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Preface

Wearable technologies are networked devices equipped with microchips and 
sensors, capable of tracking and wirelessly communicating information in real 
time. The rapid adoption of such devices in the past decade has made them the 
most attractive innovation in the word of technology. From fitness activity trackers 
to Google Glass, miniaturized wearable devices have shown great potential to be 
embedded in various domains including healthcare, robotic systems, prosthetics, 
visual realities, professional sports, and entertainment and arts. Since their first 
innovation in the 1960s, a wide variety of wearable devices have been developed. 
These include single functional sensors such as temperature, pressure, and strain 
detectors, to multifunctional wearable systems capable of monitoring two or more 
factors simultaneously.

The wearable technologies market is expected to grow 80% from now until 2021, 
with revenue increasing from $220 million to approximately $12 billion. This is 
attributed to the wide variety of services these products can offer potential custom-
ers. For instance, wireless headset technologies, such as Elinka, OldShark, and 
Goodaa Sunglasses, can provide users the ability to enjoy music as well as answer 
phone calls while keeping their hands free during walking, biking, or driving. Fitbit 
fitness watches can continuously monitor heart rate, track activity, and even pro-
vide on-screen workouts with no need to be manually configurated on a daily basis. 
With innovations on the horizon, the future of wearable devices will go beyond 
answering calls or counting our steps to providing us with sophisticated wearable 
gadgets capable of addressing fundamental and technological challenges.

This book investigates the development of wearable technologies across a range of 
applications from educational assessment to health, biomedical sensing, and energy 
harvesting. Furthermore, it discusses some key innovations in micro/nano fabrica-
tion of these technologies, their basic working mechanisms, and the challenges 
facing their progress.

Dr Noushin Nasiri
Head of NanoTech Laboratory,

School of Engineering,
Faculty of Science and Engineering,

Macquarie University,
Sydney NSW, Australia
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Chapter 1

Introductory Chapter: Wearable 
Technologies for Healthcare 
Monitoring
Noushin Nasiri

1. Introduction

Wearable technologies are becoming increasingly popular as personal health 
system, enabling continuous real-time monitoring of human health on a daily basis 
and outside clinical environments [1–3]. The wearable device market is currently 
having a worldwide profit of around $34 billion and is expected to reach above $50 
billion by 2022 owing to wearables’ ease of use, flexibility, and convenience [4]. 
Real-time monitoring, operational efficiency, and fitness tracking are reported 
as main factors supporting the market growth of health wearable devices such as 
smart watches, smart glasses, and other wellness gadgets, with expected $12.1 bil-
lion world market by 2021 [5].

In the past decade, the recent progress in developing wearable devices was more 
focused on monitoring physical parameters, such as motion, respiration rate, etc. 
[3, 6, 7]. Today, there is a great interest in evolving wearable sensors capable of 
detecting chemical markers relevant to the status of health. Different approaches 
have been applied by researchers to design and fabricate wearable biosensors for 
remote monitoring of metabolites and electrolytes in body fluids including tear, 
sweat, and saliva [3, 8–10]. A great example would be the development of small and 
reliable sensors that would allow continuous glucose monitoring in diabetic patients 
[11, 12]. Diabetes is a chronic disease that can significantly impact on quality of 
life and reduce life expectancy. However, diabetics can stay one step ahead of the 
disease by monitoring their blood glucose level to minimize the complication of the 
disease by proper administration of insulin. Currently, blood analysis is the gold 
standard method for measuring the level of glucose in patient’s blood. However, this 
technique cannot be applied without penetrating the skin, which can be painful and 
inconvenient, and requires user obedience. Therefore, current research focuses on 
the development of portable and wearable devices capable of continuous glucose 
sensing through noninvasive detection techniques.

2. Tear analysis

A majority of the recent studies in this field have targeted the area of personal-
ized medicine, endeavoring to develop miniaturized wearable devices featuring 
real-time glucose monitoring in diabetic patients [12–15]. One great example is 
contact lens which is an ideal wearable device that can be worn for hours without 
any pain or discomfort [16]. Integration of glucose biosensors into contact lenses 
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has recently been demonstrated by several research groups [9, 17, 18]. However, the 
level of glucose in tear fluid is very low (0.1–0.6 mM), requiring a high sensitivity 
of the sensor for picking up the signal from expected chemical reaction [3, 19]. Yao 
et al. [16] have fabricated a contact lens with integrated sensor for continuous tear 
glucose monitoring with wireless communication system over a distance of several 
centimeters. The sensor demonstrated a fast response of 20 s with a minimum 
detection of less than 0.01 mM glucose, which is 10–60 times lower than glucose 
level in human tear [16].

In addition to glucose, lactate is an important metabolite in the human body, 
which gets converted into l-lactate under hypoxic condition [20]. l-Lactate levels 
in tear fluid is about 1–5 mmol L−1, which might increase significantly due to some 
heath conditions including ischemia, inadequate tissue oxygenation, stroke, and 
different types of cancer [21]. Thomas et al. [22] demonstrated an invasive detec-
tion of lactate in human tear by integrating an amperometric lactate sensor with Pt 
working (WE) and reference (RE) electrodes as well as a counter electrode (CE) as 
current drain, on a polymer-based contact lens, measuring lactate in situ in human 
tears without any need for physical sampling [22].

Very recently, Park et al. [17] reported a novel approach for fabricating fully 
transparent and stretchable smart contact lens capable of wirelessly monitoring 
the level of glucose in the tears of diabetic patients. Figure 1 shows the layout of 
fabricated devices made of glucose sensors, wireless circuit, and display pixel 
on soft and transparent contact lens substrate (Figure 1a and b). The circuit 
diagram of the device is illustrated in Figure 1a, with radio frequency antenna 
receiving signals from a transmitter and a rectifier converting the signals to DC 
(Figure 1a and c). A continuous network of ultralong Ag nanofibers was used 
as stretchable electrodes for the antenna and interconnects (Figure 1d). In the 
case of any change in the concentration of glucose in tear, the sensor resistance 
changes resulting in the light-emitting diode (LED) pixel turning on or off. 
The device was tested in vitro using a live rabbit, providing substantial finding 
for smart contact lenses as one of the promising wearable devices in healthcare 
system [17].

Figure 1. 
(a) (i) Schematic illustration and (ii) operation of the soft, smart contact lens and (iii) the circuit diagram of 
the smart contact lens system. The soft, smart contact lens is composed of (b) a hybrid substrate; (c) functional 
devices including rectifier, LED, and glucose sensor; and (d) a transparent, stretchable conductor for antenna 
and interconnects [17].
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3. Sweat analysis

In addition to tear, sweat electrolyte concentrations and blood serum are related 
[2, 8]. As one of the most readily accessible human biofluids, a great deal of informa-
tion about the human body and its physical performance could be obtained via moni-
toring sweat electrolyte concentrations [23, 24]. Several groups have reported the key 
biomarkers in human sweat (e.g., sodium level, pH change, lactate concentration) 
relevant to human health and well-being, for monitoring athletic performance during 
sporting activities [25]. Jia et al. fabricated a skin-worn tattoo-based sensor for real-
time monitoring of lactate in human sweat, offering substantial benefits for biomedi-
cal as well as sport applications [25]. In another approach, Curto et al. [26] fabricated 
a wearable and flexible microfluidic platform capable of monitoring changes in the 
sweat pH in real time. Anastasova et al. [27] developed a flexible microfluidic device 
for real-time monitoring of metabolite such as lactate as well as electrolytes such as 
pH and sodium in human sweat. Recently, Gao et al. [28] developed a flexible and 
wearable device (Figure 2) made of arrays of sensors for real-time monitoring of 
heavy metals, such as Zn, Cu, and Hg in human sweat. The device fabrication method 
is presented in Figure 2a, showing the deposition and stripping steps on microelec-
trodes. The sensing mechanism was based on an electrochemical detection of targeted 
heavy metals through four microelectrodes, including Au and Bi working electrodes, 
Ag reference electrode, and an Au counter electrode (Figure 2b and c). The fabricated 
device demonstrated high stability and selectivity toward heavy metals, providing a 
great platform to advancing the field of wearable biosensors for healthcare applica-
tion, via monitoring the level of some heavy metals in human sweat [28]. A balanced 
level of Zn is necessary in the human body as a low and high Zn concentration can 
lead to pneumonia and liver damages, respectively [29, 30]. High level of Cu in the 
human body can lead to several diseases including Wilson’s disease and heart, kidney, 
and liver failures as well as brain diseases [31, 32]. The fabricated device demonstrated 
high stability and selectivity toward heavy metals, providing a great platform to 
advancing the field of wearable biosensors for healthcare application [28].

Figure 2. 
(a) A schematic showing the concept of deposition and stripping on microelectrodes. (b) A schematic showing 
the composition of the microsensor array. (c) Optical image of a flexible sensor array interfacing with a flexible 
printed circuit connector [28].
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4. Saliva analysis

Saliva, as a great diagnostic fluid, can be used in personal health devices for real-
time monitoring of chemical markers including salivary lactate analysis [33]. Chai 
et al. developed a saliva nanosensor with a radio-frequency identification tag, inte-
grated into dental implants for detecting cardiac biomarkers in saliva and predicting 
close heart attack in patients suffering from cardiovascular diseases [34]. In another 
approach, an instrumented mouthguard was designed and fabricated by Kim et al. 
[35] for measuring salivary uric acid levels which could be a biomarker for several 
diseases including hyperuricemia, gout, physical stress, and renal syndrome. The 
fabricated device showed high selectivity and sensitivity to low level of uric acid 
as well as great stability during a 4-h operation period [35]. Mannoor et al. [36] 
developed a hybrid biosensor made of graphene layers printed onto water-soluble 
silk, for noninvasive detection of bacteria through body fluids including sweat and 
saliva. This graphene/silk hybrid device illustrated an extremely high sensitivity to 
bacteria in body fluid with detection limits down to a single bacterium [36]. In addi-
tion, the fabricated device provided the potential users with battery-free operation 
and wireless communication system via radio frequency [36]. Arakawa et al. [37] 
designed and fabricated a salivary sensor equipped with a wireless measurement 
system, embedded onto a mouthguard support, featuring a high sensitivity toward 
detection of glucose over a range of 5–1000 μmol L−1. The device demonstrated a 
great stability during a 5-h real-time glucose monitoring period in an artificial saliva 
with a phantom jaw [37]. In a similar approach, de Castro et al. [38] developed 
a microfluidic paper-based device integrated into a mouthguard, for continues 
monitoring of glucose and nitrite in human saliva. The saliva samples were collected 
from periodontitis and/or diabetes patients as well as healthy individuals. The 
fabricated device featured a low detection limit of 27 and 7 μmol L−1 for glucose and 
nitrite, respectively [38].

5. Summary

In summary, there is a great potential for micro- and nanosensors’ integration 
into healthcare monitoring devices, developing new technologies for noninvasive 
detection of diseases in the human body. Flexible wearable devices offer promising 
capabilities in real-time monitoring of body fluids including tear, sweat, and saliva. 
However, more research is required to expand the use of wearable platforms in 
continuous analysis of body fluids, providing reliable real-time detection of target-
ing ions and proteins, among other complex analytes.
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In summary, there is a great potential for micro- and nanosensors’ integration 
into healthcare monitoring devices, developing new technologies for noninvasive 
detection of diseases in the human body. Flexible wearable devices offer promising 
capabilities in real-time monitoring of body fluids including tear, sweat, and saliva. 
However, more research is required to expand the use of wearable platforms in 
continuous analysis of body fluids, providing reliable real-time detection of target-
ing ions and proteins, among other complex analytes.
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Noninvasive Acquisition of the 
Aortic Blood Pressure Waveform
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and Paul Annus

Abstract

Blood pressure reflects the status of our cardiovascular system. For the mea-
surement of blood pressure, we typically use brachial devices on the upper arm, 
and much less often, the radial devices with pressure sensors on the wrist. Medical 
doctors know that this is an unfortunate case. The brachial pressure and even more, 
the radial pressure, both are poor replacements for the central aortic pressure 
(CAP). Moreover, the devices on the market cannot provide continuous measure-
ments 24 h. In addition, most of the ambulatory and wearable monitors do not 
enable acquisition of the blood pressure curves in time. These circumstances limit 
the accuracy of diagnosing. The aim of this chapter is to introduce our experiments, 
experiences and results in developing the wearable monitor for central aortic 
blood pressure curve by using electrical bioimpedance sensing and measurement. 
First, electronic circuitry with embedded data acquisition and signal processing 
approaches is given. Second, finding appropriate materials, configurations and 
placements of electrodes is of interest. Third, the results of modelling and simula-
tions are discussed for obtaining the best sensitivity and stability of the measure-
ment procedures. Finally, the discussion on the provided provisional experiments 
evaluates the obtained results. The conclusions are drawn together with the need for 
further development.

Keywords: blood pressure waveform, central aortic pressure, cardiovascular system, 
medical indications, diagnosing, electrical impedance, bioimpedance-based  
sensing, modelling, simulation, signal processing, transfer function, 
noninvasive measurements, electrodes, wearable devices

1. Introduction

Hypertension, one of the most common medical disorders, “silent killer” and 
tremendous global burden, is often overlooked until otherwise healthy individual 
has a regular health check and the doctor discovers that the blood pressure (BP) is 
too high. What does it mean? Typically, it means that the systolic blood pressure 
(SBP) is over 140 mmHg and diastolic blood pressure (DBP) is over 90 mmHg. This 
probably implies that the heart is under huge load and it can soon wear out causing 
cardiovascular diseases (CVD). Systolic pressure indicates how much pressure the 
blood is exerting against artery walls when the heart beats. Diastolic blood pres-
sure shows how much pressure is exerted while the heart is in a resting condition 
between the beats. As large arteries start to stiffen with age, it is normal that SBP 
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1. Introduction

Hypertension, one of the most common medical disorders, “silent killer” and 
tremendous global burden, is often overlooked until otherwise healthy individual 
has a regular health check and the doctor discovers that the blood pressure (BP) is 
too high. What does it mean? Typically, it means that the systolic blood pressure 
(SBP) is over 140 mmHg and diastolic blood pressure (DBP) is over 90 mmHg. This 
probably implies that the heart is under huge load and it can soon wear out causing 
cardiovascular diseases (CVD). Systolic pressure indicates how much pressure the 
blood is exerting against artery walls when the heart beats. Diastolic blood pres-
sure shows how much pressure is exerted while the heart is in a resting condition 
between the beats. As large arteries start to stiffen with age, it is normal that SBP 
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rises; but for every 20 mmHg systolic or 10 mmHg diastolic increase in BP, there is a 
doubling of mortality from ischemic heart disease and stroke [1].

1.1 Why an aortic pressure?

Brachial cuff sphygmomanometer is widely used to assess the pressure parameters 
for both, diagnosis and treatment decisions. This is unfortunate, as we have known 
for over a half a century that brachial pressure is a poor surrogate for central aortic 
pressure (CAP), which is invariably lower than corresponding brachial values [2]. It is 
quite logical that CAP represents the true load imposed on the heart and large arteries 
rather than the brachial [3], but there are many reasons why we are still so stuck in old 
methods. For example, lack of proper guidelines for alternative technologies (nonin-
vasive and nonocclusive) which are not standardised as brachial pressure assessment 
with oscillometric devices are. This makes it hard to trust the new ones. In addition, 
the cuff method is easy and quick for the doctors to execute. There is still a lot of 
work to do to prove that the cardiovascular (CV) risk stratification and monitoring 
response to therapy are better when based on central rather than brachial pressure [2].

Profound study on accuracy of cuff-measured blood pressure was conducted in 
2017, and they found that, on average, cuff BP underestimates intraarterial brachial 
systolic BP by 5.7 mmHg and overestimates diastolic systolic BP by 5.5 mmHg [4, 5]. 
This means that the real load on the heart is often unknown and wrongly evaluated 
causing questionable treating decisions. In addition, the systolic and diastolic pres-
sures shown only as two numbers do not reflect the situation of the patient as well as 
a real-time and continuous aortic pressure waveform. Continuous aortic waveform 
provides important information about derived parameters, which are intrinsically 
created by the pulse pressure profile, like left ventricular stroke volume, cardiac 
output, vascular resistance and pulse pressure variations in real time [6].

If we are talking about different devices and methods to assess BP, the invasive 
intraarterial catheterization (“gold standard”) is undoubtedly the most accurate 
and reliable technique to consider, providing continuous and beat-by-beat reading 
of blood pressure variations. During cardiac catheterization to diagnose CV condi-
tion and at the same time to measure the pressure directly in the aorta, a thin tube is 
inserted into an artery (radial, femoral or brachial) and threaded to the heart. Albeit 
major complications are uncommon, the procedure can cause infections, nephropa-
thy, cholesterol emboli, local vascular injury, hematoma and arteriovenous fistula 
[7]. Unfortunately, this procedure is not feasible for daily use, as it is technically 
demanding and costly, requiring well-trained personnel. Preventing hypertension 
would be much more efficient if we could observe the BP during people’s everyday 
life. When a doctor has a suspicion that the patient has hypertension, they do the 
ambulatory BP monitoring. The patient gets the brachial sphygmomanometry 
device for 24-h home monitoring to measure the blood pressure by inflating the cuff 
multiple times per day and during the night. In addition to the fact that cuff mea-
surement variably under- or overestimates SBP at the aorta [5], the measurement is 
very uncomfortable for long-time recording due to pressing the blood flow shut.

1.2 What are the alternatives?

Karamanoglu et al. presented in 1993 that it is possible to use transfer function 
between the ascending aorta and the brachial or radial artery to estimate central 
(aortic) blood pressure (CAP) [8]. This work opened the door for noninvasive 
method called applanation tonometry. Currently it has the widest application in 
devices that perform pulse wave analysis and assessment of aortic pressure waveform 
[9]. Tonometry sensor probe flattens the artery so that transmural forces within the 
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vessel wall are perpendicular to the arterial surface to measure pressure transmit-
ted through the skin [10]. Preferred measuring site is often the radial artery, as the 
measurements are more easily reached when there is a firm base under the soft artery 
(radius bone under radial artery). One of the earliest arterial tonometry apparatus 
on the market that is clinically approved by the US Food and Drug Administration 
(FDA) is SphygmoCor by AtCor Medical, Sydney, Australia [11]. SphygmoCor was 
also the first device that used the general transfer function to estimate CAP wave-
form from peripheral arteries [12]. It uses pencil-like sensor that is pressed against 
the artery by trained healthcare professional, but a number of limitations occur. 
Firstly, due to manual positioning of the tonometer over the artery, the readings can 
be operator dependent. Secondly, it can be difficult to obtain high-quality pulse in 
some subjects with lower blood pressure or with obesity. Thirdly, tonometry requires 
calibration with brachial cuff technique, and finally, the blood vessel is flattened 
against the bone and possibly disturbing the blood flow [11, 13].

There are not many reliable ambulatory devices that could measure the aortic 
pressure or aortic pressure waveform in 24 h. Operator-independence would be a 
tremendous step forward in assessing patients with prehypertension, as evaluating 
patient’s BP change during the day and night gives a good insight into the scope of the 
disease. BPro (HealthSTATS International, Singapore) is a wristwatch-type BP sensor 
that has come strongly into the market lately. It acquires radial pressure waveform 
through automated radial tonometry, and the software estimates aortic pressure 
values using N-point moving average method, but it does not provide an aortic 
waveform [14]. This wearable device is not fully accepted in regular clinical work as 
the accuracy and reliability are still unclear. Study by Harju et al. discovered inaccu-
rate readings [15] when comparing the BPro device with standard invasive monitor-
ing, based on recommendations by the Association for the Advancement of Medical 
Instrumentation (AAMI). On a Bland-Altman plot, the bias and precision between 
these two methods was 19.8 ± 16.7 mmHg [15]. So there is a room for development, 
especially in the world of wearables that measure blood pressure. Even though there 
are numerous different methods established already, it is not an easy task to tackle.

2. Bioimpedance-based sensing

Another, less known technique to derive a blood pressure-related waveform 
from the radial artery is bioimpedance. Small current is applied to the interested site 
through electrodes, and a voltage difference is measured (Figure 1). Bioimpedance 
is calculated from the exerted current and measured voltage, which gives us the 
change of the impedance during cardiac cycle. With each heartbeat, the volume of 
the blood changes under the electrodes, and it reflects in impedance curve which 
corresponds to blood pressure waveform. The measurement site is often the radial 
artery, because the signal source is closest to the skin. Our workgroup has discov-
ered that similarly with tonometer, applying the developed general transfer func-
tion to the measured signal, we can assess central aortic blood pressure at least as 
well as with tonometry device.

Bioimpedance sensing does not need strong pressure on the artery, as it is with 
tonometry, only a permanent electrical contact is required. Therefore, the worry of 
affecting the blood circulation with the measurement procedure falls off in a large 
extent—the measurements become more passive. The first papers that suggested 
the viability of bioimpedance measurements for pressure assessment circulated 
already in the 1980s. Herscovici and Roller [16] proposed in 1986 a possibility to 
determine the mean arterial pressure with impedance plethysmography by attaching 
four conductive Velcro electrodes to the regular blood pressure cuff. The algorithm 
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rises; but for every 20 mmHg systolic or 10 mmHg diastolic increase in BP, there is a 
doubling of mortality from ischemic heart disease and stroke [1].

1.1 Why an aortic pressure?
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1.2 What are the alternatives?

Karamanoglu et al. presented in 1993 that it is possible to use transfer function 
between the ascending aorta and the brachial or radial artery to estimate central 
(aortic) blood pressure (CAP) [8]. This work opened the door for noninvasive 
method called applanation tonometry. Currently it has the widest application in 
devices that perform pulse wave analysis and assessment of aortic pressure waveform 
[9]. Tonometry sensor probe flattens the artery so that transmural forces within the 
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also the first device that used the general transfer function to estimate CAP wave-
form from peripheral arteries [12]. It uses pencil-like sensor that is pressed against 
the artery by trained healthcare professional, but a number of limitations occur. 
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be operator dependent. Secondly, it can be difficult to obtain high-quality pulse in 
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values using N-point moving average method, but it does not provide an aortic 
waveform [14]. This wearable device is not fully accepted in regular clinical work as 
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rate readings [15] when comparing the BPro device with standard invasive monitor-
ing, based on recommendations by the Association for the Advancement of Medical 
Instrumentation (AAMI). On a Bland-Altman plot, the bias and precision between 
these two methods was 19.8 ± 16.7 mmHg [15]. So there is a room for development, 
especially in the world of wearables that measure blood pressure. Even though there 
are numerous different methods established already, it is not an easy task to tackle.

2. Bioimpedance-based sensing

Another, less known technique to derive a blood pressure-related waveform 
from the radial artery is bioimpedance. Small current is applied to the interested site 
through electrodes, and a voltage difference is measured (Figure 1). Bioimpedance 
is calculated from the exerted current and measured voltage, which gives us the 
change of the impedance during cardiac cycle. With each heartbeat, the volume of 
the blood changes under the electrodes, and it reflects in impedance curve which 
corresponds to blood pressure waveform. The measurement site is often the radial 
artery, because the signal source is closest to the skin. Our workgroup has discov-
ered that similarly with tonometer, applying the developed general transfer func-
tion to the measured signal, we can assess central aortic blood pressure at least as 
well as with tonometry device.

Bioimpedance sensing does not need strong pressure on the artery, as it is with 
tonometry, only a permanent electrical contact is required. Therefore, the worry of 
affecting the blood circulation with the measurement procedure falls off in a large 
extent—the measurements become more passive. The first papers that suggested 
the viability of bioimpedance measurements for pressure assessment circulated 
already in the 1980s. Herscovici and Roller [16] proposed in 1986 a possibility to 
determine the mean arterial pressure with impedance plethysmography by attaching 
four conductive Velcro electrodes to the regular blood pressure cuff. The algorithm 
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applied to find the central pressure value showed a good correlation between direct 
measurement of intra-aortic pressure curve and indirect impedance signal. In 1994, 
Rudolf A. Hatschek [17] patented a blood pressure measuring device and method, 
which allows to make measurements in a noninvasive manner. He explains that the 
blood pressure can be determined relatively accurately by obtaining two different 
values: blood volume, as a variable that changes periodically over time in the rhythm 
of the pulse beat, and a pulse wave velocity. By linking these two values together, it 
is possible to form at least one blood pressure value or its change (systolic pressure, 
diastolic pressure or the average blood pressure). Among other proposed possibilities 
as light waves, ultrasonic waves and magnetic/electrical induction, Hatschek sug-
gests to configure the device so that it determines the changing blood volume in the 
measuring region of a body part with the electrical impedance. Japanese workgroup’s 
patent application [18] was published in 2010 for a device that measures the pulse 
wave of a radial artery and among other parameters as cardiac load and hardness 
of artery, also a blood pressure value derived from the pulse wave of the artery. The 
device consists of four electrodes placed on a cuff, and it detects the blood volume 
fluctuation of the radial artery as the variations in electrical bioimpedance (EBI) to 
acquire the volume pulse wave. Solà et al. presented in 2011 a pilot study [19], where 
they provided first experimental evidence that electrical impedance tomography 
(EIT) is capable of measuring pressure pulses directly within the descending aorta. 
Their research measures the impedance on the thorax, not on the arm or wrist, but 
the study supports, nevertheless, the idea of central aortic pressure assessment with 
bioimpedance. Recently, He et al. published a promising paper [20] in 2016, which 
discusses pulse wave detection method based on the bioimpedance of the arteria 
radialis. The aim of this paper is to analyse the impedance pulse wave to obtain 
the pulse rate, but refers also to the central aortic pressure waveform. A number 
of researchers have had analogs thoughts and promising results, and a number of 
scholars have had practical results in improvement of the EBI-based measurements 
of aortic pressure curve. At the same time, the development of corresponding 
devices for clinical practice is still not significant. Nevertheless, the interest to get a 
blood pressure measurement device that relies on bioimpedance is still very topi-
cal. Especially, when the big corporate, Microsoft Technologies, got their patent 
published in 2018 for a wearable system that determines a pulse waveform based on 
bioimpedance measurement device together with pressure transducer [21].

2.1 Bioimpedance measurement device

For the measurement of bioimpedance variations (bio-modulation) at the wrist on 
top of the radial artery, a wearable device was designed. The work principle consists 
of generating a single-frequency sinewave from an excitation current source through 
the impedance and detecting the voltage response to it synchronously with excitation 

Figure 1. 
Four electrodes placed on the radial artery and the cross-section of the wrist.
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current (lock-in demodulation). A 12-bit digital-to-analog converter (DAC) generates 
the constant value excitation current in the frequency range from 1 to 100 kHz from a 
digital waveform, and a differential input instrumentation amplifier picks up the voltage 
response from the impedance. A two-phase (o and 90°) synchronous rectifier demodu-
lates and separates the response voltage VRES into real (Re) and quadrature (Im) com-
ponents. Two 32-bit analog-to-digital converters (ADC) digitise both the components 
for further signal processing and communication. The simplified block diagram of the 
device is given in Figure 2. Figures 3 and 4 show a photo of the prototyped solution.

Experimental circuitry uses the state-of-the-art linear technology/analog devices 
LTC2508-32 32-bit over-sampling ADC, which is reasonably low-noise and low-power 
micro device, containing embedded configurable filter for digital averaging and noise 
smoothing. Direct conversion of the impedance signal is not possible anymore, since 
the high-resolution 32-bit ADC’s are relatively slow. Classical synchronous demodula-
tors were introduced in the path, and only the slowly varying bio-modulation ΔZ(t) 
was left for the ADC instead of the high-frequency measurement signal.

The device was designed to have very low energy consumption, small footprint 
and good connectivity, all essential parameters for the wearable use. Bluetooth 
Low Energy (BLE) Version 4.0+ was used for the connectivity with host devices, 
and the power was supplied from the lithium-ion (Li-ion) battery. USB connection 
switches on only during charging the internal energy source. AVR microcontroller 
ATXMEGA256A3U with low energy consumption handled all the computing and 
communication tasks on the module.

2.2 Design consideration for a measurement system

The value of the measured bioimpedance Z is varying, but the base value of it, 
Z0, is huge compared to the information carrying modulation ΔZ(t) (see Eq. (1) 

Figure 2. 
Block diagram of the measurement device.

Figure 3. 
The prototyped version of a wearable impedance measurement device.
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current (lock-in demodulation). A 12-bit digital-to-analog converter (DAC) generates 
the constant value excitation current in the frequency range from 1 to 100 kHz from a 
digital waveform, and a differential input instrumentation amplifier picks up the voltage 
response from the impedance. A two-phase (o and 90°) synchronous rectifier demodu-
lates and separates the response voltage VRES into real (Re) and quadrature (Im) com-
ponents. Two 32-bit analog-to-digital converters (ADC) digitise both the components 
for further signal processing and communication. The simplified block diagram of the 
device is given in Figure 2. Figures 3 and 4 show a photo of the prototyped solution.

Experimental circuitry uses the state-of-the-art linear technology/analog devices 
LTC2508-32 32-bit over-sampling ADC, which is reasonably low-noise and low-power 
micro device, containing embedded configurable filter for digital averaging and noise 
smoothing. Direct conversion of the impedance signal is not possible anymore, since 
the high-resolution 32-bit ADC’s are relatively slow. Classical synchronous demodula-
tors were introduced in the path, and only the slowly varying bio-modulation ΔZ(t) 
was left for the ADC instead of the high-frequency measurement signal.

The device was designed to have very low energy consumption, small footprint 
and good connectivity, all essential parameters for the wearable use. Bluetooth 
Low Energy (BLE) Version 4.0+ was used for the connectivity with host devices, 
and the power was supplied from the lithium-ion (Li-ion) battery. USB connection 
switches on only during charging the internal energy source. AVR microcontroller 
ATXMEGA256A3U with low energy consumption handled all the computing and 
communication tasks on the module.

2.2 Design consideration for a measurement system

The value of the measured bioimpedance Z is varying, but the base value of it, 
Z0, is huge compared to the information carrying modulation ΔZ(t) (see Eq. (1) 
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Figure 5. 
Measured bioimpedance values on top of the radial artery on the Nyquist diagram [23].

in Chapter 3.1). Several observations can be drawn from the generalized measure-
ment results in Figure 5. The first observation is that the greyish, slightly smeared 
information carrying signal, ΔZ(t), is tiny compared to the base value Z0 of the 
acquired bioimpedance. Next, the imaginary part Im Z of the impedance vector Z 
is nearly 10 times smaller than the real part Re Z. Third, the modulation is roughly 
in the direction of the vector of the impedance base value Z0. The conclusion is that 
the role of Im Z is low, and less attention can be paid into the accuracy of the vector 
measurements when designing the device, especially the synchronous detector of it. 
A root problem in designing a suitable electronics is whether to use analog or digital 
realisation of the synchronous detector.

2.3 A novel solution measurement of differences

Certified medical bioimpedance measurement device CircMon BT101, which we 
have been using so far during the clinical studies, employs a carrier (base value Z0) 
compensation method [22]. The biggest drawback of this solution is the complexity 
of both, electronic circuitry and algorithms, for adjusting the compensation signal. 

Figure 4. 
Image of the 32-bit impedance acquisition system prototype.
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Increased energy consumption is a penalty for improvements. The conclusion is that 
a new, more effective solution should be developed.

The difference method has been introduced recently for achieving the same 
result [22, 23]. The main idea behind it lies in digitising of the difference between 
two consecutive samples instead of direct digitalisation of all the samples. It cor-
responds to taking a derivative, mathematically. Since the derivative of the constant 
is zero, the base value Z0 of the impedance Z is eliminated, but the informative 
variations ΔZ(t) are upraised.

The novel test device in Figure 6 contains AVR ATXMEGA microcontroller 
together with BLE 4.0+ module, but instead of high-quality external 32-bit ADC, an 
internal rather noisy low-quality 10-bit-embedded ADC was used.

The acquired signal presents now a derivative of the original biological imped-
ance depicted in Figure 7. The original signal is restored by digital integration 
(Figure 17), which brings in an additional smoothing effect improving the resulting 
signal-to-noise ratio (SNR). At the same time, this integration may well be unneces-
sary in some cases.

Occasionally, one of the signal processing steps after acquiring the impedance 
signal is differentiation for finding certain peculiar points in the waveform. The first, 
second and even higher derivatives are used to find and calculate relevant cardiovascu-
lar parameters. In that sense, the acquired impedance signal in Figure 7 is well suited 
without the integration step. The CAP waveform can also be derived directly from the 
derivative of the ΔZ(t). The experiments showed the presence of significant noise and 

Figure 6. 
Block diagram of the derivative bioimpedance signal acquisition system.

Figure 7. 
The differenced bioimpedance signal dZ(t) measured by 10-bit ADC in numberic value range from −128 to 
+256. The measured waveform is smoothed by the third-order Savitzky-Golay filter within 10 sidepoints.
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disturbance when making provisional experiments with simple stainless steel elec-
trodes [24], and the role of movement artefacts was highly troubling. This implies that 
the electrode design must be considered more seriously in further research.

3. Electrodes

Electrodes play a crucial role in bioimpedance measurements. The sensitivity 
to tiny impedance changes, as well as stability and repeatability of measurements 
depend on the quality of the electrodes. Bioimpedance variability during cardiac 
cycle is usually measured with two pairs of electrodes: two current-injecting elec-
trodes and two voltage-sensing electrodes. This configuration cancels out electrode 
polarisation impedances and reduces dramatically the influence of skin-electrode 
contact resistance. However, quite frequently we cannot see this advantage, and 
the electrode-skin contact impedance remains prominent exceeding the actual 
bioimpedance of interest, which greatly affects the end signal quality [25]. This is 
especially important when measuring heartbeat-associated impedance variations 
from the wrist area, where they are minuscule (order of mΩ). Choosing appropriate 
electrodes increases the correct result probability, but the top skin layer (stratum 
corneum) against the electrode is very dry and badly conductive making electrode 
design extremely complicated. The main type to consider for bioimpedance mea-
surements is disposable non-polarizable and pre-gelled silver/silver chloride (Ag/
AgCl) electrodes. Pre-gelled electrodes have usually the lowest skin-electrode 
impedance, low motion artefacts and low noise level [26]. Unfortunately, as they 
are suitable for single use only, we do not consider them for wearable devices. Dry 
electrodes are a more prospective choice, but due to lack of gel between the skin and 
the electrode, there exists a significant capacitive layer, which increases the total 
impedance and the probability of motion artefacts [27].

3.1 Electrode placements and materials

The total impedance Z of the wrist consists of the invariable basal impedance Z0 
and a variable part ΔZ(t) that is caused by the pulse wave. As a result, the imped-
ance expresses as

  Z (t)  =  Z  0   + ∆ Z (t)   (1)

In order to detect the cardiac activity, the interesting variable is the ΔZ(t), 
assumedly reflecting the volume change of pulsating blood in arteries. A custom-
made flexible electrode (Figure 8a and b) was used, positioned distally (Figure 8c) 
and circularly (Figure 8d) on top of the location of the radial artery.

Suitable materials for electrodes must be found and thoroughly tested for truly 
unobtrusive and reliable pervasive monitoring. Easy applicability is paramount. They 
should not irritate the skin; their parameters should stay reasonably unchanged dur-
ing the acquisition cycle and should be insensitive to motion-induced stress.

In order to evaluate the effect of distal and circular placement of electrodes on the 
radial artery to the measured values of Z and ΔZ(t), the experiments were carried 
out having the excitation signal with the amplitude of 500 mV in the frequency range 
of 10–5000 kHz. The results are visible on Figure 9. The ΔZ(t) is few times higher in 
the case of longitudinal placement of electrodes (Figure 9a, red line) than in the case 
of transverse placement (Figure 9a, blue line). The total impedance Z is on average 
about 2.7 Ω higher in the case of transverse placement than in the case of longitudinal 
placement. When Z is decreasing with frequency, the ΔZ(t) is maintaining its relative 
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Figure 8. 
Dimensions (a), design (b), and placement of a custom-made flexible four-electrode system in the case of a 
distal (c) and circular (d) locations on the wrist, where the thick red line denotes the approximate location of 
the radial artery (reprinted from [27]).

Figure 9. 
Frequency response of measured (a) ΔZ(t) and (b) Z of the wrist in the cases of distal and circular placements 
of the electrodes.
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disturbance when making provisional experiments with simple stainless steel elec-
trodes [24], and the role of movement artefacts was highly troubling. This implies that 
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impedance, low motion artefacts and low noise level [26]. Unfortunately, as they 
are suitable for single use only, we do not consider them for wearable devices. Dry 
electrodes are a more prospective choice, but due to lack of gel between the skin and 
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ance expresses as

  Z (t)  =  Z  0   + ∆ Z (t)   (1)
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out having the excitation signal with the amplitude of 500 mV in the frequency range 
of 10–5000 kHz. The results are visible on Figure 9. The ΔZ(t) is few times higher in 
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of transverse placement (Figure 9a, blue line). The total impedance Z is on average 
about 2.7 Ω higher in the case of transverse placement than in the case of longitudinal 
placement. When Z is decreasing with frequency, the ΔZ(t) is maintaining its relative 

19

Noninvasive Acquisition of the Aortic Blood Pressure Waveform
DOI: http://dx.doi.org/10.5772/intechopen.86065

Figure 8. 
Dimensions (a), design (b), and placement of a custom-made flexible four-electrode system in the case of a 
distal (c) and circular (d) locations on the wrist, where the thick red line denotes the approximate location of 
the radial artery (reprinted from [27]).

Figure 9. 
Frequency response of measured (a) ΔZ(t) and (b) Z of the wrist in the cases of distal and circular placements 
of the electrodes.
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Figure 10. 
Modified dimensions of the standard ECG electrodes in utilised four-electrode system (a) and the placement on 
the wrist in distal (b) and circular configuration (c and d), where the thick red line denotes the approximate 
location of the radial artery (reprinted from [27]).

value regardless of the excitation frequency. We can say that the longitudinal place-
ment of electrodes possesses better results concerning the monitoring of cardiac 
activity in the wrist by using the prepared flexible electrode [28].

In order to verify the results of the custom-made electrode system, a similar 
research was performed by using the standard Ag/AgCl electrodes with foam tape 
(Type 2228 of 3M Health Care). Electrode dimensions were reduced physically 
(Figure 10a) and placed on the wrist distally (Figure 10b) and circularly (Figure 10c 
and d). The results in the case of distal placement of Ag/AgCl gel electrodes confirm 
the outcome of the results obtained with the custom-made electrodes.

Another custom-made electrode material was tested to try to improve the signal 
acquisition. Highly conductive carbon-based fillers added to the soft and flexible 
polydimethylsiloxane (PDMS) or silicone rubber matrix make a prospective dry 
electrode material. These fillers can be carbon nanotubes (CNTs), carbon nanofi-
bres (CNFs), carbon fibres (CFs) and carbon black (CB). Previous researches have 
shown that these composites are biocompatible, and the existence of sweat and 
long-term wearing has little influence on the performance [27, 29]. We have devel-
oped a CNF/CF-PDMS material that could be used as electrodes for our wearable 
bioimpedance device due to its softness and stretchability [30]. Stratum corneum 
has very high impedance due to a large number of dead skin cells. Our hypothesis is 
that the developed electrode material can overcome this problem because the long 
fibres of carbon inside the silicone are sticking out and pressing a little bit into the 
skin layer (Figure 11).

We compared three different sets of electrodes: (a) Ag/AgCl gel electrodes, (b) 
carbon nanofibre electrodes (CNF-PDMS) and (c) carbon nanofibre together with 
carbon fibre electrodes (CNF/CF-PDMS). We abraded the skin slightly with a rough 
cloth for a better contact and placed the material on the wrist to register impedance 
variability with MFLI Lock-In amplifier (Zürich Instruments) on the frequency of 
1o kHz. The results are shown on Figure 12. Pre-gelled commercially available elec-
trodes showed good clean signal with impedance change of 0.1%. As skin-electrode 
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contact is worse, the CNF-PDMS and CNF/CF-PDMS soft electrodes gave slightly 
noisier signal, but the impedance change is clearly visible.

During these preliminary experiments, we could conclude that the CNF/
CF-PDMS electrode material gave more stable results than CNF-PDMS over longer 
period of time. Further work needs to be done to establish whether silicone poly-
mer together with carbon fibre and carbon nanofibre has a prospect to be used as 
electrodes for bioimpedance wearable devices. Also the question of the source of the 
signal arise—in what amount the blood itself contributes to the measured ΔZ(t) and 
in what amount it is caused by the rhythmical compression of tissues nearby [31].

4. Simulations

The development of mathematical and physical models of a haemodynamics 
is of great importance for the cardiovascular research [32]. The model is a simpli-
fied approximation of the real system, which incorporates most of the features. By 
using simulations, it is possible to predict the performance of the instrumentation, 
optimise and minimise the design and cost.

Figure 11. 
Carbon fibre strands sticking out of the base material (CNF/CF-PDMS polymer) (reprinted from [30].

Figure 12. 
Three different impedance signals from the wrist with Ag/AgCl, CNF-PDMS and CNF/CF-PDMS electrodes.
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contact is worse, the CNF-PDMS and CNF/CF-PDMS soft electrodes gave slightly 
noisier signal, but the impedance change is clearly visible.

During these preliminary experiments, we could conclude that the CNF/
CF-PDMS electrode material gave more stable results than CNF-PDMS over longer 
period of time. Further work needs to be done to establish whether silicone poly-
mer together with carbon fibre and carbon nanofibre has a prospect to be used as 
electrodes for bioimpedance wearable devices. Also the question of the source of the 
signal arise—in what amount the blood itself contributes to the measured ΔZ(t) and 
in what amount it is caused by the rhythmical compression of tissues nearby [31].
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The development of mathematical and physical models of a haemodynamics 
is of great importance for the cardiovascular research [32]. The model is a simpli-
fied approximation of the real system, which incorporates most of the features. By 
using simulations, it is possible to predict the performance of the instrumentation, 
optimise and minimise the design and cost.

Figure 11. 
Carbon fibre strands sticking out of the base material (CNF/CF-PDMS polymer) (reprinted from [30].

Figure 12. 
Three different impedance signals from the wrist with Ag/AgCl, CNF-PDMS and CNF/CF-PDMS electrodes.
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Noninvasive sensing instruments for bioimpedance measurement on the radial 
artery are highly sensitive to noise, and small errors on the measured data could 
turn into large mistakes in the final results [33]. In order to optimise the signal 
acquisition of the approach and to understand the impact of arterial pulse propa-
gation to the results, it is reasonable to use modelling and simulation. In addition, 
we can determine the highest sensitivity of bioimpedance sensing on the radial 
artery.

4.1 Simulation of sensitivity distribution for EBI measurement

Sensitivity field is a frequently discussed topic in the impedance measurements. 
The transfer impedance (Ζ) can be approximated as the ration measured between 
the pick-up (PU) couple voltage (E) and the injected current (I) between the 
current-carrying (CC) couple [34].

  Z =   E __ I    (2)

As biological tissue is inhomogeneous, the total measured impedance (Ζ) is the 
sum of all local resistivity (ρ) values of all small sub-volumes in the sample and can 
be written as following [35]:

  Z = ∭ ρ ∙    J  CC   ∙  J  PU   ______  I  CC   ∙  I  PU     d  (3)

The sensitivity (S) of an impedance measurement is the scalar value representing 
the CC current density lines   J  CC    projection on the PU current density lines   J  PU    [35].

  S =    J  CC   ∙  J  PU   ______  I  CC   ∙  I  PU      (4)

S is a positive value if measured impedance Z increases and negative if measured 
impedance Z decreases [35]. The sensitivity field S can be expressed by the follow-
ing equation [36]:

  S =  J  reic  ′   ∙  J  cc  ′    (5)

where   J  cc  
′    is current density and   J  reci  

′    J  reci  
′    reciprocal density.

The sensitivity field in EBI measurements depends on several parameters like 
electrode number and geometry, orientation, configuration and spacing between 
electrode couples. Several configuration strategies have been published and 
researched for EIT applications. Some of these are neighbouring method [37], cross 
method [38], opposite method [33], adaptive method [39] and focused impedance 
measurement (FIM) [40].

4.2 Experimental bioimpedance sensitivity simulation

A finite element modelling (FEM) was used for simulation of four-electrode 
impedance measuring on the human forearm with different setups and configura-
tions between electrode couples. The objective of the study was to describe the 
spatial sensitivity field in order to optimise the bioimpedance measurement acquisi-
tion of haemodynamics [34]. Two most common approaches of electrode place-
ment for EBI measurements on the wrist are distal and circular [28] which are also 
used for simulation. The sensitivity can be represented as a projection of the density 
lines of current-carrying electrode couple on the voltage pick-up density lines, 
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and it describes how effectively different regions are contributing to the measured 
signal (Figure 13) [33]. In Figure 14, the configurations A and C have regions of 
both positive and negative sensitivities, but B (electrodes circularly) detects that 
the radial artery have only positive (or negative) sensitivity [34]. The maximum 
sensitivity is concentrated close to the surface of the forearm, near the artery.

5. Transfer function

The electrical bioimpedance-based method for central aortic pressure waveform 
reconstruction allows long-term monitoring of the CAP and obtaining of haemody-
namic parameters like the augmentation index (AI) [41] (see Figure 15).

Figure 13. 
Simulated current density lines on the wrist (reprinted from [33]).

Figure 14. 
Examples of calculated sensitivity maps obtained for different electrode configurations. Four electrodes are 
placed on the wrist in distal (a and c) and circular (b) configuration. Scaling of the colour map is kept the 
same within each simulation. The sensitivity is shown in the colour map: Positive values are indicated with red 
colour, and negative values are indicated with blue colour (reprinted from [33]).
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and it describes how effectively different regions are contributing to the measured 
signal (Figure 13) [33]. In Figure 14, the configurations A and C have regions of 
both positive and negative sensitivities, but B (electrodes circularly) detects that 
the radial artery have only positive (or negative) sensitivity [34]. The maximum 
sensitivity is concentrated close to the surface of the forearm, near the artery.

5. Transfer function

The electrical bioimpedance-based method for central aortic pressure waveform 
reconstruction allows long-term monitoring of the CAP and obtaining of haemody-
namic parameters like the augmentation index (AI) [41] (see Figure 15).
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To make this possible, the measured EBI waveform is transformed into the wave-
form of CAP, and for that, the transfer function (TF) approach is used (see Figure 16 
for illustration). Over 100 measurements of the EBI and invasive CAP waveforms were 
provided in East-Tallinn Central Hospital (Estonia) to collect data for this research 
work. In the beginning, the EBI measurements were carried out using a wireless 
multichannel impedance cardiograph CircMon BT101 [22] with additional channel 
for simultaneous acquiring of invasively measured CAP data using the PVB’s XTRANS 
pressure sensor.

One possible algorithm for estimating a generic TF between the EBI and CAP 
waveforms (Figures 17 and 18) is a period-wise estimation of individual transfer 
functions for each patient and ensemble averaging to get a generic TF [42]. Another 
approach is to use adaptive algorithm to find a generic TF directly by matching all 
available patients’ signals [43]. Both approaches give similar generic TF between the 
EBI and CAP of cardiac cycle waveforms. Despite the efforts made, the problems 
related to removing the artefacts remain. This causes corruption of the recon-
structed CAP waveform due to the fact that all uncleaned artefacts are transformed 
into the reconstructed CAP. Regardless of that, the EBI signal-based noninvasive 

Figure 15. 
Finding of augmentation index (AI) from the CAP waveform with diastolic and systolic pressures DP and SP 
accordingly, the CAP waveform is a sum of the forward (green line) and reflected (light red) pressure waves.

Figure 16. 
Demonstration of the CAP cycle reconstruction with transfer function (TF) from the EBI cardiac cycle 
waveform.

Figure 17. 
The impedance variation ΔZ(t), obtained by integration of dZ(t)/dt wave (Figure 7) using trapezoidal 
method with dt = 0.0025 s and scaling the amplitude by factor of 20.
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estimation of the central aortic blood pressure waveform is still highly promising 
alternative to the applanation method.

6. Summary

Blood pressure variations inside the aorta during cardiac cycles (known also as 
central aortic blood pressure curve) is an important source for diagnosing patient’s 
cardiovascular system. Classical approach, catheterization, is technically demand-
ing and costly medical procedure. Therefore, different noninvasive methods have 
been studied and taken into use. The present chapter discusses the possibilities to 
bring in wearable techniques by sensing blood pressure variations with electrical 
bioimpedance changes on the radial artery. Two versions of wearable devices were 
designed and different electrode systems studied by simulations and experiments. 
Provisional human experiments were carried out at the hospital in limited extent 
but evidently with positive results. Further work will concentrate in developing the 
generalized transfer function algorithms and electrode system.
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Chapter 3

Wearable Skin-Worn Enzyme-
Based Electrochemical Devices: 
Biosensing, Energy Harvesting, 
and Self-Powered Sensing
Itthipon Jeerapan

Abstract

Integrating enzymes with wearable electrochemical systems delivers extraordi-
nary functional devices, including biosensors and biofuel cells (BFCs). Strategies 
employing enzyme-based bioelectronics represent a unique foundation of wear-
ables because of specific enzyme recognition and catalytic activities. Therefore, 
such electrochemical biodevices on various platforms, e.g., tattoos, textiles, and 
wearable accessories, are interesting. However, these devices need effective power 
sources, requiring combining effective energy sources, such as BFCs, onto compact 
and conformal platforms. Advantageously, bioenergy-harvesting BFCs can also act 
as self-powered sensors, simplifying wearable systems. Challenges pertaining to 
energy requirements and the integration of biocatalysts with electrodes should be 
considered. In this chapter, we detail updated advancement in skin-worn devices, 
including biosensors, BFCs, and self-powered sensors, along with engineering 
designs and on-skin iontophoretic strategies to extract biofluids. Crucial parameters 
including mechanical/material aspects (e.g., stretchability), electrochemistry, 
enzyme-related views (e.g., electron shuttles, immobilization, and behaviors), and 
oxygen dependency will be discussed, along with outlooks. Understanding such 
challenges and opportunities is important to revolutionize wearable devices for 
diverse applications.

Keywords: wearable technology, electrochemical devices,  
enzyme-based bioelectronics, biosensors, biofuel cells, self-powered biosensors, 
sweat, iontophoresis, personalized healthcare

1. Introduction

Since 1962 when the first Clark’s biosensor was introduced [1], enzymatic elec-
trochemical devices have attracted increasing attention, recently being regarded 
as a powerful tool for the development of emerging wearable bioelectronics [2]. 
Integrating enzymes with electrochemical transduction units is one of the most 
popular and well-built bioelectronic systems due to outstanding selectivity and 
natural behaviors of enzymes [2–4]. Employing enzymes, as a catalytic system, in 
order to substitute nonselective metal catalysts, is interesting. Because of inherent 
behaviors of enzymes, enzyme-based bioelectronics offers favorable operations 
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Figure 1. 
(A) Skin-worn enzyme-based electrochemical devices. The soft electrode platform is functionalized with 
enzymes, allowing various applications, including (B) biosensors, (C) energy-harvesting biofuel cells, and  
(D) self-powered biosensors.

under mild physiological conditions of pH and temperature, unlike nonenzymatic 
approaches [5, 6]. In addition, enzymes will usually catalyze only one particular 
reaction. Therefore, such enzyme specificity enables bioelectronics to operate 
selectively even in complex solutions, including biofluids. Recently, there is an 
increasing interest in transforming traditional enzymatic bioelectronics into 
modern wearable platforms. Wearable enzyme electronics expands appealing 
spectra of a variety of applicable fields, ranging from personalized healthcare, 
fitness, to the environment. These applications comprise of noninvasive diagnosis 
of biomarkers in biofluids, such as sweat, and the monitoring of the surrounding 
of the wearer. Besides, electron collectors can be functionalized with enzymes 
to develop BFCs for energy and self-powered applications. These biodevices 
employ enzymes to obtain electrocatalytic oxidations of biofuels, such as glucose 
and lactate. This aims to achieve next-generation energy autonomy for the whole 
wearable system. In addition to energy-harvesting purposes, BFCs can also act as 
self-powered electrochemical sensors. Three main applications of enzyme-based 
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electrodes, including biosensors, biofuel cells (BFCs), and self-powered sensors, 
along with their relevant aspects, will be discussed (Figure 1). An enzymatic 
biosensor employs an enzyme, immobilized on an electrochemical transducer, to 
recognize and react with the target, generating a readable electrical signal (Figure 
1B). A BFC energy harvester can convert chemical energy into electricity and 
power wearable devices (Figure 1C) [7]. A BFC can also be designed to act as a 
self-powered sensor by displaying power signals proportional to the target con-
centration (Figure 1D) [8, 9].

Skin-worn enzyme-based electrochemical devices are among the most sig-
nificant wearables because the skin offers the largest organ interface and unique 
opportunities to be accessed noninvasively [10–13]. The large epidermal area also 
provides sweat, which contains a variety of biomarker-rich information, such as 
levels of glucose, lactate, hormone, urea, pH, and electrolytes. Advantageously, 
skin-worn electrochemical devices can be attached directly close to the location 
of sweat generation, enabling the fast access for monitoring or energy harvesting 
before the unwanted biodegradation. In addition to physical parameters obtained 
from existing skin-worn biodevices (such as temperature and heartbeat), chemi-
cal data is also crucial to step further to understand comprehensive insights of 
individual [14]. The history of sweat content analysis began many decades ago 
with the development of cystic fibrosis diagnosis [15]. Establishing new “lab-on-
skin” electrochemical devices enables noninvasive detection of such biometrics, 
essential for health monitoring and early disease diagnosis. In addition, such 
wearable electrochemical tools are also helpful for drug testing and chemical 
threat screening, such as in sports [12] and in the surrounding environment [16]. 
Importantly, for emerging energy technologies, sweat also contains relevant 
biofuels, such as glucose and lactate; this is useful to BFCs as energy-harvesting 
and self-powered devices, which exemplify new exciting wearable autonomous 
bioelectronic systems.

Although researchers are battling to create new enzymatic bioelectronics, there 
is a continuing need for further development. Revolutionizing traditional elec-
trodes toward wearable bioelectronics needs careful engineering to address several 
key challenges associated with electrochemistry, the integration of biocatalysts, 
mechanical stability, environment effects (e.g., O2 fluctuations), and sweat extrac-
tion. Therefore, the bulk of this chapter will focus on examples of progress in skin-
worn enzymatic electrochemical devices. Key working principles and opportunities 
of biosensors and BFCs will be described. In addition, perspectives emphasizing 
on main challenges will be discussed. The outlooks of emerging wearable electro-
chemical technologies will also be concluded.

2. Skin-worn enzyme-based electrochemical devices

2.1 Enzyme-based biosensors

Wearable enzymatic electrochemical biosensors utilize enzymes, which are 
functionalized in spatial contact with electrochemical transduction units. In prin-
ciple, biosensors consist of electrodes and enzyme receptors, allowing the specific 
binding capabilities and catalytic activity to target analytes. Interfacing enzymes 
with electrodes will be discussed further in Section 3.3. It should be remarked that 
the key consideration to fabricate a successful biosensor for nonspecialist wearers 
is choosing highly specific biocatalysts. Enzymatic biosensors can also function 
continuously because enzymes are not consumed in reactions, offering an advan-
tage for wearable sensors.
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bioelectronic systems.

Although researchers are battling to create new enzymatic bioelectronics, there 
is a continuing need for further development. Revolutionizing traditional elec-
trodes toward wearable bioelectronics needs careful engineering to address several 
key challenges associated with electrochemistry, the integration of biocatalysts, 
mechanical stability, environment effects (e.g., O2 fluctuations), and sweat extrac-
tion. Therefore, the bulk of this chapter will focus on examples of progress in skin-
worn enzymatic electrochemical devices. Key working principles and opportunities 
of biosensors and BFCs will be described. In addition, perspectives emphasizing 
on main challenges will be discussed. The outlooks of emerging wearable electro-
chemical technologies will also be concluded.

2. Skin-worn enzyme-based electrochemical devices

2.1 Enzyme-based biosensors

Wearable enzymatic electrochemical biosensors utilize enzymes, which are 
functionalized in spatial contact with electrochemical transduction units. In prin-
ciple, biosensors consist of electrodes and enzyme receptors, allowing the specific 
binding capabilities and catalytic activity to target analytes. Interfacing enzymes 
with electrodes will be discussed further in Section 3.3. It should be remarked that 
the key consideration to fabricate a successful biosensor for nonspecialist wearers 
is choosing highly specific biocatalysts. Enzymatic biosensors can also function 
continuously because enzymes are not consumed in reactions, offering an advan-
tage for wearable sensors.
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Enzymatic biosensors are based on numerous mechanisms. The popular 
mechanism relies on the conversion of the analyte as an enzymatic substrate into a 
product, enabling the detection by using electrochemical transducer. Another way 
is to monitor the analyte (e.g., a toxic compound) that acts as an enzyme inhibitor. 
In addition, the enzyme can be used as a labeling transducer for bioaffinity recogni-
tion. Besides, a reverse approach can be designed to detect the enzyme level. In 
this case, the enzyme acts as an analyte, while the substrate is immobilized on the 
electrode surface. When the enzyme reaches the electrode sensor, it will generate 
the signal, corresponding to the concentration level of the enzyme target.

In recent decades, enzymatic biosensors have been proven to be modern wear-
ables to monitor numerous analytes, such as glucose, lactate, alcohol, and organo-
phosphate nerve agents. Among several enzymes, oxidoreductase and hydrolase, 
such as glucose oxidase (GOx), lactate oxidase (LOx), alcohol oxidase (AOx), and 
organophosphorus hydrolase, are predominant for wearable biosensing applica-
tions. A temporary tattoo with the integration of transdermal enzymatic glucose 
biosensor has been introduced since glucose is a key biomarker for diabetes 
mellitus, which still affects hundreds of millions of patients globally (Figure 2A) 
[17]. The iontophoretic ISF extraction system was coupled with the amperometric 

Figure 2. 
Skin-worn enzyme-based electrochemical biosensors. (A) Transdermal tattoo-based glucose sensors, coupled 
with reversed iontophoresis [17]. Adapted with permission from ref [17]. Copyright 2015 American Chemical 
Society. (B) Tattoo-based alcohol biosensors, coupled with pilocarpine iontophoresis and wireless electronics 
[18]. Adapted with permission from ref [18]. Copyright 2016 American Chemical Society. (C) Biosensors 
integrated with a microfluidic patch for sweat collection and analysis [20]. Adapted with permission from ref 
[20]. Copyright 2017 American Chemical Society. (D) Microneedle-based β-lactam sensors [22]. Adapted 
with permission from ref [22]. Copyright 2019 American Chemical Society. (E) Integrated glucose/lactate 
enzymatic biosensors with electrolyte and temperature sensors. (F) Integrated sweat monitoring biosensing and 
transdermal drug delivery system.
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detection to extract the sample containing glucose. The glucose biosensor, located 
near the negative iontophoretic electrode, relied on GOx immobilization on the 
Prussian blue (PB)-carbon electrode; this PB facilitates the electroreduction of 
H2O2 product, generated by the GOx reaction. The amperometric reduction of 
H2O2 could be detected at a potential of −0.1 V versus Ag/AgCl. The iontophoresis 
strategy will be discussed in Section 3.5. Additionally, the tattoo-based alcohol 
sensor was also invented (Figure 2B). The AOx-/PB-based sensor was designed 
to be close to the positive iontophoretic electrode to determine ethanol in sweat 
induced by transdermal delivery of the pilocarpine drug [18]. Moreover, recent 
efforts have been made to combine these two concepts, including glucose and 
alcohol sensors, on a single tattoo [19]. This holds a possibility for multianalyte 
sweat analysis.

Skin-worn microfluidic devices can enable the continuous flow of renewed 
sweat over operational periods. This addresses the challenge of mixing and carry-
over between new and old sweat. Figure 2C shows an example of sweat collection 
microfluidic devices, coupled with glucose and lactate biosensors [20]. This offers 
wearable effective continuous sweat sampling and flow electroanalysis.

Furthermore, minimally invasive microneedles for continuous glucose 
monitoring have been demonstrated. For example, a GOx/tetrathiafulvalene 
microneedlebased amperometric sensor (~1.2 mm needle height) could be used for 
in vivo studies [21]. The data were also validated with the finger-prick technique, 
indicating a promising alternative for on-skin analysis. In addition, a minimally-
invasive microneedle-based potentiometric sensor for tracking β-lactam antibiotic 
concentrations in vivo and real time was demonstrated Figure 2C [22]. This 
example represents a possibility to tailor individual therapy with the optimal 
efficacy.

Moreover, reading several parameters can complete a clear picture of individual 
health. A fully integrated sensor array for sweat analysis was demonstrated (Figure 2E) 
[23]. These integrated sensors can monitor information of glucose, lactate, electrolytes 
(e.g., sodium and potassium ions), and temperature. The temperature sensor is also 
helpful to standardize the biosensing amperometric response. Furthermore, in order 
to apply the biosensor glucose device for health management, a transdermal closed-
loop drug delivery integrated with a sweat-based glucose electrochemical sensor was 
demonstrated (Figure 2F) [24]. The sense-treat concept aimed to give feedback of 
transdermal administration of type 2 diabetes drugs in response to the glucose level. 
This idea represents a possible opportunity to overcome insulin overtreatment, helping 
patients to maintain their homeostasis.

2.2 Enzyme-based electrochemical power sources

BFCs are energy-conversion devices that utilize biocatalysts to convert chemi-
cal energy into electricity. For wearable electronics, the need to anatomically 
power sources has attracted many research groups to develop a BFC, as a “green” 
energy-harvesting alternative, in order to extract energy from metabolites present 
in biofluids, such as perspiration. Since glucose, lactate, and oxygen are present in 
physiological fluids, in general, a majority of wearable enzymatic BFCs rely on (1) 
the generation of electrons from glucose or lactate biofuels and (2) the electron 
reduction by oxidants (such as oxygen). Figure 1C shows a typical example of a glu-
cose/O2 BFC. In principle, a glucose BFC uses GOx, functionalized on the bioanode, 
to catalyze the glucose oxidation reaction to generate electrons. After this oxidation 
process, these harvested electrons are driven through an external circuit to the 
biocathode compartment where such electrons are accepted by oxidant molecule 
(commonly O2) and, eventually, generate complete electrical work. In addition to 



Wearable Devices - The Big Wave of Innovation

34

Enzymatic biosensors are based on numerous mechanisms. The popular 
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phosphate nerve agents. Among several enzymes, oxidoreductase and hydrolase, 
such as glucose oxidase (GOx), lactate oxidase (LOx), alcohol oxidase (AOx), and 
organophosphorus hydrolase, are predominant for wearable biosensing applica-
tions. A temporary tattoo with the integration of transdermal enzymatic glucose 
biosensor has been introduced since glucose is a key biomarker for diabetes 
mellitus, which still affects hundreds of millions of patients globally (Figure 2A) 
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Figure 2. 
Skin-worn enzyme-based electrochemical biosensors. (A) Transdermal tattoo-based glucose sensors, coupled 
with reversed iontophoresis [17]. Adapted with permission from ref [17]. Copyright 2015 American Chemical 
Society. (B) Tattoo-based alcohol biosensors, coupled with pilocarpine iontophoresis and wireless electronics 
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transdermal drug delivery system.
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detection to extract the sample containing glucose. The glucose biosensor, located 
near the negative iontophoretic electrode, relied on GOx immobilization on the 
Prussian blue (PB)-carbon electrode; this PB facilitates the electroreduction of 
H2O2 product, generated by the GOx reaction. The amperometric reduction of 
H2O2 could be detected at a potential of −0.1 V versus Ag/AgCl. The iontophoresis 
strategy will be discussed in Section 3.5. Additionally, the tattoo-based alcohol 
sensor was also invented (Figure 2B). The AOx-/PB-based sensor was designed 
to be close to the positive iontophoretic electrode to determine ethanol in sweat 
induced by transdermal delivery of the pilocarpine drug [18]. Moreover, recent 
efforts have been made to combine these two concepts, including glucose and 
alcohol sensors, on a single tattoo [19]. This holds a possibility for multianalyte 
sweat analysis.

Skin-worn microfluidic devices can enable the continuous flow of renewed 
sweat over operational periods. This addresses the challenge of mixing and carry-
over between new and old sweat. Figure 2C shows an example of sweat collection 
microfluidic devices, coupled with glucose and lactate biosensors [20]. This offers 
wearable effective continuous sweat sampling and flow electroanalysis.

Furthermore, minimally invasive microneedles for continuous glucose 
monitoring have been demonstrated. For example, a GOx/tetrathiafulvalene 
microneedlebased amperometric sensor (~1.2 mm needle height) could be used for 
in vivo studies [21]. The data were also validated with the finger-prick technique, 
indicating a promising alternative for on-skin analysis. In addition, a minimally-
invasive microneedle-based potentiometric sensor for tracking β-lactam antibiotic 
concentrations in vivo and real time was demonstrated Figure 2C [22]. This 
example represents a possibility to tailor individual therapy with the optimal 
efficacy.

Moreover, reading several parameters can complete a clear picture of individual 
health. A fully integrated sensor array for sweat analysis was demonstrated (Figure 2E) 
[23]. These integrated sensors can monitor information of glucose, lactate, electrolytes 
(e.g., sodium and potassium ions), and temperature. The temperature sensor is also 
helpful to standardize the biosensing amperometric response. Furthermore, in order 
to apply the biosensor glucose device for health management, a transdermal closed-
loop drug delivery integrated with a sweat-based glucose electrochemical sensor was 
demonstrated (Figure 2F) [24]. The sense-treat concept aimed to give feedback of 
transdermal administration of type 2 diabetes drugs in response to the glucose level. 
This idea represents a possible opportunity to overcome insulin overtreatment, helping 
patients to maintain their homeostasis.

2.2 Enzyme-based electrochemical power sources

BFCs are energy-conversion devices that utilize biocatalysts to convert chemi-
cal energy into electricity. For wearable electronics, the need to anatomically 
power sources has attracted many research groups to develop a BFC, as a “green” 
energy-harvesting alternative, in order to extract energy from metabolites present 
in biofluids, such as perspiration. Since glucose, lactate, and oxygen are present in 
physiological fluids, in general, a majority of wearable enzymatic BFCs rely on (1) 
the generation of electrons from glucose or lactate biofuels and (2) the electron 
reduction by oxidants (such as oxygen). Figure 1C shows a typical example of a glu-
cose/O2 BFC. In principle, a glucose BFC uses GOx, functionalized on the bioanode, 
to catalyze the glucose oxidation reaction to generate electrons. After this oxidation 
process, these harvested electrons are driven through an external circuit to the 
biocathode compartment where such electrons are accepted by oxidant molecule 
(commonly O2) and, eventually, generate complete electrical work. In addition to 
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Pt-based catalysts, multicopper oxidases such as laccase, bilirubin oxidase, and 
polyphenol oxidase are commonly used for electrocatalyzing oxygen-reduction 
reaction (ORR) in the BFC cathode [25].

Enzymatic BFCs represent an interesting alternative due to their unique 
advantages, such as outstanding selectivity and behaviors of enzymes. Unlike most 
traditional inorganic catalyst-based fuel cells, which require harsh conditions (such 
as acidic conditions or high temperatures ranging from 45°C to more than 100°C), 
the enzyme-based BFC can operate under mild conditions (20–40°C at neutral pH). 
Moreover, non-specific catalyst-based fuel cells require to separate anode and cath-
ode chambers by a thin membrane. Unfortunately, this common use of separation 
membrane between the anode and the cathode compartments will be unsatisfactory 
for skin-worn miniaturized devices. Thanks to the nature of enzymes, utilizing high 
specificity of enzymatic catalysis can obviate this membrane requirement, facili-
tating the fabrication and applications [26]. In addition, enzyme-based BFCs can 
operate selectively in complex biofluids.

Interestingly, BFCs also offer opportunities to design self-powered biosensors 
(Figure 1D). For example, the power is proportional to the concentration of the 
fuel (also acting as analyte); self-powered output itself can determine the level of 
the target. This offers opportunities to eliminate external energy sources for power-
ing potentiostat and signaling systems [9].

An initial concept integrating enzymatic BFCs with skin-worn technologies 
represented an exciting way to scavenge bioenergy available in human perspira-
tion (Figure 3A). This demonstrated the first epidermal tattoo-based BFC that 
converted sweat lactate biofuel and oxygen into electricity [27]. The lactate oxida-
tion by LOx electrocatalyzation was mediated by tetrathiafulvalene on the carbon 
nanotube (CNT)-based anode, while electroreduction on the oxygen-reduction 
cathode relies on Pt black catalyst. This system facilitates mediated oxidation of 
lactate at −0.1 V with a peak potential of 0.14 V (versus Ag/AgCl). This low anodic 
onset potential indicates the efficient electron-donor-acceptor TTF/CNT. The 
successful on-body test displayed a power up to 70 μW cm−2. This idea was also 
established on fabrics and could power a light-emitting diode with an integrated 
DC-DC converter [28].

Mechanical stability has been the focus in the development of the next-genera-
tion of skin-worn BFCs due to the multiplex mechanical movements experienced 
in vivo. In order to minimize cracking of the device and maintain good electro-
chemical performance, screen-printable stretchable inks and judicious stretchable 
design have been engineered (Figure 3B) [29]. Combining additional degrees of 
stretchability with intrinsic mechanical resiliency of soft CNT/polyurethane (PU) 
composite offers the desirable stretchable platform. The BFC was then functional-
ized on the soft electrodes, allowing good mechanical stability. This holds promise 
applications for on-body bioenergy fields wherein resilience toward mechanical 
distortions is compulsory.

In addition to energy-conversion applications, BFCs can be applied further 
as another significant tool for wearable bioelectronics. Enzymatic BFC can serve 
as self-sustainable biosensors (without an extra powering device). In order to 
expand the spectrum of BFC applications for on-skin electroanalytical chemistry, 
the pioneering stretchable textile-based BFCs that can act as self-powered was 
demonstrated (Figure 3C) [30]. These biodevices can deliver two key functions: 
(1) harvesting electrical power from sweat glucose and lactate and (2) display-
ing signals of such metabolites. Extracted bioenergy from the wearer’s sweat can 
directly indicate the metabolite levels. Sock-based biodevices were successfully 
demonstrated on human subjects, representing a promising concept for modern 
wearable self-powered biosensors.
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Maximizing the loading amount of active enzyme, mediator, and conduc-
tive materials can improve the power performance of BFCs. The high amount 
of such active materials can be packed by a compress. However, this strategy 
will affect mechanical softness. Therefore, further engineering was to fabricate 
island-bridge assemblies merging the high enzyme loading packed islands with 
stretchable serpentine bridges [34]. This combination offered a soft bioelectronic 
skin for harvesting a good power density of 1.2 mW cm−2. This energy was suf-
ficient to power a Bluetooth Low Energy (BLE) radio integrated with a DC-DC 
converter.

Recently, additional efforts have been made to scavenge, improve, and store 
energy by hybridizing textile-based energy conversion with energy storage devices 
(BFCs and supercapacitors, respectively) (Figure 3E) [31]. The on-body demon-
stration showed that after perspiring, the supercapacitor could be charged by the 
BFC energy and reach a stable 0.4 V output.

Furthermore, a photoelectric BFC was developed to convert external light and-
chemical energy from wearer’s perspiration into electrical energy (Figure 3D) [32]. The 
anode relied on a LOx/Meldola’s blue/buckypaper electrode, while the photocathode 

Figure 3. 
Skin-worn BFCs and self-powered sensors. (A) Epidermal tattoo-based lactate BFCs. (B) Stretchable 
glucose BFCs [29]. Adapted with permission from ref [29]. Copyright 2016 American Chemical Society. 
(C) Stretchable textile-based BFCs acting as self-powered biosensors [30]. Adapted with permission from 
ref [30]. Copyright 2016 The Royal Society of Chemistry. (D) Photoelectric BFCs. (E) Textile-based BFC-
supercapacitor hybrid devices [31]. Adapted with permission from ref [31]. Copyright 2018 The Royal Society 
of Chemistry. (F) Built-in BFCs with transdermal iontophoresis patches.
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successful on-body test displayed a power up to 70 μW cm−2. This idea was also 
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tion of skin-worn BFCs due to the multiplex mechanical movements experienced 
in vivo. In order to minimize cracking of the device and maintain good electro-
chemical performance, screen-printable stretchable inks and judicious stretchable 
design have been engineered (Figure 3B) [29]. Combining additional degrees of 
stretchability with intrinsic mechanical resiliency of soft CNT/polyurethane (PU) 
composite offers the desirable stretchable platform. The BFC was then functional-
ized on the soft electrodes, allowing good mechanical stability. This holds promise 
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In addition to energy-conversion applications, BFCs can be applied further 
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as self-sustainable biosensors (without an extra powering device). In order to 
expand the spectrum of BFC applications for on-skin electroanalytical chemistry, 
the pioneering stretchable textile-based BFCs that can act as self-powered was 
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Maximizing the loading amount of active enzyme, mediator, and conduc-
tive materials can improve the power performance of BFCs. The high amount 
of such active materials can be packed by a compress. However, this strategy 
will affect mechanical softness. Therefore, further engineering was to fabricate 
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energy by hybridizing textile-based energy conversion with energy storage devices 
(BFCs and supercapacitors, respectively) (Figure 3E) [31]. The on-body demon-
stration showed that after perspiring, the supercapacitor could be charged by the 
BFC energy and reach a stable 0.4 V output.

Furthermore, a photoelectric BFC was developed to convert external light and-
chemical energy from wearer’s perspiration into electrical energy (Figure 3D) [32]. The 
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Figure 3. 
Skin-worn BFCs and self-powered sensors. (A) Epidermal tattoo-based lactate BFCs. (B) Stretchable 
glucose BFCs [29]. Adapted with permission from ref [29]. Copyright 2016 American Chemical Society. 
(C) Stretchable textile-based BFCs acting as self-powered biosensors [30]. Adapted with permission from 
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relied on an organic polyterthiophene semiconductor, which drove a reduction reaction 
under illumination (wavelengths of 350 nm to over 600 nm). This system presented an 
attractive example of on-skin autonomous power sources and sensors.

Additional efforts have been made to explore new biomedical applications of 
BFCs. Figure 3F shows an integrated fructose/O2 BFC patch that was conjugated 
with transdermal iontophoresis [33]. The current generated by the BFC was 
used to drive an osmotic flow from the anode to the cathode, resulting in the net 
ionic movement of small-molecule drug into the skin. The level of transdermal 
current to control the drug administration could be adjusted by connecting a 
thin poly(3,4-ethylenedioxythiophene)/PU resistor of a programmable resis-
tance value.

3. Challenges and possible solutions

3.1 Mechanical properties

Young’s modulus of the human skin is in a range of 10–500 kPa [35, 36], while 
the moduli of common electronic materials, such as silicon and gold, are much 
higher (high GPa), indicating significant mechanical mismatch when integrating 
with the skin. Therefore, functionalities of non-stretchable electrodes will dete-
riorate after multiplex deformations commonly experienced by daily life activities. 
Furthermore, such rigidity and bulkiness of traditional devices also restrict the 
wearability and comfortability [14]. Non-compliant electrochemical devices will 
limit continuous long-term functions due to cracking and increasing of material 
resistance. This increasing of resistivity, which opposes the current flow in bioelec-
tronics, causes poor electron communication at the enzyme-electrode interface.

This major challenge of skin-integrated electronics can be addressed by explor-
ing stretchable materials which display mechanical properties in a similar range 
of skin’s modulus. One approach is using polymers due to their low mechanical 
toughness. For example, conducting materials with high moduli can be blended 
with soft polydimethylsiloxane or Ecoflex materials (Young’s moduli of 0.4–3.5 MPa 
and 125 kPa, respectively) in order to tune the mechanical properties while keeping 
good electrochemical functions [37]. CNT-based materials, which are powerful 
for electrochemical devices [38], are used to combine with soft elastomers, such 
as PU and styrene-butadiene-styrene (SBS) [29, 39]. PU and SBS composites 
have moduli of ~700–800 kPa. As shown in Figure 3C, CNT filler (with the high-
aspect ratio ∼1300) was combined with PU [30], achieving stretchable conductive 
electrode materials. The percolation of dispersed CNTs can facilitate the electric 
flow in stretchable bioelectronics. Combining the intrinsic stretchability of this 
engineered inks with the structural stretchability of the serpentine design allows 
the device to tolerate strains as high as 500% with a small effect on its electrochemi-
cal performance [29]. This concept can be expanded by adding new functionalities 
into electrodes. For example, platinum-decorated graphite was mixed with PU to 
obtain stretchable electrocatalytic materials, allowing the fabrication of stretchable 
electrodes for glucose biosensors [40].

3.2 Powering wearable devices

Growing demand of wearable technologies has stimulated the need of the devel-
opment of viable energy sources. The lack of anatomically power sources becomes a 
key bottleneck for the progress in wearable bioelectronics. Skin-worn bioelectronics 
mandates the compliant and efficient energy sources to supply multitasks, including 
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sensing and data communication. In addition to developing low-power-consuming 
electronic microelectronics [9, 41], there is an increasing interest in advancing 
bioenergy-harvesting devices. Enzymatic BFCs are attractive self-sustainable energy 
devices to meet this growing energy demand. For example, 0.3-V complementary 
metal-oxide-semiconductor (CMOS) wireless glucose or lactate biosensing systems, 
which consumed power of ~1.2 μW, could be powered by BFCs [9]. Nevertheless, 
several applications of enzymatic BFCs still have some challenges, such as low-
power output. The major challenge in enzymatic BFC is faced by the electrical 
“wiring” of enzymes with electrodes. The difficulty of electrical wiring, referring to 
electron transfer, and their possible solutions will be detailed in Section 3.3.

Compared with traditional fuel cells, enzymatic BFCs are challenging due to 
their multicomponent including redox potentials of enzyme, cofactor, and media-
tor. This results in the typical unwanted deviation of open-circuit voltages (OCV) 
from their theoretical maximum values, referring to “cell voltage losses.” The 
redox potential for electrocatalytic oxidation at the bioanode required to be higher 
than that of the biocathode for reduction reaction in order to deliver a sufficient 
electromotive force for electron transfer between enzyme active site and mediator. 
The voltage difference between the formal redox potentials (E°′) of redox enzyme 
cofactors in the active sites, in the anode and cathode, will govern the maximum 
cell voltage. Parameters, including redox potential of mediator and cofactor redox 
potential in the enzyme, can influence the resulting potential output of BFCs. 
Therefore, the mediator should be carefully chosen. For example, ferrocene deriva-
tives coimmobilized with GOx at a graphite electrode can be used for glucose 
sensors [42]. Nevertheless, ferrocene derivatives display high redox potentials 
(0.1–0.4 V versus SCE); these will cause cell voltage losses in the GOx-based BFC 
if they are used as anode mediators. It should be noted that the difference between 
the redox potentials of the enzymes wired at the anode and the cathode determines 
the cell voltage. An example of a successful anode mediator used in skin-worn BFCs 
is 1,4-naphthoquinone [30]. This quinone compound is also almost insoluble in 
cold water, preventing leaching during on-body operations. One challenge of using 
GOx on the anode is the O2 competition with a mediator, decreasing the oxida-
tion current on the bioanode. Moreover, O2 competitive reaction on the anode can 
produce H2O2. This by-product can inhibit GOx activity and decrease the overall 
BFC performance. Therefore, catalase should be cofunctionalized to the bioanode 
to diminish the undesirable H2O2 [43].

A single-enzyme BFC can usually convert only a partial portion of biochemical 
energy, resulting in low current output. For instance, wearable BFCs, such as for 
harvesting energy from lactate sweat, commonly employ a single enzyme-based 
bioanode, catalyzing the oxidation of lactate to pyruvate, which only harvests two 
electrons. In other words, they utilize only a portion of the biofuel energy and leave 
most of the energy in the oxidized product. Therefore, it is interesting to harvest 
the total of 12 electrons in order to maximize the energy-conversion efficiency. A 
potential solution is to design an enzyme cascade system for complete oxidation 
of lactate fuel. For example, the bioinspired multienzyme catalytic cascade could 
complete the metabolic cycle, successfully enhancing net BFC power [44].

Furthermore, in order to optimize the current output, diffusion and enzyme 
loading should be enhanced. The engineering of specific enzyme activity and three-
dimensional structure of enzymatic electrodes should be explored.

3.3 Enzyme-related aspects

The selection of enzymes is a primary subject which should be discussed. 
Enzymes must be selected by considering their particular reactions to target 
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relied on an organic polyterthiophene semiconductor, which drove a reduction reaction 
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engineered inks with the structural stretchability of the serpentine design allows 
the device to tolerate strains as high as 500% with a small effect on its electrochemi-
cal performance [29]. This concept can be expanded by adding new functionalities 
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3.2 Powering wearable devices

Growing demand of wearable technologies has stimulated the need of the devel-
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sensing and data communication. In addition to developing low-power-consuming 
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cold water, preventing leaching during on-body operations. One challenge of using 
GOx on the anode is the O2 competition with a mediator, decreasing the oxida-
tion current on the bioanode. Moreover, O2 competitive reaction on the anode can 
produce H2O2. This by-product can inhibit GOx activity and decrease the overall 
BFC performance. Therefore, catalase should be cofunctionalized to the bioanode 
to diminish the undesirable H2O2 [43].

A single-enzyme BFC can usually convert only a partial portion of biochemical 
energy, resulting in low current output. For instance, wearable BFCs, such as for 
harvesting energy from lactate sweat, commonly employ a single enzyme-based 
bioanode, catalyzing the oxidation of lactate to pyruvate, which only harvests two 
electrons. In other words, they utilize only a portion of the biofuel energy and leave 
most of the energy in the oxidized product. Therefore, it is interesting to harvest 
the total of 12 electrons in order to maximize the energy-conversion efficiency. A 
potential solution is to design an enzyme cascade system for complete oxidation 
of lactate fuel. For example, the bioinspired multienzyme catalytic cascade could 
complete the metabolic cycle, successfully enhancing net BFC power [44].

Furthermore, in order to optimize the current output, diffusion and enzyme 
loading should be enhanced. The engineering of specific enzyme activity and three-
dimensional structure of enzymatic electrodes should be explored.

3.3 Enzyme-related aspects

The selection of enzymes is a primary subject which should be discussed. 
Enzymes must be selected by considering their particular reactions to target 
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analytes or biofuels for electroanalytical monitoring and energy harvesting, respec-
tively. One of the most predominant enzymes used to develop wearable bioelectron-
ics is GOx from Aspergillus niger. It represents an example of commercially available 
biocatalyst that has good stability, substrate specificity, and electron turnover rate 
[3, 4, 45]. It is a powerful biorecognition element for glucose biosensors, the most 
widely interesting devices for diabetes health management. As shown in Figure 4 
(A–C), the enzyme is immobilized on the electrode, establishing a biosensor. GOx 
contains two 80 kDa subunits. Each holds a tightly bound flavin adenine dinucleo-
tide (FAD) cofactor, the important redox center which has a redox potential 
−0.32 V (vs Ag/AgCl) at pH 7. This redox center is crucial to transfer electrons and 
specifically oxidize β-D-glucose to gluconolactone. However, this FAD is shielded by 
the protein and a glycan structure, hindering electron exchange at the enzyme-elec-
trode interface. Inevitably, this requires research efforts to address this roadblock 
[46, 47]. FAD plays an important role as a common cofactor for glucose oxidation 
biocatalysis. The redox process for FAD/FADH2, involving two electrons, is shown 
in Figure 4D, where the R group represents adenosine diphosphate and ribitol 
connected with the flavin. However, it is O2-dependent; accordingly, O2 fluctuations 
can vary the performance of this type of oxidase-based bioelectronics. Although 
alternative O2-independent electrodes utilized NAD-dependent electrodes can 
be used, they require a diffusional cofactor, not simple for wearable applications. 
Hence, FAD-dependent dehydrogenases are becoming interesting choices since they 
are O2-independent and do not depend on diffusional mediators [48, 49].

The first generation of biosensors relies on quantifying O2 generation or H2O2 
depletion (Figure 4A). This leads to key drawbacks, such as low dynamic range, 
dependency to oxygen fluctuations, and interfering effects. For instance, for 
glucose amperometric sensors, the detection of H2O2 at common first-generation 
electrodes needs the high applied detection potential where interfering compounds 
existing in sweat, e.g., ascorbic acid, uric acid, and some drugs, are also electroac-
tive. Lowering the applied potential for the detection is a strategy to minimize 

Figure 4. 
Principles of interfacing the enzyme, such as glucose oxidase (GOx), with the electrode. Different generations of 
strategies (A–C: first, second, and third generations) are illustrated. (D) Reactions involving the glucose oxidase 
biocatalyst.
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such electroactive interferences. One approach is to incorporate electrocatalysts in 
wearable electrodes, such as PB or Pt [17, 40]. This offers low-potential detection of 
H2O2 to mitigate interference effects.

Furthermore, researchers have developed two strategies to wire enzymes to the 
electrode interface (Figure 4B and C). These include (1) mediated electron transfer 
(MET) and (2) direct electron transfer (this may refer to mediatorless electron 
transfer between the enzyme and the electrode). Such new tactics are not only 
useful for enzymatic biosensors but also for enzymatic BFCs which also involve 
bioelectrocatalysis.

First, the MET strategy utilizes a redox mediator, acting as an electron-
shuttle assistant between the enzymatic active center and the electrode. The 
substrate level, such as glucose, can then be monitored by the redox process of 
the mediator. This results in the independence of oxygen and mitigating the 
interfering signals due to the operation at low potentials. The first consideration 
in electrically wiring the enzyme with the electrode is the choice of the mediator 
that should be close to the redox potential of the active center of the enzyme 
to facilitate efficient electron communication between the enzyme and the 
conductive electrode surface. In particular, for enzymatic BFCs, the selection of 
mediators is crucial to positively control the cell voltage and enhance heteroge-
neous electron transfer to the order of a homogeneous transfer [50]. However, 
challenges of using mediators, particularly for BFCs, are their stability and 
deviated cell voltage. In addition, biocompatibility is highly vital for skin-worn 
applications. In spite of the assistance of electron shuttle by redox mediators, 
major concerns are their biocompatibility. One possible solution is employing 
nanomaterials or highly biocompatible catalysts. For example, mushroom/plant 
extracts could be used to obtain efficient “green” bioelectrocatalytic reactions 
for ethanol BFCs [51].

Second, direct electron transfer is an ideal goal of electrical wiring. It can be 
achieved by employing nanomaterials which suggest the direct electron transfer 
between enzyme active site and electrode. This wiring strategy is based on the 
shortening of the electronic contact of the enzyme and electrode (a short distance 
of ~1.5 nm) where the redox center of the enzyme can be regenerated directly 
by the electrode [52]. Therefore, this strategy can maximize the performance of 
bioelectronics. The engineering needs to consider the position of the active site 
inside the protecting protein and the conformation of the protein in order to wire 
the conducting materials with the redox center. This still remains the most challeng-
ing topic.

Several variables also affect the response nature of enzyme bioelectronics. 
Consideration of the fundamental theory of their functions will help to improve 
their performances. A key well-known model of enzyme behaviors is Michaelis-
Menten kinetics,   V  0   =  V  max      [S]  ______  K  m   +  [S]    , where V0, Vmax, Km, and [S] are the initial velocity of 
the reaction, the maximal rate of the reaction, the Michaelis-Menten constant,  
and the concentration of the substrate, respectively. In general, it is desirable to 
engineer the biointerface electrode system to obtain high Vm and low Km (good 
affinity). However, dynamic range is also a crucial characteristic for wearable bio-
sensors. Traditionally, dilution or preconcentration can be used to adjust the level of 
the target to be fit in the linear range of the sensor; nonetheless, manipulating such 
processes for on-skin applications is sophisticated. Therefore, diffusion-limiting 
membranes may be a useful solution to tune the dynamic range. The linear range 
can be extended by coating a thin membrane over an active enzyme layer since 
the sensor response is controlled by the analyte diffusion and not by the nonlinear 
characteristic of enzyme kinetics. Nevertheless, it should be noted that coating may 
lower the sensitivity and cause slow response time.
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analytes or biofuels for electroanalytical monitoring and energy harvesting, respec-
tively. One of the most predominant enzymes used to develop wearable bioelectron-
ics is GOx from Aspergillus niger. It represents an example of commercially available 
biocatalyst that has good stability, substrate specificity, and electron turnover rate 
[3, 4, 45]. It is a powerful biorecognition element for glucose biosensors, the most 
widely interesting devices for diabetes health management. As shown in Figure 4 
(A–C), the enzyme is immobilized on the electrode, establishing a biosensor. GOx 
contains two 80 kDa subunits. Each holds a tightly bound flavin adenine dinucleo-
tide (FAD) cofactor, the important redox center which has a redox potential 
−0.32 V (vs Ag/AgCl) at pH 7. This redox center is crucial to transfer electrons and 
specifically oxidize β-D-glucose to gluconolactone. However, this FAD is shielded by 
the protein and a glycan structure, hindering electron exchange at the enzyme-elec-
trode interface. Inevitably, this requires research efforts to address this roadblock 
[46, 47]. FAD plays an important role as a common cofactor for glucose oxidation 
biocatalysis. The redox process for FAD/FADH2, involving two electrons, is shown 
in Figure 4D, where the R group represents adenosine diphosphate and ribitol 
connected with the flavin. However, it is O2-dependent; accordingly, O2 fluctuations 
can vary the performance of this type of oxidase-based bioelectronics. Although 
alternative O2-independent electrodes utilized NAD-dependent electrodes can 
be used, they require a diffusional cofactor, not simple for wearable applications. 
Hence, FAD-dependent dehydrogenases are becoming interesting choices since they 
are O2-independent and do not depend on diffusional mediators [48, 49].

The first generation of biosensors relies on quantifying O2 generation or H2O2 
depletion (Figure 4A). This leads to key drawbacks, such as low dynamic range, 
dependency to oxygen fluctuations, and interfering effects. For instance, for 
glucose amperometric sensors, the detection of H2O2 at common first-generation 
electrodes needs the high applied detection potential where interfering compounds 
existing in sweat, e.g., ascorbic acid, uric acid, and some drugs, are also electroac-
tive. Lowering the applied potential for the detection is a strategy to minimize 
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such electroactive interferences. One approach is to incorporate electrocatalysts in 
wearable electrodes, such as PB or Pt [17, 40]. This offers low-potential detection of 
H2O2 to mitigate interference effects.

Furthermore, researchers have developed two strategies to wire enzymes to the 
electrode interface (Figure 4B and C). These include (1) mediated electron transfer 
(MET) and (2) direct electron transfer (this may refer to mediatorless electron 
transfer between the enzyme and the electrode). Such new tactics are not only 
useful for enzymatic biosensors but also for enzymatic BFCs which also involve 
bioelectrocatalysis.

First, the MET strategy utilizes a redox mediator, acting as an electron-
shuttle assistant between the enzymatic active center and the electrode. The 
substrate level, such as glucose, can then be monitored by the redox process of 
the mediator. This results in the independence of oxygen and mitigating the 
interfering signals due to the operation at low potentials. The first consideration 
in electrically wiring the enzyme with the electrode is the choice of the mediator 
that should be close to the redox potential of the active center of the enzyme 
to facilitate efficient electron communication between the enzyme and the 
conductive electrode surface. In particular, for enzymatic BFCs, the selection of 
mediators is crucial to positively control the cell voltage and enhance heteroge-
neous electron transfer to the order of a homogeneous transfer [50]. However, 
challenges of using mediators, particularly for BFCs, are their stability and 
deviated cell voltage. In addition, biocompatibility is highly vital for skin-worn 
applications. In spite of the assistance of electron shuttle by redox mediators, 
major concerns are their biocompatibility. One possible solution is employing 
nanomaterials or highly biocompatible catalysts. For example, mushroom/plant 
extracts could be used to obtain efficient “green” bioelectrocatalytic reactions 
for ethanol BFCs [51].

Second, direct electron transfer is an ideal goal of electrical wiring. It can be 
achieved by employing nanomaterials which suggest the direct electron transfer 
between enzyme active site and electrode. This wiring strategy is based on the 
shortening of the electronic contact of the enzyme and electrode (a short distance 
of ~1.5 nm) where the redox center of the enzyme can be regenerated directly 
by the electrode [52]. Therefore, this strategy can maximize the performance of 
bioelectronics. The engineering needs to consider the position of the active site 
inside the protecting protein and the conformation of the protein in order to wire 
the conducting materials with the redox center. This still remains the most challeng-
ing topic.

Several variables also affect the response nature of enzyme bioelectronics. 
Consideration of the fundamental theory of their functions will help to improve 
their performances. A key well-known model of enzyme behaviors is Michaelis-
Menten kinetics,   V  0   =  V  max      [S]  ______  K  m   +  [S]    , where V0, Vmax, Km, and [S] are the initial velocity of 
the reaction, the maximal rate of the reaction, the Michaelis-Menten constant,  
and the concentration of the substrate, respectively. In general, it is desirable to 
engineer the biointerface electrode system to obtain high Vm and low Km (good 
affinity). However, dynamic range is also a crucial characteristic for wearable bio-
sensors. Traditionally, dilution or preconcentration can be used to adjust the level of 
the target to be fit in the linear range of the sensor; nonetheless, manipulating such 
processes for on-skin applications is sophisticated. Therefore, diffusion-limiting 
membranes may be a useful solution to tune the dynamic range. The linear range 
can be extended by coating a thin membrane over an active enzyme layer since 
the sensor response is controlled by the analyte diffusion and not by the nonlinear 
characteristic of enzyme kinetics. Nevertheless, it should be noted that coating may 
lower the sensitivity and cause slow response time.
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In addition, extra membranes can be a biocompatible barrier to address chal-
lenges from biofouling and interferents, especially when electrochemical operations 
are made in real matrices, samples, such as sweat. A perfluorinated sulfonated 
membrane (Nafion®) is an example membrane, which is also easy to drop-cast. 
This coating membrane can protect the enzymatic layer and also prevent anionic 
interferents, such as ascorbate [53].

Shelf life and operational stabilities of enzymatic electrodes are among the 
most critical challenges. The enzyme and active materials, such as mediators, can 
also leach during operations. Extensive studies have been made to improve enzyme 
bioelectrodes, such as by crosslinking hydrogels in the presence of the enzyme 
[54, 55]. Such crosslinking can entrap the enzyme to be more stable; moreover, 
this way enhances the loading of the enzyme, while the three-dimensional struc-
ture can facilitate the transport of analytes or biofuels, improving bioelectrode 
functions. Nevertheless, crosslinking enzyme or covalent binding of the enzyme 
can change the conformation of the enzyme and thus affect the activity [56]. 
Furthermore, one alternative to stabilize the enzyme electrode is the addition of 
stabilizers, such as polyelectrolytes, dextrans, glycerol, polyethyleneimine, and 
hydrophobic oils [57–59]. For instance, hydrophobic mineral oil or silicone grease 
can be used to minimize enzyme denaturation [58, 59]. The pasting liquid helps to 
lower protein mobility, maintain conformational rigidity of enzymes, and bar-
rier to hydronium ions from acid environments. This strategy can stabilize many 
enzymes, such as GOx, LOx, AOx, horseradish peroxidase, amino acid oxidase, 
and polyphenol oxidase.

Increasing enzyme loading can also improve the performance of biocatalytic 
devices. Employing high surface nanomaterials is useful to enhance the surface 
loading of the target catalyst. A graphene-based electrode is a good example 
platform to offer a high enzyme loading (1.1 nmol cm−2); in addition, it offers a fast 
heterogeneous electron transfer rate (ks) of 2.8 s−1 [60]. Moreover, CNTs, which 
have high conductivity and specific surface, represent an outstanding candidate 
nanomaterial for electrochemical wiring [38, 61]. The thin nanoscale structure 
can intimately incorporate with the active enzyme. Adsorption of GOx on CNTs 
provides the apparent ks, of 1.5 s−1 [62]. The ks of GOx at the hybrid biocomposite 
can be as high as 11.2 s− 1 [63]. Therefore, mediatorless bioelectrodes with excellent 
electron transfer could be demonstrated. Their high three-dimensional architecture 
also offers an enhanced loading of enzyme and/or redox mediator immobiliza-
tions. As a result, this can enlarge the current output from the biosensor or BFCs. 
Importantly, for BFCs, the maximized OCV and current density could be observed 
[43]. This BFC consists of a GOx/catalase/CNT bioanode and laccase/CNT bio-
cathode without additional mediators. The CNT/enzyme matrix was compressed 
together under high hydraulic pressure (10 kN). The resulting output in an air-
saturated electrolyte (200 mM glucose in 0.2 M phosphate buffer solution, pH 7 at 
room temperature) after 3 days displayed a high maximum OCV of 1 V. Note that 
the GOx/catalase/CNT bioanode and the laccase/CNT biocathode showed OCV 
values of −0.35 and +0.6 V, respectively.

Importantly, biofluids from the skin (such as sweat and extracted interstitial 
fluids) contain a variety of chemicals that can inhibit enzyme activity, reflecting 
challenges in biosensing and BFC functions in real-time on-body applications. 
For instance, heavy metals can be found in sweat as the body expels chemicals or 
balances the charges. One example is Cu2+ which has been reported as an inhibitor 
to deactivate the enzyme. The Cu2+ in sweat can be in a range of 1.6–16 μM [11]. 
0.1 μM Cu2+ could decrease the OCV value of the glucose BFC [64]. However, this 
enzyme-inhibitor electrochemical behavior is analytically attractive toward the 
development of self-powered biosensors, such as for direct heavy metal screening 
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or indirect cysteine monitoring. For example, cysteine prefers to bind with Cu2+ via 
the Cu-S bond; this superior conjugation between cysteine and Cu2+ removes metal 
ions from the bioanode, consequently turning on the OCV.

3.4 Effects of oxygen fluctuations on electrochemical performances

Since the O2 level in biofluids may vary, first-generation biosensors, employing 
O2-dependent mechanism, are subject to inaccuracy. This issue can be addressed by 
using fluorocarbon pasting liquids to supply internal O2 [65]. Using redox mediator 
as a second-generation sensor is another way to eliminate this error. Furthermore, 
FAD-dependent glucose dehydrogenase is an option to address O2-dependent 
problems due to its O2-insensitive nature, compared with GOx [49]. In addition, 
because of the high rate of homogeneous electron transfer rate between GOx and 
oxygen, GOx prefers to transfer electrons to oxygen rather than to the electrode, 
causing undesirable O2 competition effect [66]. Moreover, for BFCs and self-
powered sensors, the commonly used ORR cathode may cause the error under 
anaerobic conditions. The use of Ag2O/Ag redox cathode, which does not depend on 
ORR, can be used to operate BFCs, mitigating the possible O2 errors [30, 67]. Note 
that the reduction potential of Ag2O/Ag (0.342 V vs. SHE) is close to that of O2/
OH− (0.401 V vs. SHE) at pH 7. Moreover, using O2-rich cathode is another possible 
option to mitigate O2-deficit effects [68].

3.5 On-skin biofluid extraction: electrical-based approaches

Each person has 2.03 million sweat glands; sweat gland densities vary broadly 
across the skin surface and subjects, ranging from 16 to 530 glands cm−2 [11, 13, 69]. 
Normally, during exercise, sweat can be secreted around 20 nL gland−1 min−1 [11]. For 
example, the forehead or arm can generate sweat around 3 μL cm−2 or even lower. The 
fluctuation of sweat rate is also related to numerous factors, such as activity intensity 
and hydration level. Therefore, the limited volume of sweat causes a challenge in sweat 
analysis and operations. This leads to the development of miniaturized skin-worn 
electrochemical devices that can be practical in such small dead volume. For instance, 
the textile-based energy-harvesting BFC requires sweat volume per area of 40 μL cm−2 
to deliver steady outputs [31]. Designing a capillary chamber is a possible route for 
low-volume electroanalytical systems [70].

In addition to a passive way to collect sweat, one strategy is an active electrical-
based approach, called “iontophoresis” [71, 72]. This active strategy offers 

Figure 5. 
Electrical-based strategies using iontophoretic electrodes to extract biofluids, including (A) pilocarpine 
iontophoresis and (B) reversed iontophoresis.
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In addition, extra membranes can be a biocompatible barrier to address chal-
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are made in real matrices, samples, such as sweat. A perfluorinated sulfonated 
membrane (Nafion®) is an example membrane, which is also easy to drop-cast. 
This coating membrane can protect the enzymatic layer and also prevent anionic 
interferents, such as ascorbate [53].

Shelf life and operational stabilities of enzymatic electrodes are among the 
most critical challenges. The enzyme and active materials, such as mediators, can 
also leach during operations. Extensive studies have been made to improve enzyme 
bioelectrodes, such as by crosslinking hydrogels in the presence of the enzyme 
[54, 55]. Such crosslinking can entrap the enzyme to be more stable; moreover, 
this way enhances the loading of the enzyme, while the three-dimensional struc-
ture can facilitate the transport of analytes or biofuels, improving bioelectrode 
functions. Nevertheless, crosslinking enzyme or covalent binding of the enzyme 
can change the conformation of the enzyme and thus affect the activity [56]. 
Furthermore, one alternative to stabilize the enzyme electrode is the addition of 
stabilizers, such as polyelectrolytes, dextrans, glycerol, polyethyleneimine, and 
hydrophobic oils [57–59]. For instance, hydrophobic mineral oil or silicone grease 
can be used to minimize enzyme denaturation [58, 59]. The pasting liquid helps to 
lower protein mobility, maintain conformational rigidity of enzymes, and bar-
rier to hydronium ions from acid environments. This strategy can stabilize many 
enzymes, such as GOx, LOx, AOx, horseradish peroxidase, amino acid oxidase, 
and polyphenol oxidase.

Increasing enzyme loading can also improve the performance of biocatalytic 
devices. Employing high surface nanomaterials is useful to enhance the surface 
loading of the target catalyst. A graphene-based electrode is a good example 
platform to offer a high enzyme loading (1.1 nmol cm−2); in addition, it offers a fast 
heterogeneous electron transfer rate (ks) of 2.8 s−1 [60]. Moreover, CNTs, which 
have high conductivity and specific surface, represent an outstanding candidate 
nanomaterial for electrochemical wiring [38, 61]. The thin nanoscale structure 
can intimately incorporate with the active enzyme. Adsorption of GOx on CNTs 
provides the apparent ks, of 1.5 s−1 [62]. The ks of GOx at the hybrid biocomposite 
can be as high as 11.2 s− 1 [63]. Therefore, mediatorless bioelectrodes with excellent 
electron transfer could be demonstrated. Their high three-dimensional architecture 
also offers an enhanced loading of enzyme and/or redox mediator immobiliza-
tions. As a result, this can enlarge the current output from the biosensor or BFCs. 
Importantly, for BFCs, the maximized OCV and current density could be observed 
[43]. This BFC consists of a GOx/catalase/CNT bioanode and laccase/CNT bio-
cathode without additional mediators. The CNT/enzyme matrix was compressed 
together under high hydraulic pressure (10 kN). The resulting output in an air-
saturated electrolyte (200 mM glucose in 0.2 M phosphate buffer solution, pH 7 at 
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or indirect cysteine monitoring. For example, cysteine prefers to bind with Cu2+ via 
the Cu-S bond; this superior conjugation between cysteine and Cu2+ removes metal 
ions from the bioanode, consequently turning on the OCV.
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causing undesirable O2 competition effect [66]. Moreover, for BFCs and self-
powered sensors, the commonly used ORR cathode may cause the error under 
anaerobic conditions. The use of Ag2O/Ag redox cathode, which does not depend on 
ORR, can be used to operate BFCs, mitigating the possible O2 errors [30, 67]. Note 
that the reduction potential of Ag2O/Ag (0.342 V vs. SHE) is close to that of O2/
OH− (0.401 V vs. SHE) at pH 7. Moreover, using O2-rich cathode is another possible 
option to mitigate O2-deficit effects [68].

3.5 On-skin biofluid extraction: electrical-based approaches

Each person has 2.03 million sweat glands; sweat gland densities vary broadly 
across the skin surface and subjects, ranging from 16 to 530 glands cm−2 [11, 13, 69]. 
Normally, during exercise, sweat can be secreted around 20 nL gland−1 min−1 [11]. For 
example, the forehead or arm can generate sweat around 3 μL cm−2 or even lower. The 
fluctuation of sweat rate is also related to numerous factors, such as activity intensity 
and hydration level. Therefore, the limited volume of sweat causes a challenge in sweat 
analysis and operations. This leads to the development of miniaturized skin-worn 
electrochemical devices that can be practical in such small dead volume. For instance, 
the textile-based energy-harvesting BFC requires sweat volume per area of 40 μL cm−2 
to deliver steady outputs [31]. Designing a capillary chamber is a possible route for 
low-volume electroanalytical systems [70].

In addition to a passive way to collect sweat, one strategy is an active electrical-
based approach, called “iontophoresis” [71, 72]. This active strategy offers 

Figure 5. 
Electrical-based strategies using iontophoretic electrodes to extract biofluids, including (A) pilocarpine 
iontophoresis and (B) reversed iontophoresis.
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on-demand sweat generation as the device can be placed to a local skin target. There 
are two main approaches to extract sweat: (1) iontophoresis with pilocarpine drug 
and (2) reversed iontophoresis without the drug. These are attractive routes for 
continuous sweat analysis.

First, pilocarpine iontophoresis can be used to stimulate the sweat. In principle, 
a small electrical current is applied to enable the pilocarpine administration across 
the epidermis as illustrated in Figure 5A. For example, the tattoo-based enzymatic 
alcohol sensor consists of a pair of electrodes located in contact with the skin 
surface. Small constant current (0.2 mA cm−2) was applied through the cryogel 
material containing pilocarpine at the anode (positive) iontophoretic side [18]. 
The applied electrical force will push the pilocarpine drug, which possesses a large 
positive charge, to eventually enter into the skin. Such transdermal drug delivery 
of pilocarpine can induce the local sweat, sufficient for the subsequent electro-
chemical detection. In addition, interstitial fluid (ISF) located under the skin can 
be extracted. Without this iontophoretic strategy, it is challenging to access ISF 
through wearable technology.

Second, the reversed iontophoresis without pilocarpine drug can be used 
to extract relevant analytes, such as glucose [17]. For instance, as presented in 
Figure 5B, a current (0.2 mA cm−2) is applied to extract glucose in ISF. During the 
reverse iontophoresis process, glucose is pulled out at the negative iontophoretic 
compartment. Even though glucose holds no charge, the inherent permiselective 
characteristic of the skin prefers to transport positive species, allowing such glucose 
extraction. Applying electric field on mobile electric charge can cause Coulombic 
force, leading to a net convective flow in the skin from the anode to cathode 
direction. Accordingly, dissolved analytes (e.g., glucose) are also moved toward 
the cathode where they can be extracted and monitored. Therefore, the glucose 
amperometric working electrode, adjacent to the cathodic iontophoretic side, can 
detect the glucose level from the extracted sample.

4. Conclusions and future prospects

This chapter has reviewed some examples of new trends of skin-worn enzyme-
based electrochemical systems, focusing on biosensors, BFC, and self-powered 
sensors. The existing systems provide significant advances toward the painless and 
point-of-care applications and personalized electrochemical biodevices, which 
was not possible without such new biodevices. However, researchers still face 
many challenges, such as electrochemistry, electrical wiring of enzymes, enzyme 
behaviors, the fabrication of stretchable electrodes, O2 fluctuations in biofluids, 
interferences, and difficulty in sweat extraction. Moreover, the workability and 
reliability of biodevices can be limited due to the limited fluctuating and volume 
of biofluids. In order to avoid frequent recalibrations, the stability of biodevices 
or self-calibration systems are also important. Precise electrochemical functions 
for on-skin applications are still very challenging. Therefore, it is required careful 
attention to address all challenges in order to advance such wearable technologies.

Although main skin-worn BFCs have been driven by glucose and lactate fuels, it 
is interesting to explore new opportunities, such as from alcohol-based BFCs, where 
the bioanode can be functionalized with alcohol dehydrogenases. Future efforts 
may be made to expand the spectrum of current concepts. New integrated devices 
can be achieved by designing multifunctional sensors that can provide informative 
series of personalized data. This will require the incorporation of big-data analysis 
and Internet of things (IoT) to build up integrated networks and personalized 
baselines of each wearer. Big data collected from networks and individuals can 
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then warn the user whether the body is in a healthy and equilibrium state or not. It 
is expected that developing new electrochemical biodevices will eventually track 
“fingerprints” of various pathologies and disorders. This aims toward wearable 
systems for early disease diagnosis. Moreover, full closed-loop concepts such as 
biocomputing logic gate, sensing, and therapeutic systems can also be further 
exploited in the integration of biosensors, BFCs, and drug delivery devices, in order 
to obtain both diagnostic and therapeutic applications. The next success of wearable 
biodevices needs the hybrid of multidiscipline, including physiological medicine, 
electronics, electrochemistry, bio- and nanoengineering, and computer science. 
These continued collaborative efforts will open fantastic opportunities for address-
ing current challenges and step further to create novel wearable devices and acquire 
comprehensive big data. Ultimately, it is expected that innovative wearable electro-
chemical technologies and new findings will contribute to revolutionizing diverse 
personalized wearables and biomedical applications.
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Abstract

This chapter introduces the anatomy and physiology of the respiratory system, 
and the reasons for measuring breathing events, particularly, using wearable 
sensors. Respiratory monitoring is vital including detection of sleep apnea and 
measurement of respiratory rate. The automatic detection of breathing patterns 
is equally important in other respiratory rehabilitation therapies, for example, 
magnetic resonance exams for respiratory triggered imaging, and synchronized 
functional electrical stimulation. In this context, the goal of many research groups 
is to create wearable devices able to monitor breathing activity continuously, under 
natural physiological conditions in different environments. Therefore, wearable 
sensors that have been used recently as well as the main signal processing methods 
for breathing analysis are discussed. The following sensor technologies are pre-
sented: acoustic, resistive, inductive, humidity, acceleration, pressure, electromyog-
raphy, impedance, and infrared. New technologies open the door to future methods 
of noninvasive breathing analysis using wearable sensors associated with machine 
learning techniques for pattern detection.

Keywords: breathing analysis, sensors, wearable device, respiration monitoring, 
pattern recognition

1. Introduction

Wearable devices mean whatever a person can wear since they do not restrict 
daily activities or mobility [1]. Recently, progress has been made in the use of 
wearable sensors for breathing monitoring devices, so that it is considered a promis-
ing area [2]. Many applications, including sleep monitoring [3], breathing pattern 
detection, and respiratory rate detection [4, 5], require comfortable and wearable 
devices that patients can wear in their homes, if possible, for continuous monitoring 
and storage of relevant data. Other requirements for wearable devices involve (i) 
the ability to share patient data with healthcare professionals, researchers, and fam-
ily, (ii) very low energy consumption and long battery autonomy, and (iii) wireless 
communication with other devices [1, 6].
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The main topics for the development of wearable devices for breathing monitor-
ing and pattern detection are discussed in this chapter.

1.1 Why is it important to monitor breathing activity with wearable devices?

The development of wearable devices to monitor breathing activity allows giving 
rise to various medical care services. For example, considering people with asthma or 
chronic obstructive pulmonary disease, the environmental conditions directly affect 
their breathing, and a wearable device is able to continually measure air quality and 
pulmonary function [7]. The device could trigger alarm functions for drug uptake, 
contact a general practitioner for an appointment, or call emergency services [8].

The measurement of air quality is important, as pollutant exposure can lead to 
acute asthma attacks [7]. This happens usually after days under exposure. If a system 
detects pollutant exposure, it can warn the person and help to prevent attacks [7, 9].

Other applications of wearable devices include sleep monitoring for apnea detec-
tion [3], speaking detection as an indicator of social interaction [10], respiratory 
impedance [8], etc. The detection and tracking of respiratory movement for image-
guided chest and abdomen radiotherapy, for compensation of movement during 
treatment, are additional uses of wearable devices [11]. Moreover, researchers have 
studied ways to develop smart fabrics, which are comfortable and nonintrusive, for 
different applications such as healthcare, sports, and military scenarios [5].

1.2  What is important to know for the development of a wearable device for 
breathing monitoring and pattern detection?

The creation of these wearable devices requires understanding the anatomy 
and physiology of the respiratory system. The knowledge about its structure and 
function leads to the development of devices that do not interfere with respiratory 
mechanics or daily life activities. It also allows selecting the best sensors in each 
case. Therefore, it is important to have an overview of the main types of electronic 
sensors used in recent years and how they have been applied, as well as signal 
processing and machine learning methods.

This chapter covers these topics concisely as a guide for people interested in 
developing wearable devices for respiratory monitoring. The next section intro-
duces the anatomy and physiology of the respiratory system. The sections 3, 4, 
and 5 discuss, respectively, the electronic sensors, signal processing methods, and 
machine learning techniques applied to respiratory signals for pattern recognition.

2. Anatomy and physiology: mechanics of respiration

When one thinks of breathing, the airways and the airflow come to mind. 
Therefore, an understanding starting with the structures involved in this process is 
very important.

2.1 Respiratory system

The respiratory system consists of the following structures [12, 13] (Figure 1):

• Nose: nasal fossae; nasal cavity; pharynx (muscle tube); larynx (cartilage 
tube); trachea—bifurcates into two primary bronchi, which enter the pulmo-
nary lobes, then subdivided into progressively smaller structures: bronchioles, 
ducts, and alveoli (where gas exchange occurs).
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• Airways: space from the nose to the bronchioles (where no gas exchange 
occurs). The structures up to the trachea are responsible for conducting, filter-
ing, heating, and humidifying the air.

• Lungs: the principal organs of the respiratory system, surrounded by a mem-
brane of connective-elastic tissue called visceral pleura. There are also the 
parietal pleura, which cover the thoracic cavity. Between them, there is pleural 
fluid, which contributes to respiratory mechanics.

Not only structures play an important role in respiration. Airflow direction 
delimits the breathing phases. Breathing comprises two steps. The first is the 
transport of oxygen (O2) through inhalation, from the environment to the cells. 
The second is the transport of carbon dioxide (CO2) from the intracellular to the 
environment. Breathing aims to supply the cells with adequate amounts of O2 and 
withdraw CO2 from the body to maintain homeostasis [13].

The lungs are positioned in an airtight space, and the oscillation of their pressure 
volume is the basis for respiratory control. The intrathoracic pressure is negative 
compared to the lung pressure. The lung functions as an elastic structure that resists 
deformation. The ability of the lung to expand is called compliance [14] and is 
expressed as Eq. (1).

  C = dV / dP   (1)

Compliance requires a respiratory effort under conditions of normality. When 
compliance is reduced, more effort is demanded from the respiratory system, and, 
in more severe cases, it may lead to respiratory insufficiency.

Thorax compliance (CT), lung compliance (CL), and lung-thorax system  
compliance (CLT) may be expressed by Eqs. (2), (3) and (4), respectively, according 
to [14].

Figure 1. 
Breathing process: (a) structures involved in the breathing process; (b) inhalation event; and (c) exhalation event.
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The main topics for the development of wearable devices for breathing monitor-
ing and pattern detection are discussed in this chapter.

1.1 Why is it important to monitor breathing activity with wearable devices?

The development of wearable devices to monitor breathing activity allows giving 
rise to various medical care services. For example, considering people with asthma or 
chronic obstructive pulmonary disease, the environmental conditions directly affect 
their breathing, and a wearable device is able to continually measure air quality and 
pulmonary function [7]. The device could trigger alarm functions for drug uptake, 
contact a general practitioner for an appointment, or call emergency services [8].

The measurement of air quality is important, as pollutant exposure can lead to 
acute asthma attacks [7]. This happens usually after days under exposure. If a system 
detects pollutant exposure, it can warn the person and help to prevent attacks [7, 9].

Other applications of wearable devices include sleep monitoring for apnea detec-
tion [3], speaking detection as an indicator of social interaction [10], respiratory 
impedance [8], etc. The detection and tracking of respiratory movement for image-
guided chest and abdomen radiotherapy, for compensation of movement during 
treatment, are additional uses of wearable devices [11]. Moreover, researchers have 
studied ways to develop smart fabrics, which are comfortable and nonintrusive, for 
different applications such as healthcare, sports, and military scenarios [5].
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breathing monitoring and pattern detection?

The creation of these wearable devices requires understanding the anatomy 
and physiology of the respiratory system. The knowledge about its structure and 
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case. Therefore, it is important to have an overview of the main types of electronic 
sensors used in recent years and how they have been applied, as well as signal 
processing and machine learning methods.

This chapter covers these topics concisely as a guide for people interested in 
developing wearable devices for respiratory monitoring. The next section intro-
duces the anatomy and physiology of the respiratory system. The sections 3, 4, 
and 5 discuss, respectively, the electronic sensors, signal processing methods, and 
machine learning techniques applied to respiratory signals for pattern recognition.

2. Anatomy and physiology: mechanics of respiration

When one thinks of breathing, the airways and the airflow come to mind. 
Therefore, an understanding starting with the structures involved in this process is 
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2.1 Respiratory system

The respiratory system consists of the following structures [12, 13] (Figure 1):

• Nose: nasal fossae; nasal cavity; pharynx (muscle tube); larynx (cartilage 
tube); trachea—bifurcates into two primary bronchi, which enter the pulmo-
nary lobes, then subdivided into progressively smaller structures: bronchioles, 
ducts, and alveoli (where gas exchange occurs).
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• Airways: space from the nose to the bronchioles (where no gas exchange 
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deformation. The ability of the lung to expand is called compliance [14] and is 
expressed as Eq. (1).
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compliance is reduced, more effort is demanded from the respiratory system, and, 
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Breathing also involves air diffusion, exchange from a more concentrated to a 
less concentrated medium. Poiseuille’s law governs the flow resistance as expressed 
by Eq. (5).

  R =   8ηL ___ 
 𝜋𝜋r   4 

     (5)

Where R is the flow resistance, L is the length, η is the viscosity of air, and r is 
the radius of the tubes.

Figure 1 shows the main structures and processes involved in breathing.

2.2 Muscles involved in breathing and their functions

The diaphragm is the most important muscle of inspiration. When it contracts, 
there is a decrease in intrapleural pressure and an increase in lung volume [13]. 
Simultaneously, an increase in abdominal pressure is transmitted to the chest 
through the apposition zone to expand the lower thoracic cavity. When the dia-
phragm contracts, the lower rib cage expands. One may observe the bucket handle 
movement that causes an increase in thorax transverse diameter due to the elevation 
of the ribs during inspiration [15]. Elevation and sternum forward movement dur-
ing inspiration causes the increase of thorax anteroposterior diameter. Diaphragm 
contraction also contributes to increasing the longitudinal thorax diameter [12].

Scalene muscle, sternocleidomastoid muscle, and intercostal muscle are inspira-
tion auxiliary muscles. During forced expiration, the abdominal muscles contract, 
and the diaphragm is pushed upward, thus causing a decrease in chest diameters. 
Abdominal muscle is also important for coughing [16].

2.3  Different etiologies, types, and characteristics of pathological respiratory 
patterns

If structural and/or functional changes occur, then adequate air transport to 
and from the lungs can be compromised. There are different etiologies, types, 
and pathological respiratory patterns in which wearable systems may assist in the 
characterization of movement patterns [1]. This capacity helps in the analysis of the 
health condition of patients, providing important additional information.

Thoracic mobility is related to the integrity of the nerve pathways and respiratory 
muscles [13]. In clinical practice, thoracic and abdominal amplitude measurements 
during respiratory movement may provide information on changes in the respiratory 
system or eventual diseases [17]. Some paradoxical movements may occur when 
patients present weakness, muscle paralysis, or chronic obstructive pulmonary 
disease (COPD), with pulmonary hyperinflation, among other commitments [18]. 
Another example is Cheyne-Stokes breathing, which is a type of central sleep apnea 
with an unstable breathing pattern throughout the night. It can cause changes in 
respiratory frequency and depth of patients with congestive heart failure [19].
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Other impairments may cause changes in the thoracic and abdominal mobility 
relation such as dyspnea, orthopnea, alternate breathing, forced expiration, etc. 
Wearable systems capable of monitoring the contribution of different muscles 
and changes in mobility patterns can help monitor the evolution of the respiratory 
functional condition of a person.

2.4 Pulmonary auscultation: sounds in healthy and diseased lungs

Lung sounds occur because of air turbulence in the larger airways [15, 20]. They 
are the results of pulmonary vibrations and the respective airways transmitted to 
the thoracic wall. Sounds that occur during natural breathing differ depending on 
where they are acquired as well as the moment of the ventilatory cycle [20]. So, 
controlling where to place wearable devices and their sampling frequency and dura-
tion allows obtaining significant data from lung sounds.

Normal pulmonary sounds are classified into:

• Tracheal sound: it is audible in the region of the trachea from cervical to sternal 
height, having an intense and tubular sound. Inspiration is slightly shorter 
than expiration, with a pause between events [21].

• Bronchial sound: it is audible in the region of the bronchi, at the height of the 
sternal manubrium, having less intensity than the tracheal sound. The dura-
tion of inspiration and expiration is similar, with a pause between events [22].

• Bronchovesicular sound: it is audible in the first and second intercostal spaces 
and between the scapulae. The duration of inspiration and expiration is 
similar, with no pause between events [22].

• Vesicular murmur: it is audible in the peripheral regions of the lungs, having 
less intensity than the bronchial sound. Inspiration is longer than expiration, 
with no pause between events [21].

The anatomical structures may influence the sound heard during normal 
breathing [21].

Pathological changes in the lungs directly affect the perception of lung sounds 
from the airways to the thoracic surface. Abnormal lung sounds, also called adven-
titious noises, are classified into:

• Wheezing: it occurs with the oscillations of the bronchial pathways [22].

• Rhonchus: similar to snoring, it can be heard during inspiration and/or  
expiration [21].

• Crackles: they are discontinuous sounds, presented in a short and explosive 
manner, usually classified considering their duration and loudness, during the 
respiratory cycle [22].

There are other sounds and more details about each of them, and wearable 
systems contribute to distinguishing the different sounds in clinical practice.

The concepts presented in this section are very important for understanding the 
respiratory system in healthy and unhealthy conditions. Depending on the event one 
aims to observe, this information helps to identify the best location for sensor place-
ment. It also contributes to a better interpretation of the respiratory signals obtained.
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After this brief overview of the main concepts involving respiratory anatomy 
and physiology, the next section explains how wearable devices for respiratory 
monitoring have been made.

3. Respiratory wearable sensors

Wearable sensors for respiratory monitoring employ various types of electronic 
sensors that can be mounted into clothes [23], attached to belts [5, 24], fixed on the 
skin [3, 7], etc. There are many ways to make wearable devices and some of them 
are described separately by the type of primary sensor in the following sections.

3.1 Pressure sensors

We can take advantage of the events of diaphragm contraction (as shown in 
Figure 1b) and relaxation (as illustrated in Figure 1c) to create wearable devices 
based on pressure sensors. As an example, researchers have used an electrome-
chanical film (EMFit) to develop a respiratory rate sensor designed as a belt [24] 
(as shown in Figure 2a). They attached the sensor to the belt so that the expan-
sion of the chest during breathing applies a force to the sensor, and produces a 
voltage change proportional to this movement. EMfit is a capacitive pressure 
sensor that has a thin porous polypropylene film structure with a sensitivity of 
30–170 pC/N.

Another way to use pressure sensors is to use them directly in contact with the 
inhaled and exhaled air pressure during breathing. The facemask introduced in [8] 
measures the respiratory impedance and was targeted to home and clinical applica-
tions. The solution consists of two pressure transducers, two low power consump-
tion fans, a field-programmable gate array, and a real-time processing engine. The 
device is based on the forced oscillation technique (FOT), which is a nonstandard-
ized lung function test. The idea is to use fans to input a periodic sinusoidal air 
pressure signal and measure the opposite force produced by the respiratory tract. 
With these data, respiratory resistance and compliance, as shown in Eq. (1), can be 
calculated and sent via Bluetooth to a smartphone (Figure 2b).

The EMFit sensor is less intrusive and performed well in the detection of respira-
tory rate. However, body movements affect the accuracy of the measurement, so the 
sensor only worked well for still or moderate moving patients [24]. The facemask 
sensor also performed well and estimated the respiratory impedance satisfactorily. 
Nevertheless, it was a prototype and its use was not comfortable [8].

3.2 Acoustic sensors

As seen in Section 2.4, it is possible to monitor lung sounds using acoustic sensors. 
Acoustic signals related to breathing are usually obtained with the sensors located 
close to the nose, mouth, throat, and suprasternal notch [3, 25, 26]. Figure 3a shows 
a wireless microphone that is a portable, cheap, and easy-to-use wearable device 
positioned next to the nose [3]. The purpose was to measure the respiratory rate in 
sleep. The microphone is fixed near the nose with a tape, and the signals are sent to a 
smartphone via wireless communication.

BodyScope was developed to record the sounds produced by the throat region 
in order to classify them into the following categories [25]: eating, drinking, speak-
ing, laughing, and coughing. The developers modified a wireless headset attaching 
a microphone and a stethoscope chestpiece to minimize external source audio, as 
illustrated in Figure 3b. The position selected to place the sensor was close to the 
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carotid artery region as indicated the preliminary test results. The device sends the 
audio signals to a computer or smartphone likewise solution shown in Figure 3a [3].

Figure 3c shows a real-time wheeze detector that consists of a wireless sound 
acquisition module, a wearable mechanical design and a host system [23]. The sen-
sor module was an omnidirectional condenser microphone and a stethoscope bell.

A commercial repository of normal and abnormal lung sounds (referred to as 
the R.A.L.E lung repository) was used to implement and evaluate a wearable sensor 
that monitors lung sounds continuously for asthma attack detection [27]. The sen-
sor is a microphone array for pre-filtered acoustic signal acquisition. It is an acoustic 
resonator array consisting of 13 paddle-shaped piezoelectric cantilevers. The results 
showed that accessing a repository to test for event detections did not hinder its 
application as a wearable system.

Figure 2. 
Wearable pressure sensors: (a) pressure sensor (EMFit) attached to the belt and against the skin: the variations 
of ribcage volume during respiration compresses the sensor, producing a proportional charge [24]; (b) system 
developed by [8] for respiratory impedance measurement based on the forced oscillation technique.

Figure 3. 
Acoustic devices for respiratory monitoring: (a) a wireless microphone connected to a smartphone application 
[3]; (b) BodyScope system: Bluetooth headset attached with a microphone and a stethoscope chestpiece [25]; (c) 
a wireless acquisition module embedded into a wearable mechanical design [23] and placed over the right chest.
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Acoustic wearable sensors can be very practical. However, some challenges are 
faced during the project design phase such as determining the optimal sensor posi-
tion, canceling the acoustic ambient noise and the detection of movement artifacts. 
Depending on the setting, its use is not possible.

3.3 Humidity sensors

Wearable humidity sensors based on the porous graphene network (a chemical 
structure capable of detecting moisture) have been tested for breathing analysis 
[4]. The sensors are capable of sensing the human respiration, apnea, speaking, and 
whistle rhythm. The sensors are attached to the body with a facemask, as shown in 
Figure 4. The disadvantage of using this sensor is that long time use is also uncom-
fortable. It still needs some improvements to further commercialization.

3.4 Oximetry sensors

Oximetry is the technique used to measure oxygen saturation. It consists, 
basically, of a small infrared emitter that illuminates a small portion of the skin 
and a receiver that measures the light absorption depending on the oxygenated 
and deoxygenated blood levels [28]. Wearable oximetry sensors can be worn on the 
wrist, finger, head, earphones, earlobe, thigh, and ankle, and they have been widely 
commercialized [1] (Figure 5).

3.5 Acceleration sensors

Accelerometers can be used to capture the respiratory movements during inhala-
tion and exhalation events [29]. An adhesive sensor (called BiostampRC®) made of 
a triaxial accelerometer that can be placed on the chest wall (Figure 6b) has been 
used [29].

Researchers adapted the EMFit-based sensor to evaluate MEMS (microelectro 
mechanical system) high-resolution capacitive accelerometers for the detection of 
respiratory rate at the same time [24]. They attached two monoaxial accelerometers 
to the belt as shown in Figure 6a.

A better signal can be obtained depending on the location of the sensor [30, 31], 
because people may have disorders that affect muscle contraction during breathing 
[32], as seen in Section 2.3. Accelerometers have found application in many areas, 
recently, since sensors operate in a wide spectral range and have small dimensions 

Figure 4. 
Humidity sensor attached to a facemask [4].
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[33, 34]. In spite of that, in the clinical setting, body movement seriously influ-
ences them [35]. The sensitivity can be set to measure vibrations with amplitude 
varying from gross body movements to small artery pulsation [36]. Therefore, 
likewise applications with acoustic sensors, unwanted artifacts have to be detected 
in order to prevent taking decisions based on contaminated lung signals [37]. The 
activation of synchronized functional electrical stimulation should consider these 
undesirable artifacts.

3.6 Resistive sensors

Another work used a textile sensor to detect talk events based on changes in 
breathing patterns [10]. The solution consisted of resistive stretch sensors that are 
made with a conductive material and a polymer mixture. These components were 
attached to three different belts: upper chest, lower chest, and abdomen as illustrated 
in Figure 7a. The events of thoracic or abdominal expansion and relaxation result in 
variation in the resistance of the stretch sensor with this sensor configuration. The 
idea is that the sensor can be directly integrated into the clothing in the future.

Piezoresistive sensors can also be used for the production of wearable  
devices. Figure 7b shows an example in which a smart textile fabric for respiratory rate 
monitoring was developed using a conductive piezoresistivity-based yarn garment [5].

Movement artifacts are also a problem for this kind of sensor. Researchers are 
working on improvements to incorporate these sensors in clothes and allow for 
activities such as running and cycling in the future [5, 38, 39].

Figure 5. 
Location of some oximetry wearable devices [1].
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Figure 4. 
Humidity sensor attached to a facemask [4].
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[33, 34]. In spite of that, in the clinical setting, body movement seriously influ-
ences them [35]. The sensitivity can be set to measure vibrations with amplitude 
varying from gross body movements to small artery pulsation [36]. Therefore, 
likewise applications with acoustic sensors, unwanted artifacts have to be detected 
in order to prevent taking decisions based on contaminated lung signals [37]. The 
activation of synchronized functional electrical stimulation should consider these 
undesirable artifacts.

3.6 Resistive sensors

Another work used a textile sensor to detect talk events based on changes in 
breathing patterns [10]. The solution consisted of resistive stretch sensors that are 
made with a conductive material and a polymer mixture. These components were 
attached to three different belts: upper chest, lower chest, and abdomen as illustrated 
in Figure 7a. The events of thoracic or abdominal expansion and relaxation result in 
variation in the resistance of the stretch sensor with this sensor configuration. The 
idea is that the sensor can be directly integrated into the clothing in the future.

Piezoresistive sensors can also be used for the production of wearable  
devices. Figure 7b shows an example in which a smart textile fabric for respiratory rate 
monitoring was developed using a conductive piezoresistivity-based yarn garment [5].

Movement artifacts are also a problem for this kind of sensor. Researchers are 
working on improvements to incorporate these sensors in clothes and allow for 
activities such as running and cycling in the future [5, 38, 39].

Figure 5. 
Location of some oximetry wearable devices [1].
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Figure 7. 
(a) System consisting of different belts to monitor chest and/or abdominal breathing [10]; (b) piezoresistive 
sensor [5].

Figure 6. 
(a) The 1-axis accelerometers were mounted perpendicularly and parallel relative to the chest plane [24];  
(b) the BiostampRC® system.
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3.7 Multimodal sensing platforms

Low-power multimodal wearable systems for the continuous monitoring of 
respiratory activity have been developed. Figure 8 shows a system with a sensing 
platform that consists of a chest-patch, a wristband, and a handheld spirometer 
[7]. Its aim is to monitor health and the environment for asthma management. The 
chest-patch measures electrocardiogram (ECG), skin impedance, photoplethys-
mography (PPG), movement, and acoustic signals. The spirometer can measure 
forced expiratory volume in 1 s (FEV1), peak expiratory flow (PEF), and forced 
expiratory capacity (FVC). The wristband sensors are intended to measure ozone 
exposure, ambient temperature, relative humidity, PPG, and movement. The idea 
is to create a system for continuous long-term monitoring of the state of health and 
the environmental factors relevant to respiratory problems such as asthma.

This brief overview revealed that different sensors can monitor the same respi-
ratory event and there are different ways to apply them. The sensors discussed are 
not limited to the applications mentioned in this chapter; they can be used in many 
other applications and combinations. One of the most difficult tasks is to develop a 
respiratory wearable device that is low cost, low power consuming, and immune to 
movement artifacts other than the pulmonary ones.

4. Signal processing methods for respiratory signals

4.1 Amplification

Some sensor signals have very low amplitude and need to be processed. The 
sensitivity of the EMFit, for example, is about 2.2–7 mV/mmHg. For signals so 
small, high-impedance voltage amplifiers must be used [24].

Figure 8. 
Multimodal system [7].
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Reference Sensor Type of filter Cutoff frequencies (Hz)

[24] Pressure and 
accelerometer

2nd order Butterworth low-pass filter 0.2

[44] Acoustic 2nd order Butterworth high-pass and 
low-pass filters in series

20–2000

[23] Acoustic Band-pass filter 150–1000

[10] Resistive Band-pass filter 0.1–1.5

[5] Piezoresistive Band-pass filter 0.05–2

[45] Accelerometer Low-pass filter 1

Table 1. 
Synthesis of the use of filters in respiratory signals.

4.2 Filtering

Depending on the signal, filtering is advantageous for processing [40]. Filters 
are quite common in biomedical engineering applications to emphasize the spectral 
contents of electrophysiological signals [41]. There are signals with a well-known 
spectrum that researchers have extensively investigated. Once the frequency range 
of the signal is determined, an electronic circuit prevents unwanted energy from 
contributing to the processing and decision-making [42]. As an example, if the 
acoustic signal band frequency of interest of a solution is between 500 and 900 Hz, 
then a band-pass filter encompassing this spectrum is inserted into the circuit [43]. 
For each sensor, one filter should be placed.

Filters can be applied to minimize high-frequency noise, preserving the shape 
of the respiratory signal [29]. A band-pass filter with cutoff frequencies of 0.1 and 
1.5 Hz was applied to compensate for possible drifts and to reduce the total noise 
level in the signals [10]. Table 1 shows some types of filters used by the researchers 
in this area.

4.3 Analog to digital processing

Despite the advances in digital technologies, we still live in a world full of analog 
phenomena and human physiology is no exception. Almost all electronic biomedi-
cal devices use some kind of quantity conversion, from analog to digital. The 
exceptions are those devices that work entirely in analog mode.

Key factors of analog to digital conversion need to be considered in order to 
understand the operation of mobile wearable devices. One factor relates to Claude 
Shannon’s [46] and Harry Nyquist’s theories [47]. The sampling theory helps to 
determine the acquisition frequency (or sampling frequency   f  s   ) of analog signals. 
To digitize a pure sinusoidal wave properly, an acquisition frequency of at least 
twice the maximum frequency of the analog signal must be used. Knowledge of the 
spectral range is therefore crucial for determining   f  s   .

Human electrophysiological signals are not purely sinusoidal so that the 
developers of biomedical systems should be far more conservative in deter-
mining   f  s   . Knowing the maximum frequency of the bandwidth (   f  max   ) is useful, 
because the theory indicates to set   f  s    at least twice that value (   f  s   ≥ 2 ×  f  max   ). In 
some cases, however,   f  s    must be high enough to keep the signal’s significant 
energy depending on the frequencies of interest. Acoustic sounds, for instance, 
revealed that signal power was mainly distributed below 5000 Hz [25]. The 
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researchers, therefore, set   f  s   =  22,050 Hz, which covers up to 11,025 Hz, because 
the range was considered enough for their application. Table 2 shows some of 
the sampling rates used.

Other equally important factors affect the quality of the acquisition, operation, 
and energy efficiency of wearable devices, such as the duration of acquisition, 
signal conditioning, conversion resolution, etc. However, these are not explored in 
this chapter.

4.4 Fast Fourier transform (FFT)

Fast Fourier Transform (FFT) is an algorithm that converts the signal from 
the time domain to the frequency domain and vice versa [40, 48]. This algo-
rithm is important because it is the first step to extract spectral features, which 
can be used by machine learning algorithms and other algorithms for signal 
processing.

5. Machine learning for respiratory signal pattern detection

Machine Learning is the result of pattern recognition and the assumption that 
computers can learn to execute a task. As a field of artificial intelligence, machine 
learning is the ability of a machine to learn, identify, and classify from being 
exposed to specific data in an interactive way, and to not only learn and make reli-
able decisions but also to adapt when exposed to new data.

This technique can be useful for automatic pattern recognition in respiratory 
signals such as sleep apnea, respiratory patterns, and talking detection [10, 49, 50]. 
The steps to implement a machine learning algorithm are introduced in the follow-
ing sections.

5.1 Feature extraction

First, for machine learning classification, some features must be given to the 
classification algorithm. These features must be extracted from the original signal, 
and they must be well chosen for better results.

Reference Sensor Objective Sample rate

[10] Chest or abdominal belt with 
a resistive sensor

Talking detection 100 Hz

[25] Acoustic sensor configured 
as a headset over the throat

Activity detection of deep breath, 
eating, drinking, speaking, whispering, 

whistling, laughing, sighing, and 
coughing.

22,050 Hz

[3] Acoustic sensor fixed with 
tape near the nose

Sleep apnea detection 44.1 kHz

[44] Acoustic sensor fixed with 
tape on the thoracic region

Measurement of acoustic sounds from 
the thorax, including the lung sounds

4 kHz

[23] Acoustic sensor embedded 
in a wearable mechanical 
design over the right chest

Wheeze detection 2048 Hz

Table 2. 
Examples of sampling rates.
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5. Machine learning for respiratory signal pattern detection
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exposed to specific data in an interactive way, and to not only learn and make reli-
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This technique can be useful for automatic pattern recognition in respiratory 
signals such as sleep apnea, respiratory patterns, and talking detection [10, 49, 50]. 
The steps to implement a machine learning algorithm are introduced in the follow-
ing sections.

5.1 Feature extraction

First, for machine learning classification, some features must be given to the 
classification algorithm. These features must be extracted from the original signal, 
and they must be well chosen for better results.
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For example, when working with a wearable acoustic sensor [50] aiming to 
recognize activity patterns like sitting, eating, and drinking and respiratory pat-
terns such as whispering, deep breath, and coughing, the features extracted from 
the sensor signals were related to time, frequency, and cepstral:

• Time domain features: these features were obtained using the zero-crossing 
rate, that is, the rate of sign changes along a signal.

• Frequency domain features: to obtain these features, the FFT needs to be cal-
culated. The features include total spectrum power, subband powers (summed 
power signal in logarithmically divided bands), brightness (frequency cen-
troid), spectral roll-off (skewness of the spectral distribution), and spectral 
flux (L2-norm of the spectral amplitude difference of two adjacent frames, 
representing how drastically the sound changes between two frames).

• Cepstral features: commonly used for speech recognition and audio, the mel-
frequency cepstral coefficients are extracted with the application of a discrete 
cosine transform to the log-scaled outputs of the FFT coefficients filtered by a 
triangular band-pass filter bank.

It is also possible to use a tool that automatically extracts the features of the 
signals being studied. With the purpose of identifying talking in respiratory signals 
[10], more than 10 features were extracted using the Python library “tsfresh” [51]; 
those that presented more than 10% of recurrence between the tests were manually 
selected in order to use that feature for classification in the algorithm.

It is common to extract a variety of features in a study, but the effectiveness of 
a machine learning algorithm strongly depends on which one will be selected and 
how the data will be selected for training and validation.

5.2 Classification selection

After the selection of features to be used in the algorithm, it is important to 
decide which the classes are and how the data will be processed. It is important to 
select what will be used to train the algorithm and what will be used to validate it. 
There are several ways of separating the acquired data so that the network is trained 
without the risk of overfitting.

For instance, in Yatani and Tuong [25], two approaches were carried out:

• “Leave-one-participant-out”: they worked with 9 samples of data, training the 
chosen algorithm and using one participant to validate the results.

• “Leave-one-sample-per-participant”: an example of each class of each partici-
pant was left out for validation and the rest used for training.

A different approach was used by Ejupi and Menon [10]: the data were obtained 
executing different activities such as walking, standing, and sitting, and an algo-
rithm was trained for each one. For classification, 70% of the database was used for 
training and 30% for validation.

These techniques prevent the major problem in machine learning, overfitting [52]. 
In case an algorithm is overfitted, it will produce inaccurate results creating unreal-
istic patterns. It is always wise to select which data will be used to train the algorithm 
and which will be used to validate the results, never using all dataset to just one task.
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5.3 Machine learning algorithms

The strategy or algorithm to be used in a project as well as its effectiveness and 
performance are strongly dependent on the problem domain (e.g., data structure, 
database size, etc.) [53]. It is therefore impossible to choose a method as the best 
one regardless of domain intricacies. Some popular machine learning algorithms are 
presented in the following topics.

5.3.1 Support Vector Machines

In order to identify speech pattern using a wearable textile-based sensor [10], 
the best results were obtained with Support Vector Machines (SVMs). The basic 
approach for SVM algorithms is to give a set of basic examples and their weight, 
generally understood as positive and negative (binary) examples for the algorithm, 
interpreted as classes, where there is a degree of similarity between them, a kernel 
function, as a means of comparison [52].

SVM was applied for identifying activities using an acoustic sensor [50]. They 
used more than two classes, comparing one against the other as a strategy to obtain 
results, using the Radial Basis Function (RBF) as a kernel function. All the imple-
mentation using a library “LIBSVM” [54] reaches almost 80% of accuracy.

5.3.2 Naïve Bayes

The Naïve Bayes algorithm can be used when it is necessary to recognize the user 
activities in real time [25]. The theorem is based on the Bayes statistical theorem 
that describes the probability of an event based on conditions or previous knowl-
edge. The “naïve” comes from the naivety of the assumption that the results are 
independent given the cause [52].

From the Bayes’ theorem, we have Eq. (6):

  P (A | B)  =   P (B | A)  ∗ P (A)   ____________ P (B)      (6)

where, P(A|B) is the probability that hypothesis A is true given data of type 
B. P(B|A) is the probability of data B given that hypothesis A was true.

P(A) is the probability that A is true independently of data, and P(B) is the 
probability of data B regardless of the hypothesis.

The algorithm uses this probability structure to classify at least two independent 
sets, which can lead to another set of classification or decision and, at the same 
time, to another independent set.

This algorithm is simple, computationally cost-effective and can be used for 
small datasets, as it was used to identify activity patterns such as speaking, laugh-
ing, and coughing, presenting good results of accuracy [25].

5.3.3 Artificial neural networks

An artificial neural network (ANN) is a technique based on a series of connected 
inputs and outputs. Its structure resembles neurons, each one connected and with 
associated weights. The weights represent information being used by the net to 
solve the problem and can be adjusted as required. The networks can be supervised 
or not, the fundamental difference is that in supervised learning, the target vectors 
indicate what is wanted from the network.
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For example, the application of an ANN in talking [10, 25] recognition through 
respiratory patterns [10] is of supervised learning as the targets to classify are 
provided to the algorithm.

The neural networks can also be more complex, which depends of the problems 
intricacies. Aiming to recognize activity patterns such as respiratory effort, using a 
wearable piezo sensor [25] it was applied networks with up to 17 layers and inputs, a 
very complex ANN, to achieve the best classification.

Overall, the use of machine learning has become increasingly common in 
health implementations and has proved a very beneficial tool in classifying and 
recognizing respiratory activities and patterns when combined with wearable 
sensors [10, 25, 55].

6. Conclusion

Wearable devices for breathing monitoring and pattern detection are not simple 
devices. They must not interfere with the respiratory system activities and need to 
be highly immune to external perturbations. The understanding of the respiratory 
mechanics is crucial to the development of wearable sensors, and to know how to 
connect them in an optimal way. The methods, whether manual processing or the 
use of machine learning algorithms, depend substantially on the type of the signal 
studied and are a crucial step for a study development.
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For example, the application of an ANN in talking [10, 25] recognition through 
respiratory patterns [10] is of supervised learning as the targets to classify are 
provided to the algorithm.

The neural networks can also be more complex, which depends of the problems 
intricacies. Aiming to recognize activity patterns such as respiratory effort, using a 
wearable piezo sensor [25] it was applied networks with up to 17 layers and inputs, a 
very complex ANN, to achieve the best classification.

Overall, the use of machine learning has become increasingly common in 
health implementations and has proved a very beneficial tool in classifying and 
recognizing respiratory activities and patterns when combined with wearable 
sensors [10, 25, 55].

6. Conclusion

Wearable devices for breathing monitoring and pattern detection are not simple 
devices. They must not interfere with the respiratory system activities and need to 
be highly immune to external perturbations. The understanding of the respiratory 
mechanics is crucial to the development of wearable sensors, and to know how to 
connect them in an optimal way. The methods, whether manual processing or the 
use of machine learning algorithms, depend substantially on the type of the signal 
studied and are a crucial step for a study development.
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Chapter 5

Wearable Electromechanical 
Sensors and Its Applications
Dan Liu and Guo Hong

Abstract

Wearable electromechanical sensor transforms mechanical stimulus into electri-
cal signals. The main electromechanical sensors we focus on are strain and pressure 
sensors, which correspond to two main mechanical stimuli. According to their 
mechanisms, resistive and capacitive sensor attracts more attentions due to their 
simple structures, mechanisms, preparation method, and low cost. Various kinds of 
nanomaterials have been developed to fabricate them, including carbon nanomateri-
als, metallic, and conductive polymers. They have great potentials on health moni-
toring, human motion monitoring, speech recognition, and related human-machine 
interface applications. Here, we discuss their sensing mechanisms and fabrication 
methods and introduce recent progress on their performances and applications.

Keywords: wearable, electromechanical sensor, health monitoring, fabrication, 
mechanism

1. Introduction

With the rapid development of information technology, the Internet of 
Everything turns more critical in the next technological revolution. Wearable 
devices, which have the advantages of good portability, easy to carry, and multi-
functional capability, are considered as the basic hardware in the future, which 
show great potential on many applications, including medicine, healthcare, robotic 
systems, prosthetics, visual realities, professional sports, as well as entertainment. 
In recent years, much efforts have been devoted to developing wearable sensing 
technologies. Various kinds of wearable sensors have been proposed and demon-
strated in lab, from single functional sensors, such as temperature [1], pressure [2], 
strain [3], optical [4], and electrochemical sensors [5], to multifunctional sensors, 
such as tactile and electronic skin [6]. Among these wearable sensors, wearable 
electromechanical sensors including strain and pressure sensor have attracted more 
and more attentions due to its clear mechanism, low cost, low power consumption, 
and high performance [7]. Through integrating wearable strain and pressure sensor 
with other sensors, tactile sensor [8] and electronic skin [9] have been realized. 
High-performance wearable electromechanical sensor can monitor the tiny change 
of strain and pressure, which is useful in many fields.

Traditional electromechanical sensor is usually fabricated with brittle materials, 
such as silicon and metal. Though flexibility can be improved by structural design, 
their performance is still limited. Thus, many new materials have been developed. 
The materials used in wearable electromechanical sensor consist of sensing and 
supporting material. Most of the progresses are focusing on the development of 
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new sensing materials. Structural design is also an effective strategy to improve the 
performance. Fabrication method is also the significant aspect. Many traditional 
techniques are utilized, such as screen printing, contact printing, electrospinning, 
and spray coating [10]. Moreover, wearable electromechanical sensor has been suc-
cessfully demonstrated on a lot of applications, such as health monitoring, disease 
diagnosis, behavior correction, alarm of accident falls, human-machine interfaces, 
and even speech recognition.

The present chapter will discuss their basic working mechanism, fabrication 
methods, and applications of wearable electromechanical sensors and challenges 
facing the progress.

2. Working mechanisms of a wearable electromechanical sensor

Firstly, we discuss the working mechanism of a wearable electromechanical 
sensor. Based on their working mechanisms, it can be classified into piezoresistive, 
capacitive, iontronic, and piezoelectric sensor, as seen in Figure 1 [11].

2.1 Wearable piezoresistive sensor

Figure 1a shows the mechanism of piezoresistive sensor. It transfers mechanical 
stimuli into resistance signal. The factors resulting in resistance change depend on 
the property of materials utilized and their structures, including geometrical effect, 
structural effect, and disconnection mechanism.

2.1.1 Geometrical effect

Geometrical effect means that the resistance change is caused by geometrical 
change, which is mainly due to Poisson’s ratio (υ). Poisson’s ratio (υ) is a fundamen-
tal parameter of materials, meaning that materials tend to contract in transverse 
direction of stretching when they are stretched. The resistance of a conductor is 
represented by:

  R = 𝜌𝜌L / A  (1)

Figure 1. 
Schematics illustrating the different modalities of wearable electromechanical sensors. (a) Piezoresistivity,  
(b) capacitance, (c) piezoelectricity, and (d) iontronic.
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where ρ is the electrical resistivity, L is the length, and A is the cross-sectional area 
of the conductor. When strain or pressure is applied, the length increases and cross-
sectional area would be changed due to the shrinkage of materials, resulting in change 
of the resistance. Geometrical effect is usually limited compared to other factors.

2.1.2 Structural effect

Structural effect is defined as the change in the resistance caused by the struc-
tural deformations. This is usually observed in semiconducting materials. When 
strain or pressure is applied, the crystal structure especially interatomic space is 
changed, resulting in the change of the bandgap, which may increase the resistance 
of materials to few times [12]. For example, individual carbon nanotube (CNT) 
[13] shows ultrahigh resistivity change owning to their chirality and change in 
barrier height, respectively. However, compared with total resistance change, the 
part is usually low because strain applied on individual nanoflake is always small. In 
addition, the large elastic mismatch and weak interfacial adhesion strength between 
nanomaterials and polymers also make nanoflakes almost free from deformation.

2.1.3 Disconnection mechanism

The disconnection mechanism means that resistance change is caused by discon-
nection process between adjacent nanoflakes. It consists of three situations under 
different strains or pressures, which are contact area change, tunneling effect, and 
crack propagation.

When the applied strain or pressure is small, contact area changes between 
adjacent nanoflakes dominants. The electrons mainly pass through overlapped 
nanoflakes within the percolation conductive network. When the applied strain 
or pressure increases and fully pull some adjacent nanoflakes apart, the electrons 
still can pass through them because the distance between them is small enough. 
This phenomenon is called tunneling effect, and the distance is called tunneling 
distance. The tunneling resistance between two adjacent nanoflakes can be approxi-
mately estimated by Simmons’s theory [14]:

   R  tunnel   =    h   2  d _______ 
 Ae   2   √ 

_____
 2m𝜆𝜆  
   exp  (  4𝜋𝜋d ____ h    √ 

_____
 2m𝜆𝜆  )   (2)

where A, e, h, d, m, λ represent the cross-sectional area of the tunneling 
junction, single electron charge, Plank’s constant, the distance between adjacent 
nanoflakes, the mass of electron and the height of energy barrier for insulators, 
respectively. It can be found that the distance between adjacent nanoflakes domi-
nates the tunneling resistance. When there is no electron pass through by tunneling, 
the distance is defined as cut-off tunneling distance. The cut-off distance is usually 
several nanometers. When the applied strain or pressure is large enough, crack is 
formed, leading to rapidly increasing of resistance. Strain or pressure leads opening 
and enlargement of cracks, critically limiting the electrical conduction due to the 
separation of several crack edges.

2.2 Wearable capacitive sensor

As Figure 1b shows wearable capacitive sensor is based on capacitance change of 
capacitor. Among different capacitors, the most popular architecture is the parallel-
plate configuration because it is easy to be fabricated and its model is simple. The 
capacitive change can be expressed by the classic equation:
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  C = κ   A __ d    (3)

in which κ, A, and d represent the permittivity of the medium between two 
plates, the overlap area, and the distance between two plates, respectively. When any 
of them is changed by the mechanical stimulus, the capacitance would be changed.

For capacitive strain sensor, when the strain ε is applied, the length of capacitor 
along the strain direction would be increased, which is expressed as (1 + ε)l0, while 
the width and thickness of dielectric layer would be decreased, which is expressed 
as (1 − νelectrode)w0 and (1 − νdielectric)d0, respectively. The νelectrode and νdielectric are 
used to represent the Poisson’s ratios of flexible electrodes and dielectric layer, 
respectively. If both flexible electrodes and dielectric layer have same Poisson’s 
ratio, then the capacitance upon stretching could be calculated as:

  C =  (1 + ε)   C  0    (4)

The equation indicates that the capacitance of capacitive strain sensor is linear 
with the applied strain. However, the linear relationship is only suitable for limited 
strain range. When the applied strain is higher than certain value, the relationship 
between different axes cannot be obtained simply by the Poisson’s ratio.

For capacitive pressure sensor, the sensitivity (S) of capacitance to pressure is 
given by:

  S = δ (ΔC /  C  0  )  / 𝛿𝛿P  (5)

where ΔC is the variation of capacitance (C–C0) and P presents applied pres-
sure. The most popular structure for the wearable pressure sensor is interlock 
structure, which is hard to make accurate analysis.

2.3 Iontronic sensors

As Figure 1c shows, iontronic sensor is based on the iontronic interface sens-
ing mechanism. The iontronic interface usually exists at the nanoscale interface 
between the electrode and the electrolyte. The electrode forms ionic-electronic 
contact with ionic gel. The electrons on the electrode and the counter ions from the 
iontronic film accumulate and attract to each other at a nanoscopic distance, leading 
to an ultrahigh unit-area capacitance. Compared to traditional parallel plate capaci-
tive sensors, iontronic sensor has a higher surface area and its electrical capacitance 
is at last 1000 times larger. This excellent property is suitable for wearable electro-
mechanical sensors. In addition, this special mechanism enables iontronic sensor 
immunity to environmental or body capacitive noises. So far, ion gels and ionic 
liquids are the most popular materials for iontronic sensor.

2.4 Piezoelectric sensors

As Figure 1d shows, the sensing mechanism of piezoelectric sensor is piezoelec-
tric effect. Piezoelectric means that electric change accumulates in piezoelectric 
materials when mechanical stress is applied. Many materials have piezoelectric 
property, such as crystals, certain ceramics, and even biological matter. When strain 
or pressure is applied, there is a change in electrical polarization inside the material, 
resulting in a change in surface charge (voltage) at the surface of the piezoelectric 
material. In general, the electrical signal of piezoelectric sensor is voltage, which 
can be collected by measuring two different surfaces.
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3. Performance of wearable electromechanical sensor

3.1 Basic parameters of wearable electromechanical sensor

3.1.1 Sensitivity and linearity

Sensitivity is the magnitude of electrical response to measured mechani-
cal stimulus, which is an important parameter. For strain sensor, sensitivity is 
called gauge factor (GF), which is defined as GF = ΔR/R0 for resistive type and 
GF = ΔC/C0 for capacitive type. For pressure sensor, pressure sensitivity (PS) 
is defined as PS = (ΔR/R0)/P. Sensitivity can be affected by functional mate-
rial, sensing mechanism, and structural configuration. The materials with large 
piezoresistive or piezoelectric coefficient are desired. Tunneling effect and crack/
gap structures in piezoresistive sensors have been proven to be effective in pro-
moting sensitivity. However, most highly sensitive sensors always show limited 
stretchability.

Linearity characterizes degree of deviation from linear relationship between 
electrical signals and mechanical stimulus. High linearity is convenient for the 
calibration and data processing process. However, there is always a contradiction 
between sensitivity and linearity because crack propagation and tunneling-
effect-induced resistance change are usually exponential. For instance, 
piezoresistive strain sensors often exhibit varied sensitivity in different strain 
ranges, which is induced by the nonlinear heterogeneous deformation. In addi-
tion, capacitive sensors with microstructured dielectric also suffer the similar 
problem.

3.1.2 Hysteresis and response time

Hysteresis and response time are another two important parameters in evalu-
ating dynamical performance of electromechanical sensor. Hysteresis means 
the dependence of the performance on its history, which should be reduced or 
avoided. In general, capacitive sensors show immediate responding to the varia-
tion of overlapped area, featuring a lower hysteresis. Meanwhile, piezoresistive 
sensors have slower response due to the interactive motion between sensing 
material and polymer substrate. The interfacial binding between sensing material 
and substrate greatly affects the optimization of hysteresis. The full recovery of 
sensing material position is hindered by the interfacial slide, leading to a high 
hysteresis behavior. Meanwhile, to avoid the friction-induced buckling and 
facture in sensing materials, a weak adhesion is needed. It is reported that using 
low viscoelastic polymer substrate and improved configuration can partially 
eliminate hysteresis. However, it is still a large challenge to optimize hysteresis 
by novel material and structural engineering. Response time illustrates the speed 
to achieve steady response to applied mechanical stimulus, and response delay 
exists in nearly all composite-based sensors because of the viscoelastic property 
of polymers. Relatively, piezoresistive device has a larger response time than 
others because it needs more time to reestablish percolation network in resistive 
composites. In addition, lower modulus materials are popular for wearable elec-
tromechanical sensor, which can further decrease the response speed of resistive 
sensors. Moreover, based on structural design, the newly developed crack-based 
piezoresistive sensors show an appealing response time (about 20 ms) because 
cracks can reversibly connect and disconnect with loading and unloading of 
mechanical stimuli [15].
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  C = κ   A __ d    (3)

in which κ, A, and d represent the permittivity of the medium between two 
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  C =  (1 + ε)   C  0    (4)

The equation indicates that the capacitance of capacitive strain sensor is linear 
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strain range. When the applied strain is higher than certain value, the relationship 
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  S = δ (ΔC /  C  0  )  / 𝛿𝛿P  (5)

where ΔC is the variation of capacitance (C–C0) and P presents applied pres-
sure. The most popular structure for the wearable pressure sensor is interlock 
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2.3 Iontronic sensors

As Figure 1c shows, iontronic sensor is based on the iontronic interface sens-
ing mechanism. The iontronic interface usually exists at the nanoscale interface 
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3. Performance of wearable electromechanical sensor

3.1 Basic parameters of wearable electromechanical sensor

3.1.1 Sensitivity and linearity
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avoided. In general, capacitive sensors show immediate responding to the varia-
tion of overlapped area, featuring a lower hysteresis. Meanwhile, piezoresistive 
sensors have slower response due to the interactive motion between sensing 
material and polymer substrate. The interfacial binding between sensing material 
and substrate greatly affects the optimization of hysteresis. The full recovery of 
sensing material position is hindered by the interfacial slide, leading to a high 
hysteresis behavior. Meanwhile, to avoid the friction-induced buckling and 
facture in sensing materials, a weak adhesion is needed. It is reported that using 
low viscoelastic polymer substrate and improved configuration can partially 
eliminate hysteresis. However, it is still a large challenge to optimize hysteresis 
by novel material and structural engineering. Response time illustrates the speed 
to achieve steady response to applied mechanical stimulus, and response delay 
exists in nearly all composite-based sensors because of the viscoelastic property 
of polymers. Relatively, piezoresistive device has a larger response time than 
others because it needs more time to reestablish percolation network in resistive 
composites. In addition, lower modulus materials are popular for wearable elec-
tromechanical sensor, which can further decrease the response speed of resistive 
sensors. Moreover, based on structural design, the newly developed crack-based 
piezoresistive sensors show an appealing response time (about 20 ms) because 
cracks can reversibly connect and disconnect with loading and unloading of 
mechanical stimuli [15].
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3.1.3 Durability

Durability is the ability to remain its performance, without requiring excessive 
maintenance or repair, when it is normally used. It is usually measured by cyclic 
stability for wearable electromechanical sensor. Cyclic stability is sensor endurance to 
periodic loading and unloading cycles. The sensing material film on polymer sub-
strate is easy to form buckling, facture, and even stripping after enough cycles, which 
results in cyclic instable problem. For example, the sensitivity of graphene woven 
fabric (GWF) strain sensor decreases 24% after about 1000 cycles from 0 to 2% [16].

Endowing sensor with self-healing is a novel way to promoting durability. Several 
works have been reported on wearable electromechanical sensor. Figure 2a shows a 
stretchable self-healing piezoresistive strain sensor using single wall carbon nanotube 
(SWCNT) in self-healing hydrogel (SWCNT/hydrogel) as the conductive sensing 
channel [17]. The cutting groove is partially healed after 30 s and totally restored to 
normal after 60 s at room temperature without any external assistance. It also shows 
the repetitive cutting-healing processes with five cycles at the same location. The 
average efficiencies are 98 ± 0.8% for the five self-healing cycles within about 3.2 s, 
indicating that the SWCNT/hydrogel possesses significant and repeatable electrical 
restoration performance. Figure 2b shows that a self-healing sensor with tunable 
positive/negative piezoresistivity is designed by the construction of hierarchical 
structure connected through supramolecular metal-ligand coordination bonds [18]. 
The electrical resistance of the repaired samples only slightly increases after multiple 
cutting/healing cycles. However, the increase of electrical resistance is neglectable, 
which is lower than one order of magnitude, indicating its excellent electrical self-
healing ability. The high-healing efficiency is estimated to be 88.6% after the third 
healing process, and the healed wearable strain sensor still show good flexibility, high 
sensitivity, and accurate detection capability, even after bending over 10,000 cycles.

3.1.4 Biocompatibility

Wearable electromechanical sensors are usually directly used on human skins, 
so biocompatibility is also important. The main danger comes from sensing 
materials, which is usually nanomaterial other than substrate materials, which is a 
polymer. For example, it has been reported that injecting large quantities of CNTs 
into mice lungs could cause asbestos-like pathogenicity because of the small size 
and needle-like morphology of CNT [19]. To improve the biocompatibility, organic 
active materials, such as polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) 

Figure 2. 
(a) Self-healing properties of SWCNT/hydrogel-based strain sensor. (b) Electrical self-healing properties of 
supramolecular-elastomer-based strain sensor.
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(PEDOT), have generally been used. The carbonized cotton or silk also presents 
great potentials in constructing biocompatible wearable sensors [20].

3.1.5 Self-power

Power is the basic element for wearable system. Wearable devices with self-power 
ability attract more and more attentions, which can greatly extend their application 
scenarios and is particularly suitable for long-lasting wearables. Self-power wearable 
electromechanical sensor has been demonstrated so far using triboelectric [21], photo-
voltaic [22], piezoelectric [23], radiofrequency, thermoelectric (TE) systems [24], and 
others [25]. Among them, TE technology is rather attractive because of the utilization 
of conjugated polymers as the active component, which is also flexible, enabling a new 
generation of novel, low-cost, low-powered wearable electromechanical sensors [26].

3.2 Materials for wearable electromechanical sensor

3.2.1 Materials for substrate

Substrate is mainly responsible for flexibility and stretchability, and directly 
determines the comfort level and long-term reliability. Polydimethylsiloxane 
(PDMS), a commercial silicone elastomer with intrinsic high stretchability (up to 
1000%), nontoxic, nonflammability, hydrophobicity, and good processability, has 
been frequently used. Though cannot be stretched for its relatively high modulus 
(about 2~4 GPa), polyethylene terephthalate (PET) features good transparency 
(>85%), high creep resistance, and excellent printability. Silicone elastomers 
including Ecoflex, Sylgard, Dragon Skin, and Silbione are biocompatible and 
their maximum stretchability is up to 900%. They are suitable flexible substrate 
because of their strong adhesion onto target surfaces. Ecoflex® rubber is a newly 
developed, highly stretchable and skin safe silicone with better stretchability and 
lower modulus, which has been used in the sensors requiring more severe flexibility 
and stretchability. Polyimide (PI) is another frequently used substrate because 
it can maintain flexibility, creep resistance and tensile strength under the condi-
tion of high temperature (up to 360°C) and acids/alkalis. Thus, PI is compatible 
with micromanufacturing process and many types of wearable electromechanical 
sensor are possible to be designed and implemented on it. Natural materials are 
also explored and developed to produce flexible substrate because they are easily 
biodegraded, such as cellulose paper. Moreover, the natural textiles, like silk and 
cotton, are also highly desirable substrate materials [41].

3.2.2 Materials for active elements

3.2.2.1 Carbon nanomaterials

Carbon nanomaterials including graphite, CNT and graphene, have been widely 
used in fabricating wearable electromechanical sensors. Graphite is a conductor and 
attracts more and more attentions with development of pencil-on-paper electronics 
[54]. Graphite flakes in pencil lead is easy to be deposited on paper surface by the 
physical friction between lead tip and porous cellulose paper. Moreover, structural 
edges in graphite flakes results in a strain-induced resistance variation of pencil 
traces, making them suitable for strain sensor. The contact area between graphite 
flakes increases by compressing the trace and decreases when the tension strain is 
applied, leading to the decrease or increase of resistance. The wearable strain sensor 
fabricated with pencil-on-paper shows high GF up to 536.61 [27].
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(PEDOT), have generally been used. The carbonized cotton or silk also presents 
great potentials in constructing biocompatible wearable sensors [20].

3.1.5 Self-power

Power is the basic element for wearable system. Wearable devices with self-power 
ability attract more and more attentions, which can greatly extend their application 
scenarios and is particularly suitable for long-lasting wearables. Self-power wearable 
electromechanical sensor has been demonstrated so far using triboelectric [21], photo-
voltaic [22], piezoelectric [23], radiofrequency, thermoelectric (TE) systems [24], and 
others [25]. Among them, TE technology is rather attractive because of the utilization 
of conjugated polymers as the active component, which is also flexible, enabling a new 
generation of novel, low-cost, low-powered wearable electromechanical sensors [26].

3.2 Materials for wearable electromechanical sensor

3.2.1 Materials for substrate

Substrate is mainly responsible for flexibility and stretchability, and directly 
determines the comfort level and long-term reliability. Polydimethylsiloxane 
(PDMS), a commercial silicone elastomer with intrinsic high stretchability (up to 
1000%), nontoxic, nonflammability, hydrophobicity, and good processability, has 
been frequently used. Though cannot be stretched for its relatively high modulus 
(about 2~4 GPa), polyethylene terephthalate (PET) features good transparency 
(>85%), high creep resistance, and excellent printability. Silicone elastomers 
including Ecoflex, Sylgard, Dragon Skin, and Silbione are biocompatible and 
their maximum stretchability is up to 900%. They are suitable flexible substrate 
because of their strong adhesion onto target surfaces. Ecoflex® rubber is a newly 
developed, highly stretchable and skin safe silicone with better stretchability and 
lower modulus, which has been used in the sensors requiring more severe flexibility 
and stretchability. Polyimide (PI) is another frequently used substrate because 
it can maintain flexibility, creep resistance and tensile strength under the condi-
tion of high temperature (up to 360°C) and acids/alkalis. Thus, PI is compatible 
with micromanufacturing process and many types of wearable electromechanical 
sensor are possible to be designed and implemented on it. Natural materials are 
also explored and developed to produce flexible substrate because they are easily 
biodegraded, such as cellulose paper. Moreover, the natural textiles, like silk and 
cotton, are also highly desirable substrate materials [41].

3.2.2 Materials for active elements

3.2.2.1 Carbon nanomaterials

Carbon nanomaterials including graphite, CNT and graphene, have been widely 
used in fabricating wearable electromechanical sensors. Graphite is a conductor and 
attracts more and more attentions with development of pencil-on-paper electronics 
[54]. Graphite flakes in pencil lead is easy to be deposited on paper surface by the 
physical friction between lead tip and porous cellulose paper. Moreover, structural 
edges in graphite flakes results in a strain-induced resistance variation of pencil 
traces, making them suitable for strain sensor. The contact area between graphite 
flakes increases by compressing the trace and decreases when the tension strain is 
applied, leading to the decrease or increase of resistance. The wearable strain sensor 
fabricated with pencil-on-paper shows high GF up to 536.61 [27].
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CNT are allotropes of carbon with a cylindrical nanostructure, which possesses 
excellent electrical conductivity and mechanical properties. It has been demon-
strated that a single CNT shows strong structural effect and has a GF higher than 
1000. However, wearable electromechanical sensor fabricated with single CNT is 
difficult and hard to realize mass production. Thus, CNT is usually intermingled 
into polymer substrates and its excellent conductivity plays an important role in 
electromechanical sensor construction. Wearable capacitive and piezoresistive 
electromechanical sensors have all been demonstrated by depositing CNT onto 
substrate or forming composite with polymers. For the piezoresistive composite 
sensor, the resistance change is mainly due to the strain-varied intertube tunneling 
resistance. The maximum GF can be achieved when the concentration of CNT is 
near the percolation threshold (PH). When the CNT loading is much lower than 
PH, the distance between adjacent CNTs is larger than their cut-off distance and 
there is almost no tunneling resistance. On the contrary, when CNT loading is much 
higher than PH, the CNTs can form dense 3D network and most of CNTs would 
connect with each other, resulting in a small intertube resistance. In this case, the 
contact resistance dominates the behavior, which will significantly decrease the 
GF. For piezoresistive film sensor, the variation of resistance gains almost a tenfold 
increment compared with nanocomposite type, but its cycle durability is not favor-
able enough because of unexpected cracks and desquamations. CNTs are also used 
to form wrinkle structure on a soft substrate via heating of the film or a prestrained 
substrate and are utilized to fabricate high-performance wearable strain sensor.

Due to outstanding electroconductibility, excellent mechanical properties, 
great thermal characteristic and optical transmittance, graphene becomes the most 
promising sensing material for the development of wearable electromechanical 
sensor [28]. Graphene has been developed as electrode material for capacitive 
sensor and filler for piezoresistive sensor. A variety of graphene electromechanical 
sensors with different forms have been demonstrated, including porous foams, 
flakes, ripples, woven fabrics, and films. For example, the GWF film, which can be 
fabricated either by CVD or dip coating, consisted of many overlapping microrib-
bons and features a good trade-off between sensitivity and stretchability, making it 
suitable for wearable strain sensors. It shows fascinating stretchability (a tolerable 
strain up to 57%) and sensitivity (GF = 416 for 0 < ε < 40%, and GF = 3667 for 
48 < ε < 57%) by encapsulating the obtained GWFs in natural rubber latex [29].

3.2.2.2 Metal materials

Metal possesses excellent electrical conductivity and has been widely used in 
wearable electromechanical sensors. There are four forms of metal developed, 
which are nanowires, nanoparticles, stretchable configurations, and liquid state at 
room temperature. Nanowires (NWs) and nanoparticles (NPs) are usually used to 
prepare piezoresistive composites or conductive ink. For example, silver nanowire 
(AgNW) can be embedded into PDMS to build resistive-type strain sensor. Because 
the adhesion between AgNWs and polymers is not as strong as carbon nanomateri-
als, AgNW interconnection is easy to be broken. The resistance will irreversibly 
increase after buckling and wrinkling if the AgNW film is just simply coated on the 
surface of polymer. In addition, AgNWs are easy to be oxidized. Therefore, AgNW 
layer is often sandwiched between two polymer layers, ensuring AgNWs to move 
back along their determined paths and be free from oxidation [23]. The stretchable 
configurations of metal are on the basis of the strategy “structures that are flexible 
and stretch.” Coiled buckled, serpentine and woven structures have been utilized 
to endow flexibility and stretchability to metals. The liquid metal, like Ga and its 
alloys, maintains the liquid state at room temperature. With the help of microfluidic 
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techniques, liquid metals show a great potential on wearable sensors. When strain 
or pressure is applied, the microchannel geometry will be changed, leading to a 
significant variation in the sectional area and length of liquid metal resistor. The 
change of electric resistance can reach as much as 50%.

3.2.2.3 Polymer

Conductive polymers possess favorable electroproperties and can participate 
in building sensing materials. An attractive feature of conductive polymer is the 
mechanical similarity between them and many insulated substrate polymers. 
PEDOT-based polymers are the most common sensing materials for their thermal 
stability, high transparency, and tunable conductivity. Among them, poly(3,4-
ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) is one of the promis-
ing conductive polymers due to its excellent solubility in water. However, the dried 
PEDOT:PSS film is easy to form hard particles inside, which may induce fissure and 
then decrease electrical conductivity. It is not suitable for continuous bending and 
stretching. To solve this problem, porous substrates have been developed for print-
ing and permeating PEDOT:PSS ink, such as fabrics and cellulose paper, which can 
greatly promote their adhesion. This strategy greatly improves the stability of wear-
able electromechanical sensor fabricated with PEDOT:PSS ink [30]. The polyvinyl-
edenedifluoride (PVDF) is another appealing sensing material with many attractive 
properties, such as piezoelectric property, especially appropriate for piezoelectric 
wearable electromechanical sensors. Moreover, other conductive polymers such 
as PPy, poly(3-hexylthiophene-2,5-diyl) (P3HT) and PANI have also been utilized 
to fabricate wearable sensors [31]. More recently, ionic liquid (IL), a kind of salt 
that keep liquid state at room temperature, has attracted extensive attention [32]. 
Similar to liquid metals, IL can also be embedded in PDMS-based microchannels to 
fabricate wearable electromechanical sensor.

3.3 Performance of wearable electromechanical sensor

3.3.1 Wearable strain sensor

Wearable strain sensor converts strain into electrical signal. Many applica-
tions, such as human health monitoring, require enough stretchability range from 
tiny deformation (small than 1%) to large deformations (as large as 100%) and 
high sensitivity. There are two main strategies to enhance the sensitivity. One is 
choosing proper sensing materials. Various kinds of nanomaterials are tested, as 
seen in Table 1. For example, by coating graphene on woven fabric structure, a 
maximum elongation of 57% and a GF of 416 and 3667 at lower and higher strains 
are achieved. Combining graphene and nanocellulose into nanocomposite, it shows 
ultrahigh sensitivity with GF of 502 at 1% strain and 2427 at 6% strain.

The second strategy is structure engineering. As discussed in above section, 
cracks can greatly enhance the change of resistance. Network cracks formed in mul-
tilayer CNT films on PDMS composite result in both high gauge factor (maximum 
value of 87) and a wide sensing range (up to 100%) of the strain sensor, which allows 
the detection of strain as low as 0.007% with excellent stability (1500 cycles) [27].

To improve stretchability, many strategies have been developed. One strategy 
is using intrinsically flexible materials and the relative stiff components bridged 
with highly flexible interconnects [48]. When the intrinsic stretchability of flexible 
material is not enough, structural engineering can be used to further enhance their 
stretchability. The fragmented structure with connected islands can form a lot of 
cracks, which can relieve most of the applied strain through opening and enlargement 
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techniques, liquid metals show a great potential on wearable sensors. When strain 
or pressure is applied, the microchannel geometry will be changed, leading to a 
significant variation in the sectional area and length of liquid metal resistor. The 
change of electric resistance can reach as much as 50%.

3.2.2.3 Polymer

Conductive polymers possess favorable electroproperties and can participate 
in building sensing materials. An attractive feature of conductive polymer is the 
mechanical similarity between them and many insulated substrate polymers. 
PEDOT-based polymers are the most common sensing materials for their thermal 
stability, high transparency, and tunable conductivity. Among them, poly(3,4-
ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) is one of the promis-
ing conductive polymers due to its excellent solubility in water. However, the dried 
PEDOT:PSS film is easy to form hard particles inside, which may induce fissure and 
then decrease electrical conductivity. It is not suitable for continuous bending and 
stretching. To solve this problem, porous substrates have been developed for print-
ing and permeating PEDOT:PSS ink, such as fabrics and cellulose paper, which can 
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maximum elongation of 57% and a GF of 416 and 3667 at lower and higher strains 
are achieved. Combining graphene and nanocellulose into nanocomposite, it shows 
ultrahigh sensitivity with GF of 502 at 1% strain and 2427 at 6% strain.
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of cracks. Deformable structures are widely used. For instance, the horseshoe and 
filamentary serpentine have been patterned with nanomaterials, which can accom-
modate large strain [49, 50]. Porous structures such as sponge and foam are also 
employed to improve the stretchability [51]. Wrinkled structure based on CNT film is 
produced and integrated on an Ecoflex substrate, allowing conductivity up to 750% 
elongation, an approximate 60 times increase versus nonwrinkled films [52].

Significant progress has been achieved on the sensitivity and stretchability, but 
there are some challenges still existing. Most resistive wearable strain sensors suffer 
from at least one of these problems, which are nonlinear response, large hysteresis, 
and irreversibility. The irreversibility mainly origins from partial slides back of sensing 
materials and irreversibly recover of cracks. Hysteresis is mainly caused by the visco-
elasticity of polymers and the friction between the sensing materials and the polymer 
matrix. The rearrangement of sensing materials and opening of cracks are also 
responsible for time delay between electrical output and mechanical input. Nonlinear 
response mainly results from crack propagation and tunneling effect, which is always 
exponential as discussed above. Therefore, the performance of resistive wearable 
strain sensor should be evaluated from more aspects in further research.

Material Type Sensitivity Stretchability Linearity Durability 
(cycles)

Refs

AgNW Strain 150,000 60% 0.989 200 [33]

AgNW Pressure 1.54 kPa−1 0.6 Pa-115 kPa linear 5000 [34]

AuNW (gold 
nanowire)

Strain 70 250% Nonlinear 500 [35]

AuNW Pressure 1.14 kPa−1 13 Pa-5 kPa Linear 5000 [36]

Carbon black Strain 647 20% Nonlinear 200 [37]

Carbon black Pressure 4.2 kPa−1 0–30 kPa 0.996 30,000 [38]

Carbon 
nanofiber

Strain 72 300% Nonlinear 8000 [39]

Carbon 
nanofiber

Pressure 4.2 kPa−1 1.0 Pa-2 kPa Nonlinear 10,000 [40]

Carbonized 
silk

Strain 9.6
(0–250%)

37.5
(250–500%)

500% Nonlinear 10,000 [41]

Carbon 
nanotube

Strain 80 100% Nonlinear 1500 [42]

Carbon 
nanotube

Pressure 0.209 kPa−1 5.0 Pa-50 kPa Nonlinear 5000 [43]

Graphene Pressure 1.2 kPa−1 0–25 kPa Linear 1000 [44]

Graphene Strain 1054 26% Nonlinear 500 [45]

Mxene Strain 64.6
(0–30%)

772.6
(30–70%)

130% Nonlinear 5000 [46]

Mxene Pressure 4.05 kPa−1

(0–1.0 kPa)
22.56 kPa−1

(1–3.5 kPa)

0–3.5 kPa Nonlinear 10,000 [47]

Table 1. 
Performance of wearable electromechanical sensor fabricated with typical nanomaterials.
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Compared with resistive wearable strain sensor, capacitive strain sensors possess 
good linearity with low hysteresis, fast response, and are less susceptible to over-
shoot and creep. Nanomaterial-based stretchable conductors are usually used as the 
electrodes for capacitive strain sensors. Highly stretchable silicone, such as PDMS, 
Dragon Skin, and Ecoflex are commonly used as the dielectric layer sandwiched 
between two electrodes. For example, a capacitive strain sensor is fabricated with 
stretchable AgNW/PDMS conductors as the top and bottom electrodes and Ecoflex 
as the dielectric material [53]. The GF of this sensor reaches 0.7 and its stretch-
ability is up to 50%. Moreover, it also has a good linearity. While capacitive strain 
sensors exhibit smaller GFs than the resistive strain sensors, they are ideal for 
applications where the strain is relatively large. In addition, the GFs of capacitive 
strain sensors remain constant in the entire strain range.

3.3.2 Wearable pressure sensor

Wearable pressure sensor converts pressure into electrical signal. Pressure sen-
sor can be fabricated with interlocked structures, percolative networks of nano-
materials, microfabricated structures (e.g., micropyramids, micropillars), porous 
structures (e.g., sponges, foams, porous rubbers), and so forth. For example, 
Figure 3a presents a pressure sensor fabricated with interlocked microdome array. 
The contact between microdome increases when pressure is applied, thus decreas-
ing the tunneling resistance [54].

To improve the sensitivity of piezoresistive pressure sensor, structural surface 
modification of the electrodes is an effective strategy. Incorporation of nano/
microscaled structures can provide large changes in contact resistance, allowing 
for detections of smaller pressures. For example, through coating polyurethane 
sponge with graphene to form fracture structure, a two-order of magnitude 
increase in sensitivity within the 0–2 kPa regime is demonstrated compared with 
no fracture one [55].

For the capacitive pressure sensor, the separation between two electrodes 
decreases with the pressure, resulting in an increase in capacitance. The property of 
dielectric materials almost determines the pressure sensitivity. Lower elastic modu-
lus means a larger strain ε under a given pressure. The dielectric constant increased 
with pressure and low Poisson’s ratio would all benefit the performance. High 
sensitivity of 0.8 kPa−1 has been reported by using a GO-based low elastic modulus 
foam as the dielectric material [56]. There are several methods been demonstrated 
to fabricate highly deformable dielectric materials, including using commercial 

Figure 3. 
(a) Schematic of the fabrication procedure and mechanism of pressure with interlocked microdome arrays.  
(b) Response characteristics of the flexible capacitive pressure sensor based on the PDMS microarray dielectric layer.
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applications where the strain is relatively large. In addition, the GFs of capacitive 
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for detections of smaller pressures. For example, through coating polyurethane 
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increase in sensitivity within the 0–2 kPa regime is demonstrated compared with 
no fracture one [55].

For the capacitive pressure sensor, the separation between two electrodes 
decreases with the pressure, resulting in an increase in capacitance. The property of 
dielectric materials almost determines the pressure sensitivity. Lower elastic modu-
lus means a larger strain ε under a given pressure. The dielectric constant increased 
with pressure and low Poisson’s ratio would all benefit the performance. High 
sensitivity of 0.8 kPa−1 has been reported by using a GO-based low elastic modulus 
foam as the dielectric material [56]. There are several methods been demonstrated 
to fabricate highly deformable dielectric materials, including using commercial 

Figure 3. 
(a) Schematic of the fabrication procedure and mechanism of pressure with interlocked microdome arrays.  
(b) Response characteristics of the flexible capacitive pressure sensor based on the PDMS microarray dielectric layer.
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porous tapes, using special molds (e.g., the surface of matte glass, a micromachined 
Si mold, or the surface of lotus leaf) to create microstructures in elastomers, using 
sugar cubes as the template to create porous elastomers and fabricating buckled 
structures through prestretching and releasing. As the dielectric constant of air 
is smaller than that of the dielectric material used for the sensor, the effective 
dielectric constant is increased under pressure when the air gap is compressed. 
For example, Figure 3b shows a flexible pressure sensor with high sensitivity been 
built, which is a typical sandwich structure by combining a microarrayed PDMS 
dielectric layer with PDMS substrates. The top/bottom electrode material is PDMS 
substrate coated with AgNWs, and the dielectric layer is a PDMS with microarray 
structure, which is used to improve the pressure sensitivity. The results show that 
it possesses high sensitivity (2.04 kPa−1) in low-pressure ranges (0–2000 Pa), low 
detection limits (<7 Pa), and fast response times (<100 ms). Meanwhile, it also has 
excellent bending and cycling stability [57].

Progress has also been made on wearable piezoelectric and triboelectric pressure 
sensors. For example, it has been reported that a novel piezoelectric pressure sensor 
was fabricated through sandwiching freestanding electrospun polyvinyledenediflu-
oride-trifluoroethylene (PVDF-TrFE) nanofiber arrays [58] or electrospun PVDF-
TrFE nanofiber between two electrodes. It can detect very tiny pressures as low as 
0.1 Pa and has high sensitivity up to 1.1 V kPa−1 for pressure range from 0.4–2 kPa. 
In a representative work, a pressure-responsive triboelectric nanogenerator is used 
to gate the graphene transistors. Such graphene tribotronics showed a pressure 
sensitivity of ≈2% kPa−1 at a pressure of 10 kPa.

4. Fabrication technology of wearable electromechanical sensor

The wearable electromechanical sensor usually consists of three basic com-
ponents, which are substrate, active elements, and electrode/interconnect. They 
are usually fabricated with different materials. During the fabrication process, 
combining the substrate and active elements is the key step. Basically, there are two 
situations. One is that sensing material forms uniform composite with polymer sub-
strate, the other is that sensing material is attached on substrate and a clear inter-
face exists. In this part, we will focus on the combination strategies for substrates 
and sensing elements, and some key processes for performance enhancement are 
also concerned.

4.1 Fabrication of wearable composite electromechanical sensor

For the composite electromechanical sensor, the substrate and sensing materi-
als should be fabricated into composite. The key process is how to mix them and 
prepare uniform composite. The sensing materials are usually mixed with polymers 
by magnetically or ultrasonically stirring, and then the dried elastic composites can 
be prepared in bulk or film forms. The mixed composites have complex electrome-
chanical features that are induced by the diversity of sensing materials and polymer 
and significantly depend on concentration of sensing materials and its distribution 
state. For example, the electrical property of carbon black-silicone composite is 
mainly determined by carbon black concentration. The electrical resistance clearly 
increases with the applied uniaxial pressure when the concentration is about 
0.08–0.09 wt%. By further increasing the concentration from 0.1 to 0.13 wt%, the 
change tendency of electrical resistance switches from increase to decrease. Finally, 
the electrical resistance starts to decrease with the uniaxial pressure with the 
concentration larger than 0.14 wt % [59].
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4.2 Fabrication of wearable layered electromechanical sensor

For the wearable layer electromechanical sensor, the substrate and sensing 
materials are assembled into film layer by layer. Many techniques have been devel-
oped to assemble active material on substrate, including printing, coating, casting, 
and other methods.

Printing can simultaneously deposit and pattern many materials on various 
substrates without the need for sophisticated equipment and clean room. The 
wearable sensors can be printed with/without the help of masks, according to the 
specific implementation approach, as seen in Figure 4a [60]. The electrode pattern 
can directly be obtained by inkjet printing. Inkjet printing is an accurate, fast, and 
reproducible film preparation technique. Functional ink droplets are propelled onto 
different substrates by a nozzle. The functional inks should have proper solubil-
ity, viscosity, and surface tension. As a typical printing method, screen printing 
requires the help of mask and proper functional ink. During the process, screen 
openings are fully covered with functional by using fill blade or squeegee, and then 
it is transferred onto substrate surface. Finally, the mask is removed, and a pat-
terned film is formed on the substrate by functional ink. This technique has been 
widely used in manufacturing sensing materials in electromechanical sensors.

Lithography is a pattern transferring method to realize diverse and ingenious 
geometries. This process firstly deposits functional layer onto the substrate and then 
etches the undesired areas by reagent solutions with the help of photolithography. 
Since photolithography and wet etching has high accuracy, the devices with sophisti-
cated geometries and rich functionality can be obtained. Coating technique is another 
popular method because of its low cost and simplicity. There are different advantages 
for different coating methods. Dip coating can be used to any kinds of substrate and 
can control the thickness by dipping time. Spin coating is easy to form uniform film 
and can control the thickness by time and spin speed. Compared with spin and dip 
coating, spray coating can fully utilize the functional inks. Figure 4b shows a buckled 
sheath-core fiber-based ultrastretchable sensor fabricated with spray coating meth-
ods. The fiber wearable strain sensor possesses excellent stretchability higher than 
1135% and fast response time (≈16 ms). Moreover, the performance is very repeatable 
and stable even after 20,000 cycles with loading/unloading test [47].

Novel techniques have been developed, such as laser scribed (LS) technique. 
Graphene oxide (GO) can be simultaneously reduced and patterned by laser [61]. 
Carbonating substrate material by one-step direct laser writing (DLW) has also 
been validated. Glassy and porous carbon structures have been produced from PI 
film via DLW. The DLW-based graphene possesses favorable electroconductibility, 
porousness, and superhydrophilic wettability. Directly drawing electronics with 
various instruments has recently become an alternative technique. This technique 
endows end-users the capability to design and realize sensors according to the 
“on-site, real-time” demands [62]. “Penciling it on” has been proved to be a simple, 
rapid, and solvent-free method for producing electronics [63]. Chinese brush pen is 
a possible more appealing writing instrument for sensor fabrication. Similarly, the 
animal hair bundle is first soaked into low-viscosity ink, and then the ink is uni-
formly coated on the substrate by well-controlled handwriting manner. Benefiting 
from excellent liquid manipulation of Chinese brush pen, sensing materials can be 
coated on different substrates without considering its rigidness and surface rough-
ness. For example, a high-performance tattoo-like strain sensor has been fabricated 
with AuNWs/PANI ink writing by Chinese brush pen [64]. Various types of func-
tional inks can be loaded in their reservoirs, including metal inks, liquid metals, and 
even organic mixtures. Sophisticated structures can be generated with controllable 
geometries on many substrates by using these two methods [65]. Wet spinning is 
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another special method to fabricate fiber shape wearable electromechanical sensor. 
Figure 5c shows a fiber strain sensor fabricated with coaxial wet-spinning and post-
treatment process. The spinning nozzle has the coaxial inner and outer channels, 
respectively. The inner spinning dope is SWCNT/CH3SO3H, and the outer spinning 
solution is the solution of thermoplastic elastomer (TPE) in CH2Cl2. The SWCNT/
CH3SO3H dope from the inner channel and the TPE/CH2Cl2 solution from the outer 
channel are introduced into the ethanol coagulation bath simultaneously. A single 
TPE-wrapped SWCNT coaxial fiber is then wetspun and collected successfully. 
The sensors attain high sensitivity (with a gauge factor of 425 at 100% strain), high 
stretchability, and high linearity.

4.3 Fabrication of wearable 3D electromechanical sensor

For the wearable 3D electromechanical sensor, the substrate and sensing mate-
rials are combined into 3D structure. The first method introduced is microscale 
modeling. It is often utilized to fabricate different microstructures in substrates, 
electrodes, and sensing composites. Successfully designed microstructure not only 
can be used to increase the sensitivity of piezoresistive but also that of capacitive 
sensors when microstructured dielectric is applied. Different modules have been 
developed, including micromachined wafers, silk fabrics, and even plant leaves. 
During the fabrication process, sensing materials are simply poured onto the mod-
ule and peeled off after partial or complete drying. The adhesion between processed 

Figure 4. 
Wearable electromechanical sensor fabricated with different techniques: (a) inkjet printing,  
(b) dropping casting, and (c) spray coating.
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material and module is the most important parameters for this technique, which can 
be adjusted by necessary pretreatment and sophisticated geometric design.

3D printing is the best candidate for developing 3D constructions and has gained 
great popularity due to its powerful ability [66]. If the sensing materials are well 
prepared, arbitrary structures can be printed with 3D printing with adjustable 
resolution, even lower than 0.1 μm. For instance, A three-layer sensor has been 
fabricated in a single step by 3D printing, which originally requires multiple steps 
by using traditional method, including micromolding, laminating, and infilling. 
Wearable pressure sensor has also been realized by a multimaterial, multiscale, and 
multifunctional 3D printing approach. The size of this sensor is 3 × 3 mm in area 
and 1.2 mm in height [67].

Figure 5. 
Health motion monitoring with CNT-based strain sensor: (a) impact pressure, (b) muscle movement,  
(c) heartbeat, (d) finger motion, (e) finger touch, (f) schematic diagram of sensor array, (g) magnified view 
of the sensor array, (h) optical photograph of a fabricated sensor array containing 25 × 25 pixels, (i) circuit 
schematic of the sensor matrix (j–n) foot pressure pattern, and (o) strain sensor attached on the human right foot.
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Figure 4. 
Wearable electromechanical sensor fabricated with different techniques: (a) inkjet printing,  
(b) dropping casting, and (c) spray coating.
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Wearable pressure sensor has also been realized by a multimaterial, multiscale, and 
multifunctional 3D printing approach. The size of this sensor is 3 × 3 mm in area 
and 1.2 mm in height [67].
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schematic of the sensor matrix (j–n) foot pressure pattern, and (o) strain sensor attached on the human right foot.
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5. Applications of wearable electromechanical sensor

Wearable electromechanical sensors can basically detect mechanical signals 
including pressure and strain. Applications that require monitoring pressure and 
strain are theoretically can realized by it. Until now, monitoring of human motion 
and health, speech recognition, gesture recognition, human machine interaction, 
acoustic waves detection, and even disease diagnosis have been demonstrated, 
which would be discussed in the following.

5.1 Human motion monitoring

When wearable electromechanical sensor is mounted on the skin or integrated 
with textiles, it can real-time monitor human motions including hand, limb, foot, 
face, and throat. Subtle deformations induced by body activities such as blood 
pulse flow and respiration, and large deformations related to the body move-
ments such as finger and knee bending can be readily detected. Figure 5 shows the 
human motions in daily life detected by CNT-coated auxetic foam strain sensor 
(AFS) [68]. As Figure 5a shows, the foam sensors performed well by dependably 
detecting the timing, frequency, and magnitude of the impact event and output-
ting signals in sharp spikes corresponding to the impact events. Figure 5b shows 
the monitoring of the muscle movement during speech by attaching a foam sensor 
onto a person’s neck. When the person repeatedly says the simple words “go,” stable 
signals can observe which timing and pattern corresponded well with the vocal 
events. Moreover, the wrist pulse has also been successfully monitored by the AFS 
(Figure 5c). A typical pulse waveform is obtained, and the pulse frequency of 76 
beats min−1 can be calculated. It can also be used to transfer the human intentions 
of pressing buttons and switches by attaching the AFS directly to the fingertip 
(Figure 5d). Figure 5e demonstrates that the AFS can control gesture by wearing 
on the finger joint because the signal of the foam sensor one by one corresponds to 
the gesture. Figure 5f and g shows the schematic and a photograph of the sensor 
matrix, respectively. Figure 5h illustrates the sensing system and a simplified 
electrical schematic that scan the intersecting points of the sensor’s rows and 
columns and measure the resistance at each crossing point. The plantar pressure 
distribution can be successfully analyzed with AFS matrix, further extending 
its fields of application ranging from sports performance and injury prevention 
to prosthetics and orthotics design. For further example, Figure 5j–n shows the 
various barefoot pressure distributions applied by a human right foot (Figure 5o), 
including neutral position, pronation, supination, plantar flexion, and dorsiflex-
ion, which is displayed by the colored contour maps. The in-shoe plantar pressure 
measurement can also be finished by simply inserting AFS matrix into shoes. It 
can be anticipated that wearable electromechanical sensor can find a wide range of 
applications in human motion monitoring, body pressure distribution, and even 
adjusting sitting posture.

5.2 Human health monitoring

Human health monitoring is based on the continuous monitoring of human 
motions, especially the pulse and respiration. Wearable electromechanical sensor 
attached on wrist and chest can be used to detect the pulse and respiratory rate. 
Figure 6 shows that graphene film strain sensor can exactly monitor people’s pulse 
and breath rate. Strain sensor are attached on a person’s wrist or chest for real-time 
recording of pulse and respiratory rate signals (Figure 7a) [69]. Figure 6b shows 
the collected pulse and respiratory signals, where each cycle represents a pulse or 
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breath. The valleys correspond to the shrinking of the chest, and peaks represent 
the stretching of the chest. Then, the pulse and breath rates can be estimated to 
be about 76 and 19 in 60 s, respectively. Three kinds of exhaled breath (simulated 
diabetic breath, simulated nephrotic breath, and the breath of healthy individu-
als) are investigated. The obtained response data are analyzed, and the results are 
displayed in Figure 6c. It can be observed that the three breath samples are clearly 
different. The exhaled breath samples are categorized into three distinguishable 
clusters without any overlap, which correspond to healthy individuals, simulated 
diabetic patients, and simulated nephrotic patients, respectively. This demonstrates 
that wearable strain sensor has high potential for human health monitoring and 
even the diagnosis diseases.

5.3 Speech recognition

Speech recognition is also based on the monitoring of human motions. When 
the wearable electromechanical is attached on the throat, it could record muscular 
movements in order to collect and recognize speech sounds. This is permitted by 
the fact that the throat muscle exhibits different degrees of stretching or shrinking 
strains when speaking different words. Due to the tiny changes caused by throat 
motion, the strain sensor used in speech recognition should have high sensitivity. 
The GF of GWF strain sensor can be as high as 103 with 2–6% strains, 106 with 
higher strains (>7%), and ~35 with a minimal strain of 0.2%, which is suitable for 
this application. The results show test signal waveforms of all 26 english letters [70]. 
As expected, the waveforms are unique and repeatable for all letters. Since each 

Figure 6. 
Health monitoring with graphene strain sensor. (a) Photograph of strain sensor mounted on the human wrist, 
(b) normalized resistance changes of the strain sensor when monitoring wrist pulses and respiratory rate, and 
(c) PCA analysis of exhaled breath of simulated nephrotic patients, diabetic patients, and healthy people.

Figure 7. 
Piezoresistive sensors for human-machine interfaces: (a) smart gloves and (b) robotic controlling.
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individual speech organ is different, people can easily distinguish whether a given 
voice comes from the same person. This demonstrates that wearable electrome-
chanical can be used in speech recognition.

5.4 Human-machine interface

Human-machine interfaces and robotic remote controlling are greatly beneficial 
in surgery or a highly risky work that requires the replacement of robotics. The 
electromechanical sensor used in human-machine interface is typically mounted on 
body joint, which are normally bended or stretched at large degree of deformations; 
thus, high stretchability (>50%) is required. The robotic controlling is demonstrated 
in Figure 7, and the wearable strain sensors are based on the hybrid of polyaniline 
and gold nanowires for a smart glove [9]. The sensor-based-smart glove is used to 
control the movement of a robot through wireless signals (Figure 7a). The robot is 
at relaxed state (a1) and works as an arm that can clamp (a2), lift up (a3), put down 
(a4), and release (a5) an object based on different postures of human fingers as 
wearing the sensor. Figure 7b reveals the remote control on the robot movement by 
a strain sensor based on graphene. As can be seen in this figure, b1 and b4 demon-
strate the robot at the relaxed state. As the strain sensor is stretched or bended, the 
robot starts working (b2 and b5) and moves to the controller (b3 and b6).

6. Conclusion and outlook

In this chapter, we discuss the working mechanism, fabrication methods, and 
applications of wearable electromechanical sensors. Piezoresistive sensor attracts 
more attentions due to its clear structure, mechanism, fabrication methods, and 
low cost. High sensitivity and stretchability have been achieved simultaneously. 
However, the stability and linearity are still limited for resistive-type sensor. 
Moreover, mass production with low cost is still a challenge. One strategy to reduce 
cost is developing novel fabrication methods, which can readily build high-
performance sensor. Many applications have been demonstrated in a qualitative way 
by using strain or pressure sensor. However, the practical application needs more 
quantitative analysis, which requires further investigations.
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Chapter 6

Using Wearable Devices in 
Educational Assessment: 
Smartphone Exams
Oytun Sözüdoğru and Nazime Tuncay

Abstract

We are residing in a planet where technology is contemporary in our life rou-
tines. Today, smartphones are one of the vastest revolutions in individuals’ lifes-
pans. Smartphones are becoming increasingly popular, both in formal and informal 
educational environments. This chapter discusses the benefits and obstacles in 
using smartphones as an assessment tools and it compares the achievement of 
exams delivered via smart phones to paper-based exams. The result of the study 
indicates that; there was a significant difference between three groups of English 
Paper Exams, however there was not any significant difference between these 
groups on English Language Mobile Exams.

Keywords: mobile exam, students, English exam, assessments, success

1. Wearable technology

Wearable technology is a group of devices that can be worn by people and track 
and communicate the colorful information with the outside world. The first known 
wearable computing device was invented in 1961 by MIT Edward Thorp and Claude 
Shannon, and the world’s first calculator wristwatch was released in 1975. Wearable 
technology specially Fitbit, smart watches, and smart phones is attracting more 
interest of many consumers in the finance, gaming, health, music fields, as well as 
educators specially after the 2010s. They are specially designed to address the major-
ity of the population who are still inactive [1]. These devices can be integrated into 
clothing, recognizable personal accessories (glasses, contact lenses, and watches), or 
additional devices (pocket device to count steps) [2]. Revenues in this segment are 
forecast to grow even faster than unit shipments, more than tripling in value to over 
$32 billion by 2019 up from $10 billion in 2013 (see Figure 1) [3].

As wearable devices become smaller, inexpensive, and more feature packed, the 
opportunity for use in various applications grows alongside [4]. People have tactile 
and kinesthetic senses to feel the objects’ properties like its size, shape, weight 
(light or heavy), and temperature (hot or cold), and these ensures them about 
the existence and the reality. In this meaning, using wearable devices in education 
motivates students more than the other devices.
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2. Switch to wearable devices in education: smartphone case

We are residing in a planet where technology is contemporary in our life rou-
tines. The achievement of personal goals of needs leads the individual to attain the 
activities voluntarily [5–8] which is also necessary to achieve their goals [5, 9]. These 
lead to the result that students and their motivation are the most significant part of 
the achievement of our courses. In this sense, choosing the best technological device 
brings the best possible outcome!

Today, smartphones are one of the vastest revolutions in individuals’ life 
spans. They give mobility and excitement to its users that these modern tech-
nological devices become the most significant part of many people’s lives. From 
online banking to watch the news on TV, we are confronting the progressions 
and affects that convey to our lives. The school could not stay out of these 
progressions, and a range of classrooms had been altered, from special spaces for 
the perusing of scholarly messages, to sight and sound spaces, where the utiliza-
tion of data and correspondence innovation had accomplished incredible sig-
nificance. Students of the twenty-first century prefer the lightest, the simplest, 
and the most popular way of communal and educational communication. They 
record everything in their smartphones for future use and are not volunteers for 
paper works.

Lots of students at universities have smartphones and are using its facilities like 
taking pictures, recording videos, and using social media. According to eminent 
pedagogy expert Scott P. Simkins, as far as technological innovations are alarmed, 
it is not pedagogy itself that mattered, but how pedagogic innovation is exploited 
by taking into account the specific environment in which it is implemented [10]. 
In the educational model where education process is carried out fully or partially 
with mobile technologies, students use mobile devices in wireless environments 
and engage in formal and informal learning [11–13]. Mobile learning model is also 
differentiated from other learning models by its mobility [14]. Universities and 
institutions have been utilizing advances, for example, synchronous videocon-
ferencing (SV), online courses, and other kinds of technological innovations to 
convey language courses for the part of their educational modules. This is an open 
door, which is constantly important to the quickly developing requirement for 
understudies to end up able in utilizing innovative applications and comprehend 
the part of learner-focused engagement in language learning [15]. With backing 
of such innovations, most of these language related courses have begun being 
delivered online. The use of mobile phone is very popular these days specially 
in language learning. Mobile devices helps language teachers to use a variety of 
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teaching methods and techniques according to students’ different needs,  interests, 
motivations and learning styles. While there have been many researches on using 
or integrating the mobile technology into language teaching in literature, very 
few of them is about the devices in wireless environments [11, 12]. The most 
important difference between mobile learning and other learning activities is that 
learners are continually on the move [14]. Universities and institutions have been 
utilizing advances, for example, synchronous videoconferencing (SV), online 
courses, and other kinds of technological innovations to convey language courses 
for the part of their educational modules. This is an open door, which is constantly 
important to the quickly developing requirement for understudies to end up able 
in utilizing innovative applications and comprehend the part of learner-focused 
engagement in language learning [15]. With backing of such innovations, most of 
these language-related courses have begun being delivered online. Nowadays, the 
use of mobile phone has received considerable attention in education as well as in 
language learning. Language teachers use a variety of teaching methods and tech-
niques by considering students’ different needs, interests, motivations, learning 
styles, and strategies as well as their pace in learning. While there have been many 
researches on using or integrating the mobile technology into English language 
teaching in literature, very few of them dwell on the usefulness of smartphones as 
an assessment tool from students’ perspectives. Several studies have investigated 
the impact of mobile phones on learning outcomes in adult learning programs 
among rural populations and poor communities in developing countries [16, 17]; 
and some examined the use of mobile devices to support intentional informal 
learning among experienced users [18]. Ranieri and Bruni [19] stated that mobile 
phones are used for storytelling as well. Ranieri and Pachler [20] delivered a 
research study and collected data through formal and informal meetings, direct 
and indirect observations, interactions with participants, and focus groups and 
concluded in their research study that adults have great trust in the power of the 
media but were somewhat disappointed at their own lack of skills.

Mobile education has been delivered to university students for decades, and 
lots of researchers have delivered researches to discuss its efficiency and students’ 
perspectives about it [21–25]. However, using mobile technologies like smartphones 
in education is relatively a new concept, and several educators and researchers start 
discussing this new technology in their reports [26–30]. There are lots of portable 
equipments like smartphones m-learning feasible at anytime and anyplace com-
pared to the use of a notebook that can easily be damaged and does not last long 
[26–28]. Some research studies among Islamic education teachers are delivered for 
using mobile phones in secondary schools, and it is found that there is a potential 
for m-learning produced for Islamic education in secondary schools [29, 30].

Mobile phones have been used to provide access to contextually relevant infor-
mation in clinical education [31], to create digital narratives to be used in adult 
education [32], and as vehicles for interactive museum guidebooks [33]. There are 
also studies which have been focused on developing assistive, mobile, experiential 
language learning applications to enhance daily literacy education anywhere and 
at anytime [34, 35]. Some researchers stressed that mobile media are commonly 
exploited in both more and less conscious modes [36–38]. Jankovića [39] examined 
the simultaneous impact of Facebook and smartphone usage on leisure activities 
and college adjustment of students in Serbia. Rheea and Kimb [40] delivered a 
survey with a total of 450 workers in Korea to see if there were differences in the 
effects of breaks with smartphones (e.g., browsing the Internet or using social 
network services) which have a different association with “conventional breaks” 
(e.g., walking or chatting face-to-face with friends).
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2. Switch to wearable devices in education: smartphone case
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learning among experienced users [18]. Ranieri and Bruni [19] stated that mobile 
phones are used for storytelling as well. Ranieri and Pachler [20] delivered a 
research study and collected data through formal and informal meetings, direct 
and indirect observations, interactions with participants, and focus groups and 
concluded in their research study that adults have great trust in the power of the 
media but were somewhat disappointed at their own lack of skills.

Mobile education has been delivered to university students for decades, and 
lots of researchers have delivered researches to discuss its efficiency and students’ 
perspectives about it [21–25]. However, using mobile technologies like smartphones 
in education is relatively a new concept, and several educators and researchers start 
discussing this new technology in their reports [26–30]. There are lots of portable 
equipments like smartphones m-learning feasible at anytime and anyplace com-
pared to the use of a notebook that can easily be damaged and does not last long 
[26–28]. Some research studies among Islamic education teachers are delivered for 
using mobile phones in secondary schools, and it is found that there is a potential 
for m-learning produced for Islamic education in secondary schools [29, 30].
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mation in clinical education [31], to create digital narratives to be used in adult 
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(e.g., walking or chatting face-to-face with friends).
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3. Some problems on the way

There are some obstacles in using mobile phones in education. Some of these 
are students not having smartphone, slow Internet access, and insufficient smart-
phone usage awareness. Also, administrators’, teachers’, and students’ negative 
attitude toward smartphone usage in education may present an obstacle in this 
new technology’s usage. Some research studies show that there was no significant 
difference between the traditional, blended, and mobile groups of students’ paper 
and mobile exam results [41]. Also, studies show that there is not a significant dif-
ference between male and female students’ exam results [41]. The only difference 
was between the students who were familiar with the mobile technology exams and 
between those who were novice.

Students’ perspectives are vital guides for upcoming directions in teaching and 
learning [22]; therefore, research studies aimed first by finding students’ attitudes 
to smartphone usage; delivered education to three different groups of students 
to measure if there is any significant difference between students having mobile 
courses or other courses; and then the research is directed to students’ perspec-
tives of mobile education. The increasingly widespread use of new communication 
methods via smartphones occupies an important place in the lives of young people 
and influences their leisure activities [39, 42]. A high percentage of students at 
universities have the latest technology smartphones and are professionals using its 
facilities like taking pictures, creating albums, and using Gmail, Viber, WhatsApp, 
and Facebook perfectly with their phones. Due to the reasonable price of mobile 
Internet connection plans, this usage increases day by day. Smartphones are today’s 
handheld computers for configuring the daily schedules, saving large documents, 
watching videos, listening music, using Internet, using World Wide Web, video 
conferencing, and much more than a human mind can imagine.

There are also some researchers which state that using smartphones in a class-
room is supported by data suggesting that the use of such technology (e.g., text 
messaging during class) is negatively related to sustained attention, and sustained 
attention itself is positively related to academic performance. On the other hand, 
the use of mobile technologies in the classroom also stimulates students while they 
learn new material [43]. Due to strong mobile technology infrastructure in com-
munication and Internet connections, students can benefit from both formal and 
informal learning methods [44]. Sometimes, social media tools may not fit into the 
configurations of all mobile devices. Some of the functions may be disabled, and 
frequent update of software is required [45].

4. Using wearable devices in assessment: mobile assessment

Computer-assisted learning environments made use of branching based on 
learner interactions that were the same for all learners in that same situation [46], 
and mobile phone-assisted learning environments take learning a step forward. 
Mobile phones are being used in a variety of assessing purposes. Self-assessment 
and peer assessment can be meaningful forms of formative feedback [47]. It is 
critical to a teacher’s ability to adapt lessons and check for student understanding 
[48]. Using suitable technology for a successful implementation is important for 
assessing students’ performance about the key concepts related to the unit  
[49, 50], and in a current research, a new method of assessment via smartphones 
is used. Smartphone exams are being used in some universities for assessments. 
Figure 2 is a screenshot of two pages in an exam (the first page and the last page). 
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In the exam, students and teachers were getting their results as soon as they finish 
the exam. This method claims to be the fastest method of assessing and evaluating 
students’ progress.

5. A recent research with smartphones

Three groups of students have attained to the smartphone exams at Cyprus 
Science University. The first group of students are the students who were liking 
coming to classroom and listening to teachers in the classroom. The second group 
of students were preferring to come to some of the courses and to follow the other 
courses from mobile technologies. The third group of students were mostly work-
ing and were not able to come to class; therefore, they were following the courses 
from their smartphones. This research is based on a qualitative research design that 
meanings, perceptions, and awareness of the prospective teachers have a potential 
impact to retrieve the qualitative findings within an inductive process.

Seventy-five volunteer students who enrolled English I course in Guidance 
and Psychological Counseling program became part of this research. Volunteer 
participation provided a ground for confidentiality and trustworthiness within the 
process. In this research, trustworthy mobile phones and mobile exam programs 
were used as instrument tools. The mobile exam questions were distributed to 
students on the exam time. Students who took the exam and teachers who were the 
invigilators during smartphone exams had been given special training about how to 

Figure 2. 
An exam with smartphones [41].
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use smartphones and how to access to the mobile exam via smartphones. Therefore, 
there were not any problems with the usage of smartphones.

At the end of mobile exams, the average scores of mobile and paper exams were 
compared, and students’ results were driven from these comparisons. Blended 
course students’ English paper exam results (M = 87.76; SD = 12.81) were higher 
than the English mobile course students’ English paper exam results (M = 84.48; 
SD = 14.44), which was higher than the traditional course students’ paper exam 
results (M = 83.24; SD = 14.60). Traditional course students’ English mobile exam 
results (M = 73; SD = 16.46) is higher than the blended course students’ English 
mobile exam results (M = 72.60; SD = 23.14), which is slightly higher than the 
mobile course students’ English mobile exam results (M = 72.53; SD = 19.28). These 
results can be seen in Table 1.

Students had English paper exams in three different classes: traditional, blended, 
and mobile. There was a normal distribution between the marks and an equal num-
ber in three groups; one-way ANOVA was used to check if there was a meaningful 
difference between these three groups. According to the results of this test, there was 
not a significant difference between the three groups of F(2, 72) = 1.86, p = 0.16. The 
achievement of students in traditional, blended, and mobile classes in English mobile 
exams was also calculated statistically. There was not meaningful significant differ-
ence between three groups on F(2, 72) = 0.53, p = 0.95 (see Table 2).

These results can be interpreted as mobile exams which are also possible in 
education, and it’s just a choice of the examiners whether they want to make paper 
exams or mobile exams.

Paper exam results of the two courses are used to make comparisons. In 
these comparisons, students belonging to three different groups are taken into 
consideration.

Blended course students’ English paper exam results (M = 87.76; SD = 12.84), 
which are higher than the mobile course students’ English paper exam results 
(M = 84.48; SD = 14.44), are higher than the English paper exam results of tradi-
tional class (M = 83.24; SD = 14.60).

Traditional course students’ computer paper exam results (M = 94.44; SD = 5.88) 
are higher than the blended course students’ computer paper exam results 
(M = 89.04; SD = 11.17), which are slightly higher than the mobile course students’ 
computer paper exam results (M = 86.76; SD = 14.23). These results can be seen in 
Table 3.

Blended course students’ English paper exam results and traditional course students’ 
computer paper exam results were the highest among the students’ groups.

N Mean Std. deviation Std. error

English paper exams Traditional 25 83.24 14.60 2.92

Blended 25 87.76 12.81 2.57

Mobile 25 84.48 14.44 2.89

Total 75 85.16 13.96 1.60

English mobile exams Traditional 25 73.00 16.46 3.29

Blended 25 72.60 23.14 4.63

Mobile 25 72.00 18.43 3.69

Total 75 72.53 19.28 2.27

Table 1. 
English paper exams and English mobile exams.
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A one-way ANOVA was conducted to compare the English paper exam results 
and computer paper exam results of traditional, blended, and mobile groups of students. 
There was a significant effect of three groups of F(2, 72) = 0.70, p = 0.50 in English 
paper exams as well as computer paper exams.

F(2, 72) = 3.23, p = 0.046 (see Table 4).
Although there was a meaningful difference in paper exams of computer and 

English courses; there was not any significant difference in their mobile exams as it 
can be seen in Table 5.

Three groups of students have attained to mobile, blended, and traditional 
courses for 3 months. Results of the questionnaires bring out the conclusion of 
compatibility and standardization. The results show that students are as good at 
paper exams as they are at mobile exams. Therefore, we can conclude that smart-
phones can be used as assessment tools in mobile English exams and the choice 
does not affect the students’ success at the end-of-course exams. This gives a huge 
flexibility to the courses and freedom to teachers and students. The positive side 
of using smartphones is for teachers, who do not need to grade numbers of exam 
papers at the end of each exam. Neither should they have huge amounts of papers 
for examinations; thus, they save time and money. When we integrate mobile learn-
ing environments into our classrooms, teachers are required to know how to use and 
support that technology [51]. This may be a negative side in a smartphone usage for 
some teachers. Some of the limitations of this study are that it assumes that there is 
not an effect of sex on the results and it is restricted only with 75 first form psychol-
ogy department students. Further studies about this can also be delivered to measure 
effect of mobile exams on other courses and with different groups of students.

Sum of 
squares

Df Mean 
square

F Sig.

English paper exams Between groups 706.16 2 353.080 1863 0.163

Within groups 13643.92 72 189.499

Total 14350.08 74

English mobile exams Between groups 40.67 2 20.33 0.053 0.948

Within groups 27478.00 72 381.64

Total 27518.67 74

Table 2. 
One-way ANOVA results for English paper exams and English mobile exams.

N Mean Std. deviation Std. error

English paper exams Traditional 25 83.24 14.60 2.92

Blended 25 87.76 12.84 2.57

Mobile 25 84.48 14.44 2.89

Total 75 85.16 13.93 1.61

Computer paper exams Traditional 25 94.44 5.88 1.18

Blended 25 89.04 11.17 2.23

Mobile 25 86.76 14.23 2.85

Total 75 90.08 11.31 1.30

Table 3. 
English and computer paper exams.
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Sum of 
squares

Df Mean 
square

F Sig.

English paper exams Between groups 706.16 2 353.080 1863 0.163

Within groups 13643.92 72 189.499

Total 14350.08 74

English mobile exams Between groups 40.67 2 20.33 0.053 0.948

Within groups 27478.00 72 381.64

Total 27518.67 74

Table 2. 
One-way ANOVA results for English paper exams and English mobile exams.

N Mean Std. deviation Std. error

English paper exams Traditional 25 83.24 14.60 2.92

Blended 25 87.76 12.84 2.57

Mobile 25 84.48 14.44 2.89

Total 75 85.16 13.93 1.61

Computer paper exams Traditional 25 94.44 5.88 1.18

Blended 25 89.04 11.17 2.23

Mobile 25 86.76 14.23 2.85

Total 75 90.08 11.31 1.30

Table 3. 
English and computer paper exams.
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This research was significant in its own ways of research and its findings; and it 
aims to compare the success of students in English paper exams and English mobile 
exams, as well as discussing smartphone pros and cons as assessment tools.

5.1 Internet access problems

From the previous experiences, it was observed that there were Internet 
accessibility problems when all the students tried to access the exam at the same 
time. Therefore, students are divided into groups and entered the exam. Even 
with smaller groups, it was observed that the questions were emerging slowly. By 
increasing the speed of Internet access, this problem was elevated.

5.2 Print screen and copy problems

Mostly, students had tried to find a way to cheat or to disobey the given rules; 
and they tested the programs by their own ways. They tried to take screenshots of 
the program, and this was prevented successfully. The students who tried to do this 
were warned by the course teacher. One student tried to shade the questions and 
cheat; this was also successfully prevented by displaying him a warning message.

5.3 Translation problems

The exam started when the teacher had made an active link on the Internet. 
Since the students used translation programs in their daily lives, their smartphones 

Sum of 
squares

Df Mean 
square

F Sig.

English paper exam results Between 
groups

272.72 2 136.36 0.70 0.50

Within groups 14077.36 72 195.52

Total 14350.08 74

Computer paper exam results Between 
groups

777.84 2 388.92 3.23 0.046

Within groups 8681.68 72 120.58

Total 9459.52 74

Table 4. 
One-way ANOVA results.

Sum of 
squares

Df Mean 
square

F Sig.

Computer mobile exams Between groups 60.67 2 30.33 0.24 0.784

Within groups 8939.00 72 124.15

Total 8999.67 74

English mobile exams Between groups 40.67 2 20.33 0.053 0.948

Within groups 27478.00 72 381.64

Total 27518.67 74

Table 5. 
One-way ANOVA results for computer mobile and English mobile exams.
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instantly converted the exam to the students’ native language, which was a critical 
problem for a language exam. Technicians corrected the problem quickly; however, 
it was a nasty thing. There are several possible solutions to this problem: additional 
codes can be included to the exam software to prevent such a case; the software 
can be distributed to students offline and can be programmed to send the results 
to the teachers’ smartphone. Another possible solution to this may be instead of 
distributing exam papers to the students, teachers can distribute smartphones with 
restricted facilities to students, and they can collect these at the end of the exams to 
be used for future exams.

6. Wearable devices in future

We are residing in a planet where technology is contemporary in our life rou-
tines. The more that you know, the more that you want to know! Knowledgeable 
people are generally more keen on learning new technological devices. People’s 
relatively high rates of prior experience with computers and smartphones may 
partially explain the sample’s high willingness to accept smart wearable devices [4]. 
Today, smartphones are one of the vastest revolutions in individuals’ life spans. 
Smartphones are becoming increasingly popular, both in formal and informal 
educational environments. Although benefits and obstacles in using smartphones 
as assessment tools can be discussed, “70 percent of students and teachers agree 
that they prefer to write work and notes on their computers rather than writing on 
paper” [52], and recent studies shows that students are as successful in smartphone 
exams as they are in written exams.

There are different students with different social needs: some are keen on being 
virtually social, and some are keen on being physically social (see Figure 3). Some 
research studies show that the younger physically social students are more suc-
cessful than the younger virtually social ones [53, 54]; a solution to these would be 
improving wearable technologies in a way that students can both be physically and 
virtually social!

Figure 3. 
Physically virtual and virtually social [53, 54].
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Chapter 7

Wearable Devices and their
Implementation in Various
Domains
Menachem Domb

Abstract

Wearable technologies are networked devices that collect data, track activities
and customize experiences to users’ needs and desires. They are equipped, with
microchips sensors and wireless communications. All are mounted into consumer
electronics, accessories and clothes. They use sensors to measure temperature,
humidity, motion, heartbeat and more. Wearables are embedded in various
domains, such as healthcare, sports, agriculture and navigation systems. Each
wearable device is equipped with sensors, network ports, data processor, camera
and more. To allow monitoring and synchronizing multiple parameters, typical
wearables have multi-sensor capabilities and are configurable for the application
purpose. For the wearer’s convenience, wearables are lightweight, modest shape
and multifunctional. Wearables perform the following tasks: sense, analyze, store,
transmit and apply. The processing may occur on the wearer or at a remote location.
For example, if dangerous gases are detected, the data are processed, and an alert is
issued. It may be transmitted to a remote location for testing and the results can be
communicated in real-time to the user. Each scenario requires personalized mobile
information processing, which transforms the sensory data to information and then
to knowledge that will be of value to the individual responding to the situation.

Keywords: wearable devices, device architecture, healthcare, visually impair,
automatic navigation

1. Introduction

Wearable devices have embedded sensors which acquire the data for which they
were built. This data are then pushed to its integrated processor. The processor
analyzes this data and accordingly launches commands, actuators or activates other
sensors to collect more data or execute tasks according to predefined scenarios and
processes. To promote device standardization and quick adaptation to a wide
variety of goals and purposes, we propose a three-layer architecture: the common
layer, the domain layer and the special-purpose layer. The basic layer contains
common elements required for any wearable device: motherboard, power supply,
processor, operating system, communication ports, a grid of sockets and adapters
for sensors plugin and software applications.
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With the emergence of growth in various technologies, it is predicted that soon
about 50 billion new devices will be added world-wide. This raises two major issues:
a huge amount of data and heterogeneous devices with severe integration issues.
These concerns remain when referring to wearable technology. Typical wearable
body sensor networks consist of tiny, smart, low-power and self-organized sensors
to observe physiological signals of a human body. Standardization, compliance,
effective coexistence and interoperability among multiple technologies are required
to ensure end-to-end network routing and connectivity among wearables and
external devices. M. Alam et al. [4] review multi-standard and multiple technolo-
gies based wearable wireless for inter-device communication. Coexistence and
inter-operability are challenges discussed along with utilization of possible technol-
ogies for on-body, body-to-body and off-body communications. It explores several
schemes to ensure effective coexist among multiple technologies and issues related
to interoperability.

In this chapter, we describe the architecture and its operation in several
domains, one implementation per domain. Lauren Kolodzey et al. [1] reviewed 614
articles aiming to provide an objective overview of the literature about the use of
wearable technology in clinical and simulated surgery. They found that applications
of wearable technology mainly focused on improving the safety and efficiency of
intraoperative processes. The associated applications were wide-ranging and
designed for use by a variety of care providers, thereby reflecting the
interconnected relationship between intraoperative safety and the entire healthcare
team. It suggests that wearable devices resolve certain human factors that nega-
tively influence performance and safety in the operating room. For example, a
display of patient variables to mitigate conflicts associated with patient care tasks
and the distracting operative environment. It recommended the use of a variety of
wearable devices, such as special glass for its lightweight construction, user-friendly
interface and potentially for hands-free control, special camera for capturing
precise anatomical details.

The rest of this chapter is composed as follows. In Section 2, we describe the
platform and technology components used for developing and implementing
wearable-based systems. In Section 3, we outline wearables in the healthcare
domain, which is the most advanced domain and with the highest number of
production implementations. In Section 4, we review several wearable
implementations in several domains, such as agriculture, cconstruction and others.
In Section 5, we describe in detail our original implementation of a wearable-based
system assisting visually impaired people in safety walking through and avoiding
obstacles. At Section 6, we conclude and outline potential directions for further
advancements in this subject.

2. Technology enablers

S. Park et al. [2, 3] explore advanced wearables and accordingly recommend
guidelines for successful development and deployment of comprehensive wearable
systems. Among these are the use of a variety of sensors, each sensor should be
flexible, adaptive, effective and reliable.

2.1 Variety of sensor types and flexible, effective and practical sensors

Sensors are needed for capturing various aspects and parameters to be handled
simultaneously [4], such as vital signs sensors working at the same time and having
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multiple sensor types: heart rate, body temperature, pulse oximetry, blood glucose
level of different types, the number of sensors may change to capture the signals
required to compute a single parameter. In some cases, it may require placing the
sensors is specific locations, for example, electrocardiography for recording the
electrical activity of the heart where the sensors are placed in three locations on the
body. In addition, sensors should be easy for attachment and removal, or for
plugging and playing, as sensors may be used at different times and changing
requirements. In most cases, parallel processing is required. For example, a pilot
during a flight-simulation wants to analyze his overall body reaction during the
simulation action. This requires placement of several sensor types, changing loca-
tions and types during the simulation. Practically, sensors should be low cost,
lightweight, adaptable to the wearer body, distributed power supply and data com-
munication among sensors and processes in the wearable network.

The concept of packaging and fabrication technologies has been widely used and
keeps improving with new various materials [5]. These developments enable
embedding sensors, such as gyroscopes, accelerometers, camera, motion sensing,
physiological and biochemical sensing, into a rigid and flexible platform, adding
capabilities to wearable devices. Mobile devices have been integrated with wireless
communication technology. The constant growth of broadband wireless networks
opens a new era for wearable devices and sensors to continuously monitor the
health of patients remotely.

2.2 The generic paradigm for connecting wearables

M. Alam and Ben Hamida [6] propose a generic paradigm, which can serve as a
platform for many existing and future applications, such as healthcare, disaster
recovery, people safety and more. The key advantage is its wearable Wireless Body
Area Networks (WBANs) capabilities, enabling remote and ad hoc deployment of
networks. Envisioned applications in this context, range from the popular medical
field, continue with entertainment, lifestyle, gaming and ambient intelligence.
Applications, such as disaster recovery, rescue, safety, wearable technology can also
play a role to protect critical and valuable assets. The network is designed in such
a way that the coordinating device communicates with implanted and on-body

Figure 1.
The generic paradigm.
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sensors, transmits the collected information to a remote monitoring station.
Figure 1 depicts the advantages of wearable communications to enhance the
readiness and alertness of the wearers, devices and vehicles to act as an integrated
unit, regardless of their physical location and distance from the occurrence.
Enhancing this composition, we may implant cameras in the wearables and provide
real-time information to all who involved in a given situation. We may assume
that this architecture is the right architecture and infrastructure for any
wearable-based functions.

3. Wearables for health

A dominant area of wearables is health. It is aiming to predict and treat
common cases by acquiring and processing physiological and environmental
data. Wearable technologies allow consumers to be better at converting
personal, biological and environmental data into valuable consumer insights.
Wearables can transmit the data to and from the consumer at the appropriate
time, creating new consumption experiences that can improve the landscape of
health and fitness. These insights may turn into holistic decisions and goal-
directed actions, especially if patients allow the access to their physiological data,
collected from wearables. A new generation of wearable sensors enables
physicians to capture long-term-patients’ activity levels and exercise compliance,
facilitating effective dispensing of medications for chronic patients and provide
tools to assess their ability to perform specific motor activities, and propose
rehabilitation solutions.

Wearables enable remote health monitoring of patients [7, 8]. The data are sent
from the wearable to the physician’s office, avoiding the need for office visits. The
ability to continuously track patients’ health helps identifying potential problems
through preventive interventions and so enhances the quality of care and save
money, since the cost of prevention is most cases is less than the treatment cost. The
resulting higher quality of care at lower cost would also contribute to better
operating efficiencies and lower overhead costs for insurance companies, as
resources can be better spent on providing care and not on measures to ensure high
quality of care is being provided. This is where wearables have a critical role to play
in creating and serving as the core of an ecosystem essential for facilitating the
seamless transformation of data to deliver value.

Healthy lifestyle improves employee’s productivity and lower absence rate [9].
Insurance companies can collect its activity and sleeping data to leverage the data
for personal insurance plans and reward employees for good health score. An
American insurance company issued a wearables based health program pilot, which
continuously collects invasive and noninvasive data, such as vital signs. Artificial
intelligence provides an added value to healthcare with a focus on diagnosis, treat-
ment, patient monitoring and prevention.

3.1 Personalization

The doctor, with the help of a software expert can quickly create a program
based on the needs of the patient. Early diagnosis: precise medical parameters allow
early detection of symptoms. Remote patient monitoring: healthcare professionals
can monitor patients remotely and in real-time using wearable devices. Adherence
to medication: help patients to take medications on time and inform medical pro-
fessionals if the patient fails to adhere to medications. Information registry: the data
are stored in real time allowing an exhaustive analysis of the information. The result
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is a complete and precise report about the patient’s medical history, which can be
shared with other specialists. Optimum decisions: the doctor can analyze the data to
make better clinical decisions, to enhance the patient’s quality of life. Saving
healthcare cost: remote healthcare using wearable devices means saving time and
mobility.

Recent emergence of new materials accelerates the development of non-invasive
skin-based wearable devices [10], which are expected to be compatible with
human skin: flexible, stretchable and less irritating, and comply with: sensitivity to
changes in body temperature, changes in the body and an adequate detection limit.
Following are several examples of skin-based devices in healthcare applications:
predicting a sudden attack and providing the means to cope with it; detecting
genetic cancer syndromes or rapid changes in heart-beat rate; early evidence of
vascular events; detecting abnormal respiration rate; monitoring body temperature
and biosensing clothing. Wearable strain sensors are used for detecting and moni-
toring of movement-based signals, such as heart-beat rate and respiration rate. It
is lightweight, reliable, flexible, stretchable and aligned with the diverse
healthcare applications.

3.2 Diseases

Several researchers proposed wearable-based solutions for specific diseases [11],
to assist in curing or relieving the symptoms of a list of diseases as follows:

1. Sleep apnea: interruptions or a decrease in breathing for few seconds up to a
minute. The treatment types depend on the severity of the case and ranges
from weight loss to surgical operations. DT is a wearable oral device for
following the prescribed therapy for sleep apnea. It measures the
temperature, movement and head position of patients by determining the
spatial orientation of the device in the mouth.

2. Chronic obstructive pulmonary disease: a common lung disease that leads to
shortness of breath. An ear wearable monitors the physical activities that
allow patients to continuously evaluate their condition at home. It reduces
healthcare costs for patients that can be treated at home.

3. Diabetes mellitus. A chronic disease whereby the body cannot produce
enough insulin, and the control of blood glucose levels is essential for diabetic
patients. A wearable artificial pancreas for monitoring glucose level. It is
composed of a flexible core system as a brain and three wedges for insulin
delivery, glucose sensing and glucagon delivery. Another wearable to
measure blood sugar levels in diabetics is the smart contact lens that
Google/Verily Life Sciences owns.

4. Cardiovascular diseases: it is related to the heart, veins, venous thrombosis,
heart failure and cardiac dysrhythmia. Various wearable sensors exist for
providing real-time heart rate measurements, such as the wireless blood
pressure wrist monitor, which monitors blood pressure in connection with
a smartphone. It was shown that the accuracy of the measurements was
in good agreement with the reference clinical measurements.

5. The Vega GPS bracelet is a wearable sensor for ensuring the safety of people
by monitoring their location with the use of GPS and global system for mobile
communications positioning. Embrace is a wristband for monitoring
physiological signals in epileptic people in real time to alert family members.
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6. Mosquito-borne diseases: it causes a wide range of deadly diseases, such as
malaria, chikungunya, yellow fever, the Zika virus and the Ebola virus. The
kite patch is a patch-type wearable that disperses volatile compounds and is
worn on a shirt to repel mosquitoes.

7. Renal failure: kidney failure and chronic kidney disease. In the treatment of
renal failure, dialysis is commonly used, in which kidney function is replaced
by a machine. To replace dialysis, a wearable artificial kidney has been
developed.

8. Skeletal system diseases: joint disorders, osteoporosis and poor posture. Using
three-dimensional gyroscopes, accelerometers and magnetometers embedded
into wearable sensors, the chronic pain resulting from most skeletal diseases
can be treated with transcutaneous electrical nerve stimulation and by
performing therapeutic exercises. Another wearable monitor uses postural
variation and warns users through vibrations when they deviate from normal
posture, reminding them to return to a normal posture.

9. Sunburn prevention: the ultraviolet (UV) radiation of sunlight causing
wrinkles, burns, aging and even skin cancer. Wearable UV sensors, which can
be worn on the arm in the form of a bracelet, armband or wristband, are used
to monitor UV exposure levels with alerts for potential skin damage and
safety precautions, as well as estimating vitamin D production levels.

10. Vein finding: a wearable smart glass termed Eyes-On technology enables
nurses to rapidly see the veins of patients through the skin by incorporating
multispectral 3D imaging and wireless connectivity.

11. Detection of stress/depression levels: wearables are used to determine the
state of mind of their users. The product is a wristband that monitors heart
rate variability aiming to warn the user about a rise in personal stress levels.

3.3 Nutrition and dietetics

Real-time, effective and affordable nutrition and dietetics wearable technology
and sensors are an emerging field with immense opportunities and benefits to the
global nutrition challenge [12, 13]. Such revolution real time, home-, work- and
hospital-based rapid, accurate and cost-effective self-detection and diagnosis of
direct or indirect causes or diet deficiency or excess are much needed for generating
evidence-based information and knowledge for individual and vulnerable group
nutritional and dietary mitigation and lifestyle adaptation through wearable sensors
and technology. These can enhance evidence-based, coherent and coordinated
nutrition and dietary programs and strategies to a targeted group or illness, vital in
addressing malnutrition and under-nutrition public health burden. Building wear-
able consumers’ health and fitness prognosis, prospective digital nutrition, dietetic
data and database and nutrition informatics platforms. These provide a paradigm
shift in engaging participatory communication among public consumers, dietetic
and nutritionist professionals in improving quality interventions, management and
outcomes. Assessment and understanding of nutritional and dietary needs, and
potential opportunities in functional health benefits and resource development in
personalized accessibility and availability of needed resources to encourage positive
behavior, diet and nutrition changes.
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Diet-related deficiencies are estimated at 3.5 million deaths annually. This results
in rapid urbanization and food consumption patterns that require nutrition safety.
The public health nutrition wearable and implantable sensors approach provides a
new perspective in human and animal nutrition and dietary. They lead to reliable
and effective nutrition and health interdisciplinary approaches and tackle the ever-
growing local and global nutrition challenges. Modern convenient and cost-
effective wearable sensors can be used to educate, track and predict energy level
and advice on interventions or activities required to improve the excess or defi-
ciency and adaptation changes from plant-derived sources in achieving balanced
choices and quantities of unique fruit and vegetable phytochemical/micronutrient
needs.

The effectiveness of wearable devices and fitness trackers, and mobile applica-
tion on healthy life and care delivery outcomes, such as weight loss and mainte-
nance have been documented in developed countries. Nutritional and dietary
wearable technology has a critical role in contributing to nutritional and food
challenges paradigm shift in Africa. It provides real time, home-, work- and
hospital-based rapid, accurate and cost-effective detection, and diagnosis of nutri-
tion/energy or diet deficiency or excess is much needed. It supports the generation
of quality information and knowledge for individual, vulnerable group to national
decision-making nutrition policy and guidelines, programs and interventions
towards healthier lifestyle and increasing life expectancy, more productivity and
wellness. Real time is required for flexible applications of smart wearable and
implantable sensors are needed in providing clues into effective fitness and feeding
best practices.

3.4 Body dietary and energy balance

To estimate daily total energy expenditure (TEE) using a physical activity mon-
itor, combined with dietary assessment of energy intake to assess the relationship
between daily energy expenditure and patterns of activity with energy intake. [14]
An activity monitor has been used to determine the total energy expenditure, sleep
duration and physical activity. The armband was placed around the left upper
triceps. Energy intake was determined by evaluating all food and drink items. TEE
was correlated with BMI and body weight but inversely related to sleep duration
and time lying down. Multiple linear regression analysis revealed that after taking
BMI, sleep duration and time spent lying down into account, TEE was no longer
correlated with energy intake. Results show the extent to which body mass, variable
activity and sleep patterns may be contributing to TEE and together with reduced
energy intake, energy requirements were not satisfied. Hence, wearable technology
has the potential to offer real-time monitoring to provide appropriate nutrition
management which is more person-centered to prevent weight loss.

4. Wearables for other domains

4.1 Construction

The known high percentage of accidents occurring in the construction industry,
calls for developing safety strategies. In this section, we describe personalized
construction safety-monitoring applications, incorporating wearable technology.
These devices predict safety performance and management practices are identified
and analyzed. Awolusi et al. [15] present a variety of solutions.
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Environment sensors are silicon sensors, small and embedded communication
technologies, such as Bluetooth and Wi-Fi wearables. They increase the volume and
precision of environmental data, such as air quality, barometric pressure, carbon
monoxide, capacitance, color, gas leaks, humidity, hydrogen sulfide, temperature,
light, volatile organic compounds (VOCs) and ability to realize intelligent RFID
tags. There are sensors that support a broad range of emerging high-performance
applications, such as navigation, barometric air pressure, humidity and ambient air
temperature sensing functions. Some of these sensors are designed for wearable
technologies. Workers can be monitored while doing their normal work and at the
same time having the ability to see highly localized, real-time data on things like
temperature. Other wearable-sensors that can be used in wearable devices are
gyroscope, light sensors, noise sensors, humidity sensors, temperature sensors, gas
sensors, among others.

Wearable devices have the potential to protect workers in hazardous conditions:
the use of Smart headsets for monitoring truck drivers’ performance to reduce
accidents; Augmented Reality headset to guide workers though complex production
processes or wearable devices to predict injuries and machine downtime. According
to Gartner, most companies with 500+ employees already use wearables in the
workplace.

4.2 Quality of life

J. Lee et al. [16] focus on the value of sustainability in human-oriented wearables
and services that seek to improve the quality of life, which involves social impact
and public interest. Wearables refer to the technology and its applications with a
value of sustainability having a positive impact on the improvement of quality of
life, social impact and the public interest. We aim to discuss how continuously
evolving wearables influence positively on human life and environment through the
keyword of sustainability.

A variety of wearable devices have been launched in the market to achieve
various purposes with the development of sensing technologies. One typical exam-
ple is an application that constantly measures movement distance and movement
conditions of users over time through motion sensors that include in wrist-wearable
devices and display the measured results. Moreover, measuring the intake and
consumption of calories, tracking sleep, postural correction, blood pressure, and
heart rate are the most fundamental applications of the current wearables field. As
such, wearable applications started by quantifying various human activities (con-
sciously or unconsciously) numerically in daily life. Over the past few years, more
wearable devices have been introduced according to their purpose with increasing
performance. As a result, the demand for them to quantify individual daily lives by
themselves has increased. Along with this demand, more studies of the methods to
improve the quality of life by analyzing individual conditions have been conducted
for application in real life, which is called the quantified self. Targets whose move-
ments are tracked include various types of personal information, such as physical
activities performed and environmental information.

4.3 Monitoring social interactions

Wrist-worn wearables enable monitoring, detecting and recording interpersonal
social interaction features [17]. The wrist has embedded motion sensors, acceler-
ometers, heart rate monitors, optical sensors, skin conductivity, skin temperature
and other physiological sensors. Increased synchrony of physiological measures has
been shown to lead to increased perceived empathy and positive outcome.
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Leveraging data from wearables for social sensing based on interpersonal syn-
chrony. Preliminary results show that wearable data are suitable for analyzing and
quantifying social dynamics. Results indicate differences in wearable sensing data
during a social interaction between two people.

4.4 Agriculture

According to Afzal et al. [18], water is a vital component in plants. They mea-
sured leaf moisture using special sensors. Results showed that variations curve of
the capacitance was in the form of an exponential function, y = ae bx, where y is
capacitance, x is leaf moisture content, a is the linear coefficient and b is the
exponential coefficient. A new adhesive sensor, sensitive to water vapor, measures
leaf surface humidity and how much water is transpired by crop plants. It exhibits
different levels of conductivity depending on the humidity and provides farmers
with practical information on the real-time water absorption habits of their crops.
The sensor is connected to a Wi-Fi device that transmits the data to the data
analyzer, which then recommends the amount of water gallons to put in which
parts of the field. The sensor is used for water management to accelerate the process
of breeding drought tolerant for any crop.

5. Wearables for navigation and safety systems

Automatic navigation in an unknown environment raises various challenges
as many cues about orientation are difficult to perceive without the use of vision.
Though assisted aids, such as global positioning system (GPS), a satellite-based
radio-navigation system, which help in route finding, still it fails to fulfill safety
requirements. This section proposes a framework that provides accurate guiding
and information on the route traversal and the topography of the road ahead. The
framework is composed of technologies, such as Lumigrids, Drone, GPS, Mobile
applications andCloud storage which are used to map the road surface and gen-
erate proper navigation guidance to the end user. This is done in three stages:
(1) off-line mapping of the road surface and storing this information in the
cloud; (2) wearable technology used for obtaining in real-time surface informa-
tion and comparing it to the data on the cloud facilitating accurate and safer
navigation and (3) updating the cloud information with information collected
by the pedestrian.

There are many technological navigation aids but none of them focus on pedes-
trian paths. Banovic et al. [19] claim that travelers require detailed information
about the terrain and its challenges—size, curves, hurdles, fences, changes in ele-
vation and proposes a three-phase safe navigation system that provides surface
information of the pedestrian paths and uses this information while suggesting in
real time routes to the visually impaired.

Most applications use location-sensing technology, such as GPS combined with a
map to locate and guide pedestrians. Sendero [20] uses smart phone’s location
sensing power. Trekker Breeze [21] supports orientation using a commercial GPS
receiver. In another work, [22] has combined crowd sourcing with computer vision
techniques to provide additional information about traffic intersections and side-
walks or arbitrary images. Few open source [23] software systems provide similar
navigation instructions on points of interest like restaurants and buildings to the
user using speech or Braille output. Studies say that pedestrians are positive on
using technological assisted aids to guide them for navigation [24].
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5.1 The process phases

The proposed navigation system consists of the following three phases:
(1) terrain mapping phase, (2) pedestrian guidance phase and (3) re-mapping of the
terrain based on comparative walk-thru and terrain database. In the terrain map-
ping phase, an unmanned aerial vehicle is made to fly over the pedestrian path. This
vehicle records the GPS coordinates of the mapped region and accurately identifies
the actual terrain of the underlying pedestrian path. This data are versioned and
stored in a cloud. This referential database is centrally shared for the visually
impaired. The terrain mapping phase is essential to initially map all the pedestrian
paths and populate the cloud with data. The pedestrian guidance phase is the phase
where the stored terrain-related information on cloud is combined with the regular
GPS-based route finding and in real time, it is used to guide a pedestrian in naviga-
tion. A shirt mounted device assists the visually impaired in achieving this. During
the walk-thru, the mounted device with the visually impaired obtains the real-time
terrain information of the path ahead and compares it to the existing information on
the cloud to alert of the new challenges/hazards that may have cropped up.

5.2 The navigation system

The terrain mapping phase consists of the following components: Quadcopter—
unmanned aerial object and Raspberry—a microcomputer to run required image
processing algorithms and save the information to the cloud. Figure 2 depicts the
components and their interconnection used in terrain mapping phase.

Lumigrids—a LED projector projecting light in the shape of grids as presented
in Figure 3.

Lumigrids are mounted on the quadcopter and placed facing the ground. These
light grids can accurately extract the terrain information of the pedestrian path as
the regular arrangement of the lights grid gets distorted based on the terrain. [24]
shows how lumigrids can help cyclists to understand the terrain ahead at night and
keep them safe. Camera—placed facing the direction of ground where the lumigrids
are projected. It constantly takes the images of the patterns formed by the grids and
sends it for image processing. GPS sensor is used to obtain the GPS location of the
quadcopter drone. Raspberry Pi serves as the central computing unit for all the
attached sensors. It processes the captured images of the formed light grids on the
ground and obtains the required terrain information.

An interesting approach can also be used to obtain the terrain-related informa-
tion by using the accelerometer data of the smart phones of other visually sound

Figure 2.
Components used in terrain mapping phase.
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pedestrians who use these pedestrian paths. The accelerometer of their mobile
devices detects the vibration along the X, Y and Z-axes. The magnitude m of the

acceleration is calculated as m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2 þ Z2

p
. This is used to predict the terrain

information of the pedestrian paths.

5.3 Capturing of the terrain topography in two phases

The terrain mapping system consists of a lumigrids projector and a GPS sensor
mounted on a quadcopter which flies along the pedestrian path at height “h” above
ground, as depicted in Figure 4. The captured data are associated with its exact
location [GPS], which allows the comparison between images taken from the same
location. As mentioned, the process is divided into two phases. In the first phase,
the terrain image and data are taken and stored in the cloud storage. To ensure
accurate terrain data, while the pedestrian walks, we recapture, in the second phase,
the same image from the same location.

Figure 5 describes the process of obtaining the terrain topography using
lumigrids projection. The first picture on the top-left is the image of the sidewalk,
we refer to in this section. The picture on the top-right presents the projection of the
lumigrids projector on the sidewalk. A complete flat terrain will produce and show a
perfect grid picture. However, due to some bumps in the sidewalk, as presented in
the right-bottom image, some of the projected squares are distorted, representing
the bump location. The resulting grid is sent to the cloud application for analysis
and storing it in the cloud storage.

Figure 6 depicts the data collection and processing from the impaired person
guidance perspective. It assumes the use of a smart-phone application, which con-
tinuously transmits the current person location and orientation to the cloud and
obtains the data about the terrain of the path ahead. The left-top image presents the
shirt with a mounted unit, which the pedestrian wears. The unit consists of a
lumigrids projector, camera and a communication unit. The projector flashes on the

Figure 3.
Light grids projected on ground by lumigrids projector.

Figure 4.
The basic set-up of capturing the terrain image and its data in phase 1.
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tion by using the accelerometer data of the smart phones of other visually sound

Figure 2.
Components used in terrain mapping phase.
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pedestrians who use these pedestrian paths. The accelerometer of their mobile
devices detects the vibration along the X, Y and Z-axes. The magnitude m of the

acceleration is calculated as m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2 þ Z2

p
. This is used to predict the terrain

information of the pedestrian paths.

5.3 Capturing of the terrain topography in two phases

The terrain mapping system consists of a lumigrids projector and a GPS sensor
mounted on a quadcopter which flies along the pedestrian path at height “h” above
ground, as depicted in Figure 4. The captured data are associated with its exact
location [GPS], which allows the comparison between images taken from the same
location. As mentioned, the process is divided into two phases. In the first phase,
the terrain image and data are taken and stored in the cloud storage. To ensure
accurate terrain data, while the pedestrian walks, we recapture, in the second phase,
the same image from the same location.

Figure 5 describes the process of obtaining the terrain topography using
lumigrids projection. The first picture on the top-left is the image of the sidewalk,
we refer to in this section. The picture on the top-right presents the projection of the
lumigrids projector on the sidewalk. A complete flat terrain will produce and show a
perfect grid picture. However, due to some bumps in the sidewalk, as presented in
the right-bottom image, some of the projected squares are distorted, representing
the bump location. The resulting grid is sent to the cloud application for analysis
and storing it in the cloud storage.

Figure 6 depicts the data collection and processing from the impaired person
guidance perspective. It assumes the use of a smart-phone application, which con-
tinuously transmits the current person location and orientation to the cloud and
obtains the data about the terrain of the path ahead. The left-top image presents the
shirt with a mounted unit, which the pedestrian wears. The unit consists of a
lumigrids projector, camera and a communication unit. The projector flashes on the

Figure 3.
Light grids projected on ground by lumigrids projector.

Figure 4.
The basic set-up of capturing the terrain image and its data in phase 1.
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ground. The camera captures the grid image formed on the ground and continu-
ously transmits it to the smartphone application, which then transmits it to the
cloud application. The application compares the received image to the already
stored image and generates the most accurate image representing the terrain situa-
tion at this moment. Accordingly, the application generates the proper instructions
set and sends it back to the smartphone, which guides the pedestrian accordingly. In
parallel, the discrepancy between the stored data in the cloud and the data accepted
from the pedestrian, is analyzed and if there is a need to update the cloud data it is
done by the cloud application.

The steps of the terrain mapping phase:

Figure 6.
The process of the pedestrian guidance phase.

Figure 5.
The terrain mapping phase and its transmission to the cloud storage.
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1. The entire pedestrian path is divided into squares of equal area—called the
sub-squares: let “k” be the area of each sub-square with side “x” which are
named as (1, 1), (1, 2) and so on.

2. The height “h” is adjusted to generate the lumigrids of area “k” just enough to
cover each sub square.

3. The midpoint M of the sub-square is calculated as: M ¼ lat1þ x
2 ; long1þ x

2

� �
:

4. The quadcopter flying at height “h” above the ground files to the calculated M
from where it flashes the lumigrids of area “k” equal to the area of the sub-
square on ground. The lumigrids projector creates the light grids of
dimension n � n on the ground below.

5. The following image formed on the ground shows an undistorted lumigrids of
area “k” formed on an ideally flat and perpendicular surface to the
quadcopter flying at a height “h” above the ground.

6. This image is captured by the mounted camera and thresholding of the input
image splits the lumigrids image data from rest of the image as explained in
10. Camera coordinates can be mapped to the real world coordinates by the

following transformation matrix

Xc
Yc
Zc

0
B@

1
CA ¼ Tcm

Xa
Ya
Za

0
B@

1
CA, where Xc, Yc, Zc are

the coordinates of the object in camera and Xa, Ya, Za are the coordinates of
the same object in the real world and Tcm is the transformation matrix which
can be calibrated for a camera.

7. The dimensions and inclinations of each line segment of the n � n segmented
sub-square are the parameters used to represent an ideally flat terrain
Length ¼ Breadthð Þ of each side ¼ x

n Inclination of each side ¼ 90°

8. Shortening of length (less than x
nÞ of any line segment (even skewed) of the

formed lumigrids square mesh indicates that the terrain beneath the
formed lumigrids is not flat. It is either concave or convex in nature along
the Z axis.

9. The angle between the line segments (tangents of the line segments at the
point of intersection if they are skewed) if not the right angle indicates that
there is an inclination in XY plane of the terrain beneath the formed
lumigrids based on the quadrant (first quadrant or fourth quadrant) of the
inclination. Let a0 be the inclination of the line segments of the lumigrids
and “a” the corresponding inclination in the ground is given by: a ¼ �d1 ∗ a0,
where “d1” is the ratio of the inclination on the ground and the corresponding
inclination caused by the lumigrids. And + indicates that the inclination is
towards the first quadrant and—indicates that the inclination is towards the
fourth quadrant.

10. After the image thresholding algorithm on the obtained image, the lumigrids
are visible clearly as Figure 7.
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1. The entire pedestrian path is divided into squares of equal area—called the
sub-squares: let “k” be the area of each sub-square with side “x” which are
named as (1, 1), (1, 2) and so on.

2. The height “h” is adjusted to generate the lumigrids of area “k” just enough to
cover each sub square.

3. The midpoint M of the sub-square is calculated as: M ¼ lat1þ x
2 ; long1þ x

2

� �
:

4. The quadcopter flying at height “h” above the ground files to the calculated M
from where it flashes the lumigrids of area “k” equal to the area of the sub-
square on ground. The lumigrids projector creates the light grids of
dimension n � n on the ground below.

5. The following image formed on the ground shows an undistorted lumigrids of
area “k” formed on an ideally flat and perpendicular surface to the
quadcopter flying at a height “h” above the ground.

6. This image is captured by the mounted camera and thresholding of the input
image splits the lumigrids image data from rest of the image as explained in
10. Camera coordinates can be mapped to the real world coordinates by the

following transformation matrix

Xc
Yc
Zc

0
B@

1
CA ¼ Tcm

Xa
Ya
Za

0
B@

1
CA, where Xc, Yc, Zc are

the coordinates of the object in camera and Xa, Ya, Za are the coordinates of
the same object in the real world and Tcm is the transformation matrix which
can be calibrated for a camera.

7. The dimensions and inclinations of each line segment of the n � n segmented
sub-square are the parameters used to represent an ideally flat terrain
Length ¼ Breadthð Þ of each side ¼ x

n Inclination of each side ¼ 90°

8. Shortening of length (less than x
nÞ of any line segment (even skewed) of the

formed lumigrids square mesh indicates that the terrain beneath the
formed lumigrids is not flat. It is either concave or convex in nature along
the Z axis.

9. The angle between the line segments (tangents of the line segments at the
point of intersection if they are skewed) if not the right angle indicates that
there is an inclination in XY plane of the terrain beneath the formed
lumigrids based on the quadrant (first quadrant or fourth quadrant) of the
inclination. Let a0 be the inclination of the line segments of the lumigrids
and “a” the corresponding inclination in the ground is given by: a ¼ �d1 ∗ a0,
where “d1” is the ratio of the inclination on the ground and the corresponding
inclination caused by the lumigrids. And + indicates that the inclination is
towards the first quadrant and—indicates that the inclination is towards the
fourth quadrant.

10. After the image thresholding algorithm on the obtained image, the lumigrids
are visible clearly as Figure 7.
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In the above image, the required lengths between the skewed line segments are
calculated.

11. Let a line segment of generated lumigrids of ideal expected size x
n gets shorten

by y% due to a skewed terrain. Let “d2” be the ratio of the absolute value of
the vertical height on the ground indicated by the corresponding lumigrids to
length of the corresponding line segment generated by the lumigrids. Then
the absolute height “h” with reference to ideal flat surface of the ground is

given by: h ¼ �d2 ∗ x
n ∗ 100�y

100

� �
. Axiom 5 decides if h is positive or negative. h

is positive for concave terrain and negative for convex terrain. If y = 100%,
theoretically there could be a narrow pit or hill in the ground, as indicated by
the non-visibility of the lumigrids.

12. To exactly identify if the terrain at a given position is concave or convex in
nature, we observe the inter line segment distance i of the terrain. If
i = x

n ! flat surface, if i > x
n ! concave surface, if i < x

n ! convex surface.

13. After calculating the terrain information of the given sub-square, the process
is repeated to all the sub-squares so that the entire pedestrian path is scanned
for its terrain details and mapped. The data thus obtained is pushed to the
cloud.

The cloud now has precise information of the terrain. The pedestrian guidance
phase consists of the following steps:

1. When the pedestrian wishes to navigate, the pedestrian’s smart phone
requests a route from source to destination. A GIS map is consulted to obtain
various routes from the source to the destination. The data from the cloud has
precise information about the terrain of each of the pedestrian paths
presented in all these routes. An optimum route is selected based on the
variations in the terrain in that route, pedestrian traffic density in the route,
the route with easy help in case of danger or need and various other
parameters which govern the safety of the pedestrian are considered.

2. The smart phone guides the pedestrian along this route in the pedestrian
path. All major terrain variations in the pedestrian path are alerted to the
pedestrian.

3. The shirt mounted unit on the pedestrian flashes the lumigrids on the path
ahead and the camera embedded on the unit captures the image of the

Figure 7.
Lumigrids formed over a pit.
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lumigrids formed and transmits this image to the smart phone of the
pedestrian (Figure 8).

4. The terrain information obtained from the lumigrids are cross checked at real
time with the terrain information available in the cloud to recognize and
handle temporary terrain changes, like a dog sitting on the pedestrian’s path
or a random stone in the way, or sudden permanent terrain changes like a
road block.

5. If considerable discrepancies are found in the terrain, the person is alerted to
find possible alternate route like “Stop and Move 3 feet to your right” and a
match for the known pattern in the cloud is checked for. If a match is found,
the pedestrian is guided along that path.

6. If some permanent blocks are identified by the shirt mounted device, the
cloud is notified about this so that the cloud can flag the terrain data of that
pedestrian path as obsolete and can schedule a re-mapping of the terrain
phase. An alternate route is found for the pedestrian and the pedestrian is
guided accordingly.

Re-mapping of the terrain based on comparative walk-thru and terrain database
phase consists of re-mapping of a pedestrian path either if the current data is
flagged as obsolete by the pedestrian guidance phase, or a scheduled re-mapping
process or on-need basis.

Figure 8.
Lumigrids formed by the shirt mounted unit of a pedestrian in the guidance phase.

Figure 9.
Visualization of the terrain grid of a pedestrian path formed by the data.
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In the above image, the required lengths between the skewed line segments are
calculated.
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by y% due to a skewed terrain. Let “d2” be the ratio of the absolute value of
the vertical height on the ground indicated by the corresponding lumigrids to
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the absolute height “h” with reference to ideal flat surface of the ground is
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. Axiom 5 decides if h is positive or negative. h

is positive for concave terrain and negative for convex terrain. If y = 100%,
theoretically there could be a narrow pit or hill in the ground, as indicated by
the non-visibility of the lumigrids.

12. To exactly identify if the terrain at a given position is concave or convex in
nature, we observe the inter line segment distance i of the terrain. If
i = x

n ! flat surface, if i > x
n ! concave surface, if i < x

n ! convex surface.

13. After calculating the terrain information of the given sub-square, the process
is repeated to all the sub-squares so that the entire pedestrian path is scanned
for its terrain details and mapped. The data thus obtained is pushed to the
cloud.

The cloud now has precise information of the terrain. The pedestrian guidance
phase consists of the following steps:

1. When the pedestrian wishes to navigate, the pedestrian’s smart phone
requests a route from source to destination. A GIS map is consulted to obtain
various routes from the source to the destination. The data from the cloud has
precise information about the terrain of each of the pedestrian paths
presented in all these routes. An optimum route is selected based on the
variations in the terrain in that route, pedestrian traffic density in the route,
the route with easy help in case of danger or need and various other
parameters which govern the safety of the pedestrian are considered.

2. The smart phone guides the pedestrian along this route in the pedestrian
path. All major terrain variations in the pedestrian path are alerted to the
pedestrian.

3. The shirt mounted unit on the pedestrian flashes the lumigrids on the path
ahead and the camera embedded on the unit captures the image of the

Figure 7.
Lumigrids formed over a pit.
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lumigrids formed and transmits this image to the smart phone of the
pedestrian (Figure 8).

4. The terrain information obtained from the lumigrids are cross checked at real
time with the terrain information available in the cloud to recognize and
handle temporary terrain changes, like a dog sitting on the pedestrian’s path
or a random stone in the way, or sudden permanent terrain changes like a
road block.

5. If considerable discrepancies are found in the terrain, the person is alerted to
find possible alternate route like “Stop and Move 3 feet to your right” and a
match for the known pattern in the cloud is checked for. If a match is found,
the pedestrian is guided along that path.

6. If some permanent blocks are identified by the shirt mounted device, the
cloud is notified about this so that the cloud can flag the terrain data of that
pedestrian path as obsolete and can schedule a re-mapping of the terrain
phase. An alternate route is found for the pedestrian and the pedestrian is
guided accordingly.

Re-mapping of the terrain based on comparative walk-thru and terrain database
phase consists of re-mapping of a pedestrian path either if the current data is
flagged as obsolete by the pedestrian guidance phase, or a scheduled re-mapping
process or on-need basis.

Figure 8.
Lumigrids formed by the shirt mounted unit of a pedestrian in the guidance phase.

Figure 9.
Visualization of the terrain grid of a pedestrian path formed by the data.
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The data on the cloud contains the terrain information of the pedestrian path
capable of generating a terrain grid along with its GPS coordinates.

The visualization of the data represented as a terrain grid available on the cloud
for a pedestrian path looks like Figure 9.

1. A sample data from the cloud is as follows

1. When the pedestrian wants to navigate, he first initiates a session with the
cloud server which is a onetime activity for every navigation session.

2. The smart phone application now starts streaming the terrain data from the
cloud shown above which is the reference data of the pedestrian path.

3. The system guides the person to follow the route and alerts on any terrain-
related danger. For instance, when the pedestrian is in (20, 33). The interface
alerts the pedestrian that there is a pit right in front of him ((20, 30), (20, 31)
as indicated by a negative high value) and identifies that nearby terrain that is
tolerable to walk and guides the pedestrian accordingly.

4. The lumigrids on the shirt scans the terrain ahead of the person and checks
if there is an acceptable match with the reference data on cloud. If there is
any discrepancy in the data obtained by the shirt and the cloud, the person
is requested to take some alternative like a slight lateral movement and
again a match is checked for. If the person is not able to get any help or no
match is found, the server looks for alternative routes and guides the
person. For instance, let the person be in (21, 30). According to the cloud
data, there should be a high wall in front of him, but the shirt mounted
unit scans and finds that there is no wall now and the terrain is optimum to
walk. It flags all these data in the cloud as dirty by setting the Dirty Bit as
follows:

GPS Ver. h a Dirty bit

(20, 30) 1 +20 �3 0

(20, 31) 1 +20 �7 0

(20, 32) 1 +20 �10 0

(20, 33) 1 +20 �10 0

(21, 30) 1 +2 0 0

(21, 31) 1 +2 +1 0

(21, 32) 1 +3 0 0

(21, 33) 1 0 �2 0

(20, 30) 1 �8 0 0

(20, 31) 1 �8 0 0

(20, 32) 1 +2 0 0

(20, 33) 1 +2 0 0

GPS, the coordinates of the GPS location; Ver., the version number of the data; h, the height of the terrain; a, the
inclination of the terrain; dirty bit, specifies if the data is obsolete
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Accordingly the cloud decides if it needs to schedule a re-mapping phase for that
terrain or to accept the information shared by the pedestrian shirt.

After the re-map, following is the data in the cloud:

5.4 Summary

This section proposes a conceptual framework which fills the major gaps exist in
the design of technological navigation aids and explains the software architecture,
hardware and wearable devices requirements and the theoretical models necessary
for building an infrastructure to seamlessly gather the terrain-related information
of the pedestrian path and use this information to guide the pedestrians to navigate
properly.

6. Conclusions

In this chapter, we outlined various aspects of wearable technology and its
implementation in a wide range of applications, starting with healthcare, continued
with other domains and concludes with the integration of wearables to navigation
and safety systems. Wearables technology is still at its development and growing
stage. We expect wearables to continue its fast growth and be implemented in
much more domains, transforming our life to be much more convenient, safe
and automated.

GPS Ver. h a Dirty bit

(20, 30) 2 +0 0 0

(20, 31) 2 +2 0 0

(20, 32) 2 +0 0 0

(20, 33) 2 +2 0 0

GPS Ver. h a Dirty bit

(20, 30) 1 +20 �3 1

(20, 31) 1 +20 �7 1

(20, 32) 1 +20 �10 1

(20, 33) 1 +20 �10 1
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The data on the cloud contains the terrain information of the pedestrian path
capable of generating a terrain grid along with its GPS coordinates.

The visualization of the data represented as a terrain grid available on the cloud
for a pedestrian path looks like Figure 9.

1. A sample data from the cloud is as follows

1. When the pedestrian wants to navigate, he first initiates a session with the
cloud server which is a onetime activity for every navigation session.

2. The smart phone application now starts streaming the terrain data from the
cloud shown above which is the reference data of the pedestrian path.

3. The system guides the person to follow the route and alerts on any terrain-
related danger. For instance, when the pedestrian is in (20, 33). The interface
alerts the pedestrian that there is a pit right in front of him ((20, 30), (20, 31)
as indicated by a negative high value) and identifies that nearby terrain that is
tolerable to walk and guides the pedestrian accordingly.

4. The lumigrids on the shirt scans the terrain ahead of the person and checks
if there is an acceptable match with the reference data on cloud. If there is
any discrepancy in the data obtained by the shirt and the cloud, the person
is requested to take some alternative like a slight lateral movement and
again a match is checked for. If the person is not able to get any help or no
match is found, the server looks for alternative routes and guides the
person. For instance, let the person be in (21, 30). According to the cloud
data, there should be a high wall in front of him, but the shirt mounted
unit scans and finds that there is no wall now and the terrain is optimum to
walk. It flags all these data in the cloud as dirty by setting the Dirty Bit as
follows:
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GPS, the coordinates of the GPS location; Ver., the version number of the data; h, the height of the terrain; a, the
inclination of the terrain; dirty bit, specifies if the data is obsolete
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Accordingly the cloud decides if it needs to schedule a re-mapping phase for that
terrain or to accept the information shared by the pedestrian shirt.

After the re-map, following is the data in the cloud:

5.4 Summary

This section proposes a conceptual framework which fills the major gaps exist in
the design of technological navigation aids and explains the software architecture,
hardware and wearable devices requirements and the theoretical models necessary
for building an infrastructure to seamlessly gather the terrain-related information
of the pedestrian path and use this information to guide the pedestrians to navigate
properly.

6. Conclusions

In this chapter, we outlined various aspects of wearable technology and its
implementation in a wide range of applications, starting with healthcare, continued
with other domains and concludes with the integration of wearables to navigation
and safety systems. Wearables technology is still at its development and growing
stage. We expect wearables to continue its fast growth and be implemented in
much more domains, transforming our life to be much more convenient, safe
and automated.
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