esti-
mate for the rate of decay:

s j(T ) = o( j−
(

1
2+

1
p

)
).

We note that the situation for Schatten classes Sp for p > 2 is simpler and, in fact,
similar to that of p = 2. For the inclusion of some more recent results, let us briefly
review a few other properties, for example, for convolution operators in the setting
of compact Lie groups.

Theorem 3.93 ([35]) Let G be a compact Lie group, and let T be a convolution
operator,

T f (x) = f ∗κ(x).

Then
κ ∈ Lp′(G), 1≤ p′ ≤ 2 =⇒ T ∈ Sp(L2(G)),

1
p′

+
1
p
= 1.

The converse of this is also true but for interchanged indices, i.e.

T ∈ Sp(L2(G)), 1≤ p≤ 2 =⇒ κ ∈ Lp′(G).

We refer to [35] for this as well as for the symbolic characterisation of Schatten
classes in the setting of compact Lie groups.

There are several other conditions for the membership in the Schatten-von Neu-
mann classes Sp for p > 2, for the case of integral operators on σ -finite measure
spaces. The following condition was found independently by several mathematicians,
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we give here a version by [98]. Let X be a σ -finite measure space, and we define the
class Lp,q as consisting of (kernel) functions k(x,y), x,y ∈ X , such that

‖k‖Lp,q =

(∫
X

(∫
X
|k(x,y)|pdx

)q/p

dy

)1/q

< ∞.

Theorem 3.94 ([98]) Let p > 2, p′ = p/(p−1), and let the integral kernel k of the
operator

(T f )(x) =
∫

X
k(x,y) f (y)dy,

belong to L2(X ×X). Suppose that k and the adjoint kernel k∗(x,y) = k(y,x) belong
to Lp′,p. Then the integral operator T belongs to the Schatten-von Neumann class
Sp(L2(X)). Moreover, we have

‖T‖Sp ≤ (‖k‖Lp′,p‖k∗‖Lp′,p)
1/2.

In fact, it was also shown in [45], quite elementarily, that the condition k∈ L2(X×
X) is excessive and may be removed.

Under the above conditions, one can write the formula for the powers of the
operator T . Thus, the following was shown in [45, Theorem 2.4]:

Theorem 3.95 Let the integral kernel k(x,y) of an operator T satisfy the conditions
of Theorem 3.94 for some p > 2. Then for the operator T m, which belongs to the
trace class by the above theorem for any integer m > p, the following formula holds

Tr(T m) =
∫

Xs

(
s

∏
k=1

k(xk,xk+1)

)
dx1dx2 . . .dxm, (3.120)

where one identifies xm+1 with x1.

Combining Theorem 3.91 with Theorem 3.94, we obtain the following extension.

Corollary 3.96 ([36]) Let (X ,M ,µ) be a measure space endowed with a σ -finite
measure µ . Let E j ( j = 1,2) be linear invertible operators on L2(X) such that E−1

j ∈
Sp j(L

2(X)) for some p j > 0. Let k ∈ L2(X ×X) and let T be the integral operator
from L2(X) to L2(X) defined by

(T f )(x) =
∫

X
k(x,y) f (y)dµ(y).

Let 1 < q≤ 2 and 1
q +

1
q′ = 1.

(i) If (E2)x(E1)yk and ((E2)x(E1)yk)∗ ∈ Lq′(X ,Lq(X)), then T belongs to the trace
class S1(L2(µ)) provided that

1≤ 1
q′

+
1
p1

+
1
p2

.
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Moreover, we have

‖T‖S1 ≤ 21+ 1
q′+

1
p1 ‖E−1

1 ‖Sp1
‖E−1

2 ‖Sp2
×

×
(
‖(E2)x(E1)yk‖Lq′ (X ,Lq(X))

‖((E2)x(E1)yk)∗‖Lq′ (X ,Lq(X))

) 1
2
. (3.121)

In particular, if (E2)x(E1)yk ∈ L2(X ×X), then T belongs to the trace class
S1(L2(X)) provided that 1

2 = 1
p1
+ 1

p2
.

(ii) Let E be a linear invertible operator on L2(X) such that E−1 ∈ Sp(L2(X))

for some p > 0. If Exk,(Exk)∗ ∈ Lq′(X ,Lq(X)) or Eyk,(Eyk)∗ ∈ Lq′(X ,Lq(X)),
then T belongs to the trace class S1(L2(µ)) provided that

1≤ 1
q′

+
1
p
.

Moreover, respectively one has

‖T‖S1 ≤ 2‖E−1‖Sp

(
‖Exk‖Lq′ (Ω,Lq(Ω))

‖(Exk)∗‖Lq′ (Ω,Lq(Ω))

) 1
2
, (3.122)

or

‖T‖S1 ≤ 2‖E−1‖Sp

(
‖Eyk‖Lq′ (Ω,Lq(Ω))

‖(Eyk)∗‖Lq′ (Ω,Lq(Ω))

) 1
2
. (3.123)

particular, if E is a linear invertible operator on L2(X) such that E−1 ∈
S2(L2(X)) and either Eyk ∈ L2(X ×X) or Exk ∈ L2(X ×X), then T belongs
to the trace class S1(L2(X)).

(iii) Moreover, assume additionally that X is a second countable topological space
and (X ,M ,µ) is a measure space endowed with a σ -finite Borel measure µ .
Then under any of the assumptions (i) or (ii), the operator T is trace class on
L2(µ) and its trace is given by

Tr(T ) =
∫

X
k̃(x,x)dµ(x). (3.124)

Here k̃(x,x) in (3.124) is defined using the averaging with respect to the martingale
maximal function, see [36].

Consequently, Theorem 3.92 can be extended by using Corollary 3.96.

Corollary 3.97 ([36]) Assume that E1 and E2 satisfy the assumptions of Theorem
3.92. Let 1 < q≤ 2 and 1

q +
1
q′ = 1. Then the following holds:
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(i) If (E2)x(E1)yk and ((E2)x(E1)yk)∗ ∈ Lq′(X ,Lq(X)), then T belongs to the
Schatten-von Neumann class Sr(L2(X)) for all 0 < r < ∞ such that

1
r
<

1
q′

+
1
p1

+
1
p2

,

and (3.121) holds.

Moreover, the sequence of singular values (s j(T )) j satisfies the following esti-
mate for the rate of decay:

s j(T ) = o( j−
(

1
q′+

1
p1

+ 1
p2

)
).

(ii) Let E be a linear invertible operator on L2 as above such that its spectrum
satisfies (3.119) for some p> 0. If Exk,(Exk)∗ ∈ Lq′(X ,Lq(X)) or Eyk,(Eyk)∗ ∈
Lq′(X ,Lq(X)), then T belongs to the Schatten-von Neumann class Sr(L2(X))
for all 0 < r < ∞ such that

1
r
<

1
q′

+
1
p
,

and respectively (3.122) or (3.123) holds.

Moreover, the sequence of singular values (s j(T )) j satisfies the following esti-
mate for the rate of decay:

s j(T ) = o( j−
(

1
q′+

1
p

)
).

The above criteria for the membership in the Schatten-von Neumann classes have
a wide applicability; we refer to [36] for the detailed analysis of many examples in
various settings.

3.11 Regularised trace for a differential operator
As we have seen in Section 3.9, the classical result of the matrix theory on the

equality of matrix and spectral traces has been extended to the infinite-dimensional
case. If an operator in the infinite-dimensional case is nuclear, then its matrix and
spectral traces have a finite value and are equal to each other.

There arises a question of an analogue of these results for the case of unbounded
operators. In this case the sequence of eigenvalues of a self-adjoint unbounded oper-
ator unboundedly increases. Therefore, the matrix and spectral traces of the operator
do not exist. The further development of the theory has led to the formulation and
investigation of the question on extending the notion of the trace invariance to oper-
ators not having a trace. The concept of the so-called regularised traces naturally
arises.
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If we consider the classical Sturm-Liouville problem

−u′′(x)+q(x)u(x) = λu(x); u′(0)−hu(0) = 0, u′(π)+Hu(π) = 0, (3.125)

then, as has been shown in Section 3.8, for q ∈C1[0,π] the eigenvalues of this prob-
lem have the asymptotics

λk = k2 +α1 +O
(

1
k2

)
, where α1 =

2
π

(
h+H +

1
2

∫
π

0
q(t)dt

)
.

Therefore,
∞

∑
k=1

(
λk− k2−α1

)
=

∞

∑
k=1

O
(

1
k2

)
< ∞,

that is, we have obtained a convergent series.
Series of such type are called the regularised traces of the corresponding opera-

tors. As it has turned out (for the Sturm-Liouville problem), although the eigenvalues
of the Sturm-Liouville problem cannot be calculated in an explicit form, the sum of
its regularised trace can be found exactly.

In a more general form, we consider the problem of calculating the regularised
traces of operators of the form

A = A0 +B,

where A0 is an unbounded self-adjoint operator in a separable Hilbert space H with a
compact resolvent, and B is an operator which is in some sense “subordinate” to the
operator A0.

The formula for the regularised traces for the operator A is a formula of the
form

∞

∑
k=1

(
λ

p
k −λ

p
k0− ck(p)

)
= F(p),

where λk and λk0 are the eigenvalues of the operators A and A0, respectively, p is an
integer parameter called the order of the regularised trace, and ck(p) and F(p) are
expressions in some explicit form.

For a wide class of abstract operators the formula for the regularised trace is
obtained in the form

∞

∑
k=1

(λk−λk0) = Tr B,

where Tr B is the spectral trace of some nuclear operator B. However, such class of
operators of the form A0+B, where B is nuclear, is not often used. In fact, more often,
for the operator B one takes the operator of the multiplication by a function, Bu(x) =
q(x)u(x), which is not even a compact operator. Therefore, for such operators the
additional investigation is needed.

The formula for the regularised trace of the first order was first obtained by I. M.
Gelfand and B. M. Levitan in [43] (1953) for one concrete Sturm-Liouville problem:

−u′′(x)+q(x)u(x) = λu(x), x ∈ (0,π); u′(0) = 0, u′(π) = 0. (3.126)
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Under conditions q ∈C[0,π] and
∫

π

0 q(x)dx = 0, they obtained the formula

∞

∑
k=0

(
λk− k2)= q(0)+q(π)

4
.

Here λk are the eigenvalues of the problem (3.126). Noting that the second term in
this sum, λk0 = k2, is the eigenvalue of the problem (3.126) for q ≡ 0. We obtain
that formula (3.126) is a particular case of the general formula of calculating the
regularised trace.

In further investigations the formulae for regularised traces were obtained for
a wide class of differential operators including partial differential operators. It is
known that the derivation of formulae for the regularised trace for a wide class of
boundary value problems generated by ordinary differential expressions on a finite
segment with complicated participation of a spectral parameter, reduces to studying
regularised sums of roots of entire functions with a certain asymptotic structure. One
can find a rather complete review of the modern state of this theory in the survey of
V. A. Sadovnichii and V. E. Podol’skii [107]. Final formulations of the results have
been obtained for most non-singular cases.

For the spectral problem (3.125) the formula of the regularised trace was obtained
by B. M. Levitan [73] (1964) in the form

∞

∑
k=1

(
λk− k2−α1

)
=

q(0)+q(π)
4

− h+H
π
− 1

2π

∫
π

0
q(t)dt− h2 +H2

2
.

The further development of this theory consists in extending the formulae for the
regularised trace to singular cases. These include problems in unbounded domains
with non-smooth coefficients (which can be even generalised functions of Dirac
delta-function type and/or its derivatives), problems in multiply-connected domains,
etc.

Example 3.98 As a demonstration, we consider the following eigenvalue problem:

−u′′(x)+q(x)u(x) = λu(x),
π

n
(k−1)< x <

π

n
k, k = 1, . . . ,n; n≥ 2; (3.127)

u(0) = 0, u(π) = 0, (3.128)

u
(

πk
n
−0
)
= u

(
πk
n

+0
)
, (3.129)

u′
(

πk
n
−0
)
= u′

(
πk
n

+0
)
−βk

∫
π

0
u(t)dt, k = 1, . . . ,n−1. (3.130)

Here q(x) is a sufficiently differentiable real-valued function, βk are real constants,
and λ is a spectral parameter.

One of the peculiarities of this problem is that the differential equation (3.127)
is not satisfied at the interior points πk/n, k = 1, . . . ,n−1, of the interval (0,π).
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At these points the solution is continuous according to the conditions (3.129), but
the first derivative has jumps at these points according to the condition (3.130). The
problems of such type are called problems in punctured domains.

Another peculiarity of this problem is that the used jump conditions (3.130) of
the first derivative are sufficiently nonlocal: they involve an integral of the solution
with respect to the whole interval (0,π).

However, even for such complicated problems the first regularised trace can be
written out in an explicit form. The problem is reduced to calculating a regularised
sum of roots of quasi-polynomials.

Note that in [81] the formulae of the first regularised trace for the equation (3.127)
with additional terms of the form ∑

n−1
k=1 αku

(
πk
n

)
for βk = 0, k = 1, . . . ,n−1, were

obtained. We will demonstrate the method of development of this result in the case
of problems with integral conditions in a complex multiply-connected domain.

Theorem 3.99 For a regularised trace of the problem (3.127)-(3.130) the following
formula is valid:

∞

∑
m=0

2n

∑
j=1

(
λm, j− (2nm+ j)2−

(
1+

1
2nm+ j

)
2
π

∫
π

0
q(t)dt

)
(3.131)

=−q(0)+q(π)
4

+
1

2π

∫
π

0
q(t)dt,

where λm, j are the eigenvalues of the problem (3.127)-(3.130). Moreover, the eigen-
values have the asymptotics

λm, j = s2
m, j, j = 1, . . . ,2n, m = m0,m0 +1, . . . ,

where

sm, j = (2nm+ j)+
c1, j

2nm+ j
+

c2, j

(2nm+ j)2 +O
(

1
(2nm+ j)3

)
; (3.132)

c1, j =
1

2π

∫
π

0
q(t)dt, c2, j =

1− (−1) j

2
i
π

n−1

∑
k=1

(βk +βn−k)e
iπ jk

n . (3.133)

Let us give a brief indication of the proof of this theorem. By standard calcula-
tions for Eq. (3.127) on each interval Ik : π

n (k− 1) < x < π

n k, one can write out the
asymptotics (for |s| → ∞) for two linearly independent solutions of this equation:

u1,k(x,s)∼ eisx
∞

∑
ν=0

aν ,k(x)
sν

, u2,k(x,s)∼ e−isx
∞

∑
ν=0

(−1)ν
aν ,k(x)

sν
,

where
a0,k(x)≡ 1,

aν ,k(x) =
i
2

{
a′ν−1,k(x)−a′ν−1,k

(
π

n
(k−1)

)
−
∫ x

π
n (k−1)

q(t)aν−1,k(t)dt
}
. (3.134)
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Here it is assumed that the complex plane (λ = s2, s =
√

λ ) is divided into four
sections by angles args = 0 and args = π

2 and the asymptotics exist in each of the
four sections.

From the recurrent formula (3.134) we get

a1,k(x) =−
i
2

∫ x

π
n (k−1)

q(t)dt,

a2,k(x) =
1
4

{
q(x)−q

(
π

n
(k−1)

)
− 1

2

(∫ x

π
n (k−1)

q(t)dt
)2
}
,

aν ,k

(
π

n
(k−1)

)
= 0,ν = 1,2;

u1,k

(
π

n
(k−1),s

)
= ei π(k−1)s

n , u2,k

(
π

n
(k−1),s

)
= e−i π(k−1)s

n .

On each of the intervals Ik a general solution of Eq. (3.127) is represented in the
form

u(x) = Aku1,k(x,s)+Bku2,k(x,s).

Satisfying the boundary conditions (3.128) and the generalised “gluing” conditions
(3.129), (3.130), we obtain a linear system of 2n equations for the constants Ak, Bk,
whose determinant ∆(s) will be the characteristic determinant of the spectral prob-
lem (3.127)-(3.130). This function ∆(s) is determined by the following asymptotic
expression:

∆(s) = eiπs
{

1+
a1

s
+

a2− (β1 + ...+βn−1)

s2 +O
(

1
s3

)}

+e−iπs
{
−1+

a1

s
− a2− (β1 + ...+βn−1)

s2 +O
(

1
s3

)}

+
n−1

∑
k=1

ei πk
n s
{

βk +βn−k

s2 +O
(

1
s3

)}
−

n−1

∑
k=1

e−i πk
n s
{

βk +βn−k

s2 +O
(

1
s3

)}
+O

(
1
s4

)
.

Here

a1 =−
i
2

∫
π

0
q(t)dt, a2 =

1
4

{
q(π)−q(0)− 1

2

(∫
π

0
q(t)dt

)2
}
.

Analysing the equation ∆(s) = 0, we obtain that the problem (3.127)-(3.130) has
4n series of eigenvalues with the asymptotics (3.132), (3.133). Given that the function
∆(s) is odd, we obtain that along with the eigenvalues sm, j from formula (3.132), the
numbers −sm, j are also the roots of the characteristic polynomial. We denote them
by sm, j+2n, j = 1, . . . ,2n. Then we obtain the vanishing of the coefficients c2, j from
(3.133) with the even numbers j. Thus, in terms of the spectral parameter λ we get
2n series of the eigenvalues.
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The number of series of the eigenvalues in this problem is not classic. It is caused
by the fact that the whole interval [0,π] is divided in n subintervals.

Here the function ∆(s) belongs to the class K of entire functions of the first order.
Therefore, for its analysis one can apply the method of calculating the regularised
sum of roots of quasi-polynomials developed in the theory of regularised traces [107].
In view of the cumbersomeness of these calculations we will not give them here.

Remark 3.100 In a particular case when βk = 0, k = 1, . . . ,n−1, the problem
(3.127)-(3.130) coincides with the Cauchy problem and formula (3.131) of Theo-
rem 3.99 coincides with the classical result:

∞

∑
m=0

(
λm−m2− 1

π

∫
π

0
q(t)dt

)
=−1

4
(
q(0)+q(π)

)
+

1
2π

∫
π

0
q(t)dt.

The considered example once again demonstrates the possibilities of the methods
of the theory of regularised traces. Although for concrete problems the eigenvalues
themselves cannot be calculated in an explicit form, the regularised trace can often
still be calculated in the form of an explicit formula. �

3.12 Eigenvalues of non-self-adjoint ordinary differential
operators of the second order

In this section we consider basic properties of eigenvalues of non-selfadjoint
boundary value problems of the general form for the second-order ordinary differen-
tial equations.

In L2(0,1), consider the operator L given by

Lu≡−u′′(x)+q(x)u(x) = λu(x), 0 < x < 1, (3.135)

and two-point boundary conditions of the general form U1(u) = a11u′(0)+a12u′(1)+a13u(0)+a14u(1) = 0,

U2(u) = a21u′(0)+a22u′(1)+a23u(0)+a24u(1) = 0,
(3.136)

where U1(u) and U2(u) are linearly independent forms with arbitrary complex-valued
coefficients and q ∈C[0,1] is an arbitrary complex-valued function.

We denote by L the closure in L2(0,1) of the operator given by the differential
expression (3.135) on the linear space of functions y ∈C2[0,1] satisfying the bound-
ary conditions (3.136).

It is easy to justify that the operator L is a linear operator on L2(0,1) defined by
(3.135) with the domain

D(L) =
{

u ∈ L2
2(0,1) : U1(u) =U2(u) = 0

}
.
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For the elements u ∈ D(L) we understand the action of the operator Lu = u′′(x)+
q(x)u(x) in the sense of almost everywhere on (0,1).

By an eigenvector of the operator L corresponding to an eigenvalue λ0 ∈ C, we
mean any nonzero vector u0 ∈ D(L) which satisfies the equation

Lu0 = λ0u0. (3.137)

By an associated vector of the operator L of order m (m= 1,2, . . .) corresponding
to the same eigenvalue λ0 and the eigenvector u0, we mean any function um ∈ D(L)
which satisfies the equation

Lum = λ0um +um−1. (3.138)

The vectors {u0,u1, . . .} are called a chain of the eigen- and associated vectors of
the operator L corresponding to the eigenvalue λ0.

The eigenvalues of the operator L will be called the eigenvalues of the problem
(3.135)-(3.136). The eigen- and associated vectors of the operator L will be called
eigen- and associated functions of the problem (3.135)-(3.136). One can also say
that the eigenfunction u0 is a zero order associated function. The set of all eigen- and
associated functions (they are collectively called root functions) corresponding to the
same eigenvalue λ0 forms a linear root space. This space is called a root space.

The Sturm-Liouville problem considered in Section 3.8 is a particular case of
problem (3.135)-(3.136). The peculiarity of the general case (3.135)-(3.136) is that
in this case the operator L is not necessarily self-adjoint. Therefore, its spectral prop-
erties cannot be obtained from the results for the general self-adjoint operators.

We can form the matrix

A =

(
a11 a12 a13 a14
a21 a22 a23 a24

)
from the coefficients of the boundary conditions (3.136) We denote by A(i j) the
matrix composed of the i-th and j-th columns of A, and denote

Ai j := detA(i j), (1≤ i < j ≤ 4).

We denote by c(x,λ ) and s(x,λ ) the fundamental system of solutions of Eq.
(3.135) (functions of cosine type and sine type) with the initial conditions

c(0,λ ) = 1, c′(0,λ ) = 0, s(0,λ ) = 0, s′(0,λ ) = 1. (3.139)

Then the general solution of Eq. (3.135) is a linear combination of these functions:

u(x,λ ) =C1c(x,λ )+C2s(x,λ ),

where C1 and C2 are arbitrary constants. Substituting the general solution into the
boundary conditions (3.136) for finding C1 and C2, we obtain the system of equations{

C1U1(c(x,λ ))+C2U1(s(x,λ )) = 0,
C1U2(c(x,λ ))+C2U2(s(x,λ )) = 0. (3.140)
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Hence, the boundary value problem (3.135)-(3.136) has a nonzero solution if and
only if the system (3.140) has a nonzero solution. Therefore, the eigenvalues of this
boundary value problem are given by the roots of its characteristic determinant

4(λ ) =

∣∣∣∣U1(c(x,λ )) U1(s(x,λ ))
U2(c(x,λ )) U2(s(x,λ ))

∣∣∣∣ .
Taking into account the initial condition (3.136), we can rewrite the characteristic

determinant in the form

4(λ ) =

∣∣∣∣a12c′(1,λ )+a13 +a14c(1,λ ) a11 +a12s′(1,λ )+a14s(1,λ )
a22c′(1,λ )+a23 +a24c(1,λ ) a21 +a22s′(1,λ )+a24s(1,λ )

∣∣∣∣ .
(3.141)

Consider the Wronskian of the fundamental system of solutions c(x,λ ) and
s(x,λ ),

W (x,λ ) = c(x,λ )s′(x,λ )− c′(x,λ )s(x,λ ).

Since these solutions are linearly independent, we have W (x,λ ) 6= 0. Moreover, since
these functions are the solutions of Eq. (3.135), then (we do not temporarily write the
dependence on λ )

W ′(x) = c(x)s′′(x)− c′′(x)s(x) = c(x)[q(x)−λ ]s(x)− [q(x)−λ ]c(x)s(x) = 0.

That is, the Wronskian does not depend on x: W (x,λ ) = W (0,λ ). Given the initial
conditions (3.136) we easily obtain that W (x,λ ) = 1.

Using this fact, we calculate the determinant (3.141):

4(λ ) =−A12c′(1,λ )−A23s′(1,λ )−A14c(1,λ )+A34s(1,λ )−A13−A24. (3.142)

In the particular case when q(x) ≡ 0, the fundamental system of solutions is

written in the explicit form c(x,λ ) = cos
(√

λx
)

and s(x,λ ) =
sin(
√

λx)√
λ

. Therefore,
the characteristic determinant (3.142) takes the form

40(λ ) = A12
√

λ sin
√

λ − (A14 +A23)cos
√

λ +A34
sin
√

λ√
λ
−A13−A24. (3.143)

It is clear that it makes sense to consider the question of the eigenvalues of
the problem (3.135)-(3.136) for q(x) ≡ 0 only for those boundary conditions, under
which40(λ ) differs from a constant. So we come to the concept of non-degenerate
boundary conditions.

The boundary conditions (3.136), under one of three conditions

(1) A12 6= 0,
(2) A12 = 0, A14 +A23 6= 0,
(3) A12 = A14 +A23 = 0, A34 6= 0,

(3.144)

are called the non-degenerate boundary conditions. Accordingly, if

A12 = A14 +A23 = A34 = 0, (3.145)
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then the boundary conditions (3.136) are called the degenerate boundary conditions.

Although conditions (3.144) are allocated for the particular case q(x) ≡ 0, the
non-degeneracy of the boundary conditions (3.136) guarantees the existence of the
eigenvalues of the problem also in the case when q(x) 6≡ 0. Then we have

Lemma 3.101 Let the boundary conditions (3.136) be non-degenerate, that is, one
of the three conditions (3.144) holds. Then for any q ∈C[0,1], the problem (3.135)-
(3.136) has an infinite countable number of eigenvalues.

This lemma is a consequence of a more general result which we introduce in a
following section in Theorem 3.147. We have formulated this lemma here in order to
emphasize the importance of assigning the class of non-degenerate conditions among
all general boundary conditions.

Here it is necessary to note that the boundary value problems with degenerate
boundary conditions generally can have no eigenvalues or can have a countable
number of eigenvalues, and there may be cases when any complex number is an
eigenvalue of the problem.

Example 3.102 To demonstrate some degenerate boundary conditions we consider
the spectral problem

−u′′(x) = λu(x), u′(0)+αu′(1) = 0, u(0)−αu(1) = 0, (3.146)

where α ∈C is a fixed number. It is easy to see that (3.145) holds for all α . Therefore,
the boundary conditions in the problem (3.146) are degenerate.

For our problem from (3.143) we have

40(λ ) =−A13−A24 =−1+α
2.

Then we obtain that for α2 6= 1 the problem (3.146) does not have eigenvalues, and
for α2 = 1 each number λ ∈ C is an eigenvalue of this problem.

Moreover, in [19] a general case was considered: the spectral problem

−u′′(x)+q(x)u(x) = λu(x), u′(0)+αu′(1) = 0, u(0)−αu(1) = 0,

with a continuous coefficient q(x). It is obvious that for α = 0 this problem is the
Cauchy problem and does not have eigenvalues. It was shown in [19] that for α2 6= 1
this problem does not have eigenvalues if and only if the coefficient q(x) is symmet-
ric:

q(x) = q(1− x), ∀x ∈ [0,1]. �

For the second-order equations there are no degenerate boundary conditions of
the other kind than these conditions (see, for example, [19]). The concept of the
degenerate boundary conditions can be similarly introduced also for higher-order
differential equations. Then, as is shown in [1], the degenerate boundary conditions
of the other kind exist. The final description of all the degenerate boundary conditions
is not complete even for equations of the third and fourth orders.
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The following example demonstrates that even in the case q(x)≡ 0 the eigenval-
ues cannot always be found in an explicit form.

Example 3.103 Consider the spectral problem

−u′′(x) = λu(x), u′(1)−αu(1) = 0, u(0) = 0, (3.147)

where α ∈ C is a fixed number. It is easy to see that for all α the case (2) from
(3.144) holds: A12 = 0, A14 +A23 = 1 6= 0. Therefore, the boundary conditions of
the problem (3.147) are non-degenerate. If α is a real number, then the problem
(3.147) is the self-adjoint Sturm-Liouville problem, whose spectral properties were
considered in Section 3.8.

For our problem, from (3.143) we have

40(λ ) =−cos
√

λ +α
sin
√

λ√
λ

.

Therefore, we obtain that the eigenvalues of the problem will be squares of positive
roots of the equation

cot µ =
α

µ
, µ =

√
λ . (3.148)

Solutions of this equation for α 6= 0 cannot be found in an explicit form. But
the Rouche theorem 3.67 can be applied to this equation. According to this theorem,
the roots of Eq. (3.148) are asymptotically close to the roots cot µ0 = 0. Since µ0 =
kπ−π/2, (k = 1,2, . . .), we will look for the roots of Eq. (3.148) in the form

µk = kπ− π

2
+δk.

Substituting this into Eq. (3.148), we get

cot
(

δk−
π

2

)
=

α

kπ− π

2 +δk
.

Therefore, cot
(
δk− π

2

)
= O

( 1
k

)
, that is, δk = O

( 1
k

)
. Thus, for sufficiently large k the

eigenvalues of the spectral problem (3.147) have the form

λk =

(
kπ− π

2
+O

(
1
k

))2

.

The eigenfunctions of the spectral problem (3.147) have the representation

uk(x) = sin
(

kπ− π

2
+O

(
1
k

))
x,

and also cannot be written out in an explicit form.
This example demonstrates that even for equations of a simple form (q(x)≡ 0) it

is necessary to involve general methods for investigating the spectral properties. �
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Regardless of the concept of the non-degeneracy of the boundary conditions we
now introduce the concept of regular boundary conditions. This concept was first
introduced by G. D. Birkhoff in his works in 1908 in [14], [15], for n-th order general
ordinary differential operators

u(n)(x)+ p2(x)u(n−2)(x)+ . . .+ pn−1(x)u′(x)+ pn(x)u(x) = λu(x), (3.149)

with n linearly independent boundary conditions of the general form

U j(u)≡
n−1

∑
s=0

(
a jsu(s)(0)+b jsu(s)(1)

)
= 0, j = 1, . . . ,n.

Replacing, if it is necessary, the boundary forms U j(u) by their linear combina-
tions, one can always achieve that the boundary conditions have the form

a ju(k j)(0)+b ju(k j)(1)+
k j−1

∑
s=0

(
a jsu(s)(0)+b jsu(s)(1)

)
= 0, j = 1, . . . ,n, (3.150)

where |a j|+ |b j|> 0, n−1≥ k1 ≥ k2 ≥ . . .≥ kn ≥ 0, k j > k j+2.
Let us give the definition of Birkhoff regular boundary conditions. We denote by

ε j = exp
(

i 2π j
n

)
, j = 1, . . . ,n, the roots of order n from 1.

In the odd case n = 2m−1 the “normed” boundary conditions (3.150) are called
the regular boundary conditions if the numbers θ0 and θ1 defined by the equality

θ0 +θ1s =

∣∣∣∣∣∣∣∣
a1ε

k1
1 . . . a1ε

k1
m−1 (a1 + sb1)ε

k1
m b1ε

k1
m+1 . . . b1ε

k1
n

a2ε
k2
1 . . . a2ε

k2
m−1 (a2 + sb2)ε

k2
m b2ε

k2
m+1 . . . b2ε

k2
n

. . . . . . . . . . . . . . . . . . . . .

anε
kn
1 . . . anε

kn
m−1 (an + sbn)ε

kn
m bnε

kn
m+1 . . . bnεkn

n

∣∣∣∣∣∣∣∣
are different from zero.

In the even case n = 2m, the “normed” boundary conditions (3.150) are called
the regular boundary conditions if the numbers θ−1 and θ1 defined by the equality

θ−1

s
+θ0 +θ1s

=

∣∣∣∣∣∣∣∣
a1ε

k1
1 . . . a1ε

k1
m−1 (a1 + sb1)ε

k1
m (a1 +

1
s b1)ε

k1
m+1 b1ε

k1
m+2 . . . b1ε

k1
n

a2ε
k2
1 . . . a2ε

k2
m−1 (a2 + sb2)ε

k2
m (a2 +

1
s b2)ε

k2
m+1 b2ε

k2
m+2 . . . b2ε

k2
n

. . . . . . . . . . . . . . . . . . . . . . . .

anε
kn
1 . . . anε

kn
m−1 (an + sbn)ε

kn
m (an +

1
s bn)ε

kn
m+1 bnε

kn
m+2 . . . bnεkn

n

∣∣∣∣∣∣∣∣
are different from zero.

The regular boundary conditions are called Birkhoff regular. Note that in defin-
ing the regularity there appear only the coefficients from terms with the highest
derivatives in the normed boundary conditions a ju(k j)(0)+b ju(k j)(1), and the coef-
ficients ps(x) of the differential expression (3.149) do not appear.
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Later, the regular boundary conditions were studied by many authors. An impor-
tant subclass of the regular boundary conditions, the so-called strengthened regular
boundary conditions was defined. In the case of the odd order n = 2m− 1 of Eq.
(3.149) all the regular boundary conditions are strengthened regular. And in the case
of the even order n = 2m of Eq. (3.149) the regular boundary conditions, for which
θ 2

0 −4θ−1θ1 6= 0, are called strengthened regular.
The important result established by Birkhoff consisted in estimating the resolvent

of a regular differential operator and in establishing its spectrum asymptotics. We will
give this result in the formulation from the monograph of M. A. Naimark [84] (1967)
and only for the case of the even order n = 2m in Eq. (3.149). Namely, this case will
be considered below.

Theorem 3.104 (see [84]) The eigenvalues of the n-th order differential operator
(3.149) generated by the Birkhoff regular boundary conditions (3.150) form two infi-
nite sequences λ ′k and λ ′′k (k = N,N +1,N +2, . . .), where N is some integer. Let the
order of Eq. (3.149) be an even number n = 2m. Then

1. For θ 2
0 −4θ−1θ1 6= 0, that is, for strengthened regular boundary conditions we

have that all eigenvalues starting with some eigenvalue are simple and have
the asymptotics

λ
′
k = (2kπ)m

{
(−1)m− m lnξ ′

kπi
+O

(
1
k2

)}
, (3.151)

λ
′′
k = (2kπ)m

{
(−1)m− m lnξ ′′

kπi
+O

(
1
k2

)}
, (3.152)

where ξ ′ and ξ ′′ are roots of the equation

θ1ξ
2 +θ0ξ +θ−1 = 0, (3.153)

and lnξ denotes some fixed value of the natural logarithm;

2. For θ 2
0 −4θ−1θ1 = 0, that is, for not strengthened regular boundary conditions

we have that all eigenvalues starting with some eigenvalue can be simple or
twofold, and have the asymptotics

λ
′
k = (2kπ)m

{
(−1)m− m lnξ

kπi
+O

(
1

k3/2

)}
, (3.154)

λ
′′
k = (2kπ)m

{
(−1)m− m lnξ

kπi
+O

(
1

k3/2

)}
, (3.155)

where ξ is a (double) root of Eq. (3.153).

We see from this theorem the difference in asymptotics of the eigenvalues of the
strengthened regular and not strengthened regular boundary value problems. As is
clarified in subsequent investigations, namely the presence of multiple eigenvalues,
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or series of eigenvalues infinitely close to each other, causes the main difficulties in
investigating the basis property of the system of root functions.

The general description of the regular and strengthened regular boundary condi-
tions is cumbersome. Of course, for a concrete type of the boundary value problems
the checking of regularity conditions may be a feasible task. However, the complete
description of all classes of regular and strengthened regular boundary conditions is
not complete even for fourth-order ordinary differential operators.

For the case of general boundary value problems for the second-order equation
(3.135)-(3.136) such a classification does not cause difficulties. Let us single out
second-order conditions. We have n = 2, m = 1, ε1 =−1, ε2 = 1.

Let first A12 6= 0. In this case the boundary conditions (3.136) have the normed
form. We have a1 = a11, b1 = a12, a2 = a21, b2 = a22, k1 = k2 = 1. We calculate the
determinant

θ−1

s
+θ0 +θ1s =

∣∣∣∣∣∣
(a1 + sb1)ε

k1
1 (a1 +

1
s b1)ε

k1
2

(a2 + sb2)ε
k2
1 (a2 +

1
s b2)ε

k2
2

∣∣∣∣∣∣
=

∣∣∣∣∣∣
−(a11 + sa12) (a11 +

1
s a12)

−(a21 + sa22) (a21 +
1
s a22)

∣∣∣∣∣∣
=

(
s− 1

s

)∣∣∣∣a11 a12
a21 a22

∣∣∣∣= A12

(
s− 1

s

)
.

Then θ−1 = −1, θ1 = 1, θ0 = 0. In this case the boundary conditions (3.136) are
regular. Since θ 2

0 − 4θ−1θ1 = 4 6= 0, in this case the conditions are strengthened
regular.

Let now A12 = 0, and |a11|+ |a12|> 0. Then the boundary conditions (3.136) can
be reduced to the normed form (we do not change the notations of the coefficients){

a11u′(0)+a12u′(1)+a13u(0)+a14u(1) = 0,
a23u(0)+a24u(1) = 0. (3.156)

We have a1 = a11, b1 = a12, a2 = a23, b2 = a24, k1 = 1, k2 = 0. We calculate the
determinant

θ−1

s
+θ0+θ1s=

∣∣∣∣∣∣
−(a11 + sa12) a11 +

1
s a12

a23 + sa24 a23 +
1
s a24

∣∣∣∣∣∣=−
(

s+
1
s

)
(A14 +A23)−2(A13 +A24) .

Then, θ−1 = θ1 =−(A14 +A23), θ0 =−2(A13 +A24). That is, in this case the bound-
ary conditions (3.156) are regular under the additional condition A14 + A23 6= 0.
The same condition provides the validity of the assumption |a11|+ |a12| > 0. The
condition of the strengthened regularity will be written in the form θ 2

0 − 4θ−1θ1 =

(A13 +A24)
2− (A14 +A23)

2 6= 0.
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Consider the remaining case A12 = 0, with a11 = a12 = 0. Then the boundary
conditions (3.136) can be reduced to the normed form{

a13u(0)+a14u(1) = 0,
a23u(0)+a24u(1) = 0. (3.157)

We have a1 = a13, b1 = a14, a2 = a23, b2 = a24, k1 = k2 = 0. We calculate the deter-
minant

θ−1

s
+θ0 +θ1s =

∣∣∣∣a13 + sa14 a13 +
1
s a14

a23 + sa24 a23 +
1
s a24

∣∣∣∣= A34

(
1
s
− s
)
.

Then, θ−1 = −θ1 = A34, θ0 = 0. The inequality A34 6= 0 is satisfied in view of
the linear independence of the boundary conditions (3.157). Hence, in this case the
boundary conditions (3.157) are regular. Since θ 2

0 −4θ−1θ1 = 4A2
34 6= 0, these bound-

ary conditions are strengthened regular.
Since in this case a11 = a12 = a21 = a22 = 0, all determinants A12 = A13 = A14 =

A23 = A24 = 0 are equal to zero, except that A34 6= 0.
Let us formulate the obtained result in the form of a theorem.

Theorem 3.105 The boundary conditions (3.136) are regular in the following three
cases:

(1) A12 6= 0,
(2) A12 = 0, A14 +A23 6= 0,
(3) A12 = A13 = A14 = A23 = A24 = 0, A34 6= 0.

(3.158)

Here, the boundary conditions will be strengthened regular in the cases (1) and (3),
and in the case (2) under the additional condition

A13 +A24 6=±(A14 +A23) . (3.159)

Corollary 3.106 For the case of the second-order equation (3.135) all the regular
boundary conditions (3.136) are non-degenerate.

Indeed, it is easy to verify the statement of the corollary by comparing condi-
tions (3.144) and (3.158). Here, the boundary conditions can be non-degenerate and
simultaneously irregular in the case when A12 = 0, A14 +A23 = 0, A34 6= 0, and one
of the determinants |A13|+ |A14|+ |A23|+ |A24|> 0 is not equal to zero.

Example 3.107 Consider the spectral problem

−u′′(x) = λu(x), u′(0)−αu(1) = 0, u(0) = 0, (3.160)

where α ∈ C is a fixed number. It is easy to see that for all α 6= 0 item (3) from
(3.144) holds: A12 = 0, A14 +A23 = 0, A34 = α 6= 0. Therefore, the boundary condi-
tions of the problem (3.160) are non-degenerate.



Elements of the spectral theory of differential operators 201

Here, the determinant A13 = 1 is not equal to zero since condition (3) from
(3.158) does not hold. Hence, the boundary conditions of the problem (3.160) are
not regular.

For our problem from (3.143) we have

40(λ ) = A34
sin
√

λ√
λ
−A13 = α

sin
√

λ√
λ
−1.

From this we obtain that the eigenvalues are the roots of this equation in the form

sin
√

λ =

√
λ

α
,

and they have asymptotics which do not coincide at all with the asymptotics (3.151)-
(3.155) in Theorem 3.104. �

For convenience of use we reformulate Theorem 3.105 in terms of coefficients of
the boundary conditions (3.136).

Theorem 3.108 The boundary conditions (3.136) are regular, if one of the following
three conditions holds:

(1) a11a22−a12a21 6= 0;
(2) a11a22−a12a21 = 0, |a11|+ |a12|> 0, a11a24 +a12a23 6= 0;
(3) a11 = a12 = a21 = a22 = 0, a13a24−a14a23 6= 0.

(3.161)

The regular boundary conditions are strengthened regular in the first and third cases,
and in the second case under the additional condition

a11a23 +a12a24 6= (a11a24 +a12a23) . (3.162)

In the case (1) from (3.161), the regular boundary conditions can be reduced to
the form {

u′(0)+a13u(0)+a14u(1) = 0,
u′(1)+a23u(0)+a24u(1) = 0.

The boundary conditions of such type are called boundary conditions solvable with
respect to the highest derivative.

For example, the Sturm type boundary conditions

u′(0)−hu(0) = 0, u′(1)+Hu(1) = 0,

are strengthened regular. Therefore the Sturm-Liouville problem is a strengthened
regular boundary value problem. The particular case of this problem occurring when
h = H = 0:

u′(0) = 0, u′(1) = 0,

is called the Neumann (or second-type) boundary conditions, and the corresponding
boundary value problem is called the Neumann problem or the second boundary
value problem.



202 Spectral geometry of partial differential operators

In case (3) from (3.161), it is easy to see that it is a first-type boundary condition

u(0) = 0, u(1) = 0.

They are also called the Dirichlet boundary condition, and the corresponding bound-
ary value problem is called the Dirichlet problem.

Let us consider now regular but not strengthened regular boundary conditions for
the second-order equation (3.135). As follows from Theorem 3.105, such boundary
conditions can occur only in case (2) from (3.158) when conditions (3.159) do not
simultaneously hold:

A12 = 0, A14 +A23 6= 0, A13 +A24 =±(A14 +A23) .

Let us represent these conditions in a more convenient form in terms of the coeffi-
cients of the boundary condition (3.136). As follows from Theorem 3.108, the regular
but not strengthened regular boundary conditions can be written in the form{

a11u′(0)+a12u′(1)+a13u(0)+a14u(1) = 0,
a23u(0)+a24u(1) = 0, (3.163)

when |a11|+ |a12|> 0 and two conditions

a11a24 +a12a23 6= 0, (3.164)

a11a23 +a12a24 = (a11a24 +a12a23) (3.165)

simultaneously hold.

Theorem 3.109 ([86], [110]) If the boundary conditions (3.136) are regular but not
strengthened regular, they can be always reduced to the form (3.163) (with |a11|+
|a12|> 0) of one of the following four types:

I. a11 = a12, a23 6=−a24;
II. a11 =−a12, a23 6= a24;
III. a23 = a24, a11 6=−a12;
IV. a23 =−a24, a11 6= a12.

(3.166)

Indeed, condition (3.165) can be written in the form

(a11±a12)(a23±a24) = 0,

that is, even one of the equalities of condition (3.166) holds. If one of these equalities
holds, condition (3.164) provides the validity of the corresponding inequality from
(3.166). The theorem is proved. �

Corollary 3.110 All regular, but not strengthened regular boundary conditions can
be reduced to one of the four forms:{

u′(0)−u′(1)+au(0)+bu(1) = 0,
u(0)+αu(1) = 0,

{
u′(0)+u′(1)+au(0)+bu(1) = 0,

u(0)−αu(1) = 0,
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u′(0)+αu′(1)+au(0)+bu(1) = 0,

u(0)−u(1) = 0,

{
u′(0)−αu′(1)+au(0)+bu(1) = 0,

u(0)+u(1) = 0,

where α 6= 1, and the coefficients a and b can be arbitrary.
For α = 1 these boundary conditions are degenerate (and consequently, are not

regular).

3.13 Biorthogonal systems in Hilbert spaces
As we have demonstrated in Sections 3.5 and 3.8, the eigenvectors of self-adjoint

operators are important for the expansion of an arbitrary vector in the form of a series.
According to the Hilbert-Schmidt theorem 3.32 for a compact self-adjoint operator
A in a Hilbert space H, any element Aϕ ∈ H decomposes into a convergent Fourier
series with respect to the system xk of normalised eigenvectors of the operator A.

According to Theorem 3.61, the Sturm-Liouville operator L is a self-adjoint lin-
ear operator in L2(0,1) and any element f ∈ L2(0,1) is decomposed into converging
Fourier series with respect to the system uk(x) of the normed eigenvectors of the
operator L:

f (x) =
∞

∑
k=1
〈 f ,uk〉uk(x).

For the case of non-selfadjoint operators the situation is much more complicated.
As follows from Example 3.102, the non-self-adjoint operator may have no eigenval-
ues and eigenfunctions. The operator of the Samarskii-Ionkin problem, as shown in
Example 3.59, has an infinite number of associated vectors. Such a variety does not
allow us to apply the general methods simultaneously to all non-self-adjoint opera-
tors.

Therefore, the results for ordinary differential operators with general order
boundary conditions cannot be obtained as a consequence of the spectral theory of
self-adjoint operators.

To consider a possibility of representing an arbitrary element in the form of an
expansion into a series with respect to root vectors of a differential operator, it is
necessary that there is a sufficient number of them. So, we naturally come to the
concept of the completeness of a system of elements.

A system of elements of a Hilbert space is said to be a complete system if any
vector orthogonal to all vectors of this system is equal to zero. In a Hilbert space, the
properties of completeness and closeness of the system are equivalent. The system
of elements {xk} is said to be a closed system in the Hilbert space H if the linear
span of this system is everywhere dense in H. That is, any element of the space H
can be approximated by a linear combination of elements of this system {xk} with
any accuracy in the norm of the space H.
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An important analogue of the linear independence of elements in an infinite-
dimensional space is the concept of the minimality of a system. The system of ele-
ments {xk} is said to be a minimal system in H if none of its elements belongs to the
closure of the linear span of the other elements of this system.

Two systems of elements {xk} and {zk} are said to be biorthogonal systems in H
if the relation 〈

xk,z j
〉
= δk j ≡

{
1, k = j,
0, k 6= j; (3.167)

holds for all values of the indices k and j. Here δk j is the Kronecker delta.
In particular, any orthonormal system {xk} is biorthogonal to itself:

〈
xk,x j

〉
=

δk j.

Example 3.111 In L2(0,1), consider the system of functions uk(x) = α−xe2kπix, k ∈
Z, where α ∈ C is a fixed number. It is easy to calculate that

〈
uk,u j

〉
=
∫ 1

0
α
−xe2kπix

α
−xe−2 jπixdx =

∫ 1

0
|α|−2x e2(k− j)πixdx 6= δk j

for |α| 6= 1. Therefore, the system {uk} is not orthogonal and cannot be the system
biorthogonal to itself.

It is easy to make sure that vk(x) = α
xe2kπix, k ∈ Z, is a biorthogonal system.

Indeed, we have

〈
uk,v j

〉
=
∫ 1

0
α
−xe2kπix

α
xe−2 jπixdx =

∫ 1

0
e2(k− j)πixdx = δk j.

Note that the system {uk} is a system of eigenfunctions of the boundary value
problem for the first-order ordinary differential operator

u′(x) = λu(x), u(0) = αu(1),

corresponding to the eigenvalues λk =− lnα +2kπi. Consequently, the biorthogonal
system {vk} is the system of eigenfunctions of the adjoint boundary value problem:

−v′(x) = λv(x), αv(0) = v(1). �

We will continue the discussion of this setting in Example 3.143. �

The closeness and minimality of biorthogonal systems are closely related to each
other and are the dual concepts.

Theorem 3.112 (see [68]) A system {xk} is minimal in H if and only if there exists
a biorthogonal system dual to it, that is, a system {zk}, such that (3.167) holds.
Moreover, if the original system {xk} is at the same time closed and minimal in H,
then its (biorthogonally) dual system {zk} is uniquely defined.
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Example 3.113 Let a closed and minimal system in H have the form {x0k,x1k}k∈N.
Then by Theorem 3.112 there exists a biorthogonal system dual to it, that is, a system
{z0k,z1k}k∈N, such that

〈xik,z jn〉= δi jδkn, where i, j = 0,1 and k,n ∈ N

holds.
Let {Ck}k∈N be a scalar sequence. We now consider the system

{x0k,x1k +Ckx0k}k∈N ,

and show that this system is a closed and minimal system in H and construct a
biorthogonal system for it.

The minimality of this system is evident and it follows from the minimality of
the initial system {x0k,x1k}k∈N. Suppose that the system {x0k,x1k +Ckx0k}k∈N is not
closed. Then there exists a vector f ∈ H that is orthogonal to all vectors of this
system:

〈x0k, f 〉= 0, 〈x1k +Ckx0k, f 〉= 0, ∀k ∈ N.
Then we have

〈x0k, f 〉= 0, 〈x1k, f 〉= 0, ∀k ∈ N,
that is, this vector f is orthogonal to all vectors of the system {x0k,x1k}k∈N. Since
this system is closed in H, we have f = 0, which proves the closeness of the system
{x0k,x1k +Ckx0k}k∈N.

Let us now show that the system
{

z0k−Ckz1k,z1k
}

k∈N is a biorthogonal system.
Indeed, firstly, equalities

〈x0k,z0n−Ckz1n〉= 〈x0k,z0n〉= δkn;
〈x0k,z1n〉= 0;
〈x1k +Ckx0k,z0n−Ckz1n〉=Ck〈x0k,z0n〉−Ck〈x1k,z1n〉=Ckδkn−Ckδkn = 0;
〈x1k +Ckx0k,z1n〉= 〈x1k,z1n〉= δkn;

hold for all values of the indices k,n ∈ N regardless of the choice of the numeric
sequence {Ck}k∈N.

Therefore, for the systems {x0k,x1k +Ckx0k}k∈N and
{

z0k−Ckz1k,z1k
}

k∈N, the
biorthogonality conditions hold.

Secondly, as we have proved, the system {x0k,x1k +Ckx0k}k∈N is closed in H.
Therefore, according to Theorem 3.112, the biorthogonal system is uniquely defined.
�

In Example 3.111 for the system consisting of eigenfunctions of the boundary
value problem for the differential equation, the biorthogonal system turned out to be
the system consisting of eigenfunctions of the adjoint boundary value problem. The
following general result holds.

Theorem 3.114 Let A be a densely defined operator on a Hilbert space H with a
compact resolvent. Suppose that its system of root vectors is a closed and minimal
system in H. Then the system biorthogonal to it consists of the root vectors of the
operator A∗.
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To prove this, we denote by {xk}k∈N the system of root vectors of the operator
A, and let {zk}k∈N be the biorthogonally adjoint system. We write the equation for
eigen- and associated vectors in a single form

Axk−λkxk = θkxk−1,

where θk = 0 if xk is an eigenvector, and θk = 1 if xk is an associated vector (in this
case we additionally require that λk = λk−1).

For all values of the indices k, j ∈ N we consider the inner product

0 =
〈
Axk−λkxk−θkxk−1,z j

〉
=
〈
xk,A∗z j

〉
−
〈

xk,λ kz j

〉
−θk

〈
xk−1,z j

〉
=
〈

xk,A∗z j−λ jz j−θ j+1z j+1

〉
+(λ j−λk)

〈
xk,z j

〉
+θ j+1

〈
xk,z j+1

〉
−θk

〈
xk−1,z j

〉
.

In view of the biorthogonality conditions, the second term here is equal to zero
for all k, j ∈ N, and the third and fourth terms are equal to zero for k 6= j+1. But if
k = j+1, then the third and fourth terms are equal to zero in the sum. Thus, for all
k, j ∈ N we get 〈

xk,A∗z j−λ jz j−θ j+1z j+1

〉
= 0.

Since the system {xk}k∈N is closed in H, we have

A∗z j−λ jz j = θ j+1z j+1.

Let xn,xn+1, . . . ,xn+m be a chain of the eigenvector xn and all the associated vec-
tors xn+1, . . . ,xn+m of an operator A corresponding to one eigenvalue λn = λn+1 =
. . .= λn+m. Then, θn = 0 and θn+1 = . . .= θn+m = 1. Also, θn+m+1 = 0.

Hence,
A∗zn+m−λ nzn+m = 0,

A∗zn+m−1−λ nzn+m−1 = zn+m, . . . , A∗zn−λ nzn = zn+1.

Thus, zn,zn+1, . . . ,zn+m is a chain of the eigenvector zn+m and of all the associated
vectors zn+m−1, . . . ,zn of the operator A∗ corresponding to one eigenvalue λ n. Note
that unlike the initial system, the numbering inside the chains for the adjoint system
goes in the inverse direction: from the most recent associated vector to the first one.

Theorem 3.114 is proved. �
As we have noted earlier, the associated vectors of an operator are constructed not

uniquely, but up to a linear combination of the eigenvector and the associated vec-
tors of the lower order. Modulo this, the biorthogonal system is constructed uniquely.
Hence, for a fixed system of the eigen- and associated vectors of an operator A, one
needs to choose as the biorthogonal system an arbitrary but well-defined system of
eigen- and associated vectors of the operator A∗. The following example demon-
strates this fact.
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Example 3.115 Let a closed and minimal system in H have the form {x0k,x1k}k∈N
and consist of eigenvectors x0k and associated vectors x1k of the operator A. That is,
all eigenvalues of the operator A are twofold and

Ax0k−λkx0k = 0, Ax1k−λkx1k = x0k.

By Theorem 3.112 there exists a biorthogonal system {z0k,z1k}k∈N, dual to it.
According to Theorem 3.114, this biorthogonal system consists of eigen- and asso-
ciated vectors of the adjoint operator. Here, z1k is the eigenvector, and z0k is the
associated vector:

A∗z1k−λ kz1k = 0, A∗z0k−λ kz0k = z1k.

Let us choose another chain of eigen- and associated vectors of the operator A:
{x0k,x1k +Ckx0k}k∈N, where Ck are some constants. Then, as follows from Exam-
ple 3.113, this system is the closed and minimal system in H, and the biorthogonal
system will be the system

{
z0k−Ckz1k,z1k

}
k∈N.

As is easy to see, in this new system the vector z1k is an eigenvector, and z0k−
Ckz1k is the associated vector. �

3.14 Biorthogonal expansions and Riesz bases
Let {xk} be a closed and minimal system in a Hilbert space H, and let {zk} be a

system biorthogonal to it, that is, we have

〈xk,z j〉= δk j

is the Kronecker’s delta, which is equal to 1 for j = k and 0 otherwise, see (3.167).
Assume that the equality

f =
∞

∑
k=1

fkxk

holds with some numbers fk. If we form the inner product of this with {z j}, by the
biorthogonality condition (3.167) we formally obtain the equalities

fk = 〈 f ,zk〉.

The numbers fk are said to be the Fourier coefficients with respect to the biorthogo-
nal system.

The biorthogonal expansion of the vector f ∈H with respect to {xk} is the series

f ∼
∞

∑
k=1
〈 f ,zk〉xk. (3.168)
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Here the sign ∼ means the correspondence of this series to this function. We cannot
put the sign of equality until we justify the convergence of the series in the right-hand
side of (3.168).

The system {xk} is said to form a basis of the space H if, for any element f ∈H,
there exists a unique expansion of f with respect to the elements of this system:

f =
∞

∑
k=1

fkxk. (3.169)

That is, the series (3.169) is convergent to f in the norm of the space H. The same
definition of a basis also makes sense for Banach spaces.

It is obvious that any basis {xk} is a closed and minimal system in H, and, there-
fore by Theorem 3.112, we can uniquely find its biorthogonal dual system {zk}, and
hence the expansion of any element of f with respect to the basis {xk} coincides with
its biorthogonal expansion (3.168). Thus, the basis property of a closed and minimal
system is equivalent to the convergence of the biorthogonal expansions.

A basis {xk} in the space H is said to be an unconditional basis, if it remains a
basis for any permutation for its elements.

If the system {xk} is a basis (unconditional basis) of the space H, then the
biorthogonally adjoint system {zk} is also a basis (unconditional basis) of the space
H.

Theorem 3.116 ([46]) In order for a system {xk} to be a basis in a Banach space X
it is necessary and sufficient that there exists a positive constant α > 0 such that for
all indices k = 1,2, . . ., we have

ρ

(
Sk,Lk

)
:= inf

x′∈Sk, x′′∈Lk
‖x′− x′′‖ ≥ α. (3.170)

Here
Sk = {x ∈ Lk : ‖x‖= 1}

is the unit sphere in Lk, where

Lk = Span {x1, . . . ,xk}

is the linear space spanned by the vectors {x1, . . . ,xk}, and

Lk = Span {xk+1,xk+2, . . .}.

Of course, the checking of condition (3.170) for all indices k = 1,2, . . . is not
an easy task even for systems given in an explicit form. Therefore, there has been
intensive research for justifying various kinds of necessary and sufficient conditions.

A harder requirement than the minimality is the concept of a uniform minimal
system. We say that the system {xk} is uniformly minimal in H, if there exists a
constant α > 0 such that for all values of the indices k, we have

ρ (xk,Ek) := inf
x∈Ek
‖xk− x‖ ≥ α,

where Ek is the closure of the linear span of all elements {x j} with indices j 6= k.
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Theorem 3.117 (see [68]) A closed and minimal system {xk} is uniformly minimal
in a Hilbert space H if and only if there exists a constant C > 0 such that for all
values of the indices k we have

‖xk‖ · ‖zk‖ ≤C < ∞, (3.171)

where {zk} is the biorthogonal system to {xk}.

Indeed, let {xk} be a basis in H. Then the biorthogonal expansions
∞

∑
k=1
〈 f ,zk〉xk

converge in H. Therefore, ‖〈 f ,zk〉xk‖ → 0 as k → ∞. That is, 〈 f ,zk‖xk‖〉 → 0 as
k→ ∞ for all f ∈ H. Hence, the norms of the elements zk‖xk‖ are totally bounded,
that is, the condition (3.171) holds. �

Corollary 3.118 Any basis in H is a uniformly minimal system, and, therefore,
(3.171) holds.

The condition (3.171) is said to be a condition for the uniform minimality of the
system {xk}. Indeed, there exist examples of closed, minimal and uniformly minimal
systems which are not a basis. Therefore, (3.171) is a necessary condition for being
a basis.

Example 3.119 Consider a particular case of the system from Example 3.113. Let
an orthonormal system in H have the form {x0k,x1k}k∈N. Then

〈xik,x jn〉= δi jδkn; i, j = 0,1; k,n ∈ N

holds.
Let {Ck}k∈N be some scalar sequence. Consider the system {x0k,x1k +Ckx0k}k∈N.

As follows from Example 3.113, this system is a closed and minimal system in H
and the biorthogonal system for it will be the system

{
x0k−Ckx1k,x1k

}
k∈N.

Let us now verify the condition for the uniform minimality (3.171). We have

‖x0k‖ · ‖x0k−Ckx1k‖=
√

1+ |Ck|2,

‖x1k +Ckx0k‖ · ‖x1k‖=
√

1+ |Ck|2.

Therefore, the condition for the uniform minimality is a uniform bounded-
ness of the sequence {Ck}k∈N. If this sequence is not bounded, then the system
{x0k,x1k +Ckx0k}k∈N does not form a basis in H.

Let us show now that if the sequence {Ck}k∈N is uniformly bounded, then the
system {x0k,x1k +Ckx0k}k∈N forms a basis in H. In this case there exists a constant
Ĉ such that |Ck| ≤ Ĉ for all k ∈ N.

For an arbitrary vector f ∈ H, consider a partial sum of the biorthogonal series

Sn = S0n +S1n, where S0n =
n

∑
k=1
〈 f ,x0k−Ckx1k〉x0k, S1n =

n

∑
k=1
〈 f ,x1k〉(x1k +Ckx0k) .
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It is easy to see that for each fixed n the partial sum Sn coincides with the
partial sum of the expansion of the vector f with respect to the orthonormal basis
{x0k,x1k}k∈N:

Ŝ0n + Ŝ1n =
n

∑
k=1
〈 f ,x0k〉x0k +

n

∑
k=1
〈 f ,x1k〉x1k.

Hence, if the partial sum Sn converges, then it converges to f .
To prove the convergence of Sn it is sufficient to show the convergence of the

partial sums S0n and S1n. Let us show that these sequences are Cauchy sequences.
We have

‖S0n−S0(n+p)‖2 =

∥∥∥∥∥ n+p

∑
k=n+1

〈
f ,x0k−Ckx1k

〉
x0k

∥∥∥∥∥
2

=
n+p

∑
k=n+1

∣∣〈 f ,x0k−Ckx1k
〉∣∣2

≤ 2
n+p

∑
k=n+1

|〈 f ,x0k〉|2 +2
n+p

∑
k=n+1

|〈 f ,x1k〉|2 |Ck|2 .

Hence, since the sequence {Ck}k∈N is uniformly bounded, we obtain

‖S0n−S0(n+p)‖2 ≤ 2‖Ŝ0n− Ŝ0(n+p)‖2 +2|Ĉ|2‖Ŝ1n− Ŝ1(n+p)‖2.

Since Ŝ0n and Ŝ1n are Cauchy sequences, then S0n is also a Cauchy sequence. The
proof for S1n is similar.

Hence, the sequences of the partial sums S0n and S1n converge in H. That is, for
an arbitrary vector f ∈ H its biorthogonal series converges to f :

f =
∞

∑
k=1
〈 f ,x0k−Ckx1k〉x0k +

∞

∑
k=1
〈 f ,x1k〉(x1k +Ckx0k) .

This means that the system {x0k,x1k +Ckx0k}k∈N is a basis in H. �

Let us formulate a final result of Example 3.115 in the form of a lemma.

Lemma 3.120 Let an orthonormal system in H have the form {x0k,x1k}k∈N. Let
{Ck}k∈N be some scalar sequence. Then the system {x0k,x1k +Ckx0k}k∈N is a closed
and minimal system in H. This system forms a basis of the space H if and only if the
sequence {Ck}k∈N is bounded.

In her fundamental paper, N.K. Bari [9] (1951) introduced new definitions which
turned out to be widely used in the future.

A complete and minimal system {xk} is said to be a Bessel system in H if for
any vector f ∈ H the series of squares of coefficients of its biorthogonal expansion
converges:

∞

∑
k=1
|〈 f ,zk〉|2 < ∞,
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where {zk} is a biorthogonal system to {xk}. In other words, the system {xk} is said to
be Bessel in H if there exists a constant M > 0 such that for any f ∈H, the following
Bessel-type inequality holds:

∞

∑
k=1
|〈 f ,zk〉|2 ≤M‖ f‖2.

A complete and minimal system {xk} is said to be a Hilbert system in H if for
any sequence of numbers ξk such that ∑

∞
k=1 |ξk|2 < ∞ there exists a unique vector f ,

for which these ξk are the coefficients of its biorthogonal expansion: ξk = 〈 f ,zk〉. In
other words, the system {xk} is said to be Hilbert in H if there exists a constant m > 0
such that for any f ∈ H, the following Hilbert-type inequality holds:

m‖ f‖2 ≤
∞

∑
k=1
|〈 f ,zk〉|2.

The Bessel and Hilbert properties for systems from a biorthogonal pair {xk} and
{zk} are dual to one another: if one of the systems is a Bessel system in H, then the
other is a Hilbert system in H, and vice versa ([9]).

A complete and minimal system {xk} is said to be a Riesz basis in H, if it is
simultaneously a Bessel and a Hilbert system in H.

Theorem 3.121 ([9]) A closed and minimal system {xk} in H is a Riesz basis in H
if and only if there exists a bounded invertible operator S such that the system {Sxk}
is an orthonormal basis in H.

If the system {xk} is a Riesz basis in H, then its biorthogonal system {zk} is also
a Riesz basis in H.

Corollary 3.122 If a system {xk} is a Riesz basis in H, then it is also a basis in H.

Indeed, let the system {xk} be a Riesz basis in H. Then by Theorem 3.121 there
exists a bounded invertible operator S such that the system {Sxk} is an orthonormal
basis in H. For an arbitrary vector f ∈H we write an expansion of the vector S f with
respect to this orthonormal basis {Sxk}:

S f =
∞

∑
k=1
〈S f ,Sxk〉Sxk.

Since the operator S is bounded and defined on the whole H, then the adjoint
operator S∗ exists. Therefore,

S f =
∞

∑
k=1
〈 f ,S∗Sxk〉Sxk.

Acting on this equality by the operator S−1, we will have

f =
∞

∑
k=1
〈 f ,S∗Sxk〉xk.
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Thus, for the arbitrary vector f ∈ H we obtain its expansion into a series with
respect to elements of the system {xk}. Therefore, the system {xk} is a basis in H.

Note that in the process of proving the lemma we also have found that the
biorthogonally adjoint system is {S∗Sxk}. �

Thus, the Riesz bases are bases equivalent to the orthonormal bases. Other signif-
icant results have been obtained earlier for such bases. The following theorem gives
the connection between the concepts of the Riesz basis and an unconditional basis.

Theorem 3.123 (E. R. Lorch [76], I. M. Gelfand [42]) A closed and minimal system
{xk} in H is a Riesz basis in H if and only if it is an unconditional basis almost
normalised in H, i.e. there exist constants m > 0 and M > 0 such that for all values
of the indices k we have

0 < m≤ ‖xk‖ ≤M < ∞.

Note that if a basis is almost normalised, then the biorthogonal basis to it is also
almost normalised.

Let us give two more important facts indicating another similarity of the Riesz
bases with the orthonormal ones.

Theorem 3.124 ([9]) Let a system {xk} be a Riesz basis in H. If the series

∞

∑
k=1
| fk|2 < ∞,

converges, then also the series
∞

∑
k=1

fkxk < ∞

is convergent with respect to the norm of the space H, and the converse is also true.

Theorem 3.125 ([9]) Let a system {xk} be a Riesz basis in H. Then for any vector
f ∈ H we have the two-sided inequality

m‖ f‖2 ≤
∞

∑
k=1
|〈 f ,xk〉|2 ≤M‖ f‖2.

The inequality in Theorem 3.125 can be improved to an equality if we choose
the equivalent norms for the appearing expressions appropriately. Let us explain this
following [105].

Let us take biorthogonal systems

U := {uk| uk ∈ H}k∈N

and
V := {vk| vk ∈ H}k∈N

in a separable Hilbert space H. We assume that U (and hence also V ) is a Riesz
basis in H.



Elements of the spectral theory of differential operators 213

It is convenient to introduce the U - and V -Fourier transforms (coefficients) by
formulae

FU ( f )(k) := 〈 f ,vk〉=: f̂ (k) (3.172)

and
FV (g)(k) := 〈g,uk〉=: ĝ∗(k), (3.173)

respectively, for all f ,g ∈ H and for each k ∈ N. Here ĝ∗ stands for the V -Fourier
transform of the function g. Indeed, in general ĝ∗ 6= ĝ. Their inverses are given by

(F−1
U a)(x) := ∑

k∈N
a(k)uk (3.174)

and
(F−1

V a)(x) := ∑
k∈N

a(k)vk. (3.175)

Let us denote by
l2
U = l2(U )

the linear space of complex-valued functions a on N such that F−1
U a∈H, i.e. if there

exists f ∈ H such that FU f = a. Then the space of sequences l2
U is a Hilbert space

with the inner product

〈a, b〉l2
U

:= ∑
k∈N

a(k) (FV ◦F−1
U b)(k), (3.176)

for arbitrary a, b ∈ l2
U . The reason for this choice of the definition is the following

formal calculation:

〈a, b〉l2
U
= ∑

ξ∈N
a(k) (FV ◦F−1

U b)(k)

= ∑
k∈N

a(k)
(
F−1

U b,uk
)

=

([
∑
k∈N

a(k)uk

]
,F−1

U b

)
= 〈F−1

U a, F−1
U b〉,

which implies the Hilbert space properties of the space of sequences l2
U . The norm

of l2
U is then given by the formula

‖a‖l2
U
=

(
∑
k∈N

a(k) (FV ◦F−1
U a)(k)

)1/2

, for all a ∈ l2
U . (3.177)

We note that individual terms in this sum may be complex-valued but the formula
implies that the whole sum is real and nonnegative.

Analogously, we introduce the Hilbert space

l2
V = l2(V )
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as the space of sequences a on N such that F−1
V a ∈ H, with the inner product

〈a, b〉l2
V

:= ∑
k∈N

a(k) (FU ◦F−1
V b)(k), (3.178)

for arbitrary a, b ∈ l2
V . The norm of l2

V is given by the formula

‖a‖l2
V
=

(
∑
k∈N

a(k) (FU ◦F−1
V a)(k)

)1/2

for all a ∈ l2
V . The spaces of sequences l2

U and l2
V are thus generated by biorthogonal

systems {uk}k∈N and {vk}k∈N.
Since by Theorem 3.121 the Riesz bases are equivalent to an orthonormal basis

by an invertible linear transformation, we have the equality between the spaces l2
U =

l2
V = `2(N) as sets.

With the definitions as above, we have the following Plancherel identity essen-
tially established in [103], and finally in [105]:

Theorem 3.126 (Biorthogonal Plancherel identity, [105]) If f , g ∈ H, then f̂ , ĝ ∈
l2
U , f̂∗, ĝ∗ ∈ l2

V , and the inner products (3.176), (3.178) take the form

( f̂ , ĝ)l2
U
= ∑

k∈N
f̂ (k) ĝ∗(k)

and
( f̂∗, ĝ∗)l2

V
= ∑

k∈N
f̂∗(k) ĝ(k),

respectively. In particular, we have

( f̂ , ĝ)l2
U
= (ĝ∗, f̂∗)l2

V
.

The Parseval identity takes the form

〈 f ,g〉H = ( f̂ , ĝ)l2
U
= ∑

k∈N
f̂ (k) ĝ∗(k). (3.179)

Furthermore, for any f ∈ H, we have f̂ ∈ l2
U , f̂∗ ∈ l2

V , and

‖ f‖H = ‖ f̂‖l2
U
= ‖ f̂∗‖l2

V
. (3.180)

Now, let us briefly discuss a few other features of the biorthogonal Fourier anal-
ysis, such as the `p-types spaces, and their interpolation properties and duality. For
this, we introduce a scale of Banach spaces {H p}1≤p≤∞ with the norms ‖ · ‖p such
that

H p ⊆ H

and with the property
|〈x,y〉H | ≤ ‖x‖H p‖y‖Hq (3.181)
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for all 1 ≤ p ≤ ∞, where 1
p +

1
q = 1. We assume that H2 = H, and that H p are real

interpolation properties in the following sense:

(H1,H2)θ ,p = H p, 0 < θ < 1,
1
p
= 1− θ

2
,

and
(H2,H∞)θ ,p = H p, 0 < θ < 1,

1
p
=

1−θ

2
.

We also assume that U ⊂ H p and V ⊂ H p for all p ∈ [1,∞].
Here, we will not discuss the basics of the real interpolation, referring the reader,

for example, to [13]. However, let us give some examples. If H = L2(Ω) for some Ω,
we could take H p = L2(Ω)∩Lp(Ω). If H = S2(K ) is the Hilbert space of the Hilbert-
Schmidt operators on a Hilbert space K , then we can take H p = S2(K )∩Sp(K ),
where Sp(K ) stands for the space of p-Schatten-von Neumann operators on K .

We now introduce the p-Lebesgue versions of the spaces of Fourier coefficients.
We define spaces lp

U = lp(U ) as the spaces of all a : N→ C such that

‖a‖lp(U ) :=

(
∑
k∈N
|a(k)|p‖uk‖2−p

H∞

)1/p

< ∞, for 1≤ p≤ 2, (3.182)

and

‖a‖lp(U ) :=

(
∑
k∈N
|a(k)|p‖vk‖2−p

H∞

)1/p

< ∞, for 2≤ p < ∞, (3.183)

and, for p = ∞, we define

‖a‖l∞(U ) := sup
k∈N

(
|a(k)| · ‖vk‖−1

H∞

)
< ∞.

Here, without loss of generality, we can assume that uk 6= 0 and vk 6= 0 for all
k ∈ N, so that the above spaces are well-defined.

Analogously, we introduce spaces lp
V = lp(V ) as the spaces of all b : N→C such

that

‖b‖lp(V ) =

(
∑
k∈N
|b(k)|p‖vk‖2−p

H∞

)1/p

< ∞, for 1≤ p≤ 2,

‖b‖lp(V ) =

(
∑
k∈N
|b(k)|p‖uk‖2−p

H∞

)1/p

< ∞, for 2≤ p < ∞,

‖b‖l∞(V ) = sup
k∈N

(
|b(k)| · ‖uk‖−1

H∞

)
.

The introduced spaces have the expected interpolation properties.
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Theorem 3.127 ([105]) For 1≤ p≤ 2, we have

(l1(U ), l2(U ))θ ,p = lp(U ),

(l1(V ), l2(V ))θ ,p = lp(V ),

where 0 < θ < 1 and p = 2
2−θ

.

In a standard way, the Plancherel identity in Theorem 3.126, the obvious H1−`∞

and `1 −H∞ estimates following from (3.181), and the interpolation in Theorem
3.127 imply the following Hausdorff-Young inequality.

Theorem 3.128 ([105]) Assume that 1 ≤ p ≤ 2 and 1
p +

1
p′ = 1. Then there exists a

constant Cp ≥ 1 such that

‖ f̂‖lp′ (U )
≤Cp‖ f‖H p and ‖F−1

U a‖H p′ ≤Cp‖a‖lp(U ) (3.184)

for all f ∈ H p and a ∈ lp(U ). Similarly, for all b ∈ lp(V ) we obtain

‖ f̂∗‖lp′ (V )
≤Cp‖ f‖H p and ‖F−1

V b‖H p′ ≤Cp‖b‖lp(V ). (3.185)

Finally, we record the duality between spaces lp(U ) and lq(V ):

Theorem 3.129 ([105]) Let 1≤ p < ∞ and 1
p +

1
q = 1. Then

(lp(U ))′ = lq(V ) and (lp(V ))′ = lq(U ).

We now go back to discussing the Riesz bases. It is necessary to pay attention to
the fact that even a simplest transformation among the basis elements can lead to the
violation of the basis property. The following example demonstrates this.

Example 3.130 Let {xk}k∈N be a Riesz basis in H. Consider the sequence

yk = x1 + xk+1, k ∈ N.

Let us show that the system {yk}k∈N, although closed and almost normalised in H,
does not give a basis in H.

Let us check first of all that this system {yk}k∈N is closed. Suppose that it is not
closed. Then there exists an element f0 ∈H, f0 6= 0, orthogonal to all elements of the
system {yk}k∈N. Then we have

〈 f0,yk〉= 〈 f0,x1〉+ 〈 f0,xk+1〉= 0, k ∈ N.

Therefore, 〈 f0,xk〉 = −〈 f0,x1〉 for all k > 1. But by Theorem 3.124 we have
〈 f0,xk〉 → 0 as k→ ∞. Hence, 〈 f0,xk〉= 0 for all k ∈ N. Then f0 = 0, which proves
the closedness of the system {yk}k∈N.
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Let us show that the system {yk}k∈N does not give a basis in H. Indeed, suppose
that this system is a basis in H. Then the element x1 must be also represented in the
form of the expansion with respect to the basis:

x1 =
∞

∑
k=1

ξkyk.

Then,

0 =

(
∞

∑
k=1

ξk−1

)
x1 +

∞

∑
k=2

ξk−1xk.

Since {xk}k∈N is a Riesz basis in H, we get

∞

∑
k=1

ξk = 1; ξk = 0, k ≥ 1.

It is obvious that this system of equations has no solutions. Hence, the system
{yk}k∈N is not a basis in H. �

The transformations among the elements of the basis, considered in this example,
although looking simple and innocent, have turned out to be quite significant.

A remarkable property of the Riesz bases is their stability with respect to small
(in some sense) perturbations. The system of the functions {yk} is said to be quadrat-
ically close to {xk} if the scalar series

∞

∑
k=1
‖yk− xk‖2 < ∞

converges.

Theorem 3.131 ([9]) Any minimal system that is quadratically close to a Riesz basis
in H, is also a Riesz basis in H.

Example 3.132 In L2(0,1), consider a system of functions {uk(x)}∞
k=0, where

uk(x) = cos(µkx) ,

and µk are the solutions of the equation tan µ = α

µ
, and α is an arbitrary complex

number. This system is the system of eigenfunctions of the boundary value prob-
lem (3.147) considered in Example 3.103. In that example we have shown that the
sequence µk has the asymptotics

µk = kπ +δk, δk = O(1/k). (3.186)

Using Theorem 3.131, we can show that this system is a Riesz basis in L2(0,1).
Let us choose a system v0(x) = 1, vk(x) = cos(kπx), k = 1,2, . . .. It is well known
that the system of functions

{
1,
√

2cos(kπx)
}

is an orthonormal basis in L2(0,1).
The expansion into a series with respect to this basis is the classical trigonometric
Fourier series.
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Our system {vk(x)}∞
k=0 is obtained from this orthonormal basis by multiplying by

the constant
√

2. Such action is a bounded and invertible operator in L2(0,1). There-
fore, according to Theorem 3.121, the system {vk}∞

k=0 is a Riesz basis in L2(0,1).
Let us now show that the systems {uk(x)}∞

k=0 and {vk(x)}∞
k=0 are quadratically

close. Indeed, since

uk(x)− vk(x) = cos(µkx)− cos(kπx) = 2sin
(

kπ +
1
2

δk

)
x · sin

(
1
2

δk

)
x,

in view of the asymptotics (3.186), we get that uk(x)− vk(x) = O
( 1

k

)
. Hence, the

series
∞

∑
k=1
‖uk− vk‖2 < ∞ is convergent.

Thus, the systems {uk(x)}∞
k=0 and {vk(x)}∞

k=0 are quadratically close. By Theo-
rem 3.131 this implies that the system {uk}∞

k=0 of the eigenfunctions of the boundary
value problem (3.147) is a Riesz basis in L2(0,1). �

The property (3.171) is a necessary condition for a system {xk} to be a basis.
However, an essential inconvenience for this condition is the need to use the biorthog-
onal system {zk}, whose construction may not be an easy task.

Let us give one more necessary condition for unconditional bases in Hilbert
spaces.

Theorem 3.133 Let a system {xk} be closed, minimal and almost normalised in H.
Assume that there are infinitely increasing sequences of integers ki and n j such that
the following inner products are different from zero

|〈xki ,xn j〉| ≥ α > 0 (3.187)

as i, j→ ∞. Then the system {xk} is not an unconditional basis in H.

To prove this, we suppose the opposite, namely, that the system {xk} is an uncon-
ditional basis in H. Since this system is almost normalised in H, then by Theorem
3.123 it is a Riesz basis in H. Hence (see Theorem 3.121), a biorthogonally adjoint
system {zk} is also a Riesz basis in H.

For all indices ki we represent vectors xki in the form of a biorthogonal expansion
with respect to the basis {zk}:

xki =
∞

∑
k=1
〈xki ,xk〉zk.

Since {zk} is a Riesz basis in H, then by Theorem 3.124 the series of squares of the
Fourier coefficients converges:

∞

∑
k=1
|〈xki ,xk〉|2 < ∞.

This implies that the sequence 〈xki ,xk〉 goes to zero as k→ ∞, which contradicts
condition (3.187). The theorem is proved. �.
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Example 3.134 Let us demonstrate an application of Theorem 3.133 using the
example of the system from Example 3.130. Let {xk}k∈N be a Riesz basis in H.
Consider the sequence

yk = x1 + xk+1, k ∈ N.

In Example 3.130 we have shown that the system {yk}k∈N is closed and almost nor-
malised in H. For all indices k 6= n we calculate the inner products

〈yk,yn〉= 〈x1 + xk+1,x1 + xn+1〉= ‖x1‖2 + 〈x1,xn+1〉+ 〈xk+1,x1〉+ 〈xk+1,xn+1〉.

Since {xk}k∈N is a Riesz basis in H, here the second, third and fourth terms
vanish as k→∞ and n→∞. However, the first term remains fixed. Hence, the system
{uk}k∈N satisfies condition (3.187) of Theorem 3.133 and, therefore, is not a basis.
�

Let us give another necessary condition for the unconditional bases in a Hilbert
space.

Theorem 3.135 Let {xk} be a closed and minimal system in H. If the system {xk} is
an unconditional basis in H, then

lim
k→∞

∣∣∣∣〈 xk

‖xk‖
,

xk+1

‖xk+1‖

〉∣∣∣∣< 1. (3.188)

Indeed, let us denote yk := xk
‖xk‖

. Then ‖yk‖= 1 and, therefore, in view of Theorem
3.123, the system {yk} is a Riesz basis in H. Hence, by Theorem 3.116 there exists a
constant α > 0 such that for all constants C we have

‖yk+1−Cyk‖ ≥ α.

Therefore, we have

α
2 ≤ 〈yk+1−Cyk,yk+1−Cyk〉= 1+ |C|2−C 〈yk+1,yk〉−C〈yk+1,yk〉.

Let us represent the coefficient C in the form of C = t 〈yk+1,yk〉, where t ∈ R is
an arbitrary real coefficient. Then for any t we have

0≤
(
1−α

2)−2t |〈yk+1,yk〉|2 + t2 |〈yk+1,yk〉|2 .

This is a quadratic polynomial of a single variable t. Since this inequality must hold
for all t ∈ R, the discriminant of the quadratic equation is non-positive, that is,

4= |〈yk+1,yk〉|4−
(
1−α

2) |〈yk+1,yk〉|2 ≤ 0.

Therefore,
|〈yk+1,yk〉|2 ≤ 1−α

2.

Since α > 0, this proves inequality (3.188). �
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Corollary 3.136 For a system {xk} to be an unconditional basis in H, it is necessary
that the inequality (3.188) holds.

Let us show an application of this necessary condition in an example of a system
of eigenfunctions of the boundary value problem.

Example 3.137 Consider the spectral problem

−u′′(x) = λu(x), u′(0)−u′(1)−αu(1) = 0, u(0) = 0, (3.189)

where α ∈ C is a fixed number.
For all α , the part (2) from (3.144) holds: A12 = 0, A23 +A14 =−1 6= 0. There-

fore, the boundary conditions of problem (3.189) are non-degenerate.
If α = 0, then this problem is said to be the Samarskii-Ionkin problem. We have

considered it in Example 3.59, where we have shown that all eigenvalues of the
problem (except the zero value) are twofold, and the root subspaces consist of one
eigenfunction and one associated function.

Let us consider the problem (3.189) for α 6= 0. For this case, from (3.143) we
have

40(λ ) = cos
√

λ +α
sin
√

λ√
λ
−1 = 2sin

√
λ

2

(
α

cos
√

λ

2√
λ
− sin

√
λ

2

)
.

Therefore, we obtain that the eigenvalues of the problem are squares of roots of two
equations

sin µ = 0, tan µ =
α

2µ
, where µ =

√
λ

2
. (3.190)

Solutions of the first equation can be found explicitly to be µ1k = kπ . And for the
solutions of the second equation in (3.190), we can write out an asymptotic formula
using the Rouche theorem 3.67: µ2k = kπ + δk, where δk = O

( 1
k

)
. From this it is

obvious that all the eigenvalues are simple.
From the second condition for the problem (3.189) we obtain that all eigenfunc-

tions have the form u(x) = sin
√

λx.
Thus, the spectral problem (3.189) has two series of simple eigenvalues

λ1k = (kπ)2, k = 1,2, . . . ; λ2k = (kπ +δk)
2 , k = 0,1,2, . . . ,

with the corresponding eigenfunctions

u1k(x) = sin(kπx), k = 1,2, . . . ; u2k(x) = sin((kπ +δk)x) , k = 0,1,2, . . . ,

The problem has no associated functions.
Let us calculate the inner product

〈u1k,u2k〉=
∫ 1

0
sin(kπx)sin

((
kπ +δk

)
x
)

dx =
sin
(

δk

)
2δk

4kπ

4kπ +δk
.
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Since δk = O
( 1

k

)
, we obtain that

lim
k→∞

〈u1k,u2k〉=
1
2
.

It is easy to calculate norms of the eigenfunctions:

‖u1k‖=
1√
2

; lim
k→∞
‖u2k‖=

1√
2
.

As a result, we finally have

lim
k→∞

∣∣∣∣〈 u1k

‖u1k‖
,

u2k

‖u2k‖

〉∣∣∣∣= 1.

Hence, the necessary condition for the unconditional basis property (3.188) is not
satisfied. Therefore, the system {sin(kπx),sin((kπ +δk)x)} of all eigenfunctions of
the problem (3.189) is not an unconditional basis in L2(0,1). �

3.15 Convolutions in Hilbert spaces
Let us now discuss convolutions in Hilbert spaces corresponding to biorthogonal

systems. We continue with the setting of the previous section, so we fix the biorthog-
onal systems

U := {uk| uk ∈ H}k∈N

and
V := {vk| vk ∈ H}k∈N

in a separable Hilbert space H. We assume that U (and hence also V ) is a Riesz basis
in H, i.e. any element of H has a unique decomposition with respect to the elements
of H.

We will be also using the Fourier analysis notation as set in (3.172)-(3.175).
We now define the U – and V –convolutions in the following form:

f ?U g := ∑
k∈N
〈 f ,vk〉〈g,vk〉uk (3.191)

and
h?V j := ∑

k∈N
〈h,uk〉〈 j,uk〉vk (3.192)

for appropriate elements f ,g,h, j ∈H. We can call them biorthogonal convolutions.
These convolutions are clearly commutative and associative, and have a number of
properties expected from convolutions, which we will briefly discuss here. First we
note that these convolutions are well-defined.
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Theorem 3.138 Let f ?U g and h ?V j be defined by (3.191) and (3.192), respec-
tively. Then there exists a constant M > 0 such that we have

‖ f ?U g‖H ≤M sup
k∈N
‖uk‖H‖ f‖H‖g‖H , ‖h?V j‖H ≤M sup

k∈N
‖vk‖H‖h‖H‖ j‖H ,

(3.193)
for all f ,g,h, j ∈ H.

The statement follows from the Cauchy-Schwarz inequality, from Theorem 3.124,
and from the uniform boundedness

sup
k∈N
‖uk‖H + sup

k∈N
‖vk‖H < ∞,

assured by Theorem 3.123.
The above convolutions have been introduced in [105] where also their main

properties have been analysed. Some properties have been also established in [61].
In the rest of this section we follow the analysis of [105].

There is a straightforward relation between U - and V -convolutions, and the
Fourier coefficients defined in (3.172)-(3.175).

Theorem 3.139 For arbitrary f ,g,h, j ∈ H we have

f̂ ?U g = f̂ ĝ, ĥ?V j∗ = ĥ∗ ĵ∗.

Therefore, the convolutions are commutative and associative.
Let K : H×H → H be a bilinear mapping. If for all f ,g ∈ H, the form K( f ,g)

satisfies the property
K̂( f ,g) = f̂ ĝ (3.194)

then K is the U –convolution, i.e. K( f ,g) = f ∗U g.
Similarly, if K( f ,g) satisfies the property

K̂( f ,g)∗ = f̂∗ ĝ∗ (3.195)

then K is the V –convolution, i.e. K( f ,g) = f ∗V g.

Indeed, by direct calculations we have

FU ( f ?U g)(k) = 〈∑
l∈N

f̂ (l)ĝ(l)ul ,vk〉

= ∑
l∈N

f̂ (l)ĝ(l)〈ul ,vk〉

= f̂ (k)ĝ(k).
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The commutativity follows from the bijectivity of the U –Fourier transform, also
implying the associativity. This can be also seen from the definition:

(( f ?U g)?U h) = ∑
k∈N
〈∑

l∈N
f̂ (l)ĝ(l)ul ,vk〉ĥ(k)uk

= ∑
k∈N

f̂ (k)ĝ(k)ĥ(k)uk

= ∑
k∈N

f̂ (k)

[
∑
l∈N

ĝ(l)ĥ(l)〈ul ,vk〉

]
uk

= ∑
k∈N

f̂ (k)〈∑
l∈N

ĝ(l)ĥ(l)ul ,vk〉uk

= ( f ?U (g?U h)).

Next, let us show that K is the U -convolution under the assumption (3.194). The
similar property for V -convolutions under assumption (3.195) follows by simply
replacing U by V in the part concerning U -convolutions.

Since for arbitrary f ,g ∈ H and for K( f ,g) ∈ H the property (3.194) holds, we
can obtain K( f ,g) from the inverse U –Fourier transform formula:

K( f ,g) = ∑
k∈N

K̂( f ,g)(k)uk = ∑
k∈N

f̂ (k) ĝ(k)uk.

The last expression defines the U –convolution. �

Very much as for the classical distributions, we can define “distribution-type”
behaviour in Hilbert spaces and to link it to properties of convolutions.

In contrast to previous sections where we have analysed the spectrum of opera-
tors, we now look at operators corresponding to given collections of eigenvalues. So,
we fix some sequence Λ := {λk}k∈N of complex numbers such that the series

∑
k∈N

(1+ |λk|)−s0 < ∞, (3.196)

converges for some s0 > 0.
We then associate to the pair (U ,Λ) a linear operator L : H→H by the formula

L f := ∑
k∈N

λk〈 f ,vk〉uk, (3.197)

for those f ∈ H for which this series converges in H. The operator L is densely
defined in H since Luk = λkuk for all k∈N, and U is a Riesz basis in H. In particular,
we observe that Span(U )⊂D(L)⊂H. We will say that L is the operator associated
to the pair (U ,Λ).

In a similar way to the above, we define the operator L∗ : H→ H by

L∗g := ∑
k∈N

λk〈g,uk〉vk,
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for those g ∈ H for which it makes sense. Then L∗ is densely defined since L∗vk =
λkvk and V is a basis in H, Span(V )⊂ D(L∗)⊂ H. One can also readily check that
the equality

〈L f ,g〉= 〈 f ,L∗g〉= ∑
k∈N

λk〈 f ,vk〉〈g,uk〉

holds on their domains, so that the notation L∗ is justified.
Let us describe the space of rapidly decreasing sequences on N, in analogy to

the Schwartz rapidly decaying functions on Rn. We will write ϕ ∈S (N) if for any
M < ∞ there exists a constant Cϕ,M such that

|ϕ(k)| ≤Cϕ,M(1+ |λk|)−M (3.198)

holds for all k ∈ N. The topology on S (N) is given by the seminorms pk, k ∈ N0,
defined by

pk(ϕ) := sup
k∈N

(1+ |λk|)k|ϕ(k)|.

Continuous anti-linear functionals on S (N) are of the form

ϕ 7→ 〈w,ϕ〉 := ∑
k∈N

w(k)ϕ(k),

where functions w : N→ C grow at most polynomially at infinity, i.e. there exist
constants M < ∞ and Cw,M such that

|w(k)| ≤Cw,M(1+ |λk|)M

holds for all k ∈ N. Such distributions w : N→ C form the space of distributions
which we denote by S ′(N), with the distributional duality extending the inner prod-
uct on `2(N).

Let us now define spaces of test functions and distribution associated to the
given biorthogonal systems and the set Λ. The following constructions can be also
expressed in terms of the so-called rigged Hilbert spaces, but we will avoid such
language for the simplicity of the exposition:

(i) the spaces of (U ,Λ)- and (V ,Λ)-test functions are defined by

C ∞
U ,Λ :=

∞⋂
j=0

C j
U ,Λ,

where

C j
U ,Λ := {φ ∈H : |〈φ ,vk〉| ≤C(1+ |λk|)− j for some constant C for all k∈N},

and

C ∞
V ,Λ :=

∞⋂
j=0

C j
V ,Λ,

where

C j
V ,Λ := {ψ ∈ H : |〈ψ,uξ 〉| ≤C(1+ |λk|)− j for some constant C for all k ∈ N}.

The topology of these spaces can be defined by a natural choice of seminorms.
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(ii) We can define spaces of (U ,Λ)– and (V ,Λ)–distributions by

D ′U ,Λ := (C ∞
V ,Λ)

′ and D ′V ,Λ := (C ∞
U ,Λ)

′,

as spaces of linear continuous functionals on C ∞
V ,Λ and C ∞

U ,Λ, respectively. We
can extend the inner product on H to cover the above duality by

〈u,φ〉D ′U ,Λ,C
∞
V ,Λ

:= 〈u,φ〉H , (3.199)

extending the inner product on H for u,φ ∈ H, and similarly for the pair
D ′V ,Λ := (C ∞

U ,Λ)
′.

(iii) the U – and V –Fourier transforms

FU (φ)(k) := 〈φ ,vk〉=: φ̂(k)

and
FV (ψ)(k) := 〈ψ,uk〉=: ψ̂∗(k),

respectively, for arbitrary φ ∈ C ∞
U ,Λ, ψ ∈ C ∞

V ,Λ and for all k ∈ N. By duality
these Fourier transforms extend to D ′U ,Λ and D ′V ,Λ, respectively. Here we have

〈FU (w),a〉= 〈w,F−1
V (a)〉, w ∈D ′U ,Λ, a ∈S (N). (3.200)

Indeed, for w ∈ H we can calculate

〈FU (w),a〉= 〈ŵ,a〉`2(N) = ∑
k∈N
〈w,vk〉a(k)

=

〈
w, ∑

k∈N
a(k)vk

〉
= 〈w,F−1

V a〉,

justifying definition (3.200). Similarly, we define

〈FV (w),a〉= 〈w,F−1
U (a)〉, w ∈D ′V ,Λ, a ∈S (N). (3.201)

The Fourier transforms of elements of D ′U ,Λ,D
′
V ,Λ can be characterised by the

property that, for example, for w ∈D ′U ,Λ, there is N > 0 and C > 0 such that

|FU w(k)| ≤C(1+ |λk|)N , for all k ∈ N.

(iv) U - and V -convolutions can be extended by the same formula:

f ?U g := ∑
k∈N

f̂ (k)ĝ(k)uk = ∑
k∈N
〈 f ,vk〉〈g,vk〉uk

for example, for all f ∈D ′U ,Λ and g ∈ C ∞
U ,Λ. It is well-defined since the series

converges in view of properties from (i) above and assumption (3.196). By the
commutativity we can also take the convolution in the other order. Similarly,

h?V j := ∑
k∈N

ĥ∗(k) ĵ∗(k)vk = ∑
k∈N
〈h,uk〉〈 j,uk〉vk

for all h ∈D ′V ,Λ, j ∈ C ∞
V ,Λ.
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The space C∞
U ,Λ can be also described in terms of the domain of the operator L

in (3.197) and of its iterated powers. Namely, we have the equality

C ∞
U ,Λ =

⋂
k∈N

D(Lk), (3.202)

where
D(Lk) := { f ∈ H : Li f ∈ H, i = 2, ...,k−1},

and similarly
C ∞

V ,Λ =
⋂
k∈N

D((L∗)k),

where
D((L∗)k) := {g ∈ H : (L∗)ig ∈ H, i = 2, ...,k−1}.

Summarising the above definitions and observations, we note the basic properties
of the described extensions of the Fourier transforms:

Theorem 3.140 The U -Fourier transform FU is a bijective homeomorphism from
C ∞

U ,Λ to S (N). Its inverse

F−1
U : S (N)→ C ∞

U ,Λ

is given by
F−1

U h = ∑
k∈N

h(k)uk, h ∈S (N), (3.203)

so that the Fourier inversion formula becomes

f = ∑
k∈N

f̂ (k)uk for all f ∈ C ∞
U ,Λ. (3.204)

Similarly, FV : C ∞
V ,Λ→S (N) is a bijective homeomorphism and its inverse

F−1
V : S (N)→ C ∞

V ,Λ

is given by
F−1

V h := ∑
k∈N

h(k)vk, h ∈S (N), (3.205)

so that the conjugate Fourier inversion formula becomes

f = ∑
k∈N

f̂∗(k)vk for all f ∈ C ∞
V ,Λ. (3.206)

By (3.200) the Fourier transforms extend to linear continuous mappings FU :
D ′U ,Λ→S ′(N) and FV : D ′V ,Λ→S ′(N).

Given the above properties, we can also extend the corresponding properties of
U - and V -convolutions from those in Theorem 3.139:
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Theorem 3.141 For all f ∈D ′U ,Λ,g ∈ C ∞
U ,Λ, h ∈D ′V ,Λ, j ∈ C ∞

V ,Λ we have

f̂ ?U g = f̂ ĝ, ĥ?V j∗ = ĥ∗ ĵ∗.

The convolutions are commutative and associative. If g∈C ∞
U ,Λ then for all f ∈D ′U ,Λ

we have
f ?U g ∈ C ∞

U ,Λ. (3.207)

The proof is analogous to the same verification as in Theorem 3.139. The prop-
erty (3.207) follows from the fact that ĝ ∈S (N) implies that the series

∑
k∈N

λ
j

k f̂ (k)ĝ(k)uk

converges for any j ∈ N. �
The operator L associated to the pair (U ,Λ), as defined in (3.197) by

L f := ∑
k∈N

λk〈 f ,vk〉uk,

is bi-invariant in the following sense, and, moreover, its resolvent can be described
in terms of the convolution:

Theorem 3.142 If L : H→ H is associated to the pair (U ,Λ) then we have

L( f ?U g) = (L f )?U g = f ?U (Lg)

for all f ,g ∈ C ∞
U ,Λ. Moreover, the resolvent of the operator L is given by the formula

Rλ f := (L−λ I)−1 f = gλ ?U f , λ 6∈ Λ,

where I is the identity operator in H and

gλ = ∑
k∈N

1
λk−λ

uk.

The first statement follows immediately from the definition of L and the calcula-
tions:

FU (L( f ?U g))(k) = λk f̂ (k)ĝ(k)

and
FU ((L f )?U g)(k) = FU (L f )(k)ĝ(k) = λk f̂ (k)ĝ(k),

for all k ∈ N.
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The second statement follows from the following calculation:

gλ ?U f = ∑
k∈N

1
λk−λ

f̂ (k)uk

= ∑
k∈N

f̂ (k)(L−λ I)−1uk

= (L−λ I)−1

(
∑
k∈N

f̂ (k)uk

)
= (L−λ I)−1 f

= Rλ f ,

where we used the continuity of the resolvent. �
Sometimes the abstract convolution can be worked out explicitly, as we will show

in the following example.

Example 3.143 Consider the operator O(1)
h : L2(0,1)→ L2(0,1) defined

O(1)
h :=−i

d
dx

,

where h > 0, on the domain (0,1) with the boundary condition

hy(0) = y(1).

We have briefly discussed such operators in Example 3.111. In the case h =

1 we have O(1)
1 with periodic boundary conditions, and the systems U and V of

eigenfunctions of O(1)
1 and its adjoint O(1)

1
∗

coincide, and are given by

U = V = {uk(x) = e2πixk, k ∈ Z}.

This leads to the setting of the classical Fourier analysis on the circle which can be
viewed as the interval (0,1) with periodic boundary conditions.

For h 6= 1, the operator O(1)
h is not self-adjoint. The spectral properties of O(1)

h are

well-known: the spectrum of O(1)
h is discrete and is given by

λk =−i lnh+2kπ, k ∈ Z.

The corresponding bi-orthogonal families of eigenfunctions of O(1)
h and its adjoint

are given by
U = {uk(x) = hxe2πixk, k ∈ Z}

and
V = {vk(x) = h−xe2πixk, k ∈ Z},

respectively. They form Riesz bases, and O(1)
h is the operator associated to the pair

U and Λ = {λk =−i lnh+2kπ}k∈Z.
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Clearly, all the previous constructions work with the index set Z instead of N.
It was shown in [105] that one can work out the abstract convolution expressions

for the U –convolution in some special cases. Let us give an example.
We consider the special case

H = L2(0,1), U = {uk(x) = hxe2πixk, k ∈ Z},

tand Λ = {λk =−i lnh+2kπ}k∈Z. Then the operator L : L2(0,1)→ L2(0,1) associ-
ated to the pair (U ,Λ) by formula (3.197) coincides with O(1)

h . The corresponding
U -convolution can be written in the integral form

( f ?U g)(x) =
∫ x

0
f (x− t)g(t)dt +

1
h

∫ 1

x
f (1+ x− t)g(t)dt, (3.208)

which is the so-called Kanguzhin’s convolution that was studied in [62]. In particu-
lar, when h = 1, this gives

( f ?U g)(x) =
∫ 1

0
f (x− t)g(t)dt,

the usual convolution on the circle.
Let us prove the formula (3.208). Let us denote

K( f ,g)(x) :=
∫ x

0
f (x− t)g(t)dt +

1
h

∫ 1

x
f (1+ x− t)g(t)dt.

Then we can calculate

FU (K( f ,g))(k) =
∫ 1

0

∫ x

0
f (x− t)g(t)h−xe−2πixkdtdx

+
1
h

∫ 1

0

∫ 1

x
f (1+ x− t)g(t)h−xe−2πixkdtdx

=
∫ 1

0

[∫ 1

t
f (x− t)h−xe−2πixkdx

]
g(t)dt

+
∫ 1

0

[∫ t

0
f (1+ x− t)h−(1+x)e−2πi(1+x)kdx

]
g(t)dt

=
∫ 1

0

[∫ 1

t
f (x− t)h−(x−t)e−2πi(x−t)kdx

]
g(t)h−te−2πitkdt

+
∫ 1

0

[∫ t

0
f (1+ x− t)h−(1+x−t)e−2πi(1+x−t)kdx

]
g(t)h−te−2πitkdt

=
∫ 1

0

[∫ 1−t

0
f (z)h−ze−2πizkdz

]
g(t)h−te−2πitkdt

+
∫ 1

0

[∫ 1−t

1
f (z)h−ze−2πizkdx

]
g(t)h−te−2πitkdt
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=
∫ 1

0

[∫ 1

0
f (z)h−ze−2πizkdz

]
g(t)h−te−2πitkdt

= f̂ (k) ĝ(k).

Consequently, by Theorem 3.139, we must have K( f ,g) = f ∗U g. �

In the above constructions we had an operator L associated to the pair (U ,Λ) by
the formula (3.197), where U was a Riesz basis of eigenfunctions corresponding to
the discrete spectrum Λ of the operator L, with Luk = λkuk. However, it may happen
that we want to analyse an operator which does not have eigenfunctions forming
a basis. In this case, as was discussed in the preceding sections, one looks at the
associated functions.

In this case one can work with another, more general, version of the convolution.
This, let L : H → H be a linear densely defined operator in H. We say that a

bilinear associative and commutative operation ∗L is an L-convolution if for any
f ,g ∈ D(L∞) we have

L( f ?L g) = (L f )?L g = f ?L (Lg). (3.209)

Here we have denoted D(L∞) :=
⋂

k∈N D(Lk) with D(Lk) := { f : Li f ∈ H, i =
2, ...,k−1}.

Theorem 3.142 implies that the U -convolution is a special case of L-
convolutions.

However, the converse is not true, that is, an L-convolution does not have to be a
U -convolution for any choice of the set Λ.

Example 3.144 Let us consider an L-convolution associated to the so-called Ionkin
operator considered in [54], see Example 3.59 (and also Examples 3.148 and 3.152,
and Lemma 3.153). The Ionkin operator L : H→H is the operator in L2(0,1) given
by

L =− d2

dx2 , x ∈ (0,1),

with the boundary conditions

u(0) = 0, u′(0) = u′(1).

It has eigenvalues
λk = (2πk)2, k ∈ Z+,

and an extended set of root functions

u0(x) = x, u2k−1(x) = sin(2πkx), u2k(x) = xcos(2πkx), k ∈ N,

which give a basis in L2(0,1). We denote this basis by U . The corresponding
biorthogonal basis is given by

v0(x) = 2, v2k−1(x) = 4(1− x)sin(2πkx), v2k(x) = 4cos(2πkx), k ∈ N.
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The derivation of these formulae go back to Ionkin [54], see also Lemma 3.153.
The so-called Ionkin-Kanguzhin convolution appearing in the analysis related to
the Ionkin problem is given by the formula

f ?L g(x) :=
1
2

∫ 1

x
f (1+ x− t)g(t)dt

+
1
2

∫ 1

1−x
f (x−1+ t)g(t)dt +

∫ x

0
f (x− t)g(t)dt

− 1
2

∫ 1−x

0
f (1− x− t)g(t)dt +

1
2

∫ x

0
f (1+ t− x)g(t)dt, (3.210)

where we have indicated that it is, indeed, an L-convolution in the sense of (3.209),
that is, it satisfies the relation

L( f ?L g) = (L f )?L g = f ?L (Lg),

which follows from the analysis in [63] and [105]. For the collection

U := {uξ : u0(x) = x, u2ξ−1(x) = sin(2πξ x), u2ξ (x) = xcos(2πξ x), ξ ∈ N},

it can be readily checked that the corresponding U -Fourier transform satisfies

f̂ ?L g(0) = f̂ (0)ĝ(0),

f̂ ?L g(2k) = f̂ (2k)ĝ(2k),

f̂ ?L g(2k−1) = f̂ (2k−1)ĝ(2k)+ f̂ (2k)ĝ(2k)+ f̂ (2k)ĝ(2k−1), k ∈ N.

Therefore, by Theorem 3.139, the L-convolution does not coincide with the U –
convolution for any choice of numbers Λ.

Remark 3.145 Based on the biorthogonal Fourier analysis as set in (3.172)-(3.175)
and on the notion of the convolution as described in Section 3.15, one can develop
the full global theory of pseudo-differential operators and the corresponding sym-
bolic calculus based on the biorthogonal systems and expansions. This becomes very
useful in many problems since such an approach incorporates the boundary condi-
tions in the general form into the symbolic calculus. We refer the reader to [103] for
the development of this theory, as well as to [104] for its more general version.

3.16 Root functions of second-order non-self-adjoint ordinary
differential operators

Compared to the self-adjoint case, the spectral theory of non-self-adjoint differ-
ential operators has some significant differences. For example, while the eigenvalues
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of any self-adjoint operator always exist and are always real, then eigenvalues of
a non-self-adjoint operator may not exist, and, if they exist, they can be complex.
Moreover, a self-adjoint operator has the system of eigenvectors forming an orthonor-
mal basis, while the system of eigenvectors of a non-self-adjoint operator can be non-
closed in H. In some cases a non-self-adjoint operator, in addition to eigenvectors,
may also have associated vectors; the system of root (that is, eigen- and associated
vectors) vectors can be non-closed in H or, if it is closed, it may not form a basis
in H.

These and other peculiarities of the non-self-adjoint operators make it difficult to
construct a unified spectral theory for this case. Therefore, we may single out differ-
ent classes of boundary value problems for which it is still possible to study proper-
ties of eigenvalues and root vectors (including questions on expansions in biorthog-
onal series with respect to the system of root functions).

Since the volume of results available in the literature is quite large, we will
dwell in this section only on a few main (from our point of view) results, giving
the reader an idea of the appearing complications. And we will consider only the
case of second-order differential operators.

In this section we consider main properties of eigen- and associated functions of
the non-self-adjoint boundary value problems of the general form for a second-order
ordinary differential operator.

In L2(0,1), consider the operator L given by a differential expression

Ly≡−u′′(x)+q(x)u(x) = λu(x), 0 < x < 1, (3.211)

and two-point boundary conditions of the general form U1(u) = a11u′(0)+a12u′(1)+a13u(0)+a14u(1) = 0,

U2(u) = a21u′(0)+a22u′(1)+a23u(0)+a24u(1) = 0,
(3.212)

where U1(u) and U2(u) are linearly independent forms with arbitrary complex-valued
coefficients, and q ∈C[0,1] is an arbitrary complex-valued function.

We denote by L the closure in L2(0,1) of the operator given by the differential
expression (3.211) on the linear space of functions u ∈C2[0,1] satisfying the bound-
ary conditions (3.212).

It is easy to justify that the operator L is a linear operator on L2(0,1) defined by
(3.211) with the domain

D(L) =
{

u ∈ L2
2(0,1) : U1(u) = 0, U2(u) = 0

}
.

For u∈D(L) we understand the action of the operator Lu =−u′′(x)+q(x)u(x) in the
sense of almost everywhere on (0,1).

By an eigenvector of the operator L corresponding to an eigenvalue λ0 ∈ C, we
mean any nonzero vector u0 ∈ D(L) which satisfies the equation

Lu0 = λ0u0. (3.213)
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By an associated vector of the operator L of order m (m = 1,2, . . .) corresponding
to the same eigenvalue λ0 and the eigenvector u0, we mean any function um ∈ D(L)
which satisfies the equation:

Lum = λ0um +um−1. (3.214)

The vectors {u0,u1, · · ·} are called a chain of the eigen- and associated vectors of
the operator L corresponding to the eigenvalue λ0.

The eigenvalues of the operator L will be called the eigenvalues of problem
(3.211)-(3.212). The eigen- and associated vectors of the operator L will be called
eigen- and associated functions of problem (3.211)-(3.212). One can also say that
the eigenfunction u0 is a zero order associated function. The set of all eigen- and
associated functions (they are collectively called root functions) corresponding to
the same eigenvalue λ0 forms a root linear space. This space is called a root space.

Avoiding repetition, in this section we use the definitions and terminology from
Sections 3.12-3.14.

In Example 3.102 we have demonstrated the example of a boundary value prob-
lem with degenerate boundary conditions, which does not have eigenvalues. We now
consider an example of a problem with degenerate boundary conditions, which has
eigenvalues, but its system of eigenfunctions is not closed.

Example 3.146 Consider the spectral problem

−u′′(x)+q(x)u(x) = λu(x), u′(0)+αu′(1) = 0, u(0)−αu(1) = 0, (3.215)

with a continuous coefficient q, where α ∈ C is a fixed number. It is easy to see that
for all α the condition (3.145) holds: A12 = 0, A14+A23 = 0. Therefore, the boundary
conditions of the problem (3.215) are degenerate.

It was shown in [19] that this problem for α2 6= 1 and α 6= 0 does not have
eigenvalues if and only if the coefficient q is symmetric:

q(x) = q(1− x) (3.216)

for all x ∈ [0,1].
Assume that the condition (3.216) holds not on the whole interval [0,1] but only

on some part of it. That is, suppose that there exists a positive number δ < 1/2
such that condition (3.216) holds for x ∈ [0,δ ]. Then this condition also holds for
x ∈ [1− δ ,δ ]. Assume that this condition does not hold for x ∈ (δ ,1− δ ). In this
case, as was shown in [19], the problem (3.215) has eigenvalues. Let us show that
the system of the eigen- and associated functions of the problem is not closed in
L2(0,1).

Let u(x) be an eigenfunction of the problem (3.215) corresponding to an eigen-
value λ .

Denote U(x) := u(x)−αu(1− x). It is easy to see that U(0) = 0 and U ′(0) = 0.
For x ∈ [0,δ ] by condition (3.216) we have

−u′′(x)+q(x)u(x)+α
{
−u′′(1− x)+q(x)u(1− x)

}
=−u′′(x)+q(x)u(x)+α

{
−u′′(1− x)+q(1− x)u(1− x)

}
= λu(x)+αλu(1− x).
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Therefore, U(x) on the interval x ∈ [0,δ ] is a solution of the Cauchy problem

−U ′′(x)+q(x)U(x) = λU(x), U(0) = 0, U ′(0) = 0.

In view of the uniqueness of solutions to the Cauchy problems we have U(x)≡ 0 for
all x ∈ [0,δ ]. Therefore,

u(x)≡ αu(1− x), ∀x ∈ [0,δ ]. (3.217)

Similarly we can prove that the first-order associated function also satisfies
(3.216). Continuing, we obtain that all root functions of the problem (3.215) sat-
isfy the condition (3.216). Let us show that due to this reason the system of root
functions is not closed in L2(0,1).

Consider a function v(x) that is not identically zero, satisfying the conditions

αv(x)+ v(1− x)≡ 0, ∀x ∈ [0,δ ]; v≡ 0, ∀x ∈ [δ ,1−δ ]. (3.218)

For an arbitrary root function u(x) of the problem (3.215), using the second con-
dition from (3.218), we calculate the inner product

〈u,v〉=
∫

δ

0
u(x)v(x)dx+

∫ 1

1−δ

u(x)v(x)dx

=
∫

δ

0
u(x)v(x)dx+

∫
δ

0
u(1− x)v(1− x)dx

=
∫

δ

0
u(1− x){αv(x)+ v(1− x)}dx.

Therefore, by the first condition from conditions (3.218), we have 〈u,v〉= 0. That
is, each root function of the problem (3.215) is orthogonal to v(x). Since the function
v(x) is not zero, this proves that the system of root functions of the problem (3.215)
is not closed in L2(0,1).

Note that in [20] one also proved an inverse result: for α2 6= 1, the system of root
functions of the boundary value problem (3.215) is closed in L2(0,1) if and only if
there is no δ > 0 such that condition (3.216) holds for x ∈ [0,δ ). �

To consider problems whose system of root functions gives a basis, we need to
avoid boundary value problems whose system of root functions is not closed. As
Example 3.146 shows, such cases can be among problems with degenerate boundary
conditions. For the boundary value problems of the general form (3.211)-(3.212) the
following important result holds, which we record without proof.

Theorem 3.147 (see [80]) The system of eigen- and associated functions of the
boundary value problem (3.211)-(3.212) with nondegenerate boundary conditions
is closed in L2(0,1). For any nondegenerate conditions, the spectrum of the prob-
lem (3.211)-(3.212) consists of a countable set {λn} of eigenvalues with only one
limit point ∞, and the dimensions of the corresponding root subspaces are uniformly
bounded by the same constant.
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For an arbitrary system of elements of a Hilbert space, generally speaking, the
completeness of this system does not yet entail the basis property (for example see
Lemma 3.120, Example 3.130, Example 3.134). The same fact holds also for non-
degenerate problems of the general form: the completeness of the system of eigen-
and associated functions of the problem with nondegenerate conditions does not yet
guarantee the basis properties of this system of eigen- and associated functions. We
have considered one such problem in Example 3.137.

Consider an example of a problem with the nondegenerate boundary conditions
whose system of eigenfunctions is complete but does not form a basis.

Example 3.148 Consider the spectral problem

−u′′(x) = λu(x), u′(0) = u′(1), u(0) = 0. (3.219)

We have considered this problem in Example 3.59. There, we have shown that the
problem (3.219) has the eigenvalues: λ0 = 0 (simple) and λk = (2kπ)2, k ∈ N (dou-
ble). The simple eigenvalue λ0 has the eigenfunction u0(x) = x. For the double
eigenvalues λk one has one eigenfunction uk0(x) = sin(2kπx) and one associated
function

uk1(x) =
x

4kπ
cos(2kπx)+Ck sin(2kπx) ,

where Ck are arbitrary constants. The arbitrariness of this constant is caused by the
fact that the associated functions of the problem are not uniquely defined.

Let us check the necessary basis condition (3.188). We calculate the scalar prod-
uct

〈uk0,uk1〉=
∫ 1

0
sin(2kπx)

( x
4kπ

cos(2kπx)+Ck sin(2kπx)
)

dx =
Ck

2
− 1

(4kπ)2 .

We also calculate the norms of the root functions:

‖yk0‖=
1√
2

; ‖yk1‖2 =

∣∣∣∣Ck

2

∣∣∣∣2− Ck +Ck

(4kπ)2 +
1

96kπ
+

1
(8kπ)2 .

If the sequence Ck
√

k is unbounded, then there exists a subsequence k j such that
Ck j

√
k j→ ∞. Then

lim
k→∞

∣∣∣∣〈 y1k

‖y1k‖
,

y2k

‖y2k‖

〉∣∣∣∣= 1.

Hence, in this case the necessary condition for an unconditional basis (3.188) does
not hold. Therefore, such system of root functions of the problem (3.219) does not
give an unconditional basis in L2(0,1).

In the case when the sequence Ck
√

k is bounded, we get

lim
k→∞

∣∣∣∣〈 y1k

‖y1k‖
,

y2k

‖y2k‖

〉∣∣∣∣= lim
k→∞

∣∣∣Ck
√

k
∣∣∣√∣∣∣Ck

√
k
∣∣∣2 + 1

24π

< 1.



236 Spectral geometry of partial differential operators

This means that for such Ck the necessary condition (3.188) for an unconditional
basis holds. To make a conclusion whether such a system of root functions of the
problem (3.219) is a basis or not, we need an additional investigation. �

The considered Examples 3.137 and 3.148 show that the completeness of a sys-
tem of root functions (which is guaranteed by Theorem 3.147 for all problems with
nondegenerate boundary conditions) does not guarantee that the system is a basis.
Therefore, we need to single out a new class among problems with the nondegener-
ate boundary conditions for which the basis property of the system of root functions
can be guaranteed.

One of these classes, for example, is the class of Sturm-Liouville problems which
we have considered in Section 3.8. But this class consists only of self-adjoint bound-
ary value problems. The coefficients of boundary conditions and of a differential
equation are real. The root subspaces consist only of eigenfunctions. The system of
all eigenfunctions forms an orthonormal basis. This class of boundary value prob-
lems has turned out to be too narrow for modelling arising new physical phenomena.
It was necessary to construct a wider class of problems.

An important step was made at the beginning of the 1960s by G. M. Kesel’man
[67] and V. P. Mihailov [82]. They singled out a narrower class among regular bound-
ary conditions providing the Riesz basis of the system of root functions. Boundary
conditions of such type were called strengthened regular (the exact definition and
asymptotics of eigenvalues are given in Theorem 3.104). They showed that eigen-
values of problems with strengthened regular conditions starting from some moment
become simple (onefold), and this means that they have only eigenfunctions (without
associated functions). Thus, the problem with strengthened regular boundary condi-
tions can have no more than a finite number of associated functions. In this sense the
problem with strengthened regular conditions “is similar” to a self-adjoint one.

Let us formulate this result for a case of the problem (3.211)-(3.212) for a second-
order equation.

From the coefficients of the boundary conditions (3.212) we form the matrix

A =

(
a11 a12 a13 a14
a21 a22 a23 a24

)
.

We denote by A(i j) the matrix composed of the i-th and j-th columns of A, and
denote Ai j := detA(i j) (1≤ i < j≤ 4). From Theorem 3.105 we have that the bound-
ary conditions (3.212) are regular in the following three cases:

(1) A12 6= 0,
(2) A12 = 0, A14 +A23 6= 0,
(3) A12 = A13 = A14 = A23 = A24 = 0, A34 6= 0.

(3.220)

Here, the boundary conditions will be strengthened regular in the cases (1) and (3),
and in the case (2) under the additional condition

A13 +A24 6=±(A14 +A23) . (3.221)
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Theorem 3.149 ([67], [82]). Let the boundary conditions (3.212) be regular and
strengthened regular, that is, let one of conditions (3.220) and (3.221) hold. Then the
system of root functions of the boundary value problem (3.211)-(3.212) is a Riesz
basis in L2(0,1).

Note that the result of this theorem does not depend on the coefficient q(x) of Eq.
(3.211), but depends only on coefficients of the boundary condition. Thus, the basis
property of the system of root functions of the problem with the strengthened regular
boundary conditions is stable with respect to the coefficients (the potential) of the
equation.

A particular case of the strengthened regular boundary conditions are Sturm type
conditions. It follows from Theorem 3.149 that the system of root functions of the
problem with the Sturm type boundary conditions (see Example 2.92) is a Riesz
basis.

As the further investigations show, the class of the strengthened regular boundary
conditions turns out to be a single class in which the basis property of root functions
is completely defined by the coefficients of the boundary condition and does not
depend on the behavior of the coefficients. The theory of the basis property for the
boundary value problems with not strengthened regular boundary conditions is far
from completion.

Relatively recently in 2006, A. S. Makin [78] considered one subclass of the
not strengthened regular boundary conditions and showed that the system of root
functions of problems with such conditions gives a Riesz basis regardless of the
behavior of the coefficient q(x).

Theorem 3.150 (A. S. Makin [78]) If A14 +A23 = 0 and A34 6= 0, then the system
of eigen- and associated functions is a Riesz basis in L2(0,1), and the spectrum is
asymptotically simple.

The boundary conditions satisfying the conditions of Theorem 3.150 can be
reduced to one of two forms:{

u′(0)−u′(1)+au(0) = 0,
u(0)−u(1) = 0, or

{
u′(0)+u′(1)+au(0) = 0,

u(0)+u(1) = 0,

where the coefficient a is different from zero: a 6= 0.
This subclass (singled out by A. S. Makin) of the not strengthened regular bound-

ary conditions is the only boundary condition, in addition to strengthened regular
ones, that ensure the Riesz basis property of the system of root functions for any
potential q(x). For the other cases of the not strengthened regular boundary condi-
tions it is shown (see [79]) that the set of coefficients q(x), for which the system of
root functions of the problem (3.211)-(3.212) is a Riesz basis in L2(0,1), is dense
in L1(0,1). Here, the set of coefficients q(x), for which the system of root functions
of (3.211)-(3.212) does not give a Riesz basis in L2(0,1), is also dense in L1(0,1).
This fact demonstrates the instability of the basis property of the root functions with
respect to small changes of the coefficient q(x).

The question of such instability of the basis property of not strengthened regular
problems was studied by V. A. Ilin. He showed that the basis conditions of the system
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of root functions for a wide class of non-self-adjoint differential operators cannot in
principle be expressed in terms of boundary conditions. In particular he constructed
an example for such a phenomenon.

Consider the boundary value problem

−u′′(x)+ p(x)u′(x)+q(x) = λu(x), u′(0) = u′(1), u(0) = 0. (3.222)

We have considered this problem for p(x) = q(x) = 0 in Examples 3.59 and 3.148.
It was shown in [53] that in this case the system of eigen- and associated functions
of problem (3.222) is a Riesz basis in L2(0,1). And if p(x) = ε

(
x− 1

2

)
and q(x) =

ε2

4

(
x− 1

2

)2
+ ε

2 , then for any small ε > 0 the system of root functions of the problem
(3.222) consists only of the eigenfunctions and does not give an unconditional basis
in L2(0,1).

Thus, two operators with the same boundary conditions and arbitrarily close (in
any metric) infinitely differentiable coefficients have fundamentally different prop-
erties: one has a basis from root functions, and the other does not. This example
clearly shows that the study of the basis property of a system of root functions of
non-self-adjoint operators in terms of the boundary conditions and the smoothness
of the coefficients is generally rather impossible.

Based on this thesis, V. A. Ilin proposed in [51] a new interpretation of the root
functions, abandoning the specific form of the boundary conditions. Since for the
case of the strengthened regular boundary conditions all problems have the system
of root functions forming a basis, then the theory of V. A. Ilin actually deals with
problems with conditions that are not strengthened regular. Since the explicit form
of the boundary conditions is not used in the considerations, then by the root func-
tions one means the system of arbitrary complex-valued functions {uk(x)}∞

k=1 that
are different from identical zero satisfying almost everywhere in [0,1] the equation

Luk−λkuk = θkuk−1, (3.223)

where θk = 0 if uk is an eigenfunction, and θk = 1 if uk is an associated function (in
this case we additionally require that λk = λk−1). We assume that all chains of root
functions entering the system are finite, i.e. m(λ )< ∞. Denote by {uk} the system of
root functions enumerated in a certain way.

The theory of V. A. Ilin received further developments for several classes of dif-
ferential equations and problems. Let us give without proof the simplest version of
the theorem on necessary and sufficient conditions for the basis property of a system
of root functions.

Let {uk} be a system of root functions (understood in the sense of equality
(3.223)) of an operator given by the differential expression (3.211). We require the
following Condition A [51]:

(A1): the system of root functions {uk} of an operator L is closed and minimal in
L2(0,1);

(A2): the ranks of eigenfunctions are uniformly bounded:

sup
λ∈Λ

m(λ )< ∞;
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(A3): the following estimate holds uniformly in t > 0:

∑
λ∈Λ: |Re

√
λ−t|≤1

1≤ B1,

which will be called a “sum of units” in what follows;
(A4): the set of eigenvalues Λ lies inside a certain parabola (which is called the

Carleman parabola), i.e. the following estimate holds uniformly in λ ∈ Λ:∣∣∣Im√λ

∣∣∣≤ B2.

The latter condition on the spectrum of the operator will be called the Carleman
condition;

By Theorem 3.112, condition (A1) ensures the existence of a unique system {vk}
biorthogonally dual to {uk}. Also, we assume that

(A5): the biorthogonal dual system {vk} consists of root functions of the formally
adjoint operator L∗ given by the expression

L∗v(x) =−v′′(x)+q(x)v(x).

Theorem 3.151 (V.A. Ilin [51]) Let the potential q(x) of the operator L be Lebesgue
integrable on (0,1), and let conditions (A1)-(A5) hold. Then each of the systems {uk}
and {vk} is an unconditional basis in L2(0,1) if and only if the following estimate of
the product of norms holds uniformly in k ∈ N:

‖uk‖ · ‖vk‖ ≤C. (3.224)

Thus, under the assumptions (A1)-(A5), the condition (3.171) of the uniform
minimality of the system {uk}, which is the necessary condition for the basis prop-
erty, also becomes a sufficient condition for the system of root functions to be an
unconditional basis.

The condition “sum of units” (A3) expresses a serious requirement for the uni-
form distribution of eigenvalues: in each vertical strip of the width 1 the quantity of
the numbers

√
λ is bounded by the same uniform constant.

We note that for the system of root functions of a concrete boundary-value prob-
lem, all the conditions of Theorem 3.151 are easily verified. Indeed, the completeness
of the system {uk} is proved by using the well-known abstract theorems. For exam-
ple, the closedness of the system {uk} can be a consequence of the non-degeneracy of
the boundary conditions. The minimality is implied by the completeness in L2(0,1)
of the biorthogonally dual system {vk}. Conditions (A2), (A3), and (A4) are verified
by using the leading term of the asymptotics of eigenvalues, and estimate (3.224) is
verified by using the leading term of the asymptotics of root functions.

Example 3.152 Let us continue the consideration of the problem (3.219) from
Example 3.148. Consider a system of root functions consisting of one eigenfunction
u0(x) and a pair of eigen- and associated functions

u0(x) = x, uk0(x) = sin(2kπx) , uk1(x) =
x

4kπ
cos(2kπx)+Ck sin(2kπx) . (3.225)



240 Spectral geometry of partial differential operators

These root functions form a closed and minimal system in L2(0,1). This is a
consequence of the non-degeneracy of the boundary conditions of problem (3.219).
Therefore condition (A1) is satisfied.

Condition (A2) is satisfied since all eigenvalues (except the one-fold eigenvalue
λ0) are double (two-fold). The eigenvalues of problem (3.219) are known in the
explicit form : λk = (2kπ)2, k ∈ N. Therefore conditions (A3) and (A4) are also
satisfied.

The biorthogonal system {vk} is constructed of the root functions of the problem
adjoint to (3.219):

−v′′(x) = λv(x), v′(0) = 0, v(0) = v(1). (3.226)

The root functions of the problem (3.226) can be constructed in the explicit form:
v0(x) = A0 is an eigenfunction; vk1(x) = Ak cos(2kπx) are eigenfunctions; vk0(x) =
Ak

(1−x)
4πk sin(2kπx)+Bk cos(2kπx) are associated functions. Here A0, Ak and Bk are

arbitrary constants.
To construct a biorthogonal system, we need to choose these coefficients A0, Ak

and Bk according the biorthogonality condition:

〈u0,v0〉= 1, 〈uk0,vk0〉= 1, 〈uk1,vk1〉= 1, 〈uk1,vk0〉= 0. (3.227)

From the first condition we get

1 = 〈u0,v0〉= A0

∫ 1

0
xdx =

1
2

A0.

Then, A0 = 2. We use the third condition from (3.227):

1 = 〈uk1,vk1〉= Ak

∫ 1

0

{ x
4kπ

cos(2kπx)+Ck sin(2kπx)
}

cos(2kπx)dx =
Ak

16kπ
.

Then, Ak = 16kπ . Therefore the eigen- and associated functions have the form
vk1(x) = 16kπ cos(2kπx), vk0(x) = 4(1− x)sin(2kπx)+Bk cos(2kπx)

Given the obtained result, we have the second condition in (3.227):

〈uk0,vk0〉=
∫ 1

0
sin(2kπx)

{
4(1− x)sin(2kπx)+Bk cos(2kπx)

}
dx = 1.

To choose Bk, we use the fourth condition in (3.227):

0 =
∫ 1

0

{ x
4kπ

cos(2kπx)+Ck sin(2kπx)
}{

4(1− x)sin(2kπx)+Bk cos(2kπx)
}

dx

=Ck +
Bk

16kπ
.

Then, Bk =−16kπCk.
Thus, the system

v0(x) = 2, vk1(x) = 16kπ cos(2kπx) ,

vk0(x) = 4(1− x)sin(2kπx)−16kπCk cos(2kπx)
(3.228)
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will be biorthogonal to the system of root functions (3.225). Under such choice of the
root functions of the problem (3.226) condition (A5) will hold. Thus, all conditions
(A1)-(A5) from Theorem 3.151 hold.

Let us check for what constants Ck the necessary and sufficient basis condi-
tion (3.224) from Theorem 3.151 holds. We calculate the norms of elements of the
biorthogonal system:

‖uk0‖=
1√
2

; ‖uk1‖2 =

∣∣∣∣Ck

2

∣∣∣∣2− Ck +Ck

(4kπ)2 +
1

96kπ
+

1
(8kπ)2 ,

‖vk0‖2 = 2(8kπ)2 |Ck|2 +8
(
Ck +Ck

)
+

8
3
− 1

(kπ)2 ; ‖vk1‖=
16kπ√

2
;

If the sequence Ck
√

k is unbounded, then there exists a subsequence k j such that
Ck j

√
k j→ ∞. Then

lim
k→∞
‖uk0‖‖vk0‖= ∞, and lim

k→∞
‖uk1‖‖vk1‖= ∞.

Hence, in this case the requirement of the criterion (3.224) for an unconditional basis
does not hold. Therefore, the system (3.225) of root functions of the problem (3.219)
does not give an unconditional basis in L2(0,1).

This result (on absence of the basis property) has been previously obtained in
Example 3.148 by using the necessary condition (3.188) for an unconditional basis.
But in that example we could not substantiate the basis of the system of root functions
for the case of other sequences Ck. For such sequences Ck we use the criterion (3.224)
for unconditional bases from Theorem 3.151.

In the case when the sequence Ck
√

k is bounded, we get

lim
k→∞
‖uk0‖‖vk0‖< ∞, and lim

k→∞
‖uk1‖‖vk1‖< ∞.

This means that for such Ck the condition (3.224) for the unconditional bases holds.
Hence, under the choice of such sequences Ck the system (3.225) of root functions
of problem (3.219) forms an unconditional basis in L2(0,1). �

The considered Example 3.152 demonstrates the essence of one problem of the
spectral theory of non-self-adjoint operators, the so-called “problem of choosing
associated functions”. It consists in the fact that for one choice of the associated func-
tions the system of root functions of the operator is an unconditional basis, while for
another choice of the associated functions the system of root functions cannot give a
basis.

Usually, when one considers the systems of eigen- and associated functions, the
constants Ck are chosen independently of the index: Ck = C. Then the system of
eigen- and associated functions of the Samarskii-Ionkin problem (3.219) has the form

u0(x) = x, uk0(x) = sin(2kπx) , uk1(x) =
x

4kπ
cos(2kπx)+C sin(2kπx) . (3.229)

From the results of Example 3.152, we obtain the following result for the system
(3.229).
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Lemma 3.153 The system of eigen- and associated functions of the Samarskii-
Ionkin problem (3.219) is closed and minimal in L2(0,1). It has the form (3.229),
where C is an arbitrary constant. This system for a special choice of the constant
C = 0 is an unconditional basis in L2(0,1), and ceases to be a basis for any other
choice C 6= 0.

In accordance with the demonstrated problem the term “for a special choice of
associated functions” is used in the scientific literature. It is used in cases when one
considers spectral properties of problems having an infinite number of associated
functions. This term demonstrates that the basis property depends not only on prop-
erties of the problem under consideration, but also on the choice of the system of
associated functions.

Studying this problem, Ilin [50] in 1976 constructed the theory of a reduced sys-
tem of eigen- and associated functions for ordinary differential operators. Specifi-
cally, the reduced system always has the basis property if there is at least one choice
of eigen- and associated functions possessing this property. However, the elements of
the reduced system do not satisfy the equation for determining associated functions.

In the context of choosing associated functions, the question arises as to what
relations the eigen- and associated functions must satisfy to avoid this effect?

To solve this problem, it was suggested in [108] and [109] to use a modified
definition of the associated functions. An important result for justifying such new
definition of the associated functions is the following theorem:

Theorem 3.154 ([108], [109]) Let the system {uk0(x);uk1(x)}k∈N consisting of
eigen- and associated functions of the operator L be an unconditional basis of the
space L2(0,1). Then the system

{uk0(x);uk1(x)+Cuk0(x)}k∈N (3.230)

is an unconditional basis in L2(0,1) if and only if the uniform estimate

‖uk0‖ ≤C0‖uk1‖ (3.231)

is valid for all indices k.

Let us give a brief proof. Denote by {vk0(x);vk1(x)} the system biorthogo-
nal to the initial system {uk0(x);uk1(x)}. As follows from Example 3.113, the
system (3.230) is a closed and minimal system in L2(0,1), and the system{

vk0−Cvk1,vk1
}

k∈N will be its biorthogonal system.
Let the system (3.230) form an unconditional basis in L2(0,1). Let us show that

the inequality (3.227) must be valid. But first we note that the basis property of the
system (3.230) leads to the validity of the following two conditions as a necessary
condition for the basis property (condition (3.171) for the uniform minimality of the
system):

‖uk0‖ · ‖vk0−Cvk1‖ ≤C1,

‖uk1 +Cuk0‖ · ‖vk1‖ ≤C2.
(3.232)
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In addition, we have the estimates

‖uk0‖ · ‖vk0‖ ≤C3,

‖uk1‖ · ‖vk1‖ ≤C4,
(3.233)

which follow from the unconditional basis property of the system {uk0(x);uk1(x)} as
a necessary condition for the basis property.

By using the estimates (3.232) and (3.233), one can estimate the quantity

‖uk0‖ · ‖vk1‖.

This estimate follows from the inequalities

|C|‖uk0‖ · ‖vk1‖= ‖uk0‖ · ‖Cvk1− vk0 + vk0‖ ≤ ‖uk0‖
{
‖vk0−Cvk1‖+‖vk0‖

}
≤ ‖uk0‖ · ‖vk0−Cvk1‖+‖uk0‖ · ‖vk0‖ ≤C1 +C3,

where C1 and C3 are the constants occurring in (3.232) and (3.233), respectively, so
that

‖uk0‖ · ‖vk1‖ ≤C5 = (C1 +C3)|C|−1. (3.234)

By the biorthogonality condition we have 〈uk1,vk1〉= 1. Therefore, the second of
inequalities (3.233) can be rewritten in the form

1 = 〈uk1,vk1〉 ≤ ‖uk1‖ · ‖vk1‖ ≤C4,

which implies the inequalities

1
‖uk1‖

≤ ‖vk1‖ ≤
C4

‖uk1‖
.

Substituting the obtained result into (3.234), we obtain ‖uk0‖(‖uk1‖)−1 ≤C5, which
proves inequality (3.231).

Let us now prove the converse statement. To prove that the system (3.230) is
a basis, we show the criterion (3.224) from Theorem 3.151. Since the system of
root functions {uk0(x);uk1(x)} is an unconditional basis, conditions (A1)-(A5) of
Theorem 3.151 hold. To prove the sufficiency of condition (3.231), we show that
relation (3.231) implies conditions (3.232). First inequalities in (3.232) are valid,
since

‖uk0‖ · ‖vk0−Cvk1‖ ≤ ‖uk0‖ · ‖vk0‖+ |C|‖uk0‖ · ‖vk1‖

≤ ‖uk0‖ · ‖vk0‖+ |C|C0‖uk1‖ · ‖vk1‖ ≤C3 + |C|C0C4.

Here we have used relations (3.233), which are valid by the basis property of the
system {uk0(x);uk1(x)}.

In a similar way, one can prove the validity of the second inequalities in (3.232).
We have thus justified (3.224).
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Since all assumptions of Theorem 3.151 are satisfied, it follows that the system
(3.230) is an unconditional basis of the space L2(0,1). The proof of Theorem 3.154
is complete. �

In connection with the assertion of the above theorem, we especially note that
estimates of the form (3.231) (for the case in which the right-hand side does not
contain the spectral parameter in a positive power) are not natural at least in the
case of second-order differential operators if there exist infinitely many associated
functions, and they are given by the formula

Luk1 = λkuk1 +uk0. (3.235)

Moreover, uniform estimates with respect to the index k (see [53, p. 11])

‖uk0‖= O(1)
(

1+
∣∣∣Im√λk

∣∣∣)‖uk1‖

hold for eigen- and associated functions of the second-order differential operator
given by the differential expression (3.211) for all q ∈ L1(0,1).

This estimate completely contradicts inequality (3.231). The obtained contradic-
tion together with Theorem 3.154 lead to the conclusion that if some system of eigen-
and associated functions {uk0(x);uk1(x)} is an unconditional basis, then no system
of eigen- and associated functions of the form {uk0(x);uk1(x)+Cuk0(x)} for C 6= 0
can be an unconditional basis.

It should be noted that to correct such situation in some special cases one some-
times uses another formula for constructing associated functions, which differs from
(3.235).

In [108] and [109] one suggested the following formula for constructing the asso-
ciated functions:

Luk1 = λk
(
uk1 +uk0

)
. (3.236)

If the associated functions of the operator L given by the differential expression
(3.211) are defined with the use of relation (3.236), then one can show that anti-a
priori estimates of the form (3.231) (whose right-hand side does not contain a positive
power of the spectral parameter) are valid, and, consequently, the investigation of the
basis property of eigen- and associated functions of this operator is not related to any
difficulty in the choice of associated functions.

By the above theorems, if there is at least one choice of eigen- and associated
functions given by (3.236) which is an unconditional basis in L2(0,1), then any other
system of eigen- and associated functions given by (3.236) also is an unconditional
basis, since estimates of the form (3.231) are always valid in this case.

Thus, the use of formula (3.236) for constructing the system of eigen- and asso-
ciated functions makes it possible to completely avoid the problem of choosing asso-
ciated functions for the case of the second-order operator given by the differential
expression (3.211). Some of these results have been extended to the case of higher-
order differential operators and for an arbitrary (finite) number of associated func-
tions in each root subspace.

Although in the general case the theory of bases of the systems of root functions
of ordinary differential operators is far from completion, we note two works in which
significant results for a wide class of problems were obtained.
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For the case of the second-order operator with q≡ 0, that is, for the operator

Lu =−u′′(x),

the complete spectral characteristic of all boundary value problems on the interval
(0,1) was given in [70]. In this paper the authors obtained the results on the spectrum
σ(L) of L, on the algebraic multiplicities of the eigenvalues λ ∈ σ(L) and the ascents
of the operators L− λ I, on the boundedness of the family of all finite sums of the
projections associated with L, on the density of the generalised eigenfunctions, and
on the existence of bases consisting of generalised eigenfunctions.

In particular, they obtained either explicit or the asymptotic formulae for the
eigenvalues of L, explicit algebraic multiplicities and ascents, explicit or asymptotic
formulae for the projections; furthermore, they either obtained explicit bounds for
the family of all finite sums of these projections, or they showed that such families
are unbounded.

A survey of results on the spectral theory of differential operators generated by
ordinary differential expressions and also by partial differential expressions of the
elliptic type obtained with the help of the theory of V. A. Ilin, as well as their devel-
opment and subsequent application, was given in [53]. The main focus there is on
the non-self-adjoint case.

A. A. Skalikov in [118] considered the general case of the problem for the n-th
order equation (3.149) with regular boundary conditions of the general form (3.150).
For all cases of the regular boundary conditions he proved that the system of eigen-
and associated functions forms an unconditional basis with brackets (that is, a basis
of subspaces) in L2 and, moreover, no more than two eigenfunctions are combined
into the brackets.

Let us recall that a system {Hk}∞
k=1 of subspaces is called a basis in a Hilbert

space H if any vector f ∈ H is uniquely expanded into a series

f =
∞

∑
k=1

fk, where fk ∈ Hk.

A basis {Hk}∞
k=1 of subspaces is orthogonal if Hk⊥H j for k 6= j. A system {Hk}∞

k=1 is
called a Riesz basis of subspaces if there exists a bounded and boundedly invertible
operator S such that the system {S(Hk)}∞

k=1 is an orthogonal basis of subspaces in
H. If the boundary conditions are regular, but not strengthened regular, then it is not
guaranteed that the system {uk}∞

k=1 of eigenfunctions and associated functions of the
operator L forms a Riesz basis. However, in this case, the Riesz basis property holds
and the subspaces are two-dimensional.

This result was widely used in further works on the spectral theory and was
developed for several other classes of operators. For example, in a recent work [112]
the concepts of regularity and strengthened regularity for a matrix two-dimensional
Dirac operator were introduced. If the boundary conditions are strengthened regu-
lar, then the spectrum of the Dirac operator is asymptotically simple and the system
of eigen- and associate functions is a Riesz basis. If the boundary conditions are
regular, but not strengthened regular, then all eigenvalues of the Dirac operator are
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asymptotically double, and the system formed by the corresponding two-dimensional
root subspaces of the Dirac operator is a Riesz basis of subspaces (Riesz basis with
brackets).

Problems closely related to the results of this section were considered by V. A.
Ilin in [52]. He studied the uniform and absolute convergence and the convergence
in the norm of L2 for biorthogonal expansions of functions in the Sobolev class L2

2p
with respect to a system of eigen- and associated functions of the non-self-adjoint
second-order elliptic operator

Lu =
n

∑
i, j=1

∂

∂xi

(
ai j

∂u
∂x j

)
+

n

∑
i=1

bi
∂u
∂xi

+ c(x)u(x), (3.237)

which is defined in an arbitrary domain Ω ∈ Rn and has smooth coefficients; more-
over, the coefficients ai j(x) are assumed to be real-valued, and all the remaining
coefficients are complex-valued.

The eigen- and associated functions are understood in the generalised sense,
which permits considering arbitrary boundary conditions. Namely, an eigenfunction
of the operator (3.237) corresponding to an eigenvalue λk is defined as an arbitrary
complex-valued function uk0 ∈ L2(Ω) that is not identically zero, belongs to the class
C2(Ω), and is a solution of the equation Luk0 = λkuk0. Similarly, an associated func-
tion of order j = 1,2, . . . corresponding to the same eigenvalue λk and eigenfunction
uk0 is defined as an arbitrary complex-valued function uk j ∈ L2(Ω) that belongs to
the class C2(Ω) and is a solution of the equation Luk j = λkuk j +uk j−1.

Theorem 3.155 (V. A. Ilin [52]) Let {uk(x)} be an arbitrary closed and minimal
system in L2(Ω) consisting of eigen- and associated functions of operator (3.237)
(understood in the above-mentioned generalised sense), and let the following condi-
tions be satisfied:
1. The system {vk(x)} biorthogonal in L2(Ω) to the system {uk(x)} consists of eigen-
and associated functions (understood in the above-mentioned generalised sense) of
the differential operator

L∗v =
n

∑
i, j=1

∂

∂x j

(
ai j

∂v
∂xi

)
+

n

∑
i=1

∂

∂xi

(
bi(x)v

)
+ c(x)v(x), (3.238)

which is adjoint to operator (3.237); more precisely, each function vk(x) belongs
to the class C2(Ω) and is a solution of the equation L∗vk +λ kvk = θ̂kvk+1 inside the
domain Ω, where λ k is the complex conjugate of λk and the number θ̂k is equal either
to zero [in this case, vk(x) is referred to as an eigenfunction of operator (3.238)] or to
unity [in this case, we require that λk = λk+1, and vk(x) is referred to as an associated
function of operator (3.238)].
2. For any compact set K in the domain Ω, there exists a constant C(K) such that the
inequality ‖uk‖L2z(Ω) · ‖vk‖L2(K) ≤C(K) holds for all indices k.
3. The number of associated functions corresponding to each eigenfunction of the
system {uk(x)} is uniformly bounded.
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4. The eigenvalues λk satisfy two inequalities:
(a) |Imλk| ≤M

√
|Reλk|;

(b) N(λ )≡ ∑|λk|≤λ 1≤M1λ α , valid for some α > 0 and for an arbitrary λ > 0;
5. The function f (x) is compactly supported in the domain Ω and belongs to the
Sobolev class L2

2p for some index p. Then the spectral expansion

Sλ (x, f ) = ∑
|λk|≤λ

〈 f ,vk〉uk(x)

converges to f (x) in the metric of L2(Ω) as λ → ∞ for p > α and, in addition,
is convergent absolutely and uniformly on any compact set K in the domain Ω for
p > α + n−1

4 . As usual, here 〈 f ,g〉=
∫
Ω

f (x)g(x)dx.

The ideas of this theorem were developed further in [58], where biorthogonal
decompositions for an arbitrary (not necessarily elliptic) operator were considered.

Let Ω ∈ Rn, and let L be a linear operator with dense domain D(L) in L2(Ω).
We assume that the operator L is invertible and that L−1 is a compact operator. Then
its spectrum can consist only of eigenvalues λk of finite multiplicity with the only
limiting point at infinity. Most linear differential operators have such properties.

We use the new definition of associated functions suggested in [108] and [109]
(see also (3.236)). The eigenfunctions are defined as solutions of the equation
Luk0 = λkuk0, uk0 ∈D(L), and chains uk j of associated functions of uk0 are defined as
solutions of the equations Luk j = λk

(
uk j +uk j−1

)
, uk j ∈D(L), j = 1,2, . . . ,m. Obvi-

ously, the number m of associated functions depends on the index k: m = mk, but to
simplify the notation, we omit this index. We denote by {vk(x)} the system that is
biorthogonal to {uk(x)} and consists of root functions of the adjoint operator L∗.

Theorem 3.156 ([58]) Let {uk} be an arbitrary closed and minimal system in L2(Ω)
that consists of root functions of the operator L understood in the sense of the new
definition of associated functions, let {vk} be its biorthogonal system, and let the
following conditions be satisfied:
1. The number of associated functions uk j corresponding to each eigenfunction uk0
of the system {uk(x)} is uniformly bounded;
2. The inequalities

‖uk j‖ ≤C‖uk j+1‖, ‖vkm− j‖ ≤C‖vkm− j−1‖, j = 0,1, . . . ,m, (3.239)

hold inside chains of eigenfunctions uk0 and vkm and associated functions uk j and
vkm− j, j = 1,2, . . . ,m, of the operators L and L∗;
3. There exists a positive integer p such that

∞

∑
k=1
|λk|−p < ∞,

where λk are eigenvalues of the operator L;
4. For any index k, there exists a constant C > 0 such that the estimate

‖uk‖ · ‖vk‖ ≤C
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holds and, in terms of eigen- and associated functions, this estimate can be rewritten
in the form

‖uk j‖ · ‖vk j‖ ≤C, j = 0,1, . . . ,m.

Then the relation

f (x) =
∞

∑
k=1
〈 f ,vk〉uk(x)

is satisfied for any function f ∈ D(Lp) in the sense of the norm of the space L2(Ω).

Note that condition (3.239) is not a restrictive requirement. As is shown in The-
orem 3.154, such conditions between eigenfunctions and associated functions are
natural for the basis property of systems of root functions.

The assertions of Theorems 3.155 and 3.156 naturally lead to the introduction of
the following notion.

An arbitrary closed and minimal in L2(Ω) system of root functions {uk(x)} of the
operator L is referred to as an almost basis in L2(Ω) if there exists a set W ⊂ L2(Ω),
everywhere dense in L2(Ω), such that the biorthogonal expansion ∑

∞
k=1〈 f ,vk〉uk(x)

of an arbitrary function f ∈W (where {vk(x)} is the biorthogonal system of {uk(x)}),
converges to the function f in the sense of the metric of the space L2(Ω).

For example, the system of root functions satisfying the assumptions of Theorem
3.155 is an almost basis in the space L2(Ω).

Corollary 3.157 Let the assumptions of Theorem 3.156 hold. Then root functions of
the operator L are an almost basis in the space L2(Ω).

Indeed, the statement follows from the density of the domain D(Lp) in L2(Ω). �

In conclusion, we note that studies of the questions about bases and convergence
of biorthogonal (spectral) expansions for various classes of differential operators are
actively continuing.



Chapter 4
Symmetric decreasing rearrangements and
applications

Historically, in the celebrated book Inequalities by Hardy, Littlewood and Pólya
[47], the systematic analysis of symmetric decreasing rearrangements of nonnega-
tive measurable functions was given. Since this foundational book, there have been
many developments dedicated to symmetrizations of functions and their applications.
Nowadays, the methods and techniques of symmetric decreasing rearrangements of
functions and other related symmetrizations have become one of the important tools
in analysis and its applications.

Compared to previous chapters, in this chapter we present the material at an
advanced level, in the spirit of [75], [26] and [122]. We review backgrounds on sym-
metric decreasing rearrangements of functions and then give some of their applica-
tions. We have also reviewed a part of the work [27], which has important applica-
tions in astrophysics.

The structure of the present chapter is as follows. Roughly speaking, the sym-
metric decreasing rearrangement u∗ of a positive measurable function u is a lower
semicontinuous function such that u∗ is equimeasurable with u. To present a formal
definition of u∗ we follow the layer-cake decomposition approach. The definition
will be given with concrete examples of elementary functions and some of their main
properties, for instance, the Lp-norm preserving and Lp-distance decreasing proper-
ties are discussed.

It should be noted that we have chosen a simpler definition of the symmetric
decreasing rearrangement which, although sometimes less general, is better suited for
our further considerations and is useful in various applications. Then we present and
prove several fundamental rearrangement inequalities, namely the Hardy-Littlewood
inequality, the Riesz inequality, the Pólya-Szegő inequality and the Talenti inequali-
ties. We first prove the Hardy-Littlewood inequality by using the layer-cake decom-
position and Fubini’s theorem. Then we give the proof of the Pólya-Szegő theorem
by using the co-area formula and Jensen’s inequality. As usual, the Riesz inequality
is proved by induction over the dimension. Finally, we prove the Talenti inequali-
ties which are also called Talenti’s comparison principles for the Laplacian and the
p-Laplacian.

Consequently, we discuss the compactness properties of symmetric decreasing
rearrangements of minimising sequences arising in various problems in mathemat-
ical physics. We state and give the complete proof of the Burchard-Guo theorem
on compactness via symmetric decreasing rearrangements, which has interesting

249
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applications in the dynamical stability analysis of gaseous stars and stability of sym-
metric steady states in galactic dynamics. Then we list some applications of symmet-
ric decreasing rearrangement in mathematical physics. First, we give an example of
applications to the Brownian motion, then an application to the theory of sound.

It is proved that the deepest bass note is produced by the circular drum among
all drums of the same area (as the circular drum). Moreover, we show that among
all bodies of a given volume in the three-dimensional space with constant density,
the ball has a gravitational field of the highest energy. We also give an application of
the symmetric decreasing rearrangement in dynamical stability problems of gaseous
stars. Finally, we discuss very briefly the stability of a symmetric steady state in
galactic dynamics via the symmetric decreasing rearrangement of functions.

4.1 Symmetric decreasing rearrangements
In this section the symmetric rearrangement of sets and the symmetric decreasing

rearrangement of functions are defined and some properties are noted. We present
some examples and applications of symmetric decreasing rearrangements to illustrate
the definitions and techniques.

4.1.1 Definitions and examples

Let Ω be a measurable (bounded) set in Rd . An open ball (centred at 0) Ω∗ is
called a symmetric rearrangement (or just symmetrization) of the set Ω if

|Ω∗|= |Ω|

and
Ω
∗ =

{
x ∈ Rd : σd |x|d < |Ω|

}
,

where σd = 2π
d
2

Γ( d
2 )

is the surface area of the unit ball of the d-dimensional Euclidean

space. Here and in the sequel we denote by |Ω| the volume (the Lebesgue measure)
of the set Ω.

Let u be a nonnegative measurable function vanishing at infinity in the sense that
all of its positive level sets have a finite measure, that is,

Vol({x : u(x)> t})< ∞, (∀t > 0).

It is easy to see that any nonnegative function u≥ 0 can be represented in terms
of its level sets in the following way

u(x) =
∞∫

0

χ{u(x)>t}dt, (4.1)
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where χ is the characteristic function. This representation is also called the layer-
cake decomposition.

We now give the central definition for this chapter.

Definition 4.1 Let u≥ 0 be a nonnegative measurable function vanishing at infinity.
Then the function

u∗(x) :=
∞∫

0

χ{u(x)>t}∗dt

is called the symmetric decreasing rearrangement of u.

We note that u∗ is a lower semicontinuous function since its level sets are open.
Moreover, it is uniquely determined by the distribution function

µu(t) := Vol{x : u(x)> t} .

By Definition 4.1, the function u∗ is nonnegative and equimeasurable with u, that is,
the corresponding level sets of these functions have the same volume:

µu(t) = µu∗(t), (∀t > 0). (4.2)

From this and (4.1) we also have

M(u(x)) = M(u∗(x)), (4.3)

for any non-decreasing function M : R+→ R+.

Example 4.2 Let Ω = [−1,3] and let

u(x) =
{

x+1, x ∈ [−1,2],
9−3x, x ∈ [2,3].

Then the symmetric rearrangement of the set [−1,3] is [−2,2] and the symmetric
decreasing rearrangement of u is

u∗(x) = 3− 3
2
|x|, in [−2,2].

Example 4.3 Let Ω = [−3,4] and let

u(x) =


−x−3, x ∈ [−3,−1],
−x+1, x ∈ [−1,0],

1, x ∈ [0,3],
−x+4, x ∈ [3,4].

Then the symmetric rearrangement of the set [−3,4] is [−3.5,3.5] and the symmetric
decreasing rearrangement of u is



252 Spectral geometry of partial differential operators

u∗(x) =



x+3.5, x ∈ [−3.5,−2.5],
1, x ∈ [−2.5,−1],

x+2, x ∈ [−1,0],
−x+2, x ∈ [0,1],

1, x ∈ [1,2.5],
−x+3.5, x ∈ [2.5,3.5].

Example 4.4 Let Ω = [−2,2] and consider the function

u(x) = exp−|x|, x ∈ [−2,2].

Then the symmetric decreasing rearrangement of u is

u∗(x) = exp−|x|, x ∈ [−2,2].

In this case the function u is equal to its symmetric decreasing rearrangement,
because this function is itself a symmetric decreasing function on a symmetric
domain.

4.1.2 Some properties

Let us discuss some important well-known properties of the symmetric decreas-
ing rearrangements.

Lemma 4.5 (Order-preserving) Let u and v be nonnegative measurable functions. If

u(x)≤ v(x), ∀x ∈ Rd ,

then
u∗(x)≤ v∗(x), ∀x ∈ Rd .

To show this, by using Definition 4.1 and u(x)≤ v(x), ∀x∈Rd , we simply obtain

u∗(x) =
∞∫

0

χ{u(x)>t}∗dt ≤
∞∫

0

χ{v(x)>t}∗dt = v∗(x), ∀x ∈ Rd ,

which proves Lemma 4.5. �

Lemma 4.6 (Lp-norm preserving) For any 1≤ p≤ ∞ we have

‖u‖Lp(Ω) = ‖u∗‖Lp(Ω∗).

for any nonnegative measurable function u in Lp(Ω).

To prove this (let us say, in the case p= 2), by using the layer-cake decomposition
(4.1), Fubini’s theorem, and (4.2), we calculate

∫
Ω

|u(x)|2dx =
∫
Ω

∞∫
0

χ{u2(x)>t}dtdx
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=

∞∫
0

Vol
({

u2(x)> t
})

dt =
∞∫

0

Vol({u(x)> s})2sds

=

∞∫
0

µu(s)2sds =
∞∫

0

µu∗(s)2sds

=

∞∫
0

Vol({u∗(x)> s})2sds =
∞∫

0

Vol({u∗(x)2 > t})dt

=
∫
Ω

∞∫
0

χ{u∗2 (x)>t}dtdx =
∫
Ω

|u∗(x)|2dx.

Note that following exactly the same proof (using p instead of 2), we prove the same
preserving statement for the Lp-norm with 1≤ p≤ ∞. Lemma 4.6 is proved. �

Lemma 4.7 (Non-expansivity) Let H :R→R be a nonnegative convex function with
H(0) = 0. Then for any nonnegative functions u and v on Rd we have∫

Rd
H(u∗(x)− v∗(x))dx≤

∫
Rd

H(u(x)− v(x))dx. (4.4)

To show the statement, we will use the following consequence of the Hardy-
Littlewood inequality (see Theorem 4.9):∫

Rd
u(x)χ{v(x)≤t}dx≤

∫
Rd

u∗(x)χ{v∗(x)≤t}dx. (4.5)

Let us write
H = H−+H+,

where
H−(x) = 0 for x≥ 0 and H−(x) = H(x) for x≤ 0,

H+(x) = 0 for x≤ 0 and H+(x) = H(x) for x≥ 0.

As H− and H+ are convex functions, we can prove Lemma 4.7 for H− and H+ sepa-
rately.

Since H+ is convex, by the fundamental lemma of calculus, one has

H+(x) =
∫ x

0
H
′
+(t)dt,

and H
′
+(x) is a nondecreasing function of x. Thus, we get

−H+(u(x)− v(x)) =
∫ u(x)

v(x)
H
′
+(u(x)− t)dt =

∫
∞

0
H
′
+(u(x)− t)χ{v≤t}(x)dt. (4.6)
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Integrating over the whole Rd we get∫
Rd

H+(u(x)− v(x))dx =−
∫
Rd

∫
∞

0
H
′
+(u(x)− t)χ{v≤t}(x)dtdx.

By using Fubini’s theorem we can change the order of integration for s and x in the
right-hand side, i.e.∫

Rd
H+(u(x)− v(x))dx =−

∫
∞

0

∫
Rd

H
′
+(u(x)− t)χ{v≤t}(x)dxdt.

Now combining inequality (4.5) and property (4.3) we obtain∫
Rd

H+(u(x)− v(x))dx =−
∫

∞

0

∫
Rd

H
′
+(u(x)− t)χ{v≤t}(x)dxdt

≥−
∫

∞

0

∫
Rd

H
′
+(u

∗(x)− t)χ{v∗≤t}(x)dxdt =
∫
Rd

H+(u∗(x)− v∗(x))dx,

that is, ∫
Rd

H+(u(x)− v(x))dx≥
∫
Rd

H+(u∗(x)− v∗(x))dx. (4.7)

A similar calculation for H− gives∫
Rd

H−(u(x)− v(x))dx≥
∫
Rd

H−(u∗(x)− v∗(x))dx. (4.8)

These inequalities yield (4.4), so that Lemma 4.7 is proved. �

Corollary 4.8 (Lp-distance decreasing) Let 1 ≤ p ≤ ∞. Then for any two nonnega-
tive measurable functions u and v on Rd we have

‖u− v‖Lp(Rd) ≥ ‖u
∗− v∗‖Lp(Rd). (4.9)

To see this for p < ∞ (the case p = ∞ is a modification of it), we take the nonneg-
ative convex function H(t) = |t|p with H(0) = 0, and apply Lemma 4.7. This gives∫

Rd
|u∗(x)− v∗(x)|pdx≤

∫
Rd
|u(x)− v(x)|pdx, (4.10)

proving Corollary 4.8. �

4.2 Basic inequalities
The goal of this section is to discuss fundamental inequalities in the symmetric

decreasing rearrangement theory. This section is based on the online lecture note of
Burchard [26]. We believe that the shortest proofs of these inequalities are given in
that note and, for the sake of completeness, below we recapture some of these short
proofs of the following well-known results.
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4.2.1 Hardy-Littlewood inequality

The following is a fundamental result showing how the symmetric decreasing
rearrangements behave with respect to the inner product.

Theorem 4.9 (Hardy-Littlewood inequality) Let u and v be nonnegative measurable
functions, which vanish as |x| → ∞, and let u∗ and v∗ be their symmetric decreasing
rearrangements. If

∫
Rd u∗v∗ < ∞ is finite, then∫

Rd
u(x)v(x)dx≤

∫
Rd

u∗(x)v∗(x)dx. (4.11)

To show this, we observe that for any two measurable sets X and Y of finite
volume we have the inequality

Vol(X∗∩Y ∗) = min{Vol(X∗),Vol(Y ∗)} ≥ Vol(X ∩Y ), (4.12)

where X∗ and Y ∗ are the balls (centred at 0) which are the rearrangements of X and Y ,
respectively. By the layer-cake decomposition (4.1), the Fubini theorem and (4.12),
we get ∫

Rd
u(x)v(x)dx =

∫
Rd

u(x)
∫

∞

0
χ{v(x)>t}dtdx

=
∫
Rd

∫
∞

0
χ{u(x)>s}

∫
∞

0
χ{v(x)>t}dsdtdx

=
∫

∞

0

∫
∞

0
Vol({u > s}∩{v > t})dsdt

≤
∫

∞

0

∫
∞

0
Vol({u∗ > s}∩{v∗ > t})dsdt

=
∫
Rd

∫
∞

0
χ{u∗(x)>s}

∫
∞

0
χ{v∗(x)>t}dsdtdx

=
∫
Rd

u∗(x)v∗(x)dx,

which proves the Hardy-Littlewood inequality. �

4.2.2 Riesz inequality

The Riesz inequality is another important rearrangement inequality with a wide
range of applications; for example, the Riesz inequality plays a decisive role in proofs
of embedding theorems. For the first time in the one-dimensional case the inequal-
ity was proved by F. Riesz in [96]. Later in [119], S. L. Sobolev generalised this
inequality to the multidimensional case by using induction over the dimension. Note
that Hardy, Littlewood and Pólya gave a different proof in their book [47].

Theorem 4.10 (Riesz inequality) For any nonnegative measurable functions u,v,ε :
Rd → R+ vanishing as |x| → ∞, we have∫

Rd

∫
Rd

u(x)ε(x− y)v(y)dxdy≤
∫
Rd

∫
Rd

u∗(x)ε∗(x− y)v∗(y)dxdy. (4.13)
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The inequality (4.13) is understood to hold for those u,v and ε for which the
right-hand side in (4.13) is finite.

Let us now prove the Riesz inequality (4.13). Let us first prove that∫
X

χY ∗χZ ≤
∫

X∗

χY ∗ ∗χZ∗ , (4.14)

where X ,Y,Z ⊂ Rd are measurable sets of finite volume and χ is the characteristic
function of a corresponding set. After using the layer cake representation (4.1) for
nonnegative measurable functions u,v and ε one can easily see that showing (4.14) is
sufficient to prove inequality (4.13). Let us introduce the following notation for the
left-hand side of (4.14):

L(X ,Y,Z) :=
∫
X

χY ∗χZ .

To prove inequality (4.14) we use induction over the Euclidian dimensions.
The case d = 1. To proceed in the one-dimensional case we will use the

Brascamp-Lieb-Luttinger sliding method. Let X ,Y and Z be intervals such that

X = x0 +X∗, Y = y0 +Y ∗ and Z = z0 +Z∗.

We will employ the following family of the symmetric rearrangements:

X(t) = x0e−t +X∗, Y (t) = y0e−t +Y ∗ and Z(t) = z0e−t +Z∗,

so that X(0) = X and X(t)→ X∗ as t→ ∞. For these families we have

L(X(t),Y (t),Z(t)) =
∫

(x0−y0−z0)e−t+X∗

χY ∗ ∗χZ∗ .

This integral can be computed in an explicit form and it is a symmetric decreasing
function. Therefore, the value L(X(t),Y (t),Z(t)) is nondecreasing in t, proving the
case of the sets being the intervals.

Now consider the case

X =
m⋃

k=1

Xk,

that is, when X is the union of m (a finite number) intervals Xk. Then we replace
any two intervals such that their closures intersect by their union, so that the distance
between any two intervals can be assumed to be positive. Let us denote by t1 the
point when the sub-interval closures for the family Xk(t) first intersect, and set

X(t) =
m⋃

k=1

Xk(t), t ≤ t1.

At t1, we combine the collided intervals, and we keep going with the same pro-
cedure for the new set of intervals. We follow the same scheme for Y and Z. It can be
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shown that the functional L increases with t. Thus, this implies the desired inequality
for unions of intervals. For general sets, the inequality is proved by approximation,
using that L is continuous with respect to symmetric differences, and that the sym-
metric decreasing rearrangement can only decrease the symmetric difference.

Induction. Let us assume that the Riesz inequality holds in dimensions from 1
to d − 1. Let X ,Y,Z ⊂ Rd . For any x̂ ∈ Rd−1, let us denote by Xx̂, Yŷ and Zẑ the
intersection of X , Y and Z with the line through (x̂,0), (ŷ,0) and (ẑ,0), respectively.
By the Fubini theorem we obtain

L(X ,Y,Z) =
∫

Rd−1

∫
Rd−1

L(Xx̂,Yŷ,Zx̂−ŷ)dx̂dŷ.

We know from the case d = 1 of the Riesz inequality that L increases under the
symmetric decreasing rearrangement. Moreover, by the induction hypothesis the d−
1-dimensional case of the inequality implies that L increases under the symmetric
decreasing rearrangement. It is clear that L is invariant under simultaneous rotations
of X ,Y and Z. Thus, its continuity implies

L(X ,Y,Z)≤ L(X∗,Y ∗,Z∗),

proving the general case of the Riesz inequality. �

4.2.3 Pólya-Szegő inequality

The following inequality comes from a more general inequality for functions of
the Sobolev class Lp

1(R
d) with 1 ≤ p ≤ ∞ , from [90]. We are mostly interested in

the case p = 2 which we will use later in the next chapter.

Theorem 4.11 (Pólya-Szegő inequality) Let 1 ≤ p ≤ ∞. Then for any u ∈ Lp
1(R

d)
we have

‖∇u‖Lp(Rd) ≥ ‖∇u∗‖Lp(Rd).

Let us outline the proof of this theorem in the case p = 2 as it can be modified
to also cover the whole range of 1 ≤ p ≤ ∞. We will rely on the following co-area
formula (see e.g. [75]):

∫
Rd
|∇u(x)|2dx =

∞∫
0

∫
u−1(t)

|∇u|dσdt,

where dσ is the integration over the d−1-dimensional level sets.
Let us first consider the integrand in the right-hand side. Since s 7→ s−1 is convex,

by the Jensen inequality we obtain that

∫
u−1(t)

|∇u| dσ

Per({u > t})
≥

 ∫
u−1(t)

|∇u|−1 dσ

Per({u > t})


−1

, (4.15)
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where Per denotes the surface area of a set. Moreover, we have

∫ t2

t1

∫
u−1(t)

|∇u|−1dσdt = Vol({x : t1 < u(x)< t2, |∇u(x)| 6= 0}), (4.16)

for every semi-interval (t1, t2]. The volume of the set of critical points decreases under
the symmetric-decreasing rearrangement, so the right-hand side of (4.16) increases.
From the left-hand side of (4.16) for u and u∗ we get∫

u−1(t)

|∇u|−1dσ ≤
∫

(u∗)−1(t)

|∇u∗|−1dσ ,

for almost every t > 0. By using this and replacing u with u∗in (4.15) we arrive at

∫
u−1(t)

|∇u|dσ ≥ Per({u > t})2

 ∫
u−1(t)

|∇u|−1dσ


−1

≥ Per({u∗ > t})2

 ∫
(u∗)−1(t)

|∇u∗|−1dσ


−1

=
∫

(u∗)−1(t)

|∇u∗|dσ ,

where we have used the following isoperimetric inequality (see, e.g. [2]):

Per({u > t})≥ Per({u∗ > t}). (4.17)

Integrating over t we obtain the desired result, finishing the proof of the Pólya-Szegő
inequality. �

4.2.4 Talenti’s comparison principles

In this section we prove the celebrated Talenti comparison principle ([125]),
which states that the symmetric decreasing rearrangement (Schwarz rearrangement)
of the Newtonian potential of a charge distribution is pointwise smaller than the
potential resulting from symmetrizing the charge distribution itself. Talenti’s com-
parison principle can be also extended to the Dirichlet p-Laplacian and the Dirichlet
uniformly elliptic boundary value problems.

Theorem 4.12 (Talenti’s inequality) Consider a smooth nonnegative function f with
supp f ⊂ Ω ⊂ Rd , d ≥ 3, for a bounded set Ω, and its symmetric decreasing rear-
rangement f ∗. If solutions u and v of

−∆u = f , −∆v = f ∗,

vanish as |x| → ∞, then
u∗(x)≤ v(x), ∀x ∈ Rd .
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Note that u and v exist, and are uniquely determined by the equation, i.e.

u(x) =
∫

Ω

εd(x− y) f (y)dy

and
v(x) =

∫
B

εd(x− y) f ∗(y)dy,

where εd(·) is the fundamental solution of the Laplacian, that is,

εd(x− y) =
1

(d−2)σd |x− y|d−2 , d ≥ 3,

σd is the surface area of the d-dimensional unit ball, and B is the ball centred at the
origin with |B| = |Ω|, where | · | is the Lebesgue measure in Rd . They are nonneg-
ative since the fundamental solution is nonnegative. The inequality also holds for
nonnegative measurable functions f vanishing as |x| → ∞.

Let us outline the proof of this theorem. Consider the distribution function of u
given by

µ(t) = Vol{x : u(x)> t}.

First we will estimate this distribution function in terms of f ∗. It is clear that µ is
differentiable at t > 0 almost everywhere. Equality (4.16) yields

−µ
′(t)≥

∫
{u=t}

|∇u|−1dσ ,

for almost every t > 0. Restating the integrand on the right-hand side as

|∇u(x)|−1 = sup
τ>0
{2τ− τ

2|∇u(x)|}, (4.18)

we have
−µ
′(t)≥ sup

τ>0
{2τ

∫
{u=t}

1dσ − τ
2
∫
{u=t}

|∇u|dσ}. (4.19)

The first term on the right-hand side satisfies∫
{u=t}

1dσ = Per({u > t})≥ Per({u∗ > t}),

where we have used (4.17).
From the Gauss divergence theorem we obtain the following equality for the

second term ∫
{u=t}

|∇u|dσ =−
∫
{u=t}

∇u ·Ndσ =
∫
{u>t}

−∆u(y)dy,
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where N is the exterior normal to the level set {u = t}. From the Poisson equation
−∆u = f , we get ∫

{u=t}

|∇u|dσ =
∫
{u>t}

f (y)dy =
∫

{u∗>t}

f ∗dy.

By using these inequalities and minimising over τ , from (4.19) we obtain

−µ
′(t)≥ Per({u∗ > t})2

 ∫
σd |y|d<µ(t)

f ∗(y)dy


−1

.

We also have

−µ
′(t)

∫
σd |y|d<µ(t)

f ∗(y)dy≥ (dσd)
2
(

µ(t)
σd

)2− 2
d
.

To represent the above inequality in terms of u∗, we set u∗(x) = η(|x|) for some
non-increasing function η , and use a new variable t = η(r). By definition we have
µ ◦η(r) = σdrd . It implies that µ ′(t)η ′(r) = dσdrd−1. Therefore, we get

−η
′(r)≤ (dσdrd−1)−1

∫
|y|<r

f ∗(y)dy. (4.20)

Now integrating over r and using that η vanishes at infinity, we obtain

η
′(r)≤ (dσd)

−1
∞∫

r

∫
|y|<s

f ∗(y)s−d+1dyds.

All the above inequalities will be equalities if the function f is a symmetric decreas-
ing function. By using the Fubini theorem and computing the integral over s in an
explicit form, we arrive at

u∗(x)≤ v(x) =
1

d(d−2)σd

∫
Rd

f ∗(y)(max{|x|, |y|})−d+2dy, ∀x ∈ Rd .

This expression of v is equivalent to the ordinary representation of v in terms of the
Newton potential, finishing the proof of Talenti’s inequality. �

Talenti’s comparison principle can be extended to the Dirichlet boundary value
problems for uniformly elliptic second-order differential operators and for the p-
Laplacian (see, e.g. of [26, Section 4.3] as well as [125] and [126]).

Theorem 4.13 (Talenti’s comparison principle for the Dirichlet p-Laplacian) Let
1< p<∞. Consider a (smooth) nonnegative function f in a smooth bounded domain
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Ω⊂Rd , d≥ 1, and its symmetric decreasing rearrangement f ∗. Then solutions u and
v of

−∆pu = f in Ω, u|∂Ω = 0,

and
−∆pv = f ∗ in B, v|∂B = 0,

satisfy
u∗(x)≤ v(x), ∀x ∈ B.

Here B is the ball centred at the origin with |B|= |Ω|, and | · | is the Lebesgue measure
in Rd .

4.3 Properties of symmetric rearrangement sequences
In this section we study the compactness properties of minimising sequences of

symmetric decreasing rearrangements. We formulate the Burchard-Guo theorem [27]
on compactness via symmetric decreasing rearrangements. Some of its interesting
applications will be considered in the following sections.

4.3.1 Burchard-Guo theorem

Let us consider the following energy integral

I(u) =
∫
Rd

∫
Rd

u(x)K(x− y)u(y)dxdy, (4.21)

where the positive kernel K ∈ L1
loc(Rd) is a symmetric-decreasing function in Rd .

Using the Riesz inequality we have

I(u) =
∫
Rd

∫
Rd

u(x)K(x− y)u(y)dxdy

≤
∫
Rd

∫
Rd

u∗(x)K∗(x− y)u∗(y)dxdy = I(u∗). (4.22)

As in the previous sections u is a nonnegative measurable function which vanishes
as |x| → ∞, and its symmetric-decreasing rearrangement is denoted by u∗. Let F :
R+→ R+ be an increasing convex function satisfying F(0) = 0 and let

J(u) :=
∫
Rd

F(|∇u|)dx. (4.23)

From Lemma 4.7 and the Pólya-Szegő inequality we obtain

J(u) =
∫
Rd

F(|∇u|)dx≥
∫
Rd

F(|∇u∗|)dx = J(u∗), (4.24)
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for all nonnegative measurable function u on Rd vanishing at infinity.
Let us assume that the kernel K is a positive strictly symmetric decreasing func-

tion and that F is a nonnegative strictly convex function which satisfies F(0) = 0.
By the continuity of I with respect to the norm defined by the positive definite

quadratic form I, we obtain that

lim
n→∞

I(u∗n− v) = 0 (4.25)

implies
lim
n→∞

I(un)≤ lim
n→∞

I(u∗n) = I(v).

In this section we denote by un the sequence of nonnegative functions which vanishes
as |x| → ∞, and v is a symmetric decreasing function.

Similarly, by using (4.24) and the Fatou lemma, from

lim
n→∞

J(u∗n− v) = 0, (4.26)

it follows that

limn→∞J(un)≥ limn→∞J(u∗n)≥ J(v).

Now setting un ≡ v and v = u∗, inequalities (4.22) and (4.24) are verified. Thus, both
(4.22) and (4.24) are preserved under taking limits.

The following theorem shows that from (4.25) one obtains that the sequence un
converges to v modulo translations.

Theorem 4.14 (Burchard-Guo theorem) Let the sequence of rearrangements u∗n con-
verge to v in the sense that

lim
n→∞

I(u∗n− v) = 0. (4.27)

If
lim
n→∞

I(un) = I(v), (4.28)

then there exists a sequence of translations Tn in Rd such that

lim
n→∞

I(Tnun− v) = 0. (4.29)

In the proof of the Burchard-Guo theorem it is useful to represent a function u as
a sum of levels, u = ub +ua, where

ub = [min{u,u∗(R−1)}−u∗(R)]+ (4.30)

is finite, and
ua = u−ub = [min{u,u∗(R)}+[u−u∗(R−1)]+ (4.31)

is zero for large enough R. Here, as usual, the lower index + means that we get only
its positive value, that is, if the value in the bracket is negative then we get zero as
a result. Clearly, in the case of equimeasurability of u and v it follows that ub and
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ua are equimeasurable to vb and va, respectively. It is easy to see that the expansion
commutes with translations and symmetric decreasing rearrangements.

We will prove Theorem 4.14 in the next section, and now we collect a number of
technical lemmas that will be useful in its proof.

Lemma 4.15 For fixed R > 1 and I0,J0 > 0 as in (4.21) and (4.23), respectively,
define the middle level ub by (4.30) , i.e.

ub = [min{u,u∗(R−1)}−u∗(R)]+,

where u is a nonnegative measurable function which vanishes as |x| → ∞.
Then we can always find constants C1(R, I0) and C2(R,J0) such that

‖ub‖∞ ≤C1(R, I0), (4.32)

for any u such that I(u∗)≤ I0, and

‖ub‖∞ ≤C2(R,J0), (4.33)

for any u such that J(u∗)≤ J0.

Let us prove this lemma. As ‖ub‖∞ grows with R, it is sufficient to show Lemma
4.15 for large R. First, using the fact that K and u∗ are symmetric decreasing, we get

I(u∗)≥
∫ ∫
|x|,|y|<R−1

u∗(x)K(x− y)u∗(y)dxdy

≥ K(2R−1)(dσdR−du∗(R−1))2 ≥ K(2R−1)(dσdR−d‖ub‖∞)
2,

where σd = 2π
d
2

Γ( d
2 )

is the surface area of the unit ball in Rd and ‖ub‖∞ ≤ u(R−1) has

been used. We get (4.32) as K(2R−1)> 0 for large enough R by assumption. To prove
(4.33), we define a function Q on R+ such that |∇u∗(x)|= Q(|x|), and by using polar
coordinates we have

J(u∗)≥
R∫

R−1

F(Q(r))dσdrd−1dr

≥ dσdR1−d(R−R−1)F

 R∫
R−1

Q(r)
dr

R−R−1

≥ dσdR2−dF
(
‖ub‖∞

R

)
.

In the second step, we bound rd−1 from below by R1−d and then use the Jensen
inequality. Since tF(x/t) is non-increasing in t, R−R−1 can be replaced by R in the
last step. Now (4.33) follows since F is strictly increasing, so that Lemma 4.15 is
proved. �
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Lemma 4.16 Let us fix R > 1 and expand un,u∗n and v into levels as in (4.30)-(4.31).
If

lim
n→∞

J(u∗n− v) = 0, (4.34)

then
lim
n→∞

J(u∗bn − vb) = 0 and lim
n→∞

J(u∗an − va) = 0. (4.35)

If, additionally,
lim
n→∞

J(un) = J(v), (4.36)

then
lim
n→∞

J(ub
n) = J(vb) and lim

n→∞
J(ua

n) = J(va). (4.37)

Let us prove this lemma. By

∇u∗b(x) = ∇u∗(x)1R−1≤|x|≤R,

the condition (4.34) can be rewritten as

lim
n→∞
{J(u∗bn − vb)+ J(u∗an − va)}= 0,

which implies that both terms approach zero as in (4.35). To prove (4.37), by using

∇ub(x) = ∇u(x)1u∗(R)≤u(x)≤u∗(R−1),

the condition (4.36) can be rewritten as

lim
n→∞
{J(ub

n− J(vb))+ J(ua
n− J(va))}= 0.

The (4.37) follows since the limit of each term is nonnegative by (4.26). The similar
claim holds for the convolution functional I, so that Lemma 4.16 is proved. �

Lemma 4.17 Let us fix R> 1, and expand un, u∗n and v into levels as in (4.30)-(4.31).
If

lim
n→∞

(u∗n− v) = 0, (4.38)

then
lim
n→∞

I(u∗bn − vb) = 0 and lim
n→∞

I(u∗an − va) = 0. (4.39)

If, additionally,
lim
n→∞

I(un) = I(v), (4.40)

then

lim
n→∞

I(ub
n) = I(vb) and lim

n→∞
I(ua

n) = I(va). (4.41)

To prove Lemma 4.17 we need some preliminary estimates:
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Lemma 4.18 We have

I(v)≥ K(2R)

 ∫
|x|≤R

v(x)dx


2

(4.42)

and

I(v)≥

 ∫
|x|≥2R

v(x)K(|x|+R)dx


 ∫
|x|<R

v(x)dx

 (4.43)

for any R > 0. In addition, for every h ∈ L1(Rd) supported in {x : |x| ≤ R0}, and
each ε > 0 there exists R > 0 depending only on K,R0, and ε such that∫

|x|≥R

v(x)K ∗h(x)dx≤ ε‖h‖1I(v)1/2. (4.44)

Let us prove Lemma 4.18. It is clear that (4.42)-(4.43) are valid since K and v are
nonnegative and symmetric decreasing functions. To establish the weak remainder
estimate in (4.25), we consider two cases. If

‖v‖L1 ≤
(3/2)d−1

ε
I(v)1/2,

then we obtain for R > R0∫
|x|≥R

v(x)|K ∗h(x)|dx≤ ‖h‖L1‖v‖L1K(R−R0)

≤ ‖h‖L1
(3/2)d−1K(R−R0)

ε
I(v)1/2,

and (4.25) follows by taking R sufficiently large such that K(R−R0)(3/2)d−1 ≤ ε2

If ∫
|x|≥R1

v(x)dx >
(3/2)d−1

ε
I(v)1/2,

for R1 ≥ R0, then we have for R≥ 4R1, that∫
|x|≥R

v(x)|K ∗h(x)|dx≤ ‖h‖L1

∫
|x|≥4R1

v(x)K(|x|−R1)dx.

On the other hand, we have∫
|x|≥4R1

v(x)K(|x|−R1)dx≤
∫

|x|≥2R1

v(x)K(|x|+R1)

(
1+

2R1

|x|

)d−1

dx
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≤ (3/2)d−1 I(v)∫
|x|≤R1

v(x)dx
≤ εI(v)1/2.

In the first step, v(x) ≤ v(|x|− 2R1) is estimated using the polar coordinates. In the
second step, |x|+2R1 ≤ (3/2)|x| is used and (4.43). Plugging the last inequality into
the preceding equation again gives (4.44). Lemma 4.18 is proved. �

Lemma 4.19 For some R > 1 and a sequence of nonnegative symmetric decreasing
functions vn on Rd vanishing at infinity we use the decompositions (4.30)-(4.31). If

lim
n→∞

I(vn− v) = 0, (4.45)

then
lim
n→∞

I(vb
n− vb) = 0 and lim

n→∞
I(va

n− va) = 0. (4.46)

Let us prove Lemma 4.19. First we need to show that a subsequence of vn
approaches v pointwise a. e.; then (4.46) is established by applying the Fatou lemma
to ∫

Rd

∫
Rd
{[vn(x)+ v(x)][vn(y)+ v(y)]

−[v]n(x)− v](x)][v]n(y)− v](y)]}K(x− y)dxdy,

for ]= b,a. Now let us show pointwise convergence. It is clear that

lim
n→∞

I(vn) = I(v)

by (4.45). By the Cauchy-Schwarz inequality, the assumption (4.45) implies

lim
n→∞

∫
Rd

∫
Rd

vn(x)K(x− y)h(y)dxdy =
∫
Rd

∫
Rd

v(x)K(x− y)h(y)dxdy,

for all h with I(h) < ∞. It is the same as saying that K ∗ vn converges to K ∗ v in the
distribution sense. By (4.42) we see that the sequence vn is uniformly bounded in
L1

loc. Since all functions vn are symmetric decreasing, a subsequence (still denoted
by vn) can be taken such that

vn ⇀ gδ0 + v0

in the distribution sense, and
vn→ v0

pointwise a. e. Here g≥ 0,δ0 is the Dirac distribution at 0, and v0 ≥ 0 is a symmetric
decreasing function satisfying I(v0)< ∞. We need to prove that g = 0. To do it, let us
fix a function h ∈C∞

0 . As supn≥1 I(vn) < ∞, estimate (4.44) in Lemma 4.18 implies
that for each ε > 0 there exists an R > 0 such that

sup
n≥1

∫
|x|≥R

vn(x)|K ∗h(x)|dx≤ ε.
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This yields ∫
Rd
(K ∗ v)h = lim

n→∞

∫
Rd

vn(x)K ∗h(x)dx

= lim
R→∞

lim
n→∞

∫
|x|≤R

vn(x)K ∗h(x)dx =
∫
Rd

K ∗ (gδ0 + v0)(x)h(x)dx,

where we have used that K ∗ vn and vn converge in the sense of distributions. As h is
arbitrary, finally, we arrive at

K ∗ (gδ0 + v0) = K ∗ v,

which implies that gδ0+v0 = g by the positivity of K, and the pointwise convergence
also follows. Lemma 4.19 is now proved. �

Proof of Lemma 4.17. Applying Lemma 4.19 to the sequence u∗n of symmetric
decreasing rearrangements, we see that (4.38) implies (4.39). On the other hand, we
have

lim
n→∞

I(ub
n)≤ I(vb) and lim

n→∞
I(ua

n)≤ I(va),

by (4.38). Similarly, using the Riesz inequality and then the continuity with respect
to the norm defined by the positivity of the quadratic form I, we obtain

lim
n→∞

∫
Rd

∫
Rd

ub
nK(x− y)ua

n(y)dxdy≤
∫
Rd

∫
Rd

vbK(x− y)va(y)dxdy.

Combining these inequalities we verify (4.41) of Lemma 4.17. �

Lemma 4.20 Let u∗ be a symmetric decreasing rearrangement of u∗ supported on a
ball of radius R0 and let I(u∗)< ∞. Then there exists a translation T such that

I(u∗−u)≥ (K(2R0)−K(R1))

 ∫
|x|>R1

Tu(x)dx


2

,

for any R1 > 2R0.

To prove Lemma 4.20, let us represent K as

K = [K−K(2R0)]++min[K,K(2R0)].

Since both terms on the right-hand side are nonnegative and symmetric decreasing,
by the Riesz inequality we obtain

I(u∗)− I(u)≥
∫
Rd

∫
Rd

u∗(x)u∗(y)min[K(x− y),K(2R0)]dxdy

−
∫
Rd

∫
Rd

u(x)u(y)min[K(x− y),K(2R0)]dxdy≥ 0.
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We rewrite the first integral on the right-hand side in the form∫
Rd

∫
Rd

u∗(x)u∗(y)min[K(x− y),K(2R0)]

=
∫
Rd

∫
Rd

u∗(x)u∗(y)K(2R0)dxdy =
∫
Rd

∫
Rd

u(x)u(y)K(2R0)dxdy,

where in the first line we have used that u is supported in the ball with radius R0, and
we use that u is equimeasurable with its u∗. We have

I(u∗)− I(u)≥
∫
Rd

∫
Rd

u(x)u(y)(K(2R0)−min[K(x− y),K(2R0)])dxdy

+(K(2R0)−K(R1))
∫
Rd

∫
Rd

u(x)u(y)1|x−y|≥R1dxdy,

for any R1 > 2R0.
Setting h(y) =

∫
u(x)1|x−y|≥R1dx, by using the mean-value theorem there exists a

point x0 such that ∫
Rd

u(y)h(y)dy≥ h(x0)
∫
Rd

u(y)dy.

We have shown that

I(u∗)− I(u)≥ (K(2R0)−K(R1))
∫
Rd

u(y)
∫
Rd

u(x)1|x−y|≥R1dxdy

≥ (K(2R0)−K(R1))
∫
Rd

u(x)1|x−x0|≥R1dx
∫
Rd

u(y)dy

≥ (K(2R0)−K(R1))

(∫
Rd

u(x)1|x−x0|≥R1dx
)2

.

Putting Tu(x) = u(x+ x0) ends the proof of Lemma 4.20. �

We denote by un a sequence of nonnegative functions in L2, and, as in the whole
section, I is defined by (4.21), with the nonnegative symmetric decreasing kernel K.
Then the following lemma is valid.

Lemma 4.21 If un ⇀ u and u∗n ⇀ v converge weakly in L2 for some functions u and
v, then

I(u)≤ I(v).

If K is strictly symmetric decreasing and I(v) < ∞, then from the equality it follows
that there exists a translation T with Tu = v.

Let us prove Lemma 4.21. For an arbitrary nonnegative function h ∈ L2 we have∫
u(x)h(x)dx = lim

n→∞

∫
un(x)h(x)dx

≤ lim
n→∞

∫
v∗n(x)h

∗(x)dx =
∫

v(x)h∗(x)dx.
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By equimeasurability of u and u∗ and the bathtub principle ([75]), for every R > 0
we have ∫

|x|<R

u∗(x)dx = sup
A:Vol(A)=σdRd

∫
A

u∗(x)dx

= sup
A:Vol(A)=σdRd

∫
A

u(x)dx≤
∫
|x|<R

v(x)dx,

where σd is the surface area of the unit ball of the d-dimensional Euclidian space.
Using the layer-cake decomposition we arrive at∫

u∗(x)h(x)dx≤
∫

v(x)h(x)dx, (4.47)

for any symmetric decreasing h. If h is strictly symmetric decreasing and the integrals
are not infinite, then the equality in (4.47) is valid only for u∗ = v. Then the Riesz
inequality gives

I(u)≤ I(u∗)≤
∫

u∗(x)K ∗ v(x)dx≤ I(v), (4.48)

where (4.47) has been used with h = K ∗ u∗ and then with h = K ∗ v. If K is strictly
symmetric decreasing, then the equality in the Riesz inequality implies that there
exists a translation T with Tu = u∗. In addition, since obviously both K ∗u∗ and K ∗v
are strictly symmetric decreasing, the equality in (3.12) implies u∗ = v. Lemma 4.21
is proved. �

4.3.2 Proof of Burchard-Guo theorem

Suppose that un are uniformly bounded and their symmetric decreasing rear-
rangements u∗n are supported in a ball with radius R. By Lemma 4.20, there exists
a sequence of translations Tn such that

∫
|x|≥3R

Tnun(x)dx≤
(

I(u∗)− I(u)
K(2R)−K(3R)

) 1
2
→ 0, n→ ∞. (4.49)

Since ‖Tnun‖2
L2 = ‖u∗n‖2

L2 is uniformly bounded, the sequence Tnun is weakly compact
in L2, that is, there exists a subsequence (again denoted by un) and a function u such
that

Tnun ⇀ u, n→ ∞, (4.50)

converges weakly in L2. From Lemma 4.21 we see that I(u) is finite. We need to
prove I(Tnun−u)→ 0 when n→ ∞. To do it, first let us fix ε > 0 and set

K = K1|x|<ε +K1|x|≥ε := Ks +Kc.
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Thus, we have

I(Tnun−u) =
∫

|x|<3R

(Tnun−u)Kc ∗ (Tnun−u)dx

+
∫

|x|≥3R

(Tnun−u)Kc ∗ (Tnun−u)dx

+
∫
Rd
(Tnun−u)Ks ∗ (Tnun−u)dx.

Here the first integral on the right-hand side disappears because of the compactness
(by the Hilbert-Schmidt theorem) of {(Kc ∗Tnun)1|x|<3R}n≥1 in L2, and

(Kc ∗Tnun)1|x|<3R→ (Kc ∗u)1|x|<3R, n→ ∞.

By using (4.49) we get ∫
Tnun(Kc ∗Tnun)1|x|≥3Rdx

≤ ‖Kc‖L∞‖u‖L1

∫
|x|≥3R

un(x)dx→ 0, n→ ∞,

for the second integral. The last integral is bounded by∫
Rd

Tnun(x)Ks ∗un(x)dx≤ ‖un‖L∞‖un‖L1

∫
|x|≤ε

K(x)dx,

which can be chosen small by taking ε sufficiently small.
We obtain I(Tnun−u)→ 0 for the positive kernel K ∈ L1

loc(Rd).
Since we have I(u)= I(v∗), Lemma 4.21 implies that T0u= v for some translation

T0. Thus, this implies that

inf
T

I(T0un− v)≤ I(T0Tnun− v)→ 0, n→ ∞,

for a suitable sub-sequence. This proves (4.29) when u∗n are uniformly bounded and
supported on the same ball as the limit is independent of the subsequence.

Consider a sequence un, which satisfies the convergence assumptions of the
Burchard-Guo theorem.

In cases when un and v have large level sets or/and they are not uniformly
bounded, we represent them in the form

un = ub
n +ua

n

and
v = vb + va,

using (4.30)-(4.31), where R > 1 is a sufficiently large number which will be chosen
below.
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By the Cauchy-Schwarz inequality and the fact that Tun is equimeasurable with
un, we obtain

inf
T

I(Tun− v)≤ 3{inf
T

I(Tub
n− vb)+ I(ua

n)+ I(va)}. (4.51)

Lemma 4.15 says that the sequence ub
n is uniformly bounded, and by definition

their symmetric decreasing rearrangements are supported on a ball of radius R.
According to Lemma 4.17, we see that the assumptions of the Burchard-Guo

theorem are also satisfied by the functions ub
n, with v changed by vb.

In the first part of the proof it is shown that

lim
n→∞

inf
T

I(Tub
n− vb) = 0.

Moreover, by Lemma 4.17, we have

lim
n→∞

I(Tua
n) = I(va).

Letting n→ ∞ in (3.46), we arrive at

lim
n→∞

inf
T

I(Tun− v)≤ 6I(va).

Since the right-hand side can be chosen arbitrarily small by taking R sufficiently
large, the Burchard-Guo theorem follows. �

4.4 Applications in mathematical physics
In this section we give a number of applications of the technique of the symmetric

decreasing rearrangements to several problems of mathematical physics.

4.4.1 Brownian motion in a ball

Let z(t) = (z1(t),z2(t),z3(t)) be the three-dimensional Brownian motion, i.e.
z1(t),z2(t) and z3(t) are independent Wiener processes (see e.g. [55]). By definition

Prob{y+ z(τ) ∈Ω}=
∫

Ω

(2πτ)−
3
2 exp(−1

2
τ
−1|x− y|2)dx, (4.52)

where Prob{y+ z(τ) ∈Ω} means the probability of y+ z(τ) being in the set Ω⊂R3

at time τ .

Lemma 4.22 For any τ > 0, we have∫
Ω

Prob{y+ z(τ) ∈Ω}dy≤
∫

Ω∗
Prob{y+ z(τ) ∈Ω

∗}dy. (4.53)
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Note that geometrically (4.53) means that Brownian particles starting from Ω are
more likely to leave Ω than those starting from the ball Ω∗ with the same volume as
Ω to leave that ball.

Let us now prove (4.53). Recall the Riesz inequality from Theorem 4.10 stating
that ∫

R3

∫
R3

f (y)g(z− y)h(y)dydz≤
∫
R3

∫
R3

f ∗(y)g∗(z− y)h∗(y)dydz, (4.54)

where f ∗, g∗ and h∗ are the symmetric decreasing rearrangement of positive
measurable functions f , g and h, respectively. Now that for τ > 0 the function
exp(− 1

2 τ−1|z|2) is itself a strictly symmetrically decreasing function, so it does not
change its formula under the rearrangement. By using the Riesz inequality (4.54) we
have ∫

Ω

Prob{y+ z(τ) ∈Ω}dy =
∫

Ω

∫
Ω

(2πτ)−
3
2 exp(−1

2
τ
−1|z− y|2)dzdy

=
∫
R3

∫
R3

χΩ(z)(2πτ)−
3
2 exp(−1

2
τ
−1|z− y|2)χΩ(y)dzdy

≤
∫
R3

∫
R3

χΩ∗(z)(2πτ)−
3
2 exp(−1

2
τ
−1|z− y|2)χΩ∗(y)dzdy

=
∫

Ω∗

∫
Ω∗
(2πτ)−

3
2 exp(−1

2
τ
−1|z− y|2)dzdy =

∫
Ω∗

Prob{y+ z(τ) ∈Ω
∗}dy,

where χΩ(z) is the characteristic function of the domain Ω, i.e. χΩ(z) = 1 if z ∈ Ω,
χΩ(z) = 0 if z ∈ R3 \Ω. This completes the proof. �

4.4.2 Optimal membrane shape for the deepest bass note

Let Ω⊂Rd , d ≥ 2, be a bounded domain with a smooth boundary ∂Ω. Consider
the following spectral problem for the Dirichlet Laplacian

−∆u = λu, x ∈Ω, (4.55)

u = 0, x ∈ ∂Ω. (4.56)

It is known from the spectral theory by arguments like those in Chapter 3 that
the operator (4.55)-(4.56) is positive defined, self-adjoint and compact. Therefore,
we know from Section 3.4 that it has a countable set of positive real eigenvalues that
we can enumerate in increasing order (each time repeated according to multiplicity).
Let us denote the smallest eigenvalue by λ1(Ω). It is also known that λ1(Ω) is simple
and the corresponding eigenfunction u1(x) can be chosen positive.

Theorem 4.23 (Rayleigh-Faber-Krahn inequality) The ball is a minimiser of the first
eigenvalue of the Dirichlet Laplacian among all domains of a given measure:

λ1(Ω)≥ λ1(Ω
∗),

where Ω∗ is the ball with |Ω∗|= |Ω|.
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When d = 2 this theorem is interpreted as showing that the deepest bass note is
produced by the circular drum among all drums with the same area as the circular
drum, which was stated for the first time by Lord Rayleigh in his work [92]. In gen-
eral, beyond the intrinsic interest of geometric extremum problems, Rayleigh-Faber-
Krahn type inequalities produce a priori bounds for spectral invariants of operators on
arbitrary domains. For example, in other words, the Rayleigh-Faber-Krahn inequal-
ity says that the operator norm of the inverse operator to the Dirichlet Laplacian is
maximised in the ball among all Euclidean domains of a given volume.

Let us now prove Theorem 4.23. Let Ω be an open bounded (smooth) domain
with the same measure as the ball Ω∗. Let u1 be the first eigenfunction, i.e. an eigen-
function associated to λ1(Ω). As we mentioned one can use that u1 is positive in Ω,
so we can introduce its symmetric decreasing rearrangement u∗1. From Lemma 4.6,
we get ∫

Ω

|u1(x)|2dx =
∫

Ω∗
|u∗1(x)|2dx. (4.57)

From the Pólya-Szegő inequality in Theorem 4.11, we have∫
Ω∗
|∇u∗1(x)|2dx≤

∫
Ω

|∇u1(x)|2dx. (4.58)

Now using (4.57), (4.58) and the variational principle, we arrive at

λ1(Ω) =

∫
Ω
|∇u1(x)|2dx∫

Ω
|u1(x)|2dx

≥
∫

Ω∗ |∇u∗1(x)|2dx∫
Ω∗ |u∗1(x)|2dx

≥ inf
v∈L̇2

1(Ω
∗)

∫
Ω∗ |∇v(x)|2dx∫
Ω∗ |v(x)|2dx

= λ1(Ω
∗).

This proves the Rayleigh-Faber-Krahn inequality. �

4.4.3 Maximiser body of the gravitational field energy

Let Ω be a 3-dimensional body with a fixed volume and constant density ρ .
Assume that the body Ω⊂ R3 generates the gravitational field with energy EΩ.

It is known from the classical theory of gravity that the gravitational (Newtonian)
potential u is represented in the form

u(z) =
∫

Ω

1
4π|z− y|

dy,

and it satisfies the Laplace equation, that is,

4u(z) =
{

1, for z ∈ B,
0, otherwise.

The corresponding energy of the gravitational field is given by
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EΩ =
∫
R3
|∇u|2dz,

and using Green’s first formula and the fact that the gravitational potential vanishes
as |z| → ∞, this can be rewritten as

EΩ =
∫

Ω

∫
Ω

1
4π|z− y|

dydz. (4.59)

Using the Riesz inequality (Theorem 4.10) and the fact that 1
|z| is a symmetric

decreasing function for all z ∈ R3, we obtain

EΩ =
∫

Ω

∫
Ω

1
4π|z− y|

dydz =
∫
R3

∫
R3

χΩ(z)χΩ(y)
1

4π|z− y|
dydz

≤
∫
R3

∫
R3
(χΩ(z))∗(χΩ(y))∗

(
1

4π|z− y|

)∗
dydz

=
∫
R3

∫
R3

χΩ∗(z)χΩ∗(y)
1

4π|z− y|
dydz =

∫
Ω∗

∫
Ω∗

1
4π|z− y|

dydz = EΩ∗ ,

where, as usual, χ is the characteristic function of the corresponding domain.
Thus, we obtain that

EΩ ≤ EΩ∗ ,

for an arbitrary Ω ⊂ R3 with |Ω| = |Ω∗|, where Ω∗ is the ball. Therefore, we have
shown that the ball has the gravitational field with maximal energy among all bodies
with the same volume as the ball.

4.4.4 Dynamical stability problem of gaseous stars

In the present section we briefly discuss an application of the Burchard-Guo theo-
rem to the dynamical stability of gaseous stars. Following [27] we give an alternative
proof of G. Rein’s result [95] on the stability of gaseous stars. It is known that a
self-gravitating star is expressed by the following Euler-Poisson system:{

∂t µ +∇ · (µu) = 0,
µ∂tu+µ(u ·∇)u =−∇P(µ)−µ∇V, (4.60)

∆V = 4πµ,

with the condition at infinity
lim
|x|→∞

V (t,x) = 0,

where µ ≥ 0 is the mass density, u is the velocity field of a gaseous star, and V =Vµ

is the gravitational (Newtonian) potential which can be written in the form

Vµ(t,x) =−
∫
R3
|x− y|−1

µ(t,x)dy. (4.61)
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Let us consider the special case when P(µ) = µγ . Formally, from (4.60) one obtains
the conservation of the energy functional

E(µ,u) =
1
2

∫
R3
|u|2µdx+

1
γ−1

∫
R3

µ
γ dx− 1

2

∫
R3

∫
R3

µ(x)|x− y|−1
µ(y)dxdy.

On the right-hand side, the first term gives the kinetic energy, the second term repre-
sents the pressure contribution, and the last term expresses the gravitational potential
energy.

The steady states are obtained by minimising the functional

H =
1

γ−1

∫
R3

µ
γ dx− 1

2

∫
R3

∫
R3

µ(x)|x− y|−1
µ(y)dxdy, (4.62)

with the mass restriction
∫
R3 µ(x)dx = M.

A symmetric minimiser is expressed by the formula

µ0(x) = c(γ)[E0−Vµ0(x)]
1

γ−1
+ . (4.63)

Here E0 ≤ 0 is the Lagrange multiplier corresponding to the mass constraint, and
Vµ0(x) is the potential obtained by using (4.61) with µ0. This minimiser is always
unique up to a translation.

Theorem 4.24 ([95]) For some γ > 4/3, the symmetric steady-state solution µ0(x)
is dynamically stable up to translations, among all weak solutions which satisfy the
mass constraint and whose energy is not greater than the initial energy.

The “distance” from µ0 to µ is given by

d(µ,µ0) =
1

γ−1

∫
R3

µ
γ −µ

γ

0 +(Vµ0 −E0)(µ−µ0)dx.

It is clear that the integrand is nonnegative since γ > 4/3 (one can see it expand-
ing into the Taylor series around µ0 in (4.63)). It is important to obtain for any min-
imising sequence µn that there exists a translation sequence Tn on R3 with

‖∇VTnµn −∇Vµ0‖L2(R3)→ 0. (4.64)

Let us now prove Theorem 4.24. Let us introduce the notation

I(µ) :=
∫
R3

∫
R3

µ(x)|x− y|−1
µ(y)dxdy = ‖∇Vµ‖2

L2(R3),

which expresses the gravitational potential energy corresponding to µ .
It follows directly from [95, Lemma 4.1] that the symmetric minimising

sequences are compact.
It was also proved in [95] that (4.64) is valid without any translation, that is,

lim
n→∞

I(µn−µ0) = 0.
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Now we take a general minimising sequence µn such that limn→∞

∫
µn = M. By

using the fact that µn is equimeasurable with µ∗n and the Riesz inequality, we obtain
that the symmetrization sequence µ∗n by itself is a minimising sequence, so that

lim
n→∞

I(µn) = lim
n→∞

I(µ∗n ) = I(µ0).

By the first step,
lim
n→∞

I(µ∗n −µ0) = 0.

By using the fact that the kernel K(x− y) = |x− y|−1 is a positive strictly symmetric
decreasing function and belongs to L1

loc, the convergence (4.64) follows directly from
the Burchard-Guo Theorem 4.14. �

4.4.5 Stability of symmetric steady states in galactic dynamics

In this section we briefly discuss another application of the symmetric decreasing
rearrangements to the stability in a large ensemble of stars (for instance, a galaxy).
This section is based on [27] and we refer to it for further discussions.

Let us consider a galactic system of stars (a large ensemble of stars, for example,
a galaxy) under the gravitational field which is created by themselves.

It is almost impossible to study the dynamics of every single star separately. For
this reason, the most basic models of theoretical physics to study galaxy dynamics
are based on the kinetic theory, in which the star system is described by a density
q(t,x,u) of the phase space instead of a density ρ(t,x) and a velocity field u(t,x).

Let us introduce the notations for the position and the momentum variables by
(x,u) ∈ R3×R3, respectively.

In astrophysics, the galaxy dynamics or the global cluster dynamics are described
by the following Vlasov-Poisson equations:{

∂tq+u ·∇xq−∇xu ·∇uq = 0,
∆V = 4πρ,

(4.65)

where
ρ(t,x) =

∫
q(t,x,u)du (4.66)

is the particle density associated with q, and the gravitational potential V again solves
(4.61).

The Hamiltonian energy (the sum of the kinetic and potential energies)

E(q) = Ekinetic(q)+Epotential(ρ)

=
1
2

∫ ∫
|u|2q(x,u)dudx− 1

2

∫ ∫
ρ(x)|x− y|−1

ρ(y)dxdy

is conserved by the equations (4.65).
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Note that the rare collisions among stars are neglected in this kind of model. In
fact, the Vlasov-Poisson system has more properties, in particular, a scaling sym-
metry and a continuum of conserved quantities are given by the following Casimir
functionals

C(q) =:
∫ ∫

Q(q(x,u))dudx,

where Q is any measurable function which satisfies suitable growth conditions. In
the present section Q(q) = q1+ 1

k with 0 < k < 3
2 will play a special role.

One obtains the steady states by minimising the functionals

C(q)+E(q) (4.67)

under the essential restriction that the total mass
∫ ∫

qdudx = M should be a positive
constant.

We consider the minimisation problem for (4.67),

inf
q:
∫ ∫

q(x,u)dudx=M
{C(q)+E(q)}=

= inf
ρ:
∫

ρ(x)dx=M
{ inf

q:
∫

q(·,u)du=ρ

{C(q)+Ekinetic(q)+Epotential(ρ)}},

in two steps.
Step I: The inner minimisation is equivalent to calculating for a fixed particle

density ρ the quantity G◦ρ , where

G(r) = inf{
∫

Q(g(u))+
1
2
|u|2g(u)du | 0≤ g ∈ L1(R3),

∫
g(u)du = r}, (4.68)

for r ≥ 0. Since Q is a strictly convex function, the minimiser in (4.68) is expressed
in terms of r in a unique form. Thus, any minimising phase space density for (4.67)
is uniquely expressed by the associated particle density.

Using their Legendre transforms Q̂ of Q and Ĝ of G, it can be written as the
following relationship

Ĝ(t) =
∫

Q̂(t− |u|
2

2
)du.

From Q(q) = q1+ 1
k we obtain (up to a multiplicative constant) G(ρ) = ργ with

γ = 1+ 1
k+ 3

2
∈ ( 4

3 ,
5
3 ).

Step II: Thus, the outer minimisation problem is simplified to minimising

H =
∫

G(ρ(x))dx−
∫ ∫

ρ(x)|x− y|−1
ρ(y)dxdy (4.69)

over particle densities ρ with the mass restriction
∫

ρ(x)dx = M. This problem has
the same form as (4.62), studied in the previous section. In particular, the existence
of symmetric steady states with the particle density is given by (4.63). The associated
symmetric minimising phase space density is expressed by

q0(x,u) =
[

E0−
|u|2

2
−Vρ0(x)

]k

+

,0 < k <
3
2
.
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From the stability point of view for the Vlasov-Poisson equations all the needed
knowledge for the variational problem in (4.67) can be taken from its simplified form
in (4.69).

To see it, let us consider a minimising sequence qn for (4.67) and the relevant
sequence of particle densities ρn which is determined by (4.66).

According to the fact that ρn is a minimising sequence for the simplified problem
in (4.69), we obtain from the previous section that ρn approaches (up to suitable
translations Tn) some particle density ρ0 and ∇VTnρn → ∇Vρ0 in L2.

Using a corresponding subsequence and applying the special form of Q, it can be
assumed that the sequence of phase space densities Tnqn converges weakly in L1+ 1

k

to some function u0. From the compactness of ∇VTnqn in L2, the Casimir energy
functional E +C is lower semi-continuous, and its value must converge along the
sequence, and we establish that Tnqn → q0 strongly in L1+ 1

k . This means that q0 is
the unique minimiser for the given problem in (4.67) expressed by ρ0(x). Therefore,
there exists a sequence of translations Tn such that Tnqn→ q0. �



Chapter 5
Inequalities of spectral geometry

In this chapter we will discuss the isoperimetric inequalities and other related
inequalities of the spectral geometry for integral operators of several types, appear-
ing as solutions to different boundary value problems for elliptic and parabolic partial
differential equations.

We start by discussing the logarithmic potential operators in 2-dimensions, subse-
quently moving to the Riesz and Bessel potential operators. Consequently, we show
how the analysis can be extended to the Riesz potential operators also in the spherical
and hyperbolic geometries.

Next, we concentrate on several cases of non-self-adjoint operators. This is a
case much more rarely encountered in the literature. Here we discuss different ver-
sions of the isoperimetric inequalities for the singular numbers, for the heat oper-
ators of different types: higher-order heat operators, as well as the heat operators
with the Cauchy-Dirichlet, Cauchy-Robin, Cauchy-Neumann and Cauchy-Dirichlet-
Neumann boundary conditions.

Most of the results in this chapter are based on the papers by the authors and we
follow the presentation therein for our exposition here.

5.1 Introduction
In Rayleigh’s famous book Theory of Sound (first published in 1877, [92]), by

using some explicit computation and physical interpretations, he stated that the disc
minimises (among all domains of the same area) the first eigenvalue of the Dirichlet
Laplacian. The proof of this conjecture was obtained about 50 years later, simulta-
neously (and independently) by G. Faber and E. Krahn. Nowadays, the Rayleigh-
Faber-Krahn inequality has been established for many other operators; see e.g. [48]
for further references (see also [8] and [90], as well as the already described Theo-
rem 4.23). Among other things, in this chapter we prove the Rayleigh-Faber-Krahn
inequality for the integral operators of convolution type, i.e. it is proved that the ball
is a minimiser of the first eigenvalue of the convolution type integral operator among
all domains of a given measure.

By using the Feynman-Kac formula and spherical rearrangements, Luttinger
proved in [77] that the disc D is a maximiser of the partition function of the Dirichlet

279
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Laplacian among all domains of the same area as D for all positive values of
time, i.e.

∞

∑
i=1

exp(−tµD
i (Ω))≤

∞

∑
i=1

exp(−tµD
i (D)), ∀t > 0, |Ω|= |D|,

where µD
i , i = 1,2, . . . , are the characteristic numbers of the Dirichlet Laplacian. The

characteristic numbers are defined as the inverses of the eigenvalues, and there is a
natural correspondence between the eigenvalues of a problem and the characteristic
numbers of its solution operator.

From here by using the Mellin transform one obtains

∞

∑
i=1

1
[µD

i (Ω)]p
≤

∞

∑
i=1

1
[µD

i (D)]p
, |Ω|= |D|, (5.1)

when p > 1, Ω ⊂ R2. In this chapter we discuss an analogue of this Luttinger’s
inequality for the integral operator of the convolution type. For example, we con-
sider the logarithmic potential operator: in this setting the main difficulty arises
from the fact that the logarithmic potential is not positive and that we cannot use
the Brascamp-Lieb-Luttinger type rearrangement inequalities directly.

Thus, we are mainly interested in questions of spectral geometry. The main rea-
son why the results are useful, beyond the intrinsic interest of geometric extremum
problems, is that they produce a priori bounds for spectral invariants of operators
on arbitrary domains. For a good general review of isoperimetric inequalities for the
Dirichlet, Neumann and other Laplacians we can refer to [12].

We also show that under certain restrictions for indices, the Schatten norms of
the Riesz potentials Rα,Ω over sets of a given measure are maximised on balls. More
precisely, we can summarise this type of discussion as follows:

• Let 0 < α < d and let Ω∗ be a ball in Rd ; we set p0 := d/α . Then for any
integer p with p0 < p≤ ∞ we have

‖Rα,Ω‖p ≤ ‖Rα,Ω∗‖p, (5.2)

for any domain Ω with |Ω|= |Ω∗|. Here ‖ ·‖p stands for the Schatten p-norm,
| · | for the Lebesgue measure. The proof is based on the application of a suit-
ably adapted Brascamp-Lieb-Luttinger inequality. Note that for p = ∞ this
result gives a variant of the famous Rayleigh-Faber-Krahn inequality for the
Riesz potentials (and hence also for the Newton potential).

• We also establish the Hong-Krahn-Szegő inequality: the maximum of the sec-
ond eigenvalue of Rα,Ω among bounded open sets with a given measure is
approached by the union of two identical balls with mutual distance going to
infinity.

There is a vast number of papers dedicated to the above type of results for
Dirichlet, Neumann and other Laplacians, see, for example, [23], [48] and refer-
ences therein. For instance, the questions of Rayleigh-Faber-Krahn type are still
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open for boundary value problems of the bi-Laplacian (see [48, Chapter 11]). The
main difficulty arises because the resulting operators of these boundary value prob-
lems are not positive for higher powers of the Laplacian. The same is the situation
for the Schatten p-norm inequalities: the result for the Dirichlet Laplacian can be
obtained from Luttinger’s inequality [77] but very little is known for other Laplacians
(see [38]). The Hong-Krahn-Szegő inequality for the Robin Laplacian was proved
recently [66] (see [24] for further discussions). So, in general, until now there were
no examples of a boundary value problem for the poly-Laplacian (m > 1) for which
all the above results had been proved. It seems that there are also no isoperimetric
results for the fractional order Riesz or/and Bessel potentials either.

We believe that Kac’s boundary value problem (5.3) with (5.5) serves as the first
example of such a boundary value problem, for which all the above results are true.
This problem describes the nonlocal boundary conditions for the poly-Laplacian cor-
responding to the polyharmonic Newton potential operator.

In a bounded connected domain Ω ⊂ Rd with a piecewise C1 boundary ∂Ω, we
consider the polyharmonic equation

(−∆x)
mu(x) = f (x), x ∈Ω, m ∈ N. (5.3)

To relate the polyharmonic Newton potential

u(x) =
∫

Ω

ε2m,d(|x− y|) f (y)dy, f ∈ L2(Ω), (5.4)

to the boundary value problem (5.3) in Ω, we can use the result of [60] asserting
that for each function f ∈ L2(Ω), supp f ⊂ Ω, the polyharmonic Newton potential
(5.4) belongs to the class H2m(Ω) and satisfies, for i = 0,1, . . . ,m− 1, the nonlocal
boundary conditions

− 1
2
(−∆x)

iu(x)+

+
m−i−1

∑
j=0

∫
∂Ω

∂

∂ny
(−∆y)

m−i−1− j
ε2(m−i),d(|x− y|)(−∆y)

j(−∆y)
iu(y)dSy

−
m−i−1

∑
j=0

∫
∂Ω

(−∆y)
m−i−1− j

ε2(m−i),d(|x−y|) ∂

∂ny
(−∆y)

j(−∆y)
iu(y)dSy = 0, x∈ ∂Ω.

(5.5)

Conversely, if a function u ∈ H2m(Ω) satisfies (5.3) and the boundary conditions
(5.5) for i = 0,1, . . . ,m−1, then it defines the polyharmonic Newton potential by the
formulae (5.4).

Therefore, our analysis (of the special case of the Riesz (or Bessel) potential)
of the polyharmonic Newton potential (5.4) implies the corresponding result for the
boundary value problem (5.3) with (5.5). Note that the analogue of the problem (5.3)
with (5.5) for the Kohn Laplacian and its powers on the Heisenberg group have been
recently investigated in [101]. We note that there are certain interesting questions
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concerning such operators, lying beyond Schatten classes properties, see e.g. [39]
for different regularised trace formulae.

On the other hand, in G. Pólya’s work [89] he proves that the first eigenvalue of
the Dirichlet Laplacian is minimised in the equilateral triangle among all triangles of
given area.

In this chapter our other aim is to extend some of the known results for the self-
adjoint operators to non-self-adjoint operators. Thus, for example, we prove a Pólya
type inequality for the Cauchy-Dirichlet heat operator, that is, that the first s-number
of the Cauchy-Dirichlet heat operator is minimised in the equilateral triangular cylin-
der among all triangular cylinders of given volume. We also discuss a number of other
inequalities of the spectral geometry for the heat operators with different boundary
conditions.

5.2 Logarithmic potential operator
Let us consider the logarithmic potential operator on L2(Ω) defined by

LΩ f (x) :=
∫

Ω

1
2π

ln
1
|x− y|

f (y)dy, f ∈ L2(Ω), (5.6)

where Ω⊂ R2 is an open bounded set and

|x− y|=
√

(x1− y1)2 +(x2− y2)2.

Since the logarithmic potential operator LΩ is a compact and self-adjoint operator,
all of its eigenvalues are discrete and real. The characteristic numbers (the inverses
of the eigenvalues) of LΩ may be enumerated in ascending order of their modulus,

|µ1(Ω)| ≤ |µ2(Ω)| ≤ ...,

where µi(Ω) is repeated in this series according to its multiplicity. We denote the
corresponding eigenfunctions by u1,u2, ..., so that for each characteristic number µi
there is a unique corresponding normalised eigenfunction ui,

ui = µi(Ω)LΩui, i = 1,2, ....

It is known, see e.g. [59], that the equation

u(x) =
∫

Ω

1
2π

ln
1
|x− y|

f (y)dy

is equivalent to the equation

−∆u(x) = f (x), x ∈Ω, (5.7)
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with the nonlocal integral boundary condition

−πu(x)+
∫

∂Ω

∂

∂ny
ln

1
|x− y|

u(y)dSy−
∫

∂Ω

ln
1
|x− y|

∂u(y)
∂ny

dSy = 0, (5.8)

for all x ∈ ∂Ω, where ∂

∂ny
denotes the outer normal derivative at a point y on the

boundary ∂Ω, which is assumed piecewise C1 here.
Spectral analysis on the logarithmic potential have been investigated in many

papers (see, e.g. [3], [5], [18], [40], [56], [59], [111], [128], [129]). Here we dis-
cuss some spectral geometric inequalities of the logarithmic potential LΩ, that is
also, some spectral geometric inequalities of the nonlocal Laplacian (5.7)-(5.8). For
a general review of spectral geometric inequalities for the Dirichlet, Neumann and
other Laplacians we refer to Benguria, Linde and Loewe in [12].

Thus, in this section we show that the disc is a maximiser of the Schatten p-
norm of the logarithmic potential operator among all domains of a given measure
in R2, for all even integers 2 ≤ p < ∞. We also discuss polygonal versions of this
result; in particular, we show that the equilateral triangle has the largest Schatten
p-norm among all triangles of a given area. For the logarithmic potential operator
on bounded open or triangular domains, we also present analogies of the Rayleigh-
Faber-Krahn or Pólya inequalities, respectively. This section is completely based on
our open access paper [99].

5.2.1 Spectral geometric inequalities and examples

We assume that Ω⊂ R2 is an open bounded set and we consider the logarithmic
potential operator on L2(Ω) of the form

LΩ f (x) =
∫

Ω

1
2π

ln
1
|x− y|

f (y)dy, f ∈ L2(Ω). (5.9)

We also assume that the operator LΩ is positive. In Landkof [69, Theorem 1.16, p.
80] the positivity of the operator LΩ is proved in domains Ω ⊂U, where U is the
unit disc. In general, LΩ is not a positive operator. For any bounded open domain Ω

the logarithmic potential operator LΩ can have at most one negative eigenvalue, see
Troutman [128] (see also Kac [56]). Note that for positive self-adjoint operators the
singular values equal the eigenvalues.

By ‖LΩ‖p we denote the Schatten p-norm of the logarithmic potential operators.
It is known that LΩ is a Hilbert-Schmidt operator.

Theorem 5.1 Let D be a disc. Let Ω be a bounded open domain with the same
Lebesque measure as the disc D. Assume that the logarithmic potential operator is
positive on both sets Ω and D. Then

‖LΩ‖p ≤ ‖LD‖p (5.10)

for any integer 2≤ p < ∞.
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Note that we will see from the proof that for even integers p we do not need to
assume the positivity of the logarithmic potential operator for the above result to be
true:

Theorem 5.2 We have
‖LΩ‖p ≤ ‖LD‖p (5.11)

for all even integer 2≤ p < ∞ and any bounded open domain Ω with |Ω|= |D|. Here
D is a disc and | · | is the Lebesque measure of a set.

The right-hand side of the formula (5.11) can be calculated explicitly by a direct
calculation of the logarithmic potential eigenvalues in the unit disc, see [3, Theorem
3.1]. For example, we have

‖LΩ‖p ≤ ‖LU‖p =

(
∞

∑
m=1

3

j2p
0,m

+
∞

∑
l=1

∞

∑
m=1

2

j2p
l,m

) 1
p

, (5.12)

for any even 2 ≤ p < ∞ and any bounded open domain Ω with |Ω| = |U |. Here U
is the unit disc and jkm denotes the mth positive zero of the Bessel function Jk of the
first kind of order k.

We also have the following Rayleigh-Faber-Krahn inequality for the logarithmic
potential when p = ∞:

Theorem 5.3 (Rayleigh-Faber-Krahn inequality) The disc D is a minimiser of the
characteristic number of the logarithmic potential LΩ with the smallest modulus
among all domains of a given measure, that is,

‖LΩ‖∞ ≤ ‖LD‖∞ (5.13)

for an arbitrary bounded open domain Ω⊂ R2 with |Ω|= |D|.

From [3, Corollary 3.2] we calculate explicitly the operator norm in the right-
hand side of (5.13). Let D≡U be the unit disc. Then by Theorem 5.3 we have

‖LΩ‖∞ ≤ ‖LU‖∞ =
1
j2
01

for any bounded open domain Ω with |Ω|= |D|. Here ‖ · ‖∞ is actually the operator
norm of the logarithmic potential on the space L2.

As discussed before, the logarithmic potential operator can be related to a non-
local boundary value problem for the Laplacian, so above theorems are valid for the
eigenvalues (5.7)-(5.8) as well.

To prove Theorem 5.3 first we need some preliminary discussions: The eigen-
functions of the logarithmic potential LΩ may be chosen to be real as its kernel is
real. First let us prove that u1 cannot change sign in the domain Ω, that is,

u1(x)u1(y) = |u1(x)u1(y)|, x, y ∈Ω.
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Indeed, in the opposite case, by the continuity of the function u1(x), there would
be neighborhoods U(x0,r)⊂Ω such that

|u1(x)u1(y)|> u1(x)u1(y), x,y ∈U(x0,r)⊂Ω.

On the other hand we have∫
Ω

1
2π

ln
1

|x0− z|
1

2π
ln

1
|z− x0|

dz > 0, x0 ∈Ω. (5.14)

From here by continuity it is simple to check that there exists ρ > 0 such that∫
Ω

1
2π

ln
1
|x− z|

1
2π

ln
1
|z− y|

dz > 0, x,y ∈U(x0,ρ)⊂U(x0,r). (5.15)

Now let us introduce a new function

ũ1(x) :=
{
|u1(x)|, x ∈U(x0,ρ),
u1(x), x ∈Ω\U(x0,ρ).

(5.16)

Then we obtain

(L 2
Ω

ũ1, ũ1)

‖ũ1‖2 =
1
‖ũ1‖2

∫
Ω

∫
Ω

∫
Ω

1
2π

ln
1
|x− z|

1
2π

ln
1
|z− y|

dzũ1(x)ũ1(y)dxdy

>
1
‖u1‖2

∫
Ω

∫
Ω

∫
Ω

1
2π

ln
1
|x− z|

1
2π

ln
1
|z− y|

dzu1(x)u1(y)dxdy =
1

µ2
1
, (5.17)

where µ2
1 is the smallest characteristic number of L 2

Ω
and u1 is the eigenfunction

corresponding to µ2
1 , i.e.

u1 = µ
2
1 L 2

Ωu1.

Therefore, by the variational principle we also have

1
µ2

1
= sup

f∈L2(Ω), f 6=0

〈L 2
Ω

f , f 〉
‖ f‖2 . (5.18)

This means that the strong inequality (5.17) contradicts the variational principle
(5.18) because ‖ũ1‖L2 = ‖u1‖L2 < ∞.

Since u1 is nonnegative it follows that µ1 is simple. Indeed, if there were an
eigenfunction v1 linearly independent of u1 and corresponding to µ1, then for all real
c the linear combination u1 + cv1 also would be an eigenfunction corresponding to
µ1 and therefore, by what has been proved, it could not become negative in Ω. As c
is arbitrary, this is impossible. Thus, we have proved the following fact.

Lemma 5.4 The characteristic number µ1 of the logarithmic potential LΩ with the
smallest modulus is simple, and the corresponding eigenfunction u1 can be chosen
nonnegative.
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Let us now prove Theorem 5.3. As discussed above, µ2
1 (Ω) is the smallest char-

acteristic number of L 2
Ω

and u1 is the eigenfunction corresponding to µ2
1 , i.e.

u1 = µ
2
1 (Ω)L 2

Ωu1.

By Lemma 5.4 the first characteristic number µ1 of the operator LΩ is simple; the
corresponding eigenfunction u1 can be chosen positive in Ω, and in view of Lemma
5.4 we can apply the above construction to the first eigenfunction u1. The rearrange-
ment inequality for the logarithmic kernel (cf. [29, Lemma 2]) gives

∫
Ω

∫
Ω

∫
Ω

u1(y)
1

2π
ln

1
|y− z|

1
2π

ln
1
|z− x|

u1(x)dzdydx≤∫
D

∫
D

∫
D

u∗1(y)
1

2π
ln

1
|y− z|

1
2π

ln
1
|z− x|

u∗1(x)dzdydx. (5.19)

where u∗1 is the symmetric decreasing rearrangement of u1.
For the proof of the rearrangement inequality (5.19) for the logarithmic kernel,

see Lemma 5.8. The proof is almost the same with the slight difference that in this
case the symmetric decreasing rearrangement is used instead of the Steiner sym-
metrization.

In addition, for each nonnegative function u ∈ L2(Ω) we have

‖u‖L2(Ω) = ‖u
∗‖L2(D). (5.20)

Therefore, from (5.64), (5.20) and the variational principle for the positive oper-
ator L 2

D , we get

µ
2
1 (Ω) =

∫
Ω
|u1(x)|2dx∫

Ω

∫
Ω

∫
Ω

u1(y) 1
2π

ln 1
|y−z|

1
2π

ln 1
|z−x|u1(x)dzdydx

≥

∫
D |u∗1(x)|2dx∫

D
∫

D
∫

D u∗1(y)
1

2π
ln 1
|y−z|

1
2π

ln 1
|z−x|u

∗
1(x)dzdydx

≥

inf
v∈L2(D),v6=0

∫
D |v(x)|2dx∫

D
∫

D
∫

D v(y) 1
2π

ln 1
|y−z|

1
2π

ln 1
|z−x|v(x)dzdydx

= µ
2
1 (D).

Finally, note that 0 is not a characteristic number of LD (see [128, Corollary 1]), that
is, 0 < |µ1(D)|. �

Throughout this chapter, the Brascamp-Lieb-Luttinger inequality [22] will be
used often. Therefore, let us state its suitable version explicitly. For the proof we
refer to [116, Theorem 14.8]:

Theorem 5.5 (Brascamp-Lieb-Luttinger inequality) Let f1, . . . , fn be nonnegative
functions in Rd and let f ∗1 , . . . , f ∗n be their symmetric decreasing rearrangements.
Fix an integer m. Let {a jk}1≤ j≤n;1≤k≤m be an n×m real matrix. Then∫

Rd
...
∫
Rd

n

∏
j=1

f j

(
m

∑
k=1

a jkyk

)
dy1...dym ≤

∫
Rd

...
∫
Rd

n

∏
j=1

f ∗j

(
m

∑
k=1

a jkyk

)
dy1...dym.

(5.21)
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Note that taking m = n, a jk = 1 if j = k and a jk =−1 if k = j+1 with ann+1 = an1,
otherwise a jk = 0, Theorem (5.5) becomes

∫
Rd

...
∫
Rd

f1 (y1− y2) f2 (y2− y3) ... fn (yn− y1)dy1...dyn ≤∫
Rd

...
∫
Rd

f ∗1 (y1− y2) f ∗2 (y2− y3) ... f ∗n (yn− y1)dy1...dyn. (5.22)

Let us now prove Theorem 5.2. We first prove the Brascamp-Lieb-Luttinger type
rearrangement inequality for the logarithmic kernel (which is not nonnegative func-
tion).

Let D be a disc centred at the origin. Then

∫
Ω

...
∫

Ω

1
2π

ln
1

|y1− y2|
...

1
2π

ln
1

|yp− y1|
dy1...dyp ≤∫

D
...
∫

D

1
2π

ln
1

|y1− y2|
...

1
2π

ln
1

|yp− y1|
dy1...dyp, (5.23)

for any p = 2,3, . . . , and for any bounded open set Ω with |Ω|= |D|. Here we prove
it for p = 2 and the proof is based on the proof of [29, Lemma 2]. The proof for
arbitrary p is essentially the same as the case p = 2. Let us fix r0 > 0 and consider
the function

f (r) :=

{
1

2π
ln 1

r , r ≤ r0,
1

2π
ln 1

r0
− 1

2π

∫ r
r0

s−1 1+r2
0

1+s2 ds, r > r0.
(5.24)

Let us show that the function f (r) is strictly decreasing and has a limit of r→ ∞. If
r ≤ r0 then

f (r1) =
1

2π
ln

1
r1

>
1

2π
ln

1
r2

= f (r2)

for r1 < r2. If r > r0 then

f (r) =
1

2π
ln

1
r0
− 1

2π

∫ r

r0

s−1 1+ r2
0

1+ s2 ds =

1
2π

ln
1
r0
− 1

2π
(1+ r2

0)[lnr− 1
2

ln(1+ r2)− lnr0 +
1
2

ln(1+ r2
0)]. (5.25)

Thus f (r1) > f (r2) for r1 < r2, that is, f (r) is strictly decreasing. From (5.25) it is
easy to see that

lim
r→∞

f (r) =
1

2π
ln

1
r0
− 1

2π
(1+ r2

0)[− lnr0 +
1
2

ln(1+ r2
0)]. (5.26)

We use the notation

f∞ :=
1

2π
ln

1
r0
− 1

2π
(1+ r2

0)[− lnr0 +
1
2

ln(1+ r2
0)].
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By construction 1
2π

ln 1
r − f (r) is decreasing. Thus, if we define

h1(r) = f (r)− f∞

we have the decomposition

1
2π

ln
1
r
= h1(r)+h2(r)

where h1 is positive strictly decreasing function and h2 is decreasing. Hence by the
Brascamp-Lieb-Luttinger rearrangement inequality we have∫

Ω

∫
Ω

h1(|y1− y2|)h1(|y2− y1|)dy1dy2 ≤∫
D

∫
D

h1(|y1− y2|)h1(|y2− y1|)dy1dy2 (5.27)

and∫
Ω

∫
Ω

h2(|y1− y2|)h2(|y2− y1|)dy1dy2 ≤∫
D

∫
D

h2(|y1− y2|)h2(|y2− y1|)dy1dy2. (5.28)

Thus it remains to show that∫
Ω

∫
Ω

h1(|y1− y2|)h2(|y2− y1|)dy1dy2 ≤∫
D

∫
D

h1(|y1− y2|)h2(|y2− y1|)dy1dy2, (5.29)

which does not follow directly from the Brascamp-Lieb-Luttinger rearrangement
inequality since h2 is not positive. Define for R > 0 the function

qR(r) :=
{

h2(r)−h2(R), r ≤ R,
0, r > R, (5.30)

and note that by the monotone convergence we have

IΩ(h1,h2) = lim
R→∞

[IΩ(h1,qR)+h2(R)
∫

Ω

∫
Ω

h1(|y1− y2|)dy1dy2], (5.31)

with the notation

IΩ( f ,g) =
∫

Ω

∫
Ω

f (|y1− y2|)g(|y2− y1|)dy1dy2. (5.32)

Since h1 and qR are positive and nonincreasing, we have

IΩ(h1,qR)≤ ID(h1,qR)
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by the Brascamp-Lieb-Luttinger rearrangement inequality. Noting that∫
Ω

∫
Ω

h1(|y1− y2|)dy1dy2 ≤
∫

D

∫
D

h1(|y1− y2|)dy1dy2,

we obtain

IΩ(h1,h2) = lim
R→∞

[IΩ(h1,qR)+h2(R)
∫

Ω

∫
Ω

h1(|y1− y2|)dy1dy2]≤

lim
R→∞

[ID(h1,qR)+h2(R)
∫

D

∫
D

h1(|y1− y2|)dy1dy2] = ID(h1,h2), (5.33)

completing the proof of (5.23). Since the logarithmic potential operator is a Hilbert-
Schmidt operator, by using bilinear expansion of its iterated kernels (see, for exam-
ple, [130]) we obtain for p≥ 2, p ∈ N,

∞

∑
j=1

1
µ

p
j (Ω)

=
∫

Ω

...
∫

Ω

1
2π

ln
1

|y1− y2|
...

1
2π

ln
1

|yp− y1|
dy1...dyp. (5.34)

Recalling the inequality (5.23) stating that∫
Ω

...
∫

Ω

1
2π

ln
1

|y1− y2|
...

1
2π

ln
1

|yp− y1|
dy1...dyp ≤

∫
D
...
∫

D

1
2π

ln
1

|y1− y2|
...

1
2π

ln
1

|yp− y1|
dy1...dyp, (5.35)

we obtain
∞

∑
j=1

1
µ

p
j (Ω)

≤
∞

∑
j=1

1
µ

p
j (D)

, p≥ 2, p ∈ N, (5.36)

for any bounded open domain Ω ⊂ R2 with |Ω| = |D|. Taking even p in (5.36) we
complete the proof of Theorem 5.2. �

Finally, we note that the inequality (5.36) also proves Theorem 5.1 when the
logarithmic potential operator is positive. �

5.2.2 Isoperimetric inequalities over polygons

The techniques of the previous section do not allow us to prove Theorem 5.2 for
all p > 1. In view of the Dirichlet Laplacian case, it seems reasonable to conjecture
that the Schatten p-norm is still maximised on the disc also for all p > 1.

On the other hand, we can ask the same question of maximising the Schatten p-
norms in the class of polygons with a given number n of sides. We denote by Pn the
class of plane polygons with n edges. We now aim at describing the maximiser for
Schatten p-norms of the logarithmic potential LΩ in Pn. According to the previous
section, it is natural to conjecture that it is the n-regular polygon.

Let us prove this for n = 3:
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Theorem 5.6 The equilateral triangle is a maximiser of Schatten p-norms of LΩ for
any even integer 2 ≤ p < ∞ among all triangles of a given area, that is, if ∆ is the
equilateral triangle, then we have

‖LΩ‖p ≤ ‖L∆‖p (5.37)

for any even integer 2≤ p≤ ∞ and any bounded open triangle Ω with |Ω|= |∆|.

Similarly, we have the following P3 analogue of Theorem 5.1:

Theorem 5.7 Let ∆ be an equilateral triangle and let Ω be a bounded open triangle
with |Ω|= |∆|. Assume that the logarithmic potential operator is positive for Ω and
∆. Then

‖LΩ‖p ≤ ‖L∆‖p (5.38)

for any integer 2≤ p < ∞.

Let u be a nonnegative, measurable function on R2, and let x2 be a line through
the origin of R2. Choose an orthogonal coordinate system in R2 such that the x1-axis
is perpendicular to x2. A nonnegative, measurable function u?(x|x2) on R2 is called
the Steiner symmetrization with respect to x2 of the function u(x), if u?(x1,x2) is a
symmetric decreasing rearrangement with respect to x1 of u(x1,x2) for each fixed x2.
The Steiner symmetrization (with respect to the x1-axis) Ω? of a measurable set Ω

is defined in the following way: if we write (x1,z) with z ∈ R, and let

Ωz = {x1 : (x1,z) ∈Ω},

then
Ω

? = {(x1,z) ∈ R×R : x1 ∈Ω
∗
z},

where Ω∗ is a symmetric rearrangement of Ω (see the proof of Theorem 5.3). We
obtain:

Lemma 5.8 For a positive function u and a measurable Ω⊂ R2 we have

∫
Ω

∫
Ω

∫
Ω

u(y) ln
1
|y− z|

ln
1
|z− x|

u(x)dzdydx≤∫
Ω?

∫
Ω?

∫
Ω?

u?(y) ln
1
|y− z|

ln
1
|z− x|

u?(x)dzdydx, (5.39)

where Ω? and u? are Steiner symmetrizations of Ω and u, respectively.

Let us prove Lemma 5.8. The proof is based on the proof of [29, Lemma 2]. Let
us fix r0 > 0 and consider the function

f (r) :=

{
ln 1

r , r ≤ r0,

ln 1
r0
−
∫ r

r0
s−1 1+r2

0
1+s2 ds, r > r0.

(5.40)
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The function f (r) is strictly decreasing and has a limit of r→ ∞,

lim
r→∞

f (r) =: f∞.

Since f (r) is strictly decreasing, ln 1
r − f (r) is decreasing. Thus if we define

h1(r) = f (r)− f∞

we have the decomposition

ln
1
r
= h1(r)+h2(r)

where h1 is a positive strictly decreasing function and h2 is decreasing. Hence by the
Brascamp-Lieb-Luttinger rearrangement inequality for the Steiner symmetrization
(see [22, Lemma 3.2]) we have

∫
Ω

∫
Ω

∫
Ω

u(y)h1(|y− z|)h1(|z− x|)u(x)dzdydx≤∫
Ω?

∫
Ω?

∫
Ω?

u?(y)h1(|y− z|)h1(|z− x|)u?(x)dzdydx. (5.41)

Thus, it remains to show that∫
Ω

∫
Ω

∫
Ω

u(y)h2(|y− z|)h2(|z− x|)u(x)dzdydx≤∫
Ω?

∫
Ω?

∫
Ω?

u?(y)h2(|y− z|)h2(|z− x|)u?(x)dzdydx (5.42)

and∫
Ω

∫
Ω

∫
Ω

u(y)h1(|y− z|)h2(|z− x|)u(x)dzdydx≤∫
Ω?

∫
Ω?

∫
Ω?

u?(y)h1(|y− z|)h2(|z− x|)u?(x)dzdydx, (5.43)

which does not follow directly from the Brascamp-Lieb-Luttinger rearrangement
inequality since h2 is not positive. Define for R > 0 the function

qR(r) :=
{

h2(r)−h2(R), r ≤ R,
0, r > R, (5.44)

and note that by the monotone convergence we have

IΩ(u,h2) = lim
R→∞

[
IΩ(u,qR)+2h2(R)JΩ(u,qR)+h2

2(R)
(∫

Ω

u(x)dx
)2
]
, (5.45)

with the notations

IΩ(u,g) =
∫

Ω

∫
Ω

∫
Ω

u(y)g(|y− z|)g(|z− x|)u(x)dzdydx (5.46)
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and
JΩ(u,g) =

∫
Ω

∫
Ω

∫
Ω

u(y)g(|z− x|)u(x)dzdydx. (5.47)

Since qR is positive and nonincreasing, and noting that∫
Ω

u(x)dx =
∫

Ω?
u?(x)dx,

we obtain
IΩ(u,qR)≤ IΩ?(u?,qR),

and
JΩ(u,qR)≤ JΩ?(u?,qR),

by the Brascamp-Lieb-Luttinger rearrangement inequality. Therefore,

IΩ(u,h2)

= lim
R→∞

[
IΩ(u,qR)+2h2(R)JΩ(u,qR)+h2

2(R)
(∫

Ω

u(x)dx
)2
]
≤

lim
R→∞

[
IΩ?(u?,qR)+2h2(R)JΩ?(u?,qR)+h2

2(R)
(∫

Ω
?

u?(x)dx
)2
]

= IΩ?(u?,h2). (5.48)

This proves the inequality (5.42). Similarly, now let us show that the inequality (5.43)
is valid. We have

ĨΩ(u,h2) = lim
R→∞

[ĨΩ(u,qR)+h2(R)J̃Ω(u,h1)], (5.49)

with the notations

ĨΩ(u,g) =
∫

Ω

∫
Ω

∫
Ω

u(y)h1(|y− z|)g(|z− x|)u(x)dzdydx (5.50)

and
J̃Ω(u,h1) =

∫
Ω

∫
Ω

∫
Ω

u(y)h1(|y− x|)u(x)dzdydx. (5.51)

Since both qR and h1 are positive and nonincreasing,

ĨΩ(u,qR)≤ ĨΩ?(u?,qR), (5.52)

and
J̃Ω(u,h1)≤ J̃Ω?(u?,h1), (5.53)

by the Brascamp-Lieb-Luttinger rearrangement inequality. Therefore, we obtain

ĨΩ(u,h2) = lim
R→∞

[ĨΩ(u,qR)+h2(R)J̃Ω(u,h1)]≤

lim
R→∞

[ĨΩ?(u?,qR)+h2(R)J̃Ω?(u?,h1)] = ĨΩ?(u?,h2).

This proves the inequality (5.43). �

Lemma 5.8 implies the following analogy of the Pólya theorem [89] for the oper-
ator LΩ.
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Theorem 5.9 The equilateral triangle ∆ centred at the origin is a minimiser of the
first characteristic number of the logarithmic potential LΩ among all triangles of a
given area, i.e.

1
|µ1(Ω)|

≤ 1
|µ1(∆)|

for any triangle Ω⊂ R2 with |Ω|= |∆|.

In other words, Theorem 5.9 says that the operator norm of LΩ is maximised in
an equilateral triangle among all triangles of a given area.

Let us prove Theorem 5.9. According to Lemma 5.4, the first characteristic num-
ber µ1 of the operator LΩ is simple; the corresponding eigenfunction u1 can be
chosen positive in Ω. Using the fact that by applying a sequence of the Steiner sym-
metrizations with respect to the mediator of each side, a given triangle converges to
an equilateral one (see e.g. [48, Figure 3.2]), from (5.39) we have

∫
Ω

∫
Ω

∫
Ω

u1(y)
1

2π
ln

1
|y− z|

1
2π

ln
1
|z− x|

u1(x)dzdydx≤∫
∆

∫
∆

∫
∆

u?1(y)
1

2π
ln

1
|y− z|

1
2π

ln
1
|z− x|

u?1(x)dzdydx. (5.54)

Thus, from (5.54) and the variational principle for the positive operator L 2
∆

, we
get

µ
2
1 (Ω) =

∫
Ω
|u1(x)|2dx∫

Ω

∫
Ω

∫
Ω

u1(y) 1
2π

ln 1
|y−z|

1
2π

ln 1
|z−x|u1(x)dzdydx

≥

∫
∆
|u?1(x)|2dx∫

∆

∫
∆

∫
∆

u?1(y)
1

2π
ln 1
|y−z|

1
2π

ln 1
|z−x|u

?
1(x)dzdydx

≥

inf
v∈L2(∆)

∫
∆
|v(x)|2dx∫

∆

∫
∆

∫
∆

v(y) 1
2π

ln 1
|y−z|

1
2π

ln 1
|z−x|v(x)dzdydx

= µ
2
1 (∆).

Note that here we have used the fact that the Steiner symmetrization preserves the
L2-norm. �

Finally, let us prove Theorem 5.6 and Theorem 5.7. Actually, the proofs of The-
orem 5.6 and Theorem 5.7 follow by the same steps as the proofs of Theorem 5.2
and Theorem 5.1, with the difference that now the Steiner symmetrization is used.
According to the property of the Steiner symmetrization (cf. [22, Lemma 3.2]), in
the same way as for the symmetric-decreasing rearrangement (5.35), it is clear that
any Steiner symmetrization increases (or at least does not decrease) the Schatten p-
norms for even integers p ≥ 2. Thus, for the proofs we only need to recall the fact
that a sequence of Steiner symmetrizations with respect to the mediator of each side,
a given triangle converges to an equilateral one. �

Any quadrilateral can be transformed into a rectangle by using a sequence of
three Steiner symmetrizations (see [48, Figure 3.3]). That is, it is sufficient to seek
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the maximisation problem among rectangles for P4. However, for P5 (pentagons
and others), the Steiner symmetrization increases, in general, the number of sides.
This prevents us from using the same technique for general polygons Pn with n≥ 5.

5.3 Riesz potential operators
In this section we discuss the spectral properties and several spectral geometric

inequalities for the Riesz potential operators. Our exposition here of the Riesz and
Bessel operators follows our open access paper [97] with G. Rozenblum.

Thus, let us consider the Riesz potential operators

(Rα,Ω f )(x) :=
∫

Ω

εα,d(|x− y|) f (y)dy, f ∈ L2(Ω), 0 < α < d, (5.55)

where Ω⊂ Rd is a set with finite Lebesgue measure,

εα,d(|x− y|) = cα,d |x− y|α−d (5.56)

and cα,d is a positive constant,

cα,d = 2α−d
π
−d/2 Γ(α/2)

Γ((d−α)/2)
.

The Riesz potential operators generalise the Riemann-Liouville operators to the set-
tings of several variables, and the Newton potential operators to fractional orders.
The fact that cα,d |x|α−d is the Fourier transform of the function |ξ |−α in Rd says that
the kernel is the fundamental solution of (−∆)α/2, i.e.

(−∆y)
α/2

εα,d(x− y) = δx,

where δx is the Dirac distribution. In particular, for an even integer α = 2m with
0 < m < d/2, the function

ε2m,d(|x|) = c2m,d |x|2m−d , (5.57)

is the fundamental solution to the polyharmonic equation of order 2m in Rd .
Thus, the polyharmonic (Newton) potential

(L −1
2m,Ω f )(x) :=

∫
Ω

ε2m,d(|x− y|) f (y)dy, f ∈ L2(Ω), (5.58)

is a particular case of the Riesz potential,

L −1
2m,Ω = R2m,Ω. (5.59)
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In the case m = 1, i.e. for the Laplacian, under the assumption of a sufficient
regularity of the boundary of Ω (for example, piecewise C1), it is known, see e.g.
[59], that the equation

u(x) = (L −1
2,Ω f )(x) =

∫
Ω

ε2,d(|x− y|) f (y)dy (5.60)

is equivalent to the equation

−∆u(x) = f (x), x ∈Ω, (5.61)

with the following nonlocal integral boundary condition

−1
2

u(x)+
∫

∂Ω

∂ε2,d(|x− y|)
∂ny

u(y)dSy−
∫

∂Ω

ε2,d(|x− y|)∂u(y)
∂ny

dSy = 0, x ∈ ∂Ω,

(5.62)
where ∂

∂ny
denotes the outer normal derivative at the point y ∈ ∂Ω. This approach

was further expanded in [60] to polyharmonic operators.
Discussions in this section, as it concerns integer values m≥ 1, take care of a gen-

eralisation of the boundary value problem (5.61)-(5.62). Moreover, for non-integer
values of m (i.e. α 6∈ 2Z), the operator (5.55) acts as the interior term in the resolvent
for boundary problems for the fractional power of the Laplacian, see, e.g. [114].

In the present section we show that the ball is a maximiser of some Schatten
p-norms of the Riesz potential operators among all domains of a given measure in
Rd . In particular, the result is valid for the polyharmonic Newton potential operator,
which is related to a nonlocal boundary value problem for the poly-Laplacian, so we
also show isoperimetric inequalities for its eigenvalues as well, namely, analogues of
Rayleigh-Faber-Krahn and Hong-Krahn-Szegö inequalities. Before we present these
results we give some preliminaries on basic spectral properties of the Riesz potential
operators.

5.3.1 Spectral properties of Rα,Ω

Consider the spectral problem of the Riesz potential operators

Rα,Ωu =
∫

Ω

εα(|x− y|)u(y)dy = λu, u ∈ L2(Ω), (5.63)

where the kernel is
εα,d(|x− y|) := cα,d |x− y|α−d ,

and 0 < α < d. We may sometimes drop the subscripts α,d and Ω in the notation of
the operator and the kernel, provided this does not cause confusion. Recall that in the
case of the Newton potential operator it is the same as considering the spectrum of
the operator corresponding to the boundary value problem (5.3)-(5.5), which we call
L =L2m,Ω, in a bounded connected domain Ω⊂Rd with a piecewise C1 continuous
boundary ∂Ω, that is,

(−∆x)
mu(x) = λ

−1u(x), x ∈Ω, m ∈ N, (5.64)

with the nonlocal boundary conditions (5.5).
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Let Ω ⊂ Rd be a set with finite Lebesgue measure. Then the well-known Schur
test shows immediately that Rα,Ω is bounded in L2(Ω). Also, it will be shown soon
that this operator is compact in L2(Ω) as well and belonging to certain Schatten-
von Neumann classes Sp. Since the Riesz kernel is symmetric, the operator Rα,Ω

is self-adjoint. For compact self-adjoint operators the singular values are equal to
the moduli of (nonzero) eigenvalues, and the corresponding eigenfunctions form a
complete orthogonal basis on L2. In addition, if the operator is nonnegative, the words
‘moduli of’ in the previous sentence can be omitted.

Thus, the eigenvalues of the Riesz potential operator Rα,Ω can be enumerated in
the descending order of their moduli,

|λ1| ≥ |λ2| ≥ ...

where λ j is repeated in this series according to its multiplicity. The corresponding
eigenfunctions can be denoted by u1,u2, . . . , so that for each eigenvalue λ j one can
fix a unique normalised eigenfunction u j:

Rα,Ωu j = λ ju j, j = 1,2, ....

The following lemma asserts that the operator Rα,Ω is compact and evaluates the
decay rate of its singular numbers.

Lemma 5.10 Let Ω ⊂ Rd be a measurable set with finite Lebesgue measure, 0 <
α < d. Then

(a) The Riesz potential operator Rα,Ω is nonnegative; this means, in particular,
that all eigenvalues are nonnegative,

λ j ≡ λ j(Rα,Ω) = |λ j(Rα,Ω)|= s j.

(b) For the eigenvalues λ j of Rα,Ω the following estimate holds:

λ j ≤C|Ω|ϑ j−ϑ ,

where ϑ = α/d. In particular, this implies the compactness of the operator
Rα,Ω.

In fact, for the Riesz operator Rα,Ω, the inequality

λ j ≤C|Ω|ϑ j−ϑ ,

is actually accompanied by an asymptotic formula for its eigenvalues. Indeed, as we
will see from the proof below, we can extend the operator Rα,Ω to an operator R̃α,Ω

on the whole space Rd without changing its nonzero singular numbers: in fact they
are related by

R̃α,Ω = Rα,Ω⊕000,
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in the direct sum decomposition L2(Rd) = L2(Ω)⊕ L2(Rd \Ω). Consequently, we
can write R̃α,Ω = (2π)dT ∗T for some explicitly given operator T : L2(Rd) →
L2(Rd),

T f (x) =
∫

Ω

εα/2,d(|x− y|) f (y)dy,

for which we have the asymptotics

s j(T )∼C j−α/(2d)|Ω|α/(2d).

In fact, such asymptotics are known for more general convolution type operators,
also with an explicitly given constant C. For a bounded set Ω, this asymptotics is a
particular case of general results of M. Birman and M. Solomyak [16] concerning
integral operators with weak polarity in the kernel. One can easily dispose of this
boundedness condition using the estimate and the asymptotic approximation proce-
dure as has been done many times since the early 1970s (see, for instance, in [17]
and [94]).

Let us prove Lemma 5.10. Using the formula for the fundamental solutions, it is
easy to see that

εα ′,d ∗ εα ′′,d(|x− y|)≡
∫
Rd

εα ′,d(|x− z|)εα ′′,d(|z− y|)dz

= (2π)d
εα ′+α ′′,d(|x− y|), (5.65)

for 0 < α ′,α ′′ < α ′+α ′′ < d. Since |ξ |−(α ′+α ′′) = |ξ |−α ′ |ξ |−α ′′ , this well-known
relation follows, for instance, from the fact, already mentioned, that εα,d is the
Fourier transform of |ξ |−α , and from the relation between the Fourier transform of a
product and the convolution of the Fourier transforms. We consider the operator

R̃α,Ω : L2(Rd) 3 f 7→ χΩ(x)
∫
Rd

εα,d(|x− y|)χΩ(x)(y) f (y)dy ∈ L2(Rd), (5.66)

where χΩ is the characteristic function of Ω. In the direct sum decomposition
L2(Rd) = L2(Ω)⊕ L2(Rd \Ω) the operator R̃α,Ω is represented as Rα,Ω ⊕000, so
the nonzero singular numbers of operators R̃α,Ω and Rα,Ω coincide. According to
the convolution property (5.65), the operator R̃α,Ω can be represented as (2π)dT ∗T ,
where T : L2(Rd)→ L2(Rd),

T f (x) =
∫

εα/2,d(|x− y|)χΩ(y) f (y)dy. (5.67)

In fact, the above relations show that the operator R̃α,Ω = T ∗T and, further on, the
operator Rα,Ω are nonnegative. This proves the case (a) in the lemma.

Moreover, the eigenvalues of Rα,Ω equal the squares of the singular numbers of
T . Thus, we can apply the Cwikel estimate, see [30], concerning the singular numbers
estimates for integral operators with a kernel of the form h(x− y)g(y). In our case,
h = εα/2,d , g = χΩ, and thus the Cwikel’s [30, estimate (1)], with p = 2d/α gives

s j(T )≤C j−1/p‖χΩ‖Lp =C j−α/(2d)|Ω|α/(2d), (5.68)
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with certain constant C =C(α,d) and, finally,

s j(Rα,Ω)≤C j−θ |Ω|θ , θ = α/d. (5.69)

This completes the proof of Lemma 5.10. �

It follows from Lemma 5.10 that the Riesz potential operator Rα,Ω belongs to
each Schatten class Sp with p > p0 = α/d and

‖Rα,Ω‖p =

(
∞

∑
j=1

λ j(Ω)p

) 1
p

, 1≤ p < ∞. (5.70)

In some further discussions, we need to calculate the trace of certain trace class
integral operators. For a positive trace class integral operator K with continuous ker-
nel K(x,y) on a (nice) set Ω, it is well known that

Tr(K) =
∫

Ω

K(x,x)dx.

This fact cannot be used directly in our more general setting, since our set Ω is not
supposed to be nice and we cannot grant the continuity of the kernels in question. So
we need to do some additional work.

In general, for an integral operator K with kernel K(x,y) an exact criterion for
membership in the Schatten-von Neumann classes Sp in terms of the kernel exists
only for p = 2, that is, for Hilbert-Schmidt operators (but see also conditions for
Schatten classes in terms of the regularity of the kernel in Section 3.10). Namely for
K to belong to S2, it is necessary and sufficient that

∫∫
Ω×Ω
|K(x,y)|2dxdy < ∞ (see

Theorem 3.84), moreover, ‖K‖2
2 equals exactly the above integral and for the trace

class operator K∗K the same integral equals its trace.
Now let us apply the trace formula in Theorem 3.95 to our kernel

K(x,y) = εα,d(|x− y|), x,y ∈Ω.

For its definition it follows that the kernel K(x,y) belongs to Lp′,p(Ω×Ω) for any
p > d

α
. That is, for the trace of Ks formula (3.120) is valid, and thus, for s > p0 =

d
α

we have

∑λ j(Rα,Ω)
s = Tr(Rs

α,Ω)

=
∫
Ωs

(
s

∏
k=1

K(xk,xk+1)

)
dx1dx2 . . .dxs, xs+1 ≡ x1. (5.71)

Note that for the membership in the Schatten classes Sp with p < 2 usually a
certain regularity of the kernel is required. We can recall from Theorem 3.87 (or from
Theorem 3.91) that if the integral kernel K of an operator K f (x) =

∫
Ω

K(x,y) f (y)dy
satisfies

K ∈ Hµ(Ω×Ω)
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for a space Ω of dimension d then

K ∈ Sp(L2(Ω)) for p >
2d

d +2µ
.

In the case of the Riesz potential with K(x,y) = εα,d(|x− y|) it implies that

Rα,Ω ∈ Sp(L2(Ω)) for p >
d
α
.

As was already mentioned, if the integral kernel K(s) of the operator Ks is not con-
tinuous, the formula Tr(Ks) =

∫
Ω

K(s)(x,x)dx may not hold but it can be replaced by
the formula (3.120) (and hence also (5.71)). However, there is also another expres-
sion for the trace: if K̃(s) denotes the averaging of K(s) with respect to the martingale
maximal function, we have

Tr(Ks) =
∫

Ω

K̃(s)(x,x)dx,

as in (3.124). For the description of K̃(s), its properties and further references we
refer to [34, Section 4].

5.3.2 Spectral geometric inequalities for Rα,Ω

In this section we present some spectral geometric inequalities for the Riesz
potential operator Rα,Ω. As usual, here |Ω| denotes the Lebesgue measure of Ω.

Theorem 5.11 Let Ω∗ be a ball in Rd . For any integer p with p0 := d
α
< p≤ ∞, we

have
‖Rα,Ω‖p ≤ ‖Rα,Ω∗‖p, (5.72)

for all Ω with |Ω|= |Ω∗|.

Since the integral kernel of Rα,Ω is positive, the statement, sometimes called
Jentsch’s theorem, applies, see, e.g. [94]. We give it here without proof since it is
very similar to the proofs of Lemma 5.4 or Lemma 5.18.

Lemma 5.12 The eigenvalue λ1 of Rα,Ω with the largest modulus is positive and
simple; the corresponding eigenfunction u1 is positive, and any other eigenfunction
u j, j > 1, is sign changing in Ω.

Note that we have already established in Lemma 5.10 that all λ j(Ω), i = 1,2, ..., are
positive for any domain Ω, so the positivity of λ1 is already known, since the operator
Rα,Ω is nonnegative; what is important is the positivity of u1.

First we prove the following analogue of Rayleigh-Faber-Krahn theorem for the
operator Rα,Ω, that is, p = ∞ case in Theorem 5.11. We will use this fact further on.
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Lemma 5.13 (Rayleigh-Faber-Krahn inequality) The ball Ω∗ is a maximiser of the
first eigenvalue of the operator Rα,Ω among all domains of a given volume, i.e.

0 < λ1(Ω)≤ λ1(Ω
∗)

for an arbitrary domain Ω⊂ Rd with |Ω|= |Ω∗|.

In other words Lemma 5.13 says that the operator norm of Rα,Ω is maximised in
the ball among all Euclidean domains of a given volume.

Let us prove Lemma 5.13. According to the Riesz inequality in Theorem 4.10 and
the fact that εα(|x− y|) is a symmetric-decreasing function, we obtain∫

Ω

∫
Ω

u1(y)εα(|y− x|)u1(x)dydx≤
∫

Ω∗

∫
Ω∗

u∗1(y)εα(|y− x|)u∗1(x)dydx, (5.73)

where u∗1 is symmetric decreasing rearrangement of the function u1. In addition, for
each nonnegative function u ∈ L2(Ω) we have

‖u‖L2(Ω) = ‖u
∗‖L2(Ω∗). (5.74)

Therefore, from (5.73), (5.74) and the variational principle for λ1(Ω
∗), we get

λ1(Ω) =

∫
Ω

∫
Ω

u1(y)εα(|y− x|)u1(x)dydx∫
Ω
|u1(x)|2dx

≤

∫
Ω∗
∫

Ω∗ u∗1(y)εα(|y− x|)u∗1(x)dydx∫
Ω∗ |u∗1(x)|2dx

≤

sup
v∈L2(Ω∗),v6=0

∫
Ω∗
∫

Ω∗ v(y)εα(|y− x|)v(x)dydx∫
Ω∗ |v(x)|2dx

= λ1(Ω
∗),

completing the proof. �

Let us now prove Theorem 5.11. According to Theorem 3.95, we have

∞

∑
j=1

λ
p
j (Ω) =

∫
Ω

...
∫

Ω

εα(|y1−y2|)...εα(|yp−y1|)dy1...dyp, p > p0, p ∈N. (5.75)

It follows from the Brascamp-Lieb-Luttinger inequality ([22]) that∫
Ωp

εα(|y1− y2|)...εα(|yp− y1|)dy1...dyp

≤
∫

Ω∗
...
∫

Ω∗
εα(|y1− y2|)...εα(|yp− y1|)dy1...dyp. (5.76)

This implies
∞

∑
j=1

λ
p
j (Ω)≤

∞

∑
j=1

λ
p
j (Ω

∗), p ∈ N, p > p0, (5.77)
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for Ω ⊂ Rd with |Ω| = |Ω∗|. Here the fact that the kernel εα is a symmetric-
decreasing function in Ω∗×Ω∗ is used, i.e.

ε
∗
α(|x− y|) = εα(|x− y|), x,y ∈Ω

∗×Ω
∗. �

We also present the following analogue of the Hong-Krahn-Szegő inequality for
the Riesz potential operators:

Theorem 5.14 (Hong-Krahn-Szegő inequality) The maximum of the second eigen-
value λ2(Ω) of Rα,Ω among all sets Ω⊂ Rd with a given measure is approached by
the union of two identical balls with mutual distance going to infinity.

In Theorem 5.14 we have λ2(Ω) > 0 since all the eigenvalues of Rα,Ω are non-
negative (see Lemma 5.10). Note that a similar result for the Dirichlet Laplacian is
called the Hong-Krahn-Szegő inequality. See, for instance, [23] and [66] for further
reference. We also refer to [24] which deals with the second eigenvalue of a nonlocal
and nonlinear p-Laplacian operator.

To prove Theorem 5.14, the classical two-ball trick, Lemma 5.12 and Lemma
5.13 can be used. Thus, in the remainder of this subsection we prove Theorem 5.14.

Introducing the following sets:

Ω
+ := {x : u2(x)> 0}, Ω

− := {x : u2(x)< 0},

we have,
u2(x)> 0, ∀x ∈Ω

+ ⊂Ω, Ω
+ 6= { /0},

u2(x)< 0, ∀x ∈Ω
− ⊂Ω, Ω

− 6= { /0},

and it follows from Lemma 5.12 that the sets Ω− and Ω+ both have positive Lebesgue
measure. Denoting

u+2 (x) :=
{

u2(x), in Ω+,
0, otherwise, (5.78)

and

u−2 (x) :=
{

u2(x), in Ω−,
0, otherwise,

we have

λ2(Ω)u2(x) =
∫

Ω+
εα(|x− y|)u+2 (y)dy+

∫
Ω−

εα(|x− y|)u−2 (y)dy, x ∈Ω.

Multiplying both sides of this equality by u+2 (x) and integrating over Ω+ we obtain

λ2(Ω)
∫

Ω+
|u+2 (x)|

2dx =
∫

Ω+
u+2 (x)

∫
Ω+

εα(|x− y|)u+2 (y)dydx

+
∫

Ω+
u+2 (x)

∫
Ω−

εα(|x− y|)u−2 (y)dydx, x ∈Ω.
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The second term on the right-hand side of this inequality is non-positive since the
integrand is non-positive. Thus, we get

λ2(Ω)
∫

Ω+
|u+2 (x)|

2dx≤
∫

Ω+
u+2 (x)

∫
Ω+

εα(|x− y|)u+2 (y)dydx,

that is, ∫
Ω+ u+2 (x)

∫
Ω+ εα(|x− y|)u+2 (y)dydx∫
Ω+ |u+2 (x)|2dx

≥ λ2(Ω).

By the variational principle, we obtain

λ1(Ω
+) = sup

v∈L2(Ω+),v6≡0

∫
Ω+ v(x)

∫
Ω+ εα(|x− y|)v(y)dydx∫

Ω+ |v(x)|2dx

≥
∫

Ω+ u+2 (x)
∫

Ω+ εα(|x− y|)u+2 (y)dydx∫
Ω+ |u+2 (x)|2dx

≥ λ2(Ω).

Similarly, we establish
λ1(Ω

−)≥ λ2(Ω).

Therefore, we have

λ1(Ω
+)≥ λ2(Ω), λ1(Ω

−)≥ λ2(Ω). (5.79)

Now we introduce B+ and B−, the balls of the same volume as Ω+ and Ω−, respec-
tively. According to Lemma 5.13, we obtain

λ1(B+)≥ λ1(Ω
+), λ1(B−)≥ λ1(Ω

−). (5.80)

Comparing (5.79) and (5.80), we get

min{λ1(B+), λ1(B−)} ≥ λ2(Ω). (5.81)

Now let us consider the set B+∪B−, with the balls B± placed at distance l, that is,

l = dist(B+,B−),

Let us denote by u~1 the first normalised eigenfunction of Rα,B+∪B− and take u+
and u− being the first normalised eigenfunctions of each single ball, i.e. of operators
Rα,B± . Moreover, we introduce the function v~ ∈ L2(B+∪B−), which equals u+ in
B+ and γu− in B−. Because the functions u+,u−,u~ are positive, it is possible to find
a real number γ so that v~ is orthogonal to u~1 . We can write

∫
B+∪B−

∫
B+∪B−

v~(x)v~(y)εα(|x− y|)dxdy =
4

∑
i=1

Ii, (5.82)

where
I1 :=

∫
B+

∫
B+

u+(x)u+(y)εα(|x− y|)dxdy,
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I2 :=
∫

B+

∫
B−

u+(x)u−(y)εα(|x− y|)dxdy,

I3 := γ

∫
B−

∫
B+

u−(x)u+(y)εα(|x− y|)dxdy,

I4 := γ
2
∫

B−

∫
B−

u−(x)u−(y)εα(|x− y|)dxdy.

By using the variational principle, we obtain

λ2(B+∪B−) = sup
v∈L2(B+

⋃
B−),v⊥u1,‖v‖=1

∫
B+∪B−

∫
B+∪B−

v(x)v(y)εα(|x− y|)dxdy.

By construction v~ is orthogonal to u1, so we get

λ2(B+∪B−)≥
∫

B+∪B−

∫
B+∪B−

v~(x)v~(y)εα(|x− y|)dxdy =
4

∑
i=1

Ii.

Moreover, since u+ and u− are the first normalised eigenfunctions (by Lemma 5.4
both are positive everywhere) of each single ball B+ and B−, we have

λ1(B±) =
∫

B±

∫
B±

u±(x)u±(y)εα(|x− y|)dxdy

Summarising the above facts, we obtain

λ2(B+∪B−)≥

∫
B+

∫
B+ u+(x)u+(y)εα(|x− y|)dxdy

+γ2 ∫
B−
∫

B− u−(x)u−(y)εα(|x− y|)dxdy+I2 +I3

λ1(B+)−1 ∫
B+

∫
B+ u+(x)u+(y)εα(|x− y|)dxdy

+γ2λ1(B−)−1 ∫
B−
∫

B− u−(x)u−(y)εα(|x− y|)dxdy

. (5.83)

Since the kernel εα(|x− y|) tends to zero as x ∈ B±, y ∈ B∓ and l→ ∞, we observe
that

lim
l→∞

I2 = lim
l→∞

I3 = 0,

thus
lim
l→∞

λ2(B+
⋃

B−)≥max{λ1(B+), λ1(B−)}, (5.84)

where l = dist(B+,B−). The inequalities (5.81) and (5.84) imply that the optimal set
for λ2 does not exist. Moreover, taking Ω≡ B+⋃B− with l = dist(B+,B−)→∞, and
B+ and B− being identical, from the inequalities (5.81) and (5.84) we arrive at

lim
l→∞

λ2(B+
⋃

B−)≥min{λ1(B+), λ1(B−)}= λ1(B+)

= λ1(B−)≥ lim
l→∞

λ2(B+∪B−),

and this implies that the maximising sequence for λ2 is given by a disjoint union of
two identical balls with mutual distance going to ∞. �
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5.4 Bessel potential operators
Following the analysis of Riesz potential operators in the previous section, we

now briefly discuss some questions of the spectral geometry and boundary properties
for Bessel potential operators in open bounded Euclidean domains. In particular, the
results apply to differential operators related to a nonlocal boundary value problem
for the Helmholtz equation, so we obtain isoperimetric inequalities for its eigenvalues
as well.

In L2(Ω), Ω⊂ Rd , consider the Bessel potential operators

(Bα,Ω f )(x) :=
∫

Ω

εα,d(|x− y|) f (y)dy, f ∈ L2(Ω), 0 < α < d, (5.85)

where

εα,d(|x− y|) = cα,d

K d−α
2
(|x− y|)

|x− y| d−α
2

, (5.86)

with

cα,d =
2

2−m−α
2

πd/2Γ(α/2)
.

Here Kν is the modified Bessel function of the second kind (the McDonald function):

Kν(z) =
π

2sinυπ
(I−ν(z)−Iν(z)) , ν 6= 0,±1,±2, . . . ,

Kn(z) = lim
ν→n

Kν(z), n = 0,±1,±2, . . .

and

Iν =
∞

∑
k=0

(z/2)ν+2k

k!Γ(ν + k+1)
.

For an even integer α = 2m with 0 < m < d/2, the kernel ε2m,d(|x|) is the funda-
mental solution to the poly-Helmholtz equation of order 2m in Rd :

(I−∆x)
m

εα,d(|x− y|) = δy, m = 1,2, . . . ,

where I is the identity operator, ∆x is the Laplacian with respect to the point x ∈ Rd

and δy is the Dirac distribution at the point y ∈ Rd .
In a bounded connected set (domain) Ω⊂Rd with a piecewise C1 boundary ∂Ω,

as an analogue to (5.62) we consider the poly-Helmholtz equation

L u(x) := (I−∆x)
mu(x) = f (x), x ∈Ω, , m = 1,2, . . . . (5.87)

To relate the Bessel potential (5.85) (α = 2m and 0<m< d/2) to the boundary value
problem (5.87) in Ω, we will show that for any f ∈ L2(Ω), the Bessel potential (5.85)
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belongs to the functional class H2m(Ω) and satisfies the following nonlocal integral
boundary conditions

− 1
2
L iu(x)+

m−i−1

∑
j=0

∫
∂Ω

∂

∂ny
L m−i−1− j

ε2(m−i),d(|x− y|)L j+iu(y)dSy

−
m−i−1

∑
j=0

∫
∂Ω

L m−i−1− j
ε2(m−i),d(|x− y|) ∂

∂ny
L j+iu(y)dSy = 0, x ∈ ∂Ω, (5.88)

for i = 0,1, . . . ,m− 1. Conversely, if u ∈ H2m(Ω) satisfies (5.87) and the boundary
conditions (5.88) for i = 0,1, . . . ,m− 1, then it coincides with the (polyharmonic)
volume potential (defined by the formula (5.85)). On the other hand, this means that
the analysis of the Bessel potential operators (5.85) yields corresponding result for
the boundary value problem (5.87)–(5.88).

Thus, we can summarise the facts of this section as:

• Let Ω∗ be a ball in Rd . Then for any integer p with d/α < p≤ ∞ we have

‖Bα,Ω‖p ≤ ‖Bα,Ω∗‖p, 0 < α < d, (5.89)

for any domain Ω with |Ω|= |Ω∗|. Here ‖ · ‖p is the Schatten p-norm and | · |
is the Lebesgue measure. Note that for p = ∞ this result gives an analogue of
the famous Rayleigh-Faber-Krahn inequality for the Bessel potentials.

• Also, we construct a well-posed boundary value problem (5.87)-(5.88) for the
poly-Helmholtz equation, which is related to the Bessel potential.

5.4.1 Spectral properties of Bα,Ω

According to the discussions of Reisz potential operators in Section 5.3, in the
same way the eigenvalues of Bα,Ω may be enumerated in descending order,

λ1 ≥ λ2 ≥ ...

where λ j is repeated in this series with respect to its multiplicity. As usual we denote
the corresponding eigenfunctions by u1,u2, . . . , so that for each eigenvalue λ j one
and only one corresponding normalised eigenfunction u j is fixed,

Bα,Ωu j = λ ju j, j = 1,2, ....

Recall the Bessel operator Bα,Ω is nonnegative, means, in particular, that all eigen-
values are nonnegative and equal to its singular values

λ j ≡ λ j(Bα,Ω) = |λ j(Bα,Ω)|= s j.

In addition, for each eigenvalue λ j one has the inequality

λ j ≤C|Ω|ϑ j−ϑ , (5.90)
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where ϑ = α/d. This implies the compactness of the operator in Ω ⊂ Rd , which is
a measurable set with finite Lebesgue measure. This also means the Bessel operator
Bα,Ω belongs to all Schatten class Sp with p > α/d and

‖Bα,Ω‖p =

(
∞

∑
j=1

λ j(Ω)p

) 1
p

, 1≤ p < ∞. (5.91)

Furthermore, applying Theorem 3.95 to the Bessel operator kernel K(x,y) =
εα,d(|x− y|), x,y ∈ Ω, that is, since the measure of Ω is finite, the kernel K(x,y)
belongs to Lp′,p(Ω×Ω) for any p > d

α
. Therefore, for s > d

α
we have

∑λ j(Bα,Ω)
s = Tr(Bs

α,Ω)

=
∫
Ωs

(
s

∏
k=1

K(xk,xk+1)

)
dx1dx2 . . .dxs, xs+1 ≡ x1. (5.92)

Thus, we have:

Theorem 5.15 For any integer p with d
α
< p≤ ∞, we have

‖Bα,Ω‖p ≤ ‖Bα,Ω∗‖p, 0 < α < d, (5.93)

for any domain Ω with |Ω|= |Ω∗|, where Ω∗ is a ball in Rd .

By Jentsch’s theorem (as in Lemma 5.4 or Lemma 5.18), the eigenvalue λ1 of
Bα,Ω with the largest modulus is positive and simple; the corresponding eigenfunc-
tion u1 is positive, and any other eigenfunction u j, j > 1, is sign changing in Ω. Note
that the positivity of λ1 is already known, since the operator Bα,Ω is nonnegative;
what is important is the positivity of u1.

Proof of the analogue of the famous Rayleigh-Faber-Krahn theorem for the oper-
ator Bα,Ω is the same as the proof of Lemma 5.13. That is for p = ∞: The ball Ω∗

is a maximiser of the first eigenvalue of the operator Bα,Ω among all domains of a
given volume, i.e.

0 < λ1(Ω)≤ λ1(Ω
∗)

for an arbitrary domain Ω ⊂ Rd with |Ω| = |Ω∗|. In other words it means that the
operator norm of Bα,Ω is maximised in the ball among all Euclidean domains of a
given volume.

Theorem 5.15 can be proved in the same way as Theorem 5.11. Note that an
analogue of Theorem 5.14 is also proved the same way for the Bessel operators.

5.4.2 Boundary properties of Bα,Ω

Let Ω ⊂ Rd be an open bounded domain with a piecewise smooth boundary
∂Ω ∈C1. For m ∈ N, we denote

L m := L L m−1, m = 2,3, . . . ,
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with
L = I−∆.

Then for m = 1,2, . . ., we consider the equation

L mu(x) = f (x), x ∈Ω, (5.94)

for a given f ∈ L2(Ω) and

u(x) =
∫

Ω

f (y)ε2m(|x− y|)dy (5.95)

in Ω⊂ Rd , where ε2m(|x− y|) is a fundamental solution of (5.94).
A simple calculation shows that the Bessel potential (5.95) is a solution of (5.94)

in Ω. Also it is known that if f ∈ L2(Ω), then u ∈ H2m(Ω) (see, e.g. [6]).
We now describe a boundary condition on ∂Ω such that with this boundary con-

dition equation (5.94) has a unique solution in H2m(Ω), which coincides with (5.95).

Theorem 5.16 For any f ∈ L2(Ω), the Bessel potential (5.95) is a unique solution
of equation (5.94) in H2m(Ω)∩H2m−1(Ω) with the m boundary conditions

−L iu(x)
2

+
m−i−1

∑
j=0

∫
∂Ω

L j+iu(y)
∂

∂ny
L m−1− j

ε2m(|x− y|)dSy

−
m−i−1

∑
j=0

∫
∂Ω

L m−1− j
ε2m(|x− y|) ∂

∂ny
L j+iu(y)dy = 0, x ∈ ∂Ω, (5.96)

for all i = 0,1, . . . ,m−1.

The remainder of this section is devoted to the proof of Theorem 5.16. Applying
Green’s second formula for each x ∈Ω, we calculate

u(x) =
∫

Ω

f (y)ε2m(|x− y|)dy =
∫

Ω

L mu(y)ε2m(|x− y|)dy

=
∫

Ω

L m−1u(y)L ε2m(|x− y|)dy−
∫

∂Ω

L m−1u(y)
∂

∂ny
ε2m(|x− y|)dSy

+
∫

∂Ω

ε2m(|x− y|) ∂

∂ny
L m−1u(y)dSy =

∫
Ω

L m−2u(y)L 2
ε2m(|x− y|)dy
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−
∫

∂Ω

L m−2u(y)
∂

∂ny
L ε2m(|x− y|)dSy

+
∫

∂Ω

L ε2m(|x− y|) ∂

∂ny
L m−2u(y)dSy

−
∫

∂Ω

L m−1u(y)
∂

∂ny
ε2m(|x− y|)dSy

+
∫

∂Ω

ε2m(|x− y|) ∂

∂ny
L m−1u(y)dSy = ...

= u(x)−
m−1

∑
j=0

∫
∂Ω

L ju(y)
∂

∂ny
L m−1− j

ε2m(|x− y|)dSy

+
m−1

∑
j=0

∫
∂Ω

L m−1− j
ε2m(|x− y|) ∂

∂ny
L ju(y)dSy, x ∈Ω.

where ∂

∂ny
is the unit outer normal at the point y on the boundary ∂Ω.

This gives the identity

m−1

∑
j=0

∫
∂Ω

L ju(y)
∂

∂ny
L m−1− j

ε2m(|x− y|)dSy

−
m−1

∑
j=0

∫
∂Ω

L m−1− j
ε2m(|x− y|) ∂

∂ny
L ju(y)dSy = 0, x ∈Ω. (5.97)

Using the properties of the double- and single-layer potentials as x approaches
the boundary ∂Ω from the interior, (5.97) gives

− u(x)
2

+
m−1

∑
j=0

∫
Ω

L ju(y)
∂

∂ny
L m−1− j

ε2m(|x− y|)dSy

−
m−1

∑
j=0

∫
∂Ω

L m−1− j
ε2m(|x− y|) ∂

∂ny
L ju(y)dSy = 0, x ∈ ∂Ω.

Thus, this relation is one of the boundary conditions of (5.95). Let us derive the
remaining boundary conditions. To do it, we set

L m−iL iu = f , i = 0,1, . . . ,m−1, m = 1,2, . . . , (5.98)

and carry out similar calculations just as above. This yields
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L iu(x) =
∫

Ω

f (y)L i
ε2m(|x− y|)dy =

∫
Ω

L m−iL iu(y)L i
ε2m(|x− y|)dy

=
∫

Ω

L m−i−1L iu(y)L L i
ε2m(|x− y|)dy

−
∫

∂Ω

L m−i−1L iu(y)
∂

∂ny
L i

ε2m(|x− y|)dSy

+
∫

∂Ω

L i
ε2m(|x− y|) ∂

∂ny
L m−i−1L iu(y)dSy

=
∫

Ω

L m−i−2L iu(y)L 2L i
ε2m(|x− y|)dy

−
∫

∂Ω

L m−i−2L iu(y)
∂

∂ny
L L i

ε2m(|x− y|)dSy

+
∫

∂Ω

L L i
ε2m(|x− y|) ∂

∂ny
L m−i−2L iu(y)dSy

−
∫

∂Ω

L m−i−1L iu(y)
∂

∂ny
L i

ε2m(|x− y|)dSy

+
∫

∂Ω

L i
ε2m(|x− y|) ∂

∂ny
L m−i−1L iu(y)dSy

= ...=
∫

Ω

L iu(y)L m−iL i
ε2m(|x− y|)dy

−
m−i−1

∑
j=0

∫
∂Ω

L jL iu(y)
∂

∂ny
L m−i−1− jL i

ε2m(|x− y|)dSy

+
m−i−1

∑
j=0

∫
∂Ω

L m−i−1− jL i
ε2m(|x− y|) ∂

∂ny
L jL iu(y)dSy

= L iu(x)−
m−i−1

∑
j=0

∫
∂Ω

L j+iu(y)
∂

∂ny
L m−1− j

ε2m(|x− y|)dSy

+
m−i−1

∑
j=0

∫
∂Ω

L m−1− j
ε2m(|x− y|) ∂

∂ny
L j+iu(y)dSy, x ∈Ω,

where, L iεm is a fundamental solution of equation (5.98), that is,

L m−iL i
ε2m = δ , i = 0,1, . . . ,m−1.
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The previous relations imply

m−i−1

∑
j=0

∫
∂Ω

L j+iu(y)
∂

∂ny
L m−1− j

ε2m(|x− y|)dSy

−
m−i−1

∑
j=0

∫
∂Ω

L m−1− j
ε2m(|x− y|) ∂

∂ny
L j+iu(y)dSy = 0

for any x ∈Ω and i = 0,1, . . . ,m−1. According to the properties of the double- and
single-layer potentials as x approaches the boundary ∂Ω from the interior of Ω, we
obtain

−L iu(x)
2

+
m−i−1

∑
j=0

∫
Ω

L j+iu(y)
∂

∂ny
L m−1− j

ε2m(|x− y|)dSy

−
m−i−1

∑
j=0

∫
∂Ω

L m−1− j
ε2m(|x− y|) ∂

∂ny
L j+iu(y)dSy = 0, x ∈ ∂Ω,

are all boundary conditions of (5.95) for each i = 0,1, . . . ,m−1.

To prove the uniqueness of the solution, let us show that if a function w ∈
H2m(Ω)∩H2m−1(Ω) satisfies the equation L mw = f and the boundary conditions
(5.96), then it coincides with the solution (5.95). Indeed, otherwise the function

v = u−w ∈ H2m(Ω)∩H2m−1(Ω),

where u is the generalised volume potential (5.95), satisfies the homogeneous equa-
tion

L mv = 0 (5.99)

and the boundary conditions (5.96), i.e.

Ii(v)(x) :=−L iv(x)
2

+
m−i−1

∑
j=0

∫
Ω

L j+iv(y)
∂

∂ny
L m−1− j

ε2m(|x− y|)dSy

−
m−i−1

∑
j=0

∫
∂Ω

L m−1− j
ε2m(|x− y|) ∂

∂ny
L j+iv(y)dSy = 0, i = 0,1, . . . ,m−1,
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for x ∈ ∂Ω. By applying the Green formula to the function v ∈H2m(Ω)∩H2m−1(Ω)
and by following the lines of the above argument, we obtain

0 =
∫

Ω

L mv(x)L i
ε2m(|x− y|)dy

=
∫

Ω

L m−iL iv(x)L i
ε2m(|x− y|)dy

=
∫

Ω

L m−1v(x)L L i
ε2m(|x− y|)dy

−
∫

∂Ω

L m−1v(x)
∂

∂ny
L i

ε2m(|x− y|)dSy

+
∫

∂Ω

L i
ε2m(|x− y|) ∂

∂ny
L m−1v(x)dSy = ...

= L iv(x)−
m−i−1

∑
j=0

∫
∂Ω

L j+iv(y)
∂

∂ny
L m−1− j

ε2m(|x− y|)dSy

+
m−i−1

∑
j=0

∫
∂Ω

L m−1− j
ε2m(|x− y|) ∂

∂ny
L j+iv(y)dSy, i = 0,1, . . . ,m−1.

By passing to the limit as x→ ∂Ω, we obtain the relations

L iv(x) |x∈∂Ω= Ii(v)(x) |x∈∂Ω= 0, i = 0,1, . . . ,m−1. (5.100)

Assuming for the moment the uniqueness of the solution of the boundary value
problem

L mv = 0, (5.101)

L iv |∂Ω= 0, i = 0,1, . . . ,m−1,

we get that v = u−w≡ 0, for all x ∈ Ω, i.e. w coincides with u in Ω. Thus (5.95) is
the unique solution of the boundary value problem (5.94), (5.96) in Ω.

It remains to argue that the boundary value problem (5.101) has a unique solution
in H2m(Ω)∩H2m−1(Ω). Denoting ṽ := L m−1v, this follows by induction from the
uniqueness in C2(Ω)∩C1(Ω) of the problem

L ṽ = 0, ṽ |∂Ω= 0.

The proof of Theorem 5.16 is complete. �

5.5 Riesz transforms in spherical and hyperbolic geometries
We now discuss the spectral geometric properties of the Riesz transforms in non-

flat geometries, namely, in the cases of the spheres and of the hyperbolic spaces.
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Thus, let M be a complete, connected, simply connected Riemannian manifold of
constant sectional curvature. Let dy be the Riemannian measure on M, and let d(x,y)
be the Riemannian geodesic distance. As is well-known, the three possibilities for
M are the sphere Sn, the Euclidean space Rn and the real hyperbolic space Hn for
positive, zero, and negative curvature, respectively. As the Euclidean case has been
already treated in Section 5.3, we now discuss the other two cases.

Let us consider the Riesz transform

Rα f (x) :=
∫

M

1
d(x,y)α

f (y)dy, (5.102)

where f will be assumed to be compactly supported in an open bounded set Ω⊂M.
In fact, we can also consider the family of operators

Rα,Ω f (x) :=
∫

Ω

1
d(x,y)α

f (y)dy, 0 < α < n, (5.103)

depending on Ω. In the present section we are interested in the behaviour of the first
and second eigenvalues of operators Rα,Ω.

Now we describe the results on Sn and Hn, similar to the Euclidean results of
Section 5.3. In the case of the real hyperbolic space Hn we also establish the analogue
of the Hong-Krahn-Szegő inequality on Rn, namely, the description of Ω for which
the second eigenvalue is maximised. In fact, our results apply to a more general class
of convolution type operators than the Riesz transforms (5.103) that we will now
describe.

Let Ω⊂ Sn or Ω⊂Hn be an open bounded set. We consider the following integral
operator KΩ : L2(Ω)→ L2(Ω) defined by

KΩ f (x) :=
∫

Ω

K(d(x,y)) f (y)dy, f ∈ L2(Ω), (5.104)

which we assume to be compact. Here d(x,y) is the distance between the points x
and y in the space Sn or Hn. Throughout this section we assume that the kernel K(·)
is (say, a member of L1(Sn) or L1

loc(Hn)) real, positive and non-increasing, that is,
the kernel K : [0,∞)→ R+ satisfies

K(ρ1)≥ K(ρ2) if ρ1 ≤ ρ2. (5.105)

Since the kernel K is a real and symmetric function, KΩ is a self-adjoint operator.
So, all of its eigenvalues are real. Thus, the eigenvalues of KΩ can be enumerated in
the descending order of their moduli,

|λ1| ≥ |λ2| ≥ ..., (5.106)

where λ j = λ j(Ω) is repeated in this series according to its multiplicity. Further
on, the corresponding eigenfunctions will be denoted by u1,u2, ..., so that for each
eigenvalue λ j there is a unique corresponding normalised eigenfunction u j:

KΩu j = λ j(Ω)u j, j = 1,2, . . . .
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As we mentioned above, in this section we are interested in spectral geometric
inequalities of the convolution type operator KΩ for the first and the second eigen-
values.

Summarising the main results of this section for operators KΩ in both cases of
Sn or Hn, we present the following facts:

• Rayleigh-Faber-Krahn type inequality: the first eigenvalue of KΩ is max-
imised on the geodesic ball among all domains of a given measure in Sn or
Hn;

• Hong-Krahn-Szegő type inequality: the maximum of the second eigenvalue
of (positive) KΩ among bounded open sets with a given measure in Hn is
achieved by the union of two identical geodesic balls with mutual distance
going to infinity.

The presentation of this section follows our open access paper [102].

5.5.1 Geometric inequalities for the first eigenvalue

Let M denote Sn or Hn. We assume that Ω ⊂ M is an open bounded set, and
consider compact integral operators on L2(Ω) of the form

KΩ f (x) =
∫

Ω

K(d(x,y)) f (y)dy, f ∈ L2(Ω), (5.107)

where the kernel K is real, positive and non-increasing, that is, K satisfies (5.105). By
|Ω| we will denote the Riemannian measure of Ω. We prove the following analogue
of the Rayleigh-Faber-Krahn inequality for the integral operator KΩ.

Theorem 5.17 (Rayleigh-Faber-Krahn inequality) The geodesic ball Ω∗ ⊂ M is a
maximiser of the first eigenvalue of the operator KΩ among all domains of a given
measure in M, that is, more precisely we have

λ1(Ω)≤ λ1(Ω
∗) (5.108)

for an arbitrary domain Ω⊂M with |Ω|= |Ω∗|.

Note that, in other words, Theorem 5.17 says that the operator norm ‖KΩ‖ is
maximised in a geodesic ball among all domains of a given measure.

Since the integral kernel of K is positive, the following statement, sometimes
called Jentsch’s theorem, applies. However, for completeness we restate and give its
proof on the symmetric space M (that is, Sn or Hn). This also shows that (5.108) is
the inequality between positive numbers, that is, 0 < λ1(Ω)≤ λ1(Ω

∗).

Lemma 5.18 The first eigenvalue λ1 (with the largest modulus) of the convolution
type compact operator K is positive and simple; the corresponding eigenfunction
u1 can be chosen positive.
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Let us prove Lemma 5.18.
Since as the kernel K is real the eigenfunctions of the convolution type compact

operator K = KΩ may be chosen to be real. Let us first show that u1 cannot change
its sign in Ω⊂M, i.e.

u1(x)u1(y) = |u1(x)u1(y)|, x,y ∈Ω⊂M.

In the opposite case, in view of the continuity of the function u1(x), there would
be neighbourhoods U(x0,r)⊂Ω and U(y0,r)⊂Ω such that

|u1(x)u1(y)|> u1(x)u1(y), x ∈U(x0,r)⊂Ω, y ∈U(y0,r)⊂Ω,

and so due to ∫
Ω

K(d(x,z))K(d(z,y))dz > 0 (5.109)

we get

(K 2|u1|, |u1|)
‖u1‖2 =

1
‖u1‖2

∫
Ω

∫
Ω

∫
Ω

K(d(x,z))K(d(z,y))dz|u1(x)||u1(y)|dxdy

>
1
‖u1‖2

∫
Ω

∫
Ω

∫
Ω

K(d(x,z))K(d(z,y))dzu1(x)u1(y)dxdy = λ
2
1 . (5.110)

Using the fact
λ

2
1 u1 = K 2u1,

and by the variational principle we establish

λ
2
1 = sup

f∈L2(Ω), f 6≡0

〈K 2 f , f 〉
‖ f‖2 . (5.111)

It follows that the strict inequality (5.110) contradicts the variational principle
(5.111).

Now it remains to show the eigenfunction u1(x) cannot become zero in Ω and
therefore can be chosen positive in Ω. If it is not so, then there would be a point
x0 ∈Ω such that

0 = λ
2
1 u1(x0) =

∫
Ω

∫
Ω

K(d(x0,z))K(d(z,y))dzu1(y)dy,

from which, due to condition (5.109), the contradiction follows: u1(y) = 0 for almost
all y ∈Ω.

From positivity of u1 it follows that λ1 is simple. Indeed, if λ1 is not simple, that
is, if there were an eigenfunction ũ1 linearly independent of u1 and corresponding to
λ1, then for all real c every linear combination u1 + c ũ1 would also be an eigenfunc-
tion corresponding to λ1 and therefore, by what has been proved, it could not become
zero in Ω. As c is arbitrary, this is impossible. Finally, it remains to show that λ1 is
positive. It is trivial since u1 and the kernel are positive. �
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We can now prove Theorem 5.17. Let Ω be a bounded measurable set in M
(where, as above, M is Sn or Hn). We denote its symmetric rearrangement by Ω∗,
which is simply an open geodesic ball centred at 0 with the measure equal to the
measure of Ω, i.e. |Ω∗|= |Ω|.

Let u be a nonnegative measurable function in Ω such that all its positive level
sets have finite measure. The symmetric decreasing rearrangement of u (we refer to
[7] and [10] for more detailed discussions on this subject) can be defined in the same
way as in Section 4.1: Let u be a nonnegative measurable function in Ω ⊂ M. The
function

u∗(x) :=
∞∫

0

χ{u(x)>t}∗dt (5.112)

is called the (radially) symmetric decreasing rearrangement of a nonnegative mea-
surable function u.

By Proposition 5.18 the first eigenvalue λ1 of the operator K is simple; the
corresponding eigenfunction u1 can be chosen positive in Ω ⊂M. Recall the Riesz-
Sobolev inequality (see e.g. Symmetrization Lemma in [11]):∫

Ω

∫
Ω

u1(y)K(d(y,x))u1(x)dydx≤
∫

Ω∗

∫
Ω∗

u∗1(y)K(d(y,x))u∗1(x)dydx. (5.113)

Moreover, we have
‖u‖L2(Ω) = ‖u

∗‖L2(Ω∗), (5.114)

for each nonnegative function u ∈ L2(Ω) Thus, from (5.113), (5.114) and the varia-
tional principle for λ1(Ω

∗), we obtain

λ1(Ω) =

∫
Ω

∫
Ω

u1(y)K(d(y,x))u1(x)dydx∫
Ω
|u1(x)|2dx

≤
∫

Ω∗
∫

Ω∗ u∗1(y)K(d(y,x))u∗1(x)dydx∫
Ω∗ |u∗1(x)|2dx

≤ sup
v∈L2(Ω∗),v6=0

∫
Ω∗
∫

Ω∗ v(y)K(d(y,x))v(x)dydx∫
Ω∗ |v(x)|2dx

= λ1(Ω
∗). �

5.5.2 Geometric inequalities for the second eigenvalue

Let us consider the maximisation problem of the second eigenvalue for positive
operators KΩ on Hn among open sets of a given measure. We keep all the notation
of the previous section.

Theorem 5.19 If the kernel K of the positive integral operator KΩ on Hn satisfies

K(ρ)→ 0 as ρ → ∞, (5.115)

then the maximum of the second eigenvalue λ2 among bounded open sets in Hn of a
given measure is achieved by the union of two identical geodesic balls with mutual
distance going to infinity. Moreover, this maximum is equal to the first eigenvalue of
one of the two geodesic balls.
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A similar type of results on Rn, called the Hong-Krahn-Szegő inequality, was
given in Theorem 5.14. Note that in Theorem 5.19 we consider only domains Ω⊂Hn

for which KΩ are positive operators. However, this assumption can be relaxed. In
fact, the statement of Theorem 5.19 and its proof remain valid if we only assume
that the second eigenvalues λ2(Ω) of considered operators KΩ are positive. In the
case of Rn and Riesz transforms (5.103), Theorem 5.19 holds without the positivity
assumption since the Riesz transforms Rα,Ω on Rn are positive, see Lemma 5.10.
We do not have an analogue of Theorem 5.19 on Sn because the assumption (5.115)
does not make sense due to compactness of the sphere.

Let us prove Theorem 5.19. By introducing the sets

Ω
+ := {x : u2(x)> 0}, Ω

− := {x : u2(x)< 0},

we have
u2(x)≷ 0, ∀x ∈Ω

± ⊂Ω⊂Hn, Ω
± 6= { /0},

and it follows from Proposition 5.18 that both Ω− and Ω+ have a positive measure.
Denoting

u±2 (x) :=
{

u2(x), in Ω±,
0, otherwise, (5.116)

we have

λ2(Ω)u2(x) =
∫

Ω+
K(d(x,y))u+2 (y)dy+

∫
Ω−

K(d(x,y))u−2 (y)dy, x ∈Ω.

This gives

λ2(Ω)
∫

Ω+
|u+2 (x)|

2dx =
∫

Ω+
u+2 (x)

∫
Ω+

K(d(x,y))u+2 (y)dydx

+
∫

Ω+
u+2 (x)

∫
Ω−

K(d(x,y))u−2 (y)dydx, x ∈Ω.

Since the last term (on the right-hand side) is non-positive we have

λ2(Ω)
∫

Ω+
|u+2 (x)|

2dx≤
∫

Ω+
u+2 (x)

∫
Ω+

K(d(x,y))u+2 (y)dydx,

that is, ∫
Ω+ u+2 (x)

∫
Ω+ K(d(x,y))u+2 (y)dydx∫
Ω+ |u+2 (x)|2dx

≥ λ2(Ω).

On the other hand, the variational principle yields

λ1(Ω
+) = sup

v∈L2(Ω+),v6≡0

∫
Ω+ v(x)

∫
Ω+ K(d(x,y))v(y)dydx∫
Ω+ |v(x)|2dx

≥
∫

Ω+ u+2 (x)
∫

Ω+ K(d(x,y))u+2 (y)dydx∫
Ω+ |u+2 (x)|2dx

≥ λ2(Ω).
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By the same argument we obtain

λ1(Ω
−)≥ λ2(Ω).

Therefore, we showed that

min{λ1(Ω
+),λ1(Ω

−)} ≥ λ2(Ω). (5.117)

Now let us introduce B+ and B−, the geodesic balls of the same measure as Ω+ and
Ω−, respectively. According to Theorem 5.17, we have

λ1(B+)≥ λ1(Ω
+) and λ1(B−)≥ λ1(Ω

−). (5.118)

From (5.117) and (5.118), we get

min{λ1(B+), λ1(B−)} ≥ λ2(Ω). (5.119)

We also consider the set B+ ∪ B−, with the geodesic balls B+ and B− placed at
distance l, that is,

l = dist(B+,B−).

Let us denote by u~1 the first normalised eigenfunction of KB+∪B− and take u+ and
u− being the first normalised eigenfunctions of each single geodesic ball B+ and
B−, respectivily, that is, of operators KB± . Let us also introduce the function v~ ∈
L2(B+∪B−), which equals u+ in B+ and γu− in B−. Since the functions u+,u−, and
u~ are positive, it is possible to find a real number γ so that v~ is orthogonal to u~1 .
We observe that∫

B+∪B−

∫
B+∪B−

v~(x)v~(y)K(d(x,y))dxdy =
4

∑
i=1

Ii, (5.120)

where
I1 :=

∫
B+

∫
B+

u+(x)u+(y)K(d(x,y))dxdy,

I2 := γ

∫
B+

∫
B−

u+(x)u−(y)K(d(x,y))dxdy,

I3 := γ

∫
B−

∫
B+

u−(x)u+(y)K(d(x,y))dxdy,

and
I4 := γ

2
∫

B−

∫
B−

u−(x)u−(y)K(d(x,y))dxdy.

On the other hand, the variational principle implies

λ2(B+∪B−) = sup
v∈L2(B+

⋃
B−),v⊥u1,‖v‖=1

∫
B+∪B−

∫
B+∪B−

v(x)v(y)K(d(x,y))dxdy.

Since by construction v~ is orthogonal to u1, we have

λ2(B+∪B−)≥
∫

B+∪B−

∫
B+∪B−

v~(x)v~(y)K(d(x,y))dxdy =
4

∑
i=1

Ii.
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Moreover, since u+ and u− are the first normalised eigenfunctions (by Proposition
5.18 both are positive everywhere) of each single geodesic ball B+ and B−, we obtain

λ1(B±) =
∫

B±

∫
B±

u±(x)u±(y)K(d(x,y))dxdy.

Summarising the above facts, we get

λ2(B+∪B−)≥
4

∑
i=1

Ii ≥
∑

4
i=1 Ii

1+ γ2 =
I1 +I4 +I2 +I3

λ1(B+)−1I1 +λ1(B−)−1I4
. (5.121)

Since the function K(d(x,y)) tends to zero as x ∈ B±, y ∈ B∓ and l→∞, we observe
that

lim
l→∞

I2 = lim
l→∞

I3 = 0,

therefore,
lim
l→∞

λ2(B+
⋃

B−)≥max{λ1(B+), λ1(B−)}, (5.122)

where l = dist(B+,B−). The inequalities (5.119) and (5.122) imply that the optimal
set for λ2 does not exist. However, taking Ω≡ B+⋃B− with l = dist(B+,B−)→ ∞,
and B+ and B− being identical, from the inequalities (5.119) and (5.122) we obtain

lim
l→∞

λ2(B+
⋃

B−)≥min{λ1(B+), λ1(B−)}= λ1(B+)

= λ1(B−)≥ lim
l→∞

λ2(B+∪B−), (5.123)

and this implies that the maximising sequence for λ2 is given by a disjoint union of
two identical geodesic balls with mutual distance going to ∞. �

Finally, let us briefly mention the convolution type integral operator KΩ :
L2(Ω)→ L2(Ω) in the form

KΩ f (x) :=
∫

Ω

K(|x− y|) f (y)dy, f ∈ L2(Ω), (5.124)

where Ω ⊂ Rd is an open bounded set, which we assume to be compact. Thus, we
assume that the operator KΩ is compact and, also the kernel K(|x|) is (a member
of L1

loc(Rd)) real, positive and non-increasing, i.e. that the function K : [0,∞)→ R
satisfies

K(ρ)> 0 for any ρ ≥ 0, (5.125)

and
K(ρ1)≥ K(ρ2) if ρ1 ≤ ρ2. (5.126)

Since KΩ is a self-adjoint operator all of its eigenvalues and characteristic num-
bers are real (recall that the characteristic numbers are the inverses of the eigenval-
ues). Thus, the characteristic numbers of KΩ can be enumerated in ascending order
of their modulus,

|µ1(Ω)| ≤ |µ2(Ω)| ≤ . . . , (5.127)
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where µi(Ω) is repeated in this series according to its multiplicity. As usual, the cor-
responding eigenfunctions can be denoted by u1,u2, ..., so that for each characteristic
number µi there is a unique corresponding (normalised) eigenfunction ui,

ui = µi(Ω)KΩui, i = 1,2, . . . .

Note that examples of operators KΩ often appear as solutions to differential
equations. For instance, the Peierls integral operator, that is,

PΩ f (x) =
∫

Ω

1
4π

e−|x−y|

|x− y|2
f (y)dy, f ∈ L2(Ω), Ω⊂ R3,

appears as the inverse operator to the one-speed neutron transport operator in Ω. In
this way, the eigenvalues of the differential operators correspond to characteristic
numbers of operators KΩ.

Note that some arguments in the previous sections also hold for more general
convolution-type operators: the ball is a maximiser of the Schatten p-norm of some
convolution type integral operators KΩ (with certain kernel conditions) among all
domains of a given measure in Rd . Moreover, the equilateral triangle has the largest
Schatten p-norm among all triangles of a given area. However, this seems to still
require certain additional assumptions on the kernel, which we will not dwell upon
here.

5.6 Heat potential operators
In the following sections we discuss some inequalities of the spectral geometry

of non-self-adjoint operators. In this case, as the eigenvalues may be complex, one
cannot immediately talk about maximisation problems for them. However, one can
still consider their moduli, or the corresponding singular s-numbers, provided that
the appearing operators are compact. In the following sections we will demonstrate
some of such properties in the example of the heat operators, first without, and then
with boundary conditions of different types. In such cases, it is useful to find some
ways to change the operator in a way that it becomes self-adjoint while keeping track
of the spectral properties under such change. If the resulting (composed) operators
are self-adjoint, the developed methods can be applied to it.

In this section we start with heat operators. We will show that the circular cylinder
is a maximiser of the Schatten p-norm of the (generalised) heat potential operators
among all cylindric domains of a given volume. We also show that the equilateral
triangular prism has the largest Schatten p-norm among all triangular prisms of a
given measure. Furthermore, we will discuss the cylindric analogues of the Rayleigh-
Faber-Krahn and Hong-Krahn-Szegő inequalities.
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5.6.1 Basic properties

Let Ω ⊂ Rd be a simply-connected set with smooth boundary ∂Ω, so D =
Ω× (0,T ) is a cylindrical domain. Let us consider the following generalised heat
potential operator HΩ : L2(D)→ L2(D):

HΩ f (x, t) :=
∫ t

0

∫
Ω

Km,d(|x−ξ |, t− τ) f (ξ ,τ)dξ dτ, ∀ f ∈ L2(D), (5.128)

where t ∈ (0,T ), m = 1,2, . . . , and

Km,d(|x|, t) =
θ(t)tm−1

(2
√

πt)d
e
−|x|2

4t ,

with the Heaviside function

θ(t) =
{

0, t < 0,
1, t ≥ 0.

This Km,d(|x|, t) is the fundamental solution of the Cauchy problem for the high-order
heat equation, i.e. (

∂

∂ t
−∆x

)m

Km,d(|x−ξ |, t− τ) = 0,

also satisfying its adjoint equation(
− ∂

∂τ
−∆ξ

)m

Km,d(|x−ξ |, t− τ) = 0,

and
lim
t→τ

Km,d(|x−ξ |, t− τ) = δ (x−ξ ),

for all x,ξ ∈ Rd , where δ is the Dirac delta ‘function’.
The operators of such type are higher-order analogues of the usual heat potential

operators, and some boundary value problems for them have been considered, e.g. in
[124].

The generalised heat potential operator HΩ is a non-self-adjoint operator in
L2(D). We introduce an involution operator P : L2(D)→ L2(D) in the form

Pu(x, t) := u(x,T − t), t ∈ (0,T ).

This operator has the following properties

P2 = I, P = P∗ and P = P−1,

where I is the identity operator, P∗ is the adjoint operator to the involution operator
P, and P−1 is the inverse operator to P.
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Thus, the involution operator P acts on the operator HΩ by the formula

PHΩu =
∫ T−t

0

∫
Ω

Km,d(|x−ξ |,T − t− τ)u(ξ ,τ)dξ dτ. (5.129)

A direct computation shows that

〈PHΩu,v〉L2(D) =∫ T

0

∫
Ω

(∫ T−t

0

∫
Ω

Km,d(|x−ξ |,T − t− τ)u(ξ ,τ)dξ dτ

)
v(x, t)dxdt

=
∫ T

0

∫ T−t

0

∫
Ω

∫
Ω

Km,d(|x−ξ |,T − t− τ)u(ξ ,τ)v(x, t)dξ dxdτdt

=
∫ T

0

∫ T−τ

0

∫
Ω

∫
Ω

Km,d(|x−ξ |,T − t− τ)u(ξ ,τ)v(x, t)dξ dxdtdτ

=
∫ T

0

∫
Ω

u(ξ ,τ)
(∫ T−τ

0

∫
Ω

Km,d(|x−ξ |,T − t− τ)v(x, t)dxdt
)

dξ dτ

=
∫ T

0

∫
Ω

u(ξ ,τ)
(∫ T−τ

0

∫
Ω

Km,d(|ξ − x|,T − τ− t)v(x, t)dxdt
)

dξ dτ

= 〈u,PHΩv〉L2(D) .

Thus, we arrive at PHΩ = (PHΩ)
∗ in L2(D), i.e. PHΩ is a self-adjoint operator.

This proves

Lemma 5.20 The operator PHΩ is a self-adjoint operator in L2(D).

Recall that the s-numbers of a compact operator A are the eigenvalues of the
operator (A∗A)1/2, where A∗ is the adjoint operator to A. By the properties of the
operator P, we obtain

(PHΩ)
2 = (PHΩ)

∗(PHΩ) = H ∗
Ω P∗PHΩ = H ∗

Ω P2HΩ = H ∗
Ω HΩ,

yielding

Lemma 5.21 The s-numbers of the operator HΩ coincide with eigenvalues of the
operator PHΩ.

As a consequence of Lemma 5.21 we obtain ‖HΩ‖p = ‖PHΩ‖p for HΩ ∈ Sp.
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5.6.2 Spectral geometric inequalities for the heat potential

In this section we discuss the basic spectral geometric inequalities for the heat
potential operators based on the observation in Lemma 5.21.

Theorem 5.22 (Rayleigh-Faber-Krahn inequality) The first eigenvalue of the oper-
ator PHΩ is maximised in the circular cylinder C = B× (0,T ) with B ⊂ Rd being
the open ball, that is,

0 < λ1(D)≤ λ1(C),

for |Ω|= |B|, where D = Ω× (0,T ) with Ω being a bounded simply-connected open
set with smooth boundary ∂Ω. Here |Ω| is the Lebesgue measure of the domain Ω.

Let us now prove this theorem.
A symmetric rearrangement of a bounded measurable set D = Ω×(0,T ) in Rd+1

can be defined as the circular cylinder C = B× (0,T ) with the measure equal to the
measure of D, i.e. |D| = |C|. Let u be a nonnegative measurable function in D, such
that all its positive level sets have finite measure. As before, to define a cylindrical
symmetric-decreasing rearrangement of u we can use the layer-cake decomposition
as in Section 4.1, expressing a nonnegative function u in terms of its level sets with
respect to the variable x for each t ∈ (0,T ):

u(x, t) =
∫

∞

0
χ{u(x,t)>z}dz, ∀t ∈ (0,T ), (5.130)

where χ is the characteristic function of the domain. The function

u∗(x, t) =
∫

∞

0
χ{u(x,t)>z}∗dz, ∀t ∈ (0,T ), (5.131)

is called a cylindrical symmetric decreasing rearrangement of a nonnegative mea-
surable function u.

Let us consider the eigenvalue problem

PHΩu = λu.

By the variational principle for the self-adjoint operator PHΩ, we get

λ1(D) =

∫ T
0
∫ T−t

0
∫

Ω

∫
Ω

Km,d(|x−ξ |,T − t− τ)u1(ξ ,τ)u1(x, t)dξ dxdτdt
‖u1‖2

L2(D)

,

where u1(x, t) is the first eigenfunction of PHΩ.
By the Riesz inequality (for the cylindrical symmetric decreasing rearrangement,

which can be shown in a similar way to Theorem 4.10), we have∫ T

0

∫ T−t

0

∫
Ω

∫
Ω

Km,d(|x−ξ |,T − t− τ)u1(ξ ,τ)u1(x, t)dξ dxdτdt

≤
∫ T

0

∫ T−t

0

∫
B

∫
B

Km,d(|x−ξ |,T − t− τ)u∗1(ξ ,τ)u
∗
1(x, t)dξ dxdτdt. (5.132)
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We also have
‖u‖L2(D) = ‖u

∗‖L2(C), (5.133)

for each nonnegative function u ∈ L2(D). From (5.133) and (5.132), it follows that

λ1(D) =

∫ T
0
∫ T−t

0
∫

Ω

∫
Ω

Km,d(|x−ξ |,T − t− τ)u1(ξ ,τ)u1(x, t)dξ dxdτdt
‖u1‖2

L2(D)

≤
∫ T

0
∫ T−t

0
∫

B
∫

B Km,d(|x−ξ |,T − t− τ)u∗1(ξ ,τ)u
∗
1(x, t)dξ dxdτdt

‖u1‖2
L2(C)

≤ sup
v∈L2(C),v6=0

∫ T
0
∫ T−t

0
∫

B
∫

B Km,d(|x−ξ |,T − t− τ)v(ξ ,τ)v(x, t)dξ dxdτdt
‖v‖2

L2(C)

= λ1(C). �

Due to Lemma 5.21, the eigenvalues of the self-adjoint operator PHΩ coincide
with the s-numbers of the operator HΩ, in particular, λ1(PHΩ) = s1(HΩ). There-
fore, ‖HΩ‖ = ‖PHΩ‖ for any Ω, i.e. the norm of the operator HΩ is maximised in
the cylinder C, that is,

‖HΩ‖ ≤ ‖HB‖.

Moreover, we can compare some of the Schatten norms.

Theorem 5.23 Let PH ∈ Sp0 . For each integer p we have

‖PHΩ‖p ≤ ‖PHB‖p, p0 ≤ p < ∞,

for all Ω such that |Ω|= |B|.

Let us prove this theorem. For all integer p with p0 ≤ p < ∞, we have

∞

∑
j=1

λ
p
j (PH ) =

∫ T

0

∫ T−τ1

0
...
∫ T−τp−1

0

∫
Ω

...
∫

Ω

p

∏
k=1

Km,d(|ξk−ξk+1|,T−τk−τk+1)dτ1...dτpdξ1...dξp,

where ξ1 = ξp+1 and τ1 = τp+1. By the Brascamp-Lieb-Luttinger inequality, we get

∞

∑
i=1

λ
p
i (D) =

∫ T

0

∫ T−τ1

0
...
∫ T−τp−1

0

∫
Ω

...
∫

Ω

p

∏
k=1

Km,d(|ξk−ξk+1|,T − τk− τk+1)dz

≤
∫ T

0

∫ T−τ1

0
...
∫ T−τp−1

0

∫
B
...
∫

B

p

∏
k=1

K∗m,d(|ξk−ξk+1|,T − τk− τk+1)dz

=
∞

∑
i=1

λ
p
i (C),
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where ξ1 = ξp+1, τ1 = τp+1 and dz = dτ1...dτpdξ1...dξp. Here the following fact is
used:

Km,d(|x− y|,T − t− τ) = K∗m,d(|x− y|,T − t− τ).

Therefore, we arrive at
∞

∑
i=1

λ
p
i (D)≤

∞

∑
i=1

λ
p
i (C), p0 ≤ p < ∞.

That is,
‖PHD‖p ≤ ‖PHC‖p, p0 ≤ p < ∞,

completing the proof. �

Theorem 5.24 The supremum of the second eigenvalue λ2 of the operator PHΩ

among all cylindric domains D with a given measure is approached by a disjoint
union of two identical cylinders with mutual distance going to ∞.

Let us prove this theorem. Let D+ = {(x, t) : u2(x, t) > 0}, and D− = {(x, t) :
u2(x, t)< 0}, so that

u2(x, t)> 0, t ∈ (0,T ),∀x ∈Ω
+ ⊂Ω, Ω

+ 6= { /0},

u2(x, t)< 0, t ∈ (0,T ),∀x ∈Ω
− ⊂Ω, Ω

− 6= { /0}.
We also introduce the notations

u+2 (x, t) :=

{
u2(x, t), (x, t) ∈ D+,

0, otherwise,

and

u−2 (x, t) :=

{
u2(x, t), (x, t) ∈ D−,
0, otherwise.

On the other hand, we have
λ2(D)u2(x, t)

=
∫ T−t

0

∫
Ω+

Km,d(|x−ξ |,T − t− τ)u2(ξ ,τ)dξ dτ

+
∫ T−t

0

∫
Ω−

Km,d(|x−ξ |,T − t− τ)u2(ξ ,τ)dξ dτ.

And multiplying by u+2 (x, t) as well as integrating over Ω+× (0,T ), we obtain

λ2(D)‖u+2 ‖
2
L2(D+)

=
∫ T

0

∫ T−t

0

∫
Ω+

∫
Ω+

Km,d(|x−ξ |,T − t− τ)u+2 (x, t)u
+
2 (ξ ,τ)dz

+
∫ T

0

∫ T−t

0

∫
Ω+

∫
Ω−

Km,d(|x−ξ |,T − t− τ)u−2 (x, t)u
+
2 (ξ ,τ)dz, (5.134)

where dz = dξ dxdτdt.
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Since ∫ T−t

0

∫
Ω−

Km,d(|x−ξ |,T − t− τ)u−2 (ξ ,τ)dξ dτ < 0,

we have
λ2(D)‖u+2 ‖

2
L2(D+)

=
∫ T

0

∫ T−t

0

∫
Ω+

∫
Ω+

Km,d(|x−ξ |,T − t− τ)u+2 (x, t)u
+
2 (ξ ,τ)dz

+
∫ T

0

∫ T−t

0

∫
Ω+

∫
Ω−

Km,d(|x−ξ |,T − t− τ)u−2 (x, t)u
+
2 (ξ ,τ)dz

6
∫ T

0

∫ T−t

0

∫
Ω+

∫
Ω+

Km,d(|x−ξ |,T − t− τ)u+2 (x, t)u
+
2 (ξ ,τ)dz.

This means

λ2(D)6

∫ T
0
∫ T−t

0
∫

Ω+

∫
Ω+ Km,d(|x−ξ |,T − t− τ)u+2 (x, t)u

+
2 (ξ ,τ)dz

‖u+2 ‖2
L2(D+)

.

Furthermore, we have

λ2(D)6

∫ T
0
∫ T−t

0
∫

Ω+

∫
Ω+ Km,d(|x−ξ |,T − t− τ)u+2 (x, t)u

+
2 (ξ ,τ)dz

‖u+2 ‖2
L2(D+)

6 sup
v∈L2(D+)

∫ T
0
∫ T−t

0
∫

Ω+

∫
Ω+ Km,d(|x−ξ |,T − t− τ)v+(x, t)v+(ξ ,τ)dz

‖v‖2
L2(D+)

= λ1(D+).

Similarly, we see
λ2(D)6 λ1(D−).

Finally, we have
λ2(D)6 λ1(D−), λ2(D)6 λ1(D+). (5.135)

By Theorem 5.22 we have

λ1(D+)< λ1(C+), λ1(D−)< λ1(C−). (5.136)

From (5.135) and (5.136), we obtain

λ2(D)6min{λ1(C+),λ1(C−)}.

Let l be the distance between C+ and C−, i.e. l = dist(C+,C−). Here C+ and C−

are the circular cylinders of the same measure as D+ and D−, respectively.
Let us denote by u~1 (x, t) the first normalised eigenfunction of the operator

PHC+∪C− and take u+ and u− being the first (normalised) eigenfunctions of each
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circular cylinder, i.e. of the corresponding operators PHC± . Let f~ ∈ L2 (C+∪C−)
be a function such that

f~ =

{
u+(x, t), (x, t) ∈C+,

γu−(x, t), (x, t) ∈C−,

where γ is a real number, such that f~ is orthogonal to u~1 , moreover, u+,u− and u~

are positive functions.
Let us denote

4

∑
i=1

Ui :=

∫ T

0

∫ T−t

0

∫
B+∪B−

∫
B+∪B−

Km,d(|x−ξ |,T − t− τ) f~(ξ ,τ) f~(x, t)dξ dxdτdt,

where

U1 :=
∫ T

0

∫ T−t

0

∫
B+

∫
B+

Km,d(|x−ξ |,T − t− τ)u+(ξ ,τ)u+(x, t)dξ dxdτdt,

U2 :=
∫ T

0

∫ T−t

0

∫
B+

∫
B−

Km,d(|x−ξ |,T − t− τ)u−(ξ ,τ)u+(x, t)dξ dxdτdt,

U3 := γ

∫ T

0

∫ T−t

0

∫
B−

∫
B+

Km,d(|x−ξ |,T − t− τ)u+(ξ ,τ)u−(x, t)dξ dxdτdt,

U4 := γ
2
∫ T

0

∫ T−t

0

∫
B−

∫
B−

Km,d(|x−ξ |,T − t− τ)u−(ξ ,τ)u−(x, t)dξ dxdτdt.

The variational principle implies that

λ2
(
C+∪C−

)
=

sup
v∈L2(C+∪C−),v⊥u1

∫ T

0

∫ T−t

0

∫
B+∪B−

∫
B+∪B−

Km,d(|x−ξ |,T − t− τ)v(ξ ,τ)v(x, t)dξ dxdτdt

≥
∫ T

0

∫ T−t

0

∫
B+∪B−

∫
B+∪B−

Km,d(|x−ξ |,T − t− τ) f~(ξ ,τ) f~(x, t)dξ dxdτdt =
4

∑
i=1

Ui.

Moreover, u+ and u− are the first (normalised) eigenfunctions of each circular
cylinder C+ and C−, that is, we have

λ1
(
C±
)
=
∫ T

0

∫ T−t

0

∫
B±

∫
B±

u±(x, t)u±(ξ ,τ)Km,d(|x−ξ |,T − t− τ)dξ dxdτdt.

Thus, we arrive at

λ2
(
C+∪C−

)
≥ U1 +U2 +U3 +U4

(λ1(D+))−1U1 +(λ1(D−))−1U2
.
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Since for x ∈ B±, ξ ∈ B∓ the kernel Km,d(|x− ξ |,T − t − τ) tends to zero as
l→ ∞, we notice that

lim
l→0

U2 = lim
l→0

U3 = 0.

That is, we get
λ2(C+

⋃
C−)>max{λ1(C+),λ1(C−)}, (5.137)

where l = dist(C+,C−). On the other hand, from inequalities (5.135) and (5.137),
we obtain

lim
l→∞

λ2

(
C+

⋃
C−
)
≥min{λ1(C+),λ1(C−)}= λ1(C+) = λ1(C−)

≥ lim
l→∞

λ2
(
C+∪C−

)
,

and this yields that the maximising sequence for λ2 corresponds to the union of two
identical circular cylinders with mutual distance going to infinity. �

5.6.3 The case of triangular prisms

Let us now discuss the same question of maximising the Schatten p-norms in the
class of triangular prisms with a given measure. That is, we look for the maximiser for
Schatten p-norms of the heat potential operator HΩ in the class of triangular prisms
with a given measure. According to the previous section, it is natural to conjecture
that it is the equilateral triangular prism.

Theorem 5.25 Let4 be an equilateral triangle and assume that PH4 ∈ Sq(L2(4))
for some q > 1. Let Ω be any triangle with |Ω|= |4|. Then

‖PHΩ‖p ≤ ‖PH4‖p (5.138)

for any integer p such that q≤ p < ∞.

The proof of Theorem 5.25 is based on the same scheme as the proof of Theorem
5.22, with the only difference that now we use Steiner’s symmetrization. Here we use
the fact that by a sequence of Steiner symmetrizations with respect to the mediator
of each side, a given triangle converges to an equilateral one. The rest of the proof is
exactly the same as the proof of Theorem 5.22. �

We now present the following analogue of the Pólya theorem ([89]) for the inte-
gral operator HΩ for triangles Ω. This also says that the operator norm of HΩ is
maximised on the equilateral triangular cylinder among all triangular cylinders of a
given measure.

Theorem 5.26 Let4 be an equilateral triangle. The equilateral triangular cylinder
(0,T )×4 is a maximiser of the first eigenvalue of the operator PHΩ among all
prisms (0,T )×Ω of a given measure, that is,

0 < λ1((0,T )×Ω)≤ λ1((0,T )×4),

for any triangle Ω⊂ R2 with |Ω|= |4|.
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Let us prove Theorem 5.26.
The first eigenvalue λ1(Ω) of the operator PHΩ is positive and simple, more-

over, the corresponding eigenfunction u1 can be chosen positive in (0,T )×Ω. Since
applying a sequence of Steiner symmetrizations with respect to the mediator of each
side, a given triangle converges to an equilateral one, and Km,d(|x−y|,T − t−τ) is a
non-increasing function, we have

∫ T

0

∫ T−t

0

∫ T−τ

0

∫
E

u1(y,τ1)F(x,y,ξ ; t,τ,τ1)u1(x, t)dz

≤
∫ T

0

∫ T−t

0

∫ T−τ

0

∫
E4

u?1(y,τ1)F(x,y,ξ ; t,τ,τ1)u?1(x, t)dz, (5.139)

where

F(x,y,ξ ; t,τ,τ1) = Km,d(|y−ξ |,T − τ− τ1)Km,d(|ξ − x|,T − t− τ)

and dz = dξ dydxdτ1dτdt. Thus, by (5.139) and the variational principle for the pos-
itive self-adjoint operator (PH4)

2, we obtain

λ
2
1 ((0,T )×Ω)

=

∫ T
0
∫ T−t

0
∫ T−τ

0
∫

E u1(y,τ1)F(x,y,ξ ; t,τ,τ1)u1(x, t)dz∫ T
0
∫

Ω
|u1(x, t)|2dxdt

≤
∫ T

0
∫ T−t

0
∫ T−τ

0
∫

E4
u?1(y,τ1)F(x,y,ξ ; t,τ,τ1)u?1(x, t)dz∫ T

0
∫

∆
|u?1(x, t)|2dxdt

≤ inf
v∈L2((0,T )×4)

∫ T
0
∫ T−t

0
∫ T−τ

0
∫

E4
v(y,τ1)F(x,y,ξ ; t,τ,τ1)v(x, t)dz∫ T

0
∫
4 |v(x, t)|2dxdt

= λ
2
1 ((0,T )×4),

where

F(x,y,ξ ; t,τ,τ1) = Km,d(|y−ξ |,T − τ− τ1)Km,d(|ξ − x|,T − t− τ)

and dz = dξ dydxdτ1dτdt. Here we have used the fact that the Steiner symmetriza-
tion preserves the L2-norm. Since λ1((0,T )×Ω) and λ1((0,T )×4) are positive we
get

0 < λ1((0,T )×Ω)≤ λ1((0,T )×4)

for any triangle Ω⊂ R2 with |Ω|= |4|. �
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5.7 Cauchy-Dirichlet heat operator
In this section we show that a circular cylinder is a minimiser of the first s-number

of the Cauchy-Dirichlet heat operator among all cylindric domains of a given mea-
sure. It is a (non-self-adjoint) analogue of the Rayleigh-Faber-Krahn inequality for
the Cauchy-Dirichlet heat operator. We also discuss analogues of the Hong-Krahn-
Szegő and Payne-Pólya-Weinberger inequalities for the heat operator.

As mentioned in a previous section, the classical Rayleigh-Faber-Krahn inequal-
ity asserts that the first eigenvalue of the Laplacian with the Dirichlet boundary con-
dition in Rd , d ≥ 2, is minimised in a ball among all domains of the same measure.
However, the minimum of the second Dirichlet Laplacian eigenvalue is achieved by
the union of two identical balls. This fact is called a Hong-Krahn-Szegő inequality. In
the present section analogues of both inequalities are discussed for the heat operator.

Payne, Pólya and Weinberger ([87] and [88]) studied the ratio of λ2(Ω)
λ1(Ω) for the

Dirichlet Laplacian and conjectured that the ratio of λ2(Ω)
λ1(Ω) is maximised in the disk

among all domains of the same area. Later in [4], Ashbaugh and Benguria proved this
conjecture for Ω ⊂ Rd . In the present section we also investigate the same ratio for
s-numbers of the Cauchy-Dirichlet heat operator, and prove an analogue of a Payne-
Pólya-Weinberger type inequality for the heat operator. The aim of this section is to
extend these results for a non-self-adjoint operator. Thus, we discuss the following
facts:

• Rayleigh-Faber-Krahn type inequality: the first s-number of the Cauchy-
Dirichlet heat operator is minimised in the circular cylinder among all
Euclidean cylindric domains of a given measure;

• Hong-Krahn-Szegő type inequality: the second s-number of the Cauchy-
Dirichlet heat operator is minimized in the union of two identical circular
cylinders among all Euclidean cylindric domains of a given measure;

• Payne-Pólya-Weinberger type inequality: the ratio s2
s1

is maximized in the cir-
cular cylinder;

• Ashbaugh-Benguria type inequality: the maximum of the ratio s4
s2

among cylin-
dric bounded open sets with a given measure is achieved by the union of two
identical cylinders.

5.7.1 Spectral geometric inequalities for the Cauchy-Dirichlet heat
operator

Let Ω ⊂ Rd be a simply-connected bounded set with smooth boundary ∂Ω, and
let D=Ω×(0,T ), T > 0, be a cylindrical domain. We consider the Cauchy-Dirichlet
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heat operator ♦ : L2(D)→ L2(D) in the form

♦u(x, t) :=


∂u(x,t)

∂ t −∆xu(x, t),
u(x,0) = 0, x ∈Ω,

u(x, t) = 0, x ∈ ∂Ω, ∀t ∈ (0,T ).
(5.140)

It is easy to check that the operator ♦ is a non-self-adjoint operator in L2(D) and the
adjoint operator ♦∗ to the operator ♦ is

♦∗v(x, t) =


− ∂v(x,t)

∂ t −∆xv(x, t),
v(x,T ) = 0, x ∈Ω,

v(x, t) = 0, x ∈ ∂Ω, ∀t ∈ (0,T ).
(5.141)

Moreover, a direct calculation yields that the operator ♦∗♦ has the formula

♦∗♦u(x, t) =



− ∂ 2u(x,t)
∂ t2 +∆2

xu(x, t),
u(x,0) = 0, x ∈Ω,
∂u(x,t)

∂ t |t=T −∆xu(x, t)|t=T = 0, x ∈Ω,

u(x, t) = 0, x ∈ ∂Ω, ∀t ∈ (0,T ),
∆xu(x, t) = 0, x ∈ ∂Ω, ∀t ∈ (0,T ).

(5.142)

Let us introduce operators M,L : L2(Ω)→ L2(Ω) by

Mz(x) =

{
−∆z(x),
z(x) = 0, x ∈ ∂Ω.

(5.143)

and

Lz(x) =


∆2z(x),
z(x) = 0, x ∈ ∂Ω,

∆z(x) = 0, x ∈ ∂Ω.

(5.144)

Lemma 5.27 The first eigenvalue of the operator L is minimised in the ball B among
all domains Ω of the same measure with |B|= |Ω|.

Let us prove this lemma. Let µ be an eigenvalue of the operator M. A straight-
forward calculation from (5.143) gives that

∆2z(x) = µ2z(x),
z(x) = 0, x ∈ ∂Ω,

∆z(x) = 0, x ∈ ∂Ω.

(5.145)

Thus, M2 = L and µ2 = λ , where λ is an eigenvalue of the operator L. Now using
the Rayleigh-Faber-Krahn inequality (Lemma 5.22) we have

λ1(B) = µ
2
1 (B)≤ µ

2
1 (Ω) = λ1(Ω),
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i.e. λ1(B)≤ λ1(Ω). Here λ1 and µ1 are the first eigenvalues of L and M, respectively.
�

Theorem 5.28 (Rayleigh-Faber-Krahn inequality for s-numbers) Let C = B×(0,T )
be a circular cylinder with B ⊂ Rd an open ball. The first s-number of the operator
♦ is minimised on the circular cylinder C among all cylindric domains of a given
measure, that is,

s1(C)≤ s1(D),

for all D with |D|= |C|, where |D| is the Lebesgue measure of the domain D.

In other words, the statement of Theorem 5.28 says that the operator norm of the
operator ♦−1 is maximised on the circular cylinder C among all cylindric domains
of a given measure, i.e.

‖♦−1‖D ≤ ‖♦−1‖C.

To prove this, recall that the symmetric rearrangement of D = Ω× (0,T ) is a
circular cylinder C =B×(0,T ) with the measure equal to the measure of D, i.e. |D|=
|C|. Let u be a nonnegative measurable function in D. Then its cylindric symmetric
decreasing rearrangement is

u∗(x, t) =
∫

∞

0
χ{u(x,t)>z}∗dz, ∀t ∈ (0,T ). (5.146)

We consider the following spectral problem

♦∗♦u = su,

♦∗♦u(x, t) =



− ∂ 2u(x,t)
∂ t2 +∆2

xu(x, t) = su(x, t),
u(x,0) = 0, x ∈Ω,
∂u(x,t)

∂ t |t=T −∆xu(x, t)|t=T = 0, x ∈Ω,

u(x, t) = 0, x ∈ ∂Ω, ∀t ∈ (0,T ),
∆xu(x, t) = 0, x ∈ ∂Ω, ∀t ∈ (0,T ).

(5.147)

Let us set u(x, t) = X(x)ϕ(t), and take u1(x, t) = X1(x)ϕ1(t) as the first eigenfunction
of the operator ♦∗♦. Then we have

−ϕ
′′
1 (t)X1(x)+ϕ1(t)∆2X1(x) = s1ϕ1(t)X1(x). (5.148)

By using the variational principle for the self-adjoint compact positive operator♦∗♦,
we obtain

s1(D) =
−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
Ω

X2
1 (x)dx+

∫ T
0 ϕ2

1 (t)dt
∫

Ω
(∆X1(x))2dx∫ T

0 ϕ2
1 (t)dt

∫
Ω

X2
1 (x)dx

=
−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
Ω

X2
1 (x)dx+

∫ T
0 ϕ2

1 (t)dt
∫

Ω
(−µ1(Ω)X1(x))2dx∫ T

0 ϕ2
1 (t)dt

∫
Ω

X2
1 (x)dx
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=
−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
Ω

X2
1 (x)dx+µ2

1 (Ω)
∫ T

0 ϕ2
1 (t)dt

∫
Ω
(X1(x))2dx∫ T

0 ϕ2
1 (t)dt

∫
Ω

X2
1 (x)dx

,

where µ1(Ω) is the first eigenvalue of the Dirichlet Laplacian.
For each nonnegative function u ∈ L2(D), we have∫

Ω

|X1(x)|2dx =
∫

B
|X∗1 (x)|2dx. (5.149)

Combining Lemma 5.27 and (5.149), we calculate

s1(D) =
−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
Ω
(X1(x))2dx+µ2

1 (Ω)
∫ T

0 ϕ2
1 (t)dt

∫
Ω
(X1(x))2dx∫ T

0 ϕ2
1 (t)dt

∫
Ω
(X1(x))2dx

≥
−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
B(X

∗
1 (x))

2dx+µ2
1 (B)

∫ T
0 ϕ2

1 (t)dt
∫

B(X
∗
1 (x))

2dx∫ T
0 ϕ2

1 (t)dt
∫

B(X
∗
1 (x))

2dx

=
−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
B(X

∗
1 (x))

2dx+
∫ T

0 ϕ2
1 (t)dt

∫
B(−µ1(B)X∗1 (x))

2dx∫ T
0 ϕ2

1 (t)dt
∫

B(X
∗
1 (x))

2dx

=
−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
B(X

∗
1 (x))

2dx+
∫ T

0 ϕ2
1 (t)dt

∫
B(∆X∗1 (x))

2dx∫ T
0 ϕ2

1 (t)dt
∫

B(X
∗
1 (x))

2dx

=
−
∫ T

0
∫

B u∗1(x, t)
∂ 2u∗1(x,t)

∂ t2 dxdt +
∫ T

0
∫

B u∗1(x, t)∆
2
xu∗1(x, t)dxdt∫ T

0
∫

B(u
∗
1(x, t))

2dxdt

≥ inf
z(x,t)6=0

−
∫ T

0
∫

B z(x, t) ∂ 2z(x,t)
∂ t2 dxdt +

∫ T
0
∫

B z(x, t)∆2
xz(x, t)dxdt∫ T

0
∫

B z2(x, t)dxdt
= s1(C).

The proof is complete. �

Theorem 5.29 (Hong-Krahn-Szegő inequality for s-numbers) The second s-number
of the operator♦ is minimised on the union of two identical circular cylinders among
all cylindric domains of the same measure.

Let D+ = {(x, t) : u(x, t)> 0}, D− = {(x, t) : u(x, t)< 0}, and introduce the fol-
lowing notations

u+2 (x, t) :=

{
u2(x, t), (x, t) ∈ D+,

0, otherwise,

and

u−2 (x, t) :=

{
u2(x, t), (x, t) ∈ D−,
0, otherwise.

We will need the following fact in the proof.
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Lemma 5.30 For the operator ♦∗♦ we obtain the equalities

s1(D+) = s1(D−) = s2(D).

Let us prove this lemma. For the operator M we have the equality

µ1(Ω
+) = µ1(Ω

−) = µ2(Ω). (5.150)

Let us solve the spectral problem (5.147) by using Fourier’s method in the domain
D±, so 

− ∂ 2u(x,t)
∂ t2 +∆2

xu(x, t) = s(D±)u(x, t),
u(x,0) = 0, x ∈Ω±,
∂u(x,t)

∂ t |t=T −∆xu(x, t)|t=T = 0, x ∈Ω±,

u(x, t) = 0, x ∈ ∂Ω±, ∀t ∈ (0,T ),
∆xu(x, t) = 0, x ∈ ∂Ω±, ∀t ∈ (0,T ).

(5.151)

Thus, we arrive at the spectral problems for ϕ(t) and X(x):
∆2X(x) = µ2(Ω±)X(x), x ∈Ω±,

X(x) = 0, x ∈ ∂Ω±,

∆X(x) = 0, x ∈ ∂Ω±,

(5.152)

and 
ϕ
′′
(t)+(s(D±)−µ2(Ω±))ϕ(t) = 0, t ∈ (0,T ),

ϕ(0) = 0,
ϕ
′
(T )+µ(Ω±)ϕ(T ) = 0.

(5.153)

It also gives that

tan
√

s(D±)−µ2(Ω±)T =−
√

s(D±)−µ2(Ω±)

µ(Ω±)
. (5.154)

Now for the domains D and D± we have
tan
√

s1(D+)−µ2
1 (Ω

+)T =−
√

s1(D+)−µ2
1 (Ω

+)

µ1(Ω+)
,

tan
√

s1(D−)−µ2
1 (Ω

−)T =−
√

s1(D−)−µ2
1 (Ω

−)
µ1(Ω−)

,

tan
√

s2(D)−µ2
2 (Ω)T =−

√
s2(D)−µ2

2 (Ω)

µ2(Ω) .

By using (5.150) we establish that
tan
√

s1(D+)−µ2
1 (Ω

−)T =−
√

s1(D+)−µ2
1 (Ω

−)
µ1(Ω−)

,

tan
√

s1(D−)−µ2
1 (Ω

−)T =−
√

s1(D−)−µ2
1 (Ω

−)
µ1(Ω−)

,

tan
√

s2(D)−µ2
1 (Ω

−)T =−
√

s2(D)−µ2
1 (Ω

−)
µ1(Ω−)

.
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Finally, we get
s1(D+) = s1(D−) = s2(D). � (5.155)

Let us now prove Theorem 5.29.
We will use the notation for C and D from Theorem 5.28.
Let us state the spectral problem for the second s-number of the Cauchy-Dirichlet

heat operator (that is, the second eigenvalue of (5.142)) in the circular cylinder C:

s2(C)v2(x, t) =−
∂ 2v2(x, t)

∂ t2 +∆
2
xv2(x, t). (5.156)

where v2(x, t) is the second eigenfunction of the operator♦∗♦ in the circular cylinder
C.

Let B = B+ ∪B−. Then by multiplying (5.156) by v+2 (x, t) and integrating over
B+× (0,T ), we get

s2(C)
∫ T

0

∫
B+

v2(x, t)v+2 (x, t)dxdt = s2(C)
∫ T

0

∫
B+

(v+2 (x, t))
2dxdt

=−
∫ T

0

∫
B+

v+2 (x, t)
∂ 2v2(x, t)

∂ t2 dxdt +
∫ T

0

∫
B+

v+2 (x, t)∆
2
xv2(x, t)dxdt

=−
∫ T

0

∫
B+

v+2 (x, t)
∂ 2v+2 (x, t)

∂ t2 dxdt +
∫ T

0

∫
B+

v+2 (x, t)∆
2
xv+2 (x, t)dxdt. (5.157)

After this, we get

s2(C) =
−
∫ T

0
∫

B+ v+2 (x, t)
∂ 2v+2 (x,t)

∂ t2 dxdt +
∫ T

0
∫

B+ v+2 (x, t)∆
2
xv+2 (x, t)dxdt∫ T

0
∫

B+(v+2 (x, t))
2dxdt

≤ sup
z(x,t)6=0

−
∫ T

0
∫

B+ z(x, t) ∂ 2z(x,t)
∂ t2 dxdt +

∫ T
0
∫

B+ z(x, t)∆2
xz(x, t)dxdt∫ T

0
∫

B+ z2(x, t)dxdt
= s1(C+).

(5.158)

Similarly, if we multiply (5.156) by v−2 (x, t) and intergrate over B−× (0,T ), we have{
s2(C)≤ s1(C+)

s2(C)≤ s1(C−).
(5.159)

From the Rayleigh-Faber-Krahn inequality in Theorem 5.28, we obtain{
s1(C+)≤ s1(D+)

s1(C−)≤ s1(D−).
(5.160)

By using Lemma (5.30) we arrive at

s2(C)≤min(s1(C+),s1(C−))≤ s1(D+) = s1(D−) = s2(D). �

We now show an analogue of the Payne-Pólya-Weinberger inequality. We keep
the notation for C and D from Theorem 5.28.
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Theorem 5.31 The ratio s2(D)
s1(D) is maximised in the circular cylinder among all cylin-

dric domains of the same measure, i.e.

s2(D)

s1(D)
≤ s2(C)

s1(C)
,

for all D with |D|= |C|.

To prove this theorem, let us restate the first and second s-numbers in the forms

s1(D) =
−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
Ω

X2
1 (x)dx+

∫ T
0 ϕ2

1 (t)dt
∫

Ω
∆2X1(x)dx∫ T

0 ϕ2
1 (t)dt

∫
Ω

X2
1 (x)dx

=
−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
Ω

X2
1 (x)dx+µ2

1 (Ω)
∫ T

0 ϕ2
1 (t)dt

∫
Ω

X2
1 (x)dx∫ T

0 ϕ2
1 (t)dt

∫
Ω

X2
1 (x)dx

. (5.161)

and

s2(D) =
−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
Ω

X2
2 (x)dx+

∫ T
0 ϕ2

1 (t)dt
∫

Ω
∆2X2(x)dx∫ T

0 ϕ2
1 (t)dt

∫
Ω

X2
2 (x)dx

=
−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
Ω

X2
2 (x)dx+µ2

2 (Ω)
∫ T

0 ϕ2
1 (t)dt

∫
Ω

X2
2 (x)dx∫ T

0 ϕ2
1 (t)dt

∫
Ω

X2
2 (x)dx

, (5.162)

From [4] we have

µ2(Ω)

µ1(Ω)
≤ µ2(B)

µ1(B)
. (5.163)

Using this and (5.133) we obtain

s2(D)

s1(D)
=

−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
Ω X2

2 (x)dx+µ2
2 (Ω)

∫ T
0 ϕ2

1 (t)dt
∫

Ω X2
2 (x)dx∫ T

0 ϕ2
1 (t)dt

∫
Ω X2

2 (x)dx

−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
Ω X2

1 (x)dx+µ2
1 (Ω)

∫ T
0 ϕ2

1 (t)dt
∫

Ω X2
1 (x)dx∫ T

0 ϕ2
1 (t)dt

∫
Ω X2

1 (x)dx

≤

−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
B(X

∗
2 (x))

2dx+µ2
2 (B)

∫ T
0 ϕ2

1 (t)dt
∫

B(X
∗
2 (x))

2dx∫ T
0 ϕ2

1 (t)dt
∫

B(X
∗
2 (x))

2dx

−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
B(X

∗
1 (x))

2dx+µ2
1 (B)

∫ T
0 ϕ2

1 (t)dt
∫

B(X
∗
1 (x))

2dx∫ T
0 ϕ2

1 (t)dt
∫

B(X
∗
1 (x))

2dx
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=

−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
B(X

∗
2 (x))

2dx+
∫ T

0 ϕ2
1 (t)dt

∫
B(∆X∗2 (x))

2dx∫ T
0 ϕ2

1 (t)dt
∫

B(X
∗
2 (x))

2dx

−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
B(X

∗
1 (x))

2dx+
∫ T

0 ϕ2
1 (t)dt

∫
B(∆X∗1 (x))

2dx∫ T
0 ϕ2

1 (t)dt
∫

B(X
∗
1 (x))

2dx

=

−
∫ T

0
∫

B u∗2(x,t)
∂2u∗2(x,t)

∂ t2
dxdt+

∫ T
0
∫

B u∗2(x,t)∆
2
xu∗2(x,t)dxdt∫ T

0
∫

B(u
∗
2(x,t))

2dxdt

−
∫ T

0
∫

B u∗1(x,t)
∂2u∗1(x,t)

∂ t2
dxdt+

∫ T
0
∫

B u∗1(x,t)∆
2
xu∗1(x,t)dxdt∫ T

0
∫

B(u
∗
1(x,t))

2dxdt

=
s2(C)

s1(C)
. � (5.164)

Theorem 5.32 The maximum of the ratio s4(D)
s2(D) among cylindric bounded open sets

with a given measure is achieved by the union of two identical circular cylinders.

To see this, we recall the fact (see, e.g. [48]) that µ2
4 (Ω)

µ2
2 (Ω)
≤ µ2

4 (B)
µ2

2 (B)
. The rest of the

proof is similar to the proof of Theorem 5.31. �

5.7.2 The case of polygonal cylinders

The main motivation of the present section is the Polya inequality which asserts
that the equilateral triangle is a minimiser of the first eigenvalue of the Dirichlet
Laplacian among all triangles of a given area. In this section we prove Polya type
inequalities for the Cauchy-Dirichlet heat operator in polygonal cylindric domains of
a given measure. That is, in particular, we prove that the s1-number of the Cauchy-
Dirichlet heat operator is minimised on the equilateral triangular cylinder among
all triangular cylinders of given measure, which means that the operator norm of
the inverse operator is maximised on the equilateral triangular cylinder among all
triangular cylinders of a given measure.

Let D1 = Ω1× (0,T ) and D2 = Ω2× (0,T ) be cylindrical domains, where Ω1 ⊂
R2 is a triangle and Ω2 ⊂ R2 is a quadrilateral. We denote an equilateral triangular
cylinder by

C4 :=4× (0,T ),

where4⊂ R2 is an equilateral triangle with |4|= |Ω1|, and a quadratic cylinder

C� :=�× (0,T ),

where � ⊂ R2 is a square with |�| = |Ω2|. Here, as usual, |Ω| is the area of the
domain Ω.

Let us introduce operators T, L : L2(Ω)→ L2(Ω) by the formulae

T z(x) :=

{
−∆z(x) = µz(x),
z(x) = 0, x ∈ ∂Ω.

(5.165)

and

Lz(x) :=


∆2z(x) = λ z(x),
z(x) = 0, x ∈ ∂Ω,

∆z(x) = 0, x ∈ ∂Ω.

(5.166)
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Lemma 5.33 The first eigenvalue of the operator L is minimised on the equilateral
triangle (square) among all triangles (quadrilaterals) with |4|= |Ω| (|�|= |Ω|).

Let us prove this lemma. The Pólya theorem ([89]) for the operator T says that the
equilateral triangle (square) is a minimiser of the first Dirichlet Laplacian eigenvalue
among all triangles (quadrilaterals) Ω1 (Ω2) of the same area with |4|= |Ω1|(|�|=
|Ω2|). Let us calculate T 2 from (5.165),

T 2z(x) =


∆2z(x) = µ2z(x),
z(x) = 0, x ∈ ∂Ω,

∆z(x) = 0, x ∈ ∂Ω.

(5.167)

That is, T 2 = L and µ2 = λ . Thus, we obtain that

λ1(4) = µ
2
1 (4)≤ µ

2
1 (Ω1) = λ1(Ω1)

and
λ1(�) = µ

2
1 (�)≤ µ

2
1 (Ω2) = λ1(Ω2).

Then, we arrive at λ1(4)≤ λ1(Ω1) and λ1(�)≤ λ1(Ω2). �

Theorem 5.34 The s1-number of the operator ♦ is minimised on the equilateral
triangular cylinder among all triangular cylinders of given measure, that is,

s1(C4)≤ s1(D1),

with |D1|= |C4|.

To prove this theorem, consider the following spectral problem

♦∗♦u = su,

♦∗♦u(x, t) =



− ∂ 2u(x,t)
∂ t2 +∆2

xu(x, t) = su(x, t),
u(x,0) = 0, x ∈Ω1,
∂u(x,t)

∂ t |t=T −∆xu(x, t)|t=T = 0, x ∈Ω1,

u(x, t) = 0, x ∈ ∂Ω1, ∀t ∈ (0,T ),
∆xu(x, t) = 0, x ∈ ∂Ω1, ∀t ∈ (0,T ).

(5.168)

The domain D1 = {(x, t)|x ∈ Ω1 ⊂ R2, t ∈ (0,T )} is a cylindrical domain and we
can have u(x, t) = X(x)ϕ(t), so that u1(x, t) = X1(x)ϕ1(t) is the first eigenfunction of
the operator ♦∗♦. We can also restate this fact (5.168) as

−ϕ
′′
1 (t)X1(x)+ϕ1(t)∆2X1(x) = s1ϕ1(t)X1(x). (5.169)

By the variational principle for the operator ♦∗♦ and after a straightforward calcu-
lation, we obtain

s1(D1) =
−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
Ω1

X2
1 (x)dx+

∫ T
0 ϕ2

1 (t)dt
∫

Ω1
(∆X1(x))2dx∫ T

0 ϕ2
1 (t)dt

∫
Ω1

X2
1 (x)dx
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=
−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
Ω1

X2
1 (x)dx+

∫ T
0 ϕ2

1 (t)dt
∫

Ω1
(−µ1(Ω1)X1(x))2dx∫ T

0 ϕ2
1 (t)dt

∫
Ω1

X2
1 (x)dx

=
−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
Ω1

X2
1 (x)dx+µ2

1 (Ω1)
∫ T

0 ϕ2
1 (t)dt

∫
Ω1
(X1(x))2dx∫ T

0 ϕ2
1 (t)dt

∫
Ω1

X2
1 (x)dx

,

where µ1(Ω1) is the first eigenvalue of the operator Dirichlet Laplacian.
For each nonnegative function X ∈ L2(Ω1) we have∫

Ω1

|X1(x)|2dx =
∫
4
|X?

1 (x)|2dx, (5.170)

where X? is the Steiner symmetrization of the function X . By Lemma 5.33 and
(5.170) we obtain

s1(D1) =
−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
Ω1

X2
1 (x)dx+µ2

1 (Ω1)
∫ T

0 ϕ2
1 (t)dt

∫
Ω1
(X1(x))2dx∫ T

0 ϕ2
1 (t)dt

∫
Ω1

X2
1 (x)dx

≥
−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
4(X

?
1 (x))

2dx+µ2
1 (4)

∫ T
0 ϕ2

1 (t)dt
∫
4(X

?
1 (x))

2dx∫ T
0 ϕ2

1 (t)dt
∫
4(X

?
1 (x))

2dx

=
−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
4(X

?
1 (x))

2dx+
∫ T

0 ϕ2
1 (t)dt

∫
4(−µ1(4)X?

1 (x))
2dx∫ T

0 ϕ2
1 (t)dt

∫
4(X

?
1 (x))

2dx

=
−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
4(X

?
1 (x))

2dx+
∫ T

0 ϕ2
1 (t)dt

∫
4(∆X?

1 (x))
2dx∫ T

0 ϕ2
1 (t)dt

∫
4(X

?
1 (x))

2dx

=
−
∫ T

0
∫
4

∂ 2u?1(x,t)
∂ t2 dxdt +

∫ T
0
∫
4(∆

2
xu?1(x, t))

2dxdt∫ T
0
∫
4(u

?
1(x, t))

2dxdt

≥ inf
z(x,t)6=0

−
∫ T

0
∫
4 zt(x, t)z(x, t)dxdt +

∫ T
0
∫
4(∆z(x, t))2dxdt∫ T

0
∫
4 z2(x, t)dxdt

= s1(C4).

The proof is complete. �

Theorem 5.35 The s1-number of the operator♦ is minimised on the quadratic cylin-
der among all quadrangular cylinders of a given measure, i.e.

s1(C�)≤ s1(D2),

with |D2|= |C�|.

The proof of this theorem is similar to the proof of Theorem 5.34.
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5.8 Cauchy-Robin heat operator
In this section we consider the heat operator with the Robin boundary condition.
The techniques developed in the previous section allow us to show that the first s-

number of the Cauchy-Robin heat operator is minimised on a circular cylinder among
all cylindric (Lipschitz) domains of a given measure. In addition, following the same
idea from the previous section we see that the second s-number is minimised on
the disjoint union of two identical circular cylinders among all cylindric (Lipschitz)
domains of the same measure.

The Bossel-Daners inequality (see [21] and [31]) shows that the first eigenvalue
of the Laplacian with the Robin boundary condition is minimised on a ball among all
Lipschitz domains (in Rd , d≥ 2) of the given measure. However, as in the case of the
Dirichlet Laplacian, among all domains of the given measure, the minimiser of the
second eigenvalue of the Robin Laplacian on a bounded Lipschitz domain consists of
the disjoint union of two balls. In the present section analogues of both inequalities
are discussed for the heat operator. That is, we show that the first s-number of the
Cauchy-Robin heat operator is minimised on the circular cylinder among all cylindric
(Lipschitz) domains of a given measure, and its second s-number is minimised on
the set consisting of the disjoint union of two identical circular cylinders among all
cylindric (Lipschitz) domains of a given measure.

These isoperimetric inequalities have been mainly studied for the operators
related to the Laplacian, for instance, for the p-Laplacians and bi-Laplacians. How-
ever, there are also many papers on this subject for other types of compact operators.
For instance, at the beginning of this chapter we discussed results for self-adjoint
operators. So the goal of these sections is to further extend those known isoperimet-
ric inequalities to non-self-adjoint operators, namely in this case, for the heat operator
(see, e.g. [64], which we follow in our exposition in this part).

Thus, in this section we discuss the following facts:

• The first s-number of the Cauchy-Robin heat operator is minimised on the
circular cylinder among all cylindric (Lipschitz) domains of a given measure;

• The minimiser of the second s-number of the Cauchy-Robin heat operator
among cylindric bounded open (Lipschitz) sets with a given measure consists
of the disjoint union of two identical circular cylinders.

5.8.1 Isoperimetric inequalities for the first s-number

Let Ω ⊂ Rd be a simply-connected set with (piecewise) smooth boundary ∂Ω

and D = Ω× (0,T ) be a cylindrical domain. We consider the heat operator for the
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Cauchy-Robin problem ♦R : L2(D)→ L2(D) in the form

♦Ru(x, t) :=


∂u(x,t)

∂ t −∆xu(x, t), (x, t) ∈ D,

u(x,0) = 0, x ∈Ω,

αu(x, t)+ ∂u(x,t)
∂n = 0, x ∈ ∂Ω, ∀t ∈ (0,T ), α > 0.

(5.171)

It is simple to check that the operator ♦R is a non-self-adjoint operator in L2(D),
and the adjoint operator ♦∗R to the operator ♦R is

♦∗Rv(x, t) =


− ∂v(x,t)

∂ t −∆xv(x, t), (x, t) ∈ D,

v(x,T ) = 0, x ∈Ω,

αv(x, t)+ ∂v(x,t)
∂n = 0, x ∈ ∂Ω, ∀t ∈ (0,T ), α > 0.

(5.172)

A direct calculation gives that the operator ♦∗R♦R has the formula

♦∗R♦Ru(x, t) =



− ∂ 2u(x,t)
∂ t2 +∆2

xu(x, t), (x, t) ∈ D,

u(x,0) = 0, x ∈Ω,
∂u(x,t)

∂ t |t=T −∆xu(x, t)|t=T = 0, x ∈Ω,

αu(x, t)+ ∂u(x,t)
∂n = 0, x ∈ ∂Ω, ∀t ∈ (0,T ),

α∆xu(x, t)+ ∂∆xu(x,t)
∂n = 0, x ∈ ∂Ω, ∀t ∈ (0,T ), α > 0.

We consider a (circular) cylinder C = B× (0,T ), where B ⊂ Rd is an open ball.
We will denote by |Ω| the Lebesgue measure of the set Ω.

Let us introduce operators TR and LR in L2(Ω) by the formulae

TRz(x) :=

{
−∆z(x) = µz(x), x ∈Ω,

αz(x)+ ∂ z(x)
∂n = 0, x ∈ ∂Ω, α > 0,

(5.173)

and

LRz(x) :=


∆2z(x) = λ z(x), x ∈Ω,

αz(x)+ ∂ z(x)
∂n = 0, x ∈ ∂Ω,

α∆z(x)+ ∂∆z(x)
∂n = 0, x ∈ ∂Ω, α > 0.

(5.174)

Lemma 5.36 The first eigenvalue of the operator LR is minimised on the ball B
among all Lipschitz domains Ω of the same measure with |B|= |Ω|.

Let us prove this statement. The Bossel-Daners (see [21] and [31]) inequality is
valid for the Robin Laplacian, that is, the ball is a minimiser of the first eigenvalue
of the operator T among all Lipschitz domains Ω with |B| = |Ω|. A straightforward
calculation from (5.173) gives that

T 2
R z(x) =


∆2z(x) = µ2z(x), x ∈Ω,

z(x) = 0, x ∈ ∂Ω,

α∆z(x)+ ∂∆z(x)
∂n = 0, x ∈ ∂Ω, α > 0.

(5.175)
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Thus, T 2
R = LR and µ2 = λ . Now using the Bossel-Daners inequality we have

λ1(B) = µ
2
1 (B)≤ µ

2
1 (Ω) = λ1(Ω),

i.e. λ1(B)≤ λ1(Ω). �

We keep the notation for C and D from Theorem 5.28.

Theorem 5.37 The first s-number of the operator ♦R is minimised on the circular
cylinder C among all cylindric Lipschitz domains D of a given measure, that is,

sR
1 (C)≤ sR

1 (D),

for all D with |D|= |C|.

Let us prove this theorem. Recall that D = Ω× (0,T ) is a bounded measurable
set in Rd+1. Its symmetric rearrangement C = B× (0,T ) is the circular cylinder with
the measure equal to the measure of D, i.e. |D|= |C|. Consider the spectral problem

♦∗R♦Ru = sRu,

♦∗R♦Ru(x, t) =



− ∂ 2u(x,t)
∂ t2 +∆2

xu(x, t) = sRu(x, t), (x, t) ∈ D,

u(x,0) = 0, x ∈Ω,
∂u(x,t)

∂ t |t=T −∆xu(x, t)|t=T = 0, x ∈Ω,

αu(x, t)+ ∂u(x,t)
∂n = 0, x ∈ ∂Ω, ∀t ∈ (0,T ),

α∆xu(x, t)+ ∂∆xu(x,t)
∂n = 0, x ∈ ∂Ω, ∀t ∈ (0,T ), α > 0.

Since the domain D is cylindrical we can seek u(x, t) = X(x)ϕ(t) and u1(x, t) =
X1(x)ϕ1(t) for the first eigenfunction of the operator ♦∗R♦R. Thus, we have

−ϕ
′′
1 (t)X1(x)+ϕ1(t)∆2X1(x) = sR

1 ϕ1(t)X1(x).

By the variational principle for the self-adjoint compact positive operator ♦∗♦, we
get

sR
1 (D) =

−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
Ω

X2
1 (x)dx+

∫ T
0 ϕ2

1 (t)dt
∫

Ω
(∆X1(x))2dx∫ T

0 ϕ2
1 (t)dt

∫
Ω

X2
1 (x)dx

=
−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
Ω

X2
1 (x)dx+

∫ T
0 ϕ2

1 (t)dt
∫

Ω
(−µ1(Ω)X1(x))2dx∫ T

0 ϕ2
1 (t)dt

∫
Ω

X2
1 (x)dx

=
−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
Ω

X2
1 (x)dx+µ2

1 (Ω)
∫ T

0 ϕ2
1 (t)dt

∫
Ω

X2
1 (x)dx∫ T

0 ϕ2
1 (t)dt

∫
Ω

X2
1 (x)dx

,

where µ1(Ω) is the first eigenvalue of the Robin Laplacian.
For each nonnegative function f ∈ L2(D) we have∫

Ω

| f (x, t)|2dx =
∫

B
| f ∗(x, t)|2dx, ∀t ∈ (0,T ), (5.176)
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where as usual f ∗ is the (cylindric) symmetric decreasing rearrangement of the func-
tion f . Combining Lemma 5.36 and (5.176), we obtain

sR
1 (D) =

−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
Ω
(X1(x))2dx+µ2

1 (Ω)
∫ T

0 ϕ2
1 (t)dt

∫
Ω
(X1(x))2dx∫ T

0 ϕ2
1 (t)dt

∫
Ω
(X1(x))2dx

≥
−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
B(X

∗
1 (x))

2dx+µ2
1 (B)

∫ T
0 ϕ2

1 (t)dt
∫

B(X
∗
1 (x))

2dx∫ T
0 ϕ2

1 (t)dt
∫

B(X
∗
1 (x))

2dx

=
−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
B(X

∗
1 (x))

2dx+
∫ T

0 ϕ2
1 (t)dt

∫
B X∗1 (x)(µ

2
1 (B)X

∗
1 (x))dx∫ T

0 ϕ2
1 (t)dt

∫
B(X

∗
1 (x))

2dx

=
−
∫ T

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
B(X

∗
1 (x))

2dx+
∫ T

0 ϕ2
1 (t)dt

∫
B X∗1 (x)∆

2X∗1 (x)dx∫ T
0 ϕ2

1 (t)dt
∫

B(X
∗
1 (x))

2dx

=
−
∫ T

0
∫

B u∗1(x, t)
∂ 2u∗1(x,t)

∂ t2 dxdt +
∫ T

0
∫

B u∗1(x, t)∆
2
xu∗1(x, t)dxdt∫ T

0
∫

B(u
∗
1(x, t))

2dxdt

≥ inf
z(x,t)6=0

−
∫ T

0
∫

B z(x, t) ∂ 2z(x,t)
∂ t2 dxdt +

∫ T
0
∫

B z(x, t)∆2
xz(x, t)dxdt∫ T

0
∫

B z2(x, t)dxdt
= sR

1 (C).

The proof is complete. �

5.8.2 Isoperimetric inequalities for the second s-number

A direct consequence of Theorem 5.37 is that the operator norm of the operator
♦−1

R is maximised in the circular cylinder C among all cylindric domains of a given
measure, i.e.

‖♦−1
R ‖D ≤ ‖♦−1

R ‖C.

Theorem 5.38 The second s-number of the operator♦R is minimised on the disjoint
union of two identical circular cylinders among all cylindric Lipschitz domains of
the same measure.

Let us prove this theorem. First we solve the following initial boundary value
problem by the Fourier method:

− ∂ 2u(x,t)
∂ t2 +∆2

xu(x, t) = sR(D)u(x, t), (x, t) ∈ D,

u(x,0) = 0, x ∈Ω,
∂u(x,t)

∂ t |t=T −∆xu(x, t)|t=T = 0, x ∈Ω,

αu(x, t)+ ∂u(x,t)
∂n = 0, x ∈ ∂Ω, ∀t ∈ (0,T ),

α∆xu(x, t)+ ∂∆xu(x,t)
∂n = 0, x ∈ ∂Ω, ∀t ∈ (0,T ),α > 0.
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So we arrive at the spectral problems for ϕ(t) and X(x), that is,
∆2X(x) = µ2(Ω)X(x), x ∈Ω,

αX(x)+ ∂X(x)
∂n = 0, x ∈ ∂Ω,

α∆X(x)+ ∂∆X(x)
∂n = 0, x ∈ ∂Ω, α > 0,

and 
ϕ
′′
(t)+(sR(D)−µ2(Ω))ϕ(t) = 0, t ∈ (0,T ),

ϕ(0) = 0,
ϕ
′
(T )+µ(Ω)ϕ(T ) = 0.

It also gives that

tan
√

sR(D)−µ2(Ω)T =−
√

sR(D)−µ2(Ω)

µ(Ω)
.

We have sR
2 (D) = sR

2 (µ), and for the second s-number we get

tan
√

sR
2 (µi)−µ2

i T =−

√
sR

2 (µi)−µ2
i

µi
.

Thus, we have

(sR
2 (µi))

′ =
2sR

2 (µi)cos2
√

sR
2 −µ2

i T +2µ3
i T

µ2
i T +µi cos2

√
sR

2 −µ2
i T

i = 1,2, ... .

These s-numbers and µi are positive, so

(sR
2 (µi))

′ > 0 i = 1,2, ... .

It means that the function sR
2 (µi) is monotonically increasing. From [66] we have

µ2(Ω)≥ µ2(B), and thus we arrive at

sR
2 (D)≥ sR

2 (C). �

5.9 Cauchy-Neumann and Cauchy-Dirichlet-Neumann heat
operators

In [117], Siudeja proved certain (isoperimetric) eigenvalue inequalities for the
mixed Dirichlet-Neumann Laplacian operator in the right and equilateral triangles.
As many other isoperimetric inequalities these inequalities have physical interpreta-
tion. In fact, the eigenvalues can be related to the (time dependent) survival prob-
ability of the Brownian motion on a triangle, dying on the Dirichlet boundary, and
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reflecting on the Neumann part. Thus, it is clear that enlarging the Dirichlet part
leads to a shorter survival time. Moreover, having the Dirichlet condition on one
long side gives a larger chance of dying, than having a shorter Dirichlet side. In the
present section we extend such properties to the mixed Cauchy-Dirichlet-Neumann
heat operator in the right and equilateral triangular cylinders (prisms).

In [71], Laugersen and Siudeja proved that the first nonzero Neumann Laplacian
eigenvalue is maximised on the equilateral triangle among all triangles of given area.
Below we also present a version of such inequality for the Cauchy-Neumann heat
operator on the triangular cylinders.

One of classical inequalities in this direction is the Szegő-Weinberger inequality
(see, e.g. [121], and [132] ) which shows that the first nonzero eigenvalue of the
Laplacian with the Neumann boundary condition is maximised in a ball among all
Lipschitz domains in Rd , d ≥ 2, of the same measure. In this section an analogue of
the Szegő-Weinberger inequality is also presented for the heat operator. That is, we
prove that the second s-number of the Cauchy-Neumann heat operator is maximised
on the circular cylinder among all (Euclidean) cylindric Lipschitz domains of a given
volume.

Spectral isoperimetric inequalities have been mainly studied for the Laplacian
related operators, for instance, for the p-Laplacians and bi-Laplacians. However,
there are also many recent works on this subject for other types of compact oper-
ators. All these works were for self-adjoint operators. Here our main interest is to
describe the extensions of the known isoperimetric inequalities to the case of non-
self-adjoint operators. Summarising main results of the present section, we prove the
following facts:

• The second s-number of the Cauchy-Neumann heat operator is maximised on
the circular cylinder among all (Euclidean) cylindric Lipschitz domains of a
given volume.

• We show the s-numbers inequalities for the (mixed) Cauchy-Dirichlet-
Neumann heat operator in the right and equilateral triangular cylinders.

• The second s-number of the Cauchy-Neumann heat operator is maximised on
the equilateral triangular cylinder among all triangular cylinders with a given
volume.

5.9.1 Basic properties

Let D=Ω×(0,1) be a triangular cylindrical domain, where Ω⊂R2 is a triangle.
We consider the Cauchy-Dirichlet and Cauchy-Neumann heat operators ♦D, ♦N :
L2(D)→ L2(D) respectively, given by the formulae

♦Du(x, t) :=


∂u(x,t)

∂ t −∆xu(x, t),
u(x,0) = 0, x ∈Ω,

u(x, t) = 0, x ∈ ∂Ω, ∀t ∈ (0,1),
(5.177)
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and

♦Nu(x, t) :=


∂u(x,t)

∂ t −∆xu(x, t),
u(x,0) = 0, x ∈Ω,
∂u(x,t)

∂n = 0, x ∈ ∂Ω, ∀t ∈ (0,1).

(5.178)

Here ∂Ω is the boundary of Ω and ∂

∂n is the normal derivative on the boundary.
The operators ♦D and ♦N are compact, but these are non-self-adjoint operators in
L2(D). The adjoint operators ♦∗D and ♦∗N to the operators ♦D and ♦N can be written
as

♦∗Dv(x, t) =


− ∂v(x,t)

∂ t −∆xv(x, t),
v(x,1) = 0, x ∈Ω,

v(x, t) = 0, x ∈ ∂Ω, ∀t ∈ (0,1),
(5.179)

and

♦∗Nv(x, t) =


− ∂v(x,t)

∂ t −∆xv(x, t),
v(x,1) = 0, x ∈Ω,
∂∆xv(x,t)

∂n = 0, x ∈ ∂Ω, ∀t ∈ (0,1).

(5.180)

A direct calculation gives that the operators ♦∗D♦D and ♦∗N♦N can be written in
the forms

♦∗D♦Du(x, t) :=



− ∂ 2u(x,t)
∂ t2 +∆2

xu(x, t),
u(x,0) = 0, x ∈Ω,
∂u(x,t)

∂ t |t=1−∆xu(x, t)|t=1 = 0, x ∈Ω,

u(x, t) = 0, x ∈ ∂Ω, ∀t ∈ (0,1),
∆xu(x, t) = 0, x ∈ ∂Ω, ∀t ∈ (0,1),

(5.181)

and

♦∗N♦Nu(x, t) :=



− ∂ 2u(x,t)
∂ t2 +∆2

xu(x, t),
u(x,0) = 0, x ∈Ω,
∂u(x,t)

∂ t |t=1−∆xu(x, t)|t=1 = 0, x ∈Ω,
∂u(x,t)

∂n = 0, x ∈ ∂Ω, ∀t ∈ (0,1),
∂∆xu(x,t)

∂n = 0, x ∈ ∂Ω, ∀t ∈ (0,1).

(5.182)

Let D4 =4× (0,1) be a cylindrical domain, where 4⊂ R2 is a right triangle
with the sides of length L≥M ≥ S (that is, with the boundary ∂4= {L,M,S}). We
also denote by L, M, S the sides of the right triangle with respect to their lengths (cf.
[117]). We consider the Cauchy-Dirichlet-Neumann heat operator ♦4 : L2(D4)→
L2(D4) in the form

♦4u(x, t) :=


∂u(x,t)

∂ t −∆xu(x, t),
u(x,0) = 0, x ∈4,

u(x, t) = 0, x ∈ D⊂ {L,M,S}, ∀t ∈ (0,1)
∂u(x,t)

∂n = 0, x ∈ ∂4\D, ∀t ∈ (0,1).

(5.183)
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Here D ∈ {L,M,S} means that D is one of the sides where we set the Dirichlet
condition. Its adjoint operator ♦∗4 can be written as

♦∗4v(x, t) :=


− ∂v(x,t)

∂ t −∆xv(x, t),
u(x,1) = 0, x ∈4,

∆v(x, t) = 0, x ∈ D⊂ {L,M,S}, ∀t ∈ (0,1)
∂∆v(x,t)

∂n = 0, x ∈ ∂4\D, ∀t ∈ (0,1).

(5.184)

A direct calculation gives that the operator ♦∗4♦4 has the following formula

♦∗4♦4u(x, t) =



− ∂ 2u(x,t)
∂ t2 +∆2

xu(x, t),
u(x,0) = 0, x ∈4,
∂u(x,t)

∂ t |t=1−∆xu(x, t)|t=1 = 0, x ∈4,

u(x, t) = 0, x ∈ D⊂ {L,M,S}, ∀t ∈ (0,1),
∂u(x,t)

∂n = 0, x ∈ ∂4\D, ∀t ∈ (0,1),
∆xu(x, t) = 0, x ∈ D⊂ {L,M,S}, ∀t ∈ (0,1),
∂∆xu(x,t)

∂n = 0, x ∈ ∂4\D, ∀t ∈ (0,1).

(5.185)

Let sN
1 and sN

2 be the first and second s-numbers of the Cauchy-Neumann prob-
lem, respectively. Let sside

1 be the first s-number of the spectral problem with the
Dirichlet condition to this side. That is, sSL

1 would correspond to the Dirichlet condi-
tions imposed on the shortest and longest sides. Let sD

1 be the first s-number of the
Cauchy-Dirichlet heat operator. We will be using these notations in the subsections
that follow.

5.9.2 On the Szegő-Weinberger type inequality

Let Ω be a simply-connected Lipschitz set with smooth boundary ∂Ω with |B|=
|Ω|, where |Ω| is the Lebesgue measure of the domain Ω.

Let us introduce the operators T,L : L2(Ω)→ L2(Ω), respectively, by

T z(x) :=

{
−∆z(x) = µz(x),
∂ z(x)

∂n = 0, x ∈ ∂Ω,
(5.186)

and

Lz(x) :=


∆2z(x) = λ z(x),
∂ z(x)

∂n = 0, x ∈ ∂Ω,
∂∆z(x)

∂n = 0, x ∈ ∂Ω.

(5.187)

Lemma 5.39 The second eigenvalue of the operator L is maximised on the ball B
among all Lipschitz domains Ω of the same measure with |Ω|= |B|.

Let us prove this lemma. The Szegő-Weinberger inequality is valid for the Neu-
mann Laplacian, that is, the ball is a maximiser of the second eigenvalue of the oper-
ator T among all Lipschitz domains Ω with |B|= |Ω|. A straightforward calculation
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from (5.186) gives that

T 2z(x) =


∆2z(x) = µ2z(x),
z(x) = 0, x ∈ ∂Ω,
∂∆z(x)

∂n = 0, x ∈ ∂Ω.

Thus, T 2 = L and µ2 = λ . Now using the Szegő-Weinberger inequality, we see that

λ2(B) = µ
2
2 (B)≥ µ

2
2 (Ω) = λ2(Ω),

that is, λ2(B)≥ λ2(Ω). �

Let D = Ω× (0,1) be a cylindrical domain, where Ω⊂Rd is a simply-connected
Lipschitz set with smooth boundary ∂Ω. We consider the heat operator with the
Cauchy-Neumann conditions, ♦ : L2(D)→ L2(D). We also denote by C = B× (0,1)
a circular cylinder, where B⊂ Rd is an open ball.

Theorem 5.40 The second s-number of the operator ♦ is maximised on the circular
cylinder C among all cylindric Lipschitz domains of a given measure, that is,

sN
2 (C)≥ sN

2 (D),

for all D with |D|= |C|.

Let us prove this theorem. Consider the spectral problem

♦∗N♦Nu = su,

♦∗N♦Nu(x, t) :=



− ∂ 2u(x,t)
∂ t2 +∆2

xu(x, t) = sNu(x, t),
u(x,0) = 0, x ∈Ω,
∂u(x,t)

∂ t |t=1−∆xu(x, t)|t=1 = 0, x ∈Ω,
∂u(x,t)

∂n = 0, x ∈ ∂Ω, ∀t ∈ (0,1),
∂∆xu(x,t)

∂n = 0, x ∈ ∂Ω.

(5.188)

We can set u(x, t) = X(x)ϕ(t), with u2(x, t) = X2(x)ϕ1(t) the second eigenfunction
of the operator♦∗N♦N , where ϕ1(t) and X2(x) are the first and second eigenfunctions
with respect to variables t and x. Consequently, we have

−ϕ
′′
1 (t)X2(x)+ϕ1(t)∆2X2(x) = sN

2 ϕ1(t)X2(x). (5.189)

Now by the variational principle for the self-adjoint compact positive operator
♦∗N♦N , we get

sN
2 (D) =

−
∫ 1

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
Ω

X2
2 (x)dx+

∫ 1
0 ϕ2

1 (t)dt
∫

Ω
X2(x)∆2X2(x)dx∫ 1

0 ϕ2
1 (t)dt

∫
Ω

X2
2 (x)dx

=
−
∫ 1

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
Ω

X2
2 (x)dx+

∫ 1
0 ϕ2

1 (t)dt
∫

Ω
λ2(Ω)(X2(x))2dx∫ 1

0 ϕ2
1 (t)dt

∫
Ω

X2
2 (x)dx
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=
−
∫ 1

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
Ω

X2
2 (x)dx+λ2(Ω)

∫ 1
0 ϕ2

1 (t)dt
∫

Ω
X2

2 (x)dx∫ 1
0 ϕ2

1 (t)dt
∫

Ω
X2

2 (x)dx
,

where λ2(Ω) is the second eigenvalue of the operator L. For each nonnegative func-
tion X ∈ L2(Ω) we have∫

Ω

|X1(x)|2dx =
∫

B
|X∗1 (x)|2dx, with |Ω|= |B|, (5.190)

where X∗ is the symmetric decreasing rearrangement of X .
By applying Lemma 5.39 and (5.190), we get

sN
2 (D) =

−
∫ 1

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
Ω
(X2(x))2dx+λ2(Ω)

∫ 1
0 ϕ2

2 (t)dt
∫

Ω
(X2(x))2dx∫ 1

0 ϕ2
1 (t)dt

∫
Ω
(X2(x))2dx

≤
−
∫ 1

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
B(X

∗
2 (x))

2dx+λ2(B)
∫ 1

0 ϕ2
1 (t)dt

∫
B(X

∗
2 (x))

2dx∫ 1
0 ϕ2

1 (t)dt
∫

B(X
∗
2 (x))

2dx

=
−
∫ 1

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
B(X

∗
2 (x))

2dx+
∫ 1

0 ϕ2
1 (t)dt

∫
B X∗2 (x)(λ2(B)X∗2 (x))dx∫ 1

0 ϕ2
1 (t)dt

∫
B(X

∗
2 (x))

2dx

=
−
∫ 1

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
B(X

∗
2 (x))

2dx+
∫ 1

0 ϕ2
1 (t)dt

∫
B X∗2 (x)∆

2X∗2 (x)dx∫ 1
0 ϕ2

1 (t)dt
∫

B(X
∗
2 (x))

2dx

=
−
∫ 1

0
∫

B u∗2(x, t)
∂ 2u∗2(x,t)

∂ t2 dxdt +
∫ 1

0
∫

B u∗2(x, t)∆
2
xu∗2(x, t)dxdt∫ 1

0
∫

B(u
∗
2(x, t))

2dxdt

≤ sup
ν(x,t)6=0

−
∫ 1

0
∫

B ν(x, t) ∂ 2ν(x,t)
∂ t2 dxdt +

∫ 1
0
∫

B ν(x, t)∆2
xν(x, t)dxdt∫ 1

0
∫

B ν2(x, t)dxdt
= sN

2 (C).

The proof is complete. �

5.9.3 Inequalities for the Cauchy-Dirichlet-Neumann operator

Let us consider the eigenvalue problems for the operators T4,L4 : L2(4) →
L2(4), respectively, defined by

T4z(x) :=


−∆z(x) = β z(x),
z(x) = 0, x ∈ D⊂ {L,M,S},
∂ z(x)

∂n = 0, ∂4\D,

(5.191)

and

L4z(x) :=



∆2z(x) = ηz(x),
z(x) = 0, x ∈ D⊂ {L,M,S},
∂ z(x)

∂n = 0, x ∈ ∂4\D,

∆z(x) = 0, x ∈ D⊂ {L,M,S},
∂∆z(x)

∂n = 0, x ∈ ∂4\D.

(5.192)
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Lemma 5.41 For the operator L4 and any right triangle4 with the smallest angle
α with π

6 < α < π

4 , we have the eigenvalue inequalities

0 = η
N
1 < η

S
1 < η

M
1 < η

N
2 < η

L
1 < η

SM
1 < η

SL
1 < η

ML
1 < η

D
1 . (5.193)

When α = π

6 , ηM
1 = ηN

2 , and for α = π

4 (right isosceles triangle) we have S =
M and ηN

2 < ηL
1 . All other inequalities stay sharp in these cases. For an arbitrary

triangle we have

min{ηS
1 ,η

M
1 ,ηL

1 }< η
N
2 ≤ η

SM
1 ≤ η

SL
1 ≤ η

ML
1 , (5.194)

for any lengths of sides. However, it is possible that ηN
2 > ηL

1 (for any small pertur-
bation of the equilateral triangle) or ηN

2 < ηM
1 (for the right triangle with α < π

6 ).

Let us prove this lemma. It is easy to see that L4 = T 2
4. It means that η = β 2.

From [117], for any right triangle with the smallest angle α ∈ (π

6 ,
π

4 ), we have the
inequalities

0 = β
N
1 < β

S
1 < β

M
1 < β

N
2 < β

L
1 < β

SM
1 < β

SL
1 < β

ML
1 < β

D
1 .

This yields

0 = η
N
1 < η

S
1 < η

M
1 < η

N
2 < η

L
1 < η

SM
1 < η

SL
1 < η

ML
1 < η

D
1 .

For α = π

6 we have β M
1 = β N

2 , so that ηM
1 = ηN

2 , and for α = π

4 (right isosceles
triangle) we have S = M and β N

2 < β L
1 , so that ηN

2 < ηL
1 . For an arbitrary triangle we

have
min{β S

1 ,β
M
1 ,β L

1 }< β
N
2 ≤ β

SM
1 ≤ β

SL
1 ≤ β

ML
1 ,

for any lengths of sides. Moreover, we have

min{ηS
1 ,η

M
1 ,ηL

1 }< η
N
2 ≤ η

SM
1 ≤ η

SL
1 ≤ η

ML
1 .

However, it is possible that β N
2 > β L

1 in the case ηN
2 > ηL

1 (for any small perturbation
of the equilateral triangle) or β N

2 < β M
1 , after that ηN

2 < ηM
1 (for right triangle with

α < π

6 ). This completes the proof. �

Theorem 5.42 For any right triangular cylinder D4, with the smallest angle α with
π

6 < α < π

4 , we have the inequalities for s-numbers:

π2

4
= sN

1 < sS
1 < sM

1 < sN
2 < sL

1 < sSM
1 < sSL

1 < sML
1 < s1. (5.195)

For α = π

6 we have sM
1 = sN

2 , and for α = π

4 (right isosceles triangular cylinder)
we have S = M and sN

2 < sL
1 . All other inequalities stay sharp in these cases. For an

arbitrary triangular cylinder we have

min{sS
1,s

M
1 ,sL

1}< sN
2 ≤ sSM

1 ≤ sSL
1 ≤ sML

1 , (5.196)

for any lengths of sides. However, it is possible that sN
2 > sL

1 (for any small perturba-
tion of the equilateral triangular cylinder) or sN

2 < sM
1 (for right triangular cylinders

with α < π

6 ).
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To prove this theorem, let us prove first the inequality in (5.195). To do it, we
solve the following problem by the Fourier method:

♦∗4♦4u(x, t) =



− ∂ 2u(x,t)
∂ t2 +∆2

xu(x, t),
u(x,0) = 0, x ∈4,
∂u(x,t)

∂ t |t=1−∆xu(x, t)|t=1 = 0, x ∈4,

u(x, t) = 0, x ∈ D⊂ {L,M,S}, ∀t ∈ (0,1),
∂u(x,t)

∂n = 0, x ∈ ∂4\D, ∀t ∈ (0,1),
∆xu(x, t) = 0, x ∈ D⊂ {L,M,S}, ∀t ∈ (0,1),
∂∆xu(x,t)

∂n = 0, x ∈ ∂4\D, ∀t ∈ (0,1).

(5.197)

Thus, we arrive at the spectral problems for ϕ(t) and X(x) separately, i.e

∆2X(x) = β 2(4)X(x), x ∈4,

X(x) = 0, x ∈ D⊂ {L,M,S}, ∀t ∈ (0,1),
∂X(x)

∂n = 0, x ∈ ∂4\D,

∆X(x) = 0, x ∈ D⊂ {L,M,S},
∂∆X(x)

∂n = 0, x ∈ ∂4\D,

(5.198)

and 
ϕ
′′
(t)+(s−β 2)ϕ(t) = 0, t ∈ (0,1),

ϕ(0) = 0,
ϕ
′
(1)+β (4)ϕ(1) = 0.

(5.199)

It also gives that

tan
√

s−β 2 =−
√

s−β 2

β
. (5.200)

We have (see, [117]) that 0 = ηN
1 < ηS

1 < ηM
1 < ηN

2 < ηL
1 < ηSM

1 < ηSL
1 < ηML

1 < ηD
1

and

tan
√

s(β )−β 2 =−
√

s(β )−β 2

β
. (5.201)

It is easy to see that

s′(β ) =
2s(β )cos2

√
s−β 2

β 2 +β cos2
√

s−β 2
. (5.202)

The s-numbers and β are positive, so that

s′1(β )
′ > 0. (5.203)

It means the function s(η) is monotonically increasing. If β N
1 = 0 from (5.153) we

take sN
1 = π2

4 and [117] and from Lemma 5.41 we take 0 = ηN
1 < ηS

1 < ηM
1 < ηL

1 <

ηSM
1 < ηSL

1 < ηML
1 < η1, and thus we get

π2

4
= sN

1 < sS
1 < sM

1 < sL
1 < sSM

1 < sSL
1 < sML

1 < s1.
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Let’s prove the second part of inequality (5.193), sM
1 < sN

2 < sL
1 , and from Lemma

5.41 we get ηM
1 < ηN

2 < ηL
1 . The operator ♦∗4♦4 is a self-adjoint and compact

operator. Hence, we have a complete orthonormal system in L2(D4), and thus

∫
D4

uiu jdxdt =

{
0, i 6= j,
1, i = j.

Now using Lemma 5.41 we obtain

sM
1 =

−
∫ 1

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
4(X

M
1 (x))2dx+

∫ 1
0 ϕ2

1 (t)dt
∫
4XM

1 ∆2XM
1 (x)dx∫ 1

0
∫
4(u

M
1 (x, t))2dxdt

=
−
∫ 1

0 ϕ
′′
1 (t)ϕ1(t)dt +

∫
4XM

1 ∆2XM
1 (x)dx∫ 1

0
∫
4(u

M
1 (x, t))2dxdt

=
−
∫ 1

0 ϕ
′′
1 (t)ϕ1(t)dt +ηM

1∫ 1
0
∫
4(u

M
1 (x, t))2dxdt

<
−
∫ 1

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
4(X

N
2 (x)dx)2 +

∫ 1
0 ϕ1(t)ϕ1(t)dt

∫
4XN

2 (x)∆2XN
2 (x)dx∫ 1

0
∫
4(u

N
2 (x, t)

2dxdt

=
−
∫ 1

0 ϕ
′′
1 (t)ϕ1(t)dt +

∫
4ηN

2 (XN
2 (x))2dx∫ 1

0
∫
4(u

N
2 (x, t))

2dxdt
=
−
∫ 1

0 ϕ
′′
1 (t)ϕ1(t)dt +ηN

2∫ 1
0
∫
4(u

N
2 (x, t))

2dxdt

= sN
2 <
−
∫ 1

0 ϕ
′′
1 (t)ϕ1(t)dt +ηL

1∫ 1
0
∫
4(u

L
2(x, t))

2dxdt

=
−
∫ 1

0 ϕ
′′
1 (t)ϕ1(t)dt

∫
4(X

L
1 (x)dx)2 +

∫ 1
0 ϕ1(t)ϕ1(t)dt

∫
4XL

1 (x)∆
2XL

1 (x)dx∫ 1
0
∫
4(u

L
2(x, t))

2dxdt

= sL
1 . (5.204)

The rest of the equalities and inequalities follow from the monotonicity property
(5.203). �

Theorem 5.43 For all triangular cylinders, the second s-number of the Cauchy-
Neumann heat operator (5.112) satisfies

sN
2 (Ω)≤ (2.78978609910027)2 +

(
4π2

3
√

3

)2

,

and the equality holds if and only if the triangular cylinder coincides with the equi-
lateral triangular cylinder Ω∗× (0,1), that is, |Ω|= |Ω∗|.

Let us prove this theorem. By using the fact that s-numbers are monotonically
increasing (see (5.203)) and the main result of [71] we obtain

sN
2 (Ω)≤ sN

2

(
4π2

3
√

3

)
.
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A straightforward calculation in (5.201) gives

sN
2 (Ω)≤ sN

2

(
4π2

3
√

3

)
∼= (2.78978609910027)2 +

(
4π2

3
√

3

)2

. �
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[89] G. Pólya. On the characteristic frequencies of a symmetric membrane.
Math. Z., 63:331–337, 1955.

[90] G. Pólya and G. Szegő. Isoperimetric inequalities in mathematical physics.
Ann. Math. Studies, 27, Princeton Univ. Press, 1951.

[91] E. Post. Generalized differentiation. Trans. Amer. Math. Soc., 32:723–781,
1930.

[92] J. W. S. Rayleigh. The theory of sound. Dover Pub. New York, 1945
(republication of the 1894/96 edition).

[93] M. Reed and B. Simon. Methods of Modern Mathematical Physics. II
Fourier analysis self-adjointness. Academic Press, 1975.

[94] M. Reed and B. Simon. Methods of Modern Mathematical Physics, Vol.
IV: Analysis of operators. Academic Press, 1977.

[95] G. Rein. Non-linear stability of gaseous stars. Arch. Rat. Mech. Anal.,
168:115–130, 2003.
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