
Shelve in
Mathematical Sciences

User level:
Intermediate–Advanced

Effi cient Learning Machines
Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying
relationships between information and data and for predicting future events by processing existing information
to train models. Effi cient Learning Machines explores the major topics of machine learning, including knowledge
discovery, classifi cations, genetic algorithms, neural networking, kernel methods, and biologically-inspired
techniques.

Mariette Awad and Rahul Khanna’s synthetic approach weaves together the theoretical exposition, design
principles, and practical applications of effi cient machine learning. Their experiential emphasis, expressed in their
close analysis of sample algorithms throughout the book, aims to equip engineers, students of engineering, and
system designers to design and create new and more effi cient machine learning systems. Readers of Effi cient
Learning Machines will learn how to recognize and analyze the problems that machine learning technology can
solve for them, how to implement and deploy standard solutions to sample problems, and how to design new
systems and solutions.

Advances in computing performance, storage, memory, unstructured information retrieval, and cloud computing
have coevolved with a new generation of machine learning paradigms and big data analytics, which the authors
present in the conceptual context of their traditional precursors. Awad and Khanna explore current developments
in the deep learning techniques of deep neural networks, hierarchical temporal memory, and cortical algorithms.

Nature suggests sophisticated learning techniques that deploy simple rules to generate highly intelligent
and organized behaviors with adaptive, evolutionary, and distributed properties. The authors examine the most
popular biologically-inspired algorithms, together with a sample application to distributed datacenter management.
They also discuss machine learning techniques for addressing problems of multi-objective optimization in which
solutions in real-world systems are constrained and evaluated based on how well they perform with respect to
multiple objectives in aggregate. Two chapters on support vector machines and their extensions focus on recent
improvements to the classifi cation and regression techniques at the core of machine learning.

Effi cient Learning Machines systematically guides readers to an understanding and practical mastery of the
following techniques:

• The machine learning techniques most commonly used to solve complex real-world problems
• Recent improvements to classifi cation and regression techniques
• The application of bio-inspired techniques to real-life problems
• New deep learning techniques that exploit advances in computing performance and storage
• Machine learning techniques for solving multi-objective optimization problems with

nondominated methods that minimize distance to the Pareto optimality

Awad
Khanna

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

9 781430 259893

53999
ISBN 978-1-4302-5989-3

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Authors���xv

About the Technical Reviewers��xvii

Acknowledgments���xix

Chapter 1: Machine Learning■■ ��� 1

Chapter 2: Machine Learning and Knowledge Discovery■■ ������������������������������������� 19

Chapter 3: Support Vector Machines for Classification■■ �� 39

Chapter 4: Support Vector Regression■■ ��� 67

Chapter 5: Hidden Markov Model■■ ��� 81

Chapter 6: Bioinspired Computing: Swarm Intelligence■■ ������������������������������������� 105

Chapter 7: Deep Neural Networks■■ �� 127

Chapter 8: Cortical Algorithms■■ ��� 149

Chapter 9: Deep Learning■■ ��� 167

Chapter 10: Multiobjective Optimization■■ �� 185

Chapter 11: Machine Learning in Action: Examples■■ ��� 209

Index�� 241

1

Chapter 1

Machine Learning

Nature is a self-made machine, more perfectly automated than any automated machine.
To create something in the image of nature is to create a machine, and it was by learning
the inner working of nature that man became a builder of machines.

—Eric Hoffer, Reflections on the Human Condition

Machine learning (ML) is a branch of artificial intelligence that systematically applies algorithms to
synthesize the underlying relationships among data and information. For example, ML systems can be
trained on automatic speech recognition systems (such as iPhone’s Siri) to convert acoustic information in a
sequence of speech data into semantic structure expressed in the form of a string of words.

ML is already finding widespread uses in web search, ad placement, credit scoring, stock market
prediction, gene sequence analysis, behavior analysis, smart coupons, drug development, weather
forecasting, big data analytics, and many more applications. ML will play a decisive role in the development
of a host of user-centric innovations.

ML owes its burgeoning adoption to its ability to characterize underlying relationships within large
arrays of data in ways that solve problems in big data analytics, behavioral pattern recognition, and
information evolution. ML systems can moreover be trained to categorize the changing conditions of a
process so as to model variations in operating behavior. As bodies of knowledge evolve under the influence
of new ideas and technologies, ML systems can identify disruptions to the existing models and redesign and
retrain themselves to adapt to and coevolve with the new knowledge.

The computational characteristic of ML is to generalize the training experience (or examples) and
output a hypothesis that estimates the target function. The generalization attribute of ML allows the system
to perform well on unseen data instances by accurately predicting the future data. Unlike other optimization
problems, ML does not have a well-defined function that can be optimized. Instead, training errors serve
as a catalyst to test learning errors. The process of generalization requires classifiers that input discrete or
continuous feature vectors and output a class.

The goal of ML is to predict future events or scenarios that are unknown to the computer. In 1959,
Arthur Samuel described ML as the “field of study that gives computers the ability to learn without
being explicitly programmed” (Samuel 1959). He concluded that programming computers to learn from
experience should eventually eliminate the need for much of this detailed programming effort. According
to Tom M. Mitchell’s definition of ML: “A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P,
improves with experience E.” Alan Turing’s seminal paper (Turing 1950) introduced a benchmark standard
for demonstrating machine intelligence, such that a machine has to be intelligent and responsive in a
manner that cannot be differentiated from that of a human being.

Chapter 1 ■ Machine Learning

2

The learning process plays a crucial role in generalizing the problem by acting on its historical experience.
Experience exists in the form of training datasets, which aid in achieving accurate results on new and unseen
tasks. The training datasets encompass an existing problem domain that the learner uses to build a general
model about that domain. This enables the model to generate largely accurate predictions in new cases.

Key Terminology
To facilitate the reader’s understanding of the concept of ML, this section defines and discusses some key
multidisciplinary conceptual terms in relation to ML.

•	 classifier. A method that receives a new input as an unlabeled instance of an
observation or feature and identifies a category or class to which it belongs. Many
commonly used classifiers employ statistical inference (probability measure) to
categorize the best label for a given instance.

•	 confusion matrix (aka error matrix). A matrix that visualizes the performance of
the classification algorithm using the data in the matrix. It compares the predicted
classification against the actual classification in the form of false positive, true
positive, false negative and true negative information. A confusion matrix for
a two-class classifier system (Kohavi and Provost, 1998) follows:

•	 accuracy (aka error rate). The rate of correct (or incorrect) predictions made by the
model over a dataset. Accuracy is usually estimated by using an independent test set
that was not used at any time during the learning process. More complex accuracy
estimation techniques, such as cross-validation and bootstrapping, are commonly
used, especially with datasets containing a small number of instances.

Chapter 1 ■ Machine Learning

3

			     Accuracy (AC) =
+

+ + +
TP TN

TP TN FN FP
			 (1-1)

				   Precision (P) =
+

TP

TP FP
			 (1-2)

			    Recall R true positive rate,() =
+

TP

TP FN
		   	   (1-3)

				   F Measure- =
+()× ×

× +

b

b

2

2

1 P R

P R
, 			   (1-4)

where b has a value from 0 to infinity (∞) and is used to control the weight assigned
to P and R.

•	 cost. The measurement of performance (or accuracy) of a model that predicts (or
evaluates) the outcome for an established result; in other words, that quantifies the
deviation between predicted and actual values (or class labels). An optimization
function attempts to minimize the cost function.

•	 cross-validation. A verification technique that evaluates the generalization ability
of a model for an independent dataset. It defines a dataset that is used for testing the
trained model during the training phase for overfitting. Cross-validation can also be used
to evaluate the performance of various prediction functions. In k-fold cross-validation,
the training dataset is arbitrarily partitioned into k mutually exclusive subsamples
(or folds) of equal sizes. The model is trained k times (or folds), where each iteration
uses one of the k subsamples for testing (cross-validating), and the remaining k-1
subsamples are applied toward training the model. The k results of cross-validation
are averaged to estimate the accuracy as a single estimation.

•	 data mining. The process of knowledge discovery (q.v.) or pattern detection in a
large dataset. The methods involved in data mining aid in extracting the accurate
data and transforming it to a known structure for further evaluation.

•	 dataset. A collection of data that conform to a schema with no ordering
requirements. In a typical dataset, each column represents a feature and each row
represents a member of the dataset.

•	 dimension. A set of attributes that defines a property. The primary functions of
dimension are filtering, classification, and grouping.

•	 induction algorithm. An algorithm that uses the training dataset to generate a
model that generalizes beyond the training dataset.

•	 instance. An object characterized by feature vectors from which the model is either
trained for generalization or used for prediction.

•	 knowledge discovery. The process of abstracting knowledge from structured or
unstructured sources to serve as the basis for further exploration. Such knowledge is
collectively represented as a schema and can be condensed in the form of a model
or models to which queries can be made for statistical prediction, evaluation, and
further knowledge discovery.

Chapter 1 ■ Machine Learning

4

•	 model. A structure that summarizes a dataset for description or prediction. Each
model can be tuned to the specific requirements of an application. Applications
in big data have large datasets with many predictors and features that are too
complex for a simple parametric model to extract useful information. The learning
process synthesizes the parameters and the structures of a model from a given
dataset. Models may be generally categorized as either parametric (described by
a finite set of parameters, such that future predictions are independent of the new
dataset) or nonparametric (described by an infinite set of parameters, such that
the data distribution cannot be expressed in terms of a finite set of parameters).
Nonparametric models are simple and flexible, and make fewer assumptions, but
they require larger datasets to derive accurate conclusions.

•	 online analytical processing (OLAP). An approach for resolving multidimensional
analytical queries. Such queries index into the data with two or more attributes (or
dimensions). OLAP encompasses a broad class of business intelligence data and is
usually synonymous with multidimensional OLAP (MOLAP). OLAP engines facilitate
the exploration of multidimensional data interactively from several perspectives,
thereby allowing for complex analytical and ad hoc queries with a rapid execution
time. OLAP commonly uses intermediate data structures to store precalculated
results on multidimensional data, allowing fast computation. Relational OLAP
(ROLAP) uses relational databases of the base data and the dimension tables.

•	 schema. A high-level specification of a dataset’s attributes and properties.

•	 supervised learning. Learning techniques that extract associations between
independent attributes and a designated dependent attribute (the label). Supervised
learning uses a training dataset to develop a prediction model by consuming
input data and output values. The model can then make predictions of the output
values for a new dataset. The performance of models developed using supervised
learning depends upon the size and variance of the training dataset to achieve
better generalization and greater predictive power for new datasets. Most induction
algorithms fall into the supervised learning category.

•	 unsupervised learning. Learning techniques that group instances without a
prespecified dependent attribute. This technique generally involves learning
structured patterns in the data by rejecting pure unstructured noise. Clustering and
dimensionality reduction algorithms are usually unsupervised.

•	 feature vector. An n-dimensional numerical vector of explanatory variables
representing an instance of some object that facilitates processing and statistical
analysis. Feature vectors are often weighted to construct a predictor function that
is used to evaluate the quality or fitness of the prediction. The dimensionality of a
feature vector can be reduced by various dimensionality reduction techniques, such
as principal component analysis (PCA), multilinear subspace reduction, isomaps,
and latent semantic analysis (LSA). The vector space associated with these vectors is
often called the feature space.

Chapter 1 ■ Machine Learning

5

Developing a Learning Machine
Machine learning aids in the development of programs that improve their performance for a given task
through experience and training. Many big data applications leverage ML to operate at highest efficiency. The
sheer volume, diversity, and speed of data flow have made it impracticable to exploit the natural capability
of human beings to analyze data in real time. The surge in social networking and the wide use of Internet-
based applications have resulted not only in greater volume of data, but also increased complexity of data. To
preserve data resolution and avoid data loss, these streams of data need to be analyzed in real time.

The heterogeneity of the big data stream and the massive computing power we possess today present
us with abundant opportunities to foster learning methodologies that can identify best practices for a given
business problem. The sophistication of modern computing machines can handle large data volumes,
greater complexity, and terabytes of storage. Additionally, intelligent program-flows that run on these
machines can process and combine many such complex data streams to develop predictive models and
extract intrinsic patterns in otherwise noisy data. When you need to predict or forecast a target value,
supervised learning is the appropriate choice. The next step is to decide, depending on the target value,
between clustering (in the case of discrete target value) and regression (in the case of numerical target value).

You start the development of ML by identifying all the metrics that are critical to a decision process. The
processes of ML synthesize models for optimizing the metrics. Because the metrics are essential to developing
the solution for a given decision process, they must be selected carefully during conceptual stages.

It is also important to judge whether ML is the suitable approach for solving a given problem. By its
nature, ML cannot deliver perfect accuracy. For solutions requiring highly accurate results in a bounded
time period, ML may not be the preferred approach. In general, the following conditions are favorable to
the application of ML: (a) very high accuracy is not desired; (b) large volumes of data contain undiscovered
patterns or information to be synthesized; (c) the problem itself is not very well understood owing to lack
of knowledge or historical information as a basis for developing suitable algorithms; and (d) the problem
needs to adapt to changing environmental conditions.

The process of developing ML algorithms may be decomposed into the following steps:

	 1.	 Collect the data. Select the subset of all available data attributes that might be
useful in solving the problem. Selecting all the available data may be unnecessary
or counterproductive. Depending upon the problem, data can either be retrieved
through a data-stream API (such as a CPU performance counters) or synthesized
by combining multiple data streams. In some cases, the input data streams,
whether raw or synthetic, may be statistically preprocessed to improve usage or
reduce bandwidth.

	 2.	 Preprocess the Data. Present the data in a manner that is understood by the
consumer of the data. Preprocessing consists of the following three steps:

i.	 Formatting. The data needs to be presented in a useable format. Using
an industry-standard format enable plugging the solution with multiple
vendors that in turn can mix and match algorithms and data sources such as
XML, HTML, and SOAP.

ii.	 Cleaning. The data needs to be cleaned by removing, substituting, or fixing
corrupt or missing data. In some cases, data needs to be normalized,
discretized, averaged, smoothened, or differentiated for efficient usage. In
other cases, data may need to be transmitted as integers, double precisions,
or strings.

iii.	 Sampling. Data need to be sampled at regular or adaptive intervals in a
manner such that redundancy is minimized without the loss of information
for transmission via communication channels.

Chapter 1 ■ Machine Learning

6

	 3.	 Transform the data. Transform the data specific to the algorithm and the
knowledge of the problem. Transformation can be in the form of feature scaling,
decomposition, or aggregation. Features can be decomposed to extract the useful
components embedded in the data or aggregated to combine multiple instances
into a single feature.

	 4.	 Train the algorithm. Select the training and testing datasets from the transformed
data. An algorithm is trained on the training dataset and evaluated against the
test set. The transformed training dataset is fed to the algorithm for extraction of
knowledge or information. This trained knowledge or information is stored as a
model to be used for cross-validation and actual usage. Unsupervised learning,
having no target value, does not require the training step.

	 5.	 Test the algorithm. Evaluate the algorithm to test its effectiveness and performance.
This step enables quick determination whether any learnable structures can be
identified in the data. A trained model exposed to test dataset is measured against
predictions made on that test dataset which are indicative of the performance
of the model. If the performance of the model needs improvement, repeat the
previous steps by changing the data streams, sampling rates, transformations,
linearizing models, outliers’ removal methodology, and biasing schemes.

	 6.	 Apply reinforcement learning. Most control theoretic applications require a good
feedback mechanism for stable operations. In many cases, the feedback data
are sparse, delayed, or unspecific. In such cases, supervised learning may not be
practical and may be substituted with reinforcement learning (RL). In contrast to
supervised learning, RL employs dynamic performance rebalancing to learn from
the consequences of interactions with the environment, without explicit training.

	 7.	 Execute. Apply the validated model to perform an actual task of prediction. If new
data are encountered, the model is retrained by applying the previous steps. The
process of training may coexist with the real task of predicting future behavior.

Machine Learning Algorithms
Based on underlying mappings between input data and anticipated output presented during the learning
phase of ML, ML algorithms may be classified into the following six categories:

•	 Supervised learning is a learning mechanism that infers the underlying relationship
between the observed data (also called input data) and a target variable
(a dependent variable or label) that is subject to prediction (Figure 1-1). The learning
task uses the labeled training data (training examples) to synthesize the model
function that attempts to generalize the underlying relationship between the feature
vectors (input) and the supervisory signals (output). The feature vectors influence
the direction and magnitude of change in order to improve the overall performance
of the function model. The training data comprise observed input (feature) vectors
and a desired output value (also called the supervisory signal or class label).
A well-trained function model based on a supervised learning algorithm can
accurately predict the class labels for hidden phenomena embedded in unfamiliar
or unobserved data instances. The goal of learning algorithms is to minimize the
error for a given set of inputs (the training set). However, for a poor-quality training
set that is influenced by the accuracy and versatility of the labeled examples, the
model may encounter the problem of overfitting, which typically represents poor
generalization and erroneous classification.

Chapter 1 ■ Machine Learning

7

•	 Unsupervised learning algorithms are designed to discover hidden structures in
unlabeled datasets, in which the desired output is unknown. This mechanism has
found many uses in the areas of data compression, outlier detection, classification,
human learning, and so on. The general approach to learning involves training
through probabilistic data models. Two popular examples of unsupervised learning
are clustering and dimensionality reduction. In general, an unsupervised learning
dataset is composed of inputs x x x xn1 2 3, ,  , but it contains neither target outputs
(as in supervised learning) nor rewards from its environment. The goal of ML in this
case is to hypothesize representations of the input data for efficient decision making,
forecasting, and information filtering and clustering. For example, unsupervised
training can aid in the development of phase-based models in which each phase,
synthesized through an unsupervised learning process, represents a unique
condition for opportunistic tuning of the process. Furthermore, each phase can
act as a state and can be subjected to forecasting for proactive resource allocation
or distribution. Unsupervised learning algorithms centered on a probabilistic
distribution model generally use maximum likelihood estimation (MLE), maximum
a posteriori (MAP), or Bayes methods. Other algorithms that are not based on
probability distribution models may employ statistical measurements, quantization
error, variance preserving, entropy gaps, and so on.

Figure 1-1.  High-level flow of supervised learning

Chapter 1 ■ Machine Learning

8

•	 Semi-supervised learning uses a combination of a small number of labeled and
a large number of unlabeled datasets to generate a model function or classifier.
Because the labeling process of acquired data requires intensive skilled human labor
inputs, it is expensive and impracticable. In contrast, unlabeled data are relatively
inexpensive and readily available. Semi-supervised ML methodology operates
somewhere between the guidelines of unsupervised learning (unlabeled training
data) and supervised learning (labeled training data) and can produce considerable
improvement in learning accuracy. Semi-supervised learning has recently gained
greater prominence, owing to the availability of large quantities of unlabeled data for
diverse applications to web data, messaging data, stock data, retail data, biological
data, images, and so on. This learning methodology can deliver value of practical
and theoretical significance, especially in areas related to human learning, such as
speech, vision, and handwriting, which involve a small amount of direct instruction
and a large amount of unlabeled experience.

•	 Reinforcement learning (RL) methodology involves exploration of an adaptive
sequence of actions or behaviors by an intelligent agent (RL-agent) in a given
environment with a motivation to maximize the cumulative reward (Figure 1-2).
The intelligent agent’s action triggers an observable change in the state of the
environment. The learning technique synthesizes an adaptation model by training
itself for a given set of experimental actions and observed responses to the state of
the environment. In general, this methodology can be viewed as a control-theoretic
trial-and-error learning paradigm with rewards and punishments associated with
a sequence of actions. The RL-agent changes its policy based on the collective
experience and consequent rewards. RL seeks past actions it explored that resulted
in rewards. To build an exhaustive database or model of all the possible action-
reward projections, many unproven actions need to be tried. These untested
actions may have to be attempted multiple times before ascertaining their strength.
Therefore, you have to strike a balance between exploration of new possible actions
and likelihood of failure resulting from those actions. Critical elements of RL include
the following:

The •	 policy is a key component of an RL-agent that maps the control-actions to
the perceived state of the environment.

The •	 critic represents an estimated value function that criticizes the actions that
are made according to existing policy. Alternatively, the critic evaluates the
performance of the current state in response to an action taken according to
current policy. The critic-agent shapes the policy by making continuous and
ongoing corrections.

The •	 reward function estimates the instantaneous desirability of the perceived
state of the environment for an attempted control-action.

•	 Models are planning tools that aid in predicting the future course of action by
contemplating possible future situations.

Chapter 1 ■ Machine Learning

9

•	 Transductive learning (aka transductive inference) attempts to predict exclusive
model functions on specific test cases by using additional observations on the
training dataset in relation to the new cases (Vapnik 1998). A local model is
established by fitting new individual observations (the training data) into a single
point in space—this, in contrast to the global model, in which new data have to
fit into the existing model without postulating any specific information related
to the location of that data point in space. Although the new data may fit into the
global model to a certain extent (with some error), thereby creating a global model
that would represent the entire problem, space is a challenge and may not be
necessary in all cases. In general, if you experience discontinuities during the model
development for a given problem space, you can synthesize multiple models at
the discontinuous boundaries. In this case, newly observed data are the processed
through the model that fulfill the boundary conditions in which the model is valid.

•	 Inductive inference estimates the model function based on the relation of data
to the entire hypothesis space, and uses this model to forecast output values for
examples beyond the training set. These functions can be defined using one of the
many representation schemes, including linear weighted polynomials, logical rules,
and probabilistic descriptions, such as Bayesian networks. Many statistical learning
methods start with initial solutions for the hypothesis space and then evolve them
iteratively to reduce error. Many popular algorithms fall into this category, including
SVMs (Vapnik 1998), neural network (NN) models (Carpenter and Grossberg 1991),
and neuro-fuzzy algorithms (Jang 1993). In certain cases, one may apply a lazy learning
model, in which the generalization process can be an ongoing task that effectively
develops a richer hypothesis space, based on new data applied to the existing model.

Figure 1-2.  High-level flow of reinforcement learning

Chapter 1 ■ Machine Learning

10

Popular Machine Learning Algorithms
This section describes in turn the top 10 most influential data mining algorithms identified by the IEEE
International Conference on Data Mining (ICDM) in December 2006: C4.5, k-means, SVMs, Apriori,
estimation maximization (EM), PageRank, AdaBoost, k–nearest neighbors (k-NN), naive Bayes, and
classification and regression trees (CARTs) (Wu et al. 2008).

C4.5
C4.5 classifiers are one of the most frequently used categories of algorithms in data mining. A C4.5 classifier
inputs a collection of cases wherein each case is a sample preclassified to one of the existing classes. Each
case is described by its n-dimensional vector, representing attributes or features of the sample. The output
of a C4.5 classifier can accurately predict the class of a previously unseen case. C4.5 classification algorithms
generate classifiers that are expressed as decision trees by synthesizing a model based on a tree structure.
Each node in the tree structure characterizes a feature, with corresponding branches representing possible
values connecting features and leaves representing the class that terminates a series of nodes and branches.
The class of an instance can be determined by tracing the path of nodes and branches to the terminating leaf.

Given a set S of instances, C4.5 uses a divide-and-conquer method to grow an initial tree, as follows:

If all the samples in the list •	 S belong to the same class, or if the list S is small, then
create a leaf node for the decision tree and label it with the most frequent class.

Otherwise, the algorithm selects an attribute-based test that branches •	 S into multiple
subbranches (partitions) (S1, S2, …), each representing the outcome of the test.
The tests are placed at the root of the tree, and each path from the root to the leaf
becomes a rule script that labels a class at the leaf. This procedure applies to each
subbranch recursively.

Each partition of the current branch represents a child node, and the test separating •	
S represents the branch of the tree.

This process continues until every leaf contains instances from only one class or further partition is
not possible. C4.5 uses tests that select attributes with the highest normalized information gain, enabling
disambiguation of the classification of cases that may belong to two or more classes.

k-Means
The k-means algorithm is a simple iterative clustering algorithm (Lloyd 1957) that partitions N data points
into K disjoint subsets S

j
 so as to minimize the sum-of-squares criterion. Because the sum of squares is the

squared Euclidean distance, this is intuitively the “nearest” mean,

				    J = -
Î=
åå | | ,xn
n Sj

K

j

j1

2m 		
(1-5)

where
x

n
= vector representing the nth data point

m
j
 = geometric centroid of the data points in S

j

Chapter 1 ■ Machine Learning

11

The algorithm consists of a simple two-step re-estimation process:

	 1.	 Assignment: Data points are assigned to the cluster whose centroid is closest to
that point.

	 2.	 Update: Each cluster centroid is recalculated to the center (mean) of all data
points assigned to it.

These two steps are alternated until a stopping criterion is met, such that there is no further change in
the assignment of data points. Every iteration requires N × K comparisons, representing the time complexity
of one iteration.

Support Vector Machines
Support vector machines (SVMs) are supervised learning methods that analyze data and recognize patterns.
SVMs are primarily used for classification, regression analysis, and novelty detection. Given a set of
training data in a two-class learning task, an SVM training algorithm constructs a model or classification
function that assigns new observations to one of the two classes on either side of a hyperplane, making it
a nonprobabilistic binary linear classifier (Figure 1-3). An SVM model maps the observations as points in
space, such that they are classified into a separate partition that is divided by the largest distance to the
nearest observation data point of any class (the functional margin). New observations are then predicted to
belong to a class based on which side of the partition they fall. Support vectors are the data points nearest to
the hyperplane that divides the classes. Further details of support vector machines are given in Chapter 4.

Figure 1-3.  The SVM algorithm finds the hyperplane that maximizes the largest minimum distance between
the support vectors

Chapter 1 ■ Machine Learning

12

Apriori
Apriori is a data mining approach that discovers frequent itemsets by using candidate generation (Agrawal
and Srikant 1994) from a transactional database and highlighting association rules (general trends) in the
database. It assumes that any subset of a frequently occurring pattern must be frequent. Apriori performs
breadth-first search to scan frequent 1-itemsets (that is, itemsets of size 1) by accumulating the count for
each item that satisfies the minimum support requirement. The set of frequent 1-itemsets is used to find the
set of frequent 2-itemsets, and so on. This process iterates until no more frequent k-itemsets can be found.
The Apriori method that identifies all the frequent itemsets can be summarized in the following three steps:

	 1.	 Generate candidates for frequent k + 1-itemsets (of size k + 1) from the frequent
k-itemsets (of size k).

	 2.	 Scan the database to identify candidates for frequent k + 1-itemsets, and
calculate the support of each of those candidates.

	 3.	 Add those itemsets that satisfy the minimum support requirement to frequent
itemsets of size k + 1.

Thanks in part to the simplicity of the algorithm, it is widely used in data mining applications. Various
improvements have been proposed, notably, the frequent pattern growth (FP-growth) extension, which
eliminates candidate generation. Han et al. (Han, Pei, and Yin 2000) propose a frequent pattern tree
(FP-tree) structure, which stores and compresses essential information to interpret frequent patterns and
uses FP-growth for mining the comprehensive set of frequent patterns by pattern fragment growth. This
Apriori technique enhancement constructs a large database that contains all the essential information and
compresses it into a highly condensed data structure. In the subsequent step, it assembles a conditional-
pattern base which represents a set of counted patterns that co-occur relative to each item. Starting at the
frequent header table, it traverses the FP-tree by following each frequent item and stores the prefix paths of
those items to produce a conditional pattern base. Finally, it constructs a conditional FP-tree for each of the
frequent items of the conditional pattern base. Each node in the tree represents an item and its count. Nodes
sharing the same label but residing on different subtrees are conjoined by a node–link pointer. The position
of a node in the tree structure represents the order of the frequency of an item, such that a node closer to the
root may be shared by more transactions in a transactional database.

Estimation Maximization
The estimation–maximization (EM) algorithm facilitates parameter estimation in probabilistic models
with incomplete data. EM is an iterative scheme that estimates the MLE or MAP of parameters in statistical
models, in the presence of hidden or latent variables. The EM algorithm iteratively alternates between the
steps of performing an expectation (E), which creates a function that estimates the probability distribution
over possible completions of the missing (unobserved) data, using the current estimate for the parameters,
and performing a maximization (M), which re-estimates the parameters, using the current completions
performed during the E step. These parameter estimates are iteratively employed to estimate the distribution
of the hidden variables in the subsequent E step. In general, EM involves running an iterative algorithm
with the following attributes: (a) observed data, X; (b) latent (or missing) data, Z; (c) unknown parameter, q;
and (d) a likelihood function, L(q; X, Z) = P(X, Z|q). The EM algorithm iteratively calculates the MLE of the
marginal likelihood using a two-step method:

	 1.	 Estimation (E): Calculate the expected value of the log likelihood function, with
respect to the conditional distribution of Z, given X under the current estimate of
the parameters q(t), such that

				 Q t E L X ZZ X t(| ()) log (; ,) .| , ()q q qq= [] 	 (1-6)

Chapter 1 ■ Machine Learning

13

	 2.	 Maximization (M): Find the parameter that maximizes this quantity:

				  q q qq() arg max (| ()).t Q t+ =1 	 (1-7)

PageRank
PageRank is a link analysis search algorithm that ranks the elements of hyperlinked documents on the World
Wide Web for the purpose of measuring their importance, relative to other links. Developed by Larry Page
and Sergey Bin, PageRank produces static rankings that are independent of the search queries. PageRank
simulates the concept of prestige in a social network. A hyperlink to a page counts as a vote of support.
Additionally, PageRank interprets a hyperlink from source page to target page in such a manner that the
page with the higher rank improves the rank of the linked page (the source or target). Therefore, backlinks
from highly ranked pages are more significant than those from average pages. Mathematically simple,
PageRank can be calculated as

				     r P
r Q

QQ Bp

()
()

| |
,=

Î
å 		 (1-8)

where
r(P) = rank of the page P
B

p
= the set of all pages linking to page P

|Q| = number of links from page Q
r(Q) = rank of the page Q

AdaBoost (Adaptive Boosting)
AdaBoost is an ensemble method used for constructing strong classifiers as linear combinations of simple,
weak classifiers (or rules of thumb) (Freund and Schapire 1997). As in any ensemble method, AdaBoost
employs multiple learners to solve a problem with better generalization ability and more accurate
prediction. The strong classifier can be evaluated as a linear combination of weak classifiers, such that

H x h xt t
t

T

() (),= ×
=
åb

1

	

where
H(x) = strong classifier
h

t
(x) = weak classifier (feature)

The Adaboost algorithm may be summarized as follows:

Input:
Data-Set I x y x y x y x ym m= () () () (){ }1 1 2 2 3 3, , , , , , , , ,
Base learning algorithm L
Number of learning rounds T

Process:

1

1i

D m
= 		 // Initialize weight distribution

FOR (t = 1 to T) DO	 // Run the loop for t = T iterations
h

t
 = L(I, D

t
)		 // Train a weak learner h

t
 from I using D

t

Î = -åt t

i

t i i
i

D h x y| () | 	 // calculate the error of h
t

Chapter 1 ■ Machine Learning

14

bt
t

t

=
-Î
Î

æ

è
ç

ö

ø
÷

1

2

1
ln 	 // calculate the weight of h

t

t

i t

i

t

y h xD D
Z

e t i t i

+
- × ×= ×

1

(())b 	 // Update the distribution,

			 // Z
t
 is the normalization factor

END

Output:

H x sign h xt t
t

T

() ()=
æ

è
ç

ö

ø
÷

=
åb

1

	 // Strong classifier

The AdaBoost algorithm is adaptive, inasmuch as it uses multiple iterations to produce a strong learner
that is well correlated with the true classifier. As shown above, it iterates by adding weak learners that are
slightly correlated with the true classifier. As part of the adaptation process, the weighting vector adjusts
itself to improve upon misclassification in previous rounds. The resulting classifier has a greater accuracy
than the weak learners’ classifiers. AdaBoost is fast, simple to implement, and flexible insofar as it can be
combined with any classifier.

k-Nearest Neighbors
The k-nearest neighbors (k-NN) classification methodology identifies a group of k objects in the training
set that are closest to the test object and assigns a label based on the most dominant class in this
neighborhood. The three fundamental elements of this approach are

an existing set of labeled objects•	

a distance metric to estimate distance between objects•	

the number of nearest neighbors (•	 k)

To classify an unlabeled object, the distances between it and labeled objects are calculated and its
k-nearest neighbors are identified. The class labels of these nearest neighbors serve as a reference for
classifying the unlabeled object. The k-NN algorithm computes the similarity distance between a training
set, (x, y) Î I, and the test object, ̂ (ˆ , ˆ)x z x y= , to determine its nearest-neighbor list, I

z
. x represents the training

object, and y represents the corresponding training class. x̂ and ŷ represent the test object and its class,
respectively. The algorithm may be summarized as follows:

Input:
Training object (x, y) Î I and test object ̂ (ˆ , ˆ)x z x y=

Process:
Compute distance ˆ (ˆ ,)x d x x= between z and every object (x, y) Î I.
Select I Iz Í , the set of k closest training objects to z.

Output (Majority Class):
ˆ arg ()

(,)

y max F v yv i
x y Ii i Z

= =
∈

∑

F(.) = 1 if argument (.) is TRUE and 0 otherwise, v is the class label.
The value of k should be chosen carefully. A smaller value can result in noisy behavior, whereas a larger

value may include too many points from other classes.

Chapter 1 ■ Machine Learning

15

Naive Bayes
Naive Bayes is a simple probabilistic classifier that applies Bayes’ theorem with strong (naive) assumption
of independence, such that the presence of an individual feature of a class is unrelated to the presence of
another feature.

Assume that input features x x xn1 2,  are conditionally independent of each other, given the class
label Y, such that

			      P x x x Y P x Yn
i

n

i(, |) (|)1 2 =
=1
P 		 (1-9)

For a two-class classification (i = 0,1), we define P(i|x) as the probability that measurement vector
x x x xn= { , }1 2 belongs to class i. Moreover, we define a classification score

	

			  
P x

P x

f x P

f x P

P

P
j

n

j

j

n

j
j

n(|)

(|)

(|) ()

(|) ()

()

()

1

0

1 1

0 0

1

0
1

1

1

= ==

=

=

Π

Π
ΠΠ

f x

f x
j

j

(|)

(|)

1

0

	
(1-10)	

			     ln
(|)

(|)
ln

()

()
ln

(|)

(|)
,

P x

P x

P

P

f x

f xj

n
j

j

1

0

1

0

1

01

= +
=

∑ 		 (1-11)

where P(i|x) is proportional to f (x|i)P(i) and f (x|i) is the conditional distribution of x for class i objects.
The naive Bayes model is surprisingly effective and immensely appealing, owing to its simplicity and

robustness. Because this algorithm does not require application of complex iterative parameter estimation
schemes to large datasets, it is very useful and relatively easy to construct and use. It is a popular algorithm
in areas related to text classification and spam filtering.

Classification and Regression Trees
A classification and regression tree (CART) is a nonparametric decision tree that uses a binary recursive
partitioning scheme by splitting two child nodes repeatedly, starting with the root node, which contains the
complete learning sample (Breiman et al. 1984). The tree-growing process involves splitting among all the
possible splits at each node, such that the resulting child nodes are the “purest.” Once a CART has generated
a “maximal tree,” it examines the smaller trees obtained by pruning away the branches of the maximal
tree to determine which contribute least to the overall performance of the tree on training data. The CART
mechanism is intended to yield a sequence of nested pruned trees. The right-sized, or “honest,” tree is
identified by evaluating the predictive performance of every tree in the pruning sequence.

Challenging Problems in Data Mining Research
Data mining and knowledge discovery have become fields of interdisciplinary research in the areas related
to database systems, ML, intelligent information systems, expert systems, control theory, and many others.
Data mining is an important and active area of research but not one without theoretical and practical
challenges from working with very large databases that may be noisy, incomplete, redundant, and dynamic
in nature. A study by Yang and Wu (2006) reviews the most challenging problems in data mining research, as
summarized in the following sections.

Chapter 1 ■ Machine Learning

16

Scaling Up for High-Dimensional Data and High-Speed Data Streams
Designing classifiers that can handle very high-dimensional features extracted through high-speed data
streams is challenging. To ensure a decisive advantage, data mining in such cases should be a continuous
and online process. But, technical challenges prevent us from computing models over large amounts
streaming data in the presence of environment drift and concept drift. Today, we try to solve this problem
with incremental mining and offline model updating to maintain accurate modeling of the current data
stream. Information technology challenges are being addressed by developing in-memory databases,
high-density memories, and large storage capacities, all supported by high-performance computing
infrastructure.

Mining Sequence Data and Time Series Data
Efficient classification, clustering, and forecasting of sequenced and time series data remain an open
challenge today. Time series data are often contaminated by noise, which can have a detrimental effect on
short-term and long-term prediction. Although noise may be filtered, using signal-processing techniques or
smoothening methods, lags in the filtered data may result. In a closed-loop environment, this can reduce the
accuracy of prediction, because we may end up overcompensating or underprovisioning the process itself.
In certain cases, lags can be corrected by differential predictors, but these may require a great deal of tuning
the model itself. Noise-canceling filters placed close to the data I/O block can be tuned to identify and clean
the noisy data before they are mined.

Mining Complex Knowledge from Complex Data
Complex data can exist in many forms and may require special techniques to extract the information
useful for making real-world decisions. For example, information may exist in a graphical form, requiring
methods for discovering graphs and structured patterns in large data. Another complexity may exist in
the form of non—independent-and-identically-distributed (non-iid) data objects that cannot be mined as
an independent single object. They may share relational structures with other data objects that should
be identified.

State-of-the-art data mining methods for unstructured data lack the ability to incorporate domain
information and knowledge interface for the purpose of relating the results of data mining to real-world
scenarios.

Distributed Data Mining and Mining Multi-Agent Data
In a distributed data sensing environment, it can be challenging to discover distributed patterns and
correlate the data streamed through different probes. The goal is to minimize the amount of data exchange
and reduce the required communication bandwidth. Game-theoretic methodologies may be deployed to
tackle this challenge.

Data Mining Process-Related Problems
Autonomous data mining and cleaning operations can improve the efficiency of data mining dramatically.
Although we can process models and discover patterns at a fast rate, major costs are incurred by
preprocessing operations such as data integration and data cleaning. Reducing these costs through
automation can deliver a much greater payoff than attempting to further reduce the cost of model-building
and pattern-finding.

Chapter 1 ■ Machine Learning

17

Security, Privacy, and Data Integrity
Ensuring users’ privacy while their data are being mined is critical. Assurance of the knowledge integrity of
collected input data and synthesized individual patterns is no less essential.

Dealing with Nonstatic, Unbalanced, and Cost-Sensitive Data
Data is dynamic and changing continually in different domains. Historical trials in data sampling and model
construction may be suboptimal. As you retrain a current model based on new training data, you may
experience a learning drift, owing to different selection biases. Such biases need to be corrected dynamically
for accurate prediction.

Summary
This chapter discussed the essentials of ML through key terminology, types of ML, and the top 10 data
mining and ML algorithms. Owing to the explosion of data on the World Wide Web, ML has found
widespread use in web search, advertising placement, credit scoring, stock market prediction, gene
sequence analysis, behavior analysis, smart coupons, drug development, weather forecasting, big data
analytics, and many more such applications. New uses for ML are being explored every day. Big data
analytics and graph analytics have become essential components of cloud-based business development.
The new field of data analytics and the applications of ML have also accelerated the development of
specialized hardware and accelerators to improve algorithmic performance, big data storage, and data
retrieval performance.

References
Agrawal, Rakesh, and Ramakrishnan Srikant. “Fast Algorithms for Mining Association Rules in Large
Databases.” In Proceedings of the 20th International Conference on Very Large Data Bases (VLDB ’94),
September 12–15, 1994, Santiago de Chile, Chile, edited by Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo.
San Francisco: Morgan Kaufmann (1994): 487–499.

Breiman, Leo, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone. Classification and Regression
Trees. Belmont, CA: Wadsworth, 1984.

Carpenter, Gail A., and Stephen Grossberg. Pattern Recognition by Self-Organizing Neural Networks.
Massachusetts: Cambridge, MA: Massachusetts Institute of Technology Press, 1991.

Freund, Yoav, and Robert E. Schapire. “A Decision-Theoretic Generalization of On-Line Learning and an
Application to Boosting.” Journal of Computer and System Sciences 55, no. 1 (1997): 119–139.

Han, Jiawel, Jian Pei, and Yiwen Yin. “Mining Frequent Patterns without Candidate Generation.”
In SIGMOD/PODS ’00: ACM international Conference on Management of Data and Symposium on Principles
of Database Systems, Dallas, TX, USA, May 15–18, 2000, edited by Weidong Chen, Jeffrey Naughton,
Philip A. Bernstein. New York: ACM (2000): 1–12.

Jang, J.-S. R. “ANFIS: Adaptive-Network-Based Fuzzy Inference System.” IEEE Transactions on Systems,
Man and Cybernetics 23, no. 3 (1993): 665–685.

Kohavi, Ron, and Foster Provost. “Glossary of Terms.” Machine Learning 30, no. 2–3 (1998): 271–274.

Chapter 1 ■ Machine Learning

18

Lloyd, Stuart P. “Least Squares Quantization in PCM,” in special issue on quantization, IEEE Transactions on
Information Theory, IT-28, no. 2(1982): 129–137.

Samuel, Arthur L. “Some Studies in Machine Learning Using the Game of Checkers,” IBM Journal of Research
and Development 44:1.2 (1959): 210–229.

Turing, Alan M. “Computing machinery and intelligence.” Mind (1950): 433–460.

Vapnik, Vladimir N. Statistical Learning Theory. New York: Wiley, 1998.

Wu, Xindong, Vipin Kumar, Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi Motoda,
Geoffrey J. McLachlan, Angus Ng, Bing Liu, Philip S. Yu, Zhi-Hua Zhou, Michael Steinbach, David J. Hand,
and Dan Steinberg. “Top 10 Algorithms in Data Mining.” Knowledge and Information Systems 14 (2008): 1–37.

Yang, Qiang, and Xindong Wu. “10 Challenging Problems in Data Mining Research.” International Journal of
Information Technology and Decision Making 5, no. 4 (2006): 597–604.

19

Chapter 2

Machine Learning and Knowledge
Discovery

When you know a thing, to hold that you know it; and when you do not know a thing,
to allow that you do not know it—this is knowledge.

—Confucius, The Analects

The field of data mining has made significant advances in recent years. Because of its ability to solve
complex problems, data mining has been applied in diverse fields related to engineering, biological science,
social media, medicine, and business intelligence. The primary objective for most of the applications is
to characterize patterns in a complex stream of data. These patterns are then coupled with knowledge
discovery and decision making. In the Internet age, information gathering and dynamic analysis of
spatiotemporal data are key to innovation and developing better products and processes. When datasets
are large and complex, it becomes difficult to process and analyze patterns using traditional statistical
methods. Big data are data collected in volumes so large, and forms so complex and unstructured, that
they cannot be handled using standard database management systems, such as DBMS and RDBMS. The
emerging challenges associated with big data include dealing not only with increased volume, but also the
wide variety and complexity of the data streams that need to be extracted, transformed, analyzed, stored,
and visualized. Big data analysis uses inferential statistics to draw conclusions related to dependencies,
behaviors, and predictions from large sets of data with low information density that are subject to random
variations. Such systems are expected to model knowledge discovery in a format that produces reasonable
answers when applied across a wide range of situations. The characteristics of big data are as follows:

•	 Volume: A great quantity of data is generated. Detecting relevance and value within
this large volume is challenging.

•	 Variety: The range of data types and sources is wide.

•	 Velocity: The speed of data generation is fast. Reacting in a timely manner can be
demanding.

•	 Variability: Data flows can be highly inconsistent and difficult to manage, owing to
seasonal and event-driven peaks.

•	 Complexity: The data need to be linked, connected, and correlated to infer nonlinear
relationships and causal effects.

Chapter 2 ■ Machine Learning and Knowledge Discovery

20

Modern technological advancements have enabled the industry to make inroads into big data and big data
analytics. Affordable open source software infrastructure, faster processors, cheaper storage, virtualization, high
throughput connectivity, and development of unstructured data management tools, in conjunction with cloud
computing, have opened the door to high-quality information retrieval and faster analytics, enabling businesses
to reduce costs and time required to develop newer products with customized offerings.

Big data and powerful analytics can be integrated to deliver valuable services, such as these:

•	 Failure root cause detection: The cost of unplanned shutdowns resulting from
unexpected failures can run into billions of dollars. Root cause analysis (RCA)
identifies the factors determinative of the location, magnitude, timing, and nature
of past failures and learns to associate actions, conditions, and behaviors that can
prevent the recurrence of such failures. RCA transforms a reactive approach to
failure mitigation into a proactive approach of solving problems before they occur
and avoids unnecessary escalation.

•	 Dynamic coupon system: A dynamic coupon system allows discount coupons to
be delivered in a very selective manner, corresponding to factors that maximize
the strategic benefits to the product or service provider. Factors that regulate the
delivery of the coupon to selected recipients are modeled on existing locality,
assessed interest in a specific product, historical spending patterns, dynamic
pricing, chronological visits to shopping locations, product browsing patterns, and
redemption of past coupons. Each of these factors is weighted and reanalyzed as a
function of competitive pressures, transforming behaviors, seasonal effects, external
factors, and dynamics of product maturity. A coupon is delivered in real time,
according to the recipient’s profile, context, and location. The speed, precision, and
accuracy of coupon delivery to large numbers of mobile recipients are important
considerations.

•	 Shopping behavior analysis: A manufacturer of a product is particularly interested in
the understanding the heat-map patterns of its competitors’ products on the store
floor. For example, a manufacturer of large-screen TVs would want to ascertain
buyers’ interest in features offered by other TV manufacturers. This can only be
analyzed by evaluating potential buyers’ movements and time spent in proximity
to the competitors’ products on the floor. Such reports can be delivered to the
manufacturer on an individual basis, in real time, or collectively, at regular intervals.
The reports may prompt manufacturers to deliver dynamic coupons to influence
potential buyers who are still in the decision-making stage as well as help the
manufacturer improve, remove, retain, or augment features, as gauged by buyers’
interest in the competitors’ products.

•	 Detecting fraudulent behavior: Various types of fraud related to insurance, health
care, credit cards, and identity theft cost consumers and businesses billions of
dollars. Big data and smart analytics have paved the way for developing real-time
solutions for identifying fraud and preventing it before it occurs. Smart analytics
generate models that validate the patterns related to spending behavior, geolocation,
peak activity, and insurance claims. If a pattern cannot be validated, a corrective,
preventive, or punitive action is initiated. The accuracy, precision, and velocity
of such actions are critical to the success of isolating the fraudulent behavior. For
instance, each transaction may evaluate up to 500 attributes, using one or more
models in real time.

Chapter 2 ■ Machine Learning and Knowledge Discovery

21

•	 Workload resource tuning and selection in datacenter: In a cloud service management
environment, service-level agreements (SLAs) define the expectation of quality of
service (QoS) for managing performance loss in a given service-hosting environment
composed of a pool of computing resources. Typically, the complexity of resource
interdependencies in a server system results in suboptimal behavior, leading to
performance loss. A well-behaved model can anticipate demand patterns and
proactively react to dynamic stresses in a timely and optimized manner. Dynamic
characterization methods can synthesize a self-correcting workload fingerprint
codebook that facilitates phase prediction to achieve continuous tuning through
proactive workload allocation and load balancing. In other words, the codebook
characterizes certain features, which are continually reevaluated to remodel workload
behavior to accommodate deviation from an anticipated output. It is possible,
however, that the most current model in the codebook may not have been subjected
to newer or unidentified patterns. A new workload is hosted on a compute node
(among thousands of potential nodes) in a manner that not only reduces the thermal
hot spots, but also improves performance by lowering the resource bottleneck. The
velocity of the analysis that results in optimal hosting of the workload in real time is
critical to the success of workload load allocation and balancing.

Knowledge Discovery
Knowledge extraction gathers information from structured and unstructured sources to construct a
knowledge database for identifying meaningful and useful patterns from underlying large and semantically
fuzzy datasets. Fuzzy datasets are sets whose elements have a degree of membership. Degree of membership
is defined by a membership function that is valued between 0 and 1.

The extracted knowledge is reused, in conjunction with source data, to produce an enumeration of
patterns that are added back to the knowledge base. The process of knowledge discovery involves programmatic
exploration of large volumes of data for patterns that can be enumerated as knowledge. The knowledge acquired
is presented as models to which specific queries can be made, as necessary. Knowledge discovery joins the
concepts of computer science and machine learning (such as databases and algorithms) with those of statistics
to solve user-oriented queries and issues. Knowledge can be described in different forms, such as classes of
actors, attribute association models, and dependencies. Knowledge discovery in big data uses core machine
algorithms that are designed for classification, clustering, dimensionality reduction, and collaborative filtering as
well as scalable distributed systems. This chapter discusses the classes of machine learning algorithms that are
useful when the dataset to be processed is very large for a single machine.

Classification
Classification is central to developing predictive analytics capable of replicating human decision making.
Classification algorithms work well for problems with well-defined boundaries in which inputs follow
a specific set of attributes and in which the output is categorical. Generally, the classification process
develops an archive of experiences entailing evaluation of new inputs by matching them with previously
observed patterns. If a pattern can be matched, the input is associated with the predefined predictive
behavioral pattern. If a pattern cannot be matched, it is quarantined for further evaluation to determine if
it is an undiscovered valid pattern or an unusual pattern. Machine-based classification algorithms follow
supervised-learning techniques, in which algorithms learn through examples (also called training sets) of
accurate decision making, using carefully prepared inputs. The two main steps involved in classification are
synthesizing a model, using a learning algorithm, and employing the model to categorize new data.

Chapter 2 ■ Machine Learning and Knowledge Discovery

22

Clustering
Clustering is a process of knowledge discovery that groups items from a given collection, based on similar
attributes (or characteristics). Members of the same cluster share similar characteristics, relative to those
belonging to different clusters. Generally, clustering involves an iterative algorithm of trial and error that
operates on an assumption of similarity (or dissimilarity) and that stops when a termination criterion is
satisfied. The challenge is to find a function that measures the degree of similarity between two items
(or data points) as a numerical value. The parameters for clustering—such as the clustering algorithm, the
distance function, the density threshold, and the number of clusters—depend on the applications and the
individual dataset.

Dimensionality Reduction
Dimensionality reduction is the process of reducing random variables through feature selection and
feature extraction. Dimensionality reduction allows shorter training times and enhanced generalization
and reduces overfitting. Feature selection is the process of synthesizing a subset of the original variables for
model construction by eliminating redundant or irrelevant features. Feature extraction, in contrast, is the
process of transforming the high-dimensional space to a space of fewer dimensions by combining attributes.

Collaborative Filtering
Collaborative filtering (CF) is the process of filtering for information or patterns, using collaborative
methods between multiple data sources. CF explores an area of interest by gathering preferences from
many users with similar interests and making recommendations based on those preferences. CF algorithms
are expected to make satisfactory recommendations in a short period of time, despite very sparse data,
increasing numbers of users and items, synonymy, data noise, and privacy issues.

Machine learning performs predictive analysis, based on established properties learned from the
training data (models). Machine learning assists in exploring useful knowledge or previously unknown
knowledge by matching new information with historical information that exists in the form of patterns.
These patterns are used to filter out new information or patterns. Once this new information is validated
against a set of linked behavioral patterns, it is integrated into the existing knowledge database. The new
information may also correct existing models by acting as additional training data. The following sections
look at various machine learning algorithms employed in knowledge discovery, in relation to clustering,
classification, dimensionality reduction, and collaborative filtering.

Machine Learning: Classification Algorithms
Logistic Regression
Logistic regression is a probabilistic statistical classification model that predicts the probability of the occurrence
of an event. Logistic regression models the relationship between a categorical dependent variable X and a
dichotomous categorical outcome or feature Y. The logistic function can be expressed as

		 P Y X
e

e

X

X
(|) .=

+

+

+

b b

b b

0 1

0 11
		 (2-1)

Chapter 2 ■ Machine Learning and Knowledge Discovery

23

The logistic function may be rewritten and transformed as the inverse of the logistic function—called
logit or log-odds—which is the key to generating the coefficients of the logistic regression,

	 logit P((|)) ln
(|)

(|)
.Y X

P Y X

P Y X
X=

-
æ

è
ç

ö

ø
÷ = +

1 0 1b b 		 (2-2)

As depicted in Figure 2-1, the logistic function can receive a range of input values (b
0
 + b

1
X) between

negative infinity and positive infinity, and the output (P(Y |X) is constrained to values between 0 and 1.

Figure 2-1.  The logistic function

The logit transform of P(Y |X) provides a dynamic range for linear regression and can be converted
back into odds. The logistic regression method fits a regression curve, using the regression coefficients b

0

and b
1
, as shown in Equation 2-1, where the output response is a binary (dichotomous) variable, and X is

numerical. Because the logistic function curve is nonlinear, the logit transform (see Equation 2-2) is used to
perform linear regression, in which P(Y  |X) is the probability of success (Y) for a given value of X. Using the
generalized linear model, an estimated logistic regression equation can be formulated as

	 logit((| , ,)) .P Y X X X X Xn k k
k

n

= = +
=
å1 1 2 3 0

1

 b b 		 (2-3)

The coefficients b
0
 and b

k
 (k = 1, 2, ..., n) are estimated, using maximum likelihood estimation (MLE)

to model the probability that the dependent variable Y will take on a value of 1 for given values of
X

k
 (k = 1, 2, ..., n).

Logistic regression is widely used in areas in which the outcome is presented in a binary format. For
example, to predict blood cholesterol based on body mass index (BMI), you would use linear regression,
because the outcome is continuous. If you needed to predict the odds of being diabetic based on BMI, you
would use logistic regression, because the outcome is binary.

Chapter 2 ■ Machine Learning and Knowledge Discovery

24

Random Forest
Random forest (Breiman 2001) is an ensemble learning approach for classification, in which “weak learners”
collaborate to form “strong learners,” using a large collection of decorrelated decision trees (the random
forest). Instead of developing a solution based on the output of a single deep tree, however, random forest
aggregates the output from a number of shallow trees, forming an additional layer to bagging. Bagging
constructs n predictors, using independent successive trees, by bootstrapping samples of the dataset. The
n predictors are combined to solve a classification or estimation problem through averaging. Although
individual classifiers are weak learners, all the classifiers combined form a strong learner. Whereas single
decision trees experience high variance and high bias, random forest averages multiple decision trees to
improve estimation performance. A decision tree, in ensemble terms, represents a weak classifier. The term
forest denotes the use of a number of decision trees to make a classification decision.

The random forest algorithm can be summarized as follows:

	 1.	 To construct B trees, select n bootstrap samples from the original dataset.

	 2.	 For each bootstrap sample, grow a classification or regression tree.

	 3.	 At each node of the tree:

–	 m predictor variables (or subset of features) are selected at random from all the
predictor variables (random subspace).

–	 The predictor variable that provides the best split performs the binary split on
that node.

–	 The next node randomly selects another set of m variables from all predictor
variables and performs the preceding step.

	 4.	 Given a new dataset to be classified, take the majority vote of all the B subtrees.

By averaging across the ensemble of trees, you can reduce the variance of the final estimation. Random
forest offers good accuracy and runs efficiently on large datasets. It is an effective method for estimating
missing data and maintains accuracy, even if a large portion of the data is missing. Additionally, random
forest can estimate the relative importance of a variable for classification.

Hidden Markov Model
A hidden Markov model (HMM) is a doubly stochastic process, in which the system being modeled is a
Markov process with unobserved (hidden) states. Although the underlying stochastic process is hidden
and not directly observable, it can be seen through another set of stochastic processes that produces the
sequence of observed symbols. In traditional Markov models, states are visible to an observer, and state
transitions are parameterized, using transition probabilities. Each state has a probability distribution over
output emissions (observed variables). HMM-based approaches correlate the system observations and state
transitions to predict the most probable state sequence. The states of the HMM can only be inferred from
the observed emissions—hence, the use of the term hidden. The sequence of output emissions generated
by an HMM is used to estimate the sequence of states. HMMs are generative models, in which the joint
distribution of observations and hidden states is modeled. To define a hidden Markov model, the following
attributes have to be specified (see Figure 2-2):

Set of states: {•	 S
1
,S

2
...,S

n
}

Sequence of states: •	 Q = q
1
,q

2
,...,q

t

Markov chain property: •	 P P(| , , ,) (|)q S q S q S q S q S q St j t i t k t j t i+ - += = = = = = =1 1 0 0 1

Chapter 2 ■ Machine Learning and Knowledge Discovery

25

Set of observations: •	 O = {o
1
,o

2
,o

3
,...,o

M
}

Transition probability matrix: •	 P = { }, (|)p p q S q Sij ij t j t i= = =+P 1

Emission probability matrix: •	 B = = = ={ ()}, () (|)b k b k x o q Sj j t k t jP

Initial probability matrix: •	 p p p= = ={ }, ()i i iq SP 1

HMM: •	 M = (A,B,p)

Figure 2-2.  Attributes of an HMM

The three fundamental problems addressed by HMMs can be summarized as follows:

•	 Model evaluation: Evaluate the likelihood of a sequence of observations for a given
HMM (M = (A,B,p)).

•	 Path decoding: Evaluate the optimal sequence of model states (Q) (hidden states) for
a given sequence of observations and HMM model M = (A,B,p).

•	 Model training: Determine the set of model parameters that best accounts for the
observed signal.

HMMs are especially known for their application in temporal pattern recognition, such as speech,
handwriting, gesture recognition, part-of-speech tagging, musical score following, partial discharges, and
bioinformatics. For further details on the HMM, see Chapter 5.

Multilayer Perceptron
A multilayer perceptron (MLP) is a feedforward network of simple neurons that maps sets of input data onto
a set of outputs. An MLP comprises multiple layers of nodes fully connected by directed graph, in which
each node (except input nodes) is a neuron with a nonlinear activation function.

The fundamental component of an MLP is the neuron. In an MLP a pair of neurons is connected in two
adjacent layers, using weighted edges. As illustrated in Figure 2-3, an MLP comprises at least three layers of
neurons, including one input layer, one or more hidden layers, and one output layer. The number of input

Chapter 2 ■ Machine Learning and Knowledge Discovery

26

neurons depends on the dimensions of the input features; the number of output neurons is determined
by the number of classes. The number of hidden layers and the number of neurons in each hidden layer
depend on the type of problem being solved. Fewer neurons result in inefficient learning; a larger number
of neurons results in inefficient generalization. An MLP uses a supervised-learning technique called
backpropagation for training the network. In its simple instantiation the perceptron computes an output y by
processing a linear combination of weighted real-valued inputs through a nonlinear activation function,

		 y w x bi i
i

n

= +




=

∑j
1

, 		 (2-4)

where w represents the weights vector, x is the input vector, b is the bias, and j is the activation function.
Generally, MLP systems choose the logistic sigmoid function 1/(1+e–x) or the hyperbolic tangent tanh(x) as
the activation functions. These functions offer statistical convenience, because they are linear near the origin
and saturate quickly when moved away from the origin.

Figure 2-3.  The MLP is fed the input features to the input layer and gets the result from the output layer; the
results are calculated in a feedforward approach from the input layer to the output layer

The MLP learning process adjusts the weights of the hidden layer, such that the output error is reduced.
Starting with the random weights, MLP feeds forward the input pattern signals through the network and
backpropagates the error signal, starting at the output. The backpropagating error signal is made up of of the
difference between actual (O

n
(t)) and desired (T

n
) values. Error function may be summarized as

		 E O t T O tn n n(()) ().= - 		 (2-5)

The goal of the learning process is to minimize the error function. To find the minimum value of the
error function, differentiate it, with respect to the weight matrix. The learning algorithm comprises the
following steps:

	 1.	 Initialize random weights within the interval [1, –1].

	 2.	 Send an input pattern to the network.

Chapter 2 ■ Machine Learning and Knowledge Discovery

27

	 3.	 Calculate the output of the network.

	 4.	 For each node n in the output layer:

a.	 Calculate the error on output node n: E(O
n
(t))=T

n
–O

n
(t).

b.	 Add E(O
n
(t)) to all the weights that connect to node n.

	 5.	 Repeat step 2.

To influence the convergence rate and thereby reduce the step sizes at which weights undergo an
adaptive change, a learning parameter h (< 1) is used. The i-th weight connected to j-th output can be
updated by the following rule:

		 w t w t E O tij ij j() () (()).+ - =1 h 		 (2-6)

Equation 2-6 represents an iterative weight adaptation, in which a fraction of output error at iteration
(t + 1) is added to the existing weight from iteration t.

MLPs are commonly used for supervised-learning pattern recognition processes. There is renewed
interest in MLP backpropagation networks, owing to the successes of deep learning. Deep learning is an
approach for effectively training an MLP, using multiple hidden layers. With modern advancements in
silicon technology, deep learning is being developed to unlock the enormous big data analytics potential in
areas in which highly varying functions can be represented by deep architecture.

Machine Learning: Clustering Algorithms
k-Means Clustering
k-means clustering is an unsupervised-learning algorithm of vector quantization that partitions
n observations into k clusters. The algorithm defines k centroids, which act as prototypes for their respective
clusters. Each object is assigned to a cluster with the nearest centroid when measured with a specific
distance metric. The step of assigning objects to clusters is complete when all the objects have been applied
to one of the k clusters. The process is repeated by recalculating centroids, based on previous S = {S

1
,S

1
,...,S

k
}

allocations, and reassigning objects to the nearest new centroids. The process continues until there is
no movement of centroids of any k cluster. Generally, a k-means clustering algorithm classifies objects
according to their features into k groups (or clusters) by minimizing the sum of squares of the distances
between the object data and the cluster centroid.

For a given set of d-dimensional observations vectors (x
1
,x

2
,...,x

n
), k-means clustering partitions

n observations into k(£n) cluster sets so as to minimize the sum of squares,

		 arg min || || ,
S

x -mmi
Si

k

i

2

1 xÎ=
åå 		 (2-7)

where m
i
 is the mean of the points in S

i
.

The k-means clustering algorithm is easy to implement on large datasets. It has found many uses
in areas such as market segmentation, computer vision, profiling applications and workloads, optical
character recognition, and speech synthesis. The algorithm is often used as the preprocessing step for other
algorithms in order to find the initial configuration.

Chapter 2 ■ Machine Learning and Knowledge Discovery

28

Fuzzy k-Means (Fuzzy c-Means)
Fuzzy k-means (also called fuzzy c-means [FCM]) (Dunn 1973; Bezdek 1981) is an extension of the k-means
algorithm that synthesizes soft clusters, in which an object can belong to more than one cluster with a
certain probability. This algorithm provides increased flexibility in assigning data objects to clusters and
allowing the data objects to maintain partial membership in multiple neighboring clusters. FCM uses the
fuzzification parameter m in range [1, n], which determines the degree of fuzziness in the clusters. Whereas
m = 1 signifies crisp clustering, m > 1 suggests a higher degree of fuzziness among data objects in decision
space. The FCM algorithm is based on minimization of the objective function

		 J w x c xm k
m

j
j

C

x

= −
=

∑∑ () || || ,2

1
		 (2-8)

where x is the d-dimensional data object, c
j
 is the d-dimensional centroid of the cluster j (see Equation 2-10),

and w
k
(x) is the degree of membership of x in the cluster k dependent on the fuzzification parameter m,

which controls the weighting accorded the closest centroid:

		 w x
c x
c x

k

k

j

m

j

C
()

|| ||
|| ||

./()=
-
-

æ

è
çç

ö

ø
÷÷

-

=
å

1
2 1

1

		 (2-9)

With FCM the d-dimensional centroid of a kth cluster (c
k
) is the mean of all points, weighted by their

degree of membership to that cluster:

		 c
w x x

w xk

k
m

x

k
m

x

=
å
å

()

()
. 		 (2-10)

The c-means clustering algorithm synthesizes cluster centers and the degree to which data objects are
assigned to them. This does not translate into hard membership functions. FCM is used in image processing
for clustering objects in an image.

Streaming k-Means
Streaming k-means is a two-step algorithm, consisting of a streaming step and a ball k-means step. A streaming
step traverses the data objects of size n in one pass and generates an optimal number of centroids—which
amounts to k log(n) clusters, where k is expected number of clusters. The attributes of these clusters are passed
on to the ball k-means step, which reduces the number of clusters to k.

Streaming Step
A streaming-step algorithm steps through the data objects one at a time and makes a decision to either add
the data object to an existing cluster or create a new one. If the distance between the centroid of the cluster
and a data point is smaller than the distance cutoff threshold, the algorithm adds the data to an existing
cluster or creates a new cluster with a probability of d/(distancecutoff). If the distance exceeds the cutoff, the
algorithm creates a new cluster with a new centroid. As more data objects are processed, the centroids of
the existing clusters may change their position. This process continues to add new clusters until the number
of existing clusters reaches a cluster cutoff limit. The number of clusters can be reduced by increasing the
distance cutoff threshold. This step is mainly used for dimensionality reduction. The output of this step is a
reduced dataset in the form of multiple clusters that are proxies for a large amount of the original data.

Chapter 2 ■ Machine Learning and Knowledge Discovery

29

Ball K-Means Step
A ball k-means algorithm consumes the output of a streaming step (X = set of centroids > k) and performs
multiple independent runs to synthesize k clusters by selecting the best solution. Each run selects k
centroids, using a seeding mechanism, and runs the ball k-means algorithm iteratively to refine the solution.

The seeding process may invoke the k-means++ algorithm for optimal spreading of k clusters.
The k-means++ seeding algorithm is summarized as follows:

	 1.	 Choose center c
1
 uniformly at random from X.

	 2.	 Select a new center c
i
 by choosing xÎX with probability, P(x), and add it to X ,

P x
D x

D i
i X

()
()

()
,=

Î
å

2

2

where D(x) is the distance between x and the nearest center that has already been chosen.

	 3.	 Repeat step 2 until k centers c c c Xk1 2, , , ∈ are selected.

	 4.	 Randomly pick two centers ˆ , ˆc c X1 2 ∈ with probability proportional to ̂ || ˆ ˆ ||cnorm c c1 2
2− .

	 5.	 For each ĉi , create a ball of radius ̂|| ˆ ˆ || /c c c1 2 3- around it.

	 6.	 Recompute the new centroids c c1 2, by using the elements of X contained within
the ball.

This algorithm is particularly useful in applications with a large number of data objects. The algorithm
reduces the dimensionality of the original dataset by employing the streaming operation and replacing that
data with a reduced proxy data composed of k·log(n) centroids of the original data. The reduced data act as
input to the ball k-means algorithm, which synthesizes and refines k centroids for their respective clusters.

Machine Learning: Dimensionality Reduction
Machine learning works through a large number of features to train most regression or classification problems.
This compounds the complexity, raises the computational requirement, and increases the time needed to
converge to a solution. A useful approach for mitigating these problems is to reduce the dimensional space of
the original features by synthesizing a lower-dimensional space. In this new, lower-dimensional space the most
important features are retained, hidden correlations between features are exposed, and unimportant features are
discarded. One of the simplest, most straightforward, and least supervised feature-reduction approaches involves
variants of matrix decomposition: singular value decomposition, eigen decomposition, and nonnegative matrix
factorization. The following sections consider some of the methods commonly used in statistical dimensionality
reduction.

Singular Value Decomposition
Singular value decomposition (SVD) performs matrix analysis to synthesize low-dimensional representation
of a high-dimensional matrix. SVD assists in eliminating less important parts of matrix representation,
leading to approximate representation with the desired number of dimensions. This helps in creating
a smaller representation of a matrix that closely resembles the original. SVD is useful in dimensionality
reduction, owing to the following characteristics:

SVD transforms correlated variables into a set of uncorrelated ones that exposes •	
corresponding relationships between the data items.

SVD identifies dimensions along which data points exhibit the most variation.•	

Chapter 2 ■ Machine Learning and Knowledge Discovery

30

Once you identify the points with distinct variations, you can approximate original data points with
fewer dimensions. You can define thresholds below which variations can be ignored, thereby leading to
a highly reduced dataset without degradation of the information related to inherent relationships and
interests within data points.

If M is an m × n matrix , then you can break it down into the product of three matrices U, ∑, and V T with
the following characteristics:

•	 U is a column-orthogonal matrix. The columns of U are orthonormal
eigenvectors of MM  T.

•	 V  T is a transpose of orthogonal matrix V. The columns of V are orthonormal
eigenvectors of M  TM.

∑ is a diagonal matrix, where all elements except diagonal are 0. ∑ contains square •	
roots of eigenvalues from U or V, in descending order.

In its exact form, M can be rewritten as

	 M U V T= å . 		 (2-11)

In the process of dimensionality reduction, you synthesize U and V, such that they contain elements
accounted for in the original data, in descending order of variation. You may delete elements representing
dimensions that do not exhibit meaningful variation. This can be done by setting the smallest eigenvalue
to 0. Equation 2-11 can be rewritten in its best rank-l approximate form as

	 ˆ , , ,M u vi i i
T

i

l

l= × × ³ ³å l l l l1 2  		 (2-12)

where u
i
 and v

i
 are the ith columns of U and V, respectively, and l

i
 is the ith element of the diagonal matrix ∑.

Principal Component Analysis
When you have a swarm of points in space, the coordinates and axes you use to represent such points are
arbitrary. The points have certain variances, relative to the direction of axes chosen, indicating the spread
around the mean value in that direction. In a two-dimensional system the model is constrained by the
perpendicularity of the second axis to the first axis. But, in three-dimensional cases and higher, you can
position the nth axis perpendicular to the plane constructed by any two axes. The model is constrained by
the position of the first axis, which is positioned in the direction with the highest variance. This results in a
new feature space that compresses the swarm of points into the axes of high variance. You may select the
axes with higher variances and eliminate the axes with lower variances. Figure 2-4 illustrates the new feature
space, reduced from a dataset with 160 featuresto 59 components (axes). Each component is associated
with a certain percentage of variance, relative to other components. The first component has the highest
variance, followed by second component, and so on.

Chapter 2 ■ Machine Learning and Knowledge Discovery

31

Principal component analysis (PCA) is a widely used analytic technique that identifies patterns to
reduce the dimensions of the dataset without significant loss of information. The goal of PCA is to project a
high-dimensional feature space into a smaller subset to decrease computational cost. PCA computes new
features, called principal components (PCs), which are uncorrelated linear combinations of the original
features projected in the direction of greater variability. The key is to map the set of features into a matrix M
and synthesize the eigenvalues and eigenvectors for MM  T or M  TM. Eigenvectors facilitate simpler solutions
to problems that can be modeled using linear transformations along axes by stretching, compressing, or
flipping. Eigenvalues provide a factor (length and magnitude of eigenvectors) whereby such transformation
occurs. Eigenvectors with larger eigenvalues are selected in the new feature space because they enclose
more information than eigenvectors with lower eigenvalues for a data distribution. The first PC has the
greatest possible variance (i.e., the largest eigenvalues) compared with the next PC (uncorrelated, relative to
the first PC), which is computed under the constraint of being orthogonal to the first component. Essentially,
the ith PC is the linear combination of the maximum variance that is uncorrelated with all previous PCs.

PCA comprises the following steps:

	 1.	 Compute the d-dimensional mean of the original dataset.

	 2.	 Compute the covariance matrix of the features.

	 3.	 Compute the eigenvectors and eigenvalues of the covariance matrix.

	 4.	 Sort the eigenvectors by decreasing eigenvalue.

	 5.	 Choose k eigenvectors with the largest eigenvalues.

Eigenvector values represent the contribution of each variable to the PC axis. PCs are oriented in the
direction of maximum variance in m-dimensional points.

Figure 2-4.  The percentage of variance of a principal component transform of a dataset with 160 features
reduced to 59 components

Chapter 2 ■ Machine Learning and Knowledge Discovery

32

PCA is one of the most widely used multivariate methods for uncovering new, informative, uncorrelated
features; it reduces dimensionality by rejecting low-variance features and is useful in reducing the
computational requirements for classification and regression analysis.

Lanczos Algorithm
The Lanczos algorithm is a low-cost eigen-decomposition technique identical to truncated SVD, except that
it does not explicitly compute singular values/vectors of the matrix. The Lanczos algorithm uses a small
number of Lanczos vectors that are eigenvectors of M TM or MM T, where M is a symmetrical n × n matrix.

Lanczos starts by seeding an arbitrary nonzero vector x
0
 with cardinality equal to the number of

columns of matrix M. The mth (m<<n) step of the algorithm transforms the matrix M into a tridiagonal
matrix T

mm
. The iterative process can be summarized as follows:

Initialize
M MM T=

q0 00 0= =, b

v
x

x1
0

0

=
|| ||

Algorithm
FOR i m= -1 2 3 4 1, , , , , ,

u Mqi i=

ai i
H

iq u=

u u v vi i i i i i= - -- -b a1 1

bi iu=|| ||

IF b
i
 = 0, then STOP

v
u

i
i

i
+ =1 b

END
After m iterations are completed, you get a

i
 and b

i
, which are the diagonal and subdiagonal entries,

respectively, of the symmetrical tridiagonal matrix T
mm

. The resulting tridiagonal matrix is orthogonally
similar to M:

	 	Tmm
m

m m

=

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

a b
b

b
b a

1 2

2

0

0

 

 

. 		 (2-13)

The symmetrical tridiagonal matrix represents the projections of given matrices onto a subspace
spanned by corresponding sets of Lanczos vectors V

m
. The eigenvalues of these matrices are the eigenvalues

of the mapped subspace of the original matrix. Lanczos iterations by themselves do not directly produce
eigenvalues or eigenvectors; rather, they produce a tridiagonal matrix (see Equation 2-13) whose

Chapter 2 ■ Machine Learning and Knowledge Discovery

33

eigenvalues and eigenvectors are computed by another method (such as the QR algorithm) to produce Ritz
values and vectors. For the eigenvalues, you may compute the k smallest or largest eigenvalues of T

mm
 if the

number of Lanczos iterations is large compared with k. The Lanczos vectors v
i
 so generated then construct

the transformation matrix,

V v v v vm i m= (, , , ,),2 3 

which can be used to generate the Ritz eigenvectors (V
m

·u
m

), the approximate eigenvectors to the
original matrix.

Machine Learning: Collaborative Filtering
Collaborative filtering (CF is used by recommender systems, whose goal is to forecast the user’s interest in a
given item, based on collective user experience (collaboration). The main objective is to match people with
similar interests to generate personalized recommendations. Let’s say, for instance, that there are M items
and N users. This gives us an M × N user–item matrix X, where x

m,n
 represents nth user recommendations for

item m. The following sections discuss some of the CF systems used in recommender systems.

User-Based Collaborative Filtering
User-based CF forecasts the user’s interest in an item, based on collective ratings from similar user profiles.
The user–item matrix can be written as

X u u u= [, , ,]1 2  N
T

un = =[, ,] , , , , , ., , ,x x x n Nn n M n
T

1 2 1 2 3 

The first step in user-based CF is to evaluate the similarity between users and arrange them according
to their nearest neighbor. For example, to evaluate the similarity between two users, you may use a cosine
similarity matrix un,ua:

		 sim
x x

x x

m n m a
m

M

m n
m

M

m a
m

M
() .

, ,

, ,

u , un a =

×

=

= =

å

å å
1

2

1

2

1

		 (2-14)

Finally, the predicted rating ˆ
,xm a of test item m by test user a is computed as

		 ˆ
)

,
()(

()
,

,

x u
usim x

sim
m a a

nm n
n

N

n

N= +
-

=

=

å

å

u , u

u , u

n a

n a

1

1

		 (2-15)

where un and ua denote the average rating made by users n and a, respectively. As seen from
Equations 2-14 and 2-15, processing CF is a compute-intensive job function and may require large resource
pools and faster computing machines. Therefore, it is recommended that you leverage a Hadoop platform
for better performance and scalability.

Chapter 2 ■ Machine Learning and Knowledge Discovery

34

Item-Based Collaborative Filtering
Item-based CF computes the similarity between items and selects the best match. The idea is to isolate users
that have reviewed both items and then compute the similarity between them. The user–item matrix is
represented as

X = [, ,]i i i1 M2 
T

im = =[, ,] , , , , ,, , ,x x x m Mm m m N
T

1 2 1 2 

where i
m

 corresponds to an item’s ratings by all users m, which results in item-based recommendation
algorithms.

The first step in item-based CF is to evaluate the similarity between items and arrange them according
to their nearest neighbor. For instance, you may use the cosine similarity matrix to evaluate the similarity
between two items i

m
,i

b
. To remove the difference in rating scale between users when computing the

similarity, the cosine similarity is adjusted by subtracting the user’s average rating xn (Sarwar 2001) from
each co-rated pair:

	 sim
x x x x

x x x x
m b

m n n b n n
n

N

m n n
n

N

b n n

(,)
()()

() (

, ,

, ,

i i =
− −

− ⋅ −

=

=

∑

∑
1

2

1

))

.
2

1n

N

=
∑

		 (2-16)

Finally, the predicted rating ˆ
,xm a of test item m by test user a is computed as

	 ˆ
)

.
()(

()
,

,

x
sim x

sim
m a

b m b a
b

N

b m
b

M= =

=

å

å

i , i

i , i

1

1

		 (2-17)

The rating of an item by a user can be estimated by averaging the ratings of similar items evaluated by
the same user.

Alternating Least Squares with Weighted-l-Regularization
The alternating-least-squares with weighted-l-regularization (ALS-WR) algorithm factors the user–item
matrix into the user–factor matrix and the item–factor matrix. This algorithm strives to uncover the latent
factors that rationalize the observed user–item ratings and searches for optimal factor weights to minimize
the least squares between predicted and actual ratings (Zhou 2008).

If you have multiple users and items, you will need to learn the feature vectors that represent each item
and each user in the feature space. The objective is to uncover features that associate each user u with a
user–factor vector xu

fÎ , and each item i with an item–factor vector yi
fÎ() . Ratings are described by

the inner dot product p x yui u
T

i= of the user–factor vector and the item–factor vector. The idea is to perform
matrix factorization, such that users and items can be mapped into common latent factors, whereby they can
be directly compared. Because the rating matrix is sparse and not fully defined, the factorization has to be
done using known ratings only. The quality of the solution is measured not only with respect to the observed
data, but also with respect to a generalization of the unobserved data. You have to find a set of user and item
feature vectors that minimizes the following cost function:

	 () || || || || ,
,

p x y n x n yui u
T

i u
x

u
u

i
y

i
iu i

- - +
æ

è
ç

ö

ø
÷å åå 2 2 2l 		 (2-18)

Chapter 2 ■ Machine Learning and Knowledge Discovery

35

where nu
x and ni

y represent the number of ratings of user u and item i, respectively. The regularization term
l(...) avoids overfitting the training data. The parameter l depends on the data and is tuned by cross-
validation in the dataset for better generalization. Because the search space is very large (multiple users
and items), it prevents application of traditional direct optimization techniques, such as stochastic gradient
descent.

The cost function assumes a quadratic form when either the user–factor or the item–factor is fixed,
which allows computation of a global minimum. This in turn allows ALS optimization, in which user–factors
and item–factors are alternately recomputed by fixing each other. This algorithm is designed for large-scale
CF for large datasets.

Machine Learning: Similarity Matrix
A similarity matrix scores the similarity between data points. Similarity matrices are strongly related to
their counterparts: distance matrices and substitution matrices. The following sections look at some of the
commonly used similarity calculation methods.

Pearson Correlation Coefficient
Pearson correlation measures the linear dependence between two variables. The Pearson correlation
coefficient is the covariance of the two variables (X and Y) divided by the product of their standard
deviations:

	 r
X X Y Y

X X Y Y

i i
i

n

i
i

n

i
i

n
=

- -

- -

=

= =

å

å å

()()

() ()

.1

2

1

2

1

		 (2-19)

The Pearson correlation coefficient ranges from −1 to 1. A value of 1 validates a perfect linear
relationship between X and Y, in which the data variability of X tracks that of Y. A value of −1 indicates a
reverse relationship between X and Y, such that the data variability of Y is opposite to that of X. A value of 0
suggests lack of linear correlation between the variables X and Y.

Although the Pearson coefficient reflects the strength of the linear relationship, it is highly sensitive to
extreme values and outliers. The low relationship strength may be misleading if two variables have a strong
curvilinear relationship instead of a strong linear relationship. The coefficient may also be misleading if
X and Y have not been analyzed in terms of their full ranges.

Spearman Rank Correlation Coefficient
The Spearman correlation coefficient performs statistical analysis of the strength of a monotonic
relationship between the paired variables X and Y. Spearman correlation calculates Pearson correlation for
the ranked values of the paired variables. Ranking (from low to high) is obtained by assigning a rank of 1 to
the lowest value, 2 to the next lowest, and so on, such that

		 r
d

n nS
i= -
-

å1
6

1

2

2()
, 		 (2-20)

where n is the sample size, and d is the distance between the statistical ranks of the variable pairs given by

d x yi i i= - .

Chapter 2 ■ Machine Learning and Knowledge Discovery

36

The sign of the Spearman correlation coefficient signifies the direction of the association between the
dependent and independent variables. The coefficient is positive if the dependent variable Y increases
(or decreases) in the same direction as the independent variable X. The coefficient is negative if the
dependent variable Y increases (or decreases) in the reverse direction, relative to the independent variable X.
A Spearman correlation of 0 signifies that the variable Y has no inclination to either increase or decrease,
relative to X. Spearman correlation increases in magnitude as X and Y move closer to being perfect
monotone functions. Spearman correlation can only be computed if the data are not truncated. Although
less sensitive to extreme values, it relies only on rank instead of observation.

Euclidean Distance
The Euclidean distance is the square root of the sum of squared differences between the vector elements of
the two variables:

	 d X Yi i
i

n

() .()X, Y = -
=
å 2

1

		 (2-21)

A Euclidean distance is valid if both variables are measured on the same scale. You can transform the
distance in Equation 2-21 to an inverse form (see Equation 2-22), such that it returns a value of 1 if X and Y
(X – Y = 0) are similar and trend to 0 if the similarity decreases:

		 ˆ()
()

.d
d

X, Y
X, Y

=
+

1

1
		 (2-22)

You can verify that ˆ()d X, Y calculates to the value of 1 if the distance d(X,Y) = 0 (indicating similarity),
and ˆ()d X, Y decreases to 0 if d(X,Y) increases (indicating dissimilarity).

Jaccard Similarity Coefficient
The Jaccard similarity coefficient gauges similarity between finite sample sets X and Y by measuring
overlapping between them. Sets X and Y do not have to be of same size. Mathematically, the coefficient can
be defined as the ratio of the intersection to the union of the sample sets (X, Y):

	 J X Y
X Y

X Y
J X Y(,) , (,)=

Ç
È

£ £0 1 		 (2-23)

J X X(,) .=1

The Jaccard distance measures the dissimilarity between sample sets and is obtained by subtracting the
Jaccard coefficient from 1:

		 d X Y J X YJ (,) (,).= -1 		 (2-24)

The Jaccard coefficient is commonly used in measuring keyword similarities, document similarities,
news article classification, natural language processing (NLP), and so on.

Chapter 2 ■ Machine Learning and Knowledge Discovery

37

Figure 2-5.  Machine learning–based feedback control system: features are transformed and fed into phase
detectors; the data classification process employs models trained on the detected phase

Summary
The solution to a complex problem relies on intelligent use of machine learning techniques. The precision,
speed, and accuracy of the solution can be improved by employing techniques that not only reduce the
dimensionality of the features, but also train the models specific to a unique behavior. Distinct behavioral
attributes can be clustered into phases by using one of the clustering techniques, such as k-means.
Reduced data points corresponding to each cluster label are separated and trained to solve a regression or
classification problem. In a normal posttraining operation, once phases are identified, the trained model
associated with that phase is employed to forecast (or estimate) the output of the feedback loop.

Figure 2-5 summarizes a process control system capable of sensing a large number of sensors in
order to control an environmental process (e.g., cooling in the datacenter). The first step is to reduce the
dimensionality of the data. The new data are fed into clustering methods, which discover a group’s items from
a given collection, based on similar attributes and distinctive properties. Data corresponding to each cluster
label are segregated and trained individually for classification. Phase identification allows the application of
a model function, which associates with the identified phase. The output of the phase-specific model triggers
the process control functions, which act on the environment and change the sensor outputs. Additionally,
this procedure lets us actively predict the current phase duration and the upcoming phase and accordingly
forecast the output for proactive control.

Chapter 2 ■ Machine Learning and Knowledge Discovery

38

References
Bezdek, James C. Pattern Recognition with Fuzzy Objective Function Algorithms. Norwell, MA: Kluwer, 1981.

Breiman, Leo. “Random Forests.” Machine Learning 45, no. 1 (2001): 5–32.

Dunn, J. C. “A Fuzzy Relative of the Isodata Process and Its Use in Detecting Compact Well-Separated
Clusters.” Cybernetics 3 (1973): 32–57.

Sarwar, Badrul, George Karypis, Joseph Konstan, and John Riedl. “Item-Based Collaborative Filtering
Recommendation Algorithms.” In Proceedings of the 10th International Conference on the World Wide Web,
285–295. New York: ACM, 2001.

Zhou, Yunhong, Dennis Wilkinson, Robert Schreiber, and Rong Pan. “Large-Scale Parallel Collaborative
Filtering for the Netflix Prize.” In Algorithmic Aspects in Information and Management, Proceedings of the
4th International Conference, AAIM 2008, Shanghai, China, June 23–25, 2008, edited by Rudof Fleischer and
Jinhui Xu, 337–348. Berlin: Springer, 2008.

39

Chapter 3

Support Vector Machines for
Classification

Science is the systematic classification of experience.

—George Henry Lewes

This chapter covers details of the support vector machine (SVM) technique, a sparse kernel decision machine
that avoids computing posterior probabilities when building its learning model. SVM offers a principled
approach to machine learning problems because of its mathematical foundation in statistical learning
theory. SVM constructs its solution in terms of a subset of the training input. SVM has been extensively
used for classification, regression, novelty detection tasks, and feature reduction. This chapter focuses
on SVM for supervised classification tasks only, providing SVM formulations for when the input space is
linearly separable or linearly nonseparable and when the data are unbalanced, along with examples. The
chapter also presents recent improvements to and extensions of the original SVM formulation. A case study
concludes the chapter.

SVM from a Geometric Perspective
In classification tasks a discriminant machine learning technique aims at finding, based on an independent
and identically distributed (iid) training dataset, a discriminant function that can correctly predict labels for
newly acquired instances. Unlike generative machine learning approaches, which require computations of
conditional probability distributions, a discriminant classification function takes a data point x and assigns
it to one of the different classes that are a part of the classification task. Less powerful than generative
approaches, which are mostly used when prediction involves outlier detection, discriminant approaches
require fewer computational resources and less training data, especially for a multidimensional feature
space and when only posterior probabilities are needed. From a geometric perspective, learning a classifier
is equivalent to finding the equation for a multidimensional surface that best separates the different classes
in the feature space.

SVM is a discriminant technique, and, because it solves the convex optimization problem analytically,
it always returns the same optimal hyperplane parameter—in contrast to genetic algorithms (GAs) or
perceptrons, both of which are widely used for classification in machine learning. For perceptrons, solutions
are highly dependent on the initialization and termination criteria.

For a specific kernel that transforms the data from the input space to the feature space, training
returns uniquely defined SVM model parameters for a given training set, whereas the perceptron and GA
classifier models are different each time training is initialized. The aim of GAs and perceptrons is only to
minimize error during training, which will translate into several hyperplanes’ meeting this requirement.

Chapter 3 ■ Support Vector Machines for Classification

40

If many hyperplanes can be learned during the training phase, only the optimal one is retained, because
training is practically performed on samples of the population even though the test data may not exhibit the
same distribution as the training set. When trained with data that are not representative of the overall data
population, hyperplanes are prone to poor generalization.

Figure 3-1 illustrates the different hyperplanes obtained with SVM, perceptron, and GA classifiers on
two-dimensional, two-class data. Points surrounded by circles represent the support vector, whereas the
hyperplanes corresponding to the different classifiers are shown in different colors, in accordance with
the legend.

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

x 2

x1

0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 21

Class 1
Class 2
Support Vectors
SVM
Perceptron 1
Perceptron 2
GA 1
GA 2

Figure 3-1.  Two-dimensional, two-class plot for SVM, perceptron, and GA hyperplanes

Note SVM vs. ANN■■   Generally speaking, SVM evolved from a robust theory of implementation, whereas
artificial neural networks (ANN) moved heuristically from application to theory.

SVM distinguishes itself from ANN in that it does not suffer from the classical multilocal minima—the double
curse of dimensionality and overfitting. Overfitting, which happens when the machine learning model strives
to achieve a zero error on all training data, is more likely to occur with machine learning approaches whose
training metrics depend on variants of the sum of squares error. By minimizing the structural risk rather than
the empirical risk, as in the case of ANN, SVM avoids overfitting.

SVM does not control model complexity, as ANN does, by limiting the feature set; instead, it automatically
determines the model complexity by selecting the number of support vectors.

Chapter 3 ■ Support Vector Machines for Classification

41

SVM Main Properties
Deeply rooted in the principles of statistics, optimization, and machine learning, SVM was officially
introduced by Boser, Guyon, and Vapnik (1992) during the Fifth Annual Association for Computing
Machinery Workshop on Computational Learning Theory. [Bartlett (1998) formally revealed the
statistical bounds of the generalization of the hard-margin SVM. SVM relies on the complexity of the
hypothesis space and empirical error (a measure of how well the model fits the training data). Vapnik-
Chervonenkis (VC) theory proves that a VC bound on the risk exists. VC is a measure of the complexity
of the hypothesis space. The VC dimension of a hypothesis H relates to the maximum number of points
that can be shattered by H. H shatters N points, if H correctly separates all the positive instances from the
negative ones. In other words, the VC capacity is equal to the number of training points N that the model
can separate into 2N different labels. This capacity is related to the amount of training data available.
The VC dimension h affects the generalization error, as it is bounded by  w where w is the weight vector of
the separating hyperplane and the radius of the smallest sphere R that contains all the training points,

according to: h
R

w
<

2

2
 

. The overall error of a machine learning model consists of e = e
emp

 + e
g
, where e

emp
 is the

training error, and e
g
 is the generalization error. The empirical risk of a model f is eemp

i

N

if
N

y f[]= - ()
=
å1 1

21

. .

The lower bound for risk is e e
h

f f
N

h
N

hemp[]≤ []+ 











+ −
1 2

1
4

ln ln where 1−h is the probability of

his bound’s being true for any function in the class of function with VC dimension h, independent of the data
distribution.

Note■■  T here are 2N different learning problems that can be defined, as N points can be labeled in 2N
manners as positive or negative. For instance, for three points, there are 24 different labels and 8 different
classification boundaries that can be learned. Thus, the VC dimension in R2 is 3.

SVM elegantly groups multiple features that were already being proposed in research in the 1960s to form
what is referred to as the maximal margin classifier. SVM borrows concepts from large-margin hyperplanes
(Duda 1973; Cover 1995; Vapnik and Lerner 1963; Vapnik and Chervonenkis 1964); kernels as inner products
in the feature space (Aizermann, Braverman, and Rozonoer 1964); kernel usage (Aizermann, Braverman, and
Rozonoer 1964; Wahba 1990; Poggio 1990) and sparseness (Cover 1995). Mangasarian (1965) also proposed
an optimization approach similar to the one adopted by SVM. The concept of slack, used to address noise in
data and nonseparability, was originally introduced by Smith (1968) and was further enhanced by Bennett
and Mangasarian (1992). Incorporated into SVM formulation by Cortes (1995), soft-margin SVM represents
a modification of the hard-margin SVM through its adoption of the concept of slack to account for noisy data
at the separating boundaries. (For readers interested in delving into the foundations of SVM, see Vapnik 1998,
1999, for an exhaustive treatment of SVM theory.)

Known for their robustness, good generalization ability, and unique global optimum solutions, SVMs
are probably the most popular machine learning approach for supervised learning, yet their principle is
very simple. In his comparison of SVM with 16 classifiers, on 21 datasets, Meyer, Leisch, and Hornik (2003)
showed that SVM is one of the most powerful classifiers in machine learning. Since their introduction
in 1992, SVMs have found their way into a myriad of applications, such as weather prediction, power
estimation stock prediction, defect classification, speaker recognition, handwriting identification, image and
audio processing, video analysis, and medical diagnosis.

Chapter 3 ■ Support Vector Machines for Classification

42

What makes SVM an attractive machine learning framework can be summarized by the following
properties:

•	 SVM is a sparse technique. Like nonparametric methods, SVM requires that all
the training data be available, that is, stored in memory during the training phase,
when the parameters of the SVM model are learned. However, once the model
parameters are identified, SVM depends only on a subset of these training instances,
called support vectors, for future prediction. Support vectors define the margins of
the hyperplanes. Support vectors are found after an optimization step involving an
objective function regularized by an error term and a constraint, using Lagrangian
relaxation.1 The complexity of the classification task with SVM depends on the
number of support vectors rather than the dimensionality of the input space. The
number of support vectors that are ultimately retained from the original dataset
is data dependent and varies, based on the data complexity, which is captured by
the data dimensionality and class separability. The upper bound for the number of
support vectors is half the size of the training dataset, but in practice this is rarely
the case. The SVM model described mathematically in this chapter is written as
a weighted sum of the support vectors, which gives the SVM framework the same
advantages as parametric techniques in terms of reduced computational time for
testing and storage requirements.

•	 SVM is a kernel technique. SVM uses the kernel trick to map the data into a
higher-dimensional space before solving the machine learning task as a convex
optimization problem in which optima are found analytically rather than
heuristically, as with other machine learning techniques. Often, real-life data are not
linearly separable in the original input space. In other words, instances that have
different labels share the input space in a manner that prevents a linear hyperplane
from correctly separating the different classes involved in this classification task.
Trying to learn a nonlinear separating boundary in the input space increases the
computational requirements during the optimization phase, because the separating
surface will be of at least the second order. Instead, SVM maps the data, using
predefined kernel functions, into a new but higher-dimensional space, where a
linear separator would be able to discriminate between the different classes. The
SVM optimization phase will thus entail learning only a linear discriminant surface
in the mapped space. Of course, the selection and settings of the kernel function are
crucial for SVM optimality.

•	 SVM is a maximum margin separator. Beyond minimizing the error or a cost
function, based on the training datasets (similar to other discriminant machine
learning techniques), SVM imposes an additional constraint on the optimization
problem: the hyperplane needs to be situated such that it is at a maximum distance
from the different classes. Such a term forces the optimization step to find the
hyperplane that would eventually generalize better because it is situated at an equal
and maximum distance from the classes. This is essential, because training is done on
a sample of the population, whereas prediction is to be performed on yet-to-be-seen
instances that may have a distribution that is slightly different from that of the subset
trained on.

1Established in the 1970s, Lagrangian relaxation provides bounds for the branch-and-bound algorithm and has been
extensively used in scheduling and routing. Lagrangian relaxation converts many hard integer-programming problems
into simpler ones by emphasizing the constraints in the objective function for optimization via Lagrange multipliers.
(For a more in-depth discussion on Lagrangian relaxation, see Fisher 2004.)

Chapter 3 ■ Support Vector Machines for Classification

43

SVM uses structural risk minimization (SRM) and satisfies the duality and convexity requirements. SRM
(Vapnik 1964) is an inductive principle that selects a model for learning from a finite training dataset. As an
indicator of capacity control, SRM proposes a trade-off between the VC dimensions, that is, the hypothesis
of space complexity and the empirical error. SRM’s formulation is a convex optimization with n variables in
the cost function to be maximized and m constraints, solvable in polynomial time. SRM uses a set of models
sequenced in an increasing order of complexity. Figure 3-2 shows how the overall model error varies with
the complexity index of a machine learning model. For non- complex models, the error is high because a
simple model cannot capture all the complexity of the data which results in an underfitting situation. As the
complexity index increases, the error reaches its minimum for the optimal model indexed h* before it starts
increasing again. For high model indices, the structure starts adapting its learning model to the training data
which results in an overfitting that reduces the training error value and increases the model VC however, at
the expense of a deterioration in the test error.

Hard-Margin SVM
The SVM technique is a classifier that finds a hyperplane or a function g x w x bT() = + that correctly
separates two classes with a maximum margin. Figure 3-3 shows a separating hyperplane corresponding to a
hard-margin SVM (also called a linear SVM).

best model overfittingunderfitting

error

structure

test error

VC (confidence term)

training error/empirical error

h (model index)

Figure 3-2.  Relationship between error trends and model index

Chapter 3 ■ Support Vector Machines for Classification

44

Mathematically speaking, given a set of points x
i
 that belong to two linearly separable classes w

1
, w

2
, the

distance of any instance from the hyperplane is equal to
g x

w

()
 

. SVM aims to find w, b, such that the value of

g(x) equals 1 for the nearest data points belonging to class w
1
 and –1 for the nearest ones of w

2
.

This can be viewed as having a margin of

1 1 2

     w w w
+ = ,

whereas w x b xT + = ∈1 1for w , and w x b xT + = − ∈1 2for w .
This leads to an optimization problem that minimizes the objective function

J w w() = 1

2
2

  ,

subject to the constraint

y x b i Ni wi
T +() ≥ =1 1 2, , , . . ., .

When an optimization problem—whether minimization or maximization—has constraints in the
variables being optimized, the cost or error function is augmented by adding to it the constraints, multiplied
by the Lagrange multipliers.

In other words, the Lagrangian function for SVM is formed by augmenting the objective function with a
weighted sum of the constraints,

 w b w w w x byT

i

N

i i
T

i, ,λ λ() = − +() − 
=
∑1

2
1

1

where w and b are called primal variables, and l
i
’s the Lagrange multipliers.

These multipliers thus restrict the solution’s search space to the set of feasible values, given the
constraints. In the presence of inequality constraints, the Karush-Kuhn-Tucker (KKT) conditions generalize
the Lagrange multipliers.

Figure 3-3.  Hard-maximum-margin separating hyperplane

Chapter 3 ■ Support Vector Machines for Classification

45

The KKT conditions are

	 1.	 Primal constraints

− +() −  ≤ ∀ =y w x b ii
T

i 1 0 1, .. .,N

	 2.	 Dual constraints

li i N≥ ∀ =0 1, .. .,

	 3.	 Complementarity slackness

λi i Ny w x bi
T

i +() −  = ∀ =1 0 1, ...,

	 4.	 Gradient of the Lagrangian (zero, with respect to primal variables)

∇ () =
−

−





















==

=

∑

∑
 w b, ,λ

w y x

y

i

N

i i i

i

N

i i

1

1

0

l

l

Based on the KKT conditions,

w y x
i

N

i i i
=

=
∑

1

λ ,

i

N

i y i
=
∑ =

1

0λ .

Note■■  A ppearing in a study by Kuhn and Tucker (1951), these conditions are also found in the unpublished
master’s thesis of Karush (1939).

Since most linear programming problems come in pairs, a primal problem with n variables and m
constraints can be rewritten in the Wolfe dual form with m variables and n constraints while the same
solution applies for both primal and dual formulations. The duality theorem formalizes this by stating that
the number of variables in one form is equal to the number of constraints in the complementary form. The
complementary slackness is the relationship between the primal and dual formulation: when added to
inequalities, slack variables transform them into equalities.

The dual problem of SVM optimization is to find

max ,
,

λ
λ λ λ

i

N

i
i j

i j i j jy y x x
i

=
∑ ∑−











1

1

2

subject to

i

N

i iy
=
∑ =

1

0λ ,

li i≥ ∀0 .

Chapter 3 ■ Support Vector Machines for Classification

46

Note■■  T his last constraint is essential for solution optimality. At optimality, the dual variables have to be
nonnegative, as dual variables are multiplied by a positive quantity. Because negative Lagrange multipliers
decrease the value of the function, the optimal solution cannot have negative Lagrange multipliers. Active or
binding constraints have a corresponding nonzero multiplier, whereas nonbinding ones are zero and do not
affect the problem solution. SVM hyperplane parameters are thus defined by the active, binding constraints,
which correspond to the nonzero Lagrange multipliers, that is, the support vector.

Solving the duality of the aforementioned problem is useful for several reasons. First, even if the primal is not
convex, the dual problem will always have a unique optimal solution. Second, the value of the objective function
is a lower bound on the optimal function value of the primal formulation. Finally, the number of dual variables
may be significantly less than the number of primal variables; hence, an optimization problem formulated in the
dual form can be solved faster and more efficiently.

Soft-Margin SVM
When the data are not completely separable, as with the points marked by a X in Figure 3-4, slack variables
x

i
 are introduced to the SVM objective function to allow error in the misclassification. SVM, in this case, is

not searching for the hard margin, which will classify all data flawlessly. Instead, SVM is now a soft-margin
classifier; that is, SVM is classifying most of the data correctly, while allowing the model to misclassify a few
points in the vicinity of the separating boundary.

Figure 3-4.  A few misclassifications, as part of soft-margin SVM

Chapter 3 ■ Support Vector Machines for Classification

47

The problem in primal form now is a minimization of the objective function

J w b w C
i

N

i, , ,ξ ξ() = +
=
∑1

2
2

1

 

subject to these two constraints:

y b i Ni wi
T

ix i+  ≥ − =1 ξ , , , . .. , ,1 2

ξi i N≥ =0 1 2, , , ..., .

The regularization term or box constraint, C, is a parameter that varies, depending on the optimization
goal. As C is increased, a tighter margin is obtained, and more emphasis is placed on minimizing the
number of misclassifications. As C is decreased, more violations are allowed, because maximizing the
margin between the two classes becomes the SVM aim. Figure 3-5 captures the effect of the regularization
parameter, with respect to margin width and misclassification. For C C1 2< , fewer training points are within
the margin for C

2
 than for C

1
, but the latter has a wider margin.

Figure 3-5.  The box constraint effect on SVM performance

In dual form the soft margin SVM formulation is

max ,
λ

λ λ λ
i

N

i
i j

i j i j i jy y x x
=
∑ ∑−











1

1

2 ,

subject to

i

N

i iy
=
∑ =

1

0λ ,

0 1 2≤ ≤ =λi C i N, , , ..., .

Chapter 3 ■ Support Vector Machines for Classification

48

The soft-margin dual problem is equivalent to the hard-margin dual problem, except that the dual
variable is upper bounded by the regularization parameter C.

Kernel SVM
When a problem is not linearly separable in input space, soft-margin SVM cannot find a robust separating
hyperplane that minimizes the number of misclassified data points and that generalizes well. For that, a
kernel can be used to transform the data to a higher-dimensional space, referred to as kernel space, where
data will be linearly separable. In the kernel space a linear hyperplane can thus be obtained to separate the
different classes involved in the classification task instead of solving a high-order separating hypersurface in
the input space. This is an attractive method, because the overhead on going to kernel space is insignificant
compared with learning a nonlinear surface.

A kernel should be a Hermitian and positive semidefinite matrix and needs to satisfy Mercer’s theorem,
which translates into evaluating the kernel or Gram matrix on all pairs of data points as positive and
semidefinite, forming

K x u x u
r

r r, ,() = () ()∑ϕ ϕ

where j(x) belongs to the Hilbert space.
In other words, K x u g x g u dxdu g x g x dx, ,() () () ≥ ∀ () () <+ ∞∫∫∫ 0 2where .

Some popular kernel functions include

•	 Linear kernel: K x u uT, .() = x

•	 Polynomial function: K x u ax u c qT q
, ,() = +() > 0

•	 Hyperbolic tangent (sigmoid): K x u x uT, tanh() = +()b g

•	 Gaussian radial basis function (RBF): K x u
x u

, exp() = −
−









2

2s

•	 Laplacian radial basis function: K x u
x u

, exp() = −
−







s

•	 Randomized blocks analysis of variance (ANOVA RB) kernel:

K x u x u
k

n
k k d, (())() = − −

=
∑

1

2exp s

•	 Linear spline kernel in 1D:

K x u
x u

, . .min , (min(,) (,))() = + ()− + +1
2

1

3
2 3x u x u x u x umin

Kernel selection is heavily dependent on the data specifics. For instance, the linear kernel—the simplest
of all—is useful in large sparse data vectors. However, it ranks behind the polynomial kernel, which avoids
zeroing the Hessian. The polynomial kernel is widely used in image processing, whereas the ANOVA RB
kernel is usually reserved for regression tasks. The Gaussian and Laplace RBFs are general-purpose kernels
that are mostly applied in the absence of prior knowledge. A kernel matrix that ends up being diagonal
indicates that the feature space is redundant and that another kernel should be tried after feature reduction.

Note that when kernels are used to transform the feature vectors from input space to kernel space for
linearly nonseparable datasets, the kernel matrix computation requires massive memory and computational
resources, for big data.

Chapter 3 ■ Support Vector Machines for Classification

49

Figure 3-6 displays the two-dimensional exclusive OR (XOR) data, a linearly nonseparable distribution
in input space (upper-left) as well as in the feature space. In the latter, 16 points (for different sets) are
created for the four inputs when the kernel is applied. The choice of the Gaussian RBF kernel-smoothing
parameter s2 affects the distribution of the data in the kernel space. Because the choice of parameter value
is essential for transforming the data from a linearly nonseparable space to a linearly separable one, grid
searches are performed to find the most suitable values.

The primal formulation of the kernel SVM is

min ,
,w

T

i

N

iw w C
ξ

ξ1

2 1

+
=
∑

subject to y w x bi
T

i iϕ ξ()+() ≥ −1 and ξi i≥ ∀0, ,

where j(x
i
) is such that K x x x xi j i j, .() = () ()ϕ ϕ .

Again, the SVM solution should satisfy the KKT conditions, as follows:

	 1.	 w y x
i

N

i i i= ∑
=1

λ ϕ()

	 2.	 ∑ =
=i

N

i iy
1

0λ

	 3.	 C i Ni i− − = =µ λ 0 1 2, , ...,

	 4.	 λ ϕ ξi i
T

i iy w x b i N() , , ...,+()− +  = =1 0 1 2

	 5.	 µ ξi i i N= =0 1 2, ,...,

	 6.	 µ ξi i, , , ...,> =0 1 2i N

Figure 3-6.  Two-dimensional XOR data, from input space to kernel space

Chapter 3 ■ Support Vector Machines for Classification

50

As mentioned earlier, the dual formulation of this problem is more efficient to solve and is used in most
implementations of SVM:

max ,
λ

λ λ λi i j i j i j
i

N

i

N

y y x x
= =
∑ ∑−








1 1

1

2

subject to

λi
i

iy∑

Note■■  F or a dataset size of N, the kernel matrix has N2 entries. Therefore, as N increases, computing the
kernel matrix becomes inefficient and even unfeasible, making SVM impractical to solve. However, several
algorithms have alleviated this problem by breaking the optimization problem into a number of smaller
problems.

Multiclass SVM
The early extensions of the SVM binary classification to the multiclass case were the work of Weston and
Watkins (1999) and Platt (2000). Researchers devised various strategies to address the multiclassification
problem, including one-versus-the-rest, pair-wise classification, and the multiclassification formulation,
discussed in turn here.

•	 One-versus-the-rest (also called one-against-all [OAA]) is probably the earliest SVM
multiclass implementation and is one of the most commonly used multiclass SVMs.
It constructs c binary SVM classifiers, where c is the number of classes. Each classifier
distinguishes one class from all the others, which reduces the case to a two-class
problem. There are c decision functions: w x b w x bT

i c
T

i c1 1j j() + () +; ...; . The initial
formulation of the OAA method assigns a data point to a certain class if and only if
that class has accepted it, while all other classes have not, which leaves undecided
regions in the feature space when more than one class accepts it or when all
classes reject it. Vapnik (1998) suggested assigning data points to the class with the
highest value, regardless of sign. The final label output is given to the class that has
demonstrated the highest output value:

class of x max w x bi c i
T

iarg (()).,. . .,≡ +=1 j

Proposed by Knerr, Personnaz, and Dreyfus (1990), and first adopted in SVM by •	
Friedman (1996) and Kressel (1999), pair-wise classification (also called one-against-
one [OAO]) builds c(c – 1)/2 binary SVMs, each of which is used to discriminate two
of the c classes only and requires evaluation of (c – 1) SVM classifiers. For training
data from the kth and jth classes, the constraints for (x yt t,) are

w bkj
T

kj kj
tϕ ξxt()+() ≥ −1 , for y kt = ,

w bkj
T

kj kj
tϕ ξxt()+() ≤ − +1 , for y jt = ,

ξkj
t ≥ 0.

Chapter 3 ■ Support Vector Machines for Classification

51

The •	 multiclassification objective function probably has the most compact form, as it
optimizes the problem in a single step. The decision function is the same as that of
the OAA technique. The multiclassification objective function constructs c two-class
rules, and c decision functions solve the following constraints:

w b w by
T

y m
T

m i
m

i i
ϕ ϕ ξx xi i() + ≥ () + + −2 , ξi

m ≥ 0 .

For reasonable dataset sizes, the accuracy of the different multiclassification techniques is comparable.
For any particular problem, selection of the optimal approach depends partly on the required accuracy and
partly on the development and training time goals. For example, from a computational cost perspective,
OAA and OAO are quite different. Let’s say, for instance, that there are c different classes of N instances and
that T(N

1
) represents the time for learning one binary classifier. Using N

1
 examples, OAA will learn in cN 3,

whereas OAO will require 4(c – 1)N 3/ c2.
Although the SVM parametric model allows for adjustments when constructing the discriminant

function, for multiclass problems these parameters do not always fit across the entire dataset. For this
reason, it is sometimes preferable to partition the data into subgroups with similar features and derive the
classifier parameters separately. This process results in a multistage SVM (MSVM), or hierarchical SVM,
which can produce greater generalization accuracy and reduce the likelihood of overfitting, as shown by
Stockman (2010). A graphical representation of a single SVM and an MSVM is presented in Figure 3-7.

SVM

C1

C2

Cn

MSVM

C1

MSVM

C1

C3...Cn

C2, C3, … ,Cn

Single Multiclass SVM Multistage SVM

. .
 .

Figure 3-7.  Single multiclass SVM and MSVM flows

With a multistage approach, different kernel and tuning parameters can be optimized for each stage
separately. The first-stage SVM can be trained to distinguish between a single class and the rest of the classes.
At the next stage, SVM can tune a different kernel to further distinguish among the remaining classes. Thus,
there will be a binary classifier, with one decision function to implement at each stage.

Hierarchical SVM as an alternative for multiclass SVM has merit in terms of overall model error. SVM
accuracy approaches the Bayes optimal rule as an appropriate kernel choice and in smoothing metaparameter

values. Also, by definition, for a multiclass problem with M c
i
 classes, and an input vector x,

i

M

iP c x
=
∑ () =

1

1| ,

because classes should cover all the search space. When the classes being considered are not equiprobable,
the maximum P c xi |() has to be greater than 1/M; otherwise, the sum will be less than 1. Let’s say, for
example, that the probability of correct classification is

P P x R c P c p x c dxc
i

M

i i
i

M

i

R

i

i

= ∈ = () ()
= =
∑ ∑ ∫

1 1

(,) ,|

Chapter 3 ■ Support Vector Machines for Classification

52

where R
i
 is the region of the feature space in which the decision is in favor of c

 i
. Because of the definition of

region R
i
,

P P x c p x dx
M

p x dxc
i

M

R

i
i

M

Ri i

= () () ≥ ()
= =
∑∫ ∑∫

1 1

1
| ,

➩ P
Mc ≥ 1 ;

hence, the probability of multiclassification error is

P P
M

M

Me c= − ≤ − = −
1 1

1 1
.

As the number of classes M increases, P
e
 increases for a multiclassification flat formulation.

For a hierarchical classification the multiclassification task is reduced at each stage to a binary one,
with Pe =

1

2
. Thus, the cumulative error for the hierarchical task is expected to converge asymptotically to

a lower value than with a flat multiclassification task.

SVM with Imbalanced Datasets
In many real-life applications and nonsynthetic datasets, the data are imbalanced; that is, the important
class—usually referred to as the minority class—has many fewer samples than the other class, usually
referred to as the majority class. Class imbalance presents a major challenge for classification algorithms
whenever the risk loss for the minority class is higher than for the majority class. When the minority data
points are more important than the majority ones, and the main goal is to classify those minority data points
correctly, standard machine learning that is geared toward optimized overall accuracy is not ideal; it will
result in hyperplanes that favor the majority class and thus generalize poorly.

When dealing with imbalanced datasets, overall accuracy is a biased measure of classifier goodness.
Instead, the confusion matrix, and the information on true positive (TP) and false positive (FP) that it holds,
are a better indication of classifier performance. Referred to as matching matrix in unsupervised learning,
and as error matrix or contingency matrix in fields other than machine learning, a confusion matrix provides
a visual representation of actual versus predicted class accuracies.

ACCURACY METRICS

A confusion matrix is as follows:

Predicted/Actual Class Positive Class Negative Class

Positive Class TP FP

Negative Class FN TN

Accuracy is the number of data points correctly classified by the classification algorithm:

Accuracy
TP TN

TP TN FN FP
=

+
+ + +

.

The positive class is the class that is of utmost importance to the designer and usually is the
minority class.

Chapter 3 ■ Support Vector Machines for Classification

53

True positive (TP) (also called recall in some fields) is the number of data points correctly classified from
the positive class.

False positive (FP) is the number of data points predicted to be in the positive class but in fact belonging
to the negative class.

True negative (TN) is the number of data points correctly classified from the negative class.

False negative (FN) is the number of data points predicted to be in the negative class but in fact
belonging to the positive class.

Sensitivity (also called true positive rate [TPR] or recall rate [RR]) is a measure of how well a
classification algorithm classifies data points in the positive class:

Sensitivity
TP

TP FN
=

+
.

Specificity (also called true negative rate [TNR]) is a measure of how well a classification algorithm
classifies data points in the negative class:

Specificity
TN

TN FP
=

+
.

Receiver operating characteristic (ROC) curves offer another useful graphical representation for
classifiers operating on imbalanced datasets. Originally developed during World War II by radar and
electrical engineers for communication purposes and target prediction, ROC is also embraced by diagnostic
decision making. Fawcett (2006) provided a comprehensive introduction to ROC analysis, highlighting
common misconceptions.

The original SVM formulation did not account for class imbalance during its supervised learning phase.
But, follow-up research proposed modifications to the SVM formulation for classifying imbalanced datasets.

Previous work on SVM addressed class imbalance either by preprocessing the data or by proposing
algorithmic modification to the SVM formulation. Kubat (1997) recommended balancing a dataset by
randomly undersampling the majority class instead of oversampling the minority class. However, this results
in information loss for the majority class. Veropoulos, Campbell, and Cristianini (1999) introduced different
loss functions for the positive and negative classes to penalize the misclassification of minority data points.
Tax and Ruin (1999) solved the class imbalance by using the support vector data description (SVDD), which
aims at finding a sphere that encompasses the minority class and separates it from the outliers as optimally
as possible. Feng and Williams (1999) suggested general scaled SVM (GS-SVM), another variation of SVM,
which introduces a translation of the hyperplane after training the SVM. The translation distance is added
to the SVM formulation; translation distance is computed by projecting the data points on the normal vector
of the trained hyperplane and finding the distribution scales of the whole dataset (Das 2012). Chang and
Lin (2011) proposed weighted scatter degree SVM (WSD-SVM), which embeds the global information in the
GS-SVM by using the scatter of the data points and their weights, based on their location.

Many efforts have been made to learn imbalanced data at the level of both the data and the algorithm.
Preprocessing the data before learning the classifier was done through oversampling of the minority class to
balance the class distribution by replication or undersampling of the larger class, which balances the data by
eliminating samples randomly from that class (Kotsiantis, Kanellopoulos, and Pintelas 2006). Tang et al. (2009)
recommended the granular SVM repetitive undersampling (GSVM-RU) algorithm, which, instead of using
random undersampling of the majority class to obtain a balanced dataset, uses SVM itself—the idea being to
form multiple majority information granules, from which local majority support vectors are extracted and then
aggregated with the minority class. Another resampling method for learning classifiers from imbalanced data
was suggested by Ou, Hung, and Oyang (2006) and Napierała, Stefanowski, and Wilk (2010). These authors
concluded that only when the data suffered severely from noise or borderline examples would their proposed

Chapter 3 ■ Support Vector Machines for Classification

54

resampling methods outperform the known oversampling methods. The synthetic minority oversampling
technique (SMOTE) algorithm (Chawla et al. (2002) oversamples the minority class by introducing artificial
minority samples between a given minority data point and its nearest minority neighbors. Extensions of the
SMOTE algorithm have been developed, including one that works in the distance space (Koknar-Tezel and
Latecki 2010). Cost-sensitive methods for imbalanced data learning have also been used. These methods
define a cost matrix for misclassifying any data sample and fit the matrix into the classification algorithm
(He and Garcia 2009).

Tax and Duin (2004) put forward the one-class SVM, which tends to learn from the minority class only.
The one-class SVM aims at estimating the probability density function, which gives a positive value for the
elements in the minority class and a negative value for everything else.

By introducing a multiplicative factor z to the support vector of the minority class, Imam, Ting, and
Kamruzzaman (2006) posited that the bias of the learned SVM will be reduced automatically, without
providing any additional parameters and without invoking multiple SVM trainings.

Akbani, Kwek, and Japkowicz (2004) proposed an algorithm based on a combination of the SMOTE
algorithm and the different error costs for the positive and negative classes. Wang and Japkowicz (2010)
also aggregated the different penalty factors as well as using an ensemble of SVM classifiers to improve
the error for a single classifier and treat the problem of the skewed learned SVM. In an attempt to improve
classification of imbalanced datasets using SVM standard formulation, Ajeeb, Nayal, and Awad (2013)
suggested a novel minority SVM (MinSVM), which, with the addition of one constraint to the SVM objective
function, separates boundaries that are closer to the majority class. Consequently, the minority data points
are favored, and the probability of being misclassified is smaller.

Improving SVM Computational Requirements
Despite the robustness and optimality of the original SVM formulation, SVMs do not scale well
computationally. Suffering from slow training convergence on large datasets, SVM online testing time can be
suboptimal; SVMs write the classifier hyperplane model as a sum of support vectors whose number cannot
be estimated ahead of time and may total as much as half the datasets. Thus, it is with larger datasets that
SVM fails to deliver efficiently, especially in the case of nonlinear classification. Large datasets impose heavy
computational time and storage requirements during training, sometimes rendering SVM even slower than
ANN, itself notorious for slow convergence. For this reason, support vector set cardinality may be a problem
when online prediction requires real-time performance on platforms with limited computational and power
supply capabilities, such as mobile devices.

Many attempts have been made to speed up SVM. A survey related to SVM and its variants reveals a
dichotomy between speedup strategies. The first category of techniques applies to the training phase of the
SVM algorithm, which incurs a heftier computational cost in its search for the optimal separator. The intent of
these algorithms is to reduce the cardinality of the dataset and speed up the optimization solver. The second
category of techniques aims to accelerate the testing cycle. With the proliferation of power-conscious mobile
devices, and the ubiquity of computing pushed from the cloud to these terminals, reducing the SVM testing
cycle can be useful in applications in which computational resources are limited and real-time prediction
is necessary. For example, online prediction on mobile devices would greatly benefit from reducing the
computations required to perform a prediction.

To reduce the computational complexity of the SVM optimization problem, Platt (1998) developed
the sequential minimal optimization (SMO) method, which divides the optimization problem into two
quadratic program (QP) problems. This decomposition relieves the algorithm of large memory requirements
and makes it feasible to train SVM on large datasets. Therefore, this algorithm grows alternately linearly and
quadratically, depending on dataset size. SMO speeds up the training phase only, with no control over the
number of support vectors or testing time. To achieve additional acceleration, many parallel implementations

Chapter 3 ■ Support Vector Machines for Classification

55

of SMO (Zeng et al. 2008; Peng, Ma, and Hong 2009; Catanzaro et al. 2008; Alham et al. 2010; Cao et al. 2006)
were developed on various parallel programming platforms, including graphics processing unit (GPU)
(Catanzaro et al. 2008), Hadoop MapReduce (Alham et al. 2010), and message passing interface (MPI)
(Cao et al. 2006).

Using the Cholesky factorization (Gill and Murray 1974), Fine (2002) approximated the kernel matrix by
employing a low-rank matrix that requires updates that scale linearly with the training set size. The matrix
is then fed to a QP solver to obtain an approximate solution to the SVM classification problem. Referred
to as the Cholesky product form QP, this approach showed significant training time reduction, with its
approximation of the optimal solution provided by SMO. However, if the training set contains redundant
features, or if the support vectors are scaled by a large value, this method fails to converge (Fine and
Scheinberg 2002).

Instead of decomposing the optimization problem, Lee (2001a) reformulated the constraint
optimization as an unconstrained, smooth problem that can be solved using the Newton-Armijo
algorithm in quadratic time. This reformulation resulted in improved testing accuracy of the standard
SVM formulation (Vapnik 1999) on several databases (Lee 2001). Furthermore, Lee (2001) argued that this
reformulation allows random selection of a subset of vectors and forces creation of more support vectors,
without greatly affecting the prediction accuracy of the model.

Margin vectors were identified by Kong and Wang (2010) by computing the self and the mutual center
distances in the feature space and eliminating the statistically insignificant points, based on the ratio and
center distance of those points. The training set was forced to be balanced, and results were compared with
those found using reduced SVM (RSVM) on three datasets from the University of California, Irvine, Machine
Learning Repository (Frank and Asuncion 2010). The authors found that the model resulted in better
generalization performance than with RSVM but that it required slightly more training time, owing to the
overhead of computing the ratios and center distances.

Zhang (2008) identified boundary vectors, using the k-nearest neighbors (k-NN algorithm. With this
method the distance between each vector and all other vectors is computed, and the vectors that have
among their k-NN a vector of opposing class are retained. For linearly nonseparable problems, k-NN is
applied in the kernel space, where the dataset is linearly separable. The preextract boundary vectors are
used to train SVM. Because this subset is much smaller than the original dataset, training will be faster, and
the support vector set will be smaller.

Downs, Gates, and Masters (2002) attempted to reduce the number of support vectors used in the
prediction stage by eliminating vectors from the support vector set produced by an SMO solver that are
linearly dependent on other support vectors. Hence, the final support vector set is formed of all linearly
independent support vectors in the kernel space obtained by using row-reduced echelon form. Although
this method produced reduction for polynomial kernels, and RBF with large sigma values, the number of,
support vectors reduced could not be predicted ahead of time and was dependent on the kernel and the
problem.

Nguyen (2006) reduced the support vector set by iteratively replacing the two nearest support vectors
belonging to the same class, using a constructed support vector that did not belong to the original training
set. The algorithm was applied after training the SVM on the training set and obtaining the support vector
set. The algorithm was tested on the United States Postal Service database (Le Cun 1990) and achieved
significant reduction in support vector set cardinality, with little reduction in prediction accuracy.

Rizk, Mitri, and Awad (2013) proposed a local mixture–based SVM (LMSVM), which exploits the
increased separability provided by the kernel trick, while introducing a one-time computational cost.
LMSVM applies kernel k-means clustering to the data in kernel space before pruning unwanted clusters,
based on a mixture measure for label heterogeneity. Extending this concept, Rizk, Mitri, and Awad (2014)
put forward knee-cut SVM (KCSVM) and knee-cut ordinal optimization–inspired SVM (KCOOSVM), with
a soft trick of ordered kernel values and uniform subsampling to reduce the computational complexity of
SVM, while maintaining an acceptable impact on its generalization capability.

Chapter 3 ■ Support Vector Machines for Classification

56

Case Study of SVM for Handwriting Recognition
Automated handwriting recognition (HWR) is becoming popular in several offline and online sensing
tasks. Developing robust yet computationally efficient algorithms is still a challenging problem, given
the increased awareness of energy-aware computing. Offline sensing occurs by optically scanning words
and then transforming those images to letter code usable in the computer software environment. Online
recognition automatically converts the writing on a graphics tablet or pen-based computer screen into
letter code. HWR systems can also be classified as writer dependent or writer independent, with dependent
systems’ having a higher recognition rate, owing to smaller variance in the provided data.

Because isolated-letter HWR is an essential step for online HWR, we present here a case study on
developing an efficient writer-independent HWR system for isolated letters, using pen trajectory modeling
for feature extraction and an MSVM for classification (Hajj and Awad 2012). In addition to underlining the
importance of the application, this case study illustrates how stationary features are created from sequential
data and how a multiclass task is converted into a hierarchical one. Usually, hidden Markov models (HMM)
are better for modeling and recognizing sequential data, but with an appropriate feature generation scheme,
an SVM model can be used to model variable sequence length for moderate handwriting vocabularies.

The proposed HWR workflow is composed of preprocessing; feature extraction; and a hierarchical,
three-stage classification phase.

Preprocessing
The UJIpenchars database can be transformed into a sequence of points suitable for feature extraction in
a way similar to preprocessing performed a step typically found in many HWR systems. The preprocessing
comprises correcting the slant; normalizing the dimensions of the letter; and shifting the coordinates, with
respect to the center of mass.

To correct the slant, the input, consisting of a sequence of collected points, is first written in the form
of a series of vectors with polar coordinates, and then only vectors with an angle equal to or less than
50 degrees with the vertical are considered. The slant is computed by averaging the angles of the significant
vectors. Next, the letter is rotated by the slant angle, and the data are normalized so that all letters have the
same dimensions. Finally, the shifting of the coordinates, with respect to the center of mass, fits the letter
into a square of unit dimension with a centroid with the coordinates (0, 0).

Figure 3-8 shows two letters before (left) and after (right) the preprocessing stage.

Figure 3-8.  Examples of letters before (left) and after (right) preprocessing

Chapter 3 ■ Support Vector Machines for Classification

57

Feature Extraction
To obtain different representations of the letters, a set of feature vectors of fixed length should be computed.
The preprocessed data, consisting of strokes of coordinate pairs [x(t), y(t)], can be modeled, using a pen
trajectory technique (Jaeger 2008), and the set of features is obtained after averaging the following functions:

•	 Writing direction: Defined by

cos ; sin ,a at
x t

s t
t

y t

s t
() = ()

() () = ()
()

∆
∆

∆
∆

where Dx, Dy, and Ds are defined as

∆x t x t x t() = −() − +()1 1 ,

∆y t y t y t() = −() − +()1 1 ,

∆ ∆ ∆s t x t y t() = () + ()2 2
.

•	 Curvature: Defined by the sine and cosine of the angle defined by the points (x(t - 2),
y(t - 2)); (x(t), y(t)); and (x(t + 2), y(t + 2)). Curvature can be calculated from the writing
direction, using the following equations:

cos cos cos sin sin ,b a a a at t t t t() = −() +()+ −() +()1 1 1 1

sinb a a a at t t t t() = − +()− − +cos ()sin sin ()cos ().1 1 1 1

•	 Aspect of the trajectory: Computed according to the equation

A t
y t x t

y t x t
() =

() − ()()
() + ()()

∆ ∆
∆ ∆

.

•	 Curliness: Describes the deviation of the points from a straight line formed by the
previous and following points in the sequence by the equation

C t L t x y() = ()−()/ , ,max ∆ ∆ 2

where L(t) represents the length of the trajectory from point (x(t - 1), y(t - 1)) to point
(x(t + 1), y(t + 1)).

In addition to the previous functions, the following global features are computed:

•	 Linearity: Measured by the average distance from each point of the sequence to the
straight line joining the first and last points in the sequence:

LN
N

di= ∑1
.

•	 Slope of the sequence: Measured by the cosine and sine of the angle formed by the
straight line joining the first and last points in the sequence and a horizontal line.

•	 Ascenders and descenders: Describes the number of points of the sequence below
(descenders) or above (ascenders) the baseline (the straight horizontal line on which
the letter is written), each weighted by its distance to the baseline.

•	 Variance of coordinates (for both dimensions): Measures the expansion of the points
around the center of mass.

•	 Ratio of variances: Represents the proportion of the width to the height of the letter.

Chapter 3 ■ Support Vector Machines for Classification

58

Using OAA SVM, with a simple majority vote, the third stage identifies the letter •	
as one of the 52 classes (or subclusters). Figure 3-9 displays the hierarchy of the
three-stage system.

•	 Cumulative distance: The sum of the length of the segments of line joining
consecutive points of the sequence.

•	 Average distance to the center, The mean of the distances from each point of the
sequence to the center of mass of the letter.

Hierarchical, Three-Stage SVM
After the preprocessing and feature extraction stages, a three-stage classifier recognizes one of the 52 classes
(26 lowercase and 26 uppercase letters).

Using a binary SVM classifier, the first stage classifies the instance as one of two •	
classes: uppercase or lowercase letter.

Using OAA SVM, the second stage classifies the instance as one of the manually •	
determined clusters shown in Table 3-1.

Table 3-1.  Lower- and Uppercase Clusters

Lowercase Clusters Uppercase Clusters

Cluster 1: a c e o

Cluster 2: b d l t

Cluster 3: f h k

Cluster 4: g z j

Cluster 5: p q

Cluster 6: i r s

Cluster 7: u v w x

Cluster 8: m n

Cluster 9: A B P R

Cluster 10: C D G O Q

Cluster 11: E F I L

Cluster 12: J K T

Cluster 13: M N H

Cluster 14: S Y Z X

Cluster 15: U V W

Chapter 3 ■ Support Vector Machines for Classification

59

Input letter
Lower or

Upper Case

Lower
case

Upper
case

C1 - C8?

C9 - C15?

C 2

.

.

.

C 10

C 15

.

.

.

a, e,
c, o?

a
e
c
o.

.

.

A, B,
P, R?

A
B

R

.

.

.

STAGE 1
SVM

P

STAGE 2
SVM

STAGE 3
SVM

.

.

.

C 1

.

.

.

C 9

Output letter

C 8

Figure 3-9.  Hierarchical, three-stage SVM

Experimental Results
Experimental results, implemented with the MATLAB R2011a SVM toolbox, showed (using a four-fold
cross-validation) an average accuracy of 91.7 percent—or, an error rate of 8.3 percent, compared with
an error rate of 10.85 percent, using 3NN (Prat et al. 2009). The three stages of the classifier achieved,
respectively, 99.3 percent, 95.7 percent, and 96.5 percent accuracy. The kernel used for the three stages was
an RBF with parameters tuned using a grid search algorithm. Our proposed preprocessing helped improve
the general accuracy of the recognizer by approximately 1.5 percent to 2 percent.

Figure 3-10 presents a confusion histogram demonstrating the occurrence of the predicted classified
labels, along with their true labels. For example, in the first column, of the six letter a’s, five were correctly
recognized, and one was mistaken for c. Generally, no particular trend was observed in this confusion
matrix, and the error may be assumed to be randomly distributed among all classes.

Chapter 3 ■ Support Vector Machines for Classification

60

Table 3-2.  Recognition Rate Comparison

Architecture Recognition Rate (%)

Flat SVM OAA 65

Flat SVM OAO 82

3NN (Prat et al. 2009) 89.15

Three-Stage SVM 91.8

Figure 3-10.  Confusion plot for classified label versus true label

Because a flat SVM architecture may seem computationally less expensive, it was compared with
the proposed three-stage SVM, using OAO and OAA SVM techniques. Table 3-2 shows the recognition
rates obtained using the proposed architecture, compared with a flat SVM technique as well as the3NN
algorithm. The accuracy attained ranged from 65 percent, using OAA, to 82 percent, using OAO, whereas
the hierarchical SVM structure reached 91.7 percent. This is due to the fact that, with a three-stage SVM,
both the metaparameters of SVM (i.e., the regularization parameter between the slack and hyperplane
parameters) and the kernel specifics can be better modified independently during each phase of training
and better tailored to the resulting data subsets than a flat SVM model can be for the whole dataset.

Chapter 3 ■ Support Vector Machines for Classification

61

Complexity Analysis
Tables 3-3 and 3-4, respectively, provide the required operations for the preprocessing and feature extraction
stages of the three-stage SVM, where a letter is represented by a sequence of strokes of length N, with M
being the number of significant vectors, and K, the data size.

Table 3-4.  Required Operations for the Feature Extraction Stage

Feature Total Operations

Writing direction 7N

Curvature 6N

Aspect 2N

Curliness 14N

Linearity 6N + 1

Slope 7

Ascenders and descenders 6N

Variance 8N + 4

Ratio of variances 1

Cumulative distance 5N - 5

Average distance 4N

Table 3-3.  Required Operations for the Preprocessing Stage

Step Total Operations

Representing letter in a sequence of vector 8N

Computing slant M + 1

Rotating letter N

Normalizing dimensions 2N

Shifting to center of mass 4N + 2

Table 3-5 compares the required operations for the classification process using three-stage SVM and
the 3NN algorithm . Both SVM optimal hyperplane coefficients and support vectors were computed during
the training process. Given an input pattern represented by a multidimensional (11) vector x and a w vector
representing the decision boundary (hyperplane), the decision function for the classification phase is
reduced to a sign function.

Chapter 3 ■ Support Vector Machines for Classification

62

The online classification task is much costlier using a 3NN classifier compared with a hierarchical SVM. In
fact, every classification task requires the Euclidian distance calculation to all points in the dataset, which would
be an expensive cost to incur in the presence of a large dataset. Additionally, with the lack of a classification
model, the k-NN technique is a non parametric approach and requires access to all the data each time an
instance is recognized. With SVM, in contrast, separating class boundaries is learned offline, during the training
phase, and at runtime the computational cost of SVM training is not present. Only preprocessing, feature
extraction, and a simple multiplication operation with the hyperplane parameters are involved in the online
testing process. An advantage of 3NN, however, is that no training is required, as opposed to the complex SVM
classification step.

References
Aizerman, M., E. Braverman, and L. Rozonoer. “Theoretical Foundations of the Potential Function Method
in Pattern Recognition Learning.” Automation and Remote Control 25 (1964): 821–837.

Ajeeb, N., A. Nayal, and M. Awad. “Minority SVM for Linearly Separable and Imbalanced Datasets.” In
IJCNN 2013: Proceedings of the 2013 International Joint Conference on Neural Networks, 1–5. Piscataway, NJ:
Institute for Electrical and Electronics Engineers, 2013.

Akbani, Rehan, Stephen Kwek, and Nathalie Japkowicz. “Applying Support Vector Machines to Imbalanced
Datasets.” In Machine Learning: ECML 2004: 15th European Conference on Machine Learning, Pisa, Italy,
September 2004, edited by Jean-François Boulicaut, Floriana Esposito, Fosca Giannotti, and Dino Pedreschi,
39–50. Berlin: Springer, 2004.

Alham, N. K., Maozhen Li, S. Hammoud, Yang Liu, and M. Ponraj. “A Distributed SVM for Image
Annotation.” In FSKD 2010: Proceedings of the Seventh International Conference on Fuzzy Systems and
Knowledge Discovery, edited by Maozhen Li, Qilian Liang, Lipo Wang and Yibin Song, 2983–2987.
Piscataway, NJ: Institute of Electrical and Electronics Engineers, 2010.

Aronszajn, N. “Theory of Reproducing Kernels.” Transactions of the American Mathematical Society 68,
no. 3 (1950): 337–404.

Bartlett, P. and J. Shawe-Taylor, “Generalization Performance of Support Vector Machines and Other Pattern
Classifiers”, Advances in Kernel Methods: Support Vector Learning, 1999.

Ben-Hur, Asa, and Jason Weston. “A User’s Guide to Support Vector Machines.” Data Mining Techniques for
Life Sciences, edited by Oliviero Carugo and Frank Eisenhaber, 223-239. New York: Springer, 2010.

Bennett, Kristen P., and O. L. Mangasarian. “Robust Linear Programming Discrimination of Two Linearly
Inseparable Sets.” Optimization Methods and Software 1, no. 1: (1992): 23–34.

Boser, Bernard E., Isabelle M. Guyon, and Vladimir N. Vapnik. “A Training Algorithm for Optimal Margin
Classifiers.” In COLT ’92: Proceedings of the Fifth Annual Workshop on Computational Learning Theory,
edited by David Haussler, 144–152. New York: ACM, 1992.

Table 3-5.  Comparison of Three-Stage SVM and 3NN Classifiers

Classifier Decision Function Total Operations

Three-Stage SVM C w wx xT() = + 0
12 operations per classifier; in total,
168 operations (the class requiring the
most classifiers)

3NN (Prat et al. 2009) D x z x z x z, ...() = −() + + −()1 1

2

50 50

2 150 operations per distance measure; in
total, 3 50 * K = 150 * K

Chapter 3 ■ Support Vector Machines for Classification

63

Cao, L. J., S. S. Keerthi, Chong-Jin Ong, J. Q. Zhang, U. Periyathamby, Xiu Ju Fu, and H. P. Lee. “Parallel
Sequential Minimal Optimization for the Training of Support Vector Machines.” IEE Transactions on Neural
Networks 17, no. 4 (2006): 1039–1049.

Catanzaro, Bryan Christopher, Narayanan Sundaram, and Kurt Keutzer. “Fast Support Vector Machine
Training and Classification on Graphics Processors.” In ICML ’08: Proceedings of the 25th International
Conference on Machine Learning, edited by William Cohen, Andrew McCallum, and Sam Roweis, 104–111.
New York: ACM, 2008.

Chang, Chih-Chung, and Chih-Jen Lin. “LIBSVM: A Library for Support Vector Machines,” in “Large-Scale
Machine Learning,” edited by Huan Liu and Dana Nau, special issue, ACM Transactions on Intelligent
Systems and Technology 2, no. 3 (2011).

Chawla, Nitesh V., Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. “SMOTE: Synthetic
Minority Over-Sampling Technique.” Journal of Artificial Intelligence Research 16 (2002): 321–357.

Cover, Thomas M. “Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications
in Pattern Recognition.” IEEE Transactions on Electronic Computers 14 (1995): 326–334.

Das, Barnan. “Implementation of SMOTEBoost Algorithm Used to Handle Class Imbalance Problem in
Data,” 2012. www.mathworks.com/matlabcentral/fileexchange/37311-smoteboost.

Downs, Tom, Kevin E. Gates, and Annette Masters. “Exact Simplification of Support Vector Solutions.”
Journal of Machine Learning Research 2 (2002): 293–297.

Duda, Richard O., and Peter E. Hart. Pattern Classification and Scene Analysis. New York: Wiley, 1973.

Fawcett, Tom. “An Introduction to ROC Analysis. “Pattern Recognition Letters 27 (2006): 861–874.

Feng, Jianfeng, and P. Williams. “The Generalization Error of the Symmetric and Scaled Support Vector
Machines.” IEEE Transactions on Neural Networks 12, no. 5 (1999): 1255–1260.

Fine, Shai, and Katya Scheinberg. “Efficient SVM Training Using Low-Rank Kernel Representations.” Journal
of Machine Learning Research 2 (2002): 243–264.

Fisher, Marshall L. “The Lagrangian Relaxation Method for Solving Integer Programming Problems.
“Management Science 50, no. 12 (2004):1861–1871.

Frank, A., and A. Asuncion. University of California, Irvine, Machine Learning Repository. Irvine: University
of California, 2010. www.ics.uci.edu/`mlearn/MLRepository.html.

Friedman, J. “Another Approach to Polychotomous Classification.” Technical report, Stanford University, 1996.

Hajj, N., and M. Awad.” Isolated Handwriting Recognition via Multi-Stage Support Vector Machines.” In
Proceedings of the 6th IEEE International Conference on Intelligent Systems,” edited by Vladimir Jotsov,
Krassimir Atanassov, 152–157. Piscataway, NJ: Institute for Electrical and Electronic Engineers, 2012.

He, Heibo, and Edwardo A. Garcia. “Learning from Imbalanced Data.” IEEE Transactions on Knowledge and
Data Engineering 21, no. 9(2009):1263–1284.

Gill, Philip E., and Walter Murray. “Newton-Type Methods for Unconstrained and Linearly Constrained
Optimization.” Mathematical Programming 7 (1974): 311–350.

Imam, Tasadduq, Kai Ming Ting, and Joarder Kamruzzaman. “z-SVM: An SVM for Improved Classification
of Imbalanced Data.” In AI 2006: Advances in Artificial Intelligence; Proceedings of the 19th Australian Joint
Conference on Artificial Intelligence, Hobart, Australia, December 4–8, 2006, edited by Abdul Sattar and
Byeong-Ho Kang, 264–273, 2006. Berlin: Springer, 2006.

S. Jaeger, S. Manke, J. Reichert, A. Waibel, “Online Handwriting Recognition: the NPen++ Recognizer”,
International Journal on Document Analysis and Recognition, vol.3, no.3, 169-180, March 2008.

http://www.mathworks.com/matlabcentral/fileexchange/37311-smoteboost
http://www.ics.uci.edu/%60mlearn/MLRepository.html

Chapter 3 ■ Support Vector Machines for Classification

64

Jin, A-Long, Xin Zhou, and Chi-Zhou Ye. “Support Vector Machines Based on Weighted Scatter Degree.” In
Artificial Intelligence and Computational Intelligence: Proceedings of the AICI Third International Conference,
Taiyuan, China, September 24–25, 2011, Part III, edited by Hepu Deng, Duoqian Miao, Jingsheng Lei, and Fu
Lee Wang, 620–629. Berlin: Springer, 2011.

Karush, William. “Minima of Functions of Several Variables with Inequalities as Side Constraints.” Master’s
thesis, University of Chicago, 1939.

Knerr, S., L. Personnaz, and G. Dreyfus. “Single-Layer Learning Revisited: A Stepwise Procedure for Building
and Training a Neural Network.” In Neurocomputing: Algorithms, Architectures and Applications; NATO
Advanced Workshop on Neuro-Computing, Les Arcs, Savoie, France, 1989, edited by Françoise Fogelman
Soulié and Jeanny Hérault, 41–50. Berlin: Springer, 1990.

Koknar-Tezel, S., and L. J. Latecki. “Improving SVM Classification on Imbalanced Data Sets in Distance
Spaces.” In ICDM ’09: Proceedings of the Ninth IEEE International Conference on Data Mining, edited by Wei
Wang, Hillol Kargupta, Sanjay Ranka, Philip S. Yu, and Xindong Wu, 259–267. Piscataway, NJ: Institute for
Electrical and Electronics Engineers, 2010.

Kong, Bo, and Hong-wei Wang. “Reduced Support Vector Machine Based on Margin Vectors.” In CiSE 2010
International Conference on Computational Intelligence and Software Engineering,” 1–4. Piscataway,
NJ: Institute for Electrical and Electronic Engineers, 2010.

Kotsiantis, Sotiris, Dimitris Kanellopoulos, and Panayiotis Pintelas. “Handling Imbalanced Datasets: A
Review.”GESTS International Transactions on Computer Science and Engineering 30, no. 1 (2006): 25–36.

Kressel, Ulrich H.-G. “Pairwise Classification and Support Vector Machines.” In Advances in Kernel Methods:
Support Vector Learning, edited by Bernhard Schölkopf, Christopher J. C. Burges, and Alexander J. Smola,
255–268. Cambridge, MA: Massachusetts Institute of Technology Press, 1999.

Kuhn, H. W., and A. W. Tucker. “Nonlinear Programming.” In Proceedings of the Second Berkeley Symposium
on Mathematical Statistics and Probability, edited by Jerzy Neyman, 481–492. Berkeley: University of
California Press, 1951.

Le Cun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard and L. D. Jackel. “Handwritten
Digit Recognition with a Back-Propagation Network.” In Advances in Neural Information Processing Systems,
edited by D. S. Touretzky, 396–404. San Mateo, CA: Morgan Kaufmann, 1990.

Lee, Yuh-Jye, and O. L. Mangasarian. “SSVM: A Smooth Support Vector Machine for Classification.”
Computational Optimization and Applications 20 (2001a): 5–22.

Lee, Yuh-Jye, and Olvi L. Mangasarian. “RSVM: Reduced Support Vector Machines.” In Proceedings of the
First SIAM International Conference on Data Mining, edited by Robert Grossman and Vipin Kumar, 5–7.
Philadelphia: Society for Industrial and Applied Mathematics, 2001b .

Liu, Xin, and Ying Ding. “General Scaled Support Vector Machines.” In ICMLC 2011: Proceedings of the 3rd
International Conference on Machine Learning and Computing. Piscataway, NJ: Institute of Electrical and
Electronics Engineers, 2011.

Mangasarian, O. L. “Linear and Nonlinear Separation of Patterns by Linear Programming.” Operations
Research 13, no. 3 (1965): 444–452.

Meyer, David, Friederich Leisch, and Kurt Hornik.” The Support Vector Machine Under Test.”
Neurocomputing 55, nos. 1–2 (2003): 169–186.

Napierała, Krystyna, Jerzy Stefanowski, and Szyman Wilk. “Learning from Imbalanced Data in Presence
of Noisy and Borderline Examples.” In Rough Sets and Current Trends in Computing: Proceedings of the
7th RSCTC International Conference, Warsaw, Poland, June 2010,edited by Marcin Szczuka, Marzena
Kryszkiewicz, Sheela Ramanna, Richard Jensen, and Qinghua Hu, 158–167. Berlin: Springer, 2010.

Chapter 3 ■ Support Vector Machines for Classification

65

Nguyen, Duc Dung, and Tuo Bao Ho. “A Bottom-Up Method for Simplifying Support Vector Solutions.” IEEE
Transactions on Neural Networks. 17, no. 3 (2006): 792–796.

Ou, Yu-Yen, Hao-Geng Hung, and Yen-Jen Oyang, “A Study of Supervised Learning with Multivariate
Analysis on Unbalanced Datasets.” In IJCNN ’06: Proceedings of the 2006 International Joint Conference on
Neural Networks, 2201–2205. Piscataway, NJ: Institute for Electrical and Electronic Engineers, 2006.

Peng, Peng, Qian-Lee Ma, and Lei-Ming Hong. “The Research of the Parallel SMO Algorithm for Solving
SVM.” In ICMLC 2009: Proceedings of the 2009 International Conference on Machine Learning and
Cybernetics, 1271–1274. Piscataway, NJ: Institute for Electrical and Electronics Engineers, 2009.

Platt, John C. “Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines.”
Technical report MSR-TR-98-14, 1998.

Platt, John C., Nello Cristianini, and John Shawe-Taylor. “Large Margin DAGs for Multiclass Classification.”
In Advances in Neural Information Processing Systems 12 (NIPS ‘99), edited S. A. Solla, T. K. Leen, and
K.-R. Müller, 547–553. Cambridge, MA: Massachusetts Institute of Technology Press, 2000.

Poggio, Tomaso, and Federico Girosi. “Networks for Approximation and Learning.” Proceedings of the IEEE 78,
no. 9 (1990): 1481–1497.

Prat, Federico, Andrés Marzal, Sergio Martín, Rafael Ramos-Garijo, and María José Castro. “A Template-
Based Recognition System for On-line Handwritten Characters.” Journal of Information Science and
Engineering 25 (2009): 779–791.

Rizk, Y., N. Mitri, and M. Awad. “A Local Mixture Based SVM for an Efficient Supervised Binary
Classification.” In IJCNN 2013: Proceedings of the International Joint Conference on Neural Networks, 1–8.
Piscataway, NJ: Institute for Electrical and Electronics Engineers, 2013.

Rizk, Y., N. Mitri, and M. Awad. “An Ordinal Kernel Trick for a Computationally Efficient Support Vector
Machine.” In IJCNN 2014: Proceedings of the 2014 International Joint Conference on Neural Networks,
3930–3937. Piscataway, NJ: Institute for Electrical and Electronics Engineers, 2014.

Schölkopf, B., John C. Platt, John C. Shawe-Taylor, Alex J. Smola, and Robert C. Williamson. “Estimating the
Support of a High-Dimensional Distribution.” Neural Computation 13, no. 7 (2001):1443–1471.

Smith, F. W. “Pattern Classifier Design by Linear Programming.” IEEE Transactions on Computers, C-17.
no. 4 (1968): 367–372.

Stockman, M., and M. Awad. “Multistage SVM as a Clinical Decision Making Tool for Predicting Post
Operative Patient Status.” IKE ’10: Proceedings of the 2010 International Conference on Information and
Knowledge Engineering. Athens, GA: CSREA, 2010.

Suykens, J. A. K. Suykens, and J. Vandewalle. “Least Squares Support Vector Machine Classifiers.” Neural
Processing Letters 9, no. 3 (1999): 293–300.

Tang, Yuchun, Yan-Qing Zhang, Nitesh V. Chawla, and Sven Krasser. “SVMs Modeling for Highly Imbalanced
Classification.” Journal of Latex Class Files 1, no. 11 (2002). www3.nd.edu/~dial/papers/SMCB09.pdf.

Tang, Yuchun, Yan-Qing Zhang, N. V. Chawla, and Sven Krasser. “SVMs Modeling for Highly Imbalanced
Classification.” Systems, Man, and Cybernetics B: IEEE Transactions on Cybernetics 39, no. 1 (2009): 281–288.

Tax, David M. J., and Robert P. W. Ruin. “Support Vector Domain Description.” Pattern Recognition Letters
20 (1999): 1191–1199.

Tax, David M. J., and Robert P. W. Duin. “Support Vector Data Description.” Machine Learning 54 (2004): 45–66.

Vapnik, Vladimir N. The Nature of Statistical Learning Theory. New York: Springer, 1995.

Vapnik, Vladimir N. Statistical Learning Theory. New York: Wiley, 1998.

http://www3.nd.edu/~dial/papers/SMCB09.pdf

Chapter 3 ■ Support Vector Machines for Classification

66

Vapnik, Vladimir N. The Nature of Statistical Learning Theory, Second Edition. New York: Springer, 1999.

Vapnik, V., and A. Chervonenkis. “A Note on One Class of Perceptrons.” Automation and Remote Control 25 (1964).

Vapnik, V., and A. Lerner. “Pattern Recognition Using Generalized Portrait Method.” Automation and Remote
Control 24 (1963): 774–780.

Veropoulos, K., C. Campbell, and N. Cristianini. “Controlling the Sensitivity of Support Vector Machines.”
In IJCAI ‘99: Proceedings of the 16th International Joint Conference on Artificial Intelligence, edited by
Thomas Dean, 55–60. San Francisco: Morgan Kaufmann, 1999.

Wahba, Grace. Spline Models for Observational Data. CBMS-NSF Regional Conference Series in Applied
Mathematics 59. Philadelphia: Society for Industrial and Applied Mathematics, 1990.

Wang, Benjamin X., and Nathalie Japkowicz. “Boosting Support Vector Machines for Imbalanced Data Sets.”
Knowledge and Information Systems 25, no. 1 (2010): 1–20.

Weston, J., and C. Watkins. Support Vector Machines for Multi-Class Pattern Recognition. In ESANN 1999:
Proceedings of the 7th European Symposium on Artificial Neural Networks, Bruges, Belgium, 21–23 April 1999,
219–224. 1999. https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es1999-461.pdf.

Zeng, Zhi-Qiang, Hong-Bin Yu, Hua-Rong Xu, Yan-Qi Xie, and Ji Gao. “Fast Training Support Vector
Machines Using Parallel Sequential Minimal Optimization.” In ISKE 2008: Proceedings of the 3rd
International Conference on Intelligent System and Knowledge Engineering, edited by Shaozi Li, Tianrui Li,
and Da Ruan, 997–1001. Piscataway, NJ: Institute for Electrical and Electronics Engineers, 2008.

Zhang, Li, Ning Ye, Weida Zhou, and Licheng Jiao. “Support Vectors Pre-Extracting for Support Vector
Machine Based on K Nearest Neighbour Method.” In ICIA 2008: Proceedings of the 2008 International
Conference on Information and Automation, 1353–1358. Piscataway, NJ: Institute of Electrical and
Electronics Engineers, 2008.

Zhang, Xuegong. “Using Class-Center Vectors to Build Support Vector Machines.” Neural Networks for Signal
Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop, edited by Yu-Hen Hu, Jan
Larsen, Elizabeth Wilson, and Scott Douglas, 3–11. Piscataway, NJ: Institute for Electrical and Electronic
Engineers, 1999.

Zhuang, Ling, and Honghua Dai. “Parameter Optimization of Kernel-Based One-Class Classifier on
Imbalance Text Learning.” Journal of Computers 1, no. 7 (2006): 32–40.

https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es1999-461.pdf

67

Chapter 4

Support Vector Regression

The key to artificial intelligence has always been the representation.

—Jeff Hawkins

Rooted in statistical learning or Vapnik-Chervonenkis (VC) theory, support vector machines (SVMs) are
well positioned to generalize on yet-to-be-seen data. The SVM concepts presented in Chapter 3 can be
generalized to become applicable to regression problems. As in classification, support vector regression
(SVR) is characterized by the use of kernels, sparse solution, and VC control of the margin and the number
of support vectors. Although less popular than SVM, SVR has been proven to be an effective tool in real-value
function estimation. As a supervised-learning approach, SVR trains using a symmetrical loss function,
which equally penalizes high and low misestimates. Using Vapnik’s e-insensitive approach, a flexible tube
of minimal radius is formed symmetrically around the estimated function, such that the absolute values
of errors less than a certain threshold e are ignored both above and below the estimate. In this manner,
points outside the tube are penalized, but those within the tube, either above or below the function, receive
no penalty. One of the main advantages of SVR is that its computational complexity does not depend on
the dimensionality of the input space. Additionally, it has excellent generalization capability, with high
prediction accuracy.

This chapter is designed to provide an overview of SVR and Bayesian regression. It also presents a case
study of a modified SVR applicable to circumstances in which it is critically necessary to eliminate or strictly
limit underestimating a function.

SVR Overview
The regression problem is a generalization of the classification problem, in which the model returns a
continuous-valued output, as opposed to an output from a finite set. In other words, a regression model
estimates a continuous-valued multivariate function.

SVMs solve binary classification problems by formulating them as convex optimization problems
(Vapnik 1998). The optimization problem entails finding the maximum margin separating the hyperplane,
while correctly classifying as many training points as possible. SVMs represent this optimal hyperplane with
support vectors. The sparse solution and good generalization of the SVM lend themselves to adaptation to
regression problems. SVM generalization to SVR is accomplished by introducing an e-insensitive region
around the function, called the e-tube. This tube reformulates the optimization problem to find the tube that
best approximates the continuous-valued function, while balancing model complexity and prediction error.
More specifically, SVR is formulated as an optimization problem by first defining a convex e-insensitive loss
function to be minimized and finding the flattest tube that contains most of the training instances. Hence, a
multiobjective function is constructed from the loss function and the geometrical properties of the tube.

Chapter 4 ■ Support Vector Regression

68

Then, the convex optimization, which has a unique solution, is solved, using appropriate numerical
optimization algorithms. The hyperplane is represented in terms of support vectors, which are training
samples that lie outside the boundary of the tube. As in SVM, the support vectors in SVR are the most
influential instances that affect the shape of the tube, and the training and test data are assumed to
be independent and identically distributed (iid), drawn from the same fixed but unknown probability
distribution function in a supervised-learning context.

SVR: Concepts, Mathematical Model, and Graphical
Representation
SVR problem formulation is often best derived from a geometrical perspective, using the one-dimensional
example in Figure 4-1. The continuous-valued function being approximated can be written as in Equation 4-1.
For multidimensional data, you augment x by one and include b in the w vector to simply the mathematical
notation, and obtain the multivariate regression in Equation 4-2.

	          y f x w x b w x b y b x wj j
M

j

M
= = < >+ = + ∈ ∈

=∑() , , , , , 

1
	 (4-1)

	          f x
w

b

x
w x b x w

T

T M() ,=


















 = + ∈ +

1
1



	 (4-2)

SVR formulates this function approximation problem as an optimization problem that attempts to find
the narrowest tube centered around the surface, while minimizing the prediction error, that is, the distance
between the predicted and the desired outputs. The former condition produces the objective function in
Equation 4-3, where  w is the magnitude of the normal vector to the surface that is being approximated:

	          min .w w
1

2
2 	 (4-3)

Figure 4-1.  One-dimensional linear SVR

Chapter 4 ■ Support Vector Regression

69

To visualize how the magnitude of the weights can be interpreted as a measure of flatness, consider the
following example:

f x w w x x wi
i M

i

M
(,) , , .= Î Î

=å  

1

Here, M is the order of the polynomial used to approximate a function. As the magnitude of the vector w
increases, a greater number of w

i
 are nonzero, resulting in higher-order solutions, as shown in Figure 4-2.

The horizontal line is a 0th-order polynomial solution and has a very large deviation from the desired
outputs, and thus, a large error. The linear function, a 1st-order polynomial, produces better approximations
for a portion of the data but still underfits the training data. The 6th-order solution produces the best
tradeoff between function flatness and prediction error. The highest-order solution has zero error but a
high complexity and will most likely overfit the solution on yet to be seen data. The magnitude of w acts as a
regularizing term and provides optimization problem control over the flatness of the solution.

The constraint is to minimize the error between the predicted value of the function for a given input
and the actual output. SVR adopts an e-insensitive loss function, penalizing predictions that are farther
than e from the desired output. The value of e determines the width of the tube; a smaller value indicates
a lower tolerance for error and also affects the number of support vectors and, consequently, the solution
sparsity. Intuitively, the latter can be visualized for Figure 4-1. If e is decreased, the boundary of the tube is
shifted inward. Therefore, more datapoints are around the boundary, which indicates more support vectors.
Similarly, increasing e will result in fewer points around the boundary.

Because it is less sensitive to noisy inputs, the e-insensitive region makes the model more robust. Several
loss functions can be adopted, including the linear, quadratic, and Huber e, as shown in Equations 4-4, 4-5,
and 4-6, respectively. As demonstrated in Figure 4-3, the Huber loss function is smoother than the linear
and quadratic functions, but it penalizes all deviations from the desired output, with greater penalty as the
error increases. The choice of loss function is influenced by a priori information about the noise distribution
affecting the data samples (Huber 1964), the model sparsity sought, and the training computational
complexity. The loss functions presented here are symmetrical and convex. Although asymmetrical loss
functions can be adopted to limit either underestimation or overestimation, the loss functions should be
convex to ensure that the optimization problem has a unique solution that can be found in a finite number of
steps. Throughout this chapter, the derivations will be based on the linear loss function of Equation 4-4.

Figure 4-2.  Solutions with various orders

Chapter 4 ■ Support Vector Regression

70

	          L y f x w
y f x w

y f x w otherwisee

e
e

, ,
, ;

, ,
()() = - () £

- () -
ì
í
ï

îï

0 	 (4-4)

	          L y f x w
y f x w

y f x w otherwise
e

e

e
, ,

, ;

, ,
()() =

- () £
- () -()

ì
í
ï

îï

0
2

	 (4-5)

	          L y f x w
c y f x w

c
y f x w c

y f x w y f x w c

, ,
, ,

, ,
()() =

- () - - () >

- () - () £

ì

í

2

2

2
1

2

ïïï

î
ï
ï

	 (4-6)

Figure 4-3.  Loss function types: (a) linear, (b) quadratic, and (c) Huber

ASYMMETRICAL LOSS FUNCTIONS

Some researchers have proposed modification to loss functions to make them asymmetrical. Shim,
Yong, and Hwang (2011) used an asymmetrical e-insensitive loss function in support vector quantile
regression (SVQR) in an attempt to decrease the number of support vectors. The authors altered the
insensitivity according to the quantile and achieved a sparser model. Schabe (1991) proposed a
two-sided quadratic loss function and a quasi-quadratic s-loss function for Bayes parameter estimation,
and Norstrom (1996) replaced the quadratic loss function with an asymmetrical loss function to
derive a general class of functions that approach infinity near the origin for Bayesian risk analysis.
Nath and Bhattacharyya (2007) presented a maximum margin classifier that bounds misclassification
for each class differently, thus allowing for different tolerances levels. Lee, Hsieh, and Wang (2005)
reformulated the typical SVR approach into a nonconstrained problem, thereby only solving a system
of linear equations rather than a convex quadratic one. Pan and Pan (2006) compared three* different
loss functions for economic tolerance design: Taguchi’s quadratic loss function, inverted normal loss
function, and revised inverted normal loss function.

Adopting a soft-margin approach similar to that employed in SVM, slack variables x, x* can be added
to guard against outliers. These variables determine how many points can be tolerated outside the tube
illustrated in Figure 4-1.

Based on Equations 4-3 and 4-4, the optimization problem in Equation 4-7 is obtained; C is a
regularization—thus, a tuneable parameter that gives more weight to minimizing the flatness, or the error, for
this multiobjective optimization problem. For example, a larger C gives more weight to minimizing the error.
This constrained quadratic optimization problem can be solved by finding the Lagrangian (see Equation 4-8).
The Lagrange multipliers, or dual variables, are l, l*, a, a* and are nonnegative real numbers.

Chapter 4 ■ Support Vector Regression

71

	          min ,*1

2
2

1
 w C i ii

N
+ +

=å x x 	 (4-7)

subject to

y w x i Ni
T

i i- £ + =e x * ...1

w x y i NT
i i i- £ + =e x 1...

x xi i i N, ...* ³ =0 1

	         
 w w C y w xi ii

N

ii

N

i
T

i, , , , , ,* * * * *x x l l a a x x a e() = + + + - -
= =å å1

2
2

1 1
  --()

+ - + - -() - +
= =å å

x

a e x lx l x

i

ii

N

i
T

i i i i i ii

N
y w x

*

* *

1 1

	 (4-8)

The minimum of Equation 4-8 is found by taking its partial derivatives with respect to the variables
and setting them equal to zero, based on the Karush-Kuhn-Tucker (KKT) conditions. The partial derivatives
with respect to the Lagrange multipliers return the constraints, which have to be less than or equal to zero,
as illustrated in Equation 4-9. The final KKT condition states that the product of the Lagrange multipliers
and the constraints is equal to zero (see Equation 4-10). The Lagrange multipliers that are equal to zero
correspond to data inside the tube, whereas the support vectors have nonzero-valued Lagrange multipliers.
The solution is written in terms of the support vector only—hence, the solution sparsity. The function
approximation is represented in Equation 4-12. By replacing Equation 4-9 in Equation 4-8, the dual form of
the optimization problem can be written as shown in Equation 4-13.

	         

d
d

a a

d
dx

l a

d
dx

l a

d







w
w x

C

C

i i ii

N

i
i i

i
i i

= - - =

= - - =

= - - =

=å ()*

*
* *

0

0

0

1









dl
x

d
dl

x

d
da

e x

d
da

i
ii

N

i
ii

N

i
i

T
i iy w x

*
*

*
*

= £

= £

= - - - £

=

=

å

å

0

0

0

1

1

ii
i

T
i iy w x= - + - - £e x 0

	 (4-9)

	         

a e x

a e x

l x
l x

i i
T

i i

i i
T

i i

i i

i i

y w x

y w x i

- + - -() =
- - -() =

=
=

"

0

0

0

0

* *

* *

,

	 (4-10)

		  w xi i ii

NSV= -()=å a a*

1
	 (4-11)

Chapter 4 ■ Support Vector Regression

72

	          f x x x Ci i i
T

i ii

NSV() = -() Î
=å a a a a* *, , [,]0

1
	 (4-12)

	      max , *
* * * *

a a e a a a a a a a a- +() + -() - -() -
= =å åi ii

N

i i ii

N

i i j
SV SV y
1 1

1

2 jj i
T

ji

N

j

N
x xSVSV ()== åå 11

, 	 (4-13)

subject to

a a a ai i i ii

NSV * *, , ,-() = Î[]=å 0 0
1

C

At the beginning of this section, the weights vector w was augmented with the scalar b, and the
derivation of the SVR’s mathematical formulation was carried out, disregarding the explicit computation of b
(see Equation 4-2). However, b could have been calculated from the KKT conditions, as shown next.

Training data that belong to the outside of the boundary of the tube will have nonzero a
i
 or ai

* ; they
cannot both be zero, because that would mean that the instance (x

i
, y

i
) belongs to the lower and upper

boundary, which is not possible. Therefore, the corresponding constraints will be satisfied with equality, as
demonstrated in Equation 4-14. Furthermore, because the point is not outside the tube, xi = 0 , leading to
the result in Equation 4-15 when aÎ(,)0 C . Equation 4-16 computes b. Performing the same analysis for ai

* ,
one gets Equations 4-17 and 4-18.

		 y w x bi
T

i i- - - - =e x 0
	 (4-14)

		   y w x bi
T

i- - - =e 0 	 (4-15)

		   b y w xi
T

i= - -e 	 (4-16)

		 - + - - =y w x bi
T

i e 0 	 (4-17)

		  b y w xi
T

i= - + -e 	 (4-18)

Instead of using the KKT conditions, one could have also computed b, while solving the optimization
problem, using the interior-point method, which can converge to an optimal solution in logarithmic time by
navigating along the central path of the feasible region. The central path is determined by solving the primal
and dual optimization problems simultaneously.

Kernel SVR and Different Loss Functions: Mathematical
Model and Graphical Representation
The previous section dealt with data in the feature space, assuming f (x) is linear. For non linear functions,
the data can be mapped into a higher dimensional space, called kernel space, to achieve a higher accuracy,
using kernels that satisfy Mercer’s condition (see Figure 4-4), as discussed previously for classification.
Therefore, replacing all instances of x in Equations 4-1–4-18 with k(x

i
, x

j
) yields the primal formulation

shown in Equation 4-19, where j(.) is the transformation from feature to kernel space. Equation 4-20
describes the new weight vector in terms of the transformed input. The dual problem is represented in
Equation 4-21, and the function approximation f (x) is in Equation 4-22, where k(.,.), the kernel, is as
illustrated in Equation 4-23.

Chapter 4 ■ Support Vector Regression

73

		 min ,*1

2
2

1
 w C i ii

N
+ +

=å x x 	 (4-19)

subject to

y w x i Ni
T

i i- () £ + =j e x * ,...,1

w x y i NT
i i ij e x() - £ + = ,...,1

x xi i i N, , ... ,* ³ =0 1

		 w x
i

N

i i i

SV

= -()
=
å ()*

1

a a j 	 (4-20)

	         max
,

* *
*a a
e a a a a- +() + -() -

= = = =
å å å
i

N

i i
i

N

i i i
j

N

i

NSV SV SV SV

y
1 1 1 1

1

2 åå -() -() ()a a a ai i j j i jk x x* * , 	 (4-21)

a a a ai i SV
i

N

i iC i N
SV

, , , ,..., ,* *Î[] = -() =
=
å0 1 0

1

	          f x k x x
i

N

i i i

SV

() = -() ()
=
å ,*

1

a a 	 (4-22)

		 k x x x xi i, . ()() = ()j j 	 (4-23)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 4-4.  Nonlinear regression

Chapter 4 ■ Support Vector Regression

74

Bayesian Linear Regression
Unlike SVR, Bayesian linear regression is a generative, as opposed to discriminant, method, that builds
linear regression models based on Bayesian inference. After specifying a model, the method computes the
posterior distribution of parameters and model predictions. This statistical analysis allows the method to
determine model complexity during training, which results in a model that is less likely to overfit.

For simplicity, assume that a single output yp Î are predicted using the model parameters w
learned from a set of predictor variables X sized k´1 and observations Y sized n´1 . The observations Y
are assumed to have the distribution in Equation 4-24, where s 2 is the variance of the uncertainty in the
observations:

	          P Y w X Xw I| , , ~ ,s s2 2() () 	 (4-24)

Once the model has been specified, the model parameters’ posterior distributions can be estimated.
This is done by first assuming a prior distribution of the model parameters (see Equation 4-25). Given the
model variance and observations, the posterior distribution of the model parameters (which is Gaussian)
is as shown in Equation 4-26, with the mean computed in Equation 4-27, and the standard deviation scale
factor, in Equation 4-28. The mean is simply the Moore-Penrose pseudoinverse of the predictive variables
multiplied by the observations. Given some observations, the posterior probability of the model variance is
computed, and an inverse chi-squared distribution (see Equation 4-29), with n k- degrees of freedom and
a scale factor s2 (see Equation 4-30), is obtained. The scale factor is the error between the model’s predicted
output and an observation.

		   P w,s
s

2
2

1()µ 	 (4-25)

	          P w Y
P Y w X P w

P Y
w vE w|

|

|
s

s s

s
s2

2 2

2

2,
| , ,

~ ,() = () ()
() () 	 (4-26)

		  w X X X YE
T T= ()-1 	 (4-27)

		   v X Xw
T= ()-1 	 (4-28)

	           P Y
P Y P

P Y
inv n k ss

s s
2

2 2

2 2|
|() = () ()
()

- -()~ , 	 (4-29)

	          s
Y Xw Y Xw

n k
E

T

E2 =
-() -()

-
	 (4-30)

The marginal posterior distribution of the model parameters, given the observations, is a multivariate
Student’s t-distribution, shown in Equation 4-31 and computed in Equation 4-32, with n k- degrees of
freedom, w

E
 mean, and s2 scale factor, as P w Y|s 2 ,() has a normal distribution, and P Ys 2|() has an inverse

chi-squared distribution.

	          P w Y t n k w sE|() -()~ , , 2 	 (4-31)

	          P w Y P w Y P Y d| | |() = () ()ò
s

s s s
2

2 2 2, 	 (4-32)

Chapter 4 ■ Support Vector Regression

75

Given the model parameter probability distributions and a set of predictive variables X
p
, the marginal

posterior predictive distribution Y
p
, which is a multivariate Student’s t-distribution (see Equation 4-33) can

be determined. The mean is computed in Equation 4-34, and the variance, in Equation 4-35. The predictive
distribution variance depends on the uncertainty in the observed data and the model parameters.

	           P Y Y t n k E Y Y var Y YP p p| | |() - () ()()~ , , ,s 2 	 (4-33)

		  E Y Y X wp p E|() = 	 (4-34)

	           var Y Y I X v Xp p w p
T|s s2 2,() = +() 	 (4-35)

The concept of Bayesian regression is displayed in Figure 4-5, in which the sample input data available
during training would have been generated by a Gaussian distribution. If these instances represent their
population well, the regression model is expected to generalize well.

Figure 4-5.  One-dimensional regression example illustrating the Gaussian conditional probability
distributions of the output on the input and model parameters

DISCRIMINANT VS. GENERATIVE MODELS

A generative approach models the joint probability distribution of the data and class labels p(x, Ck),
based on the prior probability distributions of the class labels p(Ck) and the likelihood probability
distribution p x Ck|(). The joint distribution computes the posterior probability distributions p C kk |() ,
which will be used to map datapoints to class labels.

A discriminant approach directly computes the posterior probability distributions p C xk |() without
computing the joint probability distribution p(x, Ck). A discriminant approach produces a mapping from
the datapoints to the class labels without computing probability distributions. Therefore, this approach
performs the inference and decision stages in one step.

Chapter 4 ■ Support Vector Regression

76

Advantages Disadvantages

Generative Robust to outliers•	
Can easily update decision model•	
Allows combination of classifiers trained •	
on different types of data by applying
probability rules
Can improve prediction accuracy by •	
measuring confidence in classification based
on posterior distributions and not making
predictions when confidence is low

Computationally demanding•	
Requires a lot of training data•	
Suffers from the curse of •	
dimensionality

Discriminant Computationally less demanding•	
Simple to implement•	

Sensitive to noisy data and outliers•	
Requires retraining for any changes •	
in the decision model

Asymmetrical SVR for Power Prediction: Case Study
Justification: In many instances of approximation, there is an uneven consequence of misprediction,
based on whether the error is above or below the target value (Stockman et al. 2012a, 2012b). For example,
in power prediction an incorrect low estimate may be of much more concern than an overestimate.
Underpredicting can lead to insufficient cooling of datacenters, inadequate uninterruptible power supply
(UPS), unavailable processor resources, needless powering down of chip components, and so on. In the case
of forest fire behavior prediction, a lower estimate of the threat can lead to greater property damage as well
as loss of life, owing to a lack of adequate supply of personnel and equipment.

In these instances, it is crucial to minimize misestimates on one side of a boundary, even at the risk of
reducing the accuracy of the entire estimation. It is necessary to restrict the loss function so that a minimal
number of under- or overestimates occur. This leads to an asymmetrical loss function for training, in which a
greater penalty is applied when the misestimate is on the wrong side of the boundary.

Approach: Asymmetrical and lower-bounded SVR (ALB-SVR) was proposed by Stockman, Awad, and
Khanna (2012a). This approach modifies the SVR loss functions and corresponding error functions, such
that the e-tube is only above the function, as demonstrated in Figure 4-6. The penalty parameter C is split
into C+ and C- so that different penalties can be applied to the upper and lower mispredictions.

Figure 4-6.  (a) SVR and (b) ALB-SVR (Source: Intel, 2012)

Chapter 4 ■ Support Vector Regression

77

ALB-SVR uses the Huber insensitive loss function (Popov and Sautin 2008). This function is similar to
the e-insensitive loss function; however, it increases quadratically for small errors outside the e-bound but
below a certain threshold ¶ > e and then linearly beyond ¶. This makes it robust with respect to outliers.
The Huber insensitive loss function is represented by:

,L t y

if t y

t y if t y

t y

HuberSVRe

e

e e

e
¶ () =

- £

- -() < - < ¶

¶ -() - -

0

2

2

¶¶ -() - ³ ¶

ì

í
ïï

î
ï
ï e if t y .

ALB-SVR modifies the Huber insensitive loss function as follows:

L t y

if t y

t y if t y

t y
HuberALB SVRe

e

¶ - () =

³ -() £
-() -() <
-

,
()

0 0

0
2

--() < - < ¶

¶ -() - -¶ -() - ³ ¶

ì

í

ï
ïï

î

ï
ï
ï

e e

e e

2

2

if t y

t y if t y

()

.

Thus, the solution is:

max

() ()

(
,

,

a a

a a ea a

a
+ -

=

+ -

=

+ -

+

å å

å

- - -

- -

i

L

i i i
i

L

i i

i j
i

t
C1 1

2 21

2

1

2
aa a ai i i i j

- + -- ×

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

)()

,

x x

and the resulting optimization problem:

max

() ()

(
,

,

a a

a a ea a

a
+ -

- - + -

+

=

+ -

=

+ -

+

å å

å
i

L

i i i
i

L

i i

i j
i

t
C1 1

2 21

2

1

2
-- - ×

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

- + -a a ai i i i j)()x x

- £ - £ =+ -C C i Li i() ..a a 1

1

0
L

i iå + -- =() .a a

By substituting the new loss function, ALB-SVR’s empirical risk becomes

R y
L

L t yemp
i

L

ALB SVR i i() =
=

- -å1

1
e (,).

The maximum additional empirical risk for ALB-SVR can be computed as

i y t

L

i y t

L

y t
Î -()£ Î -()>
å å-() +

e e

e .

Validation: ALB-SVR was tested on a dataset used by David et al. (2010) and Stockman et al. (2010)
that consists of 17,765 samples of five attributes of memory activity counters, with the actual corresponding
power consumed in watts, as measured directly by a memory power riser. The memory power model
attributes are activity, read, write, CKE = high, and CKE = low. ALB-SVR was implemented with a modified

Chapter 4 ■ Support Vector Regression

78

version of LIBSVM (Chang and Lin 2011) for ALB-SVR. Simulation results (see Figures 4-7 – 4-9) took the
average of ten runs of threefold cross-validation of a radial basis function (RBF) kernel, with a combination
of grid search and heuristic experimentation to find the best metaparameters e, g, C+, and C–.

Figure 4-8.  Power estimates for running average power limit (RAPL) data with Huber insensitive SVR
(Source: Intel, 2012)

 Type
%
Error

% Out of
Bound

Huber
insensitive
SVR

512 – 128 0.1 1.0e-06 1.03 67.07

Huber
insensitive
ALB-SVR

10,000,000 1,000 128 0.1 1.0e-06

1.50 0.24

Figure 4-7.  Comparative results of SVR versus ALB-SVR (Source: Intel, 2012)

Chapter 4 ■ Support Vector Regression

79

In SVR, support vectors are those points that lie outside the e-tube. The smaller the value of e, the more
points that lie outside the tube and hence the greater the number of support vectors. With ALB-SVR the
e-tube is cut in half, and the lower e -bound is dropped. Therefore, for the same g and e parameters, more
points lie outside the tube, and there are a larger number of support vectors. This means that the number of
support vectors is greater for ALB-SVR than for SVR. This increase in the number of support vectors indicates
that using ALB-SVR has some negative effects on the complexity of the estimating function. Although the
percentage relative error data set was higher (5.06 percent), this is acceptable, because the main purpose
was to reduce the number of underestimates and this was achieved.

References
Chang, Chih-Chung, and Chih-Jen Lin. “LIBSVM: A Library for Support Vector Machines,” in “Large-Scale
Machine Learning,” edited by C. Ling, special issue, ACM Transactions on Intelligent Systems and Technology 2,
no. 3 (2011). www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf.

David, Howard, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna, and Christian Le. “RAPL: Memory Power
Estimation and Capping.” In Proceedings of the 2010 ACM/IEEE International Symposium on Low-Power
Electronics and Design (ISLPED), August 18–20, 2010, Austin, TX, 189–194. Piscataway, NJ: Institute for Electrical
and Electronics Engineers, 2010.

Huber, Peter J. “Robust Estimation of a Location Parameter.” Annals of Mathematical Statistics 35, no. 1
(1964): 73–101.

Lee, Yuh-Jye, Wen-Feng Hsieh, and Chien-Ming Huang. “e-SSVR: A Smooth Support Vector Machine for
e-Insensitive Regression.” IEEE Transactions on Knowledge and Data Engineering 17, no. 5 (2005): 678–685.

Figure 4-9.  Power estimates for RAPL data with Huber insensitive ALB-SVR (Source: Intel, 2012)

http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf

Chapter 4 ■ Support Vector Regression

80

Nath, J. Saketha, and Chiranjib Bhattacharyya. “Maximum Margin Classifiers with Specified False Positive
and False Negative Error Rates.” In Proceedings of the Seventh SIAM International Conference on Data
Mining, April 26–28, 2007, Minneapolis, MN, 35–46. 2007. http://dblp.uni-trier.de/rec/bibtex/conf/
sdm/NathB07.

Norstrom, Jan Gerhard. “The Use of Precautionary Loss Functions in Risk Analysis.” IEEE Transactions on
Reliability 45, no. 3 (1996): 400–403.

Pan, Jeh-Nan, and Jianbiao Pan. “A Comparative Study of Various Loss Functions in the Economic
Tolerance Design.” In Proceedings of the 2006 IEEE International Conference on Management of Innovation
and Technology, June 21–23, 2006, Singapore, China, 783–787. Piscataway, NJ: Institute of Electrical and
Electronics Engineers, 2006.

Popov, A. A, and A. S. Sautin. “Loss Functions Analysis in Support Vector Regression,” 9th International
Conference on Actual Problems of Electronic Instrument Engineering, September 23–25, 2008, Novosibirsk,
Russia, 198. Piscataway, NJ: Institute of Electrical and Electronics Engineers, 2008.

Schabe, H. “Bayes Estimates Under Asymmetric Loss.” IEEE Transactions on Reliability 40, no. 1 (1991): 63–67.

Shim, Joo Yong, and Chang Ha Hwang. “Support Vector Quantile Regression Using Asymmetric e-Insensitive
Loss Function.” Communications for Statistical Applications and Methods 18, no. 2 (2011): 165–170.

Stockman, Melissa, Mariette Awad, and Rahul Khanna. “Asymmetrical and Lower Bounded Support Vector
Regression for Power Prediction.” Intel Technology Journal 16, no. 2 (2012a).

Stockman, Melissa, Mariette Awad, Rahul Khanna, Christian Le, Howard David, Eugene Gorbatov, and Ulf
R. Hanebutte. “A Novel Approach to Memory Power Estimation Using Machine Learning.” In Proceedings of
the 2010 International Conference on Energy Aware Computing (ICEAC), December 16–18, 2010, Cairo, Egypt,
1–3. Piscataway, NJ: Institute for Electrical and Electronics Engineers, 2010.

Stockman, Melissa, Randa S. El Ramli, Mariette Awad, and Rabih Jabr. “An Asymmetrical and Quadratic
Support Vector Regression Loss Function for Beirut Short Term Load Forecast.” In2012 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), October 14–17, 2012, Seoul, Korea, 651–656. Piscataway,
NJ: Institute of Electrical and Electronics Engineers, 2012b.

Vapnik, Vladimir N. Statistical Learning Theory. New York: Wiley, 1998.

http://dblp.uni-trier.de/rec/bibtex/conf/sdm/NathB07
http://dblp.uni-trier.de/rec/bibtex/conf/sdm/NathB07

81

Chapter 5

Hidden Markov Model

The best thing about the future is that it comes one day at a time.

—Abraham Lincoln

Real-time processes produce observations that can be discrete, continuous, stationary, time variant, or
noisy. The fundamental challenge is to characterize the observations as a parametric random process,
the parameters of which should be estimated, using a well-defined approach. This allows us to construct
a theoretical model of the underlying process that enables us to predict the process output as well as
distinguish the statistical properties of the observation itself. The hidden Markov model (HMM) is one such
statistical model. HMM interprets the (nonobservable) process by analyzing the pattern of a sequence of
observed symbols. An HMM consists of a doubly stochastic process, in which the underlying (or hidden)
stochastic process can be indirectly inferred by analyzing the sequence of observed symbols of another set
of stochastic processes. HMM comprises (hidden) states that represent an unobservable, or latent, attribute
of the process being modeled. HMM-based approaches are widely used to analyze features or observations,
such as usage and activity profiles and transitions between different states of the process, to predict the
most probable sequence of states. The HMM can be represented as a stochastic model of discrete events
and a variation of the Markov chain, a chain of linked states or events, in which the next state depends
only on the current state of the system. The states of an HMM are hidden (or can only be inferred from the
observed symbols). For a given model and sequence of observations, HMM is used to analyze the solution
to problems related to model selection, state-sequence determination, and model training (for more details,
see the section “The Three Basic Problems of HMM”).

The fundamental theory of HMMs was developed on the basis of pioneering work •	
by Baum and colleagues (Baum and Petrie 1966; Baum and Eagon 1967; Baum
and Sell 1968; Baum et al. 1970; Baum 1972). Earlier work in this area is credited to
Stratonovich (1960), who proposed an optimal nonlinear filtering model, based on
the theory of conditional Markov processes. A recent contribution to the application
of HMM was made by Rabiner (1989), in the formulation of a statistical method of
representing speech. The author established a successful implementation of an
HMM system, based on discrete or continuous density parameter distributions.

This chapter describes HMM techniques, together with their real-life applications, in •	
such management solutions as intrusion detection, workload optimization, and fault
prediction.

Chapter 5 ■ Hidden Markov Model

82

Discrete Markov Process
A system may be described at any time as being in one of the states S

1
, S

2
, S

n
 (see Figure 5-1). When the

system undergoes a change from state S
i
 to S

j
 at regular time intervals with a certain probability p

ij
, this can

be described by a simple stochastic process, in which the distribution of future states depends only on the
present state and not on how the system arrived at the present state. The matrix P, with elements p

ij
, is called

the transition probability matrix of the Markov chain. In other words, we can describe a discrete Markov
process as a phenomenon evolving in regularly spaced intervals, such that, for a given present state, past
and future are statistically independent. Conventionally, a time-evolving phenomenon in which only the
present state affects the future state, is called a dynamic system. The exclusive dependence of future states
on present states allows us to model the solutions, using random variables instead of deterministic objects.
A random variable defines a set of possible outcomes (the sample space W) and a probability distribution
that associates each outcome with a probability.

P (1,2)

P (2,1)

P (4,3)

P (3,4)

P
(3

,3
)

P (5,4)

P (2,5)

P (5,5)

P (4,5)

P (1,1)

S1 S2

S4S3 S5

P(1,1) P(1,2) P(1,3) P(1,4) P(1,5)

P(2,1) P(2,2) P(2,3) P(2,4) P(2,5)

P(3,1) P(3,2) P(3,3) P(3,4) P(3,5)

P(4,1) P(4,2) P(4,3) P(4,4) P(4,5)

P(5,1) P(5,2) P(5,3) P(5,4) P(5,5)

(Transition Matrix) P =

Figure 5-1.  Markov chain with five states (S1–S5) with selected state transitions P(i, j)

A simple example of a discrete Markov process—a Markov chain—is a random walk in one dimension.
In this case, an individual may move forward or backward with a certain probability. Formally, you can
define independent random variables q q1 2, , where each variable is either +1 (forward movement) or −1

Chapter 5 ■ Hidden Markov Model

83

(backward movement), with a 50 percent probability for each value. Statistically, you may define a random
walk as a sequence Q

t
 of random variables that increments, using independent and identically distributed

(iid) random variables S, such that

Q q Qn t
t

n

= =
=
å

1
0 0; ,

where expectation E(Q
n
) = 0, and variance E Q nn()2 = . If S S SN1 2, , , is the sequence of integers, then

	
 (| , ,) (|).q S q S q S q S q St j t i t k t j t i+ - += = = = = =1 2 1 	 (5-1)

This equation tells us that the probability that the random walk will be at S
j
at time t + 1 depends only on

its current value and not on how it got there. Formally, the discrete Markov process admits three definitions,
described in the following sections.

Definition 1
A Markov chain on W is a stochastic process {q

0
, q

1
,...,q

t
}, with each qi ÎW, such that

	


 

(| , , ,)

(|) : (,)

q S q S q S q S

q S q S i j
t j t i t k

t j t i

+ -

+

= = = =

=> = = =
1 1 0 0

1



:: .= pij
	 (5-2)

You construct W × W transition matrix P, whose (i, j) th entry represents (,)i j , with the following
properties:

" Î ³

" Î =
Î
å

(,) , (,)

, (,)

i j i j

i i j
j

W

W
W




0

1

A matrix P with these properties is called a stochastic matrix.

Definition 2
The (ij) th entry Pn(i, j) of the matrix Pn gives the probability that the Markov chain, starting in state i, will be
in state j after n steps.

Definition 3
Let u(0) be the probability vector that represents the starting distribution. Then, the probability that the chain
is in state j after n steps is the jth entry in the vector:

u(n) = u(0)P(n)

If you want to examine the behavior of the chain under the assumption that it starts in a certain state
i, you simply choose u to be the probability vector, with ith entry equal to 1 and all other entries equal to 0.
The stochastic process defined in the following sections can also be characterized as an observable Markov
model, because each state can be represented as physical event.

Chapter 5 ■ Hidden Markov Model

84

Introduction to the Hidden Markov Model
The previous sections discussed a stochastic process characterized by a Markov model in which states
correspond to an observable physical phenomenon. This model may be too restrictive to be of practical use
in realistic problems in which states cannot directly correspond to a physical event. To improve its flexibility,
you expand the model into one in which the observed output is a probabilistic function of a state. Each state
can produce a number of outputs, according to a unique probability distribution, and each distinct output
can potentially be generated at any state. The resulting model is the doubly embedded stochastic model
referred to as the HMM. The underlying stochastic process in the HMM produces a state sequence that is
not directly observable and that can only be approximated through another set of stochastic processes that
produces the sequence of observations.

Figure 5-2 illustrates an extension of a discrete Markov process into a doubly stochastic HMM. The new
HMM allows observation symbols to be emitted from each state, with a finite probability distribution. This
lets the model be more expressive and flexible than the simple Markov chain. Additionally, as illustrated in
Figure 5-3, you can model physical processes through a sequence of observed symbols that is true in most
practical cases. The key difference from a conventional Markov chain is that, in analyzing the sequence
of observed states, you cannot say exactly which state sequence produced these observations; you can,
however, calculate the likelihood of a certain state sequence’s having produced them. This indicates that
state sequence is hidden and can only be observed through a sequence of observed states or symbols.

Figure 5-2.  Hidden Markov model with four hidden states and three observed states

Chapter 5 ■ Hidden Markov Model

85

Essentials of the Hidden Markov Model
A complete specification of the HMM (Rabiner 1989) requires formal definition of the following elements:

•	 Number of hidden states: (N) in the model. Individual states are represented as
S S S S SN= { , , , , }1 2 3  ; the state at time t is represented as q

t
.

•	 State transition probability distribution: P = { }pij
, to represent state transition from

state i to state j, where p q S q Sij t j t i= = =+(|)1 , 1 0£ £ ³i j N pij, , . This property is
similar to Definition 5-1 of a Markov chain.

•	 Observation symbol probability distribution: (B = { ()}b kj) for state j, where
b k x o q S j N k Mj t k t j() (|), ,= = = £ £ £ £ 1 1 .

•	 Initial state distribution: (pp = { }p i), where p i iq S i N= = £ £(),1 1 .

Once the HMM parameters are defined for a physical process by appropriate values of N, M, P, B, p,
you can analyze an observation sequence (output) x x x1 2 3, , , , in which each x

t
 is one of the symbols from

observation matrix O at time t.
Formally, an HMM can be defined by specifying model parameters N and M, observation symbols O,

and three probability matrices P, B, and p. For simplicity, you can use the compact form,

	ll pp= (,),P B, 	 (5-3)

to indicate the complete parameter set of the model. The HMM described here makes two assumptions:

•	 Markov assumption: The current state is dependent only on the previous state; this
represents the memory of the model.

•	 Independence assumption: Output observation o
t
 at time t is dependent only on the

current state; it is independent of previous observations and states.

Figure 5-3.  Hidden Markov model: trellis representation

Chapter 5 ■ Hidden Markov Model

86

The Three Basic Problems of HMM
The preceding section described the model for HMM. This section identifies the basic problems that need to
be solved to apply the model to real-world problems.

These basic problems fall into three categories:

Problem 1. Evaluation: Given the observation sequence X x x x xt= 1 2 3, , , , and an
HMM model ll pp= (, ,)P B , how do we compute the probability of X? The solution
to this problem allows us to select the competing model that best matches the
observation sequence.

Problem 2. Decoding: Given the observation sequence X x x x xt= 1 2 3, , , , and an
HMM model ll pp= (, ,)P B , how do we find the state sequence Q q q q qt= 1 2 3, , , , that
best explains the observations? The solution to this problem attempts to uncover the
hidden part of the stochastic model.

Problem 3. Learning: How do we adjust the model parameters ll pp= (, ,)P B to
maximize (|)X ll ? The solution to this problem attempts to optimize the model
parameters to best describe the observation sequence. Furthermore, the solution
allows us to adapt the model parameters, according to the observed training data
sequence.

Consider the problem of failure prediction, which assesses the risk of failure in future time. In a typical
system, components have underlying dependencies that allow an error to propagate from one component
to another. Additionally, there exist health states that cannot be cannot be measured but that can induce
errors among dependable components. These health states progress through normal performance state,
subperformance state, attention-needed state, and, ultimately, failure state. It is therefore essential to identify
the operational states accurately to avoid a reactive shutdown of the system. In this scenario, health states
correspond to hidden states, and observations correspond to a sequence of error conditions. This lets the
system administrator schedule preventive maintenance ahead of a complete system failure. Because faults
are hidden (and so cannot be measured) and produce symbols corresponding to errors, you can model
the problem of failure prediction to an HMM. For the sake of simplicity, you may assume that faults can be
predicted by identifying unique patterns of errors that can be measured, using system counters.

Although the complete system can be modeled, using a normal state and failed states, such models
do not provide component-level granularity for tracking the progression of failure through dependent
components. For this reason, system architects categorize failure into multiple domains to attribute the
prediction of a failure to a specific component and thus avoid a system-level catastrophic shutdown.

The first task is performed by using the solution to Problem 3, in which individual models for each
failure domain (LL = ll ll1 2, ,) are constructed through a training process. This process assigns the HMM
parameters to the descriptive model that enables an optimal match between error patterns and the
corresponding transition to a fault state by the system. In a computer system this training can be supported
by system event-log information, which contains error information as well as failure descriptions.

To understand the physical meaning of the model states, you identify the solution to Problem 2. In this
case, the statistical properties of error counters translate into the sequence of observations occurring in each
health state of the models. The definition and the number of states are dependent on the objectives and
characteristics of the application. This process allows us to fine-tune the model to improve its capability to
represent the various states that characterize system health. Normal state and failure state are the two end
states of the HMM; intermediate states are added as needed to help predict the progression of the faulty
behavior. Adding intermediate states affords modeling of predictive and critical scenarios that facilitate
incorporation of repair mechanisms in anticipation of an actual failure.

Once you have the set of HMMs (L) designed and optimized, recognition of a component health state is
performed by using the solution to Problem 1.

Chapter 5 ■ Hidden Markov Model

87

Solutions to the Three Basic Problems of HMM
The following sections present the solutions to the three fundamental problems of HMM. The solutions to
these problems are critical to building a probabilistic framework.

Solution to Problem 1
The solution to Problem 1 involves evaluating the probability of observation sequence X x x x xt= 1 2 3, , , ,

given the model l; that is, (|)X ll . Consider a state sequence Q q q q qt= 1 2 3, , , , , where q
1
 and q

t
 are initial

and final states, respectively. The probability of an observation X sequence for a state sequence Q and a
model l can be represented as

	
 (| ,) (| ,) (). () . () ().X Q x q b q b q b q b qt t

t

n

x x x x nn
ll ll= =

=
Õ

1
1 2 31 2 3

 	 (5-4)

From the property of a Markov chain, you can represent the probability of the state sequence as

	
(|) ., , ,Q p p pq q q q q q qn n

ll = × ×
-

p
1 1 2 2 3 1

 	 (5-5)

Summation over all possible state sequences is as follows:

	

   



(|) (, |) (| ,). (|)

(|) () ,

X X Q X Q Q

X b q p

Q

q x q q

ll ll ll ll

ll

= =

= × ×

å
p

1 1 1 21 ×× ×
-å b q p b q p b qx q q x q q x n

Q
n n n2 2 3 3 12 3(). () ()., ,

	 (5-6)

Unfortunately, direct computation is not very practical, because it requires 2nNn multiplications.
At every t n= 1 2 3, , , , , N possible states can be reached, which turns out to be a large number. For example,
at n = 100 (number of observation sequences) and N = 5 (states), there can be 2 100 5 10100 72× × » possible
computations. Fortunately, an efficient approach, called the forward algorithm, achieves the same result.

Forward Algorithm

Consider a forward variable a
t
(i) that represents the probability of a partial observation sequence up to time t,

such that the underlying Markov process is in state S
i
 at time t, given the HMM model l:

at t t ii x x x x q S() (, , , , , |).= = 1 2 3  ll

You can compute a
t
(i) recursively via the following steps:

	 1.	 Initialize the forward probability as a joint probability of state S
i
 and initial

observation x
1
. Let a p1 1() ()i b xi i= for 1 £ i £ N.

	 2.	 Compute a
n
(j) for all states j and t = n, using the induction procedure,

		 substituting t n= 1 2 3, , , , :

a at t ij
i

N

j tj i p b x t n j N+
=

=
é

ë
ê

ù

û
ú £ £ - £ £å1

1

1 1 1() (). (), (), .

	 3.	 Using the results from the preceding step, compute (|) ().X jn
j

N

ll =
=

åa
1

The total number of computations involved in evaluating the forward probability is N2n rather than
2nNn, as required by direct computation. For n = 100 and N = 5 the total number of computations is 2,500,
which is 1069 times smaller in magnitude.

Chapter 5 ■ Hidden Markov Model

88

Backward Algorithm

For the forward algorithm you can also define a backward variable b
t
(i) that represents the probability of

a partial observation sequence from time t + 1 to the end (instead of up to t. as in the forward algorithm),
where the Markov process is in state S

i
 at time t for a given model l. Mathematically, you can represent the

backward variable as

bt t t n t ii x x x q S() (, , , | ,).= =+ + 1 2  ll

You can compute a
t
(i) recursively via the following steps:

	 1.	 Define b
n
(i) = 1 for 1 £ i £ N.

	 2.	 Compute b bt ij j t
j

N

ti p b x j() () ().= +
=

+å 1
1

1

Scaling

A practical impediment in modeling long sequences of HMMs is the numerical scaling of conditional
probabilities. Efficient computation of conditional probabilities helps in estimating the most likely sequence
of states for a given model. For a sufficiently large sequence the probability of observing a long sequence tends
to be so extremely small that numerical instability occurs. In most cases, the resulting computations exceed
the precision range of essentially any machine (including double-precision). The most common approach for
mitigating this situation is to rescale the conditional probabilities, using efficient scaling mechanisms.

For example, let’s revisit the forward variable equation,

a at t ij
i

N

j tj i p b x+
=

= ×
é

ë
ê

ù

û
úå1

1

() () ().

In the case of forward variable a
t
(i), you obtain the new value a

t+1
(i) by multiplying by p

ij
 and b

j
(x

t
).

These probabilities tend to be small and can underflow. Logarithms may not be helpful, because you
are dealing with the sum of products. Furthermore, logarithms require computation of the logarithm
and exponential for each addition. Basic scaling procedure multiplies a

t
(i) with the scaling coefficient,

with the goal of keeping the scaled a
t
(i) within the dynamic precision range of the machine. At the end of

computation, scaling coefficients are canceled out. The scaling coefficients need not be applied at every
t-step but can be used whenever necessary.

Solution to Problem 2
Unlike the solution of Problem 1, identifying the optimal state sequence is a complex problem, because
there can be many criteria. Part of the complexity originates from the definition of the measure of optimality,
in which several unique criteria are possible. One solution is to identify the states q

t
 that are most likely to

occur individually at time t. This solution attempts to maximize the expected number of correct individual
states. To implement the solution to Problem 2, you define the variable g

t
(i) as the probability of being in

state S
i
 at time t, given the observation sequence X and model l, such that

g t t ii q S X() (| ,).= = ll

Using the definition of conditional probability, you can express this equation as

	

g t
t i t i

t i
i

Ni
X q S

X

X q S

X q S
()

(, |)

(|)

(, |)

(, |)
.=

=
=

=

=å







ll
ll

ll

ll
	 (5-7)

Chapter 5 ■ Hidden Markov Model

89

You can rewrite Equation 5-7, using the forward-backward variable, as

	

g
a b

a b
t

t t

t t
i

Ni
i i

i i
()

(). ()

(). ()
,=

å
	 (5-8)

where a
t
(i) defines the probability of partial observation x x x xt1 2 3, , , , and state S

i
 at time t, and b

t
(i) defines

the remainder of the probability of observation x x x xt t t n+ + +1 2 3, , , , and state S
i
 at time t. Using g

t
(i), you can

solve for the individually most likely state qt
* at each time t by calculating the highest probability of being in

state S
i
 at time t, as expressed by the following equation:

	q argmax i t nt
i N

t
* ()= [] "

£ £1

g for =1 . 	 (5-9)

Although this equation maximizes the expected number of correct states by choosing the most
likely state at each time interval, the state sequence itself may not be valid. For instance, in the case of the
individually most likely states in the sequence q

t
 = S

i
 and q

t+1
 = Sj , the transition probability p

ij
 may be 0 and

hence not valid. This solution identifies the individually most likely state at any time t without giving any
consideration as to the probability of the occurrence of the sequence of states.

One way to address this issue is to maximize the occurrence of a sequence of more than one state.
This allows automatic evaluation of valid occurrences of states, while evaluating for the most likely
sequence. One widely used scheme is to find the single most likely sequence of states that ultimately results
in maximizing (, |)X Q ll . This technique, which is based on dynamic programming, is called a Viterbi
algorithm. To find the single best state sequence, you define a variable d

t
(i) that represents the highest

probability along one state sequence (path) that accounts for first t observations and that ends in state S
i
,

as follows:

dt
q q q

t i ti max q q q S x x x
t

() (, , , , , , , |).
, , ,

= =
-1 2 1

1 2 1 2


  ll

You can compute d
t+1

( j) by induction, as

d dt
i

i ij j tj max i p b x+ += ×éë ùû ×1 1() () (),

from which it is clear that to retrieve the state sequence, you need to track the state that maximizes d
i
(i)

at each time t. This is done by constructing an array y
t+1

( j) that defines the state at time t from which a
transition to state S

j
 maximizes the probability d

t+1
( j). Mathematically, this can be represented as

y dt
i N

t ijj argmax i p+
£ £

= ×éë ùû1
1

() () .

Chapter 5 ■ Hidden Markov Model

90

The complete procedure for finding the best state sequence consists of the following steps:

Initialization

d p
y

1 1

1

1

0

() ();

()

i b x I N

i
i i= × £ £

=

Recursion

d d

y

t
i N

t ij j t

t

j max p b x j N t n

j argmax

() (); ;

()

= ×éë ùû × £ £ £ £

=
£ £ -

1
1

1

1 2

££ £
- ×éë ùû £ £ £ £

i N
t iji p j N t nd 1 1 2() ; ;

Termination
P max i

q argmax i
i N

n

n
i N

n

*

*

()

()

= []
= []

£ £

£ £

1

1

d

d

State Sequence Backtracking

q q t n n nt t t
* *(); , , , ,= = - - -+ +y 1 1 1 2 3 1

The Viterbi algorithm is similar to the forward procedure, except that it uses maximization over
previous states instead of a summation.

Solution to Problem 3
The solution to Problem 3 involves a method for adjusting the model parameters (P,B,p) to maximize the
probability of an observation sequence for a given model. In practice there is no well-known method that
maximizes the probability of observation sequence. However, you can select l = (P,B,p), such that P(X|l) is
locally maximized, using an iterative method, such as the Baum-Welch algorithm.

To specify the reestimation of HMM parameters, you define the variableg
t
(i,j) as the probability of being

in state S
i
 at time t and in S

j
 at time t + 1 for a given model l and observation sequence X, such that

	
g t t i t ji j q S q S X(,) (, | ,).= = =+ 1 ll 	 (5-10)

Using the definition of the forward-backward algorithm, you can rewrite Equation 5-10 as

	
g

a b
t

t ij j t ti j
i p b x j

X
(,)

() () ()

(|)
=

× × ×+ +1 1

 ll
	 (5-11)

	

g
a b

a b
t

t ij j t t

t ij j t t

i j
i p b x j

i p b x
(,)

() () ()

() () (
=

× × ×

× × ×

+ +

+ +

1 1

1 1 jj
j

N

i

N

)
.

åå 	 (5-12)

Chapter 5 ■ Hidden Markov Model

91

As defined by Equation 5-8, g
t
(i) is the probability of being in state S

i
 at time t, given the observation

sequence and model. Using this equation, you can relate g
t
(i) to g

t
(i, j) by summing over j as

g gt t
j

N

i i j() (,).= å

By summing g
t
(i) over time t, you can quantify the number of times state S

i
 is visited or, alternatively,

the expected number of transitions made from state S
i
. Similarly, summation of g

t
(i, j) over time t reveals the

expected number of transitions from state S
i
 to state S

j
. Given g

t
(i), g

t
(i, j), and the current model l, you can

build the method to reestimate the parameters of the HMM model (ll). The method can be broken down
as follows:

	 1.	 At time t = 1 the expected frequency at state S
i
 is given

by p gi i i N= " =1 1 2 3() (, , , ,).

	 2.	 The probability of transiting from state S
i
 to state S

j
, which is the desired

value of pij , is given by

p
i j

i
i j Nij

t
t

n

t
t

n= " ==

-

=

-

å

å

g

g

(,)

()
, (, , , ,).1

1

1

1 1 2 3

The numerator is the reestimated value of the expected number of transitions
from state S

i
 to state S

j
; the denominator is the expected number of transitions

from S
i
 to any state.

	 3.	 The probability of observing symbol k, given that the model is in state S
j
,

is given by

b k

j

j
k Mj

t
t x k

n

t
t

n
t()

()

()
(, , ,).,= " == =

=

å

å

g

g

1

1

1 2 

The numerator of the reestimated b kj () is the expected number of times the
model is in state S

j
 with observation symbol k; the denominator is the expected

number of times the model is in state S
j
.

With this method, you use the current model l(P,B,p) to reestimate the new model ll pp(, ,)P B , as
described by the previous three steps. The reestimation process is an iterative method consisting of the
following steps:

	 1.	 Initialize l(P,B,p) with a best guess or random value, or use the existing model.

	 2.	 Compute a
t
(i),b

t
(i),g

t
(i),g

t
(i, j).

	 3.	 Reestimate the model ll pp(, ,)P B .

	 4.	 If  (|) (|)X Xll ll> , repeat step 2.

The final result of this reestimation process is called the maximum likelihood estimation (MLE) of the
parameters of the HMM. The forward-backward algorithm yields only the local maximum.

Chapter 5 ■ Hidden Markov Model

92

Continuous Observation HMM
The previous sections considered a scenario in which observations are discrete symbols from a finite
alphabet, enabling use of the discrete probability density for each state in the system. For many practical
implementations, however, observations are continuous vectors. Although it is possible to quantize
continuous vectors via codebooks, and so on, quantization may entail degradation. Therefore, it is
advantageous to have an HMM with continuous observations, whose probability density function (PDF)
is evaluated as a convex combination of other distribution functions—a mixture distribution, with an
associated mixture weight. The number of components is restricted to being finite. For a given pool of
observations, mixture distributions are employed to make statistical inferences about the properties of the
subpopulations without requiring the label identifying the subpopulation to which the observation belongs.
The number of components M (subpopulations) depends on the number of observation clusters (learned
through unsupervised algorithms, such as k-means) that group the pool of observations. Generally, each
mixture component represents an m-dimensional categorical distribution, where each of the M possible
outcomes is specified with the probability of each outcome. Each mixture component follows the similar
distributions (normal, log-normal, and so on) and represents a unique qualification for classifying the set
of continuous observations at any time instance as a unique symbol (similar to discrete observations).
Mixture components that are trained using the EM algorithm are able to self-organize to fit a data set. The
continuous observation model produces sequences of hidden clusters (or a mixture symbol) at each time
step of the HMM state transition, according to a state-to-cluster-emission probability distribution. Clusters
(or mixture symbols) can be considered the hidden symbols embedded in the hidden states. For example,
a hidden state may represent a specific workload, and a symbol may represent a specific attribute of the
workload, based resource utilization.

You start with the representation of the probability density function (PDF) that allows its parameters to
be reestimated in a consistent manner. The most general form of PDF that can be used for the reestimation
process is given by a multivariate normal distribution or a mixture of Gaussian distributions:

	
b X c X U j Nj jm jm jm

m

M

() (, ,) ,= À £ £
=

å m 1
1 	 (5-13)

where

X  = observation vector (x x x xD1 2 3, , , ,)

M = number of mixture densities

c
jm

 = weight of the mth mixture in the jth state

À = any elliptically symmetrical density function (e.g., a Gaussian)

m
jm

 = mean vector for the mth mixture in the jth state

U
jm

= covariance matrix for the mth mixture and jth state

c j N m M

c j N

b x dx j N

jm

jm
m

M

j

³ £ £ £ £

= £ £

= £ £

-

-¥

¥

å

ò

0 1 1

1 1

1 1

1

, ,

,

() ,

In statistics a mixture model is a probabilistic model in which the underlying data belong to a
mixture distribution. In a mixture distribution the density function is a convex combination (i.e., a linear
combination in which all coefficients or weights sum to 1) of other PDFs. It can be shown (Liporace 2006;
Hwang 1986) that reestimation of the coefficients for mixture density (c

jm
,m

jm
,U

jm
) can be represented as

Chapter 5 ■ Hidden Markov Model

93

	

c
j k

j k

j k x

j k

jk

t
t

n

t
k

M

t

n

jk

t t
t

n

t

=

=
×

=

==

=

å

åå

å

e

e

m
e

e

(,)

(,)

(,)

(,

1

11

1

))

(,) () ()

(,)
,

t

n

jk

t t jk t jk
T

t

n

t
t

nU
j k x x

j k

=

=

=

å

å

å
=

× - × -

1

1

1

e m m

e

	 (5-14)

where (X
t
–m

jk
)T represents the vector transpose, and e

t
( j, k), the probability of being in state j at time t with

the kth mixture accounting for X
t
:

	

e
a b

a b

m
t

t t

t t
j

N

jk t jkj k
j j

j j

c X U
(,)

() ()

() ()

(, ,
=

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

À

=
å

1

jjk

jm t jm jm
m

M

c X U

)

(, ,)
.

À

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=
å m

1

	 (5-15)

The reestimation formula for p
ij
 is similar to that defined for discrete observation density. The

reestimation formula for c
jk

 is the ratio of the expected number of times the system is in state j, using the kth
mixture component to the expected number of times the system is in state j.

To reduce computational complexity, an alternate approach is semicontinuous HMM (SCHMM), which
is a special form of continuous observation HMM (CHMM). SCHMM uses state mixture densities that are
tied to a general set of mixture densities. All states share the same mixture, and only the mixture density
component weights c

jk
 remain state-specific states.

Multivariate Gaussian Mixture Model
In the CHMM, b

j
(X) is a continuous PDF that is often a mixture of multivariate Gaussian distributions of

L-dimensional observations. Gaussian mixture model (GMM) density is defined as the weighted sum of
Gaussian densities. The choice of the Gaussian distribution is natural and very widespread when dealing
with a natural phenomenon. For the Gaussian mixture, À in Equation 5-13 can be substituted by Gaussian
distribution to take the mathematical form of an emission density,

	

b X c
U

X U Xj jk
k

M

L
jk

jk

T

jk jk()
() | |

exp
/ /

= - -() -()æ
è=

-å
1

2 1 2
11

2

1

2p
m mçç

ö
ø
÷

æ

è
çç

ö

ø
÷÷. 	 (5-16)

Each Gaussian mixture is defined by its set of parameters, which includes the mixture distribution c
jk

,
the mean vectors m

jk
, and the covariance matrices U

jk
. Note that a CHMM with finite mixtures of Gaussian

PDFs as conditional densities is equivalent to one with simple Gaussian PDFs as conditional densities.
Using a Gaussian mixture PDF, you can transform a state with a mixture density into a net of multiple
single-density states. Figure 5-4 depicts a scenario in which the state S2, corresponding to a two-component
mixture PDF, has been expanded into two states S2

a
 and S2

b
 with single-component PDFs and adjusted

transition probabilities.

Chapter 5 ■ Hidden Markov Model

94

Example: Workload Phase Recognition
Recent computer architecture research has demonstrated that program execution exhibits phase behavior
that can be characterized on the largest of scales (Perelman et al. 2002). In the majority of cases, workload
behavior is neither homogeneous nor totally random; it is well structured, with a class of phases. As you
transition between phases, you can initiate a reconfiguration by reusing configuration information for
recurring phases.

Trends in datacenter and cloud computing pose interesting challenges related to power optimization
and power control in a server system. A system can be represented as a set of components whose
cooperative interaction produces useful work. These components may be heterogeneous in nature and
may vary in their power consumption and power control mechanisms. A server system with several central
processing unit (CPU), memory, and input/output (I/O) components may coordinate power control actions,
using embedded controllers or special hardware. The accuracy and agility of control actions are critical
in proactive tuning for performance. Observing how variations in a workload affect the power drawn by
different server components provides critical data for analysis and for building models relating quality of
service (QoS) expectations to power consumption. Therefore, you need an autonomous system that can
extract the workload features and proactively tune the system, according to the phase of operation. The

Figure 5-4.  Two-component Gaussian mixture model for state S2 expanded into single-component Gaussian
model with two new states (S2

a
, S2

b
)

Chapter 5 ■ Hidden Markov Model

95

following sections present one such approach that uses performance data in a server platform to model
the runtime behavior of a system. We describe a trained model that analyzes the behavioral attributes of a
workload and that identifies the present and predicts with reasonable accuracy the future phase of workload
characteristics, using a CHMM.

Predictive systems are devised for recognition of workload patterns and early detection of phases for
characterization. The knowledge base (model) recommends appropriate actions. These systems are self-
correcting and require continuous training to adapt to the previously known as well as evolutionary behavior
over a period of time. The phase detection model can assist in predicting performance states and proactively
adapts by tuning its parameters to meet system constraints.

Monitoring and Observations
Monitoring and measuring events from system activities is the basis for characterizing system phases and
predicting the future. Modern processors have built-in performance-monitoring counters that measure
real-time access patterns to processor and memory events and that help in designing analytical intelligence
for a variety of dynamic decisions. Trends such as memory access patterns, rate of instruction execution,
and pipeline stalls can be studied statistically for patterns, hidden correlations, and time-dependent
behaviors. Measured events (resource utilization, temperature, energy consumption, performance) can be
considered multiple dimensions of observed emissions. Extracted phases can be seen as predictable system
characteristics, based on dynamic models that maximize the probability of the sequence of observations.
Once you identify the current workload phase of operation and the most likely future phase, you can tune
and provision the system with adequate resources and avoid reactive resource allocation. The CHMM-based
phase characterization process uses built-in performance counters and sensors. Additionally, synthetic
counters are used to abstract time-varying behavior of the workload.

Workload and Phase
Workloads are applications with specialized objectives (queries, searches, analysis, and so on) that undergo
phases of execution, while operating under multiple constraints. These constraints are related to power
consumption, heat generation, and QoS requirements. Optimal system operation involves complex choices,
owing to a variety of degrees of freedom for power and performance parameter tuning. The process involves
modeling methodology, implementation choices, and dynamic tuning. Phase detection in a workload acts as
an essential ingredient, capturing time-varying behavior of dynamically adaptable systems. This ability aids
in reconfiguring hardware and software ahead of variation in demand and enables reuse of trained models
for recurring phases. Phase identification also helps predict future phases during workload execution, which
prevents reactive response to changes in workload behavior. In this context a phase is a stage of execution in
which a workload demonstrates similar power, temperature, and performance characteristics.

CHMM-assisted methodology identifies a phase’s boundaries, which are represented by a latent
component of Gaussian density mixture function in the presence of system sensors and performance
counters. A state’s variable can be used as a process control parameter that is fed back to the process control
loop. For instance, you can feed back the workload phase (or behavioral attributes) to control thermal
behavior proactively, because the physical dynamics of the temperature can be represented as a function
of utilization of various system components. In general, the HMM is particularly useful, as it can exploit
the underlying pattern in a sequence of events and perform state-space analysis. You may use Gaussian
observations as an indicator of correctly identifying phase boundaries in a time-varying workload behavior.
These phase boundaries can further be used to extract the relationship with various states of physical
phenomena, such as server demand projection and thermal variation projection. Figure 5-5 for example
displays a test of CPU utilization versus a workload phase that is estimated statistically at regular intervals.
This function can be expanded by using more than one variable.

Chapter 5 ■ Hidden Markov Model

96

Compared with aggregate workload analysis, CHMM-assisted analysis is more accurate and
informative. In general, effective tuning of system hardware and software helps in building efficient systems
that minimize power and thermal dissipation for given performance constraints. Various attributes of
systems can benefit from phase identification:

For a given performance constraint, you can tune the system components (CPU, •	
memory, I/O) for minimum power usage. Upon identifying a new phase, power
is allocated (or deallocated) in a manner such that performance degradation is
minimized.

Proactive compensation for anticipated performance variation aids in avoiding •	
reactive state changes and thus reactive latencies, improving performance.

Available power is distributed to system components in a way that maximizes overall •	
performance. One strategy may involve individual allocation (or deallocation),
according to each component’s share in performance gain.

Activity vectors are employed to perform thermally balanced computing, thus •	
preventing hot spots. Activity data can also be used to coschedule tasks in a
contention-free and energy-efficient manner.

You can profile task characteristics related to (1) task priority, (2) energy and thermal •	
profile, and (2) optimization methodology regarding latency targets proportional to
task priority.

Figure 5-5.  CPU utilization versus phase model. The workload is composed of eight phases with phase-specific
power, thermal, and performance characteristics. The red line (bottom graph) identifies the phase number
that corresponds to the running average power limit (RAPL) (blue line) for each instance of workload.
For example, average utilization of 65–70 percent results in phase 1

Chapter 5 ■ Hidden Markov Model

97

Workload phases can be exploited for adaptive architectures, guiding performance and power
optimization through predictive state feedback. Because HMM uses and correlates observations
with objective oriented states (such as average temperature or utilization), it may very well be a
consideration in system design. Observation points can be characterized by using a reasonable set of
system-wide performance counters and sensors. Hidden states that predict a control objective (such as
server temperature) are measured by extracting workload phases, using feature extraction techniques.
Furthermore, states share probabilistic relationships with these observations. These probabilistic
relationships (also called profiles), harden and evolve with the constant use of the workload over its
lifetime. If you consider a normal workload behavior to be a pattern of an observed sequence, an HMM
should be appropriate for mapping such patterns to one of several states. Furthermore, it is essential
to build an adaptive strategy, based on embedding numerous policies that are informed by contextual
and environmental inputs. The policies govern various behavioral attributes, enhancing flexibility to
maximize efficiency and performance in the presence of high levels of environmental variability. HMM-
based approaches correlate the system observations (usage, activity profiles) to predict the most probable
system state. HMM training, using initial data and continuous reestimation, creates a profile that consists
of component models, transition probabilities, and observation symbol probabilities. CHMM aids in
estimating workload phases by clustering the homogeneous behavior of multiple components. Workload
phases can be interpreted by a d-dimensional Gaussian (observation vector) model of k mixtures by
maximizing the probability of the sequence of observations.

Mixture Models for Phase Detection
The foremost objective of HMM-based methodology is to predict the state of the process by establishing
various phase execution boundaries in the presence of time-varying behavior. Unlike traditional approaches,
which study aggregate behavior, HMM-based methods can extract representative phases and workload
classification, using Gaussian mixture models (GMMs). For instance, HMM can be modeled by training itself
against workloads and the corresponding phases that are characterized by an inherent behavioral pattern.
These phases can be considered latent symbols (as they cannot be observed directly) that are embedded
in the hidden states, which, in this case, is a workload. In a trained model these latent phase patterns
can be identified through sets of observed phenomena modeled through a combination of individual
mixture component probability densities, along with the presence of a hidden state (evaluated using a state
transition matrix). The observations exist in the form of synthetic counters and sensors that measure the
performance and power characteristics of the system as well as system components. Various functional
blocks that assist in workload phase detection are described in turn in the following sections.

Sensor Block
In autonomic system instrumentation, endpoints (sensors/controllers) are spread all over the platform
(see Figure 5-6), and the characteristics of these endpoints can differ from one platform to another. In typical
server management architecture a sensor block comprises a mix of performance counters and temperature,
airflow, and power sensors. These sensors are accessed through a variety of interfaces, such as PCI Express,
SMBus, PECI Bus, and CPU model specific registers (MSR). The output of the sensors is statistically
processed and used as feedback. The relative importance of instrumentation may vary, according to
the user requirements. In some cases, because of cost constraints, instrumentation is synthesized in
lieu of physical sensors by correlating the sensor data with a different set of variables. In other cases, the
instrumentation accuracy of physical sensors may vary over the operating region, outside of which it may be
highly inaccurate. In such cases, sensitivity is not constant over the entire operating range of the sensor, and
nonlinearity results. Nonlinearity depends on the deviation of the sensor output from the ideal behavior over
the full range of the sensor. It may be necessary to calibrate the sensor within the linear operating range and
then use the calibrated parameters and functions for the rest of the nonlinear operating region. Sensor data

Chapter 5 ■ Hidden Markov Model

98

can also observe long-term drift, owing to the aging of sensor properties over a long period of time. With
digital sensors, you can also have digitization error, because the measured data are an approximation of the
actual data. Additionally, limitations on sampling frequency can lead to dynamic error in the measured data.
The ability of an application to measure or control an aspect of the platform depends significantly on where
it is hosted and its connectivity to the instrumentation endpoint.

Figure 5-6.  Instrumentation telemetry in a typical Intel Xeon server platform

Power, thermal, and performance variations in a system can result in suboptimal behavior that may
need correction for platform policy compliance. This behavior must be predicted well in advance so that
corrective action can be employed within a window of opportunity. Such conditions can be predicted, using
a set of sensors that together can act as component Gaussians to model the overall feature density. In a
platform these sensors are available as activity counters; temperature, power, and performance monitors;
and so on. Classes of sensor data are as follows:

•	 CPU performance counters: These are special-purpose hardware counters that are
built into modern microprocessors to store the counts of hardware-related activities
within a CPU context. The output of these counters is used to forecast common
workload behaviors, in terms of CPU utilization (cache, pipeline, idle time, stall,
thermal).

•	 Memory performance counters: Memory performance counters identify memory
access patterns, bandwidth utilization, dynamic random access memory (DRAM)
power consumption, and proportions of DRAM command activity (read, write),
which can be useful for characterizing the memory-intensive behavior of a workload.
It is possible to characterize workload patterns by observing the proportion of read/
write cycles and time in the precharge, active, and idle states.

Chapter 5 ■ Hidden Markov Model

99

•	 I/O performance counters: Three major indicators of I/O power are (1) direct
memory access (DMA), (2) uncacheable access, and (3) interrupt activity. Of these
the number of interrupts per cycle is the dominant indicator of I/O power. DMA
indicators perform suboptimally, owing to the presence of various performance
enhancements (such as write combining) in the I/O chip. I/O interrupts are typically
triggered by I/O devices to indicate the completion of large data transfers. Therefore,
it is possible to correlate I/O power with the appropriate device. Because this
information cannot be obtained through CPU counters, it is made available by the
operating system, using performance monitors.

•	 Thermal data: In addition to the foregoing performance counters, you may also
consider using thermal data, which are available in all modern components (CPU,
memory, and so on) and accessible via PECI Bus.

•	 Workload performance feedback: Control theoretic action initiates a defensive
response, based on hysteresis, to reduce the effects of variation in resource
demands. This response needs to be corrected if it interferes with the performance
requirements of useful work. Excessive responses can slow down the system
and negatively impact the effectiveness of the control action. State feedback
communicates the optimal fulfillment of performance demands (or service-level
objectives) at a given time. This feedback has to be estimated by forecasting the
attributes of the fitness function that is related to the behavior of the work being
performed and its dynamic requirements. Continuous state feedback trains the
system-specific control actions and saves the recipe for those actions by relating it to
a unique state-phase fingerprint that can repeat in the future.

Model Reduction Block
A model reduction block (MRB) is responsible for reducing the dimensionality of a dataset by retaining key
uncorrelated and noncolinear datasets. This allows us to retain the most significant datasets—those that are
sufficient to identify the phases of workload operation that demonstrate time-varying behavior. Input to the
MRB model is time series data related to microarchitectural performance counters, workload performance
counters, and analog sensors (measuring power, temperature, and so on). These data can be collected, using
one of the many interfaces (PCI Express, SMBus, PECI Bus, and so on) illustrated in Figure 5-6.

You can use principal component analysis (PCA) for reducing the dimensionality of data without loss
of information (see Chapter 2). The resulting output variables are the principal components, which are
uncorrelated. For example, PCA transforms N inputs Y y y y yN= (, , , ,)1 2 3  to M principal components
X x x x xM= (, , , ,)1 2 3  , with very little information overlap Cov x xK L,() =()0 . Furthermore, variance of

each principal component is arranged in descending order Var x Var x Var xM() () ()1 2³ ³ ³() , such that x
1

contains the most information, and x
M

, the least. Each principal component defines the dimensionality of an
observation.

Emission Block
An emission block (EB) is responsible for collecting noncorrelated emissions as time series data. The raw
data that are collected from sensors are noisy and have to be filtered to extract quantifiable information.
The noise-reduction procedure identifies a simple dynamic system that is a good representation of the data.
During the training cycle the noise reduction scheme consists of a representative distribution that fits the
incoming data for a modeling window of dt. Sensor data streaming to the receiving blocks (see Figure 5-7)
are delayed by a configurable time period dt. The behavior of data within the dt period is governed by the
underlying equation, which is trained to reject (or reconstruct) the datapoints.

Chapter 5 ■ Hidden Markov Model

100

The output of a sensor block is processed into an EB, which processes the sequence of polled sensor
data to generate a continuous observation sequence. Additionally, an MRB scales down the number of
sensor inputs by synthesizing those that are significant and providing independent characteristics. You may
use a discrete set of weighted Gaussian PDFs, each with their own mean and covariance matrix, to enable
better modeling of phase detection features, using continuous emission. The Gaussian mixture forms
parametric models, whose parameters are estimated iteratively from training data, using Equations 5-14
and 5-15. In workload phase detection a d-dimensional Gaussian (independent emission) of k mixtures is
modeled as a weighted sum of Gaussian densities (see Equation 5-16).

Training Block
Dynamic systems are characterized by temporal features, whose time-varying properties undergo changes
during the operational period. These systems produce a temporal sequence of observations that can be
analyzed for dynamic characteristics. A training block (TB) facilitates the construction of a forecast model
by feeding it with metric vectors and the corresponding forecast variable for workloads with varying
characteristics (such as system power). A TB performs unsupervised classification and builds data structures
by partitioning the data into homogeneous clusters, such that similar objects are grouped within the same
class. In the simplest case, you may use the k-means clustering algorithm, which partitions the
d-dimensional emissions into k clusters, such that each emission belongs to the cluster with the nearest
mean. For a given a set of emissions (, , ,)x x xn1 2  , the k-means clustering algorithm partitions the emissions
into k sets G G G G Gk= (, , , ,)1 2 3  by finding the minimum distance to observation of all the k clusters:

arg min x
G

j i
x Gi

k

j i
 

|| || .-
Î=
åå m 2

1

Figure 5-7.  Phase detection model, using GMM

Chapter 5 ■ Hidden Markov Model

101

Each G element acts as a single-component Gaussian density function for k single-density states, each
representing a distinctive workload phase; m

i
 represents the mean of cluster i.

Parameter Estimation Block
You can use GMM to represent feature distributions in a workload phase prediction system, in which
individual component densities model an underlying set of latent classes. A parameter estimation block
(PEB) is responsible for estimating the parameters of the model l

k
 that fits the data for that model.

In the beginning, the model’s input data are the output sensor data from the TB, which classifies (labels)
the observations as a cluster number? The classifier uses the minimum distortion, or nearest-neighbor,
approach to classify the input vector, which selects the best Gaussian component from the mixture. Once
the training data are buffered for each model for a time interval dt, they are used to estimate the Gaussian
mixture parameters of that model. In the absence of an a priori model, a PEB initializes the number
of mixtures and estimates the model parameters (c

k
,m

k
,U

k
). You can use the estimation maximization

(EM) method, which maximizes the likelihood (|)X ll of the cluster-tagged data (see Chapter 1). The
fundamental idea behind the EM algorithm is to introduce a variable (a Gaussian mixture component) that
will simplify the maximization of likelihood. The EM algorithm is a two-step method:

	 1.	 E-Step: Estimate the probability distribution of each Gaussian mixture
component for a given emission (X) and model (l).

	 2.	 M-Step: Estimate the joint probability distribution of the data and the latent
variable (Gaussian mixture component). This step modifies the model
parameters of the Gaussian mixture component to maximize the likelihood of
the emission and the Gaussian component itself.

Beginning with an initial model l, the EM algorithm estimates a new model ll , such that
 (|) (|)X Xll ll³ . The new model then becomes the starting model for the next iteration, and the process is

repeated until a convergence threshold is reached. For a given sequence of d-dimensional emission vector
sequences X x x xn= (, , ,)1 2  , the a posteriori probability for the kth mixture component is given by

p k x
c G U x

c G U x
t

k k k t

k k k t
k

M(| ,)
(,)()

(,)()
.ll =

×

×
=

å
m

m
1

The formula used in reestimation of the model parameters is

Mixture weights

Mixture mean

: (| ,)

:
(| ,)

c
n

p k x

p k x

k t
t

n

k

t

=

=

=
å1

1

ll

ll
m tt

n

t

t
t

n

k

t t

x

p k x

U
p k x x

=

=

å

å

×

=
× -

1

1

(| ,)

:
(| ,) (

ll

ll
Diagonal variance

mkk t k
T

t

n

t
t

n

x

p k x

) ()

(| ,)
.

× -
=

=

å

å

m
1

1

ll

Chapter 5 ■ Hidden Markov Model

102

This block aids in categorizing the sequence of observations to the kth Gaussian component. You can
expand a single-state GCHMM into a single-density, multistate GCHMM.

Phase Prediction Model
Workload patterns that can be represented as application phases exhibit certain repetitive behaviors. You
need methods to identify and predict repetitive phases to apply feasible dynamic management responses
proactively. With a phase predictor block (PPB), you can estimate the observation sequence ahead of time by
a configurable period dt (see Figure 5-8).

Figure 5-8.  Prediction of an observation vector for twelve phases, using an exponential smoothing function

PPB analysis is of particular interest when the workload is operating at phase boundaries, and control
action has to be optimized for an anticipated phase. To build a simple prediction model, you estimate the
future d-dimensional observation vectors, using the observation vector exponential smoothing model.
Exponential smoothing can generally be represented as

y x y tt t t+ + - £ £ >1 =a a a() ; ;1 0 1 0

y yt t t+ + Î1 = a() where Î = -t t tx y ,

where y
t
 represents the predicted output of the smoothing function at instance t – 1, and x

t
 (our standard

notation) represents the raw emission from various sensors. Ît represents the prediction error at instance t.
Exponential smoothing takes into account all past data, but the proportional contribution of older samples
is diminished geometrically. This allows us to tune the value of a for two different models. In Figure 5-7 this
is illustrated by the “Predict T + t” block. Figure 5-9 demonstrates the prediction process, in which a control
process consumes the estimated phase signature and associates with a control action. The same action is
repeated if the phase appears in the future.

Chapter 5 ■ Hidden Markov Model

103

Figure 5-9.  Phase prediction block; control processes use the prediction model and sensor observations to
tune the process variables proactively

State Forecasting Block
In the context of workload characterization, a state represents an interesting attribute of a feedback
function that, when forecasted, triggers a corrective response proactively to avoid reactive action. Reactive
response lags the control action during which the function performs housekeeping and identifies the cause
of behavioral change. To prevent performance degradation, you identify a key process variable that, if
predicted, can generate a proactive response. A phase represents that unique behavioral characteristic of a
workload that varies with time and that needs to be predicted to avoid reactive tuning.

System Adaptation
The preceding sections examined a systematic approach for detecting workload phases in dynamic systems
with time-varying properties. Now, the question remains as to why we need to detect system phases.

Typically, workloads are subjected to arbitrary performance and environmental stresses, which are
compensated for by using adaptive systems. Adaptation may have to serve functions that are mutually
hostile and that pull in different directions. This results in needing to make compromises among solutions
to maximize the fitness of the overall solution. An adaptation function will optimize power in a manner
that delivers the desired performance, as perceived by the application. The desired performance may not
necessarily be the highest performance. In real systems it is impossible to improve all aspects of the target
policy to the same degree simultaneously. Therefore, systems develop various feedback control schemes
that operate in hardware, software, or software-assisted hardware scenarios. Control objectives include

Monitoring resource conditions in a continuous mode•	

Determining how and when adaptation should be performed by modeling feedback •	
control behavior

Chapter 5 ■ Hidden Markov Model

104

Identifying real-time constraints and resource requirements for a given workload •	
behavior

Identifying choice of available execution paths for a given autonomic element•	

Provisioning future resource requirements of a server, based on current resource •	
usage and work behavior

Discovering inherent phase dependencies on component power and performance •	
tuning

The QoS profile governs an appropriate level of resource reservation by indicating the output quality
levels in a dynamic fashion. In general, the QoS maximization process starts with an initial resource
allocation, which it revises, according to changing application demands and satisfaction levels. In the
scenarios we have described here, it is noteworthy that intelligent control action requires an understanding
of workload behavior; because workload behavior is characterized by a discrete phase, you can use this
information as feedback on any control loop action. Various process control applications within a system
can optimize their work function by building custom learning functions that relate the phase activity to the
control action. The resulting decisions steer each control loop model to train itself dynamically, based on the
historical trends, with respect to quantifiable phase behaviors.

References
Baum, Leonard E. “An Equality and Associated Maximization Technique in Statistical Estimation for
Probabilistic Functions of Markov Processes.” Inequalities 3 (1972): 1–8.

Baum, Leonard E., and J. A. Eagon. “An Inequality with Applications to Statistical Estimation for Probabilistic
Functions of Markov Processes and to a Model for Ecology.” Bulletin of the American Mathematical Society
73, no. 3 (1967): 360–363. http://projecteuclid.org/euclid.bams/1183528841.

Baum, Leonard E., and Ted Petrie. “Statistical Inference for Probabilistic Functions of Finite State Markov Chains.”
Annals of Mathematical Statistics (1966): 1554–1563. http://projecteuclid.org/euclid.aoms/1177699147.

Baum, Leonard E., and George Sell. “Growth Transformations for Functions on Manifolds.” Pacific Journal of
Mathematics 27, no. 2 (1968): 211–227. http://projecteuclid.org/euclid.pjm/1102983899.

Baum, Leonard E. “An Equality and Associated Maximization Technique in Statistical Estimation for
Probabilistic Functions of Markov Processes.” Inequalities 3 (1972): 1–8.

Juang, Bing-Hwang, Stephen E. Levinson, and M. Mohan Sondhi. “Maximum Likelihood Estimation for
Multivariate Mixture Observations of Markov Chains (Corresp.).” IEEE Transactions on Information Theory
32, no. 2 (1986): 307–309.

Liporace, L. “Maximum Likelihood Estimation for Multivariate Observations of Markov Sources.” IEEE
Transactions on Information Theory 28, no. 5 (1982): 729–734.

Sherwood, Timothy, Erez Perelman, Greg Hamerly, and Brad Calder. “Automatically Characterizing Large
Scale Program Behavior.” ACM SIGARCH Computer Architecture News 30, no. 5 (2002): 45–57.

Rabiner, Lawrence. “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition.”
Proceedings of the IEEE 77, no. 2 (1989): 257–286.

Stratonovich, R. L. “Conditional Markov Processes.” Theory of Probability and Its Applications 5, no. 2 (1960):
156–178.

http://projecteuclid.org/euclid.bams/1183528841
http://projecteuclid.org/euclid.aoms/1177699147
http://projecteuclid.org/euclid.pjm/1102983899

105

Chapter 6

Bioinspired Computing:
Swarm Intelligence

Brains exist because the distribution of resources necessary for survival and the hazards
that threaten survival vary in space and time.

—John M. Allman, Evolving Brains

Natural systems solve multifaceted problems using simple rules, and exhibit organized, complex, and
intelligent behavior. Natural process control systems are adaptive, evolutionary, distributed (decentralized),
reactive, and aware of their environment. Bioinspired computing (or biologically inspired computing) is a field
of study that draws its inspiration from the sophistication of the natural world in adapting to environmental
changes through self-management, self-organization, and self-learning. Bioinspired computational methods
produce informatics tools that are predicated on the profound conceptions of self-adaptive distributed
architectures seen in natural systems. Heuristics that imitate these natural processes can be expressed as
theoretical methods of constrained optimization. Such heuristics define a representation, in the form of
a fitness function. This function describes the problem, evaluates the quality of its solution, and uses its
operators (such as crossover, mutation, and splicing) to generate a new set of solutions.

Ashby’s (1952) book Design for a Brain discusses the mechanisms that shape the concept of adaptive
behavior, as demonstrated in living organisms, and the adaptive behavior of the brain. The author defines
adaptation as a form of behavior that promotes stability and that maintains the essential variables, within
physiological limits. Additionally, stability is expressed as a combined function of multiple fields with
changing dynamics. Therefore, stability is assumed to be associated with a coordination function between
various fields. As the system and feedbacks become more complex, the achievement of stability becomes
more difficult, and the likelihood of instability, greater.

Biologically, an important factor in the survival of an organism is its ability to maintain its essential
variables, within viable bounds. Otherwise, the organism faces the possibility of disintegration or loss of
identity (dissolution, death), or both. Adaptation provides an organismic stability criterion that contributes
to the maintenance of the essential variables, within viable limits; an adaptive system is a stable system
(Harvey et al. 2005, the region of stability being that part of the state space where all essential variables are
within physiological limits.

In the natural world the brain exhibits the properties of a highly efficient informatics tool that gathers
data (sensor function), infers and stores useful patterns in the data (knowledge base, memory), uses
that data for planning and anticipating future actions (decision making), executes those actions (control
functions), and learns from the consequences of those actions (learning). The brain acts as an information
processing machine that enables a fast and adequate response to environmental perturbations by filtering
disrupting triggers.

Chapter 6 ■ Bioinspired Computing: Swarm Intelligence

106

Jacob, Lanyon-Hogg, Nadgir, and Yassin (2004) conceptualized autonomic computing as analogous to
the autonomic nervous system (ANS), which constitutes an essential element of the peripheral nervous system.
Autonomic computing resembles the ANS, insofar as the latter is composed of a hierarchy of numerous
self-governing components that give monitoring and control functions the ability to transmit messages to
various organs at a subconscious level. While the ANS monitors the “operating environment,” it also maintains
the required equilibrium by enacting the optimal changes at a subconscious level. In general, the ANS is
responsible for controlling various actions related to digestion, perspiration, heart rate, respiration, salivation,
pupil dilation, and other such functions. The ANS facilitates such control systems by actively monitoring,
integrating, and analyzing input stimuli via sensory channels and distributing electrochemical impulses via
motor channels to generate control responses to various environmental conditions.

The brain and the ANS inspire us with design principles abstracted to informatics tools, such as
artificial neural networks (ANNs) and autonomic computing. But, nature motivates us with many more
naturally occurring and highly efficient computational phenomena that, when modeled effectively, can
improve the use of computers in solving complex optimization problems. Such phenomena exist in the
form of social interactions, evolution, natural selection, biodegradation, swarm behavior, immune systems,
cross-membrane molecular interactions, and so on. Software- or field programmable gate array– (FPGA-)
based agents can model these natural forms of computational and collective intelligence as evolutionary
algorithms, swarm intelligence (SI), artificial immune systems, artificial life, membrane computing, DNA
computing, quantum computing, and so on. The abstractions derived from natural processes formalize
the distributed computing paradigm, in which independent entities improve their reactive behaviors by
interacting with other entities, using a well-defined protocol, and fine-tuning their control actions.

Applications
Bioinspired computing systems confront complex problems by exploiting the design principals and
computational techniques encountered in natural processes. These systems possess a deep understanding
of the distributed processes that exist in nature and use the concepts of theoretical biology to produce
informatics tools that are robust, scalable, and flexible.

Evolvable Hardware
Evolvable hardware (EHW) is a novel field, in which practical circuits that exhibit desirable behaviors are
synthesized, using evolutionary algorithms. In their rudimentary configuration, such algorithms—such as
genetic algorithms (GAs)—influence a population of existing circuits to synthesize a set of new candidate
circuits targeted to fulfill the design specifications. The quality of the circuit is evaluated, using a fitness
function that ascertains if all the design requirements are met. Such techniques are useful when design
specifications merely specify the desired behavior or when hardware needs to adapt dynamically and
autonomously to changing operating conditions. In both cases, design specifications lack adequate
information to warrant the use of conventional methods. An evolvable circuit can be synthesized, using a
simulation tool (such as SPICE), a physical device (such as an FPGA), or a configurable logic.

In an evolutionary design approach it is not necessary to have a priori knowledge of the problem domain.
In many cases, it may be either too complex or too expensive to acquire such information. As the complexity
of the circuitsgrows, it becomes increasingly challenging to comprehend the dynamics between the various
components of the circuit. EHW envisages evolutionary design techniques that facilitate development of
online hardware that adapts its architecture, according to environmental changes or perturbations.

An example of this technique is cache quality of service (CQoS) logic (Iyer 2004), which performs
dynamic partitioning of the cache among selected cores to improve the performance of the system. The
automation methodology employs central processing unit (CPU) performance counter feedback in a GA
to evolve an optimal cache distribution scheme. The GA chromosome contains all the building blocks for a
solution to the problem at hand in a form that is suitable for the genetic operators and the fitness function.

Chapter 6 ■ Bioinspired Computing: Swarm Intelligence

107

Each CPU core node is represented by an n-bit binary number, called a gene. These n-bit genes define
the representation, in which each bit and its position correspond to an individual cache slice slot of the
total last-level cache (LLC). The GA-based evolutionary algorithm dynamically partitions the cache into
private and shared regions, without prior knowledge of the workload profile, and allows sharing among
the cores. The advantages of evolutionary methodology in partitioning the cache are that it is practical
and significantly reduces the overall miss rate of the cache, at the cost of a small evaluation (training) time
overhead. This methodology ensures optimal cache partitioning, with a view to increasing the instructions
per cycle (IPC) and reducing the cache miss rate, thus ultimately enhancing overall performance. Each slot
is assumed to host the same-sized cache partition. Figure 6-1 depicts a chromosome structure with an 80-bit
string (20 bits per core) that represents the association of each core with a 1MB cache slot.

The cache-clustering fitness function is a weighted function capable of measuring the quality or
performance of a solution—in this case, a cache-partitioning scheme that improves workload performance
among CPU cores. This function is maximized by the GA system in the process of evolutionary optimization.
A fitness function must include and correctly represent all or at least the most important factors that
affect the performance of the system. You may need functions that represent workload-independent and
workload-dependent characteristics. The workload-independent function in Equation 6-1 executes the
global fair allocation of cache, without biasing the characteristic behavior of a workload. This function,

Figure 6-1.  The chromosome structure of the cache clustering, based on workload behavior, using four cores
and 20 cache slots sized 1MB. For example, for core 1 cache slots, 0, 1, and 4 are private, and cache slot 5 is
shared with core 2. The complete string describes the cache association of each core with a cache slot

Chapter 6 ■ Bioinspired Computing: Swarm Intelligence

108

where N is the number of workloads, and (f
k
) is the miss rate of each workload (see Equation 6-2), attempts

to maximize the average performance (F
avg

) of all workloads. The contribution of each workload k can be
weighted (l

k
), based on the effect of throughput by individual workload.

	 F avg k k
k

N

k
k

N

1 1 0 1 0
1 1

= - × =
= =
å å. , .l f l 	 (6-1)

	 fk
k
miss

k
miss

k
hit

LLC

LLC LLC
=

+
	 (6-2)

The workload-dependent function (see Equation 6-3) biases the characteristic behavior of a workload
and tries to improve performance, based on that characteristic. This function, where (f

k
) is the fraction

of the miss rate of each workload over the total miss rate of the cores, and (y
k
) is the fraction of the cache

size allocated to each core over the total cache size, allows us to identify certain characteristics that may be
capable of boosting the service-level objectives for a given environment. As shown in Equation 6-3, a certain
bias can be generated to build pressure for allocation of cache sizes (S

k
) for each core k that is proportional

to the LLC miss rate ratio of that core (see Equation 6-4).

	 F absavg k
k

N
k

k

2 1 0 1 0
1

= - × -
æ

è
ç

ö

ø
÷

=
å. .l

j
y

	 (6-3)

		
j

f

f
k

k

j
j

N=

=
å

1

	 (6-4a)

		
y k

k

j
j

N

S

S
=

=
å

1

	 (6-4b)

Finally, the overall fitness (see Equation 6-5) can be defined as the weighted proportion of each
individual fitness, as given in Equations 6-1 and 6-3:

	 F F Favg avg avg= × + - ×a a1 1 2() . 	 (6-5)

Bioinspired Networking
Communication and network technologies have gained a lot of traction in recent years, owing to
advancements in cloud-based networking (CBN), networked embedded systems, wireless sensor networks
(WSNs), the Internet of Things (IOT), software-defined networking (SDN), and so on. Furthermore,
enterprise-class networking solutions are being developed to deliver high resiliency, high availability, and
high reliability through capacity planning, traffic engineering, throughput management, and overlaying
of multitenant applications, using the existing Internet infrastructure. As the network scales, the search
space for the optimal route increases dramatically. The number of routing tables and the amount of traffic
overhead overwhelm network bandwidth. Ideally, we would like to have efficient, self-organizing networks
with low route-finding latencies (or overhead) and high probabilities of successful transmission.

Nevertheless, significant challenges prevent us from realizing the practical implementation of new
networking paradigms. In addition to the need for scalability, availability, and survivability, these challenges
arise from resource constraints, absence of centralized architecture, and the dynamic nature of networking.
However, similar phenomena are also found in natural processes that are successfully dealt with through
adaptation in biological systems. Biological communication paradigms are evolutionary; resilient to
failure; adaptive to environmental conditions; and collaborative, on the basis of a simple sets of rules.

Chapter 6 ■ Bioinspired Computing: Swarm Intelligence

109

Bioinspired networks self-organize by apprehending the mutual interactions of components that produce
complex patterns. These interactions facilitate behavioral responses through information transfer between
interacting components as well as through the interaction of components with the environment.

Gianni, Ducatelle, and Gambardella (2005) presented the AntHocNet design for stigmergy-driven
shortest-path discovery, based on a self-organizing behavior exemplified in ant colonies. Similar routing
algorithms exist for packet-switched networks, such as AntNet (Di Caro and Dorigo 1998), and circuit-
switched networks, such as artificial bee colony (ABC) (Schoonderwoerd et al. 1997). The AntHocNet
algorithm inserts limited routing information in “Hello” messages so that the information regarding existing
paths can propagate throughout the network, using node-to-node information exchange. This process is
equivalent to collective ant learning behavior, in which ants swarm together to gather and maintain updated
information. Artificial ants instigate the stigmergic communication process by acting as autonomous agents
that update and follow the pheromone table (path). Similar to routing ants, the pheromone table explores
the high-probability paths that can be used for routing data packets. Additionally, ants put their limited
resources toward optimizing global behavior to identify the food source in a cost-effective manner. This
behavior inspires resource-efficient networking techniques.

Given their dynamic nature and lack of infrastructure, networks are also prone to failure and delay.
Therefore, networks should have capability to self-organize and self-heal in real time. Dynamic networks
(especially mobile ad hoc networks) may use the bioequivalent of epidemic models both to describe and
to adapt information dissemination. Papadopouli and Schulzrinne (2000) described a simple stochastic
epidemic model that estimates the delay until data diffuse to all mobile devices. Carreras et al. (2006) proposed
an epidemic spreading mechanism for efficient information dissemination in clustered networks and for
opportunistic routing in delay-tolerant networks. The authors used eigenvector centrality (EVC) as an objective
fitness measure of the ability of nodes to spread an epidemic (information) within the network. The resulting
topology built using EVC defines the regions in which the epidemic spreads extremely fast. Infection fronts
(information) spread toward highly connected neighborhoods (EVC), because spreading is fastest there.

Resource-constrained sensors, such as wireless sensors, are limited in energy, bandwidth, storage,
and processing capabilities. Large numbers of such sensors create a sensor management problem. At the
network layer the solution entails setting up an energy-efficient route that transmits the nonredundant
data from the source to the sink to maximize the battery’s and sensors’ lives. This is done while adapting to
changing connectivity resulting from the failure of some nodes and the powering up of new nodes. Khanna,
Liu, and Chen (2009) demonstrated that the GA-based approach optimizes the sensor network to maximize
energy usage as well as battery conservation and route optimization. Each sensor is encoded with a gene
that identifies it and any other specific information it may contain. This information may be related to
sensor objectivity, next hop, cluster domain, and so on. The GA adaptation process evolves optimal cluster
boundaries, in terms of addition, deletion, or modified sensor objectives. The process also discovers optimal
routes from cluster heads to the sink.

Datacenter Optimization
The size and complexity of modern distributed datacenter systems are expanding every day. The volume
of information that must be processed in real time has been growing geometrically over the past few years,
requiring peak processing capabilities to rise in concert. Despite the superior performance per watt that
newer platforms deliver, handling peak loads continues to call for higher power delivery and heat dissipation
capacities per cubic meter in enterprise information technology (IT) and datacenter facilities, with 63 percent
of the total cost of ownership going toward powering, cooling, and electricity delivery infrastructure. In
contrast to the traditional focus on delivering the highest throughput or lowest response time, unconstrained
by power, these realities have made it a more compelling proposition to minimize the amount of energy
consumed, relative to computational work performed, while meeting responsiveness targets. In particular,
dynamically conserving power when some machines do not need to be in full use translates directly into cost
savings and creates greater allowance for other, more power-constrained servers.

Chapter 6 ■ Bioinspired Computing: Swarm Intelligence

110

One way to optimize power in a datacenter is to regulate or redistribute the load of a rack-level server
unit autonomously through management of job admission, distribution, and continuous balancing.
Barbagallo et al. (2010) put forward self-organizing architectures for dynamic workload distribution, using
a decentralized approach built on top of SelfLet architecture. SelfLet architecture (Devescovi et al. 2007) is
a bioinspired system that possesses the capability to change and adapt its internal behavior dynamically,
according to variations in the environment. SelfLet uses autonomic reasoning to facilitate self-management
capabilities. SelfLet itself represents a service framework built using a self-sufficient piece of code that
interacts with a group of other SelfLet individuals and that cooperates through high-level functions.
Each SelfLet either offers or consumes a service and interacts via a communication framework. The authors
used self-organization algorithms based on the principles of collective decision making in animal colonies.
Self-organizing in these colonies is characterized by scouting, evaluating, deliberating, and decision-making
functions. Self-organization in a datacenter can be summarized using similar entities, as follows:

•	 Colony: A collection of virtual machines (VMs) residing on the same server.

•	 Scout: Explores multiple physical servers and compares them with the original one.
A scout can be characterized by its current location, lifetime, and information stored
related to each server class that it examined.

•	 Server manager: Communicates with the scouts and makes decisions related to the
movements of VMs.

Based on the collective data from multiple scouts, a decision is made either to permit or to inhibit
migration. As in biological systems, the decision whether to migrate is not deterministic and follows a
probability distribution. This avoids a reactive migration, which could result in instability and oscillatory
behavior. Furthermore, like biological systems, individual servers may propagate an inhibitor flag to prevent
migration in the middle of critical operations.

Li and Parashar (2003) developed AutoMate architecture to investigate bioinspired conceptual models
and implementation designs for developing and executing self-managing (i.e., configuring, healing,
optimizing, and protecting) grid applications, while dealing with the challenges of complexity, dynamism,
and heterogeneity. AutoMate architecture is built on three operative principles:

Separating policies from the mechanisms related to algorithms, communication •	
protocols, and so on that drive those policies

Applying context-, constraint-, and aspect-based composition techniques •	
to applications to synthesize dynamic requirements for compute resources,
performance guarantees, and QoS

Developing proactive- and reactive-component management to optimize resource •	
utilization and application performance in dynamic environments

Bioinspired Computing Algorithms
Bioinspired computing methods are metaheuristics that imitate methods for solving optimization problems
in natural processes. These heuristics deliver a robust and decentralized compute engine that can perform in
noisy ecosystems and yet deliver a desired behavior, while operating within time, energy, and power constraints.
Such computing methods have been used in almost all areas of optimization, knowledge discovery, and big
data analytics, including computer networks, image processing, WSNs, security, control systems, biomedical
systems, and robotics. The following sections give a brief overview of bioinspired optimization algorithms that
are computationally efficient alternatives to the traditional deterministic approach—an approach that does not
scale well and that requires massive computational effort. Designing bioinspired algorithms involves identifying
a suitable representation of the problem, developing a fitness function to evaluate the quality of solution,

Chapter 6 ■ Bioinspired Computing: Swarm Intelligence

111

and defining operators to produce a set of new solutions. Broadly, bioinspired algorithms can be divided
into three major classes: evolutionary algorithms, swarm-based algorithms, and ecological algorithms. These
classes are further divided into subclasses, based on their inspiration from specific cases of naturally occurring
processes involving ants, fireflies, bacteria, bees, birds, and so on.

Swarm Intelligence
Swarm intelligence (SI) is a type of artificial intelligence based on the collective behavior of decentralized,
self-organized systems. The term was introduced by Beni and Wang (1989), in the context of cellular robotic
systems. SI typically comprises a collection of unsophisticated agents, called boids, that interact locally with
other agents as well as with the environment, using extremely elementary rules. No centralized control
infrastructure governs an individual agent’s behavior or interactions. Instead, local and random interaction
between participating agents leads to an intelligent global behavior unattributable to individual agents.
In other words, collective interaction at peer level leads to a sophisticated phenomenon globally. Natural
examples of SI include ant colonies, bird flocking, animal herding, bacterial growth, and fish schooling.
SI-inspired systems include positive feedback, negative feedback, amplification of fluctuations, and multiple
interactions between multiagents.

Autonomic computing and SI are closely related. For example, through the tuning of system parameters,
the self-configuration aspect can be achieved autonomically rather than manually. In the natural world the
local process indicators can change, be reinforced, or reach a threshold, reflecting the actual dynamic swarm
situation. Clearly, system performance can be optimized through interaction between multiple local agents.
Also, system robustness can be guaranteed through this kind of parallel multiagent interaction. Finally,
security and load balancing can be fulfilled with careful parameter and rule design. The appropriate tradeoff
between the purely reactive behavior promoted by traditional stigmergy and the purely cognitive behavior
promoted by artificial intelligence approaches has to be determined. Stigmergy is a mechanism occurring in
many social animal societies that contrives to solve complex problems using a decentralized approach in a
self-organized system. This system rewards positive feedback, while penalizing the negative. As a result, the
system enables a complex, intelligent infrastructure that needs no planning, control, or complex interactions
between the agents. The social aspects support efficient collaboration between elementary agents, which lack
memory, intelligence, and even awareness of each other.

Ant Colony Optimization Algorithm
In the natural world, ants wander randomly until they find a path that leads to food. This behavior has
inspired a variant of SI called the ant colony optimization (ACO) algorithm. In the ACO scenario (Dorigo,
Di Caro, and Gambardella 1999) ants communicate with other ants to exchange status information regarding
food sources through changes in the environmental medium by depositing pheromones. The status
information is exchanged within a local scope, and the context is transferred only to ants at the location of
pheromone deposition. After finding food, these ants return to the colony, while laying down pheromones
for other ants to follow. Upon discovering the food trail, the other ants abandon their random food search
and follow the pheromone trail, thereby reinforcing the original path.

Over time, however, the pheromone trail tends to evaporate and lose its attractive property. If the
round-trip time between the ant colony and the food source is great, the pheromone can evaporate faster
than it can be reinforced. In contrast, a short pheromone trail has a greater pheromone density and can
be reinforced faster than it evaporates. The pheromone evaporation process is analogous to avoiding
convergence to a local optimal; the process avoids strengthening the nonoptimal solution, while aiding
the unconstrained exploration of the solution space. In general, variation in the pheromone quantity on
the edge allows for the choice of a specific edge. A stable system is a network of strong edges that adapt to
active variations and environmental changes. Because of dynamic variations in the interactive environment,

Chapter 6 ■ Bioinspired Computing: Swarm Intelligence

112

certain edges are reinforced through positive feedback, whereas others are weakened because of negative
feedback. A slight variation in the edges can result in an alternate route that remains valid until other edges
exhibit stronger traits. For instance, if the pheromone trail to a single food source is reinforced, it will take
much longer to discover alternate sources that may be optimally suited for the colony, in terms of distance or
abundance. ACO attempts to find a path to the solution that is likely to be followed by other agents, thereby
building positive feedback that eventually leads to a single path to the solution.

ACO methodologies differ from evolutionary algorithms in one main regard. In evolutionary
algorithms, such as GA, all knowledge about the problem is contained in the current population, whereas
in ACO algorithms a memory of past performance is maintained in the form of pheromone trails Dorigo,
Di Caro, and Gambardella (1999) represented ants as playing the role of environmental signals, and the
pheromone update rule, the role of the automaton learning rule. In ACO the environmental signals/ants are
stochastically biased, by means of their probabilistic transition rule, to direct the learning process toward
the most interesting regions of the search space. That is, the whole environment has a key, active role in the
learning of good state-action pairs. The basic ACO rule can be defined by the following process (Engelbrecht
2006; Wang et al. 2007):

	 1.	 Create nr global ants; each ant visits each food source exactly once.

	 2.	 Evaluate the fitness of each food source; a distant food source has a lesser
probability of being chosen.

	 3.	 Update the ants’ pheromone and the age of weak regions.

	 4.	 Move local ants to better regions, based on the pheromone intensity, to improve
their fitness; otherwise, choose new random search directions.

	 5.	 Update the ants’ pheromone to all the regions they traversed.

	 6.	 After each iteration, evaporate the ants’ pheromone.

Ants are attracted to the regions, based on the intensity of the pheromone at time t. As the pheromone
evaporates, that region becomes less attractive to the ant and is finally abandoned. The probability of an ant
k transitioning from region i to region j at time t is

	 P i j t
t d t

t d t
j Nk

i j i j

i n i n
n N

i
k

i
k

(, ,)
() ()

() ()
,, ,

, ,

=
×

×
Î

Î
å
t
t

a b

a b if ,, 	 (6-6)

where

t
i,j

(t) = pheromone trail region, represented by edges i and j at time t

d
i,j

(t) = distance between source (i) and destination (j) locations

Ni
k = feasible neighborhood of ant k at source i

a = relative significance of the pheromone trail

b = relative significance of the distance between source and destination

The positive parameters a and b define the relationship between pheromone and heuristic information.
Therefore, the probability of a trail that is chosen by ant k is a function of distance and the density of the
pheromone that already exists on that trail at time t. The significance of intensity and distance to the cost
function is determined by a and b, respectively. Thus, the better the region is, the more attraction it has
to the successive ants. The pheromone concentration in the region is updated as a function of constant
evaporation (p) and new deposits (Dt

k
) by the ants attracted to this region, such that

Chapter 6 ■ Bioinspired Computing: Swarm Intelligence

113

	 t t ti j i j k i j
k

m

t p t t, , , ,() () ()+ = × +
=
å1

1

D 	 (6-7)

	 if i j S
Lk k i j

k i j

(,) : ,, ,
, ,

Î =Dt
1 	 (6-8)

where

p = �evaporation constant, whose value can be set between 0 and 1 and represents the rate at which
the pheromone evaporates

L
k,i,j

 = length of the tour by ant k, with shorter tours resulting in higher pheromone density

Dt
k,i,j

 = amount of pheromone deposited by ant k in region (i, j).

The probability of local ants’ selecting a region is proportional to its pheromone trail. The pheromone
is affected by the evaporation rate, ant age, and growth of fitness. Thus, this pheromone-based selection
mechanism is capable of promoting the solution candidate update, which is suitable for handling the
changing environments in optimization.

ACO techniques can be used for knowledge discovery corresponding to learning the functional
relationship between variables, changes in data pattern, and data classification. The social behavior of the
ants suggests the notion of formulating an infrastructure that fosters the concept of self-organization, using
natural interactions and local information to solve complex computational problems.

Dorigo, Di Caro, and Gambardella (1999) described a solution to the Traveling Salesman Problem (TSP),
in which m artificial ants concurrently build a tour of the TSP. Initially, k ants are placed on randomly selected
cities. At each step the kth ant applies a probabilistic action choice rule to resolve which city to visit next.
The probability that an ant chooses to travel from city i to city j (J Ni

kÎ) is given in Equation 6-6, where Ni
k

defines a potential neighborhood of k cities when the ant is in city j. If a = 0, the closest cities are more likely to
be selected; if b = 0, then only pheromone amplification is used, without any heuristic bias. Each ant k retains
a memory area, where it generates the tour, computes the length of the tour, and retraces the path to deposit
the pheromone to the arcs of the tour. Pheromone trails are updated after all ants have constructed their tour.
This is done by decreasing the pheromone by a constant factor on all arcs (evaporation) and then successively
adding the pheromone to the arcs crossed by ants in their tours. Pheromone evaporation and updating are
implemented in Equation 6-7. Arcs that are part of a short route and are visited by many ants receive more
pheromone and are therefore more likely to be chosen by ants in future iterations of the algorithm.

Particle Swarm Optimization
Particle swarm optimization (PSO) is a stochastic computational technique that iteratively optimizes the
candidate solution of a problem until it attains the target fitness (or quality) (Kennedy and Eberhart 1995).
This technique is biologically inspired by the social behavior of bird flocking and fish schooling. Owing to its
simplicity and computational efficiency, PSO has been successfully applied to many engineering research
and optimization applications. Particle in PSO denotes an individual member of a population that searches
for optimal behavior when subjected to velocity and acceleration in a large search space. Each particle in the
swarm explores the coordinates of the solution space and records the following four vectors, relative to the
best solutions (fitness) achieved in that process:

Particle’s current coordinates•	

Particle’s velocity, with respect to magnitude and direction•	

Coordinates (position) associated with the particle’s local best solution achieved up •	
to that point (pbest)

Coordinates (position) associated with the particle neighborhood’s best solution •	
achieved up to that point (gbest)

Chapter 6 ■ Bioinspired Computing: Swarm Intelligence

114

PSO can search a large solution space, while making no assumptions regarding the problem being
optimized. PSO looks for an optimal solution by moving the particle in the solution space, relative to its
current position, at a certain velocity and guided by a fitness function: a particle’s movement is controlled by
changing its velocity (accelerating), guided by its current best position (pbest) and the best position found
in its neighborhood (gbest)up to that point. The gbest solution is iteratively updated as better positions are
found. The combined (collective) exploration of all the particles moves the swarm toward the best solution.
In their quest for the global optimum, particles in the swarm realign to cluster around the suboptimal. Once
a particle is close to the global optimum, other particles are attracted to it, with a high probability of finding
the best solution. In each iteration k, particle i updates its position and velocity, according to the following
equations:

		 v x xi
k

i
k

i
k+ += -1 1 	 (6-9)

	 x x v c r pbest x c r gbest xi
k

i
k

i
k

i
k

i
k

i
k

i
k+ = + + - + -1

1 1 2 2() () 	 (6-10)

	 v v c r pbest x c r gbest xi
k

i
k

i
k

i
k

i
k

i
k+ = + - + -1

1 1 2 2() (), 	 (6-11)

where

xi
k= particle i position for the kth iteration

vi
k = particle i velocity for the kth iteration

c
1
,c

2
 = weighting coefficients

r
1
,r

2
 = random numbers between 0 and 1

The PSO algorithm is composed of the following steps for iteration k:

	 1.	 Initialize the swarm by allocating a random position xi
0 to each particle i of the

swarm bounded by the problem space.

	 2.	 Evaluate the fitness of each particle i, relative to its current position xi
k.

	 3.	 Compare the particle i fitness with its pbesti
k-1; if the current fitness is greater

than the pbest, set the pbest value (pbesti
k) to the current fitness value.

	 4.	 Select the particle j with the best fitness (pbest j
k); mark this fitness gbesti

k.

	 5.	 Evaluate the new position xi
k+1 of particle (i), using Equations 6–10.

	 6.	 Evaluate the new velocity vi
k+1 of particle (i), using Equations 6–11.

The process repeats until the stopping criteria are met, or the best solution is found. Unlike evolutionary
algorithms, such as GA, particles improve the PSO algorithm’s fitness, using the current global optimum,
without evolutionary operators.

Because of its distributed nature and ability to operate under noisy conditions, PSO can prove to
be a useful technique for workload balancing, with respect to power consumption, heat generation, and
QoS requirements in cloud computing. The workload has to be distributed in such a manner that power
consumption is minimized, thermal hot spots are eliminated, and performance targets are fulfilled.
Dynamic placement of the workload in a system (or cluster of compute machines) triggers dynamic
variations in the availability of compute, memory, network, input/output (I/O), and storage resources.
Optimal system operation results in complex workload distribution choices, owing to the many degrees
of freedom for allocating the load in a dynamically varying resource pool. The PSO solution continuously
searches for the dynamically shifting optimum to identify the placement target of the new or upcoming load.

Chapter 6 ■ Bioinspired Computing: Swarm Intelligence

115

Yassa et al. (2013) proposed DVFS multiobjective discrete particle swarm optimization (DVFS-MODPSO)
for workload scheduling in a distributed environment. DVFS-MODPSO implements the multiobjective
optimization of several conflicting goals—minimizing execution time, execution cost, and energy
consumption—and produces a set of nondominated solutions to offer flexibility in choosing a schedule
that meets the QoS targets. DVFS-MODPSO defines a triplet <T

i
, P

j
, V

k
> that characterizes the position of a

particle and that represents a reasonable solution to the workload scheduling problem. Each triplet allocates
the task T

i
 to a processor P

j
 with a voltage scaling V

k
. The results demonstrate that DVFS-MODPSO generates

a set of Pareto optimal solutions for execution time, execution cost, and power consumption.
Solving a global optimization problem using a traditional approach involves precise function

description and gradient evaluation, which may be expensive, time-consuming, hard to achieve, or
impossible. Compounding the problem, many complex optimization problems exhibit a noisy behavior that
renders methods such as implicit filtering and evolutionary gradient search almost ineffective. In contrast,
PSO algorithms operate in a stable and efficient manner, even in the presence of noise. In many cases,
noise can be beneficial, because it helps avoid local minimum solutions and converge faster to the globally
optimal solution. Owing to their simplicity, PSO algorithms have also been proposed as an alternative to
gradient-based techniques for detecting Pareto optimal solutions to multiobjective optimization problems.

Artificial Bee Colony Algorithm
The artificial bee colony (ABC) algorithm is a swarm-based metaheuristic inspired by the foraging behavior
of the honeybee that was proposed by Karaboga, Dervis, and Basturk (2007). The model consists of three
groups of honey bees that facilitate an optimal search for food sources. Employed bees attach themselves
to a specific food source and share the information regarding its profitability through waggle dancing to
recruit new bees. An onlooker bee is an unemployed bee that evaluates the quality of the food source by
observing the waggle dances on the floor and deploys itself toward the most profitable food source. A scout
bee searches for new food sources randomly and presents information associated with their quality through
a waggle dance. The employed bee whose food source has been exhausted transforms itself into a scout bee
and searches for new food sources. The principal components of the ABC algorithm are as follows:

•	 Food sources: A food source represents the candidate solution to an optimization
problem. To select an optimal food source, an employed bee evaluates the overall quality
of a food source, as measured by its proximity to the hive, the quantity and quality of the
food (nectar), and the level of difficulty in extracting the food.

•	 Employed bees: Employed bees are employed at a specific food source, which
they exploit to gather nectar. The bees collect information related to the distance,
direction, and quality of the food source and share it with other bees, waiting on
the dance floor. An employed bee attempts to improve its solution (food source) by
reevaluating the coordinates in the neighborhood of its memorized coordinates,
using multiple trials.

•	 Unemployed bees: Scout bees and onlooker bees are both in this category. They evaluate
the profitability of potential food sources, either through random scouting or through
information shared by employed bees. This evaluation helps convert an unemployed
bee to an employed bee by facilitating selection of the most profitable food source.

•	 Measure of quality (fitness): The quality of the food source—characterized by its
proximity to the hive, the quantity and quality of its nectar, and the relative difficulty
of extracting the nectar—can be summarized, using a single quantity: fitness.

•	 Knowledge exchange: Knowledge exchange is the critical element of the ABC
algorithm. Knowledge is shared within the staging area, called the dance area; here,
bees exchange information related to the fitness and coordinates (angle, distance) of
the food source through the waggle dance.

Chapter 6 ■ Bioinspired Computing: Swarm Intelligence

116

The ABC algorithm can be used as a technique for load balancing in a datacenter. Load balancing attempts
to optimize resource utilizationresponse time, throughput, and thermal hot spots. Load balancing can be
implemented by reallocating existing tasks or allocating new tasks to an existing compute node. These compute
nodes act as potential candidates for hosting the workload, which, when loaded effectively, can improve
the efficiency of the datacenter. Each compute node advertises its prevailing characteristics (or fingerprint)
related to utilization, operational phase, time spent in that phase, cache behavior, temperature, and power
consumption. The fitness function defines a compute node’s ability to host new work at a future time. For
example, a candidate node that can compensate for the forecasted thermal variance in its neighborhood
will have a higher fitness, compared with other nodes with similar characteristics but existing in a fully balanced
cluster. Each server consists of management microcontrollers that act as idle, employed, onlooker, or scout
bees. Scout bees are appointed in a random manner, whereas employed and onlooker bees follow the swarm
behavior that is influenced by the fitness outcome. While an employed bee (management node) records the
benefits of hosting the load on the existing node, an onlooker bee (waiting in a work queue), in its effort to
become employed, analyzes the collective information delivered through scout and employed bees. Once the
compute target is selected, the onlooker bee attempts to host the queued work on that target. The technique of
load balancing using ABC deploys the following agents:

•	 Scout bee: Acts as a random agent that constitutes approximately 2 percent of the
total compute nodes in a datacenter. These agents execute the scout function, using
the management agent corresponding to the compute node tagged as scout bee.
Scout agents collect neighborhood-specific information related to hot spots, average
power consumption, and availability of compute resources.

•	 Employed bee: Acts as an agent that assists in loading and collecting the operational
statistics of the load that is executing on the compute node tagged as employed bee.
These statistics include usage, memory bandwidth, noisy behavior of the cache, and
I/O contention.

•	 Onlooker bee: Acts as an agent of the potential workload waiting in the queue.
Each agent identifies the best target to host this workload.

Two principal factors that attract bees to a specific node or neighborhood, in this example, are the
availability of thermal variance and compute resources. As the thermal variance or compute resource diminishes,
that node becomes less attractive and is eventually abandoned. While a node remains attractive, an employed
bee repeatedly visits that location and encourages onlooker bees to host work in its neighborhood. Scout bees
identify additional targets or neighborhoods with high fitness that can be exploited by unemployed bees.

The main steps of the ABC algorithm are generalized as follows:

	 1.	 Random food sources are allocated to each employed bee. Repeat:

a.	 Each employed bee visits the food source, according to the information
stored in the bee’s memory. The bee evaluates the quantity and quality of
the food (nectar) and performs the waggle dance in the hive.

b.	 Each onlooker bee observes the waggle dance of the employed bees,
and some of them select the food source, based on the information
communicated through the dance.

c.	 Once the food source is abandoned, new sources are identified by
the scout bees.

d.	 The new food source is identified by the scout bees and attracts the swarm,
depending on the quality of the nectar.

e.	 Requirements are met.

	 2.	 Repeat.

Chapter 6 ■ Bioinspired Computing: Swarm Intelligence

117

Bacterial Foraging Optimization Algorithm
The bacterial foraging optimization (BF0) algorithm (Passino 2002) models the microbiological phenomenon
of organized behavior in a bacterial colony. The BFO algorithm for modeling the social foraging behavior of
Escherichia coli (E. coli) can be used to solve real-world numeric optimization problems. BFO is primarily
composed of three processes: chemotaxis, reproduction, and elimination–dispersal.

Chemotaxis is defined as cell movement in response to a chemical stimulus. This method is used by
many single- and multicellular organisms to discover their food. Bacterial chemotaxis represents the signal
transduction system, which stimulates the behavior of bacterial movement. Reproduction characterizes
natural selection, which favors the best-adapted bacteria with a higher likelihood of survival than the
less-adapted bacteria. Natural selection allows the selected population in each generation to transfer the
genetic material to successive generations. Elimination–dispersal promotes the low probability of the
elimination and dispersal of randomly selected parts of the bacterial population. This fosters diversity in the
bacterial population and prevents the global optimal solution from being trapped in a local minimum.

E. coli alternates between two modes of movement, called swim and tumble, throughout its entire life.
Swimming action allows the bacterium to move in the current direction of increasing nutrient gradient;
tumble action allows change in orientation when the nutrient gradient is no longer attractive. The alternating
mode of bacterial movement enables a bacterium to locate the position of the optimal nutrient source. After
a certain number of complete swims, the bacterial population undergoes reproduction and elimination,
according to the fitness criteria. Each bacterium position has an associated cost and represents a possible
solution. BFO simulation keeps track of the cost of current and previous positions to estimate the quality
of gradient improvement or worsening. In each generation the health of the bacterium factors into its
likelihood of being retained for reproduction (making replicas) or elimination.

If q i represents the position of the ith bacteria, the successive movement of the bacterium is

	 q q fi i i ij k l j k l v j j(, ,) (, ,) () (),+ = + ×1 	 (6-12)

where

q i( j,k,l) = �position of the ith bacterium in the jth chemotactic, k th reproductive, and lth
elimination–dispersal step

vi( j) = step size in a random direction during the tumble

f i( j) = random direction of movement after the tumble

For the given position of the ith bacterium, q i( j,k,l), Ji( j,k,l) represents the fitness of the bacterium at
that location. If the fitness of ith bacterium at location q i( j+1,k,l) is better than that at q i( j,k,l), such that
Ji( j+1,k,l) is better than Ji( j,k,l), then vi( j+1) = vi( j), and fi( j+1) = fi( j). If the reverse is true, then vi( j+1) takes
a different step, in a random direction.

Munoz, Lopez, and Caicedo (2007) proposed a BFO algorithm for searching the best actuators in each
sample time to obtain a uniform temperature over the temperature grid platform. The idea is to compensate
for the cold spots by allocating or deallocating additional resources. Similar techniques can be applied to
load balancing in a cluster of compute servers, as in a datacenter. Server load balancing techniques employ
bacterial searches to locate the regions of nonuniform thermal behavior (high temperature variance).
The fitness of the newly identified location can be evaluated by modeling the thermal variance in the
temperature grid resulting from adding or subtracting quantities of unit load.

Chapter 6 ■ Bioinspired Computing: Swarm Intelligence

118

Artificial Immune System
The artificial immune system (AIS) is a bioinspired optimization algorithm (Dasgupta 1999) based on the
principles of the vertebrate immune system. The algorithm emulates several characteristics of the human
immune system: that it is highly distributed, that it is parallel, and that it uses adaptive learning and memory
to solve problems related to pattern recognition and classification. The AIS algorithm learns to categorize
relevant patterns through a pattern detector that associates previously -seen patterns with existing ones.
The algorithm formulates a different response mechanism to deal with the effects of each pattern.

The adaptive immune system in the human body uses many agents that perform diverse functions
at different locations, primarily employing negative selection and clonal selection mechanisms. Negative
selection mechanisms exploit the immune system's ability to detect unknown antigens, while not reacting
to self. Clonal selection mechanisms promote the proliferation of cells that possess the ability to recognize
an antigen over those that do not. Therefore, self-reacting cells are eliminated, and mature cells are allowed
to proliferate. The learning mechanism involves bolstering by the cloning process of those lymphocytes
within a given population that contribute to the identification of an antigen. New cells are copies (clones)
of their parents, but cloning is subject to a high rate of mutation (somatic hypermutation). This mutation
process mimics the mechanism that reallocates the resources needed for recognition of new antigens versus
previously identified antigens. The reinforced learning mechanism rebalances the population of diverse
lymphocytes to promote optimal detection and mediation of pathogens.

The properties of the immune system have the following attributes (Castro, Nunes, and Von Zuben 1999):

•	 Exclusivity: The immune system is exclusive to each individual, with its own
vulnerabilities and capabilities.

•	 Recognition of foreigners: The toxic elements or molecules that are foreign to the
individual’s body are identified, categorized, and labeled for future detection.

•	 Anomaly detection: The immune system learns to classify the unidentified foreign
element as a pathogen and attempts a remedial action.

•	 Distributed detection: The cells are distributed throughout the body and are not
subject to centralized control.

•	 Imperfect detection (noise tolerance): Pathogens are first classified as unidentified
foreign elements, and their absolute recognition is not essential.

•	 Reinforcement learning and memory: The immune system continuously learns the
structure of the pathogen to formulate an increasingly effective response.

Similar to that of the GA, AIS architecture comprises the following four steps (Aickelin, Dasgupta,
and Gu 2014):

	 1.	 Encoding: Encoding is binary, numeric, or nominal representation of antigens or
antibodies. An antigen represents the solution to a problem domain that needs
to be tested for an intrusion. Antibodies represent previously identified patterns
that can be used later.

	 2.	 Similarity measure: A similarity measure quantifies the affinity between an
antigen and its candidate antibodies. The matching algorithm measures the
extent of agreement, disagreement, or correlation between a candidate antibody
and its target antigen. Candidates with strong agreement or disagreement may
be selected for further processing (cloning or mutation).

Chapter 6 ■ Bioinspired Computing: Swarm Intelligence

119

	 3.	 Selection: The selection process follows an iterative procedure, in which the
concentration of antibodies is regulated by cloning or removal at each step,
depending on the antibody–antigen affinity measure. Upon adding a new
antibody, the iterative process changes the concentration of that antibody,
continuing until the AIS achieves stability. AIS iteration can be represented by
the following equation (Farmer, Packard, and Perelson 1986):

	          x k m x y k xi ji i j
j

n

i= -
æ

è
çç

ö

ø
÷÷

=
å1

1
2 , 	 (6-13)

where

n = number of antigens

x
i
 = concentration of antibody i

y
j
 = concentration of antigen j

m
ji
 = affinity function representing the correlation between antibody i and antigen j

k
1
 = rate of antibody production

k
2
 = death rate

�Equation 6-13 represents the iterative change in the antibody concentration,
contingent on the net outcome of cloning due to antigen recognition and death in
the absence of correlation.

	 4.	 Mutation: Antigen–antibody interaction, coupled with somatichypermutation,
forms the basis of an AIS. Mutation introduces diversity in the population and
facilitates effective response to antigens.

AIS uses an adaptive population of antibodies to facilitate intelligent behavior by synthesizing diverse
subset solutions for a given problem domain. AIS has been applied in areas related to network security and
anomaly detection.

Distributed Management in Datacenters
Datacenters are complex environments that deal with key challenges related to power delivery, energy
consumption, heat management, security, storage performance, service assurance, and dynamic resource
allocation. These challenges relate to providing effective coordination to improve the stability and efficiency
of datacenters. The fluctuating demands and diverse workload characteristics of a large datacenter make
complex the tasks of upholding workload performance, cooling efficiency, and energy targets (discussed
in the following sections). In such large clusters of systems, multiple objectives compete to accomplish
service-level goals by avoiding actuator overlapping and exhausting a complex combination of constraints,
timing granularity, type of approach, and sequence of controls. However, the combinatorial solution space
can be extremely large and may not converge to a global optimal in a bounded time. Therefore, a centralized
datacenter management system may not scale well in constrained time and hence may not deliver an
optimal management solution.

Chapter 6 ■ Bioinspired Computing: Swarm Intelligence

120

SI has emerged as a promising field that can be exploited to construct a distributed management
methodology leading to scalable solutions without centralized control. The following sections present a control
system that identifies suitable targets for workload placement, with these fundamental control elements:

•	 Controlled process: The controlled process implements the feedback control loop,
which constrains the temperature and power of compute clusters, such as server
racks, for a given policy. An optimal process operates within policy constraints and
provisions sufficient energy to operate a workload at highest performance efficiency
and lowest cooling.

•	 Fitness function: The fitness function estimates the most favorable placement of the
workload, based on the existing knowledge base’s expected demand and availability
of resources.

•	 Knowledge base: The knowledge base acts as a finite database made up of survey
data conducted by the sensor agents. This knowledge assists in identifying the most
probable placement of the workload. As the dynamics of the system changes, newer
data replace the old data, according to a custom data retention policy. The knowledge
database increases the retention of data likely to boost the fitness of the solution and
deprecates the data less likely to improve the existing solution.

•	 Control parameters: Control parameters define the optimal decision boundaries that
result in placement of the workload on the selected compute node.

•	 Swarm agents: Swarm agents participate in the system optimization process by
executing specific roles in a decentralized and self-organized system. These agents
coordinate with each other and with the environment, ultimately leading to the
emergence of intelligent global behavior.

Workload Characterization
Because workloads undergo phases of execution, phase boundaries are fundamental attributes for
predicting workload behavior for scheduling or migration between clusters of servers. Additionally, phase
identification enables reuse of past configurations of recurring phases to improve performance. These
configurations enforce a policy for scheduling new workloads, migrating existing workloads, and eliminating
thermal load imbalances between compute nodes or clusters of compute nodes.

Thermal Optimization
Given the highly dynamic environment in a datacenter, hot spots are created as a result of temporal events
(such as increased workload on a set of servers) or spatial events (such as inefficiency of the computer room
air-conditioning [CRAC]) units in delivering the requisite cooling to a particular region in the datacenter).
Figure 6-2 depicts a thermal snapshot of a datacenter with hot and cold spots. Hot spots may trigger
overcooling, degrading the power usage effectiveness (PUE) of the datacenter operations. Traditional cooling
control solutions operate using reactive schemes, which depend on the instantaneous temperatures of racks
or blades. These schemes have a fundamental disadvantage, inasmuch as the corrective action is completed
long after the component’s thermal or performance threshold has been crossed. In a datacenter with a large
number of nodes, it is almost impossible to perform optimal workload balance in real time using a reactive
approach without causing hysteresis. In the presence of dynamic variations in a cluster of configurable
hardware and software, the ability to initiate a timely response to reduce temperature variance (hot spots)
between clusters is essential.

Chapter 6 ■ Bioinspired Computing: Swarm Intelligence

121

Load Balancing
Load balancing is a method for distributing workload among a cluster of compute nodes in a manner that
allows fulfillment of a given policy. Load balancing optimizes resource usage, maximizes throughput, and
minimizes response time. Load balancing is realized through active load migration between compute nodes,
which also governs the hot-spot mitigation scheme, using workload tradeoffs and power distribution. Hot
spots can be attributed to uneven load distributions leading to imbalanced compute utilization. Hot spots
result in inefficient cooling and higher datacenter operating costs. In a swarm-based optimization scheme
thermal variance can be equated with foraging for a source of nutrients. Regions of high thermal variance act
as a source (or target) of load migration, attracting increased surveillance from the swarm agents.

Algorithm Model
The algorithm model consists of a server manager, a scout agent, worker agents, free agents, and a load
controller. The server manager administers each server node and presents programming interfaces for
interpreting the sensor data and synthesizing the useful metrics. The server manager exerts control at
multiple levels of timing granularity, which can eventually result in heterogeneous sampling requirements
specific to each one of those elements. For instance, the server manager records the performance data and
processes them to synthesize the workload phase distribution by exercising built-in sensors. In a hierarchical
scheme the server manager manages a cluster of compute resources and identifies the compute resource
capable of hosting a candidate workload. Externally, each cluster represents a set of compute units that is
managed locally, without exposing its local hierarchy.

Scout agents are randomly generated proxy instruments that evaluate their surroundings and
peer clusters to identify possible sources of hot and cold spots. Owing to the dynamic nature of the
systemutilization, newer sources are identified, and past sources are slowly forgotten. Scout agents employ
fitness criteria to determine the suitability of the region to host the work assignment.

Figure 6-2.  Thermal snapshot of a datacenter

Chapter 6 ■ Bioinspired Computing: Swarm Intelligence

122

Worker agents are floating entities that use a feedback function to quantify the significance of the compute
region and that attach themselves to a node that they select for foraging. At each scheduling instant a feedback
function measures the historical impact by either boosting or shedding the node’s credibility, based on the
most recent scheduling decisions and preceding outcomes. If the compute region continues to host workloads
successfully, it boosts its credibility; if, however, the compute region loses its bid to host or hosts infrequently,
then the credibility declines. Worker agents are finite in number and can only be reused if one is released,
owing to either its low impact score or its migration to newer regions. The feedback function is

		 b r b tn
k

n
k

n
k

+ = - +1 1() , 	 (6-14)

where

bn
k

 = impact score of cluster (or node) k at instance n

tn
k = incremental credit boost of cluster (or node) k at instance n

r = impact decay coefficient

As described in function 6-14, whenever a compute cluster or node hosts a workload successfully, it
improves its impact score by receiving incremental credits. At the same time, the feedback function sheds a
percentage of its score at a rate defined by the impact decay coefficient r. The decay coefficient lets the rate of
adaptation be adjusted. At any one time, only a finite number of worker agents is allowed to operate. A worker
agent transitions to a free agent when its fitness score falls below a certain threshold. Once this occurs, the
worker agent can attach itself to a new cluster, based on feedback from scout agents and worker agents.

Whereas scout agents identify new and promising regions for exploration, worker agents help in
characterizing desirable neighborhoods close to their current operating region. At all times, these agents
evaluate the cluster’s fitness, a measure of its ability to host a new workload. This fitness score allows the
respective agents to participate in a bidding process to host the workload in the region they represent.
The fitness evaluation assesses the following characteristics:

Severity of the thermal imbalances in the attached region, as compared •	
with other regions

Availability of the resources needed to execute a workload successfully•	

Degree of contention with respect to available resources shared among •	
compute nodes (e.g., shared cache)

Figure 6-3 depicts the architectural interfaces of a compute node that facilitate optimal workload
distribution. Worker and scout agents gather node-specific performance and environmental data, using
instrumentation APIs provided by the server manager. The agents explore the viability of using the node
to host a workload by measuring the node’s impact score (see Equation 6-14), evaluating its resource
requirements, forecasting shared resource contention, and predicting the temperature behavior that may
lead to thermal imbalances. Once the node is ascertained to be a potential host, its impact score is updated
for future analysis. Cold regions with sufficient availability of resources identify themselves as the preferred
localities for exploration. Worker agents analyze the compatibility of each region with the workload;
incompatibilities may arise, owing to lack of exclusive resources or historical evidence of noisy behavior, with
respect to the sharing of resources with other workloads. The worker agent ranks the host it is attached to and
makes a decision as to whether to participate in the bidding process to host the workload on that node. If it
participates and wins the bid, the agent updates the feedback function; if it does not win the bid, the agent
sheds a percentage of its impact score b. Once the impact score drops below a certain threshold, the worker
agent transitions to a free agent. A free agent transitions its role back to worker agent by attaching itself to a
new cluster (or node), based on an evaluation score received from the scout agents and worker agents.

Chapter 6 ■ Bioinspired Computing: Swarm Intelligence

123

References
Aickelin, Uwe, Dipankar Dasgupta, and Feng Gu. “Artificial Immune Systems.” In Search Methodologies,
187–211. New York: Springer, 2014.

Ashby, W. Ross. “Design for a Brain.” New York: Wiley, 1952. https://archive.org/details/
designforbrainor00ashb.

Barbagallo, Donato, Elisabetta Di Nitto, Daniel J. Dubois, and Raffaela Mirandola. “A Bio-Inspired
Algorithm for Energy Optimization in a Self-Organizing Data Center.” In Self-Organizing Architectures: First
International Workshop, SOAR 2009, Cambridge, UK, September 14, 2009, edited by Danny Weyns, Sam
Malek, Rogério de Lemos, and Jesper Andersson, 127–151. Berlin: Springer, 2010.

Beni, Gerardo, and Jing Wang. “Swarm Intelligence in Cellular Robotic Systems.” In Robots and Biological
Systems: Towards a New Bionics?, edited by Paolo Dario, Giulio Sandini, and Patrick Aebischer, 703–712.
Berlin: Springer , 1993.

Carreras, I., D. Miorandi, G. S. Canright, and K. Engo-Monsen. “Understanding the Spread of Epidemics in
Highly Partitioned Mobile Networks.” In Proceedings of the 1st IEEE Conference on Bio-Inspired Models of
Network, Information and Computing Systems, 1–8. Piscataway, NJ: Institute of Electrical and Electronics
Engineers, 2006. Dasgupta, Dipankar. Artificial Immune Systems and Their Applications. Berlin: Springer, 1999.

de Castro, Leandro Nunes, and Fernando José Von Zuben. “Artificial Immune Systems: Part I–Basic Theory
and Applications.” Technical report, Universidade Estadual de Campinas, 1999.

Figure 6-3.  Compute node: architectural interfaces for interpreting sensor data for evaluating feedback
function and fitness function

https://archive.org/details/designforbrainor00ashb
https://archive.org/details/designforbrainor00ashb

Chapter 6 ■ Bioinspired Computing: Swarm Intelligence

124

Devescovi, Davide, Elisabetta Di Nitto, Daniel Dubois, and Raffaela Mirandola. “Self-Organization
Algorithms for Autonomic Systems in the SelfLet Approach.” In Proceedings of the 1st International
Conference on Autonomic Computing and Communication Systems. Brussels: Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering, 2007.

Di Caro, Gianni, and Marco Dorigo. “AntNet: Distributed Stigmergetic Control for Communications
Networks.” Journal of Artificial Intelligence Research 9 (1998): 317–365. www.cs.cmu.edu/afs/cs/project/
jair/pub/volume9/dicaro98a.pdf.

Di Caro, Gianni, Frederick Ducatelle, and Luca Maria Gambardella. “AntHocNet: An Adaptive
Nature-Inspired Algorithm for Routing in Mobile Ad hoc Networks.” European Transactions on
Telecommunications 16, no. 5 (2005): 443–455.

Dorigo, Marco, Gianni Di Caro, and Luca Gambardella. “Ant Algorithms for Discrete Optimization.”
Artificial Life 5, no. 2 (1999): 137–172.

Engelbrecht, Andries P. Fundamentals of Computational Swarm Intelligence. Chichester, UK: Wiley, 2006.

Farmer, J. Doyne, Norman H. Packard, and Alan S. Perelson. “The Immune System, Adaptation, and
Machine Learning.” Physica D: Nonlinear Phenomena 22, no. 1 (1986): 187–204.

Harvey, Inman, Ezequiel Di Paolo, Rachel Wood, Matt Quinn, Elio Tuci, and Elio Tuci. “Evolutionary
Robotics: A New Scientific Tool for Studying Cognition.” Artificial Life 11, no. 1–2 (2005): 79-98.

Iyer, Ravi. “CQoS: A Framework for Enabling QoS in Shared Caches of CMP Platforms.” In Proceedings of the
18th Annual International Conference on Supercomputing, 257–266. New York: ACM, 2004.

Karaboga, Dervis, and Bahriye Basturk. “Artificial Bee Colony (ABC) Optimization Algorithm for Solving
Constrained Optimization Problems.” In Proceedings of the 12th international Fuzzy Systems Association
World Congress on Foundations of Fuzzy Logic and Soft Computing, IFSA 2007, Cancun, Mexico, June 18–21,
2007, edited by Patricia Melin, Oscar Castillo, Luis T. Aguilar, Janusz, Kacprzyk, and Witold Pedrycz, 789–798.
Berlin: Springer, 2007.

Kennedy, J., and R. Eberhart. “Particle Swarm Optimization.” In Proceedings of the 1995 IEEE International
Conference on Neural Networks, 1942–1948. Piscataway, NJ: Institute of Electrical and Electronics
Engineers, 1995.

Khanna, Rahul, Huaping Liu, and Hsiao-Hwa Chen. “Reduced Complexity Intrusion Detection in
Sensor Networks Using Genetic Algorithm.” In Proceedings of the 2009 IEEE International Conference on
Communications, 1–5. Piscataway, NJ: Institute of Electrical and Electronics Engineers, 2009.

Jacob, Bart, Richard Lanyon-Hogg, Devaprasad K. Nadgir, and Amr F. Yassin. “A Practical Guide to the
IBM Autonomic Computing Toolkit.” Armonk, NY: IBM, 2004. www.redbooks.ibm.com/redbooks/pdfs/
sg246635.pdf.

Li, Zhen, and Manish Parashar. “Enabling Autonomic Grid Applications: Dynamic Composition,
Coordination and Interaction.” In Unconventional Programming Paradigms: Proceedings of the International
Workshop UPP 2004, Le Mont Saint Michel, France, September 2004; Revised and Selected Papers, edited by
Jean-Pierre Banâtre, Pascal Fradet, Jean-Louis Giavitto, and Olivier Michel, 270–285. Berlin: Springer, 2005.

Munoz, Mario A., Jesus A. Lopez, and Eduardo Caicedo. “Bacteria Swarm Foraging Optimization for
Dynamical Resource Allocation in a Multizone Temperature Experimentation Platform.” In Analysis and
Design of Intelligent Systems Using Soft Computing Techniques, 427–435. Berlin: Springer, 2007.

Papadopouli, Maria, and Henning Schulzrinne. “Seven Degrees of Separation in Mobile Ad Hoc Networks.”
In Proceedings of the 2000 IEEE Global Telecommunications Conference, 1707–1711. Piscataway, NJ: Institute
of Electrical and Electronics Engineers, 2000.

http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume9/dicaro98a.pdf
http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume9/dicaro98a.pdf
www.redbooks.ibm.com/redbooks/pdfs/sg246635.pdf
www.redbooks.ibm.com/redbooks/pdfs/sg246635.pdf

Chapter 6 ■ Bioinspired Computing: Swarm Intelligence

125

Passino, Kevin M. “Biomimicry of Bacterial Foraging for Distributed Optimization and Control.” IEEE Control
Systems 22, no. 3 (2002): 52–67.

Schoonderwoerd, Ruud, Owen E. Holland, Janet L. Bruten, and Leon JM Rothkrantz. “Ant-Based Load
Balancing in Telecommunications Networks.”Adaptive Behavior 5, no. 2 (1997): 169–207.

Wang, Xiaolei, Xiao Zhi Gao, and Seppo J. Ovaska. “A Hybrid Optimization Algorithm Based on Ant Colony
and Immune Principles.” International Journal of Computer Science and Applications 4, no. 3 (2007): 30–44.

Yassa, Sonia, Rachid Chelouah, Hubert Kadima, and Bertrand Granado. “Multi-Objective Approach for
Energy-Aware Workflow Scheduling in Cloud Computing Environments.” Scientific World Journal 2013
(2013): 350934. www.hindawi.com/journals/tswj/2013/350934/.

http://www.hindawi.com/journals/tswj/2013/350934/

127

Chapter 7

Deep Neural Networks

I think the brain is essentially a computer and consciousness is like a computer program. It
will cease to run when the computer is turned off. Theoretically, it could be re-created on a
neural network, but that would be very difficult, as it would require all one’s memories.

—Stephen Hawking, Time magazine

Proposed in the 1940s as a simplified model of the elementary computing unit in the human cortex, artificial
neural networks (ANNs) have since been an active research area. Among the many evolutions of ANN,
deep neural networks (DNNs) (Hinton, Osindero, and Teh 2006) stand out as a promising extension of the
shallow ANN structure. The best demonstration thus far of hierarchical learning based on DNN, along
with other Bayesian inference and deduction reasoning techniques, has been the performance of the IBM
supercomputer Watson in the legendary tournament on the game show Jeopardy!, in 2011.

This chapter starts with some basic introductory information about ANN then outlines the DNN
structure and learning scheme.

Introducting ANNs
ANNs have been successfully used in many real-life applications, especially in supervised-learning modes.
However, ANNs have been plagued by a number of notable challenges and shortcomings. Among the many
challenges in supervised learning is the curse of dimensionality (Arnold et al. 2011), which occurs when
the number of features and training points becomes significantly large. Big data thus makes ANN learning
more difficult, owing to the overwhelming amount of data to process and the consequent memory and
computational requirements. Another challenge in classification is the data nonlinearity that characterizes
the feature overlap of different classes, making the task of separating the classes more difficult. Primarily
for these reasons and the heuristic approach to select the appropriate network architecture, ANNs lagged
through the 1990s and 2000s behind the widely adopted support vector machines (SVMs), which proved to
be, in many respects, superior to ANNs.

Note■■   SVM offers a principled approach to machine learning problems because of its mathematical
foundations in statistical learning theory. SVM constructs solutions as a weighted sum of support vectors, which
are only a subset of the training input. Like ANN, SVM minimizes a particular error cost function, based on the
training data set, and relies on an empirical risk model. Additionally, SVM uses structural risk minimization and
imposes an additional constraint on the optimization problem, forcing the optimization step to find a model that
will eventually generalize better as it is situated at an equal and maximum distance between the classes.

Chapter 7 ■ Deep Neural Networks

128

With advancements in hardware and computational power, DNNs have been proposed as an extension
of ANN shallow architectures. Some critics consider deep learning just another “buzzword for neural nets”
(Collobert 2011). Although they borrow the concept of neurons from the biological brain, DNNs do not
attempt to model it as cortical algorithms (CAs) or other biologically inspired machine learning
approaches do. DNN concepts stem from the neocognitron model proposed by Fukushima (1980). Broadly
defined as a consortium of machine learning algorithms that aims to learn in a hierarchical manner and
that involves multiple levels of abstraction for knowledge representation, DNN architectures are intended to
realize strong artificial intelligence (AI) models. These architectures accumulate knowledge as information
propagates through higher levels in a manner such that the learning at the higher level is defined by and
built on the statistical learning that happens at the lower-level layers.

With such a broad definition of deep learning in mind, we can construe the combinations of the
backpropagation algorithm (available since 1974) with recurrent neural networks and convolution neural
networks (introduced in the 1980s) as being the predecessors of deep architectures. However, it is only with
the advent of Hinton, Osindero, and Teh’s (2006) contribution to deep learning training that research on
deep architectures has picked up momentum. The following sections give a brief overview of ANN, along
with introducing in more detail deep belief networks (DBNs) and restricted Boltzmann machines (RBMs).

Early ANN Structures
One of the first ANN attempts dates back to the late 1940s, when the psychologist Donald Hebb (Hebb 1949)
introduced what is known today as Hebbian learning, based on the plasticity feature of neurons: when
neurons situated on either side of a synapse are stimulated synchronously and recurrently, the synapse’s
strength is increased in a manner proportional to the respective outputs of the firing neurons (Brown et al.
1990), such that

w t w t x t x tij ij ij i j+() = () + () ()1 h ,

where t represents the training epoch, w
ij
 is the weight of the connection between the ith and the jth

neurons, x
i
 is the output of the ith neuron, and h

ij
 is a learning rate specific to the synapse concerned.

The Hebbian rule is an unsupervised-learning scheme that updates the weights of a network locally;
that is, the training of each synapse depends on the weights of the neurons connected to it only. With its
simple implementation the Hebbian rule is considered the first ANN learning rule, from which multiple
variants have stemmed. The first implementations of this algorithm were in 1954, at the Massachusetts
Institute of Technology, using computational machines (Farley and Clark, 1954).

The 1950s also saw the introduction of the perceptron, a two-layer neural network model for pattern
recognition, using addition and subtraction operations (Rosenblatt 1958). The model consists of four
components, as depicted in Figure 7-1. The retina, or input region, receives stimulus through sensory units.
The connections are called localized because their origin points tend to cluster around a certain point or
in a certain area. Although units in the projection area are identical to those in the association area, the
projection area receives input through localized connections, whereas input to the association area emerges
from the projection area through random connections; as if the input is generated from scattered areas. The
A-units receive a set of transmitted impulses that may be excitatory or inhibitory. If the stimulus exceeds a
certain threshold, the units respond by firing. The random connections between the association area and
the response units are bidirectional. The feedforward connections transmit synapses from the association
area to the responses, whereas the feedback connections transmit excitatory synapses to the source points
in the association area from which the connection is generated. Inhibitory synapses complement the source
points in the association areas that do not transmit to the response concerned.

Chapter 7 ■ Deep Neural Networks

129

Classical ANN
The basic structure of an ANN is the artificial neuron shown in Figure 7-2, which resembles the biological
neuron in its shape and function (Haykin 1994). 

Figure 7-1.  A Rosenblatt perceptron structure

Figure 7-2.  An artificial neuron

Note■■   In the human body’s nervous system, neurons generate, transmit, and receive electrical signals called
action potential. A typical biological neuron has the following three basic components:

Cell body•	  : Can have a variety of sizes and shapes

•	 Dendrites: Numerous, treelike structures that extend from the cell body and that
constitute the receptive portion of the neuron (i.e., the input site)

•	 Axon: A long, slender structure, with relatively few branches, that transmits electrical
signals to connected areas

The inputs (X) are connected to the neuron through weighted connections emulating the dendrite’s
structure, whereas the summation, the bias (b), and the activation function (q) play the role of the cell body,
and the propagation of the output is analogous to the axon in a biological neuron.

Chapter 7 ■ Deep Neural Networks

130

Mathematically, a neuron is equivalent to the function:

Y W X b
i

n

i i= +
æ

è
ç

ö

ø
÷

=
åq

1

,

which can be conveniently modeled, using a matrix form,

Y W X b= +()q . ,

where W W W Wn= []1 2  , and X

X

X

X n

=

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1

2



.

The activation function shapes the output or state of the neuron. Multiple activation functions can be
used, the most common of which are as follows:

•	 Hard limiter: q a
if a

if a
() =

<
>

ì
í
î

0 0

1 0

•	 Saturating linear function: q a

if a

a if a

if a

() =
<
£ £
>

ì

í
ï

î
ï

0 0

0 1

1 1

•	 Log-sigmoid function: q a
e a() =

+ -

1

1

•	 Hyperbolic tangent sigmoid function: q a
e e

e e

a a

a a() =
-
+

-

-

The bias shifts the activation function to the right or the left, as necessary for learning, and can in some
cases be omitted.

A neural network is simply an association of cascaded layers of neurons, each with its own weight
matrix, bias vector, and output vector. A layer of neurons is a “column” of neurons that operate in parallel, as
shown in Figure 7-3. Each element of this column is a single neuron, with the output of the layer being the
vector output, which is formed by the individual outputs of neurons. If an input vector is constituted of N
inputs and a layer of M neurons, W

ij
 represents the weight of the connection of the jth input to the ith neuron

of the layer; Y
i
 and b

i
 are, respectively, the output of and the bias associated with the jth neuron.

Chapter 7 ■ Deep Neural Networks

131

A layer of neurons can be conveniently represented, using matrix notation, as follows:

W

W W

W W

M

N NM

=
¼

¼

é

ë

ê
ê
ê

ù

û

ú
ú
ú

11 1

1

   .

The row index in each element of this matrix represents the destination neuron of the corresponding
connection, whereas the column index refers to the input source of the connection.

Designating by Y the output of the layer, you can write

Y

Y

Y

Y

W X b

Wi

N

j

M

j j

j

M

i=

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

=

+
æ

è
çç

ö

ø
÷÷

=

=

å

å

1

1
1 1

1







q

q jj j i

j

M

Nj j N

X b

W X b

+
æ

è
çç

ö

ø
÷÷

+
æ

è
çç

ö

ø
÷÷

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=
å



q
1

úú
ú
ú
ú
ú
ú
ú
ú

= +()q W X b. ,

Figure 7-3.  A layer of neurons

Chapter 7 ■ Deep Neural Networks

132

where =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

b

bN

1

 .

To aid in identifying the layer corresponding to a particular matrix, superscript indexes are used. Thus, Wij
k

represents the weight of the connection between the jth neuron in layer k–1and the ith neuron in layer k, and
Yi

k is the output of the ith neuron of the kth layer. The network output is the output of the last layer (also called
the output layer), and the other layers are called hidden layers. A network with two hidden layers is illustrated
in Figure 7-4. For generalization purposes, you designate by N

k
 the number of hidden neurons in the kth layer.

Figure 7-4.  A three-layer ANN

The function achieved by this network is

YY

Y

Y

Y

W Y b W W Y bi

N

3

1
3

3

3
3

3 2 3 3 2 1 2=

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

= +() = +() +




q q q bb W W W X b b b3 3 2 1 1 2 3()= +()() +() +().q q q

Chapter 7 ■ Deep Neural Networks

133

 Note■■   For the sake of simplicity, the same activation function q has been adopted in all layers. However,
multiple activation functions can be used in different layers in a network. Also, the number of neurons per layer
may not be constant throughout the network.

The optimal number of layers and neurons for best performance is a question yet to be answered
decisively, because this number is application dependent. A layer of hidden neurons divides the input space
into regions whose boundaries are defined by the hyperplanes associated with each neuron.

The smaller the number of hidden neurons, the fewer the subregions created and the more the
network tends to cluster points and map them to the same output. The output of each neuron is a non linear
transformation of a hyperplane. In the case of classification, this separating curve formed by weighted
inputs coming from the previous layer contributes, with other neurons in the same layer, in defining the
final classification boundary. With a large number of neurons, the risk of overfitting increases, and the
generalized performance decreases, because of overtraining. The network must be trained with enough data
points to ensure that the partitions obtained at each hidden layer correctly separate the data.

ANN Training and the Backpropagation Algorithm
To enable an ANN to recognize patterns belonging to different classes, training on an existing dataset seeks
to obtain iteratively the set of weights and biases that achieves the highest performance of the network
(Jain, Mao, and Mohiuddin 1996).

In a network with M inputs, N output neurons, and L hidden layers, and given a set of labeled
data—that is, a set of P pairs (X, T), where X is an M-dimensional vector, and T is an N-dimensional
vector—the learning problem is reduced to finding the optimal weights, such that a cost function is
optimized. The output of the network should match the target T

i
 and minimize the mean squared error,

E Y T
i

P

i i= -
=
å1

2 1

2 ,

where Y
i
 is the output obtained by propagating input X

i
 through the network.

ANNs can also use entropy as a cost function. Training requires at least a few epochs to update weights
according to a weight update rule. It is to be noted that the backpropagation algorithm is widely adopted. It
consists of the following steps:

	 1.	 Initialization: This step initializes the weights of the network in a random, weak
manner; that is, it assigns random values close to 0 to the connections’ weights.

	 2.	 Feedforward: The input X
i
 is fed into the network and propagated to the output

layer. The resultant error is computed.

	 3.	 Feedback: The weights and biases are updated with:

W t W t
E

Wij
k

ij
k

ij
k

+() = () -
¶

¶
1 a

b t b t
E

bi
k

i
k

i
k

+() = () -
¶
¶

1 a ,

where a is a positive, tunable learning rate. The choice of a affects whether the
backpropagation algorithm converges and how fast it converges. A large learning
rate may cause the algorithm to oscillate, whereas a small learning rate may lead
to a very slow convergence.

Chapter 7 ■ Deep Neural Networks

134

Because the update of the weights necessitates computing the gradient of the error (the cost
function), it is essential for it to be differentiable. Failure to satisfy this condition prevents from using the
backpropagation algorithm.

The computation of the gradient in the backpropagation algorithm can be simplified, using the chain
rule, which calls for the following steps:

	 1.	 For each output unit i N= ¼1 2, , , (in output layer L of Figure 7-4), the
backpropagated error is computed, using

. ,di
L i

L

i i
L

d Y t

dt
T Y t=

()()
- ()()

where, T
i
 is the desired output; and, for the sigmoidal function,

d Y t

dt
Y t Y t

i
L

i
L

i
L ,

()()
= () - ()()1

resulting in the following expression:

.di
L

i
L

i
L

i i
LY t Y t T Y t= () - ()() - ()()1

	 2.	 For each hidden unit h Nk= 1 2, ,..., (in a hidden layer k with N
k
 hidden units), and

moving from layer L–1, backward to the first layer, the backpropagated error can
be computed as shown:

d dh
k

h
k

k
k

q

N

qh
k

q
kY t Y t W

k

= () - ()()
=

+å1
1

1+1 .

	 3.	 The weights and biases are updated according to the following gradient descent:

W t W t Yij
k

ij
k

i
k

j
k+() = () -1 ad -1

b t b ti
k

i
k

i
k+() = () -1 ad .

The network error is eventually reduced via this gradient-descent approach. For instance, considering
a one-dimensional training point that belongs to class 1 (+1) and that is wrongly classified as class 2 (–1), the
hyperplane should be moved away from class 1. Because, the hyperplane will be shifted to the left (decrease
in Wij

k) if di
k

j
kY - >1 0, and it will be shifted to the right (increase in Wij

k) if di
k

j
kY - <1 0.

DBN Overview
DBNs, a deep architecture widely seen in the literature since the introduction of a fast, greedy training
algorithm (Hinton, Osindero, and Teh 2006), are a network of stochastic neurons grouped in layers, with
no intralayer neuron connections. The first two layers of the network contain neurons with undirected
connections, which form an associative memory, analogous to biological neurons, whereas the remaining
hidden layers form a directed acyclic graph, as displayed in Figure 7-5.

Chapter 7 ■ Deep Neural Networks

135

Figure 7-5.  DBN architecture

Although a DBN can be viewed as an ANN with more hidden layers, training a DBN, using
backpropagation, does not produce a good machine learning model, because the explaining-away
phenomenon makes inference more difficult in deep models. When training a network, the simplifying
assumption that layers are independent. Explaining away (also called Berkson’s paradox or selection bias),
makes this assumption invalid; the hidden nodes become anticorrelated. For example, if an output node
can be activated by two equally rare and independent events with an even smaller chance of occurring
simultaneously (because the probability of two independent events’ occurring simultaneously is the product
of both probabilities), then the occurrence of one event negates (“explains away”) the occurrence of the
other, such that a negative correlation is obtained between the two events. As a result of the difficulty of
training deep architectures, DBNs lost popularity until Hinton and Salakhutdinov (2006) proposed a greedy
training algorithm to train them efficiently. This algorithm broke down DBNs into sequentially stacked
RBMs, which is a two-layer network constrained to contain only interlayer neuron connections, that is,
connections between neurons that do not belong to the same layer.

As shown in Figure 7-6, connections between neurons in layer 1 are not allowed, and the same goes
for layer 2; connections have to link a neuron from layer 1 to a neuron in layer 2 only. In a DBN the first
two layers are allowed to have bidirectional connections, whereas the remaining layers have just directed
connections. Therefore, interest in deep architectures was renewed, as training them became feasible and
fast, involving training RBM units independently before adjusting the weights, using an up–down algorithm
to avoid underfitting (Hinton, Osindero, and Teh 2006).

Chapter 7 ■ Deep Neural Networks

136

Following is list of the DBN nomenclature adopted here:

DNN Nomenclature

Wi j
r
, : Weight of the edge connecting neuron i in layer r to neuron j in layer; r is suppressed when there are

only two layers in the network

Wi
r: Weight vector of all connections leaving neuron i in layer r

Wr : Weight vector connecting layer r to layer r +1

m: Learning rate

k: Number of Gibbs sampling steps performed in contrastive divergence

n: Total number of hidden layer neurons

m: Total number of input layer neurons

Q(. | .): Conditional probability distribution

hr: Binary configuration of layer r

p(hr): Prior probability of hr under the current weight values

v0: Input layer datapoint v j
t() : binary configuration of neuron j in the input layer at sampling step t

H
i
: Binary configuration variable of neuron i in the hidden layer at sampling step t

hi
t() : Binary configuration value of neuron i in the hidden layer at sampling step t

b
j
: Bias term for neuron j in the input layer

c
i
: Bias term for neuron i in the hidden layer

Figure 7-6.  Weight labeling

Chapter 7 ■ Deep Neural Networks

137

Restricted Boltzmann Machines
Boltzmann machines (BMs) are two-layer neural network architectures composed of neurons connected
in an interlayer and intralayer fashion. Restricted Boltzmann machines (RBMs), first introduced under the
name Harmonium, by Smolensky (1986), are constrained to form a bipartite graph. A bipartite graph is a
two-layer graph, in which the nodes of the two layers form two disjoint sets of neurons This is achieved
by restricting intralayer connections, such that connections between nodes in the same layer are not
permitted. This restriction is what distinguishes BMs from RBMs and makes RBMs simpler to train. An
RBM with undirected connections between neurons of the different layers forms an autoassociative
memory, analogous to neurons in the human brain. Autoassociative memory is characterized by feedback
connections that allow the exchange of information between neurons in both directions (Hawkins 2007).

RBMs can be trained in a supervised and unsupervised fashion. The weight vector is updated, using
Hinton’s contrastive divergence (CD) algorithm (Hinton 2002). CD is an algorithm that approximates the
log-likelihood gradient and that requires fewer sampling steps than the Markov chain Monte Carlo (MCMC)
algorithm (Hinton 2002). CD performs k steps of Gibbs sampling and gradient descent to find the weight vector
that maximizes the objective function (Hinton 2010), which is the product of probabilities. As k increases, the
performance of the learned model improves, however at the cost of a longer training time. A typical value for
this parameter is k = 1 (Hinton 2010). The workflow of the training algorithm is shown in Table 7-1.

Table 7-1.  RBM Training Algorithm Workflow, Using CD (Fischer and Igel, 2012)

1.	 Initialize the weights to 0.

2.	 For each sample from the training batch:

a.	 Apply the sample to the network input.

b.	 For 0 to k-1 sampling steps,

i.	 for each hidden layer neuron from 1 to n, sample h p hi
t

i
t() ()()~ |v ;

ii.	 for each input layer neuron from 1 to m, sample v p vj
t

j
t() ()~ .()|h

c.	 For each input and hidden layer neuron, compute

i.	 D = D + =() - =()() ()w w p H v v p H v vij ij i j i
k

j
k1 10 0| |() ()

ii.	 D = D + -b b v vj j j j
k() ()0

iii.	 D = D + =() - =() ()c c p H v p H vi i i i
k1 10| (|)

Based on the Gibbs distribution, the energy function or loss function used to describe the joint
probability distribution is denoted in Equation 7-1, where w

ij
, b

j
, and c

i
 are real-valued weights, and h

i
 and v

j

can take values in the set (Aleksandrovsky et al. 1996):
			   

E v h w h v b v c h
i

n

j

m

ij i j
j

m

j j
i

n

i i, .() = - - -
= = = =
åå å å

1 1 1 1

		    

(7-1)

The joint probability distribution is thus computed using Equation 7-2:
				 

p v h
e

eE v h
E v h, .

,

,() = - ()
- ()

åå
1

hv

			   
(7-2)

Chapter 7 ■ Deep Neural Networks

138

DNN Training Algorithms
Backpropagation is one of the most popular algorithms used to train ANNs (Werbos 1974). Equation 7-3
displays a simple formulation of the weight update rule, used in backpropagation:
				 

w w
w1 1

1

r r
r

J
new old() = () -

¶
¶

m

		      

(7-3)

However, as the depth of the network increases, backpropagation’s performance degradation increases
as well, making it unsuitable for training general deep architectures. This is due to the vanishing gradient
problem (Horchreiter 1991; Horchreiter et al. 2001; Hinton 2007; Bengio 2009), a training issue in which the
error propagated back in the network shrinks as it moves from layer to layer, becoming negligible in deep
architectures and making it almost impossible for the weights in the early layers to be updated. Therefore, it
would be too slow to train and obtain meaningful results from a DNN.

Because of backpropagation’s shortcomings, many attempts were made to develop a fast training
algorithm for deep networks. Schmidhuber’s algorithm (Schmidhuber 1992) trained a multilevel hierarchy
of recurrent neural networks by using unsupervised pretraining on each layer and then fine-tuning the
resulting weights via backpropagation.

Interest in DNNs was renewed in 2006, when Hinton and Salakhutdinov (2006) proposed a greedy,
layer-by-layer training algorithm for DBNs that attempts to learn simpler models sequentially and then
fine-tune the results for the overall model. Using complementary priors to eliminate the explaining-away
effect, the algorithm consists of two main steps:

	 1.	 A greedy layer-wise training to learn the weights by

a.	 Tying the weights of the unlearned layers.

b.	 Applying CD to learn the weights of the current layer.

	 2.	 An up-down algorithm for fine-tuning the weights

Instead of learning the weights of millions of connections across many hidden layers at once, this
training scheme finds the optimal solution for a single layer at a time, which makes it a greedy algorithm.
This is accomplished by tying all the weights of the following layers and learning only the weights of the
current layer. Tying weights also serves to eliminate the explaining-away phenomenon, which results in
poorly trained deep networks when adopting other training algorithms. As illustrated in Figure 7-7, the
weights W

0
 between layers 1 and 2 are learned. The weights between all the following layers are tied to W

0
.

Once CD learning has converged, the weights W
1
, between layers 2 and 3, are learned by tying the weights of

all the following layers to W
1
 and fixing the weights between layers 1 and 2 that were learned in the previous

stage to W
0
. Similarly, when the CD converges to the optimal values for W

1
, the weights of the third RBM

block are untied from the second RBM block, and CD is used to learn the final set of weights W
2
.

Figure 7-7.  Sequential training

Chapter 7 ■ Deep Neural Networks

139

This process of tying, learning, and untying weights is repeated until all layers have been processed.
DBNs with tied weights resemble RBMs. Therefore, as mentioned earlier, each RBM is learned, using CD
learning. However, this algorithm can only be applied if the first two layers form an undirected graph, and
the remaining hidden layers form a directed, acyclic graph.

The energy of the directed model is computing, using Equation 7-4, which is bounded by Equation 7-5.
Tying the weights produces equality in Equation 7-5 and renders Q v(. |)0 and p v h(|)0 0

constant. The
derivative of Equation 7-5 is simplified and equal to Equation 7-6. Therefore, tying the weights leads to a
simpler objective function to maximize. Applying this rule recursively allows the training of a DBN (Hinton,
Osindero, and Teh 2006).

			     
E v h h v h0 0 0 0 0, log log() = - () + ()()p p |

�
(7-4)

			     log p v0()

³ () () + ()()å Q h v p h p v h
all h

0 0 0 0 0
0 | |log log

			    - () ()å Q h v Q h v
all h

0 0 0 0
0 | |log � (7-5)

			     ¶ ()()
¶

= () ()å
log

log
p v

w
Q h v p h

ij
all h

0

0 0 0
0 |

	�
(7-6)

Once the weights have been learned for each layer, a variant of the wake–sleep algorithm with the CD
weight update rule is used to fine-tune the learned parameters. The up–down algorithm is used to backfit
the obtained solution to avoid underfitting—an important concern when training in an unsupervised and
greedy fashion. The up–down algorithm subjects lower-level layers, whose weights were learned early
in the training, to the influence of the higher-level layers, whose weights were learned toward the end of
training. In the bottom-up pass the generative weights on directed connections are adjusted by computing
the positive phase probabilities, sampling the states, using the CD weight update rule, and running Gibbs
sampling for a limited number of iterations. The top-down pass will stochastically activate each of the
lower layers, using the top-down connections. This is done by computing the negative phase probabilities,
sampling the states, and computing the predictions of the network. Appropriate adjustments to the
generative and inference parameters as well as the top-layer weights are performed in a contrastive form of
the wake–sleep algorithm, because it addresses issues in the sleep phase of the algorithm. The workflow for
this algorithm is shown in Table 7-2.

Chapter 7 ■ Deep Neural Networks

140

Despite its limitations when applied to DNNs, interest in the backpropagation algorithm was renewed,
because of the surge in graphics processing unit (GPU) computational power. Ciresan et al. (2010)
investigated the performance of the backpropagation algorithm on deep networks. It was observed that,
even with the vanishing gradient problem, given enough epochs, backpropagation can achieve results
comparable to those of other, more complex training algorithms.

It is to be noted that supervised learning with deep architectures has been reported as performing well
on many classification tasks. However, when the network is pretrained in an unsupervised fashion, it almost
always performs better than the scenarios where pretraining is omitted without the pretraining phase (Erhan
et al. 2010). Several theories have been proposed to explain this phenomenon, such as that the pretraining
phase acts as a regularizer (Bengio 2009; Erhan et al. 2009) and an aid (Bengio et al. 2007) for the supervised
optimization problem.

DNN-Related Research
The use of DBN in various machine learning applications has flourished since the introduction of Hinton’s
fast, greedy training algorithm. Furthermore, many attempts have been made to speed up DBN and address
its weaknesses. The following sections offer a brief survey of the most recent and relevant applications
of DBN, a presentation on research aimed at speeding up training as well as a discussion of several DBN
variants and DNN architectures.

DNN Applications
DNN has been applied to many machine learning applications, including feature extraction, feature
reduction, and classification problems, to name a few.

Feature extraction involves transforming raw input data to feature vectors that represent the input; raw
data can be audio, image, or text. For example, DBN has been applied to discrete Fourier transform (DFT)
representation of music audio (Hamel and Eck 2010) and found to outperform Mel frequency cepstral
coefficients (MFCCs), a widely used method of music audio feature extraction.

Once features are extracted from raw data, the high-dimensional data representation may have to be
reduced to alleviate the memory and computational requirements of classification tasks as well as enable

Table 7-2.  Up–Down Algorithm Workflow (Hinton and Salakhutdinov 2006)

1.	 In the bottom-up pass:

a.  Compute positive phase probabilities.

b.  Sample states.

c.  Compute CD statistics, using the positive phase probabilities.

d. � Perform Gibbs sampling for a predefined number of iterations, based on the associative
memory part of the network.

e. � Compute negative phase contrastive divergence statistics, using information from step 1d.

2.	 In the top-down pass:

a.  Calculate negative phase probabilities.

b.  Sample states.

c.  Compute predictions.

3.	 Update generative parameters.

4.	 Update associative memory part of the network.

5.	 Update inference parameters.

Chapter 7 ■ Deep Neural Networks

141

better visualization of the data and decrease the memory needed to store the data for future use. Hinton and
Salakhutdinov (Hinton and Salakhutdinov 2006; Salakhutdinov and Hinton 2007) used a stack of RBMs to
pretrain the network and then employed autoencoder networks to learn the low-dimensional features.

Extracting expressive and low-dimensional features, using DBN, was shown to be possible for fast
retrieval of documents and images, as tested on some ever-growing databases. Ranzato and Szummer
(2008) were able to produce compact representations of documents to speed up search engines, while
outperforming shallow machine learning algorithms. Applied to image retrieval from large databases,
DBN produced results comparable to state-of-the art algorithms, including latent Dirichlet allocation and
probabilistic latent semantic analysis (Hörster and Lienhart 2008).

Transferring learned models from one domain to another has always been an issue for machine
learning algorithms. However, DNN was able to extract domain-independent features (Bengio and Delalleau
2011), making transfer learning possible in many applications (Collobert and Weston 2008; Glorot, Bordes,
and Bengio 2011; Bengio 2012; Ciresan, Meier, and Schmidhuber 2012;Mesnil et al. 2012). DNNs have also
been used for curriculum learning, in which data are learned is a specific order (Bengio et al. 2009).

DBN has been applied to many classification tasks in fields such as vision, speech, medical ailments,
and natural language processing (NLP). Object recognition from images has been widely addressed,
and DBN’s performance exceeded state-of-the-art algorithms (Desjardins and Bengio 2008; Uetz and
Behnke 2009; Ciresan et al. 2010; Ciresan, Meier, and Schmidhuber 2012). For instance, Ciresan et al.
(2010) achieved an error rate of 0.35 percent on the Mixed National Institute of Standards and Technology
(MNIST) database. Nair and Hinton (2009) outperformed shallow architectures, including SVM, on
three-dimensional object recognition, achieving a 6.5 percent error rate, on the New York University
Object Recognition Benchmark (NORB) dataset, compared with SVM’s 11.6 percent. Considering speech
recognition tasks, deep architectures have improved acoustic modeling (Mohamed et al. 2011; Hinton et al.
2012), speech-to-text transcription (Seide, Li, and Yu 2011), and large-vocabulary speech recognition (Dahl
et al. 2012; Jaitly et al. 2012; Sainath et al. 2011). On phone recognition tasks, DBN achieved an error rate of
23 percent on the TIMIT database—better than reported errors, ranging from 24.4 percent to 36 percent,
using other machine learning algorithms (Mohamed, Yu, and Deng 2010).

DBN produced classification results comparable to other machine learning algorithms in seizure
prediction, using electroencephalography (EEG) signals, but reached those results in significantly faster
times—between 1.7 and 103.7 times faster (Wulsin et al. 2011). McAfee (2008) adopted DBN for document
classification and showed promise for succeeding on such databases.

Generating synthetic images—specifically facial expressions—from a high-level description of human
emotion is another area in which DBN has been successfully applied, producing a variety of realistic facial
expressions (Susskind et al. 2008).

NLP, in general, has also been investigated with deep architectures to improve on state-of-the-art
results. Such applications include machine transliteration (Deselaers et al. 2009), sentiment analysis (Zhou,
Chen, and Wang 2010; Glorot, Bordes, and Bengio 2011), and language modeling (Collobert and Weston
2008; Weston et al. 2012)—including part-of-speech tagging, similar-word recognition, and chunking.
The complexity of these problems requires a machine learning algorithm with more depth (Bengio and
Delalleau 2011) to produce meaningful results. For example, machine transliteration poses a challenge to
machine learning algorithms, because the words do not have a unified mapping, which leads to a many-
to-many mapping that does not exist in dictionaries. Additionally, the large number of source-to-target
language-pair character symbols and different sound structures leading to missing sounds are just a few
properties of transliteration that make it difficult for machines to do well.

Parallel Implementations to Speed Up DNN Training
Sequentially training a DBN layer by layer becomes more time-consuming as the layer and network sizes
increase. Stacking the layers to form networks, called deep-stacking networks, and training the network on
CPU clusters, as opposed to one supercomputer (Deng, Hutchinson, and Yu 2012), exploit the inherent
parallelism in the greedy training algorithm to achieve significant training-time savings.

Chapter 7 ■ Deep Neural Networks

142

However, this method does not speed up the training time per layer. This can be achieved by
parallelizing the training algorithm for the individual RBM layers, using GPUs (Cai et al. 2012).

However, use of the large and sparse data commonly employed to train RBMs creates challenges for
parallelizing this algorithm. Modifying the computations for matrix-based operations and optimizing the
matrix–matrix multiplication code for sparse matrices make GPU implementation much faster than CPU
implementation.

As opposed to speeding up training via software, attempts have been made to speed up training via
hardware, using field-programmable gate arrays (FPGAs). Ly and Chow (2010) mapped RBMs to FPGAs
and achieved significant speedup of the optimized software code. This work was extended to investigate the
scalability of the approach by Lo (2010).

Deep Networks Similar to DBN
One variation of DBN, called modular DBN (M-DBN), trains different parts of the network separately, while
adjusting the learning rate as training progresses (Pape et al. 2011), as opposed to using one training set for
the whole network. This allows M-DBN to avoid forgetting features learned early in training, a weakness of
DBN that can hinder its performance in online learning applications in which the data distribution changes
dynamically over time.

Sparse DBN learns sparse features—unlike Hinton’s DBN, which learns nonsparse data
representations—by adding a penalty in the objective function for deviations from the expected activation of
hidden units in the RBM formulation (Lee, Ekanadham, and Ng 2007).

Convolutional DBN integrates translation invariance into the image representations by sharing
weights between locations in an image, allowing inference to be done when the image is scaled up by using
convolution (Lee et al. 2009). Therefore, convolutional DBN scales better to real-world-sized images without
suffering from computational intractability as a result of the high dimensionality of these images.

DBNs are not the only deep architectures available. Sum product network (SPN) is a deep architecture
represented as a graph with directed and weighted edges. SPN is acyclic (contains no loops), with variables
on the leaves of the graph, and its internal nodes consist of sum and product operations (Poon and Domingo
2011). SPN trains, using backpropagation and expectation maximization (EM) algorithms. These simple
operations result in a network that is more accurate, faster to train, and more tractable than DBN.

Deep Boltzmann machines (DBMs) are similar to but have a more general deep architecture than DBNs.
They are composed of BMs stacked on top of each others (Salakhutdinov and Hinton 2009). Although more
complex and slower to train than DBNs, owing to the symmetrical connections between all neurons in the
BM network, the two-way edges let DBMs propagate input uncertainty better than DBNs, making their
generative models more robust. The more complex architecture requires an efficient training algorithm to
make training feasible. The DBN greedy training algorithm was modified to achieve a more efficient training
algorithm for DBM by using an approximate inference algorithm. However, this rendered DBM training
approximately three times slower than DBN training (Salakhutdinov and Larochelle 2010).

References
Aleksandrovsky, Boris, James Whitson, Gretchen Andes, Gary Lynch, and Richard Granger. “Novel Speech
Processing Mechanism Derived from Auditory Neocortical Circuit Analysis.” In Proceedings of the Fourth
International Conference on Spoken Language, edited by H. Timothy Bunnell and William Idsardi, 558–561.
Piscataway, NJ: Institute of Electrical and Electronics Engineers, 1996.

Arnold, Ludovic, Sébastien Rebecchi, Sylvain Chevallier, and Hélène Paugam-Moisy. “An Introduction
to Deep Learning.” In Proceedings of the 19th European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, Bruges, Belgium, April 27–29, 2011, edited by Michel
Verleysen, 477–488. Leuven, Belgium: Ciaco, 2011.

Chapter 7 ■ Deep Neural Networks

143

Bengio, Yoshua. “Learning Deep Architectures for AI.” In Foundations and Trends in Machine Learning 2,
no. 1 (2009): 1–127.

Bengio, Yoshua. “Deep Learning of Representations for Unsupervised and Transfer Learning.” In ICML
2011: Proceedings of the International Conference on Machine Learning Unsupervised and Transfer Learning
Workshop, edited by Isabelle Guyon, Gideon Dror, Vincent Lemaire, Graham Taylor, and Daniel Silver, 17–36.
2012. http://jmlr.csail.mit.edu/proceedings/papers/v27/bengio12a/bengio12a.pdf.

Bengio, Yoshua, and Olivier Delalleau. “On the Expressive Power of Deep Architectures.” In Algorithmic
Learning Theory, edited by Jyrki Kivinen, Csaba Szepesvári, Esko Ukkonen, and Thomas Zeugmann, 18–36.
Berlin: Springer, 2011.

Bengio, Yoshua, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. “Greedy Layer-Wise Training of Deep
Networks.” In NIPS ’06: Proceedings of Advances in Neural Information Processing Systems 19, edited by
Bernhard Schlkopf, John Platt, and Thomas Hofmann, 153–160. Cambridge, MA: Massachusetts Institute of
Technology Press, 2007.

Bengio, Yoshua, Jérôme Louradour, Ronan Collobert, and Jason Weston. “Curriculum Learning.” In ICML
’09: Proceedings of the 26th Annual International Conference on Machine Learning, edited by Léon Bottou
and Michael Littman, 41–48. New York: ACM, 2009.

Brown, Thomas H., Edward W. Kairiss, and Claude L. Keenan. “Hebbian Synapses: Biophysical Mechanisms
ad Algorithms.”Annual Review of Neuroscience 13, no. 1 (1990): 475–511.

Cai, Xianggao, Zhanpeng Xu, Guoming Lai, Chengwei Wu, and Xiaola Lin. “GPU-Accelerated Restricted
Boltzmann Machine for Collaborative Filtering.” In Algorithms and Architectures for Parallel Processing:
Proceedings of the 12th International ICA3PP Conference, Fukuoka, Japan, September 2012, edited by Yang
Xiang, Ivan Stojmenović, Bernady O. Apduhan, Guojun Wang, Koji Nakano, and Albert Zomaya, 303–316.
Berlin: Springer, 2012.

Ciresan, Dan Claudiu, Ueli Meier, Luca Maria Gambardella, and Jürgen Schmidhuber. “Deep, Big, Simple
Neural Nets for Handwritten Digit Recognition.”Neural Computation 22, no. 12 (2010): 3207–3220.

Ciresan, Dan Claudiu, Ueli Meier, and Jürgen Schmidhuber. “Transfer Learning for Latin and Chinese
Characters with Deep Neural Networks.” In Proceedings of the 2012 International Joint Conference on Neural
Networks, 1–6. Piscataway, NJ: Institute of Electrical and Electronics Engineers, 2012.

Collobert, Robert. “Deep Learning for Efficient Discriminative Parsing.” Recorded April 2011. AISTATS video,
21:16. Posted May 6, 2011. http://videolectures.net/aistats2011_collobert_deep/.

Collobert, Ronan, and Jason Weston. “A Unified Architecture for Natural Language Processing: Deep
Neural Networks with Multitask Learning.” In ICML ’08: Proceedings of the 25th International Conference on
Machine Learning, edited by Andrew McCallum and Sam Roweis, 160–167. New York: ACM, 2008.

Dahl, George E., Dong Yu, Li Deng, and Alex Acero. “Context-Dependent Pre-Trained Deep Neural Networks
for Large-Vocabulary Speech Recognition.” IEEE Transactions on Audio, Speech, and Language Processing 20,
no. 1 (2012): 30–42.

Deng, Li, Brian Hutchinson, and Dong Yu. “Parallel Training for Deep Stacking Networks.” In Interspeech
2012: Proceedings of the 13th Annual Conference of the International Speech Communication Association.
2012. www.isca-speech.org/archive/interspeech_2012.

Deselaers, Thomas, Saša Hasan, Oliver Bender, and Hermann Ney. “A Deep Learning Approach to Machine
Transliteration.” In Proceedings of the Fourth Workshop on Statistical Machine Translation, e233–241.
Stroudsburg, PA: Association for Computational Linguistics, 2009.

http://jmlr.csail.mit.edu/proceedings/papers/v27/bengio12a/bengio12a.pdf
http://videolectures.net/aistats2011_collobert_deep/
http://www.isca-speech.org/archive/interspeech_2012

Chapter 7 ■ Deep Neural Networks

144

Desjardins, Guillaume, and Yoshua Bengio. “Empirical Evaluation of Convolutional RBMs for Vision.”
Technical report, Université de Montréal, 2008.

Erhan, Dumitru, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and Samy
Bengio. “Why Does Unsupervised Pre-Training Help Deep Learning?” Journal of Machine Learning Research
11 (2010): 625–660.

Erhan, Dumitru, Pierre-Antoine Manzagol, Yoshua Bengio, Samy Bengio, and Pascal Vincent. “The Difficulty
of Training Deep Architectures and the Effect of Unsupervised Pre-Training.” In Proceedings of the 12th
International Conference on Artificial Intelligence and Statistics, edited by David van Dyk and Max Welling,
153–160. 2009. http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS09_ErhanMBBV.pdf.

Farley, B. G., and W. Clark. “Simulation of Self-Organizing Systems by Digital Computer.” IEEE Transactions
of the IRE Professional Group on Information Theory 4, no. 4 (1954): 76–84.

Fischer, Asja, and Christian Igel. “An Introduction to Restricted Boltzmann Machines.” In Progress in Pattern
Recognition, Image Analysis, Computer Vision, and Applications: Proceedings of the 17th Iberoamerican
Congress, CIARP 2012, Buenos Aires, Argentina, September 3–6, 2012, edited by Luis Alvarez, Marta E.
Mejail, Luis E. Gomez, and Julio E. Jacobo, 14–36. Berlin: Springer, 2012.

Fukushima, Kunihiko. “Neocognition: A Self-Organizing Neural Network Model for a Mechanism of Pattern
Recognition Unaffected by Shift in Position.” Biological Cybernetics 36 (1980): 193–202.

Glorot, Xavier, Antoine Bordes, and Yoshua Bengio. “Domain Adaptation for Large-Scale Sentiment
Classification: A Deep Learning Approach.” In ICML ’11: Proceedings of the 28th International Conference on
Machine Learning, 513–520. 2011. www.icml-2011.org/papers/342_icmlpaper.pdf.

Hamel, Philippe, and Douglas Eck. “Learning Features from Music Audio with Deep Belief Networks.” In
ISMIR 2010: Proceedings of the 11th International Society for Music Information Retrieval Conference
(ISMIR 2010), August 9–13, 2010, Utrecht, the Netherlands, edited by J. Stephen Downie and Rembo C.
Veltkamp, 339–344. International Society for Music Information Retrieval, 2010. http://ismir2010.ismir.
net/proceedings/ISMIR2010_complete_proceedings.pdf.

Hawkins, Jeff, and Sandra Blakeslee. On Intelligence. New York: Macmillan, 2007.

Haykin, Simon. Neural Networks. Upper Saddle River, NJ: Prentice Hall, 1994.

Hebb, Donald. The Organization of Behavior. New York: Wiley, 1949.

Hinton, Geoffrey E. “Training Products of Experts by Minimizing Contrastive Divergence.” Neural
Computation 14, no. 8 (2002): 1771–1800.

Hinton, Geoffrey E. “To Recognize Shapes, First Learn to Generate Images.” Progress in Brain Research 165
(2007): 535–547.

Hinton, Geoffrey E.. “A Practical Guide to Training Restricted Boltzmann Machines.” Momentum 9,
no. 1 (2010).

Hinton, Geoffrey E., Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew
Senior, et al. “Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of
Four Research Groups.” IEEE Signal Processing Magazine 29, no. 6 (2012): 82–97.

Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. “A Fast Learning Algorithm for Deep Belief Nets.”
Neural Computation 18, no. 7 (2006): 1527–1554.

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. “Reducing the Dimensionality of Data with Neural
Networks.” Science 313, no. 5786 (2006): 504–507.

http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS09_ErhanMBBV.pdf
http://www.icml-2011.org/papers/342_icmlpaper.pdf
http://ismir2010.ismir.net/proceedings/ISMIR2010_complete_proceedings.pdf
http://ismir2010.ismir.net/proceedings/ISMIR2010_complete_proceedings.pdf

Chapter 7 ■ Deep Neural Networks

145

Hochreiter, Sepp. “Untersuchungen zu dynamischen neuronalen Netzen.” Master's thesis, Technical
University of Munich, 1991.

Hochreiter, Sepp, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber. “Gradient Flow in Recurrent
Nets: The Difficulty of Learning Long-Term Dependencies.” In A Field Guide to Dynamical Recurrent Neural
Networks, edited by John F. Kolen and Stefan C. Kremer, 237–244. Piscataway, NJ: Institute of Electrical and
Electronics Engineers, 2001.

Hörster, Eva, and Rainer Lienhart. “Deep Networks for Image Retrieval on Large-Scale Databases.” In
Proceedings of the 16th ACM International Conference on Multimedia, 643–646. New York: ACM, 2008.

Jain, Anil K., Jianchang Mao, and K. M. Mohiuddin. “Artificial Neural Networks: A Tutorial.” Computer 29,
no. 3 (1996): 31–44.

Jaitly, Navdeep, Patrick Nguyen, Andrew W. Senior, and Vincent Vanhoucke. “Application of Pretrained Deep
Neural Networks to Large Vocabulary Speech Recognition.” In Interspeech 2012: Proceedings of the 13th
Annual Conference of the International Speech Communication Association. 2012. www.isca-speech.org/
archive/interspeech_2012/.

Lee, Honglak, Chaitanya Ekanadham, and Andrew Y. Ng. “Sparse Deep Belief Net Model for Visual Area V2.”
Proceedings of NIPS 2007: Advances in Neural Information Processing Systems, edited by J. C. Platt, D. Koller,
Y. Singer, and S. T. Roweis. 2008. http://papers.nips.cc/paper/3313-sparse-deep-belief-net-model-
for-visual-area-v2.pdf.

Lee, Honglak, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. “Convolutional Deep Belief Networks
for Scalable Unsupervised Learning of Hierarchical Representations.” In ICML ’09: Proceedings of the
26th Annual International Conference on Machine Learning, edited by Léon Bottou and Michael Littman,
609–616. New York: ACM, 2009.

Lo, Charles. “A FPGA Implementation of Large Restricted Boltzmann Machines.” In Proceedings of the 18th
IEEE Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM),
May 2–4, 2010, Charlotte, NC, 201–208. Piscataway, NJ: Institute of Electrical and Electronics Engineers, 2010.

Ly, Daniel L., and Paul Chow. “High-Performance Reconfigurable Hardware Architecture for Restricted
Boltzmann Machines.” IEEE Transactions on Neural Networks 21, no. 1 (2010): 1780–1792.

McAfee, Lawrence. “Document Classification Using Deep Belief Nets,” 2008.

Mesnil, Grégoire, Yann Dauphin, Xavier Glorot, Salah Rifai, Yoshua Bengio, Ian J. Goodfellow,
Erick Lavoie, et al. “Unsupervised and Transfer Learning Challenge: A Deep Learning Approach.” In ICML
2011: Proceedings of the International Conference on Machine Learning Unsupervised and Transfer Learning
Workshop, edited by Isabelle Guyon, Gideon Dror, Vincent Lemaire, Graham Taylor, and Daniel Silver,
97–110. 2012. http://jmlr.csail.mit.edu/proceedings/papers/v27/mesnil12a/mesnil12a.pdf.

Mohamed, Abdel-rahman, Tara N. Sainath, George Dahl, Bhuvana Ramabhadran, Geoffrey E. Hinton, and
Michael A. Picheny. “Deep Belief Networks Using Discriminative Features for Phone Recognition.”
In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech, and Signal Processing,
5060–5063. Piscataway, NJ: Institute of Electrical and Electronics Engineers, 2011.

Mohamed, Abdel-rahman, Dong Yu, and Li Deng. “Investigation of Full-Sequence Training of Deep Belief
Networks for Speech Recognition.” In Interspeech 2010: Proceedings of 11th Annual Conference of the
International Speech Communication Association, edited by Takao Kobayashi, Keikichi Hirose, and Satoshi
Nakamura, 2846–2849. 2010. www.isca-speech.org/archive/interspeech_2010/i10_2846.html.

http://www.isca-speech.org/archive/interspeech_2012/
http://www.isca-speech.org/archive/interspeech_2012/
http://papers.nips.cc/paper/3313-sparse-deep-belief-net-model-for-visual-area-v2.pdf
http://papers.nips.cc/paper/3313-sparse-deep-belief-net-model-for-visual-area-v2.pdf
http://jmlr.csail.mit.edu/proceedings/papers/v27/mesnil12a/mesnil12a.pdf
http://www.isca-speech.org/archive/interspeech_2010/i10_2846.html

Chapter 7 ■ Deep Neural Networks

146

Nair, Vinod, and Geoffrey E. Hinton. “3D Object Recognition with Deep Belief Nets.” In NIPS ’09: Proceedings
of Advances in Neural Information Processing Systems 22, edited Yoshua Bengio, Dale Schuurmans, John
Lafferty, Chris Williams, and Aron Culotta, 1339–1347. 2009. http://machinelearning.wustl.edu/
mlpapers/paper_files/NIPS2009_0807.pdf.

Pape, Leo, Faustino Gomez, Mark Ring, and Jürgen Schmidhuber. “Modular Deep Belief Networks That
Do Not Forget.” In Proceedings of the 2011 International Joint Conference on Neural Networks, 1191–1198.
Piscataway, NJ: Institute of Electrical and Electronics Engineers, 2011.

Poon, Hoifung, and Pedro Domingos. “Sum-Product Networks: A New Deep Architecture.” In Proceedings of
the 2011 IEEE International Conference on Computer Vision Workshops, 689–690. Piscataway, NJ: Institute of
Electrical and Electronics Engineers, 2011.

Ranzato, Marc’Aurelio, and Martin Szummer. “Semi-Supervised Learning of Compact Document
Representations with Deep Networks.” In ICML ’08: Proceedings of the 25th International Conference on
Machine Learning, edited by Andrew McCallum and Sam Roweis, 792–799. New York: ACM, 2008.

Rosenblatt, Frank. “The Perceptron: A Probabilistic Model for Information Storage and Organization in the
Brain.” Psychological Review 65, no. 6 (1958): 386–408.

Sainath, Tara N., Brian Kingsbury, Bhuvana Ramabhadran, Petr Fousek, Petr Novak, and Abdel-rahman
Mohamed. “Making Deep Belief Networks Effective for Large Vocabulary Continuous Speech Recognition.”
In Proceedings of the 2011 IEEE Workshop on Automatic Speech Recognition and Understanding, edited by
Thomas Hain and Kai Yu, 30–35. Piscataway, NJ: Institute of Electrical and Electronics Engineers, 2011.

Salakhutdinov, Ruslan, and Geoffrey Hinton. “Learning a Nonlinear Embedding by Preserving Class
Neighbourhood Structure.” In Proceedings of the 11th International Conference on Artificial Intelligence
and Statistics, edited by Marina Meila and Xiaotong Shen, 412–419. 2007. http://jmlr.csail.mit.edu/
proceedings/papers/v2/salakhutdinov07a/salakhutdinov07a.pdf.

Salakhutdinov, Ruslan, and Geoffrey Hinton. “Deep Boltzmann Machines.” In Proceedings of the 12th
International Conference on Artificial Intelligence and Statistics, edited by David van Dyk and Max Welling,
448–455. 2009. www.jmlr.org/proceedings/papers/v5/salakhutdinov09a/salakhutdinov09a.pdf.

Salakhutdinov, Ruslan, and Hugo Larochelle. “Efficient Learning of Deep Boltzmann Machines.”
In Proceedings of the 13th Annual International Conference on Artificial Intelligence and Statistics, edited
by Yee Whye Teh and Mike Titterington, 693–700. 2010. www.dmi.usherb.ca/~larocheh/publications/
aistats_2010_dbm_recnet.pdf.

Schmidhuber, Jurgen. “Learning Complex, Extended Sequences Using the Principle of History
Compression.” Neural Computation 4 (1992): 234–242.

Seide, Frank, Gang Li, and Dong Yu. “Conversational Speech Transcription Using Context-Dependent Deep
Neural Networks.” In Interspeech 2011: Proceedings of 11th Annual Conference of the International Speech
Communication Association, edited by Piero Cosi, Renato De Mori, Giuseppe Di Fabbrizio, and Roberto
Pieraccini, 437–440. 2011. www.isca-speech.org/archive/interspeech_2011.

Smolensky, Paul. “Information Processing in Dynamical Systems: Foundations of Harmony Theory.”
In Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Vol. 1, edited by David E.
Rumelhart, James L. McClelland, and the PDP Research Group, 194–281. Cambridge, MA: Massachusetts
Institute of Technology Press, 1986.

Susskind, Joshua M., Geoffrey E. Hinton, Javier R. Movellan, and Adam K. Anderson. “Generating Facial
Expressions with Deep Belief Nets.” In Affective Computing: Focus on EmotionExpression, Synthesis and
Recognition, edited by Jimmy Or, 421–440. Vienna: I-Tech, 2008.

http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2009_0807.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2009_0807.pdf
http://jmlr.csail.mit.edu/proceedings/papers/v2/salakhutdinov07a/salakhutdinov07a.pdf
http://jmlr.csail.mit.edu/proceedings/papers/v2/salakhutdinov07a/salakhutdinov07a.pdf
http://www.jmlr.org/proceedings/papers/v5/salakhutdinov09a/salakhutdinov09a.pdf
http://www.dmi.usherb.ca/~larocheh/publications/aistats_2010_dbm_recnet.pdf
http://www.dmi.usherb.ca/~larocheh/publications/aistats_2010_dbm_recnet.pdf
http://www.isca-speech.org/archive/interspeech_2011

Chapter 7 ■ Deep Neural Networks

147

Uetz, Rafael, and Sven Behnke. “Locally-Connected Hierarchical Neural Networks for GPU-Accelerated
Object Recongition.” In Proceedings of the NIPS 2009 Workshop on Large-Scale Machine Learning Parallelism
and Massive Datasets. 2009.

Werbos, Paul. “Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences.”
PhD thesis, Harvard University, 1974.

Weston, Jason, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert. “Deep Learning via Semi-Supervised
Embedding.” In Neural Networks: Tricks of the Trade, Second Edition, edited by Grégoire Montavon,
Geneviève Orr, and Klaus-Robert Müller, 639–655. Berlin: Springer, 2012.

Wulsin, D. F., J. R. Gupta, R. Mani, J. A. Blanco, and B. Litt. “Modeling Electroencephalography Waveforms
with Semi-Supervised Deep Belief Nets: Fast Classification and Anomaly Measurement.” Journal of Neural
Engineering 8, no. 3 (2011): 036015.

Zhou, Shusen, Qingcai Chen, and Xiaolong Wang. “Active Deep Networks for Semi-Supervised Sentiment
Classification.” In Proceedings of the 23rd International Conference on Computational Linguistics: Posters,
edited by Chu-Ren Huang and Dan Jurafsky, 1515–1523. Stroudsburg, PA: Association for Computational
Linguistics, 2010.

149

Chapter 8

Cortical Algorithms

If you just have a single problem to solve, then fine, go ahead and use a neural network.
But if you want to do science and understand how to choose architectures, or how to go to
a new problem, you have to understand what different architectures can and cannot do.

—Marvin Minsky1

Computational models inspired by the structural and functional properties of the human brain have seen
impressive gains since the mid-1980s, owing to significant discoveries in neuroscience and advancements
in computing technology. Among these models, cortical algorithms (CAs) have emerged as a biologically
inspired approach, modeled after the human visual cortex, which stores sequences of patterns in an
invariant form and recalls those patterns autoassociatively. This chapter details the structure and
mathematical formulation of CA then presents a case study of CA generalization accuracy in identifying
isolated Arabic speech using an entropy-based weight update.

Cortical Algorithm Primer
Initially developed by Edelman and Mountcastle (1978), and inspired by the visual human cortex, CAs are
positioned to be superior to the early generations of artificial neural networks (ANNs), which do not use
temporal and spatial relationships in data for building machine learning models.

The CA model consists of a multilayered network, with the cortical column as the basic structure. The
network is trained in a two-stage manner: the first learning stage is unsupervised and trains the columns to
identify independent features from the patterns occurring; the second stage relies on supervised feedback
learning to create invariant representations.

Cortical Algorithm Structure
The human brain is a six-layered structure consisting of a very large number of neurons strongly connected via
feedforward and feedback connections. An important property of the neocortex is its structural and functional
uniformity: all units in the network seem similar, and they perform the same basic operation. Like this brain
architecture, CA architecture has minicolumns of varying thickness (Edelman and Mountcastle 1978).
A minicolumn is a group of neurons that share the same receptive field: neurons belonging to a minicolumn
are associated with the same sensory input region. The minicolumn is the basic structure in a cortical network,
in contrast to neurons in a classical ANN. An association of minicolumns is called a hypercolumn or layer

1Marvin Minsky, “Scientist on the Set: An Interview with Marvin Minsky,” in HAL’s Legacy: 2001’s Computer as
Dream and Reality, by David G. Stork (Massachusetts Institute of Technology Press, 1998), p. 18.

Chapter 8 ■ Cortical Algorithms

150

(in what follows, the terms column and minicolumn are used interchangeably). Connections in a CA network
occur in two directions: horizontally, between columns in the same layer, and vertically, between columns of
consecutive layers. Although connections between nonconsecutive layers are present in the human cortex,
these connections are omitted in CA, for the sake of simplicity.

Figure 8-1 displays a representation of a cortical network. The lateral inhibiting connections are not
shown explicitly in the figure because their functionality is not physical; that is, these connections do not
represent data propagated between neurons, but serve as a means of communication between the columns.

Figure 8-1.  Schematic of cortical network connectivity

The notation adopted hereafter is given in Figure 8-2, whereWi j k
r t
, ,

, represents the weight of the connection
between the jth neuron of the ith column of layer r and the kth column of the previous layer (r-1) during
the training epoch t. Bold variables stand for vector entities, underlined variables represent matrices, and
italic variables represent scalar entities.

Chapter 8 ■ Cortical Algorithms

151

During the learning process a connection is disabled by assigning to it a zero weight. If the network
is fully connected, each neuron j in the column is connected to all the columns in the previous layer. All
connections are elastic; that is, if a connection is disabled during the feedforward process, it can be restored
during the feedback learning, and vice versa.

The weight matrix representing the state of a column composed of M nodes during the training epoch t
is defined by

			  Wi
r t,

,
,

,
,

,
,

,
, .= ¼ ¼éë ùûW W W Wi

r t
i
r t

i j
r t

i M
r t

1 2
� (8-1)

The weight vector Wi j
r t
,

, of the connections entering neuron j of column i in layer r, composed of L
r

columns, is given by

			 Wi j
r t
,

,
, ,

,
, ,

,
, ,

,
, ,

, ,= ¼ ¼éë ùû-
W W W Wi j

r t
i j
r t

i j k
r t

i j L
r t

r1 2 1

¢

� (8-2)

where Lr-1 is the number of columns in the layer (r-1), L
r
 represents the number of columns in the

layer r, and the superscript ' stands for the transpose operator.
Expanding Wi

r t, yields

			  
W

W W W

W Wi
r t

i
r t

i j
r t

i M
r t

i k
r t

i j k
r,

, ,
,

, ,
,

, ,
,

, ,
,

, ,
,=

1 1 1 1

1

 

    



tt
i M k
r t

i L
r t

i j L
r t

i M L
r t

W

W W W
r r r



    

 

, ,
,

, ,
,

, ,
,

, ,
,

1 1 1 1- - -

é

ë

ê
êê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú

.
� (8-3)

The output vector Z r,t of layer r for epoch t is given by

			    Z r t, , , , ., , , , , ,= ¼ ¼éë ùûZ Z Z Zr t r t
i
r t

L
r t

r1 2

¢
� (8-4)

where Zi
r t, is the output of column i in the layer for the same training epoch.

Figure 8-2.  Nomenclature conventions for the weight , ,
,Wi j k

r t

Chapter 8 ■ Cortical Algorithms

152

Considering the output of a neuron to be the result of the nonlinear activation function f(.), in response
to the weighted sum of the connections entering the neuron, the output of the column is defined as the sum
of the outputs of the neurons constituting the column.

 Zi j
r t
,
, is the output of the jth neuron of the ith column in the rth layer at the training epoch t, given by

			   Z Z Z f W Zi
r t

j

M

i j
r t

i j
r t

k

L

i j k
r t

k
r t

r
,

,
,

,
,

, ,
, ,;= =

æ

è
ç

ö

ø= =

-å å
-

1 1

1
1

÷÷. � (8-5)

Zi j
r
, � is the output of the jth neuron constituting the ith column of the rth layer, and f W Z

k

L

i j k
r t

k
r t

r

=

-
-

å
æ

è
ç

ö

ø
÷

1

1
1

, ,
, ,

is
defined by

		

f W Z

W Z
k

L

i j k
r t

k
r t

k

L

i j k
r t

r

r=

-

=

-

-
å

å

æ

è
çç

ö

ø
÷÷ =

+
1

1

1

1

1

1

1

, ,
, ,

, ,
,exp kk

r t

k

L

i j k
r t

k
r t

r

W Z T-

=

-
-

å
æ

è
çç

ö

ø
÷÷ -

æ

è
çç

ö

ø
÷÷

ì
í
ï

îï

ü
ý

1

1

1
1

,
, ,

, ,. j ïï

þï

æ

è
çç

ö

ø
÷÷ =

-

=

- =-

-

å
å

j
k

L

i j k
r t

k
r t k

L

i j k
r

r

r

W Z

if W

1

1 1
1

1

2

, ,
, ,

, ,
,tt

k
r t

k

L

i j k
r t

k
r t

Z

W Z otherwise
r

-

=

-

=
ì

í

ï
ï

î

ï
ï

ì

í

ï
ï
ï
ï

-

å

1

1

1

1

1

,

, ,
, , ,

ïï

î

ï
ï
ï
ï
ï

� (8-6)

where T is a tolerance parameter empirically selected and constant for all epochs and columns. It is
assumed that all weights are normalized and bounded between –1 and 1.

The nonlinear activation function is analogous to the propagation of the action potential through an
axon in the neural system.

Training of Cortical Algorithms
Connectivity within the columns is modeled through the value of the synaptic weights. Initially, there is no
specific connectivity between cortical columns. It is assumed that the network is fully connected before
training. Also, all synaptic weights are initialized to random values that are very close to 0 to avoid preference
to any particular pattern.

The training process, as introduced by Edelman and Mountcastle (1978) and developed further
by Hashmi (2010), is described in the following sections, according to its main phases: unsupervised
feedforward, supervised feedback, and weight update.

Unsupervised Feedforward
Feedforward learning trains columns to identify features via random firing and repeated exposure. When
a pattern is presented, the input is propagated through the network. Each column has a small probability
of firing, which means that most of the columns in a particular layer stay inactive. When the random firing
of a particular column coincides with a particular input pattern, this activation is enforced. In other words,
when activation is enforced, the column firing strengthens its weights, according to the strengthening weight
update rule. At the same time, the column firing inhibits neighboring columns in the same layer from firing
by weakening the weights, as presented in the inhibiting update rule.

Chapter 8 ■ Cortical Algorithms

153

The weight update rules are as follows:

•	 Inhibiting:

	       W Z W Wi j k
r t

k
r t

i j k
r t

i j
r t

, ,
, ,

, ,
,

,
,.+ -= - ()()1 1 W 	 (8-7)

•	 Strengthening:	

	        W Z W C

e

i j k
r t

k
r t

i j k
r t

i j k
r t

W Ti j k
r t, ,

, ,
, ,

,
, ,
,. .

, ,
,

+ -

-
= + +

+

1 1 1

1

r (()
()

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷W Wi

r t,

, 	 (8-8)

where W(Wi j
r t
,

,) is given by

	       W W C W C
if W

other
i
r t

i j k
r t

i j k
r t

i j k
r t i j k

r t
,

, ,
,

, ,
,

, ,
, , ,

,

;() = =
>1

0

e
wwisek

L

j

M r
ì
í
ï

îï
==

-åå 11

1 	 (8-9)

and where r is a tuning parameter, and e is the firing threshold chosen empirically to be constant for all
epochs and columns.

With repeated exposure the network learns to extract certain features of the input data, and the columns
learn to fire for specific patterns. Layers in the network extract aspects of the input in increasing complexity.
Thus, lower layers detect simple features, whereas higher stages learn concepts and more complex
abstractions of the data.

Supervised Feedback
Feedforward learning trains columns to identify features of the data, such that the hierarchical network
starts to recognize patterns. When the network is exposed to a variation of a pattern that is quite different
from the previous one, the top layer of columns that are supposed to fire for that pattern do not, and only
some of the columns in the hierarchy may fire, which leads to a misclassification. Through the CA feedback
mechanism, the error occurring at the top layer generates a feedback signal that forces the column firing
for the original pattern to fire, while inhibiting the column that is firing for the variation. Over multiple
exposures the top layer should reach the desired firing scheme (also called stable activation). More
specifically, designated columns in the top layer learn to fire for a particular pattern. Once the columns
start to give a stable activation for pattern variations, the feedback signal is propagated back to the previous
layers. Each layer is then trained until a convergence criterion, expressed as an error term in function of the
actual output, and a desired output (firing scheme) are reached. The feedback signal is sent to the preceding
layers only once the error in the layer concerned converges to a value below a certain, predefined tolerance
threshold. The excitatory and inhibiting signals follow the same update rules as for the feedforward learning.

When used for the feedback learning of the network, CA can be summarized by the following steps:

	 1.	 Following the feedforward unsupervised batch learning (i.e., after the training
data are entirely propagated through the network), a desired output scheme per
layer is formed by averaging the column outputs. If Zi

r

k
 is the output of the ith

column in the rth layer of the network for a certain training instance denoted by k
and given N instances in total; the desired output for this particular column Zi

r

d

is given by:

	     
Z avg Z

N
Zi d

r
i
r

i
r

k

N

k k
= () = =å1

1
. 	 (8-10)

Chapter 8 ■ Cortical Algorithms

154

	 2.	 Starting with the last layer, compare the measured output of each column as a
response to each instance k, Zi

r t, with the desired value of Zi
r

d
. If the desired output

of a column is a firing state, whereas the actual is different, the column is strengthened
(see Equation 8-8; the column is inhibited (see Equation 8-7) if the opposite occurs
(i.e., if the actual output is firing, whereas a nonfiring state is desired).

	 3.	 Repeat step 2 until the error threshold is met.

	 4.	 Follow the same procedure for the previous layers, one layer at a time.

Weight Update
In CA, good accuracy is taxed with computationally expensive and lengthy training. This cost is mainly due
to the computation of the exponential function invoked during the weight update process for each neuron
while the weights of the network are learned.

For a particular node , ,
,Wi j k

r t , Equation 8-8 may be written as:

	     

W W W

W
W

i j k
r t

i j k
r t

i j k
r t

i j k
r t

i

, ,
,

, ,
,

, ,
,

, ,
, .

exp

+ = + ()
() =

+

1

1

1

a q

q b
,, ,

,

, ,

,
, ,

.

,

.

j k
r t

k
r t

k
r t

k
r t

i j k

T

Z Z

Z C

-é

ë
ê
ê

ù

û
ú
ú

+

= =

=

- -

-

W

d

a b r

d

1 1

1 rr t,

ì

í

ï
ï
ï
ï

î

ï
ï
ï
ï

	 (8-11)

Here, a, b, and d are variables that depend on the training epoch as well as the column considered;
therefore, a suitable nomenclature would be in the form

,ck
r t-1

. For the sake of simplicity, one can omit the
subscripts and superscripts for these variables, referring to W(Wi

r t,) as Ω.
As demonstrated in Equation 8-11, the parameters of the exponential weight update rule—a, b, d, Ω,

and T—depend on the state of the column considered. Therefore, it can be inferred that the strengthening
rule is a family of exponential functions with varying parameters for each column. The update of a column
requires the computation of the exponential function for each of the nodes—hence, the lengthy training.

Figure 8-3 shows a plot of q, with respect to the value of the neuron weight for a random node.

Chapter 8 ■ Cortical Algorithms

155

The computational cost involved in the strengthening rule also comes from the calculation of the
exponential function. For example, MATLAB software uses the binomial theorem (see Equation 8-12) to
compute the approximate value of an exponential, and this approximation is computed up to orders ranging
from 5 to 10 (Mohler 2011):

	       e x
x x x

n

x

i
x

n

i

i

= + + + + + + =
=
å1

2 3

2 3

0! ! ! !
. 

¥
	 (8-12)

The number of operations required to compute the exponential function is summarized in Table 8-1.

Table 8-1.  Required Operations for Exponential Function

Expression Operations Total Number of Operations

i ! 2 * 3 * … * i i-two multiplications

xi x * x * x * … i multiplications

x

i

i

!

x x x

i

* * ¼
* *¼*2 3

2i-one operation

ex

i

n ix

i=
å

0 ! i

n

i n n n
=
å - + = +

0

22 1()

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Value of neuron

A
m

ou
nt

 o
f

st
re

ng
th

en
in

g
ad

de
d

Figure 8-3.  Plot of q Wi j k
r t
, ,

,() versus Wi j k
r t
, ,

,

Chapter 8 ■ Cortical Algorithms

156

Experimental Results
Experimental results for various pattern recognition databases obtained from the University of California,
Irvine, Machine Learning Repository (Bache and Lichman 2013) show CA superior performance, as detailed
for the following datasets:

•	 Letter Recognition dataset: This dataset consists of a collection of 20,000 black-and-white
images to be classified as one of the 26 capital letters of the English alphabet (Slate 1991).
Each instance is represented by a set of 16 features of integer type, normalized into
a range of 0-15 representing aspects of the image, such as horizontal and vertical
position, and width and length. The best accuracy reported for this dataset is 97.58
percent (Bagirov and Ugon 2011).

Figure 8-4.  Training of a cortical network

The workflow for CA training is displayed in Figure 8-4.

Chapter 8 ■ Cortical Algorithms

157

•	 Image Segmentation dataset: This dataset is collection of images sized 3 × 3 each,
represented by 19 attributes describing features of the image, such as average
intensity, saturation, and hue (Vision Group 1990). The dataset is divided into a
training set consisting of 210 instances and a testing set of 2,100 instances;
each image belongs to one of 7 classes. Dash et al. (2003) achieved an accuracy
of 98.6 percent.

•	 ISOLET (Isolated Letter Speech Recognition) dataset: The task in this experiment is
to classify a collection of isolated spoken English letters as one of 26 classes (A-Z).
The dataset is composed of 2,800 instances uttered by 150 speakers, each instance
represented by a set of 617 features, including spectral coefficients, contour features,
sonorant features, presonorant features, and postsonorant features (Cole and Fanty
1994). The reported accuracy of this database is 96.73 percent (Dietterich 1994).

•	 PENDIGITS (Pen-Based Recognition of Handwritten Digits) dataset: This experiment
consists of pen-based recognition of handwritten digits. The database collects
10,992 samples from 44 writers, each sample being a sequence of (x, y) coordinates
representing the trajectory of the pen during the writing process. The sequences
have been resampled to obtain a fixed-length attribute vector equal to 16 (eight pairs
of (x, y) coordinates) and normalized to eliminate the effect of artifacts resulting
from different handwritings. The 10,992 samples are divided into a training set of
7,494 instances and 3,498 instances for testing. The accuracy of this dataset reached
98.6 percent (Alpaydin and Alimoglu 1998).

•	 Multiple Features dataset: This dataset consists of 649 features, for a total of
2,000 patterns of handwritten numerals (`0'--`9') extracted from a collection of
Dutch utility maps (Duin 2013). These digits are represented in terms of six feature
sets: 76 Fourier coefficients of the character shapes; 216 profile correlations;
64 Karhunen-Loève coefficients; 240 pixel averages, in 2 × 3 windows; 47 Zernike
moments; and six morphological features. The best accuracy achieved is 98 percent
(Perkins and Theiler 2003).

•	 Abalone dataset: The task for this dataset is to classify the age of a collection of
4,177 abalones from a total of eight physical measurements, such as height, weight,
diameter, and length. This dataset is characterized by a highly unbalanced class
distribution and has achieved an accuracy of 79.0 percent
(Tan and Dowe 2003).

Table 8-2 compiles the recognition rate, training time, and total number of required iterations for
convergence, based on a fourfold cross-validation, using the mean squared error (MSE) and the well-formed
cross-entropy (CE) cost functions at the output layer.

Two experiments were performed:

•	 Experiment 1: CA with the exponential weight update rule and MSE as a cost
function

•	 Experiment 2: CA with the exponential weight rule and CE as a cost function

Chapter 8 ■ Cortical Algorithms

158

On average the CE cost function results in better classification accuracy. However, this is achieved at the
expense of an increase in computational complexity and training time. 

Table 8-2.  Experimental Results

Dataset Measure Experiment 1 Experiment 2

Letter Recognition % Accuracy 98.3 98.8

Training time (min) 223 235

Number of epochs 237 225

Number of operations 8.9 * 1012 1.1 * 1013

Image Segmentation % Accuracy 99.3 99.7

Training time (min) 45 52

Number of epochs 77 69

Number of operations 22 * 1012 2.5 * 1012

ISOLET % Accuracy 98.1 98.7

Training time (min) 54 67

Number of epochs 147 131

Number of operations 2.6 * 1012 3.2 * 1012

PENDIGITS % Accuracy 99.8 100

Training time (min) 135 154

Number of epochs 94 82

Number of operations 6.5 * 1012 7.4 * 1012

Multiple Features % Accuracy 98.7 99.1

Training time (min) 35 42

Number of epochs 66 53

Number of operations 1.4 * 1012 2.0 * 1012

Abalone % Accuracy 91.8 92.2

Training time (min) 56 68

Number of epochs 70 62

Chapter 8 ■ Cortical Algorithms

159

Note■■   Despite their superior hypothetical performance, CAs remain less widely used than ANNs, owing to
their longer and more expensive training and computational requirements. These make them unattractive
for online learning, energy-aware computing nodes, and large datasets with stringent restrictions on the
training duration.

Modified Cortical Algorithms Applied to Arabic Spoken
Digits: Case Study
Because CAs have not been extensively implemented for automatic speech recognition (in particular for
the Arabic language), the following sections show how CA strengthening and inhibiting rules originally
employed during feedback were modified with weighted entropy concepts that were added to the CA cost
function and the weight update rule.

Entropy-Based Weight Update Rule
During the feedback learning stage of a CA, the output of each layer is compared with a desired state of
firing, and the weights are updated until an error term is reduced to a minimum threshold value. Using the
least squares criterion, large error values influence the learning process much more than smaller ones. For
a class of problems, the gradient descent algorithm, with the MSE as a criterion for weight updates, can be
trapped in a local minimum and so it will fail to find the optimal solution. In contrast, the well-formed CE
criterion, employing a gradient descent algorithm, guarantees convergence to the optimal solution during
learning (Wittner and Denker 1988).

The three properties of a well-formed error function of the form J W h Wi j k
r t

i j k
r t

, ,
,

, ,
,()() =å are as follows:

For all •	 Wi j k
r t
, ,

, the derivative of h Wi j k
r t(), ,

, , defined as h Wi j k
r t’
, ,

,() , must be negative.

There must exist an •	  > 0 , such that - () ³h Wi j k
r t’
, ,

,  for all Wi j k
r t
, ,

, £ 0 .

The function •	 h must be differentiable and bounded.

CE as a cost function criterion can be written as

J Z
Z

Z
r t

di
r i

r t

di
ri

Lr,
,

ln ,=
=å 1

where Zdi
r is the desired output of the ith column of layer r at epoch t.

Chapter 8 ■ Cortical Algorithms

160

If you adopt the same procedure for the feedback learning, and assume that training convergence of
each layer happens when the entropy measure falls below a predetermined threshold value, the weight
update rule becomes:

•	 Inhibiting:

	          W
J

Z
Z W Wi j k

r t
r t

i
r t k

r t
i j k
r t

i
r t

, ,
,

,

,
,

, ,
, ,.+ -= - ()()1 1D

D
W 	 (8-13)

•	 Strengthening:

	         W
J

Z
Z W Ci j k

r t
r t

i
r t k

r t
i j k
r t

i j k
r t

, ,
,

,

,
,

, ,
,

, ,
,. . .+ -= + +

+

1 1 1

1

D
D

r

eexp , ,
,

,

W T

W
i j k
r t

i
r t

-

()
é

ë
ê
ê

ù

û
ú
ú

æ

è

ç
ç
ç
ç
çç

ö

ø

÷
÷
÷
÷
÷÷W

	 (8-14)

One advantage of using the proposed gradient descent weighted rules is that the CE cost function
diverges if one of the outputs converges to the wrong extreme; hence, the gradient descent reacts quickly.
In contrast, the MSE cost function approaches a constant, and the gradient descent on the least square will
wander on a plateau, even though the error may not be small.

Experimental Validation
Using a CA of six hidden layers, starting with 2,000 columns of 20 nodes for the first hidden layer and
decreasing the number of columns by half between consecutive layers, four experiments, employing the
weighted entropy weight update rule, were performed based on a fivefold cross-validation:

•	 Experiment 1: CA trained using the MSE cost function and the original weight
update rule

•	 Experiment 2: CA trained using the MSE cost function and the proposed weight
update rule

•	 Experiment 3: CA trained using the CE cost function and the original weight
update rule

•	 Experiment 4: CA trained using the CE function and the proposed weight update rule

Simulations were executed, using MATLAB R2011a software on an Intel i7 at 2GHz and 6GB RAM on
a Windows 7 Home Premium operating system, using a modified central nervous system (CNS) library.
Developed at the Massachusetts Institute of Technology, by Mutch, Knoblich, and Poggio (2010), the CNS
library is a framework for simulating cortically organized networks.

The database was obtained from the UCI Machine Learning Repository and consists of a collection
of 13 Mel frequency cepstral coefficient (MFCC) frames representing 8,800 spoken Arabic digits—one of
ten classes (0-9), uttered by 88 different speakers, obtained after filtering the spoken digits, using a moving
Hamming window. Several techniques were validated on this database; the best achieved result shows a
97.03 percent recognition rate, based on a threefold cross-validation, using a multiclass SVM classifier
(Ji and Sun 2011).

Chapter 8 ■ Cortical Algorithms

161

TREE REPRESENTATION FOR ARABIC PHONEMES

As the first language in 22 countries, Arabic ranks fifth among the most spoken languages in the world
(Mosa and Ali 2009). Although applications treating speech recognition have increased significantly
(e.g., iPhone 4S Siri interface), implementation for the Arabic language is limited, mainly because of
its morphological complexity. For Arabic automatic speech recognition, the recognition of phonemes
constitutes an important step in continuous speech analysis. Most research proceeds by extracting
isolated phonemes or small phonetic segments (El-Obaid, Al-Nassiri, and Maaly 2006; Awais 2003;
Gevaert, Tsenov, and Mladenov 2010; Al-Manie, Alkanhal, and Al-Ghamdi 2009) for analysis of longer
speech signals (Abushariah et al. 2010) and broadcast news (Al-Manie, Alkanhal, and Al-Ghamdi 2009),
using several techniques, such as ANN (Essa, Tolba, and Elmougy 2008), fuzzy HMM (Shenouda, Zaki,
and Goneid 2006), fuzzy logic, concurrent self-organizing maps (Sehgal, Gondal, and Dooley 2004), and
HMM (Satori, Harti, and Chenfour 2007; Bourouba et al. 2010; Biadsy, Moreno, and Jansche 2012).

Spoken in the Middle East and North Africa, Arabic has different dialects. However, Literary Arabic (also
called Modern Standard Arabic) is the official form used in documents and for formal speaking in all
Arabic-speaking countries. One of the differences between spoken and written Arabic is the presence in
the latter of diacritics (marks used to indicate how a letter should be pronounced). The complexity of Arabic
is the result of its unusual morphology: words are formed using a root-and-pattern scheme, in which
the root is composed of 3 consonants, leading to several possibilities from one root. Phonetically, Arabic
has 28 consonant segments and 6 vowels (Newman 1984). Phonemes can be grouped according to the
articulation of the lips and tongue during speech, as shown in the classification of Arabic phonemes.

 

Chapter 8 ■ Cortical Algorithms

162

Note■■  M FCCs can model the acoustic content of speech independently of the source (speaker). MFCCs are
calculated by mapping the logarithm of the spectrum into the Mel scale and converting the obtained signal back
to the time domain, using discrete cosine transform (Klatau 2005).

For consistency, the first experiment with the data used the 13 MFCCs provided and then added the first
and second derivatives of the MFCCs, that is, coefficients with a feature vector of size 39. Tables 8-3 and 8-4
show a comparison of the results obtained for all experiments with the average recognition rate obtained,
training time, and number of epochs required for convergence.

Table 8-3.  Results for the Spoken Arabic Digit Dataset, Using 13 MFCCs

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Recognition rate (%) 97.4 98.4 97.9 99.0

Training time (min) 90 110 100 115

Number of epochs
until convergence

240 232 235 220

Table 8-4.  Results for the Arabic Spoken Digit Dataset, Using 39 MFCCs

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Recognition rate (%) 98.2 99.1 98.6 99.7

Training time (min) 125 142 137 156

Number of epochs
until convergence

335 298 322 280

Tables 8-3 and 8-4 demonstrate that training of the cortical network, using the entropy cost function and
the proposed weight update rule, performed better than the original training parameters. This improvement
is achieved at the expense of a small worsening of the required training time. Despite the lengthy training
time, however, the proposed weight update rule requires fewer training epochs to converge, compared with
the original weight update rule. This is because the amount of strengthening added using the proposed
rule is proportional to the gradient of the cost function, meaning that fewer training epochs are necessary
to reach convergence. The proposed weight update rule involves computing the entropy gradient, which is
computationally more expensive, compared with the original weight update rule.

The confusion matrices in Figure 8-5, obtained for the image segmentation dataset using both cost
functions, demonstrate that although a significant trend is observed in the confusion between classes 1, 7,
and 8 with the classical distance measure, the proposed entropy-based update rule was able to correct this
trend partially.

Chapter 8 ■ Cortical Algorithms

163

65
11.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

98
17.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

77
13.3%

0
0.0%

1
0.2%

0
0.0%

0
0.0%

98.7%
1.3%

2
0.3%

0
0.0%

0
0.0%

79
13.7%

1
0.2%

0
0.0%

0
0.0%

96.3%
3.7%

0
0.0%

1
0.2%

1
0.2%

1
0.2%

91
15.6%

0
0.0%

0
0.0%

97.8%
2.2%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

87
15.1%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

75
13.0%

100%
0.0%

97.0%
3.0%

100%
0.0%

98.7%
1.3%

98.8%
1.2%

97.8%
2.2%

100%
0.0%

100%
0.0%

99.0%
1.0%

65
11.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

98
17.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

77
13.3%

0
0.0%

1
0.2%

0
0.0%

0
0.0%

98.7%
1.3%

1
0.2%

0
0.0%

0
0.0%

80
13.9%

1
0.2%

0
0.0%

0
0.0%

97.6%
2.4%

0
0.0%

1
0.2%

0
0.0%

0
0.0%

91
15.8%

0
0.0%

0
0.0%

98.9%
1.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

87
15.1%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

75
13.0%

100%
0.0%

98.5%
1.5%

100%
0.0%

98.7%
1.3%

100%
0.0%

97.8%
2.2%

100%
0.0%

100%
0.0%

99.3%
0.7%

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Confusion Matrix Confusion Matrix

Ou
tp

ut
 C

la
ss

Ou
tp

ut
 C

la
ss

Target Class Target Class

Figure 8-5.  Confusion matrices for the Image Segmentation dataset: left, exponential rule; right, linear rule

Figure 8-6.  Entropy cost function comparison for regular and proposed weight update rules

Figure 8-6 compares the CE cost function with the training epochs obtained while training the cortical
network using the entropy cost function for the proposed and the regular weight update rules. Note that
the proposed weight update converges to a smaller MSE value, compared with the regular update, which is
consistent with the recognition rates obtained earlier.

Chapter 8 ■ Cortical Algorithms

164

References
Abushariah, Mohammad A. M., Raja N. Ainon, Roziati Zainuddin, Moustafa Elshafei, and Othman O. Khalifa.
“Natural Speaker-Independent Arabic Speech Recognition System Based on Hidden Markov Models Using
Sphinx Tools.” In Proceedings of the 2010 International Conference on Computer and Communication
Engineering, Kuala Lumpur, Malaysia, May 11–12, 2010, 1–6. Piscataway, NJ: Institute of Electrical and
Electronic Engineers, 2010.

Awais, M. M. “Recognition of Arabic Phonemes Using Fuzzy Rule Base System.” In Proceedings of the 7th
International Multitopic Conference, Islamabad, Pakistan, December 8–9, 2003, 367–370. Piscataway, NJ:
Institute of Electrical and Electronic Engineers, 2003.

Bache, K., and M. Lichman. “University of California, Irvine, Machine Learning Repository.” Irvine:
University of California, 2013. http://archive.ics.uci.edu/ml/index.html.

Bagirov, A. M., J. Ugon, and D. Webb. “An Efficient Algorithm for the Incremental Construction of a Piecewise
Linear Classifier.” Journal of Information Systems 36, no. 4 (2011): 782–790.

Biadsy, Fadi, Pedro J. Moreno, and Martin Jansche. “Google's Cross-Dialect Arabic Voice Search.”
In Proceedings of the 2012 IEEE International Conference on Acoustics, Speech, and Signal Processing, Kyoto,
Japan, March 25–30, 2012, 4441–4444. Piscataway, NJ: Institute of Electrical and Electronic Engineering, 2012.

Bourouba, H., R. Djemili, M. Bedda, and C. Snani. “New Hybrid System (Supervised Classifier/HMM)
for Isolated Arabic Speech Recognition.” In Proceedings of the 2nd Conference on Information and
Communication Technologies, Damascus, Syria, April 24–28, 2006, 1264–1269. Piscataway, NJ: Institute of
Electrical and Electronic Engineering, 2006.

Cole, Ron, and Mark Fanty. “ISOLET Data Set.” University of California, Irvine, Machine Learning
Repository. Irvine: University of California, 1994. https://archive.ics.uci.edu/ml/datasets/ISOLET.

Dash, Manoranjan, Huan Liu, Peter Scheuermann, and Kian Lee Tan. “Fast Hierarchical Clustering and Its
Validation.” Data and Knowledge Engineering 44, no. 1 (2003): 109–138.

Dietterich, Thomas G., and Ghulum Bakiri. “Solving Multiclass Learning Problems via Error-Correcting
Output Codes.” Journal of Artificial Intelligence Research 2, no. 1 (1995): 263–286.

Duin, Robert P. W. “Multiple Features Data Set.” University of California, Irvine, Machine Learning
Repository. Irvine: University of California, 2013. http://archive.ics.uci.edu/ml/datasets/
Multiple+Features.

Edelman, Gerald M., and Vernon B. Mountcastle. The Mindful Brain: Cortical Organization and the Group-
Selective Theory of Higher Brain Function. Cambridge, MA: Massachusetts Institute of Technology Press, 1978.

Essa, E. M., A. S. Tolba, and S. Elmougy. “A Comparison of Combined Classifier Architectures for Arabic
Speech Recognition.” In Proceedings of the 2008 International Conference on Computer Engineering and
Systems, Cairo, Egypt, November 25–27, 2008, 149–153. Piscataway, NJ: Institute of Electrical and Electronic
Engineering, 2008.

Gevaert, Wouter, Georgi Tsenov, and Valeri Mladenov. “Neural Networks Used for Speech Recognition.”
Journal of Automatic Control 20, no. 1 (2010): 1–7.

Ji, You, and Shiliang Sun. “Multitask Multiclass Support Vector Machines.” In Proceedings of the 11th
International Conference on Data Mining Workshops), Vancouver, BC, December 11, 2011, 512–518.
Piscataway, NJ: Institute of Electrical and Electronic Engineering, 2011.

Klautau, Aldebaro. “The MFCC,” 2012. www.cic.unb.br/~lamar/te073/Aulas/mfcc.pdf.

http://archive.ics.uci.edu/ml/index.html
https://archive.ics.uci.edu/ml/datasets/ISOLET
http://archive.ics.uci.edu/ml/datasets/Multiple+Features
http://archive.ics.uci.edu/ml/datasets/Multiple+Features
http://www.cic.unb.br/~lamar/te073/Aulas/mfcc.pdf

Chapter 8 ■ Cortical Algorithms

165

Hashmi, Artif G., and Mikko. H. Lipasti. “Discovering Cortical Algorithms”. In Proceedings of the International
Conference on Fuzzy Computation and International Conference on Neural Computation, Valencia, Spain,
October 24–26, 2010, 196–204.

Manie, Mohammed A. Al-, Mohammed I. Alkanhal, and Mansour M. Al-Ghamdi. “Automatic Speech
Segmentation Using the Arabic Phonetic Database.” In Proceedings of the 10th WSEAS International
Conference on Automation and Information, Prague, Czech Republic, March 23–25, 76–79. Stevens Point,
Wisconsin: World Scientific and Engineering Academy and Society, 2009.

Mohler, Cleve. “Exponential Function.” Chap. 8 in Experiments with MATLAB. MathWorks, 2011.
www.mathworks.com/moler/exm/chapters/exponential.pdf.

Mosa, Ghassaq S., and Abduladhem Abdulkareem Ali. “Arabic Phoneme Recognition Using Hierarchical Neural
Fuzzy Petri Net and LPC Feature Extraction.” Signal Processing: An International Journal 3, no. 5 (2009): 161–171.

Mutch, Jim, Ulf Knoblich, and Tomaso Poggio. “CNS: A GPU-Based Framework for Simulating
Cortically-Organized Networks.” Technical Report, Massachusetts Institute of Technology, 2010.

Newman, Daniel. “The Phonetics of Arabic.” Journal of the American Oriental Society 46 (1984): 1–6.

Obaid, Manal El-, Amer Al-Nassiri, and Iman Abuel Maaly. “Arabic Phoneme Recognition Using Neural
Networks.” In Proceedings of the 5th WSEAS International Conference on Signal Processing, Istanbul,
Turkey, May 27–29, 2006, 99–104. Stevens Point, Wisconsin: World Scientific and Engineering Academy
and Society, 2006.

Perkins, Simon, and James Theiler. “Online Feature Selection Using Grafting.” In Proceedings of the Twentieth
International Conference on Machine Learning, Washington, DC, August 21–24, 2003, 592–599. Menlo Park,
CA: Association for the Advancement of Artificial Intelligence, 2003.

Satori, Hassan, Mostafa Harti, and Nouredine Chenfour. “Introduction to Arabic Speech Recognition Using CMU
Sphinx System.” In Proceedings of the Information and Communication Technologies International Symposium,
Fez, Morocco, April 3–5, 2007, edited by Mohammad Essaaidi, Mohammed El Mohajir, Badreddine El Mohajir,
and Paolo Rosso, 139–142. Piscataway, NJ: Institute of Electrical and Electronic Engineers, 2007.

Sehgal, M. S. B., Iqbal Gondal, and Laurence Dooley. “A Hybrid Neural Network Based Speech Recognition
System for Pervasive Environments.” In Proceedings of the 8th International Multitopic Conference, Lahore,
Pakistan, December 24–26, 2004, 309–314. Piscataway, NJ: Institute of Electrical and Electronic Engineers, 2004.

Shenouda, Sinout D., Fayez W. Zaki, and A. M. R. Goneid. “Hybrid Fuzzy HMM System for Arabic
Connectionist Speech Recognition.” In Proceedings of the Twenty-Third National Radio Science Conference,
Monufia, Egypt, March 14–16, 1–8. Piscataway, NJ: Institute of Electrical and Electronic Engineers, 2006.

Slate, David J. “Letter Recognition Data Set.” University of California, Irvine, Machine Learning Repository.
Irvine: University of California, 1991. http://archive.ics.uci.edu/ml/datasets/Letter+Recognition.

Tan, Peter J., and David L. Dowe. “MML Inference of Decision Graphs with Multi-Way Joins and Dynamic
Attributes.” In AI 2003: Advances in Artificial Intelligence; Proceedings of the 16th Australian Conference on
AI, Perth, Australia, December 3–5, 2003, edited by Tamás Domonkos Gedeon and Lance Chun Che Fung,
269–281. Berlin: Springer, 2003.

Alpaydin, E., and Fevzi Alimoglu. ”Pen-Based Recognition of Handwritten Digits Data Set.” University of
California, Irvine, Machine Learning Repository. Irvine: University of California, 1998. https://archive.
ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits.

Vision Group. “Image Segmentation Data Set.” University of California, Irvine, Machine Learning Repository.
Irvine: University of California, 1990. https://archive.ics.uci.edu/ml/datasets/Image+Segmentation.

Wittner, Ben S., and John S. Denker. “Strategies for Teaching Layered Networks Classification Tasks.” In
Neural Information Processing Systems: Denver, CO, 1987, edited by Dana Z. Anderson, 850–859. Berlin:
Springer, 1988.

http://www.mathworks.com/moler/exm/chapters/exponential.pdf
http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Image+Segmentation

167

Chapter 9

Deep Learning

Any fool can know. The point is to understand.

—Albert Einstein

Artificial neural networks (ANNs) have had a history riddled with highs and lows since their inception.
At a nodal level, ANNs started with highly simplified neural models, such as McCulloch-Pitts neurons
(McCulloch and Pitts 1943), and then evolved into Rosenblatt’s perceptrons (Rosenblatt 1957) and a
variety of more complex and sophisticated computational units. From single- and multilayer networks, to
self-recurrent Hopfield networks (Tank and Hopfield 1986), to self-organizing maps (also called Kohonen
networks) (Kohonen 1982), adaptive resonance theory and time delay neural networks among other
recommendations, ANNs have witnessed many structural iterations. These generations carried incremental
enhancements that promised to address predecessors’ limitations and achieve higher levels of intelligence.
Nonetheless, the compounded effect of these “intelligent” networks has not been able to capture the true
human intelligence (Guerriere and Detsky 1991; Becker and Hinton 1992). Thus, Deep learning is on the
rise in the machine learning community, because the traditional shallow learning architectures have proved
unfit for the more challenging tasks of machine learning and strong artificial intelligence (AI). The surge
in and wide availability of increased computing power (Misra and Saha 2010), coupled with the creation
of efficient training algorithms and advances in neuroscience, have enabled the implementation, hitherto
impossible, of deep learning principles. These developments have led to the formation of deep architecture
algorithms that look in to cognitive neuroscience to suggest biologically inspired learning solutions. This
chapter presents the concepts of spiking neural networks (SNNs) and hierarchical temporal memory (HTM),
whose associated techniques are the least mature of the techniques covered in this book.

Overview of Hierarchical Temporal Memory
HTM aims at replicating the functional and structural properties of the neocortex. HTM incorporates a
number of insights from Hawkins’s book On Intelligence (2007), which postulates that the key to intelligence
is the ability to predict. Its framework was designed as a biomimetic model of the neocortex that seeks
to replicate the brain’s structural and algorithmic properties, albeit in a simplified, functionally oriented
manner. HTM is therefore organized hierarchically, as depicted generically in Figure 9-1. All levels of
hierarchy and their subcomponents perform a common computational algorithm.

Chapter 9 ■ Deep Learning

168

Figure 9-1.  An HTM network’s hierarchical structure

Deep architectures adopt the hierarchical structure of the human neocortex, given the evident
existence of a common computational algorithm in the brain that is pervasive throughout the neocortical
regions and that makes the brain deal with sensory information—visual, auditory, olfactory, and so on—in
very similar ways. Different regions in the brain connect in a hierarchy, such that information flowing up
coalesces, building higher and more complex abstractions and representations of the sensory stimuli at
each successive level. The brain’s structure, specifically the neocortex, evolved to gain the ability to model
the structure of the world it senses. At its simplest abstraction the brain can be viewed as a biological data
processing black box that discovers external causes in an environment that imposes massive amounts of
data on its inputs (senses). The causes of this continuous stream of information are by nature hierarchical,
in both space and time. These causes serve as a collection of smaller building blocks that combine to form
a larger picture of the world. For instance, speech can be broken down into sentences, sentences into word
utterances, word utterances into phonemes, and so on. With digital imagery, pixels combine into edges,
edges into contours, contours into shapes, and, finally, shapes into objects. Every sensed object in the world
reveals a similar structure perceived at varying levels of granularity. It is this hierarchically organized world
that the neocortex and therefore HTM, by imitation, aim at modeling. This modeling happens in HTM at
every level.

In HTM the lowest-level nodes of the network are fed sensory information. This information can be raw
or preprocessed, depending on the task the network is performing. The nodes learn the most basic features
of the data stream by discerning repeatable patterns and the sequences in which these patterns occur and
storing them either via local memory structures or via connectivity configurations. These basic patterns and
sequences are then used as building blocks at higher levels to form more complex representations of sensory
causes. As information travels up the hierarchy, the same learning mechanics are used as higher and higher
abstractions of the input patterns are formed. Information can also flow down the hierarchy. This enables
the network to act as a generative model, in which higher levels bias lower levels by communicating their
internal states to fill in missing input data or resolve ambiguity, or both (Hawkins 2007).

Hierarchical Temporal Memory Generations
HTM has seen so far two generations during its evolution. The underlying implementation in the first
generation of computational algorithms, called Zeta 1, is strongly rooted in the Bayesian belief propagation
(BBP) and borrows many of its computations and rules of convergence from that theory. In this earlier
version, which is now sunset, HTM used a variation of BBP. BBP is used in Bayesian networks, whereby,
under certain topological constraints, the network is ensured to reach an optimal state in the time it takes a

Chapter 9 ■ Deep Learning

169

message to traverse the network along the maximum path length. Thus, BBP forces all nodes in a network to
reach mutually consistent beliefs. The state of these nodes is encoded in probabilistic terms, and Bayesian
theory is used to process and fuse information. HTM can be thought of as a Bayesian network with some
additions to allow for handling time, self-training, and discovery of causes.

The second-generation algorithms were created to make the framework more biologically feasible.
Functionally, many of the concepts of invariant representation and spatial and temporal pooling were
carried over by reference to principles of sparse distributed representation (SDRs) and structural change.
Nodes were replaced with closer analogues of cortical columns with biologically realistic neuron models,
and connectivity was altered to allow strong lateral inhibition (Edelman and Mountcastle 1978). Cortical
columns are a collection of cells characterized by common feedforward connections and strong inhibitory
interconnections (Edelman and Mountcastle, 1978).

Second-generation algorithms—initially referred to as fixed-density distributed representations (FDRs)
and now simply called HTM cortical learning algorithms (CLAs)—replace Zeta 1. In lieu of the “barrel”
hierarchy, with its clean-cut receptive fields, each level in the updated framework is a continuous region
of cells stacked into columns that act as a simplified model of Edelman and Mountcastle’s (1978) cortical
columns. Figure 9-2 depicts the structure of HTM, with cells organized into columns, columns into levels,
and levels into a hierarchy of cortical regions.

Figure 9-2.  HTM structure

Whereas Zeta 1 was strongly rooted in Bayesian theory—specifically, in belief propagation—CLA is
founded on the principles of SDR. To understand the underlying implementation of CLA, a discussion of
SDR and how it is fundamental to HTM theory is necessary.

The architecture suggested for the first-generation HTM model was strongly influenced by the
Bayesian rules it implemented. It benefited from the structural characteristics of the neocortex, namely, its
hierarchical organization; however, nodes diverged from their biological counterparts. In short, functional
modeling was the emphasis. In CLA, HTM abandons these roots and adheres more strictly to neocortical
structural guidelines. The result is a neuron model, known in this context as an HTM cell. Figure 9-3 depicts
the model put forward by Hawkins, Ahmad, and Dubinsky (2011). These cells are more realistic and
biologically faithful than those used in traditional ANNs.

Chapter 9 ■ Deep Learning

170

HTM cells have two types of incoming connection structures: proximal dendrites and distal dendrites.
Dendritic segments of both types are populated by synapses that connect them to other neighboring cells.
These synaptic connections are binary, owing to the stochastic nature of real neurons. Because Hawkins,
Ahmad, and Dubinsky (2011) posited that any algorithm that aims at emulating the brain cannot rely on the
precision or fidelity of individual neurons, HTM cells were modeled to have binary, nonweighted synapses;
meaning, they are either connected or not. To account for a real neuron’s ability to retract and extend to
form connections, HTM cell synapses are assigned a parameter, called permanence. Permanence is a scalar
value between 0 and 1 that is incremented or decremented, based on a synapse’s contribution to activity.
When permanence is above a predefined threshold, a synapse becomes connected. Therefore, all synapses
in CLA are potential synapses. They are dynamic elements of connectivity.

Proximal dendrites are responsible for feedforward connectivity between regions. These dendrites
are populated by a set of potential synapses that are associated with a subset of an input to an HTM region.
The dendrites are shared by all the cells of a column (shared feedforward connectivity) and act as linear
summation units. Distal dendrites are responsible for lateral connections across a single region. Several
segments are associated with a distal dendrite. These segments act as a set of threshold coincidence
detectors, meaning that, when enough connections are active at one time, they trigger a response in the
receiving cell. It is enough for one segment to be active to trigger a response in the cell (OR gate). Each
segment connects an HTM cell to a different subset of neighboring cells. The activity of those cells is
monitored and allows the receiving cell to enter a predictive state. This is essentially the root of prediction in
an HTM network: every cell continuously monitors the activity of surrounding cells to predict its own.

Finally, an HTM cell has two binary outputs. The first output, owing to proximal connections, forces
the cell into an active state if enough activation is present. The second output, owing to distal connections,
forces the cell into a predictive state if enough neighbor activity is present; the cell expects to be activated
soon. This enables HTM to act in a predictive manner and react to sequences of input. Finally, the output of
the HTM cell is the OR of these two outputs. This is what regions higher up in the hierarchy receive as input.
Figure 9-4 shows an example of activation of cells in a set of HTM columns: at any point, some cells will be
active, as a result of feedforward input (dark gray), whereas other cells, receiving lateral input from active
cells, will be in a predictive state (light gray).

Figure 9-3.  An HTM cell/neuron model

Chapter 9 ■ Deep Learning

171

Sparse Distributed Representation
CLA borrows many of its principles of operation for its biological analogue. The neocortex is made up of
more than 1011 highly interconnected neurons. Yet, it is still capable of reacting to stimuli with relatively
sparse activation levels. This is made possible by the vast amount of inhibitory connections. Inhibition
guarantees that only a small number of neurons are activated at any one time. Furthermore, CLA
implements the same encoding strategy as SDR. Using lateral synaptic connections, strongly stimulated
neural columns inhibit nearby activity, thus reducing the number of active columns and yielding a sparse
internal representation of the input pattern or stimuli. This internal representation is also distributed, that is,
spread out across a region.

Because active bits are sparse, knowledge of a subset of them still carries information about the input
pattern, in contrast to other representations, such as ASCII code. With ASCII code an individual bit is
meaningless; SDR, therefore, injects a representational quality into individual activations. Because only a
tiny fraction of possibly a large number of neurons are active, whatever semantic meaning a single neuron
gains becomes specific to a limited number of similar patterns. Consequently, even a subset of the active
neurons of a pattern can be a good indicator of it. The theoretical loss of information that results from
enforcing this kind of sparseness does not have a practical effect (Hawkins, Ahmad, and Dubinsky 2011).

Algorithmic Implementation
Contrary to the first generation, separation of the learning phase from the inference phase does not offer
much insight into the rules of operation of HTM. In CLA, learning, inference, and—most important—
prediction occur harmoniously. Each level of the hierarchy is always predicting. Learning by the lower nodes
can be turned off when they stabilize; it occurs online in tandem with prediction, when activated.

Figure 9-4.  HTM columns

Chapter 9 ■ Deep Learning

172

Therefore, it is best to consider the operation of CLA in terms of its pooling functions. The following two
sections discuss the theory behind spatial and temporal pooling in second-generation algorithms and show
how they are implemented in the cortical network, as suggested by Hawkins, Ahmad, and Dubinsky (2011).

Spatial Pooler
The role of the spatial pooler is the same in CLA as in Zeta 1. Input patterns that are spatially similar should have a
common internal representation. The representation should be not only robust to noise, but also sparse to abide
by the principles of SDR. These goals are achieved by enforcing competition between cortical columns. When
presented with input data, all columns in an HTM region will compute their feedforward activation. Columns that
become active are allowed to inhibit neighboring columns. In this way, only a small set of strongly active columns
can represent a cluster of similar inputs. To give other columns a fair chance at activation and ensure that all
columns are used, a boosting factor is added. This enables weak columns to better compete.

For each of the active columns, permanence values of all the potential synapses are adjusted, based on
Hebbian learning rules. The permanence values of synapses aligned with active input bits are increased,
whereas permanence values of synapses aligned with inactive input bits are decreased. Figure 9-5 shows a
flow chart of the phases involved.

Figure 9-5.  Spatial pooler flowchart

Chapter 9 ■ Deep Learning

173

The spatial pooling operations are as follows:

•	 Phase 0 (corresponding to initialization): Each column is randomly assigned
a random set of inputs (50 percent of the input vector), which is referred to as
the potential pool of the column. Each input within this pool is represented by
a potential synapse and assigned a random permanence value. The choice of
permanence value is decided according to the following criteria:

Values are chosen from within a small range around the permanence threshold. •	
This enables potential synapses to become connected (or disconnected) after a
small number of training iterations.

Each column has a natural center over the input region, and the permanence •	
values have a bias toward this center, with higher values near the center.

•	 Phase 1 (corresponding to overlap): The overlap for each column is computed as the
number of connected synapses with active inputs multiplied by its boost. If this value
is below a predefined threshold (“minOverlap”), the overlap score is set to 0.

•	 Phase 2 (corresponding to inhibition): The number of winning columns in a local
area of inhibition (neighborhood of a column) is set to a predefined value, N. A
column is a winner if its overlap score is greater than the score of the Nth highest
column within its inhibition radius. A variation of this inhibition strategy that is
significantly less computationally demanding is picking the columns with the
highest overlap scores for every level of the hierarchy.

•	 Phase 3 (corresponding to learning): During this phase, updates to the permanence
values of all synapses are performed as necessary as well as to the parameters,
such as boost and inhibition radius. For winning columns, if a synapse is active,
its permanence value is incremented; if inactive, it is decremented. There are two
separate boosting mechanisms in place to help a column learn connections. If a
column does not win often enough, its overall boost value is increased; alternatively,
if a column’s connected synapses do not overlap well with any inputs often enough,
its permanence values are boosted. This phase terminates with updating the
inhibition.

Temporal Pooler
With winning columns calculated by the spatial pooler, the HTM network gains insight into what pattern
it may be seeing at its input. What it lacks is context. Any one pattern can occur as part of a large number
of sequences, that is, in multiple contexts. Essential to HTM theory is the ability to predict through the
learning of sequences. In CLA sequential learning happened using multiple cells per column. All the cells
in a column share feedforward activation, but only a subset (usually a single cell) is allowed to be active.
This means that the same pattern, represented by the same set of columns, can be represented by different
cells in each column, depending on the context in which the pattern occurs. On a cellular level each of a
cell’s dendritic distal segments has a set of connections to other cells in the same region, which is used to
recognize the state of the network at some point in time. Cells can predict when they will become active by
looking at their connections. A particular cell may be part of dozens or hundreds of temporal transitions.
Therefore, every cell has several dendrite segments, not just one.

There are three phases involved with temporal pooling. In the first phase each cell’s active state
is computed. Phase 2 computes each cell’s predictive state. In Phase 3, synapses are updated by either
incrementing or decrementing their permanence values. Following is the general case, in which both
inference and learning are taking place, with the caveat that the learning phase in CLA can be switched off.

Chapter 9 ■ Deep Learning

174

•	 Phase 1: For every winning column the active state of each of its cells is computed
here. Also, a cell is designated a learning cell. If any of the cells is in a predictive
state, owing to its lateral connections, it is put in an active state. If a learning cell
contributed to its lateral activation, the cell is chosen as a learning cell, too. In
contrast, if no cell in the column is in a predictive state, all the cells are turned active
to indicate that the context is not clear—a process called bursting. Additionally, the
best matching cell becomes the learning cell, and a new distal segment is added to
that cell.

•	 Phase 2: Once all the cells in the winning columns are updated, their states can be
used for prediction in the cells of other columns. Every cell in the region computes
its lateral/distal connection. If any of a cell’s segments are activated, owing to
feedforward activation in other cells, the cell is put in a predictive state. The cell then
queues up the following changes:

Reinforcement of the currently active segment by incrementing the permanence •	
values for active synapses and decrementing the values for synapses that are
inactive

Reinforcement of a segment that could have predicted this activation, that is, a •	
segment that has a (potentially weak) match to activity in the previous time step

•	 Phase 3: This is the phase in which learning occurs, by deciding which of the
queued-up updates are to be committed. Temporary segment updates are
implemented once you have feedforward input and a cell is chosen as a learning
cell. Thus, you update the permanence of synapses only if they correctly predicted
the feedforward activation of the cell; otherwise, if the cell stops predicting for any
reason, the segments are negatively reinforced.

Related Work
Zhituo, Ruan, and Wang (2012) used multiple HTMs in a content-based image retrieval (CBIR) system,
which leverages the categorical semantics of a query image, rather than low-level image features, for image
indexing and retrieval. Using ten individual HTM networks with some training and testing datasets of size
50 each, recall rates greater than 95 percent were achieved for four of the five categories involved and greater
than 70 percent for the fifth category.

Bobier (2007) recreated a handwritten digit recognition experiment on the United States Postal
Service database reported by Numenta (Hawkins’s company) to have achieved a 95 percent accuracy rate.
The digit images were binarized and fed to the network at varying parameters to reach a maximum rate of
96.26 percent—which, the authors noted, was not up to par, compared with other classifiers, such as support
vector machine (SVM), which delivered higher rates in a fraction of the computational time.

Kostavelis, Nalpantidis, and Gasteratos (2012) presented a biologically inspired object recognition
system. Saliency maps were used to emulate visual fixation and reveal only the relevant parts of the image,
thus reducing the amount of redundant information presented to the classifier. The authors chose to
substitute the temporal pooler with a correlation-based alternative, using the ETH-80 and supervised
learning at the top node. The system outperformed other HTM-based implementations with both SVM and
k-NN as top-level supervisors.

Sinkevicius, Simutis and Raudonis (2011) explored using HTM for human traffic analysis in public
spaces. Two HTM networks were designed: one for human detection, the other for direction of movement
detection. An experiment involving use of an overhead camera, mounted on a doorway, was performed, and
detection performance was evaluated, using multiple scenarios of varying difficulties. The average accuracy
achieved was 80.94 percent for pedestrian detection and 73.44 percent for directional detection.

Chapter 9 ■ Deep Learning

175

Boone et al. (2010) used HTM as an alternative to traditional computer vision techniques for diabetic
retinopathy. HTM primarily detected the optic nerve on retina images. The images were segmented into
fragments the size of an optic nerve and presented with labels (0 or 1) to HTM. Following supervised training
the HTM network was able to correctly classify 77.44 percent of the optic nerves presented, leading the
authors to conclude that HTM is not competitive with traditional techniques, despite its promise.

Zhuo et al. (2012) supplemented state-of-the-art image classification techniques with locality-
constrained linear coding (LLC), spatial pyramid matching (SPM), and HTM for feature pooling. Image
descriptors were extracted and encoded using LLC. The LLC codes were then fed to HTM and multiscale
SPM to form an image vector. The system was evaluated using a Caltech 101 dataset and UIUC-Sport dataset,
with linear SVM as the classifier. Results showed an increase in accuracy for both datasets (73.5 percent
versus 71.2 percent and 86.7 percent versus 84.2, respectively), compared with the original LLC model.

Gabrielsson, Konig, and Johansson (2012) aimed at leveraging HTM to create a profitable software
agent for trading financial markets. A supervised training scheme was used for HTM, with intraday tick data
for the E-mini Standard and Poor’s 500 futures markets. The tuned model was used as a predictor of market
trends and showed at least comparable results when evaluated against ANNs.

Note■■   Most of the work making use of HTM has been carried out by the developer community established
by Numenta. Annual “hackathons” have produced multiple demos, in which CLA was employed for traffic
prediction, human movement prediction, tic-tac-toe simulation, infrared (IR) sensor prediction, and so on.
One of the more impressive demos, on music analysis and prediction, shows the use of MIDI note sequencing for
training; a melody was learned after 25 epochs (http://numenta.org/blog/2013/06/25/hackathon-outcome.

html#jin-danny-stan). Currently, research is being undertaken on a CLA model for use in natural language
processing (NLP). An example is available on the GitHub web site (https://github.com/chetan51/linguist).
However, more research and validation are needed to compare HTM performance with the state-of-the-art
machine learning approaches the model claims to be superior or similar to. With HTM reported performances,
the community has yet to see where HTM has the upper hand.

Overview of Spiking Neural Networks
SNNs are biologically inspired networks and belong to the third generation of ANNs. It seems for ANNs that
any improvement on the performance should be based on the neuron model. The neuron model in the
second generation of ANNs is based on a simplified model of the actual neuron which ignores the actual
way of encoding the information between neurons and the type of this information. SNNs are similar to the
ANNs architecture which consists of one or more layers of connected neurons, but differ in the neuron’s
model and the type of the activation function. In contrast with the second generation of ANNs which
utilize time-missing continuous activation functions, SNNs rely on the spike timing in their learning and
activation phases. SNNs strive to mimic human neurons, in using spikes to transmit and learn the spatio- and
spectrotemporal data (SSTD) that are encoded with the location of the synapses, for the spatial data, and
with the spiking-time activities, for the temporal data.

SNNs and their variants have been used in many applications, such as character recognition (Gupta and
Long 2007), sign language recognition (Schliebs, Hamed, and Kasabov 2011), visual and auditory pattern
recognition (Wysoski, Benuskova, and Kasabov 2006, 2007), image clustering (Meftah et al. 2008), car crash
identification (Kasabov et al. 2013), human behavior recognition (Meng, Jin, and Yin 2011), breast cancer
classification (O’Halloran et al. 2011), human localization in sensor networks (Obo et al. 2011), intrusion
detection (Budjade 2014; Demertzis and Illiadis 2014), electroencephalography (EEG) spatio-/spectrotemporal

http://numenta.org/blog/2013/06/25/hackathon-outcome.html#jin-danny-stan
http://numenta.org/blog/2013/06/25/hackathon-outcome.html#jin-danny-stan
https://github.com/chetan51/linguist

Chapter 9 ■ Deep Learning

176

pattern recognition (Kasabov et al. 2013), and taste recognition (Soltic and Kasabov 2010). Generally, SNNs
are not as popular as other methods of machine learning, owing to their high computational cost.

To understand how SNNs differ from ANNs, it is necessary to examine the most common models of
human neurons: the Hodgkin-Huxley model, the integrate-and-fire model, the leaky integrate-and-fire
model, the Izhikevich model, and Thorpe’s model. These models are covered in the following sections.

Hodgkin-Huxley Model
The Hodgkin-Huxley model formulates the propagation of action potential in neurons and may be
considered the basis of the other models. Hodgkin and Huxley modeled the electrochemical information
of natural neurons after the giant axon of the squid. The model consists of four differential equations
describing the change in electrical charge on the part of the neuron’s membrane capacitance as functions of
voltage (V

m
) and current (I(t)),

C
du

dt
g m h u E g n u E g u E I tNa Na K K L L= - -() - -() - -() +3 4 ()

t t tn m h

dn

dt
n n u

dm

dt
m m u

dh

dt
h h u= - - ()éë ùû = - - ()éë ùû = - - ()éë ù0 0 0, , ûû ,

where

I(t) is the input current caused by the presynaptic potentials

�g
Na

, g
K
, g

L
 are the conductance parameters for the sodium and potassium ion channels and

the leak per unit area, respectively

E
Na

, E
K
, E

L
 are the equilibrium potentials

m, n, h are dimentionless variables that are governed by three other differential equations

Because of the complexity of these equations, caused by the nonlinearity and four-dimensionality of the
data, several simpler forms were proposed for practical implementation. We discuss some of these proposals
in the following sections.

Integrate-and-Fire Model
The integrate-and-fire model is derived from the Hodgkin-Huxley model but neglects the shape of the potential
actions. This model assumes that all potential actions are uniform but differ in the time of occurrence. As a
result for the previous simplification, all the spikes have the same characteristics such as shape, width, and
amplitude. The membrane capacitance and postsynaptic potential (PSP) are given by the equations

C
du

dt R
u t u Irest= - -() +1

() ()t

u t with u tf f() () ,() = () >J ‘ 0

where

u
rest

 is the membrane potential of the neuron at the initial state

J is the threshold value at which the neuron fires

t( f ) is the spike firing time

I(t) is the input current, caused by the presynaptic potentials

Chapter 9 ■ Deep Learning

177

Leaky Integrate-and-Fire Model
The leaky integrate-and-fire model differs from the integrate-and-fire model, in that the membrane potential
of the neuron decays over time if no potentials reach the neuron. When the membrane potential u(t) of
the neuron reaches a specific threshold J at time t, called the spiking time t( f ), and the u(t) satisfies the
u`(t( f )) > 0 condition, the neuron emits a spike immediately. Then, the neuron goes under an absolute
refractory period u

abs
 which means that the neuron will neglect any effect of the arriving spikes during this

period. The refractory period lasts for a specific time d
abs

; the membrane potential of the neuron during
this period is

u(t) = –u
abs

,

where u
abs

 is the refractoriness potential.
When d

abs
 expires, the membrane potential returns to the u

rest
 value. The membrane potential is

given by:

tm

du

dt
u u t RI t= - () +rest (),

where

t
m

 is the time constant of the neuron membrane

u
rest

 is the membrane potential of the neuron at the initial state

I(t) is the input current, caused by the presynaptic potentials

R is the equivalent resistance of the neuron model.

Izhikevich Model
The Izhikevich model is a tradeoff between biological plausibility and computational efficiency. This model
uses the following two differential equations to represent the activities of the membrane potential:

du

dt
u t u t w t I t= () + () + - () +0 04 5 140

2
. ()

dw

dt
a bu t w t= () - ()().

The after-spiking action is described by the term below where membrane potential and recovery
variable are reset

if u ³ J, then u ¬ c, and w ¬ w + d.

Here, u represents the membrane potential, and w represents a membrane recovery variable that
provides –ve feedback to u. a, b, c, and d are the dimensionless parameters. Due to the simplicity of this
model, large number of neurons can be simulated of a compute machine.

Chapter 9 ■ Deep Learning

178

Thorpe’s Model
Thorpe’s model is a variation of the integrate-and-fire model that takes into consideration the order of the
spikes as they reach the neuron. Thorpe’s model is suitable for many applications, because it uses the simple
mathematical representation:

PSP w modi ji
orderj=å * ,

where

w
ji
 is the weight or efficiency of synapsis between neuron j and neuron i

mod is a modulation factor Î[0,1]

�order
j
 is the firing order of the presynaptic neuron j, where j Î[1, n–1], and n is the number of

presynaptic neurons connected to neuron i

The weights in this model are updated according to

D =w modji
orderj .

Thorpe’s model makes stronger connections with the connected neurons that fire and reach the current
neuron early. Spiking occurs whenever PSP

i
 reaches a threshold value PSPqi

. After the spiking, PSP
i
 is

immediately set to 0, such that:

PSP
PSP P when PSP PSP

whi
i ji i i=
+ < q

0 een PSP PSPi i

.
³

ì
í
î q

This method allows a fast and real-time simulation of large networks.

Information Coding in SNN
Information coding in neurons has long been the subject of lively debate, in terms of whether the
information in the neuron is coded as rate coding or spike coding. Recent studies have shown that the
information is encoded as spike coding, because rate coding is insufficient as a representation of the ability
of neurons to process information rapidly.

Rank coding is very efficient and can achieve the highest information coding capacity. Rank coding
starts by converting the input values into a sequence of spikes, using the Gaussian receptive fields. The
Gaussian receptive fields consist of m receptive fields that are used to represent the input values n as spikes.
Assuming that n takes values from the range [,]I Imin

n
max
n , the Gaussian receptive field for the neuron i is given

by its center u
i
,

u I
i I I

Mi min
n max

n
min
n

= +
- -

-
2 3

2 2
* ,

and the width s,

s
b

=
-
-

1

2
*

I I

M
max
n

min
n

,

where b is a parameter that controls the width of the receptive field with 1 £ b £ 2.
Unlike the common learning methods, which depend on the rate of spiking, SNNs use a variant of Hebb’s

rule to emphasize the effect of the spikes’ timing. The weight-updating mechanism is based on the interval
between the firing time of the presynaptic and postsynaptic neurons. Two types of neurons are involved in the
weights updating process; the neurons before the synapses of the current neuron (the presynaptic neurons)

Chapter 9 ■ Deep Learning

179

and the neuron after the synapses (the postsynaptic neuron). If the postsynaptic neuron fires right after the
postsynaptic neuron, then the connection between these two neurons is strengthened, such that the neuron’s
weight is given by:

if Dt ³ 0, then w
new

 ¬ w
old

 + Dw, where
Dt is the difference in firing time and it is equal tot

post
 – t

pre
.

If the presynaptic neuron fires right after postsynaptic neuron, then the connection between these two
neurons is weakened, such that

if t then w w wnew oldD < ¬ -D0, .

When the firing time of the postsynaptic neuron does not occur immediately after the firing time of the
presynaptic neuron, the weights are not updated.

The preceding discussion addresses the excitatory connection. The inhibitory connection uses a
simple process, as it does not take into account the interval between the firing time of the presynaptic and
postsynaptic neurons.

Learning in SNN
The most popular algorithms developed for SNN are the SpikeProp and the Theta learning rule. SpikeProp is
similar to the backpropagation algorithm that was designed to adjust the weights in the second generation
of the neural networks. The Theta learning rule uses the quadratic integrate and fire (QIF) neuron model.
Both of these algorithms are very sensitive to the parameters of the neuron model, and sometimes these
algorithms suffer spike-loss problems. Spike loss occurs when the neuron does not fire for any patterns
and hence cannot be recovered by the gradient method. Another approach for training SNNs is using
evolutionary strategies that do not suffer from the tuning sensitivity, but these are computationally intensive
and costly.

Assume H, I and J are the input layer, the hidden layer and the output layer respectively. Each neuron
from a specific layer is represented by the lower cases i, h and j. The set of neurons that are preceding the
neuron i are denoted by G

i
 while the neurons that are succeeding the neuron i are denoted by Gi. Each

connection between two neurons in the consecutive layers is consisted of m Î{1..m} subconnections where
each has a constant incremental delay d

k
 and a weight wij

k
 with k Î{ .. }1 m . t

i
, t

h
 and t

j
 represent the spike time

of the neuron in the respective layers, while t ti h
 , and t j

 represent the actual spike time in the respective layers.
The response function of the neuron i is given by:

y t t di
k

i k t ti i
= - -() =
e |



with:

e
t

tt
t

e
t

() =
-1

x t w y tj
i k

m

ij
k

i
k

t t
j

i i
() =

Î =
=åå () |

G 1



Where t is the membrane constant.

Chapter 9 ■ Deep Learning

180

Weights updating from the output layer to the hidden layer is given by

D = -
= =

w yij
k

i
k

t t t tj
i i j j

h.d . |
, 

where

d j
j t t

j

j x x

E

t

t

x
j j j j

=
¶
¶

¶

¶
= = 

.

=
-
¶
¶ = =

=Î
åå

T t

w
t

y

j j

ij
l

i
l

t t t t
l

m

i i i j j
j



 

()
,

1G

Weights updating from the hidden layers to the input layer is given by

D = -
= =

w yhi
k

i h
k

t t t ti i h h
h. . |

,
d

 

Where

di
i t t

i

i x x

E

t

t

x
i i i i

=
¶
¶

¶
¶

= = 

.

=

¶
¶
¶
¶

= =
=Î

=

åå d j ij
l

i
l

t t t t
l

m

j

hi
l

h
l

t t t

w
t

y

w
t

y

i i j ji

i i

()

()

,

,

 



1G

hh h
i

t
l

m

h
=

=Î
åå



1G

The weaknesses of the SpikeProp algorithm include the following:

The membrane potential of neurons is calculated at fixed time-step intervals.•	

There is no method for selecting the initial weights and the thresholds.•	

A reference neuron that spikes at t=0 is required.•	

Convergence is compromised owing to the insufficient spike response function.•	

SNN Variants and Extensions
Variants and extensions of SNNs are reviewed in the following sections.

Evolving Spiking Neural Networks
Evolving spiking neural networks (eSNNs) are a variant class of SNNs that have a dynamic architecture
(Schliebs and Kasabov 2013). eSNNs use Thorpe’s model and a population rank coding to encode information.
eSNNs combine evolving connectionist system (ECoS) (Kasabov 2007) architecture and SNNs. Compared with
SNNs, eSNNs have three advantages. First, eSNNs have a lower computational cost, as they are dependent
on a light neuron model, namely, Thorpe’s model. Second, the learning algorithm in eSNN is more effective
than those in SNNs, which are unable to converge 20 percent of the time (Thiruvarudchelvan, Crane, and
Bossomaier 2013). Third, eSNNs are online learning models, which gives them a clear advantage over other
techniques.

Chapter 9 ■ Deep Learning

181

Reservoir-Based Evolving Spiking Neural Networks
Reservoir computing (RC) is a framework of randomly and sparsely connected nodes (neurons) used to
solve complex dynamic systems. RC is divided into echo state machine (ESM) (Jaeger 2007) and liquid state
machine (LSM) (Maass, Natschläger, and Markram 2002; Maass 2010) types.

The LSM is a real-time computation model that accepts continuous streams of data and that generates
a high-dimensional continuous output stream. The LSM can be seen as a dynamic SVM kernel function. The
architecture of the LSM consists of a liquid and a readout function. A liquid may be seen as a filter that has
a trained architecture and that is used for general-purpose problem solving, such as recognizing different
kinds of objects from the same video stream. In contrast, a readout function is specific purpose, such
that different readout functions are used to recognize different objects from the same liquid. The readout
function should be a linear-discriminant and memory-less function.

Dynamic Synaptic Evolving Spiking Neural Networks
Dynamic synaptic evolving spiking neural networks (deSNNs) are a class of eSNNs that use dynamic weight
adjustments throughout the learning process (Kasabov et al. 2013). The dynamic updating of weights makes
the model more efficient at capturing the complex patterns of a problem. In deSNN the weights continue to
change slightly, according to the spikes arriving at the connection, as opposed to eSNN, in which the weights
are updated once.

Probabilistic Spiking Neural Networks
The neural model of the probabilistic spiking neural network (pSNN) (see Figure 9-6) uses three types of
probabilities (Kasabov 2010):

P
cj,i

(t), the probability that a spike emitted from neuron n
j
 reaches neuron n

i
 at a

time moment t through the connection cj,i between n
j
 and n

i
.

P
sj,i

(t), the probability that synapse s
j,i

 contributes to the PSP
i
(t) after receiving a

spike from neuron n
j 
.

P
i
(t), the probability that neuron n

i
 emits a spike after its PSP reaches the emitting

thresholds.

pj (t)

pi (t)

pcji (t)

psj,i (t), wji (t)

ni

ni

Figure 9-6.  The pSNN model

Chapter 9 ■ Deep Learning

182

The PSP of neuron n
i
 is given by:

PSP t e g P t p f P t p wi
p t t j m

j cj i sj i j i() = -() -()()
= ¼ =
å å

0 1, , ,..,
, , ,) (((),t

where

e
j
 is 1 if a spike has been emitted from neuron n

j
, and 0 otherwise

g(P
cj,i

(t – p)) is 1 with a probability of P
cj,i

(t), and 0 otherwise

g(P
sj,i

(t – p)) is 1 with a probability of P
sj,i

(t), and 0 otherwise

Conclusion
This and the preceding two chapters have covered four learning algorithms that relate to deep learning:
deep neural networks (DNNs), cortical algorithms (CAs), hierarchical temporal memory (HTM), and spiking
neural networks (SNNs). DNN is an established technique developed from a traditional AI perspective and
has shown robust results in many applications. CA, SNN, and HTM are biologically inspired techniques that
are less mature but that are regarded by advocates of biologically inspired computing as highly promising.
Traditional AI exponents, however, argue that DNN-related approaches will be the future winners in the
learning area. Which vision will prevail is a hotly contested issue.

But, instead of asking who is right and who is wrong, we might do better to frame the question in
terms of the context and aim of the learning sought. Are we seeking to create a universal form of machine
intelligence that replicates the capability of human intelligence to learn by inference from a few instances
for a wide variety of applications? Or, are we after computationally efficient learning frameworks that can
crush with brute force the big data collected from the Internet of Things (IOT) to develop models capable of
predictive and descriptive tasks?

As researchers have yet to agree on a unique definition of AI or on a golden metric for evaluating
learning algorithms, the intention of the present work is to provide readers with a general background and a
snapshot in time of this rapidly expanding subfield of deep learning.

References
Bobier, Bruce. “Handwritten Digit Recognition Using Hierarchical Temporal Memory,” 2007.

Boone, Aidan R. W., T. P. Karnowski, E. Chaum, L. Giancardo, Y. Li, and K. W. Tobin Jr. “Image Processing
and Hierarchical Temporal Memories for Automated Retina Analysis.” In Proceedings of the 2010 Biomedical
Sciences and Engineering Conference. Piscataway, NJ: Institute of Electrical and Electronic Engineers, 2010.

Budjade, Gaurav. “Intrusion Detection Using Spiking Neural Networks.” Master’s thesis, Rochester Institute
of Technology, 2014.

Demertzis, Konstantinos, and Lazaros Iliadis. “A Hybrid Network Anomaly and Intrusion Detection
Approach Based on Evolving Spiking Neural Network Classification.” In E-Democracy, Security, Privacy and
Trust in a Digital World: 5th International Conference, E-Democracy 2013, Athens, Greece, December 5–6,
2013, Revised Selected Papers, edited by Alexander B. Sideridis, Zoe Kardasiadou, Constantine P. Yialouris,
and Vasilios Zorkadis, 11–23. Cham, Switzerland: Springer, 2014.

Dileep, George. “How the Brain Might Work: A Hierarchical and Temporal Model for Learning and
Recognition.” PhD diss., Stanford University, 2008.

Chapter 9 ■ Deep Learning

183

Dileep, George, and Jeff Hawkins. “Towards a Mathematical Theory of Cortical Micro-Circuits.” PLoS
Computational Biology 5, no. 10 (2009). http://journals.plos.org/ploscompbiol/article?id=10.1371/
journal.pcbi.1000532.

Edelman, Gerald M., and Vernon B. Mountcastle. The Mindful Brain: Cortical Organization and the Group-
Selective Theory of Higher Brain Function. Cambridge, MA: Massachusetts Institute of Technology Press, 1978.

Gabrielsson, Patrick, R. Konig, and Ulf Johansson. “Hierarchical Temporal Memory-Based Algorithmic Trading
of Financial Markets.” In Proceedings of the 2012 IEEE Conference on Computational Intelligence for Financial
Engineering and Economics, 1–8. Piscataway, NJ: Institute of Electrical and Electronic Engineers, 2012.

Guerriere, Michael R. J., and Allan S. Detsky. “Neural Networks: What Are They?” Annals of Internal Medicine
115, no. 11 (1991): 906–907.

Gupta, Ankur, and Lyle N. Long, “Character Recognition Using Spiking Neural Networks.” In IJCNN 2007:
Proceedings of the 2007 International Joint Conference on Neural Networks, 53–58. Piscataway, NJ: Institute of
Electrical and Electronic Engineers.

Hawkins, Jeff. On Intelligence. New York: Times Books, 2007.

Hawkins, Jeff, Subutai Ahmad, and D. Dubinsky. “Hierarchical Temporal Memory, Including HTM Cortical
Learning Algorithms.” Technical report, Numenta, 2011.

Jaeger, Herbert. “Echo State Network.” Scholarpedia 2, no. 9: (2007): 2330.

Johnson, Stephen C. “Hierarchical Clustering Schemes.” Psychometrika 32, no. 3 (1967): 241–254.

Kasabov, Nikola. Evolving Connectionist Systems. London: Springer, 2007.

Kasabov, Nikola. “To Spike or Not to Spike: A Probabilistic Spiking Neuron Model.” Neural Networks 23, no. 1
(2010): 16–19.

Kasabov, Nikola, Kshitij Dhoble, Nuttapod Nuntalid, and Giacomo Indiveri. “Dynamic Evolving Spiking
Neural Networks for On-Line Spatio- and Spectro-Temporal Pattern Recognition.” Neural Networks 41
(2013): 188–201.

Kohonen, Teuvo. “Self-Organized Formation of Topologically Correct Feature Maps.” Biological Cybernetics
43.1 (1982): 141–152.

Kostavelis, Ioannis, Lazaros Nalpantidis, and Antonios Gasteratos. “Object Recognition Using Saliency
Maps and HTM Learning.” In Proceedings of the 2012 IEEE International Conference on Imaging Systems and
Techniques, 528–532. Piscataway, NJ: Institute of Electrical and Electronic Engineers, 2012.

Maass, Wolfgang. “Liquid State Machines: Motivation, Theory, and Applications.” In Computability in
Context: Computation and Logic in the Real World, edited by S. Barry Cooper and Andrea Sorbi, 275–296.
London: Imperial College Press, 2011.

Maass, Wolfgang, Thomas Natschläger, and Henry Markram. “Real-Time Computing Without Stable States:
A New Framework for Neural Computation Based on Perturbations.” Neural Computation 14, no. 11 (2002):
2531–2560.

McCulloch, W. S., and W. H. Pitts. A Logical Calculus of the Ideas Immanent in Nervous Activity. Bulletin of
Mathematical Biophysics 5 (1943): 115–133.

Meftah, B., A. Benyettou, O. Lezoray and W. QingXiang. “Image Clustering with Spiking Neuron Network.” In
IJCNN 2008: Proceedings of the IEEE International Joint Conference on Neural Networks, 681–685. Piscataway,
NJ: Institute of Electrical and Electronic Engineers, 2008.

http://dx.doi.org/http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000532
http://dx.doi.org/http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000532

Chapter 9 ■ Deep Learning

184

Meng, Yan, Yaochu Jin, and Jun Yin. “Modeling Activity-Dependent Plasticity in BCM Spiking Neural
Networks with Application to Human Behavior Recognition.” IEEE Transactions on Neural Networks 22, no.
12 (2011): 1952–1966.

Misra, Janardan, and Indranil Saha, “Artificial Neural Networks in Hardware: A Survey of Two Decades of
Progress.” Neurocomputing 74, nos. 1–3 (2010): 239–255.

Obo, Takenori, Naoyuki Kubota, Kazuhiko Taniguchi, and Toshiyuki Sawayama. “Human Localization Based
on Spiking Neural Network in Intelligent Sensor Networks.” In Proceedings of the 2011 IEEE Workshop on
Robotic Intelligence in Informationally Structured Space, 125–130. Piscataway, NJ: Institute of Electrical and
Electronic Engineers, 2011.

O’Halloran, Martin, Brian McGinley, Raquel C. Conceição, Fearghal Morgan, Edward Jones, and Martin
Glavin. “Spiking Neural Networks for Breast Cancer Classification in a Dielectrically Heterogeneous Breast.”
Progress in Electromagnetics Research 113 (2011): 413–428.

Rosenblatt, Frank. “The Perceptron: A Perceiving and Recognizing Automaton.” Project Para Report No.
85-460-1, Cornell Aeronautical Laboratory, 1957.

Schliebs, Stefan, Haza Nuzly Abdull Hamed, and Nikola Kasabov. “Reservoir-Based Evolving Spiking Neural
Network for Spatio-Temporal Pattern Recognition.” In Neural Information Processing (2011): 160–168.

Schliebs, Stefan, and Nikola Kasabov. “Evolving Spiking Neural Network—a Survey.” Evolving Systems 4, no. 2
(2013): 87–98.

Sinkevicius, S., R. Simutis, and V. Raudonis. “Monitoring of Humans Traffic Using Hierarchical Temporal
Memory Algorithms.” Electronics and Electrical Engineering 115, no. 9 (2011): 91–96.

Soltic, Snjezana, and Nikola Kasabov. “Knowledge Extraction from Evolving Spiking Neural Networks with
Rank Order Population Coding.” International Journal of Neural Systems 20, no. 6 (2010): 437–445.

Tank, D. W. and J. J. Hopfield. “Simple ‘Neural’ Optimization Networks: An A/D Converter, Signal Decision
Circuit, and a Linear Programming Circuit.” IEEE Transactions on Circuits and Systems 33, no. 5 (1986):
533–541.

Thiruvarudchelvan, Vaenthan, James W. Crane, and Terry R. Bossomaier. “Analysis of Spikeprop
Convergence with Alternative Spike Response Functions.” In Proceedings of the 2013 IEEE Symposium on
Foundations of Computational Intelligence, 98–105. Piscataway, NJ: Institute of Electrical and Electronic
Engineers, 2013.

Wysoski, Simei Gomes, Lubica Benuskova, and Nikola Kasabov. “On-Line Learning with Structural
Adaptation in a Network of Spiking Neurons for Visual Pattern Recognition.” In Artificial Neural Networks–
ICANN 2006: Proceedings of the 16th International Conference, Athens, Greece, September 10–14, 2006, edited
by Stefanos D. Kollias, Andreas Stafylopatis, Włodzisław Duch, and Erkki Oja, 61–70. Berlin: Springer, 2006.

Wysoski, Simei Gomes, Lubica Benuskova, and Nikola Kasabov. “Text-Independent Speaker Authentication
with Spiking Neural Networks.” In Artificial Neural Networks–ICANN 2007: Proceedings of the 17th
International Conference, Porto, Portugal, September 9–13, 2007, edited by Joaquim Marques de Sá, Luís A.
Alexandre, Włodzisław Duch, and Danilo Mandic, 758–767. Berlin: Springer, 2007.

Zhituo, Xia, Ruan Hao, and Wang Hao. “A Content-Based Image Retrieval System Using Multiple
Hierarchical Temporal Memory Classifiers.” In Proceedings of the Fifth International Symposium on
Computational Intelligence and Design, 438–441. Piscataway, NJ: Institute of Electrical and Electronic
Engineers, 2012.

Zhuo, Wen, Zhiguo Cao, Yueming Qin, Zhenghong Yu, and Yang Xiao. “Image Classification Using HTM
Cortical Learning Algorithms.” In Proceedings of the 21st International Conference on Pattern Recognition,
2452–2455. Piscataway, NJ: Institute of Electrical and Electronic Engineers, 2012.

185

Chapter 10

Multiobjective Optimization

All men seek one goal: success or happiness. The only way to achieve true success is to
express yourself completely in service to society. First, have a definite, clear, practical
ideal—a goal, an objective. Second, have the necessary means to achieve your ends:
wisdom, money, materials, and methods. Third, adjust all your means to that end.

—Aristotle

Multiobjective optimization caters to achieving multiple goals, subject to a set of constraints, with a
likelihood that the objectives will conflict with each other. Multiobjective optimization can also be explained
as a multicriteria decision-making process, in which multiple objective functions have to be optimized
simultaneously. In many cases, optimal decisions may require tradeoffs between conflicting objectives.
Traditional optimization schemes use a weight vector to specify the relative importance of each objective
and then combine the objectives into a scalar cost function. This strategy reduces the complexity of
solving a multiobjective problem by converting it into a single-objective problem. Solution techniques
for multiobjective optimization involve a tradeoff between model complexity and accuracy. Examples of
multiobjective optimization can be found in economics (setting monetary policy), finance (risk–return
analysis), engineering (process control, design tradeoff analysis), and many other applications in which
conflicting objectives must be obtained.

One of the prerequisites of multiobjective optimization is to determine whether one solution is better
than another. However, no simple method exists for reaching such a conclusion. Instead, multiobjective
optimization methods commonly adopt a set of Pareto optimal solutions (also called nondominated
solutions), which are alternatives with different tradeoffs between the various objectives. In the solution
defined by a Pareto optimal set, one objective cannot be improved without degrading at least one other
objective in the set. It is up to the decision maker to select the Pareto optimal solution that best fits preferred
policy or guidelines. Pareto graphs illustrate the attributes of the tradeoff between distinct objectives. The
solution can be represented in the shape of a curve, or a three-dimensional surface that trades off different
zones in the multiobjective space.

This chapter discusses machine learning methodologies for solving Pareto-based multiobjective
optimization problems, using an evolutionary approach. The goal is to find a set of nondominated solutions
with the minimum distance to the Pareto front in each generation. Successive solutions are built as part of
the evolutionary process, in which one set of selected individual solutions gives rise to another set for the
next generation. Solutions with higher fitness measures are more likely to be selected to the mating pool, on
the assumption that they will produce a fitter solution in the next generation (next run), whereas solutions
with weaker fitness measures are more likely to be discarded. Such solutions possess several attributes
that make them suitable for problems involving (1) a large and complex search space and (2) mutually
conflicting objectives.

Chapter 10 ■ Multiobjective Optimization

186

Formal Definition
A multiobjective optimization problem deals with a finite number of objective functions. In an optimization
problem with n objectives of equal importance, all need to be minimized (or maximized) to serve a
performance criterion. Mathematically, the problem can be expressed as a vector of objectives f

i
(x) that must

be traded off in some manner,

	
F x f x f x f x f x xm() min (), (), (), , () ,= Îéë ùû1 2 3  X � (10-1)

where X (see Equation 10-2) is a set of n decision vectors (a decision space) that represents parameters for
the values selected to satisfy constraints and optimize a vector function,

	
X = []x x x xn

T

1 2 3, , , , � (10-2)

	 x x x i ni
low

i i
high£ £ = 1 2 3, , , , . � (10-3)

The relative significance of these objectives cannot be determined until the tradeoffs between them are
distinctly understood. Because F(x) is a vector, competing objective functions will prevent it from achieving
a unique solution. You can associate each solution x in a decision space X with a point in objective space Y,
such that

	
f x y y y ym

T
() , , , , .= = []Y 1 2 3  � (10-4)

In multiobjective optimization the sets X and Y are known as decision variable space and objective
function space, respectively. Figure 10-1 illustrates the mapping of the search space to the objective space.
Every iteration of search space leads to a set of objective vectors that defines the objective space, in which
several optimal objective vectors may represent different tradeoffs between the objectives.

Chapter 10 ■ Multiobjective Optimization

187

Pareto Optimality
Pareto optimality is a concept built on multiobjective optimization that facilitates optimization of a vector
of multiple goals through tradeoffs between combinations of multiple objectives. Tradeoffs are formulated
to improve the performance of one objective at the cost of one or more other objectives. As displayed in
Figure 10-1, each point in the objective space represents a unique set of model variables, such that Pareto
optimality categorizes multiple Pareto optimal solutions. The term honors Vilfredo Pareto (1848–1923), an
Italian economist who demonstrated that income follows a power law probability distribution.

For an ideal case the optimal solution of a multiobjective problem is generally denoted as a Pareto set
X X* Í . The corresponding outcome, or objective vector, is represented by a Pareto front Y X Y* *()+ Íf . In

practice an ideal solution is nonexistent, and solving multiobjective optimization does not typically produce
an optimally unique solution. Instead, we use Pareto optimal solutions, in which one objective cannot
be improved without degrading at least one of the other objectives. Therefore, when using evolutionary
techniques, knowledge of the optimal Pareto set (X*,  Y*) assists in finding a best-compromise solution.

Dominance Relationship
A solution x

1
 dominates another solution ()x x x1 2 2 if the following conditions are met:

	 1.	 For all objectives, solution x
1
 is better than or equal to x

2
, such that

f x f x i mi i() () , , , , .1 2 1 2 3£ " Î 

	 2.	 For at least one objective, solution x
1
 is strictly better than x

2
, such that

f x f x j mj j() () , , , , .1 2 1 2 3< $ Î 

Figure 10-1.  Multiobjective optimization problem: mapping the search space to the objective space

Chapter 10 ■ Multiobjective Optimization

188

If either of these conditions is violated, then x
1
 does not (Pareto) dominate the solution x

2
. The

dominance relationship is nonsymmetrical. For example, if the solution x
1
 does not dominate the

solution x x x2 1 2(),/ that does not imply that x
2
 dominates x x x1 2 1(); therefore, both solutions can be

nondominated. However, the dominance relationship is also transitive. For instance, if x x1 2 and x x2 3 ,
then x x1 3 . This property allows us to identify which solutions are not dominated (X̂) by any member of
the solution set X. These nondominated sets (X̂) of the entire feasible search space are called globally
Pareto-optimal sets.

Generating a Pareto set can be computationally expensive. Therefore, you need to select a
computationally efficient method for determining the Pareto-optimal set of a multiobjective optimization
algorithm. Although you may employ many different approaches to solve a multiobjective optimization
problem, much work has been done in the area of evolutionary multiobjective optimization on the
approximation of the Pareto set.

Performance Measure
To evaluate the performance of a solution, it is essential to develop a measurement scheme that quantifies
the quality of the nondominant Pareto front. The general performance criteria for multiobjective
optimization algorithms can be summarized as follows:

	 1.	 Convergence (g): Estimates the proximity of the candidate nondominated
(Pareto) solutions to the best-known prediction or known set of Pareto optimal
solutions. For each solution obtained using an algorithm, you can use the
minimum Euclidian distance (Deb, Pratap, and Agarwal 2002) to the Pareto
optimal front. The average distance can be used as the convergence measure.
A smaller g value indicates a better convergence.

	 2.	 Diversity (D): Provides a decision maker with efficient choices. Because you are
interested in the solution that covers the entire Pareto-optimal region, you need
to evaluate the degree of spread between the solutions obtained.

	 3.	 Displacement (D): In the case of algorithmic approximations or the presence of
a discontinuous Pareto-optimal front, only a portion of true optimal front may
be reflected. Displacement is used to overcome this limitation. Displacement
measures the relative proximity of the candidate solution set to a known set of
Pareto-optimal solutions. Mathematically, displacement can be expressed as

	

D
P

d i j
J

Q

i

P

= × []
=

=
å1

1
1

*
min (,) ,

*

� (10-5)

where,

P* = Uniformly spaced solutions from the true Pareto-optimized front

Q = Final solution

d(I, j) = Euclidean distance between the ith solution of P* and jth solution of Q

A lower displacement value represents better convergence and coverage.

Each algorithm may select one or more performance criteria to test the quality of a solution. In many
cases, the performance criteria may depend on the availability (or nonavailability) of a known collection of
Pareto-optimal sets. The rest of this chapter looks at various multiobjective optimization solutions based on
evolutionary learning methodologies.

Chapter 10 ■ Multiobjective Optimization

189

Machine Learning: Evolutionary Algorithms
Generating the Pareto set can be computationally expensive, because multiobjective optimization problems
no longer have a single optimal solution, but a whole set of potential solutions. Classical optimizers (Marler
and Arora 2004) include weighted-sum approaches, perturbation methods, Tchybeshev methods, goal
programming, and min–max methods. Although these methods can be used for multicriteria optimization,
you can only obtain a single solution for each simulation run; simulation needs to execute multiple
times, with an expectation that one of the solutions may lead to the Pareto-optimal solution. Evolutionary
algorithms (EAs) are well suited to solving multiobjective optimization problems, because they mimic
natural processes that are inherently multiobjective; a number of Pareto-optimal solutions can be captured
in a single simulation run. Additionally, EAs are less sensitive to the shape or continuity of the Pareto
front. These algorithms have been successfully applied to a wide range of combination problems, in which
information from multiple sources is brought together to achieve an optimal solution. Such algorithms are
particularly useful in applications involving design and optimization, in which there are a large number of
variables and in which procedural algorithms are either nonexistent or extremely complicated. Generally,
evolutionary methods are population-based, metaheuristic optimization algorithms that mimic the
principles of natural evolution. These methods use the initial population of a solution and update in each
generation to converge to a single optimal solution. Although EAs do not guarantee a true optimal solution,
they attempt to find a good approximation, representing a near-Pareto-optimal solution.

EAs are typically classified into four major categories: (1) genetic algorithms (GAs), (2) genetic
programming (GP), (3) evolutionary programming (EP), and (4) evolution strategy (ES). Although these
algorithms employ different approaches, they all derive inspiration from the principle of natural selection.
Fundamental processes involved in EAs are selection, mutation, and crossover. The first stage of an EA entails
applying a fitness factor to evaluate the population in the objective space (which represents the quality of
the solution). Next, a mating pool is created by selecting the population from previous step, using a random
selection or likelihood-based selection criterion. Once the mating pool is organized, it is subjected to
recombination and mutation, which produce a new population set. The recombination process performs
an n-point crossover, with a configurable probability that allows fragments of one parent to combine with
fragments of another parent to create an entirely new child population. Mating selection is a critical step in
the EA process, inasmuch as it attempts to select promising solutions, on the assumption that future mating
pools derived as a consequence of a high-quality selection tend to be superior. A mutation operator modifies
individuals by making small changes to the associated vectors, according to a given mutation rate. Given
the probabilistic nature of the mating and mutation processes, certain populations may not undergo any
variation and simply replicate to the next generation.

Analogous to natural evolution, individuals represent possible solutions, and a set of individuals (or
possible solutions) is called a population. Each individual is encoded, using a problem-specific encoding
scheme that can be decoded and evaluated by a fitness function. The mating process iterates through the
process of modifying an existing population via recombination and mutation to evolve a new population.
Each loop iteration is called a generation, which represents a timeline in the evolutionary process.

Early work in the area of multiobjective EAs is credited to David Schaffer, who implemented the vector-
evaluated GA (VEGA) (Schaffer 1985). Goldberg(1989) proposed calculating individual fitness according to
Pareto dominance. Many variants of multiobjective EAs have since been suggested (of which this chapter
considers some of the more popular).

Chapter 10 ■ Multiobjective Optimization

190

Genetic Algorithm
GAs follow the principle of natural selection (see Figure 10-2), in which each solution is represented as
a binary (or real) coded string (chromosomes) and an associated fitness measure. Successive solutions
are built as part of the evolutionary process, in which one set of selected individual solutions gives rise to
another set for the next generation. Individuals with a high fitness measure are more likely to be selected
to the mating pool, on the assumption that they will produce a fitter solution in the next generation.
Solutions with the weaker fitness measures are naturally discarded. Typically, you can use roulette-wheel
selection to simulate natural selection, in which elimination of solutions with a higher functional fitness
is, although possible, less likely. In this method each possible selection is assigned a portion of the wheel that
is proportional to its fitness value, followed by a random selection, analogous to spinning a roulette wheel.
A small likelihood also exists that some weaker solutions will survive the selection process, because
they may include components (genes) that prove useful after the crossover process. Mathematically, the
likelihood of selecting a potential solution is given by

	

P
F

F
i

i

j
j

N=

=
å

0

,
� (10-6)

where P
i
 represents the likelihood of ith solution’s being selected for the mating pool, F

i
 stands for the

operating fitness of ith individual solution, and N is the total number of solution elements in a population.
GAs have proven useful in solving complex problems with large search spaces that are less understood
by reason of little domain knowledge. The chromosomes of a GA represent the building blocks (alleles)
of a solution to the problem that is suitable for the genetic operators and the fitness function. Candidate
solutions undergo modification, using crossover and mutation functions, and result in new candidate
solutions that undergo evaluation for candidacy in new mating pools.

Figure 10-2.  Basic flow of a GA

Chapter 10 ■ Multiobjective Optimization

191

Genetic Programming
GP is an evolutionary technique that expands the genetic learning paradigm into an autonomous synthesis
of computer programs that, when executed, lead to candidate solutions. Unlike GAs, in which populations
are fixed-length encoded character strings representing candidate solutions, in GP, populations are
programs represented by syntax trees (also called parse trees). GP iteratively evolves the populations of
programs, transforming one set of programs into another set by exercising the genetic operations crossover
and mutation. Crossover function is implemented by exchanging subtrees at a random crossover point
of two parent individuals (selected according to fitness criteria) in the population. Crossover creates an
offspring by replacing the subtree at the crossover point of the first parent with the subtree of the second
parent. In subtree mutation (the most commonly used form of mutation) the subtree of a randomly selected
mutation point is replaced by the subtree of a randomly generated tree.

Figure 10-3 demonstrates the general flow and crossover operation of a GP methodology using two
variables x and y and prefix notation to express mathematical operators. Parent 1 [+(*(x, y),2)] crosses over
with parent 2 [*(+(x,1),/(y,2))] and produces an offspring represented by [+(/(y,2)),2)]. It is customary to use
such prefix notation to represent expressions in GP.

Figure 10-3.  Basic flow of GP with crossover operations; after selecting random crossover points on both
parents, a portion of parent 1 attaches to a portion of parent 2 to create an offspring

Chapter 10 ■ Multiobjective Optimization

192

Multiobjective Optimization: An Evolutionary Approach
In single-objective optimization, to evaluate the quality of the solution, you simply measure the value of
the objective function. In the case of multiobjective optimization, it may not be possible to evaluate the
quality of the solution relative to optimal Pareto approximations, because you may not possess the relevant
information, with respect to objective space or coverage, and thus may not be able to define the quality
of solution, in terms of closeness to the optimal Pareto set and diversity of coverage. Even if one solution
dominates the other solution, you may still not be able to quantify the relative improvement, because
relative distance and diversity alone are not sufficient to quantify the Pareto set approximation. This brings
us to the fundamental requirements for defining the strategy for implementing multiobjective EAs. These
requirements can be summarized as follows:

•	 Fitness: Guiding the solution closer to the Pareto set. This requires constructing a
scalar fitness function that fulfills multiple optimization criteria.

•	 Diversity improvement: Improving coverage by selecting a diverse set of
nondominated solutions. This avoids a situation in which identical solutions exist,
relative to objective space and decision space.

•	 Elitism: Preventing nondominated solutions from being eliminated.

Most EAs differ in the manner in which they handle fitness, diversity, and elitism. Listed here are some
of the most popular multiobjective EA (MOEA) approaches:

•	 Weighted-Sum approach

•	 Vector-Evaluated GA (VEGA) (Schaffer 1985)

•	 Multiobjective GA (MOGA) (Fonseca and Fleming 1993)

•	 Niched Pareto GA (NPGA) (Horn, Nafpliotis, and Goldberg 1994)

•	 Nondominated sorting GA (NSGA) (Nidamarthi and Deb 1994)

•	 Strength Pareto EA (SPEA) (Zitzler and Thiele 1999)

•	 Strength Pareto EA II (SPEA-II) (Zitzler, Laumanns, and Thiele 2001)

•	 Pareto archived evolutionary strategy (PAES) (Knowles and Corne 1999)

•	 Pareto envelope-based selection algorithm (PESA) (Corne, Knowles, and Oates 2000)

•	 Pareto envelope-based selection algorithm II (PESA-II) (Corne et al. 2001)

•	 Elitist nondominated sorting GA (NSGA-II) (Deb, Pratap, and Agarwal 2002)

These approaches are presented in turn in the following sections.

Weighted-Sum Approach
The weighted-sum method for multiobjective optimization delivers multiple solution points by varying the
weights consistently. Different objectives are merged into a single objective, and the composite function is
minimized, using configurable weights. Mathematically, the weighted-sum approach can be represented as

	     
F w f x for w and wi i i

i

m

i
i

m

= ³ =
=
å å. () .0 1

1

� (10-7)

Chapter 10 ■ Multiobjective Optimization

193

For positive weights, minimizing F can result in a Pareto optimal solution. Although this method is
computationally efficient, the major drawback is that it cannot determine the weights that can optimally
scale the objective functions for a problem with little or no information.

Vector-Evaluated Genetic Algorithm
VEGA is a population-based algorithm that extends the selection operator of a simple GA (SGA), such that
each generation produces a number of disjoint subpopulations, as a result of a proportional selection
scheme, and is governed by different objectives. For a problem with m objectives and a total population of
size N, m subpopulations of size N / m are generated by their respective fitness functions. As depicted in
Figure 10-4, these subpopulations are shuffled together to generate a new population of size N. The scheme
is efficient and easy to implement, because only the selection method of SGA is modified.

Figure 10-4.  Basic flow of a VEGA

Because of proportional selection, the shuffling and merging operations of all the subpopulations in
VEGA result in an aggregating approach. The drawback of this scheme is its inability to find a large number
of points on the Pareto optimal front because each solution executes its own objective function. VEGA is
prone to finding extreme solutions, owing to the parallel search directions of the axes in the objective space
or simultaneous execution of multiple-objective functions.

Chapter 10 ■ Multiobjective Optimization

194

Multiobjective Genetic Algorithm
MOGA is another variant of SGA, differing in the way fitness is assigned to a solution. In this scheme, rank R
is assigned to each solution, using the expression

	 R x t n ti i(,) (),= +1 � (10-8)

where n
i
 is the number of solutions that dominate the ith solution x

i
 in generation t. Once the ranking

process is completed, the fitness of individuals is assigned by interpolating between the best rank (1) and the
worst rank (£m) via a user-defined function. The fitness of individuals of the same rank is averaged, allowing
sampling at the similar rate, while maintaining selection pressures. The fitness of certain individuals may
degrade more than others, depending on the size of the ranked population. Ranking guides the search to
converge only on global optima. Solutions exhibiting good performance in many objective dimensions are
more likely to participate in the mating process.

Although the ranking process assigns the nondominated solutions the correct fitness, it does not
always guarantee sampling uniformity in the Pareto set. When dealing with multiple objectives, genetic drift
triggers a suboptimal behavior, in which a large number of solutions tend to converge on a lesser number of
objectives, owing to an imperfect selection process. To prevent premature convergence and to diversify the
population, a niche-formation method is adopted to distribute the population over the Pareto region, in the
objective space. If the fitness of two individuals is closer than a certain niching distance, they are considered
part of same niche (i.e., sharing the same fitness). Niche formation discourages convergence to a single
region of the fitness function by introducing competitive pressures among niches that reduce the fitness of
such locally optimal solutions. Niche formation leads to discovery of diverse regions of the fitness landscape.
In nature a niche is regarded as an organism’s task in the environment, and a species is the collection of
organisms with the same features. Niching segments the GA population into disjoint sets in such a manner
that at least one member in each region of fitness function covers more than one local optimal. In one such
method, you define a parameter niche radius (s

radius
). Any two individuals closer than this distance are

considered part of the same niche, sharing the same fitness value. Niching lets the GA operate on the new
shared fitness instead of on the original fitness of an individual. Niching reduces interspecies competition
and helps synthesize a stable subpopulation around different niches. In multiobjective optimization
problems, a niche is ordinarily represented by the locale of each optimum in the search space, with fitness as
the resource of that niche.

Niched Pareto Genetic Algorithm
NPGA is a tournament selection scheme based on Pareto dominance, in which a comparison set of
randomly selected individuals participates to determine the winner between two candidate solutions. Each
of the candidates is tested to determine dominance. The candidate that is nondominated by the comparison
set is selected for the mating pool. If both candidates are either dominated or nondominated by the
comparison set, then they are likely to belong to the same equivalence class. As shown in Figure 10-5,
for a given niche radius (s

share
) the selection for the mating pool is determined by the niche class count.

Candidates with the least number of individuals in the equivalence class (least niche count) have the best
fitness. In this example, because both candidates are nondominated, Candidate 1 is selected to the mating
pool, on the basis of lower niche class count.

Chapter 10 ■ Multiobjective Optimization

195

MOGA and NPGA suffer from similar drawbacks; both methods are highly sensitive to selection of
niche radius (s

share
).

Nondominated Sorting Genetic Algorithm
NSGA is another Pareto-based nonelitist approach that differs from SGA in the manner in which the
selection operator is used. All the nondominant solutions are selected first and classified as the first
nondominant front in the population. To determine the members of the second nondominant front,
members of the first nondominant front are eliminated from the evaluation process, and the search
for nondominance continues with the remaining population. This process of level elimination and
nondominance search within a shrinking population continues until all the individuals of the population
have been categorized to a level of nondominance. Levels of nondominance range from 1 to p. Fitness is
assigned to each category of the subpopulation proportionally to the population size. Solutions belonging to
the lower levels of nondominance have higher fitness than those belonging to higher levels. This mechanism
maintains the selection pressure to select individuals to the mating pool with higher fitness (members of
lower levels of nondominance), in a direction toward the Pareto-optimal front.

In the first step the initial dummy fitness, equal to the population size, is assigned to individuals in the
first level of the nondominance front. Based on the number of neighboring solutions (niche class count for
a given niche radius s

share
) sharing the same front and the same level, the fitness value of an individual is

reduced by a factor of the niche count, and a new shared fitness value is recomputed for each individual in
this level. For the individuals in the second nondominance level, a dummy fitness smaller than the lowest
shared fitness of the first nondominance level is assigned. Similarly, individuals that are members of the
third and all subsequent levels are assigned fitnesses in decreasing order, relative to the lowest fitness of the
lower levels. This guarantees that the fitness of individuals belonging to higher levels of nondominance is

Figure 10-5.  Equivalence class sharing; candidate 1 (niche class count = 3) is a better fit than candidate 2
(niche class count = 4)

Chapter 10 ■ Multiobjective Optimization

196

always lower than that of individuals in the lower levels. This process continues until all individuals in the
entire population have been assigned their shared fitness. Once all the fitness values have been assigned,
traditional GA processes related to selection, crossover, and mutation apply. Mathematically, this process
can be explained as follows: for k individuals with a dummy fitness of f

p
 and niche count of m

i

p, as part of p
nondominance level, the shared fitness of each individual i can be calculated as

	
f̂

f

m
p
i

p

i
p

= � (10-9)

dummy fitness for individuals in the subsequent nondominance level is given as

	 � (10-10)

where e is a small positive number.
NSGA shares the same drawback as other algorithms in this category: high sensitivity to the niche

radius s
share

.

Strength Pareto Evolutionary Algorithm
SPEA implements elitism and nondominance by merging several features of previous implementations
of multiobjective EAs. Elitist selection prevents the quality of good solutions from degrading, from one
generation to the next. In one of its variants, the best individuals from the current generation are carried to
the next, without alteration.

Zitzler et al. (2001) defined the characteristics of SPEA by referencing the following attributes:

	 1.	 Creates an external and continuously updating nondominated population set
by archiving previously found nondominated solutions. At each generation the
nondominated solutions are copied to the external nondominated set. Unlike
other EAs, in SPEA the relative dominance of one solution by other solutions
within the population is irrelevant.

	 2.	 Applies external nondominated solutions from step 1 to the selection process
by evaluating an individual’s fitness, based on the strength of its solutions that
dominate the candidate solution.

	 3.	 Preserves population diversity, using the Pareto dominance relationship. This EA
does not require a distance parameter (such as niche radius).

	 4.	 Incorporates a clustering procedure to prune the nondominated external set
without destroying its characteristics.

As stated, this algorithm implements elitism explicitly by maintaining an external nondominant
population set ()P . The algorithm flow consists of the following steps:

	 1.	 Initialize the population P of size n.

	 2.	 Initialize an empty population P representing an external nondominant solution
set archive.

	 3.	 Copy the nondominated solutions of P to P .

	 4.	 Remove solutions contained in P that are covered by other members of P
(or dominated solutions).

ˆ min ˆ ,f f fp i
k

i
p= () -=

-
1

1 e

Chapter 10 ■ Multiobjective Optimization

197

	 5.	 If the number of solutions in P exceeds a given threshold, prune P, using
clustering.

	 6.	 Compute the fitness of each member of P and the strength of each member of P.

	 7.	 Perform binary tournament selection (with replacement) to select individuals
for the mating pool from the multiset union of P and P (P P+). Tournament
selection creates selection pressure by holding a “tournament” among randomly
selected individuals from the current population (P P+). The winner of each
tournament (the individual with the best fitness) is inducted into the mating
pool. The mating pool has higher average fitness, compared with the average
population fitness, and helps build selection pressure, which improves the
average fitness of successive generations.

	 8.	 Apply problem-specific mutation and crossover operators, as usual.

	 9.	 Go to step 3, and repeat (unless termination criteria are reached).

Strength of P Solutions
Each solution is assigned a strength Si Î[)0 1, . Si is proportional to the number of individuals j PÎ , such
that i dominates j. The fitness of the solution in an external nondominated set P is given by

	   
f S

n

Ni i= =
+1

, � (10-11)

where n is the number of individuals in P dominated by i, and N is the total population of P.

Fitness of P Solutions
The fitness of solution j PÎ is calculated by summing the strength of all external nondominated solutions

i PÎ() that cover (or dominate) j. The fitness of a solution in set P is given by

	   
f Sj i

i P i j

= +
Î
å1 ,

, 
� (10-12)

with 1 added to the fitness to maintain better fitness of the external nondominant solution. Because the
fitness is minimized, lower fitness results in a higher likelihood of being selected to the mating pool.

Clustering
In SPEA the size of the external nondominated solution set ()P is key to the success of the algorithm.
Because of its participation in the selection process, an extremely large nondominated solution set may
reduce selection pressure and slow down the search. Yet, unbalanced distribution in the population may
bias the solutions toward certain regions of the search space. Therefore, a pruning process is needed

Chapter 10 ■ Multiobjective Optimization

198

to eliminate individuals in the external nondominated population set, while maintaining its diversity.
Zitzler, Laumanns, and Thiele (2001) used the average linkage method (Morse 1980) to prune the external
nondominated solution set. The clustering steps are as follows:

	 1.	 Initialize a cluster C, such that each individual i PÎ() in the external
nondominated solution set is a member of a distinct cluster.

	 2.	 Calculate the distance between all possible pairs of clusters. Let d
m,n

 be the
distance between two clusters c

m
 and c Cn Î ; then,

	
d

c c
i im n

m n
m n

i im n

,
,.

. ,= -å1
� (10-13)

		 where i c i c i im m n n m nÎ Î -, , is the Euclidian distance between the objective
space of two individuals, and ck is the population of cluster c

k
.

	 3.	 Merge two clusters with minimum distance d
m,n

 into the larger cluster.

	 4.	 Identify the individual in each cluster set with the minimum average distance to
all other individuals in the cluster.

	 5.	 Cycle steps 2–4 until reaching a threshold of maximum number of allowed
clusters ()C N£ .

SPEA introduces elitism into evolutionary multiobjective optimization. One advantage that stands out is
that this algorithm is not dependent on niche distance (s

radius
), as are MOGA or NSGA. The success of SPEA

largely depends on the fitness assignment methodology, based on the strength of the archive members. In
the worst-case scenario, if the archive contains a single member, then every member of P will have the same
rank. The clustering process also remains the critical consideration for the success of the algorithm. Although
essential for maintaining diversity, this technique may not be able to preserve boundary solutions, which
can lead to nonuniform spread of nondominated solutions.

Strength Pareto Evolutionary Algorithm II
SPEA-II is an enhanced version of SPEA. In SPEA-II each individual in both the main population and the
elitist archive is assigned a strength value (S

i
) representing the number of solutions it dominates,

	 S j j P P i ji = Î + Ù(()) .

� (10-14)

On the basis of the strength value S
i
, the raw fitness value R

i
 is calculated by summing the strengths of

the individuals that dominate the existing one i,

	
R Si j

j

= å , � (10-15)

where j P P j iÎ +(), .

Unlike SPEA, in which fitness is determined only by the cumulative strength of the dominating archive
members, in SPEA-II, fitness is determined by the cumulative strength of the dominating members in both
the archive and the population. Because the fitness is minimized, a higher fitness value signifies that the
candidate individual is dominated by a large number of individuals.

Chapter 10 ■ Multiobjective Optimization

199

To distinguish individuals with identical raw fitness scores, SPEA uses the k–nearest neighbors
(k-NN) method (Silverman 1986) for estimating additional density information for each individual. Here,
k is calculated as the square root of the combined sample size of P and P. Each individual i measures, stores,
and sorts its distance in objective space, relative to all other individuals j in the archive and the population.
The kth element (distance) of the sorted list, in increasing order, is represented by s i

k. Density D
i
 is given by

	
Di

i
k

=
+
1

2 s
,

� (10-16)

where Di £ 1.
Finally, adding R

i
 (raw fitness) and D

i
 yields the fitness of individual i, represented by

	 F R Di i i= + . � (10-17)

Unlike SPEA, SPEA-II maintains a constant number of individuals in the archive. After the fitness
evaluation is completed, the next step is to copy all nondominated individuals from archive ()Pt and
population (P

t
) to the archive of the next generation (),Pt+1

	
P i i P P Ft t t i+ = Î + Ù <{ }1 1() . � (10-18)

If the number of nondominated solutions is less than the threshold N, then the N Pt- +1 best-dominated
solutions ()Fi > 1 from the sorted list of the previous archive ()Pt and population (P

t
) are moved to the

new archive ()Pt+1 . If, however, the number of nondominated solutions exceeds the threshold N, then the
truncation process takes place by removing P Nt+ -1 individuals with minimum distance, relative to each
other. In the case of a tie, the second-smallest distances are considered, and so on.

Also unlike SPEA, in which binary tournament selection (with replacement) selects individuals for
the mating pool from the multiset population of P

t
 and Pt , SPEA-II selects individuals from the archive

population Pt+1 only.

Pareto Archived Evolutionary Strategy
PAES is a simple multiobjective EA capable of generating diverse Pareto-optimal solutions. It is a single-
parent, single-child EA that resembles (1+1)-Evolutionary Strategy. PAES uses binary representation and
bitwise mutation operators to fulfill local search and create offspring. A bitwise mutation operator flips
the bits (genes) of the binary coded solution (chromosomes) with a fixed probability, thereby creating a
new solution. A reference archive stores and updates the best nondominated solutions found in previous
generations. The best solution is the one that either dominates or remains nondominated in a less crowded
region in the parameter space. This archive is used for ranking the dominance of all the resulting solutions.

First, a child is created, and its objective functions are computed. Next, the child is compared with the
parent. If the child dominates the parent, the child is accepted as a parent for the next generation, and its
copy is added to the archive. If the parent dominates the child, the child is discarded, and a new mutated
solution is generated from the parent.

In the event that the parent and the child are nondominating, with respect to each other, then both are
compared with the archive of best solutions to make an appropriate selection. If any member of the archive
dominates the child, the child is discarded, and a new mutated solution is generated from the parent. If
the child dominates any member of the archive, the child is accepted as a parent for the next generation,
and all dominated solutions in the archive are eliminated. If the child does not dominate any solution in

Chapter 10 ■ Multiobjective Optimization

200

the reference archive, then the child is checked for its proximity to the solutions in the archive. The child is
accepted as a parent in the next generation if it resides in a less crowded region in the parameter space. A
copy of the child is also added to the archive.

The PAES algorithm consists of the following steps:

	 1.	 Initialize a parent, evaluate its objective function, and add it to the archive.

	 2.	 Mutate the parent, generate a child, and evaluate its objective function.

	 3.	 Compare the parent and child.

a.	 If the parent dominates the child, discard the child, and go to step 2.

b.	 If the child dominates the parent, accept the child as a parent for the next
generation, and add it to the archive.

	 4.	 Compare the child with members in the archive.

a.	 If any member of the archive dominates the child, discard the child, and go
to step 2.

b.	 If the child dominates any member of the archive, accept the child as
a parent for the next generation, add it to the archive, and remove all
dominated solutions in the archive.

	 5.	 If the child does not dominate any solution in the reference archive, then check
the child for proximity to the solutions in the archive; accept the child as a parent
in next generation if it resides in a less crowded region in the parameter space.
Copy the child to the archive.

	 6.	 Go to step 2, and repeat until a predefined number of generations is reached.

Pareto Envelope-Based Selection Algorithm
PESA is a multiobjective EA that uses features from both SPEA and PAES. The difference is attributed
to the part of the algorithm in which PESA integrates selection and diversity, using a hypergrid-based
crowding scheme. Like SPEA, PESA employs a smaller internal population and larger external population.
Whereas the external population archives the existing Pareto front approximation, the internal population
comprises new candidates competing for inclusion in the external archive. Similar to PAES, to maintain
diversity, PESA uses the hypergrid division of objective space to measure the scale of crowding in distinct
regions of the external archive. Like PAES and SPEA, PESA’s solution replacement scheme (archiving the
best nondominated solutions) for the external archive is based on the crowding measure; however, unlike
PAES (which uses parent mutation) and SPEA (which uses the fitness measure, based on the strength of the
dominating solutions), the selection scheme in PESA is also based on the crowding measure.

The PESA algorithm uses two population sets: P
I
 representing the internal population and P

E

representing the external population (also called archive population). The steps of PESA are as follows:

	 1.	 Initialize the external population (P
E

) to an empty set.

	 2.	 Initialize the internal population ()PI =f .

	 3.	 Evaluate each individual in the internal population.

Chapter 10 ■ Multiobjective Optimization

201

	 4.	 Update the external population archive P
E
.

a.	 Copy the nondominated solution (in P
I
 and any member of P

E
) of P

I
 into P

E
.

b.	 Remove the solution of P
E
 that is dominated by the newly added

nondominated solution of P
I
.

c.	 If the solution of P
I
 neither dominates nor is dominated by P

E
, then add the

solution to P
E
.

d.	 If |P
E
| exceeds a threshold, randomly choose a solution from the most

crowded hypergrids to be removed.

	 5.	 Check the termination criteria.

a.	 IF a termination criterion has been reached, STOP; return P
E
.

b.	 OTHERWISE,

1.	 Delete the internal population PI =f .

2.	 Repeat (until a new P
I
 is generated).

a.	 Select two parents from P
E
, from the less crowded hypergrid

(based on the density information).

b.	 Create new offspring, based on crossover and mutation.

	 6.	 Go to to step 3, and repeat.

The crowding methodology in PESA forms a hypergrid that divides objective space into hyperboxes.
Each individual in the external archive is associated with a particular hyperbox in objective space. An
attribute defined as the squeeze factor represents the total number of other individuals that reside in the same
hyperbox. The squeeze factor narrows down the choice of solutions from among randomly selected solutions
(from the external archive) by picking the ones with lower squeeze factors. The squeeze factor drives the
search toward an emerging Pareto front by selecting members of the under represented population.

The squeeze factor is also used to regulate the population of the external archive. When the archive
population |P

E
| exceeds a certain threshold, a random individual from the region with a maximum squeeze

factor is chosen to be removed.

Pareto Envelope-Based Selection Algorithm II
PESA-II is an extension of PESA that exercises a region-based selection approach, in which the selection
criteria are satisfied using a hyperbox instead of random individuals in the hyperbox. A sparsely populated
hyperbox has a higher likelihood of being selected than a crowded one. Once the cell is selected,
individuals with the cell are randomly selected to participate in the mating and mutation processes.
Although this algorithm is computationally efficient, it requires prior information about the objective space
to tune the grid size.

Elitist Nondominated Sorting Genetic Algorithm
NSGA-II improves the nonelitist nature of NSGA with a crowded tournament selection scheme that uses
crowding distance to facilitate selection. In NSGA-II, once the population is initialized, individuals in the
population undergo nondominated sorting and ranking, as in NSGA. To find the first nondominated front,
each individual in the population is compared with every other individual in the population to find if
that individual is dominated. The nondominated individuals in the first front are removed from the
population and placed in temporary (level 1) storage. To find the next front, the procedure is repeated with

Chapter 10 ■ Multiobjective Optimization

202

the remainder of the population. The process continues until all the members of the population are assigned
a front. In the worst-case scenario, each front contains only one solution. Each individual in each front is
given a fitness value (or rank), based on the front it belongs to; for instance, an individual in the nth front
is given a fitness of n. Additionally, crowding distance is measured for each individual. Crowding distance
represents the measure of an individual’s proximity to its neighbors, which drives the population toward
better diversity. Parents are admitted into the mating pool, using binary tournament selection, based on
rank and crowding distance. On completion of the nondominated sort, a crowding distance value is assigned
to each individual.

If two solutions are compared during tournament selection, the winning solution is selected, based on
the following criteria:

If the solutions belong to two different ranks, the solution with the better rank wins •	
the selection.

If the solutions belong to the same rank, the solution with the higher crowding •	
distance (or lesser crowding region) wins.

Once the mating pool is populated, crossover and mutation operators are applied to generate
the offspring population. To implement elitism, the parent and child populations are combined, and the
nondominated individuals from the combined population are propagated to the next generation.
The NSGA-II algorithm is summarized as follows:

Initialization

	 1.	 Initialize a random population P
0
 of size N.

	 2.	 Sort and rank the population by creating nondomination fronts.

	 3.	 Assign fitness, according to the ranks of the population.

	 4.	 Create offspring Q
0
 of size N, using crossover and mutation operators.

Selection

	 5.	 The start of each generation has a combined population of
R t P t Q t() () ()= - È -1 1 size 2N .

	 6.	 Sort and rank the population by creating nondomination fronts (F
1
(t), F

2
(t),

F
3
(t),…,F

n
(t)).

	 7.	 Select fronts F
1
(t) to F

n
(t) until the sum of the combined population of selected

fronts exceeds N.

	 8.	 Copy the entire populations of selected fronts F
1
(t) to F

n-1
(t) to the mating pool of

the next generation.

	 9.	 Sort the population of the last selected front F
n
(t) in decreasing order, by

crowding distance.

	 10.	 Select the best individuals from the last front F
n
(t) needed to fill the mating pool

slot of N.

	 11.	 The mating pool now comprises the entire population of fronts F
1
 to F

n-1
 and the

partial population (sorted by crowding distance) of front F
n
 to create a parent

population (mating pool) of population N.

	 12.	 Use crossover and mutation operators to create N offspring.

	 13.	 Go to step 5, and repeat. 

Chapter 10 ■ Multiobjective Optimization

203

The crowding distance guides the selection process toward a uniformly spread-out Pareto optimal front. The
crowding distance of the ith solution D[i] is calculated as the sum of individual distance values corresponding to
each objective m. Each objective function is normalized before calculating the crowding distance. The following
steps summarize the crowding distance computation of all solutions in a nondominated set I:

	 1.	 l = I 			 Number of solutions

	 2.	 I = {0}			 Initialize all solutions to 0
---------[For all objectives k = 1 to k = m]----------

	 3.	 I = Sort (I,k ) 		 Sort by the kth objective

	 4.	 D D[] []i l= = ¥
--------[For i = 2 to i £ (l −1)]-----------------------

	 5.	 D D
I I

[] []
. .

max min
i i

i k i k

f fm m

= +
+[] - -[]()

-

1 1
� (10-19)

		 f m m m N mm
max max . , . , . , .= [] [] [] []()I I I I1 2 3 

	 f m m m N mm
min min . , . , . , .= [] [] [] []()I I I I1 2 3 

Step 5 is a recursive operation, in which each successive iteration evaluates the crowding distance
of the sorted solutions, based on the objective fitness. Step 5 is invoked for each objective fitness. Here,
I[i].k represents the kth objective function value of the ith individual in the set I. The crowding distance
is the Euclidian distance between each individual in the m–dimensional hyperspace. The individuals in

Figure 10-6.  NSGA-II procedure: the nondominated fronts F
1
(t)

,
 F

2
(t), and F

3
(t) are included fully in the

mating pool P(t + 1); the crowding distance–sorted front F
4
(t) is included partially in the mating pool P(t + 1)

Chapter 10 ■ Multiobjective Optimization

204

the boundary are always selected, because they have infinite distance assignment. To ensure elitism, the
offspring and parent populations of the current generation are combined to select the mating pool of the
next generation. The population is subsequently sorted by nondomination. As illustrated in Figure 10-6,
the new population for the mating pool is generated by filling the populations of each front F

j
 (low to high)

until the population size exceeds a threshold size of the parent population. If by including individuals in the
front F

j
 the total population exceeds N, then individuals in the front F

j
 are selected in descending order of

crowding distance until the population of size N is reached. This concludes the creation of the mating pool
for the next generation. In the figure the nondominated fronts F

1
(t), F

2
(t), and F

3
(t) are included fully, and the

crowding distance–sorted front F
4
(t) is included partially, in the mating pool P(t + 1).

Example: Multiobjective Optimization
Cloud computing allows us to host workloads with variable resource requirements and service-level
objectives or performance guarantees. Furthermore, the cloud enables us to share resources efficiently,
thereby reducing operational costs. These shared resources primarily relate to compute, memory, input/
output (I/O), and storage. Variability of resources creates thermal imbalances, over- or underprovisioning,
performance loss, and reliability issues. If these problems remain unchecked, their cumulative effect
can increase the cost of running a datacenter as well as degrade workload performance, owing to
unplanned provisioning and unanticipated demands. The solution for efficient datacenter management
rests in satisfying multidimensional constraints that may be dynamic in nature and mutually conflicting.
Environmental stresses vary from time to time and create resource pressures, which may be either global or
regional, creating dynamic constraints that result in revised goals that need to be achieved.

As illustrated in Figure 10-7, the operational constraints in this example can be classified as four
objective functions:

Figure 10-7.  Multiobjective optimization in a datacenter with four objective functions, related to power,
performance, temperature, and usage

Chapter 10 ■ Multiobjective Optimization

205

	 1.	 Reducing thermal stresses (F
T
): Thermal stresses occur when one or more devices

approach their throttling limit or generate hot or cold spots, relative to other
devices (or clusters of systems). Thermal stresses can be relieved by regulating
fan speed, input airflow, or resource utilization.

	 2.	 Meeting power targets (F
P
): Power targets are set by an external management

agent, according to fair usage and availability of maximum power. System power
targets can be regulated by resource utilization; fan speed; or hosting workloads
that do not exceed power demands and that are nonnoisy, relative to other
workloads already running on different cores.

	 3.	 Meeting performance guarantees (F
S
): Performance guarantees are the fitness

matrices defined by applications to measure service-level objectives (SLOs).
For example, query response time is a measure that can quantify the quality of
service when hosted on a system or cluster of systems. Performance guarantees
are delivered via regulated resource utilization or by hosting workloads that are
nonnoisy, relative to other workloads running on different cores.

	 4.	 Meeting resource utilization targets (F
U

): Resource utilization targets are
enforced to maximize the server usage in a unit volume of rack space, leading
to a reduction in idle periods. In some cases, resource utilization is regulated
to deliver service assurance or reduce thermal hot spots. Resource utilization
enforcement is generally realized by using an appropriate distribution of
workloads in different cores in a manner that ultimately leads to the most
efficient resource utilization with the least amount of mutual noise (cache,
prefetching) or contention.

The multiobjective optimization problem can be represented as a function of these four objectives,

	 F x f F x F x F x F xT P s U() min (), (), (), () ,= () � (10-20)

where x represents the parameters for the values selected to satisfy thermal, power, utilization, and
performance constraints. These parameters can be summarized as follows:

Fan speed (•	 x
1
)

Central processing unit (CPU) power limit (•	 x
2
)

Memory power limit (•	 x
3
)

Input airflow (•	 x
4
)

Workload type ID (•	 x
5
)

Number of CPU cores (•	 x
6
)

These parameters x = (x
1
, x

2
, x

3
, x

4
, x

5
, x

6
) regulate the operating states of the resources, which result in

environmental as well as system-specific perturbations that may need to be corrected as part of exploring a
true Pareto-optimal front or stable system.

Chapter 10 ■ Multiobjective Optimization

206

Objective Functions
Individual objective functions measure the quality of solutions. Multiobjective optimization methods
trade off the performance between various objectives. Here, a suitable tradeoff between power, thermal,
performance, and utilization objectives is sought, using the EAs. Equations 10-21–10-24 represent the
objective functions for these objectives. Each of the objectives is contingent on the values of parameters
(decision vectors) that define the search space to satisfy the vectors of multiple goals through tradeoffs
between combinations of multiple objectives,

		  F
N

f T T for T f x f T TT
d

T
d

d

N
d

T
d d

T
d= () = £ () £

=
å1

0 1
1

, () ; , 	 (10-21)

			   F f P P for P f x f P PP T P T= () = £ () £, () ; ,0 1 	 (10-22)

			   F f Q Q for Q f x f Q Qs T Q T= () = £ () £, () ; ,0 1 	 (10-23)

		  F
N

f U U forU f x f U UU
d

T
d

d

N
d

U
d d

T
d= () = £ () £

=
å1

0 1
1

, () ; , 	 (10-24)

where Td and Ud are temperature and utilization of device d, respectively; TT
d and UT

d are the respective

temperature and utilization thresholds; P is the current power consumption of the complete system;

and Q is the service-level agreement (SLA), or performance score, of the workload running on the

system. The solution x impacts the process output, represented by the corresponding functions

f x f x f x f xT
d

P Q U
d(), (), (), () ,() which influence the output of the objective functions. (Note that power and

performance are system specific and not device specific in this context.)

The solution x evolves by maneuvering multiple dimensions of the decision space and anticipating an
optimal tradeoff between all four objectives. Forinstance, setting a higher fan speed (x

1
) will improve cooling

(F
T
) but increase power consumption, thereby degrading F

P 
. Similarly, the CPU power limit (x

1
) may regulate

power consumption but degrade performance (F
S
). Therefore, the goal of the EAs is to synthesize a near-

optimal solution that attempts to fulfill the inherent and often conflicting constraints of all the objectives.
Solutions should reflect optimal decisions in the presence of tradeoffs between the four objectives. These
decision vectors match certain workloads on specific systems, such that there is the least amount of conflict
between objectives. Additional controls regulate the fan speed, CPU and memory power limits, input
airflow, and allocation (or deallocation) of additional CPU cores.

Figure 10-8 displays the process of selecting the best compute node (from among a large number of
nodes) for workload hosting.

Chapter 10 ■ Multiobjective Optimization

207

Whenever a new workload is staged for hosting on one of the compute nodes, it undergoes
fingerprinting. This process involves matching the distinctive attributes of multidimensional features
to a preexisting database. Fingerprints correlate resource utilization patterns and estimate resource
requirements. Swarm intelligence acts as a mechanism whereby a few candidate host nodes are selected
from hundreds of possible host nodes for further evaluation. Some nodes are eliminated because of the
low likelihood of their ability to deliver enough contention-free resources. Once shortlisted, the candidate
nodes represent compute resources that can host incoming workloads, although with varying degrees
of resource handling. All the shortlisted nodes are evaluated for quality of hosting the new workload by
running MOEA in parallel, in an effort to generate multiple Pareto-optimal fronts, one for each node. The
node corresponding to the best solution is selected for hosting the workload. The MOEA evaluates the
solutions (see Equation 10-20) by measuring the collective efficiency of power, performance, utilization,
and temperature and iterates toward finding the tradeoff representing the best solution. The process repeats
each time a new workload appears in the staging queue to be serviced by one of the compute nodes.

References
Corne, David W., Nick R. Jerram, Joshua D. Knowles, and Martin J. Oates. “PESA-II: Region-Based Selection
in Evolutionary Multiobjective Optimization.” In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2001). San Francisco: Morgan Kaufmann, 2001.

Corne, David W., Joshua D. Knowles, and Martin J. Oates. “The Pareto Envelope-Based Selection Algorithm
for Multiobjective Optimization.” Parallel Problem Solving from Nature—PPSN VI: Proceedings of the 6th
International Conference, edited by Marc Schoenauer, Kalyanmoy Deb, Günter Rudolph, Xin Yao, Evelyne
Lutton, Juan Julian Merelo, and Hans-Paul Schwefel, 839–848. Berlin: Springer, 2000.

Deb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. “A Fast and Elitist Multiobjective Genetic
Algorithm: NSGA-II.” IEEE Transactions on Evolutionary Computation 6, no. 2 (2002): 182–197.

Figure 10-8.  Node selection for workload hosting, using multiobjective evolutionary optimization

Chapter 10 ■ Multiobjective Optimization

208

Fonseca, Carlos M., and Peter J. Fleming. “Genetic Algorithms for Multiobjective Optimization: Formulation
Discussion and Generalization.” In Proceedings of the 5th International Conference on Genetic Algorithms,
edited by Stephanie Forrest, pp. 416–423. San Francisco: Morgan Kaufmann, 1993.

Goldberg, David E. Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, MA:
Addison-Wesley, 1989.

Horn, J., N. Nafpliotis, and D. E. Goldberg. “A Niched Pareto Genetic Algorithm for Multiobjective
Optimization.” In Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World
Congress on Computational Intelligence, 82–87. Piscataway, NJ: Institute of Electrical and Electronic
Engineers, 1994.

Knowles, J. D., and D. W. Corne. “The Pareto Archived Evolution Strategy: A New Baseline Algorithm for
Pareto Multiobjective Optimisation.” In Proceedings of the 1999 Congress on Evolutionary Computation,
98–105. Piscataway, NJ: Institute of Electrical and Electronic Engineers, 1999.

Marler, R. Timothy, and Jasbir S. Arora. “Survey of Multi-Objective Optimization Methods for Engineering.”
Structural and Multidisciplinary Optimization 26, no. 6 (2004): 369–395.

Morse, J. N. “Reducing the Size of the Nondominated Set: Pruning by Clustering.” Computers and Operations
Research 7, nos. 1–2 (1980): 55–66.

Nidamarthi, Srinivas, and Kalyanmoy Deb. “Muiltiobjective Optimization Using Nondominated Sorting in
Genetic Algorithms.” Evolutionary Computation 2, no. 3 (1994): 221–248.

Schaffer, J. David. 1985. “Multiple Objective Optimization with Vector Evaluated Genetic Algorithms.”
In Proceedings of the 1st International Conference on Genetic Algorithms, edited by John J. Grefenstette,
93–100. Hillsdale, NJ: L. Erlbaum, 1985.

Silverman, B. W. Density Estimation for Statistics and Data Analysis. London: Chapman and Hall, 1986.

Zitzler, E., M. Laumanns, and L. Thiele. “SPEA2: Improving the Strength Pareto Evolutionary Algorithm.”
Technical report, Swiss Federal Institute of Technology, 2001.

Zitzler, E., and L. Thiele. “Multiobjective Evolutionary Algorithms: A Comparative Case Study and the
Strength Pareto Approach” IEEE Transactions on Evolutionary Computation 3, no. 4 (1999): 257–271.

209

Chapter 11

Machine Learning in Action:
Examples

A breakthrough in machine learning would be worth ten Microsofts.

—Bill Gates

Machine learning is an important means of synthesizing and interpreting the underlying relationship
between data patterns and proactive optimization tasks. Machine learning exploits the power of
generalization, which is an inherent and essential component of concept formation through human
learning. The learning process constructs a knowledge base that is hardened by critical feedback to improve
performance. The knowledge base system gathers a collection of facts and processes them through an
inference engine that uses rules and logic to deduce new facts or inconsistencies.

As more and more data are expressed digitally in an unstructured form, new computing models are
being explored to process that data in a meaningful way. These computing models synthesize the knowledge
embedded in the unstructured data and learn domain-specific trends and attributes. More sophisticated
models can facilitate decision support systems, using hierarchies of domains and respective domain-specific
models. Machine learning plays an important role in automating, expanding, and concentrating procedures
for unearthing learnings in ways that traditional statistical methods are hard-pressed to match.

This chapter presents examples in which machine learning is used as the principal constituent of
a feedback control system. We discuss machine learning usage in areas related to datacenter workload
fingerprinting, datacenter resource allocation, and intrusion detection in ad hoc networks. These examples
demonstrate an intelligent feedback control system based on the principles of machine learning. Such
systems can enable automated detection, optimization, correction, and tuning throughout high-availability
environments, while facilitating smart decisions. Furthermore, these systems evolve and train themselves,
according to platform needs, emerging use cases, and the maturity of the knowledge data available in the
ecosystem. The goal is to create models that act as expert systems and that automatically perform proactive
actions that can later be reviewed or modified, if necessary.

A traditional system uses a collection of attributes that determine a property or behavior in current
time. An expert system uses machine learning to discover the nature of the change resulting from the
learning process and analyze the reasoning behind better adaptation of the process. Such a system can
be either history determined or state -determined. A state-determined system can be described in terms
of transitions between states in consecutive time intervals (such as first-order Markov chains). The new
state is uniquely determined by the previous state. To adapt, the organism, guided by information from
the environment, must manage its essential variables, forcing them to operate within the proper limits by
manipulating the environment (through the organism’s motor control of it), such that it then acts on the
variables appropriately.

Chapter 11 ■ Machine Learning in Action: Examples

210

Figure 11-1 illustrates an autonomic system that is constructed by using modular functions to enact an
intelligent feedback control system. Machine learning plays a significant role in modeling the knowledge
function, which is used to store the rules, constraints, and patterns in a structured manner. New knowledge
is synthesized, using the elements of existing structures and new learnings. The collective knowledge enacts
a feedback control loop, which enables a stable and viable system. The supporting functions that facilitate an
intelligent feedback control system are as follows:

A •	 sensor function to sense any changes in the internal or external environment
(such as component temperature, power, utilization, and aberrant behavior).

A •	 motor function to compensate for the effects of environmental disturbances by
changing the system elements, thereby maintaining equilibrium.

An •	 analytical function to analyze the sensor channel data to ascertain if any of the
essential variables are operating within viable bounds, or limits.

A •	 planning function to determine the changes that need be made to the current
system behavior to bring the system back to the equilibrium state in the new
environment.

A •	 knowledge function that contains the set of possible behaviors that can be applied
to the new environment. The planning tool uses this knowledge to select the
appropriate action to nullify the disturbance; the motor channel applies the selected
behavior. The knowledge function is synthesized, using the generalization process,
which can be an ongoing task that effectively develops a richer hypothesis space,
based on new data applied to the existing model.

MOTOR
CHANNEL

SENSOR
CHANNEL

KNOWLEDGE

Monitor

Analysis Planning

Execute

Managed Element

CCHANNEECC NN ECC NNNELNNEENN

Figure 11-1.  Modular functions as fundamental elements for building autonomics architecture

These functions enable key elements to model a practical system by using an abstracted cybernetic
description (regulation theory). This description abstracts a set of interrelated objects that can receive, store,
process, and exchange data. Cybernetic systems can be represented by means of control objects and control
systems. Control systems transmit the control information to the controlled objects via sets of effectors.
The state information on a controlled object is received through a set of receptors and is transmitted
back to the control system, thereby creating a feedback loop. This feedback loop is capable of developing

Chapter 11 ■ Machine Learning in Action: Examples

211

an autonomic system that operates an effective control system through adaptive regulation. The model
comprises the following five necessary and sufficient interacting subsystems, which, collectively, constitute
an organizational structure that affords system viability:

•	 Infrastructure to interact with the operational environment, which is controlled by
the management process.

•	 Coordination to promote the dissemination of policy data that allow collaboration
and coordination.

•	 Control for intervention rules as well as policy adherence, resource compliance,
accessibilities, and responsibilities.

•	 Intelligence for planning ahead in anticipation of changes in the external
environment and capabilities. Intelligence aids in capturing a complete view of the
system environment and benefits the system in formulating alternate strategies,
which are necessary for adapting to changing conditions to keep the system viable.

•	 Policy to steer the organization toward a purposeful goal by formulating policy
functions that lead to planning activities.

Viable System Modeling
Controlled systems may demonstrate a high degree of dynamism in their interactions that may result
in unpredictable behaviors. Viable system modeling facilitates a framework that allows coordination,
coevolution, and survivability, using monitoring, control, and communication abstractions. Such modeling
helps the system survive in a constantly changing and unpredictable environment; the modeling is built
to outlast external stresses and demands variability, and it adapts to any unexpected stimuli. You abstract
the framework in such a manner that variability in the usage model does not interfere with stabilizing the
system within its viable limits. Unpredictable behavior, intermittent failures, and scattered knowledge
generate a sizeable uncertainty, which can cause reactive or suboptimal decisions as well as rendering
ineffective traditional programming paradigms, which operate on the principals of independence and static
behavioral models. Programming strategies need to be built to characterize and optimize runtime patterns,
using dynamic policies. This requires autonomous instantiation of mechanisms that respond to changing
dynamics. Additionally, programming models must take into account the separation between policy
management, activation mechanisms, computation, and runtime adaptation. Isolation can be realized using
abstractions that make it possible to hide the implementation choices. Abstractions establish a common
view of a component model to allow interoperability via communication semantics.

Intelligent feedback control implementation facilitates adaptation, which lets the controlled process
change its configuration over time by dynamically adapting to specific needs and requirements. Adaptation
is typically triggered by the rule engine, owing to faulting, or changing behavior, of a resource in platform,
and is achieved through changes in the set of resources, components, or dependencies. A necessary
condition for adaptation is the preservation of the existing semantics, with an ability to reconfigure and
adapt to the new environment. This is supported by implementing adding, plugging, and unplugging
component controllers dynamically, thereby adding or removing the functional aspect of a component.
The two categories of adaptation are as follows:

•	 Functional adaptation adapts the architectural behavior of the component to new
requirements or environments.

•	 Nonfunctional adaptation adapts the nonfunctional architecture of the container
to the new requirements or environment (e.g., changes in security policy or
communication protocol).

Chapter 11 ■ Machine Learning in Action: Examples

212

Adaptation functions require the ability to identify dynamically changing patterns and behaviors with
these properties:

The ability to evaluate when and how much. Heuristics are built to identify •	
appropriate conditions that demand reconfiguration. Reactive reconfiguration or
tuning can easily lead to oscillation. Additionally, the amount of reconfiguration
depends on the application-specific optimization function (also called the cost
function), which is maximized for a given policy.

A weighted cost function to evaluate the significance of specific objectives in cases in •	
which multiple objective functions race for adaptability.

Low-latency evaluation and optimization of the cost function to satisfy the handling •	
of control function in real time.

The ability to identify and resolve resource conflicts and oscillations resulting from •	
competing objectives.

The ability to log resource attributes and behavioral patterns to aid in establishing a •	
rational reasoning process for future optimizations and conflict resolutions.

Knowledge synthesis through pattern identification plays a pivotal role, modeling several behavioral
trends that recur over time. These patterns are appealing for proactive analysis, which paves the way for
monitoring and analyzing the process by focusing on the most significant activities. Pattern analysis is
commonly used to determine workflow behavior as well as the correspondence between related actions.
Pattern analysis is also used to predict the choices that are more likely to yield the desired policy compliance,
thereby supporting the selection of the best action to be activated from among a set of possible candidates.
The framework execution model is responsible for collecting two types of information: raw data logged
during the execution of workload and processed data derived from the raw data, which are synthesized to
describe behavioral patterns.

Figure 11-2 conceptualizes an adaptation framework for a server system, in which subfunctional
components are isolated into discrete and independent blocks. The monitor function monitors the
performance parameters and corresponding resource utilization. This is logged into the knowledge base,
which traces the relationship between resource utilization and various performance attributes. The drift
detector evaluates the deviation between measured performance and desired performance. A deviation
(positive or negative) triggers a correction to the cost function as well as to the resource control block.
Whereas the cost function manipulates the relative coefficients of the fitness equation, the resource control
mechanism reevaluates resource allocation, based on rational reasoning and fuzzy logic. This process
continues until all the objectives are met.

Chapter 11 ■ Machine Learning in Action: Examples

213

Example 1: Workload Fingerprinting on a Compute Node
Datacenter power consumption has increased drastically in recent years, and controlling the power intake of
servers has become critical. To develop efficient servers, server platforms require online characterization to
determine platform parameters for the tuning required for various system features because of the complex
dependencies among them. Feedback-directed optimization of servers with insights gained from workload
observation has proven to be more effective than static configurations. The server processor and chipsets
expose software-configurable margins and range limits, called control parameters, which can be tuned to
achieve a balance between power and performance. Some of these parameters are set by the platform’s basic
input/output system (BIOS) once at boot time and remain static throughout. One-time configuration at boot
time renders the system nonresponsive to load variation.

The example given here describes a dynamic characterization technique using machine learning
algorithms that determine tuned values from runtime program phases. A self-correcting workload
fingerprint codebook accelerates phase prediction to achieve continuous and proactive tuning. Parameters
such as memory and processor power states can be set dynamically, based on observed demand variations,
by the operating system or the hardware modules. Autonomous systems then trade off system margins to
gain power or performance advantages, depending on the use case. Proactive tuning prepares the system
to tune itself in advance and avoids the response lag characteristic of reactive systems. Various machine

Figure 11-2.  Adaptation function of a server system; based on the feedback, the cost function block reevaluates
the function weights, whereas the resource control block reevaluates resource allocation

Chapter 11 ■ Machine Learning in Action: Examples

214

learning techniques, such as clustering, classifiers, and discrete phase predictors, are applied to the data
collected from subsystems of the processor. Additionally, it is crucial to ascertain the appropriate algorithms
and operations, while considering extrapolative efficiency at the least computational cost.

Performance-monitoring units facilitate measurement of fine-grained events through hardware
counters. These counters allow application profilers to reveal the application’s time-varying phase behaviors
that repeat in a defined pattern over their lifetime. A program phase can be described as a discontinuity
in the time in which observable characteristics vary distinctively enough to effect an equally measurable
system impact variation. The phase characteristics and probabilistic sequence of known phases are
represented as a fingerprint. Fingerprints facilitate proactive models for load balancing, thermal control, and
resource allocation within a collection of servers in a datacenter. The steps employed in the learning process
can be summarized as follows:

	 1.	 Execute the workload in the server system(s).

	 2.	 Identify relevant process control parameters, and relate them to process goals
(workload throughput, server power, thermal variance, and so on).

	 3.	 Synthesize the attributes of a phase and phase sequence.

	 4.	 Build a phase prediction model to forecast future behavior of the workload.

	 5.	 Tune the system control parameters proactively.

Workload fingerprinting allows proactive self-tuning, which avoids a lag between the feedback and
the control (or the reactive control) by learning the underlying relationships between operational workload
phases and corresponding application behavior, thereby facilitating dynamic adaptation in changing
environments. Understanding application behavior has also been a key source of insight for driving several
new architectural features, such as built-in memory power control, thermal throttling, turbo boosting,
processor cache size adaptation, and link configurations. The feature-specific controls that constitute the
decision space are dynamically tuned to the current and future phases through a multiobjective coordinated
tuning process to achieve globally optimal results. Traditionally, the decision space of a process is defined
by control parameters, which are tuned, based on insights derived from offline empirical analysis of
data collected by running well-known benchmarks and establishing the average case. These control
parameters are then statically programmed at boot time by the system BIOS. A better approach is to program
dynamically the parametric values synthesized by proactive simulation, using a machine learning method
that exploits an intelligent feedback-based self-tuning process.

Phase Determination
It is quite common to employ well-understood benchmark tools as models that approximate real-world
workload behavior, because they have a finite completion time, while exhibiting unique resource usage
patterns. A program phase has been defined and extended in many ways by researchers, based on the
goals to be achieved. This example defines a program phase as a variable time interval during execution in
which a set of observable characteristics exhibits spatial uniformity and distinctiveness. The example uses
a multivariable phase determination technique consisting of multiple dominant variables that are both
externally observable and related to the platform control variable. The measured variables m

i
 are the values

of performance events obtained from hardware counters when running a range of bootstrap workloads. The
elements of this initial dataset M (| ,)m m M i Ni i Î £ serve as the building blocks of the phase model.

The motivation to choose N variables to be measured comes from the objective of the study. The feature
selection process is commonly applied to large datasets to filter out correlations and vastly reduce the
computational complexity of algorithms in subsequent stages. To improve classifier accuracy and efficiency,
special tools, such as the correlation-based feature selection (CFS) algorithm, are applied to reduce the
dataset’s dimensionality. CFS is a best-first search heuristic algorithm that ranks the worth of subsets rather

Chapter 11 ■ Machine Learning in Action: Examples

215

Figure 11-3.  Phase model: cluster mean and standard deviation

than individual features. The algorithm filters out the features that are effective in predicting the class, along
with the level of intercorrelation among features in the subset, by calculating the feature–class and feature–
feature matrices. The features selected by CFS exhibit a high degree of correlation to the reference class, but
redundant variables are removed. Given a subset S consisting of k features, the heuristic score is given as

	          Merit
kr

k k k r
s

cf

ff

k
=

+ +()
,

1
	 (11-1)

where rcf is the average feature–class correlation, and rf is the average feature–feature intercorrelation.
CFS transforms the measured variable set M to a reduced variable set D, yielding (| ,)d d D j Nj j Î £ ,

D = CFS(M), and N N£ . The next step is to build the phase model by using the selected features and
applying the simple k-means algorithm to group the uncorrelated variable instances. The k-means
algorithm is an unsupervised machine learning algorithm that partitions the input set into k clusters, such
that each observation belongs to a cluster with the nearest mean (the Euclidean distance). The objective
function of the k-means algorithm can be represented as

		 J d cm
l

l
m

j

l

k

= -
==
åå || || ,() 2

11

	 (11-2)

where c
l
 is the chosen centroid of cluster l and dm

l() represents mth datapoint in lth cluster. You consider each
cluster a phase f. This example, with k = 5, produces a model that has the mean and standard deviation of the
12 filtered variables (see Figure 11-3).

f

Chapter 11 ■ Machine Learning in Action: Examples

216

Once the phase model is trained, it can be tested against subsequent runs of the workload data.
A classifier algorithm from a related class of machine learning algorithms can generate a tree, a set of rules,
or a probability model to identify quickly the correct phase. One example is the tree representation obtained
from a decision tree classifier algorithm upon training with the cluster data, as illustrated in Figure 11-4.
This classifier achieves approximately 99 percent accuracy in phase identification.

Figure 11-4.  Decision tree representation of the model

The initial training data set of 37 workloads results in five clusters, with each cluster representing
a workload phase (see Figure 11-5). In each phase the 12 dominant features display a diverse variation
pattern, with at least one feature being the primary predictor. As mentioned earlier, a phase transition can be
identified by the classifier tree, using the feature-specific threshold values.

Chapter 11 ■ Machine Learning in Action: Examples

217

Figure 11-6 shows the workload–phase boundaries, with seven clusters found in four workloads. Each
workload is characterized by a unique composition of workload phases. Once the workload is identified, it is
phase characterized by its resource utilization and time series pattern. Whereas workload 3 consists mainly
of phase 7, workload 1 is a complex mix of phases 3, 5, and 6. These phases discover the characteristic that is
unique to a workload instance at any given time.

Figure 11-5.  Phase transition diagram for various workloads

Figure 11-6.  Workload and phase dependency graph; a workload may share phase characteristics with other
workloads and can cater to one or more phases

Chapter 11 ■ Machine Learning in Action: Examples

218

Fingerprinting
Workloads undergo phases of execution, while operating under multiple constraints. These constraints are
related to power consumption, heat generation, and quality of service (QoS) requirements. Optimal system
operation involves complex choices, owing to a variety of degrees of freedom, with respect to power and
performance parameter tuning. The process involves modeling methodology, implementation choices,
and dynamic tuning. Fingerprinting acts as an essential feature that captures time-varying behavior of
dynamically adaptable systems. This ability is used as a statistical output that aids in reconfiguring hardware
and software ahead of variation in demand and that enables the reuse of trained models for recurring
phases. Pattern detection also assists in predicting future phases during the execution of workloads, which
prevents reactive response to changes in workload behavior.

As part of the workload fingerprinting process (see Figure 11-7), individual performance characteristics
are collected at a given interval, classified, and aggregated to establish patterns representative of an existing
workload or collection of workloads. System control agents, such as I/O schedulers, power distribution,
and dynamic random access memory (DRAM) page policy settings, can use this information to tune
their parameters or schedule workloads in real time. Fingerprinting can roughly be attributed using three
properties: size, phase, and pattern. The machine learning process facilitates synthesis of these properties by
measuring or data mining performance characteristics over a finite period. Generally, the feature selection
process allows automatic correlation of performance matrices with occurrences of unique workload
behaviors, thereby aiding in speedy diagnosis and proactive tuning. Fingerprinting data can be combined
with simple statistical functions, such as optimization, visualization, or control theory, to create powerful
operator tools. Furthermore, fingerprints help contain prolonged violation of one or more specified
service-level objectives (SLOs), which involves performing proactive actions to return the system to an
SLO-compliant state.

Figure 11-7.  Workload fingerprint: a quantifiable form of characterization

Chapter 11 ■ Machine Learning in Action: Examples

219

Size Attribute
The size attribute is useful in proactive provisioning of resources. Using the size dimension provides answers
to the following questions:

What is the shape of the distribution? Which resources are more popular than •	
others? Is there a significant tail?

What is the spatial locality in accesses to the groups of popular objects during spikes?•	

Phase Attribute
A phase represents a unique property that characterizes the behavior of an ongoing process. In this example
the phase demonstrates unique power, temperature, and performance characteristics. As described
previously (see the section “Phase Determination”), this example employs a simple k-means algorithm
to synthesize exclusive behaviors in the form of clusters, represented as phases. This process is executed
once all the relevant feature vectors are identified. These vectors are observations that directly or indirectly
reflect the unique behavior in the form of resource usage. The phases are compressed representative output
that can be used in conjunction with any other statistical parameter for prediction of behavior. Sequences
of phases can be seen as patterns. Patterns represent a unique time-varying characteristic of the workload.
Figure 11-8a illustrates the phase sequence during one execution of a workload. Figure 11-8b displays the
encoded representation of the phase sequence.

Chapter 11 ■ Machine Learning in Action: Examples

220

Figure 11-8.  (a) Test workload phases, (b) run-length encoded phase sequence, and (c) phase transition
likelihood matrix and workload–phase dependency matrix; the workload 1 phase dependency is highlighted

Chapter 11 ■ Machine Learning in Action: Examples

221

Pattern Attribute
A pattern is defined as a sequence of phases that repeats. Once a sequence is identified, it can be used to
predict future phases and the duration of current phases. In the time series operations, you construct the
vocabulary for the time series pattern database. Each alphabet in the vocabulary is represented by the
operating phase of the workload. This phase is measured in a fixed interval of length (T). The pattern matrix
can be represented as M

ij
, where i represents the pattern, and j stands for the frequency of that pattern.

As new patterns are identified, they are updated into the pattern matrix, and old and infrequent patterns are
deprecated. You can use a discrete time Markov chain (DTMC) (see Equation 11-3) to identify underlying
patterns in a time series sequence of changing phases,

	           (| , ,) (|),q S q S q S q S q St j t i t k t j t i+ - += = = = = =1 2 1

	 (11-3)

where q
t
 represents the current state, and S

i
 represents one of the phases of operation. In this model a

state transition (phase change) follows the Markov property and then creates transitions between states
(phases), based on a learned model for forecasting. You can use a moving window to monitor real-time data
and produce an autoregressive model for recently observed data, which is then matched to the state of the
learned Markov model. The model also makes corrections, if necessary, to adapt to the changes. By tracing
the time series progression from one phase to another, you can build a transition function of the Markov
model (see Figure 11-8c).

Forecasting
The workload forecasting module detects trends in the workload and makes predictions about future
workload volume. If the target workload demonstrates a strong periodic behavior, a historic forecast can be
incorporated into workload forecasting. This allows the policy decision to react proactively to the workload
spikes ahead of time. This also helps you take advantage of the heterogeneous compute and I/O resources
offered by cloud computing providers. Furthermore, based on the extracted patterns, you may distribute the
workloads in a manner that creates different performance models.

Example 2: Dynamic Energy Allocation
Controlling the amount of power drawn by server machines has become increasingly important in recent
years. The accuracy and agility of three types of action are critical in power governance:

Selecting which hardware elements must run at what rates to meet the •	
performance needs of the software

Assessing how much power must be expended to achieve those rates•	

Adjusting the power outlay in response to shifts in computing demand•	

Observing how variations in a workload affect the power drawn by different server components
provides data critical for analysis and for building models relating QoS expectations to power consumption.
This next example describes a process of observation, modeling, and course correction in achieving
autonomic power control on an Intel Xeon server machine meeting varying response time and throughput
demands during the execution of a database query workload. The process starts with fine-grained power
performance observations permitted by a distributed set of physical and logical sensors in the system.
These observations are used to train models for various phases of the workload. Once trained, system
power, throughput, and latency models participate in optimization heuristics that redistribute the power to
maximize the overall performance per watt of the server.

Chapter 11 ■ Machine Learning in Action: Examples

222

The term power optimization denotes the act of targeting and achieving high levels of power-normalized
performance at the application level. For a software application, such as a business transaction service
or content retrieval service, the significant performance metrics include the number of requests serviced
(throughput) and the turnaround delay (response time) per request. Optimizing power entails multiple
dynamic tradeoffs. Typically, a system can be represented as a set of components whose cooperative
interaction produces useful work. These components may be heterogeneous or presented with heterogeneous
loads, and they may vary in their power consumption and power control mechanisms. At the level of any
component—such as a processing unit or a storage unit—power needs to be increased or decreased on an
ongoing basis, according to whether that component’s speed plays a critical role in the overall speed or rate of
execution of programs. In particular, different application phases may have different sensitivities to component
speed. For instance, a memory-bound execution phase will be less affected by central processing unit (CPU)
frequency scaling than a CPU-bound execution phase. With the execution reordering that most modern
processors employ, the degree to which a program benefits from out-of-order execution varies from one phase
to another. Moreover, the rate at which new work arrives in a system changes, and, as a result, the overall speed
at which programs have to execute to meet a given service-level expectation varies with time. Thus, the needed
power performance tradeoffs have to occur on a continuous basis.

Arguably, given the self-correcting and self-regulating aspects common in systems today, software-
driven power performance should be unnecessary. For example, in power control algorithms, CPUs and
DRAMs transition into lower frequencies or ultralow power modes during low-activity periods. Although
circuit-level self-regulation is highly beneficial in transitioning components to low-power states, software
needs to wield policy control over which activity should be reduced, and when, to facilitate the transition of
hardware into power-saving modes.

Harnessing power savings on less busy servers is a delicate task that is hard to delegate to hardware-
based recipes. Servers are typically configured for handling high rates of incoming work requests at the
lowest possible latencies. Therefore, it is not uncommon for servers to have many CPUs and a large amount
of physical memory over which computations and data remain widely distributed during both high- and
low-demand periods. Owing to the distributed nature of activities, slowing down a single CPU or DRAM
can have unpredictable performance ramifications; it can be counterproductive to push part of a server
into ultralow power operation. At the other extreme, when power approaches saturation levels, hardware
is ill positioned to determine or enforce decisions about which software activities can tolerate reduced
performance and which must continue as before.

Thus, software must share with hardware the responsibility of determining when and in which
component power can be saved. Here, we consider an autonomic solution for fine-grained control over
power performance tradeoffs for server configurations. The solution consists of ingredients for observing,
analyzing, planning, and controlling the dynamic expenditure of power in pursuance of an application-
level performance objective that is specified as an SLO. This solution uses a time-varying database query
workload, in which the learning machine simultaneously changes the power allocation to CPUs and DRAM
and gathers performance and power readings via a set of distributed physical and logical sensors in the
server. Through these observations, models are trained for various phases of the workload. Based on these
models, the optimization heuristic redistributes the power to maximize the overall performance per watt of
the server. Experimental measurements demonstrate that a heuristic improves performance and power, as
needed or as permitted by the performance objective.

Learning Process: Feature Selection
The primary role of a learning process is to identify relationships between the total power expended (P) and
two measures of performance: response time (R) and throughput (T). These relationships are synthesized as
models, and optimization techniques use these models to achieve better power performance efficiency.

Chapter 11 ■ Machine Learning in Action: Examples

223

The process of generalization requires a classifier that inputs a vector of discrete feature vectors and outputs
an operating phase, which can be summarized as follows:

Fine-grained and time-aligned component-level power readings at multiple power •	
rails of the primary components (CPU and dual inline memory module [DIMM])

System-level readings corresponding to three quantities, each averaged over a small •	
time interval: (1) P, the total system power; (2) T, the application-level throughput;
and (3) R, the response time experienced by requests

The component-level power readings are aligned with the {P, T, R} tuples. This entire data collection
is then used to divide the {P, T, R} space into classes (phases). Within each class or phase a linear function
can relate P, T, and R to the component-level power readings. These linear relationships are used in
optimization planning, whose objective may be to minimize P (total system power) or maximize T
(application-level throughput), subject to R’s (response time) not exceeding a specific threshold. Learning
continues online. Therefore, as the workload evolves, the models and optimization planning adapt.

The support vector machine (SVM) technique may be employed to divide the {P, T, R} space into
different phases and to obtain linear relationships governing the {P, T, R} variables in each phase. As
discussed previously, SVM is a computationally efficient and powerful technique; invented by Boser, Guyon,
and Vapnik (1992), it is employed for classification and regression in a wide variety of machine learning
problems. Given a data collection relating a set of training inputs to outputs, an SVM is a mathematical entity
that accomplishes these tasks:

	 1.	 The SVM describes a hyperplane (in some higher dimension) whose projection
into the input space separates inputs into equivalence classes, such that the
inputs in a given class have a linear function mapping them to outputs that is
distinctive for that class.

	 2.	 The hyperplane whose projection is the SVM maximizes the distance that
separates it from the nearest samples from each of the classes, thus maximizing
the distances between classes, subject to a softness margin.

	 3.	 The SVM creates a softness margin that permits a bounded classification error,
whereby a small fraction of the inputs that should be placed on one side of the
projection are instead placed within a bounded distance on the other side (and
are therefore misclassified); this margin allows a pragmatic tradeoff between
having a high degree of separation between classes (i.e., better distinctiveness)
and having too many outliers.

Equation 11-4 expresses each element of {P, T, R} as a linear function of the five power readings per
processor within each given class or phase. Whereas (V

CPU
) yields power going into the processor, V

DIMM

measures power in memory modules that are connected to and controlled from the processor. The variable J
represents a given class, {P

J
(t),R

J
(t),T

J
(t)} represents a tuple from a sample numbered t in the training set, and

the various power readings associated with that sample are represented by V*(t). The phases J; constants
K*

P
, K*

R
, K*

T
; and coefficients a*

* and b*
* are all estimated through the SVM regression technique.

Chapter 11 ■ Machine Learning in Action: Examples

224

CPU Power Readings (2) Memory Power Readings (4)

	         

P t K V t V t

R t

j P
J

PK
iJ

CPU
i

P
iJ

DIMM
i

DRAM CH iCPU i

j

() () ()

()

- = +

-
==

åå a b

KK V t V t

T t K

R
J

RK
iJ

CPU
i

R
iJ

DIMM
i

DRAM CH iCPU i

j T
J

= +

- =
==

åå a b

a

() ()

() TTK
iJ

CPU
i

T
iJ

DIMM
i

DRAM CH iCPU i

V t V t() ()+
==

åå b

	 (11-4)

Learning Process: Optimization Planning
Energy and performance models have a number of degrees of freedom and conflicting objectives that are
difficult to optimize collectively. For example, consider the following objectives:

Best performance per watt•	

Staying within a power limit•	

Response time •	 £ a service-level agreement (SLA) threshold

Conflicts can manifest themselves among these objectives, with considerations such as

How to obtain a given throughput within a •	 system power budget

How to obtain a given throughput under a •	 response time threshold

In the common case, P (total system power) is affected by both performance targets—throughput and
response time. Also in the general case, performance is influenced by the power spent in both processors
and DIMM modules. Thus, optimization planning must grapple with meeting a compound objective: one in
which power expended toward one objective generally comes at the cost of another. Once the coefficients
of the linear estimation model for power, throughput, and response time are synthesized, these models can
be used as a synthetic feedback in a multiobjective optimization through a feedback control loop. This
example uses an adaptive weighted genetic algorithm (AWGA) method to search for the global optimal in a
scenario with multiple goals. In this machine learning technique a successful outcome is defined as one
that redistributes power in such a way that power, response time, and the reciprocal of throughput all meet
the viable limits. More generally, a set of fitness functions { f

n
}, one per objective n, determines the optimality

of a candidate setting (i.e., a vector describing the distribution of power among components) for each of the
objectives. In AWGA, for a population f of candidate settings {x}, F f x xn

max
n= Îmax(() |)f) and

Fn
min = min(f

n
(x)|x Î f), you compute, respectively, the fitness bounds for each of a set of n = 1, 2, . . . , N

objectives, where each x in f is a vector whose fitness function represents a feasible power distribution among
components, such as CPUs and DIMMs. You may then choose an N objective fitness function F that evaluates
an aggregate fitness value. For example, in the case of AWGA, F can be chosen as

		 F
f F

N F F
n n

min

n
max

n
min

n

N

=
-

× -=
å ()

()
.

x

1

	 (11-5)

An evolutionary algorithm (EA) selects parents from a given generation of f (usually employing an elitism
process that allows the best solution[s] from the current generation to carry over unaltered to the next), from
which to produce power-feasible offspring as new candidates for the next generation. In the objective space,
Fn

min and Fn
max represent extreme points that are renewed at each generation. As the extreme points, fitness

bounds {(F Fn
min

n
max,)|n = 1, 2, . . . , N} are renewed at each generation, and the contribution (weight) of each

objective is also renewed accordingly.

Chapter 11 ■ Machine Learning in Action: Examples

225

Learning Process: Monitoring
Achieving power-efficient performance and abiding by power and performance constraints call for real-time
feedback control. An autonomic system implements continuous feedback-based course correction, with the
following provisions:

•	 Monitoring infrastructure to sample or quantify physical and logical metrics,
such as power, temperature, and activity rates, and to obtain statistical moments
of the metrics

•	 Analysis modules to distill relationships between monitored quantities (e.g., between
power, temperature, and performance) and to determine whether one or more
operational objectives are at risk

A •	 planning element to formulate a course of action, such as suspending, resuming,
speeding up, or slowing down various parts of a system, to effect a specific policy
choice (e.g., to limit power or energy consumed or to improve performance)

A capability to •	 execute the formulated plan and thereby control the operation of the system

Usually, a knowledge base supplements analysis and planning. The knowledge base may be an
information repository that catalogs the allowable actions in each system state, or it may be implicit in the logic
of the analysis, planning, and control capabilities. In a system designed for extensibility, the knowledge base
typically incorporates an adaptive mechanism that tracks and learns from prior decisions and outcomes. For
intelligent feedback control processes, fine-grained and lightly intrusive power performance monitoring is a
key element of the adaptive power management infrastructure. The ideal monitoring mechanism operates in
real time (i.e., reports data that are as recent as possible) and is not subject to the behavior(s) being monitored.
In this configuration logical sensors at the operating system and software levels offer a near real-time
information stream consisting of rates at which common system calls, storage accesses, and network transfers
proceed. These logical sensors are supplemented with power sensing through physical sensors.

A telemetry bus is used to collect data from physical (hardware) and logical (software) sensors and send
them to a monitoring agent. In particular, power sensing is accomplished by sensing voltage regulator (VR)
outputs at each processor chip. The monitoring agent, to which the telemetry data are sent, processes the
data, organizes them as a temporally aligned stream of power and performance statistics, and transmits
the stream to a remote machine for further storage or analysis. The monitoring infrastructure provides
the ability to obtain distinct power readings for each processor. Each processor controls distinct memory
channels, with multiple DIMMs per channel; each pair of memory channels furnishes one V

DDQ
 signal; and

summing those V
DDQ

 readings gives the power expended in the memory subsystem for each processor. The
data collected by these sensors are refined through a succession of transformations (see Figure 11-9):

•	 Sensor hardware abstraction (SHA) layer: This layer interacts with the sensors and
communication channels. It uses adaptive sampling, such that measurements are
only as frequent as necessary, and it eliminates redundancies.

•	 Platform sensor analyzer: This layer removes noise and isolates trends, which makes
it easier to incorporate recent and historical data as inputs in further processing.

•	 Platform sensor abstraction: This layer provides a programming interface for flexible
handling of analyzed sensor data through the control procedures implemented above it.

•	 Platform sensor event generation: This layer makes it possible to generate signals.
Signals facilitate event-based conversations from control procedures, thereby
allowing further control to be hosted in a distributed set of containers (such as local
or remote controller software and operating system modules). The prior successive
refinements bridge the gap between the raw data that sensors produce and the
processed, orderly stream of performance and power readings and alerts that
software modules can receive and analyze further.

Chapter 11 ■ Machine Learning in Action: Examples

226

Although a machine can be readily furnished with a metered power supply to sense total power, an
instrumentation capability that yields the fine-grained decomposition of power requires nontrivial effort.
Moreover, adding many physical power sensors in production machines is neither necessary nor practical,
in terms of cost. Event-counting capabilities in modern machines offer a potent alternative means of
estimating component power when direct measurement is not practical. One simple yet accurate way of
estimating the power draw for recent CPUs is to project it on the basis of usage and power-state residencies,
using trained models. Such training can be made more accurate by including execution profiles that capture
what fraction of the instructions falls into each of a small set of categories, such as single instruction,
multiple data (SIMD); load/store; and arithmetic logical unit (ALU). DRAM power can similarly be estimated
on the basis of cache miss counts, or DRAM operations that are counted at the memory controllers and
tracked through processor event monitors. DRAM power estimation permits measurement of DRAM energy
at DIMM granularity with sufficient accuracy to enable efficient control of DRAM power states. Efficient
control of DRAM energy allows us not only to reduce the cost of hardware infrastructure, but also to improve
energy efficiency by reducing the guard bands required to compensate for underprediction. Furthermore,
overprediction can also be reduced to avoid performance degradation.

Decision space that facilitates optimal distribution of power among competing components is obtained
by process control methods, in which privileged software can modify its power draw. The first method,
which is commonly used in Intel-based processors, is to change the P-states and C-states (Siddha 2007).
The second method is to change the average power level, using a control known as running average power
limit (RAPL) capability for CPUs and DRAM modules. CPU RAPL provides interfaces for setting a power
budget for a certain time window and letting the hardware meet the energy targets. Specifying the power
limit as an average over a time window allows us to represent physical power and thermal constraints.
Privileged software can use the RAPL capability by programming to an interface register the desired average
level of power to which the hardware can guide the processor via its own corrective frequency adjustments

Figure 11-9.  Sensor network model: sensor network layered architecture (S1, S2, . . . , Sn) represents platform
sensors (CPU/DIMM power, thermal, performance, and so on). Source: A Vision for Platform Autonomy:
Robust Frameworks for Systems (Intel, 2011)

Chapter 11 ■ Machine Learning in Action: Examples

227

over a programmable control window. The window size and power limit are selected, such that, at either a
single-machine level or a datacenter level, correction to a machine’s power is driven quickly. In practice the
window size can vary between milliseconds and seconds—the former to satisfy power delivery constraints,
the latter to manage thermal constraints. The RAPL concept extends to memory systems as well, aided
by the integration of the memory controller into each multicore processor in several recent versions of
Intel platforms. Although CPU and memory energy can be regulated individually, it is possible to build
a coordinated self-tuning approach, in which power regulation is part of a joint optimization function
supported by the machine learning technique discussed in the following section.

Model Training: Procedure and Evaluation
For the model training the data collection module collects time-aligned readings from the power-monitoring
sensors. Additionally, it gathers response times and requests completion rates from a database performance
module. These readings provide the input–output training vectors { (), (), (), (),}* * *P t R t T t V tCPU

iand
(see Equation 11-4). The training data are obtained through a cross-product of two sets of variations:

•	 Variation of demand: This parameter controls how long each of a number of threads
in the workload driver waits between completion of a previous request and issuance
of a new request.

•	 Variation of supply: This control varies the CPU and memory RAPL settings, thereby
varying the supply of power to CPU and DRAM.

In this example the workload uses time-varying think time varying from 0 to 100. For each think time,
CPU RAPL limits are varied between 20W and 95W. SVM model training on the basis of these data is then
used to categorize the data into distinct phases (J), following which the SVM model parameters for each
phase { , , , , , , , , }K K KP

J
R
J

T
J

P
iJ

R
iJ

T
iJ

P
iJ

R
iJ

T
iJa a a b b b are evaluated.

The SVM-based classification yields decomposition into three phases, as shown in Figure 11-10.

Figure 11-10.  Model tree depicting three phases (P0, P1, P2) in a workload characterized by throughput and
response time

Chapter 11 ■ Machine Learning in Action: Examples

228

Accordingly, three different sets of modeling parameters (i.e., for J = 0, 1, 2) in Equation 11-4 relate
CPU RAPL parameters to total system power, throughput, and response time outcomes. Figure 11-10
demonstrates how the total wall power estimated on the basis of the RAPL parameters in Equation 11-4
compares with that actually measured. Figures 11-11 and 11-12 illustrate the close agreement between
estimated and measured results from the training.

Figure 11-11.  Wall power, measured versus estimated (as function of component power)

Figure 11-12.  CPU power, measured versus estimated; estimated CPU power is phase wise and based on the
throughput and target latency requirements

On average a machine learning regression function supported by SVM delivers accuracy between
97 percent and 98.5 percent. Each phase is trained for its own performance and latency model coefficients.

Figure 11-13 depicts an example consisting of four possible workload conditions on a server. On the x
axis, tt00, tt10, and tt20 stand for think times of 0.0ms, 10.0ms, and 20.0ms, respectively. The y axis shows
response times. The red multisegment line in the figure connects four workload points (W

1
, W

2
, W

3
, W

4
).

Chapter 11 ■ Machine Learning in Action: Examples

229

These points are randomly selected perturbations in supply and demand ; for example, W
1
 results from

setting a think time of 20.0ms and a CPU RAPL value of 40W; W
2
 results from a think time of 0.0ms (driving a

higher arrival rate than W
1
) and a CPU RAPL value of 50W, and so on.

Figure 11-14.  Illustration of improvement in response time, using proactive control of CPU power employing
CPU RAPL

Figure 11-13.  Response time at four arbitrarily selected points, reflecting four possible workload and server
conditions

If none of the response times for W
1
, W

2
, W

3
, and W

4
 were to exceed a desired performance

objective—for instance, an SLA target of R = 20.0ms—then it would be desirable to save power by reducing
performance, so long as the higher response times were still below the target of 20.0ms. However, if at any of
these workload points the response time were to exceed a desired threshold, then it would be preferable to
improve performance by increasing the power to meet the SLA.

Generally, an SLA may spell out throughput and response time expectations and may include details,
such as the fraction of workload that must be completed within a threshold amount of response time
under differing levels of throughput. For ease of description, this example has a simple SLA setting: that
the response time, averaged over small time intervals (1s), not exceed a static target value of 14.0ms; this is
displayed in Figure 11-14 by the solid line, R = 0.014.

Chapter 11 ■ Machine Learning in Action: Examples

230

As you can see, new workload points (shown in diamonds) result from proactive power performance
control through the use of a trained SVM model. Additionally, new RAPL settings (higher CPU power)
computed using the trained model reduce the response times for W

1
 and W

2
 from their previous values

(by 15 percent and 7 percent, respectively) to new values that are much closer to the SLA. Similarly, the
model training produces lower CPU power settings for W

3
 and W

4
, which leads to power savings at the cost

of higher response times and to 11.5 percent improvement in energy efficiency. Incidentally, the new setting
for W

4
 misses the SLA target by a small but not negligible margin, which could force a recomputation of

the CPU RAPL setting in the next iteration. Note that to reduce frequent course correction, a control policy
may permit overshooting the SLA target by a small margin in either direction. Here, because the new RAPL
settings for W

1
 and W

2
 reduced response times, phase-aware CPU power scaling yields significant power

reduction at all performance levels, relative to isolated tuning.

Example 3: System Approach to Intrusion Detection
In an era of cooperating ad hoc networks and pervasive wireless connectivity, we are becoming more
vulnerable to malicious attacks. These sophisticated attacks operate under the threshold boundaries during an
intrusion attempt and can only be identified by profiling the complete system activity, in relation to a normal
behavior. Many of these attacks are silent in nature and cannot be detected by conventional intrusion detection
system (IDS) methods, such as traffic monitoring, port scanning, or protocol violation. Intrusion detection may
be compared to the human immune system, which, through understanding of the specifications of normal
processes, identifies and eliminates anomalies. Identifiers should be distributed throughout a system with
identifiable and adaptable relationships. We therefore need a model that, in each state, has a probability of
producing observable system outputs and a separate probability indicating the next states.

Unlike wired networks, ad hoc nodes coordinate among member nodes to allow exclusive use of the
communication channel. A malicious node can exploit this distributed and complex decision-making
property of cooperating nodes to launch an attack on, or hijack, the node. This inherent vulnerability can
disable the whole network cluster and further compromise security through impersonating, message
contamination, passive listening, or acting as a malicious router. An IDS mechanism should be able to
detect intrusion by monitoring unusual activities in the system via comparison with a user’s profile and with
evolving trends. Although they may not be sufficient to prevent malicious attacks if the attacker operates
below the threshold, threshold-based mechanisms can be modified to monitor trends in the related system
components to predict an attack. This is similar to an HMM (see Chapter 5), in which the hidden state
(attack) can be predicted from relevant observations (changes in system parameters, fault frequency, and so
on). Observed behavior acts as a signature or description of normal or abnormal activity and is characterized
in terms of a statistical metric and model. A metric is a random variable representing a quantitative measure
accumulated over a period of time. Observations obtained from the audit records, when used together with
a statistical model, analyze any deviation from a standard profile and trigger a possible intrusion state.

This example discusses an HMM-based strategy for intrusion detection, using a multivariate Gaussian
model for observations that are in turn used to predict an attack that exists in the form of a hidden state. The
model comprises a self-organizing network for event clustering, an observation classifier, a drift detector,
a profile estimator (PE), a Gaussian mixture model (GMM) accelerator, and an HMM engine. This method
is designed to predict intrusion states, based on observed deviation from normal profiles or by classifying
these deviations into an appropriate attack profile. An HMM is a stochastic model of discrete events and a
variation of the Markov chain. Like a conventional Markov chain, an HMM consists of a set of discrete states
and a matrix A = {a

ij
} of state transition probabilities. Additionally, every state has a vector of observed symbol

probabilities, B = b
j
(v), which corresponds to the probability that the system will produce a symbol of type

v when it is in state j. The states of the HMM can only be inferred from the observed symbols—hence, the
term hidden. HMM correlates observations with hidden states that factor in the system design, in which
observation points are optimized, using an acceptable set of system-wide intrusion checkpoints (ICs); hidden
states are created using explicit knowledge of probabilistic relationships with these observations. These

http://dx.doi.org/10.1007/9781430259893_5

Chapter 11 ■ Machine Learning in Action: Examples

231

relationships (also called profiles) are hardened and evolve with the constant usage of the multiple and
independent systems. If observation points can be standardized, then the problem of intrusion predictability
can be reduced to profiling the existing and new, hidden states to standard observations.

Modeling Scheme
Parameters for HMM modeling schemes consist of observed states, hidden (intrusion) states, and HMM
profiles. HMM training, using initial data and continuous reestimation, creates a profile that involves
transition probabilities and observation symbol probabilities. HMM modeling involves the following tasks:

Measuring the •	 observed states, which are analytically or logically derived from the
intrusion indicators. These indicators are test points spread throughout the system.

Estimating the •	 instantaneous observation probability function, which indicates the
probability of an observation, given a hidden state. This density function can be
estimated using an explicit parametric model (multivariate Gaussian) or, implicitly,
from data via nonparametric methods (multivariate kernel density emission).

Estimating the •	 hidden states by clustering the homogeneous behavior of single or
multiple components. These states are indicative of various intrusion activities that
need to be identified to the administrator.

Estimating the •	 hidden state transition probability matrix, using prior *knowledge
or random data. Prior knowledge, along with long-term temporal characteristics,
indicates an approximate probability of the transitioning of state components from
one intrusion state to another.

Observed (Emission) States
Observed states represent competing risks derived analytically or logically, using IC indicators. Machine
intrusion can be considered a result of several components’ competing for the occurrences of the intrusion.
In this model the IC engine derives continued multivariate observations, which is similar to the mean and
standard deviation model, except that the former is based on correlations between two or more metrics.
These observations bj(v) have a continuous probability density function (PDF) and are a mixture of
multivariate Gaussian (normal) distributions, expressed (Lee, Kawahara, and Shikano 2001) as

	          b v c exp v vj jk M
jk

jk
T

jk jk()
() | |

() ()
/ /

= - - -é
ëê

ù
ûú

é
-1

2

1

22 1 2
1

p s
m s m

ëë
ê
ê

ù

û
ú
ú=

å ,
k

M

1

	 (11-6)

where ×()T
 denotes transpose, and

c
jk

 ³ 0 & c jk =
=
å 1

1k

M

s
jk

= covariance matrix of the k th mixture component of the j th state

m
jk

 = mean vector of the kth mixture component of the jth state

v = observation vector

M = number of dimensions of an observation with a multivariate Gaussian distribution

q
jk

 = (s
jk

, m
jk

) = Gaussian components

h
jk

 = drift factor of the kth mixture component of the jth state

l
jk

 = (q
jk

, c
jk

, h
jk

) = user profile components

Chapter 11 ■ Machine Learning in Action: Examples

232

It is the responsibility of the IC engine to reestimate the l
jk

 parameters dynamically for all matrices and
all possible attack states. Various matrices that represent dimensions of an observation are as follows:

•	 Resource activity trend: The measure of a resource activity that is monitored over a
larger sampling period and that has characteristics that repeat over that sampling
period. Each period of activity can be thought of as an extra dimension of activity
measure.

•	 Event interval: The measure of an interval between two successive activities
(e.g., logging attempts).

•	 Event trend: The measure of events monitored over a larger sampling period,
with the objective of calculating the event behavior with a built-in repeatability
(e.g., the count of logging attempts in a day).

Hidden States
Hidden states S = -{ , , , , }S S S SN N1 2 1

 are a set of states that are not visible, but each state randomly generates
a mixture of the M observations (or visible states O). The probability of the subsequent state depends only
on the previous state. The complete model is defined by the following probabilities: transition probability
matrix A = a

ij
, where a

ij
 = p(S

i
|S

j
); observation probability matrix B = (b

i
(v

m
)), where b

i
(v

m
) = p(v

m
|S

i
); and an

initial probability vector p = p(S
i
). Observation probability represents an attribute that is observed with some

probability if a particular failure state is anticipated. The model is represented by M = (A,B,p).
A transition probability matrix is a square matrix of size equal to the number of states and stands for the
state transition probabilities.

The observation probability distribution is a nonsquare matrix whose dimensions equal the number of
states by number of observables. This distribution represents the probability of an observation for a given
state. The IDS depicted in Figure 11-15 uses these states:

•	 Normal (N) state indicates profile compliance.

•	 Hostile intrusion attempt (HI) indicates a hostile intrusion attempt that is in progress.
This is typical of an external agent trying to bypass the system security.

•	 Friendly intrusion attempt (FI) denotes a nonhostile intrusion attempt that is in
progress. This is typical of an internal agent trying to bypass the system security.

•	 Intrusion in progress (IP) signals an intrusion activity that is setting itself up. This
includes attempts to access privileged resources and acceleration in resource usage.

•	 Intrusion successful (IS) signifies a successful intrusion. Successful intrusion will be
accompanied by unusual resource usage (CPU, memory, I/O activity, and so on).

Chapter 11 ■ Machine Learning in Action: Examples

233

Intrusion Detection System Architecture
In ad hoc networks an IDS is deployed at the nodes to detect the signs of intrusion locally and independently
of other nodes, instead of using routers, gateways, or firewalls. In this section, we define components of the
IDS that cooperate with each other to predict an attack state.

After the model is trained, it enters a runtime state, in which it examines and classifies each valid
observation. The model then decides to add the observation to a profile update, reject it, or mark it
“unclassified.” This decision is important, because a drift in the user’s normal behavior may represent an
attack situation. An unclassified observation is monitored for classification in the future. This observation
will later be rejected as a noise or classified as a valid state, based on the trending similarity between
unclassified states tending toward a certain classification and on feedback from the state machine resulting
from other, independent observations. Various components of an IDS are as follows:

Profile estimator (PE): The PE is responsible for maintaining/reestimating
user profiles, classifying an observation as an attack state, triggering an alert
upon detecting a suspicious observation, or acting on the HMM feedback
for reestimation of a profile. User profile data consist of PDF parameters
l s m hjk jk jk jk jkc= (, , ,) , where j represents the intrusion state, and k stands for the
GMM mixture component. A new observation is evaluated against this profile,
which results in its classification and drift detection.

Instrumentation: Instrumentation produces event data, which are processed
and used by a clustering agent to estimate the profile. Component identification
and measurements involve setup to discern whether events should be sampled
at regular intervals or whether notification (or an alert) should be generated as
an event vector upon recording changes in pattern. The sensor data should be
able to analyze data, either as they are collected or afterward, and to provide
real-time alert notification for suspected intrusive behavior. This will require
fast-acting silicon hooks that are capable of identifying, counting, thresholding,
timestamping, eventing, and clearing an activity. Examples of such hooks are
performance counters, flip counters (also called transaction counters), header
sniffers, fault alerts (page faults, and so on), and bandwidth usage monitors.

Figure 11-15.  HMM model, with five intrusion states and four Gaussian distributions for each state; each
Gaussian distribution can be represented as the mixture component of an observation. (Source: Khanna
and Liu 2006)

Chapter 11 ■ Machine Learning in Action: Examples

234

At the same time, software instrumentation is also required to sample software-
related measurements, such as session activity, system call usage between various
processes and applications, file system usage, and swap-in/swap-out usage. Most
operating systems support these hooks in the form of process tracking (such
as process ID [PID], in UNIX). Combinations of these fast-acting hooks with
sampling capability are clustered to enact an observation.

Data clustering: Observation data are dependent on the aggregation of events
that are active. For instance, a resource fault event generated by a resource usage
engine is further categorized as a fault type, such as a page fault. Page faults count,
and invalid page faults in a sampled interval represent instances of measurement
(m

1
,m

2
). An observation (emission) can be a set of correlated measurements

but is represented by a single probability distribution function. Each of these
measurements carries different weights, as in multivariate Gaussian distribution.
For example, disk I/O usage may be related to network I/O usage because of the
network file system (NFS). Such a relationship is incorporated into the profile, for
the completeness of the observation, and reduces the dimensionality, for effective
runtime handling.

Classifier: Observation data are analyzed for the purpose of subclassification as
an appropriate attack state in a profile driven by different probability distribution
parameters. Once the appropriate attack state is identified, an attention event
is generated to initiate a corrective or logging action. Observations are also
analyzed for concept drift to compensate for changes in user (or attack) behavior.
Therefore, one of the objectives of the IC engine (see Figure 11-16) is to build a
classifier for j (attack states) that has a posterior probability p(j|v) close to unity
for one value of j and close to 0 for all the others, for each realization. This can be
obtained by minimizing the Shannon entropy, given observed data v, which can
be evaluated for each observation as

	          E p j v p j v
j

M

= -
=
å (|)log((|)).

1

	 (11-7)

Each IC engine samples its observations independently of other observations
(or emissions). Whenever it suspects an abnormal activity, it triggers an alert,
which causes an evaluation of the most likely state. As the system changes
its active behavior, the profile corresponding to that behavior is updated to
avoid false-positive evaluations by reevaluating the model parameters, using
continuous estimation mechanisms in real time. New HMM parameters are
evaluated again against the historical HMM parameters by comparing the
entropy of the old and the retrained models. The expectation maximization (EM)
algorithm (Moon 1996) provides a general approach to the problem of maximum
likelihood estimation (MLE) of parameters in statistical models with variables
that are not observed. The evaluation process yields a parameter set, which the
algorithm uses to assign observation points to new states. The computational
complexity of the EM algorithm for GMMs is O(i × ND2), where i is the number
of iterations performed, N is the number of samples, and D is the state
dimensionality. A common implementation choice is the k-means algorithm,
in which k clusters are parameterized by their centroids, with a complexity of
O(kND). A number of other algorithms can also be used, including x-means
clustering (Pelleg and Moore 2000), which reduces the complexity to O(D).

Chapter 11 ■ Machine Learning in Action: Examples

235

Concept drift detector (CDD): This module detects and analyzes the concept
drifting (Widmer and Kubat 1996) in the profile, when the training dataset alone
is not sufficient, and the model (profile) needs to be updated continually. When
there is a time-evolving concept drift, using old data unselectively helps if the
new concept and old concept still have consistencies and if the amount of old
data chosen arbitrarily happens to be right (Fan 2004). This requires an efficient
approach to data mining that aids in selecting a combination of new and old
data (historical) to make an accurate reprofiling and further classification.
The mechanism used is the Kullback-Leibler (KL) divergence (Kullback and
Leibler 1951), in which relative entropy measures the kernel distance between two
probability distributions of generative models. The KL divergence is also the gain
in Shannon information that occurs in going from the a priori to the posteriori,
expressed as

	          a q qjkt j jkt j jktKL b v b v= ((|), (|)),’ 	 (11-8)

Figure 11-16.  IC engine. Reestimation of the profile uses an observation classifier and HMM feedback to the
profile. The profile manager triggers an attention event if the observation classifies as an attack state or cannot
be classified (U). An attention event initiates an HMM state sequence prediction, based on other, continuous
observations (dotted arrows), extracted in conjunction with profiles and state transition probabilities.
(Source: Khanna and Liu 2006)

Chapter 11 ■ Machine Learning in Action: Examples

236

where a
jkt

 is the KL divergence measure, q jkt
’ is the new Gaussian component,

and q
jkt

 is the old Gaussian component of the kth mixture of the jth state at time t.
You can evaluate divergence via a Monte Carlo simulation, using the law of large
numbers (Grimmett and Stirzacker 1992), which draws an observation v

i
 from the

estimated Gaussian component q jkt
’ , computes the log ratio, and averages this

over M samples as

	          a
q
qjk

i

M
j i jkt

j i jktM

b v

b v
»

æ

è
çç

ö

ø
÷÷

=
å1

1

log
(|)

(|)
.

’

	 (11-9)

KL divergence data calculated in the temporal domain are used to evaluate the
speed of the drift (also called the drift factor) (0 £ h £ 1). These data are then
used to assign weights to the historical parameters, which are in turn used for
reprofiling.

Feedback engine (FE): This component is responsible for feeding back the
current state information to the PE. The current state information is reevaluated,
using the current PDF model parameters. This reevaluated state information is
then used for improving the descent algorithm for finding the MLE.

Profiles and System Considerations
In this section, we look at events that form input to the profile structure. We define the features as processed
observations derived from one or more temporal input events, using a processor function.

Exploiting temporal sequence information of events leads to better performance (Ghosh, Schwartzbard,
and Schata 1999) of the profiles that are defined for individual users, programs, or classes. Abnormal activity
in any of the following forms is an indicator of an intrusion or a worm activity:

•	 CPU activity is monitored by sampling faults, interprocessor interrupt (IPI) calls,
context switches, thread migrations, spins on locks, and usage statistics.

•	 Network activity is monitored by sampling input error rate, collision rate, remote
procedure call (RPC) rejection rate, duplicate acknowledgment (DUPACK),
retransmission rate, time-out rate, refreshed authentications, bandwidth usage,
active connections, connection establishment failure, header errors and checksum
failures, and so on.

•	 Interrupt activity is monitored by sampling device interrupts (nontimer).

•	 I/O utilization is monitored by sampling the I/O requests’ average queue lengths and
busy percentages.

•	 Memory activity is monitored by sampling memory transfer rate, page statistics
(reclaim rate, swap-in rate, swap-out rate), address translation faults, and pages
scanned and paging averages over a short interval.

•	 File access activity is monitored by sampling file access frequency, file usage
overflow, and file access faults.

•	 System process activity is monitored by sampling processes with inappropriate
process priorities, CPU and memory resources used by processes, processes’ length,
processes that are blocking I/Os, zombie processes, and the command and terminal
that generated the process.

Chapter 11 ■ Machine Learning in Action: Examples

237

•	 System fault activity represents an illegal activity (or a hardware error) and is
sampled to detect abnormality in the system usage. Rare faults are a result of bad
programming, but spurts of activity indicate an attack.

•	 System call activity involves powerful tools for obtaining computer system privileges.
An intrusion is accompanied by the execution of unexpected system calls. If the
system call execution pattern of a program can be collected before it is executed
and is used for comparison with the runtime system call execution behavior, then
unexpected execution of system calls can be detected. During real-time operation a
pattern-matching algorithm is applied to match on the fly the system calls generated
by the process examined with entries from the pattern table. Based on how well the
matching can be done, it is decided whether the sequence of system calls represents
normal or anomalous behavior (Wespi, Dacier, and Debar 1999).

•	 Session activity is monitored by sampling logging frequency, unsuccessful logging
attempts, session durations, session time, and session resource usages.

Sensor Data Measurements
Sensor data are collected and statistically processed so that they can be used to measure historical trends,
capture unique patterns, and visualize abnormal behavior. The data are classified and then analyzed for use
in prediction of abnormal activity. Sensor data measurements comprise various components that perform
either a statistical processing function or an infrastructure function (such as generating priority events),
as follows:

Sensor data measurement (SDM) hooks reduce system complexity and increase
the possibility of software reuse (see Figure 11-17). SDM accelerates the combined
measurement of the clustered components with an ability to send alerts, using
a system’s policy. Hardware and software act as glue between transducers and
a control program that is capable of measuring the event interval and the event
trend and of generating alerts upon deviation from normal behavior, as defined
by system policy. The SDM hardware exists as a multiple-instance entity that
receives alert vectors from various events spread throughout the system. A set
of correlated events that forms a cluster is registered against a common SDM
instance. This instance represents the Bayes optimal decision boundaries
between a set of pattern classes, with each class represented by an SDM instance
and associated with a reference vector. Each SDM instance can trend and alert
and integrates the measurements from the event sensors into a unified view.
Cluster trending analysis is very sensitive to small signal variations and capable
of detecting the abnormal signals embedded in the normal signals via supervised
self-organizing maps (Kohonen 1995), using learning vector quantization (LVQ).
The strategy behind LVQ is to effectively train the reference vectors to define the
Bayes optimal decision boundaries between the SDM classes registered to an
SDM instance.

Chapter 11 ■ Machine Learning in Action: Examples

238

Observation data classifier (ODC) hooks accelerate the classification of an
observation alert generated by SDM. This is multiple-instance hardware capable
of handling multiple observations in parallel. Each registered observation
instance of the ODC hook consists of Gaussian probability distribution
parameters for each state. Upon receiving an SDM alert, the corresponding
observation is then classified as a specific state. Reclassification of observed data
may cause changes in the probability distribution parameters corresponding to
the state. ODC can maintain the historical parameters, which are used to calculate
concept drift properties, such as drift factor and drift speed, using the KL drift
detector.

The GMM calculator calculates the probability of the Gaussian mixture for each
state, using the current observation. During system setup, event vectors are
registered against SDM instances. These events are clustered and processed in
their individual SDMs. The processing includes trigger properties, which initiate
an observation. These observations then act as single-dimensional events that are
registered to their ODC. Upon receiving the trigger, ODC performs reclassification
of the observation derived from the trigger and calculates the concept drift. This
hardware is activated upon a trigger by its parent.

Figure 11-17.  Illustration of the relationship between events (circles), sensors (SDM), and classifiers
(ODC). Clusters of events (marked by common colors) are registered to an SDM. Upon evaluating the event
properties, the SDM generates an event to ODC, which is responsible for classification, trend analysis, and drift
calculation. Classification feedback acts as a mechanism for reestimation. (Source: Khanna and Liu 2006)

Chapter 11 ■ Machine Learning in Action: Examples

239

Summary
As more and more data are expressed digitally in an unstructured form, new computing models are being
developed to process that data in a meaningful manner. Machine learning methods can be applied to synthesize
the fundamental relationship between the unstructured datasets and information through systematic
application of algorithms. Machine learning exploits the power of generalization that is an inherent and
essential component of concept formation through human learning. The machine learning methodology can
be applied to develop autonomous systems, using modular functions to enact an intelligent feedback control
system. This approach can play a critical role in modeling the knowledge function, which is used to enact a
stable and viable system. This chapter presented three examples of techniques used in machine learning. The
first example employed the concept of workload fingerprinting, using phase detection to establish observable
characteristics exhibiting spatial uniformity and distinctiveness. The second example was based on the concept
of optimal, dynamic energy distribution among multiple compute elements. This example proposed phases as
compressed representative output that can be used in conjunction with any other statistical parameter to predict
future behavior. The last example suggested use of the IDS mechanism for detecting intrusions by monitoring
unusual activities in the system with reference to the user’s profile and evolving trends. Each example used an
application-specific grouping of machine learning techniques to achieve the desired goals.

References
Becker, Suzanna, and Geoffrey E. Hinton. “Self-Organizing Neural Network that Discovers Surfaces in
Random-Dot Stereograms.” Nature 355, no. 6356 (1992): 161–163.

Boser, Bernhard E., Isabelle M. Guyon, and Vladimir N. Vapnik. “A Training Algorithm for Optimal Margin
Classifiers.” In COLT ’92: Proceedings of the Fifth Annual Workshop on Computational Learning Theory,
144–152. New York: ACM, 1992.

Fan, Wei. “Systematic Data Selection to Mine Concept-Drifting Data Streams.” In KDD ’04: Proceedings of the
Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 128–137. New York:
ACM, 2004.

Ghosh, Anup K., Aaron Schwartzbard, and Michael Schatz. “Learning Program Behavior Profiles for
Intrusion Detection.” In ID’ 99: Proceedings of the 1st Conference on Intrusion Detection and Network
Monitoring. Berkley, CA: USENIX, 1999.

Grimmett, Geoffrey, and David Stirzaker. Probability and Random Processes. Oxford: Clarendon, 1992.

Khanna, Rahul, and Huaping Liu. “System Approach to Intrusion Detection Using Hidden Markov Model.”
In Proceedings of the 2006 International Conference on Wireless Communications and Mobile Computing,
349–354. New York: ACM, 2006.

Kohonen, Teuvo. “Self-Organizing Maps, Third Edition.” Berlin: Springer, 1995.

Kullback, Solomon, and Richard A. Leibler. “On Information and Sufficiency.” Annals of Mathematical
Statistics 22, no. 1 (1951): 79–86.

Lee, Akinobu, Tatsuya Kawahara, and Kiyohiro Shikano. “Gaussian Mixture Selection Using Context-
Independent HMM.” In Proceedings of the 2001 IEEE International Conference on Acoustics, Speech, and
Signal Processing, 69–72. Piscataway, NJ: Institute of Electrical and Electronics Engineers, 2001.

Moon, Todd K. “The Expectation-Maximization Algorithm.” IEEE Signal Processing Magazine 13, no. 6
(1996): 47–60.

Chapter 11 ■ Machine Learning in Action: Examples

240

Pelleg, Dan, and Andrew W. Moore. “X-Means: Extending K-Means with Efficient Estimation of the Number
of Clusters.” In ICML ’00: Proceedings of the Seventeenth International Conference on Machine Learning,
727–734. San Francisco: Morgan Kaufmann, 2000.

Siddha, Suresh. “Multi-Core and Linux Kernel.” Technical report, Intel Open Source Technology Center, 2007.

Wespi, Andreas, Marc Dacier, and Hervé Debar. “An Intrusion-Detection System Based on the Teiresias
Pattern-Discovery Algorithm.” In EICAR Proceedings 1999, edited by Urs E. Gattiker, Pia Pedersen, and
Karsten Petersen, 1–15. Aalborg, Denmark: Tim-World, 1999.

Widmer, Gerhard, and Miroslav Kubat. “Learning in the Presence of Concept Drift and Hidden Contexts.”
Machine Learning 23, no. 1 (1996): 69–101.

241

A�       �
AdaBoost, 13
Adaptive weighted genetic algorithm (AWGA)

method, 224
ALB-SVR. See Asymmetrical and lower-bounded

SVR (ALB-SVR)
Alternating-least-squares with weighted-l-

regularization (ALS-WR), 34
Ant colony optimization (ACO) algorithm, 111
Apriori, 12
Arabic automatic speech recognition, 161
Arabic Spoken Digit Dataset, 162
Arithmetic logical unit (ALU), 226
Artificial bee colony (ABC) algorithm

employed bees, 115
load balancing, 116
onlooker bee, 115
principal components, 115
principal factors, 116
scout bee, 115

Artificial immune system (AIS)
attributes, 118
clonal selection mechanisms, 118
encoding, 118
mutation, 119
negative selection mechanisms, 118
reinforced learning mechanism, 118
selection, 119
similarity measure, 118

Artificial neural networks (ANNs), 40, 106
activation function, 130
basic structure of, 129
bias, 129
dendrite’s structure, 129
hidden neurons, 133
layer of neurons, 131
matrix notation, 131
network output, 132
Rosenblatt perceptron structure, 128
three-layer ANN, 132

training and backpropagation algorithm
chain rule, 134
feedback, 133
feedforward, 133
initialization, 133

Asymmetrical and lower-bounded SVR (ALB-SVR)
Huber insensitive loss function, 77
power estimates, 78
validation, 77

Autoassociative memory, 137
AutoMate architecture, 110
Autonomic nervous system (ANS), 106

B�       �
Backpropagation, 26
Bacterial foraging optimization (BFO) algorithm

chemotaxis, 117
E. coli, 117

Ball k-means algorithm, 29
Basic input/output system (BIOS), 213
Bayesian belief propagation (BBP), 168
Bayesian linear regression

discriminant vs. generative models, 75
Gaussian conditional probability

distributions, 75
model parameters, 74
Moore-Penrose pseudoinverse, 74
multivariate Student’s t-distribution, 74

Berkson’s paradox, 135
Big data

characteristics, 19
detecting fraudulent behavior, 20
dynamic coupon system, 20
failure root cause detection, 20
shopping behavior analysis, 20
standard database management systems, 19
workload resource tuning and selection, 21

Bioinspired computing
AIS (see Artificial immune system (AIS))
ANS, 106

Index

■ index

242

BFO algorithm (see Bacterial foraging
optimization (BFO) algorithm)

datacenter optimization
AutoMate architecture, 110
SelfLet architecture, 110
self-organization algorithm, 110

datacenters
algorithm model, 121
control system, 120
load balancing, 121
thermal optimization, 120
workload characterization, 120

evolvable hardware (EHW), 106
heuristics, 105
networking

advancements, 108
AntHocNet algorithm, 109
epidemic spreading mechanism, 109
resource-constrained sensors, 109

SI (see Swarm intelligence (SI))
Body mass index (BMI), 23
Boltzmann machines (BMs), 137

C�       �
Cache quality of service (CQoS), 106
C4.5 classifiers, 10
Classification and regression tree (CART), 15
Cloud-based networking (CBN), 108
Collaborative filtering (CF), 22
Concept drift detector (CDD), 235
Content-based image retrieval (CBIR) system, 174
Continuous observation HMM (CHMM), 93
Contrastive divergence (CD), 137
Correlation-based feature selection (CFS)

algorithm, 214
Cortical algorithms (CAs), 158

confusion matrices, 162
entropy-based weight update rule, 159
experimental validation, 160
structure

cortical network connectivity, 150
hypercolumn, 149
minicolumn, 149
nomenclature conventions, 151
nonlinear activation function, 152
weight matrix, 151

training
supervised feedback, 153
unsupervised feedforward, 152
workflow for, 156

weight update process
abalone dataset, 157
computational cost, 155

exponential function, 155
image segmentation dataset, 157
ISOLET dataset, 157
letter recognition dataset, 156
multiple features dataset, 157
neuron weight, random node, 154
PENDIGITS dataset, 157

Cortical learning algorithm (CLA)
SDR, 171
spatial pooler, 172
temporal pooler, 173

Cross-entropy (CE) cost functions, 158–159

D�       �
Deep belief networks (DBNs)

architecture, 135
convolutional DBN, 142
layer-by-layer training algorithm, 138
low-dimensional features, 141
M-DBN, 142
nomenclature, 136
object recognition, 141
sparse DBN, 142
SPN, 142
weight labeling, 136

Deep learning, 27
HTM

algorithmic implementation, 171
Bayesian theory, 169
BBP, 168
binary outputs, 170
CBIR system, 174
cell/neuron model, 170
diabetic retinopathy, 175
distal dendrites, 170
human traffic analysis, 174
LLC, 175
neocortex, 167
permanence, 170
proximal dendrites, 170
saliency maps, 174
SDR, 169, 171
sensory information, 168
spatial pooler, 172
support vector machine, 174
synaptic connections, 170
temporal pooler, 173

SNN
applications, 175
deSNN, 181
eSNN, 180
Hodgkin-Huxley model, 176
integrate-and-fire model, 176
Izhikevich model, 177

Bioinspired computing (cont.)

■ Index

243

leaky integrate-and-fire model, 177
postsynaptic neuron, 179
presynaptic neuron, 179
pSNN, 181
rank coding, 178
reservoir computing, 181
spike coding, 178
SpikeProp, 179–180
SSTD, 175
Thetalearning rule, 179
Thorpe’s model, 178

Deep neural networks (DNNs)
curriculum learning, 141
definition, 128
feature extraction, 140
Hebbian learning, 128
implementations, 141
training algorithms

layer-wise training, 138
sequential training, 138
up–down algorithm, 138, 140

Degree of membership, 21
Discrete Fourier transform (DFT), 140
DVFS multiobjective discrete particle swarm

optimization (DVFS-MODPSO), 115
Dynamic random access

memory (DRAM), 218, 226
Dynamic synaptic evolving spiking neural network

(deSNN), 181

E�       �
Echo state machine (ESM), 181
Epidemic spreading mechanism, 109
Error matrix, 2
Error rate, 2
Euclidean distance, 36
Evolutionary algorithms (EAs), 224

diversity improvement, 192
elitism, 192
fitness, 192
GA, 190
GP, 191
mating selection, 189
MOGA, 194
NPGA, 194
NSGA, 195
PAES, 199
PESA, 200
SPEA, 196
VEGA, 193
weighted-sum method, 192

Evolving spiking neural
network (eSNN), 180

Expectation maximization (EM)
algorithm, 12, 234

F�       �
False negative (FN), 53
False positive (FP), 53
Feature extraction, 22, 140
Feature selection, 22
Feedback engine (FE), 236
Field-programmable gate arrays (FPGAs), 106, 142
Fingerprinting, 207
Fixed-density distributed representation (FDR), 169
Fuzzy c-means (FCM). See Fuzzy k-means
Fuzzy datasets, 21
Fuzzy k-means, 28

G�       �
Gaussian mixture model (GMM), 93, 230, 238
Genetic algorithm (GA), 190
Genetic programming (GP), 191
Gibbs distribution, 137
Graphics processing unit (GPU), 55, 140, 142

H�       �
Handwriting recognition (HWR)

complexity analysis, 61
feature extraction, 57
grid search algorithm, 59
hierarchical, three-stage, 58
label vs. true label, 59
OAA, 60
OAO, 60
offline sensing, 56
online recognition, 56
recognition rate, 60
writer dependent, 56
writer independent, 56

Hebbian rule, 128
Hidden Markov model (HMM), 24, 56

attributes, 24
continuous observation

Gaussian mixture model (GMM), 93
mixture distribution, 92
PDF (see Probability density function (PDF))

decoding, 86
initialization, 90
recursion, 90
state sequence backtracking, 90
termination, 90
Viterbi algorithm, 89

definition, 85
discrete Markov process

definition, 83
dynamic system, 82
Markov chain, 82
stochastic process, 82

■ index

244

evaluation
backward algorithm, 88
forward algorithm, 87
scaling, 88

features, 81
health states progress, 86
hidden states and observed states, 84
IDS, 230, 232
learning, 86

Baum-Welch algorithm, 90
maximum likelihood estimation (MLE), 91

model evaluation, 25
model training, 25
monitoring and observations, 95
parameters, 85
path decoding, 25
phase detection

emission block (EB), 99
model reduction block (MRB), 99
parameter estimation block (PEB), 101
phase predictor block (PPB), 102
sensor block, 97
state forecasting block, 103
system adaptation, 103
training block (TB), 100

trellis representation, 85
workload phase recognition

CHMM, 95
CPU utilization vs. phase model, 96
feature extraction techniques, 97
optimal system operation, 95
predictive systems, 95
program execution, 94
systems attributes, 96

Hierarchical temporal memory (HTM)
algorithmic

implementation, 171
Bayesian theory, 169
BBP, 168
binary outputs, 170
CBIR system, 174
cell/neuron model, 170
diabetic retinopathy, 175
distal dendrites, 170
FDR, 169
human traffic analysis, 174
LLC, 175
neocortex, 167
permanence, 170
proximal dendrites, 170
saliency maps, 174
SDR, 169, 171
spatial pooler, 172
support vector machine, 174

synaptic connections, 170
temporal pooler, 173

HMM. See Hidden Markov model (HMM)
Hodgkin-Huxley model, 176
Hyperbolic tangent, 26

I�       �
Independent and identically distributed (iid), 39
Integrate-and-fire model, 176
International Conference on

Data Mining (ICDM), 10
Internet of Things (IOT), 108
Intrusion checkpoints (ICs), 230
Intrusion detection system (IDS) method

ad hoc nodes, 230
architecture

CDD, 235
classifier, 234
data clustering, 234
FE, 236
IC engine, 234
instrumentation, 233
profile estimator, 233
runtime state, 233
valid state, 233

hidden states, 232
HMM, 230, 232
malicious node, 230
metric, 230
observed states, 231

Isolated Letter Speech Recognition (ISOLET)
dataset, 157

Item-based collaborative filtering, 34
Izhikevich model, 177

J�       �
Jaccard similarity coefficient, 36

K�       �
Karush-Kuhn-Tucker (KKT), 44, 71
Kernel SVR, 72
k-means, 10
k-means clustering, 27
k-nearest neighbors (k-NN), 14
Knee-cut ordinal optimization–inspired support

vector machine (KCOOSVM), 55
Knee-cut support vector

machine (KCSVM), 55
Knowledge discovery

classification, 21
clustering, 22
collaborative filtering, 22

Hidden Markov model (HMM) (cont.)

■ Index

245

core machine algorithms, 21
dimensionality reduction, 22
machine learning. Machine learning

Kullback-Leibler (KL) divergence, 235

L�       �
Lagrangian relaxation, 42
Lanczos algorithm, 32
Leaky integrate-and-fire model, 177
Learning vector quantization (LVQ), 237
Liquid state machine (LSM), 181
Literary Arabic, 161
Locality-constrained linear

coding (LLC), 175
Local mixture–based Support vector machine

(LMSVM), 55
Logistic regression, 22
Logistic sigmoid function, 26

M�       �
Machine learning (ML)

accuracy, 2
algorithms

AdaBoost, 13
Apriori, 12
CART, 15
C4.5 classifiers, 10
expectation–maximization (EM), 12
inductive inference, 9
k-means, 10
k-nearest neighbors (k-NN), 14
naive Bayes model, 15
PageRank, 13
process, 5
RL methodology, 8
semi-supervised learning, 8
supervised learning, 6
SVMs, 11
transductive learning, 9
unsupervised learning algorithms, 7

analytical function, 210
autonomic system, 210
characteristics, 1
classification algorithms

HMM, 24
logistic regression, 22
MLP, 25
random forest, 24

classifier, 2
clustering algorithms

fuzzy k-means, 28
k-means clustering, 27
streaming k-means, 28

collaborative filtering
ALS-WR, 34
item-based, 34
user-based, 33

confusion matrix, 2
cost, 3
cross-validation, 3
cybernetic systems, 210
data mining, 3
data mining research problems, 15
dataset, 3
definition, 1, 209
dimension, 3
dimensionality reduction

Lanczos algorithm, 32
PCA, 30
SVD, 29

dynamic energy allocation
adjusting, 221
assessing, 221
autonomic solution, 222
feature selection, 222
Intel Xeon server, 221
less busy servers, 222
monitoring, 225
optimization planning, 224
power optimization, 222
selecting, 221
self-correcting, 222
self-regulating, 222

feature vector, 4
goal, 1
GMM calculator, 238
IDS (see Intrusion detection system (IDS) method)
induction algorithm, 3
instance, 3
knowledge base, 209
knowledge discovery, 3
knowledge function, 210
model, 4
model training

CPU power, 228
SLA, 229
SVM, 227
variation of demand, 227
variation of supply, 227
wall power, 228
workload conditions, 228

motor function, 210
ODC, 238
OLAP, 4
planning function, 210
profiles and system considerations

CPU activity, 236
file access activity, 236

■ index

246

interrupt activity, 236
I/O utilization, 236
memory activity, 236
network activity, 236
processor function, 236
system call activity, 237
system fault activity, 237

schema, 4
SDM, 237
sensor function, 210
similarity matrix

Euclidean distance, 36
Jaccard similarity coefficient, 36
Pearson correlation coefficient, 35
Spearman rank

correlation coefficient, 35
state-determined system, 209
supervised learning, 4
unsupervised learning, 4
user-centric innovations, 1
viable system modeling, 211
workload fingerprinting (see Workload

fingerprinting)
Markov chain Monte Carlo (MCMC) algorithm, 137
Mating process, 189
MATLAB software, 155, 160
Maximum likelihood estimation (MLE), 23, 234
Mel frequency cepstral coefficients

(MFCCs), 140, 160, 162
Membership function, 21
Message passing interface (MPI), 55
Modular DBN (M-DBN), 142
Multidimensional OLAP (MOLAP), 4
Multilayer perceptron (MLP)

activation function, 26
deep learning, 27
definition, 25
error function, 26
fundamental component, 25
input features, 26
learning algorithm steps, 26
supervised-learning technique, 26

Multiobjective genetic
algorithm (MOGA), 194

Multiobjective optimization, 185
decision space, 186
decision variable space, 186
definition, 186
dominance relationship

nonsymmetrical, 188
transitive, 188

evolutionary algorithms (see Evolutionary
algorithms (EAs))

objective functions, 206

objective function space, 186, 187
Pareto optimality, 187
performance guarantees, 205
performance measurement, 188
power targets, 205
reducing thermal stresses, 205
resource utilization targets, 205

Multistage support vector machine (MSVM), 51

N�       �
Naive Bayes, 15
Natural language processing (NLP), 36, 141
Niched Pareto genetic algorithm (NPGA), 194
Niche-formation method, 194
Nondominated sorting genetic

algorithm (NSGA), 195
NSGA-II, 201

initialization, 202
selection, 202

steps, 195

O�       �
Observation data classifier (ODC), 238
One-against-all (OAA), 50, 60
One-against-one (OAO), 50, 60
One-versus-the-rest. See One-against-all (OAA)
Online analytical processing (OLAP), 4

P�       �
PageRank, 13
Pair-wise classification. See One-against-one (OAO)
Pareto archived evolutionary strategy (PAES), 199
Pareto envelope-based selection algorithm (PESA)

external population, 200
internal population, 200
PESA-II, 201
steps of, 200

Particle swarm optimization (PSO), 113
Pearson correlation coefficient, 35
Pen-Based Recognition of Handwritten Digits

(PENDIGITS) dataset, 157
Perceptron, 128
Principal component analysis (PCA), 30, 99
Probabilistic spiking neural network (pSNN), 181
Process control methods, 226
Profile estimator (PE), 230

Q�       �
Quadratic integrate and fire (QIF) neuron

model, 179
Quality of service (QoS), 21, 218

Machine learning (ML) (cont.)

■ Index

247

R�       �
Random forest, 24
Recall rate (RR), 53
Receiver operating characteristic (ROC), 53
Reinforcement learning (RL) methodology, 8
Relational OLAP (ROLAP), 4
Restricted Boltzmann machines (RBMs)

autoassociative memory, 137
CD, 137–138

Rosenblatt perceptron structure, 129
Running average power limit (RAPL), 226

S�       �
Schmidhuber’s algorithm, 138
SelfLet architecture, 110
Semicontinuous HMM (SCHMM), 93
Semi-supervised learning, 8
Sensor data measurement (SDM), 237
Sensor hardware abstraction (SHA) layer, 225
Sequential minimal optimization (SMO)

method, 54
Service-level agreements (SLAs), 21, 224, 229
Service-level objectives (SLO), 218
Session activity, 237
Single instruction, multiple data (SIMD), 226
Singular value decomposition (SVD), 29
Software-defined networking (SDN), 108
Sparse distributed representation (SDR), 169, 171
Spatio-and spectrotemporal data (SSTD), 175
Spearman Rank Correlation

Coefficient, 35
Spiking neural network (SNN)

applications, 175
deSNN, 181
eSNN, 180
Hodgkin-Huxley model, 176
integrate-and-fire model, 176
Izhikevich model, 177
leaky integrate-and-fire model, 177
postsynaptic neuron, 179
presynaptic neuron, 179
pSNN, 181
rank coding, 178
reservoir computing, 181
spike coding, 178
SpikeProp, 179–180
SSTD, 175
Thetalearning rule, 179
Thorpe’s model, 178

Streaming k-means
ball k-means step, 29
streaming-step algorithm, 28

Strength Pareto evolutionary algorithm (SPEA)
algorithm flow, 196
clustering process, 198
definition, 196
fitness of solutions, 197
SPEA-II, 198
strength of solutions, 197

Structural risk minimization (SRM), 43
Sum product network (SPN), 142
Supervised-learning technique, 6, 26
Support vector data description (SVDD), 53
Support vector machines (SVMs), 11, 67, 127, 141, 223

computational requirements, 54
geometric perspective, 39
hard-margin, 43
HWR

complexity analysis, 61
feature extraction, 57
grid search algorithm, 59
hierarchical, three-stage, 58
label vs. true label, 59
OAA, 60
OAO, 60
offline sensing, 56
online recognition, 56
preprocessing, 56
recognition rate, 60
writer dependent, 56
writer independent, 56

imbalanced datasets
confusion matrix, 52
error matrix/contingency matrix, 52
GS-SVM, 53
GSVM-RU, 53
majority class, 52–53
matching matrix, 52
minority class, 52
MinSVM, 54
ROC, 53
SMOTE, 54
SVDD, 53
WSD-SVM, 53

machine learning problems, 39
model training, 227
multiclass

hierarchical SVM, 51
OAA, 50
OAO, 50
single, 51

properties
error trends vs. model index, 43
kernel technique, 42, 48
maximal margin classifier, 41
maximum margin separator, 42

■ index

248

slack concept, 41
sparse technique, 42
SRM, 43
VC theory, 41

soft-margin, 46
Support vector quantile regression (SVQR), 70
Support vector regression (SVR)

concepts, 68
graphical representation, 68
kernel, 72
mathematical model, 68
overview, 67

Support vectors, 42
Swarm intelligence (SI)

ant colony optimization (ACO) algorithm, 111
artificial bee colony (ABC) algorithm, 115
boids, 111
particle swarm optimization (PSO), 113
stigmergy, 111

Syntax trees, 191
Synthetic minority oversampling technique

(SMOTE), 54
system process activity, 236

T�       �
Telemetry bus, 225
Thermal stresses, 201–2
Thorpe’s model, 178
True negative (TN), 53
True negative rate (TNR), 53
True positive (TP), 53
True positive rate (TPR), 53

U�       �
Unsupervised learning algorithms, 7
User-based collaborative filtering, 33

V�       �
Vapnik-Chervonenkis (VC) theory, 41
Vapnik’s e-insensitive approach, 67
Vector-evaluated genetic algorithm (VEGA), 193
Viable system modeling, 211
Voltage regulator (VR), 225

W�       �
Wireless sensor networks (WSNs), 108
Workload fingerprinting

characterization, 218
control parameters, 213
dynamic characterization technique, 213
feature selection process, 218
feedback-directed optimization, 213
forecasting, 221
optimal system operation, 218
performance-monitoring units, 214
phase determination

boundaries, 217
classifier algorithm, 216
cluster mean and standard

deviation, 215
feature selection process, 214
phase transition, 216
program phase, definition, 214

proactive self-tuning, 214
properties, 218

pattern attribute, 221
phase attribute, 219
size attribute, 219

SLO, 218
system control agents, 218

X, Y, Z�       �
X-means clustering, 234

Support vector machines (SVMs) (cont.)

Efficient Learning
Machines

Theories, Concepts, and Applications for
Engineers and System Designers

Mariette Awad

Rahul Khanna

Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and
System Designers

Mariette Awad and Rahul Khanna

Copyright © 2015 by Apress Media, LLC, all rights reserved

ApressOpen Rights: You have the right to copy, use and distribute this Work in its entirety, electronically
without modification, for non-commercial purposes only.

License for Distribution of the Work: This Work is copyrighted by Apress Media, LLC, all rights reserved.
Use of this Work other than as provided for in this license is prohibited. By exercising any of the rights herein,
you are accepting the terms of this license. You have the non-exclusive right to copy, use and distribute this
English language Work in its entirety, electronically without modification except for those modifications
necessary for formatting on specific devices, for all non-commercial purposes, in all media and formats
known now or hereafter. While the advice and information in this Work are believed to be true and accurate
at the date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or
implied, with respect to the material contained herein.

ISBN-13 (pbk): 978-1-4302-5989-3

ISBN-13 (electronic): 978-1-4302-5990-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Managing Director: Welmoed Spahr
Lead Editors: Jeffrey Pepper (Apress); Steve Weiss (Apress); Patrick Hauke (Intel)
Acquisitions Editor: Robert Hutchinson
Developmental Editor: Douglas Pundick
Technical Reviewers: Abishai Daniel, Myron Porter, Melissa Stockman
Coordinating Editor: Rita Fernando
Copyeditor: Lisa Vecchione

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com

iii

About ApressOpen

What Is ApressOpen?
ApressOpen is an open access book program that publishes •	
high-quality technical and business information.

ApressOpen eBooks are available for global, free, •	
noncommercial use.

ApressOpen eBooks are available in PDF, ePub, and Mobi formats.•	

The user-friendly ApressOpen free eBook license is presented on the copyright page •	
of this book.

To my family, and especially Edwin, my sunshine.—Mariette

To my family, and especially my mother, Udesh, who always believed in me.—Rahul

vii

Contents

About the Authors���xv

About the Technical Reviewers��xvii

Acknowledgments���xix

Chapter 1: Machine Learning■■ ��� 1

Key Terminology�� 2

Developing a Learning Machine�� 5

Machine Learning Algorithms��� 6

Popular Machine Learning Algorithms�� 10

C4.5��� 10

k-Means�� 10

Support Vector Machines��� 11

Apriori�� 12

Estimation Maximization��� 12

PageRank�� 13

AdaBoost (Adaptive Boosting)��� 13

k-Nearest Neighbors��� 14

Naive Bayes��� 15

Classification and Regression Trees�� 15

Challenging Problems in Data Mining Research��� 15

Scaling Up for High-Dimensional Data and High-Speed Data Streams��� 16

Mining Sequence Data and Time Series Data�� 16

Mining Complex Knowledge from Complex Data��� 16

Distributed Data Mining and Mining Multi-Agent Data�� 16

■ Contents

viii

Data Mining Process-Related Problems�� 16

Security, Privacy, and Data Integrity�� 17

Dealing with Nonstatic, Unbalanced, and Cost-Sensitive Data�� 17

Summary��� 17

References�� 17

Chapter 2: Machine Learning and Knowledge Discovery■■ ������������������������������������� 19

Knowledge Discovery�� 21

Classification��� 21

Clustering�� 22

Dimensionality Reduction�� 22

Collaborative Filtering�� 22

Machine Learning: Classification Algorithms�� 22

Logistic Regression��� 22

Random Forest�� 24

Hidden Markov Model�� 24

Multilayer Perceptron�� 25

Machine Learning: Clustering Algorithms��� 27

k-Means Clustering��� 27

Fuzzy k-Means (Fuzzy c-Means)��� 28

Streaming k-Means��� 28

Machine Learning: Dimensionality Reduction��� 29

Singular Value Decomposition��� 29

Principal Component Analysis��� 30

Lanczos Algorithm��� 32

Machine Learning: Collaborative Filtering��� 33

User-Based Collaborative Filtering�� 33

Item-Based Collaborative Filtering�� 34

Alternating Least Squares with Weighted-l-Regularization��� 34

■ Contents

ix

Machine Learning: Similarity Matrix�� 35

Pearson Correlation Coefficient��� 35

Spearman Rank Correlation Coefficient�� 35

Euclidean Distance�� 36

Jaccard Similarity Coefficient�� 36

Summary��� 37

References�� 38

Chapter 3: Support Vector Machines for Classification■■ �� 39

SVM from a Geometric Perspective��� 39

SVM Main Properties��� 41

Hard-Margin SVM�� 43

Soft-Margin SVM��� 46

Kernel SVM ��� 48

Multiclass SVM ��� 50

SVM with Imbalanced Datasets��� 52

Improving SVM Computational Requirements �� 54

Case Study of SVM for Handwriting Recognition ��� 56

Preprocessing�� 56

Feature Extraction �� 57

Hierarchical, Three-Stage SVM�� 58

Experimental Results��� 59

Complexity Analysis��� 61

References�� 62

Chapter 4: Support Vector Regression■■ ��� 67

SVR Overview�� 67

SVR: Concepts, Mathematical Model, and Graphical Representation������������������������������ 68

Kernel SVR and Different Loss Functions: Mathematical Model and Graphical
Representation�� 72

■ Contents

x

Bayesian Linear Regression ��� 74

Asymmetrical SVR for Power Prediction: Case Study�� 76

References�� 79

Chapter 5: Hidden Markov Model■■ ��� 81

Discrete Markov Process��� 82

Definition 1 ��� 83

Definition 2�� 83

Definition 3�� 83

Introduction to the Hidden Markov Model �� 84

Essentials of the Hidden Markov Model�� 85

The Three Basic Problems of HMM�� 86

Solutions to the Three Basic Problems of HMM�� 87

Continuous Observation HMM��� 92

Multivariate Gaussian Mixture Model�� 93

Example: Workload Phase Recognition�� 94

Monitoring and Observations��� 95

Workload and Phase�� 95

Mixture Models for Phase Detection�� 97

References�� 104

Chapter 6: Bioinspired Computing: Swarm Intelligence■■ ������������������������������������� 105

Applications��� 106

Evolvable Hardware��� 106

Bioinspired Networking��� 108

Datacenter Optimization�� 109

Bioinspired Computing Algorithms�� 110

Swarm Intelligence��� 111

Ant Colony Optimization Algorithm�� 111

Particle Swarm Optimization��� 113

Artificial Bee Colony Algorithm�� 115

■ Contents

xi

Bacterial Foraging Optimization Algorithm�� 117

Artificial Immune System�� 118

Distributed Management in Datacenters�� 119

Workload Characterization�� 120

Thermal Optimization�� 120

Load Balancing�� 121

Algorithm Model�� 121

References�� 123

Chapter 7: Deep Neural Networks■■ �� 127

Introducting ANNs��� 127

Early ANN Structures��� 128

Classical ANN��� 129

ANN Training and the Backpropagation Algorithm��� 133

DBN Overview��� 134

Restricted Boltzmann Machines�� 137

DNN Training Algorithms��� 138

DNN-Related Research�� 140

DNN Applications��� 140

Parallel Implementations to Speed Up DNN Training��� 141

Deep Networks Similar to DBN�� 142

References�� 142

Chapter 8: Cortical Algorithms■■ ��� 149

Cortical Algorithm Primer�� 149

Cortical Algorithm Structure ��� 149

Training of Cortical Algorithms�� 152

Weight Update��� 154

Experimental Results �� 156

■ Contents

xii

Modified Cortical Algorithms Applied to Arabic Spoken Digits: Case Study������������������ 159

Entropy-Based Weight Update Rule��� 159

Experimental Validation��� 160

References... �� 164

Chapter 9: Deep Learning■■ ��� 167

Overview of Hierarchical Temporal Memory��� 167

Hierarchical Temporal Memory Generations��� 168

Sparse Distributed Representation�� 171

Algorithmic Implementation ��� 171

Spatial Pooler�� 172

Temporal Pooler��� 173

Related Work��� 174

Overview of Spiking Neural Networks��� 175

Hodgkin-Huxley Model�� 176

Integrate-and-Fire Model�� 176

Leaky Integrate-and-Fire Model�� 177

Izhikevich Model�� 177

Thorpe’s Model�� 178

Information Coding in SNN�� 178

Learning in SNN��� 179

SNN Variants and Extensions��� 180

Conclusion��� 182

References�� 182

Chapter 10: Multiobjective Optimization■■ �� 185

Formal Definition��� 186

Pareto Optimality��� 187

Dominance Relationship�� 187

Performance Measure��� 188

■ Contents

xiii

Machine Learning: Evolutionary Algorithms�� 189

Genetic Algorithm�� 190

Genetic Programming�� 191

Multiobjective Optimization: An Evolutionary Approach�� 192

Weighted-Sum Approach��� 192

Vector-Evaluated Genetic Algorithm�� 193

Multiobjective Genetic Algorithm��� 194

Niched Pareto Genetic Algorithm��� 194

Nondominated Sorting Genetic Algorithm��� 195

Strength Pareto Evolutionary Algorithm�� 196

Strength Pareto Evolutionary Algorithm II�� 198

Pareto Archived Evolutionary Strategy�� 199

Pareto Envelope-Based Selection Algorithm��� 200

Pareto Envelope-Based Selection Algorithm II�� 201

Elitist Nondominated Sorting Genetic Algorithm��� 201

Example: Multiobjective Optimization��� 204

Objective Functions��� 206

References�� 207

Chapter 11: Machine Learning in Action: Examples■■ ��� 209

Viable System Modeling�� 211

Example 1: Workload Fingerprinting on a Compute Node��� 213

Phase Determination��� 214

Fingerprinting�� 218

Forecasting�� 221

Example 2: Dynamic Energy Allocation��� 221

Learning Process: Feature Selection��� 222

Learning Process: Optimization Planning�� 224

Learning Process: Monitoring�� 225

■ Contents

xiv

Model Training: Procedure and Evaluation�� 227

Example 3: System Approach to Intrusion Detection�� 230

Modeling Scheme�� 231

Intrusion Detection System Architecture��� 233

Profiles and System Considerations�� 236

Sensor Data Measurements�� 237

Summary��� 239

References�� 239

Index�� 241

xv

About the Authors

Mariette Awad is an assistant professor in the Department of Electrical
and Computer Engineering at the American University of Beirut.
She was also a visiting professor at Virginia Commonwealth University,
Intel (Mobile and Communications Group), and the Massachusetts
Institute of Technology and was invited by the Computer Vision Center
at the Autonomous University of Barcelona, Google, and Qualcomm
to present her work on machine learning and image processing.
Additionally, she has published in numerous conference proceedings and
journals. Prior to her academic position, she was with the IBM Systems
and Technology Group, in Essex Junction, Vermont, as a wireless product
engineer. Over the years, her technical leadership and innovative spirit
have earned her management recognition and several business awards
as well as multiple IBM patents. Mariette holds a PhD in Electrical
Engineering from the University of Vermont.

Rahul Khanna is currently a principal engineer working as a platform
architect at Intel involved in the development of energy-efficient
algorithms. Over the past 20 years he has worked on server system
software technologies, including platform automation, power/thermal
optimization techniques, reliability, and predictive methodologies.
He has authored numerous technical papers and book chapters on
energy optimization, platform wireless interconnect, sensor networks,
interconnect reliability, predictive modeling, motion estimation,
and security and has coauthored a book on platform autonomy. He
holds 33 patents. He is also the coinventor of the Intel Interconnect
Built-in Self-Test (IBIST), a methodology for high-speed interconnect
testing. His research interests include machine learning–based power/
thermal optimization algorithms, narrow-channel high-speed wireless
interconnects, and information retrieval in dense sensor networks.

Rahul is a member of the Institute of Electrical and Electronic Engineers and the recipient of three Intel
Achievement Awards for his contributions in areas related to the advancement of platform technologies.

xvii

About the Technical Reviewers

Abishai Daniel is a staff reliability engineer with Intel’s Datacenter Group. He works in the areas of device,
component, architectural reliability, and input-output (I/O) signal integrity, with a focus on statistical
predictive model development based on reliability data and the application of machine learning techniques
to reliability modeling. He has served as both program committee member and session chair for various
Institute of Electrical and Electronic Engineer conferences, mainly on the topics of reliability and design for
reliability, and has published more than 15 papers. Abishai has an AB from Wabash College and an MSEE
and a PhD from the University of Michigan.

Myron Porter has served in a variety of roles at Intel, including systems programmer, manager, board
validation program manager, and technical writer. Previously, he had positions at other Fortune 500
companies. He has lived in Bush Alaska and Sakha (Russian Yakutia) but was raised in the Ozarks. He got his
start in business selling Christmas cards door-to-door at the age of eight. Myron later sold fireworks and has
worked as a cabdriver, a pollster/political interviewer, a grant writer, a cook, a substitute teacher, a fuel truck
deliveryman, a college English instructor, a copywriter, a restaurant manager, an ESL teacher, and a technical
contractor. Additionally, he has done volunteer work for a veterinarian and two college radio stations and as
technical support to a regional women’s shelter.

Melissa Stockman is currently in the Division of Surgery at the American University of Beirut Medical
Center, focusing on the analysis of medical data. She also worked as a senior software engineer in the United
States and was the director, for more than 10 years, of Information Technology Infrastructure and Support
at the Lebanese American University. She holds a PhD in Electrical and Computer Engineering from the
American University of Beirut as well as a BA in Mathematics from New York University and an
MA in Computer Science from George Mason University. Melissa’s research areas include machine learning,
support vector machines, and computer architecture.

xix

Acknowledgments

Many thanks to Yara Rizk (Chapter 7), Nadine Hajj (Chapter 8), Nicolas Mitri (Chapter 9), and
Obada Al Zoubi (Chapter 9) for their contributions to this book.

We would also like to thank Kshitij Doshi, Christian Le, John J. Jaiber, Martin Dimitrov, and
Karthik Kumar, who helped develop the concepts of phase detection and workload fingerprinting detailed
in Chapter 11.

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Chapter 1: Machine Learning
	Key Terminology
	Developing a Learning Machine
	Machine Learning Algorithms
	Popular Machine Learning Algorithms
	C4.5
	k -Means
	Support Vector Machines
	Apriori
	Estimation Maximization
	PageRank
	AdaBoost (Adaptive Boosting)
	k -Nearest Neighbors
	Naive Bayes
	Classification and Regression Trees

	Challenging Problems in Data Mining Research
	Scaling Up for High-Dimensional Data and High-Speed Data Streams
	Mining Sequence Data and Time Series Data
	Mining Complex Knowledge from Complex Data
	Distributed Data Mining and Mining Multi-Agent Data
	Data Mining Process-Related Problems
	Security, Privacy, and Data Integrity
	Dealing with Nonstatic, Unbalanced, and Cost-Sensitive Data

	Summary
	References

	Chapter 2: Machine Learning and Knowledge Discovery
	Knowledge Discovery
	Classification
	Clustering
	Dimensionality Reduction
	Collaborative Filtering

	Machine Learning: Classification Algorithms
	Logistic Regression
	Random Forest
	Hidden Markov Model
	Multilayer Perceptron

	Machine Learning: Clustering Algorithms
	k -Means Clustering
	Fuzzy k -Means (Fuzzy c - Means)
	Streaming k -Means
	Streaming Step
	Ball K-Means Step

	Machine Learning: Dimensionality Reduction
	Singular Value Decomposition
	Principal Component Analysis
	Lanczos Algorithm
	Initialize
	Algorithm

	Machine Learning: Collaborative Filtering
	User-Based Collaborative Filtering
	Item-Based Collaborative Filtering
	Alternating Least Squares with Weighted- l -Regularization

	Machine Learning: Similarity Matrix
	Pearson Correlation Coefficient
	Spearman Rank Correlation Coefficient
	Euclidean Distance
	Jaccard Similarity Coefficient

	Summary
	References

	Chapter 3: Support Vector Machines for Classification
	SVM from a Geometric Perspective
	SVM Main Properties
	Hard-Margin SVM
	Soft-Margin SVM
	Kernel SVM
	Multiclass SVM
	SVM with Imbalanced Datasets
	Improving SVM Computational Requirements
	Case Study of SVM for Handwriting Recognition
	Preprocessing
	Feature Extraction
	Hierarchical, Three-Stage SVM
	Experimental Results
	Complexity Analysis

	References

	Chapter 4: Support Vector Regression
	SVR Overview
	SVR: Concepts, Mathematical Model, and Graphical Representation
	Kernel SVR and Different Loss Functions: Mathematical Model and Graphical Representation
	Bayesian Linear Regression
	Asymmetrical SVR for Power Prediction: Case Study
	References

	Chapter 5: Hidden Markov Model
	Discrete Markov Process
	Definition 1
	Definition 2
	Definition 3

	Introduction to the Hidden Markov Model
	Essentials of the Hidden Markov Model
	The Three Basic Problems of HMM
	Solutions to the Three Basic Problems of HMM
	Solution to Problem 1
	Forward Algorithm
	Backward Algorithm
	Scaling

	Solution to Problem 2
	Initialization
	Recursion
	Termination
	State Sequence Backtracking

	Solution to Problem 3

	Continuous Observation HMM
	Multivariate Gaussian Mixture Model
	Example: Workload Phase Recognition
	Monitoring and Observations
	Workload and Phase
	Mixture Models for Phase Detection
	Sensor Block
	Model Reduction Block
	Emission Block
	Training Block
	Parameter Estimation Block
	Phase Prediction Model
	State Forecasting Block
	System Adaptation

	References

	Chapter 6: Bioinspired Computing: Swarm Intelligence
	Applications
	Evolvable Hardware
	Bioinspired Networking
	Datacenter Optimization

	Bioinspired Computing Algorithms
	Swarm Intelligence
	Ant Colony Optimization Algorithm
	Particle Swarm Optimization
	Artificial Bee Colony Algorithm

	Bacterial Foraging Optimization Algorithm
	Artificial Immune System
	Distributed Management in Datacenters
	Workload Characterization
	Thermal Optimization
	Load Balancing
	Algorithm Model

	References

	Chapter 7: Deep Neural Networks
	Introducting ANNs
	Early ANN Structures
	Classical ANN
	ANN Training and the Backpropagation Algorithm

	DBN Overview
	Restricted Boltzmann Machines
	DNN-Related Research
	DNN Applications
	P arallel Implementations to Speed Up DNN Training
	Deep Networks Similar to DBN

	References

	Chapter 8: Cortical Algorithms
	Cortical Algorithm Primer
	Cortical Algorithm Structure
	Training of Cortical Algorithms
	Unsupervised Feedforward
	Supervised Feedback

	Weight Update
	The workflow for CA training is displayed in Figure 8-4 .
	Experimental Results

	Modified Cortical Algorithms Applied to Arabic Spoken Digits: Case Study
	Entropy-Based Weight Update Rule
	Experimental Validation

	References

	Chapter 9: Deep Learning
	Overview of Hierarchical Temporal Memory
	Hierarchical Temporal Memory Generations
	Sparse Distributed Representation
	Algorithmic Implementation
	Spatia l Poole r
	Temporal Pooler

	Related Work
	Overview of Spiking Neural Networks
	Hodgkin-Huxley Model
	Integrate-and-Fire Model
	Leaky Integrate-and-Fire Model
	Izhikevich Model
	Thorpe’s Model
	Information Coding in SNN
	Learning in SNN
	SNN Variants and Extensions
	Evolving Spiking Neural Networks
	Reservoir-Based Evolving Spiking Neural Networks
	Dynamic Synaptic Evolving Spiking Neural Networks
	Probabilistic Spiking Neural Networks

	Conclusion
	References

	Chapter 10: Multiobjective Optimization
	Formal Definition
	Pareto Optimality
	Dominance Relationship
	Performance Measure

	Machine Learning: Evolutionary Algorithms
	Genetic Algorithm
	Genetic Programming

	Multiobjective Optimization: An Evolutionary Approach
	Weighted-Sum Approach
	Vector-Evaluated Genetic Algorithm
	Multiobjective Genetic Algorithm
	Niched Pareto Genetic Algorithm
	Nondominated Sorting Genetic Algorithm
	Strength Pareto Evolutionary Algorithm
	Strength of Solutions
	Fitness of P Solutions
	Clustering

	Strength Pareto Evolutionary Algorithm II
	Pareto Archived Evolutionary Strategy
	Pareto Envelope-Based Selection Algorithm
	Pareto Envelope-Based Selection Algorithm II
	Elitist Nondominated Sorting Genetic Algorithm

	Example: Multiobjective Optimization
	Objective Functions
	References

	Chapter 11: Machine Learning in Action: Examples
	Viable System Modeling
	Example 1: Workload Fingerprinting on a Compute Node
	Phase Determination
	Fingerprinting
	Size Attribute
	Phase Attribute
	Pattern Attribute

	Forecasting

	Example 2: Dynamic Energy Allocation
	Learning Process: Feature Selection
	Learning Process: Optimization Planning
	Learning Process: Monitoring

	Model Training: Procedure and Evaluation
	Example 3: System Approach to Intrusion Detection
	Modeling Scheme
	Observed (Emission) States
	Hidden States

	Intrusion Detection System Architecture

	Profiles and System Considerations
	Sensor Data Measurements
	Summary
	References

	Index

