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Zusammenfassung 

Die vorliegende Arbeit befasst sich mit einem neuen Ansatz zur Clusteranalyse 
hochdimensionaler Daten. Die projektionsbasierte Clusteranalyse verbindet in zwei 
Dimensionen erhaltenen Strukturen mit zugrunde liegenden hochdimensionalen Strukturen. 
Hierbei werden Cluster als natürlich definiert, wenn sie auf hochdimensionalen Daten beruhen, 
welche Diskontinuitäten aufweisen. Solche distanz- oder dichtebasierte Diskontinuitäten 
bezeichnen entweder kompakte oder verbundene Strukturen. Natürliche Cluster mit kompakten 
Strukturen werden hauptsächlich durch Inter- und Intra-Cluster-Distanzen definiert, während 
verbundene Strukturen auf dem Prinzip von Nachbarschaften zwischen Datenpunkten beruhen. 
Mit Hilfe auf der Graphentheorie begründeten Grundprinzipien und den in dieser Arbeit 
durchgeführten Untersuchungen lässt sich schlussfolgern, dass zum Erreichen einer 
Visualisierung oder Clusteranalyse die Optimierung einer mathematischen Zielfunktion 
irreführende Ergebnisse bezüglich der Struktur liefern kann, wenn die zugrunde liegenden 
Strukturen der verwendeten hochdimensionalen Daten dieser Zielfunktion nicht entsprechen. 
Diese Arbeit geht der Fragestellung nach, wie man einen korrekten Typ von Strukturen 
herausfinden kann, der Cluster in einem hochdimensionalen Datensatz ohne Vorannahmen 
definiert. Es wird dargelegt, dass Verfahren der Dimensionsreduktion helfen können, dieses 
Problem zu lösen. 
Projektionsverfahren stellen einen gängigen Ansatz zur Dimensionalitätsreduktion 
hochdimensionaler Daten dar. Sie werden verwendet, um die Größe des Eingaberaumes zu 
reduzieren um dadurch eine Visualisierung der hochdimensionalen Daten zu ermöglichen. 
Durch die Beschränkung des Ausgaberaumes auf zwei Dimensionen zu einem Streudiagram 
(Projektion) repräsentieren niederdimensionale Ähnlichkeiten jedoch nicht notwendigerweise 
die Distanzen. Die Projektion kann zu einer irreführenden Interpretation der Strukturen führen. 
Die Qualitätsmaße (QM) zur Bewertung der Projektion haben Schwierigkeiten 
Diskontinuitäten in hochdimensionalen Daten korrekt zu erfassen, weil sie unter Umständen 
auf falschen Annahmen über die zugrunde liegenden hochdimensionalen Strukturen basieren. 
Andernfalls könnte mittels einer QM eine globale Zielfunktion definiert werden. Es wäre damit 
immer möglich, eine strukturerhaltende Projektion durch Optimierung dieser Zielfunktion zu 
erhalten. 
Das aus diesen drei Modulen bestehende Verfahren Databionicswarm (DBS) wird in dieser 
Arbeit vorgestellt. Das erste Modul des hier vorgeschlagenen Ansatzes besteht darin, 
hochdimensionale Distanzen in der zweidimensionalen Projektion durch eine dreidimensionale 
topographische Karte mit hypsometrischen Farben zu visualisieren. Die resultierende 
topographische Karte ist die Weiterentwicklung der „generalisierten U-matrix“. 
Im zweiten Modul wird das neue Projektionsverfahren Pswarm vorgeschlagen. Pswarm nutzt 
die Konzepte der Schwarmintelligenz, Selbstorganisation, Symmetrieüberlegungen der Physik 
und das Nash-Gleichgewichtskonzept aus der Spieltheorie. Für Pswarm entfällt die 
Notwendigkeit einer globalen Zielfunktion. Dieses Projektionsverfahren erfordert, abgesehen 
von der Distanz, keine Eingabeparameter für die Projektion. Durch Selbstorganisation können 
Strukturen von hochdimensionalen Daten durch einen Prozess abgebildet werden, der als 
Emergenz bekannt ist.  Die Erwartung hat sich bestätigt, dass ein Schwarm aus intelligenten 
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Agenten für die Visualisierung und Clusteranalyse verwendet werden kann. Pswarm wurde mit 
den üblichen Projektionsmethoden PCA, CCA, t-SNE, ESOM, NeRV und dem MDS-Technik-
Sammon-Mapping verglichen. Hierbei wurde ein neues Qualitätsmaß (Delaunay Classification 
Error, DCE) eingesetzt. Der DCE ermöglicht durch die Verwendung vorgegebener 
Klassifikationen eine unvoreingenommene Beurteilung der Projektionsqualität für beide Arten 
von Strukturen. Die Ergebnisse zeigen, dass es mit Pswarm-Projektionen möglich ist 
Projektionen resultierend aus der Optimierung einer globalen Zielfunktion zu übertreffen. 
Im dritten Modul werden die Ansätze früherer Arbeiten erweitert, indem kürzeste Wege 
zwischen geodätischen Abständen der abstrakten U-Matrix von projizierten Punkten für die 
Clusteranalyse verwendet werden. 
DBS übertrifft die gängigen Methoden der Clusteranalyse (k-means, PAM, Single-Linkage, 
Spektralclustering, modellbasierte Clustering und Ward) hinsichtlich Stabilität und Plastizität 
auf einem künstlichen Benchmark-System von Datensätzen (FCPS). Im Gegensatz zu anderen 
üblichen Methoden der Clusteranalyse findet DBS keine Cluster, wenn keine natürlichen 
Cluster vorhanden sind. Die Anzahl der Cluster kann hierbei mit Hilfe einer Visualisierung 
abgeschätzt werden. 
Die Anwendung von DBS auf drei hochdimensionale und multivariate Datensätze für den 
praktischen Gebrauch (Leukämie, Welt-Bruttoinlandsprodukt, Tetragonula-Bienen) 
reproduzierten bereits bekannte Erkenntnisse. In zwei aktuellen Anwendungen, Hydrologie und 
Schmerz-Gene findet DBS plausible und erklärbare Cluster. 
Durch die Modularität lässt sich DBS zu einer projektionsbasierten Clusteranalyse 
verallgemeinern. Sollte Vorwissen gegeben sein, kann die Visualisierung durch die 
generalisierte U-Matrix und das DBS-Clustering auf jede Projektionsmethode für beide 
Strukturtypen (kompakt oder verbunden) angewendet werden. Alternativ können durch die 
verallgemeinerte U- Matrix-Visualisierung die Ergebnisse gängiger Clustermethoden durch die 
von Pswarm gefundenen Strukturen oder jede andere Projektionsmethode überprüft werden. 
Darüber hinaus können 3D-Drucke der visualisierten Strukturen von hochdimensionalen 
Datensätzen mit üblichen 3D-Drucktechniken hergestellt werden. 
 



Abstract 

This work introduces a new approach for cluster analysis defined as projection-based clustering. 
The projection based clustering combines structures preserved in two dimensions with under-
lying high-dimensional structures, if natural clusters exist in high-dimensional data. Clusters 
are defined as natural, if they are based on patterns in high-dimensional data characterized by 
discontinuity. Discontinuous patterns, which can either be based on distance or density, are 
described in this work as compact or connected structures. Natural clusters with compact struc-
tures are defined mainly by inter- versus intracluster distance, whereas the connected structures 
are based on the idea of neighborhoods present between data points. 
With the use of basic principles founded on graph theory, this work demonstrated that the ob-
jective functions of clustering and visualization are based on the fundamental distinction be-
tween connected and compact structures. The derived conclusion is that in a case when the goal 
is to achieve a structure-preserving visualization or clustering, the optimization of a mathemat-
ical objective function could yield misleading results if the underlying structures of the high-
dimensional data do not coincide with the objective function.  The question that arises is how 
to recognize structures that defines clusters in a high-dimensional data set without prior 
knowledge. The argument here is that dimensionality reduction methods may help solve this 
problem. 
Projections are common dimensionality reduction methods to visualize high-dimensional data 
in a two-dimensional space. However, when restricting the Output space into two dimensions 
resulting in a two dimensional scatter plot (projection) of the data, low dimensional similarities 
do not represent high dimensional distances coercively. This could lead to a misleading inter-
pretation of the underlying structures. Further, it is argued here that the quality measures (QMs), 
which evaluate this projection, have difficulties to correctly grasp discontinuities in high-di-
mensional data; this is because they imply assumptions about the underlying high-dimensional 
structures. Otherwise, a global objective function could be defined using the best QM, and it 
would always be possible to obtain a structure-preserving projection or clustering by optimizing 
this objective function.  
Therefore, the first module for a solution proposed here is to visualize high-dimensional dis-
tances in the projection through a three dimensional topographic map with hypsometric colors, 
which is a further development of the generalized U-matrix. 
After an extensive review of application of artificial intelligence in data science, two interesting 
concepts are addressed here, called self-organization and swarm intelligence. The irreducible 
structures of high-dimensional data can emerge through self-organization in a phenomenon 
called emergence. If properly applied through the use of a swarm of intelligent agents, the data-
driven approach presented in this work can outperform the optimization of a global objective 
function in the tasks of clustering and dimensionality reduction. 
Here, the second module called Pswarm, is presented for projecting high-dimensional data. 
Pswarm exploits the concepts of swarm intelligence, self-organization, symmetry considera-
tions in physics, and the Nash equilibrium concept from game theory. It eliminates the need for 
a global objective function and does not require any input parameters for projection besides a 
distance. The data-driven Pswarm was compared to the common projection methods PCA, 
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CCA, t-SNE, ESOM, NeRV and the MDS technique Sammon mapping. Using the new quality 
measure (Delaunay classification error) this work showed that the resulting two-dimensional 
projections of Pswarm are comparable to the state of the art projection methods like NeRV and 
ESOM. By using prior classifications, the Delaunay classification error allows for an unbiased 
evaluation of projection quality for both types of structures. 
For the third module, the author expands the idea of previous works by using shortest paths 
between geodesic distances of the abstract U-matrix of projected points in the case of cluster 
analysis. The whole method is called Databionic swarm (DBS) and it outperforms the common 
clustering methods (k-means, PAM, single-linkage, spectral clustering, model based clustering 
and Ward) in terms of stability and plasticity on an artificial benchmark system of data sets 
(FCPS). Contrary to other common clustering methods, the DBS finds no clusters if no natural 
clusters exist. The number of clusters can be estimated with the help of the topographic map. 
On three different high dimensional and multivariate data sets (types of leukemia, world gross 
domestic product, Tetragonula bees), the already known insights can be reproduced. In two real 
world applications of hydrology and pain genes, the DBS retrieves meaningful clusters, which 
was confirmed by domain experts.  
Through the modularization, DBS can be generalized to projection to projection-based cluster-
ing. The visualization by the generalized U-matrix and the DBS clustering can be applied to 
every projection method for both types of structures. Through the use of the topographic map, 
results of common clustering methods can be verified by the structures found by Pswarm or 
any other projection method. Additionally, 3D prints of the visualized structures of high dimen-
sional data sets can be manufactured with common 3D printing techniques 
 



1 Introduction 

We live in a time when information is cheaply available and saved as data nearly everywhere. 
The amount of generated data is growing exponentially. By the end of the year 2016 alone, 
9000 exabytes of data will have been generated, equal to 9 trillion gigabytes or the capacity of 
360 billion Blu-ray Discs [Schiele, 2016]. The goal of the interdisciplinary field of data science 
is to extract knowledge from these data with the help of statistics, machine learning or data 
mining. Unlike in physics, a data scientist hardly ever starts with a hypothesis; he also is not 
interested in the source of the data or how they were collected. The data must be mined to gain 
knowledge through the identification of consistent patterns, and this is usually a very trying 
task. 
Among the various available methods of analyzing data, the focal point of this work is cluster 
analysis. In contrast to common approaches, the goal here is not merely to group similar infor-
mation but also to explain why the grouping of information in a certain context is valid, non-
trivial and useful. Only then will the clustering of data be helpful to a domain expert. Cluster 
analysis “is a discipline on the intersection of different fields and can be viewed from different 
angles, which may be sometimes confusing because different perspectives may contradict each 
other” [Mirkin, 2005, p. 33]. From the statistical perspective, some assumption regarding the 
underlying model is required, and data clusters are viewed as probability distributions whose 
properties can be estimated from the data themselves [Mirkin, 2005, pp. 33-34]. “A trouble with 
this approach is that in most cases clustering is applied to phenomena of which nothing is 
known” [Mirkin, 2005, p. 34]. Here, cluster analysis is regarded as the process of generating a 
classification based on empirical data in a situation in which clear theoretical concepts and 
definitions are absent and the patterns and laws governing the situation are unknown (see 
[Mirkin, 2005, p. 36]). The concept of every application (available as open-source code in the 
R language [R Development Core Team, 2008]) used throughout this thesis is based on this 
idea. 
The goal of this work is to provide an open-source framework for cluster analysis that is 
founded on a swarm-based projection method and uses a human-understandable visualization 
approach based on a topographic map of high-dimensional data structures, with the option of 
3D printing (see [Thrun et al., 2016a]). This framework should be sufficiently stable while 
remaining adaptive and exhibiting sufficient plasticity to permit the creation of clusters of var-
ious shapes. It should include only a very few non-sensitive parameters that can be visually 
deduced by a non-professional data miner without any need to understand the theory behind 
them. 
To achieve this goal, expertise on various topics from various areas of research will be required. 
It is the author’s experience that experts in different fields rarely share or exchange practical 
approaches, and almost nobody is interested in providing and willing to provide easily available 
and human-understandable solutions to domain experts. 
Here, the main hope is to be able to provide reproducible cluster analysis solutions for non-
professional data miners and to deliver human-understandable concepts of high-dimensional 
data structures that are simultaneously able to be processed by machines. In the context of the 
Databionic swarm (DBS) approach, the author attempts to build, use and explain connections 
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among various fields of research; to be precise, the author will illustrate connections between 
cluster analysis [Hennig et al., 2015; Jain/Dubes, 1988], the imitation of collective behavior 
[Beni/Wang, 1993; Bonabeau et al., 1999; Reynolds, 1987], the visualization of information 
[Venna et al., 2010] and its evaluation, machine learning applications [Herrmann/Ultsch, 
2008c], game theory [Nash, 1951], symmetry considerations in physics [Feynman et al., 2007, 
pp. 147-153, 745] and emergence [Ultsch, 2007]. Undoubtedly, making connections between 
different schools of thought sometimes requires simplifications. For example, with regard to 
the collective behavior of bees, the fact that bees have a queen who influences their behavior 
remains unaddressed in this work. Such simplifications are necessary for analytical modeling 
and applications of cluster analysis. 
Chapter 2 addresses most of the necessary definitions and lays the groundwork for all of the 
mathematical notation used throughout the thesis. The literature reviewed in chapter 3 shows 
how common clustering methods tend to implicitly assume the patterns or structures sought in 
data. The reviewed clustering methods are grouped based on their definitions of generalized 
neighborhoods. 
Chapter 4 introduces and classifies common methods of projecting high-dimensional data into 
two dimensions. Such projections are necessary to cope with the pitfalls of higher dimensions 
(see, e.g., [Bouveyron/Brunet-Saumard, 2014, pp. 55-57; Verleysen et al., 2003]). Two- or 
three-dimensional projections will always result in errors; however, gaining a spatial under-
standing of more than three dimensions is typically an excessively complex task for humans. 
Chapter 5 presents examples to depict the typical errors encountered and describes efforts to 
manage these errors by means of the U-matrix visualization approach [Ultsch, 2003a]. By con-
trast, chapter 6 demonstrates a more stringent mathematical approach based on quality measures 
(QMs) presented in the literature. The evaluation of 19 QMs yields a grouping of the QMs 
based on their implied characterization of structures of high-dimensional data using the defini-
tion of neighborhoods introduced in this thesis. Consequently, it is not possible to generalize 
any of the QMs. If it were possible, the corresponding optimization approaches would not imply 
any prior assumptions about the structures of high-dimensional data and, consequently, would 
outperform any other projection methods. 
Chapter 7 discusses a nature-inspired and behavior-based system of data science with the goal 
of using emergence, instead of the optimization of an objective function, for data visualization 
and clustering. 
Building on the insights gained in chapter 7, chapter 8 introduces the DBS concept. Because it 
relies on the self-organization of data and emergence, DBS does not imply any particular struc-
ture that is sought in data. In the context of the projection, visualization and clustering of arti-
ficial or high-dimensional data, chapters 10-12 compare DBS with various common methods 
and apply the DBS framework both to reproduce known insights and to gain new knowledge 
about various types of data, e.g., multivariate time series or genetic data. 
Readers may skip certain chapters depending on their interests. However, the contents of some 
chapters are based on insights from previous chapters, as indicated by arrows in Figure 1.1, 
which outlines the organization of this work. Please note, that due to technical limitations the 
figures and equations are numbered chapter wise.  
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Figure 1.1:  Dependency graph of the chapters. BBS: behavior based systems; QAV: Quality Assessments of 
Visualizations; DBS: Databionic swarm. The underlying concept of DBS is based on insights from 
chapters 3, 5 and 7 (orange). The evaluation of DBS is performed in three steps (green): general 
validation in chapter 10, the reproduction of known knowledge in chapter 11, and the generation of 
new knowledge, as validated by domain experts, in chapter 12. 
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2 Fundamentals 

The first section of this chapter familiarizes the reader with the definitions of the basic notation 
and terminology used in this thesis. Concepts of graph theory are introduced in the next section. 
They give rise to a new concept of neighborhoods, which is utilized in several chapters. The 
last section explains a possible approach to knowledge discovery, which is applied in chapters 
11 and 12. 

2.1 Basic Definitions 

Hilbert space 
Let ࣢ be a vector space above a field Κ with the following properties for every pair of elements 
ሺݔ, ,ݕ ሻݖ ∈ ࣢ and ߙ ∈ Κ: 
1.) 〈. , . 〉࣢:࣢	x	࣢ → Κ is a non-degenerate symmetric bilinear form: 

a. ∀	ݔ ∈ ࣢: ,ݔ〉 ࣢〈ݔ ൒ 0	
b. 〈ݔ, ࣢〈ݕ ൌ ݕ	∀	,0 ∈ ࣢ൌ൐	xൌ0	
c. 〈ݔ, ࣢〈ݕ ൌ ,ݕ〉 Κ	if	࣢തതതതതതതതത〈ݔ ൌ ԧ,	and	〈ݔ, ࣢〈ݕ ൌ ,ݕ〉 Κ	if	࣢〈ݔ ൌ Թ	
d. 〈ݔߙ, ࣢〈ݕ ൌ ,ݕ〉ߙ 	࣢〈ݔ
e. 〈ݔ ൅ ,ݕ ,ݔ〉࣢ൌ〈ݖ ,ݕ〉࣢൅〈ݖ 	࣢〈ݖ

2.) Each Cauchy sequence ሼݔ௜ሽ௜∈Գ in ࣢ converges to an element of ࣢, i.e., the space is com-
plete with respect to the norm induced by 〈. , . 〉࣢. 

Thus, ࣢ is a Hilbert space (for further details, see [Bronstein et al., 2005, pp. 635-636; Nolting, 
2001, p. 22]). 

Bra-ket notation 
Bra-ket notation 〈. |. 〉 is used in physics to describe functions or vectors in a Hilbert space when 
the coordinate system of the vectors is irrelevant. The left part is called the bra (ۦ. |), and the 
right part is the ket (|. ۧ). This notation is used to describe physical states (it is also called Dirac 
notation, as described in [Dirac, 1981, pp. 15-22]; for a formal introduction, see [Nolting, 2001, 
pp. 147-148]). 

Operator 

An operator ܣመ is an unambiguous mapping of each element |ۧߙ of the subset ܦఈ ⊆ ࣢ to an 

element |ۧߚ ∈ ஺ܹ ⊆ ࣢ such that หۧߚ ൌ ۧߙห	መܣ 	ൌ  መܣ ఈ is the definition range ofܦ where ,ۧߙ	መܣ|

and the set of all |ۧߚ is the domain of ܣመ, as defined in [Nolting, 2001, p. 153]; see also [Bron-
stein et al., 2005, pp. 49,639-640]. An “operator is considered to be completely defined when a 
result of its application to every ket vector [|ۧߙ] is given” [Dirac, 1981, p. 23]. 

Observation 
An observation f is a set of measured values for the properties of a phenomenon. It is described 
in the bra-ket notation as the change from one physical state ݕۦ| to another physical state |ۧݔ 
that results from the measurement of the operator መ݂, as denoted by ݂ ൌ |ݕ〉 መ݂|ݔ〉 (see [Feynman 
et al., 2006, pp. 145, 147]). Such an observation f is a measurement of a physical process. 

© The Author(s) 2018
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Feature 
Each individually measurable property r of a phenomenon being observed can be mapped to an 
operator ̂ݎ that can be applied to a physical state |ۧݔ [Stöcker et al., 2007, p. 744]. Such an 
individually measurable property is called a feature, attribute or observable. Here, an approx-
imately continuous distribution of values in the vector space Թௗ is additionally assumed for a 
variable (see the definition of the distribution of a variable). 

Data 

A batch of data is defined as a matrix 〈݅หܣመ	ห݆〉 ൌ  ௜௝, in which facts1 about a physical state areܣ

summarized based on observations of the form 〈ݕหܣመ	หݔ〉 ൌ ∑ ௜௝〈ݔ|݆〉〈ห݆	መܣห݅〉〈݅|ݕ〉  of a phenome-

non in a Hilbert space, where ݆ۦ ,|݅ۦ|, |݅ۧ and |݆ۧ are the basic states relevant to the phenomenon 
(for further discussion, see [Feynman et al., 2006, pp. 147-150]). 

Distribution of a variable 
A formal distribution ݂݀ is defined as the probability density of a feature ݎ: 

݂݀ሺݎሻ ൌ lim
୼௥→଴

〈௫ೝ,౴ೝ|	௫〉

√ሺ୼௥ሻ
 [Nolting, 2001, p. 150]. If the feature r is continuous, then it is called a 

variable	ݖ ∈ 	Թௗ, and df is called its probability density function (pdf) (see [Goodfellow et al., 
2016, p. 58]). Here, when it describes how the relative probability of a variable ݖ takes on a 
given value, such a distribution is a pdf that is assumed to be normalized as follows [Walck, 

2007, p. 15]: ׬ ݖሻ݀ݖሺ݂݀݌ ൌ 1
ஶ
ିஶ .  

“Statisticians often use the distribution function or as physicists more often call it the cumula-

tive function which is defined as ݂ܿ݀ሺݖሻ ൌ ׬ ݖሻ݀ݖሺ݂݀݌
௫
ିஶ ” [Walck, 2007, p. 15]. 

If not elaborated further, here, the distribution of a variable z is regarded as an approximation 
of its pdf; for further details, see, for example, [Bock, 1974, p. 250; G. Ritter, 2014, p. 275 ff], 
and for types of pdfs, see [Walck, 2007]. 

Dirac delta function 
The Dirac delta function ߜ is a function with the following properties [Jackson, 1999, p. 31]: 
ݖሺߜ (.1 െ ܽሻ ൌ 0	iff	ݖ ് ܽ 

׬ (.2 ݖሺߜ െ ܽሻ ൌ ൜
1, if	ݖ ൌ ܽ lies in the integration area under the curve
0, otherwise

 

Density of data 
Let dn be the number of observations in an elementary volume (see [Bronstein et al., 2005, 

p. 491]) ݀ௗ෨ݒ ൌ ଵݒ݀ ∗ ଶݒ݀ ∗. . ௗ෨ݒ݀ ൌ Ԧ of the Hilbert space Թௗ෨ݒ݀  (henceforth, Թௗ); then, the 

density of the data is defined as ߩሺݒԦ	ሻ ൌ ௗ௡

ௗ௩ሬԦ	
, where ߩ:Թௗ → Թ is the density field function. 

Here, ߩ is subject to the condition that N is the number of data points defined by 

ܰ ൌ ׬ ԦሻԹ೏ݒሺߩ dݒԦ ൌ ׬ ∑ Ԧݒሺߜ െ ԦݒԦ௜ሻdݒ
ே
௜ୀଵԹ೏ , in analogy to [Jackson, 1999, p. 33], where ߜ is the 

Dirac delta function and ߩሺݒԦሻ ൌ ∑ Ԧݒሺߜ௜ݍ െ Ԧ௜ሻݒ
ே
௜ୀଵ  is the charge density of point charges. Then, 

the homogeneity of the data is defined as  

ܰ ൌ ׬ ԦԹ೏ݒԦሻdݒሺߩ ൌ ׬ ԦԹ೏ݒ଴dߩ ൌ ଴ߩ ׬ dݒԦԹ೏ , where	ߩ଴ ൌ const. 

                                                      
1  See [Fayyad et al., 1996, p. 6]. 
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Pattern 
A “[p]attern is an expression E in a language L describing facts [F] in a subset ܨா of F. E is 
called a pattern if it is simpler than the enumeration of all facts in ܨா” [Fayyad et al., 1996, 
p. 7]. Here, the expression E is “simpler” if it describes a group of similar (see the definitions 
of metric space and distance below) or homogeneous observations. 
In graph theory, a pattern may be described by a neighborhood H (see the graph theory section 
for details). If the observations are not directly comprehensible, such a pattern is called a hidden 
pattern. 
 

Discontinuity in data 
A set of data can exhibit discontinuity if 

׬ ԦԹ೏ݒԦሻdݒሺߩ ് ଴ߩ ׬ dݒԦԹ೏ , 

which means that the density of data ߩ depends on its location ݒԦ in the Hilbert space Թௗ; 
Discontinuities can occur when interruptions or distortions exist in the homogeneity of the data, 
or in the continuity of the distribution of the data, in Թௗ. Thus, there are elementary volumes	dݒԦ  
with high density and elementary volumes	dݒԦ with low density or even empty elementary 
volumes.  In the one-dimensional case, such a discontinuity can be mathematically defined as 
an essential or jump discontinuity. In two or three dimensions, a discontinuity may manifest as 
a spatial separation (see, e.g., Figure 2.1 or chapter 5 and 9, the Hepta data set). 
In a higher-dimensional case, a discontinuity represents a change in the characteristics of facts, 
resulting in multiple patterns (see, for example, the leukemia data set, chapter 3, Figure 3.7 and 
chapter 9).  
 

 

Figure 2.1:  Spatial separation of data, after [Handl et al., 2005]. 
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Metric space and distance 
Let a metric space be represented by an ordered pair (M, d), where M is an arbitrary set and d 
is a metric on M, i.e., a function 
      d ∶ 	M	 ൈ 	M	 → 	Թ 
such that for any l, j, m ∈ M , 
      ݀ሺ݈, ݆ሻ ൌ ݀ሺ݆, ݈ሻ 

      ݀ሺ݈, ݆ሻ ൒ 0 

      ݀ሺ݈, ݆ሻ ൌ 0,iff	݈ ൌ ݆ 

and the triangle inequality is satisfied as follows: 

           ݀ሺ݈, ݆ሻ ൅ ݀ሺ݆,݉ሻ ൒ ݀ሺ݈,݉ሻ	

Then, the metric d is also called a distance (see [Bronstein et al., 2005, pp. 624-625]). By 

contrast, for a dissimilarity, denoted by መ݀, the triangle inequality may not apply ([Bock, 1974, 
pp. 25-26]. The distance between two similar points ݈, ݆ ∈  is small, whereas that between ܯ

two dissimilar points ݈, ݆ ∈  is large. Transformations exist between a dissimilarity መ݀ and a ܯ
distance d (e.g., [Bock, 1974, pp. 77-79]). 
If the distance is defined in an output space O, it is denoted by d(l, j), whereas a distance defined 
in an input space I is denoted by D(l, j). An example of a metric space is a Hilbert space that is 

a real-numbered vector space Թୢ of d dimensions. If the distances in a space are defined as 
Euclidean distances, then the corresponding space is called a Euclidean space. 

Data set 

A data set consists of a finite set of observations ݂ ∈ F ⊂ ࣢෩ୢ of ሚ݀ observed features. 
In this work, observations ݂ are assumed to be vectors l in a metric space M, and features are 
assumed to be variables, if not stated otherwise. 

Input space 

An input space ܫ ⊂ Թௗ is the d-dimensional space consisting of ݀≤	d෨  variables in a data set that 
have been selected for a given task and contains n data points: ܫ ൌ ሼ݈ଵ, … , ݈௡, ݊ ∈ Գሽ. The prop-
erties of an input space are as follows (see [Lee/Verleysen, 2007, p. 243]): 
I. The input space is considered to be high dimensional if it contains more than five variables, 

which makes direct visualization very difficult. 
II. If the number of data points is greater than 2000, then the input space is considered to be 

large2. 
III. If the number of data points is fewer than 200, then the input space is considered to be 

small. 

Data point 
A data point ݈ ∈  is a numeric vector consisting of one observation for each of the d variables ܫ
in the input space, where a vector is an array of numbers arranged in a specific order defined 
with respect to the d variables. 

                                                      
2  Note that, in general, the number of data points has greatly increased over time [Goodfellow et al., 2016, p. 21 

, Fig. 1.8] and therefore the precise number may change with time 
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Object 
When the data of interest are a set of facts F consisting of numerical, ordinal or nominal scaled 

entries, each fact	݂ ∈ f	such that ,ܨ ∉ Թୢ, is called an object or case. 
An object can be regarded as a generalization of a data point. If an object can be interpreted 
(has a meaning within itself), then it contains information ([Ultsch, 2016c]; see also [Ultsch, 
1994, p. 2]). 

Output space 
An output space ܱ ⊂ Թ௠ is the m-dimensional space such that m<d in which, for each point 

݆ ∈ ܱ, a mapping to a data point ݈ of the input space I⊂ Թௗ exists. 

Machine learning 
The field of machine learning concerns computer programs that can imitate learning behavior 
[Natarajan, 2014] (see also [Goodfellow et al., 2016, p. 99]). Machine learning comes in two 
general forms3 (see [Murphy, 2012, p. 2]). Unsupervised learning refers to the task of finding 
patterns in unlabeled data. Since the data are unlabeled, no reward function exists that can be 
used to evaluate potential results. If the data set is labeled, then supervised learning is possible. 
A typical supervised learning task is classification or regression. A typical unsupervised learn-
ing task is cluster analysis. 

Label 
A label is a tag ݃ ∈ ሼ1, . . . , ݇ሽ ⊂ Գ attached to an object ݂ ∈  that identifies the object via a ܨ
mapping	݂: ሼ1, . . . , ݇ሽ →  The labels of such a set of objects range from one to k [Hennig et .ܨ
al., 2015, p. 2], where k is the number of groups of objects. Here, it is assumed that a label 
exists for every object. 

Classification 

A classification ܥ ൌ ሼܩଵ, ,ଶܩ … ሽ is a system of subsets [Bock, 1974, p. 22] such that ܥ ⊂ ࣢෩ୢ. 
A subset ܩ௜ ൌ ሼ݈ଵ,, … ݈௞ሽ݅ ∈ Գ, , is a set of k observations.	In an exclusive classification, the 

subsets are disjunct, denoted by ܩଵ ∩ ଶܩ ൌ ∅; in a non-exclusive classification, elements that 
overlap between two subsets may exist, denoted by ܩ௝ ∩ ௞ܩ ് ∅. However, overlapping clas-

sification is not considered here (for various types of classification, see Figure 2.2 or [Hennig 
et al., 2015, p. 45]). Supervised and unsupervised classifications are defined as in the context 
of machine learning. 

                                                      
3 Reinforcement learning is not considered in this context; semi-supervised learning (e.g. active learning) uses 

labeled data as well as unlabeled data. 
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Figure 2.2:  Tree of classification types, after [Jain/Dubes, 1988, p. 56]. This work concentrates on unsupervised 
classification (see unsupervised machine learning). 

Classifier 
A classifier is an algorithm that constructs a function ݏ݈ܥ: ܨ → ሼ1,… , ݇ሽ ⊂ Գ that maps objects 
݂ ∈ ݃௜	to class labels ܨ ∈ Գ. 
In terms of understandability, a distinction can be drawn between symbolic and sub-symbolic 
classifiers [Ultsch/Korus, 1993]. Symbolic classifiers are able to acquire knowledge (for a de-
tailed description, see the last section of this chapter). By contrast, sub-symbolic classifiers 
(e.g., KNN classifiers) are only able to integrate knowledge [Ultsch, 1994], because a charac-
teristic property of a sub-symbolic representation of data is that a single object alone does not 
contain information (see [Ultsch, 1994, p. 2]). 

Projected point 
A projected point ݆ ሺݔଵ, . . , ௠ሻݔ ൌ ଔԦ is a vector of m scalars ݔ௜ in the output space	ܱ ⊂ Թ௠, where 
a vector is an array of numbers arranged in a specific order such that each individual number 
can be identified by its index. 

Projection 
Let ݆ ∈ ⊃denote data points in the input space I ܫ Թௗ, and let ݈ ∈ ܱ denote projected points in 
the output space O⊂ Թ௠. Then, a mapping proj:	I → O, j ↦ 	l is called a projection iff ݉ ൌ
	ݐݏ݊݋ܿ ∧ 	݉ ≪ ݀. 
Note that unlike for a projection method, for a manifold learning method, the dimensionality of 
the output space ݉ depends on the data set (see, e.g., [Lee/Verleysen, 2007, pp. 14-15]). 

2.2 Concepts of Graph Theory Applied to Patterns 

This section uses graph theory to describe patterns found in data. 
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Graph 
“A graph [Γሿ is a pair [Γ ൌ ሺV, Eሻ] consisting of a finite set ܸ ് ∅ and a set E of two-element 
subsets of V. The elements of V are called vertices. An element e = (a, b) of E is called an edge 
with end vertices a and b. […] [In such a case,] a and b are adjacent or neighbors of each other” 
[Jungnickel, 2013, p. 2]. 
A graph ߁ is called undirected if, for every edge ݁ሺܽ, ܾሻ in E, the edge ݁ሺܾ, ܽሻ is also in E. A 
graph is called a weighted graph if a number (weight) is assigned to each edge. 

Directed graph 

A “directed graph or, for short, a digraph is a pair ߁	 ൌ 	 ሺܸ,  ሻ consisting of a finite set V andܧ
a set E of ordered pairs (a, b), where ܽ	 ് 	ܾ are elements of V” [Jungnickel, 2013, pp. 25-26]. 

Direct adjacency 

Let Γ	be a graph, and let	j be a point in a metric space	M; then, 

࣢ሺ݆, ሻܯ,߁ ൌ ൛݈ ∈ ௟ݒ	|ܯ ∈ ܸ ∧ ∃	݁ሺݒ௟, ௝ሻݒ 	∈ 	ൟܧ

is the set of points that are directly adjacent to j. The direct adjacency is defined by the specified 
graph. 

Adjacency matrix 
A digraph Γ with a vertex set ሼ1, . . . , ݊ሽ is specified by an ݊	 ൈ 	݊ matrix ܣ	 ൌ 	 ሺܽ௜௝	ሻ, where 

ܽ௜௝ 	ൌ 	1	if and only if ሺ݅, ݆ሻ	is an edge of	Γ, and ܽ௜௝ 	ൌ 	0 otherwise. A is called the adjacency 

matrix of Γ [Jungnickel, 2013, p. 40]. 

Path 
Let ሺ݁ଵ, . . . , ݁௡ሻ be a sequence of edges in a graph ߁. If there exist vertices ݒ଴, . . . ,  ௡ such thatݒ
݁௜ 	ൌ 	 	݅ ௜ forݒ௜ିଵݒ ൌ 	1, . . . , ݊, then the sequence is called a walk; if ݒ଴ 	ൌ 	  ௡, one speaks of aݒ
closed walk (Figure 2.3). A walk for which the ݁௜ are distinct is called a trail (Figure 2.3), and 
a closed walk with distinct edges is a closed trail. If, in addition, the ݒ௝ are distinct, then the 

trail is a path [Jungnickel, 2013, p. 5]. 

 

Figure 2.3:  Examples of trails, walks and paths [Jungnickel, 2013, p. 6 Fig. 1.5]: (a, b, c, v, b, c) is a walk but 
not a trail, and (a, b, c, v, b, u) is a trail but not a path [Jungnickel, 2013, p. 5]. 
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Connected Graph 
Two vertices a and b of a graph Γ are called connected vertices if a walk exists with start vertex 
a and end vertex b. If all pairs of vertices of Γ are connected, then Γ itself is called a connected 
graph. For any vertex a, we consider a to be a trivial walk of length 0, such that any vertex is 
connected with itself. Thus, connectedness is an equivalence relation on the vertex set of Γ. The 
equivalence classes of this relation are called the connected components of Γ. Thus, Γ is con-
nected if and only if its vertex set V is its unique connected component [Jungnickel, 2013, p. 6]. 

Lattice 
A connected graph Γ with a particular well-defined two-dimensional tiling (tessellation) is de-
fined as a lattice. A ݊݉ݔ lattice has n vertices on the x-axis and m vertices on the y- axis. If the 
tiling is rectangular (every vertex has exactly four perpendicular edges) it will be called a lattice 
(tiling) in this work, if the tiling is hexagonal (every vertex has exactly three edges) this will be 
called a grid (tiling) in this work. 

Shortest path 
For a connected graph Γ, there exists a distance D(a, b) between two vertices a and b that can 
be defined as the shortest path between these vertices [Jungnickel, 2013, pp. 65-66] as follows: 
For each path ܲ ൌ ሺ݁ଵ, … , ݁௡ሻ, let the length of P be ݌ሺܲሻ:ൌ ሺ݁ଵሻ݌ ൅ ⋯൅  ሺ݁௡ሻ; then, the݌
distance between two vertices a and b in (Γ, p) is defined by 

,ሺܽܩ ܾ, ሻ߁ ൌ ൜
∞, if	ܾ	is	not	accessible	from	ܽ

minሼ݌ሺܲሻ:	ܲ	is	a	path	from	ܽ	to	ܾ	݅݊	߁ሽ , otherwise 	

Let the vertices be denoted by points ݈, ݆ ∈ -is the nota (߁	,l, j)in the metric space M; then, G ܯ
tion if the points ݈ and ݆ lie in the input space I, and gሺl, j,  is the notation if they lie in the (߁
output space O. 
Note that ݀ሺܽ, ܽሻ 	ൌ 	0 always holds because an empty sum is considered to have a value of 0, 
as usual. If no explicit length function is given, then the shortest paths and distances in a graph 
are defined using a length function that assigns a length of ݌ሺ݁ሻ 	ൌ 	1 to each edge e [Jung-
nickel, 2013, p. 66]. An algorithm for calculating the shortest paths in a graph is described in 
[Jungnickel, 2013, pp. 83-87]. The authors Lee and Verleyson have claimed that graph dis-
tances outperform the traditional Euclidean metric in terms of dimensionality reduction 
[Lee/Verleysen, 2007, p. 227]. 

Acyclic graph 
Let ሺܯ,≼ሻ be a partially ordered set (a poset, for short), which consists of the set M together 
with a reflexive, antisymmetric and transitive relation ≼, and let M correspond to a digraph ߁ 
with the vertex set M and with edges defined by pairs (a, b) such that ܽ	 ≺ 	ܾ; then, because of 
the transitive property, ߁ is acyclic [Jungnickel, 2013, p. 49]. 

Tree 
A tree is a graph ߁ that satisfies the following three conditions [Jungnickel, 2013, pp. 7-8]: 
I. ߁ is connected. 
II. ߁ is acyclic. 
III. ߁ contains n-1 edges and n vertices. 
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The vertices in a tree are often called nodes. If ሺܽ, ܾሻ is an edge in a tree, then a is called the 
parent of b, and b is a child of a. If a path exists from a to b (ܽ ് ܾ), then a is a proper ancestor 
of b and b is a proper descendant of a [Safavian/ Landgrebe, 1990, p. 2]. If a node has no 
descendant, it is called a leaf; if a node has no ancestor, it is called a root. 

Directed acyclic graph (DAG) 
A DAG is a directed tree (see above) that contains no cycles and one vertex, defined as the root, 
into which no edges enter. There is a unique path from the root to every vertex [Safavian/Land-
grebe, 1990, p. 3]. Every vertex has a descendant called a child, except for the leaf vertices, 
which do not. 

Decision tree 

Let ܩ௜ be a subset of a classification ܥ ൌ ሼܩଵ, … , ,௜ܩ … ሽ ⊆ ࣢෩ୢ; then, a decision tree is a tree 
with the following properties: 

I. Each node that is not a leaf is mapped to a feature ݂ ∈ ܨ ⊂ ࣢෩ୢ. 
II. Every edge (a, b), where a is the parent and b is the child, is mapped to a condition that 

matches the feature mapped to the parent a (see I.). 
III. Every leaf is mapped to a subset ܩ௜. 

Decision tree learning 
Decision tree learning refers to a type of supervised machine learning in which decision trees 
are used (see [Safavian/Landgrebe, 1990]). 

Binary tree 
A binary tree is an ordered tree such that [Safavian/Landgrebe, 1990, p. 3] (see also the defini-
tion of a DAG) 
I. each child of a vertex is designated as either a left child or as a right child, and 
II. no vertex has more than one left child nor more than one right child. 

Lemma 1 
Let ߁ ൌ 	 ሺܸ,   ,ሻ be a connected graph with a positive length function p. Thenܧ
(V, D) is a finite metric space, where the distance function is defined as  
ܦ ൌ ,ሺܽܩ ܾሻ [Jungnickel, 2013, p. 68]. 

Proposition 1 
Any finite metric space can be represented by a pair (߁,  with a positive length (network) (݌
function p [Jungnickel, 2013, p. 68]. 

Ultrametric space 
Note that a metric space can be represented by a tree if and only if the following condition holds 
for any four vertices x, y, z, and t of the given metric space [Jungnickel, 2013, p. 69]: 

݀ሺݔ, ሻݕ 	൅ 	݀ሺݖ, ሻݐ 	൑ ,ݔሺ݀ሺݔܽ݉	 ሻݖ 	൅ 	݀ሺݕ, ,ሻݐ ݀ሺݔ, ሻݐ 	൅ 	݀ሺݕ, 	ሻሻݖ

Changing the triangle inequality to this condition implies an ultrametric space. 
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2.2.1 Patterns Defined as a Generalization of Neighbourhoods 

Here, it is argued that by using shortest paths and direct adjacency, the patterns that exist in 
data can be generalized to neighborhoods H of an extent k. 
Let k ∈ Գ, k>0, let Γ be a connected graph, let	݆ be a point in a metric space ܯ, and let ܩሺ݆, ݈,  ሻ߁
be the shortest path between ݆ ∈ ݈ and an arbitrary point ܯ ∈  ,then (1) ;ܯ

,௝ሺ݇ܪ ሻܯ,߁ ൌ ሼ݈ ∈ ,ሺ݈ܩ	|ܯ ݆, ሻ߁ ൑ ݇ሽ ሺ1ሻ	

is the neighborhood set of the point j and k the neighborhood extent. The neighborhood H can 
define a pattern in the input space4. 
The easiest example is a neighborhood defined by distances in a Euclidean graph. In the context 
of graph theory, a Euclidean graph is an undirected weighted graph of the highest order with 
respect to all other graphs discussed here, because every vertex is connected to every other 
vertex. Note that the weights of the vertices in a Euclidean graph need not necessarily be defined 
by the Euclidean metric. Another representation of a neighborhood H is a Delaunay graph 
ࣞሺܸ, ,ሻ, which is a subgraph of a Euclidean graph. A Delaunay graph ࣞሺܸܧ  ሻ is based onܧ
Voronoi cells [Toussaint, 1980]. Each cell is assigned to one data point, and the size of a cell is 
characterized in terms of the nearest data points surrounding the point assigned to that cell. 
Within the borders of one Voronoi cell, there is no position that is nearer to any outer data point 
than to the data point within the cell. Thus, a neighborhood of data points is defined in terms of 
direct links between borders of Voronoi cells that induce an edge E in the corresponding De-
launay graph [Delaunay, 1934]. In short, a Delaunay graph represents a graph for a neighbor-
hood ܪሺ1, ,ሺܸܩ ሻ. A neighborhood H can also be represented by a Gabriel graphܯ,ࣞ -ሻ [Gaܧ
briel/Sokal, 1969], which is a subgraph of a Delaunay graph ࣞሺܸ,  ሻ in which two points areܧ
connected if the line segment between the two points is the diameter of a closed disc that con-
tains no other points within it (empty ball condition). A Gabriel graph represents a graph for a 
neighborhood ܪሺ1,  ሻ. Another case that is often considered is that of a neighborhoodܯ,ܩ
 where the number of nearest neighbors of a point j is defined by the number of ,(M ,ܭ ,knn)௝ܪ

vertices connected to this point in the K-nearest-neighbor graph (KNN graph), e.g., [Brito et 
al., 1997]. Here, we will use the shorter notation H(knn, M). 

 

Figure 2.4:  Four points and their Voronoi cells: D(l, k)>D(l, m) illustrate the different types of neighborhoods: 
unidirectional versus direction-based. 

                                                      
4  Such neighborhoods H will prove useful for various evaluation steps, as summarized in Fig. 2.5. 
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Neighborhoods of points can be divided into two types, namely, unidirectional and direction-
based neighborhoods. Consider the four points shown in Figure 2.4. The points l, k, j, and l are 
in the same neighborhood ܪ௟ሺ1,  in the corresponding Delaunay graph, but the points l (ܯ,ࣞ
and m are never neighbors in this graph, even if the distance D(l, m) is smaller than D(l, k). 
Thus, in this neighborhood definition, the direction information is more important than the real 
arrangement of the points in space as characterized by the distances D. 
However, if a neighborhood is defined in terms of a KNN graph, then the points l and m could 
be in the same neighborhood ܪ௟ሺ݇݊݊, -and the points l and k could be in different neigh ,(ܯ,ܭ
borhoods, depending on the value of ݇݊݊ and on the ranking of the distances between these 
points. Therefore, this type of neighborhood is called unidirectional. In other words, it can be 
said that the points l, j, and m are more dense with respect to each other than they are with 
respect to k. Thus, unidirectional neighborhoods defined in terms of KNN graphs or unit disk 
graphs [Clark et al., 1990] can be used to define neighborhoods based on density. 

2.3 Overview of Knowledge Discovery 

 “The term knowledge discovery in databases […] was coined in 1989 to refer to the general process of finding 
knowledge in data and to emphasize the ‘high-level´ application of particular data mining methods” [Fayyad et 
al., 1996, p. 3].  

In 1996, Fayyad et al. used this term in his introduction to “From Data Mining to Knowledge 
Discovery” as follows:  

“Knowledge discovery in databases is the non-trivial process of identifying valid, novel, potentially useful, and 
ultimately understandable patterns in data” [Fayyad et al., 1996, p. 6].  

Dropping the suffix in databases, the term knowledge discovery was extensively discussed in 
[Mörchen, 2006, pp. 6-7]. According to the definition used in that work, knowledge discovery 
is “data mining with the goal of finding knowledge, i.e., novel useful, interesting, understand-
able, and automatically interpretable patterns” [Mörchen, 2006, p. 7]. The definition of data 
mining as given in [Mörchen, 2006, p. 7] is  

“The process of finding hidden information or structure in a data […] [set.] This includes extraction, selection, 
preprocessing, and transformation of features describing different aspects of the data”.  

The following overview in Figure 2.5 presents a possible approach to knowledge discovery, as 
applied in chapters 11 and 12. It is not claimed here that this view is the only approach available 
in this research field. The remainder of this chapter will describe the various tasks involved in 
knowledge discovery which are shown in Figure 2.5. 
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Figure 2.5:  The step-wise process of knowledge discovery, as inspired by [Fayyad et al., 1996, p. 10; Ultsch, 

2000b]. The systematic process may contain loops between any steps [Behnisch/Ultsch, 2015, 
p. 52]. This work focuses on Clustering analysis which will be separately discussed in the next 
chapter, but in general applying Machine learning algorithms would be the 4th step. 

2.3.1 Feature Selection 

In the first step, the “features must be properly selected so as to encode as much information as 
possible concerning the task of interest. […] minimum information redundancy among the fea-
tures is a major goal” [Theodoridis/Koutroumbas, 2009, pp. 596-597] (see also [Lee/Verleysen, 
2007, p. 230]). Redundancy refers to a case in which certain features of a data set are not inde-
pendent of each other [Lee/Verleysen, 2007, pp. 1-2]. For example, if the two variables ݈ and ݆ 

are correlated, then ܦሺ݈, ݆ሻ ൌ ඥ∑ ݈௜ െ ݆௜௜  is no longer a Euclidean distance [Cormack, 1971, 

p. 326]. 

2.3.2 Preprocessing 

 “Preprocessing the data to be mined is utterly important for a successful outcome of the analysis. If the data is not 
cleansed and normalized, there is a high danger of getting spurious and meaningless results. Cleansing includes 
the removal of outliers, i.e., data objects with extreme values, replacement of missing values, or the removal of 
erroneous corresponding data sets” [Mörchen, 2006, pp. 7-8].  

Sometimes, this first step is already referred to as feature extraction [Bishop, 2006, p. 2]. 
Many data mining methods rely on the concept of (dis-)similarity between pieces of information 
encoded in data. For example, for Euclidean distances, “normalization of the data needs to be 
considered to avoid undesired emphasis of features with large ranges and variances” [Mörchen, 
2006, p. 8] (see also [Jain/Dubes, 1988, p. 38]). This process of creating such “syntetic” data 
features that retain the most important information of a pattern in question is here called feature 
extraction (consistent with [Mirkin, 2005, p. 208]). 

2.3.3 Feature Extraction 

The first step of feature extraction is to determine the distribution of each individual variable. 

 “Important tools for this inspection are the quantile-quantile plot (QQ-plot) and kernel estimators for the proba-
bility density function (pdf). Here we use the PDE method for pdf estimation [Ultsch, 2003b] as it is specially 
designed to uncover subsets in the variables” [Behnisch/Ultsch, 2015, p. 54].  
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A QQ-plot makes it possible to compare the given distribution of a variable to standard distri-
butions. Additionally, box-whisker diagrams (boxplots) may be used to visualize the quartiles 
of a variable. 

2.3.3.1 Transformations 

“Real valued data often comes from domains where variables have greatly varying variances because of different 
scales. Variables with large variances are likely to dominate the obtained distance structure, e.g. when using Min-
kowski metrics. To overcome this problem, each variable is linearly transformed (standardized) such that the esti-
mated variance is the same on all variables. The Z-score scheme transforms a variable’s values ݔ ← ሺݔ െ ݉ሻ/ߪ 
with mean m and standard deviation σ” [Herrmann, 2011, p. 28]. 

If a variable can be non-linearly transformed to a normal distribution, the Box-Cox algorithm 
(see [Asar et al., 2014]) is often used to estimate the factor of the transformation. With an ap-
proximation of the factor obtained from the ladder of powers [Tukey, 1977], an “understanda-
ble” transformation, e.g., “log” or “sqrt,” can be applied that is as near as possible to the factor 
of the Box-Cox algorithm. “These allow for hypotheses on why the distribution is shaped in a 
particular way” [Behnisch/Ultsch, 2015, p. 56]. 
For non-normally distributed variables (e.g., a variable with a multimodal distribution), a mean-
ingful variance ߪଶ may be difficult to estimate. “Instead, a (robust) min/max-standardization 

transforms a variable’s values ݔ ← ௫ି௠௜௡ሺ௫ሻ

௠௔௫ሺ௫ሻି௠௜௡ሺ௫ሻ
 with robust estimates ݉݅݊ሺݔሻ, ݉ܽݔሺݔሻ for 

minimum and maximum values. There is empirical evidence by Milligan and Cooper [Milli-
gan/Cooper, 1988] that min/max standardization is to be preferred over Z-score, especially if 
variances of underlying distributions is [sic] hard to estimate” [Herrmann, 2011, p. 28]. In this 
context,	݉ܽݔሺݔሻ and ݉݅݊ሺݔሻ are estimated as the 95th and 5th percentiles, respectively, of the 
distribution [Herrmann, 2011, p. 127]. 

2.3.3.2 Dimensionality Reduction 

A common approach to feature extraction is dimensionality reduction (DR). To cope with the 
“curse of high dimensionality” (for further details, see [Verleysen et al., 2003]), dimensionality 
reduction reduces an input space I⊂ Թௗ to an output space O⊂ Թ௠ such that ݉ ൏ ݀ [Lee/Ver-
leysen, 2007].  

“All difficulties that occur when dealing with high-dimensional data are often referred to as the ‘curse of dimen-
sionality´. When data dimensionality grows, the good and well-known properties of the usual 2D or 3D Euclidean 
spaces make way for strange and annoying phenomena” [Lee/Verleysen, 2007, p. 3].  

The various phenomena related to this concept are explained in [Lee/Verleysen, 2007, pp. 4-9] 
(see also [Bellman, 1957]). A DR method is usually either a manifold learning method or a 
projection method. DR methods such as autoencoders [Hinton/Salakhutdinov, 2006], Isomap 
[Tenenbaum et al., 2000] or local linear embedding (LLE) [Roweis/Saul, 2000] that are de-
signed to find a manifold5 that represents a given set of high-dimensional data6 are called man-
ifold learning methods. Such methods are disregarded here because these manifolds usually 
have more than two dimensions. DR methods of the type known as projection methods are 

                                                      
5  “A manifold is a connected region. Mathematically, it is a set manifold of points, associated with a neighborhood 

around each point. From any given point, the manifold locally appears to be a Euclidean space.” [Goodfellow 
et al., 2016, p. 160]  

6  Often described using the term intrinsic dimension (e.g., [Lee/Verleysen, 2007, pp. 18-24, 41, 47ff]). 
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separately introduced in chapter 4. There, the focus is placed on methods that attempt to visu-
alize information by means of projections that are restricted to visualizing high-dimensional 
data in a two-dimensional space while preserving their structure (for details, see chapter 5). The 
quality of a projection critically depends on the concept of dissimilarity that is chosen to be 
applied to the input space I. This concept could be a definition based on either distance or local 
proximity. An index used to evaluate the quality of a projection is called a quality measure 
(QM), and 19 QMs are introduced in chapter 6. 

2.3.4 Cluster Analysis 

Many data mining methods rely on some concept of the dissimilarity between pieces of infor-
mation encoded in the data of interest. These methods are used for cluster analysis, and common 
approaches will be described in the next chapter. Cluster analysis is the task of unsupervised 
classification that results in a clustering. Given a data set I that contains n data points, the ob-
jective of cluster analysis is to group the data points into K disjoint subsets of I, denoted by 
ܿଵ, … , ܿ௄ [Hennig et al., 2015, p. 2]. “A clustering is […] the partition obtained” with  
Κ ൌ ሼܿଵ, … ܿ௄ሽ. If a data point l belongs to a cluster ܿ௚, then it has the class label ݃ ∈ Գ. In the 

literature, this process is often called hard clustering to distinguish it from methods such as 
fuzzy clustering, in which a fractional degree of membership is assigned to each ݈ ∈  Jain et] ܫ
al., 1999]. 

Cluster 
No generally accepted definition of clusters exists in the literature [Hennig et al., 2015, p. 705]. 
When describing clusters, the term pattern is often used (e.g., [Theodoridis/Koutroumbas, 
2009]). 
Here, consistent with Bouveyron et al., it is assumed that a cluster is a group of similar objects 
[Bouveyron et al., 2012]. Chapter 3 will elaborate on this statement while presenting the defi-
nition of natural clusters. 

Intracluster Distance 
Let ܿ௣ ⊂ be a cluster such that ∀ܿ௤ ܫ ⊂ ,݌ where ,ܫ ݍ ∈ ሼ1,… , ݇ሽ and ݌ ് ௣ܿ ,ݍ 	∩ ܿ௤ ൌ ሼ	ሽ; 
then, the distance ܽݎݐ݊ܫሺܿ௣ሻ ≔ ,ሺ݈ܦ ݆ሻ between two data points ݆, ݈ ∈ ܿ௣, is called an intraclus-

ter distance. 

Intercluster Distance 
Let ܿ௣ ⊂ ܿ௤	and	ܫ ⊂ ,݌ be two clusters such that ܫ ݍ ∈ ሼ1,… , ݇ሽ	, ܿ௣ 	∩ ܿ௤ ൌ ሼ	ሽ, and ݌ ്  ;ݍ

then, the distance ݎ݁ݐ݊ܫ൫ܿ௣, ܿ௤൯ ൌD(݆, ݈) between two data points ݆ and ݈ in the two clusters, 

݆ ∈ ܿ௣ and ݈ ∈ ܿ௤, is called an intercluster distance. 

Compact Structures  
Compact structures in a data set are mainly defined by distances d if discontinuity in data exist 
such that the intracluster distances are small and the intercluster distances are large. Note, that 
the distance distribution is often bimodal if the data structures are compact. This type of struc-
tures leads to natural clusters (see chapter 3). 
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Connected Structures  
Connected structures in a data set are mainly defined by density ߩሺݒԦ	ሻ if discontinuity in data 
exist. If a connected graph Γ is chosen appropriately regarding the data set, these data structures 
are based on neighborhoods ܪ௝	ሺ݇, Γ,ܯሻ. This type of structures leads to natural clusters (see 

chapter 3). 

2.3.5 An Approach to Knowledge Acquisition 

If, for a given data set, there exist labels defined by a clustering or a domain expert, the next 
step may be to determine what each cluster means [Behnisch/Ultsch, 2015, p. 65] or what kind 
of knowledge can be acquired from it7. 

“Under knowledge we understand a symbolic representation of objects, facts and rules for an interpreter with 
symbol processing capability, e.g. a human8. In particular, knowledge is communicable by word or writing” 
[Ultsch, 1994, p. 1] (see also [Ultsch, 1987, p. 22]).  

Knowledge has the properties of being valid, comprehensible, nontrivial, potentially innovative 
and useful in practice [Behnisch/ Ultsch, 2015, p. 52]. It can be stored in a knowledge base, 
which “is an organized collection of knowledge together with operations for accessing and ma-
nipulating knowledge” [Ultsch, 1987, p. 22]. One example of a representation of knowledge is 
a rule [Ultsch, 2016c], which is defined as a prescription regarding how to generate, interpret 
and manipulate facts [Ultsch, 1987, p. 22]. 
In the context of knowledge discovery, knowledge acquisition can be defined “as the encoding 
of knowledge into the formal representation scheme of a knowledge-based system [KBS]” 
[Ultsch, 1987, p. 23]); here, a KBS is defined as “a computer program that contains an explicit, 
formal representation of knowledge in a knowledge base and is capable of [drawing conclu-
sions9]” [Ultsch, 1987, p. 23]. In another context, researchers may interview domain experts 
“to become educated about the domain and to elicit the required knowledge, in a process called 
knowledge acquisition” [Russell et al., 2003, p. 217]. In short, knowledge acquisition can be 
described as a process that leads to a formal representation of knowledge (see [Aikins, 1983]), 
for example, a process leading to the generation of rules required for a computer program, e.g., 
DENDRAL [Russell et al., 2003, p. 22] or MYCIN [Aikins, 1983]. One possible approach to 
knowledge acquisition is to use machine learning [Russell et al., 2003, p. 687]. With regard to 
understandability, the machine learning methods used for this purpose can be classified as either 
symbolic or sub-symbolic methods [Ultsch/Korus, 1993]. 

“Sub-symbolic methods model the structure of data using many numerical parameters. They are usually aimed at 
prediction or classification. The output of sub-symbolic methods often depends on the values and interactions of most 
or all model parameters. They fail to explain the prediction or classification. There are certainly areas of data mining 
where it is sufficient to build such black-box models that can approximately reproduce a classification or predict 
future data. An important requirement for knowledge discovery is the interpretability of the results. In many domains 
the expert wants to know why a decision was made or what a […] pattern describes. Comprehensible descriptions 
of the models are crucial for success in this case” [Mörchen, 2006, p. 120]. 

For the acquisition of knowledge through cluster analysis, symbolic methods are preferable, as 
described in chapters 11 and 12 (see also [Ultsch, 1994]). In chapter 12, decision tree learning 

                                                      
7    In another context one would like to explain a prediction done by a machine learning algorithm. 
8  For humans 7±2 rules appear to be the optimum [Miller 1956]. 
9  Formally defined as inference in [Ultsch, 1987, p. 22]. 
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is used in a knowledge acquisition approach called Classification And Regression Tree (CART) 
analysis [Breiman et al., 1984]). This method relies on a binary tree in which the splitting cri-
teria (decisions) for the vertices are expressed in terms of the Gini index (for further details, see 
[Safavian/Landgrebe, 1990, p. 15]). 
“A class is described by a number of conditions” [Ultsch/Korus, 1993, p. 3] that lead to the 
generation of a subset ܩ௜ ⊂  defined by a previously identified clustering. Additionally, for ܥ
each class, a unique class label ݃ ∈ Գ exists for all	݋ ∈ ݋ ௜. Every observationܩ ∈  ௜ can beܩ
unambiguously described by one or more properties that are shared among all observations of 
 ௜ is reachedܩ ௜. Here, the conclusion that an observation can be correctly assigned to a classܩ
based on the conditions defining a path (rule) from the corresponding leaf to the root of the 
binary tree, and this conclusion is called the decision to place ݋	in	ܩ௜. Therefore, the class ܩ௜ 
has a semantic characterization because it is characterized by the rules governing the decision 
tree, which allow this class to be distinguished from other classes. Here, it is assumed that the 
last step in the evaluation of a clustering is to ask domain experts to validate the identified 
classes. 

License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 
reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if changes were made. 
The images or other third party material in this chapter are included in the chapter’s Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, 
you will need to obtain permission directly from the copyright holder.
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3 Approaches to Cluster Analysis 

Many data mining methods rely on some concept of the similarity between pieces of 
information encoded in the data of interest. Various names have been applied to these clustering 
methods, depending largely on the field of application in data science. For example, in biology 
the term “numerical taxonomy” is used [Thorel et al., 1990], in psychology the term Q analysis 
is sometimes employed, market researchers often talk about “segmentation” [Arimond/Elfessi, 
2001] and in the artificial intelligence literature, unsupervised pattern recognition is the favored 
label [Everitt et al., 2001, p. 4]. The corresponding methods can be either data-driven or need-
driven. The latter, called also constraint clustering  [Tung et al., 2001] aims at organizing the 
true structure to meet certain application requirements such as energy aware sensor networks, 
privacy preservation, and market segmentation  [Ge et al., 2007, p. 320]. An overview of con-
strained clustering algorithms can be found in [Basu et al., 2008].  
Here, however, the focus is placed on data-driven10 methods, in which patterns present in the 
data are used to identify homogeneous groups of objects [Arabie et al., 1996, p. 8 ff.]. 
Consequently, the term cluster analysis is used to refer to a step in the knowledge discovery 
process (chapter 2, Figure 2.5.).  Let it be assumed that in Figure 3.1 (top left), the first data set 
(I) contains two variables11. The division of this homogeneous data set into different patterns 
would be called dissection [Everitt et al., 2001, p. 7]. By contrast, natural clusters do not require 
dissection; instead, they are clearly separated in the data [Duda et al., 2001, p. 539; The-
odoridis/Koutroumbas, 2009, pp. 579, 600], as shown in the second data set (II) in Figure 3.1 
(top right).  
No generally accepted definition of clusters exists in the literature [Hennig et al., 2015, p. 705]. 
Additionally, Kleinberg showed for a set of three simple properties (scale-invariance, con-
sistency and richness), that there is no clustering function12 satisfying all three [Kleinberg, 
2003]. By concentrating on distance and density based structures13, this work restricts clusters 
to “natural” clusters  (see section 2) and therefore omits the axiom of richness where all 
partitions should be achievable. Consequently, only natural clusters, in which objects are simi-
lar within clusters and dissimilar between clusters [Bouveyron et al., 2012], are considered here. 
For example, the distance distribution in the input space can be bimodal, indicating a distinction 
between the inter- versus intracluster distances: in data set I in Figure 3.1 (bottom left), no large 
intercluster distances exist and the distribution of the distances is unimodal, whereas in data set 
II in Figure 3.1 (bottom right), the distribution of the distances is bimodal because data set II 
contains two natural clusters with a large intercluster distance. Another example is the case in 
which the number of data points in one elementary volume (݀ݒԦ) of the input space is higher 
than that in another elementary volume ݀ -Ԧ, which can be estimated using a nonparametric techݒ
nique for density estimation (e.g., kernel density estimation). In a third example, local proxim-
ities can be defined as structures based on neighborhoods ܪ௝ሺ݇,  .ሻ (see chapter 2.2.1)ܯ,߁

                                                      
10 The progress in an “algorithmic activity” is enforced by data w.r.t. patterns (as opposite to intuition or personal 

experience, e.g. through the setting of parameters). 
11  In fact, this figure shows a CCA projection of the leukemia data set (see chapter 9). 
12  “[A]ny function f that takes a set S of n points with pairwise distances between them, and returns a partition of 

S“ [Kleinberg, 2003, p 2]. 
13 They can be described as patterns identified based on discontinuity. 
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Figure 3.1:  Data set I is an approximately homogeneous data set with patterns that form no natural clusters (left, 
top). The distance distribution in this case is not bimodal (left, bottom). Data set II contains two 
natural clusters with a large intercluster distance (right, top). The distance distribution is bimodal 
here (right, bottom). See Figure 12.2 or supplement B for a high-dimensional example. Distance 
distributions was generated using the AdaptGauss CRAN package [Thrun/Ultsch, 2015; Ultsch et 
al., 2015]. 

3.1 Common Clustering Methods 

Clustering methods can be broadly divided into two groups: hierarchical and partitional meth-
ods [Jain, 2010]. Partitional clustering methods simultaneously divide a set of data points into 
subsets. Because we are concentrating on natural clusters, overlapping clustering is not con-
sidered here. It should be remarked that the choice of the clustering algorithm to be used is 
more important than the choice of the distance calculation [Jain/Dubes, 1988, p. 140]. 
A prominent example of a partitional clustering method is the well-known k-means method of 
[MacQueen, 1967] (originally from [Steinhaus, 1956]). It proceeds as follows: Once the number 
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of clusters has been chosen, a random initialization of cluster centers, called centroids, is per-
formed in the input space.  Then, the nearest data points to each centroid are assigned to that 
centroid. After the mapping of the data points, the centroids are moved such that the distances 
from the assigned points to their corresponding centroids are minimized. This process is per-
formed repeatedly. Figure 3.2 illustrates four iterations of the process. In summary, k-means 
centroids are average points rather than individual data points. Details about the algorithm can 
be found in [Hennig et al., 2015, p. 68ff]. 
By contrast, the clustering method called partitioning around medoids (PAM), introduced in [L. 
Kaufman/Rousseeuw, 1990], minimizes the sum of the distances from the data points within a 
cluster to one chosen data point in the same cluster, called the medoid [Mirkin, 2005, p. 181]. 
In other words, the average distance between a medoid and a subset of data points in the same 
cluster is minimized. Aside from the change from centroids to medoids, the algorithm can be 
formulated analogously to k-means [Mirkin, 2005, p. 182].  
Hierarchical clustering algorithms are based on the “representation of data as a hierarchy of 
clusters nested over set-theoretic inclusion” [Mirkin, 2005, p. 112]. In the agglomerative ap-
proach, such an algorithm begins with each data point in its own cluster and successively 
merges the most similar pairs of clusters to form a cluster hierarchy14. 
A typical visual representation of this process is called a dendrogram (Figure 3.3). A dendro-
gram is a tree showing a hierarchical structure of distance-based connections between subsets 
of points. The similarity between points or groups of points depends on the algorithm. [Bock, 
1974] demonstrated (see chapter 2 for details) that for every dendrogram, an ultrametric space 
can be constructed in which the triangle inequality is redefined as  
,ሺ݈ܦ ݆ሻ 	൑ ,ሺ݈,݉ሻܦሺ	ݔܽ݉	 ,ሺ݉ܦ ݆ሻሻ. 

 

Figure 3.2:  Steps of iteration using the k-means algorithm. After a random initialization of three centroids the 
nearest data points are assigned to each centroid. Then the centroids are moved to minimalize the 
distances. 

                                                      
14  The divisive approach is not considered here (see [Mirkin, 2005, p. 113 ff] for details). 
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Figure 3.3:  Dendrogram of the Hepta data set based on the Ward algorithm. Large changes in fusion levels of 
the ultrametric portion of the Euclidean distance in the Ward algorithm (y-axis) indicate the best cut. 
Seven clusters are indicated by red boxes at the y-axis value of 10. If only small changes in the 
fusion levels exist, it indicates that the algorithm is not able to find a cluster structure. 

One of the most common hierarchical clustering algorithms is called single linkage (SL) [Florek 
et al., 1951; Sokal/Sneath, 1963], in which the clustering process is agglomerative [Jain et al., 
1999]. In SL, the similarity between two subsets of data points is defined as the minimum dis-
tance between data points in these subsets [Duda et al., 2001, p. 553]. 

Let ܦ෩ be the distance between two clusters ܿଵ ⊂ and ܿଶ ܫ ⊂ ,ሺ݈ܦ and let ,ܫ ݆ሻ be the distance 
between two data points in the input space I; then, SL is defined based on (see [Hennig et al., 

2015, p. 9]) ܦ෩ሺܿଵ, ܿଶሻ ൌ min
௟	∈	௖భ,௝∈௖మ

,ሺ݈ܦ ݆ሻ. 

In graph theory terminology, this process generates a tree [Duda et al., 2001, p. 553]. If it is 
allowed to continue until all subsets of points are linked, the result is a (minimal) spanning tree 
(MST) [Duda et al., 2001, pp. 553, 554; Jain/Dubes, 1988, p. 70]. Of all common algorithms 
developed before 1968, only SL satisfies all conditions of a “theoretically valid” clustering (see 
[Jardine/Sibson, 1968] for details).  
Another hierarchical clustering algorithm that will be used here is called the Ward algorithm 
[Ward Jr, 1963]. In the Ward algorithm, the similarity between two subsets of points is based 
on an optimal value of an objective function, which commonly is the sum of squared errors 
(SE). 
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Let ܿ௥ ⊂ and ܿ௤	ܫ ⊂ ,ݎ be two clusters such that ܫ ݍ ∈ ሼ1,… , ݇ሽ and ܿ௥ 	∩ ܿ௤ ൌ ሼ	ሽ for ݎ ്  ,ݍ

and let the data points in the clusters be denoted by ݆௜ ∈ ܿ௤ and ݈௜ ∈ ܿ௥, with the cardinality of 

the sets being ݇	 ൌ 	 หܿ௤ห and ݌	 ൌ 	 |ܿ௥| and with  

݉൫ܿ௤൯ ൌ
ଵ

௞
∑ ݆௜
௞
௜ୀଵ 	and	݉ሺܿ௥ሻ ൌ

ଵ

௣
∑ ݈௜
௣
௜ୀଵ ;		

then, the SE is defined as (see [Theodoridis/Koutroumbas, 2009, pp. 661-663]) 

ܧܵ ൌ
݇ ∗ ݌
݇ ൅ ݌

	෍ቀ݉ሺܿ௞ሻ െ ݉൫ܿ௣൯ቁ
ଶ

௡

௜ୀଵ

	

In Figure 3.3, the ultrametric property of the Ward algorithm is represented in a dendrogram 
(for further details, see [Duda et al., 2001, p. 557; Everitt et al., 2001, p. 68ff; Jain/Dubes, 
1988]). If the values on the y axis “for the levels are roughly evenly distributed throughout the 
range of possible values, then there is no principled argument that any particular number of 
clusters is better or more natural than another” [Duda et al., 2001, p. 551]. “Large changes in 
fusion levels are taken to indicate the best cut” [Everitt et al., 2001, p. 76]. The cut depicted in 
Figure 3.3 generates a clustering consisting of seven clusters of roughly equal size. 
The next clustering method used in this work is called spectral clustering. 

“[It] is a class of graph-based techniques that unravel the structure properties of a graph using information con-
veyed by the spectral decomposition [eigendecomposition [see [Goodfellow et al., 2016, pp. 42-44]]] of an asso-
ciated [Laplacian] matrix. The elements of this matrix code the underlying similarities among nodes [data points] 
of the graph” [Theodoridis/Koutroumbas, 2009, p. 772]. 

 “The K principal eigenvectors of the Laplacian matrix provide a mapping of the objects into K dimensions. To 
obtain clusters, the resulting K-dimensional vectors are clustered by standard methods, usually K-means. There 
are various interpretations of this. […]. For these [Euclidean] data, spectral clustering acts as a remarkably robust 
linkage method.” [Hennig et al., 2015, p. 10].  

There is a close resemblance between spectral clustering and manifold learning methods [The-
odoridis/Koutroumbas, 2009, p. 779]. Here, the clustering algorithm of [Ng et al., 2002] is used 
to take advantage of the open-source implementation of this method that is available in the R 
language [R Development Core Team, 2008]. 
 “Clustering via mixtures of parametric probability models is sometimes in the literature re-
ferred to as ‘model-based clustering´” [Hennig et al., 2015, p. 10]. With the clustering algorithm 
of [Fraley/Raftery, 2006] in mind, here, this clustering method is called the mixture of Gaussi-
ans (MoG) method. The MoG method uses the expectation maximization (EM) algorithm (for 
further details on the EM algorithm, see [Bishop, 2006]).  

The EM algorithm is “an algorithm of alternating maximization applied to the likelihood function for a mixture 
of distributions model. At each iteration, EM is performed according to the following steps: (1) Expectation: 
Given parameters of the mixture ௞ܲ and individual density functions ܽ௞, find posterior probabilities for obser-
vations to belong to individual clusters ݃௜௞ […]. (2) Maximization: given posterior probabilities ݃௜௞, find pa-
rameters ௞ܲ, ܽ௞ maximizing the likelihood function” [Mirkin, 2005, p. 178].  

The MoG method suffers “from the well-known curse of dimensionality [Bellman, 1957], 
which is mainly due to the fact that model-based clustering methods are over-parametrized in 
high-dimensional spaces” [Bouveyron/Brunet-Saumard, 2014, p. 53]. To solve this problem, 
“for model based clustering, variable selection can be tackled within a Bayesian framework” 
[Bouveyron et al., 2012]. In the case of the MoG clustering method, the optimal model can be 
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calculated according to the Bayesian information criterion [Aho et al., 2014] for parameterized 
Gaussian mixtures that are EM initialized using hierarchical agglomeration [Fraley/Raftery, 
2002, pp. 10-12].  

“In each hierarchical agglomeration, each stage of merging corresponds to a unique number of clusters, and a 
unique partition of data. A given partition can be transformed into indicator variables […] which can then be used 
as conditional probabilities in an M-step of EM for parameter estimation, initializing an EM iteration” [Fra-
ley/Raftery, 2002, p. 11]. Here, the R package mclust is used [Fraley/Raftery, 2006]. 

3.2 Structure of Natural Clusters 

“Clusters can be of arbitrary shapes (structures) and sizes in a multidimensional pattern space. Each clustering 
criterion imposes a certain structure on the data, and if the data happen to conform to the requirements of a par-
ticular criterion, the true clusters are recovered. Only a small number of independent clustering criteria can be 
understood both mathematically and intuitively. Thus the hundreds of criterion functions proposed in the literature 
are related and the same criterion appears in several disguises” [Jain/Dubes, 1988, p. 91].  

This section analyzes common clustering algorithms from the perspective of structures, 
whereas in various other sources, the clustering criterion or objective function has been under-
stood only intuitively. Here, it is argued that the main argument of Jain and Dubes has received 
overall consent from the clustering community: Different clustering methods tend to implicitly 
assume different structures of clusters [Duda et al., 2001, pp. 537, 542, 551; Everitt et al., 2001, 
pp. 61, 177; Handl et al., 2005; Theodoridis/Koutroumbas, 2009, pp. 862, 896; Ultsch/Lötsch, 
2016]. 

3.2.1 Types of Structures Sought by Clustering Algorithms 

The argument of Handl et al. is partially adopted here, in which natural clusters are considered 
to exhibit two types of structures, called compact and connected structures [Handl et al., 2005], 
as depicted in Figure 3.4. Clusters with compact structures show small variations in their intra-
cluster distances; connected structures are based on the idea of neighborhoods of data points 
[Handl et al., 2005]. Here, a compact structure is considered to be mainly defined by inter- 
versus intracluster distances, whereas a connected structure is primarily defined by neighbor-
hoods H of data. Using the definitions presented in section 2.2.1, neighborhoods can be identi-
fied based on graph theory. This can result in connected structures consisting of either unidi-
rectional or direction-based neighborhoods. 

 

Figure 3.4:  Two types of cluster structures, compact (left) and connected (right), taken from [Handl et al., 2005]. 
Here, a compact structure is considered to be mainly defined by intra- versus intercluster distances, 
whereas a connected structure is primarily defined based on neighborhoods ܪ௝	ሺ݇, Γ,ܯሻ and the 
density of the data. 
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An example of an algorithm that seeks compact clusters is the k-means clustering algorithm, 
which imposes a spherical cluster structure [Duda et al., 2001, p. 542; Handl et al., 2005, 
p. 3202; Hennig et al., 2015, p. 61; Mirkin, 2005, p. 108; Theodoridis/Koutroumbas, 2009, 
p. 742] such that the clusters cannot be too elongated [L. R. Kaufman/Rousseeuw, 2005, 
p. 117]. This cluster structure can be found in a data set if “the data points are actually normally 
distributed” (…) because “the sample mean tends to fall in the region where the samples are 
most densely concentrated” [Duda et al., 2001, p. 537]. The k-means algorithm is sensitive to 
noise and outliers [Theodoridis/Koutroumbas, 2009, p. 744]. “This drawback […] gave rise to 
the k-medoids algorithms […].” The PAM algorithm is less sensitive to outliers. Because of its 
strong similarity to the k-means algorithm, it is assumed here that PAM also yields a compact 
spherical cluster structure. 
Examples of algorithms that seek connected clusters include density-based methods such as 
DBscan [Ester et al., 1996] and SL [Handl et al., 2005]. Because SL searches for nearest neigh-
bors [Cormack, 1971, p. 331], it tends to produce connected and chain-like structures [Duda et 
al., 2001, p. 554; Everitt et al., 2001, p. 67; Hartigan, 1981; Jain/Dubes, 1988, pp. 64-65; The-
odoridis/Koutroumbas, 2009, p. 660]. A nearest neighbor is also a Delaunay neighbor (Figure 
3.4), leading to a direction-based connected structure of clusters. Spectral clustering is based 
on graph theory and consequently searches for connected structures [Ng et al., 2002, p. 5] of 
clusters with “chain-like or other intricate structures” [Duda et al., 2001, p. 582]. This indicates 
that such an algorithm also searches for direction-based connected clusters (see also [Hennig et 
al., 2015, p. 10]). “They [spectral clustering methods] are well-suited for the detection of arbi-
trarily shaped clusters, but can lack robustness when there is little spatial separation between 
the clusters” [Handl et al., 2005, p. 3202]. 
The Ward algorithm is sensitive to outliers and tends to find compact clusters of equal size 
[Everitt et al., 2001, p. 61, Tab. 1] that are ellipsoidal in structure [Ultsch/Lötsch, 2016]. The 
MoG method uses a mixture-of-distributions approach, which leads to connected clusters. Con-
trary to [Handl et al., 2005], it is argued here that the MoG method should be able to separate 
clusters that are non-linear separable (e.g., Chainlink [Ultsch/Vetter, 1995]). Jains and Dubes 
report that “fitting a mixture density model to patterns” creates clusters with hyper-ellipsoidal 
shapes [Jain/Dubes, 1988, p. 92]. [Handl et al.] report that the MoG method is very effective 
for well-separated clusters [Handl et al., 2005, p. 3202].  
In the case of self-organizing mapping (SOM)15, the structures have been reported to be of “very 
general shapes” [Duda et al., 2001, p. 582; Ultsch/Lötsch, 2016]. Similarly to the emergent 
SOM (ESOM)/U-matrix clustering method [Ultsch et al., 2016a], the Databionic swarm (DBS) 
method that is discussed later in this work also uses the concept of emergence16, through which 
novel properties can arise in a system. Emergence leads to clusters whose structures are not 
predefined. 
To summarize, the cluster structures that are theoretically sought by various methods are visu-
alized in Figure 3.5. It should be noted that clustering methods that search for clusters with 
connected structures should also be able to find compact clusters as long as the distance between  

                                                      
15  However, for k-means-SOM of the batch type, spherical or well-separated structures have been reported [Handl 

et al., 2005, p. 3202] (see the SOM section in chapter 4 for the differences between ESOM and k-means-SOM). 
16  Definition, see chapter 7.3, p. 81-82 
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Figure 3.5:  Overview of the cluster structures that common clustering algorithms tend to find. It is based on the 
literature, except for the MoG algorithm17, for which an educated guess is made. The subgroup of 
DBscan clustering is characterized based on arguments presented in section 3.2.1, for the definition 
of emergent see chapter 7.3. 

clusters is large or the density between clusters is very low (see also [Handl et al., 2005, 
p. 3202]); e.g., “single-linkage clusters detect high-density clusters if there is a low enough 
valley separating them” [Hartigan, 1981]. However, methods that search for compact and spher-
ical structures cannot be expected to find connected structures. 

3.2.2 Quality of Clustering 

“[The quality of clustering is measured using a] “procedure for validating a cluster structure […]. This can be 
based on an internal index, an external index or resampling. An internal index scores the degree of correspondence 
between the data and the cluster structure. An external index compares the cluster structure with a structure given 
externally. A resampling is used to see whether the cluster structure is stable with respect to data change” [Mirkin, 
2005, p. 205] (see also [Jain/Dubes, 1988, p. 161ff]).  

Internal and external indices are also often called intrinsic or extrinsic indices, respectively; 
here, they are referred to as supervised or unsupervised indices, respectively. 
The simplest example of a supervised index is the accuracy, which is defined as follows: 

Accuracy	ሾ%ሿ ൌ
ሾNo.	of	true	positivesሿ

ሾNo.	of	casesሿ
ሺ3.1ሻ	

In Eq. 3.1, the number of true positives is the number of labeled data points for which the label 
defined by a prior classification is identical to the label defined after the clustering process. 
To determine either the number of clusters or the clustering quality, two approaches are gener-
ally possible. Covariance matrices can be calculated, or the intra- versus intercluster distances 
can be compared to evaluate the homogeneity versus heterogeneity of the clusters. In the liter-
ature, a sufficient overview of 15-30 indices has already been provided [Charrad et al., 2012; 
Dimitriadou et al., 2002], and these indices will not be further discussed here. A special type of 
unsupervised indices, referred to as quality measures for projection methods, will be separately 

                                                      
17  Also known as model-based clustering. 
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introduced in chapter 6. Two unsupervised indices and corresponding visualizations are pre-
sented in the following sections. 

3.2.2.1 Heatmaps 

A heatmap is an example of an unsupervised index. For the ordering of the data points in 
heatmaps, dendrograms are often used. They enable the visualization of high-dimensional in-
formation and dissimilarity matrices without projecting them into a lower-dimensional space. 
Their use strongly depends on the sequence of the observations. For cluster validation, it is 
desirable to plot observations that are in the same cluster together [Hennig et al., 2015].  

“[A heatmap] consists of a rectangular tiling, with each tile shaded on a color scale to represent the value of the 
corresponding element of the data set. The rows (columns) of the tiling are ordered such that similar rows (col-
umns) [in the sense that they are in the same cluster] are near each other“ [Wilkinson/Friendly, 2012]. “The 
cluster heat map is a rectangular tiling of a data matrix with cluster trees appended to its margins. Within a rela-
tively compact display area, it facilitates inspection of joint cluster structure” [Wilkinson/Friendly, 2009].  

Unlike in [Wilkinson/Friendly, 2009; Fig. 1], in Figure 3.7, the dendrogram between the varia-
bles is disregarded and only the ݊݊ݔ heat map of the distance matrix is shown. 

3.2.2.2 Silhouette plots 

The Silhouette plot is a common unsupervised index for visual evaluation of a clustering [L. R. Kauf-
man/Rousseeuw, 2005].  

“A score function s: ܺ	 → 	 ሾെ1, 1ሿ evaluates the positioning of data objects inside their assigned cluster. Let a(x) 
denote the average distance between x and all other objects of the same cluster, and b(x) denotes the smallest 
average distance between x and all objects of another cluster. The silhouette score follows as ሺݔሻ 	ൌ 	

௕ሺ௫ሻି௔ሺ௫ሻ

௠௔௫ሼ௔ሺ௫ሻ,௕ሺ௫ሻሽ
	. 

Silhouette scores similar to 1 indicate objects that have been assigned to an appropriate cluster, whereas −1 indi-
cates objects that have been badly classified. Silhouette scores similar to 0 indicate objects that lie in between 
clusters. Each cluster is represented by one silhouette, showing which objects lie within the cluster and which 
objects merely hold an intermediate position. The entire clustering is displayed by plotting all silhouettes into a 
single diagram, from which the quality of the clusters can be compared” [Herrmann, 2011, pp. 91-92]. 

A reasonable clustering is characterized by a silhouette width of greater than 0.5, and an average 
width below 0.2 should be interpreted as indicating a lack of any substantial cluster structure 
[Everitt et al., 2001, p. 105]. However, it is evident that silhouette scores assume clusters that 
are spherical or Gaussian in shape [Herrmann, 2011, pp. 91-92]. 

3.3 Problems with Clustering Methods 

To illustrate several problems encountered when using common clustering methods, a domain 
expert measured genetic data for subjects who were known either to be healthy or to have one 
of 3 subtypes of leukemia. Here, a typical knowledge discovery task could be to identify pat-
terns in the cancer subtypes based on the four diagnoses leading to the prior classification. 

 “[I]t is a common practice among researchers to employ a variety of different clustering techniques to analyse a 
dataset, and to use visual inspection18 and prior biological knowledge to select what is considered the most ‘ap-
propriate’ result” [Handl et al., 2005, pp. 3202-3203]. 

 Consequently, the first step would be to confirm that the structure defined by the classification 
distinguishing the healthy patients from the non-healthy ones does indeed exist in this data set. 

                                                      
18  The application of visual inspection will be reported in chapter 6, Fig. 1, resulting in arbitrary projections. 
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The data set used as an example to illustrate the general problem described above contains data 
representing 7747 variables for 554 subjects (see chapter 9 for details). Of the subjects, 109 are 
healthy, 15 have acute promyelocytic leukemia (APL), 266 have chronic lymphocytic leukemia 
(CLL), and 164 have acute myeloid leukemia (AML). There is a possibility that some subjects 
might be misclassified, but a future publication will address this diagnostic. 
The heatmap and the silhouette plot presented in Figure 3.7 and 3.6 show that this data set is 
defined by discontinuities because the intracluster distances are small and the intercluster dis-
tances large. Hence, the leukemia data set is a high-dimensional data set with natural clusters 
that are specified by the illness status and defined by discontinuities19. 
Table 3.1 shows the accuracies of common clustering algorithms computed by comparing the 
clustering results with the prior classification made available by the domain expert. The default 
settings were used for all algorithms, and the number of clusters was assumed to be four. The 
MoG algorithm cannot be applied without first using dimensionality reduction methods because 
the dimensionality of the data set is too high. Only one algorithm (Ward) is able to fully repro-
duce the prior classification. However, a classification should typically be reproduced using 
more than one algorithm, and the reproduction of a classification with 100% accuracy is unu-
sual. 
This example illustrates that “Clustering algorithms will create clusters whether the data are 
naturally clustered or purely random” [Jain/Dubes, 1988, p. 201] and “By imposing a prede-
fined shape on the clusters, classical algorithms occasionally suggest a cluster structure in ho-
mogenously distributed data or assign points to incorrect clusters” [Ultsch/Lötsch, 2016]. 
To summarize, the unsupervised indices, namely, the heatmap and the silhouette plot, agree 
with the prior classification provided by the domain expert, whereas the external index of ac-
curacy and the projections of the data5 disagree with the domain expert. The question arises 
whether this data set contains natural clusters and, if so, how the structure of these natural clus-
ters can be correctly identified or how the optimal clustering (or projection) algorithm can be 
chosen for the knowledge discovery task. This work will propose approaches and solutions to 
these problems. 

 

Figure 3.6:  Silhouette plot of the leukemia data set indicates a cluster structure. 
                                                      
19 It should be remarked that common data-driven methods as well as the heatmap and Silhouette plot do not 

reproduce the (sub) classification(s) of AML (like FAB subtypes) or CLL of research in this area, e.g. [Bene et 
al., 1995; Bennett et al., 1985; Vardiman et al., 2009; Haferlach et al., 2010], for CLL [Rosenwald et al., 2001]. 
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Table 3.1:  Accuracy results for common clustering algorithms.  
  No result could be calculated for the MoG algorithm (also known as model-based clustering). 

Algorithm Ward SL k-means MoG PAM Spectral 

Accuracy in % 100 80.1 76.53 Not Computable 78.3 59.0 

 

Figure 3.7:  The heatmap of the leukemia data set with at least one outlier (red line). The intracluster distances 
are distinctively smaller than the intercluster distances. Cls1 =APL, Cls2= healthy, Cls3=CLL, 
Cls4=AML. 
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4 Methods of Projection 

Dimensionality reduction techniques reduce the dimensions of the input space to facilitate the 
exploration of structures in high-dimensional data. Two general dimensionality reduction ap-
proaches exist: manifold learning and projection. Manifold-learning methods attempt to find a 
sub-space in which the high-dimensional distances can be preserved. These sub-spaces may 
have a dimensionality of greater than two. However, only two- or three-dimensional represen-
tations of high-dimensional data are easily graspable for to the human observer. 
The goal of this chapter is the visualization of structures in high-dimensional data. Venna et al. 
argued that “manifold learning methods are not necessarily good for […] visualization […] 
since they have been designed to find a manifold, not compress it into a lower dimensionality” 
[Venna et al., 2010, p. 452], and it has been shown by van der Maaten et al that they do not 
outperform classical principal component analysis (PCA) for real-world tasks [L. J. van der 
Maaten et al., 2009]. 
Therefore, this chapter focuses on common projection methods. Many projection methods are 
characterized by an objective function that is optimized using gradient descent or a correspond-
ing learning algorithm. The quality of the projection and, consequently, of the visualization will 
critically depend on the similarity concept chosen as the basis of the objective function, which 
may be based on either distance or local proximity; thus, the methods will be categorized on 
this basis. This chapter will attempt to relate the various projection approaches to the compact 
and connected structure types introduced in the previous chapter. 

4.1 Common Approaches 

Here, projection is used as a method for visualizing high-dimensional data in a two-dimensional 
space such that the discontinuities in the data are captured. Thus, the quality of a projection 
critically depends on the chosen similarity concept. This concept may be defined based on either 
distance or local proximity. The former type of similarity describes the arrangement of all given 
points in space and is sometimes called topography; the latter compares local neighborhoods 
and is sometimes called topology. Here, projections are called focusing if they are constructed 
using an iterative learning process that first adapts to the global intercluster distances and then 
focuses on more local intracluster distances. 

4.1.1 Principal Component Analysis (PCA) 

PCA assumes that the directions in the input space that show the highest variance contain the 
most information about the data set [Hotelling, 1933]. The coordinate system of the input space 
is replaced with a (principal) coordinate system in which the variance of the data is maximized. 
This is achieved by finding a set of weighted linear combinations of the original variables, 
where the weights are found through eigendecomposition (for a definition, see [Goodfellow et 
al., 2016, pp. 42-44]). 
Pearson proposed an equivalent definition based on an objective function in which the average 
projection cost is minimized [Pearson, 1901]. The projection cost is defined in terms of the 
mean squared distances between the points ݈ ∈ ݆ and the projected points ܫ ∈ ܱ: 

© The Author(s) 2018
M. C. Thrun, Projection-Based Clustering through Self-Organization 
and Swarm Intelligence, https://doi.org/10.1007/978-3-658-20540-9_4
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௡
௜ୀ௠ାଵ  has the same dimension as ݈ ∈

 Here, n is the dimension of the input space I, m is the dimension of the output space O, the .ܫ
ܾ ௜ are the basis vectors, and theݑ ௜ are constants. The minimization of J is achieved by choosing 
the basis vectors to be eigenvectors of the covariance matrix constrained by the orthonormality 
conditions [Duda et al., 2001, pp. 114-117]: 

,ሺ݈ݒ݋ܥ ݆ሻ ൌ
1
݊
෍ሺ݈ െ ݉݁ܽ݊௟ሻ
௟∈ூ

ሺ݆ െ ݉݁ܽ ௝݊ሻ ሺ4.2ሻ	
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Now, the objective function E can be redefined in (4.4) in terms of the eigenvalues ߣ௜ in (4.1) 
as 
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௡

௜ୀ௠ାଵ

ሺ4.4ሻ	

where n is the dimension of the input space I and m is the dimension of the output space O. The 
largest eigenvalues correspond to the 1,… ,݉ dimensions with the largest variance. Dimensions 
of the input space with small variances are discarded. Thus, PCA is an orthogonal projection of 
the data into a lower-dimensional space. It should be noted that “PCA remains a rather basic 
method and suffers from many shortcomings” [Lee/Verleysen, 2007, p. 226]. 

4.1.2 Independent Component Analysis (ICA) 

“Independent component analysis (ICA) is a method for finding underlying factors or components from multivari-
ate (multi-dimensional) statistical data. What distinguishes ICA from other methods is that it looks for components 
that are both statistically independent, and nonGaussian” [Hyvärinen et al., 2004]. 

Let ܫ ൌ ሺ݈ଵ, … , ݈௡ሻ be defined as the matrix of the data in the input space. ICA assumes that I is 
a linear combination of non-Gaussian independent components S as follows: 

ܫ ൌ ܵ ∗ ܣ ሺ4.5ሻ	

where A is a linear mixing matrix and ܵ ൌ ሺ݆ଵ, … , ݆௡ሻ, ݆ ∈ ܱ. ICA unmixes I by estimating a 
matrix ܹ ൌ  ଵ such thatିܣ

ܫ ∗ ܹ ൌ ܵ ሺ4.6ሻ	

With the goal of estimating W, the central limit theorem and matrix search can be used to max-
imize the non-Gaussianity. In the fastICA algorithm [Hyvärinen, 1997], the non-Gaussianity is 
defined as the negentropy F, and it is approximately maximized by maximizing the objective 
function in (4.7) 

ሺ݆ሻܧ ൎ ሺ݆ሻሽܩሼܨൣ െ ൫ܰሺ݉ܩ൛ܨ ൌ 0, ݏ ൌ 1ሻ൯ൟ൧
ଶ

ሺ4.7ሻ	

where N is a Gaussian and G is a contrast function, e.g., ܩሺݑሻ ൌ െ݁݌ݔሺെ ௔௨మ

ଶ
	ሻ. 

Constraints on the estimated contrast function G include pre-whitening and the centering of the 
data in the input space [Hyvärinen et al., 2004]. 
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4.1.3 Non-linear metric multidimensional scaling (MDS) techniques 

Multidimensional scaling (MDS) was originally proposed by [Torgerson, 1952]. MDS tech-
niques attempt to preserve the pairwise distances D(l, j) of the input space in the output space 
to the greatest possible extent. Therefore, MDS techniques minimize an objective (error) func-
tion E that is, as given in [Kruskal, 1964b], defined as 

,ܦሺܧ ݀ሻ ൌ ෍ ቀ݂൫ܦሺ݈, ݆ሻ൯ െ ݀ሺ݈, ݆ሻቁ
ଶ

௡

௝,௟ୀଵ,௝ழ௟

ሺ4.8ሻ	

where f(D(l, j)) is a non-metric, monotonic transformation of the distances in the input space 
[Kruskal, 1964a, p. 7]. E is often called the stress, and E is minimized in an attempt to reproduce 
the general rank ordering of the distances. This minimization is usually performed via gradient 
descent. 
However, the objective function E depends on the scale on which the distances are measured. 
It is preferable to normalize the objective E to reduce it to the same units in which the distances 
are expressed (Eq.4.9). Sammon mapping [Sammon] is one type of MDS technique and uses 
the error function 
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4.1.4 Curvilinear Component Analysis (CCA) 

When a non-linear structure is being analyzed, MDS cannot reproduce all distances. Therefore, 
[Demartines/Hérault] proposed a projection method that favors local neighborhoods. Curvilin-
ear component analysis (CCA) attempts to reproduce short distances before reproducing long 
distances [Demartines/Hérault, 1995]. The objective function is defined in (4.10) as 

,ܦሺܧ ݀ሻ ൌ ෍ ൫ܦሺ݈, ݆ሻ െ ݀ሺ݈, ݆ሻ൯
ଶ
∗ ݄ሺܦሺ݈, ݆ሻ, ሻݎ ሺ4.10ሻ
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where ݄:		Թ → ሾ0,1ሿ is a neighborhood function that depends on a radius R as follows: 

݄ሺܦሺ݈, ݆ሻ, ܴሻ ൌ ൜
1, ,ሺ݈ܦ݂݅	 ݆ሻ ൑ ܴ
0, ݁ݏ݅ݓݎ݄݁ݐ݋

ሺ11ሻ	

4.1.5 t-Distributed Stochastic Neighbor Embedding (t-SNE) 

The t-distributed stochastic neighbor embedding (t-SNE) technique is an enhanced version of 
SNE [Hinton/Roweis, 2002] in which the Kullback-Leibler divergence (KLD) is symmetrized 
and the crowding problem solved. The latter is achieved by redefining the conditional proba-
bilities in the output space O through the application of Student’s t-distribution with 

ሺ݈|݆ሻ݌	 ൌ ቐ
ሺ1 ൅ dሺl, jሻଶሻିଵ

∑ ሺ1 ൅ dሺl, jሻଶሻିଵ୪,୨∈୍
, ݈ ് ݆

0, 	݈ ൌ ݆
ሺ4.12ሻ	

In [Van der Maaten/Hinton], the distance between two data points is redefined as the condi-
tional probability that j would pick l, where ݈, ݆ ∈  :as follows ,ܫ
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where ߪሺ݈ሻ is the variance of a Gaussian that is centered on data point j. If the projection is 
correct, then the conditional probabilities will be equal [Van der Maaten/Hinton]. Therefore, 
the objective function is defined using the symmetric KLD in (14) as 
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4.1.6 Neighborhood Retrieval Visualizer (NeRV) 

[Venna et al., 2010] reintroduced the idea of misses used by [Ultsch/Herrmann, 2005], where 
misses are similar data points ሺ݈ூ, ݆ூ)	∈ ݅ that are mapped onto far separated points ሺ݈ை, ݆ைሻ ∈ ܱ 
[Ultsch/Herrmann, 2005]. Conversely, if a pair of closely neighboring positions ሺ݈ை, ݆ைሻ repre-
sents a pair of distant data points, then this pair is called a false positive. From the information 
retrieval perspective, this approach allows one to define the precision ܨ௉	and the recall ܨோ for 
the case in which the neighborhoods are simply binary. However, [Venna et al., 2010] goes a 
step further by replacing such binary neighborhoods with probabilistic ones, which are loosely 
inspired by the SNE approach [Hinton/Roweis, 2002]. The neighborhood of the point l is de-
fined in terms of the relevance of the ݆ ∈  :points around l ܫ
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where ߪ௟ is set to the value for which the entropy of ݌௟ሺ݆ሻ is equal to log(knn) and knn is a rough 
upper limit on the number of relevant neighbors that is set by the user [Venna et al., 2010]. The 
authors propose a default value of 20 effective nearest neighbors. Similarly, the corresponding 
neighborhood in the output space is defined as 
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These neighborhoods are compared based on the mean of the KLD, which is used to define the 
precision ܨ௉ and recall	ܨோ: 
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The objective function is then defined in (19) as 
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The objective function E is non-linearly optimized via conjugate gradient descent. In the ab-
sence of prior knowledge, the neighborhoods p are defined as symmetric Gaussians or heavy-
tailed distributions. The weighting between precision and recall must be set by the user using 
the parameter	ߣ. Weighting precision over recall means that if points are similar to each other 
in the output space, then they will also be similar to each other in the input space, whereas 
weighting recall over precision means that if points are similar in the input space, then they will 
also be similar in the output space. Note that the KLD and the symmetric KLD do not follow 
the triangle inequality for metric spaces. 
The projection approach used in the Neighborhood Retrieval Visualizer (NeRV) method is ran-
domly initialized by default, resulting in stochastic projections (see Figure 4.1). However, there 
exists an option to use PCA projection for initialization. 

4.2 Emergent Self-Organizing Map (ESOM) 

Self-organizing (feature) map (SOM) was invented by [Kohonen, 1982a, 1982b] and is a type 
of unsupervised neural learning algorithm. In contrast to other neural network models20 a SOM 
consists of an ordered two-dimensional layer of neurons called units. Neurons are intercon-
nected nerve cells in the human neocortex [H. Ritter et al., 1992, p. 22], and the SOM approach 
was inspired by somatosensory maps (e.g. see [Hennig et al., 2015, p. 421] cites [Haykin, 1994], 
see also [Kandel, 2012, p. 335]). There are two types of SOM algorithms: online and batch 
[Fort et al., 2001]. The first is stochastic, whereas the second is deterministic, which means that 
it yields reproducible results for a given parameter setting. However, Fort et al. have argued 
“that randomness could lead to better performances” [Fort et al., 2001, p. 12]. 
The main differences between batch-SOM [Kohonen/Somervuo, 2002] and online-SOM [Ko-
honen, 1995] lie in the updating and averaging of the input data. In batch-SOM, prototypes (see 
Eq. 4.20 below) are assigned to the data points and the influences of all associated data points 
are calculated simultaneously, in contrast to online-SOM, in which sequential training of the 
neurons is applied (as described in detail below). The batch-SOM method has been shown to 
produce topographic mappings of varying quality depending on the pre-defined parametrization 
[Fort et al., 2001], and “the representation of clusters in the data space on maps trained with 
batch learning is poor compared to sequential training“ [Nöcker et al., 2006]. An important 
comparison between the batch-SOM approach and ant-based clustering was presented by 
[Herrmann/Ultsch, 2008c] and will be elaborated upon in chapter 7. No objective function is 
used in online-SOM [Lee/Verleysen, 2007, p. 241], and SOM remains a reference tool for two-
dimensional visualization [Lee/Verleysen, 2007, p. 244]. 
In one common approach to applying the SOM concept, the algorithm acts as an extension of 
the k-means algorithm [Cottrell et al., 2016] or is a partitioning method of the k-means type 
[Murtagh/Hernández-Pajares, 1995]. In such a case, only a few units are used in the SOM al-
gorithm to represent the data [Reutterer, 1998], which results in direct clustering of the data. 
Here, each neuron can be considered to represent a cluster. For example, Cottrell and de Bodt 

                                                      
20    For an overview, see [H. Ritter et al., 1992], for deep learning see [Goodfellow et al., 2016]. 
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used 4x4 units to represent the 150 data points in the Iris data set ([Ultsch et al., 2016a] cites 
[Cottrell, 1996]). Therefore, the conventional SOM algorithm is called k-means-SOM here. 
This SOM algorithm also has two common extensions called Heskes-SOM [Heskes, 1999] and 
Cheng-SOM; these two extensions include objective functions [Cheng, 1997] and are not dis-
cussed further in this thesis. The optimization of objective functions in general will be discussed 
in chapter 6, where it will be argued that it is not useful for the goal of this thesis. Chapter 7 
will show that objective functions are incompatible with self-organization. 
The other approach to applying SOM is to exploit its emergent phenomena through self-organ-
ization, in which case it is necessary to use a large number of neurons (>4000) [Ultsch, 1999]. 
This enhancement of the online-SOM approach is called emergent SOM (ESOM). In such a 
case, the neurons serve as a projection of the high-dimensional input space instead of a cluster-
ing, as is the case in k-means-SOM. 
Let ܯ	 ൌ 	 ሼ݉ଵ,…	,݉௡	ሽ be the positions of neurons on a two dimensional lattice21 (feature map) 
and ܹ	 ൌ 	 ሼݓሺ݉௜ሻ 	ൌ 	݅|	௜ݓ ൌ 	1, … 	݊ሽ the corresponding set of weights or prototypes of neu-
rons, then, the SOM training algorithm constructs a non-linear and topology-preserving map-
ping of the input space by finding the best matching unit (ܷܯܤ) for each ݈ ∈  :ܫ

ሺ݈ሻݑܾ݉ ൌ argmin
௠೔∈ெ

ሼܦሺ݈, ,௜ሻሽݓ ݅ ∈ ሼ1,… , ݊ሽ ሺ4.20ሻ,		

if in Eq. 4.20 a distance in the input space I between the point l and the prototype ݓ௜ is denoted. 
In each step, SOM learning is achieved by modifying the prototypes (weights) in a neighbor-
hood as follows: 

ሺܴሻݓ߂ ൌ ሺܴሻߟ ∗ ݄ሺܾ݉ݑሺ݈ሻ,݉௜, ܴሻ ∗ ሺ݈ െ ሺ݉௜ሻሻݓ ሺ4.21ሻ	

The cooling scheme is defined by the neighborhood function ݄ ܯ: ൈ ܯ ൈ Թା → ሾെ1,1ሿ and the 
learning rate ߟ: Թା → ሾ0,1ሿ, where the radius R decreases until ܴ ൌ 1 in accordance with the 
definition of the maximum number of epochs. In contrast to all previously introduced projection 
methods, no objective function is used in the ESOM algorithm. Instead, ESOM uses the concept 
of self-organization (see chapter 6 for further details) to find the underlying structures in data. 
The structure of a (feature) map is toroidal; i.e., the borders of the map are cyclically connected 
[Ultsch, 1999], which allows the problem of neurons on borders and, consequently, boundary 
effects to be avoided. The positions ݉ ∈  of the BMUs exhibit no structure in the input space ܯ
[Ultsch, 1999]. The structure of the input data emerges only when a SOM visualization tech-
nique called U-matrix is exploited [Ultsch/Siemon, 1990]. 
Let ܰሺ݆ሻ be the eight immediate neighbors of ௝݉ 	 ∈ -௝ ∈ ܹ be the corresponding proݓ let ,ܯ	

totype to ௝݉, then the average of all distances between prototypes ݓ௜ 

ሺ݆ሻݑ ൌ
1
݊
෍ ,ሺ݉௜ሻݓሺܦ ሺݓ ௝݉ሻሻ
௜∈ேሺ௝ሻ

, ݊ ൌ |ܰሺ݆ሻ|	 ሺ4.22ሻ	

A display of all U-heights in Eq. 4.22 is called a U-matrix [Ultsch/Siemon, 1990].  

                                                      
21 In general this work uses the term grid if the resulting tiling is hexagonal and lattice if the resulting tiling is 

rectangular (see connected graph). In the context here the distinction is not important, therefore we use the term 
(feature) map. 
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“By formalizing the displayed structures, [Lötsch/Ultsch, 2014] showed that the U-matrix is an approximation of 
the Voronoi borders of the high-dimensional points in the output space: 

Let bmu(l) and bmu(j) be the BMUs of data points l and j, where bmu(j) and bmu(l) have bordering Voronoi cells. 
On the borderline, there is a vertical plane (AU-height), which is the distance D(l, j) > 0 between the data points 
in the input space. In sum, the abstract U-matrix (AU-matrix) is the Delaunay graph of the BMUs weighted by the 
corresponding Euclidean distances in the input space” [Thrun et al., 2016a, p. 9]. 

4.2.1 Visualizations of SOMs 

This section is reproduced in its entirety from [Thrun et al., 2016a]. The result of every Kohonen 
SOM algorithm is a set of neurons located on a map where a set W of prototypes corresponds 
to a set M of positions. In general, the positions on M are restricted to a grid/lattice, but a few 
approaches exist that change the positions in M, like Adaptive Coordinates [Merkl/Rauber, 
1997]. Because these approaches are not grid/lattice based, they are not considered any further. 
BMUs define the locations of input points on the map. However, they exhibit no structure of 
the input space for a SOM [Ultsch, 1999]. However, the goal is to grasp the high-dimensional 
data structure and possibly even visualize cluster boundaries. Therefore, post-processing of the 
neurons is required for an informative representation of high-dimensional data. Three standard 
approaches are found in the literature: 
The first approach projects the set W of prototypes with MDS [Torgerson, 1952] or some of its 
variants to a two-dimensional space [Kaski et al., 2000; Sarlin/Rönnqvist, 2013]. The result is 
mapped into the CIELab color space [Colorimetry, 2004]. In this uniform color space, percep-
tual differences in colors correspond to Euclidean distances in the map space as precisely as 
possible [Kaski et al., 2000]. The next two approaches visualize either the distances or density 
of the prototypes. 
The second approach defines receptive fields around each position in M. The unified distance 
matrix (U-matrix), [Ultsch/Siemon, 1990] or one of its variants [Häkkinen/Koikkalainen, 1997; 
Hamel/Brown, 2011; Kraaijveld et al., 1995] , represents distances of prototypes (see equations 
above) by using proportional intensities of gray shades, color hues, shape or size. In [Kraaijveld 
et al., 1995], every neuron corresponds to a pixel. The gray value of each pixel is determined 
by the maximum unit distance from the neuron to its four neighbors (up, down, left, right). The 
larger the distance is, the lighter the gray value is. In [Häkkinen/Koikkalainen, 1997], additional 
unit distance visualization approaches are explained. The shapes and sizes of the receptive fields 
describe the dissimilarity of corresponding neurons. Apart from the U-matrix, visualizations of 
receptive fields in three dimensions or specific components of prototypes with receptive fields 
in two dimensions have been attempted [Vesanto, 1999]. It is also possible to add SOM quality 
measures to the receptive fields in a third dimension, e.g., [Vesanto et al., 1998]. 
The third approach connects the positions M by way of a specific scheme. In [Hamel/Brown, 
2011], in addition to a U-matrix approach, neurons are connected with lines along the maximum 
gradient. The authors claim that clusters are the always-connected components of the graph 
defined by the U-matrix. [Merkl/Rauber, 1997] omitted the receptive fields approach, merely 
connecting map positions with lines, where the connection intensities reflect the similarity of 
the underlying prototypes. [K. Tasdemir/Merenyi, 2009] proposed the CONNvis technique, 
which visualizes the feature map by connecting neurons whose corresponding prototypes are 
adjacent in an input space with a dimensionality equal to that of the high-dimensional data. The 



40 Methods of Projection 
 

width of each connection line is proportional to the strength of the connection [K. Tasdemir/Me-
renyi, 2009]. 
In sum, all above described visualizations of large SOMs require an expert in the field for in-
terpretation. To the best of the present author’s knowledge, there are no 3D visualizations of 
ESOMs based on a 2D feature map currently in use22. 

4.2.2 Clustering with ESOM 

Combining ESOM with the U*-matrix approach enables an application of [Ultsch et al., 2016a]: 

 “A single wall of AU-matrix represents the true distance information between two points in the data space. Valid 
density information at the midpoints between a BMU and a second BMU is calculated for [the] P-matrix, since the 
same volumes, i.e. spheres of a predefined radius, are used. The AU*matrix therefore represents the true distance 
information between two points weighted by the true density at the midpoint. The representation is such that high 
densities shorten the distance and low densities stretch this distance. Using transitive closure for these weighted 
distances allows classical clustering algorithms (AU*clustering) to actually perform distance- and density-based 
clustering, taking into account the complex structure of partially entwined clusters within the data.” 

In contrast to the Databionic swarm approach, in which the shortest paths between AU-dis-
tances are calculated23, this clustering approach uses only the direct neighborhood of the pro-
jected points. A computation of the abstract P-matrix is necessary because ESOM itself does 
not consider density. Overlaying a political map on the U*-matrix map reveals errors made by 
the ESOM algorithm during the annealing process. The political map shows the Voronoi areas 
of each cluster, where the color of each cluster area corresponds to the cluster label. The clus-
tering is solid if every cluster consists of only one connected area, of which the borders are 
mountain ranges. The clustering process is sensitive to the parcel window parameter that is 
required for estimating the density of the high-dimensional data, and the clustering process is 
mostly conducted through an interactive approach requiring human intervention24. 

4.3 Types of Projection Methods 

In the previous section, it was shown that projection methods such as CCA, MDS and NeRV 
are characterized by an objective function that is optimized using gradient descent or a corre-
sponding learning algorithm, whereas others, such as ESOM, are not. However, the first obvi-
ous difference between types of projection methods is that between linear projection methods 
such as PCA or ICA and non-linear projection methods. Linear projection methods are only 
able to rotate the high-dimensional data space and choose the most interesting dimensions, such 
as the dimensions with the highest variance, as is the case for PCA. 
In contrast to this approach, non-linear projection methods are able to disentangle structures, 
e.g., represent the Chainlink data set25 in such a way that the two clusters are separated in the 
output space. The next major distinction between projection methods is the deterministic versus 
the stochastic approach. Some projection methods will always produce the same projection in 
the output space if all parameters remain unchanged. However, for many projection methods, 
such as t-SNE, their projections in the output space will drastically change with different trials 
                                                      
22 Standard ESOM visualizations using the U-matrix are shown in supplementary D. 
23  See chapter 7 for details. 
24  For this reason, the ESOM/U-matrix clustering approach cannot be compared with other approaches in chapter 

10. 
25  See the next chapter for details. 
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even when all settings of the projection method remain unchanged (see also examples in chapter 
5, Figure 5.2). Hence, the results of deterministic methods are always reproducible, whereas 
stochastic methods may yield irreproducible results and require a statistical approach to assess 
their quality. Similarly to MDS techniques, deterministic projection methods are often based 
on Lyapunov functions (for further details, see [Lyapunov, 1992]). Here, it is assumed that 
linear and MDS techniques should only be able to visualize compact structures, which are based 
on the intra- versus intercluster distances of natural clusters (see the previous chapter for de-
tails). 
Stochastic methods are mainly characterized by either a focusing approach or a self-organizing 
approach. Let k be the neighborhood extent, and let ߁ be a graph; then, a projection method is 
of the focusing type if the result is constructed through an iterative learning process that adapts 
first to global neighborhoods ܪሺ݇ଵ ൐ 1, ,߁ ,ሺ݇ଶܪ ሻ and later to local neighborhoodsܫ ,߁  ,ሻܫ
where ݇ଵ ൐ ݇ଶ. Therefore, such methods should be capable of visualizing connected structures 
(see the previous chapter for details) if the annealing process is correctly chosen. 
Self-organization is defined as spontaneous pattern formation by a system itself, without any 
central control26 [Kelso, 1997, p. 8 ff.]. By means of self-organization, some projection meth-
ods, such as ESOM or Pswarm, are able to project data without requiring an objective function. 
Thus, self-organizing methods do not implicitly predefine the structures that are sought in the 
data of interest. The Pswarm projection method will be introduced in chapter 8 as part of the 
Databionic swarm clustering approach. An overview of the various types of projection methods 
is shown in Figure 4.1. 
Assumptions regarding the types of structures that the projection methods in Figure 4.1 are able 
to visualize will be either disproven or verified in chapter 10 based on 100 trials per projection 
method (with the exception of ICA due to technical difficulties) of five artificial three-dimen-
sional data sets. 

                                                      
26  Further explained in chapter 7, p.79 ff.  
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Figure 4.1:  Overview of different types of projection methods. Here, it is argued that linear methods and MDS 
techniques are only able to visualize compact structures (shaded with the first pattern), whereas 
focusing projection methods should be able to visualize connected structures (shaded with the 
second pattern) if the annealing scheme is correctly chosen. For self-organizing methods, the 
structures that are sought in the data are not implicitly predefined. The ellipses indicate that this 
overview includes only common projection methods. Pswarm will be introduced in chapter 8 as a 
new approach based on swarm intelligence. 

License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 
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Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, 
you will need to obtain permission directly from the copyright holder.
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5 Visualizing the Output Space 

Projection methods are a common approach to dimensionality reduction with the aim of trans-
forming high-dimensional data into a low-dimensional space. For data visualization purposes, 
projections into two dimensions are considered here. However, when the output space is limited 
to two dimensions, the low-dimensional similarities cannot completely represent the high-di-
mensional distances, which can result in a misleading interpretation of the underlying struc-
tures. 
Nonetheless, visualization techniques based on scatter plots produced using a projection 
method (usually principal component analysis (PCA)) remain the state of the art in cluster anal-
ysis (e.g., [Everitt et al., 2001, pp. 31-32; Hennig et al., 2015, pp. 119-120, 683-684; Mirkin, 
2005, p. 25; G. Ritter, 2014, p. 223]). Even if one disregards that “PCA remains a rather basic 
method and suffers from many shortcomings” [Lee/Verleysen, 2007, p. 226], visualization 
based on such a scatter plot is questionable in principle. Several two-dimensional scatter plots 
of elementary three-dimensional data sets and one high-dimensional data set (see also Figure 
6.1 in the next chapter) will be presented to illustrate this claim. 
Thereafter, structure preservation will be defined in this chapter to serve as the basis for a new 
method of visualization. This new concept with regard to the visualization of projected points 
in a two-dimensional output space is called the generalized U-matrix approach. In the general-
ized U-matrix approach, similarities between high-dimensional data are represented as valleys, 
and dissimilarities are represented as mountains or ridges. For the computation of the general-
ized U-matrix, the generation of the topographic map (see chapter 5.3) and island visualization 
the CRAN R package GeneralizedUmatrix was used [Thrun/Ultsch, 2017b]. 

5.1 Examples 

In Figure 5.1, the Hepta data set is shown. The Hepta data set [Moutarde/Ultsch, 2005] consists 
of 7 clusters that are clearly separated by distance, which means that the intracluster distances 
are small and the intercluster distances are large (for details, see chapter 9). This gives rise to 
structures that are clearly defined by discontinuity and consequently can be characterized as 
natural clusters. 
Projections of the Hepta data set obtained by applying three of the projection methods intro-
duced in the previous chapter are shown in Figure 5.2: PCA, curvilinear component analysis 
(CCA) and t-distributed stochastic neighbor embedding (t-SNE). In total, four projections are 
evaluated, including two t-SNE projections, denoted by t-SNE (1) and t-SNE (2). PCA yields 
the best representation of the clusters. With the default parameters, CCA adds excessive gaps 
around three points. In t-SNE (1), generated using the default parameter settings of t-SNE, the 
density of the data is overestimated, and wide gaps are added between two points and their 
corresponding cluster. When one parameter of the t-SNE algorithm is changed, resulting in t-
SNE (2), the data clusters are not preserved because many random gaps are added. 

© The Author(s) 2018
M. C. Thrun, Projection-Based Clustering through Self-Organization 
and Swarm Intelligence, https://doi.org/10.1007/978-3-658-20540-9_5
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Figure 5.1:  The three-dimensional Hepta data set consists of 7 clusters that are clearly separated by distance. 
One cluster (green) has a higher density. Every cluster is ball-like in shape. 

 

Figure 5.2:  Visualizations of four cases of the projection of the Hepta data set into a two-dimensional space 
generated with [Thrun et al, 2017b].  
Top left: PCA projects the data without disrupting any clusters. This is the best-case scenario for a 
projection method. Top right: CCA disrupts two clusters by falsely projecting 3 points. This is the 
standard-case scenario.  
Bottom left: t-SNE does not correctly visualize the density of the data set at all, and one cluster is 
disrupted through the false projection of two points. Projection methods are often unable to correctly 
capture the density of data. Bottom right: When one parameter of the t-SNE algorithm is chosen 
incorrectly, all clusters are completely disrupted. This is the worst-case scenario for a projection 
method. 
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Figure 5.3:  Chainlink data set and PCA projection generated with [Thrun et al., 2017]. The projection suffers 
from local backward projection error (BPE) and forward projection error (FPE) only in two small 
areas around a low number of points, but the visualization still shows low structure preservation. 

The Chainlink data set [Ultsch, 2005c] consists of two clusters in Թଷ. Together, both clusters 
form intricate links in a chain and therefore cannot be separated by linear decision boundaries. 
Both rings are intertwined in Թଷ and have the same average distance and density (Figure5.3 
left). The data lie on two well-separated manifolds; however, the global proximities contradict 
the local ones in the sense that the center of each ring is closer to some elements of the other 
class than it is to elements of its own class (for details, see chapter 9). PCA projection com-
pletely fails to preserve the structures in this data set because PCA merely rotates the data set 
and the discontinuities are not linearly separable. 

5.2 Structure Preservation 

Let ݇ ൐ 0, ݇ ∈ Գ, let Γ	be a connected graph, and let	j be a point in a metric space	M; then, 

,௝ሺ݇ܪ ሻܯ,߁ ൌ ሼ݈ ∈ ,ሺ݈ܩ	|ܯ ݆, Γሻ ൑ ݇ሽ ሺ5.1ሻ	

is the neighborhood set of j with k as the neighborhood extent, where ܩሺ݈, ݆, Γሻ is the minimum 
distance among all possible path distances (for details, see chapter 2, Eq. 1). 
Suppose that there exists a pair of similar high-dimensional data points ሺ݈ூ, ݆ூሻ ∈  such that ܫ
ሺ݈ூ, ݆ூሻ ∈ ,ሺ1ܪ ,߁  ሻ. For visualization, the goal of a projection is to match these points to theܫ

low-dimensional space R௕; e.g., data points in close proximity should remain in close proxim-
ity, and remote data points should stay in remote positions. 
Consequently, two kinds of errors exist. The first is forward projection error (FPE), which oc-
curs when similar data points ݈ ∈ ,௝ሺ1ܪ ,߁  ሻ are mapped onto far-separated pointsܫ

݈ ∉ ,௝ሺ1ܪ ,߁ ܱሻ⋀݈ ∈ ௝ሺ݇ܪ ൐ 1, ,߁ ܱሻ. The second is backward projection error (BPE), which 

occurs when a pair of closely neighboring positions ݈ ∈ ,௝ሺ1ܪ ,߁ ܱሻ represents a pair of distant 

data points ݈ ∉ ,௝ሺ1ܪ ,߁ ݈⋀ሻܫ ∈ ௝ሺ݇ܪ ൐ 1, ,߁  ሻ. It should be noted that similar definitions areܫ

found in [Ultsch/Herrmann, 2005], for the case of a Euclidean graph; in [Venna et al., 2010], 
for the case of a KNN graph of binary neighborhoods, where BPE and FPE are referred to as 

y 

z 

x 
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precision and recall; and in [Aupetit, 2007], for the case of a Delaunay graph, where BPE and 
FPE are referred to as manifold stretching and manifold compression. 
Examples of BPE and FPE are shown in Figure 5.2. The PCA projection of the Hepta data set 
has a low FPE but a high BPE. The CCA projection has a very low BPE, but three points have 
high FPEs. The t-SNE (1) projection has a very high FPE, and for the t-SNE (2) projection, 
both the FPE and BPE are very high. 
However, the FPE and BPE are not sufficient measures for evaluating projections if the goal is 
to estimate the number of clusters or to ensure a sound clustering of the data (e.g., Figure 5.3 
right). In such a case, a suitable projection method should be able to preserve discontinuities, 
which occur in regions of the data space where the probability density function becomes very 
small. Discontinuities divide a dataset in the input space I into several clusters of similar ele-
ments represented by points ([Ultsch/Herrmann, 2005] used a similar definition). 
In summary, the quality of structure preservation should be measured based on the preservation 
of high-dimensional discontinuities as gaps in the two-dimensional output space. Structure 
preservation refers to the preservation of input-space discontinuities such that no points are 
allowed to intrude into the corresponding discontinuity regions in the output space. 
Let ݆ ∈  be an arbitrary point, and let I be projected into O by the function proj; then, the	ܫ
projection method proj is structure-preserving for a fixed extent ݇ ∈ Գ if 

ܫ		:݆݋ݎ݌                 → ,௝ሺ݇ܪ	,ܱ ,߁ ሻܫ ↦ ,௝ሺ݇ܪ	 ,߁ ܱሻ	∀݆ ∈ ܫ ሺ5.2ሻ	

The direct neighborhoods are preserved if 

∀݆ ∈ ,௝ሺ1ܪ	:ܫ ,߁ ,௝ሺ1ܪ⋂ሻܫ ,߁ ܱሻ ൌ ∅ ሺ5.3ሻ	

The BPE and FPE are acceptable if the quality of structure preservation is high (e.g., Figure 
5.3). Notably, the preservation of structure critically depends on the chosen concept of similar-
ity. For example, a multidimensional scaling (MDS) technique may be a suitable projection 
method if the structure preservation depends only on a Euclidean graph. This is the case for the 
Hepta data set. By contrast, for the Chainlink data set, a KNN graph with a suitably chosen 
number of nearest neighbors could yield a better result. 
In Chapter 6, it will be demonstrated that many quality criteria exist for evaluating visualiza-
tions. Given the definition of structure preservation, it is possible to group these quality 
measures (QMs) into semantic classes based on graph theory. 
In the last section of this chapter, a visualization method with the specific aim of structure 
preservation is proposed. 

5.3 Generating a Topographic Map from the Generalized U*-matrix 

In this section I introduce an U*-matrix technique that is generally applicable for all projection 
methods and can be used to visualize both distance- and density-based structures. This visualiza-
tion technique is the further development of the idea that the U-matrix can be applied to every 
projection method [Ultsch/Mörchen, 2006].  
In this work, the visualization technique results in a topographic 3D landscape. Here, the re-
quirements are a heavily modified emergent self-organizing map (ESOM) algorithm and a 
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method of high-dimensional density estimation. Contrary to  [Ultsch/Mörchen, 2006], the pro-
cess of computing the resulting topographic map is completely free of parameter dependence 
and accessible by simply by downloading the corresponding R package [Thrun/Ultsch, 2017b].  

5.3.1 Simplified ESOM 

To calculate a U*-matrix for any projection method, a modified ESOM algorithm is required. 
The first step is the computation of the correct lattice size. 
On the x axis, let the lattice begin at 1 and end at a maximal number denoted by Columns C 
(equal to the number of columns in the lattice); similarly, on the y axis, let the lattice begin at a 
maximal number denoted by Lines L and end at 1. Then, the first condition is expressed as 
[Ultsch, 2015] 

           
௅ିଵ

஼ିଵ
ൎ

|୫ୟ୶ሺ௬ሻି୫୧୬ሺ௬ሻ|

|୫ୟ୶ሺ௫ሻି୫୧୬ሺ௫ሻ|
ൌ

ௗ௬

ௗ௬
ൌ Δ ሺܫ. ሻ 

The second condition is that the lattice size should be larger than NN27: 
ܮ              ∗ ܥ ൒ NN ሺܫܫ. ሻ 
The first condition (I.) implies that the lattice size should be as close to equal to the size of the 
coordinate system as possible. The second condition (II.) is required for emergence in our al-
gorithm. For details, see [Ultsch, 1999]. The resulting equation to be solved is 

ଶܮ   ൅ ሺ1ܮ ൅ Δሻ െ NN ∗ Δ ൒ 0 ሺ5.4ሻ	

which yields 

ܮ       ൒ െ ଵା୼

ଶ
൅ ටቀଵା୼

ଶ
ቁ
ଶ
൅ NN ∗ Δ ሺ5.5ሻ	

After the transformation from the projected points28 ݌ ∈ ܱ to points on a discrete lattice, the 
points are called the best-matching units (BMUs) ܾ ݑ݉ ∈ 	ܤ ⊂ Թଶ of the high-dimensional data 
points j, analogous to the case for general SOM algorithms with ݂݃݀݅ݎ:	ܱ → ,ܤ ݌ ↦  ,ݑܾ݉	
where fgrid is surjective when conditions (i) and (ii) are met. 
To develop the algorithm illustrated in Listing 5.1, the idea of [Ultsch/Mörchen, 2006], in which 
it was suggested to “apply Self-Organizing Map training without changing the best match[ing 
unit] assignment”, was adopted. However, in contrast to [Ultsch/Mörchen, 2006], here, the 
transformation fgrid is defined precisely to calculate the BMU positions and the structure of the 
lattice is toroidal; i.e., the borders of the lattice are cyclically connected [Ultsch, 1999]. 
Based on the relevant symmetry considerations29, a simplified version of ESOM (sESOM) is 
introduced here. No epochs or learning rate are required, because the cooling scheme is defined 
by a special neighborhood function h:M ൈ M ൈ Թା → ሾ0,1ሿ. 
Let ܯ ൌ ሼ݉ଵ,… ,݉௡ሽ be a set of neurons (where ݉௜ are the lattice positions) with the corre-
sponding prototype set ܹ ൌ ሼݓଵ,… -௡ሽ, where dim(W)=dim(I) and #W=#M; then, the neighݓ,
borhood function h is defined as 

                                                      
27  In [Ultsch, 1999] the minimum number of 4096 neuros was proposed. 
28 Or DataBot positions on the hexagonal grid of Pswarm (see chapter 8). 
29  See chapter 8 for details. 
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h ൌ ቐ1 െ
dሺj, lሻଶ

πRଶ
, iff	

dሺj, lሻଶ

πRଶ
൏ 1

0, else
ሺ5.6ሻ	

In sESOM, learning is achieved in each step by modifying the weights in a neighborhood as 
follows:  

ሺܴሻݓ߂              ൌ 1 ∗ ݄ሺܾ݉ݑሺ݆ሻ,݉௜, ܴሻ ∗ ሺ݆ െ 	ሺ݉௜ሻሻݓ ሺ5.7ሻ	
In contrast to [Ultsch/Mörchen, 2006], the algorithm does not require any input parameters, and 
the resulting visualization is not a two-dimensional gray-scale map but rather a topographic 
map with hypsometric tints [Thrun et al., 2016a]. The entire algorithm is summarized in Listing 
5.1. 

 

Listing 5.1:  sESOM pseudocode algorithm implements a stepwise iteration from the maximum radius Rmax 
which is given by the lattice size (Rmax = C/6) stepwise with one per step and down to 1. w´(݉௞) 
indicates that the prototype w(݉௞) of neuron ݉௞ is modified by Eq. 5.7 

  Additionally, the search for a new best matching unit still is used and these prototypes may change 
during one iteration. The predefined prototypes are reset to the weights of their corresponding high-
dimensional data points after each iteration. 

5.3.2 U*-Matrix Calculation 

After sESOM projection, the structure of the input data emerges when a visualization technique 
called U-matrix is applied. A U-matrix represents a folding of the high-dimensional space in 
which each receptive field is called a U-height. Let N(j) be the eight immediate neighbors of 
 be the prototype corresponding to ݆݉; then, the average of all distances	ܹ∋݆ݓ and let ,ܯ∋݆݉
between ݆ݓ and the other prototypes ݅ݓ	is called the U-height corresponding to the position ݆݉: 

ሺ݆ሻݑ ൌ
1
݊
෍ ,௜ݓሺܦ ௝ሻݓ
௜∈ேሺ௝ሻ

, ݊ ൌ |ܰሺ݆ሻ| ሺ5.8ሻ	

function (B, I) 

for all ܾ݉ݑሺ݆ሻ߳ B: 

assign the positions ௝݉ ∈  ௝߳ W on the gridݓ with random weightings ܯ

assign to each ܾ݉ݑሺ݆ሻ ൌ ௝݉ the weighting	ݓ௝ ൌ ݆ ∈   ܫ

end for ܾ݉ݑሺ݆ሻ  
for R=Rmax to 1 do 

for all ݆	߳	ܫ: 
ሺ݆ሻݑܾ݉   ൌ argmin

௠∈ெ
ሼܦሺ݆, ሺ݉ሻሻሽݓ  	

,൫ܴݓ߂										 ሺ݆ሻ൯ݑܾ݉ ൌ ݄ሺܾ݉ݑሺ݆ሻ,݉௜, ܴሻ ∗ ሺ݆ െ  ሺ݉௜ሻሻݓ

for all ݓሺ݉௞ሻ ∈ ݄ሺܾ݉ݑሺ݈ሻ,݉௜, ܴሻ  

w´(݉௞) = w(݉௞) + Δw(R,bmu(l)) 

end for w(݉௞)  

end for ݆	߳	ܫ 
for all ܾ݉ݑሺ݆ሻ߳	B: 

assign to each ܾ݉ݑሺ݆ሻ ൌ ௝݉ the weighting	ݓ௝ ൌ ݆ ∈   ܫ

end for R 

end function 
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To explain the visualization technique for the sESOM algorithm, in this section and in section 
5.3.3 below, [Thrun et al., 2016a] is cited: 

“The U-matrix is the display of values ݑሺ݆ሻ through proportional intensities of grey shades [Ultsch, 2003a]. By 
formalizing the displayed structures, [Lötsch/Ultsch, 2014] showed that the U-matrix is an approximation of [the] 
Voronoi borders of the high-dimensional points in the output space” (see chapter 4.2.0).  

Therefore, the generalized U-matrix can be normalized [using] the generalized abstract U-ma-
trix. 

“In addition to the U-matrix, [Ultsch, 2003c] introduced the high-dimensional density visualization technique 
called P-matrix, where P-heights on top of the receptive fields are displayed. The P-height ݌ሺ݉௜ሻ for a position ݉௜ 
is a measure of the density of data points in the vicinity of ݓሺ ௝݉ሻ: 

൫݌             ௝݉൯ ൌ |ሼ݅ ∈ ,൫݅ܦ|ܫ ሺݓ ௝݉ሻ൯ ൏ ݎ ൐ 0, ݎ ∈ Թ	ሽ| ሺ5.9ሻ. 

The P-height is the number of data points within a hypersphere of radius r. Here, we choose the interval ϱ of the 
radius with 

߷	 ∈ 	 ሾ݉݁݀݅ܽ݊൫ܥሺܦሻ൯,݉݁݀݅ܽ݊൫ܣሺܦሻ൯ሿ, ሺ5.10ሻ 

where D [represents] all input space distances and A(D) is the group A of distances calculated by [the] ABC 
analysis [Ultsch/Lötsch, 2015]. ABC analysis30 tries to identify the optimum information that can be validly re-
trieved by using concepts developed in economic sciences. In particular, [these] concepts are used in the search 
for a minimum possible effort that gives the maximum yield [Ultsch/Lötsch, 2015]. The distances are divided into 
three disjoint subsets A, B and C, with subset A comprising [the] largest values (“outer cluster distances”), subset 
B comprising values where the yield equals the effort required to obtain it, and the subset C comprising [] the 
smallest values (“inner cluster distances”). We suggest [choosing] the specific radius r [based on] the [ratio] v of 
[the] inter- versus intracluster distances[,] estimated [as] 

ݒ                          ൌ
௠௔௫൫஼ሺ஽ሻ൯

௠௜௡൫஺ሺ஽ሻ൯
ሺ5.11ሻ 

The radius r is estimated [as] ݎ ൌ ݒ ∗  ሻ is [the] 20-th percentile of [the] input distancesܦ20ሺ݌ ሻ, whereܦ20ሺ݌
[Ultsch, 2003b]. From this starting point, the user may search interactively for the empirical Pareto percentile 
[that] defines the radius r (see [the] R package Umatrix). 

The combination of a U-matrix and a P-matrix is called [a] U*-matrix [Ultsch et al., 2016a]. It can be formalized 
as [a] pointwise matrix [product]: ܷ∗ ൌ ܷ ∗  ሺܲሻ, where F(P) is a matrix of factors f(p) that are determinedܨ
through a linear function f on the P-heights p [in] the P-matrix. The function f is calculated so that f(p) = 1 if p is 
equal to the median and f(p) = 0 if p is equal to the 95-[th] percentile (p95) of the heights in the P-matrix. For         
p(j) > p95, f(p) = 0, which indicates that j is well within a cluster and results in [a height of zero] in the                       
U*-matrix.” [Thrun et al., 2016a] 

5.3.3 Topographic Map with Hypsometric Tints 

The U*-matrix visualization technique produces a topographic map with hypsometric tints 
[Thrun et al., 2016a]. Hypsometric tints are surface colors that represent ranges of elevation 
[Patterson/Kelso, 2004]. Here, a specific color scale is combined with contour lines. 
The color scale is chosen to display various valleys, ridges and basins: blue colors indicate 
small distances (sea level), green and brown colors indicate middle distances (low hills), and 
white colors indicate large distances (high mountains covered with snow and ice). Valleys and 

                                                      
30 For usage see CRAN R package ABCanalysis [Thrun et al. 2015]. 
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basins represent clusters, and the watersheds of hills and mountains represent the borders 
between clusters (Figure 5.1 and Figure 5.4). 
The landscape consists of receptive fields, which correspond to certain U*-height intervals with 
edges delineated by contours. This work proposes the following approach (see [Thrun et al., 
2016a, p. 10]): First, the range of U*-heights is split up into intervals, which are assigned uni-
formly and continuously to the color scale described above through robust normalization [Mil-
ligan/Cooper, 1988]. In the next step, the color scale is interpolated based on the corresponding 
CIELab color space [Colorimetry, 2004]. The largest possible contiguous areas corresponding 
to receptive fields in the same U*-height intervals are outlined in black to form contours. Con-
sequently, a receptive field corresponds to one color displayed in one particular location in the 
U*-matrix visualization within a height-dependent contour. Let u(j) denote the U*-heights, and 
let q01 and q99 denote the first and 99-th percentiles, respectively, of the U*-heights; then, the 
robust normalization of the U*-heights u(j) is defined by 

ሺ݆ሻݑ          ൌ ௨ሺ௝ሻି௤଴ଵ

௤ଽଽି௤଴ଵ
ሺ5.12ሻ	

The number of intervals in is defined by 

1
݅݊
ൌ
01ݍ
99ݍ

ሺ5.13ሻ	

The resulting visualization consists of a hierarchy of areas of different height levels represented 
by corresponding colors (see Figure 5.4). To the human eye, the visualization using the gener-
alized U-matrix tool is analogous to a topographic map; therefore, one can visually interpret the 
presented data structures in an intuitive manner. In contrast to other SOM visualizations, e.g., 
[K. Tasdemir/Merenyi, 2009], this topographic map presentation enables the layman to inter-
pret sESOM results. 
The use of a toroidal map for sESOM computations necessitates a tiled landscape display in the 
interactive U-matrix tool [Thrun et al., 2015], which means that every receptive field is shown 
four times. Consequently, in the first step, the visualization consists of four adjoining images 
of the same U-matrix [Ultsch, 2003a] (the same is true for the U*-matrix). To obtain the 3D 
landscape (island31), [Thrun et al., 2016a, p. 10] proposed to rectangularly cut the tiled U*-
matrix visualization as follows. 
Let ݒ௅௜௡௘௦ and ݒ஼௢௟௨௠௡௦ be the vectors of the row and column sums, respectively, of the U*-
heights, and let ܾ௅௜௡௘௦ (ܾ஼௢௟௨௠௡௦) be the number of BMUs in the corresponding row line of 
then, we define the upper border as up ;(஼௢௟௨௠௡௦ݒ) ௅௜௡௘௦ݒ ൌ max	ሺݒ௅௜௡௘௦/݂ሺܾ௅௜௡௘௦ሻ), the left 
border as lb ൌ maxሺܾ஼௢௟௨௠௡௦/݂ሺݒ஼௢௟௨௠௡௦)) and the other two borders based on the length and 

width of the U*-matrix, where the vector f(b) is the sum ݂ሺܾሻ ൌ ෠ܾ ൅ ܾ ൅ ෰ܾ with 
෠ܾ ൌ ሺܾ௡, ܾଵ, … , ܾ௡ିଵሻ and ෰ܾ ൌ ሺܾଶ, … , ܾ௡ାଵሻ for a toroidal lattice. For better comprehensibility, 
see the axes in [Thrun et al., 2016a, p. 14, Fig. 1], which are defined from one to ݉ܽݔሺݏ݁݊݅ܮሻ 
and from one to ݉ܽݔሺݏ݊݉ݑ݈݋ܥሻ. 

                                                      
31  An island can be also cut interactively (or the the cutting may be improved) and thus may not be rectangular 
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Figure 5.4:  Topographic map of the PCA projection of the Chainlink data set. The discontinuities between the 
clusters are misrepresented. 

 

Figure 5.5:  Zoomed-in view of the misrepresentation of the discontinuities in the PCA projection of the Chain-
link data set to better visualize the BPE and FPE. 
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Figure 5.6:  Topographic maps can depict the discontinuities in high-dimensional data sets: clusters lie in valleys 
and are separated by hills. However, the introduction of spurious gaps between projected points (the 
disruption of clusters) cannot be seen using this approach.  
Top: topographic map of CCA projection [Demartines/Hérault, 1995] of the Chainlink data set. 
Middle: topographic map of ESOM projection [Ultsch, 1999] of the Atom data set.  
Bottom: island of NeRV projection [Venna et al., 2010] of the leukemia data set. All results are 
trial-dependent because the projection methods are stochastic. Sometimes, the annealing scheme (in 
CCA or ESOM) or the random initialization process (in NeRV) fails. 
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5.3.4 Limitations 

The generalized U*-matrix visualization by a topographic map is capable of visualizing BPEs 
and FPEs. For example, this is shown in Figure 5.5. The projected points in the output space 
with low BPE/FPE values lie in sea regions. If the BPE/FPE around a projected point is high, 
then the visualization generates a mountain at this point (Figure 5.5). However, the topographic 
map has certain limitations (Figure 5.6). When the default parameters in CCA are used to ana-
lyze the Chainlink data set (see [Thrun et al., 2017]) or when the default ESOM parameters 
([Thrun et al., 2016b]) are used to analyze the Atom data set, clusters are sometimes disrupted 
because additional gaps are added that cause points to intrude into the discontinuity regions 
between clusters. 
Another question that arises in this chapter from the examples of the CCA and ESOM projec-
tions of the Chainlink and Atom data sets, respectively, in Figure 5.6 is the question of how to 
handle stochastic projection methods in which the visualization is trial-dependent. The anneal-
ing schemes used in the ESOM and CCA algorithms may be relevant here. The annealing pro-
cess depends on certain parameters and may not yield structure-preserving projections, as 
shown in the examples in Figure 5.6 The Neighborhood Retrieval Visualizer (NeRV) projection 
of the leukemia data set presented in Figure 5.6 further illustrates the problem of the correct 
choice of parameters, which is typically very challenging. In this case, the NeRV projection is 
sensitive to the initialization parameters, especially to the seed used for the random number 
generator. In chapter 9, an additional example will be presented to demonstrate that NeRV re-
quires the weighting between precision and recall to be correctly chosen for high-dimensional 
structures to be preserved. 
Hence, the next chapter will focus on the search for a QM that may be able to measure structure 
preservation instead of attempting to visualize it.

License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 
reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if changes were made. 
The images or other third party material in this chapter are included in the chapter’s Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, 
you will need to obtain permission directly from the copyright holder.
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6 Quality Assessments of Visualizations 

Dimensionality reduction techniques reduce the dimensions of the input space to facilitate the 
exploration of structures in high-dimensional data. Two general dimensionality reduction ap-
proaches exist: manifold learning and projection. Manifold learning methods attempt to find 
sub-spaces in which the high-dimensional distances are preserved. Usually, these sub-spaces 
have more than two dimensions. 
It was argued in [Venna et al., 2010] that manifold learning methods are not very useful for 
information visualization because they are designed simply to find a manifold, and L. J. van der 
Maaten et al. demonstrated that they do not outperform classical principal component analysis 
(PCA) for real-world tasks [L. J. van der Maaten et al., 2009]. 
This work focuses on two-dimensional visualizations of high-dimensional data, with the inten-
tion of making the visualizations easily understandable, because it is difficult for humans to get 
a spatial sense of more than three dimensions. A valid visualization is possible if a projection 
method creates an image of the structure of high-dimensional data. The two-dimensional scatter 
plot remains a state-of-the-art form of visualization used in cluster analysis (e.g., [Everitt et al., 
2001, pp. 31-32; Hennig et al., 2015, pp. 119-120, 683-684; Mirkin, 2005, p. 25; G. Ritter, 
2014, p. 223]). Consequently, the aim here is to evaluate two-dimensional visualizations of 
high-dimensional data in which the structures are defined by discontinuities. In short, projection 
methods should preserve the structures defined by natural clusters. 
However, as a consequence of limiting the output space to two dimensions, the low-dimensional 
similarities cannot completely represent the high-dimensional distances, which can result in a 
misleading interpretation of the underlying structures; these structures can be evaluated using 
quality measures (QMs), and the first step in the process of assessing the performance of pro-
jection methods is to assess these measures themselves. Here, the QMs are assessed based on 
the proposed concept of structure preservation, namely, the preservation of high-dimensional 
discontinuities related to compact or connected structures (see chapter 3, section 3.2.1, for de-
tails). Overall, 19 QMs will be categorized into semantic groups in this chapter, and their ad-
vantages and disadvantages will be discussed. 
To date, QMs have mostly been applied to data sets such as a Swiss roll shape [L. Van der 
Maaten et al., 2009] [Mokbel et al., 2013], an s-shape [Yin, 2007] or a sphere [Venna et al., 
2010], for which the problem lies only in the visual representation of an object that is continuous 
in more than two dimensions. Recently, [Gracia et al.] conducted a study on a number of QMs 
based on 12 real-world data sets. The research team’s analysis of the QMs concentrated on the 
correlations between them [Gracia et al., 2014]. This study illustrates the other common evalu-
ation approach: the use of various natural high-dimensional data sets for which prior classifica-
tions are available. However, with the exception of the classification error (CE) (see section 2), 
this information is not used in the evaluation of projection methods, e.g., [Bunte et al., 2012]. 
Moreover, it is not stated whether the classification is defined based on discontinuities or the 
prior knowledge of a domain expert. Whether these data sets possess discontinuities is not dis-
cussed. 
Serving as an illustration of this problem, Figure 6.1 presents projections of a high-dimensional 
data set called the leukemia data set. In addition, above each plot in Figure 6.1, the CE for 7 

© The Author(s) 2018
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nearest neighbors is provided. The leukemia data set was introduced in chapter 3, where it was 
shown that common clustering algorithms are unable to reproduce its prior classification. 
The question arises of whether the existing QMs are able to distinguish among different 
projections with regard to their preservation of the discontinuities in this data set (see chapter 
3.3, Figure 3.6 and 3.7). As an example, Figure 6.2 shows the often used trustworthiness and 
discontinuity (T&D) measures [Venna/Kaski, 2001] and precision and recall measures [Venna 
et al., 2010] for this data set. The distinction among the six projections in terms of quality, based 
on these measures, is debatable. 

 

Figure 6.1:  Projections of the leukemia data set generated using common methods and the corresponding 
classification errors (CEs, see 6.1.1 for def.) for 7 nearest neighbors CE(k=7). The colors represent 
the predefined illness cluster labels. The clusters are separated by discontinuities in the high-
dimensional space (see chapter 3). Emergent self-organizing map (ESOM) is the projection method 
that best preserves the discontinuities in this data set. The Neighborhood Retrieval Visualizer 
(NeRV) algorithm splits the smallest cluster into two roughly equal parts. 
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Figure 6.2:  Trustworthiness and discontinuity (T&D) measures (def. see 6.1.13 on p. 65) and precision and 
recall measures (def. see 6.1.8 on p. 68) for the six projections shown in Figure 6.1 of the leukemia 
data set. The discontinuity is highest for Sammon mapping and NeRV (top left), as is the 
trustworthiness (top right). However, in the case of the trustworthiness, the outcome depends on the 
number of nearest neighbors considered, k; for a low value, ESOM is superior to Sammon mapping, 
and for a high value, principal component analysis (PCA) overtakes NeRV. In terms of the smoothed 
precision and recall [Venna et al., 2010], NeRV and PCA achieve the best values. Without the scatter 
plots in Figure 6.1, interpretation of the results of this figure is difficult.
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This example illustrates that the evaluation of projections of real-world, high-dimensional data 
sets, and consequently the evaluation of QMs, is a challenging task. To simplify the problem, 
two elementary artificial three-dimensional data set32 will be used to aid in assessing QMs (re-
sults in supplement A). Both data sets are clearly defined based on the discontinuities, which 
some projection methods fail to project into two dimensions (see supplement A). In the second 
section of this chapter, the definitions of neighborhoods from the perspective of graph theory 
(chapter 2) will enable a deeper understanding of the various types of QMs. 
In the last section, a new QM called the Delaunay classification error (DCE) will be introduced, 
which requires a prior classification of the data set of interest and is inspired by recent SOM 
research [Lötsch/Ultsch, 2014] on the structures of the U-matrix. In the previous chapter, a 
method that allows the U-matrix to be computed for any projection method was proposed. 

6.1 Common Quality Measures (QMs) 

In this section, the well-known measures for assessing the quality of projections are introduced 
in alphabetical order. Some QMs use the ranks of distances ܴሺ݆, ݈ሻሻ instead of the actual dis-
tances ܦሺ݆, ݈ሻ between points. In this case, the following shorthand notation will be used. 
Let ܦሺ݆, ݈ሻ be an entry in the matrix ܦேൈே of the distances between all N points in a metric 

space M, where ݆, ݈ ∈ ,ሺ݆ܦthen, the rank ܴሺ ;ܯ ݈ሻሻ ൌ ݕ ∈ ሼ1,… , ݊ሽ denotes the ݕ௧௛ position in 
the consecutive sequence of all entries of this matrix arranged in value from smallest to greatest. 
In short, the ranks of the distances are the relative positions of the distances, where R denotes 
the ranks of the distances in the input space and r denotes the ranks of the distances in the output 
space. Occasionally, ranks are represented by a vector in which the entries are the ranks of the 
distances between one specific point and all other points. Typically, the matrix or vector of 
ranks is normalized such that the values of its entries lie between zero and one. 

6.1.1 Classification Error (CE) 

This type of error is often used to compare projection methods when a prior classification is 
given [Bunte et al., 2012; Gracia et al., 2014; L. J. van der Maaten et al., 2009; Venna et al., 
2010]. 
Each point ݈ ∈ ܱ in the output space is classified by a majority vote among its k nearest neigh-
bors in the visualization [Venna et al., 2010], although sometimes simply the cluster of the 
nearest neighbor is chosen. This classification is compared with the prior classification as fol-
lows: Let ܿ ∈ ݆ denote the classification of the points ܥ ∈  ሻܫ௞ሺܥ in the input space, where ܫ
denotes a cluster of the classification in I. Let ݈ ∈ ܱ denote the projected points in the output 
space that map to I. Let ܪ௝ሺknn, ,ܭ ܱሻ be the neighborhood of ݆ in a KNN graph in the output 

space. Then, the clusters are sorted and the clusters with the largest number of points is chosen:  

If ൛݈ ∈ ,௝ሺknnܪ ,ܭ ܱሻห	∀	݈ଵ, … , ݈௞௡௡, หܥ௞భሺ݈ሻห ൏ 	 หܥ௞మሺ݈ሻห ൏. . . ൏ หܥ௞ೖሺ݈ሻหሽ, then 

௝ሺܱሻܥ ൌ ሼܥ௞ೖሺ݈ሻ}. The label ܥ௝ሺܱሻ is then compared with ܥ௝ሺܫሻ. This yields the error 

ܨ ൌ
1
ܰ
෍หܥ௝ሺܱሻ ് ሻหܫ௝ሺܥ	

ே

௝ୀଵ

ሺ6.1ሻ	

                                                      
32  One with compact structures, one with connected structures. 
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6.1.2 C Measure 

The C measure is a product of the input and output spaces in terms of similarity functions 
[Goodhill et al., 1995]. For ease of comparison, in (6.4), the similarity function is redefined as 
the distance between two points. Consequently, the C measure is defined based on a Euclidean 
graph. 
In the equation below, C is replaced with the capital letter F. 

ܨ ൌ෍෍ܦሺ݆, ݈ሻ ∙ ݀ሺ݆, ݈ሻ ሺ6.2ሻ
௟௝

	

A high value of the C measure indicates good neighborhood preservation. It is evident from Eq. 
6.2 that F is at a maximum when the ranks of the distances in the spaces I and O are equivalent. 
No normalization of the F value is given. 

6.1.3 Two Variants of the C Measure: Minimal Path Length and Minimal Wiring 

Eq. 6.3 presents the definition of the minimal path length [Durbin/Mitchison, 1990], and Eq. 
6.4 gives the definition of the minimal wiring [Mitchison, 1995]: 

ܨ ൌ෍ܦሺ݆, ݈ሻ ∙ ,ሺ݆ݏ ݈ሻ ሺ6.3ሻ
௝,௟

	

ܨ ൌ෍݀ሺ݆, ݈ሻ ∙ ,ሺ݆ݏ ݈ሻ ሺ6.4ሻ
௝,௟

 

Where Eq. (I) with ݏሺ݇, ݆ሻ defines the k nearest neighbors. Thus, it is analogous to a KNN 
graph: 

,ሺ݆ݏ ݈ሻ ൌ ൜
1, 	݂݅	݆ ∈ ሺ݇݊݊ܪ ൌ ሻܯ,1
0, ݁ݏ݅ݓݎ݄݁ݐ݋

ሺܫሻ	

where in (Eq. 6.3), M=I to define the set of the nearest spatial neighbors in the input space I, 
and in (Eq 6.4), ܯ ൌ ܱ to serve the same purpose for the output space. A smaller value of the 
error F indicates a better projection. 

6.1.4 Force Approach Error 

According to the force approach concept presented in [Tejada et al., 2003], the relation between 
the distances ܦሺ݆, ݈ሻ	and	dሺj, lሻ should be constant for each pair of adjacent data points. The 
force approach attempts to separate data points that are projected too close to one another and 
to bring together those that are too scattered. In [Tejada et al., 2003], it was suggested that it is 
possible to improve any projection method by the following means. 
First, for each pair of projected points ሺݓ௝, ఫ௟ሬሬሬሬԦݒ ௟ሻ, the vectorݓ ൌ ௝ݓ െ  ௝ is aݓ ௟ is calculated ifݓ

direct neighbor of ݓ௟; then, a perturbation in the direction of ݒఫ௟ሬሬሬሬԦ is applied. Consequently, ݓ௝ is 

moved in the direction of ݒఫ௞ሬሬሬሬሬԦ by the fraction defined in (5a). When all points ݓ௝ have thus been 

improved, a new iteration begins. 

∆௟ൌ
,ሺ݆ܦ ݈ሻ െ ௠௜௡ܦ

௠௔௫ܦ െ ௠௜௡ܦ
െ d′ሺj, lሻ ሺ6.5′ሻ	
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Note that all distances ܦሺ݆, ݈ሻ are normalized only once. For performance reasons, the projected 
points are normalized in every iteration instead of the dሺj, lሻ. The error on the projected points 
is defined as 

ܨ ൌ
1
ܯ
෍|∆௟| ሺ6.5ሻ

ே

௟ୀଵ

	

Thus, as shown in Eq. 6.5´, the force approach error is defined with respect to a Euclidean 
graph, and an F value of zero suggests optimal neighborhood preservation, as seen from Eq. 
6.5. A similar approach, referred to as point compression and point stretching, was proposed in 
[Aupetit, 2007], where it was used for the visualization of errors with the aid of Voronoi cells. 

6.1.5 König’s Measure 

König’s measure is a rank-based measure introduced in [König et al., 1994]: 

ሺ݇݊݊ሻܨ ൌ
1

3݇݊݊ ∗ ܰ
෍ݍ௖ሺ݆, ݇݊݊ሻ ሺ6.6ሻ

ே

௝ୀଵ

	

with ݍ௖as in Eq. I 

,௖ሺ݆ݍ ݇݊݊ሻ ൌ

ە
۔

,3ۓ
2,
1,
0,

																																								݂݅	ܴሺ݆, ݈ሻ ൌ ,ሺ݆ݎ ݈ሻ	ܽ݊݀		݈ ∈ ,௝ሺ݇݊݊ܪ ሻܫ ∩ ,௟ሺ݇݊݊ܪ ܱሻ
݂݅	݈ ∈ ,௝ሺ݇݊݊ܪ ሻܫ ∩ ,௝ሺ݇݊݊ܪ ܱሻ

													
݂݅	݈ ∈ ,௝ሺ݇݊݊ܪ ሻܫ ∩ ,௝ሺܿܪ ܱሻ, ݇݊݊ ൏ ܿ	

݁ݏ݅ݓݎ݄݁ݐ݋

ሺܫሻ	

König’s measure is controlled by the following parameters: a constant parameter c and a vari-
able parameter representing the neighborhood size, ݇݊݊ ∈ ሼ1, . . , ݇݊݊|݇݊݊ ൏ ܿሽ, which must 
be smaller than c. 
In the first case, the ranks place l in the same knn neighborhood with respect to j in both the 
input and output spaces. In the second case, the sequence in the neighborhood may be different, 
but ݈ ∈ ܱ is still within the first knn ranks relative to j in the current neighborhood defined by 
the value of knn. In the third case, the point l lies in a larger, constant neighborhood of ܪ௝ሺܿ, ܱሻ. 
The range of F is between zero and one, where a value of one indicates perfect structure preser-
vation and a value of zero indicates poor structure preservation [König, 2000]. The parameters 
݇݊݊ and c were investigated by [Karbauskaitė/Dzemyda, 2009]. The results indicated that c 
does not have a strong influence on the value of F; F changes only for large knn values. More-
over, [Karbauskaitė/Dzemyda, 2009] showed that the parameter ݇ଵ influences only the magni-
tude of the F value, whereas the form of F(knn) remains approximately the same. 

6.1.6 Local Continuity Meta-Criterion (LCMC) 

The local continuity meta-criterion (LCMC) was introduced in [Chen/Buja, 2006]; note that a 
similar idea was independently adopted by [Akkucuk/Carroll, 2006]. Because the correlation 
between these two measures is very high [Gracia et al., 2014]), only the LCMC is introduced 
here. The LCMC is defined as the average size of the overlap between neighborhoods consisting 
of k nearest neighbors in I and O [Chen/Buja, 2009]. For each ݔ௝ ∈ and w௝ ܫ ∈ ܱ, there exist 

corresponding sets of points in the neighborhoods ܪሺ݇݊݊, ,ሺ݇݊݊ܪ ሻ andܫ ܱሻ, which are calcu-
lated using a given knn in a KNN graph. The overlap is measured in a pointwise manner: 
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ሺ݆ሻܣ ൌ หܪ௝ሺ݇݊݊, ሻܫ 	∩ ,௝ሺ݇݊݊ܪ ܱሻ ห, ௞௡௡തതതതതതܣ ൌ
1
ܰ
෍ܣሺ݆ሻ
ே

௝ୀଵ

ሺ6.7′ሻ	

In Eq. 6.7´, a global measure is obtained by averaging all N cases [Chen/Buja, 2009]. The mean 
 ௞௡௡തതതതതത. Eq. 6.7ܣ ௞௡௡തതതതതത is normalized with respect to knn because this value is the upper bound onܣ
is also adjusted by means of a baseline term representing a random neighborhood overlap, 
which is obtained by modeling a hypergeometric distribution with knn defectives out of N-1 
items, from which knn items are drawn: 

ሺ݇݊݊ሻܨ ൌ
1
݇݊݊

௞௡௡തതതതതതܣ െ
݇݊݊
ܰ െ 1

ሺ6.7ሻ	

In contrast to the T&D measures and the mean relative rank error (MRRE; see the next section), 
the LCMC is calculated based on desired behavior [Lee/Verleysen, 2009]. The cited authors 
also showed that the LCMC can be expressed as a special case of the co-ranking matrix. 

6.1.7 Mean Relative Rank Error (MRRE) and the Co-ranking Matrix 

The MRRE was introduced in [Lee/Verleysen, 2007, p. 214] and is defined as follows: 

ଵሺ݇݊݊ሻܨ ൌ
1

ܰሺ݇݊݊ሻ
∗෍ ෍

|ܴሺ݆, ݈ሻ െ ,ሺjݎ lሻ|

ܴሺ݆, ݈ሻ
௟ ୌሺ୩୬୬,୓ሻ௝

ሺ6.8ܽሻ	

ଶሺ݇݊݊ሻܨ ൌ
1

ܰሺ݇݊݊ሻ
∗෍ ෍

|ܴሺ݆, ݈ሻ െ ,ሺjݎ lሻ|

,ሺ݆ݎ ݈ሻ
௝ ୌሺ୩୬୬,୍ሻ௝

ሺ6.8ܾሻ	

The normalization is given by ܰሺ݇݊݊ሻ ൌ ܰ∑
|ேିଶ௡ାଵ|

௡
௞௡௡
௡ୀଵ , which represents the worst case. 

There are notable similarities between the MRRE and the T&D measures: both types of 
measures use the ranks of the distances and KNN graphs to calculate overlaps, but, in addition 
to the different weightings, the MRRE also measures changes in the order of positions in a 
neighborhood H(knn, I) or H(knn, O). Both position changes and intruding/extruding points are 
considered, but position changes are weighted more heavily than intrusion/extrusion. The 
MRRE (and T&D and LCMC, as well) can be abstracted using the co-ranking matrix frame-
work as follows. 
As introduced in [Lee/Verleysen, 2008], ܳ ൌ  ௜௞,ଵஸ௜,௞ஸேିଵ is a matrix in which each element isݍ

equal to the number of pairs of points that lie in neighborhoods defined by the same or different 

values of knn. For example, ݍ௜௞ ൌ หܪሺ݅, ݇݊݊, ሻܫ 	∩ ,ሺ݇ܪ ݇݊݊, ܱሻ ห represents the upper left 

block of the co-ranking matrix for a specific knn. Formally, Q is a sum of N permutation ma-

trices; hence, ∑ ௜௞ݍ
ேିଵ
௜ୀଵ ൌ ∑ ௜௞ݍ

ேିଵ
௞ୀଵ ൌ ܰ. It was shown in [Lee/Verleysen, 2009] that the MRRE 

can be rewritten as two alternative quantities characterizing a projection 

 ܳெோோாሺܭሻ ൌ 1 െ ிభାிమ
ଶ

, which the authors call the quality of the projection, and 

ሻܭெோோாሺܤ  ൌ ଵܨ െ  .ଶ, called the behavior (for details, see [Lee/Verleysen, 2009])ܨ

6.1.8 Precision and Recall 

[Venna et al., 2010] reintroduced the idea of misses used by [Ultsch/Herrmann, 2005], where 
misses are similar data points ሺ݈ூ, ݆ூ)	∈ ݅ that are mapped to far-separated points ሺlை, jைሻ ∈ ܱ 




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[Ultsch/Herrmann, 2005]. Conversely, if a pair of closely neighboring positions ሺlை, jைሻ repre-
sents a pair of distant data points, then this pair is called a false positive. From the information 
retrieval perspective, this approach allows one to define the precision and recall for the case in 
which the neighborhoods are merely binary. However, [Venna et al., 2010] goes a step further 
by replacing such binary neighborhoods with probabilistic ones, which are loosely inspired by 
stochastic neighbor embedding [Hinton/Roweis, 2002]. The neighborhood of the point l is de-
fined with respect to the relevance of the points ݆ ∈  :around l ܫ

௟ሺ݆ሻ݌ ൌ
௘௫௣ሺିವ

ሺ೗,ೕሻమ

഑೗
మ ሻ

∑ ௘௫௣ሺିವ
ሺ೗,ೖሻమ

഑೗
మೖಯೕ 	ሻ

ሺܫሻ		

where ߪ௟ is set to the value for which the entropy of ݌௟ሺ݆ሻ is equal to log(knn) and knn is a rough 
upper limit on the number of relevant neighbors and is set by the user [Venna et al., 2010]. The 
authors propose a default value of 20 effective nearest neighbors. Similarly, the corresponding 
neighborhood in the output space is defined as 

௟ሺ݆ሻݍ ൌ
exp ൬െ

݀ሺ݈, ݆ሻଶ

௟ߪ
ଶ ൰

∑ exp	ሺെ݀
ሺ݈, ݇ሻଶ

௟ߪ
ଶ௞ஷ௝ 	ሻ

ሺܫܫሻ	

These neighborhoods are compared based on the Kullback-Leibler divergence (KLD). Apply-
ing (I) and (II) KLD is used to define the precision ܨ௉ and recall ܨோ: 

ோܨ ൌ െ
1
ܰ
෍෍݌௝ሺ݈ሻ

௝ஷ௟

ே

௟

log	ቆ
௝ሺ݈ሻ݌

௝ሺ݈ሻݍ
ቇ ሺ6.9ܽሻ	

௉ܨ ൌ െ
1
ܰ
෍෍ݍ௝ሺ݈ሻ

௝ஷ௟

ே

௟

log	ቆ
௝ሺ݈ሻݍ

௝ሺ݈ሻ݌
ቇ ሺ6.9ܾሻ	

The precision and recall are plotted using a receiver operating characteristic (ROC)-like ap-
proach, in which the negative definition of the values results in the best projection method being 
displayed in the top right corner. The authors call this measure smoothed because it is not nor-
malized, and theyalso propose a normalized version, with values lying between zero and one, 
based on ranks instead of distances. Note that the KLD and the symmetric KLD do not follow 
the triangle inequality for metric spaces. 

6.1.9 Rescaled Average Agreement Rate (RAAR) 

The average agreement rate is defined in Eq. I as 

ܳሺ݇݊݊ሻ ൌ
1
ܰ
෍

หܪ௝ሺ݇݊݊, ሻܫ 	∩ ,௝ሺ݇݊݊ܪ ܱሻ ห
݇݊݊

ே

௝ୀଵ

ሺ6.10ሻ	

in [Lee et al., 2014], analogously to the LCMC, using the unified co-ranking framework 
[Lee/Verleysen, 2008], in which the T&D, MRRE, and LCMC measures can all be summarized 
mathematically (for further details, see [Lee/Verleysen, 2009]). [Lee et al., 2014] argues that to 
enable fair comparisons or combinations of values of Q(knn) for different neighborhood sizes, 
the measure in Eq. 6.10 must be rescaled to 
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ሺ݇݊݊ሻܨ ൌ
ሺܰ െ 1ሻܳሺ݇݊݊ሻ െ ݇݊݊

ܰ െ 1 െ ݇݊݊
, 1 ൑ ݇݊݊ ൑ ܰ െ 2 ሺ6.10′ሻ	

This quantity is called the rescaled average agreement rate (RAAR). The values of F lie in the 
interval between zero and one, with a logarithmic knn scale and a scalar value that can be ob-
tained by calculating the area under the curve (AUC).	

6.1.10 Stress and the Shepard Diagram 

The original multidimensional scaling (MDS) measure has various limitations, such as difficul-
ties with handling non-linearities (see [Shepard, 1980] for a review); moreover, the underlying 
metric must be Euclidean, and Sammon mapping is simply a normalized version of MDS. 
Therefore, only non-metric MDS is considered here. The calculated evaluation measure is 
known as the stress and was first introduced in [Kruskal, 1964a]. Here, the stress F is defined 
as shown in Eq. 6.11. The disparities ߦ௜,௝ are the target values for each ݀ሺ݆, ݈ሻ, meaning that if 

the distances in the output space achieve these values, then the ordering of the distances is 
preserved between the input and output spaces [Goodhill et al., 1995, pp. 8-9]. 

ܨ ൌ ඩ
∑ ൫ܦሺ݆, ݈ሻ െ ௜,௝൯ߦ

ଶ
௝ஷ௟

∑ ,ሺ݆ܦ ݈ሻଶ௝ஷ௟

ሺ6.11ሻ	

The input-space distances are used to define this measure based on a Euclidean graph. Several 
algorithms exist for calculating ߦ௜,௝. [Kruskal, 1964a] himself regarded F as a sort of residual 

sum of squares. A smaller value of F indicates a better fit. Therefore, perfect neighborhood 
preservation is achieved when F is equal to zero [Kruskal, 1964a]. The author describes F in 
terms of percentages, where values below 5% imply good neighborhood preservation. F can be 
described as the deviation from a perfect scatter plot of the distances in I versus the distances 
in O. This scatter plot is known as the Shepard diagram [Shepard, 1980 Fig 1C]. 
Here, the use of a density plot based on Pareto density estimation (PDE) [Ultsch, 2005b], in-
stead of a scatter plot, is proposed. The author also proposes calculating Kendall’s ߬ for these 
density plots. 

6.1.11 Topographic Product 

The topographic product [Bauer/Pawelzik, 1992] and an improved version thereof [Revuelta et 
al., 2004] were originally defined for neural maps, but in contrast to the quantization error [Uri-
arte/Martín, 2005] and the topographic error [Kiviluoto, 1996], it is possible to generalize the 
idea of the topographic product to all projection methods. Let the points l୑ ∈ Hሺknnሺjሻ,Mሻ 
constitute the neighborhood of a point j in a metric space M defined based on a KNN graph and 
sorted in ascending order of knn; then, 

,ሺ݆ݍ ݇݊݊ሻ ൌ 	
݀ሺ݆, ݈ூሻ

݀ሺ݆, ݈ைሻ
ሺܫሻ	

ܳሺ݆, ݇݊݊ሻ ൌ 	
,ሺ݆ܦ ݈ூሻ

,ሺ݆ܦ ݈ைሻ
ሺIIሻ	

Q represents the distance between the point j ∈ and the k-th nearest neighbor ݈ூ	ܫ 	 ∈  in the ܫ
input space I divided by the distance between the point j ∈ and the point ݈ை ܫ ∈  corresponding ܫ
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to the k-th nearest neighbor in O. Now, the product of q and Q of (I) and (II) for all orders knn 
can be calculated in Eq. 6.12: 

ܲሺ݆, ࣿሻ ൌ ൭ ෑ ,ሺ݆ݍ ݇݊݊ሻ ∗ ܳሺ݆, ݇݊݊ሻ
ࣿ

௞௡௡ୀଵ

൱

ଵ
ଶࣿ

ሺ6.12ሻ	

The resulting QM is then defined as 

ܨ ൌ
1

ܰሺܰ െ 1ሻ
෍෍ log൫ܲሺ݆, ݇݊݊ሻ൯

ேିଵ

௞௡௡

ே

௝

ሺ6.12′ሻ	

F takes different values depending on whether the dimension of the output space is smaller than 
(F<0), similar to (Fൎ0) or greater than (F>0) the dimension of the input space [Revuelta et al., 
2004]. Thus, in our case, F is always smaller than zero. [Revuelta et al., 2004] improved the 
topographic product by using the shortest-path distances in a Euclidean graph (geodesic dis-
tances) in Eq. (I´) and (II´) instead of the direct distances of Eq. (I) and (II): 

,ሺ݆ݍ ݇݊݊ሻ ൌ 	
݃ሺ݆, ݈ூሻ

݃ሺ݆, ݈ைሻ
ሺܫ′ሻ	

ܳሺ݆, ݇݊݊ሻ ൌ 	
,ሺ݆ܩ ݈ூሻ

,ሺ݆ܩ ݈ைሻ
ሺII′ሻ	

6.1.12 Topographic Function (TF) 

The topographic function (TF) for SOMs was introduced in [Villmann et al., 1994]. This meas-
ure operates on Voronoi tessellations [Toussaint, 1980]. The TF quantifies the identity of the 
Delaunay graphs in I and O [Herrmann, 2011]. This work follows the general definitions found 
in [Villmann et al., 1997], where the TF is defined as given in Eq. 6.13 (denoted by F), with 
݄ ് 0 being the cardinality of ܱ	or	ܫ: 

ሺ݄ሻܨ ൌ
1
ܰ

෍ ߶ሺ݆, ݄ሻ ݄ ് 0		 ሺ6.13ሻ

ே

௝ୀଵ,௝∈ூ

	

߶ሺ݆, ݄ሻ ൌ #ሼ∀݈ ∈ :ܫ ݃ሺ݈, ݆, ࣞሻ ൐ ݄ ∧ ,ሺ݈ܩ ݆, ࣞሻ ൌ 1ሽ, ݄ ൐ 0	 	ሺ6.13aሻ	
߶ሺ݆, ݄ሻ ൌ #ሼ∀݈ ∈ :ܫ ݃ሺ݈, ݆, ࣞሻ ൌ 1 ∧ ,ሺ݈ܩ ݆, ࣞሻ ൐ |݄|ሽ, ݄ ൏ 0	 	ሺ6.13bሻ	

The shortest path in the Delaunay graph of the input space between the data points ሺl, j)	∈  is ܫ
denoted by ܩሺ݈, ݆, ࣞሻ, and that between the projected points ሺl, j)	∈ ܱ is denoted by ݃ሺ݈, ݆, ࣞሻ. 
The Delaunay-graph distances G and g are equal to the number of Voronoi cells between the 
two points. If h is greater than zero, then ሺl, j)	∈  are neighbors in the input space, and if h is ܫ
smaller than zero, then ሺl, j)	∈ ܱ are neighbors in the output space. 
In Eq. 6.13a, represents the number of neighbors surrounding a data point ݆ ∈  at a Delaunay ܫ

distance greater than h, with the restriction that only the projected points ݈ ∈ ܱ that are located 
in adjacent Voronoi cells in O are considered. 
The converse situation is considered in Eq. 6.13b:  represents the number of neighbors sur-

rounding a projected point ݆ ∈ ܱ at a Delaunay distance greater than h, with the restriction that 
only the data points ݈ ∈  .that are located in adjacent Voronoi cells in I are considered ܫ




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In summary, the shape of ܨሺ݄ሻ enables a detailed discussion of the magnitude of distortions 
occurring in O [Bauer et al., 1999]: “Small values of h indicate that there are only local dimen-
sional conflicts, whereas large values indicate the global character of a dimensional conflict” 
[Villmann et al., 1997]. [Bauer et al., 1999] proposed the following simplified equation: 

ሺ݄ܨ ൌ 0ሻ ൌ ሺ݄ܨ ൌ 1ሻ ൅ ሺ݄ܨ ൌ െ1ሻ	 	ሺ6.13’ሻ	

Here, h is equal to zero if and only if two points are neighbors in both the input space and the 
output space; thus, the overlap of Voronoi neighbors in I and O is required. 

6.1.13 Trustworthiness and Discontinuity (T&D) 

[Venna/Kaski, 2001] introduced the T&D measures, namely, trustworthiness and discontinuity. 
For each point j, let the points ݈ ∈ H୨ሺknn, O\Iሻ be in the neighborhood consisting of the k 

nearest neighbors of the point j in the output space O, but not in the input space. Then, the T&D 
are defined as 

ଵሺ݇݊݊ሻܨ ൌ 1 െ
1

ܰሺ݇݊݊ሻ
∗෍ቌ ෍ ሺܴሺ݆, ݈ሻ െ ݇݊݊ሻ

௟∈ୌౠሺ୩୬୬,୓\୍ሻ

ቍ
௝,

ሺ6.14ܽሻ	

ଶሺ݇݊݊ሻܨ ൌ 1 െ
1

ܰሺ݇݊݊ሻ
∗෍ ෍ ሺݎሺ݆, ݈ሻ െ ݇݊݊ሻ

௟∈ୌౠሺ୩୬୬,୍\୓ሻ௝,

ሺ6.14ܾሻ	

where ܰሺ݇݊݊ሻ is a normalization factor that scales the values to the interval between zero and 
one [Kaski et al., 2003]. ܨଵ is the trustworthiness (T), and ܨଶ is the discontinuity (D). By count-
ing the number of intruders, the T&D measures quantify the difference in the overlap of rank-
based neighborhoods in I and O: ܨଵ represents the number of points that are incorrectly included 
in the input-space neighborhood, and ܨଶ represents the number of points that are incorrectly 
ejected from the input-space neighborhood. 
[Venna/Kaski] claim that the trustworthiness (ܨଵ) quantifies from “how far from the original 
neighborhood [in the input space] the new points [݈ ∈ -entering the [output-space] neighbor [ܫ
hood [H(knn, O/I)] come” [Venna/Kaski, 2001, p. 487]. For the calculation of the T&D 
measures, KNN graphs must be generated for various knn values. Then, the trend of the curve 
can be interpreted. It is unclear how many knn values must be considered. Hence, knn values 
up to 25% of the total number of points are plotted. [Lee/Verleysen] showed that the T&D 
measures can be expressed as a special case of the co-ranking matrix [Lee/Verleysen, 2009]. 

6.1.14 U-ranking 

In [Ultsch/Herrmann, 2005], a QM based on a lattice was proposed. To generalize the idea to 
any projection method, one would use a graph. Let Γ be a graph, and let g(l, j,	Γ) be the shortest 
path between the projected points ሺ݆, ݈ሻ ∈ ܱ; then, the U-distance can be generalized as 

,ሺ݆ݑ ݈ሻ ൌ gሺl, j, Γሻ ሺ6.15ሻ	

Let ൫ݑሺ݆, 1ሻ	, . . . , ,ሺ݆ݑ ݊ሻ൯ be the ascending sequence of all U-distances, as defined in Eq. 6.15, 

with respect to an arbitrary projected point j. The rank ݎሺ݆, ݈ሻ ൌ ݕ ∈ ሼ1, … , ݊ሽ represents the 

,ሺ݆ݑ ௧௛ position in the consecutive sequence of all U-distancesݕ ݈ሻ with respect to a projected 
point ݈ ∈ ܱ. Now, the minimal U-ranking measure can be defined as follows: 
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ሺ݆ሻܨ ൌ ෍ ,ሺ݆ݎ ݈ሻ

௟∈ቄ݅ቚݔ௜ ∈ ,௝ݔ൫ܪ ൯ቅܫ

ሺ6.15′ሻ	

Considering [Lötsch/Ultsch, 2014], a good choice for ߁ is the Delaunay graph ࣞ. 

6.1.15 Overall Correlations: Topological Index (TI) and  
Topological Correlation (TC) 

Various applications of the two correlation measures introduced below can be found in the 
literature. 
The first type of correlation was introduced in [Siegel/Castellan, 1988] as Spearman’s ߩ and, 
in the context of metric topology preservation, was renamed as the topological index (TI) in 
[Bezdek/Pal, 1993]; see [Bezdek/R Pal, 1995] for further details. In Eq. 6.16, we follow the 
definition of the TI given in [Bezdek/R Pal, 1995], with ߢ ൌ ݊ሺ݊ െ 1ሻ/2, where n is the number 
of distances: 

ܨ ൌ 1 െ
6

ଷߢ െ ߢ
෍൫ܴሺ݆, ݈ሻ െ ,ሺjݎ lሻ൯

ଶ
఑

௟,௝ୀଵ

ሺ6.16ሻ	

The values of the TI are between zero and one, but [Goodhill et al., 1995] argued that the values 
of Spearman’s ߩ depend on the dimensions of the input and output spaces. Moreover, research 
has indicated that the elementary Spearman’s ߩ does not yield proper results for topology 
preservation [Karbauskaitė/Dzemyda, 2009]. 
[Handl et al., 2006] used the Pearson correlation, which is also called the topological correlation 
(TC) [Doherty et al., 2006]. The latter is notable because Delaunay-graph distances are used 
instead of Euclidean distances, as illustrated in the following equation: 

ܨ ൌ
1
ܰ
෍ሺgሺl, j, ࣞሻ െ gොሺࣞሻ ∗ ଵሻିߢ ∗ ൫Gሺl, j, ࣞሻ െ G෡ሺࣞሻ ∗ ଵ൯ିߢ ሺ6.17ሻ	

where gሺ෡ࣞሻ and G෡ሺࣞሻ are the means of the entries in the lower half of the distance matrices and 
ߢ ൌ ݊ሺ݊ െ 1ሻ/2, with n being the number of distances. The TC is preferable to the TI as a 
means of characterizing topology preservation because in the case of the TI, the matching of 
extreme distances is sufficient to yield reasonably high overall correlation values [Handl et al., 
2006]. 

6.1.16 Zrehen’s Measure 

Zrehen’s measure operates on the empty ball condition of Gabriel graphs [Gabriel/ 
Sokal, 1969]. The neighborhood of each pair of projected points (l, j) in the output space is 
depicted using locally organized cells: 

“A pair of neighbor cells A and B is locally organized if the straight line joining their weight vectors W(A) and 
W(B) contains points which are closer to W(A) or W(B) than they are to any other” [Zrehen, 1993, p. 664]. 

In this work, the strong connection between the TF value ܨሺെ1ሻ and Zrehen’s measure [Bauer 
et al., 1999] is remarked, but in contrast to [Zrehen, 1993], who assumed a neural net in two 
dimensions with precisely defined neighborhoods, here the output-space neighborhood is gen-
eralized to a Gabriel graph representation. Furthermore, for each pair of nearest neighbors, the 
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TF considers the neighborhood order h for that pair, whereas [Zrehen, 1993] counts the number 
of intruding points in neighborhoods of all orders h (for details, see the section on the TF above). 
In summary, if the condition ሺ݈, ݆ሻ ∈ ,ሺ1ܪ ,݈݁݅ݎܾܽܩ ܱሻ is met, then all points ݉ ∈  that lie ܫ
between the corresponding points ሺ݈, ݆ሻ ∈ ,݈݁݅ݎܾܽܩሺܪ  .ሻ are deemed intruders and are countedܫ
The sum of the number of intruders for all pairs of neighbors is normalized using a factor that 
depends only on the size and topology [Zrehen, 1993]: 

݂ሺ݆, ݈ሻ ൌ #ሼ∀݇ ∈ ,ሼ݈\ܫ ݆ሽ: ሺ݈, ݇ሻ ∈ ,݈݁݅ݎܾܽܩ௝ሺܪ ሻܫ ∧ 

																																										݃ሺ݈, ݆, ሻ ൌ݈݁݅ݎܾܽܩ 1 ∧ 
,ሺ݆ܩ																																																								 ݇ሻ ൏ ,ሺ݆ܩ ݈ሻሽ	 ሺ6.18ሻ 

ܨ ൌ
1
ܰ
∗ ෍ ݂ሺ݆, ݈ሻ
௝,௟ஷ௝

ሺ6.18′ሻ	

where N is the number of data points. The range of F starts at zero and extends to positive 
infinity, with a value of zero indicating the best possible projection. 

6.2 Types of Quality Measures for Assessing Structure Preservation 

In general, three types of QMs and some special cases can be identified, as shown in Figure 
6.3. The first type of measure is called compact33 because a measure of this type compares the 
arrangement of all given points in the metric space as expressed in terms of distance. In the 
literature, the term topographic is often used for such measures, e.g., [Goodhill et al., 1995]. 
These measures depend on some kind of comparison between inter- and intracluster distances. 
Measures in the second group are based on a neighborhood definition and, analogously to the 
terminology used in chapter 3, are called connected. These QMs rely on a type of predefined 
neighborhood H based on graph theory with a varying neighborhood extent k; thus, these neigh-
borhoods are denoted by ܪ௝ሺ݇, -ሻ (see chapter 2 for the corresponding definition). The exܯ,߁

pression topology preservation is often used in reference to this type of measure, e.g., 
[Bezdek/R Pal, 1995]. The special cases are grouped together under the term SOM-based 
measures. These measures, namely, the quantization error [Uriarte/Martín, 2005] and the topo-
graphic error [Kiviluoto, 1996], are not considered any further here because they require calcu-
lations of the distances between the data points in the input space and the weights of the neurons 
(prototypes) in the output space in an SOM. Instead of prototypes, general projection methods 
consider projected points, which can also refer to the positions of neurons on a lattice. Distances 
between spaces of unequal dimensions are not mathematically defined. A number of high-qual-
ity reviews are available on the subject of measuring SOM quality [Bauer et al., 1999; Beaton 
et al., 2010; Pölzlbauer, 2004]. 
The neighborhood-based QMs are divided into two groups, called unidirectional measures and 
direction-based measures. The reason for this is explained in chapter 2, section 2.2.1: two points 
(j, k) that lie in the same direct neighborhood of point l in ܪ௟ሺ1,  may not lie in the same (ܯ,ࣞ
neighborhood ܪ௟ሺ݇݊݊ ൌ  in the KNN graph if the distance D(l, k) is greater than the (ܯ,ܭ,2
distance D(l, m) for a point m behind point j (see Figure 2.4 in chapter 2.2.1). 

                                                      
33  Analogously to the usage of this term in chapter 3, where a compact structure is defined by inter- versus intra-

cluster distances. 
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Figure 6.3:  Groups of quality measures (QMs). The “Compact” group is only able to evaluate projections of 
compact structures (shaded with the first pattern), whereas the group of “Connected” QMs should 
be able to evaluate projections of connected structures (shaded with the second pattern) if the 
neighborhood definition is properly chosen. SOM-based measures are QMs that require weights of 
neurons (prototypes) and therefore are not generalizable to every projection method.  

 Supervised methods are not considered here (see chapter 3 for details).  
Abbreviations: trustworthiness and discontinuity (T&D), mean relative rank error (MRRE), local 
continuity meta-criterion (LCMC) and rescaled average agreement rate (RAAR). 

6.2.1 Theoretical Assessment of Quality Measures 

A good QM should reflect the quality of structure preservation and have the following proper-
ties: 
I. The result should be easily interpretable and should enable a comparison of different pro-

jection methods. 
II. The result should be deterministic, with no or only simple parameters. 
III. The result should be statistically stable and calculable for high-dimensional data in Թௗ. 
IV. The result should measure the preservation of high-dimensional discontinuities and should 

distinguish between backward projection errors (BPEs) or forward projection errors (FPEs) 
and gaps based on high-dimensional discontinuities. 

QMs for evaluating the preservation of compact structures are easily interpretable; this is be-
cause they measure the quality of the preservation of distances. In most cases, the outcome is a 
single value in a specified range. However, no projection is able to completely preserve all 
distances or even the ranks of the distances [Drygas, 1978; Kirsch, 1978; Schmid, 1980]; here, 



Types of Quality Measures for Assessing Structure Preservation 69 
 

it is argued that only the preservation of discontinuities in the distances is important. Therefore, 
any attempt to measure the quality of a projection by considering all distances is greatly disad-
vantageous. For example, the major disadvantage of the stress and the C measure is that the 
largest distances, which are likely associated with outliers in the data, exert the strongest influ-
ences on the F value. Moreover, the C measure does not consider gaps. Correlation measures 
capture only linear correlations; however, in most cases, a non-linear projection method is re-
quired for structure preservation [Verleysen et al., 2003]. Additionally, outliers resulting in ex-
treme distances are over-weighted in all correlation approaches. 
QMs of the second type, connected measures, compare only local neighborhoods H. For unidi-
rectional connected QMs, it is necessary to choose the correct number of k nearest neighbors, 
which is a complicated problem in itself. Even worse, for the comparison of different projection 
methods, it may be necessary to choose different knn values for the output space if there is a 
need to measure structure preservation. For this reason, unidirectional QMs that result in a sin-
gle value, such as König’s measure [König, 2000], do not satisfy quality conditions I and II. In 
other approaches, e.g., MRRE and T&D, two F values are obtained for every knn, and it is 
necessary to plot both functions, ܨଵ/ଶሺ݇݊݊ሻ. In this case, no distinction is possible between 

gaps and FPEs. Any further comparison of functional profiles for different projection methods 
is abstract and, consequently, not easily interpretable. Notably, the co-ranking matrix frame-
work defined in [Lee/Verleysen, 2009, 2010] allows for the comparison, from a theoretical 
perspective, of several measures (the MRRE, T&D, and LCMC measures) based on 
,ሺ݇݊݊ܪ  However, no transformation of the co-ranking matrix into a single meaningful .(ܯ,ܭ
value exists [Mokbel et al., 2013], and the practical application of co-ranking matrices is con-
troversial [Lueks et al., 2011]. With regard to the LCMC, [Chen/Buja, 2009] showed that it is 
statistically unstable and not smooth. Consequently, conditions I and II are not met, but the 
KNN graph is always calculable (IV). 
The direction-based approach has the advantage that a distinction between FPEs and gaps is 

possible. However, an obvious disadvantage is the very high cost of calculation: ܱ ቀ݀
೙
మቁ for a 

Delaunay graph and ܱሺ݊ଶሻ for a Gabriel graph [Aupetit, 2003]. [Villmann et al., 1997] at-
tempted to solve this problem by proposing an approximation of the intrinsic dimension of 
[Grassberger/Procaccia, 1983]. In theory, the TF seems to be the best choice, but in the context 
considered here, a projection is defined as a mapping into a lower-dimensional space. In this 
case, the quality measure F(h) is equal to zero for h<0. It follows that F(h=0)=F(h=1)+F(h=-
1)=F(h=1). Consequently, half of the definition proves to be useless for the purpose considered 
here. The second problem is that the TF does not consider the input distances, apart from cal-
culating the Delaunay graph in the input space. Thus, there is no difference between FPE and 
BPE, as long as no other points lie in between. Further disadvantages include numerical insta-
bility, because the Delaunay graph is sensitive to rounding errors in higher dimensions, and the 
fact that the Delaunay graph does not always correctly preserve neighborhoods if the intrinsic 
dimensionality of the data does not match the dimensionality of the output space O [Bauer et 
al., 1999]. 
Based on the classification of the QMs into semantic groups, here, one is able to identify several 
approaches that have not yet been considered. For example, one could develop a QM based on 
unit disk graphs. 
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6.2.2 Practical Assessment of Quality Measures 

Various QMs were used to evaluate the structure preservation of projections of the Hepta and 
Chainlink data sets. In supplement A, it is shown that every approach used to measure the qual-
ity of projection methods is based on the preservation of discontinuities only when the discon-
tinuities serve as a representation of compact or connected structures (directed or unidirec-
tional). Consequently, the assessment of projections using QMs requires prior assumptions 
about the underlying structure of the data. If these assumptions are wrong, the QM will fail to 
correctly measure the projection quality. Figure 6.4 and 6.5 show the compact QM results ob-
tained using the Shepard density plot method, introduced earlier in the chapter, for the Hepta 
and Chainlink data sets. It is possible to evaluate the preservation of compact structures in the 
Hepta data set (Figure 6.4), whereas the evaluation of the preservation of connected structures 
fails (Figure 6.5). 
None of the QMs is fully credible. This is because none of them is able to measure structure 
preservation in all possible cases of the existence of discontinuities in the input space. To date, 
QMs have mostly been applied to data sets, such as a Swiss roll [Mokbel et al., 2013] or a 
sphere [Venna et al., 2010], for which the problem lies only in the visual representation of a 
continuous high-dimensional object. Therefore, the aim has been to measure the BPE and FPE. 
However, these examples show that structure preservation is more important, and if the goal is 
to visualize structures that can be used in clustering algorithms, higher FPEs and BPEs are 
sometimes necessary. 
In supplement A, the simple Hepta example shows that every connected QM has difficulty 
capturing the quality of structure preservation. This is because such measures depend on com-
pact structures defined by intra- versus intercluster distances (in a Euclidean graph). The Chain-
link example illustrates that compact QMs are unsuccessful because each ring is closer to some 
points in the other cluster than it is to points in its own cluster, and therefore, the relevant struc-
tures are of the connected type. The density plots obtained using the Shepard diagram and Ken-
dall’s ߬  approaches are only able to capture discontinuities that can be unambiguously identified 
based on the intra- versus intercluster distances. This is not the case for the Chainlink data set, 
and consequently, these compact QMs fail for this data set. Moreover, because some connected 
QMs are not direction-based, even they encounter difficulties in evaluating structure preserva-
tion. 
It seems that in the case of discontinuities in data and data sets that contain natural clusters, the 
user must make certain assumptions regarding which structures are most relevant and should 
be preserved. Based on this decision, the user can choose the most appropriate QM. Further-
more, the problem of trial-dependent projections, which is mostly ignored in the literature, is 
demonstrated in the example of the CCA projection of the Chainlink data set. 



Types of Quality Measures for Assessing Structure Preservation 71 
 

 

Figure 6.4:  Density plots of the Shepard diagrams [Shepard, 1980] of the four projections of the Hepta data set 
shown in chapter 5, Figure 5.2. It is clearly apparent that PCA best preserves the structure of the 
data. 
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Figure 6.5:  Density plots of the Shepard diagrams (density plots) for three projections of the Chainlink data set.  
PCA appears to produce the best projection of the data set, but in reality, it results in the worst 
structure preservation (see the supplement A). No clear difference between the CCA projections can 
be distinguished. 
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6.3 Introducing the Delaunay Classification Error (DCE) 

On the one hand, QMs have difficulty measuring structure preservation when discontinuities 
exist in data sets (supplement A). On the other hand, in the case of natural clusters, discontinu-
ities are important for cluster analysis, and projections of high-dimensional data sets should be 
able to visualize cluster structures accordingly. Consequently, identifying the most suitable 
method of evaluating projections of high-dimensional data for every case of high-dimensional 
discontinuities, with no available prior classification, remains an unsolved problem. However, 
if a prior classification of the data is known and if it represents patterns characterized by dis-
continuity, then these structures can be used for projection evaluation. 
In chapter 5, it was shown that for every projection produced by any projection method, the 
generation of a U-matrix is possible. Consequently, the approach proposed herein assumes that 
an abstract U-matrix is available for every projection, as proven in [Lötsch/Ultsch, 2014] in the 
case of SOMs. Therefore, a Delaunay graph can be computed in the output space, and the edges 
are weighted using the high-dimensional distances in the input space. 
Let ܿ ∈ ݆ be the classification of the points ܥ ∈  ௞ is a cluster of Cܥ in the input space, where ܫ
and N=|I|. Let ݈ ∈ ܱ be the projected points in the output space that are mapped to I, and let 
,௝ሺ1ܪ ,݈݁ܦ ܱሻ be the direct neighborhood of j in the Delaunay graph in the output space. Then, 

the neighboring points of j are sorted using the Euclidean input-space distances between j and 
these neighboring points	݈ ∈ ,௝ሺ1ܪ ,݈݁ܦ ܱሻ: 

,෩௝ሺ1ܪ ,݈݁ܦ ܱ, ݇݊݊ሻ ൌ ൛݈ ∈ ,௝ሺ1ܪ ,݈݁ܦ ܱሻห	∀	݈ଵ, … ݈௞, ,ሺ݈ଵܦ ݆ሻ ൏ ,ሺ݈ଶܦ ݆ሻ ൏ ⋯ 

																																																																																																		൏ ,ሺ݈௞௡௡ܦ ݆ሻሽ ሺ6.19aሻ	

where the number of nearest neighbors considered is 

݇݊݊ ∈ Գ, ݇݊݊ ൑ |H୨ሺ1, ,݈݁ܦ ܱሻ| ሺ6.19bሻ	

Then, the incorrectly classified points in the neighborhood ܪఫ෪ሺ1, knn, ,݈݁ܦ ܱሻ can be counted 

as follows: 

|௞ሺ݈ሻܥ̅| ൌ หሼ݌ ∈ ,ܫ ݆ሺ݌ሻ ∈ ,݌∀	|ܱ ݆ሺ݌ሻ ∈ ,෩௟ሺ1ܪ| ,݈݁ܦ ܱ, ݇݊݊ሻห ∧ 

݌																																														 ∉ |௞̅ሺ݈ሻሽܥ	 ሺ6.19cሻ	

Finally, the DCE measure is defined as 

ܧܥܦ ൌ
1
ܰ

෍ ෍
|௞ሺ݈ሻܥ̅|	

,෩௝ሺ1ܪ| ,݈݁ܦ ܱ, ݇݊݊, ሻ| െ 1

ே

௟ୀଵ

୩

୩୬୬ୀଶ

ሺ6.19݀ሻ	

A low DCE value indicates a structure-preserving projection. Following the discussion in 
[Ultsch, 2016a], the DCE can be simplified to 

ܧܥܦ ൌ ෍ ௝ሺܰሻܦܪ ∗ ܿܿ௟௝

ே

௟,௝ୀଵ

ሺ6.19݁ሻ	

where ܦܪ௝ሺܰሻ ൌ ሼ1,1 ൅ ଵ

ଶ
, … ,1 ൅ ଵ

ଶ
൅. . . ଵ

௡
ሽ is the vector of the decay function and ܥܥ௜௝ is an 

NxN matrix with the following definition. Let ܰ ௜ܰ௝ ൌ ௟௝ܦ ∗  ௟௝ be the distance matrixݕ݊ܽݑ݈ܽ݁ܦ

multiplied by the Delaunay adjacency matrix, where every element of this adjacency matrix is 
defined as 
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௟௝ݕܽ݊ݑ݈ܽ݁݀ ൌ ൜
1, ݀݁ݐܿ݁݊݊݋ܿ	݁ݎܽ	݆	݀݊ܽ	݈	݂݅
∞, ݀݁ݐܿ݁݊݊݋ܿ	ݐ݋݊	݁ݎܽ	݆	݀݊ܽ	݈	݂݅ ሺ6.19݂ሻ	

Let ܰ పܰఫ෫  be the matrix ܰ ௜ܰ௝ with the columns sorted in ascending order; then, every element 

of the matrix ܥܥ௟௝ is defined as 

ܿܿ௟௝ ൌ ൜
0, ݏݏ݈ܽܿ	݁݉ܽݏ	݄݁ݐ	݊݅	݁ݎܽ	݆	݀݊ܽ	݈	݂݅
1, ݁ݏ݅ݓݎ݄݁ݐ݋

ሺ6.19݃ሻ	

With the help of [Ultsch, 2016a], the harmonic decay function is approximately 
௝ሺܰሻܦܪ ൎ ሺܰሻ݃݋݈ ൅ 	0.5772156649 ൅ 	1/ሺ2 ∗ ܰሻ. It assigns the heaviest weights to the er-

rors that are nearest to a given point. The range of the DCE, which is approximately 

ሾ0, ܰ ∗ ∑ ሺ݅ሻ݃݋݈	 ൅ 	0.5772156649 ൅ 	1/ሺ2 ∗ ݅ሻே
௜ୀଵ ሿ, can be restricted to ሾെ2,2ሿ by calculating 

a baseline. An example of a baseline is a NeRV projection ([Venna et al., 2010]) with ߣ ൌ 0.5, 
which means that the precision and recall are equally weighted. The relative difference can be 
calculated as 

݂݂݅ܦ݈ܴ݁ ൌ
ݔ െ ݕ

0.5 ∗ ሺݔ ൅ ሻݕ
ሺ6.19݄ሻ	

Then, the normalized DCE is defined as 

ܨ ൌ ,ܧܥܦሺ݂݂݅ܦ݈ܴ݁ ሻ݈݁݊݅݁ݏܾܽ ሺ6.19ሻ	

When the relative difference is used in this way, the range of values is fixed to ሾെ2,2ሿ. A posi-
tive value indicates a lower error compared with the baseline projection, whereas a negative 
value indicates a higher error compared with the baseline. In addition, the use of the relative 
difference enables the comparison of different projection methods in a direct and statistical 
manner. 

6.3.1 Summary 

Overall, 19 QMs were reviewed in this chapter, and the most common measures used to assess 
the quality of projections were compared. The QMs were grouped into semantic classes with 
the aid of graph theory. The QMs presented in the literature require prior assumptions regarding 
the underlying high-dimensional structures in a data set of interest (examples, see supplement 
A). Here, it is argued that for structure preservation, one must assume the presence of disconti-
nuities in the high-dimensional data, which should correspond to gaps in their two-dimensional 
projection. In the case of such structures, the QMs reviewed here seemingly do not capture the 
important and unavoidable errors that occur in the projections because they assume certain def-
initions regarding which types of neighborhoods should be preserved (see supplement A). 
Otherwise, an objective function could be defined using the best QM, and it would always be 
possible to obtain a structure-preserving two-dimensional visualization or clustering by opti-
mizing this objective function. 
Hence, a new QM is required to measure the quality of structure preservation. It must utilize 
information provided by a prior classification. The DCE is formulated based on the idea that an 
abstract U-matrix is available for every projection method, as demonstrated in [Lötsch/Ultsch, 
2014] for the case of SOMs. A generalized U-matrix visualization called topographic map 
method for any arbitrary projection method was presented in the previous chapter. The DCE 
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allows projections to be ranked and normalized compared with a baseline and also enables sta-
tistical testing. 
This work will present an alternative approach using swarm intelligence, self-organization, and 
the Nash equilibrium concept [Nash, 1950] from game theory, with the goal of eliminating the 
need for an objective function. The expectation is that novel and coherent properties that can 
be used for visualization and clustering will emerge from such a system. Chapter 7 will explain 
the relevant concepts, and chapter 8 will introduce the Pswarm projection method, which serves 
as part of the Databionic swarm clustering algorithm. 

License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 
reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if changes were made. 
The images or other third party material in this chapter are included in the chapter’s Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, 
you will need to obtain permission directly from the copyright holder.
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7 Behavior-based Systems in Data Science 

Many technological advances have been achieved with the help of bionics, which is defined as 
the application of biological methods and systems found in nature. A related, rarely discussed 
subfield of information technology is called databionics. Databionics refers to the attempt to 
adopt information processing techniques from nature. This chapter will discuss the imitation of 
natural processes (also called biomimicry [Benyus, 2002]) using swarm intelligence, which is 
a form of artificial intelligence (AI) [Bonabeau et al., 1999] and was introduced as a term in the 
context of robotics [Beni/Wang, 1989]. In the context considered here, AI may be described as 
a field of study that seeks to explain and emulate intelligent behavior in the form of a compu-
tational process34 [Russell et al., 2003, p. 5]. 
Consequently, swarm intelligence is defined as the emergent collective behavior35 of simple 
entities called agents36[Bonabeau et al., 1999, p. 12]. An agent is a software entity, situated37 in 
a given environment, that is capable of flexible, autonomous action in order to meet its design 
objectives [Jennings et al., 1998]. In the context of swarms, the terms behavior and intelligence 
are used synonymously, bearing in mind that in general, the definition of intelligence is contro-
versial [Legg/Hutter, 2007] and complex [Zhong, 2010]. The properties of swarm behavior will 
be explained later in this section. 

“There are […] three key concepts […] [related to agents]: situatedness, autonomy, and flexibility. Situated-
ness, in this context, means that the agent receives sensory input from its environment and that it can perform 
actions which change the environment in some way” [Jennings et al., 1998, p.8].  

Autonomy refers to an agent’s capability for independent, decentralized action, and flexibility 
refers to its ability to proactively respond to its environment in a “timely fashion” [Jennings et 
al., 1998].  
Inspired by Beni’s definition of intelligent robots [Beni/Wang, 1993, p. 705], here, an intelli-
gent agent is described as one whose behavior is neither random nor predictable [Beni, 2004, 
p. 4]. On the one hand, “intelligent behavior is the production of something ordered, i.e., un-
likely to occur: an improbable outcome” [Beni, 2004, p. 3]. On the other hand, unpredictability 
is not equivalent to intelligence; a roulette, for example, is not intelligent [Beni, 2004, p. 3]. “It 
seems that somehow both unpredictability and the creation of some order are necessary to be 
able to speak of “intelligence” [Beni, 2004, p. 3]. In the context of data science, the first intel-
ligent agents to be developed and applied were called DataBots [Ultsch, 2000a]. DataBots pos-
sess probabilistically defined movement strategies, take in food, consume food and store quan-
tities of food. However, the question of whether DataBots themselves exhibit swarm intelli-
gence is controversial [de Buitléir et al., 2012, p. 2], and as such, they will be separately intro-
duced in the next section. It will be shown that in the case of swarm-organized projection  (SOP) 

                                                      
34  The author focuses on AI in the context of behavior; however, thought process and reasoning types of AI also 

exist, of which neural networks and Bayesian learning are representative examples.  
35  The term collective behavior generically denotes any behavior of agents in a system of more than one agent 

[Cao et al., 1997]. 
36  See also a similar definition in [Martens et al., 2011, p. 2]. 
37  “The word "situated,"  […] is intended to emphasize that the process of deliberation takes place in an agent that 

is directly connected to an environment” [Russell et al., 2003, p. 422]. 
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[Herrmann, 2011], DataBots do not exhibit swarm intelligence, whereas in the case of Pswarm 
(introduced in the next chapter), they do. 
Another example of the use of intelligent agents is Schelling’s segregation model [Schelling, 
1969, 1971]. The model consists of a lattice of square patches (tiling). Agents are located on 
this landscape, initially at random, with no more than one on any patch. The agents are of two 
different types, e.g., blue and red, and there are free patches available. Each agent has a toler-
ance parameter. A blue agent is “happy” when the ratio of blues to reds in its Moore neighbor-
hood (the eight immediately adjacent patches) is above its tolerance threshold. Unhappy agents 
are allowed to move randomly to a new open position (white). Schelling’s segregation model 
leads to segregation of the agents, even when individual agents have only a mild preference for 
living near agents of the same type. An example of the segregation process is illustrated in 
Figure 7.1.  

“Originally the model was intended to explain how racialized city ghettos might emerge from individual choices, 
given even slight racial biases. Some important constraints on effective segregation have been described by 
[Vinković/Kirman, 2006]. Segregation is greatly increased if agents are allowed to jump to any node that yields 
less stress, instead of neighbouring nodes only” [Herrmann, 2011, pp. 54-55]. 

Swarm behavior can be imitated based on observations of herds [Wong et al., 2014], bird flocks 
and fish schools [Reynolds, 1987], bats [Yang/He, 2013], or insects such as bees [Karaboga, 
2005; Karaboga/Akay, 2009], ants [Deneubourg et al., 1991], fireflies [Yang, 2009], cock-
roaches [Havens et al., 2008], midges [Passino, 2013], glow-worms or slime moulds [Par-
pinelli/Lopes, 2011]. [Grosan et al.] define five main principles of swarm behavior: Homoge-
neity, meaning that every agent has the same behavior model; Locality, meaning that the motion 
of each agent is influenced only by its nearest neighbors; Velocity Matching, meaning that each 
agent attempts to match the velocity of nearby flockmates; Collision Avoidance, meaning that 
each agent avoids collisions with nearby agents; and Flock Centering, meaning that agents at-
tempt to stay close to neighboring agents [Grosan et al., 2006, p. 2; Reynolds, 1987, pp. 6, 7]. 
Here, these definitions are given greater specificity in two respects.  
First, the term agent is modified to the term agents of the same type because many swarms 
consists of more than one type of agent, e.g., small and large workers in the Pheidole genus of 
ants [Bonabeau et al., 1999, pp. 3, 4].Second, a swarm need not necessarily move. For example, 
fire ants self-assemble into waterproof rafts to survive floods [Mlot et al., 2011]. The individual 
ants are linked together to construct such self-assemblages [Mlot et al., 2011]. Therefore, ve-
locity matching can result in a velocity of zero. 
 

 

Figure 7.1:  The Schelling model of a liquid on a periodic lattice [Vinković/Kirman, 2006, Fig. 5 a]. After 225 
mil. steps the agents are fully segregated. The segregation requires many iterations if agents are 
allowed only to jump to the positions nearest to them. 
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If a swarm contains a sufficient number of agents, self-organization may emerge. Self-organi-
zation is defined as the spontaneous formation of patterns by a system itself [Kelso, 1997, p. 8 
ff.], without any central control. The snowflake in Figure 7.2 serves as an example of self-
organization. During self-organization, novel and coherent structures, patterns, and properties 
may arise [Goldstein, 1999]. This ability of a system to produce phenomena on a new, higher 
level is called emergence [Ultsch, 1999], and it is separately discussed in the next section. 
“Self-organizing swarm behavior relies on four basic ingredients” [Bonabeau et al., 1999, pp. 
22-25]: positive feedback, negative feedback, amplification of fluctuations and multiple inter-
actions. The first two factors promote the creation of convenient structures and help to stabilize 
them. Fluctuations are defined to include errors, random movements and task switching. For 
swarm behavior to emerge, multiple interactions are required. Agents can communicate with 
each other either directly or indirectly. An example of direct communication is the dancing 
behavior of bees, in which a bee shares information about a food source, such as how plentiful 
it is and its direction and distance away [Karaboga/Akay, 2009]. Indirect communication is 
observed, for example, in the behavior of ants [Schneirla, 1971]. If the agents communicate 
only through modifications to their environment (through pheromones, for example), then this 
type of communication is defined as stigmergy [Beckers et al., 1994; Grassé, 1959]. 
The exact number of agents required for self-organization is unknown, but it should be not so 
large that it must be handled in terms of statistical averages and not so small that it can be 
treated as a few-body problem [Beni, 2004]. For example, 4096 neurons are required for self-
organization in SOMs [Ultsch, 1999], and for the coordinated marching behavior of locusts, a 
minimum density of least 73.8 ݈ݏݐݏݑܿ݋/݉ଶ was reported in [Buhl et al., 2006, p. 1404].  

 

Figure 7.2:  Example of self-organization: a large, 10.1x10.1 mm snow crystal [Libbrecht, 2016]. This snow 
flake is a spontaneous formation of a pattern by molecules of ܪଶܱ.
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Considering the two requirements stated above, Beni defined a swarm as a formation of cellular 
robots with a number exceeding 100 [Beni, 2004]. Here, consistent with [Beni, 2004], the ar-
gument is made that for self-organization38, the number of agents should be higher than 100. 
The two main types of swarm-based analysis discussed in data science, namely, particle swarm 
optimization (PSO) and ant colony optimization (ACO) [Martens et al.], are distinguished by 
the type of communication used: PSO agents communicate directly, whereas ACO agents com-
municate through stigmergy. PSO methods are based on the movement strategies of particles 
[Kennedy/Eberhart, 1995] and typically used as population-based search algorithms [Rana et 
al., 2011], whereas ACO methods are applied for sorting tasks [Martens et al., 2011]. In addition 
to being used to solve discrete optimization problems, PSO has been used as a basis for rule-
based classification models, e.g., AntMiner, or as an optimizer within other learning algorithms 
[Martens et al., 2011], whereas ACO has been used primarily for supervised classification 
within the data mining community [Martens et al., 2011]. Pseudocode for both types of algo-
rithms and illustrative descriptions can be found in [Abraham et al., 2006]. 

7.1 Artificial Behavior Based on DataBots 

The term DataBots refers to agents in the sense discussed here. DataBots were introduced in 
[Ultsch, 2000a] as the first artificial-behavior-based approach to data science. Each DataBot 
b୨ ∈  .has a position i୨ϵ O and takes in food, consumes food and stores quantities of food ܤ

Quantities of food are represented by numbers in the range from 0% to 100%. All positions lie 
on a toroidal lattice, and each DataBot is capable of detecting a scent λ at its current position. 
This approach is used to perform clustering tasks. 
In [Ultsch, 2000c], each DataBot possesses an opinion, defined by one high-dimensional data 
point, and the DataBots are used as a projection method for a classification task. The movement 
of the DataBots is defined in terms of probabilities, which are computed using various move-
ment programs called strategies, for each of the four directions (south, east, west and north) and 
for no movement (origin). With the use of these strategies, self-organization of the system is 
possible. Unlike in ACO methods, each DataBot possesses an opinion defined by a high-di-
mensional data point [Ultsch, 2000c]. Hence, reduction of the agents is impossible. 
[Kämpf/Ultsch] suggested the use of movement strategies with a decreasing neighborhood ra-
dius. The underlying idea of the decreasing radius approach is to promote self-organization, 
first of a global structure and then of local structures [Kämpf/Ultsch, 2006]. In 
[Herrmann/Ultsch, 2008b], a set of additional strategies was defined for a subset of DataBots 
based on labeled data, requiring a prior classification. The authors used this approach to address 
a classification task by combining it with emergent self-organizing map (ESOM) and the gray-
scale two-dimensional U-matrix method. The U-matrix was partitioned into clusters using an 
entropy-based heuristic algorithm called U*C [Ultsch, 2006].Here, it is assumed that the Data-
Bots are defined similarly to their definition in [Herrmann/Ultsch, 2008b]: Let each DataBot 
b୨ ∈ -௝ϵԹௗ; it resides on a large, finite, twoݖ be an agent identified by a numerical vector ܤ

dimensional discrete lattice that is embedded on the surface of a torus [Ultsch, 2003a]. The 

                                                      
38  Beni himself only indirectly restricted systems that exhibit self-organization to those consisting of more than 

100 agents [Beni, 2004]. 



Artificial Behavior Based on DataBots 81 
 

current position of DataBot b୨	is denoted by i୨ϵ O. Every DataBot b୨ ൌ ሼi୨, z୨ሽ	emits a scent	λ, 

which is detected by all other DataBots in its neighborhood. 
By analyzing ant-based clustering39 (ABC) [Lumer/Faieta, 1994] and the batch self-organizing 
map (batch-SOM) method [Kohonen/Somervuo, 2002] the local stress of an ABC projection40 
can be extracted [Herrmann, 2011, pp. 137-138; Herrmann/Ultsch, 2008a, p. 3; 2008c, p. 217; 
2009, p. 4]: It is an upper limit on the best matching unit criterion41 of batch-SOM and forms 
the topographic term of the Attractiveness function used in ant-based clustering. 
[Ultsch/Herrmann, 2010] used this mathematical stress term to define a scent as follows: 
Let D(l, j) be the distance between two points x୪, x୨ ∈ I, let d(l, j) be the corresponding distance 

in the output space O, and let ݄ ோ:	ܴ	െ൐ 	 ሾ0,1ሿ be an arbitrary but continuous and monotonically 

decreasing function; then, the scent	ߣ൫ ௝ܾ, ܴ൯: Թ଴
ା ൈ ܱ → Թ଴

ା is defined as 

൫ߣ ௝ܾ, ܴ൯ ൌ
∑ ݄ோ൫݀ሺ݆, ݈ሻ൯ ∗ ,ሺ݆ܦ ݈ሻ୪஫	ூ

∑ ݄ோ൫݀ሺ݆, ݈ሻ൯୪஫	ூ
	 ሺ7.1ሻ	

The scent ߣ is the weighted sum of the distances to neighboring objects; consequently, ݄ோ “re-
alizes a neighborhood function by means of focus” [Herrmann, 2011, p. 65]. To better distinct 
this neighborhood function from the Databionic swarm, in the following chapters it will be 
referred to with the same capital letter ܨோ ൌ ݄ோ as in [Herrmann, 2011]. 

7.1.1 Swarm-Organized Projection (SOP) 

The discussion in this section is based on the thesis of [Herrmann, 2011], which is a continua-
tion of the work of [Herrmann, 2009; Ultsch/Herrmann, 2010]. The SOP algorithm was pro-
posed as a self-adaptive projection method with the aim of creating a cohesive visualization of 
clusters [Herrmann, 2011]. The algorithm combines a DataBot approach, a scent definition de-
rived from the above analysis of ABC, and Schelling’s segregation model [Schelling, 1969]: 
the better (weaker) the scent ߣ becomes, the happier the DataBot is. The SOP algorithm, as 
presented in Listing 7.1, operates on a finite data set with pairwise dissimilarities, which are 
usually defined as Euclidean distances [Herrmann, 2011]. The numeric vector z୨ associated 

with each DataBot b୨ represents a high-dimensional data point, and the cardinality of the data 

set I is equal to the number of DataBots. The positions of the DataBots are defined on a rectan-
gular lattice tiling (quad grid) O, which is typically toroidal but could also be planar, in Carte-
sian coordinates ݅ሺݔ,  ሻ߳ O, where the numbers of lines L and columns C must be set by theݕ
user. Every DataBot chooses between its current position and one new position. If the scent ߣ, 
which is defined by the function ܨோ, would be weaker in its new neighborhood, then the DataBot 
jumps to the new position. Another DataBot may already be located in the new position, but 
this does not affect the decision to jump. 
In each iteration, all DataBots are allowed to move simultaneously [Herrmann, 2011]. An epoch 
ends when the following condition is met [Herrmann, 2011]: As long as the number of DataBots 
that want to jump exceeds an arbitrary threshold value, called a fixed point in [Herrmann, 2011], 

                                                      
39  See next section for a more detailed description. 
40  In [Herrmann/Ultsch, 2008a] called topographic mapping.  
41  It “is a weighted sum of local input space distances” [Herrmann/Ultsch, 2009, p. 4]. 
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the current epoch proceeds to the next iteration. Otherwise, the next epoch starts, with a de-
crease in the neighborhood radius R. To ensure the convergence of the algorithm, a maximum 
number of iterations must be set. [Kohlhof, 2010] proposes a 5% threshold and a maximum 
number of 500 iterations, but in [Herrmann, 2011], no exact numbers are indicated. 

The maximum possible distance in the map space is defined by ܴ௠௔௫ ൌ ଶܮ√ ൅  ଶ, and theܥ
algorithm ends if the smallest possible radius ܴ ൌ 1 is reached [Herrmann, 2011, p. 65]. The 
following contradiction should be taken into account: sometimes, a different minimal radius 
(e.g., R=8 in [Herrmann, 2011, p. 118] for the gene data set, R>1 in [Herrmann, 2011, p. 167] 
for the GPD194 data set) is chosen without any scientific basis other than the author’s experi-
ence. In practice, the neighborhood function ܨோ is chosen to be a Gaussian function where the 
mean is equal to zero and the standard deviation is equal to the radius R. Each possible new 
position is drawn from a Gaussian-shaped probability distribution (Fig 4.1) [Herrmann, 2011, 
p. 64]. Pseudocode for the SOP algorithm is provided in [Herrmann, 2011, p. 65], with the scent 
ሺߣ ௝ܾሻ defined as in equation (1). 

Previous work has revealed, based on the practical experience of the inventor [Herrmann, 
2009], that SOP is almost as good as or even better than the best of its carefully parameterized 
competitor methods, such as curvilinear component analysis (CCA), t-distributed stochastic 
neighbor embedding (t-SNE) and ESOM, in terms of the 1-nearest-neighbor classification ac-
curacy and the specially formulated dispersion measure of [Herrmann, 2011, p. 101] on several 
natural and artificial data sets. 
 

function O=sop(I) 

   for all z୧ϵ I: assign an initial random Cartesian position iሺx, yሻϵ O on the lattice to generate DataBots b୧ ∈ B 

    for R={Rmax,…, 1} do 

      m=Gaussian(R) of a Gaussian-shaped distribution: Nሺmሺxሻ, sሻ ൅ Nሺmሺyሻ, sሻ 

       iteration=0 

       repeat 

for j={1,…n} do 

l ൌ argmin୨ሺλሺb୨ሻ) with  j ൌ ሼi,mሽϵO 

end for 

              iteration = iteration +1 

       until {l ∈ O fix with |ሼl ∈ O	|l ൌ m|ሽ| ൏ threshold) OR  (iteration ൐ i_max)} 

   return O 

end function SOP 

Listing 7.1:  The swarm-organized projection (SOP) algorithm as described in [Herrmann, 2011, p. 65]. The are 
some parameters to be set by a user (e.g. Rmax, threshold,_max, i_max, …). 
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7.2 Swarm Intelligence for Unsupervised Machine Learning 

As mentioned earlier in this chapter, there are two main types of artificial swarm optimization 
methods: PSO and ACO. In unsupervised learning, two additional approaches are known. The 
first one is based on bees [Karaboga/Akay, 2009], and the second is based on foraging theory 
[Stephens/Krebs, 1986]. 
For clustering tasks, PSO has mainly been applied in hybrid algorithms [Esmin et al., 2015]; 
e.g., [Van der Merwe/Engelbrecht, 2003] applied PSO combined with k-means clustering. 
Here, it is argued that the hybridization of PSO and k-means may improve the choice of cen-
troids or may, in some special cases, even allow the problem of the number of clusters to be 
solved. However, this approach is subject to several of the shortcomings of k-means, which is 
known to search for spherical clusters [Hennig et al., 2015, p. 721]/[Hennig, 2015a, p. 18]; i.e., 
it is unable to find clusters in elementary data sets, such as those in the Fundamental Clustering 
Problems Suite42 (FCPS) [Ultsch, 2005a].  
According to [Rana et al., 2011], the advantages of the clustering process when the PSO ap-
proach is used are that it is very fast, simple and easy to understand and implement. “PSO also 
has very few parameters to adjust [Eberhart et al., 2001] and requires little memory for compu-
tation. Unlike other evolutionary and mathematical algorithms it is more computationally ef-
fective” [Rana et al., 2011] (citing [Arumugam et al., 2005]). Again according to [Rana et al., 
2011], the disadvantages are the “poor quality results when it deals with large and complex data 
sets”. “PSO gives good results and accuracy for single objective optimization, but for a multi 
objective problem it becomes stuck in local optima” [Rana et al., 2011] (citing [Li/Xiao, 2008]). 
Another problem with PSO is its tendency to reach fast and premature convergence at mid-
optimum points [Rana et al., 2011]. It is difficult to find the correct stopping criterion for PSO 
[Bogon, 2013, p. 155], which is usually one of the following: a fixed maximum number of 
iterations, a maximum number of iterations without improvement or a minimum objective func-
tion error [Abraham et al., 2006; Esmin et al., 2015]. Hybrid PSO algorithms usually optimize 
an objective function [Bogon, 2013, pp. 39 ff, 46] and therefore always make implicit assump-
tions regarding the underlying structures of the data (see chapters 2, 4 and 5 for details). Nota-
bly, there is no single “best” criterion for obtaining a clustering because no precise and worka-
ble definition of “a cluster” exists [Jain/Dubes, 1988, p. 91]. For the task of dimensionality 
reduction, the swarm-inspired projection (SIP) method [Su et al., 2009] are discussed later in 
this section. 
ACO methods for clustering tasks are referred to as ABC methods (for an overview, see 
[Kaur/Rohil, 2015]). ABC methods model the behavior of ant colonies, and data points are 
picked up and dropped off accordingly [Bonabeau et al., 1999]. ABC was introduced by [De-
neubourg et al., 1991] as a way to explain the phenomenon of the gathering and sorting of 
corpses observed among ants. In an experiment (Figure 7.3), the ants formed cemeteries of dead 
ants that had been randomly scattered beforehand. [Deneubourg et al., 1991] proposed proba-
bility functions for the picking up and dropping off of the corpses. Because ants are very spe-
cialized in their roles, several different types of ants of the same species exist in a colony, and 
different individuals in the colony perform different tasks. The probabilities are calculated as 
functions of the number of corpses of the same type in a nearby area (positive feedback).  

                                                      
42  See also the results presented in chapter 9. 



84 Behavior-based Systems in Data Science 
 

 

Figure 7.3:  Randomly scattered ant corpses are clustered by living ants in a matter of hours [Bonabeau et al., 
1999, p. 151; Martens et al., 2011, Fig.5]. The different stage depicted correspond to 0, 3, 6 and 36 
hours after the beginning of the experiment. 

For a clustering task, the ants and data points (representing ant corpses) are randomly placed 
on a lattice, and the ants move randomly across the lattice, at times picking up and carrying the 
data points [Lumer/Faieta, 1994]. The probabilities of picking up and dropping off the data 
points are modified according to a dissimilarity-based evaluation of the local density (see 
[Kaur/Rohil, 2015] and [Jafar/Sivakumar, 2010], citing [Lumer/Faieta, 1994]). 
[Handl et al., 2006] enhanced the algorithm; they called their version Adaptive Time-dependent 
Transporter Ants (ATTA) because they incorporated adaptive heterogeneous ants and time-
dependent transport activities into the algorithm. Further improvements to the picking up and 
dropping off activities were presented in [Omar et al., 2013; Ouadfel/Batouche, 2007], and im-
provements to the initialization and post-processing were proposed in [Aparna/Nair, 2014]. An-
other version of the approach was developed by introducing an annealing scheme [Tsai et al., 
2004]. A feature of ABC algorithms is that the clustering objective is implicitly defined: neither 
the overall clustering objective nor the type of clusters sought is explicitly defined at any point 
during the clustering process43 [Handl/Meyer, 2007]. 
The main problem in ABC lies in the fact that the picking up and dropping off behaviors are 
independent of the number of agents required to execute the task [Herrmann, 2011, p. 81; 
Herrmann/Ultsch, 2008a, 2008c, 2009; Tan et al., 2006]. Furthermore, ABC methods can be 
regarded as derived from the batch-SOM algorithm [Herrmann/Ultsch, 2008a]. From this per-
spective, an ABC algorithm possesses an objective function, which can be decomposed into an 
output density term multiplied by one minus a topographic quality term [Herrmann, 2011, pp. 
137-138; Herrmann/Ultsch, 2008a, p. 3; 2008c, p. 217; 2009, p. 4]. Both terms are minimized 
simultaneously [Herrmann/Ultsch, 2008a, 2008c, 2009]. The output density term is easy to op-
timize but distorts the correct clustering of the data. Here, it is argued that at least 100 agents 
are required for self-organization in a swarm. However, this many agents are not required in 
ABC methods, and consequently, the self-organization property of ABC-based swarm algo-
rithms is controversial.Methods of the third type are founded on an analysis of the behavior of 
bees [Karaboga, 2005]. These are hybrid approaches to clustering that use swarm intelligence 
in combination with other methods, e.g., k-means44 [Karaboga/Ozturk, 2011; Marinakis et al., 
2007; Pham et al., 2007; Zou et al., 2010] or SOM [Fathian/Amiri, 2008]. 
To the best of the author’s knowledge, only seven instances of the application of AI in projec-
tion methods exist. One method is based on foraging theory, which focuses on two basic prob-

                                                      
43  This feature will be used in Databionic swarm. 
44  k-means is known to search for spherical clusters [Hennig et al., 2015, p. 721]/[Hennig, 2015a, p. 18]; see above. 
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lems: which prey a forager should consume and when a forager should leave a patch [Ste-
phens/Krebs, 1986, p. 6]. A forager is viewed as an agent who compares a potential energy gain 
with a potential opportunity for finding an item of a superior type [Martens et al., 2011] (citing 
[Stephens/Krebs, 1986]). This approach is also called the prey model [Martens et al., 2011]: the 
average energy gain can be mathematically expressed in terms of the expected time, energy 
intake, encounter rate and attack probability for each type of prey. In the projection method 
proposed by [Giraldo et al., 2011], in addition to the characteristics of the approach described 
above, the “foraging landscape was viewed as a discrete space, and objects representing points 
from the dataset as prey.” There were three agents defined as foragers. Here, the approaches 
based on the prey model are classified as basic swarm algorithms.  
A second method, called the self-organizing swarm (SOSwarm) method, is a clustering method 
based on a hybrid of PSO and SOM [O’Neill/Brabazon, 2008]. In SOSwarm, 100 particles were 
used on a 10x10 SOM feature map. However, because only a few units are used, SOSwarm 
represents a combination of k-means-SOM (see chapter 3) with PSO. Thus, it can be viewed as 
an application of swarm intelligence, but it is questionable whether this swarm is self-organiz-
ing because 4096 neurons are required for self-organization in SOMs [Ultsch, 1999] and the 
conditions for self-organizing swarm behavior may not apply [Bonabeau et al., 1999, pp. 22-
25]. 
A third method is known as the swarm-inspired projection (SIP [Su et al., 2009], as briefly 
mentioned above. SIP is a PSO approach that is loosely related to foraging theory because it is 
inspired by the foraging behavior of doves. The authors report that the number of doves should 
be significantly smaller than the number of data points and need only be higher than the ex-
pected number of clusters. Because of the small number of agents used, it is questionable 
whether this swarm is self-organizing, but as a PSO approach, it is an example of swarm intel-
ligence. 
The fourth approach, SOP [Herrmann, 2011], was already introduced. In terms of swarm be-
havior, the SOP algorithm does not consider collision avoidance (see the second section of this 
chapter), as seen from the fact that one or more DataBots may occupy the same position. After 
an annealing process, the SOP agents are uniformly distributed [Herrmann, 2011, pp. 68-69]; 
thus, the principle of flock centering is also disregarded. In the next chapter, it will be shown 
that the SOP algorithm also does not necessarily exhibit the property of fluctuations (referred 
to in the next section as randomness) because the position choices of the DataBots are predict-
able because of their self-interaction and the oblique neighborhood definition. In summary, 
SOP is a self-organizing swarm of DataBots based on Schelling’s idea to unsupervised machine 
learning that cannot be regarded as an example of swarm intelligence. 
Because ABC methods can be reduced to one ant, these approaches are classified as basic 
swarms. To exhibit swarm intelligence, a swarm must contain more than one independent agent. 
Therefore, LF [Lumer/Faieta, 1994] and its derivatives45 ATTA-TM [Handl et al., 2006] and 
ASM [Xu et al., 2007] are not applications of swarm intelligence. Notably, the argument pre-
sented here is only valid for ABC methods of unsupervised learning; the categorization may 
prove invalid for other ACO methods that are supervised. 
 

                                                      
45  The fifth, sixth and seventh applications of unsupervised learning. 
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The discussion presented in this section is summarized in Figure 7.4, in which only projection 
methods are explicitly listed. All of the various methods used for clustering cannot be illustrated 
in one figure. Thus, only general hybrid types are depicted. For all of the publications mentioned 
above, there is currently no open-source code46 available except for applications of rule-based 
classification [Martens et al., 2011]. 
 

 

Figure 7.4:  Types of swarm algorithms used in unsupervised learning. Pswarm will be introduced in the next 
chapter; it combines self-organization with swarm intelligence. Various PSO and bee hybrids are 
used for clustering tasks. Most of these are based on k-means. Aside from Schelling’s segregation 
model, only projection methods are explicitly listed. Abbreviations: ant-based clustering (ABC), 
particle swarm optimization (PSO). 

 

 

 

 

                                                      
46  The authors of [O’Neill/Brabazon, 2008; Su et al., 2009; Giraldo et al., 2011] were contacted via email, but only 

Giraldo et al. responded and provided their source code. Due to various limitations, it could not be used for this 
thesis. 
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7.3 Missing Links: Emergence and Game Theory 

Through self-organization, novel and irreducible47 structures, patterns, and properties can 
emerge in a complex system [Goldstein, 1999]. In analogy to SOMs [Ultsch, 1999], this idio-
syncratic behavior of a swarm is defined here as emergence (see also [Stephan, 1999]). 
Sometimes, a distinction is made between strong and weak emergence [Janich/Duncker, 2011, 
p. 19]. Here, only strong emergence is relevant. In the literature, the existence of emergence is 
controversial48; it is possible that the concept is only required because the causal explanations 
for certain phenomena have not yet been found [Janich/Duncker, 2011, p. 23]. Figure 7.5 pre-
sents an example of emergence in swarms. The non-deterministic movement of fish is tempo-
rarily and structurally unpredictable and consists of many interactions among many agents. 
Nevertheless, this fish school forms a ball-like formation. 
It appears that the concept of emergence has remained unused and rarely discussed in the liter-
ature on swarm intelligence, although it is a key concept in AI [Brooks, 1991]. Emergence is 
mentioned in the literature as a biological aspect of swarms [Garnier et al., 2007], in distributed 
AI for complex optimization problems [Bogon, 2013, p. 19],in the context of software systems 
[Bogon, 2013, p. 19] (citing [Timm, 2006]) and as emergent computation [Forest, 1990]. Con-
trary to Forest, who assumes that only cooperative behavior can lead to emergence [Forest, 
1990, p. 8], this works shows that egoistic behavior of a swarm can lead to emergence as well 
(see chapter 8). With regard to swarms, emergence should be a key concept. The four factors 
leading to emergence in swarms are 
I. Randomness 
II. Temporal and structural unpredictability 
III. Multiple non-linear interactions among many agents 
IV. Irreducibility 

[Bonabeau et al., 1999, p. 23] agrees with [Ultsch, 1999, 2007] regarding the first factor: “Ran-
domness is often crucial, since it enables the discovery of new solutions, and fluctuations can 
act as seeds from which structures nucleate and grow.” Here, an algorithm is considered to have 
the property of randomness if it uses a source of random numbers in its calculations (non-
determinism) [Ultsch, 2007]. The power of randomness is evident in Schelling’s segregation 
model (Fig 3.).  
The second factor, unpredictability [Ultsch, 2007, O'Connor/Wong, 2015], is incompatible with 
the PSO approach, in which an objective function is optimized [Martens et al., 2011] and, there-
fore, predictable assumptions are implicitly made regarding the structures of data sets in the 
case of unsupervised machine learning (see chapter 4 for further details on projection methods). 
The third factor, multiple interactions among many agents, was identified by [Forest, 1990, pp. 
1-2] for nonlinear systems. Although [Bonabeau et al., 1999] defines a requirement of multiple 
interactions for self-organization, the authors argue on page 24 that a single agent may also be 
sufficient. This is not the case for emergence, for which many elementary processes are man-
datory [Beni, 2004; Ultsch, 1999]. Hence, ACO methods cannot exhibit the property of emer-
gence Nonlinearity means that adding or removing interactions among agents or any agents 

                                                      
47  There is no way to derive the property from any part, subset or partial structure of the system [Ultsch, 2007]. 
48  For applications, the existence of emergence is irrelevant. Even if emergent phenomena can be causally ex-

plained, they can still be used in the future (see [Stephan, 1999] for discussion). 
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Figure 7.5:  A fish swarm in the form of a ball [Uber_Pix, 2015]: an example of emergence in swarms. It 
illustrates the ability of a system to produce phenomena on a new, higher level. 

themselves results in behavior that is linearly unpredictable. For example, the removal of one 
DataBot results in the elimination of one data point.  
The fourth factor, Irreducibility [Kim, 2006, p. 555, Ultsch, 2007, O'Connor/Wong, 2015], 
means that the (novel) property cannot be derived from any agent (or part) of the system, but is 
only a property of the whole system. It is the ability of a system to produce phenomena on a 
new, higher level [Ultsch, 1999]. Vividly, it mark a distinction between the self-organization in 
Figure 7.2, where essentially a pattern of a snow flake could be derived by the physical proper-
ties and chemical bonds of ܪଶܱ and Figure 7.5, where the formation of a ball cannot be pre-
dicted from any fish itself. 
The second missing link is a connection to game theory, in which the four axioms of self-
organization — positive and negative feedback, amplification of fluctuations and multiple in-
teractions — are apparent. Game theory was introduced by [Neumann/Morgenstern] in 1947. 
The purpose of game theory is to model situations49 in which multiple players interact with 
each other or affect each other’s outcomes [Nisan et al., 2007, p. 3] (multiple interactions). 
Here, the focus lies on a general, not zero-sum, n-person game [Neumann/Morgenstern, 1953, 
p. 85]. A game is defined as a scenario with n players i=1, …, n in which each player makes a 
choice [Neumann/Morgenstern, 1953, p. 84] (amplification of fluctuations50). 
Let a game G be defined by n players associated with n non-empty sets Πଵ, … , Π௡, where every 
set Π௜ represent all choices made by player ݅; then, the pay-off function is defined as 

݌ ൌ ሺ݌ଵ, … , :௡ሻ݌ Πଵ ൈ …ൈ Π௡ → Թ௡ ሺ7.2ሻ	

                                                      
49  To be more specific, rational decision-making behavior in social conflict situations. 
50  Task switching. 
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The choices of each player determine the outcome for each player, and the outcome will, in 
general, be different for different players [Nisan et al., 2007, p. 9]. In a game, the payoff for 
each player depends on not only his own choices but also the choices of all other players [Nisan 
et al., 2007, p. 9] (positive and negative feedback). Often, the choices are defined based on a set 
of mixed strategies for each player. From the biological point of view, these mixed strategies 
may include the five main principles of collective behavior: Homogeneity, Locality, Velocity 
Matching, Collision Avoidance, and Flock Centering [Grosan et al., 2006].  

In a game with n players, let the k choices of player ݅  be defined by a set Π௜ ൌ ሼߨଵ
௜ , ఈ௜ߨ… , … , ௞ߨ

௜ ሽ, 
where ߨఈ௜  indicates the ݅௧௛ player’s ߙ௧௛ choice; then, a mixed strategy ݏ௝ሺ݅ሻ ∈ ௜ܵ for player ݅ is 

defined by 

௝ሺ݅ሻݏ ൌ ෍ ܿఈሺ݅ሻߨఈሺ݅ሻ ሺ7.3ሻ,

௞ሺ௜ሻ

ఈୀଵ

	

where ∑ ܿఈሺ݅ሻ ൌ 1௞ሺ௜ሻ
ఈୀଵ   and all ܿఈሺ݅ሻ ൒ 0. 

For noncooperative games, [Nash, 1951] proved the existence of at least one equilibrium point. 
Let ݐ௝ሺ݅ሻ ∈ ௜ܵ be the mixed strategy that maximizes the payoff for player ݅; then, the Nash 

equilibrium is defined as 

,ሺ1ሻݏ௜൫݌ … , ሺ݅ݏ െ 1ሻ, ,௝ሺ݅ሻݐ ሺ݅ݏ ൅ 1ሻ, … , ሺ݊ሻ൯ݏ ൌ max
௧ೕሺ௜ሻ∈ௌ೔

,ሺ1ሻݏ௜൫݌ … , ሺ݊ሻ൯ݏ ሺ7.4ሻ 

if and only if this equation holds for every ݅ [Nash, 1951]. The mixed strategy ݐ௝ሺ݅ሻ ∈ ௜ܵ is the 

equilibrium point if no deviation in strategy by any single person results in a greater profit for 
that person. A Nash equilibrium is called weak if multiple mixed strategies ݐ௝ሺ݅ሻ ∈ ௜ܵ for the 

same person exist in equation (4) that result in the same maximal payoff ݌௜, whereas in a strong 
Nash equilibrium, even a coalition of players cannot further increase their payoffs by simulta-
neously changing their strategies ݐ௝ሺ݅ሻ ∈ ௜ܵ, ݅ ൌ 1. . . ݉ ൑ ݊, in (4). An illustrative example is 

the prisoner’s dilemma [Poundstone, 1992]. Because of the interactions among the mixed strat-
egies of all players that govern the payoff for a single player, the Nash equilibrium is not nec-
essarily unique, and multiple different equilibria could exist. 
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8 Databionic Swarm (DBS) 

This chapter introduces a new concept for the use of swarm intelligence. It makes use of insights 
from the previous chapter and proposes a projection method based on a swarm of intelligent 
agents called DataBots [Ultsch, 2000c]. This new swarm is called a polar swarm (Pswarm) 
because its agents move in polar coordinates based on symmetry considerations (see [Feynman 
et al., 2007, pp. 147-153, 745]). All parameters are automatically chosen according to, and 
directly based on, the appropriate high-dimensional definition of distance. The main idea of 
Pswarm is to combine the concepts of swarm intelligence and self-organization with non-coop-
erative game theory [Nash, 1950]. The main advance is the reliance on the concept of emer-
gence [Ultsch, 2007] instead of the optimization of an objective function. This allows Pswarm 
to preserve structures in data sets that are characterized by discontinuity. 
The extensive analysis of ant-based clustering (ABC) methods that has been performed in pre-
vious work allows the formulation of a precise mathematical definition of pheromonal 
stigmergy (a scent) [Herrmann/Ultsch, 2009]. The scent is defined in each neighborhood using 
an annealing scheme. The approach based on neighborhood reduction during the annealing pro-
cess was invented by Kohonen [Kohonen, 1982b] and was used, for example, in [Demar-
tines/Hérault, 1995; Hinton/Roweis, 2002; Ultsch, 1999]. In the context of swarm-based tech-
niques, it was used for the first time in [Tsai et al., 2004]. Until now, finding the correct anneal-
ing scheme for a high-dimensional data set has remained a challenging task [Nybo et al., 2007]. 
The Pswarm algorithm utilizes randomness and the Nash equilibrium [Nash] of non-coopera-
tive game theory to find an appropriate annealing scheme based on the data as given in the input 
space. For this purpose, the scent will be redefined as the payoff function51. 
Having projected the high-dimensional points into two dimensions using Pswarm in section 
8.1, the author applies the insights from chapters 4 and 5, particularly with regard to the gener-
alized U-matrix, to propose a three-dimensional topographic map with hypsometric tints [Thrun 
et al., 2016a] based on the high-dimensional distances and the density of the two-dimensional 
projected points. Drawing further insights from [Lötsch/Ultsch, 2014], a semi-interactive, but 
parameter-insensitive, clustering approach is possible. The framework as a whole is called Dat-
abionic swarm (DBS) and has only two parameters: the number of clusters and the type of 
clustering (connected or compact). The key feature of DBS is that neither an overall objective 
function for the process nor the type of clusters sought is explicitly defined at any point during 
the Pswarm process. Both parameters can be deduced from a topographic map of the Pswarm 
projection and a dendrogram. For DBS clustering and Pswarm projection the CRAN R package 
Databionic swarm was used [Thrun, 2017]. 

8.1 Projection with Pswarm 

This section introduces the Polar swarm (Pswarm algorithm, which is the key foundation for 
the clustering performed in the DBS framework. Although the entire algorithm is used in an 
interactive clustering approach, Pswarm by itself may be used as a projection method. Because 

                                                      
51  However, DataBots will still be described as “smelling” their surroundings.  

© The Author(s) 2018
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this enables direct comparison with the swarm-organized projection (SOP) algorithm, Pswarm 
is introduced and discussed separately from DBS. 
The analysis presented in the second section of this chapter strongly indicates that Pswarm 
outperforms SOP in terms of structure preservation by virtue of the property of emergence aris-
ing from its self-organizing collective behavior (see also chapter 10, section 3). In contrast to 
SOP and all other common projection methods [Venna/Kaski, 2007; Venna et al., 2010], 
Pswarm does not require any input parameters other than the data set of interest, in which case 
Euclidean distances are used in the input space. Alternatively, a user may also provide Pswarm 
with a matrix defined in terms of a particular dissimilarity measure, which is typically a distance 
but may also be a non-metric measure. 

8.1.1 Motivation: Game Theory 

The purpose of game theory is to model situations in which multiple players interact with each 
other and/or affect each other’s outcomes [Nisan et al., 2007, p. 3]. The author of this thesis 
focuses on a general, not zero-sum, non-cooperative game of n players [Neumann/Morgenstern, 
1953, p. 85] in which the choices each player makes determine the outcome for each player 
[Nisan et al., 2007, p. 9]. For this kind of game, Nash proved the existence of at least one equi-
librium point [Nash, 1951]. The payoff for each player depends on not only his own choices 
but also the choices made by all other players [Nisan et al., 2007, p. 9]. Often, these choices are 
defined based on a set of mixed strategies for each player. 
The key idea of Pswarm is to redefine a game as one annealing step (epoch), the players as 
DataBots, and the scent as a payoff function and to find an equilibrium for each game. In the 
context of Pswarm, the game consists of rules governing the movement of the DataBots, which 
is defined by the grid, the neighborhoods and the payoff function. Each DataBot searches for 
its strongest payoff by either moving across the grid or staying in its current position. A new 
game (epoch), which is defined based on the considered neighborhood radius R, begins once 
an approximate equilibrium is achieved, i.e., once no movement of any DataBot leads to a 
stronger or better payoff for any other DataBot any longer (weak Nash equilibrium). This ap-
proach leads to a data-driven annealing scheme with steps which are not defined by parameters, 
contrary to SOP (e.g. threshold_max, i_max in Listing 7.1), CCA and ESOM (e.g. number of 
epochs) as well as NeRV52. 

8.1.2 Symmetry Considerations 

If we consider DataBots that occupy space in two dimensions, such as spheres or atoms, two 
points must be considered: first, no two DataBots are allowed to be in the same spot at the same 
time (collision avoidance), and second, a hexagonal lattice (tiling) is the densest possible pack-
ing of identical spheres in two dimensions [Hunklinger, 2009, p. 65]. Every such sphere repre-
sents a possible position for a DataBot. To ensure that the two-dimensional output space is used 
most efficiently, a hexagonal lattice tiling (grid) is used in Pswarm. To avoid problems associ-
ated with the surface of the grid, such as the positioning of DataBots near the border, the grid 
must have periodic boundary conditions and consequently must possess full translational sym-
metry [Haug/Koch, 2004, p. 34]. If the third dimension (e.g., as in a crystal) is disregarded, this 
two-dimensional grid can be represented by a three-dimensional torus [Pasquier, 1987], which 
                                                      
52 e.g. iterations, cg_steps, cg_steps_final in [Nybo/ Venna, 2015, Thrun et al., 2017]. 
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is hereafter referred to as a toroidal grid. This means that the borders of the grid are cyclically 
connected. The periodicity of the grid is defined by its size in terms of the numbers of lines L 
and columns C. If the grid were planar (not toroidal), undesired boundary effects could affect 
the outcome of any method. 
Boundary effects are effects related to the borders of the output space in which the patterns of 
interactions across the borders of the bounded region are ignored or distorted, giving rise to 
shape effects, such that the shape imposed on the planar output space affects the perceived 
interactions between phenomena (see [McDonnell, 1995]). For example, if the output space is 
planar, it is unknown whether a projected point on the left border is similar (or dissimilar, in 
this case) to a projected point on the right border. It could be that the projection method is 
constrained to split similar points (with regard to the input space) in the output space. Another 
example is the distorted interactions between DataBots on the four borders when the output 
space is planar. Compared with a planar output space, a toroidal output space imposes fewer 
constraints on a projection (or clustering) method53 and therefore enables a more optimized 
folding of the high-dimensional input space. A toroidal output space (in the case of Pswarm, a 
grid) possesses the advantage of translational symmetry in two dimensions, and in this case, the 
direction of a DataBot’s movement is less important than its extent (length) because of the 
periodicity (of the grid). 
In addition to the above considerations, the positions on the grid are coded using polar coordi-
nates because the distances between DataBots on the grid will be most important in later com-
putations of the neighborhoods and the annealing scheme. Consequently, based on the relevant 
symmetry considerations, a transformation of the Cartesian (x, y) coordinate system into polar 
coordinates ሺݎ, ߶ሻ	߳ O is proposed as follows: 

ݎ ൌ ଶݔ ൅ ଶݕ ሺ8.1ሻ 

           ߶ ൌ tanିଵ ቀ௬
௫
ቁ ∗ ଵ଼଴

గ
ሺ8.2ሻ 

Hereafter, r represents the length of a DataBot’s movement (jump), and ߶ represents the direc-
tion of that movement. 
Previously, the size of any grid (e.g., in SOP or emergent self-organizing map (ESOM)), as 
defined by the numbers of lines L and columns C, had to be chosen by the user. Choosing an 
incorrect size could result in a poor projection of the data. This was noted in previous works 
describing DataBot approaches prior to the development of the SOP algorithm [Kohlhof, 2010]. 
By contrast, in Pswarm, the grid size is chosen automatically, subject to three conditions. Let 

 ෩ be an upper triangle of the matrix of the input distances, let N be the number of DataBots, letܦ
ߚ be the number of possible jump positions, let ߙ ∈ ሺ0.5,1ሿ be a scaling factor, and let p99 and 
p01 denote the 99-th and first percentiles, respectively, of the distances; then, the conditions for 
determining the grid size are 

ଶܥ√ ൅ ଶܮ

1
൒
෩൯ܦଽଽ൫݌

෩൯ܦ଴ଵ൫݌
ൌ: ܣ ሺܫሻ 

ܮ ∗ ܥ ൒ ߙ ∗ ܰ ሺܫܫሻ	

                                                      
53  To the author’s knowledge, only the emergent self-organizing map (ESOM) and the swarm-organized projection 

(SOP) method offer the option to switch between planar and toroidal spaces (see [Ultsch, 1999], [Herrmann, 
2011, p. 98]). 
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ܮ
ܥ
ൌ
ߚ
1

ሺܫܫܫሻ	

These conditions result in the following bi-quadratic equation: 
ସܥ      െ ଶܣ ∗ ଶܥ ൅ ଶߙ ∗ ܰଶ ൌ 0 ሺ8.3ሻ 

ଵ/ଶݖ  ൌ ଶܣ േ ଵ

ଶ
ටܣସ െ ఈమ

ସ
ܰଶ	

ൌ൐ܥ ൌ

ە
ۖ
۔

ۖ
ۓ ଵ

√ଶ
ඨܣଶ ൅ ටܣସ െ ఈమ

ସ
ܰଶ, ସܣ ൒ ఈమ

ସ
ܰଶ

,݊݋݅ݐܽ݉݅ݔ݋ݎ݌݌ܽ ܣ ൏ ఈమ

ସ
ܰଶ

ሺ8.4ሻ	

The first condition ensures that the shortest and longest distances of interest are assignable to 
grid units. It defines the possible resolution of high-dimensional structures in the grid. The sec-
ond condition ensures that there are sufficient available positions to which a DataBot can jump. 
The third condition causes the grid to be more rectangular than square because in the case of 
SOMs, “rectangular maps outperform square maps” [Ultsch/Herrmann, 2005]. The first two 
conditions are used to formulate the bi-quadratic equation under the assumption of equality (see 

Eq. 8.4). If the equation has no solution for the case of ܣସ ൏ ఈమ

ସ
ܰଶ, then conditions I and III 

are used to generate approximate solutions. The scaling factor ߚ is arbitrary and used only to 
ensure a solution in the case of approximation but it is not a parameter which has to be chosen. 
In this solution space, a solution that fulfills condition II is chosen. 

8.1.3 Algorithm 

Several previously developed ideas are applied in Pswarm: scent54 [Herrmann/ 
Ultsch, 2008a], DataBots [Ultsch, 2000c] and the decreasing neighborhood radius proposed for 
DataBots by [Kämpf/Ultsch, 2006]. The decrease in the radius is based on the data and is not 
predefined by parameters, which was a goal of [Herrmann, 2011], where it was called self-
adaptation. The underlying idea of the decreasing radius approach is to promote self-organiza-
tion, first of a global structure and then of local structures [Kämpf/Ultsch, 2006]. 
The intelligent agents of Pswarm operate on a toroidal grid where the positions are coded using 
polar coordinates, ݅థሺݎሻ߳ O. This permits the DataBots’ movement, the neighborhood function 

and the annealing scheme to be precisely defined. The numeric vector zj associated with each 

DataBot bj represents its distances from all other DataBots in the input space I. The output-

space distances are coded using only the polar coordinate r. The size of the squared-distance 
matrix D is defined by the number of DataBots. 
After the assignment of initial random positions on the grid O (and therefore random output 
distances) to the DataBots in Listing 8.1, a data-driven decreasing of the radius R begins. In 
every iteration, a portion of the DataBots are allowed to jump if the payoff in one of their new 
positions is better (stronger) than that in their old positions. In other words, each DataBot is 
given a chance c(R) to try new positions on the grid. 
The chance ܿሺܴሻ:	Գ	െ൐ 	 ሾ0.05,0.5ሿ is a continuous, monotonically decreasing linear function 
addressing the number of the DataBots which are allowed to search for a new position to jump 

                                                      
54  Called topographic stress in [Herrmann/Ultsch, 2008]. 
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to. Initially, many55 DataBots are allowed to jump simultaneously to reproduce the coarse 
structure of the high-dimensional data set. However, as the algorithm progresses to address 
finer structures, only a small number56 of DataBots may move simultaneously. The chance 
function depends on the number of DataBots and on the current radius ܴ and consequently is 
based on the data itself.  
In Pswarm, the length of a possible DataBot jump is not reduced during annealing57. The pos-
sible jumps of DataBots to new positions are drawn from a uniform distribution; therefore, the 
probability of selection is the same for all possible jumps, from a jump to zero to a jump to Rmax 
in any direction. The direction of a jump to a new position is chosen separately from among all 
positions corresponding to an equal jump length. This approach prevents local minima from 
causing the DataBots to become stuck in an incorrect cluster because the length of their jump 
is smaller than half of the cluster’s diameter. No DataBot is allowed to jump to an occupied 
position. Each DataBot may choose one of the four best different positions (4 = ߙ) in different 
directions to which to jump if it is sampled for jumping. This approach ensures a high proba-
bility that every sampled DataBot will find a free position. 

function Positions O=Pswarm(matrix D(l, j)) 

   for all ݖ௜ ∈ I: assign an initial random polar position ݅థሺݎሻ ∈ O on the grid 

                     to generate N DataBots ܾ݅ ∈   ܤ

   for R={Rmax=Lines/2,…,Rmin} do 

        calculate chance c(R) 

        Repeat for each iteration 

 ܿ ൌ ,ሺܿሺܴሻ	݈݁݌݉ܽݏ   ሻܤ

 ݉௞ሺܿሻ ൌ ,ሺ1݉ݎ݋݂݅݊ݑ ௞ሺܿሻ݉ ,ߙ,…,ሻ, with k=1ݔܴܽ݉ ∈ ܱ 

 ݈ሺܿሻ ൌ argmax
௝∈ሼ௜,௠ೖሺ௖ሻሽ

ቀߣ൫ ௝ܾ, ܴ൯ቁ 

 ݈ሺ! ܿሻ ൌ ݅ 

		ܵ ൌ෍ߣ௟ሺܾ௟, ܴሻ

ே

௟ୀଵ

 

        Until  
߲ܵሺ݁,ߣሺܴሻሻ

߲݁
ൌ 0 

  return O in Cartesian coordinates 

end function Pswarm 

Listing 8.1:  The Pswarm algorithm consisting of N DataBots. New possible positions are depicted with ݉ ௞ሺ௜ሻሺܿሻ 
where k indicates up to the number of ߙ polar positions ݅థሺݎሻ chosen with an equal chance in the 
range from 1 up to Rmax (uniform) relative to the old position i and the old position with ݅ of a 
DataBot which has a chance ܿ to jump. After the decision to jump or not to jump the position is 
depicted with l(c). All other DataBots do not search for a new position depicted with ! ܿ and remain 
on their old position ݅. The data-driven annealing scheme (repeat/until) is parameter free due to the 
application of the Nash equilibrium of game theory (see 8.1.6). 

                                                      
55  However, no more than half of the DataBots are allowed to search for a new position. 
56  At the end exactly five percent of all DataBots. 
57  Unlike in the SOP algorithm. 
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8.1.4 Data-driven Annealing Scheme 

Let each annealing step be defined as an epoch e; then, a new epoch begins (and a game58 ends) 
if the radius R is reduced by the condition defined below. 
Let ݎሺ݆, ݈ሻ be the one-dimensional distance from l	∈ O to j	∈ O in polar coordinates 	
ሺݎ, ߶ሻ as specified by the radius ܴ௘; then, the neighborhood function “Cone” is defined as 

݄ோ: ܴ௘ → ሾ0,1ሿ: 

݄ோ ൌ ൝
1 െ ௥ሺ௝,௟ሻమ

గோ೐
మ , ݂݂݅	 ௥

ሺ௝,௟ሻమ

గோ೐
మ ൏ 1

0, ݁ݏ݅ݓݎ݄݁ݐ݋
ሺ8.5ሻ	

where ܴ݁ is the radius of the neighborhood during epoch e. 
Let D(l, j) be the distance between x୪, x୨ ∈ I, and let ݎሺ݆, ݈ሻ be the one-dimensional radial dis-

tance in two-dimensional polar coordinates ሺݎ, ߮ሻ in the output space O; then, in Pswarm, the 
scent around a DataBot ܾ݆ is redefined to 

௘൫ߣ ௝ܾ, ܴ௘, ܵ଴൯ ൌ ൞
ܵ଴ െ

∑ ݄ோ൫ݎሺ݆, ݈ሻ൯ ∗ ,ሺ݆ܦ ݈ሻ୪஫	ூ

∑ ݄ோ൫ݎሺ݆, ݈ሻ൯୪஫	ூ
, ݂݂݅෍ ݄ோ൫ݎሺ݆, ݈ሻ൯

୪஫	ௐ

൐ 0

ܵ଴, ݁ݏ݅ݓݎ݄݁ݐ݋

ሺ8.6ሻ	

where 

ܵ଴ ൌ෍หߣ൫ ௝ܾ, ܴ௠௔௫, 0൯ห
௝

ሺ8.7ሻ 

Following the discussion in section 8.1.2, the scent ߣሺ ௝ܾ, ܴሻ is identified as the payoff function 

௘൫ߣ ௝ܾ, ܴ൯: Թ଴
ା ൈ ܱ → Թ଴

ା for a DataBot. 

The high-dimensional input distances D(l, j) must be calculated only once, which is done prior 
to starting the algorithm, thereby reducing the computational cost. The computational cost of 
the algorithm does not depend on the dimension of the data set but does depend on the number 
of DataBots and the number of possible jump positions ߙ. Additionally, Pswarm allows the 
conversion of distances or dissimilarities into two-dimensional points. 
Let e be the current epoch, let ܴ݁ be the current neighborhood radius, and let 	

௝ܾ ∈  denote the DataBots; then, the sum of all payoffs is the current global happiness, which ܤ

may be called the stress59 ܵሺ݁, ܴ௘ሻ, and is defined as 

ܵሺ݁, ܴ௘ሻ ൌ෍ߣ௘൫ ௝ܾ, ܴ௘൯
௝

ሺ8.8ሻ 

The neighborhood is reduced if the derivative of the current global happiness is equal to zero: 
߲ܵሺ݁, ܴ௘ሻ

߲݁
ൌ 0 ሺ8.9ሻ 

which is called the equilibrium of happiness condition. The neighborhood radius R is reduced 
from Rmax toward Rmin with a step size of 1 if the derivative of the sum of all payoffs ߣ௘ is equal 
to zero. This is the case if a (weak) equilibrium for all DataBots is found. 
Because not all DataBots are allowed to jump simultaneously during a single iteration, as im-
posed by the function ݈݁݌݉ܽݏ	ሺܿሺܴሻ,  ሻ, the DataBots are able to pay off their neighborhoodsܤ

                                                      
58  In the context of game theory. 
59  To simplify the comparison with SOP. 
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more often, thereby promoting the process of self-organization. By searching for an equilib-
rium, the net number of DataBots that would like to jump or are unhappy is irrelevant to the 
self-adaptive annealing process. Instead, the decision to shrink the neighborhood size or to pro-
ceed to the next epoch e is made based on a Nash equilibrium [Nash, 1950]. The criterion is 
clearly defined to correspond to the condition in which the global amount of happiness in the 

current epoch remains unchanged, which is defined as the equilibrium of happiness, 
డௌ

డ௘
ൌ 0.	 

8.1.5 Annealing Interval 

Rmax is equal to Lines/2 if Lines<Columns to prevent self-interaction of the DataBots. If the 
radius R were to be greater than Lines/2, then the neighborhood of a given DataBot would 
overlap with itself because of the toroidal nature of the grid. Moreover, the probability density 
function for choosing a new position cannot be uniformly (or Gaussian) distributed in this case 
because border positions can be reached from two directions ߶ on a toroidal grid. 
Rmin is determined by the size of the grid and the number of DataBots. It is set to a value that 
allows every DataBot to smell a minimum of 5% of the other DataBots if they are distributed 
uniformly60. This selection is inspired by an emergent phenomenon called an ant mill 
[Schneirla, 1971, pp. 281-283]: Army ants are an aggressive, nomadic species, incessantly mov-
ing around. Based on its payoff, every ant follows another ant in front of it. If the head of the 
ant colony runs into the tail of the colony, the ants form a so-called circle of death, because they 
keep moving until they die. This phenomenon would not occur if the ants were able to smell a 
region farther ahead of them. 

8.1.6 Convergence 

In game theory, for a game with egoistic agents, a solution concept exists called the Nash equi-
librium [Nash, 1950]. 
Let ሺܲ, Λሻ be a game with n DataBots ܾ௜, i ൌ 1,… ,ܰ, where P is a set of movement strategies 
and Λ ൌ ሼλୣ,୧ሺܾ௜, ܴ௘ ൌ ݅|ሻݐݏ݊݋ܿ ൌ 1,… , ܰሽ is the payoff function evaluated for every grid po-

sition ݓ௜ ∈ ௜ܲ. Each DataBot chooses a movement strategy consisting of a probability associ-
ated with a position on the grid. Upon deciding on a position, a DataBot receives the payoff 
defined by the scent. P is a set of mixed strategies that are chosen stochastically with fixed 
probability in the context of game theory. Nash proved that in this case, the following equilib-
rium exists: 

∀݅. ,௜ݓ ܾ௜ ∈ ܲ: ௜ሺܾ௜′ሻߣ ൒ ௜ሺܾ௜ሻߣ ሺ8.10ሻ 
The strategy ܾ݅ is the equilibrium, for which no deviation in strategy (position on the grid) by 
any single DataBot results in a greater profit for that DataBot. In the case of Pswarm, the Nash 
equilibrium is called weak because there may be more than one strategy with the same payoff 
for some DataBots. Because of the existence of this equilibrium, the Pswarm algorithm will 
always converge. 

                                                      
60  Rmin (and Rmax) are chosen automatically by the Pswarm algorithm based on the gird size and consequently 

based on the data. 
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8.2  Comparing Pswarm with a Previously Developed Approach 

Although the entire algorithm is used in an interactive clustering approach that does not require 
any sensitive input parameters, in this section, Pswarm is treated as an independent projection 
method and is compared with swarm-organized projection (SOP, see also chapter 10, section 
3). 
It will be demonstrated that changing the coordinate system from Cartesian to polar coordinates 
enables precise and practical definitions of neighborhoods, stigmergy and distances in the out-
put space. With this approach, by using the Nash equilibrium [Nash, 1950] and modifying the 
DataBots’ movements, it is possible to deduce a parameter-free and data-driven annealing 
scheme. This section will show that the self-adaptive annealing scheme of SOP requires im-
portant parameters and is, in fact, not always self-adaptive, as opposed to the Pswarm algorithm. 

8.2.1 Neighborhood Definition 

The main problem with regard to SOP lies in the neighborhood definition and annealing scheme 
of [Ultsch/Herrmann, 2010] and [Herrmann, 2011], as shown in Figure 8.1. 
Because the lattice tiling is rectangular (quad grid), as is justified for Cartesian coordinates by 
[Ultsch/Herrmann, 2005], the neighborhoods are square and not round; this was explicitly de-
fined in [Herrmann, 2011, p. 46] and remains unchanged in the SOP algorithm [Herrmann, 
2011, pp. 64-70], and it is relevant to the scent ߣ (as defined in chapter 7.1 in Eq. 7.1). 
In SOP, the following applies ݀1 ቀ݈, ݆ቁ ൌ ݀2ሺ݈, ݆ሻ, where these distances denote the lengths of 

jumps between l, j=x, y in Cartesian coordinates. This means that the probability of selecting a 
diagonal position for a DataBot jump is equal to that of selecting a horizontal/vertical position 
in the SOP lattice because the two-dimensional Gaussian neighborhood consists of two Gauss-
ian functions, from which the vertical and horizontal coordinates are drawn separately to deter-
mine the chosen lattice positions: ܰሺ݉ሺݔሻ, ݏ ൌ ߪ ൌ ܴሻ ൅ ܰሺ݉ሺݕሻ, ݏ ൌ ߪ ൌ ܴሻ. 
For the choice of new positions for the DataBots, Hermann proposed that the selection proba-
bility should  a Gaussian  [Herrmann, 2011, p. 64], where the center is the current position of 
the DataBot, m(x, y), and the standard deviation s [Ultsch/Herrmann, 2010, p. 3] is equal to the 
radius R. In [Ultsch/Herrmann, 2010], a two-dimensional Gaussian distribution ܰଶሺ݉,  ሻ wasݏ
mentioned, but a practical solution to the problem of how to implement a two-dimensional 
Gaussian distribution on a discrete lattice was not addressed [Herrmann, 2011]. Moreover, the 
neighborhood considered in [Herrmann, 2011, p. 64] was defined only on a finite lattice.  
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.  

Figure 8.1:  Neighborhood definition in the (rectangular) lattice tiling of a square shape of the SOP algorithm, 
adapted from [Herrmann, 2011, p. 47]. All positions defined at distances of less than or equal to r=2 
are shown. Independent of the coordinate system, the SOP lattice is rectangular, with a size of (L, C). 

 

Figure 8.2:  A similar rectangular lattice tiling of a square shape in polar coordinates for comparison61. In 
Pswarm, it applies ݀ଵሺ݈, ݆ሻ ് ݀ଶሺ݈, ݆ሻ  for j, l=r,	߶ in polar coordinates. All positions at distances 
smaller than or equal to r=2 are marked by gray squares. In this case, the neighborhood (Eq. 8.5) 
depends on a precise one-dimensional grid distance, and for Gaussian neighborhoods, jump 
positions can be drawn from ܰሺ݉ሺݎሻ, ݏ ൌ ܴሻ. Independent of the coordinate system, the Pswarm 
(hexagonal) grid has a rectangular shape of borders, with a size of (L, C). 

On a toroidal grid or lattice (tiling), such a neighborhood will always overlap itself because 
Gaussian functions are never equal to zero. No solution for the case of a toroidal lattice was 
offered in [Herrmann, 2011]. Instead, in practice, the choice of a new DataBot position in the 
SOP algorithm is made by drawing separately from one normal distribution for the x coordinate 

                                                      
61 In reality, Pswarm uses a hexagonal tiling instead of a rectangular tiling referenced as a grid. 
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and another normal distribution for the y coordinate, where the means are the corresponding 
coordinates of the current position and the standard deviations are equal to the radius62 R. How-
ever, the following inequality applies: 

ܰሺ݉ሺݔሻ, ሻݏ ൅ ܰሺ݉ሺݕሻ, ሻݏ ് ܰଶሺ݉ሺݔ, ,ሻݕ ሻݏ ሺ8.11ሻ	

Consequently, diagonal jumps are equal in length to horizontal and vertical jumps. However, 
[Bauer et al., 1999] argues that in a rectangular lattice, diagonal neighbors cannot be regarded 
as nearest neighbors. Moreover, the Gaussians overlap at the origin. 
Based on symmetry considerations, a transformation from the Cartesian (x, y) coordinate sys-
tem to the polar (r,	߶) coordinate system is exploited in Pswarm. 
This allows Pswarm to use a more precise neighborhood definition with sharp borders in Eq. 
8.5, as illustrated in Figure 8.2, and makes the calculation of Euclidean distances in the two-
dimensional output space unnecessary63. The neighborhood is defined only by the radius r of 
the polar coordinates. If the radius exceeds the borders of the toroidal grid, then the distance 
and jump length can be adapted using a modulus operation if drawn from uniform distributions. 
Allowing the maximum possible jump lengths prevents the algorithm from becoming trapped 
in local minima: if the jump length is too short, there is a possibility that the DataBots may be 
unhappy in their positions but unable to find new positions because no open positions exist. 
In contrast to Pswarm, in SOP, the neighborhood definition for the scent ߣ remains vague. In 
[Herrmann, 2011, p. 63], it is stated that the development of SOP led to the revision of the ABC 
method based on Figure 8.1, where quadratic neighborhoods are explicitly defined [Herrmann, 
2011, p. 46]. Still, this definition remained unchanged [Herrmann, 2011, pp. 64-70]. However, 
if the maximal radius is set to R>Lines/2 for Lines<Columns, then the Gaussian function ܨோ  

required to calculate the scent ߣ [Herrmann, 2011, p. 64] overlaps itself if no sharp borders are 
defined or if the grid or lattice is not finite (see chapter 7.1 Eq. 7.1). This overlap changes the 
weights of the output-space distances and the probabilities of choosing new positions to which 
to jump. 
Additionally, the neighborhood of the lattice in which the DataBot is moving is defined by 
equal (square) diagonal and vertical jumps, but the two-dimensional distances on the lattice are 
defined as Euclidean distances (radial). These definitions are inconsistent with each other. Thus, 
the annealing scheme of the SOP algorithm is more square (jump length, position probability) 
than radial (output-space Euclidean distance). In summary, the use of Gaussian functions 
prevents the possibility of precisely defining the DataBot jump length and neighborhood, and 
worse, the jump length and neighborhood are not consistent with the output distances; see 
Figure 8.1. 
More importantly, the radius R does not define a border for the SOP neighborhood; instead, it 
defines only the standard deviation of the density of a normal distribution. This results in very 
large neighborhoods without sharp borders. The adaptation of this neighborhood definition for 
a toroidal lattice was not addressed, and if the definitions of [Herrmann, 2011] were to be used 
on a toroidal lattice without modification, this would lead to significant mistakes. 
Consequently, the definition of the scent ߣ is not consistent because the Euclidean output-space 
distance definition is inconsistent with the neighborhood definition. 

                                                      
62  Taken from [Kohlhof, 2010] and Lutz Herrmann’s 2011 Java implementation. 
63  A spherical coordinate system is the appropriate extension for a three-dimensional system. 
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Only a polar coordinate approach, such as that used in Pswarm, allows the selection of a neigh-
borhood function ݄ோ that precisely defines the neighborhood borders (Eq. 8.5). Moreover, the 
computational effort needed to calculate the output-space distances from one DataBot to all 
others is reduced in such an approach because it is sufficient to look up radii coded in hash 
tables. 

8.2.2 Annealing Scheme 

The second problem with the SOP algorithm lies in the annealing scheme itself, which is not 
self-adaptive, as is claimed in [Herrmann, 2011]. This is because it is governed by two magic 
numbers: a threshold in terms of the number of DataBots that are allowed to jump and the 
maximum number of iterations after which an epoch ends given that this arbitrary threshold is 
exceeded in every iteration. The term “magic” indicates that these numbers are not derived from 
data but instead must be carefully chosen by an experienced user. 
Only if the number of DataBots that want to jump exceeds a certain threshold value, called a 
fixed point in [Herrmann, 2011], will another iteration of the current epoch start. Otherwise, a 
new epoch with a smaller radius begins. This threshold value is required in SOP because the 
following case was not sufficiently considered: Often, as a result of a jump of one DataBot, not 
only will the scent of that DataBot change, but so will those of all the other DataBots in its new 
neighborhood and, more importantly, its old neighborhood. Because all DataBots are allowed 
to jump simultaneously, the DataBots are unable to update their scents sufficiently quickly in 
response to the changes occurring around them before they jump themselves; the scent at a 
possible new position is compared with an outdated (incorrect) scent at the current position, 
because the scent at the current position will have changed as a result of the jumps of other 
DataBots. This may result in random jumping. 
In addition, if the scents at their current positions become worse, other DataBots will become 
unhappy. Therefore, on the one hand, they should also be allowed to jump, but on the other 
hand, allowing these DataBots to jump could trigger a cyclic process in which the DataBots 
simply follow each other. There is also a possibility that when DataBots are unhappy with their 
current positions, they may be unable to find new ones. Either no open positions may exist, or 
the scents at all other positions in the small circle around the DataBot itself may be even worse. 
This occurs because in a Gaussian distribution, there is a very high probability of making only 
small jumps and an exponentially lower probability of making larger jumps. 
To summarize, these problems are intrinsic to the SOP algorithm and are unrelated to the sparse 
probabilistic movements of the agents, as claimed by [Herrmann, 2011, p. 66]. 
Another problem with the annealing process in SOP is the assumption that the stress Sሺߣ, ݁ሻ 
will be decreased only through iterations (Fig. 4.3 in [Herrmann, 2011, p. 69]) in which the 
DataBots move. 
If the neighborhood function ܨோ is chosen to be a Gaussian distribution, then a smaller radius 
implies a reduction of the neighborhood function, i.e., Rଵ ൏ Rଶ 	ൌ൐ Fୖభ ൏ Fୖమ., because the 

standard deviation is defined by the radius. As shown by the curve in Fig. 4.3 in [Herrmann, 
2011, p. 69], the sum of the scent64 in a neighborhood (in Hermann’s thesis, this is called the 

                                                      
64  Defined in chapter 7.1. 
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sum of (topographic) stress) therefore also decreases because for lower values of the neighbor-
hood function ܨோ, the scent64 values and, consequently, the stress S must be lower: 
ோభܨ ൐ ோమ ൌ൐ܨ ሺܴଵሻߣ	 ൏ ሺܴଶሻߣ ൌ൐ ܵሺܴଵሻ ൏ ܵሺܴଶሻ. Only if the iterations are within the same 

epoch (with a constant radius R) must a reduction in stress be driven by DataBot movement. 
Therefore, applying argmin between scent64 values associated with different neighborhood ra-
dii results in random jumping of the DataBots. 
Furthermore, the annealing scheme appears to reduce the stress S until convergence is reached 
(see Fig. 4.3 in [Herrmann, 2011, p. 69]). However, defining the scent64 and ܴ݉݅݊ ൌ 1 for the 
SOP algorithm as proposed by Herrmann results in ߣ ൌ ∞ if there are no other DataBots in the 
neighborhood of a jumping DataBot. Even worse, this could lead to random jumping if, for 
example, two simultaneously jumping DataBots can smell only themselves when changing po-
sitions or if a reduction in the scent  is only an effect of a reduction in the number of DataBots 
in the neighborhood. 
By contrast, in Eq. 8.6 the payoff ߣ௘ሺ ௝ܾ, ܴ௘ሻ considered in Pswarm was modified based on 

symmetry considerations, because the two-dimensional output-space distances are irrelevant if 
the coordinate system is polar. In this case, it is sufficient simply to use radii, and thus, it is not 
necessary to simulate radial neighborhoods by means of expensive computations using a Gauss-
ian neighborhood function. Pswarm allows the definition of a sharp, radial, and deterministic 
neighborhood function (called Cone, Eq. 8.5) instead of the blurry, squarer than radial, and 
stochastic neighborhood of SOP. 
In Pswarm, the “fixed point condition” of [Herrmann, 2011] is replaced with the equilibrium of 

happiness, 
డௌ

డ௘
ൌ 0 in Eq. 8.8. The use of the derivative makes it possible, during an epoch with 

a specific radius R, to find an iteration in which changes to the positions of some unhappy 
DataBots will not change the global happiness of all DataBots. In other words, an unhappy 
DataBot may jump to a new, more profitable position to become happier, but the DataBots 
surrounding its old position will simultaneously be left with less profitable positions and, in 
turn, become unhappier. This results in a kind of equilibrium in which, on the global scale of 
the toroidal plane65, the DataBots are incapable of finding more profitable positions. 
When the DataBots are not allowed to jump simultaneously, they are able to detect the payoffs 
related to other DataBots in their current positions before deciding to jump. By allowing all 
DataBots to jump in every iteration, as in SOP, the process of finding emergent structures could 
be delayed or even destroyed. 
On a toroidal grid, setting the maximal neighborhood radius to the maximal distance on the grid 
results in self-interaction of the DataBots: the probabilities of choosing a new position will 
overlap for radii that extend beyond the closer edge of the grid (R>Lines/2 if Lines<Columns). 
Moreover, the neighborhood of one DataBot will overlap with itself, which will result in an 
incorrect calculation of the payoff and disrupt the process of emergence. Furthermore, the (max-
imal) neighborhood radius R in SOP is determined based on the architecture of the lattice-
shaped output space [Herrmann, 2011, p. 138], which was set to a constant value of 64x64 in 
the cited thesis regardless of the specific structures of the various data sets to be analyzed. 

                                                      
65  This statement is only true if the possible jump length does not decrease with the neighborhood size. 
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Using Schelling’s model in SOP is difficult because the dependence on chance, the data and 
the parameter settings causes an enormous number of iterations to be required [Hatna/Benen-
son, 2012] for the separation of the DataBots. Consequently, the number of iterations must be 
limited, and a threshold must be set on the number of jumping DataBots. Additionally, the 
attempt to find the minimum scent  between two possible positions results in the problems 
discussed above. By contrast, Pswarm exploits the Nash equilibrium concept [Nash, 1950] 
based on the redefinition of scent  as a payoff function ߣ௘ and important changes to the neigh-
borhood definition. This results in an annealing scheme that is based on the data. 
In conclusion, SOP requires the user to choose a lattice size, two magic numbers for the anneal-
ing process and, in some cases, a minimal radius, whereas Pswarm does not. Additionally, the 
annealing scheme of Pswarm is fully radial with sound neighborhoods, whereas the neighbor-
hood definition and annealing process of SOP are inconsistent with each other, which could 
prevent effective self-organization and, thus, emergence (examples in chapter 10.3). 

8.2.3 Swarm Intelligence and Self-Organization 

As described in the previous chapter, swarm behavior is characterized by five main principles 
[Grosan et al., 2006]: Homogeneity, Locality, Collision Avoidance, Velocity Matching and 
Flock Centering. In Pswarm, every agent is based on a DataBot, and the motion of each DataBot 
is influenced only by a well-defined neighborhood in which no two DataBots can be located in 
the same place at the same time. Hence, the first three main principles are obviously used. 
Velocity is defined as the rate of change in position with respect to time.  
Considering fluctuations due to randomness, the average change in position is defined as 

Δ തܴ ൌ ଵ

ଶ
ቚ0.5 െ ௅௜௡௘௦

ଶ
ቚ ൌ ௅௜௡௘௦ିଵ

ସ
 because the DataBots can jump with uniform probability to 

positions at distances ranging from 0.5 to 
௅௜௡௘௦

ଶ
 units of length and the relevant time interval is 

one iteration (within an epoch). Therefore, on average, the agents in Pswarm exhibit velocity 
matching. Flock centering, in our case, refers to centering around more than one flock, if a flock 
is understood to have the figurative meaning of a group of similar agents. In summary, all five 
principles of swarm behavior are represented in Pswarm. For the simplified definition of intel-
ligence reduced to behavior, as presented in the last chapter, Pswarm therefore uses swarm 
intelligence. 
Self-organization relies on four principles [Bonabeau et al., 1999]: positive and negative feed-
back, amplification of fluctuations and multiple interactions. Fluctuations appear because of the 
random jump lengths and the random choices of new DataBot positions. Multiple interactions 
among DataBots are required for stigmergy in a given neighborhood in which various DataBots 
are present. Positive feedback and negative feedback are reflected in the choices of a DataBot 
to not jump when it is “happy” and to jump when it is “unhappy”. Moreover, the number of 
DataBots cannot be reduced because each DataBot represents one data point in the data set. 
Consequently, self-organization is a property of Pswarm if the data set of interest contains more 
than 100 high-dimensional data points. Because of the randomness of the choice of possible 
jump positions, the system is temporally and structurally unpredictable, and Pswarm exhibits 
multiple interactions among many agents. The property of irreducibility is shown through the 
found compact and connected structures (chapter 10-12). Therefore, this system of DataBots 
possesses the property of emergence, as defined in chapter 7.3. 
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8.3 Clustering on a Generalized U*-Matrix 

Chapter 4 introduces a generalized U*-matrix visualization called topographic map that can be 
used for any projection method. The U*-matrix represents high-dimensional density- and dis-
tance-based structures and is visualized as a topographic map with hypsometric tints [Thrun et 
al., 2016a]. Chapter 4 explains the connection between an approximation made by the simpli-
fied ESOM (sESOM) algorithm and an abstract U-matrix (AU-matrix) [Lötsch/Ultsch, 2014]. 
The clustering approach here uses the idea applied for the ESOM method that the abstract U*-
matrix can be used for hierarchical clustering [Ultsch et al., 2016a]. 
Here, Pswarm, the AU-matrix concept and the proposed visualization are combined in the DBS 
clustering approach. In contrast to SOP and ESOM, this semi-interactive approach does not 
require any parameters other than the number of clusters and the cluster structure, which is 
either connected or compact (for details, see chapter 3). The number of clusters and the cluster 
structure can be estimated by counting the valleys in a topographic map and from a dendrogram. 
If the number of clusters and the clustering method are chosen correctly, then the clusters will 
be well separated by mountains in the visualization. Outliers are represented as volcanoes and 
can be interactively marked in the visualization after the automated clustering process. 
The distances required for hierarchical clustering are defined by the AU-matrix, which was 
introduced in [Lötsch/Ultsch, 2014] for the U-matrix of a SOM. Here, the AU-matrix itself is 
defined by the Pswarm projection. In principle, the approach described in this section can be 
used for clustering based on any projection method because it is possible to generate a general-
ized U-matrix for any projection method (see chapter 5). 
Let Gሺl, j, ࣞሻ  be the minimum of all possible path distances p୨,ଵ between a pair of points ሼ݆, 1ሽ ∈

ܱ in the output space, as defined in chapter 2; then, the graph ࣞ is defined as the Delaunay 
graph weighted by the high-dimensional Euclidean distances between the points ሼ݆, 1ሽ ∈ I  in 
the input space. In every direct neighborhood ܪ௝ሺ݇ ൌ 1,ࣞ, ܱሻ, all direct connections from the 

points l to the point j in the output space are weighted using the input-space distances D(l, j). In 
comparison to the ESOM clustering method proposed in [Ultsch et al., 2016a], here the shortest 
paths Gሺl, j, ࣞሻ are calculated additionally using the algorithm of [Dijkstra, 1959]. Contrary to 
[Ultsch et al., 2016a], the DBS clustering is not based on density information coded in the P-
matrix, because Pswarm itself is already able to project density-based structures (e.g. projection 
of EngyTime in chapter 10.3, Figure 10.7). 
For example, in Figure 8.3, there are two well-separated clusters (green and blue), which the 
compact DBS clustering can detect in the dendrogram (Figure 8.4, left). In fact, the dendrogram 
could indicate also three or four clusters, but this is not verified by the visualization. If three or 
four clusters were chosen, the DBS clustering algorithm would not label points in the same 
cluster with the same color because they would not be well separated by mountains. The cluster 
heatmap shown in Figure 8.4 (right) verifies the clustering result of two clusters. 
The outliers in a data set may be manually identified by the user. In this case, choosing the 
connected structure option for the clustering process would result in the automatic detection of 
all outliers. However, this option does not always lead to the detection of the main clusters in 
terms of the Gሺl, j, ࣞሻ distances. A second example of outlier detection is presented in chapter 
10 using the Tetragonula data set [Franck et al., 2004]. 
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Figure 8.3:  DBS visualization as a topographic map of the Target data set of [Ultsch, 2005a]. Two main clusters 
are shown; the cluster labeled in green has a higher density than the cluster labeled in blue. The 
outliers (orange, yellow, magenta and cyan) lie in volcanoes. 
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Figure 8.4:  The dendrogram (left) of Target data set generated using the Ward algorithm shows either two or 
four clusters; however, in Figure 8.3, only two clusters are visible. The heatmap of the Target data 
set (right) shows two separated clusters with some outliers, because the intracluster distances are 
distinctively smaller than the intercluster distances. 
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9 Experimental Methodology 

This chapter describes all the data sets used in the results chapter and the parameter settings for 
the various methods. In the final section, brief overviews of the Gene Ontology (GO) database 
and overrepresentation analysis (ORA) are provided. For general distribution analyses, the 
CRAN R package AdaptGauss [Thrun/Ultsch, 2015; Ultsch et al., 2015] was used. For the 
topographic map and island visualization the CRAN R package GeneralizedUmatrix was used 
[Thrun/Ultsch, 2017b]. For the ABC analysis the CRAN R package ABCanalysis was used 
[Thrun et al. 2015]. For DBS clustering and Pswarm projection the CRAN R package Data-
bionic swarm was used [Thrun, 2017]. 

9.1 Data Sets 

For the comparison of Pswarm as a projection method with the swarm-organized projection 
(SOP) algorithm, the original data sets of [Herrmann, 2011] were used. The artificial data sets 
of the Fundamental Clustering Problems Suite (FCPS) [Ultsch, 2005a] are summarized in Tab. 
1 with regard to the cluster structures discussed in chapter 2. 

 “The FCPS comprises a collection of intentionally simple data sets with known classifications offering a variety 
of problems on which the performance of clustering algorithms can be tested. The data sets in the FCPS are spe-
cially designed such that the performance of clustering algorithms on particular challenges, for example, outliers 
or density- vs. distance-defined clusters, can be tested” [Ultsch/Lötsch, 2016, p. 4].  

All FCPS data sets have uniquely unambiguously defined class labels. For the error rate is de-
fined as 1-Accuracy (Eq. 3.1 on p. 29) was is used as a sum over all true positive labeled data 
points by the clustering algorithm. The best of all permutation of labels of the clustering algo-
rithm regarding the accuracy was chosen in every trial, because the labels are arbitrarily defined 
by the algorithms.  
Additional data sets that are used in later chapters are also described below in alphabetical 
order. If these data sets are not discussed directly in chapter 10 and 11 than please see to 
Supplement C and D where the clusterings and the visualizations of DBS are shown. The hy-
drology data set and the pain genes data set are separately introduced in chapter 12. 

9.1.1 Atom 

“The Atom data set [Ultsch, 2005c] consists of two clusters in Թଷ. The first cluster is completely enclosed by the 
second one and, therefore, cannot be separated by linear decision boundaries. Additionally, both clusters have 
different densities and variances. The Atom data set consists of a dense core of 400 points surrounded by a well 
separated, but sparse hull of 400 points. Both clusters are not linearly separable and many algorithms cannot 
construct a cohesive projection. The core is located in the center of the hull, which, for some methods based on 
averaging, makes it hard to solve it. The density of the core is much higher than the density in the hull. For data in 
the hull, some of the inner-cluster distances are bigger than the distance to the other clusters. The data set was not 
preprocessed“ [Herrmann, 2011, pp. 99-100]. 

9.1.2 Chainlink 

The Chainlink data set [Ultsch, 1995; Ultsch et al., 1994] consists of two clusters in Թଷ. To-
gether, the two clusters form intricate links of a chain, and therefore, they cannot be separated 
by linear decision boundaries [Herrmann, 2011, pp. 99-100]. The rings are cohesive in Թଷ; 
however, many projections are not. This data set serves as an excellent demonstration of several 
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challenges facing projection methods: The data lie on two well-separated manifolds such that 
the global proximities contradict the local ones in the sense that the center of each ring is closer 
to some elements of the other cluster than to elements of its own cluster [Herrmann, 2011, pp. 
99-100]. The two rings are intertwined in Թଷ  and have the same average distances and densi-
ties. The data set was not preprocessed [Herrmann, 2011, pp. 99-100]. Every cluster contains 
500 points. 

9.1.3 EngyTime 

The EngyTime data set [Baggenstoss, 2002] contains 4,096 points belonging to two clusters in 
Թଶ; the data set is typical for sonar applications with the variables “Engy” and “Time” as a two-
dimensional mixture of Gaussians. The clusters overlap, and cluster borders can be defined only 
by using density information. There is no empty space between the clusters. The data set was 
not preprocessed [Herrmann, 2011, pp. 99-100]. 

9.1.4 Golf Ball 

The Golf Ball data set “consists of an artificial data set with 4,002 points, resembling a 3-D 
view of a golf ball” [Ultsch/Lötsch, 2016, p. 3]. “The points are located on the surface of a 
sphere at equal distances from each of the six nearest neighbors” [Ultsch/Lötsch, 2016, p. 4]. 
This data set does not contain any natural clusters. The data set was not preprocessed. 

9.1.5 Hepta 

The Hepta data set [Ultsch, 2003a] is used to illustrate the general problems with quality 
measures (QMs) and projections from the perspective of structure preservation. The three-di-
mensional Hepta data set consists of seven clusters that are clearly separated by distance, one 
of which has a much higher density. The data set consists of 212 points, comprising seven 
clusters of thirty points each plus two additional points in the center cluster. The centroids of 
the clusters span the coordinate axes of Թଷ. The density of the central cluster is almost twice as 
high as the density of the other six clusters. The structure of the data set is clearly defined by 
distances and is compact. The data set was not preprocessed. 

9.1.6 Iris 

“Anderson’s [Anderson, 1935] Iris data set was made famous by Fisher [Fisher, 1936], who used it to exemplify 
his linear discriminant analysis. It has since served to demonstrate the performance of many clustering algorithms” 
[G. Ritter, 2014, p. 220].  

The Iris data set consists of data points in Թସ with a prior classification and describes the geo-
graphic variation of Iris flowers. The data set consists of 50 samples from each of three species 
of Iris flowers, namely, Iris setosa, Iris virginica and Iris versicolor. Four features were meas-
ured for each sample: the lengths and widths of the sepals and petals (see [Herrmann, 2011, pp. 
99-100]). The observations have “only two digits of precision preventing general position of 
the data” [G. Ritter, 2014, p. 220] and “observations 102 and 142 are even equal” [G. Ritter, 
2014, p. 220]. The I. setosa cluster is well separated, whereas the I. virginica and I. versicolor 
clusters slightly overlap (see [Herrmann, 2011, pp. 99-100]). This presents “a challenge for any 
sensitive classifier” [G. Ritter, 2014, p. 220]. The data set was not preprocessed (see [Herrmann, 
2011, pp. 99-100]). 
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9.1.7 Leukemia 

The anonymized leukemia data set consists of 12,692 gene expressions66 from 554 subjects and 
is available from a previous publication [Haferlach et al., 2010]. Each gene expression is a 
logarithmic luminance intensity (presence call), which was measured using Affymetrix tech-
nology. The presence calls are related to the number of specific RNAs in a cell, which signals 
how active a specific gene is. Of the subjects, 109 were healthy, 15 were diagnosed with acute 
promyelocytic leukemia (APL), 266 had chronic lymphocytic leukemia (CLL), and 164 had 
acute myeloid leukemia (AML). “The study design adhered to the tenets of the Declaration of 
Helsinki and was approved by the ethics committees of the participating institutions before its 
initiation” [Haferlach et al., 2010, p. 2530]. The leukemia data set was preprocessed, resulting 
in a high-dimensional data set with 7.747 variables and 554 data points separated into natural 
clusters, as determined by the illness status and defined by discontinuities (see chapter 2). Ad-
ditionally, patient consent was obtained for the data set, in accordance with the Declaration of 
Helsinki, and the Marburg local ethics board approved the study (No. 138/16) [Brendel, 2016]. 

9.1.8 Lsun3D 

The Lsun3D data set consists of three well-separated clusters and four outliers in Թଷ; it is based 
on the two-dimensional Lsun data set of Moutarde and Ultsch [Moutarde/Ultsch, 2005]. Two 
of the clusters contain 100 points each, and the third contains 200 points. “The inter-cluster 
minimum distances, however, are in the same range as or even smaller than the inner-cluster 
mean distances” [Moutarde/Ultsch, 2005, p. 28]. The data set consists of 404 data points and 
was not preprocessed. 

9.1.9 S-shape 

“The plain s-curve data set is an artificial set sampled from an S-shaped two-dimensional sur-
face embedded in three-dimensional space” [Venna et al., 2010, p. 462]. The authors claim that 
“an almost perfect two-dimensional representation should be possible for a non-linear dimen-
sionality reduction method, so this data set works as a sanity check” [Venna et al., 2010, p. 462]. 
Here, it is more important that the data set does not possess any natural clusters. The data set 
consist of 2000 data points in Թଷ and was not preprocessed. 

9.1.10 Swiss Banknotes 

“The idea is to produce bills at a cost substantially lower than the imprinted number. This calls for a compromise 
and forgeries are not perfect” [G. Ritter, 2014, pp. 223-224]. “If a bank note is suspect but refined, then it is sent 
to a money-printing company, where it is carefully examined with regard to printing process, type of paper, water 
mark, colors, composition of inks, and more. Flury and Riedwyl [Flury/Riedwyl, 1988] had the idea to replace the 
features obtained from the sophisticated equipment needed for the analysis with simple linear dimensions” [G. 
Ritter, 2014, p. 224].  

The Swiss Banknotes data set consists of six variables measured on 100 genuine and 100 coun-
terfeit old Swiss 1000-franc bank notes. The variables are the length of the bank note, the height 
of the bank note (measured on the left side), the height of the bank note (measured on the right 
side), the distance from the inner frame to the lower border, the distance from the inner frame 
to the upper border and the length on the diagonal. The robust normalization of Milligan and 

                                                      
66 Process with which information from a gene is used in the synthesis of functional RNA or protein. 
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Cooper [Milligan/Cooper, 1988] is applied to prevent a few features from dominating the ob-
tained distances [Herrmann, 2011, pp. 99-100]. 

9.1.11 Target 

The Target data set [Ultsch, 2005c] consists of two main clusters and four groups of four outli-
ers each. The first main cluster is a sphere of 363 points, and the second cluster is a ring around 
the sphere and consists of 395 points. The data set as a whole consists of 770 points in Թଶ. The 
main challenge of this data set is the four groups of outliers in the four corners. The data set 
was not preprocessed. 

9.1.12 Tetra 

The Tetra data set, which is part of the FCPS, consists of 400 data points in four clusters in Թଷ 
that have large intracluster distances [Ultsch, 2005c]. The clusters are nearly touching each 
other, resulting in low intercluster distances. 

9.1.13 Tetragonula 

The Tetragonula data set was published in [Franck et al., 2004] and is available to the public in 
the R package prabclus:  

“It contains the genetic data of 236 Tetragonula (Apidae) bees from Australia and Southeast Asia. The data give 
pairs of alleles (codominant markers) for 13 microsatellite loci. The 13 string variables consist of six digits each” 
[Hennig, 2014]. The format is derived from the data format used by the GENEPOP 4.0 software implemented by 
Rousset in 2010. “Alleles have a three digit code, so a value of “258260” on variable V10 means that on locus 10, 
the two alleles have codes 258 and 260. “000” refers to missing values” [Hennig, 2014]. 

9.1.14 Cuboid 

The uniform Cuboid data set “was constructed by filling a cuboid with uniformly distributed 
random numbers in the x, y and z directions” [Ultsch/Lötsch, 2016, p. 5]. It was introduced in 
this publication. “A group structure [is] clearly absent by construction” [Ultsch/Lötsch, 2016, 
p. 5]; thus, the data set does not possess any natural clusters. The data set consists of 1000 data 
points in Թଷ and was not preprocessed. Additionally, another data set was generated by filling 
the same cuboid with Gaussian-distributed random numbers in the x, y and z directions. 

9.1.15 Two Diamonds 

“The data consists of two clusters of two-dimensional points. Inside each “diamond” the values 
for each data point were drawn independently from uniform distributions” [Ultsch, 2003c, p. 8]. 
The clusters contain 300 points each. “[In] [e]ach cluster[, the] points are uniformly distributed 
within a square, and at one point the two squares almost touch. This data set is critical for 
clustering algorithms using only distances” [Moutarde/Ultsch, 2005, p. 28]. The data set was 
not preprocessed. 

9.1.16 Wine 

The Wine data set [Aeberhard et al., 1992] is a 13-dimensional, real-valued data set. It consists 
of chemical measurements of wines grown in the same region in Italy but derived from three 
different cultivars. The robust normalization of Milligan and Cooper [Milligan/Cooper, 1988] 
is applied to prevent a few features from dominating the obtained distances [Herrmann, 2011, 
pp. 99-100]. 



Parameter Settings 111 
 

9.1.17 Wing Nut 

“The Wing Nut dataset […] consists [of] two symmetric data subsets of 500 points each. Each of these subsets is 
an overlay of equal[ly] spaced points with a lattice distance of 0.2 and random points with a growing density in 
one corner. The data sets are mirrored and shifted such that the gap between the subsets is larger than 0.3. Although 
there is a bigger distance in between the subsets than within the data of a subset, clustering algorithms like K-
means parameterized with the right number of clusters (k=2) produce classification errors” [Moutarde/Ultsch, 
2005, pp. 27-28].  

The data set was not preprocessed. 

9.1.18 World Gross Domestic Product (World GDP) 

The World GDP data set of [Leister, 2016] was constructed by selecting the purchasing power 
parity (PPP)-converted gross domestic product (GDP) per capita for the years from 1970 to 
2010 from the data published in [Heston et al., 2012] of 190 countries. The data were logarith-
mized, and countries with missing values were not considered. In the resulting data set, 160 
countries remain. 

Table 9.1:  Structures of the clusters in the artificial benchmark sets of the FCPS [Ultsch, 2005a] as defined in 
Chapter 2. 

Data Set Cluster Structure 

Atom Connected, direction-based, varying density, non-linear separable 

Chainlink Connected, direction-based, non-linear separable 

EngyTime Connected, unidirectional, varying density 

Hepta Compact, spherical, high intercluster distance 

Lsun3D Compact, ellipsoidal, outliers 

Target Connected, direction-based, outliers 

Tetra Compact, spherical, low intercluster distance 

Two Diamonds Compact, spherical, borders defined by discontinuity 

Wing Nut Connected, direction-based, linear separable 

Golf Ball No natural clustering tendency 

  

9.2 Parameter Settings 

The parameter settings for the clustering algorithms, the projection methods and the QMs used 
in this thesis are as follows. 

9.2.1 Quality Measures (QMs) 

Freely available implementations of the trustworthiness and discontinuity (T&D) measures and 
the precision and recall (P&R) measures (see chapter 6.1) in C++ code were used [Nybo/ 
Venna, 2015]. For all other measures, self-developed implementations were used. Every QM is 
available in our R package, projections, which also includes R wrappers for the C++ code for 
the T&D and P&R measures. Our density-based version of the Shepard diagram is also availa-
ble in the R package projections. This package can be downloaded from CRAN. 
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9.2.2 Projection Methods 

For the projection methods considered here (see chapter 4), we used freely available code which 
is summarized in the ProjectionBasedClustering CRAN package [Thrun et al., 2017]: for prin-
cipal component analysis (PCA) [Pearson, 1901], we used the PCA software available in the R 
package stats [R Development Core Team, 2008]; due to technical limitations ICA was omitted 
in the analysis; for curvilinear component analysis (CCA) [Demartines/Hérault, 1995], the CCA 
source code [Alhoniemi, et al., 2005] was ported from MATLAB to R and for t-distributed 
stochastic neighbor embedding (t-SNE) [Van der Maaten/Hinton, 2008], we used Donaldson’s 
t-SNE implementation. Also included in the evaluation of various projection methods were the 
Neighbor Retrieval Visualizer (NeRV) algorithm ([Venna et al., 2010]) as implemented in the 
freely available C++ code [Nybo/ Venna, 2015] called in R (Thrun et al., 2017b]), the Sammon 
mapping technique for multidimensional scaling (MDS) [Sammon, 1969] available from [R 
Development Core Team, 2008], and the emergent self-organizing map (ESOM) algorithm as 
implemented in the R package Umatrix [Thrun et al., 2016a] which reproduced the results of 
[Ultsch/Mörchen, 2005]. 
For every projection method, only the default parameters were used, as given here (see also 
[Thrun et al., 2017]): The ESOM algorithm was set with 20 epochs; a planar lattice; 50 lines; 
80 columns; a Euclidean neighborhood function; and a linear annealing scheme with a starting 
radius of 25, an end radius of 1, a starting learning rate of 0.5 and an end learning rate of 0.1. 
For the NeRV method, lambda was set to 0.5 (for DCE baseline with PCA initialization) and 
0.1 (default); the optimization scheme was set with 20 neighbors, 10 iterations, 2 conjugate 
gradient steps per iteration, and 20 conjugate gradient steps in the final iteration; and the points 
were randomly initialized (default). PCA and Sammon mapping did not require any input pa-
rameters. For CCA, 20 epochs, an initial step size of 0.5, and a radius of influence of 
3*max	ሺ݀ݐݏሺ݀ܽܽݐሻሻ were specified. The t-SNE method was set with a perplexity of 30,100 
epochs and a maximum number of iterations of 1.000. Aside from ESOM, every projection 
method is available through standardized wrappers in our R package projections on CRAN. 
The NeRV source code was modified only as required for compatibility with the CRAN pack-
age Rcpp. The Delaunay classification error (DCE) measure is also available in our R package 
projections on CRAN. 

9.2.2.1 Swarm-Organized Projection (SOP) 

The SOP parameterization was chosen following Herrmann [Herrmann, 2011, p. 98], using a 
64 x 64 toroidal lattice with Gaussian neighborhoods, as described above. Further parameter 
specifications included a maximum of 500 iterations per epoch (for a single radius) and a jump-
ing DataBot threshold of 5%. In a given iteration, the DataBots were allowed to jump only if 
the number of DataBots that wished to jump was above this threshold. If only 5% or fewer of 
the DataBots could find a better position or if the maximum number of iterations was exceeded, 
the radius was reduced. The starting radius was set to the maximum possible distance in the 
output space as defined by [Herrmann, 2011, p. 65]. The source code was implemented in R by 
Kohlhof [Kohlhof, 2010] under the supervision of Lutz Hermann  and the SOP algorithm was 
executed using version 3.2.3 of R on a 64-bit Windows 7 system. Only Euclidean distances 
were used for SOP, consistent with the settings defined by [Herrmann, 2011, p. 98] and the 
restrictions of the source code. For this reason, the GDP194 data set was excluded because this 
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data set requires the use of special dissimilarities [Herrmann, 2011, p. 100]. Moreover, it should 
be mentioned that Rmin was set to a value much larger than 1 for this data set, although the 
precise number was not recorded [Herrmann, 2011, p. 167]. 
Other functional code for SOP or its extension for very large data sets, swarm-organized quan-
tization, was not available to the author67. A self-developed implementation based on the algo-
rithm exactly as described in chapter 7 yielded worse results on the data sets compared with 
that of Kohlhof [Kohlhof, 2010] because of the problems discussed in chapter 8. 

9.2.2.2 Pswarm 

For Pswarm, there are no parameters to set. In the case of the Wine data set, the distances were 
changed to squared Euclidean distances because the resulting distance distribution yielded a 
better distinction between the intra- and intercluster distances (see supplement B). The data sets 
were compared using the generalized U-matrix technique for three-dimensional visualization, 
as described in chapter 5. The CRAN R package Databionic swarm was used [Thrun, 2017]. 
Notably, the three-dimensional topographic map with hypsometric tints that is referred to as the 
generalized U-matrix in this thesis is completely different from the gray-scale two-dimensional 
visualization of Hermann [Herrmann, 2011, p. 72], which was also called the generalized U-
matrix.All source code was executed in R 3.3.1 [R project, , 2008] on a 64-bit Windows 7 
system. 

9.2.3 Common clustering algorithms 

For the k-means algorithm, the CRAN R package cclust was used [Dimitriadou/Hornik 2017]. 
For the single linkage (SL) and Ward algorithms, the CRAN R package stats was used [R De-
velopment Core Team, 2008]. For the Ward algorithm, the option “ward.D2” was used, which 
is an implementation of the algorithm as described in [Ward Jr, 1963]. For the spectral cluster-
ing algorithm, the CRAN R package kernlab was used [Karatzoglou et al., 2016] with the de-
fault parameter settings: “The default character string “automatic” uses a heuristic to determine 
a suitable value for the width parameter of the RBF kernel”, which is a “radial basis kernel 
function of the “Gaussian” type”. The “Nyström method of calculating eigenvectors” was not 
used (=FALSE). The “proportion of data to use when estimating sigma” was set to the default 
value of 0.75, and the maximum number of iterations was restricted to 200 because of the al-
gorithm’s long computation time (on the order of days) for 100 trials using the FCPS data sets. 
For the mixture of Gaussians (MoG) algorithm, the CRAN R package mclust was used [Fraley 
et al., 2017]. In this instance, the default settings for the function “Mclust()” were used, which 
are not specified in the documentation. For the partitioning around medoids (PAM) algorithm, 
the CRAN R package cluster was used [Maechler et al., 2017]. 

9.3 Gene Ontology (GO) 

An ontology is a representation of knowledge in which the relationships part of and is a are 
visualized in a directed acyclic graph (DAG). For the analysis of pain genes, the GO database 
was accessed via R 3.3.1 [R Development Core Team, 2008]. In the GO database, knowledge 

                                                      
67  Lutz Herrmann’s 2011 Java implementation is largely identical to that of [Kohlhof, 2010], but the source code 

could not be compiled. 
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about molecular functions, biological processes and the cellular components of genes is defined 
using a controlled vocabulary consisting of labels called GO terms, which are used to represent 
biological concepts [Ashburner et al., 2000]. These terms describe and unify the attributes of 
genes and gene products68 in a species-independent manner. “The GO terms are ordered in a 
directed acyclic graph (DAG), in which the set of genes annotated69 to a certain term (node) is 
a subset of those annotated to its parent nodes” [Goeman/Mansmann, 2008]. Here, the important 
relationships between the nodes are of the “part of” type, resulting in a “top-down poly-hierar-
chy of GO terms” starting “at the root with terms with the broadest definition” and specializing 
“toward the leaves representing GO terms of the narrowest definition (details)” [Ultsch et al., 
2016b]. Given a set of genes, ORA reveals the significance of a GO term that represents these 
genes or a subset of these genes [Backes et al., 2007]. 

9.3.1 Overrepresentation Analysis (ORA) 

“In ORA, the most commonly used statistical test is based on the hypergeometric distribution or its binomial ap-
proximation ([…] among others). Let A denote a GO term or the set of genes annotated to A (with cardinality ܫ஺), 
and let S denote the set of genes (with cardinality ܫௌ) based on a certain criterion (i.e. differential expression) from 
a full gene list G (with cardinality I) in an experiment. The number of genes belonging to both S and A (S∩A), 
denoted by ݊஺, indicates the representation of A in S. Under the null hypothesis that S and A are independent (i.e. 
the GO term is irrelevant to the gene cluster), ݊஺ follows a hypergeometric distribution. The [p-value ݌] measuring 
the significance of association is the tail probability of observing ݊஺, or more genes annotated by A in S, 
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 is the binomial coefficient. Many software packages and webtools (Onto-Express, CLAS-

SIFI, GoMiner, EASEonline, GeneMerge, FuncAssociate, GOTree Machine, etc.) have been developed based on 
the hypergeometric [p-value]. A detailed review can be found in Khatri and Drăghici [Khatri/Drăghici, 2005]. 

The hypergeometric [p-value] provides a straightforward measure of overrepresentation for each individual GO 
term. However, the major drawback of this approach is that it ignores the hierarchical structure in the GO DAG, 
which contains a substantial amount of information regarding the interactions among the GO terms” [Zhang et 
al., 2010, pp. 905-906].  

For the ORA algorithm, the R package ORA was used [Lippmann et al., 2016]. 

9.3.2 Filtering via ABC Analysis 

The resulting p-values ݌ were filtered via ABC analysis (see chapter 5.3.2 on p. 49 for further 
explanation) [Ultsch/Lötsch, 2015]; thereafter, only the most important group A was considered 
for interpretation. For the ABC analysis algorithm, the CRAN R package ABC analysis was 
used [Thrun et al., 2015]. 
Here, it is argued that changing the threshold with respect to the significance of the p-value 
does not lead to better results. Aside from the problems discussed by Button and Nuzzo [Button 
et al., 2013; Nuzzo, 2014], the paramount goal of a gene analysis is to find GO terms with a 

                                                      
68 Usually either Ribonucleic acid (RNA) or a protein 
69  For further details, see [Camon et al., 2003] and [Camon et al., 2004]. 
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high effect strength. For this purpose, it is sufficient for the effect to be significant with regard 
to a commonly used (arbitrary) p-value threshold. 
Let E be the strength of an effect as defined with respect to its p-value significance p (expressed 
as a percent), as follows: 

ܧ ൌ െ10log	ሺ݌ሻ ሺ9.2ሻ 
At first glance, the definition given in Eq. 9.2 is contradictory to the equation above (1). 
On the one hand, the calculation of p-values based on the Fisher test with ݌ሺܫ஺,ܫௌ, ݇,  ሻ requiresܫ

four parameters; on the other hand, one would calculate the strength of an effect based on the 
relative difference between the expected value e and the observed value o, known as the fold 
change ܥܨ: 

,ሺ݇ܥܨ ݁ሻ ൌ 2
݋ െ ݁
݋ ൅ ݁

ሺ9.3ሻ 

Here, the p-values are calculated analogously to Backes [Backes et al., 2007], where the formula 
is called the hypergeometric test. However, the hypergeometric test is simply the Fisher test 
based on the hypergeometric distribution [Ultsch, 2014a]. The hypergeometric distribution is 
defined as 
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Given this distribution, the expected value ݁ሺ݂ሻ is defined as 
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It can be shown that Eq. 9.2 is directly proportional to the definition of the expected number of 
genes in Eq. 9.5 [Ultsch, 2014a]. Therefore, the observed number of genes o are compared 
against a hypergeometric distribution (Eq. 9.4) around the value for the expected genes number 
of e in Eq. 9.5, and in the special case of ORA, the p-values imply more than merely 
significance. 
One may ask why the calculation must be complicated if the fold change, as defined in Eq. 9.3, 
could be used. The disadvantage of the fold change is illustrated in the following equation: 

,݋ሺܥܨ ݁ሻ ൌ 2
݋ െ ݁
݋ ൅ ݁

ൌ 2
ܿ ∗ ݋ െ ܿ ∗ ݁
ܿ ∗ ݋ ൅ ܿ ∗ ݁

ሺ9.6ሻ 

According to this equation, one expected gene compared with four observed genes yields the 
same value as 100 expected genes compared with 400 observed genes. Clearly, the effect 
strength here is not the same. 
It could be argued that this problem could be solved by reducing the p-value threshold to a low 
level, such that only a few GO terms are represented in the DAG. However, one would be 
obliged to do this manually for every ORA calculation. Moreover, to the author’s knowledge, 
every tool or package that uses GO terms or performs ORA calculations has a different version 
of the GO database. Hence, the p-value calculation has a measurement error that is difficult to 
specify. Furthermore, even if a tool used the database obtained directly from the Gene Ontology 
Consortium, there is an even stronger source of measurement error: every list of genes ܫௌ to be 
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analyzed was obtained based on microarray experiments with arbitrary thresholds or probe 
intensities (for a detailed discussion, see [Khatri et al., 2012, p. 3]). 
Here, with regard to the definition of the effect strength given in (Eq. 9.2), it is assumed that 
the magnitudes of the p-values do not change regardless of measurement errors. This is the 
reason for taking the logarithm of the p-value in (Eq. 9.2). Moreover, Figure 9.1 shows the 
correlation between the fold change FC (Eq. 9.3) and the effect strength E (Eq. 9.2) for a given 
interval of the number of annotated genes per GO term. Consistent with Ultsch [Ultsch, 2014a], 
it is argued here that in ORA, the p-values are directly proportional to the effect sizes. 
After setting the p-value threshold to 0.05, which is a generally accepted level of significance, 
and calculating the corresponding GO terms, the results of an ABC analysis of the effect 
strengths as given by (2) can be obtained. The relevant GO terms are defined as those assigned 
to group A in the ABC analysis. 

 

Figure 9.1:  Scatter plot of the fold changes FC of Eq. 9.6 and the corresponding E value of Eq. 9.3 for numbers 
of annotated genes per GO term in the range [10,25] is proportional.  
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10 Results on Pre-classified Data Sets 

This chapter has three sections. In the first section, the results of the Databionic swarm (DBS) 
clustering framework are compared with the given prior classifications for data sets from the 
Fundamental Clustering Problems Suite (FCPS) [Ultsch, 2005a]. The results for nine data sets 
analyzed using common clustering algorithms are compared in the first subsection. In the sec-
ond subsection, the results for data sets with no natural clusters are compared (e.g., Golf Ball). 
Neighbor Retrieval Visualizer (NeRV) projection and Ward clustering indicate the presence of 
clusters, whereas DBS does not. 
The second section compares Pswarm with other common projection methods using the Delau-
nay clustering error (DCE). The third section compares emergent self-organizing map (ESOM), 
swarm-organized projection (SOP) and Pswarm using topographic map visualizations based on 
the generalized U-matrix for the Wine, Iris, and Swiss Banknotes data sets as well as several 
FCPS data sets. 

10.1 Comparison with Given Classifications 

The FCPS [Ultsch, 2005a] is a repository consisting of ten data sets with known classifications. 
These data sets are intentionally simple enough to be visualized (in 2D or 3D) but nevertheless 
present a variety of problems that offer good tests of the performance of clustering algorithms 
[Ultsch/Lötsch, 2016]. The first Figure (10.1) shows the performance of several common clus-
tering algorithms compared with DBS based on 100 trials. The performance is depicted using 
boxplots of the error rate, which is defined as one minus the accuracy and for which 50% is the 
level attributable to chance (see chapter 3, Eq. 3.1). Here, the common clustering algorithms 
considered are single linkage (SL) [Florek et al., 1951], spectral clustering [Ng et al., 2002], the 
Ward algorithm [Ward Jr, 1963], the Linde-Buzo-Gray algorithm (LBG-k-means) [Linde et al., 
1980], partitioning around medoids (PAM) [L. Kaufman/Rousseeuw, 1990] and the mixture of 
Gaussians (MoG) method with expectation maximization (EM) [Fraley/Raftery, 2002] (also 
known as model-based clustering).  
Aside from the number of clusters, which is given for each of the artificial FCPS data sets, only 
the default parameter settings of the clustering algorithms were used. ESOM/U-matrix 
clustering [Ultsch et al., 2016a] and DBscan [Ester et al., 1996] were omitted because no default 
clustering settings exist for these methods. k-means has the highest overall error rate, and 
spectral clustering shows the highest variance. The results for the other clustering algorithms 
vary depending on the data set. DBS has the lowest overall error rate. However, on the Tetra 
data set, it is outperformed by PAM and MoG; on the EngyTime data set, it is outperformed by 
MoG; and in the case of the Wing Nut data set, it is outperformed by spectral clustering. 
Additional statistical tests to Fig 10.1 can be found in supplement I. With the help of insights 
from chapter 3, Tab. 3101 lists the FCPS cluster structures alongside the algorithms with the 
best results in terms of the lowest error rate and variance for each data set. 
 

© The Author(s) 2018
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Figure 10.1:  Error rate (see p. 107) of 100 trials of common clustering algorithms on nine FCPS data sets, shown 
as boxplots with the notch as median; chance level at 50%. The interactive clustering approach of 
DBS was not used here. Abbreviations: single linkage (SL), Linde-Buzo-Gray algorithm (LBG-k-
means), partitioning around medoids (PAM), mixture-of-Gaussians clustering (MoG), Databionic 
swarm (DBS). Additional statistical tests can be found in supplement I. 
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10.1.1 Recognition of the Absence of Clusters 

The Golf Ball data set (see chapter 9) does not exhibit natural clusters. Therefore, it is analyzed 
separately because, with the exception of SL and the Ward algorithm, the common clustering 
algorithms give no indication regarding the existence of clusters. This “cluster tendency prob-
lem has not received a great deal of attention but is certainly an important problem” 
[Jain/Dubes, 1988, p. 222]. Reproducing the results of [Ultsch/Lötsch, 2016], the Ward algo-
rithm indicates six clusters, whereas SL indicates two clusters (Figure 10.2). As seen from the 
two dendrograms generated using DBS, the connected approach does not indicate any clusters, 
whereas the compact approach indicates four clusters (Figure 10.3). However, the presence of 
four clusters is not confirmed by the topographic map of DBS. 
In Figure 10.4, the topographic maps of DBS with the NeRV are compared. The NeRV projec-
tion of the Golf Ball data set with ߣ ൌ 0.5 (for the other parameters, see the R package projec-
tions), i.e., with precision and recall weighted equally, is shown in Figure 10.4 (top). The visu-
alization of the NeRV projection strongly indicates a two-cluster structure, whereas the DBS 
projection does not (Figure 10.4, bottom). The compact DBS clustering divides the data points 
lying in valleys into different clusters and merges the data points into clusters through hills, 
resulting in cluster borders that are not defined by mountains. 
The topographic map of DBS of the S-shape data set and the uniform and Gaussian Cuboid data 
sets (see chapter 9) are also shown in supplement D, Figure D.19. Neither data set contains any 
natural clusters; this is correctly visualized using the DBS approach. 
 

 

Figure 10.2:  The dendrogram generated using the Ward algorithm indicates at least two clusters with a high 
intercluster distance. The SL dendrogram could indicate two clusters with a very low intercluster 
distance. 
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Figure 10.3:  The two dendrograms generated using DBS. The connected DBS clustering does not indicate any 
structure whereas the compact DBS clustering indicates two or four clusters. The connected 
approach does not indicate any clusters, whereas the compact approach does indicate four clusters. 
However, Figure 10.4 shows that these clusters are inconsistent with the visualization. 

10.2 Evaluation of Projections Using the Delaunay Classification Error (DCE) 

Figure 10.5 shows the results for the DCE measure, relative to the baseline, for 100 trials of the 
common projection methods ESOM, NeRV, Sammon mapping (a multidimensional scaling 
(MDS) technique), curvilinear component analysis (CCA), principal component analysis (PCA) 
and t-distributed stochastic neighbor embedding (t-SNE). Positive values indicate higher errors 
compared with the baseline, whereas negative values indicate lower errors. The baseline is the 
NeRV projection with ߣ ൌ 0.5 and PCA initialization; this baseline was chosen because the 
outcome of this initialization is deterministic (for the other parameters, see the R package pro-
jections). The parameter setting ߣ ൌ 0.5 indicates that precision and recall are weighted equally. 
Every subfigure shows a robust mean estimate M and a robust standard deviation estimate S for 
the 100 relative DCEs. Notably, it is claimed that t-SNE projections are similar to NeRV pro-
jections with ߣ ൌ 1 [Venna et al., 2010]. 
The linear method PCA and the MDS technique of Sammon mapping are unable to separate the 
connected structures of the Chainlink and Atom data sets based on their assumed neighborhood 
relations. This result confirms the assumptions made in chapter 4. By contrast, the CCA pro-
jections have difficulty separating compact structures based on intra- versus intercluster dis-
tances. However, not all focusing projection methods are able to separate connected structures, 
e.g., the t-SNE projections of Chainlink. 
Without the U-matrix, the ESOM projection method distributes the points uniformly, which 
results in a higher DCE. The projections generated by t-SNE, Pswarm and NeRV with their 
default settings show high variances, although the variance in the accuracy of the DBS cluster-
ing results for these data sets is low (Figure 10.1). 
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Figure 10.4:  Top: Topographic map of the NeRV projection (ߣ ൌ 0.5) of the Golf Ball data set indicates two 
well-separated clusters.  
Bottom: The topographic map of the DBS projection and (compact) clustering of the Golf Ball data 
set. The projection does not indicate a cluster structure. The DBS clustering generates clusters that 
are not separated by mountains. No island can be extracted from the toroidal visualization. 
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Statistical testing was performed using the two-sample, one-sided Wilcoxon rank sum test with 
continuity correction [Hollander/Wolfe, 1973, pp. 68–75]. The DCE values for the Pswarm 
projections were compared with the projections obtained using the other methods with the 
“nearest”70 ranges of DCE values “above” and “below” those of Pswarm (visually in the 90° 
rotated figures). In the former case, means that the DCE values of Pswarm are more negative 
(shifted to the left) compared with the DCE values of the projection method with the nearest 
range of values. Consequently, a significant result means that Pswarm’s performance is consid-
erably better. In the latter case, the DCE values of Pswarm are more positive (shifted to the 
right), and a significant result means that Pswarm’s performance is worse than that of the pro-
jection method with the nearest range of DCE values “below” those of Pswarm. Statistical re-
sults regarding the performance of Pswarm in Figure 10.5 are as follows. 
1.) Atom: The performance of Pswarm is significantly better than that of NeRV, with 

 W(100) = 1675, p < 0.001, and worse than that of t-SNE, with W(100) = 5795, p = 0.026. 
2.) Hepta: The performance of Pswarm is significantly better than that of CCA, with  

W(100) = 1855, p < 0.001, and worse than that of NeRV, with W(100) = 8941, p < 0.001. 
3.) Lsund3D: The performance of Pswarm is significantly better than that of t-SNE, with  

W (100) = 4145, p < 0.02, and not significantly worse than that of CCA, with  
W (100) = 5444, p = 0.14. However, the performance of Pswarm is significantly worse than 
that of NeRV, with W(100) = 7969, p < 0.001. 

4.) Chainlink: The performance of Pswarm is significantly better than that of NeRV, with 
 W (100) = 2472, p < 0.001, and worse than that of CCA, with W(100) = 6270, p = 0.001. 

5.) Tetra: The performance of Pswarm is significantly better than that of CCA,  
with W(100) = 2879, p < 0.001, and not significantly worse than that of ESOM, with 
W(100) = 5000, p = 0.5. 

10.3 Topographic Maps with Hypsometric Colors 

To compare Pswarm as a projection method with SOP and ESOM, the data sets of [Herrmann, 
2011, pp. 99-100] were used. After the computation of several trials based only on the visually 
best71 scatter plot, topographic maps with hypsometric colors (hypsometric tints) were 
generated. The Atom, Chainlink, EngyTime, Iris, Swiss Banknotes, and Wine data sets were 
projected using SOP, ESOM and Pswarm and visualized using the U-matrix or generalized U-
matrix approach. 
Figure 10.6 shows that only the colored labels corresponding to the prior classification separate 
the two clusters of EngyTime. The topographic map is inconsistent with the projected points in 
terms of lattice locations. Moreover, the separation is blurry, and several points are misplaced. 
Notably, the cardinality of the data set is 4096, and there are only 4096 positions on a 64x64 
lattice. However, the visualization presented in Figure 10.6 shows many empty positions. 
Consequently, there are many positions at which more than one DataBot is located; therefore, 
the colored labels could be misleading, and the quality measures of [Herrmann, 2011] could be 
incorrect. 

                                                      
70  With the highest overlap in ܯ േ ܵ. It is assumed that non-overlapping ranges of DCE values are always statis-

tically significant. 
71  In the sense that the structures defined by the prior classification were preserved. 
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Figure 10.5:  Relative DCE values for projections of the Atom, Hepta, Lsun3D, Chainlink and Tetra data sets.  
The following seven methods are compared: Pswarm ESOM, CCA, PCA, Sammons mapping, 
NeRV and t-SNE.  The most structure-preserving projections have the lowest negative values. No 
projection method is able to outperform any other projection method on five all data sets. 



124 Results on Pre-classified Data Sets 
 

Table 10.1:  Cluster structures in the artificial benchmark sets of the FCPS [Ultsch, 2005a], as defined in chapter 2.  
  The clustering algorithms with the lowest error rate and variance in Figure 10.1 are listed for each 

data set. These results confirm the assumptions discussed in chapter 3 regarding the cluster structures 
sought by common clustering algorithms. On the right the projection methods who were unable to 
find the structure are listed for the three-dimensional data sets. ESOM method is omitted, because 
it distributes the projected points uniformly. Additional statistical tests can be found in supplement 
I. 

Data Set Cluster Structure Clustering Algorithms that Found 
this Structure with a Small Vari-
ance in the Results 

Projection Methods that 
did not Found this  
Structure 

Atom Connected, direction-based, 
varying density, non-linear 
separable 

DBS, MoG, SL, Spectral NeRV, Sammon’s mapping 
and PCA 

Chainlink Connected, direction-based, 
non-linear separable 

DBS, SL, Spectral, (MoG) t-SNE, Sammon’s mapping 
and PCA 

EngyTime Connected, unidirectional, 
varying density 

All except SL  

Hepta Compact, spherical, high in-
tercluster distance 

DBS, MoG, PAM, SL, Ward CCA 

Lsun3D Compact, ellipsoidal, outli-
ers 

DBS t-SNE 

Target Connected, direction-based, 
outliers 

DBS, SL, Spectral  

Tetra Compact, spherical, low in-
tercluster distance 

All except SL and Spectral PCA and Sammons map-
ping 

Two  
Diamonds 

Compact, spherical, borders 
defined by discontinuity 

All except SL  

Wing Nut Connected, direction-based, 
linear separable 

DBS, SL, Spectral   

Golf Ball No natural clustering ten-
dency 

DBS  

By contrast, in the topographic map of the Pswarm projection shown in Figure 10.7, the clusters 
are clearly separated by both the positions of the projected points and the high-dimensional 
distances and densities of the generalized U*-matrix. Here, only one DataBot is allowed per 
grid position. In comparison to Figure 10.7, the planar ESOM/U*-matrix projection presented 
in Figure 10.8 does not clearly show the border between the two clusters. As shown in Figure 
10.9, when the default settings (toroidal) are used, it is difficult to distinguish between the two 
clusters. Because the extraction of an island was not possible, a tiled display is shown in Figure 
10.9. Likewise, for the Wing Nut data set, the topograpic map of the Pswarm projection shows 
a clear cluster structure, whereas the toroidal ESOM/U-matrix projection does not (Figure 10.10 
and supplement E, Figure E.23) when the P-matrix and U*-matrix visualization is not used. 
On the Iris data set, the topographic map of the generalized U*-matrix of the SOP result shows 
three clusters that are clearly separated by hills, but these clusters do not match the colored 
labels of the prior classification (supplement C, Figure C.13). By contrast, the Pswarm 
projection visualized using the generalized U*-matrix approach does show these clusters, one 
of which is defined by its density (supplement C, Figure C.14). Five points are misplaced. The 
ESOM/U-matrix method is unable to separate two of the three clusters (supplement E, Figure 
E.22). 
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Figure 10.6:  Topographic map of the EngyTime data set projected using SOP with the default parameters: The 
two clusters are mixed and difficult to separate without the colored labels corresponding to the 
classification. The radius of the P-matrix was automatically chosen to be 1.38. No island could be 
extracted. 

 

Figure 10.7:  Topographic map of the EngyTime data set projected using DBS (196x220) with an automatically 
chosen lattice size: There are clearly two clusters with an accuracy of the DBS clustering of 95% 
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Figure 10.8:  U*-matrix visualization of the toroidal ESOM projection of the EngyTime data set: The data set 
contains 4096 observations, and the lattice contains 4096 neurons. As shown, not every neuron is a 
best matching unit (BMU); therefore some BMUs include more than one observation, and the 
colored labels are misleading. The clusters are mixed, and no border between the green and blue 
BMUs can be found. 

 

Figure 10.9:  U*-matrix visualization of the planar ESOM projection of the EngyTime data set: The data set 
contains 4096 observations, and the lattice contains 4096 neurons. As shown, not every neuron is a 
best matching unit (BMU); therefore, some BMUs include more than one observation, and the 
colored labels are misleading. The clusters are mixed, and a border between the green and blue 
BMUs is difficult to locate. 

 

Figure 10.10:  Topographic map of the DBS projection of the Wing Nut data set with Generalized Umatrix (64x68). 
Both clusters are clearly separated, but four points are misplaced. 
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The topograpic map of the Swiss Banknotes data set as projected using SOP shows three 
clusters based on high-dimensional distances in the generalized U-matrix, with one misplaced 
point (supplement C, Figure C.9). Without the topographic map, a scatter plot of the projected 
points would not lead the reader to the conclusion that the data set consists of separate clusters 
because the projected points defined by the DataBots are uniformly distributed. By comparison, 
Pswarm reveals two unambiguously separated clusters with two misplaced points (supplement 
C, Figure C.10). In the ESOM/U-matrix projection, one best matching unit is misplaced. The 
cluster of blue best matching unit could be interpreted as two clusters, one small and one large, 
based on the high hills in between (supplement E, Figure E.21).An interpretation of the 
uniformly distributed projected points of the Wine data set, as generated via SOP, does not 
allow the number of clusters to be determined (supplement C, Figure C.11). The generalized 
U-matrix shows no clear borders between projected points with differently colored labels. 
Several points are misplaced. By contrast, the topographic map of the Pswarm projection 
explicitly shows three clusters (supplement C, Figure C.12). — one triangular, one rectangular 
and one square — but six points are misplaced. In the ESOM/U-matrix projection, the clusters 
in the Wine data set are difficult to separate without their colored labels (supplement E, Figure 
E.20). Again, in the SOP result for the Atom data set, the clusters are distinguished only by the 
borders of the generalized U-matrix and the colored labels corresponding to the prior 
classification because the points are uniformly distributed (supplement C, Figure C.15). 
However, the visualization could also be misleading in suggesting that the data set consists of 
three clusters. The topographic map of the Pswarm projection explicitly shows two clusters 
(supplement C, Figure C.16).The projections of the Chainlink data set obtained using both SOP 
and Pswarm are similar (supplement C, Figure C.17) but the Pswarm visualization is smoother 
in terms of intracluster structure (supplement C, Figure C.18). 
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11 DBS on Natural Data Sets 

Several real-world data sets are used in this chapter to show that Databionic swarm (DBS) is 
able to find clusters in a variety of cases. The leukemia data set is based on luminance meas-
urements of 7747 different active or non-active genes in 554 human subjects. The World GDP 
data set is a multivariate time series that consists of monetary values for 190 countries from 
1970 to 2010. The Tetragonula data set contains 13 string variables consisting of pairs of alleles 
for 13 microsatellite loci in bees. In each case, suitable preprocessing and a correctly chosen 
distance definition make it possible for DBS to cluster and visualize the data such that the 
known knowledge is reproduced. 

11.1 Types of Leukemia 

The leukemia data set consists of 7747 variables for 554 subjects (for details, see chapter 3). Of 
the subjects, 109 were healthy, 15 were diagnosed with acute promyelocytic leukemia (APL), 
266 had chronic lymphocytic leukemia (CLL), and 164 had acute myeloid leukemia (AML). 
The leukemia data set is a high-dimensional data set with natural clusters specified by the illness 
status and defined by discontinuities (for details, see chapters 3 and 9). 
Figure 11.1 shows a visualization of the healthy patients and the patients diagnosed with these 
three major types of leukemia. The four groups are well separated by mountains, with the sub-
jects represented by points of different colors. Magenta points indicate healthy subjects, 
whereas points of other colors indicate ill subjects. The automatic clustering of DBS is able to 
separate the four groups with an accuracy of 99.6%. Two outliers can be seen in Figure 11.1, 
marked with red arrows. These green and yellow outliers cannot be explained without deanon-
ymization of the patients, which was not feasible for the author. They may be misclassified, but 
a future publication will address this diagnostic problem72. 

11.2 World Gross Domestic Product (World GDP) 

The World GDP data set, published in [Leister, 2016], consists of data on the gross domestic 
product (GDP) per capita for 160 countries over the past 40 years (see chapter 9 for details). 
The dynamic time warping (DTW) distances were calculated using the R package dtw 
[Giorgino, 2009], which computes the optimal alignment between two time series [Giorgino, 
2009]. The homogeneity of the cluster structures of DBS is visualized in a silhouette plot in 
Figure 11.4, the result of the DBS method in Figure 11.2 shows this clear cluster structure and 
it is confirmed by the heatmap in Figure 11.3. 
As the rules deduced through Classification and Regression Tree (CART) analysis show in 
Figure 11.5, the clusters are defined by a tragic event that occurred in 2001, the crashing of 
airplanes into the World Trade Center. In its aftermath, “the world economy was experiencing 
its first synchronized global recession in a quarter-century” [Makinen, 2002, p. 17].  
 

                                                      
72 It should be remarked that a data-driven DBS clustering does not reproduce the classification(s) of AML (like 

FAB subtypes) or CLL of research in this area, e.g. [Bene et al., 1995; Bennett et al., 1985; Vardiman et al., 
2009; Haferlach et al., 2010], for CLL see [Rosenwald et al., 2001]. See also p. 30 fn. 19. 

© The Author(s) 2018
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Figure 11.1:  Topographic map with DBS clustering results for the leukemia data set, showing six clusters and an 
accuracy of 99.6% in comparison with the prior classification of four leukemia statuses.  
Top: healthy (magenta), AML (cyan), APL (blue), and CLL (black). Two outliers are marked with 
red arrows: an APL outlier (green) and a CLL outlier (yellow).  
Bottom: 3D print (see [Thrun et al., 2016a]), colors are not available yet due to technical limitations. 
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Therefore, the first cluster consists mostly of African and Asian countries, which were generally 
unaffected by this event, and the second cluster consists of American and European countries, 
which were affected. The outlier is Equatorial Guinea, where the first Parliamentary elections 
since 1968 were held in 1983. Equatorial Guinea shows the smallest variance in its GDP, which 
is mostly based on oil — this small country, with an area of 28,000 square kilometers, is one of 
sub-Saharan Africa’s largest oil producers. 

 

Figure 11.2:  Topographic map of the DBS clustering of the World GDP data set shows two distinctive clusters. 
There is one outlier, colored in magenta and marked with a red arrow. 

 

Figure 11.3:  Heatmap of the dynamic time warping (DTW) distances for the World GDP data set shows a small 
variance of intracluster distance. 
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Figure 11.4:  Silhouette plot of the DBS clustering results for the World GDP data set indicates that data points 
(y-axis) above a value of 0.5 (x-axis) have been assigned to an appropriate cluster. 

 

Figure 11.5:  Classification and Regression Tree (CART) analysis rules for the clusters. The two main clusters 
are defined only by an event in 2001. 

11.3 Tetragonula Bees 

The Tetragonula data set was published in [Franck et al., 2004] and contains the genetic data of 
236 Tetragonula bees from Australia and Southeast Asia, expressed using 13 variables (for 
details, see chapter 9), with a specific distance definition. 
The shared allele distance is described in [Hausdorf/Hennig, 2010, p. 493] as follows:  

“[The distance is] defined as one minus the proportion of alleles shared by 2 individuals averaged over loci. Loci 
with missing values are not considered in the pairwise distance calculation. In the presence of missing values, this 
distance measure is not necessarily a metric.”  
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For the distance calculation, the R package fpc of [Hausdorf/Hennig, 2010] was used with the 
distance introduced by [Bowcock et al., 1994].  
The first DBS visualization implied the existence of 8 clusters and two pairs of outliers. Hence, 
100 trials of Pswarm projection and DBS clustering with k=10 clusters were generated, and the 
best one (i.e., the one with the smallest Delaunay clustering error (DCE)) was chosen (Figure 
11.7). The silhouette plot indicates a hyperspherical cluster structure (Figure 11.6) and the 
heatmap of the distances in Figure 11.9 confirmed the DBS clustering. This application of DBS 
illustrated the possibility of using multiple swarms by means of parallel computing, for which 
the term deep swarming (see [Ultsch, 2016b]) is introduced in this work in analogy to deep 
learning [Goodfellow et al., 2016]. Additionally, using the prabclus package, the largest within-
cluster gap, the cluster separation, and the average within-cluster dissimilarity of [Hennig, 
2014] were calculated to be 0.5, 0.33 and 0.29, respectively. These values are the minima 
reported in [Hennig, 2014], presented there in Fig. 4. Seven clusters of the average linkage 
hierarchical clustering with ten clusters ([Hennig, 2014, p. 5]) could be reproduced  (see 
supplement H) with a total accuracy of 93%. Finally, as Figure 11.8 shows, the clusters strongly 
depend on the geographic origins of the bees: 

“Longitude (x-axis) and latitude (y-axis) of locations of individuals in decimal format, i.e. one number is latitude 
(negative values are South), with minutes and seconds converted to fractions. The other number is longitude (neg-
ative values are West)” (see [Hennig, 2014] and the prabclus package). 

 After the transformation into a two-dimensional plane Figure 11.8 shows that the first eight 
clusters (96% of data) are consistent with the geography (top) except for the Outliers in 
Queensland (bottom). The dependency on geography was also illustrated in [Franck et al., 2004, 
p. 2319]. 

 

Figure 11.6:  Silhouette plot of the Tetragonula data set, showing very homogeneous cluster structures because 
most of the data points (y-axis) are above a value of 0.5 (x-axis). 



134 DBS on Natural Data Sets 
 

 

Figure 11.7:  Topographic map of the DBS clustering of the Tetragonula data set with the best DCE shows eight 
clusters and three groups of outliers. The cluster labels are colored as shown on the right, and a 
similar color code is used in Figure 11.8 below. Clusters are ordered sequentially by the number of 
samples such that in cluster 1 lies the bee species with the highest occurrence. 
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Figure 11.8:  Clustering is consistent with the geographic origins: The first eight clusters (96% of data) are 
consistent with the geography (top) except for the Outliers in Queensland (bottom). Pictures were 
generated using the ggmap CRAN package. 
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Figure 11.9:  Heatmap of the distances for the Tetragonula data set shows large intercluster distances.
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12 Knowledge Discovery with DBS 

In contrast to chapter 11, in which Databionic swarm (DBS) clustering was applied to recognize 
more or less obvious knowledge, this chapter shows that DBS is also able to discover new 
knowledge. A hydrological data set of multivariate time series [Aubert et al., 2016] and a data 
set consisting of pain genes [Ultsch et al., 2016b] are used for this purpose. In [Aubert et al., 
2016], a high-frequency time series analysis was performed, but no prediction could be made. 
Here, the focus is placed on daily frequency. 
The analysis of [Ultsch et al., 2016b] concentrated on chronic pain, and for that reason, it re-
quired searching for candidate genes that modulate pain chronification. This chapter, however, 
focuses on defining the distances between genes and grouping genes by semantic similarity, 
which can be explained based on overrepresentation analysis (ORA) [Backes et al., 2007]. 

12.1 Hydrology 

“Human activities modify the global nitrogen cycle, particularly through farming. These practices have unintended 
consequences; for example, nitrate lost from terrestrial runoff to streams and estuaries can impact aquatic life” 
[Aubert et al., 2016]. 

A greater understanding of water quality variations can improve the evaluation of the state of 
water bodies and lead to better recommendations for appropriate and efficient management 
practices [Cirmo/McDonnell, 1997]. Accordingly, the objective here is to predict water quality 
in the Schwingbach catchment73 using the currently available variables related to chemical wa-
ter quality: nitrate and (electrical) conductivity (N&C) which is a part of the science of hydrol-
ogy. Electrical conductivity is a measure that reflects the water quality as a whole; this is be-
cause it indicates the variations in the presence of ions other than nitrate in the water body 
[Aubert, 2015]. Nitrate in water bodies is partially responsible for the phenomenon of eutroph-
ication [Diaz, 2001]. Eutrophication occurs when an excess of nutrients (i.e., nitrate) leads to 
uncontrollable growth of aquatic plant life, followed by a depletion of the dissolved oxygen 
[Diaz, 2001; Howarth et al., 1996]. For this reason, the nitrate concentration is one of the pa-
rameters used to evaluate water quality. 

“The available dataset contained in total 32,196 data points for each of the 14 variables (in total, 4% missing 
data). For technical reasons, no nitrate data were available during winter, so the actual time span of nitrate mon-
itoring was 05 March 2013 12:45 to 24 September 2013 12:30 and 27 April 2014 00:00 to 23 October 13:15. Data 
were analyzed as a whole, without differentiating between the hydrological years” [Aubert et al., 2016]. 

Conductivity, in particular, will be explained using another set of variables, which are indicators 
of hydrological and biological conditions. In contrast to the temporal high-frequency analysis 
(with 15-minute intervals) of [Aubert et al., 2016], here, the daily courses for each variable 
were calculated as the sums of all daily measurements, resulting in a low-frequency analysis. 
The missing values were imputed using the seven-nearest-neighbors approach. All variables 
were linearly decorrelated, and the logarithms of the variables q13 and q18 were calculated. 
Subsequently, all variables, with the exception of rain, were normalized to values between zero 

                                                      
73  A catchment is a dynamic system, and current observations depend on previous hydrological states [Aubert et 

al., 2016].   

© The Author(s) 2018
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and one through robust normalization. The outliers in the rain variable were detected via ABC 
analysis [Ultsch/Lötsch, 2015]: in the ABC analysis, rain was normalized with respect to the 
minimum value in group A and then all points in group A were set to a value of 1.1 for rain, 
and. After feature selection the data set had in 12 variables over 343 days. 
The preprocessed daily courses are shown in Figure 12.1. The preprocessing resulted in Euclid-
ean distances with a multimodal distribution (Figure 12.2). The first mode represents the intra-
cluster distances, and the second mode represents the intercluster distances (see also chapter 3, 
Figure 3.1). 
DBS was used for visualization and clustering. The outliers were marked interactively, resulting 
in five classes (Figure 12.4). The clusters have small intracluster distances and high intercluster 
distances, as visualized using DBS (Figure 12.4) and confirmed by the heatmap (Figure 12.4). 
The silhouette plot shows that all clusters can be well modeled as hyperspheres (Figure 12.3). 

 

Figure 12.1:  Variances of variables after preprocessing and feature extraction visualized using boxplots after the 
preprocessing of the hydrology data set. 
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Figure 12.2:  Distribution analysis of the distances. The first mode represents the intracluster distances, and the 
second mode represents the intercluster distances (for further explanation see chapter 3, Figure 3.1). 

 

Figure 12.3:  Silhouette plot of the DBS clustering set indicates that data points (y-axis) above a value of 0.5  
(x-axis) have been assigned to an appropriate cluster. 
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Figure 12.4:  Five clusters are shown in the topographic map of DBS of the Hydrology data set. For 3D print see 
supplement G, Figure G.24. 

 

Figure 12.5:  The five clusters have clearly distinctive distances, as shown by the heatmap; there are small 
distances within each cluster and large distances between the clusters. 
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Figure 12.6:  Classification and Regression Tree (CART) analysis rules for the hydrology data set with the five 
clusters identified by DBS. Applying the rules to the clustering combined with the data set results 
in three misclassified points (0.9%). Abbreviations: rainfall intensity (rain), soil temperature (St24), 
soil moisture (Smoist24), groundwater level at point 3 (GWl3). All values are expressed as 
percentages. 

12.1.1 Knowledge Acquisition and Prediction in the Hydrology Data Set 

Here, the rules extracted from the Classification and Regression Tree (CART) decision tree, as 
shown in Figure 12.6, were applied to the clustering. In comparison to the DBS clustering, the 
application of the CART rules to the data set results in the misclassification of three data points 
(0.9%). Based on this finding, it can be said that the rules precisely classify the data set (Figure 
12.6). The generated rules are listed in Table 12.1. 

Table 12.1:  The CART rules based on Figure 12.6, in which the clusters of Figure 12.4 are used. Abbreviations: 
rainfall intensity (rain), soil temperature (St24), soil moisture (Smoist24), groundwater level at point 
3 (GWl3). All values are expressed as percentages. 

Rule No. DBS Cluster No. No. of Days Rule 

R1 1 223 if rain < 0.5 and St24 ൒ 0.29 and Smoist24 < 0.73 

R2 4 7 if rain < 0.5 and St24൒ 0.29 and Smoist24 ൒ 0.73 

R3 3 21 if rain < 0.5 and St24 < 0.29 

R4 2 87 if rain ൒ 0.5 and GWl3 < 0.72 

R5 5 5 if rain ൒ 0.5 and GWl3 ൒ 0.72 
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The N&C measurements can be described by two variables related to biological processes, 
namely, soil temperature and soil moisture, and two variables related to hydrological processes, 
namely, rainfall intensity and groundwater level at point 3, which represents downslope condi-
tions. Temperature influences the activities of living organisms, such as soil microbial organ-
isms [Zak et al., 1999]. Soil moisture determines microbial activities, such as long-term inac-
tivity in dried soil followed by wetting [Borken/Matzner, 2009]. The groundwater level (or 
head, in m) is the main factor driving discharge in a catchment [Orlowski et al., 2014]. Rainfall 
intensity triggers discharge and affects soil moisture as well as leaching of nutrients [Orlowski 
et al., 2014]. 
A thorough examination of the CART results based on the five distinguishing rules R (Tab. 1) 
yields the following classes C: 
C1/R1:  Low rain, higher soil temperature, lower soil moisture  => DryDays WetHotGround 
C2/R4:  High rain, lower downslope groundwater level           => Rain Shower 
C3/R3:  Low rain, low soil temperature             => DryDays Cold Ground 
C4/R2:  Low rain, higher soil temperature, high soil moisture   => DryDays DryHotGround 
C5/R5:  High rain, high downslope groundwater level           => Rainy Days 
With regard to N&C, these classes can be distinguished as follows: the first two classes (green 
and blue) are responsible for normal N&C, the third class (magenta) is associated with low 
N&C, and the fourth and fifth classes (teal and black) are responsible for high N&C (Figure 
12.7). 
After a rain shower or on dry days when the ground is wet and hot, the N&C concentrations are 
normal. The N&C concentrations are high (above 50%) on rainy days, when the downslope 
groundwater level is above 72%. The N&C concentration is low (<25%) on dry days (below 
50% rain) when the ground is cold (below 29% of the maximum ground temperature). These 
definitions enable future predictions of daily N&C concentrations.  
It is assumed here that the structures associated with the 5 clusters described by these classes 
are defined by discontinuities. Consequently, the clusters should contain samples of different 
natures and based on different processes. Given this assumption, it is valid to statistically test 
whether the N&C distributions significantly differ between clusters. The Kolmogorov–Smirnov 
test (KS test) is a nonparametric two-sample test of the null hypothesis that two variables are 
drawn from the same continuous distribution [Conover, 1971, pp. 309-314], and it is imple-
mented in the R language [R Development Core Team, 2008]. 
The statistical results are shown in supplement F, Tab. 1 and 2. All N&C distributions signifi-
cantly differ between clusters, with the exception of cluster 4 compared with 5, for both varia-
bles. 
 



Pain Genes 143 
 

 

 

Figure 12.7:  Boxplots of the five classes with regard to nitrate N (top) and conductivity C (bottom). All values 
are expressed as percentages. 

12.2 Pain Genes 

In [Ultsch et al., 2016b], a set of genes with relevance to pain74 was obtained from four sources, 
and the search of several databases and studies (e.g., the Pain Genes Database, the PubMed 
database) was described in detail. This search yielded a set of n = 535 genes, subsequently 
referred to as pain genes in [Ultsch et al., 2016b]. 
After accessing the Gene Ontology (GO) database in this work, 528 of the pain genes were 
found to be annotated, and the remaining seven genes were disregarded in the subsequent anal-
ysis (feature selection). Various types of annotation (evidence codes) are possible. When the 
inverse document frequency idf is used [Sparck Jones, 1972], the distances between these genes 
are defined as follows (as discussed in [Ultsch, 2014b]): 
Let the documents be represented by GO terms T, and let the terms used to calculate idf be 
represented by the genes G, which are coded with numbers defined by the National Center for 
Biotechnology Information (NCBI) [NCBI, 2013]; the term frequency tf is then the frequency 
of occurrence of a gene in a given document divided by the maximal occurrence of the gene in 
any document: 

                                                      
74 “An unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described 

in terms of such damage” [Merskey/Bogduk, 1994]. 
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,ܩሺ݂ݐ ܶሻ ൌ
݂ሺܩ, ܶሻ

maxሺ݂ሻ
ሺ1ሻ 

If only manually curated evidence codes are used for annotation, then ݂ݐሺܩ, ܶሻ	= 1. 
Let N be the number of GO terms to which the pain genes are annotated, and let ݊݅ be the 
number of GO terms to which a pain gene with a given NCBI number is annotated; then, the 
inverse document frequency is defined as 

݅݀ ௜݂ ൌ ݃݋݈ ൬1 ൅
ܰ
݊௜
൰ ሺ2ሻ 

and the term frequency–inverse document frequency is defined as 
݂݂݀݅ݐ ൌ ,ܩሺ݂ݐ ܶሻ ∗ ݅݀ ௜݂ ൌ 1 ∗ ݅݀ ௜݂ ሺ3ሻ 

A gene that is annotated to only some GO terms is more meaningful than one that is annotated 
to almost every or only a few GO terms . Hence, the inverse document frequency reduces the 
weights of genes that occur very frequently among the GO terms and increases the weight of 
genes that occur rarely. The distance D between two genes l and j is defined as the absolute 
distance in terms of idf: 

,ሺ݈ܦ ݆ሻ ൌ ሺ݅݀ݏܾܽ ௟݂ െ ݅݀ ௝݂ሻ ሺ4ሻ 
This distance was used to generate the DBS visualization shown in Figure 12.9, and clustering 
was automatically performed after the identification of 8 clusters in the visualization. The clus-
ters are verified by the heatmap presented in Figure 12.10 and the Silhouette plot in Figure 12.8. 
 

 

Figure 12.8: Silhouette plot of the DBS clustering of pain genes. Most of clusters of pain genes can be modeled 
as hyperspheres. However, cluster 6 has a different high-dimensional structure. 
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Figure 12.9:  Topographic map of DBS clustering of 528 pain genes. Clusters 1 and 3 and clusters 2 and 4 are 
very similar to each other. Cluster 6, labeled in yellow, consists of outliers. The counts per cluster, 
from 1 to 8, are 72, 99, 75, 133, 53, 21, 58, and 17. For 3D print see supplement G, Figure G.25. 

 

Figure 12.10:  Heatmap of the distances with regard to the 8 identified clusters of pain genes, which verifies that 
the clustering is sound. Clusters 1 and 3 and clusters 2 and 4 are very similar to each other. Cluster 
6 is clearly defined by outliers. 
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12.2.1 Prior Knowledge 

The pain genes were analyzed by means of ORA, revealing several important functions, as 
listed below. If the distance definition and DBS clustering were applied correctly to the pain 
genes data set, it should be possible to rediscover structures that are already known from two 
main publications on this topic. [Lötsch et al., 2013] defined twelve functions of pain for 460 
pain genes (Figure 12.11) [Lötsch et al., 2013]: 

1.)  regulation of localization 
2.)  behavior 
3.)  response to wounding 
4.)  response to organic substance 
5.)  cellular ion homeostasis 
6.)  ion transport 
7.)  synaptic transmission 
8.)  G protein-coupled receptor protein signaling pathway 
9.)  intracellular signal transduction 
10.)  positive regulation of biological process 
11.)  regulation of system process 
12.)  anatomical structure development 

Additionally, in 2016, twelve chronification functions of 535 pain genes were identified [Ultsch 
et al., 2016b]: 

1.)  single-organism cellular process 
2.)  biological regulation 
3.)  cell communication 
4.)  cellular response to stimulus 
5.)  localization 
6.)  response to stress 
7.)  phosphorus metabolic process 
8.)  nervous system development 
9.)  cell death 
10.)  single-organism behavior 
11.)  cellular ion homeostasis 
12.)  rhythmic process 

With the aim of reproducing the knowledge listed above, for every cluster in Figure 12.9, ORA 
was performed using the R package ORA [Lippmann et al., 2016]. The resulting p-values were 
filtered via ABC analysis, and thereafter, only group A was considered for interpretation (see 
chapter 9 for further details). 

12.2.2 Knowledge Acquisition in Clusters of Pain Genes 

DBS identified eight clusters75 of genes (Figure 12.9). For each cluster, an ORA was performed. 
In contrast to the standard approach, in which the Bonferroni correction [Perneger, 1998] is 

                                                      
75  After inspection of the functional areas in the eight ORA results, the eight clusters could be reduced to six (for 

details, see Tab. 2 
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often used, here, the p-values of the GO terms in the ORA results were filtered via ABC analysis 
[Ultsch/Lötsch, 2015]. The Bonferroni correction reduces the alpha error of significance, but it 
may cause valid results to be disregarded because the beta error simultaneously increases (for 
extensive discussions, see [Button et al., 2013; Nuzzo, 2014; Perneger, 1998]. Here, it is argued 
that in the special case of ORA, the p-values also represent the effect strength. Therefore, the 
adjustments to the significance threshold made by the Bonferroni correction are unnecessary. 
In contrast to the standard approach, ABC analysis was used to identify the most important GO 
terms as those assigned to group A, which had the highest effect strength. After the reduction 
of the directed acyclic graph (DAG) using this approach, the functional areas identified in [Lö-
tsch et al., 2013] and [Ultsch et al., 2016b] were found to be associated with three of the classes 
(Table 12.2). 
Considering the prior knowledge regarding pain functions and pain chronification, the follow-
ing clusters could be combined: cluster 1 and cluster 3 were combined to class C1*, and cluster 
2 and cluster 4 were combined into class C2*, because they showed similar functions and were 
separated only by low borders in the topographic map with hypsometric tints (Figure 12.9). 
Hence, it was possible to identify five classes with different semantic characterizations, plus 
one class of outliers (Tab. 2). Class C1* predominantly describes the pain functions of cells and 
reproduces knowledge presented in section 11.2.1. The main class (C2*) describes the molec-
ular transport and signaling of pain, also reproducing prior knowledge about the pain genes. 
class C5 represents the downregulation of metabolic processes and the upregulation of the cre-
atine metabolic process, which is a new discovery enabled by the DBS clustering. Class C6 
describes outliers that are not relevant to the ORA-based DAG — these outliers are surrounded 
by very large hills in Figure 12.9. Class C7 characterizes the response and regulation systems 
as well as the upregulation of the phosphorus metabolic process, effectively reproducing the 
results of [Lötsch et al., 2013] and [Ultsch et al., 2016b]. The final class, C8, could represent 
hematopoietic stem cell differentiation. In summary, these clusters reproduce the previously 
identified functions of pain genes as described in section 11.2.1. In addition, new insights can 
also be found from class C5 and perhaps class C8. 

 

Figure 12.11:  The biological process of pain with the twelve functions of pain genes [Lötsch et al., 2013]. 
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Table 12.2:  Semantic characterization of the eight clusters of pain genes and the connections to prior knowledge. 
Downregulation is indicated as underlined, and new functional areas [Ultsch/Lötsch, 2014] are indicated in 
italics. The following clusters in Figure 12.9 were combined with the aid of prior knowledge: C1 and C3 were 
combined into C1*, and C2 and C4 were combined into C2*. 

ORA 
Parameters 

Clas
s. 

No. of 
Genes 

Semantic Meaning as Defined by GO 
Terms in ORA 

Semantic  
Characterization 

RAW and 
Bonferroni, 
minimum 
number of 
genes=10 

C1* 147 single-organism cellular process 
cell communication 
cellular response to stimulus 
localization 
cell death 
cellular ion homeostasis 
nervous system development 
single-organism behavior 
rhythmic process 

intracellular signal transduction 
anatomical structure development 

cellular ion homeostasis 

Pain functions of cells 

RAW and 
Bonferroni, 
minimum 
number of 
genes=10 

C2* 232 synaptic transmission 
ion transport 
G protein-coupled receptor signaling 
pathway 
transmembrane transport 

Molecular transport and signaling 

RAW C5 53 creatine metabolic process 
metabolic process 

Downregulation of metabolic processes and 
upregulation of the creatine metabolic process 

RAW C6 21 None Outliers 
RAW and 
Bonferroni, 
minimum 
number of 
genes=2 

C7 58 response to stress 
phosphorus metabolic process 

behavior 
positive regulation of biological process 
response to organic substance 
response to wounding 
regulation of localization 
regulation of system process 

Response and regulation systems as well as  
upregulation of the phosphorus metabolic  
process 

RAW C8 17 hematopoietic stem cell differentiation Hematopoietic stem cell differentiation 
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13 Discussion 

This work examined and analyzed patterns in high-dimensional data characterized by disconti-
nuity. Such distance- or density-based patterns are either compact or connected structures. If 
the structures are compact, inter- versus intracluster distances are relevant. If they are con-
nected, then density relations and neighborhoods play an important role. Here, it was demon-
strated that the neighborhood of a point can always be defined based on graph theory. If the 
neighborhoods are defined based only on distance, then the structure is compact and a Euclidean 
graph can be used. If the structure is connected, then two subtypes can be deduced from graph 
theory: direction-based and unidirectional neighborhoods. 
In the context of cluster analysis, structures induced by discontinuities lead to natural clusters, 
as elaborated in chapter 3. The definition of discontinuity in high-dimensional data, presented 
in chapter 2, enables the generalization of spatial separation, which was described by [Handl et 
al.] as a third category of clustering criteria [Handl et al., 2005, p. 3202]. Here, in contrast to 
[Handl et al., 2005], it is argued that there is no distinction between connected and spatially 
separated structures or between compact and spatially separated structures76. Instead, the third 
category (spatial separation) can be generalized as the prerequisite for natural clusters defined 
by either compact or connected structures. It was discussed in chapter 3 that, through the appli-
cation of basic principles founded on graph theory, clustering algorithms usually search for 
clusters with a predefined structure. However, it is not always clear which structures are sought 
because the objective functions that are optimized can be mathematically very difficult to un-
derstand. An extensive evaluation of the objective functions found in the literature supports this 
argument and implies two subtypes of structures sought by common clustering algorithms, 
called direction-based and unidirectional structures. The assumptions put forward in chapter 3 
(Figure 3.5) were verified in chapter 10 (Table 10.1) using data sets from the Fundamental 
Clustering Problems Suite (FCPS). A question arises regarding how one can choose a clustering 
algorithm that assumes the correct type of cluster structure for a high-dimensional data set with-
out prior knowledge. Here, it is suggested that dimensionality reduction methods for generating 
(two-dimensional) projections may help solve this problem. 
This work has demonstrated that the objective functions used in clustering and projection meth-
ods and the quality measures (QMs) used to evaluate them are based on the fundamental dis-
tinction between connected and compact structures. The conclusion is that when the task is to 
achieve a structure-preserving visualization or clustering, the optimization of an objective func-
tion could yield misleading results if the underlying structures of the high-dimensional data of 
interest are unknown. Hence, a completely different approach is required, which, in chapter 7, 
motivates an extensive review of the application of artificial intelligence in data science. In 
chapter 7, two interesting concepts are addressed, called self-organization and swarm intelli-
gence. Through self-organization, the irreducible structures of high-dimensional data can 
emerge, in a process defined as emergence in chapter 7. If properly applied using a swarm of 
intelligent agents, the approach presented in this work can outperform the optimization of an 
objective function for the tasks of clustering and dimensionality reduction. 

                                                      
76  In [Handl et al.], the three categories of clustering criteria were called connectedness, compactness and spatial 

separation [Handl et al., 2005, p. 3202].  
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The Databionic Swarm (DBS) method 

“[A clustering approach] must be adaptive or exhibit ‘plasticity,’ possibly allowing for the creation of new clusters, 
if the data warrants it. On the other hand, if the cluster structures are unstable […], then it is difficult to ascribe 
much significance to any particular clustering. This general problem has been called ‘the stability/plasticity di-
lemma’ ” [Duda et al., 2001, p. 559].  

The work presented herein introduces a clustering algorithm based on a swarm-based projection 
method combined with a human-understandable visualization technique. In terms of stability 
and plasticity (chapter 10, Figure 9.1), the Databionic swarm (DBS) framework outperforms 
common algorithms in clustering tasks on the FCPS.  

“One source of this dilemma is that with clustering based on a global criterion, every sample can have an influence 
on the location of a cluster center, regardless of how remote it might be” [Duda et al., 2001, p. 559].  

In contrast to standard approaches, swarm techniques are known for their properties of flexibil-
ity and robustness [Bonabeau/Meyer, 2001; Şahin, 2004]. As a swarm technique, DBS cluster-
ing is robust with respect to outliers (see chapter 10). 
DBS is a flexible and robust clustering framework that consists of three independent modules. 
The first module is the parameter-free projection method Pswarm, which exploits the concepts 
of self-organization and emergence, game theory, swarm intelligence and symmetry consider-
ations. The second module is a parameter-free high-dimensional data visualization technique, 
which generates projected points on a topographic map with hypsometric colors, called the 
generalized U-matrix. The third module is a clustering method with no sensitive parameters. 
The clustering can be verified by the visualization and vice versa. The term DBS refers to the 
method as a whole. DBS enables even a non-professional in the field of data mining to apply 
its algorithms for visualization and/or clustering to data sets with completely different structures 
drawn from diverse research fields, simply by downloading the corresponding R package 
[Thrun, 2017]. 
Each module of DBS was compared with various competing algorithms, and in the majority of 
cases, the modules outperformed those algorithms. However, the author of this work concurs 
with [Coretto/Hennig, 2016] that despite one’s best intentions and efforts to conduct fair com-
parisons of various methods of visualization, projection and clustering, “ultimately it would be 
good to have comparisons of methods run by researchers who did not have their hand in the 
design of any of the methods”; this is because “(simulation) studies can always be designed that 
make any method ‘win.’ ” The author also agrees with [Coretto/Hennig, 2016] that “readers 
need to make up their own mind about to what extent our study covered situations that are 
important to them.”  
With these considerations in mind, DBS was particularly designed to be flexible and to allow 
the modules to be interchangeable. An expert in the field of data mining may prefer a method 
with a clear optimization strategy or may not require the entire DBS framework for his/her 
application. The interchangeability of the modules is useful in such a case. For example, it is 
possible to use the visualization and clustering module with NeRV instead of Pswarm. Alter-
natively, a user could cluster a data set using his/her preferred clustering algorithm and then 
verify the clusters visually using Pswarm and the generalized U-matrix. As another example, a 
user could use Pswarm and its clustering algorithm with no visualization, by setting the number 
of clusters with the aid of the dendrogram of the swarm-defined distances. In summary, the 
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projection based clustering framework proposed here is a user-friendly platform for the visual-
ization of high-dimensional structures and/or for clustering with no sensitive parameters.77 

Clustering with DBS 

“[T]he majority of clustering algorithms […] impose a clustering structure on the data set X, even though X may 
not possess such a structure” [Theodoridis/Koutroumbas, 2009, p. 863]. 

 Additionally, they may return meaningless results in the absence of natural clusters [Cormack, 
1971, pp. 345-346; Handl et al., 2005, p. 3203; Jain/Dubes, 1988, p. 75]. The results presented 
in this work illustrate that the DBS algorithm does not suffer from these two disadvantages. 
The DBS algorithm makes it possible to apply the abstract U-matrix (AU-matrix) [Lö-
tsch/Ultsch, 2014] to a Pswarm projection instead of an emergent self-organizing map (ESOM) 
projection. The new clustering approach of DBS is defined by using the shortest-path distances 
[Dijkstra, 1959] of the AU-matrix and a hierarchical approach to clustering. In contrast to 
swarm-organized projection (SOP) and ESOM, this approach does not require any parameters 
except the number of clusters and a two-option parameter that specifies the cluster structure as 
being either compact or connected (see chapter 3 for details). “One of the most difficult deci-
sions to make is the number of clusters” [Everitt et al., 2001, p. 179]. In DBS, the number of 
clusters and the cluster structure can be easily estimated from a careful examination of the topo-
graphic map (by counting the valleys) and with the help of a dendrogram. If the number of 
clusters and the cluster structure are chosen properly, then the clusters in the topographic map 
will be well separated by mountains. 
It is argued here that DBS clustering should be semi-interactive and requires user supervision 
to achieve the best possible results. Nevertheless, the results of automatic DBS clustering with 
no user intervention were also compared with the results of the common clustering algorithms 
k-means [MacQueen, 1967], partitioning around medoids (PAM) [L. Kaufman/Rousseeuw, 
1990], single linkage (SL) [Florek et al., 1951] and spectral clustering [Ng et al., 2002] as well 
as two state-of-the-art clustering algorithms: the mixture of Gaussians (MoG) method [Fra-
ley/Raftery, 2002] and the Ward algorithm [Ward Jr, 1963]. “Several of the comparative studies 
[…] conclude that Ward’s method […] outperforms other hierarchical clustering methods” 
[Jain/Dubes, 1988, p. 81]. MoG clustering, which is also known as model-based clustering, 
serves as the reference technique [Bouveyron/Brunet-Saumard, 2014]. Clustering algorithms 
such as DBscan [Ester et al., 1996] or the ESOM/U-matrix approach [Ultsch et al., 2016a] 
require additional sensitive and continuous parameters and were omitted from the comparison 
for that reason. Every clustering algorithm was applied using the default parameter settings and 
the correct number of clusters. Calculations were performed for 100 trials on the FCPS data 
sets [Ultsch, 2005c]. 
The main result achieved in the work presented herein concerns the error rates of the clustering 
algorithms tested in these trials. As already stated throughout this work, clustering algorithms 
often predefine the structure of the clusters they seek; e.g., for PAM and k-means, the shape is 
round, and thus, the structure is compact. Therefore, these algorithms failed on the Chainlink 
and Atom data sets. In addition, the k-means and spectral clustering algorithms showed large 

                                                      
77 After this work it was also made available in [Thrun et al., 2017, Thrun/Ultsch, 2017a]. 
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variances in their results on the Hepta and Target data sets. It is known that the k-means algo-
rithm sometimes strongly depends on the order of objects in a data set [L. R. Kauf-
man/Rousseeuw, 2005, p. 114], which may be the cause of the large variance in the results. 
This variance was shown through several examples for the spectral clustering algorithm, in 
which case the results were strongly trial-dependent, even when the parameter settings remain 
unchanged. The MoG method yielded results of comparably good quality to those of DBS, but 
it still failed in the case of the Lsun3D data set (in the sense that it showed a large variance) and 
in the case of the Target data set and its outliers. The MoG approach uses the expectation max-
imization (EM) algorithm, which is known to be subject to such problems on univariate data 
sets [Ultsch et al., 2015]. Notably, only “if the underlying distribution comes from a mixture of 
component densities described by a set of unknown parameters” can it be estimated using MoG 
approaches [Duda et al., 2001, e.g. p. 581]. This is the case for the FCPS data sets, resulting in 
high performance of the MoG algorithm. However, natural data sets do not necessarily satis-
fyhave to meet this assumption. Additionally, the MoG method fails if the dimensionality of 
the data set is too high (chapter 3). 
The automatic DBS clustering showed a small variance in its results and yielded good accuracy 
for all data sets. In contrast to all other approaches, in every trial in which the clustering accu-
racy of DBS was worse than that of some other algorithm, its performance could be improved 
by using the semi-interactive approach. The reason for this ability to improve the results of DBS 
lies in the main advantage of DBS clustering, namely, the possibility of verifying the clustering 
results through visualization, as described below. For a clustering algorithm, it is relevant to 
test for the absence of a cluster structure [Everitt et al., 2001, p. 180], or the clustering tendency 
[Theodoridis/Koutroumbas, 2009, p. 896]. Usually, tests for the clustering tendency rely on 
statistical tests [Theodoridis/Koutroumbas, 2009, p. 896]. Unlike other hierarchical clustering 
algorithms (except for ESOM/U-matrix clustering [Ultsch et al., 2016a]), the DBS algorithm 
finds no clusters if no natural clusters exist. The clustering tendency is visualized by the gener-
alized U-matrix. 

Generalized U-matrix visualization and structure preservation 
The technique of producing visualizations in the form of a two-dimensional scatter plot of pro-
jected points currently remains the state of the art in cluster analysis (e.g., [Hennig et al., 2015, 
pp. 119-120, 683-684; Ritter, 2014, p. 223]). However, such a two-dimensional visualization 
can lead to a misleading interpretation of the underlying structures because the low-dimensional 
similarities do not completely represent the high-dimensional distances in two dimensions. Two 
types of error have been identified in the literature (see chapter 5): forward projection error 
(FPE) and backward projection error (BPE) [Aupetit, 2007; Ultsch/Herrmann, 2005; Venna et 
al., 2010]. In addition to these errors, this work introduces the concept of structure preservation, 
which is the preservation of high-dimensional discontinuities such that no points are allowed to 
intrude into the discontinuity regions of the two dimensional projection. 
The FPEs and BPEs were visualized for various projection methods using a two-dimensional 
gray-scale U-matrix visualization in [Ultsch/Mörchen, 2006]. Such a gray-scale U-matrix is the 
most commonly used method for displaying dissimilarities in SOMs [K. Tasdemir/Merenyi, 
2009, p. 550; Kadim Tasdemir/Merényi, 2012, p. 3]. Here, the idea was to “apply Self-Organ-
izing Map training without changing the best matching unit [prototype] assignment” 
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[Ultsch/Mörchen, 2006, pp. 3-4] through the transformation of projected points into best match-
ing units, as introduced in this work. Unlike the approach of Ultsch and Mörchen, the newly 
proposed simplified ESOM (sESOM) algorithm does not require a learning rate, and the cooling 
scheme is defined by a special neighborhood function based on symmetry considerations, which 
results in a parameter-free algorithm (cf. [Ultsch/Mörchen, 2006, p. 4]). This makes it possible 
to visualize SOMs as topographic maps with hypsometric tints [Thrun et al., 2016a], which 
serves as a basis for a visualization technique that can be applied in combination with any pro-
jection method. The third dimension is used to visualize the local BPE and FPE around each 
projected point in precisely defined height-dependent colors, thereby giving rise to the gener-
alized U-matrix, which is a generalization of the U-map concept [Ultsch, 2003a]. 
Here, it is argued that the generalized U-matrix visualization of a topographic map (second 
DBS module) is able to visualize both compact and connected structures. In terms of the preser-
vation of high-dimensional structures, it is a suitable approach for visualizing the BPEs, FPEs 
and discontinuities in a data set. However, as shown in Fig. 5.6 in chapter 5, this visualization 
technique has certain limitations. If additional gaps with intruding points are added by the pro-
jection method, then the generalized U-matrix is not able to distinguish identical clusters from 
distinct ones. To the author’s knowledge, the only visualization that shows whether clusters 
have been disrupted uses a linear gray-scale approach based on a holistic solution called the 
proximity measure [Aupetit, 2007]. In the two-dimensional projected space, Voronoi cells are 
filled with brighter or darker luminances depending on their high-dimensional distances D to a 
reference point. “Points with bright cells are connected in the original space” [Aupetit, 2007, 
p. 17]. However, cluster disruption can only be successfully visualized when the user selects 
the correct reference point. To estimate the correct reference point for a projected space, addi-
tional visualizations of other measures, as introduced in this paper, must be used. Consequently, 
this process is both time-consuming and challenging and requires user supervision. 
Many quality criteria exist for evaluating the visualization of a scatter plot. Chapter 6 addressed 
the question of whether the currently existing QMs are able to measure structure preservation. 
By using a generalized, graph-theory-based definition for a neighborhood of points, it is possi-
ble to group the QMs based on their semantic characterization. Here, 19 common QMs were 
reviewed and grouped, and they were compared with regard to their ability to measure the 
structure preservation of a projection. It is argued here that the QMs that have been presented 
in the literature have difficulty correctly capturing the discontinuities in high-dimensional data 
because of their inherent assumptions regarding the underlying high-dimensional structures. 
This was shown using the Hepta and Chainlink data sets in supplement A. 
Otherwise, an objective function could be defined using the “best” QM, and it would always be 
possible to obtain a structure-preserving two-dimensional visualization by optimizing this ob-
jective function. In this work, no answer could be found to the question of how the quality of 
structure preservation can be automatically measured or visualized without prior knowledge. 
However, when a prior classification of the data is available, it can be used to evaluate the 
quality of structure preservation. The structures that should be preserved are defined by such a 
classification. A QM called the Delaunay classification error (DCE) was developed based on 
this concept; it allows projections to be ranked and normalized compared with a baseline and 
also enables statistical testing. 
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In summary, structure preservation depends on the chosen projection method; however, the task 
of choosing the correct projection method is challenging because the optimization of an objec-
tive function requires the predefinition of the structures to be visualized. The generalized U-
matrix is able to visualize the similarities and dissimilarities among high-dimensional data 
points in a scatter plot of the projected points (BPEs and FPEs), but it is unable to visualize the 
disruption of clusters, based on which the quality of structure preservation is defined. 

The projection method Pswarm 
The first module of the DBS framework is called Pswarm. Pswarm is a projection method that 
does not rely on an objective function. Similarly to SOP, Pswarm uses stigmergy and a swarm 
of DataBots because swarm techniques are known for their properties of flexibility and robust-
ness [Bonabeau/Meyer, 2001; Şahin, 2004]. However, in contrast to SOP, which uses an 
ESOM-like grid space, the environment of the DataBots in Pswarm has been redefined based 
on symmetry considerations [Feynman et al., 2007, pp. 147-153, 745], resulting in the use of 
polar coordinates on a toroidal hexagonal grid. The combination of symmetry considerations 
with game theory concepts endows the polar swarm (Pswarm) with a parameter-free annealing 
process and an automatically selected, data-driven grid size. 
The insights presented in chapter 7 demonstrate that Pswarm exhibits both self-organization 
and swarm intelligence. In the swarm-based techniques presented in the available literature, the 
swarms used for projection and/or clustering do not take advantage of both concepts (chapter 
7.3, Figure 7.4). Moreover, no other reported swarm method exploits game theory or the phe-
nomenon of emergence (as defined in chapter 7, section 3, after [Ultsch, 2007]). Here, the focus 
is placed on a subfield of dimensionality reduction in which projection methods are used for 
visualizing high-dimensional data in a two-dimensional space, as opposed to manifold learning 
methods, which are designed only to find manifolds, not to compress them into two-dimen-
sional space [Venna et al., 2010, p. 2]. 
Of the methods of projecting high-dimensional data into two-dimensional space, two stand out: 
Neighborhood Retrieval Visualizer (NeRV) [Venna et al., 2010] and ESOM [Ultsch, 1999]. 
NeRV optimizes the objective function that quantifies the cost, defined as information retrieval, 
with the goal of visualizing the similarity relationships between data points. NeRV attempts to 
achieve a faithful representation of the data in two dimensions by minimizing the BPE and FPE. 
The cost is a tradeoff between the FPE and BPE78, which is defined by the parameter ߣ. ESOM 
is an unsupervised neural learning algorithm and can be used as a projection method if a large 
number of neurons is specified. ESOM remains a reference tool for two-dimensional visualiza-
tion [Lee/Verleysen, 2007, p. 244]. Instead of an objective function, ESOM uses the powerful 
concept of emergence [Ultsch, 2007] in addition to the 3D visualization technique of [Thrun et 
al., 2016a], which is based on the U-matrix [Ultsch, 2003a]. Both NeRV and ESOM are state-
of-the-art methods for the visualization of high-dimensional data. 
Pswarm was compared with the following common projection methods: principal component 
analysis (PCA), curvilinear component analysis (CCA), t-distributed stochastic neighbor em-
bedding (t-SNE), ESOM, NeRV and the multidimensional scaling (MDS) technique of Sam-
mon mapping. Five artificial three-dimensional data sets from the FCPS were used to compare 
these projection methods because of their clearly defined natural clusters. Typically, the QMs 
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discussed in the literature indirectly assume that a projection method has a deterministic out-
come. A problem that has, thus far, remained undiscussed is the stochastic outcomes of some 
common projection methods, such as t-SNE and CCA. Therefore, the DCEs were calculated 
for 100 trials per projection method and data set. Thus, the outcomes of the projection methods 
could be statistically compared. To enable an unbiased comparison, the DCE requires a prior 
classification that defines the structures in a data set. However, as discussed by [Färber et al., 
2010], natural data sets may have more than one useful classification, depending on the context 
and the algorithm applied, because no universal definition of a cluster exists [Hennig, 2015b, 
p. 705]. Therefore, the evaluation of different projections methods by DCE only makes sense 
on artificial data sets with predefined natural clusters (see chapter 9). This is a major limitation 
of the DCE QM. 
It was shown that the two-dimensional projections generated by Pswarm are comparable to 
those produced by the state-of-the-art methods NeRV and ESOM. To the author’s knowledge, 
every projection method considered here (except ESOM and SOP) optimizes an objective func-
tion, which may lead to the disadvantages discussed above. Moreover, some projection meth-
ods, such as ESOM and CCA, use a sophisticated annealing scheme that may be sensitive to 
one or more parameters or have one or more sensitive parameters themselves (e.g., ߣ in NeRV). 
Examples are given in chapter 10.2, Tab. 10.1. In contrast to NeRV, Pswarm is not sensitive to 
any parameter or, as in the case of ESOM, to an annealing scheme and lattice size. It was shown 
that a projection with minimal BPE and FPE values does not necessarily achieve structure 
preservation. In the case of NeRV, it was shown that this algorithm is sensitive to its random 
initialization process (chapter 5, Fig. 5.6, and chapter 10). Venna et al. also proposed an alter-
native PCA-based initialization [Venna et al., 2010, p. 459], which in itself makes prior as-
sumptions regarding the relevant structures of the high-dimensional data79, as illustrated by the 
baseline used to analyze the DCE results (see chapter 10.2 Figure 10.5). Unlike NeRV, Pswarm 
does not visualize cluster structures if such structures do not exist in the data, as in the case of 
the Golf Ball data set (or the various continuous data sets presented in supplement D); moreo-
ver, because Pswarm is a swarm-based technique, it is more robust to the random initialization 
process (e.g., the DBS visualization of the leukemia data set in chapter 11, Figure 10.1). 
In the third section of chapter 10, the SOP algorithm is emphasized because it is another method 
based on a swarm of DataBots, as introduced in [Herrmann, 2009]. In [Herrmann, 2011], it was 
shown that SOP is nearly as good as or even better than the best of its carefully parameterized 
competitor methods, namely, CCA, t-SNE and ESOM, in terms of the 1-nearest-neighbor clas-
sification accuracy and the specially formulated dispersion measure of [Herrmann, 2011, 
p. 101]. It was also noted that these methods resulted in severe misrepresentations of the struc-
tures for several data sets, which was not the case for SOP (see also the scatter plots in section 
A2 of [Herrmann, 2011, pp. 158-161]). 
Notably, the annealing process of the SOP algorithm is not truly self-adaptive; rather, it is pa-
rameterized, which can lead to severe errors in the projections. In the best case, the choice of 
the lattice size and, therefore, the maximal neighborhood radius as well as the choices of the 
two magic numbers (the jumping DataBots threshold and the maximum number of iterations) 
in the SOP algorithm have only a minor effect on the visualization of the high-dimensional 
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structures (as in the cases of the Atom and Chainlink data sets). In the worst case, as for the 
EngyTime or Iris data set, all structures are prevented from emerging. Moreover, in the case of 
EngyTime, it was shown that when there is no restriction ensuring that no more than one Data-
Bot can occupy each lattice position, the information about the high-dimensional structure is 
lost. Unlike the dispersion measure and 1-nearest-neighbor classification approach of 
Herrmann, in comparison with SOP and based on a topographic map of projected points, the 
visualizations presented in this work illustrate important improvements achieved by Pswarm, 
which are described in the last section of chapter 10. 
Several examples were presented to demonstrate that the process leading to emergence is dis-
rupted in the SOP algorithm. Other swarms do not exhibit self-organization but instead rely on 
the optimization of an objective function, which makes emergence impossible. To the author’s 
knowledge, the game theory approach to behavior-based systems remains undiscussed in the 
available literature on artificial intelligence in data science. The naturally clustered Wine, Swiss 
Banknotes and Iris data sets all illustrate the importance of consistent and appropriate defini-
tions of the neighborhoods, scents, grid or lattice size and data-driven annealing scheme used 
for clustering and projection. If these definitions are oblique, as is the case for SOP, then the 
self-organization of the DataBots is disrupted. The ultimate disruption of the process leading to 
emergence may be minor (Swiss Banknotes) or major (Wine, Iris), depending on the data set 
and the specific trial. For the Wine data set, Pswarm gains an advantage because of the ability 
to choose different a distance whereas the SOP algorithm does not. [Herrmann, 2011, p. 65]. 
Pswarm allows the user to define a non-metric distance method without any restrictions. 
The correct selection of the parameters for the annealing scheme requires an experienced user. 
For example, it was shown that with the default settings, the ESOM algorithm sometimes pro-
jects three, instead of two, clusters for the Atom data set (chapter 5, Fig. 5.6). To further sub-
stantiate this argument, additional ESOM projections generated with the default parameters are 
presented in Supplement E. For example, it is necessary to change the lattice type from toroidal 
(default) to planar to achieve a correct projection of the Wing Nut data set. If the default pa-
rameters are not changed, the structures are very difficult to see. Disruption of the clusters can 
be seen in the ESOM/U-matrix visualizations of the Iris, Wine, and Swiss Banknotes data sets, 
in which one or more of the other eight parameters play an important role (see supplement C 
for these U-matrix visualizations). 
Thus, it is argued here that the ESOM/U-matrix projections of the EngyTime, Wing Nut, Iris, 
Wine and Swiss Banknotes data sets may be misleading because the toroidal ESOM projections 
are computed without accounting for symmetry considerations, which results in unwanted 

boundary effects. For example, the maximal radius is set to the diagonal length80 √ܮଶ ൅  ଶܥ
instead of ܮ	/	2, which leads to overlapping of the neighborhoods if the neighborhood function 
is defined as Gaussian. Several examples illustrate that the uniform distribution used in the 
ESOM and SOP algorithms has no advantages; however, it may have some disadvantages. The 
attempt to distribute the projected points uniformly on the lattice is useful only if a visualization 
method is able to reveal the high-dimensional structures of the data. For this reason, the U-
matrix visualization [Ultsch, 2003a] is mandatory for ESOM projections. In other cases, uni-
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formly distributed projected points do not lead to new knowledge about the data set. By con-
trast, for the generalized U-matrix, there is no requirement for the projected points to be uni-
formly distributed. Consequently, Pswarm outperforms ESOM on density-based data sets such 
as EngyTime. 
Being a swarm-based method, DBS suffers from the disadvantage of high computational costs. 
When the number of DataBots81 is greater than 4000, the use of Pswarm is impractical because 
of the long calculation time. Further research is necessary on the application of game theory as 
the foundation for a data-driven annealing scheme. At this point, it can be proven only that a 
weak Nash equilibrium will be found [Nash, 1951], which may be the reason for the high vari-
ance observed in the DCE results (chapter 10, section 2). Only with DBS clustering can the 
variance of the results be noticeably improved. The structures of 14 of the investigated data sets 
were preserved using Pswarm (chapters 10 and 11). 
The main drawbacks of the proposed approach are as follows. If no prior classification is avail-
able for a data set, then the use of DCE measure is limited. Thus, it is very difficult to evaluate 
whether Pswarm and the generalized U-matrix produce a structure-preserving visualization or 
whether the clusters are disrupted in the visualization. Additionally, the variance of the results 
remains high: because it is a stochastic projection method, two different trials of Pswarm could 
yield different visualizations of the same data set. If the number of clusters is known before-
hand, deep swarming may be able to solve this problem, as the Tetragonula data set demon-
strated82. Moreover, it should be possible for the swarm to iteratively add new data points during 
or after the algorithm following a well-defined process. At present, the Pswarm algorithm is 
unable to do this. Briefly, it was demonstrated in sections 2 and 3 of chapter 10 that finding the 
correct grid or lattice size and annealing scheme for ESOM/SOP may be challenging. It should 
be emphasized that unlike SOP and, especially, ESOM (see supplement C and E), Pswarm is 
able to successfully project density-based data sets. The comparison between Pswarm and the 
other common projection methods with their default parameter settings resulted in two major 
findings. First, the state-of-the-art methods ESOM and NeRV do not outperform Pswarm, and 
second, Pswarm has one important advantage, namely, that it is parameter-free. However, if 
prior knowledge of the data set to be analyzed is available, then a projection method that is 
appropriately chosen with regard to the structures that should be preserved will always outper-
form Pswarm. Furthermore, other projection methods may also outperform Pswarm if their set-
tings are carefully selected by an experienced user. In summary, to the author’s knowledge, 
Pswarm is the first swarm-based technique to show emergent properties while simultaneously 
combining swarm intelligence, self-organization and game theory. 

Knowledge discovery with DBS 
Up to this point, mainly artificial data sets have been used to assess the capabilities of DBS. In 
the case of natural data sets, only the prior classifications were considered. However, the intro-
duction of a new clustering method is necessary only if it is useful. Therefore, three complex 
real world data sets were first analyzed using DBS to confirm its ability to reproduce known 
knowledge. Subsequently, two high-dimensional data sets were clustered using DBS to obtain 
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82  for details see next section or chapter 11, section 3. 
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new knowledge. The silhouette plots and the heatmaps, which showed small intracluster dis-
tances and large intercluster distances, indicated that the clustering results for all five data sets 
were valid. 
The visualization and connected clustering of the high-dimensional83 leukemia data set, which 
contains clearly defined natural clusters (see chapter 3), successfully reproduced the diagnoses 
of three types of leukemia: acute myeloid leukemia (AML), acute promyelocytic leukemia 
(APL) and chronic lymphocytic leukemia (CLL). Aside from two outliers (patients), the prior 
classification of healthy patients and patients diagnosed with the three leukemia subtypes was 
reproduced by the DBS clustering and visualization. The two outlier patients may be misdiag-
nosed; however, a future publication will address this diagnostic problem. Chapter 6 showed 
that aside from ESOM, no other common projection method was able to visualize the prede-
fined cluster structure of this data set. Similarly, in chapter 3, it was demonstrated that common 
clustering algorithms failed to correctly cluster the leukemia data set, with the exception of the 
Ward algorithm, which was not able to find the two outliers. 
When the dynamic time-warping distance definition was applied on a data set consisting of the 
gross domestic product (GDP) per capita in 190 countries for the years 1970–2010, two clusters 
and one outlier were found using DBS. Upon the application of Classification and Regression 
Tree (CART) analysis, it was found that the two clusters could be explained as being distin-
guished by the influence of the tragic event of planes crashing into the World Trade Center in 
2001. 
DBS found 10 clusters in the Tetragonula data set, as verified by the heatmap and silhouette 
plot. When the largest within-cluster gap, the cluster separation, and the average within-cluster 
dissimilarity of [Hennig, 2014] were calculated, the resulting values were the minima reported 
in [Hennig, 2014], presented there in Fig. 4. The 10 identified clusters strongly depended on 
the locations of the bees (chapter 11, Figure 11.8). Additionally, the application of DBS to this 
data set illustrated the possibility of using multiple swarms by means of parallel computing, for 
which the term deep swarming (see [Ultsch, 2016b]) is introduced here in analogy to deep 
learning [Goodfellow et al., 2016]. Here, deep swarming was applied with a DCE-based objec-
tive function, but it can also be applied in combination with any arbitrary objective function. 
For the hydrology data set, the daily courses were analyzed. After preprocessing, DBS identi-
fied five distinct clusters (chapter 12, Figure 11.4), which were verified by the heatmap and 
silhouette plot. The rules extracted from a CART decision tree were applied to the clustering of 
this data set and found to result in the misclassification of 0.9% of the points (chapter 12, Figure 
12.6). Five different water quality states in terms of nitrate concentration and electrical conduc-
tivity were identified based on a semantic characterization of these clusters (chapter 12, Figure 
12.7). The extracted rules enable the prediction of future nitrate and electrical conductivity con-
ditions. 
For the pain gene data set, focus was placed on the task of clustering the pain genes. The dis-
tances between genes were defined based on the inverse document frequency (idf) [Sparck 
Jones, 1972] and the information available in the Gene Ontology (GO) database. The DBS 
clustering resulted in eight clusters (Figure 12.9). Five clusters reproduced the previously 
known functions of the pain genes (Tab 12.2), as described in section 12.2.1. Outliers were 
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found in two clusters, and one cluster yielded new discoveries regarding the functions of pain 
genes (Tab 12.2, C5). This cluster was characterized by the downregulation of metabolic pro-
cesses and the upregulation of the creatine metabolic process. 

“The experience from many knowledge discovery tasks ([Behnisch/Ultsch, 2009; Kupas et al., 2004; Lötsch/Ultsch, 
2013; Mörchen et al., 2005]) is that about 80% of clusters coincide with known processes. Typically about 10% 
may be attributed to erroneous data, while the remaining 10% may generate entirely new knowledge” 
[Behnisch/Ultsch, 2015, p. 68].  

This experience is consistent with the findings obtained in the above examples. Two domain 
experts found the results presented above to be valid and useful. 
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14 Conclusion 

A new and data-driven approach for cluster analysis and visualization is introduced in this work. 
The projection based clustering combines structures preserved in two dimensions with under-
lying high-dimensional structures (see also [Thrun et al., 2017, Thrun/Ultsch, 2017a]). It is a 
flexible and robust approach for cluster analysis that consists of three independent modules 
which can be optionally combined into the Databionic swarm (DBS). Here, the attention is 
focused on data for which the generation process is complete and for which the size and amount 
of information can be managed using a personal computer with standard hardware; conse-
quently, the realm of Big Data is not discussed here. To the author’s knowledge, DBS is the 
first swarm-based technique showing emergent properties while simultaneously exploiting the 
concepts of swarm intelligence, self-organization and the Nash equilibrium concept from game 
theory, which results in the elimination of a global objective function and of the setting of pa-
rameters. 
Alternatively, the visualization by the generalized Umatrix and the DBS clustering can be ap-
plied to every projection method for connected or compact structures based on discontinuities 
of high-dimensional data [Thrun/Ultsch, 2017a]. Through the use of the generalized Umatrix 
visualization, results of common clustering methods can be verified by the structures found by 
the data-driven Pswarm or any other projection method. 
This work introduced the fundamental principle of considering compact versus connected struc-
tures in the clustering of data. However, in this context, only unsupervised indices, called QMs 
for projection methods, were analyzed. A similar analysis of supervised indices should be con-
ducted in the future with the help of the FCPS. There is sufficient literature available to do so 
(e.g., [Charrad et al., 2012; Dimitriadou et al., 2002; Handl et al., 2005]). 
Another goal of future research should be to find a strong Nash equilibrium. However, a strong 
Nash equilibrium is mathematically difficult to prove. In the opinion of the author, if each Data-
Bot were able to assess all possible jump positions in a given neighborhood instead of only 
four, then a strong Nash equilibrium could be achieved. However, the time complexity of this 
approach is too high for practical testing unless the algorithm is parallelized. Additionally, deep 
swarming should be extensively tested. 
Symmetry considerations were applied to the two-dimensional toroidal output space, resulting 
in the use of polar coordinates in the DBS framework. Additionally, it should be possible to 
explore and exploit connections with solid-state physics. Perhaps it would be beneficial to de-
fine the Bravais lattice, apply a Fourier transformation to the reciprocal lattice [Hunklinger, 
2009, pp. 83-88], and perform calculations in the reciprocal space, where boundary effects 
could be easily eliminated and a low computational time complexity could be achieved. 
Further research on these possibilities is required.

© The Author(s) 2018
M. C. Thrun, Projection-Based Clustering through Self-Organization 
and Swarm Intelligence, https://doi.org/10.1007/978-3-658-20540-9_14



License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 
reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if changes were made. 
The images or other third party material in this chapter are included in the chapter’s Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, 
you will need to obtain permission directly from the copyright holder.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International



References 

[Abraham et al., 2006]  Abraham, A., Guo, H., & Liu, H.: Swarm intelligence: foundations, perspectives and 
applications, In Nedjah, N. & Mourelle, L. d. M. (Eds.), Swarm Intelligent Systems, pp. 3-25, Springer, 2006. 

[Aeberhard et al., 1992]  Aeberhard, S., Coomans, D., & De Vel, O.: Comparison of classifiers in high dimen-
sional settings, Dept. Math. Statist., James Cook Univ., North Queensland, Australia, Tech. Rep, Vol. (92-
02), 1992. 

[Aho et al., 2014]  Aho, K., Derryberry, D., & Peterson, T.: Model selection for ecologists: the worldviews of 
AIC and BIC, Ecology, Vol. 95(3), pp. 631-636, 2014. 

[Aikins, 1983]  Aikins, J. S.: Prototypical knowledge for expert systems, Artificial intelligence, Vol. 20(2), pp. 
163-210, 1983. 

[Akkucuk/Carroll, 2006]  Akkucuk, U., & Carroll, J. D.: PARAMAP vs. Isomap: a comparison of two nonlinear 
mapping algorithms, Journal of Classification, Vol. 23(2), pp. 221-254, 2006. 

[Alhoniemi, et al., 2005] Alhoniemi E., Himberg J., Parhankangas, J. & Vesanto J.: SOM Toolbox 2.1, in 
Matlab under GPL, http://www.cis.hut.fi/projects/somtoolbox/, Version 2.1, Retrieved 10.10.2015, 2005. 

[Anderson, 1935]  Anderson, E.: The Irises of the Gaspé Peninsula, Bulletin of the American Iris Society, Vol. 59, 
pp. 2-5, 1935. 

[Aparna/Nair, 2014]  Aparna, K., & Nair, M. K.: Enhancement of K-Means algorithm using ACO as an optimi-
zation technique on high dimensional data, Proc. International Conference on Electronics and Communica-
tion Systems (ICECS), pp. 1-5, IEEE, 2014. 

[Arabie et al., 1996]  Arabie, P., Hubert, L. J., & De Soete, G.: Clustering and classification, Singapore, World 
Scientific, ISBN: 9810212879, 1996. 

[Arimond/Elfessi, 2001]  Arimond, G., & Elfessi, A.: A clustering method for categorical data in tourism market 
segmentation research, Journal of Travel Research, Vol. 39(4), pp. 391-397. 2001. 

[Arumugam et al., 2005]  Arumugam, M. S., Chandramohan, A., & Rao, M.: Competitive approaches to PSO 
algorithms via new acceleration co-efficient variant with mutation operators, Proc. Sixth International Con-
ference on Computational Intelligence and Multimedia Applications (ICCIMA’05), pp. 225-230, IEEE, 
2005. 

[Asar et al., 2014]  Asar, Ö., Ilk, O., & Dag, O.: Estimating Box-Cox power transformation parameter via good-
ness of fit tests, Communications in Statistics-Simulation and Computation, Vol.46.1, pp. 91-105, 2014. 

[Ashburner et al., 2000]  Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., . . . 
Eppig, J. T.: Gene Ontology: tool for the unification of biology, Nature genetics, Vol. 25(1), pp. 25-29, 2000. 

[Aubert, 2015]  Aubert, A. H.: “Introduction into hydrology variables”, personal correspondence, 21.04.2015, 
2015. 

[Aubert et al., 2016]  Aubert, A. H., Thrun, M. C., Breuer, L., & Ultsch, A.: Knowledge discovery from high-
frequency stream nitrate concentrations: hydrology and biology contributions, Scientific reports, Vol. 
6(31536), doi 10.1038/srep31536, 2016. 

[Aupetit, 2003]  Aupetit, M.: Robust Topology Representing Networks, Proc. ESANN, pp. 45-50, 2003. 

[Aupetit, 2007]  Aupetit, M.: Visualizing distortions and recovering topology in continuous projection techniques, 
Neurocomputing, Vol. 70(7), pp. 1304-1330, 2007. 

[Backes et al., 2007]  Backes, C., Keller, A., Kuentzer, J., Kneissl, B., Comtesse, N., Elnakady, Y. A., . . . 
Lenhof, H.-P.: GeneTrail—advanced gene set enrichment analysis, Nucleic acids research, Vol. 35(suppl 
2), pp. W186-W192, 2007. 

[Baggenstoss, 2002]  Baggenstoss, p. M.: Statistical modeling using gaussian mixtures and HMMs with Matlab, 
Naval Undersea Warfare Center, Newport RI, 2002. 

[Basu et al., 2008]  Basu, S., Davidson, I., & Wagstaff, K.: Constrained clustering: Advances in algorithms, 
theory, and applications, CRC Press, ISBN: 1584889977, 2008. 

[Bauer et al., 1999]  Bauer, H.-U., Herrmann, M., & Villmann, T.: Neural maps and topographic vector quan-
tization, Neural networks, Vol. 12(4), pp. 659-676, 1999. 

[Bauer/Pawelzik, 1992]  Bauer, H.-U., & Pawelzik, K. R.: Quantifying the neighborhood preservation of self-
organizing feature maps, Neural Networks, IEEE Transactions on, Vol. 3(4), pp. 570-579, 1992. 

© The Author(s) 2018
M. C. Thrun, Projection-Based Clustering through Self-Organization 
and Swarm Intelligence, https://doi.org/10.1007/978-3-658-20540-9



164 References 
 

[Beaton et al., 2010]  Beaton, D., Valova, I., & MacLean, D.: CQoCO: A measure for comparative quality of 
coverage and organization for self-organizing maps, Neurocomputing, Vol. 73(10), pp. 2147-2159, 2010. 

[Beckers et al., 1994]  Beckers, R., Holland, O., & Deneubourg, J.-L.: From local actions to global tasks: 
Stigmergy and collective robotics, Proc. Artificial life IV, Vol. 181, pp. 189, 1994. 

[Behnisch/Ultsch, 2009]  Behnisch, M., & Ultsch, A.: Urban data-mining: spatiotemporal exploration of multidi-
mensional data, Building Research & Information, Vol. 37(5-6), pp. 520-532, 2009. 

[Behnisch/Ultsch, 2015]  Behnisch, M., & Ultsch, A.: Knowledge Discovery in Spatial Planning Data: A Concept 
for Cluster Understanding, Computational Approaches for Urban Environments, pp. 49-75, Springer, 2015. 

[Bellman, 1957]  Bellman, R.: Dynamic programming: Princeton Univ. press, Princeton, 1957. 
[Bene et al., 1995]  Bene, M., Castoldi, G., Knapp, W., Ludwig, W., Matutes, E., Orfao, A., & Van't Veer, 

M.: Proposals for the immunological classification of acute leukemias. European Group for the Immunolog-
ical Characterization of Leukemias (EGIL), Leukemia, Vol. 9(10), pp. 1783-1786. 1995. 

[Bennett et al., 1985]  Bennett, J. M., Catovsky, D., Daniel, M. T., Flandrin, G., Galton, D. A., Gralnick, H. 
R., & Sultan, C.: Proposed revised criteria for the classification of acute myeloid leukemia A report of the 
French-American-British Cooperative Group, Annals of internal medicine, Vol. 103(4), pp. 620-625. 1985. 

[Beni, 2004]  Beni, G.: From swarm intelligence to swarm robotics, Proc. International Workshop on Swarm 
Robotics, pp. 1-9, Springer, 2004. 

[Beni/Wang, 1989]  Beni, G., & Wang, J.: Swarm Intelligence in Cellular Robotic Systems, Proc. NATO Ad-
vanced Workshop on Robots and Biological Systems, Tuscany, Italy, 1989. 

[Beni/Wang, 1993]  Beni, G., & Wang, J.: Swarm intelligence in cellular robotic systems, Robots and Biological 
Systems: Towards a New Bionics?, pp. 703-712, Springer, 1993. 

[Benyus, 2002]  Benyus, J.: Biomimicry: innovation inspired by design, New York: Harper Perennial, 2002. 

[Bezdek/Pal, 1993]  Bezdek, J. C., & Pal, N. R.: An index of topological preservation and its application to self-
organizing feature maps, Proc. Neural Networks, 1993. IJCNN’93-Nagoya. Proceedings of 1993 Interna-
tional Joint Conference on, Vol. 3, pp. 2435-2440, IEEE, 1993. 

[Bezdek/R Pal, 1995]  Bezdek, J. C., & R Pal, N.: An index of topological preservation for feature extraction, 
Pattern Recognition, Vol. 28(3), pp. 381-391, 1995. 

[Bishop, 2006]  Bishop, C. M.: Pattern recognition, Machine Learning, Vol. 128,  2006. 

[Bock, 1974]  Bock, H. H.: Automatische Klassifikation: Theoret. u. prakt. Methoden z. Gruppierung u. 
Strukturierung von Daten (Cluster-Analyse), (Vol. XXIV), Göttingen, Germany, Vandenhoeck & Ruprecht, 
ISBN: 3-525-40130-2, 1974. 

[Bogon, 2013]  Bogon, T.:Agentenbasierte Schwarmintelligenz, (Phd Dissertation ), Springer-Verlag, Trier, 
Germany, 2013. 

[Bonabeau et al., 1999]  Bonabeau, E., Dorigo, M., & Theraulaz, G.: Swarm intelligence: from natural to arti-
ficial systems, New York, Oxford University Press, ISBN: 978-0-19-513159-8, 1999. 

[Bonabeau/Meyer, 2001]  Bonabeau, E., & Meyer, C.: Swarm intelligence: A whole new way to think about 
business, Harvard business review, Vol. 79(5), pp. 106-115, 2001. 

[Borken/Matzner, 2009]  Borken, W., & Matzner, E.: Reappraisal of drying and wetting effects on C and N 
mineralization and fluxes in soils, Global Change Biology, Vol. 15(4), pp. 808-824, 2009. 

[Bouveyron/Brunet-Saumard, 2014]  Bouveyron, C., & Brunet-Saumard, C.: Model-based clustering of high-
dimensional data: A review, Computational Statistics & Data Analysis, Vol. 71, pp. 52-78, 2014. 

[Bouveyron et al., 2012]  Bouveyron, C., Hammer, B., & Villmann, T.: Recent developments in clustering al-
gorithms, Proc. ESANN, Citeseer, 2012. 

[Bowcock et al., 1994]  Bowcock, A. M., Ruiz-Linares, A., Tomfohrde, J., Minch, E., Kidd, J. R., & Cavalli-
Sforza, L. L.: High resolution of human evolutionary trees with polymorphic microsatellites, Nature, Vol. 
368(6470), pp. 455-457, 1994. 

[Breiman et al., 1984]  Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A.: Classification and regression 
trees, CRC press, ISBN: 0412048418, 1984. 

[Brendel, 2016]  Brendel, C.: “About the Statements of Consent”, personal correspondence, 18.11.2016, 2016. 

[Brito et al., 1997]  Brito, M., Chávez, E., Quiroz, A., & Yukich, J.: Connectivity of the mutual k-nearest-
neighbor graph in clustering and outlier detection, Statistics & Probability Letters, Vol. 35(1), pp. 33-42, 
1997. 



References 165 
 

[Bronstein et al., 2005]  Bronstein, I. N., Hromkovic, J., Luderer, B., Schwarz, H.-R., Blath, J., Schied, A., . . 
. Zeidler, E.: Taschenbuch der mathematik, (6th edition ed. Vol. 1), Springer-Verlag, ISBN: 3-8171-2006-0, 
2005. 

[Brooks, 1991]  Brooks, R. A.: Intelligence without representation, Artificial intelligence, Vol. 47(1), pp. 139-159, 
1991. 

[Buhl et al., 2006]  Buhl, J., Sumpter, D. J., Couzin, I. D., Hale, J. J., Despland, E., Miller, E., & Simpson, S. 
J.: From disorder to order in marching locusts, Science, Vol. 312(5778), pp. 1402-1406, 2006. 

[Bunte et al., 2012]  Bunte, K., Biehl, M., & Hammer, B.: A general framework for dimensionality-reducing data 
visualization mapping, Neural Computation, Vol. 24(3), pp. 771-804, 2012. 

[Button et al., 2013]  Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & 
Munafò, M. R.: Power failure: why small sample size undermines the reliability of neuroscience, Nature 
Reviews Neuroscience, Vol. 14(5), pp. 365-376, 2013. 

[Camon et al., 2003]  Camon, E., Magrane, M., Barrell, D., Binns, D., Fleischmann, W., Kersey, P., . . . Cox, 
A.: The gene ontology annotation (GOA) project: implementation of GO in SWISS-PROT, TrEMBL, and 
InterPro, Genome research, Vol. 13(4), pp. 662-672, 2003. 

[Camon et al., 2004]  Camon, E., Magrane, M., Barrell, D., Lee, V., Dimmer, E., Maslen, J., . . . Apweiler, 
R.: The gene ontology annotation (goa) database: sharing knowledge in uniprot with gene ontology, Nucleic 
acids research, Vol. 32(suppl 1), pp. D262-D266, 2004. 

[Cao et al., 1997]  Cao, Y. U., Fukunaga, A. S., & Kahng, A.: Cooperative mobile robotics: Antecedents and 
directions, Autonomous robots, Vol. 4(1), pp. 7-27, 1997. 

[Charrad et al., 2012]  Charrad, M., Ghazzali, N., Boiteau, V., & Niknafs, A.: NbClust Package: finding the 
relevant number of clusters in a dataset, Journal of statistical Software, Vol. 61(6), doi 10.18637/jss.v061.i06, 
2012. 

[Chen/Buja, 2006]  Chen, L., & Buja, A.:Local multidimensional scaling for nonlinear dimensionality reduction, 
graph layout, and proximity analysis, (PhD thesis), University of Pennsylviana, USA, 2006. 

[Chen/Buja, 2009]  Chen, L., & Buja, A.: Local multidimensional scaling for nonlinear dimension reduction, 
graph drawing, and proximity analysis, Journal of the American Statistical Association, Vol. 104(485), pp. 
209-219, 2009. 

[Cheng, 1997]  Cheng, Y.: Convergence and ordering of Kohonen’s batch map, Neural Computation, Vol. 9(8), 
pp. 1667-1676, 1997. 

[Cirmo/McDonnell, 1997]  Cirmo, C. P., & McDonnell, J. J.: Linking the hydrologic and biogeochemical con-
trols of nitrogen transport in near-stream zones of temperate-forested catchments: a review, Journal of Hy-
drology, Vol. 199(1), pp. 88-120, 1997. 

[Clark et al., 1990]  Clark, B. N., Colbourn, C. J., & Johnson, D. S.: Unit disk graphs, Discrete mathematics, 
Vol. 86(1-3), pp. 165-177, 1990. 

[Colorimetry, 2004]  Colorimetry.C.I.E., CIE Publication,Central Bureau of the CIE, Vienna, 2004. 

[Conover, 1971]  Conover, W. J.: Practical nonparametric statistics, New York, USA, John Wiley & Sons, ISBN, 
1971. 

[Coretto/Hennig, 2016]  Coretto, P., & Hennig, C.: Robust improper maximum likelihood: tuning, computation, 
and a comparison with other methods for robust Gaussian clustering, Journal of the American Statistical 
Association, Vol. 111(516), pp. 1648-1659, 2016. 

[Cormack, 1971]  Cormack, R. M.: A review of classification, Journal of the Royal Statistical Society. Series A 
(General), pp. 321-367, 1971. 

[Cottrell, 1996]  Cottrell, M.: A {K} ohonen Map Representation to Avoid Misleading Interpretations, Proc., D 
facto conference services, 1996. 

[Cottrell et al., 2016]  Cottrell, M., Olteanu, M., Rossi, F., & Villa-Vialaneix, N.: Theoretical and applied aspects 
of the self-organizing maps, Advances in Self-Organizing Maps and Learning Vector Quantization, pp. 3-26, 
Springer, 2016. 

[de Buitléir et al., 2012]  de Buitléir, A., Russell, M., & Daly, M.: Wains: A pattern-seeking artificial life species, 
Artificial Life, Vol. 18(4), pp. 399-423, 2012. 

[Delaunay, 1934]  Delaunay, B.: Sur la sphere vide, Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i 
Estestvennyka Nauk, Vol. 7(793-800), pp. 1-2, 1934. 



166 References 
 

[Demartines/Hérault, 1995]  Demartines, P., & Hérault, J.: CCA:” Curvilinear component analysis”, Proc. 15° 
Colloque sur le traitement du signal et des images, FRA, 1995, Vol. 199, GRETSI, Groupe d’Etudes du 
Traitement du Signal et des Images, 1995. 

[Deneubourg et al., 1991]  Deneubourg, J.-L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., & Chré-
tien, L.: The dynamics of collective sorting robot-like ants and ant-like robots, Proc. Proceedings of the first 
international conference on simulation of adaptive behavior on From animals to animats, pp. 356-363, 1991. 

[Diaz, 2001]  Diaz, R. J.: Overview of hypoxia around the world, Journal of environmental quality, Vol. 30(2), 
pp. 275-281, 2001. 

[Dijkstra, 1959]  Dijkstra, E. W.: A note on two problems in connexion with graphs, Numerische mathematik, 
Vol. 1(1), pp. 269-271, 1959. 

[Dimitriadou et al., 2002]  Dimitriadou, E., Dolničar, S., & Weingessel, A.: An examination of indexes for 
determining the number of clusters in binary data sets, Psychometrika, Vol. 67(1), pp. 137-159, 2002. 

[Dimitriadou/Hornik 2017] Dimitriadou, E. & Kurt Hornik: cclust: Convex Clustering Methods and 
Clustering Indexes, in R under GPL-2, Version 0.6-21, https://cran.r-project.org/web/packages/cclust/in-
dex.html, 2017.  

[Dirac, 1981]  Dirac, p. A. M.: The principles of quantum mechanics, Oxford university press, ISBN: 0198520115, 
1981. 

[Doherty et al., 2006]  Doherty, K., Adams, R., & Davey, N.: Topological correlation, Proc. ESANN, pp. 125-
130, Citeseer, 2006. 

[Drygas, 1978]  Drygas, H.: Über multidimensionale Skalierung, Statistical Papers, Vol. 19(1), pp. 63-66, 1978. 

[Duda et al., 2001]  Duda, R. O., Hart, p. E., & Stork, D. G.: Pattern classification, (Second Edition ed.), Ney 
York, USA, John Wiley & Sons, ISBN: 0-471-05669-3, 2001. 

[Durbin/Mitchison, 1990]  Durbin, R., & Mitchison, G.: A dimension reduction framework for understanding 
cortical maps, Nature, Vol. 343(6259), pp. 644-647, 1990. 

[Eberhart et al., 2001]  Eberhart, R. C., Shi, Y., & Kennedy, J.: Swarm Intelligence (The Morgan Kaufmann 
Series in Evolutionary Computation), Elsevier, 2001. 

[Esmin et al., 2015]  Esmin, A. A., Coelho, R. A., & Matwin, S.: A review on particle swarm optimization 
algorithm and its variants to clustering high-dimensional data, Artificial Intelligence Review, Vol. 44(1), pp. 
23-45, 2015. 

[Ester et al., 1996]  Ester, M., Kriegel, H.-P., Sander, J., & Xu, X.: A density-based algorithm for discovering 
clusters in large spatial databases with noise, Proc. Kdd, Vol. 96, pp. 226-231, 1996. 

[Everitt et al., 2001]  Everitt, B. S., Landau, S., & Leese, M.: Cluster analysis, (McAllister, L. Ed. Fourth Edition 
ed.), London, Arnold, ISBN: 0 340 76119 9, 2001. 

[Färber et al., 2010]  Färber, I., Günnemann, S., Kriegel, H.-P., Kröger, P., Müller, E., Schubert, E., . . . 
Zimek, A.: On using class-labels in evaluation of clusterings, Proc. MultiClust: 1st international workshop 
on discovering, summarizing and using multiple clusterings held in conjunction with KDD, pp. 1, 2010. 

[Fathian/Amiri, 2008]  Fathian, M., & Amiri, B.: A honeybee-mating approach for cluster analysis, The Interna-
tional Journal of Advanced Manufacturing Technology, Vol. 38(7-8), pp. 809-821, 2008. 

[Fayyad et al., 1996]  Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., & Uthurusamy, R.: Advances in 
knowledge discovery and data mining, (Vol. 21), Menlo Park, California, USA, American Association for 
Artificial Intelligence press, ISBN: 0-262-56ß97-6, 1996. 

[Feynman et al., 2006]  Feynman, R. P., Leighton, R. B., & Sands, M.: Quantenmechanik, (Köhler, K.-H., 
Schröder, K.-E. & Beckmann, W. B. P., Trans. 5th Edition: Definitive Edition ed. Vol. 3), Munich, Germany, 
Oldenbourg Verlag, ISBN: 978-3-486-58108-6, 2006. 

[Feynman et al., 2007]  Feynman, R. P., Leighton, R. B., & Sands, M.: Mechanik, Strahlung, Wärme, (Köhler, 
K.-H., Schröder, K.-E. & Beckmann, W. B. P., Trans. 5th Edition: Definitive Edition ed. Vol. 1), Munich, 
Germany, Oldenbourg Verlag, ISBN: 978-3-486-58108-9, 2007. 

[Fisher, 1936]  Fisher, R. A.: The use of multiple measurements in taxonomic problems, Annals of eugenics, Vol. 
7(2), pp. 179-188, 1936. 

[Florek et al., 1951]  Florek, K., Łukaszewicz, J., Perkal, J., Steinhaus, H., & Zubrzycki, S.: Sur la liaison et 
la division des points d’un ensemble fini, Proc. Colloquium Mathematicae, Vol. 2, pp. 282-285, Institute of 
Mathematics Polish Academy of Sciences, 1951. 



References 167 
 

[Flury/Riedwyl, 1988]  Flury, B., & Riedwyl, H.: Multivariate statistics, a practical approach, London, Chapman 
and Hall, ISBN, 1988. 

[Forest, 1990]  Forest, S.: Emergent computation: self-organizing, collective, and cooperative phenomena in nat-
ural and artificial computing networks, Physica D, Vol. 42, pp. 1-11, 1990. 

[Fort et al., 2001]  Fort, J.-C., Cottrell, M., & Letremy, P.: Stochastic on-line algorithm versus batch algorithm 
for quantization and self organizing maps, Proc. Neural Networks for Signal Processing XI, 2001. Proceed-
ings of the 2001 IEEE Signal Processing Society Workshop, pp. 43-52, IEEE, 2001. 

[Fraley/Raftery, 2002]  Fraley, C., & Raftery, A. E.: Model-based clustering, discriminant analysis, and density 
estimation, Journal of the American Statistical Association, Vol. 97(458), pp. 611-631, 2002. 

[Fraley/Raftery, 2006]  Fraley, C., & Raftery, A. E.MCLUST version 3: an R package for normal mixture mod-
eling and model-based clustering,DTIC Document, 2006. 

[Fraley et al., 2017] Fraley, C., Raftery, A.E., Scrucca, L., Murphy, T.B. & Fop, M.: mclust: Gaussian 
Mixture Modelling for Model-Based Clustering, Classification, and Density Estimation, in R under GPL-3, 
Version 5.3, https://cran.r-project.org/web/packages/mclust/index.html, 2017. 

[Franck et al., 2004]  Franck, P., Cameron, E., Good, G., RASPLUS, J. Y., & Oldroyd, B.: Nest architecture 
and genetic differentiation in a species complex of Australian stingless bees, Molecular Ecology, Vol. 13(8), 
pp. 2317-2331, 2004. 

[Fraser, 2006]  Fraser, G.: The New Physics: For the Twenty-First Century, USA, Cambridge University Press, 
ISBN: 978-0-521-81600-9, 2006. 

[Gabriel/Sokal, 1969]  Gabriel, K. R., & Sokal, R. R.: A new statistical approach to geographic variation analysis, 
Systematic Biology, Vol. 18(3), pp. 259-278, 1969. 

[Garnier et al., 2007]  Garnier, S., Gautrais, J., & Theraulaz, G.: The biological principles of swarm intelligence, 
Swarm Intelligence, Vol. 1(1), pp. 3-31, 2007. 

[Ge et al., 2007]  Ge, R., Ester, M., Jin, W., & Davidson, I.: Constraint-driven clustering, Proc. Proceedings of 
the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 320-329, 
ACM, 2007. 

[Giorgino, 2009]  Giorgino, T.: Computing and visualizing dynamic time warping alignments in R: the dtw pack-
age, Journal of statistical Software, Vol. 31(7), pp. 1-24, 2009. 

[Giraldo et al., 2011]  Giraldo, L. F., Lozano, F., & Quijano, N.: Foraging theory for dimensionality reduction 
of clustered data, Machine Learning, Vol. 82(1), pp. 71-90, 2011. 

[Goeman/Mansmann, 2008]  Goeman, J. J., & Mansmann, U.: Multiple testing on the directed acyclic graph of 
gene ontology, Bioinformatics, Vol. 24(4), pp. 537-544, 2008. 

[Goldstein, 1999]  Goldstein, J.: Emergence as a construct: History and issues, Emergence, Vol. 1(1), pp. 49-
72.,1999. 

[Goodfellow et al., 2016]  Goodfellow, I., Bengio, Y., & Courville, A.: Deep learning, Cambridge, Massachu-
setts, USA, MIT press, ISBN, 2016. 

[Goodhill et al., 1995]  Goodhill, G. J., Finch, S., & Sejnowski, T. J.: Quantifying neighbourhood preservation 
in topographic mappings, Proceedings of the 3rd Joint Symposium on Neural Computation, Vol. 6, pp. 61-
82, 1995. 

[Gracia et al., 2014]  Gracia, A., González, S., Robles, V., & Menasalvas, E.: A methodology to compare Di-
mensionality Reduction algorithms in terms of loss of quality, Information Sciences, Vol. 270, pp. 1-27, 2014. 

[Grassberger/Procaccia, 1983]  Grassberger, P., & Procaccia, I.: Estimation of the Kolmogorov entropy from a 
chaotic signal, Physical review A, Vol. 28(4), pp. 2591-2593, 1983. 

[Grassé, 1959]  Grassé, P.-P.: La reconstruction du nid et les coordinations interindividuelles chezBellicositermes 
natalensis etCubitermes sp. la théorie de la stigmergie: Essai d’interprétation du comportement des termites 
constructeurs, Insectes sociaux, Vol. 6(1), pp. 41-80, 1959. 

[Grosan et al., 2006]  Grosan, C., Abraham, A., & Chis, M.: Swarm intelligence in data mining, Swarm Intelli-
gence in Data Mining, pp. 1-20, Springer, 2006. 

[Haferlach et al., 2010]  Haferlach, T., Kohlmann, A., Wieczorek, L., Basso, G., Te Kronnie, G., Béné, M.-
C., . . . Mills, K. I.: Clinical utility of microarray-based gene expression profiling in the diagnosis and sub-
classification of leukemia: report from the International Microarray Innovations in Leukemia Study Group, 
Journal of Clinical Oncology, Vol. 28(15), pp. 2529-2537, 2010. 



168 References 
 

[Häkkinen/Koikkalainen, 1997]  Häkkinen, E., & Koikkalainen, P.: SOM based visualization in data analysis, 
Artificial Neural Networks—ICANN’97, pp. 601-606, Springer, 1997. 

[Hamel/Brown, 2011]  Hamel, L., & Brown, C. W.: Improved interpretability of the unified distance matrix with 
connected components, Proc. 7th International Conference on Data Mining (DMIN’11), pp. 338-343, 2011. 

[Handl et al., 2006]  Handl, J., Knowles, J., & Dorigo, M.: Ant-based clustering and topographic mapping, 
Artificial Life, Vol. 12(1), pp. 35-62, 2006. 

[Handl et al., 2005]  Handl, J., Knowles, J., & Kell, D. B.: Computational cluster validation in post-genomic data 
analysis, Bioinformatics, Vol. 21(15), pp. 3201-3212, 2005. 

[Handl/Meyer, 2007]  Handl, J., & Meyer, B.: Ant-based and swarm-based clustering, Swarm Intelligence, Vol. 
1(2), pp. 95-113, 2007. 

[Hartigan, 1981]  Hartigan, J. A.: Consistency of single linkage for high-density clusters, Journal of the American 
Statistical Association, Vol. 76(374), pp. 388-394, 1981. 

[Hatna/Benenson, 2012]  Hatna, E., & Benenson, I.: The Schelling model of ethnic residential dynamics: Beyond 
the integrated-segregated dichotomy of patterns, Journal of Artificial Societies and Social Simulation, Vol. 
15(1), pp. 6, 2012. 

[Haug/Koch, 2004]  Haug, H., & Koch, S. W.: Quantum theory of the optical and electronic properties of semi-
conductors, (Edition, F. Ed.  Vol. 5), Singapore, World Scientific, ISBN: 13 978-981-283-883-4, 2004. 

[Hausdorf/Hennig, 2010]  Hausdorf, B., & Hennig, C.: Species delimitation using dominant and codominant 
multilocus markers, Systematic Biology, Vol. 59.5, pp. 491-503, 2010. 

[Havens et al., 2008]  Havens, T. C., Spain, C. J., Salmon, N. G., & Keller, J. M.: Roach infestation optimiza-
tion, Proc. Swarm Intelligence Symposium, 2008. SIS 2008. IEEE, pp. 1-7, IEEE, 2008. 

[Haykin, 1994]  Haykin, S.: Neural Networks: A comprehensive Foundation, Uppder Saddle River, NJ, Prentice-
Hall, ISBN: 0023527617, 1994. 

[Hennig, 2014]  Hennig, C.: How many bee species? A case study in determining the number of clusters, Data 
Analysis, Machine Learning and Knowledge Discovery, pp. 41-49, Springer, 2014. 

[Hennig, 2015a]  Hennig, C.: Clustering strategy and method selection, arXiv preprint arXiv:1503.02059, 2015. 

[Hennig, 2015b]  Hennig, C.: What are the true clusters?, Pattern Recognition Letters, Vol. 64, pp. 53-62, 2015. 

[Hennig et al., 2015]  Hennig, C., Meila, M., Murtagh, F., & Rocci, R.: Handbook of cluster analysis, New 
York, USA, CRC Press, ISBN: 9781466551893, 2015. 

[Herrmann, 2009]  Herrmann, L. Swarm-Organized Projection for Topographic Mapping, technical report, 
Philipps-Universität Marburg, Marburg, 2009. 

[Herrmann, 2011]  Herrmann, L.:Swarm-Organized Topographic Mapping, Doctoral dissertation, Philipps-Uni-
versität Marburg, Marburg, 2011. 

[Herrmann/Ultsch, 2008a]  Herrmann, L., & Ultsch, A.: The architecture of ant-based clustering to improve 
topographic mapping, Ant Colony Optimization and Swarm Intelligence, pp. 379-386, Springer, 2008. 

[Herrmann/Ultsch, 2008b]  Herrmann, L., & Ultsch, A.: An artificial life approach for semi-supervised Learning, 
Data Analysis, Machine Learning and Applications, pp. 139-146, Springer, 2008. 

[Herrmann/Ultsch, 2008c]  Herrmann, L., & Ultsch, A.: Explaining Ant-Based Clustering on the basis of Self-
Organizing Maps, Proc. ESANN, pp. 215-220, Citeseer, 2008. 

[Herrmann/Ultsch, 2009]  Herrmann, L., & Ultsch, A.: Clustering with swarm algorithms compared to emergent 
SOM, Proc. International Workshop on Self-Organizing Maps, pp. 80-88, Springer, 2009. 

[Heskes, 1999]  Heskes, T.: Energy functions for self-organizing maps, Kohonen maps, Vol., pp. 303-316, 1999. 

[Heston et al., 2012]  Heston, A., Summers, R., & Aten, B.: Penn World Table Version 7.1 Center for Interna-
tional Comparisons of Production, Income and Prices at the University of Pennsylvania, 2012. 

[Hinton/Roweis, 2002]  Hinton, G. E., & Roweis, S. T.: Stochastic neighbor embedding, Proc. Advances in neural 
information processing systems, pp. 833-840, 2002. 

[Hinton/Salakhutdinov, 2006]  Hinton, G. E., & Salakhutdinov, R. R.: Reducing the dimensionality of data with 
neural networks, Science, Vol. 313(5786), pp. 504-507, 2006. 

[Hollander/Wolfe, 1973]  Hollander, M., & Wolfe, D. A.: Nonparametric statistical methods, (Second Edition 
ed.), New York, USA, John Wiley & Sons, ISBN: 1118553292, 1973. 



References 169 
 

[Hotelling, 1933]  Hotelling, H.: Analysis of a complex of statistical variables into principal components, Journal 
of educational psychology, Vol. 24(6), pp. 417, 1933. 

[Howarth et al., 1996]  Howarth, R. W., Billen, G., Swaney, D., Townsend, A., Jaworski, N., Lajtha, K., . . . 
Jordan, T.: Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic 
Ocean: Natural and human influences, Nitrogen cycling in the North Atlantic Ocean and its watersheds, pp. 
75-139, Springer, 1996. 

[Hunklinger, 2009]  Hunklinger, S.: Festkörperphysik, Oldenbourg Verlag, ISBN: 3486596411, 2009. 

[Hyvärinen, 1997]  Hyvärinen, A.: Independent Component Analysis by Minimization of Mutual Information, 
Helsinki University of Technology, Laboratory of Computer and Information Science, Finland, Report A 46, 
1997. 

[Hyvärinen et al., 2004]  Hyvärinen, A., Karhunen, J., & Oja, E.: Independent component analysis, (Vol. 46), 
John Wiley & Sons, ISBN: 0471464198, 2004. 

[Jackson, 1999]  Jackson, J. D.: Classical Electrodynamics, (4th edition ed.), New York, John Wiley $ Sons, 
ISBN: 9783110189704, 1999. 

[Jafar/Sivakumar, 2010]  Jafar, O. M., & Sivakumar, R.: Ant-based clustering algorithms: A brief survey, Inter-
national Journal of Computer Theory and Engineering, Vol. 2(5), pp. 787, 2010. 

[Jain, 2010]  Jain, A. K.: Data clustering: 50 years beyond K-means, Pattern Recognition Letters, Vol. 31(8), pp. 
651-666, 2010. 

[Jain/Dubes, 1988]  Jain, A. K., & Dubes, R. C.: Algorithms for Clustering Data, (Vol. 3), Englewood Cliffs, 
New Jersey, USA, Prentice Hall College Div, ISBN: 9780130222787, 1988. 

[Jain et al., 1999]  Jain, A. K., Murty, N. M., & Flynn, p. J.: Data clustering: a review, ACM computing surveys 
(CSUR), Vol. 31(3), pp. 264-323. 1999. 

[Janich/Duncker, 2011]  Janich, P., & Duncker, H.-R.: Emergenz-Lückenbüssergottheit für Natur-und 
Geisteswissenschaften, F. Steiner, ISBN: 978-3-515-09871-7, 2011. 

[Jardine/Sibson, 1968]  Jardine, N., & Sibson, R.: The construction of hierarchic and non-hierarchic classifica-
tions, The Computer Journal, Vol. 11(2), pp. 177-184, 1968. 

[Jennings et al., 1998]  Jennings, N. R., Sycara, K., & Wooldridge, M.: A roadmap of agent research and devel-
opment, Autonomous agents and multi-agent systems, Vol. 1(1), pp. 7-38, 1998. 

[Jungnickel, 2013]  Jungnickel, D.: Graphs, networks and algorithms, (4th ed ed. Vol. 5), Berlin, Heidelberg, 
Germany, Springer, ISBN: 978-3-642-32278-5, 2013. 

[Kämpf/Ultsch, 2006]  Kämpf, D., & Ultsch, A.: An Overview of Artificial Life Approaches for Clustering, From 
Data and Information Analysis to Knowledge Engineering, pp. 486-493, Springer, 2006. 

[Kandel, 2012]  Kandel, E.: Neurowissenschaften. Eine Einführung, Padiatrische Praxis, Vol. 79(4), pp. 672, 
2012. 

[Karaboga, 2005]  Karaboga, D.An idea based on honey bee swarm for numerical optimization,Technical report-
tr06, Erciyes university, engineering faculty, computer engineering department, 2005. 

[Karaboga/Akay, 2009]  Karaboga, D., & Akay, B.: A survey: algorithms simulating bee swarm intelligence, 
Artificial Intelligence Review, Vol. 31(1-4), pp. 61-85, 2009. 

[Karaboga/Ozturk, 2011]  Karaboga, D., & Ozturk, C.: A novel clustering approach: Artificial Bee Colony 
(ABC) algorithm, Applied Soft Computing, Vol. 11(1), pp. 652-657, 2011. 

[Karatzoglou et al., 2016] Karatzoglou, A., Smola, A., Hornik, K.: kernlab: Kernel-Based Machine Learning 
Lab, R under GPL-2, Version 0.9-25,https://cran.r-project.org/web/packages/kernlab/, 2016. 

[Karbauskaitė/Dzemyda, 2009]  Karbauskaitė, R., & Dzemyda, G.: Topology preservation measures in the vis-
ualization of manifold-type multidimensional data, Informatica, Vol. 20(2), pp. 235-254, 2009. 

[Kaski et al., 2003]  Kaski, S., Nikkilä, J., Oja, M., Venna, J., Törönen, P., & Castrén, E.: Trustworthiness and 
metrics in visualizing similarity of gene expression, BMC bioinformatics, Vol. 4(1), pp. 48, 2003. 

[Kaski et al., 2000]  Kaski, S., Venna, J., & Kohonen, T.: Coloring that reveals cluster structures in multivariate 
data, Australian Journal of Intelligent Information Processing Systems, Vol. 6(2), pp. 82-88, 2000. 

[Kaufman/Rousseeuw, 1990]  Kaufman, L., & Rousseeuw, p. J.: Partitioning around medoids (program pam), 
Finding groups in data: an introduction to cluster analysis, Vol., pp. 68-125, 1990. 

[Kaufman/Rousseeuw, 2005]  Kaufman, L. R., & Rousseeuw, P.: Finding groups in data: An introduction to 
cluster analysis, Hoboken New York, John Wiley & Sons Inc, ISBN: 0-471-73578-7, 2005. 



170 References 
 

[Kaur/Rohil, 2015]  Kaur, P., & Rohil, H.: Applications of Swarm Intelligence in Data Clustering: A Compre-
hensive Review, International Journal of Research in Advent Technology (IJRAT), Vol. 3(4), pp. 85-95, 2015. 

[Kelso, 1997]  Kelso, J. A. S.: Dynamic patterns: The self-organization of brain and behavior, Cambridge, Mas-
sachusetts, London, England, MIT press, ISBN: 0262611317, 1997. 

[Kennedy/Eberhart, 1995]  Kennedy, J., & Eberhart, R.: Particle Swarm Optimization, IEEE International Con-
ference on Neural Networks, Vol. 4, pp. 1942-1948, IEEE Service Center,, Piscataway, 1995. 

[Khatri/Drăghici, 2005]  Khatri, P., & Drăghici, S.: Ontological analysis of gene expression data: current tools, 
limitations, and open problems, Bioinformatics, Vol. 21(18), pp. 3587-3595, 2005. 

[Khatri et al., 2012]  Khatri, P., Sirota, M., & Butte, A. J.: Ten years of pathway analysis: current approaches 
and outstanding challenges, PLoS Comput Biol, Vol. 8(2), pp. e1002375, 2012. 

 [Kim, 2006]  Kim, J.: Emergence: Core ideas and issues, Synthese, Vol. 151(3), pp. 547-559. 2006. 

 [Kirsch, 1978]  Kirsch, A.: Bemerkung zu H. Drygas,“Über multidimensionale Skalierung”, Statistical Papers, 
Vol. 19(3), pp. 211-212, 1978. 

[Kiviluoto, 1996]  Kiviluoto, K.: Topology preservation in self-organizing maps, Proc. International Conference 
on Neural Networks, Vol. 1, pp. 294-299, 1996. 

[Kleinberg, 2003]  Kleinberg, J.: An impossibility theorem for clustering, Advances in neural information pro-
cessing systems, Proc. of the 15th International Conference on Neural Information Processing Systems 
(NIPS'02), pp. 463-470, 2003. 

[Kohlhof, 2010]  Kohlhof, J.:Untersuchung der Leistungsfähigkeit topologieerhaltender Schwarmalgorithmen zur 
explorativen Clusteranalyse, (Diplom Diplomarbeit), Phillips-Universität Marburg, Gießen, 2010. 

[Kohonen, 1982a]  Kohonen, T.: Analysis of a simple self-organizing process, Biological cybernetics, Vol. 44(2), 
pp. 135-140. 1982. 

[Kohonen, 1982b]  Kohonen, T.: Self-organized formation of topologically correct feature maps, Biological cy-
bernetics, Vol. 43(1), pp. 59-69, 1982. 

[Kohonen, 1995]  Kohonen, T.: Self-Organizing Maps, (Vol. 30), Berlin Heidelberg, Springer, ISBN: 978-3-642-
97610-0, 1995. 

[Kohonen/Somervuo, 2002]  Kohonen, T., & Somervuo, P.: How to make large self-organizing maps for non-
vectorial data, Neural networks, Vol. 15(8), pp. 945-952, 2002. 

[König, 2000]  König, A.: Interactive visualization and analysis of hierarchical neural projections for data mining, 
Neural Networks, IEEE Transactions on, Vol. 11(3), pp. 615-624, 2000. 

[König et al., 1994]  König, A., Bulmahn, O., & Glesner, M.: Systematic Methods for Multivariate Data Visu-
alization and Numerical Assessment of Class Separability and Overlap in Automated Visual Industrial Qual-
ity Control, Proc. BMVC, pp. 1-10, 1994. 

[Kraaijveld et al., 1995]  Kraaijveld, M., Mao, J., & Jain, A. K.: A nonlinear projection method based on Ko-
honen’s topology preserving maps, Neural Networks, IEEE Transactions on, Vol. 6(3), pp. 548-559, 1995. 

[Kruskal, 1964a]  Kruskal, J. B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypoth-
esis, Psychometrika, Vol. 29(1), pp. 1-27, 1964. 

[Kruskal, 1964b]  Kruskal, J. B.: Nonmetric multidimensional scaling: a numerical method, Psychometrika, Vol. 
29(2), pp. 115-129, 1964. 

[Kupas et al., 2004]  Kupas, K., Ultsch, A., & Klebe, G.: Comparison of substructural epitopes in enzyme active 
sites using self-organizing maps, Journal of computer-aided molecular design, Vol. 18(11), pp. 697-708, 
2004. 

[Lee et al., 2014]  Lee, J. A., Peluffo-Ordonez, D. H., & Verleysen, M.: Multiscale stochastic neighbor embed-
ding: Towards parameter-free dimensionality reduction, Proc. Proceedings of 22st European Symposium on 
Artificial Neural Networks, Computational Intelligence And Machine Learning (ESANN), 2014. 

[Lee/Verleysen, 2007]  Lee, J. A., & Verleysen, M.: Nonlinear dimensionality reduction, New York, USA, 
Springer, ISBN: 978-0-387-39350-6, 2007. 

[Lee/Verleysen, 2008]  Lee, J. A., & Verleysen, M.: Rank-based quality assessment of nonlinear dimensionality 
reduction, Proc. ESANN, pp. 49-54, 2008. 

[Lee/Verleysen, 2009]  Lee, J. A., & Verleysen, M.: Quality assessment of dimensionality reduction: Rank-based 
criteria, Neurocomputing, Vol. 72(7), pp. 1431-1443, 2009. 



References 171 
 

[Lee/Verleysen, 2010]  Lee, J. A., & Verleysen, M.: Scale-independent quality criteria for dimensionality reduc-
tion, Pattern Recognition Letters, Vol. 31(14), pp. 2248-2257, 2010. 

[Legg/Hutter, 2007]  Legg, S., & Hutter, M.: A collection of definitions of intelligence, Frontiers in Artificial 
Intelligence and applications, Vol. 157, pp. 17, 2007. 

[Leister, 2016]  Leister, A. M.: Hidden Markov models: Estimation theory and economic applications, Doctoral 
dissertation, Philipps University Marburg Marburg, 2016. 

[Li/Xiao, 2008]  Li, J., & Xiao, X.: Multi-swarm and multi-best particle swarm optimization algorithm, Proc. 
Intelligent Control and Automation, 2008. WCICA 2008. 7th World Congress on, pp. 6281-6286, IEEE, 2008. 

[Libbrecht, 2016]  Libbrecht, K. G.: A monster snow crystal, In c1230c035B1.jpg (Ed.), The Snowflake: Winter’s 
Frozen Artistry, Kenneth Libbrecht and Rachel Wing, 2016. 

[Linde et al., 1980]  Linde, Y., Buzo, A., & Gray, R.: An algorithm for vector quantizer design, IEEE Transac-
tions on communications, Vol. 28(1), pp. 84-95, 1980. 

[Lippmann et al., 2016]  Lippmann, C., Thrun, M. C., & Ultsch, A.: Overrepresentation Analysis (Version 
1.2.5), in preparation. R package, requires CRAN packages: Matrix, ggm, AnnotationDbi, 2016. 

[Lötsch et al., 2013]  Lötsch, J., Doehring, A., Mogil, J. S., Arndt, T., Geisslinger, G., & Ultsch, A.: Functional 
genomics of pain in analgesic drug development and therapy, Pharmacology & therapeutics, Vol. 139(1), pp. 
60-70, 2013. 

[Lötsch/Ultsch, 2013]  Lötsch, J., & Ultsch, A.: A machine-learned knowledge discovery method for associating 
complex phenotypes with complex genotypes. Application to pain, Journal of biomedical informatics, Vol. 
46(5), pp. 921-928, 2013. 

[Lötsch/Ultsch, 2014]  Lötsch, J., & Ultsch, A.: Exploiting the Structures of the U-Matrix, in Villmann, T., 
Schleif, F.-M., Kaden, M. & Lange, M. (eds.), Proc. Advances in Self-Organizing Maps and Learning Vector 
Quantization, pp. 249-257, Springer International Publishing, Mittweida, Germany, 2014. 

[Lueks et al., 2011]  Lueks, W., Mokbel, B., Biehl, M., & Hammer, B.: How to Evaluate Dimensionality Re-
duction?-Improving the Co-ranking Matrix, arXiv preprint arXiv:1110.3917, 2011. 

[Lumer/Faieta, 1994]  Lumer, E. D., & Faieta, B.: Diversity and adaptation in populations of clustering ants, 
Proc. Proceedings of the third international conference on Simulation of adaptive behavior: from animals to 
animats 3: from animals to animats 3, pp. 501-508, MIT Press, 1994. 

[Lyapunov, 1992]  Lyapunov, A. M.: The general problem of the stability of motion, International Journal of 
Control, Vol. 55(3), pp. 531-534, doi 10.1080/00207179208934253, 1992. 

[MacQueen, 1967]  MacQueen, J.: Some methods for classification and analysis of multivariate observations, 
Proc. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Vol. 1, pp. 
281-297, Oakland, CA, USA, 1967. 

[Maechler et al., 2017] Maechler, M., Rousseeuw, P. (Fortran original), Struyf,, A. (S original), Hubert, M. 
(S original), Hornik , K. (port to R; maintenance(1999-2000)), Studer, M., Roudier, P. & Gonzalez, J.: 
cluster: "Finding Groups in Data": Cluster Analysis Extended Rousseeuw et al., in R under GPL-3, Version 
2.0.6, https://cran.r-project.org/web/packages/cluster/index.html, 2017. 

[Makinen, 2002]  Makinen, G.: The economic effects of 9/11: A retrospective assessment, Proc., DTIC Document, 
2002. 

[Marinakis et al., 2007]  Marinakis, Y., Marinaki, M., & Matsatsinis, N.: A hybrid clustering algorithm based 
on honey bees mating optimization and greedy randomized adaptive search procedure, Proc. International 
Conference on Learning and Intelligent Optimization, pp. 138-152, Springer, 2007. 

[Martens et al., 2011]  Martens, D., Baesens, B., & Fawcett, T.: Editorial survey: swarm intelligence for data 
mining, Machine Learning, Vol. 82(1), pp. 1-42, 2011. 

[McDonnell, 1995]  McDonnell, R.: International GIS dictionary   Retrieved from http://support.esri.com/other-
resources/gis-dictionary/term/boundary%20effect, 30.11.2016 11:10, 1995. 

[Merkl/Rauber, 1997]  Merkl, D., & Rauber, A.: Alternative ways for cluster visualization in self-organizing 
maps, Proc. Proc. of the Workshop on Self-Organizing Maps (WSOM97), pp. 4-6, Citeseer, 1997. 

[Merskey/Bogduk, 1994]  Merskey, H., & Bogduk, N.: Classification of chronic pain, IASP Task Force on 
Taxonomy, https://www.iasp-pain.org/Taxonomy, 1994.  

[Miller, 1956] Miller, G. A: The magical number seven, plus or minus two: Some limits on our capacity for 
processing information, Psychological Review. Vol. 63 (2), pp. 81–97, PMID 13310704, 
doi:10.1037/h0043158, 1956. 



172 References 
 

[Milligan/Cooper, 1988]  Milligan, G. W., & Cooper, M. C.: A study of standardization of variables in cluster 
analysis, Journal of Classification, Vol. 5(2), pp. 181-204, 1988. 

[Mirkin, 2005]  Mirkin, B.: Clustering: a data recovery approach, Boca Raton, FL, USA, CRC Press, ISBN: 978-
1.58488-534-4, 2005. 

[Mitchison, 1995]  Mitchison, G.: A type of duality between self-organizing maps and minimal wiring, Neural 
Computation, Vol. 7(1), pp. 25-35, 1995. 

[Mlot et al., 2011]  Mlot, N. J., Tovey, C. A., & Hu, D. L.: Fire ants self-assemble into waterproof rafts to survive 
floods, Proceedings of the National Academy of Sciences, Vol. 108(19), pp. 7669-7673, 2011. 

[Mokbel et al., 2013]  Mokbel, B., Lueks, W., Gisbrecht, A., & Hammer, B.: Visualizing the quality of dimen-
sionality reduction, Neurocomputing, Vol. 112, pp. 109-123, 2013. 

[Mörchen, 2006]  Mörchen, F.: Time series knowledge mining, Marburg, Germany, Citeseer/Görich & Weiershäu-
ser, ISBN: 3897036703, 2006. 

[Mörchen et al., 2005]  Mörchen, F., Ultsch, A., & Hoos, O.: Extracting interpretable muscle activation patterns 
with time series knowledge mining, International Journal of Knowledge-based and Intelligent Engineering 
Systems, Vol. 9(3), pp. 197-208, 2005. 

[Moutarde/Ultsch, 2005]  Moutarde, F., & Ultsch, A.: U* F clustering: a new performant” cluster-mining” 
method based on segmentation of Self-Organizing Maps, Proc. Workshop on Self-Organizing Maps 
(WSOM’2005), 2005. 

[Murphy, 2012]  Murphy, K. P.: Machine learning: a probabilistic perspective, MIT press, ISBN: 0262304325, 
2012. 

[Murtagh/Hernández-Pajares, 1995]  Murtagh, F., & Hernández-Pajares, M.: The Kohonen self-organizing map 
method: an assessment, Journal of Classification, Vol. 12(2), pp. 165-190, 1995. 

[Nash, 1950]  Nash, J. F.: Equilibrium points in n-person games, Proc. Nat. Acad. Sci. USA, Vol. 36(1), pp. 48-
49, 1950. 

[Nash, 1951]  Nash, J. F.: Non-cooperative games, Annals of mathematics, Vol., pp. 286-295, 1951. 

[Natarajan, 2014]  Natarajan, B. K.: Machine learning: a theoretical approach, Morgan Kaufmann, ISBN: 
0080510531, 2014. 

[NCBI, 2013]  NCBI, R. C.: Database resources of the National Center for Biotechnology Information, Nucleic 
acids research, Vol. 41(Database issue), pp. D8, 2013. 

[Neumann/Morgenstern, 1953]  Neumann, L. J., & Morgenstern, O.: Theory Of Games And Economic Behavior 
(Third Edition ed. Vol. 60), Princeton, USA, Princeton University Press, ISBN, 1953. 

[Ng et al., 2002]  Ng, A. Y., Jordan, M. I., & Weiss, Y.: On spectral clustering: Analysis and an algorithm, 
Advances in neural information processing systems, Vol. 2, pp. 849-856, 2002. 

[Nisan et al., 2007]  Nisan, N., Roughgarden, T., Tardos, E., & Vazirani, V. V.: Algorithmic Game Theory, 
(Nisan, N. Ed.), New York, USA, Cambridge University Press, ISBN: 978-0-521-87282-9, 2007. 

[Nöcker et al., 2006]  Nöcker, M., Mörchen, F., & Ultsch, A.: An algorithm for fast and reliable ESOM learning, 
Proc. ESANN, pp. 131-136, 2006. 

[Nolting, 2001]  Nolting, W.: Grundkurs Theoretische Physik 5/1, (7th edition ed. Vol. 5), Berlin, Heidelberg, New 
York, pringer-Verlag ISBN: 3540688686, 2001. 

[Nuzzo, 2014]  Nuzzo, R.: Statistical errors, Nature, Vol. 506(7487), pp. 150-152, 2014. 

[Nybo et al., 2007]  Nybo, K., Venna, J., & Kaski, S.: The self-organizing map as a visual neighbor retrieval 
method, Proc. Proc. of the Sixth Int. Workshop on Self-Organizing Maps, 2007. 

[Nybo/ Venna, 2015] Nybo, K. & Venna J.: dredviz: dimensionality reduction for information visualization, 
in ANSI/ISO C++  under LGPL, Version 1.0.2, http://research.cs.aalto.fi/pml/software/dredviz/, Retrieved 
15.10.2016 2015.  

[O'Connor/Wong, 2015]  O'Connor, T., & Wong, H. Y.: Emergent properties, In Zalta, E. N. (Ed.), The Stanford 
Encyclopedia of Philosophy, Stanford, Kalifornien, Metaphysics Research Lab, Stanford University, 2015. 

[O’Neill/Brabazon, 2008]  O’Neill, M., & Brabazon, A.: Self-organising swarm (SOSwarm), Soft 
Computing, Vol. 12(11), pp. 1073-1080, 2008. 

[Omar et al., 2013]  Omar, E., Badr, A., & Hegazy, A. E.-F.: Hybrid AntBased Clustering Algorithm with Cluster 
Analysis Techniques, Proc. Journal of Computer Science, Vol. 9, pp. 780-793, Citeseer, 2013. 



References 173 
 

[Orlowski et al., 2014]  Orlowski, N., Lauer, F., Kraft, P., Frede, H.-G., & Breuer, L.: Linking spatial patterns 
of groundwater table dynamics and streamflow generation processes in a small developed catchment, Water, 
Vol. 6(10), pp. 3085-3117, 2014. 

[Ouadfel/Batouche, 2007]  Ouadfel, S., & Batouche, M.: An Efficient Ant Algorithm for Swarm-Based Image 
Clustering 1, Journal of Computer Science, Vol. 3(3), pp. 2-167, 162, 2007. 

[Parpinelli/Lopes, 2011]  Parpinelli, R. S., & Lopes, H. S.: New inspirations in swarm intelligence: a survey, 
International Journal of Bio-Inspired Computation, Vol. 3(1), pp. 1-16, 2011. 

[Pasquier, 1987]  Pasquier, V.: Lattice derivation of modular invariant partition functions on the torus, Journal of 
Physics A: Mathematical and General, Vol. 20(18), pp. L1229, 1987. 

[Passino, 2013]  Passino, K. M.: Modeling and Cohesiveness Analysis of Midge Swarms, International Journal 
of Swarm Intelligence Research (IJSIR), Vol. 4(4), pp. 1-22, 2013. 

[Patterson/Kelso, 2004]  Patterson, T., & Kelso, N. V.: Hal Shelton revisited: Designing and producing natural-
color maps with satellite land cover data, Cartographic Perspectives, Vol. (47), pp. 28-55, 2004. 

[Pearson, 1901]  Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space, The London, 
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 2(11), pp. 559-572, 1901. 

[Perneger, 1998]  Perneger, T. V.: What’s wrong with Bonferroni adjustments, Bmj, Vol. 316(7139), pp. 1236-
1238, 1998. 

[Pham et al., 2007]  Pham, D., Otri, S., Afify, A., Mahmuddin, M., & Al-Jabbouli, H.: Data clustering using 
the bees algorithm, Proc. Proceedings of 40th CIRP international manufacturing systems seminar, 2007. 

[Pölzlbauer, 2004]  Pölzlbauer, G.: Survey and comparison of quality measures for self-organizing maps, In Fifth 
Workshop on Data Analysis (WDA’04), pp. 67-82, 2004. 

[Poundstone, 1992]  Poundstone, W.: Prisoner’s Dilemma: John von Neuman, Game Theory, and the Puzzle of 
the Bomb (Kindle Edition, Anchor 2011 ed., pp. 294, Doubleday, New York, 1992. 

[R Development Core Team, 2008]  R Development Core Team: R: A Language and Environment for Statistical 
Computing (Version 3.2.5), Vienna, Austria, R Foundation for Statistical Computing. Retrieved from 
http://www.R-project.org, 2008. 

[Rana et al., 2011]  Rana, S., Jasola, S., & Kumar, R.: A review on particle swarm optimization algorithms and 
their applications to data clustering, Artificial Intelligence Review, Vol. 35(3), pp. 211-222, 2011. 

[Reutterer, 1998]  Reutterer, T.: Competitive market structure and segmentation analysis with self-organizing 
feature maps, Proc. Proceedings of the 27th EMAC Conference, pp. 85-115, Citeseer, 1998. 

[Revuelta et al., 2004]  Revuelta, F. F., Chamizo, J. M. G., Rodríguez, J. G., & Sáez, A. H.: Geodesic topo-
graphic product: An improvement to measure topology preservation of self-organizing neural networks, Ad-
vances in Artificial Intelligence–IBERAMIA 2004, pp. 841-850 Springer, 2004. 

[Reynolds, 1987]  Reynolds, C. W.: Flocks, herds and schools: A distributed behavioral model, ACM SIGGRAPH 
computer graphics, Vol. 21(4), pp. 25-34, 1987. 

[Ritter, 2014]  Ritter, G.: Robust cluster analysis and variable selection, CRC Press, ISBN: 1439857962, 2014. 

[Ritter et al., 1992]  Ritter, H., Martinetz, T., Schulten, K., Barsky, D., Tesch, M., & Kates, R.: Neural com-
putation and self-organizing maps: an introduction, Addison-Wesley Reading, MA, ISBN: 0201554429, 
1992. 

[Rosenwald et al., 2001]  Rosenwald, A., Alizadeh, A. A., Widhopf, G., Simon, R., Davis, R. E., Yu, X., . . . 
Powell, J.: Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic 
lymphocytic leukemia, Journal of Experimental Medicine, Vol. 194(11), pp. 1639-1648. 2001. 

[Roweis/Saul, 2000]  Roweis, S. T., & Saul, L. K.: Nonlinear dimensionality reduction by locally linear embed-
ding, Science, Vol. 290(5500), pp. 2323-2326, 2000. 

[Russell et al., 2003]  Russell, S. J., Norvig, P., Canny, J. F., Malik, J. M., & Edwards, D. D.: Artificial intel-
ligence: a modern approach, (Vol. 2), New Jersey, USA, Prentice-Hall, Upper Saddle River, ISBN: 0-13-
103805-2, 2003. 

[Safavian/Landgrebe, 1990]  Safavian, S. R., & Landgrebe, D.: A survey of decision tree classifier methodology, 
IEEE transactions on systems, man, and cybernetics, Vol. 21(3), pp. 660-674, 1990. 

[Şahin, 2004]  Şahin, E.: Swarm robotics: From sources of inspiration to domains of application, Proc. Interna-
tional workshop on swarm robotics, pp. 10-20, Springer, 2004. 



174 References 
 

[Sammon, 1969]  Sammon, J. W.: A nonlinear mapping for data structure analysis, IEEE Transactions on com-
puters, Vol. 18(5), pp. 401-409, doi doi:10.1109/t-c.1969.222678, 1969. 

[Sarlin/Rönnqvist, 2013]  Sarlin, P., & Rönnqvist, S.: Cluster coloring of the Self-Organizing Map: An infor-
mation visualization perspective, Proc. Information Visualisation (IV), 17th International Conference, pp. 
532-538, IEEE, 2013. 

[Schelling, 1969]  Schelling, T. C.: Models of segregation, The American Economic Review, Vol. 59(2), pp. 488-
493, 1969. 

[Schelling, 1971]  Schelling, T. C.: Dynamic models of segregation†, Journal of mathematical sociology, Vol. 
1(2), pp. 143-186, 1971. 

[Schiele, 2016]  Schiele, J. (2016, 07.09.2016, 06:06 Uh). Irgendwas mit Daten Frankfurter Allgemeine Zeitung, 
p. 2. Retrieved from http://www.faz.net/aktuell/beruf-chance/arbeitswelt/digitalisierung-was-macht-
eigentlich-ein-data-scientist-14416564.html, 2016. 

[Schmid, 1980]  Schmid, F.: Über ein Problem der mehrdimensionalen Skalierung, Statistical Papers, Vol. 21(2), 
pp. 140-144, 1980. 

[Schneirla, 1971]  Schneirla, T.: Army ants, a study in social organization, San Francisco, USA, W.H. Freeman 
and Company, ISBN: 0-7167-0933-3, 1971. 

[Shepard, 1980]  Shepard, R. N.: Multidimensional scaling, tree-fitting, and clustering, Science, Vol. 210(4468), 
pp. 390-398, 1980. 

[Siegel/Castellan, 1988]  Siegel, S., & Castellan, N. J.: Nonparametric statistics for the behavioural sciences, New 
York, McGraw-Hill, 1988. 

[Sokal/Sneath, 1963]  Sokal, R. R., & Sneath, P.: Principles of Numerical Taxonomy, London, Freeman, ISBN, 
1963. 

[Sparck Jones, 1972]  Sparck Jones, K.: A statistical interpretation of term specificity and its application in re-
trieval, Journal of documentation, Vol. 28(1), pp. 11-21, 1972. 

[Steinhaus, 1956]  Steinhaus, H.: Sur la division des corp materiels en parties, Bull. Acad. Polon. Sci, Vol. 1(804), 
pp. 801, 1956. 

[Stephan, 1999]  Stephan, A.: Emergenz von der Unvorhersagbarkeit zur Selbstorganisation, (First Edition ed.), 
Germany, mentis, ISBN: 3897854392 or 3933168090, 1999. 

[Stephens/Krebs, 1986]  Stephens, D. W., & Krebs, J. R.: Foraging theory, New Jersey, USA, Princeton Uni-
versity Press, ISBN: 0691084424, 1986. 

[Stöcker et al., 2007]  Stöcker, H., Best, C., Kutz, H., Pitka, R., Griepenkerl, K., Bohrmann, S., . . . Spieles, 
C.: Taschenbuch der Physik, (5th edition ed.), Frankfurt am Main, Germany, Harri Deutsch, ISBN: 
3817117205, 2007. 

[Su et al., 2009]  Su, M.-C., Su, S.-Y., & Zhao, Y.-X.: A swarm-inspired projection algorithm, Pattern Recogni-
tion, Vol. 42(11), pp. 2764-2786, 2009. 

[Tan et al., 2006]  Tan, S. C., Ting, K. M., & Teng, S. W.: Reproducing the results of ant-based clustering without 
using ants, Proc. 2006 IEEE International Conference on Evolutionary Computation, pp. 1760-1767, IEEE, 
2006. 

[Tasdemir/Merenyi, 2009]  Tasdemir, K., & Merenyi, E.: Exploiting Data Topology in Visualization and Clus-
tering of Self-Organizing Maps, IEEE Transactions on Neural Networks, Vol. 20(4), pp. 549-562, doi 
10.1109/tnn.2008.2005409, 2009. 

[Tasdemir/Merényi, 2012]  Tasdemir, K., & Merényi, E.: SOM-based topology visualisation for interactive anal-
ysis of high-dimensional large datasets, Machine Learning Reports, Vol. 1, pp. 13-15, 2012. 

[Tejada et al., 2003]  Tejada, E., Minghim, R., & Nonato, L. G.: On improved projection techniques to support 
visual exploration of multi-dimensional data sets, Information Visualization, Vol. 2(4), pp. 218-231, 2003. 

[Tenenbaum et al., 2000]  Tenenbaum, J. B., Silva, V. d., & Langford, J. C.: A Global Geometric Framework 
for Nonlinear Dimensionality Reduction, Science,Vol. 290(5500), pp. 2319-2323, doi 10.1126/sci-
ence.290.5500.2319, 2000. 

[Theodoridis/Koutroumbas, 2009]  Theodoridis, S., & Koutroumbas, K.: Pattern Recognition, (Fourth Edition 
ed.), Canada, Elsevier, ISBN: 978-1-59749-272-0, 2009. 



References 175 
 

[Thorel et al., 1990]  Thorel, M.-F., Krichevsky, M., & Lévy-Frébault, V. V.: Numerical taxonomy of myco-
bactin-dependent mycobacteria, emended description of Mycobacterium avium, and description of Myco-
bacterium avium subsp. avium subsp. nov., Mycobacterium avium subsp. paratuberculosis subsp. nov., and 
Mycobacterium avium subsp. silvaticum subsp. nov, International Journal of Systematic and Evolutionary 
Microbiology, Vol. 40(3), pp. 254-260, 1990. 

[Thrun/Ultsch, 2017a]  Thrun, M.C., Ultsch, A.: Projection based Clustering, Conf. Int. Federation of Classifi-
cation Societies (IFCS), Tokyo, Japan, DOI:10.13140/RG.2.2.13124.53124, 2017. 

[Thrun/Ultsch, 2017b]  Thrun, M. C.: GeneralizedUmatrix (Version 0.9.5), Marburg. R package, requires CRAN 
packages: Rcpp, RcppArmadillo, Suggests: matrixStats, rgl, ggplot2, grid, mgcv, Retrieved from 
https://cran.r-project.org/web/packages/GeneralizedUmatrix/index.html, 2017. 

[Thrun, 2017]  Thrun, M. C.: DatabionicSwarm (Version 0.9.7), Marburg. R package, requires CRAN packages: 
Rcpp, RcppArmadillo, deldir, GeneralizedUmatrix, Suggests: plotrix, geometry, sp, spdep, AdaptGauss, 
ABCanalysis, parallel, matrixStats, rgl, png, Retrieved from https://cran.r-project.org/web/packages/Data-
bionicSwarm/index.html, 2017. 

 [Thrun et al., 2017]  Thrun, M. C., Lerch, F., & Pape, F.: ProjectionBasedClustering (Version 1.0.4), Marburg. 
R package, requires CRAN packages: Rcpp, ggplot2, stats, graphics, vegan, deldir, geometry, Generalize-
dUmatrix, shiny, shinyjs; Suggests: fastICA, tsne, FastKNN, MASS, pcaPP, spdep, methods, pracma, grid, 
mgcv, fields, png, reshape2, Retrieved from https://cran.r-project.org/web/packages/Projection-
BasedClustering/index.html, 2017. 

[Thrun et al., 2016a]  Thrun, M. C., Lerch, F., Lötsch, J., & Ultsch, A.: Visualization and 3D Printing of Mul-
tivariate Data of Biomarkers, in Skala, V. (Ed.), International Conference in Central Europe on Computer 
Graphics, Visualization and Computer Vision (WSCG), Vol. 24, pp. 7-16, ISBN: 976-80-86943-68-9, Plzen, 
2016. 

[Thrun et al., 2016b]  Thrun, M. C., Lerch, F., & Ultsch, A.: Umatrix (Version 2.0.0), Marburg. R package, 
requires CRAN packages: Rcpp, ggplot2, shiny, ABCanalysis, shinyjs, reshape2, fields, plyr, abind, tcltk, 
png, tools, grid, rgl, Retrieved from www.uni-marburg.de/fb12/datenbionik/software-en, 2016. 

[Thrun et al., 2015]  Thrun, M. C., Lötsch, J., & Ultsch, A.: ABCanalysis (Version 1.1.2), Marburg. R package, 
requires CRAN packages: plotrix, Retrieved from  https://cran.r-project.org/web/packages/ABCanaly-
sis/index.html, 2015. 

[Thrun/Ultsch, 2015]  Thrun, M. C., & Ultsch, A.: Models of Income Distributions for Knowledge Discovery, 
Proc. European Conference on Data Analysis (ECDA), DOI 10.13140/RG.2.1.4463.0244, pp. 136-137, Col-
chester, 2015. 

[Timm, 2006]  Timm, I. J.: Strategic management of autonomous software systems, TZI-Bericht Center for Com-
puting Technologies, University of Bremen, Bremen, 2006. 

[Torgerson, 1952]  Torgerson, W. S.: Multidimensional scaling: I. Theory and method, Psychometrika, Vol. 17(4), 
pp. 401-419, 1952. 

[Toussaint, 1980]  Toussaint, G. T.: The relative neighbourhood graph of a finite planar set, Pattern Recognition, 
Vol. 12(4), pp. 261-268, 1980. 

[Tsai et al., 2004]  Tsai, C.-F., Tsai, C.-W., Wu, H.-C., & Yang, T.: ACODF: a novel data clustering approach 
for data mining in large databases, Journal of Systems and Software, Vol. 73(1), pp. 133-145, 2004. 

[Tukey, 1977]  Tukey, J. W.: Exploratory data analysis, (1 edition ed.), Pearson, ISBN: 978-0201076165, 1977. 

[Tung et al., 2001]  Tung, A. K., Han, J., Lakshmanan, L. V., & Ng, R. T.: Constraint-based clustering in large 
databases, Proc. ICDT, Vol. 1, pp. 405-419, Springer, 2001. 

[Uber_Pix, 2015]  Uber_Pix. A spherical school of fish, 567289_1280_1024.jpg, 1280x1024, https://twit-
ter.com/Uber_Pix/status/614068525766995969, twitter, 2015. 

[Ultsch, 1987]  Ultsch, A.:Control for knowledge-based information retrieval, Doctoral Dissertation, Techn. Wiss. 
ETH Zürich, Zürich, (8353), 1987. 

[Ultsch, 1994]  Ultsch, A.: The integration of neural networks with symbolic knowledge processing, New Ap-
proaches in Classification and Data Analysis, pp. 445-454, Springer, 1994. 

[Ultsch, 1995]  Ultsch, A.: Self organizing neural networks perform different from statistical k-means clustering, 
Proc. Society for Information and Classification (GFKL), Vol. 1995, Basel 8th-10th March, 1995. 

[Ultsch, 1999]  Ultsch, A.: Data mining and knowledge discovery with emergent self-organizing feature maps for 
multivariate time series, In Oja, E. & Kaski, S. (Eds.), Kohonen maps, (1 ed.), pp. 33-46, Elsevier, 1999. 



176 References 
 

[Ultsch, 2000a]  Ultsch, A.: Clustering with DataBots, Int. Conf. Advances in Intelligent Systems Theory and 
Applications (AISTA), pp. p. 99-104, IEEE ACT Section, Canberra, Australia, 2000a. 

[Ultsch, 2000b]  Ultsch, A.: The Neuronal Data Mine, Proc. Proceedings 2nd Int. ICSC Symposium on Neural 
Computation NC, Berlin, 2000. 

[Ultsch, 2000c]  Ultsch, A.: Visualisation and Classification with Artificial Life, Data Analysis, Classification, 
and Related Methods, pp. 229-234, Springer, 2000. 

[Ultsch, 2003a]  Ultsch, A.: Maps for the visualization of high-dimensional data spaces, Proc. Workshop on Self 
organizing Maps (WSOM), pp. 225-230, Kyushu, Japan, 2003. 

[Ultsch, 2003b]  Ultsch, A.Optimal density estimation in data containing clusters of unknown structure, technical 
report, Vol. 34, University of Marburg, Department of Mathematics and Computer Science, 2003. 

[Ultsch, 2003c]  Ultsch, A.: U*-matrix: a tool to visualize clusters in high dimensional data, Fachbereich Mathe-
matik und Informatik, ISBN, 2003. 

[Ultsch, 2005a]  Ultsch, A.: Clustering wih SOM: U* C, Proc. Proceedings of the 5th Workshop on Self-Organizing 
Maps, Vol. 2, pp. 75-82, 2005. 

[Ultsch, 2005b]  Ultsch, A.: Pareto density estimation: A density estimation for knowledge discovery, In Baier, 
D. & Werrnecke, K. D. (Eds.), Innovations in classification, data science, and information systems, Vol. 27, 
pp. 91-100, Berlin, Germany, Springer, 2005. 

[Ultsch, 2005c]  Ultsch, A.: U* C: Self-organized Clustering with Emergent Feature Maps, Proc. Lernen, Wis-
sensentdeckung und Adaptivität (LWA/FGML), pp. 240-244, Saarbruecken, Germany, 2005. 

[Ultsch, 2006]  Ultsch, A.: Analysis and practical results of U* C clustering, Advances in data analysis, Proceed-
ings 30th annual conference of the german classification society (GfKl), Berlin, Germany pp. 6, 2006. 

[Ultsch, 2007]  Ultsch, A.: Emergence in Self-Organizing Feature Maps, Proc. 6th International Workshop on Self-
Organizing Maps (WSOM), ISBN: 978-3-00-022473-7, Bielefeld, Germany, 2007. 

[Ultsch, 2014a]  Ultsch, A.: “About the Effektsize of pValues in ORA”, personal correspondence, 09.04.2014 
11:26, 2014. 

[Ultsch, 2014b]  Ultsch, A.: “about the term frequency-inverse document frequency metrik”, personal correspond-
ence, 05.06.2014 16:17, 2014. 

[Ultsch, 2015]  Ultsch, A.: “About the grid size for the generelized Umatrix”, personal correspondence, 
07.04.2015, 2015. 

[Ultsch, 2016a]  Ultsch, A.: “About the Delaunay Classification Error”, personal correspondence, 10.10.2016, 
2016. 

[Ultsch, 2016b]  Ultsch, A.: “Discussion about the Application of Muliple Swarms”, personal correspondence, 
22.11.2016, 2016. 

[Ultsch, 2016c]  Ultsch, A.: “Lectures: “Introduction into Artificial Intelligence””, personal correspondence, 
08.02.2016, 2016. 

[Ultsch et al., 2016a]  Ultsch, A., Behnisch, M., & Lötsch, J.: ESOM Visualizations for Quality Assessment in 
Clustering, In Merényi, E., Mendenhall, J. M. & O’Driscoll, p. (Eds.), Advances in Self-Organizing Maps 
and Learning Vector Quantization: Proceedings of the 11th International Workshop WSOM 2016, Houston, 
Texas, USA, January 6-8, 2016, doi: 10.1007/978-3-319-28518-4_3, pp. 39-48, Cham, Springer International 
Publishing, 2016. 

[Ultsch et al., 1994]  Ultsch, A., Guimaraes, G., Korus, D., & Li, H.: Knowledge extraction from artificial neural 
networks and applications, Parallele Datenverarbeitung mit dem Transputer, pp. 148-162, Springer, 1994. 

[Ultsch/Herrmann, 2005]  Ultsch, A., & Herrmann, L.: The architecture of emergent self-organizing maps to 
reduce projection errors, Proc. ESANN, pp. 1-6, 2005. 

[Ultsch/Herrmann, 2010]  Ultsch, A., & Herrmann, L.: Self Organized Swarms for cluster preserving Projections 
of high-dimensional Data, Electronic Communications of the EASST, Vol. 27, 2010. 

[Ultsch/Korus, 1993]  Ultsch, A., & Korus, D.: Automatic acquisition of symbolic knowledge from subsymbolic 
neural networks, Proc. Proceedings of the 3rd European Congress on Intelligent Techniques and Soft Com-
puting, EUFIT, Vol. 3, pp. 326-331, 1993. 

[Ultsch et al., 2016b]  Ultsch, A., Kringel, D., Kalso, E., Mogil, J. S., & Lötsch, J.: A data science approach to 
candidate gene selection of pain regarded as a process of learning and neural plasticity, Pain, Vol. 157(12), 
pp. 2747-2757, 2016. 



References 177 
 

[Ultsch/Lötsch, 2014]  Ultsch, A., & Lötsch, J.: Functional abstraction as a method to discover knowledge in 
gene ontologies, PloS one, Vol. 9(2), pp. e90191. 2014. 

[Ultsch/Lötsch, 2015]  Ultsch, A., & Lötsch, J.: Computed ABC Analysis for Rational Selection of Most In-
formative Variables in Multivariate Data, PloS one, Vol. 10(6), pp. e0129767. doi 10.1371/jour-
nal.pone.0129767, 2015. 

[Ultsch/Lötsch, 2016]  Ultsch, A., & Lötsch, J.: Machine-learned cluster identification in high-dimensional data, 
Journal of biomedical informatics, Vol. 66, pp. 95-104, 2016. 

[Ultsch/Mörchen, 2005]  Ultsch, A., Moerchen, F.: ESOM-Maps: tools for clustering, visualization, and classifi-
cation with Emergent SOM, Technical Report Dept. of Mathematics and Computer Science, University of 
Marburg, Germany, No. 46, 2005. 

[Ultsch/Mörchen, 2006]  Ultsch, A., & Mörchen, F.: U-maps: topograpic visualization techniques for projections 
of high dimensional data, Proc. Proc. 29th Annual Conference of the German Classification Society, Citeseer, 
2006. 

[Ultsch/Siemon, 1990]  Ultsch, A., & Siemon, H. P.: Kohonen’s Self Organizing Feature Maps for Exploratory 
Data Analysis, International Neural Network Conference, pp. 305-308, Kluwer Academic Press, Paris, 
France, 1990. 

[Ultsch et al., 2015]  Ultsch, A., Thrun, M. C., Hansen-Goos, O., & Lötsch, J.: Identification of Molecular 
Fingerprints in Human Heat Pain Thresholds by Use of an Interactive Mixture Model R Toolbox 
(AdaptGauss), International journal of molecular sciences, Vol. 16(10), pp. 25897-25911, 2015. 

[Ultsch/Vetter, 1995]  Ultsch, A., & Vetter, C.Self-Organizing-Feature-Maps versus statistical clustering meth-
ods: a benchmark,Dept. of Mathematics and Computer Science,, University of Marburg Germany, 1995. 

[Uriarte/Martín, 2005]  Uriarte, E. A., & Martín, F. D.: Topology preservation in SOM, International Journal 
of Mathematical and Computer Sciences, Vol. 1(1), pp. 19-22, 2005. 

[Van der Maaten/Hinton, 2008]  Van der Maaten, L., & Hinton, G.: Visualizing Data using t-SNE, Journal of 
Machine Learning Research, Vol. 9(11), pp. 2579-2605, 2008. 

[Van der Maaten et al., 2009]  Van der Maaten, L., Postma, E. O., & Van den Herik, J.: Dimensionality Re-
duction: A Comparative Review. from Tilburg Centre for Creative Computing, 2009. 

[Van der Maaten et al., 2009]  van der Maaten, L. J., Postma, E. O., & van den Herik, H. J.: Dimensionality 
reduction: A comparative review, Journal of Machine Learning Research, Vol. 10(1-41), pp. 66-71, 2009. 

[Van der Merwe/Engelbrecht, 2003]  Van der Merwe, D., & Engelbrecht, A. P.: Data clustering using particle 
swarm optimization, Proc. Evolutionary Computation, 2003. CEC’03. The 2003 Congress on, Vol. 1, pp. 
215-220, IEEE, 2003. 

[Vardiman et al., 2009]  Vardiman, J. W., Thiele, J., Arber, D. A., Brunning, R. D., Borowitz, M. J., Porwit, 
A., . . . Tefferi, A.: The 2008 revision of the World Health Organization (WHO) classification of myeloid 
neoplasms and acute leukemia: rationale and important changes, Blood, Vol. 114(5), pp. 937-951. 2009. 

[Venna/Kaski, 2001]  Venna, J., & Kaski, S.: Neighborhood preservation in nonlinear projection methods: An 
experimental study, Artificial Neural Networks—ICANN 2001, pp. 485-491, Springer, 2001. 

[Venna/Kaski, 2007]  Venna, J., & Kaski, S.: Comparison of visualization methods for an atlas of gene expression 
data sets, Information Visualization, Vol. 6(2), pp. 139-154, 2007. 

[Venna et al., 2010]  Venna, J., Peltonen, J., Nybo, K., Aidos, H., & Kaski, S.: Information retrieval perspective 
to nonlinear dimensionality reduction for data visualization, The Journal of Machine Learning Research, Vol. 
11, pp. 451-490, 2010. 

[Verleysen et al., 2003]  Verleysen, M., Francois, D., Simon, G., & Wertz, V.: On the effects of dimensionality 
on data analysis with neural networks, Artificial Neural Nets Problem solving methods, pp. 105-112, 
Springer, 2003. 

[Vesanto, 1999]  Vesanto, J.: SOM-based data visualization methods, Intelligent data analysis, Vol. 3(2), pp. 111-
126, 1999. 

[Vesanto et al., 1998]  Vesanto, J., Himberg, J., Siponen, M., & Simula, O.: Enhancing SOM based data visu-
alization, Proc. Proceedings of the 5th International Conference on Soft Computing and Information/Intelli-
gent Systems. Methodologies for the Conception, Design and Application of Soft Computing, Vol. 1, pp. 64-
67, 1998. 

[Villmann et al., 1994]  Villmann, T., Der, R., Herrmann, M., & Martinetz, T. M.: A novel approach to measure 
the topology preservation of feature maps, ICANN’94, pp. 298-301, Springer, 1994. 



178 References 
 

[Villmann et al., 1997]  Villmann, T., Der, R., Herrmann, M., & Martinetz, T. M.: Topology preservation in 
self-organizing feature maps: exact definition and measurement, Neural Networks, IEEE Transactions on, 
Vol. 8(2), pp. 256-266, 1997. 

[Vinković/Kirman, 2006]  Vinković, D., & Kirman, A.: A physical analogue of the Schelling model, Proceedings 
of the National Academy of Sciences, Vol. 103(51), pp. 19261-19265, 2006. 

[Walck, 2007]  Walck, C.Handbook on statistical distributions for experimentalists, Vol. 96-01 SUF-PFY,Uni-
versity of Stockholm, Stockholm, Sweden, 2007. 

[Ward Jr, 1963]  Ward Jr, J. H.: Hierarchical grouping to optimize an objective function, Journal of the American 
Statistical Association, Vol. 58(301), pp. 236-244, 1963. 

[Wilkinson/Friendly, 2009]  Wilkinson, L., & Friendly, M.: The history of the cluster heat map, The American 
Statistician, Vol. 63(2), pp. 179-184, 2009. 

[Wilkinson/Friendly, 2012]  Wilkinson, L., & Friendly, M.: The history of the cluster heat map, The American 
Statistician, Vol. 63(2), pp. 179-184, 2012. 

[Wong et al., 2014]  Wong, K.-C., Peng, C., Li, Y., & Chan, T.-M.: Herd clustering: A synergistic data clustering 
approach using collective intelligence, Applied Soft Computing, Vol. 23, pp. 61-75, 2014. 

[Xu et al., 2007]  Xu, X., Chen, L., & He, P.: A novel ant clustering algorithm based on cellular automata, Web 
Intelligence and Agent Systems: An International Journal, Vol. 5(1), pp. 1-14, 2007. 

[Yang, 2009]  Yang, X.-S.: Firefly algorithms for multimodal optimization, Proc. International Symposium on 
Stochastic Algorithms, pp. 169-178, Springer, 2009. 

[Yang/He, 2013]  Yang, X.-S., & He, X.: Bat algorithm: literature review and applications, International Journal 
of Bio-Inspired Computation, Vol. 5(3), pp. 141-149, 2013. 

[Yin, 2007]  Yin, H.: Nonlinear dimensionality reduction and data visualization: a review, International Journal 
of Automation and Computing, Vol. 4(3), pp. 294-303, 2007. 

[Zak et al., 1999]  Zak, D. R., Holmes, W. E., MacDonald, N. W., & Pregitzer, K. S.: Soil temperature, matric 
potential, and the kinetics of microbial respiration and nitrogen mineralization, Soil Science Society of Amer-
ica Journal, Vol. 63(3), pp. 575-584, 1999. 

[Zhang et al., 2010]  Zhang, S., Cao, J., Kong, Y. M., & Scheuermann, R. H.: GO-Bayes: Gene Ontology-based 
overrepresentation analysis using a Bayesian approach, Bioinformatics, Vol. 26(7), pp. 905-911, 2010. 

[Zhong, 2010]  Zhong, Y.: Advanced intelligence: definition, approach, and progresses, International Journal of 
Advanced Intelligence, Vol. 2(1), pp. 15-23, 2010. 

[Zou et al., 2010]  Zou, W., Zhu, Y., Chen, H., & Sui, X.: A clustering approach using cooperative artificial bee 
colony algorithm, Discrete Dynamics in Nature and Society, Vol. 2010, Article ID 459796, 16 p., doi:  
10.1155/2010/459796, 2010. 

[Zrehen, 1993]  Zrehen, S.: Analyzing Kohonen maps with geometry, Proc. of the International Conference on 
Artificial Neural Networks Amsterdam (ICANN’93), pp. 609-612, Springer, London, 1993. 

 

 
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International 
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 
reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if changes were made. 
The images or other third party material in this book are included in the book’s Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, 
you will need to obtain permission directly from the copyright holder.



Appendices 

The following section are additions to the various chapters. Supplement A evaluates various 
QMs on the examples of the Hepta and Chainlink data sets. Supllement B illustatres an high-
dimensional example of a bimodal distribution of distances explained in chapter 3 (see Fig. 
3.1). Supplement C to D show all visualizations of ESOM, SOP and Pswarm of various data 
sets introduced in chapter 9. Most importantly it is illustrated that Pswarm does not find any 
structure if such a structure does not exist in a data set (supplemen D). Supplement G shows 
additions 3D prints of Pswarm visualizations. Supplement F, H and I complement results of this 
work with further (mostly statistical) comparisons and testings. 

Supplement A:  Evaluation of Common QMs 

The following section unravels the pitfalls of quality measures based on two different examples: 
Hepta and Chainlink. They will demonstrate that no quality measure is generalizable because 
every quality measure (QM) assumes the underlying structure of the data set. If this were not 
the case the minimizing of a QM would lead to the best possible projection of every data set. 
Both data sets are defined by discontinuities: Hepta is a data set with compact structures 
whereas Chainlink is a data set with connected structures. 

First Example: Hepta 
For example, three projections methods for the Hepta data set are chosen: PCA, CCA and t-
SNE. Overall, four projections are evaluated denoting the two projections of t-SNE with t-SNE 
(1) and t-SNE (2). Visually the results are depicted in chapter 5, Figure 5.2, where the seven 
class labels refer to the colors of the points. 
PCA has the highest structure preservation. With default parameters CCA adds gaps of around 
3 points. In t-SNE (1) projection the density of the data is overestimated and wide gaps are also 
added between two points and their cluster, if the default parameter setting is used. By changing 
one parameter of t-SNE, the t-SNE (2) projection is not able to preserve the structures of data, 
because many gaps are randomly added. 
In Figure A.1 curves of Trustworthiness and Continuity (T&D) are drawn for the four projec-
tions of the Hepta data set. The best quality of structure preservation was achieved by PCA (see 
supplementary), however the curves tend to prefer CCA over PCA. If one plotted only the first 
25 k nearest neighbors, t-SNE (1) would reach the best results. Out of the four cases, the T&D 
is finally able to distinguish the worst case of a low structure preservation of t-SNE (2). 
In Table A.1 Topological Index (Spearman’s error) and Cpath fail to distinguish the four cases. 
Topological Correlation (TC) is able to distinguish t-SNE (2) from the other three cases. Cwir-
ing is able to distinguish the four cases, but the difference in values between CCA and PCA is 
very small. Additionally, without a normalization scheme different data sets would be incom-
parable. The Classification error with knn=5 is able to rank the PCA projections as the best one 
and t-SNE (2) as the worst, but prefers t-SNE (1) over the CCA projection. 
Calculating AUC in accordance with [Lee et al., 2014] does not yield proper results either  be-
cause CCA is rated as the best projection by far, and the other three are rated very similar. The 
RAAR (Figure A.2) curves do not lead to correct interpretations. Zrehen’s measure evaluates 
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t-SNE (1) as a better projection than PCA or CCA, and is only able to depict t-SNE (2) as the 
worst one. 
The precision and recall measures validate that t-SNE minimizes the recall. The measures 
clearly separate CCA and PCA projections from t-SNE’s  but cannot distinguish between PCA 
and CCA projections (see Figure A.3). 
On the other hand, the four Shepard Diagrams make it possible to clearly distinguish all four 
cases. Accordingly, the scatter plot of PCA is distinctly correlated, CCA has some errors on the 
right corner, t-SNE (1) has problems with density and in t-SNE (2) the distances are randomly 
distributed. The results of the Shepard Diagram seem to be captured quite well by Kendalls ࣎ 
(Table A.1). 

 

Figure A.1:  Trustworthiness and Continuity [Kaski et al., 2003] of the four projections for the first 50 k nearest 
neighbors. T-SNE (1) instead of PCA has the best values for the first 30 knn, but t-SNE (1) projection 
does not represent the density of the data set and adds some gaps (see supplementary). From 30 to 
50 knn it is unclear if one should prefer CCA or the PCA projection, but CCA disrupts one cluster 
(see supplementary) by adding additional gaps. The worst projection, t-SNE (2), can be clearly 
distinguished. The curves do not change their ranks for figures above 50 knn. 



Appendices 181 
 

 

Figure A.2: Rescaled Average Agreement Rate (RAAR) [Lee et al., 2014]. The x-axis is in log scale. CCA is 
performing slightly better than PCA, and the difference between CCA, PCA and t-SNE to the right 
of the chart is only visible for knn>50. 

Table A.1:  Seven quality measures, which produce values of four projections of the Hepta dataset are displayed.  
  The projections are listed in order from best to worst structure preservation. Higher AUC or 

Correlation values denote better quality of a projection, however for Zrehen and the C values, high 
values imply a bad quality. TI=Topological Index, TC=Topological Correlation 

Projection Cpath Cwiring AUC TC TI’s ࣋ Kendall’s ࣎ Zrehen Classification-
Error 

PCA 52.9 22.9 57.6 0.666 0.808 0.656 4.94 0.0 

CCA 28.6 70.5 66.9 0.670 0.809 0.645 4.57 0.014 

tSNE (1), „right“ 34.2 278 54.6 0.455 0.512 0.365 3.60 0.0047 

tSNE (2), „wrong“ 38.3 1174 51.9 0.185 0.332 0.233 12.7 0.024 

 

Figure A.3:  For the Smoothed Precision and recall of Hepta one could prefer either the CCA or PCA projection. 
The quality measure shows that t-SNE maximizes the recall. One may also choose the best projection 
depending on the preference for recall over precision, or vice versa. 
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Second Example: Chainlink 
In this instance the projections of PCA and two different trials of CCA which yield different 
results are evaluated. The projections are shown in Fig 4. Both CCA projections were computed 
using the same set of parameters, but the outcome is not deterministic. Instead, the quality of 
the projection depends on the trial. The PCA projection completely fails to preserve the 
structures, and the reason is that the PCA only rotates the data set and the discontinuities are 
not linearly separable. The first CCA (1) projection shows good quality structure preservation 
but the second CCA (2) projection cuts one cluster in half and projects it in the middle of the 
second cluster, thus disrupting discontinuities in the input space by letting intruding points in-
between. This example illustrates, that for high structure preservation it is sometimes necessary 
to make higher BPE/FPE errors. A smaller BPE/FPE in CCA (2) does not yield to higher 
structure preservation, because CCA (2) projections results in additional gaps (Figure A.4).  
The evaluation of QMs is restricted to the Sheppard Density Plot with Kendall’s ࣎, the Cwiring 
measure, precision and recall (Figure A.5), and Trustworthiness and Discontinuity (T&D in 
Figure A.6) which were the best approaches in the first example. In terms of the CCA and PCA 
projection of Hepta, the results of precision and recall, as well as of Classification error, were 
ambiguous. Thus, they are added for the projections of the Chainlink dataset. One could argue 
that T&D alone cannot distinguish gaps of lower relevance (some points are in the wrong 
neighborhood) and data density. Hence, results are shown in Fig 6 for the Chainlink data set. 
The Sheppard Density Plot and Kendall’s ࣎ are not able to measure structure preservation. This 
is because the structures of the data sets are not based on compact structures; each ring is closer 
to some points of the other class than to points of its own class. Cwiring also fails completely. 
The difference in the T&D measure is very small (<3%). Discontinuity ranks PCA as the best 
projection, for Trustworthiness CCA (2) ranks highest for the first 50 knn, and thereafter CCA 
(1). For the PCA projection, recall is clearly much better than for both CCA projections. For 
the CCA (1) projection, precision is a slightly better than for the CCA (2) projection. However, 
the best projection may be chosen according to the preference for recall over precision or vice 
versa. 
The classification error is exact zero for both CCA projections. They cannot be distinguished. 
The PCA projection has a slightly above zero error of 0.3% although the structure preservation 
is very low. 

Table A.2:  Cwiring results in three projections of the dataset whereby Chainlink is sorted from the worst to the 
best structure preservation. The CCA projection is ranked worse than PCA projection. However one 
CCA projection preserves structures significantly better than the PCA projection. For Kendall’s ࣎ 
the PCA projection is ranked as the best. 

Projection Kendalls ࣎ Classification error Cwiring 

PCA 0.792 0.0037 14.3 

CCA (2) „wrong“ 0.757 0 20.0 

CCA (1) „right” 0.748 0 18 
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Figure A.4:  Chainlink Projection by the PCA and CCA methods. The PCA projection overlaps the clusters, as 
CCA shows three clearly separated clusters in the first trial (CCA wrong), and preserves the cluster 
structure in the second trial (CCA correct). 
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Figure A.6:  T&D for the Chainlink data set. For Discontinuity PCA is clearly regarded as the best projection, 
while the CCA (2) projection is most ideal for Trustworthiness up to the first 50 knn and after that 
the CCA (1) projection is most suitable. Compared to Figure A.2 of the supplementary, the CCA (1) 
projection is clearly the best one. Note, that the difference between the three projections is only 
around 3 percent, but the visual differences in Figure A.2 are clear. 

 

 

Figure A.5:  Smoothed Precision and Recall of Chainlink. It is unclear which projection is structure preserving, 
but the projections of CCA can be distinguished from each other.  
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Supplement B: Wine Dataset Distance Distribution  

Only Euclidean distances (Figure B.7) were used for SOP, consistent with the settings defined by [Herrmann, 
2011, p. 98] and the restrictions of the source code. For Pswarm the squared Euclidean distances were used, be-
cause they are slightly more bimodal (Figure B.8) indicating a better distinction between inter and intracluster 
distances, for further details see chapter 3, Figure 3.1. Distance distributions was generated using the AdaptGauss 
CRAN package [Thrun/Ultsch, 2015; Ultsch et al., 2015]. 

 

Figure B.7:  Distribution of Euclidean distances visualized by histogram, PDEplot, QQplot, Boxplot and the 
amount of NaNs: The distribution is in the first approximation unimodal. 

  

Figure B.8:  Distribution of squared Euclidean distances visualized by histogram, PDEplot, QQplot, Boxplot and 
the amount of NaNs: The distribution is in the first approximation bimodal distinguishing intra- and 
inter-cluster distances. 
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Supplement C: Generalized Umatrix of Pswarm and SOP 

Supplement C compares the visualizations of DBS through the projection method of Pswarm with the Generalized 
U-Matrix of SOP for all data sets introduced in chapter 9 which were not shown in this work up until now. 

 

Figure C.9:  Topographic map of the Swiss Banknotes data set projected using SOP with the default parameters: 
The hills of the generalized U-matrix indicate 3 clusters, and one green point is misplaced in the 
small cluster.  

 

Figure C.10:  Topographic map of the Swiss Banknotes data set projected using DBS (36x40) with an 
automatically chosen lattice size: Two clusters are clearly visible, with two misplaced points. The 
clustering accuracy of the DBS projection is 99%.  
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Figure C.11:  Topographic map of the Wine data set projected using SOP with the default parameters: The cluster 
structure is intertwined. Without the colored labels, the clusters could not be identified. 

 

Figure C.12:  Topographic map of the Wine data set projected using DBS (28x32) with an automatically chosen 
lattice size and squared Euclidean distances: The first cluster (green, right) is rectangular in form, 
the second cluster (blue, left) is square, and the third (pink, bottom) is triangular. The DBS projection 
yields a clustering accuracy of 92%. 
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Figure C.13:  Topographic map of the Iris data set projected using SOP with the default parameters: One cluster 
(green) is clearly visible, but the other two clusters (pink and blue) are not correctly reproduced 
because too many points (11%) are misplaced. The radius of the P-matrix was automatically chosen 
to be 1.38. 

 

Figure C.14:  Topographic map of the Iris data set projected using DBS (26x28) with an automatically chosen 
lattice size: Three clusters are clearly visible, but with five misplaced points. The points in the first 
cluster (green) are clearly separated, and the second cluster (blue) has a much higher density than 
the third cluster (pink). The clustering accuracy of the DBS projection is 99%. 
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Figure C.15:  Topographic map of the Atom data set projected using SOP with the default parameters: The 
projection shows hills separating parts of the green-labeled cluster. Without the labels corresponding 
to the prior classification, three clusters would be seen. 

 

Figure C.16:  Topographic map of the Atom data set projected using DBS (58x60) with an automatically chosen 
lattice size: Two clusters are visible, without any substructures. The clustering accuracy of the DBS 
projection is 100%. 
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Figure C.17:  Topographic map of the Chainlink data set projected using SOP with the default parameters: Two 
clusters are visible, with two points that could be misinterpreted as outlier points (the green point is 
shown twice here). The projection is not smooth, as seen from the hilly substructures evident in the 
clusters.  

 

Figure C.18:  Topographic map of the Chainlink data set projected using DBS (64x64) with an automatically 
chosen lattice size: Two clusters are clearly visible, but there is one point that could be 
misinterpreted as an outlier point (shown twice here). The projection is smoother than that of SOP, 
as seen from the fact that no hills are visible within the clusters. The clustering accuracy of the DBS 
projection is 100%. 
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Supplement D: DBS Visualizations of S-shape and uniform Cuboid  

In Figure D.19 it is verified that DBS does not visualize any structures in a data set if the data set does not contain 
structures. 

 

 

 

Figure D.19:  Topographic maps of three data sets by DBS which do not contain any natural cluster structure. The 
visualizations show that a cluster structure cannot be seen. Top: cuboid with uniform distributed 
points; Middle: cuboid with Gaussian distributed points; Down: S-share data sets (see chapter 9 for 
data set descriptions). 
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Supplement E: U-Matrix Visualizations of ESOM Projections 

All source code was executed in R 3.2.3 [R project, , 2008] on a Windows 7, 64bit system. The ESOM 
parameterization was chosen for a 50x82 sized toroidal lattice with Gaussian neighborhood function. Further 
parameterization for the annealing scheme were: 20 epochs, the global neighborhood (learning) radius Rmax=24 
and Rmin=1, and the learning rate started at 0.5 and ended at 0.1. The visualization of Fig E.120 E.21, E.22, E.23 
are compared in chapter 10.3 to the DBS visualizations. 

 

Figure E.20:  ESOM projection and U-matrix visualization on Wine data set. The clusters are difficult to separate 
without the colored labels. Many points are misplaced. 

 

Figure E.21:  ESOM projection and U-matrix visualization on Swiss banknotes data set. One best matching unit 
is misplaced. The cluster with blue best matching units could be interpreted as a small and a big 
cluster because of the high hills in-between. 
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Figure E.22:  ESOM projection and U*-matrix visualization of Iris data set. With default parameters the clusters 
with blue and pink best matching unit cannot be separated. 

 

Figure E.23:  ESOM projection and U-matrix visualization of Wing Nut data set. If the default parametrization of 
ESOM is not changed from toroid to planar, the structures of the clusters are very difficult to see. 
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Supplement F: Statistical Tests in Hydrology 

Tab F.3 and F.4 compare the clustering achieved in chapter 12.1 for conductivity and for nitrate. The clusters 
should contain samples of different natures and based on different processes. Given this assumption, it is valid to 
statistically test whether the N&C distributions significantly differ between clusters. The Kolmogorov–Smirnov 
test (KS test) is a nonparametric two-sample test of the null hypothesis that two variables are drawn from the same 
continuous distribution [Conover, 1971, pp. 309-314. All N&C distributions significantly differ between clusters, 
with the exception of cluster 4 compared with 5. 

Table F.3:  KS-test with test statistics D and p-value p for conductivity. The null hypothesis for cluster 4 and 5 
could not be disproved. 

Cluster No.  
(Sample Size) 

C1 (223) C2 (87) C3 (21) C4 (7) C5 (5) 

C1(223)  D=0.29, 
p<0.001 

D=0.87, 
p<0.001 

D=1,  
p<0.001 

D=1,  
p<0.001 

C2 (87) D=0.29, 
p<0.001 

 D=0.84, 
p<0.001 

D=1, p<0.001 D=1,  
p<0.001 

C3 (21) D=0.87, 
p<0.001 

D=0.84, 
p<0.001 

 D=1,  
p<0.001 

D=1,  
p<0.001 

C4 (7) D=1,  
p<0.001 

D=1,  
p<0.001 

D=1, 
 p<0.001 

 D=0.31,  
p=0.84 

Table F.4:  KS-test test with test statistics D and p-value p for nitrate. The null hypothesis for cluster 4 and 5 
could not be disproved. 

Cluster No.  
(Sample Size) 

C1 (223) C2 (87) C3 (21) C4 (7) C5 (5) 

C1(223)  D=0.19, p=0.02 D=0.91, p<0.001 D=0.96, p<0.001 D=0.96, p<0.001 

C2 (87) D=0.19, p=0.02  D=0.79, p<0.001 D=0.99, p<0.001 D=0.99, p<0.001 

C3 (21) D=0.91, p<0.001 D=0.79, p<0.001  D=1, p<0.001 D=1, p<0.001 

C4 (7) D=0.96, p<0.001 D=0.99, p<0.001 D=1, p<0.001  D=0.26, p=0.96 
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Supplement G: 3D Prints of Generalized Umatrix Visualizations of DBS 

In Fig. G.1 and G.2 the 3D prints of the visualizations of chapter 12 are shown . [Thrun et al., 2016a].  

 

Figure G.24:  3D print of the topographic map of DBS the Hydrology data set of chapter 12, Figure 12.4  
(cf. [Thrun et al., 2016a]), colors are not available yet due to technical limitations. 

 

Figure G.25:  3D print of the topographic map DBS of pain genes of chapter 12, Figure 12.9 (cf.  [Thrun et al., 
2016a]), colors are not available yet due to technical limitations. 
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Supplement H: Contingency Table for Tetragonula Bees Clustering 

Chapter 11.3 introduces the Databionic swarm clustering of the Tetragonula Bees data set and evaluates it with 
the unsupervised indices of the heatmap and the Silhouette plot. In addition Tab H.5 evaluates the clustering by 
comparing it to the clustering of [Hennig 2014] by using a contingency table. Besides cluster 6 both clusterings 
are similar to each other.    

Table H.15:  DBS clustering in rows versus H2014 ([Hennig 2014]) average linkage clustering in columns. Seven 
clusters can be reproduced. Total accuracy of DBS clustering in comparison to H2014 is 93%. 

  Abbreviations: R∑െRowsum, R% - Rowpercentage, C∑െColumnsum, C% - Columnpercentage,  

H2014/  
DBS 

1 2 3 4 5 6 7 8 9 10 R∑ R% 

1 63 0 0 0 0 0 0 0 0 0 63 26,7 

2 0 48 0 0 0 0 0 0 0 0 48 20,3 

3 0 0 35 0 0 0 0 0 0 0 35 14,8 

4 0 0 0 23 1 0 0 0 0 0 24 10,2 

5 0 0 0 0 17 0 0 0 0 0 17 7,2 

6 0 15 0 0 0 0 0 0 1 0 16 6,78 

7 0 0 0 0 0 13 0 0 0 0 13 5,51 

8 0 0 0 0 0 0 11 0 0 0 11 4,66 

97 0 0 0 0 0 0 0 4 0 0 4 1,69 

98 0 0 0 0 0 0 0 0 0 2 2 0,85 

99 0 0 0 0 0 0 0 0 3 0 3 1,27 

C∑ 63 63 35 23 18 13 11 4 4 2 236 0 

C% 26,7 26,7 14,8 9,75 7,63 5,51 4,66 1,69 1,69 0,85 0 100 
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Supplement I: Statistical Tests for FCPS clustering compared to DBS 

In Tab I.6 the p-values of the Bonferroni adjusted Wilcoxon rank sum test of the results in chapter 10 Figure 10.1 
are presented. If the p-value is lower than 0.05, then DBS outperforms the other clustering method significantly.  

Table I.6:  Wilcoxon rank sum test for Fig. 10.1 in chapter 10. Abbreviations: single linkage (SL), Linde-Buzo-
Gray algorithm (LBG-kMeans), partitioning around medoids (PAM), mixtures-of-Guassians 
clustering (MoG) also known as model based clustering 

DataSet/ 

Method 

Spectral kMeans PAM Ward SL MoG 

Atom 1 p<0.001 p<0.001 p<0.001 1 p<0.001 

Chainlink 1 p<0.001 p<0.001 p<0.001 1 p<0.001 

EngyTime 1 1 1 p<0.001 p<0.001 1 

Hepta p<0.001 p<0.001 1 1 1 1 

Lsund3D p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 

Target p<0.001 p<0.001 p<0.001 p<0.001 1 p<0.001 

Tetra 1 1 1 1 p<0.001 1 

Two Diamonds p=0.02 1 1 1 p<0.001 1 

Wing Nut 1 1 p<0.001 p<0.001 1 1 
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