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Preface

This book is a collection of reviewed and relevant research chapters on the 
developments within the telomerase and non-telomerase mechanisms of telomere 
maintenance field of study. The book includes scholarly contributions by various 
authors and has been edited by a group of experts in the fields of biochemistry, 
genetics, and molecular biology. Each contribution comes as a separate chapter, 
complete in itself but directly related to the book’s topics and objectives.

The book includes chapters dealing with the topics: telomerase structure and 
function, activity and its regulation with emerging methods of measurement in 
eukaryotes, telomerase in space and time: regulation of yeast telomerase function 
at telomeres and DNA breaks, telomere formation systems in budding and 
fission yeasts, syndromes associated with telomere shortening and telomeres and 
telomerase activity in the human placenta.

The target audience comprises scholars and specialists in the field.
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Chapter 1

Telomerase Structure and
Function, Activity and Its
Regulation with Emerging
Methods of Measurement in
Eukaryotes
Prem Singh Yadav and Abubakar Muhammad Wakil

Abstract

The telomerase reverse transcriptase has an essential role in telomere mainte-
nance which is very important in aging process and cancer biology. Recent studies
have revealed three-dimensional architecture of both human and ciliate telomerase
at about 25 Å resolution, using single particle electron microscopy (EM). Telome-
rase supplements the tandem array of simple-sequence repeats at chromosome ends
to compensate for the DNA erosion inherent in genome replication which makes it
to be distinct among polymerases. Telomeres are found at the end of eukaryotic
linear chromosomes and proteins that bind to them and help to protect DNA from
being recognized as double-strand breaks thus preventing end-to-end fusions. The
activity of telomerase is tightly regulated at multiple levels of cellular development,
from transcriptional regulation of the telomerase components to holoenzyme bio-
genesis and recruitment to the telomere site for activation and processing. Com-
monly used methods in telomere biology are telomere restriction fragment (TRF),
telomere repeat amplification protocol (TRAP) and telomere dysfunction induced
foci (TIF) analysis. This chapter summarizes our current knowledge on the mecha-
nisms of telomerase recruitment and activation using insights from studies in
mammals and budding and fission yeasts. Finally, we discuss the differences in
telomere homeostasis between different cell types and non-telomerase telomere
maintenance mechanisms.

Keywords: telomerase, telomere, holoenzyme biogenesis, chromosome ends,
reverse transcriptase

1. Introduction

Telomerase is a ribonucleoprotein complex, composed of a reverse transcriptase
enzyme catalytic subunit and a long non-coding RNA that contains the template
sequence for telomere synthesis [1, 2] and is required for linear chromosome main-
tenance in most eukaryotes. The enzyme telomerase is active in germ cells and
during early embryogenesis, ensuring restoration of telomere length for the next
generation. However, when using an aged somatic cell with shortened telomeres for
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cloning, the offspring might start with a diminished replicating capability of its cells
and consequently age, or at least reach senescence, faster [3]. Telomere biology
differ significantly among mammalian species, ranging from humans with very
short telomeres and limited telomerase activity in the cells to mice with extremely
long telomeres and active telomerase in multiple tissues. Human fibroblast cells
have been reported to possess short telomeres and suppress telomerase activity [4].
Hence, human cells undergo permanent growth arrest, or replicative senescence,
which is triggered by the critically short telomeres upon serial passaging in culture
[5, 6]. Replicative senescence is an important barrier in tumor progression, as
malignant tumors must reactivate telomerase or use the alternative lengthening of
telomere mechanism to gain unlimited proliferation potential [7]. The expression of
some components of the telomerase holoenzyme is tightly regulated [8]. For
instance, in unicellular eukaryotes TERT and TER are constitutively expressed. In
mammals, TERT is expressed only in highly proliferative cells and tumor cells.
Somatic cells and cells with low proliferative capacity lack enzyme activity, this is
the reason why telomerase activity is extensively studied as a potential target for
antitumor therapy [9, 10]. However, apart from telomerase there are other mecha-
nism used to maintain chromosome length; in some organisms, such as the fruit fly
Drosophila melanogaster, retrotransposon-like elements are alternatively used to
replenish the DNA at the ends of chromosomes [11]. As reported by Miriam
Aparecida Giardini et al. [12], under certain circumstances, yeast and human cells
that lack telomerase activity, as well as some telomerase-negative tumor lineages,
are able to maintain their telomeres using a recombination-based DNA replication
mechanism known as alternative lengthening of telomeres (ALT) [13, 14].

Research conducted in the past 10 years has revealed important discoveries on
the evolution of telomere maintenance mechanisms [15]. Telomeres serve as sub-
strates for telomerase, the enzyme responsible for adding DNA to the ends of
chromosomes, thus maintaining chromosome length [9, 16]. To compensate for the
DNA erosion inherent in genetic stability, telomerase adds tandem array of simple-
sequence repeats at the chromosome ends. The template for telomerase reverse
transcriptase is within the RNA subunit of the ribonucleoprotein complex, this
contains additional telomerase holoenzyme protein components within cells that
assemble the active ribonucleoprotein and promote its function at telomeres. In
terms of its reiterative reuse of an internal template, telomerase is different among
other polymerases [17]. Like many polymerases, telomerase catalyzes nucleotide
addition to a primer 30 hydroxyl group, forming a product-template duplex.
Accordingly, telomerase and other polymerases share a metal-dependent chemistry
of nucleotide addition. Beyond these parallels, telomerase possesses unique proper-
ties of nucleic acid handling. Accurate telomeric repeat synthesis depends on strict
boundaries of template copying within TER. Also, telomerases from most species
studied have the exceptional ability to extend a primer by processive addition of
repeats (reviewed in [17]). Repeat addition processivity (RAP) obliges dissociation
of the product-template duplex without product dissociation from the enzyme [17].
The template-dissociated single-stranded DNA must maintain template-
independent interactions while the template repositions for base pairing of its 30

end, rather than the 50 end, with the product. These coordinated nucleic acid
handling events transpire as part of the full catalytic cycle of repeat synthesis [17].

Telomeres are specialized nucleoprotein structures located at the ends of linear
chromosomes; they consist of TTAGGG repetitive sequences. They function to
prevent natural chromosomal termini from activating the DNA damage response.
[18]. The knowledge and understanding of telomerase structure, mechanism of
action and factors involved in its activity would give more insight in overcoming
the problem of replicative senescence.
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2. Telomerase organizational architecture

During the last 4 years, progress in telomere research has revealed the three-
dimensional architecture of telomerase in human and ciliate which is measured at
about 25 Å resolution, this was obtained using single particle electron microscopy
(EM). The structural analysis of the two holoenzyme complexes isolated from cells
revealed that telomerase in ciliate is monomeric while the human telomerase is
dimeric and it is only functional as a dimer [19]. Telomerase is a RNP complex with
high-molecular weight and comprises of two major components and these are;
TERC and a TERT (Figure 1) [12]. TERC is the RNA component which is essential
for telomere synthesis; this serves as a template to elongate the 30 overhang of the
telomeric G-rich strand and specifies the repeat sequence added. In vertebrates, the
TERC is comprised of three highly conserved structural domains and these are: the
template pseudoknot domain, CR4-CR5 domain, and the small Cajal-body RNA
domain. The template pseudoknot domain contains the template region for
telomeric DNA synthesis and a conserved pseudoknot structure crucial for telome-
rase activity [20, 21]. Among eukaryotes the RNA component varies dramatically in
sequence composition and in size [22–26].

TERT contains catalytic domains and is the protein component which acts as a
specialized reverse transcriptase. In humans, TERT and TERC are the components
required for telomerase activity in in vitro condition, although in in vivo condition
some proteins are associated with the holoenzyme complex and are also essential for
the catalytic function of telomerase enzyme [27]. About 32 different proteins are
associated with human telomerase in vivo so as to maintain its functionality [28];
but few of these proteins are phylogenetically conserved. Proteins associated with
telomerase activity have been best categorized in eukaryotes. Ciliate telomerase
RNPs complex comprises a telomerase-specific La motif protein that folds telome-
rase RNA into a conformation that will be recognized by the TERT component [29].

Figure 1.
Telomerase holoenzyme showing the various components. (A) Telomerase reverse transcriptase component
(TERT) and telomerase RNA component (TER). (B) Diagram representing the TERT primary structure
showing important TERT domains which include; the telomerase N-terminal domain (TEN), telomerase
RNA-binding domain (TRBD), reverse transcriptase domain (RT) and C-terminal extension region (CTE).
The position of the structural fingers, palm, and thumb subdomains are also highlighted. Openly accessed from
Miriam Aparecida Giardini et al. [12] and Nanda Kumar and Cech [34].
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At least two additional subunits, p45 and p75 are present in Tetrahymena
thermophila holoenzyme which are not considered essential for TERT RNP assem-
bly but are required for telomere elongation process. This common role is played by
the proteins Est1p and Est3p in Saccharomyces cerevisiae [30]. There has not been
any report in humans for proteins with this type of function, but known interaction
partners of human telomerase RNA (hTR) have been reported and they include
dyskerin (the H/ACA-motif RNA binding proteins), NHP2, NOP10, and GAR1.
These four proteins assemble with hTR and with large families of H/ACA-motif
small nucleolar (sno) RNAs and small Cajal body (sca) RNAs (Figure 2). Amino
acid substitutions in dyskerin reduce hTR accumulation and this give rise to the X-
linked form of dyskeratosis congenita (a bone marrow failure syndrome) [31].
Proteomics of highly purified active human telomerase led to the suggestion that
only hTERT and dyskerin are associated with hTR [28]. However, this conclusion is
challenged by previous studies showing that dyskerin possesses minimal RNA
binding affinity in the absence of its H/ACA-motif binding partners NHP2 and
NOP10 [32].

In general, telomerase RNP complexes exhibit conserved compositions and
structures, even in evolutionarily distant organisms. Their compositions are similar
from yeasts to mammals, including humans (Figure 1) [5, 12, 33].

For in vitro enzyme activity, minimal complex formation by TERT and TER
components is sufficient. Nevertheless, in vivo, enzyme biogenesis, enzyme activity,
and nucleotide addition processes also depend on other accessory proteins, indicat-
ing that a relatively complex maturation pathway is required for generation of an
active RNP that has to find its substrate [35, 36]. Telomerase function to avoid the
loss of terminal DNA, which is caused due to inability of DNA polymerases to
completely replicate the 50 ends of linear DNA molecules and also the actions of
exonucleases involved. Both processes are responsible for generation of transient
3’OH overhangs found on the opposite ends of the leading and lagging DNA
strands. The recognition of these overhangs are done by the end-binding
proteins, they bind to the overhangs and afterward recruit telomerase to elongate
the G-strand termini. The C-strand is synthesized by the conventional DNA
replication pathway as soon as the telomeres are replicated by the telomerase
[2, 14, 37, 38].

2.1 Telomerase-associated proteins

Though expression of hTERT and hTERC in rabbit reticulocyte lysates is suffi-
cient to reconstitute basic telomerase enzyme [29], but the in vivo requirements for
other factors necessary in the assembly of the active enzyme which did not clearly
revealed some of this in vitro reconstitution, even though some of these factors are
present in the rabbit reticulocyte lysates [39]. The molecular chaperones; Hsp90
and p23 are present in rabbit reticulocyte lysates. These are directly associated
with the hTERT and are necessary for telomerase activity [39]. Biochemical and
genetic studies reveal that additional protein subunits of telomerase exists which
may be involved in the biogenesis or assembly of active telomerase RNP
complex and may facilitate or regulate the access of telomerase to its substrate
(i.e. the telomeres) [39].

2.2 hTERT-associated proteins

Biochemical fractionation of telomerase activity from the yeast Tetrahymena
thermophilawas used in identifying the first telomerase-associated proteins [29, 39].
The proteins, p80 and p95, were identified by their association with the RNA
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component of telomerase and by copurification of telomerase activity [37]. In a
similar report,Tetrahymena strains were shown to lack p80 and p95, and the levels
of telomerase activity with its RNA appear to function totally normal. This suggests
that these proteins are not core components of telomerase and can be a separate

Figure 2.
Showing schematic structure of (A) budding yeast (S. cerevisiae) telomerase, (B) human telomerase cropped at
a telomere 3’end, and (C) vertebrate telomerase RNAs showing the conserved structural motifs. The positions of
DKC mutations in the human telomerase (hTERC) gene are shown in red. Images are adopted from
Smogorzewska and de Lange [33].
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2.1 Telomerase-associated proteins

Though expression of hTERT and hTERC in rabbit reticulocyte lysates is suffi-
cient to reconstitute basic telomerase enzyme [29], but the in vivo requirements for
other factors necessary in the assembly of the active enzyme which did not clearly
revealed some of this in vitro reconstitution, even though some of these factors are
present in the rabbit reticulocyte lysates [39]. The molecular chaperones; Hsp90
and p23 are present in rabbit reticulocyte lysates. These are directly associated
with the hTERT and are necessary for telomerase activity [39]. Biochemical and
genetic studies reveal that additional protein subunits of telomerase exists which
may be involved in the biogenesis or assembly of active telomerase RNP
complex and may facilitate or regulate the access of telomerase to its substrate
(i.e. the telomeres) [39].

2.2 hTERT-associated proteins

Biochemical fractionation of telomerase activity from the yeast Tetrahymena
thermophilawas used in identifying the first telomerase-associated proteins [29, 39].
The proteins, p80 and p95, were identified by their association with the RNA
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component of telomerase and by copurification of telomerase activity [37]. In a
similar report,Tetrahymena strains were shown to lack p80 and p95, and the levels
of telomerase activity with its RNA appear to function totally normal. This suggests
that these proteins are not core components of telomerase and can be a separate

Figure 2.
Showing schematic structure of (A) budding yeast (S. cerevisiae) telomerase, (B) human telomerase cropped at
a telomere 3’end, and (C) vertebrate telomerase RNAs showing the conserved structural motifs. The positions of
DKC mutations in the human telomerase (hTERC) gene are shown in red. Images are adopted from
Smogorzewska and de Lange [33].
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ribonucleoprotein that was copurified nonspecifically with telomerase [40].
Nevertheless, it was reported in another study that cells devoid of p80 and p95 have
their telomeres elongated both in macronuclei and micronuclei but lose genetic
content in their micronuclei, which suggest the role of p80 and p95 proteins in
micronuclear genomic stability and telomere length maintenance [40]. TEP1
(telomerase-associated protein 1) which was identified in humans, mice and rats is
the mammalian homolog of p80, and is involved with telomerase activity [39].
TEP1 consists of 2629 amino acids, much larger than p80. About 900 amino acids
found at the amino terminus of TEP1, contain region homologous to p80 which
were found to associate with telomerase RNA. The carboxyl terminus of TEP1
contains 12 WD40 repeats, a motif known to be involved in protein-protein inter-
actions [39]. TEP1 expression can be distinguished in most tissues irrespective of
telomerase activity. Disturbance of mouse TEP1 has no effect on telomerase activity
or telomere length in spite of its association with both the RNA and catalytic
components of telomerase in cell extracts from immortalized human, mouse, and
rat cells [39, 41]. The TEP1 protein has also been recognized as a constituent of large
cytoplasmic particles called vaults, which are ribonucleoprotein complexes [39].
The functions of TEP1 in both telomerase and vaults are still not elucidated [39].
The molecular chaperone p23 was first identified to be associated with hTERT using
the amino terminus (amino acids 1–195) as the desirability in a yeast two-hybrid
screen. Consequently, it was observed that the proteins p23 and p90 were in asso-
ciation with hTERT in mammalian cells and in in vitro condition [41]. The first
identified sets of proteins which interact physically and functionally with human
telomerase is the hsp90 chaperone complex and have been found to support
complete assembly of ribonucleoprotein and the formation of active
telomerase enzyme [39]. It is well known that other reverse transcriptase that
are of viral origin also interact with hsp70, hsp90, and p23, but appear to be
transient [12].

3. Telomerase activity in different cell types

Telomeres are needed to maintain the ends of chromosomes and sustain chro-
mosome stability in eukaryotic cells. Telomeres loss their noncoding DNA
sequences in the erosion that happens during DNA replication in each cell cycle.
They do this to protect the genetic information in the chromosomes [42, 43]. Most
somatic cells enter into replicative senescence because they have undergone suffi-
cient cell divisions to cause critical shortening of the telomeres. Some cells, includ-
ing lymphocytes, germ cells, stem cells and unicellular eukaryotes such as yeast,
express the enzyme telomerase, which gives them the ability to replenish their
telomeres and give them further replicative potential [30, 44]. Most human
tumors express active telomerase enzyme making them immortal while in
differentiated cells, expression of the telomerase components is closely regulated
[45, 46]. A direct correlation between continuous cell division and telomere
length maintenance was studied in in vitro culture condition through ectopic
expression of telomerase activity in somatic cell [47]. Even though cancer cells
steadily maintain telomere length which also tend to be shortened in later stage
[48, 49], some of them are critically shortened and are termed ‘t-stumps’ [50]
resulting in immortal cells which possessed a high risk of chromosome instability.
This is extraordinarily different from our understanding of telomerase activity
in normal cells, in which telomerase acts to elongate shorter telomeres until they are
no longer short [7, 51]. The reason why telomerase behaves differently in cancer
cells still remains an area of interest for research.
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3.1 Telomerase expression and cellular proliferation

The expression of telomerase enzyme activity in different types of cells has been
characterized using the telomeric repeat amplification protocol (TRAP) assay. The
method fundamentally measures the telomerase activity confined within a cell lysate
in vitro culture [10]. By using this assay, it is well documented that most differenti-
ated somatic cells lack detectable telomerase activity [10, 46], explaining the reason
why telomeres shorten in each cell divisions [47, 48, 52]. In adult testes and ovaries,
telomerase enzyme is highly expressed thereby, allowing consistently longer telo-
meres to be inherited by the next generation [48, 53]. During the early embryonic
development, telomerase enzyme remains active but its expression declines after the
blastocyst stage and cannot be detected in neonatal somatic cells [53–55]. Telome-
rase activity is weak in most stem cell populations [10, 44, 46, 56], this is not
sufficient to immortalize cells but can extend the proliferative capacity of these cells
(reviewed in [6, 57]). Remarkably, the Hayflick limit of somatic cells can be indef-
initely avoided when telomere length is maintained by high expression of telomerase
activity [47, 58]. Therefore, the level of telomerase activity and its expression deter-
mines the level of telomere length elongation and proliferative ability of a cell.

4. Regulation of telomerase activity in mammals

Telomerase activity is widely regulated owing to its important role in the
maintenance of genome integrity. Multicellular organisms display tissue-specific,
developmental and stress response strategies for telomerase suppression [59, 60].
In human somatic cells the inactivation of telomerase enzyme and maintenance of
telomere length have been proposed to play a role as a tumor suppressor mechanism
[61, 62]. This may also be needed for cell latency, differentiation, and death of some
cell types [63]. However, collective telomere erosion limits the self-renewal ability of
highly proliferative human cell lineages in the skin and blood [29]. The expression of
TERC is universal while TERT expression is highly regulated in some organisms,
especially in mammals. Many strategies have been proposed to control telomerase
activity, because the enzyme can be regulated at various levels including expression
level. For instance, the epigenetic modification of histones can modulate chromatin
structure and the accessibility of the transcriptional machinery to regulatory regions
of target genes. In this regard, numerous transcription factors, such as c-MYC, SP1,
MAD1, and HIF-2a, have been shown to recruit either histone acetyltransferases or
histone deacetylases to the TERT promoter to control TERT expression [64, 65].
However, the transcription expression is not constantly linked with the enzyme
activity, which might result in transcription modulation failure [66]. Consequently,
telomerase is expressed in embryonic stem cells, but TERT expression and telome-
rase activity are frequently very low or undetectable in somatic cells [67]. In con-
trast, telomerase activity seems to be high in most (85–90%) cancer cells [10, 46,
68]. Nevertheless, some cells that lack telomerase activity still exhibit a high level of
hTERT transcription. In these cases, regulation at the level of alternative splicing
leads to the skipping of exons that encode reverse transcriptase function [69]. In
mice, the deletion of either TERC or TERT can result in telomere shortening, geno-
mic instability, aneuploidy, telomeric fusion, and aging-related phenotypes [41, 70].
Therefore, telomerase dysfunction may lead to defects in various highly proliferative
cells/tissues, ultimately leading to aging-related degenerative diseases [71]. The
overexpression of TERT can dramatically increase the life span of mice in the
background of the overexpression of tumor suppressor genes, such as p53, p16, and
p19, indicating that TERT must have an anti-aging activity in mammals [4, 15, 72].
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4.1 Telomere replication in the absence of telomerase

There exist some alternative mechanisms which are activated to maintain telo-
mere length in the absence of telomerase activity. These mechanisms are principally
based on recombination events that come into play to amplify or reorganize previ-
ously existing telomeric sequences [73, 74], and the mechanisms seem to be com-
plementary to both the telomerase method and the method occupied in “retro
transposition” [11]. The alternative mechanisms were first observed in budding
yeasts that were able to survive and achieve telomere elongation despite lack of a
functional telomerase [12]. Thereafter it was verified that this phenomenon is
dependent on RAD52 (a protein involved in homologous recombination) [74].
Telomere lengths are also maintained by telomerase in most cancer cells, [46].
Reports have shown that approximately 10–15% of cancer cells elongate their telo-
meres by using one or more alternative mechanisms referred to as alternative
telomere lengthening (ALT) [68, 75]. In the same way, immortalized cells can also
elongate their telomeres using either telomerase [76] or ALT [77].

Other telomere-lengthening mechanisms also exist in the absence of telome-
rase activity. These mechanisms have been reviewed in details in previous reports
[11]. The mosquito fly Anopheles gambiae, the vinegar fly Drosophila melanogaster,
and some species of plants are other examples of organisms that use alternative
telomere elongation mechanism by using recombination [11]. For instance,
Drosophila, lacks telomerase activity and exhibits long tandem arrays composed of
three non-LTR retrotransposons, HeT-A, TART, and TAHRE, instead of simple
telomeric repeats unlike in most organisms. These were the first transposable
elements revealed to play an important role in cell structure [11, 40, 78]. In
Trypanosoma brucei (a haemoparasite), critically short telomeres generated by
knocking out the TERT gene were stabilized by an unknown mechanism [79].
These short telomeres lack active transcriptional factors and tend to shorten more
and more without leading to cell senescence due to their stability regardless of the
absence of active telomerase enzyme [80, 81]. The mechanism by which these
short telomeres are stabilized has not yet been revealed, but it is known that the
telomerase-deficient strains switch variant surface genes (VSG) by duplicative
gene conversion, which occurs more frequently than in wild-type strains and
exhibit longer telomeres. Furthermore, it was observed that shorter chromosomes
at no time underwent fusion and that telomere stabilization was sufficient to
preserve genomic integrity, with no apparent effects on long-term population
growth [82].

4.2 Methods of measuring telomerase activity

Methods used for the detection of telomerase activity can be divided into two
major groups as described by Skvortsov et al. [83]: those based on direct detection of
telomerase products, (Table 1) and those based on different systems of amplification
of the signals from DNA yield from telomerase (Table 2). The methods discussed in
this chapter (Figures 3 and 4) are suitable for testing telomerase activity in different
types of samples such as; in protozoa, mammalian cells, mixed cellular populations,
and tissues [83].

4.2.1 Methods containing the amplification of telomerase-synthesized DNA with
modifications to the original TRAP

Telomeric repeat amplification protocols (TRAPs) are the most common
methods employed for detection of telomerase activity which permit one to carry out
semi-quantitative and quantitative analyses, by introducing some modifications [83].
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Figure 4.
Showing direct detection of telomerase by surface plasmon resonance (SPR) for detecting macromolecules;
(A) sensogram corresponding to the general scheme and (B) SPR sensogram for telomerase activity detection.
RU, resonance units. The difference between signals 1 and 2 represents DNA which was synthesized by
telomerase [83].

Figure 3.
Illustration showing the original telomeric repeat amplification protocol (TRAP) assay [83].
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These modifications may include: rising of the rate of analysis, substitution of the
radioactive label by nonlabeled compounds, the decrease in the amount of side
products, and so on. A number of modifications still make it possible to detect
telomerase activity within a single cell [84]. The TRAP consists of three main stages:
primer elongation, amplification of telomerase-synthesized DNA, and finally, the
detection step. In the elongation step, telomeric repeats are added to the telomere-
imitating oligonucleotide (TS) by telomerase found in the cell extract. Next, PCR-
amplification of telomerase synthesized DNA is carried out using definite primers
(telomere-imitating and reverse primers). At this stage, different labels such as
radioactive or fluorescent labels can be incorporated into the synthesized DNA. This
step is then followed by detection through separation of PCR products by gel
electrophoresis and imaging) [83]. The original TRAP assay has several drawbacks.
Initially, the CX oligonucleotide, which complementarily overlaps with TS for sev-
eral base pairs (bp), is used in the amplification of PCR products which results in
the primer dimer formation as a result of the interaction between primers and
products [83]. The use of optimal ACX primer with the noncomplementary TS end
can lead to appearance of background signal during the analysis of concentrated
tissue extracts from tumor [85]. The use of an oligonucleotide TSG4 which can also
be added to the TRAP mixture in order to evaluate the effect of duplex-stabilizing
inhibitors. This oligonucleotide does not require the synthesis of several repeats by
telomerase before the inhibitor begins its action [86]. Various nucleotides used in
TRAP assay were discussed in more detail [87]. In addition, when PCR is used for
signal amplification, the PCR inhibitors contained in the specimen can alter the
results of telomerase activity detection [83]. Previously, in the TRAP method, PCR
products were detected in polyacrylamide gel (PAGE) with respect to the radioac-
tive label used, it can be introduced using a radioactively labeled primer or incor-
porated into the DNA during the preparation of the PCR reaction. This method
allows performing a qualitative assessment of the activity and processivity of telo-
merase in cells and tissue extracts [83]. In the second stage of TRAP, the PCR
product allows to obtain an amount of DNA sufficient for gel staining, for instance,
use of ethidium bromide [88], silver nitrite [89] and SYBR Green [90] and its
analogs (which has sensitivity equal to that of radioactive label [91], while mutage-
nicity is considerably higher than when ethidium bromide is used) (Tables 1 and 2).

4.3 Methods used for measurement of telomere length (TL)

Several researchers have shown interest in measuring telomere length (TL)
accurately and efficiently so as to understand both the fundamental biology of
telomere maintenance as well as factors which contributes significantly to acceler-
ated TL attrition. Tarik et al. [126, 127] have described different techniques which
were developed for telomere length measurement (Table 3).

5. Conclusions

Telomerase is a ribonucleoprotein complex, composed of a reverse transcriptase
enzyme catalytic subunit and a long non-coding RNA that contains the template
sequence for telomere synthesis and is required for linear chromosome maintenance
in most eukaryotes. Telomerase is a high-molecular weight RNP complex that
consists of two major components: TERC and a TERT. It was found that in humans;
only the TERT and TERC components of the telomerase are required for its activity
in vitro, even though some proteins which have regulatory function are also essen-
tial for the catalytic function of telomerase in vivo. It was estimated that about 32
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These modifications may include: rising of the rate of analysis, substitution of the
radioactive label by nonlabeled compounds, the decrease in the amount of side
products, and so on. A number of modifications still make it possible to detect
telomerase activity within a single cell [84]. The TRAP consists of three main stages:
primer elongation, amplification of telomerase-synthesized DNA, and finally, the
detection step. In the elongation step, telomeric repeats are added to the telomere-
imitating oligonucleotide (TS) by telomerase found in the cell extract. Next, PCR-
amplification of telomerase synthesized DNA is carried out using definite primers
(telomere-imitating and reverse primers). At this stage, different labels such as
radioactive or fluorescent labels can be incorporated into the synthesized DNA. This
step is then followed by detection through separation of PCR products by gel
electrophoresis and imaging) [83]. The original TRAP assay has several drawbacks.
Initially, the CX oligonucleotide, which complementarily overlaps with TS for sev-
eral base pairs (bp), is used in the amplification of PCR products which results in
the primer dimer formation as a result of the interaction between primers and
products [83]. The use of optimal ACX primer with the noncomplementary TS end
can lead to appearance of background signal during the analysis of concentrated
tissue extracts from tumor [85]. The use of an oligonucleotide TSG4 which can also
be added to the TRAP mixture in order to evaluate the effect of duplex-stabilizing
inhibitors. This oligonucleotide does not require the synthesis of several repeats by
telomerase before the inhibitor begins its action [86]. Various nucleotides used in
TRAP assay were discussed in more detail [87]. In addition, when PCR is used for
signal amplification, the PCR inhibitors contained in the specimen can alter the
results of telomerase activity detection [83]. Previously, in the TRAP method, PCR
products were detected in polyacrylamide gel (PAGE) with respect to the radioac-
tive label used, it can be introduced using a radioactively labeled primer or incor-
porated into the DNA during the preparation of the PCR reaction. This method
allows performing a qualitative assessment of the activity and processivity of telo-
merase in cells and tissue extracts [83]. In the second stage of TRAP, the PCR
product allows to obtain an amount of DNA sufficient for gel staining, for instance,
use of ethidium bromide [88], silver nitrite [89] and SYBR Green [90] and its
analogs (which has sensitivity equal to that of radioactive label [91], while mutage-
nicity is considerably higher than when ethidium bromide is used) (Tables 1 and 2).

4.3 Methods used for measurement of telomere length (TL)

Several researchers have shown interest in measuring telomere length (TL)
accurately and efficiently so as to understand both the fundamental biology of
telomere maintenance as well as factors which contributes significantly to acceler-
ated TL attrition. Tarik et al. [126, 127] have described different techniques which
were developed for telomere length measurement (Table 3).

5. Conclusions

Telomerase is a ribonucleoprotein complex, composed of a reverse transcriptase
enzyme catalytic subunit and a long non-coding RNA that contains the template
sequence for telomere synthesis and is required for linear chromosome maintenance
in most eukaryotes. Telomerase is a high-molecular weight RNP complex that
consists of two major components: TERC and a TERT. It was found that in humans;
only the TERT and TERC components of the telomerase are required for its activity
in vitro, even though some proteins which have regulatory function are also essen-
tial for the catalytic function of telomerase in vivo. It was estimated that about 32
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different proteins are involved with human telomerase in vivo which maintain its
functionality and only some of these proteins are phylogenetically preserved. The
molecular chaperones Hsp90 and p23, which directly associate with hTERT, are
present in rabbit reticulocyte lysates and are necessary for telomerase activity.
Studies suggest that in Tetrahymena the proteins p80 and p95 are not core telome-
rase components and may be separate ribonucleoproteins that copurified non-
specifically with telomerase. Telomerase remains active during early embryonic
development but expression declines after the blastocyst stage and can no longer be
detected in neonatal somatic cells.

Until recently, the activity of telomerase was thought to be controlled by limiting
access to the telomeres but it is regulated by some protein complexes such as the
shelterin complexes. Nevertheless, the cumulative information given in this chapter
show that the events involved in telomerase recruitment and its activation are
separate. Although, the organizational biology and biochemistry responsible for the
process of telomerase activation is still unknown which could be an important focus
area in future research. Telomerase activity is highly expressed in embryonic germ
cells, testes, ovaries and in some cancer cells but its activity is low or absent in
somatic cells. The expression of telomerase activity in cells indicates replicative
capability of that cell and this involves several factors which regulate the telomerase
activity. Towards understanding the biology of telomere, several methods have been
designed to measure the telomerase activity and the telomere length. TRAP was the
initial method deployed for the measurement of telomerase where the amplified
product is detected using gel electrophoresis. There are several other modifications
to the original TRAP which has more advantages, such as the qPCR amplification
method which uses less concentration of primers and permits quantitative determi-
nation of synthesized DNA. However, proper optimization of qPCR conditions is
required to achieve reproducibility of this method. There are various methods which
have been established for measurement of telomere length (TL) and these includes:
(i) terminal restriction fragment (TRF) analysis (the gold standard), (ii) flow-FISH
cytometry of cells following hybridization with fluorescent peptide nucleic acid
(PNA) probes, (iii) quantitative fluorescence in situ hybridization (FISH) with
fluorescent telomere PNA probes and (iv) qPCR assay. Monochrome multiplex
qPCR (MMqPCR) was also established which is an improved version of the qPCR
method in which both telomeric DNA and single-copy gene are amplified in a same
well of a plate which require lesser sample and shows less variability. Studies have
shown that there is wide range of CVs (2–28%) for measurement of TL by qPCR
which suggests that repeatability is a concern with the qPCR technique. Therefore,
proper optimization of qPCR protocols is required to reduce variability in the results.

Apart from the TRF assay all other methods have the problem of generating a
relative measure of TL.While the qPCR technique has more advantage where it requires
small amounts of DNA, less time consuming and can easily be performed in high-
throughput format which makes it possible to analyze large epidemiological samples.
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different proteins are involved with human telomerase in vivo which maintain its
functionality and only some of these proteins are phylogenetically preserved. The
molecular chaperones Hsp90 and p23, which directly associate with hTERT, are
present in rabbit reticulocyte lysates and are necessary for telomerase activity.
Studies suggest that in Tetrahymena the proteins p80 and p95 are not core telome-
rase components and may be separate ribonucleoproteins that copurified non-
specifically with telomerase. Telomerase remains active during early embryonic
development but expression declines after the blastocyst stage and can no longer be
detected in neonatal somatic cells.

Until recently, the activity of telomerase was thought to be controlled by limiting
access to the telomeres but it is regulated by some protein complexes such as the
shelterin complexes. Nevertheless, the cumulative information given in this chapter
show that the events involved in telomerase recruitment and its activation are
separate. Although, the organizational biology and biochemistry responsible for the
process of telomerase activation is still unknown which could be an important focus
area in future research. Telomerase activity is highly expressed in embryonic germ
cells, testes, ovaries and in some cancer cells but its activity is low or absent in
somatic cells. The expression of telomerase activity in cells indicates replicative
capability of that cell and this involves several factors which regulate the telomerase
activity. Towards understanding the biology of telomere, several methods have been
designed to measure the telomerase activity and the telomere length. TRAP was the
initial method deployed for the measurement of telomerase where the amplified
product is detected using gel electrophoresis. There are several other modifications
to the original TRAP which has more advantages, such as the qPCR amplification
method which uses less concentration of primers and permits quantitative determi-
nation of synthesized DNA. However, proper optimization of qPCR conditions is
required to achieve reproducibility of this method. There are various methods which
have been established for measurement of telomere length (TL) and these includes:
(i) terminal restriction fragment (TRF) analysis (the gold standard), (ii) flow-FISH
cytometry of cells following hybridization with fluorescent peptide nucleic acid
(PNA) probes, (iii) quantitative fluorescence in situ hybridization (FISH) with
fluorescent telomere PNA probes and (iv) qPCR assay. Monochrome multiplex
qPCR (MMqPCR) was also established which is an improved version of the qPCR
method in which both telomeric DNA and single-copy gene are amplified in a same
well of a plate which require lesser sample and shows less variability. Studies have
shown that there is wide range of CVs (2–28%) for measurement of TL by qPCR
which suggests that repeatability is a concern with the qPCR technique. Therefore,
proper optimization of qPCR protocols is required to reduce variability in the results.

Apart from the TRF assay all other methods have the problem of generating a
relative measure of TL.While the qPCR technique has more advantage where it requires
small amounts of DNA, less time consuming and can easily be performed in high-
throughput format which makes it possible to analyze large epidemiological samples.
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Chapter 2

Telomerase in Space and Time: 
Regulation of Yeast Telomerase 
Function at Telomeres and DNA 
Breaks
Yulia Vasianovich, Alexandra Krallis and Raymund Wellinger

Abstract

A development of new strategies against telomerase-associated disorders, such 
as dyskeratosis congenita, aplastic anemia or cancer, relies on a detailed understand-
ing of telomerase life cycle and the multiple layers of its regulation. Saccharomyces 
cerevisiae is a prime model to study telomerase function and it has already revealed 
many conserved pathways for telomerase biology. In this chapter, we review the 
current knowledge of the regulatory pathways that control telomerase function 
in budding yeast. In particular, we discuss the cell cycle-dependent assembly of 
telomerase and its recruitment to telomeres. We also focus on the mechanisms that 
target telomerase to short telomeres. Finally, we discuss possible pathways that 
inhibit telomerase function at DNA double-strand breaks, thus limiting deleterious 
de novo telomere addition events.

Keywords: telomerase, cell cycle, regulation, RNP biogenesis

1. Introduction

Eukaryotic chromosomal DNA must be completely duplicated for both daughter 
cells to receive a full complement of DNA during cell division. Given the inherent 
properties of the conventional replication machinery, a newly replicated lagging-
strand DNA is always slightly shorter than the template parental strand at the ends 
of chromosomes [1, 2]. As a result, the lagging-strand chromosome end acquires a 
short 3′-overhang—a conserved feature of ends of linear chromosomes crucial for 
genome stability. At the same time, the leading-strand ends are initially generated 
as blunt-ended, and will therefore need to be resected to restore the 3′-overhang 
[3–5]. This process is repeated during each replication cycle and will inevitably 
lead to a progressive shortening of the chromosome ends and loss of vital genetic 
information [6, 7].

In order to meet these end-replication challenges, chromosome ends are capped 
with a stretch of noncoding DNA repeats, called telomeres. The actual length of 
these repeat stretches within one cell is not uniform, and slight length variations 
can occur without any consequences for cell viability and fitness [8]. Moreover, 
shortened tracts that reach a lower limit of functionality can be restored to a 
longer form by a specialized reverse transcriptase, called telomerase [9, 10]. This 
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as blunt-ended, and will therefore need to be resected to restore the 3′-overhang 
[3–5]. This process is repeated during each replication cycle and will inevitably 
lead to a progressive shortening of the chromosome ends and loss of vital genetic 
information [6, 7].

In order to meet these end-replication challenges, chromosome ends are capped 
with a stretch of noncoding DNA repeats, called telomeres. The actual length of 
these repeat stretches within one cell is not uniform, and slight length variations 
can occur without any consequences for cell viability and fitness [8]. Moreover, 
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ribonucleoprotein (RNP) enzyme synthesizes new telomeric repeats using its 
intrinsic protein catalytic subunit and a segment of its internal RNA as a template.

Given its essential task in maintaining genome stability, it is not surprising that 
telomerase function is tightly controlled at multiple levels. Disruption of this fine-
tuned regulation leads to telomerase malfunction or its unregulated expression, 
which may contribute to serious genetic disorders such as dyskeratosis congenita, 
aplastic anemia and cancer [11].

Historically, budding yeast has been an extremely rich source of information on the 
biology of telomeres and telomerase. Therefore, in this review we discuss the intricate 
network of Saccharomyces cerevisiae regulatory mechanisms, that cooperate to ensure 
timely and sufficient telomerase activity at telomeres. In particular, we focus on the cell 
cycle-dependent regulation of telomerase assembly and its recruitment to telomeres. 
We also discuss the mechanisms that target telomerase to short telomeres, which pose a 
major threat to genome stability, and therefore must be dealt with immediately. Finally, 
we describe the mechanisms that limit telomerase function at DNA double-strand 
breaks (DSBs), thereby preventing deleterious de novo telomere addition events.

2. Interactions between telomerase components within the RNP complex

In budding yeast, the telomerase holoenzyme consists of the noncoding TLC1 
RNA that contains a template for telomere synthesis, and several protein subunits 
that are bound onto the RNA [8] (Figure 1A). The catalytic activity of telomerase 
relies on the Est2 protein, which together with TLC1 is sufficient for the enzymatic 
activity of telomerase in vitro [12, 13]. The yeast Est2 protein, as well as the catalytic 
telomerase subunits from other organisms (e.g., human, mouse, fission yeast and 
ciliates), share sequence homology to the reverse transcriptase family of DNA 
polymerases, and therefore are collectively known as telomerase reverse transcrip-
tases (TERTs) [12, 14–21]. In addition to Est2, several accessory telomerase subunits 
associate with the telomerase RNA to mediate telomerase function in vivo: Est1 is 
required for telomerase recruitment to telomeres via its association with the Cdc13 
single-stranded telomeric DNA-binding protein; Est3 provides a regulatory function 
which so far is not very well understood; a set of essential Pop proteins, Pop1, Pop6 
and Pop7, stabilizes the association of Est1 and Est2 with TLC1 [22–25]. Elimination 
of TLC1 or any of the three Est proteins leads to a progressive loss of telomeres 
and subsequent cellular senescence (an ever shorter telomere, est, phenotype), 
underscoring the importance of all these components for telomerase function in 
vivo. The same est phenotype is also observed if the interaction of Cdc13 with Est1 is 
abrogated, or Pop protein binding to TLC1 is disrupted [22, 25–27]. The TLC1 RNA 
also associates with the Yku70/80 heterodimer and the Sm7 complex [28, 29]. In the 
context of telomerase function, Yku is important for its retention in the nucleus and 
recruitment to telomeres, while the Sm7 complex participates in TLC1 maturation 
and promotes its stability [28, 30, 31].

Several distinct elements have been mapped onto the two-dimensional 
structure of the TLC1 RNA that was defined by phylogenetic analyses [32] 
(Figure 1A). At the heart of TLC1 lies a group of conserved core elements 
associated with the reverse transcriptase activity: the single-stranded template, 
the template boundary element and the pseudo-knot structure, to which the 
catalytic subunit Est2 is attached [32–34]. The core of the RNA is branched into 
three stem-loops [32]. A conserved three-way junction brings TLC1 3′- and 
5′-ends to the same vicinity and also contains the Sm7 binding motif. The second 
stem-loop structure holds the Yku complex [28]. The third arm contains the 
bulge-stem IVc, which supports Est1 binding at the base [35, 36] and the set of 
Pop proteins at the distal end [25, 37].
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Figure 1. 
Telomerase composition and interactions between telomerase components within the RNP. (A) The telomerase 
RNP consists of the TLC1 RNA, the Est2 catalytic protein and a set of accessory proteins: Est1, Est3, Pop1, 6 and 7, 
Yku70/80 and the Sm7 complex (see the text for details). (B) Est1 associates stably with TLC1 in S-phase through the 
residue cluster at the Est1 N-terminus (dark gray lines). Est3 binds Est1 near the Est1-TLC1 interaction domain in 
late S-phase. Est1-Est3 binding is abolished by est1-R269E mutation (green line). Cdc13 associates with Est1 in late 
S-phase. This interaction is compromised in est1-60 (est1-K444E) mutants (light gray line) due to the disruption of a 
salt bridge between the Est1 and Cdc13 proteins. Pop1, 6 and 7 associate with Est1 and Est2 but the exact interaction 
surfaces are unknown. Est2 association with TLC1 occurs throughout the cell cycle and is mediated by the Est2 TEN 
domain. TEN is also required for Est2 binding to telomeric DNA and Est2-Est3 interaction in late S-phase. The Est2-
N150D mutant protein (green line) does not bind Est3. Est3 binding to the RNP occurs in late S-phase and requires 
simultaneous Est3 interaction with Est1 and Est2. The Est3 TEL patch (blue lines) is a cluster of residues that promote 
Est3 association with telomerase. The Est3 TEL-I patch (Est3-S113Y) (red line) inhibits Est3 binding to the RNP. The 
Est3 separation-of-function patch (TEL-R) (gray lines) is essential for telomere maintenance but does not affect Est3 
interaction with the known telomerase components. Yku80 as part of the Yku70/80 heterodimer associates with TLC1 
throughout the cell cycle. This interaction is supported by the vWA domain of Yku80 (gray lines indicate important 
residues). yku80-135i mutant with a 5 amino acid insertion in the vWA domain (at Yku80-W45, black line) are 
defective in Yku80-TLC1 interaction. Sir4 also binds to the Yku80 vWA domain. This interaction is strengthened by 
Yku80-D141 and -E146 residues (yellow lines). Yku80-TLC1 and Yku80-Sir4 interactions can occur simultaneously. 
Cdc13 binds Est1 via two domains (yellow and pink lines, respectively). cdc13-2 (cdc13-E252K) mutation abolishes 
the salt bridge between Cdc13 and Est1. Cdc13 binds the 3′-single-stranded telomeric overhang via its DNA binding 
domain (DBD). Cdc13 also binds Pol1 and Stn1 via its N- and C-terminus, respectively.
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ribonucleoprotein (RNP) enzyme synthesizes new telomeric repeats using its 
intrinsic protein catalytic subunit and a segment of its internal RNA as a template.
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A complex hierarchy of the protein subunits defines telomerase composition. 
Est1 and Est2 bind to separate regions of TLC1 RNA and do not interact directly 
[33, 34, 38]. Accordingly, Est1 and Est2 do not co-immunoprecipitate in the absence 
of TLC1 [38]. In addition, Est1 and Est2 binding to TLC1 is not interdependent: 
disruption of Est1 association with TLC1 does not affect Est2 binding, and vice 
versa, when Est2-TLC1 interaction is abolished, Est1 still maintains association with 
TLC1 [34, 35].

In contrast to Est1 and Est2, Est3 does not bind to TLC1 directly. Instead, it 
associates with telomerase via simultaneous binding to Est1 and Est2, bridging them 
together. On one end, Est3 interacts with the N-terminus of Est1 (Figure 1B). The 
Est1-Est3 interaction site is distinct from the Est1-TLC1 binding surface, which was 
also partially mapped to the protein N-terminus [39, 40]. The est1-R269E mutation 
results in the loss of Est1-Est3 interaction and telomere shortening [39, 40]. On the 
other side, Est3 associates with the TEN domain of Est2 [41–43]. Accordingly, the 
est2ten mutant displays dramatically reduced Est2-Est3 association and telomere 
shortening [39, 42]. The Est2-Est3 interaction surface overlaps with the Est2 site that 
binds telomeric DNA, raising a possibility that Est3 might regulate Est2 interaction 
with telomeres [44]. Notably, a combination of the est1-R269E and est2-N150D muta-
tions, that attenuate Est3 interaction surfaces in Est1 and Est2, respectively, leads 
to an additive telomere defect comparable to est3∆. This observation indicates that 
to function properly, Est3 must be bound to both Est1 and Est2, although only one 
interaction can be sufficient to support Est3 function [39].

However, it was shown that Est3 cannot interact with Est1 if Est2 is not bound 
to TLC1, and vice versa, Est3 will not bind Est2 if Est1 is not present in the com-
plex [39]. This suggests that Est3 association with the telomerase RNP absolutely 
requires both Est1 and Est2 bound to TLC1. Hence, Est3 might have additional 
interaction surfaces with Est1 and Est2 that are not abolished in est1-R269E and 
est2ten mutations. This would explain their milder telomere phenotypes compared to 
the double mutant.

Interestingly, despite the relative abundance of Est3, only a small fraction of 
telomerase comprises Est3 during late S-phase, when telomeres are elongated 
[39, 45, 46]. This argues that Est3 association with the telomerase complex 
is restricted during the cell cycle. Indeed, an est3-S113Y mutation leads to an 
increased Est3 association with telomerase and elongated telomeres [39]. These 
data indicate that the area affected by est3-S113Y (dubbed TEL-I, for TEL inhibi-
tory) might negatively regulate Est3 recruitment to the telomerase complex 
(Figure 1B). The TEL-I control site seems to affect Est3 binding to both Est1 and 
Est2, as the est3-S113Y mutation partially suppresses the telomere defect caused by 
Est1 and Est2 mutant proteins that do not interact with Est3.

In addition, Est3 contains a positive regulatory site (named TEL), which pro-
motes Est3 association with Est2 [47]. In contrast to the TEL-I, mutating the TEL 
patch results in decreased association of Est3 with Est2 and telomere shortening. 
Notably, both patches are found in close proximity on the Est3 surface. Therefore, it 
was suggested that TEL and TEL-I might function as a toggle switch, mediating posi-
tive and negative regulation of Est3 binding, respectively [39]. Est3 association with 
the telomerase RNP occurs exclusively during late S-phase of the cell cycle [39, 48]. 
This is believed to be one of the mechanisms that restrict telomerase function during 
the cell cycle (discussed in detail in Section 3), thus, raising the possibility that the 
Est3 toggle switch might be designed to control its cell cycle-specific association with 
telomerase. Consistent with this idea, disruption of the TEL-I patch results in Est3 
binding to telomerase in G1-phase of the cell cycle [39].

Notably, another Est3 regulatory element (the separation-of-function patch, 
TEL-R) was also identified in proximity to the TEL and TEL-I area [47] (Figure 1B). 
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Although it does not affect Est3 interaction with the telomerase RNP, it is essential 
for telomere maintenance. It is still unknown what the role of Est3 binding to Est1 
and Est2 is; whether it induces a conformational change in telomerase that favors 
telomere extension or acts as a bridge to attract other yet-to-be-identified telomerase 
subunits. The existence of the Est3 separation-of-function patch is consistent with 
both ideas. For instance, it can be a subject of a post-translational modification, 
which would induce a conformational change in Est3 and affect the rest of telomer-
ase components. Alternatively, it could be the site of a protein-protein interaction 
with another telomerase component. In both cases, disrupting this patch would 
abrogate telomere maintenance without affecting Est3 interaction with Est2 or Est1.

Recently, a set of novel telomerase components called Pop1, Pop6 and Pop7 was 
shown to associate with TLC1 at the P3-like domain of the stem IVc, in the vicinity 
to the Est1 binding site [25] (Figure 1A). These Pop 1/6/7 subunits of telomerase 
are shared with RNAseP and RNaseMRP, conserved RNP complexes, required for 
processing of tRNA, rRNA and mRNAs [49]. Notably, within RNAseP and MRP, 
binding of Pop proteins is also supported by the P3 domain, structurally similar to 
the one of telomerase. The Pop proteins are essential for telomerase in vivo function 
[25]. Similar to RNAseP/MRP, where Pop1, 6 and 7 stabilize the RNP structure, 
telomerase Pop subunits are implicated in stabilization of Est1 and Est2 on TLC1 
[25, 37]. The Pop-mediated stabilization of telomerase proteins is likely conferred 
by achieving a precise TLC1 architecture [37]. Introduction of just two base pairs 
into the short stem between the Est1 and Pop binding sites results in a complete loss 
of Est1, whereas Pop proteins remained present. This effect was attributed to the 
rotation of the P3 domain, possibly disrupting interaction between the Pop proteins 
and Est1. In addition, these results show that the Pop complex binds to telomerase 
in an Est1-independent manner. Altogether, it suggests that both the functional and 
physical interaction between the Pop complex and Est1 occurs only in the context 
of the proper TLC1 architecture, which brings the proteins in close proximity to 
favor their interaction [37]. Whether the Pop complex also interacts with Est3 and 
affects its stable association with the telomerase complex, is still unknown and will 
be important to assess.

The unexpected discovery of the novel Pop telomerase components raises the 
possibility that the complete telomerase RNP composition is not yet solved and 
other components are waiting to be uncovered. Interestingly, a distinct set of muta-
tions in the Est1 C-terminus leads to a short telomere phenotype, although all the 
Est1 interactions known so far remain intact (Est1-TLC1, Est1-Est3, Est1-Cdc13 or 
Est1-Pop1) [40]. Therefore, Est1 might mediate a novel protein-protein interaction 
that is important for telomerase function.

3.  Regulation of telomerase assembly and disassembly during  
the cell cycle

In vivo, telomerase function is strictly cell cycle-regulated. As a consequence, 
telomere elongation only occurs within a narrow window of late S-phase, right after 
conventional replication is completed [45, 46, 50]. Multiple regulatory mechanisms, 
discussed throughout this review, ensure that telomerase is active only at the right 
time and place. One of such mechanisms is the cell cycle-dependent modification 
of telomerase composition (Figure 2). It operates via fine-tuning the abundance of 
the telomerase protein subunits and their association with the telomerase complex 
according to the stage of the cell cycle.

The Est2 catalytic subunit and the TLC1 RNA, in essence a minimal telomerase, 
can in principle associate with telomeres throughout the whole cell cycle [31, 51].  
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However, the modes of Est2-TLC1 recruitment to telomeres as well as its con-
sequences vary during different stages. In G1, telomere-telomerase association 
requires the Yku-TLC1 binding, whereas in late S-phase, it mostly depends on the 
Cdc13-Est1 interaction. In line with the different mechanisms of telomerase recruit-
ment, association of Est2-TLC1 with telomeres is transient in G1- and G2-phases of 
the cell cycle. However, during late S-phase it gets stabilized, allowing for produc-
tive telomere elongation (see Section 4 for more details) [52].

In contrast to Est2, the total Est1 protein level fluctuates during the progression 
of the cell cycle (Figure 2). While in G1, Est1 abundance is quite low, it reaches 
its maximum in S-phase and is maintained at the same level for the rest of the cell 
cycle [48, 51, 53]. This cell cycle regulation of Est1 abundance results in its limited 
association with telomerase complex and telomeres in G1 [39, 48, 51, 54]. Indeed, 
Est2 immunoprecipitation experiments revealed that in G1, Est1 association with 
the telomerase RNP is 3-fold lower than that of Est2 [39, 54]. Only during S-phase 
does the Est1-Est2 ratio reach 1:1 and remain constant until the end of the cell 
cycle. Consistent with stable association of Est1 within the telomerase complex 
in S-phase, Est1 is robustly detected at telomeres at this point of the cell cycle and 
further on [48, 51]. Notably, by increasing Est1 protein level in G1, the 1:1 ratio of 
Est1 and Est2 can be achieved in the telomerase complex throughout the cell cycle 

Figure 2. 
Telomerase assembly and disassembly through the cell cycle. (A) The Est2 catalytic subunit associates with 
the TLC1 RNA during G1- and S-phase of the cell cycle. It is likely, that Pop1, 6 and 7 associate with TLC1 
constitutively, thus stabilizing the RNA structure and its interactions with other proteins. The Sm7 complex, 
required for TLC1 maturation and stability, and the Yku70/80 heterodimer, important for TLC1 retention in 
the nucleus, are also constitutive subunits of the telomerase RNP. In G1, low abundance of Est1 and activation 
of Est3 TEL-I patch (red shape) limit their association with the complex. Est3 cannot associate with the 
telomerase RNP when Est1 is not bound to TLC1. (B) Increased abundance of Est1 in S-phase promotes its 
association with TLC1. This complex is not active without subsequent Est3 binding promoted by its TEL patch 
(blue shape) activation. (C) In late S-phase, a functional telomerase complex is formed by Est3 bridging Est1 
and Est2. (D) Telomerase is disassembled through the departure of Est2 in G2-phase. Est1 and Est3 remain 
associated with TLC1, perhaps due to stabilization by Pop1, 6 and 7, or a conformational change induced by 
initial Est3 association in S-phase.
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[48, 54]. Therefore, Est1 is absent from the telomerase RNP during G1 due to its low 
abundance, and as of yet there is no evidence for an active exclusion of Est1.

Cell cycle-dependent regulation of Est1 abundance occurs both at the mRNA 
and protein levels. During G1, the Est1 mRNA level is at its lowest, whereas at the 
G1-S transition, it increases, reflecting the fact that EST1 transcription occurs late 
in G1 [48, 55, 56]. In G2/M-phase, the Est1 mRNA level decreases again, likely as a 
result of a standard mRNA decay process [55, 56].

Several studies indicate that the low abundance of Est1 in G1-phase is not solely 
due to cell cycle-specific control of its mRNA level, but also due to the G1-specific 
proteasome-dependent degradation of Est1 [48, 53, 57]. Degradation by the pro-
teasome requires prior protein poly-ubiquitination [58]. Ferguson et al. showed 
that Est1 degradation is mediated by the Anaphase Promoting Complex (APC) E3 
ubiquitin-ligase, that acts in G1 and ensures a smooth progression of the cell cycle via 
timely degradation of key regulatory proteins [53]. Disruption of the APC function 
and APC recognition motifs identified in Est1 was shown to abrogate the cell cycle 
regulation of the Est1 protein abundance, such that Est1 becomes more stable in G1.

However, this result has been challenged recently, as no change in G1-specific 
Est1 protein level has been observed in cells bearing mutations in the APC motifs 
[40]. Ferguson et al. could not detect Est1 poly-ubiquitination in vivo, arguing that 
ubiquitinated proteins would constitute a small fraction of a low abundant Est1 
protein, and also would be quickly degraded by the proteasome [53]. However, 
single mutations of the conserved Est1 lysine residues, which act as the poly-ubiq-
uitination substrates, did not yield a telomere defect, suggesting that Est1 might not 
be a subject for ubiquitination in vivo [40]. The poly-ubiquitination sites could be 
redundant though, and elimination of the whole lysine cluster might be required 
to abolish the ubiquitination mechanism. Furthermore, neither APC-dependent 
degradation, nor poly-ubiquitination of Est1 was observed in vitro, suggesting that 
the APC effect on the Est1 abundance might be indirect [53].

Yet, the idea of the G1-specific degradation of Est1 by the proteasome was 
supported by another study, which showed that Est1 physically interacts with the 
Cdc48 complex [57]. Cdc48 is a chaperone, which in complex with the E3 ubiquitin-
ligases Npl4 and Ufd1, acts as a segregase to separate ubiquitinated proteins from 
multi-protein complexes [58]. In cells expressing the cdc48-3 temperature-sensitive 
allele at the semi-permissive temperature, the G1-specific regulation of the Est1 
abundance was abrogated, and the Est1 level became comparable at all stages of the 
cell cycle [57]. In addition, the overall Est1 protein level increased almost 40-fold, 
indicating that Cdc48 contributes to Est1 degradation throughout the cell cycle. 
Notably, in this study Est1 ubiquitination could be detected in vivo. In cdc48-3 cells, 
the level of ubiquitinated Est1 was twice higher than in wild-type cells, consistent 
with the role of Cdc48 in channeling ubiquitinated proteins for degradation. 
However, enrichment of the ubiquitinated Est1 was observed throughout the whole 
cell cycle, which again suggests that the Cdc48 role in Est1 degradation is not limited 
to G1-stage of the cell cycle. It is plausible, that in addition to its regulatory G1 
function, the Cdc48 complex promotes Est1 degradation after the disassembly of 
the telomerase complex in G2 (see below). However, the Est1 protein level does not 
decrease in G2-phase [48, 51]. This argues that accumulation of the ubiquitinated 
Est1 population in cdc48-3 cells is not linked to the Est1 degradation defect, but 
occurs for another reason [57]. Indeed, although the proteasome-mediated deg-
radation requires protein poly-ubiquitination, only mono-ubiquitinated Est1 was 
observed in cdc48-3 cells.

Altogether, these conflicting results leave open the question about the role of 
the proteasome in cell-cycle regulation of Est1 abundance and require additional 
clarification [40, 48, 53, 57].



Telomerase and non-Telomerase Mechanisms of Telomere Maintenance

34
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the telomerase RNP is 3-fold lower than that of Est2 [39, 54]. Only during S-phase 
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cycle. Consistent with stable association of Est1 within the telomerase complex 
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required for TLC1 maturation and stability, and the Yku70/80 heterodimer, important for TLC1 retention in 
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of Est3 TEL-I patch (red shape) limit their association with the complex. Est3 cannot associate with the 
telomerase RNP when Est1 is not bound to TLC1. (B) Increased abundance of Est1 in S-phase promotes its 
association with TLC1. This complex is not active without subsequent Est3 binding promoted by its TEL patch 
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and Est2. (D) Telomerase is disassembled through the departure of Est2 in G2-phase. Est1 and Est3 remain 
associated with TLC1, perhaps due to stabilization by Pop1, 6 and 7, or a conformational change induced by 
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[48, 54]. Therefore, Est1 is absent from the telomerase RNP during G1 due to its low 
abundance, and as of yet there is no evidence for an active exclusion of Est1.

Cell cycle-dependent regulation of Est1 abundance occurs both at the mRNA 
and protein levels. During G1, the Est1 mRNA level is at its lowest, whereas at the 
G1-S transition, it increases, reflecting the fact that EST1 transcription occurs late 
in G1 [48, 55, 56]. In G2/M-phase, the Est1 mRNA level decreases again, likely as a 
result of a standard mRNA decay process [55, 56].

Several studies indicate that the low abundance of Est1 in G1-phase is not solely 
due to cell cycle-specific control of its mRNA level, but also due to the G1-specific 
proteasome-dependent degradation of Est1 [48, 53, 57]. Degradation by the pro-
teasome requires prior protein poly-ubiquitination [58]. Ferguson et al. showed 
that Est1 degradation is mediated by the Anaphase Promoting Complex (APC) E3 
ubiquitin-ligase, that acts in G1 and ensures a smooth progression of the cell cycle via 
timely degradation of key regulatory proteins [53]. Disruption of the APC function 
and APC recognition motifs identified in Est1 was shown to abrogate the cell cycle 
regulation of the Est1 protein abundance, such that Est1 becomes more stable in G1.

However, this result has been challenged recently, as no change in G1-specific 
Est1 protein level has been observed in cells bearing mutations in the APC motifs 
[40]. Ferguson et al. could not detect Est1 poly-ubiquitination in vivo, arguing that 
ubiquitinated proteins would constitute a small fraction of a low abundant Est1 
protein, and also would be quickly degraded by the proteasome [53]. However, 
single mutations of the conserved Est1 lysine residues, which act as the poly-ubiq-
uitination substrates, did not yield a telomere defect, suggesting that Est1 might not 
be a subject for ubiquitination in vivo [40]. The poly-ubiquitination sites could be 
redundant though, and elimination of the whole lysine cluster might be required 
to abolish the ubiquitination mechanism. Furthermore, neither APC-dependent 
degradation, nor poly-ubiquitination of Est1 was observed in vitro, suggesting that 
the APC effect on the Est1 abundance might be indirect [53].

Yet, the idea of the G1-specific degradation of Est1 by the proteasome was 
supported by another study, which showed that Est1 physically interacts with the 
Cdc48 complex [57]. Cdc48 is a chaperone, which in complex with the E3 ubiquitin-
ligases Npl4 and Ufd1, acts as a segregase to separate ubiquitinated proteins from 
multi-protein complexes [58]. In cells expressing the cdc48-3 temperature-sensitive 
allele at the semi-permissive temperature, the G1-specific regulation of the Est1 
abundance was abrogated, and the Est1 level became comparable at all stages of the 
cell cycle [57]. In addition, the overall Est1 protein level increased almost 40-fold, 
indicating that Cdc48 contributes to Est1 degradation throughout the cell cycle. 
Notably, in this study Est1 ubiquitination could be detected in vivo. In cdc48-3 cells, 
the level of ubiquitinated Est1 was twice higher than in wild-type cells, consistent 
with the role of Cdc48 in channeling ubiquitinated proteins for degradation. 
However, enrichment of the ubiquitinated Est1 was observed throughout the whole 
cell cycle, which again suggests that the Cdc48 role in Est1 degradation is not limited 
to G1-stage of the cell cycle. It is plausible, that in addition to its regulatory G1 
function, the Cdc48 complex promotes Est1 degradation after the disassembly of 
the telomerase complex in G2 (see below). However, the Est1 protein level does not 
decrease in G2-phase [48, 51]. This argues that accumulation of the ubiquitinated 
Est1 population in cdc48-3 cells is not linked to the Est1 degradation defect, but 
occurs for another reason [57]. Indeed, although the proteasome-mediated deg-
radation requires protein poly-ubiquitination, only mono-ubiquitinated Est1 was 
observed in cdc48-3 cells.

Altogether, these conflicting results leave open the question about the role of 
the proteasome in cell-cycle regulation of Est1 abundance and require additional 
clarification [40, 48, 53, 57].
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The Est3 protein level per se is not the subject of cell cycle regulation. However, 
in line with the Est1 behavior, Est3 association with telomerase is also cell-cycle 
regulated, being restricted to late S-phase [39, 48]. Similar behavior of Est1 and 
Est3 can at least partly be explained by the fact that Est1 is required for Est3 associa-
tion with Est2 and TLC1 [23, 48] (Figure 2).

Notably, overexpression of Est1 in G1 leads to its association with the telomerase 
RNP, as well as Est3 binding, resulting in the assembly of the active telomerase [48, 
54]. Despite that, no productive telomere elongation was observed during G1-stage 
of the cell cycle [46, 48, 52, 54]. This observation strongly suggests that the cell 
cycle regulated telomerase assembly is not the limiting regulatory mechanism that 
prevents telomere elongation during G1 (see Section 4).

As outlined above, the assembly of the telomerase complex is a tightly regulated 
process that occurs via regulation of abundance and inclusion of the Est1 and Est3 
accessory proteins in the complex in late S-phase [39, 48, 51, 54]. However, there is 
evidence that telomerase disassembly may also be an actively regulated process. It 
may occur via a mechanism different from telomerase assembly, as it requires the 
dissociation of the Est2 catalytic subunit, resulting in the formation of the Est1-
Est3-TLC1 disassembly complex [39] (Figure 2D). It is not known what serves as a 
signal for Est2 dissociation and how this process occurs mechanistically. Since Est3 
interacts with Est2 in the TEN domain, which is also responsible for Est2 binding 
to the telomeric DNA, it is possible that the G2-specific disassembly of telomerase 
complex might be signaled via the Est3 subunit [39, 44].

One of the intriguing questions is how Est3 remains within the Est1-Est3-TLC1 
complex after Est2 dissociation, given that its binding to the complex requires a 
simultaneous presence of Est1 and Est2 on TLC1 [39]. It is possible that once bound 
to the telomerase complex, Est3 can be stabilized by other proteins and conse-
quently no longer requires Est2 to keep its position. One of the candidates for such a 
function is the complex of the Pop1, Pop6 and Pop7 proteins, which might stabilize 
Est3 binding within the telomerase complex, as they do for Est1 and Est2 [25, 37]. 
In general, although constitutively present in the telomerase RNP, the role of the 
Pop proteins in telomerase regulation remains unexplored. Therefore, it would be 
of a great interest to assess whether their telomerase-related function is somehow 
regulated during cell cycle.

4.  Regulation of telomerase recruitment to telomeres during  
the cell cycle

As mentioned above, telomerase assembly is highly regulated during the cell 
cycle. However, this control is insufficient to limit telomerase function to late 
S-phase. In this section, we discuss how the telomerase RNP is recruited to telo-
meres, and how regulation of this process makes an impact on cell-cycle restriction 
of telomerase function.

4.1 Sir4-Yku-TLC1 as the G1-specific telomerase recruitment mechanism

Telomerase is recruited to telomeres via two different mechanisms: (1) via the 
Sir4-Yku70/80-TLC1 interaction, which mostly operates in G1-phase of the cell 
cycle, and (2) via the Cdc13-Est1 interaction, which is the predominant recruitment 
pathway during late S-phase, when telomere elongation takes place (Figure 3).

The Yku complex is not a dedicated telomeric protein, and its main function is 
normally associated with DSB repair via non-homologous end joining (NHEJ) [59]. 
Yku is a heterodimer that consists of the Yku70 and Yku80 subunits. Together the 
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two subunits form a ring structure, that binds a DSB end by encircling DNA strands 
[60]. Despite the fact that NHEJ must be avoided at all costs at telomeres, Yku is 
present at chromosome ends, where it plays multiple roles, such as inhibition of 
5′-telomere processing [61, 62], maintenance of the telomere position effect [61, 
63, 64], as well as telomere clustering and tethering to the nuclear envelope [65]. In 
addition, Yku is required for telomerase retention in the nucleus and its recruitment 
to telomeres in G1 [30, 31].

Yku70/80 associates with TLC1 via a 48 nt RNA stem-loop [30, 66] (Figure 1). 
Indeed, in tlc1-∆48 and yku80-135i mutants with abolished Yku-TLC1 interaction, 
the association of telomerase components with telomeres follows the same pattern 
as in yku80∆ cells. The structural element of TLC1 required for interaction with 
the Yku complex has been recently narrowed down to 25 nt [67]. It consists of two 
stems separated by a two-nucleotide (A292U293) bulge. Bending the TLC1 stem-
loop in a bulge region is absolutely essential for Yku binding in vitro and in vivo. 
Indeed, tlc1∆AU cells have slightly shortened telomeres, comparable to the effect of 
tlc1∆48 with the whole stem-loop being removed.

Structural studies indicate that Yku binds double-stranded DNA and the TLC1 
stem-loop through the same aperture in the Yku70/80 heterodimer structure, 

Figure 3. 
Recruitment and disassociation of telomerase at short and long telomeres. (A) Inhibition of telomerase in 
G1: Rap1-bound Rif2 inhibits MRX-dependent telomeric C-strand resection. In addition, Rif1 and Rif2 may 
compete with Sir proteins for Rap1 binding, resulting in unstable telomerase recruitment via the Sir4-Yku-
TLC1 pathway. (B) Inhibition of telomerase at long telomeres in S-phase: Long telomeres allow increased Rap1 
binding and recruitment of Rif and Sir complexes. Rif2 competes with Tel1 to inhibit MRX activation, and 
subsequent 5′-end resection. This prevents the formation of a single-stranded substrate for Cdc13 and telomerase 
recruitment. (C) Telomerase recruitment at short telomeres in S-phase: At short telomeres, less Rap1 and Rif 
binding allows TERRA transcription (red line). TERRA recruits multiple telomerase molecules (T-Rec) to its 
telomere of origin. Tel1 can outcompete Rif2 for MRX binding, promoting 5′-end resection. Cdc13 can bind 
single-stranded DNA and is phosphorylated by Tel1 to recruit telomerase via Est1. (D) Elongation of telomeres 
by telomerase is terminated in G2-phase: Cdk1-, Aurora K- and PP2A-mediated phosphorylation and 
de-phosphorylation of Cdc13 and Stn1 allow formation of the CST (Cdc13, Stn1, Ten1) complex. This inhibits 
Est1-Cdc13 interaction and therefore decreases telomerase recruitment. Cdc13 and Stn1 recruit DNA polymerase 
ɑ to fill-in the telomeric C-strand. After the C-strand has been filled-in, Cdc13 no longer has a single-stranded 
substrate to bind to, and hence cannot recruit telomerase.
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in line with the Est1 behavior, Est3 association with telomerase is also cell-cycle 
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complex might be signaled via the Est3 subunit [39, 44].
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two subunits form a ring structure, that binds a DSB end by encircling DNA strands 
[60]. Despite the fact that NHEJ must be avoided at all costs at telomeres, Yku is 
present at chromosome ends, where it plays multiple roles, such as inhibition of 
5′-telomere processing [61, 62], maintenance of the telomere position effect [61, 
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Yku70/80 associates with TLC1 via a 48 nt RNA stem-loop [30, 66] (Figure 1). 
Indeed, in tlc1-∆48 and yku80-135i mutants with abolished Yku-TLC1 interaction, 
the association of telomerase components with telomeres follows the same pattern 
as in yku80∆ cells. The structural element of TLC1 required for interaction with 
the Yku complex has been recently narrowed down to 25 nt [67]. It consists of two 
stems separated by a two-nucleotide (A292U293) bulge. Bending the TLC1 stem-
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tlc1∆48 with the whole stem-loop being removed.
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Recruitment and disassociation of telomerase at short and long telomeres. (A) Inhibition of telomerase in 
G1: Rap1-bound Rif2 inhibits MRX-dependent telomeric C-strand resection. In addition, Rif1 and Rif2 may 
compete with Sir proteins for Rap1 binding, resulting in unstable telomerase recruitment via the Sir4-Yku-
TLC1 pathway. (B) Inhibition of telomerase at long telomeres in S-phase: Long telomeres allow increased Rap1 
binding and recruitment of Rif and Sir complexes. Rif2 competes with Tel1 to inhibit MRX activation, and 
subsequent 5′-end resection. This prevents the formation of a single-stranded substrate for Cdc13 and telomerase 
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binding allows TERRA transcription (red line). TERRA recruits multiple telomerase molecules (T-Rec) to its 
telomere of origin. Tel1 can outcompete Rif2 for MRX binding, promoting 5′-end resection. Cdc13 can bind 
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by telomerase is terminated in G2-phase: Cdk1-, Aurora K- and PP2A-mediated phosphorylation and 
de-phosphorylation of Cdc13 and Stn1 allow formation of the CST (Cdc13, Stn1, Ten1) complex. This inhibits 
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ɑ to fill-in the telomeric C-strand. After the C-strand has been filled-in, Cdc13 no longer has a single-stranded 
substrate to bind to, and hence cannot recruit telomerase.
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indicating that Yku cannot simultaneously interact with DNA and RNA [67, 68]. 
This suggests that interaction of the Yku-TLC1 complex with telomeres might be 
mediated by a protein-protein interaction. Indeed, Yku80 directly interacts with 
Sir4, a component of telomeric chromatin that is recruited to telomeres via the Rap1 
double-stranded telomere binding protein [69, 70]. The Sir4-Yku80 interaction 
site is not in conflict with the Yku70/80-TLC1 binding surface [67]. Accordingly, 
the Yku70/80 heterodimer, TLC1 and Sir4 can be co-immunoprecipitated as a 
complex, implying that telomerase could be recruited to DNA via Sir4-Yku80 
interaction. Indeed, in sir4 mutants with abolished Sir4-Yku80 interaction, the Est2 
level at telomeres is 15-25% lower than in wild-type cells, which is reminiscent of 
the sir4∆ effect. In addition, telomere length in these mutants is somewhat shorter 
than in wild-type cells, similar to the yku80 mutants with an attenuated Sir4-Yku80 
interaction.

Interestingly, the telomere defect in the yku80∆ cells is much more pronounced 
than in mutants with the disrupted Sir4-Yku80 interaction. This effect can be 
explained by the additional role of the Yku complex in the nuclear retention of 
TLC1, which does not depend on Sir4 [31, 67]. Accordingly, the level of nuclear 
TLC1 was reduced both in the tlc1∆AU and yku80∆ cells with abolished Yku-TLC1 
interaction [67]. At the same time, in the Sir4-Yku80 interaction mutants, the 
nuclear fraction of TLC1 was normal.

Certain evidence suggests that at telomeres, the Yku complex does not exist as a 
uniform population. Apart from the Sir4-bound fraction, Yku also binds to telo-
meres directly, as it does at DSBs [71–73]. In addition to having two different modes 
of telomere binding, Yku was also found at diverse telomeric loci, including the 
junction between telomere and subtelomere regions, as well as interstitial telomeric 
sequences between the subtelomeric repeats [73]. Both populations include Yku 
directly bound to DNA and Sir4-bound Yku. It is still unknown whether Yku binds 
to the very tips of telomeres, and if so, in what fashion. The position of Yku so far 
from the telomere end was attributed to its role in maintenance of stalled and bro-
ken replication forks. Here, Yku might load on one-ended breaks and protect them 
from end-resection, thus favoring telomere addition by telomerase. However, since 
the Sir4-bound Yku population is also present at the distal telomeric loci, it suggests 
that telomerase recruited to telomeres via the Sir4-Yku80 pathway might be kept far 
from the telomere end. By extension, since the Sir4-Yku80 pathway operates mainly 
in G1-phase, keeping telomerase at a larger distance from the chromosome end 
might be a novel regulatory step, which would ensure telomerase molecules are not 
engaged in productive telomere elongation in G1.

Disrupting the Sir4-Yku-TLC1 pathway of telomerase recruitment results only 
in mild telomere shortening [28, 66, 67]. This implies that the productive telomer-
ase recruitment required for telomere elongation is predominantly mediated by a 
different mechanism. Indeed, the S-phase specific Cdc13-Est1 interaction underlies 
the main functional telomerase recruitment pathway, and is therefore absolutely 
essential for telomere maintenance [22, 26, 27].

4.2 Cdc13-Est1 as the major telomerase recruitment pathway in late S-phase

A significant feature of late S-phase telomeres that distinguishes them from G1 
and G2 chromosome ends is the formation of detectable 3′-single-stranded telo-
meric overhangs, or G-tails [74, 75]. The formation of telomeric overhangs requires 
MRX-dependent 5′-end processing, but, as briefly mentioned in the introduction, 
this process seems to take place only on the leading-strand telomeres [4, 76–78]. 
This S-phase specific structure is bound by Cdc13 and facilitates telomerase recruit-
ment to telomeres via a direct association between Cdc13 and Est1 [22] (Figure 3C). 
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The Cdc13-Est1 interaction is also favored by an increased abundance of Est1 in late 
S-phase (see Section 3) [51].

The direct interaction between Cdc13 and Est1 was inferred from the fact that 
the C-terminal Cdc13 Glu252 residue forms a salt bridge with the Lys444 of Est1 
(Figure 1B). Abrogation of either of these partners by the cdc13-2 or est1-60 muta-
tions, respectively, results in a loss of telomerase recruitment and the senescence 
phenotype [26, 27]. However, a combination of mutations that leads to a charge 
swap in those residues, suppresses the defect associated with single mutations [27]. 
Consistently, co-immunoprecipitation of Est1 via Cdc13 revealed that in cdc13-2 
cells, Cdc13-Est1 binding is significantly reduced, but a complementary est1-60 
mutation can restore this interaction [40, 54].

However, the importance of the Cdc13Glu252-Est1Lys444 salt bridge in telomerase 
recruitment was challenged by several later studies. For example, no interaction 
defect between the Cdc13-2 mutant protein and Est1 has been detected in the yeast 
two-hybrid and co-immunoprecipitation analyses [79]. In addition, the cdc13-2 
and est1-60 mutations only mildly affected Cdc13-Est1 association in vitro [67, 80]. 
Furthermore, estimation of the Est1 level at telomeres yielded the opposite results, 
reporting either no change or a complete loss of Est1 association with telomeres in 
cdc13-2 cells [51, 67, 81]. In any case, neither cdc13-2 nor est1-60 mutants can maintain 
telomeres and the cells undergo senescence, suggesting that an important functional 
interaction is abrogated by these mutations and can be rescued by the charge swap.

Recent studies shed some light on the cdc13-2/est1-60 controversy, demonstrating 
that this specific Cdc13-Est1 interface might be important for activation or stabiliza-
tion of telomerase after it is recruitment to telomeres [37, 67]. Cells expressing the 
Cdc13-Est2 fusion bypass the need for Est1 for telomerase recruitment to telomeres 
[22]. Due to the loss of the Est1-dependent regulatory mechanism of telomerase 
activity, these mutants acquire over-elongated telomeres. Notably, the long telomere 
phenotype of the Cdc13-Est2 cells was even further exacerbated if Est1 was ectopi-
cally expressed, indicating that Est1 indeed activates or stabilizes telomerase after 
its recruitment to telomeres [37, 67]. However, expression of the TLC1 variants 
deficient in Est1 binding in this strain background suppressed the telomere-elon-
gation phenotype, resulting in the wild-type telomere length [37]. Furthermore, 
supplementing cells expressing the Cdc13-Est2 protein fusion with the est1-60 allele 
resulted in telomere shortening when compared to isogenic strains expressing the 
wild-type Est1 protein [67]. A similar effect was observed when the Cdc13-2 mutant 
protein was fused with Est2. However, when the Cdc13-2-Est2 fusion was combined 
with the Est1-60 protein expression, telomere length was restored to that of a wild-
type. This result indicates that Est1 association with the telomerase RNP and the 
interface between the Cdc13 and Est1 forming the Cdc13Glu252-Est1Lys444 salt bridge 
might be required for telomerase activation and/or stabilization, which comes into 
play downstream of telomerase recruitment [37, 67].

If the Cdc13Glu252-Est1Lys444 salt bridge area is important for telomerase stabiliza-
tion, which Cdc13 interface supports the Est1 recruitment? Based on in vitro stud-
ies, the Est1-recruitment site of Cdc13 may be located within the N-terminal part 
of the protein, in close proximity to the salt bridge interface discussed above [67]. 
Disruption of this area in cdc13-P235A and cdc13-F237A mutants resulted in a large 
reduction of telomere length. In addition, cdc13-F237A cells displayed an S-phase 
specific decrease in Est1 and Est2 association with telomeres, whereas the level of 
Cdc13 was not affected. It must be noted that when compared to cdc13-2 mutants, 
the cdc13-F237A defects both in telomere maintenance and telomerase binding 
to telomeres were somewhat weaker [67, 81]. However, based on the assigned 
functions, the recruitment-deficient cdc13-F237A mutant would be expected to 
have more pronounced telomere phenotypes. Hence, additional studies might be 
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indicating that Yku cannot simultaneously interact with DNA and RNA [67, 68]. 
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ken replication forks. Here, Yku might load on one-ended breaks and protect them 
from end-resection, thus favoring telomere addition by telomerase. However, since 
the Sir4-bound Yku population is also present at the distal telomeric loci, it suggests 
that telomerase recruited to telomeres via the Sir4-Yku80 pathway might be kept far 
from the telomere end. By extension, since the Sir4-Yku80 pathway operates mainly 
in G1-phase, keeping telomerase at a larger distance from the chromosome end 
might be a novel regulatory step, which would ensure telomerase molecules are not 
engaged in productive telomere elongation in G1.

Disrupting the Sir4-Yku-TLC1 pathway of telomerase recruitment results only 
in mild telomere shortening [28, 66, 67]. This implies that the productive telomer-
ase recruitment required for telomere elongation is predominantly mediated by a 
different mechanism. Indeed, the S-phase specific Cdc13-Est1 interaction underlies 
the main functional telomerase recruitment pathway, and is therefore absolutely 
essential for telomere maintenance [22, 26, 27].

4.2 Cdc13-Est1 as the major telomerase recruitment pathway in late S-phase

A significant feature of late S-phase telomeres that distinguishes them from G1 
and G2 chromosome ends is the formation of detectable 3′-single-stranded telo-
meric overhangs, or G-tails [74, 75]. The formation of telomeric overhangs requires 
MRX-dependent 5′-end processing, but, as briefly mentioned in the introduction, 
this process seems to take place only on the leading-strand telomeres [4, 76–78]. 
This S-phase specific structure is bound by Cdc13 and facilitates telomerase recruit-
ment to telomeres via a direct association between Cdc13 and Est1 [22] (Figure 3C). 
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type. This result indicates that Est1 association with the telomerase RNP and the 
interface between the Cdc13 and Est1 forming the Cdc13Glu252-Est1Lys444 salt bridge 
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tion, which Cdc13 interface supports the Est1 recruitment? Based on in vitro stud-
ies, the Est1-recruitment site of Cdc13 may be located within the N-terminal part 
of the protein, in close proximity to the salt bridge interface discussed above [67]. 
Disruption of this area in cdc13-P235A and cdc13-F237A mutants resulted in a large 
reduction of telomere length. In addition, cdc13-F237A cells displayed an S-phase 
specific decrease in Est1 and Est2 association with telomeres, whereas the level of 
Cdc13 was not affected. It must be noted that when compared to cdc13-2 mutants, 
the cdc13-F237A defects both in telomere maintenance and telomerase binding 
to telomeres were somewhat weaker [67, 81]. However, based on the assigned 
functions, the recruitment-deficient cdc13-F237A mutant would be expected to 
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Telomerase and non-Telomerase Mechanisms of Telomere Maintenance

40

required to dissect the dual role of the Cdc13-Est1 interaction in supporting telom-
erase recruitment to telomeres and its subsequent stabilization and/or activation.

Certain evidence suggests that Cdc13 is phosphorylated by the Tel1/Mec1 check-
point kinases to promote the Cdc13-Est1 interaction [82, 83] (Figure 3C). Indeed, 
in vitro, Tel1 phosphorylates Cdc13 at the positions 225, 249 and 255 [82]. Mec1/
Tel1-dependent Cdc13 phosphorylation was also detected in vivo by the S249/S255 
phospho-specific antibody [83]. The cdc13-S249A/255A mutants with abolished Tel1 
phosphorylation sites display telomere shortening and the senescence phenotype, as 
well as a loss of telomerase-mediated telomere addition at HO sites flanked by telo-
meric repeats. Notably, the identified phosphorylation sites reside in the part of the 
Cdc13 protein, which is responsible for the formation of the Cdc13Glu252-Est1Lys444 salt 
bridge. This implies that Tel1-mediated Cdc13 phosphorylation might be required 
for telomerase activation/stabilization after telomerase recruitment. Consistent with 
this idea, lack of Cdc13 could be complemented by expression of Cdc13-Est1 as well 
as Cdc13-S249A/255A-Est1 fusion proteins [82]. This suggests that Cdc13 phosphory-
lation may promote the Est1 function downstream of telomerase recruitment.

However, there are also conflicting data on this issue. In particular, cells express-
ing the Cdc13 protein in which all potential consensus Tel1 phosphorylation sites 
were mutated, did not display any telomere defect [84]. In addition, the mass-spec-
trometry analysis of the Cdc13 phosphorylation sites did not detect in vivo phos-
phorylation of the S249/255 residues [85]. Therefore, the existence of Tel1-mediated 
Cdc13 phosphorylation in vivo and its role in telomerase function remains unclear.

Altogether, the data presented above demonstrates that in principle, telomerase 
can be recruited to telomeres via two separate mechanisms: Sir4-Yku-TLC1 which 
operates in G1 and Cdc13-Est1 available in late S-phase. However, live-cell imaging 
of TLC1 dynamics revealed that in G1 and G2 phases, telomerase-telomere interac-
tions are very short-lived and transient [52]. Indeed, outside S-phase, TLC1 mol-
ecules move much more rapidly and diffusively as compared to telomeres. During 
late S-phase, however, TLC1 RNA molecules can assemble in a cluster of 6-15 
molecules, named telomerase-recruitment cluster, or T-Rec, which stably associates 
with telomeres and follows their dynamics.

Consistent with the in vivo pattern of telomerase-telomere interactions, the loss 
of the Sir4-Yku telomerase recruitment pathway has only a mild effect on telomere 
length [28, 66, 67], whereas disruption of the Cdc13-Est1 interaction completely 
abrogates telomere maintenance and results in cellular senescence [22, 26, 27]. 
Therefore, it can be concluded that the Cdc13-Est1 mechanism is the only true telom-
erase recruitment pathway which allows efficient telomere elongation. As telomerase 
recruitment via Cdc13-Est1 is only possible in late S-phase, Cdc13-Est1 interaction 
might be the main factor that determines cell cycle restriction of telomerase function 
[51]. As for the Sir4-Yku80 telomerase recruitment pathway, the question about its 
functional significance remains open (see Section 6 for discussion).

4.3 The switch between the Cdc13-Est1 and Cdc13-Stn1-Ten1 complexes  
as a signal for telomerase dissociation

In addition to the Cdc13-Est1 interaction important for telomerase recruitment 
to telomeres, Cdc13 also forms a complex with the Stn1 and Ten1 proteins (CST) 
(Figure 3D). CST prevents degradation of the chromosome ends and their recogni-
tion by DSB repair mechanisms, collectively known as the capping function [8]. 
The CST complex also negatively regulates telomere maintenance, demonstrated 
by the fact that disrupting Cdc13-Stn1-Ten1 interactions leads to a long telomere 
phenotype [86]. The CST-dependent effect on telomere elongation is due to a direct 
inhibition of telomerase recruitment, as well as an indirect consequence of the CST 
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function in the re-synthesis of the telomeric C-strand, which eliminates the G-tails 
as a substrate for telomerase recruitment [86, 87].

The idea of CST directly inhibiting telomerase recruitment stems from two-
hybrid experiments, indicating that Stn1 and Est1 compete for binding to Cdc13 
[87]. Indeed, the mutant allele cdc13-2, that disrupts the Cdc13-Est1 interaction, 
also abolishes the Cdc13-Stn1 binding, suggesting that Est1 and Stn1 might share the 
same Cdc13-binding interface. Consistently, the senescence phenotype of the cdc13-
2 mutants is partially suppressed by Est1 overexpression, while overexpression of 
Stn1 enhances it. To support the idea of the Est1-Stn1 competition, an interesting 
experiment was performed with mutants expressing only the N-terminus of Stn1, 
which does not bind Cdc13 [86]. As in other strains where the Cdc13-Stn1 interac-
tion is disrupted, these cells harbored long telomeres. However, an additional 
expression of the C-terminal portion of Stn1 suppressed this phenotype. Evidently, 
the C-terminus, expressed as a separate protein unit, cannot simply attach itself 
to the rest of Stn1, and thus, mediate the Cdc13-Stn1 interaction. The more likely 
explanation would be that the Stn1 C-terminus interacts with Cdc13 independently 
of the rest of Stn1 to outcompete Est1 for Cdc13 binding. Hence, Est1 and Stn1 com-
pete for the same Cdc13 interface, implying that the formation of the CST complex 
can directly inhibit telomerase recruitment.

Telomerase-mediated elongation of the G-strand is followed by C-strand fill-in 
synthesis, which restores the double-stranded portion of the telomere (Figure 3D). 
CST plays an essential role in this process, as it is responsible for the recruitment 
of the DNA polymerase ɑ/primase complex to telomeres. For example, it has been 
shown that Cdc13 interacts with Pol1, the catalytic subunit of this complex [79], 
while Pol12, the B subunit of the complex, associates with Stn1 [86, 88]. As a con-
sequence of C-strand synthesis, the single-stranded telomeric overhangs that serve 
as substrates for Cdc13 binding are eliminated. Hence, this effect contributes to the 
CST role as a negative regulator of telomerase recruitment. Consistently, cells defi-
cient in the Cdc13-Pol1 interaction have elongated telomeres, and this phenotype is 
dependent on telomerase interaction with Cdc13 [87]. Surprisingly, cells expressing 
Cdc13 with an N-terminal truncation are proficient in Pol1 interaction, but still have 
a telomere elongation phenotype as well as longer telomeric overhangs. The latter 
phenotype was attributed to the defect in the C-strand fill-in, as it was telomerase-
dependent, the overhangs were only visible during late S-phase, and the C-strand 
was also slightly elongated when compared to wild-type cells. Overexpression of 
Stn1 almost completely suppressed the long telomere and G-tail phenotype in these 
mutants. This suppression mechanism might be mediated by the Stn1-Pol12 interac-
tion, which could stabilize DNA polymerase ɑ at telomeres. Consistently, certain 
pol12 alleles also confer telomere elongation and longer single-stranded telomeric 
overhangs [88].

Altogether, the above results suggest that the CST complex can affect telomerase 
recruitment via two mechanisms: (1) directly, via competition between Stn1 and 
Est1 for Cdc13 binding; and (2) indirectly, via its role in the restoration of the 
double-stranded telomere structure and elimination of the G-tails. If the Cdc13-
Est1 complex permits telomerase recruitment, and the CST complex prohibits it, 
the switch between these two complexes might serve as an additional regulatory 
mechanism, which determines the window of telomerase function at telomeres.

Indeed, the transition from the Cdc13-Est1 interaction to the CST complex 
formation seems to be regulated in part by sequential phosphorylation of Cdc13 
and Stn1 by Cdk1 [89, 90] (Figure 3D). Cdk1-dependent phosphorylation of 
Cdc13 and Stn1 is mediated by S- and M-phase cyclins, respectively [90]. During 
S-phase, Cdc13 phosphorylation by Cdk1 leads to its association to telomeres, where 
Cdc13 can form a complex with Est1 and recruit telomerase. Moreover, S-phase 
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required to dissect the dual role of the Cdc13-Est1 interaction in supporting telom-
erase recruitment to telomeres and its subsequent stabilization and/or activation.

Certain evidence suggests that Cdc13 is phosphorylated by the Tel1/Mec1 check-
point kinases to promote the Cdc13-Est1 interaction [82, 83] (Figure 3C). Indeed, 
in vitro, Tel1 phosphorylates Cdc13 at the positions 225, 249 and 255 [82]. Mec1/
Tel1-dependent Cdc13 phosphorylation was also detected in vivo by the S249/S255 
phospho-specific antibody [83]. The cdc13-S249A/255A mutants with abolished Tel1 
phosphorylation sites display telomere shortening and the senescence phenotype, as 
well as a loss of telomerase-mediated telomere addition at HO sites flanked by telo-
meric repeats. Notably, the identified phosphorylation sites reside in the part of the 
Cdc13 protein, which is responsible for the formation of the Cdc13Glu252-Est1Lys444 salt 
bridge. This implies that Tel1-mediated Cdc13 phosphorylation might be required 
for telomerase activation/stabilization after telomerase recruitment. Consistent with 
this idea, lack of Cdc13 could be complemented by expression of Cdc13-Est1 as well 
as Cdc13-S249A/255A-Est1 fusion proteins [82]. This suggests that Cdc13 phosphory-
lation may promote the Est1 function downstream of telomerase recruitment.

However, there are also conflicting data on this issue. In particular, cells express-
ing the Cdc13 protein in which all potential consensus Tel1 phosphorylation sites 
were mutated, did not display any telomere defect [84]. In addition, the mass-spec-
trometry analysis of the Cdc13 phosphorylation sites did not detect in vivo phos-
phorylation of the S249/255 residues [85]. Therefore, the existence of Tel1-mediated 
Cdc13 phosphorylation in vivo and its role in telomerase function remains unclear.

Altogether, the data presented above demonstrates that in principle, telomerase 
can be recruited to telomeres via two separate mechanisms: Sir4-Yku-TLC1 which 
operates in G1 and Cdc13-Est1 available in late S-phase. However, live-cell imaging 
of TLC1 dynamics revealed that in G1 and G2 phases, telomerase-telomere interac-
tions are very short-lived and transient [52]. Indeed, outside S-phase, TLC1 mol-
ecules move much more rapidly and diffusively as compared to telomeres. During 
late S-phase, however, TLC1 RNA molecules can assemble in a cluster of 6-15 
molecules, named telomerase-recruitment cluster, or T-Rec, which stably associates 
with telomeres and follows their dynamics.

Consistent with the in vivo pattern of telomerase-telomere interactions, the loss 
of the Sir4-Yku telomerase recruitment pathway has only a mild effect on telomere 
length [28, 66, 67], whereas disruption of the Cdc13-Est1 interaction completely 
abrogates telomere maintenance and results in cellular senescence [22, 26, 27]. 
Therefore, it can be concluded that the Cdc13-Est1 mechanism is the only true telom-
erase recruitment pathway which allows efficient telomere elongation. As telomerase 
recruitment via Cdc13-Est1 is only possible in late S-phase, Cdc13-Est1 interaction 
might be the main factor that determines cell cycle restriction of telomerase function 
[51]. As for the Sir4-Yku80 telomerase recruitment pathway, the question about its 
functional significance remains open (see Section 6 for discussion).

4.3 The switch between the Cdc13-Est1 and Cdc13-Stn1-Ten1 complexes  
as a signal for telomerase dissociation

In addition to the Cdc13-Est1 interaction important for telomerase recruitment 
to telomeres, Cdc13 also forms a complex with the Stn1 and Ten1 proteins (CST) 
(Figure 3D). CST prevents degradation of the chromosome ends and their recogni-
tion by DSB repair mechanisms, collectively known as the capping function [8]. 
The CST complex also negatively regulates telomere maintenance, demonstrated 
by the fact that disrupting Cdc13-Stn1-Ten1 interactions leads to a long telomere 
phenotype [86]. The CST-dependent effect on telomere elongation is due to a direct 
inhibition of telomerase recruitment, as well as an indirect consequence of the CST 
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also abolishes the Cdc13-Stn1 binding, suggesting that Est1 and Stn1 might share the 
same Cdc13-binding interface. Consistently, the senescence phenotype of the cdc13-
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of the DNA polymerase ɑ/primase complex to telomeres. For example, it has been 
shown that Cdc13 interacts with Pol1, the catalytic subunit of this complex [79], 
while Pol12, the B subunit of the complex, associates with Stn1 [86, 88]. As a con-
sequence of C-strand synthesis, the single-stranded telomeric overhangs that serve 
as substrates for Cdc13 binding are eliminated. Hence, this effect contributes to the 
CST role as a negative regulator of telomerase recruitment. Consistently, cells defi-
cient in the Cdc13-Pol1 interaction have elongated telomeres, and this phenotype is 
dependent on telomerase interaction with Cdc13 [87]. Surprisingly, cells expressing 
Cdc13 with an N-terminal truncation are proficient in Pol1 interaction, but still have 
a telomere elongation phenotype as well as longer telomeric overhangs. The latter 
phenotype was attributed to the defect in the C-strand fill-in, as it was telomerase-
dependent, the overhangs were only visible during late S-phase, and the C-strand 
was also slightly elongated when compared to wild-type cells. Overexpression of 
Stn1 almost completely suppressed the long telomere and G-tail phenotype in these 
mutants. This suppression mechanism might be mediated by the Stn1-Pol12 interac-
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Altogether, the above results suggest that the CST complex can affect telomerase 
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mechanism, which determines the window of telomerase function at telomeres.

Indeed, the transition from the Cdc13-Est1 interaction to the CST complex 
formation seems to be regulated in part by sequential phosphorylation of Cdc13 
and Stn1 by Cdk1 [89, 90] (Figure 3D). Cdk1-dependent phosphorylation of 
Cdc13 and Stn1 is mediated by S- and M-phase cyclins, respectively [90]. During 
S-phase, Cdc13 phosphorylation by Cdk1 leads to its association to telomeres, where 
Cdc13 can form a complex with Est1 and recruit telomerase. Moreover, S-phase 
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cyclin-dependent Cdc13 phosphorylation also delays the phosphorylation of Stn1 
by M-phase cyclins. In turn, Cdk1-dependent Stn1 phosphorylation promotes the 
formation of the CST complex.

In addition, Tel1/Mec1 checkpoint kinases also contribute to the balance between 
the Cdc13-containing telomeric complexes. As was mentioned above, Tel1/Mec1-
mediated Cdc13 phosphorylation promotes the Cdc13-Est1 interaction [82, 83]. In 
turn, this effect is counteracted by the PP2A phosphatase and the Aurora kinase 
[83]. Pph22, the catalytic subunit of the PP2A phosphatase, dephosphorylates 
Cdc13 sites phosphorylated by Tel1 or Cdk1. This facilitates telomerase dissociation 
from telomeres in G2/M-phase, which is demonstrated by prolonged Est1 and Est2 
telomere association in pph22∆ strains. Aurora kinase on the other hand, phosphor-
ylates Cdc13 in G2/M, thus promoting TLC1 departure from telomeres, possibly by 
allosterically influencing its interactions with Est1.

Therefore, a tightly regulated sequence of Cdc13 and Stn1 phosphorylation 
events, first, promotes the formation of the Cdc13-Est1 complex, and next, medi-
ates the shift to the Cdc13-Stn1-Ten1 complex. Such a precise order of events defines 
a narrow time frame, which permits telomerase function at telomeres, explaining 
how the cell-cycle regulated restriction of telomerase function is orchestrated.

5. Regulation of telomerase preference for short telomeres

5.1 Rif2-MRX-Tel1 mechanism

Telomerase function is restricted not only by the cell cycle, but also by telomere 
length, being preferentially targeted to short telomeres. Indeed, within a particu-
lar cell cycle, only 6–8% of wild-type length telomeres (~300 bp) get extended, 
whereas short telomeres of about 100 bp are elongated in almost 45% cases [91]. 
Such preference for short telomeres is mediated by the Rap1-interacting partners 
Rif1 and Rif2. Altogether, Rap1, Rif1, and Rif2 form a negative feedback loop, which 
regulates telomere elongation in a length-dependent manner [92, 93] (Figure 3). 
Therefore, telomeres become over-elongated in the absence of Rif1 or Rif2, due 
to the increased frequency of telomerase function at all telomeres [91, 94–96]. 
The Rap1-Rif1-Rif2 regulatory mechanism relies on the number of the telomere-
associated Rif proteins as a readout of an individual telomere length [93]. As a result 
of such “protein counting,” only those telomeres that have the low number of Rif1 
and Rif2, i.e., short ones, will be elongated. Once telomeres get extended and the 
sufficient amount of the Rif proteins is restored at telomeres, the negative feedback 
loop inhibits telomere extension.

The mechanism of the Rif protein counting, and hence, targeting telomerase 
to short telomeres, depends on the intricate network of physical and functional 
interactions between the Rif1 and Rif2 proteins, Tel1 and the MRX (Mre11-Rad50-
Xrs2) complex.

The checkpoint kinase Tel1 preferentially localizes to short telomeres, and 
as a result, also mediates Est1 and Est2 preference to short telomeres [97–100]. 
Tethering Rif1 and Rif2 to DSB ends leads to the reduction in Tel1 binding, suggest-
ing that Rif proteins might out-compete or displace Tel1 from chromosome ends. 
Indeed, both Rif2 and Tel1 are recruited to telomeres via the Xrs2 subunit of the 
MRX complex, whereas Rif1 recruitment is partially mediated by Rif2 [96, 101]. 
In vitro, the Tel1-Xrs2 interaction is inhibited by Rif2, suggesting that Rif2 and Tel1 
compete for Xrs2 binding. However, it is unclear whether Rif2 and Tel1 binding 
to Xrs2 is mutually exclusive. Alternatively, binding of Rif2 may stimulate Tel1 
dissociation [96].
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As was mentioned above, timely generation of the single-stranded 3′-telomeric 
overhangs is crucial for telomerase function. This process largely relies on the MRX/
Sae2 complex, which resects the telomeric 5′-strand and generates a short G-tail in 
late S-phase after the passage of the replication fork [50, 76, 77]. In addition, the 
Mre11-Sae2 complex is essential for opening the hairpin structures that might be 
formed at telomeres by G-strand foldbacks, followed by DNA synthesis and hairpin 
closure [102]. If not resolved, replication of such hairpins will result in the forma-
tion of dicentric chromosomes and initiation of a breakage-fusion-bridge cycle that 
is detrimental for genome stability.

It was shown, that a balance of the Tel1 and Rif2 activities defines the extent of 
telomere processing by MRX [103–105]. On one hand, Tel1 enhances MRX-dependent 
5′-telomere processing [103]. Rif2, on the other hand, inhibits MRX activity [104, 
105]. Tel1 also increases association of MRX at the breaks flanked with telomeric 
repeats, although it is unclear, if this effect also exists at native telomeres [96].

Based on these observations, the following model for the regulation of telomerase 
preference for short telomeres by the Rap1-Rif1-Rif2 counting mechanism can be 
proposed. At short telomeres, Rif2 levels are reduced [99], which relieves inhibition 
of MRX-mediated telomere processing and also allows unrestricted Tel1 interaction 
with MRX. In turn, Tel1 may stabilize MRX association with telomeres and enhance 
its resection activity. As a result, short telomeres acquire single-stranded G-overhangs 
that serve as a substrate for Cdc13 binding and subsequent Est1-mediated recruit-
ment of telomerase [84, 103]. Once telomeres are extended, the double-stranded 
Rap1-binding sites are restored. As a result, more abundant Rif2 binding to telomeres 
decreases Tel1 association with MRX and inhibits MRX-dependent resection, thus 
blocking Cdc13 and telomerase access to telomeres. Hence, the availability of the 
G-tail as a substrate for telomerase binding is the main feature that distinguishes 
short telomeres from the long ones and allows their preferential elongation.

As an alternative to the Rap1-Rif1-Rif2 protein-counting mechanism described 
earlier, the telomerase preference for short telomeres could also be explained by 
a replication fork model, proposed recently by Carol Greider [106]. This model 
predicts that telomerase associates and progresses with the conventional replication 
fork, and telomere elongation can happen only if telomerase successfully reaches 
the chromosome end. The telomeric proteins (such as Rap1-Rif1-Rif2) may pose an 
obstacle for telomerase movement with the replication fork. Hence, the longer the 
telomere, the longer the distance telomerase must cover to reach the telomere, and 
the higher the chance for its premature dissociation. At short telomeres, the prob-
ability that telomerase will reach the chromosome end increases, explaining why 
short telomeres are preferentially extended in a given cell cycle. The late timing of 
telomere replication also justifies the cell cycle-restricted mode of the telomerase 
function, which also occurs in late S-phase.

However, in direct conflict to the replication fork model, Gallardo et al. showed 
that in the absence of Rif1 and Rif1 telomeric proteins, telomerase can elongate 
telomeres in G1-phase [52]. Since, replication does not take place in G1, these data 
show that a functional telomere-telomerase interaction as well as telomere elonga-
tion by telomerase do not depend on the replication fork. However, it is possible, 
that the replication fork might operate as an alternative pathway, which functions 
under specific circumstances.

5.2 TERRA-mediated pathway

Another mechanism promoting telomerase recruitment to short telomeres 
depends on the long noncoding RNA, TERRA (telomeric repeat-containing RNA), 
transcribed from telomeres [107, 108]. In yeast, TERRA is preferentially expressed 
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associated Rif proteins as a readout of an individual telomere length [93]. As a result 
of such “protein counting,” only those telomeres that have the low number of Rif1 
and Rif2, i.e., short ones, will be elongated. Once telomeres get extended and the 
sufficient amount of the Rif proteins is restored at telomeres, the negative feedback 
loop inhibits telomere extension.

The mechanism of the Rif protein counting, and hence, targeting telomerase 
to short telomeres, depends on the intricate network of physical and functional 
interactions between the Rif1 and Rif2 proteins, Tel1 and the MRX (Mre11-Rad50-
Xrs2) complex.

The checkpoint kinase Tel1 preferentially localizes to short telomeres, and 
as a result, also mediates Est1 and Est2 preference to short telomeres [97–100]. 
Tethering Rif1 and Rif2 to DSB ends leads to the reduction in Tel1 binding, suggest-
ing that Rif proteins might out-compete or displace Tel1 from chromosome ends. 
Indeed, both Rif2 and Tel1 are recruited to telomeres via the Xrs2 subunit of the 
MRX complex, whereas Rif1 recruitment is partially mediated by Rif2 [96, 101]. 
In vitro, the Tel1-Xrs2 interaction is inhibited by Rif2, suggesting that Rif2 and Tel1 
compete for Xrs2 binding. However, it is unclear whether Rif2 and Tel1 binding 
to Xrs2 is mutually exclusive. Alternatively, binding of Rif2 may stimulate Tel1 
dissociation [96].
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telomeres in G1-phase [52]. Since, replication does not take place in G1, these data 
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tion by telomerase do not depend on the replication fork. However, it is possible, 
that the replication fork might operate as an alternative pathway, which functions 
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depends on the long noncoding RNA, TERRA (telomeric repeat-containing RNA), 
transcribed from telomeres [107, 108]. In yeast, TERRA is preferentially expressed 
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from short telomeres and reaches its maximum level in S-phase [109, 110]. During 
late S-phase, TERRA may act as a scaffold to allow the formation of a cluster of 
telomerase molecules (T-Rec), and promote telomerase recruitment to the short 
telomere of the TERRA origin [52, 109] (Figure 3C). Indeed, FISH experiments 
revealed that TERRA interacts with TLC1 RNA, and the complex of TERRA and 
T-Rec co-localize with a short telomere, from which TERRA is expressed [109].

Interestingly, TERRA expression is inhibited by Rif1 and Rif2 [111]. Therefore, it 
is possible that at short telomeres, containing fewer Rap1-binding sites and less Rif 
proteins, TERRA expression might be de-repressed, in order to favor recruitment 
of telomerase to short telomeres [109, 111]. Hence, the Rif counting mechanism, 
which allows preferential extension of short telomeres, may operate not only via 
Tel1-MRX-dependent formation of G-tails, but also via TERRA expression from 
short telomeres [91, 96, 103, 109].

6. Why telomerase is not welcome in G1-phase

As was discussed in Section 3, Est1 and Est3 do not associate stably with the 
telomerase RNP in G1-phase [39, 48, 51, 54]. However, restoration of telomerase 
composition in G1, still did not result in telomere extension [48, 54]. This implies 
that lack of telomerase components is not the main factor that restricts telomerase 
function in G1. Instead, the Rif1 and Rif2 telomeric proteins might govern such a 
regulatory mechanism.

Indeed, in the absence of Rif1 or Rif2, telomerase clusters are no longer 
restricted to late S-phase of the cell cycle and also appear in G1 [52]. Moreover, 
these G1-born T-Recs are functional in rif1∆ or rif2∆ mutants, as they can efficiently 
elongate short telomeres.

The most plausible explanation for this phenomenon lies in the role of Rif 
proteins in inhibition of telomere processing and formation of 3′-single-stranded 
overhangs [103, 104] (Figure 3A). Indeed, Rif2 was shown to inhibit processing in 
both G1 and G2 [104]. This means that in rif2∆ mutants, G-tails might be generated 
outside S-phase, followed by Cdc13-dependent telomerase recruitment. In addi-
tion, unrestricted expression and accumulation of TERRA in rif1∆ or rif2∆ mutants 
may contribute to unconstrained telomerase function, by promoting formation of 
telomerase clusters at any stage of the cell cycle [109].

Alternatively, telomere elongation may not take place in G1 due to unstable 
association of telomerase with telomeres outside S-phase [52]. Rif1 and Rif2 are 
recruited to telomeres via interaction with Rap1, and hence, compete with Sir3 and 
Sir4 which also bind to Rap1 [95, 112]. As a result of this competition, Sir4-Yku 
binding to telomeres might be unstable, providing an explanation for transient 
telomerase recruitment to telomeres in G1 (Figure 3A). Indeed, the role of Rif 
proteins as negative regulators of telomere length affects the Sir4-Yku pathway 
of telomere maintenance [70]. rif1Δ and rif2Δ mutants have hyper-elongated 
telomeres [94, 95]. The tlc1Δ48 mutation, which abrogates Yku-TLC1 interaction, 
resulted in ∼500 bp shortening of over-elongated rif1Δ and rif2Δ telomeres, which 
is a far bigger effect than in the wild-type background (only 70 bp) [70]. This 
observation suggests that Rif proteins inhibit Yku-mediated telomere lengthening. 
Altogether, these data support the idea for the role of Rif proteins in destabilizing 
Yku-Sir4 binding to telomeres, and hence, transient telomerase recruitment in 
G1-phase. It must be noted that the tlc1Δ48 mutation does not completely suppress 
the telomere over-elongation phenotype of rif1Δ and rif2Δ mutants, implying that 
the negative role of Rif proteins in telomere length maintenance is also linked to the 
Cdc13-Est1 mechanism of telomerase recruitment.
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Therefore, it is possible that G1-specific inhibition of telomerase function is con-
trolled by Rif1 and Rif2 proteins at two different levels: (1) by ensuring that G-tails 
are not produced in G1, and hence, the Cdc13-Est1 telomerase recruitment pathway 
is not available; and (2) by out-competing Sir4-Yku from telomeres, therefore 
destabilizing telomerase association with telomeres.

As we can see, Sir4-Yku interaction does not provide stable telomerase recruit-
ment in G1 and is mostly dispensable for telomere maintenance. Then why having 
a specialized but unproductive telomerase recruitment pathway in G1? We suggest 
that via short-lived interactions, cells could ensure that telomerase does not local-
ize to sites of DSB repair and engage in unsanctioned repair mechanisms. Indeed, 
sites of telomere elongation and DSB repair were shown to be spatially separated 
between different nuclear compartments [113, 114]. Although in this scenario, 
telomerase is kept at telomeres in G1, it does not engage in productive interactions 
with telomeres, possibly due to the competition between Rif and Sir proteins for 
Rap1 binding. Interestingly, the fact that Sir4-Yku80 complexes locate distally from 
telomere ends [73], might also ensure that telomerase recruitment to telomeres in 
G1 remains unproductive.

7. Inhibition of telomerase function at DSBs

Due to a similar structure of telomeres and DSBs, telomerase has a potential 
to add telomeres to broken DNA, a phenomenon called de novo telomere addi-
tion. The consequences of telomere addition to DSBs could be fatal, because 
the chromosome fragment distal to the DSB is either lost or can initiate further 
genomic rearrangements [115, 116]. On the other hand, unsanctioned access 
of DNA repair mechanisms to telomeres will lead to chromosome fusions and 
massive genome rearrangements with devastating consequences for cell function 
[117–120].

To ensure that these accidents do not happen, telomeres and DNA DSBs are 
spatially separated in the nucleus. DSBs are mainly localized to the nuclear pores, 
whereas telomeres anchor at the nuclear envelope, although exceptions from this 
general rule can be observed [113, 114]. In addition, local mechanisms operate both 
at DSBs and telomeres to ensure that telomerase and DSB repair machinery do not 
mix up their substrates.

7.1 Telomere anchoring at the nuclear envelope

During G1- and S-phase, telomeres are clustered in approximately 8 foci, which 
are tethered to the nuclear envelope [113, 121]. Telomere tethering requires interac-
tion between telomeric and nuclear envelope proteins. One telomere tethering 
pathway involves Sir4 interaction with Esc1 and Mps3 nuclear envelope proteins, 
whereas the other one depends on the Yku70/80 and Mps3 [122–124]. The two 
telomere tethering pathways are redundant to a certain extent, although the details 
of their exact functional interaction remain elusive [121].

Unlike Sir4, Yku70 cannot directly bind Mps3 in vitro [123]. This indicates that 
the Yku-mediated telomere anchoring pathway requires a “bridge” between Yku on 
the telomere side and Mps3 on the nuclear envelope side. It seems that telomerase 
might function as such a “bridge,” at least during S-phase. It was shown, that on 
the nuclear envelope side, Est1 interacts with Mps3 [125]. In turn, on the telomere 
side of this “sandwich,” TLC1 and Est1 interact with Yku [126]. In G1-phase, these 
interactions do not contribute to telomere anchoring, suggesting that another factor 
may mediate Yku-Mps3 bridging and telomere tethering.
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Unlike Sir4, Yku70 cannot directly bind Mps3 in vitro [123]. This indicates that 
the Yku-mediated telomere anchoring pathway requires a “bridge” between Yku on 
the telomere side and Mps3 on the nuclear envelope side. It seems that telomerase 
might function as such a “bridge,” at least during S-phase. It was shown, that on 
the nuclear envelope side, Est1 interacts with Mps3 [125]. In turn, on the telomere 
side of this “sandwich,” TLC1 and Est1 interact with Yku [126]. In G1-phase, these 
interactions do not contribute to telomere anchoring, suggesting that another factor 
may mediate Yku-Mps3 bridging and telomere tethering.
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An elegant single-telomere extension experiment revealed that telomeres detach 
from the nuclear envelope during extension [127]. In this assay, a telomerase-defi-
cient recipient mutant with short telomeres was mated with a wild-type donor cell. 
In the zygote, short recipient telomeres can be efficiently elongated by the donor 
telomerase. To track short recipient telomeres, Tel5R was tagged with lacO/LacI-
GFP, and the nuclear envelope was marked with Nup49-GFP. It was observed that 
the short Tel5R telomere was released from the nuclear periphery in the first S-phase 
after mating, when telomere elongation was expected to happen. However, in the 
second cell cycle, when the short telomere should already have been extended, 
Tel5R stayed anchored to the nuclear envelope. Notably, in the telomerase-negative 
zygote, the short telomere did not detach from the nuclear envelope in the first cell 
cycle. This indicates that telomerase function or the process of telomere elongation 
in general somehow triggers telomere dissociation from the nuclear envelope.

Deletion of SIZ2, encoding for the SUMO E3 ligase, causes long untethered telo-
meres. This indicates that telomere anchoring to the nuclear envelope is achieved 
via Siz2-dependent sumoylation of certain tethering components. Accordingly, Siz2 
sumoylates Yku70/80 and Sir4 in vivo. Moreover, fusing Yku70 with SUMO sup-
presses the siz2∆ telomere tethering defect.

Altogether, these observations suggest that telomere anchoring may not only sepa-
rate telomere-extension and DSB repair activities in space, but also act as an additional 
regulatory mechanism, which ensures cell-cycle restriction of telomere elongation.

Although normally clustered at the nuclear envelope, some telomeres can 
occasionally localize to nuclear pores, the sites of DSB repair. For instance, when 
a DSB occurs in a subtelomeric region, it must re-localize to the nuclear pore for 
efficient DSB repair [128]. In addition, eroded telomeres in telomerase-negative 
cells were also shown to re-localize to nuclear pores [129]. As a result, such critically 
short telomeres can undergo recombination-dependent elongation that allows cell 
survival in the absence of telomerase [130].

7.2 Local mechanisms restricting telomerase access to DSBs

De novo telomere addition at DSBs occurs mostly at telomere-like TG-rich 
regions [131–134]. However, the molecular mechanism of this process is not very 
well understood. In particular, it is still unknown how telomerase is recruited to the 
break. Cdc13 is one of the most likely candidates for this role. Consistently, Cdc13 
and telomerase can be detected at both TG-flanked and non-TG DSB ends [135]. 
The single-stranded DNA binding protein complex RPA is another candidate for 
recruiting telomerase to DSBs. RPA is abundantly present at processed DSB ends 
and was also shown to mediate telomerase association with telomeres [136, 137].

Chromosome healing via de novo telomere addition is an extremely rare event, 
suggesting that telomerase function is efficiently inhibited at DSBs [115, 134]. In 
yeast, two mechanisms are implicated in the inhibition of de novo telomere addition. 
The first one involves Mec1-mediated Cdc13 phosphorylation at the S306 residue 
[138]. In cells expressing the Cdc13-S306A unphosphorylatable protein, the fre-
quency of de novo telomere addition to DSBs is increased. This Cdc13 modification 
does not prevent Cdc13-Est1 interaction, but rather affects Cdc13 association with 
the breaks. Accordingly, cdc13-S306A mutants have increased accumulation of Cdc13 
at DSBs. The Mec1-dependent phosphorylation of Cdc13-S306 can be reversed by 
Pph3, the yeast protein phosphatase 4, and Rrd1, the yeast ortholog of human phos-
photyrosyl phosphatase activator. Reversible Cdc13 phosphorylation kept under the 
control of the DNA damage checkpoint kinase is reminiscent of Cdc13 regulation at 
telomeres (discussed in Section 4). Therefore, by targeting different phosphoryla-
tion sites, cells modulate Cdc13 functions both at telomeres and DSBs.
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Another mechanism inhibiting telomerase at DSBs relies on Pif1, a multi-
functional 5′-3′ helicase, expressed both in the nucleus and mitochondria [139]. 
The nuclear Pif1 isoform contributes to DNA replication and repair by promot-
ing Okazaki fragment processing, resolution of G-quadruplex DNA structures, 
ribosomal DNA replication and DSB repair via Rad51-dependent break-induced 
replication. In addition, Pif1 inhibits telomere addition both at telomeres and DSBs. 
Accordingly, cells expressing the pif1-m2 allele that lack the nuclear Pif1 isoform, 
have long telomeres, whereas overexpression of PIF1 leads to telomere shortening 
[134]. The frequency of de novo telomere addition to spontaneous and HO-induced 
DSBs is increased 200-1000-fold in the absence of Pif1 [131, 132, 134]. The 
inhibitory effect of Pif1 on de novo telomere addition is telomerase-dependent, as 
inactivation of telomerase function suppresses the high rate of gross chromosomal 
rearrangements and long telomere phenotype observed in pif1-m2 cells [132, 140].

Similar to Cdc13, Pif1 function can be modulated by specific phosphorylation 
events. It was shown that Mec1-dependent phosphorylation specifically regulates 
Pif1 activity at DSBs [141]. Cells expressing Pif1-4A, which cannot be phosphory-
lated by Mec1, have the same level of de novo telomere addition as pif1-m2 cells. 
However, additional telomere lengthening associated with pif1-m2 does not occur in 
pif1-4A cells. Hence, Mec1-dependent Pif1 phosphorylation is required for telomer-
ase inhibition specifically at DSBs.

In vitro, Pif1 preferentially unwinds RNA-DNA structures [142]. In addition, the 
helicase activity of Pif1 is required for its telomeric function [140]. Therefore, Pif1 
role in inhibition of telomere elongation could be explained by its ability to disrupt 
the base-pairing between the TLC1 RNA and telomeric DNA, leading to displace-
ment of telomerase from telomeres. Consistent with this model, Pif1 expression is 
cell-cycle regulated and reaches its maximum during late S-phase, coinciding with 
the time of telomerase action at telomeres [51, 143]. In addition, Pif1 overexpression 
reduces telomerase association with telomeres [144]. However, the novel function 
of the TERRA RNA in recruitment of telomerase clusters to telomeres raises the 
possibility that TERRA might also be a target for the Pif1 helicase activity, which 
would explain its negative effect on telomere lengthening [109].

Replication forks can frequently stall at TG-rich sequences, resulting in forma-
tion of DSBs flanked with short TG-sequences. At the same time, native telomeres 
can also reach a critically short length. Despite this structural resemblance, the first 
type of substrate must be channeled into proper DSB repair mechanisms, whereas 
telomerase must be inhibited. In turn, short telomeres must not be recognized by 
DNA repair mechanisms, and instead, must be elongated by telomerase.

How does a cell distinguish between these very similar structures? Recent evi-
dence suggests that cooperation between Cdc13 and Pif1 might channel particular 
substrates into proper repair pathways [145]. It was shown, that if either a natural 
telomere or a TG-seed flanking a DSB is shorter than 35-40 bp, it is recognized 
as a break and is protected from telomerase activity by Pif1. As a result, such a 
substrate will be processed by DSB repair mechanisms. In turn, when the length of 
the TG-tract exceeds the 35-40 bp threshold, it is considered as a short telomere, 
irrespective of whether it is at a break or at the natural chromosome end. Pif1 will 
not protect such a substrate from telomerase function, thus making it available for 
telomerase-mediated elongation.

Mec1-dependent Pif1 phosphorylation, which specifically modulates its function 
at the breaks, does not make Pif1 selectively sensitive to shorter TG-sequences and 
insensitive to the longer ones [141, 145]. Instead, it was shown that Pif1 selectivity 
for different TG-substrates is mediated by Cdc13 [145]. If Cdc13 binding to DSBs is 
attenuated, longer telomeres become sensitive to Pif1. This implies that Cdc13 pro-
tects longer TG-sequences from the inhibitory Pif1 activity, thus allowing telomere 
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An elegant single-telomere extension experiment revealed that telomeres detach 
from the nuclear envelope during extension [127]. In this assay, a telomerase-defi-
cient recipient mutant with short telomeres was mated with a wild-type donor cell. 
In the zygote, short recipient telomeres can be efficiently elongated by the donor 
telomerase. To track short recipient telomeres, Tel5R was tagged with lacO/LacI-
GFP, and the nuclear envelope was marked with Nup49-GFP. It was observed that 
the short Tel5R telomere was released from the nuclear periphery in the first S-phase 
after mating, when telomere elongation was expected to happen. However, in the 
second cell cycle, when the short telomere should already have been extended, 
Tel5R stayed anchored to the nuclear envelope. Notably, in the telomerase-negative 
zygote, the short telomere did not detach from the nuclear envelope in the first cell 
cycle. This indicates that telomerase function or the process of telomere elongation 
in general somehow triggers telomere dissociation from the nuclear envelope.

Deletion of SIZ2, encoding for the SUMO E3 ligase, causes long untethered telo-
meres. This indicates that telomere anchoring to the nuclear envelope is achieved 
via Siz2-dependent sumoylation of certain tethering components. Accordingly, Siz2 
sumoylates Yku70/80 and Sir4 in vivo. Moreover, fusing Yku70 with SUMO sup-
presses the siz2∆ telomere tethering defect.

Altogether, these observations suggest that telomere anchoring may not only sepa-
rate telomere-extension and DSB repair activities in space, but also act as an additional 
regulatory mechanism, which ensures cell-cycle restriction of telomere elongation.

Although normally clustered at the nuclear envelope, some telomeres can 
occasionally localize to nuclear pores, the sites of DSB repair. For instance, when 
a DSB occurs in a subtelomeric region, it must re-localize to the nuclear pore for 
efficient DSB repair [128]. In addition, eroded telomeres in telomerase-negative 
cells were also shown to re-localize to nuclear pores [129]. As a result, such critically 
short telomeres can undergo recombination-dependent elongation that allows cell 
survival in the absence of telomerase [130].

7.2 Local mechanisms restricting telomerase access to DSBs

De novo telomere addition at DSBs occurs mostly at telomere-like TG-rich 
regions [131–134]. However, the molecular mechanism of this process is not very 
well understood. In particular, it is still unknown how telomerase is recruited to the 
break. Cdc13 is one of the most likely candidates for this role. Consistently, Cdc13 
and telomerase can be detected at both TG-flanked and non-TG DSB ends [135]. 
The single-stranded DNA binding protein complex RPA is another candidate for 
recruiting telomerase to DSBs. RPA is abundantly present at processed DSB ends 
and was also shown to mediate telomerase association with telomeres [136, 137].

Chromosome healing via de novo telomere addition is an extremely rare event, 
suggesting that telomerase function is efficiently inhibited at DSBs [115, 134]. In 
yeast, two mechanisms are implicated in the inhibition of de novo telomere addition. 
The first one involves Mec1-mediated Cdc13 phosphorylation at the S306 residue 
[138]. In cells expressing the Cdc13-S306A unphosphorylatable protein, the fre-
quency of de novo telomere addition to DSBs is increased. This Cdc13 modification 
does not prevent Cdc13-Est1 interaction, but rather affects Cdc13 association with 
the breaks. Accordingly, cdc13-S306A mutants have increased accumulation of Cdc13 
at DSBs. The Mec1-dependent phosphorylation of Cdc13-S306 can be reversed by 
Pph3, the yeast protein phosphatase 4, and Rrd1, the yeast ortholog of human phos-
photyrosyl phosphatase activator. Reversible Cdc13 phosphorylation kept under the 
control of the DNA damage checkpoint kinase is reminiscent of Cdc13 regulation at 
telomeres (discussed in Section 4). Therefore, by targeting different phosphoryla-
tion sites, cells modulate Cdc13 functions both at telomeres and DSBs.

47

Telomerase in Space and Time: Regulation of Yeast Telomerase Function at Telomeres…
DOI: http://dx.doi.org/10.5772/intechopen.85750

Another mechanism inhibiting telomerase at DSBs relies on Pif1, a multi-
functional 5′-3′ helicase, expressed both in the nucleus and mitochondria [139]. 
The nuclear Pif1 isoform contributes to DNA replication and repair by promot-
ing Okazaki fragment processing, resolution of G-quadruplex DNA structures, 
ribosomal DNA replication and DSB repair via Rad51-dependent break-induced 
replication. In addition, Pif1 inhibits telomere addition both at telomeres and DSBs. 
Accordingly, cells expressing the pif1-m2 allele that lack the nuclear Pif1 isoform, 
have long telomeres, whereas overexpression of PIF1 leads to telomere shortening 
[134]. The frequency of de novo telomere addition to spontaneous and HO-induced 
DSBs is increased 200-1000-fold in the absence of Pif1 [131, 132, 134]. The 
inhibitory effect of Pif1 on de novo telomere addition is telomerase-dependent, as 
inactivation of telomerase function suppresses the high rate of gross chromosomal 
rearrangements and long telomere phenotype observed in pif1-m2 cells [132, 140].

Similar to Cdc13, Pif1 function can be modulated by specific phosphorylation 
events. It was shown that Mec1-dependent phosphorylation specifically regulates 
Pif1 activity at DSBs [141]. Cells expressing Pif1-4A, which cannot be phosphory-
lated by Mec1, have the same level of de novo telomere addition as pif1-m2 cells. 
However, additional telomere lengthening associated with pif1-m2 does not occur in 
pif1-4A cells. Hence, Mec1-dependent Pif1 phosphorylation is required for telomer-
ase inhibition specifically at DSBs.

In vitro, Pif1 preferentially unwinds RNA-DNA structures [142]. In addition, the 
helicase activity of Pif1 is required for its telomeric function [140]. Therefore, Pif1 
role in inhibition of telomere elongation could be explained by its ability to disrupt 
the base-pairing between the TLC1 RNA and telomeric DNA, leading to displace-
ment of telomerase from telomeres. Consistent with this model, Pif1 expression is 
cell-cycle regulated and reaches its maximum during late S-phase, coinciding with 
the time of telomerase action at telomeres [51, 143]. In addition, Pif1 overexpression 
reduces telomerase association with telomeres [144]. However, the novel function 
of the TERRA RNA in recruitment of telomerase clusters to telomeres raises the 
possibility that TERRA might also be a target for the Pif1 helicase activity, which 
would explain its negative effect on telomere lengthening [109].

Replication forks can frequently stall at TG-rich sequences, resulting in forma-
tion of DSBs flanked with short TG-sequences. At the same time, native telomeres 
can also reach a critically short length. Despite this structural resemblance, the first 
type of substrate must be channeled into proper DSB repair mechanisms, whereas 
telomerase must be inhibited. In turn, short telomeres must not be recognized by 
DNA repair mechanisms, and instead, must be elongated by telomerase.

How does a cell distinguish between these very similar structures? Recent evi-
dence suggests that cooperation between Cdc13 and Pif1 might channel particular 
substrates into proper repair pathways [145]. It was shown, that if either a natural 
telomere or a TG-seed flanking a DSB is shorter than 35-40 bp, it is recognized 
as a break and is protected from telomerase activity by Pif1. As a result, such a 
substrate will be processed by DSB repair mechanisms. In turn, when the length of 
the TG-tract exceeds the 35-40 bp threshold, it is considered as a short telomere, 
irrespective of whether it is at a break or at the natural chromosome end. Pif1 will 
not protect such a substrate from telomerase function, thus making it available for 
telomerase-mediated elongation.

Mec1-dependent Pif1 phosphorylation, which specifically modulates its function 
at the breaks, does not make Pif1 selectively sensitive to shorter TG-sequences and 
insensitive to the longer ones [141, 145]. Instead, it was shown that Pif1 selectivity 
for different TG-substrates is mediated by Cdc13 [145]. If Cdc13 binding to DSBs is 
attenuated, longer telomeres become sensitive to Pif1. This implies that Cdc13 pro-
tects longer TG-sequences from the inhibitory Pif1 activity, thus allowing telomere 
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addition. Interestingly, this effect of Cdc13 is not linked to its role in telomerase 
recruitment. The Cdc13-Est1 or Cdc13-Est2 fusions did not result in more frequent 
telomere addition at short TG-sequences when Pif1 was present. It suggests that the 
role of Cdc13 at the threshold DSB TG-sequences is not due to telomerase recruit-
ment, but could possibly be explained by other Cdc13 functions, such as telomere 
capping or promoting the C-strand synthesis.

Pif1 was previously implicated in promoting resection in cdc13-1 cells, 
where Cdc13 is inactive [146, 147]. Hence, Strecker et al. suggested that at short 
TG-stretches, less Cdc13 may allow more extensive processing by Pif1 and telomer-
ase inhibition [145]. Once telomere length is over the threshold, it can be protected 
from Pif1 resection and thus Pif1 no longer inhibits telomerase.

We suggest an alternative explanation that may explain the Pif1 and Cdc13 effect 
on telomere addition to threshold substrates by their role in Okazaki fragment 
synthesis. When the replicative helicase runs off telomeric DNA ends ahead of 
the replisome, single-stranded DNA stretches may become exposed. The CA-rich 
strand will be rapidly converted into double-stranded DNA by leading-strand 
synthesis, whereas the TG-rich strand must be filled-in by the lagging-strand 
replication. It is possible, that if the TG-tract is shorter than 35–40 bp, lagging-
strand initiation will be inefficient. In this scenario, the TG-tract, as well as the 
upstream non-TG sequence, will remain single-stranded. RPA bound to the non-TG 
sequence will signal for the DNA damage response activation, resulting in the 
engagement of the 3′-overhang in homology search and DSB repair. However, when 
the TG-sequence is longer than the threshold, priming for lagging-strand synthesis 
may be efficient. As a result, single-stranded DNA will get converted into a double-
stranded DNA tract, and RPA displaced from the non-TG sequence will no longer 
signal for the DNA damage response activation. Finally, Cdc13 bound to the leftover 
single-stranded TG-sequence will recruit telomerase.

Why would the initiation of the lagging-strand synthesis be inefficient at short 
TG-tracts? In mammals, the CST complex cannot bind single-stranded DNA tracts that 
are shorter than 32 bp [148]. This suggests that at shorter TG-tracts, the CST complex 
might not be stable, and hence, cannot efficiently recruit/stabilize DNA polymerase ɑ/
primase complex. Consequently, Okazaki fragment synthesis will be inefficient, and 
the RNA primer could be displaced from DNA via the Pif1 helicase activity. Therefore, 
the RPA-bound 3′-overhang containing non-TG and TG-sequences will persist and 
signal for DNA damage response activation. Long TG-tracts, on the other hand, will 
efficiently accommodate the CST complex, resulting in stable recruitment of the 
lagging-strand synthesis machinery. The RNA primer would be quickly extended into a 
full Okazaki fragment, making it inaccessible for Pif1. This can explain, why at longer 
TG-tracts, telomere addition is not under Pif1 control. According to this scenario, 
abolishing lagging-strand DNA synthesis, but not RNA priming, should render long 
TG-tracts sensitive to Pif1, leading to inhibition of telomere addition.

Therefore, at telomeres and DSBs, Pif1 might act at two consecutive steps. First, 
Pif1 may decide the fate of the telomeric end, and either channel it to the DSB 
repair pathway or leave it accessible for telomere elongation. As discussed above, 
this could be due to the Pif1 role in Okazaki fragment synthesis, rather than direct 
telomerase displacement. At the next step, Pif1 might regulate the extent of telo-
mere elongation by telomerase. Accordingly, Pif1 was shown to inhibit telomerase 
preferentially at long telomeres [149]. Unlike its function at the threshold TG-tracts, 
this effect could be due to Pif1 stripping telomerase from telomeric 3′-overhangs.

Although most DSBs are localized to nuclear pores to be repaired, some persis-
tent breaks are brought to the same regions as telomeres [114]. If such a break is 
deemed “nontelomeric,” it will subsequently re-localize to the nuclear pore. Why 
are these “questionable” DSBs brought so dangerously close to the telomeric sites? 
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Such behavior can be nicely explained by the role of Pif1 in sorting DSBs from telo-
meres based on their threshold TG-sequence [145]. By extension, this Pif1-mediated 
process should co-localize with telomeric clusters tethered to the nuclear envelope.

8. Conclusions and future perspectives

In this review, we have outlined the main regulatory mechanisms that tightly 
cooperate in order to control telomerase function at telomere and at the breaks. 
Although our knowledge on this subject is quite extensive, many questions 
remain. Do the Pop1, Pop6 and Pop7 proteins functionally interact with any other 
telomerase subunits or telomeric proteins, in addition to Est1 and Est2 (e.g., Est3, 
Cdc13, Yku). How do the Pop proteins affect telomerase composition and function 
during cell cycle? Are there any unknown telomerase subunits that are yet to be 
discovered, and if so, what are their roles? What is the functional significance of the 
Sir4-Yku-TLC1 telomerase recruitment pathway? Is it related to the sequestration of 
telomerase from the DSB repair sites, as we proposed above, or does it play another 
role? Telomere anchoring at the nuclear periphery seems to affect their elongation. 
How is this process mediated, and what is the significance of telomerase in telomere 
anchoring at the nuclear envelope? What is the mechanism that allows Pif1 to dis-
tinguish DSBs from short telomeres and inhibit telomerase only at DSBs? All these 
questions and many more wait for answers, which will help to understand better the 
intricate network of telomerase regulatory pathways.
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addition. Interestingly, this effect of Cdc13 is not linked to its role in telomerase 
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telomere addition at short TG-sequences when Pif1 was present. It suggests that the 
role of Cdc13 at the threshold DSB TG-sequences is not due to telomerase recruit-
ment, but could possibly be explained by other Cdc13 functions, such as telomere 
capping or promoting the C-strand synthesis.

Pif1 was previously implicated in promoting resection in cdc13-1 cells, 
where Cdc13 is inactive [146, 147]. Hence, Strecker et al. suggested that at short 
TG-stretches, less Cdc13 may allow more extensive processing by Pif1 and telomer-
ase inhibition [145]. Once telomere length is over the threshold, it can be protected 
from Pif1 resection and thus Pif1 no longer inhibits telomerase.

We suggest an alternative explanation that may explain the Pif1 and Cdc13 effect 
on telomere addition to threshold substrates by their role in Okazaki fragment 
synthesis. When the replicative helicase runs off telomeric DNA ends ahead of 
the replisome, single-stranded DNA stretches may become exposed. The CA-rich 
strand will be rapidly converted into double-stranded DNA by leading-strand 
synthesis, whereas the TG-rich strand must be filled-in by the lagging-strand 
replication. It is possible, that if the TG-tract is shorter than 35–40 bp, lagging-
strand initiation will be inefficient. In this scenario, the TG-tract, as well as the 
upstream non-TG sequence, will remain single-stranded. RPA bound to the non-TG 
sequence will signal for the DNA damage response activation, resulting in the 
engagement of the 3′-overhang in homology search and DSB repair. However, when 
the TG-sequence is longer than the threshold, priming for lagging-strand synthesis 
may be efficient. As a result, single-stranded DNA will get converted into a double-
stranded DNA tract, and RPA displaced from the non-TG sequence will no longer 
signal for the DNA damage response activation. Finally, Cdc13 bound to the leftover 
single-stranded TG-sequence will recruit telomerase.

Why would the initiation of the lagging-strand synthesis be inefficient at short 
TG-tracts? In mammals, the CST complex cannot bind single-stranded DNA tracts that 
are shorter than 32 bp [148]. This suggests that at shorter TG-tracts, the CST complex 
might not be stable, and hence, cannot efficiently recruit/stabilize DNA polymerase ɑ/
primase complex. Consequently, Okazaki fragment synthesis will be inefficient, and 
the RNA primer could be displaced from DNA via the Pif1 helicase activity. Therefore, 
the RPA-bound 3′-overhang containing non-TG and TG-sequences will persist and 
signal for DNA damage response activation. Long TG-tracts, on the other hand, will 
efficiently accommodate the CST complex, resulting in stable recruitment of the 
lagging-strand synthesis machinery. The RNA primer would be quickly extended into a 
full Okazaki fragment, making it inaccessible for Pif1. This can explain, why at longer 
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telomerase displacement. At the next step, Pif1 might regulate the extent of telo-
mere elongation by telomerase. Accordingly, Pif1 was shown to inhibit telomerase 
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49

Telomerase in Space and Time: Regulation of Yeast Telomerase Function at Telomeres…
DOI: http://dx.doi.org/10.5772/intechopen.85750

Author details

Yulia Vasianovich, Alexandra Krallis and Raymund Wellinger*
Université de Sherbrooke, Sherbrooke, Canada

*Address all correspondence to: raymund.wellinger@usherbrooke.ca
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meres based on their threshold TG-sequence [145]. By extension, this Pif1-mediated 
process should co-localize with telomeric clusters tethered to the nuclear envelope.
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cooperate in order to control telomerase function at telomere and at the breaks. 
Although our knowledge on this subject is quite extensive, many questions 
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Cdc13, Yku). How do the Pop proteins affect telomerase composition and function 
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discovered, and if so, what are their roles? What is the functional significance of the 
Sir4-Yku-TLC1 telomerase recruitment pathway? Is it related to the sequestration of 
telomerase from the DSB repair sites, as we proposed above, or does it play another 
role? Telomere anchoring at the nuclear periphery seems to affect their elongation. 
How is this process mediated, and what is the significance of telomerase in telomere 
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Budding and Fission Yeasts
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Abstract

Telomeres are specialized structures essential for genomic stability in eukaryotic 
cells. Inducible systems causing telomere shortening or telomere formation from 
short tracts of telomere repeats were developed in the late 1990s in Saccharomyces 
cerevisiae and have been adapted to investigate multiple aspects of telomere biol-
ogy. In the formation system, an internal tract of telomere repeats is placed next to 
an inducible double-strand break. Inducing the break converts the telomere tract 
into a functional telomere whose fate can be followed kinetically and allows one to 
assay elongation, protein recruitment, and the DNA damage checkpoint activation. 
This work was extended to Schizosaccharomyces pombe, as it shares some features 
of telomeric chromatin with mammalian cells that are missing in S. cerevisiae. The 
S. pombe system has revealed novel aspects of telomeric chromatin formation and 
similarities with S. cerevisiae. This chapter will review these past discoveries in dif-
ferent yeast model organisms, and what they reveal about telomere physiology that 
may well be conserved in mammals.

Keywords: telomere formation, chromosome end, double-strand break, checkpoint, 
heterochromatin, yeast, Saccharomyces cerevisiae, Schizosaccharomyces pombe, I-SceI, 
HO, endonuclease, Cre, recombinase

1. Introduction

1.1 Context

Telomeres are the physical ends of linear eukaryotic chromosomes. The chromo-
somal end structure of most telomeres is composed of G-rich DNA repeats bound by 
specific proteins (Table 1 and Figure 1). One of the major functions of this nucleo-
protein complex is to prevent chromosome fusions and the recognition of the ends 
as a double-strand break (DSB) [1, 2]. Due to the semi-conservative replication and 
nuclease activities occurring at the chromosome ends, the telomeres shorten at each 
cell division, a process called the “end replication problem” [3, 4]. To counteract this 
gradual shortening, telomerase can elongate short telomeres at each division  
[5, 6]. Telomerase is expressed constitutively in unicellular eukaryotic organisms 
such as yeasts, but not in most of the somatic cells of humans [7]. The gradual ero-
sion of telomere repeats leads to loss of telomere binding proteins and chromosome 
end deprotection, which activates the DNA damage response (DDR). The DDR can 
cause replicative senescence or apoptosis, acting as an anti-proliferative barrier [8, 
9]. The dysfunction of this barrier can generate genomic instability, chromosomal 
aberrations and initiate tumorigenesis or oncogenic transformation of the cells [10].
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Telomere length is defined as the number of short G-rich repeats at chromosome 
ends. Organisms have a required minimum number of repeats, or telomere repeat 
tracts, to recruit enough telomere binding proteins to accomplish telomere function 
[11–15]. Some proteins within the telomere protein complex recruit telomerase to 
allow elongation of the telomeres (positively regulating telomerase), while oth-
ers prevent telomerase from continuously adding repeats (negatively regulating 
telomerase) (Tables 1 and 2).

Telomere length is linked to aging, as it was shown that late generation mice 
with limited telomerase (heterozygotes for telomerase RNA mTR+/−) have short 
telomeres and revealed a decrease of tissue renewal capacity [16]. In contrast, mice 
overexpressing telomerase have an extended lifespan [17]. In humans, a correlation 

Figure 1. 
Telomere complexes conservation from yeasts to humans (A) S. cerevisiae telomere complex. (B) S. pombe 
telomere complex. (C) Humans telomere complex (also named “shelterin”).
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between telomere length, aging, and age-related diseases has also been shown 
(reviewed in [18, 19]). For instance, in dyskeratosis congenita or its most severe 
form: Hoyeraal-Hreidarsson syndrome, patients have abnormally short telomeres 
and shorter lifespan [20]. Most of the known mutations associated are found in 
telomere proteins (TIN2), telomerase (hTR and hTERT) or the telomerase-associ-
ated factor as dyskerin (DKC1), which stabilizes the telomerase RNA (hTR) (Table 2)  
[18]. Moreover, shortened telomere length was observed in other premature aging 
disorders such as Down’s syndrome leading to accelerated aging, or Cockayne 
syndrome in which neurological degeneration is observed (aging-disorders linked 
to a telomere phenotype reviewed in [21]). In Down’s syndrome, the genetic defect 
observed is mostly a trisomy of chromosome 21, which increased the biological age 
of tissues, whereas in Cockayne syndrome, mutations are described in the majority 
in Cockayne syndrome group B protein (CSB) involved in telomere length mainte-
nance with TRF1 and TRF2 [21]. Prematurely shortened telomeres can also lead to 
loss of telomere capping function, which in turn can cause telomeres to behave as 
DNA breaks and undergo recombination to promote genomic instability leading to 
cell death or tumorigenesis [22]. Telomerase defects have also been associated with 

Figure 2. 
Double-strand break (DSB) and telomere formation systems (A) restriction enzyme or endonuclease with no 
natural sites in the genome is produced in cells from a rapidly inducible promoter. (B) Inducible DSB system: a 
unique cut site (red triangle) is engineered next to a selectable marker gene. After induction, the endonuclease 
produces a DSB which leads to the degradation of both 5′ and 3′ strands on each side of the cut site (indicated by 
short black lines) and to the marker degradation, conducting to cell growth inhibition. (C) Inducible telomere 
formation system: the cut here exposes telomere repeats (black triangles) to form a new functional telomere that 
is stable and elongated. If the distal chromosomal DNA (3′ to the cut site) is dispensable, the new functional 
telomere allows normal cell growth. Modified and adapted from Wang et al. [107].
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cancer, and telomerase promoter mutations are prevalent in multiple cancer types 
[23], where the presence of telomerase activity allows extended growth of cancer 
cells [24].

S. cerevisiae S. pombe H. sapiens Regulates 
telomerase

Major functions at 
telomeres

Refs

Rap1 Rap1 RAP1 − Inhibits NHEJ, plays 
a role in telomere 

heterochromatin. Only 
in Sc: binds telomeric 

dsDNA

[60, 61, 74–76]

Rif1 Rif1 RIF1 Sc & Sp: − Only in Sc: checkpoint 
inhibition at telomeres 

(with Rif2).
Hs: not associated with 

wild-type telomeres 
(only at dysfunctional 

ends to promote NHEJ)

[60, 61, 77, 78]

-np- Taz1 TRF1
TRF2

− Sp & Hs: binds 
telomeric dsDNA, 

inhibits NHEJ, 
role in telomere 

heterochromatin

[58, 61, 79, 80]

YKu70/Yku80 Pku70/Pku80 KU70/KU86 Only in 
Sc: +

Protects ends from 
being degraded. 

Affects subtelomeric 
heterochromatin

[81–84]

-np- Poz1 TIN2 − Sp & Hs: required 
for the “bridged 
organization”

[70, 71]

-np- Tpz1 TPP1 + Hs: telomerase 
recruitment & 

processivity.
Sp & Hs: telomerase 

activation

[68, 69, 85]

-np- Ccq1 -np- + Sp: telomerase 
recruitment

[64–67]

-np- Pot1 POT1 No role Binds telomeric ssDNA, 
end protection

[62, 63]

Cdc13 (Est4) -np- -np- + Binds telomeric ssDNA, 
end protection and 

telomerase recruitment

[38, 86–88]

Stn1/Ten1 Stn1/Ten1 STN1/TEN1 − End protection. 
Terminator of 

telomerase activity/
lagging-strand 

replication of telomere 
DNA. Form CST 

complex with Cdc13 in 
Sc and CTC1 in Hs

[69, 89, 90]

dsDNA: double-stranded DNA. -np-: not present. ssDNA: single-stranded DNA.
“+” means positively regulates telomerase. “−” means negatively regulates telomerase.

Table 1. 
Major telomere proteins and functions of S. cerevisiae, S. pombe, and H. sapiens—Sc: S. cerevisiae, Sp: S. 
pombe, Hs: H. sapiens, NHEJ: non-homologous-end-joining.
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Telomeres are also able to convert adjacent chromatin into heterochromatin, 
a compact and transcriptionally silent form of chromatin with important roles 
in chromosome biology, for example, in development and mammalian female 
X-chromosome inactivation and development of cancers [25–27]. This function, 
the inhibition of the DDR, and how the cells distinguish a DSB from a telomere or 
heterochromatin regulation at the chromosome ends are still not fully understood. 
Elucidation of these mechanisms will provide an understanding of some of the 
molecular mechanisms associated with aging and the initiation of tumorigenesis.

1.2 Telomere complexes from yeasts to humans

The yeast model systems have the advantage of a small eukaryotic genome that 
can be easily altered due to high levels of homologous recombination [28–31]. The 
terminal telomere repeat tracts of Saccharomyces cerevisiae and Schizosaccharomyces 
pombe follow the scale of these smaller genomes with lengths of ~0.3 kb [12, 32]. 
In contrast, telomeres size in humans is between 10 and 30 kb, but with measure-
ment limitations due to a highly variable length either at the time of birth [33, 34], 
in different tissues [35] or among others between women and men [36]. Therefore, 
yeasts are significant model organisms for dissecting the molecular genetics of basic 
telomere biology (reviewed in [37, 38]).

Telomeres have also been studied in several budding yeasts somewhat related 
to S. cerevisiae [39, 40]. A striking difference between S. cerevisiae and these 
organisms is that while S. cerevisiae has a short heterogeneous telomere repeat 
sequence (abbreviated as TG1–3), several other species of Saccharomyces, Candida, 
and Kluyveromyces lactis have longer, homogeneous repeats [39, 40]. These lon-
ger repeats allowed the cloning of the gene for telomerase RNA in K. lactis and 
Saccharomyces castellii (now referred to as Naumovozyma castellii) and the study of 
highly related telomere binding proteins that co-evolved with the different telomere 
sequences [39, 41–45]. Work in N. castellii showed that the Rap1 protein of this yeast 
can bind to both the double-stranded telomere repeats and the junction between 
the double and single strands DNA, suggesting a level of coordination between 
Rap1 and the single-strand telomere repeat binding protein Cdc13 [46, 47]. N. 
castellii may also provide insight into the regulation of telomerase synthesis of the 
3′ overhang as this yeast synthesizes a specific 70 nucleotides 3′ overhang in late 
S-phase [48].

Mutation of the telomerase RNA in K. lactis allowed the synthesis of mutant 
telomere repeats which revealed surprising aspects of telomerase-dependent and 
telomerase-independent telomere elongation. Some mutant telomere repeats gave 
rise to hyper-extended telomeres in a phenomenon called “runaway telomere 
elongation,” which was thought to be related to the loss of telomere binding proteins 
that negatively regulate telomerase [42, 49]. Similar hyper-elongation phenotypes 
are known in the more “popular” yeasts, S. cerevisiae and S. pombe, caused by loss of 

S. cerevisiae S. pombe H. sapiens

Est1 Est1 EST1 Regulatory subunit of the telomerase [91–93]

Est2 Trt1 hTERT Catalytic subunit of the telomerase [93]

Est3 -np- -np- Regulatory subunit only in Sc [94]

Tlc1 TER1 hTR (hTERC) Telomerase RNA [7, 95–97]

Table 2. 
Major telomerase components of S. cerevisiae, S. pombe, and H. sapiens.
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S. cerevisiae S. pombe H. sapiens

Est1 Est1 EST1 Regulatory subunit of the telomerase [91–93]

Est2 Trt1 hTERT Catalytic subunit of the telomerase [93]

Est3 -np- -np- Regulatory subunit only in Sc [94]

Tlc1 TER1 hTR (hTERC) Telomerase RNA [7, 95–97]

Table 2. 
Major telomerase components of S. cerevisiae, S. pombe, and H. sapiens.
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Rif1 and Rif2 from budding yeast or Taz1 or Rap1 from S. pombe (Table 1). K. lactis 
mutant telomere repeats have also been used to follow a telomerase-independent 
mode of recombinational telomere elongation (RTE). In this model, shortened 
telomeres become highly recombinogenic, and the formation of double-stranded 
circular DNAs made of telomere repeats (t-circles) allows a “rolling circle” replica-
tion mechanism to produce telomere repeats that can be incorporated into short 
chromosomal telomeres [45, 50] This model is supported by further work indicat-
ing that a single t-circle may be a sufficient source for the elongation of all chromo-
somal telomeres [51, 52]. Results from these studies indicate that K. lactis telomeres 
may become very short prior to RTE and provide a model for human cancers that 
replicate telomeres by a recombinational mechanism termed ALT for alternative 
lengthening of telomeres [53]. Therefore, these budding yeasts have provided 
insights into the mechanisms of telomerase-dependent and -independent telomere 
elongation. However, both of them lack a rapidly inducible telomere formation 
system, which has the potential to follow some of the unique processes observed in 
these yeasts in real time.

The fission yeast S. pombe is significantly different from S. cerevisiae, K. lactis, 
and N. castellii, having diverged from the budding yeasts early in fungal evolution 
[54]. A consequence of this divergence is that S. pombe has conserved many features 
of telomere protein and chromatin structure that were lost from the budding yeasts. 
S. pombe has the same genome size as S. cerevisiae but only three chromosomes com-
pared to 16 for the same size genome, and early studies confirmed that S. pombe was 
amenable to the same molecular genetic manipulations as S. cerevisiae [28] includ-
ing telomere formation [32, 55], but had differences in telomere repeat sequence 
and the structure of the repeated subtelomeric elements adjacent to chromosome 
ends [32]. The human telomere complex, also called “shelterin,” is more similar to 
the telomere complex of S. pombe than to S. cerevisiae (Tables 1 and 2; Figure 1) 
(reviewed in [56, 57]). Rap1 does not bind directly to the double-strand telomeric 
DNA in humans or S. pombe, but is recruited to the telomeres by its interaction 
with double-stranded DNA binding proteins, that is, Taz1 in S. pombe and TRF1 
and TRF2 in humans. In S. pombe, Taz1 and Rap1 inhibit NHEJ, playing a role in 
the silencing of subtelomere regions and negatively regulating telomerase [58–61]. 
At the single strand, Pot1 protects the 3′ overhang, as in humans, and is bound by 
Tpz1 [62, 63]. Tpz1, the ortholog of human TPP1, plays central roles in telomerase 
recruitment (via its interaction with Ccq1 [64–67]), telomerase activation (via its 
interaction with the catalytic subunit of the telomerase [68]) and the termination of 
telomere elongation (via its SUMOylation [69]). Poz1, the ortholog of human TIN2, 
links the double-strand DNA binding complex of Taz1-Rap1 and Rif1 to the single-
strand DNA binding complex of Pot1-Tpz1-Ccq1 (Figure 1). The entire complex 
negatively regulates telomerase as loss of Poz1 or Rap1 results in elongation of the 
terminal telomere repeat sequence tracts [70, 71]. In addition to telomere proteins, 
S. pombe has also conserved heterochromatin-mediated transcriptional silencing 
via di- and tri-methylation of lysine 9 of histone H3 (H3K9me2 and H3K9me3), 
which is absent in S. cerevisiae [72, 73].

2. Telomere formation systems in yeasts

Inducible systems that form telomeres from short tracts of telomere repeats were 
first developed in the late 1990s in S. cerevisiae [98]. The system modified induc-
ible DSB systems, which consists of the rapid expression of a restriction enzyme 
or endonuclease allowing a cut at a specific engineered locus (Figure 2A and B). 
These systems have variants in many organisms (reviewed in [99]) with relevance 
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for fundamental understanding of DSB repair mechanisms [100] and therapeutic 
response to DSBs, as in radiotherapies [101]. In yeast, two site-specific endo-
nucleases, HO and I-SceI were used, with a similar kinetics of cleavage [102, 103]. 
However, I-SceI was preferred in early mammalian work [104].

The telomere formation system integrates telomeric DNA repeats next to an 
engineered cut site, and the newly exposed telomere tract is converted into a 
functional, stable telomere without causing growth inhibition (Figure 2C) [98, 
105–107]. In contrast, an induced DSB in the middle of a chromosome leads to 
DNA degradation and growth inhibition [108]. A variant of this system involving 
an inducible recombinase and specific recognition sites was also made to target one 
specific telomere in budding yeast and artificially shorten it [89, 109–111].

The S. cerevisiae telomere formation system proved to be a highly useful tool, 
but was limited by the biology of this yeast species. By translating this system to 
S. pombe, some of these issues, such as the presence of H3K9me2 and 3 modifica-
tions and a high level of conservation of the telomeric complexes with humans 
were addressed (Figure 1B and C) [56, 70, 72, 73]. The recent development of the 
S. pombe telomere formation system thus opens new avenues to study telomeric 
chromatin regulation and telomere formation.

Telomere formation systems allow a real-time study of telomere formation, 
elongation or heterochromatin spreading from the newly induced end. It also gives 
us the opportunities to examine the effects of different mutations in telomere 
proteins or to test the protein requirements for how telomeres are distinguished 
from DSBs. This non-exhaustive list highlights the significant advantages of these 
systems compared to steady-state experiments, as studies introducing mutations 
into cells with existing telomeres can only monitor telomeres after they have 
reached their equilibrium state. Formation systems can also study the initiation 
of mechanisms associated with telomeres, such as heterochromatinization of the 
nearby sequences or DNA damage checkpoint inhibition. Technically, these systems 
allow multiple experiments such as ChIP for protein recruitment at the break, 
Southern blotting to follow the de novo telomere elongation or DNA degradation, 
cell morphology observation (as large budded cells in S. cerevisiae or elongated cells 
in S. pombe—characteristic of a G2/M arrest), or western blotting for Chk1 phos-
phorylation (checkpoint activation).

2.1 Inducible telomere systems in S. cerevisiae

The first inducible telomere formation system in S. cerevisiae used the HO endo-
nuclease placed under the control of a galactose-inducible promoter (in a MATa-inc 
allele strain which contains a point mutation to avoid an unwanted HO cut at the 
MAT locus [112]) and to the HO recognition sequence placed next to an 80 bp tract 
of telomere repeats (Figure 3A) [98].

The telomere cassette containing the ADE2 marker, the HO recognition site, and 
the LYS2 marker, was inserted at the ADH4 locus at the left arm of the chromosome 
VII (VII-L) at 20 kb from the telomere end (this 20 kb contains no essential genes) 
(Figure 3A). The LYS2 gene here serves as a marker for loss of the non-essential distal 
DNA and indirectly measure the HO cut efficiency by comparing Lys+ and Lys− cells.

The Diede and Gottsheing studies [98, 113] highlighted the efficacy of the 
system: a rapid and efficient cutting exposed a new stable telomere end that was 
elongated by telomerase. They also described a cell cycle-regulated elongation and 
the requirement of the DNA primase and DNA polymerases α and δ for the de novo 
telomere elongation [98]. Additionally, they also revealed the involvement of the 
MRX (Mre11-Rad50-Xrs2) complex and its exonuclease activity at the new telomere 
end for its elongation and Cdc13 loading [113]. It is worth noting that short formed 
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(reviewed in [56, 57]). Rap1 does not bind directly to the double-strand telomeric 
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with double-stranded DNA binding proteins, that is, Taz1 in S. pombe and TRF1 
and TRF2 in humans. In S. pombe, Taz1 and Rap1 inhibit NHEJ, playing a role in 
the silencing of subtelomere regions and negatively regulating telomerase [58–61]. 
At the single strand, Pot1 protects the 3′ overhang, as in humans, and is bound by 
Tpz1 [62, 63]. Tpz1, the ortholog of human TPP1, plays central roles in telomerase 
recruitment (via its interaction with Ccq1 [64–67]), telomerase activation (via its 
interaction with the catalytic subunit of the telomerase [68]) and the termination of 
telomere elongation (via its SUMOylation [69]). Poz1, the ortholog of human TIN2, 
links the double-strand DNA binding complex of Taz1-Rap1 and Rif1 to the single-
strand DNA binding complex of Pot1-Tpz1-Ccq1 (Figure 1). The entire complex 
negatively regulates telomerase as loss of Poz1 or Rap1 results in elongation of the 
terminal telomere repeat sequence tracts [70, 71]. In addition to telomere proteins, 
S. pombe has also conserved heterochromatin-mediated transcriptional silencing 
via di- and tri-methylation of lysine 9 of histone H3 (H3K9me2 and H3K9me3), 
which is absent in S. cerevisiae [72, 73].
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Inducible systems that form telomeres from short tracts of telomere repeats were 
first developed in the late 1990s in S. cerevisiae [98]. The system modified induc-
ible DSB systems, which consists of the rapid expression of a restriction enzyme 
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for fundamental understanding of DSB repair mechanisms [100] and therapeutic 
response to DSBs, as in radiotherapies [101]. In yeast, two site-specific endo-
nucleases, HO and I-SceI were used, with a similar kinetics of cleavage [102, 103]. 
However, I-SceI was preferred in early mammalian work [104].

The telomere formation system integrates telomeric DNA repeats next to an 
engineered cut site, and the newly exposed telomere tract is converted into a 
functional, stable telomere without causing growth inhibition (Figure 2C) [98, 
105–107]. In contrast, an induced DSB in the middle of a chromosome leads to 
DNA degradation and growth inhibition [108]. A variant of this system involving 
an inducible recombinase and specific recognition sites was also made to target one 
specific telomere in budding yeast and artificially shorten it [89, 109–111].

The S. cerevisiae telomere formation system proved to be a highly useful tool, 
but was limited by the biology of this yeast species. By translating this system to 
S. pombe, some of these issues, such as the presence of H3K9me2 and 3 modifica-
tions and a high level of conservation of the telomeric complexes with humans 
were addressed (Figure 1B and C) [56, 70, 72, 73]. The recent development of the 
S. pombe telomere formation system thus opens new avenues to study telomeric 
chromatin regulation and telomere formation.

Telomere formation systems allow a real-time study of telomere formation, 
elongation or heterochromatin spreading from the newly induced end. It also gives 
us the opportunities to examine the effects of different mutations in telomere 
proteins or to test the protein requirements for how telomeres are distinguished 
from DSBs. This non-exhaustive list highlights the significant advantages of these 
systems compared to steady-state experiments, as studies introducing mutations 
into cells with existing telomeres can only monitor telomeres after they have 
reached their equilibrium state. Formation systems can also study the initiation 
of mechanisms associated with telomeres, such as heterochromatinization of the 
nearby sequences or DNA damage checkpoint inhibition. Technically, these systems 
allow multiple experiments such as ChIP for protein recruitment at the break, 
Southern blotting to follow the de novo telomere elongation or DNA degradation, 
cell morphology observation (as large budded cells in S. cerevisiae or elongated cells 
in S. pombe—characteristic of a G2/M arrest), or western blotting for Chk1 phos-
phorylation (checkpoint activation).
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The first inducible telomere formation system in S. cerevisiae used the HO endo-
nuclease placed under the control of a galactose-inducible promoter (in a MATa-inc 
allele strain which contains a point mutation to avoid an unwanted HO cut at the 
MAT locus [112]) and to the HO recognition sequence placed next to an 80 bp tract 
of telomere repeats (Figure 3A) [98].

The telomere cassette containing the ADE2 marker, the HO recognition site, and 
the LYS2 marker, was inserted at the ADH4 locus at the left arm of the chromosome 
VII (VII-L) at 20 kb from the telomere end (this 20 kb contains no essential genes) 
(Figure 3A). The LYS2 gene here serves as a marker for loss of the non-essential distal 
DNA and indirectly measure the HO cut efficiency by comparing Lys+ and Lys− cells.

The Diede and Gottsheing studies [98, 113] highlighted the efficacy of the 
system: a rapid and efficient cutting exposed a new stable telomere end that was 
elongated by telomerase. They also described a cell cycle-regulated elongation and 
the requirement of the DNA primase and DNA polymerases α and δ for the de novo 
telomere elongation [98]. Additionally, they also revealed the involvement of the 
MRX (Mre11-Rad50-Xrs2) complex and its exonuclease activity at the new telomere 
end for its elongation and Cdc13 loading [113]. It is worth noting that short formed 
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telomeres in different mutant strains that have a functional chromosome ends do 
not require MRX for elongation [114], highlighting how a broken end forming a 
telomere may differ from an existing end that requires elongation. Finally, they 
showed that the interaction of Ku (YKu70/YKu80) and telomerase RNA (TLC1) 
promotes telomere addition at the newly formed chromosome end [115].

Michelson et al. showed that even if the telomere formation system has the 
characteristics of a DSB, the cells respond differently when the DSB is next to a 
telomeric tract [116]. The de novo telomere end and degrading DNA fragment 
(Figure 1C) does not induce a normal checkpoint arrest, giving rise to a “telomere 
anti-checkpoint” activity.

Figure 3. 
Inducible telomere formation system in S. cerevisiae (A) schematic representation of the induction of the HO 
endonuclease (under the control of GAL1 promoter) in presence of galactose and modified chromosome VII-L 
containing the telomere cassette. The telomere cassette containing the ADE2 marker, the HO recognition site, 
and the LYS2 marker was inserted at the ADH4 locus at 20 kb from the telomere end (this 20 kb contains 
no essential genes) [98]. This insertion placed the HO recognition site at 13 kb from the distal telomere end. 
CEN: centromere. TEL: telomere (terminal black triangles). TG1–3: telomere repeats sequence. (B) Variants 
of telomeres cassettes. The telomere cassette at the chromosome V-R containing the TRP1 marker was inserted 
at the YER188W locus (there are no essential genes from this locus to the chromosome end) [77]. Numbers 
represent the telomere tract length in base pairs (bp). CA1–3: telomere repeats on the other side of the break in 
the opposite orientation represented in dark red. Modified and adapted from Ribeyre and Shore [77].
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The Shore lab followed up these results by creating new variants of the systems 
(Figure 3B) with some variations of the telomere tract length, or the addition 
of inverted telomere tract directly after the HO cut site (distal DNA fragment) 
[77]. Similarly, a telomere cassette was added at a different locus in the right arm 
of the chromosome V (V-R) with TRP1 as the only proximal marker (Figure 3B) 
[77]. These variants were used to show that the telomere anti-checkpoint activity 
required the telomere proteins: Rif1 and Rif2. These results imply that a telomeric 
tract on one side of a break influences the recruitment of DNA damage checkpoint 
proteins on the other side [77].

An alternative inducible telomere elongation system has been constructed where 
an existing telomere with a functional chromosome end loses internal telomere 
repeats, so the resulting telomere tract is much shorter than normal [89, 109–111]. 
The first one used the site-specific recombinase Flp1 under a galactose-inducible 
promoter and two FRT (Flp1-Recognition Target) sites inserted at the ADH4 locus 
on chromosome VII-L (Figure 4A) [109, 110, 117]. The system is based on the Flp1 
recombinase excising a tract between two FRT sites and leaving only the distal 
telomere DNA sequence next to the terminal FRT site. Because the FLP1 gene is 
encoded on the S. cerevisiae endogenous plasmid called the “2-micron circle,” only cir° 
strains that lack this plasmid can be used with the FRT system. The system was later 
improved by using the loxP sites instead of FRT, and the Cre-recombinase, allowing 
its use in any strains, at the chromosome VII-L [111] or chromosome V-R, with an 
unchanged or short telomere induction (Figure 4B and C) [89, 118]. The constructs 
contain 16 inverted Rap1-binding sites, a loxP site, and a terminal telomere tract. 
Arrays of Rap1 binding sites at this position are considered by the cell to be a part of 
the terminal telomere tract, so the internal repeat tract distal to the loxP site is shorter 
than a normal telomere [119–121]. In these systems, after recombination, the remain-
ing terminal tract is about 90 bp or 1/3 of the normal telomere length (Figure 4B)  
[89, 109–111, 117, 118]. These constructs were used to show a cell cycle restriction 
of telomere elongation in late S phase and a progressive telomerase inhibition upon 
telomere elongation [109, 110]. Additionally, an early replication of a short telomere 
was linked to an increase association of telomerase [111, 117] and highlighted two 
distinct roles of Stn1 in telomere capping and telomerase inhibition [89].

2.2 Inducible telomere systems in S. pombe

More recently, the telomere formation system was extended to S. pombe. The 
telomeric complex of the fission yeast has a high level of conservation with humans, 
both structurally with a “bridged organization” of telomere proteins [70] and in 
how telomerase is regulated (Figure 1B and C) (reviewed in [56]). This yeast also 
exhibits the H3K9me2 and -3 modifications present in multicellular eukaryotes that 
is absent in S. cerevisiae opening new perspectives of translational studies in telo-
meric chromatin regulations [72, 73].

The building of an efficient system took more time in S. pombe, as a rapidly 
inducible promoter was not available in this system. A system with the HO endo-
nuclease using the nmt1 promoter had been used but required 24 hours for full 
induction that would complicate kinetic analysis [122]. Two systems that could 
rapidly induce a site-specific nuclease that did not cut in the S. pombe genome were 
published in 2011 and 2012, but were inappropriate for a telomere formation system 
because they either prevented the use of the ura4+ marker, which is important for 
monitoring telomere-associated heterochromatin [123–125], or special strains 
[126]. We, therefore, developed a telomere system that was using the anhydrotetra-
cycline (ahTET)-inducible promoter and an I-SceI enzyme with preferred S. pombe 
codons [127] coupled to two NLS (Nuclear Localization Signals) to ensure a rapid 
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of inverted telomere tract directly after the HO cut site (distal DNA fragment) 
[77]. Similarly, a telomere cassette was added at a different locus in the right arm 
of the chromosome V (V-R) with TRP1 as the only proximal marker (Figure 3B) 
[77]. These variants were used to show that the telomere anti-checkpoint activity 
required the telomere proteins: Rif1 and Rif2. These results imply that a telomeric 
tract on one side of a break influences the recruitment of DNA damage checkpoint 
proteins on the other side [77].

An alternative inducible telomere elongation system has been constructed where 
an existing telomere with a functional chromosome end loses internal telomere 
repeats, so the resulting telomere tract is much shorter than normal [89, 109–111]. 
The first one used the site-specific recombinase Flp1 under a galactose-inducible 
promoter and two FRT (Flp1-Recognition Target) sites inserted at the ADH4 locus 
on chromosome VII-L (Figure 4A) [109, 110, 117]. The system is based on the Flp1 
recombinase excising a tract between two FRT sites and leaving only the distal 
telomere DNA sequence next to the terminal FRT site. Because the FLP1 gene is 
encoded on the S. cerevisiae endogenous plasmid called the “2-micron circle,” only cir° 
strains that lack this plasmid can be used with the FRT system. The system was later 
improved by using the loxP sites instead of FRT, and the Cre-recombinase, allowing 
its use in any strains, at the chromosome VII-L [111] or chromosome V-R, with an 
unchanged or short telomere induction (Figure 4B and C) [89, 118]. The constructs 
contain 16 inverted Rap1-binding sites, a loxP site, and a terminal telomere tract. 
Arrays of Rap1 binding sites at this position are considered by the cell to be a part of 
the terminal telomere tract, so the internal repeat tract distal to the loxP site is shorter 
than a normal telomere [119–121]. In these systems, after recombination, the remain-
ing terminal tract is about 90 bp or 1/3 of the normal telomere length (Figure 4B)  
[89, 109–111, 117, 118]. These constructs were used to show a cell cycle restriction 
of telomere elongation in late S phase and a progressive telomerase inhibition upon 
telomere elongation [109, 110]. Additionally, an early replication of a short telomere 
was linked to an increase association of telomerase [111, 117] and highlighted two 
distinct roles of Stn1 in telomere capping and telomerase inhibition [89].

2.2 Inducible telomere systems in S. pombe

More recently, the telomere formation system was extended to S. pombe. The 
telomeric complex of the fission yeast has a high level of conservation with humans, 
both structurally with a “bridged organization” of telomere proteins [70] and in 
how telomerase is regulated (Figure 1B and C) (reviewed in [56]). This yeast also 
exhibits the H3K9me2 and -3 modifications present in multicellular eukaryotes that 
is absent in S. cerevisiae opening new perspectives of translational studies in telo-
meric chromatin regulations [72, 73].

The building of an efficient system took more time in S. pombe, as a rapidly 
inducible promoter was not available in this system. A system with the HO endo-
nuclease using the nmt1 promoter had been used but required 24 hours for full 
induction that would complicate kinetic analysis [122]. Two systems that could 
rapidly induce a site-specific nuclease that did not cut in the S. pombe genome were 
published in 2011 and 2012, but were inappropriate for a telomere formation system 
because they either prevented the use of the ura4+ marker, which is important for 
monitoring telomere-associated heterochromatin [123–125], or special strains 
[126]. We, therefore, developed a telomere system that was using the anhydrotetra-
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and efficient cut [107] (Figure 5A). I-SceI has no endogenous site in the fission 
yeast genome [128], so the only DSB induced is at the engineered I-SceI site in the 
telomere formation system (called the proto-telomere cassette in S. pombe).

Figure 4. 
S. cerevisiae systems to generate a single shortened telomere (A) schematic representation of the inducible 
recombinase-based system to generate a single shortened telomere at the chromosome VII-L (ADH4 locus). FRT: 
Flp1-recognition target site. The galactose-mediated induction allows the expression of Flp1 which induced 
homologous recombination through the FRT sites to generate an excised circle (containing the indicated elements) 
and a short telomere. Numbers represent the telomere tract length in base pairs (bp). Note that the terminal 
tract length is variable at individual telomeres due to lengthening and shortening at each cell division, and the 
numbers presented represent the average of the population [109, 110, 117]. (B) Variant system using loxP site 
and galactose inducible Cre-recombinase expression at the same locus (ADH4, chromosome VII-L) [111] or at 
the chromosome V-R end (YER188W locus) [89, 118]. (C) The control chromosome V-R construct that does not 
excise telomere repeats [89]. Modified and adapted from Marcand et al. and Puglisi et al. [89, 109].
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Two constructs were then created containing either 48 or 0 bp of telomere 
repeat sequence, an I-SceI cut site, and two flanking selectable markers: the ura4+ 
gene and the hygromycin resistance gene (hph+)(Figure 5B) [107]. The cassettes 
were placed at the right arm of the chromosome II (II-R), 3′ to the gal1+ locus and, as 
in the S. cerevisiae systems, the region between this locus and the chromosome end 
was dispensable (without essential genes).

The S. pombe telomere formation system revealed several novel aspects of telo-
mere function [107]. First, the DSB next to the telomere repeat tract immediately 
acquires telomere function: the end is immediately stable and not degraded (even in 
a strain lacking telomerase activity), does not undergo recombination, and the DNA 
damage response is somehow blocked. Second, the heterochromatin domain associ-
ated with telomeres formed in two distinct phases. The first consists of heterochro-
matin spreading from the telomere toward the interior of the chromosome over 
~3 kb in the first cell division (about 5 hours). The newly formed telomere is elon-
gated to wild type lengths during this time by telomerase. Heterochromatin spread-
ing over ~10 kb continues for the next eight generations (population doublings) 
after the terminal telomere repeat tracts are at their equilibrium lengths. It is worth 
noting that the clr4 deletion, which blocks heterochromatin formation, had no 
effect on telomere elongation [107], indicating that heterochromatin is independent 
of telomerase-mediated elongation as it is for chromosome end stability as observed 
in S. cerevisiae [129, 130]. In a second phase studied 34–87 population doublings 
after telomere formation, the established heterochromatin domain was surpris-
ingly dynamic, with significant expansions and contraction of the heterochromatin 
mark H3K9me2 over the 35 kb domain that was monitored. Thus, different lineages 
from the same telomere formation event had different heterochromatin domains 
at different times after formation. These lineages were monitored at the single cell 
level by integrating the ade6+ colony color marker at different distances from the 

Figure 5. 
The S. pombe inducible telomere formation system (A) the I-SceI endonuclease was expressed from a TetR 
controlled promoter (CaMV35S). In the absence of ahTET (left part), TetR represses the expression of I-SceI, 
and the addition of ahTET (9uM) into the medium induces expression (right part). (B) The 48 and 0 bp 
proto-telomeres cassettes are presented here and consist of a ura4+ gene followed by either a 48 bp of telomere 
tract (black triangles) or no telomere sequences for the 0 bp version, the I-SceI cut site (red triangle) and the 
hygromycin resistance gene (hph+) at the distal part of the construct. The cassettes were introduced at the 
chromosome II-R, 3′ to the gal1+ locus. CEN: centromere. TEL: telomere (terminal black triangles). The number 
represents the telomere tract length in base pairs (bp). Modified and adapted from Wang et al. [107].
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and efficient cut [107] (Figure 5A). I-SceI has no endogenous site in the fission 
yeast genome [128], so the only DSB induced is at the engineered I-SceI site in the 
telomere formation system (called the proto-telomere cassette in S. pombe).
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tract length is variable at individual telomeres due to lengthening and shortening at each cell division, and the 
numbers presented represent the average of the population [109, 110, 117]. (B) Variant system using loxP site 
and galactose inducible Cre-recombinase expression at the same locus (ADH4, chromosome VII-L) [111] or at 
the chromosome V-R end (YER188W locus) [89, 118]. (C) The control chromosome V-R construct that does not 
excise telomere repeats [89]. Modified and adapted from Marcand et al. and Puglisi et al. [89, 109].

69

Telomere Formation Systems in Budding and Fission Yeasts
DOI: http://dx.doi.org/10.5772/intechopen.86176

Two constructs were then created containing either 48 or 0 bp of telomere 
repeat sequence, an I-SceI cut site, and two flanking selectable markers: the ura4+ 
gene and the hygromycin resistance gene (hph+)(Figure 5B) [107]. The cassettes 
were placed at the right arm of the chromosome II (II-R), 3′ to the gal1+ locus and, as 
in the S. cerevisiae systems, the region between this locus and the chromosome end 
was dispensable (without essential genes).

The S. pombe telomere formation system revealed several novel aspects of telo-
mere function [107]. First, the DSB next to the telomere repeat tract immediately 
acquires telomere function: the end is immediately stable and not degraded (even in 
a strain lacking telomerase activity), does not undergo recombination, and the DNA 
damage response is somehow blocked. Second, the heterochromatin domain associ-
ated with telomeres formed in two distinct phases. The first consists of heterochro-
matin spreading from the telomere toward the interior of the chromosome over 
~3 kb in the first cell division (about 5 hours). The newly formed telomere is elon-
gated to wild type lengths during this time by telomerase. Heterochromatin spread-
ing over ~10 kb continues for the next eight generations (population doublings) 
after the terminal telomere repeat tracts are at their equilibrium lengths. It is worth 
noting that the clr4 deletion, which blocks heterochromatin formation, had no 
effect on telomere elongation [107], indicating that heterochromatin is independent 
of telomerase-mediated elongation as it is for chromosome end stability as observed 
in S. cerevisiae [129, 130]. In a second phase studied 34–87 population doublings 
after telomere formation, the established heterochromatin domain was surpris-
ingly dynamic, with significant expansions and contraction of the heterochromatin 
mark H3K9me2 over the 35 kb domain that was monitored. Thus, different lineages 
from the same telomere formation event had different heterochromatin domains 
at different times after formation. These lineages were monitored at the single cell 
level by integrating the ade6+ colony color marker at different distances from the 

Figure 5. 
The S. pombe inducible telomere formation system (A) the I-SceI endonuclease was expressed from a TetR 
controlled promoter (CaMV35S). In the absence of ahTET (left part), TetR represses the expression of I-SceI, 
and the addition of ahTET (9uM) into the medium induces expression (right part). (B) The 48 and 0 bp 
proto-telomeres cassettes are presented here and consist of a ura4+ gene followed by either a 48 bp of telomere 
tract (black triangles) or no telomere sequences for the 0 bp version, the I-SceI cut site (red triangle) and the 
hygromycin resistance gene (hph+) at the distal part of the construct. The cassettes were introduced at the 
chromosome II-R, 3′ to the gal1+ locus. CEN: centromere. TEL: telomere (terminal black triangles). The number 
represents the telomere tract length in base pairs (bp). Modified and adapted from Wang et al. [107].



Telomerase and non-Telomerase Mechanisms of Telomere Maintenance

70

proto-telomere and plating single cells on inducing medium to follow the spreading 
of heterochromatin to silence the color marker at different stages of colony growth 
[107]. A marker close to the newly formed telomere initially showed expression 
before it was extinguished after several population doublings and remained extin-
guished as cells continued to grow. In contrast, markers placed further away from 
the telomere switched between the transcribed and repressed state in subsequent 
population doublings. These relative kinetics of telomere-associated functions 
would not have been observable using a telomere formed by cellular transforma-
tion, which requires ~30 generations of growth between telomere formation of a 
single cell to the generation of a sufficient number of cells to analyze the hetero-
chromatin domain.

It is worth noting that this work and many other S. pombe heterochromatin 
studies follow the histone modification H3K9me2, but the H3K9me3 mark is also 
associated with heterochromatin. Recent work by the Moazed lab showed that 
the H3K9me2 mark is associated with very low gene activity, and its conversion to 
H3K9me3 extinguished detectable transcription [131]. This model can explain the 
level of H3K9me2 near the newly formed telomere, which peaked about 3–13 kb 
from the new telomere in different experiments [107]. Presumably, H3K9me3 
modification replaced H3K9me2 closer to the new telomere where expression of the 
ura4+ and ade6+ genes was undetectable [107]. Thus, the inducible telomere forma-
tion system may also prove useful in studying how the transition between these 
chromatin marks is regulated.

3. Conclusion

The inducible telomere formation system first developed in S. cerevisiae has 
provided several important results in the understanding of telomere elongation, in 
the cell cycle regulation of telomerase, in DNA checkpoint inhibition induced by a 
telomere end, and in the role of specific telomere proteins (Table 3) [77, 89, 98, 109, 
110, 113, 115–118]. The new S. pombe system has allowed one to follow the establish-
ment of telomere-end protection functions and the formation and dynamics of 
heterochromatin (Table 3) [107].

The ability to monitor the relative kinetics of different telomere-associated 
processes of replication, end protection, and chromatin domain formation has 
provided insights that could not be obtained using steady-state experiments with 
established telomeres. As telomere dysfunctions contribute to genomic instability 
or chromosome aberrations in human cancers, aging disorders, or specific patholo-
gies such as dyskeratosis congenita [10, 19–21, 23, 24], telomere formation studies 
have the potential to identify defects related to these diseases. Heterochromatin also 
plays an important role in chromosome biology [25–27], and inducible telomeres 
and heterochromatin domains may shed light on these metazoan processes.

A key component of these telomere formation systems is the rapidly inducible 
DSB to expose the new physical chromosome end with adjacent telomere repeats. 
Inducible DSB systems using I-SceI or CRISPR/Cas9 have been used in mammalian 
cells to reveal differences in DNA repair at internal sites compared to subtelomeric 
ones [132–137]. An issue with the CRISPR/Cas9 approach is that it is a two-compo-
nent system consisting of a guide RNA to target the endonuclease to a precise site, 
so how rapidly inducible this system is compared to the single component I-SceI 
nuclease needs to be carefully tested. Using I-SceI, an inducible telomere system 
in mouse cells to measure telomere repeat addition over 48 hours was developed 
[105]. While not used kinetically, the system allowed the assay of the effect of the 
DNA damage kinase ATM on the addition of new telomere repeats by telomerase. 
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The events discovered in the S. cerevisiae and S. pombe telomere formation systems 
will provide important models for testing in this and other mammalian telomere 
formation systems.
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Organism System description Used to show

S. cerevisiae • HO endonuclease

• Galactose inducible promoter

• Specific cut site at chromosome VII-L 
or V-R to create a new telomere end

• New telomere stable and elongation by telomerase 
[98].

• Telomere elongation is cell cycle regulated [98].

• DNA primase and DNA polymerases α and δ are 
required of the de novo telomere elongation [98].

• Involvement of the MRX complex and its 
exonuclease activity at the new telomere end for 
its elongation and the Cdc13 loading [113].

• Ku complex interacts with TLC1 (telomerase 
RNA) to promote telomere addition at the newly 
formed chromosome end [115].

• The de novo telomere end and degrading DNA 
fragment does not induce a checkpoint arrest 
[116].

S. cerevisiae • FLP1 recombinase

• Galactose inducible promoter

• FRT sites inserted at chromosome 
VII-L to artificially shorten a 
telomere end

• Progressive telomerase inhibition upon telomere 
elongation [109].

• Cell cycle restriction of telomere elongation in late 
S phase [110].

• Telomerase is preferentially associated with short 
telomeres [117].

S. cerevisiae • Cre recombinase

• Galactose inducible promoter

• LoxP sites inserted at chromosome 
VII-L or V-R to artificially shorten a 
telomere end

• Early replication of a short telomere linked to an 
increased association of telomerase [111].

• Two distinct roles of Stn1 in telomere capping and 
telomerase inhibition [89].

S. pombe • I-SceI endonuclease

• Tetracycline (TetR) controlled 
promoter (CaMV35S)

• Specific cut site at chromosome II-R 
to create a new telomere end

• New telomere-end stable and elongated by 
telomerase [107].

• Gradual heterochromatin formation which 
remains dynamic after the new end reaches its 
equilibrium length [107].

Table 3. 
Summary of telomere formation systems in different yeast species.



Telomerase and non-Telomerase Mechanisms of Telomere Maintenance

70
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[107]. A marker close to the newly formed telomere initially showed expression 
before it was extinguished after several population doublings and remained extin-
guished as cells continued to grow. In contrast, markers placed further away from 
the telomere switched between the transcribed and repressed state in subsequent 
population doublings. These relative kinetics of telomere-associated functions 
would not have been observable using a telomere formed by cellular transforma-
tion, which requires ~30 generations of growth between telomere formation of a 
single cell to the generation of a sufficient number of cells to analyze the hetero-
chromatin domain.

It is worth noting that this work and many other S. pombe heterochromatin 
studies follow the histone modification H3K9me2, but the H3K9me3 mark is also 
associated with heterochromatin. Recent work by the Moazed lab showed that 
the H3K9me2 mark is associated with very low gene activity, and its conversion to 
H3K9me3 extinguished detectable transcription [131]. This model can explain the 
level of H3K9me2 near the newly formed telomere, which peaked about 3–13 kb 
from the new telomere in different experiments [107]. Presumably, H3K9me3 
modification replaced H3K9me2 closer to the new telomere where expression of the 
ura4+ and ade6+ genes was undetectable [107]. Thus, the inducible telomere forma-
tion system may also prove useful in studying how the transition between these 
chromatin marks is regulated.

3. Conclusion

The inducible telomere formation system first developed in S. cerevisiae has 
provided several important results in the understanding of telomere elongation, in 
the cell cycle regulation of telomerase, in DNA checkpoint inhibition induced by a 
telomere end, and in the role of specific telomere proteins (Table 3) [77, 89, 98, 109, 
110, 113, 115–118]. The new S. pombe system has allowed one to follow the establish-
ment of telomere-end protection functions and the formation and dynamics of 
heterochromatin (Table 3) [107].

The ability to monitor the relative kinetics of different telomere-associated 
processes of replication, end protection, and chromatin domain formation has 
provided insights that could not be obtained using steady-state experiments with 
established telomeres. As telomere dysfunctions contribute to genomic instability 
or chromosome aberrations in human cancers, aging disorders, or specific patholo-
gies such as dyskeratosis congenita [10, 19–21, 23, 24], telomere formation studies 
have the potential to identify defects related to these diseases. Heterochromatin also 
plays an important role in chromosome biology [25–27], and inducible telomeres 
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DSB to expose the new physical chromosome end with adjacent telomere repeats. 
Inducible DSB systems using I-SceI or CRISPR/Cas9 have been used in mammalian 
cells to reveal differences in DNA repair at internal sites compared to subtelomeric 
ones [132–137]. An issue with the CRISPR/Cas9 approach is that it is a two-compo-
nent system consisting of a guide RNA to target the endonuclease to a precise site, 
so how rapidly inducible this system is compared to the single component I-SceI 
nuclease needs to be carefully tested. Using I-SceI, an inducible telomere system 
in mouse cells to measure telomere repeat addition over 48 hours was developed 
[105]. While not used kinetically, the system allowed the assay of the effect of the 
DNA damage kinase ATM on the addition of new telomere repeats by telomerase. 
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• Specific cut site at chromosome VII-L 
or V-R to create a new telomere end

• New telomere stable and elongation by telomerase 
[98].

• Telomere elongation is cell cycle regulated [98].

• DNA primase and DNA polymerases α and δ are 
required of the de novo telomere elongation [98].

• Involvement of the MRX complex and its 
exonuclease activity at the new telomere end for 
its elongation and the Cdc13 loading [113].

• Ku complex interacts with TLC1 (telomerase 
RNA) to promote telomere addition at the newly 
formed chromosome end [115].

• The de novo telomere end and degrading DNA 
fragment does not induce a checkpoint arrest 
[116].

S. cerevisiae • FLP1 recombinase

• Galactose inducible promoter

• FRT sites inserted at chromosome 
VII-L to artificially shorten a 
telomere end

• Progressive telomerase inhibition upon telomere 
elongation [109].

• Cell cycle restriction of telomere elongation in late 
S phase [110].

• Telomerase is preferentially associated with short 
telomeres [117].

S. cerevisiae • Cre recombinase

• Galactose inducible promoter

• LoxP sites inserted at chromosome 
VII-L or V-R to artificially shorten a 
telomere end

• Early replication of a short telomere linked to an 
increased association of telomerase [111].

• Two distinct roles of Stn1 in telomere capping and 
telomerase inhibition [89].

S. pombe • I-SceI endonuclease

• Tetracycline (TetR) controlled 
promoter (CaMV35S)

• Specific cut site at chromosome II-R 
to create a new telomere end

• New telomere-end stable and elongated by 
telomerase [107].
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remains dynamic after the new end reaches its 
equilibrium length [107].
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Chapter 4

Syndromes Associated with 
Telomere Shortening
Snehasish Nag

Abstract

We know that chromosomes are threadlike structures of nucleic acids and 
proteins, which are found in the nucleus of most living cells. They carry genetic 
information in the form of genes. Chromosomes are protected at their ends by a 
specialized structure called telomere. With each replicative cycle, the telomeres 
get shortened preventing uncontrolled replications. Telomeres perform several 
functions like protect the chromosome ends from sticking together, solve the end 
of replication problem, and limit the number of cell divisions. It is considered 
that telomeres are associated with cancer incidence and mortality. Telomere DNA 
has repetitive sequences (5′-TTAGGG-3′ in human), which is lengthened at the 
3′ end by a special ribonucleoprotein enzyme called telomerase. Short telomeres 
are associated with early senescence, genomic instability, and apoptosis of cells. 
Short telomeres can result due to several factors including environmental factors, 
external factors like smoking, stress, as well as due to mutations in the components 
of telomere or telomerase. Short telomeres are associated with several disorders and 
diseases, such as dyskeratosis congenita, aplastic anemia, pulmonary fibrosis, and 
even cancer. Thus, it is important to understand how telomeres are associated with 
these diseases and what can be done to prevent such conditions.

Keywords: aplastic anemia, dyskeratosis congenita, idiopathic pulmonary fibrosis, 
telomere, telomerase

1. Introduction

Over the years, it has been observed that many degenerative disorders are associ-
ated with telomere dysfunction. Telomeres are present at the end of chromosomes. 
They protect the chromosome ends and critical genetic information in the chromo-
some from degradation by acting as caps from fusing with other chromosomes [1]. 
We know that the replication machinery cannot completely copy the chromosome 
ends, which is called end replication problem. As a result, the telomeres get shorter 
with each replicative cycle that leads to cell senescence [2]. Short telomeres are 
associated with genome instability. Telomere dysfunction caused by defects in 
telomerase proteins is associated with genomic instability that increases genetic 
mutations characterized by an increased incidence of cancer and also high sensitiv-
ity to genotoxic compounds. Short telomeres activate a p53-dependent checkpoint, 
which leads to senescence and apoptosis of the cells [3–6]. Telomere shortening can 
be caused by some external factors also such as smoking, stress, poor health such as 
obesity, inflammation [7]. Telomere shortening is also accelerated due to chemical 
and physical environmental agents. Reactive oxygen species can produce modified 
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bases (mainly 8-oxoG) and single strand breaks in the genome. Oxidative damage 
can result from high incidence of guanine residues in telomeric DNA sequences [8]. 
Telomere shortening has been recognized as one of the important determinants 
behind senility and some diseases including—dyskeratosis congenita (DC), idio-
pathic pulmonary fibrosis (IPF) [9]. Telomere length is maintained by an enzyme 
called telomerase that adds telomeric repeats to the chromosome 3′-end using an 
RNA template. The enzyme is a ribonucleoprotein complex, which is inactive in 
somatic cells but active in stem cells and most cancer cells [10, 11]. Dysfunctional 
telomeres are recognized by many DNA damage response proteins leading to chro-
mosome fusions, genome instability and altered gene expression patterns [12, 13]. 
Several cellular processes including apoptosis, aging, carcinogenesis, and chromo-
some instability are caused as consequences of loss of telomeres [14, 15].

2. Telomeres

Hermann J. Muller and Barbara McClintock in the 1930s described the telomere 
as a protective structure of DNA present at the end of the chromosome [16]. It pro-
tects the chromosome structure. The human telomeres have repetitive 5′-TTAGGG-3′ 
subunits, associated with a variety of telomere-associated proteins. The structure 
consists of a portion of the double-stranded DNA with an overhanging 3′ G-rich end 
(Figure 1) [1, 16].

Human somatic cells enter replicative senescence after a limited number of 
replications. This occurs due to the end replication problem leading to shortening 
of telomeres [17]. In absence of this structure, the replication cycle stops and the 
end-to-end fusion of chromosomes may occur [18–20]. Telomeres are bound by 
a specialized protein complex called shelterin [21–24]. Due to the end replication 
problem, the telomeres shorten with each cell cycle, and these short telomeres 
induce the DNA damage response and activate the p−53 dependent checkpoint, 
leading to apoptosis or senescence (Figure 2A) [21]. But in case of germ cells or in 
cancer cells, telomere maintenance is observed likely due to the expression or reacti-
vation of telomerase, thus the replicative cycle of the cells continue.

The telomere shortening takes place as the eukaryotic DNA polymerases have no 
mechanism for synthesizing the final nucleotides present on the “lagging strand” 
of the double-stranded DNA. DNA polymerase synthesizes new DNA only from 
the 5′ → 3′ direction. The two strands of DNA are complementary, one strand is in 
5′ → 3′ direction, while the other is in 3′ → 5′. DNA polymerase cannot synthesize 
DNA in the 3′ → 5′ direction. The process is compensated by the use of Okazaki 
fragments. Okazaki fragments are short pieces of DNA that are synthesized in the 
5′ → 3′ direction from the 3′ → 5′ end as the replication fork moves. As RNA primer 
is required by DNA polymerase to synthesize new strand, each Okazaki fragment 
consists of an RNA primer followed by short DNA sequence. When the DNA 
polymerase reaches the chromosome end, the RNA primer is again placed, which 

Figure 1. 
3′ overhanging of telomere.
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is inevitably removed. But as the primer is removed, the DNA polymerase cannot 
synthesize the remaining bases leading to telomere shortening with each replicative 
cycle (Figure 2B) [16, 25, 26].

In addition to that several external factors can also affect telomere length and 
maintenance. Factors such as smoking, alcohol consumption, chemical and environ-
mental pollutants, radiation and many more can affect telomere length (Figure 2C).
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3. Telomerase

The telomerase enzyme is a ribonucleoprotein containing both RNA and protein. 
It functions as a reverse transcriptase that positively regulates the telomere length 
[21, 27, 28]. The ribonucleoprotein has two essential components: telomerase reverse 
transcriptase (hTERT), the catalytic component, and telomerase RNA component 
(hTERC or hTR) which provides the template for telomere addition. Telomerase 
synthesizes new telomeres by solving the end-replication problem (Figure 3) [29].

Biogenesis of telomerase in somatic cells requires the assembly of hTERT and 
hTR into a stable complex that can function at telomeres. hTR (RNA component 
of telomerase) contains a box H/ACA motif which regulates RNA trafficking and 

Figure 3. 
An image showing how telomerase elongates telomere ends progressively.

Figure 2. 
(A) Telomere shortening leads to DNA damage response. The DNA damage responses include apoptosis, senescence 
of the cell or genomic instability that can lead to cancer. (B) “Lagging strand” end-replication problem. With 
each replication cycle the ends of the chromosome get shortened as the final RNA primer at the 3′-end cannot be 
replaced with DNA. (C) External factors associated with telomere shortening and maintenance.
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stability. This H/ACA motif allows the hTR to associate with the dyskerin complex. 
This dyskerin complex is a four-protein core of dyskerin protein with another three 
nucleolar proteins—NOP10, NHP2, and GAR1 (Figure 4) [21, 30, 31]. Mutations 
in five out of six components that make up the telomerase ribonucleoprotein 
have been identified in humans causing telomere syndrome. These H/ACA RNAs 
can be divided into two groups. First, H/ACA small nucleolar RNAs (snoRNAs), 
that modifies ribosomal RNAs by accumulating in the nucleolus. Second, H/ACA 
small Cajal body-specific RNAs (scaRNAs) direct the modification of splicing 
RNAs by accumulating in Cajal bodies [32]. The difference in cellular trafficking 
between the two groups is attributable to the presence of another sequence motif, 
called Cajal body box or CAB box. They are the subnuclear sites of ribonucleo-
protein assembly and modification [33]. The hTR has both H/ACA motif and  
also CAB box.

Shelterin component of telomerase regulates the synthesis of telomeres. It regu-
lates the telomere length by forming t-loops whose formation is controlled by TRF2. 
TRF2 requires the help of other components such as TRF1 to function. Mutations in 
the shelterin components such as TRF2 and POT1 are found to be associated with 
short telomeres leading to such syndromes (Figure 5) [34].

A number of studies have revealed that in normal somatic cells the telomerase 
activity is almost absent. However a low level of telomerase activity has been found in 
mitotically active cells, including skin, lymphocytes, and endometrium. Telomerase 
enzyme is expressed in stem cells to maintain the telomere length all through their 

Figure 4. 
The essential telomerase components.

Figure 5. 
The shelterin complex.
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life cycle. About 90% of the cancer cells have short telomeres with increased levels of 
telomerase activity [18]. For example, about 75% cases of oral carcinomas, 80% of 
lung cancers, 84% of prostate cancers, 85% of liver cancers, 93% of breast cancers, 
94% of neuroblastomas, 95% of colorectal cancers, and 98% of bladder cancers have 
been found to be associated with increased levels of telomerase activity [35].

Telomerase transfection in normal cells can lead to the elongation of telomeres. 
For example, telomerase-negative normal cells, such as retinal pigment epithelial 
cells and foreskin fibroblasts, transfected with vectors encoding human hTERT 
show telomere elongation, but telomerase-negative control cells exhibit both 
telomere shortening and senescence [36].

Furthermore, mutations in the telomerase and telomere components lead to the 
syndromes of telomere shortening (Table 1).

4. Syndromes associated with short telomere

4.1 Dyskeratosis congenita (DC)

Dyskeratosis congenita (DC) is a rare progressive congenital disorder having 
a highly variable phenotype [38]. DC is a rare syndrome of premature aging. The 
term coined by clinicians based on a triad of mucocutaneous features that they 
found in male children. These are—leukoplakia of the oral mucosa, skin hyperpig-
mentation, and dystrophy of nails [39]. This triad was associated with premature 
mortality of children due to bone marrow failure in aplastic anemia. DC mainly 
affects the skin. But in nearly 80% of the cases, bone marrow failure also occurs. 
DC is also characterized by the predisposition of cancer. In serious forms, the life 
span can be significantly shortened.

Table 1. 
Human telomere shortening associated genes, their functions and mode of inheritance in dyskeratosis congenita [37].
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4.1.1 Genetics of the syndrome

In 1998, the gene encoding dyskerin, DKC1 was discovered. It was identified 
in X-linked families with the help of linkage and positional cloning. Dyskerin is a 
putative box H/ACA telomerase RNA binding protein [40]. The protein links with 
the telomerase RNA structure. The hTR has a box H/ACA motif and the X-linked 
DC patients have low levels of telomerase RNA component resulting in short 
telomeres. It is supported by the fact that mutations in the DKC1 gene disrupt the 
maturation and stability of hTR. Mutations in the dyskerin complex, NOP1O and 
NHP2 have also been identified in DC families [41, 42].

The best characterized form of dyskeratosis congenita is a result of one or more 
mutations in the gene DKC1 present on the long arm of X chromosome. This result 
in the X-linked recessive form of the disease also called Zinsser-Cole-Engman syn-
drome wherein the major protein affected is dyskerin [40]. Within the vertebrates, 
dyskerin is a key component of the telomerase RNA component (hTR) in the form 
of the H/ACA motif. This X-linked variety, like the NOP10 and NHP2 mutations, 
demonstrates shortened telomeres as a result of lower hTR concentrations [43, 44].

Recently, heterozygous mutations in the shelterin component TINF2 were 
identified in several cases of DC. Mutations in the TINF2 results in severe mani-
festations and usually present in children [34, 45]. Different organs show different 
types of defects in DC patients (Table 2).Many of these cells express telomerase, an 
enzyme that maintains telomeres.

Mutations in DKC1 can lead to significant declines in hTR levels, i.e. one fifth 
of the wild-type [46]. This is consistent with the fact that mutations in the DKC1 

Table 2. 
Defects in DC patients are most often seen in tissues in which cells divide rapidly, and often, many of these cells 
express telomerase, an enzyme that maintains telomeres.
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lead to accelerated phenotypes because of a loss of greater than half of the avail-
able telomerase. Mutations in the shelterin component TINF2 also lead to severe 
disease. This suggests that telomere defects are alone sufficient to cause dyskeratosis 
congenita (DC) [40, 42, 43].

Due to aplastic anemia when DC patients undergo bone marrow transplant, they 
frequently suffer with morbidity and mortality from pulmonary fibrosis and liver 
failure. This happens even when the patients seem to have intact function in these 
organs during the time of transplant [47, 48]. This happens due to the limited length 
of the telomeres in the patient’s lung and liver, and also the poor capacity of DNA 
damage repair after chemotherapy and radiation.

Nonmyeloablative bone marrow transplant should be considered in aplastic 
anemia, where there is mutation in the telomere or telomerase components [40].

4.1.2 DC patients are cancer prone

As many as 10% of the DC patients die due to the cancer diagnosis. DC is 
thought to be a cancer-prone disorder because of the underlying pathology 
of abnormal telomere maintenance. The link between DC and cancer is very 
interesting, because DC is associated with defects in telomere biology. Patients 
with DC have very short telomeres. Mutations have been identified in telomere 
biology genes. The United Kingdom Dyskeratosis Congenita Registry (DCR) data 
indicated that the crude rate of malignancy among approximately 300 patients 
was 10%. DC patients are at increased risk of myelodysplasia and acute leukemia 
[49]. Since aplastic anemia itself has an associated increased risk for transforma-
tion to acute myeloid leukemia, it is unclear whether DC patients with aplastic 
anemia have an added predisposition. DC patients also have increased incidence 
of squamous cell cancers of the skin and head and neck. In DC patients, these 
cancers are diagnosed at as early as the 2nd decade of the life. DC patients with 
cancer have a mean age at cancer diagnosis of 29 and a cumulative incidence of 
~40% by the age of 50.

4.1.3 Predisposition to cancer

Susceptibility to cancer seems counterintuitive due to the fact that in many 
known cancers reactivation of telomerase is actually a required step for malignancy 
to evolve however short telomeres do contribute to genome instability. In a disease 
like DC where telomerase is affected, it does not seem that cancer would be a com-
plication to result. But it is discussed that with critically short or absent telomeres, 
chromosomes will likely be attached together at their ends through the non-homol-
ogous end joining pathway (NHEJ). If this occurrence is common enough, then 
malignancy even without functional telomerase seems probable.

4.1.4 Haploinsufficiency of telomerase

Families with autosomal dominant dyskeratosis congenita show anticipation 
and have mutations in the telomerase RNA gene. A null mutation in motif D of the 
hTERT domain is associated with this phenotype. This mutation leads to haploin-
sufficiency of telomerase, and telomere shortening occurs despite the presence of 
telomerase (Figure 6) [50].

This finding shows the importance of telomere maintenance and telomerase 
dosage for maintaining tissue proliferative capacity. It has also relevance for 
understanding mechanisms of age-related changes. Telomere length limits the 
number of replication cycle of primary fibroblasts and has been associated with 
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cellular aging [50]. Short telomeres activate DNA damage response, which leads 
to apoptosis. It is the shortest telomere and not the average telomere length within 
a cell that is responsible for mediating the response that leads to cell death [51]. 
Mutations in the hTERT component can result in a complex phenotype of stem 
cell failure. This phenotype shows anticipation; it presents earlier and more 
severely with successive generations. The anticipation is due to haploinsufficiency 
of telomerase that results in progressive shortening of telomeres (Figure 7) [52]. 
The hTERT mutation results in haploinsufficiency of telomerase, which leads to 
shortening of telomeres across generations [49]. The number of these short telo-
meres is correlated with the severity of phenotypes expressed. The earlier onset 
of such phenotypes in later generations implicates that in bone marrow and other 
solid tissues the telomere length is short and in limiting proliferative capacity. 
This pattern of anticipation suggests that like aplastic anemia, this disorder might 
also affect the stem cells within the lung.

Figure 6. 
Telomere shortening despite the presence of telomerase. Mutations in the hTERT or hTR components of 
telomerase prevent them from extending the telomere length.

Figure 7. 
The figure depicts autosomal dominance mode of inheritance. The dark blue region represents mutant hTERT 
or hTR allele. Darker shades of black represent progressive telomere shortening leading to anticipation of 
phenotypes that is the age of onset becomes earlier with each generation.
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severely with successive generations. The anticipation is due to haploinsufficiency 
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Figure 6. 
Telomere shortening despite the presence of telomerase. Mutations in the hTERT or hTR components of 
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Figure 7. 
The figure depicts autosomal dominance mode of inheritance. The dark blue region represents mutant hTERT 
or hTR allele. Darker shades of black represent progressive telomere shortening leading to anticipation of 
phenotypes that is the age of onset becomes earlier with each generation.
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4.2 Aplastic anemia due to telomere shortening

Aplastic anemia arises when the body’s bone marrow does not make enough 
new blood cells. It can develop at any age. A number of diseases, conditions and 
factors can damage the blood-making stem cells in bone marrow and bring about 
aplastic anemia.

Aplastic anemia patients with shorter chromosome tips, or telomeres, have a 
lower survival rate and are much more likely to relapse after treatment than those 
with longer telomeres. Studies identified germline mutations in the hTR and 
hTERT components of the telomerase in ~3% of the adults with so-called aplastic 
anemia [52, 53]. In recent years, scientists have found that some patients suffering 
with severe aplastic anemia have extremely short telomeres in their blood cells. 
Telomeres are also known as molecular caps that protect the chromosomes ends 
from erosion. With each cell division they naturally become shorter, but telomeres 
can be rebuilt by enzymes. Telomere length is affected by genetic factors and 
environmental stressors. Patients with short telomeres suffer from morbidity and 
mortality even after the bone marrow transplant for the aplastic anemia [47, 54]. As 
these short telomeres lead to organ failures.

Patients with the short telomeres are also at greater risk for a conversion to bone 
marrow cancer (24%).

4.3 Idiopathic pulmonary fibrosis due to telomere shortening

Idiopathic pulmonary fibrosis has a predictable and progressive clinical 
course that ultimately leads to respiratory failure [55]. Although both genetic and 
environmental factors have been implicated, the cause of idiopathic pulmonary 
fibrosis (IPF) is unknown. IPF is the most common manifestation out of the 
other telomere-mediated disorders [56]. Germ line mutations in the telomerase 
hTERT and hTR component genes are the reason behind up to one-sixth of 
pulmonary fibrosis families [57]. The presence of telomerase mutations is sig-
nificant. As extra-pulmonary complications, affected individuals can suffer from 
bone marrow failure and cryptogenic liver cirrhosis due to telomere shortening. 
Evidence suggests that IPF results from autosomal dominant telomere syn-
dromes. Here with successive generations, the condition evolves from pulmonary 
fibrosis to a disorder of bone marrow failure. It is perhaps the most devastating 
of the idiopathic disorders in medicine.

IPF is an age-related disease. From the time of diagnosis, IPF patients live on 
average 3 years. Several clinical factors are known which are associated with the 
IPF. Age is the biggest with the great majority are diagnosed after the age of 60. It is 
also most frequently in males with a nearly 2:1 ratio [58].

4.3.1 IPF in dyskeratosis congenita patients

DC represents a more severe presentation of a spectrum of telomere syn-
dromes where IPF represents an attenuated form [40]. Pulmonary fibrosis in case 
of bone-marrow failure can be precipitated by pulmonary toxic drugs during of 
bone marrow transplant. For example, fatal pulmonary fibrosis in DC patients 
is caused by the alkylating agent busulfan used in myeloablative conditioning 
regimens [59]. Even without precipitating toxins, pulmonary fibrosis is a signifi-
cant and under-estimated complication of DC. In some DC patients, pulmonary 
fibrosis is the major cause of premature mortality in the absence of bone marrow 
failure [60].
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4.3.2 IPF is the most frequent manifestation of telomere-associated disease

In most cases, IPF is associated with telomere maintenance. Mutations in hTERT 
and hTR are the risk factors in 8–15% of familial cases of IPF [57, 61]. In about 3% 
of sporadic IPF cases, mutations in the telomerase genes are also found [53]. Here 
hTERT mutations frequency is higher than hTR mutations, but the mutant genes 
cannot be identified based on only clinical features [62]. Short telomeres are suf-
ficient to cause the common form of IPF [63].

The hTERT and hTR mutations result in short telomeres because of the loss of 
functions and the haploinsufficiency [56]. As compared to DC and aplastic anemia, 
the prevalence of IPF is more common, lung disease is the most common manifes-
tation of telomere-mediated disorders [64, 65]. Thus, although DC is specific for 
identifying individuals with telomere-mediated disease, it only can identify only a 
small subset, i.e. nearly 5% of all cases.

4.3.3 IPF patients with short telomeres without any mutations in telomerase

Although telomerase mutations are found in one-sixth of the families with IPF, 
short telomeres are found in other IPF patients without any mutations in the telom-
erase genes [58]. Significantly shorter telomeres are seen in case of sporadic IPF 
cases (those who report no family history) [61, 65]. Telomere shortening can be 
found in immune cells such as lymphocytes, granulocytes and also alveolar epithe-
lial cells, which implicate global telomere defect in such individuals. The observa-
tion suggests that individuals with shortest telomeres are more likely to develop IPF 
than normal individuals in the population [66]. These patients with short telomeres 
may be a risk factor for disease outside the lung. A subset of sporadic IPF that lack 
an apparent telomerase mutation also develops cryptogenic liver cirrhosis [57]. 
There is also relation between IPF and incidence of diabetes. IPF patients have 
about 3-fold increased incidence of diabetes compared to the age-matched controls 
[67]. In case of telomerase deficient mice, short telomeres cause defects in insulin 
secretion resulting in glucose intolerance. Therefore alongside IPF, short telomeres 
can be a risk factor for diabetes development [68]. Thus in sporadic IPF cases, the 
defect in telomere length may cause telomere-associated diseases outside of lung.

4.3.4 IPF patients with extra-pulmonary disorders

IPF patients and their relatives who carry telomerase mutations can develop 
telomere-mediated diseases, which are extra-pulmonary [57]. These are, bone-
marrow failure including macrocytosis of red blood cells, single lineage cytope-
nias, aplastic anemia, myelodysplastic syndromes, and acute myeloid leukemia 
[69, 70, 71]. In case of patients without DC, IPF and bone marrow failure are not 
considered as related conditions. But occurrence of these two together allows 
clinical identification of families carrying telomerase mutations. A recent find-
ing suggests that germ line defects in telomerase of a single family are associ-
ated with the occurrence of these two disorders together [62]. When present in 
successive generations, both the IPF and bone marrow failure syndrome together 
predicted the presence of an hTERT or hTR gene mutation in 10 out of 10 
families (100%).

Other than the bone marrow failure, IPF patients with telomerase mutations 
may also develop other complications of telomere-mediated disease like liver 
cirrhosis [50]. So, the IPF affected individuals are at a higher risk of developing 
extra-pulmonary diseases.
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4.4 Role of telomeres and telomerase in cancer

Short telomeres due to mutations in telomerase have been proposed to be associ-
ated with cancer. The concept seems counterintuitive as we know that telomerase 
activation is a required step for malignancy to occur in nearly 85% of the cases as it 
allows unlimited cell cycle without senescence. How telomerase reactivation occurs 
in case of cancer is not clear till date. Studies suggest mutations in two key posi-
tions of hTERT promoter region (C250T and C228T) cause enhanced expression 
of hTERT leading to enhanced telomerase activation (Table 3) [72, 73]. But this 
information needs to be investigated properly. Short telomeres can lead to genomic 
instability and also cancer via non-homologous end joining (NHEJ) of chromo-
somes. Mutations in the hTR or hTERT components of telomerase are associated 
with abnormally short telomeres leading to cancer. Mutations in several compo-
nents of telomerase such as DKC1, NOP10, NHP2, GAR1 or shelterin components 
such as TRF1, TRF2, POT1 can lead to short telomeres [30]. Absence or very short 
telomeres allow non-homologous chromosomes to join head to head. Syndromes 
associated with short telomeres such as dyskeratosis congenita, aplastic anemia are 
associated with cancer. It has been found that DC patients are cancer prone. They 
have increased risk of acute leukemia and myelodysplasia [49]. Aplastic anemia is 
also associated with acute myeloid leukemia. Patients also have increased risk of 
squamous cell cancers. Overexpression of TERT is also associated with increased 
cell proliferation in epidermal tumors and mammary carcinomas in mice [74].

Thus genomic instability due to loss of telomeres and overexpression of telomer-
ase probably play major roles in such cancer development.

5. Conclusion

Cellular aging eventually leads to cell death. It is the progressive decline of cells in 
resisting stress and other cellular damages. This leads to gradual loss of cellular func-
tions resulting in cell death. Telomere shortening is a major factor that is related with 

Table 3. 
Types of cancers associated with mutations in the telomerase hTERT promoter region.
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cellular aging. With age, the telomere length declines due to end replication problem, 
leading to cell senescence. It poses a barrier to the tumor growth but also results in 
the loss of cells with aging. When the caps of the chromosomes which are telomeres 
become critically short, it prevents cell cycle to continue leading to either cell senes-
cence or apoptosis. This cell cycle arrest occurs due to DNA damage proteins such as 
ATM, which become activated when telomere becomes critically shortened leading to 
activation of p53 dependent checkpoint. Mutations in the telomere or the telomerase 
components such as hTR or hTERT result in a broad spectrum of diseases present in 
children and adults. The onset and severity of these diseases are determined by the 
extent of telomere shortening. Usually the onset of cancer is associated with the activ-
ity of the telomerase holoenzyme, but with reduced telomeres due to affected telomer-
ase, the chromosomes may join by non-homologous end joining (NHEJ) and can lead 
to malignancy. This study shows that syndromes such as dyskeratosis congenita (DC), 
idiopathic pulmonary fibrosis (IPF), and aplastic anemia are caused by the telomere 
shortening. IPF syndrome is the most common manifestation of the telomere shorten-
ing. Thus this provides evidence that short telomeres are sufficient to cause common, 
age-related diseases. Treatment for these diseases involves organ transplantation such 
as liver, lung, bone marrow. Although this organ transplantation provides improved 
physical condition for patients, it does not address the actual cause, which is short 
telomeres. In recent times, telomerase activators such as TA-65 has gained commercial 
interest. It is also reported that sex hormones activate TERT transcription.

The understanding of the role of telomere and telomerase in aging and some 
diseases can open new possibilities in understanding the genetic factors that play 
important role in the origin and augmentation of several other diseases.
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Chapter 5

Telomeres and Telomerase 
Activity in the Human Placenta
Marie Jirkovská, Marie Korabečná and Soňa Laššáková

Abstract

Placenta is a transient organ ensuring the intrauterine development of the indi-
vidual. To meet fetal requirements, rapid and continuous cell proliferation enlarges 
the areas of tissues maintaining maternofetal transport. The cell division in placenta 
is accompanied with shortening of telomeres leading to cell senescence. Telomerase 
activity, on the other hand, ensures replication of telomeres and allows the organ to 
serve till the end of pregnancy. This balanced process may be negatively influenced 
by unfavorable circumstances. Here, we summarize available data on telomere 
length as well as telomerase activity in placentas from normal and complicated 
pregnancies; attention is also paid to the comparison of methods used in relevant 
studies.

Keywords: pathology, placenta, pregnancy, telomerase, telomere

1. Introduction

The core of cell proliferation is the division of cells and replication of chromo-
somes. Among other factors, it is also regulated by the length of telomeres since 
short telomeres will either recruit telomerase, or, in the absence of telomerase, 
induce senescence, apoptosis, or genome instability, or activate a DNA damage 
response (e.g., telomere recombination). The main function of telomeres is the 
protection of chromosomal integrity during DNA replication; moreover, they them-
selves are protected by a shelterin protein complex. Telomeres stabilize the ends of 
linear chromosomes and prevent the ends from being recognized as a double strand 
break. In human cells, telomeres contain hexameric tandem repeats, 5′TTAGGG 
3′, of DNA sequence. To maintain the proliferative ability of cells, the elongation 
of telomeres is executed by adding telomeric DNA repeats to the 3′chromosomal 
ends by telomerase. In the absence of telomerase, the telomeres shorten in every cell 
division. Telomerase as an RNA-dependent DNA polymerase repairs the sequences 
of telomeres after each cell division; but in humans, this enzyme is active in stem 
cells, germ cells [1–3], and cancer cells only.

During development of an individual, mature oocytes and cleavage stage 
embryos display low or absent telomerase activity, whereas in the blastocyst stage, 
its activity is high again. As in cells during early cleavage, the telomeres become 
remarkably longer, and an alternate lengthening of telomeres may play a role in 
their elongation. Processes of telomeric DNA recombination between homologous 
sister chromatids take place in the cleavage stage, and the length of telomeres is 
then maintained from the blastocyst stage onward by telomerase [4]. Telomeric 
DNA recombination between telomeres on separate chromosomes such as gene 
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conversion and the elongation of telomeres by DNA polymerase activity by mecha-
nisms like break-induced replication can lengthen telomeres independently of 
telomerase activity [5].

The mechanism of DNA replication results in progressive shortening of the 
ends of linear DNA molecule. That shortening limits the life span of individual cells 
and it is referred to as replication senescence [6]. Recently, it is well known that 
telomere attrition is observed during normal cellular aging, but telomere dysfunc-
tion may also contribute to the onset and progression of age-related diseases like 
atherosclerosis and myocardial infarction [7]. Telomere attrition is regarded as one 
of the so-called hallmarks of aging as proposed in [8].

Many tissues and organs contain cycling undifferentiated stem cells that provide 
cells for their renewal. The frequency of their mitotic division is different among 
tissues; examples of the most active are epidermal cells and cells of the bone 
marrow. Those cells are characterized by high levels of telomerase expression and 
disorders of telomere homeostasis cause, or at least take part in, the pathogenesis of 
serious inherited diseases, for example, dyskeratosis congenita [9], aplastic anemia, 
other bone marrow syndromes [10–12] and/or idiopathic pulmonary fibrosis [13]. 
Moreover, increased incidence of diabetes mellitus was identified in patients suffer-
ing from those pathologies [14]. Inherited bone marrow failure syndromes threaten 
also the prenatal development due to fetal malformations and intrauterine growth 
retardation accompanied with an abnormally small placenta [15].

The correct function of telomerase-telomere complex depends on both genetic 
predispositions and external factors (age, reactive oxygen species, and exogenous 
genotoxic factors). Mutations in the telomerase holoenzyme in either of the two 
genes, TERT encoding the reverse transcriptase, or TERC encoding the RNA tem-
plate for the synthesis of telomeres by telomerase, can cause remarkable telomere 
attrition even in hemizygous individuals [16] and may take part in hereditary 
conditioned telomere disorders [17–20].

2. Placenta in pregnancy

The prenatal development of an individual is conditioned by placenta, the 
transient organ that functions exclusively for the time of pregnancy. In order to 
meet fetal requirements, the placenta holds the functions of still undeveloped fetal 
organs, for example, lung and kidney. It is the site of transport of oxygen, ions, 
nutrients, and maternal immunoglobulins from mother to fetus, and carbon dioxide 
and wastes from fetus to mother. The placenta also maintains pregnancy by produc-
tion of steroid and protein hormones and other factors. Due to its position between 
maternal and fetal bloodstreams, the placenta acts as a barrier against infectious 
agents and regulates the maternal immune tolerance, gas exchange, and fetal 
nutrition. On the other hand, its structure and function are negatively impacted by 
maternal and fetal metabolic disturbances in pathological pregnancies.

Placental tissues originate in extraembryonic structures, that is in trophoblast, 
the outer layer of the blastocyst, which invades maternal tissues and gives rise to the 
cytotrophoblast and syncytiotrophoblast, and in extraembryonic mesoderm that is 
requisite for the formation of placental vasculature and supporting connective tissue.

The progress of fetal growth and maturation of fetal organs is essentially accom-
panied by the growth of placental size. It is performed by continuous cell prolifera-
tion till the term of gestation [21] and balanced with differentiation and apoptosis 
in all tissue compartments. The weight of term placenta is 500–600 g, the estimated 
surface area of syncytiotrophoblast available for maternofetal transport is 11–13 m2, 
and the inner fetal capillary surface area is about 12 m2 [22].
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Human placenta is formed by chorionic plate and its repeatedly branched 
projections, chorionic villi, that are immersed in maternal blood circulating in the 
intervillous space. The growth of villi goes hand in hand with fetal growth. They 
develop into various types during pregnancy, and their classification depends on 
size and structural features. Basically, each villus is covered by the layer of tropho-
blast consisting of continuous cytoplasmic mass with numerous nuclei, that is, 
syncytiotrophoblast, and cuboidal cells of cytotrophoblast appearing as a continu-
ous layer underneath syncytiotrophoblast in early gestation, but sparsely spread 
in term placenta. As nuclei in syncytiotrophoblast do not divide, cytotrophoblast 
cells play the role of stem cells of trophoblast. They undergo mitotic division, and 
their fusion with syncytiotrophoblast enlarges its mass. As shown by detection of 
cell cycle markers (e.g., Ki67, PCNA), they display proliferative potential over the 
duration of pregnancy [23–25].

The other source of placental tissues is extraembryonic mesoderm. For the 
placental development, this cell population gives rise to the mesenchyme adjoining 
villous trophoblast. Mesenchymal derivatives, that is, cells of connective tissue, 
endothelial cells, pericytes, and smooth muscle cells then form villous stroma and 
vascular bed. It is obvious that they follow the growth of trophoblast, and their 
proliferation and subsequent differentiation contribute to the formation of new 
functionally efficient villi, and thus to the enlargement of the organ and its func-
tional capacity. It is significant particularly in the third trimester when the rapid 
development of terminal villi accompanies the rapid enlargement of fetal size [22]. 
Previous studies have demonstrated the proliferative potential of cells in villous 
vascular bed and stroma in early pregnancy as well as at term [24, 25]. The pro-
liferative potential of cells in terminal villi of normal human term placenta is also 
demonstrated in Figure 1.

In order to provide nutrition for the increasing metabolic requirements of 
growing fetus, the placenta displays continuous cell proliferation during its entire 
existence. Despite the fact that fetal demands attain their maximal level at term, it 
is expected that cells in placenta at term decrease their proliferative capacity due 
to telomere shortening and undergo senescence similar to somatic cells in other 
organs. It is also supposed that those changes in telomere length might take part in 
the initiation of parturition [26]. Telomere shortening during pregnancy was found 
also in the placenta of mice [27]. As shown in another study in mouse, the propor-
tion of representative short telomeres, that is, 3- and 5-kb telomere fragments, 

Figure 1. 
Proliferative activity of cytotrophoblast (arrows), stromal cell (arrowhead), and capillary endothelium 
(asterisk) in terminal villi of normal term placenta demonstrated by Ki-67 immunohistochemistry. 
Bar = 50 μm.
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conversion and the elongation of telomeres by DNA polymerase activity by mecha-
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nutrition. On the other hand, its structure and function are negatively impacted by 
maternal and fetal metabolic disturbances in pathological pregnancies.
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and the inner fetal capillary surface area is about 12 m2 [22].
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Figure 1. 
Proliferative activity of cytotrophoblast (arrows), stromal cell (arrowhead), and capillary endothelium 
(asterisk) in terminal villi of normal term placenta demonstrated by Ki-67 immunohistochemistry. 
Bar = 50 μm.
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significantly increases toward the end of pregnancy. The authors conclude that the 
quantity of representative short telomeres increases prior to parturition and takes 
part in the mediation of cellular aging in the placenta, finally leading to parturition 
[26]. Those findings are consistent with other studies regarding the impact of short 
telomere rather than average telomere length [28].

Due to its location in maternal uterus, the placenta is influenced by any abnor-
mal metabolic conditions in both mother and fetus. The negative influence demon-
strates itself in pathological structural features as well as in impaired function. In 
such organ displaying mitotic activity, altered telomere homeostasis may take part 
in those adverse changes. Here, we summarize data on telomere length and telomer-
ase activity in placentas from normal pregnancies and pregnancies complicated by 
metabolic disturbances threatening pregnancy outcome, as are maternal diabetes 
mellitus, preeclampsia, and intrauterine growth restriction.

3. Analysis of telomere homeostasis—methodological approaches

In view of the facts mentioned above, telomere length emerged as a promising 
marker generally in medicine, but the utility of such measurements highly depends 
on valid methodologies [7]. The average telomere length is highly variable among 
different cell types and among different individuals. There are also gender differ-
ences, which could be detected at birth. Additionally, the average telomere length 
declines with age [16].

Telomeres may be repaired either by the enzyme telomerase using its RNA 
template or by recombination. The methodologies examining telomere homeo-
stasis in different tissues are therefore based not only on the determination 
of the length of telomeric DNA sequences, but they examine also the status 
and expression of the reverse transcriptase (hTERT) and the RNA template 
(hTERC) genes and recombination events on selected telomeres. In the follow-
ing paragraphs and in Table 1, we summarize the main features and limitations 
of methodologies employed in placenta research, alternatively the methods 
applicable on human samples.

3.1 Methods examining telomeric DNA sequences

Terminal restriction fragment (TRF) analysis was originally developed to deter-
mine the lengths of telomeres in 1988 by Moyzis et al. [54]. Genomic DNA is isolated 
and then digested with a mixture of restriction enzymes that are selected to avoid the 
cutting of telomeric and subtelomeric sequences. The DNA fragments obtained after 
such a digestion are separated in agarose gel and hybridized with the probe contain-
ing telomeric sequences [55]. The need for high amounts of highly integral DNA 
samples represents one of the main limitations of this methodology [7].

Polymerase chain reaction (PCR)-based methodologies were elaborated to overcome 
limits of the previous method. Cawthon [56] reported the technique based on quan-
titative PCR (qPCR). The sequences of primer pairs proposed by Cawthon avoid 
the primer dimer formation which frequently occurs when repetitive sequences are 
amplified. Cawthon’s qPCR technique and its subsequent modifications [56–58] 
belong to the most frequently used methods. Telomere length is quantified rela-
tively—the ratio T/S between the quantity of repetitive telomeric sequences (T) and 
the quantity of sequences representing a single copy gene (S) is calculated. These 
ratios correlated very well with the absolute telomere lengths measured by TRF 
method in Cawthon’s original study [56]. An attempt to standardize this methodol-
ogy over large spectrum of laboratories was made [59].
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O’Callaghan and Fenech [60] described the modification of qPCR-based technique 
allowing the determination of an absolute telomere length due to the use of artificially 
synthesized DNA standard containing the defined number of telomeric repeats.

PCR-based techniques are quite popular among researchers because they require 
lower DNA quantity and usual laboratory equipment. Due to their relatively low 
costs, they may be employed in high-throughput epidemiologic studies. One short-
coming of PCR-based methodologies is that the resulting values inform only about 
the average telomere length in the specimens.

Single telomere length analysis (STELA) targets telomeric DNA from a single 
chromosome using primers specific to subtelomeric sequences [61]. All individual 
chromosomal subtelomeric regions do not contain suitable specific sequences; 
therefore, the method is able to examine only a limited set of chromosomes [7]. 
Using this methodological approach, Garcia-Martin et al. [32] found considerable 
intra-sample variability in examined placentas.

Quantitative fluorescence in situ hybridization (Q-FISH)-based techniques are 
focused more on the work with cells than with isolated DNA. A fluorescent probe, 
mostly peptide nucleic acid (PNA) probe, complementary to telomeric repetitive 
sequences is hybridized to denatured DNA of metaphase chromosomes or inter-
phase nuclei. The cells may be fresh, frozen, or formaldehyde-fixed and paraffin-
embedded. The application of metaphase Q-FISH, which was developed in 1996 
by Lansdorp and colleagues [62], results in the estimation of the length of all 92 
telomeres in human cells. It allows the detection of telomere free ends. The most 
serious limitation of this approach is the requirement of metaphases from mitoti-
cally active cells. The method is labor intensive [7, 62].

Method References

Telomere length analysis based on isolated DNA

 TRF [29–31]

 STELA [32–34]

 Q-PCR, T/S ratio [29, 35–38]

Telomere length analysis based on examination of interphase nuclei

 Interphase Q-FISH [36, 39–45]

Determination of gene copy numbers in situ

 hTERT-FISH [36]

 hTERC-FISH [36, 39, 41, 46]

hTERT expression

 Immunohistochemistry [43, 45, 47]

 RT-PCR for hTERT [29, 41, 48–51]

hTERC expression

 RT-PCR for hTERC [29]

Telomerase activity determination

 TRAP [33, 38, 48, 52, 53]

 TRAP in situ [52, 53]

Genome-wide technologies

 Illumina methylation array [37]

Table 1. 
Experimental methods used in placenta research.
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Interphase Q-FISH, first described in 1998 by de Pauw and colleagues [63], is 
applicable on nondividing cells. It compares the fluorescent signals obtained after 
hybridization with a telomere-specific probe and with a probe targeting a single 
copy gene. Its results inform, similar to the results of qPCR methodologies, about 
the average length of the telomeres in examined cell, the method is not able to 
recognize each individual telomere as metaphase Q-FISH.

A method for telomere capture evaluation based on interphase Q-FISH has been 
established by Amiel et al. [64]. When telomeres shorten to the critical length, 
repair pathways are activated. In the process of telomere capture, a critically short 
telomere obtains a new telomeric sequence from another chromosomal end. In the 
original method, the number of fluorescent signals for a single copy gene, SNRP, 
which is localized on chromosome 13, was compared with the number of signals for 
15qter region of this chromosome [64] to follow not only random aneuploidy but 
also telomere capture or translocation of telomere. The methodology was also used 
in placenta research [39, 48].

The pq-ratio assay described in 2001 by Perrem et al. [40] belongs to methods 
that directly examine telomere recombination. This assay measures the variation in 
telomere lengths at the p and q arms of a chromosome. The telomere ratio for most 
chromosomes is expected to be q/p~1, because the telomeres at both ends of a given 
chromosome shorten at a similar rate. If recombination is used to maintain the 
ends, then it could alter the length of at least one telomere by a random amount of 
telomeric repeats. This results in variable values for the pq-ratio. The pq-ratio assay 
is very sensitive, and the data may become biased as the telomeres shorten. Small 
changes on a short telomere may be overrepresented and telomeres with no signal 
will not be represented at all [40, 65, 66].

Chromosome orientation-FISH (CO-FISH) was first described in 1993 [67, 68] 
as a method for strand-specific FISH. The method is dependent on cultivation of 
analyzed cells because it requires incorporation of bromodeoxyuridine (BrdU) 
into newly synthesized strands. This step allows subsequent enzymatic removal of 
BrdU containing strands after their damage caused by UV light in the presence of 
the dye Hoechst 33258. The remaining strands then serve as single-stranded targets 
for FISH. This approach allows differentiation between the telomeres produced 
via leading- or via lagging-strand DNA synthesis, and it enables the study of sister 
chromatid exchanges (SCE) and inversions in telomeric regions [69, 70].

The methodology of directional genomic hybridization (dGH) represents the 
cytogenomic extension of strand-specific hybridization. Telo-dGH recognizes 
terminal exchange events—terminal inversions and generally different forms of 
genetic recombination occurring near the telomeres, namely sister chromatid 
exchange (SCE) [71].

Flow-FISH represents the modification of interphase Q-FISH, which was intro-
duced in 1998 by Hultdin et al. [72]. The cells in suspension are hybridized with 
fluorescent probes and then examined using flow cytometry. This approach is tech-
nically very demanding because the unfixed cells are often fragile and clustering. 
The technique is very sensitive to preservation of cells. FISH probes may also have 
affinity to cytoplasmic structures [7]. Higher numbers of cells are needed (typically 
> 1 × 105), the assay determines mean telomere lengths and it does not account for 
aneuploidy or SFE (signal free ends) but the methodology was successfully used in 
numerous studies [73–75].

TELI-FISH is a combined FISH/immunofluorescence method which was 
developed in 2002 to assess human telomere lengths from standard formalin-fixed 
paraffin-embedded tissues. Combination with immunostaining allows the simulta-
neous identification of specific cell types. The assay requires very few cells (10–15). 
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Validation showed excellent agreement with the commonly used TRF method based 
on Southern blotting [76].

Microdissection followed by qPCR allows selection of cells for analysis using 
classical histological technique and it is suitable for the studies based on archival 
material [35]. Microdissected cells may be examined by qPCR methodology, and 
therefore, its main disadvantage is that it provides information only about the 
relative average length of telomeres in analyzed samples. The methodology does not 
result in the determination of the lengths of the longest or the shortest telomeres 
contained in the sample. Comparison of T/S ratios related to a reference sample 
allows evaluation of differences between the groups of samples (for instance 
between healthy controls and patients).

Whole genome sequencing (WGS) captures sequence information from the 
entire genome, including the telomeres, and is increasingly being applied in 
research and in the clinic. In 2014, Ding et al. [77] demonstrated a novel method, 
TelSeq, which allows measurement of average telomere length by using whole 
genome or exome sequencing data. It was the first study that evaluated in detail 
the relationship between the frequency of telomere repeats and telomere length. 
With the potential to be a relatively high-throughput method, this may overtake 
qPCR as the method of choice in future studies. Their study was the first com-
putational method that had been validated against an established experimental 
method (Southern blot measurements of the mean length of terminal restriction 
fragments).

3.2  Methods examining genes coding for telomerase and its RNA components, 
their expression, and telomerase activity

The telomere length is closely associated with telomerase (human telomerase 
reverse transcriptase—hTERT) activity (TA) and the availability of its RNA compo-
nent (hTERC or TERRA—telomeric repeat-containing RNA) in tissues.

The copy number of both genes hTERT and hTERC in nuclei in archive tissues or 
cultivated cells is examined by FISH methodology. This approach was applied also 
in placenta research [36, 41, 46, 48]. RNA-FISH is based on the use of fluorescently 
labeled probes and allows the cellular localization of TERC [78].

The presence of telomerase itself may be detected in tissues by means 
of immunohistochemistry—a methodology which is generally well established in 
laboratories of pathologists [76]. This methodology was also widely used in placenta 
research—see reference in Table 1.

In Table 1, the studies that examined the expression of hTERT using reverse 
transcription and subsequent qPCR to quantify the amount of hTERT transcripts are 
also summarized.

The telomerase activity may be measured by a wide panel of methodologies 
based on addition of telomerase substrate and detection of amplified telomerase 
products by telomere repeat amplification protocols—TRAPs—developed by Kim 
et al. [79]. Recently existing numerous methodological modifications of this 
approach were reviewed by Mensa et al. [78].

hTERC (TERRA) is a long noncoding RNA, which can be transcribed from 
nearly all telomeres in mammalian cells because its transcription starts from their 
subtelomeric regions. Therefore, the quantity of such transcripts can be measured 
by RT-qPCR starting from RNA isolated from analyzed cells or tissues followed 
by reverse transcription and PCR with chromosome-specific primers. Molecular 
mechanisms associated with the role of TERC in telomere reparation are intensively 
studied [80, 81].
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Northern blotting or RNA dot blotting needs mostly radiolabeled probes and can-
not detect the minor changes in quantity of TERC [78].

Detection of G4 quadruplexes using antibodies is based on the fact that during 
hTERC transcription, the RNA:DNA hybrids at the chromosome ends are formed, 
and they can fold into G-quadruplexes [78]. The G-quadruplex structure formed 
by telomere DNA plays also an important role in the regulation of the telomerase 
reaction [82].

3.3 Methods examining epigenetic changes and chromatin structure

Not only the presence of DNA sequences of genes hTERT and hTERC but also 
their functional state determined epigenetically plays a crucial role in the regulation 
of their expression.

Wilson et al. [37] used array technology (Illumina Infinium Human Methylation 
450 BeadChip) to study methylation alterations in genes hTERT, DNMT1, and 
DNMT3A in human placentas. MALDI-TOF technology was employed to determine 
the level of DNA methylation of hTERC in placenta using Sequenom EpiTyper 
platform [29]. Lower levels of gene methylation were found in normal placentas 
compared with other somatic cells.

Quantitative Telomeric Chromatin Isolation Protocol (QTIP) was introduced 
in 2013 by Grolimund et al. [83]. It allows the comprehensive determination of 
telomere protein composition and the quantitative comparison of telomere protein 
compositions between cells with different telomeric states. Chromatin is cross-
linked, immunopurified, and analyzed by mass spectrometry. The methodology may 
be also adapted for examination of other chromatin regions within the genome [83].

4. Placenta in normal pregnancy

The assessment of telomere length in normal pregnancy gives important data 
regarding dynamics of placental cellular proliferation. The study on third trimester 
placentas using the qPCR has shown decreased telomere length between gestational 
weeks 28 and 42 (13.98–10.56 kbp) [38]. The application of qPCR and Southern 
blot-based terminal restriction fragment (TRF) assay confirmed considerably 
longer telomeres in first trimester villi than in term placentas, telomeres of which 
were found to be longer than those in cord blood mononuclear cells [29, 84].

Some authors took into consideration that the position of villous tissue in the 
placenta may influence the telomere length, and therefore collected and processed 
samples of the whole placenta from more locations [29, 37, 84]; nevertheless, no 
site-specific differences of telomere length were determined except [84] showing 
that the telomerase activity was detected in term placenta restricted to biopsy sites 
near umbilical cord only. Moreover, the Southern blot-based TRF assay discovered 
longer telomere length in placental samples than in cord blood cells [84]. The study 
by qPCR proved that telomeres in placentas of female fetuses are longer than in 
placentas of male fetuses at the same gestational week. This finding suggests an 
influence of hormonal milieu during intrauterine development [37]. On the other 
hand, the other study performed by single telomere length analysis (STELA) 
revealed neither influence of fetal sex nor influence of the mode of delivery [32].

The above-mentioned findings in chorionic villi and normal placenta suggest that 
telomere length is maintained by active telomerase during pregnancy. Nevertheless, the 
papers dealing with this topic present equivocal results. Using TRAP assay, Wright et al. 
[33] found no detectable telomerase activity in placenta. To the contrary, telomerase 
activity studied by TRAP assay and in situ TRAP assay was found in both chorionic 
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villi at 5–14 weeks of gestation and normal placentas at 23–42 weeks of gestation 
[49]. Expression of telomerase protein was detected by immunohistochemistry in 
cytotrophoblast of chorionic villi [47, 85]. Decreasing relative telomerase activity was 
shown in comparison of chorionic villi in first, second and third trimester. In normal 
villi from 6 to 40 gestational weeks, the presence of telomere RNA component (TERC) 
was demonstrated, whereas telomerase reverse transcriptase (TERT) was not found 
in samples from second and third trimesters [86]. Immunohistochemical reaction 
revealed telomerase expression in trophoblast and stroma of villi in 10th week, but not 
in term placenta [87]. Using RT-PCR method, the hTERT-RNA expression was found in 
normal chorionic villi from 6th to 10th gestational week as well as in normal placentas 
from 12th to 41st gestational week, whereas hTERT protein expression was found in 
chorionic villi, but only in the fourth part of placental samples [88].

5. Placenta in pregnancy pathologies

It is evident that normal placental growth and development carried out by cell 
proliferation is conditioned by appropriate telomere length ensured by homeostasis 
of telomerase system. For optimal course of those processes, normal metabolic 
milieu is necessary in mother, placenta, and fetus. The most critical condition of 
intrauterine development is adequate oxygen supply. The early pregnancy phase, 
that is, first 10 weeks, runs under low oxygen levels. This relative hypoxia before 
the constitution of the fetoplacental and uteroplacental blood circulation induces 
various factors, one being the hypoxia-inducible factor 1, that upregulates hTERT 
expression (and telomerase activity), and its decrease with gestational age is in 
correlation with decrease of telomerase activity logically followed by telomere 
shortening [88]. As the placenta consumes about 40% of the oxygen supplied to 
fetoplacental unit [89], the hypoxic conditions have negative impact on all processes 
running there. And hypoxia also represents a key factor in genesis of pregnancy 
pathologies discussed in the following parts of this chapter.

5.1 Maternal diabetes mellitus

There are two main forms of maternal diabetes mellitus, the insulin-dependent 
form with onset before conception, and gestational diabetes diagnosed usually in 
second half of pregnancy that disappears after birth. In the insulin-dependent type 
diabetes, an autoimmune process destroys β-cells of the islets of Langerhans com-
pletely and the patient is then treated by insulin supplementation.

As shown in experiments with mice, the type 2 diabetes, and similarly gesta-
tional diabetes, may involve telomere shortening during pathogenesis. Shorter 
telomeres are associated with impaired β-cell regeneration, impaired glucose-stim-
ulated insulin secretion by disorders of insulin release leading to impaired glucose 
tolerance as well as to increased β-cell senescence [14, 90].

Both forms of maternal diabetes are characterized by maternal hyperglycemia 
and thus higher amount of glucose transported to fetus. Metabolic complications 
derived from hyperglycemia threaten the mother; manifest themselves in placental 
structure and function; have negative influence on fetal well-being, perinatal 
morbidity and mortality; and long-lasting effect on the postnatal life of the indi-
vidual. In pregnancies complicated by maternal diabetes mellitus, the alterations of 
placental structure and function as well as the pregnancy outcome depend on the 
quality of metabolic control. Placentas from poorly controlled diabetes are larger 
and heavier and microscopic picture shows disturbances of villous maturation 
[22]. The oxidative stress produced by imbalance of glucose and oxygen supply 
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was demonstrated, whereas telomerase reverse transcriptase (TERT) was not found 
in samples from second and third trimesters [86]. Immunohistochemical reaction 
revealed telomerase expression in trophoblast and stroma of villi in 10th week, but not 
in term placenta [87]. Using RT-PCR method, the hTERT-RNA expression was found in 
normal chorionic villi from 6th to 10th gestational week as well as in normal placentas 
from 12th to 41st gestational week, whereas hTERT protein expression was found in 
chorionic villi, but only in the fourth part of placental samples [88].

5. Placenta in pregnancy pathologies

It is evident that normal placental growth and development carried out by cell 
proliferation is conditioned by appropriate telomere length ensured by homeostasis 
of telomerase system. For optimal course of those processes, normal metabolic 
milieu is necessary in mother, placenta, and fetus. The most critical condition of 
intrauterine development is adequate oxygen supply. The early pregnancy phase, 
that is, first 10 weeks, runs under low oxygen levels. This relative hypoxia before 
the constitution of the fetoplacental and uteroplacental blood circulation induces 
various factors, one being the hypoxia-inducible factor 1, that upregulates hTERT 
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correlation with decrease of telomerase activity logically followed by telomere 
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There are two main forms of maternal diabetes mellitus, the insulin-dependent 
form with onset before conception, and gestational diabetes diagnosed usually in 
second half of pregnancy that disappears after birth. In the insulin-dependent type 
diabetes, an autoimmune process destroys β-cells of the islets of Langerhans com-
pletely and the patient is then treated by insulin supplementation.

As shown in experiments with mice, the type 2 diabetes, and similarly gesta-
tional diabetes, may involve telomere shortening during pathogenesis. Shorter 
telomeres are associated with impaired β-cell regeneration, impaired glucose-stim-
ulated insulin secretion by disorders of insulin release leading to impaired glucose 
tolerance as well as to increased β-cell senescence [14, 90].

Both forms of maternal diabetes are characterized by maternal hyperglycemia 
and thus higher amount of glucose transported to fetus. Metabolic complications 
derived from hyperglycemia threaten the mother; manifest themselves in placental 
structure and function; have negative influence on fetal well-being, perinatal 
morbidity and mortality; and long-lasting effect on the postnatal life of the indi-
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quality of metabolic control. Placentas from poorly controlled diabetes are larger 
and heavier and microscopic picture shows disturbances of villous maturation 
[22]. The oxidative stress produced by imbalance of glucose and oxygen supply 
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in fetoplacental unit is compensated by enhanced placental angiogenesis dem-
onstrated by higher villous capillary branching [91]. It is possible to suppose that 
both, the higher placental weight and enhanced angiogenesis, are a consequence of 
escalated cell proliferation leading to exhaustion of telomeres available for mitotic 
division.

Regarding the telomere length in placenta from pregnancies complicated by 
maternal diabetes, the available data are not quite consistent. In the qPCR-based 
study examining large cohort of placentas, maternal diabetes was found associated 
with longer telomere length [38]. In another study comparing telomere length in 
cytotrophoblast of placentas from poorly controlled maternal diabetes and normal 
pregnancies by FISH method, the result indicated shorter telomeres in the diabetic 
group [42]. In the same groups of patients, the immunohistochemically identified 
telomerase expression, the expression of mRNA for hTERT, and the expression of 
TERC gene copy number were lower in diabetic placentas [41]. On the other hand, 
no difference of mean telomere length was found in peripheral villi of normal 
placentas and placentas in well-controlled maternal diabetes examined by laser 
capture microdissection and qPCR [35], although the study on the same placental 
material discovered lower proliferative potential of cytotrophoblast and vascular 
endothelium of terminal villi in maternal diabetes [25]. Single telomere length 
analysis (STELA) was used for measurement of telomere length in normal placentas 
and placentas from gestational diabetes treated either by lifestyle intervention or by 
metformin or insulin therapy. The result showed that the therapy by metformin or 
insulin protected from telomere shortening in placentas of male fetuses [34].

5.2 Preeclampsia

Preeclampsia is a disease of pregnancy characterized by new-onset maternal 
hypertension and proteinuria. It may begin in 28–34 gestational weeks (early-onset 
preeclampsia) or after 34 weeks (late-onset preeclampsia). It is commonly accepted 
that the preeclampsia originates in deficient placentation, that is, decreased inva-
sion of the maternal tissues by extravillous trophoblast. Under normal conditions, 
the endothelium and smooth muscle cells of uterine spiral arterioles are replaced 
with trophoblast and their diameter becomes wide allowing delivery of blood at low 
pressure to the intervillous space. The decreased trophoblastic invasion produces 
narrow uteroplacental arteries and the resulting malperfusion of the intervillous 
space causes oxidative stress of the fetoplacental unit manifested among others by 
reduced development of the villous tree and placental growth retardation. Increased 
placental proliferative activity found using detection of PCNA and Ki67 in pre-
eclampsia may be a sign of increased cell turnover [92]. The associated systemic 
vascular inflammation in maternal organism may cause injury of multiple organs.

In placentas in preeclampsia, the analysis of villous cytotrophoblast based on 
the quantitative FISH method showed shorter telomeres, more end-to-end telomere 
aggregates, and abnormal TERC gene copy number as well as decreased hTERT 
expression detected by immunohistochemistry [39, 43, 44]. Common expression 
of hTERT protein and HIF-1α in term preeclamptic placenta gives an evidence of 
response to hypoxia by telomerase upregulation [88]. Nevertheless, the measure-
ment of average telomere length by qPCR did not show significant differences 
between control, early-onset preeclamptic, and later-onset preeclamptic placentas 
[37]. Another study has also shown no differences of telomere length between 
normal placentas and placentas in preeclampsia [30]. Enhanced levels of placental 
hTERT-mRNA in preeclampsia [50] if not associated with longer telomeres as a 
result of enhanced telomerase activity suggests that there is a conceivable distur-
bance in translation or post-translation processes of the enzyme protein.
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6. Intrauterine growth restriction

In intrauterine growth restriction (IUGR), the growth and development of fetus 
is delayed by 3–4 weeks regarding the gestational age and the birth weight is low, 
under 10th percentile for gestational age. Fetal growth restriction is associated with 
restricted placental size caused by arrest mechanisms reducing cell proliferation 
[45]. There are two types of IUGR, symmetric and asymmetric. The fetus display-
ing symmetric IUGR has normal body proportion, the fat and muscle tissue are 
reduced. It is usually associated with genetic factors causing, for example, already 
mentioned bone marrow syndromes [9–12] or infections. The asymmetric IUGR 
is characterized by normal size of head and reduced chest and abdominal circum-
ference due to reduced fat and muscle tissue. It is often associated with placental 
insufficiency arising, for example, in preeclampsia and may be related to oxidative 
stress.

Studies performed by quantitative FISH method and RT-PCR on placental 
cytotrophoblast in IUGR gave an evidence of shorter telomeres, lower telomerase 
activity, decreased hTERT mRNA, and decreased TERC gene copy number  
[45, 46, 48]. The relative telomere length and hTERT expression were found lower 
in cytotrophoblast of placentas in IUGR as well as in IUGR combined with pre-
eclampsia [43].

Lower proliferative potential found in placenta in IUGR [52, 70, 76, 93] seems 
to be consistent with decreased telomerase activity in cytotrophoblast of IUGR 
placenta [52, 76]. In placenta associated with asymmetric IUGR, only weak, if any, 
telomerase activity, hTERT expression, and copy numbers of telomerase reverse 
transcriptase were found by qPCR and in situ TRAP assay [49, 51, 53]. Shorter telo-
meres associated with higher expression of cell senescence markers were found in 
placenta samples in IUGR [31] and shorter telomeres detected by quantitative FISH 
technique and reduced average telomere length detected by qPCR were shown in 
[36]. To the contrary, no difference was revealed in average telomere length assessed 
by qPCR between normal placenta and placenta in IUGR [37].

7. Conclusions

Appropriate fetal growth and development is conditioned by appropriate 
placental growth and development. It is accomplished by balanced cell prolifera-
tion, differentiation, and apoptosis. Cell proliferation is influenced by the length of 
telomeric sequences of chromosomes and their elongation due to telomerase activ-
ity. This review article summarizes available data on telomere length and telomerase 
activity of placenta in pregnancy-complicating situations, that is, maternal diabetes 
mellitus, preeclampsia, and intrauterine growth restriction (Table 2) as well as 
methods used for this research (Table 1).

In normal placentas, longer telomeres and higher telomerase activity were found 
in early pregnancy, they gradually decreased till the term. Although the available 
studies on placentas from pregnancies complicated by maternal diabetes are not 
numerous, their results corroborated by experimental studies suggest that diabetic 
metabolic conditions contribute to telomere shortening and that the appropriate 
metabolic control achieved by adequate treatment may function as a prevention 
of this adverse process. The results of research on telomere length and telomerase 
activity in preeclampsia are still equivocal and rather suggest debatable comparabil-
ity of methods applied in those studies. The telomere length in placenta associated 
with IUGR was found lower and accompanied with decreased expression and 
activity of components of telomerase apparatus.
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Maternal diabetes mellitus, preeclampsia as well as IUGR do not only complicate 
pregnancy but are also taken as causes of adverse outcomes for individuals later in 
postnatal period. Further investigation of the effect of factors influencing telomere 
length and telomerase activity may contribute to better understanding of those links. 
The placental DNA is identical to the DNA of fetal cells and the period of its existence 
equal to the prenatal period of the fetus spent in the same maternal environment. As 
telomeres are susceptible to external conditions of maternal milieu (i.e., oxidative 
stress, reactive oxygen species, exogenous genotoxic insults), those epigenetic influ-
ences may accelerate their shortening [94]. Prospective studies in experimental models 
and of course in long-time prospective studies in human should elucidate if there is a 
relation of final telomere length in placentas at term and newborn and if the measure-
ment of placental telomere length could have a predictive potential for individual.

Recently, the immunomodulatory role of telomeric sequences was recognized 
[78, 95]. Telomeric sequences originated from trophoblasts may circulate in the pool 
of cell-free DNA in maternal plasma and contribute to timing of parturition [26] by 
stimulation of maternal immune response against placenta. The role of telomeric 
sequences contained in cell-free DNA in plasma of healthy persons in the regulation 
of immune system performance was also described [95]. Additionally, the telomeric 
sequences were found also in cytoplasm where they regulate inflammatory response 
via their interaction with TLR9 receptor [78].

In view of all these facts, the study of telomeres and their homeostasis in 
placenta seems to be crucial for the understanding of pathogenesis in the broad 
spectrum of pregnancy complications.
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Diagnosis Telomere length Telomerase activity

Normal placenta Telomere length is reduced in the course of 
pregnancy; placental telomere length is not 
site-specific [32, 33, 37, 38, 84]

hTERT expression and 
telomerase activity were found 
[47, 49, 84, 85]; telomerase 
activity decreases in the course 
of pregnancy [86–88]

Placenta associated 
with maternal 
diabetes mellitus

Maternal diabetes is associated with longer 
placental telomeres [38]; there is no difference 
in placental telomere length in well-controlled 
diabetes [34, 35]; telomeres are shorter in 
placentas from poorly controlled diabetes [42]

Lower expression of hTERT, 
hTERT-mRNA, lower TERC 
copy number in placentas from 
poorly controlled diabetes [41]

Placenta associated 
with preeclampsia

No differences of telomere length between 
normal placentas and placentas in 
preeclampsia [37, 84]; shorter telomeres, 
more end-to-end telomere aggregates, higher 
telomere aggregates count [43, 44]

Lower expression of hTERT 
[44], abnormal TERC copy 
gene number [39]; higher 
expression of hTERT mRNA 
[50]

Placenta associated 
with IUGR

Shorter telomeres [31, 36, 45]; no difference in 
telomere length [37]

Lower expression of hTERT, 
hTERT-mRNA, lower TERC 
copy number [46, 48, 51–53]

Table 2. 
Summarized data on telomere length and telomerase activity in normal placenta and placenta in case of 
maternal diabetes mellitus, preeclampsia, and IUGR.

111

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

Telomeres and Telomerase Activity in the Human Placenta
DOI: http://dx.doi.org/10.5772/intechopen.86327

Conflict of interest

There are no conflicts of interest.

Abbreviations

FISH fluorescence in situ hybridization
IUGR intrauterine growth restriction
HIF hypoxia induced factor
hTERT human telomere reverse transcriptase = catalytic component of 

telomerase activity
IUGR intrauterine growth retardation
qPCR quantitative polymerase chain reaction
RT-PCR reverse transcriptase polymerase chain reaction
SFE signal free ends
TERC telomerase RNA component gene
TERT telomerase catalytic component gene
TRAP telomeric repeat amplification protocol
TRF terminal restriction fragment

Author details

Marie Jirkovská*, Marie Korabečná and Soňa Laššáková
First Faculty of Medicine, Charles University, and General University Hospital in 
Prague, Prague, Czech Republic

*Address all correspondence to: mjirk@lf1.cuni.cz



Telomerase and non-Telomerase Mechanisms of Telomere Maintenance

110

Maternal diabetes mellitus, preeclampsia as well as IUGR do not only complicate 
pregnancy but are also taken as causes of adverse outcomes for individuals later in 
postnatal period. Further investigation of the effect of factors influencing telomere 
length and telomerase activity may contribute to better understanding of those links. 
The placental DNA is identical to the DNA of fetal cells and the period of its existence 
equal to the prenatal period of the fetus spent in the same maternal environment. As 
telomeres are susceptible to external conditions of maternal milieu (i.e., oxidative 
stress, reactive oxygen species, exogenous genotoxic insults), those epigenetic influ-
ences may accelerate their shortening [94]. Prospective studies in experimental models 
and of course in long-time prospective studies in human should elucidate if there is a 
relation of final telomere length in placentas at term and newborn and if the measure-
ment of placental telomere length could have a predictive potential for individual.

Recently, the immunomodulatory role of telomeric sequences was recognized 
[78, 95]. Telomeric sequences originated from trophoblasts may circulate in the pool 
of cell-free DNA in maternal plasma and contribute to timing of parturition [26] by 
stimulation of maternal immune response against placenta. The role of telomeric 
sequences contained in cell-free DNA in plasma of healthy persons in the regulation 
of immune system performance was also described [95]. Additionally, the telomeric 
sequences were found also in cytoplasm where they regulate inflammatory response 
via their interaction with TLR9 receptor [78].

In view of all these facts, the study of telomeres and their homeostasis in 
placenta seems to be crucial for the understanding of pathogenesis in the broad 
spectrum of pregnancy complications.
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