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ETAPS Foreword

Welcome to the proceedings of ETAPS 2018! After a somewhat coldish ETAPS 2017
in Uppsala in the north, ETAPS this year took place in Thessaloniki, Greece. I am
happy to announce that this is the first ETAPS with gold open access proceedings. This
means that all papers are accessible by anyone for free.

ETAPS 2018 was the 21st instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of five conferences: ESOP, FASE, FoSSaCS, TACAS, and POST.
Each conference has its own Program Committee (PC) and its own Steering Com-
mittee. The conferences cover various aspects of software systems, ranging from
theoretical computer science to foundations to programming language developments,
analysis tools, formal approaches to software engineering, and security. Organizing
these conferences in a coherent, highly synchronized conference program facilitates
participation in an exciting event, offering attendees the possibility to meet many
researchers working in different directions in the field, and to easily attend talks of
different conferences. Before and after the main conference, numerous satellite work-
shops take place and attract many researchers from all over the globe.

ETAPS 2018 received 479 submissions in total, 144 of which were accepted,
yielding an overall acceptance rate of 30%. I thank all the authors for their interest in
ETAPS, all the reviewers for their peer reviewing efforts, the PC members for their
contributions, and in particular the PC (co-)chairs for their hard work in running this
entire intensive process. Last but not least, my congratulations to all authors of the
accepted papers!

ETAPS 2018 was enriched by the unifying invited speaker Martin Abadi (Google
Brain, USA) and the conference-specific invited speakers (FASE) Pamela Zave (AT &
T Labs, USA), (POST) Benjamin C. Pierce (University of Pennsylvania, USA), and
(ESOP) Derek Dreyer (Max Planck Institute for Software Systems, Germany). Invited
tutorials were provided by Armin Biere (Johannes Kepler University, Linz, Austria) on
modern SAT solving and Fabio Somenzi (University of Colorado, Boulder, USA) on
hardware verification. My sincere thanks to all these speakers for their inspiring and
interesting talks!

ETAPS 2018 took place in Thessaloniki, Greece, and was organised by the
Department of Informatics of the Aristotle University of Thessaloniki. The university
was founded in 1925 and currently has around 75,000 students; it is the largest uni-
versity in Greece. ETAPS 2018 was further supported by the following associations
and societies: ETAPS e.V., EATCS (European Association for Theoretical Computer
Science), EAPLS (European Association for Programming Languages and Systems),
and EASST (European Association of Software Science and Technology). The local
organization team consisted of Panagiotis Katsaros (general chair), Ioannis Stamelos,



Lefteris Angelis, George Rahonis, Nick Bassiliades, Alexander Chatzigeorgiou, Ezio
Bartocci, Simon Bliudze, Emmanouela Stachtiari, Kyriakos Georgiadis, and Petros
Stratis (EasyConferences).

The overall planning for ETAPS is the main responsibility of the Steering Com-
mittee, and in particular of its Executive Board. The ETAPS Steering Committee
consists of an Executive Board and representatives of the individual ETAPS confer-
ences, as well as representatives of EATCS, EAPLS, and EASST. The Executive
Board consists of Gilles Barthe (Madrid), Holger Hermanns (Saarbrücken), Joost-Pieter
Katoen (chair, Aachen and Twente), Gerald Lüttgen (Bamberg), Vladimiro Sassone
(Southampton), Tarmo Uustalu (Tallinn), and Lenore Zuck (Chicago). Other members
of the Steering Committee are: Wil van der Aalst (Aachen), Parosh Abdulla (Uppsala),
Amal Ahmed (Boston), Christel Baier (Dresden), Lujo Bauer (Pittsburgh), Dirk Beyer
(Munich), Mikolaj Bojanczyk (Warsaw), Luis Caires (Lisbon), Jurriaan Hage
(Utrecht), Rainer Hähnle (Darmstadt), Reiko Heckel (Leicester), Marieke Huisman
(Twente), Panagiotis Katsaros (Thessaloniki), Ralf Küsters (Stuttgart), Ugo Dal Lago
(Bologna), Kim G. Larsen (Aalborg), Matteo Maffei (Vienna), Tiziana Margaria
(Limerick), Flemming Nielson (Copenhagen), Catuscia Palamidessi (Palaiseau),
Andrew M. Pitts (Cambridge), Alessandra Russo (London), Dave Sands (Göteborg),
Don Sannella (Edinburgh), Andy Schürr (Darmstadt), Alex Simpson (Ljubljana),
Gabriele Taentzer (Marburg), Peter Thiemann (Freiburg), Jan Vitek (Prague), Tomas
Vojnar (Brno), and Lijun Zhang (Beijing).

I would like to take this opportunity to thank all speakers, attendees, organizers
of the satellite workshops, and Springer for their support. I hope you all enjoy the
proceedings of ETAPS 2018. Finally, a big thanks to Panagiotis and his local orga-
nization team for all their enormous efforts that led to a fantastic ETAPS in
Thessaloniki!

February 2018 Joost-Pieter Katoen

VI ETAPS Foreword



Preface

This volume contains the papers presented at POST 2018, the 7th Conference on
Principles of Security and Trust, held April 16–17, 2018, in Thessaloniki, Greece, as
part of ETAPS. Principles of Security and Trust is a broad forum related to all theo-
retical and foundational aspects of security and trust, and thus welcomes papers of
many kinds: new theoretical results, practical applications of existing foundational
ideas, and innovative approaches stimulated by pressing practical problems; as well as
systemization-of-knowledge papers, papers describing tools, and position papers.
POST was created in 2012 to combine and replace a number of successful and
long-standing workshops in this area: Automated Reasoning and Security Protocol
Analysis (ARSPA), Formal Aspects of Security and Trust (FAST), Security in Con-
currency (SecCo), and the Workshop on Issues in the Theory of Security (WITS).
A subset of these events met jointly as an event affiliated with ETAPS 2011 under the
name “Theory of Security and Applications” (TOSCA).

There were 45 submissions to POST 2018. Each submission was reviewed by at
least three Program Committee members, who in some cases solicited the help of
outside experts to review the papers. We employed a double-blind reviewing process
with a rebuttal phase. Electronic discussion was used to decide which papers to select
for the program. The committee decided to accept 14 papers, including one SoK paper
and one tool demonstration paper.

We would like to thank the members of the Program Committee, the additional
reviewers, the POST Steering Committee, the ETAPS Steering Committee, and the
local Organizing Committee, who all contributed to the success of POST 2018. We
also thank all authors of submitted papers for their interest in POST and congratulate
the authors of accepted papers.

March 2018 Lujo Bauer
Ralf Küsters
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The Science of Deep Specification
(Abstract of Invited Talk)

Benjamin C. Pierce

University of Pennsylvania

Formal specifications significantly improve the security and robustness of critical,
low-level software and hardware, especially when deeply integrated into the processes
of system engineering and design [4]. Such “deep specifications” can also be chal-
lenging to work with, since they must be simultaneously rich (describing complex
component behaviors in detail), two-sided (connected to both implementations and
clients), and live (connected directly to the source code of implementations via
machine-checkable proofs and/or automated testing).

The DeepSpec project [1] is a multi-institution effort to develop experience with
building and using serious specifications at many architectural levels—hardware
instruction-set architectures (MIT), hypervisor kernels (Yale), C semantics (Princeton,
Yale), compilers for both C (Penn, Princeton, Yale) and functional languages (Penn,
Princeton), cryptographic operations (Princeton, MIT), and web infrastructure (Penn)—
and to create new tools for machine-assisted formal verification [2, 3, 5] and
specification-based testing [6], all within the Coq ecosystem.

To exercise several of these specifications together, we are building a formally
specified, tested, and verified web server. Our goal is a “single Q.E.D.” spanning all
levels of the system—from an executable specification of correct server behavior in
terms of valid sequences of HTTP requests and responses, all the way down to an RTL
description of a RISC-V chip and the binary code for a hypervisor running on that chip.
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What’s the Over/Under? Probabilistic
Bounds on Information Leakage

Ian Sweet1, José Manuel Calderón Trilla2, Chad Scherrer2, Michael Hicks1,
and Stephen Magill2(B)

1 University of Maryland, College Park, USA
2 Galois Inc., Portland, USA

stephen@galois.com

Abstract. Quantitative information flow (QIF) is concerned with mea-
suring how much of a secret is leaked to an adversary who observes the
result of a computation that uses it. Prior work has shown that QIF
techniques based on abstract interpretation with probabilistic polyhedra
can be used to analyze the worst-case leakage of a query, on-line, to
determine whether that query can be safely answered. While this app-
roach can provide precise estimates, it does not scale well. This paper
shows how to solve the scalability problem by augmenting the baseline
technique with sampling and symbolic execution. We prove that our app-
roach never underestimates a query’s leakage (it is sound), and detailed
experimental results show that we can match the precision of the baseline
technique but with orders of magnitude better performance.

1 Introduction

As more sensitive data is created, collected, and analyzed, we face the problem
of how to productively use this data while preserving privacy. One approach to
this problem is to analyze a query f in order to quantify how much information
about secret input s is leaked by the output f(s). More precisely, we can consider
a querier to have some prior belief of the secret’s possible values. The belief can
be modeled as a probability distribution [10], i.e., a function δ from each possible
value of s to its probability. When a querier observes output o = f(s), he revises
his belief, using Bayesian inference, to produce a posterior distribution δ′. If
the posterior could reveal too much about the secret, then the query should be
rejected. One common definition of “too much” is Bayes Vulnerability, which is
the probability of the adversary guessing the secret in one try [41]. Formally,

V (δ) def= maxi δ(i)

Various works [6,19,24,25] propose rejecting f if there exists an output that
makes the vulnerability of the posterior exceed a fixed threshold K. In particular,
for all possible values i of s (i.e., δ(i) > 0), if the output o = f(i) could induce
a posterior δ′ with V (δ′) > K, then the query is rejected.

c© The Author(s) 2018
L. Bauer and R. Küsters (Eds.): POST 2018, LNCS 10804, pp. 3–27, 2018.
https://doi.org/10.1007/978-3-319-89722-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89722-6_1&domain=pdf


4 I. Sweet et al.

One way to implement this approach is to estimate f(δ)—the distribution
of f ’s outputs when the inputs are distributed according to δ—by viewing f as
a program in a probabilistic programming language (PPL) [18]. Unfortunately,
as discussed in Sect. 9, most PPLs are approximate in a manner that could
easily result in underestimating the vulnerability, leading to an unsafe security
decision. Techniques designed specifically to quantify information leakage often
assume only uniform priors, cannot compute vulnerability (favoring, for example,
Shannon entropy), and/or cannot maintain assumed knowledge between queries.

Mardziel et al. [25] propose a sound analysis technique based on abstract
interpretation [12]. In particular, they estimate a program’s probability distri-
bution using an abstract domain called a probabilistic polyhedron (PP), which
pairs a standard numeric abstract domain, such as convex polyhedra [13], with
some additional ornaments, which include lower and upper bounds on the size of
the support of the distribution, and bounds on the probability of each possible
secret value. Using PP can yield a precise, yet safe, estimate of the vulner-
ability, and allows the posterior PP (which is not necessarily uniform) to be
used as a prior for the next query. Unfortunately, PPs can be very inefficient.
Defining intervals [11] as the PP’s numeric domain can dramatically improve
performance, but only with an unacceptable loss of precision.

In this paper we present a new approach that ensures a better balance of both
precision and performance in vulnerability computation, augmenting PP with
two new techniques. In both cases we begin by analyzing a query using the fast
interval-based analysis. Our first technique is then to use sampling to augment
the result. In particular, we execute the query using possible secret values i
sampled from the posterior δ′ derived from a particular output oi. If the analysis
were perfectly accurate, executing f(i) would produce oi. But since intervals are
overapproximate, sometimes it will not. With many sampled outcomes, we can
construct a Beta distribution to estimate the size of the support of the posterior,
up to some level of confidence. We can use this estimate to boost the lower bound
of the abstraction, and thus improve the precision of the estimated vulnerability.

Our second technique is of a similar flavor, but uses symbolic reasoning to
magnify the impact of a successful sample. In particular, we execute a query
result-consistent sample concolically [39], thus maintaining a symbolic formula
(called the path condition) that characterizes the set of variable valuations that
would cause execution to follow the observed path. We then count the number
of possible solutions and use the count to boost the lower bound of the support
(with 100% confidence).

Sampling and concolic execution can be combined for even greater precision.
We have formalized and proved our techniques are sound (Sects. 3–6) and

implemented and evaluated them (Sects. 7 and 8). Using a privacy-sensitive ship
planning scenario (Sect. 2) we find that our techniques provide similar precision
to convex polyhedra while providing orders-of-magnitude better performance.
More experiments are needed to see if the approach provides such benefits more
generally. Our implementation freely available at https://github.com/GaloisInc/
TAMBA.

https://github.com/GaloisInc/TAMBA
https://github.com/GaloisInc/TAMBA
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Fig. 1. The data model used in the evacuation scenario.

2 Overview

To provide an overview of our approach, we will describe the application of our
techniques to a scenario that involves a coalition of ships from various nations
operating in a shared region. Suppose a natural disaster has impacted some
islands in the region. Some number of individuals need to be evacuated from
the islands, and it falls to a regional disaster response coordinator to determine
how to accomplish this. While the coalition wants to collaborate to achieve
these humanitarian aims, we assume that each nation also wants to protect
their sensitive data—namely ship locations and capacity.

More formally, we assume the use of the data model shown in Fig. 1, which
considers a set of ships, their coalition affiliation, the evacuation capacity of the
ship, and its position, given in terms of latitude and longitude.1 We sometimes
refer to the latter two as a location L, with L.x as the longitude and L.y as the
latitude. We will often index properties by ship ID, writing Capacity(z) for the
capacity associated with ship ID z, or Location(z) for the location.

The evacuation problem is defined as follows

Given a target location L and number of people to evacuate N , compute
a set of nearby ships S such that

∑
z∈S Capacity(z) ≥ N .

Our goal is to solve this problem in a way that minimizes the vulnerability to
the coordinator of private information, i.e., the ship locations and their exact
capacity. We assume that this coordinator initially has no knowledge of the
positions or capabilities of the ships other than that they fall within certain
expected ranges.

If all members of the coalition share all of their data with the coordinator,
then a solution is easy to compute, but it affords no privacy. Figure 2 gives
an algorithm the response coordinator can follow that does not require each
member to share all of their data. Instead, it iteratively performs queries AtLeast
and Nearby. These queries do not reveal precise values about ship locations
or capacity, but rather admit ranges of possibilities. The algorithm works by
maintaining upper and lower bounds on the capacity of each ship i in the array
berths. Each ship’s bounds are updated based on the results of queries about its

1 We give latitude and longitude values as integer representations of decimal degrees
fixed to four decimal places; e.g., 14.3579 decimal degrees is encoded as 143579.
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capacity and location. These queries aim to be privacy preserving, doing a sort of
binary search to narrow in on the capacity of each ship in the operating area. The
procedure completes once is solution determines the minimum required capacity
is reached.

Fig. 2. Algorithm to solve the evacuation problem for a single island.

2.1 Computing Vulnerability with Abstract Interpretation

Using this procedure, what is revealed about the private variables (location and
capacity)? Consider a single Nearby(z, l, d) query. At the start, the coordinator
is assumed to know only that z is somewhere within the operating region. If
the query returns true, the coordinator now knows that s is within d units of
l (using Manhattan distance). This makes Location(z) more vulnerable because
the adversary has less uncertainty about it.

Mardziel et al. [25] proposed a static analysis for analyzing queries such as
Nearby(z, l, d) to estimate the worst-case vulnerability of private data. If the
worst-case vulnerability is too great, the query can be rejected. A key element
of their approach is to perform abstract interpretation over the query using an
abstract domain called a probabilistic polyhedron. An element P of this domain
represents the set of possible distributions over the query’s state. This state
includes both the hidden secrets and the visible query results. The abstract
interpretation is sound in the sense that the true distribution δ is contained in
the set of distributions represented by the computed probabilistic polyhedron P .

A probabilistic polyhedron P is a tuple comprising a shape and three orna-
ments. The shape C is an element of a standard numeric domain—e.g., inter-
vals [11], octagons [29], or convex polyhedra [13]—which overapproximates the
set of possible values in the support of the distribution. The ornaments p ∈ [0, 1],
m ∈ R, and s ∈ Z are pairs which store upper and lower bounds on the probabil-
ity per point, the total mass, and number of support points in the distribution,
respectively. (Distributions represented by P are not necessarily normalized, so
the mass m is not always 1.)
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Figure 3(a) gives an example probabilistic polyhedron that represents the
posterior of a Nearby query that returns true. In particular, if Nearby(z,L1,D)
is true then Location(z) is somewhere within the depicted diamond around L1.
Using convex polyhedra or octagons for the shape domain would permit repre-
senting this diamond exactly; using intervals would overapproximate it as the
depicted 9× 9 bounding box. The ornaments would be the same in any case: the
size s of the support is 41 possible (x,y) points, the probability p per point is
0.01, and the total mass is 0.41, i.e., p · s. In general, each ornament is a pair of
a lower and upper bound (e.g., smin and smax), and m might be a more accurate
estimate than p · s. In this case shown in the figure, the bounds are tight.

Mardziel et al’s procedure works by computing the posterior P for each
possible query output o, and from that posterior determining the vulnerability.
This is easy to do. The upper bound pmax of p maximizes the probability of
any given point. Dividing this by the lower bound mmin of the probability mass
m normalizes this probability for the worst case. For P shown in Fig. 3(a), the
bounds of p and m are tight, so the vulnerability is simply 0.01/0.41 = 0.024.

2.2 Improving Precision with Sampling and Concolic Execution

In Fig. 3(a), the parameters s, p, and m are precise. However, as additional oper-
ations are performed, these quantities can accumulate imprecision. For example,
suppose we are using intervals for the shape domain, and we wish to analyze the
query Nearby(z, L1, 4) ∨Nearby(z, L2, 4) (for some nearby point L2). The result
is produced by analyzing the two queries separately and then combining them
with an abstract join; this is shown in the top row of Fig. 3(b). Unfortunately,
the result is very imprecise. The bottom row of Fig. 3(b) illustrates the result we
would get by using convex polyhedra as our shape domain. When using intervals
(top row), the vulnerability is estimated as 0.036, whereas the precise answer
(bottom row) is actually 0.026. Unfortunately, obtaining this precise answer is
far more expensive than obtaining the imprecise one.

This paper presents two techniques that can allow us to use the less pre-
cise interval domain but then recover lost precision in a relatively cheap post-
processing step. The effect of our techniques is shown in the middle-right of
Fig. 3(b). Both techniques aim to obtain better lower bounds for s. This allows
us to update lower bounds on the probability mass m since mmin is at least
smin · pmin (each point has at least probability pmin and there are at least smin

of them). A larger m means a smaller vulnerability.
The first technique we explore is sampling, depicted to the right of the arrow

in Fig. 3(b). Sampling chooses random points and evaluates the query on them
to determine whether they are in the support of the posterior distribution for a
particular query result. By tracking the ratio of points that produce the expected
output, we can produce an estimate of s, whose confidence increases as we include
more samples. This approach is depicted in the figure, where we conclude that
s ∈ [72, 81] and m ∈ [0.72, 1.62] with 90% confidence after taking 1000 samples,
improving our vulnerability estimate to V ≤ 0.02

0.72 = 0.028.
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Fig. 3. Computing vulnerability (max probability) using abstract interpretation
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Fig. 4. Core language syntax

The second technique we explore is the use of concolic execution to derive
a path condition, which is a formula over secret values that is consistent with a
query result. By performing model counting to estimate the number of solutions
to this formula, which are an underapproximation of the true size of the distri-
bution, we can safely boost the lower bound of s. This approach is depicted to
the left of the arrow in Fig. 3(b). The depicted shapes represent discovered path
condition’s disjuncts, whose size sums to 63. This is a better lower bound on s
and improves the vulnerability estimate to 0.032.

These techniques can be used together to further increase precision. In partic-
ular, we can first perform concolic execution, and then sample from the area not
covered by this underapproximation. Importantly, Sect. 8 shows that using our
techniques with the interval-based analysis yields an orders of magnitude perfor-
mance improvement over using polyhedra-based analysis alone, while achieving
similar levels of precision, with high confidence.

3 Preliminaries: Syntax and Semantics

This section presents the core language—syntax and semantics—in which we
formalize our approach to computing vulnerability. We also review probabilistic
polyhedra [25], which is the baseline analysis technique that we augment.

3.1 Core Language and Semantics

The programming language we use for queries is given in Fig. 4. The language
is essentially standard, apart from pif q then S1 else S2, which implements prob-
abilistic choice: S1 is executed with probability q, and S2 with probability 1 − q.
We limit the form of expressions E so that they can be approximated by stan-
dard numeric abstract domains such as convex polyhedra [13]. Such domains
require linear forms; e.g., there is no division operator and multiplication of two
variables is disallowed.2

2 Relaxing such limitations is possible—e.g., polynominal inequalities can be approxi-
mated using convex polyhedra [5]—but doing so precisely and scalably is a challenge.
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We define the semantics of a program in terms of its effect on (discrete)
distributions of states. States σ are partial maps from variables to integers; we
write domain(σ) for the set of variables over which σ is defined. Distributions δ
are maps from states to nonnegative real numbers, interpreted as probabilities
(in range [0, 1]). The denotational semantics considers a program as a relation
between distributions. In particular, the semantics of statement S , written [[S ]],
is a function of the form Dist → Dist; we write [[S ]]δ = δ′ to say that the
semantics of S maps input distribution δ to output distribution δ′. Distributions
are not necessarily normalized; we write ‖δ‖ as the probability mass of δ (which
is between 0 and 1). We write σ̇ to denote the point distribution that gives σ
probability 1, and all other states 0.

The semantics is standard and not crucial in order to understand our tech-
niques. In AppendixB we provide the semantics in full. See Clarkson et al. [10]
or Mardziel et al. [25] for detailed explanations.

3.2 Probabilistic Polyhedra

To compute vulnerability for a program S we must compute (an approximation
of) its output distribution. One way to do that would be to use sampling: Choose
states σ at random from the input distribution δ, “run” the program using that
input state, and collect the frequencies of output states σ′ into a distribution δ′.
While using sampling in this manner is simple and appealing, it could be both
expensive and imprecise. In particular, depending on the size of the input and
output space, it may take many samples to arrive at a proper approximation of
the output distribution.

Probabilistic polyhedra [25] can address both problems. This abstract domain
combines a standard domain C for representing numeric program states with
additional ornaments that all together can safely represent S ’s output distribu-
tion.

Probabilistic polyhedra work for any numeric domain; in this paper we use
both convex polyhedra [13] and intervals [11]. For concreteness, we present the
definition using convex polyhedra. We use the meta-variables β, β1, β2, etc. to
denote linear inequalities.

Definition 1. A convex polyhedron C = (B, V ) is a set of linear inequalities
B = {β1, . . . , βm}, interpreted conjunctively, over variables V . We write C for
the set of all convex polyhedra. A polyhedron C represents a set of states, denoted
γC(C), as follows, where σ |= β indicates that the state σ satisfies the inequal-
ity β.

γC((B, V )) def= {σ : domain(σ) = V, ∀β ∈ B. σ |= β}
Naturally we require that domain({β1, . . . , βn}) ⊆ V ; i.e., V mentions all

variables in the inequalities. Let domain((B, V )) = V .

Probabilistic polyhedra extend this standard representation of sets of pro-
gram states to sets of distributions over program states.
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Definition 2. A probabilistic polyhedron P is a tuple (C, smin, smax,pmin,
pmax,mmin, mmax). We write P for the set of probabilistic polyhedra. The quan-
tities smin and smax are lower and upper bounds on the number of support points
in the concrete distribution(s) P represents. A support point of a distribution
is one which has non-zero probability. The quantities pmin and pmax are lower
and upper bounds on the probability mass per support point. The mmin and mmax

components give bounds on the total probability mass (i.e., the sum of the prob-
abilities of all support points). Thus P represents the set of distributions γP(P)
defined below.

γP(P) def= {δ : support(δ) ⊆ γC(C) ∧
smin ≤ |support(δ)| ≤ smax ∧
mmin ≤ ‖δ‖ ≤ mmax∧
∀σ ∈ support(δ). pmin ≤ δ(σ) ≤ pmax}

We will write domain(P) def= domain(C) to denote the set of variables used
in the probabilistic polyhedron.

Note the set γP(P) is a singleton exactly when smin = smax = #(C) and
pmin = pmax, and mmin = mmax, where #(C) denotes the number of discrete
points in convex polyhedron C. In such a case γP(P) contains only the uniform
distribution where each state in γC(C) has probability pmin. In general, however,
the concretization of a probabilistic polyhedron will have an infinite number of
distributions, with per-point probabilities varied somewhere in the range pmin

and pmax. Distributions represented by a probabilistic polyhedron are not nec-
essarily normalized. In general, there is a relationship between pmin, smin, and
mmin, in that mmin ≥ pmin · smin (and mmax ≤ pmax · smax), and the combination
of the three can yield more information than any two in isolation.

The abstract semantics of S is written 〈〈S 〉〉P = P ′, and indicates that
abstractly interpreting S where the distribution of input states are approximated
by P will produce P ′, which approximates the distribution of output states.
Following standard abstract interpretation terminology, ℘Dist (sets of distribu-
tions) is the concrete domain, P is the abstract domain, and γP : P → ℘Dist is
the concretization function for P. We do not present the abstract semantics here;
details can be found in Mardziel et al. [25]. Importantly, this abstract semantics
is sound:

Theorem 1 (Soundness). For all S , P1, P2, δ1, δ2, if δ1 ∈ γP(P1) and
〈〈S 〉〉P1 = P2, then [[S ]]δ1 = δ2 with δ2 ∈ γP(P2).

Proof. See Theorem 6 in Mardziel et al. [25].

Consider the example from Sect. 2.2. We assume the adversary has no prior
information about the location of ship s. So, δ1 above is simply the uniform dis-
tribution over all possible locations. The statement S is the query issued by the
adversary, Nearby(z, L1, 4)∨Nearby(z, L2, 4).3 If we assume that the result of the
3 Appendix A shows the code, which computes Manhattan distance between s and L1

and L2 and then sets an output variable if either distance is within four units.
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query is | true | then the adversary learns that the location of s is within (Man-
hattan) distance 4 of L1 or L2. This posterior belief (δ2) is represented by the
overlapping diamonds on the bottom-right of Fig. 3(b). The abstract interpreta-
tion produces a sound (interval) overapproximation (P2) of the posterior belief.
This is modeled by the rectangle which surrounds the overlapping diamonds.
This rectangle is the “join” of two overlapping boxes, which each correspond to
one of the Nearby calls in the disjuncts of S .

4 Computing Vulnerability: Basic Procedure

The key goal of this paper is to quantify the risk to secret information of running
a query over that information. This section explains the basic approach by which
we can use probabilistic polyhedra to compute vulnerability, i.e., the probability
of the most probable point of the posterior distribution. Improvements on this
basic approach are given in the next two sections.

Our convention will be to use C1, smin
1 , smax

1 , etc. for the components associ-
ated with probabilistic polyhedron P1. In the program S of interest, we assume
that secret variables are in the set T , so input states are written σT , and we
assume there is a single output variable r. We assume that the adversary’s ini-
tial uncertainty about the possible values of the secrets T is captured by the
probabilistic polyhedron P0 (such that domain(P0) ⊇ T ).

Computing vulnerability occurs according to the following procedure.

1. Perform abstract interpretation: 〈〈S 〉〉P0 = P
2. Given a concrete output value of interest, o, perform abstract conditioning

to define Pr=o
def= (P ∧ r=o).4

The vulnerability V is the probability of the most likely state(s). When a prob-
abilistic polyhedron represents one or more true distributions (i.e., the proba-
bilities all sum to 1), the most probable state’s probability is bounded by pmax.
However, the abstract semantics does not always normalize the probabilistic
polyhedron as it computes, so we need to scale pmax according to the total prob-
ability mass. To ensure that our estimate is on the safe side, we scale pmax using
the minimum probability mass: V = pmax

mmin . In Fig. 3(b), the sound approxima-
tion in the top-right has V ≤ 0.02

0.55 = 0.036 and the most precise approximation

in the bottom-right has V ≤ 0.02
0.77 = 0.026.

5 Improving Precision with Sampling

We can improve the precision of the basic procedure using sampling. First we
introduce some notational convenience:

PT
def= P ∧ (r = o) � T

PT+
def= PT revised polyhedron with confidence ω

4 We write P ∧ B and not P | B because P need not be normalized.



What’s the Over/Under? Probabilistic Bounds on Information Leakage 13

PT is equivalent to step 2, above, but projected onto the set of secret variables
T . PT+ is the improved (via sampling) polyhedron.

After computing PT with the basic procedure from the previous section we
take the following additional steps:

1. Set counters α and β to zero.
2. Do the following N times (for some N , see below):

(a) Randomly select an input state σT ∈ γC(CT ).
(b) “Run” the program by computing [[S ]]σ̇T = δ. If there exists σ ∈

support(δ) with σ(r) = o then increment α, else increment β.
3. We can interpret α and β as the parameters of a Beta distribution of the

likelihood that an arbitrary state in γC(CT ) is in the support of the true
distribution. From these parameters we can compute the credible interval
[pL, pU ] within which is contained the true likelihood, with confidence ω
(where 0 ≤ ω ≤ 1). A credible interval is essentially a Bayesian analogue
of a confidence interval and can be computed from the cumulative distri-
bution function (CDF) of the Beta distribution (the 99% credible interval
is the interval [a, b] such that the CDF at a has value 0.005 and the CDF
at b has value 0.995). In general, obtaining a higher confidence or a nar-
rower interval will require a higher N . Let result PT+ = PT except that
smin
T+ = pL · #(CT ) and smax

T+ = pU · #(CT ) (assuming these improve on smin
T

and smax
T ). We can then propagate these improvements to mmin and mmax by

defining mmin
T+ = pmin

T ·smin
T+ and mmax

T+ = pmax
T ·smax

T+ . Note that if mmin
T > mmin

T+

we leave it unchanged, and do likewise if mmax
T < mmax

T+ .

At this point we can compute the vulnerability as in the basic procedure, but
using PT+ instead of PT .

Consider the example of Sect. 2.2. In Fig. 3(b), we draw samples from the
rectangle in the top-right. This rectangle overapproximates the set of locations
where s might be, given that the query returned true. We sample locations
from this rectangle and run the query on each sample. The green (red) dots
indicate true ( false ) results, which are added to α (β). After sampling N = 1000
locations, we have α = 570 and β = 430. Choosing ω = .9 (90%), we compute
the credible interval [0.53, 0.60]. With #(CT ) = 135, we compute [smin

T+ , smax
T+ ] as

[0.53 · 135, 0.60 · 135] = [72, 81].
There are several things to notice about this procedure. First, observe that in

step 2b we “run” the program using the point distribution σ̇ as an input; in the
case that S is deterministic (has no pif statements) the output distribution will
also be a point distribution. However, for programs with pif statements there
are multiple possible outputs depending on which branch is taken by a pif. We
consider all of these outputs so that we can confidently determine whether the
input state σ could ever cause S to produce result o. If so, then σ should be
considered part of PT+. If not, then we can safely rule it out (i.e., it is part of
the overapproximation).

Second, we only update the size parameters of PT+; we make no changes to
pmin

T+ and pmax
T+ . This is because our sampling procedure only determines whether

it is possible for an input state to produce the expected output. The probability
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that an input state produces an output state is already captured (soundly) by pT

so we do not change that. This is useful because the approximation of pT does
not degrade with the use of the interval domain in the way the approximation
of the size degrades (as illustrated in Fig. 3(b)). Using sampling is an attempt
to regain the precision lost on the size component (only).

Finally, the confidence we have that sampling has accurately assessed which
input states are in the support is orthogonal to the probability of any given state.
In particular, PT is an abstraction of a distribution δT , which is a mathematical
object. Confidence ω is a measure of how likely it is that our abstraction (or, at
least, the size part of it) is accurate.

We prove (in our extended report [43]) that our sampling procedure is sound:

Theorem 2 (Sampling is Sound). If δ0 ∈ γP(P0), 〈〈S 〉〉P0 = P , and [[S ]]δ0 =
δ then δT ∈ γP(PT+) with confidence ω where

δT
def= δ ∧ (r = o) � T

PT
def= P ∧ (r = o) � T

PT+
def= PT sampling revised with confidence ω.

6 Improving Precision with Concolic Execution

Another approach to improving the precision of a probabilistic polyhedron P is
to use concolic execution. The idea here is to “magnify” the impact of a single
sample to soundly increase smin by considering its execution symbolically. More
precisely, we concretely execute a program using a particular secret value, but
maintain symbolic constraints about how that value is used. This is referred to
as concolic execution [39]. We use the collected constraints to identify all points
that would induce the same execution path, which we can include as part of smin.

We begin by defining the semantics of concolic execution, and then show how
it can be used to increase smin soundly.

6.1 (Probabilistic) Concolic Execution

Concolic execution is expressed as rewrite rules defining a judgment 〈Π,S 〉 −→p
π

〈Π ′,S ′〉. Here, Π is pair consisting of a concrete state σ and symbolic state ζ.
The latter maps variables x ∈ Var to symbolic expressions E which extend
expressions E with symbolic variables α. This judgment indicates that under
input state Π the statement S reduces to statement S ′ and output state Π ′

with probability p, with path condition π. The path condition is a conjunction
of boolean symbolic expressions B (which are just boolean expressions B but
altered to use symbolic expressions E instead of expressions E) that record which
branch is taken during execution. For brevity, we omit π in a rule when it is true.

The rules for the concolic semantics are given in Fig. 5. Most of these are
standard, and deterministic (the probability annotation p is 1). Path conditions
are recorded for if and while, depending on the branch taken. The semantics of
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Fig. 5. Concolic semantics

pif q then S1 else S2 is non-deterministic: the result is that of S1 with probability
q, and S2 with probability 1 − q. We write ζ(B) to substitute free variables
x ∈ B with their mapped-to values ζ(x) and then simplify the result as much
as possible. For example, if ζ(x) = α and ζ(y) = 2, then ζ(x > y + 3) = α > 5.
The same goes for ζ(E).

We define a complete run of the concolic semantics with the judgment
〈Π,S 〉 ⇓p

π Π ′, which has two rules:

〈Π, skip〉 ⇓1
true Π

〈Π,S 〉 −→p
π 〈Π ′,S ′〉 〈Π ′,S ′〉 ⇓q

π′ Π ′′

〈Π,S 〉 ⇓p·q
π∧π′ Π ′′

A complete run’s probability is thus the product of the probability of each indi-
vidual step taken. The run’s path condition is the conjunction of the conditions
of each step.

The path condition π for a complete run is a conjunction of the (symbolic)
boolean guards evaluated during an execution. π can be converted to disjunctive
normal form (DNF), and given the restrictions of the language the result is
essentially a set of convex polyhedra over symbolic variables α.

6.2 Improving Precision

Using concolic execution, we can improve our estimate of the size of a proba-
bilistic polyhedron as follows:

1. Randomly select an input state σT ∈ γC(CT ) (recall that CT is the polyhedron
describing the possible valuations of secrets T ).

2. Set Π = (σT , ζT ) where ζT maps each variable x ∈ T to a fresh symbolic
variable αx. Perform a complete concolic run 〈Π,S 〉 ⇓p

π (σ′, ζ ′). Make sure
that σ′(r) = o, i.e., the expected output. If not, select a new σT and retry.
Give up after some number of failures N . For our example shown in Fig. 3(b),
we might obtain a path condition |Loc(z).x − L1.x| + |Loc(z).y − L1.y| ≤ 4
that captures the left diamond of the disjunctive query.
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3. After a successful concolic run, convert path condition π to DNF, where each
conjunctive clause is a polyhedron Ci. Also convert uses of disequality (≤ and
≥) to be strict (< and >).

4. Let C = CT � (
⊔

i Ci); that is, it is the join of each of the polyhedra in
DNF (π) “intersected” with the original constraints. This captures all of the
points that could possibly lead to the observed outcome along the concolically
executed path. Compute n = #(C). Let PT+ = PT except define smin

T+ = n if
smin
T < n and mmin

T+ = pmin
T ·n if mmin

T < pmin
T ·n. (Leave them as is, otherwise.)

For our example, n = 41, the size of the left diamond. We do not update smin
T

since 41 < 55, the probabilistic polyhedron’s lower bound (but see below).

Theorem 3 (Concolic Execution is Sound). If δ0 ∈ γP(P0), 〈〈S 〉〉P0 = P ,
and [[S ]]δ0 = δ then δT ∈ γP(PT+) where

δT
def= δ ∧ (r = o) � T

PT
def= P ∧ (r = o) � T

PT+
def= PT concolically revised.

The proof is in the extended technical report [43].

6.3 Combining Sampling with Concolic Execution

Sampling can be used to further augment the results of concolic execution. The
key insight is that the presence of a sound under-approximation generated by
the concolic execution means that it is unnecessary to sample from the under-
approximating region. Here is the algorithm:

1. Let C = C0 � (
⊔

i Ci) be the under-approximating region.
2. Perform sampling per the algorithm in Sect. 5, but with two changes:

– if a sampled state σT ∈ γC(C), ignore it
– When done sampling, compute smin

T+ = pL · (#(CT ) − #(C)) + #(C) and
smax
T+ = pU ·(#(CT )−#(C))+#(C). This differs from Sect. 5 in not includ-

ing the count from concolic region C in the computation. This is because,
since we ignored samples σT ∈ γC(C), the credible interval [pL, pU ] bounds
the likelihood that any given point in CT \C is in the support of the true
distribution.

For our example, concolic execution indicated there are at least 41 points that
satisfy the query. With this in hand, and using the same samples as shown in
Sect. 5, we can refine s ∈ [74, 80] and m ∈ [0.74, 0.160] (the credible interval is
formed over only those samples which satisfy the query but fall outside the under-
approximation returned by concolic execution). We improve the vulnerability
estimate to V ≤ 0.02

0.0.74 = 0.027. These bounds (and vulnerability estimate) are
better than those of sampling alone (s ∈ [72, 81] with V ≤ 0.028).

The statement of soundness and its proof can be found in the extended
technical report [43].
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7 Implementation

We have implemented our approach as an extension of Mardziel et al. [25], which
is written in OCaml. This baseline implements numeric domains C via an OCaml
interface to the Parma Polyhedra Library [4]. The counting procedure #(C) is
implemented by LattE [15]. Support for arbitrary precision and exact arithmetic
(e.g., for manipulating mmin, pmin, etc.) is provided by the mlgmp OCaml inter-
face to the GNU Multi Precision Arithmetic library. Rather than maintaining
a single probabilistic polyhedron P , the implementation maintains a powerset
of polyhedra [3], i.e., a finite disjunction. Doing so results in a more precise
handling of join points in the control flow, at a somewhat higher performance
cost.

We have implemented our extensions to this baseline for the case that domain
C is the interval numeric domain [11]. Of course, the theory fully applies to any
numeric abstract domain. We use Gibbs sampling, which we implemented our-
selves. We delegate the calculation of the beta distribution and its corresponding
credible interval to the ocephes OCaml library, which in turn uses the GNU
Scientific Library. It is straightforward to lift the various operations we have
described to the powerset domain. All of our code is available at https://github.
com/GaloisInc/TAMBA.

8 Experiments

To evaluate the benefits of our techniques, we applied them to queries based
on the evacuation problem outlined in Sect. 2. We found that while the base-
line technique can yield precise answers when computing vulnerability, our new
techniques can achieve close to the same level of precision far more efficiently.

8.1 Experimental Setup

For our experiments we analyzed queries similar to Nearby(s, l, d) from Fig. 2.
We generalize the Nearby query to accept a set of locations L—the query returns
true if s is within d units of any one of the islands having location l ∈ L. In
our experiments we fix d = 100. We consider the secrecy of the location of s,
Location(s). We also analyze the execution of the resource allocation algorithm
of Fig. 2 directly; we discuss this in Sect. 8.3.

We measure the time it takes to compute the vulnerability (i.e., the prob-
ability of the most probable point) following each query. In our experiments,
we consider a single ship s and set its coordinates so that it is always in
range of some island in L, so that the concrete query result returns true (i.e.
Nearby(s, L, 100) = true). We measure the vulnerability following this query
result starting from a prior belief that the coordinates of s are uniformly dis-
tributed with 0 ≤ Location(s).x ≤ 1000 and 0 ≤ Location(s).y ≤ 1000.

In our experiments, we varied several experimental parameters: analysis
method (either P, I, CE, S, or CE+S), query complexity c; AI precision level
p; and number of samples n. We describe each in turn.

https://github.com/GaloisInc/TAMBA
https://github.com/GaloisInc/TAMBA
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Analysis Method. We compared five techniques for computing vulnerability:

P: Abstract interpretation (AI) with convex polyhedra for domain C (Sect. 4),
I: AI with intervals for C (Sect. 4),
S: AI with intervals augmented with sampling (Sect. 5),
CE: AI with intervals augmented with concolic execution (Sect. 6), and
CE+S: AI with intervals augmented with both techniques (Sect. 6.3)

The first two techniques are due to Mardziel et al. [25], where the former uses
convex polyhedra and the latter uses intervals (aka boxes) for the underlying
polygons. In our experiments we tend to focus on P since I’s precision is unac-
ceptably poor (e.g., often vulnerability = 1).

Query Complexity. We consider queries with different L; we say we are increasing
the complexity of the query as L gets larger. Let c = |L|; we consider 1 ≤ c ≤ 5,
where larger L include the same locations as smaller ones. We set each location
to be at least 2 · d Manhattan distance units away from any other island (so
diamonds like those in Fig. 3(a) never overlap).

Precision. The precision parameter p bounds the size of the powerset abstract
domain at all points during abstract interpretation. This has the effect of forcing
joins when the powerset grows larger than the specified precision. As p grows
larger, the results of abstract interpretation are likely to become more precise
(i.e. vulnerability gets closer to the true value). We considered p values of 1, 2,
4, 8, 16, 32, and 64.

Samples Taken. For the latter three analysis methods, we varied the number of
samples taken n. For analysis CE, n is interpreted as the number of samples
to try per polyhedron before giving up trying to find a “valid sample.”5 For
analysis S, n is the number of samples, distributed proportionally across all the
polyhedra in the powerset. For analysis CE+S, n is the combination of the two.
We considered sample size values of 1, 000 − 50, 000 in increments of 1, 000. We
always compute an interval with ω = 99.9% confidence (which will be wider when
fewer samples are used).

System Description. We ran experiments varying all possible parameters. For
each run, we measured the total execution time (wall clock) in seconds to analyze
the query and compute vulnerability. All experiments were carried out on a
MacBook Air with OSX version 10.11.6, a 1.7 GHz Intel Core i7, and 8 GB of
RAM. We ran a single trial for each configuration of parameters. Only wall-clock
time varies across trials; informally, we observed time variations to be small.

8.2 Results

Figure 6(a)–(c) measure vulnerability (y-axis) as a function of time (x-axis) for
each analysis.6 These three figures characterize three interesting “zones” in the
5 This is the N parameter from Sect. 6.
6 These are best viewed on a color display.
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Fig. 6. Experimental results

space of complexity and precision. The results for method I are not shown in any
of the figures. This is because I always produces a vulnerability of 1. The refine-
ment methods (CE, S, and CE+S) are all over the interval domain, and should
be considered as “improving” the vulnerability of I.

In Fig. 6(a) we fix c = 1 and p = 1. In this configuration, baseline analysis
P can compute the true vulnerability in ∼ 0.95 s. Analysis CE is also able to
compute the true vulnerability, but in ∼0.19 s. Analysis S is able to compute a
vulnerability to within ∼5 ·e−6 of optimal in ∼0.15 s. These data points support
two key observations. First, even a very modest number of samples improves
vulnerability significantly over just analyzing with intervals. Second, concolic
execution is only slightly slower and can achieve the optimal vulnerability. Of
course, concolic execution is not a panacea. As we will see, a feature of this
configuration is that no joins take place during abstract interpretation. This is
critical to the precision of the concolic execution.

In Fig. 6(b) we fix c = 2 and p = 4. In contrast to the configuration of
Fig. 6(a), the values for c and p in this configuration are not sufficient to prevent
all joins during abstract interpretation. This has the effect of taking polygons
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Table 1. Analyzing a 3-ship resource allocation run

Resource allocation (3 ships)

Analysis Time (s) Vulnerability

P Timeout (5 min) N/A

I 0.516 1

CE 16.650 1.997 · 10−24

S 1.487 1.962 · 10−24

CE+S 17.452 1.037 · 10−24

that represent individual paths through the program and joining them into a
single polygon representing many paths. We can see that this is the case because
baseline analysis P is now achieving a better vulnerability than CE. However, one
pattern from the previous configuration persists: all three refinement methods
(CE, S, CE+S) can achieve vulnerability within ∼1 ·e−5 of P, but in 1

4 the time.
In contrast to the previous configuration, analysis CE+S is now able to make a
modest improvement over CE (since it does not achieve the optimal).

In Fig. 6(c) we fix c = 5 and p = 32. This configuration magnifies the effects
we saw in Fig. 6(b). Similarly, in this configuration there are joins happening,
but the query is much more complex and the analysis is much more precise.
In this figure, we label the X axis as a log scale over time. This is because
analysis P took over two minutes to complete, in contrast to the longest-running
refinement method, which took less than 6 seconds. The relationship between the
refinement analyses is similar to the previous configuration. The key observation
here is that, again, all three refinement analyses achieve within ∼ 3 · e−5 of P,
but this time in 4% of the time (as opposed to 1

4 in the previous configuration).
Figure 6(d) makes more explicit the relationship between refinements (CE,

S, CE+S) and P. We fix n = 50, 000 (the maximum) here, and p = 64 (the
maximum). We can see that as query complexity goes up, P gets exponentially
slower, while CE, S, and CE+S slow at a much lower rate, while retaining (per
the previous graphs) similar precision.

8.3 Evacuation Problem

We conclude this section by briefly discussing an analysis of an execution of the
resource allocation algorithm of Fig. 2. In our experiment, we set the number of
ships to be three, where two were in range d = 300 of the evacuation site, and
their sum-total berths (500) were sufficient to satisfy demand at the site (also
500). For our analysis refinements we set n = 1000. Running the algorithm, a
total of seven pairs of Nearby and Capacity queries were issued. In the end, the
algorithm selects two ships to handle the evacuation.

Table 1 shows the time to execute the algorithm using the different analysis
methods, along with the computed vulnerability—this latter number represents
the coordinator’s view of the most likely nine-tuple of the private data of the
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three ships involved (x coordinate, y coordinate, and capacity for each). We can
see that, as expected, our refinement analyses are far more efficient than baseline
P, and far more precise than baseline I. The CE methods are precise but slower
than S. This is because of the need to count the number of points in the DNF
of the concolic path conditions, which is expensive.

Discussion. The queries considered in Fig. 6 have two features that contribute
to the effectiveness of our refinement methods. First, they are defined over large
domains, but return true for only a small subset of those values. For larger subsets
of values, the benefits of sampling may degrade, though concolic execution should
still provide an improvement. Further experiments are needed to explore such
scenarios. Second, the example in Fig. 6 contains short but complex queries. A
result of this query structure is that abstract interpretation with polyhedra is
expensive but sampling can be performed efficiently. The evacuation problem
results in Table 1 provide some evidence that the benefits of our techniques also
apply to longer queries. However it may still be possible to construct queries
where the gap in runtime between polyhedral analysis and sampling is smaller,
in which case sampling would provide less improvement.

9 Related Work

Quantifying Information Flow. There is a rich research literature on techniques
that aim to quantify information that a program may release, or has released, and
then use that quantification as a basis for policy. One question is what measure
of information release should be used. Past work largely considers information
theoretic measures, including Bayes vulnerability [41] and Bayes risk [8], Shan-
non entropy [40], and guessing entropy [26]. The g-vulnerability framework [1]
was recently introduced to express measures having richer operational interpre-
tations, and subsumes other measures.

Our work focuses on Bayes Vulnerability, which is related to min-entropy.
Vulnerability is appealing operationally: As Smith [41] explains, it estimates
the risk of the secret being guessed in one try. While challenging to compute,
this approach provides meaningful results for non-uniform priors. Work that has
focused on other, easier-to-compute metrics, such as Shannon entropy and chan-
nel capacity, require deterministic programs and priors that conform to uniform
distributions [2,22,23,27,32]. The work of Klebanov [20] supports computation
of both Shannon entropy and min-entropy over deterministic programs with
non-uniform priors. The work takes a symbolic execution and program specifi-
cation approach to QIF. Our use of concolic execution for counting polyhedral
constraints is similar to that of Klebanov. However, our language supports prob-
abilistic choice and in addition to concolic execution we also provide a sampling
technique and a sound composition. Like Mardziel et al. [25], we are able to com-
pute the worst-case vulnerability, i.e., due to a particular output, rather than a
static estimate, i.e., as an expectation over all possible outputs. Köpf and Basin
[21] originally proposed this idea, and Mardziel et al. were the first to implement
it, followed by several others [6,19,24].
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Köpf and Rybalchenko [22] (KR) also use sampling and concolic execution
to statically quantify information leakage. But their approach is quite different
from ours. KR uses sampling of a query’s inputs in lieu of considering (as we
do) all possible outputs, and uses concolic execution with each sample to ulti-
mately compute Shannon entropy, by underapproximation, within a confidence
interval. This approach benefits from not having to enumerate outputs, but also
requires expensive model counting for each sample. By contrast, we use sampling
and concolic execution from the posterior computed by abstract interpretation,
using the results to boost the lower bound on the size/probability mass of the
abstraction. Our use of sampling is especially efficient, and the use of concolic
execution is completely sound (i.e., it retains 100% confidence in the result). As
with the above work, KR requires deterministic programs and uniform priors.

Probabilistic Programming Langauges. A probabilistic program is essentially a
lifting of a normal program operating on single values to a program operating
on distributions of values. As a result, the program represents a joint distribu-
tion over its variables [18]. As discussed in this paper, quantifying the informa-
tion released by a query can be done by writing the query in a probabilistic
programming language (PPL) and representing the uncertain secret inputs as
distributions. Quantifying release generally corresponds to either the maximum
likelihood estimation (MLE) problem or the maximum a-posteriori probability
(MAP) problem. Not all PPLs support computation of MLE and MAP, but
several do.

PPLs based on partial sampling [17,34] or full enumeration [37] of the state
space are unsuitable in our setting: they are either too inefficient or too impre-
cise. PPLs based on algebraic decision diagrams [9], graphical models [28], and
factor graphs [7,30,36] translate programs into convenient structures and take
advantage of efficient algorithms for their manipulation or inference, in some
cases supporting MAP or MLE queries (e.g. [33,35]). PSI [16] supports exact
inference via computation of precise symbolic representations of posterior dis-
tributions, and has been used for dynamic policy enforcement [24]. Guarnieri
et al. [19] use probabilistic logic programming as the basis for inference; it scales
well but only for a class of queries with certain structural limits, and which do
not involve numeric relationships.

Our implementation for probabilistic computation and inference differs from
the above work in two main ways. Firstly, we are capable of sound approximation
and hence can trade off precision for performance, while maintaining soundness
in terms of a strong security policy. Even when using sampling, we are able
to provide precise confidence measures. The second difference is our composi-
tional representation of probability distributions, which is based on numerical
abstractions: intervals [11], octagons [29], and polyhedra [13]. The posterior can
be easily used as the prior for the next query, whereas prior work would have to
repeatedly analyze the composition of past queries.

A few other works have also focused on abstract interpretation, or related
techniques, for reasoning about probabilistic programs. Monniaux [31] defines
an abstract domain for distributions. Smith [42] describes probabilistic abstract
interpretation for verification of quantitative program properties. Cousot [14]
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unifies these and other probabilistic program analysis tools. However, these do
not deal with sound distribution conditioning, which is crucial for belief-based
information flow analysis. Work by Sankaranarayanan et al. [38] uses a combina-
tion of techniques from program analysis to reason about distributions (includ-
ing abstract interpretation), but the representation does not support efficient
retrieval of the maximal probability, needed to compute vulnerability.

10 Conclusions

Quantitative information flow is concerned with measuring the knowledge about
secret data that is gained by observing the answer to a query. This paper has
presented a combination of static analysis using probabilistic abstract interpre-
tation, sampling, and underapproximation via concolic execution to compute
high-confidence upper bounds on information flow. Preliminary experimental
results are promising and suggest that this approach can operate more precisely
and efficiently than abstract interpretation alone. As next steps, we plan to eval-
uate the technique more rigorously – including on programs with probabilistic
choice. We also plan to integrate static analysis and sampling more closely so
as to avoid precision loss at decision points in programs. We also look to extend
programs to be able to store random choices in variables, to thereby implement
more advanced probabilistic structures.

A Query Code

The following is the query code of the example developed in Sect. 2.2. Here, s x

and s y represent a ship’s secret location. The variables l1 x , l1 y , l2 x , l2 y , and
d are inputs to the query. The first pair represents position L1, the second pair
represents the position L2, and the last is the distance threshold, set to 4. We
assume for the example that L1 and L2 have the same y coordinate, and their x
coordinates differ by 6 units.

We express the query in the language of Fig. 4 basically as follows:

d_l1 := |s_x - l1_x| + |s_y - l1_y|;
d_l2 := |s_x - l2_x| + |s_y - l2_y|;
if (d_l1 <= d || d_l2 <= d) then

out := true // assume this result
else

out := false

The variable out is the result of the query. We simplify the code by assuming
the absolute value function is built-in; we can implement this with a simple
conditional. We run this query probabilistically under the assumption that s x

and s y are uniformly distributed within the range given in Fig. 1. We then
condition the output on the assumption that out = true. When using intervals
as the baseline of probabilistic polyhedra, this produces the result given in the
upper right of Fig. 3(b); when using convex polyhedra, the result is shown in the
lower right of the figure. The use of sampling and concolic execution to augment
the former is shown via arrows between the two.
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B Formal Semantics

Here we defined the probabilistic semantics for the programming language given
in Fig. 4. The semantics of statement S , written [[S ]], is a function of the form Dist
→ Dist, i.e., it is a function from distributions of states to distributions of states.
We write [[S ]]δ = δ′ to say that the semantics of S maps input distribution δ to
output distribution δ′.

Figure 7 gives this denotational semantics along with definitions of relevant
auxiliary operations. We write [[E]]σ to denote the (integer) result of evaluating
expression E in σ, and [[B]]σ to denote the truth or falsehood of B in σ. The vari-
ables of a state σ, written domain(σ), is defined by domain(σ); sometimes we will
refer to this set as just the domain of σ. We will also use the this notation for distri-
butions; domain(δ) def= domain(domain(δ)). We write lfp as the least fixed-point
operator. The notation

∑
x : φ ρ can be read ρ is the sum over all x such that for-

mula φ is satisfied (where x is bound in ρ and φ).
This semantics is standard. See Clarkson et al. [10] or Mardziel et al. [25] for

detailed explanations.

Fig. 7. Distribution semantics
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Abstract. One of the key demands of cyberphysical systems is that
they meet their safety goals. Timed automata has established itself as
a formalism for modeling and analyzing the real-time safety aspects
of cyberphysical systems. Increasingly it is also demanded that cyber-
physical systems meet a number of security goals for confidentiality and
integrity. Notions of security based on Information flow control, such as
non-interference, provide strong guarantees that no information is leaked;
however, many cyberphysical systems leak intentionally some informa-
tion in order to achieve their purposes.

In this paper, we develop a formal approach of information flow for
timed automata that allows intentional information leaks. The security
of a timed automaton is then defined using a bisimulation relation that
takes account of the non-determinism and the clocks of timed automata.
Finally, we define an algorithm that traverses a timed automaton and
imposes information flow constraints on it and we prove that our algo-
rithm is sound with respect to our security notion.

1 Introduction

Motivation. Embedded systems are key components of cyberphysical systems
and are often subject to stringent safety goals. Among the current approaches
to the modeling and analysis of timed systems, the approach of timed automata
[5] stands out as being a very successful approach with well-developed tool sup-
port – in particular the UPPAAL suite [28] of tools. As cyberphysical systems
become increasingly distributed and interconnected through wireless communi-
cation links it becomes even more important to ensure that they meet suitable
security goals.

In this paper, we are motivated by an example of a smart power grid system.
In its very basic form, a smart grid system consists of a meter that measures
the electricity consumption in a customer’s (C) house and then sends this data
to the utility company (UC). The detailed measurements of the meter provide
more accurate billings for UC, while C receives energy management plans that
optimize his energy consumption. Although this setting seems to be beneficial
for both UC and C, it has been shown that high-frequent monitoring of the
power flow poses a major threat to the privacy of C [14,23,27]. To deal with
c© The Author(s) 2018
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this problem many smart grid systems introduce a trusted third-party (TTP ),
on which both UC and C agree [27]. The data of the meter now is collected by
the TTP and by the end of each month the TTP charges C depending on the
tariff prices defined by UC. In this protocol, UC trusts TTP for the accurate
billing of C, while C trusts TTP with its sensitive data. However, in some cases,
C may desire an energy management plan by UC, and consequently he makes
a clear statement to TTP that allows the latter to release the private data of C
to UC. Therefore, it is challenging to formally prove that our trusted smart grid
system leaks information only under C ′s decision.

Information Flow Control. [10,26,29] is a key approach to ensuring that software
systems maintain the confidentiality and/or integrity of their data. Policies for
secure information flow are usually formalized as non-interference [29] properties
and systems that adhere to the stated policy are guaranteed to admit no flow of
information that violates it. However, in many applications information is leaked
by intention as in our smart grid example. To deal with such systems, informa-
tion flow control approaches are usually extended with mechanisms that permit
controlled information leakage. The major difficulty imposed by this extension
is to formalize notions of security that are able to differentiate between the
intentional and the unintentional information leakages in a system.

Contribution. It is therefore natural to extend the enforcement of safety prop-
erties of timed automata with the enforcement of appropriate Information Flow
policies. It is immediate that the treatment of clocks, the non-determinism, and
the unstructured control flow inherent in automata will pose a challenge. More
fundamentally there is the challenge that timed automata is an automata-based
formalism whereas most approaches to Information Flow take a language-based
approach by developing type systems for programming languages with structured
control flow or process calculi.

We start by giving the semantics of timed automata (Sect. 2) based on the
ones used in UPPAAL [28]. Next, we formalize the security of a timed automaton
using a bisimulation relation (Sect. 3). This notion describes the observations of
a passive attacker and formally describes where an observation is allowed to leak
information and where it is not. To deal with implicit flows we define a general
notion of the post-dominator relation [18] (Sect. 4). We then develop a sound
algorithm (Sect. 5) that imposes information flow constraints on the clocks and
the variables of a timed automaton. We finish with our conclusions (Sect. 6) and
the proofs of our main results (Appendix).

Related Work. There are other papers dealing with Information Flow using
language based techniques for programs with a notion of time [2,9,16,22] or
programs that leak information intentionally [6,13,19–21,24]. Our contribution
focuses on the challenges of continuous time and the guarded actions of timed
automata.

The work of [7,8] define a notion of non-interference for timed automata
with high-level (secret) and low-level (public) actions. Their notion of security is
expressed as a non-interference property and it depends on a natural number m,



30 P. Vasilikos et al.

representing a minimum delay between high-level actions such that the low-level
behaviors are not affected by the high-level ones. The authors of [17] define a
notion of timed non-interference based on bisimulations for probabilistic timed
automata which again have high-level (secret) and low-level (public) actions.
A somewhat different approach is taken in [12] that studies the synthesis of
controllers. None of those approaches considers timed automata that have data
variables, nor is their notion of security able to accommodate systems that leak
information intentionally.

The authors of [25] take a language-based approach and they define a type-
system for programs written in the language Timed Commands. A program
in their language gives rise to a timed automaton, and type-checked programs
adhere to a non-interference like security property. However, their approach is
limited only to automata that can be described by their language and they do
not consider information release.

2 Timed Automata

A timed automaton [1,5] TA = (Q,E, I, q◦) consists of a set of nodes Q, a set of
annotated edges E, and a labelling function I on nodes. A node q◦ ∈ Q will be
the initial node and the mapping I maps each node in Q to a condition (to be
introduced below) that will be imposed as an invariant at the node.

The edges are annotated with actions and take the form (qs, g → x :=a: r, qt)
where qs ∈ Q is the source node and qt ∈ Q is the target node. The action
g → x :=a: r consists of a guard g that has to be satisfied in order for the multiple
assignments x :=a to be performed and the clock variables r to be reset. We shall
assume that the sequences x and a of program variables and expressions, respec-
tively, have the same length and that x does not contain any repetitions. To cater
for special cases we shall allow to write skip for the assignments of g → x :=a: r
when x (and hence a) is empty; also we shall allow to omit the guard g when it
equals tt and to omit the clock resets when r is empty.

It has already emerged that we distinguish between (program) variables x
and clock variables (or simply clocks) r. The arithmetic expressions a, guards g
and conditions c are defined as follows using boolean tests b:

a ::= a1 opa a2 | x | n
b ::= tt | ff | a1 opr a2 | ¬b | b1 ∧ b2
g ::= b | r opc n | (r1 − r2) opc n | g1 ∧ g2
c ::= b | r opd n | (r1 − r2) opd n | c1 ∧ c2

The arithmetic operators opa and the relational operators opr are as usual. For
comparisons of clocks we use the operators opc ∈ {<,≤,=,≥, >} in guards and
the less permissive set of operators opd ∈ {<,≤,=} in conditions.

To specify the semantics of timed automata let σ be a state mapping vari-
ables to values (which we take to be integers) and let δ be a clock assignment
mapping clocks to non-negative reals. We then have total semantic functions [[·]]
for evaluating the arithmetic expressions, boolean tests, guards and conditions;
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the values of the arithmetic expressions and boolean expressions only depend
on the states whereas that of guards and conditions also depend on the clock
assignments.

The configurations of the timed automata have the form 〈q, σ, δ〉 ∈ Config
where [[I(q)]](σ, δ) is true, and the transitions are described by an initial delay
(possibly none) that increases the values of all the clocks followed by an action.
Therefore, whenever (qs, g → x :=a: r, qt) is in E we have the rule:

〈qs, σ, δ〉 d−→ 〈qt, σ
′, δ′〉

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d ≥ 0
[[I(qs)]](σ, δ + d) = tt,
[[g]](σ, δ + d) = tt,
σ′ = σ[x 	→ [[a ]]σ], δ′ = (δ + d)[r 	→ 0],
[[I(qt)]](σ′, δ′) = tt

where d corresponds to the initial delay. The rule ensures that after the initial
delay the invariant and the guard are satisfied in the starting configuration and
updates the mappings σ and δ where δ + d abbreviates λr. δ(r) + d. Finally,
it ensures that the invariant is satisfied in the resulting configuration. Initial
configurations assume that all clocks are initialized to 0 and have the form
〈q◦, σ, λr.0〉.
Traces. We define a trace from 〈qs, σ, δ〉 to qt in a timed automaton TA to have
one of three forms. It may be a finite “successful” sequence

〈qs, σ, δ〉 = 〈q′
0, σ

′
0, δ

′
0〉 d1−→ · · · dn−→ 〈q′

n, σ′
n, δ′

n〉 (n > 0)
such that {n} = {i | q′

i = qt ∧ 0 < i ≤ n}.

in which case at least one step is performed. It may be a finite “unsuccessful”
sequence

〈qs, σ, δ〉 = 〈q′
0, σ

′
0, δ

′
0〉 d1−→ · · · dn−→ 〈q′

n, σ′
n, δ′

n〉 (n ≥ 0)
such that 〈q′

n, σ′
n, δ′

n〉 is stuck and qt 
∈ {q′
1, · · · , q′

n}
where 〈q′

n, σ′
n, δ′

n〉 is stuck when there is no action starting from 〈q′
n, σ′

n, δ′
n〉.

Finally, it may be an infinite “unsuccessful” sequence

〈qs, σ, δ〉 = 〈q′
0, σ

′
0, δ

′
0〉 d1−→ · · · dn−→ 〈q′

n, σ′
n, δ′

n〉 dn+1−→ · · ·
such that qt 
∈ {q′

1, · · · , q′
n, · · · }.

We shall write [[TA : qs 	→ qt]](σ, δ) for the set of traces from 〈qs, σ, δ〉 to qt. We
then have the following proposition

Proposition 1 [15]. For a pair (σ, δ) whenever [[TA : qs 	→ qt]](σ, δ) contains
only successful traces, then there exists a trace t ∈ [[TA : qs 	→ qt]](σ, δ) with
maximal length.

We also define the delay of a trace t from 〈qs, σ, δ〉 to qt and we have that if t is
a successful trace

〈qs, σ, δ〉 = 〈q′
0, σ

′
0, δ

′
0〉 d1−→ · · · dn−→ 〈q′

n, σ′
n, δ′

n〉 = 〈qt, σ
′, δ′〉
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1 2

4

3

bill,analytics

dataam

datapm

midnight

data,request

data

releaseno

price

releaseyes

price,analytics

Invariants:
1 T ≤ 720
2 T = 720
3 T = 720
4 T = 720

dataam: t ≤ 12 ∧ r = 1 → e1:=e1 + ed: r
datapm: t > 12 ∧ t < 24 ∧ r = 1 → e2:=e2 + ed: r
midnight: t = 24 ∧ r = 1 → e2:=e2 + ed: r, t
data,request: T = 720 → s, c1, c2:=1, e1, e2:
data: T = 720 → s, c1, c2:=0, e1, e2:

releaseno: s = 0 → skip:
releaseyes: s = 1 → y1, y2:=c1, c2:
price,analytics: p1, p2, a, f:=v1, v2, z, 1
price: p1, p2, a, f:=v1, v2, 0, 1
bill,analytics: f = 1 → b, x, e1, e2, f:=

p1 ∗ c1 + p2 ∗ c2,
a, 0, 0, 0: T,t,r

Fig. 1. The timed automaton SG (and the abbreviations used).

then
Δ(t) =

∑n
i=1 di

In the case of t being an unsuccessful (finite or infinite) trace we have that

Δ(t) = ∞
Finally for (σ1, δ1), (σ2, δ2) whenever for all t1 ∈ [[TA : qs 	→ qt]](σ1, δ1) and
t2 ∈ [[TA : qs 	→ qt]](σ2, δ2) we have that Δ(t1) = Δ(t2), we will say that (σ1, δ1)
and (σ2, δ2) have the same termination behaviour with respect to qs and qt. Note
that it is not necessarily the case that a pair (σ, δ) has the same termination
behaviour as itself.

Example 1. To illustrate our development we shall consider an example automa-
ton of a smart grid system as the one described in Sect. 1. The timed automaton
SG is given in Fig. 1 and it uses the clocks t and T to model the time elapse of a
day and a month respectively. Between midnight and noon, the electricity data
ed is aggregated in the variable e1, while from noon to midnight the measure-
ments are saved in the variable e2. The clock r is used to regulate the frequency
of the measurements, by allowing one measurement every full hour. At the end
of a day (midnight) the last measurement is calculated and the clock t is being
reset to 0 indicating the start of a new day. At the end of each month (T = 720)
the trusted party TTP collects the data e1 and e2 of the meter and stores it in
the collectors c1 and c2 respectively. At the same time, the customer C sends a
service request s to TTP in case he desires to get some analytics regarding his
energy consumption. The TTP then requests from the UC the prices p1, p2 of
the electricity tariffs for the two time periods of interest and in case that C has
made a request for his data to be analysed (s = 1 otherwise s = 0), TTP also
reveals the collected data c1 and c2 to the UC where the latter stores them in
the variables y1 and y2 respectively. The UC then responds back to the TTP by
sending the values v1 and v2 of the electricity tariffs and also the result z of C ′s
data analytics in case C made a request for that, otherwise it sends the value 0.
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Once the TTP receives everything (f = 1) he calculates the bill b for C, sends it
to him together with the analysis result a (C stores it in x), the clocks and the
variables of the meter are being reset to 0 and a new month starts. For simplicity
here we assume that all the calculations done by the TTP and the UC by the
end of the month are being completed in zero time.

3 Information Flow

We envisage that there is a security lattice expressing the permissible flows [10].
Formally this is a complete lattice and the permitted flows go in the direction
of the partial order. In our development, it will contain just two elements, L
(for low) and H (for high), and we set L � H so that only the flow from H to
L is disallowed. For confidentiality, one would take L to mean public and H to
mean private and for integrity one would take L to mean trusted and H to mean
dubious.

A security policy is then expressed by a mapping L that assigns an element
of the security lattice to each program variable and clock variable. An entity is
called high if it is mapped to H by L, and it is said to be low if it is mapped to
L by L. To express adherence to the security policy we use the binary operation
� defined on sets χ and χ′ (of variables and clocks):

χ � χ′ ⇔ ∀u ∈ χ : ∀u′ ∈ χ′ : L(u) � L(u′)

This expresses that all the entities of χ may flow into those of χ′; note that
if one of the entities of χ has a high security level then it must be the case that
all the entities of χ′ have high security level.

Example 2. Returning to Example 1 of our smart grid system, we have that L
maps the program variable ed of the electricity data, the variables e1, e2 that
store this data, the collectors c1, c2 and the bill b to the security level H, while
the rest of the program variables and clocks are mapped to L.

Information flow control enforces a security policy by imposing constraints of the
form {y} � {x} whenever the value of y may somehow influence (or flow into)
that of x. Traditionally we distinguish between explicit and implicit flows as
explained below. As an example of an explicit flow consider a simple assignment
of the form x:=a. This gives rise to a condition fv(a) � {x} so as to indicate
that the explicit flow from the variables of a to the variable x must adhere to
the security policy: if a contains a variable with high security level then x also
must have high security level. For an example of an implicit flow consider a
conditional assignment g → x:=0 where x is assigned the constant value 0 in
case g evaluates to true. This gives rise to a condition fv(g) � {x} so as to
indicate that the implicit flow from the variables of g to the variable x must
adhere to the security policy: if g contains a variable with high security level
then x also must have high security level.

As has already been explained, many applications as our smart grid example
inevitably leak some information. In this paper we develop an approach to ensure



34 P. Vasilikos et al.

that the security policy is adhered to by the timed automaton of interest, however
in certain conditions it can be bypassed. Thus, for a timed automaton TA =
(Q,E, I, q◦), we shall assume that there exists a set of observable nodes Y ⊆ Q,
that are the nodes where the values of program variables and clocks with low
security are observable by an attacker. The observable nodes will be described
by the union of two disjoint sets Ys and Yw, where a node q in Ys (Yw resp.) will
be called strongly observable (weakly observable resp.). The key idea is to ensure
that {x} � {y} whenever there is an explicit flow of information from x to y (as
illustrated above) or an implicit flow from x to y in computations that lead to
strongly observable nodes, while computations that lead to weakly observable
nodes are allowed to bypass the security policy L.

To overcome the vagueness of this explanation we need to define a semantic
condition that encompasses our notion of permissible information flow, where
information leakage occurs only at specific places in our automaton.

Observable Steps. Since the values of low program variables and clocks are only
observable at the nodes in Y , we collapse the transitions of the automaton that
lead to non-observable nodes into one. Thus we have an observable successful
step

〈qs, σ, δ〉 D=⇒Y 〈qt, σ
′, δ′〉

whenever there exists a successful trace t

〈qs, σ, δ〉 = 〈q0, σ0, δ0〉 d1−→ · · · dn−→ 〈qn, σn, δn〉 = 〈qt, σ
′, δ′〉 (n > 0)

from 〈qs, σ, δ〉 to qt in TA and qt ∈ Y , D = Δ(t) and ∀i ∈ {1, ..., n − 1} : qi 
∈ Y .
And we have an observable unsuccessful trace

〈qs, σ, δ〉 ∞=⇒Y ⊥
whenever there exists an unsuccessful finite trace

〈qs, σ, δ〉 = 〈q0, σ0, δ0〉 d1−→ · · · dn−→ 〈qn, σn, δn〉 (n ≥ 0)

or an unsuccessful infinite trace

〈qs, σ, δ〉 = 〈q0, σ0, δ0〉 d1−→ · · · dn−→ 〈qn, σn, δn〉 dn+1−→ · · ·
from 〈qs, σ, δ〉 to any of the nodes in Y and ∀i > 0 : qi 
∈ Y . From now on it
should be clear that a configuration γ will range over Config ∪ {⊥}.

We write (σ, δ) ≡ (σ′, δ′) to indicate that the two pairs are equal on low
variables and low clocks:

(σ, δ) ≡ (σ′, δ′) iff ∀x : L(x) = L ⇒ σ(x) = σ′(x) ∧
∀r : L(r) = L ⇒ δ(r) = δ′(r)

It is immediate that this definition of ≡ gives rise to an equivalence relation.
Intuitively ≡ represents the view of a passive attacker as defined in [24], a prin-
cipal that is able to observe the computations of a timed automaton and deduce
information.
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We will now define our security notion with the use of a bisimulation relation.
Our notion shares some ideas from [19,21], where a bisimulation-based security
is defined for a programming language with threads. In their approach, the
bypassing of the security policy is localized on the actions, and that is because
their attacker model is able to observe the low variables of a program at any of
its computation steps (e.g. in a timed-automaton all of the nodes would have
been observable). In contrast to [19,21], we localize bypassing of policies at the
level of the nodes, while we also define a more flexible notion of security with
respect to the attacker’s observability.

Definition 1 (Y −Bisimulation). For a timed automaton TA = (Q,E, I, q◦) and
a set of nodes Y = Ys ∪ Yw, a relation �Y ⊆ (Config ∪ {⊥}) × (Config ∪ {⊥})
will be called a Y −bisimulation relation if �Y is symmetric and we have that if
γ1 = 〈q1, σ1, δ1〉 �Y 〈q2, σ2, δ2〉 = γ2 then

(σ1, δ1) ≡ (σ2, δ2) ⇒ if γ1
D1=⇒Y γ′

1 then ∃γ′
2,D2 :

γ2
D2=⇒Y γ′

2 ∧ γ′
1 �Y γ′

2∧
(γ′

1 
= ⊥ ∧ γ′
2 
= ⊥) ⇒ ((node(γ′

1) ∈ Yw ∧ node(γ′
2) ∈ Yw)∨

pair(γ′
1) ≡ pair(γ′

2))

where node(〈q, σ, δ〉) = q, pair(〈q, σ, δ〉) = (σ, δ), and if γ1 �Y γ2 then

(γ1 = ⊥ ⇔ γ2 = ⊥)

We write ∼Y for the union of all the Y −bisimulations and it is immediate that
this definition of ∼Y is both a Y −bisimulation and an equivalence relation. Intu-
itively, when two configurations are related in ∼Y , and they are low equivalent
then they produce distinguishable pairs of states only at the weakly observable
nodes. Otherwise, observations made at strongly observable nodes should be still
indistinguishable. In both cases, the resulting configurations of two Y −bisimilar
configurations should also be Y −bisimilar. We are now ready to define our secu-
rity notion.

Definition 2 (Security of Timed Automata). For a timed automaton TA =
(Q,E, I, q◦) and a set Y = Ys ∪ Yw of observable nodes, we will say that TA
satisfies the information security policy L whenever:

∀q ∈ {q◦} ∪ Y : ∀(σ, δ), (σ′, δ′) :
([[I(q)]](σ, δ) ∧ [[I(q)]](σ′, δ′)) ⇒ 〈q, σ, δ〉 ∼Y 〈q, σ′, δ′〉

Whenever Yw = ∅ our notion of security coincides with standard definitions of
non-interference [29], where an automaton that satisfies the information security
policy L does not leak any information about its high variables.

Example 3. For the smart grid automaton SG of the Example 1, we have the set
of observable nodes Y = {2, 3, 4}, where the strongly observable ones are the
nodes 2 and 4 (Ys = {2, 4}), and the weakly one is the node 3 (Yw = {3}), where
the TTP is allowed to release the secret information of C.
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4 Post-dominators

For the implicit flows arising from conditions, we are interested in finding their
end points (nodes) that are the points where the control flow is not dependent
on the conditions anymore. For that, we define a generalized version of the post-
dominator relation and the immediate post-dominator relation [18].

Paths. A path π in a timed automaton TA = (Q,E, I, q◦) is a finite π =
q0act1q1...qn−1actnqn (n ≥ 0) or infinite π = q0act1q1...qn−1actnqn... sequence
of nodes and actions such that ∀i > 0 : (qi−1, acti, qi) ∈ E. We say that a path is
trivial if π = q0 and we say that a node q belongs to the path π, or π contains q,
and we will write q ∈ π, if there exists some i such that qi = q. For a finite path
π = q0act1q1...qn−1actnqn we write π(i) = qiacti+1qi+1...qn−1actnqn (i ≤ n) for
the suffix of π that starts at the i-th position and we usually refer to it as the
i-th suffix of π. Finally, for a node q and a set of nodes Y ⊆ Q we write

Π(q,Y ) = {π | π = q0act1q1...qn−1actnqn : n > 0 ∧ q0 = q ∧ qn ∈ Y ∧
∀i ∈ {1, ..., n − 1} : qi 
∈ Y }

for the set of all the non-trivial finite paths that start at q, end at a node y in
Y and all the intermediate nodes of the path do not belong in Y .

Definition 3 (Post-dominators). For a node q and a set of nodes Y ⊆ Q we
define the set

pdomY (q) = {q′ | ∀π ∈ Π(q,Y ) : q′ ∈ π(1)}
and whenever q′ ∈ pdomY (q), we will say that q′ is a Y post-dominator of q.

Intuitively whenever a node q′ is a Y post-dominator of a node q it means that
every non-trivial path that starts at q has to visit q′ before it visits one of the
nodes in Y . We write pdomy(q) whenever Y = {y} is a singleton and we have
the following facts

Fact 1. For a set of nodes Y ⊆ Q and for a node q we have that

pdomY (q) =
⋂

y∈Y

pdomy(q)

Fact 2. The post-dominator set for a singleton set {y} can be computed by find-
ing the greatest solution of the following data-flow equations:

pdomy(q) = Q if Π(q,{y}) = ∅
pdomy(q) = {y} if y ∈ succ(q)
pdomy(q) =

⋂
q′∈succ(q)

({q′} ∪ pdomy(q′)
)
otherwise

For a node q, we are interested in finding the Y post-dominator “closest” to it.

Definition 4. For a node q and a set of nodes Y we definite the set

ipdomY (q) = {q′ ∈ pdomY (q) | pdomY (q) = {q′}∨
q′ 
∈ Y ∧ (∀q′′ ∈ pdomY (q) : q′′ 
= q′ ⇒

q′′ ∈ pdomY (q′))}
and a node q′ ∈ ipdomY (q) will be called an immediate Y post-dominator of q.
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The following fact gives us a unique immediate Y post-dominator for the nodes
that can reach Y (Π(q,Y ) 
= ∅). Intuitively this unique immediate Y post-
dominator of a node q is the node that is the “closest” Y post-dominator of
q, meaning that in any non-trivial path starting from q and ending in Y , the Y
immediate post-dominator of q will always be visited first before any other Y
post-dominator of q.

Fact 3. For a set of nodes Y and a node q, whenever Π(q,Y ) 
= ∅ and
pdomY (q) 
= ∅ then there exists node q′ such that ipdomY (q) = {q′}.
For simplicity, whenever a node q′ is the unique immediate Y post-dominator of
a node q and Π(q,Y ) 
= ∅ we shall write ipdY (q) for q′ and we will say that the
unique immediate Y post-dominator of q is defined. For any other case where
q can either not reach Y (Π(q,Y ) = ∅) or pdomY (q) = ∅ we will say that the
unique immediate post-dominator of q is not defined.

Example 4. For the timed automaton SG and for the set of observable nodes
Y = {2, 3, 4}, we have that pdomY (q) = ipdY (q) = {2} for q being 1, 3 and 4
while pdomY (2) = ipdY (2) = ∅. Therefore for the nodes 1,3 and 4 their unique
immediate Y post-dominator is defined and it is the node 2, while the unique
immediate Y post-dominator of the node 2 is not defined.

5 Algorithm for Secure Information Flow

We develop an algorithm (Fig. 2) that traverses the graph of a timed automa-
ton TA = (Q,E, I, q◦) and imposes information flow constraints on the program
variables and clocks of the automaton with respect to a security policy L and
a Y post-dominator relation, where Y = Ys ∪ Yw is the set of observable nodes.
Before we explain the algorithm we start by defining some auxiliary operators.

Auxiliary Operators. For an edge (qs, g → x :=a: r, qt) ∈ E we define the auxil-
iary operator ass(.), expr(.) and con(.) as

ass((qs, g → x :=a: r, qt)) = {x, r}
expr((qs, g → x :=a: r, qt)) = {a}
con((qs, g → x :=a: r, qt)) = I(qs) ∧ g ∧ I(qt)[a/x][0/r]

where ass(.) gives the modified variables and clocks of the assignment performed
by TA using that edge, expr(.) gives the expressions used for the assignment,
and the operator con(.) returns the condition that has to hold in order for the
assignment to be performed. We finally lift the ass(.) operator to finite paths and
thus for a finite path π = q0act1q1...qn−1actnqn we define the auxiliary operators
Ass(.) as

Ass(q0act1q1...qn−1actnqn) =
⋃n

i=1 ass((qi−1, acti, qi))

We write
Q�w = {q | ∀π = q..q′ ∈ Π(q,Y ) : q′ ∈ Yw}
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Fig. 2. Security of TA = (Q,E, I, q◦) with respect to L and the Y post-dominator
relation

for the set of nodes, where whenever the automaton performs a successful observ-
able step starting from a node q ∈ Q�w and ending in an observable node q′ ∈ Y ,
then it is always the case that q′ is weakly observable.

Condition C1. We start by looking at the nodes in Q�w. According to our
security notion (Definition 2), for two low equivalent configurations at a node
q, whenever the first one performs a successful (or unsuccessful) observable step
that ends at a weakly observable node, then also the second should be able
to perform an observable step that ends at a weakly observable node (or an
unsuccessful one resp.). For that, the condition C1 (a) first requires that the
conditions of the outgoing edges in Eq where Eq = {(q, act, q′) | (q, act, q′) ∈ E}
contain only low variables. However, this is not enough.

Fig. 3. Example automata
(a) (top) and (b) (bottom)

To explain the rest of the constraints imposed by
the condition C1 (a) consider the automaton (a) of
Fig. 3, where the node 3 is weakly observable, h and
l is a high and a low variable respectively, and all the
invariants of the nodes are set to tt. This automaton
is not secure with respect to Definition 2. To see this,
we have ([l 	→ 0, h 	→ 1], δ) ≡ ([l 	→ 0, h 	→ 0], δ)
(for some clock state δ) but the pair ([l 	→ 0, h 	→
1], δ) always produces ⊥ since we will have an infinite
loop at the node 2, while ([l 	→ 0, h 	→ 0], δ) always
terminates at the node 3. That is because even if both
edges of the node 2 contain only the low variable l
in their condition, the assignment l:=h bypasses the
policy L and thus, right after it, the two pairs stop
being low equivalent.

As another example, consider the automaton (b)
of Fig. 3. Here the node 4 is weakly observable, h is
a high variable, l, l′ are two low variables and all
the invariants of nodes are set to tt again. We have
([l 	→ 0, l′ 	→ 0, h 	→ 1], δ) ≡ ([l 	→ 0, l′ 	→ 0, h 	→ 0], δ) (for some clock state δ)
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and again the first pair produces ⊥ by looping at the node 3, whereas the second
pair always terminates. Here even if the variable l is not used in any condition
after the assignment l:=h, it influences the value of l′ and consequently, since l′

appears on the condition of the edges of the node 3 we get this behavior.
To cater for such cases, for an edge e = (qs, g → x :=a: r, qt) we first define

the predicate
Ae =

∧

i

fv(ai) � {xi}

that takes care of the explicit flows arising from the assignments. We then define

Π(e,Y ) = {π | e = (q0, act1, q1) : π = q0act1q1...qn−1actnqn ∈ Π(q0,Y )}

to be set of paths (the ones defined in Sect. 4) that start with e and end in Y , and
all the intermediate nodes do not belong to Y . Finally, whenever an assignment
bypasses the security policy L due to an explicit flow and thus Ae is false, we
then impose the predicate

Ψe = ∀π ∈ Π(e,Y ) : ∀q′ ∈ π(1) :
q′ 
∈ Y ⇒ (∀e′ ∈ Eq′ : (ass(e) \ R) ∩ (fv(con(e′)) ∪ fv(expr(e′))) = ∅)

The predicate Ψe demands that the assigned program variables of e =
(qs, act, qt) cannot be used in any expression or condition that appears in a
path that starts with qt and goes to an observable node. Note here that even if
Ψe quantifies over a possibly infinite set of paths (Π(e,Y )), it can be computed in
finite time by only looking at the paths where each cycle occurs at most once.

We will now look at the nodes where the automaton may perform a success-
ful observable step that ends in a strongly observable node. Those nodes are
described by the set Qc

�w = Q \ Q�w, that is the complement of Q�w.

Condition C2. For a node q in Qc
�w, whose immediate Y post-dominator is

defined, condition C2 (a) takes care of the explicit and the implicit flows gener-
ated by the assignment and the control dependencies respectively, arising from
the edges of q. Note here that we do not propagate the implicit flows any further
after ipdY (q). This is because ipdY (q) is the point where all the branches of q are
joining and any further computation is not control-dependent on them anymore.
Those constraints are along the line of Denning’s approach [10] of the so-called
block-labels.

1 2

h > 0 → skip:

l:=1

Fig. 4. Example
automaton (c)

To understand condition C2 (b) consider the automaton
(c) of Fig. 4, where h and l is a high and a low variable respec-
tively, the node 2 is strongly observable, and both nodes 1
and 2 have their invariant set to tt. Next take ([l 	→ 0, h 	→
1], δ) ≡ ([l 	→ 0, h 	→ 0], δ) (for some clock state δ) and
note that the first pair can result in a configuration in 2 with
([l 	→ 0, h 	→ 1], δ) (taking the top branch) while the second
pair always ends in 2 with [l 	→ 1, h 	→ 0]. Therefore this automaton is not secure
with respect to our Definition 2.
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To take care of such behaviours we write sat(· · · ) to express the satisfiability
of the · · · formula. Whenever there are two branches (induced by the edges e and
e′ both leaving q) that are not mutually exclusive (that is, where sat(con(e) ∧
con(e′)) we make sure to record the information flow arising from bypassing the
branch that would otherwise perform an assignment. This is essential for dealing
with non-determinism.

Fact 4. For a timed automaton TA = (Q,E, I, q◦), we have that if

〈q, σ, δ〉 D=⇒{q′} 〈q′, σ′, δ′〉
then

{x | σ(x) 
= σ′(x)} ∪ {r | δ′(r) 
= δ(r) + D} ⊆
⋃

π∈Π(e,{q′})

Ass(π)

where e corresponds to the initial edge of this observable step.

Condition C2 (c) takes care of cases where a timing/termination side channel
[2] could have occurred.

1 2

h > 0 ∧ t > 30 → skip:

h ≤ 0 → skip:

Fig. 5. Example
automaton (d)

As an example of such a case consider the automaton (d)
of Fig. 5, where h and t is a high program variable and a low
clock respectively, node 2 is strongly observable and both 1
and 2 have their invariant set to tt. Next, for ([h 	→ 1], [t 	→
0]) ≡ ([h 	→ 0], [t 	→ 0]) we have that the first pair always
delays at least 30 units and ends in 2 with a clock state that
has t > 30, whereas the second pair can go to 2, taking the
lower branch immediately without any delay, and thus the resulting pairs will
not be low equivalent. To take care of such behaviours, we stipulate a predicate
Φq such that

∃t1, t2 ∈ ⋃
(σ,δ):[[I(q)]](σ,δ)[[TA : q 	→ ipdY (q)]](σ, δ) : Δ(t1) 
= Δ(t2)

⇓
Φq

Using this predicate we demand that whenever the TA does not have a “constant”
termination behavior from the node q to the node ipdY (q), then variables that
influence the termination behavior should not be of high security level.

Condition C3. We are now left with the nodes in Qc
�w, whose immediate Y

post-dominator is not defined. Since for such a node q, we cannot find a point
(the unique immediate Y post-dominator) where the control dependencies from
the branches of q end, condition C3 (a) requires that the conditions of the edges
of q should not be dependent on high security variables.

Condition C3 (b) caters for the explicit flows, of an edge e using the predicate
Ae. However we are allowed to dispense Ae, whenever further computations after
taking the edge e may lead only to weakly observable nodes and Ψe holds. To
express this for an edge e = (qs, g → x :=a: r, qt) we write

e � w

whenever qt ∈ Yw or qt ∈ Q�w.
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Example 5. Consider now the automaton SG of Example 1, and the Y post-
dominator relation of Example 4.

We have that the nodes 1, 3 and 4 are in Qc
�w and also that their immediate

unique Y post-dominator is defined. Condition C2 (a) and C2 (b) impose the
following constraints

{T, t, r} � {ed, ei, ci, s, t, r}, {ed, ei} � {ei}, {ei} � {ci}, {vi} � {pi} (i = 1, 2)
{T} � {p1, p2, a, f}, {z} � {a}, {} � {s, f, a}

Finally, for the node 1, because Φ1 (C2 (c)) all the clocks need to be of low
security level.

Next, the node 2 is in Qc
�w and since its unique immediate Y post-dominator

is not defined, condition C3 (b) impose the constraints

{p1, p2, c1, c2} � {b}, {a} � {x}, {} � {e1, e2, f}

and condition C3 (a) imposes that T, s and f should be of low security level.
Notice here that since for the edge e = (2, s = 1 → y1, y2:=c1, c2: , 3) that releases
the sensitive information of C we have that e � w, we are not imposing the
constraint {ci} � {yi} (i = (1, 2)). Those constraints are easy to verify for the
security assignment of Example 2.

Now if we were to change the node 3 from being a weakly observable to a
strongly observable node, the automaton SG will not be secure with respect to
Definition 2. In that case our algorithm will reject it, since for the edge e we
would have that e 
� w and the predicate Ae would have resulted in false.

Finally, we shall write secY,L(TA) whenever the constraints arising from our
algorithm (Fig. 2) are satisfied and thus we have the following lemmas

Lemma 1. For a timed automaton TA = (Q,E, I, q◦), if secY,L(TA) then for
(σ1, δ1), (σ2, δ2) such that [[I(q)]](σ1, δ1) and [[I(q)]](σ2, δ2) and (σ1, δ1) ≡ (σ2, δ2)
we have that

if 〈q, σ1, δ1〉 D1=⇒Y 〈q′, σ′
1, δ

′
1〉 then ∃(σ′

2, δ
′
2),D2 : 〈q, σ2, δ2〉 D2=⇒Y 〈q′, σ′

2, δ
′
2〉∧

(q′ ∈ Yw ∨ (σ′
1, δ

′
1) ≡ (σ′

2, δ
′
2))

Lemma 2. For a timed automaton TA = (Q,E, I, q◦), if secY,L(TA) then for
(σ1, δ1), (σ2, δ2) such that [[I(q)]](σ1, δ1) and [[I(q)]](σ2, δ2) and (σ1, δ1) ≡ (σ2, δ2)
we have that

if 〈q, σ1, δ1〉 ∞=⇒Y ⊥ then also 〈q, σ2, δ2〉 ∞=⇒Y ⊥

The following theorem concludes the two lemmas from above to establish
the soundness of our algorithm with respect to the notion of security of
Definition 2.

Theorem 1. For a timed automaton TA = (Q,E, I, q◦), if secY,L(TA) then TA
satisfies the information security policy L.
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6 Conclusion

We have shown how to successfully enforce Information Flow Control policies
on timed automata. This has facilitated developing an algorithm that prevents
unnecessary label creep and that deals with non-determinism, non-termination,
and continuous real-time. The algorithm has been proved sound by means of a
bisimulation result, that allows controlled information leakage.

We are exploring how to automate the analysis and in particular how to
implement (a sound approximation of) the Φq predicate. There has been a lot of
research [3,4] done for determining the maximum (maxt) or minimum (mint)
execution time that an automaton needs to move from a location qs to a location
qt. One possibility is to make use of this work [3,4] and thus the predicate Φq

would amount to checking if the execution time between the two nodes of interest
(q and ipdY (q)) is constant (e.g. maxt = mint).

A longer-term goal is to allow policies to simultaneously deal with safety and
security properties of cyberphysical systems.

Appendix

Proposition 1

Assume that all the traces in [[TA : qs 	→ qt]](σ, δ) are successful and we want to
show that there exists t ∈ [[TA : qs 	→ qt]](σ, δ) with a maximal length m.

We use results from model-checking for timed automata [15]. As in [15] we
first transform our automaton to an equivalent diagonal-free automaton, that
is an automaton where clocks appearing in its guards and invariants can be
compared only to integers (e.g. r1 − r2 ≤ 5 is not allowed). We then define the
region graph RG(TA) of TA, that is a finite graph where nodes of the region graph
are of the form (q, reg) where reg is a clock region, that is an equivalence class
defined on the clock states (for details we refer to [15]). Configurations of RG(TA)
are of the form 〈(q, reg), σ〉 and we have that 〈(q, reg), σ〉 =⇒ 〈(q′, reg′), σ′〉 if
there are δ ∈ reg, δ′ ∈ reg′, d ≥ 0, σ′ such that the automaton TA performs the
transition 〈q, σ, δ〉 d−→ 〈q′, σ′, δ′〉. Lemma 1 of [15] then states that each abstract
run (finite or infinite) in the region graph RG(TA) can be instantiated by a run
(finite or infinite resp.) in TA and vice verca. This is based on the property of
the region graph of being pre-stable that is that 〈(q, reg), σ〉 =⇒ 〈(q′, reg′), σ′〉 if
∀δ ∈ reg there are δ′ ∈ reg′, d ≥ 0, σ′ such that 〈q, σ, δ〉 d−→ 〈q′, σ′, δ′〉. Therefore
the computation tree T of 〈q, σ, δ〉 in TA has the same depth as the computation
tree T ′ of 〈(q, [δ]), σ〉 in RG(TA) where [δ] is the region that contains all the
clock states that are equivalent to δ. We then recall König’s infinity lemma as it
applies to trees – that every tree who has infinitely-many vertices but is locally
finite (each vertex has finitely-many successor vertices), has at least one infinite
path [11]. It is immediate that T ′ is a locally finite tree. Now if T ′ is infinite
then by König’s infinity lemma we have that T ′ has an infinite path and thus
using Lemma 1 of [15] we have also that T has an infinite path that corresponds
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to a trace 〈q, σ, δ〉 in TA which contradicts our assumptions that all the traces
of 〈q, σ, δ〉 are finite. Therefore we can conclude that T ′ has a finite depth and
therefore also T and that they are equal to the number m.

Proof of Fact 2

Proof. The first equation is straightforward by the definition of the post-
dominator relation. For the second one, that is when y is a successor (an immedi-
ate one) of q then the only post-dominators of q is the node y, since there exists
a non-trivial path π = qacty ∈ Π(q,y) (for some action act) such that the trivial
path π(1) = y contains only y, and therefore for any other path π′ ∈ Π(q,y)

in which a node q′ different from y is contained in π′(1), q′ can not be a post-
dominator of q since it is not contained in the trivial path π(1). To understand
the last equation notice that if a node q′′ post-dominates all of the successors of
q or it is a successor of q that post-dominates all the other successors of q then
all the non-trivial paths from q to y will always visit q′′ and thus q′′ ∈ pdomy(q);
similarly if q′′ 
∈ ⋂

q′∈succ(q)

({q′} ∪ pdomy(q′)
)

then there exists a successor of
q, q′ 
= q′′ such that q′′ does not post-dominate q′ and thus we can find a non-
trivial path π ∈ Π(q,Y ) that starts with qactq′ (for some action act) and does
not contain q′′ and thus q′′ is not a post-dominator of q.

Proof of Fact 3

Proof. To prove that ipdomY (q) is singleton we consider two cases. In the case
that pdomY (q) = {q′} then the proof is trivial.

Assume now that pdomY (q) = {q1, ..., qn} (n ≥ 2) and take an arbitrary
non-trivial path π ∈ Π(q,Y ) and find the closest to q (the one that appears first
in the path) Y post-dominator qj ∈ pdomY (q) in that path. Next note that
qj 
∈ Y since if qj ∈ Y , we could shorten that path to the point that we meet qj

for the first time and thus we have found a non trivial path π′ ∈ Π(q,Y ) (since
qj ∈ Y ) in which ∀i 
= j : qi 
∈ π′(1) and thus ∀i 
= j : qi 
∈ pdomY (q) which
contradicts our assumption. Next to prove that ∀i 
= j : qi ∈ pdomY (qj) assume
that this is not the case and thus we can find ql 
= qj : ql 
∈ pdomY (qj). Therefore
we can find a path π′′ ∈ Π(qj ,Y ) such that ql 
∈ π′′(1), but this means that if
we concatenate the paths π′ and π′′ we have a path in Π(q,Y ) in which ql does
not belong to it and thus ql does not belong in its 1-suffix either and therefore
ql 
∈ pdomY (q), which again contradicts our assumption.

Finally to prove that ipdomY (q) is singleton assume that there exists another
Y post-dominator of q, ql such that ql 
= qj and ql 
∈ Y and qj ∈ pdom(ql).
Then this means that qj belongs in all the 1-suffixes of the paths in the set
Π(ql,Y ). Therefore take π = ql...qj ...y ∈ Π(ql,Y ) (for some y ∈ Y ) such that π
contains no cycles (e.g. each node occurs exactly once in the path) but then there
exists a path π′ = qj ...y (the suffix of the path π) such that ql 
∈ π′ and thus
ql 
∈ pdomY (qj) which contradicts our assumption. Therefore we have proved
that qj is the unique immediate Y post-dominator of q.
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Proof of Lemma 1

Proof. Assume that 〈q, σ1, δ1〉 D1=⇒Y 〈q′, σ′
1, δ

′
1〉 because of the trace

〈q, σ1, δ1〉 = 〈q, σ01, δ01〉 d1−→ ...
dk−→ 〈qk1, σk1, δk1〉 = 〈q′, σ′

1, δ
′
1〉 (∗)

where k > 0 and ∀i ∈ {1, .., k − 1} : qi1 
∈ Y and D1 =
∑k

j=1 dj and the first
transition of the trace has happened because of the edge e ∈ Eq.

We shall consider two main cases. The one where q is in Q�w and one where
it is not.

Main Case 1: q is in Q�w. In that case q′ ∈ Yw and thus we only have to prove
that (σ2, δ2) can reach q′. We start by proving a small fact.

First for a set of variables and clocks Z, and two pairs (σ, δ), (σ′, δ′) we write

(σ, δ) ≡Z (σ′, δ′) iff ∀x : (x ∈ Z ∧ L(x) = L) ⇒ σ(x) = σ′(x) ∧
∀r : (r ∈ Z ∧ L(r) = L) ⇒ δ(r) = δ′(r)

Next, for a finite path π = q0act1q1...qn−1actnqn we define the auxiliary
operator Z(.) as Z(π) =

⋃n−1
i=0 (

⋃
e′∈Eqi

fv(con(e′)) ∪ fv(expr(e′))).
Now we will prove that for a path π = q′

01act′1q
′
11...q

′
(n−1)1act′nq′

n ∈ Π(e,Y ), if

〈q, σ1, δ1〉 = 〈q′
01, σ

′
01, δ

′
01〉

d′
1−→ ...

d′
l−→ 〈q′

l1, σ
′
l1, δ

′
l1〉 (l ≤ n) (1)

using the edges (q′
01, act′1, q

′
11), ..., (q

′
(l−1)1, act′l, q

′
l) and (σ1, δ1) ≡Z(π) (σ2, δ2)

then ∃(σ′
l2, δ

′
l2):

〈q, σ2, δ2〉 = 〈q′
01, σ

′
02, δ

′
02〉

d′
1−→ ...

d′
l−→ 〈q′

l1, σ
′
l2, δ

′
l2〉 (a)

and
l < n ⇒ (σ′

l1, δ
′
l1) ≡Z(π(l)) (σ′

l2, δ
′
l2) (b)

where recall that π(l) is the l−suffix of π. The proof proceeds by induction on l.

Base Case l = 1. To prove (a), let e = (q′
01, g → x :=a: r, q′

11) and note that
because (σ1, δ1) ≡Z(π) (σ2, δ2) and con(e) contains only low variables (since q′

01 =
q ∈ Q�w and C1 (a)) it is immediate that there exists σ′

12 = σ2[x 	→ [[a ]]σ2],
δ′
12 = (δ2+d′

1)[r 	→ 0] such that [[I(q′
01)]](σ2, δ2+d′

1) = tt and [[I(q′
11)]](σ

′
12, δ

′
12) =

tt, and 〈q′
01, σ2, δ2〉 d′

1−→ 〈q′
11, σ

′
12, δ

′
12〉.

Now if l < n, to prove (b) we consider two cases. One where Ae is true and one
where it is false. If Ae is true we note that (σ′

11, δ
′
11) ≡Z(π) (σ′

12, δ
′
12), and then

it is immediate that also (σ′
11, δ

′
11) ≡Z(π(1)) (σ′

12, δ
′
12) as required. Otherwise,

if Ae is false then Ψe is true and thus (σ′
11, δ

′
11) ≡Z(π(1)) (σ′

12, δ
′
12), because

the two pairs are still low equivalent for the variables that are not used in the
assignment of e, while the ones used in the assignment of e they do not appear
in any condition (or expression) of an edge of a node q that belongs in π(1).

Inductive Case l = l0 + 1 (l0 > 0). Because of the trace in (1) we have that t1 =

〈q′
01, σ

′
01, δ

′
01〉

d′
1−→ 〈q′

11, σ
′
11, δ

′
11〉 and t2 = 〈q′

11, σ
′
11, δ

′
11〉

d′
2−→ ...

d′
l−→ 〈q′

l1, σ
′
l1, δ

′
l1〉.
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Using our induction hypothesis on t1 we have that there exists (σ′
12, δ

′
12) such

that 〈q′
01, σ2, δ2〉 d′

1−→ 〈q′
11, σ

′
12, δ

′
12〉 and (σ′

11, δ
′
11) ≡Z(π(1)) (σ′

12, δ
′
12) and the

proof is completed using our induction hypothesis on t2. The proof of Main
Case 1 follows by the result (a) of the fact from above, taking the path π
that corresponds to the trace (∗) and using that (σ1, δ1) ≡Z(π) (σ2, δ2) (since
(σ1, δ1) ≡ (σ2, δ2) and all the nodes in π except qk1 have edges whose conditions
contain only low variables). Therefore, since (σ1, δ1) creates the trace (*) we also
have that ∃(σ′

2, δ
′
2) :

〈q, σ2, δ2〉 = 〈q01, σ02, δ02〉 d1−→ ...
dk−→ 〈qk1, σk2, δk2〉 = 〈q′, σ′

2, δ
′
2〉

and thus for D2 = d1 + ... + dk we have that

〈q, σ2, δ2〉 D2=⇒Y 〈q′, σ′
2, δ

′
2〉

where q′ ∈ Yw and this completes the proof for this case.

Main Case 2: When q is not in Q�w. The proof proceeds by induction on the
length k of the trace (∗).

Base Case (k = 1). We have that

〈q, σ1, δ1〉 d1−→ 〈q′, σ′
1, δ

′
1〉

and let e = (q, g → x :=a: r, q′), then it is immediate that D1 = d1, σ′
1 = σ1[x 	→

[[a ]]σ1], δ′
1 = (δ1 + d1)[r 	→ 0] and [[I(q)]](σ1, δ1 + d1) = tt and [[I(q′)]](σ′

1, δ
′
1) = tt.

We shall consider two subcases one where the unique immediate Y post-
dominator of q is defined and one where it is not.

Subcase 1: When the unique immediate Y post-dominator ipdY (q) is defined. It
has to be the case then that q′ = ipdY (q) since q′ ∈ Y and in particular, we have
that q′ ∈ Ys. We will proceed by considering two other subcases of the Subcase
1, one where the condition Φq is true and one which it is false.

Subcase 1(a): When Φq is true. Then it is the case that all the variables of the
condition con(e) are low and thus it is immediate that there exists d2 = d1 and
σ′
2 = σ2[x 	→ [[a ]]σ2], δ′

2 = (δ2 + d2)[r 	→ 0] and [[I(q)]](σ2, δ2 + d2) = tt and
[[I(q′)]](σ′

2, δ
′
2) = tt such that 〈q, σ2, δ2〉 d2−→ 〈q′, σ′

2, δ
′
2〉 which implies that for

D2 = d2

〈q, σ2, δ2〉 D2=⇒Y 〈q′, σ′
2, δ

′
2〉

Finally, because secY,L(TA), condition C2 (a) gives us that Ae is true, and thus
all the explicit flows arising from the assignments x :=a are permissible and
thus (σ′

1, δ
′
1) ≡ (σ′

2, δ
′
2) as required.

Subcase 1(b): When Φq is false. If it is the case that all the variables in the
condition con(e) are low then the proof proceeds as in Subcase 1(a).
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For the case now that at least one variable in the condition con(e) is high then
because secY,L(TA), condition C2 (a) and Fact 4 ensure that ∀x : L(x) = L ⇒
σ′
1(x) = σ1(x) and ∀r : L(r) = L ⇒ δ′

1(r) = δ1(r) + d1. Since Φq is false (σ1, δ1)
and (σ2, δ2) have the same termination behaviour and thus there exists d2 = d1

and (σ′
2, δ

′
2) such that 〈q, σ2, δ2〉 d2−→ 〈q′, σ′

2, δ
′
2〉 and therefore for D2 = d2 we

have that
〈q, σ2, δ2〉 D2=⇒Y 〈q′, σ′

2, δ
′
2〉

We just showed that (σ′
1, δ

′
1) ≡ (σ1, δ1+d1) ≡ (σ2, δ2+d2) and we will now show

that (σ′
2, δ

′
2) ≡ (σ2, δ2 + d2).

Now if
〈q, σ2, δ2〉 d2−→ 〈q′, σ′

2, δ
′
2〉

using the edge e or an edge e′ 
= e such that con(e′) contains a high variable, since
secY,L(TA), condition C2 (a) and Fact 4 gives that ∀x : L(x) = L ⇒ σ′

2(x) =
σ2(x) and ∀r : L(r) = L ⇒ δ′

2(r) = δ2(r)+d2 and therefore (σ′
2, δ

′
2) ≡ (σ2, δ2+d2)

as required. If now con(e′) contains only low variables, (σ1, δ1) is a witness of
sat(con(e) ∧ con(e′)) and therefore because secY,L(TA), using the condition C2
(b) and Fact 4 we work as before and we obtain that (σ′

2, δ
′
2) ≡ (σ2, δ2 + d2).

Subcase 2: When the unique immediate Y post-dominator of q is not defined. In
that case, all the variables in con(e) are low. If q′ is in Yw we have that e � w
and we proceed as in Main Case 1. Otherwise, we proceed as in Subcase 1(a).

This completes the case for k = 1.

Inductive Case (k = k0 + 1). We have that
〈q, σ1, δ1〉 = 〈q, σ01, δ01〉 d1−→ ...

dk−→ 〈qk1, σk1, δk1〉 = 〈q′, σ′
1, δ

′
1〉

and recall that the first transition happened because of the edge e and that q is
not in Q�w.

We shall consider two cases again, one where the unique immediate Y post-
dominator of q is defined and one where it is not.

Subcase 1: When the unique immediate-post dominator ipdY (q) is defined. We
will proceed by considering two subcases of Subcase 1, one where Φq is true and
one where Φq is false.

Subcase 1(a): When Φq is true. Since Φq is true we have that all the variables in
con(e) are low and thus ∃d′

1 = d1 and (σ12, δ12) ≡ (σ11, δ11) (this is ensured by
our assumptions that secY,L(TA) and the predicate Ae of the condition C2 (a)
that takes care of the explicit flows arising from the assignment in the edge e)
such that

〈q, σ2, δ2〉 = 〈q01, σ02, δ02〉 d′
1−→ 〈q11, σ12, δ12〉 (1)

Since q is not in Q�w, note that it is also the case that q11 is not in Q�w and
thus using that (σ12, δ12) ≡ (σ11, δ11) and our induction hypothesis on the trace

〈q11, σ11, δ11〉 d2−→ ...
dk−→ 〈qk1, σk1, δk1〉
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we have that ∃(σ′
2, δ

′
2) and D′

2 such that

〈q11, σ12, δ12〉 D′
2=⇒Y 〈q′, σ′

2, δ
′
2〉 (2)

and therefore by (1) and (2) and for D2 = d′
1 + D′

2 we have that

〈q, σ2, δ2〉 D2=⇒Y 〈q′, σ′
2, δ

′
2〉

and (σ′
1, δ

′
1) ≡ (σ′

2, δ
′
2) ∨ q′ ∈ Yw as required.

Subcase 1(b): When Φq is false. In the case that all the variables in con(e) are
low then the proof proceeds as in Subcase 1(a).

Assume now that at least one variable in con(e) is high. Since ipdY (q) is
defined then there exists j ∈ {1, ..., k} such that qj1 = ipdY (q) and ∀i ∈ {1, .., j−
1} : qi1 
= ipdY (q). Therefore we have that

〈q01, σ01, δ01〉 d1−→ ...
dj−→ 〈qj1, σj1, δj1〉 dj+1−→ ...

dk−→ 〈qk1, σk1, δk1〉

Next, using that secY,L(TA), condition C2 (a) and Fact 4 gives us that ∀x :
L(x) = L ⇒ σj1(x) = σ01(x) and ∀r : L(r) = L ⇒ δj1(r) = δ01(r)+d1 + ...+dj .
Since Φq is false, (σ1, δ1) and (σ2, δ2) have the same termination behaviour and
thus there exists trace t′ ∈ [[TA : q 	→ ipdY (q)]](σ2, δ2) and d′

1, ..., d
′
l such that

d1 + ... + dj = d′
1 + ... + d′

l and (σl2, δl2) such that t′ is

〈q, σ2, δ2〉 = 〈q, σ02, δ02〉 d′
1−→ ...

d′
l−→ 〈ql2, σl2, δl2〉 (3)

and ql2 = ipdY (q).
It is immediate that ∀x : L(x) = L ⇒ σl2(x) = σ02(x) and ∀r : L(r) = L ⇒

δl2(r) = δ02(r)+d′
1+...+d′

l. To see how we obtain this result, we have that if t′ has
started using the edge e or an edge e′ 
= e, where con(e′) contains at least one high
variable, then this result follows by our assumptions that secY,L(TA), condition
C2 (a) and Fact 4. Now if the t′ has started using an edge e′ 
= e and con(e′)
contains only low variables then (σ1, δ1) is a witness of sat(con(e) ∧ con(e′)) and
the result follows by our assumptions that secY,L(TA), condition C2 (b) and
Fact 4. Therefore in any case (σj1, δj1) ≡ (σl2, δl2).

Now if ipdY (q) = qk1 the proof has been completed. Otherwise we have that
ipdY (q) is not in Q�w and the proof follows by an induction on the trace

〈qj1, σj1, δj1〉 dj−→ ...
dk−→ 〈qk1, σk1, δk1〉

using that (σj1, δj1) ≡ (σl2, δl2)

Subcase 2: When the unique immediate Y post-dominator of q is not defined. In
that case, all the variables in con(e) are low. Therefore, if e � w we proceed
similar to Main Case 1, otherwise we proceed as in Subcase 1(a).

This completes our proof.
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Proof of Lemma 2

Proof. Assume that 〈q, σ1, δ1〉 ∞=⇒Y ⊥ and thus either there exists a finite unsuc-
cessful trace t

〈q, σ1, δ1〉 = 〈q01, σ01, δ01〉 d1−→ ...
dn−→ 〈qn1, σn1, δn1〉 (n ≥ 0)

such that ∀i ∈ {1, ..., n} : qi1 
∈ Y and 〈qn1, σn1, δn1〉 is stuck, or there exists an
infinite unsuccessful trace t

〈q, σ1, δ1〉 = 〈q01, σ01, δ01〉 d1−→ ...
dn−→ 〈qn1, σn1, δn1〉 dn+1−→ ...

such that ∀i > 0 : qi1 
∈ Y .
Assume now that all the traces from 〈q, σ2, δ2〉 to a node q′ ∈ Y are successful,

which means that 〈q, σ2, δ2〉 
 ∞=⇒Y ⊥ and thus by Proposition 1 the set

{k | 〈q′
0, σ

′
0, δ

′
0〉

d′
1−→ ...

d′
k−→ 〈q′

k, σ′
k, δ′

k〉 : 〈q′
0, σ

′
0, δ

′
0〉 = 〈q, σ2, δ2〉 ∧ q′

k ∈ Y ∧
∀i ∈ {1, ..., k − 1} : q′

i 
∈ Y }
has a maximum m.

The proof proceeds by contradiction where we show that we can either con-
struct an unsuccessful trace of 〈q, σ2, δ2〉 or a “long” trace t′

〈q, σ2, δ2〉 = 〈q02, σ02, δ02〉 d′
1−→ ...

d′
l−→ 〈ql2, σl2, δl2〉 (l > 0)

where ∀i ∈ {1, ..., l} : qi2 
∈ Y and m ≤ l and that would mean that this trace
will either terminate later (at a node in Y ) and thus it will have a length greater
than m, or it will result into an unsuccessful trace.

We consider two main cases one where q is in Q�w and one where it isn’t.

Main Case 1: When q is in Q�w. If the trace t of 〈q, σ1, δ1〉 visits only nodes that
can reach Y (∀i : Πqi1 
= ∅) then we proceed similar to the proof of Main Case 1
of Lemma 1, using the result (a) and (b) of the fact proven there. Therefore if t
is infinite we can show that (σ2, δ2) can simulate the first m steps of (σ1, δ1) and
this give us the desired trace t′. Similarly, in case of t being a finite unsuccessful
trace that stops at the node qn1, and 〈qn1, σn1, δn1〉 is a stuck, we can also show
that (σ2, δ2) can reach the node qn1 (using the result (a)) and the resulting
configuration will be stuck (using the result (b)).

Now if the first j > 0 nodes q01...qj1 (visited by t) can reach Y and then for
the node q(j+1)1 we have that Π(q(j+1)1,Y ) = ∅, we can show similarly as before
that (σ2, δ2) can reach the node q(j+1)1 (using the results (a) and (b)), and thus
any further computation will lead to an unsuccessful trace since Π(q(j+1)1,Y ) = ∅.

Finally if t visits only nodes that cannot reach Y (∀i : Πqi1 = ∅) and thus
also q cannot reach Y , the proof is trivial since all the traces of 〈q, σ2, δ2〉 will
be unsuccessful with respect to Y . This completes the proof of Main Case 1.

Main Case 2: When q is not in Q�w. We will now present a finite construction
strategy for the desired trace t′.
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Construction. We start by looking at the configurations 〈q, σ1, δ1〉, 〈q, σ2, δ2〉 the
unsuccessful trace t of (σ1, δ1), and we remember that so far we have created a
trace t′ = 〈q, σ2, δ2〉 of length l = 0. We proceed according to the following cases:

Case 1: When the unique immediate Y post-dominator ipdY (q) of q is defined.
We then consider two subcases, one where Φq is false and one where Φq is true.

Subcase (a): Φq is false. Now if the trace t does not visit ipdY (q), we have that
(σ1, δ1) and (σ2, δ2) have the same termination behaviour (using that Φq is false)
and thus there exists a trace t′ of (σ2, δ2) that never visits ipdY (q). However,
then we would have the case that t′ is an unsuccessful trace with respect to q
and the set Y which contradicts our assumptions.

If the trace t does visit ipdY (q), then it has to be the case that ipdY (q) is
not in Y . Assume now that t starts with an edge e ∈ Eq. If con(e) contains
only low variables then ∃d′

1 = d1 and (σ12, δ12) ≡ (σ11, δ11) (this is ensured by
our assumptions that secY,L(TA) and the predicate Ae of condition C2 (a) that
takes care of the explicit flows arising from the assignment in the edge e) such
that

〈q, σ2, δ2〉 = 〈q02, σ02, δ02〉 d′
1−→ 〈q12, σ12, δ12〉

where q12 = q11. If now m ≤ l +1 then we have our desired trace t′ and we stop.
Otherwise, notice that also q11 is not in Q�w and we repeat the Construction

by looking at the configurations 〈q11, σ11, δ11〉, 〈q11, σ12, δ12〉, the suffix of t that
starts with 〈q11, σ11, δ11〉 and we remember that so far we have created the trace

t′ = 〈q02, σ02, δ02〉 d′
1−→ 〈q12, σ12, δ12〉 (〈q, σ2, δ2〉 = 〈q02, σ02, δ02〉)

that has length equal to l+1.
Now if con(e) contains at least one high variable then we look at the first

occurrence of ipdY (q) in t and let that to be the configuration 〈qh1, σh1, δh1〉
for some h > 0. Therefore, since secY,L(TA), using the condition C2 (a) and
Fact 4 we have that ∀x : L(x) = L ⇒ σh1(x) = σ01(x) and ∀r : L(r) = L ⇒
δh1(r) = δ01(r)+d1+ ...+dh. Since Φq is false (σ1, δ1) and (σ2, δ2) have the same
termination behaviour and thus there exists trace t′ ∈ [[TA : q 	→ ipdY (q)]](σ2, δ2)
and d′

1, ..., d
′
j such that d1 + ... + dh = d′

1 + ... + d′
j and (σj2, δj2) such that t′ is

〈q, σ2, δ2〉 = 〈q02, σ02, δ02〉 d′
1−→ ...

d′
j−→ 〈qj2, σj2, δj2〉

where qj2 = ipdY (q).
Now if j + l ≥ m we have constructed the required trace t′.
Otherwise, we have that ∀x : L(x) = L ⇒ σj2(x) = σ02(x) and ∀r : L(r) =

L ⇒ δj2(r) = δ02(r)+d′
1+ ...+d′

j . To see how we obtain this result, we have that
if t′ has started using the edge e or an edge e′ 
= e, where con(e′) contains at least
one high variable, then this result follows by our assumptions that secY,L(TA),
condition C2 (a) and Fact 4. Now if the t′ has started using an edge e′ 
= e and
con(e′) has only low variables then (σ1, δ1) is a witness of sat(con(e) ∧ con(e′))
and the result follows again by our assumptions that secY,L(TA), condition C2
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(b) and Fact 4. Therefore in any case (σh1, δh1) ≡ (σj2, δj2) and thus we repeat
the Construction by looking at the configurations 〈qh1, σh1, δh1〉, 〈qj2, σj2, δj2〉
the suffix of t that starts with 〈qh1, σh1, δh1〉 and we remember that so far we
have created the trace t′

〈q, σ2, δ2〉 = 〈q02, σ02, δ02〉 d′
1−→ ...

d′
j−→ 〈qj2, σj2, δj2〉

of length equal to l + j.

Subcase (b): Φq is true. Then if t starts with the edge e, because secY,L(TA),
con(e) contains only low variables and we proceed as in Subcase (a).

Case 2: When the unique immediate Y post-dominator ipdY (q) of q is not
defined. In this case, if t starts with the edge e, because secY,L(TA) we have
that con(e) contains only low variables. Now if e � w working as in Main Case
1 we can get an unsuccessful trace t′, otherwise we proceed as in Subcase (a).

Proof of Theorem 1

Proof. Let

Z = {(〈q, σ, δ〉, 〈q, σ′, δ′〉) | [[I(q)]](σ, δ) ∧ [[I(q)]](σ′, δ′)}
∪{(⊥,⊥)}

It is immediate by Lemmas 1 and 2 that Z is a Y −bisimulation and that

∀q ∈ {q◦} ∪ Y : ∀(σ, δ), (σ′, δ′) :[[I(q)]](σ, δ) ∧ [[I(q)]](σ′, δ′)
⇓

(〈q, σ, δ〉, 〈q, σ′, δ′〉) ∈ Z

Therefore since ∼Y is the largest Y −bisimulation we have that Z ⊆∼Y and thus
TA satisfies the information security policy L.
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Abstract. Reasoning about information flow in a concurrent setting is
notoriously difficult due in part to timing channels that may leak sensi-
tive information. In this paper, we present a compositional and flexible
type-and-effect system that guarantees non-interference by disallowing
potentially insecure races that can be exploited through internal tim-
ing attacks. In contrast to many previous approaches, which disallow all
races on public variables, we use an explicit scheduler model to give a
more permissive security definition and type system, which allows benign
races on public variables. To achieve compositionality, we use the idea of
resources from separation logic, both to locally specify and reason about
whether accesses may be racy and to bound the security level of data
that may be learned through scheduling.

1 Introduction

Non-interference [15] is an important security property. Informally, a program
satisfies non-interference if its publicly observable (low) outputs are indepen-
dent of its private (high) inputs. In spite of the vast body of research on
non-interference, reasoning about information flow control and enforcing non-
interference for imperative concurrent programs remains a difficult problem. One
of the main problems is prevention of information flows that originate from inter-
action of the scheduler with individual threads, also known as internal timing
leaks.

Example 1. Consider the following program [44]1.

fork(delay(50); l := 1); // Thread 1
fork(if h then skip else delay(100); l := 2); // Thread 2

1 delay(n) is used as an abbreviation for skip; . . . ; skip n times, i.e., it models a com-
putation that takes n reduction steps.

c© The Author(s) 2018
L. Bauer and R. Küsters (Eds.): POST 2018, LNCS 10804, pp. 53–78, 2018.
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In this program, h is a high variable and l is intended to be a low variable.
But the order of the two assignments to l depends on the branch that is picked
by Thread 2. As a result, under many schedulers, the resulting value of l = 1
reveals the value of h being true to a low observer.

It may appear that the problem in the above example is that Thread 2 races
to the low assignment after branching on a secret. The situation is actually worse.
Without explicit assumptions on the scheduling of threads, a mere presence of
a high branching in the pool of concurrently running threads is problematic.

Example 2. Consider the following program, which forks three threads.

fork(delay(50); l := 1); // Thread 1
fork(if h then skip else delay(100)); // Thread 2
fork(l := 2) // Thread 3

In this program, every individual thread is secure, in the sense that it does not
leak information about high variables to a low observer. Additionally, pairwise
parallel composition of any of the threads is secure, too, including a benign race
fork(l := 1); fork(l := 2). Even if we assume that the attacker fully controls
the scheduler, the final value of l will be determined only by the scheduler of his
choice. However, for the parallel execution of all the three threads, if the attacker
can influence the scheduler, it can leak the secret value of h through public l.

In this paper, we present a compositional and flexible type-and-effect system
that supports compositional reasoning about information flow in concurrent pro-
grams, with minimal assumptions on the scheduler. Our type system is based on
ideas from separation logic; in particular, we track ownership of variables. An
assignment to an exclusively-owned low variable is allowed as long as it does not
create a thread-local information flow violation, regardless of the parallel con-
text. Additionally, we introduce a notion of a labeled scheduler resource, which
allows us to distinguish and accept benign races as secure.2 A racy low assign-
ment is allowed as long as the thread’s scheduler resource is low; the latter, in its
turn, prevents parallel composition of the assignment with high threads, avoiding
potential scheduler leaks. This flexibility allows our type system to accept pair-
wise parallel compositions of threads from Example 2, while rightfully rejecting
the composition of all three threads.

Following the idea of ownership transfer from separation logic, our type sys-
tem allows static transfer of resource ownership along synchronization primi-
tives. This enables typing of programs that use synchronization primitives to
avoid races, as illustrated in the following example.

2 One could argue that programs should not have any races on assignments at all; but
in general we will want to allow races on some shareable resources (e.g., I/O) and
that is why we study a setup in which we do try to accommodate benign races to
assignments.
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Example 3. Consider the following modification of Example 2.

fork(delay(50); l := 1; send(c)); // Thread 1
fork(if h then skip else delay(100)); // Thread 2
recv(c); // recover exclusive ownership of variable l
fork(l := 2) // Thread 3

In this program, Thread 1 sends a message on channel c. Since the main
program synchronizes on the c channel (by receiving on channel c), Thread 3 is
not forked until after the assignment l := 1 in Thread 1 has happened. Hence, the
synchronization ensures that there is no race on l and the program is therefore
secure, even in the presence of the high branching in the concurrent Thread 2.

Note that unconstrained transfer of resources creates an additional covert
channel that needs to be controlled. Section 3 describes how our type system
prevents implicit flows via resource transfer.

One might expect that synchronization can also be used to allow races after
high threads are removed from the scheduler. That is, however, problematic, as
illustrated by the following example.

Example 4. Consider the following program.

fork(if h then s1 else s2; send(c)); // Thread 1
recv(c);
fork(l := 1); // Thread 2
fork(l := 2) // Thread 3

The program forks off three threads and uses send(c) and recv(c) on a channel
c to postpone forking of Thread 2 and 3 until after Thread 1 has finished. Here it
is possible for the high thread (Thread 1) to taint the scheduler and thus affect its
choice of scheduling between Threads 2 and 3 after Thread 1 has finished. This
could, e.g., happen if we have an adaptive scheduler and s1 and s2 have different
workloads. Then the scheduler will be adapted differently depending on whether
h is true or false and therefore the final value of l may reveal the value of h.

To remedy this issue, we introduce a special rescheduling operation that
resets the scheduler state, effectively removing all possible taint from past high
threads.

Example 5. Consider the following variation of Example 4:

fork(if h then s1 else s2; send(c)); // Thread 1
recv(c);
reschedule; // reset the scheduler state
fork(l := 1); // Thread 2
fork(l := 2) // Thread 3
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The reschedule operation resets the scheduler state and therefore no informa-
tion about the high variable h is leaked from the high thread and this program
is thus secure.

The above example illustrates that reschedule allows us to remove scheduler
taint from high threads and thus accept programs with benign races as secure
after high threads have finished executing.

Contributions. This paper proposes a new compositional model for enforcing
information flow security in imperative concurrent programs. The key compo-
nents of the model are:

– A fine-grained compositional3 type-and-effect system that prevents internal
timing leaks by tracking when races may occur and whether the scheduler
state could be tainted with confidential information. The type-and-effect sys-
tem allows us to verify programs with benign races as secure.

– A novel programming construct for resetting the scheduler state.
– A proof technique for termination-insensitive notion of security under possible

low nondeterminism.

We emphasize that our model is independent of the choice of scheduler; the
only restriction on the runtime system is that it should implement the resched-
ule operation for resetting the scheduler state. This is a very mild restriction.
Compared to other earlier work that also allows for scheduler independence and
benign low races, our type-and-effect system is, to the best of our knowledge,
much more expressive in the sense that it allows to verify more programs as
secure.

The choice of termination-insensitive security condition as the target condi-
tion is deliberate for we only consider batch-style executions. We believe that
our results can be extended to progress-insensitive security [2] using standard
techniques. Despite that termination-insensitive security conditions leak arbi-
trary information [3], these leaks occur only via unary encoding of the secret
in the trace and are relatively slow, especially when the secret space is large,
compared to fast internal timing channels that we aim to close. We do not
consider termination (or progress)-sensitivity because it is generally difficult to
close all possible termination and crashing channels that may be exploited by
the adversary, including resource exhaustion, without appealing to system-level
mechanisms that also mitigate external timing channels. We discuss this more in
detail in Sect. 5. Finally, note that in this paper we only address leaks through
interactions with the scheduler (i.e., the internal timing leaks). Preventing exter-
nal leaks is an active area of research and is out of scope of the paper.

Outline. The remainder of this paper is organized as follows. In Sect. 2, we
formally define the concurrent language and our security model. In Sect. 3, we

3 We use a standard notion of compositionality for separation-style type systems, see
comments to Theorem 1.
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present the type system for establishing security of concurrent programs. For
reasons of space, an overview of the soundness proof and the detailed proof can
be found in the accompanying appendix. We discuss related work in Sect. 5.
Finally, in Sect. 6, we conclude and discuss future work.

2 Language and Security Model

We begin by formally defining the syntax and operational semantics of a core con-
current imperative language. The syntax is defined by the grammar below and
includes the usual imperative constructs, loops, conditionals and fork. Thread
synchronization is achieved using channels which support a non-blocking send
primitive and a blocking receive. In addition, the syntax also includes our novel
reschedule construct for resetting the scheduler.

v ∈ Val ::= () | n | tt | ff
e ∈ Exp ::= x | v | e1 = e2 | e1 + e2
s ∈ Stm ::= skip | s1; s2 | x := e | if e then s1 else s2 | while e do s

| fork(s) | send(ch) | recv(ch) | reschedule
K ∈ ECtx ::= • | K ; s

Here x and ch range over finite and disjoint sets of variable and channel identi-
fiers, respectively. The sets are denoted by Var and Chan, respectively.

The operational semantics is defined as a small-step reduction relation over
configurations of the form sf , S, T,M, ρ consisting of a scheduling function sf , a
scheduler state S, a thread pool T , a message pool M and a heap ρ. A scheduling
function sf takes a scheduler state, a thread pool, a message pool and a heap as
arguments and returns a new scheduler state and a thread identifier of the next
thread to be scheduled [30,33]. A thread pool T is a partial function from thread
identifiers to sequences of statements, a message pool is a function from channel
names to natural numbers, each representing a number of signals available on the
respective channel, and a heap is a function from variables to values. We model
a thread as a stack of statements, pushing whenever we encounter a branch
and popping upon termination of branches. The semantic domains are defined
formally in Fig. 1.

Fig. 1. Semantic domains.

The reduction relation is split into a local reduction relation that reduces
a given thread and a global reduction relation that picks the next thread to be
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Fig. 2. Global reduction relation.

scheduled. The global reduction relation is defined in terms of the local reduction
relation, written T,M, ρ �

t,a T ′,M ′, ρ′, which reduces the thread t in thread
pool T , emitting action a during the reduction. The global reduction relation
only distinguishes between reschedule actions and non-reschedule actions. To
reduce reschedule actions, the global reduction relation refers to a rescheduling
function Ψ , which computes the next scheduler and scheduler state. The global
reduction relation, written sf , S, T,M, ρ −→Ψ sf ′, S′, T ′,M ′, ρ′, is indexed by a
rescheduling function Ψ , which takes as argument the current scheduling func-
tion, message pool and heap and returns a new scheduling function and scheduler
state. The global reduction relation is defined formally in Fig. 2.

Fig. 3. Local reduction relation.

The local reduction relation is defined over configurations consisting of a
thread pool, a message pool and a heap (Fig. 3). It is defined in terms of a
statement reduction relation, s, h →a s′ that reduces a statement s to s′ and
emits an action a describing the behavior of the statement on the state. We
use evaluation contexts, K, to refer to the primitive statement that appears
in a reducible position inside a larger statement. We use K[s] to denote the
substitution of statement s in evaluation context K. Actions include a no-op
action, ε, a branch action, b(e, s), an assignment action, a(x , v), a fork action,
f(s), send and receive actions, s(ch), r(ch), a wait action for blocking on a receive
w(ch), a reschedule action, rs(t), and a wait action for blocking on a reschedule,
wa. Formally,

a ∈ Act ::= ε | b(e, s) | a(x , v) | f(s) | s(ch) | r(ch) | w(ch) | wa | rs(t)
The behavior of an action a on the state is given by the function [[a]]A defined in
Fig. 4. The function tgen is used to generate a fresh thread identifier for newly
forked threads. It thus satisfies the specification tgen(T ) �∈ dom(T ). We assume
tgen is a fixed global function, but it is possible to generalize the semantics and
allow the rescheduling function to also pick a new thread identifier generator.
active(T ) denotes the set of active threads in T , i.e., active(T ) = {t ∈ dom(T ) |
T (t) �= ε}. The statement reduction relation is defined in Fig. 5.
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Fig. 4. Semantics of actions.

Note that semantics of events is deterministic. For example, r(ch)-transition
can only be executed if M(ch) > 0, while w(ch) can only be emitted if M(ch) >
0 (symbol ⊥ in the definition means “undefined”). Note that reschedule only
reduces globally once all other threads in the thread pool have reduced fully and
that it further removes all other threads from the thread pool upon reducing
and assigns a new thread identifier to the only active thread. This requirement
ensures that once reschedule reduces and resets the scheduler state then other
threads that exist prior to the reduction of reschedule cannot immediately taint
the scheduler state again. The reschedule reduction step is deterministic: the
value of t is bound in the respective rule in Fig. 2 by function Ψ .

Example 6. To illustrate the issue, consider the following code snippet. This
program branches on a confidential (high) variable h and then spawns one of
two threads with the sole purpose of tainting the scheduler with the state of
h. It also contains a race on a public (low) variable l, which occurs after the
rescheduling.

if h > 0 then fork(skip) else fork(skip; skip);
reschedule;
fork(l := 0); l := 1

If reschedule could reduce and reset the scheduler state before the forked
thread had reduced, then the forked thread could reduce between reschedule and
the assignment and therefore affect which of the two racy assignments to l would
win the race. Our operational semantics therefore only reduces reschedule once
all other threads have terminated, which for the above example ensures that the
forked thread has already fully reduced, and cannot taint the scheduler state
after reschedule has reset it.
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Fig. 5. Statement reduction.

2.1 Security Model

In this section we introduce our formal security model for confidentiality. This is
formalized as a non-interference property, requiring that attackers cannot learn
anything about confidential inputs from observing public outputs.

To express this formally, we assume a bounded �-semilattice L of security
levels for classifying the confidentiality levels of inputs and outputs. We say that
level �1 flows into �2 if �1 � �2. In examples we typically assume L is a bounded
lattice with distinguished top and bottom elements, denoted H and L, and
referred to as high and low, respectively. Given a security typing Γ that assigns
security levels to all program variables and channel identifiers, we consider two
heaps ρ1 and ρ2 indistinguishable at attacker level �A if the two heaps agree for
all variables with a security level below or equal to the attacker security level:

ρ1 ∼�A
Γ ρ2

def= ∀x ∈ Var . Γ (x ) � �A ⇒ h1(x ) = h2(x )

Likewise, we consider two message pools M1 and M2 indistinguishable at attacker
level �A if they agree on all channels with security level below or equal to the
attackers security level:

M1 ∼�A
Γ M2

def= ∀ch ∈ Chan. Γ (ch) � �A ⇒ M1(ch) = M2(ch)

Non-interference expresses that attackers cannot learn confidential informa-
tion by requiring that executions from attacker indistinguishable initial mes-
sage pools and heaps should produce attacker indistinguishable terminal mes-
sage pools and heaps, when executed from the same initial scheduler state
and scheduling function. Since scheduling and rescheduling functions have com-
plete access to the machine state, including confidential variables and channels,
we restrict attention to schedulers and reschedulers that only access attacker-
observable variables and channels. We say that a scheduler sf is an �-scheduler
iff it does not distinguish message pools and heaps that are �-indistinguishable:

�-level(sf ) ⇔ ∀S, T,M1,M2, ρ1, ρ2.

M1 ∼�
Γ M2 ∧ ρ1 ∼�

Γ ρ2 ⇒ sf (S, T,M1, ρ1) = sf (S, T,M2, ρ2)
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Likewise, a rescheduling function is an �-rescheduler iff it does not distin-
guish message pools and heaps that are �-indistinguishable and only returns
�-schedulers:

�-level(Ψ) ⇔ ∀sf ,M1,M2, ρ1, ρ2. �-level(π1(Ψ(sf ,M1, ρ1))) ∧
(M1 ∼�

Γ M2 ∧ ρ1 ∼�
Γ ρ2 ⇒ Ψ(sf ,M1, ρ1) = Ψ(sf ,M2, ρ2))

where π1 is a projection to the first component of the triple.

Definition 1 (Security). A thread pool T satisfies non-interference at attacker
level �A and security typing Γ iff all fully-reduced executions from �A-related
initial heaps (starting with empty message pools) reduce to �A-related terminal
heaps, for all �A-level schedulers sf and reschedulers Ψ :

∀ρ1, ρ2, ρ
′
1, ρ

′
2 ∈ Heap.∀M ′

1,M
′
2 ∈ MPool.∀S, S′

1, S
′
2 ∈ S.∀T ′

1, T
′
2.∀sf , sf ′

1, sf
′
2.

�A-level(sf ) ∧ �A-level(Ψ) ∧ ρ1 ∼�A
Γ ρ2 ∧ final(T ′

1) ∧ final(T ′
2) ∧

sf , S, T, λch.0, ρ1 −→∗
Ψ sf ′

1, S
′
1, T

′
1,M

′
1, ρ

′
1 ∧

sf , S, T, λch.0, ρ2 −→∗
Ψ sf ′

2, S
′
2, T

′
2,M

′
2, ρ

′
2 ⇒ M ′

1 ∼�A
Γ M ′

2 ∧ ρ′
1 ∼�A

Γ ρ′
2

where final(T ) def= ∀t ∈ dom(T ). T (t) = ε.

This non-interference property can be specialized in the obvious way from
thread pools to programs by considering a thread pool with only the given
program.

In our security model, we focus on standard end-to-end security, i.e., the
attacker is allowed to observe low parts of the initial and final heaps. The security
definition quantifies over all possible schedulers, which in particular means that
the attacker is allowed to choose any scheduler.

To develop some intuition about our security model, let’s consider a few
basic examples. The program fork(x := 1); x := 2 is secure for any attacker
level �A, because in any two executions from the same initial scheduler state
and �A-equivalent initial message pools and heaps, the scheduler must schedule
the assignments in the same order. This follows from the assumption that the
scheduler cannot distinguish �A-equivalent message pools and heaps.

If prior to a race on a low variable a thread branches on confidential informa-
tion, then we can construct a scheduler that leaks this information. To illustrate,
consider the following variant of Example 1 from the Introduction:

fork(if h then skip else (skip; skip)) // Thread 1
fork(l := 1); // Thread 2
fork(l := 2) // Thread 3

If we take the scheduler state to be a natural number corresponding to the
number of statements reduced so far, then we can construct a scheduler that first
reduces Thread 1 and then schedules Thread 2 if Thread 1 was fully reduced in
two steps and Thread 3 if Thread 1 was fully reduced in three steps. Therefore,
this program is not secure.
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3 Type System

In this section we present a type-and-effect system for establishing non-
interference. The type-and-effect system is inspired by separation logic [36] and
uses ideas of ownership and resources to track whether accesses to variables and
channels may be racy and to bound the security level of the data that may be
learned through observing how threads are scheduled. Statements are typed rel-
ative to a pre- and postcondition, where the precondition describes the resources
necessary to run the statement and the postcondition the resources owned after
executing the statement. The statement typing judgment has the following form:

Γ | Δ | pc 
 {P} s {Q}
Here P and Q are resources and pc is an upper bound on the security level
of the data that can be learned through knowing the control of the program
up to this point. Context Γ defines security levels for all program variables and
channel identifiers and Δ defines a static resource specification for every channel
identifier. We will return to these contexts later. Expressions are typed relative
to a precondition and the expression typing judgment has the following form:
Γ 
 {P} e : �. Here � is an upper bound on the security level of the data
computed by e. Resources are described by the following grammar:

P,Q ::= emp | P ∗ Q | xπ | chπ | schdπ(�) | �P ��

where π ∈ Q ∩ (0, 1]. The emp assertion describes the empty resource that does
not assert ownership of anything. The P ∗ Q assertion describes a resource that
can be split into two disjoint resources, P and Q, respectively. This assertion is
inspired by separation logic and is used to reason about separation of resources.

Variable resources, written xπ, express fractional ownership of variable x with
fraction π ∈ Q ∩ (0, 1]. We use these to reason locally about whether accesses to a
given variable might cause a race. Ownership of the full fraction π = 1 expresses
that we own the variable exclusively and can therefore access the variable without
fears of causing a race. Any fraction less than 1 only expresses partial ownership
and accessing the given variable could therefore cause a race. These variable
resources can be split and recombined using the fraction. We express this using
the resource entailment judgment, written Γ 
 P ⇒ Q, which asserts that
resource P can be converted into resource Q. We write Γ 
 P ⇔ Q when
resource P can be converted into Q and Q can be converted into P . Splitting and
recombination of variable resources comply with the rule: If π1+π2 ≤ 1 then Γ 

xπ1+π2 ⇔ xπ1 ∗xπ2 . This can for instance be used to split an exclusive permission
into two partial permissions that can be passed to two different threads and later
recombined back into the exclusive permission.

The other kind of crucial resources, schdπ(�), where π ∈ Q ∩ (0, 1], allows us
to track the scheduler level (also called the scheduler taint). A labeled scheduler
resource, schdπ(�), expresses that the scheduler level currently cannot go above
�. This is both a guarantee we give to the environment and something we can rely
on the environment to follow. This guarantee ensures that level of information
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that can be learned by observing how threads are scheduled is bounded by
the scheduler level. Again, we use fractional permissions to split the scheduler
resource between multiple threads: If π1 + π2 ≤ 1 then Γ 
 schdπ1+π2(�) ⇔
schdπ1(�) ∗ schdπ2(�). If we own the scheduler resource exclusively, then no one
else is relying on the scheduler level staying below a given security level and we
can thus change the scheduler rely-guarantee level to a higher security level: If
�1 � �2 then Γ 
 schd1(�1) ⇒ schd1(�2). In general it is not secure to lower the
upper bound on the scheduler level in this way, even if we own the scheduler
resource exclusively. Instead, we must use reschedule to lower the scheduler level.
We will return to this issue in a subsequent section.

Fig. 6. Typing rules for assignments and control flow statements.

State and Control Flow. Before introducing the remaining resources, let’s look at
the typing rules for assignments and control flow primitives, to illustrate how we
use these variable and scheduler resources. The type-and-effect system features
two assignment rules, one for non-racy assignments and one for potentially racy
assignments (T-Asgn-Excl and T-Asgn-Racy, respectively, in Fig. 6). If we
own a variable resource exclusively, then we can use the typing rule for non-racy
assignments and we do not have to worry about leaking information through
scheduling. However, if we only own a partial variable resource for a given vari-
able, then any access to the variable could potentially introduce a race and we
have to ensure information learned from scheduling is allowed to flow into the
given variable. The typing rule for potentially racy assignments (T-Asgn-Racy)
thus requires that we own a scheduler resource, schdπ(�s), that bounds the infor-
mation that can be learned through scheduling, and requires that �s may flow
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into Γ (x ). Both assignment rules naturally also require that the security level
of the assigned expression and the current pc-level is allowed to flow into the
assigned variable. The assigned expression is typed using the expression typing
judgment, Γ 
 {P} e : �, using the rules from Fig. 7. This judgment computes
an upper-bound � on the security-level of the data computed by the expression
and ensures that P asserts at least partial ownership of any variables accessed
by e. Hence, exclusive ownership of a given variable x ensures both the absence
of write-write races to the given variable, but also read-write races, which can
also be exploited to leak confidential information through scheduling.

Fig. 7. Typing rules for expressions.

Fig. 8. Structural typing rules.

The typing rules for conditionals and loops (T-If and T-While) both require
ownership of a scheduler resource with a scheduler level �s and this scheduler level
must be an upper bound on the security level of the branching expression. The
structural rule of consequence (T-Conseq in Fig. 8) allows to strengthen precon-
ditions and weaken postconditions. In particular, in conjunction with resource
implication rules Fig. 9, it allows to raise the level of scheduler resource, which
is necessary to type branching on high-security data.

Spawning Threads. When spawning a new thread, the spawning thread is able
to transfer some of its resources to the newly created thread. This is captured
by the T-Fork rule given below, which transfers the resources described by P
from the spawning thread to the spawned thread.

Γ | Δ | pc 
 {P} s {Q}
Γ | Δ | pc 
 {P} fork(s) {emp} T-Fork

Naturally, the newly spawned thread inherits the pc-level of the spawning thread.
Upon termination of the spawned thread, the resources still owned by the
spawned thread are lost. To transfer resources back to the spawning thread
or other threads requires synchronization using channels.
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Fig. 9. Resource implication rules.

Synchronization. From the point of view of resources, synchronization is about
transferring ownership of resources between threads. When sending a message
on a channel, we relinquish ownership of some of our resources, which become
associated with the message until it is read. Conversely, when reading from a
channel the reader may take ownership of a part of the resource associated with
the message it reads. The Δ context defines a static specification for every chan-
nel identifier that describes the resources we wish to associate with messages on
the given channel. If Δ(ch) = P , then we must transfer resource P when sending
a message on channel ch. However, when receiving a message from channel ch,
we might only be able to acquire part of P , depending on whether our receive
may race with other receives to acquire the resources and how our pc-level relates
to the pc-level of the sender of the message and to the potential scheduler taint.

To capture this formally, our type-and-effect system contains channel
resources, written chπ, erased resources, written �P ��, and channel security lev-
els, Γ (ch). Like variable resources, channel resources allow us to track whether
a given receive operation on a channel might race with another receive on the
same channel using a fraction π. To receive on a channel ch requires fractional
ownership of the corresponding channel resource. The channel resource can be
split and recombined freely: Γ 
 chπ1+π2 ⇔ chπ1 ∗ chπ2 , with the full fraction,
π = 1, indicating an exclusive right to receive on the given channel. The erased
resource, �P ��, is used to erase variable and channel resources in P with secu-
rity levels that are not greater than or equal to the security level �. To illustrate
how we use these features to type send and receive commands, let us start by
considering an example that is not secure, and that should therefore not be
typeable.

We start with the simpler case of non-racy receives. In the case of non-racy
receives, we have to prevent ownership transfer of low variables from a high
security context to a lower security context. This is illustrated by the program

fork(if h then send(a) else send(b));
fork(recv(a); l := 1; send(b));
fork(recv(b); l := 2; send(a))
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This code snippet spawns a thread which sends a message on either channel
a or b depending on the value of the confidential variable h. Then the program
spawns two other threads that wait until there is an available message on their
channel, before they write to l and message the other thread that it may pro-
ceed. This code snippet is insecure, because if h is initially true, then the public
variable l will contain the value 2 upon termination and if h is initially false,
then l will contain the value 1.

Fig. 10. Typing rules for synchronization primitives.

To type this program, the idea would be to transfer exclusive ownership of
the public variable l along channels a and b. However, our type system prevents
this by erasing the resources received along channels a and b at the high security
level, because the first thread may send messages on a and b in a high security
context (i.e., with a high pc-level).

Formally, the typing rules for send and for exclusive receives are given by T-

Send and T-Recv-Excl in Fig. 10. The send rule requires that the security level
of the channel is greater than or equal to the sender’s pc-level and the exclusive
receive rule erases the resources received from the channel using the security-level
of the channel. This means that the second and third threads do not get exclusive
ownership of the l variable and that we therefore cannot type the subsequent
assignments. The exclusive receive rule also requires fractional ownership of the
scheduler resource and that the bound on the taint on the scheduler level is
greater than or equal to the channel security level when receiving on a channel.
This condition is related to the use of reschedule and we will return to this
condition later.

Example 7. To illustrate how to use these rules for ownership transfer, consider
the following variant of the examples from the introduction.

ex7
def= fork(if h then s1 else s2); /* high computation */

fork(l := 1; send(c));
recv(c); l := 2

It forks off a thread that does a high computation and potentially taints
the scheduler with confidential information. The main thread also forks off a
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new thread that performs a write to public variable l, before itself writing to l.
However, a communication through channel c in between these two assignments
ensure that they are not racy and therefore do not leak private information for
any chosen scheduling. We can, for instance, type this example as follows:

Γ | Δ | L 
 {c1 ∗ l1 ∗ h1 ∗ schd1(L)} ex7 {c1 ∗ l1 ∗ schd 1
2
(H)}

where Γ and Δ are defined as follows: Γ (l) = Γ (c) = L, Γ (h) = H, and
Δ(c) = l1.

This typing requires the main thread to pass exclusive ownership of l to the
second thread upon forking, which is then passed back on channel c. Since we only
send and receive on channel c in a low context, we can take the channel security
level to be low for c. When the main thread receives a message on c it thus takes
ownership of �l1�Γ (c) and since Γ (c) = L, it follows that Γ 
 �l1�Γ (c) ⇒ l1. The
main thread thus owns the variable resource for l exclusively when typing the
second assignment.

We use the resource implication rules in Fig. 11 to reason about erased
resources, by pulling resources out of the erasure. For instance, if the security
level of a variable x is greater than or equal to the erasure security level, then
we can pull it out of the erasure: if � � Γ (x ) then Γ 
 �xπ�� ⇒ xπ; and likewise
for channel resources: if � � Γ (ch) then Γ 
 �chπ�� ⇒ chπ. Resources that
cannot be pulled out of the erasure cannot be used for anything; owning �xπ��

where Γ (x) �� � is thus equivalent to owning emp. The full set of erasure impli-
cation rules is given in Fig. 11. Notice that scheduler resources never get erased:
Γ 
 �schdπ(�s)�� ⇒ schdπ(�s). Moreover, the resource erasure is idempotent and
distributes over the star operator.

Fig. 11. Erasure implication rules

Racy Synchronization. In the case of racy receives, where we have multiple
threads racing to take ownership of a message on the same channel, we have to
restrict which resources the receivers can take ownership of even further. This is
best illustrated with another example of an insecure program. The following is
a variant of the earlier insecure program, but instead of sending a message on a
channel in a high context it sends a message on a channel in a low context after
the scheduler has been tainted and the scheduler level has been raised to high.
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if h then skip else (skip; skip);
send(c);
fork(recv(c); l := 1; send(c));
recv(c); l := 2; send(c)

With a suitably chosen scheduler, the initial value of the confidential variable
h could decide which of the two racy receives will receive the initial message on
c and thereby leak the initial value of h through the public variable l. We thus
have to ensure that this program is not typeable. Our type system ensures that
this is the case by requiring the scheduler level to equal the channel security level
when performing a potentially racy receive. In the case of the example above,
the scheduler level gets high after the high branching and is still high when we
type check the two receives; since they are racy we are forced to set the security
level of channel c to high—see the typing rule T-Recv-Racy for racy receives
in Fig. 10—which ensures we cannot transfer ownership of the public variable l
on c. This in turn ensures that we cannot type the assignments to l as exclusive
assignments and therefore that the example is not typeable.

Reschedule. Recall that if we own the scheduler resource exclusively, then we
can freely raise the upper bound on the security level of the scheduler, since
no other threads are relying on any upper bound. In general, it is not sound
to lower this upper bound, unless we can guarantee that the current scheduler
level is less than or equal to the new upper bound. This is exactly what the
reschedule statement ensures. The typing rule for reschedule (T-Resched given
below) thus requires exclusive ownership of the scheduler resource and allows us
to change this upper bound to any security level we wish. To ensure soundness,
we only allow reschedule to be used when the pc-level is ⊥L, the bottom security
level of the semilattice of security elements.

Γ | Δ | ⊥L 
 {schd1(�1)} reschedule {schd1(�2)}
T-Resched

Example 8. To illustrate how the typing rule for reschedule is used, consider the
following code snippet from the introduction section:

ex8
def= if h then skip else (skip; skip);

reschedule;
fork(l := 0); l := 1

Recall that this snippet is secure, since reschedule resets the scheduler state
before the race on l. We can, for instance, type this example as follows:

Γ | Δ | L 
 {l1 ∗ h1 ∗ schd1(L)} ex8 {l 1
2

∗ schd 1
2
(L)}

with Γ (l) = L and Γ (h) = H.
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To type this example we first raise the upper bound on the scheduler level
from low to high, so that we can branch on confidential h. Then we use T-

Resched to reset it back to low after reschedule. At this point we split both the
scheduler and variable resource for variable l into two, keep one part of each for
the main thread and give away one part of each to the newly spawned thread.
The two assignments to l are now typed by T-Asgn-Racy rule.

Example 9. To illustrate why we only allow reschedule to be used at pc-level
⊥L, consider the following example, which branches on the confidential variable
h before executing reschedule in both branches.

fork(if h then (reschedule; skip) else (reschedule; skip; skip));
fork(l := 0); l := 1

Despite doing a reschedule in both branches, the subsequent statements in the
two branches immediately taint the scheduler with information about h again,
after the scheduler has been reset. This example is thus not safe.

In the full version of the paper, the reader will find several more intricate
examples justifying the constraints of the rules.

Precision of the Type System. Notice that mere racy reading or writing from/to
variables does not taint the scheduler. For example, programs

fork(l := 1); fork(m := l); fork(h := 0); h := 1
fork(l := 0); h := h + 1; l := 1
if l then h := 0 else h := 1; (fork(l := 0); l := 1)

where l, m are low variables and h is a high variable, are all secure in the sense
of Definition 1 and are typable. Indeed, there is no way to exploit scheduling
to leak the secret value h in either of these programs. The scheduler may get
tainted only if a high branch or receiving from a high channel is encountered,
since the number of computation steps for the remaining computation (and hence
its scheduling) may depend on a secret value as, for example, in the program
while h do h := h − 1; (fork(l := 0); l := 1). This example is rejected by our type
system. To re-enable low races in the last example, rescheduling must be used:

while h do h := h − 1; reschedule; (fork(l := 0); l := 1)

The last example is secure and accepted by the type system.
Limitations of our type system include imprecisions such as when both

branches of a secret-dependent if-statement take the same number of steps, e.g.,
if h then skip else skip; (fork(l := 0); l := 1), and standard imprecisions of flow-
insensitive type-based approaches to information flow that reject programs such
as in if h then l := 0 else l := 0 or in (if h then l := 0 else l := 1); l := 42.



70 A. Karbyshev et al.

Language Extensions. We believe that the ideas of this section can be extended
to richer languages using standard techniques [17,32,51]. In particular, to han-
dle a language with procedures we would use a separate environment to record
types for procedures, similarly to what is done in, e.g., [34]. (In loc. cit. they did
not cover concurrency; however, we take inspiration from [12] which presents a
concurrent separation logic for a language with procedures and mutable stack
variables.) Specifications for procedures would involve quantification over vari-
ables and security levels.

4 Soundness

Let T be a thread pool and let P , Q map every thread identifier to t ∈ dom(T ) to
a resource. We write Γ | Δ 
 {P} T {Q} if P (t) and Q(t) are typing resources for
every thread T (t) with respect to Γ and Δ. We say that resource R is compatible
if implication Γ 
 �x∈Varx1 ∗ �ch∈Chanch1 ∗ schd1(L) ⇒ R is provable.

Theorem 1 (Soundness). Let Γ | Δ 
 {P} T {Q} such that the composition
of all the resources in P is compatible, then T satisfies non-interference for all
attacker levels �A.

Notice that the theorem quantifies universally over all attacker levels �A, hence,
one typing is sufficient to guarantee security against all possible adversaries.

As a direct corollary from the theorem, we obtain a compositionality prop-
erty for our type-and-effect system: Given two programs s1, s2 typable with
preconditions P1 and P2, respectively, if P1 ∗ P2 is compatible then the parallel
composition of the two programs is typable with precondition P1 ∗ P2.

Our soundness proof is inspired by previous non-interference results proved
using a combination of erasure and confluence4 for erased programs, but requires
a number of novel techniques related to our reschedule construct, scheduler
resources and support for benign races. A proof of Theorem1 can be found
in the full version of the paper.

5 Related Work

The problem of securing information flow in concurrent programs has received
widespread attention. We review the relevant literature along the following three
dimensions:

(1) Scheduler-(in)dependence. Sabelfeld and Sands [41] argue for importance of
scheduler independence because in practice it may be difficult to accommo-
date for precise scheduler behavior under all circumstances, and attackers
aware of the scheduler specifics can use that knowledge to their advantage,

4 A property which guarantees that a given program can be reduced in different orders
but yields the same result (up to a suitable equivalence relation).
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also known as refinement attacks. However, designing a scheduler indepen-
dent enforcement technique that is also practical comes at a price of addi-
tional restrictions. To this extent, a number of approaches gain permissive-
ness via scheduler support. This is manifested either as an assumption on a
particular scheduling algorithm, i.e., round-robin, or scheduler awareness of
security levels of the individual threads.

(2) Permissiveness w.r.t. low races. We are interested in seeing which of the
approaches support benign low non-determinism and permit low races. We
believe this is an important factor from a practical perspective, because an
approach capable of handling low races has the potential of scaling to prac-
tical settings where parallel access, without extra synchronization overhead,
to a single attacker-observable resource, such as network I/O, is desirable.

(3) Termination-(in)sensitivity. In sequential programs, ignoring leaks via pro-
gram divergence is often a pragmatic choice, because the attacker is limited
in how much information can be learned via the termination channel [3].
Can this pragmatic argument be carried over to a concurrent setting? On
the one hand, malicious code with privileges to spawn threads may efficiently
leak an N -bit secret by creating N threads and assigning every thread to
leak a specific secret bit via the thread’s termination behavior [48]. Moti-
vated by this, many approaches reject programs that may potentially diverge
depending on a secret. On the other hand, while it is possible to use tech-
niques from literature on program termination to improve precision of the
enforcement [29], a pragmatic attacker can instead use provably-terminating
programs that take as much time as it is necessary for them to make their
observations. So, for malicious code, one really needs to focus on the timing.
But controlling timing behavior is difficult already in sequential programs,
because many runtime aspects that have no source-level representation are
in play, including hardware caches [50], memory management [35], or lazy
evaluation [11].

Another reason for our attention on termination-(in)sensitivity is that it is
our experience that technical restrictions that impose termination (or timing)-
sensitivity often simplify soundness proofs. Without such restrictions, prov-
ing soundness for a (weaker) termination-insensitive definition can be more
laborious.

Fig. 12. Summary of the related work w.r.t. permissiveness of the language-based
enforcement and scheduler dependence. TI stands for termination-insensitive; TS
stands for termination-sensitive.
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Figure 12 presents a high-level summary of the related work. The figure is
by no means exhaustive and lists only a few representative works; we discuss
the other related papers below. Observe how the literature is divided across
two diametric quadrants. Approaches that prioritize scheduler independence are
conservative in their treatment of low races. Approaches that do permit low races
require specific scheduler support are confined to particular classes of schedulers.
We discuss these quadrants in detail, followed by the discussion of rely-guarantee
style reasoning for concurrent information flow and rescheduling.

5.1 Scheduler-Independent Approaches

Observational Determinism. The approach of preventing races to individual
locations is initiated in the work on observational determinism by Zdancewic
and Myers [49] (which itself draws upon the ideas of McLean [27] and Roscoe
[37]). Subsequent efforts on observational determinism include the work by Huis-
man et al. [16] and by Terauchi [46]. Here, Huisman et al. [16] identify an issue
in the Zdancewic and Myers’ [49] definition of security—they construct a leaky
program within the intended attacker model, i.e., not exploiting termination or
timing, that is accepted by the definition (though it is ruled out by the type
system). They also propose a modified definition and show how to enforce that
using self-composition [8]. Terauchi’s [46] paper presents a capability system
with an inference algorithm for enforcing a restricted version of the Zdancewic
and Myers’ [49] definition.

Out of these, the work by Terauchi [46] is the closest to ours because of
the use of fractional permissions, but there are important differences in the
treatment of the low races and the underlying semantic condition. Terauchi’s
[46] type system is motivated by the design goal to reject racy programs of the
form l := 0 || l := 1. This is done through tracking fractional permissions on so-
called abstract locations that represent a set of locations whose identity cannot
be separated statically. Our type system uses fractional permissions in a similar
spirit, but has additional expressivity, (even without the scheduler resource),
because Terauchi’s [46] typing also rules out programs such as l1 := 0 || l2 := 1,
even when l1 and l2 are statically known to be non-aliasing. This is because the
type system has a restriction that groups all low variables into a single abstract
location. While this restriction is a necessity if the attacker is assumed to observe
the order of individual low assignments, this effectively forces synchronization of
all low-updating threads, regardless of whether the updates are potentially racy
or not. We do not have such a restriction in our model.

We suspect that lifting this restriction in the Terauchi’s [46] system to accom-
modate a more permissive attacker model such as ours may be difficult without
further changes to the type system, because their semantic security condition,
being a variant of the one by Zdancewic and Myers [49], requires trace equiva-
lence up to prefixing (and stuttering) for all locations in the set of the abstract
low location. Without the typing restriction, the definition would appear to have
the same semantic issue discovered by Huisman et al. [16]; the issue does not
manifest itself with the restriction.
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Note that adapting the security condition proposed by Huisman et al. [16]
into a language-based setting also appears tricky. The paper [16] presents both
termination-insensitive and termination-sensitive variants of their take on obser-
vational determinism. The key changes are the use of infinite traces instead of
finite ones and requiring trace equivalence instead of prefix-equivalence (up to
stuttering). Terauchi [46] expresses their concerns w.r.t. applicability of this
definition ([46], Appendix A). We think there is an additional concern w.r.t.
termination-insensitivity. Because the TI-definition requires equivalence of infi-
nite low traces it rejects a program such as

l := 1; while secret = 1 do skip; l := 2; while secret = 2 do skip

This single-threaded program is a variant of a brute-force attack that is usually
accepted by termination-insensitive definitions [3] and language-based techniques
for information flow. We, thus, agree with the Terauchi’s [46] conclusion [46]
that enforcing such a condition via a type-based method without being overly
conservative may prove difficult.

By contrast, our approach builds upon the technique of explicit refiners [30,
33], which allows non-determinism as long as it is not influenced by secrets, and
does not exhibit the aforementioned semantic pitfalls.

Whole program analysis can be used to enforce concurrent non-interference
with a high precision. Giffhorn and Snelting [14] use a PDG-based whole program
analysis to enforce relaxed low-security observational determinism (RLSOD) in
Java programs. RLSOD is similar to our security condition in that it allows
low-nondeterminism as long as it does not depend on secrets.

Strong Security. Sabelfeld and Sands [41] present a definition of strong secu-
rity that is a compositional semantic condition for a natural class of sched-
ulers. The compositionality is attained by placing timing-sensitivity constraints
on individual threads. This condition serves as a foundation for a number of
works [13,19,22]. To establish timing sensitivity, these approaches often rely on
program transformation [1,6,19,28]. A common limitation of the transformation-
based techniques is that they do not apply to programs with high loops. Another
concern is their general applicability, given the complexity of modern runtimes.
A recent empirical study by Mantel and Starostin [23] investigates performance
and security implications of these techniques, but as an initial step in this direc-
tion the paper [23] has a number of simplifying assumptions, such as disabled
JIT optimizations and non-malicious code.

5.2 Scheduler-Dependent Approaches

Scheduler-dependent approaches vary in their assumptions on the underlying
scheduler. Boudol and Castellani [9] study system and threads model where the
scheduler code is explicit in the program source; a typing discipline regulates the
secure interaction of the scheduler with the rest of the program [5].
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Security-aware schedulers [7,38] track security levels of the program counters
of each thread, and provide the interface that timing of high computations is not
revealed to the low ones; this interface is realized by suspending all low threads
when there is an alive high thread.

A number of approaches assume a particular scheduling strategy, typically
round-robin [30,39,45]. Mantel and Sudbrock [24] define a class of robust sched-
ulers as the schedulers where “the scheduling order of low threads does not
depend on the high threads in a thread pool” [24]. The class of robust sched-
ulers appears to be large enough to include a number of practical schedulers,
including round-robin. Other works rely on nondeterministic [4,8,21,25,40,44]
or probabilistically uniform [10,43,47] behavior.

5.3 Rely-Guarantee Style Reasoning for Concurrent Information
Flow and Rescheduling

Rely-Guarantee Style Reasoning. Mantel et al. [26] develops a different rely-
guarantee style compositional approach for concurrent non-interference in flow-
sensitive settings. In this approach, permissions to read or write variables are
expressed using special data access modes; a thread can obtain an exclusive read
access or an exclusive write access via the specific mode. Note that the modes are
different from fractional permissions, because, e.g., an exclusive write access to a
variable does not automatically grant the exclusive read access. The modes also
do not have a moral equivalent of the scheduler resource. Instead, the paper [26]
suggests using an external may-happen-in-parallel global analysis to track their
global consistency. Askarov et al. [4] give modes a runtime representation, and
use a hybrid information flow monitor to establish concurrent non-interference.
Li et al. [20] use rely-guarantee style reasoning to reason about information flows
in a message-passing distributed settings, where scheduler cannot be controlled.
Murray et al. [31] use mode-based reasoning in a flow-sensitive dependent type
system to enforce timing-sensitive value-dependent non-interference for shared
memory concurrent programs.

Rescheduling. The idea of barrier synchronization to recover permissiveness of
language-based enforcement appears in papers with possibilistic scheduling [4,
25]. The rescheduling however does more than simple barrier synchronization—
it also explicitly resets the scheduler state, which is crucial to avoid refinement
attacks. The reason that simple barrier synchronization is insufficient is that
despite synchronization at the barrier point, the scheduler state could be tainted
by what happens before threads reach the barrier. For example, if the scheduler
is implemented so that, after the barrier, the threads are scheduled to run in the
order they have arrived to the barrier then there is little to be gained from the
barrier synchronization.

Operationally, the reschedule is implementable in a straightforward man-
ner, which is much simpler than security-aware schedulers [7,38]. We
note that rescheduling allows programmers to explore the space of perfor-
mance/expressivity without losing security. A program that type checks without
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reschedule, because there are no dangerous race conditions, does not need to
suffer from the performance overhead of the rescheduling. Programmers only
need to add the reschedule instruction if they wish to re-enable low races after
the scheduler was tainted. In that light, rescheduling is no less practical than
the earlier mentioned barrier synchronization [4].

While on one hand the need to reschedule appears heavy-handed, we are not
aware of other techniques that re-enable low races when the scheduler can be
tainted. How exactly the scheduler gets tainted depends on the scheduler imple-
mentation/model. Presently, we assume that any local control flow that depends
on secrets may taint the scheduler. This conservative assumption can naturally
be relaxed for more precise/realistic scheduler models. Future research efforts will
focus on refining scheduler models to reduce the need for rescheduling and/or
automatic placement of rescheduling to lessen the burden on programmers. The
latter can utilize techniques from the literature on the automatic placement of
declassifications [18].

5.4 This Work in the Context of Fig. 12

Developing a sound compositional technique for concurrent information flow that
is scheduler-independent, low-nondeterministic, and termination-insensitive at
the same time—a point marked by the star symbol in Fig. 12—is a tall order,
but we believe we come close. Our only non-standard operation is reschedule
that we argue has a simple operational implementation and can be introduced
to many existing runtimes.

6 Conclusion and Future Work

In the paper, we have presented a new compositional model for enforcing infor-
mation flow security against internal timing leaks for concurrent imperative pro-
grams. The model includes a compositional fine-grained type-and-effect system
and a novel programming construct for resetting a scheduler state. The type sys-
tem is agnostic in the level of adversary, which means that one typing judgment
is sufficient to ensure security for all possible attacker level. We formulate and
prove the soundness result for the type system.

In future work, we wish to support I/O; our proof technique appears to
have all the necessary ingredients for that. Moreover, we wish to investigate a
generalization of our concurrency model to an X10-like [30,42] setting where
instead of one scheduler, we have several coarse-grained scheduling partitions.
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Abstract. We give a rigorous characterization of what it means for a
programming language to be memory safe, capturing the intuition that
memory safety supports local reasoning about state. We formalize this
principle in two ways. First, we show how a small memory-safe language
validates a noninterference property: a program can neither affect nor be
affected by unreachable parts of the state. Second, we extend separation
logic, a proof system for heap-manipulating programs, with a “memory-
safe variant” of its frame rule. The new rule is stronger because it applies
even when parts of the program are buggy or malicious, but also weaker
because it demands a stricter form of separation between parts of the pro-
gram state. We also consider a number of pragmatically motivated vari-
ations on memory safety and the reasoning principles they support. As
an application of our characterization, we evaluate the security of a pre-
viously proposed dynamic monitor for memory safety of heap-allocated
data.

1 Introduction

Memory safety, and the vulnerabilities that follow from its absence [43], are
common concerns. So what is it, exactly? Intuitions abound, but translating
them into satisfying formal definitions is surprisingly difficult [20].

In large part, this difficulty stems from the prominent role that informal,
everyday intuition assigns, in discussions of memory safety, to a range of errors
related to memory misuse—buffer overruns, double frees, etc. Characterizing
memory safety in terms of the absence of these errors is tempting, but this
falls short for two reasons. First, there is often disagreement on which behaviors
qualify as errors. For example, many real-world C programs intentionally rely
on unrestricted pointer arithmetic [28], though it may yield undefined behavior
according to the language standard [21, Sect. 6.5.6]. Second, from the perspective
of security, the critical issue is not the errors themselves, but rather the fact that,
when they occur in unsafe languages like C, the program’s ensuing behavior is
determined by obscure, low-level factors such as the compiler’s choice of run-
time memory layout, often leading to exploitable vulnerabilities. By contrast, in
memory-safe languages like Java, programs can attempt to access arrays out of
bounds, but such mistakes lead to sensible, predictable outcomes.
c© The Author(s) 2018
L. Bauer and R. Küsters (Eds.): POST 2018, LNCS 10804, pp. 79–105, 2018.
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Rather than attempting a definition in terms of bad things that cannot hap-
pen, we aim to formalize memory safety in terms of reasoning principles that
programmers can soundly apply in its presence (or conversely, principles that
programmers should not naively apply in unsafe settings, because doing so can
lead to serious bugs and vulnerabilities). Specifically, to give an account of mem-
ory safety, as opposed to more inclusive terms such as “type safety,” we focus on
reasoning principles that are common to a wide range of stateful abstractions,
such as records, tagged or untagged unions, local variables, closures, arrays, call
stacks, objects, compartments, and address spaces.

What sort of reasoning principles? Our inspiration comes from separation
logic [36], a variant of Hoare logic designed to verify complex heap-manipulating
programs. The power of separation logic stems from local reasoning about state:
to prove the correctness of a program component, we must argue that its memory
accesses are confined to a footprint, a precise region demarcated by the specifi-
cation. This discipline allows proofs to ignore regions outside of the footprint,
while ensuring that arbitrary invariants for these regions are preserved during
execution.

The locality of separation logic is deeply linked to memory safety. Consider a
hypothetical jpeg decoding procedure that manipulates image buffers. We might
expect its execution not to interfere with the integrity of an unrelated window
object in the program. We can formalize this requirement in separation logic by
proving a specification that includes only the image buffers, but not the window,
in the decoder’s footprint. Showing that the footprint is respected would amount
to checking the bounds of individual buffer accesses, thus enforcing memory
safety; conversely, if the decoder is not memory safe, a simple buffer overflow
might suffice to tamper with the window object, thus violating locality and
potentially paving the way to an attack.

Our aim is to extend this line of reasoning beyond conventional separation
logic, encompassing settings such as ML, Java, or Lisp that enforce memory
safety automatically without requiring complete correctness proofs—which can
be prohibitively expensive for large code bases, especially in the presence of third-
party libraries or plugins over which we have little control. The key observation
is that memory safety forces code to respect a natural footprint: the set of its
reachable memory locations (reachable with respect to the variables it mentions).
Suppose that the jpeg decoder above is written in Java. Though we may not
know much about its input-output behavior, we can still assert that it cannot
have any effect on the window object simply by replacing the detailed reasoning
demanded by separation logic by a simple inaccessibility check.

Our first contribution is to formalize local reasoning principles supported by
an ideal notion of memory safety, using a simple language (Sect. 2) to ground our
discussion. We show three results (Theorems 1, 3 and 4) that explain how the
execution of a piece of code is affected by extending its initial heap. These results
lead to a noninterference property (Corollary 1), ensuring that code cannot affect
or be affected by unreachable memory. In Sect. 3.3, we show how these results
yield a variant of the frame rule of separation logic (Theorem6), which embodies
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its local reasoning capabilities. The two variants have complementary strengths
and weaknesses: while the original rule applies to unsafe settings like C, but
requires comprehensively verifying individual memory accesses, our variant does
not require proving that every access is correct, but demands a stronger notion
of separation between memory regions. These results have been verified with the
Coq proof assistant.1

Our second contribution (Sect. 4) is to evaluate pragmatically motivated
relaxations of the ideal notion above, exploring various trade-offs between safety,
performance, flexibility, and backwards compatibility. These variants can be
broadly classified into two groups according to reasoning principles they sup-
port. The stronger group gives up on some secrecy guarantees, but still ensures
that pieces of code cannot modify the contents of unreachable parts of the heap.
The weaker group, on the other hand, leaves gaps that completely invalidate
reachability-based reasoning.

Our third contribution (Sect. 5) is to demonstrate how our characterization
applies to more realistic settings, by analyzing a heap-safety monitor for machine
code [5,15]. We prove that the abstract machine that it implements also satisfies a
noninterference property, which can be transferred to the monitor via refinement,
modulo memory exhaustion issues discussed in Sect. 4. These proofs are also done
in Coq.2

We discuss related work on memory safety and stronger reasoning principles
in Sect. 6, and conclude in Sect. 7. While memory safety has seen prior formal
investigation (e.g. [31,41]), our characterization is the first phrased in terms of
reasoning principles that are valid when memory safety is enforced automat-
ically. We hope that these principles can serve as good criteria for formally
evaluating such enforcement mechanisms in practice. Moreover, our definition is
self-contained and does not rely on additional features such as full-blown capabil-
ities, objects, module systems, etc. Since these features tend to depend on some
form of memory safety anyway, we could see our characterization as a common
core of reasoning principles that underpin all of them.

2 An Idealized Memory-Safe Language

Our discussion begins with a concrete case study: a simple imperative language
with manual memory management. It features several mechanisms for control-
ling the effects of memory misuse, ranging from the most conventional, such as
bounds checking for spatial safety, to more uncommon ones, such as assigning
unique identifiers to every allocated block for ensuring temporal safety.

Choosing a language with manual memory management may seem odd, since
safety is often associated with garbage collection. We made this choice for two
reasons. First, most discussions on memory safety are motivated by its absence
from languages like C that also rely on manual memory management. There is
1 The proofs are available at: https://github.com/arthuraa/memory-safe-language.
2 Available at https://github.com/micro-policies/micro-policies-coq/tree/master/

memory safety.

https://github.com/arthuraa/memory-safe-language
https://github.com/micro-policies/micro-policies-coq/tree/master/memory_safety
https://github.com/micro-policies/micro-policies-coq/tree/master/memory_safety
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Fig. 1. Syntax, states and values

a vast body of research that tries to make such languages safer, and we would
like our account to apply to it. Second, we wanted to stress that our charac-
terization does not depend fundamentally on the mechanisms used to enforce
memory safety, especially because they might have complementary advantages
and shortcomings. For example, manual memory management can lead to more
memory leaks; garbage collectors can degrade performance; and specialized type
systems for managing memory [37,41] are more complex. After a brief overview
of the language, we explore its reasoning principles in Sect. 3.

Figure 1 summarizes the language syntax and other basic definitions. Expres-
sions e include variables x ∈ var, numbers n ∈ Z, booleans b ∈ B, an invalid
pointer nil, and various operations, both binary (arithmetic, logic, etc.) and
unary (extracting the offset of a pointer). We write [e] for dereferencing the
pointer denoted by e.

Programs operate on states consisting of two components: a local store, which
maps variables to values, and a heap, which maps pointers to values. Pointers
are not bare integers, but rather pairs (i, n) of a block identifier i ∈ I and an
offset n ∈ Z. The offset is relative to the corresponding block, and the identifier
i need not bear any direct relation to the physical address that might be used in
a concrete implementation on a conventional machine. (That is, we can equiva-
lently think of the heap as mapping each identifier to a separate array of heap
cells.) Similar structured memory models are widely used in the literature, as in
the CompCert verified C compiler [26] and other models of the C language [23],
for instance.

We write [[c]](s) to denote the outcome of running a program c in an initial
state s, which can be either a successful final state s′ or a fatal run-time error.
Note that [[c]] is partial, to account for non-termination. Similarly, [[e]](s) denotes
the result of evaluating the expression e on the state s (expression evaluation is
total and has no side effects). The formal definition of these functions is left to
the Appendix; we just single out a few aspects that have a crucial effect on the
security properties discussed later.
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Illegal Memory Accesses Lead to Errors. The language controls the effect of
memory misuse by raising errors that stop execution immediately. This con-
trasts with typical C implementations, where such errors lead to unpredictable
undefined behavior. The main errors are caused by reads, writes, and frees to the
current memory m using invalid pointers—that is, pointers p such that m(p) is
undefined. Such pointers typically arise by offsetting an existing pointer out of
bounds or by freeing a structure on the heap (which turns all other pointers to
that block in the program state into dangling ones). In common parlance, this
discipline ensures both spatial and temporal memory safety.

Block Identifiers are Capabilities. Pointers can only be used to access memory
corresponding to their identifiers, which effectively act as capabilities. Identifiers
are set at allocation time, where they are chosen to be fresh with respect to the
entire current state (i.e., the new identifier is not associated with any pointers
defined in the current memory, stored in local variables, or stored on the heap).
Once assigned, identifiers are immutable, making it impossible to fabricate a
pointer to an allocated block out of thin air. This can be seen, for instance, in
the semantics of addition, which allows pointer arithmetic but does not affect
identifiers:

[[e1 + e2]](s) �

⎧
⎪⎨

⎪⎩

n1 + n2 if [[ei]](s) = ni

(i, n1 + n2) if [[e1]](s) = (i, n1) and [[e2]](s) = n2

nil otherwise

For simplicity, nonsensical combinations such as adding two pointers simply
result in the nil value. A real implementation might represent identifiers with
hardware tags and use an increasing counter to generate identifiers for new blocks
(as done by Dhawan et al. [15]; see Sect. 5.1); if enough tags are available, every
identifier will be fresh.

Block Identifiers Cannot be Observed. Because of the freshness condition above,
identifiers can reveal information about the entire program state. For example,
if they are chosen according to an increasing counter, knowing what identifier
was assigned to a new block tells us how many allocations have been performed.
A concrete implementation would face similar issues related to the choice of
physical addresses for new allocations. (Such issues are commonplace in systems
that combine dynamic allocation and information-flow control [12].) For this
reason, our language keeps identifiers opaque and inaccessible to programs; they
can only be used to reference values in memory, and nothing else. We discuss a
more permissive approach in Sect. 4.2.

Note that hiding identifiers doesn’t mean we have to hide everything asso-
ciated with a pointer: besides using pointers to access memory, programs can
also safely extract their offsets and test if two pointers are equal (which means
equality for both offsets and identifiers). Our Coq development also shows that
it is sound to compute the size of a memory block via a valid pointer.
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New Memory is Always Initialized. Whenever a memory block is allocated, all
of its contents are initialized to 0. (The exact value does not matter, as long it is
some constant that is not a previously allocated pointer.) This is important for
ensuring that allocation does not leak secrets present in previously freed blocks;
we return to this point in Sect. 4.3.

3 Reasoning with Memory Safety

Having presented our language, we now turn to the reasoning principles that it
supports. Intuitively, these principles allow us to analyze the effect of a piece of
code by restricting our attention to a smaller portion of the program state. A first
set of frame theorems (1, 3, and 4) describes how the execution of a piece of code
is affected by extending the initial state on which it runs. These in turn imply
a noninterference property, Corollary 1, guaranteeing that program execution is
independent of inaccessible memory regions—that is, those that correspond to
block identifiers that a piece of code does not possess. Finally, in Sect. 3.3, we
discuss how the frame theorems can be recast in the language of separation logic,
leading to a new variant of its frame rule (Theorem 6).

Fig. 2. Basic notation

3.1 Basic Properties of Memory Safety

Figure 2 summarizes basic notation used in our results. By permutation, we mean
a function π : I → I that has a two-sided inverse π−1; that is, π◦π−1 = π−1◦π =
idI. Some of these operations are standard and omitted for brevity.3

3 The renaming operation π · s, in particular, can be derived formally by viewing S
as a nominal set over I [34] obtained by combining products, disjoint unions, and
partial functions.
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The first frame theorem states that, if a program terminates successfully,
then we can extend its initial state almost without affecting execution.

Theorem 1 (Frame OK). Let c be a command, and s1, s′
1, and s2 be states.

Suppose that [[c]](s1) = s′
1, vars(c) ⊆ vars(s1), and blocks(s1) # blocks(s2). Then

there exists a permutation π such that [[c]](s1∪s2) = π ·s′
1∪s2 and blocks(π ·s′

1) #
blocks(s2).

The second premise, vars(c) ⊆ vars(s1), guarantees that all the variables needed
to run c are already defined in s1, implying that their values do not change once
we extend that initial state with s2. The third premise, blocks(s1) # blocks(s2),
means that the memories of s1 and s2 store disjoint regions. Finally, the conclu-
sion of the theorem states that (1) the execution of c does not affect the extra
state s2 and (2) the rest of the result is almost the same as s′

1, except for a
permutation of block identifiers.

Permutations are needed to avoid clashes between identifiers in s2 and those
assigned to regions allocated by c when running on s1. For instance, suppose that
the execution of c on s1 allocated a new block, and that this block was assigned
some identifier i ∈ I. If the memory of s2 already had a block corresponding to
i, c would have to choose a different identifier i′ for allocating that block when
running on s1 ∪ s2. This change requires replacing all occurrences of i by i′ in
the result of the first execution, which can be achieved with a permutation that
swaps these two identifiers.

The proof of Theorem 1 relies crucially on the facts that programs cannot
inspect identifiers, that memory can grow indefinitely (a common assumption in
formal models of memory), and that memory operations fail on invalid pointers.
Because of the permutations, we also need to show that permuting the initial
state s of a command c with any permutation π yields the same outcome, up to
some additional permutation π′ that again accounts for different choices of fresh
identifiers.

Theorem 2 (Renaming states). Let s be a state, c a command, and π a
permutation. There exists π′ such that:

[[c]](π · s) =

⎧
⎪⎨

⎪⎩

error if [[c]](s) = error

⊥ if [[c]](s) = ⊥
π′ · π · s′ if [[c]](s) = s′

A similar line of reasoning yields a second frame theorem, which says that
we cannot make a program terminate just by extending its initial state.

Theorem 3 (Frame Loop). Let c be a command, and s1 and s2 be states.
If [[c]](s1) = ⊥, vars(c) ⊆ vars(s1), and blocks(s1) # blocks(s2), then [[c]](s1 ∪
s2) = ⊥.

The third frame theorem shows that extending the initial state also preserves
erroneous executions. Its statement is similar to the previous ones, but with
a subtle twist. In general, by extending the state of a program with a block,
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we might turn an erroneous execution into a successful one—if the error was
caused by accessing a pointer whose identifier matches that new block. To avoid
this, we need a different premise (ids(s1) # blocks(s2)) preventing any pointers
in the original state s1 from referencing the new blocks in s2—which is only
useful because our language prevents programs from forging pointers to existing
regions. Since blocks(s) ⊆ ids(s), this premise is stronger than the analogous
ones in the preceding results.

Theorem 4 (Frame Error). Let c be a command, and s1 and s2 be states. If
[[c]](s1) = error, vars(c) ⊆ vars(s1), and ids(s1) # blocks(s2), then [[c]](s1 ∪ s2) =
error.

3.2 Memory Safety and Noninterference

The consequences of memory safety analyzed so far are intimately tied to the
notion of noninterference [19]. In its most widely understood sense, noninterfer-
ence is a secrecy guarantee: varying secret inputs has no effect on public outputs.
Sometimes, however, it is also used to describe integrity guarantees: low-integrity
inputs have no effect on high-integrity outputs. In fact, both guarantees apply
to unreachable memory in our language, since they do not affect code execution;
that is, execution (1) cannot modify these inaccessible regions (preserving their
integrity), and (2) cannot learn anything meaningful about them, not even their
presence (preserving their secrecy).

Corollary 1 (Noninterference). Let s1, s21, and s22 be states and c be a
command. Suppose that vars(c) ⊆ vars(s1), that ids(s1) # blocks(s21) and that
ids(s1) # blocks(s22). When running c on the extended states s1 ∪ s21 and s1 ∪
s22, only one of the following three possibilities holds: (1) both executions loop
([[c]](s1 ∪ s21) = [[c]](s1 ∪ s22) = ⊥); (2) both executions terminate with an error
([[c]](s1∪s21) = [[c]](s1∪s22) = error); or (3) both executions successfully terminate
without interfering with the inaccessible portions s21 and s22 (formally, there
exists a state s′

1 and permutations π1 and π2 such that [[c]](s1 ∪s2i) = πi ·s′
1 ∪s2i

and ids(πi · s′
1) # blocks(s2i), for i = 1, 2).

Noninterference is often formulated using an indistinguishability relation on
states, which expresses that one state can be obtained from the other by vary-
ing its secrets. We could have equivalently phrased the above result in a similar
way. Recall that the hypothesis ids(s1) # blocks(s2) means that memory regions
stored in s2 are unreachable via s1. Then, we could call two states “indistinguish-
able” if the reachable portions are the same (except for a possible permutation).
In Sect. 4, the connection with noninterference will provide a good benchmark
for comparing different flavors of memory safety.

3.3 Memory Safety and Separation Logic

We now explore the relation between the principles identified above, espe-
cially regarding integrity, and the local reasoning facilities of separation logic.
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Separation logic targets specifications of the form {p} c {q}, where p and q
are predicates over program states (subsets of S). For our language, this could
roughly mean

∀s ∈ p, vars(c) ⊆ vars(s) ⇒ [[c]](s) ∈ q ∪ {⊥}.
That is, if we run c in a state satisfying p, it will either diverge or terminate in a
state that satisfies q, but it will not trigger an error. Part of the motivation for
precluding errors is that in unsafe settings like C they yield undefined behavior,
destroying all hope of verification.

Local reasoning in separation logic is embodied by the frame rule, a conse-
quence of Theorems 1 and 3. Roughly, it says that a verified program can only
affect a well-defined portion of the state, with all other memory regions left
untouched.4

Theorem 5. Let p, q, and r be predicates over states and c be a command. The
rule

independent(r,modvars(c)) {p} c {q}
{p ∗ r} c {q ∗ r} Frame

is sound, where modvars(c) is the set of local variables modified by c,
independent(r, V ) means that the assertion r does not depend on the set of local
variables V

∀l1 l2 m, (∀x /∈ V, l1(x) = l2(x)) ⇒ (l1,m) ∈ r ⇒ (l2,m) ∈ r,

and p ∗ r denotes the separating conjunction of p and r:

{(l,m1 ∪ m2) | (l,m1) ∈ p, (l,m2) ∈ r, blocks(l,m1) # blocks(l,m2)}.

As useful as it is, precluding errors during execution makes it difficult to use
separation logic for partial verification: proving any property, no matter how
simple, of a nontrivial program requires detailed reasoning about its internals.
Even the following vacuous rule is unsound in separation logic:

{p} c {true} Taut

For a counterexample, take p to be true and c to be some arbitrary memory read
x ← [y]. If we run c on an empty heap, which trivially satisfies the precondition,
we obtain an error, contradicting the specification.

Fortunately, our memory-safe language—in which errors have a sensible, pre-
dictable semantics, as opposed to wild undefined behavior—supports a variant of
separation logic that allows looser specifications of the form {p} c {q}e, defined as

∀s ∈ p, vars(c) ⊆ vars(s) ⇒ [[c]](s) ∈ q ∪ {⊥, error}.

4 Technically, the frame rule requires a slightly stronger notion of specification,
accounting for permutations of allocated identifiers; our Coq development has a
more precise statement.
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These specifications are weaker than their conventional counterparts, leading
to a subsumption rule:

{p} c {q}
{p} c {q}e

Because errors are no longer prevented, the Taut rule {p} c {true}e becomes
sound, since the true postcondition now means that any outcome whatsoever
is acceptable. Unfortunately, there is a price to pay for allowing errors: they
compromise the soundness of the frame rule. The reason, as hinted in the intro-
duction, is that preventing run-time errors has an additional purpose in separa-
tion logic: it forces programs to act locally—that is, to access only the memory
delimited their pre- and postconditions. To see why, consider the same program
c as above, x ← [y]. This program clearly yields an error when run on an empty
heap, implying that the triple {emp} c {x = 0}e is valid, where the predicate
emp holds of any state with an empty heap and x = 0 holds of states whose
local store maps x to 0. Now consider what happens if we try to apply an analog
of the frame rule to this triple using the frame predicate y �→ 1, which holds in
states where y contains a pointer to the unique defined location on the heap,
which stores the value 1. After some simplification, we arrive at the specification
{y �→ 1} c {x = 0 ∧ y �→ 1}e, which clearly does not hold, since executing c on a
state satisfying the precondition leads to a successful final state mapping x to 1.

For the frame rule to be recovered, it needs to take errors into account. The
solution lies on the reachability properties of memory safety: instead of enforcing
locality by preventing errors, we can use the fact that memory operations in a
safe language are automatically local—in particular, local to the identifiers that
the program possesses.

Theorem 6. Under the same assumptions as Theorem5, the following rule is
sound

independent(r,modvars(c)) {p} c {q}e
{p � r} c {q � r}e

SafeFrame

where p � r denotes the isolating conjunction of p and r, defined as

{(l,m1 ∪ m2) | (l,m1) ∈ p, (l,m2) ∈ r, ids(l,m1) # blocks(l,m2)}.

The proof is similar to the one for the original rule, but it relies additionally
on Theorem 4. This explains why the isolating conjunction is needed, since it
ensures that the fragment satisfying r is unreachable from the rest of the state.

3.4 Discussion

As hinted by their connection with the frame rule, the theorems of Sect. 3.1 are
a form of local reasoning: to reason about a command, it suffices to consider its



The Meaning of Memory Safety 89

reachable state; how this state is used bears no effect on the unreachable por-
tions. In a more realistic language, reachability might be inferred from additional
information such as typing. But even here it can probably be accomplished by
a simple check of the program text.

For example, consider the hypothetical jpeg decoder from Sect. 1. We would
like to guarantee that the decoder cannot tamper with an unreachable object—a
window object, a whitelist of trusted websites, etc. The frame theorems give us
a means to do so, provided that we are able to show that the object is indeed
unreachable; additionally, they imply that the jpeg decoder cannot directly
extract any information from this unreachable object, such as passwords or pri-
vate keys.

Many real-world attacks involve direct violations of these reasoning princi-
ples. For example, consider the infamous Heartbleed attack on OpenSSL, which
used out-of-bounds reads from a buffer to leak data from completely unrelated
parts of the program state and to steal sensitive information [16]. Given that
the code fragment that enabled that attack was just manipulating an innocuous
array, a programmer could easily be fooled into believing (as probably many
have) that that snippet could not possibly access sensitive information, allowing
that vulnerability to remain unnoticed for years.

Finally, our new frame rule only captures the fact that a command cannot
influence the heap locations that it cannot reach, while our noninterference result
(Corollary 1) captures not just this integrity aspect of memory safety, but also a
secrecy aspect. We hope that future research will explore the connection between
the secrecy aspect of memory safety and (relational) program logics.

4 Relaxing Memory Safety

So much for formalism. What about reality? Strictly speaking, the security prop-
erties we have identified do not hold of any real system. This is partly due
to fundamental physical limitations—real systems run with finite memory, and
interact with users in various ways that transcend inputs and outputs, notably
through time and other side channels.5 A more interesting reason is that real
systems typically do not impose all the restrictions required for the proofs of
these properties. Languages that aim for safety generally offer relatively benign
glimpses of their implementation details (such accessing the contents of unini-
tialized memory, extract physical addresses from pointers or compare them for
ordering) in return for significant flexibility or performance gains. In other sys-
tems, the concessions are more fundamental, to the extent that it is harder to
clearly delimit what part of a program is unsafe: the SoftBound transforma-
tion [31], for example, adds bounds checks for C programs, but does not pro-
tect against memory-management bugs; a related transformation, CETS [32], is
required for temporal safety.
5 Though the attacker model considered in this paper does not try to address such

side-channel attacks, one should be able to use the previous research on the subject
to protect against them or limit the damage they can cause [6,39,40,49].
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In this section, we enumerate common relaxed models of memory safety and
evaluate how they affect the reasoning principles and security guarantees of
Sect. 3. Some relaxations, such as allowing pointers to be forged out of thin
air, completely give up on reachability-based reasoning. Others, however, retain
strong guarantees for integrity while giving up on some secrecy, allowing aspects
of the global state of a program to be observed. For example, a system with finite
memory (Sect. 4.5) may leak some information about its memory consumption,
and a system that allows pointer-to-integer casts (Sect. 4.2) may leak information
about its memory layout. Naturally, the distinction between integrity and secrecy
should be taken with a grain of salt, since the former often depends on the latter;
for example, if a system grants privileges to access some component when given
with the right password, a secrecy violation can escalate to an integrity violation!

4.1 Forging Pointers

Many real-world C programs use integers as pointers. If this idiom is allowed
without restrictions, then local reasoning is compromised, as every memory
region may be reached from anywhere in the program. It is not surprising that
languages that strive for safety either forbid this kind of pointer forging or con-
fine it to clear unsafe fragments.

More insidiously, and perhaps surprisingly, similar dangers lurk in the state-
ful abstractions of some systems that are widely regarded as “memory safe.”
JavaScript, for example, allows code to access arbitrary global variables by
indexing an associative array with a string, a feature that enables many seri-
ous attacks [1,18,29,44]. One might argue that global variables in JavaScript
are “memory unsafe” because they fail to validate local reasoning: even if part
of a JavaScript program does not explicitly mention a given global variable, it
might still change this variable or the objects it points to. Re-enabling local
reasoning requires strong restrictions on the programming style [1,9,18].

4.2 Observing Pointers

The language of Sect. 2 maintains a complete separation between pointers and
other values. In reality, this separation is often only enforced in one direction.
For example, some tools for enforcing memory safety in C [13,31] allow pointer-
to-integer casts [23] (a feature required by many low-level idioms [10,28]); and
the default implementation of hashCode() in Java leaks address information.
To model such features, we can extend the syntax of expressions with a form
cast(e), the semantics of which are defined with some function [[cast]] : I×Z → Z

for converting a pointer to an integer:

[[cast(e)]](s) = [[cast]]([[e]](s)) if [[e]](s) ∈ I × Z

Note that the original language included an operator for extracting the offset
of a pointer. Their definitions are similar, but have crucially different conse-
quences: while offsets do not depend on the identifier, allocation order, or other
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low-level details of the language implementation (such as the choice of phys-
ical addresses when allocating a block), all of these could be relevant when
defining the semantics of cast. The three frame theorems (1, 3, and 4) are thus
lost, because the state of unreachable parts of the heap may influence integers
observed by the program. An important consequence is that secrecy is weakened
in this language: an attacker could exploit pointers as a side-channel to learn
secrets about data it shouldn’t access.

Nevertheless, integrity is not affected: if a block is unreachable, its contents
will not change at the end of the execution. (This result was also proved in Coq.)

Theorem 7 (Integrity-only Noninterference). Let s1, s2, and s′ be states
and c a command such that vars(c) ⊆ vars(s1), ids(s1) # blocks(s2), and [[c]](s1 ∪
s2) = s′. Then we can find s′

1 ∈ S such that s′ = s′
1∪s2 and ids(s′

1) # blocks(s2).

The stronger noninterference result of Corollary 1 showed that, if pointer-to-
integer casts are prohibited, changing the contents of the unreachable portion s2
has no effect on the reachable portion, s′

1. In contrast, Theorem 7 allows changes
in s2 to influence s′

1 in arbitrary ways in the presence of these casts: not only can
the contents of this final state change, but the execution can also loop forever
or terminate in an error.

To see why, suppose that the jpeg decoder of Sect. 1 is part of a web browser,
but that it does not have the required pointers to learn the address that the user
is currently visiting. Suppose that there is some relation between the memory
consumption of the program and that website, and that there is some correlation
between the memory consumption and the identifier assigned to a new block.
Then, by allocating a block and converting its pointer to a integer, the decoder
might be able to infer useful information about the visited website [22]. Thus,
if s2 denoted the part of the state where that location is stored, changing its
contents would have a nontrivial effect on s′

1, the part of the state that the
decoder does have access to. We could speculate that, in a reasonable system, this
channel can only reveal information about the layout of unreachable regions, and
not their contents. Indeed, we conjecture this for the language of this subsection.

Finally, it is worth noting that simply excluding casts might not suffice to
prevent this sort of vulnerability. Recall that our language takes both offsets
and identifiers into account for equality tests. For performance reasons, we could
have chosen a different design that only compares physical addresses, completely
discarding identifiers. If attackers know the address of a pointer in the program—
which could happen, for instance, if they have access to the code of the program
and of the allocator—they can use pointer arithmetic (which is generally harm-
less and allowed in our language) to find the address of other pointers. If x holds
the pointer they control, they can run, for instance,

y ← alloc(1); if x + 1729 = y then . . . else . . . ,

to learn the location assigned to y and draw conclusions about the global state.
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4.3 Uninitialized Memory

Safe languages typically initialize new variables and objects. But this can degrade
performance, leading to cases where this feature is dropped—including standard
C implementations, safer alternatives [13,31], OCaml’s Bytes.create primitive,
or Node.js’s Buffer.allocUnsafe, for example.

The problem with this concession is that the entire memory becomes relevant
to execution, and local reasoning becomes much harder. By inspecting old values
living in uninitialized memory, an attacker can learn about parts of the state
they shouldn’t access and violate secrecy. This issue would become even more
severe in a system that allowed old pointers or other capabilities to occur in
re-allocated memory in a way that the program can use, since they could yield
access to restricted resources directly, leading to potential integrity violations as
well. (The two examples given above—OCaml and Node.js—do not suffer from
this issue, because any preexisting pointers in re-allocated memory are treated
as bare bytes that cannot be used to access memory.)

4.4 Dangling Pointers and Freshness

Another crucial issue is the treatment of dangling pointers—references to pre-
viously freed objects. Dangling pointers are problematic because there is an
inherent tension between giving them a sensible semantics (for instance, one
that validates the properties of Sect. 3) and obtaining good performance and
predictability. Languages with garbage collection avoid the issue by forbidding
dangling pointers altogether—heap storage is freed only when it is unreachable.
In the language of Sect. 2, besides giving a well-defined behavior to the use of
dangling pointers (signaling an error), we imposed strong freshness requirements
on allocation, mandating not only that the new identifier not correspond to any
existing block, but also that it not be present anywhere else in the state.

To see how the results of Sect. 3 are affected by weakening freshness, suppose
we run the program x ← alloc(1); z ← (y = x) on a state where y holds a
dangling pointer. Depending on the allocator and the state of the memory, the
pointer assigned to x could be equal to y. Since this outcome depends on the
entire state of the system, not just the reachable memory, Theorems 1, 3 and 4
now fail. Furthermore, an attacker with detailed knowledge of the allocator could
launder secret information by testing pointers for equality. Weakening freshness
can also have integrity implications, since it becomes harder to ensure that blocks
are properly isolated. For instance, a newly allocated block might be reachable
through a dangling pointer controlled by an attacker, allowing them to access
that block even if they were not supposed to.

Some practical solutions for memory safety use mechanisms similar to our
language’s, where each memory location is tagged with an identifier describ-
ing the region it belongs to [11,15]. Pointers are tagged similarly, and when a
pointer is used to access memory, a violation is detected if its identifier does not
match the location’s. However, for performance reasons, the number of possible
identifiers might be limited to a relatively small number, such as 2 or 4 [11] or
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16 [46]. In addition to the problems above, since multiple live regions can share
the same identifier in such schemes, it might be possible for buffer overflows to
lead to violations of secrecy and integrity as well.

Although we framed our discussion in terms of identifiers, the issue of fresh-
ness can manifest itself in other ways. For example, many systems for spatial
safety work by adding base and bounds information to pointers. In some of
these [13,31], dangling pointers are treated as an orthogonal issue, and it is pos-
sible for the allocator to return a new memory region that overlaps with the
range of a dangling pointer, in which case the new region will not be properly
isolated from the rest of the state.

Finally, dangling pointers can have disastrous consequences for overall system
security, independently of the freshness issues just described: freeing a pointer
more than once can break allocator invariants, enabling attacks [43].

4.5 Infinite Memory

Our idealized language allows memory to grow indefinitely. But real languages
run on finite memory, and allocation fails when programs run out of space.
Besides enabling denial-of-service attacks, finite memory has consequences for
secrecy. Corollary 1 does not hold in a real programming language as is, because
an increase in memory consumption can cause a previously successful allocation
to fail. By noticing this difference, a piece of code might learn something about
the entire state of the program. How problematic this is in practice will depend
on the particular system under consideration.

A potential solution is to force programs that run out of memory to terminate
immediately. Though this choice might be bad from an availability standpoint,
it is probably the most benign in terms of secrecy. We should be able to prove
an error-insensitive variant of Corollary 1, where the only significant effect that
unreachable memory can have is to turn a successful execution or infinite loop
into an error. Similar issues arise for IFC mechanisms that often cannot prevent
secrets from influencing program termination, leading to termination-insensitive
notions of noninterference.

Unfortunately, even an error-insensitive result might be too strong for real
systems, which often make it possible for attackers to extract multiple bits of
information about the global state of the program—as previously noted in the
IFC literature [4]. Java, for example, does not force termination when memory
runs out, but triggers an exception that can be caught and handled by user code,
which is then free to record the event and probe the allocator with a different
test. And most languages do not operate in batch mode like ours does, merely
producing a single answer at the end of execution; rather, their programs con-
tinuously interact with their environment through inputs and outputs, allowing
them to communicate the exact amount of memory that caused an error.

This discussion suggests that, if size vulnerabilities are a real concern, they
need to be treated with special care. One approach would be to limit the amount
of memory an untrusted component can allocate [47], so that exhausting the
memory allotted to that component doesn’t reveal information about the state
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of the rest of the system (and so that also global denial-of-service attacks are
prevented). A more speculative idea is to develop quantitative versions [6,39] of
the noninterference results discussed here that apply only if the total memory
used by the program is below a certain limit.

5 Case Study: A Memory-Safety Monitor

To demonstrate the applicability of our characterization, we use it to analyze a
tag-based monitor proposed by Dhawan et al. to enforce heap safety for low-level
code [15]. In prior work [5], we and others showed that an idealized model of
the monitor correctly implements a higher-level abstract machine with built-in
memory safety—a bit more formally, every behavior of the monitor is also a
behavior of the abstract machine. Building upon this work, we prove that this
abstract machine satisfies a noninterference property similar to Corollary 1. We
were also able to prove that a similar result holds for a lower-level machine that
runs a so-called “symbolic” representation of the monitor—although we had to
slightly weaken the result to account for memory exhaustion (cf. Sect. 4.5), since
the machine that runs the monitor has finite memory, while the abstract machine
has infinite memory. If we had a verified machine-code implementation of this
monitor, it would be possible to prove a similar result for it as well.

5.1 Tag-Based Monitor

We content ourselves with a brief overview of Dhawan et al.’s monitor [5,15],
since the formal statement of the reasoning principles it supports are more com-
plex than the one for the abstract machine from Sect. 5.2, on which we will focus.
Following a proposal by Clause et al. [11], Dhawan et al.’s monitor enforces mem-
ory safety for heap-allocated data by checking and propagating metadata tags.
Every memory location receives a tag that uniquely identifies the allocated region
to which that location belongs (akin to the identifiers in Sect. 2), and pointers
receive the tag of the region they are allowed to reference. The monitor assigns
these tags to new regions by storing a monotonic counter in protected memory
that is bumped on every call to malloc; with a large number of possible tags, it
is possible to avoid the freshness pitfalls discussed in Sect. 4.4. When a memory
access occurs, the monitor checks whether the tag on the pointer matches the tag
on the location. If they do, the operation is allowed; otherwise, execution halts.
The monitor instruments the allocator to make set up tags correctly. Its imple-
mentation achieves good performance using the PUMP, a hardware extension
accelerating such micro-policies for metadata tagging [15].

5.2 Abstract Machine

The memory-safe abstract machine [5] operates on two kinds of values: machine
words w, or pointers (i, w), which are pairs of an identifier i ∈ I and an offset
w. We use W to denote the set of machine words, and V to denote the set
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of values. Machine states are triples (m, rs, pc), where (1) m ∈ I ⇀fin V∗ is a
memory mapping identifiers to lists of values; (2) rs ∈ R ⇀fin V is a register
bank, mapping register names to values; and (3) pc ∈ V is the program counter.

The execution of an instruction is specified by a step relation s → s′. If there
is no s′ such that s → s′, we say that s is stuck, which means that a fatal
error occurred during execution. On each instruction, the machine checks if the
current program counter is a pointer and, if so, tries to fetch the corresponding
value in memory. The machine then ensures that this value is a word that cor-
rectly encodes an instruction and, if so, acts accordingly. The instructions of the
machine, representative of typical RISC architectures, allow programs to perform
binary and logical operations, move values to and from memory, and branch. The
machine is in fact fairly similar to the language of Sect. 2. Some operations are
overloaded to manipulate pointers; for example, adding a pointer to a word is
allowed, and the result is obtained by adjusting the pointer’s offset accordingly.
Accessing memory causes the machine to halt when the corresponding position
is undefined.

In addition to these basic instructions, the machine possesses a set of special
monitor services that can be invoked as regular functions, using registers to
pass in arguments and return values. There are two services alloc and free for
managing memory, and one service eq for testing whether two values are equal.
The reason for using separate monitor services instead of special instructions
is to keep its semantics closer to the more concrete machine that implements
it. While instructions include an equality test, it cannot replace the eq service,
since it only takes physical addresses into account. As argued in Sect. 4.2, such
comparisons can be turned into a side channel. To prevent this, testing two
pointers for equality directly using the corresponding machine instruction results
in an error if the pointers have different block identifiers.

5.3 Verifying Memory Safety

The proof of memory safety for this abstract machine mimics the one carried for
the language in Sect. 3. We use similar notations as before: π · s means renaming
every identifier that appears in s according to the permutation π, and ids(s) is
the finite set of all identifiers that appear in the state s. A simple case analysis on
the possible instructions yields analogs of Theorems 1, 2 and 4 (we don’t include
an analog of Theorem 3 because we consider individual execution steps, where
loops cannot occur).

Theorem 8. Let π be a permutation, and s and s′ be two machine states such
that s → s′. There exists another permutation π′ such that π · s → π′ · s′.

Theorem 9. Let (m1, rs, pc) be a state of the abstract machine, and m2 a
memory. Suppose that ids(m1, rs, pc) # dom(m2), and that (m1, rs, pc) →
(m′, rs ′, pc′). Then, there exists a permutation π such that ids(π·m′, π·rs, π·pc) #
dom(m2) and (m2 ∪ m1, rs, pc) → (m2 ∪ π · m′, π · rs ′, π · pc′).
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Theorem 10. Let (m1, rs, pc) be a machine state, and m2 a memory. If
ids(m1, rs, pc) # dom(m2), and (m1, rs, pc) is stuck, then (m2 ∪ m1, rs, pc) is
also stuck.

Once again, we can combine these properties to obtain a proof of noninter-
ference. Our Coq development includes a complete statement.

5.4 Discussion

The reasoning principles supported by the memory-safety monitor have an
important difference compared to the ones of Sect. 3. In the memory-safe lan-
guage, reachability is relative to a program’s local variables. If we want to argue
that part of the state is isolated from some code fragment, we just have to con-
sider that fragment’s local variables—other parts of the program are still allowed
to access the region. The memory-safety monitor, on the other hand, does not
have an analogous notion: an unreachable memory region is useless, since it
remains unreachable by all components forever.

It seems that, from the standpoint of noninterference, heap memory safety
taken in isolation is much weaker than the guarantees it provides in the presence
of other language features, such as local variables. Nevertheless, the properties
studied above suggest several avenues for strengthening the mechanism and mak-
ing its guarantees more useful. The most obvious one would be to use the mech-
anism as the target of a compiler for a programming language that provides
other (safe) stateful abstractions, such as variables and a stack for procedure
calls. A more modest approach would be to add other state abstractions to the
mechanism itself. Besides variables and call stacks, if the mechanism made code
immutable and separate from data, a simple check would suffice to tell whether
a code segment stored in memory references a given privileged register. If the
register is the only means of reaching a memory region, we should be able to
soundly infer that that code segment is independent of that region.

On a last note, although the abstract machine we verified is fairly close to our
original language, the dynamic monitor that implements it using tags is quite
different (Sect. 5.1). In particular, the monitor works on a machine that has a
flat memory model, and keeps track of free and allocated memory using a pro-
tected data structure that stores block metadata. It was claimed that reasoning
about this base and bounds information was the most challenging part of the
proof that the monitor implements the abstract machine [5]. For this reason, we
believe that this proof can be adapted to other enforcement mechanisms that
rely solely on base and bounds information—for example, fat pointers [13,25] or
SoftBound [31]—while keeping a similar abstract machine as their specification,
and thus satisfying a similar noninterference property. This gives us confidence
that our memory safety characterization generalizes to other settings.

6 Related Work

The present work lies at the intersection of two areas of previous research: one
on formal characterizations of memory safety, the other on reasoning principles
for programs. We review the most closely related work in these areas.
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Characterizing Memory Safety. Many formal characterizations of memory safety
originated in attempts to reconcile its benefits with low-level code. Gener-
ally, these works claim that a mechanism is safe by showing that it prevents
or catches typical temporal and spatial violations. Examples in the literature
include: Cyclone [41], a language with a type system for safe manual memory
management; CCured [33], a program transformation that adds temporal safety
to C by refining its pointer type with various degrees of safety; Ivory [17] an
embedding of a similar “safe-C variant” into Haskell; SoftBound [31], an instru-
mentation technique for C programs for spatial safety, including the detection of
bounds violations within an object; CETS [32], a compiler pass for preventing
temporal safety violations in C programs, including accessing dangling point-
ers into freed heap regions and stale stack frames; the memory-safety monitor
for the PUMP [5,15], which formed the basis of our case study in Sect. 5; and
languages like Mezzo [35] and Rust [45], whose guarantees extend to prevent-
ing data races [7]. Similar models appear in formalizations of C [24,26], which
need to rigorously characterize its sources of undefined behavior—in particular,
instances of memory misuse.

Either explicitly or implicitly, these works define memory errors as attempts
to use a pointer to access a location that it was not meant to access—for exam-
ple, an out-of-bounds or free one. This was noted by Hicks [20], who, inspired by
SoftBound, proposed to define memory safety as an execution model that tracks
what part of memory each pointer can access. Our characterization is comple-
mentary to these accounts, in that it is extensional : its data isolation properties
allow us to reason directly about the observable behavior of the program. Fur-
thermore, as demonstrated by our application to the monitor of Sect. 5 and the
discussions on Sect. 4, it can be adapted to various enforcement mechanisms and
variations of memory safety.

Reasoning Principles. Separation logic [36,48] has been an important source of
inspiration for our work. The logic’s frame rule enables its local reasoning capa-
bilities and imposes restrictions that are similar to those mandated by memory-
safe programming guidelines. As discussed in Sect. 3.3, our reasoning principles
are reminiscent of the frame rule, but use reachability to guarantee locality in
settings where memory safety is enforced automatically. In separation logic, by
contrast, locality needs to be guaranteed for each program individually by com-
prehensive proofs.

Several works have investigated similar reasoning principles for a variety of
program analyses, including static, dynamic, manual, or a mixture of those. Some
of these are formulated as expressive logical relations, guaranteeing that pro-
grams are compatible with the framing of state invariants; representative works
include: L3 [3], a linear calculus featuring strong updates and aliasing control;
the work of Benton and Tabereau [8] on a compiler for a higher-order language;
and the work of Devriese et al. [14] on object capabilities for a JavaScript-like
language. Other developments are based on proof systems reminiscent of sep-
aration logic; these include Yarra [38], an extension of C that allows program-
mers to protect the integrity of data structures marked as critical ; the work
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of Agten et al. [2], which allows mixing unverified and verified components by
instrumenting the program to check that required assertions hold at interfaces;
and the logic of Swasey et al. [42] for reasoning about object capabilities.

Unlike our work, these developments do not propose reachability-based isola-
tion as a general definition of memory safety, nor do they attempt to analyze how
their reasoning principles are affected by common variants of memory safety. Fur-
thermore, many of these other works—especially the logical relations—rely on
encapsulation mechanisms such as closures, objects, or modules that go beyond
plain memory safety. Memory safety alone can only provide complete isolation,
while encapsulation provides finer control, allowing some interaction between
components, while guaranteeing the preservation of certain state invariants. In
this sense, one can see memory-safety reasoning as a special case of encapsulation
reasoning. Nevertheless, it is a practically relevant special case that is interesting
on its own, since when reasoning about an encapsulated component, one must
argue explicitly that the invariants of interest are preserved by the private oper-
ations of that component; memory safety, on the other hand, guarantees that
any invariant on unreachable parts of the memory is automatically preserved.

Perhaps closer to our work, Maffeis et al. [27] show that their notion of
“authority safety” guarantees isolation, in the sense that a component’s actions
cannot influence the actions of another component with disjoint authority. Their
notion of authority behaves similarly to the set of block identifiers accessible by
a program in our language; however, they do not attempt to connect their notion
of isolation to the frame rule, noninterference, or traditional notions of memory
safety.

Morrisett et al. [30] state a correctness criterion for garbage collection based
on program equivalence. Some of the properties they study are similar to the
frame rule, describing the behavior of code running in an extended heap. How-
ever, they use this analysis to justify the validity of deallocating objects, rather
than studying the possible interactions between the extra state and the program
in terms of integrity and secrecy.

7 Conclusions and Future Work

We have explored the consequences of memory safety for reasoning about pro-
grams, formalizing intuitive principles that, we argue, capture the essential dis-
tinction between memory-safe systems and memory-unsafe ones. We showed how
the reasoning principles we identified apply to a recent dynamic monitor for heap
memory safety.

The systems studied in this paper have a simple storage model: the lan-
guage of Sect. 2 has just global variables and flat, heap-allocated arrays, while
the monitor of Sect. 5 doesn’t even have variables or immutable code. Realis-
tic programming platforms, of course, offer much richer stateful abstractions,
including, for example, procedures with stack-allocated local variables as well
as structured objects with contiguously allocated sub-objects. In terms of mem-
ory safety, these systems have a richer vocabulary for describing resources that
programs can access, and programmers could benefit from isolation-based local
reasoning involving these resources.
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For example, in typical safe languages with procedures, the behavior of a
procedure should depend only on its arguments, the global variables it uses,
and the portions of the state that are reachable from these values; if the caller
of that procedure has a private object that is not passed as an argument, it
should not affect or be affected by the call. Additionally, languages such as C
allow for objects consisting of contiguously allocated sub-objects for improved
performance. Some systems for spatial safety [13,31] allow capability downgrad-
ing—that is, narrowing the range of a pointer so that it can’t access outside of
a sub-object’s bounds. It would be interesting to refine our model to take these
features into account. In the case of the monitor of Sect. 5, such considerations
could lead to improved designs or to the integration of the monitor inside a
secure compiler. Conversely, it would be interesting to derive finer security prop-
erties for relaxations like the ones discussed in Sect. 4. Some inspiration could
come from the IFC literature, where quantitative noninterference results pro-
vide bounds on the probability that some secret is leaked, the rate at which it
is leaked, how many bits are leaked, etc. [6,39].

The main goal of this work was to understand, formally, the benefits of
memory safety for informal and partial reasoning, and to evaluate a variety of
weakened forms of memory safety in terms of which reasoning principles they
preserve. However, our approach may also suggest ways to improve program
verification. One promising idea is to leverage the guarantees of memory safety
to obtain proofs of program correctness modulo unverified code that could have
errors, in contexts where complete verification is too expensive or not possible
(e.g., for programs with a plugin mechanism).
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Appendix

This appendix defines the language of Sect. 2 more formally. Figure 3 summarizes
the syntax of programs and repeats the definition of program states. The syntax
is standard for a simple imperative language with pointers.

Figure 4 defines expression evaluation, [[e]] : S → V. Variables are looked
up in the local-variable part of the state (for simplicity, heap cells cannot be
dereferenced in expressions; the command x ← [e] puts the value of a heap
cell in a local variable). Constants (booleans, numbers, and the special value
nil used to simplify error propagation) evaluate to themselves. Addition and
subtraction can be applied both to numbers and to combinations of numbers
and pointers (for pointer arithmetic); multiplication only works on numbers.
Equality is allowed both on pointers and on numbers. Pointer equality compares
both the block identifier and its offset, and while this is harder to implement in
practice than just comparing physical addresses, this is needed for not leaking
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Fig. 3. Syntax and program states

information about pointers (see Sect. 4.2). The special expression offset extracts
the offset component of a pointer; we introduce it to illustrate that for satisfying
our memory characterization pointer offsets do not need to be hidden (as opposed
to block identifiers). The less-than-or-equal operator only applies to numbers—in
particular, pointers cannot be compared. However, since we can extract pointer
offsets, we can compare those instead.

The definition of command evaluation employs an auxiliary partial function
that computes the result of evaluating a program along with the set of block
identifiers that were allocated during evaluation. Formally, [[c]]+ : S ⇀ O+,
where O+ is an extended set of outcomes defined as Pfin(I) × S � {error}. We
then set

[[c]](l,m) =

⎧
⎪⎨

⎪⎩

(l′,m′) if [[c]]+(l,m) = (I, l′,m′)
error if [[c]]+(l,m) = error

⊥ if [[c]]+(l,m) = ⊥

finalids(l,m) =

{
ids(l,m) \ I if [[c]]+(l,m) = (I, l′,m′)
∅ otherwise

To define [[c]]+, we first endow the set S ⇀ O+ with the partial order of
program approximation:

f � g � ∀s, f(s) �= ⊥ ⇒ f(x) = g(x)
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Fig. 4. Expression evaluation

Fig. 5. Auxiliary operators bind and if
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Fig. 6. Command evaluation with explicit allocation sets

This allows us to define the semantics of iteration (the rule for while e do c end)
in a standard way using the Kleene fixed point operator fix.

The definition of [[c]]+ appears in Fig. 6, where several of the rules use a
bind operator (Fig. 5) to manage the “plumbing” of the sets of allocated block
ids between the evaluation of one subcommand and the next. The rules for if
and while also use an auxiliary operator if (also defined in Fig. 5) that turns
non-boolean guards into errors.

The evaluation rules for skip, sequencing, conditionals, while, and assignment
are standard. The rule for heap lookup, x ← [e], evaluates e to a pointer and
then looks it up in the heap, yielding an error if e does not evaluate to a pointer
or if it evaluates to a pointer that is invalid, either because its block id is not
allocated or because its offset is out of bounds. Similarly, the heap mutation
command, [e1] ← e2, requires that e1 evaluate to a pointer that is valid in the
current memory m (i.e., such that looking it up in m yields something other than
⊥). The allocation command x ← alloc(e) first evaluates e to an integer n, then
calculates the next free block id for the current machine state (fresh(ids(l,m)));
it yields a new machine state where x points to the first cell in the new block
and where a new block of n cells is added the heap, all initialized to 0. Finally,
free(e) evaluates e to a pointer and yields a new heap where every cell sharing
the same block id as this pointer is undefined.
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Spector-Zabusky, A., Tolmach, A.: Micro-policies: formally verified, tag-based secu-
rity monitors. In: S&P, Oakland (2015). http://prosecco.gforge.inria.fr/personal/
hritcu/publications/micro-policies.pdf
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Abstract. Formal verification of systems-level software such as hyper-
visors and operating systems can enhance system trustworthiness. How-
ever, without taking low level features like caches into account the verifi-
cation may become unsound. While this is a well-known fact w.r.t. timing
leaks, few works have addressed latent cache storage side-channels, whose
effects are not limited to information leakage. We present a verification
methodology to analyse soundness of countermeasures used to neutralise
these channels. We apply the proposed methodology to existing coun-
termeasures, showing that they allow to restore integrity of the system.
We decompose the proof effort into verification conditions that allow for
an easy adaption of our strategy to various software and hardware plat-
forms. As case study, we extend the verification of an existing hypervisor
whose integrity can be tampered using cache storage channels. We used
the HOL4 theorem prover to validate our security analysis, applying the
verification methodology to a generic hardware model.

1 Introduction

Formal verification of low-level software such as microkernels, hypervisors, and
drivers has made big strides in recent years [3,4,17,21,22,33,37,38]. We appear
to be approaching the point where the promise of provably secure, practical sys-
tem software is becoming a reality. However, system verification is usually based
on models that are far simpler than contemporary state-of-the-art hardware.
Many features pose significant challenges: Memory models, pipelines, specula-
tion, out-of-order execution, peripherals, and various coprocessors, for instance
for system management. In a security context, caches are notorious. They have
been known for years to give rise to timing side channels that are difficult to fully
counteract [13,16,26,28,32,36]. Also, cache management is closely tied to mem-
ory management, which—since it governs memory mapping, access control, and
cache configuration through page-tables residing in memory—is one of the most
complex and security-critical components in the computer architecture flora.
c© The Author(s) 2018
L. Bauer and R. Küsters (Eds.): POST 2018, LNCS 10804, pp. 109–133, 2018.
https://doi.org/10.1007/978-3-319-89722-6_5
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Computer architects strive to hide this complexity from application program-
mers, but system software and device drivers need explicit control over features
like cacheability attributes. In virtualization scenarios, for instance, it is critical
for performance to be able to delegate cache management authority for pages
belonging to a guest OS to the guest itself. With such a delegated authority a
guest is free to configure its share of the memory system as it wishes, including
configurations that may break conventions normally expected for a well-behaved
OS. For instance, a guest OS will usually be able to create memory aliases and
to set cacheability attributes as it wishes. Put together, these capabilities can,
however, give rise to memory incoherence, since the same physical location can
now be pointed to by two virtual addresses, one to cache and one to memory.
This opens up for cache storage attacks on both confidentiality and integrity, as
was shown in [20]. Analogous problems arise due to the presence of instruction-
caches, that can contain binary code that differs from the one stored in memory.
Differently from timing channels, which are external to models used for formal
analysis and do not invalidate verification of integrity properties, storage chan-
nels make the cacheless models unsound: Using them for security analysis can
lead to conclusions that are false.

This shows the need to develop verification frameworks for low-level system
software that are able to adequately reflect the presence of caches. It is partic-
ularly desirable if this can be done in a manner that allows to reuse existing
verification tools on simpler models that do not consider caches. This is the goal
we set ourselves in this paper.

Our Contributions. We undertake the first rigorous analysis of integrity-
preserving countermeasures against cache storage channel attacks. We propose
a practical verification framework, which is independent of a specific hardware
and the software executing on the platform, and can be used to analyse security
of low-level software on models with enabled caches. Our framework accom-
modates both data and instruction caches and we have proved its soundness
in the HOL4 theorem prover. Our strategy consists in introducing hardware
and software proof obligations and demonstrating that they prevent attacks on
integrity. The framework is used to verify soundness of two countermeasures for
data-caches and two countermeasures for instruction-caches. This results in code
verification conditions that can be analysed on cacheless models, so that exist-
ing tools [6,11,31] (mostly not available on cache-enabled models) can automate
this task to a large extent. To demonstrate that our methodology can be applied
to commodity hardware, we formally model a generic cache and demonstrate
that extensions of existing cacheless architectural models with the generic cache
model satisfy all requirements imposed by our methodology. The practicability
of our approach is shown by applying it to repair the verification of an existing
and vulnerable hypervisor [21], demonstrating that the modified design prevents
cache-attacks.
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2 Related Work

Cache Storage Channels. The existence of cache storage channels due to mis-
matched cacheability attributes was first pointed out in [20]. That paper also
sketches how prior integrity and confidentiality proofs for a sequential mem-
ory model could be repaired, identifying that coherency of data-cache is a key
requirement. However, the verification methodology is only sketched and pro-
vides merely an intuition about the proof strategy. The present paper develops
these ideas in detail, providing several new contributions, including (i) a for-
mal cache-aware hardware model, (ii) a revised and detailed proof strategy that
allows to decompose verification into hardware-, software-, and countermeasure-
dependent proof obligations, (iii) introduction and verification of instruction
cache coherency, (iv) formal definitions of all proof obligations and invariants,
(v) a detailed explanation of the proof and how the proof obligations can be dis-
charged for given applications and countermeasures, and (vi) a complete mech-
anization in HOL4.

Formal Verification. Recent works on kernel and hypervisor verification [8,10,
17–19,21,24,25,33,34] all assume a sequential memory model and leave cache
issues to be managed by model external means, while the CVM framework [4]
treats caches only in the context of device management [23]. In [21], a cacheless
model was used to prove security of the hypervisor used here as a case study. Due
to absence of caches in the underlying hardware model, the verification result is
unsound in presence of uncacheable aliases, as demonstrated in [20].

Timing Channels. Timing attacks and countermeasures have been formally ver-
ified to varying degrees of detail in the literature. Since their analysis gen-
erally ignores caches, verified kernels are susceptible to timing attacks. For
instance, Cock et al. [13] examined the bandwidth of timing channels in seL4
and possible countermeasures including cache coloring. Other related work
includes those adopting formal analysis to either check the rigour of counter-
measures [5,7,9,15,20,35] or to examine bandwidth of side-channels [14,27].

There is no comparable formal treatment for cache storage channels. These
channels carry information through memory and, additionally to permitting
illicit information flows, can be used to compromise integrity. To the best of
our knowledge we are the first to present a detailed security proof for counter-
measures against cache storage channel attacks.

3 Threats, Countermeasures, and Verification Goal

Data-Caches and Aliases. Modern CPU architectures such as ARM, Power, and
x64 permit to configure if a given virtual page is cacheable or not. This capability
can result in a class of attacks called “alias-driven attacks”. Suppose a victim
reference monitor that (1) validates an input stored in a memory location against
a security policy and (2) uses such input for implementing a critical functionality.
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Assume an incoherent state for this memory location: the data-cache contains
a value for this location that differs from the content of the memory but the
cache is not dirty. If the cache line is evicted between (1) and (2), its content is
not written into the memory, since it is not dirty. In this case, the victim can
potentially evaluate the policy using the value fetched from the cache and later
use the content stored in memory to implement the critical functionality, allowing
untrusted inputs to bypass the policy. This behavior has been demonstrated for
ARMv7 and ARMv8 CPUs [20] as well as for MIPS, where uncacheable aliases
have been used to establish incoherency. This behavior clearly departs from the
behavior of a system that has no cache. However, x64 processors that implement
“self-snooping” appear to be immune to this phenomenon.

A system that (1) permits an attacker to configure cacheability of its virtual
memory, (2) acquires ownership of that location from the attacker, and (3) uses
the location to read security critical information can be target of this attack. An
example is the hypervisor presented in Sect. 5.5. The runtime monitor presented
in [12], which forbids the execution of unsigned code, can also be attacked using
caches. The attacker can load a signed process in cache and a malware in mem-
ory. Similarly, remote attestation checks the integrity of a device by a trusted
measuring function. If this function accesses stale data from the caches then the
measurements can be inaccurate.

In this paper we analyse two countermeasures against alias-driven attacks:
“always cacheability” consists in defining a fixed region of memory that is made
always cacheable and ensuring that the trusted software rejects any input point-
ing outside this region; “selective eviction” consists in flushing from the cache
every location that is accessed by the trusted software and that has been pre-
viously accessed by the attacker. A description and evaluation of other possible
countermeasures against cache storage channels was provided in [20].

Instruction-Caches. In a similar vein, instruction-caches may be dangerous if
the content of executable pages is changed without using cache management
instructions to maintain memory coherency. Suppose that a software (1) executes
instructions from a region of memory, thus filling the instruction-cache with the
instructions of a program, (2) it updates the memory with the code of a new
program without flushing the cache, and (3) it executes the new program. Since
between (1) and (3) some lines of the instruction-cache are evicted and other
not, the CPU can execute a mix of the code of the two programs, resulting in a
behavior that is hard to predict.

The presence of instruction-caches affect systems whose security depends on
dynamically loaded code. This includes the aforementioned runtime monitor,
boot-loaders that load or relocate programs, systems that implement dynamic
code randomization, and Software Fault Isolation [29] (SFI) sandboxes that
inspect binary code to isolate loadable third party modules.

We analyse two countermeasures against attacks that use instruction-caches:
“Constant program memory” ensures the trusted executable code is never mod-
ified; “Selective eviction” consists in selectively evicting lines of the instruction-
cache and flushing lines of the data-cache for locations that are modified.
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3.1 Verification Goals

In this work we consider a trusted system software (the “kernel”) that shares the
system with an untrusted user level software (the “application”): the application
requests services from the kernel. The hardware execution mode used by the
application is less privileged than the mode used by the kernel. The application
is potentially malicious and takes the role of the attacker. The kernel dynamically
manages memory ownership and can provide various services, for instance for
secure ownership transfer. This enables the application to pass data to the kernel
services, while avoiding expensive copy operations: The application prepares the
input inside its own memory, the ownership of this memory is transferred to the
kernel, and the corresponding kernel routine operates on the input in-place.

Intuitively for guaranteeing integrity we mean that it is not possible for
the application to influence the kernel using cache features (except possibly for
timing channels, which are not considered in this work). That is, if there is a
possibility for the application to affect the kernel behavior (e.g. by providing
parameters to a system call) in a system with caches, there must be the same
possibility in an idealized system that has no caches. This goal is usually formal-
ized by requiring that the cacheless system can simulate all possible executions
of the system with caches (i.e. all executions of the real system are admitted by
the specification, that in this case is represented by the cacheless system).

Unfortunately, ensuring this property for complete executions is not possible:
since the application is untrusted we need to assume that its code is unknown
and that it can exploit behaviors of caches that are not available in the cacheless
system, making impossible to guarantee that the behavior of the application is
the same in both systems. For this reason, we analyse executions of the applica-
tion and of the kernel separately.

We first identify a set of memory resources called “critical”. These are the
resources for which integrity must be preserved and that affect the kernel behav-
ior. For example, in an operating system the memory allocator uses a data struc-
ture to keep track of the ownership of allocated memory pages. Thus all pages
not belonging to the untrusted process (the application) are considered critical.
Since this classification depends on the content of the allocator data structure,
this is also a critical resource. Similarly in [21] the page type data structure
identifies critical resources.

Then we phrase integrity as two complementary properties: (1) direct or
indirect modification of the critical resources is impossible while the application
is executing on the system with caches; and (2) the kernel has the same behavior
in the cacheless and the cache-aware system.

An alternative approach to phrase integrity might be to show the absence of
information flow from application to kernel. There are a number of issues with
such an approach in this context, however: First, attacks that do not involve
information flow would not be covered; Second, it is not clear how an infor-
mation flow oriented account would handle kernel invocations; these generally
correspond to endorsement actions in a multi-level security lattice setting and
are challenging to map to the present setting. On the other hand, our account of
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integrity permits any safety property that only depends on the critical resources
and holds for the cacheless system to be transferred to the system with caches.

4 Formalisation

As basis for our study we define two models, a cacheless and a cache-aware model.
The cacheless model represents a memory-coherent single-core system where all
caches are disabled. The cache-aware model is the same system augmented by a
single-level separated data- and instruction-cache.

4.1 Cacheless Model

The cacheless model is ARM-flavoured but general enough to apply to other
architectures. A (cacheless) state s = 〈reg , psreg , coreg ,mem〉 ∈ S is a tuple of
general-purpose registers reg (including program counter pc), program-status
registers psreg , coprocessor registers coreg , and memory mem. The core exe-
cutes either in non-privileged mode U or privileged mode P , Mode(s) ∈ {U ,P}.
Executions in privileged mode are necessarily trusted, since they are able to
modify the system configuration, e.g., coprocessor registers, in arbitrary ways.
The program-status registers psreg encode the execution mode and other exe-
cution parameters such as the arithmetic flags. The coprocessor registers coreg
determine a range of system configuration parameters, including virtual memory
mapping and memory protection. The word addressable memory is represented
by mem : PA → B

w , where B = {0, 1}, PA is the set of physical addresses, and
w is the word size.

Executions in non-privileged mode are unable to directly modify coproces-
sor registers as well as certain critical program-status registers. For instance,
the execution mode can be switched to P only by raising an exception. Mem-
ory accesses are controlled by a Memory Management Unit (MMU), which also
determines memory region attributes such as cacheability. Let A = {wt , rd , ex}
be the set of access permissions (for write, read, and execute respectively) and
M = {U ,P} be the set of execution modes. The MMU model is the function
MMU (s, va) ∈ (2M×A × PA × B) which yields for a virtual address va ∈ VA the
set of granted access rights, the translation, and the cacheability attribute. Note
that the same physical addresses can be accessed with different access rights and
different cacheability settings using different virtual aliases. Hereafter, when it
is clear from the context, we use MMU (s, va) to represent the translation of va.

The behaviour of the system is defined as a labeled transition system using
relation →m⊆ S × S, where m ∈ M and if s →m s′ then Mode(s) = m. Each
transition represents the execution of a single instruction. When needed, we
let s →m s′ [ops] denote that the operations ops are performed on the mem-
ory subsystem, where ops is a list whose elements are either wt(pa, c) (pa was
written with cacheability attribute c), rd(pa, c) (pa was read with cacheability
attribute c), flD(pa), or flI (pa) (the data- or instruction-cache flush operation for
pa, which have no effects in the cacheless model). We use s0 sn to represent the
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weak transition relation that holds if there is an execution s0 −→ · · · −→ sn such
that Mode(sn) = U and Mode(sj) �= U for 0 < j < n, i.e. the weak transition
hides states while the kernel is running.

4.2 Cache-Aware Model

We model a single-core processor with single-level separated instruction and
data-caches, i.e., a modified Harvard architecture. In Sect. 7 we discuss variations
and generalizations of this model.

A state s̄ ∈ S̄ in the cache-aware model has the components of the cacheless
model together with a data-cache d-cache and an instruction-cache i-cache, s̄ =
〈reg , psreg , coreg ,mem, d-cache, i-cache〉. The function MMU and the transition
relation →m⊆ S̄ × S̄ are extended to take into account caches.

Other definitions of the previous subsection are extended trivially. We use
d -hit(s̄, pa) to denote a data-cache hit for address pa, d -dirty(s̄, pa) to identify
dirtiness of the address pa (i.e. if the value of pa has been modified in cache and
differs from the memory content), and d -cnt(s̄, pa) to obtain the value for pa
stored in the data-cache (respectively i -hit(s̄, pa), i -dirty(s̄, pa), and i -cnt(s̄, pa)
for the instruction-cache).

Due to the use of the modified Harvard architecture and the presence of
caches, there are three views of the memory subsystem: the data-view Dv, the
instruction-view Iv, and the memory-view Mv :

Dv(s̄, pa) = if d -hit(s̄, pa) then d -cnt(s̄, pa) else s̄.mem(pa)

Iv(s̄, pa) = if i -hit(s̄, pa) then i -cnt(s̄, pa) else s̄.mem(pa)

Mv(s̄, pa) = if d -dirty(s̄, pa) then d -cnt(s̄, pa) else s̄.mem(pa)

We require that the kernel always uses cacheable virtual aliases. There-
fore, kernel reads access the data-view and kernel instruction fetches access the
instruction-view. Moreover, the MMU always consults first the data-cache when
it fetches a page-table descriptor, as is the case for instance in ARM Cortex-A53
and ARM Cortex-A8. Therefore, the MMU model uses the data-view. Finally,
the memory-view represents what can be observed from the data-view after non-
dirty cache lines have been evicted.

4.3 Security Properties

As is common in designs of low-level software, we assume that the kernel uses
a static region of virtual memory Kvm ⊆ VA for its memory accesses and that
the static region Kex ⊆ Kvm maps the kernel code.

We first identify the critical resources, i.e., those resources for which integrity
must be preserved and on which kernel behavior depends. This set always
includes the coprocessor registers, which the architecture protects from non-
privileged modifications. The security type of memory locations, however, can
dynamically change due to transfer of memory ownership, i.e., the criticality
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of resources depends on the state of the system. The function CR : S̄ → 2PA

retrieves the subset of memory resources that are critical. Function CR itself
depends on a subset of resources, namely the internal kernel data-structures
that determine the security type of memory resources (for the kernel being an
operating system and the application being one of its user processes, imagine
the internal state of the page allocator and the process descriptors). Similarly,
the function EX : S̄ → 2PA retrieves the subset of critical memory resources that
contain trusted executable code. These definitions are naturally lifted to the
cacheless model, by extending a cacheless state with empty caches. Two states
s̄ and s̄′ have the same data-view (respectively instruction-view) of the critical
memory, written s̄ ≡D s̄′ (respectively s̄ ≡I s̄′), if

{(pa,Dv(s̄, pa)) | pa ∈ CR(s̄)} = {(pa,Dv(s̄′, pa)) | pa ∈ CR(s̄′)}

(respectively Iv and EX ). Finally, two states s̄ and s̄′ have the same critical
resources, and we write s̄ ≡CR s̄′, iff s̄ ≡D s̄′, s̄ ≡I s̄′, and s̄.coreg = s̄′.coreg .

Our verification approach requires to introduce a system invariant Ī that
is software dependent and defined per kernel. This invariant ensures that the
kernel can work properly (e.g. stack pointer and its data structures are correctly
configured) and its properties are detailed in Sect. 5. A corresponding invariant I
for the cacheless model is derived from Ī by excluding properties that constrain
caches. Our goal is to establish two theorems: an application integrity theorem
showing that Ī correctly constrains application behaviour in the cache-aware
model, and a kernel integrity theorem showing that kernel routines in the cache-
aware model correctly refine the cacheless model.

As the application is able to break its memory coherency at will, the appli-
cation integrity theorem is a statement about the processor hardware and its
correct configuration. In particular, Theorem1 shows that non-privileged execu-
tion in the cache-aware model preserves the required invariant, that the invariant
is adequate to preserve the critical resources, and that entries into privileged level
correctly follow the hardware mode switching convention. For the latter, we use
predicate ex-entry(s̄) to identify states of the system immediately after switching
to the kernel, i.e., when an exception is triggered, the mode becomes privileged
and the program counter points to an entry in the exception vector table.

Theorem 1 (Application Integrity). For all s̄, if Ī (s̄) and s̄ →U s̄′ then
Ī (s̄′), s̄ ≡CR s̄′, and if Mode(s̄′) �= U then ex-entry(s̄′).

For the kernel we prove that the two models behave equivalently. We prove this
using forward simulation, by defining a simulation relation Rsim guaranteeing
equality of all registers and critical memory resources, and then showing that
both the invariant and the relation are preserved by privileged transitions:

Theorem 2 (Kernel Integrity). For all s̄1 and s1 such that Ī (s̄1), s̄1 Rsim

s1, and ex-entry(s̄1), if s̄1 s̄2 then ∃s2. s1 s2, s̄2 Rsim s2 and Ī (s̄2).
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5 Proof Strategy

Theorems 1 and 2 are proved in five steps:

1. First we introduce crucial properties of the hardware, abstracting from the
details of a specific hardware architecture. We obtain a set of proof obligations
(i.e. HW Obligation) that must be discharged for any given hardware.

2. Next, we reduce application integrity, Theorem1, to proof obligations (i.e.
SW-I Obligation) on software-specific invariants of the cache-aware model.

3. The same approach applies for kernel integrity, Theorem2, where we also
derive proof obligations (i.e. SW-C Obligation) on the kernel code.

4. We then demonstrate correctness of the selected countermeasures of Sect. 3
by discharging the corresponding proof obligations.

5. The last step is kernel-specific: we sketch how our results allow standard
cache-oblivious binary analysis tools to show that a kernel implements the
countermeasures, establishing Theorems 1 and 2.

A fundamental notion for our proof is coherency, which captures memory
resources whose content cannot be indirectly effected through cache eviction.

Definition 1 (Data-Coherency). We say that a memory resource pa ∈ PA is
data-coherent in s̄, D-Coh(s̄, pa), iff d -hit(s̄, pa) and d -cnt(s̄, pa) �= s̄.mem(pa)
implies d -dirty(s̄, pa). A set R ⊆ PA is data-coherent iff all pa ∈ R are.

In other words, a physical location pa is data-coherent if a non-dirty cache hit
of pa in s̄ implies that the cached value is equal to the value stored in memory.
The general intuition is that, for an incoherent resource, the view can be changed
indirectly without an explicit memory write by evicting a clean cache-line with
different values in the cache and memory. For instance, consider an MMU that
looks first into the caches when it fetches a descriptor. Then if the page-tables are
coherent, a cache eviction cannot indirectly affect the behaviour of the MMU.
This intuition also underpins the definition of instruction-coherency.

Definition 2 (Instruction-Coherency). We say that a memory resource
pa ∈ PA is instruction-coherent in s̄, I-Coh(s̄, pa), iff the following statements
hold:

1. pa is data-coherent,
2. if i -hit(s̄, pa) then i -cnt(s̄, pa) = s̄.mem(pa), and
3. ¬d -dirty(s̄, pa)

Instruction-coherency requires the data-cache to be not dirty to ensure that
eviction from the data-cache does not break part (2) of the definition.

The role of coherency is highlighted by the following Lemma. The memory-
view differs from the data-view only in memory resources that are cached, clean,
and have different values stored in the cache and memory, and data-view differs
from instruction-view only for resources that are not instruction-coherent.

Lemma 1. Let pa ∈ PA and s̄ ∈ S̄. Then:

1. D-Coh(s̄, {pa}) ⇔ (Dv(s̄, pa) = Mv(s̄, pa)).
2. I-Coh(s̄, {pa}) ⇒ (Dv(s̄, pa) = Iv(s̄, pa)).
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5.1 Hardware Abstraction Layer

ISA models are complex because they describe the behavior of hundreds of possi-
ble instructions. For this reason we introduce three key notions in order to isolate
verification tasks that are architecture-dependent and that can be verified once
and reused for multiple countermeasures and kernels. These notions are:

1. MMU Domain: This identifies the memory resources that affect the virtual
memory translation.

2. Derivability : This provides an overapproximation of the effects over the mem-
ory and cache for instructions executed in non-privileged mode.

3. Instruction Dependency : This identifies the memory resources that affect the
behavior of the current instruction.

Here we provide an intuitive definition of these notions and formalize the prop-
erties that must be verified for the specific hardware model to ensure that these
abstractions are sound. Section 6 comments on the verification of these properties
for a generic hardware model in HOL4.

MMU domain is the function MD(s̄, V ) ⊆ PA that determines the memory
resources (i.e., the current master page-table and the linked page-tables) that
affect the translation of virtual addresses in V ⊆ VA.

HW Obligation 1

1. MD is monotone, i.e., V ′ ⊆ V implies MD(s̄, V ′) ⊆ MD(s̄, V ).
2. For all s̄, s̄′ and V ⊆ VA if Dv(s̄, pa) = Dv(s̄′, pa) for all pa ∈ MD(s̄, V )

and s̄.coreg = s̄′.coreg then MD(s̄, V ) = MD(s̄′, V ) and for all va ∈ V ,
MMU (s̄, va) = MMU (s̄′, va).

Definition 3 (Derivability). We say s̄′ is derivable from s̄ in non-privileged
mode (denoted as s̄� s̄′) if s̄.coreg = s̄′.coreg and for every pa ∈ PA at least one
of Dacc properties and at least one of Iacc hold:

D∅(s̄, s̄′, pa): Independently of the access rights for the address pa, a data-cache
line can always change due to an eviction. An eviction of a dirty cache entry
causes a write back; eviction of clean entries does not affect the memory.

Drd(s̄, s̄′, pa): If non-privileged mode can read the address pa, the value of pa in
the memory can be filled into its data-cache line, making it clean.

Dwt(s̄, s̄′, pa): If non-privileged mode can write the address pa, it can either write
directly into the data-cache, potentially making it dirty, or bypass it, by using
an uncacheable alias. Only writes can make a location in data-cache dirty.

I∅(s̄, s̄′, pa): Independently of the access rights for the address pa, the correspond-
ing line can always be evicted, leaving memory unchanged.

Iex (s̄, s̄′, pa): If non-privileged mode can execute the address pa, the instruction-
cache state can change through a fill operation which updates the cache with
the value of pa in the memory. Instruction-cache lines never become dirty.
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Fig. 1. Derivability. Here d-W(s̄, pa) = 〈d-hit(s̄, pa), d-dirty(s̄, pa), d-cnt(s̄, pa)〉 and
i-W(s̄, pa) = 〈i-hit(s̄, pa), i-dirty(s̄, pa), i-cnt(s̄, pa)〉 denote the cache-line contents
corresponding to pa in s̄.d-cache and s̄.i-cache, M = s̄.mem, M ′ = s̄′.mem, and
MMU (s̄, pa,U , acc, c) = ∃va.MMU (s̄, va,U , acc) = (pa, c).

Figure 1 reports the formal definition of these predicates for a cache oper-
ating in write-back mode, assuming cache line granularity is finer than page
granularity, i.e., the same memory permissions hold for all entries of a given
line.

Note that in a cache, one cache line contains several locations and that writing
one such location marks the whole line of the data-cache dirty. However, due to
our definition of d -dirty the locations in the written line are not considered dirty,
if they have the same value in cache as in memory.

In practice, if s̄� s̄′ then for a given location D-Coh can be invalidated only
if there exists a non-cacheable writable alias and I-Coh can be invalidated only
if there exists a writable alias. The following obligation shows that derivability
correctly overapproximates the hardware behavior:

HW Obligation 2. For all s̄ such that D-Coh(s̄,MD(s̄,VA)) and MD(s̄,VA)∩
{pa | ∃va. MMU (s̄, va) = (acc, pa, c) and (U ,wt) ∈ acc} = ∅, if s̄′ is reachable
by a non-privileged transition, i.e. s̄ →U s̄′, then

1. s̄ � s̄′, i.e., s̄′ is derivable from s̄, and
2. if Mode(s̄′) �=U then ex-entry(s̄′), i.e., the mode can only change by entering

an exception handler

The precondition of the obligation requires the MMU domain to be data-coherent
and to not overlap with the memory writable in non-privileged mode. This
ensures that the MMU configuration is constant during the execution of instruc-
tions that update multiple memory locations. This requirement also ensures
transitivity of derivability.

To complete the hardware abstraction we need sufficient conditions to ensure
that the cache-aware model behaves like the cacheless one. We use the functions
p-deps(s̄) ⊆ PA and v-deps(s̄) ⊆ VA to extract an overapproximation of the
physical and virtual addresses that affect the next transition of s̄. For instance,
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v-deps includes the program counter, the locations loaded and stored, while
p-deps(s) includes the translation of the program counter, the translation of the
virtual addresses read, and the addresses that affect the translation of v-deps (i.e.
MD(s̄, v-deps(s̄))). As usual, these definitions are lifted to the cacheless model
using empty caches. We say that s̄ and s are similar, if (s̄.reg , s̄.psreg , s̄.coreg) =
(s.reg , s.psreg , s.coreg), Dv(s̄, pa) = s.mem(pa) for all pa in p-deps(s)∩p-deps(s̄),
and Iv(s̄,MMU (s̄, s̄.reg .pc) = s.mem(MMU (s, s.reg .pc)).

HW Obligation 3. For all similar s̄ and s

1. p-deps(s̄) = p-deps(s) and v-deps(s̄) = v-deps(s)
2. if s →m s′ [ops1], s̄ →m s̄′ [ops2] and all accesses in ops1 are cacheable (i.e.

wt(pa, c) ∈ ops1 or rd(pa, c) ∈ ops1 implies c) then
(a) ops2 = ops1
(b) (s̄′.reg , s̄′.psreg , s̄′.coreg) = (s′.reg , s′.psreg , s′.coreg)
(c) for every pa if wt(pa, c) ∈ ops1 then Dv(s̄′, pa) = s′.mem(pa),

otherwise Mv(s̄, pa) = Mv(s̄′, pa) and s.mem(pa) = s′.mem(pa)

The obligation, thus, is to show that if s̄ and s are similar, then their instructions
have the same dependencies; the same physical addresses are read, written, and
flushed; registers are updated in the same way; addresses written have the same
values; addresses that are not written preserve their memory view.

The last obligation describes cache effects of operations:

HW Obligation 4. For every s̄ if s̄ →m s̄′ [ops] and all accesses in ops are
cacheable then

1. for every pa if wt(pa, c) ∈ ops then D-Coh(s̄′, {pa}),
otherwise D-Coh, I-Coh and ¬d -dirty of pa are preserved

2. if flD(pa) ∈ ops then D-Coh(s̄′, {pa}) and ¬d -dirty(s̄, pa)
3. if flI (pa) ∈ ops, D-Coh(s̄, {pa}), and ¬d -dirty(s̄, pa) then I-Coh(s̄′, {pa})

If the kernel only uses cacheable aliases then memory writes establish data-
coherency; data- and instruction-coherency, as well as non-dirtyness are pre-
served for non-updated locations; data-cache flushes establish data-coherency
and make locations non-dirty; instruction-cache flushes make data-coherent, non-
dirty locations instruction-coherent.

5.2 Application Level: Theorem1

To decompose the proof of Theorem 1, the invariant Ī is split in three parts:
a functional part Īfun which only depends on the data-view of the critical
resources, an invariant Īcoh which only depends on data-coherency of the criti-
cal resources and instruction-coherency of executable resources, and an optional
countermeasure-specific invariant Īcm which depends on coherency of non-critical
memory resources such as resources in an always-cacheable region:

SW-I Obligation 1. For all s̄, Ī (s̄)= Īfun(s̄)∧Īcoh(s̄)∧Īcm(s̄) and:
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1. for all s̄′ if s̄ ≡CR s̄′ then Īfun(s̄)= Īfun(s̄′);
2. for all s̄′ if s̄ ≡CR s̄′, D-Coh(s̄,CR(s̄)), D-Coh(s̄′,CR(s̄′)), I-Coh(s̄,EX (s̄)),

and I-Coh(s̄′,EX (s̄′)), then Īcoh(s̄)= Īcoh(s̄′);
3. for all s̄′ if Ī (s̄) and s̄ � s̄′ then Īcm(s̄′).

The invariants must prevent direct modification of the critical resources by
the application, i.e., there is no address writable in non-privileged mode that
points to a critical resource. Similarly, indirect modification, e.g., by line eviction,
must be impossible. This is guaranteed if critical resources are data-coherent and
executable resources are instruction-coherent.

SW-I Obligation 2. For all s̄:

1. If Īfun(s̄) and pa ∈ CR(s̄) then there is no va such that MMU (s̄, va) =
(acc, pa, c) and (U ,wt) ∈ acc

2. If Īfun(s̄) and Īcoh(s̄) then D-Coh(s̄,CR(s̄)) and I-Coh(s̄,EX (s̄))

Also, the functions CR and EX must be correctly defined: resources needed to
identify the set of critical kernel resources are critical themselves, as are resources
affecting the MMU configuration (i.e., the page-tables).

SW-I Obligation 3. For all s̄, s̄′:

1. If Īfun(s̄), s̄ ≡D s̄′ and s̄.coreg = s̄′.coreg then CR(s̄) = CR(s̄′), EX (s̄) =
EX (s̄′), and EX (s̄) ⊆ CR(s̄)

2. If Īfun(s̄) then MD(s̄,VA) ⊆ CR(s̄)

The following lemmas assume HW Obligation 2 and SW-I Obligations 1–3.
First, we show that the application cannot modify critical resources.

Lemma 2. For all s̄, s̄′ such that Ī (s̄) if s̄ � s̄′ then s̄ ≡CR s̄′.

Proof. Since Ī (s̄) holds, the MMU prohibits writable accesses of the applica-
tion to critical resources (SW-I Obligation 2.1). Also, derivability shows that the
application can directly change only resources that are writable according to the
MMU. Thus, the application cannot directly update CR(s̄). Besides, the invari-
ant guarantees data-coherency of critical resources and instruction-coherency of
executable resources in s̄ (SW-I Obligation 2.2). This prevents indirect modifi-
cations of these resources. Finally, SW-I Obligation 3.1 ensures that the kernel
data-structures that identify what is critical cannot be altered. �

To complete the proof of Theorem 1 we additionally need to show that
coherency of critical resources (Lemma 3) and the functional invariant (Lemma4)
are preserved by non-privileged transitions.

Lemma 3. For all s̄ if Ī (s̄) and s̄�s̄′ then D-Coh(s̄′,CR(s̄′)), I-Coh(s̄′,EX (s̄′)).

Proof. From the previous lemma we get CR(s̄′) = CR(s̄) and EX (s̄′) = EX (s̄).
Coherency of these resources in s̄ is given by SW-I Obligation 2.2. From derivabil-
ity we know that data-coherency can be invalidated only through non-cacheable
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writes; instruction-coherency can be invalidated only through writes to exe-
cutable resources. SW-I Obligation 2.1 yields that there is no alias writable in
non-privileged mode pointing to a critical resource, using SW-I Obligation 3.1
then also executable resources cannot be written. �

Lemma 4. For all s̄ and s̄′ if Ī (s̄) and s̄ →U s̄′ then Īfun(s̄′).

Proof. To show that non-privileged transitions preserve the invariant we use HW
Obligation 2.1, Lemma 2, and SW-I Obligation 1.1. �

We are now able to complete the proof of application integrity. The following
Lemma directly proves Theorem 1 if the proof obligations are met.

Lemma 5 (Application Integrity). For all s̄, if Ī (s̄) and s̄ →U s̄′ then
Ī (s̄′), s̄ ≡CR s̄′, and if Mode(s̄′) �= U then ex-entry(s̄′).

Proof. By HW Obligation 2, s̄ � s̄′ and if Mode(s̄′) �= U then ex-entry(s̄′). By
Lemma 2, s̄ ≡CR s̄′. By Lemma 4, Īfun(s̄′). By Lemma 3, D-Coh(s̄′,CR(s̄′)) and
I-Coh(s̄′,EX (s̄′)). By SW-I Obligation 2.2, D-Coh(s̄,CR(s̄)) and I-Coh(s̄,EX (s̄)).
By SW-I Obligation 1.2 and Ī (s̄), Īcoh(s̄′). Then by SW-I Obligation 1.3, Īcm(s̄′),
thus Ī (s̄′) = Īfun(s̄′) ∧ Īcoh(s̄′) ∧ Īcm(s̄′) holds. �

5.3 Kernel Level: Theorem2

Our goal is to constrain kernel execution in such a way that it behaves identically
in the cache-aware and the cacheless model. The challenge is to find suitable
proof obligations for the kernel code that are stated on the cacheless model, so
they can be verified using existing tools for binary analysis.

The first code verification obligation requires to show that the kernel pre-
serves the invariant when there is no cache:

SW-C Obligation 1. For all s,s′ if I (s), ex-entry(s), and s s′, then I (s′).

We impose two requirements on the kernel virtual memory: the addresses
in Kvm must be cacheable (so that the kernel uses the data-view of memory
resources) and Kex must be mapped to a subset of the executable resources.

SW-I Obligation 4. For all s such that I (s):

1. For every va ∈ Kvm if MMU (s, va) = (acc, pa, c) then c holds.
2. For every va ∈ Kex if MMU (s, va) = (acc, pa, c) then pa ∈ EX (s).

A common problem of verifying low-level software is to couple the invariant
with every possible internal state of the kernel. This is a major concern here,
since the set of critical resources changes dynamically and can be stale while
the kernel is executing. We solve this problem by defining an internal invariant
II (s, s′), which allows us to define properties of the state s′ in relation with the
initial state s of the kernel handler.
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Definition 4. The intermediate invariants II (s, s′) for the cacheless model and
II (s̄, s̄′) for the cache-aware model hold if:

1. s′.reg .pc ∈ Kex and s̄′.reg .pc ∈ Kex, respectively,
2. for all pa ∈ PA: if pa ∈ MD(s,Kvm) then s.mem(pa) = s′.mem(pa) and if

pa ∈ MD(s̄,Kvm) then Dv(s̄, pa) = Dv(s̄′, pa), respectively,
3. v-deps(s′) ⊆ Kvm and v-deps(s̄′) ⊆ Kvm, respectively,
4. II cm(s, s′) and II cm(s̄, s̄′), respectively: additional countermeasure-specific

requirements that will be instantiated in Sect. 5.4, and
5. only for the cache-aware model: D-Coh(s̄′,CR(s̄)).

Now we demand a proof that the intermediate invariant is preserved in the
cacheless model during kernel execution, i.e., that (1) the kernel does not execute
instructions outside its code region, (2) the kernel does not change page-table
entries that map its virtual memory, (3) the kernel does not leave its virtual
address space, and (4) the kernel implements the countermeasure correctly.

SW-C Obligation 2. For all s,s′ if I (s), ex-entry(s), and s →∗
P s′, then

II (s, s′).

We require to demonstrate correctness of the countermeasure, by showing
that it guarantees coherency of dependencies during kernel execution.

SW-I Obligation 5. For all s̄, s̄′, if Ī (s̄), II cm(s̄, s̄′), and s̄′.reg .pc ∈ Kex then
D-Coh(s̄′, p-deps(s̄′)) and I-Coh(s̄′,MMU (s̄′, s̄′.reg .pc)).

We introduce the simulation relation between the two models: s̄ Rsim s
iff (s̄.reg , s̄.psreg , s̄.coreg) = (s.reg , s.psreg , s.coreg) and for all pa, Mv(s̄, pa) =
s.mem(pa). The intuition in using the memory-view is that it is equal to the
data-view for coherent locations and is unchanged (as demonstrated by HW
Obligation 3) for incoherent locations that are not directly accessed by the kernel.

The following proof obligation connects the simulation relation, the invariants
and the intermediate invariants: (1) the invariant of the cache-aware model can
be transferred to the cacheless model via the simulation; (2) after the execution
of a handler (i.e. Mode(s′) = U ) if the two intermediate invariants hold then the
simulation allows to transfer the functional invariant of the cacheless model to
the cache-aware model and guarantees coherency of critical resources; and (3) the
cache-aware intermediate invariant ensures the countermeasure requirements.

SW-I Obligation 6. For all s̄, s such that s̄ Rsim s and Ī (s̄)

1. I (s) holds and II cm(s, s) implies II cm(s̄, s̄),
2. for all s̄′, s′ such that s̄′ Rsim s′ if II (s̄, s̄′), II (s, s′), I (s′), and Mode(s′) = U

then Īfun(s̄′) and Īcoh(s̄′), and
3. for all s̄′ if Īfun(s̄′), Īcoh(s̄′), and II (s̄, s̄′) then Īcm(s̄′).

The following lemmas assume that the proof obligations hold. First we show
that the intermediate invariant can be transferred from the cacheless to the
cache-aware model.
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Lemma 6. Suppose that s̄0 Rsim s0, s̄ Rsim s, s̄ →P s̄′[ops], s →P s′[ops], and
s̄′ Rsim s′. If Ī (s̄0), II (s0, s), II (s0, s′), and II (s̄0, s̄) then II (s̄0, s̄′).

Proof. Transferring the property of Definition 4.1 from s′ to s̄′ is trivial, since
Rsim guarantees equivalence of registers.

For Definition 4.5 we show that the kernel only performs cacheable accesses
in ops from s (due to SW-I Obligation 4 and HW Obligation 1.2); these are the
same accesses performed in s̄; CR(s̄0) is data-coherent in s̄ due to II (s̄0, s̄);
coherency is preserved from s̄ to s̄′ due to HW Obligation 4.

For Definition 4.2: Let D = MD(s0,Kvm); II (s0, s′) ensures that the memory
in D is the same in s0, s, and s′; Rsim guarantees that the memory-view of D in
s̄0 is the equal to the content of the memory in s0; D is data-coherent in s̄0 by HW
Obligation 1.1, SW-I Obligations 3.2 and 2.2, hence by Lemma 1 the data-view of
D in s̄0 is equal to its memory content in s0 and s′; also D = MD(s̄0,Kvm) due
to HW Obligation 1.2; similarly, Rsim guarantees that the memory-view of D in
s̄′ is equal to the memory content of D in s′; then locations D have the same
data-view in s̄0 and s̄′ via Lemma 1, if D is coherent in s̄′. This follows from
D-Coh(s̄′,CR(s̄0)) (shown above), HW Obligation 1.1, and SW-I Obligation 3.2.

For Definition 4.4 we rely on a further proof obligation that demonstrates
correctness of the countermeasure: if the software implements the countermea-
sure in the cacheless model, then the additional coherency requirements on the
cache-aware model are satisfied.

SW-I Obligation 7. Assume s̄0 Rsim s0, s̄ Rsim s, s̄ →P s̄′[ops], s →P

s′[ops], and s̄′ Rsim s′. If Ī (s̄0), II (s0, s), II (s0, s′), and II (s̄0, s̄) then
II cm(s̄0, s̄′).

From this we also establish coherency of the dependencies of s̄′ (due to SW-
I Obligation 5), thus the data-view and the memory-view of the dependencies
of s̄′ are the same (Lemma 1). The dependencies of s′ and s̄′ have the same
memory content via the simulation relation. Therefore s′ and s̄′ are similar ; by
HW Obligation 3.1, we transfer the property of Definition 4.3 from s′ to s̄′. �

The following lemma shows that the simulation relation and the intermediate
invariant is preserved while the kernel is executing.

Lemma 7. Suppose that Ī (s̄), ex-entry(s̄), and s̄ Rsim s. If s̄ →n
P s̄′ then s →n

P

s′ for some s′ such that s̄′ Rsim s′, II (s̄, s̄′), and II (s, s′).

Proof. Internal invariant II (s, s′) is directly obtained from SW-C Obligation 2.
We prove the remaining goals by induction on the execution length. Simulation
in the base case is trivial, as no step is taken, and II (s̄, s̄) follows from II (s̄, s̄), the
coherency of critical resources in s̄, SW-I Obligations 6.1 and 5, the simulation
relation and Lemma 1, as well as HW Obligation 3.1.

For the inductive case we first show that the simulation relation is preserved.
Rsim guarantees that s′ and s̄′ have the same registers, SW-I Obligation 5 ensures
that the memory pointed by the program counter is instruction-coherent and the
instruction dependencies are data-coherent. Therefore, by Lemma 1 and Rsim we
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Fig. 2. Verification of kernel integrity: inductive simulation proof and invariant transfer

can ensure all preconditions of HW Obligation 3, which shows that the simulation
is preserved. We use Lemma 6 to transfer the intermediate invariant. �

Figure 2 indicates how the various proof obligations and lemmas of the section
tie together. We are now able to complete the proof of kernel integrity. The
following lemma directly proves Theorem 2 if the proof obligations are met.

Lemma 8 (Kernel Integrity). For all s̄1 and s1 such that Ī (s̄1), s̄1 Rsim s1,
and ex-entry(s̄1), if s̄1 s̄2 then ∃s2. s1 s2, s̄2 Rsim s2 and Ī (s̄2).

Proof. From s̄1 s̄2. we have s̄1 →n
P s̄2 for some n; by Lemma 7 we find s2

such that s1 →n
P s2, s̄2 Rsim s2, II (s̄1, s̄2), and II (s1, s2). Then s1 s2 as s2

and s̄2 are in the same mode. By SW-I Obligation 6.1 we obtain I (s1). Then by
SW-C Obligation 1, I (s2). SW-I Obligation 6.2 yields Īfun(s̄2) and Īcoh(s̄2), and
by SW-I Obligation 6.3, Īcm(s̄2). It follows that Ī (s̄2) holds, as desired. �

5.4 Correctness of Countermeasures

Verification of a countermeasure amounts to instantiating all invariants that are
not software-specific and discharging the corresponding proof obligations. We
verify combinations of always cacheablility or selective eviction of the data-cache,
and constant program memory or selective eviction of the instruction-cache.

Always Cacheablility and Constant Program Memory. Let Mac ⊆ PA be the
region of physical memory that must always be accessed using cacheable aliases.
The software needs to preserve two properties: (8.1) there are no uncacheable
aliases to Mac , (8.2) the kernel never allocates critical resources outside Mac :

SW-I Obligation 8. If I (s) holds, then:

1. For every va, if MMU (s, va)=(acc, pa, c) and pa ∈ Mac then c.
2. CR(s) ⊆ Mac.

For this countermeasure, the non-functional invariants are defined as follows
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Īcoh(s̄) states that critical resources are data-coherent and executable resources
are instruction-coherent (from which SW-I Obligation 1.2 and SW-I Obliga-
tion 2.2 follow directly).

Īcm(s̄) states that addresses in Mac that are not critical are data-coherent (SW-I
Obligation 1.3 holds as there are no uncacheble aliases to Mac).

II cm(s, s′) states that dependencies of instructions in s′ are in Mac , no kernel
write targets EX (s̄) (i.e. there is no self-modifying code), and when the kernel
handler completes EX (s̄′) ⊆ EX (s̄).

II cm(s̄, s̄′) states that dependencies of instruction in s̄′ are in Mac , Mac is data-
coherent, and EX (s̄) is instruction-coherent (SW-I Obligation 5 holds due to
SW-I Obligation 4, i.e., the kernel fetches instructions from EX (s̄) only).

The cache-aware functional invariant Īfun is defined equivalently to I using
Dv(s̄, pa) in place of s.mem(pa). This and the two intermediate invariants enable
to transfer properties between the two models, establishing SW-I Obligation 6.

The proof of SW-I Obligation 7 (i.e. the cache-aware intermediate invari-
ant II cm is preserved) consists of three tasks: (1) data-coherency of Mac is
preserved, since SW-I Obligation 4 and II imply that the kernel only per-
forms cacheble accesses, therefore, data-coherency cannot be invalidated; (2)
instruction-coherency is guaranteed by the fact that there is no self-modifying
code and HW Obligation 4; (3) the hypothesis of HW Obligation 3.1 (which
shows that cacheless and cache-aware model have the same dependencies) is
ensured by the fact that cacheless dependencies are in Mac which is data-
coherent.

Selective Eviction of Data-Cache and Constant Program Memory. Differently
from always cacheability, selective eviction does not require to establish a func-
tional property (i.e. SW-I Obligation 8). Instead, it is necessary to verify that
resources acquired from the application are accessed by the kernel only after
they are made coherent via cache flushing. For this purpose, we extend the two
models with a history variable h that keeps track of all effects of instruction
executed by the kernel (i.e. s →m s′ [ops] then (s, h) →m (s′, h′) [ops] and
h′ = h; ops). Let C(s, s′) be the set of resources that were critical in s or that
have been data-flushed in the history of s′. Hereafter we only describe the parts
of the non-functional invariants that deal with the data-cache, since for the
instruction-cache we use the same countermeasure as in the previous case.

Īcoh(s̄) is the same as always cacheability, while Īcm(s̄) = true, since the coun-
termeasure is not a state-based property.

II cm(s, s′) (and II cm(s̄, s̄′)) states that dependencies in s′ are in C(s, s′)
(C(s̄, s̄′), respectively) and that CR(s′) ⊆ CR(s) ∪ C(s, s′) if Mode(s′) = U .

Again, the cache-aware functional invariant Īfun is defined equivalently to I using
the data-view of memory resources.

The proofs of SW-I Obligation 6 and SW-I Obligation 7 are similar to the
ones above. Instead of Mac they rely on the data-coherency of C(s̄, s̄′) and the
fact that data-cache flushes always establish coherency (HW Obligation 4).
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Selective Eviction of Instruction-Cache. The two previous countermeasures for
data-cache can be combined with selective eviction of instruction-cache to sup-
port dynamic code. The requirements that the kernel does not write into exe-
cutable resources and that these are not extended are changed with the following
property. Let C ′(s, s′) be the set of executable resources in s that have not been
written in the history of s′, joined with the resources that have been data-flushed,
instruction-flushed, and have not been overwritten after the flushes. The inter-
mediate invariant II cm(s, s′) (and analogously II cm(s̄, s̄′) for the cache-aware
model) states that the translation of the program counter is in C ′(s, s′), and
when the kernel handler completes, EX (s′) ⊆ C ′(s, s′). Additionally, II cm(s̄, s̄′)
states that C ′(s̄, s̄′) is instruction-coherent. SW-I Obligation 5 holds because the
kernel only fetches instructions from C ′(s̄, s̄′).

The main change to the proof of SW-I Obligation 7 consists in showing
instruction-coherency of C ′(s̄, s̄′), which is ensured by the fact that data- and
instruction-flushing a location makes it instruction-coherent (HW Obligation 4).

5.5 Verification of a Specific Software

Table 1 summarizes the proof obligations we identified. As the countermeasures
are verified, three groups of proof obligations remain for a specific software:
(1) SW-I Obligation 2.1, SW-I Obligation 3, and SW-C Obligation 1: these are
requirements for a secure kernel independently of caches; (2) SW-I Obligation 4
(and SW-I Obligation 8 for always-cacheability): these only constrain the con-
figuration of the MMU; (3) SW-C Obligation 2: during the execution the kernel
(i) stays in its code region, (ii) does not change or leave its virtual memory,

Table 1. List of proof obligations

Type # Description

HW 1 Constraints on the MMU domain

HW 2 Derivability correctly overapproximates the hardware behavior

HW 3 Conditions ensuring that the cache-aware model behaves like the cacheless one

HW 4 Sufficient conditions for preserving coherency

SW-I 1 Decomposition of the invariant

SW-I 2 Invariant prevents direct and indirect modification of the critical resources

SW-I 3 Correct definition of CR and EX

SW-I 4 Kernel virtual memory is cacheable and its code is in the executable resources

The following obligations were proved for the selected countermeasures

SW-I 5 Correctness of the countermeasure

SW-I 6 Transfer of the invariants from the cacheless model to the cache-aware one

SW-I 7 Transfer of the countermeasure properties

SW-C 1 Kernel preserves the invariant in the cacheless model

SW-C 2 Kernel preserves the intermediate invariant in the cacheless model
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(iii) preserves the countermeasure specific intermediate invariant. These must
be verified for intermediate states of the kernel, e.g., by inlining assertions that
guarantee (i–iii). Notice that the two code verification tasks (SW-C Obligation 1
and SW-C Obligation 2) do not require the usage of the cache-aware model,
enabling the usage of existing binary analysis tools.

Case Study. As a case study, we use a hypervisor capable of hosting a Linux
guest that has been formally verified previously on a cacheless model [21] and
its vulnerability to cache storage channel attacks is shown in [20]. The memory
subsystem is virtualized through direct paging. To create a page-table, a guest
prepares it in guest memory and requests its validation. If the validation succeeds
the hypervisor can use the page-table to configure the MMU, without requiring
memory copy operations. The validation ensures that the page-table does not
allow writable accesses of the guest outside the guest’s memory or to the page-
tables. Other hypercalls allow to free and modify validated page-tables.

Using mismatched cacheability attributes, a guest can potentially violate
memory isolation: it prepares a valid page-table in cache and a malicious page-
table in memory; if the hypervisor validates stale data from the cache, after
eviction, the MMU can be made to use the malicious page-table, enabling the
guest to violate memory isolation. We fix this vulnerability by using always
cacheability: The guest is forced to create page-tables only inside an always
cacheable region of memory.

The general concepts of Sect. 4.1 are easily instantiated for the hypervisor.
Since it uses a static region of physical memory HM , the critical resources con-
sist of HM and every memory page that is allocated to store a page-table.
Additionally to the properties described in [21], the invariant requires that all
page-tables are allocated in Mac and all aliases to Mac are cacheable. To guar-
antee these properties the hypervisor code has been updated: validation of a
page-table checks that the page resides in Mac and that all new mapping to Mac

are cacheable; modification of a page-table forbids uncacheable aliases to Mac .

6 Implementation

The complete proof strategy has been implemented [2] and machine-checked
using the HOL4 interactive theorem prover [1]. The resulting application and
kernel integrity theorems are parametric in the countermeasure-dependent proof
obligations. These obligations have been discharged for the selected counter-
measures yielding theorems that depend only on code verification conditions and
properties of the functional kernel invariant. Hardware obligations have been ver-
ified on a single-core model consisting of a generic processor and memory inter-
face. While the processor interface has not been instantiated yet, all assumptions
on the memory system have been validated for an instantiation with single-level
data- and instruction-caches using a rudimentary cache implementation. Instan-
tiation with more realistic models is ongoing. The formal analysis took three
person months and consists of roughly 10000 LoC for the hardware model spec-
ification and verification of its instantiation, 2500 LoC for the integrity proof,
and 2000 LoC for the countermeasure verification.
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For the case study we augmented the existing hypervisor with the always
cacheability countermeasure. This entailed some engineering effort to adapt the
memory allocator of the Linux kernel to allocate page-tables inside Mac . The
adaptation required changes to 45 LoC in the hypervisor and an addition of 35
LoC in the paravirtualized Linux kernel and imposes a negligible performance
overhead (≤ 1% in micro- and macro-benchmarks [20]). The HOL4 model of the
hypervisor design has been modified to include the additional checks performed
by the hypervisor. Similarly, we extended the invariant with the new properties
guaranteed by the adopted countermeasure. The model has been used to show
that the new design preserves the invariant and that all proof obligations on the
invariant hold, which required 2000 HOL4 LoC. Verification of the augmented
hypervisor binary is left for future work. Even if binary verification can be auto-
mated to a large extent using binary analysis tools (e.g. [11,30]), it still requires
a substantial engineering effort.

7 Conclusion

Modern hardware architectures are complex and can exhibit unforeseen vul-
nerabilities if low level details are not properly taken into account. The cache
storage channels of [20], as well as the recent Meltdown [26] and Spectre [28]
attacks are examples of this problem. They shows the importance of low-level
system details and the need of sound and tractable strategies to reason about
them in the verification of security-critical software.

Here we presented an approach to verify integrity-preserving countermea-
sures in the presence of cache storage side-channels. In particular, we identified
conditions that must be met by a security mechanism to neutralise the attack
vector and we verified correctness of some of the existing techniques to counter
both (instruction- and data-cache) integrity attacks.

The countermeasures are formally modelled as new proof obligations that can
be imposed on the cacheless model to ensure the absence of vulnerability due to
cache storage channels. The result of this analysis are theorems in Sect. 4.3. They
demonstrate that a software satisfying a set of proof obligations (i.e., correctly
implementing the countermeasure) is not vulnerable because of cache storage
channels.

Our analysis is based on an abstract hardware model that should fit a number
of architectures. While here we only expose two execution modes, we can support
multiple modes of executions, where the most privileged is used by the kernel
and all other modes are considered to be used by the application. Also our MMU
model is general enough to cover other hardware-based protection mechanisms,
like Memory Protection Units or TrustZone memory controllers.

While this paper exemplifies the approach for first-level caches, our method-
ology can be extended to accommodate more complex scenarios and other hard-
ware features too. For instance our approach can be used to counter storage
channels due to TLBs, multi-level caches, and multi-core processing.

Translation Look-aside Buffers (TLBs) can be handled similarly to
instruction-caches. Non-privileged instructions are unable to directly modify the
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TLB and incoherent behaviours can arise only by the assistance of kernel mod-
ifying the page-tables. Incoherent behavior can be prevented using TLB cleans
or demonstrating that the page-tables are not changed.

Multi-level caches can be handled iteratively in a straightforward fashion,
starting from the cacheless model and adding CPU-closer levels of cache at each
iteration. Iterative refinement has three benefits: Enabling the use of existing
(cache unaware) analysis tools for verification, enabling transfer of results from
Sects. 5.3 and 5.4 to the more complex models, and allowing to focus on each
hardware feature independently, so at least partially counteracting the pressure
towards ever larger and more complex global models.

In the same way the integrity proof can be repeated for the local caches in
a multi-core system. For shared caches the proof strategy needs to be adapted
to take into account interleaved privileged and non-privileged steps of different
cores, depending on the chosen verification methodology for concurrent code.

It is also worth noting that our verification approach works for both preemp-
tive and non-preemptive kernels, due to the use of the intermediate invariants
II and II that do not depend on intermediate states of kernel data structures.

For non-privileged transitions the key tool is the derivability relation, which is
abstract enough to fit a variety of memory systems. However, derivability has the
underlying assumption that only uncacheable writes can bypass the cache and
break coherency. If a given hardware allows the application to break coherency
through other means, e.g., non-temporal store instructions or invalidate-only
cache flushes, these cases need to be added to the derivability definition.

The security analysis requires trustworthy models of hardware, which are
needed to verify platform-dependent proof obligations. Some of these properties
require extensive tests to demonstrate that corner cases are correctly handled by
models. For example, while the conventional wisdom is that flushing caches can
close side-channels, a new study [16] showed flushing does not sanitize caches
thoroughly and leaves some channels active, e.g. instruction-cache attack vectors.

There are several open questions concerning side-channels due to similar
shared low-level hardware features such as branch prediction units, which under-
mine the soundness of formal verification. This is an unsatisfactory situation
since formal proofs are costly and should pay off by giving reliable guarantees.
Moreover, the complexity of contemporary hardware is such that a verification
approach allowing reuse of models and proofs as new hardware features are added
is essential for formal verification in this space to be economically sustainable.
Our results represent a first step towards giving reliable guarantees and reusable
proofs in the presence of low level storage channels.
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Abstract. In the inference attacks studied in Quantitative Information
Flow (QIF), the adversary typically tries to interfere with the system in
the attempt to increase its leakage of secret information. The defender,
on the other hand, typically tries to decrease leakage by introducing some
controlled noise. This noise introduction can be modeled as a type of pro-
tocol composition, i.e., a probabilistic choice among different protocols,
and its effect on the amount of leakage depends heavily on whether or
not this choice is visible to the adversary. In this work we consider oper-
ators for modeling visible and invisible choice in protocol composition,
and we study their algebraic properties. We then formalize the interplay
between defender and adversary in a game-theoretic framework adapted
to the specific issues of QIF, where the payoff is information leakage. We
consider various kinds of leakage games, depending on whether players
act simultaneously or sequentially, and on whether or not the choices of
the defender are visible to the adversary. Finally, we establish a hierar-
chy of these games in terms of their information leakage, and provide
methods for finding optimal strategies (at the points of equilibrium) for
both attacker and defender in the various cases.

1 Introduction

A fundamental problem in computer security is the leakage of sensitive informa-
tion due to correlation of secret values with observables—i.e., any information
accessible to the attacker, such as, for instance, the system’s outputs or execu-
tion time. The typical defense consists in reducing this correlation, which can
be done in, essentially, two ways. The first, applicable when the correspondence
secret-observable is deterministic, consists in coarsening the equivalence classes
of secrets that give rise to the same observables. This can be achieved with
post-processing, i.e., sequentially composing the original system with a program
that removes information from observables. For example, a typical attack on
encrypted web traffic consists on the analysis of the packets’ length, and a typi-
cal defense consists in padding extra bits so to diminish the length variety [28].
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The second kind of defense, on which we focus in this work, consists in adding
controlled noise to the observables produced by the system. This can be usually
seen as a composition of different protocols via probabilistic choice.

Example 1 (Differential privacy). Consider a counting query f , namely a func-
tion that, applied to a dataset x, returns the number of individuals in x that
satisfy a given property. A way to implement differential privacy [12] is to add
geometrical noise to the result of f , so to obtain a probability distribution P on
integers of the form P (z) = c e

∣z−f(x)∣, where c is a normalization factor. The
resulting mechanism can be interpreted as a probabilistic choice on protocols of
the form f(x), f(x)+1, f(x)+2, . . . , f(x)−1, f(x)−2, . . ., where the probability
assigned to f(x) + n and to f(x) − n decreases exponentially with n.

Example 2 (Dining cryptographers). Consider two agents running the dining
cryptographers protocol [11], which consists in tossing a fair binary coin and
then declaring the exclusive or ⊕ of their secret value x and the result of the
coin. The protocol can be thought as the fair probabilistic choice of two proto-
cols, one consisting simply of declaring x, and the other declaring x ⊕ 1.

Most of the work in the literature of quantitative information flow (QIF) con-
siders passive attacks, in which the adversary only observes the system. Notable
exceptions are the works [4,8,21], which consider attackers who interact with
and influence the system, possibly in an adaptive way, with the purpose of max-
imizing the leakage of information.

Example 3 (CRIME attack). Compression Ratio Info-leak Made Easy (CRIME)
[25] is a security exploit against secret web cookies over connections using the
HTTPS and SPDY protocols and data compression. The idea is that the attacker
can inject some content a in the communication of the secret x from the target
site to the server. The server then compresses and encrypts the data, including
both a and x, and sends back the result. By observing the length of the result,
the attacker can then infer information about x. To mitigate the leakage, one
possible defense would consist in transmitting, along with x, also an encryption
method f selected randomly from a set F . Again, the resulting protocol can be
seen as a composition, using probabilistic choice, of the protocols in the set F .

In all examples above the main use of the probabilistic choice is to obfuscate
the relation between secrets and observables, thus reducing their correlation—
and, hence, the information leakage. To achieve this goal, it is essential that the
attacker never comes to know the result of the choice. In the CRIME exam-
ple, however, if f and a are chosen independently, then (in general) it is still
better to choose f probabilistically, even if the adversary will come to know,
afterwards, the choice of f . In fact, this is true also for the attacker: his best
strategies (in general) are to chose a according to some probability distribution.
Indeed, suppose that F = {f1, f2} are the defender’s choices and A = {a1, a2}
are the attacker’s, and that f1(⋅, a1) leaks more than f1(⋅, a2), while f2(⋅, a1)
leaks less than f2(⋅, a2). This is a scenario like the matching pennies in game
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theory: if one player selects an action deterministically, the other player may
exploit this choice and get an advantage. For each player the optimal strategy
is to play probabilistically, using a distribution that maximizes his own gain for
all possible actions of the adversary. In zero-sum games, in which the gain of
one player coincides with the loss of the other, the optimal pair of distributions
always exists, and it is called saddle point. It also coincides with the Nash equi-
librium, which is defined as the point in which neither of the two players gets
any advantage in changing unilaterally his strategy.

Motivated by these examples, this paper investigates the two kinds of choice,
visible and hidden (to the attacker), in a game-theoretic setting. Looking at
them as language operators, we study their algebraic properties, which will help
reason about their behavior in games. We consider zero-sum games, in which the
gain (for the attacker) is represented by the leakage. While for visible choice it
is appropriate to use the “classic” game-theoretic framework, for hidden choice
we need to adopt the more general framework of the information leakage games
proposed in [4]. This happens because, in contrast with standard game theory,
in games with hidden choice the utility of a mixed strategy is a convex func-
tion of the distribution on the defender’s pure actions, rather than simply the
expected value of their utilities. We will consider both simultaneous games—in
which each player chooses independently—and sequential games—in which one
player chooses his action first. We aim at comparing all these situations, and at
identifying the precise advantage of the hidden choice over the visible one.

To measure leakage we use the well-known information-theoretic model. A cen-
tral notion in this model is that of entropy, but here we use its converse, vulnerabil-
ity, which represents the magnitude of the threat. In order to derive results as gen-
eral as possible, we adopt the very comprehensive notion of vulnerability as any
convex and continuous function, as used in [5,8]. This notion has been shown [5]
to subsume most information measures, including Bayes vulnerability (aka min-
vulnerability, aka (the converse of) Bayes risk) [10,27], Shannon entropy [26],
guessing entropy [22], and g-vulnerability [6].

The main contributions of this paper are:

– We present a general framework for reasoning about information leakage in
a game-theoretic setting, extending the notion of information leakage games
proposed in [4] to both simultaneous and sequential games, with either hidden
or visible choice.

– We present a rigorous compositional way, using visible and hidden choice
operators, for representing adversary and defender’s actions in information
leakage games. In particular, we study the algebraic properties of visible and
hidden choice on channels, and compare the two kinds of choice with respect
to the capability of reducing leakage, in presence of an adaptive attacker.

– We provide a taxonomy of the various scenarios (simultaneous and sequential)
showing when randomization is necessary, for either attacker or defender,
to achieve optimality. Although it is well-known in information flow that
the defender’s best strategy is usually randomized, only recently it has been
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shown that when defender and adversary act simultaneously, the adversary’s
optimal strategy also requires randomization [4].

– We use our framework in a detailed case study of a password-checking proto-
col. The naive program, which checks the password bit by bit and stops when
it finds a mismatch, is clearly very insecure, because it reveals at each attempt
the maximum correct prefix. On the other hand, if we continue checking until
the end of the string (time padding), the program becomes very inefficient.
We show that, by using probabilistic choice instead, we can obtain a good
trade-off between security and efficiency.

Plan of the Paper. The remaining of the paper is organized as follows. In Sect. 2
we review some basic notions of game theory and quantitative information flow.
In Sect. 3 we introduce our running example. In Sect. 4 we define the visible and
hidden choice operators and demonstrate their algebraic properties. In Sect. 5,
the core of the paper, we examine various scenarios for leakage games. In Sect. 6
we show an application of our framework to a password checker. In Sect. 7 we
discuss related work and, finally, in Sect. 8 we conclude.

2 Preliminaries

In this section we review some basic notions from game theory and quantitative
information flow. We use the following notation: Given a set I, we denote by
DI the set of all probability distributions over I. Given μ ∈ DI, its support
supp(μ)

def= {i ∈ I ∶ μ(i) > 0} is the set of its elements with positive probability.
We use i←μ to indicate that a value i ∈ I is sampled from a distribution μ on I.

2.1 Basic Concepts from Game Theory

Two-Player Games. Two-player games are a model for reasoning about the
behavior of two players. In a game, each player has at its disposal a set of actions
that he can perform, and he obtains some gain or loss depending on the actions
chosen by both players. Gains and losses are defined using a real-valued payoff
function. Each player is assumed to be rational, i.e., his choice is driven by the
attempt to maximize his own expected payoff. We also assume that the set of
possible actions and the payoff functions of both players are common knowledge.

In this paper we only consider finite games, in which the set of actions avail-
able to the players are finite. Next we introduce an important distinction between
simultaneous and sequential games. In the following, we will call the two players
defender and attacker.

Simultaneous Games. In a simultaneous game, each player chooses his action
without knowing the action chosen by the other. The term “simultaneous” here
does not mean that the players’ actions are chosen at the same time, but only
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that they are chosen independently. Formally, such a game is defined as a tuple1

(D, A, ud, ua), where D is a nonempty set of defender’s actions, A is a nonempty
set of attacker’s actions, ud ∶ D ×A → R is the defender’s payoff function, and
ua ∶ D ×A → R is the attacker’s payoff function.

Each player may choose an action deterministically or probabilistically. A
pure strategy of the defender (resp. attacker) is a deterministic choice of an
action, i.e., an element d ∈ D (resp. a ∈ A). A pair (d, a) is called pure strategy
profile, and ud(d, a), ua(d, a) represent the defender’s and the attacker’s payoffs,
respectively. A mixed strategy of the defender (resp. attacker) is a probabilis-
tic choice of an action, defined as a probability distribution δ ∈ DD (resp.
α ∈ DA). A pair (δ, α) is called mixed strategy profile. The defender’s and
the attacker’s expected payoff functions for mixed strategies are defined, respec-
tively, as: Ud(δ, α)

def= Ed←δ
a←α

ud(d, a) = ∑d∈D
a∈A

δ(d)α(a)ud(d, a) and Ua(δ, α)
def=

Ed←δ
a←α

ua(d, a) = ∑d∈D
a∈A

δ(d)α(a)ua(d, a).
A defender’s mixed strategy δ ∈ DD is a best response to an attacker’s mixed

strategy α ∈ DA if Ud(δ, α) = maxδ′∈DD Ud(δ
′
, α). Symmetrically, α ∈ DA is

a best response to δ ∈ DD if Ua(δ, α) = maxα′∈DA Ud(δ, α
′
). A mixed-strategy

Nash equilibrium is a profile (δ
∗
, α

∗
) such that δ

∗ is the best response to α
∗

and vice versa. This means that in a Nash equilibrium, no unilateral deviation
by any single player provides better payoff to that player. If δ

∗ and α
∗ are

point distributions concentrated on some d
∗ ∈ D and a

∗ ∈ A respectively, then
(δ

∗
, α

∗
) is a pure-strategy Nash equilibrium, and will be denoted by (d

∗
, a

∗
).

While not all games have a pure strategy Nash equilibrium, every finite game
has a mixed strategy Nash equilibrium.

Sequential Games. In a sequential game players may take turns in choosing
their actions. In this paper, we only consider the case in which each player moves
only once, in such a way that one of the players (the leader) chooses his action
first, and commits to it, before the other player (the follower) makes his choice.
The follower may have total knowledge of the choice made by the leader, or
only partial. We refer to the two scenarios by the terms perfect and imperfect
information, respectively.

We now give the precise definitions assuming that the leader is the defender.
The case in which the leader is the attacker is similar.

A defender-first sequential game with perfect information is a tuple
(D, D→A, ud, ua) where D, A, ud and ua are defined as in simultaneous games.
Also the strategies of the defender (the leader) are defined as in simultane-
ous games: an action d ∈ D for the pure case, and a distribution δ ∈ DD for
the mixed one. On the other hand, a pure strategy for the attacker is a func-
tion sa ∶ D→A, which represents the fact that his choice of an action sa in A
depends on the defender’s choice d. An attacker’s mixed strategy is a probability

1
Following the convention of security games, we set the first player to be the defender.
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distribution σa ∈ D(D→A) over his pure strategies.2 The defender’s and the
attacker’s expected payoff functions for mixed strategies are defined, respec-
tively, as Ud(δ, σa)

def= E d←δ
sa←σa

ud(d, sa(d)) = ∑ d∈D
sa∶D→A

δ(d)σa(sa)ud(d, sa(d)) and

Ua(δ, σa)
def= E d←δ

sa←σa

ua(d, sa(d)) = ∑ d∈D
sa∶D→A

δ(d)σa(sa)ua(d, sa(d)).

The case of imperfect information is typically formalized by assuming an
indistinguishability (equivalence) relation over the actions chosen by the leader,
representing a scenario in which the follower cannot distinguish between the
actions belonging to the same equivalence class. The pure strategies of the fol-
lowers, therefore, are functions from the set of the equivalence classes on the
actions of the leader to his own actions. Formally, a defender-first sequential
game with imperfect information is a tuple (D, Ka → A, ud, ua) where D, A, ud

and ua are defined as in simultaneous games, and Ka is a partition of D. The
expected payoff functions are defined as before, except that now the argument
of sa is the equivalence class of d. Note that in the case in which all defender’s
actions are indistinguishable from each other at the eyes of the attacker (totally
imperfect information), we have Ka = {D} and the expected payoff functions
coincide with those of the simultaneous games.

Zero-sum Games and Minimax Theorem. A game (D, A, ud, ua) is zero-
sum if for any d ∈ D and any a ∈ A, the defender’s loss is equivalent to the
attacker’s gain, i.e., ud(d, a) = −ua(d, a). For brevity, in zero-sum games we
denote by u the attacker’s payoff function ua, and by U the attacker’s expected
payoff Ua.

3 Consequently, the goal of the defender is to minimize U , and the
goal of the attacker is to maximize it.

In simultaneous zero-sum games the Nash equilibrium corresponds to the
solution of the minimax problem (or equivalently, the maximin problem),
namely, the strategy profile (δ

∗
, α

∗
) such that U(δ

∗
, α

∗
) = minδ maxα U(δ, α).

The von Neumann’s minimax theorem, in fact, ensures that such solution (which
always exists) is stable.

Theorem 1 (von Neumann’s minimax theorem). Let X ⊂ R
m and Y ⊂ R

n

be compact convex sets, and U ∶ X × Y → R be a continuous function such that
U (x, y) is a convex function in x ∈ X and a concave function in y ∈ Y. Then
minx∈X maxy∈Y U (x, y) = maxy∈Y minx∈X U (x, y).

2
The definition of the mixed strategies as D(D → A) means that the attacker draws
a function sa ∶ D→A before he knows the choice of the defender. In contrast, the
so-called behavioral strategies are defined as functions D → DA, and formalize the
idea that the draw is made after the attacker knows such choice. In our setting, these
two definitions are equivalent, in the sense that they yield the same payoff.

3
Conventionally in game theory the payoff u is set to be that of the first player, but
we prefer to look at the payoff from the point of view of the attacker to be in line
with the definition of payoff as vulnerability.
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A related property is that, under the conditions of Theorem 1,
there exists a saddle point (x

∗
, y

∗
) s.t., for all x ∈ X and y ∈ Y:

U (x
∗
, y) ≤ U (x

∗
, y

∗
) ≤ U (x, y

∗
).

The solution of the minimax problem can be obtained by using convex opti-
mization techniques. In case U (x, y) is affine in x and in y, we can also use linear
optimization.

In case D and A contain two elements each, there is a closed form for the
solution. Let D = {d0, d1} and A = {a0, a1} respectively. Let uij be the utility of
the defender on di, aj . Then the Nash equilibrium (δ

∗
, α

∗
) is given by: δ

∗
(d0) =

(u11−u10)/(u00−u01−u10+u11) and α
∗
(a0) = (u11−u01)/(u00−u01−u10+u11) if these values

are in [0, 1]. Note that, since there are only two elements, the strategy δ
∗ is

completely specified by its value in d0, and analogously for α
∗.

2.2 Quantitative Information Flow

Finally, we briefly review the standard framework of quantitative information
flow, which is concerned with measuring the amount of information leakage in a
(computational) system.

Secrets and Vulnerability. A secret is some piece of sensitive information the
defender wants to protect, such as a user’s password, social security number, or
current location. The attacker usually only has some partial knowledge about
the value of a secret, represented as a probability distribution on secrets called
a prior. We denote by X the set of possible secrets, and we typically use π to
denote a prior belonging to the set DX of probability distributions over X.

The vulnerability of a secret is a measure of the utility that it represents for
the attacker. In this paper we consider a very general notion of vulnerability,
following [5], and we define a vulnerability V to be any continuous and convex
function of type DX → R. It has been shown in [5] that these functions coincide
with the set of g-vulnerabilities, and are, in a precise sense, the most general
information measures w.r.t. a set of basic axioms.4

Channels, Posterior Vulnerability, and Leakage. Computational systems can be
modeled as information theoretic channels. A channel C ∶ X × Y → R is a
function in which X is a set of input values, Y is a set of output values, and
C(x, y) represents the conditional probability of the channel producing output
y ∈ Y when input x ∈ X is provided. Every channel C satisfies 0 ≤ C(x, y) ≤ 1
for all x ∈ X and y ∈ Y, and ∑y∈Y C(x, y) = 1 for all x ∈ X.

A distribution π ∈ DX and a channel C with inputs X and outputs Y induce a
joint distribution p(x, y) = π(x)C(x, y) on X × Y, producing joint random vari-
ables X,Y with marginal probabilities p(x) = ∑y p(x, y) and p(y) = ∑x p(x, y),

4
More precisely, if posterior vulnerability is defined as the expectation of the vulnera-
bility of posterior distributions, the measure respects the data-processing inequality
and always yields non-negative leakage iff vulnerability is convex.
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and conditional probabilities p(x∣y) = p(x,y)/p(y) if p(y) ≠ 0. For a given y (s.t.
p(y) ≠ 0), the conditional probabilities p(x∣y) for each x ∈ X form the posterior
distribution pX∣y.

A channel C in which X is a set of secret values and Y is a set of observable
values produced by a system can be used to model computations on secrets.
Assuming the attacker has prior knowledge π about the secret value, knows
how a channel C works, and can observe the channel’s outputs, the effect of the
channel is to update the attacker’s knowledge from π to a collection of posteriors
pX∣y, each occurring with probability p(y).

Given a vulnerability V, a prior π, and a channel C, the posterior vulnerability
V [π,C] is the vulnerability of the secret after the attacker has observed the
output of the channel C. Formally: V [π,C]

def= ∑y∈Y p(y)V [pX∣y].
It is known from the literature [5] that the posterior vulnerability is a convex

function of π. Namely, for any channel C, any family of distributions {πi}, and
any set of convex coefficients {ci}, we have: V [∑i ciπi, C] ≤ ∑i ciV [πi, C].

The (information) leakage of channel C under prior π is a comparison
between the vulnerability of the secret before the system was run—called prior
vulnerability—and the posterior vulnerability of the secret. Leakage reflects by
how much the observation of the system’s outputs increases the attacker’s infor-
mation about the secret. It can be defined either additively (V [π,C] − V [π]),
or multiplicatively (V[π,C]/V[π]).

3 An Illustrative Example

Fig. 1. Running example.

We introduce an example which will serve as run-
ning example through the paper. Although admit-
tedly contrived, this example is simple and yet pro-
duces different leakage measures for all different
combinations of visible/invisible choice and simul-
taneous/sequential games, thus providing a way to
compare all different scenarios we are interested in.

Consider that a binary secret must be processed
by a program. As usual, a defender wants to pro-
tect the secret value, whereas an attacker wants to
infer it by observing the system’s output. Assume
the defender can choose which among two alterna-
tive versions of the program to run. Both programs
take the secret value x as high input, and a binary
low input a whose value is chosen by the attacker.
They both return the output in a low variable y.5

Program 0 returns the binary product of x and a,
whereas Program 1 flips a coin with bias a/3 (i.e., a coin which returns heads

5
We adopt the usual convention in QIF of referring to secret variables, inputs and
outputs in programs as high, and to their observable counterparts as low.
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with probability a/3) and returns x if the result is heads, and the complement x̄
of x otherwise. The two programs are represented in Fig. 1.

The combined choices of the defender’s and of the attacker’s determine how
the system behaves. Let D = {0, 1} represent the set of the defender’s choices—
i.e., the index of the program to use—, and A = {0, 1} represent the set of
the attacker’s choices—i.e., the value of the low input a. We shall refer to the
elements of D and A as actions. For each possible combination of actions d ∈ D
and a ∈ A, we can construct a channel Cda modeling how the resulting system
behaves. Each channel Cda is a function of type X × Y → R, where X = {0, 1}
is the set of possible high input values for the system, and Y = {0, 1} is the set
of possible output values from the system. Intuitively, each channel provides the
probability that the system (which was fixed by the defender) produces output
y ∈ Y given that the high input is x ∈ X (and that the low input was fixed by
the attacker). The four possible channels are depicted as matrices below.

C00 y = 0 y = 1

x = 0 1 0

x = 1 1 0

C01 y = 0 y = 1

x = 0 1 0

x = 1 0 1

C10 y = 0 y = 1

x = 0 0 1

x = 1 1 0

C11 y = 0 y = 1

x = 0 1/3 2/3

x = 1 2/3 1/3

Note that channel C00 does not leak any information about the input x
(i.e., it is non-interferent), whereas channels C01 and C10 completely reveal x.
Channel C11 is an intermediate case: it leaks some information about x, but
not all.

We want to investigate how the defender’s and the attacker’s choices influence
the leakage of the system. For that we can just consider the (simpler) notion of
posterior vulnerability, since in order to make the comparison fair we need to
assume that the prior is always the same in the various scenarios, and this
implies that the leakage is in a one-to-one correspondence with the posterior
vulnerability (this happens for both additive and multiplicative leakage).

Table 1. Vulnerability of each chan-
nel Cda in the running example.

V a = 0 a = 1
d = 0 1/ 2 1
d = 1 1 2/3

For this example, assume we are inter-
ested in Bayes vulnerability [10,27], defined
as V(π) = maxx π(x) for every π ∈ DX.
Assume for simplicity that the prior is the
uniform prior πu. In this case we know from
[9] that the posterior Bayes vulnerability of
a channel is the sum of the greatest elements
of each column, divided by the total number of inputs. Table 1 provides the Bayes
vulnerability Vda

def= V [πu, Cda] of each channel considered above.
Naturally, the attacker aims at maximizing the vulnerability of the system,

while the defender tries to minimize it. The resulting vulnerability will depend
on various factors, in particular on whether the two players make their choice
simultaneously (i.e. without knowing the choice of the opponent) or sequentially.
Clearly, if the choice of a player who moves first is known by an opponent who
moves second, the opponent will be in advantage. In the above example, for
instance, if the defender knows the choice a of the attacker, the most convenient



Leakage and Protocol Composition in a Game-Theoretic Perspective 143

choice for him is to set d = a, and the vulnerability will be at most 2/3. Vice
versa, if the attacker knows the choice d of the defender, the most convenient
choice for him is to set a ≠ d. The vulnerability in this case will be 1.

Things become more complicated when players make choices simultaneously.
None of the pure choices of d and a are the best for the corresponding player,
because the vulnerability of the system depends also on the (unknown) choice
of the other player. Yet there is a strategy leading to the best possible situation
for both players (the Nash equilibrium), but it is mixed (i.e., probabilistic), in
that the players randomize their choices according to some precise distribution.

Another factor that affects vulnerability is whether or not the defender’s
choice is known to the attacker at the moment in which he observes the output
of the channel. Obviously, this corresponds to whether or not the attacker knows
what channel he is observing. Both cases are plausible: naturally the defender
has all the interest in keeping his choice (and, hence, the channel used) secret,
since then the attack will be less effective (i.e., leakage will be smaller). On the
other hand, the attacker may be able to identify the channel used anyway, for
instance because the two programs have different running times. We will call
these two cases hidden and visible choice, respectively.

It is possible to model players’ strategies, as well as hidden and visible choices,
as operations on channels. This means that we can look at the whole system as
if it were a single channel, which will turn out to be useful for some proofs of our
technical results. Next section is dedicated to the definition of these operators.
We will calculate the exact values for our example in Sect. 5.

4 Visible and Hidden Choice Operators on Channels

In this section we define matrices and some basic operations on them. Since
channels are a particular kind of matrix, we use these matrix operations to
define the operations of visible and hidden choice among channels, and to prove
important properties of these channel operations.

4.1 Matrices, and Their Basic Operators

Given two sets X and Y, a matrix is a total function of type X × Y → R.
Two matrices M1 ∶ X1 × Y1 → R and M2 ∶ X2 × Y2 → R are said to be
compatible if X1 = X2. If it is also the case that Y1 = Y2, we say that the
matrices have the same type. The scalar multiplication r⋅M between a scalar r
and a matrix M is defined as usual, and so is the summation (∑i∈I Mi) (x, y) =
Mi1(x, y)+ . . .+Min(x, y) of a family {Mi}i∈I of matrices all of a same type.

Given a family {Mi}i∈I of compatible matrices s.t. each Mi has type X × Yi →
R, their concatenation ◇i∈I is the matrix having all columns of every matrix in
the family, in such a way that every column is tagged with the matrix it came
from. Formally, (◇i∈IMi) (x, (y, j)) = Mj(x, y), if y ∈ Yj , and the resulting



144 M. S. Alvim et al.

matrix has type X × (⨆i∈I Yi) → R.6 When the family {Mi} has only two
elements we may use the binary version ⋄ of the concatenation operator. The
following depicts the concatenation of two matrices M1 and M2 in tabular form.

M1 y1 y2
x1 1 2
x2 3 4

⋄
M2 y1 y2 y3
x1 5 6 7
x2 8 9 10

=
M1 ⋄ M2 (y1, 1) (y2, 1) (y1, 2) (y2, 2) (y3, 2)

x1 1 2 5 6 7
x2 3 4 8 9 10

4.2 Channels, and Their Hidden and Visible Choice Operators

A channel is a stochastic matrix, i.e., all elements are non-negative, and all rows
sum up to 1. Here we will define two operators specific for channels. In the
following, for any real value 0 ≤ p ≤ 1, we denote by p̄ the value 1 − p.

Hidden Choice. The first operator models a hidden probabilistic choice among
channels. Consider a family {Ci}i∈I of channels of a same type. Let μ ∈ DI be
a probability distribution on the elements of the index set I. Consider an input
x is fed to one of the channels in {Ci}i∈I, where the channel is randomly picked
according to μ. More precisely, an index i ∈ I is sampled with probability μ(i),
then the input x is fed to channel Ci, and the output y produced by the channel
is then made visible, but not the index i of the channel that was used. Note that
we consider hidden choice only among channels of a same type: if the sets of
outputs were not identical, the produced output might implicitly reveal which
channel was used.

Formally, given a family {Ci}i∈I of channels s.t. each Ci has same type X ×
Y → R, the hidden choice operator ⨊i←μ is defined as ⨊i←μCi = ∑i∈I μ(i)Ci.

Proposition 2. Given a family {Ci}i∈I of channels of type X × Y → R, and a
distribution μ on I, the hidden choice ⨊i←μCi is a channel of type X × Y → R.

In the particular case in which the family {Ci} has only two elements Ci1 and
Ci2 , the distribution μ on indexes is completely determined by a real value 0 ≤ p ≤
1 s.t. μ(i1) = p and μ(i2) = p̄. In this case we may use the binary version p⊕ of
the hidden choice operator: Ci1 p⊕ Ci2 = pCi1+p̄ Ci2 . The example below depicts
the hidden choice between channels C1 and C2, with probability p = 1/3.

C1 y1 y2
x1

1/2 1/2
x2

1/3 2/3
1/3⊕

C2 y1 y2
x1

1/3 2/3
x2

1/2 1/2
=

C1 1/3⊕ C2 y1 y2
x1

7/18 11/18
x2

4/9 5/9

Visible Choice. The second operator models a visible probabilistic choice
among channels. Consider a family {Ci}i∈I of compatible channels. Let μ ∈ DI
be a probability distribution on the elements of the index set I. Consider an

6 ⨆i∈I Yi = Yi1 ⊔ Yi2 ⊔ . . . ⊔ Yin denotes the disjoint union {(y, i) ∣ y ∈ Yi, i ∈ I} of
the sets Yi1 , Yi2 , . . ., Yin .
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input x is fed to one of the channels in {Ci}i∈I, where the channel is randomly
picked according to μ. More precisely, an index i ∈ I is sampled with probability
μ(i), then the input x is fed to channel Ci, and the output y produced by the
channel is then made visible, along with the index i of the channel that was used.
Note that visible choice makes sense only between compatible channels, but it
is not required that the output set of each channel be the same.

Formally, given {Ci}i∈I of compatible channels s.t. each Ci has type X × Yi →
R, and a distribution μ on I, the visible choice operator �i←μ is defined as
�i←μCi = ◇i∈I μ(i)Ci.

Proposition 3. Given a family {Ci}i∈I of compatible channels s.t. each Ci has
type X × Yi → R, and a distribution μ on I, the result of the visible choice
�i←μCi is a channel of type X × (⨆i∈I Yi) → R.

In the particular case the family {Ci} has only two elements Ci1 and Ci2 ,
the distribution μ on indexes is completely determined by a real value 0 ≤ p ≤ 1
s.t. μ(i1) = p and μ(i2) = p̄. In this case we may use the binary version p
 of
the visible choice operator: Ci1 p
 Ci2 = pCi1 ⋄ p̄ Ci2 . The following depicts the
visible choice between channels C1 and C3, with probability p = 1/3.

C1 y1 y2
x1

1/2 1/2
x2

1/3 2/3
1/3


C3 y1 y3
x1

1/3 2/3
x2

1/2 1/2
=

C1 1/3
 C3 (y1, 1) (y2, 1) (y1, 3) (y3, 3)
x1

1/6 1/6 2/9 4/9
x2

1/9 2/9 1/3 1/3

4.3 Properties of Hidden and Visible Choice Operators

We now prove algebraic properties of channel operators. These properties will be
useful when we model a (more complex) protocol as the composition of smaller
channels via hidden or visible choice.

Whereas the properties of hidden choice hold generally with equality, those
of visible choice are subtler. For instance, visible choice is not idempotent, since
in general C p
 C ≠ C. (In fact if C has type X × Y → R, C p
 C has type
X× (Y⊔Y) → R.) However, idempotency and other properties involving visible
choice hold if we replace the notion of equality with the more relaxed notion of
“equivalence” between channels. Intuitively, two channels are equivalent if they
have the same input space and yield the same value of vulnerability for every
prior and every vulnerability function.

Definition 4 (Equivalence of channels). Two compatible channels C1 and
C2 with domain X are equivalent, denoted by C1 ≈ C2, if for every prior π ∈ DX
and every posterior vulnerability V we have V [π,C1] = V [π,C2].

Two equivalent channels are indistinguishable from the point of view of infor-
mation leakage, and in most cases we can just identify them. Indeed, nowadays
there is a tendency to use abstract channels [5,23], which capture exactly the
important behavior with respect to any form of leakage. In this paper, however,
we cannot use abstract channels because the hidden choice operator needs a
concrete representation in order to be defined unambiguously.
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The first properties we prove regard idempotency of operators, which can be
used do simplify the representation of some protocols.

Proposition 5 (Idempotency). Given a family {Ci}i∈I of channels s.t. Ci =
C for all i ∈ I, and a distribution μ on I, then: (a) ⨊i←μCi = C; and (b)
�i←μCi ≈ C.

The following properties regard the reorganization of operators, and they
will be essential in some technical results in which we invert the order in which
hidden and visible choice are applied in a protocol.

Proposition 6 (“Reorganizationof operators”).Given a family {Cij}i∈I,j∈J
of channels indexed by sets I and J, a distribution μ on I, and a distribution η
on J:

(a) ⨊i←μ ⨊j←ηCij = ⨊i←μ
j←η

Cij, if all Ci’s have the same type;

(b) �i←μ �j←ηCij ≈ �i←μ
j←η

Cij, if all Ci’s are compatible; and

(c) ⨊i←μ �j←ηCij ≈ �j←η ⨊i←μCij, if, for each i, all Cij’s have same type
X × Yj→R.

4.4 Properties of Vulnerability w.r.t. Channel Operators

We now derive some relevant properties of vulnerability w.r.t. our channel opera-
tors, which will be later used to obtain the Nash equilibria in information leakage
games with different choice operations.

The first result states that posterior vulnerability is convex w.r.t. hidden
choice (this result was already presented in [4]), and linear w.r.t. to visible choice.

Theorem 7. Let {Ci}i∈I be a family of channels, and μ be a distribution on I.
Then, for every distribution π on X, and every vulnerability V:

(a) posterior vulnerability is convex w.r.t. to hidden choice: V [π,⨊i←μCi] ≤
∑i∈I μ(i)V [π,Ci] if all Ci’s have the same type.

(b) posterior vulnerability is linear w.r.t. to visible choice: V [π,�i←μCi] =
∑i∈I μ(i)V [π,Ci] if all Ci’s are compatible.

The next result is concerned with posterior vulnerability under the compo-
sition of channels using both operators.

Corollary 8. Let {Cij}i∈I,j∈J be a family of channels, all with domain X and
with the same type, and let π ∈ DX, and V be any vulnerability. Define U ∶

DI × DJ → R as follows: U (μ, η)
def= V [π,⨊i←μ �j←η Cij]. Then U is convex

on μ and linear on η.
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5 Information Leakage Games

In this section we present our framework for reasoning about information leakage,
extending the notion of information leakage games proposed in [4] from only
simultaneous games with hidden choice to both simultaneous and sequential
games, with either hidden or visible choice.

In an information leakage game the defender tries to minimize the leakage of
information from the system, while the attacker tries to maximize it. In this basic
scenario, their goals are just opposite (zero-sum). Both of them can influence the
execution and the observable behavior of the system via a specific set of actions.
We assume players to be rational (i.e., they are able to figure out what is the
best strategy to maximize their expected payoff), and that the set of actions and
the payoff function are common knowledge.

Players choose their own strategy, which in general may be mixed (i.e. prob-
abilistic), and choose their action by a random draw according to that strategy.
After both players have performed their actions, the system runs and produces
some output value which is visible to the attacker and may leak some informa-
tion about the secret. The amount of leakage constitutes the attacker’s gain, and
the defender’s loss.

To quantify the leakage we model the system as an information-theoretic
channel (cf. Sect. 2.2). We recall that leakage is defined as the difference (addi-
tive leakage) or the ratio (multiplicative leakage) between posterior and prior
vulnerability. Since we are only interested in comparing the leakage of different
channels for a given prior, we will define the payoff just as the posterior vulner-
ability, as the value of prior vulnerability will be the same for every channel.

5.1 Defining Information Leakage Games

An (information) leakage game consists of: (1) two nonempty sets D, A of
defender’s and attacker’s actions respectively, (2) a function C ∶ D × A →
(X × Y → R) that associates to each pair of actions (d, a) ∈ D × A a chan-
nel Cda ∶ X × Y → R, (3) a prior π ∈ DX on secrets, and (4) a vulnerability
measure V. The payoff function u ∶ D × A → R for pure strategies is defined as
u(d, a)

def= V [π,Cda]. We have only one payoff function because the game is zero-
sum.

Like in traditional game theory, the order of actions and the extent by which
a player knows the move performed by the opponent play a critical role in decid-
ing strategies and determining the payoff. In security, however, knowledge of
the opponent’s move affects the game in yet another way: the effectiveness of
the attack, i.e., the amount of leakage, depends crucially on whether or not the
attacker knows what channel is being used. It is therefore convenient to distin-
guish two phases in the leakage game:

Phase 1: Each player determines the most convenient strategy (which in gen-
eral is mixed) for himself, and draws his action accordingly. One of the players
may commit first to his action, and his choice may or may not be revealed to
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the follower. In general, knowledge of the leader’s action may help the follower
choose a more advantageous strategy.

Phase 2: The attacker observes the output of the selected channel Cda and
performs his attack on the secret. In case he knows the defender’s action,
he is able to determine the exact channel Cda being used (since, of course,
the attacker knows his own action), and his payoff will be the posterior vul-
nerability V [π,Cda]. However, if the attacker does not know exactly which
channel has been used, then his payoff will be smaller.

Note that the issues raised in Phase 2 are typical of leakage games; they do
not have a correspondence (to the best of our knowledge) in traditional game
theory. On the other hand, these issues are central to security, as they reflect
the principle of preventing the attacker from inferring the secret by obfuscating
the link between secret and observables.

Following the above discussion, we consider various possible scenarios for
games, along two lines of classification. First, there are three possible orders for
the two players’ actions.

Simultaneous: The players choose (draw) their actions in parallel, each with-
out knowing the choice of the other.

Sequential, defender-first: The defender draws an action, and commits to it,
before the attacker does.

Sequential, attacker-first: The attacker draws an action, and commits to it,
before the defender does.

Note that these sequential games may present imperfect information (i.e., the
follower may not know the leader’s action).

Second, the visibility of the defender’s action during the attack may vary:

Visible choice: The attacker knows the defender’s action when he observes the
output of the channel, and therefore he knows which channel is being used.
Visible choice is modeled by the operator �.

Hidden choice: The attacker does not know the defender’s action when he
observes the output of the channel, and therefore in general he does not
exactly know which channel is used (although in some special cases he may
infer it from the output). Hidden choice is modeled by the operator ⨊.

Note that the distinction between sequential and simultaneous games is orthog-
onal to that between visible and hidden choice. Sequential and simultaneous games
model whether or not, respectively, the follower’s choice can be affected by knowl-
edge of the leader’s action.This dichotomycaptureshowknowledgeabout the other
player’s actions can help a player choose his own action. On the other hand, visi-
ble and hidden choice capture whether or not, respectively, the attacker is able to
fully determine the channel representing the system, once defender and attacker’s
actions have already been fixed. This dichotomy reflects the different amounts of
information leaked by the system as viewed by the adversary. For instance, in a
simultaneous game neither player can choose his action based on the choice of the
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Table 2. Kinds of games we consider. All sequential games have perfect information,
except for game V.

Order of action

simultaneous defender 1
st

attacker 1
st

Defender’s
choice

visible Game I Game II Game III

hidden Game IV Game V Game VI

other. However, depending on whether or not the defender’s choice is visible, the
adversary will or will not, respectively, be able to completely recover the channel
used, which will affect the amount of leakage.

If we consider also the subdivision of sequential games into perfect and imper-
fect information, there are 10 possible different combinations. Some, however,
make little sense. For instance, defender-first sequential game with perfect infor-
mation (by the attacker) does not combine naturally with hidden choice ⨊,
since that would mean that the attacker knows the action of the defender and
choses his strategy accordingly, but forgets it at the moment of the attack. (We
assume perfect recall, i.e., the players never forget what they have learned.) Yet
other combinations are not interesting, such as the attacker-first sequential game
with (totally) imperfect information (by the defender), since it coincides with
the simultaneous-game case. Note that attacker and defender are not symmetric
with respect to hiding/revealing their actions a and d, since the knowledge of a
affects the game only in the usual sense of game theory, while the knowledge of
d also affects the computation of the payoff (cf. “Phase 2” above).

Table 2 lists the meaningful and interesting combinations. In Game V we
assume imperfect information: the attacker does not know the action chosen
by the defender. In all the other sequential games we assume that the follower
has perfect information. In the remaining of this section, we discuss each game
individually, using the example of Sect. 3 as running example.

Game I (simultaneous with visible choice). This simultaneous game can
be represented by a tuple (D, A, u). As in all games with visible choice �,
the expected payoff U of a mixed strategy profile (δ, α) is defined to be the
expected value of u, as in traditional game theory: U (δ, α)

def= Ed←δ
a←α

u(d, a) =
∑d∈D

a∈A
δ(d)α(a) u(d, a), where we recall that u(d, a) = V [π,Cda].

From Theorem 7(b) we derive: U (δ, α) = V [π,�d←δ
a←α

Cda]. Hence the whole

system can be equivalently regarded as the channel �d←δ
a←α

Cda. Still from The-
orem 7(b) we can derive that U (δ, α) is linear in δ and α. Therefore the Nash
equilibrium can be computed using the minimax method (cf. Sect. 2.1).

Example 9. Consider the example of Sect. 3 in the setting of Game I. The Nash
equilibrium (δ

∗
, α

∗
) can be obtained using the closed formula from Sect. 2.1, and
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it is given by δ
∗
(0) = α

∗
(0) = (2/3−1)/(1/2−1−1+2/3) = 2/5. The corresponding payoff

is U (δ
∗
, α

∗
) = 2/5 2/5 1/2 + 2/5 3/5 + 3/5 2/5 + 3/5 3/5 2/3 = 4/5.

Game II (defender 1st with visible choice). This defender-first sequential
game can be represented by a tuple (D, D→A, u). A mixed strategy profile is
of the form (δ, σa), with δ ∈ DD and σa ∈ D(D→A), and the corresponding
payoff is U (δ, σa)

def= E d←δ
sa←σa

u(d, sa(d)) = ∑ d∈D
sa∶D→A

δ(d)σa(sa) u(d, sa(d)), where

u(d, sa(d)) = V [π,Cdsa(d)].

Again, from Theorem 7(b) we derive: U (δ, σa) = V [π,� d←δ
sa←σa

Cdsa(d)] and

hence the system can be expressed as channel � d←δ
sa←σa

Cdsa(d). From the same

Theorem we also derive that U (δ, σa) is linear in δ and σa, so the mutually
optimal strategies can be obtained again by solving the minimax problem. In
this case, however, the solution is particularly simple, because it is known that
there are optimal strategies which are deterministic. Hence it is sufficient for the
defender to find the action d which minimizes maxa u(d, a).

Example 10. Consider the example of Sect. 3 in the setting of Game II. If the
defender chooses 0 then the attacker chooses 1. If the defender chooses 1 then
the attacker chooses 0. In both cases, the payoff is 1. The game has therefore two
solutions, (0, 1) and (1, 0).

Game III (attacker 1st with visible choice). This game is also a sequential
game, but with the attacker as the leader. Therefore it can be represented as
tuple of the form (A→D, A, u). It is the same as Game II, except that the
roles of the attacker and the defender are inverted. In particular, the payoff
of a mixed strategy profile (σd, α) ∈ D(A→D) × DA is given by U (σd, α)

def=
Esd←σd

a←α
u(sd(a), a) = ∑sd∶A→D

a∈A
σd(sd)α(a) u(sd(a), a) = V [π,�sd←σd

a←α
Csd(a)a], and

the whole system can be equivalently regarded as channel �sd←σd
a←α

Csd(a)a. Obvi-
ously, also in this case the minimax problem has a deterministic solution.

In summary, in the sequential case, whether the leader is the defender or the
attacker (Games II and III, respectively), the minimax problem has always a
deterministic solution [24].

Theorem 11. In a defender-first sequential game with visible choice, there exist
d ∈ D and a ∈ A such that, for every δ ∈ DD and σa ∈ D(D→A) we have:
U (d, σa) ≤ u(d, a) ≤ U (δ, a). Similarly, in an attacker-first sequential game with
visible choice, there exist d ∈ D and a ∈ A such that, for every σd ∈ D(A→D)
and α ∈ DA we have: U (d, α) ≤ u(d, a) ≤ U (σd, a).

Example 12. Consider now the example of Sect. 3 in the setting of Game III.
If the attacker chooses 0 then the defender chooses 0 and the payoff is 1/2. If the
attacker chooses 1 then the defender chooses 1 and the payoff is 2/3. The latter
case is more convenient for the attacker, hence the solution of the game is the
strategy profile (1, 1).
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Game IV (simultaneous with hidden choice). This game is a tuple
(D,A, u). However, it is not an ordinary game in the sense that the payoff a
mixed strategy profile cannot be defined by averaging the payoff of the corre-
sponding pure strategies. More precisely, the payoff of a mixed profile is defined
by averaging on the strategy of the attacker, but not on that of the defender. In
fact, when hidden choice is used, there is an additional level of uncertainty in
the relation between the observables and the secret from the point of view of the
attacker, since he is not sure about which channel is producing those observables.
A mixed strategy δ for the defender produces a convex combination of channels
(the channels associated to the pure strategies) with the same coefficients, and
we know from previous sections that the vulnerability is a convex function of
the channel, and in general is not linear.

In order to define the payoff of a mixed strategy profile (δ, α), we need there-
fore to consider the channel that the attacker perceives given his limited knowl-
edge. Let us assume that the action that the attacker draws from α is a. He
does not know the action of the defender, but we can assume that he knows his
strategy (each player can derive the optimal strategy of the opponent, under the
assumption of common knowledge and rational players).

The channel the attacker will see is ⨊d←δCda, obtaining a corresponding
payoff of V [π,⨊d←δCda]. By averaging on the strategy of the attacker we

obtain U (δ, α)
def= Ea←αV [π,⨊d←δCda] = ∑a∈A α(a)V [π,⨊d←δCda]. From

Theorem 7(b) we derive: U (δ, α) = V [π,�a←α ⨊d←δCda] and hence the whole
system can be equivalently regarded as channel �a←α ⨊d←δCda. Note that, by
Proposition 6(c), the order of the operators is interchangeable, and the system
can be equivalently regarded as ⨊d←δ �a←αCda. This shows the robustness of
this model.

From Corollary 8 we derive that U (δ, α) is convex in δ and linear in η, hence
we can compute the Nash equilibrium by the minimax method.

Example 13. Consider now the example of Sect. 3 in the setting of Game IV.
For δ ∈ DD and α ∈ DA, let p = δ(0) and q = α(0). The system can be
represented by the channel (C00 p⊕ C10) q
 (C01 p⊕ C11) represented below.

C00 p⊕ C10 y = 0 y = 1
x = 0 p p̄
x = 1 1 0

q

C01 p⊕ C11 y = 0 y = 1

x = 0 1/3 + 2/3 p 2/3 − 2/3 p
x = 1 2/3 − 2/3 p 1/3 + 2/3 p

For uniform π, we have V [π,C00 p⊕ C10]=1 − 1/2; and V [π,C10 p⊕ C11]
is equal to 2/3 − 2/3 p if p ≤ 1/4, and equal to 1/3 + 2/3 p if p > 1/4. Hence the
payoff, expressed in terms of p and q, is U (p, q) = q(1 − 1/2) + q̄(2/3 − 2/3 p) if
p ≤ 1/4, and U (p, q) = q(1− 1/2)+ q̄(1/3+ 2/3 p) if p > 1/4. The Nash equilibrium
(p

∗
, q

∗
) is given by p

∗ = argminp maxq U (p, q) and q
∗ = argmaxq minp U (p, q),

and by solving the above, we obtain p
∗ = q

∗ = 4/7.

Game V (defender 1st with hidden choice). This is a defender-first sequen-
tial game with imperfect information, hence it can be represented as a tuple of
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the form (D, Ka → A, ud, ua), where Ka is a partition of D. Since we are assum-
ing perfect recall, and the attacker does not know anything about the action
chosen by the defender in Phase 2, i.e., at the moment of the attack (except the
probability distribution determined by his strategy), we must assume that the
attacker does not know anything in Phase 1 either. Hence the indistinguishabil-
ity relation must be total, i.e., Ka = {D}. But {D} → A is equivalent to A, hence
this kind of game is equivalent to Game IV.

It is also a well known fact in Game theory that when in a sequential game
the follower does not know the leader’s move before making his choice, the game
is equivalent to a simultaneous game.7

Game VI (attacker 1st with hidden choice). This game is also a sequen-
tial game with the attacker as the leader, hence it is a tuple of the form
(A→D, A, u). It is similar to Game III, except that the payoff is convex on
the strategy of the defender, instead of linear. The payoff of the mixed strategy
profile (σd, α) ∈ D(A→D) × DA is U (σd, α)

def= Ea←αV [π,⨊sd←σd
Csd(a)a] =

V [π,⨊a←α �sd←σd
Csd(a)a], so the whole system can be equivalently regarded

as channel ⨊a←α �sd←σd
Csd(a)a. Also in this case the minimax problem has a

deterministic solution, but only for the attacker.

Theorem 14. In an attacker-first sequential game with hidden choice, there
exist a ∈ A and δ ∈ DD such that, for every α ∈ DA and σd ∈ D(A→D) we
have that U (δ, α) ≤ U (δ, a) ≤ U (σd, a).

Example 15. Consider again the example of Sect. 3, this time in the setting
of Game VI. Consider also the calculations made in Example 13, we will use
the same results and notation here. In this setting, the attacker is obliged to
make its choice first. If he chooses 0, which corresponds to committing to the
system C00 p⊕ C10, then the defender will choose p = 1/4, which minimizes its
vulnerability. If he chooses 1, which corresponds to committing to the system
C01 p⊕ C11, the defender will choose p = 1, which minimizes its vulnerability
of the above channel. In both cases, the leakage is p = 1/2, hence both these
strategies are solutions to the minimax. Note that in the first case the strategy
of the defender is mixed, while that of the attacker is always pure.

5.2 Comparing the Games

If we look at the various payoffs obtained for the running example in the
various games, we obtain the following values (listed in decreasing order):
II ∶ 1; I ∶ 4/5; III ∶ 2/3; IV ∶ 4/7; V ∶ 4/7; VI ∶ 1/2.

7
However, one could argue that, since the defender has already committed, the
attacker does not need to perform the action corresponding to the Nash equilib-
rium, any payoff-maximizing solution would be equally good for him.
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Fig. 2. Order of games
w.r.t. payoff. Games
higher in the lattice
have larger payoff.

This order is not accidental: for any vulnerabil-
ity function, and for any prior, the various games are
ordered, with respect to the payoff, as shown in Fig. 2.
The relations between II, I, and III, and between IV-
V and VI come from the fact that, in any zero-sum
sequential game the leader’s payoff will be less or equal
to his payoff in the corresponding simultaneous game.
We think this result is well-known in game theory, but
we give the hint of the proof nevertheless, for the sake
of clarity.

Theorem 16. It is the case that:

(a) minδ maxσa
V [π,� d←δ

sa←σa

Cdsa(d)] ≥ minδ maxα V [π,�d←δ
a←α

Cda]

≥ maxα minσd
V [π,�sd←σd

a←α
Csd(a)a]

(b) minδ maxα V [π,�a←α ⨊d←δCda] ≥ maxα minσd
V [π,⨊a←α �sd←σd

Csd(a)a]

Proof. We prove the first inequality in (a). Independently of δ, consider the
attacker strategy τa that assigns probability 1 to the function sa defined as
sa(d) = argmaxaV [π,Cda]. Then we have that

min
δ

max
σa

V

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

π, �
d←δ
sa←σa

Cdsa(d)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ min
δ

V

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

π, �
d←δ
sa←τa

Cdsa(d)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ min
δ

max
α

V

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

π, �
d←δ
a←α

Cda

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that the strategy τa is optimal for the adversary, so the first of the above
inequalities is actually an equality. All other cases can be proved with an anal-
ogous reasoning. ⊓⊔

Concerning III and IV-V: these are not related. In the running example the
payoff for III is higher than for IV-V, but it is easy to find other cases in which
the situation is reversed. For instance, if in the running example we set C11 to
be the same as C00, the payoff for III will be 1/2, and that for IV-V will be 2/3.

Finally, the relation between III and VI comes from the fact that they are
both attacker-first sequential games, and the only difference is the way in which
the payoff is defined. Then, just observe that in general we have, for every a ∈ A
and every δ ∈ DD: V [π,⨊d←δCda] ≤ V [π,�d←δCda].

The relations in Fig. 2 can be used by the defender as guidelines to better
protect the system, if he has some control over the rules of the game. Obviously,
for the defender the games lower in the ordering are to be preferred.
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6 Case Study: A Safer, Faster Password-Checker

Fig. 3. Password-checker algorithm.

In this section we apply our game-theoretic,
compositional approach to show how a
defender can mitigate an attacker’s typical
timing side-channel attack while avoiding
the usual burden imposed on the password-
checker’s efficiency.

Consider the password-checker PWD123 of
Fig. 3, which performs a bitwise-check of
a 3-bit low-input a = a1a2a3, provided by
the attacker, against a 3-bit secret pass-
word x = x1x2x3. The low-input is rejected
as soon as it mismatches the secret, and is
accepted otherwise.

The attacker can choose low-inputs to
try to gain information about the password.
Obviously, in case PWD123 accepts the low-input, the attacker learns the password
value is a = x. Yet, even when the low-input is rejected, there is some leakage of
information: from the duration of the execution the attacker can estimate how
many iterations have been performed before the low-input was rejected, thus
inferring a prefix of the secret password.

To model this scenario, let X = {000, 001, . . . , 111} be the set of all possible
3-bit passwords, and Y = {(F, 1), (F, 2), (F, 3), (T, 3)} be the set of observables
produced by the system. Each observable is an ordered pair whose first element
indicates whether the password was accepted (T or F ), and the second element
indicates the duration of the computation (1, 2, or 3 iterations). For instance,
channel C123,101 in Fig. 4 models PWD123’s behavior when the attacker provides
low-input a = 101.

We will adopt as a measure of information Bayes vulnerability [27]. The prior
Bayes vulnerability of a distribution π ∈ DX is defined as Vg [π]=maxx∈X πx,
and represents the probability that the attacker guesses correctly the password
in one try. For instance, if the distribution on all possible 3-bit passwords is
π̂ = (0.0137, 0.0548, 0.2191, 0.4382, 0.0002, 0.0002, 0.0548, 0.2191), its prior Bayes
vulnerability is V [π̂] = 0.4382.

The posterior Bayes vulnerability of a prior π and a channel C∶X × Y→R is
defined as V [π,C]=∑y∈Y maxx∈X πxC(x, y), and it represents the probability
that the attacker guesses correctly the password in one try, after he observes
the output of the channel (i.e., after he has measured the time needed for the
checker to accept or reject the low-input). For prior π̂ above, the posterior Bayes
vulnerability of channel C123,101 is V [π̂, C123,101] = 0.6577 (which represents an
increase in Bayes vulnerability of about 50%), and the expected running time
for this checker is of 1.2747 iterations.

A way to mitigate this timing side-channel is to make the checker’s execution
time independent of the secret. Channel Ccons,101 from Fig. 4 models a checker
that does that (by eliminating the break command within the loop in PWD123)
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when the attacker’s low-input is a = 101. This channel’s posterior Bayes vulner-
ability is V [π̂, C123,101] = 0.4384, which brings the multiplicative Bayes leakage
down to an increase of only about 0.05%. However, the expected running time
goes up to 3 iterations (an increase of about 135% w.r.t. that of C123,101).

Fig. 4. Channels Cda modeling the password
checker for defender’s action d and attacker’s
action a.

Seeking some compromise
between security and efficiency,
assume that the defender
can employ password-checkers
that perform the bitwise com-
parison among low-input a
and secret password x in
different orders. More pre-
cisely, there is one version of
the checker for every possi-
ble order in which the index
i ranges in the control of the
loop. For instance, while PWD123 checks the bits in the order 1, 2, 3, the alterna-
tive algorithm PWD231 uses the order 2, 3, 1.

To determine a defender’s best choice of which versions of the checker
to run, we model this problem as game. The attacker’s actions A =
{000, 001, . . . , 111} are all possible low-inputs to the checker, and the defender’s
D = {123, 132, 213, 231, 312, 321} are all orders to perform the comparison.
Hence, there is a total of 48 possible channels Cad∶X × Y→R, one for each
combination of d ∈ D, a ∈ A.

Table 3. Utility for each pure strategy profile.
In our frame-

work, the utility
of a mixed strat-
egy profile (δ, α) is
given by U (δ, α) =
Ea←αV [π,⨊d←δCda].
For each pure strat-
egy profile (d, a),
the payoff of the game will be the posterior Bayes vulnerability of the resulting
channel Cda (since, if we measuring leakage, the prior vulnerability is the same
for every channel once the prior is fixed). Table 3 depicts such payoffs. Note
that the attacker’s and defender’s actions substantially affect the effectiveness of
the attack: vulnerability ranges between 0.4934 and 0.9311 (and so multiplicative
leakage is in the range between an increase of 12% and one of 112%). Using tech-
niques from [4], we can compute the best (mixed) strategy for the defender in this
game, which turns out to be δ

∗ = (0.1667, 0.1667, 0.1667, 0.1667, 0.1667, 0.1667).
This strategy is part of an equilibrium and guarantees that for any choice of the
attacker the posterior Bayes vulnerability is at most 0.6573 (so the multiplica-
tive leakage is bounded by 50%, an intermediate value between the minimum of
about 12% and the maximum of about 112%). It is interesting to note that the
expected running time, for any action of the attacker, is bounded by at most
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2.3922 iterations (an increase of only 87% w.r.t. the channel PWD123), which is
below the worst possible expected 3 iterations of the constant-time password
checker.

7 Related Work

Many studies have applied game theory to analyses of security and privacy in
networks [3,7,14], cryptography [15], anonymity [1], location privacy [13], and
intrusion detection [30], to cite a few. See [20] for a survey.

In the context of quantitative information flow, most works consider only
passive attackers. Boreale and Pampaloni [8] consider adaptive attackers, but
not adaptive defenders, and show that in this case the adversary’s optimal strat-
egy can be always deterministic. Mardziel et al. [21] propose a model for both
adaptive attackers and defenders, but in none of their extensive case-studies the
attacker needs a probabilistic strategy to maximize leakage. In this paper we
characterize when randomization is necessary, for either attacker or defender, to
achieve optimality in our general information leakage games.

Security games have been employed to model and analyze payoffs between
interacting agents, especially between a defender and an attacker. Korzhyk et al.
[19] theoretically analyze security games and study the relationships between
Stackelberg and Nash Equilibria under various forms of imperfect information.
Khouzani and Malacaria [18] study leakage properties when perfect secrecy is
not achievable due to constraints on the allowable size of the conflating sets,
and provide universally optimal strategies for a wide class of entropy measures,
and for g-entropies. These works, contrarily to ours, do not consider games with
hidden choice, in which optimal strategies differ from traditional game-theory.

Several security games have modeled leakage when the sensitive informa-
tion are the defender’s choices themselves, rather than a system’s high input.
For instance, Alon et al. [2] propose zero-sum games in which a defender chooses
probabilities of secrets and an attacker chooses and learns some of the defender’s
secrets. Then they present how the leakage on the defender’s secrets gives influ-
ences on the defender’s optimal strategy. More recently, Xu et al. [29] show
zero-sum games in which the attacker obtains partial knowledge on the security
resources that the defender protects, and provide the defender’s optimal strategy
under the attacker’s such knowledge.

Regarding channel operators, sequential and parallel composition of channels
have been studied (e.g., [17]), but we are unaware of any explicit definition
and investigation of hidden and visible choice operators. Although Kawamoto
et al. [16] implicitly use the hidden choice to model a probabilistic system as the
weighted sum of systems, they do not derive the set of algebraic properties we
do for this operator, and for its interaction with the visible choice operator.
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8 Conclusion and Future Work

In this paper we used protocol composition to model the introduction of noise
performed by the defender to prevent leakage of sensitive information. More
precisely, we formalized visible and hidden probabilistic choices of different pro-
tocols. We then formalized the interplay between defender and adversary in a
game-theoretic framework adapted to the specific issues of QIF, where the payoff
is information leakage. We considered various kinds of leakage games, depending
on whether players act simultaneously or sequentially, and whether the choices
of the defender are visible or not to the adversary. We established a hierarchy
of these games, and provided methods for finding the optimal strategies (at the
points of equilibrium) in the various cases.

As future research, we would like to extend leakage games to the case of
repeated observations, i.e., when the attacker can observe the outcomes of the
system in successive runs, under the assumption that both attacker and defender
may change the channel in each run. We would also like to extend our frame-
work to non zero-sum games, in which the costs of attack and defense are not
equivalent, and to analyze differentially-private mechanisms.
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1 Université de Lorraine, CNRS, Inria, LORIA, Vandœuvre-lès-Nancy, France
joseph.lallemand@loria.fr
2 TU Wien, Vienna, Austria

Abstract. Recently, many tools have been proposed for automatically
analysing, in symbolic models, equivalence of security protocols. Equiv-
alence is a property needed to state privacy properties or game-based
properties like strong secrecy. Tools for a bounded number of sessions
can decide equivalence but typically suffer from efficiency issues. Tools
for an unbounded number of sessions like Tamarin or ProVerif prove a
stronger notion of equivalence (diff-equivalence) that does not properly
handle protocols with else branches.

Building upon a recent approach, we propose a type system for rea-
soning about branching protocols and dynamic keys. We prove our type
system to entail equivalence, for all the standard primitives. Our type
system has been implemented and shows a significant speedup compared
to the tools for a bounded number of sessions, and compares similarly
to ProVerif for an unbounded number of sessions. Moreover, we can also
prove security of protocols that require a mix of bounded and unbounded
number of sessions, which ProVerif cannot properly handle.

1 Introduction

Formal methods provide a rigorous and convenient framework for analysing secu-
rity protocols. In particular, mature push-button analysis tools have emerged
and have been successfully applied to many protocols from the literature in the
context of trace properties such as authentication or confidentiality. These tools
employ a variety of analysis techniques, such as model checking (e.g., Avispa [6]
and Scyther [31]), Horn clause resolution (e.g., ProVerif [13]), term rewriting
(e.g., Scyther [31] and Tamarin [38]), and type systems [7,12,16–21,34,36,37].

In the recent years, attention has been given also to equivalence properties,
which are crucial to model privacy properties such as vote privacy [8,33], unlik-
ability [5], or anonymity [9]. For example, consider an authentication protocol
Ppass embedded in a biometric passport. Ppass preserves anonymity of pass-
port holders if an attacker cannot distinguish an execution with Alice from an
execution with Bob. This can be expressed by the equivalence Ppass(Alice) ≈t

Ppass(Bob). Equivalence is also used to express properties closer to cryptographic
games like strong secrecy.
c© The Author(s) 2018
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Two main classes of tools have been developed for equivalence. First, in the
case of an unbounded number of sessions (when the protocol is executed arbitrar-
ily many times), equivalence is undecidable. Instead, the tools ProVerif [13,15]
and Tamarin [11,38] try to prove a stronger property, namely diff-equivalence,
that may be too strong e.g. in the context of voting. Tamarin covers a larger class
of protocols but may require some guidance from the user. Maude-NPA [35,40]
also proves diff-equivalence but may have non-termination issues. Another class
of tools aim at deciding equivalence, for bounded number of sessions. This is the
case in particular of SPEC [32], APTE [23], Akiss [22], and SatEquiv [26]. SPEC,
APTE, and Akiss suffer from efficiency issues and can typically not handle more
than 3–4 sessions. SatEquiv is much more efficient but is limited to symmetric
encryption and requires protocols to be well-typed, which often assumes some
additional tagging of the protocol.

Our Contribution. Following the approach of [28], we propose a novel technique
for proving equivalence properties for a bounded number of sessions as well as an
unbounded number of sessions (or a mix of both), based on typing. [28] proposes
a first type system that entails trace equivalence P ≈t Q, provided protocols
use fixed (long-term) keys, identical in P and Q. In this paper, we target a
larger class of protocols, that includes in particular key-exchange protocols and
protocols whose security relies on branching on the secret. This is the case e.g.
of the private authentication protocol [3], where agent B returns a true answer
to A, encrypted with A’s public key if A is one of his friends, and sends a decoy
message (encrypted with a dummy key) otherwise.

We devise a new type system for reasoning about keys. In particular, we
introduce bikeys to cover behaviours where keys in P differ from the keys in Q.
We design new typing rules to reason about protocols that may branch differently
(in P and Q), depending on the input. Following the approach of [28], our type
system collects sent messages into constraints that are required to be consistent.
Intuitively, the type system guarantees that any execution of P can be matched
by an execution of Q, while consistency imposes that the resulting sequences
of messages are indistinguishable for an attacker. We had to entirely revisit the
approach of [28] and prove a finer invariant in order to cope with the case where
keys are used as variables. Specifically, most of the rules for encryption, signature,
and decryption had to be adapted to accommodate the flexible usage of keys.
For messages, we had to modify the rules for keys and encryption, in order to
encrypt messages with keys of different type (bi-key type), instead of only fixed
keys. We show that our type system entails equivalence for the standard notion
of trace equivalence [24] and we devise a procedure for proving consistency. This
yields an efficient approach for proving equivalence of protocols for a bounded
and an unbounded number of sessions (or a combination of both).

We implemented a prototype of our type-checker that we evaluate on a set of
examples, that includes private authentication, the BAC protocol (of the biomet-
ric passport), as well as Helios together with the setup phase. Our tool requires a
light type annotation that specifies which keys and names are likely to be secret
or public and the form of the messages encrypted by a given key. This can be
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easily inferred from the structure of the protocol. Our type-checker outperforms
even the most efficient existing tools for a bounded number of sessions by two
(for examples with few processes) to three (for examples with more processes)
orders of magnitude. Note however that these tools decide equivalence while
our type system is incomplete. In the case of an unbounded number of sessions,
on our examples, the performance is comparable to ProVerif, one of the most
popular tools. We consider in particular vote privacy in the Helios protocol, in
the case of a dishonest ballot board, with no revote (as the protocol is insecure
otherwise). ProVerif fails to handle this case as it cannot (faithfully) consider
a mix of bounded and unbounded number of sessions. Compared to [28], our
analysis includes the setup phase (where voters receive the election key), which
could not be considered before.

The technical details and proofs omitted due to space constraints are available
in the companion technical report [29].

2 High-Level Description

2.1 Background

Trace equivalence of two processes is a property that guarantees that an attacker
observing the execution of either of the two processes cannot decide which one it
is. Previous work [28] has shown how trace equivalence can be proved statically
using a type system combined with a constraint checking procedure. The type
system consists of typing rules of the form Γ � P ∼ Q → C, meaning that in
an environment Γ two processes P and Q are equivalent if the produced set of
constraints C, encoding the attacker observables, is consistent.

The typing environment Γ is a mapping from nonces, keys, and variables to
types. Nonces are assigned security labels with a confidentiality and an integrity
component, e.g. HL for high confidentiality and low integrity. Key types are of
the form keyl(T ) where l is the security label of the key and T is the type of the
payload. Key types are crucial to convey typing information from one process to
another one. Normally, we cannot make any assumptions about values received
from the network – they might possibly originate from the attacker. If we however
successfully decrypt a message using a secret symmetric key, we know that the
result is of the key’s payload type. This is enforced on the sender side, whenever
outputting an encryption.

A core assumption of virtually any efficient static analysis for equivalence is
uniform execution, meaning that the two processes of interest always take the
same branch in a branching statement. For instance, this means that all decryp-
tions must always succeed or fail equally in the two processes. For this reason,
previous work introduced a restriction to allow only encryption and decryption
with keys whose equality could be statically proved.

2.2 Limitation

There are however protocols that require non-uniform execution for a proof of
trace equivalence, e.g., the private authentication protocol [3]. The protocol aims
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Γ (kb, kb) = keyHH(HL ∗ LL) initial message uses same key on both sides
Γ (ka, k) = keyHH(HL) authentication succeeded on the left, failed on the right
Γ (k, kc) = keyHH(HL) authentication succeeded on the right, failed on the left

Γ (ka, kc) = keyHH(HL) authentication succeeded on both sides
Γ (k, k) = keyHH(HL) authentication failed on both sides

Fig. 1. Key types for the private authentication protocol

at authenticating B to A, anonymously w.r.t. other agents. More specifically,
agent B may refuse to communicate with agent A but a third agent D should
not learn whether B declines communication with A or not. The protocol can be
informally described as follows, where pk(k) denotes the public key associated
to key k, and aenc(M, pk(k)) denotes the asymmetric encryption of message M
with this public key.

A → B : aenc(〈Na, pk(ka)〉, pk(kb))

B → A :

{
aenc(〈Na, 〈Nb, pk(kb)〉〉, pk(ka)) if B accepts A’s request
aenc(Nb, pk(k)) if B declines A’s request

If B declines to communicate with A, he sends a decoy message
aenc(Nb, pk(k)) where pk(k) is a decoy key (no one knows the private key k).

2.3 Encrypting with Different Keys

Let Pa(ka, pk(kb)) model agent A willing to talk with B, and Pb(kb, pk(ka))
model agent B willing to talk with A (and declining requests from other agents).
We model the protocol as:

Pa(ka, pkb) = new Na.out(aenc(〈Na, pk(ka)〉, pkb)). in(z)
Pb(kb, pka) = new Nb. in(x).

let y = adec(x, kb) in let y1 = π1(y) in let y2 = π2(y) in
if y2 = pka then
out(aenc(〈y1, 〈Nb, pk(kb)〉〉, pka))

else out(aenc(Nb, pk(k)))

where adec(M,k) denotes asymmetric decryption of message M with private
key k. We model anonymity as the following equivalence, intuitively stating that
an attacker should not be able to tell whether B accepts requests from the agent
A or C:

Pa(ka, pk(kb)) | Pb(kb, pk(ka)) ≈t Pa(ka, pk(kb)) | Pb(kb, pk(kc))

We now show how we can type the protocol in order to show trace equiva-
lence. The initiator Pa is trivially executing uniformly, since it does not contain
any branching operations. We hence focus on typing the responder Pb.

The beginning of the responder protocol can be typed using standard tech-
niques. Then however, we perform the test y2 = pk(ka) on the left side and
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y2 = pk(kc) on the right side. Since we cannot statically determine the result
of the two equality checks – and thus guarantee uniform execution – we have
to typecheck the four possible combinations of then and else branches. This
means we have to typecheck outputs of encryptions that use different keys on
the left and the right side.

To deal with this we do not assign types to single keys, but rather to pairs of
keys (k, k′) – which we call bikeys – where k is the key used in the left process
and k′ is the key used in the right process. The key types used for typing are
presented in Fig. 1.

As an example, we consider the combination of the then branch on the
left with the else branch on the right. This combination occurs when A is
successfully authenticated on the left side, while being rejected on the right side.
We then have to typecheck B’s positive answer together with the decoy message:
Γ � aenc(〈y1, 〈Nb, pk(kb)〉〉, pk(ka)) ∼ aenc(Nb, pk(k)) : LL. For this we need the
type for the bikey (ka, k).

2.4 Decrypting Non-uniformly

When decrypting a ciphertext that was potentially generated using two different
keys on the left and the right side, we have to take all possibilities into account.
Consider the following extension of the process Pa where agent A decrypts B’s
message.

Pa(ka, pkb) = new Na.out(aenc(〈Na, pk(ka)〉, pkb)). in(z).
let z′ = adec(z, ka) in out(1)
else out(0)

In the decryption, there are the following possible cases:

– The message is a valid encryption supplied by the attacker (using the public
key pk(ka)), so we check the then branch on both sides with Γ (z′) = LL.

– The message is not a valid encryption supplied by the attacker so we check
the else branch on both sides.

– The message is a valid response from B. The keys used on the left and the
right are then one of the four possible combinations (ka, k), (ka, kc), (k, kc)
and (k, k).

• In the first two cases the decryption will succeed on the left and fail on
the right. We hence check the then branch on the left with Γ (z′) = HL
with the else branch on the right. If the type Γ (ka, k) were different from
Γ (ka, kc), we would check this combination twice, using the two different
payload types.

• In the remaining two cases the decryption will fail on both sides. We hence
would have to check the two else branches (which however we already
did).

While checking the then branch together with the else branch, we have to
check Γ � 1 ∼ 0 : LL, which rightly fails, as the protocol does not guarantee
trace equivalence.
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3 Model

In symbolic models, security protocols are typically modelled as processes of a
process algebra, such as the applied pi-calculus [2]. We present here a calculus
used in [28] and inspired from the calculus underlying the ProVerif tool [14]. This
section is mostly an excerpt of [28], recalled here for the sake of completeness,
and illustrated with the private authentication protocol.

3.1 Terms

Messages are modelled as terms. We assume an infinite set of names N for nonces,
further partitioned into the set FN of free nonces (created by the attacker) and
the set BN of bound nonces (created by the protocol parties), an infinite set of
names K for keys similarly split into FK and BK, and an infinite set of variables
V. Cryptographic primitives are modelled through a signature F , that is, a set
of function symbols, given with their arity (i.e. the number of arguments). Here,
we consider the following signature:

Fc = {pk, vk, enc, aenc, sign, 〈·, ·〉, h}

that models respectively public and verification key, symmetric and asymmetric
encryption, concatenation and hash. The companion primitives (symmetric and
asymmetric decryption, signature check, and projections) are represented by the
following signature:

Fd = {dec, adec, checksign, π1, π2}

We also consider a set C of (public) constants (used as agent names for instance).
Given a signature F , a set of names N , and a set of variables V, the set of terms
T (F ,V,N ) is the set inductively defined by applying functions to variables in V
and names in N . We denote by names(t) (resp. vars(t)) the set of names (resp.
variables) occurring in t. A term is ground if it does not contain variables.

We consider the set T (Fc ∪ Fd ∪ C,V,N ∪ K) of cryptographic terms, simply
called terms. Messages are terms with constructors from T (Fc ∪ C,V,N ∪ K).
We assume the set of variables to be split into two subsets V = X 	 AX where
X are variables used in processes while AX are variables used to store messages.
An attacker term is a term from T (Fc ∪ Fd ∪ C,AX ,FN ∪ FK). In particular,
an attacker term cannot use nonces and keys created by the protocol’s parties.

A substitution σ = {M1/x1, . . . ,Mk/xk} is a mapping from variables
x1, . . . , xk ∈ V to messages M1, . . . ,Mk. We let dom(σ) = {x1, . . . , xk}. We
say that σ is ground if all messages M1, . . . ,Mk are ground. We let names(σ) =⋃

1≤i≤k names(Mi). The application of a substitution σ to a term t is denoted
tσ and is defined as usual.
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The evaluation of a term t, denoted t ↓, corresponds to the bottom-up appli-
cation of the cryptographic primitives and is recursively defined as follows.

u ↓ = u if u ∈ N ∪ V ∪ K ∪ C
pk(t) ↓ = pk(t ↓) if t ↓∈ K
vk(t) ↓ = vk(t ↓) if t ↓∈ K
h(t) ↓ = h(t ↓) if t ↓�= ⊥

〈t1, t2〉 ↓ = 〈t1 ↓, t2 ↓〉 if t1 ↓�= ⊥ and t2 ↓�= ⊥
enc(t1, t2) ↓ = enc(t1 ↓, t2 ↓) if t1 ↓�= ⊥ and t2 ↓∈ K

sign(t1, t2) ↓ = sign(t1 ↓, t2 ↓) if t1 ↓�= ⊥ and t2 ↓∈ K
aenc(t1, t2) ↓ = aenc(t1 ↓, t2 ↓) if t1 ↓�= ⊥ and t2 ↓= pk(k)

for some k ∈ K

π1(t) ↓ = t1 if t ↓= 〈t1, t2〉
π2(t) ↓ = t2 if t ↓= 〈t1, t2〉

dec(t1, t2) ↓ = t3 if t1 ↓= enc(t3, t4) and t4 = t2 ↓
adec(t1, t2) ↓ = t3 if t1 ↓= aenc(t3, pk(t4)) and t4 = t2 ↓

checksign(t1, t2) ↓ = t3 if t1 ↓= sign(t3, t4) and t2 ↓= vk(t4)
t ↓ = ⊥ otherwise

Note that the evaluation of term t succeeds only if the underlying keys are atomic
and always returns a message or ⊥. For example we have π1(〈a, b〉) ↓= a, while
dec(enc(a, 〈b, b〉), 〈b, b〉) ↓= ⊥, because the key is non atomic. We write t =↓ t′

if t ↓= t′ ↓.

d ::= dec(x, t) | adec(x, t) | checksign(x, t′) | π1(x) | π2(x)

where x ∈ X , t ∈ K ∪ X , t′ ∈ {vk(k)|k ∈ K} ∪ X .

Processes:

P, Q ::= 0 | new n.P | out(M).P | in(x).P | (P | Q) | !P
| let x = d in P else Q | if M = N then P else Q

where n ∈ BN ∪ BK, x ∈ X , and M, N are messages.

Destructors used in processes:

Fig. 2. Syntax for processes.

3.2 Processes

Security protocols describe how messages should be exchanged between partic-
ipants. We model them through a process algebra, whose syntax is displayed
in Fig. 2. We identify processes up to α-renaming, i.e., avoiding substitution of
bound names and variables, which are defined as usual. Furthermore, we assume
that all bound names, keys, and variables in the process are distinct.
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A configuration of the system is a tuple (P;φ;σ) where:

– P is a multiset of processes that represents the current active processes;
– φ is a substitution with dom(φ) ⊆ AX and for any x ∈ dom(φ), φ(x) (also

denoted xφ) is a message that only contains variables in dom(σ). φ represents
the terms that have been sent;

– σ is a ground substitution.

The semantics of processes is given through a transition relation α−−→, defined
in Fig. 3 (τ denotes a silent action). The relation w−−→∗ is defined as the reflexive
transitive closure of α−−→, where w is the concatenation of all actions. We also
write equality up to silent actions =τ .

Intuitively, process new n.P creates a fresh nonce or key, and behaves like
P . Process out(M).P emits M and behaves like P , provided that the evalua-
tion of M is successful. The corresponding message is stored in the frame φ,
corresponding to the attacker knowledge. A process may input any message
that an attacker can forge (rule In) from her knowledge φ, using a recipe R
to compute a new message from φ. Note that all names are initially assumed
to be secret. Process P | Q corresponds to the parallel composition of P and
Q. Process let x = d in P else Q behaves like P in which x is replaced
by d if d can be successfully evaluated and behaves like Q otherwise. Process
if M = N then P else Q behaves like P if M and N correspond to two equal
messages and behaves like Q otherwise. The replicated process !P behaves as an
unbounded number of copies of P .

A trace of a process P is any possible sequence of transitions in the presence
of an attacker that may read, forge, and send messages. Formally, the set of
traces trace(P ) is defined as follows.

trace(P ) = {(w, φ, σ)|({P}; ∅; ∅) w−−→∗ (P;φ;σ)}

Example 1. Consider the private authentication protocol (PA) presented in
Sect. 2. The process Pb(kb, pk(ka)) corresponding to responder B answering a
request from A has already been defined in Sect. 2.3. The process Pa(ka, pk(kb))
corresponding A willing to talk to B is:

Pa(ka, pkb) = new Na.out(aenc(〈Na, pk(ka)〉, pkb)). in(z)

Altogether, a session between A and B is represented by the process:

Pa(ka, pk(kb)) | Pb(kb, pk(ka))

where ka, kb ∈ BK, which models that the attacker initially does not know ka, kb.
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({P1 | P2} ∪ P;φ;σ) τ−−→ ({P1, P2} ∪ P;φ;σ) PAR

({0} ∪ P;φ;σ) τ−−→ (P;φ;σ) ZERO

({new n.P} ∪ P;φ;σ) τ−−→ ({P} ∪ P;φ;σ) NEW

({new k.P} ∪ P;φ;σ) τ−−→ ({P} ∪ P;φ;σ) NEWKEY

({out(t).P} ∪ P;φ;σ)
new axn.out(axn)−−−−−−−−−−−−→({P} ∪ P;φ ∪ {t/axn};σ) OUT

if tσ is a ground term, (tσ) ↓�= ⊥, axn ∈ AX and n = |φ| + 1

({in(x).P} ∪ P;φ;σ)
in(R)−−−−→({P} ∪ P;φ;σ ∪ {(Rφσ) ↓ /x}) IN

if R is an attacker term such that vars(R) ⊆ dom(φ),
and(Rφσ) ↓�= ⊥

({let x = d in P else Q} ∪ P;φ;σ) τ−−→ ({P} ∪ P;φ;σ ∪ {(dσ) ↓ /x}) LET-IN

if dσ is ground and (dσ) ↓�= ⊥
({let x = d in P else Q} ∪ P;φ;σ) τ−−→ ({Q} ∪ P;φ;σ) LET-ELSE

if dσ is ground and (dσ) ↓= ⊥, i.e. d fails
({if M = N then P else Q} ∪ P;φ;σ) τ−−→ ({P} ∪ P;φ;σ) IF-THEN

if M , N are messages such that Mσ, Nσ are ground,
(Mσ) ↓�= ⊥, (Nσ) ↓�= ⊥, and Mσ = Nσ

({if M = N then P else Q} ∪ P;φ;σ) τ−−→ ({Q} ∪ P;φ;σ) IF-ELSE

if M , N are messages such that Mσ, Nσ are ground
and (Mσ) ↓= ⊥ or (Nσ) ↓= ⊥ or Mσ �= Nσ

({!P} ∪ P;φ;σ) τ−−→ ({P, !P} ∪ P;φ;σ) REPL

Fig. 3. Semantics

An example of a trace describing an “honest” execution, where the attacker
does not interfere with the intended run of the protocol, can be written as (tr, φ)
where

tr =τ new x1.out(x1).in(x1).new x2.out(x2).in(x2)

and

φ = {x1 �→ aenc(〈Na, pk(ka)〉, pk(kb)), x2 �→ aenc(〈Na, 〈Nb, pk(kb)〉〉, pk(ka))}.

The trace tr describes A outputting the first message of the protocol, which is
stored in φ(x1). The attacker then simply forwards φ(x1) to B. B then performs
several silent actions (decrypting the message, comparing its content to pk(ka)),
and outputs a response, which is stored in φ(x2) and forwarded to A by the
attacker.

l ::= LL | HL | HH
KT ::= keyl(T ) | eqkeyl(T ) | seskeyl,a(T ) with a ∈ {1, ∞}
T ::= l | T ∗ T | T ∨ T | �τ l,a

n ; τ l′,a
m � with a ∈ {1, ∞}

| KT | pkey(KT ) | vkey(KT ) | (T )T | {T}T

Fig. 4. Types for terms



Equivalence Properties by Typing in Cryptographic Branching Protocols 169

3.3 Equivalence

When processes evolve, sent messages are stored in a substitution φ while the
values of variables are stored in σ. A frame is simply a substitution ψ where
dom(ψ) ⊆ AX . It represents the knowledge of an attacker. In what follows, we
will typically consider φσ.

Intuitively, two sequences of messages are indistinguishable to an attacker
if he cannot perform any test that could distinguish them. This is typically
modelled as static equivalence [2]. Here, we consider of variant of [2] where the
attacker is also given the ability to observe when the evaluation of a term fails,
as defined for example in [25].

Definition 1 (Static Equivalence). Two ground frames φ and φ′ are stati-
cally equivalent if and only if they have the same domain, and for all attacker
terms R,S with variables in dom(φ) = dom(φ′), we have

(Rφ =↓ Sφ) ⇐⇒ (Rφ′ =↓ Sφ′)

Then two processes P and Q are in equivalence if no matter how the adversary
interacts with P , a similar interaction may happen with Q, with equivalent
resulting frames.

Definition 2 (Trace Equivalence). Let P , Q be two processes. We write P �t

Q if for all (s, φ, σ) ∈ trace(P ), there exists (s′, φ′, σ′) ∈ trace(Q) such that
s =τ s′ and φσ and φ′σ′ are statically equivalent. We say that P and Q are
trace equivalent, and we write P ≈t Q, if P �t Q and Q �t P .

Note that this definition already includes the attacker’s behaviour, since pro-
cesses may input any message forged by the attacker.

Example 2. As explained in Sect. 2, anonymity is modelled as an equivalence
property. Intuitively, an attacker should not be able to know which agents are
executing the protocol. In the case of protocol PA, presented in Example 1, the
anonymity property can be modelled by the following equivalence:

Pa(ka, pk(kb)) | Pb(kb, pk(ka)) ≈t Pa(ka, pk(kb)) | Pb(kb, pk(kc))

4 A Type System for Dynamic Keys

Types. In our type system we give types to pairs of messages – one from the
left process and one from the right one. We store the types of nonces, variables,
and keys in a typing environment Γ . While we store a type for a single nonce
or variable occurring in both processes, we assign a potentially different type to
every different combination of keys (k, k′) used in the left and right process – so
called bikeys. This is an important non-standard feature that enables us to type
protocols using different encryption and decryption keys.

The types for messages are defined in Fig. 4 and explained below. Selected
subtyping rules are given in Fig. 5. We assume three security labels HH, HL and LL,
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eqkeyl(T ) <: keyl(T )
(SEQKEY)

seskeyl,a(T ) <: eqkeyl(T )
(SSESKEY)

keyl(T ) <: l
(SKEY)

T <: eqkeyl(T ′)
pkey(T ) <: LL

(SPUBKEY)
T <: eqkeyl(T ′)
vkey(T ) <: LL

(SVKEY)

T <: T ′

(T )T ′′ <: (T ′)T ′′
(SENC)

T <: T ′

{T}T ′′ <: {T ′}T ′′
(SAENC)

Fig. 5. Selected subtyping rules

ranged over by l, whose first (resp. second) component denotes the confidentiality
(resp. integrity) level. Intuitively, values of high confidentiality may never be
output to the network in plain, and values of high integrity are guaranteed
not to originate from the attacker. Pair types T ∗ T ′ describe the type of their
components and the type T ∨ T ′ is given to messages that can have type T or
type T ′.

The type τ l,a
n describes nonces and constants of security level l: the label a

ranges over {∞, 1}, denoting whether the nonce is bound within a replication or
not (constants are always typed with a = 1). We assume a different identifier n
for each constant and restriction in the process. The type τ l,1

n is populated by a
single name, (i.e., n describes a constant or a non-replicated nonce) and τ l,∞

n is
a special type, that is instantiated to τ l,1

nj
in the jth replication of the process.

Type �τ l,a
n ; τ l′,a

m � is a refinement type that restricts the set of possible values of
a message to values of type τ l,a

n on the left and type τ l′,a
m on the right. For a

refinement type �τ l,a
n ; τ l,a

n � with equal types on both sides we write τ l,a
n .

Keys can have three different types ranged over by KT , ordered by a subtyping
relation (SEqKey, SSesKey): seskeyl,a(T ) <: eqkeyl(T ) <: keyl(T ). For all
three types, l denotes the security label (SKey) of the key and T is the type of
the payload that can be encrypted or signed with these keys. This allows us to
transfer typing information from one process to another one: e.g. when encrypting,
we check that the payload type is respected, so that we can be sure to get a value
of the payload type upon decryption. The three different types encode different
relations between the left and the right component of a bikey (k, k′). While type
keyl(T ) can be given to bikeys with different components k �= k′, type eqkeyl(T )
ensures that the keys are equal on both sides in the specific typed instruction.
Type seskeyl,a(T ) additionally guarantees that the key is always the same on the
left and the right throughout the whole process. We allow for dynamic generation
of keys of type seskeyl,a(T ) and use a label a to denote whether the key is generated
under replication or not – just like for nonce types.

For a key of type T , we use types pkey(T ) and vkey(T ) for the correspond-
ing public key and verification key, and types (T ′)T and {T ′}T for symmetric
and asymmetric encryptions of messages of type T ′ with this key. Public keys
and verification keys can be treated as LL if the corresponding keys are equal
(SPubkey, SVkey) and subtyping on encryptions is directly induced by sub-
typing of the payload types (SEnc, SAenc) (Fig. 6).
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Γ (n) = τ l,a
n Γ (m) = τ l,a

m l ∈ {HH, HL}
Γ � n ∼ m : l → ∅ (TNONCE)

Γ (n) = τ LL,a
n

Γ � n ∼ n : LL → ∅ (TNONCEL)

Γ (x) = T

Γ � x ∼ x : T → ∅ (TVAR)
Γ � M ∼ N : T ′ → c T ′ <: T

Γ � M ∼ N : T → c
(TSUB)

Γ � M ∼ N : T → c Γ � M ′ ∼ N ′ : T ′ → c′

Γ � 〈M, M ′〉 ∼ 〈N, N ′〉 : T ∗ T ′ → c ∪ c′ (TPAIR)

M, N well formed

Γ � M ∼ N : HL → ∅ (THIGH)

Γ (k, k′) = T

Γ � k ∼ k′ : T → ∅ (TKEY)
k ∈ keys(Γ ) ∪ FK

Γ � pk(k) ∼ pk(k) : LL → ∅ (TPUBKEYL)

Γ � M ∼ N : T → ∅ ∃T ′, l.T <: keyl(T ′)
Γ � pk(M) ∼ pk(N) : pkey(T ) → ∅ (TPUBKEY)

Γ � M ∼ N : T → c Γ � M ′ ∼ N ′ : T ′ → c′

T ′ = LL ∨ (∃T ′′, T ′′′, l.T ′ = pkey(T ′′) ∧ T ′′ <: keyl(T ′′′))
Γ � aenc(M, M ′) ∼ aenc(N, N ′) : {T}T ′ → c ∪ c′ (TAENC)

Γ � M ∼ N : {T}pkey(T ′) → c T ′ <: keyHH(T )

Γ � M ∼ N : LL → c ∪ {M ∼ N} (TAENCH)

Γ � M ∼ N : {LL}T → c (T = pkey(T ′) ∧ T ′ <: eqkeyl(T ′′)) or T = LL

Γ � M ∼ N : LL → c
(TAENCL)

Fig. 6. Selected rules for messages

Constraints. When typing messages, we generate constraints of the form
(M ∼ N), meaning that the attacker may see M and N in the left and right
process, respectively, and these two messages are thus required to be indistin-
guishable.

Due to space reasons we only present a few selected rules that are character-
istic of the typing of branching protocols. The omitted rules are similar in spirit
to the presented ones or are standard rules for equivalence typing [28].

4.1 Typing Messages

The typing judgement for messages is of the form Γ � M ∼ N : T → c which
reads as follows: under the environment Γ , M and N are of type T and either this
is a high confidentiality type (i.e., M and N are not disclosed to the attacker) or
M and N are indistinguishable for the attacker assuming the set of constraints
c is consistent.

Confidential nonces can be given their label from the typing environment
in rule TNonce. Since their label prevents them from being released in clear,
the attacker cannot observe them and we do not need to add constraints for
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them. They can however be output in encrypted form and will then appear in
the constraints of the encryption. Public nonces (labeled as LL) can be typed if
they are equal on both sides (rule TNonceL). These are standard rules, as well
as the rules TVar, TSub, TPair and THigh [28].

A non-standard rule that is crucial for the typing of branching protocols is
rule TKey. As the typing environment contains types for bikeys (k, k′) this rule
allows us to type two potentially different keys with their type from the environ-
ment. With the standard rule TPubKeyL we can only type a public key of the
same keys on both sides, while rule TPubKey allows us to type different public
keys pk(M), pk(N), provided we can show that there exists a valid key type for
the terms M and N . This highlights another important technical contribution
of this work, as compared to existing type systems for equivalence: we do not
only support a fixed set of keys, but also allow for the usage of keys in variables,
that have been received from the network.

To show that a message is of type {T}T ′ – a message of type T encrypted
asymmetrically with a key of type T ′, we have to show that the corresponding
terms have exactly these types in rule TAenc. The generated constraints are
simply propagated. In addition we need to show that T ′ is a valid type for a
public key, or LL, which models untrusted keys received from the network. Note,
that this rule allows us to encrypt messages with different keys in the two pro-
cesses. For encryptions with honest keys (label HH) we can use rule TAenc to
give type LL to the messages, if we can show that the payload type is respected.
In this case we add the entire encryptions to the constraints, since the attacker
can check different encryptions for equality, even if he cannot obtain the plain-
text. Rule TAencL allows us to give type LL to encryptions even if we do not
respect the payload type, or if the key is corrupted. However, we then have to
type the plaintexts with type LL since we cannot guarantee their confidential-
ity. Additionally, we have to ensure that the same key is used in both processes,
because the attacker might possess the corresponding private keys and test which
decryption succeeds. Since we already add constraints for giving type LL to the
plaintext, we do not need to add any additional constraints.

4.2 Typing Processes

From now on, we assume that processes assign a type to freshly generated nonces
and keys. That is, new n.P is now of the form new n : T. P . This requires a (very
light) type annotation from the user. The typing judgement for processes is of
the form Γ � P ∼ Q → C and can be interpreted as follows: If two processes
P and Q can be typed in Γ and if the generated constraint set C is consistent,
then P and Q are trace equivalent. We present selected rules in Fig. 7.

Rule POut states that we can output messages to the network if we can
type them with type LL, i.e., they are indistinguishable to the attacker, pro-
vided that the generated set c of constraints is consistent. The constraints
of c are then added to all constraints in the constraint set C. We define
C∪∀c′ := {(c ∪ c′, Γ ) | (c, Γ ) ∈ C}. This rule, as well as the rules PZero, PIn,
PNew, PPar, and PLet, are standard rules [28].
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Γ � P ∼ Q → C Γ � M ∼ N : LL → c

Γ � out(M).P ∼ out(N).Q → C∪∀c
(POUT)

Γ � � Γ does not contain union types

Γ � 0 ∼ 0 → (∅, Γ )
(PZERO)

Γ, x : LL � P ∼ Q → C

Γ � in(x).P ∼ in(x).Q → C
(PIN)

Γ, n : τ l,a
n � P ∼ Q → C

Γ � new n : τ l,a
n .P ∼ new n : τ l,a

n .Q → C
(PNEW)

Γ, (k, k) : seskeyl,a(T ) � P ∼ Q → C

Γ � new k : seskeyl,a(T ).P ∼ new k : seskeyl,a(T ).Q → C
(PNEWKEY)

Γ � P ∼ Q → C Γ � P ′ ∼ Q′ → C′

Γ � P | P ′ ∼ Q | Q′ → C∪×C′ (PPAR)

Γ �d t ∼ t′ : T Γ, x : T � P ∼ Q → C Γ � P ′ ∼ Q′ → C′

Γ � let x = t in P else P ′ ∼ let x = t′
in Q else Q′ → C ∪ C′ (PLET)

(PLETADECSAME)
Γ (y) = LL Γ (k, k) <: keyHH(T )

Γ, x : T � P ∼ Q → C Γ, x : LL � P ∼ Q → C′ Γ � P ′ ∼ Q′ → C′′

(∀T ′.∀k′ �= k. Γ (k, k′) <: keyHH(T ′) ⇒ Γ, x : T ′ � P ∼ Q′ → Ck′)
(∀T ′.∀k′ �= k. Γ (k′, k) <: keyHH(T ′) ⇒ Γ, x : T ′ � P ′ ∼ Q → C′

k′)
Γ � let x = adec(y, k) in P else P ′ ∼ let x = adec(y, k) in Q else Q′

→ C ∪ C′ ∪ C′′ ∪ (
⋃

k′
Ck′) ∪ (

⋃

k′
C′

k′)

Γ � P ∼ Q → C1

Γ � P ∼ Q′ → C2 Γ � P ′ ∼ Q → C3 Γ � P ′ ∼ Q′ → C4

Γ � if M = M ′
then P else P ′ ∼ if N = N ′

then Q else Q′

→ C1 ∪ C2 ∪ C3 ∪ C4

(PIFALL)

Fig. 7. Selected rules for processes

Rule PNewKey allows us to generate new session keys at runtime, which
models security protocols more faithfully. It also allows us to generate infinitely
many keys, by introducing new keys under replication.

Rule PLetAdecSame treats asymmetric decryptions where we use the same
fixed honest key (label HH) for decryptions in both processes. Standard type sys-
tems for equivalence have a simplifying (and restrictive) invariant that guaran-
tees that encryptions are always performed using the same keys in both pro-
cesses and hence guarantee that both processes always take the same branch in
decryption (compare rule PLet). In our system however, we allow encryptions
with potentially different keys, which requires cross-case validation in order to
retain soundness. Still, the number of possible combinations of encryption keys
is limited by the assignments in the typing environment Γ . To cover all the
possibilities, we type the following combinations of continuation processes:
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Γ (k, k) <: keyLL(T ) Γ (x) = LL

Γ �d adec(x, k) ∼ adec(x, k) : LL
(DADECL)

Γ (y) = seskeyHH,a(T ) Γ (x) = LL

Γ �d adec(x, y) ∼ adec(x, y) : T ∨ LL
(DADECH’)

(Γ (y) = seskeyLL,a(T ) ∨ Γ (y) = LL) Γ (x) = LL

Γ �d adec(x, y) ∼ adec(x, y) : LL
(DADECL’)

Γ (k, k) = seskeyl,a(T ′) Γ (x) = {T}pkey(seskeyl,a(T ′))

Γ �d adec(x, k) ∼ adec(x, k) : T
(DADECT)

Γ (y) = seskeyl,a(T ′) Γ (x) = {T}pkey(seskeyl,a(T ′))

Γ �d adec(x, y) ∼ adec(x, y) : T
(DADECT’)

Fig. 8. Selected destructor rules

– Both then branches: In this case we know that key k was used for encryption
on both sides. Because of Γ (k, k) = keyHH(T ), we know that in this case the
payload type is T and we type the continuation with Γ, x : T .
Because the message may also originate from the attacker (who also has access
to the public key), we have to type the two then branches also with Γ, x : LL.

– Both else branches: If decryption fails on both sides, we type the two else
branches without introducing any new variables.

– Left then, right else: The encryption may have been created with key k on
the left side and another key k′ on the right side. Hence, for each k′ �= k, such
that Γ (k, k′) maps to a key type with label HH and payload type T ′, we have
to typecheck the left then branch and the right else branch with Γ, x : T ′.

– Left else, right then: This case is analogous to the previous one.

The generated set of constraints is simply the union of all generated constraints
for the subprocesses. Rule PIfAll lets us typecheck any conditional by simply
checking the four possible branch combinations. In contrast to the other rules
for conditionals that we present in a companion technical report, this rule does
not require any other preconditions or checks on the terms M,M ′, N,N ′.

Destructor Rules. The rule PLet requires that a destructor application succeeds
or fails equally in the two processes. To ensure this property, it relies on addi-
tional rules for destructors. We present selected rules in Fig. 8. Rule DAdecL

is a standard rule that states that a decryption of a variable of type LL with an
untrusted key (label LL) yields a result of type LL. Decryption with a trusted
(label HH) session key gives us a value of the key’s payload type or type LL in
case the encryption was created by the attacker using the public key. Here it
is important that the key is of type seskeyHH,a(T ), since this guarantees that
the key is never used in combination with a different key and hence decryption
will always equally succeed or fail in both processes. Rule DAdecL’ is similar to
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* =
〈y1, 〈Nb, pk(kb)〉〉, Nb well formed

Γ � 〈y1, 〈Nb, pk(kb)〉〉 ∼ Nb : HL → ∅ THIGH

∗

Γ (ka, k) = keyHH(HL)

Γ � ka ∼ k : keyHH(HL) → ∅ TKEY

Γ � pk(ka) ∼ pk(k) : pkey(keyHH(HL)) → ∅ TPUBKEY

Γ � aenc(〈y1, 〈Nb, pk(kb)〉〉, pk(ka)) ∼ aenc(Nb, pk(k)) : {HL}pkey(keyHH(HL)) → ∅ TAENC

Γ � aenc(〈y1, 〈Nb, pk(kb)〉〉, pk(ka)) ∼ aenc(Nb, pk(k)) : LL → C
TAENCH

where C = {aenc(〈y1, 〈Nb, pk(kb)〉〉, pk(ka)) ∼ aenc(Nb, pk(k))}.

Fig. 9. Type derivation for the response to A and the decoy message

rule DAdecL except it uses a variable for decryption instead of a fixed key. Rule
DAdecT treats the case in which we know that the variable x is an asymmetric
encryption of a specific type. If the type of the key used for decryption matches
the key type used for encryption, we know the exact type of the result of a suc-
cessful decryption. DAdecT’ is similar to DAdecT, with a variable as key. In
a companion technical report we present similar rules for symmetric decryption
and verification of signatures.

4.3 Typing the Private Authentication Protocol

We now show how our type system can be applied to type the Private Authen-
tication protocol presented in Sect. 2.3, by showing the most interesting parts of
the derivation. We type the protocol using the initial environment Γ presented
in Fig. 1.

We focus on the responder process Pb and start with the asymmetric decryp-
tion. As we use the same key kb in both processes, we apply rule PLetAdec-

Same. We have Γ (x) = LL by rule PIn and Γ (kb, kb) = keyHH(HH, LL). We do
not have any other entry using key kb in Γ . We hence typecheck the two then
branches once with Γ, y : (HH ∗ LL) and once with Γ, y : LL, as well as the two
else branches (which are just 0 in this case).

Typing the let expressions is straightforward using rule PLet. In the con-
ditional we check y2 = pk(ka) in the left process and y2 = pk(kc) in the right
process. Since we cannot guarantee which branches are taken or even if the same
branch is taken in the two processes, we use rule PIfAll to typecheck all four
possible combinations of branches. We now focus on the case where A is success-
fully authenticated in the left process and is rejected in the right process. We
then have to typecheck B’s positive answer together with the decoy message:
Γ � aenc(〈y1, 〈Nb, pk(kb)〉〉, pk(ka)) ∼ aenc(Nc, pk(k)) : LL.

Figure 9 presents the type derivation for this example. We apply rule TAenc

to give type LL to the two terms, adding the two encryptions to the constraint set.
Using rule TAencH we can show that the encryptions are well-typed with type
{HL}pkey(keyHH(HL)). The type of the payload is trivially shown with rule THigh.
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To type the public key, we use rule TPubKey followed by rule TKey, which
looks up the type for the bikey (ka, k) in the typing environment Γ .

5 Consistency

Our type system collects constraints that intuitively correspond to (symbolic)
messages that the attacker may see (or deduce). Therefore, two processes are in
trace equivalence only if the collected constraints are in static equivalence for
any plausible instantiation.

However, checking static equivalence of symbolic frames for any instantia-
tion corresponding to a real execution may be as hard as checking trace equiva-
lence [24]. Conversely, checking static equivalence for any instantiation may be
too strong and may prevent proving equivalence of processes. Instead, we use
again the typing information gathered by our type system and we consider only
instantiations that comply with the type. Actually, we even restrict our attention
to instantiations where variables of type LL are only replaced by deducible terms.
This last part is a key ingredient for considering processes with dynamic keys.
Hence, we define a constraint to be consistent if the corresponding two frames
are in static equivalence for any instantiation that can be typed and produces
constraints that are included in the original constraint.

Formally, we first introduce the following ingredients:

– and denote the frames that are composed of the left and the right
terms of the constraints respectively (in the same order).

– φΓ
LL denotes the frame that is composed of all low confidentiality nonces and

keys in Γ , as well as all public encryption keys and verification keys in Γ .
This intuitively corresponds to the initial knowledge of the attacker.

– Two ground substitutions σ, σ′ are well-typed in Γ with constraint cσ if they
preserve the types for variables in Γ , i.e., for all x, Γ � σ(x) ∼ σ′(x) : Γ (x) →
cx, and cσ =

⋃
x∈dom(Γ ) cx.

The instantiation of a constraint is defined as expected. If c is a set of constraints,
and σ, σ′ are two substitutions, let �c�σ,σ′ be the instantiation of c by σ on the
left and σ′ on the right, that is, �c�σ,σ′ = {Mσ ∼ Nσ′ | M ∼ N ∈ c}.

Definition 3 (Consistency). A set of constraints c is consistent in an envi-
ronment Γ if for all substitutions σ, σ′ well-typed in Γ with a constraint cσ such
that cσ ⊆ �c�σ,σ′ , the frames φΓ

LL∪ (c)σ and φΓ
LL∪ (c)σ′ are statically equiva-

lent. We say that (c, Γ ) is consistent if c is consistent in Γ and that a constraint
set C is consistent in Γ if each element (c, Γ ) ∈ C is consistent.

Compared to [28], we now require cσ ⊆ �c�σ,σ′ . This means that instead of
considering any (well typed) instantiations, we only consider instantiations that
use fragments of the constraints. For example, this now imposes that low vari-
ables are instantiated by terms deducible from the constraint. This refinement
of consistency provides a tighter definition and is needed for non fixed keys, as
explained in the next section.
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6 Soundness

In this section, we provide our main results. First, soundness of our type system:
whenever two processes can be typed with consistent constraints, then they are
in trace equivalence. Then we show how to automatically prove consistency.
Finally, we explain how to lift these two first results from finite processes to
processes with replication. But first, we discuss why we cannot directly apply
the results from [28] developed for processes with long term keys.

6.1 Example

Consider the following example, typical for a key-exchange protocol: Alice
receives some key and uses it to encrypt, e.g. a nonce. Here, we consider a
semi-honest session, where an honest agent A is receiving a key from a dishon-
est agent D. Such sessions are typically considered in combination with honest
sessions.

C → A : aenc(〈k,C〉, pk(A))
A → C : aenc(n, k)

The process modelling the role of Alice is as follows.

PA = in(x). let x′ = adec(x, kA) in let y = π1(x′) in let z = π2(x′) in
if z = C then new n. out(enc(n, y))

When type-checking PA ∼ PA (as part as a more general process with honest
sessions), we would collect the constraint enc(n, y) ∼ enc(n, y) where y comes
from the adversary and is therefore a low variable (that is, of type LL). The app-
roach of [28] consisted in opening messages as much as possible. In this example,
this would yield the constraint y ∼ y which typically renders the constraint
inconsistent, as exemplified below.

When typechecking the private authentication protocol, we obtain con-
straints containing aenc(〈y1, 〈Nb, pk(kb)〉〉, pk(ka)) ∼ aenc(Nb, pk(k)) (as seen
in Fig. 9), where y1 has type HL. Assume now that the constraint also contains
y ∼ y for some variable y of type LL and consider the following instantiations
of y and y1: σ(y1) = σ′(y1) = a for some constant a and σ(y) = σ′(y) =
aenc(Nb, pk(k)). Note that such an instantiation complies with the type since
Γ � σ(y) ∼ σ′(y) : LL → c for some constraint c. The instantiated constraint
would then contain

{aenc(〈a, 〈Nb, pk(kb)〉〉, pk(ka)) ∼ aenc(Nb, pk(k)),
aenc(Nb, pk(k)) ∼ aenc(Nb, pk(k))}

and the corresponding frames are not statically equivalent, which makes the
constraint inconsistent for the consistency definition of [28].

Therefore, our first idea consists in proving that we only collect constraints
that are saturated w.r.t. deduction: any deducible subterm can already be con-
structed from the terms of the constraint. Second, we show that for any exe-
cution, low variables are instantiated by terms deducible from the constraints.
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This guarantees that our new notion of consistency is sound. The two results are
reflected in the next section.

6.2 Soundness

Our type system, together with consistency, implies trace equivalence.
Theorem 1 (Typing implies trace equivalence). For all P , Q, and C, for
all Γ containing only keys, if Γ � P ∼ Q → C and C is consistent, then P ≈t Q.

Example 3. We can typecheck PA, that is

Γ � Pa(ka, pk(kb)) | Pb(kb, pk(ka)) ∼ Pa(ka, pk(kb)) | Pb(kb, pk(kc)) → CPA

where Γ has been defined in Fig. 1 and assuming that nonce Na of process Pa

has been annotated with type τ HH,1
Na

and nonce Nb of Pb has been annotated
with type τ HH,1

Nb
. The constraint set CPA can be proved to be consistent using the

procedure presented in the next section. Therefore, we can conclude that

Pa(ka, pk(kb)) | Pb(kb, pk(ka)) ≈t Pa(ka, pk(kb)) | Pb(kb, pk(kc))

which shows anonymity of the private authentication protocol.

The first key ingredient in the proof of Theorem 1 is the fact that any well-
typed low term is deducible from the constraint generated when typing it.
Lemma 1 (Low terms are recipes on their constraints). For all ground
messages M , N , for all Γ , c, if Γ � M ∼ N : LL → c then there exists an
attacker recipe R without destructors such that M = R( (c) ∪ φΓ

LL) and N =
R( (c) ∪ φΓ

LL).
The second key ingredient is a finer invariant on protocol executions: for

any typable pair of processes P,Q, any execution of P can be mimicked by
an execution of Q such that low variables are instantiated by well-typed terms
constructible from the constraint.

Lemma 2. For all processes P , Q, for all φ, σ, for all multisets of processes
P, constraint sets C, sequences s of actions, for all Γ containing only keys, if
Γ � P ∼ Q → C, C is consistent, and ({P}, ∅, ∅) s−→∗ (P, φ, σ), then there
exist a sequence s′ of actions, a multiset Q, a frame φ′, a substitution σ′, an
environment Γ ′, a constraint c such that:

– ({Q}, ∅, ∅) s′
−−→∗ (Q, φ′, σ′), with s =τ s′

– Γ ′ � φσ ∼ φ′σ′ : LL → c, and for all x ∈ dom(σ) ∩ dom(σ′), there exists cx

such that Γ ′ � σ(x) ∼ σ(x) : Γ ′(x) → cx and cx ⊆ c.

Note that this finer invariant guarantees that we can restrict our attention
to the instantiations considered for defining consistency.

As a by-product, we obtain a finer type system for equivalence, even for
processes with long term keys (as in [28]). For example, we can now prove equiv-
alence of processes where some agent signs a low message that comes from the
adversary. In such a case, we collect sign(x, k) ∼ sign(x, k) in the constraint,
where x has type LL, which we can now prove to be consistent (depending on
how x is used in the rest of the constraint).
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6.3 Procedure for Consistency

We devise a procedure check const(C) for checking consistency of a con-
straint C, depicted in Fig. 10. Compared to [28], the procedure is actually simpli-
fied. Thanks to Lemmas 1 and 2, there is no need to open constraints anymore.
The rest is very similar and works as follows:

– First, variables of refined type �τ l,1
m ; τ l′,1

n � are replaced by m on the left-hand-
side of the constraint and n on the right-hand-side.

– Second, we check that terms have the same shape (encryption, signature,
hash) on the left and on the right and that asymmetric encryption and hashes
cannot be reconstructed by the adversary (that is, they contain some fresh
nonce).

– The most important step consists in checking that the terms on the left satisfy
the same equalities than the ones on the right. Whenever two left terms M
and N are unifiable, their corresponding right terms M ′ and N ′ should be
equal after applying a similar instantiation.

For constraint sets without infinite nonce types, check const entails consis-
tency.

Theorem 2. Let C be a set of constraints such that

∀(c, Γ ) ∈ C. ∀l, l′,m, p. Γ (x) �= �τ l,∞
m ; τ l′,∞

p �.

If check const(C) = true, then C is consistent.

Example 4. Continuing Example 3, typechecking the PA protocol yields the set
CPA of constraint sets. CPA contains in particular the set

{aenc(〈Na, pk(ka)〉, pk(kb)) ∼ aenc(〈Na, pk(ka)〉, pk(kb)),
aenc(〈y1, 〈Nb, pk(kb)〉〉, pk(ka)) ∼ aenc(Nb, pk(k))}

where variable y1 has type HL (we also have the same constraint but where
y1 has type LL). The other constraint sets of CPA are similar and correspond
to the various cases (else branch of Pa with then branch of Pb, etc.). The
procedure check const returns true since no two terms can be unified, which
proves consistency. Similarly, the other constraints generated for PA can be
proved to be consistent applying check const.

6.4 From Finite to Replicated Processes

The previous results apply to processes without replication only. In the spirit
of [28], we lift our results to replicated processes. We proceed in two steps.

1. Whenever Γ � P ∼ Q → C, we show that:
[ Γ ]1∪· · ·∪ [ Γ ]n � [ P ]1| . . . |[ P ]n ∼ [ Q ]1| . . . |[ Q ]n → [ C ]1∪× · · · ∪×[ C ]n,
where [ Γ ]i is intuitively a copy of Γ , where variables x have been replaced
by xi, and nonces or keys n of infinite type τ l,∞

n (or seskeyl,∞(T )) have been
replaced by ni. The copies [ P ]i, [ Q ]i, and [ C ]i are defined similarly.
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Fig. 10. Procedure for checking consistency.
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2. We cannot directly check consistency of infinitely many constraints of the
form [ C ]1∪× · · · ∪×[ C ]n. Instead, we show that it is sufficient to check con-
sistency of two copies [ C ]1∪×[ C ]2 only. The reason why we need two copies
(and not just one) is to detect when messages from different sessions may
become equal.

Formally, we can prove trace equivalence of replicated processes.

Theorem 3. Consider P , Q, P ′, Q′, C, C ′, such that P , Q and P ′, Q′ do
not share any variable. Consider Γ , containing only keys and nonces with finite
types.

Assume that P and Q only bind nonces and keys with infinite nonce types, i.e.
using new m : τ l,∞

m and new k : seskeyl,∞(T ) for some label l and type T ; while
P ′ and Q′ only bind nonces and keys with finite types, i.e. using new m : τ l,1

m

and new k : seskeyl,1(T ).
Let us abbreviate by new n the sequence of declarations of each nonce m ∈

dom(Γ ) and session key k such that Γ (k, k) = seskeyl,1(T ) for some l, T . If

– Γ � P ∼ Q → C,
– Γ � P ′ ∼ Q′ → C ′,
– check const([ C ]1∪×[ C ]2∪×[ C ′ ]1) = true,

then new n. ((!P ) | P ′) ≈t new n. ((!Q) | Q′).

Interestingly, Theorem 3 allows to consider a mix of finite and replicated pro-
cesses.

7 Experimental Results

We implemented our typechecker as well as our procedure for consistency in a
prototype tool TypeEq. We adapted the original prototype of [28] to implement
additional cases corresponding to the new typing rules. This also required to
design new heuristics w.r.t. the order in which typing rules should be applied.
Of course, we also had to support for the new bikey types, and for arbitrary terms
as keys. This represented a change of about 40% of the code of the software. We
ran our experiments on a single Intel Xeon E5-2687Wv3 3.10 GHz core, with
378 GB of RAM (shared with the 19 other cores). Actually, our own prototype
does not require a large amount of RAM. However, some of the other tools we
consider use more than 64 GB of RAM on some examples (at which point we
stopped the experiment). More precise figures about our tool are provided in the
table of Fig. 11. The corresponding files can be found at [27].

We tested TypeEq on two symmetric key protocols that include a handshake
on the key (Yahalom-Lowe and Needham-Schroeder symmetric key protocols).
In both cases, we prove key usability of the exchanged key. Intuitively, we show
that an attacker cannot distinguish between two encryptions of public constants:
P.out(enc(a, k)) ≈t P.out(enc(b, k)). We also consider one standard asymmet-
ric key protocol (Needham-Schroeder-Lowe protocol), showing strong secrecy of
the exchanged nonce.
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Helios [4] is a well known voting protocol. We show ballot privacy, in the
presence of a dishonest board, assuming that voters do not revote (otherwise
the protocol is subject to a copy attack [39], a variant of [30]). We consider a
more precise model than the previous Helios models which assume that voters
initially know the election public key. Here, we model the fact that voters actu-
ally receive the (signed) freshly generated election public key from the network.
The BAC protocol is one of the protocols embedded in the biometric passport [1].
We show anonymity of the passport holder P (A) ≈t P (B). Actually, the only
data that distinguish P (A) from P (B) are the private keys. Therefore we con-
sider an additional step where the passport sends the identity of the agent to
the reader, encrypted with the exchanged key. Finally, we consider the private
authentication protocol, as described in this paper.

7.1 Bounded Number of Sessions

We first compare TypeEq with the tools for a bounded number of sessions.
Namely, we consider Akiss [22], APTE [23] as well as its optimised variant
with partial order reduction APTE-POR [10], SPEC [32], and SatEquiv [26].
We step by step increase the number of sessions until we reach a “complete”
scenario where each role is instantiated by A talking to B, A talking to C, B
talking to A, and B talking to C, where A,B are honest while C is dishonest.

Fig. 11. Experimental results for the bounded case
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This yields 14 sessions for symmetric-key protocols with two agents and one
server, and 8 sessions for a protocol with two agents. In some cases, we further
increase the number of sessions (replicating identical scenarios) to better com-
pare tools performance. The results of our experiments are reported in Fig. 11.
Note that SatEquiv fails to cover several cases because it does not handle asym-
metric encryption nor else branches.

7.2 Unbounded Number of Sessions

We then compare TypeEq with Proverif. As shown in Fig. 12, the performances
are similar except that ProVerif cannot prove Helios. The reason lies in the
fact that Helios is actually subject to a copy attack if voters revote and ProVerif
cannot properly handle processes that are executed only once. Similarly, Tamarin
cannot properly handle the else branch of Helios (which models that the ballot
box rejects duplicated ballots). Tamarin fails to prove that the underlying check
either succeeds or fails on both sides.

Protocols ProVerif TypeEq
Helios x 0.005s

Needham-Schroeder (sym) 0.23s 0.016s
Needham-Schroeder-Lowe 0.08s 0.008s

Yahalom-Lowe 0.48s 0.020s
Private Authentication 0.034s 0.008s

BAC 0.038s 0.005s

Fig. 12. Experimental results for an unbounded number of sessions

8 Conclusion and Discussion

We devise a new type system to reason about keys in the context of equivalence
properties. Our new type system significantly enhances the preliminary work
of [28], covering a larger class of protocols that includes key-exchange proto-
cols, protocols with setup phases, as well as protocols that branch differently
depending on the decryption key.

Our type system requires a light type annotation that can be directly inferred
from the structure of the messages. As future work, we plan to develop an auto-
matic type inference system. In our case study, the only intricate case is the
Helios protocol where the user has to write a refined type that corresponds to
an over-approximation of any encrypted message. We plan to explore whether
such types could be inferred automatically.

We also plan to study how to add phases to our framework, in order to cover
more properties (such as unlinkability). This would require to generalize our type
system to account for the fact that the type of a key may depend on the phase
in which it is used.
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Another limitation of our type system is that it does not address pro-
cesses with too dissimilar structure. While our type system goes beyond diff-
equivalence, e.g. allowing else branches to be matched with then branches, we
cannot prove equivalence of processes where traces of P are dynamically mapped
to traces of Q, depending on the attacker’s behaviour. Such cases occur for exam-
ple when proving unlinkability of the biometric passport. We plan to explore how
to enrich our type system with additional rules that could cover such cases, tak-
ing advantage of the modularity of the type system.

Conversely, the fact that our type system discards processes that are in equiv-
alence shows that our type system proves something stronger than trace equiv-
alence. Indeed, processes P and Q have to follow some form of uniformity. We
could exploit this to prove stronger properties like oblivious execution, prob-
ably further restricting our typing rules, in order to prove e.g. the absence of
side-channels of a certain form.
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Research Council (ERC) under the European Union’s Horizon 2020 research (grant
agreements No. 645865-SPOOC and No. 771527-BROWSEC).
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Abstract. Over the last few years, there has been an almost exponen-
tial increase of the number of mobile applications that deal with sensi-
tive data, such as applications for e-commerce or health. When dealing
with sensitive data, classical authentication solutions based on username-
password pairs are not enough, and multi-factor authentication solutions
that combine two or more authentication elements of different categories
are required. Many different such solutions are available, but they usu-
ally cover the scenario of a user accessing web applications on their lap-
tops, whereas in this paper we focus on native mobile applications. This
changes the exploitable attack surface and thus requires a specific analy-
sis. In this paper, we present the design, the formal specification and the
security analysis of a solution that allows users to access different mobile
applications through a multi-factor authentication solution providing a
Single Sign-On experience. The formal and automated analysis that we
performed validates the security goals of the solution we propose.

1 Introduction

Context and Motivations. Over the last few years, there has been an almost
exponential increase of the number of mobile applications (or apps, for short)
that deal with sensitive data, ranging from apps for e-commerce, banking and
finance to apps for well-being and health. One of the main reasons behind such
a success is that mobile apps considerably increase the portability and efficiency
of online services. Banking apps allow users not only to check their account
balances but also to move money and pay bills or friends [1]. Mobile health
apps range from personal health records (PHR) to personal digital assistants
using connected devices such as smartwatches and other body-worn devices or
implants. As reported in [2], there are nowadays more than 100,000 mobile health
apps on the market, a number that is increasing on a weekly basis.

However, also the reports on security and privacy issues in mobile apps
are increasing on a weekly basis, bearing concrete witness to the fact that the
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management of sensitive data is often not properly taken into account by the
developers of the apps. For example, the studies performed by He et al. [3] on
free mobile health apps available on the Google Play store show that the major-
ity of these apps send sensitive data in clear text and store it on third party
servers that do not support the required confidentiality measures.

When dealing with sensitive data, classical authentication solutions based
on username-password pairs are not enough. The “General Data Protection
Regulation” [4] mandates that specific security measures must be implemented,
including multi-factor authentication, a strong(er) authentication solution that
combines two or more authentication elements of different categories (e.g.,
a password combined with a pin sent to a mobile device, or some biomet-
ric data). There are many alternative solutions on the market for providing
multi-factor authentication. Examples are FIDO (Fast IDentity Online, https://
fidoalliance.org), which enables mobile devices to act as U2F (Universal 2nd
Factor) authentication devices over Bluetooth or NFC, and Mobile Connect
(https://mobileconnect.io), which identifies users through their mobile phone
numbers.

In addition to the establishment of high-level security for authentication solu-
tions for mobile apps, it is essential to take the usability aspect into considera-
tion. Monitoring apps often require a daily or even hourly use, but understand-
ably users cannot be bothered by a long and complex authentication procedure
each time they want to read or update their data, especially on mobile devices
where the keyboard is small and sometimes uncomfortable to use. A better
usability can be provided by supporting a Single Sign-On (SSO) experience,
which allows users to access different, federated apps by performing a single
login carried out with a selected identity provider (e.g., Facebook or Google).
While the authentication session is valid, users can directly access all the apps
in the federation, without having to enter their credentials again and again.

Contributions. In this paper, we present the design, the formal specification and
the security analysis of a solution that allows users to access different mobile apps
through a multi-factor authentication solution providing a SSO experience.

We focus on multi-factor authentication solutions that use One Time Pass-
words (OTPs), which are passwords that are valid for a short time and can
only be used once. We have selected OTP-generation approaches as they are
commonly used to provide strong authentication and many alternative solu-
tions (from physical to software tools) are available on the market. For instance,
Google Authenticator is a mobile app that generates OTPs [5]. Like Google
Authenticator, many of the OTP-generation solutions on the market are appli-
cable only for web solutions and use mobile devices as an additional factor.

However, in the scenario considered in this paper, users are not accessing
web apps on their laptops or desktop computers, but instead they are accessing
native mobile apps. In relation to SSO and multi-factor authentication, web
and mobile environments and channels guarantee different security properties,
e.g., in web scenarios identity providers can authenticate service provider apps
using shared secrets, but this is not possible for native mobile apps that are

https://fidoalliance.org
https://fidoalliance.org
https://mobileconnect.io
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unable to keep values secret. This changes the exploitable attack surface and
thus requires a specific analysis. To the best of our knowledge, the definition of
a multi-factor authentication solution for native apps is still not well specified.
Even if there are some solutions currently used, their security analyses have
been performed informally or semi-formally at best, and without following a
standardized formal procedure. This makes a comparison between the different
solutions both complex and potentially misleading.

For the security assumptions and the design of a native SSO solution, our
work is based on [6,7]. In this previous work, we presented a solution for native
SSO and performed a semi-formal security analysis. In this work, we extend
these studies by providing a multi-factor authentication solution and a formal
analysis of the identified security goals.

Summarizing, our contributions are four-fold as we have

1. designed a multi-factor authentication solution that uses OTPs as an authen-
ticator factor and provides a SSO experience for native apps;

2. provided a description of the proposed solution detailing the security and
trust assumptions;

3. formally defined the security goals of our multi-factor authentication solution;
4. formally analyzed our solution by modeling the flow, assumptions and goals

using a formal language (ASLan++) and model-checking the identified secu-
rity goals with the SATMC tool.

The results of our analysis show that our solution behaves as expected.

Organization. Section 2 provides background on strong authentication solutions
and SSO for native mobile apps, and on ASLan++ and SATMC. Section 3
describes the design of the proposed multi-factor authentication solution, dis-
cusses the peculiarities of a multi-factor authentication solution compared to a
basic username-password authentication, and identifies the corresponding secu-
rity assumptions and security goals. For concreteness, Sect. 4 describes our solu-
tion in the context of mHealth apps, and the solution is then formally analyzed
using SATMC. Section 5 discusses related work and Sect. 6 draws conclusions.

2 Background

This section provides the basic notions required to understand the proposed
design for a multi-factor authentication solution that supports a SSO experi-
ence and its security assessment. In Sect. 2.1, we describe the entities involved
in a multi-factor authentication and SSO solution, discuss the different OTP-
generation approaches, and identify the functional requirements of a native SSO
solution. In Sect. 2.2, we provide useful background for our formal analysis.

2.1 Multi-factor Authentication and Native SSO

The entities involved in a multi-factor native SSO solution are: a User (User)
that wants to access a native Service Provider app ( SPC); an Identity Provider
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server ( IdPS) that manages the digital identities of the users and provides the
multi-factor process; a User Agent (UA), which could be a browser or a native
app used to perform the multi-factor process between the SPC and IdPS . Option-
ally, the SPC app could have a backend server (SPS ).

A multi-factor authentication solution augments the security of the basic
username-password authentication by exploiting two or more authentication fac-
tors. In [8], it is defined as:

“a procedure based on the use of two or more of the following elements —
categorised as knowledge, ownership and inherence: i) something only the
user knows, e.g., static password, code, personal identification number; ii)
something only the user possesses, e.g., token, smart card, mobile phone;
iii) something the user is, e.g. biometric characteristic, such as a finger-
print. In addition, the elements selected must be mutually independent [ . . .]
at least one of the elements should be non-reusable and non-replicable”.

The more factors are used during the authentication process, the more confidence
a service has that the user is correctly identified.

There are many multi-factor techniques on the market. In this paper, we
focus on a well-accepted solution that combines a PIN code (“something only
the user knows”) with the generation of an OTP using a software OTP generator
(“something only the user possesses”). When an OTP-generation approach is
used, a different password is generated for each authentication request and is
valid only once, providing a fresh authentication property. Thus, compromising
an old OTP does not have security consequences in the authentication process.

There exist many algorithms for generating OTPs and we can classify them
into three main OTP-generation approaches:

– Time synchronization: the OTP is generated starting from a shared secret
key (called seed) and the current time of the operation. IdPS must validate
this value: only OTPs that fall into a short temporal range are accepted.

– Lamport’s algorithm [9]: the first OTP is generated from a seed value and each
successor OTP value is based on the value of its predecessor. For example,
if s is a seed value and F (x) is a one-way function, we have the following
OTPs: o1 = s, o2 = F (o1 ), o3 = F (o2 ), . . . on = F (on−1 ). The last OTP, on ,
is stored on IdPS . When a User wants to login, she sends on−1 to the server,
and the server applies the function F and checks that the result corresponds
to the stored value. If the two values correspond, IdPS authenticates User
and updates the stored value with on−1 . In the next login, User will use on−2

and so on. After n logins, User has to change the seed value and calculate
new OTP values.

– Challenge/Response: in the execution of this approach, IdPS presents a “chal-
lenge” (e.g., a random number) and User answers with a valid “response”,
which is an OTP value calculated using a mathematical algorithm starting
from the challenge.
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Although our solution is parametric in the OTP-generation approach, in
Sect. 4, we will detail and analyze the time synchronization approach in the
context of a real-world scenario.

Native SSO protocols allow users to access multiple SPC apps through a sin-
gle authentication performed with an IdPS . As identified in [6], the two require-
ments that we expect for a native SSO solution are: (i) the IdP user credentials
can be used to gain access to several SPC apps—this implies that a User does not
need to have credentials with a SPC to access it; (ii) if a User has already a login
session with an IdPS , then she can access new SPC apps without re-entering her
IdP credentials—only the User consent is required.

2.2 Formal Analysis: ASLan++ and SATMC

The use of formal languages and automatic tools for analyzing security protocols
has allowed researchers to uncover a large number of vulnerabilities in protocols
that had been thought to be, or even informally proved to be, secure. Famous
examples range from protocols such as the Needham-Schroeder Public Key pro-
tocol to Kerberos or TLS (see [10] for details). These examples underline how the
design of a protocol that requires specific security goals is not a simple task, as its
security depends on several assumptions on trust and communication channels
(e.g., the federation between the involved parties, and the transport protocol
used in the message exchange). Several formal languages have been developed,
all sharing the idea to extract from the protocol message flow a description of the
entities involved, the exchanged messages and the channel assumptions. Formal
protocol specifications are then given in input to automated tools that check the
desired security goals of the protocol against realistic threat models.

In this paper, we use ASLan++ [11], the input specification language of
the AVANTSSAR Platform [12]. ASLan++ is a high-level formal language that
formalizes the interactions between the different protocol roles, where a role
represents a sequence of operations (e.g., sending and receiving messages) that
must be executed by the entity that plays that role. ASLan++ supports the
specification of different channel assumptions and security goals, most notably
different variants of authentication and confidentiality. In our analysis, we use
SATMC [13], which is one of the model checkers of the AVANTSSAR platform.
SATMC uses state-of-the-art SAT Solvers and allows for the specification of
security goals written using the Linear Temporal Logic.

3 Description of Our mID(OTP) Solution

In this section, we present a mobile identity management solution that augments
the security of the native SSO solution proposed in [6] by adding a multi-factor
authentication based on the generation of OTPs. We called it mID(OTP) to
highlight the dual goal that our solution pursued: (i) to establish a multi-factor
authentication and (ii) to manage identities for native mobile apps, e.g., provid-
ing a SSO service. As we will describe, mID(OTP) is parametric on the OTP
generation (i.e., it supports different OTP-generation approaches).
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In the mobile context, two possible design choices are available: a UA could be
played either by a browser (external or embedded in the SPC app) or by a native
app. In the design of mID(OTP), we have preferred the latter choice, as a native
app can be (easily) extended to support the generation of an authentication
factor (e.g., by adding the code for a OTP generator or a library to process the
user’s fingerprint). In addition, as the UA is involved in the authentication phase
with the IdPS , it must be trusted in knowing the user’s IdP credentials. Thus,
we assume that this native app, called IDOTP , is released directly by the IdPS .

mID(OTP) consists of three phases: registration, activation and exploitation,
which we describe in the following subsections.

3.1 Registration and Activation Phases of mID(OTP)

The registration phase of mID(OTP) is performed by the SPC developers and
corresponds to the exchange of some information about SPC , such as the package
name and logo, together with its certificate fingerprint key hash (i.e., the hash
of the certificate of the app). Note that key hash depends on the private key
of the SPC developer and is thus different for apps by different developers. The
registration phase can be performed in different ways, e.g., entering the data into
an online dashboard or via an email exchange. As a trust relationship between
SPC and IdPS is established as result of the registration phase, it is important
that the IdPS validates the SPC data and in some cases (e.g., when user personal
or sensitive data are involved) a service-level agreement could be required as well.

The activation phase of mID(OTP) is performed by the User to configure the
native app IDOTP on her smartphone. In addition to the procedure described
in [6]—user login and release of a token (token IdP) used (from here on) to iden-
tify the user session in place of the user credentials—at the end of the activation
phase the IDOTP is configured to generate OTPs, usually requiring the creation
of a PIN code for the future interactions.

Also the activation phase can be performed in different ways. As a multi-
factor authentication is configured during this phase, it is essential to provide
the User with an activation code—exchanged using a secure channel (e.g., after
an in-person identification)—that she has to enter during the process.

3.2 Exploitation Phase of mID(OTP)

The exploitation phase of mID(OTP), which is shown in Fig. 1, is performed
every time the User accesses a SPC that requires the multi-factor authentication
and SSO experience offered by IDOTP . In Step S1, User opens the SPC app
that sends a request to SPS including a session token token sync (Step S2). SPS

checks the validity of token sync. If token sync has expired, SPS sends an error
message asking for a login to SPC (Step S3), otherwise Step S7 is executed. If
a login form is presented to User , she clicks the login button (Step A1) and
SPC sends a login request to IDOTP (Step A2). As a consequence, in Step A3
IDOTP reads the key hash value of SPC and in Step A4 sends a request to
IdPS asking the SPC data. The received key hash is used by IdPS to validate
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Fig. 1. Exploitation phase of mID(OTP).

the SPC identity. If SPC is valid, IdPS returns to IDOTP a consent containing
the meta-data of SPC (Step A5). In Step A6, User checks whether SPC is the
app that she wants to access and decides whether to give her consent or not. If
User agrees, the OTP is generated following one of the approaches described in
Sect. 2.1 (Step A7). Then, in Step A8, IDOTP sends a token request to IdPS

including the OTP value, key hash and token IdP , which corresponds to the user
credentials entered during the activation phase. IdPS checks the validity of OTP,
key hash and token IdP . If they are valid, a token (token SP) for the SP app is
returned (Step A9). token SP contains the identity of User , IdPS and SP , and is
digitally signed with K−1

IdPS
, the private key of IdPS . In Step A10, IDOTP returns

token SP to SPC as result of Step A2. To finalize the authentication, SPC

sends a token request to SPS with token SP (Step S4). SPS checks the validity
of token SP , and if it is valid, creates and sends to SPC a token token sync
(Step S5). This token will be used by SPC to synchronize user data in the
future interactions, until its expiration. When SPC needs to synchronize data,
sends a request to the SPS including token sync (Step S6), and SPS returns the
requested resource to SPC (Step S7).

We have labeled the steps with “S” and “A”. The S steps are related to the SP
(but note that our representation is only an example and each SP could support
different solutions). The A steps represent the steps related to the authentication
solution. As the S steps can vary depending on the choices of the SP developers,
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in our analysis, we will focus on the A steps. Compared to the protocol flow
proposed in [6], we have enhanced its security by adding the generation, exchange
and validation of OTPs. For example, the OTP extension protects mainly against
a stolen smartphone. Indeed, even if the user’s smartphone is stolen, the intruder
cannot login as the victim without generating the expected OTP.

3.3 Towards a Formal Specification of Multi-factor Authentication

We now discuss the peculiarities of a multi-factor authentication solution com-
pared to a basic username-password authentication; in doing so, we introduce
some concepts that will be the key for the formal analysis.

In a basic username-password authentication, the expected security goal is:

(G1A) SP authenticates User

Here, User is required to provide an authentication factor: either credentials
(something only she knows) or a session token (e.g., a cookie stored in her
browser) in order to properly complete the authentication process. If this is
the case, it is possible to specify a minimum set of security assumptions (e.g.,
on the behavior of User or on the communication channels) that are necessary
to guarantee G1A. For example, if the channel used for the login is not https,
then an intruder can eavesdrop the User ’s password and impersonate her in the
future. We call these assumptions strong assumptions (to distinguish them from
the weak assumptions that we define later).

A multi-factor authentication solution augments the security of the basic
username-password authentication by exploiting two or more authentication fac-
tors. By the definition given in Sect. 2.1, we infer that mID(OTP) is a two-factor
authentication solution using knowledge and ownership elements (factors). We
do not consider inherence factors. In addition, instead of considering the inde-
pendent factors, we introduce the concept of instance-factors.

We call instance-factor (IFactor ) every specific instance of either an owner-
ship factor (IFactoro) or a knowledge factor (IFactork). The multi-factor authen-
tication solution mID(OTP) that we propose contains three instance-factors:

– the IFactoro token IdP that is stored in IDOTP and in IdPS as a result of
the activation phase (used as a session token in place of the user credentials
to provide a SSO experience);

– another IFactork that can vary according to the specific OTP generator used,
e.g., a PIN known by the user (used to protect the OTP generator);

– an IFactoro that is stored in IDOTP (and possibly shared with IdPS ), accord-
ing to the OTP-generator approach used (e.g., a seed value or a private key).

Note that the IFactoro token IdP is present in all instances of our solution,
whereas the other two factors may differ depending on the specific solution (and
this is the reason why we cannot name them explicitly a priori).

Compared to classic notion of authentication factors, instance-factors can
have a dependency. For example, the two IFactoro are stored in IDOTP . Thus,
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by breaching the IDOTP app both of them are compromised. However, it is
important to note that different mitigations can be implemented for the differ-
ent instance-factors. For example, in our solution, if a User realizes that the
IDOTP has been compromised (e.g., if her smartphone has been stolen), she
can invalidate token IdP , thus blocking possible attacks.

We are not aware of any formal definition of the multi-factor authentication
property apart from [14]. In [14] they analyzed a two-factor and two-channel
authentication solution that combines a classic single-factor solution with the
exchange of a second factor using the GSM/3G/4G communication infrastruc-
ture of the user’s mobile phone. By generalizing the definition in [14] by consid-
ering a solution involving n instance-factors, we can define the following security
goal:

(G1MFA) Goal G1A (i.e., SP authenticates User) holds even if an intruder
knows up to n − 1 instance-factors.

Thus, the addition of instance-factors ensures some “redundancy”, meaning that
even if one of them is compromised there are no attacks.

We call weak assumption (wa) an assumption that, whenever it is not valid or
not implemented properly, causes the disclosure of a non-empty set of instance-
factors of the same type, i.e., either IFactoro or IFactork. We refer to this
set as the set of instance-factors associated with wa and denote it by writing
IF (wa).1 For example, if a weak assumption wa1 states that the intruder can-
not read the values typed by User , and in the authentication process User has
to enter her password and PIN , then IF (wa1 ) = {password ,PIN }. This def-
inition can be easily extended to a set of weak assumptions WA′ as follows:
IF (WA′) =

⋃
wai∈WA′ IF (wai). We write WA to denote the set of all the weak

assumptions.

Defining Security Goals. The notions that we just introduced allow us to
rephrase the definition of the security goal G1MFA of a multi-factor authentica-
tion solution in the following way:

(G1MFA) Goal G1A holds under the strong assumptions and under chosen sub-
sets of weak assumptions (WA′) such that the set of instance fac-
tors associated to WA \ WA′ does not include all the instance-factors.
That is, |IF (WA \ WA′)| < n.

A main characteristic of mID(OTP) is the use of OTPs. In G1MFA, we con-
sidered (among others) the instance-factors linked to the OTP generation. In
addition, as reported in Sect. 2, an OTP “should be non-reusable and non-
replicable.” Indeed, if the OTP is not fresh, then the knowledge of an OTP
leads to the same attacks possible when knowing the instance-factors linked to

1 To compromise all instance-factors, at least two weak assumptions must be not valid.
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its generation. Thus, it is crucial that the following security goal about the OTP
is satisfied:

(G2) The OTP must prove its origin (meaning that IdPS authenticates IDOTP ,
as IDOTP is the only app that possesses a secret value shared with IdPS

or a private key), and it is non-reusable (i.e., IdPS accepts only one OTP
for a specific operation so as to avoid replay attacks).

3.4 Assumptions

Our solution is based on different security assumptions, which we have classified
as strong or weak assumptions.

Strong Assumptions. We have identified the following assumptions and
checked them to be strong assumptions (see Sect. 4.5): Trust Assumption that
clarifies the trust relationships between the different entities, Communication
Assumptions that specify the concrete implementation of the communication
channels required in mID(OTP), and Activation Assumption that identifies the
assumptions related to the activation phase of mID(OTP).

Trust Assumption. mID(OTP) is based on the following trust relationship:

(TA) IdPS is trusted by SPC .

Communication Assumptions. Communications between the parties are subject
to the following assumptions:

(ComA1) The communication between SPC and IDOTP is carried over
an inter-app communication implemented using StartActivity
ForResult(). This Android method—which allows an app to open
another app and get a result back—guarantees that the SPC app
that sends a request to IDOTP at Step A2 in Fig. 1 is the same app
that receives the result back from IDOTP at Step A10.

(ComA2) To read the key hash value (Step A3 of Fig. 1), IDOTP
uses the Android method getPackageInfo(client packageName,
PackageManager. GET SIGNATURES), which extracts the informa-
tion about the certificate fingerprint included in the package of SPC .

(ComA3) The communication between IDOTP and IdPS occurs over a unilat-
eral SSL or TLS channel (henceforth SSL/TLS), established through
the exchange of a valid certificate (from IdPS to IDOTP).

Note that even if these assumptions refer to a concrete implementation of the
communication channels, in Sect. 4.3 we will provide the formal counterpart
abstracting away the implementation details. By doing so, any implementation
satisfying the abstract assumptions can be used in place of the implementation
mentioned above (e.g., considering a similar solution in the case of iOS), and
the results of our security analysis still hold. For example, the main reason to
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have ComA1 is to avoid the eavesdropping of the identity assertion (token SP)
by a malicious app, as in this way an intruder can use it to impersonate the
user on another smartphone. An alternative implementation of ComA1 could be
obtained by requiring SPC to insert a fresh value in the token request. In this
way, SPC will accept only the token SP that includes the expected fresh value.
Regardless of the design choice, it is crucial that SPC (and SPS if it is involved)
only accepts tokens that are released for itself for a particular operation.

Activation Assumption. Phishing attacks (e.g., a malicious app that creates a
fake login form and steals the user’s credentials) are one of the most common
types of attack and usually are beyond the scope of an authentication protocol. In
our analysis, together with a secure communication, we assume that no phishing
is possible during the activation phase:

(ActivA) The activation phase is correctly performed by User . That is, User
downloads the correct IDOTP (it is not a fake app) and correctly
follows the process, and the communication channels used are secure.

Weak Assumptions. We have identified two categories for weak assump-
tions: Background Assumptions that specify the assumptions on the environ-
ment (user’s smartphone), and User Behavior Assumptions that specify which
user behaviors are allowed in our model.

Background Assumptions. The environment is subject to these assumptions:

(BA1) Integrity and confidentiality of data stored in the device.
(BA2) There is no surveillance software (e.g., keylogger) installed on the user’s

device capable of reading the values that User types.

User Behavior Assumptions. To enforce a correct execution of the flow and to
investigate the security consequences of a stolen smartphone, in our analysis we
take into account the following behavioral rules:

(UBA1) User enters her IFactork only in the correct IDOTP app being careful
not to be seen by other people.

(UBA2) User is the only person using the IDOTP app that stores the IFactorp
associated to her identity.

4 Formal Specification and Analysis of the mID(OTP)
Solution: The mHealth Use-Case

In this section, we describe how the semi-formal description of the mID(OTP)
solution can be translated into a formal model (in this case, specified in
ASLan++). mID(OTP) provides a general solution for several application con-
texts. Instead of presenting at first the general model and then the formalization
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of a use-case, for brevity and concreteness, here we describe directly the for-
malization of a real use-case scenario that involves mHealth (mobile health)
apps. All the concepts presented apply in general to every solution based on
mID(OTP) (apart from a trivial renaming of the entities). Only the steps and
instance-factors related to the particular OTP generator used are specific for
this use-case.

In Sect. 4.1, we describe the entities and the steps of the OTP-generator app-
roach for this use-case. In Sects. 4.2 and 4.3, we detail the mapping between the
assumptions and their formal specification. In Sect. 4.4, we give the formalization
of the security goals. In Sect. 4.5, we present the results of our security analysis.

4.1 Description of the TreC Scenario

TreC is an acronym for “Cartella Clinica del Cittadino”, i.e., “Citizens’ Clinical
Record”. TreC is a platform developed in the Trentino region (Italy) for man-
aging personal health records (PHRs).2 In addition to the web platform, which
is routinely used by around 80,000 users, TreC is currently designing and imple-
menting a number of native Android applications to support self-management
and remote monitoring of chronic conditions. These applications are used in a
“living lab” by voluntary chronic patients according to their hospital physicians.
Examples are:

– “TreC-Lab: Diario Diabete”, a mobile diary that allows patients to record
health data, such as the blood glucose level and physical activity, and

– “TreC: Referti”, which permits patients to consult their personal health data
and medical prescriptions from the smartphone.

In the traditional web scenario, patients access services using their local health-
care system credentials (leveraging a SAML-based SSO [15] solution), but a
solution for native SSO was missing. The solution we have proposed will allow
patients to access different TreC e-health native mobile apps (and possibly other
third-party e-health apps) through a single authentication act. An implementa-
tion of the proposed model is currently being tested by TreC users.

In the following, we instantiate the entities described in Sect. 3 with the
entities involved in TreC: Patient plays the role of User who wants to access
her PHR on her smartphone. ADC (“Autenticazione del Cittadino”) is the IdP
of the local health care system and plays the role of IdPS . OTP -PAT plays the
role of IDOTP and manages the generation of OTPs and the SSO experience
for the apps installed on the phone that are part of the federation. TreCC (TreC
client) plays the role of SPC and is one of the apps that are part of the ADC
federation and it is used by Patient to read her PHR. TreCS (TreC server) plays
the role of SPS and manages user health data.

Figure 2 shows the A-steps of the exploitation phase of mID(OTP) for this
use-case. Compared to Fig. 1, we have detailed the OTP generation box (steps
A7 a–c), and graphically shown the channel properties, which we will explain
2 More information is available at https://trec.trentinosalute.net/.

https://trec.trentinosalute.net/
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Fig. 2. MSC of the exploitation phase of the TreC scenario.

in Sect. 4.3. Given that TreCS is not involved in the A-steps, for the sake of
brevity, in the rest of the section we refer to TreCC simply with TreC . Steps A7
(a–c) model the behavior of a Time-OTP (TOTP) algorithm [16], which is a
time synchronization algorithm that generates OTPs as a function of the time
of the execution and a seed (i.e., a shared secret). In general, the TOTP algo-
rithm requires that “the prover and verifier must either share the same secret
or the knowledge of a secret transformation to generate a shared secret” [16],
without specifying when and how to exchange this secret. In the analyzed use-
case, OTP -PAT obtains the seed value as part of the activation phase, and then
stores it encrypted with the PIN code ({|seed |} PIN ) selected by Patient . Thus,
the OTP generation box depicted in Fig. 1 is replaced here with a PIN request
(Steps A7.a), the entering of the PIN (Steps A7.b) and the generation of the
OTP as a function of the seed—extracted using the PIN as decryption key—and
of time (Steps A7.c).

The TreC scenario corresponds to a multi-factor authentication with 3
instance-factors: token IdP and {|seed |} PIN are IFactoro , and PIN is an
IFactork .

In the rest of this section, we present the formalism that we have used to
specify this use-case, detailing the initial state and the behavior of the entities,
the channels and the security goals. We also describe how we have formalized
the assumptions presented in Sect. 3.4. In Table 1, we show each assumption and
the corresponding formal specification. In addition, we model what in Sect. 3.3 is
indicated as an assumption not valid or not implemented properly by removing
it from the formal model, as shown in the last column of Table 1.
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4.2 Formal Specification of the Initial State and of the Behavior
of Entities

Initial States. The initial state of a protocol defines the initial knowledge of
the intruder, who is indicated with the letter i, and of all the honest entities
that participate in the protocol session, where a protocol session is a particular
run of the protocol, played by specific entities, using specific instances of the
communication channels and optionally, additional parameters that must be
passed as initial knowledge to the different entities. To model the TA assumption,
as shown in Table 1, in our analysis we have not considered sessions with i
playing the role of OTP -PAT and ADC .

Regarding the registration phase, we have modeled the data provided by the
TreC developer as initial knowledge of ADC . In general, after the registration
phase, IdPS creates two databases: trustedSPs, containing the relation between
the SPC identities and their key hash values, and metadataDB, containing the
relation between the key hash and the information (e.g., name and logo) pro-
vided by the SP developers. As shown in Table 1 by the ActivA assumption,
we have modeled the data obtained as result of the activation phase (token IdP
and data required for generating OTPs) as initial knowledge of User , IDOTP

Table 1. Mapping between assumptions (Asm(s) for short) and formal specification.

Asm Formal specification

Specification of Asm Removal of Asm

TA We do not consider sessions with i
playing the role of ADC

add sessions with i playing the role of
ADC

ComA1 link(T2O,O2T); delete link(T2O,O2T);

ComA2 authentic on(T2O,TreC); and DB
Keyhash

delete authentic on(T2O,TreC);

ComA3 confidential to(O2A,ADC);
weakly authentic(O2A);
weakly confidential(A2O);
authentic on(A2O,ADC);
link(O2A,A2O);

delete confidential to(O2A,ADC);
weakly authentic(O2A);
weakly confidential(A2O);
authentic on(A2O,ADC); link(O2A,A2O);

ActivA Data obtained during the activation
phase are nonpublic values shared as
parameters between Patient ,
OTP-PAT and ADC

add iknows(pinUser);
iknows(token IDP);
iknows({|seed|} pinUser); in general
add all the iknows(IFactor); obtained
during the activation phase

BA1 “Built-in”: i cannot read the internal
state of the other entities

add iknows(token IDP); and
iknows({|seed|} pinUser); in general
add all the iknows(IFactorp);

BA2 “Built-in”: i cannot read the internal
state of the other entities

add iknows(pinUser); in general add all
the iknows(IFactork);

UBA1 confidential to(P2O,OTP-PAT); delete confidential to(P2O,OTP-PAT);

UBA2 authentic on(P2O,Patient); delete authentic on(P2O,Patient);
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and IdPS . In particular, for the use-case, as result of the activation phase:
a Patient knows her PIN value (pinUser), OTP -PAT knows token IDP and
{|seed|} pinUser, and ADC creates a DB (usersDB) with Patient, token IDP
and seed as entry.

To specify that the intruder knows a message m, we use the ASLan++ pred-
icate iknows(m). As shown in Table 1 for ActivA, BA1 and BA2, the removal of
an assumption (which we will do to consider different scenarios of the analysis)
boils down to adding some iknows facts to the initial knowledge of the intruder.

Behavior of Entities. The behavior of the honest entities is specified by the
evolution of the system, which consists of a sequence of operations performed
by each role. For simplicity, Fig. 3 shows the evolution of the protocol using a
process view, which describes the messages exchanged in Fig. 2 for each entity
as a set of actions (e.g., receive or send a message and DB access). This formal
representation can be translated into various role-based formal languages and
input to different state-of-the-art security protocol analyzers. In our analysis, we
use ASLan++ and SATMC (see [11] for more details on language and tool).

The translation of the process view into ASLan++ is quite straightfor-
ward. The complete ASLan++ specification can be found at https://st.fbk.eu/
publications/POST-2018. Here, for lack of space, we provide only an example
by considering Steps 1 and 2 of Fig. 2, which involve the entities Patient , TreC
and OTP -PAT . Focusing on TreC , this exchange of messages in ASLan++ cor-
responds to

Patient -Ch_P2T-> Actor: Request; % Step 1
Actor -Ch_T2O-> OTP-PAT: Actor; % Step 2

where Actor is the keyword used in ASLan++ to represent the entity taken into
consideration, in our example TreC .

In our analysis, we have considered the behavior of a Dolev-Yao intruder [17],
who can overhear and modify messages using his initial knowledge and the knowl-
edge obtained from the traffic—this behavior is built-in in the SATMC tool. An
operation that is not allowed to i is the reading of the internal state of another
entity, where an internal state is a list of expressions known by the corresponding
entity. Thus, as highlighted in Table 1, BA1 and BA2 are built-in in the tool.

4.3 Formal Specification of Channels

For a detailed definition of the properties of channels between two protocol
entities A and B we point the reader to [18,19]. In a nutshell, consider a message
M sent on a channel A2B from A to B. A2B is authentic if B can rely on the fact
that only A could have sent M . A2B is confidential if A can rely on the fact that
only B can receive M . A2B is weakly authentic if the channel input is exclusively
accessible to a single, but yet unknown, sender, and A2B is weakly confidential if
the channel output is exclusively accessible to a single, yet unknown, receiver. A
link between two channels A2B and B2A means that the entity sending messages

https://st.fbk.eu/publications/POST-2018
https://st.fbk.eu/publications/POST-2018
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Fig. 3. Protocol view.

over the A2B is the same entity that receives messages from B2A. We have
represented these properties graphically in Fig. 2 as follows: A •→ B, A ◦→
B, A →• B, A →◦ B mean authentic, weak authentic, confidential and weak
confidential channel, respectively; moreover, we indicate a link property between
two channels with the same trace for the corresponding arrows.

As shown in Table 1, we have modeled as channel properties the tree commu-
nication assumptions (ComA1, ComA2 and ComA3) and the two user behavior
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assumptions (UBA1 and UBA2). The modeling of these assumption is far from
a trivial mapping and requires an explanation.

ComA1 is related to the inter-app communication in the mobile. The property
expected by the StartActivityForResult method can be modeled by a link
property between the two channels used in the mobile: the app that has sent a
request is the same app that will receive the result.

ComA3 is modeled with five channel properties (see Table 1) that all together
model a TLS/SSL unilateral channel.

Regarding ComA2, we have modeled an Android method, which extracts the
key hash value included in the package of an app, using an authentic channel
(used by TreC to send its identity to OTP -PAT ) and a DB containing the
relations between the SPC identities and their key hash, used by OTP -PAT
to read the correct key hash value. This is due to the fact that this method—
executed by the Android OS—guarantees the authenticity of its output.

We have modeled UBA1 and UBA2 as properties of the channel from Patient
to OTP -PAT (P2O). UBA1 is necessary to prevent leakage of the PIN—entered
in a malicious app or watched by an intruder during the typing—thus, we have
modeled P2O as a confidential channel. UBA2 guarantees the possession of the
OTP -PAT app installed in the user’s smartphone. Having this assumption, only
the valid Patient can communicate with that particular installation of OTP -
PAT , thus we have modeled P2O as an authentic channel.

4.4 Formal Specification of Security Goals

As described in Sect. 3.3, we have defined G1MFA in terms of a traditional authen-
tication goal and the strong and weak assumptions. This means that, in the
formal model, we consider the traditional authentication goal G1A and we check
whether it holds under the strong assumptions and different (sub)sets of weak-
assumptions. The property must hold if the intruder is not able to compromise all
the instance-factors. G1A requires that a message is transmitted in an authenti-
cated and fresh manner, thus allowing TreC to authenticate Patient and offering
replay-protection at the same time. For the definition of authentication we refer
to [20]: whenever the entity B completes a run of the protocol apparently with
the entity A, then A has previously been running the protocol apparently with
B, and the two entities agree on a message M . In ASLan++, this corresponds
to specifying the goal

(G1A) SP authn U on Request: ( ) Patient *->> TreC ;

where *->> indicates authenticity, directedness (i.e., the only (honest) receiver
of a message is the intended one [11]) and freshness. In addition, following the
definition in [20], associated goal labels are used to specify which values of M the
goal is referring to, namely, the Request value in State 1 of the Patient process
(in Fig. 3) and the corresponding value in the last state of the TreC process
(State 3 in Fig. 3).
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Similarly, the OTP properties are checked by means of the goal

(G2) IDP authn UA on OTP: ( ) OTP -PAT *->> ADC;

with the associated goal labels specifying for M the values otp generation
(Seed,Time) in States 3 of both the OTP -PAT and the ADC processes in Fig. 3,
where we have modeled Seed as a constant value shared between OTP -PAT and
ADC , and Time as a session parameter (cf. [16]) shared between OTP -PAT and
ADC . Thus, ADC will accept only one OTP value for each session, enforcing
the property (informally described in Sect. 3.3) that OTP is non-reusable.

4.5 Results of the Security Analysis

We are now ready to discuss the results of the security assessment that we
have performed on the mHealth use-case. Our focus is determining whether the
concurrent execution of a finite number of protocol sessions enjoys the expected
security goals in spite of the intruder. To this aim, we have mechanically analyzed
the formal model of our use-case using SATMC, a state-of-the-art model checker
for security protocols. SATMC carries out an iterative deepening strategy on
k. Initially k is set to 0, and then it is incremented till an attack is found (if
any) or kmax is reached. If this is the case, no attack traces of length up to
kmax exist, where the length of the trace is computed by taking into account
the parallel execution of non-conflicting actions (actions executed in parallel are
considered as a single step). The trace includes the actions performed by attacker
and honest participants, where most of the actions of the attacker are executed
in parallel (and counted as a single step) with the ones of honest participants.
We set kmax to 1.5 times the length of the longest trace of the protocol when
only honest entities participate. As a rule of thumb, with this choice we are
reasonably confident that no attack is possible with greater values of kmax . In
our analysis, the length of the longest trace of the protocol when only honest
entities participate is 19, and thus we have set kmax = 30. We have considered
several scenarios including (at most) three parallel sessions in which the intruder
either does not play any role or plays the role of SPC (the TreC app in the use-
case). In each session, we used different instances of the channels. The complete
set of specifications can be found at the companion website.

In Sect. 3.4, in relation to the security goal G1MFA (and consequently to
G1A), we have described a list of strong and weak assumptions that we have

Table 2. Analyses performed for G1A.

Analysis Strong Asm(s) Weak Asm(s) Atk

1 all −1 all Yes

2 all all −1 No

3 all all −m (1 < m ≤ 4) *
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added to the model to constrain the intruder’s abilities. Table 2 summarizes the
security analyses that we have performed to check this goal.

Regarding the strong assumptions (TA, ComA1, ComA2, ComA3 and
ActivA), we have performed the following analyses:

Analysis 1: We have checked that by removing only one of the five strong
assumptions from the model we have a violation of G1A (i.e., there
is an attack). For this analysis, we have thus performed 5 execu-
tions of SATMC removing one strong assumption at a time. To
provide an example of an attack, Fig. 4 shows the attack trace
deriving from removing ComA2. In this attack, i can impersonate
trec simply because the channel used to exchange its identity is
not authentic; thus, i can pretend to be another app. Note that,
for the sake of clarity, this figure (and, similarly, the other figures
shown in this section) represents only the significant steps of the
attack traces found by the SATMC tool.3

Regarding the weak assumptions (BA1, BA2, UBA1, and UBA2), we have per-
formed the following analyses that are detailed in Table 3:

Analysis 2: We have checked that by removing only one of the four weak
assumptions from the model, SATMC does not find any attack
on the solution (i.e., the intruder is not able to impersonate the
user). Indeed, as shown in Table 3, by removing only one weak
assumption, the intruder obtains only 1 or 2 instance-factors.

Analysis 3: We have checked that by removing specific subsets of weak assump-
tions it is possible to compromise all the instance-factors, causing
a violation of G1A. In Table 2, the star (*) denotes that the result

Fig. 4. Attack trace without the strong assumption ComA2.

3 The original charts can be examined on the companion website https://st.fbk.eu/
publications/POST-2018.

https://st.fbk.eu/publications/POST-2018
https://st.fbk.eu/publications/POST-2018
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Table 3. Results for G1A (Analyses 2 and 3).

Removed weak Asm(s) Compromised factors Atk

PIN {seed} PIN token IdP

BA1 x � � No

BA2 � x x No

UBA1 � x x No

UBA2 x � � No

(UBA1 ∨ BA2) ∧ BA1 � � � Yes

(UBA1 ∨ BA2) ∧ UBA2 � � � Yes

can be “yes” or “no” depending on the chosen subset of weak
assumptions. The subsets shown in Table 3 violate G1A and result
in different attack traces. Figure 5 shows the attack trace deriving
from removing UBA1 and UBA2 (e.g., a proximity intruder that
watches the PIN entered by Patient and then steals the smart-
phone). In the attack, i initiates a session of the protocol with
trec pretending to be patient (indicated as i(patient)). By
entering the PIN code (pinUser) when requested by otppat, i
is able to impersonate the patient and obtaining the requested
resource (resources1). Figure 6 shows the attack trace deriving
from removing both BA1 and BA2 (e.g., a hacker that steals the
PIN typed by Patient using a keylogger and reads token IdP and
{|seed |} PIN exploiting a malware installed on the smartphone).
In this case, i is able to generate an OTP and sends a token request
to adc.

Fig. 5. Attack trace obtained removing UBA1 and UBA2.
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Fig. 6. Attack trace obtained removing BA1 and BA2.

As expected, when checking the solution w.r.t. the security goal G2—which
embodies the OTP properties—under all the (weak and strong) assumptions,
SATMC does not find any attack.

5 Related Work

OAuth 2.0 [21] and OpenID Connect [22] have been designed for light-RESTful
API services, and are considered the de-facto standards for managing authenti-
cation and authorization. These protocols are well-accepted in the web scenario,
but they provide only partial support for mobile apps (frequent use of the expres-
sion “out of scope”). This could lead to the implementation of insecure solutions.
An in-depth analysis of OAuth in the mobile environment—underlining possible
security problems and vulnerabilities—is available in [23,24].

Given the lack of specifications, the OAuth Working Group has released in
2017 a best practice with the title “OAuth 2.0 for Native Apps” [25]. The spec-
ification of [25] has two main differences with respect to our solution: the choice
of UA (browser vs native app) and the activation phase. The authors of [25] do
not described any security issues in using native apps as UA; they discourage
this because of the overhead on users to install a dedicated app. Nevertheless,
in some scenarios, we consider this to be an advantage rather than a drawback
because it allows for easily integrating new security mechanisms (e.g., access
control and a wider range of MFA solutions). Concerning the activation phase of
our solution, it allows for better mitigation of phishing as users directly interact
with our app. Instead, [25] requires a redirection from a (possible malicious)
SPC to a browser, thus users can be cheated by a fake browser invoked by SPC .
We want to underline that, as described in [7], our solution is not designed from
scratch but on top of Facebook; and the formalization that we have presented
in this work can be easily extended to also analyze the OAuth solution of [25].

Much research has been carried out to discover vulnerabilities in different
implementations of OAuth 2.0 and OpenID Connect in web and mobile scenar-
ios. For instance, Sun et al. [26] analyzed hundreds of OAuth apps focusing on
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classical web attacks such as Cross-Site Scripting (XSS) and Cross-Site Request
Forgery (CSRF). Other studies, such as [27,28], analyzed the implementations
of multi-party web apps via browser-related messages. In the context of mobile
apps, a similar work is described in [29], where Yang et al. discovered an incor-
rect use of OAuth that permits an intruder to login as a victim without the
victim’s awareness. To evaluate the impact of this attack, they have shown that
more than 40% of 600 top-ranked apps were vulnerable.

Although these techniques are useful for the analysis of a specific implemen-
tation (as they are able to discover serious security flaws), it is important to
perform a comprehensive security analysis of the standard itself. In the context
of web apps, Fett et al. [30] performed a formal analysis of the OAuth protocol
using an expressive web model (defined in [31]) that describes the interaction
between browsers and servers in a real-world set-up. This formal analysis revealed
two unknown attacks on OAuth that violate the authorization and authentica-
tion properties. A similar analysis is performed for OpenID Connect in [32]. Two
other examples of formalizations of OAuth are [33], where the different OAuth
flows are modeled in the Applied Pi calculus and verified using ProVerif extended
with WebSpi (a library that models web users, apps and intruders), and [34],
where OAuth is modeled in Alloy.

In our analysis (cf. Sect. 4) we used ASLan++ and SATMC. In the past,
SATMC has revealed severe security flaws in the SAML 2.0 protocol [15] and in
the variant implemented by Google [18]; by exploiting these flaws a dishonest
service provider could impersonate a user at another service provider. Moreover,
Yan et al. [35] used ASLan++ and SATMC to analyze four security properties
of OAuth: confidentiality, authentication, authorization, and consistency.

The aforementioned formal analyses, however, focus on the web app scenario,
whereas in this paper we deal with native apps. In [36], Ye et al. used Proverif
to analyze the security of a SSO implementation for Android. They applied
their approach to the implementation of the Facebook Login and identified a
vulnerability that exploits super user (SU) permissions. In contrast, our analysis
assumes that the user smartphone cannot be rooted. Indeed, if a malicious app
is able to obtain a SU permission, then it can set for itself the permission to
access all the data stored in the smartphone, compromising all the user data
and the tokens of the other apps installed on the rooted smartphone.

YubiKey NEO [37] is one of the most attractive mobile identity management
products on the market. It is a token device that supports OTPs and the FIDO
Alliance Universal 2nd Factor (U2F) protocol, and, by integrating an NFC (Near
Field Communication) technology, it can be used to provide a second-factor
also in the mobile context. Compared to this product, our solution provides a
multi-factor authentication solution for native mobile apps without requiring an
additional device.

6 Conclusions

We have presented the design of mID(OTP), a multi-factor authentication solu-
tion for native mobile apps that includes an OTP exchange and provides a
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SSO experience. In addition to the protocol flow, we have detailed the security
assumptions and defined two security goals: G1MFA related to a multi-factor
authentication solution and G2 that identifies the properties of a OTP. To per-
form a security analysis of mID(OTP), we have detailed the OTP-generation
approach in the context of a real use-case scenario (TreC). We have formally
modeled the flow, assumptions and goals of TreC using a formal language
(ASLan++) and checked the identified security goals using a model-checker
(SATMC).

The solution we have presented, as well as the formal specification and anal-
ysis that we have given, can be generalized quite straightforwardly to other
use-cases, which we are currently doing. As future work, we also plan to extend
the analysis to other authentication factors, such as biometric traits. In addition,
we started exploring an alternative formalization of multi-factor authentication
protocols that decomposes the protocol and models the authentication property
as a composition of two goals: one related to basic authentication (involving
User , UA, SPC and IdPS ) and one related only to the generation and valida-
tion of the OTP (without involving SPC ). In this way, a proper separation is
kept between the multi-factor authentication performed with IdPS and the basic
authentication plus SSO experience offered to SPC . As a preliminary analysis,
we can affirm that the two different definitions of goals lead to similar attack
traces.
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30. Fett, D., Küsters, R., Schmitz, G.: A comprehensive formal security analysis of
OAuth 2.0. In: Proceedings of the 23rd ACM SIGSAC Conference on Computer
and Communications Security (CCS), pp. 1204–1215. ACM (2016)
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Abstract. Albeit the primary usage of Bitcoin is to exchange currency,
its blockchain and consensus mechanism can also be exploited to securely
execute some forms of smart contracts. These are agreements among
mutually distrusting parties, which can be automatically enforced with-
out resorting to a trusted intermediary. Over the last few years a variety
of smart contracts for Bitcoin have been proposed, both by the aca-
demic community and by that of developers. However, the heterogeneity
in their treatment, the informal (often incomplete or imprecise) descrip-
tions, and the use of poorly documented Bitcoin features, pose obstacles
to the research. In this paper we present a comprehensive survey of smart
contracts on Bitcoin, in a uniform framework. Our treatment is based
on a new formal specification language for smart contracts, which also
helps us to highlight some subtleties in existing informal descriptions,
making a step towards automatic verification. We discuss some obstacles
to the diffusion of smart contracts on Bitcoin, and we identify the most
promising open research challenges.

1 Introduction

The term “smart contract” was conceived in [43] to describe agreements between
two or more parties, that can be automatically enforced without a trusted
intermediary. Fallen into oblivion for several years, the idea of smart contract
has been resurrected with the recent surge of distributed ledger technologies,
led by Ethereum (http://www.ethereum.org/) and Hyperledger (https://www.
hyperledger.org/). In such incarnations, smart contracts are rendered as com-
puter programs. Users can request the execution of contracts by sending suitable
transactions to the nodes of a peer-to-peer network. These nodes collectively
maintain the history of all transactions in a public, append-only data structure,
called blockchain. The sequence of transactions on the blockchain determines the
state of each contract, and, accordingly, the assets of each user.

A crucial feature of smart contracts is that their correct execution does not
rely on a trusted authority: rather, the nodes which process transactions are
assumed to be mutually untrusted. Potential conflicts in the execution of con-
tracts are resolved through a consensus protocol, whose nature depends on the
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specific platform (e.g., it is based on “proof-of-work” in Ethereum). Ideally, con-
tracts execute correctly whenever the adversary does not control the majority
of some resource (e.g., computational power for “proof-of-work” consensus).

The absence of a trusted intermediary, combined with the possibility of
transferring money given by blockchain-based cryptocurrencies, creates a fertile
ground for the development of smart contracts. For instance, a smart contract
may promise to pay a reward to anyone who provides some value that satisfies
a given public predicate. This generalises cryptographic puzzles, like breaking a
cipher, inverting a hash function, etc.

Since smart contracts handle the ownership of valuable assets, attackers may
be tempted to exploit vulnerabilities in their implementation to steal or tamper
with these assets. Although analysis tools [17,30,34] may improve the security
of contracts, so far they have not been able to completely prevent attacks. For
instance, a series of vulnerabilities in Ethereum contracts [10] have been exploited,
causing money losses in the order of hundreds of millions of dollars [3–5].

Using domain-specific languages (possibly, not Turing-complete) could help
to overcome these security issues, by reducing the distance between contract
specification and implementation. For instance, despite the discouraging limi-
tations of its scripting language, Bitcoin has been shown to support a variety
of smart contracts. Lotteries [6,14,16,36], gambling games [32], contingent pay-
ments [13,24,35], and other kinds of fair multi-party computations [8,31] are
some examples of the capabilities of Bitcoin as a smart contracts platform.

Unlike Ethereum, where contracts can be expressed as computer programs
with a well-defined semantics, Bitcoin contracts are usually realised as crypto-
graphic protocols, where participants send/receive messages, verify signatures,
and put/search transactions on the blockchain. The informal (often incomplete
or imprecise) narration of these protocols, together with the use of poorly doc-
umented features of Bitcoin (e.g., segregated witnesses, scripts, signature mod-
ifiers, temporal constraints), and the overall heterogeneity in their treatment,
pose serious obstacles to the research on smart contracts in Bitcoin.

Contributions. This paper is, at the best of our knowledge, the first systematic
survey of smart contracts on Bitcoin. In order to obtain a uniform and precise
treatment, we exploit a new formal model of contracts. Our model is based on a
process calculus with primitives to construct Bitcoin transactions, to put them
on the blockchain, and to search the blockchain for transactions matching given
patterns. Our calculus allows us to give smart contracts a precise operational
semantics, which describes the interactions of the (possibly dishonest) partici-
pants involved in the execution of a contract.

We exploit our model to systematically formalise a large portion of the con-
tracts proposed so far both by researchers and Bitcoin developers. In many cases,
we find that specifying a contract with the intended security properties is sig-
nificantly more complex than expected after reading the informal descriptions
of the contract. Usually, such informal descriptions focus on the case where all
participants are honest, neglecting the cases where one needs to compensate for
some unexpected behaviour of the dishonest environment.
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Overall, our work aims at building a bridge between research communities:
from that of cryptography, where smart contracts have been investigated first,
to those of programming languages and formal methods, where smart contracts
could be expressed using proper linguistic models, supporting advanced analysis
and verification techniques. We outline some promising research perspectives on
smart contracts, both in Bitcoin and in other cryptocurrencies, where the synergy
between the two communities could have a strong impact in future research.

2 Background on Bitcoin Transactions

In this section we give a minimalistic introduction to Bitcoin [21,38], focussing on
the crucial notion of transaction. To this purpose, we rely on the model of Bitcoin
transactions in [11]. Here, instead of repeating the formal machinery of [11], we
introduce the needed concepts through a series of examples. We will however
follow the same notation of [11], and point to the formal definitions therein, to
allow the reader to make precise the intuitions provided in this paper.

Bitcoin is a decentralised infrastructure to securely transfer currency (the
bitcoins, B) between users. Transfers of bitcoins are represented as transactions,
and the history of all transactions is stored in a public, append-only, distributed
data structure called blockchain. Each user can create an arbitrary number of
pseudonyms through which sending and receiving bitcoins. The balance of a user
is not explicitly stored within the blockchain, but it is determined by the amount
of unspent bitcoins directed to the pseudonyms under her control, through one
or more transactions. The logic used for linking inputs to outputs is specified by
programmable functions, called scripts.

Hereafter we will abstract from a few technical details of Bitcoin, e.g. the
fact that transactions are grouped into blocks, and that each transaction must
pay a fee to the “miner” who appends it to the blockchain. We refer to [11] for a
discussion on the differences between the formal model and the actual Bitcoin.

2.1 Transactions

In their simplest form, Bitcoin transactions allow to transfer bitcoins from one
participant to another one. The only exception are the so-called coinbase trans-
actions, which can generate fresh bitcoins. Following [11], we assume that there
exists a single coinbase transaction, the first one in the blockchain. We represent
this transaction, say T0, as follows:

T0

in: ⊥
wit: ⊥
out: (λx. x < 51, 1B)

The transaction T0 has three fields. The fields in and wit are set to ⊥, meaning
that T0 does not point backwards to any other transaction (since T0 is the first
one on the blockchain). The field out contains a pair. The first element of the
pair, λx. x < 51, is a script, that given as input a value x, checks if x < 51
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(this is just for didactical purposes: we will introduce more useful scripts in a
while). The second element of the pair, 1B, is the amount of currency that can
be transferred to other transactions.

Now, assume that participant A wants to redeem 1B from T0, and transfer
that amount under her control. To do this, A has to append to the blockchain a
new transaction, e.g.:

TA

in: T0

wit: 42
out: (λx.versigkA

(x), 1B)

The field in points to the transaction T0 in the blockchain. To be able to
redeem from there 1B, A must provide a witness which makes the script within
T0.out evaluate to true. In this case the witness is 42, hence the redeem succeeds,
and T0 is considered spent. The script within TA .out is the most commonly used
one in Bitcoin: it verifies the signature x with A’s public key. The message against
which the signature is verified is the transaction1 which attempts to redeem TA .

Now, to transfer 1B to another participant B, A can append to the blockchain
the following transaction:

TB

in: TA

wit: sigkA
(TB)

out: (λx.versigkB
(x), 1B)

where the witness sigkA
(TB) is A’s signature on TB (but for the wit field itself).

The ones shown above represent just the simplest cases of transactions. More
in general, a Bitcoin transaction can collect bitcoins from many inputs, and split
them between one or more outputs; further, it can use more complex scripts,
and specify time constraints on when it can be appended to the blockchain.

Following [11], hereafter we represent transactions as tuples of the form
(in,wit, out, absLock, relLock), where:

– in contains the list of inputs. An input (T, i) refers to the i-th output of
transaction T.

– wit contains the list of witnesses, of the same length as the list of inputs. For
each input (T, i) in the in list, the witness at the same index must make the
i-th output script of T evaluate to true.

– out contains the list of outputs. Each index refers to a pair (λz.e, v), where
the first component is a script, and the second is a currency value.

– absLock and relLock indicate absolute and relative time constraint on when
the transaction can be added to the blockchain.

In transaction fields, we represent a list �1 · · · �n as 1 �→ �1, . . . , n �→ �n, or just as
�1 when n = 1. We denote with ˜Tv

A the canonical transaction, i.e. the transaction
with a single output of the form (λς.versigkA

(ς), vB), and with all the other fields
empty (denoted with ⊥).
1 Actually, the signature is not computed on the whole redeeming transaction, but

only on a part of it, as shown in Sect. 2.3.
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T1

in: · · ·
wit: · · ·
out: 1 �→ (λx.versigk(x), v1B)

2 �→ (λx, x′.e1, v2B)

T2

in: 1 �→ (T1, 1)
wit: 1 �→ σ1

out: 1 �→ (λx.e2, v1B)
relLock: 1 �→ t

T3

in: 1 �→ (T1, 2) 2 �→ (T2, 1)
wit: 1 �→ σ2, σ

′
2 2 �→ σ3

out: 1 �→ (λx.e3, (v1 + v2)B)
absLock: t′

Fig. 1. Three Bitcoin transactions.

Example 1. Consider the transactions in Fig. 1. In T1 there are two outputs:
the first one transfers v1B to any transaction T′ which provides as witness a
signature of T′ with key k; the second output can transfer v2B to a transaction
whose witness satisfies the script e1. The transaction T2 tries to redeem v1B from
the output at index 1 of T1, by providing the witness σ1. Since T2.relLock(1) = t,
then T2 can be appended only after at least t time units have passed since the
transaction in T2.in(1) (i.e., T1) appeared on the blockchain. In T3, the input 1
refers to the output 2 of T1, and the input 2 refers to the output 1 of T2. The
witness σ2 and σ′

2 are used to evaluate T1.out(2), replacing the occurrences of x
and x′ in e1. Similarly, σ3 is used to evaluate T2.out(1), replacing the occurrences
of x in e2. The transaction T3 can be put on the blockchain only after time t′. ��

2.2 Scripts

In Bitcoin, scripts are small programs written in a non-Turing equivalent lan-
guage. Whoever provides a witness that makes the script evaluate to “true”, can
redeem the bitcoins retained in the associated (unspent) output. In the abstract
model, scripts are terms of the form λz.e, where z is a sequence of variables
occurring in e, and e is an expression with the following syntax:

e :: = x | k | e + e | e − e | e = e | e < e | if e then e else e |
|e| | H(e) | versigk (e) | absAfter t : e | relAfter t : e

Besides variables x, constants k, and basic arithmetic/logical operators, the
other expression are peculiar: |e| denotes the size, in bytes, of the evaluation of
e; H(e) evaluates to the hash of e; versigk (e) evaluates to true iff the sequence of
signatures e (say, of length m) is verified by using m out of the n keys in k. For
instance, the script λx.versigk(x) is satisfied if x is a signature on the redeem-
ing transaction, verified with the key k. The expressions absAfter t : e and
relAfter t : e define absolute and relative time constraints: they evaluate as e if
the constraints are satisfied, otherwise they evaluate to false.

In Fig. 2 we recap from [11] the semantics of script expressions. The function
�·�T,i,ρ takes three parameters: T is the redeeming transaction, i is the index
of the redeeming witness, and ρ is a map from variables to values. We use ⊥
to represent the “failure” of the evaluation, H for a public hash function, and
size(n) for the size (in bytes) of an integer n. The function verk (σ,T, i) verifies
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Fig. 2. Semantics of script expressions.

a sequence of signatures σ against a sequence of keys k (see Sect. 2.3) All the
semantic operators used in Fig. 2 are strict, i.e. they evaluate to ⊥ if some of
their operands is ⊥. We use syntactic sugar for expressions, e.g. false denotes
1 = 0, true denotes 1 = 1, while e and e′ denotes if e then e′ else false.

Example 2. Recall the transactions in Fig. 1. Let e1 (the script expression within
T1.out(2)) be defined as e1 = absAfter t′ : versigk(x) and H(x′) = h, for h and t′

constants such that T3.absLock ≥ t′. Further, let σ2 and σ′
2 (the witnesses within

T3.wit(1)) be respectively sigk(T3) and s, where sigk(T3) is the signature of T3

(excluding its witnesses) with key k, and s is a preimage of h, i.e. h = H(s). Let
ρ = {x �→ sigk(T3), x′ �→ s}. To redeem T1.out(2) with the witness T3.wit(1),
the script expression is evaluated as follows:

�absAfter t′ : versigk(x) and H(x′) = h�T3,1,ρ

= �versigk(x) and H(x′) = h�T3,1,ρ as T3.absLock ≥ t′

= �versigk(x)�T3,1,ρ ∧ �H(x′) = h�T3,1,ρ

= verk(ρ(x),T3, 1) ∧ (�H(x′)�T3,1,ρ = �h�T3,1,ρ)
= verk(sigk(T3),T3, 1) ∧ (H(ρ(x′)) = h) as ρ(x) = sigk(T3)
= true as ρ(x′) = s ��

2.3 Transaction Signatures

The signatures verified with versig never apply to the whole transaction: the
content of wit field is never signed, while the other fields can be excluded from the
signature according to some predefined patterns. To sign parts of a transaction,
we first erase the fields which we want to neglect in the signature. Technically,
we set these fields to the “null” value ⊥ using a transaction substitution.

A transaction substitution {f �→ d} replaces the content of field f with d. If
the field is indexed (i.e., all fields but absLock), we denote with {f (i) �→ d} the
substitution of the i-th item in field f , and with {f (	= i) �→ d} the substitution
of all the items of field f but the i-th. For instance, to set all the elements of
the wit field of T to ⊥, we write T{wit �→ ⊥}, and to additionally set the second
input to ⊥ we write T{wit �→ ⊥}{in(2) �→ ⊥}.

In Bitcoin, there exists a fixed set of transaction substitutions. We represent
them as signature modifiers, i.e. transaction substitutions which set to ⊥ the
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fields which will not be signed. Signatures never apply to the whole transaction:
modifiers always discard the content of the wit, while they can keep all the
inputs or only one, and all the outputs, or only one, or none. Modifiers also
take a parameter i, which is instantiated to the index of the witness where the
signature will be included. Below we only present two signature modifiers, since
the others are not commonly used in Bitcoin smart contracts.

The modifier aai only sets the first witness to i, and the other witnesses
to ⊥ (so, all inputs and all outputs are signed). This ensures that a signature
computed for being included in the witness at index i can not be used in any
witness with index j 	= i:

aai(T) = T{wit(1) �→ i}{wit(	= 1) �→ ⊥}
The modifier sai removes the witnesses, and all the inputs but the one at

index i (so, a single input and all outputs are signed). Differently from aai, this
modifier discards the index i, so the signature can be included in any witness:

sai(T) = aa1(T{wit �→ ⊥}{in(1) �→ T.in(i)}{in(	= 1) �→ ⊥}
{relLock(1) �→ T.relLock(i)}{relLock(	= 1) �→ ⊥})

Signatures carry information about which parts of the transaction are signed:
formally, they are pairs σ = (w, μ), where μ is the modifier, and w is the signature
on the transaction T modified with μ. We denote such signature as sigμ,i

k (T),
where k is a key, and i is the index used by μ, if any. Verification of a signature
σ for index i is denoted by verk(σ,T, i). Formally:

sigμ,i
k (T) = (sigk(μi(T)), μ) verk(σ,T, i) = verk(w, μi(T)) if σ = (w, μ)

where sig and ver are, respectively, the signing function and the verification
function of a digital signature scheme.

Multi-signature verification verk (σ,T, i) extends verification to the case
where σ is a sequence of signatures and k is a sequence of keys. Intuitively,
if |σ| = m and |k| = n, it implements a m-of-n multi-signature scheme, evalu-
ating to true if all the m signatures match (some of) the keys in k. The actual
definition also takes into account the order of signatures, as formalised in Defi-
nition 6 of [11].

2.4 Blockchain and Consistency

Abstracting away from the fact that the actual Bitcoin blockchain is formed by
blocks of transactions, here we represent a blockchain B as a sequence of pairs
(Ti, ti), where ti is the time when Ti has been appended, and the values ti are
increasing. We say that the j-th output of the transaction Ti in the blockchain
is spent (or, for brevity, that (Ti, j) is spent) if there exists some transaction Ti′

in the blockchain (with i′ > i) and some j′ such that Ti′ .in(j′) = (Ti, j).
We now describe when a pair (T, t) can be appended to B =

(T0, t0) · · · (Tn, tn). Following [11], we say that T is a consistent update of B
at time t, in symbols B � (T, t), when the following conditions hold:
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1. for each input i of T, if T.in(i) = (T′, j) then:
(a) T′ corresponds to one of the transactions in B;
(b) (T′, j) is unspent in B;
(c) the witness T.wit(i) makes the script in T′.out(j) evaluate to true;

2. the time constraints absLock and relLock in T are satisfied at time t ≥ tn;
3. the sum of the amounts of the inputs of T is greater or equal2 to the sum of

the amount of its outputs.

We assume that each transaction Ti in the blockchain is a consistent update of
the sequence of past transactions T0 · · ·Ti−1. The consistency of the blockchain
is actually ensured by the Bitcoin consensus protocol.

Example 3. Recall the transactions in Fig. 1. Assume a blockchain B whose last
pair is (T1, t1) and t1 ≥ t′, while T2 and T3 are not in B.

We verify that (T2, t2) is a consistent update of B, assuming t2 = t1 + t and
that σ1 is the signature of T2 with (the private part of) key k. The only input
of T2 is (T1, 1). Conditions 1a and 1b are satisfied, since (T1, 1) is unspent in
B. Condition 1c holds because versigk(σ1) evaluates to true. Condition 2 holds:
indeed the relative timelock in T2 is satisfied because t2 − t1 ≥ t. Condition 3
holds because the amount of the input of T2, i.e. v1B, is equal to the amount
of its output. Note instead that (T3, t2) would not be a consistent update of B,
since it violates condition 1a on the second input.

Now, let B′ = B(T2, t2). We verify that (T3, t3) is a consistent update of
B′ , assuming t3 ≥ t2, e1 as in Example 2, and e2 = versigk′(x). Further, let
σ2 = sigk(T3), let σ′

2 = s, and σ3 = sigk′(T3). Conditions 1a and 1b hold,
because T1 and T2 are in B′ , and the referred outputs are unspent. Condition 1c
holds because the output scripts T1.out(2) and T2.out(1) against σ2, σ

′
2 and σ3

evaluate to true. Condition 2 is satisfied at t3 ≥ t2 ≥ t1 ≥ t′. Finally, condition 3
holds because the amount (v1 + v2)B in T3.out(1) is equal to the sum of the
amounts in T1.out(2) and T2.out(1). ��

3 Modelling Bitcoin Contracts

In this section we introduce a formal model of the behavior of the participants
in a contract, building upon the model of Bitcoin transactions in [11].

We start by formalising a simple language of expressions, which represent
both the messages sent over the network, and the values used in internal com-
putations made by the participants. Hereafter, we assume a set Var of variables,
and we define the set Val of values comprising constants k ∈ Z, signatures σ,
scripts λz.e, transactions T, and currency values v.

2 The difference between the amount of inputs and that of outputs is the fee paid to
the miner who publishes the transaction.
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Fig. 3. Semantics of contract expressions.

Definition 1 (Contract expressions). We define contract expressions
through the following syntax:

E, T :: = ν value (ν ∈ Val)
| x variable (x ∈ Var)
| sigμ,i

k (T) signature (μ signature modifier)
| versigk (E,T, i) (multi) signature verification
| T{f (i) �→ E} transaction field update
| (E,E) pair
| E and E | E or E | not E logical expressions
| E + E | · · · arithmetic expressions

where E denotes a finite sequence of expressions (i.e., E = E1 · · · En). We define
the function �·� from (variable-free) contract expressions to values in Fig. 3. As
a notational shorthand, we omit the index i in sig (resp. versig) when the signed
(resp. verified) transactions have a single input.

Intuitively, when T evaluates to a transaction T, the expression T{f (i) �→ E}
represents the transaction obtained from T by substituting the field f (i) with
the sequence of values obtained by evaluating E. For instance, T{wit(1) �→ σ}
denotes the transaction obtained from T by replacing the witness at index 1 with
the signature σ. Further, sigμ,i

k (T) evaluates to the signature of the transaction
represented by T, and versigk (E,T, i) represents the m-of-n multi-signature veri-
fication of the transaction represented by T. Both for the signing and verification,
the parameter i represents the index where the signature will be used. We assume
a simple type system (not specified here) that rules out ill-formed expressions,
like e.g. k{wit(1) �→ T}.

We formalise the behaviour of a participant as an endpoint protocol, i.e. a
process where the participant can perform the following actions: (i) send/receive
messages to/from other participants; (ii) put a transaction on the ledger;
(iii) wait until some transactions appear on the blockchain; (iv) do some internal
computation. Note that the last kind of operation allows a participant to craft
a transaction before putting it on the blockchain, e.g. setting the wit field to her
signature, and later on adding the signature received from another participant.
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Definition 2 (Endpoint protocols). Assume a set of participants (named
A, B, C, . . . ). We define prefixes π, and protocols P ,Q,R, . . . as follows:

π :: = A ! E send messages to A

| A ? x receive messages from A

| put T append transaction T to the blockchain
| ask T as x wait until all transactions in T are on the blockchain
| check E test condition

P :: =
∑

i∈I πi . P i guarded choice (I finite set)
| P | P parallel composition
| X(E) named process

We assume that each name X has a unique defining equation X(x) = P where
the free variables in P are included in x. We use the following syntactic sugar:

– τ � check true, the internal action;
– 0 �

∑

∅ P , the terminated protocol (as usual, we omit trailing 0s);
– if E then P else Q � check E .P + check not E .Q;
– π1.Q1 + P �

∑

i∈I∪{1} πi.Qi, provided that P =
∑

i∈I πi.Qi and 1 	∈ I;
– let x = E in P � P {E/x}, i.e. P where x is replaced by E.

The behaviour of protocols is defined in terms of a LTS between systems, i.e.
the parallel composition of the protocols of all participants, and the blockchain.

Definition 3 (Semantics of protocols). A system S is a term of the form
A1[P 1] | · · · | An[Pn] | (B, t), where (i) all the Ai are distinct; (ii) there exists a
single component (B, t), representing the current state of the blockchain B, and
the current time t; (iii) systems are up-to commutativity and associativity of |.
We define the relation −→ between systems in Fig. 4, where matchB(T) is the set
of all the transactions in B that are equal to T, except for the witnesses. When
writing S | S ′ we intend that the conditions above are respected.

Intuitively, a guarded choice
∑

i πi.P i can behave as one of the branches
P i. A parallel composition P | Q executes concurrently P and Q. All the rules
(except the last two) specify how a protocol (π.P + Q) | R evolves within a
system. Rule [Com] models a message exchange between A and B: participant A
sends messages E, which are received by B on variables x. Communication is
synchronous, i.e. A is blocked until B is ready to receive. Rule [Check] allows the
branch P of a sum to proceed if the condition represented by E is true. Rule [Put]

allows A to append a transaction to the blockchain, provided that the update
is consistent. Rule [Ask] allows the branch P of a sum to proceed only when
the blockchain contains some transactions T′

1 · · ·T′
n obtained by instantiating

some ⊥ fields in T (see Sect. 2). This form of pattern matching is crucial because
the value of some fields (e.g., wit), may not be known at the time the protocol
is written. When the ask prefix unblocks, the variables x in P are bound to
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Fig. 4. Semantics of endpoint protocols.

Fig. 5. Transactions of the näıve escrow contract.

T′
1 · · ·T′

n , so making it possible to inspect their actual fields. Rule [Def] allows a
named process X(E) to evolve as P , assuming a defining equation X(x) = P .
The variables x in P are substituted with the results of the evaluation of E.
Such defining equations can be used to specify recursive behaviours. Finally,
rule [Delay] allows time to pass3.

Example 4 (Näıve escrow). A buyer A wants to buy an item from the seller
B, but they do not trust each other. So, they would like to use a contract to
ensure that B will get paid if and only if A gets her item. In a näıve attempt
to realise this, they use the transactions in Fig. 5, where we assume that (TA , 1)
used in T.in, is a transaction output redeemable by A through her key kA . The
transaction T makes A deposit 1B, which can be redeemed by a transaction
carrying the signatures of both A and B. The transactions T′

A and T′
B redeem

T, transferring the money to A or B, respectively.
The protocols of A and B are, respectively, PA and QB :

PA = put T{wit �→ sigaakA
(T)}. P ′

P ′ = τ.B ! sigaakA
(T′

B) + τ.B ? x. put T′
A{wit �→ sigaakA

(T′
A)x}

QB = ask T.
(

τ.A ? x. put T′
B{wit �→ x sigaakB

(T′
B)} + τ.A ! sigaakB

(T′
A)

)

3 To keep our presentation simple, we have not included time-constraining operators
in endpoint protocols. In case one needs a finer-grained control of time, well-known
techniques [39] exist to extend a process algebra like ours with these operators.
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First, A adds her signature to T, and puts it on the blockchain. Then, she inter-
nally chooses whether to unblock the deposit for B or to request a refund. In the
first case, A sends sigaakA

(T′
B) to B. In the second case, she waits to receive the sig-

nature sigaakB
(T′

A) from B (saving it in the variable x); afterwards, she puts T′
A on

the blockchain (after setting wit) to redeem the deposit. The seller B waits to see
T on the blockchain. Then, he chooses either to receive the signature sigaakA

(T′
B)

from A (and then redeem the payment by putting T′
B on the blockchain), or to

refund A, by sending his signature sigaakB
(T′

A).
This contract is not secure if either A or B are dishonest. On the one hand, a

dishonest A can prevent B from redeeming the deposit, even if she had already
received the item (to do that, it suffices not to send her signature, taking the
rightmost branch in P ′). On the other hand, a dishonest B can just avoid to
send the item and the signature (taking the leftmost branch in QB): in this way,
the deposit gets frozen. For instance, let S = A[PA ] | B[QB ] | (B, t), where B
contains TA unredeemed. The scenario where A has never received the item,
while B dishonestly attempts to receive the payment, is modelled as follows:

S −→ A[P ′] | B[QB ] | (B(T, t), t)

−→ A[P ′] | B[τ.A ? x. put T′
B{wit �→ x sigaakB

(T′
B)} + τ.A ! sigaakB

(T′
A)] | · · ·

−→ A[B ? x. put T′
A{wit �→ sigaakA

(T′
A) x}] | B[A ? x. put T′

B{wit �→ x sigaakB
(T′

B)}] | · · ·

At this point the computation is stuck, because both A and B are waiting a
message from the other participant. We will show in Sect. 4.3 how to design a
secure escrow contract, with the intermediation of a trusted arbiter.

4 A Survey of Smart Contracts on Bitcoin

We now present a comprehensive survey of smart contracts on Bitcoin, com-
prising those published in the academic literature, and those found online. To
this aim we exploit the model of computation introduced in Sect. 3. Remarkably,
all the following contracts can be implemented by only using so-called standard
transactions4, e.g. via the compilation technique in [11]. This is crucial, because
non-standard transactions are currently discarded by the Bitcoin network.

4.1 Oracle

In many concrete scenarios one would like to make the execution of a contract
depend on some real-world events, e.g. results of football matches for a betting
contract, or feeds of flight delays for an insurance contract. However, the evalua-
tion of Bitcoin scripts can not depend on the environment, so in these scenarios
one has to resort to a trusted third-party, or oracle [2,19], who notifies real-world
events by providing signatures on certain transactions.

For example, assume that A wants to transfer vB to B only if a certain
event, notified by an oracle O, happens. To do that, A puts on the blockchain
4 https://bitcoin.org/en/developer-guide#standard-transactions.

https://bitcoin.org/en/developer-guide#standard-transactions
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Fig. 6. Transactions of a contract relying on an oracle.

the transaction T in Fig. 6, which can be redeemed by a transactions carrying
the signatures of both B and O. Further, A instructs the oracle to provide his
signature to B upon the occurrence of the expected event.

We model the behaviour of B as the following protocol:

PB = O ? x. put T′
B{wit �→ sigaakB

(T′
B)x}

Here, B waits to receive the signature sigaakO
(T′

B) from O, then he puts T′
B on the

blockchain (after setting its wit) to redeem T. In practice, oracles like the one
needed in this contract are available as services in the Bitcoin ecosystem5.

Notice that, in case the event certified by the oracle never happens, the vB
within T are frozen forever. To avoid this situation, one can add a time constraint
to the output script of T, e.g. as in the transaction Tbond in Fig. 10.

4.2 Crowdfunding

Assume that the curator C of a crowdfunding campaign wants to fund a venture
V by collecting vB from a set {Ai}i∈I of investors. The investors want to be
guaranteed that either the required amount vB is reached, or they will be able
to redeem their funds. To this purpose, C can employ the following contract. She
starts with a canonical transaction ˜Tv

V (with empty in field) which has a single
output of vB to be redeemed by V. Intuitively, each Ai can invest money in the
campaign by “filling in” the in field of the ˜Tv

V with a transaction output under
their control. To do this, Ai sends to C a transaction output (Ti, ji), together
with the signature σi required to redeem it. We denote with val(Ti, ji) the value
of such output. Notice that, since the signature σi has been made on ˜Tv

V , the
only valid output is the one of vB to be redeemed by V. Upon the reception
of the message from Ai, C updates ˜Tv

V : the provided output is appended to
the in field, and the signature is added to the corresponding wit field. If all the
outputs (Ti, ji) are distinct (and not redeemed) and the signatures are valid,
when

∑

i val(Ti, ji) ≥ v the filled transaction ˜Tv
V can be put on the blockchain.

If C collects v′ > vB, the difference v′ − v goes to the miners as transaction fee.
The endpoint protocol of the curator is defined as X(˜Tv

V , 1, 0), where:

X(x, n, d) = if d < v then P else put x

P =
∑

i Ai ? (y, j, σ).X(x{in(n) �→ (y, j)}{wit(n) �→ σ}, n + 1, d + val(y, j))

5 For instance, https://www.oraclize.it and https://www.smartcontract.com/.

https://www.oraclize.it
https://www.smartcontract.com/
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Fig. 7. Transactions of the escrow contract.

while the protocol of each investor Ai is the following:

PAi
= C ! (Ti, ji, sig

sa,1
kAi

(˜Tv
V{in(1) �→ (Ti, ji)}))

Note that the transactions sent by investors are not known a priori, so they
cannot just create the final transaction and sign it. Instead, to allow C to com-
plete the transaction ˜Tv

V without invalidating the signatures, they compute them
using the modifier sa1. In this way, only a single input is signed, and when veri-
fying the corresponding signature, the others are neglected.

4.3 Escrow

In Example 4 we have discussed a näıve escrow contract, which is secure only if
both the buyer A and the seller B are honest (so making the contract pointless).
Rather, one would like to guarantee that, even if either A or B (or both) are
dishonest, exactly one them will be able to redeem the money: in case they
disagree, a trusted participant C, who plays the role of arbiter, will decide who
gets the money (possibly splitting the initial deposit in two parts) [1,19].

The output script of the transaction T in Fig. 7 is a 2-of-3 multi-signature
schema. This means that T can be redeemed either with the signatures A and B
(in case they agree), or with the signature of C (with key kC) and the signature of
A or that of B (in case they disagree). The transaction T′

AB(z) in Fig. 7 allows the
arbiter to issue a partial refund of zB to A, and of (1−z)B to B. Instead, to issue
a full refund to either A or B, the arbiter signs, respectively, the transactions
T′
A = ˜T1B

A {in(1) �→ (T, 1)} or T′
B = ˜T1B

B {in(1) �→ (T, 1)} (not shown in the
figure). The protocols of A and B are similar to those in Example 4, except for
the part where they ask C for an arbitration:

PA = put T{wit �→ sigaakA
(T)}. (τ.B ! sigaakA

(T′
B) + τ.P ′)

P ′ =
(

B ? x. (put T′
A{wit �→ sigaakA

(T′
A)x} + P ′′)

)

+ P ′′

P ′′ = C ? (z, x).
(

check z = 1 . put T′
A{wit �→ sigaakA

(T′
A)x}

+ check 0 < z < 1 .
(

put T′
AB(z){wit �→ sigaakA

(T′
AB(z))x} + τ.0

)

+ check z = 0 .0
)

In the summation within PA , participant A internally chooses whether to
send her signature to B (so allowing B to redeem 1B via T′

B), or to proceed with
P ′. There, A waits to receive either B’s signature (which allows A to redeem 1B
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Fig. 8. Transactions of the intermediated payment contract.

by putting T′
A on the blockchain), or a response from the arbiter, in the process

P ′′. The three cases in the summation of check in P ′′ correspond, respectively,
to the case where A gets a full refund (z = 1), a partial refund (0 < z < 1), or
no refund at all (z = 0).

The protocol for B is dual to that of A:

QB = ask T. (τ.A ! sigaakB
(T′

A) + τ.Q′)

Q′ =
(

A ? x. (put T′
B{wit �→ x sigaakB

(T′
B)} + Q′′)

)

+ Q′′

Q′′ = C ? (z, x).
(

check z = 0 . put T′
B{wit �→ sigaakB

(T′
B)x}

+ check 0 < z < 1 .
(

put T′
AB(z){wit �→ sigaakB

(T′
AB(z))x} + τ.0

)

+ check z = 1 .0
)

If an arbitration is requested, C internally decides (through the τ actions)
who between A and B can redeem the deposit in T, by sending its signature to
one of the two participants, or decide for a partial refund of z and 1−z bitcoins,
respectively, to A and B, by sending its signature on T′

AB to both participants:

RC = ask T.
(

τ.A ! (1, sigaakC
(T′

A)) + τ.B ! (1, sigaakC
(T′

B)) + τ.RAB

)

RAB =
∑

0<z<1 τ.
(

A ! (z, sigaakC
(T′

AB(z))) | B ! (z, sigaakC
(T′

AB(z)))
)

Note that, in the unlikely case where both A and B choose to send their
signature to the other participant, the 1B deposit becomes “frozen”. In a more
concrete version of this contract, a participant could keep listening for the sig-
nature, and attempt to redeem the deposit when (unexpectedly) receiving it.

4.4 Intermediated Payment

Assume that A wants to send an indirect payment of vCB to C, routing it through
an intermediary B who retains a fee of vB < vC bitcoins. Since A does not trust
B, she wants to use a contract to guarantee that: (i) if B is honest, then vCB
are transferred to C; (ii) if B is not honest, then A does not lose money. The
contract uses the transactions in Fig. 8: TAB transfers (vB + vC)B from A to B,
and TBC splits the amount to B (vBB) and to C (vCB). We assume that (TA , 1)
is a transaction output redeemable by A. The behaviour of A is as follows:

PA = (B ? x. if versigkB (x,TBC) then P ′ else 0) + τ

P ′ = put TAB{wit �→ sigaakA
(TAB)}. put TBC{wit �→ sigaakA

(TBC)x}
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Fig. 9. Transactions of the timed commitment.

Here, A receives from B his signature on TBC , which makes it possible to
pay C later on. The τ branch and the else branch ensure that A will correctly
terminate also if B is dishonest (i.e., B does not send anything, or he sends an
invalid signature). If A receives a valid signature, she puts TAB on the blockchain,
adding her signature to the wit field. Then, she also appends TBC , adding to
the wit field her signature and B’s one. Since A takes care of publishing both
transactions, the behaviour of B consists just in sending his signature on TBC .
Therefore, B’s protocol can just be modelled as QB = A ! sigaakB

(TBC).
This contract relies on SegWit. In Bitcoin without SegWit, the identifier of

TAB is affected by the instantiation of the wit field. So, when TAB is put on the
blockchain, the input in TBC (which was computed before) does not point to it.

4.5 Timed Commitment

Assume that A wants to choose a secret s, and reveal it after some time—while
guaranteeing that the revealed value corresponds to the chosen secret (or paying
a penalty otherwise). This can be obtained through a timed commitment [20],
a protocol with applications e.g. in gambling games [25,28,42], where the secret
contains the player move, and the delay in the revelation of the secret is intended
to prevent other players from altering the outcome of the game. Here we formalise
the version of the timed commitment protocol presented in [8].

Intuitively, A starts by exposing the hash of the secret, i.e. h = H(s), and at
the same time depositing some amount vB in a transaction. The participant B
has the guarantee that after t time units, he will either know the secret s, or he
will be able to redeem vB.

The transactions of the protocol are shown in Fig. 9, where we assume that
(TA , 1) is a transaction output redeemable by A. The behaviour of A is modelled
as the following protocol:

PA = put Tcom{wit �→ sigaakA
(Tcom)}.B ! sigaakA

(Tpay). P ′

P ′ = τ . put Topen{wit �→ s sigaakA
(Topen) ⊥} + τ

Participant A starts by putting the transaction Tcom on the blockchain. Note
that within this transaction A is committing the hash of the chosen secret:
indeed, h is encoded within the output script Tcom .out. Then, A sends to B her
signature on Tpay . Note that this transaction can be redeemed by B only when t
time units have passed since Tcom has been published on the blockchain, because
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Fig. 10. Transactions of the micropayment channel contract.

of the relative timelock declared in Tpay .relLock. After sending her signature
on Tpay , A internally chooses whether to reveal the secret, or do nothing (via the
τ actions). In the first case, A must put the transaction Topen on the blockchain.
Since it redeems Tcom , she needs to write in Topen .wit both the secret s and her
signature, so making the former public.

A possible behaviour of the receiver B is the following:

QB =
(

A ? x. if versigkA (x,Tpay) then Q else 0
)

+ τ

Q = put Tpay{wit �→ ⊥ x sigaakB
(Tpay)} + ask Topen as o.Q′(getsecret(o))

In this protocol, B first receives from A (and saves in x) her signature on
the transaction Tpay . Then, B checks if the signature is valid: if not, he aborts
the protocol. Even if the signature is valid, B cannot put Tpay on the blockchain
and redeem the deposit immediately, since the transaction has a timelock t.
Note that B cannot change the timelock: indeed, doing so would invalidate A’s
signature on Tpay . If, after t time units, A has not published Topen yet, B can
proceed to put Tpay on the blockchain, writing A’s and his own signatures in the
witness. Otherwise, B retrieves Topen from the blockchain, from which he can
obtain the secret, and use it in Q′.

A variant of this contract, which implements the timeout in Tcom .out, and
does not require the signature exchange, is used in Sect. 4.7.

4.6 Micropayment Channels

Assume that A wants to make a series of micropayments to B, e.g. a small fraction
of B every few minutes. Doing so with one transaction per payment would result
in conspicuous fees6, so A and B use a micropayment channel contract [29]. A
starts by depositing kB; then, she signs a transaction that pays vB to B and
(k − v)B back to herself, and she sends that transaction to B. Participant B
can choose to publish that transaction immediately and redeem its payment, or
to wait in case A sends another transaction with increased value. A can stop
sending signatures at any time. If B redeems, then A can get back the remaining
amount. If B does not cooperate, A can redeem all the amount after a timeout.

The protocol of A is the following (the transactions are in Fig. 10). A publishes
the transaction Tbond , depositing kB that can be spent with her signature and
that of B, or with her signature alone, after time t. A can redeem the deposit by
6 https://bitinfocharts.com/comparison/bitcoin-transactionfees.html.

https://bitinfocharts.com/comparison/bitcoin-transactionfees.html
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publishing the transaction Tref . To pay for the service, A sends to B the amount
v she is paying, and her signature on Tpay(v). Then, she can decide to increase
v and recur, or to terminate.

PA = put Tbond{wit �→ sigaakA
(Tbond)}. (P (1) | put Tref {wit �→ sigaakA

(Tref )})

P (v) = B ! (v, sigaakA
(Tpay(v))). (τ + τ.P (v + 1))

The participant B waits for Tbond to appear on the blockchain, then receives
the first value v and A’s signature σ. Then, B checks if σ is valid, otherwise he
aborts the protocol. At this point, B waits for another pair (v′, σ′), or, after a
timeout, he redeems vB using Tpay(v).

QB = ask Tbond .A ? (v, σ). if versigkA (σ,Tpay(v)) then P ′(v, σ) else τ

P ′(v, σ) = τ.P pay(v, σ) +
A ? (v′, σ′). if v′ > v and versigkA (σ′,Tpay(v′)) then P ′(v′, σ′) else P ′(v, σ)

P pay(v, σ) = put Tpay(v){wit �→ σ sigaakB
(Tpay(v))}

Note that QB should redeem Tpay before the timeout expires, which is not
modelled in QB . This could be obtained by enriching the calculus with time-
constraining operators (see Footnote 3).

4.7 Fair Lotteries

A multiparty lottery is a protocol where N players put their bets in a pot, and a
winner—uniformly chosen among the players—redeems the whole pot. Various
contracts for multiparty lotteries on Bitcoin have been proposed in [8,9,12,14,
16,36]. These contracts enjoy a fairness property, which roughly guarantees that:
(i) each honest player will have (on average) a non-negative payoff, even in the
presence of adversaries; (ii) when all the players are honest, the protocol behaves
as an ideal lottery: one player wins the whole pot (with probability 1/N), while
all the others lose their bets (with probability N−1/N).

Here we illustrate the lottery in [8], for N = 2. Consider two players A and
B who want to bet 1B each. Their protocol is composed of two phases. The first
phase is a timed commitment (as in Sect. 4.5): each player chooses a secret (sA
and sB) and commits its hash (hA = H(sA) and hB = H(sB)). In doing that,
both players put a deposit of 2B on the ledger, which is used to compensate the
other player in case one chooses not to reveal the secret later on. In the second
phase, the two bets are put on the ledger. After that, the players reveal their
secrets, and redeem their deposits. Then, the secrets are used to compute the
winner of the lottery in a fair manner. Finally, the winner redeems the bets.

The transactions needed for this lottery are displayed in Fig. 11 (we only show
A’s transactions, as those of B are similar). The transactions for the commitment
phase (Tcom ,Topen ,Tpay) are similar to those in Sect. 4.5: they only differ in the
script of Tcom .out, which now also checks that the length of the secret is either
128 or 129. This check forces the players to choose their secret so that it has one
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Fig. 11. Transactions of the fair lottery with deposit.

of these lengths, and reveal it (using Topen) before the absLock deadline, since
otherwise they will lose their deposits (enabling Tpay).

The bets are put using Tlottery , whose output script computes the winner
using the secrets, which can then be revealed. For this, the secret lengths are
compared: if equal, A wins, otherwise B wins. In this way, the lottery is equiv-
alent to a coin toss. Note that, if a malicious player chooses a secret having
another length than 128 or 129, the Tlottery transaction will become stuck, but
its opponent will be compensated using the deposit.

The endpoint protocol PA of player A follows (the one for B is similar):

PA = put TAcom{wit �→ sigaakA
(TAcom)}.

(

ask TBcom as y. P ′ + τ.P open

)

P ′ = let hB = gethash(y) in if hB 	= hA then P pay | P ′′ else P pay | P open

P ′′ = B ? x. P ′′′ + τ.P open

P ′′′ = let σ = sigaa,1
kA

(Tlottery(hA , hB)) in
(

put Tlottery(hA , hB){wit(1) �→ σ}{wit(2) �→ x}. (P open | Pwin)
)

+ τ.P open

P pay = put TBpay{wit �→ ⊥ sigaakA
(TBpay)}

P open = put TAopen{wit �→ sA sigaakA
(TAopen)}

Pwin = ask TBopen as z. P ′
win

P ′
win = put TAwin(hA , hB){wit �→ sigaakA

(TAwin(hA , hB)) sA getsecret(z)}

Player A starts by putting TAcom on the blockchain, then she waits for B
doing the same. If B does not cooperate, A can safely abort the protocol taking
its τ.P open branch, so redeeming her deposit with TAopen (as usual, here with τ
we are modelling a timeout). If B commits his secret, A executes P ′, extracting
the hash hB of B’s secret, and checking whether it is distinct from hA . If the
hashes are found to be equal, A aborts the protocol using P open. Otherwise, A
runs P ′′ | P pay. The P pay component attempts to redeem B’s deposit, as soon
as the absLock deadline of TBpay expires, forcing B to timely reveal his secret.
Instead, P ′′ proceeds with the lottery, asking B for his signature of Tlottery . If B
does not sign, A aborts using P open. Then, A runs P ′′′, finally putting the bets
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Fig. 12. Transactions of the contingent payment.

(Tlottery) on the ledger. If this is not possible (e.g., because one of the Tbet is
already spent), A aborts using P open. After Tlottery is on the ledger, A reveals
her secret and redeems her deposit with P open. In parallel, with Pwin she waits
for the secret of B to be revealed, and then attempts to redeem the pot (TAwin).

The fairness of this lottery has been established in [8]. This protocol can be
generalised to N > 2 players [8,9] but in this case the deposit grows quadratically
with N . The works [14,36] have proposed fair multiparty lotteries that require,
respectively, zero and constant (≥ 0) deposit. More precisely, [36] devises two
variants of the protocol: the first one only relies on SegWit, but requires each
player to statically sign O(2N ) transactions; the second variant reduces the num-
ber of signatures to O(N2), at the cost of introducing a custom opcode. Also the
protocol in [14] assumes an extension of Bitcoin, i.e. the malleability of in fields,
to obtain an ideal fair lottery with O(N) signatures per player (see Sect. 5).

4.8 Contingent Payments

Assume a participant A who wants to pay vB to receive a value s which makes
a public predicate p true, where p(s) can be verified efficiently. A seller B who
knows such s is willing to reveal it to A, but only under the guarantee that he
will be paid vB. Similarly, the buyer wants to pay only if guaranteed to obtain s.

A näıve attempt to implement this contract in Bitcoin is the following: A
creates a transaction T such that T.out(ς, x) evaluates to true if and only if p(x)
holds and ς is a signature of B. Hence, B can redeem vB from T by revealing s.
In practice, though, this approach is arguably useful, since it requires coding p
in the Bitcoin scripting language, whose expressiveness is quite limited.

More general contingent payment contracts can be obtained by exploiting
zero-knowledge proofs [13,24,35]. In this setting, the seller generates a fresh key
k, and sends to the buyer the encryption es = Ek(s), together with the hash
hk = H(k), and a zero-knowledge proof guaranteeing that such messages have
the intended form. After verifying this proof, A is sure that B knows a preimage
k′ of hk (by collision resistance, k′ = k) such that Dk′(es) satisfies the predicate
p, and so she can buy the preimage k of hk with the näıve protocol, so obtaining
the solution s by decrypting es with k.
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The transactions implementing this contract are displayed in Fig. 12. The
relAfter clause in Tcp allows A to redeem vB if no solution is provided by the
deadline t. The behaviour of the buyer A can be modelled as follows:

PA = B ? (es, hk, z). P + τ

P = if verify(es, hk, z) then put Tcp(hk){wit �→ sigaakA
(Tcp(hk))}. P ′ else 0

P ′ = ask Topen(hk) as x. P ′′(Dgetk(x)(es)) +

put Trefund(hk){wit �→ ⊥ sigaakA
(Trefund(hk))})

Upon receiving es, hk and the proof z7 the buyer verifies z. If the verification
succeeds, A puts Tcp(hk) on the blockchain. Then, she waits for Topen , from
which she can retrieve the key k, and so use the solution Dgetk(x)(es) in P ′′. In
this way, B can redeem vB. If B does not put Topen , after t time units A can get
her deposit back through Trefund . The protocol of B is simple, so it is omitted.

5 Research Challenges and Perspectives

Extensions to Bitcoin. The formal model of smart contracts we have proposed
is based on the current mechanisms of Bitcoin; indeed, this makes it possible to
translate endpoint protocols into actual implementations interacting with the
Bitcoin blockchain. However, constraining smart contracts to perfectly adhere
to Bitcoin greatly reduces their expressiveness. Indeed, the Bitcoin scripting
language features a very limited set of operations8, and over the years many
useful (and apparently harmless) opcodes have been disabled without a clear
understanding of their alleged insecurity9. This is the case e.g., of bitwise logic
operators, shift operators, integer multiplication, division and modulus.

For this reason some developers proposed to re-enable some disabled
opcodes10, and some works in the literature proposed extensions to the Bitcoin
scripting language so to enhance the expressiveness of smart contracts.

A possible extension is covenants [37], a mechanism that allows an output
script to constrain the structure of the redeeming transaction. This is obtained
through a new opcode, called CHECKOUTPUTVERIFY, which checks if a given out of
the redeeming transaction matches a specific pattern. Covenants are also studied
in [41], where they are implemented using the opcode CAT (currently disabled)
and a new opcode CHECKSIGFROMSTACK which verifies a signature against an
arbitrary bitstring on the stack. In both works, covenants can also be recursive,
e.g. a covenant can check if the redeeming transaction contains itself. Using
recursive covenants allows to implement a state machine through a sequence of
transactions that store its state.
7 For simplicity, here we model the zero-knowledge proof as a single message. More

concretely, it should be modelled as a sub-protocol.
8 https://en.bitcoin.it/wiki/Script.
9 https://en.bitcoin.it/wiki/Common Vulnerabilities and Exposures#CVE-2010-

5141.
10 https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2017-May/014356.html.

https://en.bitcoin.it/wiki/Script
https://en.bitcoin.it/wiki/Common_Vulnerabilities_and_Exposures#CVE-2010-5141
https://en.bitcoin.it/wiki/Common_Vulnerabilities_and_Exposures#CVE-2010-5141
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2017-May/014356.html
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Secure cash distribution with penalties [8,16,32] is a cryptographic primitive
which allows a set of participants to make a deposit, and then provide inputs to
a function whose evaluation determines how the deposits are distributed among
the participants. This primitive guarantees that dishonest participants (who,
e.g., abort the protocol after learning the value of the function) will pay a penalty
to the honest participants. This primitive does not seem to be directly imple-
mentable in Bitcoin, but it becomes so by extending the scripting language with
the opcode CHECKSIGFROMSTACK discussed above. Secure cash distribution with
penalties can be instantiated to a variety of smart contracts, e.g. lotteries [8]
poker [32], and contingent payments. The latter smart contract can also be
obtained through the opcode CHECKKEYPAIRVERIFY in [24], which checks if the
two top elements of the stack are a valid key pair.

Another new opcode, called MULTIINPUT [36] consumes from the stack a
signature σ and a sequence of in values (T1, j1) · · · (Tn, jn), with the following
two effects: (i) it verifies the signature σ against the redeeming transaction T,
neglecting T.in; (ii) it requires T.in to be equal to some of the Ti. Exploiting this
opcode, [36] devise a fair N -party lottery which requires zero deposit, and O(N2)
off-chain signed transaction. The first one of these effects can be alternatively
obtained by extending, instead of the scripting language, the signature modifiers.
More specifically, [14] introduces a new signature modifier, which can set to ⊥
all the inputs of a transaction (i.e., no input is signed). In this way they obtain
a fair multi-party lottery with similar properties to the one in [36].

Another way improve the expressiveness of smart contracts is to replace the
Bitcoin scripting language, e.g. with the one in [40]. This would also allow to
establish bounds on the computational resources needed to run scripts.

Unfortunately, none of the proposed extensions has been yet included in the
main branch of the Bitcoin Core client, and nothing suggests that they will be
considered in the near future. Indeed, the development of Bitcoin is extremely
conservative, as any change to its protocol requires an overwhelming consensus
of the miners. So far, new opcodes can only be empirically assessed through the
Elements alpha project11, a testnet for experimenting new Bitcoin features. A
significant research challenge would be that of formally proving that new opcodes
do not introduce vulnerabilities, exploitable e.g. by Denial-of-Service attacks. For
instance, unconstrained uses of the opcode CAT may cause an exponential space
blow-up in the verification of transactions.

Formal Methods for Bitcoin Smart Contracts. As witnessed in Sect. 4,
designing secure smart contracts on Bitcoin is an error-prone task, simi-
larly to designing secure cryptographic protocols. The reason lies in the fact
that, to devise a secure contract, a designer has to anticipate any possible
(mis-)behaviour of the other participants. The side effect is that endpoint pro-
tocols may be quite convoluted, as they must include compensations at all the
points where something can go wrong. Therefore, tools to automate the analysis
and verification of smart contracts may be of great help.

11 https://elementsproject.org/elements/opcodes/.

https://elementsproject.org/elements/opcodes/
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Recent works [7] propose to verify Bitcoin smart contracts by modelling the
behaviour of participants as timed automata, and then using UPPAAL [15] to
check properties against an attacker. This approach correctly captures the time
constraints within the contracts. The downside is that encoding this UPPAAL
model into an actual implementation with Bitcoin transactions is a complex task.
Indeed, a designer without a deep knowledge of Bitcoin technicalities is likely
to produce an UPPAAL model that can not be encoded in Bitcoin. A relevant
research challenge is to study specification languages for Bitcoin contracts (like
e.g. the one in Sect. 3), and techniques to automatically encode them in a model
that can be verified by a model checker.

Remarkably, the verification of security properties of smart contracts requires
to deal with non-trivial aspects, like temporal constraints and probabilities. This
is the case, e.g., for the verification of fairness of lotteries (like e.g. the one
discussed in Sect. 4.7); a further problem is that fairness must hold against any
adversarial strategy. It is not clear whether in this case it is sufficient to consider
a “most powerful” adversary, like e.g. in the symbolic Dolev-Yao model. In case
a contract is not secure against arbitrary (PTIME) adversaries, one would like
to verify that, at least, it is secure against rational ones [27], which is a relevant
research issue. Additional issues arise when considering more concrete models
of the Bitcoin blockchain, respect to the one in Sect. 2. This would require to
model forks, i.e. the possibility that a recent transaction is removed from the
blockchain. This could happen with rational (but dishonest) miners [33].

DSLs for Smart Contracts. As witnessed in Sect. 4, modelling Bitcoin smart
contracts is complex and error-prone. A possible way to address this complex-
ity is to devise high-level domain-specific languages (DSLs) for contracts, to be
compiled in low-level protocols (e.g., the ones in Sect. 3). Indeed, the recent pro-
liferation of non-Turing complete DSLs for smart contracts [18,22,26] suggests
that this is an emerging research direction.

A first proposal of an high-level language implemented on top of Bitcoin is
Typecoin [23]. This language allows to model the updates of a state machine as
affine logic propositions. Users can “run” this machine by putting transactions
on the Bitcoin blockchain. The security of the blockchain guarantees that only
the legit updates of the machine can be triggered by users. A downside of this
approach is that liveness is guaranteed only by assuming cooperation among the
participants, i.e., a dishonest participant can make the others unable to complete
an execution. Note instead that the smart contracts in Sect. 4 allow honest par-
ticipants to terminate, regardless of the behaviours of the environment. In some
cases, e.g. in the lottery in Sect. 4.7, abandoning the contract may even result in
penalties (i.e., loss of the deposit paid upfront to stipulate the contract).
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Abstract. Smart contracts are programs running on cryptocurrency
(e.g., Ethereum) blockchains, whose popularity stem from the possibility
to perform financial transactions, such as payments and auctions, in a
distributed environment without need for any trusted third party. Given
their financial nature, bugs or vulnerabilities in these programs may
lead to catastrophic consequences, as witnessed by recent attacks. Unfor-
tunately, programming smart contracts is a delicate task that requires
strong expertise: Ethereum smart contracts are written in Solidity, a ded-
icated language resembling JavaScript, and shipped over the blockchain
in the EVM bytecode format. In order to rigorously verify the security of
smart contracts, it is of paramount importance to formalize their seman-
tics as well as the security properties of interest, in particular at the level
of the bytecode being executed.

In this paper, we present the first complete small-step semantics of
EVM bytecode, which we formalize in the F* proof assistant, obtain-
ing executable code that we successfully validate against the official
Ethereum test suite. Furthermore, we formally define for the first time
a number of central security properties for smart contracts, such as call
integrity, atomicity, and independence from miner controlled parameters.
This formalization relies on a combination of hyper- and safety proper-
ties. Along this work, we identified various mistakes and imprecisions in
existing semantics and verification tools for Ethereum smart contracts,
thereby demonstrating once more the importance of rigorous semantic
foundations for the design of security verification techniques.

1 Introduction

One of the determining factors for the growing interest in blockchain technolo-
gies is the groundbreaking promise of secure distributed computations even in
absence of trusted third parties. Building on a distributed ledger that keeps
track of previous transactions and the state of each account, whose functionality
and security is ensured by a delicate combination of incentives and cryptogra-
phy, software developers can implement sophisticated distributed, transactions-
based computations by leveraging the scripting language offered by the underly-
ing cryptocurrency. While many of these cryptocurrencies have an intentionally
limited scripting language (e.g., Bitcoin [1]), Ethereum was designed from the
c© The Author(s) 2018
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ground up with a quasi Turing-complete language1. Ethereum programs, called
smart contracts, have thus found a variety of appealing use cases, such as finan-
cial contracts [2], auctions [3], elections [4], data management systems [5], trading
platforms [6,7], permission management [8] and verifiable cloud computing [9],
just to mention a few. Given their financial nature, bugs and vulnerabilities in
smart contracts may lead to catastrophic consequences. For instance, the infa-
mous DAO vulnerability [10] recently led to a 60M$ financial loss and similar vul-
nerabilities occur on a regular basis [11,12]. Furthermore, many smart contracts
in the wild are intentionally fraudulent, as highlighted in a recent survey [13].

A rigorous security analysis of smart contracts is thus crucial for the trust of
the society in blockchain technologies and their widespread deployment. Unfortu-
nately, this task is a quite challenging for various reasons. First, Ethereum smart
contracts are developed in an ad-hoc language, called Solidity, which resembles
JavaScript but features specific transaction-oriented mechanisms and a number
of non-standard semantic behaviours, as further described in this paper. Second,
smart contracts are uploaded on the blockchain in the form of Ethereum Vir-
tual Machine (EVM) bytecode, a stack-based low-level code featuring dynamic
code creation and invocation and, in general, very little static information, which
makes it extremely difficult to analyze.

Related Work. Recognizing the importance of solid semantic foundations for
smart contracts, the Ethereum foundation published a yellow paper [14] to
describe the intended behaviour of smart contracts. This semantics, however,
exhibits several under-specifications and does not follow any standard approach
for the specification of program semantics, thereby hindering program verifica-
tion. In order to provide a more precise characterization, Hirai formalizes the
EVM semantics in the proof assistant Isabelle/HOL and uses it for manually
proving safety properties for concrete programs [15]. This semantics, however,
constitutes just a sound over-approximation of the original semantics [14]. More
specifically, once a contract performs a call that is not a self-call, it is assumed
that arbitrary code gets executed and consequently arbitrary changes to the
account’s state and to the global state can be performed. Consequently, this
semantics can not serve as a general-purpose basis for static analysis techniques
that might not rely on the same over-approximation.

In a concurrent, unpublished work, Hildebrandt et al. [16] define the EVM
semantics in the K framework [17] – a language independent verification frame-
work based on reachability logics. The authors leverage the power of the K frame-
work in order to automatically derive analysis tools for the specified semantics,
presenting as an example a gas analysis tool, a semantic debugger, and a pro-
gram verifier based on reachability logics. The underlying semantics relies on
non-standard local rewriting rules on the system configuration. Since parts of
the execution are treated in separation such as the exception behavior and the
gas calculations, one small-step consists of several rewriting steps, which makes

1 While the language itself is Turing complete, computations are associated with a
bounded computational budget (called gas), which gets consumed by each instruction
thereby enforcing termination.
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this semantics harder to use as a basis for new static analysis techniques. This is
relevant whenever the static analysis tools derivable by the K framework are not
sufficient for the desired purposes: for instance, their analysis requires the user
to manually specify loop invariants, which is hardly doable for EVM bytecode
and clearly does not scale to large programs. Furthermore, all these works con-
centrate on the semantics of EVM bytecode but do not study security properties
for smart contracts.

Sergey and Hobor [18] compare smart contracts on the blockchain with con-
current objects using shared memory and use this analogy to explain typical
problems that arise when programming smart contracts in terms of concepts
known from concurrency theory. They encourage the application of state-of-the
art verification techniques for concurrent programs to smart contracts, but do
not describe any specific analysis method applied to smart contracts themselves.
Mavridou and Laszka [19] define a high-level semantics for smart contracts that
is based on finite state machines and aims at simplifying the development of
smart contracts. They provide a translation of their state machine specification
language to Solidity, a higher-order language for writing Ethereum smart con-
tracts, and present design patterns that should help users to improve the security
of their contracts. The translation to Solidity is not backed up by a correctness
proof and the design patterns are not claimed to provide any security guarantees.

Bhargavan et al. [20] introduce a framework to analyze Ethereum contracts
by translation into F*, a functional programming language aimed at program
verification and equipped with an interactive proof assistant. The translation
supports only a fragment of the EVM bytecode and does not come with a jus-
tifying semantic argument.

Luu et al. have recently presented Oyente [21], a state-of-the-art static anal-
ysis tool for EVM bytecode that relies on symbolic execution. Oyente comes
with a semantics of a simplified fragment of the EVM bytecode and, in partic-
ular, misses several important commands related to contract calls and contract
creation. Furthermore, it is affected by a major bug related to calls as well as
several other minor ones which we discovered while formalizing our semantics,
which is inspired by theirs. Oyente supports a variety of security properties,
such as transaction order dependency, timestamp dependency, and reentrancy,
but the security definitions are rather syntactic and described informally. As we
show in this paper, the lack of solid semantic foundations causes several sources
of unsoundness in Oyente.

Our Contributions. This work lays the semantic foundations for Ethereum
smart contracts. Specifically, we introduce

– The first complete small-step semantics for EVM bytecode;
– A formalization in F* of a large fragment of our semantics, which can serve

as a foundation for verification techniques based on encoding into this lan-
guage [20] as well as machine-checked proofs for other analysis techniques
(e.g., [21]). By compiling F* in OCaml, we could successfully validate our
semantics against the official Ethereum test suite;
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– The first formal definitions of crucial security properties for smart con-
tracts, such as call integrity, for which we devise a dedicated proof technique,
atomicity, and independence from miner controlled parameters. Interestingly
enough, the formalization of these properties requires hyper-properties, while
existing static analysis techniques for smart contracts rely on reachability
properties and syntactic conditions;

– A collection of examples showing how the syntactic conditions employed
in current analysis techniques are imprecise and, in several cases, unsound,
thereby further motivating the need for solid semantic foundations and rig-
orous security definitions for smart contracts.

The complete semantics as well as the formalization in F* are publicly avail-
able [22].

Outline. The remainder of this paper is organized as follows. Section 2 briefly
overviews the Ethereum architecture, Sect. 3 introduces the Ethereum seman-
tics and our formalization in F*, Sect. 4 formally defines various security proper-
ties for Ethereum smart contracts, and Sect. 5 concludes highlighting interesting
research directions.

2 Background on Ethereum

Ethereum. Ethereum is a cryptographic currency system built on top of a
blockchain. Similar to Bitcoin, network participants publish transactions to the
network that are then grouped into blocks by distinct nodes (the so called min-
ers) and appended to the blockchain using a proof of work (PoW) consensus
mechanism. The state of the system – that we will also refer to as global state –
consists of the state of the different accounts populating it. An account can either
be an external account (belonging to a user of the system) that carries infor-
mation on its current balance or it can be a contract account that additionally
obtains persistent storage and the contract’s code. The account’s balances are
given in the subunit wei of the virtual currency Ether.2

Transactions can alter the state of the system by either creating new contract
accounts or by calling an existing account. Calls to external accounts can only
transfer Ether to this account, but calls to contract accounts additionally execute
the code associated to the contract. The contract execution might alter the
storage of the account or might again perform transactions – in this case we talk
about internal transactions.

The execution model underlying the execution of contract code is described
by a virtual state machine, the Ethereum Virtual Machine (EVM). This is quasi
Turing complete as the otherwise Turing complete execution is restricted by
the upfront defined resource gas that effectively limits the number of execu-
tion steps. The originator of the transaction can specify the maximal gas that
should be spent for the contract execution and also determines the gas prize

2 One Ether is equivalent to 1018 wei.
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(the amount of wei to pay for a unit of gas). Upfront, the originator pays for the
gas limit according to the gas prize and in case of successful contract execution
that did not spend the whole amount of gas dedicated to it, the originator gets
reimbursed with gas that is left. The remaining wei paid for the used gas are
given as a fee to a beneficiary address specified by the miner.

EVM Bytecode. The code of contracts is written in EVM bytecode – an Assem-
bler like bytecode language. As the core of the EVM is a stack-based machine,
the set of instructions in EVM bytecode consists mainly of standard instructions
for stack operations, arithmetics, jumps and local memory access. The classical
set of instructions is enriched with an opcode for the SHA3 hash and several
opcodes for accessing the environment that the contract was called in. In addi-
tion, there are opcodes for accessing and modifying the storage of the account
currently running the code and distinct opcodes for performing internal call and
create transactions. Another instruction particular to the blockchain setting is
the SELFDESTRUCT code that deletes the currently executed contract - but
only after the successful execution of the external transaction.

Gas and Exceptions. The execution of each instruction consumes a positive
amount of gas. There is a gas limit set by the sender of the transaction. Exceed-
ing the gas limit results in an exception that reverts the effects of the current
transaction on the global state. In the case of nested transactions, the occur-
rence of an exception only reverts its own effects, but not those of the calling
transaction. Instead, the failure of an internal transaction is only indicated by
writing zero to the caller’s stack.

Solidity. In practice, most Ethereum smart contracts are not written in EVM
bytecode directly, but in the high-level language Solidity which is developed
by the Ethereum Foundation [23]. For understanding the typical problems that
arise when writing smart contracts, it is important to consider the design of this
high-level language.

Solidity is a so called “contract-oriented” programming language that uses
the concept of class from object-oriented languages for the representation of con-
tracts. Similar to classes in object-oriented programming, contracts specify fields
and methods for contract instances. Fields can be seen as persistent storage of
a contract (instance) and contract methods can by default be invoked by any
internal or external transaction. For interacting with another contract one either
needs to create a new instance of this contract (in which case a new contract
account with the functionality described in the contract class is created) or one
can directly make transactions to a known contract address holding a contract of
the required shape. The syntax of Solidity resembles JavaScript, enriched with
additional primitives accounting for the distributed setting of Ethereum. In par-
ticular, Solidity provides primitives for accessing the transaction and the block
information, like msg.sender for accessing the address of the account invoking the
method or msg.value for accessing the amount of wei transferred by the transaction
that invoked the method.
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Solidity shows some particularities when it comes to transferring money to
another contract especially using the provided low level functions send and call. A
value transfer initiated using these functions is finally translated to an internal
call transaction which implies that calling a contract might also execute code and
in particular it can fail because the available gas is not sufficient for executing the
code. In addition – as in the EVM – these kinds of calls do not enable exception
propagation, so that the caller manually needs to checks for the return result.
Another special feature of Solidity is that it allows for defining so called fallback
functions for contracts that get executed when a call via the send function was
performed or (using the call function) an address is called that however does not
properly specifies the concrete function of the contract to be called.

3 Small-Step Semantics

We introduce a small-step semantics covering the full EVM bytecode, inspired
by the one presented by Luu et al. [21], which we substantially revise in order to
handle the missing instructions, in particular contract calls and call creation. In
addition, while formalizing our semantics, we found a major flaw related to calls
and several minor ones (cf. Sect. 3.7), which we fixed and reported to the authors.
Due to space constraints, we refer the interested reader to the full version of the
paper [22] for a formal account of the semantic rules and present below the most
significant ones.

3.1 Preliminaries

In the following, we will use B to denote the set {0, 1} of bits and accordingly B
x

for sets of bitstrings of size x. We further let Nx denote the set of non-negative
integers representable by x bits and allow for implicit conversion between those
two representations. In addition, we will use the notation [X] (resp. L(X)) for
arrays (resp. lists) of elements from the set X. We use standard notations for
operations on arrays and lists.

3.2 Global State

As mentioned before, the global state is a (partial) mapping from account
addresses (that are bitstrings of size 160) to accounts. In the case that an account
does not exist, we assume it to map to ⊥. Accounts, irrespectively of their type,
are tuples of the form (n, b, stor, code), with n ∈ N256 being the account’s nonce
that is incremented with every other account that the account creates, b ∈ N256

being the account’s balance in wei, stor ∈ B
256 → B

256 being the accounts per-
sistent storage that is represented as a mapping from 256-bit words to 256-bit
words and finally code ∈ [B8] being the contract that is an array of bytes. In
contrast to contract accounts, external accounts have the empty bytearray as
code. As only the execution of code in the context of the account can access
and modify the account’s storage, the fact that formally external accounts have
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persistent storage does not have any effect. In the following, we will denote the
set of addresses with A and the set of global states with Σ and we will assume
that σ ∈ Σ.

3.3 Small-Step Relation

In order to define the small-step semantics, we give a small-step relation Γ �
S → S′ that specifies how a call stack S ∈ S representing the state of the
execution evolves within one step under the transaction environment Γ ∈ Tenv.

In Fig. 1 we give a full grammar for call stacks and transaction environments:

Fig. 1. Grammar for call stacks and transaction environments

Transaction Environments. The transaction environment represents the
static information of the block that the transaction is executed in and the
immutable parameters given to the transaction as the gas prize or the gas limit.
More specifically, the transaction environment Γ ∈ Tenv = A × N256 × H is a
tuple of the form (o, prize,H) with o ∈ A being the address of the account that
made the transaction, prize ∈ N256 denoting amount of wei that needs to paid
for a unit of gas in this transaction and H ∈ H being the header of the block
that the transaction is part of. We do not specify the format of block headers
here, but just assume a set H of block headers.

Callstacks. A call stack S is a stack of execution states which represents the
state of the execution within one internal transaction. We give a formal definition
of the set of possible callstacks S as follows:

S := {EXC :: Splain, HALT(σ, gas, d, η) :: Splain, Splain

| σ ∈ Σ, gas ∈ N, d ∈ [B8], η ∈ N, Splain ∈ L(M × I × Σ × N)}

Syntactically, a call stack is a stack of regular execution states of the form
(μ, ι, σ, η) that can optionally be topped with a halting state HALT(σ, gas, d, η)
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or an exception state EXC. We summarize these three types of states as execu-
tion states S. Semantically, halting states indicate regular halting of an internal
transaction, exception states indicate exceptional halting, and regular execu-
tion states describe the state of internal transactions in progress. Halting and
exception states can only occur as top elements of the call stack as they represent
terminated internal transactions. Exception states of the form EXC do not carry
any information as in the case of an exception all effects of the terminated inter-
nal transaction are reverted and the caller state therefore stays unaffected, except
for the gas. Halting states instead are of the form HALT(σ, gas, d, η) specifying
the global state σ the execution halted in, the gas gas ∈ N256 remaining from the
execution, the return data d ∈ [B8] and the additional transaction effects η ∈ N
of the internal transaction. The additional transaction effects carry information
that are accumulated during execution, but do not influence the small-step exe-
cution itself. Formally, the additional transaction effects are a triple of the form
(b, L,S†) ∈ N = N256 × L(Evlog) × P(A) with b ∈ N256 being the refund balance
that is increased by account storage operations and will finally be paid to the
transaction’s beneficiary, L ∈ L(Evlog) being the sequence of log events that the
bytecode execution invoked during execution and S† ⊆ A being the so called
suicide set – the set of account addresses that executed the SELFDESTRUCT
command and therefore registered their account for deletion. The information
held by the halting state is carried over to the calling state.

The state of a non-terminated internal transaction is described by a regular
execution state of the form (μ, ι, σ, η). The state is determined by the current
global state σ of the system as well as the execution environment ι ∈ I that
specifies the parameters of the current transaction (including inputs and the
code to be executed), the local state μ ∈ M of the stack machine, and the
transaction effects η ∈ N collected during execution so far.

Execution Environment. The execution environment ι of an internal trans-
action specifies the static parameters of the transaction. It is a tuple of the form
(actor, input, sender, value, code) ∈ I = A × [B8] × A × N256 × [B8] with the
following components:

– actor ∈ A is the address of the account currently executing;
– input ∈ [B8] is the data given as an input to the internal transaction;
– sender ∈ A is the address of the account that initiated the internal

transaction;
– value ∈ N256 is the value transferred by the internal transaction;
– code ∈ [B8] is the code currently executed.

This information is determined at the beginning of an internal transaction exe-
cution and it can be accessed, but not altered during the execution.

Machine State. The local machine state μ represents the state of the under-
lying state machine used for execution and is a tuple of the form (gas, pc,m, i, s)
where
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– gas ∈ N256 is the current amount of gas still available for execution;
– pc ∈ N256 is the current program counter;
– m ∈ B

256 → B
8 is a mapping from 256-bit words to bytes that represents the

local memory;
– i ∈ N256 is the current number of active words in memory;
– s ∈ L(B256) is the local 256-bit word stack of the stack machine.

The execution of each internal transaction starts in a fresh machine state, with
an empty stack, memory initialized to all zeros, and program counter and active
words in memory set to zero. Only the gas is instantiated with the gas value
available for the execution.

3.4 Small-Step Rules

In the following, we will present a selection of interesting small-step rules in
order to illustrate the most important features of the semantics.

For demonstrating the overall design of the semantics, we start with the
example of the arithmetic expression ADD performing addition of two values on
the machine stack. Note that as the word size of the stack machine is 256, all
arithmetic operations are performed modulo 2256.

ι.code [μ.pc] = ADD
μ.s = a :: b :: s μ.gas ≥ 3 μ′ = μ[s → (a + b) :: s][pc += 1][gas −= 3]

Γ � (μ, ι, σ, η) :: S → (μ′, ι, σ, η) :: S

ι.code [μ.pc] = ADD (|μ.s| < 2 ∨ μ.gas < 3)

Γ � (μ, ι, σ, η) :: S → EXC :: S

We use a dot notation, in order to access components of the different state
parameters. We name the components with the variable names introduced for
these components in the last section written in sans-serif-style. In addition, we
use the usual notation for updating components: t[c → v] denotes that the
component c of tuple t is updated with value v. For expressing incremental
updates in a simpler way, we additionally use the notation t[c += v] to denote
that the (numerical) component of c is incremented by v and similarly t[c −= v]
for decrementing a component c of t.

The execution of the arithmetic instruction ADD only performs local changes
in the machine state affecting the local stack, the program counter, and the
gas budget. For deciding upon the correct instruction to execute, the currently
executed code (that is part of the execution environment) is accessed at the
position of the current program counter. The cost of an ADD instruction is
constantly three units of gas that get subtracted from the gas budget in the
machine state. As every other instruction, ADD can fail due to lacking gas or due
to underflows on the machine stack. In this case, the exception state is entered
and the execution of the current internal transaction is terminated. For better
readability, we use here the slightly sloppy ∨ notation for combining the two
error cases in one inference rule.



252 I. Grishchenko et al.

A more interesting example of a semantic rule is the one of the CALL instruc-
tion that initiates an internal call transaction. In the case of calling, several
corner cases need to be treated which results in several inference rules for this
case. Here, we only present one rule for illustrating the main functionality. More
precisely, we present the case in that the account that should be called exists,
the call stack limit of 1024 is not reached yet, and the account initiating the
transaction has a sufficiently large balance for sending the specified amount of
wei to the called account.

ι.code [μ.pc] = CALL μ.s = g :: to :: va :: io :: is :: oo :: os :: s
σ(to) �= ⊥ |A| + 1 < 1024 σ(ι.actor).b ≥ va aw = M (M (μ.i, io, is), oo, os)

ccall = Cgascap (va, 1, g, μ.gas) c = Cbase (va, 1) + Cmem (μ.i, aw) + ccall
μ.gas ≥ c σ′ = σ

〈
to → σ(to)[b += va]

〉〈
ι.actor → σ(ι.actor)[b −= va]

〉

d = μ.m [io, io + is − 1] μ′ = (ccall, 0, λx. 0, 0, ε)
ι′ = ι[sender → ι.actor][actor → to][value → va][input → d][code → σ(to).code]

Γ � (μ, ι, σ, η) :: S → (μ′, ι′, σ′, η) :: (μ, ι, σ, η) :: S

For performing a call, the parameters to this call need to be specified on the
machine stack. These are the amount of gas g that should be given as budget to
the call, the recipient to of the call and the amount va of wei to be transferred
with the call. In addition, the caller needs to specify the input data that should
be given to the transaction and the place in memory where the return data of
the call should be written after successful execution. To this end, the remaining
arguments specify the offset and size of the memory fragment that input data
should be read from (determined by io and is) and return data should be written
to (determined by oo and os).

Calculating the cost in terms of gas for the execution is quite complicated in
the case of CALL as it is influenced by several factors including the arguments
given to the call and the current machine state. First of all, the gas that should
be given to the call (here denoted by ccall) needs to be determined. This value is
not necessarily equal to the value g specified on the stack, but also depends on
the value va transferred by the call and the currently available gas. In addition,
as the memory needs to be accessed for reading the input value and writing the
return value, the number of active words in memory might be increased. This
effect is captured by the memory extension function M . As accessing additional
words in memory costs gas, this cost needs to be taken into account in the
overall cost. The costs resulting from an increase in the number of active words
is calculated by the function Cmem. Finally, there is also a base cost charged for
the call that depends on the value va. As the cost also depends on the specific case
for calling that is considered, the cost calculation functions receive a flag (here
1) as arguments. These technical details are spelled out in the full version [22].

The call itself then has several effects: First, it transfers the balance from
the executing state (actor in the execution environment) to the recipient (to).
To this end, the global state is updated. Here we use a special notation for the
functional update on the global state using 〈〉 instead of []. Second, for initializing
the execution of the initiated internal transaction, a new regular execution state
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is placed on top of the execution stack. The internal transaction starts in a fresh
machine state at program counter zero. This means that the initial memory is
initialized to all zeros and consequently the number of active words in memory is
zero as well and additionally the initial stack is empty. The gas budget given to
the internal transaction is ccall calculated before. The transaction environment
of the new call records the call parameters. This includes the sender that is the
currently executing account actor, the new active account that is now the called
account to as well as the value va sent and the input data given to the call. To
this end the input data is extracted from the memory using the offset io and the
size is. We use an interval notation here to denote that a part of the memory
is extracted. Finally, the code in the execution environment of the new internal
transaction is the code of the called account.

Note that the execution state of the caller stays completely unaffected at this
stage of the execution. This is a conscious design decision in order to simplify
the expression of security properties and to make the semantics more suitable
to abstractions.

Besides CALL there are two different instructions for initiating internal call
transactions that implement slight variations of the simple CALL instruction.
These variations are called CALLCODE and DELEGATECALL, which both allow
for executing another’s account code in the context of the caller. The difference
is that in the case of CALLCODE a new internal transaction is started and the
currently executed account is registered as the sender of this transaction while
in the case of DELEGATECALL an existing call is really forwarded in the sense
that the sender and the value of the initiating transaction are propagated to the
new internal transaction.

Analogously to the instructions for initiating internal call transactions, there
is also one instruction CREATE that allows for the creation of a new account. The
semantics of this instruction is similar to the one of CALL, with the exception
that a fresh account is created, which gets the specified transferred value, and
that the input provided to this internal transaction, which is again specified
in the local memory, is interpreted as the initialization code to be executed in
order to produce the newly created account’s code as output. In contrast to the
call transaction, a create transaction does not await a return value, but only an
indication of success or failure.

For discussing how to return from an internal transaction, we show the rule
for returning from a successful internal call transaction.

ι.code [μ.pc] = CALL μ.s = g :: to :: va :: io :: is :: oo :: os :: s
flag = σ(to) = ⊥ ? 0 : 1 aw = M (M (μ.i, io, is), oo, os)

ccall = Cgascap (va,flag, g, μ.gas) c = Cbase (va,flag) + Cmem (μ.i, aw) + ccall
μ′ = μ[i → aw][s → 1 :: s][pc += 1][gas += gas − c][m → μ.m[[oo, oo + s − 1] → d]]

Γ � HALT(σ′, gas, d, η′) :: (μ, ι, σ, η) :: S → (μ′, ι, σ′, η′) :: S

Leaving the caller state unchanged at the point of calling has the negative
side effect that the cost calculation needs to be redone at this point in order
to determine the new gas value of the caller state. But besides this, the rule is
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straightforward: the program counter is incremented as usual and the number
of active words in memory is adjusted as memory accesses for reading the input
and return data have been made. The gas is decreased, meaning that the overall
amount of gas c allocated for the execution is subtracted. However, as this cost
already includes the gas budget given to the internal transaction, the gas gas
that is left after the execution is refunded again. In addition, the return data
d is written to the local memory of the caller at the place specified by oo and
os. Finally, the value one is written to the caller’s stack in order to indicate
the success of the internal call transaction. As the execution was successful, as
indicated by the halting state, the global state and the transaction effects of the
callee are adopted by the caller.

EVM bytecode offers several instructions for explicitly halting (internal)
transaction execution. Besides the standard instructions STOP and RETURN,
there is the SELFDESTRUCT instruction that is very particular to the blockchain
setting. The STOP instruction causes regular halting of the internal transaction
without returning data to the caller. In contrast, the RETURN instruction allows
one to specify the memory fragment containing the return data that will be
handed to the caller.

Finally, the SELFDESTRUCT instruction halts the execution and lists the
currently execution account for later deletion. More precisely, this means that
this account will be deleted when finalizing the external transaction, but its
behavior during the ongoing small-step execution is not affected. Additionally,
the whole balance of the deleted account is transferred to some beneficiary spec-
ified on the machine stack.

We show the small-step rules depicting the main functionality of
SELFDESTRUCT. As for CALL, capturing the whole functionality of
SELFDESTRUCT would require to consider several corner cases. Here we con-
sider the case where the beneficiary exists, the stack does not underflow and the
available amount of gas is sufficient.

ωμ,ι = SELFDESTRUCT μ.s = aben :: s

a = aben mod 2160 σ(a) �= ⊥ μ.gas ≥ 5000 g = μ.gas − 5000
σ′ = σ

〈
ι.actor → σ(ι.actor)[balance → 0]

〉〈
a → σ(a)[balance += σ.(ι.actor).balance]

〉

r = (ι.actor ∈ Γ.S†) ? 0 : 24000 η′ = η[S† → η.S† ∪ {ι.actor}][balance += r]

Γ � (μ, ι, σ, η) :: S → HALT(σ′, g, ε, η′) :: S

The SELFDESTRUCT command takes one argument aben from the stack spec-
ifying the address of the beneficiary that should get the balance of the account
that is destructed. If all preconditions are satisfied, the balance of the executing
account (ι.actor) is transferred to the beneficiary address and the current internal
transaction execution enters a halting state. Additionally, the transaction effects
are extended by adding ι.actor to the suicide set and by possibly increasing the
refund balance. The refund balance is only increased in case that ι.actor is not
already scheduled for deletion. The halting state captures the global state σ after
the money transfer, the remaining gas g after executing the SELFDESTRUCT
and the updated transaction effects η′. As no return data is handed to the caller,
the empty bytearray ε is specified as return data in the halting state.
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Note that SELFDESTRUCT deletes the currently executing account ι.actor
which is not necessarily the same account as the one owning the code ι.code.
This might be due a previous execution of DELEGATECALL or CALLCODE.

3.5 Transaction Execution

The outcome of an external transaction execution does not only consist of the
result of the EVM bytecode execution. Before executing the bytecode, the trans-
action environment and the execution environment are determined from the
transaction information and the block header. In the following we assume T
to denote the set of transactions. An (external) transaction T ∈ T , similar
to the internal transactions, specifies a gas limit, a recipient and a value to
be transferred. In addition, it also contains the originator and the gas prize
that will be recorded in the transaction environment. Finally, it specifies an
input to the transaction and the transaction type that can either be a call or
a create transaction. The transaction type determines whether the input will
be interpreted as input data to a call transaction or as initialization code for
a create transaction. In addition to the transaction of the environment initial-
ization, some initial changes on the global state and validity checks are per-
formed. For the sake of presentation we assume in the following a function
initialize (·, ·, ·) ∈ T × H × Σ → (Tenv × S) ∪ {⊥} performing the initialization
phase and returning a transaction environment and initial execution state in
the case of a valid transaction and ⊥ otherwise. Similarly, we assume a function
finalize (·, ·, ·) ∈ T × S × N × Σ that given the final global state of the execu-
tion, the accumulated transaction effects and the transaction, computes the final
effects on the global state. These include for example the deletion of the contracts
from the suicide set and the payout to the beneficiary of the transaction.

Formally we can define the execution of a transaction T ∈ T in a block with
header H ∈ H as follows:

(Γ, s) = initialize (T, H, σ)
Γ � s :: ε →∗ s′ :: ε final (s′) σ′ = finalize (s′, η′, T )

σ
T,H−−−→ σ′

where →∗ denotes the reflexive and transitive closure of the small-step relation
and the predicate final (·) characterizes a state that cannot be further reduced
using the small-step relation.

3.6 Formalization in F*

We provide a formalization of a large fragment of our small-step semantics in the
proof assistant F* [24]. At the time of writing, we are formalizing the remaining
part, which only consists of straightforward local operations, such as bitwise
operators and opcodes to write code to (resp. read code from) the memory.
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F* is an ML-dialect that is optimized for program verification and allows for
performing manual proofs as well as automated proofs leveraging the power of
SMT solvers.

Our formalization strictly follows the small-step semantics as presented in
this paper. The core functionality is implemented by the function step that
describes how an execution stack evolves within one execution state. To this end
it has two possible outcomes: either it performs an execution step and returns
the new callstack or – in the case that a final configuration is reached (which
is a stack containing only one element that is either a halting or an exception
state) – it reports the final state. In order to provide a total function for the step
relation, we needed to introduce a third execution outcome that signalizes that
a problem occurred due to an inconsistent state. When running the semantics
from a valid initial configuration this result, however, should never be produced.
For running the semantics, the function execution is defined that subsequently
performs execution steps using step until reaching the final state and reports it.

The current implementation encompasses approximately thousand lines of
code. Since F* code can be compiled into OCaml, we validate our semantics
against the official EVM test suite [25]. Our semantics passes 304 out of 624
tests, failing only in those involving any of the missing functionalities.

We make the formalization in F* publicly available [22] in order to facili-
tate the design of static analysis techniques for EVM bytecode as well as their
soundness proofs.

3.7 Comparison with the Semantics by Luu et al. [21]

The small-step semantics defined by Luu et al. [21] encompasses only a variation
of a subset of EVM bytecode instructions (called EtherLite) and assumes a
heavily simplified execution configuration. The instructions covered span simple
stack operations for pushing and popping values, conditional branches, binary
operations, instructions for accessing and altering local memory and account
storage, as well as as the ones for calling, returning and destructing the account.
Essential instructions as CREATE and those for accessing the transaction and
block information are omitted. The authors represent a configuration as a tuple
of a call stack of activation records and the global state. An activation record
contains the code to be executed, the program counter, the local memory and
the machine stack. The global state is modelled as mapping from addresses to
accounts, with the latter consisting of code, balance and persistent storage.

The overall abstraction contains a conceptual flaw, as not including the global
state in the activation records of the call stack does not allow for modelling
that, in the case of an exception in the execution of the callee, the global state
is rolled back to the one of the caller at the point of calling. In addition, the
model cannot be easily extended with further instructions – such as further call
instructions or instructions accessing the environment – without major changes
in the abstraction as a lot of information, e.g., the one captured in our small-step
semantics in the transaction and the execution environment, are missing.
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4 Security Definitions

In the following, we introduce the semantic characterization of the most sig-
nificant security properties for smart contracts, motivating them with typical
vulnerabilities recurring in the wild.

For selecting those properties, we inspected the classification of bugs per-
formed in [13,21]. To our knowledge, these are the only works published so far
that aim at systematically summarizing bugs in Ethereum smart contracts.

For the presented bugs, we synthesized the semantic security properties that
were violated. In this process we realized that some bugs share the same under-
lying property violation and that other bugs can not be captured by such generic
properties – either because they are of a purely syntactic nature or because they
constitute a derivation from a desired behavior that is particular to a specific
contract.

Preliminary Notations. Formally, we represent a contract as a tuple of the
form (a, code) where a ∈ A denotes the address of the contract and code ∈ [B]
denotes the contract’s code. We denote the set of contracts by C and assume
functions address (·) and code (·) that extract the contract address and code
respectively.

As we will argue about contracts being called in an arbitrary setting, we
additionally introduce the notion of reachable configuration. Intuitively, a pair
(Γ, S) of a transaction environment Γ and a call stack S is reachable if there
exists a state s such that S, s are the result of initialize (T , H, σ), for some
transaction T , block header H, a global state σ, and S is reachable from s.

Definition 1 (Reachable Configuration). The pair (Γ,A) ∈ Tenv × S is a
reachable configuration if for some transaction T ∈ T , some block header H ∈ H
and some global state σ ∈ A → A of the blockchain it holds that

(Γ, s) = initialize (T,H, σ) ∧ Γ � s :: ε →∗ S

In order to give concise security definitions, we further introduce, and assume
throughout the paper, an annotation to the small step semantics in order to
highlight the contract c that is currently executed. In the case of initialization
code being executed, we use ⊥. Specifically, we let

Sn := {EXCc :: Splain, HALT(σ, gas, η, d)c :: Splain, Splain

| σ ∈ Σ, gas ∈ N, d ∈ [B8], η ∈ N, Splain ∈ L((M × I × Σ × N) × C)}

where c ∈ C ∪ {⊥} = C⊥.
Next, we introduce the notion of execution trace for smart contract execution.

Intuitively, a trace is a sequence of actions. In our setting, the actions to be
recorded are composed of an opcode, the address of the executing contract,
and a sequence of arguments to the opcode. We denote the set of actions with
Act. Accordingly, every small step produces a trace consisting of a single action.
Again, we lift the resulting trace semantics to multiple execution steps that then
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produce sequences of actions π ∈ L(Act). We only report the trace semantics
definition for the CALL case here, referring to the full version of the paper for
the details [22].

ι.code [μ.pc] = CALL
μ.s = g :: to :: va :: io :: is :: oo :: os :: s · · · μ′ = · · · ι′ = · · · σ′ = · · ·

Γ � (μ, ι, σ)c :: S
CALLc(g,to,io,is,oo,os)−−−−−−−−−−−−−−→ (μ′, ι′, σ′)to :: (μ, ι, σ)c :: S

We will write π ↓callsc to denote the projection of π to calls performed by con-
tract c, i.e., actions of the form CALLc(g, to, va, io, is, oo, os), CREATEc(va, io, is),
CALLCODEc(g, to, va, io, is, oo, os), and DELEGATECALLc(g, to, io, is, oo, os).

4.1 Call Integrity

Dependency on Attacker Code. One of the most famous bugs of Ethereum’s
history is the so called DAO bug that led to a loss of 60 million dollars in June
2016 [10]. This bug is in the literature classified as reentrancy bug [13,21] as the
affected contract was drained out of money by subsequently reentering it and
performing transactions to the attacker on behalf of the contract. More gener-
ally, the problem of this contract was that malicious code was able to affect the
outgoing money flows of the contract. The cause of such bugs mostly roots in
the developer’s misunderstanding of the semantics of Solidity’s call primitives.
In general, calling a contract can invoke two kinds of actions: Transferring Ether
to the contract’s account or Executing (parts of) a contracts code. In particular,
the call construct invokes the called contract’s fallback function when no partic-
ular function of the contract is specified (2). Consequently, the developer may
expect an atomic value transfer where potentially another contract’s code is exe-
cuted. For illustrating how to exploit this sort of bug, we consider the following
contracts:

1 contract Bob{
2 bool sent = false;
3 function ping( address c){
4 if (!sent) { c.call.value (2)();
5 sent = true; }}}

1 contract Mallory{
2 function (){
3 Bob(msg.sender).ping(this);}}

The function ping of contract Bob sends an amount of 2 wei to the address
specified in the argument. However, this should only be possible once, which
is potentially ensured by the sent variable that is set after the successful money
transfer. Instead, it turns out that invoking the call.value function on a contract’s
address invokes the contract’s fallback function as well.

Given a second contract Mallory, it is possible to transfer more money than
the intended 2 wei to the account of Mallory. By invoking Bob’s function ping with
the address of Mallory’s account, 2 wei are transferred to Mallory’s account and
additionally the fallback function of Mallory is invoked. As the fallback function
again calls the ping function with Mallory’s address another 2 wei are transferred
before the variable sent of contract Bob was set. This looping goes on until all gas
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of the initial call is consumed or the callstack limit is reached. In this case, only
the last transfer of wei is reverted and the effects of all former calls stay in place.
Consequently the intended restriction on contract Bob’s ping function (namely to
only transfer 2 wei once) is circumvented.

Call Integrity. In order to protect from this class of bugs, it is crucial to
secure the code against being reentered before regaining control over the control
flow. From a security perspective, the fundamental problem is that the contract
behaviour depends on untrusted code, even though this was not intended by
the developer. We capture this intuition through a hyperproperty, which we
name call integrity. The idea is that no matter how the attacker can schedule
c (callstacks S and S′ in the definition), the calls of c (traces π, π′) cannot be
controlled by the attacker, even if c hands over the control to the attacker.

Definition 2 (Call Integrity). A contract c ∈ C satisfies call integrity for a set
of addresses AC ⊆ A if for all reachable configurations (Γ, sc :: S), (Γ, s′

c :: S′)
with s, s′ differing only in the code with address in AC , it holds that for all t, t′

Γ � sc :: S
π−→∗

tc :: S ∧ final (tc) ∧ Γ � s′
c :: S′ π′

−→
∗

t′c :: S′ ∧ final (t′c)
=⇒ π ↓callsc= π′ ↓callsc

4.2 Proof Technique for Call Integrity

We now establish a proof technique for call integrity, based on local properties
that are arguably easier to verify and that we show to imply call integrity. As
a first observation, we identify the different ways in which external contracts
can influence the execution of a smart contract c and introduce corresponding
security properties:

Code Dependency. The contract c might access (information on) the
untrusted contracts code via the EXTCODECOPY or the EXTCODESIZE
instructions and make his behaviour depend on those values;

Effect Dependency. The contract c might call the untrusted contract and
might depend on its execution effects and return value;

Re-entrancy. The contract c might call the untrusted contract, with the lat-
ter influencing the behaviour of the former by performing changes to the
global state itself or “on behalf” of c by reentering it and thereby potentially
decreasing the balance of c.

The first two of these properties can be seen as value dependencies and there-
fore can be formalized as hyperproperties. The first property says that the calls
performed by a contract should not be affected by the effects on the execution
state produced by adversarial contracts. Technically, we consider a contract c
calling an adversarial contract c′ (captured as Γ � sc :: S → s′′

c′ :: sc :: S in the
premise), which we let terminate in two arbitrary states s′, t′: we require that
c’s continuation code performs the same calls in both states.
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Definition 3 (AC-effect Independence). A contract c ∈ C is AC-effect
independent of for a set of addresses AC ⊆ A if for all reachable configu-
rations (Γ, sc :: S) such that Γ � sc :: S → s′′

c′ :: sc :: S for some s′′ and
address (c′) ∈ AC , it holds that for all final states s′, t′ whose global state might
differ in all components but the code from the global state of s,

Γinit � s′
c′ :: sc :: S

π−→∗
s′′

c :: S ∧ final (s′′)

∧ Γinit � t′c′ :: sc :: S
π′
−→

∗
t′′c :: S ∧ final (t′′)

=⇒ π ↓callsc= π′ ↓callsc

The second property says that the calls of a contract should not be affected
by the code read from the blockchain (e.g., the code does not branch on code read
from the blockchain). To this end we introduce the notation Γ 
 s :: S

π−→
f

∗
s′ :: S

to denote that the local small-step execution of state s on stack S under Γ results
in several steps in state s′ producing trace π given that in the local execution
steps of EXTCODECOPY and EXTCODESIZE, which are the operations used
to access the code on the global state, the code returned by these functions is
determined by the partial function f ∈ A �→ [B] as opposed to the global state. In
other words, we consider in the premise a contract c reading two different codes
from the blockchain and terminating in both runs (captured as Γ 
 sc :: S

π−→
f

∗

s′
c :: S and Γ 
 sc :: S

π′
−→
f ′

∗
s′′

c :: S), and we require that c performs the same

calls in both runs.

Definition 4 (AC-code Independence). A contract c ∈ C is AC-code inde-
pendent for a set of addresses AC ⊆ A if for all reachable configurations
(Γ, sc :: S) it holds for all local code updates f, f ′ ∈ A �→ [B] on AC that

Γ 
 sc :: S
π−→
f

∗
s′

c :: S ∧ final (s′) ∧ Γ 
 sc :: S
π′
−→
f ′

∗
s′′

c :: S ∧ final (s′′)

=⇒ π ↓callsc= π′ ↓callsc

Both these independence properties can be overapproximated by static anal-
ysis techniques based on program dependence graphs [26], as done by Joana to
verify non-interference in Java [27]. The idea is to traverse the dependence graph
in order to detect dependencies between the sensitive sources, in our case the
data controlled by the adversary and returned to the contract, and the observable
sinks, in our case the local contract calls.

The last property constitutes a safety property. Specifically, single-entrancy
states that it cannot happen that when reentering the contract c another call
is performed before returning (i.e., after reentrancy, which we capture in the
call stack as two distinct states with the same running contract c, the call stack
cannot further increase).
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Definition 5 (Single-entrancy). A contract c ∈ C is single-entrant if for all
reachable configurations (Γ, sc :: S), it holds for all s′, s′′, S′ that

Γ � sc :: S →∗ s′
c :: S′ + +sc :: S

=⇒ ¬∃s′′ ∈ S, c′ ∈ C⊥. Γ � s′
c :: S′ + +sc :: S →∗ s′′

c′ :: s′
c :: S′ + +sc :: S

This safety property can be easily overapproximated by syntactic conditions, as
for instance done in the Oyente analyzer [21].

Finally, the next theorem proves the soundness of our proof technique, i.e.,
the two independence properties and the single-entrancy property together entail
call integrity.

Theorem 1. Let c ∈ C be a contract and AC ⊆ A be a set of untrusted
addresses. If c is AC-local independent, c is AC-effect independent, and c is
single-entrant then c provides call integrity for AC .

Proof Sketch. Let (Γ, sc :: S), (Γ, s′
c :: S′) be reachable configurations such that

s, s′ differ only in the code with address in AC . We now compare the two small-
step runs of those configurations. Due to AC-code independence, the execution
until the first call to an address a ∈ AC produces the same partial trace until
the call to a. Indeed, we can express the runs under different address mappings
through the code update from the AC-code independence property, as long as no
call to one of the updated addresses is performed. When a first call to a ∈ AC

is performed, we know due to single-entrancy that the following call cannot
produce any partial execution trace for any of the runs as this would imply that
contract c is reentered and a call out of the contract is performed. Due to AC-
code independence and AC-effect independence , the traces after returning must
coincide till the next call to an address in AC . This argument can be iteratively
applied until reaching the final state of the execution of c.

4.3 Atomicity

Exception Handling. As discussed in Sect. 2, the way exceptions are prop-
agated varies with the way contracts are called. In particular, in the case of
call and send, exceptions are not propagated, but a manual check for the suc-
cessful completion of the called function’s execution is required. This behavior
reflects the way exceptions are reported during bytecode execution: Instead of
propagating up through the call stack, the callee reports the exception to the
caller by writing zero to the stack. In the context of Ethereum, the issue of
exception handling is particularly delicate as due to the gas restriction, it might
always happen that a call fails simply because it ran out of gas. Intuitively, a
user would expect a contract not to depend on the concrete gas value that is
given to it, with the exception that a contract might always fail completely (and
consequently does not perform any changes on the global state). Such a behavior
would prevent contracts from entering an inconsistent state as the one presented
in the following excerpt of a simple banking contract:
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1 contract SimpleBank{mapping( address => uint) balances;
2 function withdraw (){ msg.sender.send(balances[msg.sender]));
3 balances[msg.sender] = 0;}}

The contract keeps a record of the user balances and provides a function
that allows a user to withdraw its own balance – which results in an update
of the record. A developer might not expect that the send might fail, but as it
is on the bytecode level represented by a CALL instruction, additional to the
Ether transfer, code might be executed that runs out of gas. As a consequence,
the contract would end up in a state where the money was not transferred (as
all effects of the call are reverted in case of an exception), but still the internal
balance record of the contract was updated and consequently the money cannot
be withdrawn by the owner anymore.

Inspired by such situations where an inconsistent state is entered by a con-
tract due to mishandled gas exceptions, we introduce the notion of atomicity
of a contract. Intuitively, atomicity requires that the effects of the execution on
the global state do not depend on the amount of gas available – except when an
exception is triggered, in which case the overall execution should have no effect
at all. The last condition is captured by requiring that the final global state is
the same as the initial one for at least one of the two executions (intuitively, the
one causing the exception).

Definition 6. A contract c ∈ C satisfies atomicity if for all reachable configu-
rations (Γ, S′) such that Γ � S′ → sc :: S, it holds for all gas values g, g′ ∈ N256

that

Γ � sc[μ.gas → g] :: S →∗ s′
c :: S ∧ final (s′)

∧ Γ � sc[μ.gas → g′] :: S →∗ s′′
c :: S ∧ final (s′′)

=⇒ s′.σ = s′′.σ ∨ s.σ = s′.σ ∨ s.σ = s′′.σ

4.4 Independence of Miner Controlled Parameters

Another particularity of the distributed blockchain environment is that users
while performing transactions cannot make assumptions on large parts of the
context their transaction will be executed in. A part of this is due to the asyn-
chronous nature of the system: it can always be that another transaction that
alters the context was performed first. Actually, the situation is even more del-
icate as transactions are not processed in a first-come-first-serve manner, but
miners have a big influence on the execution context of transactions. They can
decide upon the order of the transactions in a block (and also sneak their own
transactions in first) and in addition they can even control some parameters
as the block timestamp within a certain range. Consequently, contracts whose
(outgoing) money flows depend either on miner controlled block information or
on state information (as the state of their storage or their balance) that might
be changed by other transactions are prone to manipulations by miners. A typ-
ical example adduced in the literature is the use of block timestamps as source
of randomness [13,21]. In a classical lottery implementation that randomly pays
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out to one of the participants and uses the block timestamp as source of random-
ness, a malicious miner can easily influence the result in his favor by selecting a
beneficial timestamp.

We capture the absence of the miner’s influence by two definitions, one saying
that the outgoing Ether flows of a contract should not be influenced by compo-
nents of the transaction environment that can be (within a certain range) set
by miners and the other one saying that the Ether flows should not depend on
those parts of the contract state that might have been influenced by previously
executed transactions. The first definition rules out what is in the literature often
described as timestamp dependency [13,21].

First, we define independence of (parts of) the transaction environment. To
this end, we assume CΓ to be the set of components of the transaction environ-
ment and write Γ =/cΓ

Γ ′ to denote that the transaction environments Γ, Γ ′

are equal up to component cΓ .

Definition 7 (Independence of the Transaction Environment). A con-
tract c ∈ C is independent of a subset I ⊆ CΓ of components of the transaction
environment if for all cΓ ∈ I and all reachable configurations (Γ, sc :: S) it holds
for all Γ ′ that

cΓ (Γ ) �= cΓ (Γ ′) ∧ Γ =/cΓ
Γ ′

∧ Γ � sc :: S
π−→∗

s′
c :: S ∧ final (s′) ∧ Γ ′ � sc :: S

π′
−→

∗
s′′

c :: S ∧ final (s′′)
=⇒ π ↓callsc= π′ ↓callsc

Next, we define the notion of independence of the account state. Formally, we
capture this property by requiring that the outgoing Ether flows of the contract
under consideration should not be affected by those parameters of the contract
that might have been changed by previous executions which are the balance, the
account’s nonce, and the account’s persistent storage.

Definition 8 (Independence of Mutable Account State). A contract c ∈
C is independent of the account state if for all reachable configurations (Γ, sc ::
S), (Γ, sc :: S′) with s, s′ differing only in the nonce, balance and storage for
address (c), it holds that

Γ � sc :: S
π−→∗

s′
c :: S ∧ final (s′

c) ∧ Γ � sc :: S′ π′
−→

∗
s′′

c :: S ∧ final (s′′
c)

=⇒ π ↓callsc= π′ ↓callsc

As far the other independence properties, both these properties can be stat-
ically verified using program dependence graphs.
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4.5 Classification of Bugs

The previously presented security definitions are motivated by the bugs that
were observed in real Ethereum smart contracts and studied in [13,21]. Table 1
gives an overview on the bugs from the literature that are ruled out by our
security properties.

Table 1. Bugs from [13,21] ruled out by the security properties

Security property Bug

Call integrity Reentrancy [13,21]

Call to the unknown [13]

Atomicity Mishandled exceptions [13,21]

Independence of mutable account state Transaction order dependency [21]

Unpredictable state [13]

Independence of transaction environment Timestamp dependancy [21]

Time constraints [13]

Generating randomness [13]

Our security properties do not cover all bugs described by Atzei et al. [13],
as some of the bugs do not constitute violations of general security properties,
i.e., properties that are not specific to the particular contract implementation.
There are two classes of bugs that we do not consider: The first class deals
with the occurrence of unexpected exceptions (such as the Gasless Send and
the Call stack Limit bug) and the second class encompasses bugs caused by
the Solidity semantics deviating from the programmer’s intuitions (such as the
Keeping Secrets, Type Cast and Exception Disorders bugs).

The first class of bugs encompasses runtime exceptions that are hard to
predict for the developer and that are consequently not handled correctly. Of
course, it would be possible to formalize the absence of those particular kinds
of exceptions as simple reachability properties using the small-step semantics.
Still, such properties would not give any insight about the security of a contract:
the fact that a particular exception occurs can be unproblematic in the case
that proper exception handling is in place. In general, the notion of a correct
exception handling highly depends on the specific contract’s intended behavior.
For the special case of out-of-gas exceptions, we could introduce the notion of
atomicity in order to capture a generic goal of proper exception handling. But
such a notion is not necessarily sufficient for characterizing reasonable ways of
dealing with other kinds of runtime exceptions.

The second class of bugs are introduced on the Solidity level and are similarly
hard to account for by using generic security properties. Even though these
bugs might all originate from similar idiosyncrasies of the Solidity semantics,
the impact of the bugs on the contract’s semantics might deviate a lot. This
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might result in violations of the security properties discussed before, but also
in violating the contract’s functional correctness. Consequently, catching those
bugs might require the introduction of contract-specific correctness properties.

Finally, Atzei et al. [13] discuss the Ether Lost in Transfer bug. This bug is
introduced by sending Ether to addresses that do not belong to any contract
or user, so called orphan addresses. We could easily formalize a reachability
property stating that no valid contract execution should ever send Ether to
such an address. We omit such a definition here as it is quite straightforward
and at the same time it is not a property that directly affects the security of
an individual contract: Sending Ether to such an orphan address might have
negative impacts on the overall system as money is effectively lost. For the
specific contract sending this money, this bug can be seen as a corner case of
sending Ether to an unintended address which rather constitutes a correctness
violation.

4.6 Discussion

As previously discussed, we are not aware of any prior formal security definitions
of smart contracts. Nevertheless, we compared our definitions with the verifica-
tion conditions used in Oyente [21]. Our investigation shows that the verification
conditions adopted in this tool are neither sound nor complete.

For detecting mishandled exceptions, it is checked whether each CALL
instruction in the contract code is directly followed by the ISZERO instruction
that checks whether the top element of the stack is zero. Unfortunately, Oyente
(although stated in the paper) does not implement this check, so that we needed
to manually inspect the bytecodes for determining the outcomes of the syntactic
check. As shown in Fig. 2a a check for the caller returning zero does not neces-
sarily imply a proper exception handling and therefore atomicity of the contract.
This excerpt of a simple banking contract that keeps track of the users’ balances
and allows users to withdraw their balances using the function withdraw checks
for the success of the performed call, but still does not react accordingly. It only
makes sure that the number of successes is updated consistently, but does not
perform the update on the user’s balance record according to the call outcome.

On the other hand, not performing the desired check does not imply the
absence of atomicity as illustrated in Fig. 2b. Writing the outcome in some vari-
able before checking it, satisfies the negative pattern, but still correct excep-
tion handling is performed. For detecting timestamp dependency, Oyente checks
whether the contract has a symbolic execution path with the timestamp (that
is represented as own symbolic variable) being included in one of its constraints.
This definition however, does not capture the case shown in Fig. 2c.

This contract is clearly timestamp dependent as whether or not the function
pay pays out some money to the sender depends on the timestamp set when
creating the contract. A malicious miner could consequently manipulate the
block timestamp for a transaction that creates such a contract in a way that
money is paid out and then subsequently query it for draining it out. This is
however, not captured by the characterization of the property in Oyente as they
only capture the local execution paths of the contract.
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(a)

(c)

(e) (f)

(d)

(b)

Fig. 2. (a) Exception handling: false negative (b) Exception handling: false positive
(c) Timestamp dependency: false negative (d) Timestamp dependency: false positive
(e) Reentrancy: false negative (f) Reentrancy: false positive

On the other hand, using the block timestamp in path constraints does not
imply a dependency as can easily be seen by the example in Fig. 2d.

For the transaction order dependency and the reentrancy property, we were
unfortunately not able to reconcile the property characterization provided in the
paper with the implementation of Oyente.

For checking reentrancy according to the paper, it should be checked whether
the constraints on the path leading to a CALL instruction can still be satisfied
after performing the updates on the path (e.g. changing the storage). If so, the
contract is flagged as reentrant. According to our understanding, this approach
should not flag contracts that correctly guard their calls as reentrant. Still, by
the version of Oyente provided with the paper the contract in Fig. 2f is tagged
as reentrant.

There exists an updated version of Oyente [28] that is able to precisely tag this
contract as not reentrant, but we could not find any concrete information on the
criteria used for checking this property. Still, we found out that the underlying
characterization can not be sufficient for detecting reentrancy as the contract in
Fig. 2e is classified not to exhibit a reentrancy vulnerability even though it should
as the send command also executes the recipient’s callback function (even though
with limited gas). The example is taken from the Solidity documentation [23]
where it is listed as negative example. For transaction order dependency, Oyente
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should check whether execution traces exhibiting different Ether flows exists.
But it turned out that not even a simple example of a transaction dependent
contract can be detected by any of the versions of Oyente.

5 Conclusions

We presented the first complete small-step semantics of EVM bytecode and for-
malized a large fragment thereof in the F* proof assistant, successfully validating
it against the official Ethereum test suite. We further defined for the first time a
number of salient security properties for smart contracts, relying on a combina-
tion of hyper- and safety properties. Our framework is available to the academic
community in order to facilitate future research on rigorous security analysis of
smart contracts.

In particular, this work opens up a number of interesting research directions.
First, it would be interesting to formalize in F* the semantics of Solidity code
and a compiler from Solidity into EVM, formally proving its soundness against
our semantics. This would allow us to provide software developers with a tool
to verify the security of their code, from which they could obtain bytecode that
is secure by construction. Second, we intend to design an efficient static analysis
technique for EVM bytecode and to formally prove its soundness against our
semantics.
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Abstract. Blockchain-based distributed computing platforms enable
the trusted execution of computation—defined in the form of smart con-
tracts—without trusted agents. Smart contracts are envisioned to have
a variety of applications, ranging from financial to IoT asset tracking.
Unfortunately, the development of smart contracts has proven to be
extremely error prone. In practice, contracts are riddled with security
vulnerabilities comprising a critical issue since bugs are by design non-
fixable and contracts may handle financial assets of significant value. To
facilitate the development of secure smart contracts, we have created
the FSolidM framework, which allows developers to define contracts as
finite state machines (FSMs) with rigorous and clear semantics. FSolidM
provides an easy-to-use graphical editor for specifying FSMs, a code gen-
erator for creating Ethereum smart contracts, and a set of plugins that
developers may add to their FSMs to enhance security and functionality.

Keywords: Smart contract · Security · Finite state machine
Ethereum · Solidity · Automatic code generation · Design patterns

1 Introduction

In recent years, blockchains have seen wide adoption. For instance, the mar-
ket capitalization of Bitcoin, the leading blockchain-based cryptocurrency, has
grown from $15 billion to more than $100 billion in 2017. The goal of the first
generation of blockchains was only to provide cryptocurrencies and payment sys-
tems. In contrast, more recent blockchains, such as Ethereum, strive to provide
distributed computing platforms [1,2]. Blockchain-based distributed computing
platforms enable the trusted execution of general purpose computation, imple-
mented in the form of smart contracts, without any trusted parties. Blockchains
and smart contracts are envisioned to have a variety of applications, ranging from
finance to IoT asset tracking [3]. As a result, they are embraced by an increasing
number of organizations and companies, including major IT and financial firms,
such as Cisco, IBM, Wells Fargo, and J.P. Morgan [4].
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However, the development of smart contracts has proven to be extremely
error prone in practice. Recently, an automated analysis of a large sample of
smart contracts from the Ethereum blockchain found that more than 43% of
contracts have security issues [5]. These issues often result in security vulnera-
bilities, which may be exploited by cyber-criminals to steal cryptocurrencies and
other digital assets. For instance, in 2016, $50 million worth of cryptocurrencies
were stolen in the infamous “The DAO” attack, which exploited a combination
of smart-contract vulnerabilities [6]. In addition to theft, malicious attackers
may also be able to cause damage by leading a smart contract into a deadlock,
which prevents account holders from spending or withdrawing their own assets.

The prevalence of smart-contract vulnerabilities poses a severe problem in
practice due to multiple reasons. First, smart contracts handle assets of signifi-
cant financial value: at the time of writing, contracts deployed on the Ethereum
blockchain together hold more than $6 billion worth of cryptocurrency. Second,
it is by design impossible to fix bugs in a contract (or change its functionality in
any way) once the contract has been deployed. Third, due to the “code is law”
principle [7], it is also by design impossible to remove a faulty or malicious trans-
action from the blockchain, which means that it is often impossible to recover
from a security incident.1

Previous work focused on alleviating security issues in existing smart con-
tracts by providing tools for verifying correctness [7] and for identifying com-
mon vulnerabilities [5]. In contrast, we take a different approach by developing a
framework, called FSolidM [9], which helps developers to create smart contracts
that are secure by design. The main features of our framework are as follows.

Formal Model: One of the key factors contributing to the prevalence of secu-
rity issues is the semantic gap between the developers’ assumptions about the
underlying execution semantics and the actual semantics of smart contracts [5].
To close this semantic gap, FSolidM is based on a simple, formal, finite-state
machine (FSM) based model for smart contracts, which we introduced in [9].
The model was designed to support Ethereum smart contracts, but it could
easily be extended to other platforms.

Graphical Editor: To further decrease the semantic gap and facilitate develop-
ment, FSolidM provides an easy-to-use graphical editor that enables developers
to design smart contracts as FSMs.

Code Generator: FSolidM provides a tool for translating FSMs into Solidity,
the most widely used high-level language for developing Ethereum contracts.
Solidity code can be translated into Ethereum Virtual Machine bytecode, which
can be deployed and executed on the platform.

Plugins: FSolidM enables extending the functionality of FSM based smart con-
tract using plugins. As part of our framework, we provide a set of plugins that
address common security issues and implement common design patterns, which

1 It is possible to remove a transaction or hard fork the blockchain if the stakeholders
reach a consensus; however, this undermines the trustworthiness of the platform [8].
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Table 1. Common smart-contract vulnerabilities and design patterns

Type Common name FSolidM plugin

Vulnerabilities Reentrancy [5,10] Locking

Transaction ordering [5,10] Transition counter

Patterns Time constraint [11] Timed transitions

Authorization [11] Access control

were identified by prior work [5,10,11]. In Table 1, we list these vulnerabilities
and patterns with the corresponding plugins.

Open Source: FSolidM is open-source and available online (see Sect. 3).
The advantages of our framework, which helps developers to create secure con-

tracts instead of trying to fix existing ones, are threefold. First, we decrease the
semantic gap and eliminate the issues arising from it by providing a formal model
and an easy-to-use graphical editor. Second, since the process is rooted in rigor-
ous semantics, our framework may be connected to formal analysis tools [12,13].
Third, the code generator and plugins enable developers to implement smart con-
tracts with minimal amount of error-prone manual coding.

The rest of this paper is organized as follows. In Sect. 2, we present blind
auction as a motivating example, which we implement as an FSM-based smart
contract. In Sect. 3, we describe our FSolidM tool and its built-in plugins. Finally,
in Sect. 4, we offer concluding remarks and outline future work.

2 Defining Smart Contracts as FSMs

Consider as an example a blind auction (similar to the one presented in [14]), in
which a bidder does not send her actual bid but only a hash of it (i.e., a blinded
bid). A bidder is required to make a deposit—which does not need to be equal
to her actual bid—to prevent her from not paying after she has won the auction.
A deposit is considered valid if its value is higher than or equal to the actual
bid. A blind auction has four main states:

1. AcceptingBlindedBids: blinded bids and deposits may be submitted;
2. RevealingBids: bidders may reveal their bids (i.e., they can send their actual

bids and the contract checks if the hash value is the same as the one submitted
in the previous state and if they made sufficient deposit);

3. Finished: the highest bid wins the auction; bidders can withdraw their
deposits except for the winner, who can withdraw only the difference between
her deposit and bid;

4. Canceled: bidders can retract bids and withdraw their deposits.

Since smart contracts have states (e.g., AcceptingBlindedBids) and provide
functions that allow other entities (e.g., contracts or users) to invoke actions
that change the current state of a contract, they can be naturally represented as
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Fig. 1. Example FSM for blinded auctions.

FSMs [15]. An FSM has a finite set of states and a finite set of transitions between
these states. A transition forces a contract to take a set of actions if the associated
conditions, i.e., the guards of the transition, are satisfied. Since such states and
transitions have intuitive meaning for developers, representing contracts as FSMs
provides an adequate level of abstraction for behavior reasoning.

Figure 1 presents the blind auction example in the form of an FSM.
For simplicity, we have abbreviated AcceptingBlindedBids, RevealingBids,
Finished, and Canceled to ABB, RB, F, and C, respectively. ABB is the initial
state of the FSM. Each transition (e.g., bid, reveal, cancel) is associated to a
set of actions that a user can perform during the blind auction. For instance, a
bidder can execute the bid transition at the ABB state to send a blind bid and a
deposit value. Similarly, a user can execute the close transition, which signals
the end of the bidding period, if the associated guard now >= creationTime
+ 5 days evaluates to true. To differentiate transition names from guards, we
use square brackets for the latter. A bidder can reveal her bids by executing
the reveal transition. The finish transition signals the completion of the auc-
tion, while the cancelABB and cancelRB transitions signal the cancellation of
the auction. Finally, the unbid and withdraw transitions can be executed by
the bidders to withdraw their deposits. For ease of presentation, we omit from
Fig. 1 the actions that correspond to each transition. For instance, during the
execution of the withdraw transition, the following action is performed amount
= pendingReturns[msg.sender].

3 The FSolidM Tool

FSolidM is an open-source2, web-based tool that is built on top of WebGME [16].
FSolidM enables collaboration between multiple users during the development
of smart contracts. Changes in FSolidM are committed and versioned, which
enables branching, merging, and viewing the history of a contract. We present
the FSolidM tool in more detail in [17].

To generate the Solidity code of a smart contract using FSolidM, a user must
follow three steps: (1) specify the smart contract in the form of the FSM by using
the dedicated graphical editor of FSolidM; (2) specify attributes of the smart
2 https://github.com/anmavrid/smart-contracts.

https://github.com/anmavrid/smart-contracts
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Fig. 2. The FSolidM model and code editors.

contract such as variable definition, statements, etc. in the Property Editor or
in the dedicated Solidity code editor of FSolidM; (3) optionally apply security
patterns and functionality extensions, and finally, generate the Solidity code.
Figure 2 shows the graphical and code editors of the tool (for steps 1 and 2) and
the list of services (i.e., AddSecurityPatterns and SolidityCodeGenerator for
step 3) that are provided by FSolidM. We have integrated a Solidity parser3 to
check the syntax of the Solidity code that is given as input by the users.

Notice that in Fig. 2, parts of the code shown in the code editor are darker
(lines 1–10) than other parts (lines 12–15). The darker lines of code include code
that was generated from the FSM model defined in the graphical editor and are
locked—cannot be altered in the code editor. The non-dark parts indicate code
that was directly specified in the code editor.

FSolidM provides mechanisms for checking if the FSM is correctly specified
(e.g., whether an initial state exists or not). FSolidM notifies developers of errors
and provides links to the erroneous nodes of the model (e.g., a transition or a
guard). Through the SolidityCodeEditor service, FSolidM provides an FSM-
to-Solidity code generator. Additionally, through the AddSecurityPatterns ser-
vice, FSolidM enables developers to enhance the functionality and security of
contracts conveniently by adding plugins to them. Our framework provides four
built-in plugins: locking, transition counter, timed transitions, and access con-
trol. Plugins can be simply added with a “click,” as shown in Fig. 3.

Locking: When an Ethereum contract calls a function of another contract,
the caller has to wait for the call to finish. This allows the callee—who may
be malicious—to exploit the intermediate state of the caller, e.g., by invoking
a function of the caller. This re-entrancy issue is one of the most well-known
vulnerabilities, which was also exploited in the infamous “The DAO” attack.

To prevent re-entrancy, we provide a security plugin for locking the smart
contract. Locking eliminates re-entrancy vulnerabilities in a “foolproof” manner:
functions within the contract cannot be nested within each other in any way.

3 https://github.com/ConsenSys/solidity-parser.

https://github.com/ConsenSys/solidity-parser
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Fig. 3. Running the AddSecurityPatterns.

Transition Counter: If multiple functions calls are invoked around the same
time, then the order in which these calls are executed on the Ethereum blockchain
may be unpredictable. Hence, when a user invokes a function, she may be unable
to predict what the state and the values stored within a contract will be when
the function is actually executed. This issue has been referred to as “transaction-
ordering dependence” [5] and “unpredictable state” [10], and it can lead to var-
ious security vulnerabilities.

We provide a plugin that prevents unpredictable-state vulnerabilities by
enforcing a strict ordering on function call executions. The plugin expects a
transition number in every function as a parameter and ensures that the num-
ber is incremented by one for each function execution. As a result, when a user
invokes a function with the next transition number in sequence, she can be sure
that the function is executed before any other state changes can take place.

Automatic Timed Transitions: We provide a plugin for implementing time-
constraint patterns. We extend our language with timed transitions, which are
similar to non-timed transitions, but (1) their guards and assignments do not use
input or output data and (2) they include a number specifying transition time.

We implement timed transitions as a modifier that is applied to every func-
tion, and which ensures that timed transitions are executed automatically if their
time and data guards are satisfied. Writing such modifiers manually could lead
to vulnerabilities. For example, a developer might forget to add a modifier to a
function, which enables malicious users to invoke functions without the contract
progressing to the correct state (e.g., place bids in an auction even though the
auction should have already been closed due to a time limit).

Access Control: In many contracts, access to certain transitions (i.e., func-
tions) needs to be controlled and restricted. For example, any user can participate
in a typical blind auction by submitting a bid, but only the creator should be
able to cancel the auction. To facilitate the enforcement of such constraints, we
provide a plugin that (1) manages a list of administrators at runtime (identified
by their addresses) and (2) enables developers to forbid non-administrators from
accessing certain functions.
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4 Conclusion and Future Work

Blockchain-based decentralized computing platforms with smart-contract func-
tionality are envisioned to have a significant technological and economic impact
in the future. However, if we are to avoid an equally significant risk of security
incidents, we must ensure that smart contracts are secure. To facilitate the devel-
opment of smart contracts that are secure by design, we created the FSolidM
framework, which enables designing contracts as FSMs. Our framework is rooted
in rigorous yet clear semantics, and it provides an easy-to-use graphical editor
and code generator. We also implemented a set of plugins that developers can
use to enhance the security or functionality of their contracts. In the future, we
plan to integrate model checkers and compositional verification tools into our
framework [12,13] to enable the verification of security and safety properties.
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Abstract. An ongoing challenge with differentially private database
systems is that of maximizing system utility while staying within a
certain privacy budget. One approach is to maintain per-user budgets
instead of a single global budget, and to silently drop users whose budget
is depleted. This, however, can lead to very misleading analyses because
the system cannot provide the analyst any information about which users
have been dropped.

This paper presents UniTraX, the first differentially private system
that allows per-user budgets while providing the analyst information
about the budget state. The key insight behind UniTraX is that it tracks
budget not only for actual records in the system, but at all points in the
domain of the database, including points that could exist but do not.
UniTraX can safely report the budget state because the analyst does not
know if the state refers to actual records or not. We prove that UniTraX
is differentially private. UniTraX is compatible with existing differen-
tially private analyses and our implementation on top of PINQ shows
only moderate runtime overheads on a realistic workload.

1 Introduction

Differential Privacy (DP) is a model of anonymity that measures privacy loss
resulting from queries made to a database [6]. A bound on privacy loss can be
enforced by preventing queries after a privacy budget has been exceeded. An
ongoing challenge with DP systems is that of maximizing system utility while
staying within a privacy budget, where system utility is measured in terms of
both number of queries and amount of distortion (noise) in query answers.

A simple but common approach to DP budgets is to maintain a single global
budget. With this approach, all queries draw from the budget regardless of how
many user records are used to answer a given query. In systems where users
can specify their own individual budgets, the global budget is effectively the
minimum of user budgets.
c© The Author(s) 2018
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An alternative approach is to maintain per-user budgets. The idea here is that
a given query draws only from the budgets of users whose records contribute to
the answer. This can substantially improve system utility. An analysis that for
instance targets smokers in a medical dataset would not reduce the budgets of
non-smokers. Furthermore, per-user budgets maximize utility in systems where
users specify their individual budgets because low-budget users do not constrain
the queries that are made over only high-budget users.

In spite of the tremendous potential for increasing the utility of DP systems,
we are aware of only a single system, ProPer [10], that tracks per-user budgets.1

This is because of a fundamental difficulty with per-user budget systems. Namely,
the system cannot report on the remaining budget of individual users without
revealing private information. If budgets were made public in this way, then an
analyst could trivially obtain information about users just by observing which
users’ budgets changed in response to a query.

Because of this, ProPer keeps user budgets private: it silently drops the record
of a user from the dataset when the user’s budget is depleted. This creates a
serious usability problem for the analyst. Suppose there are two analysts, Alice
and Bob. Alice wishes to learn about smokers, Bob wishes to learn about lung-
cancer patients. Suppose Alice makes a set of queries about smokers, and as
a result many smokers’ budgets are depleted and these smokers’ records are
dropped from the dataset. Afterwards Bob asks the question: “What fraction of
lung cancer patients are smokers?”. Because many smokers have been dropped
from the dataset, and non-smokers have not, Bob’s answer is incorrect. Worse,
Bob has no way of knowing whether the answer is incorrect, or how incorrect it
is. Bob’s answer is effectively useless. We call this unknown dataset bias.

To address this problem, this paper presents UniTraX, a DP system that
allows for the benefits of keeping per-user budgets without the disadvantage
of unknown dataset bias. The key insight of UniTraX is in how it tracks bud-
get. Rather than privately tracking individual users’ remaining budget, UniTraX
publicly tracks the budget consumed by prior queries over regions of the data
parameter space. In addition, UniTraX adds each user’s initial budget to the
dataset, making it a queryable parameter.

For example, assume a query asks for the count of users between the ages
of 10 and 20. ProPer would privately deduct the appropriate amount from the
individual remaining budget of all users in that age range. By contrast, UniTraX
publicly records that a certain amount of budget was consumed for the age
range 10–20. Because the consumed budget is public, the analyst can calculate
how much initial budget any given point in the data parameter space would
need in order to still have enough remaining budget for some specific query
the analyst may wish to make. Because initial budgets are also a queryable
parameter, the analyst can then explicitly exclude from the query any points
whose initial budget is too small. This allows the analyst to control which points
are included in answers and therefore avoid unknown dataset bias. (See Sect. 2
for a detailed example.)

1 Other DP systems also permit per-user or per-field initial budgets [1,15]. However,
these systems do not track the consumption of budget on a per-user basis.
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Fig. 1. System comparison

Internally, UniTraX utilizes the same calculation of required initial budget
to reject any query that covers points without sufficient budget. Critically, such
a rejection does not leak any private information as it solely depends on public
budget consumption data and query parameters. In fact, the decision to reject
a query does not even look at the actual data.

A significant practical concern is that tracking budgets across the entire
parameter space, which will usually be substantially larger than the number
of actual records in the database, can be quite expensive. To understand this
cost, we built a prototype implementation of UniTraX on top of PINQ [17].
By carefully clubbing budgets over contiguous regions of the parameter space,
we obtain average overheads of less than 80% over a no-privacy baseline on a
realistic workload.

The contributions of this paper are threefold:

1. A system model and design that maintains the advantages of per-user privacy
budgets, while avoiding the problems due to unknown dataset bias.

2. A theoretical framework and proof that the design provides DP.
3. An implementation and evaluation showing that the system is able to effi-

ciently track budgets with average overheads of less than 80%.

In Sect. 2 we compare different system models for DP and provide an example
to illustrate the effect of unknown dataset bias. We introduce the design of
UniTraX in Sect. 3 and detail the theoretical framework and the proof of DP in
Sect. 4. Our implementation and its evaluation are presented in Sects. 5 and 6.
We discuss related work in Sect. 7 and conclude in Sect. 8.

2 System Comparison

To better understand the differences and advantages of UniTraX, we start with
overviews of UniTraX and two prior system models, the classic DP “reference”
model with a global budget, and ProPer with private per-user budgets. We use
a simple running example to illustrate the differences. Figure 1 contrasts the
public, per-user budget model of UniTraX with DP reference and ProPer.

For the example we assume that two analysts Alice and Bob want to analyze
a dataset of patient records. These records contain a variety of fields among
which is one that indicates whether a patient is a smoker, and one that indicates
whether the patient suffers from lung cancer. We assume that Alice is interested
in smokers and wants to run various queries over different fields of smokers while
Bob is interested in the fraction of lung cancer patients that are smokers. We
assume that Alice does her analysis first, followed by Bob.
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Regarding the setting of each patient’s (user’s) initial budget, we consider
two cases: (1) all initial budgets are the same (uniform initial budgets), and
(2) each budget is set by the user (non-uniform initial budgets). In the case of
UniTraX, the initial budget is just another field in each record.

DP Reference. The DP reference mechanism uses a publicly visible global bud-
get. In the case of uniform initial budgets, the global budget is set as the system
default. In the case of non-uniform initial budgets, the global budget is set to
the lowest initial budget among all users.

The reference mechanism counts every query against this single global bud-
get. First, Alice runs her queries against smokers. Since each query decrements
from the global budget, this budget may well be depleted before Bob can even
start. At this point no information about non-smokers will have left the system.
Still, the system has to reject all further queries.

ProPer. ProPer tracks one budget per user but must keep it private. Users whose
budgets are depleted are silently dropped from the dataset and not considered
for any further queries. Nevertheless, each user’s full budget can be used.

Staying in our example, Alice’s queries use no budget of non-smokers under
this tracking mechanism. Once Alice has finished her queries, Bob starts his
analysis. Bob wishes to make two queries, one counting the number of smokers
with lung cancer, and one counting the number of non-smokers with lung cancer.
Bob may look at Alice’s queries, and observe that she focused on smokers, and
therefore know that there is a danger that his answers will be biased against
smokers. In the general case, however, he cannot be sure if his answers are
biased or not.

In the case of uniform budgets, if Alice requested histograms, then she would
have consumed the smokers’ budgets uniformly and depleted either all or none
of the smokers’ budgets. If Bob gets an answer that, keeping in mind the noise,
is significantly larger than zero, then Bob’s confidence that his answer is non-
biased may be high. If on the other hand Alice focused some of her queries on
specific ranges (e.g., certain age groups), or if budgets are non-uniform, then
Bob knows that the answer for smokers with lung cancer may be missing users,
while the answer for non-smokers with lung cancer will not. He may therefore
have unknown dataset bias, and cannot confidently carry out his analysis.

Our System (UniTraX). UniTraX tracks public budgets that are computable
from the history of previous queries. UniTraX is able to tell an analyst how
much budget has been consumed by previous queries for any subspace of the
parameter space. For example, the analyst may request how much budget has
been consumed in the subspace defined by “age≥10 AND age<20 AND gen-
der=male AND smoker=1”.

UniTraX tracks budget consumption over regions of the parameter space. For
example, if a query selects records over the subspace “age≥10 AND age<20”,
then UniTraX records (publicly) that a certain amount of budget has been con-
sumed from this region of the parameter space. Initial budgets are an additional
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dimension of the parameter space in UniTraX. In particular, the initial budget
of an actual record in the database is stored in a field in the record. By com-
paring the (public) consumed budget of any point in the parameter space to
the initial budget of that point, UniTraX can determine publicly whether that
point’s budget has been fully consumed or not. This allows UniTraX to reject a
query safely: If, after the query, the consumed budget of any point selected by
the query will exceed that point’s initial budget, then the query is immediately
rejected. This decision does not require looking at the actual data, and reveals
no private information.

Critically, public consumed budgets combined with the ability to filter queries
based on users’ initial budgets allows analysts to control and eliminate unknown
dataset bias. Returning to our example, when Bob is ready to start his analysis,
he queries UniTraX to determine the consumed budgets for “smoker=1 AND
disease=lungCancer”, and “smoker=0 AND disease=lungCancer”. Because no
queries have been made for non-smokers, the consumed budget of the latter
query’s region would be zero. Suppose that UniTraX indicates that the consumed
budget for the region “smoker=1 AND disease=lungCancer” is 50, and that
Bob’s two queries will further consume a budget of 10 each. Because the two
groups are disjoint, Bob knows that any user with an initial budget of 60 or
higher has enough remaining budget for his queries. (If the two queries were not
known to have disjoint user populations, then Bob would need to filter for initial
budgets of 70 or higher.)

Bob generates the following two queries:

– “count WHERE smoker=1 AND disease=lungCancer AND initBudget≥60”,
– “count WHERE smoker=0 AND disease=lungCancer AND initBudget≥60”.

In doing so, Bob is assured that no users are excluded from either query, and
avoids unknown dataset bias.2

So far, we have described how Bob may query only points with sufficient
remaining budget. However, when this is not the case, UniTraX is able to simply
reject Bob’s queries. In fact, UniTraX can even inform him about which points
are out of budget without leaking private information. Privacy is protected by
the fact that Bob does not know whether these points exist in the dataset or
not. UniTraX’s rejection does not reveal this information to Bob as it solely
depends on public consumed budgets and query parameters. Using the returned
information, Bob is able to debug his analysis and retry.

UniTraX not only allows analysts to debug their analyses but is fully com-
patible with existing DP systems. Any analysis that successfully executes over a
dataset protected by a global budget system requires only a simple initialization

2 Note that if users select their own initial budgets, and there is some correlation
between user attributes and initial budgets, then there may still be a specific bias in
the data. For instance if smokers tend to choose high budgets and non-smokers tend
to choose low budgets, then Bob’s queries would be biased towards smokers. This
problem appears fundamental to any system that allows individual user budgets.
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to run on the same dataset protected by UniTraX (see Sect. 5 for PINQ-based
analyses). Thus, analysts can easily adapt to UniTraX and exploit the increased
utility of per-user budgets.

3 Design Overview

Threat Model. UniTraX uses the standard threat model for DP. The goal is
to prevent malicious analysts from discovering whether a specific record (user)
exists in the queried database (dataset). We assume, as usual, that analysts are
limited to the interface offered by UniTraX and that they do not have direct
access to the database. We make no assumptions about the background or aux-
iliary knowledge of the analysts. Analysts may collude with each other offline.

Goals. We designed UniTraX with the following goals in mind.
Privacy: Users should be able to set privacy preferences (budgets) for their
records individually. These preferences must be respected across queries.
Utility: Querying a parameter subspace should not affect the usability of records
in a disjoint subspace.
Bias Discovery: The system should allow the analyst to discover when there
may be a bias in query answers because privacy budgets of some parts of the
parameter space have been depleted by past queries.
Efficiency: The overhead of the system should be moderate.

In the following we describe the design of UniTraX, explaining how it attains
the first three goals above. The fourth goal, efficiency, is justified by the experi-
mental evaluation in Sect. 6.

Design Overview. For simplicity, we assume that the entire database is organized
as a single table with a fixed schema. The schema includes a designated column
for the initial privacy budget of each record. UniTraX is agnostic to how this
initial budget is chosen—it may be a default value common to all records or
it may be determined individually for each record by the person who owns the
record. Higher values of initial budget indicate less privacy concerns for that
record. Records may be added to the database or removed from it at any time.

The set of all possible records constitutes the parameter space.3 We use the
term point for any point in the parameter space; a point may or may not exist
in the actual database under consideration. We use the terms actual record and
record for the points that actually exist in the database under consideration.

Like most DP systems, UniTraX supports statistical or aggregate queries.
The query model is similar to that of PINQ [17]. An analyst performs a query
in two steps. First, the analyst selects a subspace of the parameter space using
a SQL SELECT-like syntax. For example, the analyst may select the subspace
“age≥10 AND age<20 AND gender=male AND smoker=1”. Next, the analyst

3 The parameter space is also sometimes called the “domain” of the database.
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runs an aggregate query like count, sum or average on this selected subspace.
To protect privacy, UniTraX adds random noise to the result of the query. The
amount of noise added is determined by a privacy parameter, ε, that the analyst
provides with the query. For lower values of ε, the result is more noisy, but the
reduction of privacy budget is less (thus leaving more budget for future queries).

The novel aspect of UniTraX is how it tracks budgets. When an aggregate
query with privacy parameter ε is made on a selected subspace S, UniTraX
simply records that budget ε has been consumed from subspace S. The remaining
budget of any point in the parameter space is the point’s initial budget (from
the point’s designated initial budget field) minus the ε’s of all past queries that
ran on subspaces containing the point.

The consumed budgets of all subspaces are public—analysts can ask for them
at any time. This allows analysts to determine which subspaces have been heavily
queried in the past and, hence, become aware of possible data biases. Moreover,
analysts may select only subspaces with sufficient remaining budgets in subse-
quent queries, thus increasing their confidence in analysis outcomes, as illustrated
in Sect. 2.

To respect privacy budgets, it is imperative that a query with privacy param-
eter ε does not execute on any points whose remaining budget is less than ε.
This is enforced by query rejection, where a query is executed only if all points
in the selected subspace have remaining budget at least ε. Note that this check
is made on not only actual records but all points in the selected subspace. If
any such point does not have sufficient remaining budget, the query is rejected
and an error is returned to the analyst (who may then select a smaller subspace
with higher initial budgets and retry the query). Whether a query is executed or
rejected depends only on the consumption history, which is public, so rejecting
the query provides no additional information to the analyst.

Initial Budgets. UniTraX is agnostic to the method used to determine initial
budgets of actual records and supports any scheme for setting initial budgets on
actual records. The simplest scheme would assign the same, fixed initial budget
to every actual record. A more complex scheme may allow users to choose from
a small fixed set of initial budgets for each record they provide, while the most
complex scheme may let users freely choose any initial budget for every record.

4 Formal Description and Differential Privacy

In this section, we describe UniTraX using a formal model. We specify the dif-
ferential privacy property that we expect UniTraX to satisfy and formally prove
that the property is indeed satisfied. Our formalization is directly based on
ProPer’s formalization [10], which we find both elegant and natural.

4.1 Formal Model of UniTraX

Database. We treat the database as a table with n columns of arbitrary types
C1, . . . , Cn and an initial budget column—a non-negative real number. The type
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of each record, also called the parameter space, is R = C1 × . . .×Cn ×CB , where
CB = R

≥0 is the type of the initial budget column. At any point of time, the
state of the database is a set E of records from the parameter space (E ∈ 2R).

UniTraX. UniTraX acts as a reference monitor between the database and the
analyst. Its internal state consist of two components: (1) the consumption history
H and (2) the select table T .

1. UniTraX tracks the budget consumed by past queries on every subspace of
the parameter space. Formally, this is equivalent to storing a map from points
in the parameter space to non-negative real numbers. We call this map the
consumption history, denoted H. H has the type H = R → R

≥0. Intuitively,
H(r) is the amount of budget consumed by past queries that ran on subspaces
containing the point r of the parameter space.

2. To run an aggregate query in UniTraX, the analyst must first select a sub-
space of the parameter space. To support selection of records that have at
least a stipulated remaining budget, UniTraX allows selected subspaces to also
span the consumption history. Consequently, a selected subspace is a subset
of R×R

≥0 (points extended with their consumed budgets). We represent such
subspaces via logical predicates sspace of type P = R × R

≥0 → {true, false}.
For the analyst’s convenience, UniTraX allows storing a list of selected sub-
spaces, indexed by subspace variables drawn from a set SVar. UniTraX stores
the association between subspace variables and subspaces in a select table, T ,
of type SVar → P.

Analyst. We model an adaptive analyst, who queries UniTraX based on an inter-
nal program and previously received answers. Formally, the analyst is a (possibly
infinite) state machine with states denoted by P and its decorated variants, and
state transitions defined by the relation P

a−−→ P ′. Here a, b denote interactions
between the analyst and UniTraX. Allowed interactions are summarized in Fig. 2.
Note that interactions consist of either an instruction to, or an observable output
from UniTraX, or both. In detail, the interactions are:

– sv := sspace represents the instruction to UniTraX to associate the subspace
variable sv with the subspace sspace, which must be in P. This models the
selection of a subspace (for use in later aggregation queries).

– Qε(sv)?n models the instruction to UniTraX to run the aggregation query Q
with privacy parameter ε on the subspace previously mapped to variable sv .
The interaction also includes the noised result n of the query. If some point
in subspace sv has remaining budget less than ε, the output n is ‘reject’.

– update represents an output from UniTraX to the analyst indicating that the
database has been updated. The output does not specify which records were
added or deleted (else the analyst could trivially break DP).

– read?H models reading the entire current consumption history by the analyst.
H is the history returned by UniTraX.
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a, b ::= sv := sspace select subspace sspace and name it sv
Qε(sv)?n run aggregation query Q on sv , observe output n
update database update
read?H read consumption history, result is H

Fig. 2. Allowed interactions between analyst and UniTraX

We make no assumptions about the analyst (i.e., its state machine).
It may select any subspace, run any aggregation query, and read the consump-
tion history at any time. However, for technical reasons we assume (like ProPer)
that the analyst is internally deterministic and deadlock-free, meaning that it
branches only on observable output from the database and that it can always
make progress.4 Our assumptions are formalized by the following condition:
If P

a−−→ P ′ and P
b−−→ P ′′, then

1. if a = b then P ′ = P ′′

2. if a = (sv := sspace) then a = b
3. if a = Qε(sv)?n then b = Qε(sv)?n′ for some n′ and for all n′′ there

exists P ′′′ with P
Qε(sv)?n

′′
−−−−−−−−→ P ′′′

4. if a = read?H then b = read?H ′ for some H ′ and for all H ′′ there
exists P ′′′ with P

read?H′′
−−−−−−−→ P ′′′

Configuration. A configuration C = (P,E,H, T ) represents the state of the
complete system. It includes the state of the analyst (P ), the database of actual
records (E) and the internal state of UniTraX (consumption history H and select
table T ).

Execution Semantics. We model the evolution of the system using transitions
C

α−−→p C′. Here, α ∈ Act denotes an action label describing an operation within
the system and p is a transition probability (real number between 0 and 1). The
transition C

α−−→p C′ reads as follows: If, in configuration C, the operation α
happens, then, with probability p, the configuration changes to C′. α may be
any one of:

– τ : analyst selects a subspace
– n ∈ Val: query by analyst that returns result n
– reject: query by analyst that is rejected
– Rin : Rdel: database update that adds records Rin and removes records Rdel

– H: analyst reads consumption history H

The transition system C
α−−→p C′ is defined by the five rules shown in Fig. 3.

These rules model the system’s behavior as follows.
(Update) Models a database update by adding some record set Rin and remov-
ing some record set Rdel from the database E. This transition returns to the
analyst the observable output ‘update’ (first premise).
4 These restrictions do not affect the analyst’s attack capabilities.
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Fig. 3. Semantics of UniTraX

(Select) Represents the analyst’s selection of subspace sspace, naming it sv .
(Read-History) Denotes the analyst reading the current consumption history
H. This rule forces our privacy proofs to internally show that the consumption
history is indeed public.
(Query) Models the successful execution of aggregation query Q on subspace
sspace identified by sv with privacy parameter ε. The execution requires all
points in sspace to have a remaining budget of at least ε. A point r is in sspace
if sspace(r,H(r)) = true. (In the rule, r.cB is short-hand for the initial budget
column of point r.) As a consequence of the query, two things happen. First, the
consumption history of all points in the subspace is increased by ε, to record that
a query with privacy parameter ε has run on the subspace. Second, the answer to
query Q executed over those records that are both in the subspace and actually
exist in the database E (selected by the operation E|sspace,H) is returned to
the analyst after adding differentially private noise for the parameter ε. The
transition’s probability p is equal to the probability of getting the specific noised
answer for the query (the noised answer is denoted n in the rule).
(Reject) Represents UniTraX’s rejection of query Q due to some point in the
query’s selected subspace not having sufficient remaining budget. The analyst
observes a special response ‘reject’ (first premise).
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With the notable exception of (Query), all rules are deterministic—they
happen with probability 1 (the p in α−−→p is 1).

Trace Semantics. The relation C
α−−→p C′ describes a single step of system evo-

lution. We lift this definition to multiple steps. A trace σ is a (possibly empty)
finite sequence of labels α1, . . . , αn. We write C

σ==⇒q C′ to signify that config-
uration C evolves in multiple steps to configuration C′ with probability q. The
individual steps of the evolution have labels in σ. Formally, we have:

C
[]

==⇒1 C

C
α−−→p C′ C′ σ==⇒q C′′

C
α σ===⇒p·q C′′

We abbreviate C
σ==⇒q C′ to C

σ==⇒q when C′ is irrelevant.
Note that from the transition semantics (Fig. 3) it follows that a trace σ

records all updates to the database and all observations of the analyst (the
latter is comprised of all responses from UniTraX to the analyst).

Extension to Silent Record Dropping. Up to this point, our design rejects a query
whose selected subspace includes at least one point with insufficient remaining
budget. This protects user privacy and prevents unknown dataset bias. However,
in some cases, an analyst might prefer the risk of unknown dataset bias over
modifying their existing programs to handle query rejections. This might be
the case, for instance, if the analyst already knows by other means that the
percentage of records with insufficient budget will be negligible. In this case, it
would be preferable to automatically drop records with insufficient budget during
query execution, as in ProPer. It turns out that we can provide silent record
dropping without weakening the privacy guarantee. In the following paragraph,
we detail a simple extension of UniTraX that allows the analyst to specify for
each query individually whether the system should silently drop records with
insufficient remaining budgets instead of rejecting the query.

In order to enable silent record dropping, we introduce an extended
query interaction Qdrop

ε (sv)?n for the analyst’s program. Unlike the previously
described interaction, Qε(sv)?n, this interaction cannot fail (be rejected). The
semantics of Qdrop

ε (sv)?n is defined by the new rule (Query-Drop) shown in
Fig. 4. The query executes on those records in database E that (1) are in sub-
space sspace, and (b) have remaining budget at least ε. These records are selected
by E‖sspace,H,ε. As a consequence of the query, two things happen. First, the
consumption history of all points in the parameter space satisfying (1) and (2) is
increased by ε. Second, the answer of the query is returned to the analyst with
probability p, which is determined by the same method used in (Query).

4.2 Privacy Property and Its Formalization

UniTraX respects the initial privacy budget of every record added to the database
in the sense of differential privacy. Before explaining this property formally, we
recap the standard notion of differential privacy due to Dwork et al. [6].
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Fig. 4. Semantics extension for silent record dropping

Standard Differential Privacy. Let Q be a randomized algorithm on a database
that produces a value in the set V . For example, the algorithm may compute
a noisy count of the number of entries in the database. We say that Q is ε-
differentially private if for any two databases D,D′ that differ in one record and
for any V ′ ⊆ V , ∣

∣
∣
∣
ln

(
Pr [Q(D) ∈ V ′]
Pr [Q(D′) ∈ V ′]

)∣
∣
∣
∣
≤ ε.

In words, the definition says that for two databases that differ in only one record,
the probabilities that the analyst running Q makes a specific observation are very
similar. This means that any individual record does not significantly affect the
probability of observing any particular outcome. Hence, the analyst cannot infer
(with high confidence) whether any specific record exists in the database.

If the analyst runs n queries that are ε1-, . . . , εn-differentially private, then
the total loss of privacy is defined as ε1+ . . .+εn. Typically, a maximum privacy
budget is set when the analyst is given access to the database and after each ε-
differentially private query, ε is subtracted from this budget. Once the budget
becomes zero, no further queries are allowed. In this mode of use, DP guarantees
that for any two possible databases D,D′ that differ in at most one record, for
any sequence of queries Q, and for any sequence of observations o,

∣
∣
∣
∣
ln

(
Pr [Q results in o on D]
Pr [Q results in o on D′]

)∣
∣
∣
∣
≤ η,

where η is the privacy budget.

Our Privacy Property. We use the same privacy property as ProPer. This pri-
vacy property generalizes differential privacy described above by accounting for
dynamic addition and deletion of records and, importantly, allowing all new
records to carry their own initial budgets. Informally, our privacy property is
the following. Consider two possible traces σ0 and σ1 that can result from the
same starting configuration. Suppose that σ0 and σ1 differ only in the updates
made to the database and are otherwise identical. Let p0 and p1 be the respective
probabilities of the traces. Then,

∣
∣
∣ln

(
p0
p1

)∣
∣
∣ ≤ η, where η is the sum of the initial

budgets of all records in which the database updates differ between σ0 and σ1.
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Fig. 5. Trace distance

Why is this a meaningful privacy property? We remarked earlier that a trace
records all observations that the analyst (adversary) makes. Consequently, by
insisting that the traces agree everywhere except on database updates, we are
saying that the two traces agree on the analyst’s observations. Hence, if an
analyst makes a sequence of observations under database updates from σ0 with
probability p0, then the probability that the analyst makes the same observations
under database updates from σ1 is very close to p0. In fact, the log of the ratio of
the two probabilities is bounded by the sum of the initial budgets of the records
in which the updates differ. This is a natural generalization of DP’s per-database
budgets to per-record budgets.

To formalize this property, we define a partial function dist(σ, σ′) that returns
the set of records in which database updates in σ and σ′ differ if σ and σ′ agree
pointwise on all labels other than database updates. If σ and σ′ differ at a label
other than database update then dist(σ, σ′) is undefined. The formal definition
is shown in Fig. 5.

Definition 1 (Privacy). We say that UniTraX preserves privacy if whenever
C

σ0==⇒p0
and C

σ1==⇒p1
and dist(σ0, σ1) = R, then

∣
∣
∣ln

(
p0
p1

)∣
∣
∣ ≤

∑

r∈R

r.cB.

Our main result is that UniTraX is private in the sense of the above definition.

Theorem 1 (Privacy of UniTraX). UniTraX preserves privacy in the sense
of Definition 1.

We prove this theorem by first proving a strong invariant of configurations
that takes into account how UniTraX tracks the consumption history. The entire
proof is in our technical report [19].

5 Implementation

We have implemented UniTraX on top of PINQ, an earlier framework for enforc-
ing differential privacy with a global budget for the database [17]. We briefly
review relevant details of PINQ before explaining our implementation.

PINQ Review. PINQ adds differential privacy to LINQ, a general-purpose data-
base query framework. LINQ defines Queryable objects, abstractions over data
sources, e.g., a database table. The Queryable object may be transformed by a
SQL SELECT-like operation to obtain another Queryable object representing
selected records from the table. One may run an aggregate query on this second
object to obtain a specific value.
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Building on LINQ, PINQ maintains a global privacy budget for the entire
database. This budget is set when a Queryable object is initialized. Subse-
quently, differentially-private noise is added to every aggregation query on every
object derived from this Queryable object and the global budget is appropriately
reduced.

UniTraX Implementation. Our implementation currently supports only query
execution with rejection. The main addition to PINQ is tracking of consump-
tion budgets over subspaces. In principle, we must store the consumption budget
for every point in the parameter space. In practice, queries tend to select contigu-
ous ranges, so at any point of time, the parameter space splits into contiguous
subspaces, each with a uniform consumption budget. Accordingly, our imple-
mentation tries to cluster contiguous subspaces with identical consumption and
represents them efficiently.

Our interface defines a new object type, UQueryable, which represents a
subspace. Like Queryable, this object can be transformed via SQL SELECT-like
operations to derive other, smaller UQueryable objects. To run an analysis on
a subspace, the analyst invokes a special function, GetAsPINQ, to convert a
UQueryable object representing the subspace into a PINQ object representing
the same subspace. This special function also takes as an argument a budget,
which the analysis will eventually consume. The function first checks that this
budget is larger than the remaining budget of all points in the subspace. If not,
the function fails. Otherwise, this budget is immediately added to the consump-
tion budget of the subspace and a fresh PINQ object initialized with this budget
is returned. Subsequently, the analyst can run any queries on the PINQ object
and PINQ’s existing framework enforces the allocated budget.

We also provide a new interface to the analyst to ask for the maximum budget
consumed in a given subspace.

Typical Analysis Workflow. We briefly describe the steps an analyst must follow
to run an analysis on our implementation. Assume that the analyst wants to
analyze records within a specific subspace with a set of queries that require a
certain amount of budget to run successfully. Further assume that the analysis
needs to run on a stipulated minimum number of user records for its results to
be meaningful. The analyst would perform the following steps:

1. Obtain the initial UQueryable object representing the entire database.
2. Select the desired subspace obtaining another UQueryable object.
3. Obtain the maximum budget consumed on the second object.
4. Add the budget required for the analysis and a budget for a noisy count to

the just-obtained maximum budget.
5. Select the subspace that has at least the just-calculated sum of budgets avail-

able, obtaining yet another UQueryable object.
6. Obtain a PINQ object from the last UQueryable object with the PINQ budget

set to the budget of the count.
7. Perform a (noisy) count on the PINQ object. If it is too low, stop here.
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8. Otherwise, obtain another PINQ object, this time with the budget required
for the analysis.

9. Perform the analysis on the second PINQ object. All records in the PINQ
object have enough budget for the full analysis.

Data Stream Analysis. UniTraX can be directly used for analysis on streams of
data since its design and privacy proof already take record addition and deletion
into account. To allow analysts to use the full budget of newly arriving records,
we assume records to be timestamped on arrival; this timestamp is another
column in our parameter space. At any time, all active analyses use points with
timestamps in a specific window of time only. When the budgets of points in
the window run out, the window is shifted to newer timestamps. Records with
timestamps in the old window can be discarded. All analyses share the budgets
of points in the active time window.

6 Preliminary Evaluation

This section presents a preliminary evaluation of the performance of our imple-
mentation of UniTraX. It is preliminary in that (1) it uses only one dataset (the
New York City taxi ride dataset [18,21]), and (2) we carry out only one “anal-
ysis session”. The session consists of queries that perform the basic statistical
operations of count, average, and median.

Objective. Of primary interest to us is the increase in end-to-end latency expe-
rienced by the analyst (time from query submission to answer reception) as
compared to both PINQ (reference DP) and LINQ (baseline that provides no
privacy). Additionally, we want to understand the overhead of storing UniTraX’s
budget consumption history data structure.

In absolute terms, these overheads are a function of the access pattern on
the parameter space. The exact column names, the data in them or the precise
queries do not matter for this. Nonetheless, we briefly describe the dataset we
use and the queries we run. The queries are deliberately chosen to be simple
since long-running, complex queries will mask UniTraX’s relative overheads.

Dataset. We use all taxi rides of New York City reported for January 2013
(≈14M records). We modify these records to only contain numerical data and
add an additional initial budget for each. For the purpose of our measurements
all budgets are chosen high enough so that no budgets expire.

Analysis Session. Our session is roughly patterned off of the analysis of the
same dataset described in [12]. The session consists of 1213 queries split into
three groups. The first group covers the entire geographic area, and consists of
six histograms for different columns. The subsequent groups focus on a 16 × 16
grid of squares in Manhattan. The second group of queries counts the number of
rides in each square, and takes averages over two different columns for squares



UniTraX: Protecting Data Privacy with Discoverable Biases 293

that have more than 5000 rides with sufficient budget. The third group counts
rides again and takes the median of one column for squares that have more than
1000 rides with sufficient budget.

Experimental Setups. We run the session over each of the following three setups:

1. Directly on LINQ using the LINQ-to-SQL interface (no privacy protection).
2. Through a PINQ object (DP protection with a global budget).
3. With UniTraX.

All numbers presented in this section are averages of five runs of the session.

Hardware. All experiments run on two identical commodity Dell PowerEdge
M620 blade systems. Each is equipped with dual Intel Xeon E5-2667 v2 8-
core CPUs with Hyperthreading (total of 32 hardware threads per machine) and
256 GB of main memory. Both systems are connected to the same top-of-rack
switch with two bonded 1 Gbit/s connections each.

Software. We use Microsoft Windows Server 2016 on both systems. The first
system runs both UniTraX as well as the client query program. Microsoft Visual
Studio Community 2015 is the only additional software installed for these tasks.
The second system runs Microsoft SQL Server 2016 Developer Edition as the
remote database server. To optimize database performance we put data and
index files of our database onto a RAM-disk, create indexes that fit our queries,
and make the database read-only.

Absolute and Relative Latency Overheads. Figure 6 presents absolute end-to-end
latencies for the three experimental setups: direct, only PINQ, and UniTraX. A
random 5% sample of the 1213 queries is shown, sorted on the x-axis by increas-
ing latency with respect to the direct experiment. Overheads are moderate. As
expected, UniTraX is usually slower than PINQ, which is slower than direct
query execution without any privacy protection. In 3.2% of the cases, UniTraX
outperforms direct and PINQ. We verified that in these cases the database server
chose to do a sequential table scan for direct and PINQ but a parallel and thus
faster index scan for UniTraX. We were unable to force parallel execution for
direct and PINQ.

Figure 7 presents a CDF for all 1213 queries in terms of the overhead of
UniTraX relative to direct and PINQ respectively. We observe that in half of the
cases, UniTraX is 1.5x slower than PINQ and 2x slower than the direct case. At
the 99th-percentile UniTraX is 2.5x slower than PINQ and 3.5x slower than the
direct case. The figure includes a tail between 0 and 1, indicating that UniTraX
is sometimes faster than PINQ or the direct case. As explained before, this
behavior is due to the database choosing sub-optimal query plans for PINQ and
the direct case. On average, UniTraX is 1.3x slower than PINQ and 1.8x slower
than the direct case. In summary, latency overheads introduced by UniTraX are
moderate.
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Query
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UniTrax

Fig. 6. End-to-end latencies of a 5% sample of the 1213 queries ordered according to
latencies of direct. The trend in the order of performance is evident. UniTraX is slower
than PINQ, which is slower than direct. Where UniTraX outperforms the others, the
database chose a better query plan for UniTraX’s queries.

C
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F

Fig. 7. CDF of relative overheads incurred by UniTraX across all 1213 queries. At
the 99th-percentile UniTraX is 2.5x slower than PINQ and 3.5x slower than the direct
case. The initial tail of inverse overhead before 1 consists of 3.2% of queries where the
database chooses sub-optimal query plans for PINQ and the direct case.

Size of Budget Tracking State. Figure 8 shows the number of subspaces tracked
by UniTraX at the beginning of each query. Numbers are again ordered according
to query latencies in the direct case (see Fig. 6). These numbers do not change
across different runs. The two curves represent two analyst query strategies, one
with and one without re-balancing. These two curves illustrate that the analyst
can dramatically affect the size of the budget tracking state based on how queries
are formulated.
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s

Query

Fig. 8. Number of subspaces UniTraX tracks throughout the execution of the queries
shown in Fig. 6. Reported numbers are obtained at the beginning of each query and do
not change across different runs. The different curves represent two different analyst
query strategies, one where the analyst only requests data of interest (w/o RB), and
one where the analyst requests extra data in order to improve UniTraX’s re-balancing
(w/ RB). This shows that analysts can substantially reduce the overhead of UniTraX
through careful selection of query parameters.
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In the “without re-balancing” strategy (w/o RB), the analyst queries data
only within a range of interest. For instance, suppose that the analyst is inter-
ested in a histogram of fares between $0 and $100. The analyst may request
ten $10 bars. As long as each bar consumes the same budget, UniTraX will
optimize tracking state and merge the subspaces of these 10 bars into a sin-
gle subspace. The range above the histogram (above $100), however, cannot be
merged. As a result, UniTraX stores two subspaces for the fare column. The same
happens with other columns, with the result that there is a combinatoric explo-
sion in the number of subspaces because of the combinations of the columns’
multiple subspaces.

In the “with re-balancing” strategy (w/ RB), the analyst instead queries
data that covers the full range of a column, even though the analyst may not
be interested in all of that range, or may even know that no data exists in some
subrange (e.g., no taxi pickups over water). As a result, UniTraX is able to
merge more subspaces, even those of different columns. At the cost of budget,
this reduces the number of subspaces substantially, in this case by more than
an order of magnitude. Re-balancing thus allows analysts to trade-off overheads
against budget savings.

7 Related Work

Due to its age, the area of privacy-preserving data analytics has amassed a vast
amount of work. The related work section of [16] provides a good overview of
early work in this space. Around ten years ago Dwork et al. introduced differen-
tial privacy or DP [6], which quickly developed into a standard for private data
analytics research (see [7,8]). In this section, we focus on research that investi-
gates heterogeneous or personalized budgets, tracking of personalized budgets,
private analytics on dynamic data sets, and PINQ, the system our implementa-
tion is based on.

Alaggan et al. [1] propose heterogeneous differential privacy (HDP) to deal
with user-specific privacy preferences. They allow users to provide a separate pri-
vacy weight for each individual data field, a granularity finer than that supported
by UniTraX. However, the total privacy budget is a global parameter. When
computing a statistical result over the dataset, HDP perturbs each accessed
data value individually according to its weight and the global privacy budget.
UniTraX can be extended to support per field rather than per record budgets
at the cost of additional runtime latency. Further, UniTraX allows analysts to
query parts of a dataset without consuming the privacy budget of other parts.
UniTraX also supports a greater set of analytic functions, e.g., median. HDP
does not provide these capabilities. Queries can only run over the whole dataset
and, as privacy weights are secret, the exact amount of answer perturbation
remains unknown to the analyst.

Jorgensen et al.’s personalized differential privacy (PDP) is a different app-
roach to the same problem [15]. In contrast to UniTraX, PDP trusts analysts
and assumes that per-user budgets are public. It tracks the budget globally but
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manages to avoid being limited to the most restrictive user’s budget by allow-
ing the analyst to sample the dataset prior to generating any statistical output.
Depending on the sampling parameters the analyst is able to use more than the
smallest user budget for a query (but on a subset of records). PDP only supports
querying the entire dataset at once. Nevertheless, we believe that a combination
of PDP and UniTraX could be useful, in particular to allow analysts to make
high budget queries on low budget records. The combination could also do away
with PDP’s assumption that analysts be trusted.

In place of personalized privacy protection, Nissim et al. [20] and earlier
research projects [5,14] provide users different monetary compensation based
on their individual privacy preferences. It is unclear whether these models can
be combined with UniTraX as they do not provide any personalized privacy
protection. Users with a higher valuation receive a higher compensation but
suffer the same privacy loss as other users.

Despite allowing users to specify individual privacy preferences, all the above
systems track budget globally and do not allow analysts to selectively query
records and consume budget only from the queried records. To the best of our
knowledge, ProPer [10] is the only system that allows this. We compared exten-
sively to ProPer in Sect. 2. Our formal model in Sect. 4 is also based on ProPer’s
formal model. Google’s RAPPOR [11] likewise provides differential privacy guar-
antees based on user-provided parameters, but the system model is significantly
different from ours and the privacy guarantee holds only when certain cross-
query correlations do not occur. In contrast, we (and ProPer) need no such
assumptions.

Differential privacy is being increasingly applied to dynamic datasets rather
than static databases. Since the first consideration of such scenarios in 2010 [9],
numerous systems have emerged [2–4,13,22,23] that aggregate dynamic data
streams rather than static datasets in a privacy-preserving manner. UniTraX and
ProPer can be immediately used for dynamic data streams since their designs
and privacy proofs already take record addition and deletion into account.

As explained in Sect. 5, our UniTraX implementation is based on the Pri-
vacy Integrated Queries (PINQ) [17] platform, which offers privacy-preserving
data analysis capabilities. PINQ, in turn, is based on the Language Integrated
Queries (LINQ) framework, a well-integrated declarative extension of the .NET
platform. LINQ provides a unified object-oriented data access and query inter-
face, allowing analysts data access independent of how the data is provided and
where the answer is finally computed. Data providers can be switched without
changing code and can be, e.g., local files, remote SQL servers, or even mas-
sive parallel cluster systems like DryadLINQ [24]. PINQ provides a thin DP
wrapper over LINQ. For all queries, it ensures that sufficient budget is available
and that returned answers are appropriately noised. The maximum budget must
be provided during object initialization. Our implementation uses PINQ in an
unconventional way—we initialize a new PINQ object prior to every data analy-
sis, and use PINQ to enforce a stipulated budget. Additionally, we track budget
consumption on subspaces of the parameter space across queries.
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8 Conclusion and Future Work

This paper presented UniTraX, the first differentially private system that sup-
ports per-record privacy budgets, tells the analyst where (in the parameter space)
budgets have been used in the past, and allows the analyst to query only those
points that still have sufficient budget for the analyst’s task. UniTraX attains
this by tracking budget consumption not on actual records in the database,
but on points in the parameter space. As a result, information about budget
consumption reveals nothing about actual records to the analyst.

We have also presented a formal model of UniTraX and a formal proof that
UniTraX respects differential privacy for all records. Our prototype implemen-
tation incurs moderate overheads on a realistic workload.

There are several directions for future work. First, our implementation is not
very optimized and there is scope for reducing overheads even further. Second,
UniTraX can be extended to track budgets at even finer granularity, e.g., a
budget for every field. Third, one could investigate how queries can be optimized
to reduce budget consumption.
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Abstract. Porting a policy from a firewall system to another is a diffi-
cult and error prone task. Indeed, network administrators have to know in
detail the policy meaning, as well as the internals of the firewall systems
and of their languages. Equally difficult is policy maintenance and refac-
toring, e.g., removing useless or redundant rules. In this paper, we present
a transcompiling pipeline that automatically tackles both problems: it
can be used to port a policy into an equivalent one, when the target fire-
wall language is different from the source one; when the two languages
coincide, transcompiling supports policy maintenance and refactoring.
Our transcompiler and its correctness are based on a formal intermedi-
ate firewall language that we endow with a formal semantics.

1 Introduction

Firewalls are one of the standard mechanisms for protecting computer networks.
Configuring and maintaining them is very difficult also for expert system admin-
istrators since firewall policy languages are varied and usually rather complex,
they account for low-level system and network details and support non trivial
control flow constructs. Additional difficulties come from the way in which pack-
ets are processed by the network stack of the operating system and further issues
are due to Network Address Translation (NAT), the mechanism for translating
addresses and performing port redirection while packets traverse the firewall.

A configuration is typically composed of a large number of rules and it is often
hard to figure out the overall firewall behavior. Also, firewall rules interact with
each other, e.g., some shadow others making them redundant or preventing them
to be triggered. Often administrators resort to policy refactoring to solve these
issues and to obtain minimal and clean configurations. Software Defined Network
(SDN) paradigm has recently been proposed for programming the network as a
whole at a high level, making network and firewall configuration simpler and less
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error prone. However, network administrators have still to face the porting of
firewall configurations from a variety of legacy devices into this new paradigm.

Both policy refactoring and porting are demanding operations because they
require system administrators to have a deep knowledge about the policy mean-
ing, as well as the internals of the firewall systems and of their languages. To
automatically solve these problems we propose here a transcompiling pipeline
composed of the following stages:

1. decompile the policy in the source language into an intermediate language;
2. extract the meaning of the policy as a set of non overlapping declarative rules

describing the accepted packets and their translations in logical terms;
3. compile the declarative rules into the target language.

Another key contribution of this paper is to formalize this pipeline and to prove
that it preserves the meaning of the original policy (Theorems 1, 2 and 3). The
core of our proposal is the intermediate language IFCL (Sect. 4), which offers
all the typical features of firewall languages such as NAT, jumps, invocations to
rulesets and stateful packet filtering. This language unveils the bipartite struc-
ture common to real firewall languages: the rulesets determining the destiny of
packets and the control flow in which the rules are applied. The relevant aspects
of IFCL are its independence from specific firewall systems and their languages,
and its formal semantics (Sect. 5). Remarkably, stage 1 provides real languages,
which usually have no formal semantics, with the one inherited by the decom-
pilation to IFCL. In this way the meaning of a policy is formally defined, so
allowing algorithmic manipulations that yield the rules of stage 2 (Sect. 6). These
rules represent minimal configurations in a declarative way, covering all accepted
packets and their transformations, with neither overlapping nor shadowing rules.
These two stages are implemented in a tool appearing in a companion paper [1]
and surveyed below, in the section on related work. The translation algorithm
of stage 3 (Sect. 7) distributes the rules determined in the previous stage on the
relevant points of the firewall where it decides the destiny of packets.

To show our transcompilation at work, we consider iptables [2] and pf [3]
(Sect. 2), since they have very different packet processing schemes making policy
porting hard. In particular, we apply the stages of our pipeline to port a policy
from iptables to pf (Sect. 3). For brevity, we do not include an example of
refactoring, which occurs when the source and the target languages coincide.

Related Work. Formal methods have been used to model firewalls and access
control, e.g., [4–6]. Below we restrict our attention to language-based approaches.

Transcompilation is a well-established technique to address the problem of
code refactoring, automatic parallelization and porting legacy code to a new
programming language. Recently, this technique has been largely used in the
field of web programming to implement high level languages into JavaScript,
see e.g., [7,8]. We tackle transcompilation in the area of firewall languages to
support porting and refactoring of policies.

To the best of our knowledge, the literature has no approaches to mechani-
cally porting firewall policies, while it has some to refactoring. The proposal in [9]
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is similar to ours, in that it “cleans” rulesets, then analyzes them by an automatic
tool. It uses a formal semantics of iptables (without NAT) and a semantics-
preserving ruleset simplification. The tool FIREMAN [10] detects inconsistencies
and inefficiencies of firewall policies (without NAT). The Margrave policy ana-
lyzer [11] analyzes IOS firewalls, and is extensible to other languages. However
the analysis focuses on finding specific problems in policies rather then synthe-
sizing a high-level policy specification. Another tool for discovering anomalies
is Fang [12,13], which also synthesizes an abstract policy. Our approach differs
from the above proposals mainly because at the same time it (i) is language-
independent; (ii) defines a formal semantics of firewall behavior; (iii) gives a
declarative, concise and neat representation of such a behavior; (iv) supports
NAT; (v) generates policies in a target language.

Among the papers that formalize the semantics of firewall languages, we
mention [14,15] that specify abstract filtering policies to be then compiled into
the actual firewall systems. More generally, NetKat [16] proposes linguistic con-
structs for programming a network as a whole within the SDN paradigm. All
these approaches propose their own high level language with a formal semantics,
and then compile it to a specific target language (cf. our stage 3). Instead, IFCL

intermediates between real source and target languages. It thus takes from real
languages actions both for filtering/rewriting packets (notably NAT and MARK)
and for controlling the inspection flow, widely used in practice.

Our companion paper [1] describes the design of an automated tool and its
application to real cases. The tool implements the first two stages of our pipeline
and supports system administrators in the verification of some properties of a
given firewall policy. In particular, the user can ask queries to check implication,
equivalence and difference of policies, and reachability among hosts. The tool
uses the same syntax of Sect. 4 but only sketches how to obtain the declarative
representation of a given policy, while here we fully formalize the process and
prove it correct (Sect. 6.2). In detail, the present paper partially overlaps with [1]
on Sect. 4, where the language is presented, and on Sect. 6.2, where the logical
characterization is introduced. Besides the technical details and theorems, which
support the semantics and the correctness of the whole approach missing in [1],
here we also address the issue of compiling the declarative firewall representation
to a target language, enabling transcompilation (cf. Sects. 3 and 7).

2 Background

Usually, system administrators classify networks into security domains. Through
firewalls they monitor the traffic and enforce a predetermined set of access control
policies (packet filtering), possibly performing some network address translation.

Firewalls are implemented either as proprietary, special devices, or as soft-
ware tools running on general purpose operating systems. Independently of their
actual implementations, they are usually characterized by a set of rules that
determine which packets reach the different subnetworks and hosts, and how
they are modified or translated. We briefly review iptables [2] and pf [3] that
are two of the most used firewall tools in Linux and Unix.
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iptables. It is the default in Linux distributions, and operates on top of Netfil-
ter, the standard framework for packets processing of the Linux kernel [2]. This
tool is based on the notions of tables and chains. Intuitively, a table is a collec-
tion of ordered lists of policy rules called chains. The most commonly used tables
are: filter for packet filtering; nat for network address translation; mangle for
packet alteration. There are five built-in chains that are inspected at specific
moments of the packet life cycle [17]: PreRouting, when the packet reaches the
host; Forward, when the packet is routed through the host; PostRouting, right
before the packet leaves the host; Input, when the packet is routed to the host;
Output, when the packet is generated by the host. Moreover, users can define
additional chains, besides the built-in ones.

Each rule specifies a condition and a target. If the packet matches the con-
dition then it is processed according to the specified target. The most common
targets are: ACCEPT and DROP, to accept and discard packets; DNAT/SNAT,
to perform destination/source NAT; MARK to mark a packet with a numeric
identifier which can be used in the conditions of other rules, even placed in dif-
ferent chains; RETURN, to stop examining the current chain and resume the
processing of a previous chain. When the target is a user-defined chain, two
“jumping” modes are available: call and goto. They differ when a RETURN is
executed or the end of the chain is reached: the evaluation resumes from the rule
following the last matched call. Built-in chains have a user-configurable default
policy (ACCEPT or DROP): if the evaluation reaches the end of a built-in chain
without matches, its default policy is applied.

pf. This is the standard firewall of OpenBSD [3] and is included in macOS since
version 10.7. Similarly to iptables, each rule consists of a predicate which is
used to select packets and an action that specifies how to process the packets
satisfying the predicate. The most frequently used actions are pass and block to
accept and reject packets, rdr and nat to perform destination and source NAT.
Packet marking is supported also by pf: if a rule containing the tag keyword
is applied, the packet is marked with the specified identifier and then processed
according to the rule’s action.

Differently from other firewalls, the action taken on a packet is determined
by the last matched rule, unless otherwise specified. pf has a single ruleset that
is inspected both when the packet enters and exits the host. When a packet
enters the host, DNAT rules are examined first and filtering is performed after
the address translation. Similarly when a packet leaves the host: first its source
address is translated by the relevant SNAT rules, and then the resulting packet
is possibly filtered. Notice also that packets belonging to established connections
are accepted by default, thus bypassing the filters.

3 Porting a Policy: An Example

Consider the simple, yet realistic network of Fig. 1, where the IP addresses
10.0.0.0/8 identify the private LAN; 54.230.203.0/24 identify servers and produc-
tion machines in the demilitarized zone DMZ that also hosts the HTTPS server



Transcompiling Firewalls 307

Fig. 1. A network.

Table 1. Declarative representation of the configuration in Fig. 2.

with address 54.230.203.47. The firewall has three interfaces: eth0 connected to
the LAN with IP 10.0.0.1, eth1 connected to the DMZ with IP 54.230.203.1 and
ext connected to the Internet with public IP 23.1.8.15.

The iptables configuration in Fig. 2 enforces the following policy on the
traffic: (i) hosts from the Internet can connect to the HTTPS server; (ii) LAN

hosts can freely connect to any host in the DMZ; (iii) LAN hosts can connect
to the Internet over HTTP and HTTPS (with source NAT). Now, suppose the
system administrator has to migrate the firewall configuration of Fig. 2 from
iptables to pf. Performing this porting by hand is complex and error prone
because the administrator has to write the pf configuration from scratch and
test that it is equivalent to the original one. Furthermore, this requires a deep
understanding of the policy meaning, as well as of both iptables and pf and
of their configuration languages. We apply below the stages of our pipeline to
solve this problem, guaranteeing by construction that the firewall semantics is
preserved. The next sections detail the following intuitive description.

First we extract the meaning of the iptables configuration represented by a
table, in our case Table 1 (stages 1 and 2). For instance, its second row says that
the packets of a new connection with source address in the range 10.0.0.0/8 (i.e.,
from the LAN) can reach the hosts in the range 54.230.203.0/24 (the DMZ), with
no NAT, regardless of the protocol and the port. The last row says that packets of
an already established connection are always allowed. Note that each row in the
table declaratively describes a set of packets accepted by the firewall, and their
network translation. Actually, Table 1 is a clean, refactored policy automatically
generated by the tool of [1]. Indeed, each row is disjoint from the others, so they
need not to be ordered and none of the typical firewall anomalies arises, like
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Fig. 2. Firewall configuration in iptables.

Fig. 3. The policy in Fig. 2 ported in pf.

shadowing, rule overlapping, etc. According to stage 3, we compile the refactored
policy in pf, in two steps. First, the rows are translated in a sequence of IFCL

rules that are then compiled in pf. The result is in Fig. 3 and was computed
with a proof-of-concept extension of [1] based on the theory presented in Sect. 7.

4 The Intermediate Firewall Configuration Language

We now present our intermediate firewall configuration language (IFCL). It is
parametric w.r.t. the notion of state and the steps performed to elaborate pack-
ets. For generality, we do not detail the format of network packets. In the follow-
ing we only use sa(p) and da(p) to denote the source and destination addresses
of a given packet p; additionally, tag(p) returns the tag m associated with p. An
address a consists of an IP address ip(a) and possibly a port port(a). An address
range n is a pair consisting of a set of IP addresses and a set of ports, denoted
IP(n):port(n). An address a is in the range n (written a ∈ n) if ip(a) ∈ ip(n)
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and port(a) ∈ port(n), when port(a) is defined, e.g., for ICMP packets we only
check if the IP address is in the range.

Firewalls modify packets, e.g., through network address translations. We
write p[da �→ a] and p[sa �→ a] to denote a packet identical to p, except for
the destination address da and source address sa, which is equal to a, respec-
tively. Similarly, p[tag �→ m] denotes the packet with a modified tag m.

Here we consider stateful firewalls that keep track of the state s of network
connections and use this information to process a packet. Any existing network
connection can be described by several protocol-specific properties, e.g., source
and destination addresses or ports, and by the translations to apply. In this way,
filtering and translation decisions are not only based on administrator-defined
rules, but also on the information built by previous packets belonging to the
same connection. We omit a precise definition of a state, but we assume that
it tracks at least the source and destination ranges, NAT operations and the
state of the connection, i.e., established or not. When receiving a packet p one
may check whether it matches the state s or not. We left unspecified the match
between a packet and the state because it depends on the actual shape of the
state. When the match succeeds, we write p �s α, where α describes the actions
to be carried on p; otherwise we write p ��s.

A firewall rule is made of two parts: a predicate φ expressing criteria over
packets, and an action t, called target, defining the “destiny” of matching packets.
Here we consider a core set of actions included in most of the real firewalls. These
actions not only determine whether or not a packet passes across the firewall,
but also control the flow in which the rules are applied. They are the following:

ACCEPT a packet passes
DROP a packet is discarded
CALL(R) invoke the ruleset R (see below)
GOTO(R) jump to the ruleset R
RETURN exit from the current ruleset
NAT(nd, ns) network translation
MARK(m) marking with tag m
CHECK-STATE(X) examine the state

The targets CALL( ) and RETURN implement a procedure-like behavior; GOTO( ) is sim-
ilar to unconditional jumps. In the NAT action nd and ns are address ranges used
to translate the destination and source address of a packet, respectively; in the
following we use the symbol � to denote an identity translation, e.g., n : � means
that the address is translated according to n, whereas the port is kept unchanged.
The MARK action marks a packet with a tag m. The argument X ∈ {←,→,↔} of
the CHECK-STATE action denotes the fields of the packets that are rewritten accord-
ing to the information from the state. More precisely, → rewrites the destination
address, ← the source one and ↔ both. Formally:

Definition 1 (Firewall rule). A firewall rule r is a pair (φ, t) where φ is a
logical formula over a packet, and t is the target action of the rule.
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A packet p matches a rule r with target t whenever φ holds.

Definition 2 (Rule match). Given a rule r = (φ, t) we say that p matches r
with target t, denoted p |=r t, iff φ(p). We write p �|=r when p does not match r.

We can now define how a packet is processed given a possibly empty list of
rules (denoted with ε), hereafter called ruleset. Similarly to real implementations
of firewalls, we inspect the rules in the list, one after the other, until we find
a matching one, which establishes the destiny (or target) of the packet. For
sanity, we assume that no GOTO(R) and CALL(R) occur in the ruleset R, so avoiding
self-loops. We also assume that rulesets may have a default target denoted by
td ∈ {ACCEPT, DROP}, which accepts or drops according to the will of the system
administrator.

Definition 3 (Ruleset match). Given a ruleset R = [r1, . . . , rn], we say that
p matches the i-th rule with target t, denoted p |=R (t, i), iff

i ≤ n . ri = (φ, t) ∧ p |=ri
t ∧ ∀j < i . p �|=rj

.

We also write p �|=R if p matches no rules in R, formally if ∀r ∈ R . p �|=r. After-
words, we will omit the index i when immaterial, and we simply write p |=R t.

In our model we do not explicitly specify the steps performed by the kernel of
the operating system to process a single packet passing through the host. We
represent this algorithm through a control diagram, i.e., a graph where nodes
represent different processing steps and the arcs determine the sequence of steps.
The arcs are labeled with a predicate describing the requirements a packet has
to meet in order to pass to the next processing phase. Therefore, they are not
finite state auomata. We assume that control diagrams are deterministic, i.e.,
that every pair of arcs leaving the same node has mutually exclusive predicates.
For generality, we let these predicates abstract, since they depend on the specific
firewall.

Definition 4 (Control diagram). Let Ψ be a set of predicates over packets.
A control diagram C is a tuple (Q,A, qi, qf ), where

– Q is the set of nodes;
– A ⊆ Q×Ψ ×Q is the set of arcs, such that whenever (q, ψ, q′), (q, ψ′, q′′) ∈ A

and q′ �= q′′ then ¬(ψ ∧ ψ′);
– qi,qf ∈ Q are special nodes denoting the start and the end of elaboration.

The firewall filters and possibly translates a given packet by traversing a control
diagram accordingly to the following transition function.

Definition 5 (Transition function). Let (Q,A, qi, qf ) be a control diagram
and let p be a packet. The transition function δ : Q × Packet �→ Q is defined as

δ(q, p) = q′ iff ∃(q, ψ, q′) ∈ A. ψ(p) holds.

We can now define a firewall in IFCL.

Definition 6 (Firewall). A firewall F is a triple (C, ρ, c), where C is a control
diagram; ρ is a set of rulesets; and c : Q �→ ρ is the correspondence mapping
from the nodes of C to the actual rulesets.
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Fig. 4. The control diagram of iptables

4.1 Decompiling Two Real Languages into IFCL

Here we encode the two de facto standard Unix firewalls iptables and pf as
triples (C, ρ, c) of our framework (stage 1). An immediate fallout is a formal
semantics for both iptables and pf defined in terms of that of IFCL (see Sect. 5).

Modelling iptables. Let L be the set of local addresses of a host; and let ψ1

and ψ2 predicates over packets defined as follows:

ψ1(p) = sa(p) ∈ L ψ2(p) = da(p) ∈ L.

Figure 4 shows the control diagram C of iptables, where unlabeled arcs carry
the label “true.” It also implicitly defines the transition function according to
Definition 5. In iptables there are twelve built-in chains, each of which corre-
spond to a single ruleset. So we can define the set ρp ⊆ ρ of primitive rulesets
as the one made of Rman

Inp , Rnat
Inp , Rfil

Inp, Rman
Out , Rnat

Out, Rfil
Out, Rman

Pre , Rnat
Pre, Rman

For ,
Rfil

For, Rman
Post and Rnat

Post, where the superscript represents the chain name and
the subscript the table name. Note that the set ρ \ρp contains the user-defined
chains.

The mapping function c : Q �→ ρ is defined as follows:

c(qi) = R c(qf ) = R c(Prem) = Rman
Pre

c(Pren) = Rnat
Pre c(Inpm) = Rman

Inp c(Fwdf ) = Rfil
For

c(Inpn) = Rnat
Inp c(Inpf ) = Rfil

Inp c(Outm) = Rman
Out

c(Outn) = Rnat
Out c(Outf ) = Rfil

Out c(Fwdm) = Rman
For

c(Fwdf ) = Rfil
For c(Postm) = Rman

Post c(Postn) = Rnat
Post

where R is an empty ruleset with ACCEPT as default policy.
Finally, note that the action CALL( ) implements the built in target JUMP( ).

Modelling pf. Differently from iptables, pf has a single ruleset and the rule
applied to a packet is the last one matched, apart from the case of the so-called
quick rules: as soon as one of these rules matches the packet, its action is applied
and the remaining part of the ruleset is skipped.

Figure 5 shows the control diagram Cpf for pf that also defines the transition
function. The nodes Inpn and Inpf represent the procedure executed when an
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Fig. 5. The control diagram of pf

IP packet reaches the host from the net. Dually, Outn and Outf are for when the
packet leaves the host. The predicates ψ1 and ψ2 are those defined for iptables.
Given the pf ruleset Rpf we include the following rulesets in ρpf :

– Rdnat contains the rule (state == 1, CHECK-STATE(→)) as the first one, followed
by all the rules rdr of Rpf;

– Rsnat contains the rule (state == 1, CHECK-STATE(←)) as the first one, followed
by all the rules nat of Rpf;

– Rfinp contains the rule (state == 1, ACCEPT) followed by all the quick filtering
rules of Rpf without modifier out, and finally the rule (true, GOTO(Rfinpr));

– Rfinpr contains all the no quick filtering rules of Rpf without modifier out,
in reverse order;

– Rfout contains the rule (state == 1, ACCEPT) followed by all the quick filtering
rules of Rpf without modifier in, and (true, GOTO(Rfoutr)) as last rule;

– Rfoutr includes all the no quick filtering rules of Rpf without modifier in in
reverse order.

Given the ruleset R with the only rule for ACCEPT as default policy, the mapping
function cpf is defined as follows:

cpf (qi) = R cpf (Inpn) = Rdnat cpf (Outn) = Rsnat

cpf (qf ) = R cpf (Inpf ) = Rfinp cpf (Outf ) = Rfout

5 Formal Semantics

Now, we formally define the semantics of a firewall through two transition sys-
tems operating in a master-slave fashion. The master has a labeled transition

relation of the form s
p,p′
−−→ s′. The intuition is that the state s of a firewall

changes to s′ when a new packet p reaches the host and becomes p′.
The configurations of the slave transition system are triples (q, s, p) where:

(i) q ∈ Q is a control diagram node; (ii) s is the state of the firewall; (iv) p is
the packet. A transition (q, s, p) → (q′, s, p′) describes how a firewall in a state s
deals with a packet p and possibly transforms it in p′, according to the control
diagram C. Recall that the state records established connections and other kinds
of information that are updated after the transition.
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In the slave transition relation, we use the following predicate, which
describes an algorithm that runs a ruleset R on a packet p in the state s

p, s |=S
R (t, p′)

This predicate searches for a rule in R matching the packet p through p |=R (t, i).
If it finds a match with target t, t is applied to p to obtain a new packet p′.

Recall that actions CALL(R), RETURN and GOTO(R) are similar to procedure calls,
returns and jumps in imperative programming languages. To correctly deal with
them, our predicate p, s |=S

R (t, p′) uses a stack S to implement a behavior similar
to the one of procedure calls. We will denote with ε the empty stack and with ·
the concatenation of elements on the stack. This stack is also used to detect and
prevent loops in ruleset invocation, as it is the case in real firewalls.

In the stack S we overline a ruleset R to indicate that it was pushed by
a GOTO( ) action and it has to be skipped when returning. Indeed, we use the
following pop� function in the semantics of the RETURN action:

pop∗(ε) = ε pop∗(R · S) = (R,S) pop∗(R · S) = pop∗(S)

In case there is a non-overlined ruleset on the top of S, it behaves as a standard
pop operation; otherwise it extracts the first non-overlined ruleset. When S is
empty, we assume that pop∗ returns ε to signal the error.

Furthermore, in the definition of p, s |=S
R (t, p′) we use the notation Rk to

indicate the ruleset [rk, ..., rn] (k ∈ [1, n]) resulting from dropping the first k − 1
rules from the given ruleset R = [r1, ..., rn].

We also assume the function establ that, taken an action α from the state,
a packet p and the fields X ∈ {←,→,↔} to rewrite, returns a possibly changed
packet p′, e.g., in case of an established connection. Also this function depends
on the specific firewall we are modeling, and so it is left unspecified.

Finally, we assume as given a function nat(p, s, dn, sn) that returns the packet
p translated under the corresponding NAT operation in the state s. The argument
dn is used to modify the destination range of p, i.e., destination NAT (DNAT),
while sn is used to modify the source range, i.e., source NAT (DNAT). Recall
that a range of the form � : � is interpreted as the identity translation, whereas
one of the form a : � modifies only the address. Also this function is left abstract.

Table 2 shows the rules defining p, s |=S
R (t, p′). The first inference rule deals

with the case when the packet p matches a rule that says ACCEPT or DROP; in this case
the ruleset execution stops returning the found action and leaving p unmodified.
When a packet p matches a rule with action CHECK-STATE, we query the state s:
if p belongs to an established connection, we return ACCEPT and a p′ obtained
rewriting p. If p belongs to no existent connection the packet is matched against
the remaining rules in the ruleset. When a packet p matches a NAT rule, we return
ACCEPT and the packet resulting by the invocation of the function nat. There are
two cases if a packet p matches a GOTO( ). If the ruleset R′ is not already in the
stack, we push the current ruleset R onto the stack overlined to record that this
ruleset dictated a GOTO( ). Otherwise, if R′ is in the stack, we detect a loop and
discard p. The case when a packet p matches a rule with action CALL( ) is similar,
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Table 2. The predicate p, s |=S
R (t, p′).

except that the ruleset pushed on the stack is not overlined. When a packet p
matches a rule with action RETURN, we pop the stack and match p against the
top of the stack. Finally, when no rule matches, an implicit return occurs: we
continue from the top of the stack, if non empty. The MARK rule simply changes
the tag of the matching packet to the value m. If none of the above applies, we
return the default action td of the current ruleset.

We can now define the slave transition relation as follows.

c(q) = R p, s |=ε
R (ACCEPT, p′) δ(q, p′) = q′

(q, s, p) → (q′, s, p′)

The rule describes how we process the packet p when the firewall is in the
elaboration step represented by the node q with a state s. We match p against
the ruleset R associated with q and if p is accepted as p′, we continue considering
the next step of the firewall execution represented by the node q′.

Finally, we define the master transition relation that transforms states and
packets as follows (as usual, below →+ stands for the transitive closure of →):

(qi, s, p) →+ (qf , s, p′)

s
p,p′
−−→ s � (p, p′)

This rule says that when the firewall is in the state s and receives a packet p,
it elaborates p starting from the initial node qi of its control diagram. If this
elaboration succeeds, i.e., it reaches the node qf accepts p as p′, we update the
state s by storing information about p, its translation p′ and the connection they
belong to, through the function �, left unspecified for the sake of generality.
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Example 1. Suppose to have the user-defined chains below
Chain CB

(φ1, DROP)
(φ2, CALL(u1))
(φ3, ACCEPT)

Chain u1

(φ11, ACCEPT)
(φ12, CALL(u2))
(φ13, DROP)

Chain u2

(φ21, ACCEPT)
(φ22, RETURN)
(φ23, DROP)

and that the condition ¬φ1 ∧ φ2 ∧ φ11 holds for a packet p. Then, the semantic
rules (a), (b) and (c) are applied in order:

(a)
p |=CB

(CALL(u1), i) u1 �∈ S p, s |=CB3 ·ε
u1 (ACCEPT, p)

p, s |=ε
CB

(ACCEPT, p)

(b)
p |=u1 (ACCEPT, 1)

p, s |=CB3 ·ε
u1 (ACCEPT, p)

(c)
c(q) = CB p, s |=ε

CB
(ACCEPT, p) δ(q, p) = q′

(q, s, p) → (q′, s, p)

6 From Operational to Declarative Descriptions

We now extract the meaning of a firewall written in our intermediate language by
transforming it in a declarative, logical presentation that preserves the semantics
(stage 2). This transformation is done in three steps: (i) generate an unfolded fire-
wall with a single ruleset for each node of the control diagram; (ii)transform the
unfolded firewall in a first-order formula; (iii)determine a model for the obtained
formula, through a SAT solver (the procedure for this step is described in [1]
and is omitted here). The correctness of stage 2 follows from Theorem 1, which
guarantees that the unfolded firewall is semantically equivalent to the original
one, and from Theorem 2, which ensures that the derived formula characterizes
exactly the accepted packets and their translations.

6.1 Unfolding Chains

Our intermediate language can deal with involved control flows, by using the tar-
gets GOTO( ), CALL( ) and RETURN (see Example 1). The following unfolding operation
[[ ]] rewrites a ruleset into an equivalent one with no control flow rules.

Hereafter, let r;R be a non empty ruleset consisting of a rule r followed by
a possibly empty ruleset R; and let R1@R2 be the concatenation of R1 and R2.

The unfolding of a ruleset R is defined as follows:

[[R]] = [[R]]true
{R}

[[ε]]fI = ε

[[(φ, t);R]]fI = (f ∧ φ, t); [[R]]fI if t �∈ {GOTO(R’), CALL(R’), RETURN}
[[(φ, RETURN);R]]fI = [[R]]f∧¬φ

I

[[(φ, CALL(R’));R]]fI =

{
[[R′]]f∧φ

I∪{R′}@[[R]]fI if R′ /∈ I

(f ∧ φ, DROP); [[R]]fI otherwise
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[[(φ, GOTO(R’));R]]fI =

{
[[R′]]f∧φ

I∪{R′}@[[R]]f∧¬φ
I if R′ /∈ I

(f ∧ φ, DROP); [[R]]f∧¬φ
I otherwise

The auxiliary procedure [[R]]fI recursively inspects the ruleset R. The formula f
accumulates conjuncts of the predicate φ; the set I records the rulesets traversed
by the procedure and helps detecting loops. If a rule does not affect control flow,
we just substitute the conjunction f ∧ φ for φ, and continue to analyze the rest
of the ruleset with the recursive call [[R]]fI .

In the case of a return rule (φ, RETURN) we generate no new rule, and we continue
to recursively analyze the rest of the ruleset, by updating f with the negation of
φ. For the rule (φ, CALL(R’)) we have two cases: if the callee ruleset R′ is not in I,
we replace the rule with the unfolding of R′ with f ∧φ as predicate, and append
{R′} to the traversed rulesets. If R′ is already in I, i.e., we have a loop, we replace
the rule with a DROP, with f ∧φ as predicate. In both cases, we continue unfolding
the rest of the ruleset. We deal with the rule (φ, GOTO(R’)) as the previous one,
except that the rest of the ruleset has f ∧ ¬φ as predicate.

Example 2. Back to Example 1, unfolding the chain CB gives the following rules:

[[CB ]] = (φ1, DROP);
(φ2 ∧ φ11, ACCEPT);
(φ2 ∧ φ12 ∧ φ21, ACCEPT);
(φ2 ∧ φ12 ∧ ¬φ22 ∧ φ23, DROP);
(φ2 ∧ φ13, DROP);
(φ3, ACCEPT);
ε

We just illustrate the first three steps:

[[CB ]] =[[(φ1, DROP);CB2]]true
{CB} = (φ1, DROP); [[(φ2, CALL(u1));CB3]]true

{CB}

=[[u1]]
true∧φ2
{CB}∪{u1}@[[CB3]]true

{CB}

Note that our transformation does not change the set of accepted packets, e.g.,
all packets satisfying ¬φ1 ∧ φ2 ∧ φ11 are still accepted by the unfolded ruleset.

An unfolded firewall is obtained by repeatedly rewriting the rulesets associated
with the nodes of its control diagram, using the procedure above. Formally,

Definition 7 (Unfolded firewall). Given a firewall F = (C, ρ, c), its unfolded
version [[F ]] is (C, ρ′, c′) where ∀q ∈ C. c′(q) = [[c(q)]] and ρ′ = {[[c(q)]] | q ∈ C}.

We now prove that a firewall F and its unfolded version [[F ]] are semantically
equivalent, i.e., they perform the same action over a given packet p in a state s,
and reach the same state s′. Formally, the following theorem holds:
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Table 3. Translation of rulesets into logical predicates.

Theorem 1 (Correctness of unfolding). Let F = (C, ρ, c) be a firewall and

[[F ]] its unfolding. Let s
p,p′
−−→X s′ be a step of the master transition system

performed by the firewall X ∈ {F , [[F ]]}. Then, it holds

s
p,p′
−−→F s′ ⇐⇒ s

p,p′
−−→[[F ]] s′.

6.2 Logical Characterization of Firewalls

We construct a logical predicate that characterizes all the packets accepted by
an unfolded ruleset, together with the relevant translations.

To deal with NAT, we define an auxiliary function tr that computes the set of
packets resulting from all possible translations of a given packet p. The parameter
X ∈ {←,→,↔} specifies if the translation applies to source, destination or both
addresses, respectively, similarly to CHECK-STATE(X).

tr(p, dn, sn,↔) � {p[da �→ ad, sa �→ as] | ad ∈ dn, as ∈ sn}
tr(p, dn, sn,→) � {p[da �→ ad] | ad ∈ dn}
tr(p, dn, sn,←) � {p[sa �→ as] | as ∈ sn}

Furthermore, we model the default policy of a ruleset R with the predicate dp,
true when the policy is ACCEPT, false otherwise.

Given an unfolded ruleset R, we build the predicate PR(p, p̃) that holds when
the packet p is accepted as p̃ by R. Its definition is in Table 3 that induces on
the rules in R. Intuitively, the empty ruleset applies the default policy dp(R)
and does not transform the packet, encoded by the constraint p = p̃. The rule
(φ, ACCEPT) considers two cases: when φ(p) holds and the packet is accepted as it is;
when instead ¬φ(p) holds, p is accepted as p̃ only if the continuation R accepts it.
The rule (φ, DROP) accepts p only if the continuation does and φ(p) does not hold.
The rule (φ, NAT(dn, sn)) is like an (φ, ACCEPT): the difference is when φ(p) holds,
and it gives p̃ by applying to p the NAT translations tr(p, dn, sn,↔). Finally,
(φ, CHECK-STATE(X)) is like a NAT that applies all possible translations of kind X
(written as tr(p, ∗:∗, ∗:∗,X)). The idea is that, since we abstract away from the
actual established connections, we over-approximate the state by considering
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any possible translations. At run-time, only the connections corresponding to
the actual state will be possible. The rule (φ, MARK(m)) is like a NAT, but when
φ(p) holds it requires that the continuation accepts p tagged by m as p̃.

Example 3. The predicate of the unfolded ruleset in Example 2 when
dp(CB) = F is

P[[CB ]] (p, p̃) = ¬φ1 ∧ (
(φ2 ∧ φ11 ∧ p = p̃) ∨ (¬(φ2 ∧ φ11) ∧ (
(φ2 ∧ φ12 ∧ φ21 ∧ p = p̃) ∨ (¬(φ2 ∧ φ12 ∧ φ21) ∧ (
¬(φ2 ∧ φ12 ∧ ¬φ22 ∧ φ23) ∧ (
¬(φ2 ∧ φ13) ∧ (
(φ3 ∧ p = p̃) ∨ (¬φ3 ∧ (
F ∧ p = p̃)))))))))

Note that if ¬φ1 ∧ φ2 ∧ φ11 holds then the formula trivially holds and therefore
the formula accepts the packet as the semantics does.

As a further example, consider the case in which φ2, φ12, φ22, φ23, φ3 hold for
a packet p, while all the other φ’s does not. Then, p is accepted as it is: the
rule (φ23, DROP) is not evaluated since φ22 holds and the RETURN is performed (cf.
Example 1). Indeed, the predicate P[[CB ]](p, p) evaluates to:

T ∧ (F ∨ (T ∧ (F ∨ (T ∧ (T ∧ (T ∧ (T ∨ (F ∧ F )))))))) = T

Instead, if φ13 holds too, the packet is rejected as expected:

T ∧ (F ∨ (T ∧ (F ∨ (T ∧ (T ∧ (F ∧ (T ∨ (F ∧ F )))))))) = F

The predicate in Table 3 is semantically correct, because if a packet p is accepted
by a ruleset R as p′, then PR(p, p′) holds, and vice versa. Formally,

Lemma 1. Given a ruleset R we have that

1. ∀p, s. p, s |=ε
R (ACCEPT, p′) =⇒ PR(p, p′); and

2. ∀p, p′. PR(p, p′) =⇒ ∃s.p, s |=ε
R (ACCEPT, p′)

We eventually define the predicate associated with a whole firewall as follows.

Definition 8. Let F = (C, ρ, c) be a firewall with control diagram C = (Q,A,
qi, qf ). The predicate associated with F is defined as

PF (p, p̃) � P∅
qi(p, p̃) where

PI
qf (p, p̃) � p = p̃ PI

q (p, p̃) � ∃p′.Pc(q)(p, p′) ∧

⎛
⎜⎜⎝

∨
(q,ψ,q′)∈A

q′ /∈I

ψ(p′) ∧ PI∪{q}
q′ (p′, p̃)

⎞
⎟⎟⎠

for all q ∈ Q such that q �= qf , and where Pc(q) is the predicate constructed from
the ruleset associated with the node q of the control diagram.
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Intuitively, in the final node qf we accept p as it is. In all the other nodes, p is
accepted as p̃ if and only if there is a path starting from p in the control diagram
that obtains p̃ through intermediate transformations. More precisely, we look for
an intermediate packet p′, provided that (i) p is accepted as p′ by the ruleset
c(q) of node q; (ii) p′ satisfies one of the predicates ψ labeling the branches of
the control diagram; and (iii) p′ is accepted as p̃ in the reached node q′. Note
that we ignore paths with loops, because firewalls have mechanisms to detect
and discard a packet when its elaboration loops. To this aim, our predicate uses
the set I for recording the nodes already traversed.

We conclude this section by establishing the correspondence between the log-
ical formulation and the operational semantics of a firewall. Formally, F accepts
the packet p as p̃ if the predicate PF (p, p̃) is satisfied, and vice versa:

Theorem 2 (Correctness of the logical characterization). Given a fire-
wall F = (C, ρ, c) and its corresponding predicate PF we have that

1. s
p,p′
−−→ s � (p, p′) =⇒ PF (p, p′)

2. ∀p, p′. PF (p, p′) =⇒ ∃s.s
p,p′
−−→ s � (p, p′)

Recall that the logical characterization abstracts away the notion of state, and
thus PF (p, p′) holds if and only if there exists a state s in which p is accepted as p′.
In particular, if the predicate holds for a packet p that belongs to an established
connection, p will be accepted only if the relevant state is reached at runtime.
This is the usual interpretation of firewall rules for established connections.

7 Policy Generation

The declarative specification extracted from a firewall policy (cf. Table 1) can be
mapped to a firewall FS whose control diagram has just one node. The ruleset RS

associated with this node only contains ACCEPT and NAT rules, each corresponding
to a line of the declarative specification. In Sect. 3 we showed that each line is
disjoint from the others. Hence, the ordering of rules in RS is irrelevant.

Here we compile FS into an equivalent firewall FC . First, we introduce an
algorithm that computes the basic rulesets of FC . Then, we map these rulesets
to the nodes of the control diagram of a real system. Finally, we prove the
correctness of the compilation.

For simplicity, we produce a firewall that automatically accepts all the packets
that belong to established connections with the appropriate translations. We
claim this is not a limitation, since it is the default behavior of some real firewall
systems (e.g., pf) and it is quite odd to drop packets, once the initial connection
has been established. Moreover, this is consistent with the over-approximation
on the firewall state done in Sect. 6.2.
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Algorithm 1. Generation of the rulesets Rdnat, Rfil, Rsnat, Rmark from RS

1: Rdnat = Rfil = Rsnat = Rmark = ε
2: for r in RS do
3: if r = (φ, ACCEPT) then
4: add r to Rfil

5: else if r = (φ, NAT(dn, sn)) then
6: generate fresh tag m
7: add (φ ∧ tag(p) = •, MARK(m)) to Rmark

8: add (tag(p) = m, NAT(dn, �)) to Rdnat

9: add (tag(p) = m, NAT(�, sn)) to Rsnat

10: end if
11: end for
12: add (tag(p) �= •, ACCEPT) and (true, DROP) to Rfil

13: prepend Rmark to Rdnat, Rfil and Rsnat

7.1 Compiling a Firewall Specification

Our algorithm takes as input the ruleset RS derived from a synthesized spec-
ification and yields the rulesets Rfil, Rdnat, Rsnat (with default ACCEPT policy)
containing filtering, DNAT and SNAT rules. This separation reflects that all the
real systems we have analyzed impose constraints on where NAT rules can be
placed, e.g., in iptables, DNAT is allowed only in rulesets Rnat

Pre and Rnat
Out, while

SNAT only in Rnat
Inp and Rnat

Post.
Intuitively, Algorithm 1 produces rules that assign different tags to packets

that must be processed by different NAT rules (lines 6 and 7). Each NAT rule is
split in a DNAT (line 8) and an SNAT (line 9), where the predicate φ becomes a
check on the tag of the packet. Filtering rules are left unchanged (line 4). Packets
subject to NAT are accepted in Rfil while the others are dropped (line 12). We
prepend Rmark to all rulesets making sure that packets are always marked,
independently of which ruleset will be processed first (line 13). We use • to
denote the empty tag used when a packet has never been tagged.

Recall that the @ operator combines rulesets in sequence. Note that Rfil

drops by default and shadows any ruleset appended to it. In practice, the only
interesting rulesets are R = {Rε, Rfil, Rdnat, Rsnat, Rdnat @Rfil, Rsnat @Rfil}
where Rε is the empty ruleset with default ACCEPT policy. Since here we do not
discuss ipfw [18] and other firewalls with a minimal control diagram, we neither
use Rdnat @Rfil nor Rsnat @Rfil.

We now introduce the notion of compiled firewall.

Definition 9 (Compiled firewall). A firewall FC = (C, ρ, c) with control dia-
gram C = (Q,A, qi, qf ) is a compiled firewall if

– c(qi) = c(qf ) = Rε

– c(q) ∈ R for every q ∈ Q \ {qi, qf}
– every path π from qi to qf in the control diagram C traverses a node q such

that c(q) ∈ {Rfil, Rdnat @Rfil, Rsnat @Rfil}
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Intuitively, the above definition requires that only rulesets in R are associated
with the nodes in the control diagram and that all paths pass at least one through
a node with the filtering ruleset.

Example 4. Now we map the rulesets to the nodes of the control diagrams of
the real systems presented in Sect. 4.1. For iptables we have:

c(Pren) = Rdnat c(Outn) = Rdnat c(Inpn) = Rsnat c(Postn) = Rsnat

c(Fwdf ) = Rfil c(Inpf ) = Rfil c(Outf ) = Rfil

while the remaining nodes get the empty ruleset Rε. For pf we have:

c(Inpn) = Rdnat c(Outn) = Rsnat c(Inpf ) = Rfil c(Outf ) = Rfil

7.2 Correctness of the Compiled Firewall

We start by showing that a compiled firewall FC accepts the same packets as
FS , possibly with a different translation.

Lemma 2. Let FC be a compiled firewall. Given a packet p, we have that

∃p′.PFS
(p, p′) ⇔ ∃p′′.PFC

(p, p′′).

Let be T = {id, dnat, snat, nat} the set of translations possibly applied to a
packet while it traverses a firewall. The first, id, represents the identity, dnat
and snat are for DNAT and SNAT, while nat represents both DNAT and SNAT.
Also, let (T , <) be the partial order such that id < dnat, id < snat, dnat < nat
and snat < nat. Finally, given a packet p and a firewall F , let πF (p) be the path
in the control diagram of F along which p is processed. Note that there exists a
unique path for each packet because the control diagram is deterministic.

The following function computes the translation capability of a path π, i.e.,
which translations can be performed on packets processed along π.

Definition 10 (Translation capability). Let π = 〈q1, . . . , qn〉 be a path on the
control diagram of a compiled firewall F = (C, ρ, c). The translation capability
of π is

tc(π) = lub

( ⋃
qi∈π

γ(c(qi))

)

where lub is the least upper bound of a set T ⊆ T w.r.t. < and γ is defined as

γ(R) = {id} for R ∈ {Rε, Rfil}
γ(Rt) = {t} for t ∈ {dnat, snat}

γ(R1 @R2) = γ(R1) ∪ γ(R2)



322 C. Bodei et al.

We write p ≈ p′ to denote that p′ = p[tag �→ m] for some marking m. In addition,
let tβ be a function that, given a packet p and its translation p′, computes a
packet p′′ where only the translation β ∈ T is applied to p, defined as:

tid(p, p′) = p tdnat(p, p′) = p[da �→ da(p′)]
tnat(p, p′) = p′ tsnat(p, p′) = p[sa �→ sa(p′)]

The following theorem describes the relationship between a compiled firewall FC

and the firewall FS . Intuitively, FS accepts a packet p as p′ if and only if FC

accepts a packet p as p′′ where p′ and p′′ only differ on marking and NAT. More
specifically, p′′ is derived from p by applying all the translations available on the
path πFC

(p) in the control diagram of FC , along which p is processed.

Theorem 3. Let p, p′ be two packets such that p is accepted by both FS and FC .
Moreover, let p′′ ≈ tβ(p, p′) where β = tc(πFC

(p)). We have that

PFS
(p, p′) ⇔ PFC

(p, p′′).

Example 5. Consider again Example 4. Any path π in iptables has tc(π) =
nat, which implies p′ ≈ p′′, i.e., FC behaves exactly as FS . Interestingly, paths
π1 = 〈qi, Inpn, Inpf , qo〉 and π2 = 〈qi,Outn,Outf , qo〉 in pf have tc(π) equal to
dnat and snat, respectively. In fact, pf cannot perform snat and dnat on packets
directed to and generated from the host, respectively.

8 Conclusions

We have proposed a transcompling pipeline for firewall languages, made of three
stages. Its core is IFCL, an intermediate language equipped here with a formal
semantics. It has the typical actions of real configuration languages, and it keeps
them apart from the way the firewall applies them, represented by a control
diagram. In stage 1, a real firewall policy language can be encoded in IFCL by
simply instantiating the state and the control diagram. As a by-product, we give
a formal semantics to the source language, which usually has none. In stage 2,
we have built a logical predicate that describes the flow of packets accepted by
the firewall together with their possible translations. From that, we have synthe-
sized a declarative firewall specification, in the form of a table that succinctly
represents the firewall behavior. This table is the basis for supporting policy
analysis, like policy implication and comparison, as described in our companion
paper [1]. The declarative specification is the input of stage 3, which compiles
it to a real target language. To illustrate, we have applied these stages on two
among the most used firewall systems in Linux and Unix: iptables and pf.
We have selected these two systems because they exhibit very different packet
processing schemes, making the porting of configurations very challenging. All
the stages above have been proved to preserve the semantics of the original pol-
icy, so guaranteeing that our transcompilation is correct. As a matter of fact,
we have proposed a way to mechanically implement policy refactoring, when
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the source and the target languages coincide. This is because the declarative
specification has no anomalies, e.g., rule overlapping or shadowing, so helping
the system administrator also in policy maintenance. At the same time, we have
put forward a manner to mechanically port policies from one firewall system
to another, when their languages differ. We point out that, even though [1]
intuitively presents and implements the first two stages of our transcompiling
pipeline, the overlap with this paper is only on Sects. 4 and 6.2. Indeed, the the-
ory, the semantics, the compilation of stage 3 and the proofs of the correctness
of the whole transcompilation are original material.

As a future work, we intend to further experiment on our proposal by encod-
ing more languages, e.g., from specialized firewall devices, like commercial Cisco
IOS, or within the SDN paradigm. We plan to include a (more refined) policy
generator of stage 3 in the existing tool [1] that implements the stages 1 and 2,
and can deal with configurations made of hundreds of rules. Also testing and
improving the performance of our transcompiler, as well as providing it with a
friendly interface would make it more appealing to network administrators. For
example, readability can be improved by automatically grouping rules and by
adding comments that explain the meaning of refactored configurations. Finally,
it would be very interesting to extend our approach to deal with networks with
more than one firewall. The idea would be to combine the synthesized specifica-
tions based on network topology and routing.
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Abstract. Ensuring security of complex systems is a difficult task that
requires utilization of numerous tools originating from various domains.
Among those tools we find attack–defense trees, a simple yet practical
model for analysis of scenarios involving two competing parties. Enhanc-
ing the well-established model of attack trees, attack–defense trees are
trees with labeled nodes, offering an intuitive representation of possible
ways in which an attacker can harm a system, and means of countering
the attacks that are available to the defender. The growing palette of
methods for quantitative analysis of attack–defense trees provides secu-
rity experts with tools for determining the most threatening attacks
and the best ways of securing the system against those attacks. Unfor-
tunately, many of those methods might fail or provide the user with
distorted results if the underlying attack–defense tree contains multiple
nodes bearing the same label. We address this issue by studying condi-
tions ensuring that the standard bottom-up evaluation method for quan-
tifying attack–defense trees yields meaningful results in the presence of
repeated labels. For the case when those conditions are not satisfied, we
devise an alternative approach for quantification of attacks.

1 Introduction

Beginning with 19th century chemistry and a groundbreaking work of Cayley,
who used them for the purposes of enumeration of isomers, trees – connected
acyclic graphs – have a long history of application to various domains. Those
include safety analysis of systems using the model of fault trees [10], developed
in 1960s, and security analysis with the assistance of the attack trees, which
the fault trees inspired. Attack trees were introduced by Schneier in [26], for
the purpose of analyzing security of systems and organizations. Seemingly sim-
ple, attack trees offer a compromise between expressiveness and usability, which
not only makes them applicable for industrial purposes [23], but also puts them
at the core of many more complex models and languages [11,24]. An exten-
sive overview and comparison of attack tree-based graphical models for security
can be found in [20]. A survey focusing on scalability, complexity analysis and
practical usability of such models has recently been provided in [12].
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Attack–defense trees [18] are one of the most well-studied extensions of attack
trees, with new methods of their analysis developed yearly [2,3,8,21]. Attack–
defense trees enhance attack trees with nodes labeled with goals of a defender,
thus enabling modeling of interactions between the two competing actors. They
have been used to evaluate the security of real-life systems, such as ATMs [7],
RFID managed warehouses [4] and cyber-physical systems [16]. Both the theo-
retical developments and the practical studies have proven that attack–defense
trees offer a promising methodology for security evaluation, but they also high-
lighted room for improvements. The objective of the current paper is to address
the problem of quantitative analysis of attack–defense trees with repeated labels.

Related Work. It is well-know that the analysis of an attack–defense tree becomes
more difficult if the tree contains repeated labels. This difficulty is sometimes
recognized, e.g., in [2,21], where authors explicitly assume lack of repeated labels
in order for their methods to be valid. In some works the problem is avoided (or
overlooked) by interpretation of repeated labels as distinct instances of the same
goal, thus, de facto as distinct goals (e.g., [8,13,18,22]), or by distinguishing
between the repetitions occurring in specific subtrees of a tree, as in [3]. Recently,
Bossuat and Kordy have established a classification of repeated labels in attack–
defense trees, depending on whether the corresponding nodes represent exactly
the same instance or different instances of a goal [5]. They point out that, if the
meaning of repeated labels is not properly specified, then the fast, bottom-up
method for identifying attacks that optimize an attribute (e.g., minimal cost,
probability of success, etc.), as used in [15,18,22], might yield tainted results.

Repeated labels are also problematic in other tree-based models, for instance
fault trees. Whereas some methods for qualitative analysis of fault trees with
repeated basic events (or generally, shared subtrees) have been developed [6,
27], their quantification might rely on approximate methods. For example, the
probability of a system failure can be evaluated using rare event approximation
approach (see [10], Chap. XI), while a simple bottom-up procedure gives an exact
result in fault trees with no shared subtrees [1]. This last observation is consistent
with the results previously obtained for attack–defense trees (see Theorems 2–4
in [2]).

Contribution. The contribution of this work is threefold. First, we determine
sufficient conditions ensuring that the standard quantitative bottom-up analysis
of attack–defense trees with repeated labels is valid. Second, we prove that some
of these conditions are in fact necessary for the analysis to be compatible with
a selected semantics for attack–defense trees. Finally, for the case when these
conditions are not satisfied, we propose a novel, alternative method of evaluation
of attributes that takes the presence of repeated labels into account.

Paper Structure. The model of attack–defense trees is introduced in detail in the
next section. In Sect. 3, the attributes and exisiting methods for their evaluation
are explained. In Sect. 4, we present our main results on quantification of attack–
defense trees with repeated labels. We give proofs of these results in Sect. 5, and
conclude in Sect. 6.
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2 Attack–Defense Trees

Attack–defense trees are rooted trees with labeled nodes that allow for an intu-
itive graphical representation of scenarios involving two competing actors, usu-
ally called attacker and defender. Nodes of a tree are labeled with goals of the
actors, with the label of the root of the tree being the main goal of the modeled
scenario. The actor whose goal is represented by the root is called proponent and
the other one is called opponent. The aim of the proponent is to achieve the root
goal, whereas the opponent tries to make this impossible.

In order for an actor to achieve some particular goal g, they might need to
achieve other goals. In such a case the node labeled with g is a refined node. The
basic model of attack–defense trees (as introduced in [18]) admits two types of
refinements: the goal of a conjunctively refined node (an AND node) is achieved
if the goals of all its child nodes are achieved, and the goal of a disjunctively
refined node (an OR node) is achieved if at least one of the goals of its children
is achieved. If a node is not refined, then it represents a goal that is considered
to be directly achievable, for instance by executing a simple action. Such a goal
is called a basic action. Hence, in order to achieve goals of refined nodes, the
actors execute (some of) their basic actions. What distinguishes attack–defense
trees model from attack trees is the possibility of the goals of the actors to be
countered by goals of their adversary, which themselves can be again countered,
and so on. To represent the countering of a goal, the symbol C will be used. A
goal g is countered by a goal g′ (denoted C(g, g′)) if achieving g′ by one of the
actors makes achieving g impossible for the other actor.

It is not rare that in an attack–defense tree, whether generated by hand or
in a semi–automatic way [14,25,28] some nodes bear the same label. In such a
case, there are two ways of interpreting them:

1. either the nodes represent the same single instance of the goal – e.g., cutting
the power off in a building can be done once and has multiple consequences,
thus a number of refined nodes might have a node labeled cutPowerOff among
their child nodes, but all these nodes will represent exactly the same action
of cutting the power off;

2. or else each of the nodes is treated as a distinct instance of the goal. For
instance, while performing an attack, the attacker might need to pass through
a door twice – once to enter and second time to leave a building. Since these
actions refer to the same door and the same attacker, the corresponding nodes
will, in most cases, hold the same label goThroughDoor. However, it is clear
that they represent two different instances of the same goal.

In this work we assume the first of these ways of interpretation. In particular,
following [5], we call a basic action that serves as a label for at least two nodes
a clone or a cloned basic action, and interpret them as the same instance of a
goal. Nodes representing distinct instances of the same goal or distinct goals are
assumed in this work to have different labels.
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An example of attack–defense tree1 is represented in Fig. 1. In this tree, the
proponent is the attacker and the opponent is the defender. According to the
attack–defense trees’ convention, nodes representing goals of the attacker are
depicted using red circles, and those of the defender using green rectangles.
Children of an AND node are joined by an arc, and countermeasures are attached
to nodes they are supposed to counter via dotted edges.

Example 1. In the attack–defense scenario represented by the attack–defense
tree from Fig. 1, the proponent wants to steal money from the opponent’s
account. To achieve this goal, they can use physical means, i.e., force the oppo-
nent to reveal their PIN, steal the opponent’s card and then withdraw money
from an ATM. One way of learning the PIN would be to eavesdrop on the victim
when they enter the PIN. This could be prevented by covering the keypad with
hand. Covering the keypad fails if the proponent monitors the keypad with a
hidden micro–camera installed at an appropriate spot. Another way of getting
the PIN would be to force the opponent to reveal it.

Instead of attacking from a physical angle, the proponent can steal money by
exploiting online banking services. In order to do so, they need to learn the oppo-
nent’s user name and password. Both of these goals can be achieved by creating
a fake bank website and using phishing techniques for tricking the opponent into
entering their credentials. The proponent could also try to guess what the pass-
word and the user name are. Using very strong password would counter such
guessing attack. Once the proponent obtains the credentials, they use them for
logging into the online banking services and execute a transfer. Transfer disposi-
tions might be additionally secured with two-factor authentication using mobile
phone text messages. This security measure could be countered by the proponent
by stealing the opponent’s phone.

Note that even though there are two nodes labeled with phishing in the tree,
they actually represent the same instance of the same action. The proponent does
not need to perform two different phishing attacks to get the password and the
user name—setting up one phishing website and sending one phishing e-mail will
suffice for the proponent to get both credentials. Thus, the two nodes labeled
phishing are clones.

Let us now introduce a formal notation for attack–defense trees, which we
will use throughout this paper. Such notation is necessary to formally define the
meaning of attack–defense trees in terms of formal semantics and to specify the
algorithms for their quantitative analysis.

We use symbols p and o to distinguish between the proponent and the oppo-
nent. By B

p and B
o we denote the sets of labels representing basic actions of

the proponent and of the opponent, respectively. We assume that B
p ∩ B

o = ∅,
and we set B = B

p ∪ B
o. For s ∈ {p, o}, the symbol s̄ stands for the other actor,

i.e., p̄ = o and ō = p. We denote the elements of B
s with bs, for s ∈ {p, o}.

Attack–defense trees can be seen as terms generated by the following grammar,
where ORs and ANDs are unranked refinement operators, i.e., they may take an
arbitrary number of arguments, and Cs is a binary counter operator.

1 The example is based on one of exemplary trees provided by ADTool [9].
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T s : bs | ORs(T s, . . . , T s) | ANDs(T s, . . . , T s) | Cs(T s, T s̄) (1)

Example 2. Consider the tree from Fig. 1. The term corresponding to the subtree
rooted in the via ATM node is

ANDp
(
ORp

(
Cp

(
eavesdrop, Co(coverKey, camera)

)
, force

)
, stealCard,

withdrawCash

)
,

where the labels of basic actions have been shortened for better readability.

We denote the set of trees generated by grammar (1) with T.
In order to analyze possible attacks in an attack–defense tree, in particu-

lar, determine cheapest ones, or the ones that require the least amount of time
to execute, one needs to decide what is considered to be an attack. This can
be achieved with the help of semantics that provide formal interpretations for
attack–defense trees. Several semantics for attack–defense trees have been pro-
posed in [18]. Below, we recall two ways of interpreting attack–defense trees and
the notions of attack they entail.

Definition 1. The propositional semantics for attack–defense trees is a function
P that assigns to each attack–defense tree a propositional formula, in a recursive
way, as follows

P(b) = xb, P(ORs(T s
1 , . . . , T s

k)) = P(T s
1) ∨ · · · ∨ P(T s

k),
P(Cs(T s

1 , T s̄
2)) = P(T s

1) ∧ ¬P(T s̄
2), P(ANDs(T s

1 , . . . , T s
k)) = P(T s

1) ∧ · · · ∧ P(T s
k),

where b ∈ B, and xb is the corresponding propositional variable. Two attack–
defense trees are equivalent wrt P if their interpretations are equivalent propo-
sitional formulæ.

Definition 1 formalizes one of the most intuitive and widely used ways of
interpreting attack–defense trees, where every basic action is assigned a propo-
sitional variable indicating whether or not the action is satisfiable. In the light
of the propositional semantics, an attack in an attack–defense tree T is any
assignment of values to the propositional variables, such that the formula P(T )
evaluates to true. We note that this natural approach is often used without invok-
ing the propositional semantics explicitly (e.g., in [2] or [8]). Observe also that
due to the idempotency of the logical operators ∨ and ∧, and the fact that every
basic action is assigned a single variable, when the propositional semantics is
used, cloned actions are indeed treated as the same instance of the same action.
In particular, this implies that the trees ANDp(b, ORp(b, b′)) and b are equiva-
lent under the propositional interpretation. Such approach might not always be
desirable, especially when we do not only want to know whether attacks are
possible, but actually how they can be achieved. To accommodate this point of
view, the set semantics has recently been introduced in [5]. We briefly recall its
construction below.
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In the sequel, we set

S � Z = {(PS ∪ PZ , OS ∪ OZ)|(PS , OS) ∈ S, (PZ , OZ) ∈ Z}, (2)

for S,Z ⊆ B
p×B

o. Furthermore, for a set X we denote its power set with ℘(X).

Definition 2. The set semantics for attack–defense trees is a function S : T →
℘
(
℘(Bp) × ℘(Bo)

)
that assigns to each attack–defense tree a set of pairs of sets

of labels, as follows

S(
bp

)
=

{({bp}, ∅)}
, S(

bo
)

=
{(∅, {bo})}

,

S(
ORp(T p

1 , . . . , T p
k )

)
=

k⋃
i=1

S(T p
i ), S(

ORo(T o
1 , . . . , T o

k )
)

=
k⊙

i=1

S(T o
i ),

S(
ANDp(T p

1 , . . . , T p
k )

)
=

k⊙
i=1

S(T p
i ), S(

ANDo(T o
1 , . . . , T o

k )
)

=
k⋃

i=1

S(T o
i ),

S(
Cp(T p

1 , T o
2 )

)
= S(T p

1 ) � S(T o
2 ), S(

Co(T o
1 , T p

2 )
)

= S(T o
1 ) ∪ S(T p

2 ).

Two trees T1 and T2 are equivalent wrt the set semantics, denoted T1 ≡S T2, if
and only if the two sets S(T1) and S(T2) are equal.

The meaning of a pair (P,O) belonging to S(T ) is that if the proponent
executes all actions from P and the opponent does not execute any of the actions
from O, then the root goal of the tree T is achieved. In particular, if (P, ∅) ∈
S(T ), then the opponent cannot prevent the proponent from achieving the root
goal when they execute all actions from P .

Example 3. The set semantics of the tree in Fig. 1 is the following

S(T ) =
{
({force, stealCard, withdrawCash}, ∅),

({camera, eavesdrop, stealCard, withdrawCash}, ∅),

({eavesdrop, stealCard, withdrawCash}, {coverKey}),

({phish, logIn&execTrans}, {SMS}),

({phish, guessUN, logIn&execTrans}, {SMS}),

({phish, guessPwd, logIn&execTrans}, {strongPWD, SMS}),

({guessUN, guessPwd, logIn&execTrans}, {strongPWD, SMS}),

({phish, stealPhone, logIn&execTrans}, ∅),

({phish, guessUN, stealPhone, logIn&execTrans}, ∅),

({phish, guessPwd, stealPhone, logIn&execTrans}, {strongPWD}),

({guessUN, guessPwd, stealPhone, logIn&execTrans}, {strongPWD})
}
.

Throughout the rest of the paper, by an attack in an attack–defense tree T
we mean an element of its set semantics S(T ).

Grammar (1) ensures that attack–defense trees are well-typed with respect
to the two players, i.e., p and o. However, not every well-typed tree is necessar-
ily well-formed wrt the labels used. In particular, it should be ensured that the
usage of repeated labels is consistent throughout the whole tree. For instance,
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if the action coverKey, of covering an ATM’s keypad with a hand, can be
countered by monitoring with a camera, this countermeasure should also be
attached to every other node labeled coverKey. Similarly, if execution of the
action logIn&execTrans contributes to the achievement of the proponent’s goal
of stealing money via the online banking services, this information should be
kept in every subtree rooted in a node labeled via online banking. Thus, to
ensure that the results of the methods developed further in the paper indeed
reflect the intended aspects of a modeled scenario, in the following we assume
that subtrees of an attack–defense tree that are rooted in identically labeled
nodes are equivalent wrt the set semantics.

3 Quantitative Analysis Using Attributes

Among methods for quantitative analysis of scenarios modeled with attack–
defense trees are so called attributes, introduced intuitively by Schneier in [26]
and formalized for attack trees in [15,22], and for attack–defense trees in [18].
Attributes represent quantitative aspects of the modeled scenario, such as a
minimal cost of executing an attack or maximal damage caused by an attack.
Numerous methods to evaluate the value of an attribute on attack–defense trees
exist [2,8], and the most often used approach is based on so called bottom-up
evaluation [18]. The idea behind the bottom-up evaluation is to assign attribute
values to the basic actions and to propagate them up to the root of the tree using
appropriate operations on the intermediate nodes. The notions of attribute and
bottom-up evaluation are formalized using attribute domains.

Definition 3. An attribute domain for an attribute α on attack–defense trees
is a tuple

Aα = (Dα, ORpα, ANDpα, ORoα, ANDoα, Cpα, Coα),

where Dα is a set, and for s ∈ {p, o}, OP ∈ {OR, AND},
1. OPsα is an unranked function on Dα,
2. Csα is a binary function on Dα.

Let Aα = (Dα, ORpα, ANDpα, ORoα, ANDoα, Cpα, Coα) be an attribute domain. A func-
tion βα : B → Dα that assigns values from the set Dα to basic actions of attack–
defense trees is called a basic assignment for attribute α.

Definition 4. Let Aα = (Dα, ORpα, ANDpα, ORoα, ANDoα, Cpα, Coα) be an attribute
domain, T be an attack–defense tree, and βα be a basic assignment for attribute
α. The value of attribute α for T obtained via the bottom–up procedure, denoted
αB(T, βα), is defined recursively as

αB(T, βα) =

⎧⎪⎨
⎪⎩

βα(b) if T = b, b ∈ B,

OPsα(αB(T s
1 , βα), . . . , αB(T s

n, βα)) if T = OPs(T s
1 , . . . , T s

n),
Csα(αB(T s

1 , βα), αB(T s̄
2 , βα)) if T = Cs(T s

1 , T s̄
2),

where s ∈ {p, o}, OP ∈ {OR, AND}. (In the notation αB(T, βα), the index B refers
to the “bottom-up” computation.)
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An extensive overview of attribute domains and their classification can be
found in [19]. The article [4] contains a case study and guidelines for practical
application of the bottom-up procedure. Numerous examples of attributes for
attack trees and attack trees extended with additional sequential refinement have
been given in [13,15]. We gather some relevant attribute domains for attack–
defense trees in Table 1.

Table 1. Selected attribute domains for attack–defense trees

Attribute Dα ORpα ANDpα ORoα ANDoα Cpα Coα βα(bo)

min. attack cost R≥0 ∪ {+∞} min + + min + min +∞
max. damage R≥0 ∪ {−∞} max + + max + max −∞
min. skill level N ∪ {0, +∞} min max max min max min +∞
min. nb of experts N ∪ {0, +∞} min + + min + min +∞
satisfiability for p {0, 1} ∨ ∧ ∧ ∨ ∧ ∨ 0

Example 4 illustrates the bottom-up procedure on the tree from Fig. 1.

Example 4. Consider the tree T given in Fig. 1, and let α be the minimal attack
cost attribute (see Table 1 for its attribute domain). We fix the basic assignment
βcost to be as follows:

basic action b βcost(b) basic action b βcost(b)
stealCard 60 force 100
camera 75 withdrawCash 10
phish 70 eavesdrop 20
guessPwd 120 guessUN 120
logIn&execTrans 10 stealPhone 60

Furthermore, for every basic action b of the opponent, we set βcost(b) = +∞.
The bottom-up computation of the minimal cost on T gives

costB(T, βcost) = 165.

This value corresponds to monitoring with the camera, eavesdropping on the
victim to learn their PIN, stealing the card, and withdrawing money.

As already noticed in [22], the value of an attribute for a tree can also be
evaluated directly on its semantic. For our purposes we define this evaluation as
follows.

Definition 5. Let (Dα, ORpα, ANDpα, ORoα, ANDoα, Cpα, Coα) be an attribute domain and
let T be an attack–defense tree with a basic assignment βα. The value of the
attribute α for T evaluated on the set semantics, denoted αS(T, βα), is defined as
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αS(T, βα) = (ORpα)(P,O)∈S(T )

(
Cpα

(
(ANDpα)b∈P βα(b), (ORoα)b∈Oβα(b)

))
.

(In the notation αS(T, βα), the index S refers to the computation on the “set
semantics”.)

Example 5. Consider again the tree from Fig. 1 and the basic assignment for the
minimal cost attribute given in Example 4. The cost of all elements of the set
semantics for T are as follows

({force, stealCard, withdrawCash}, ∅), 170
({camera, eavesdrop, stealCard, withdrawCash}, ∅), 165
({eavesdrop, stealCard, withdrawCash}, {coverKey}) + ∞
({phish, logIn&execTrans}, {SMS}), + ∞
({phish, guessUN, logIn&execTrans}, {SMS}), + ∞
({phish, guessPwd, logIn&execTrans}, {strongPWD, SMS}), + ∞
({guessUN, guessPwd, logIn&execTrans}, {strongPWD, SMS}), + ∞
({phish, stealPhone, logIn&execTrans}, ∅), 140
({phish, guessUN, stealPhone, logIn&execTrans}, ∅), 260
({phish, guessPwd, stealPhone, logIn&execTrans}, {strongPWD}), + ∞
({guessUN, guessPwd, stealPhone, logIn&execTrans}, {strongPWD}) + ∞.

The evaluation of the minimal cost attribute on the set semantics for T gives

αS(T, βcost) = min{170, 165,+∞, 140, 260} = 140,

which corresponds to performing the phishing attack to get the user name and
their password, stealing the phone, and logging into the online bank application
to execute the transfer.

Notice that the values obtained for the same tree in Examples 4 and 5 are
different, despite the fact that the same basic assignment and the same attribute
domain have been used. This is due to the fact that the tree from Fig. 1 contains
cloned nodes which the standard bottom-up evaluation cannot handle properly.
In the next section, we provide conditions and develop a method for a proper
evaluation of attributes on attack–defense trees with cloned nodes.

4 Quantification On Attack–Defense Trees with Clones

Depending on what is considered to be an attack in an attack–defense tree,
different semantics can be used. Note that a semantics for attack–defense trees
naturally introduces an equivalence relation in T. It is thus of great importance to
select a method of quantitative analysis that is consistent with a chosen seman-
tics, i.e., a method that for any two trees equivalent wrt the employed semantics
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returns the same result. This issue was recognized by the authors of [22] for
attack trees, and addressed, in the case of attack–defense trees in [18], with the
notion of compatibility between an attribute domain and a semantics. Below, we
adapt the definition of compatibility from [18] to the bottom-up computation.

Definition 6. Let Aα = (Dα, ORpα, ANDpα, ORoα, ANDoα, Cpα, Coα) be an attribute
domain. The bottom-up procedure, defined in Definition 4, is compatible with
a semantics ≡ for attack–defense trees, if for every two trees T1, T2 satis-
fying T1 ≡ T2, the equality αB(T1, βα) = αB(T2, βα) holds for any basic
assignment βα.

For instance, it is well-known that the bottom-up computation of the mini-
mal cost using the domain from Table 1 is not compatible with the proposi-
tional semantics. Indeed, consider the trees T1 = ORp(b, AND(b′, b′′)) and T2 =
ANDp(ORp(b, b′), (b, b′′)) whose corresponding propositional formulæ are equiva-
lent. However, for the basic assignment βcost(b) = 3, βcost(b′) = 4, βcost(b′′) = 1
the values αB(T1, βα) = 3 and αB(T2, βα) = 4 are different. Similarly, the
bottom-up computation of the minimal cost attribute is not compatible with
the set semantics. This can be shown by considering trees T3 = ANDp(b, b) and
T4 = b and will further be discussed in Corollary 1.

This notion of compatibility defined in Definition 6 can be generalized to any
computation on attack–defense trees.

Definition 7. Let D be a set and let f be a function on T × D. We say that f
is compatible with a semantics ≡ for attack–defense trees, if for every two trees
T1, T2 satisfying T1 ≡ T2 the equality f(T1, d) = f(T2, d) holds for any d ∈ D.

To illustrate the difference between the compatibility notions defined in Def-
initions 6 and 7, one can consider the method for computing the so called
attacker’s expected outcome, proposed by Jürgenson and Willemson in [17]. Since
this method is not based on an attribute domain, it cannot be simulated using
the bottom-up evaluation. However, the authors show that the outcome of their
computations is independent from the Boolean representation of an attack tree.
This means that the method proposed in [17] is compatible with the proposi-
tional semantics for attack trees.

Remark 1. Consider an attribute domain Aα = (Dα,⊕,⊗,⊗,⊕,⊗,⊕) with ⊕
and ⊗ being binary, associative, and commutative operations on Dα

2. Under
these assumptions, for a tree T and a basic assignment βα, we have

αS(T, βα) =
⊕

(P,O)∈S(T )

( ⊗ ( ⊗
b∈P

βα(b),
⊗
b∈O

βα(b)
))

=
⊕

(P,O)∈S(T )

⊗
b∈P∪O

βα(b).

2 Note that a binary and associative operation can be modeled with an unranked
operator.
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Since for any two trees T1 and T2 that are equivalent wrt the set semantics the
expressions αS(T1, βα) and αS(T2, βα) differ only in the order of the terms, they
yield the same (numerical) result. In other words, under the above assumptions,
the computation αS is compatible with the set semantics.

As it has been observed in [18,19], there is a wide class of attribute domains
of the form (Dα,⊕,⊗,⊗,⊕,⊗,⊕), where (Dα,⊕,⊗) constitutes a commutative
idempotent semiring. Recall that an algebraic structure (R,⊕,⊗) is a commu-
tative idempotent semiring if ⊕ is an idempotent operation, both operations ⊕
and ⊗ are associative and commutative, their neutral elements, denoted here
by e⊕ and e⊗, belong to R, operation ⊗ distributes over ⊕, and the absorbing
element of ⊗, denoted a⊗, is equal to e⊕.

Remark 2. In order for the computations performed using the bottom-up eval-
uation to be consistent with the intuition, the basic actions of the oppo-
nent are assigned a specific value. In the case of an attribute domain
(Dα,⊕,⊗,⊗,⊕,⊗,⊕) based on a commutative idempotent semiring (Dα,⊕,⊗)
this value is equal to a⊗. One of the consequences of this choice is that if for
every attack (P,O) ∈ S(T ) the set O is not empty, then αS(T, βα) = a⊗ = e⊕,
indicating the fact that the proponent cannot achieve the root goal if the oppo-
nent executes all of their actions present in the tree. Note that this is closely
related to the choice of the functions Cpα = ⊗ and Coα = ⊕.

Example 6. For instance, in the case of the minimal cost attribute domain
(cf. Table 1), which is based on the idempotent commutative semiring (R≥0 ∪
{+∞},min,+), the basic actions of the opponent are originally assigned +∞,
which is both a neutral element for the min operation, and the absorbing element
for the addition. This implies that, if on a certain path, there is an opponent’s
action which is not countered by the proponent, the corresponding branch will
result in the value +∞, which models that it is impossible (since too costly) for
the proponent. This is due to the fact that Cpcost = +. However, if the opponent’s
action is countered by the proponent’s action, the corresponding branch will
yield a real value different from +∞, because the min operator, used for Cocost,
will be applied between a real number assigned to the proponent’s counter and
the +∞.

The first contribution of this work is presented in Theorem 1. It establishes a
relation between the evaluation of attributes via the bottom–up procedure and
their evaluation on the set semantics. Its proof is postponed to Sect. 5.

Theorem 1. Let T be an attack–defense tree generated by grammar (1) and let
Aα = (Dα,⊕,⊗,⊗,⊕,⊗,⊕) be an attribute domain such that the operations ⊕
and ⊗ are associative and commutative, ⊕ is idempotent, and ⊗ distributes over
⊕. If

– there are no repeated labels in T , or
– the operator ⊗ is idempotent,

then the equality αB(T, βα) = αS(T, βα) holds for any basic assignment βα.
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Note that the assumptions of Theorem 1 are satisfied by any commutative idem-
potent semiring, thus the same result also holds for attributes whose attribute
domains are based on commutative idempotent semirings. Furthermore, one can
compare the assumption on the lack of repeated labels in Theorem 1 with the lin-
earity of an attack–defense tree, considered in [2]. The authors of [2] have proven
that under this strong assumption, the evaluation method that they have devel-
oped for multi-parameter attributes coincides with their bottom-up evaluation.

Remark 3. Consider again the attribute domain specified in Theorem 1. Suppose
that the operation ⊗ is not idempotent. Then there exists d ∈ Dα, such that
d ⊗ d �= d. In consequence, for βα(b) = d and the trees T1 = b and T2 =
ANDp(b, b) that are equivalent wrt to the set semantics, we have αB(T1, βα) �=
αB(T2, βα). This shows that if the operation ⊗ is not idempotent, then the
bottom-up evaluation based on the attribute domain satisfying the remaining
assumptions of Theorem 1 is not compatible with the set semantics.

Theorem 1 and Remarks 1 and 3 immediately yield the following corollary.

Corollary 1. Let Aα = (Dα,⊕,⊗,⊗,⊕,⊗,⊕) be an attribute domain such that
the operations ⊕ and ⊗ are associative and commutative, ⊕ is idempotent, and
⊗ distributes over ⊕. The bottom-up procedure based on Aα is compatible with
the set semantics if and only if the operation ⊗ is idempotent.

We can also notice that if the assumptions from Corollary 1 are satisfied but
the operation ⊗ is not idempotent, then the bottom-up procedure is compatible
with the so called multiset semantics (introduced for attack trees in [22] and
attack–defense trees in [18]) which uses pairs of multisets instead of pairs of
sets.

Some of the domains based on idempotent semirings have a specific property
that we encapsulate in the notion of non-increasing domain.

Definition 8. Let Aα be an attribute domain. We say that Aα is non-increasing
if Aα = (Dα,⊕,⊗,⊗,⊕,⊗,⊕), (Dα,⊕,⊗) is a commutative idempotent semir-
ing, and for every d, c ∈ Dα, the inequality d ⊗ c � d holds, where � stands for
the canonical partial order on Dα, i.e., the order defined by d � c if and only if
d ⊕ c = c.

Example 7. From the attribute domains presented in Table 1 all but one are
non-increasing. The only one which is not non-increasing is the maximal damage
domain.

Note that in order to be able to evaluate the value of an attribute on the set
semantics S(T ), one needs to construct the semantics itself. This task might be
computationally expensive, since, in the worst case, the number of elements of
S(T ) is exponential in the number of nodes of T . In contrast, the complexity of
the bottom-up procedure is linear in the number of nodes of the underlying tree
(if the operations performed on the intermediate nodes are linear in the num-
ber of arguments). Thus, it is desirable to ensure that αB(T, βα) = αS(T, βα).
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By Theorem 1, this equality holds in a wide class of attributes, provided that
there are no clones in T . If T contains clones, then the two methods might return
different values (as illustrated in Remark 3).

To deal with this issue, we present our second contribution of this work. In
Algorithm 1, we propose a method of evaluating the value of attributes hav-
ing non-increasing domains on attack–defense trees, that takes the repetition of
labels into account. The algorithm relies on the following notion of necessary
clones.

Definition 9. Let b be a cloned basic action of the proponent in an attack–
defense tree T . If b is present in every attack of the form (P, ∅) ∈ S(T ), then b
is a necessary clone; otherwise it is an optional clone.

It is easy to see that the tree from Fig. 1 does not contain any necessary
clones. Indeed, this tree contains only one clone – phish – however, there exists
the attack ({force, stealCard, withdrawCash}, ∅) which does not make use of
the corresponding phishing action.

The sets of all necessary and optional clones in a tree T are denoted with
CN (T ) and CO(T ), respectively. When there is no danger of ambiguity, we use CN

and CO instead of CN (T ) and CO(T ). The idea behind Algorithm 1 is to first rec-
ognize the set CN of necessary clones and temporarily ensure that the values of
the attribute assigned to them do not influence the result of the bottom–up pro-
cedure. Then the values of the optional clones are also temporarily modified, and
the corresponding bottom-up evaluations are performed. Only then the result
is adjusted in such a way that the original values of the necessary clones are
taken into account. Before explaining Algorithm 1 in detail, we provide a sim-
ple method for determining whether a cloned basic action of the proponent is a
necessary clone in the following lemma.

Lemma 1. Let T be an attack–defense tree generated by grammar (1) and a ∈
B
p be a cloned action of the proponent in T . Let α be the minimal skill level

attribute (cf. Table 1) with the following basic assignment, for b ∈ B

βskill(b) =

⎧⎪⎨
⎪⎩

0 if b �= a and b ∈ B
p,

1 if b = a,

+∞ otherwise.

Then, a is a necessary clone in T if and only if skillB(T, βskill) = 1.

Proof. Observe that under the given basic assignment the value of skillS(T, βskill)
is equal to 1 if and only if a is a necessary clone. Since max is an idempo-
tent operation, skillB(T, βskill) = skillS(T, βskill), by Theorem 1. The lemma
follows. ��

We now explain our algorithm for evaluating attributes on attack–defense
trees with repeated labels. Algorithm 1 takes as input an attack–defense tree T
generated by grammar (1), an attribute domain Aα, and a basic assignment βα

for the attribute. Once the sets of necessary and the optional clones have been
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determined, new basic assignments are created. Under each of these assignments
β′

α, the necessary clones receive value e⊗ (in line 3). Intuitively, this ensures two
things. First, that when the bottom–up procedure with the assignment β′

α is
performed (in line 8), the value selected at the nodes corresponding to a choice
made by the proponent (e.g., at the ORp nodes) is likely to be the one corre-
sponding to a subset of actions of some optimal attack (i.e., a subset containing
a necessary clone). The second outcome is that in the final result of the algo-
rithm, the values of βα assigned to the necessary clones are taken into account
exactly once (line 11).

Algorithm 1. Evaluation of attributes in attack–defense tree with clones
Input: Attack–defense tree T , attribute domain (Dα, ⊕, ⊗, ⊗, ⊕, ⊗, ⊕), βα : B → Dα

Output: αA(T, βα)
1: αA(T, βα) ← e⊗
2: initialize CN , CO

3: β′
α(b) ← e⊗ for every b ∈ CN

4: β′
α(b) ← βα(b) for every b ∈ B \ (CN ∪ CO)

5: for every subset C ⊆ CO do
6: β′

α(b) ← a⊗ for every b ∈ C
7: β′

α(b) ← e⊗ for every b ∈ CO \ C
8: rc ← αB(T, β′

α) ⊗ ⊗
b∈CO\C βα(b)

9: αA(T, βα) ← αA(T, βα) ⊕ rc

10: end for
11: αA(T, βα) ← αA(T, βα) ⊗ ⊗

b∈CN
βα(b)

12: return αA(T, βα)

In lines 6–7, an assignment β′
α is created for every subset C of the set of

optional clones CO. The clones from C are assigned a⊗, which intuitively ensures
that they are ignored by the bottom-up procedure, and the remaining optional
clones are assigned e⊗ (again, to ensure that their values under βα will eventually
be counted exactly once). The result of computations performed in the for loop
is multiplied (in the sense of performing operation ⊗) in line 11 by the product
of values assigned to the necessary clones. (Note that the index A in the notation
αA(T, βα) refers to the evaluation using Algorithm 1.)

Example 8. We illustrate Algorithm 1 on the tree T from Fig. 1 and the minimal
cost attribute domain. Consider the basic assignment of cost given in Example 4.
Observe that CN = ∅ and CO = {phish}.

The sets C considered in the for loop, their influence on the assignment of
cost, and their corresponding results rc are the following

C = ∅, β′
cost(phish) = 0, rc = 140,

C = {phish}, β′
cost(phish) = +∞, rc = 165.
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The value of costA(T, βcost) after the for loop is min{140, 165}. Since CN =
∅, the algorithm returns costA(T, βcost) = 140. This value corresponds to the
cost of the attack ({phish, logIn&execTrans, stealPhone}, ∅), which is indeed
the cheapest attack in the tree under the given basic assignment, as already
illustrated in Example 5. Notice furthermore, that costA(T, βcost) = αS(T, βcost)
(cf. Example 5).

Now we turn our attention to complexity of Algorithm 1. Let k be the number
of distinct clones of the proponent in T . Furthermore, let n be the number of
nodes in T . We assume that the complexity of operations ⊕ and ⊗ is linear in
the number of arguments, which is a reasonable assumption in the view of the
existing attribute domains (cf. Table 1). This implies that the result of a single
bottom up-procedure in T is obtained in time O(n). Thus, from the operations
performed in lines 1–4, the most complex one is the initialization of the sets
CN and CO, the time complexity of which is in O(kn) (by Lemma 1). Since the
for loop from line 5 iterates over all of the subsets of the optional clones, and
the operations inside the loop are linear in n, the overall time complexity of
Algorithm 1 is in O(n2k).

In Theorem 2 we give sufficient conditions for the result αA(T, βα) of Algo-
rithm 1 to be equal to the result αS(T, βα) of evaluation on the set semantics.
Its proof is presented in Sect. 5.

Theorem 2. Let T be an attack–defense tree generated by grammar (1) and Aα

be a non–increasing attribute domain. Then the equality αA(T, βα) = αS(T, βα)
holds for every basic assignment βα : B → Dα satisfying βα|

Bo ≡ a⊗.

Remark 1 and Theorem 2 imply the following corollary.

Corollary 2. Let Aα = (Dα,⊕,⊗,⊗,⊕,⊗,⊕) be a non–increasing attribute
domain and let β := {βα : B → Dα st βα|

Bo ≡ a⊗}. Then, the evaluation pro-
cedure αA : T × β → Dα specified by Algorithm 1 is compatible with the set
semantics (in the sense of Definition 7).

5 Proofs of Theorems 1 and 2

Throughout this section it is assumed that T is an attack–defense tree generated
by grammar (1) and Aα = (Dα,⊕,⊗,⊗,⊕,⊗,⊕) is an attribute domain with
the operations ⊕ and ⊗ that are associative and commutative, ⊕ is idempotent,
and ⊗ distributes over ⊕. We begin with examining parallels between attribute
domains of this type and the set semantics.

Since the operation ⊗ distributes over ⊕, the result of the bottom–up pro-
cedure for any basic assignment βα of α can be represented as

αB(T, βα) = (βα(b11) ⊗ βα(b12) ⊗ . . . ⊗ βα(b1k1
))⊕

. . .

⊕ (βα(bi
1) ⊗ βα(bi

2) ⊗ . . . ⊗ βα(bi
ki

))⊕
. . .

⊕ (βα(bn
1 ) ⊗ βα(bn

2 ) ⊗ . . . ⊗ βα(bn
kn

)).

(3)
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Observe that with the set DS = ℘
(
℘(Bp) × ℘(Bo)

)
and the opera-

tion � defined by equality (2), the algebraic structure (DS ,∪,�) constitutes
a commutative idempotent semiring. Consider the attribute domain AS =
(DS ,∪,�,�,∪,�,∪) and the basic assignment

βS(b) =

{{({b}, ∅)}
if b ∈ B

p,{(∅, {b})}
otherwise.

Clearly, S(T ) = SB(T, βS). By the previous observations SB(T, βS) can be
represented as

SB(T, βS) = (βS(b11) � βS(b12) � · · · � βS(b1k1
))∪

. . .

∪ (βS(bi
1) � βS(bi

2) � · · · � βS(bi
ki

))∪
. . .

∪ (βS(bn
1 ) � βS(bn

2 ) � · · · � βS(bn
kn

)).

(4)

We chose the representations (3) and (4) in such a way that for i ∈ {1, . . . , n}
and j ∈ {1, . . . , ki} the basic action bi

j in (3) is the same as bi
j in (4), which is

possible due to the commutativity of the operations.
From definitions of the basic assignment βS and the operation � it follows

that for every i ∈ {1, . . . , n} the ith term

βS(bi
1) � βS(bi

2) � · · · � βS(bi
ki

)

of representation (4) is a set consisting of exactly one pair of sets. Let us
denote this term with {(Pi, Oi)}. Observe that since S(T ) = SB(T, βS), we
have (Pi, Oi) ∈ S(T ) for every i, and, conversely, for every (P,O) ∈ S(T ) there
exists at least one i such that (P,O) = (Pi, Oi).

Finally, we denote the ith term of representation (3) with αi. Now we are
ready to prove Theorem 1.

Proof of Theorem 1. If there are no repeated labels in T or the operator ⊗ is
idempotent, then for i ∈ {1, . . . , n} it holds that αi =

⊗
b∈Pi∪Oi

βα(b). Together
with the idempotency of ⊕ this implies that

αB(T, βα) =
n⊕

i=1

αi =
⊕

(P,O)∈S(T )

⊗
b∈P∪O

βα(b).

��
We finish this section by providing the proof of Theorem 2.

Proof of Theorem 2. Consider a result rc of the bottom–up procedure obtained
in the line 8 of Algorithm 1 for a set C ⊆ CO of optional clones. Using represen-
tation (3), it can be written as
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rc = αB(T, β′
α) ⊗

⊗
b∈CO\C

βα(b)

=
(
β′

α(b11) ⊗ β′
α(b12) ⊗ . . . ⊗ β′

α(b1k1
)
) ⊗

⊗
b∈CO\C

βα(b)⊕

. . .

⊕ (
β′

α(bi
1) ⊗ β′

α(bi
2) ⊗ . . . ⊗ β′

α(bi
ki

)
) ⊗

⊗
b∈CO\C

βα(b)⊕

. . .

⊕ (
β′

α(bn
1 ) ⊗ β′

α(bn
2 ) ⊗ . . . ⊗ β′

α(bn
kn

)
) ⊗

⊗
b∈CO\C

βα(b).

Let us denote the ith term of the above expression with rc
i . Observe that the

result of Algorithm 1 is

αA(T, βα) =

⎡
⎣ ⊕

C⊆CO

rc

⎤
⎦ ⊗

⊗
b∈CN

βα(b) =

⎛
⎝ n⊕

i=1

⎡
⎣ ⊕

C⊆CO

rc
i

⎤
⎦

⎞
⎠ ⊗

⊗
b∈CN

βα(b).

Due to the values assigned to the optional clones in the for loop, the inner
expression can be expanded as follows.

⊕
C⊆CO

rc
i =

⎡
⎢⎢⎣

⊕
C⊆CO

C∩(Pi∪Oi) �=∅

[a⊗ ⊗
⊗

b∈CO\C
βα(b)]

⎤
⎥⎥⎦

⊕
⊕

C⊆CO

C∩(Pi∪Oi)=∅

⎡
⎢⎢⎣

⊗
b∈Pi∪Oi

b/∈CN∪CO

βα(b) ⊗
⊗

b∈Pi∪Oi

b∈CN∪CO\C

e⊗ ⊗
⊗

b∈CO\C
βα(b)

⎤
⎥⎥⎦

=
⊕

C⊆CO

C∩(Pi∪Oi)=∅

⎡
⎢⎢⎣

⊗
b∈Pi∪Oi

b/∈CN

βα(b) ⊗
⊗

b/∈Pi∪Oi

b∈CO\C

βα(b)

⎤
⎥⎥⎦

Since the attribute domain is non–increasing, the last “sum” is absorbed by the
term corresponding to the set C satisfying CO \ C = (Pi ∪ Oi) ∩ CO, namely, the
term

⊗
b∈Pi∪Oi

b/∈CN

βα(b). Thus,
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αA(T, βα) =

⎛
⎜⎜⎝

n⊕
i=1

⎡
⎢⎢⎣

⊗
b∈Pi∪Oi

b/∈CN

βα(b)

⎤
⎥⎥⎦

⎞
⎟⎟⎠ ⊗

⊗
b∈CN

βα(b)

=
n⊕

i=1

⊗
b∈Pi∪Oi

βα(b) =
⊕

(P,O)∈S(T )

⊗
b∈P∪O

βα(b),

where the second equality follows from definition of necessary clones and the fact
that βα|

Bo ≡ a⊗, and the last one holds by the idempotency of ⊕. The proof is
complete. ��

6 Conclusion

The goal of the work presented in this paper was to tackle the issue of quantita-
tive analysis of attack–defense trees in which a basic action can appear multiple
times. We have presented conditions ensuring that in this setting the classi-
cal, fast bottom-up procedure for attributes evaluation yields valid result. For a
subclass of attributes, we have identified necessary and sufficient condition for
compatibility of the bottom-up evaluation with the set semantics. A constructive
method of evaluation of attributes belonging to a wide and important subclass
of attributes, that takes the presence of repeated labels into account, has been
presented.

This work addresses only the tip of the iceberg of a much larger problem
which is the analysis and quantification of attack–defense trees with dependent
actions. The notion of clones captures the strongest type of dependency between
goals, namely where the nodes bearing the same label represent exactly the same
instance of the same goal. It is thus obvious that the attribute values for the
clones should only be considered once in the attribute computations. However, in
practice, weaker dependencies between goals may also be present. For instance,
when the attacker has access to a computer with sufficient computation power,
the attack consisting in guessing a password becomes de facto the brute force
attack and can be performed within a reasonable time, for most of the passwords
used in practice. In contrast, if this attack is performed manually, it will, most
probably, take much longer to succeed. Similarly, if the attacker knows the vic-
tim, guessing their password manually will, in most cases, be faster compared
to the situation when the attacker is a stranger to the victim. Of course, this
problem can be solved by relabeling the nodes and using differently named goals
for the two situations. However, this solution is not in line with the practical
usage of attack(–defense) trees whose construction often relies on preexisting
libraries of attack patterns where the nodes are already labeled and the labels
are as simple as possible. We are currently working on improving the standard
bottom-up evaluation procedure for attributes (in the spirit of Algorithm 1) to
accommodate such weakly dependent nodes.

Furthermore, it would be interesting to try to generalize Algorithm 1 for the
approaches proposed in the past for the restricted class of attack–defense trees
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without repeated labels. Such approaches include for instance multi-objective
optimization defined in [2] and a method for selecting the most suitable set of
countermeasures, based on integer linear programing, developed in [21].

Acknowledgments. We would like to thank Angèle Bossuat for fruitful discussions on
the interpretation of repeated labels in attack–defense trees and on possible approaches
to the problem of quantification in the presence of clones.
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