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Preface

This book is an attempt to collect a number of properties emerging in recent research
describing certain features of the theory of partial differential equations that can be
attributed to the field of spectral geometry. Both being vast fields, our attempt is not
to give a comprehensive account of the whole theory, but to provide the reader with
a quick introduction to a number of its important aspects.

The topic of spectral geometry is a broad research area appearing in different
mathematical subjects. As such, it allows one to compare spectral information asso-
ciated with various objects over different domains with selected geometric properties.
For example, when the area of the domain is fixed, one often talks of the isoperimetric
inequalities in such context. The purpose of this book is to highlight one direction of
such research aimed at the understanding of spectral properties of partial differential
operators as well as of the related integral operators.

An indispensable language of the area is that of functional analysis and, aimed
also at the student readership, we give a basic introduction to the theory. In general,
the functional analysis can be viewed as a powerful collection of mathematical tools
allowing one to obtain significant generalisations of various effects detected in the
investigation of one concrete problem. At present, this is a vast mathematical field
with numerous investigations and excellent monographs readily available.

Thus, in the first chapters of this book we give a brief account of the basics of
functional analysis aiming at consequent applications in the theory of differential
equations. Chapter 1 deals with the basic notions of function spaces, Chapter 2 is
devoted to the foundation of the theory of linear operators, and Chapter 3 discusses
the basics of the spectral theory of differential operators. These are aimed to provide
the reader with a quick introduction to the subject. As there are many detailed and
comprehensive monographs already available, we omit many proofs of basic results
that can be easily found in a variety of sources. From this point of view, this book
is only a “guidebook” indicating the main directions and necessary basic facts. The
general course of the functional analysis contains a large number of various defi-
nitions and facts. It is clear that it is impossible to cover and understand all these
concepts even briefly. Therefore, in the present book we introduce only those con-
cepts which are necessary (but, of course, not sufficient) for a beginner wanting to do
research on spectral problems for the differential operators.

We introduce only the main concepts of the functional analysis, and only those
on which we will lean in the further exposition. This presentation is therefore far
from being complete, and there are many other concepts and ideas widely used in
the theory. We also do not dwell on detailed justifications of introduced concepts
and their general properties, as the proof of those (standard) facts goes beyond the

iX



X Preface

scope of the present book. The choice of the exposition objects is stipulated only by
opinions of the authors and their own experience in using the introduced concepts
of the functional analysis for analysing concrete problems appearing in the theory of
differential equations.

Surely, the functional analysis contains much more general concepts and has
numerous important methods successfully applied to a wide range of mathematical
problems. In this work we dwell only on the illustration of some concrete concepts
by means of the simplest examples related to the subject of differential operators.
Our first goal here is to provide a simplest exposition of the used concepts to move
on to the spectral geometry questions.

Thus, in our exposition we also provide the reader with a collection of concrete
examples of the simplest operators. Our goal is to demonstrate, on one side, advan-
tages appearing in using the general methods for solving concrete problems and, on
the other side, the fact that these methods are not complicated and very soon lead to
a number of concrete applications.

In Chapter 4 we review another important ingredient often playing a crucial role
in the subject of the spectral geometry of differential and integral operators: the sym-
metric decreasing rearrangement. This is a basic tool to allow one to compare integral
expressions over different domains provided the functions under the integral are also
rearranged in an appropriate way. Since this is a well-known subject already treated
in much detail in many excellent books, we touch upon it only briefly, emphasising
different applications of such methods, and preparing the scenery for the results in
the following chapter.

Finally, in Chapter 5 our exposition culminates in the core subject of this mono-
graph: geometric spectral inequalities for a collection of most important differential
and integral operators. Here is where the background material presented in previous
chapters comes into play, to allow one to compare spectral information for various
operators over different domains. In particular, we treat in detail the logarithmic,
Riesz and Bessel potential operators and the corresponding boundary value prob-
lems, also extending the analysis to the Riesz operators in spherical and hyperbolic
geometries.

Subsequently, we concentrate on several cases of non-selfadjoint operators, the
case that is much less understood. Here we discuss different versions of the isoperi-
metric inequalities for the singular numbers, for the heat operators of different types:
higher-order heat operators, as well as the heat operators with the Cauchy-Dirichlet,
Cauchy-Robin, Cauchy-Neumann and Cauchy-Dirichlet-Neumann boundary condi-
tions. Part of the presentation in this chapter is based on the authors’ recent research
in the area.

It is our pleasure to thank Junqing Huang for help in producing the picture for the
cover of the book in Mathematica, representing the ball with respect to the Carnot-
Carathéodory distance on the Heisenberg group.

Michael Ruzhansky

London (UK) & Ghent (Belgium)
Makhmud Sadybekov

Almaty (Kazakhstan)
Durvudkhan Suragan

Astana (Kazakhstan)
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Chapter 1

Functional spaces

This chapter contains a brief and basic introduction to the part of the functional anal-
ysis dealing with function spaces. This chapter, as well as the next two, are aimed to
serve as a “guidebook” indicating the main directions and necessary facts. As there is
a large variety of sources available, and as the material of the first three chapters can
be readily found in numerous monographs with much detail, we avoid giving techni-
cal proofs but restrict ourselves here to giving an exposition of main ideas, concepts,
and their main properties.

Thus, as a rule, main theorems are introduced without proofs, which can be found
in the extensive mathematical literature. Here, our goal is the explanation of intro-
duced concepts and properties in concrete simple examples.

There are numerous excellent books containing very detailed and rigorous expo-
sition of the material of the first two or three chapters on the basics of the functional
analysis. We can only mention a few, such as the books by Reed and Simon [93, 94],
Davies [32], Gohberg and Krein [44], Lax [72], and many others. For a more informal
introduction to basic and more advanced analysis and measure theory we can also
recommend [106], with the additional emphasis put on the Fourier analysis aspects
of the operator theory.

However, one distinguishing feature of our presentation is the particular emphasis
put on many examples related to the theory of differential equations.

The following conventions will apply to the material throughout the whole book.
New terms appearing in the text are in ifalics and in bold. For the convenience of
the reader, the logical completion of a separate idea, justification of an approval,
discussions of theorems, lemmas and remarks, consideration of an example, proofs,
etc., are denoted by the symbol L.

1.1 Normed spaces

We start with the concept of a linear space (or a vector space) which is the basic
notion of the (linear) functional analysis. A collection X of elements is called a linear
space if any linear combination of them still belongs to X. The rigorous definition of
this concepts looks like:



2 Spectral geometry of partial differential operators

Definition 1.1 A linear space over the field K (K = R or C), or a vector space, is a
nonempty set X # 0, equipped with two fixed operations:

(1) addition of set elements,
(2) multiplication of set elements by a scalar,
such that the following properties hold true:
e X is a group with respect to the addition, that is:
x+y=y+x Vx,y€eX;
(x+y)+z=x+(+z2) YxyzeX;
eX: x+0=x VxelX;
VxeX I(—x)eX: x+(—x)=0;
e and also axioms for the scalar multiplication are satisfied:

(af)x=o(fx), a(x+y)=ax+ay, 1-x=x, (ot+p)x=ax+Px.

A rather general concept of spaces appearing in the functional analysis are linear
(vector) topological spaces. These spaces are linear spaces X over a field of complex
numbers C (or real numbers R) which are at the same time also topological spaces,
that is, the linear operations from Definition 1.1 are continuous in the topology of the
space.

A more particular, but very important setting appears when one can introduce a
norm (length) of vectors in the linear space X, with properties mimicking the length
properties of vectors in the standard Euclidean space. Namely, the norm of the ele-
ment x € X is a real number ||x|| such that we always have

|lx|| >0, and ||x|| = 0 if and only if x = 0;
[Ax] = |A]-[lx]l, VA €C, VxeX,
and “the triangle inequality” is satisfied:
x4yl < [lxl| +lIy1l-

A linear space equipped with the norm introduced on it is called a normed space.
The convergence in X can be introduced as

Xp — x, if ||x, —x|| = 0 as n — oo.

Suppose we have two norms ||x||(") and ||x]|(®) in a normed space X. Then the
norms || - || and || - |?) are called equivalent, if there exist numbers & > 0, 8 > 0
such that for all elements x € X we have

a1V < @ < Bl .
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It follows that two norms in a linear space are equivalent if and only if each of them is
subordinated to another. Thus, if for a linear space X two equivalent norms are given,
and we denote by X| and X, the corresponding normed spaces, then any sequence
converging in one of these spaces also converges in another, moreover, to the same
limit. This fact allows us to choose one of the equivalent norms, which may be more
convenient to work with in the linear space X.

In the case when the considered space X is finite-dimensional, it turns out that
any choice of a norm leads to an equivalent normed space. More precisely: In a
finite-dimensional linear space all the norms are equivalent.

Example 1.2 (Euclidean space R") Let E" be a linear space consisting of n-
dimensional vectors x = (xj,x2,...,%,), with x; € R for all k = 1,...,n. If in E"
we introduce one of the following norms:

1

n P
o := max or = 4 , 1< p<oo, 1.1
il = max 1] o [l (z ud ) <p (L)

k=1

then the obtained normed space is called the Euclidean space R". Checking the
axioms of the norm is straightforward. Here, the triangle inequality for the second
type of the p-norms is a consequence of the well-known Minkowski inequality for

finite sums:
n 1/p n 1/p n I/p
(Z |k +)’k|p> < (Z |Xk|P> + (Z |yk|p) . (1.2)
k=1

k=1 k=1

If the “coordinates” of a vector are complex numbers, then the linear space consisting
of complex columns x = (x1,x2,...,%,) with the norm (1.1) (where for a € C, |a| =
V/(Re(a))? + (Im(a))?), is a normed space, denoted by C". [J

A point xg € X is called a limit point (or a limiting point) of the set M C X, if any
neighbourhood of the point xo has at least one point of the set M, different from xg.
In other words, x is a limit point of M, if in any ball B, (xo) = {x € X : ||x—xo|| < r}
there always exists some element x € M, x # xy. A necessary and sufficient condition
for the point xy € X to be a limit point of the set M C X is the existence of a sequence
{x¢} C M converging to xo, where also x; # xo, k= 1,2,....

Let M C X, and let M’ be the set of the limit points of M. Then the set

M=m\ M

is called the closure of the set M. In other words, M is the smallest set containing M
and all of its limit points. The set M, for which we have M = M, is called closed. In
other words, a set is closed if it contains all of its limit points.

A set X in a linear space X is called a linear subspace, if for any x,y € X and
for any numbers «, 8 (from K), their linear combination satisfies ox + By € X. Note
that since X is a subset of the linear space X, it follows that X is also a linear space.
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We should pay attention to the fact that, generally speaking, such a linear space X
need not be closed with respect to the norm of the normed space X.

A linear subspace X of the normed space X ()? C X) is called dense in X, if for
any x € X and any € > 0 there exists an element X € X such that ||x —X]| < &. Thus,
if X is dense in X, then for any x € X there exists a sequence {x;} C X such that
X —>xask — oo,

Comparing the definitions of the closure and the density, we see that the assertion
“X is dense in X7, X C X, X # X, means that the closure of the linear subspace X
with respect to the norm of X coincides with X. Then one also says that the space X
is the completion of the linear subspace X with respect to the norm X. Each linear
normed space X has the completion and this completion is unique up to an isometric
(i.e. norm preserving) mapping, mapping X into itself.

Similar to linear subspaces, a general subset X of the topological space X is called
dense (in X) if every point x € X either belongs to X or is a limit point of X. That
is, for every point in X, the point is either in X or it is arbitrarily “close” to some
element in X. For instance, every real number is either a rational number or has one
arbitrarily close to it. Thus, the set of rational numbers is dense in the space of real
numbers.

A set X is called dense everywhere (in X) if it is dense in X. It can be readily

seen that a set X is dense in X if and only if its closure X contains X , that is, XDOX.
In particular, X is dense everywhere in X if X=X.

One of the central questions of the spectral theory is the property of completeness
of the system of eigenfunctions (sometimes complemented by the so-called associ-
ated functions) in the linear space under consideration. In many cases the proof of
the completeness of a system {uy } in the space X is based on the density everywhere
in X of the linear subspace spanned by the vectors {u; }, that is, of the set of all linear
combinations of the vectors {uy}.

As a visual demonstration of how “frequent” or “rare” the elements must be in
order for their linear span to be dense in the space under consideration, we mention
the following theorem being, generally speaking, a generalisation of the Weierstrass
theorem on polynomial approximations of continuous functions.

Theorem 1.3 (Muntz) Let ng =0, n; < np < ... € R. A linear span of power func-
tions {x"},"_ is dense in Cla,b), b > a > 0, if and only if the series

i 1
: n
diverges.

Thus, for example, the linear span of the system of the power functions {x"}”_,

=)

is dense in C|a,b], while the linear span of the functions {x"z} is not dense in
Cla,b).

The following lemma is useful for understanding the completeness of normed
spaces. For this, recall that a subsequence of the sequence {x; };”, is a subset {x; }
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such that k; 1 > k;, j=1,2,..., thatis, in {xkj} the sequential order of elements of
{xk}r_; is preserved.

A Cauchy sequence is a sequence whose elements become arbitrarily close to
each other as the sequence progresses. More precisely, given any positive € > 0, all
but a finite number of elements of the sequence are at distance < € from each other:
there exists N > 0 such that for all k,m > N we have ||x; —x,|| < €.

Lemma 1.4 (On convergence of sequences) Let X be a normed (not necessarily
complete) linear space. For any sequence {xi},_,, xx € X, the following statements
are equivalent:

1) the sequence {x;},_, converges;

2) any subsequence {xy;} of the sequence {x;};__ converges;

3) the sequence {x;};_, is a Cauchy sequence and any subsequence {xkj} con-
verges;

4) the sequence {xi},_, is a Cauchy sequence and it has some converging sub-
sequence {xi; };

5) the series Y. (xj11 —xi) converges.

k=1

It is usual to define a complete normed space X by requiring the property that

every Cauchy sequence of points in X converges to some element of X.

1.2 Hilbert spaces

In a large number of problems one deals with a more particular case when in
the linear space X one can introduce an inner product which is a generalisation of
the ordinary inner product in the Euclidean space. Namely, the inner product of the
elements x,y € X is a complex number denoted by (x,y), such that

e we always have (x,x) > 0, and (x,x) = 0 if and only if x = 0;
o (x,x) = (x,x);
o (ax+ By, z) = a{x,z) + B(y,z), for any numbers a, B € C.

A real number +/(x,x) satisfies all axioms of the norm and, therefore, can be
chosen as a norm of the element x:

(]l == v/ x, %)

Such space is called a pre-Hilbert space. For developing rich functional analysis
it is important for spaces under consideration to be complete (that is, any Cauchy
sequence of elements of the space converges to some element of this space; in other
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words, from the fact that ||x, — x,|| — 0 as n,m — oo for x,,,x, € X, it follows that
the limit lim x,, = x exists and that x € X).
n—yo0

Complete linear normed and complete pre-Hilbert spaces are called Banach and
Hilbert spaces, respectively. For non-complete spaces, the well-known completion
procedure of a metric space (analogous to the transition from rational numbers to
real ones) in the case of the linear normed (pre-Hilbert) space leads to the Banach
(Hilbert) space, respectively.

If in a linear space the norm is generated by an inner product ||x|| = /(x,x), then
the parallelogram law is valid:

x4+ 31> + lx = ylI> = 211>+ 2|y )|>. (1.3)

The ordinary Euclidean space is one of the simplest examples of the (real) Hilbert
space. The space of complex vectors C” is also a Hilbert space, with the inner product
defined by the formula

n
(x,x) :== Zxk)Tk» Vx,y: x=(x1,x2,...,%,) €C", y= (y1,y2,..,yn) € C".
k=1

However, the infinite dimensional spaces, that is, the spaces having an infinite
number of linearly independent vectors, play the main role in the functional analysis.
In the next section we recall some examples of such spaces.

1.3 Examples of basic functional spaces

Thus, in this section we recall several examples of the most commonly encoun-
tered functional spaces.

Example 1.5 Consider the Banach space Cla,b|, the space of all continuous
complex-valued (i.e. with values in C) functions fon the closed interval [a,b], with
the norm

1|0 := max |f(x)].

It is well-known from any general course of real analysis that the convergence in the
space Cla, b] with respect to this norm is the uniform convergence of functions.

Example 1.6 Consider the Banach space C¥[a,b] consisting of all complex-valued
functions f which are k-times continuously differentiable on the closed interval [a, b],
with the norm

IFlex = max (1F@1+17/00) -+ 1)

x€[a,b]
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where f ) (x) is the derivative of the function f of order k. The convergence of
the sequence {f;} C C*[a,b] is the uniform convergence on [a,b] of the sequences

(A" i=0,1,... k.

Example 1.7 Consider the Banach space L?(a,b) (1 < p < o) of all (measurable)
functions on (a,b) with the integrable p-th power, with the finite norm

1/p

b
I£lp= | [ 1reorax

The convergence of a sequence in the norm of the space L'(a,b) is also called the
convergence in mean, and the convergence in the norm of the space L?(a, b) is some-
times called the mean-square convergence.

Example 1.8 Consider the Banach space /7 (1 < p < o) of all sequences {x; }rez
such that Y |x¢|? < oo, with the norm
keZ

1/p
llxllp := (): ka|p> ;
keZ

where Z is the set of integers.

Example 1.9 In the case p = 2 the spaces /> and L?(a,b) are Hilbert spaces. For
example, in Lz(a, b) the inner product is defined by

b
(f,g) = / F)z()dx.

It is easy to see that the spaces ¢? and LP(a,b) are not Hilbert spaces for p # 2,
since the parallelogram identity (1.3) is not satisfied for their norms. All these spaces
are infinite dimensional. It is most easily seen for ¢7: it is clear that the set consisting
of linearly independent vectors

e;=(0,...,0,1,0,...)
——
j—1

is countable.

1.4 The concept of Lebesgue integral

Here and in the sequel, all integrals are understood in the Lebesgue sense. Only
in this case the spaces introduced above will be complete. But how to understand
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the Lebesgue integral? The general theory answers this question quite accurately and
in depth by using the notion of the Lebesgue measure. For beginners the following
simple understanding of such an integral is sufficient.

The set M C [a,b] has measure zero, if for every € > 0 there exists a finite or
countable collection of the intervals [ot,, ], such that M C [, By, and
n

Y (Bi— ) <e.

n

If for the sequence of functions { f,, } ,cn there exists a limit equal to f everywhere on
[a, D] with a possible exception of a set of measure zero, then we say that f,, converges
to f almost everywhere on |a, D], and this is written as

lim f,,(x) = f(x).

n—yo

The function f is called Lebesgue integrable on [a,b], if there exists a Cauchy
sequence with respect to the norm || f||,1 := fab | f(x)|dx of the functions {f,}nen,
continuous on the closed interval [a,b], such that

lim £, (x) = f(x)

n—soo

exists. Here the integral in the definition of the norm is meant in the usual Riemannian
sense as the integral of the continuous function. Then the number

b b
fx)dx=lim [ f(x)dx

n—e /4

is called the Lebesgue integral of the function f over the interval [a, b].
Thus, in Example 1.7 the elements of the function space L!(a,b) are func-

tions for which the Lebesgue integral |, f | f(x)|dx < oo is finite, and the elements
of the space L”(a,b) are measurable functions f(x), for which the Lebesgue integral

P 1£(x)|Pdx < oois finite.

1.5 Lebesgue spaces

We will use the following result from the functional analysis.

Theorem 1.10 Any normed space X can be considered as a linear space which is
dense in some Banach space X. Then X is called the completion of the space X.

By LP(a,b) (1 < p < =) we denote the Banach space of functions, obtained by
the completion of continuous functions on [a,b], with respect to the norm

b /p
I =15l i= ([ rtorar)
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Thus, the limits (with respect to the norm || - || ,) of the Cauchy sequences of contin-
uous functions on [a,b] are the elements of the space L”(a,b).
For p = 2 the space becomes a Hilbert space with the inner product

(f.8) = / hf(x)@dx- (1.4)

Remark 1.11 Let us consider a more general case of a measure space (X, i), which
is a set X with the measure u such that g > 0, u is countably additive, Dom(u)
is a o-algebra subordinate to X, such that u is complete in the following sense: if
E € Dom(p) and u(E) =0, then VE’ C E we have E’ € Dom(). Then the Lebesgue
space L” (X, i) is defined as the space

{[f] | f:X —C, Re(f) and Im(f) are measurable , /|f”d,u<<>°}7
b

where [f] is the equivalence class of functions coinciding with f almost everywhere.
Thus, since in the Lebesgue integration the sets of measure zero can be neglected,
the elements of the space L” (X, i) are the classes of equivalent functions [f] differing
from each other on the sets of measure zero (that is, coinciding almost everywhere).
If now as a space X we choose the set of all integers Z, and the measure is defined
as

w(E) = cardE, Dom(u) el {E CZ},

then the space L” (X, ) in this case will coincide with the space ¢”. Indeed, f : Z — R
is measurable if the integral

Jan =X [ 17ldn = ¥ 15eldu(ing) = L1709 < =

nez nez nez

is finite. Therefore, we have that

fFELP(X p) = ) [f(n)]P <oos= {f(n)}nez € .

nez
That is, the space ¢” is a particular case of L?.

This remark illustrates the initial depth of the general theory of the Lebesgue
integral and of the Lebesgue spaces with the general norm. However, in the majority
of applications a more simple Lebesgue measure allowing one to understand the
definition of the integral in the sense introduced in Section 1.4 is applied for dealing
with problems related to the differential equations.

Further, for simplicity, we will assume all the considered domains © C R" to be
bounded. The set of all functions measurable in 2, whose modulus to the p-th degree
is integrable over Q, will be denoted by LP(Q), 1 < p < . This set with the norm

1/p
I llriay = ( , rova ) 15)



10 Spectral geometry of partial differential operators

is a Banach space. Here the integral is meant in the Lebesgue sense. Moreover, we
identify the functions different from each other on the set of measure zero. That is,
the functions coinciding with each other almost everywhere will be assumed to be
the same element of the space L?(Q).

By L”(Q) we denote the Banach space of measurable functions with the norm
based on the essential supremum

1f =) = esssgglf(X)l =inf{a>0: u{|f(x)| >a} =0}

As in the one-dimensional case, the space L”(€2) can be obtained as the comple-
tion of functions continuous in Q with respect to the norm (1.5). And this completion
can be carried out in a constructive way.

‘We now briefly review the averaging construction due to S. L. Sobolev. The func-

tion
1
chexpq — , <1,
o ()= " p{ 1—t2} d

07 ‘t|217

is called an “averaging kernel”, with the constant ¢, depending on the dimension of
the space R" and computed from the condition

/ o1 (|x|)dx = 1.
RI’L
Let 2 > 0. The function
1
oy () := g o1 (lxl/h), x € R,

is also often called an “averaging kernel”. One can readily check that this kernel has
the following properties:

e o, € C*(R") and wy(|x|) > 0in R";
e y(|x]) =0 for |x| > h;
o [ (|x])dx=1.

For a measurable function f, for any /& > 0, the function

5= [ r@an(le-&Nag, xer,

is called an averaged function for the function f. It readily follows that f}, € C* (R").
In the theory of Sobolev spaces the following result has an important value.

Theorem 1.12 If f € LP(Q), then f,(x) — f(x) in LP(Q) as h — 0.

Consequently, as in the one-dimensional case, the space L”(€)) can be obtained
as the completion of continuous functions in Q, with respect to the norm (1.5).



Functional spaces 11

Example 1.13 The set C; () of smooth compactly supported functions in Q is
everywhere dense in L”(Q).

For the proof, first of all, we define the distance function to the boundary of the
domain dQ: for each point x € Q we set

r(x) := min |x—y|,
(x) = min x|
which is well-defined since Q is bounded. For any 6 > 0, by Qs we denote the set of
the points {x € Q: r(x) > 6}.
Now, for each f € L”(Q) we define the corresponding family of functions with
compact support in Q by

S L f(x)v XEQ&
Fo) = {0, xd Q5.

It is clear that for any small £ > 0 there exists § > 0 such that || f — f°||»(q) < €/2.
For small 2 < §/2, the averaged function fha will be a function with compact support
in Q. That is, f7 € C5(Q). In view of Theorem 1.12 for small enough 1 < §/2, we
will have || £ — f°|1r(q) < £/2.

Thus, for each f € LP(Q), for any small € > 0 there exists a differentiable func-
tion f7 € Cy(Q) with compact support in Q such that || £ — fllr (@) < € That s,
Cy (Q) is everywhere dense in L7 (Q).

1.6 Sobolev spaces
In this section we recall the notion of Sobolev spaces.
Example 1.14 For 1 < p <~ and k € N, we denote by Lf (a,b) the Banach space of

functions obtained by the completion of the set of k times continuously differentiable
functions on [a, b], with respect to the norm

1= ([ o+ wr] )

For p = 2, this space becomes a Hilbert space with the inner product

(f.8) = ./ab [f(x)@—f—f(k) (x)g® (x)} dx.

In fact, while here the Lebesgue integral exists everywhere and it is not immedi-
ately clear what will happen after such a completion, these spaces do not contain too
“extravagant” functions. Thus, for example, elements composing the space L%(a,b)
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can be identified with absolutely continuous functions f on [a,b] (see Remark
1.15) having an ordinary derivative f’(x) almost everywhere on [a, b], for which the
Lebesgue integral

b
L 17 P ar <o

is finite.

Here we must note that if the space dimension of variables is greater than one,
that is, x € R” for n > 1, then this (absolute continuity) is not always true. Moreover,
the functions from the Sobolev space can be discontinuous. For example, in a two-
dimensional domain Q = {x € R?: |x| < 1/2} the function f(x) =1In|In x| belongs
to the space L% (Q), but it has a discontinuity of the second kind at the point x. [J

Remark 1.15 Since in the sequel we will often use the Sobolev spaces, let us discuss
in more detail the concept of absolutely continuous functions.

The function f is called absolutely continuous on the interval [a, b], if for every
€ > 0 there exists a number 6 > 0 such that we have

f(q) — Flu)| <€

(ngE

k=1

for any set of intervals [x;c,x;é] C [a, D] of the total length less than J:
n ’ "
Y o —x ] < 6.
k=1
If a function f is absolutely continuous on [a, b], then it is differentiable almost
everywhere and f’ € L' (a,b). An inverse statement is also true: if g € L!(a,b), then

X
the function G(x) := [g(¢)dr is absolutely continuous on [a,b], and almost every-

a
where on this interval we have G'(x) = g(x). O

To consider the Sobolev space in multi-dimensional domains it is necessary to
explain the concept of a generalised derivative. Thus, let f be a function defined on
the set Q C R".

If £ has a partial derivative f,, = dy,f continuous at Q, then for any g € C}(Q)
we have the equality

| r@esdr == [ £, s0xax. (16)
Moreover, this equality completely determines the derivative f;, of the function f.

Indeed, if for the function f € C'(Q) there exists a function ¢ € C(Q) such that for
any g € C}(Q) we have

| g dx == [ plogtxax
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then comparing it with (1.6), we get
| 1) = 9] s()dx =o. (an

Since Cg(Q) is everywhere dense in L! (Q) (see Example 1.13), and C () C C}(Q),
then C}(Q) is also everywhere dense in L!(Q). Consequently, (1.7) implies that
S (x) = @(x) for all x € [a, b], since the functions are continuous.

If now in Eq. (1.6) we abandon the continuity of the involved functions, and
instead require their integrability, then we arrive at the concept of a generalised
derivative introduced by S. L. Sobolev.

Let o = (a1, 02, ..., 0) be a multi-index with nonnegative integer components,
and we denote | 0| := a; + - - - + @,. For a function g € C1*/(Q), by D* we denote the
classical derivative

Do . olal
g(x) T axifﬁ axlzxz . angn

The function, which (by analogue with the classical derivative) is denoted as
D%f € L(Q), is called a generalised derivative of order o of the function f €
L'(Q), if the equality

g(x).

|07 )gdx = (~1) [ D% g(x)dx (1)
Q Q

holds for all g € C(‘)O‘| (Q).

As in the case with the continuous functions, it is easy to show that equality (1.8)
uniquely defines the generalised derivative (if it exists).

This definition of the generalised derivative is essentially the same as the defini-
tion of the derivative of a generalised function. Moreover, the definition above is a
particular case of the situation when both the function f and its derivative D* f are
regular generalised functions.

Example 1.16 Let us compare the classical derivative, the generalised derivative,
and the derivative in the sense of generalised functions in an example. In the unit ball
Q={xeR": |x| <1}, consider the function u(x) = |x;|. It is clear that the classical
derivative with respect to the variable x; does not exist at x; = 0.

At the same time u has the first generalised derivative with respect to any variable:
uy, =sgnxy, and uy, =0 fork=2,...,n. In turn, the function sgnx; does not have the
generalised derivative with respect to the variable xj, but its generalised derivatives
with respect to other variables are all equal to zero.

If u(x) = |x1| is considered as a generalised function, then it has all derivatives
of any order. In particular, its second derivative with respect to the variable x; gives
the Dirac delta function: uy,,, = 26(x;). As is well-known, the Dirac delta function
is not a regular generalised function. Therefore, it cannot be taken as the generalised
derivative of the function u(x) = |x;|.

We must also note that unlike the classical derivative, the generalised derivative
DY f is defined directly for the order ¢, without the assumption of the existence of
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corresponding lower-order derivatives. For example, for the function u(x) = sgnx; +
sgnx, the generalised derivatives of first order u,, and u,, in & do not exist. At the
same time, the second mixed generalised derivative does exist: uy,, = 0. [J

Let us now move directly to the definition of the Sobolev space. The set of func-
tions f € LP(Q), whose generalised derivatives up to k-th order inclusively belong
to the space L” (), form the Sobolev space L} (Q). Here, similar to the definition of
the space L (Q), the functions from L (Q) different on the set of measure zero, are
identified with each other. For p = 2, the notation H*(Q) is also used.

The space L,f (Q), 1 < p <, is a Banach space with the norm

1/p 1/p
e :(]'Zuﬂf|wg (Znnvw ) .9

|| <k |or| <k

and the space H*(Q) is a Hilbert space with the inner product

o= [ ¥ D/0D%dr= Y (D%.D%)pz(a.

\a\<k || <k

For L7 () an analogue of Example 1.13 holds:

Theorem 1.17 Let 9Q € C* for k > 1. Then the set C* (ﬁ) is everywhere dense in
LP(Q).
k

A function from L (Q) for any p and k is defined up to an arbitrary set of measure
zero. It follows that each function from le’ (Q) can be arbitrarily changed on any set
of measure zero still being the same element of this space. Since the boundary dQ
has measure zero, a question arises: how can we understand the value of the functions
from LY (Q) on dQ? The concept of a trace answers this question.

Without getting into too much detail, we introduce the general scheme of the
concept of the trace of functions from H'(Q). First, we assume that f € C' (Q). For
such functions one can justify the inequality

2 2
| JFOPAS < Clf (1.10)

with the constant C independent of f.

Now let f € H'(Q) with H! (Q) = L}(Q) being the Sobolev space of order 1 over
L?*(Q). In view of Theorem 1.17, there exists a sequence fi, f2, ... of the functions
from C' (Q), converging to f in the norm of H'(£). From (1.10), for the elements
of this sequence we have

1fic = fill2200) < Cllfe = fillfn @) = 0 as k,j — oo

This means that the sequence of values fk] g Of the functions fi on the surface dQis

the Cauchy sequence with respect to the norm of L?(9). Consequently, there exists
a function f ] 90 € L?(9Q), to which this sequence converges in the norm of L(9Q).
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It can also be proved that the function f | 56 does not depend on the choice of the
sequence f1, f2,..., approximating the function f. This function f | a0 18 called the
trace on 9 of the function f € H'(Q).

By the density of C!(Q) in H'(Q), inequality (1.10) remains true for all functions
f € H'(Q). Thus, we take f(s) = ], (s) for s € 9Q.

1.7 Subspaces

From the geometric point of view, the simplest functional spaces are the Hilbert
spaces H, because their properties resemble the properties of finite-dimensional
Euclidean spaces most. In particular, two vectors x,y € H are called orthogonal (this
is written as in the finite-dimensional case as x_Ly), if (x,y) = 0.

Example 1.18 In the space L?(0,27) with respect to the inner product

= [ g

the functions ¢, = e* (k € 7)) are orthonormal, that is

&l
Q2

N_ s _J 0, fork#j,
(ek’ej)_&”:{ 1, for k= j.

This fact is easily checked by a direct calculation. Here & is the so-called Kronecker
delta, i.e. a function of two variables k and j, usually defined for nonnegative integers
k and j. This function is equal to 1 if the variables are equal, and is O otherwise.

A closed linear subset of the space H is called its subspace. For any x € H one can
define its projection to an arbitrary subspace F as the vector xg such that x —xp L f
for any f € F. Due to this fact, a large number of geometric constructions, holding
in the Euclidean space, is transferred to the abstract setting of Hilbert spaces, where
such constructions often take an analytical character.

So, for example, an ordinary procedure of orthogonalisation (for example, the
Gram-Schmidt orthogonalisation process in the proof of Theorem 1.24 in Section
1.9) leads to the existence of an orthonormal basis in H. That is, it leads to an infinite
sequence of the vectors {e }rcz from H such that ||ex|| = 1, exLe; for k # j, and for
any element x € H a “coordinate-wise” expansion is valid:

X = Zxkek. (1~11)

kEZ

Here x; = (x,ex) and ||x|| = (Lrez [x|?) '/2 (for simplicity H is assumed to be sepa-
rable (see Section 1.7), that is, there exists a countable dense set in H).
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If we take H = L?(0,27) and denote e (¢) := ﬁeikt, k= 0,£1,42, ..., then the

formula (1.11) gives an expansion of a function x € L*(0,27) into its Fourier series
converging in mean square:

x(t) = —— Y xe™, where x, = e *dr. (1.12)

1
Van keZ \/275 /0
Furthermore, the relation (1.11) shows the existence of a one-to-one correspon-
dence (bijection) between the abstract separable Hilbert spaces H and ¢ to each ele-
ment x € H there corresponds a unique element X € /%, X = {X }rez- And vice versa,
to each element ¥ € 2, X = {x; }1ez, there corresponds a unique element x € H and
this element is given by the formula (1.11).

b
Example 1.19 The set of measurable functions f € L*(a, b), for which [ f(x)dx =0,
a

forms a subspace of the space L?(a,b).

Taking into account the inner product (1.4), we can describe this subspace as the
functions f € L?(a,b), for which f_1 1. Moreover, this subspace can be considered as
a linear space of functions with the finite norm

2‘| 1/2

b b
e [/ eoPas+| [ oo

This space will be a Hilbert space with the inner product given by the formula

(f.8) =[;bf(X)@dx+ (/abf(x)dx) </jg(x)dx).

Example 1.20 In the Hilbert space of Sobolev L3 (a,b), with the inner product

b
(.80 = [ [0+ @] dx, (113)
a
consider the linear space My of functions Vanishing at some point x € [a,b]:
Mo :={f € Li(a,b): f(x0) =0}. (1.14)

Let us show that M, forms a linear subspace in Ll (a,b), that is, a closed lin-
ear subset with respect to the norm of L%(a,b). For this it is sufficient to show the
existence of a function g € L3(a,b) such that the linear space M coincides with a
subspace orthogonal to g, that is

JgeLi(a,b): My={feLi(ab) =0}. (1.15)

Taking into account the representation of the inner product by the formula (1.13),
comparing (1.14) and (1.15), we obtain that for any f € L%(a, b), we have the relation

b
fx0) = [ [r0)g@+ 7' g0 a. (116
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We will look for g in the class C[a,b] N C?[a,xo] N C*[xo,b], i.e. in the class of
more regular functions. Since it can still happen that the function g’ is not continu-
ously differentiable at the point xo € [a,b], in order to apply the integration by parts
to the second summand in (1.16) it is necessary to divide the interval into two parts:
[a,b] = [a,x0] U [x0,b]. Then

160 = [ [ ae— [ rwerac- [ :f(X)g”(X)dx (1.17)

+/(b)g'(b) = f(a)g'(a) + f(x0) [¢'(x0 — 0) — &' (x0 +0)].

Therefore,

1) (1- [T — 0~ g0 +0)] ) = [ 10 [0~ 8700 |
(1.18)

b N
+ [0 [0 =g709] e £ 01 B~ fla)gTTa)

It is easy to check that formula (1.18) will hold for any function f € L% (a,b)
provided that the function g satisfies the following conditions:

1) the function belongs to the class

g € Cla,b] N C?[a,xo) N C*[x0,b]; (1.19)

2) on the intervals (a,xo) and (xg,b), the function is a solution of the differential
equation
g (x) = g(x), a <x<xp, x0 <x<b; (1.20)

3) the function satisfies the conditions

g =0, gb)=0, g(x0—0)—g'(x0+0)=1. (1.21)

Let us show that such function g exists.

Thus, it is necessary to find a solution of the ordinary differential equation (1.20),
satisfying “the boundary conditions” (1.21). Although Eq. (1.20) is a second-order
differential equation, and the number of the boundary conditions equals three, this
problem is solvable. The point is that the last of the conditions (1.21) is not a bound-
ary condition in the usual sense, but is a so-called “internal” condition. Here, for
solving Eq. (1.20) one assumes a discontinuity of the first derivative (jump) at the
inner point xg € [a,b], and the solution itself is continuous, since it belongs to the
space L2(a,b). The condition of continuity can be written in the form

g(xo—0)—g(xo+0)=0. (1.22)

Thus, for Eq. (1.20) we have already obtained four boundary conditions: (1.21)
and (1.22). But this equation should be understood as two separate equations of the
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second order: one equation is on the interval (a,xo) and the second one is on (xg,b).
Therefore this problem is solvable.

Let us check this by a direct calculation.

The general solution of Eq. (1.20) in the class of functions (1.19) on each of the
intervals (a,x0) and (xq,b) has the form

(1.23)

(x) = Cre* +Cpe™, a <x<ux,
EVZ Coet+Cpe ™, xo <x < b,

where Cj;, (i, j = 1,2) are arbitrary constants.
By the function (1.23) to satisfy the conditions (1.21) and (1.22) for defining the
constants C;; we get the linear system of equations

Ciiet —Cppe @ =0,

Co€é? —Cpe? = 0,
Ci1e +Cpe™ -1 —Cpe ™ =0,
Ci11e0  —Cppe™  —Cy1e  4Crpe ™ =1.

(1.24)

The determinant of this system equals A = 2¢%~? +2¢7~¢ > (. Therefore, the
system (1.24) has the unique solution.

Since the function g is represented by the formula (1.23), it is clear that g €
L%(a7 b). Thus, we have proved the existence of a function g, for which (1.15) holds.
Therefore, the linear space My is a (closed) subspace of L%(a, D).

Example 1.21 (The space H'(Q)) Denote by H'(Q) the set of functions from
H'(Q) = L}(Q) for which the trace to the boundary d< is equal to zero. It is clear
that H'(Q) is a linear subset of the space H'(Q). Therefore it is the Hilbert space
with respect to the inner product of the space H'!(Q).

Indeed, let us show that H'(Q) is a (closed) subspace of H'(Q). For this, we
need to show that the set H'(Q) is closed with respect to the norm H'(Q).

Consider a sequence f1, f2, ... of functions from A! (Q), converging to f in the
norm of H'(Q). Let us show that the trace of f on the boundary dQ is equal to zero.
From (1.10), for the elements of this sequence we have

Hf”iZ(aQ) < Cllfe —f||i1(g) —0, as k— oo,

Consequently, f | 20 = 0. Thus, the set H! (Q) is closed with respect to the norm of

H'(Q). Since in H'(Q) there is an element f = 1 not belonging to H' (), it follows
that H'(Q) is a proper closed subspace of H' (Q).

1.8 Initial concept of embedding of spaces

The concept of embedding of linear spaces is helpful in situations when one
is using several spaces at the same time. A linear normed space X is said to be
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embedded into a linear normed space Y, if there exists a linear mapping J : X — Y,
bijective on the domain of J, for which there exists a constant & > 0 such that for all
x € X we have the inequality

[xly < ecllxlx,

that is, the mapping J is bounded and the domain of J is D(J) = X. The mapping J is
called an embedding operator. 1t is clear that from the definition that an embedding
operator is always bounded. The fact of embedding is often indicated by the use of a
“hooked arrow™: X — Y.

Frequently one considers the embeddings when X is a subset of the space Y.
Then the identity mapping J(x) = x is often chosen as an embedding mapping. In
this case the normed linear space X is called embedded into the normed linear space
Y (indicated by X — Y), if X is the subset of the space Y and the inequality

[ xlly < Cllx]lx

holds for all x € X. Here the constant C should not depend on x € X. In this case the
identity operator acting from the space X into the space Y, mapping each element
x € X to the (same) element x of the space Y, is called the embedding operator. 1t
is clear that such an embedding operator is a bounded linear operator. The theorems
establishing the fact of an embedding of functional spaces are called embedding
theorems.

Example 1.22 The following simple embedding theorems hold (here for simplicity,
an interval [a,b] is considered to be finite —eo < a < b < o0 and the set Q C R”" is
assumed to be bounded):

e E" <3 E™ for n < m, where E¢ stands for the d-dimensional Euclidean space;

o CkH1 (ﬁ) s CK (ﬁ) for all nonnegative integers k, for spaces of functions con-
tinuously differentiable in Q up to the k-th order;

o C(Q) — CF™ (Q) for all nonnegative integers k and v > p, for the spaces
Cckru (ﬁ) of functions satisfying together with all their derivatives up to the k"
order inclusively the Holder condition with the index u:

ID*f(x) =D f(y)| < Clx—y* Vx,yeQ, Va:|a|=k;

o CKV(Q) — C*(Q) for any nonnegative integer k and any v > 0;

o L1(Q) — LP(Q) for any g > p > 1 for the Lebesgue space L’(Q) over a
bounded set Q;

e C(Q) — LP(Q) forany p > 1;

o L. (Q) = L;(Q) for any n > 0 and p > 1, for the Sobolev spaces L ()

of functions having all generalised derivatives up to the k" order inclusively
belonging to L”(Q);
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o L(Q) — L7(Q) forany k >0and g > p > 1;

e L} (Q) < C(Q), if the set Q is an n-dimensional parallelepiped.

For more complicated cases of embeddings we need several definitions. For some
x € R”, let By be an open ball with centre at the point x, and let B, be an open ball
not containing x. The set

Ce=BiN{(1-a)x+ay: Yye B,,Vo > 0}

is called a finite cone with the top at the point x.

We say that the domain Q C R” has a cone property if there exists a finite cone
C such that each point x € Q is the top of some finite cone Cy congruent to C, and
completely contained in Q. Roughly speaking, it means that at each point of the
boundary, we can fit in a cone of a fixed angle inside the domain.

Theorem 1.23 Let Q C R" be a bounded domain with the cone property, let p > 1
and m > 1. Then the embedding

L2(Q) < L1(Q)

holds for mp < n forall p < q < nffnp, while for mp = n it holds for all p < q.
For p =1, the embedding

L, (Q) — Cp(Q)

holds true.
Under some additional assumptions on the smoothness of the boundary 0 of
the domain Q, the embedding

L2(Q) — LI(99Q) (1.25)

for mp < n holds true for all p < g < %, while for mp = n it holds true for all
p=q<ce

Here Cp(Q) denotes the space of functions, continuous in £ and bounded in Q,

with the norm || f|| = sup|f(x)|. Note that C(Q) C C(L) but the space Cp(Q) is not
XEQ

contained in C (Q). So, for example, the function sin(1/x) belongs to Cz(0, 1), but
does not belong to C[0, 1].

The embedding (1.25) is understood in the sense that the restriction operator to
the boundary dQ is bounded from L},(Q) to LI(9Q).

1.9 Separable spaces

Let X be an infinite-dimensional Banach space. A sequence {e; };_, of elements
ey € X is called a basis of the space X if every x € X can be uniquely represented in
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the form of a converging series
x= Z Xp € - (1.26)
k=1

Here the numbers x; € C are called coordinates of the element x € X with respect to
the basis {ey }.

Note that this definition has two conditions: first, any element can be represented
in the form of the series (1.26). And second, such representation must be unique, that
is, the set of the numbers x; € C in such a representation must be unique.

The infinite system of elements {e;},__, is called linearly independent if for any
n € N the finite system {e; };_, is linearly independent.

In particular, it follows from the uniqueness of the representation (1.26) that
any finite set of elements of the basis will be a linearly independent system. Con-
sequently, any basis is a linearly independent system.

The concept of the basis of an infinite-dimensional space introduced in this way
is a natural generalisation of the same concept in the finite-dimensional case. The
majority of the spaces used in practice have a basis.

A normed space X is called separable if it contains a countable, everywhere
dense set. The majority of the spaces used in practice are separable.

In particular, a Banach space with a countable basis is separable. Indeed, if {e;}

n

is a basis of the space X, then the set of all possible linear combinations ¥ ey
kf

(where n € N, §, € C, Re(&;) and Im(&;) are rational numbers) forms a countable
and dense set in X.

The inverse statement is also true. It can be more simply formulated for the
Hilbert spaces.

Theorem 1.24 In any separable infinite-dimensional Hilbert space H there exists an
orthogonal basis of a countable number of elements.

Recall that a system {e;} in a Hilbert space H is called orthogonal if ¢, # 0
and (ey,ej) = 0 for k # j. Here one often uses the notation e;_Le;. If additionally
(ex,ex) =1 (thatis, ||ex]| = 1 for all k), then the system {e; } is called orthonormal.

Let us give a proof of Theorem 1.24 since there one can use an important process
of Gram-Schmidt orthogonalisation that will be useful also in the sequel.

Let H be a separable Hilbert space. Then it has a countable, everywhere dense set.
Let us take all nonzero elements from this set. Since this set is countable, its elements
can be numbered as {u},_;. Since this set is numbered, it can be interpreted as a
sequence.

Let us extract from this sequence a linearly independent system { @y },._, in the
following way.

Let o) := uy.

Then let @, be the first element of the sequence {uy };_, which is linearly inde-
pendent with @;. Let it be the element ;. Then we set @, := u;.
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Consider now a sequence u1,uj2,Uj13,... and denote by @3 the first element
from it that is linearly independent with @; and ;.

Continuing this process, we get an infinite (since the space is infinite-
dimensional) system { @y };_, of linearly independent elements. Since its linear span
L (that is, the set of all possible finite linear combinations i c oy, for various n € N)

k=1
contains the system {u},_,, the set L is dense in H.

We now show that given any linearly independent system { @y },_, one can con-
struct the orthogonal system {e;},_, using the following so-called Gram-Schmidt
orthogonalisation process.

Let us assume e¢; = o;. Note that e; # 0 since the sequence {ux},_, contains
only nonzero elements.

Further, we look for an element e, in the form e, = w, — 01 €1, where the number

0 is chosen so that ¢; and e, are orthogonal, that is, so that (e;,e;) = 0. From here
we get that (e1, @, — ape1) = 0. Therefore, o) = % It is easy to see that e; # 0
since otherwise @; and @, would be linearly dependent.

Continuing this process further, we obtain at the k’* step the orthogonal system
e1,e2,...,ex—1 which has been already constructed. Then we look for the next element
e in the form

k=1
e = W — Z O e
j=1
We are looking for the coefficients oy; to satisfy the orthogonality condition
exLej (j= 1,2,...,k—1). Since first k — 1 of elements are already mutually orthog-

onal, we must have og; = t/?"; . Thus, e # 0. Continuing this process we obtain
. T

the orthogonal system {ex };_,.

Since the linear spans of the systems {ay },_, and {ex},_, coincide (they coin-
cide with L), and L is dense in H, the system {¢; },__, is the required orthogonal basis
of the space H.

Note that if we take vy := “j’k‘H , then the system {v} will be an orthonormal basis
of the space H. Thus, we have shown that any separable infinite-dimensional Hilbert
space H has an orthonormal basis consisting of a countable number of elements,

completing the proof of the theorem. [

Let us give some examples of separable spaces:

o the real line R is separable since rational numbers form a countable and dense
setin R;

e any finite-dimensional space is separable since for an arbitrary basis it is suffi-
cient to consider the set of its linear combinations with rational coefficients;

e the space C (ﬁ) is separable since the set of polynomials with rational coeffi-
cients is dense in it;
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e the spaces C* (ﬁ), LP(Q), 1 < p < o, and Lf(Q), 1 <p<oo, k>1,are
separable.

Separability of a space is not applied just by itself. It is important that in a sep-
arable space (in view of Theorem 1.24) there is always an orthogonal (and even
orthonormal) basis. It is sufficient to understand once that the spac