Deep Crustal Seismic Reflection Profiling: Australia 1978-2015

- B.L.N. Kennett (Research School of Earth Sciences, The Australian National University)
- E. Saygin (Centre for Energy Geoscience, School of Earth and Environment, University of Western Australia)
- T. Fomin and R. Blewett (Geoscience Australia)

Australian Government

Geoscience Australia

Published by ANU Press and Commonwealth of Australia (Geoscience Australia), Canberra, Australia

This title is also available on-line at http://press.anu.edu.au

Address for correspondence: ANU Press The Australian National University Acton ACT 2601 Australia Email: anupress@anu.edu.au

National Library of Australia Cataloguing-in-Publication entry

Creator: Kennett, B. L. N. (Brian Leslie Norman), 1948- author

Title Deep crustal seismic reflection profiling : Australia1978-2015 / B.L.N. Kennett, E. Saygin, T. Fomin, R. Blewett.

Edition: Second edition

ISBN: 9781760460846 (paperback) 9781760460853 (ebook)

Subjects: Seismology--Australia. Seismic waves. Seismic tomography.

Other Creators/Contributors: Saygin, E., author. Fomin, T., author. Blewett, Richard, author.

Dewey Number 551.220994

This edition © ANU Press and Commonwealth of Australia (Geoscience Australia) 2016

First edition 2013: Deep crustal seismic reflection profiling: Australia1978-2011 Second edition 2016: Deep crustal seismic reflection profiling: Australia1978-2015

Department of Industry, Innovation and Science Minister for Resources and Northern Australia: Senator the Hon Matt Canavan

Secretary: Glenys Beauchamp

Geoscience Australia Chief Executive Officer: Dr Chris Pigram

This work is published with the permission of the CEO, Geoscience Australia

With the exception of the Commonwealth Coat of Arms and where otherwise noted, all material in this publication is provided under a Creative Commons Attribution 4.0 International Licence (<u>http://www.creativecommons.org/licenses/by/4.0</u>)

Geoscience Australia has tried to make the information in this product as accurate as possible. However, it does not guarantee that the information is totally accurate or complete. Therefore, you should not solely rely on this information when making a commercial decision.

eCat# 101000

Citation:

Kennett B.L.N., Saygin E., Fomin T. and Blewett R. 2016. Deep Crustal Seismic Reflection Profiling: Australia, 1978-2015 ANU Press and Geoscience Australia, Canberra

Cover design by ANU Press

Text and plate layout by Brian Kennett

Foreword

This atlas of reflection profiles penetrating the whole crust, with accompanying geological maps, represents a collaboration between the Research School of Earth Sciences at The Australian National University and Geoscience Australia. The reflection atlas project arose from work on the Australian Seismological Reference Model (AuSREM) sponsored by the National Infrastructure program of AuScope and the Australian National University.

This second edition brings the collection to 2015, with 4,000 km of additional reflection profiles compared with the first version. In all the profiles cover more than 16,000 km of coverage across the Australian continent and provide an insight into the variations in crustal architecture in the varied geological domains. A number of the recent profiles provide coverage in areas that have not been previously studied such as the Nullarbor Plain and the region to the south of Mount Isa.

Each reflection profile is presented at approximately true scale with up to 220 km of profile per page and overlap between pages, with a geological strip map and line configuration. The profiles are organised by region. The material prepared for the first edition for the period 1978-2011 is presented in the same form as before in Part I. The more recent profiles from 2012-2015 are included in Part II with the same mode of display.

In addition in Part III, groups of major reflection profiles have been assembled into continuous transects of 1000 km, or more, that link across major geological provinces and provide an insight into the structure and evolution of the Australian continent.

The set of digital data that is represented in these pages is progressively being made available from the Geoscience Australia website from:

http://www.ga.gov.au/about/projects/minerals/current/seismic

The data are organised by project with the reference numbers as included on the seismic sections (see Appendix B for Geocat reference numbers).

For continuity with the first edition the geological mapping has been derived from the Surface Geology of Australia data package 2010 edition prepared by Geoscience Australia.

The reflection results are keyed to relevant reports mostly from Geoscience Australia resources, obtainable from: http://www.ga.gov.au/products-services/legacy-publications.html

There is also a chronological bibliography for published papers.

The authors would like to thank all the past and present members of the seismic reflection processing group at Geoscience Australia for their efforts in rendering the seismic data into well-balanced sections.

Contents

Introduction	1	Part II: Reflection Profiling 2012-2015
Reflection Displays	2	Geographic Groups for Full-crustal Reflect
Stacking and Migration	3	Western Australia
Legend for Geological maps	4	Index of Profiles
Part I: Reflection Profiling 1978-2011		Eucla-Gawler Profile
Geographic Groups for Full-crustal Reflection Profiles	5	South Australia and New South Wales
Northern Queensland Region	6	Index of Profiles
Index of Profiles	7	Northern Queensland
Southern Queensland Region	26	Index of Profiles
Index of Profiles	27	Part III: Reflection Transects
South Australia and New South Wales	43	Reflection Transects
Index of Profiles	44	Part IV: References and Appendices
South Australia, Victoria and Tasmania	66	Reports on reflection profiling
Index of Profiles	69	Papers on interpretation of profiles
Central Australia	97	Appendix A: Processing Steps and Scripts
Index of Profiles	98	Appendix B: Line Summary
Western Australia	117	
Index of Profiles	119	
Early Experimental Profiles: 1976-1979	148	

tion Profiles

- 153
 155
 157
 168
 175
 175
 178
 180
 191
 205
 209
 215
- 218

Introduction

This collection of crustal reflection profiles has been created from the archives maintained by Geoscience Australia and includes all significant profiles for which the recording interval includes reflections from the whole crust. The objective is to provide access to an overview of crustal architecture across the continent, as a contribution to the delineation of the structure and evolution of the Australian continent. The reflection sections are presented as far as possible on the same horizontal and vertical scale and are accompanied by a geological strip map showing the configuration of the profile and its relation to other nearby lines.

The UNCOVER initiative launched by the then Minister for Resources and Energy, the Hon. Martin Ferguson, at the International Geological Congress in Brisbane in August 2012 identifies improved information on the subsurface as a prerequisite for extending exploration in Australia from regions of exposure into those with sedimentary cover. The seismic reflection profiles cover many different environments, and provide an insight into many areas with little surface rock.

The Bureau of Mineral Resources started experimental seismic reflection probing in the late 1950's with short lines, and this work was expanded through the 1960's to 1980's (Moss & Dooley, 1988), with major profiling undertaken in southern Queensland (Finlayson, 1990). Digital recording was introduced in 1976 and we present sections going back to the earliest phase of such recording. Until 1998 the reflection acquisition was undertaken using explosive sources in shotholes, using up to 120 channel acquisition systems yielding typically 6- or 12fold data. In consequence the suppression of noise was limited, and although some sections have very good results, others are of lower quality.

In 1997 the Australian National Seismic Imaging Resource (ANSIR) was established as a Major National Research Facility, and purchased four 60,000lb vibrator trucks, which have subsequently been used in a wide range of geological environments. Recording spreads were expanded to 240 channels, and the much closer spacing of vibrator points meant that 60-fold cover could be achieved. Recently even more channels have been used, and 75-fold cover has been achieved. Terrex Seismic acted as manager of the reflection facility on behalf of ANSIR up to 2007, and since then as the primary contractor employed for deep crustal work.

The various reflection lines in this compilation have been undertaken by, or on behalf, of Geoscience Australia (and its predecessors) in association with State and Territory partners. A major boost came with the Australian Government's Onshore Energy Security Program in 2006-2011, with additional support in 2007-2011 from the AuScope research infrastructure program, that led to a further 6.500 km. Since 2012 investment from State Governments has enabled more than 4000 km of additional profiling. In all, over 16,000 km of reflection profiles penetrating the full crust have been collected under these programs.

All of the full-crustal reflection lines are included in this compilation, presented on uniform scales with accompanying geological strip map and representation of the geometry of the profile. As will be seen, there are substantial variations in crustal architecture and reflectivity, even along individual profiles. We have chosen to present the reflection sections without superimposed interpretation, so that such variations can be clearly seen and major features can be directly visualised. We provide references to the reports on the acquisition of the individual profiles and to the many papers that have been published on interpretations of particular reflection campaigns.

The crustal reflection sections have proved to be of considerable value in recent compilations of Moho structure in Australia (Kennett et al., 2011; Salmon et al., 2012), when used in combination with data from refraction and receiver function studies. The extensive geographic coverage provides valuable constraints on the thickness of the crust in many regions without other forms of control. The base of the crust is by no means smooth and reflection profiling has revealed a number of localised jumps in the depth to the Moho in different areas and geological environments.

References

- Finlayson, D.M., (Compiler and Editor), 1990. The Eromanga. Brisbane Geoscience Transect: a guide to basin development across Phanerozoic Australia in southern Queensland. Bureau of Mineral Resources, Australia Bulletin 232.
- Kennett, B.L.N., Salmon, M., Saygin, E. & AusMoho Working Group, 2011. AusMoho: the variation in Moho depth in Australia, Geophys. J. Int., 187, 946-958.
- Moss, F.J. & Dooley J.C., 1988. Deep crustal reflection recordings in Australia 1957-1973 I Data acquisition and presentation, Geophys. J.R. Astr. Soc., 93, 229-237
- Salmon, M., Kennett, B.L.N., Stern, T. & Aitken, A.R.A. 2012. The Moho in Australia and New Zealand, *Tectonophys*, doi: 10.1016/j.tecto.2012.07.009.

Reflection Displays

The reflection sections have been prepared from SEG-Y digital files from the Geoscience Australia archives. As far as possible we have used migrated record sections so that the positioning of reflectivity is as accurate as the 2-D assumptions inherent in line processing will allow. Much of the older data collected with explosives has not been migrated, and here we use the stacked traces.

The reflection sections have been prepared using the Python script detailed in the Appendix, using the facilities of Seismic Un*x (Center for Wave Propagation, Colorado School of Mines) and Generic Mapping Tools (GMT - Wessel & Smith, 1998).

Each panel of up to 220 km of reflection section is displayed on a uniform horizontal and vertical (time) scale using similar display parameters based on a combination of trace biasing and clipping. The display parameters used for the sections have been chosen to give a representation in which the character of the reflectivity is clear and the sections are not too dark so that detail can be discerned. A very slight time gain has been applied ($t^{0.05}$) to slightly enhance the deeper part of the section. In a few cases, particularly for older data where only a set of stacked traces was available, some significant tuning of the display has proved necessary to achieve a satisfactory result.

Up to 220 km of reflection profile are displayed on a single panel, with a generous overlap between the segments of longer profiles to provide continuity of view. The sections are displayed at approximately V:H 1 to 1 scale, based on an r.m.s. crustal velocity of 6 km/s. The reflection panels are annotated with two-way reflection time on the left (to 20 s) and the approximate depth conversion on the right (to 60 km). Each reflection section is accompanied by a map strip following the profile segment with Common Depth Point (CDP) numbers superimposed on geological information from the national 1:1M digital compilation (Raymond, 2012) displayed at 1:600,000 scale when printed on an A3 sheet. The grid interval is 0.5 degrees in latitude and longitude. The reflection sections are presented without any superimposed interpretation. The approximate position of crossing lines are indicated by markers.

The reflection results are grouped by six geographic regions and then displayed in related groups. Reflection profiles acquired prior to 1998 used explosive sources with limited fold so that noise suppression is uneven, and in many cases only stacked traces are available. Nevertheless these older sections still provide valuable information for many parts of the country. From 1999 (Survey L148) the reflection data were acquired using vibrator sources with much higher fold of cover, so that the signal is enhanced. The extensive reflection work since the establishment of ANSIR means that modern data are available for many parts of the continent.

Each reflection panel is accompanied by summary information on the acquisition parameters employed, with a link to more detailed information on the survey and interpretation. The sections are annotated as *Migrated* or *Stacked* in the lower display panel. An example panel with the various elements marked is shown below.

References

- Raymond, O.L., 2012. Surface Geology of Australia (1:1M scale dataset) A3 map. Geoscience Australia, Canberra.
- Wessel, P. & Smith, W.H.F., 1998. New, improved version of the Generic Mapping Tools Released, EOS Trans. AGU, 79, 579.

Example panel

Stacking and Migration

Common Depth Point (CDP) Stacking

Seismic lines follow the available access routes and hence frequently are by no means as straight as desirable. The processing is therefore based on a line of section that smooths out the variations in the line. This CDP line is a curve of best fit through the midpoints between sources and receivers, which optimises the fold of the data while minimising the subsurface area of reflections contributing to each nominal CDP. Each trace (source-receiver pair) is allocated to the nearest CDP bin to its midpoint. Typically the CDP points are at 20 or 40 metre intervals along the line.

The relation of the CDP line to the actual configuration of the original line of stations is indicated in the figure for the case of a sharp bend in the line, as e.g. when following a set of fences.

The effect of the bin size and midpoint scatter within the bin is most critical at shallow depths. Where the line has sharp bends as in the figure, there is likely to be smearing and poor resolution of shallow data. The effect of bends on deeper data can also be significant, depending of the relative directions of the seismic line and the dip of the structures to be imaged. The data in each gather are stacked together with corrections for the vertical variations in velocity, and for more recent sections with corrections for dip at depth. This produces a single stacked trace as a function of two-way time for each CDP point.

The CDP lines are processed as if they were straight, ignoring the effects of changing azimuth along the line. This simplification of the processing to a 2D geometry at the start of the processing sequence is reasonable for large sections

of the line that are relatively straight, although, it is not possible to correctly migrate reflections and, therefore, correctly image reflectors at significant bends in the line.

Post stack time migration

Migration is the final processing step and attempts to move dipping reflections to their most likely lateral positions based on an assumed velocity distribution. Reflectors that appear as dipping on a stacked section will be moved up dip, and shortened after migration. Diffraction hyperbolas which result from discontinuities, such as terminations of reflectors at faults, and which are visible on a stacked section, should collapse to a small region after migration.

The migration process is applied to the stacked record section for a line and brings together information from many CDP traces to build up the response at an individual time point. The resulting time-migrated trace is plotted for each CDP point.

Areas of poor signal to noise ratio, and sharp bends in the line, can produce artefacts in the data, which will not migrate successfully. 2-D migration is only fully-effective on a dip-section, and does not move reflections lying along strike. This can cause complications in lines with sharp bends.

The main parameters that need to be selected when performing post-stack time migration are the velocity field and dip ranges to process. The velocity field is normally derived from the stacking velocities, typically 70-80% of these velocities. This choice tends to minimise the complexities associated with interferences due to mild 3-D structure.

Depth conversion

An approximate depth conversion is plotted to the right of each of the display panels based on a conversion for an r.m.s. crustal velocity of 6 km/s. It should be noted that apparent depth will tend to be exaggerated for the shallow sedimentary parts of the section where the seismic velocity is much lower, and might be underestimated for large two-way times.

Legend for 1:1 000 000 and 1:2 500 000 Surface Geology

CENOZOIC UNITS (mainly unconsolidated deposits)

Note: Geological units which span multiple time periods have symbols showing the oldest and youngest time periods. e.g. Cambrian to Ordovician sedimentary rocks = -COs; Paleoproterozoic to Mesoproterozoic high grade metamorphics = LMn

METAMORPHIC ROCKS

Part I

Reflection Profiling 1978-2011

Geographic Regions for Full-crustal Reflection Profiles

The set of six regional groups are outlined with reference to the page for the key diagram for the profiles.

NORTHERN QUEENSLAND REGION 1978-2011

Profiles are identified by 2 digit year and line designator

INDEX OF PROFILES: NORTHERN QUEENSLAND 1978-2011

On the display panels the reflection lines are identified by year, project identifier and line designator. The table below presents the full list of the lines and the codes used in Geoscience Australia reports, together with the nature of the display and the bias and clip parameters used to display the sections using the *pssegy* facility.

Year	Project	GA Line Code	Line Designator	Display:	Bias	Clip	Page
1976	L108 *	BMR76-01	01	Stack	1.825	75	149
		BMR76-02	02	Stack	1.825	75	149
1989	L129	BMR89-B1A	B1A	Stack	1.825	75	24
		BMR89-B1B	B1B	Stack	1.825	75	24
		BMR89-B2	B2	Stack	1.825	75	25
		BMR89-B3	B3	Stack	1.825	75	25
1994	L138	94MTI-01	MTI1	Migrated	1.47	85	8-9
		94MTI-02	MTI2	Migrated	1.47	85	9
2006	L180	06GA-M1	M1	Migrated	1.47	85	10
		06GA-M2	M2	Migrated	1.47	85	10
		06GA-M3	M3	Migrated	1.47	85	11
		06GA-M4	M4	Migrated	1.47	85	12
		06GA-M5	M5	Migrated	1.47	85	13
		06GA-M6	M6	Migrated	1.47	85	14-15
2007	L184	07GA-IG1	IG1	Migrated	1.47	85	16-17
		07GA-IG2	IG2	Migrated	1.47	85	18-19
2007	L185	07GA-GC1	GC1	Migrated	1.47	85	20-22
2007	L186	07GA-A1	A1	Migrated	1.47	85	23

* see Early Experimental Profiles

~200 km

Migrated Section	Source:	Explosives, 240 m interval
	Spread:	120 channel, 40 m group interval
	Fold:	10 nominal

Survey Details: GA-L138

~100 km

V/H ~ 1

2008 L180 M1 M2

NORTHERN QUEENSLAND

Migrated Section	Source:	3 Hemi-60 Vibrators, 80 m interval	Survey Deta
	Spread:	240 channels, 40 m group interval	
	Fold:	60 nominal	

CDP

	70	00 80	90	00 100	000
0	-				
2					
Δ	-				-
	_				
<u>ග</u> 6					
Ð	-				-
8 <u></u>					
۲ ل	-				-
rg 10					
$\frac{1}{2}$	-				-
,≥ ¹ 2					
	-				
14	_				
16					
	-				-
18					
	-				
20					

Migrated Section	Source: Spread:	3 Hemi-60 Vibrators, 80 m interval 240 channels, 40 m group interval	Survey D
	Fold:	60 nominal	

Geoscience Australia Geological Survey of Queensland

11

L180

12

NORTHERN QUEENSLAND Southern Mt Isa Inlier

Geoscience Australia Geological Survey of Queensland

2006 L180 M6 - Panel 1

NORTHERN QUEENSLAND Southern Mt Isa Inlier

Geological Survey of Queensland

2006 L180 M6 - Panel 2

NORTHERN QUEENSLAND Southern Mt Isa Inlier

Geoscience Australia Geological Survey of Queensland

IG1 - Panel 1

16

NORTHERN QUEENSLAND Cloncurry to Georgetown Inlier

2007

IG1 - Panel 2

L184

Geoscience Australia Geological Survey of Queensland

2007 L184 IG2 - Panel 1

NORTHERN QUEENSLAND

2007 L184 IG2 - Panel 2

NORTHERN QUEENSLAND Georgetown Inlier

Geoscience Australia Geological Survey of Queensland

GC1 - Panel 1

NORTHERN QUEENSLAND Georgetown Inlier to Charters Towers

21

2007 L185 GC1 - Panel 3

NORTHERN QUEENSLAND Georgetown Inlier to Charters Towers

Geoscience Australia Geological Survey of Queensland

2007 L186 A1

NORTHERN QUEENSLAND Georgetown Inlier to Mareeba

Geoscience Australia

1989 L129 B1A B1B

24

NORTHERN QUEENSLAND Bowen Basin

Stacked Section	Source:	Explosion, 360 m interval	Survey D
	Spread:	96 channels, 60 m group interval	
	Fold:	8 nominal	

SOUTHERN QUEENSLAND REGION 1978-2011

Profiles are identified by 2 digit year and line designator

INDEX OF PROFILES: SOUTHERN QUEENSLAND 1978-2011

On the display panels the reflection lines are identified by year, project identifier and line designator. The table below presents the full list of the lines and the codes used in Geoscience Australia reports, together with the nature of the display and the bias and clip parameters used to display the sections using the *pssegy* facility.

Year	Project	GA Line Code	Line Designator	Display:	Bias	Clip	Page
1978	L111*	BMR78-01, 02, 03, 06,	78-01, 78-02,78-03,	Stack	1.70	80	150,152
		07, 08	78-06, 78-07, 78-08				
1979	L112*	BMR79-04E, 05, 09	79-04E, 79-05, 79-09	Stack	1.70	80	151
1980	L115	BMR80-01	80-01	Stack	1.70	80	28
		BMR80-03	80-03	Stack	1.70	80	35
		BMR80-04	80-04	Stack	1.70	80	35
		BMR80-05	80-05	Stack	1.70	80	39
		BMR80-06	80-06	Stack	1.70	80	36,39
		BMR80-08	80-08	Stack	1.70	80	41
1981	L116	BMR81-7E, 7W	81-07E, 07W	Stack	1.70	80	37
		BMR81-09	81-09	Stack	1.70	80	28,29
		BMR81-10	81-10	Stack	1.70	80	38
		BMR81-12	81-12	Stack	1.70	80	39
1982	L118	BMR82-02	81-02	Stack	1.70	80	36,40
		BMR82-11	82-11	Stack	1.70	80	41
		BMR82-11A	82-11A	Stack	1.70	80	41
		BMR82-13	82-13	Stack	1.70	80	40
1984	L120	BMR84-14	84-14	Stack	1.72	80	29-33
		BMR84-16	84-16	Stack	1.70	80	34
1986	L123	BMR86-15	86-15	Stack	1.70	80	34
		BMR86-17	86-17	Stack	1.70	80	34
		BMR86-18	86-18	Stack	1.70	80	42
		BMR86-19	86-19	Stack	1.70	80	42

*see Early Experimental Profiles

1980 L115 80-01 1981 L116 81-09

Stacked Section	Source:	Explosives, 333 m interval	Surve
	Spread:	48 Channels, 83.33 m group interval	
	Fold:	6 nominal	

Geoscience Australia

CDP

1984 L120 84-14 Panel 1

SOUTHERN QUEENSLAND Eromanga-Brisbane Transect

Geoscience Australia

Geoscience Australia

1984 L120 84-14 Panel 3

SOUTHERN QUEENSLAND

SOUTHERN QUEENSLAND Eromanga-Brisbane Transect

1984

L120

84-14 Panel 4

1984 L120 84-16

SOUTHERN QUEENSLAND

Stacked Section	Source:	Explosives, interval 333 m - L120, 360 m - L123	S
	Spread:	L120 - 48 channels, 83.33 m group interval Fold: 6 nominal	
	Fold:	L123 - 96 channels, 60.00 m group interval Fold: 8 nominal	

SOUTHERN QUEENSLAND Central Eromanga Basin

SOUTHERN QUEENSLAND Central Eromanga Basin

1981

L116

81-07W 81-07E

Stacked SectionSource:Explosives, 333 m intervalSpread:48 Channels, 83.33 m group intervalFold:6 nominal	Survey L
--	----------

1981 L116 81-10

SOUTHERN QUEENSLAND

1980 L115 80-05,06 SOUTHERN QUEENSLAND 1981 L116 81-12 Central Eromanga Basin

Geoscience Australia

1982 L118 82-02 82-13

SOUTHERN QUEENSLAND Central Eromanga Basin

25 Ş

SOUTHERN QUEENSLAND Central Eromanga Basin

Geoscience Australia

41

Approx. Depth [km]

54 60 V/H ~ 1 Survey Details: GA-L115 GA-L118

1986 L123 86-18 86-19

42

SOUTHERN QUEENSLAND Eromanga-Brisbane Transect

Stacked Section	Source:	Explosives, 360 m interval	Survey Deta
	Spread:	96 Channels, 60 m group interval	
	Fold:	8 nominal	

Profiles are identified by 2 digit year and line designator

INDEX OF PROFILES: SOUTH AUSTRALIA – NEW SOUTH WALES 1978-2011

On the display panels the reflection lines are identified by year, project identifier and line designator. The table below presents the full list of the lines and the codes used in Geoscience Australia reports, together with the nature of the display and the bias and clip parameters used to display the sections using the *pssegy* facility.

Year	Project	GA Line Code	Line Designator	Display:	Bias	Clip	Page
1989	L130	BMR89-C01	C01	Stack	1.65	80	45
		BMR89-C02	C02	Stack	1.65	80	45
		BMR89-C03A-C	C03A, C03B, C03C	Stack	1.65	80	45
1991	L131	BMR91-G01	G01	Stack	1.65	80	46
1996	L141	96AGS-BH1A	BH1A	Migrated	1.50	80	47
1996-7	L141, L143	96AGS-BH1B	BH1B	Migrated	1.80	80	47
1996	L141	96AGS-BH2	BH2	Migrated	1.50	80	48
1996	L141	96AGS-BH3	BH3	Migrated	1.80	80	48
1997	L146	97AGS-EL1	EL1	Stack	1.65	80	49
		97AGS-EL2	EL2	Stack	1.65	80	49
		97AGS-EL3	EL3	Stack	1.65	80	49
1999	L148	99AGS-C1	CB1	Migrated	1.65	80	50
1999	L151	99AGS-L1	L1	Stack	1.65	80	51
		99AGS-L2	L2	Stack	1.65	80	51
		99AGS-L3	L3	Stack	1.65	80	51
2003-4	L163	03GA-OD1	OD1	Migrated	1.50	80	57
		03GA-OD2	OD2	Migrated	1.50	80	58
2003	L164	03GA-CU1	CU1	Migrated	1.50	80	63
2005	L173	05GA-TL1	TL1	Migrated	1.65	80	52
		05GA-TL2	TL2	Migrated	1.65	80	53
		05GA-TL3	TL3	Migrated	1.65	80	54
2008/9	L188	08GA-RS1	RS1	Migrated	1.50	80	55
		09GA-RS2	RS2	Migrated	1.50	80	56
2008	L189	08GA-G1	G1	Migrated	1.50	80	59-60
		08GA-A1	A1	Migrated	1.50	80	61
		08GA-C1	C1	Migrated	1.50	80	64-65
2009	L191	09GA-CG1	CG1	Migrated	1.50	80	62

Migrated Section	Source:	Explosives, 360 m interval
	Spread:	96 Channels, 60 m group interval
	Fold:	8 nominal

1991 L131 G01

NEW SOUTH WALES Gunnedah Basin

Migrated Section	Source:	Explosives, 240 m interval	
	Spread:	120 Channels, 40 m group interval	
	Fold:	10 nominal	

Migrated Section	Source:	Explosives, 240 m interval	Survey Deta
	Spread:	120 Channels, 40 m group interval	
	Fold:	10 nominal	

Stacked Section	Source:	Explosives, interval 300 m (EL1), 240 m (EL2,3)
	Spread:	120 Channels, 50 m group interval
	Fold:	10 nominal

1999 L148 CB1

NEW SOUTH WALES Broken Hill Margin

Geoscience Australia NSW DMR

10000
Survey Deta
-

Stacked Section	Source:	3 Hemi-60 Vibrators, 40 m interval	Survey
	Spread:	240 Channels, 40 m group Interval	
	Fold:	120 nominal	

Geoscience Australia

2005 L173 TL1

NEW SOUTH WALES Thomson-Lachlan

Geoscience Australia

Migrated Section	Source:	3 Hemi-60 Vibrators, 80 m interval	Survey Deta
	Spread:	240 Channels, 40 m group interval	
	Fold:	60 nominal	

Migrated Section	Source: Spread:	3 Hemi-60 Vibrators, 80 m interval 240 Channels, 40 m group interval	Sur
	Fold:	60 nominal	

2005 L173 TL3

NEW SOUTH WALES Thomson-Lachlan

Geoscience Australia

CDP

-	60	00 50	40	000
0	-		-	_
2				
4		- · · ·		-
2 6			-	-
<u>ה</u>			-	+
8				
کر 10 ط			-	-
			-	-
<u>×</u> 12				-
14				
16			-	+
10	-		-	-
18				
20	-			

Migrated Section	Source: Spread: Fold:	3 Hemi-60 Vibrators, 80 m interval 240 Channels, 40 m group interval 60 nominal	Survey Deta

NEW SOUTH WALES Rankins Springs

2008/9 L188 RS2

NEW SOUTH WALES

48 54

60 V/H ~ 1

2003 L163 OD1

SOUTH AUSTRALIA Olympic Dam region

Migrated Section	Source: Spread:	3 Hemi-60 Vibrators, 80 m interval 240 Channels, 40 m group interval	Survey Deta
	Fold:	60 nominal	

SOUTH AUSTRALIA Gawler Craton

Geoscience Australia

60

SOUTH AUSTRALIA Gawler Craton

•	30	00 40	00
0	-		-
2			
			-
4			
<u></u> 0 0			-
e e	-		-
8 <u>B</u> .			
<u></u>			-
- 0 12			-
≥ '2	-		-
14			
			-
16			
10			-
10			_
20			

Migrated Section	Source:	3 Hemi-60 Vibrators, 80 m interval	Survey D
	Spread:	300 Channels, 40 m group interval	
	Fold:	75 nominal	

2009 L191 CG1

SOUTH AUSTRALIA Flinders-Curnamona

Geoscience Australia PIRSA

2003-2004 SOUTH AUSTRALIA L164 Geoscience Australia CU1 Curnamona PIRSA pmd*CRC

2008 L189 C1 - Panel 1

SOUTH AUSTRALIA **Curnamona Province**

Geoscience Australia PIRSA

SOUTH AUSTRALIA **Curnamona Province**

Geoscience Australia

60 V/H ~ 1

Approx. Depth [km]

SOUTH AUSTRALIA – VICTORIA 1978-2011

Profiles are identified by 2 digit year and line designator

TASMANIA 1978-2011

Profiles are identified by 2 digit year and line designator

INDEX OF PROFILES: SOUTH AUSTRALIA – VICTORIA - TASMANIA 1978-2011

On the display panels the reflection lines are identified by year, project identifier and line designator. The table below presents the full list of the lines and the codes used in Geoscience Australia reports, together with the nature of the display and the bias and clip parameters used to display the sections using the *pssegy* facility.

Land profiles:

Year	Project	GA Line Code	Line Designator	Display:	Bias	Clip	Page
1992	L135	BMR92-OT1	OT1	Stack	1.75	77	71
		BMR92-OT2	OT2	Stack	1.75	77	71
		BMR92-OT3	OT3	Stack	1.75	77	71
		BMR92-OT4	OT4	Stack	1.75	77	72
		BMR92-OT5	OT5	Stack	1.75	77	72,75
		BMR92-OT6	OT6	Stack	1.75	77	73
		BMR92-OT7	OT7	Stack	1.75	77	73
1995	L139	95AGS-T1	T1	Stack	1.75	77	81
		95AGS-T2	T2	Stack	1.75	77	81
		95AGS-T3	T3	Stack	1.75	77	82
		95AGS-T4	T4	Stack	1.75	77	82
		95AGS-T5	T5	Stack	1.75	77	82
1997	L142	97AGS-V1	V1	Migrated	1.75	77	77
		97AGS-V2	V2	Migrated	1.75	77	77
2006	L178	06GA-V1	VT1	Migrated	1.47	85	78
		06GA-V2	VT2	Migrated	1.50	80	79
		06GA-V3	VT3	Migrated	1.47	85	80
		06GA-V4	VT4	Migrated	1.60	80	80
2009	L193	09GA-SD1	SD1	Migrated	1.47	85	74
		09GA-SD2	SD2	Migrated	1.47	85	75
2009	L194	09GA-AR1	AR1	Migrated	1.47	85	76

Year	Project	GA Line Code	Line Designator	Display:	Bias	Clip	Page
1995	S148	148-01	TS-01	Migrated	1.47	80	83-85
		148-04	TS-04	Migrated	1.47	80	87-88
		148-05	TS-05	Migrated	1.47	80	86-87
		148-06	TS-06	Migrated	1.47	80	89
		148-07	TS-07	Migrated	1.47	80	89
		148-08	TS-08	Migrated	1.47	80	93
		148-09	TS-09	Migrated	1.47	80	92-93
		148-10	TS-10	Migrated	1.47	80	94
		148-11	TS-11	Migrated	1.47	80	94
		148-12	TS-12	Migrated	1.47	80	94
		148-13	TS-13	Migrated	1.47	80	91-92
		148-14	TS-14	Migrated	1.47	80	90-91
		148-15	TS-15	Migrated	1.47	80	95
	S159	159-01	TC-01	Migrated	1.47	80	96

Stacked Section	Source:	Explosives, 300 m interval	Survey
	Spread:	120 Channels, 50 m group interval	
	Fold:	10 nominal	

Source.	\Box γ
Spread:	120 Channels, 50 m group interval
Fold:	10 nominal

L193 SD1

2009 L193 SD2 SOUTH AUSTRALIA - VICTORIA AuScope Geoscience Victoria 1992 L135 OT5 Southern Delamerian

Migrated Section	Source: Spread:	3 Hemi-50 Vibrators, 80 m interval 300 Channels, 40 m group interval	Survey Det
	Fold:	75 nominal	

Migrated Section	Source:	Explosives, 240 m interval	Survey D
	Spread:	120 Channels, 40 m group interval	
	Fold:	10 nominal	

2006 L178 VICTORIA VT1 **Central Victoria**

Stacked Section	Source:	Explosives, 120 m interval	Survey
	Spread:	120 Channels, 40 m group interval	
	Fold:	20 nominal	

Stacked Section	Source:	Explosives, 240 m interval
	Spread:	120 Channels, 40 m group interval
	Fold:	10 nominal

Migrated Section	Source:	Air-guns 3000 cu.in. total, 50 m interval	Survey D
	Spread:	192 Channels, 25 m group interval	
	Fold:	48 nominal	

Geoscience Australia

1995 S148 TS-01 Panel 2

TASMANIA East Tasmania Offshore

Geoscience Australia

Migrated Section	Source:	Air-guns 3000 cu.in. total, 50 m interval	Survey Deta
	Spread:	192 Channels, 25 m group interval	
	Fold:	48 nominal	

1995S148TASMANIAGeoscienceTS-01Panel 3East Tasmania OffshoreGeoscience

Migrated Section	Source:	Air-guns 3000 cu.in. total, 50 m interval	Survey D
	Spread:	192 Channels, 25 m group interval	
	Fold:	48 nominal	

Geoscience Australia

Fold:

48 nominal

Fold: 48 nominal

Migrated Section	Source:	Air-guns 3000 cu.in. total, 50 m interval	Survey Det
	Spread:	192 Channels, 25 m group interval	
	Fold:	48 nominal	

1995 S148 TASMANIA Geoscience Australia 90 TS-14 Panel 1 West Tasmania Offshore

48 nominal

Migrated Section	Source:	Air-guns 3000 cu.in. total, 50 m interval	Survey D
	Spread:	192 Channels, 25 m group interval	
	Fold:	48 nominal	

1995 S148 TASMANIA TS-10 TS-11 TS-12

Geoscience Australia

Migrated Section	Source:	Air-guns 3000 cu.in. total, 50 m interval	Survey Deta
	Spread:	192 Channels, 25 m group interval	
	Fold:	48 nominal	

Migrated Section	Source:	Air-guns 3000 cu.in. total, 50 m interval	Survey Deta
	Spread:	192 Channels, 25 m group interval	
	Fold:	48 nominal	

CENTRAL AUSTRALIA 1978-2011

Profiles are identified by 2 digit year and line designator

INDEX OF PROFILES: CENTRAL AUSTRALIA 1978-2011

On the display panels the reflection lines are identified by year, project identifier and line designator. The table below presents the full list of the lines and the codes used in Geoscience Australia reports, together with the nature of the display and the bias and clip parameters used to display the sections using the *pssegy* facility.

Year	Project	GA Line Code	Line Designator	Display:	Bias	Clip	Page
1985	L121	BMR85-01A	01A	Migrated	1.65	80	99
		BMR85-01B	01B	Migrated	1.65	80	99
		BMR85-02	02	Migrated	1.65	80	100
		BMR85-01C	01C	Stack	*	*	101
		BMR85-01D	01D	Stack	*	*	101
		BMR85-01E	01E	Stack	*	*	101
1993	L137	93AGS-01	01	Stack	1.79	80	102
		93AGS-03	O3	Stack	1.79	80	103
		93AGS-04	O4	Stack	1.79	80	104
		93AGS-05	O5	Stack	1.79	80	105
		93AGS-06	O6	Stack	1.79	80	105
2002	L157	02GA-BT1	BT1	Migrated	1.67	80	106
		02GA-BT2	BT2	Migrated	1.67	80	106
2005	L171	05GA-T1	T1	Migrated	1.60	80	107-108
		05GA-T2	T2	Migrated	1.50	80	109
		05GA-T3	T3	Migrated	1.50	80	110
		05GA-T4	T4	Migrated	1.50	80	111
2008	L190	08GA-OM1	GOMA	Migrated	1.47	80	112-114
2009	L192	09GA-GA1	GA	Migrated	1.47	80	115-116

* Section from archived image, *segy* not available

1985 L121 01A 01B

NORTHERN TERRITORY Amadeus-Arunta Transect

Migrated Section	Source:	Explosives, 333 m interval	Survey [
	Spread:	48 Channels, 83.3 m group interval	
	Fold:	6 nominal	

Geoscience Australia

1985 L121 02

NORTHERN TERRITORY Amadeus-Arunta Transect

Geoscience Australia

		4100	CDP 4600	
	0			
	2			
	4			
[S]	6			
time	8			
way	10			
-0M	12			
F	14			
	16			
	18			
	20			

Migrated Section	Source: Spread: Fold:	Explosives, 333 m interval 48 Channels, 83.3 m group interval 6 nominal	Survey Deta
		o normilar	

NORTHERN TERRITORY Amadeus Basin

Stacked Section	Source:	Explosives, 333 m interval
from Archive Images	Spread:	48 Channels, 83.3 m group interval
	Fold:	6 nominal

Stacked SectionSource:Spread:		Explosives, 240 m interval 120 Channels, 40 m group interval	Survey Deta
	Fold:	10 nominal	Notes: Shal

SOUTH AUSTRALIA Officer Basin

Stacked Section	Source:	Explosives, 240 m interval	Survey Deta
	Spread:	120 Channels, 40 m group interval	
	Fold:	10 nominal	Notes: Shall

2005 L171 T1 - Panel 1

CENTRAL AUSTRALIA Tanami

Migrated Section	Source:	3 Hemi-60 Vibrators, 80 m interval
	Spread:	240 Channels, 40 m group interval
	Fold:	60 nominal

2005 L171 110 Т3

CENTRAL AUSTRALIA Tanami

Geoscience Australia GSWA

NTGS

2005 L171 T4

CENTRAL AUSTRALIA Tanami

		Ľ	,DP		
•	2000 30	000 40	000 5	60	00
0					
2					
	-	-	+		
4					
		-	+	+ -	
0 10					
ů ů	-	-	+	† †	
, ti			_		
ହି <u>10</u>					
<u>}</u>	+	-	+		
S 12					
É .		-	+	+ -	
14					
16	+	-	+	+	
10					
18					
	-	+	+		1
20					.

Migrated Section	Source:	3 Hemi-60 Vibrators, 80 m interval	Survey I
	Spread:	240 Channels, 40 m group interval	
	Fold:	60 nominal	

Geoscience Australia

2008 L190 GOMA - Panel 1

112

CENTRAL AUSTRALIA Gawler-Officer-Musgrave-Amadeus

Geoscience Australia AuScope PIRSA

CENTRAL AUSTRALIA Gawler-Officer-Musgrave-Amadeus

75 nominal

Fold:

GOMA - Panel 3

2009 L192 GA - Panel 1

NORTHERN TERRITORY Georgina-Arunta

2009 L192 GA - Panel 2

116

NORTHERN TERRITORY Georgina-Arunta

WESTERN AUSTRALIA - NORTH 1978-2011

-16°
-18°
-20°
-22°
-24°

-26°

114° **116°** 118° 122° 124° 126° 120° 10-CP3 -26° 10-YU2 01-NY3 -28° 0-YU3 -NY1 255 -30° -EG 91-EGF2/3 -32° -34° 114° 116° 118° 120° 122° 124° 126° 128° Profiles are identified by 2 digit year and line designator

WESTERN AUSTRALIA - SOUTH 1978-2011

128° -24° **-26**° -28° -30° -32° -34°

INDEX OF PROFILES: WESTERN AUSTRALIA 1978-2011

On the display panels the reflection lines are identified by year, project identifier and line designator. The table below presents the full list of the lines and the codes used in Geoscience Australia reports, together with the nature of the display and the bias and clip parameters used to display the sections using the *pssegy* facility.

Year	Project	GA Line Code	Line Designator	Display:	Bias	Clip	Page
1988	L126	BMR88-01A	C1A	Stack	1.72	80	120
		BMR88-01B	C1B	Stack	1.72	80	120-121
		BMR88-01C	C1C	Stack	1.72	80	121,122
		BMR88-01D	C1D	Stack	1.72	80	121,122
		BMR88-02	C2	Stack	1.72	80	123
		BMR88-03	C3	Stack	1.72	80	124
1991	L132	BMR91-EGF01	EGF1	Migrated	1.60	80	125
		BMR91-EGF02	EGF2	Stack	1.70	80	126
		BMR91-EGF03	EGF3	Stack	1.70	80	126
1997	L144	97AGS-HB1	HB1	Stack	1.825	75	127
		97AGS-HB2	HB2	Stack	1.825	75	127
		97AGS-HB3	HB3	Stack	1.825	75	127
		97AGS-SD1	SD1	Stack	1.825	75	128
1999	L150	99AGS-Y1 - 99AGS-Y5	Y1-Y5	Migrated	1.60	80	129,130
2001	L154	01AGS-NY1	NY1	Migrated	1.60	80	131-132,133
		01AGS-NY3	NY3	Migrated	1.60	80	133
2010	L195	10GA-CP1	CP1	Migrated	1.65	80	134
		10GA-CP2	CP2	Migrated	1.65	80	135-136
		10GA-CP3	CP3	Migrated	1.65	80	137
2010	L196	10GA-YU1	YU1	Migrated	1.50	80	140-141
		10GA-YU2	YU2	Migrated	1.50	80	142-143
		10GA-YU3	YU3	Migrated	1.50	80	144
2011	L199	11GA-YOM	YOM	Migrated	1.47	80	145-147
2011	L200	11GA-SC1	SC1	Migrated	1.47	80	138-139

1988 L126

WESTERN AUSTRALIA

Survey Details: GA-L126

~200 km V/H ~ 1

48

54

1988 L126 C1C C1D

122

WESTERN AUSTRALIA Canning Basin

Stacked Section	Source: Spread: Fold:	Explosives, 200 m interval 96 Channels, 50 m group interval 12 nominal	Survey D

1988 L126 C3

124

WESTERN AUSTRALIA Canning Basin

Stacked Section	Source:	Explosives, 200 m interval
	Spread:	96 Channels, 50 m group interval
	Fold:	12 nominal

1991 L132 EGF1

WESTERN AUSTRALIA Yilgarn - Eastern Gold Fields

Geoscience Australia

1991 L132 EGF2 EGF3

126

WESTERN AUSTRALIA Yilgarn - Eastern Gold Fields

Stacked Section	Source:	Explosives, 160 m interval	Survey Deta
	Spread:	96 Channels, 40 m group interval	
	Fold:	12 nominal	

1997 L144 WESTERN AUSTRALIA HB1 HB2 HB3 Hammersley Basin

Stacked Section	Source:	Explosives, 240 m interval	Survey [
	Spread:	120 Channels, 40 m group interval	
	Fold:	8 nominal	

1997 WESTERN AUSTRALIA L144 Geoscience Australia 128 SD1 Hammersley Basin

Stacked Section	Source:	Explosives, 240 m interval	Survey Deta
	Spread:	120 Channels, 40 m group interval	
	Fold:	10 nominal	

1999 L150 Y1 Y2 Y3

WESTERN AUSTRALIA Yilgarn - Eastern Gold Fields

Migrated Section	Source:	3 Hemi-60 Vibrators, 80 m interval	Survey D
	Spread:	240 Channels, 40 m group interval	
	Fold:	60 nominal	

1999 L150 Y4 Y5

WESTERN AUSTRALIA Yilgarn - Eastern Gold Fields

Geoscience Australia AGCRC

Migrated Section	Source:	3 Hemi-60 Vibrators, 80 m interval	Survey Deta
	Spread:	240 Channels, 40 m group interval	
	Fold:	60 nominal	

WESTERN AUSTRALIA Leonora - Laverton

Geoscience Australia GSWA pmd*CRC

2001 L154 NY1 - Panel 2

132

WESTERN AUSTRALIA Leonora - Laverton

Geoscience Australia GSWA pmd*CRC

Geoscience Australia GSWA pmd*CRC

WESTERN AUSTRALIA

Approx. Depth [km]
36
42 V/H ~ 1 Survey Details: GA-L195

WESTERN AUSTRALIA Capricorn Orogen

2010 L195 CP2 - Panel 2

136

WESTERN AUSTRALIA Capricorn Orogen

AuScope GSWA Geoscience Australia

2010 L195 CP3

WESTERN AUSTRALIA Capricorn Orogen

CDP

Migrated Section	Source:	3 Hemi-60 vibrators, 80 m interval	Survey
	Spread:	300 Channels, 40 m group interval	
	Fold:	75 nominal	

Geoscience Australia

2010 L196 YU2 - Panel 1

142

WESTERN AUSTRALIA Youanmi

GSWA Geoscienc

Geoscience Australia

WESTERN AUSTRALIA Youanmi

2011 L199 YOM - Panel 1

WESTERN AUSTRALIA Yilgarn-Officer-Musgrave

2011 L199 YOM - Panel 2

146

WESTERN AUSTRALIA Yilgarn-Officer-Musgrave

WESTERN AUSTRALIA Yilgarn-Officer-Musgrave

EARLY EXPERIMENTAL PROFILES: 1976-1979

Northern Queensland

Year	Project	GA Line Code	Line Designator	Display:	Bias	Clip	Page
1976	L108	BMR76-01	76-01	Stack	1.825	75	149
		BMR76-03	76-03	Stack	1.825	75	149

Southern Queensland

Year	Project	GA Line Code	Line Designator	Display:	Bias	Clip	Page
1978	L111	BMR78-01	78-01	Stack	1.70	80	150
		BMR78-02	78-02	Stack	1.70	80	150
		BMR78-03	78-03	Stack	1.70	80	150
		BMR78-06	78-06	Stack	1.70	80	152
		BMR78-07	78-07	Stack	1.70	80	152
		BMR78-08	78-08	Stack	1.70	80	152
1979	L112	BMR79-04E	79-04E	Stack	1.70	80	151
		BMR79-05	79-05	Stack	1.70	80	151
		BMR79-09	79-09	Stack	1.70	80	151

		Unominal	110103. 07
	Fold	6 nominal	Notes: ex
	Spread:	24 channels, 83.3 m group interval	
Stacked Section	Source:	Explosions, 166.7 m interval	Survey D

SOUTHERN QUEENSLAND Denison Trough

CDP

1979 SOUTHERN QUEENSLAND L112 79-04E 79-05 79-09 Denison Trough

Stacked Section	Source:	Explosive, 166.6 m interval
	Spread:	48 Channels, 41.66 m group interval
	Fold:	6 nominal

Geoscience Australia

78-06 78-07 78-08

Stacked Section	Source:	Explosive, 166.6 m interval	Survey Det
	Spread:	48 Channels, 41.66 m group interval	
	Fold:	6 nominal	

Part II

Reflection Profiling 2012-2015

Geographic Groups for Full-crustal Reflection Profiles 1978-2015

For the period from 2012-2015 we introduce a new region to encompass the Eucla-Gawler Profile, which runs from Western Australia into South Australia. The set of regional groups are outlined with reference to the page for the key diagram for the profiles conducted in 2012-2015.

Legend for 1:1 000 000 and 1:2 500 000 Surface Geology

CENOZOIC UNITS (mainly unconsolidated deposits)

SEDIMENTARY ROCKS AND LOW-GRADE METAMORPHIC ROCKS **IGNEOUS ROCKS** Volcanic rocks Intrusive rocks Mafic to Felsic to Felsic Felsic Mafic to ultramafic mudstone, siltstone, sandstone, conglomerate (s), Intermediate Mafic Low-medium grade ultramafic mafic limestone (I), coal measures (o), volcanogenic metacarbonate (m), (u). (f). metamorphosed (t), (g), (d), sediments (j), mixed sediments and volcanic (a) (V) metamorphosed (e), siliciclastic (y), metamorphosed (r) mixed intrusives (i) quartz vein (q) metamorphosed (t) rocks (w), chemical sediments (c) alkaline ultrabasic (k) hornfels (h) Cretaceous Ks Ka Jurassic 0 Js Jf Ja S -Rs -Rf Triassic -Ra Rh Pf Pd Permian Ps Pa Pb Cf Ca Carboniferous Cs СЬ Cg Cd Df Devonian Ds DA Da Db Dġ Dd ō St Ss Sd Silurian Sb Sg Sy Of Os Oa Ob Ōġ Od Ordovician Oy -Cy -Cs -Cf -Cb Ca -Cd Cambrian Neoproterozoic 00 Ns NI Na Ng Ny ERO Ma Ms Mb MY Mg Md Mesoproterozoic My Pa PRO La Lf Ls Lg Paleoproterozoic ARCHEAN Ad As Aa Ay

Note: Geological units which span multiple time periods have symbols showing the oldest and youngest time periods. e.g. Cambrian to Ordovician sedimentary rocks = -COs; Paleoproterozoic to Mesoproterozoic high grade metamorphics = LMn

METAMORPHIC ROCKS

High-grade

metamorphics (n), complexes (x)

WESTERN AUSTRALIA - SOUTH 1978-2015

Profiles are identified by 2 digit year and line designator

WESTERN AUSTRALIA - NORTH 1978-2015

Profiles are identified by 2 digit year and line designator

INDEX OF PROFILES: WESTERN AUSTRALIA 2012-2015

On the display panels the reflection lines are identified by year, project identifier and line designator. The table below presents the full list of the lines and the codes used in Geoscience Australia reports, together with the nature of the display and the bias and clip parameters used to display the sections using the *pssegy* facility.

Year	Project	GA Line Code	Line Designator	Display:	Bias	Clip	Page
2012	L201	12GA-AF1	AF1	Migrated	1.47	85	158,160
		12GA-AF2	AF2	Migrated	1.40	85	159,160
		12GA-AF3	AF3	Migrated	1.47	82	161,162
		12GA-T1	T1	Migrated	1.40	85	163
2013/14	L203	13GA-EG1	EG1	Migrated	1.47	82	169-174
2014	L205	14GA-C1	CC1	Pre-stack Time Migration	1.40	80	164-166,167
		1464-02	CC2	Pre-stack Time	1 40	80	167
		1707-02	002	Migration	1.40	00	107

Migrated SectionSource:Spread:Fold:	3 Hemi-50 vibrator, 80 m interval 300 Channels, 40 m group interval 75 nominal	Survey De
-------------------------------------	--	-----------

2012 L201 WESTERN AUSTRALIA GSWA AF2 Albany Fraser

159

2012 L201 AF1 AF2

160

WESTERN AUSTRALIA Albany Fraser

GSWA Geoscience

WESTERN AUSTRALIA Albany Fraser

GSWA Geoscie

2012 L201 T1

WESTERN AUSTRALIA Albany Fraser - Tropicana

AngloGold GSWA

Fold: 150 nominal

EUCLA-GAWLER PROFILE

Year	Project	GA Line Code	Line Designator	Display:	Bias	Clip	Page
2013/4	L203	13GA-EG1	EG1	Migrated	1.47	82	169-174

GSWA GSSA AuScope Geoscience Australia

Spread:	600 Channels, 20 m group interval
Fold:	75 nominal

AuScope Geoscience Australia

AuScope Geoscience Australia

2013-2014 L203 West-Central Australia GSWA GSSA EG1 Panel 6 Eucla-Gawler GOMA

SOUTH AUSTRALIA AND NEW SOUTH WALES 1978-2015

Profiles are identified by 2 digit year and line designator

Year	Project	GA Line Code	Line Designator	Display:	Bias	Clip	Page
2013	L202	13GA-YT1	YT1	Migrated	1.40	80	176
		13GA-YT2	YT2	Migrated	1.40	80	177

Pre-stack Time	Source:	3 Hemi-50 vibrator, 80 m interval	Survey Deta
Migrated Section	Spread:	300 Channels, 40 m group interval	
	Fold:	75 nominal	

YT2

NORTHERN QUEENSLAND 1978-2015

Original Region

Profiles are identified by 2 digit year and line designator

Extended Region: including relation to Southern Queensland profiles

INDEX OF PROFILES: NORTHERN QUEENSLAND 2014-2015

On the display panels the reflection lines are identified by year, project identifier and line designator. The table below presents the full list of the lines and the codes used in Geoscience Australia reports, together with the nature of the display and the bias and clip parameters used to display the sections using the *pssegy* facility.

Year	Project	GA Line Code	Line Designator	Display:	Bias	Clip	Page
2014	L204	14GA-CF1	CF1	Migrated	1.40	80	181-184
2014	L207	14GA-CF2	CF2	Pre-stack Time Migration	1.40	85	185-186
2014/ 2015	L207	14GA-CF3	CF3	Pre-stack Time Migration	1.40	85	187-189

Geoscience Australia

2014 L204 182 CF1 Panel 2

NORTHERN QUEENSLAND SE Mount Isa

GSQ Geoscience Australia

Migrated Section Source: 3 Hemi-60 vibrator, 80 m interval Spread: 600 Channels, 20 m group interval 75 nominal Fold:

2014 L204 CF1 Panel 4

184

NORTHERN QUEENSLAND SE Mount Isa

GSQ

Geoscience Australia

2014 L207 CF2 Panel 1

NORTHERN QUEENSLAND Birdsville-Boulia

Geoscience Australia

GSQ

186 2014 L207 CF2 Panel 2

NORTHERN QUEENSLAND Birdsville-Boulia

GSQ

Geoscience Australia

2014/15L207NORTHERN QUEENSLANDGSQCF3 Panel 1BouliaGeoscience Australia

2014/15L207NORTHERN QUEENSLANDGSQCF3 Panel 3BouliaGeoscience Australia

Part III

Reflection Transects

REFLECTION TRANSECTS

In a number of parts of the continent it is possible to assemble a group of reflection lines that span a broad range of geological structures so that a range of styles of crustal architecture are well displayed. The reflection transect displays have been assembled using the same trace displays that are used for the individual profiles, with joins where appropriate and distinct gaps left where there has been a geographic offset. Segments using explosive sources are indicated in slightly lighter tone. The transect designators refer to the accompanying map on the next page.

To get the large transects onto the same page format, the lines are plotted in approximately 550 km sections with significant overlap between consecutive lines. The distance markers are repeated to make the overlaps clear. The transect plots should be suitable for display at A1 size or larger from the electronic version.

Transects:

Region	Location	Designator	Reflection Lines used	Page
Northern Queensland	Mt. Isa to Charters Towers	NQ-EWT	94-MTI1, 07-IG1, 07-IG2, 07-GC1	193
West-East				
Northern Queensland	Longreach to Georgetown	NQ-NST	14-CF1, 07-IG1, 07-IG2	194
South-North				
South of Mt Isa	Birdsville-Boulia-Longreach	CF-T	14-CF2, 15-CF3, 14-CF1	195
West-East				
Southern Queensland	Eromanga to Brisbane	SQ-T	80-01, 81-09, 84-14, 86-17, 84-16	196
West-East				
South Australia-New South Wales	Gawler to Broken Hill	SN-T	08-G1, 08-A1, 09-CG1, 03-CU1, 96-BH1A,	197
			96-BH1B, 96-BH3	
South Australia-Victoria	Naracoorte to Central Victoria	V-T	09-SD1, 97-V1, 97-V2, 06-VT1, 06-VT2,	198
			06-VT3, 06-VT4	
Central Australia	Gawler-Arunta-Georgina-Tanami	CA-T	08-GOMA, 09-GA, 05-T1	199
South-North				
Eucla-Gawler	Yilgarn-Gawler	EG-T	12-AF3, 13-EG1	200
Western Australia	Pilbara-Kimberley	WA-CCT	14-CC1, 14-CC2	201
Canning Coastal				
Western Australia	Carnavon-Yilgarn-Musgrave	WA-EWT	11-SC1, 10-YU1, 10-YU2, 01-NY1, 11-YOM	202
West-East				
Western Australia	Yilgarn-Capricorn-Pilbara	WA-NST	10-YU1, 10-CP3, 10-CP2, 10-CP1	203
South-North				

REFLECTION TRANSECTS

Eromanga-Brisbane 196

Gawler-Broken Hill

South Australia - Victoria 198

Part IV

References and Appendices

Reports on Reflection Profiling

1968

Smith, E.R. 1968. Discussion on seismic record sections, Ngalia Basin Survey, Northern Territory, 1967-68. Bureau of Mineral Resources, Australia, Record 1968/136.

1969

Tucker, D.H., 1969. Ngalia Basin seismic survey, Northern Territory, 1968, Bureau Mineral Resources, Australia, Record 1969/70.

1970

Brown A.R. 1970. Deep crustal reflection studies, Amadeus Basin, N.T., 1969. Bureau of Mineral Resources, Australia, Record 1970/94.

1972

- Cull, J.P. & Riesz, E. J., 1972. Deep crustal seismic reflection/refraction survey between Clermont and Charters Towers, Queensland, 1971, Bureau of Mineral Resources. Australia. Record 1972/97.
- Taylor, F. J., Moss, F. J. & Branson, J. C., 1972. Deep crustal reflection seismic test survey, Tidbinbilla, ACT and Braidwood, NSW, 1969. Bureau of Mineral Resources, Australia, Record 1972/126.

1973

- Harrison, P.L., 1973. Officer Basin seismic survey, WA, 1972: operational Report. Bureau of Mineral Resources, Australia, Record 1973/62.
- Mathur, S.P. 1973. Crustal structure in southwestern Australia. Bureau of Mineral Resources, Australia, Record 1973/112.

1974

Moss, F.J. & Jones, P., 1974. Ngalia Basin seismic survey, Northern Territory. Bureau of Mineral Resources, Australia, Record 1974/49.

1975

1976

Branson, J.C., Moss, F.J. & Taylor, F.J., 1976. Deep crustal reflection seismic test survey. Mildura, Victoria and Broken Hill, New South Wales, 1968, Bureau of Mineral Resources, Australia, Report 183.

Collins, C.D.N., 1976. Seismic investigations of crustal structure in southeast Australia, Bureau of Mineral Resources, Australia, Record 1976/103.

1977

- Brassil, F. & Anfiloff, W., 1977. Galilee Basin seismic and gravity survey, Queensland, 1976. Bureau of Mineral Resources, Australia, Record 1977/26.
- Mathur, S.P. & Bauer, J.A., 1977. Southwestern Georgina Basin seismic survey, Queensland and Northern Teritory, 1977: preview report. Bureau of Mineral Resources, Australia, Record 1977/25.

Schmidt, D.L., Nelson, A. & Anfiloff, W., 1977. Galilee Basin seismic and gravity survey, Queensland, 1976 - operational report Pentland-Hughenden area. Bureau of Mineral Resources, Record 1977/27, [GA-L108]

1979

Bauer J.A. & Dixon, O. 1979. Denison Trough seismic survey, Queensland: operational report for 1978 survey and proposed program for 1979. Bureau of Mineral Resources, Australia, Record 1979/39. [GA-L111]

1980

Bauer J.A. & Dixon, O. 1980. Denison Trough seismic survey, Queensland, 1979: operational report. Bureau of Mineral Resources, Australia, Record 1980/12. [GA-L111]

1983

Wells, A.T. & Moss, F.J., 1983. The Ngalia Basin, Northern Territory stratigraphy and structure. Bureau of Mineral Resources, Australia, Bulletin 212.

1986

Goleby B.R., Wake-Dyster K.D., Wright C. & Cherry E.D., 1986. Central Australian Seismic Survey NT, 1985, Operational report. Bureau of Mineral Resources, Australia, Record **1986/35.** [GA-L121]

1989

Barton, T., Sexton, M., Lodwick, W. R. & Johnstone, D., 1989. Central Victoria seismic test survey, 1989: operational report. Bureau of Mineral Resources, Australia, Record 1989/52.

- Finlayson, D.M., (Compiler and Editor), 1990. The Eromanga. Brisbane Geoscience Transect: a guide to basin development across Phanerozoic Australia in southern Queensland. Bureau of Mineral Resources, Australia Bulletin 232. [GA-L115,116,118,120,123]
- Finlayson, D.M., 1990. Basin and crustal evolution along the Eromanga. Brisbane Geoscience Transect: precis and analogues. Bureau of Mineral Resources, Australia Bulletin 232, 253-261.
- Finlayson, D.M., Leven, J. H., Wake-Dyster, K. D. & Johnstone, D. W., 1990. A crustal image under the basins of southern Queensland along the Eromanga-Brisbane Geoscience Transect. Bureau of Mineral Resources. Australia Bulletin 232, 153-175.
- Finlayson, D.M., Collins, C.D.N. & Wright, C., 1990. Seismic velocity models of the crust and upper mantle under the basins of southern Queensland. Bureau of Mineral Resources, Australia Bulletin 232, 189-202.
- Korsch, R.J., Wake-Dyster, K.D. & Finlayson, D.M., 1990. Land seismic data acquisition proposal: Gunnedah Basin, New South Wales. Bureau of Mineral Resources, Australia, Record, 1990/93.
- O'Brien, P.E., Korsch, R.J., Wells, A.T., Sexton, M.J. & Wake-Dyster, K.D., 1990. Mesozoic basins at the eastern end of the Eromanga-Brisbane Geoscience Transect: strike-slip faulting and basin development. Bureau of Mineral Resources, Australia, Bulletin, 232, 117-132.
- Taylor, F. J., 1990. Index of BMR seismic surveys 1949-1989 (revised edition). Bureau of Mineral Resources, Australia, Record 1990/15.

Harrison, P.L., Anfiloff, W. & Moss, F.J., 1975. Galilee Basin seismic and gravity survey, Queensland, 1971. Bureau of Mineral Resources, Australia, Report 175.

- Korsch, R.J. & Kennard, J. M. (editors), 1991. Geological and geophysical studies in the Amadeus Basin central Australia. Bureau of Mineral Resources, Australia, Bulletin, 236.
- Lambeck, K., 1991, Teleseismic travel-time anomalies and deep crustal structure of the northern and southern margins of the Amadeus Basin. Bureau of Mineral Resources, Australia, Bulletin, **236**, 409-427.
- Lindsay J.F. & Korsch, R.J., 1991. The evolution of the Amadeus Basin, central Australia. Bureau of Mineral Resources, Australia, Bulletin, 236, 7-32.
- Shaw, R.D., Korsch, R.J., Wright, C. & Goleby, B.R., 1991. Seismic interpretation and thrust tectonics of the Amadeus Basin, central Australia, along the BMR regional seismic line. Bureau of Mineral Resources, Australia, Bulletin, 236, 385-408.
- Wright, C., Goleby, B.R., Shaw, R.D., Collins, C.D.N., Korsch, R.J., Barton, T., Greenhalgh, S.A. & Sugiharto, S., 1991. Seismic reflection and refraction profiling in central Australia: implications for understanding the evolution of the Amadeus Basin. Bureau of Mineral Resources, Australia, Bulletin, **236**, 41-57.

1993

- Goleby B.R., Rattenbury M.S., Swager C.P., Drummond B.J., Williams, P.R., Sheraton J.W. & Heinrich C.A., 1993. Archaean crustal structure from seismic reflection profiling, Eastern Goldfields, Western Australia, Australian Geological Survey Organisation, Record 1993/15. [GA-L132]
- Lindsay J., Leven J. & Krieg G., 1993. Central Officer Basin, South Australia, Seismic data Acquisition, 1993, Australian Geological Survey Organisation, Record 1993/89. [GA-L137]
- Wake-Dyster, K.D., 1993. Cobar Basin seismic survey 1989: operational report. Australian Geological Survey Organisation, Record 1993/90. [GA-L130]

1994

O'Brien, P. E., Korsch, R.J., Wells, A. T., Sexton, M.J. & Wake-Dyster, K.D., 1994. Structure and tectonics of the Clarence-Moreton Basin. Australian Geological Survey Organisation, Bulletin, **241**, 195-216.

1995

Chudyk, E.C., Bracewell, R. & Collins, C.D.N., 1995. Operational report for the 1995 seismic refraction, wide-angle reflection and tomographic survey of Tasmania. Australian Geological Survey Organisation, Record 1995/74. [GA-L139]

1998

- Barton, T. J., Gray, D. R., Owen, A. J., Korsch, R. J., Drummond, B. D. & Foster, D. A., 1998. Crustal structure in the western Lachlan Orogen based on a seismic transect to the north of the Grampians, Victoria. Australian Geological Survey Organisation, Record 1998/2, 1-5. [GA-L141]
- Collins, C.D.N., Drummond, B. J., Korsch, R. J., Barton, T. J. & Rawlinson, N., 1998. Crustal architecture of Tasmania from onshore/offshore seismic profiling. Australian Geological Survey Organisation, Record 1998/2, 40-43.
- Drummond, B. J. & Collins, C.D.N., 1998. Crustal architecture and processes in southeast Australia from seismic studies. Australian Geological Survey Organisation, Record 1998/2, 59-64.
- Finlayson D.M. & Jones L.E.A (editors) 1998. Minerals systems and the crust-upper mantle of southeast Australia. Australian Geological Survey Organisation, Record 1998/2.

- Finlayson, D.M., Leven, J.H., Owen, A., Barton, T. & Johnstone, D.W., 1998. Wide-angle seismic profiling and crustal architecture along the Molong-Wyangala structural zone, eastern Lachlan Orogen – Preliminary interpretation. Australian Geological Survey Organisation, Record, 1998/2, 69-73. [GA-L146]
- Fomin, T., Gibson, G. M., Owen, A., Drummond, B.J., Wake-Dyster, K. and Maidment, D., 1998. The seismic transect through the Broken Hill Region. Australian Geological Survey Organisation, Record, 1998/2, 74. [GA-L143]
- Gibson, G. M., Drummond, B.J., Fomin, T., Owen, A. J., Maidment, D., Gibson, D. L., Peljo, M. & Wake-Dyster, K.D., 1998. Re-evaluation of crustal structure of the Broken Hill Inlier through structural mapping and seismic profiling. Australian Geological Survey Organisation, Record 1998/11.
- Glen, R.A., Korsch, R.J. & Johnstone, D.W., 1998. Crustal structure of eastern Lachlan Orogen based on preliminary interpretation of 4 sec TWT seismic reflection data. Australian Geological Survey Organisation, Record 1998/2, 83-84.
- Johnstone, D.W., Owen, A.J. & Nicholl, M.G., 1998. AGCRC Eastern Lachlan Seismic Survey 1997: operations report. Australian Geological Survey Organisation Record 1998/30. [GA-L146]
- Leven, J.H., Finlayson, Owen, A.J. and Johnstone, D.M., 1998. A seismic model of the crust through the Broken Hill Block and Tasman Line. Australian Geological Survey Organisation, Record. 1998/2, 119–123.
- Leven, J.H., Fomin, T., Owen, A., Johnstone, D.W., Drummond, B.J., Wake-Dyster, K. and Finlayson, D.M., 1998. The nature of the Tasman Line southeast of the Broken Hill Block. Australian Geological Survey Organisation Record 1998/2, 124.
- Leven, J.H., Finlayson, D.M., Johnstone, D.W., Barton, T.J., Owen, A. J. & Whatman, J., 1998. AGCRC wide-angle seismic profiling across the Broken Hill Block and Eastern Lachlan Fold Belt 1997: operations report. Australian Geological Survey Organisation, Record 1998/35. [GA-L143]
- Rawlinson, N., Collins, C.D.N., Semenova, T. O. & Houseman, G. A., 1998. Crustal architecture from seismic refraction data along the north and east coasts of Tasmania. Australian Geological Survey Organisation, Record 1998/2.
- Pigram, C., 1998. An appreciation of Rig Seismic, AGSO's geoscientific research vessel, 1985-1998. Australian Geological Survey Organisation, AusGeoNews 46, 16-18.
- Sayers, J., 1998. North West Shelf ocean bottom seismometer interpretation report: AGSO Survey 168, lines 301 and 302, Browse Basin. Australian Geological Survey Organisation, Record 1998/7.

- Goleby, B.R., Bell, B., Korsch, R.J., Sorjonen-Ward, P., Groenewald, P.B., Wyche, S., Bateman, R., Fomin, T., Witt, W., Walshe, J., Drummond, B.J. & Owen, A. J., 2000. Crustal structure and fluid flow in the Eastern Goldfields, Western Australia. Australian Geological Survey Organisation, Record, 2000/34.
- Goleby, B.R., Korsch, R.J., Fomin, T., Owen, A. J. & Bell, B., 2000. Preliminary interpretation of results from the 1999 Yilgarn deep seismic survey, Eastern Goldfields, W.A. AGCRC Workshop on Crustal Structure and Fluid Flow in the Eastern Goldfields, Western Australia, Kalgoorlie, 2-3 May 2000, Australian Geological Survey Organisation, Record, 2000/34, 58-73. [GA-L150]

- Finlayson, D.M., Korsch, R.J. & Glen, R.A., 2001. Contrasts in crustal architecture north and south of the Lachlan Transverse Zone, northeastern Lachlan Orogen. Australian Geological Survey Organisation Record, 2001/09, 40-44.
- Glen, R.A., Korsch, R.J., Jones, L.E.A., Lawrie, K. C., Shaw, R.D. & Johnstone, D.W., 2001. Crustal structure of the Ordovician Macquarie Arc, Eastern Lachlan Orogen, NSW, based on deep seismic reflection profiling. Australian Geological Survey Organisation. Record. 2001/9; 45-48.
- Jones L. E. A., Drummond B.J. & Goleby B.R., 2001. Capabilities of the seismic reflection method in hard rock terranes. Australian Geological Survey Organisation. Record 2001/9, 12-25
- Jones, L.E.A. & Johnstone, D.W., 2001. Acquisition and processing of the 1997 Eastern Lachlan (L146) and 1999 Lachlan (L151) seismic reflection surveys. Australian Geological Survey Organisation. Record 2001/9, 26-35. [GA-L146]
- Korsch, R.J. & Lyons, P (editors) 2001. Integrated geophysical and geological studies of the northeastern Lachlan Orogen, New South Wales, Eastern Lachlan Orogen Workshop, 7-9 March 2001. Australian Geological Survey Organisation, Record. 2001/9.
- Korsch, R.J., Goleby, B.R., Fomin, T., & Bell, B., 2001b. Imaging the Kalgoorlie Region using seismic and gravity techniques. In: Cassidy, K F, Dunphy, J M & Van Kranendonk, M J (eds), 4th International Archaean Symposium, 24-28 September 2001, Perth, Western Australia: extended abstracts. AGSO Geoscience Australia Record 2001/37, 516-518.
- Owen, A.J., Bateman R., Barton T.J., Drummond B.J., Goleby, B.R. & Sauter, P. C. C., 2001. Kalgoorlie seismic profiling 1997: operations, processing & interpretation report. Australian Geological Survey Organisation, Record 2001/6.

2002

- Blewett, R.S., Champion, D.C., Whitaker, A.J., Bell, B., Nicoll, M., Goleby, B.R., Cassidy, K.F. & Groenewald, P. B., 2002. Three dimensional (3D) model of the Leonora-Laverton transect area: implications for Eastern Goldfields tectonics and mineralization. Geoscience Australia, Record 2002/18, 83-110.
- Cassidy, K. F., (editor) 2002. Geology, geochronology and geophysics of the north eastern Yilgarn Craton, with an emphasis on the Leonora-Laverton transect area: proceedings of papers presented at an industry workshop held in Perth, 20 June, 2002. Geoscience Australia, Record 2002/18.
- Champion, D.C & Cassidy, K. F. 2002. Granites in the Leonora-Laverton transect area, northeastern Yilgarn Craton. Geoscience Australia, Record 2002/18, 13-35
- Jones, L.E.A., Goleby, B.R., Johnstone, D.W. & Barton, T.J., 2002. Seismic data acquisition and processing. 2001 Northern Yilgarn seismic reflection survey (L154). Geoscience Australia, Record 2002/18, 111-118. [GA-L154]

2003

- Blewett, R.S., Champion, D.C., Cassidy, K.F., Goleby, B.R., Bell, B., Groenewald, P.B., Nicoll, M.G. & Whitaker, A. 2003. Implications of the northern Yilgarn seismic to Leonora-Laverton 3D model. Geoscience Australia, Record 2003/28, 113-126.
- Cassidy, K.F., Blewett, R.S., Champion, D.C. & Goleby, B.R., 2003, Northeastern Yilgarn seismic reflection survey: Implications for orogenic Au systems. Geoscience Australia, Record 2003/28, 127-143.

- Goleby, B.R., Blewett, R.S., Groenewald, P.B., Cassidy, K.F., Champion, D.C., Jones, L.E.A., Korsch, R.J., Shevchenko, S. & Apak, S. N., (editors) 2003. The 2001 Northeastern Yilgarn deep seismic reflection survey, Geoscience Australia, Record 2003/28.
- Goleby, B.R., Blewett, R.S., Groenewald, P.B., Cassidy, K.F., Champion, D. C., Korsch, R.J., Whitaker, A., Jones, L. E. A., Bell, B. & Carlson, G., 2003. Seismic interpretation of the Northeastern Yilgarn Craton seismic data. Geoscience Australia, Record, 2003/28, 85-112.
- Rawlings, D., Johnstone, D. & Barton, T., 2003. McArthur Basin seismic project; Batten Trough transect. Annual Geoscience Exploration Seminar (AGES) 2003, Alice Springs, Northern Territory, Australia, March 25-26, 2003, Australia, Northern Territory Geological Survey, Record, 2003-001. [GA-L157]

2004

- Barnicoat, A C and Korsch, R J (editors.) 2004. Predictive Mineral Discovery Cooperative Research Centre. extended abstracts from the June 2004 conference. Geoscience Australia, Record: 2004/009.
- Drummond, B.J., Hobbs, B. E., Hobbs, R. W. & Goleby, B.R., 2004c. Crustal fluids in tectonic evolution and mineral systems: evidence from the Yligarn Craton. Geoscience Australia, Record 2004/9. 33-37.
- Fomin, T., 2004. Models of the upper crust from wide-angle and reflection studies, northeastern Yilgarn: why we need both? Geoscience Australia, Record 2004/9, 53-55.
- Goleby, B.R., Kennett, B.L.N., Fomin, T., Reading, A. M., Blewett, R. & Nicoll, M., 2004c. A tomographic view of the Eastern Goldfields Province, Yilgarn Craton. Geoscience Australia, Record 2004/9, 75-78.
- Henson, P.A., Blewett, R.S., Champion, D.C., Goleby, B.R. & Cassidy, K.F., 2004. A dynamic view of orogenesis and the development of the Eastern Yilgarn Craton. Geoscience Australia, Record 2004/9, 83-86.
- Lepong, P. Goleby, B.R. & Blenkinsop, T., 2004. Crustal architecture from geophysics: reprocessing the Mt Isa Seismic Transect. Geoscience Australia, Record; 2004/009, 119-122
- Rawlings, D.J., Korsch, R.J., Goleby, B.R., Gibson, G.M., Johnstone, D.W. & Barlow, M., 2004, The 2002 Southern McArthur basin seismic reflection survey, Geoscience Australia, Record 2004/17. [GA-L157]

2005

- Drummond, B.J. Hobbs, B.E. & Goleby, B.R., 2005, Crustal fluid flow in orogenic systems and implications for the Olympic dam deposit. Geoscience Australia, Record 2005/19, 76-77.
- Goleby, B.R., Lyons, P., Drummond, B.J., Schwarz, M., Shearer, A.J., Fairclough, M.C., Korsch R.J. & Skirrow, R. G., 2005. General Basement Interpretation (18 s Data), Geoscience Australia, Record 2005/19, 48-57.
- Korsch R.J., Goleby B.R., Rawlings D. J., Gibson G. M. & Johnstone D.W., 2005. The 2002 Southern McArthur Basin Seismic Reflection Survey: The Anglo American Seismic Traverse. Geoscience Australia Professional Opinion, 2005/01, 1-37.
- Lyons, P. & Goleby, B.R., (editors) 2005. The 2003 Gawler Craton Seismic Survey: Seismic Workshop, Geoscience Australia, Record 2005/19. [GA-L163]
- Preiss, W., Korsch, R.J. & Totterdell, J., 2005, Gawler Craton cover successions: Stuart Shelf to Adelaide Geosyncline transition. Geoscience Australia, Record 2005/19, 62-67.

2006

Barnicoat, A.C. & Korsch, R.J., (editors.) 2006. Predictive Mineral Discovery Cooperative Research Centre - Extended Abstracts from the April 2006 Conference. Geoscience Australia, Record 2006/07.

- Chopping, R., 2006. 'Seismic mapping' of fluid pathways for the world-class goldmineral system at Laverton. Geoscience Australia, Record 2006/07, 18-22.
- Goleby, B.R., Korsch, R.J., Fomin, T., Conor, C.H.H., Preiss, W.V., Robertson, R.S. & Burtt, A.C., 2006. The 2003-2004 Curnamona Province seismic survey. Geoscience Australia, Record 2006/12. [GA-L164]
- Huston, D.L. Larson R. & Gerner E. (editors) 2006. Archive of results from the North Australia and Tanami National Geoscience Accord Projects. Geoscience Australia Record 2006/17. [GA-L171]
- Korsch, R.J., Fomin, T., Conor, C. H. H., Stevens, B. P., Goleby, B.R., Robertson, R. S. & Preiss, W. V., 2006. A deep seismic reflection traverse across the Curnamona Province from the Darling Basin to the Flinders Ranges. Geoscience Australia, Record 2006/21, 102-109.
- Korsch, R.J., Fomin, T. & Stevens, B. P. J., 2006. Preliminary results of a high resolution seismic reflection survey at Broken Hill. Geoscience Australia, Record 2006/21, 110-115.
- Korsch, R.J. & Barnes, R. G., (compilers) 2006. Broken Hill Exploration Initiative: abstracts for the September 2006 conference. Geoscience Australia, Record 2006/21.

Korsch, R.J., 2008. Architecture: new knowledge from seismic surveys. Geoscience Australia, Record 2008/09, 55-64.

2009

- Chopping R. & Henson P.A., (editors) 2009. 3D map and supporting geophysical studies in the North Queensland region. Geoscience Australia, Record 2009/29, 82 pp. [GA-L184,185,186]
- Korsch, R.J. (editor) 2009. Broken Hill Exploration Initiative: Abstracts for the 2009 Conference. Geoscience Australia, Record, 2009/28.
- Korsch, Russell J.; Preiss, W. V.; Blewett, R. S.; Fabris, Adrian J.; Neumann, N. L.; Fricke, Claire E.; Fraser, G. L.; Holzschuh, J.; & Jones, L. E. A. 2009, The 2008 north-south oriented, deep seismic reflection transect across the Curnamona Province, South Australia. Geoscience Australia, Record, 2009/28, 90-100. [GA-L189]

2010

- Kennett B.L.N., 2010. Understanding the lithosphere in the vicinity of seismic line 08GA-OM1 from Passive Seismic Studies. Geoscience Australia, Record, 2010/39, 87-94.
- Korsch R.J. & Kositcin, N. (editors) 2010. GOMA (Gawler Craton-Officer Basin-Musgrave Province-Amadeus Basin) Seismic and MT Workshop 2010, Geoscience Australia, Record, **2010/39.** [GA-L190]
- Korsch R.J., Blewett, R.S., Giles, D., Reid, A.J., Neumann, N.L., Fraser, G.L., Holzschuh, J., Costelloe, R.D., Duan, J., Milligan, P.R., Roy, I.G., Cowley, W.M., Armit, R., Kennett, B.L.N., Betts, P., Baines, G., Preiss, W.V. & Bendall, B.R., 2010. Geological interpretation of the deep seismic reflection and magnetotelluric line 08GA-OM1: Gawler Craton-Officer Basin-Musgrave Province-Amadeus Basin (GOMA) South Australia and Northern Territory. Geoscience Australia, Record, 2010/39, 63-86.
- Korsch R.J. & Kositcin, N. (editors) 2010b. South Australian Seismic and MT Workshop 2010. Geoscience Australia Record 2010/10, 124 pp. [GA-L189]
- Koscitin N. (editor) 2010. Geodynamic Synthesis of the Gawler Craton and Curnamona Province, Geoscience Australia Record 2010/27, 118 pp.

2011

- Cayley R.A., Korsch, R., Kennett, B.L.N., Skladzien, P., Jones, L., Morand, V.J., Gibson, G., Rawling, T.J. & Betts P.G., 2011. Results of deep seismic reflection imaging of the eastern Delamerian Orogen, South Australia and western Victoria, Australia, Geoscience Victoria, Dept. of Primary Industries, Data CD Version: 4 March 2011. [GA-L193,194]
- Johnson S.P., Thorne, A.M. & Tyler I.M., 2011. Capricorn Orogen seismic and magnetotelluric (MT) Workshop 2011: extended abstracts, Geological Survey of Western Australia, Record 2011/25. [GA-L195]

2012

Carr, L. K., Korsch, R. J., Struckmeyer, H., Jones, L. E. A., Holzschuh, J., Costelloe, R. D. & Meixner, A. J., 2012. The architecture and petroleum potential of Australia's onshore sedimentary basins from deep seismic reflection data and petroleum systems maturation modelling; the Arrowie, Georgina and Darling Basins, Geoscience Australia, Record 2012/36

2013

- Neumann, N.L. (ed.), Yilgarn Craton–Officer Basin–Musgrave Province (YOM) Seismic and MT Workshop. Geoscience Australia Record 2013/28, 51–95. [GA-199]
- Wyche, S., Ivanic, T.J. & Zibra, I. (compilers) 2013. Youanmi and Southern Carnarvon Seismic and Magnetotelluric (MT) Workshop, Geological Survey of Western Australia, Record, 2013/6. [GA-198, GA-200]

2014

Spaggiari, CV and Tyler IM (compilers) 2014, Albany–Fraser Orogen seismic and magnetotelluric (MT) workshop 2014: extended abstracts. Geological Survey of Western Australia, Record 2014/6, 28-43. [GA-201]

2015

Dutch, R. A., Pawley, M. J., and Wise, T. W., eds., What lies beneath the western Gawler Craton? 13GA-EG1E Seismic and Magnetotelluric Workshop 2015. Department of State Development, South Australia, Adelaide. Report Book 2015/00029. [GA-203]

Papers on interpretation of profiles

1979

Tucker, D. H., Wyatt, B. W., Druce, E.C., Mathur, S. P. & Harrison, P. L. 1979. The upper crustal geology of the Georgina Basin region. BMR J. Aust. Geol. Geophys. 4(3), 209-22 1979.

1980

Pinchin, J., 1980. Intracrustal seismic reflections from the Lachlan Fold Belt near Canberra, BMR J. Aust. Geol. Geophys. 5, 305-309.

1981

Bauer J.A. & Dixon, O. 1981. Results of a seismic survey in the Southern Denison Trough, Queensland. BMR J. Aust. Geol. Geophys. 6, 213-222.

1983

- Collins, C.D.N., 1983. Crustal structure of the southern McArthur Basin, Northern Australia, from deep seismic sounding, BMR J. Aust. Geol. Geophys. 8, 19-34.
- Finlayson, D.M., 1983. The mid-crustal horizon under the Eromanga Basin, eastern Australia. Tectonophysics 100, 199-214.
- Mathur, S. P., 1983a. Preliminary deep crustal reflection results from the central Eromanga Basin, Australia, Tectonophysics 100, 163-173.
- Mathur, S. P., 1983b. Deep reflection experiments in northeastern Australia, 1976-1978. Geophysics, 48, 1588-1597.
- Mathur, S. P., 1983c. Deep reflection probes in Eastern Australia reveal differences in the nature of the crust, First Break, July 1983, 9-16.
- Moss, F.J. & Wake-Dyster, K.D., 1983. The Australian Central Eromanga Basin Project: an introduction. Tectonophysics 100, 131-145.

1984

- Finlayson, D.M., Collins, C.D.N. & Lock, J., 1984. P-wave velocity features of the lithosphere under the Eromanga Basin, eastern Australia, including a prominent mid-crustal (Conrad?) discontinuity. *Tectonophysics* **101**, 267-291.
- Finlayson, D.M. & Mathur, S. P., 1984. Seismic refraction and reflection features of the lithosphere in northern and eastern Australia & continental growth. Annales Geophysicae 2. 711-722.
- Mathur, S. P., 1984. Improvements in seismic reflection techniques for studying the lithosphere in Australia, Tectonophysics 105, 373-381.
- Wake-Dyster, K.D., Moss, F.J. & Sexton, M.J., 1983. New seismic reflection results in the central Eromanga Basin, Queensland, Australia: the key to understanding its tectonic evolution. Tectonophysics 100, 147-162.

1985

- Etheridge, M.A., Drummond, B.J. & Tucker, D.H., 1985. Evolution and internal structure of intracratonic sedimentary basins as seen by geophysics. *Explor. Geophys.* 16, 216-220.
- Etheridge, M.A., Branson, J.C. & Stuart-Smith, P. G., 1985. Extensional basin-forming structures in Bass Basin and their importance for hydrocarbon exploration. Aust. Petrol. Explor. Assoc. J. 25, 344-361.
- Wake-Dyster, K.D., Sexton, M.J. & Johnstone, D.W., 1985. Lithospheric transect study of southeastern Queensland. Explor. Geophys. 16, 312-316.

1986

- Finlayson, D.M. & Collins, C.D.N., 1986. Lithospheric velocity beneath the Adavale Basin, Queensland, and the character of deep crustal reflections. BMR J. Aust. Geol. Geophys. 10, 23-37.
- Korsch, R.J., Lindsay, J.F., O'Brien, P.B., Sexton, M.F. & Wake-Dyster, K., 1986. Deep crustal seismic reflection profiling, New England Orogen, eastern Australia: Telescoping of the crust and a hidden deep layered sedimentary sequence. Geology 14, 982-985.
- Moss, F.J. & Mathur, S.P., 1986. A review of continental reflection profiling in Australia. In: Reflection Seismology: A Global Perspective, Amer. Geophys. Union, Geodynamics Series, 13, 67-76.
- Ramsay, D.C., Colwell, J.B., Coffin, M.F., Davies, H.L., Hill, P.J., Pigram, C.J. & Stagg, H.M.J., 1986. New findings from the Kerguelen Plateau. Geology 14, 589-593. 1987
 - Finlayson, D.M. & Collins, C.D.N., 1987. Crustal differences between the Nebine Ridge and the central Eromanga Basin from seismic data. Aust. J. Earth Sci. 34, 251-259.
 - Finlayson, D.M., 1987. Seismic features of Proterozoic crust in northern Australia and their evolution. In: Proterozoic Lithospheric Evolution (Editor, A. Kröner), Amer. Geophys. Union Geodynamics Series 17, 99-113.
 - Finlayson, D.M. & Leven, J.H., 1987a. Lithospheric structures and possible processes in Phanerozoic eastern Australia from deep seismic investigations. Tectonophysics 133, 199-215.
 - Finlayson, D.M. & Leven, J.H., 1987b. 3-dimensional image of the lower crust under an intracontinental basin in eastern Australia. *Explor. Geophys.* **18**, 49-52.
 - Goleby B.R., Wright C. & Kennett B.L.N. 1987. Preliminary deep reflection studies in the Arunta Block, central Australia. Geophys. J. R. Astr. Soc. 89, 437-442.
 - Korsch, R.J., Lindsay, J.F., O'Brien, P.B., Sexton, M.F. & Wake-Dyster, K., 1987. Deep crustal seismic reflection profiling, New England Orogen, eastern Australia: Telescoping of the crust and a hidden deep layered sedimentary sequence: Reply. Geology, 15, 1181-1182.
 - Leven, J.H. & Finlayson, D.M., 1987. Lower crustal involvement in upper crustal thrusting. Geophys. J. R. Astr. Soc. 89, 415-421.
 - Wright, C., Goleby, B.R., Collins, C.D.N., Kennett, B.L.N., Sugiharto, S. & Greenhalgh, S., 1987a. Some preliminary results from regional seismic profiling in central Australia. *Explor.* Geophys. 18, 227-231.
 - Wright, C., Goleby, B.R., Collins, C.D.N., Kennett, B.L.N., Sugiharto, S. & Greenhalgh, S., 1987b. The central Australian seismic experiment, 1985: preliminary results. Geophys. J. R. Astr. Soc. 89, 431-436.
 - Wake-Dyster, K.D., Sexton, M.J., Johnstone, D.W., Wright, C. & Finlayson, D.M., 1987. A deep seismic profile of 800 km length recorded in southern Queensland, Australia. Geophys. J. R. Astr. Soc. 89, 423-430.

- Dooley, J.C. & Moss, F.J., 1988. Deep crustal reflections in Australia 1957-1973-II. Crustal models, Geophys. J. R. Astr. Soc. 93, 239-249.
- Drummond, B.J., Etheridge, M.A., Davies, P.J. & Middleton, M.F., 1988, Half-graben model for the structural evolution of the Fitzroy Trough, Canning Basin, and implications for resource exploration. Aust. Petrol. Explor. Assoc. J. 28, 76-86.

- Finlayson, D.M., Leven, J.H. & Etheridge, M.A., 1988. Structural styles and basin evolution in the Eromanga region, eastern Australia. Amer. Assoc. Petrol. Geol. Bull. 72, 33-48.
- Goleby B.R., Kennett B.L.N. & Wright C. (1988), Alternative stacking techniques for deep crustal data, *Exploration Geophys.*, **19**, 78-82.
- Goleby B.R., Wright C., Collins C.D.N. & Kennett B.L.N. 1988. Seismic reflection and refraction profiling across the Arunta Block and the Ngalia and Amadeus Basins. Aust. J. Earth Sci. 35, 275-294.
- Korsch, R.J., Goleby, B.R., Leven, J.H. & Drummond, B.J., 1988b, Crustal architecture of central Australia based on deep seismic reflection profiling. Tectonophysics 288, 57-69.
- Moss, F.J. & Dooley, J.C., 1988. Deep crustal reflection recordings in Australia 1957-1973 1. Data acquisition and presentation. Geophys. J. R. Astr. Soc. 93, 229-237.
- Rutland, R.W.R., Goleby, B.R., Shaw, R.D. & Wright, C., 1988. Tectonic significance of Proterozoic thrusting in Australia: evidence from deep seismic reflection profiling. Geologiska Foreningens 110, 410-416.
- Wright, C., Barton, T. & Goleby, B.R., 1988. Lateral variation in seismic velocities in the central Australian region, from both conventional and experimental seismic reflection profiling. Explor. Geophys. 19, 214-219.

- Finlayson, D.M., Leven, J.H. & Wake-Dyster, K.D., 1989a. Large-scale lenticles in the lower crust under an intra-continental basin in eastern Australia. In: Properties and Processes of Earth's Lower Crust (Editors, R. F. Mereu, St. Mueller & D.M. Fountain), Amer. Geophys. Union Geophysical Monograph 51, 3-16.
- Finlayson, D.M., Wright, C., Leven, J.H., Collins, C.D.N., Wake-Dyster, K.D. & Johnstone, D.W., 1989b. Basement features under four intra-continental basins in central and eastern Australia. In: Origin and Evolution of Sedimentary Basins and their Energy and Mineral Resources (Editor, R. A. Price), Amer. Geophys. Union Geophysical Monograph 48, 43-55.
- Goleby, B.R., Shaw, R. D., Wright, C., Kennett, B.L.N. & Lambeck, K., 1989. Geophysical evidence for thick-skinned crustal deformation in central Australia. *Nature* **337**, 325-330.
- Korsch, R.J. & Lindsay, J.F., 1989. Relationships between deformation and basin evolution in the intracratonic Amadeus Basin, Central Australia. *Tectonophysics*, 158, 5-22.
- Korsch, R.J., O'Brien, P.E., Sexton, M.J., Wake-Dyster, K.D. & Wells, A.T., 1989. Development of Mesozoic transtensional basins in easternmost Australia. Aust. J. Earth Sci., 36, 13-28.
- Wright, C., Korsch, R.J., Finlayson, D.M. & Goleby, B.R., 1989. Deep seismic reflection profiling and continental evolution. EOS Trans. Amer. Geophys. Union 70, 639 & 642-644. 1990
- Cao S-H, Kennett B.L.N. & Goleby B.R. 1990. 3-D isochronal modelling of reflections from the deep crust: application to reflection profiling in central Australia, Tectonophysics 173, 119-128.
- Finlayson, D.M., Wake-Dyster, K.D., Leven, J.H., Johnstone, D.W., Murray, C.G., Harrington, H. J., Korsch, R.J. & Wellman, P., 1990a. Seismic imaging of major tectonic features in the crust of Phanerozoic eastern Australia, Tectonophysics 173, 211-230.
- Goleby B.R., Kennett B.L.N., Wright C., Shaw R.D. & Lambeck K. 1990. Seismic reflection profiling in the Proterozoic Arunta Block, central Australia: processing for testing models of tectonic evolution, Tectonophys., 173, 257-268.

- Korsch, R.J., O'Brien, P. E., Harrington, H. J., Wake-Dyster, K.D., Finlayson, D.M. & Johnstone, D.W., 1990d. Constraints from deep seismic profiling on models for the evolution of Permian-Mesozoic sedimentary basins in eastern Australia. In: The potential of deep seismic profiling for hydrocarbon exploration (Editors B. Pinet & C. Bois), Editions Technip, Paris, 275-290.
- Korsch, R.J., Shaw, R. D., Wright, C., Goleby, B.R. & Collins, C.D.N., 1990. Constraints on the tectonic evolution of the Amadeus Basin (central Australia) from deep seismic profiling: implications for hydrocarbon exploration. In: The potential of deep seismic profiling for hydrocarbon exploration (Editors B. Pinet & C. Bois). Éditions Technip, Paris, 249-264.
- Leven, J.H., Finlayson, D.M. & Wake-Dyster, K.D., 1990. Mid-crustal detachments controlling basin deformation: ramp synforms in southwestern Queensland, Tectonophysics 173, 231-246.
- Leven, J.H., Finlayson, D.M., Wright, C., Dooley, J. C. & Kennett, B.L.N. (editors), 1990. Seismic probing of the continents and their margins. *Tectonophysics*, **173**.
- 1990. Deep seismic profiling in Central Australia. Tectonophysics 173, 247–256. 1991
 - Braun, J., McQueen H. & Etheridge M., 1991, A fresh look at the Late Palaeozoic tectonic history of western-central Australia, Explor. Geophys. 22, 49-54.
 - Drummond, B.J., Sexton, M.J., Barton, T.J. & Shaw, R. D., 1991. The nature of faulting along the margins of the Fitzroy Trough, Canning Basin & implications for the tectonic development of the trough. Explor. Geophys., 22, 111-116.
 - Korsch, R.J., Wake-Dyster, K.D. & Johnstone, D.W., 1991. Crustal structure of the Permian-Mesozoic Eastern Australian basins complex, with emphasis on the BMR Bowen Basin deep seismic profiles. Explor. Geophys. 22, 223-226.
 - Shaw, R.D., Korsch, R.J., Goleby, B.R. & Wright, C., 1991. The BMR regional seismic line across the Amadeus Basin, central Australia: Implications for the tectonics of the basin and for hydrocarbon exploration. Explor. Geophys. 22, 345-352.
 - Shaw, R.D., Etheridge, M.A. & Lambeck, K., 1991. Development of the Late Proterozoic to mid-Palaeozoic, Intracratonic Amadeus Basin in central Australia: A key to understanding tectonic forces in plate interiors. *Tectonics*, **10**, 688-721.

1992

- Collins, C.D.N., Cull, J.P., Colwell, J.B. & Willcox, J.B. 1992. The deep velocity structure beneath the Gippsland Basin from long offset seismic data. *Explor. Geophys.* 23, 69–74.
- Hill, P. J., 1992. Capricorn and northern Tasman Basins: structure and depositional systems. Explor. Geophys. 23, 153-162.
- Korsch, R.J., 1992. Sedimentary basins of eastern Australia structural geometry and tectonics. ASEG Preview 39, 11.
- Korsch, R.J., Wake-Dyster, K.D., O'Brien, P. E., Finlayson, D.M. & Johnstone, D.W., 1992a. Geometry of Permian to Mesozoic sedimentary basins in eastern Australia and their relationship to the New England Orogen. In: Basement Tectonics 9, (Editors M.J. Rickard, H.J. Harrington & P.R. Williams), Kluwer Academic Publishers, Dordrecht, 85-108.
- Korsch, R.J., Wake-Dyster, K.D. & Johnstone, D.W., 1992b. Seismic imaging of extensional and contractional structures in the Bowen and Surat basins, eastern Australia. Tectonophysics **215**, 273-294.

Wright C., Goleby B.R., Collins C.D.N., Korsch R.J., Barton T., Greenhalgh S. A. & Sugiharto S.

- Leven, J.H., Stuart-Smith, P. G., Musgrave, R.J., Rickard, M.J. & Crook, K. A. W., 1992. A geophysical transect across the Tumut Synclinorial Zone, NSW. Tectonophysics 214, 239-248.
- Shaw, R.D., Goleby, B.R., Korsch, R.J. & Wright, C., 1992. Basement and cover thrust tectonics in central Australia based on the Arunta-Amadeus seismic reflection profile. In: Basement Tectonics 9, (Editors M.J. Rickard, H.J. Harrington & P.R. Williams) Kluwer Academic Publishers, Dordrecht, 55-84.

- Drummond, B.J., Goleby, B.R., Swager, C. P. & Williams, P.R., 1993. Constraints on Archaean crustal composition and structure provided by deep seismic sounding in the Yilgarn Block. Ore Geology Reviews 8, 117. 124.
- Drummond, B.J. & Goleby, B.R., 1993. Seismic reflection images of the major ore-controlling structures in the Eastern Goldfields province, Western Australia. Explor. Geophys., 24, 473-478.
- Finlayson, D.M., 1993a. Crustal architecture across the Phanerozoic Australia along the Eromanga-Brisbane Geoscience Transect: evolution and analogues. *Tectonophysics* 219, 191-211.
- Finlayson, D.M. & Collins, C.D.N., 1993. Lithospheric velocity structures under the southern New England Orogen: evidence for underplating at the Tasman Sea margin. Aust. J. Earth Sci. 40, 141-153.
- Finlayson, D.M., Owen, A., Johnstone, D. & Wake-Dyster, K.D., 1993b. Moho and petrologic crust mantle boundary coincide under southeastern Australia. Geology 21, 707-710.
- Trench, A., House, M., Miller, D.R., Withers, J.A., Goleby, B.R. & Drummond, B.J., 1993. On the gravity signature of Archaean greenstones in the Widgiemooltha-Tramways area. Eastern Goldfields, Western Australia. Explor. Geophys. 24, 811-818.
- Wright, C., Goleby, B.R., Shaw, R. D., Collins, C.D.N., Kennett, B.L.N. & Lambeck, K., 1993. Seismic structure and continuity of the Redbank Thrust Zone, central Australia. BMR J. Aust. Geol. Geophys. 13, 359-368.

1994

- Glen, R.A., Drummond, B.J., Goleby, B.R., Palmer, D. & Wake-Dyster, K.D., 1994. Structure of the Cobar Basin New South Wales based on seismic reflection profiling. Aust. J. Earth Sci., 41, 341-352.
- Goleby, B.R., Drummond, B.J., Korsch, R.J., Willcox, J.B., O'Brien, G.W. & Wake-Dyster, K.D., 1994a. Review of recent results from continental deep seismic profiling in Australia. *Tectonophysics* **232**, 1-12.
- Gudmundsson O., Kennett B.L.N.& Goody A. 1994. Broadband observations of upper mantle seismic phases in northern Australia and the attenuation structure in the upper mantle, Phys. Earth Planet. Inter., 84, 207-236.

1995

- Leven, J.H. & Lindsay, J.F., 1995. A geophysical investigation of the southern margin of the Musgrave Block, South Australia. AGSO J. Aust. Geol. Geophys. 16, 155-161.
- Middleton, M. F., Wilde, S. A., Evans, B.J., Long, A., Dentith, M. & Morawa, M. A., 1995. Deep seismic reflection traverse over the Darling Fault Zone, Western Australia. Aust. J. Earth Sci. **42**, 83-93.

1996

Wilde, S. A., Middleton, M. F. & Evans, B.J., 1996. Terrane accretion in the southwestern Yilgarn Craton: evidence from a deep seismic crustal profile. Precambrian Research 78, 179-196.

1997

- Drummond, B.J., Goleby, B.R., Goncharov, A.G., Wyborn, L.A.I., Collins, C.D.N. & MacCready, T., 1997. Crustal-scale structures in the Proterozoic Mount Isa Inlier of north Australia: their seismic response and influence on mineralisation. Tectonophysics 288, 43-56.
- Korsch, R.J., Johnstone, D.W. & Wake-Dyster, K.D., 1997. Crustal architecture of the New England Orogen based on deep seismic reflection profiling. Geol. Soc. Aust. Spec. Publ. 19, 29-51.
- Swager, C.P., Goleby, B.R., Drummond, B.J. Rattenbury, M.S. and Williams, P.R., 1997. Crustal structure of granite-greenstone terranes in the Eastern Goldfields, Yilgarn Craton, as revealed by seismic reflection profiling. Precambrian Research 83,43-56.

1998

- Braun, J. & Shaw R, 1998. Contrasting styles of lithospheric deformation along the northern margin of the Amadeus Basin, central Australia. In: Structure and evolution of the Australian continent, (Editors J. Braun et al.). AGU Geodynamics Series, 26 139-156.
- Braun, J. & Shaw, R., 1998. Extension in the Fitzroy Trough, Western Australia: an example of reactivation tectonics. In: Structure and evolution of the Australian continent, (Editors J. Braun et al.). AGU Geodynamics Series, 26, 157-174.
- Finlayson, D.M., Collins, C.D.N., Lukaszyk, I. & Chudyk, E.C., 1998a. A transect across Australia's southern margin in the Otway Basin region: crstal architecture and the nature of rifting from wide-angle seismic profiling. Tectonophysics 288, 177-189.
- Goleby, B.R., MacCready, T., Drummond, B.J. & Goncharov, A., 1998. The Mount Isa Geodynamic Transect. Crustal Implications. In: Structure and evolution of the Australian continent, (Editors J. Braun et al.). AGU Geodynamics Series, 26, 109-118.
- MacCready, T., Goleby, B.R., Goncharov, A., Drummond, B.J. & Lister, G.S., 1998. A framework of overprinting orogens based on interpretation of the Mount Isa deep seismic transect, Economic Geology 93, 1422-1434.

1999

- Fomin, T., Drummond, B. & Leven J., 1999. Seismic reflection and refraction studies in the Broken Hill region. Minfo: New South Wales Mining and Exploration Quarterly 62, 26-28
- House, M., Dentith, M., Trench, A., Groves, D. & Miller, D. 1999, Structure of the highly mineralised late-Archaean granitoid-greenstone terrain and the underlying crust in the Kambalda-Widgiemooltha area, Western Australia, from the integration of geophysical datasets, Explor. Geophys. 30, 50-67

- Dentith, M.C., Dent V.F. & Drummond B.J. 2000. Deep crustal structure in the southwestern Yilgarn Craton, Western Australia. Tectonophysics 325, 227–255.
- Drummond, B.J., Barton, T.J., Korsch, R.J., Rawlinson, N., Yeates, A.N., Collins, C.D.N. & Brown A.V. 2000. Evidence for crustal extension and inversion in eastern Tasmania, Australia, during the Neoproterozoic and Early Palaeozoic. *Tectonophysics* **329**, 1-21.
- Drummond, B.J., Goleby, B.R., Owen, A.O., Yeates, A.N., Swager, C., Zhang, Y. & Jackson, J.K., 2000. Seismic reflection imaging of mineral systems; three case histories. *Geophysics* **65**, 1852-1861.

- Direen, N.G., Lyons, P., Korsch, R.J. & Glen, R.A. 2001. Integrated geophysical appraisal of crustal architecture in the eastern Lachlan Orogen. Explor. Geophys. 32, 252-262.
- Rawlinson, N., Houseman, G.A., Collins, C.D.N. & Drummond, B.J. 2001. New evidence of Tasmania's tectonic history from a novel seismic experiment. Geophys. Res. Lett. 28, 3337-3340.

2002

- Blewett, R.S., Champion, D.C., Whitaker, A.J., Bell, B., Nicoll, M., Goleby, B.R., Cassidy, K.F. & Groenewald, P.B. 2002. A new 3D model of the Leonora-Laverton transect: implications for the tectonic evolution of the eastern Yilgarn Craton, Australian Institute of Geoscientists Bull. 36, 18-21.
- Finlayson, D.M., Korsch, R.J., Glen, R. A., Leven, J.H. & Johnstone, D.W., 2002. Seismic imaging and crustal architecture across the Lachlan Transverse Zone, a possible early cross-cutting feature of eastern Australia. Aust. J. Earth Sci. 49, 311-321.
- Glen, R.A., Korsch, R.J., Direen, N.G., Jones, L.E.A., Johnstone, D.W., Lawrie, K.C., Finlayson, D.M. & Shaw, R.D., 2002. Crustal structure of the Ordovician Macquarie Arc, Eastern Lachlan Orogen, based on seismic reflection profiling. Aust. J. Earth Sci. 49, 323-348.
- Goleby, B.R., Korsch, R.J., Fomin, T., Bell, B., Nicoll, M. G., Drummond, B.J. & Owen, A. J., 2002. A preliminary 3D geological model of the Kalgoorlie region, Yilgarn Craton, Western Australia based on deep seismic reflection and potential field data, Aust. J. Earth Sci. 49, 917-933.
- Goleby, B.R., Blewett, R. S., Champion, D.C., Korsch, R.J., Bell, B., Groenewald, P.B., Jones, L.E.A., Whitaker, A. J., Cassidy, K.F. & Carlsen, G. M., 2002. Deep seismic profiling in the NE Yilgarn: insights into its crustal architecture, Australian Institute of Geoscientists Bull. 36, 2006 63-66.
- Korsch, R.J., Barton, T.J., Gray, D. R., Owen, A. J. & Foster, D. A., 2002. Geological interpretation of a deep seismic reflection transect across the boundary between the Delamerian and Lachlan orogens, in the vicinity of The Grampians, Western Victoria. Aust. J. Earth Sci. 49, 1057-1075.

2003

- Drummond, B.J., Owen, A., Jackson, J.C., Goleby, B.R. & Sheard, S.N., 2003. Seismic reflection imaging of the environment around the Mount Isa ore bodies, northern Australia – A case study. In: Hardrock Seismic Exploration, Geophysical Developments, (Editors D.W. Eaton, B. Milkereit & M.H. Salisbury), Chapter 8, 127-138.
- Fomin, T., Crawford, A.R. and Johnstone, D.W., 2003. A Wide-angle reflection experiment with vibroseis sources as part of a multidisciplinary seismic study of the Leonora-Laverton Tectonic Zone, Northeastern Yilgarn Craton. Explor. Geophys. 34, 147-150.
- Reading A., Kennett B. & Sambridge M. 2003. Improved inversion for seismic structure using transformed S-wavevector receiver functions: removing the effect of the free surface, Geophys. Res. Lett., 30(19) 1981; doi: 10.1029/2003GL018090.
- Wartenberg, W., Korsch, R.J. & Schäfer, A., 2003. The Tamworth Belt in Southern Queensland, Australia: thrust-characterised geometry concealed by Surat Basin sediments. In: Tracing tectonic deformation using the sedimentary record, (Editors T. McCann & A. Saintot). Geol. Soc. London, Spec. Publ. 208, 185-203.

2004

- Blewett, R.S., Cassidy, K.F., Champion, D.C., Henson, P.A., Goleby, B.R., Jones, L. & Groenewald, P.B., 2004. The Wangkathaa Orogeny: an example of episodic regional 'D2' in the late Archaean Eastern Goldfields Province, Western Australia. Precambrian Research **130**, 139-159.
- Drummond, B.J., Hobbs, R.W. & Goleby, B.R., 2004. The effects of out-of-plane seismic energy on reflections in crustal-scale 2D seismic sections. *Tectonophysics* **388**, 213-224.
- Drummond, B.J., Hobbs, B.E. & Goleby, B.R., 2004. The role of crustal fluids in the tectonic evolution of the Eastern Goldfields Province of the Archaean Yilgarn Craton, Western Australia. Earth, Planets and Space 56, 1163-1169.
- Goleby, B.R., Blewett, R.S., Korsch, R.J., Champion, D.C., Cassidy, K.F., Jones, L.E.A., Groenewald, P.B. & Henson, P., 2004a. Deep seismic reflection profiling in the Archaean northeastern Yilgarn Craton, Western Australia: implications for crustal architecture and mineral potential. Tectonophysics 388, 119-133.
- Goleby, B.R & Korsch R.J. 2005. The 2003-2004 Curnamona Deep Seismic Reflection Traverse, South Australia. ASEG Preview 119, 27-28.
- Korsch, R.J., 2004. A Permian-Triassic retroforeland thrust system. the New England Orogen, and adjacent sedimentary basins, Eastern Australia. Amer. Assoc. Petrol. Geologists, Memoir **82**, 515-537.

2005

Goleby, B.R., Korsch, R.J., Fomin, T., Preiss, W.V., Conor, C.H.H., Robertson, R.S. & Burtt, A.C., 2005. The 2003-2004 Curnamona Deep Seismic Reflection Traverse, South Australia. ASEG Preview 119, 27-28.

- Drummond, B.J., Lyons, P., Goleby, B.R. & Jones, L., 2006. Constraining models of the tectonic setting of the giant Olympic Dam iron oxide – copper – gold deposit, South Australia, using deep seismic reflection data. *Tectonophysics* **420**, 91-103.
- Goleby, B.R., Blewett, R.S., Fomin, T., Fishwick, S., Reading, A.M., Henson, P.A., Kennett, B.L.N., Champion, D.C., Jones, L., Drummond, B.J. & Nicoll, M., 2006. An integrated multiscale 3D seismic model of the Archaean Yilgarn Craton, Australia. Tectonophysics 420, 75-90.
- MacCready, T., 2006. Structural cross-section based on the Mt. Isa Deep Seismic Transect. Aust. J. Earth Sci. 53, 5-26.
- MacCready, T., Goleby, B.R., Goncharov, A., Drummond, B.J. & Lister, G. S., 2006. Shifts in the locus of crustal thickening during Mesoproterozoic orogenesis in the Mt. Isa Terrane. Aust. J. Earth Sci. 53, 41-53.
- Gray, D. R., Foster, D. A., Korsch, R.J. & Spaggiari, C. V., 2006. Structural style and crustal architecture of the Tasmanides of eastern Australia: example of a composite accretionary orogen. Geol. Soc. Amer. Spec. Paper 414, 199-232.
- Hobbs, R.W., Drummond, B.J. & B.R. Goleby, 2006. The effects of three dimensional shear zone morphology on the nature of reflections in two dimensional crustal seismic sections. Geophys. J. Int. 164, 490-500.
- Rawlinson, N. & Urvoy, M., 2006. Simultaneous inversion of active and passive source datasets for 3-D seismic structure with application to Tasmania. Geophys. Res. Lett., 33 L24313, doi:10.1029/2006GL028105.

van der Valden, A.J., Cook, F.A., Drummond, B.J. & Goleby, B.R., 2006. Reflections of the Neoarchaen: A global perspective. In: Archean Geodynamics and Environments, (Editors K. Benn, J.-C. Mareschal & K. Condie). Amer. Geophys. Union Geophysical Monograph, 164. 255-265.

2007

- Fomin, T. & Korsch, R.J., 2007. 2005 Broken Hill high resolution vibroseis seismic reflection survey. ASEG Preview 126, 22-23.
- Glen, R.A., Poudjom Djomani, Y., Korsch, R.J., Costelloe, R.D. & Dick, S., 2007. Thomson-Lachlan seismic project – results and implications. In *Mines and Wines 2007: Mineral* Exploration in the Tasmanides. (Editor Lewis P.), Australian Institute of Geoscientists Bulletin 46, 73–78.

2009

- Korsch, R.J., Totterdell, J. M., Fomin, T. & Nicoll, M. G., 2009. Contractional structures and deformational events in the Bowen, Gunnedah and Surat Basins, eastern Australia. Aust. J. Earth Sci. 56, 477-499.
- Krassay, A.A., Korsch, R.J. & Drummond, B.J., 2009. Meandarra Gravity Ridge: symmetry elements of the gravity anomaly and its relationship to the Bowen-Gunnedah-Sydney basin system. Aust. J. Earth Sci. 56, 355-379.

2010

- Blewett, R. S., Czarnota, K. & Henson, P. A. 2010. Structural-event framework for the eastern Yilgarn Craton, Western Australia, and its implications for orogenic gold. Precambrian Research 183 203-229
- Carr. L.K., Korsch, R. Jones, L. & Holzschuh, J., 2010. The role of deep seismic reflection data in understanding the architecture and petroleum potential of Australia's onshore sedimentary basins. APPEA Journal 50
- Finlayson, D.M., 2010. A Chronicle of Deep Seismic Profiling across the Australian Continent and its Margins, 1946-2006, D.M. Finlayson, Canberra, pp 255 (available from doug.finlayson@netspeed.com.au).
- Henson, P. A., Blewett, R. S., Roy, I. G., Miller, J. McL. & Czarnota, K. 2010. 4D architecture and tectonic evolution of the Laverton region, eastern Yilgarn Craton, Western Australia. Precambrian Research 183 338-355.
- Willman, C. E.; Korsch, R. J.; Moore, D. H.; Cayley, R. A.; Lisitsin, V. A.; Rawling, T. J.; Morand, V. J.; & O'Shea, P. J. 2010. Crustal-scale fluid pathways and source rocks in the Victorian gold province, Australia; insights from deep seismic reflection profiles. Economic Geology **105,** 895-915.

2011

- Carr, L. K., Korsch, R. J., Preiss, W., Menpes, S., Holzschuh, J. & Costelloe, R., 2011. Structural and stratigraphic architecture of Australia's frontier onshore sedimentary basins; the Arckaringa, Officer, Amadeus, and Georgina Basins. APPEA Journal 51
- Cayley, R., 2011. Exotic crustal block accretion to the eastern Gondwanaland margin in the late Cambrian – Tasmania, the Selwyn Block, and implications for the Cambrian-Silurian evolution of the Ross, Delamarian and Lachlan orogens, Gondwana Res. 19, 628-649. Cayley, R. A., Korsch, R. J., Moore, D. H., Costelloe, R. D., Nakamura, A., Willman, C. E., Rawling, T. J., Morand, V. J., Skladzien, P. B. & O'Shea, P. J., 2011. Crustal architecture of central Victoria; results from the 2006 deep crustal reflection seismic survey. Aust. J. Earth Sci. 58, 113-156.

- Kennett, B.L.N., Salmon, M., Saygin, E. & AusMoho Working Group, 2011. AusMoho: the variation in Moho depth in Australia, Geophys. J. Int., 187, 946-958.
- Korsch, R. J., Struckmeyer, H. I. M., Kirkby, A., Hutton, L. J., Carr, L. K., Hoffmann, K. L., Chopping, R., Roy, I. G.; Fitzell, M.; Totterdell, J. M.; Nicoll, M. G. & Talebi, B. 2011. Energy potential of the Millungera Basin; a newly discovered basin in north Queensland. APPEA Journal **51**, 295-332

2012

Kennett B.L.N. & Blewett R. S. 2012. Lithospheric Framework of Australia, *Episodes*, 35, 9-22. Korsch, R. J., Huston, D. L., Henderson, R. A., Blewett, R. S., Withnall, I. W., Fergusson, C. L., Collins, W. J., Saygin, E.; Kositcin, N.; Meixner, A. J.; Chopping, R.; Henson, P. A.; Champion, D. C.; Hutton, L. J.; Wormald, R.; Holzschuh, J. & Costelloe, R. D. 2012. Crustal architecture and geodynamics of north Queensland, Australia; insights from deep seismic reflection profiling. Tectonophysics 572-573, 76-99.

2013

- Fontaine F., Tkalčić H. & Kennett B.L.N., (2013) Imaging crustal structure variation across southeastern Australia, Tectonophysics 582, 112-125
- Glen R. A., Korsch R. J., Hegarty R., Saeed A., Poudiom Diomani Y., Costelloe R. D. & Belousova E. 2013. Geodynamic significance of the boundary between the Thomson Orogen and the Lachlan Orogen, northwestern New South Wales and implications for Tasmanide tectonics. Austral. J. Earth Sci., 60, 371-412
- Salmon M, Kennett B.L.N. & Saygin E., (2013) Australian Seismological Reference Model (AuSREM): crustal component, Geophys. J. Int., 192, 190-206.
- Johnson S.P., Thorne A.M., Tyler I.M., Korsch R.J., Kennett B.L.N., Cutten H.N., Goodwin J., Blay O., Blewett R.S., Joly A., Dentith M.C., Aitken A.R.A., Holzschuh J., Salmon M., Reading A., Heinson G., Boren G., Ross J., Costelloe R.D. & Fomin T. (2013) Crustal architecture of the Capricorn Orogen, Western Australia and associated metallogeny, Austral. J. Earth Sci., 60, 681–705.
- Salmon M., Kennett B.L.N., Stern T. & Aitken A.R.A. (2013) The Moho in Australia and New Zealand, Tectonophysics, 609, 288-298.

2014

- Burton G. R. & Trigg S. J. 2014. Geodynamic significance of the boundary between the Thomson Orogen and the Lachlan Orogen, northwestern New South Wales and implications for Tasmanide tectonics. Discussion, Austral. J. Earth Sci., 61, 639-641.
- Glen, R.A., Poudjom Djomani, Y.H., Belousova, E., Hegarty, R., and Korsch, R.J. (2014) Geodynamic significance of the boundary between the Thomson Orogen and the Lachlan Orogen, northwestern New South Wales and implications for Tasmanide tectonics: reply, Austral. J. Earth Sci., 61, 643–657.

- Aitken, A., Banazczyk, S., Dentith, M., Lindsay, M., Shragge, J., Piña-Varas, P., Annetts, A., Austin, J., Ley-Cooper, Y., Monday, T., Kennett, B., Murdie, R., & Yuan, H., (2015) A Major Geophysical Experiment in the Capricorn Orogeny, Western Australia, ASEG-PESA 2015 – Perth, Australia.
- Kennett, B.L.N. & Saygin, E. (2015) The nature of the Moho in Australia from reflection profiling: A review, GeoResJ, 5, 74-91. doi: 10.1016/j.grj.2015.02.001.
- Doublier, M.P., Czarnota, K., Champion, D. C., & Korsch, R.J. (2015) Lithospheric architecture of the Yilgarn Craton: an integrative approach, SGTSG, Calloundra

- Gibson, G.M., Meixner, A.J., Withnall, I.W., Korsch, R.J., Hutton, L.J., Jones, L.E.A., Holzschuh, J., Costelloe, R.D., Henson, P.A., & Saygin, E. (2016) Basin architecture and evolution in the Mount Isa mineral province, northern Australia: Constraints from deep seismic reflection profiling and implications for ore genesis, *Ore Geol. Rev.*, **76**, 414-441 http://dx.doi.org/10.1016/j.oregeorev.2015.07.013
- Huston, D.L., Champion, D.C., Mernagh, T.P., Downes, P.M., Jones, P., Carr, G., Forster, D., & David, V. (2016) Metallogenesis and geodynamics of the Lachlan Orogen: New (and old) insights from spatial and temporal variations in lead isotopes, *Ore Geol. Rev.*, 76, 257-267. http://dx.doi.org/10.1016/j.oregeorev.2015.07.005
- Korsch, R.J. & Doublier, M.P., (2016) Major crustal boundaries of Australia, and their significance in mineral systems targeting, *Ore Geol. Rev.*, **76**, 211-228 http://dx.doi.org/10.1016/j.oregeorev.2015.05.010

Appendix A: Processing and Display Steps:

Each of the panels in this compilation has been constructed from the archived SEGY files at Geoscience Australia, and the associated coordinates for the reflection lines.

The first step in the process was to convert all coordinates, for the individual CDP points, into latitude and longitude referred to the WGS 1984 datum, rather than grid references. In the process a few UTM zone assignments were corrected. By this means all lines can be handled in the same way.

The same coordinate files are used for the construction of the geological maps with line profiles and for the reflection sections. The data base for the geological maps and associated colour scheme were extracted from the 2010 release of the digital 1:1 million geological map of Australia, and the 1:2.5 million map for regional synthesis (Raymond, 2012). The handling of the shape files for both the reflection lines and the geological maps from the geographic information system was achieved using the open source software ogr2ogr [http://www.gdal.org/], linked to the plotting capabilities of Generic Mapping Tools (Wessel & Smith, 1998) to produce Postscript plots. All reflection profiles in a region were plotted onto geological information, so that the configuration of each reflection section relative to other data collection can be seen. The lines are annotated with CDP numbers at 1000 point intervals using the shape files. Some editing has been needed to improve the positioning of the computer-generated text.

The geological maps for the individual panels are plotted at the same scale. A transverse Mercator projection is used for each geological strip with appropriate reference meridian. The grid spacing employed is 0.5 degree in latitude and longitude. For the regional maps differing scales were employed so that they could be reasonably accommodated on a single page. These regional maps use varying Lambert conformal conical projections adapted to the region under consideration.

The archived digital SEGY files for each line, from Geoscience Australia reflection processing (stacked or migrated), were brought into the Seismic Un*x environ- ment (http://www.cwp.mines.edu/cwpcodes/) for modest processing. This was mostly a simple time scaling of amplitudes as described on page 2. scaled files were then plotted using the python script The plot surveys with shapefile.py detailed below, which invokes the psseqy facility from Generic Mapping Tools to produce a Postscript file for the record section.

The bias and clipping applied to the records are adjustable and are specified in the tables for the reflection profiles in each of the areas. These parameters control the appearance of the reflection plot - increased bias produces a lighter plot.

The python script arranges the segmentation of the reflection results into the 220 km segments used in the displays, with annotation of the approximate distance along the profiles derived from the coordinate information. As far as possible the displays of the reflection results are on the same horizontal scale. A constant time scale has been applied to each section with 20s of display plotted in each case, even if the recordings were of lesser or greater duration. The displays are approximately true scale, based on an average r.m.s. velocity of 6 km/s for the crust.

For each profile the reflection section was inserted into a Postscript template, with annotation of line information and acquisition parameters. More work was needed to extract suitable geological strip maps since these needed to follow the reflection line. A standard window was manipulated across a broad area geological plot until the reflection line of interest was suitably bracketed, and this material was added to the Postscript page. Coordinate annotation was then added to the geological strips so that the position of the line can be recognised, even though the orientation might not be standard NS or EW.

References

- Raymond, O.L., 2012. Surface Geology of Australia (1:1M scale dataset) A3 map. Geoscience Australia, Canberra.
- Wessel, P. & Smith, W.H.F., 1998. New, improved version of the Generic Mapping Tools Released, EOS Trans. AGU, 79, 579.

Python script: plot surveys with shapefile.py

#This script reads all of the given files, then applies biasing (if selected), #then computes consecutive cdp points and the distance. #Then plots the section and a corresponding map. import glob, string import os,sys,numpy from osgeo import ogr

import utils plot seav #sys.path.append('/home/kut/research/noise python') *#import corr utils,utilssac*

#Give the name of the input text file, which contains the list of files to be processed segylist='segy list bySURVEY' #Typical format would be like #'/media/tr 3/GA reflection/second phase/L184/AL184/mig 07ga ig1 20s.sgy' #'/media/tr 3/GA reflection/second phase/L184/AL180/mig 07ga ig1 20s.sgy' #___ _____

#Open and read the contents segyfile=open(segylist,'r').readlines() segyfile=[segyfile[i].strip() for i in range(len(segyfile))]

#Give the name of the shape file, which contains the information of the full paths of the files, and corresponding coordinate files #shpfil='/media/local 300/research/australia crustal thickness/reflection processing scripts/matlab ba sed picking/coordinates/test.shp' shpfil='test.shp' #-----

#Output directory for PS files dirout='TEST PLOTS' os.system('mkdir '+dirout) #------

#Define the plotting parameters-FOR MORE INFORMATION CONSULT pssegy man pages (GMT function). #params='-D3 -F -N -B-1.4 -C95 -M' #ORIGINAL params='-D3 -F -N -B-1.47 -C85 -M' #Migrated standard #params='-D3 -Fred -N -B-1.4 -C95 -M' #This one will plot section in red.

cdps='all' #Cdps to choose #if it is all, everything will be plotted, if 5000:6000 is given, only these ones will be plotted #cdps='2001:15000' #Cdps to choose #if it is all, everything will be plotted, if 5000:6000 is given, only these ones will be plotted

#cdps='11000:22000' #Cdps to choose #if it is all, everything will be plotted,

#if 5000:6000 is given, only these ones will be plotted

tmin=0 #Minimum time to plot tmax=20 #Maximum time to plot scal=0.1 #Scaling

#_____

#We need to define a max X length, according to this plotting should be divided.

#Define the KM tick marks. kms=[] kms.append(0) #kms.append(50) kms.append(100) kms.append(200) kms.append(300) kms.append(400) kms.append(500) kms.append(600)

#-----

#Shape File Manipulation for getting the right info driver = ogr.GetDriverByName('ESRI Shapefile') map = driver.Open(shpfil) #Get the first layer layer = map.GetLayer(0) nlay = map.GetLayerCount() layer_list = [map.GetLayer(i) for i in xrange(nlay)] layer namelist = [map.GetLayer(i).GetName() for i in xrange(nlay)]

#print segyfile for i in range(len(segyfile)): #Select the file and corresponding attributes from the SHAPEFILE srstr="select * from test where SEGY Loc in ("+segyfile[i]+"")" print srstr,i,' of ',len(segyfile) #Start searching the all attributes for the given file name reslayer = map.ExecuteSQL(srstr) numFeatures = reslayer.GetFeatureCount() #_____ cdp=[] lat=[] lon=[] #Print the results by moving along the feautures for j in range(0,numFeatures): reslayerfeat=reslayer.GetNextFeature() geometry = reslayerfeat.GetGeometryRef() cdp.append(float(reslayerfeat.GetField('CDP'))) lat.append(float(geometry.GetX())) lon.append(float(geometry.GetY())) reslayer.ResetReading() #Reset the layer.

#Sort the CDP and corresponding coordinates indsrt=numpy.argsort(cdp) #Get the indices of the sorted CDP in ascending order #Give the sorted CDPS, lats and lons to the plotting program, plotting will pick the right one cdpsorted=[str(int(cdp[indsrt[ii]])) for ii in range(len(indsrt))]

latsorted=[lat[indsrt[ii]] for ii in range(len(indsrt))] lonsorted=[lon[indsrt[ii]] for ii in range(len(indsrt))] #------

splts=segyfile[i].split('/') #Create the output file name plotout=dirout+'/'+splts[-1].replace('.sgy',")+"_"+splts[-2]+".ps" print plotout seg_len=220.0 #Segment Length #Plot Chosen Files utils_plot_segy.plot_segy_plain_segments(segyfile[i],params,plotout,cdpsorted,latsorted,lonsorted,cdps ,tmin,tmax,scal,kms,seg_len) #------

#Destroy the opened Shape objects
map.Destroy()
reslayerfeat.Destroy()

Appendix B: Line Summary:

Year	Project	Survey Name	GA Line Code	Line Length [km]	No of Channels	Nominal Shot interval [m]	Group interval [m]	Nominal Fold	Record length [sec]	Partners	Processors	Geocat#
1976	L108	Galilee Basin, QLD, 1976	BMR76-01	56.50	24	166.67	83.33	6	6, 10		D.Johnstone	74977
			BMR76-02	35.30	24	166.67	41.66, 83.33	6	6			
			BMR76-03	88.67	24	166.67	83.33	6	6, 20			
			BMR76-04	40.00	24	166.67	83.33	1, 6	6			
1978	L111	Denison Trough, QLD, 1978	BMR78-01	28.66	48	166.67	41.66	6	6, 8, 16		D.Johnstone	74974
			BMR78-02	123.40	48	166.67	41.66	6	6, 8, 16			
			BMR78-03	38.33	48	166.67	41.66	6	6			
			BMR78-06	47.78	48	166.67	41.66	6	6			
			BMR78-07	32.20	48	166.67	41.66	6	6, 16			
			BMR78-08	33.91	48	166.67	41.66	6	6, 8,16			
1979	L112	Denison Trough, QLD, 1979	BMR79-04E	38.79	48	166.67	41.66	6	6		D.Johnstone	74973
			BMR79-05	17.25	48	166.67	41.66	6	6			
			BMR79-09	26.16	48	166.67	41.66	6	6			
1980	L115	Central Eromanga Basin, QLD, 1980	BMR80-01	183.33	48	333.33	41.66, 83.33	6	20		D.Johnstone	74972
			BMR80-03	148.66	48	333.33	83.33	6	20			
			BMR80-04	16.00	48	333.33	83.33	6	20			
			BMR80-05	78.33	48	333.33	83.33	6	20			
			BMR80-06	141.99	48	333.33	83.33	6	20			
			BMR80-08	55.33	48	333.33	83.33	6	20			
1981	L116	Central Eromanga Basin, QLD, 1981	BMR81-7E	31.67	48	333.33	83.33	6	20		D.Johnstone	74971
			BMR81-7W	59.66	48	333.33	83.33	6	20			
			BMR81-09	83.16	48	333.33	83.33	6	20			
			BMR81-10	200.99	48	333.33	83.33	6	20			
			BMR81-12	30.33	48	333.33	83.33	6	20			
1982	L118	Central Eromanga Basin, QLD, 1982	BMR82-02	108.66	48	333.33	83.33	6	20		D.Johnstone	74970
			BMR82-11	172.41	48	333.33	83.33	6	20			
			BMR82-11A	11.50	48	333.33	83.33	6	20			
			BMR82-13	72.33	48	333.33	83.33	6	20			

Year	Project	Survey Name	GA Line Code	Line Length [km]	No of Channels	Nominal Shot interval [m]	Group interval [m]	Nominal Fold	Record length [sec]	Partners	Processors	Geocat#
1984	L120	South East Queensland, QLD, 1984	BMR84-14	667.22	48	333.33	83.33	6	20, 39		D.Johnstone	74969
			BMR84-16A	43.78	48	161	41.66	6	20			
			BMR84-16B	90.66	48	333.33	83.33	6	20			
1985	L121	Central Australia, NT, 1985	BMR85-01A	133	48	333.33	83.33	6	20		B.Goleby	74968
			BMR85-01B	73	48	333.33	83.33	6	24		C.Wright	
			BMR85-01C	29	48	333.33	83.33	6	24			
			BMR85-01D	66	48	333.33	83.33	6	24			
			BMR85-01E	119	48	333.33	83.33	6	24			
			BMR85-02	40	48	333.33	83.33	6	20			
1986	L123	South East Queensland, QLD, 1986	BMR86-15	21.66	96	360	60	8	20		D.Johnstone	74962
			BMR86-17	58.38	96	360	60	8	20			
			BMR86-18	68.88	96	360	60	8	20			
			BMR86-19	24.24	96	360	60	8	20			
1988	L126	Canning Basin, WA, 1988	BMR88-01	414.00	96	200	50	12	20		M.Sexton, T.Barton, D.Johnstone	74956
			BMR88-02	43.00	96	200	50	12	20			
			BMR88-03	188.00	96	200	50	12	20			
1989	L129	Bowen Basin, QLD, 1989	BMR89-B1A	129.96	96	360	60	8	20		K.Wake-Dyster	74954
			BMR89-B1B	27.60	96	360	60	8	20			
			BMR89-B2	55.32	96	360	60	8	20			
			BMR89-B3	41.22	96	360	60	8	20			
1080	1 1 3 0	Cobar NSW 1989		31.02	96	360	60	8	20		R Costelloe	7/053
1909	L130		BMR89_C02	59.64	90	360	60	8	20		IX.COStelloe	74300
			BMR89-C03A	19.04	96	360	60	8	20			
			BMR89-C03B	23 34	96	360	60	8	20			
			BMR89-C03C	49.98	96	360	60	8	20			
1991	L131	Gunnedah Basin, NSW, 1991	BMR91-G01	253.14	96	360	60	8	20		K.Wake-Dyster, D.Johnstone	74952

Year	Project	Survey Name	GA Line Code	Line Length [km]	No of Channels	Nominal Shot interval [m]	Group interval M]	Nominal Fold	Record length [sec]	Partners	Processors	Geocat#
1991	L132	Eastern Goldfields, WA, 1991	BMR91-EGF01	208.96	96	240	40	12	20		B.Goleby, A.Owen	74951
			BMR91-EGF02	27.64	96	160	40	12	20			
			BMR91-EGF03	21.00	96	160	40	12	20			
1992	L135	Otway Basin, VIC and SA, 1992	BMR92-OT1	65.95	120	300	50	10	20		K.Wake-Dyster	74947
			BMR92-OT2	33.15	120	300	50	10	20			
			BMR92-OT3	58.35	120	300	50	10	20			
			BMR92-OT4	87.70	120	300	50	10	20			
			BMR92-OT5	101.05	120	300	50	10	20			
			BMR92-OT6	34.85	120	300	50	10	20			
			BMR92-OT7	82.00	120	300	50	10	20			
1993	137	Officer Basin SA 1993	93AGS-01	99 16	120	240	40	10	20		.lleven A Owen	74944
1000	2107		93AGS-03	177 16	120	240	40	10	20			7 10 11
			93AGS-04	80.20	120	240	40	10	20			
			93AGS-05	100.20	120	240	40	10	20			
			93AGS-06	94.12	120	240	40	10	20			
1994	L138	Mt Isa, QLD, 1994	94MTI-01	255.52	120	240	40	10	20	GSQ, pmd*CRC	L.Jones	74943
			94MTI-02	31.64	120	240	40	10	20	Mimex		
1995	L139	TASGO, TAS, 1995	95AGS-T1	49.20	120	120	40	20	20	TDR	T.Barton	74942
			95AGS-T2	36.48	120	120	40	20	20			
			95AGS-T3	25.84	120	240	40	10	20			
			95AGS-T4	16.32	120	240	40	10	20			
			95AGS-T5	4.80	120	240	40	10	20			
4000				50.00	400	040	40	40			TEauria	74000
1996 & 1997	L141 & L143	and 1997	96AGS-BH1A	52.96	120	240	40	10	20	AGCRC	I.Fomin	74886
			96AGS-BH1B	134.56	120	240	40	10	20			
			97AGS-BH1B	27.44	120	240	40	10	20			
			96AGS-BH2	24.28	120	240	40	10	20			
			96AGS-BH3	35.08	120	240	40	10	20			
1997	L142	Victoria Grampians, VIC,	97AGS-V1	37.20	120	240	40	10	20	AGCRC	T.Barton	74887
		1997	97AGS-V2	26.80	120	240	40	10	20			

Year	Project	Survey Name	GA Line Code	Line Length [km]	No of Channels	Nominal Shot interval [m]	Group interval [m]	Nominal Fold	Record length [sec]	Partners	Processors	Geocat#
1997	L144	Hamersley Basin, WA, 1997	97AGS-HB1	23.20	120	320	40	8	20	UWA	L.Jones, B.Goleby	74885
			97AGS-HB2	41.16	120	240	40	10	20			
-			97AGS-HB3	32.80	120	320	40	8	20			
			97AGS-SD1	38.84	120	240	40	10	20			
1997	L146	Eastern Lachlan, NSW, 1997	97AGS-EL1	32.05	120	300	50	10	20	AGCRC, NSW DMR	L.Jones	74883
			97AGS-EL2	26.90	120	240	50	10	20			
			97AGS-EL3	46.55	120	240	50	10	20			
1999	L148	CABGAS, NSW, 1999	99AGS-C1	160.10	240	30	30	120	16	NSW DMR	J.Leven	74882
1999	L150	Yilgarn, WA, 1999	99AGS-Y1	38.68	240	40, 80	40	60, 120	16	AGCRC	T.Fomin, A.Owen	74880
		····go, ···· , ·····	99AGS-Y2	37.56	240	80	40	60	16			
			99AGS-Y3	22.28	240	80	40	60	16			
			99AGS-Y4	62.44	240	80	40	60	16			
			99AGS-Y5	28.84	240	80	40	60	16			
1999	L151	Lachlan, NSW, 1999	99AGS-L1	47.32	240	40	40	120	16	AGCRC, NSW DMR	L.Jones, D.Johnstone	74879
			99AGS-L2	50.52	240	40	40	120	16			
			99AGS-L3	89.64	240	40, 80	40	60, 120	16			
2001	L154	Northern Yilgarn, WA, 2001	01AGS-NY1	384.00	240	80	40	60	16, 18	GSWA, pmd*CRC	L.Jones, E.Chudyk, T.Barton,	40495 & 40496
			01AGS-NY3	52.62	240	30, 60	30	60, 120	16			
2002	L157	Batten Trough, NT, 2002	02GA-BT1	127.60	240	40, 80	40	60, 120	20, 22	NTGS, pmd*CRC	D.Johnstone	74876
			02GA-BT2	17.20	240	80	40	60	20	NTGS, pmd*CRC, AngloAmerican		
2003	1 163	Gawler SA 2003		103 36	240	40.80	40	60 120	18 20		l lones	74860
2003			03GA-OD2	57.44	240	80	40	60	18		2.00165	1003
2003/4	L164	Curnamona, SA, 2003 and 2004	03GA-CU1	197.50	240	80	40	60	18	PIRSA, pmd*CRC	T.Fomin	74868

Year	Project	Survey Name	GA Line Code	Line Length [km]	No of Channels	Nominal Shot interval [m]	Group interval [m]	Nominal Fold	Record length [sec]	Partners	Processors	Geocat#
2005	L171	Tanami, WA and NT, 2005	05GA-T1	354.24	240	80	40	60	20, 22, 24	NTGS, GSWA, Newmont Australia, Tanami Gold NL	D.Johnstone, B.Goleby, L.Jones	74860
			05GA-T2	101.80	240	80	40	60	20			
			05GA-T3	179.20	240	80	40	60	20			+
			05GA-T4	84.40	240	80	40	60	20			
2005	L173	Thomson-Lachlan, NSW, 2005	05GA-TL1	99.20	240	80, 40	40	60, 120	22, 20	NSW DMR, pmd*CRC	R.Costelloe	74857
			05GA-TL2	115.52	240	80, 40	40	60, 120	18, 20, 22			
			05GA-TL3	73.20	240	80, 40	40	60, 120	22			
2006	L178	Central Victoria, VIC, 2006	06GA-V1	140.76	240	80	40	60	20	pmd*CRC, GSV	R.Costelloe, A.Nakamura	74819
			06GA-V2	106.56	240	80	40	60	20			
			06GA-V3	72.08	240	80	40	60	20			
			06GA-V4	78.24	240	80	40	60	20			
2006	L180	Mt Isa, QLD, 2006	06GA-M1	74.84	240	80	40	60	20	GSQ, pmd*CRC, ZINIFEX	H.Tassell, L.Jones, R.Costelloe, J.Holzschuh, E.Saygin	69674
			06GA-M2	62.00	240	80	40	60	20			
			06GA-M3	120.92	240	80	40	60	20			
			06GA-M4	200.00	240	80	40	60	20			
			06GA-M5	159.52	240	80	40	60	20			
			06GA-M6	283.20	240	80	40	60	20			
2007	L184	Mt Isa-Georgetown- Charters Towers, QLD, 2007	07GA-IG1	439.56	240	80	40	60	20	GSQ	A.Nakamura	69254
			07GA-IG2	243.04	300	80	40	75	20			
2007	L185	Georgetown Charters Towers, QLD, 2007	07GA-GC1	492.92	300	80	40	75	20	GSQ	J.Holzschuh, E.Saygin	69255
2007	L186	Far North Queensland, QLD, 2007	07GA-A1	205.40	300	80	40	75	20	AuScope, GSQ	H.Tassell, R.Costelloe	69256

Year	Project	Survey Name	GA Line Code	Line Length [km]	No of Channels	Nominal Shot interval [m]	Group interval [m]	Nominal Fold	Record length [sec]	Partners	Processors	Geocat#
2008 and 2009	L188	Rankins Springs, NSW, 2008 and 2009	08GA-RS1	126.24	300	80	40	75	22	NSW DPI	L.Jones, T.Fomin	68234
-			08GA-RS2	106.28	300	80	40	75	22			
			09GA-RS2	43.76	300	80	40	75	22			
2008	L189	Gawler-Curnamona- Arrowie, SA, 2008	08GA-G1	253.48	300	80	40	75	20	PIRSA	J.Holzschuh, E.Saygin, A.Nakamura	69460
			08GA-A1	60.40	300	80	40	75	20			
			08GA-C1	262.16	300	80	40	75	20			
2008	L190	GOMA, NT and SA, 2008	08GA-OM1	634.52	300	80	40	75	20	NTGS, PIRSA, AuScope	R.Costelloe, J.Holzschuh	70579
2009	L191	Curnamona-Gawler Link, SA, 2009	09GA-CG1	144.44	300	80	40	75	20	PIRSA	T.Fomin	70391
2009	L192	Georgina-Arunta, NT, 2009	09GA-GA1	372.92	300	80	40	75	20	NTGS	A.Nakamura	71425
2009	L193	Southern Delamerian, VIC, 2009	09GA-SD1	147.40	300	80	40	75	20	AuScope, GSV, PIRSA	L.Jones	71389
			09GA-SD2	48.60	300	80	40	75	20			
2009	L194	Ararat, VIC, 2009	09GA-AR1	69.64	300	80	40	75	20	GSV	L.Jones	71390
2010	L195	Capricorn, WA, 2010	10GA-CP1	198.00	300	80	40	75	20	GSWA, AuScope	R.Costelloe, J.Holzschuh, T.Fomin	72863
			10GA-CP2	276.80	300	80	40	75	20			
			10GA-CP3	106.40	300	80	40	75	20			
2010	L196	Youanmi, WA, 2010	10GA-YU1	302.16	300	40, 80	40	75, 150	20	GSWA, Royalties for Regions	R.Costelloe, L.Jones	74423
			10GA-YU2	282.80	300	40, 80	40	75, 150	20			
			10GA-YU3	109.84	300	40, 80	40	75, 150	20			
2011	L199	YOM, WA, 2011	11GA-YO1	484.24	300	80	40	75	20 & 22	GSWA, Royalties for Regions	J.Holzschuh	75097
2011	L200	Southern Carnarvon, WA, 2011	11GA-SC1	259.32	300	80	40	75	20	GSWA	Velseis, R.Costelloe	72891

Year	Project	Survey Name	GA Line Code	Line Length [km]	No of Channels	Nominal Shot interval [m]	Group interval [m]	Nominal Fold	Record length [sec]	Partners	Processors	Geocat#
2012	L201	Albany-Fraser Orogen, WA, 2012	12GA-AF1	114.04	300	80	40	75	20	GSWA, WA Royalties for Regions	R.Costelloe, J.Holzschuh, T.Fomin	78966
			12GA-AF2	158.40	300	80	40	75	20			
			12GA-AF3	319.12	300	80	40	75	20			
			12GA-T1	80.32	300	80	40	75	20	AngloGold		
2013	L202	Yathong Trough, NSW, 2013	13GA-YT1	97.80	300	80	40	75	22	GSNSW	Velseis	89798
			13GA-YT2	131.80	300	80	40	75	20			
2013/2014	L203	Eucla Gawler, WA/SA, 2013-2014	13GA-EG1	834.06	600	80	20	75	20	GSWA, WA Royalties for Regions, GSSA, AuScope	J.Holzschuh	89637
2014	L204	Southeastern Mt Isa, Qld, 2014	14GA-CF1	669.3	600	80	20	75	20	GSQ	R.Costelloe	89638
2014	L205	Canning Coastal, WA, 2014	14GA-C1	562.36	600	40	20	150	20	GSWA	DownUnder	89799
			14GA-C2	143.28	600	40	20	150	20			
2014	L207	Boulia, Qld, 2014-2015	14GA-CF2	368.72	600	80	20	75	20	GSQ	DownUnder	
			14GA-CF3	338.88	600	80	20	75	20			
2015			15GA-CF3	139.60	600	80	20	75	20			

Abbreviations: for partner organisations

- PIRSA Primary Industries and Resources South Australia
- GSSA Geological Survey South Australia
- GSWA Geological Survey Western Australia
- Geological Survey of Queensland GSQ
- GSV GeoScience Victoria, Department of Primary Industries
- NTGS Northern Territory Geological Survey
- NSW DPI New South Wales Department of Primary Industries
- New South Wales Department of Mineral Resources NSW DMR

TDR Tasmania Development and Resources An organisation for a National Earth Science Infrastructure Program AuScope UWA University of Western Australia AGCRC Australian Geodynamics Cooperative Research Centre pmd*CRC Predictive Mineral Discovery Cooperative Research Centre Mt Isa Mines Exploration Pty. Ltd. Mimex AngloGold Ashanti Limited AngloGold