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Foreword

Genetic improvement programs of plants and livestock are aimed at maximizing the
rate of increase of some merit function (e.g., economic value of a wheat line) that is
expected to have a genetic basis. Typically, candidates for selection with the highest
merit are kept as parents of the subsequent generation and those with the lowest
merit are eliminated (“culled”) or used less intensively. There are at least two key
questions associated with this endeavor: how merit is defined and how it is assessed.

Merit can be represented by a linear or nonlinear function of genetic values for
several traits regarded as important from the perspective of producing economic
returns or benefits. The genetic component of merit cannot be observed; thus, it must
be inferred from data on the candidates for selection, or on their relatives. Hence, and
apart from the issue of specifying economic values (an area requiring expertise
beyond animal and plant breeding), the problem of inferring merit is a largely
statistical one.

This book represents a substantial compilation of work done in an area known as
“selection indices” in animal and plant breeding. Selection indices were originally
developed by Smith (1936) in plant breeding and by Hazel (1943) in animal breeding
to address the selection of plants or animals scored for multiple attributes. In
agriculture, the breeding worth (or net genetic merit) of a candidate for selection
depends on several traits. For example, milk production and composition, health,
reproductive performance, and life-span in dairy cows; and grain yield, disease
resistance, and flowering time in maize. Smith (1936) defined a linear merit function

in which the “merit” (H, say) of a candidate was expressed as H ¼
Xt

i¼1

wigi, where

t is the number of traits, gi is the unobservable additive genetic value (breeding
value) of the candidate for trait i, and wi is the relative economic value of trait
i (calculated externally and taken as a known quantity); in vector notation, H ¼ w0g,
where w and g are t � 1 vectors of relative economic values and breeding values
respectively. The preceding definition of H implies that the rate of increase of merit
rises by wi units as the breeding value for trait i rises by one unit; thus, it is somewhat
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naïve, as it does not contemplate diminishing returns, nonlinearity, or situations in
which the economic return from increasing trait 1, say, depends on the genetic level
for trait 2.

The book contains a wealth of material on how various types of linear indices can
be constructed, interpreted, optimized, and applied. The techniques described in the
book were developed mainly with plant breeding as a focal point, an area in which
the authors have wide experience. However, I expect that the book will be of interest
to animal breeders as well. The linear selection index (LSI) theory developed in this
book is based on the Smith (1936) and Hazel (1943) linear phenotypic selection
index (LPSI) (Chap. 2), and all the LSIs described in Chaps. 3–9 are only variants of
the LPSI. Thus, in Chap. 3, the author describes null restriction and no null
predetermined restriction imposed over the expected genetic gain of the LPSI. In
Chap. 4, the authors incorporated molecular marker information into the LPSI, and
in Chap. 5 genomic estimated breeding values (GEBVs) are included in the LPSI.
Interestingly, Chap. 6 shows how the restrictive LPSI is used in the genomic
selection context, but this is based on the LPSI theory of Smith (1936) and Hazel
(1943). In Chaps. 7 and 8 the only change was to assume that the economic weights
are fixed, but unknown, and then, based on this assumption, the authors demonstrate
the eigen selection index method (ESIM) and its variants, which are, of course,
associated with the LPSI. In Chap. 9, the reader is shown how to combine the LPSI
theory with the independent culling method to develop the multistage selection
index theory.

Chapter 10 shows results on stochastic simulations from cycles of selections
using the linear phenotypic selection index (LPSI), the ESIM, the restrictive LPSI
and the restrictive ESIM. In Chap. 11 the use of RindSel (R software to analyze
Selection Indices) is presented with examples for using unrestrictive, restrictive, null
or predetermined proportional gain indices.

Animal and plant breeders follow somewhat different routes in the treatment of
multiple-trait improvement by selection, mainly because the former field deals with
candidates possessing an unequal amount of information, and extensive genetic
inter-relatedness. Recently, however, genomic selection has reunified perspectives
somewhat. In animal breeding, Henderson (1973) introduced the notion of “best
prediction,” and showed that the conditional expectation function E(H/DATA),
where DATA represents all available records on all traits, unbalanced or not, was
the “best predictor” in the sense of the mean squared error. He also showed that the
best predictor had some additional properties that were appealing from a response to
selection perspective.

In a multiple-trait context and assuming multivariate normality (with known
parameters) of the joint distribution of genetic values and DATA, the best predictor
retrieves the selection index evaluation derived by Smith (1936) and Hazel (1943) in
less general settings (Henderson 1963). It follows immediately that if w is known,
the best predictor of merit is
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E H=DATAð Þ ¼ E w0g=DATAð Þ ¼ w0E g=DATAð Þ
where E(g/DATA) is the best predictor of the breeding values. Smith (1936) and
Hazel (1943) failed to recognize that the economic values did not need to enter into
the selection index until after the predictions of the breeding values were obtained,
simply because of linear invariance. Bulmer (1980) pointed out, pertinently, that it
was unclear why ranking animals using a predictor, minimizing the mean squared
error of prediction, would maximize expected genetic progress in a single round of
selection, and suggested an alternative predictor that was later shown by Gianola and
Goffinet (1982) and Fernando and Gianola (1986) to be exactly the best predictor.
Animal breeders can perhaps interpret many of the results given in this book from
such a perspective.

A more difficult problem (although outside of the scope of the book) is that of
inferring nonlinear merit. Suppose now that the merit of a candidate has the form:

H ¼ w0gþ g0Qg

where w0 is a known row vector, as above, and Q is a known matrix, assumed to be
symmetric without loss of generality. The conditional distribution of H given DATA
does not have a closed form, but it can be estimated using Monte Carlo methods by
drawing samples of g from some posterior distribution and, thus, obtaining samples
of H from the preceding expression. If bg ¼ E g=DATAð Þ and C ¼ Var(g/DATA) are
available, the mean and variance of the conditional distribution of H can be calcu-
lated analytically, then

E H=DATAð Þ ¼ w0bg þ bg0Qbg þ tr QCð Þ
and, assuming multivariate normality

Var H=DATAð Þ ¼ Var w0gð Þ þ Var g0Qgð Þ þ 2w0Cov g; g0Qgð Þ
¼ w0Cwþ 2tr QCð Þ2 þ 4bg0QCQbg þ 2w0CQbg

Contrary to the case of a linear merit function, the precision of the evaluation
candidate or, equivalently, the reliability of its evaluation, enters nontrivially when
inferring second-order merit. Gianola and Fernando (1986) suggested the Bayesian
approach as a general inferential method for solving a large number of animal
breeding problems, linear or nonlinear, even in situations where there is uncertainty
about all location and dispersion parameters known. Today, the posterior distribu-
tion of any nonlinear merit function can be arrived at via Monte Carlo sampling.

Even when the statistical principles are well understood, it is often useful to
understand the “architecture” of selection indices. The book is unique in presenting
techniques needed to attain such an understanding, and represents a very valuable
contribution to the statistical genetics of quantitative traits. It constitutes essential
reading for plant quantitative geneticists working in multiple-trait improvement.
However, animal breeders will also benefit from studying carefully many of its
chapters, as these contribute knowledge in areas of animal breeding research where
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there has been little traffic. Personally, I am sure that much benefit will be extracted
from studying this valuable and novel contribution to the literature.

Department of Animal Sciences,
University of Wisconsin, Madison, WI,
USA

Department of Biostatistics and Medical
Informatics, University of Wisconsin,
Madison, WI, USA

Department of Dairy Science,
University of Wisconsin, Madison, WI,
USA

Daniel Gianola
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Preface

In the linear selection index (LSI) theory, the main distinction is between the net
genetic merit and the LSI. The net genetic merit is a linear combination of the true
unobservable breeding values of the traits weighted by their respective economic
values, whereas the LSI is a linear combination of phenotypic values, marker scores
or genomic estimated breeding values (GEBVs). The LSI can also be a linear
combination of phenotypic values and marker scores or phenotypic values and
GEBVs jointly. That is, the LSI is a function of observed phenotypic values, marker
scores, or GEBVs that is used to predict the net genetic merit and select parents for
the next generation. Thus, there are three main classes of LSI: phenotypic, marker,
and genomic. The main advantage of the genomic LSI over the other indices lies in
the possibility of reducing the intervals between selection cycles by more than two
thirds. One of the main characteristics of the LSI is that it allows extra merit in one
trait to offset slight defects in another. Thus, by its use, individuals with very high
merit in one trait are saved for breeding, even when they are inferior in other traits
(Hazel and Lush 1942).

Among the LSIs developed up to now, the main distinction is between an LSI that
uses economic weights and one that does not use economic weights to predict the net
genetic merit. The principal LSI theory was developed assuming that the economic
weights are fixed and known; however, recently, the LSI theory was extended to the
case where the economic weights are fixed but unknown. This latter theory is more
general than the first because it does not require the economic weights to be known.
An additional distinction among the LSIs is between the single-stage LSI and the
multistage LSI. Multistage LSIs are methods for selecting one or more individual
traits available at different times or stages; they are applied mainly in animal and tree
breeding where the target traits become evident at different ages. One advantage of
the latter method over the single-stage LSI is that the breeder does not need to carry a
large population of individuals throughout the multi-trait selection process. Some
authors have used multistage LSI as a cost-saving strategy for improving multiple
traits, because not all traits need to be measured at each stage. When traits have a
developmental sequence in ontogeny, or there are large differences in the costs of
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measuring several traits, the efficiency of multistage LSI over single-stage LSI can
be substantial (Xu and Muir 1991, 1992).

The LSI has two main parameters: the selection response and the expected genetic
gain per trait or multi-trait selection response. The selection response is associated
with the mean of the net genetic merit and is defined as the mean of the progeny of
the selected parents or the future population mean, whereas the expected genetic gain
per trait, or multi-trait selection response, is the population means of each trait under
selection of the progeny of the selected parents. Thus, although the selection
response is associated with the mean of the net genetic merit, the expected genetic
gain per trait is associated with the mean of each trait under selection. The selection
response and expected genetic gain enable breeders to estimate the expected pro-
gress of the selection before carrying it out. This information gives improvement
programs a clearer orientation and helps to predict the success of the selection
method adopted and to choose the option that is technically most effective on a
scientific basis (Costa et al. 2008).

Based on the restriction imposed on the expected genetic gain per trait, the LSIs
can be divided into unrestricted, null restricted, or predetermined proportional gains
indices. The null restricted LSI allows restrictions equal to zero to be imposed on the
expected genetic gain of some traits, whereas the expected genetic gain of other traits
increases (or decreases) without imposing any restrictions. In a similar manner, the
predetermined proportional gains LSI attempts to make some traits change their
expected genetic gain values based on a predetermined level, whereas the rest of the
traits remain without restrictions. All the foregoing indices have as their main
objectives to predict the net genetic merit and select parents for the next generation.

The LSI theory is based on multivariate normal distribution because this distribu-
tion allows the traits under selection to be completely described using only means,
variances, and covariances. In addition, if the traits do not correlate, they are inde-
pendent. Linear combinations of traits are also normal; and even when the trait
phenotypic values do not have multivariate normal distribution, this distribution serves
as a useful approximation, especially in inferences involving sample mean vectors,
which, in accordance with the central limit theorem, have multivariate normal distri-
bution (Rencher 2002). By this reasoning, a fundamental assumption in the single-
stage LSI theory is that the net genetic merit and the LSI have bivariate normal
distribution, whereas in the multistage LSI theory, the net genetic merit and the
LSIs have multivariate normal distribution. Under the latter assumption, the regression
of the net genetic merit on any linear function of the phenotypic values is linear.

The LSI theory developed in this book was based on the Smith (1936) and Hazel
(1943) linear phenotypic selection index (LPSI) described in Chap. 2. As the reader
shall see, all the LSIs described in Chaps. 3–9 of this book are only variants of the
LPSI. Thus, in Chap. 3, the restricted Kempthorne and Nordskod (1959) index only
incorporates null restriction over the LPSI expected genetic gain, and in a similar
manner, the Mallard (1972) and Tallis (1985) index incorporates no null
predetermined restriction over the LPSI expected genetic gain. In Chap. 4, Lande
and Thompson (1990) and Lange and Whittaker (2001) have only incorporated into
the LPSI molecular marker information, and in Chap. 5, the authors (Dekkers 2007;
Togashi et al. 2011; Ceron-Rojas et al. 2015) incorporated GEBVs into the LPSI. In
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Chap. 6, the only news is that the Kempthorne and Nordskod (1959) and the Mallard
(1972) and Tallis (1985) indices have been used in the genomic selection context,
but such indices are based on the LPSI theory of Smith (1936) and Hazel (1943). In
Chaps. 7 and 8, the only change was to assume that the economic weights are fixed
but unknown, and then, based on this assumption, we have developed the eigen
selection index method (ESIM) and its variants, which are, of course, associated with
the LPSI. Finally, in Chap. 9 we show that Cochran (1951) and Young (1964)
combined the LPSI theory with the independent culling method to develop the
multistage selection index theory, but the base theory is the Smith (1936) and
Hazel (1943) LPSI theory.

Note that up to now, we have used the acronym LPSI to denote the Smith (1936)
and Hazel (1943) index, whereas the rest of the indices have been denoted by the
name of their authors. We think that the use of this latter type of notation created
confusion in the reader, because it gives the impression that there are many theories
associated with the indices or that all the indices were made ad hoc. In reality, there is
only one theory, that developed by Smith (1936) and Hazel (1943), whereas the rest
of the indices are only variants of this theory. In this book, we intended to solve this
problem by using a specific acronym for each index (see Table 1.1, Chap. 1 for
details) that indicates the relationship of each index (from Chaps. 3 to 9) with
the LPSI. For example, the null restricted Kempthorne and Nordskod (1959)
index was denoted by RLPSI (restricted linear phenotypic selection index), whereas
the predetermined proportional gain Mallard (1972) and Tallis (1985) index was
denoted by PPG-LPSI (predetermined proportional gains linear phenotypic selec-
tion index). Similar notation had been used for the molecular and genomic indices
(see Table 1.1, Chap. 1 for additional detail). We hope that acronyms such as the
RLPSI and PPG-LPSI help the reader to see that the latter two indices are only
variants of the LPSI developed by Smith (1936) and Hazel (1943). To be specific,
the RLPSI and PPG-LPSI are only projections of the LPSI to a different space. For
example, the RLPSI projects the LPSI vector of coefficients to a smaller space than
the original space of the LPSI vector of coefficients (see Chap. 3 for details).

The only thing that would be strange for the reader could be the acronyms ESIM
(eigen selection index method), RESIM (restricted eigen selection index method),
MESIM (molecular eigen selection index method), etc., that we have used in
Chaps. 7 and 8, and which would seem to be unrelated to the LPSI, RLPSI, etc.
However, we would expect that the context and the theory described in the book
indicate to the reader the relationship among all the indices described in the book.
As we shall see in Chaps. 7 and 8, ESIM and its variants are the result of a
application of the canonical correlation theory to the LPSI context. This is the
keyword to understand the ESIM theory.

The main objective of this book is to describe the LSI theory and its statistical
properties. First, we describe the single-stage LSI theory by assuming that economic
weights are fixed and known to predict the net genetic merit in the phenotypic
(Chaps. 2 and 3), marker (Chap. 4), and genomic (Chaps. 5 and 6) contexts. Next, we
describe the LSI by assuming that economic weights are fixed but unknown to
predict the net genetic merit in the phenotypic (Chap. 7), marker, and genomic
(Chap. 8) contexts. In Chap. 9, we describe the multistage LSI in the phenotypic,
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marker, and genomic contexts assuming that economic weights are fixed and known.
Chapters 10 and 11 present simulation results and SAS and R codes respectively to
estimate the parameters and make selections using some of the LSIs described in
Chaps. 2, 3, 4, 7, and 8.

J. Jesus Cerón-Rojas
José Crossa
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Chapter 1
General Introduction

Abstract We describe the main characteristics of two approaches to the linear
selection indices theory. The first approach is called standard linear selection
indices whereas the second of them is called eigen selection index methods. In the
first approach, the economic weights are fixed and known, whereas in the second
approach the economic weights are fixed but unknown. This is the main difference
between both approaches and implies that the eigen selection index methods include
to the standard linear selection indices because they do not require that the economic
weights be known. Both types of indices predict the net genetic merit and maximize
the selection response, and they give the breeder an objective criterion to select
individuals as parents for the next selection cycle. In addition, in the prediction they
can use phenotypic, markers, and genomic information. In both approaches, the
indices can be unrestricted, null restricted or predetermined proportional gains and
can be used in the context of single-stage or multistage breeding selection schemes.
We describe the main characteristics of the two approaches to the linear selection
indices theory and we finish this chapter describing the Lagrange multiplier method,
which is the main tool to maximize the selection index responses.

Linear selection indices that assume that economic weights are fixed and known
to predict the net genetic merit are based on the linear selection index theory
originally developed by Smith (1936), Hazel and Lush (1942), and Hazel (1943).
They are called standard linear selection indices in this introduction. Linear
selection indices that assume that economic weights are fixed but unknown are
based on the linear selection index theory developed by Cerón-Rojas et al. (2008a,
2016) and are called Eigen selection index methods. The Eigen selection index
methods include the standard linear selection indices as a particular case because
they do not require the economic weights to be known. To understand the Eigen
selection index methods theory, the point is to see that this is an application of the
canonical correlation theory to the standard linear selection index context. The
multistage linear selection index theory will be described only in the context of the
standard linear selection indices. As we shall see, there are three main types of
LSI: phenotypic, marker, and genomic. Each can be unrestricted, null restricted or
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predetermined proportional gains and can be used in the context of single-stage or
multistage breeding selection schemes.

For each specific selection index described in this book, we have used an
acronym. For example, the Smith (1936), Hazel and Lush (1942), and Hazel
(1943) index was denoted LPSI (linear phenotypic selection index), whereas the
Cerón-Rojas et al. (2008a) index was denoted ESIM (Eigen selection index method),
etc. For additional details, see Table 1.1 and the Preface of this book. We think that
such notation gives the reader a more general point of view of the relationship that
exists among all the indices described in this book.

Table 1.1 Chapter where the index was described, authors who developed the selection index,
acronym of the index used in this book, and description of the acronym

Chapter Authors who developed the index Acronym Description

2 Smith(1936), Hazel and Lush (1942),
Hazel (1943)

LPSIa Linear phenotypic selection
index

Williams (1962a) BLPSIa Base linear phenotypic selec-
tion index

3 Kempthorne and Nordskog (1959) RLPSIa Restricted linear phenotypic
selection index

Mallard (1972), Harville (1975), Tallis
(1985), Itoh and Yamada (1987)

PPG-
LPSIa

Predetermined proportional
gain linear phenotypic selection
index

Pesek and Baker (1969), Yamada et al.
(1975), Itoh and Yamada (1986)

DG-LPSIa Desired gains linear phenotypic
selection index

4 Lande and Thompson (1990) LMSIb Linear marker selection index

Lange and Whittaker (2001) GW-
LMSIb

Genome-wide linear marker
selection index

5 Togashi et al. (2011), Ceron-Rojas
et al. (2015)

LGSIc Linear genomic selection index

Dekkers (2007) CLGSId Combined linear genomic
selection index

6 Kempthorne and Nordskog (1959),
Ceron-Rojas et al. (2015)

RLGSIc Restricted linear genomic
selection index

Tallis(1985), Ceron-Rojas et al. (2015) PPG-
LGSIc

Predetermined proportional
gain linear genomic selection
index

Kempthorne and Nordskog (1959),
Dekker (2007)

CRLGSId Combined restricted linear
genomic selection index

Tallis (1985), Dekker (2007) PPG-
CLGSId

Predetermined proportional
gain combined linear genomic
selection index

7 Cerón-Rojas et al. (2008a) ESIMa Eigen selection index method

Cerón-Rojas et al. (2008a) RESIMa Restricted eigen selection index
method

Cerón-Rojas et al. (2016) PPG-
ESIMa

Predetermined proportional
gain eigen selection index
method

(continued)
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1.1 Standard Linear Selection Indices

1.1.1 Linear Phenotypic Selection Indices

Three main linear phenotypic selection indices used to predict the net genetic merit
and select parents for the next selection cycle are the LPSI, the null restricted LPSI
(RLPSI), and the predetermined proportional gains LPSI (PPG-LPSI). The LPSI is
an unrestricted index, whereas the RLPSI and the PPG-LPSI allow restrictions to be
imposed equal to zero and predetermined proportional gain restrictions respectively,
on the trait expected genetic gain per trait values to make some traits change their
mean values based on a predetermined level while the rest of the trait means remain
without restrictions. All these indices are linear combinations of several observable
and optimally weighted phenotypic trait values.

Table 1.1 (continued)

Chapter Authors who developed the index Acronym Description

8 Cerón-Rojas et al. (2008b) MESIMb Molecular eigen selection
index method

Crossa and Cerón-Rojas (2011) GW-
ESIMb

Genome-wide eigen selection
index method

Dekkers (2007), Cerón-Rojas et al.
(2008b)

GESIMd Genomic eigen selection index
method

Dekkers (2007), Cerón-Rojas et al.
(2008a)

RGESIMd Restricted genomic eigen
selection index method

Dekkers (2007), Cerón-Rojas et al.
(2016)

PPG-
GESIMd

Predetermined proportional
gain genomic eigen selection
index method

9 Cochran (1951), Young (1964) MLPSIa Multistage linear phenotypic
selection index

Cochran (1951), Young (1964),
Kempthorne and Nordskog (1959)

MRLPSIa Multistage restricted linear
phenotypic selection index

Cochran (1951), Young (1964), Tallis
(1985)

MPPG-
LPSIa

Multistage predetermined pro-
portional gain linear pheno-
typic selection index

Cochran (1951), Young (1964), Ceron-
Rojas et al. (2015)

MLGSIc Multistage linear genomic
selection index

Cochran (1951), Young (1964),
Kempthorne and Nordskog (1959),
Ceron-Rojas et al. (2015)

MRLGSIc Multistage restricted linear
genomic selection index

Cochran (1951), Young (1964), Tallis
(1985), Ceron-Rojas et al. (2015)

MPPG-
LGSIc

Multistage predetermined pro-
portional gain linear genomic
selection index

aIndices that use only phenotypic information
bIndices that use marker and phenotypic information jointly
cIndices that use only genomic information
dIndices that use genomic and phenotypic information jointly in the prediction of the net genetic
merit
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The simplest linear phenotypic selection index (LPSI) can be written as IB = w
0
y,

where w is a known vector of economic values and y is a vector of phenotypic
values. We called this index the base linear phenotypic selection index (BLPSI). In
this case, the breeder does not need to estimate any parameters, and some authors
have indicated that the BLPSI is a good predictor of the net genetic merit (H = w

0
g,

where g is a vector of true unobservable breeding values) when no data are available
for estimating the phenotypic (P) and genotypic (G) covariance matrices. When the
traits are independent and the economic weights are also known, the LPSI can be

written as I ¼
Xt

i¼1

wih
2
i yi, and when the economic weights are not known, the LPSI is

I ¼
Xt

i¼1

h2i yi , where wi is the ith economic weight and h2i is the heritability of trait yi.

In Chap. 2 (Sects. 2.5.1 and 2.5.2), we will show that the foregoing three indices are
particular cases of the more general LPSI, i.e., I = b

0
y, where b is the I vector of

coefficients and y is the vector of observable trait phenotypic values. In the latter
case, we need to estimate matrices P and G.

The LPSI was originally proposed by Smith (1936) in the plant breeding context;
later Hazel and Lush (1942) and Hazel (1943) extended the LPSI to the context of
animal breeding. These authors made a clear distinction between the LPSI and the net
genetic merit. The net genetic merit was defined as a linear combination of the
unobservable true breeding values of the traits weighted by their respective economic
values. In the LPSI theory, the main assumptions are: the genotypic values that make
up the net genetic merit are composed entirely of the additive effects of genes, the
LPSI and the net genetic merit have a joint normal distribution, and the regression of
the net genetic merit on LPSI values is linear. Two of the main parameters of this
index are the selection response and the expected genetic gain per trait or multi-trait
selection response. The LPSI selection response is associated with the mean of the net
genetic merit and was defined as the mean of the progeny of the selected parents or
the mean of the future population (Cochran 1951). The selection response enables
breeders to estimate the expected selection progress before carrying it out. This
information gives improvement programs a clearer orientation and helps to predict
the success of the adopted selection method and choose the option that is technically
most effective on a scientific basis (Costa et al. 2008). On the other hand, the LPSI
expected genetic gain per trait, or multi-trait selection response, is the population
mean of each trait under selection of the progeny of the selected parents. Thus,
although the LPSI selection response is associated with the mean of the net genetic
merit, the LPSI expected genetic gain per trait is associated with the mean of each trait
under selection. The foregoing definition of selection response and the expected
genetic gain per trait are valid for all selection indices described in this book.

One of the main problems of the LPSI is that when used to select individuals as
parents for the next selection cycle, the expected mean of the traits can increase or
decrease in a positive or negative direction without control. This was the main reason
why Kempthorne and Nordskog (1959) developed the basics of the restricted LPSI
(RLPSI), which allows restrictions to be imposed equal to zero on the expected
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genetic gain of some traits whereas the expected genetic gain of other traits increases
(or decreases) without any restrictions being imposed. Based on the results of the
RLPSI, Tallis (1962) and James (1968) proposed a selection index called
predetermined proportional gains LPSI (PPG-LPSI), which attempts to make some
traits change their expected genetic gain values based on a predetermined level,
while the rest of the traits remain without restrictions. Mallard (1972) pointed out
that the PPG-LPSI proposed by Tallis (1962) and James (1968) does not provide
optimal genetic gains and was the first to propose an optimal PPG-LPSI based on a
slight modification of the RLPSI. Other optimal PPG-LPSIs were proposed by
Harville (1975) and Tallis (1985). Itoh and Yamada (1987) showed that the Mallard
(1972) index is equal to the Tallis (1985) index and that, except for a proportional
constant, the Tallis (1985) index is equal to the Harville (1975) index. Thus, in
reality, there is only one optimal PPG-LPSI.

In Chap. 3 (Sect. 3.1.1 and 3.2.1), we show that bR = Kb and bP = KPb are the
vectors of coefficients of the RLPSI and PPG-LPSI, respectively, where b is the
LPSI vector of coefficients. Matrices K and KP are idempotent (K = K2 and KP

¼ K2
P ), that is, they are projectors. Matrix K projects b into a space smaller than the

original space of b because the restrictions imposed on the expected genetic gains
per trait are equal to zero (Sect. 3.1.1). The reduction of the space into which matrix
K projects b will be equal to the number of null restrictions imposed by the breeder
on the expected genetic gain per trait, or multi-trait selection response. In the PPG-
LPSI context, matrix KP has the same function as K (see Sect. 3.2.1 for details).

The aims of the LPSI, RLPSI, and PPG-LPSI are to:

1. Predict the unobservable net genetic merit values of the candidates for selection.
2. Maximize the selection response and the expected genetic gain for each trait.
3. Provide the breeder with an objective rule for evaluating and selecting several

traits simultaneously (Baker 1974).

The LPSI is described in Chap. 2, and the RLPSI and PPG-LPSI are described in
Chap. 3. As we will be see in this book, the RLPSI and PPG-LPSI theories can be
extended to all selection indices described in this book. Also, the main objectives of
all selection indices described in this book are the same as those of the LPSI, RLPSI,
and PPG-LPSI.

1.1.2 Linear Marker Selection Indices

The linear marker selection index (LMSI) and the genome-wide LMSI (GW-LMSI)
are employed in marker-assisted selection (MAS) and are useful in training
populations when there is phenotypic and marker information; both are a direct
application of the LPSI theory to the MAS context. The LMSI was originally
proposed by Lande and Thompson (1990), and the GW-LMSI was proposed by
Lange and Whittaker (2001). The fundamental idea of these authors is based on the
fact that crossing two inbred lines generates linkage disequilibrium between markers
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and quantitative trait loci (QTL), which is useful for identifying markers correlated
with the traits of interest and estimating the correlation between each of the selected
markers and the trait; the selection criteria are then based upon this marker informa-
tion (Moreau et al. 2007). The LMSI combines information on markers linked to
QTL and the phenotypic values of the traits to predict the net genetic merit of the
candidates for selection because it is not possible to identify all QTL affecting the
economically important traits (Li 1998). That is, unless all QTL affecting the traits of
interest can be identified, phenotypic values should be combined with the marker
scores to increase LMSI efficiency (Dekkers and Settar 2004).

Moreau et al. (2000) and Whittaker (2003) found that the LMSI is more effective
than LPSI only in early generation testing and that LMSI increased costs because of
molecular marker evaluation. The LMSI assumes that favorable alleles are known, as
are their average effects on phenotype (Lande and Thompson 1990; Hospital et al.
1997). This assumption is valid for major gene traits but not for quantitative traits that
are influenced by the environment and many QTLs with small effects interacting
among them and with the environment. The LMSI requires regressing phenotypic
values on marker-coded values and, with this information, constructing the marker
score for each individual candidate for selection, and then combining the marker score
with phenotypic information using the LMSI to obtain a final prediction of the net
genetic merit. Several authors (Lange and Whittaker 2001; Meuwissen et al. 2001;
Dekkers 2007; Heffner et al. 2009) have criticized the LMSI approach because it makes
inefficient use of the available data. It would be preferable to use all the available data in
a single step to achieve maximally accurate estimates of marker effects. In addition,
because the LMSI is based on only a few large QTL effects, it violates the selection
index assumptions of multivariate normality and small changes in allele frequencies.

Lange and Whittaker (2001) proposed the genome-wide LMSI (GW-LMSI) as a
possible solution to LMSI problems. The GW-LMSI is a single-stage procedure that
treats information at each individual marker as a separate trait. Thus, all marker
information can be entered together with phenotypic information into the
GW-LMSI, which is then used to predict the net genetic merit and select candidates.
Both selection indices are described in Chap. 4.

1.1.3 Linear Genomic Selection Indices

The linear genomic selection index (LGSI) is a linear combination of genomic
estimated breeding values (GEBVs) and was originally proposed by Togashi et al.
(2011); however, Ceron-Rojas et al. (2015) developed the LGSI theory completely.
The advantage of the LGSI over the other indices lies in the possibility of reducing the
intervals between selection cycles by more than two thirds. A 4-year breeding cycle
(including 3 years of field testing) is thus reduced to only 4 months, i.e., the time
required to grow and cross a plant. As a result, thousands of candidates for selection
can be evaluated without ever taking them out to the field (Lorenz et al. 2011).
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In the LGSI, phenotypic and marker data from the training population are fitted in
a statistical model to estimate all available marker effects; these estimates are then
used to obtain GEBVs that are predictors of breeding values in a testing population
for which there is only marker information. The GEBV can be obtained by multi-
plying the genomic best linear unbiased predictor (GBLUP) of the estimated marker
effects in the training population (Van Raden 2008) by the coded marker values
obtained in the testing population in each selection cycle. Applying the LGSI in plant
or animal breeding requires genotyping the candidates for selection to obtain the
GEBV, and predicting and ranking the net genetic merit of the candidates for
selection using the LGSI. An additional genomic selection index was given by
Dekkers (2007); however, this index can only be used in training populations
because GEBV and phenotypic information are jointly used to predict the net genetic
merit. Both indices are described in Chap. 5 and in Chap. 6, we describe both indices
in the context of the restricted selection indices.

1.2 Eigen Selection Index Methods

The eigen selection index methods are described in Chaps. 7 and 8. As we shall see,
these indices are only used in training populations and can be unrestricted, restricted,
and predetermined proportional gains selection indices; they can also use phenotypic
and/or marker information to predict the net genetic merit. In the context of this
linear selection index theory, it is assumed that economic weights are fixed but
unknown. The eigen selection index methods is based on the canonical correlation
theory and applied to the LPSI, RLSPI, etc., selection indices's context.

1.2.1 Linear Phenotypic Eigen Selection Index Method

Cerón-Rojas and Sahagún-Castellanos (2005) and Cerón-Rojas et al. (2006) pro-
posed a phenotypic selection index in the principal component context that has low
accuracy; later, Cerón-Rojas et al. (2008a, 2016) developed the eigen selection index
method (ESIM), the restricted ESIM (RESIM) and the predetermined proportional
gain ESIM (PPG-ESIM) in the canonical correlations context (Hotelling 1935,
1936). The ESIM is an unrestricted index, but the RESIM and PPG-ESIM allow
null and predetermined restrictions respectively to be imposed on the expected
genetic gains of some traits, whereas the rest remain without restrictions. The latter
three indices use only phenotypic information to predict the individual net genetic
merit of the candidate for selection and use the elements of the first eigenvector of
the multi-trait heritability as the index vector of coefficients and the first eigenvalue
of the multi-trait heritability in their selection response. The main objectives of the
three indices are to predict the unobservable net genetic merit values of the candi-
dates for selection, maximize the selection response and the expected genetic gain
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per trait, and provide the breeder with an objective rule for evaluating and selecting
several traits simultaneously. Their main characteristics are:

1. They do not require the economic weights to be known.
2. The first eigenvector of the multi-trait heritability is used as their vector of

coefficients, and the first eigenvalue of the multi-trait heritability is used in the
selection response.

3. Owing to the properties associated with eigen analysis, it is possible to use the
theory of similar matrices (Harville 1997) to change the direction and proportion
of the expected genetic gain values without affecting the accuracy.

4. The sampling statistical properties of ESIM are known.
5. The PPG-ESIM does not require a proportional constant.

Finally, the main theory describe in Chapter 7 was developed by Cerón-Rojas et
al.(2008a, 2016) based on the canonical correlation framework. That is, ESIM and
its variants (RESIM, MESIM, PPG-ESIM) are applications of the canonical corre-
lation theory to the LPSI context.

1.2.2 Linear Marker and Genomic Eigen Selection Index
Methods

Cerón-Rojas et al. (2008b) and Crossa and Cerón-Rojas (2011) extended the ESIM
to a molecular ESIM (MESIM) and to a genome-wide ESIM (GW-ESIM), respec-
tively, similar to the linear molecular selection index (LMSI) and to the genome-
wide LMSI (GW-LMSI). The MESIM and GW-ESIM have problems similar to
those associated with the LMSI and GW-LMSI respectively (Chap. 4 for details).
The MESIM and GW-ESIM use phenotypic information and markers linked to QTL
to predict the net genetic merit, but the GW-ESIM omits the molecular selection step
in the prediction. The main difference among the MESIM, the GW-ESIM, the LMSI,
and the GW-LMSI is how they obtain the vector of coefficients: while the LMSI and
GW-LMSI obtain the vector of coefficients according to the LPSI theory, the
MESIM and the GW-ESIM obtain the vector of coefficients based on canonical
correlation analysis and the singular value decomposition theory.

It is possible to extend the ESIM to a genomic ESIM (GESIM), and the restricted
RESIM and the PPG-ESIM can be extended to a restricted genomic ESIM
(RGESIM) and to a predetermined proportional gain genomic ESIM
(PPG-GESIM) that use phenotypic and GEBV information jointly to predict the
net genetic merit of the candidates for selection, maximizing the selection response
and optimizing the expected genetic gain per trait; but although the GESIM is not
constrained, the RGESIM and the PPG-GESIM allow null and predetermined
restrictions respectively to be imposed on the expected genetic gain to make some
traits change their mean values based on a predetermined level, while the rest of the
traits remain without any restriction.

8 1 General Introduction



1.3 Multistage Linear Selection Indices

Multistage linear selection indices are methods of selecting one or more individual
traits available at different times or stages and are applied mainly in animals and tree
breeding where the traits under consideration become evident at different ages. The
theory of these indices is based on the independent culling level method and the
standard linear selection index theory. There are two main approaches associated
with these indices:

1. The optimal multistage linear selection index, which takes into consideration the
correlation among indices at different stages when makes selection.

2. The selection index updating or decorrelated multistage linear selection index, in
which the correlation among indices at different stages is zero when makes
selection.

These indices can use phenotypic or GEBV information to predict the net genetic
merit or combine phenotypic and GEBV in the prediction. These indices can also be
unrestricted, null restricted or predetermined proportional gains. In this book, we
describe only the optimal multistage linear selection index in Chap. 9 and, in this
book, it is called simply multistage linear selection index.

Multistage linear selection indices are a cost-saving strategy for improving mul-
tiple traits, because not all traits need to be measured at each stage. Thus, when traits
have a developmental sequence in ontogeny or there are large differences in the costs
of measuring several traits, the efficiency of this index over LPSI efficiency can be
substantial (Xu et al. 1995). Xu and Muir (1992) have indicated that the optimal
multistage linear phenotypic selection index (MLPSI) increases selection intensity on
traits measured at an earlier age, and, with fixed facilities, a greater number of
individuals can be selected at an earlier age. For example, if some individuals can
be culled before final traits are measured (e.g., weaning weights in swine and beef
cattle breeding), savings are realized in terms of feed, labor, and facilities. With the
LPSI, the same individuals must be measured for each trait; thus, the number of traits
measured per mature individual is the same as that for an immature individual.

The original MLPSI was developed by Cochran (1951) in the two-stage context
and later, Young (1964) and Cunningham (1975) combined the LPSI theory with the
independent culling method to simultaneously select more than one trait in the
multistage selection context. This selection method was called multistage selection
by Cochran (1951) and Young (1964) and multistage index selection by
Cunningham (1975).

The MLPSI theory can also be adapted to the genomic selection context, where it
is possible to develop an optimal multistage unrestricted, restricted, and
predetermined proportional gains linear genomic selection index. The latter indices
are linear combinations of estimated breeding values (GEBV) used to predict the
individual net genetic merit and select individual traits available at different stages in
a non-phenotyped testing population and are called multistage linear genomic
selection indices. The advantage of these indices over the other selection indices
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lies in the possibility of reducing the intervals between selection cycles or stages by
more than two thirds.

One of the main problems of all the multistage selection indices is that after the
first selection stage their values could be non-normally distributed. In addition, for
more than two stages, those indices require computationally sophisticated multiple
integration techniques to derive selection intensities, and there are problems of
convergence when the traits and the index values of successive stages are highly
correlated. Furthermore, the computational time could be unacceptable if the number
of selection stages becomes too high (Börner and Reinsch 2012). One possible
solution to these problems was given by Xu and Muir (1992) in the selection
index updating or decorrelatedmultistage linear phenotypic selection index context.
However, one problem with the decorrelated multistage selection index is that its
accuracy and selection response is generally lower than the accuracy and selection
response of the multistage selection index described in this book.

1.4 Stochastic Simulation of Four Linear Phenotypic
Selection Indices

Chapter 10 describes a stochastic simulation of four linear indices: LPSI, ESIM,
RLPSI, and RESIM. We think that stochastic simulation can contribute to a better
understanding of the relationship between these indices and their accuracies to
predict the net genetic merit.

1.5 RIndSel: Selection Indices with R

Chapter 11 describes how RIndSel can be used to determine individual candidates as
parents for the next cycle of improvement. RIndSel is a graphical unit interface that
uses the selection index theory to make selection. The index can be a linear
combination of phenotypic values, genomic estimated breeding values or a linear
combination of phenotypic values and marker scores.

1.6 The Lagrange Multiplier Method

To obtain the constrained linear selection indices (e.g., RLPSI, PPG-LPSI, RESIM)
described in Chaps. 3, 6, 7, 8, and 9, we used the method of Lagrange multipliers.
This is a powerful method for finding extreme values (maxima or minima) of
constrained functions. For example, the covariance between the breeding value vector
(g) and the LPSI (I = b

0
y) is Cov(I, g) = Gb. In the LPSI context, the Gb vector can
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take any value (positive or negative) which could be a problem for some breeding
objectives. That is, the breeder could be interested in improving only (t � r) of t
(r< t) traits, leaving r of them fixed; that is, the expected genetic gains of r traits will
be equal to zero for a specific selection cycle. In such cases, we want r covariances
between the linear combinations of g (U

0
g) and the I = b

0
y to be zero, i.e., Cov(I,U

0

g) = U
0
Gb = 0, where U

0
is a matrix with r 1’s and (t� r) 0’s; 1 indicates that the trait

is restricted and 0 that the trait is not restricted. This is the main problem of the
RLPSI, and the method of Lagrange multipliers is useful for solving that problem.

In the constrained linear selection indices context, the method of Lagrange multi-
pliers involves maximizing (or minimizing) the Lagrange function: L[H, I, g, v] = f(H,
I) + v

0
g(g, I), where the elements of vector v

0
are called Lagrange multipliers. In the

RLPSI context, f(H, I) = E[(H � I)2] = w
0
Gw + b

0
Pb � 2w

0
Gb is the mean squared

difference between I andH. Let g(g, I) =Cov(I,U
0
g) =U

0
Gb be the covariances between

the linear combinations of g (U
0
g), and I = b

0
y, the LPSI. Then, to find the RLPSI vector

of coefficientsbR=Kb, we need tominimize theLagrange function:b
0
Pb+w

0
Gw� 2w

0
Gb + 2v

0
C

0
b, with respect to vectors b and v

0
= [v1 v2 � � � vr � 1], where v is a vector of

Lagrange multipliers (see Chap. 3, Sect. 3.1.1 for details). Schott (2005) has given
additional details associated with the method of Lagrange multipliers.

References

Baker RJ (1974) Selection indexes without economic weights for animal breeding. Can J Anim Sci
54:1–8

Börner V, Reinsch N (2012) Optimising multistage dairy cattle breeding schemes including
genomic selection using decorrelated or optimum selection indices. Genet Sel Evol 44(1):11

Cerón-Rojas JJ, Sahagún-Castellanos J (2005) A selection index based on principal components.
Agrociencia 39:667–677

Cerón-Rojas JJ, Crossa J, Sahagún-Castellanos J, Castillo-González F, Santacruz-Varela A (2006)
A selection index method based on eigenanalysis. Crop Sci 46:1711–1721

Cerón-Rojas JJ, Sahagún-Castellanos J, Castillo-González F, Santacruz-Varela A, Crossa J (2008a)
A restricted selection index method based on eigenanalysis. J Agric Biol Environ Stat 13
(4):421–438

Cerón-Rojas JJ, Sahagún-Castellanos J, Castillo-González F, Santacruz-Varela A, Benítez-
Riquelme I, Crossa J (2008b) A molecular selection index method based on eigenanalysis.
Genetics 180:547–557

Ceron-Rojas JJ, Crossa J, Arief VN, Basford K, Rutkoski J, Jarquín D, Alvarado G, Beyene Y,
Semagn K, DeLacy I (2015) A genomic selection index applied to simulated and real data. G3
(Bethesda) 5:2155–2164

Cerón-Rojas JJ, Crossa J, Toledo FH, Sahagún-Castellanos J (2016) A predetermined proportional
gains eigen selection index method. Crop Sci 56:2436–2447

Cochran WG (1951) Improvement by means of selection. In: Neyman J (ed) Proceedings of the
second Berkeley symposium on mathematical statistics and probability. University of California
Press, Berkeley, CA, pp 449–470

Costa MM, Di Mauro AO, Unêda-Trevisoli SH, Castro Arriel NH, Bárbaro IM, Dias da Silveira G,
Silva Muniz FR (2008) Analysis of direct and indirect selection and indices in soybean
segregating populations. Crop Breed Appl Biotechnol 8:47–55

References 11



Crossa J, Cerón-Rojas JJ (2011) Multi-trait multi-environment genome-wide molecular marker
selection indices. J Indian Soc Agric Stat 62(2):125–142

Cunningham EP (1975) Multi-stage index selection. Theor Appl Genet 46:55–61
Dekkers JCM (2007) Prediction of response to marker-assisted and genomic selection using

selection index theory. J Anim Breed Genet 124:331–341
Dekkers JCM, Settar P (2004) Long-term selection with known quantitative trait loci. Plant Breed

Rev 24:311–335
Harville DA (1975) Index selection with proportionality constraints. Biometrics 31(1):223–225
Harville DA (1997) Matrix Algebra from a statistician’s perspective. Springer, New York
Hazel LN (1943) The genetic basis for constructing selection indexes. Genetics 8:476–490
Hazel LN, Lush JL (1942) The efficiency of three methods of selection. J Hered 33:393–399
Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49

(1):12
Hospital F, Moreau L, Lacoudre F, Charcosset A, Gallais A (1997) More on the efficiency of

marker-assisted selection. Theor Appl Genet 95:1181–1189
Hotelling H (1935) The most predictable criterion. J Educ Psychol 26:139–142
Hotelling H (1936) Relations between two sets of variables. Biometrika 28:321–377
Itoh Y, Yamada Y (1986) Re-examination of selection index for desired gains. Genet Sel Evol 18

(4):499–504
Itoh Y, Yamada Y (1987) Comparisons of selection indices achieving predetermined proportional

gains. Genet Sel Evol 19(1):69–82
James JW (1968) Index selection with restriction. Biometrics 24:1015–1018
Kempthorne O, Nordskog AW (1959) Restricted selection indices. Biometrics 15:10–19
Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of

quantitative traits. Genetics 124:743–756
Lange C, Whittaker JC (2001) On prediction of genetic values in marker-assisted selection.

Genetics 159:1375–1381
Li Z (1998) Molecular analysis of epistasis affecting complex traits. In: Paterson AH (ed) Molecular

dissection of complex traits. CRC Press, Boca Raton, New York, pp 119–1130
Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T et al (2011) Genomic selection in plant

breeding: knowledge and prospects. Adv Agron 110:77–123
Mallard J (1972) The theory and computation of selection indices with constraints: a critical

synthesis. Biometrics 28:713–735
Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-

wide dense marker maps. Genetics 157:1819–1829
Moreau L, Lemarie S, Charcosset A, Gallais A (2000) Economic efficiency of one cycle of marker-

assisted selection efficiency. Crop Sci 40:329–337
Moreau L, Hospital F, Whittaker J (2007) Marker-assisted selection and introgression. In: Balding

DJ, Bishop M, Cannings C (eds) Handbook of statistical genetics, vol 1, 3rd edn. Wiley,
New York, pp 718–751

Pesek J, Baker RJ (1969) Desired improvement in relation to selection indices. Can J Plant Sci
49:803–804

Schott JR (2005) Matrix analysis for statistics, 2nd edn. Wiley, Hoboken, NJ
Smith HF (1936) A discriminant function for plant selection. In: Papers on quantitative genetics and

related topics. Department of Genetics, North Carolina State College, Raleigh, NC, pp 466–476
Tallis GM (1962) A selection index for optimum genotype. Biometrics 18:120–122
Tallis GM (1985) Constrained selection. Jpn J Genet 60(2):151–155
Togashi K, Lin CY, Yamazaki T (2011) The efficiency of genome-wide selection for genetic

improvement of net merit. J Anim Sci 89:2972–2980
Van Raden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci

91:4414–4423

12 1 General Introduction



Whittaker JC (2003) Marker-assisted selection and introgression. In: Balding DJ, Bishop M,
Cannings C (eds) Handbook of statistical genetics, vol 1, 2nd edn. Wiley, New York, pp
554–574

Xu S, Muir WM (1992) Selection index updating. Theor Appl Genet 83:451–458
Xu S, Martin TG, Muir WM (1995) Multistage selection for maximum economic return with an

application to beef cattle breeding. J Anim Sci 73:699–710
Yamada Y, Yokouchi K, Nishida A (1975) Selection index when genetic gains of individual traits

are of primary concern. Jpn J Genet 50(1):33–41
Young SSY (1964) Multi-stage selection for genetic gain. Heredity 19:131–143

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

References 13



Chapter 2
The Linear Phenotypic Selection Index
Theory

Abstract The main distinction in the linear phenotypic selection index (LPSI)
theory is between the net genetic merit and the LPSI. The net genetic merit is a
linear combination of the true unobservable breeding values of the traits weighted by
their respective economic values, whereas the LPSI is a linear combination of several
observable and optimally weighted phenotypic trait values. It is assumed that the net
genetic merit and the LPSI have bivariate normal distribution; thus, the regression of
the net genetic merit on the LPSI is linear. The aims of the LPSI theory are to predict
the net genetic merit, maximize the selection response and the expected genetic gains
per trait (or multi-trait selection response), and provide the breeder with an objective
rule for evaluating and selecting parents for the next selection cycle based on several
traits. The selection response is the mean of the progeny of the selected parents,
whereas the expected genetic gain per trait, or multi-trait selection response, is the
population means of each trait under selection of the progeny of the selected parents.
The LPSI allows extra merit in one trait to offset slight defects in another; thus, with
its use, individuals with very high merit in one trait are saved for breeding even when
they are slightly inferior in other traits. This chapter describes the LPSI theory and
practice. We illustrate the theoretical results of the LPSI using real and
simulated data. We end this chapter with a brief description of the quadratic selection
index and its relationship with the LPSI.

2.1 Bases for Construction of the Linear Phenotypic
Selection Index

The study of quantitative traits (QTs) in plants and animals is based on the mean and
variance of phenotypic values of QTs. Quantitative traits are phenotypic expressions
of plant and animal characteristics that show continuous variability and are the result
of many gene effects interacting among them and with the environment. That is, QTs
are the result of unobservable gene effects distributed across plant or animal
genomes that interact among themselves and with the environment to produce the
observable characteristic plant and animal phenotypes (Mather and Jinks 1971;
Falconer and Mackay 1996).
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The QTs are the traits that concern plant and animal breeders the most. They are
particularly difficult to analyze because heritable variations of QTs are masked by
larger nonheritable variations that make it difficult to determine the genotypic values
of individual plants or animals (Smith 1936). However, as QTs usually have normal
distribution (Fig. 2.1), it is possible to apply normal distribution theory when
analyzing this type of data.

Any phenotypic value of QTs ( y) can be divided into two main parts: one related
to the genes and the interactions (g) among them (called genotype), and the other
related to the environmental conditions (e) that affect genetic expression (called
environment effects). Thus, the genotype is the particular assemblage of genes
possessed by the plant or animal, whereas the environment consists of all the
nongenetic circumstances that influence the phenotypic value of the plant or animal
(Cochran 1951; Bulmer 1980; Falconer and Mackay 1996). In the context of only
one environment, the phenotypic value of QTs (y) can be written as

y ¼ gþ e, ð2:1Þ
where g denotes the genotypic values that include all types of gene and interaction
values, and e denotes the deviations from the mean of g values. For two or more
environments, Eq. (2.1) can be written as y ¼ g + e + ge, where ge denotes the
interaction between genotype and environment. Assumptions regarding Eq. (2.1)
are:
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Fig. 2.1 Distribution of 252 phenotypic means of two maize (Zea mays) F2 population traits: plant
height (PHT, cm; a) and ear height (EHT, cm; b), evaluated in one environment, and of 599 -
phenotypic means of the grain yield (GY1 and GY2, ton ha�1; c and d respectively) of one double
haploid wheat (Triticum aestivum L.) population evaluated in two environments

16 2 The Linear Phenotypic Selection Index Theory



1. The expectation of e is zero, E(e) ¼ 0.
2. Across several environments, the expectation of y is equal to the expectation of g,

i.e., E(g) ¼ μg ¼ E(y) ¼ μy.
3. The covariance between g and e is equal to 0.

The g value can be partitioned into three additional components: additive genetic
(a) effects (or intra-locus additive allelic interaction), dominant genetic (d ) effects
(or intra-locus dominance allelic interaction), and epistasis (ι) effects (or inter-loci
allelic interaction) such that g¼ a + d + ι. In this book, we have assumed that g ¼ a.

According to Kempthorne and Nordskog (1959), the following four theoretical
conditions are necessary to construct a valid LPSI:

1. The phenotypic value (Eq. 2.1) shall be additively made up of two parts: a
genotypic value (g) (defined as the average of the phenotypic values possible
across a population of environments), and an environmental contribution (e).

2. The genotypic value g is composed entirely of the additive effects of genes and is
thus the individual breeding value.

3. The genotypic economic value of an individual is its net genetic merit.
4. The phenotypic values and the net genetic merit are such that the regression of the

net genetic merit on any linear function of the phenotypic values is linear.

Under assumptions 1 to 4, the offspring of a mating will have a genotypic value
equal to the average of the breeding values of the parents (Kempthorne and
Nordskog 1959). Additional conditions for practical objectives are:

5. Selection is practiced at only one stage of the life cycle.
6. The generations do not overlap.
7. All individuals below a certain level of desirability are culled without exception.
8. Selected individuals have equal opportunity to have offspring (Hazel and Lush

1942).
9. The LPSI values in the ith selection cycle and the LPSI values in the (i + 1)th

selection cycle do not correlate.
10. The correlation between the LPSI and the net genetic merit should be at its

maximum in each selection cycle.

Conditions 5 to 10 indicate that the LPSI is applying in a single stage context.

2.2 The Net Genetic Merit and the LPSI

Not all the individual traits under selection are equally important from an economic
perspective; thus, the economic value of a trait determines how important that trait is
for selection. Economic value is defined as the increase in profit achieved by
improving a particular trait by one unit (Tomar 1983; Cartuche et al. 2014). This
means that for several traits, the total economic value is a linear combination of the
breeding values of the traits weighted by their respective economic values (Smith
1936; Hazel and Lush 1942; Hazel 1943; Kempthorne and Nordskog 1959); this is
called the net genetic merit of one individual and can be written as
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H ¼ w0g, ð2:2Þ
where g0 ¼ [g1 g2 . . . gt] is a vector of true unobservable breeding values and
w0 ¼ w1 w2 . . . wt½ � is a vector of known and fixed economic weights.
Equation (2.2) has several names, e.g., linear aggregate genotype (Hazel 1943),
genotypic economic value (Kempthorne and Nordskog 1959), net genetic merit
(Akbar et al. 1984; Cotterill and Jackson 1985), breeding objective (Mac Neil et al.
1997), and total economic merit (Cunningham and Tauebert 2009), among others.
In this book, we call Eq. (2.2) net genetic merit only. The values of H ¼ w0g are
unobservable but they can be simulated for specific studies, as is seen in the
examples included in this chapter and in Chap. 10, where four indices have been
simulated for many selection cycles.

In practice, the net genetic merit of an individual is not observable; thus, to select
an individual as parent of the next generation, it is necessary to consider its overall
merit based on several observable traits; that is, we need to construct an LPSI of
observable phenotypic values such that the correlation between the LPSI and
H ¼ w0g is at a maximum. The LPSI should be a good predictor of H ¼ w0g and
should be useful for ranking and selecting among individuals with different net
genetic merits. The LPSI for one individual can be written as

I ¼ b0y, ð2:3Þ
where b0 ¼ b1 b2 � � � bt½ � is the I vector of coefficients, t is the number of traits
on I, and y0 ¼ y1 y2 � � � yt½ � is a vector of observable trait phenotypic values
usually centered with respect to its mean. The LPSI allows extra merit in one trait to
offset slight defects in another. With its use, individuals with very high merit in some
traits are saved for breeding, even when they are slightly inferior in other traits
(Hazel and Lush 1942). Only one combination of b values allows the correlation of
the LPSI with H ¼ w0g for a particular set of traits to be maximized.

Figure 2.2 indicates that the regression of the net genetic merit on the LPSI is
lineal and that the correlation between the LPSI and the net genetic merit is maximal
in each selection cycle. Also, note that the true correlations between the LPSI and the
net genetic merit, and the true regression coefficients of the net genetic merit over the
LPSI are the same, but the estimated correlation values between the LPSI and the net
genetic merit are lower than the true correlation (Fig. 2.2). Table 2.1 indicates that
the LPSI in the ith selection cycle and the LPSI in the (i + 1)th selection cycle do not
correlate. However, in practice, the correlation values between any pair of LPSIs
could be different from zero in successive selection cycles.

One fundamental assumption of the LPSI is that I ¼ b0y has normal distribution.
This assumption is illustrated in Fig. 2.3 for two real datasets: a maize (Zea mays) F2
population with 252 lines and three traits—grain yield (ton ha�1); plant height
(cm) and ear height (cm)—evaluated in one environment; and a double haploid
wheat (Triticum aestivum L.) population with 599 lines and one trait—grain yield
(ton ha�1)—evaluated in three environments. Figure 2.3 indicates that, in effect, the
LPSI values approach normal distribution when the number of lines is very large.
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2.3 Fundamental Parameters of the LPSI

There are two fundamental parameters associated with the LPSI theory: the selection
response (R) and the expected genetic gain per trait (E). In general terms, the
selection response is the difference between the mean phenotypic values of the
offspring (μO) of the selected parents and the mean of the entire parental generation
(μP) before selection, i.e., R¼ μO� μP (Hazel and Lush 1942; Falconer and Mackay
1996). The expected genetic gain per trait (or multi-trait selection response) is the
covariance between the breeding value vector and the LPSI (I ) values weighted by
the standard deviation of the variance of I(σI), i.e.,

Cov I;gð Þ
σI

¼ Gb
σI
, multiplied by the
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Fig. 2.2 True correlation (TC) and estimated correlation (ECO) values between the linear pheno-
typic selection index (LPSI) and the net genetic merit for seven selection cycles, and true regression
coefficient (TRC) of the net genetic merit over the LPSI for four traits and 500 genotypes in one
environment simulated for seven selection cycles

Table 2.1 Estimated
correlation values between the
linear phenotypic selection
index (LPSI) values in seven
simulated selection cycles

1 2 3 4 5 6 7

1.000 0.199 0.256 0.220 0.168 0.225 0.123

0.199 1.000 0.225 0.252 0.284 0.292 0.362

0.256 0.225 1.000 0.198 0.276 0.267 0.213

0.220 0.252 0.198 1.000 0.258 0.224 0.240

0.168 0.284 0.276 0.258 1.000 0.269 0.195

0.225 0.292 0.267 0.224 0.269 1.000 0.325

0.123 0.362 0.213 0.240 0.195 0.325 1.000
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selection intensity. This is one form of the LPSI multi-trait selection response. In the
univariate context, the expected genetic gain per trait is the same as the selection
response.

One additional way of defining the selection response is based on the selection
differential (D). The selection differential is the mean phenotypic value of the
individuals selected as parents (μS) expressed as a deviation from the population
mean (μP) or parental generation before the selection was made (Falconer and
Mackay 1996); that is, D ¼ μS � μP. Thus, another way of defining R is as the
part of the expected differential of selection (D ¼ μS � μP) that is gained when
selection is applied (Kempthorne and Nordskog 1959); that is

R ¼ Cov g; yð Þ
σ2y

D ¼ kσyh
2, ð2:4Þ

whereCov g; yð Þ ¼ σ2g is the covariance between g and y, g is the individual breeding
value associated with trait y, σ2y is the variance of y, k ¼ D

σy
is the standardized
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Fig. 2.3 Maize LPSI (Fig. 2.3a) is the distribution of 252 values of the LPSI constructed with the
phenotypic means of three maize (Zea mays) F2 population traits: grain yield (ton ha�1), PHT (cm)
and EHT (cm), evaluated in one environment. Wheat LPSI (Fig. 2.3b) is the distribution of
599 LPSI values constructed with the phenotypic means of the grain yield (ton ha�1) of a double
haploid wheat (Triticum aestivum L.) population evaluated in three environments
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selection differential or selection intensity, and h2 ¼ σ2g
σ2y

is the heritability of trait y in

the base population. Heritability (h2) appears in Eq. (2.4) as a measure of the
accuracy with which animals or plants having the highest genetic values can be
chosen by selecting directly for phenotype (Hazel and Lush 1942).

The selection response (Eq. 2.4) is the mean of the progeny of the selected parents
or the future population mean of the trait under selection (Cochran 1951). Thus, the
selection response enables breeders to estimate the expected progress of the selection
before carrying it out. This information gives improvement programs a clearer
orientation and helps to predict the success of the selection method adopted and
choose the option that is technically most effective on a scientific base (Costa et al.
2008). Equation (2.4) is very powerful but its application requires strong assump-
tions. For example, Eq. (2.4) assumes that the trait of interest does not correlate with
other traits having causal effects on fitness and, in its multivariate form the validity of
predicted change rests on the assumption that all such correlated traits have been
measured and incorporated into the analysis (Morrissey et al. 2010).

2.3.1 The LPSI Selection Response

The univariate selection response (Eq. 2.4) can also be rewritten as

R ¼ kσyh
2 ¼ kσgρgy, ð2:5Þ

where σgwas defined in Eq. (2.4) and ρgy is the correlation between g and y. Thus, as
H ¼ w0g and I ¼ b0y are univariate random variables, the selection response of the
LPSI (RI) can be written in a similar form as Eq. (2.5), i.e.,

RI ¼ kIσHρHI , ð2:6Þ
where σH and σI are the standard deviation and ρHI the correlation between H ¼ w0g
and I ¼ b0y respectively; kI ¼ μIA�μIB

σI
is the standardized selection differential or the

selection intensity associated with the LPSI; μIA and μIB are the means of the LPSI
values after and before selection respectively. The second part of Eq. (2.6) (kIσHρHI)
indicates that the genetic change due to selection is proportional to kI, σH, and ρHI
(Kempthorne and Nordskog 1959). Thus, the genetic gain that can be achieved by
selecting for several traits simultaneously within a population of animals or plants is
the product of the selection differential (kI), the standard deviation of H ¼ w0g (σH),
and the correlation between H ¼ w0g and I ¼ b0p (ρHI). Selection intensity kI is
limited by the rate of reproduction of each species, whereas σH is relatively beyond
man’s control; hence, the greatest opportunity for increasing selection progress is by
ensuring that ρHI is as large as possible (Hazel 1943). In general, it is assumed that kI
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and σH are fixed and w known and fixed; hence, RI is maximized when ρHI is
maximized only with respect to the LPSI vector of coefficients b.

Equation (2.6) is the mean of H ¼ w0g, whereas σ2Hρ
2
HI 1� vð Þ is its variance and

ρ∗HI ¼ ρHI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v

1� vρ2HI

s
the correlation between H ¼ w0g and I ¼ b0p after selection

was carried out (Cochran 1951), where v ¼ kI(kI � τ) and τ is the truncation point.
For example, if the selection intensity is 5%, kI ¼ 2.063, τ ¼ 1.645, and v ¼ 0.862
(Falconer and Mackay 1996, Table A). In R (in this case R denotes a platform for
data analysis, see Kabakoff 2011 for details), the truncation point and selection
intensity can be obtained as v <� qnorm(1 � q) and k <� dnorm(v)/q, respectively,
where q is the proportion retained. Both the variance and the correlation (ρ∗HI ) are
reduced by selection. If H ¼ w0g could be selected directly, the gain in H ¼ w0g
would be kI. Thus, the gain due to indirect selection using I¼ b0p is a fraction ρHI of
that due to direct selection using H ¼ w0g. As kI increases, RI increases (Eq. 2.6),ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2Hρ
2
HI 1� vð Þ

q
and ρ∗HI decrease, and the effects are in the same direction as ρ∗HI

increases (Cochran 1951). These results should be valid for all selection indices
described in this book.

Smith (1936) gave an additional method to obtain Eq. (2.6). Suppose that we have a
large number of plant lines and we select one proportion q for further propagation. In
addition, assume that the values of I for each line are normally distributed with variance
σ2I ¼ b0Pb; let I be transformed into a variable u, with unit variance and mean at zero,
that is, u ¼ I�μI

σI
, where μI is the mean of I. Assume that all I values higher than I0 value

are selected; then the value of u0 ¼ I 0�μI
σI

corresponding to any given value of qmay be

ascertained from a table of the standard normal probability integral (Fig. 2.4).
Assuming that the expectations of H and I are E(H ) ¼ 0 and E(I ) ¼ μI, the

conditional expectation of H given I can be written as

z
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Fig. 2.4 Graph of standardized LPSI values showing how a population can be separated sharply at
a given point (u0) into a selected fraction (q), denoted by the red area, and a remainder that is culled,
denoted by the white area
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E H=Ið Þ ¼ σHI
σ2I

I � μI½ � ¼ σHI
σ2I

σIu ¼ BσIu, whereB ¼ σHI
σ2I

, σHI ¼w0Gb is the covari-

ance between H and I, and σ2I ¼ b0Pb is the variance of I. Therefore, if σ2I and σHI are
fixed, the LPSI selection response (RI) can be obtained as the expectation of the
selected population, which has univariate left truncated normal distribution. A
truncated distribution is a conditional distribution resulting when the domain of
the parent distribution is restricted to a smaller region (Hattaway 2010). In the LPSI
context, a truncation distribution occurs when a sample of individuals from the
parent distribution is selected as parents for the next selection cycle, thus creating a
new population of individuals that follow a truncated normal distribution. Thus, we
need to find E[E(H/I )] ¼ q�1BσIE(u), or, using integral calculus,

E E H=Ið Þ½ � ¼ BσI
q

Z 1

u¼u0

uffiffiffiffiffi
2π

p exp �1
2
u2

� �
du ¼ z

q
σHρHI , ð2:7Þ

where z ¼ exp �0:5u02f gffiffiffiffi
2π

p is the height of the ordinate of the normal curve at the lowest

value of u0 retained and q is the proportion of the population of animal or plant lines
that is selected (Fig. 2.4). The proportion q that must be saved depends on the
reproductive rate and longevity of the species under consideration and on whether
the population is expanding, stationary or declining in numbers. The ordinate (z) of
the normal curve is determined by the proportion selected (q) (Fig. 2.4). The
amount of progress is expected to be larger as q becomes smaller; that is, as
selection becomes more intense (Hazel and Lush 1942). Kempthorne and
Nordskog (1959) showed that z

q ¼ kI . Thus, Eqs. (2.6) and (2.7) are the same,

that is, E[E(H/I )] ¼ RI.

2.3.2 The Maximized Selection Response

The main objective of the LPSI is to maximize the mean of H ¼ w0g (Eq. 2.7).
Assuming that P, G, w, and kI are known, to maximize RI we can either maximize
ρHI or minimize the mean squared difference between I and H, E[(H � I )2] ¼
w0Gw + b0Pb � 2w0Gb with respect to b, that is,
∂
∂bE H � Ið Þ2

h i
¼ 2Pb� 2Gw ¼ 0, from where

b ¼ P�1Gw ð2:8Þ
is the vector that simultaneously minimizes E[(H� I )2] and maximizes ρHI, and then
RI ¼ kIσHρHI.

By Eq. (2.8), the maximized LPSI selection response can be written as
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RI ¼ kI
ffiffiffiffiffiffiffiffiffiffi
b0Pb

p
: ð2:9Þ

The maximized LPSI selection response predicts the mean improvement in H due
to indirect selection on I only when b¼ P�1Gw (Harris 1964) and is proportional to
the standard deviation of the LPSI variance (σI) and the standardized selection
differential or the selection intensity (kI).

The maximized LPSI selection response (Eq. 2.9) it related to the Cauchy–
Schwarz inequality (Rao 2002; Cerón-Rojas et al. 2006), which establishes that
for any pair of vectors u and v, if A is a positive definite matrix, then the inequality
(u0v)2 � (v0Av)(u0A�1u) holds. Kempthorne and Nordskog (1959) proved that

maximizing ρ2HI ¼
w0Gbð Þ2

w0Gwð Þ b0Pbð Þ also maximizes RI. According to Eqs. (2.6) and

(2.7),R2
I can be written asR

2
I ¼ k2I

w0Gbð Þ2
b0Pbð Þ , such that maximizingR2

I is equivalent to

maximizing w0Gbð Þ2
b0Pbð Þ . Let Gw ¼ u, b ¼ v, and A ¼ P, by the Cauchy–Schwarz

inequality w0Gbð Þ2
b0Pbð Þ � w0GP�1Gw. This implies that the maximum is reached when

w0Gbð Þ2
b0Pbð Þ ¼ w0GP�1Gw, at which point RI ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0GP�1Gw

p
. This latter result is the

same as Eq. (2.9) when b ¼ P�1Gw.
Result RI ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0GP�1Gw

p
obtained using the Cauchy–Schwarz inequality

corroborates that b ¼ P�1Gw (Eq. 2.8) is a global minimum when the mean squared
difference between I and H (E[(H� I )2]) is minimized, and a global maximum when
the correlation ρHI between I and H is maximized because
RI ¼ kI

ffiffiffiffiffiffiffiffiffiffi
b0Pb

p
¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0GP�1Gw

p
only when b ¼ P�1Gw.

2.3.3 The LPSI Expected Genetic Gain Per Trait

Whereas R ¼ Cov g; yð Þ
σ2y

D (Eq. 2.4) denotes the selection response in the

univariate case, E ¼ Cov I;gð Þ
σI

denotes the LPSI expected genetic gain per trait. Also,

except by D
σy
, Cov g;yð Þ

σy
and Cov I;gð Þ

σI
are mathematically equivalent and whereas Cov g;yð Þ

σy

is the covariance between g and y weighted by the standard deviation of the variance
of y, Cov I;gð Þ

σI
is the covariance between the breeding value vector and the LPSI

values weighted by the standard deviation of the variance of LPSI. This means that
in effect, E is the LPSI multi-trait selection response and can be written as

E ¼ kI
Gb
σI

, ð2:10Þ
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where G, σI and kI were defined earlier. As Eq. (2.10) is the covariance between

I ¼ b0p and g0 ¼ g1 g2 . . . gt½ � divided by σI, considering gj and I ¼
Xt

j¼1

b jy j,

the genetic gain in the jth index trait due to selection on I will be

kI
σI

Cov I; g j

� � ¼ kI
σI

b1σ1 j þ b2σ2 j þ � � � þ b jσ
2
j þ � � � þ btσtj

h i
¼ kI

b0σ j

σI
, ð2:11Þ

where σ0
j ¼ σ1 j � � � σ2j � � � σtj

h i
is a vector of genotypic covariances of the jth index

trait with all the index traits (Lin 1978; Brascamp 1984).
If Eq. (2.11) is multiplied by its economic weight, we obtain a measure of the

economic value of each trait included in the net genetic merit (Cunningham and
Tauebert 2009). In percentage terms, the economic value attributable to genetic
change in the jth trait can be written as

wj
b0σ j

σ2I
100: ð2:12Þ

In addition, the percentage reduction in the net genetic merit of overall genetic
gain if the jth trait is omitted from the LPSI (Cunningham and Tauebert 2009) is

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2j

σ2Iφ
�2
j

s" #
100, ð2:13Þ

where φ�2
j is the jth diagonal element of the inverse of the phenotypic covariance

matrix P�1 and b2j the square of the jth coefficient of the LPSI. Equations (2.12) and
(2.13) are measures of the importance of each trait included in the LPSI when makes
selection.

2.3.4 Heritability of the LPSI

As the variance of I¼ b0y is equal to σ2I ¼ b0Pb ¼ b0Gbþ b0Rb, where P¼G + R,
G and R are the phenotypic, genetic, and residual covariance matrices respectively,
then the LPSI heritability (Lin and Allaire 1977; Nordskog 1978) can be written as

h2I ¼
b0Gb
b0Pb

: ð2:14Þ

When selecting a trait, the correlation between the phenotypic and genotypic
values is equal to the square root of the trait’s heritability (ρgy ¼ h); however, in the
LPSI context, when b ¼ P�1Gw, the maximized correlation between H and I is

ρHI ¼
ffiffiffiffiffiffiffiffiffi
b0Pb
w0Gw

q
¼ σI

σH
, whereas hI ¼

ffiffiffiffiffiffiffiffi
b0Gb
b0Pb

q
is the square root of I heritability; that is,
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from a mathematical point of view, ρHI 6¼ hI. In practice, h2I and ρ2HI give similar
results (Fig. 2.5).

2.4 Statistical LPSI Properties

Assuming that H and I have joint bivariate normal distribution, b ¼ P�1Gw, and P,
G and w are known, the statistical LPSI properties (Henderson 1963) are the
following:

1. The variance of I (σ2I ) and the covariance between H and I (σHI) are equal, i.e.,
σ2I ¼ σHI . We can demonstrate this property noting that as b ¼ P�1Gw,
σ2I ¼ b0Pb, and σHI ¼ w0Gb, then σ2I ¼ w0GP�1

� �
PP�1Gw ¼ w0GP�1Gw, and

σHI ¼ w0GP�1Gw; i.e., σ2I ¼ σHI . This last result implies that when μI ¼ 0, E
(H/I ) ¼ I.

2. The maximized correlation between H and I is equal to ρHI ¼ σI
σH
. That is,

ρHI ¼ w0Gbffiffiffiffiffiffiffiffiffi
w0Gw

p ffiffiffiffiffiffiffi
b0Pb

p ¼ w0GP�1Gwffiffiffiffiffiffiffiffiffi
w0Gw

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0GP�1Gw

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0GP�1Gw

w0Gw

q
¼ σI

σH
, thus, ρHI ¼ σI

σH
.
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Fig. 2.5 Estimated values of the square correlation between the LPSI and the net genetic merit
(H ¼ w0g) and the LPSI heritability for four traits and 500 genotypes in one environment simulated
for seven selection cycles
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3. The variance of the predicted error,Var H � Ið Þ ¼ 1� ρ2HI
� �

σ2H , is minimal. Note

that Var H � Ið Þ ¼ E H � Ið Þ2
h i

¼ σ2I þ σ2H � 2σHI , and when b ¼ P�1Gw,

σ2I ¼ σHI , from whereVar H � Ið Þ ¼ σ2H � σ2I ¼ 1� ρ2HI
� �

σ2H is minimal because

by Eq. (2.8), b¼ P�1GwminimizesVar H � Ið Þ ¼ 1� ρ2HI
� �

σ2H . Thus, the larger
ρHI, the smaller E[(H � I )2] and the more similar I and H are. If ρHI > 0, I and
H tend to be positively related; if ρHI < 0, they tend to be negatively related; and if
ρHI ¼ 0, I and H are independent (Anderson 2003).

4. The total variance of H explained by I is σ2I ¼ ρ2HIσ
2
H . It is evident that if ρHI ¼ 1,

σ2I ¼ σ2H , and if ρHI ¼ 0, σ2I ¼ 0. That is, the variance of H explained by I is
proportional to ρHI, and when ρHI is close to 1, σ

2
I is close to σ

2
H , and if ρHI is close

to 0, σ2I is close to 0.

2.5 Particular Cases of the LPSI

2.5.1 The Base LPSI

To derive the LPSI theory, we assumed that the phenotypic (P) and the genotypic
(G) covariance matrix, and the vector of economic values (w) are known. However,
P, G, and w are generally unknown and it is necessary to estimate them. There are
many methods for estimating P andG (Lynch and Walsh 1998) and w (Cotterill and
Jackson 1985; Magnussen 1990). However, when the estimator of P( bP ) is not
positive definite (all eigenvalues positive) or the estimator of G( bG) is not positive
semidefinite (no negative eigenvalues), the estimator of b ¼ P�1Gw (bb ¼ bP�1 bGw)
could be biased. In this case, the base linear phenotypic selection index (BLPSI):

IB ¼ w0y ð2:15Þ

may be a better predictor of H ¼ w0g than the estimated LPSI bI ¼ bb0y (Williams
1962a; Lin 1978) if the vector of economic values w is indeed known. Many authors
(Williams 1962b; Harris 1964; Hayes and Hill 1980, 1981) have investigated the
influence of parameter estimation errors on LPSI accuracy and concluded that those

errors affect the accuracy of bI ¼ bb0y when the accuracy of bP and bG is low. If vector
w values are known, the BLPSI has certain advantages because of its simplicity and
its freedom from parameter estimation errors (Lin 1978). Williams (1962a) pointed

out that the BLPSI is superior tobI ¼ bb0yunless a large amount of data is available for
estimating P and G.

There are some problems associated with the BLPSI. For example, what is the
BLPSI selection response and the BLPSI expected genetic gains per trait when no
data are available for estimating P andG? The BLPSI is a better selection index than
the standard LPSI only if the correlation between the BLPSI and the net genetic merit
is higher than that between the LPSI and the net genetic merit (Hazel 1943).
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However, if estimations of P and G are not available, how can the correlation
between the base index and the net genetic merit be obtained? Williams (1962b)
pointed out that the correlation between the BLPSI and H ¼ w0g can be written as

ρHIB ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
w0Gw
w0Pw

r
ð2:16Þ

and indicated that the ratio ρHIB=ρHI can be used to compare LPSI efficiency versus
BLPSI efficiency; however, in the latter case, at least the estimates of P andG, i.e., bP
and bG, need to be known.

In addition, Eq. (2.15) is only an assumption, not a result, and implies that P and
G are the same. That is, b¼ P�1Gw¼ w only when P¼G, which indicates that the
BLPSI is a special case of the LPSI. Thus, to obtain the selection response and the
expected genetic gains per trait of the BLPSI, we need some information about P and
G. Assuming that the BLPSI is indeed a particular case of the LPSI, the BLPSI
selection response and the BLPSI expected genetic gains per trait could be written as

RB ¼ kI
ffiffiffiffiffiffiffiffiffiffiffi
w0Pw

p
, ð2:17Þ

and

EB ¼ kI
Gwffiffiffiffiffiffiffiffiffiffiffi
w0Pw

p , ð2:18Þ

respectively. The parameters of Eqs. (2.17) and (2.18) were defined earlier.
There are additional implications if b¼ P�1Gw¼w. For example, if P¼G, then

ρHIB ¼
ffiffiffiffiffiffiffiffiffi
w0Gw
w0Pw

q
and BLPSI heritability h2IB ¼

w0Gw
w0Pw

are equal to 1. However, in

practice, the estimated values of the ρHIB(bρHIB) are usually lower than the estimated
values of the ρHI(bρHI ) (Fig. 2.6).

2.5.2 The LPSI for Independent Traits

Suppose that the traits under selection are independent, then P and G are diagonal
matrices and b ¼ P�1Gw is a vector of single-trait heritabilities multiplied by the
economic weights, because P�1G is the matrix of multi-trait heritabilities (Xu and
Muir 1992). Based on this result, Hazel and Lush (1942) and Smith et al. (1981) used
trait heritabilities multiplied by the economic weights (or heritabilities only) as
coefficients of the LPSI. Thus, when the traits are independent and the economic
weights are known, the LPSI can be constructed as
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I ¼
Xt

i¼1

wih
2
i yi, ð2:19Þ

and when the economic weights are unknown, the LPSI can be constructed as

I ¼
Xt

i¼1

h2i yi: ð2:20Þ

The selection response of Eq. (2.19) and (2.20) can be seen in Hazel and Lush
(1942).

2.6 Criteria for Comparing LPSI Efficiency

Assuming that the intensity of selection is the same in both indices, we can compare
BLPSI (IB¼w0y) efficiency versus LPSI efficiency to predict the net genetic merit in
percentage terms as
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Fig. 2.6 Values of the true correlation between the LPSI and the net genetic merit (H¼w0g) (True-
C), the estimated correlation between the LPSI and H (LPSI-C), and the estimated correlation
between the base index and H (Base-C) for four traits and 500 genotypes in one environment
simulated for seven selection cycles
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p ¼ 100 λ� 1ð Þ, ð2:21Þ
where λ ¼ ρHI

ρHIB
(Williams 1962b; Bulmer 1980). Therefore, when p ¼ 0, the

efficiency of both indices is the same; when p > 0, the efficiency of the LPSI is
higher than the base index efficiency, and when p < 0, the base index efficiency is
higher than LPSI efficiency (Fig. 2.6). Equation (2.21) is useful for comparing the
efficiency of any linear selection index, as we shall see in this book.

2.7 Estimating Matrices G and P

To derive the LPSI theory we assumed that matrices P andG are known. In practice,
we have to estimate them. Matrices P andG can be estimated by analysis of variance
(ANOVA), maximum likelihood or restricted maximum likelihood (REML) (Baker
1986; Lynch and Walsh 1998; Searle et al. 2006; Hallauer et al. 2010). Equation
(2.1) is the simplest model because we only need to estimate two variance compo-
nents: the genotypic variance (σ2g ) and the residual variance (σ2e ), from where the
phenotypic variance for trait y is the sum of σ2g and σ2e , that is, σ2y ¼ σ2g þ σ2e .
However, to construct matrices P and G, we also need the covariance between any
two traits. Thus, if yi and yj (i, j ¼ 1, 2, � � �, t) are any two traits, then the covariance
between yi and yj (σyij) can be written as σyij ¼ σgij þ σeij , where σgij and σeij denote the
genotypic and residual covariance respectively of traits yi and yj.

Several authors (Baker 1986; Lynch and Walsh 1998; Hallauer et al. 2010) have
described ANOVA methods for estimating matrix G using specific design data, for
example, half-sib, full-sib, etc., when the sample sizes are well balanced. In the
ANOVA method, observed mean squares are equal to their expected values; the
expected values are linear functions of the unknown variance components; thus the
resulting equations are a set of simultaneous linear equations in the variance
components. The expected values of mean squares in the ANOVA method do not
need assumptions of normality because the variance component estimators do not
depend on normality assumptions (Lynch and Walsh 1998; Hallauer et al. 2010).

In cases where the sample sizes are not well balanced, Lynch and Walsh (1998)
and Fry (2004) proposed using the REML method to estimate matrix G. The REML
estimation method does not require a specific design or balanced data and can be
used to estimate genetic and residual variance and covariance in any arbitrary
pedigree of individuals. The REML method is based on projecting the data in a
subspace free of fixed effects and maximizing the likelihood function in this
subspace, and has the advantage of producing the same results as the ANOVA in
balanced designs (Blasco 2001).

In the context of the linear mixed model, Lynch and Walsh (1998) have given
formulas for estimating variances σ2g and σ2e that can be adapted to estimate
covariances σgij and σeij . Suppose that we want to estimate σ2g and σ2e for the qth
trait (q ¼ 1, 2� � �, t ¼ number of traits) in the absence of dominance and epistatic
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effects using the model yq ¼ 1μq + Zgq + eq, where the vector of averages yq~NMV
(1μq,Vq) is g � 1 (g ¼ number of genotypes in the population) and has multivariate
normal distribution; 1 is a g� 1 vector of ones, μq is the mean of the qth trait, Z is an
identity matrix g � g, gq~NMV(0, Aσ2gq ) is a vector of true breeding values, and
eq~NMV(0, Iσ2eq ) is a g � 1 vector of residuals, where NMV stands for normal

multivariate distribution. Matrix A denotes the numerical relationship matrix
between individuals (Lynch and Walsh 1998; Mrode 2005) and Vq ¼ Aσ2gq þ Iσ2eq .

The expectation–maximization algorithm allows the REML to be computed for
the variance components σ2gq and σ2eq by iterating the following equations:

σ2 nþ1ð Þ
gq

¼ σ2 nð Þ
gq

þ
σ2 nð Þ
gq

� �2

g
y0q T nð ÞAT nð Þ
� �

yq � tr T nð ÞA
� �h i

ð2:22Þ

and

σ2 nþ1ð Þ
eq

¼ σ2 nð Þ
eq

þ
σ2 nð Þ
eq

� �2

g
y0q T nð ÞT nð Þ
� �

yq � tr T nð Þ
� �h i

, ð2:23Þ

where, after n iterations, σ2 nþ1ð Þ
gq

and σ2 nþ1ð Þ
eq

are the estimated variance components of

σ2gq and σ2eq respectively; tr(.) denotes the trace of the matrices within brackets; T

¼ V�1
q � V�1

q 1 10V�1
q 1

� �
10V�1

q and V�1
q is the inverse of matrix Vq ¼ Aσ2gq þ Iσ2eq .

In T(n), V�1 nð Þ
q is the inverse of matrix V nð Þ

q ¼ Aσ2 nð Þ
γq þ Iσ2 nð Þ

eq
.

The additive genetic and residual covariances between the observations of the qth
and ith traits, yq and yi (σgq, i and σeq, i , q, i ¼ 1, 2, . . ., t), can be estimated using
REML by adapting Eqs. (2.22) and (2.23). Note that the variance of the sum of yq
and yi can be written as Var(yi + yq)¼ Vi + Vq + 2Ciq, whereVi ¼ Aσ2gi þ Iσ2ei is the
variance of yi and Vq ¼ Aσ2gq þ Iσ2eq is the variance of yq; in addition,

2Ciq ¼ 2Aσgiq + 2Iσeiq ¼ 2Cov(yi, yq) is the covariance of yq and yi, and σgiq and
σeiq are the additive and residual covariances respectively associated with the
covariance of yq and yi. Thus, one way of estimating σgiq and σeiq is by using the
following equation:

0:5Var yi þ yq
� �� 0:5Var yið Þ � 0:5Var yq

� �
, ð2:24Þ

for which Eqs. (2.22) and (2.23) can be used. Equations (2.22) to (2.24) are used to
estimate P and G in the illustrative examples of this book.
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2.8 Numerical Examples

2.8.1 Simulated Data

This data set was simulated by Ceron-Rojas et al. (2015) and can be obtained at
http://hdl.handle.net/11529/10199. The data were simulated for eight phenotypic
selection cycles (C0 to C7), each with four traits (T1, T2, T3 and T4), 500 genotypes,
and four replicates for each genotype (Fig. 2.7). The LPSI economic weights for T1,

A × B
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Genomic 
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Inter-cross F2:3
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Fig. 2.7 Schematic illustration of the steps followed to generate data sets 1 and 2 for the seven
selection cycles using the linear phenotypic selection index and the linear genomic selection index.
Dotted lines indicate the process used to simulate the phenotypic data (according to Ceron-Rojas
et al. 2015)
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T2, T3 and T4 were 1, �1, 1, and 1 respectively. Each of the four traits was affected
by a different number of quantitative trait loci (QTLs): 300, 100, 60, and 40, respec-
tively. The common QTLs affecting the traits generated genotypic correlations of
�0.5, 0.4, 0.3, �0.3, �0.2, and 0.1 between T1 and T2, T1 and T3, T1 and T4, T2 and
T3, T2 and T4, and T3 and T4 respectively. The genotypic value of each plant was
generated based on its haplotypes and the QTL effects for each trait.

Simulated data were generated using QU-GENE software (Podlich and Cooper
1998; Wang et al. 2003). A total of 2500 molecular markers were distributed
uniformly across 10 chromosomes, whereas 315 QTLs were randomly allocated
over the ten chromosomes to simulate one maize (Zea mays L.) population. Each
QTL and molecular marker was biallelic and the QTL additive values ranged from
0 to 0.5. As QU-GENE uses recombination fraction rather than map distance to
calculate the probability of crossover events, recombination between adjacent pairs
of markers was set at 0.0906; for two flanking markers, the QTL was either on the
first (recombination between the first marker and QTL was equal to 0.0) or the
second (recombination between the first marker and QTL was equal to 0.0906)
marker; excluding the recombination fraction between 15 random QTLs and their
flanking markers, which was set at 0.5, i.e., complete independence (Haldane 1919),
to simulate linkage equilibrium between 5% of the QTLs and their flanking markers.
In addition, in every case, two adjacent QTLs were in complete linkage. For each
trait, the phenotypic value for each of four replications of each plant was obtained
from QU-GENE by setting the per-plot heritability of T1, T2, T3, and T4 at 0.4, 0.6,
0.6, and 0.8 respectively.

2.8.2 Estimated Matrices, LPSI, and Its Parameters

For this example, we used only cycle C1 data and traits T1, T2, and T3. The
phenotypic and genotypic estimated covariance matrices for traits T1, T2, and T3

were bP ¼
62:50 �12:74 8:53
�12:74 17:52 �3:38
8:53 �3:38 12:31

24 35 and bG ¼
36:21 �12:93 8:35
�12:93 13:04 �3:40
8:35 �3:40 9:96

24 35
respectively, whereas the inverse of matrix bP was

bP�1 ¼
0:01997 0:01251 �0:01040
0:01251 0:06809 0:01005
�0:01040 0:01005 0:09123

24 35. The estimated heritabilities for T1,

T2, and T3 were bh21 ¼ 0:579, bh22 ¼ 0:744, and bh22 ¼ 0:809 respectively.
According to matrices bP�1 and bG, and because w0 ¼ 1 �1 1½ �, the estimated

vector of coefficients was bb0 ¼ w0 cGP�1 ¼ 0:555 �1:063 1:087½ �, from which
the estimated LPSI can be written as bI ¼ 0:555T1 � 1:063T2 þ 1:087T3. Table 2.2
presents the first 20 genotypes, the means of the three traits (T1, T2 and T3) and the
first 20 estimated unranked LPSI values of the 500 simulated genotypes for cycle C1.
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According to the means of the three traits, the first estimated LPSI value was
obtained as

bI 1 ¼ 0:555 164:46ð Þ � 1:063 39:63ð Þ þ 1:087 34:66ð Þ ¼ 86:81;

the second estimated LPSI value was obtained as

bI 2 ¼ 0:555 144:39ð Þ � 1:063 144:39ð Þ þ 1:087 34:65ð Þ ¼ 63:82, etc:;

and the 20th estimated LPSI value was obtained as

bI 20 ¼ 0:555 161:80ð Þ � 1:063 46:58ð Þ þ 1:087 37:33ð Þ ¼ 80:84:

This estimation procedure is valid for any number of genotypes. Table 2.3 pre-
sents the 20 genotypes ranked by the estimated LPSI values. Note that if we use 20%
selection intensity for Table 2.2 data, we should select genotypes 12, 18, 1, 6, and
10, because their estimated LPSI values are higher than the remaining LPSI values
for that set of genotypes. Using the idea described in Fig. 2.4, genotypes 12, 18, 1, 6,
and 10 should be in the red zone, whereas the rest of the genotypes are in the white
zone and should be culled. Here, the proportion selected is q ¼ 0.2 and

Table 2.2 Number of genotypes, means of the trait (T1, T2 and T3) values, and unranked values of
the LPSI for part of a simulated data set

Number of genotypes

Means of the trait values Unranked

T1 T2 T3 LPSI values

1 164.46 39.63 34.66 86.81

2 144.39 50.77 34.65 63.82

3 157.48 48.04 37.9 77.52

4 167.30 47.98 30.49 74.97

5 164.11 49.89 32.03 72.85

6 166.26 40.44 29.93 81.81

7 154.59 52.22 30.31 63.22

8 160.00 42.91 31.23 77.12

9 158.51 46.32 34.52 76.25

10 163.63 45.43 35.73 81.35

11 156.16 46.75 35.58 75.62

12 171.38 41.17 35.13 89.52

13 153.17 54.18 36.23 66.79

14 149.89 52.33 31.13 61.39

15 159.63 49.01 31.72 70.96

16 160.70 42.51 32.99 79.85

17 157.07 45.49 28.4 69.68

18 167.50 41.69 36.73 88.55

19 159.17 50.6 36.25 73.93

20 161.80 46.58 37.33 80.84
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z ¼ exp �0:5u02f gffiffiffiffi
2π

p ¼ 0:31, where u0 ¼ 81:35�75:64
8:11 ¼ 0:704, 81.35 is the estimated LPSI

value or the genotype number 10, 75.64 is the mean of the 20 LPSI values, and 8.11
is the standard deviation of the estimated LPSI values of the 20 genotypes presented
in Tables 2.2 and 2.3.

Table 2.4 presents 25 genotypes and the means of the three traits obtained from
the 500 simulated genotypes for cycle C1 and ranked by the estimated LPSI values.
In this case, we used 5% selection intensity (kI ¼ 2.063). Also, the last four rows in
Table 2.4 give:

1. The means of traits T1, T2, and T3 (175.46, 39.26, and 38.83 respectively) of the
selected individuals and the mean of the selected LPSI values (97.84).

2. The means of the three traits in the base population (161.88, 45.19, and 34.39)
and the mean of the LPSI values in the base population (79.18)

3. The selection differentials for the three traits (13.58, �5.92, and 4.44) and the
selection differential for the LPSI (18.66)

4. The LPSI expected genetic gain per trait (9.51, �5.48, and 4.22) and the LPSI
selection response (19.21).

The variance of the estimated selection index for the 500 genotypes wasbV �bI� ¼ bb0bPbb ¼ 86:72, from which the standard deviation of bI was 9.312. The

Table 2.3 Number of genotypes, means of the trait (T1, T2 and T3) values and ranked values of the
LPSI for part of a simulated data set

Number of genotypes

Means of the trait values Ranked

T1 T2 T3 LPSI values

12 171.38 41.17 35.13 89.52

18 167.50 41.69 36.73 88.55

1 164.46 39.63 34.66 86.81

6 166.26 40.44 29.93 81.81

10 163.63 45.43 35.73 81.35

20 161.80 46.58 37.33 80.84

16 160.70 42.51 32.99 79.85

3 157.48 48.04 37.9 77.52

8 160.00 42.91 31.23 77.12

9 158.51 46.32 34.52 76.25

11 156.16 46.75 35.58 75.62

4 167.30 47.98 30.49 74.97

19 159.17 50.6 36.25 73.93

5 164.11 49.89 32.03 72.85

15 159.63 49.01 31.72 70.96

17 157.07 45.49 28.4 69.68

13 153.17 54.18 36.23 66.79

2 144.39 50.77 34.65 63.82

7 154.59 52.22 30.31 63.22

14 149.89 52.33 31.13 61.39
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estimated standardized selection differentials for the LPSI can be obtained from
Table A in Falconer and Mackay (1996), where, for 5% selection intensity,
kI ¼ 2.063. This means that the estimated LPSI selection response wasbR ¼ 2:063 9:312ð Þ ¼ 19:21, whereas the expected genetic gain per trait, or multi-

trait selection response, was bE0 ¼ 2:063
bb0 bG
9:312

" #
¼ 9:51 �5:48 4:22½ �:

Table 2.4 Number of selected genotypes, selected means of the trait (T1, T2 and T3) values and
ranked selected values of the LPSI from one simulated set of 500 genotypes with four repetitions

Number of genotypes

Means of the trait values Ranked

T1 T2 T3 LPSI values

353 189.68 38.16 36.13 103.97

370 178.27 34.38 37.79 103.45

480 174.84 42.72 45.12 100.66

300 177.38 39.15 40.34 100.65

273 181.18 35.94 35.14 100.52

275 167.94 36.82 42.2 99.92

148 173.37 37.07 39.62 99.86

137 185.48 46.48 42.55 99.77

351 173.79 38.38 40.52 99.68

236 182.85 37.88 34.96 99.2

217 175.13 38.48 39.16 98.84

356 171.09 39.6 41.98 98.47

167 175.39 38.73 37.73 97.17

230 169.73 37.1 38.69 96.8

243 171.9 41.53 41.45 96.29

55 170.02 36.92 37.76 96.15

68 172.56 37.18 36.7 96.13

36 175.8 38.86 36.34 95.75

164 173.61 38.37 36.42 95.14

140 170.53 42.52 41.97 95.05

146 177.4 39.64 35.5 94.89

432 174.01 40.73 38.26 94.84

378 176.62 42.69 38.47 94.44

288 172.14 39.31 37.26 94.23

386 175.77 42.89 38.81 94.13

Mean of selected individuals 175.46 39.26 38.83 97.84

Mean of all individuals 161.88 45.19 34.39 79.18

Selection differential 13.58 �5.92 4.44 18.66

Expected genetic gain for 5% 9.51 �5.48 4.22 19.21

The selection intensity was 5%
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2.8.3 LPSI Efficiency Versus Base Index Efficiency

The estimated correlation between the LPSI and the net genetic merit wasbρHI ¼ bσ IbσH
¼ 0:894, whereas the estimated correlation between the base index and

the net genetic merit was bρHIB ¼ 0:875, thus bλ ¼ bρHIbρHIB ¼ 1:0217 and, by Eq. (2.21),

bp ¼ 100
�bλ � 1

� ¼ 2:171. This means that LPSI efficiency was only 2.2% higher
than the base index efficiency for this data set.

Using the same data set described in Sect. 2.8.1 of this chapter, we conducted
seven selection cycles (C1 to C7) for the four traits (T1, T2, T3, and T4) using the
LPSI and the BLPSI. These results are presented in Table 2.5. To compare the LPSI
efficiency versus BLPSI efficiency, we obtained the true selection response of the
simulated data (second column in Table 2.5) and we estimated the LPSI and BLPSI
selection response for each selection cycle (third column in Table 2.5); in addition,
we estimated the LPSI and BLPSI expected genetic gain per trait for each selection
cycle (columns 4 to 7 in Table 2.5). The first part of Table 2.5 shows the true
selection response and the estimated values of the LPSI selection response and
expected genetic gain per trait. In a similar manner, the second part of Table 2.5
shows the true selection response, the estimated values of the BLPSI selection

Table 2.5 The LPSI and BLPSI responses (true and estimated) and estimated expected genetic
gain per trait for seven simulated selection cycles

Cycle

Selection response Estimated expected genetic gain per trait

True Estimated T1 T2 T3 T4

LPSI

1 17.84 17.81 7.90 �4.67 3.33 1.92

2 15.66 15.69 7.06 �3.59 3.17 1.86

3 14.44 14.22 6.67 �3.21 2.82 1.52

4 14.29 14.34 7.53 �3.45 2.07 1.29

5 13.86 13.64 7.14 �2.66 2.51 1.33

6 12.47 12.04 6.23 �2.62 1.98 1.21

7 12.44 11.61 5.38 �2.55 2.47 1.22

Average 14.43 14.19 6.85 �3.25 2.62 1.48

BLPSI

1 17.84 22.15 8.38 �4.40 3.04 1.64

2 15.66 20.49 7.74 �3.33 2.82 1.53

3 14.44 19.33 7.29 �3.00 2.44 1.22

4 14.29 19.49 8.05 �3.17 1.89 1.05

5 13.86 18.93 7.64 �2.53 2.19 1.07

6 12.47 17.72 6.81 �2.40 1.72 0.93

7 12.44 17.28 5.89 �2.35 2.11 0.93

Average 14.43 19.34 7.40 �3.02 2.32 1.19

The selection intensity was 10% (kI ¼ 1.755)
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response, and the expected genetic gain per trait. The average value of the true
selection response was equal to 14.43, whereas the average values of the estimated
LPSI and BLPSI selection response were 14.19 and 19.34 respectively. Note that
14.43–14.19 ¼ 0.24, but 19.34–14.43 ¼ 4.91. According to this result, the BLPSI
over-estimated the true selection response of the simulated data by 34.7%. Thus,
based on the Table 2.5 results and those presented in Fig. 2.6, we can conclude that
the LPSI was more efficient than the BLPSI for this data set.

Finally, additional results can be seen in Chap. 10, where the LPSI was simulated
for many selection cycles. Chapter 11 describes RIndSel: a program that uses R and
the selection index theory to make selection.

2.9 The LPSI and Its Relationship with the Quadratic
Phenotypic Selection Index

In the nonlinear selection index theory, the net genetic merit and the index are both
nonlinear. There are many types of nonlinear indices; Goddard (1983) and Weller et
al. (1996) have reviewed the general theory of nonlinear selection indices. In this
chapter, we describe only the simplest of them: the quadratic index developed
mainly by Wilton et al. (1968), Wilton (1968), and Wilton and Van Vleck (1969),
which is related to the LPSI.

2.9.1 The Quadratic Nonlinear Net Genetic Merit

The most common form of writing the quadratic net genetic merit is

Hq ¼ αþ w0 μþ gð Þ þ μþ gð Þ0A μþ gð Þ, ð2:25Þ
where α is a constant, g is the vector of breeding values, which has normal
distribution with zero mean and covariance matrix G, μ is the vector of population
means, and w is a vector of economic weights. In addition, matrix A can be written

asA ¼
w1 0:5w12 � � � 0:5w1t

0:5w12 w2 � � � 0:5w2t

⋮ ⋮ ⋱ ⋮
0:5w1t 0:5w2t . . . wt

2664
3775, where the diagonal ith values wi (i = 1,2,

. . ., t ) is the relative economic weight of the genetic value of the squared trait i and
wij (i,j = 1,2, . . ., t ) is the economic weight of the cross products between the genetic
values of traits i and j. The main difference between the linear net genetic merit (Eq.
2.2) and the net quadratic merit (Eq. 2.25) is that the latter depends on μ and (μ + g)

0

A(μ + g).
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2.9.2 The Quadratic Index

The quadratic phenotypic selection index is

Iq ¼ β þ b0yþ y0By ð2:26Þ
where β is a constant, y is the vector of phenotypic values that has multivariate normal
distribution with zero mean and covariance matrix P, b0 ¼ b1 b2 � � � bt½ � is a

vector of coefficients, and B ¼
b1 0:5b12 � � � 0:5b1t

0:5b12 b2 � � � 0:5b2t
⋮ ⋮ ⋱ ⋮

0:5b1t 0:5b2t . . . bt

2664
3775. In matrix B, the

diagonal ith values bi (i = 1,2, . . ., t ) is the index weight for the square of the
phenotypic i and bij (i,j = 1,2, . . ., t ) is the index weight for the cross products between
the phenotype of the traits i and j.

2.9.3 The Vector and the Matrix of Coefficients
of the Quadratic Index

As we saw in Sect. 2.3.2 of this chapter, to obtain the vector (b) and the matrix (B) of
coefficients of the quadratic index that maximized the selection response, we can
minimize the expectation of the square difference between the quadratic index (Iq)
and the quadratic net genetic merit (Hq):Φ = E{[Iq� E(Iq)]� [Hq� E(Hq)]}

2, or we

can maximize the correlation between Iq and Hq, i.e., ρHqIq ¼
Cov Hq;Iqð Þffiffiffiffiffiffiffiffiffiffiffiffi

Var Iqð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Hqð Þp ,

where Cov(Hq, Iq) is the covariance between Iq and Hq,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Iq

� �q
is the standard

deviation of the variance of Iq, and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Hq

� �q
is the standard deviation of the

variance of Hq. In this context, it is easier to maximize ρHqIq than to minimize Φ.

Vandepitte (1972) minimized Φ, but in this section we shall maximize ρHqIq .

Suppose that μ = 0, since α and β are constants that do not affect ρHqIq , we can

write Iq and Hq as Iq = b0y + y0By and Hq = w0g + g0Ag. Thus, under the assumption
that y and g have multivariate normal distribution with mean 0 and covariance matrix
P and G, respectively, E(Iq) = tr(BP) and E(Hq) = tr(AG) are the expectations of Iq
and Hq, whereas Var(Iq) = b0Pb + 2tr[(BP)2] and Var(Hq) = w0Gw + 2tr[(AG)2] are
the variances of Iq and Hq, respectively. The covariance between Iq and Hq is Cov
(Hq, Iq) = w0Gb + 2tr(BGAG) (Vandepitte 1972), where tr(∘) denotes the trace
function of matrices.

According to the foregoing results, we can maximize the natural logarithm of

ρHqIq [ln ρHqIq

� �
] with respect to vector b and matrix B assuming that w,A,P, and G

are known. Hence, except for two proportional constants that do not affect the
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maximum value of ρHqIq because this is invariant to the scale change, the results of

the derivatives of ln ρHqIq

� �
with respect to b and B are

b ¼ P�1Gw and B ¼ P�1GAGP�1, ð2:27Þ
respectively. In this case, b = P�1Gw is the same as the LPSI vector of coefficients
(see Eq. 2.8 for details); however, when μ 6¼ 0, b = P�1G(w + 2Aμ) = P�1Gw + 2P�1

GAμ. In the latter case, b has the additional term 2P�1GAμ, which is null when μ = 0
or A = 0. Hence, when μ 6¼ 0 the quadratic index vector b shall have two
components: P�1Gw, which is the LPSI vector of coefficients, and 2P�1GAμ,
which is a function of the current population mean μ multiplied by matrix A.
Therefore, when μ 6¼ 0 and A 6¼ 0, the quadratic index vector b will change when
the μ values change. However, μ does not affect matrix B.

2.9.4 The Accuracy and Maximized Selection Response of the
Quadratic Index

According to Eq. (2.27) results, Var(Iq) = Cov(Hq, Iq) = b0Pb + 2tr[(BP)2], which
means that the quadratic index accuracy and the maximized selection response can
be written as:

ρHqIq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0GP�1Gwþ 2tr P�1GAG

� �2h ir
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0Gwþ 2tr AGð Þ2

h ir ð2:28Þ

and

Rq ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0GP�1Gwþ 2tr P�1GAG

� �2h ir
, ð2:29Þ

respectively, where k is the selection intensity of the quadratic index. Equations
(2.27) to (2.29) indicate that the LPSI and the quadratic index are related, and the
only difference between them is the quadratic terms. Wilton et al. (1968) wrote Eq.

(2.29) as: Rq ¼ k
ffiffiffiffiffiffiffiffiffiffi
b0Pb

p
þ k2tr BPð Þ2

h i
.
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Chapter 3
Constrained Linear Phenotypic Selection
Indices

Abstract The linear phenotypic selection index (LPSI), the null restricted LPSI
(RLPSI), and the predetermined proportional gains LPSI (PPG-LPSI) are the main
phenotypic selection indices used to predict the net genetic merit and select parents
for the next selection cycle. The LPSI is an unrestricted index, whereas the RLPSI
and the PPG-LPSI allow restrictions equal to zero and predetermined proportional
gain restrictions respectively to be imposed on the expected genetic gain values of
the trait to make some traits change their mean values based on a predetermined level
while the rest of the trait means remain without restrictions. One additional restricted
index is the desired gains LPSI (DG-LPSI), which does not require economic
weights and, in a similar manner to the PPG-LPSI, allows restrictions to be imposed
on the expected genetic gain values of the trait to make some traits change their mean
values based on a predetermined level. The aims of RLPSI and PPG-LPSI are to
maximize the selection response, the expected genetic gains per trait, and provide the
breeder with an objective rule for evaluating and selecting parents for the next
selection cycle based on several traits. This chapter describes the theory and practice
of the RLPSI, PPG-LPSI, and DG-LPSI. We show that the PPG-LPSI is the most
general index and includes the LPSI and the RLPSI as particular cases. Finally, we
describe the DG-LPSI as a modification of the PPG-LPSI. We illustrate the theoret-
ical results of all the indices using real and simulated data.

3.1 The Null Restricted Linear Phenotypic Selection Index

Conditions to construct a valid null restricted linear phenotypic selection index
(RLPSI) are the same as those described in Sect. 2.1 of Chap. 2. The main objective
of the RLPSI is to optimize, under some null restrictions, the selection response, to
predict the net genetic merit H ¼ w0g and select the individuals with the highest net
genetic merit values as parents of the next generation. The RLPSI allows restrictions
equal to zero to be imposed on the expected genetic gains of some traits, whereas
other traits increase (or decrease) their expected genetic gains without imposing any
restrictions. The RLPSI solves the LPSI equations subject to the condition that the
covariance between the index and some linear functions of the genotypes involved

© The Author(s) 2018
J. J. Céron-Rojas, J. Crossa, Linear Selection Indices in Modern Plant Breeding,
https://doi.org/10.1007/978-3-319-91223-3_3
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be zero, thus preventing selection on the RLPSI from causing any genetic change in
some expected genetic gains of the traits (Cunningham et al. 1970).

Vector b ¼ P�1Gw maximizes the LPSI selection response, expected genetic
gains per trait, and the correlation between the LPSI and H¼ w

0
g. In this section, we

show that the vector of the RLPSI coefficients, bR ¼ Kb:

1. Maximizes the RLPSI selection response.
2. Impose null restrictions on the RLPSI expected genetic gains per trait (or multi-

trait selection response).
3. Maximizes the correlation with the true net genetic merit.
4. Minimizes the mean prediction error.

Vector bR ¼ Kb is a linear transformation of the LPSI vector of coefficients (b)
made by the projector matrix K. Matrix K is idempotent (K ¼ K2) and projects
b into a space smaller than the original space of b because the restrictions imposed
on the expected genetic gains per trait are equal to zero. The reduction of the space
into which matrixK projects b is equal to the number of null restrictions imposed by
the breeder on the expected genetic gain per trait, or multi-trait selection response
(Cerón-Rojas et al. 2016).

The covariance between the breeding value vector (g) and the LPSI (I ¼ b
0
y) is

Cov(I, g) ¼ Gb. Suppose that the breeder is interested in improving only (t � r) of
t (r < t) traits, leaving r of them fixed, that is, r expected genetic gains of the trait are
equal to zero for a specific selection cycle. Thus, we want r covariances between the
linear combinations of g (U

0
g) and the I ¼ b

0
y to be zero, i.e., Cov(I,U

0
g) ¼ U

0

Gb ¼ 0, where U
0
is a matrix with r 1’s and (t � r) 0’s; 1 indicates that the trait is

restricted and 0 that the trait is not restricted. That is, in the linear combinations of
g (U

0
g), 1 is the coefficient of the genotypes that have covariance equal to zero with

the LPSI, whereas the genotypes with coefficient 0 have no restriction on the
expected genetic gains. We can solve this problem by maximizing the correlation
between I andH (ρHI) or minimizing the mean squared difference between I andH(E
[(H � I )2]) under the restriction U

0
Gb ¼ 0.

3.1.1 The Maximized RLPSI Parameters

In the LPSI context, vector b ¼ P�1Gw minimizes the mean squared difference
between I and H, E[(H� I )2]¼ w

0
Gw + b

0
Pb � 2w

0
Gb. Let C

0 ¼ U
0
G and C

0
b¼ 0;

we need to minimize E[(H � I )2] with respect to b under the restriction C
0
b ¼ 0.

Thus, assuming that P, G, U
0
and w are known, we need to minimize the function

Ψ b; vð Þ ¼ b0Pbþ w0Gw� 2w0Gbþ 2v0C0b ð3:1Þ
with respect to vectors b and v

0 ¼ [v1 v2 � � � vr � 1], where v is a vector of Lagrange
multipliers. The derivative results from b and v

0
are
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Pbþ Cv ¼ Gw

and

C0b ¼ 0,

or, in matrix notation,

P C
C0 0

� �
b
v

� �
¼ Gw

0

� �
or

0 C0

C P

� �
v
b

� �
¼ 0

Gw

� �
: ð3:2Þ

In the latter case of Eq. (3.2), the solution is

v
bR

� �
¼ 0 C0

C P

� ��1
0
Gw

� �
, ð3:3Þ

where
0 C0

C P

� ��1

is the inverse of matrix
0 C0

C P

� �
and bR is the RLPSI vector of

coefficients. There is a mathematical algorithm (Searle 1966; Schott 2005) for

finding matrix
0 C0

C P

� ��1

. It can be shown that

0 C0

C P

� ��1

¼ �C0P�1C
� ��1

C0P�1C
� ��1

C0P�1

P�1C C0P�1C
� ��1 �P�1C C0P�1C

� ��1
C0P�1 þ P�1

" #
, ð3:4Þ

whence the RLPSI vector of coefficients (bR) that minimizes E[(H � I )2] and
maximizes ρHI under the restriction C

0
b ¼ 0 can be written as

bR ¼ Kb, ð3:5Þ
whereK¼ [I�Q],Q¼ P�1C(C

0
P�1C)�1C

0
and b¼ P�1Gw; P�1 is the inverse of

matrix P and I is an identity matrix t� t. When there are no restrictions on any traits,
U

0
is a null matrix and bR ¼ b ¼ P�1Gw, the LPSI vector of coefficients. Thus, the

RLPSI includes the LPSI as a particular case.
According to Eq. (3.5), the RLPSI can be written as

IR ¼ b0Ry, ð3:6Þ
whereas the maximized correlation between the RLPSI and the net genetic merit is

ρHIR ¼
w0GbRffiffiffiffiffiffiffiffiffiffiffiffi

w0Gw
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

b0RPbR
p : ð3:7Þ

According to conditions for constructing a valid RLPSI, the index IR ¼ b0Ry
should have normal distributions. Using 1 and 2 null restrictions, this assumption is
illustrated in Fig. 3.1 for a real maize (Zea mays) F2 population with 247 lines and
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four traits—grain yield (ton ha�1); plant height (cm), ear height (cm), and anthesis
day (days)—evaluated in one environment. Figure 3.1 indicates that, in effect, the
RLPSI values approach normal distribution.

Under the null restrictions made by the breeder, IR ¼ b0Ry should have maximum
correlation with H ¼ w

0
g and should be useful for ranking and selecting among

individuals with different net genetic merit; however, ρHIR is lower than the
correlation between LPSI and H ¼ w

0
g (ρHI) in each selection cycle because when

the restriction C
0
b ¼ 0 is imposed on the RLPSI vector of coefficients, the restricted

traits do not affect the correlation ρHIR . Using simulated data described in Sect. 2.8.1
of Chap. 2, we estimated ρHIR and ρHI for seven selection cycles and compared the
results in Fig. 3.2. Correlation ρHIR values were estimated for one, two, and three null
restrictions and in effect, they were lower than the estimated values of ρHI in all
selection cycles (Fig. 3.2). Additional results can be seen in Chap. 10, where the
RLPSI was simulated for many selection cycles. Chapter 11 describes RIndSel: a
program that uses R (in this case R denotes a platform for data analysis, see Kabakoff
2011 for details) and the selection index theory to select individual candidates for
selection.
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Fig. 3.1 (a) and (b) show the distributions of 247 values of the restricted linear phenotypic
selection index (RLPSI), with one and two restrictions respectively, constructed with the pheno-
typic means of four maize (Zea mays) F2 population traits: grain yield (ton ha

�1), plant height (cm),
ear height (cm), and anthesis day (days), evaluated in one environment
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The maximized RLPSI selection response and the restricted expected genetic gain
per trait can be written as

RR ¼ kI
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b0RPbR

q
ð3:8Þ

and

ER ¼ kI
GbRffiffiffiffiffiffiffiffiffiffiffiffiffi
b0RPbR

p , ð3:9Þ

respectively, where kI is the standardized selection differential or selection intensity
associated with the RLPSI.

The maximized RLPSI selection response has the same form as the maximized
LPSI selection response; thus, under r restrictions, Eq. (3.8) predicts the mean
improvement in H owing to indirect selection on IR ¼ b0Ry when bR ¼ Kb. The
restriction effects are observed on the RLPSI expected genetic gains per trait
(Eq. 3.9) where each restricted trait has an expected genetic gain equal to zero. In
addition, because the RLPSI selection response and expected genetic gain per trait
values are also affected by the restricted traits, they are lower than the LPSI selection
response and expected genetic gain per trait values.
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Fig. 3.2 Estimated correlation values between the linear phenotypic selection index (LPSI) and the
net genetic merit (H ¼ w

0
g); estimated correlation values between the RLPSI and H for one (red),

two (yellow), and three (green) restrictions for four traits and 500 genotypes in one environment
simulated for seven selection cycles
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3.1.2 Statistical Properties of the RLPSI

Under the assumptions that H ¼ w
0
g and IR ¼ b0Ry have a bivariate joint normal

distribution, bR ¼ Kb, b ¼ P�1Gw, and P, G, and w are known, the RLPSI has the
following properties:

1. MatricesQ¼ P�1C(C
0
P�1C)�1C

0
andK¼ [I�Q] are projectors. That is,Q and

K are idempotent (Q ¼ Q2 and K ¼ K2) and orthogonal (KQ ¼ QK ¼ 0). It can
be shown that Q ¼ Q2, K ¼ K2, and KQ ¼ QK ¼ 0 noting that
Q2 ¼ P�1C(C

0
P�1C)�1C

0
P�1C(C

0
P�1C)�1C

0 ¼ P�1C(C
0
P�1C)�1C

0 ¼ Q, K2

¼ [I � Q][I � Q] ¼ I � 2Q + Q2 ¼ I � Q ¼ K, and KQ ¼ QK ¼ Q � Q2 ¼ 0.
2. MatrixQ projects vector b into a space generated by the columns of matrixC owing

to the restriction C
0
b ¼ 0 used when Ψ(b, v) is maximized with respect to b and v.

3. Matrix K projects b into a space perpendicular to the space generated by the
C matrix columns (Rao 2002).

4. Because of the restriction C
0
b ¼ 0, matrix K projects b into a space smaller than

the original space of b. The space reduction into which matrix K projects b is
equal to the number of zeros that appears in Eq. (3.9).

5. Vector bR ¼ Kb minimizes the mean square error under the restriction C
0
b ¼ 0.

6. The variance of IR ¼ b0Ry (σ2IR ¼ b0RPbR ) is equal to the covariance between

IR ¼ b0Ry and H ¼ w
0
g (σHIR ¼ w0GbR). First note that K ¼ K2, K

0
P ¼ PK, and

b
0
P¼ w

0
G; thenσ2IR ¼ b0RPbR ¼ b0K0PKb ¼ b0PK2b ¼ b0PKb ¼ w0GbR ¼ σHIR .

7. The maximized correlation between H and IR is equal to ρHIR ¼
σIR
σH
. In point 6 of

this subsection we showed that σHIR ¼ σ2IR ; then

ρHIR ¼
w0GbRffiffiffiffiffiffiffiffiffiffiffiffi

w0Gw
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

b0RPbR
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b0RPbR
w0Gw

r
¼ σIR

σH
:

8. The variance of the predicted error, Var H � IRð Þ ¼ 1� ρ2HIR

� �
σ2H , is minimal.

By point 6 σHIR ¼ σ2IR , whence Var H � IRð Þ ¼ σ2H � σ2IR ¼ 1� ρ2HIR

� �
σ2H .

9. RLPSI heritability is equal to h2IR ¼ b0RGbR
b0RPbR

.

Points 1–4 show that in effect, the RLPSI projects the LPSI vector of coefficients
into a space smaller than the original LPSI vector of coefficients. In addition, the
RLPSI statistical properties denoted by points 5–9 are the same as the LPSI
statistical properties. Thus, the RLPSI is a variant of the LPSI.

3.1.3 The RLPSI Matrix of Restrictions

The main difference between the RLPSI and the LPSI is the restriction U
0
Gb ¼ 0

used to obtain the RLPSI vector of coefficients. This restriction is introduced through
matrix U

0
(t� 1)� t, which is called matrix of null restrictions and is very important
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in an RLPSI context. The form and size of matrix U
0
depends on the number of

restricted traits. For example, suppose that we restrict only one of t traits; then we
can restrict the first of them as U0 ¼ 1 0 0 � � � 0½ �, the second as
U0 ¼ 0 1 0 � � � 0½ �, the third as U0 ¼ 0 0 1 � � � 0½ �, etc. When we
restrict two of t traits, matrix U

0
could be constructed as follows. We can restrict

the first and second traits as U0 ¼ 1 0 0 � � � 0
0 1 0 � � � 0

� �
, the first and third traits as

U0 ¼ 1 0 0 � � � 0
0 0 1 � � � 0

� �
, the second and third traits as

U0 ¼ 0 1 0 � � � 0
0 0 1 � � � 0

� �
, etc. If we restrict three of t traits, matrix U

0
will have

the following form when the first, second, and third traits are restricted,

U0 ¼
1 0 0 0 � � � 0
0 1 0 0 � � � 0
0 0 1 0 � � � 0

24 35; if the first, second, and fourth traits are restricted,

U0 ¼
1 0 0 0 � � � 0
0 1 0 0 � � � 0
0 0 0 1 � � � 0

24 35, if the second, the third and the fourth traits are

restricted, U0 ¼
0 1 0 0 � � � 0
0 0 1 0 � � � 0
0 0 0 1 � � � 0

24 35, etc. The procedure to construct matrix

U
0
is valid for any number of restricted traits.

There are
Xt

r¼0

t
r

	 

¼ 2t (Leon-Garcia 2008) possible forms for constructing

matrix U
0
, where

t
r

	 

¼ t!

r! t�rð Þ! and t ! ¼ t(t� 1)(t� 2)(t� 3)� � �(t� (t� 1)). Note,

however, that when r ¼ 0, U
0
is a null matrix, and when r ¼ t, all traits are restricted

and then the RLPSI values are null. Thus, the breeder should be interested only in 2t

� 2 possible ways of constructing matrix U
0
.

3.1.4 Numerical Examples

To illustrate the RLPSI theoretical results, we use the data set described in Sect. 2.8.1
of Chap. 2. We used that data set for seven phenotypic selection cycles (C1 to C7),
each with four traits (T1, T2, T3 and T4), 500 genotypes and four replicates for each
genotype. The economic weights for T1, T2, T3, and T4 were 1, �1, 1, and 1 respec-
tively. The estimated phenotypic (bP) and genetic (bG) covariance matrices for traits T1,
T2, T3, and T4 obtained for the first selection cycle (C1) of the simulated data were
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bP ¼
62:50 �12:74 8:53 2:73
�12:74 17:52 �3:38 �2:28
8:53 �3:38 12:31 0:16
2:73 �2:28 0:16 7:27

2664
3775 and

bG ¼
36:21 �12:93 8:35 2:74
�12:93 13:04 �3:40 �2:24
8:35 �3:40 9:96 0:16
2:74 �2:24 0:16 6:64

2664
3775,

respectively. We can restrict T1 with matrix U0
1 ¼ 1 0 0 0½ �; T1 and T2 with

matrixU0
2 ¼

1 0 0 0
0 1 0 0

� �
, and T1, T2 and T3 with matrixU0

3 ¼
1 0 0 0
0 1 0 0
0 0 1 0

24 35.
Matrix C0 ¼ U0 bG associated with U0

1, U0
2, and U0

3 can be obtained as

C0
1 ¼ U0

1G ¼ 36:21 �12:93 8:35 2:74½ �,

C0
2 ¼ U0

2
bG ¼ 36:21 �12:93 8:35 2:74

�12:93 13:04 �3:40 �2:24

� �
, and

C0
3 ¼ U0

3
bG ¼

36:21 �12:93 8:35 2:74
�12:93 13:04 �3:04 �2:24
8:35 �3:40 9:96 0:16

24 35:
The estimated LPSI vector of coefficients wasbb0 ¼ w0 bGbP�1 ¼ 0:55 �1:05 1:09 1:06½ �.
The estimated matrices bQ ¼ bP�1C

�
C0bP�1C

��1
C0 and bK ¼ �

I4 � bQ�
(where I4 is

an identity matrix 4 � 4) for 1 null restriction, were

bQ1 ¼ bP�1C1
�
C0

1
bP�1C1

��1
C0

1 ¼
0:72 �0:26 0:17 0:05
�0:51 0:18 �0:12 �0:04
0:39 �0:14 0:09 0:03
0:14 �0:05 0:03 0:01

2664
3775 and

bK1 ¼
�
I4 � bQ1

� ¼ 0:28 0:26 �0:17 �0:05
0:51 0:82 0:12 0:04
�0:39 0:14 0:91 �0:03
�0:14 0:05 �0:03 0:99

2664
3775:

Thus, the estimated RLPSI vector of coefficients wasbb0
R1

¼ �bK1bb�0 ¼ �0:35 �0:41 0:59 0:89½ �, whence the estimated RLPSI for

1 null restriction can be written as bIR1 ¼ �0:35T1 � 0:41T2 þ 0:59T3 þ 0:89T4.
The average values of T1, T2, T3, and T4 were 164.46, 39.63, 34.66, and 23.11
(Table 3.1) respectively; then,
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bI R1 ¼ �0:35 164:46ð Þ � 0:41 39:63ð Þ þ 0:59 34:66ð Þ þ 0:89 23:11ð Þ ¼ �33:24:

In Table 3.1 we present ten genotypes, the mean values of four traits, and the
unranked and ranked values of the RLPSI from 500 genotypes in one environment
simulated for one selection cycle. The first part of Table 3.1 presents the ten
unranked genotypes, whereas the second part presents the ten genotypes ranked by
the estimated RLPSI values.

Assuming a selection intensity of 10% (kI ¼ 1.755), the estimated selection
response and the estimated expected genetic gain per trait for 1 null restriction

were bRR1 ¼ 1:755
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0
R1
bPbbR1

q
¼ 6:87 and bE0

R1
¼ 1:755

bb0
R1
bGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0R1
bPbbR1

q ¼ 0 �2:2½

2:03 2:66�, respectively, and the estimated correlation between the RLPSI and the

net genetic merit was bρHIR1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0R1

bPbbR1

w0 bGw

s
¼ 0:35.

In a similar manner to that for 1 null restriction, it is possible to obtain the

estimated matrices bQ ¼ bP�1C
�
C0bP�1C

��1
C0 and bK ¼ �

I4 � bQ�
, and the estimated

Table 3.1 Ten genotypes, mean values of four traits, and unranked and ranked values of the
restricted linear phenotypic selection index (RLPSI) obtained from 500 simulated genotypes (each
with four repetitions) and four traits (T1, T2, T3, and T4) in one environment for one selection cycle

Number of genotypes

Means of the trait values

T1 T2 T3 T4 RLPSI values

1 164.46 39.63 34.66 23.11 �33.24 (unranked)

2 144.39 50.77 34.65 19.56 �33.94 (unranked)

3 157.48 48.04 37.9 19.03 �35.96 (unranked)

4 167.3 47.98 30.49 24.75 �38.73 (unranked)

5 164.11 49.89 32.03 25.32 �36.98 (unranked)

6 166.26 40.44 29.93 20.55 �39.29 (unranked)

7 154.59 52.22 30.31 18.86 �41.33 (unranked)

8 160 42.91 31.23 20.95 �36.98 (unranked)

9 158.51 46.32 34.52 18.36 �38.2 (unranked)

10 163.63 45.43 35.73 19.57 �37.85 (unranked)

1 164.46 39.63 34.66 23.11 �33.24 (ranked)

2 144.39 50.77 34.65 19.56 �33.94 (ranked)

3 157.48 48.04 37.9 19.03 �35.96 (ranked)

5 164.11 49.89 32.03 25.32 �36.98 (ranked)

8 160 42.91 31.23 20.95 �36.98 (ranked)

10 163.63 45.43 35.73 19.57 �37.85 (ranked)

9 158.51 46.32 34.52 18.36 �38.2 (ranked)

4 167.3 47.98 30.49 24.75 �38.73 (ranked)

6 166.26 40.44 29.93 20.55 �39.29 (ranked)

7 154.59 52.22 30.31 18.86 �41.33 (ranked)
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RLPSI vector of coefficients for 2 and 3 null restrictions. Thus, for 2 and 3 null

restrictions, the estimated selection responses were bRR2 ¼ 1:755
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0
R2
bPbbR2

q
¼ 5:54

and bRR3 ¼ 1:755
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0
R3
bPbbR3

q
¼ 4:12 respectively, whereas the estimated

expected genetic gains per trait were bE0
R2

¼ 1:755
bb0
R2
Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0R2
bPbbR2

q ¼

0 0 2:773 2:768½ � and bE0
R3

¼ 1:755
bb0
R3
Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0R3
bPbbR3

q ¼ 0 0 0 4:12½ �:

Note that the estimated RLPS selection response decreased when the number of
restrictions increased. Also, the number of zeros in the expected genetic gain per trait
increased from 1 to 3 depending on the number of null restrictions. The same is true
for the estimated correlation between the RLPSI and the net genetic merit (Fig. 3.2).

Table 3.2 presents the estimated LPSI selection response and its heritabilities, and
the estimated RLPSI selection response and its heritabilities for 1, 2, and 3 null
restrictions for seven simulated selection cycles using a selection intensity of 10%
(kI ¼ 1.755). Note that the averages of the estimated RLPSI selection response for
the seven selection cycles were 6.76, 5.30, and 3.70 for 1, 2, and 3 null restrictions
respectively, and that 3.70, the average value for 3 null restrictions, is only 54.73%
of the average value for 1 null restriction (6.76). However, the estimated RLPSI
heritabilities for 1, 2, and 3 null restrictions tend to increase. This is because the
simulated true heritabilities of traits T1, T2, T3, and T4 were 0.4, 0.6, 0.6, and 0.8
respectively, whereas the averages of the estimated heritabilities of traits T1, T2, T3,
and T4 were 0.70, 0.78, and 0.87 for 1, 2, and 3 null restrictions respectively.

Table 3.3 presents the estimated LPSI expected genetic gain per trait and the
estimated RLPSI expected genetic gain per trait for 1, 2, and 3 null restrictions for

Table 3.2 Estimated linear phenotypic selection index (LPSI) selection response and its heritabil-
ity, and estimated restricted LPSI (RLPSI) selection response and its heritability for one, two, and
three null restrictions for seven simulated selection cycles

Cycle

LPSI

RLPSI

selection response for
one, two, and three
restrictions

Heritability for one,
two, and three
restrictions

selection response Heritability 1 2 3 1 2 3

1 17.81 0.84 6.87 5.54 4.13 0.65 0.77 0.89

2 15.69 0.80 8.45 5.94 4.27 0.76 0.80 0.90

3 14.22 0.77 7.17 5.79 4.16 0.71 0.80 0.88

4 14.34 0.76 6.68 5.06 3.72 0.71 0.79 0.89

5 13.64 0.75 6.02 5.16 3.24 0.67 0.76 0.86

6 12.04 0.71 6.37 5.17 3.31 0.70 0.79 0.86

7 11.61 0.72 5.77 4.44 3.09 0.68 0.74 0.84

Average 14.19 0.76 6.76 5.30 3.70 0.70 0.78 0.87

The selection intensity was 10% (kI ¼ 1.755)
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seven simulated selection cycles using a selection intensity of 10% (kI ¼ 1.755). In
effect, due to the restriction C

0
b ¼ 0, matrix K projects b into a space smaller than

the original space of b and the space reduction into which matrix K projects b is
equal to the number of zeros that appear in the RLPSI expected genetic gain per trait.

It can be shown that in the three restrictions case (Table 3.3) the estimated RLPSI
expected genetic gain pert traits (or multi-trait selection response) is equal to the one
trait selection response (Eqs. 2.4 and 2.5) when only trait T4 is selected. This means
that in effect, when we imposed three restriction over the RLPSI expected genetic gains
pert trait, we reduced one space of four dimensions to one space of only one dimension.

3.2 The Predetermined Proportional Gains Linear
Phenotypic Selection Index

This index is called the predetermined proportional gains phenotypic selection index
(PPG-LPSI) because the breeder pre-sets optimal levels for certain traits before the
selection is carried out. The conditions for constructing a valid PPG-LPSI are the
same as those described for the LPSI in Sect. 2.1 of Chap. 2. Some of the main

Table 3.3 Estimated LPSI expected genetic gain per trait, and estimated RLPSI expected genetic
gain per trait for one, two, and three null restrictions for seven simulated selection cycles

Cycle

LPSI expected gain per trait
RLPSI expected gain per trait for one
restriction

T1 T2 T3 T4 T1 T2 T3 T4

1 7.90 �4.67 3.33 1.92 0 �2.18 2.03 2.66

2 7.06 �3.59 3.17 1.86 0 �3.41 2.33 2.71

3 6.67 �3.21 2.82 1.52 0 �2.30 3.12 1.74

4 7.53 �3.45 2.07 1.29 0 �2.88 1.42 2.38

5 7.14 �2.66 2.51 1.33 0 �1.83 2.38 1.81

6 6.23 �2.62 1.98 1.21 0 �2.41 2.09 1.87

7 5.38 �2.55 2.47 1.22 0 �2.24 1.34 2.19

Average 6.85 �3.25 2.62 1.48 0 �2.46 2.10 2.19

RLPSI expected gain per traits for two
restrictions

RLPSI expected gain per traits for three
restrictions

Cycle T1 T2 T3 T4 T1 T2 T3 T4

1 0 0 2.77 2.77 0 0 0 4.13

2 0 0 2.87 3.07 0 0 0 4.27

3 0 0 3.11 2.68 0 0 0 4.16

4 0 0 2.35 2.70 0 0 0 3.72

5 0 0 3.12 2.04 0 0 0 3.24

6 0 0 2.84 2.33 0 0 0 3.31

7 0 0 2.07 2.37 0 0 0 3.09

Average 0 0 2.73 2.57 0 0 0 3.70

The selection intensity was 10% (kI ¼ 1.755)
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objectives of the PPG-LPSI are to optimize the expected genetic gain per trait,
predict the net genetic merit H ¼ w

0
g, and select the individuals with the highest

net genetic merit values as parents of the next generation. The PPG-LPSI allows
restrictions different from zero to be imposed on the expected genetic gains of some
traits, whereas other traits increase (or decrease) their expected genetic gains without
imposing any restrictions. The PPG-LPSI solves the LPSI equations subject to the
condition that the covariance between the LPSI and some linear functions of the
genotypes involved be equal to a vector of predetermined constants or genetic gains
defined by the breeder (Cunningham et al. 1970).

Let d0 ¼ d1 d2 � � � dr½ � be a vector r � 1 of the predetermined proportional
gains and assume that μq is the population mean of the qth trait before selection. One
objective could be to change μq to μq + dq, where dq is a predetermined change in μq
(in the RLPSI, dq ¼ 0, q ¼ 1, 2, � � �, r, where r is the number of predetermined
proportional gains). We can solve this problem in a similar manner to that used with
the RLPSI. That is, minimizing the mean squared difference between I and H(E
[(H � I )2]) under the restriction D

0
U

0
Gb ¼ 0, where

D0 ¼
dr 0 � � � 0 �d1
0 dr � � � 0 �d2
⋮ ⋮ ⋱ ⋮ ⋮
0 0 � � � dr �dr�1

2664
3775 is a Mallard (1972) matrix (r � 1) � r of

predetermined proportional gains, dq (q ¼ 1, 2. . ., r) is the qth element of vector
d

0
, U

0
is the RLPSI matrix of restrictions of 1’s and 0’s described earlier in this chapter,

G is the covariance matrix of genotypic values, and b is the LPSI vector of
coefficients. Also, it is possible to minimize E[(H � I )2] under the restriction
U

0
Gb ¼ θd (Tallis 1985), where θ is a proportionality constant, which is a scalar to

be determined a posteriori (Lin 2005), that is, θ is indeterminate a priori (Itoh and
Yamada 1987). Both approaches are very similar but the equations obtained when
introducing theD

0
U

0
Gb¼ 0 restriction are simpler than when introducingU

0
Gb¼ θd

restrictions into the process of minimizing E[(H � I )2]. The D
0
U

0
Gb ¼ 0 restriction

leads to a set of equations similar to Eq. (3.5) whereas the U
0
Gb ¼ θd restriction

leads to a set of equations that are difficult to solve.

3.2.1 The Maximized PPG-LPSI Parameters

Let M
0 ¼ D

0
C

0
be the Mallard (1972) matrix of predetermined restrictions, where

C
0 ¼ U

0
G. Under the restriction M

0
b ¼ 0, we can minimize E[(I � H )2], assuming

that P, G, U
0
, D

0
, and w are known; that is, we need to minimize the function

Φ b; vð Þ ¼ b0Pbþ w0Gw� 2w0Gbþ 2v0M0b ð3:10Þ
with respect to vectors b and v0 ¼ v1 v2 � � � vr�1½ �, where v is a vector of
Lagrange multipliers. Note that the only difference between Eqs. (3.1) and (3.10) is
matrix D

0
and that matrix M

0 ¼ D
0
C

0
has the same function in Eq. (3.10) that matrix

C
0 ¼ U

0
G had in Eq. (3.1). Then, the derivative results of Eq. (3.10) from b and

v should be similar to those of Eq. (3.1), i.e.,
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P M
M0 0

� �
b
v

� �
¼ Gw

0

� �
whence the vector that minimizes E[(H � I )2] under the restriction M

0
b ¼ 0 is

bM ¼ KMb, ð3:11Þ
whereKM¼ [It�QM],QM¼ P�1M(M

0
P�1M)�1M

0 ¼ P�1CD(D
0
C

0
P�1CD)�1D

0
C

0
,

and It is an identity matrix of size t� t. When D¼ U, bM ¼ bR (the RLPSI vector of
coefficients), and when D ¼ U and U

0
is a null matrix, bM ¼ b (the LPSI vector of

coefficients). Thus, the Mallard (1972) index is more general than the RLPSI and is
an optimal PPG-LPSI. In addition, it includes the LPSI and the RLPSI as particular
cases.

Instead of using restriction M
0
b ¼ 0 to minimize E[(I � H )2], we can use

restriction C
0
b ¼ θd and minimize

ΦT b; vð Þ ¼ b0Pbþ w0Gw� 2w0Gbþ 2v0 C0b� θdð Þ ð3:12Þ
with respect to b, v

0
, and θ (Tallis 1985; Lin 2005) assuming that P, G, U

0
, d, and

w are known. The derivative results in matrix notation are

bT
v
θ

24 35 ¼
P C 0t�1

C0 0r�t �d
001�t �d0 0

24 35�1 Gw
0
0

24 35, ð3:13Þ

where 0t � 1 is a null vector t � 1, 0r � t is a null matrix r � t, and 0 is a null column
vector (r � 1) � 1; 0 is the standard zero value. The inverse matrix of coefficients

P C 0t�1

C0 0r�t �d
001�t �d0 0

24 35�1

in Eq. (3.13) is not easy to obtain; for this reason, Tallis

(1985) obtained his results in two steps. That is, Tallis (1985) first derived Eq. (3.12)
with respect to b and v

0
, whence he obtained

bT ¼ bR þ θδ, ð3:14Þ
where bR ¼ Kb (Eq. 3.5), δ ¼ P�1C(C

0
P�1C)�1d, and d0 ¼ d1 d2 � � � dr½ �.

Next, he derived E b0Ty� H
� �2h i

only with respect to θ, and his result was

θ ¼ b0C C0P�1C
� ��1

d

d0 C0P�1C
� ��1

d
, ð3:15Þ

where b¼ P�1Gw is the LPSI vector of coefficients, C
0 ¼ U

0
G, d is the vector of the

predetermined proportional gains imposed by the breeder and P�1 is the inverse of
matrix P. When θ¼ 0, bT¼ bR, and if θ¼ 0 andU

0
is the null matrix, bT¼ b. That is,

the PPG-LPSI obtained by Tallis (1985) is more general than the RLPSI and the
LPSI. The foregoing results indicate that Eq. (3.14) consists of three parts:
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1. Vector bR ¼ Kb, which represents the weights of the RLPSI with the restriction
that the expected genetic gain per trait be equal to zero.

2. Vector δ ¼ P�1C(C
0
P�1C)�1d, which should represent the weights of the

PPG-LPSI leading to the greatest improvement in the desired direction indepen-
dently of economic weights.

3. θ represents the regression coefficient of H ¼ w
0
g on δ ¼ P�1C(C

0
P�1C)�1d

(Itoh and Yamada 1987).

When θ ¼ 1, Eq. (3.14) is equal to

bT0 ¼ bR þ δ: ð3:16Þ
The latter equation was the original result obtained by Tallis (1962). Tallis (1962)

derived Eq. (3.12) with respect to vectors b and v under the restriction U
0
Gb ¼ d,

i.e., without θ or θ¼ 1. Later, James (1968) maximized the correlation between I and
H(ρHI) under the Tallis (1962) restriction and once more obtained Eq. (3.16).
Mallard (1972) showed that Eq. (3.16) is not optimal, i.e., it does not minimize E
[(I�H )2] and does not maximize ρHI, and gave the optimal solution, which we have
presented here in Eq. (3.11). Later, using restriction U

0
Gb ¼ θd, Tallis (1985)

obtained Eq. (3.14), which also is optimal.
Figure 3.3 presents the estimated correlation values between PPG-LPSI and the

net genetic merit (H ¼ w
0
g) for the optimal PPG-LPSI (Eq. 3.14) and non-optimal

PPG-LPSI (Eq. 3.16) using one (d1 ¼ 7), two (d0 ¼ 7 �3½ � ), and three (d0 ¼
7 �3 5½ �) predetermined restrictions, four traits and 500 simulated genotypes in
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Fig. 3.3 Estimated correlation values between the predetermined proportional gain linear pheno-
typic selection index (PPG-LPSI) and the net genetic merit (H ¼ w

0
g) for the optimal and

non-optimal PPG-LPSI using 1 (d1¼ 7), 2 (d0 ¼ 7 �3½ �) and 3 (d0 ¼ 7 �3 5½ �) predetermined
restrictions, 4 traits and 500 simulated genotypes in 1 environment for 7 selection cycles
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one environment for seven selection cycles (see Sect. 2.8.1 of Chap. 2). Note that in
effect, the non-optimal PPG-LPSI has lower correlations than the optimal PPG-LPSI
for the seven simulated selection cycles.

Let bP ¼ bM ¼ bT be the PPG-LPSI vector of coefficients. Then, the optimal
PPG-LPSI can be written as

IP ¼ b0Py, ð3:17Þ
whereas the maximized correlation between the PPG-LPSI and the net genetic merit
is

ρHIP ¼
w0GbPffiffiffiffiffiffiffiffiffiffiffiffi

w0Gw
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

b0PPbP
p : ð3:18Þ

According to the conditions for constructing a valid PPG-LPSI described in Sect.
2.1 of Chap. 2, the index IP ¼ b0Py should have normal distributions. Figure 3.4
presents the distribution of 500 estimated PPG-LPSI values with two (d0 ¼ 7 �3½ �)
and three (d0 ¼ 7 �3 5½ �) predetermined restrictions respectively, obtained from
one selection cycle, with four traits and 500 genotypes simulated in one environment
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Fig. 3.4 (a) and (b) show the distribution of 500 estimated predetermined proportional gain linear
phenotypic selection index values with two ( d0 ¼ 7 �3½ � ) and three ( d0 ¼ 7 �3 5½ � )
predetermined restrictions respectively, obtained from one selection cycle for 500 genotypes and
four traits simulated in one environment
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(see Chap. 2, Sect. 2.8.1 for details). Figure 3.4 indicates that, in effect, the
PPG-LPSI values approach normal distribution.

Under the predetermined restrictions imposed by the breeder, IP ¼ b0Py should
have maximal correlation with H ¼ w

0
g and it should be useful for ranking and

selecting among individuals with different net genetic merits. However, for more
than two restrictions the proportionality constant (θ) could be lower than 1; in that
case, ρHIP is lower than the correlation between LPSI and H ¼ w

0
g (ρHI). In addition,

when the restriction M
0
b ¼ 0 or U

0
Gb ¼ θd is imposed on the PPG-LPSI vector of

coefficients, the restricted traits decrease their effect on the correlation between
PPG-LPSI and H ¼ w

0
g. Using the simulated data set described in Sect. 2.8.1 of

Chap. 2, we estimated ρHIP and ρHI for seven selection cycles and compared
the results in Fig. 3.5. Correlation ρHIP values were estimated using one (d1 ¼ 7),
two ( d0 ¼ 7 �3½ � ), and three ( d0 ¼ 7 �3 5½ � ) predetermined restrictions.
Figure 3.5 indicates that when the number of predetermined restrictions is equal to
or higher than two, the estimated values of ρHIP decrease more than when only one
predetermined restriction is imposed on the PPG-LPSI.

The maximized PPG-LPSI selection response and expected genetic gains per trait
can be written as

RP ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0MPbM

q
¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b0TPbT

q
ð3:19Þ

and
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Fig. 3.5 Estimated correlation values between the LPSI and the net genetic merit (H ¼ w
0
g); and

estimated correlation values between the PPG-LPSI and H with one (d1 ¼ 7), two (d0 ¼ 7 �3½ �),
and three (d0 ¼ 7 �3 5½ �) predetermined restrictions obtained from seven selection cycles for
four traits and 500 simulated genotypes in one environment
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EP ¼ kI
GbMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0MPbM

p ¼ kI
GbTffiffiffiffiffiffiffiffiffiffiffiffiffi
b0TPbT

p , ð3:20Þ

respectively, where kI is the standardized selection differential or selection intensity
associated with the PPG-LPSI.

The maximized PPG-LPS selection response (Eq. 3.19) has the same form as the
maximized LPSI selection response. Thus, under r predetermined restrictions,
Eq. (3.19) predicts the mean improvement in H due to indirect selection on
IP ¼ b0Py. Predetermined restriction effects are observed on the PPG-LPSI expected
genetic gain per trait (Eq. 3.20). The main difference between the RLPSI and the
PPG-LPSI is the vector of predetermined proportional gains.

3.2.2 Statistical Properties of the PPG-LPSI

Assuming that H ¼ w
0
g and IP ¼ b0Py have a bivariate joint normal distribution,

bP ¼ KMb, b ¼ P�1Gw, and P, G and w are known, the PPG-LPSI has the same
properties as the RLPSI. Some of the main PPG-LPSI properties are:

1. Matrices QM ¼ P�1M(M
0
P�1M)�1M

0
and KM ¼ [I � QM] have the same

function as matrices Q ¼ P�1C(C
0
P�1C)�1C

0
and K ¼ [I � Q] in the RLPSI.

2. MatricesQM andKM are both projectors, i.e., they are idempotent (KM ¼ K2
M and

QM ¼ Q2
M), unique and orthogonal, i.e., KMQM ¼ QMKM ¼ 0.

3. Matrix QM projects b into a space generated by the columns of matrix M due to
the restrictionM

0
b¼ 0 that is introduced when Φ(b, v) is maximized with respect

to b, whereas matrix KM projects b into a space that is perpendicular to the space
generated by the columns of matrix M (Rao 2002). Thus, the function of matrix
KM is to transform vector b ¼ P�1Gw into vector bP ¼ KMb.

4. The variance of IP ¼ b0Py (σ2IP ¼ b0PPbP ) is equal to the covariance between

IP ¼ b0PyandH¼w
0
a (σHIP ¼ w0GbP). AsKM ¼ K2

M ,K
0
MP ¼ PKM andb

0
P¼w

0
G,

then
σ2IP ¼ b0PPbP ¼ b0K0

MPKMb ¼ b0PK2
Mb ¼ b0PKMb ¼ w0GbP ¼ σHIP :

5. The maximized correlation between H and IP ¼ b0Py is equal to ρHIP ¼
σIP
σH
. In

point 4 of this subsection, we showed that σHIP ¼ σ2IP , then

ρHIP ¼
w0GbPffiffiffiffiffiffiffiffiffiffiffiffi

w0Gw
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

b0PPbP
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b0PPbP
w0Gw

r
¼ σIP

σH
:

6. The variance of the predicted error, Var H � IPð Þ ¼ 1� ρ2HIP

� �
σ2H , is minimal.

By point 4 of this subsection, σHIP ¼ σ2IP , then

Var H � IRð Þ ¼ σ2H � σ2IP ¼ 1� ρ2HIP

� �
σ2H .

7. The heritability of the PPG-LPSI is equal to h2IP ¼
b0PGbP
b0PPbP

.
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Points 1–3 show that in effect, the PPG-LPSI projects the LPSI vector of
coefficients into a different space than the original LPSI vector of coefficients. In
addition, the PPG-LPSI statistical properties denoted by points 4–7 are the same as
the LPSI statistical properties. Thus, the PPG-LPSI is a variant of the LPSI.

3.2.3 There Is Only One Optimal PPG-LGSI

Let S¼C
0
P�1C, under the restrictionD

0
d¼ 0, Itoh and Yamada (1987) showed that

D(D
0
SD)�1D

0 ¼ S�1 � S�1d(d
0
S�1d)�1d

0
S�1, whence substituting S�1 � S�1d(d

0
-

S�1d)�1d
0
S�1 for D(D

0
SD)�1D

0
in matrixQM, Eq. (3.11) can be written as Eq. (3.14),

i.e., bM ¼ bT. Therefore, the Mallard (1972) and Tallis (1985) vectors of coefficients
are the same. In addition, Itoh and Yamada (1987) showed that the Harville (1975)
vector of coefficients can written as bT

σIT
(Eq. 2.21d), where σIT is the standard deviation

of the variance of the Tallis (1985) PPG-LPSI. Thus, in reality, there is only one
optimal PPG-LPSI.

Itoh and Yamada (1987) also pointed out that matrix

D0 ¼
dr 0 � � � 0 �d1
0 dr � � � 0 �d2
⋮ ⋮ ⋱ ⋮ ⋮
0 0 � � � dr �dr�1

2664
3775 is only one example of several possible

Mallard (1972) D
0
matrices. They showed that any matrix D

0
that satisfies condition

D
0
d ¼ 0 is another Mallard (1972) matrix of predetermined proportional gains.

According to Itoh and Yamada (1987), matrices

D0 ¼
d2 �d1 0 � � � 0 0
0 d3 �d2 � � � 0 0
⋮ ⋮ ⋮ ⋮ ⋮ 0
0 0 0 0 dr dr�1

2664
3775 and

D0 ¼
d2 �d1 0 � � � 0
d3 0 �d1 � � � 0
⋮ ⋮ ⋮ ⋮ ⋮
dr 0 0 0 �d1

2664
3775

are also Mallard (1972) matrices of predetermined proportional gains because they

satisfy condition D
0
d ¼ 0. However, matrix D0 ¼

dr 0 � � � 0 �d1
0 dr � � � 0 �d2
⋮ ⋮ ⋱ ⋮ ⋮
0 0 � � � dr �dr�1

2664
3775 is

“easier” to construct.
Harville (1975) maximized the correlation between I and H (ρIH) under the

restriction C
0
b ¼ θd and was the first to point out the importance of the

60 3 Constrained Linear Phenotypic Selection Indices



proportionality constant (θ) in the PPG-LPSI. Mallard (1972) showed that the
restriction U

0
Gb ¼ d does not maximize the correlation with the net genetic merit

(H ¼ w
0
g) and Harville (1975) indicated that the restriction U

0
Gb ¼ d only changes

the sign of the genetic expected gain (or multi-trait selection response) but does not
maximize the correlation between I¼ b

0
y and H¼ w

0
g. According to Mallard (1972),

Harville (1975), and Tallis (1985), the PPG-LPSI is optimal only under the
restriction U

0
Gb ¼ θd.

Itoh and Yamada (1987) pointed out several problems associated with the Tallis
(1985) PPG-PSI:

1. When the number of restrictions imposed on the PPG-PSI expected genetic gains
increases, θ tends to zero and then the accuracy of the PPG-PSI decreases.

2. The θ values could be negative, in which case PPG-PSI results have no meaning
in practice.

3. The PPG-PSI may cause the population means to shift in the opposite direction to
the predetermined desired direction; this may happen because of the opposite
directions between the economic values and the predetermined desired direction.

Itoh and Yamada (1987) thought that one possible solution to those problems
could be to use the linear phenotypic selection index with desired gains.

3.2.4 Numerical Examples

The estimated phenotypic (bP) and genetic (bG) covariance matrices described in Sect.
3.1.4 of this chapter for RLPSI are used as the first example. First, Eq. (3.11) is
described to obtain the PPG-LPSI vector of coefficients. Let d02 ¼ 7 �3½ � be the
vector for 2 predetermined restrictions, then, the Mallard (1972) matrix is

D0 ¼ �3 �7½ �, while matrix U
0
is U0

2 ¼
1 0 0 0
0 1 0 0

� �
. Matrix M0 ¼ D0U0 bG

for 2 predetermined restrictions will be
M0 ¼ D0U0

2
bG ¼ �18:12 �52:49 �1:25 7:46½ �, whence

bQM ¼ bP�1M
�
M0bP�1M

��1
M0 ¼

0:084 0:242 0:006 �0:034
0:313 0:906 0:022 �0:129
0:037 0:106 0:003 �0:015
�0:019 �0:055 �0:001 0:008

2664
3775 and

bKM ¼ �
I4 � bQM

� ¼ 0:916 �0:242 �0:006 0:034
�0:313 0:094 �0:022 0:129
�0:037 0:106 0:997 0:015
0:019 0:055 0:001 0:992

2664
3775;

I4 is an identity matrix of size 4 � 4.
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The estimated LPSI and PPG-LPSI vectors of coefficients werebb0 ¼ 0:554 �1:053 1:090 1:058½ � and bb0
M ¼ �bKM

bb�0 ¼ 0:793 �0:159½
1:1941:004� respectively, and the estimated PPG-LPSI was bIM ¼ 0:793T1�
0:159T2 þ 1:194T3 þ 1:004T4. The standard deviation of the estimated variance

of bIM was bσ IM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0MbPbbM

q
¼ 9:526, whereas the estimated correlation value

between the PPG-LPSI and the net genetic merit was bρHIP ¼ bσ IMbσH
¼ 0:85, where bσH

¼
ffiffiffiffiffiffiffiffiffiffiffi
wbGw

p
¼ 11:202 is the estimated standard deviation of the variance of the net

genetic merit.
Suppose that the selection intensity was 10% (kI ¼ 1.755); then, the estimated

PPG-LPSI expected genetic gain per trait and the estimated selection response arebE0
M ¼ 1:755

bb0
MGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0MbPbbM

q ¼ 8:013 �3:434 3:541 1:730½ � and bRM ¼ 1:755ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0MbPbbM

q
¼ 1:755ð Þ 9:526ð Þ ¼ 16:717 respectively.

Now, let d03 ¼ 7 �3 5½ � be the vector for three predetermined restrictions,
then there are three possible predetermined Mallard matrices, i.e.,

D0
1 ¼

5 0 �7
0 5 3

� �
, D0

2 ¼
�3 �7 0
0 5 3

� �
, and D0

3 ¼
�3 �7 0
5 0 �7

� �
, and

matrix U
0
for three restrictions is U0

3 ¼
1 0 0 0
0 1 0 0
0 0 1 0

24 35. Thus, for three

predetermined restrictions matrix M0 ¼ D0U0 bG shall have three possible forms,

i.e., M0
1 ¼ D0

1U
0
3
bG ¼ 122:60 �40:85 �27:97 12:58

�39:60 55:00 12:88 �10:72

� �
, but

M0
2 ¼ D0

2U
0
3
bG ¼ M0

3 ¼
�18:12 �52:49 �1:25 7:46
122:60 �40:85 �27:97 12:58

� �
. Note that matrix

M0
1 is different from matrices M0

2 and M0
3, and that the two latter are the same;

however, both matrices should lead to the same estimated PPG-LPSI vector of

coefficients and to the same estimated PPG-LPSI expected genetic gain per trait

and selection response. It can be shown that for matrices M0
1,M

0
2, andM

0
3, matricesbQM and bKM ¼ �

I4 � bQM

�
are the same and can be written as

bQM ¼
0:771 0:080 �0:145 0:026
0:123 0:951 0:063 �0:145
�1:131 0:382 0:258 �0:117
0:118 �0:087 �0:031 0:020

2664
3775 and

bKM ¼
0:229 �0:080 0:145 �0:026
�0:123 0:049 �0:063 0:145
1:131 �0:382 0:742 0:117
�0:118 0:087 0:031 0:980

2664
3775:
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The estimated LPSI vector of coefficients was equal tobb0 ¼ 0:554 �1:053 1:090 1:058½ �, whereas the estimated PPG-LPSI vector

of coefficients was bb0
M ¼ �bKM

bb�0 ¼ 0:342 �0:035 1:960 0:914½ �. The esti-
mated PPG-LPSI was bIM ¼ 0312T1 � 0:035T2 þ 1:960T3 þ 0:914T4 and the stan-

dard deviation of the estimated variance of bIM was bσ IM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0MbPbbM

q
¼ 8:68. The

estimated correlation value between the PPG-LPSI and the net genetic merit wasbρHIP ¼ bσ IMbσH
¼ 0:775, where bσH ¼

ffiffiffiffiffiffiffiffiffiffiffi
wbGw

p
¼ 11:202 is the estimated standard

deviation of the variance of the net genetic merit.
Using a selection intensity of 10% (kI ¼ 1.755), the estimated PPG-LPSI

expected genetic gain per trait and the estimated selection response werebE0
M ¼ 1:755

bb0
MGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0MbPbbM

q ¼ 6:410 �2:747 4:579 1:496½ � and bRM ¼ 1:755ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0MbPbbM

q
¼ 1:755ð Þ 8:68ð Þ ¼ 15:32, respectively:

According to Eq. (3.14), the estimated Tallis (1985) vector of coefficients can be
obtained as bbT ¼ bbR þ bθbδ, where bbR ¼ bKbb is the estimated RLPSI,

bδ ¼ bP�1C
�
C0bP�1C

��1
d, bθ ¼

bb0C�C0bP�1C
��1

d

d0
�
C0bP�1C

��1
d

is the estimated constant of pro-

portionality, bb ¼ bP�1 bGw is the estimated LPSI vector of coefficients, and d0 ¼
d1 d2 � � � dr½ � is the vector of predetermined restrictions.
In Sect. 3.1.4 of this chapter we described how to obtain bbR ¼ bKbb, and we also

obtained matrix C0 ¼ U0 bG for two and three null restrictions as

C0
2 ¼ U0

2
bG ¼ 36:21 �12:93 8:35 2:74

�12:93 13:04 �3:40 �2:24

� �
and C0

3 ¼ U0
3
bG ¼

36:21 �12:93 8:35 2:74
�12:93 13:04 �3:04 �2:24
8:35 �3:40 9:96 0:16

24 35, whence the bbR ¼ bKbb values for two and

three null restrictions were bb0
R2

¼ �0:164 0:162 0:680 0:856½ � andbb0
R3

¼ �0:032 0:136 0:059 0:890½ � respectively.
The bθ and bδ values for two and three predetermined restrictions were

bθ2 ¼ bb0C2

�
C0

2
bP�1C2

��1
d2

d02
�
C0

2
bP�1C2

��1
d2

¼ 6:213, bθ3 ¼ bb0C3

�
C0

3
bP�1C3

��1
d3

d03
�
C0

3
bP�1C3

��1
d3

¼ 4:529,

bδ02 ¼ bP�1C2
�
C0

2
bP�1C2

��1
d2

� �0
¼ 0:153 �0:052 0:083 0:024½ �, andbδ03 ¼ bP�1C3

�
C0

3
bP�1C3

��1
d3

� �0
¼ 0:083 �0:038 0:420 0:005½ �. With these

results, the estimated Tallis (1985) vectors of coefficients for two and three
predetermined restrictions were bb0

T2
¼ 0:793 �0:159 1:194 1:004½ � and bb0

T3

¼ 0:342 �0:035 1:960 0:914½ � respectively. These latter two vectors of coef-
ficients are the same as the vectors of coefficients obtained using the Mallard (1972)
method for two and three predetermined restrictions. These results corroborate that,
in effect, the Mallard (1972) and Tallis (1985) PPG-LPSIs are the same.
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With the data set described in Sect. 2.8.1 of Chap. 2 we constructed Table 3.4,
which presents the estimated LPSI selection response and heritability, and the
estimated PPG-LPSI selection response and heritability for one, two, and three
predetermined restrictions for seven simulated selection cycles using a selection
intensity of 10% (kI ¼ 1.755). The averages of the estimated PPG-LPSI selection
responses were 14.19, 14.00, and 12.58 for one, two, and three restrictions respec-
tively. Note that 14.19 is also the average value for the estimated LPSI selection
response. This means that the PPG-LPSI and the LPSI selection responses are the
same for only one predetermined restriction. However, the estimated PPG-LPSI
selection responses for two and three restrictions tend to decrease (Table 3.4). The
same is true for the estimated PPG-LPSI heritability. That is, the estimated
PPG-LPSI heritability for one predetermined restriction is equal to the estimated
LPSI heritability. The estimated PPG-LPSI heritability for two predetermined
restrictions decreased, but increased for three predetermined restrictions
(Table 3.4). This is because the simulated true heritabilities of traits T1, T2, T3, and
T4 were 0.4, 0.6, 0.6, and 0.8 respectively.

Table 3.5 presents the estimated LPSI expected genetic gain per trait without
restrictions, and the estimated PPG-LPSI expected genetic gain per trait for one, two,
and three predetermined restrictions for seven simulated selection cycles using a
selection intensity of 10% (kI ¼ 1.755). Once again, note that for one predetermined
restriction, the estimated PPG-LPSI expected genetic gains were equal to the
estimated LPSI expected genetic gains, and for two predetermined restrictions, the
estimated PPG-LPSI expected genetic gains were similar to the estimated LPSI
expected genetic gains; however, for three predetermined restrictions, the estimated
PPG-LPSI expected genetic gains tended to decrease.

Table 3.4 Estimated LPSI selection response and heritability, and estimated predetermined pro-
portional gain LPSI (PPG-LPSI) selection response and heritability for one, two, and three
predetermined restrictions for seven simulated selection cycles

Cycle

LPSI

PPG-LPSI

Selection response for
one, two, and three
restrictions

Heritability for one,
two, and three
restrictions

Selection response Heritability 1 2 3 1 2 3

1 17.81 0.84 17.81 16.72 15.23 0.84 0.77 0.83

2 15.69 0.80 15.69 15.59 14.39 0.80 0.78 0.83

3 14.22 0.77 14.22 14.16 13.18 0.77 0.76 0.80

4 14.34 0.76 14.34 14.33 11.56 0.76 0.75 0.78

5 13.64 0.75 13.64 13.56 12.16 0.75 0.75 0.79

6 12.04 0.71 12.04 12.04 10.77 0.71 0.71 0.76

7 11.61 0.72 11.61 11.59 10.75 0.72 0.71 0.76

Average 14.19 0.76 14.19 14.00 12.58 0.76 0.75 0.79

The selection intensity was 10% (kI ¼ 1.755) and the vectors of predetermined proportional gains
for one, two, and three predetermined restrictions were d01 ¼ 7, d02 ¼ 7 �3½ � and
d03 ¼ 7 �3 5½ � respectively
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The first part of Table 3.6 presents the estimated correlation of the net genetic
merit (H ¼ w

0
g) with the estimated LPSI and RLPSI values for one, two, and three

null restrictions. In addition, this first part presents the estimated LPSI versus RLPSI
efficiency p¼ 100(λR� 1) (Eq. 2.21, Chap. 2). The second part of Table 3.6 presents
the estimated correlation of H ¼ w

0
g with the estimated LPSI and PPG-LPSI values

for one, two, and three predetermined restrictions, and the estimated LPSI versus
RLPSI efficiency p ¼ 100(λP � 1). Finally, the third part of Table 3.6 presents the
estimated variance of the predicted error (VPE) of the LPSI ( 1� ρ2HI

� �
σ2H ), the

RLPSI ( 1� ρ2HIR

� �
σ2H), and the PPG-LPSI ( 1� ρ2HIP

� �
σ2H) for one, two, and three

restrictions for seven simulated selection cycles.
The estimated VPE of the RLPSI is higher than that of the LPSI and PPG-LPSI

for one, two, and three restrictions for the seven simulated selection cycles; however,
the estimated VPE of PPG-LPSI is only greater than that of the LPSI for two and
three predetermined restrictions.

Table 3.5 Estimated LPSI expected genetic gain per trait, and estimated PPG-LPSI expected
genetic gain per trait for one, two, and three predetermined restrictions for seven simulated selection
cycles

Cycle

LPSI expected gain per trait
PPG-LPSI expected gain per trait for one
restriction

T1 T2 T3 T4 T1 T2 T3 T4

1 7.90 �4.67 3.33 1.92 7.90 �4.67 3.33 1.92

2 7.06 �3.59 3.17 1.86 7.06 �3.59 3.17 1.86

3 6.67 �3.21 2.82 1.52 6.67 �3.21 2.82 1.52

4 7.53 �3.45 2.07 1.29 7.53 �3.45 2.07 1.29

5 7.14 �2.66 2.51 1.33 7.14 �2.66 2.51 1.33

6 6.23 �2.62 1.98 1.21 6.23 �2.62 1.98 1.21

7 5.38 �2.55 2.47 1.22 5.38 �2.55 2.47 1.22

Average 6.85 �3.25 2.62 1.48 6.85 �3.25 2.62 1.48

PPG-LPSI expected gain per trait for two
restrictions

PPG-LPSI expected gain per trait for three
restrictions

Cycle T1 T2 T3 T4 T1 T2 T3 T4

1 8.01 �3.43 3.54 1.73 6.41 �2.75 4.58 1.50

2 7.39 �3.17 3.22 1.81 5.89 �2.52 4.21 1.77

3 6.86 �2.94 2.77 1.60 5.48 �2.35 3.91 1.45

4 7.65 �3.28 2.12 1.27 4.76 �2.04 3.40 1.35

5 6.88 �2.95 2.41 1.33 5.08 �2.18 3.63 1.28

6 6.20 �2.66 1.98 1.21 4.39 �1.88 3.14 1.36

7 5.50 �2.36 2.53 1.19 4.41 �1.89 3.15 1.30

Average 6.93 �2.97 2.65 1.45 5.20 �2.23 3.72 1.43

The selection intensity was 10% (kI ¼ 1.755) and the vectors of predetermined proportional gains
for one, two, and three restrictions were d

0 ¼ 7, d0 ¼ 7 �3½ � and d0 ¼ 7 �3 5½ � respectively
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Thus, according to the results obtained for the LPSI, the RLPSI, and the
PPG-LPSI, the best predictor of the net genetic merit was the LPSI followed by
the PPG-LPSI and the RLPSI.

Table 3.6 Correlation of the net genetic merit with the LPSI, the RLPSI, and the PPG-LPSI for
one, two, and three null and predetermined restrictions; LPSI versus RLPSI efficiency and LPSI
versus PPG-LPSI efficiency, and estimated variance of the predicted error (VPE) of the LPSI, the
RLPSI, and the PPG-LPSI for one, two, and three restrictions for seven simulated selection cycles

Cycle LPSI Correlation

RLPSI correlation for one,
two, and three null restrictions

LPSI versus RLPSI efficiency in
percentage terms for one, two,
and three null restrictions

1 2 3 1 2 3

1 0.91 0.35 0.28 0.21 159.16 221.34 331.65

2 0.88 0.48 0.33 0.24 85.69 164.19 267.25

3 0.87 0.44 0.35 0.25 98.42 145.51 241.61

4 0.86 0.40 0.30 0.22 114.77 183.56 285.28

5 0.86 0.38 0.32 0.20 126.47 164.15 321.00

6 0.83 0.44 0.36 0.23 89.09 132.96 264.22

7 0.83 0.41 0.32 0.22 101.23 161.60 275.26

Average 0.86 0.41 0.32 0.23 110.69 167.62 283.75

Cycle LPSI Correlation

PPG-LPSI correlation for one,
two, and three predetermined
restrictions

LPSI vs. PPG-LPSI efficiency in
percentage terms for one, two,
and three predetermined
restrictions

1 2 3 1 2 3

1 0.91 0.91 0.85 0.77 0 17.13 22.74

2 0.88 0.88 0.88 0.81 0 3.44 10.42

3 0.87 0.87 0.86 0.80 0 3.35 10.21

4 0.86 0.86 0.86 0.70 0 2.32 22.96

5 0.86 0.86 0.85 0.76 0 0.30 10.09

6 0.83 0.83 0.83 0.74 0 0.83 11.13

7 0.83 0.83 0.83 0.77 0 2.35 7.74

Average 0.86 0.86 0.85 0.77 0 4.25 13.61

Cycle LPSI VPE

RLPSI VPE for one, two, and
three null restrictions

PPG-LPSI VPE for one, two,
and three predetermined
restrictions

1 2 3 1 2 3

1 22.53 110.16 115.52 119.96 22.53 50.44 57.14

2 22.66 79.40 91.13 96.65 22.66 27.88 37.03

3 21.95 70.92 76.70 81.97 21.95 26.14 33.55

4 22.84 75.16 81.33 85.14 22.84 25.84 45.46

5 22.13 70.75 73.86 79.11 22.13 22.49 32.69

6 21.18 55.07 59.56 64.68 21.18 21.95 30.13

7 19.47 52.44 56.85 60.14 19.47 21.45 25.53

Average 21.82 73.41 79.28 83.95 21.82 28.03 37.36
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3.3 The Desired Gains Linear Phenotypic Selection Index

The most important aspect of the desired gains linear phenotypic selection index
(DG-LPSI) is that it does not require economic weights. Note that the LPSI expected
genetic gain per traitE ¼ kIGb

σI
is maximized when b¼ P�1Gw and is proportional to

kI and σI. Now let Gb be written as

Gb ¼ d, ð3:21Þ
where d is the vector of desired gains. From Eq. (3.21), E can be written as

E ¼ kI
d
σI

: ð3:22Þ

Equation (3.22) indicates that E is inversely proportional to σI; then we can
minimize σI with respect to b subject to the constraints Gb ¼ d and then E is
maximized (Brascamp 1984; Itoh and Yamada 1986). That is, we need to take the
derivative of the function

ΦDG b; vð Þ ¼ 0:5 b0Pbð Þ þ v0 Gb� dð Þ ð3:23Þ
with respect to b and v, where v is a vector of Lagrange multipliers, assuming that P,
G, and d are known. The restriction Gb ¼ d in Eq. (3.23) is similar to the Tallis
(1985) restriction U

0
Gb ¼ θd, but with U

0 ¼ I and θ ¼ 1, or θ ¼ kI
σI
(Tallis 1962).

It can be shown that the vector that minimizes σI and maximizes E can be written
as

bDG ¼ P�1G GP�1G
� ��1

d: ð3:24Þ
thus, in effect, asGb¼ d, bDG¼ P�1G(GP�1G)�1d¼ P�1G(GP�1G)�1Gb¼ b. In
Eq. (3.24) we are assuming that the traits in the index are the same as those in the net
genetic merit. However, this may not be the case, that is, the number of traits could
be different from the number of genotypes. In the latter case, Eq. (3.21) should be
written as G

0
b ¼ d and Eq. (3.24) as bDG ¼ P�1G(G

0
P�1G)�1d (Itoh and Yamada

1986).
According to Itoh and Yamada (1986, 1988), Eq. (3.24) does not maximize the

correlation between I and H (ρIH) nor the selection response because the covariance
between I and H is not defined, given that Cov(H, I ) ¼ w

0
Gb requires the economic

weight vector w
0
and DG-LPSI does not use economic weights. However, note that

becauseGb¼ d, the variance of the DG-LPSI is Var(IDG)¼ d
0
(GP�1G)�1d¼ b

0
Pb.

In practice, d is chosen arbitrarily and then we are in the same situation as when
economic weights need to be selected. Pesek and Baker (1969), Yamada et al.
(1975), and Itoh and Yamada (1986, 1988) argued that this should not be a problem
for experienced breeders because they must know the relative merits and demerits of
their strains. However, this may be true only for some breeders and the selection of
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d is always subjective. Another problem with this index is that, as it is not associated
with H ¼ w

0
g, it is not a predictor of H ¼ w

0
g.

3.4 Applicability of the LPSI, RLPSI, and PPG-LPSI

In the context of animal breeding, Hazel (1943) pointed out that because any index is
constructed from data on a herd in one locality, it may not be widely applicable. The
reasons for this are:

1. Relative economic values for a trait may vary according to the particular locality
or nature of the enterprise.

2. The genetic constitution of herds may differ, especially when they are under
distinctly nonrandom mating systems such as intense inbreeding.

3. Different managerial practices may cause standard deviations for the traits to vary
in different herds. The standard deviations for subjective traits such as market
conformation measured by judging or by scores may vary because different
judges vary the range over which they spread their scores.

4. Few herds are large enough to provide enough data to make the sampling errors of
the genetic constants small. These limitations are applicable to the LPSI, RLPSI,
and PPG-LPSI, and to all selection indices described in this book.
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Chapter 4
Linear Marker and Genome-Wide Selection
Indices

Abstract There are two main linear marker selection indices employed in marker-
assisted selection (MAS) to predict the net genetic merit and to select individual
candidates as parents for the next generation: the linear marker selection index
(LMSI) and the genome-wide LMSI (GW-LMSI). Both indices maximize the
selection response, the expected genetic gain per trait, and the correlation with the
net genetic merit; however, applying the LMSI in plant or animal breeding requires
genotyping the candidates for selection; performing a linear regression of phenotypic
values on the coded values of the markers such that the selected markers are
statistically linked to quantitative trait loci that explain most of the variability in
the regression model; constructing the marker score, and combining the marker score
with phenotypic information to predict and rank the net genetic merit of the
candidates for selection. On the other hand, the GW-LMSI is a single-stage proce-
dure that treats information at each individual marker as a separate trait. Thus, all
marker information can be entered together with phenotypic information into the
GW-LMSI, which is then used to predict the net genetic merit and select candidates.
We describe the LMSI and GW-LMSI theory and show that both indices are direct
applications of the linear phenotypic selection index theory to MAS. Using real and
simulated data we validated the theory of both indices.

4.1 The Linear Marker Selection Index

4.1.1 Basic Conditions for Constructing the LMSI

In Chap. 2, Sect. 2.1, we indicated ten basic conditions for constructing a valid linear
phenotypic selection index (LPSI). These ten conditions are also necessary for the
linear marker selection index (LMSI); however, in addition to those conditions, the
LMSI also requires the following conditions:

1. The markers and the quantitative trait loci (QTL) should be in linkage disequi-
librium in the population under selection.

2. The QTL effects should be combined additively both within and between loci.

© The Author(s) 2018
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3. The QTL should be in coupling mode, that is, one of the initial lines should have
all the alleles that have a positive effect on the chromosome, and the other lines
should have all the negative effects.

4. The traits of interest should be affected by a few QTL with large effects (and
possibly a number of very small QTL effects) rather than many small QTL
effects.

5. The heritability of the traits should be low.
6. Markers correlated with the traits of interest should be identified.

Under these conditions, the LMSI should be more efficient than the LPSI, at least
in the first selection cycles (Whittaker 2003; Moreau et al. 2007).

4.1.2 The LMSI Parameters

Let yi¼ gi + ei be the ith trait (i¼ 1, 2, . . ., t, t¼ number of traits), where ei~N(0, σ
2
ei
)

is the residual with expectation equal to zero and variance value σ2ei , and N stands for
normal distribution. Assuming that the QTL effects combine additively both within
and between loci, the ith unobservable genetic value gi can be written as

gi ¼
XNQ

k¼1

αkqk, ð4:1Þ

where αk is the effect of the kth QTL, qk is the number of favorable alleles at the kth
QTL (2, 1 or 0), and NQ is the number of QTL affecting the ith trait of interest.

If the QTL effect values are not observable, the gi values in Eq. (4.1) are also not
observable; however, we can use a linear combination of the markers linked to the
QTL (si) that affect the ith trait to predict the gi value as

si ¼
XM
j¼1

θ jx j, ð4:2Þ

where si is a predictor of gi, θj is the regression coefficient of the linear regression
model, xj is the coded value of the jth markers (e.g., 1, 0, and �1 for marker
genotypes AA, Aa and aa respectively), and M is the number of selected markers
linked to the QTL that affect the ith trait. Equation (4.2) is called the marker score
(Lande and Thompson 1990; Whittaker 2003) and this is the main reason why the
LMSI is not equal to the LPSI described in Chap. 2. The number of selected markers
is only a subset of potential markers linked to QTL in the population under selection;
thus, the si values should be lower than or equal to the gi values. One way of
estimating the si values is to perform a linear regression of phenotypic values on
the coded values of the markers, select markers that are statistically linked to
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quantitative trait loci that explain most of the variability in the regression model, and
then obtain the estimated value of si (bsi) as the sum of the products of the QTL effects
linked to markers and multiplied by the marker coded values associated with the ith
trait. Some authors (e.g., Moreau et al. 2007) callbsi the molecular score; in this book,
we call si the marker score and bsi the estimated marker score.

The objective of the LMSI is to predict the net genetic merit of each individual
and select the individuals with the highest net genetic merit for further breeding. In
the LMSI context, the net genetic merit can be written as

H ¼ w0gþ w0
2s ¼ w0 w0

2

� � g
s

� �
¼ a0z, ð4:3Þ

where g0 ¼ g1 . . . gq
� �

is the vector of breeding values; w0 ¼ w1 � � � wt½ � is
the vector of economic weights associated with g; w0

2 ¼ 01 � � � 0t½ � is a null
vector associated with the vector of marker scores s0 ¼ s1 � � � st½ �; si is the ith
marker score; a0 ¼ w0 w0

2½ � and z ¼ g0 s0½ �.
The information provided by the marker score can be used in breeding programs

to increase the accuracy of predicting the net genetic merit of the individuals under
selection. The LMSI combines the phenotypic and marker scores to predictH in each
selection cycle and can be written as

IM ¼ β0yyþ β0ss ¼ β0y β0s
� � y

s

� �
¼ β0t, ð4:4Þ

where β0y and βs are vectors of phenotypic and marker score weights respectively;
y0 ¼ y1 � � � yt½ � is the vector of trait phenotypic values and s was defined in
Eq. (4.3); β0 ¼ β0y β0s

� �
and t0 ¼ y0 s0½ �.

The LMSI selection response can be written as

RM ¼ kIσHρIMH ¼ kIσH
a0ZMβffiffiffiffiffiffiffiffiffiffiffiffiffi

a0ZMa
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

β0TMβ
p , ð4:5Þ

where kI is the standardized selection differential of the LMSI, σH ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
a0ZMa

p
andffiffiffiffiffiffiffiffiffiffiffiffiffi

β0TMβ
p

are the standard deviations of the variances of H and IM, whereas ρIMH and

a0ZMβ are the correlation and the covariance between H and IM respectively; TM

¼ Var
y
s

� �
¼ P S

S S

� �
and ZM ¼ Var

g
s

� �
¼ C S

S S

� �
are block matrices of

covariance where P ¼ Var(y), S ¼ Var(s), and C ¼ Var(g) are the covariance
matrices of phenotypic values (y), the marker score (s), and the genetic value (g)
respectively in the population. Vectors a and β were defined in Eqs. (4.3) and (4.4)
respectively.

The LMSI expected genetic gain per trait can be written as
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EM ¼ kI
ZMβffiffiffiffiffiffiffiffiffiffiffiffiffi
β0TMβ

p : ð4:6Þ

All the parameters in Eq. (4.6) were previously defined.

4.1.3 The Maximized LMSI Parameters

Suppose that P, S and C are known matrices; then, matrices TM and ZM are known
and, according to the LPSI theory (Chap. 2 for details), the LMSI vector of
coefficients (βM) that maximizes ρIMH , RM, and EM can be written as

β ¼ T�1
M ZMa, ð4:7Þ

whence the maximized selection response and the maximized correlation (or LMSI
accuracy) between H and IM can be written as

RM ¼ kI
ffiffiffiffiffiffiffiffiffiffiffiffiffi
β0TMβ

p
, ð4:8aÞ

and

ρIMH ¼ σIM
σH

, ð4:8bÞ

respectively, where σIM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
β0TMβ

p
is the standard deviation of the variance of IM

and σH ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
a0ZMa

p
is the deviation of the variance of H. Equations (4.8a) and (4.8b)

show that the LMSI is a direct application of the LPSI theory in the marker-assisted
selection (MAS) context.

Let Q ¼ T�1
M ZM ; then, matrix Q can be written as

Q ¼ P� Sð Þ�1 C� Sð Þ 0
I� P� Sð Þ�1 C� Sð Þ I

� �
, ð4:9Þ

whence β ¼ Qa, and as w0
2 ¼ 01 � � � 0t½ �, we can write the two vectors of β0

¼ β0y β0s
� �

as

βy ¼ P� Sð Þ�1 C� Sð Þw and βs ¼ I� P� Sð Þ�1 C� Sð Þ
h i

w: ð4:10aÞ

Another way of writing the marker score vector weights is

βs ¼ w� βy, ð4:10bÞ

where βy ¼ (P� S)�1(C� S)w. By Eq. (4.10b), the optimal LMSI can be written as
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IM ¼ w0sþ β0y y� sð Þ: ð4:11Þ

Equation (4.11) indicates that, in practice, to estimate the optimal LMSI, we only
need to estimate the vector of coefficients βy. By Eq. (4.10a), Eq. (4.8a) can be
written as

RM ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0C P� Sð Þ�1 C� Sð Þwþ w0S I� P� Sð Þ�1 C� Sð Þ

h i
w

r
: ð4:12Þ

Thus, by Eqs. (4.10a) and (4.12), when S is a null matrix, vector βy is equal to
βy ¼ P�1Cw ¼ b and RM ¼ kI

ffiffiffiffiffiffiffiffiffiffi
b0Pb

p
¼ RI , which are the LPSI vector of coeffi-

cients and its selection response respectively.
Assume that when the number of markers and genotypes tend to infinity, S tends

to C; then, at the limit, we can suppose that S ¼ C, and by this latter result, RM is
equal to

kI
ffiffiffiffiffiffiffiffiffiffiffiffi
w0Cw

p
: ð4:13Þ

That is, Eq. (4.13) is the maximum value of the LMSI selection response when
the numbers of markers and genotypes tend to infinity. Thus, the possible LMSI
selection response values of Eq. (4.12) should be between kI

ffiffiffiffiffiffiffiffiffiffi
b0Pb

p
and kI

ffiffiffiffiffiffiffiffiffiffiffiffi
w0Cw

p
,

i.e.,

kI
ffiffiffiffiffiffiffiffiffiffi
b0Pb

p
� RM � kI

ffiffiffiffiffiffiffiffiffiffiffiffi
w0Cw

p
, ð4:14Þ

or between 1 and
ffiffiffiffiffiffiffiffiffi
w0Cw

p ffiffiffiffiffiffiffi
b0Pb

p ¼ σH
σI
, that is,

1 � RM � σH
σI

: ð4:15Þ

Note that σHσI ¼ 1
ρHI
, where ρHI is the maximized correlation between the net genetic

merit (H ) and the LPSI (I ) described in Chap. 2. Equation (4.15) indicates that LMSI
efficiency tends to infinity when the ρHI value tends to zero and is an additional way
of denoting the paradox of LMSI efficiency described by Knapp (1998), which
implies that LMSI efficiency tends to infinity when the ρHI value tends to zero.

4.1.4 The LMSI for One Trait

For the one-trait case, matrices TM, ZM, and Q can be written as
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TM ¼ σ2y σ2s
σ2s σ2s

� �
, ZM ¼ σ2g σ2s

σ2s σ2s

� �
and Q ¼

σ2g � σ2s
σ2y � σ2s

0

σ2y � σ2g
σ2y � σ2s

1

26664
37775, ð4:16Þ

where σ2y , σ2g, and σ2s are the phenotypic, genetic, and marker score variances
respectively. By Eqs. (4.10a) and (4.10b), when a0 ¼ 1 0½ �, the elements of vector
β ¼ Qa are

βy ¼
σ2g � σ2s
σ2y � σ2s

and βs ¼ 1� βy, ð4:17aÞ

whence the optimal LMSI can be written as

IM ¼ sþ βy y� sð Þ; ð4:17bÞ

whereas by Eq. (4.12), the maximized LMSI selection response can be written as

RM ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2g σ2g � σ2s

� �
þ σ2s σ2y � σ2g

� �
σ2y � σ2s

vuut
: ð4:18Þ

When σ2s ¼ 0, βy ¼
σ2g
σ2y

¼ h2, IM ¼ h2y, andRM ¼ k
σ2g
σy

¼ kσyh
2 ¼ R, the selection

response for the one-trait case without markers.

4.1.5 Efficiency of LMSI Versus LPSI Efficiency for One
Trait

Suppose that the intensity of selection is the same in both indices; then, to compare
LMSI versus LPSI efficiency for predicting the net genetic merit, we can use the
ratio λM ¼ ρIMH

ρHI
¼ RM

RI
(Bulmer 1980; Moreau et al. 1998), where RI is the maximized

LPSI selection response. In percentage terms, the LMSI versus LPSI efficiency can
be written as

pM ¼ 100 λM � 1ð Þ: ð4:19Þ
When pM ¼ 0, the efficiency of both indices is the same; when pM > 0, the

efficiency of the LMSI is higher than that of the LPSI, and when pM < 0, LPSI
efficiency is higher than LMSI efficiency for predicting the net genetic merit.

In the case of one trait, Lande and Thompson (1990) showed that LMSI efficiency
(not in percentage terms) with respect to phenotypic efficiency can be written as
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λM ¼ RM

R
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

h2
þ 1� qð Þ2

1� qh2
,

s
ð4:20Þ

where RM was defined in Eq. (4.18), R¼ kσyh
2, h2 is the trait heritability, and q ¼ σ2s

σ2g
is the proportion of additive genetic variance explained by the markers. According to
Eq. (4.20), the advantage of the LMSI over phenotypic selection increases as the

population size increases and heritability decreases, because in such cases, q ¼ σ2s
σ2g

tends to 1 and Eq. (4.20) approaches 1h. Therefore, the LMSI is most efficient for traits
with low heritability and when the marker score explains a large proportion of the
genetic variance. Thus, note that when h2 tends to zero, 1h tends to infinity; this means
that in the asymptotic context, LMSI efficiency with respect to phenotypic efficiency
for one trait (Eq. 4.20) tends to infinity and this is the LMSI paradox pointed out by
Knapp (1998). There are other problems associated with the LMSI: it increases the
selection response only in the short term and can result in lower cumulative
responses in the longer term than phenotypic selection, as the LMSI fixes the QTL
at a faster rate than phenotypic selection. In addition, it requires the weights
(Eq. 4.17a) to be updated, because in each generation the frequency of the QTL
changes (Dekkers and Settar 2004).

4.1.6 Statistical LMSI Properties

Assume that H and IM have bivariate joint normal distribution, β ¼ T�1
M ZMa, and

that P, C, S, and w are known; then, the statistical LMSI properties are the same as
the LPSI properties described in Chap. 2. That is,

1. σ2IM ¼ σHIM : the variance of IM (σ2IM ) and the covariance between H and IM (σHIM )
are the same.

2. The maximized correlation between H and IM (or IM accuracy) is ρHIM ¼ σIM
σH
.

3. The variance of the predicted error, Var H � IMð Þ ¼ 1� ρ2HIM

� �
σ2H , is minimal.

4. The total variance of H explained by IM is σ2IM ¼ ρ2HIMσ
2
H .

5. The heritability of IM is h2M ¼ β0MZMβM
β0MTMβM

.

Properties 1 to 4 are the same as LPSI properties 1 to 4, but, because the LMSI
jointly incorporates the phenotypic and marker information to predict the net genetic
merit, LMSI accuracy should be higher than LPSI accuracy. The same is true of the
LMSI selection response and expected genetic gain per trait when compared with the
LPSI selection response and expected genetic gain per trait.
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4.2 The Genome-Wide Linear Selection Index

The genome-wide linear marker selection index (GW-LMSI) is a single-stage
procedure that treats information at each individual marker as a separate trait.
Thus, all marker information can be entered together with phenotypic information
into the GW-LMSI, which is then used to predict the net genetic merit. In a similar
manner to the LMSI, the GW-LMSI exploits the linkage disequilibrium between
markers and the QTL produced when inbred lines are crossed.

4.2.1 The GW-LMSI Parameters

In a similar manner to the LPSI, the main objective of the GW-LMSI is to predict the
net genetic merit values of each individual and select the best individuals for further
breeding. In the GW-LMSI context, the net genetic merit can be written as

H ¼ w0gþ w0
2m ¼ w0 w0

2½ � g
m

� �
¼ a0WzW , ð4:21Þ

where g0 ¼ g1 . . . gt½ � ( j ¼ 1, 2, . . ., t ¼ number of traits) is the vector of
breeding values, w0 ¼ w1 � � � wt½ � is the vector of economic weights associated
with the breeding values, and w0

2 ¼ 01 � � � 0m½ � is a null vector associated with
the coded values of the markers m0 ¼ m1 � � � mm½ �, where mj ( j ¼ 1, 2, . . .,
m ¼ number of markers) is the jth marker in the training population;
a0W ¼ w0 w0

2½ � and zW ¼ g0 m0½ �.
The GW-LMSI (IW) combines the phenotypic value and the molecular informa-

tion linked to the individual traits to predict H values in each selection cycle. It can
be written as

IW ¼ β0yyþ β0mm ¼ β0y β0m
� � y

m

� �
¼ β0W tW , ð4:22Þ

where β0y and βm are vectors of phenotypic and marker weights respectively;
y0 ¼ y1 � � � yt½ � is the vector of phenotypic values and m was defined in
Eq. (4.21); β0W ¼ β0y β0m

� �
and t0W ¼ y0 m0½ �.

The GW-LSI selection response can be written as

RW ¼ kIσHρIWH ¼ kIσH
a0WΨβWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a0WΨaW
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β0WΦβW
p , ð4:23aÞ

where kI is the standardized selection differential of the GW-LMSI, σ2H ¼ a0WΨaW
and Var IWð Þ ¼ β0WΦβW are the variance of H and IW, whereas ρIWH ¼

a0WΨβWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0WΨaW

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0WΦβW

p and a0WΨβW are the correlation and the covariance between
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H and IW respectively; Φ ¼ Var
y
m

� �
¼ P W0

W M

� �
and

Ψ ¼ Var
g
m

� �
¼ C W0

W M

� �
are block covariance matrices where P ¼ Var(y),

M ¼ Var(m), C ¼ Var(g), and W ¼ Cov(y,m) ¼ Cov(g,m) are the covariance
matrices of phenotypic values (y), the molecular marker (m) coded values, and the
genetic (g) values, whereas W is the covariance matrix between y and m, and
between g and m. The size of matrices P and C is t � t, but the sizes of matrices
M and W are m � m and m � t respectively.

From a theoretical point of view, Crossa and Cerón-Rojas (2011) showed that
matrix M can be written as

M ¼
1 1� 2δ11ð Þ � � � 1� 2δ1Nð Þ

1� 2δ21ð Þ 1 � � � 1� 2δ2Nð Þ
⋮ ⋮ ⋱ ⋮

1� 2δN1ð Þ 1� 2δN2ð Þ � � � 1

2664
3775, ð4:23bÞ

where (1 � 2δij) is the covariance (or correlation) and δij the recombination fre-
quency between the ith and jth marker (i, j ¼ 1, 2, . . ., m ¼ number of markers).
According to Crossa and Cerón-Rojas (2011), matrix W can be written as

W ¼
1� 2r11ð Þα11 1� 2r11ð Þα12 � � � 1� 2r1Nð Þα1NQ

1� 2r21ð Þα21 1� 2r22ð Þα22 � � � 1� 2r2Nð Þα2NQ

⋮ ⋮ ⋱ ⋮
1� 2rt1ð Þαt1 1� 2rN2ð Þαt2 � � � 1� 2rNNð ÞαtNQ

2664
3775, ð4:23cÞ

where (1 � 2rik)αqk (i ¼ 1, 2, . . ., m, k ¼ 1, 2, . . ., NQ ¼ number of QTL, q ¼ 1,
2, . . ., t) is the covariance between the qth trait and the ith marker; rik is the
recombination frequency between the ith marker and the kth QTL; and αqk is the
effect of the kth QTL over the qth trait.

The GW-LMSI expected genetic gain per trait can be written as

ELW ¼ kI
Ψβffiffiffiffiffiffiffiffiffiffiffi
β0Φβ

p : ð4:24Þ

All parameters in Eq. (4.24) were previously defined.
Matrix Φ could be singular, i.e., its inverse (Φ�1) could not exist because matrix

W is singular. Suppose that matrices Φ and Ψ are known; then, according to the
LPSI theory, the GW-LMSI vector of coefficients (βW) that maximizes ρIWH can be
written as
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βW ¼ Φ�ΨaW , ð4:25aÞ
where matrixΦ� denotes a generalized inverse ofΦ. By Eq. (4.25a), the maximized
GW-LMSI selection response is

RW ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0WΦβW

q
: ð4:25bÞ

Equations (4.25a) and (4.25b) show that the GW-LMSI is a direct application of
the LPSI to MAS. By Eq. (4.25a), the maximized correlation between H and IW is

ρIWH ¼ σIW
σH

, ð4:25cÞ

where σIW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0WΦβW

q
is the standard deviation of the variance of IW and σH

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0WΨaW

p
is the standard deviation of the variance of H.

4.2.2 Relationship Between the GW-LMSI and the LPSI

Matrix Φ� can be written as

Φ� ¼ L� �L�W0M�

�M�WL� M� þM�WL�W0M�

� �
, ð4:26Þ

where L� is a generalized inverse of matrix L ¼ P � W
0
M�W, and M� is a

generalized inverse of matrix M. In matrix Φ�, the inverse of matrix W is not
required and the standard inverse of matrixM (M�1) may exist. In the latter case, the
standard inverse of matrix L (L�1) exists and can be written as L�1 ¼ (P �W

0
M�1

W)�1 ¼ P�1 + P�1W
0
[M � WP�1W

0
]�1WP�1 (Searle et al. 2006).

By Eq. (4.26) and because w0
2 ¼ 01 � � � 0N½ �, the vector components of

β0W ¼ β0y β0m
� �

, or βW ¼ Φ�ΨaW, can be written as

βy ¼ L�C� L�W0M�W½ �w ð4:27Þ

and

βm ¼ M� þM�WL�W0M�ð ÞW�M�WL�C½ �w, ð4:28Þ
where w is the vector of economic weights. Suppose that there is no marker
information; then, matrices M and W are null and Eq. (4.27) is equal to βy ¼ P�1

Cw ¼ b (the LPSI vector of coefficients), whereas βm ¼ 0 and

RW ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0WΦβW

q
¼ kI

ffiffiffiffiffiffiffiffiffiffi
b0Pb

p
¼ RI , the LPSI selection response. Now suppose

that the markers explain all the genetic variability; in this case, βy ¼ 0 and βm ¼ (X
0

X)�X
0
Y, the matrix of linear regression coefficients in the multivariate context,
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where (X
0
X)� is a generalized inverse matrix of X

0
X and Y is a matrix of phenotypic

observations.

4.2.3 Statistical Properties of GW-LMSI

Assume thatH and IW have bivariate joint normal distribution, βW¼Φ�ΨaW, and P,
C,M,W, andw are known; then, the statistical GW-LMSI properties are the same as
the LMSI properties. That is,

1. σ2IW ¼ σHIW , i.e., the variance of IW (σ2IW ) and the covariance between H and IW (
σHIW ) are the same.

2. The maximized correlation between H and IW, or IW accuracy, is ρHIW ¼ σIW
σH
.

3. The variance of the predicted error, Var H � IWð Þ ¼ 1� ρ2HIW

� �
σ2H , is minimal.

4. The total variance of H explained by IW is σ2IW ¼ ρ2HIWσ
2
H .

According to Lange and Whittaker (2001), GW-LMSI efficiency should be
greater than LMSI efficiency. However, this would be true only if matrices P, C,
M, and W are known and trait heritability is very low.

4.3 Estimating the LMSI Parameters

When covariance matrices P, C, and S, and the vector of economic weights (w) are
known, there is no error in the estimation of the LMSI parameters (selection
response, expected genetic gain, etc.); the same is true for the GW-LMSI when, in
addition to P, C, and w, the covariance matricesM andW are known. In such cases,
the relative efficiency of the LMSI (GW-LMSI) depends only on the heritability of
the traits and on the portion of phenotypic variation associated with markers. Using
simulated data, Lange and Whittaker (2001) found that GW-LMSI efficiency was
higher than LMSI efficiency when trait heritability was 0.2 and matrices P, C, M,
and W were known. When P, C, S, M, and W are unknown, it is necessary to
estimate them; then, the LMSI and GW-LMSI vector of coefficients and the effects
associated with markers are estimated with some error. This error leads to lower
LMSI and GW-LMSI efficiency than expected under the assumption that the
parameters are known; however, in the latter case, Lange and Whittaker (2001)
also found that GW-LMSI efficiency was greater than that of the LMSI when trait
heritability was 0.05. Moreover, in the LMSI there is additional bias in the estima-
tion of the parameters because only markers with significant effects are included in
the index (Moreau et al. 1998).

In Chap. 2, we described the restricted maximum likelihood (REML) method for
estimating matrices P and C. Some authors (Lande and Thompson 1990; Charcosset
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and Gallais 1996; Hospital et al. 1997; Moreau et al. 1998, 2007) have described
methods for estimating marker scores, the variance of the marker scores, the LMSI
vector of coefficients, etc., in the context of one trait; however, up to now there have
been no reports on the estimation of matrix S in the multi-trait case. Lange and
Whittaker (2001) only indicated that matrix S can be estimated as bS ¼ Var

	bs
,
where bs is a vector of estimated marker scores associated with several individual
traits.

The main problems associated with the estimated LMSI parameters are:

1. The estimated values of the covariance matrix S (bS ) tend to overestimate the
genetic covariance matrix (C).

2. The estimated variances of the marker scores can be negative.

When the first point is true, the estimated LMSI selection response and efficiency

could be negative because the estimated matrix bTM ¼ bP bSbS bS
� �

is not positive

definite (all eigenvalues positive) and the estimated matrix bZM ¼ bG bSbS bS
� �

is not

positive semi-definite (no negative eigenvalues). In addition, the results can lead to
all weights being placed on the molecular score and the weights on the phenotype
values can be negative (Moreau et al. 2007). When the second point is true, the
variance of the marker scores is not useful. The two problems indicated above could
be caused by using the same data set to select markers and to estimate marker effects,
and there is no simple way of solving them. Lande and Thompson (1990) proposed
that the markers used to obtain bS be selected a priori as those with the most highly
significant partial regression coefficients from among all the markers in the linkage
group analyzed in the previous generation. Zhang and Smith (1992, 1993) proposed
using two independent sets of markers: one to estimate marker effects and the other
to select markers. Additional solutions to these problems were described by Moreau
et al. (2007).

In this subsection, we describe methods (in the univariate and multivariate
context) for estimating molecular marker effects, marker scores, and their variance
and covariance, and for estimating the LMSI and GW-LMSI vector of coefficients,
selection response, expected genetic gain, and accuracy. This subsection is only for
illustration; we use the same data set to select markers, and to estimate marker effects
and the variance of marker scores.

4.3.1 Estimating the Marker Score

According to Eqs. (4.11) and (4.17b), when the vector of economic weights is equal
to a0 ¼ 1 0½ �, the LMSI for the ith trait yi (i ¼ 1, 2, � � �, t; t ¼ number of traits)
value can be written as IMli ¼ si þ βyi yi � sið Þ (l ¼ 1, 2, � � �, n; n ¼ number of
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individuals or genotypes), where βyi ¼
σ2gi � σ2si
σ2yi � σ2si

¼ h2i 1� qið Þ
1� qih

2
i

is the LMSI coeffi-

cient, h2i ¼
σ2gi
σ2yi

is the heritability of the ith trait, and qi ¼
σ2si
σ2gi

is the proportion of

genetic variance explained by the QTL or markers associated with the ith trait; si

¼
XM
j¼1

θ jx j ( j ¼ 1, 2, � � �, M; M ¼ number of selected markers) is the ith

individual trait marker score; and σ2yi , σ2gi , and σ2si are the ith variances of the

phenotypic, genetic, and marker score values respectively.
The simplest way of estimating the ith marker score si is to perform a multiple

linear regression of phenotypic values (yi) on the coded values of the markers (xj) and
then select the markers statistically linked to the ith QTL that explain most of the
variability in the regression model and use them to construct si ¼

P
j2M

θ jx j.

We can fit the model y∗i ¼
X
j2M

θ jx j þ e, where y∗i ¼ yi � �yi and �yi are the average

values of the ith trait, by maximum likelihood or least squares. When estimating θj,
the main problem is to choose the set of markers M based on criteria for declaring
markers as significant and then use the estimated values of θj (bθ j) to estimate the ith
marker score si asbsi ¼ X

j2M
bθ jx j. The values ofbsi may increase or decrease according

to the number of markers (xj) included in the model, and bsi affects LMSI selection
response and efficiency by means of the estimated variance of bsi (bσ2bsi) (Figs. 4.1 and

4.2).
According to the least squares method of estimation, bθ ¼ X0Xð Þ�1X0y∗ is an

estimator of the vector of regression coefficients θ0 ¼ θ1 θ2 � � � θm½ �, where
m (m < n) is the number of markers, X is a matrix n � m of coded marker values
(e.g., 1, 0 and �1 for marker genotypes AA, Aa, and aa respectively) and y∗ is a
vector n � 1 of phenotypic values centered based on its average values. Only a
subset M(M < m) of the m markers is statistically linked to the QTL and then only a

subset M of the estimated vector bθ values is selected to estimate si as bsi ¼ XM
j¼1

bθ jx j.

To illustrate how to obtain bsi ¼ X
j2M

bθ jx j, we use a real maize (Zea mays) F2

population with 247 genotypes (each one with two repetitions), 195 molecular
markers, and four traits – grain yield (GY, ton ha�1); plant height (PHT, cm), ear
height (EHT, cm), and anthesis day (AD, days) – evaluated in one environment. In
an F2 population, the marker homozygous loci for the allele from the first parental
line can be coded by 1, whereas the marker homozygous loci for the allele from the
second parental line can be coded by �1, and the marker heterozygous loci by 0.
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For this example, we used trait PHT. Only seven markers were statistically linked
to the PHT. The estimated vector of regression coefficients for these seven markers

was bθ0 ¼ 5:46 �4:54 0:98 7:39 �7:75 �1:91 �3:53½ �. Table 4.1 pre-
sents the first 20 genotypes, the coded values of the seven selected markers, and
the first 20 estimated bsPHT values of the 247 genotypes in the maize (Zea mays) F2
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Fig. 4.1 Efficiency of the linear molecular selection index with respect to phenotypic selection for
the one-trait case for different values of the variance of the marker score when the phenotypic and
genetic variances are fixed
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Fig. 4.2 Selection response values of the linear molecular selection index for the one-trait case for
different values of the variance of the marker score when the phenotypic and genetic variances are
fixed

84 4 Linear Marker and Genome-Wide Selection Indices



population. According to bθ0 and the coded values of the seven markers, the first
estimated bsPHT value was obtained as bsPHT1 ¼ �1:91 1ð Þ þ �3:53 �1ð Þ ¼ 1:62 ;
the second estimated bsPHT value was obtained as bsPHT2 ¼ 5:46 �1ð Þþ
�4:54 �1ð Þ � 1:91 �1ð Þ ¼ 0:99, etc. The 20th estimated bsPHT value was obtained
as bsPHT20 ¼ �3:53 �1ð Þ ¼ 3:53. This estimation procedure is valid for any number
of genotypes and markers.

Figure 4.3 shows the distribution of the 247 estimated marker scores associated
with traits PHT and EHT of the maize F2 population. Note that the estimated marker
score values approach normal distribution.

4.3.2 Estimating the Variance of the Marker Score

There are many methods of estimating the variance of the marker score associated
with the ith trait (σ2si ); the first one was proposed by Lande and Thompson (1990).
According to these authors, σ2si can be estimated as

Table 4.1 Number of selected genotypes, coded values of seven selected markers, and estimated
marker score values obtained from a maize (Zea mays) F2 population with 247 genotypes and
195 molecular markers

Number of genotypes

Coded values of the selected markers

Marker scoreM1 M2 M3 M4 M5 M6 M7

1 0 0 0 0 0 1 �1 1.62

2 �1 �1 0 0 0 �1 0 0.99

3 0 0 0 0 0 0 1 �3.53

4 1 1 0 0 0 �1 �1 6.37

5 1 1 0 �1 �1 �1 �1 6.72

6 0 0 1 0 0 0 0 0.98

7 1 1 0 1 1 0 0 0.57

8 0 0 0 0 0 0 0 0

9 0 0 1 0 0 1 0 �0.93

10 0 0 1 1 0 0 1 4.84

11 0 0 0 0 0 0 0 0

12 �1 �1 0 0 0 0 0 �0.92

13 0 0 0 0 0 0 0 0

14 1 1 0 �1 �1 0 �1 4.81

15 0 0 1 �1 �1 0 0 1.34

16 0 0 0 0 0 0 0 0

17 �1 �1 0 0 0 0 1 �4.46

18 �1 �1 0 0 0 0 1 �4.46

19 �1 �1 1 0 0 �1 1 �1.56

20 0 0 0 0 0 0 �1 3.53
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bσ2bsi ¼ bθ0iMi
bθi �Mbσ2

ei

n
, ð4:29Þ

where bθi is the estimated vector of regression coefficients of the selected markers,

Mi ¼ 2
n
X0

iXi is the covariance matrix M � M of the selected markers that are

statistically linked to the ith trait marker loci; bσ2
ei
¼ y0 I�Hð Þy

n�M � 1
is the unbiased

estimated variance of the residuals, H ¼ I� Xi X0
iXi

	 
�1
X0

i, I is an identity matrix
n� n,M is the number of selected markers statistically linked to the QTL, andXi is a
matrix n�Mwith the coded values of the selected markers. According to Lande and
Thompson (1990), Eq. (4.29) is an unbiased estimator of σ2si and its variance can be
written as

Var
	bσ2bsi
 ¼ 4σ2siσ

2
ei

n
þ
2M σ2ei

� �2

n2
þ
2M2 σ2ei

� �2

n2 n�Mð Þ , ð4:30Þ

which tends to zero when n, the number of genotypes or individuals, is very high.

Fig. 4.3 Distribution of the marker scores associated with traits (a) plant height and (b) ear height
of a maize (Zea mays) F2 population. Note that the distribution of frequencies of the marker score
values approaches normal distribution
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From Eq. (4.29), it is possible to obtain an estimator of the covariance between
the ith and jth marker scores when the number of selected markers statistically linked
to the QTL is the same in the ith and jth traits. Thus, by Eq. (4.29), the covariance
between the ith and jth marker scores can be estimated as

bσbsij ¼ bθ0iMij
bθj �Mbσeij

n
, ð4:31Þ

where bθi and bθj are the estimated vectors of regression coefficients of the selected

markers associated with the ith and jth trait loci respectively; Mij ¼ 2
n
X0

iX j is the

covariance matrix M � M of the markers statistically linked to the ith and jth trait
marker loci; Xi and Xj are n � M matrices with the coded values of the selected

markers associated with the ith and jth trait loci respectively; bσeij ¼
y0i I�Hij

	 

y j

n�M � 1
is

the estimated covariance of the residuals between the ith (yi) and jth (yj) trait values,
Hij ¼ I� Xi X0

iX j

	 
�1
X0

j, I is an identity matrix n � n, and M is the number of
selected markers statistically linked to the QTL.

According to the PHT values described in Sect. 4.3.1 of this chapter, M ¼ 7,
n ¼ 247, bσ2

ei
¼ 180:80 and bσ2bsPHT ¼ 48:23 (Eq. 4.29). Note that bσ2bsPHT � bσ2

gPHT
, wherebσ2

gPHT
¼ 83:0 is an estimate of the genetic variance of PHT. The estimated portion of

the genetic variance attributable to bσ2bsPHT ¼ 48:23 was bqPHT ¼ 48:23
83

¼ 0:5811; that

is, the seven markers explain 58.11% of the genetic variance associated with PHT.
Charcosset and Gallais (1996) considered two possible methods of estimating

σ2si based on the coefficient of multiple determination or squared multiple
correlation R2 (note that in this case R2 is not the square of the selection response).
The coefficient R2 gives the portion of the total variation in the phenotypic values
that is “explained” by, or attributable to, the markers and can be written as

R2 ¼
bθX0y� n�y2

y0y� n�y2
¼ bσ2

sbσ2
y

, ð4:32aÞ

where bθX0y� n�y2 is the overall regression sum of squares adjusted for the intercept
and y0y� n�y2 is the total sum of squares adjusted for the mean. The coefficient R2 is
equal to 1 if the fitted equation yi ¼ θ0 þ

P
j2M

θ jx j þ ei passes through all the data

points, so that all residuals are null; then, the markers explain all the phenotypic
variance. At the other extreme, R2 is zero if �yi ¼ bθ0 and the estimated regression
coefficients are null, i.e., bθ1 ¼ bθ2 ¼ � � � ¼ bθM ¼ 0. In the latter case, markers do not
affect the phenotypic observations and the variance of the marker score values is
zero. Thus, the R2 values are between 0 and 1, i.e., 0� R2 � 1.0. Equation (4.32a) is

useful for estimating σ2si as bσ2
yi

XM
j¼1

R2
j ¼ bσ2

s , where R
2
j is the estimated value of the jth
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marker and bσ2
y is the phenotypic variance of the ith trait; however, this is a biased

estimator of σ2si (Hospital et al. 1997).
Charcosset and Gallais (1996) and Hospital et al. (1997) proposed an unbiased

estimator of σ2si based on all the selected markers using the adjusted coefficient of
multiple determination, i.e.,

R2
Adj ¼ 1� n� 1

n�M � 1
1� R2
	 
 ¼ bσ2

sbσ2
y

, ð4:32bÞ

whence we can obtain a unbiased estimator of σ2si as bσ2
yR

2
Adj ¼ bσ2bsi by jointly using all

the markers that affect the phenotypic values. The problem with Eq. (4.32b) is that
theR2

Adj values could be negative; in that case, the estimated value ofσ2si would also be
negative. One additional problem with Eq. (4.32b) is that theR2

Adj values can producebσ2
s values that are higher than those of the estimated variance of the breeding valuesbσ2
g.
Using Eqs. (4.32a) and (4.32b), we can estimate σ2si , but from them it is not clear

how we can estimate the covariance between two different estimated marker score
values.

Consider the case of the PHT values described in Sect. 4.3.1 of this chapter,
where M ¼ 7, n ¼ 247, and the estimated variance of PHT was bσ2

PHT ¼ 191:81. The
estimated values of R2 for each of the seven markers were 0.0038, 0.0005, 0.006,
0.0013, 0.0036, 0.0114, and 0.0298, whence, by multiplying each estimated R2

value by bσ2
PHT ¼ 191:81 and summing the results, we found that the estimated

value of σ2sPHT was bσ2bsPHT ¼ 9:78. In this case, the estimated portion of the genetic

variance attributable to bσ2bsPHT ¼ 9:78 was bqPHT ¼ 9:78
83

¼ 0:1178; thus, when we

estimatedσ2sPHT according to Eq. (4.32a), the seven markers explained only 11.78% of
the genetic variance associated with PHT.

The estimated value of R2
Adj for the seven markers jointly was 0.06, whence bσ2

sPHT

¼ 191:81ð Þ 0:06ð Þ ¼ 11:50 is an estimate of σ2sPHT . In the latter case, the estimated
portion of the genetic variance attributable to bσ2

sPHT
¼ 11:50 wasbqPHT ¼ 11:5

83
¼ 0:1385; that is, according to Eq. (4.32b), the seven markers explain

13.85% of the genetic variance associated with PHT.
One additional way of estimating the variance of the marker score σ2si was

proposed by Lange and Whittaker (2001) as

1
n� 1

Xn
i¼1

	bsi � bμsi


2
, ð4:33Þ
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where bsi ¼ XM
j¼1

bθ jx j and bμsi is the mean of bsi values. The covariance between the ith

and jth marker scores can be estimated as the cross products of the marker score
values divided by n � 1. Note that in this case, the number of markers associated
with the ith and jth traits may be different.

For the PHT values described in Sect. 4.3.1 of this chapter, where n ¼ 247, the
estimated value of σ2si was bσ2

sPHT
¼ 15:75 and the estimated portion of the genetic

variance attributable to bσ2
sPHT

¼ 15:75 was bqPHT ¼ 15:75
83

¼ 0:1897. That is, the

seven markers jointly explain 18.97% of the genetic variance associated with PHT
according to Eq. (4.33).

4.3.3 Estimating LMSI Selection Response and Efficiency

With the estimated phenotypic variances (bσ2
PHT ¼ 191:81), the estimated genetic

variance (bσ2
gPHT

¼ 83:0) and the estimated marker score variances: bσ2bsPHT ¼ 48:23

(Eq. 4.29), bσ2bsPHT ¼ 9:78 (Eq. 4.32a), bσ2
sPHT

¼ 11:50 (Eq. 4.32b), and bσ2
sPHT

¼ 15:75

(Eq. 4.33), we can estimate the LMSI coefficient, selection response, and efficiency.
Using the estimated value bσ2bsPHT ¼ 48:23 obtained with Eq. (4.29), it is possible to

estimate the LMSI weight as bβPHT ¼ bσ2
gPHT

� bσ2
sPHTbσ2

PHT � bσ2
sPHT

¼ 83:0� 48:23
191:81� 48:23

¼ 0:242,

whereas for bσ2bsPHT ¼ 9:78, bσ2
sPHT

¼ 11:50, and bσ2
sPHT

¼ 15:75, the estimated values

of βPHT were 0.402, 0.40, and 0.382 respectively. The latter results indicate that the
estimated values of βPHT associated with the phenotypic values tend to decrease when
the estimated values of the variance of the marker score increase. This means that at the
limit, when all the genetic variance is explained by the markers, the estimated values of
βPHT are zero and the estimated LMSI is equal to bIM ¼ bs. Thus, for trait PHT, when
the estimated values of βPHT are not zero, the estimated LMSI can be written asbIMPHT ¼ bsPHT þ bβPHT

	
PHTi �bsPHT
. The bIMPHT values are used to predict, rank, and

select the net genetic merit value of each individual candidate for selection.
Based on the result bσ2bsPHT ¼ 48:23 obtained with Eq. (4.29) and using a selection

intensity of 10% (kI¼ 1.755), the estimated LMSI selection response can be
obtained as
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bRM ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibσ2
g

	bσ2
g � bσ2

s


þ bσ2
s

	bσ2
y � bσ2

g



bσ2
y � bσ2

s

s

¼ 1:755

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
83 83� 48:23ð Þ þ 48:23 191:81� 83ð Þ

191:81� 48:23

r
¼ 1:755

ffiffiffiffiffiffiffiffiffiffiffi
56:65

p
¼ 13:21:

In a similar manner, using the result bσ2
sPHT

¼ 15:75, the estimated selection

response was bRM ¼ 1:755

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
83 83� 15:75ð Þ þ 15:75 191:81� 83ð Þ

191:81� 15:75

r
¼ 1:755

ffiffiffiffiffiffiffiffiffiffiffi
41:44

p

¼ 11:30: With bσ2bsPHT ¼ 9:78 and bσ2
sPHT

¼ 11:50, the estimated values of the LMSI

selection responses were 10.99 and 11.10 respectively. The latter results indicate that
the estimated values of the LMSI selection responses tend to increase when the
estimated values of the variance of the marker score increase.

We can estimate LMSI versus phenotypic efficiency for one trait as

bλM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibqbh2 þ
	
1� bq
2
1� bqbh2

vuut , where bh2 is the estimated trait heritability and bq ¼ bσ2
sbσ2
g

is

the estimated portion of additive genetic variance explained by the markers. Whenbσ2bsPHT ¼ 48:23, bqPHT ¼ 48:23
83

¼ 0:5811, and bh2 ¼ 0:433, the estimated LMSI effi-

ciency was bλM ¼
ffiffiffiffiffiffiffiffiffi
1:58

p
¼ 1:25. For bσ2

sPHT
¼ 15:75, bσ2bsPHT ¼ 9:78, andbσ2

sPHT
¼ 11:50, the estimated portions of the additive genetic variance explained by

the markers were bqPHT ¼ 15:75
83

¼ 0:1897, bqPHT ¼ 9:78
83

¼ 0:1178, and

bqPHT ¼ 11:5
83

¼ 0:1385 respectively, whence the estimated LMSI efficiencies were

1.1, 1.04, and 1.05 respectively. The latter results indicate that the estimated values
of LMSI efficiency tend to increase when the estimated values of the variance of the
marker score increase (Fig. 4.1).

Figure 4.1 presents the change in LMSI efficiency with respect to phenotypic
selection for different values of the variance of the marker score when the pheno-
typic (191.81) and genetic (83) variances are fixed. In a similar manner, Fig. 4.2
presents the change in the LMSI selection response for different values of the
variance of the marker score when the phenotypic (191.81) and genetic (83) vari-
ances are fixed. In effect, LMSI efficiency and the selection response depend on the
genetic variance explained by the markers.
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4.3.4 Estimating the Variance of the Marker Score
in the Multi-Trait Case

Equation (4.33) can be used in the multi-trait context when the numbers of markers
associated with the ith and jth traits are different. Also, it is possible to adapt
Eqs. (4.32a) and (4.32b) to the multi-trait case. However, in the latter case, in
addition to the markers linked to the QTL that affect one specific trait, we need to
find markers that affect more than one trait, which may be very difficult. For this
reason, in the multi-trait context, Eqs. (4.32a) and (4.32b) could be used to estimate
the variance of the marker score (S) without preselecting the markers that affect the
phenotypic traits, only when the number of genotypes is higher than the number of
markers.

Let y1, y2, . . ., yr be r independent multivariate normal vectors of observations,

each with n observations, such that Y ¼
y11 y12 � � � y1t
y21 y22 � � � y2t
⋮ ⋮ � � � ⋮
yn1 yn2 � � � ynt

2664
3775 is a matrix n � t of

observations for t traits; then, the multivariate linear regression model can be written
as Y ¼ XB + U, where X is a matrix n � m (m¼ number of markers and m < n) of
known coded marker values, B is a matrix m � n of regression coefficients, and U is
a matrix n � t of unobserved random disturbance whose rows for given X are
uncorrelated, each with mean 0 and common covariance matrix E (Mardia et al.
1982; Rencher 2002). According to the least squares method of estimation, bB ¼
X0Xð Þ�1X0Y is an estimator of B and bE ¼

	
Y� bBX
0	Y� bBX


n� m� 1
is an estimator of

the residual covariance matrix E assuming that n > m (Johnson and Wichern 2007).

Note that 1� R2 ¼ be0be
y0y

, where be is a vector of estimated residual values of the

model yi ¼ θ0 þ
P
j2M

θ jx j þ ei and R2 is the coefficient of multiple determination

(Eq. 4.32a). In addition, as in the multi-trait context the estimated matrix of residuals
is bU ¼ Y� bBX, 1 � R2 can be written as D ¼ Y0Yð Þ�1bU0bU (Mardia et al. 1982),
whence R2 in the multivariate context can written as

R2 ¼ I� D ¼ bP�1bS, ð4:34aÞ
whereas R2

Adj (Eq. 4.32b) can be written as

R2
Adj ¼ I� n� 1

n� m� 1
D ¼ bP�1bS, ð4:34bÞ

where I is an identity matrix t � t, bP�1 is the inverse of the estimated covariance
matrix of phenotypic values (bP), and bS is the estimated covariance matrix of marker
score values. From Eq. (4.34b),
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bPR2
Adj ¼ bS ð4:34cÞ

is an unbiased estimator of matrix bS, whereas bPR2 ¼ bS (Eq. 4.34a) is a biased
estimator of matrix bS. The main problem of Eq. (4.34c) is that the diagonal elements
of bS could be negative.

From the maize F2 population including 247 genotypes (each one with two
repetitions) and 195 molecular markers described in Sect. 4.3.1, we used two
traits—PHT (cm) and EHT (cm)—to illustrate the multivariate method of estimating
the LMSI parameters. The estimated phenotypic and genetic covariance matrices

were bP ¼ 191:81 106:89
106:89 167:93

� �
and bC ¼ 83:00 57:44

57:44 59:80

� �
, whereas the estimated

covariance matrix of marker scores, using Eq. (4.33), was bS ¼ 15:750 0:983
0:983 28:083

� �
.

When we used Eq. (4.34a) and Eq. (4.34c), we obtained estimated values of the
variance and covariance of the marker scores that were higher than the genetic values
(data not presented). Equations (4.29) and (4.31) are used later to compare LMSI
efficiency versus GW-LMSI efficiency using the simulated data described in Chap. 2,
Sect. 2.8.1.

With matrices bP, bC, and bS, and the vector of economic weights a0 ¼ w0 00½ �,
where w0 ¼ �1 �1½ � and 00 ¼ 0 0½ �, we obtained the estimated matrices bT
¼ bP bSbS bS

� �
and Z ¼ bC bSbS bS

� �
, whence the estimated LMSI vector of coefficients

was bβ0 ¼ a0bZM
bT�1
M ¼ �0:59 �0:18 �0:41 �0:82½ �. Using a selection inten-

sity of 10% (kI ¼ 1.755), the estimated LMSI selection response and the expected

genetic gains per trait were bRM ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0 bTM
bβq
¼ 20:41 and bE0

M ¼ kI
bβ0 bZMffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0 bTM

bβq ¼

�10:09 �10:31 �2:53 �4:39½ � respectively, whereas the estimated LMSI

accuracy was bρHÎ M
¼ bσ IMbσH

¼ 0:72.

The estimated LPSI parameters (see Chap. 2 for details) using the phenotypic
information from the maize F2 population for traits PHT and EHT are as follows.

The estimated LPSI vector of coefficients was bb0 ¼ w0bCbP�1 ¼ �0:53 �0:36½ �,
and, with a selection intensity of 10% (kI ¼ 1.755), the estimated LPSI selection

response and the expected genetic gains per trait were bRI ¼ kI

ffiffiffiffiffiffiffiffiffiffiffibb0bPbbq
¼ 18:97 andbE0 ¼ kI

bb0bCbσ I
¼ �10:52 �8:45½ � respectively, whereas the estimated LPSI accu-

racy was bρHÎ ¼ bσ IbσH
¼ 0:67.
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We can determine LMSI efficiency versus LPSI efficiency to predict the net
genetic merit using the ratio of estimated accuracy values bρHÎ M

¼ 0:72 and bρHÎ

¼ 0:67 of the LMSI and LPSI respectively, i.e., bλM ¼ 0:72
0:67

¼ 1:075, whence,

according to Eq. (4.19), the estimated LMSI efficiency versus the LPSI efficiency,
in percentage terms, was bpM ¼ 100 1:075� 1ð Þ ¼ 7:5. That is, for these data, the
estimated LMSI efficiency was only 7.5% greater than LPSI efficiency at predicting
the net genetic merit.

4.4 Estimating the GW-LMSI Parameters
in the Asymptotic Context

Lange and Whittaker (2001) proposed the GW-LMSI. However, these authors did
not provide detailed procedures for estimating matrices P, C, W, and M. They
indicated that matrix C can be estimated using the estimated matrix of covariance of
marker scores (bS) and that matrices P, W, and M can be estimated directly by their
empirical variances and covariances, but this assertion does not indicate a clear
method for estimating those covariance matrices. In Chap. 2, we described the
REML method of estimating C and P. Crossa and Cerón-Rojas (2011) described
matrices W and M in a doubled haploid population. In this study, we describe and
estimate matricesW andM for an F2 population in the asymptotic context according
to the Wright and Mowers (1994) approach, which is based on regressing phenotype
values on marker coded values. We used this latter approach to estimate W and M,
because it is a clearer estimation method than that of Lange and Whittaker (2001);
however, the Wright and Mowers (1994) approach is an asymptotic method and
should be regarded with precaution.

Matrix M is the covariance matrix of the molecular marker code values. All
marker information used to construct matrix M is presented in Table 4.2. Based on
this information, we found that the expectations (E(X1) and E(X2)) and the variances
(V(X1) and V(X2)) of the marker coded values X1 and X2 are E(X1) ¼ E(X2) ¼ 0 and
V(X1) ¼ V(X2) ¼ 1, whereas the covariance (Cov(X1,X2)) and correlation (Corr(X1,
X2)), between X1 and X2 were

Cov X1;X2ð Þ ¼ Corr X1;X2ð Þ ¼ 1� 2δ: ð4:35Þ
Thus, as the variances of X1 and X2 are equal to 1, the correlation between X1 and

X2 is Corr X1;X2ð Þ ¼ Cov X1;X2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V X1ð ÞV X2ð Þ

p ¼ 1� 2δ, i.e., the covariance and correlation

between X1 and X2 are the same. Equation (4.35) results indicate that if we perform
the same operation with many markers, we will obtain similar results; they also
indicate that this is the way to construct matrix M.
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Let X be a matrix of coded markers of size n � m, where n � m and
m¼ number of markers; then according to Wright and Mowers (1994), because
all marker information is contained in matrix X

0
X, when the number of observations

(n) tends to infinity, the product x0ix j=n tends to the covariance between markers
ith and jth, whence matrix n�1X

0
X should tend to the covariance matrix between

the markers that conform matrix X with the ijth element equal to (0.5 � δij). Thus,
matrix 2n�1X

0
X should tend to a covariance matrix where the ijth entry is equal to

(1 � 2δij). Based on the latter result, an estimator of matrix M in the asymptotic
context is

bM ¼ 2n�1X0X: ð4:36Þ

Equation (4.36) is an asymptotic result and should be taken with caution. To date,
there has been no clear method for estimating M in the non-asymptotic context; for
this reason, Eq. (4.36) is used to estimate the GW-LMSI parameters.

Assume that a QTL is between the two markers in Table 4.2; then, δ can be
written as δ ¼ r1 + r2 � 2r1r2, where r1 and r2 denote the recombination frequency
between marker 1 and marker 2 respectively, with the QTL between them. When the
number of genotypes or individuals tends to infinity, the covariance between the
phenotypic trait values ( y) and the marker 1 coded values (X1) in an F2 population
can be written as

Cov X1; yð Þ ¼ 1
2
α1 1� 2r1ð Þ, ð4:37Þ

where α1(1 � 2r1) is the portion of the additive effect (α1) of the QTL linked to
marker 1 (Edwards et al. 1987), and r1 is the recombination frequency between the
QTL and marker 1. We can assume that for many markers, the covariance of the
phenotypic values is similar to Eq. (4.37), whence matrix W can be obtained.

Let y be a vector n � 1 of recorded phenotypic values, where n denotes the
number of observation or records, and X is a matrix of coded markers of size n � m.

Table 4.2 Marker genotypes,
expected frequency, and
coded values (X1 and X2) of
the marker genotypes in an F2
population

Marker genotype Expected frequency X1 X2

A1B1/A1B1 (1�δ)2/4 1 1

A1B1/A1B2 2(δ�δ2)/4 1 0

A1B2/A1B2 δ2/4 1 �1

A1B1/A2B1 2(δ�δ2)/4 0 1

A1B2/A2B1 2(1�2δ + 2δ2)/4 0 0

A1B2/A2B2 2(δ�δ2)/4 0 �1

A2B1/A2B1 δ2/4 �1 1

A2B1/A2B2 2(δ�δ2)/4 �1 0

A2B2/A2B2 (1�δ)2/4 �1 �1
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When n tends to infinity, 2n�1X
0
y tends to be a vector with elements equal to

αi(1 � 2ri), where αi is the additive effect of the ith QTL linked to the ith marker,
and ri is the recombination frequency between the ith QTL and the ith marker. Now

let Y ¼
y11 y12 � � � y1t
y21 y22 � � � y2t
⋮ ⋮ � � � ⋮
yn1 yn2 � � � ynt

2664
3775 be a matrix of observations for t traits; then, an

estimator of matrix W in the asymptotic context is

cW ¼ 2n�1X0Y: ð4:38Þ
Once again, Eq. (4.38) is an asymptotic result and should be accepted with

caution. But to date, there has been no clear method for estimating W in the
non-asymptotic context; for this reason, Eq. (4.38) is used to estimate the
GW-LMSI parameters.

4.5 Comparing LMSI Versus LPSI and GW-LMSI
Efficiency

To compare LMSI efficiency versus GW-LMSI efficiency for predicting the net
genetic merit, we use the simulated data set described in Chap. 2, Sect. 2.8.1.

Figure 4.4 presents the estimated accuracy values of the LPSI (bρHÎ ¼
bσbIbσH

), the

LMSI (bρHÎ M
¼

bσbIMbσH
), and the GW-LMSI (bρHÎ W

¼
bσbIWbσH

) for five simulated selection

cycles. In addition, Table 4.3 presents the estimated LPSI, LMSI, and GW-LMSI
selection responses, the estimated LPSI, LMSI, and GW-LMSI variances of the
predicted error (

	
1� bρ2HÎ


bσ2
H ,

	
1� bρ2HÎ M


bσ2
H and

	
1� bρ2HÎ W


bσ2
H respectively), the

ratios of the estimated LMSI accuracy to the estimated LPSI accuracy and the
estimated LMSI accuracy to the estimated GW-LMSI accuracy, expressed as per-
centages (Eq. 4.19), for five simulated selection cycles.

According to Fig. 4.4, for this data set the estimated LMSI accuracy (bρHÎ M
) was

higher than the estimated LPSI and GW-LMSI accuracy (bρHÎ andbρHÎ W
respectively),

for the five simulated selection cycles, that is, bρHÎ M
> bρHÎ > bρHÎ W

. In a similar

manner, Table 4.3 results indicate that the estimated LMSI selection response (bRM)
was higher than the estimated LPSI and GW-LMSI selection responses (bRI and bRW

respectively): bRM > bRI > bRW .
Note that the estimated LPSI, LMSI, and GW-LMSI variances of the predicted

error, and the estimated LMSI efficiency versus LPSI efficiency and versus
GW-LMSI efficiency (expressed in percentages) are related to the estimated
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Fig. 4.4 Estimated correlation values of the linear phenotypic selection index (LPSI), the linear
molecular selection index (LMSI), and the genome-wide LMSI (GW-LMSI) with the net genetic
merit for four traits, 2500 markers and 500 genotypes (each with four repetitions) in one environ-
ment for five simulated selection cycles

Table 4.3 Estimated linear phenotypic, molecular, and genome-wide selection indices (LPSI,
LMSI, and GW-LMSI respectively), selection responses and variance of the predicted error, and
estimated ratio of LMSI accuracy to LPSI and GW-LMSI accuracy expressed in percentages for
4 traits, 2500 markers and 500 genotypes (each with four repetitions) in one environment for five
simulated selection cycles

Selection response
Variance of the predicted
error

Efficiency of LMSI
versus

Cycle LPSI LMSI GW-LMSI LPSI LMSI GW-LMSI LPSI GW-LMSI

1 17.84 19.60 16.24 22.53 0.07 39.84 10.07 20.67

2 15.66 24.36 13.88 22.66 0.07 40.06 12.14 26.81

3 14.44 14.70 12.13 21.95 1.86 39.86 3.43 21.27

4 14.29 15.29 12.48 22.84 1.46 39.09 6.57 22.50

5 13.86 15.15 11.49 22.13 0.88 39.65 11.11 31.88

Average 15.22 17.82 13.24 22.42 0.87 39.70 8.66 24.63
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LMSI, LPSI, and GW-LMSI accuracies, and that in all five selection cycles,bρHÎ M
> bρHÎ > bρHÎ W

. This implies that the estimated LMSI variance of the predicted
error was lower than the estimated LPSI and GW-LMSI variance of the predicted
error. In a similar manner, because bρHÎ M

> bρHÎ > bρHÎ W
, the estimated LMSI

efficiency was higher than the estimated LPSI efficiency and the estimated
GW-LMSI efficiency.

Based on Fig. 4.4 and Table 4.3 results, we conclude that the LMSI was a better
predictor of the net genetic merit than the LPSI, and that the LPSI is a better predictor
of the net genetic merit than the GW-LMSI for this simulated data set.
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Chapter 5
Linear Genomic Selection Indices

Abstract The linear genomic selection index (LGSI) is a linear combination of
genomic estimated breeding values (GEBVs) used to predict the individual net genetic
merit and select individual candidates from a nonphenotyped testing population as
parents of the next selection cycle. In the LGSI, phenotypic and marker data from the
training population are fitted into a statistical model to estimate all individual available
genome marker effects; these estimates can then be used in subsequent selection
cycles to obtain GEBVs that are predictors of breeding values in a testing population
for which there is only marker information. The GEBVs are obtained by multiplying
the estimated marker effects in the training population by the coded marker values
obtained in the testing population in each selection cycle. Applying the LGSI in plant
or animal breeding requires the candidates to be genotyped for selection to obtain the
GEBV, and predicting and ranking the net genetic merit of the candidates for selection
using the LGSI. We describe the LGSI and show that it is a direct application of the
linear phenotypic selection index theory in the genomic selection context; next, we
present the combined LGSI (CLGSI), which uses phenotypic and GEBV information
jointly to predict the net genetic merit. The CLGSI can be used only in training
populations when there are phenotypic and maker information, whereas the LGSI is
used in testing populations where there is only marker information. We validate the
theoretical results of the LGSI and CLGSI using real and simulated data.

5.1 The Linear Genomic Selection Index

5.1.1 Basic Conditions for Constructing the LGSI

Conditions described in Chap. 4 (Sect. 4.1.1) for constructing a valid linear molec-
ular selection index (LMSI), are also necessary for the linear genomic selection
index (LGSI); however, in addition to those conditions, the LGSI also requires:

1. All marker effects to be estimated simultaneously in the training population.
2. The estimated marker effects to be used in subsequent selection cycles to obtain

GEBVs that are predictors of the individual breeding values in the testing
population (candidates for selection) for which there is only marker information.
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3. The GEBV values to be composed entirely of the additive genetic effects.
4. Phenotypes to be used to estimate all marker effects in the training population, not

to make selections in the testing population (Heffner et al. 2009; Lorenz et al.
2011).

5.1.2 Genomic Breeding Values and Marker Effects

The breeding value (gi) is the average additive effects of the genes an individual
receives from both parents; thus, it is a function of the genes transmitted from parents
to progeny and is the only component that can be selected and, therefore, the main
component of interest in breeding programs (Mrode 2005). The ith phenotypic value
(yi) can be denoted as yi ¼ gi + ei, where gi is the breeding value and ei the residual.
Basic assumptions for gi and ei are: both gi and ei have normal distribution with
expectation equal to zero and variance σ2gi and σ2ei respectively. This means that

yi ¼ μi + gi + ei is a linear mixed model (Mrode 2005; Searle et al. 2006), where μi is
the mean of yi.

Let y0i ¼ yi1 yi2 � � � yin½ � be a vector 1 � n of observations in the ith trait and let
g0i ¼ gi1 gi2 � � � gin½ � be a vector 1 � n of unobservable breeding values
associated with yi; then yi can be written as

yi ¼ 1μi þ Zgi þ ei, ð5:1Þ
where μi is the mean of the ith trait, 1 is a vector n � 1 of 1s, Z is a design matrix of
0s and 1s, gi ~ MVN (0,Aσ2gi) is a vector of breeding values, and ei ~ MVN (0, Inσ2ei)
is a vector of residuals; 0 is the mean and Aσ2gi and Inσ

2
ei
the covariance matrix of gi

and ei respectively; A is the numerical relationship matrix (Mrode 2005) and In an
identity matrix n � n; σ2gi and σ2ei are the additive and residual variances associated

with gi and ei; and MVN stands for multivariate normal distribution.
Suppose thatA, Z, μi,σ

2
gi
, andσ2ei are known; then, according to Mrode (2005), the

best linear unbiased predictor (BLUP) of gi can be written as

bgi ¼ σ2giAZ
0V�1 yi � 1μið Þ, ð5:2Þ

where V�1 is the inverse matrix of the variance of yi, i.e.,
Var yið Þ ¼ σ2giZAZ

0 þ Inσ2ei ¼ V. In the context of animal breeding, Eq. (5.2) is

considered a univariate linear phenotypic selection index (LPSI) (Mrode 2005)
and is used to rank and select individuals as parents of the next generation in the
context of one trait. Equation (5.2) can be extended to the multi-trait phenotypic
selection index case, but to predict the net genetic merit (H ¼ w0g, see Chap. 2 for
details) it would be necessary to construct linear combinations of the predicted
values of gi associated with the traits of interest as was described in the Foreword
of this book.
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The vector of the individual genomic breeding values (γi) associated with the ith
characteristic (i ¼ 1, 2,. . .,t; t ¼ number of traits) of the candidates for selection can
be written as

γi ¼ Xui, ð5:3Þ
where X is an n � m matrix (n ¼ number of observations and m ¼ number of
markers in the population) of coded marker values (2 � 2p, 1 � 2p, and �2p for
genotypes AA, Aa, and aa respectively) associated with the additive effects of the
quantitative trait loci (QTL) and ui is an m � 1 vector of the additive effects of the
QTL associated with markers that affect the ith trait. It is assumed that γi has MVN
with mean 0 and variance Gσ2γ , i.e., γi ~ MVN (0, Gσ2γi ), where σ2γi is the

additive genomic variance of γi and G ¼ XX0/c is the n � n additive genomic

relationship matrix between genotypes; c ¼
Xm
j¼1

2p j 1� p j

� �
in an F2 population,

and c ¼
Xm
j¼1

4p j 1� p j

� �
in a double haploid population; p is the frequency of allele

A and 1 � p is the frequency of allele a in the jth marker ( j ¼ 1, 2, . . ., m).
The additive genomic relationship matrix G ¼ XX0/c has special properties.

For example, in the asymptotic context, the expectation of matrix G is equal to the
numerical relationship matrix A, i.e., E(G)¼ A (Habier et al. 2007; Van Raden 2008);
this means that G is a particular realization of A and when the number of markers and
genotypes increases in the training population, the value of G tends to concentrate
around A. Thus, it can be assumed that at the limit, when the number of markers and
genotypes is very high,G ¼ A (Cerón-Rojas and Sahagún-Castellanos 2016).

The vector of genomic breeding values (Eq. 5.3) has a similar function in
genomic selection as gi in the phenotypic selection context. In addition, gi can be
written as gi ¼ γi + ηi, where ηi ¼ gi � γi (Gianola et al. 2003). Also, note that

Cov gi; γið Þ ¼ σ2γi , ð5:4Þ

i.e., the covariance between γi and gi is equal to the variance of γi (Dekkers 2007).
Lety0i ¼ yi1 yi2 � � � yin½ �be a vector 1� n of observation of the ith trait in the

training population and let γ0i ¼ γi1 γi2 � � � γin½ � be a vector 1 � n of
unobservable genomic breeding values associated with yi; then, yi can also be
written as

yi ¼ 1μi þ Zγi þ εi, ð5:5Þ
where μi is the mean of the ith trait, 1 is a vector n � 1 of 1s, Z is a design matrix,
γi ~ MVN (0, Gσ2γ) and εi ~ MVN (0, Inσ2εi) are vectors of genomic breeding values
and of residuals respectively, and σ2εi is the residual variance. In, G, and σ2γ were
defined in Eqs. (5.2) and (5.3).

According to Eqs. (5.2) and (5.3), when μi, σ
2
γ and σ2εi are known, the vector of

GEBVs for the individuals with the ith trait can be obtained as
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bγi ¼ σ2γiGZ0V�1 yi � 1μið Þ, ð5:6Þ

where the variance of yi should now be written as V ¼ σ2γiZGZ0 þ Inσ2εi . In the

context of genomic selection, Eq. (5.6) is considered a univariate LGSI and is used to
rank and select individuals as parents of the next generation (Van Raden 2008;
Togashi et al. 2011). Equation (5.6) is the BLUP of γi and can be extended to a multi-
trait genomic selection index, but to predict the net genetic merit (H ¼ w0g), it is
necessary to construct an LGSI, which is a linear combination of γi.

Although Eq. (5.6) is theoretically very important in LGSI, in practice we need to
estimate the marker effects associated with all the traits of interest and to use these
estimates in the testing population to obtain the GEBV of the candidates for
selection. Let u0 ¼ u01 u02 � � � u0t½ � be a vector 1 � nt associated with t traits.
In the univariate context, Van Raden (2008) showed that the ith vector ui of marker
effects in the training population can be estimated as

bui ¼ c�1X0 Gþ υIn½ ��1 yi � 1μið Þ, ð5:7Þ

where υ ¼ σ2ei
σ2gi

; σ2gi , σ
2
ei
and the other parameters were defined earlier. According to

Ceron-Rojas et al. (2015), to estimate the vector u0 ¼ u01 u02 � � � u0t½ � in the
multi-trait context, Eq. (5.7) can be written as

bu ¼ c�1W0
t It �Gð Þ þ N� Inð Þ½ ��1 y� μ� 1ð Þ, ð5:8Þ

whereWt¼ It� X, “�” denotes the Kronecker product (Schott 2005), c and X were
defined in Eq. (5.3); N ¼ RC�1, whereR and C are the residual and breeding value
covariance matrices for t traits respectively; y0 ¼ y01 y02 � � � y0t½ � ~ MVN(μ, V)
is a vector of size 1 � tn, with covariance matrix V ¼ C � G + R � In; It is an
identity matrix of size t � t and In was defined earlier; μ0 ¼ μ1 μ2 � � � μt½ � is a
vector 1 � t of means associated with vector y, and 1 is a vector n � 1 of 1s. In this
case, the estimator of the vector of sub-vectors of genomic breeding values γ0 ¼
γ1 γ2 . . . γt½ � in the testing population can be obtained as

bγ ¼ Wtbu: ð5:9Þ
Equation (5.9) is the vector of GEBVs for the multi-trait case. Thus, in the testing

population, in Eq. (5.9), only the coded values in matrix X change, whereas bu is the
same in each selection cycle. Note that to obtain Eqs. (5.7) and (5.8), we assumed
that μ, C, and R are known.

We indicated that the genomic breeding values have normal distribution
(Eq. 5.5). Using the simulated data described in Chap. 2, Sect. 2.8.1, in Fig. 5.1
we present the distribution of the GEBVs (Eq. 5.9) associated with traits T1 in the
first (Fig. 5.1a) and the fifth (Fig. 5.1b) selection cycles in the testing population. In
effect, the frequency distribution of the GEBVs approaches normal distribution in
both selection cycles.
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5.1.3 The LGSI and Its Parameters

Similar to the LPSI (Chap. 2), the objective of the LGSI is to predict the net genetic
merit H ¼ w0g, where g0 ¼ g1 g2 . . . gt½ � (t ¼ number of traits) is a vector of
unobservable true breeding values and w0 ¼ w1 w2 . . . wt½ � is a vector of
economic weights. Suppose that the genomic breeding values γi ¼ Xui are known;
then, the LGSI can be written as

IG ¼ β0γ, ð5:10Þ
where β is an unknown vector of weights.

The main advantage of the LGSI over the LPSI lies in the possibility of reducing
the intervals between selection cycles (LG) by more than two thirds (Lorenz et al.
2011); thus, this parameter should be incorporated into the LGSI selection response
and the expected genetic gain per trait to reflect the main advantage of the LGSI
over the LPSI and the other indices. Assuming that LG ¼ 1, in the LPSI context we

Fig. 5.1 Distribution of the genomic estimated breeding values (GEBVs) associated with traits T1
in (a) the first and (b) the fifth selection cycles in the testing population
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wrote the selection response as RI ¼ kIσHρHI; however, if LG 6¼ 1, the LGSI selection
response can be written as

RIG ¼ kI
LG

σHIG
σ2IG

¼ kI
LG

σHρHIG , ð5:11Þ

where kI is the standardized selection differential (or selection intensity) associated
with the LGSI, σHIG is the covariance between H ¼ w0g and the LGSI, σ2IG is the
variance of the LGSI, σH is the standard deviation of H, ρHIG is the correlation
between H and the LGSI, and LG denotes the intervals between selection cycles.

Let C and Γ be matrices of covariance of the breeding values (g) and of the
genomic breeding values (γ) respectively; then, the correlation betweenH¼w0g and
IG ¼ β0γ can be written as

ρHIG ¼ w0Γβffiffiffiffiffiffiffiffiffiffiffiffi
w0Cw

p ffiffiffiffiffiffiffiffiffiffi
β0Γβ

p , ð5:12Þ

wherew0Γβ ¼ σHIG is the covariance between H ¼ w0g and IG ¼ β0γ, σH ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
w0Cw

p
is the standard deviation of the variance of H ¼ w0g, and σIG ¼

ffiffiffiffiffiffiffiffiffiffi
β0Γβ

p
is the

standard deviation of the variance of IG ¼ β0γ.

5.1.4 Maximizing LGSI Parameters

To maximize the genomic selection response (Eq. 5.11), suppose that kI, σH and LG
are fixed and take the derivative of the natural logarithm (ln) of the correlation
between H and IG (Eq. 5.12) with respect to vector β, equate the result of the
derivative to the null vector, and isolate β, i.e.,

∂
∂β

ln ρHIg ¼
∂
∂β

ln
w0Γβffiffiffiffiffiffiffiffiffiffiffiffi

w0Cw
p ffiffiffiffiffiffiffiffiffiffi

β0Γβ
p !

¼ 0: ð5:13Þ

The result is β ¼ sw, where s ¼ β0Γβ/w0Γβ is a proportional constant that does
not affect the maximum value of ρHIG , because this is invariant to the scale change;
then, assuming that β¼w, the maximized LGSI selection response can be written as

RIG ¼ kI
LG

ffiffiffiffiffiffiffiffiffiffiffi
w0Γw

p
: ð5:14Þ

Hereafter, we refer to the LGSI genomic selection response as that of Eq. (5.14).
Also, because β ¼ w, Eq. (5.12) can be written as
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ρHIG ¼
ffiffiffiffiffiffiffiffiffiffiffi
w0Γw

pffiffiffiffiffiffiffiffiffiffiffiffi
w0Cw

p ¼ σIG
σH

, ð5:15Þ

which is the maximized correlation between H ¼ w0g and IG ¼ β0γ, or LGSI
accuracy; σH ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

w0Cw
p

is the standard deviation of the variance of H, and σIG ¼ffiffiffiffiffiffiffiffiffiffi
β0Γβ

p
is the standard deviation of the variance of IG.

The LGSI expected genetic gain per trait (EIG ) can be written as

EIG ¼ kI
LG

Γwffiffiffiffiffiffiffiffiffiffiffi
w0Γw

p : ð5:16Þ

All the terms in Eq. (5.16) were previously defined.
Let λG ¼ ρHIG

ρHI
be LGSI efficiency versus LPSI efficiency to predict the net genetic

merit, where ρHIG is the LGSI accuracy and ρHI the LPSI accuracy; in percentage
terms, LGSI efficiency versus LPSI efficiency for each selection cycle can be written
as

pG ¼ 100 λG � 1ð Þ: ð5:17Þ
According to Eq. (5.17), if pG > 0, LGSI efficiency is greater than LPSI

efficiency; if pG ¼ 0, the efficiency of both selection indices is equal, and if
pG < 0, the LPSI is more efficient than the LGSI at predicting H ¼ w0g.

Equation (5.17) is useful for measuring LGSI efficiency in terms of accuracy
when predicting the net genetic merit (H ¼ w0g), whereas the Technow et al. (2013)
inequality measures LGSI efficiency in terms of the time needed to complete one
selection cycle. In the context of the LGSI and the LPSI, the Technow inequality can
be written as

LG <
ρHIG
hI

LP, ð5:18Þ

where LG and LP denote the time required to complete one selection cycle for the
LGSI and the LPSI respectively, ρHIG is the LGSI accuracy, and hI is the square root
of the heritability (Lin and Allaire 1977; Nordskog 1978) of the LPSI, which can be

denoted as hI ¼
ffiffiffiffiffiffiffiffi
b0Cb
b0Pb

q
(see Chap. 2 for details). Then, assuming that the selection

intensity is the same for both selection indices, if Eq. (5.18) is true, the LGSI is more
efficient than the LPSI per unit of time.

5.1.5 Relationship Between the LGSI and LPSI Selection
Responses

To obtain the relationship between RIG and RI in the asymptotic context, we omitted
the intervals between selection cycles (LG and LI respectively) to simplify the
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algebra. Consider a population where the number of genotypes and markers tends to
infinity; in this case, markers explain most of the true additive genetic variances and
covariances. Thus, we can assume that matrices Γ and C are very similar, and at the
limit, Γ ¼ C. Now suppose that in this population the phenotypic variance–covari-
ance matrix (P) is known and comprises matrix Γ and the variance–covariance
residual matrix (R). In this case, the inverse of P can be written as P�1 ¼ (Γ + R)�1 ¼
Γ�1� Γ�1(Γ�1 + R�1)�1Γ�1, where Γ�1 andR�1 are the inverses of matrices Γ and
R respectively. Thus, the LPSI selection response is given by

RI ¼ kI
ffiffiffiffiffiffiffiffiffiffi
b0Pb

p
¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0ΓP�1Γw

p
¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0Γw� w0 Γ�1 þ R�1

� ��1
w

q
, ð5:19Þ

where b¼ P�1Γw is the vector of coefficients of the LPSI in the asymptotic context.
Note that b0Pb � 0 and w0Γw � 0, i.e., b0Pb and w0Γw are positive semi-definite,
meaning that w0Γw � w0(Γ�1 + R�1)�1w � 0; then, in the asymptotic context,
RIG � RI . This result is not common when the number of genotypes and markers is
small; however, it gives an idea of the theoretical behavior of RIG with respect to RI

when the number of markers and genotypes is very large.
Because gq can be written as gq¼ γq + ηq, where ηq¼ gq� γq (q ¼ 1, 2, � � �, t),

for low numbers of markers and genotypes, the covariance genotypic matrix C can
be written as C ¼ Γ + E, where E ¼ C � Γ; then, the inverse of matrix P can be
written as P�1 ¼ [(Γ + E) + R]�1 ¼ (Γ + E)�1 � (Γ + E)�1[(Γ + E)�1 + R�1]�1

(Γ + E)�1. In the latter case, the LPSI selection response RI can be written as

RI ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0 Γþ Eð ÞP�1 Γþ Eð Þw

q
¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0Γwþ w0Ew� w0 Γþ Eð Þ�1 þ R�1

h i�1
w

r
: ð5:20Þ

Equation (5.20) indicates that in the non-asymptotic context (low numbers of
markers and genotypes), RIG and RI are related in three possible ways:

1. RI > RIG if w0Ew > w0[(Γ + E)�1 + R�1]�1w
2. RI ¼ RIG if w0Ew ¼ w0[(Γ + E)�1 + R�1]�1w
3. RIG > RI if w0Ew < w0[(Γ + E)�1 + R�1]�1w

The second and third points indicate that RIG may be equal to or larger than RI,
even under a small number of markers, depending on the size of w0Ew and w0

[(Γ + E)�1 + R�1]�1w. These three points explain the theoretical relationship
between RI and RIG for a low number of markers and genotypes. When Γ ¼ C,

E ¼ 0, and RI ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0Γw� w0 Γ�1 þ R�1

� ��1
w

q
, then RIG � RI .
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5.1.6 Statistical LGSI Properties

Assuming that H and IG have joint bivariate normal distribution and that Γ, C, and
w are known, the LGSI has the following properties:

1. The variance of IG (σ2IG) and the covariance between H and IG (σHIG) are equal, i.e.,

σ2IG ¼ σHIG .
2. The maximized correlation between H and IG (or LGSI accuracy) is equal to

ρHIG ¼ σIG
σH
, where σIG is the standard deviation of σ2IG and σH is the standard

deviation of the variance of H (σ2H).

3. The variance of the predicted error, Var H � IGð Þ ¼ 1� ρ2HIG

� �
σ2H , is minimal.

Note that Var H � IGð Þ ¼ σ2IG þ σ2H � 2σHIG , and when β ¼ w, σ2IG ¼ σHIG ,

whence Var H � IGð Þ ¼ σ2H � σ2IG ¼ 1� ρ2HIG

� �
σ2H is minimal.

4. The total variance of H explained by IG is σ2IG ¼ ρ2HIGσ
2
H . It is evident that if

ρHIG ¼ 1, σ2IG ¼ σ2H , and if ρHIG ¼ 0, σ2IG ¼ 0. That is, the variance of H explained

by IG is proportional to ρHIG , and when ρHIG is close to 1, σ
2
IG
is close to σ2H; if ρHIG

is close to 0, σ2IG is close to 0.

The LGSI properties described in points 1–4 of this subsection are the same as the
LPSI properties described in Chap. 2. This corroborates the LGSI as an application
of the LPSI theory to the genomic selection context.

5.1.7 Genomic Covariance Matrix in the Training
and Testing Population

To derive the LGSI theory, we assumed that the true genomic additive variance–
covariance matrix Γ was known. However, in practice, we need to estimate it. In the
training population, matrix Γ can be estimated by restricted maximum likelihood
(REML) using phenotypic and genomic information, as described by Vattikuti et al.
(2012) and Su et al. (2012). In Eqs. (2.22) to (2.24) of Chap. 2, we presented the
formulas for estimating the genotypic and residual variance and covariance based on
the formulas described by Lynch and Walsh (1998). Here, we present a brief
description of how we can estimate the qth component (σγqq) of Γ in the training
population using the REML method.

We estimated σγqq ¼ σ2γq (q, q0 ¼ t ¼ number of traits) in the absence of
dominance and epistatic effects, using the model yq ¼ 1μq + Zγq + εq, where the
vector yq ~ NMV(1μq,Vq) g� 1 (g ¼ number of genotypes in the population) had a
multivariate normal distribution; 1 was a g � 1 vector of 1s, μq was the mean of the
qth trait, Zwas an identity matrix g� g; γq ~ NMV(0,Gσ2γq) was a vector of genomic
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breeding values, and εq ~ NMV(0, Iσ2εq ) was a g � 1 vector of residuals. Matrix

G¼XX0/cwas the genomic relationship matrix, and in an F2 population,c ¼
XN
j¼1

2p jq j;

X was a g� mmatrix (m ¼ number of markers) of the coded marker values (2� 2p
for AA, 1 � 2p for Aa, and �2p for aa) for the additive effects of the markers; p and
q denote the frequency of allele A and the frequency of allele a in the jth marker
( j ¼ 1, 2, . . ., m), and Vq ¼ Gσ2γq þ Iσ2εq .

The expectation–maximization algorithm allowed the REML for the variance
components σ2γq and σ2εq to be computed by iterating the following equations:

σ2 nþ1ð Þ
γq ¼ σ2 nð Þ

γq þ
σ2 nð Þ
γq

� �2
g

y0q T nð ÞGT nð Þ
� �

yq � tr T nð ÞG
� �h i

ð5:21Þ

and

σ2 nþ1ð Þ
εq

¼ σ2 nð Þ
εq

þ
σ2 nð Þ
εq

� �2
g

y0q T nð ÞT nð Þ
� �

yq � tr T nð Þ
� �h i

, ð5:22Þ

where g is the number of genotypes. After n iterations, when σ2 nþ1ð Þ
γq was very similar

to σ2 nð Þ
γq and σ2 nþ1ð Þ

εq
was very similar to σ2 nð Þ

εq
, σ2 nþ1ð Þ

γq and σ2 nþ1ð Þ
εq

were the estimated

variance components ofσ2γq andσ
2
εq
respectively. In Eqs. (5.21) and (5.22) tr(.) denoted

the trace of the matrices within brackets; T ¼ V�1
q � V�1

q 1 10V�1
q 1

� ��1
10V�1

q , and

V�1
q was the inverse of Vq ¼ Gσ2γq þ Iσ2εq . In matrix T(n), V�1 nð Þ

q was the inverse of

matrix V nð Þ
q ¼ Gσ2 nð Þ

γq þ Iσ2 nð Þ
εq

.

The genomic additive genetic covariance between the observations of the qth and
ith traits, yq and yi (σγqi , q, i ¼ 1, 2,. . .,t), can be estimated by REML. Here, we
adapted Eqs. (5.21) and (5.22) using the variance of the sum of yq and yi, i.e., Var
(yi + yq) ¼ Vi + Vq + 2Ciq, where Vi ¼ Gσ2γi þ Iσ2εi ¼ Var yið Þ is the variance of yi
and Vq ¼ Gσ2γq þ Iσ2εq ¼ Var yq

� �
is the variance of yq; 2Ciq ¼ 2Gσγiq þ 2Iσεiq

¼ 2Cov yi; yq
� �

is the covariance of yq and yi, and σγiq and σεiq are the genomic and
residual covariance respectively, associated with yi and yq. Thus, one way of
estimating σγiq and σeiq is by using the following equation:

0:5Var yi þ yq
� �� 0:5Var yið Þ � 0:5Var yq

� �
, ð5:23Þ

for which Eqs. (5.21) and (5.22) can be adapted.
If there is only marker information on the testing population, then it is not

possible to estimate Γ using Eqs. (5.21) to (5.23). Another way of estimating Γ is
to use the method proposed by Ceron-Rojas et al. (2015), which requires the
estimated values of γq (bγq ) in the cycle of interest. Let bu be the estimator of the
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vector of marker effects u0 ¼ u01 u02 � � � u0t½ � for t traits obtained in the training
population. We obtained the qth GEBVs (q ¼ 1, 2, . . ., t) in the lth selection
cycle (l ¼ 1, 2, . . ., number of cycles) as

bγql ¼ Xlbuq ð5:24Þ

where buq is the vector of size m � 1 of the estimated marker effects of the qth trait in
the training population andXl is a matrix of size n�m of the coded values of marker
genotypes in the lth selection cycle of the testing population.

Now suppose that γq and γq0 have multivariate normal distribution jointly,
with mean 1μγq and 1μγq0 respectively, and covariance matrix Gσγqq0 , where 1 is

an n � 1 vector of 1s and G ¼ XX0/c is the additive genomic relationship matrix.

Then, Γ ¼ σγqq0
n o

can be estimated as

bΓl ¼ bσγqq0

n o
, ð5:25Þ

where bσγqq0 ¼
1
g

�bγql � 1bμγql

�0
G�1

l

�bγq0l � 1bμγq0 l

�
is the estimated covariance between

γq and γq0 in the lth selection cycle of the testing population; g is the number of
genotypes; bγql was defined in Eq. (5.24); bμγql

and bμγq0 l are the estimated arithmetic

means of the values of bγql and bγq0l; 1 is a g � 1 vector of 1s andGl ¼ c�1XlX0
l is the

additive genomic relationship matrix in the lth selection cycle (l ¼ 1, 2, . . ., number
of cycles) in the testing population.

From Eq. (5.25) we can estimate the LGSI response and expected genetic gain per
trait in the testing population as

bRIG ¼ kI
LG

ffiffiffiffiffiffiffiffiffiffiffiffi
w0bΓwp

and bEIG ¼ kI
LG

bΓwffiffiffiffiffiffiffiffiffiffiffiffi
w0bΓwp , ð5:26Þ

respectively. The estimated LGSI (bIG ) values in the lth selection cycle can be
obtained as

bIG ¼
Xt
q¼1

wqbγql, ð5:27Þ

where wq is the qth economic weight and bγql was defined in Eq. (5.24). Equation

(5.27) is a vector of size g � 1 (g¼ number of genotypes). In practice, bIG values are
ranked to select individual genotypes with optimal GEBVs.
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5.1.8 Numerical Examples

To estimate matrices C and R and the marker effects in the training population,
we used a real maize (Zea mays) F2 population with 248 genotypes (each with
two repetitions), 233 molecular markers, and three traits—grain yield (GY, ton
ha�1), ear height (EHT, cm), and plant height (PHT, cm)—evaluated in one

environment. The estimated matrices were bC ¼
0:07 0:61 1:06
0:61 17:93 22:75
1:06 22:75 44:53

24 35 and

bR ¼
0:38 0:72 1:27
0:72 47:14 60:96
1:27 60:96 121:46

24 35, which were estimated by Eqs. (5.21) to (5.23)

using the numerical relationship A instead of the genomic relationship matrix
(G ¼ XX0/c).

Table 5.1 presents the first 20 BLUPs of the estimated marker effects (Eq. 5.8)
in the training population and the first 20 marker coded values and GEBVs
(Eq. 5.9) obtained in the testing population associated with trait GY. In the

Table 5.1 The 20 best linear unbiased predictors (BLUPs) of the estimated marker effects in the
training population and the first 20 marker coded values and genomic estimated breeding values
(GEBVs) obtained in the testing population associated with grain yield

Training population Testing population

BLUPs

Marker coded values

GEBVsM1 M2 M3 . . . M233

�0.0003 1 1 0 . . . �1 0.195

�0.0038 0 0 0 . . . �1 0.221

�0.0085 �1 1 0 . . . �1 �0.643

0.0069 0 1 0 . . . 1 0.525

�0.0042 0 0 0 . . . 0 �0.603

0.0038 �1 0 0 . . . 0 0.062

0.0008 0 1 1 . . . 0 �0.226

0.0012 0 1 1 . . . 1 0.023

�0.0004 0 �1 0 . . . 0 0.444

0.0062 0 0 1 . . . �1 �0.286

0.0121 �1 1 0 . . . 1 �0.196

0.0077 �1 �1 �1 . . . 0 �0.566

0.0033 �1 0 0 . . . 0 0.073

0.0102 �1 1 0 . . . 1 0.058

0.0054 0 1 0 . . . 0 0.874

0.0002 0 0 0 . . . 0 0.102

0.0171 0 1 0 . . . �1 �0.342

0.0159 �1 0 1 . . . �1 �0.428

0.0117 �1 0 0 . . . �1 0.072

0.0121 0 �1 0 . . . �1 �0.428
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testing population, there were 380 genotypes and 233 molecular markers. In this

population, the estimated genomic covariance matrix Γ ¼ σγqq0
n o

was

bΓ ¼
0:21 2:95 5:00
2:95 42:41 71:11
5:00 71:11 121:53

24 35. The first GEBV (0.195) related to GY in

Table 5.1 was obtained as 0.195 ¼ � 0.0003(1) � 0.0038(1) � 0.0085
(0) + � � � � 0.03(�1). The other GEBVs can be obtained in a similar manner.

Suppose a selection intensity of 10% (kI¼ 1.755) and a vector of economic weights of
w0 ¼ 5 �0:1 �0:1½ �; then, the estimated LGSI selection response and the expected
genetic gain per trait without including the interval between selection cycle is bRIG ¼
1:755ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
w0bΓwp

¼ 0:92 and bE 0
IG

¼ 1:755ð Þ w0bΓffiffiffiffiffiffiffiffiffiffiffiffi
w0bΓwp ¼ 0:80 11:41 19:28½ �

respectively, whereas the estimated LGSI accuracy was bρHIG ¼ 0:48.
Chapter 11 presents RIndSel, a graphical unit interface that uses selection index

theory to select individual candidates as parents for the next selection cycle, which
can be used to obtain the results of the real numerical example described in this
subsection.

To compare LGSI efficiency versus LPSI efficiency we used the simulated data
described in Chap. 2, Sect. 2.8.1. According to Beyene et al. (2015), at least 4 years
are required to complete one phenotypic selection cycle in maize, whereas genomic
selection requires only 1.5 years. Thus, to compare LGSI efficiency versus LPSI
efficiency in terms of time, we can use the Technow et al. (2013) inequality
described in Eq. (5.18).

Table 5.2 presents the estimated value of Eq. (5.18) for five simulated selection
cycles. The LGSI efficiency was higher than LPSI efficiency in terms of time,
because the Technow et al. (2013) inequality was true in the five selection cycles.
An additional result obtained by Ceron-Rojas et al. (2015) is presented in Fig. 5.2,
which shows the correlation among the LGSI, the LPSI, and the true net genetic

Table 5.2 Five simulated
selection cycles

Cycle LG LP bρHIG bhI bρHIGbhI LP

1 1.5 4.0 0.73 0.92 3.17

2 1.5 4.0 0.78 0.89 3.50

3 1.5 4.0 0.83 0.88 3.77

4 1.5 4.0 0.74 0.87 3.40

5 1.5 4.0 0.71 0.87 3.30

Time required for the linear genomic selection index (LG) and
linear phenotypic selection index (LP) to complete one selection
cycle; estimated accuracy (bρHIG ) of the linear genomic selection
index and the square root of the estimated heritability of the

linear phenotypic selection index (bhI ); estimated right-hand side

(
bρHIGbhI LP) of the inequality formula (LG <

ρH, IG
hI

LP)
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merit values in seven selection cycles. According to Fig. 5.2, the correlation between
the LGSI and the true net genetic merit values was higher than the correlation
between the LPSI and the true net genetic merit values for the first three selection
cycles; after this cycle, the correlation between LGSI and the true net genetic merit
values tended to decrease.

5.2 The Combined Linear Genomic Selection Index

The combined LGSI (CLGSI) developed by Dekkers (2007) is a slightly modified
version of the LMSI (see Chap. 4 for details), which, instead of using the marker
scores, uses the GEBVs and the phenotypic information jointly to predict the net
genetic merit. The main difference between the CLGSI and the LGSI is that the
CLGSI can only be used in training populations, whereas the LGSI is used in testing
populations. The basic conditions for constructing a valid CLGSI include conditions
for constructing the LPSI, the LMSI, and the LGSI, because the CLGSI uses GEBVs
and phenotypic information jointly to predict the net genetic merit.
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Fig. 5.2 Correlation between the linear genomic selection index (LGSI), the linear phenotypic
selection index (LPSI), and true net genetic merit (H) values in seven selection cycles. For each
selection cycle, the first column indicates the correlation between the LGSI estimated values and the
H true values, whereas the second column shows the correlation between the LPSI estimated values
and the H true values
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5.2.1 The CLGSI Parameters

The net genetic merit can be written in a similar manner to that in the LMSI context,
that is, as

H ¼ w0gþ w0
2γ ¼ w0 w0

2½ � g
γ

� �
¼ a0GzG, ð5:28Þ

where g0 ¼ g1 . . . gt½ � is the vector of breeding values, w0 ¼ w1 � � � wt½ �
is the vector of economic weights associated with breeding values,
w0

2 ¼ 01 � � � 0t½ � is a null vector associated with the vector of genomic breeding
values γ0 ¼ γ1 γ2 . . . γt½ �, a0G ¼ w0 w0

2½ � and zG ¼ g0 γ0½ �.
The CLGSI can be written as

IC ¼ β0yyþ β0Gγ ¼ β0y β0G
	 
 y

γ

� �
¼ β0CtC, ð5:29Þ

where y0 ¼ y1 � � � yt½ � (t¼ number of traits) is the vector of phenotypic values; γ
was defined earlier; β0y and βG are vectors of coefficients of phenotypic and genomic
weight values respectively; β0C ¼ β0y β0G

	 

and t0G ¼ y0 γ0½ �.

The CLGSI selection response can be written as

RC ¼ kIσHρHIC ¼ kIσH
a0CΨCβCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a0CΨCaC
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β0CTCβ
p

C

, ð5:30Þ

where kI is the standardized selection differential of the CLGSI, σ2H ¼ a0CΨCaC and
Var ICð Þ ¼ β0CTCβC are the variances of H and IC, whereas a

0
CΨCβC and ρHIC are the

covariance and the correlation between H and IC respectively; TC ¼ Var
y
γ

� �
¼

P Γ
Γ Γ

� �
and ΨC ¼ Var

g
γ

� �
¼ C Γ

Γ Γ

� �
are block matrices of the phenotypic

covariance matrix, P ¼ Var(y), the genomic covariance matrix, Γ ¼ Var(γ), and
the genetic breeding values covariance matrix, C ¼ Var(g).

Suppose that matrices ΨC and TC are known; then the CLGSI vector of coeffi-
cients that simultaneously maximizes ρHIC and RC can be written as

βC ¼ T�1
C ΨCaC, ð5:31Þ

whence the optimized CLGSI is

IC ¼ β0CtC, ð5:32Þ
Equations (5.31) and (5.32) indicate that the CLGSI is an application of the LPSI

to the genomic selection context.
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From Eq. (5.31), the maximized CLGSI selection response, expected genetic gain
per trait and accuracy can be written as

RC ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0CTCβC

q
, ð5:33Þ

EC ¼ kI
ΨCβCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0CTCβC

p ð5:34Þ

and

ρHIC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0CTCβC

p ffiffiffiffiffiffiffiffiffiffiffiffi
w0Cw

p , ð5:35Þ

respectively. Note that the maximized LPSI accuracy is ρHI ¼
ffiffiffiffiffiffiffi
b0Pb

pffiffiffiffiffiffiffiffiffi
w0Cw

p (see Chap. 2).

The denominator of the accuracy of the CLGSI and ρHI ¼
ffiffiffiffiffiffiffi
b0Pb

pffiffiffiffiffiffiffiffiffi
w0Cw

p is the same;

however, the numerator of the two indices accuracy is different. We would expect

that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0CTCβC

q
�

ffiffiffiffiffiffiffiffiffiffi
b0Pb

p
, and then ρHIC � ρHI . Similar results can be observed

when we compared the maximized LPSI selection response and expected genetic
gain per trait with the maximized CLGSI selection response and expected genetic
gain per trait.

5.2.2 Relationship Between the CLGSI and the LGSI

As we have indicated, the CLGSI is mathematically equivalent to the LMSI; thus, it
has similar statistical properties to those of the LMSI, some of which are described in
this section. The rest can be seen in Chap. 4. Let QC ¼ T�1

C ΨC, then matrix QC can
be written as

QC ¼ P� Γð Þ�1 C� Γð Þ 0
I� P� Γð Þ�1 C� Γð Þ I

� �
, ð5:36Þ

whence asw0
2 ¼ 01 � � � 0t½ �, the two sub-vectors that conform vector βC¼QCaC

or β0C ¼ β0y β0G
	 


can be written as

βy ¼ P� Γð Þ�1 C� Γð Þw, ð5:37Þ

and

βG ¼ I� P� Γð Þ�1 C� Γð Þ
h i

w ¼ w� βy: ð5:38Þ
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When Γ is equal to the null matrix (no genomic information), Eq. (5.37) is equal
to βy ¼ P�1Cw ¼ b and RC ¼ kI

ffiffiffiffiffiffiffiffiffiffi
b0Pb

p
¼ RI , which are the LPSI vector of

coefficients and the selection response.
By Eqs. (5.37) and (5.38), the maximized CLGSI selection response and the

optimized CLGSI can be written as

RC ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0C P� Γð Þ�1 C� Γð Þwþ w0Γ I� P� Γð Þ�1 C� Γð Þ

h i
w

r
ð5:39Þ

and

IC ¼ βyyþ βGγ ¼ w0γþ βy y� γð Þ, ð5:40Þ

respectively.
Assume that when the number of markers and genotypes increases, matrix Γ

tends to matrix C and that, at the limit, Γ ¼ C; then, Eq. (5.39) can be written as
RC ¼ kI

ffiffiffiffiffiffiffiffiffiffiffi
w0Γw

p ¼ RG (except by LG); in addition, βy¼ 0 and βG¼w, the weights of
the LGSI, and, in this latter case, the CLGSI is equal to the LGSI, as we would
expect. Thus, in the asymptotic context, the LGSI and the CLGSI are the same.

An additional interesting result of the relationship between the CLGSI and the
LGSI is as follows. The maximized correlation between H and IC (or CLGSI
accuracy) can be written as

ρHIC ¼ a0CΨCβCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0CΨCaC

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0CTCβC

p ; ð5:41Þ

However, when Γ ¼ C, ΨC ¼ Γ Γ
Γ Γ

� �
, βy ¼ 0, βG ¼ w, and

β0C ¼ β0y β0G
	 
 ¼ 0 w0½ �, whence a0CΨCβC ¼ a0CΨCaC ¼ β0CTCβC ¼ w0Γw,

and Eq. (5.41) is equal to 1. That is, the maximum correlation between H and IC
in the asymptotic context is equal to the maximum correlation between H and the
LGSI, and that value will be equal to 1.

The asymptotic relationship between the CLGSI expected genetic gain per trait,
EC (Eq. 5.34), and the LGSI expected genetic gain per trait, EIG (Eq. 5.16), is as

follows. When Γ ¼ C, ΨC ¼ Γ Γ
Γ Γ

� �
and β0C ¼ 0 w0½ �, whence

EC ¼ kI
ΨCβCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0CTCβC

p ¼ kI
2Γwffiffiffiffiffiffiffiffiffiffiffi
w0Γw

p ¼ 2EIG : ð5:42Þ

This means that in the asymptotic context, the CLGSI expected genetic gain per
trait is twice the LGSI expected genetic gain per trait. Of course, 2 is only a
proportionality constant; thus, in reality, EC ¼ EIG .
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5.2.3 Statistical Properties of the CLGSI

Assume that H and IC have bivariate joint normal distribution; P, C, Γ, and w are
known, and βC ¼ T�1

C ΨCaC; then, the CLGSI properties are as follow:

1. σ2IC ¼ σHIC , i.e., the variance of IC (σ2IC) and the covariance between H and IC (σHIC)
are the same.

2. The maximized correlation between H and IC is ρHIC ¼ σIC
σH
, where σIC is the

standard deviation of the variance of IC (σ2IC ) and σH is the standard deviation of

the variance of H(σ2H).

3. The variance of the predicted error, Var H � ICð Þ ¼ 1� ρ2HIC

� �
σ2H , is minimal.

4. The total variance of H explained by IC is σ2IC ¼ ρ2HICσ
2
H .

Note that CLGSI properties 1 to 4 are the same as LMSI properties 1 to 4 and that
both indices jointly incorporate phenotypic and marker information to predict the net
genetic merit; however, the LMSI incorporates the marker information by the marker
score values, whereas the CLGSI uses the GEBVs.

5.2.4 Estimating the CLGSI Parameters

Using the real maize (Zea mays) F2 population with 248 genotypes (each with two
repetitions), 233 molecular markers and three traits—GY (ton ha�1), EHT (cm), and
PHT (cm)—described in Sect. 5.1.8 of this chapter, we estimated matrices P and
C using Eqs. (2.22) to (2.24) described in Chap. 2 of this book. The estimated

matrices were bP ¼
0:45 1:33 2:33
1:33 65:07 83:71
2:33 83:71 165:99

24 35 and bC ¼
0:07 0:61 1:06
0:61 17:93 22:75
1:06 22:75 44:53

24 35.
In a similar manner, we estimated matrix Γ using Eqs. (5.21) to (5.23). The

estimated matrix was bΓ ¼
0:07 0:65 1:05
0:65 10:62 14:25
1:05 14:25 26:37

24 35. Note that matrices bC and bΓ
have similar values. This means that, in the asymptotic context, we can assume that
matrix Γ tends to matrix C.

To estimate the CLMSI and its associated parameters (selection response,
expected genetic gain per trait, etc.), we need to estimate the vector of coefficients

βC ¼ T�1
C ΨCaC as bβC ¼ bT�1

C
bΨCaC, where bTC ¼ bP bΓbΓ bΓ

� �
and bΨC ¼ bC bΓbΓ bΓ

� �
are

estimates of matrices TC ¼ P Γ
Γ Γ

� �
and ΨC ¼ C Γ

Γ Γ

� �
respectively. The esti-

mated CLGSI vector of coefficients bβC ¼ bT�1
C
bΨCaC is conformed by the vector of
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phenotypic weights, bβy ¼
�bP � bΓ��1�bC � bΓ�w, and by the vector of genomic

weights, bβG ¼ I� �bP � bΓ��1�bC � bΓ�h i
w.

Let w0 ¼ 5 �0:1 �0:1½ � be the vector of economic weights; then, according
to the estimated matrices bP, bC, and bΓ, bβ0

y ¼ 0:08 �0:02 �0:01½ � andbβ0
G ¼ 4:92 �0:08 �0:09½ �, whence the estimated CLGSI in the training popu-

lation can be written as

bIC ¼ bβyyþ bβGbγ: ð5:43Þ

Suppose a selection intensity of 10% (kI ¼ 1.755); then, the estimated CLGSI

selection response and expected genetic gain per trait were bRC ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0CbTC
bβC

q
¼

1:54 and bE0
C ¼ kI

bβ0
C
bΨCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0CbTC
bβC

q ¼ 0:36 1:04 1:70 0:36 1:53 2:38½ � respec-

tively, whereas the estimated CLGSI accuracy was bρHIC ¼ bσ ICbσH
¼ 0:814.

The estimated LPSI selection response, expected genetic gain per trait, and
accuracy were 0.601, 0:09 �0:81 �0:89½ �, and 0.32 respectively; thus, the
CLGSI was more efficient to predict the net genetic merit than the LPSI because
the CLGSI accuracy and selection response were 0.814 and 1.54 respectively.

5.2.5 LGSI and CLGSI Efficiency Vs LMSI, GW-LMSI and
LPSI Efficiency

In this subsection, we compare the accuracy, selection response, and efficiency of the
LGSI and CLGSI with the LMSI, the GW-LMSI, and the LPSI using the simulated
data for a maize (Zea mays) population described in Chap. 2, Sect. 2.8.1.

Figure 5.3 presents the estimated accuracy values of the LMSI, the LGSI, the
CLGSI, the LPSI, and the GW-LMSI for five simulated selection cycles. According to
these results, for the first three selection cycles, the estimated accuracies of the indices,
in decreasing order, were LMSI> LGSI> CLGSI> LPSI> GW-LMSI. That is, the
highest estimated accuracy was obtained with the LMSI, whereas the lowest was
obtained with the GW-LMSI. For the fourth and fifth selection cycles, the estimated
accuracies, in decreasing order, were LMSI> LPSI> CLGSI> LGSI> GW-LMSI.
This means that in all five selection cycles, the LMSI had the highest accuracy and the
GW-LMSI had the lowest accuracy, whereas the estimated LGSI accuracy was
reduced to fourth place. Thus, the accuracy of the LGSI tended to decrease after the
first three selection cycles whereas LPSI accuracy was a constant.

To compare LGSI efficiency versus the efficiency of the other selection indices,
we assumed that the interval between selection cycles in the LGSI is 1.5 years,
whereas for CLGSI, LMSI, GW-LMSI, and LPSI, the interval was 4.0 years.
Table 5.3 presents the estimated selection response of the LPSI, the LMSI, the

5.2 The Combined Linear Genomic Selection Index 117



Selection cycle

Es
tím

at
ed

 a
cc

ur
ac

y 
va

lu
es

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1 2 3 4 5

LMSI LGSI CLGSI LPSI GW-LMSI

Fig. 5.3 Estimated accuracy values of the linear molecular selection index (LMSI), the LGSI, the
combined LGSI (CLGSI), the LPSI, and the genome-wide LMSI (GW-LMSI) with the net genetic
merit for four traits, 2500 markers, and 500 genotypes (each with four repetitions) in one environ-
ment for five simulated selection cycles

Table 5.3 Estimated selection response of the linear phenotypic selection index (LPSI), the linear
molecular selection index (LMSI), the genome-wide LMSI (GW-LMSI), the linear genomic
selection index (LGSI), and the combined LGSI (CLGSI), not including (first part of the Table)
and including (second part of the Table) the interval length between selection cycles, obtained using
five simulated selection cycles

Cycle LPSI LMSI GW-LMSI LGSI C-LGSI

Estimated selection response not including the interval length

1 17.84 19.60 16.24 14.36 18.24

2 15.66 24.36 13.88 13.90 16.02

3 14.44 14.70 12.13 13.59 14.61

4 14.29 15.29 12.48 12.30 14.14

5 13.86 15.15 11.49 11.38 13.51

Average 15.22 17.82 13.24 13.11 15.30

Estimated selection response including the interval lengtha

1 4.46 4.90 4.06 9.58 4.56

2 3.92 6.09 3.47 9.27 4.00

3 3.61 3.68 3.03 9.06 3.65

4 3.57 3.82 3.12 8.20 3.53

5 3.47 3.79 2.87 7.59 3.38

Average 3.80 4.46 3.31 8.74 3.83
aThe interval length for the LPSI, LMSI, GW-LMSI, and C-LGSI was 4 years, whereas the interval
length for the LGSI was 1.5 years
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GW-LMSI, the LGSI, and the CLGSI, including and not including the interval
between selection cycles (first and second parts of Table 5.3 respectively), obtained
using five simulated selection cycles. According to the first part of Table 5.3, the
average estimated selection responses, in decreasing order, of the LMSI, CLGSI,
LPSI, GW-LMSI, and LGSI for the five simulated selection cycles were 17.82,
15.30, 15.22, 13.24, and 13.11 respectively, when the length of the interval between
selection was not included. If the length of the interval between selection cycles is
included when comparing the selection response of the indices in terms of time, the
estimated selection response of LMSI, CLGSI, LPSI, GW-LMSI must be divided by
4 in each selection cycle, and the estimated LGSI selection response should be
divided by 1.5. Thus, according to the second part of Table 5.3, if we include the
length of the interval between selection cycles, the average estimated selection
responses, in decreasing order, of LGSI, LMSI, CLGSI, LPSI, and GW-LMSI for
the five simulated selection cycles were 8.74, 4.46, 3.83, 3.80, and 3.31. This means
that in terms of time, the efficiency of the LGSI was higher than the efficiency of the
other four selection indices.

Table 5.4 presents the estimated accuracy of the LMSI, LGSI, CLGSI, LPSI, and
the GW-LMSI. In addition, Table 5.4 presents the efficiency when predicting the net
genetic merit of the LMSI with respect to the LGSI, CLGSI, LPSI, and GW-LMSI as
percentages, for five simulated selection cycles. Note that in this case, LMSI
efficiency was higher than the efficiency of the other four selection indices, because
the LMSI had the highest correlation with the net genetic merit.
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Chapter 6
Constrained Linear Genomic Selection
Indices

Abstract The constrained linear genomic selection indices are null restricted and
predetermined proportional gain linear genomic selection indices (RLGSI and
PPG-LGSI respectively), which are a linear combination of genomic estimated
breeding values (GEBVs) to predict the net genetic merit. They are the results of a
direct application of the restricted and the predetermined proportional gain linear
phenotypic selection index theory to the genomic selection context. The RLGSI can
be extended to a combined RLGSI (CRLGSI) and the PPG-LGSI can be extended to
a combined PPG-LGSI (CPPG-LGSI); the latter indices use phenotypic and GEBV
information jointly in the prediction of net genetic merit. The main difference
between the RLGSI and PPG-LGSI with respect to the CRLGSI and the CPPG-
LGSI is that although the RLGSI and PPG-LGSI are useful in a testing population
where there is only marker information, the CRLGSI and CPPG-LGSI can be used
only in training populations when there are joint phenotypic and marker information.
The RLGSI and CRLGSI allow restrictions equal to zero to be imposed on the
expected genetic advance of some traits, whereas the PPG-LGSI and CPPG-LGSI
allow predetermined proportional restriction values to be imposed on the expected
trait genetic gains to make some traits change their mean values based on a
predetermined level. We describe the foregoing four indices and we validated their
theoretical results using real and simulated data.

6.1 The Restricted Linear Genomic Selection Index

Let H¼ w0g be the net genetic merit and IG ¼ β0γ the linear genomic selection index
(LGSI, see Chap. 5 for details), where g, γ, w, and β are vectors t� 1 (t¼ number of
traits) of breeding values, genomic breeding values, economic weights, and LGSI
coefficients respectively. It can be shown that Cov(IG, g) ¼ Γβ is the covariance
between g and IG ¼ β0γ, and that Var(γ) ¼ Γ is the genomic covariance matrix of
size t � t (see Chap. 5 for details). The objective of the restricted linear genomic
selection index (RLGSI) is to improve only (t� r) of t (r< t) traits (leaving r of them
fixed) in a testing population using only genomic estimated breeding values

© The Author(s) 2018
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(GEBVs). The RLGSI minimizes the mean squared difference between IG and H,
E[(H� IG)

2], with respect to β under the restriction Cov(IG,U0g)¼U0Γβ¼ 0, where
U0 is a matrix (t � 1) � t of 1s and 0s, in a similar manner to the restricted linear
phenotypic selection index (RLPSI) described in Chap. 3 in the phenotypic selection
context.

6.1.1 The Maximized RLGSI Parameters

Let Var(IG) ¼ β0Γβ be the variance of IG ¼ β0γ, w0Cw the variance of H ¼ w0g, and
Cov(IG,H ) ¼ w0Γβ the covariance between H ¼ w0g and IG ¼ β0γ. The mean
squared difference betweenH and IG can be written as E[(H� IG)

2], which should be
minimized under the restriction U0Γβ ¼ 0 assuming that Γ, C, U0, and w are known,
i.e., it is necessary to minimize the function

f R β; vð Þ ¼ w0Cwþ β0Γβ� 2w0Γβþ 2v0U0Γβ ð6:1Þ
with respect to vectors β and v0 ¼ [v1 v2 � � � vr � 1], where v is a vector of Lagrange
multipliers. In matrix notation, the derivative results of Eq. (6.1) are

β
v

� �
¼ Γ ΓU

U0Γ 0

� ��1 Γw
0

� �
: ð6:2Þ

Following the procedure described in Chap. 3 (Eqs. 3.2 to 3.5), it can be shown
that the RLGSI vector of coefficients that minimizes E[(H � IG)

2] under the
restriction U0Γβ ¼ 0 is

βRG ¼ KGw, ð6:3Þ
where KG ¼ [It � QG], QG ¼ U(U0ΓU)�1U0Γ, w is a vector of economic weights,
and It is an identity matrix t � t. When no restrictions are imposed on any of the
traits, U0 is a null matrix and βRG¼w, the optimized LGSI vector of coefficients (see
Chap. 5 for details).

By Eq. (6.3), the RLGSI, and the maximized RLGSI selection response and
expected genetic gain per trait can be written as

IRG ¼ β0RGγ, ð6:4Þ
RRG ¼ kI

LG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0RGΓβRG

q
ð6:5Þ

and
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ERG ¼ kI
LG

ΓβRGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0RGΓβRG

p , ð6:6Þ

respectively, where kI is the standardized selection differential (or selection inten-
sity) associated with the RLGSI, and LG is the interval between selection cycles or
the time required to complete a selection cycle using the RLGSI. Equations (6.4) to
(6.6) depend only on GEBV information; thus, they are useful in testing populations.

6.1.2 Statistical Properties of RLGSI

Assuming that H ¼ w0g and IRG ¼ β0RGγ have bivariate joint normal distribution,
βRG ¼ KGw, and Γ, C, and w are known, it can be shown that the RLGSI has the
following properties:

1. Matrices KG and QG are idempotent (KG ¼ K2
G and QG ¼ Q2

G) and orthogonal
(KGQG ¼ QGKG ¼ 0), that is, they are projectors. Matrix QG projects vector
β ¼ w into a space generated by the columns of matrix U0Γ due to the restriction
U0Γβ ¼ 0 used when fR(β, v) (Eq. 6.1) is minimized with respect to vectors β and
v, whereas matrix KG projects w into a space perpendicular to that generated by
the U0Γ matrix columns.

2. Because of the restriction U0Γβ ¼ 0, matrix KG projects vector w into a space
smaller than the original space of w. The space reduction into which matrix KG

projects w is equal to the number of zeros that appears in Eq. (6.6).
3. Vector βRG ¼ KGw minimizes the mean square error under the restriction

U0Γβ ¼ 0.
4. The variance of IRG ¼ β0RGγ (σ

2
IRG

¼ β0RGΓβRG) is equal to the covariance between
IRG ¼ β0RGγ and H ¼ w0g (σHIRG ¼ w0ΓβRG).

5. The maximized correlation between H and IRG is equal to ρHIRG ¼ σIRG
σH

, where

σIRG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0RGΓβRG

q
and σH ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

w0Cw
p

are the standard deviations of IRG ¼ β0RGγ
and H ¼ w0g respectively.

6. The variance of the predicted error, Var H � IRGð Þ ¼ 1� ρ2HIRG

� �
σ2H , is minimal.

Note that Var H � IRGð Þ ¼ σ2IRG þ σ2H � 2σHIRG , and when βRG ¼ KGw,

σ2IRG ¼ σHIRG , whence Var H � IRGð Þ ¼ σ2H � σ2IRG ¼ 1� ρ2HIRG

� �
σ2H is minimal.

The statistical RLGSI properties are equal to the statistical RLPSI properties.
Thus the RLGSI is an application of the RLPSI to the genomic selection context.

6.1.3 Numerical Examples

To estimate the parameters associated with the RLGSI, we use the real data set
described in Chap. 5, Sect. 5.1.8, where we found that, in the testing population, the
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estimate of matrix Γ was bΓ ¼
0:21 2:95 5:00
2:95 42:41 71:11
5:00 71:11 121:53

2
4

3
5. We use this matrix and the

GEBVs associated with the traits grain yield (GY, ton ha�1), ear height (EHT, cm),
and plant height (PHT, cm) to illustrate the RLGSI theoretical results.

Suppose that on the RLGSI expected genetic gain per trait we impose one

and two null restrictions using matrices U0
1 ¼ 1 0 0½ � and U0

2 ¼
1 0 0
0 1 0

� �
(see Chap. 3, Sect. 3.1.3, for details about matrix U0). We need to estimate the
RLGSI vector of coefficients (βRG ¼ KGw) as bβRG ¼ bKGw, where bKG ¼ �

I3 � bQG

�
and bQG ¼ U

	
U0bΓU
�1

U0bΓ are estimates of matrices KG ¼ [I3 � QG] and QG ¼ U
(U0ΓU)�1U0Γ respectively, and I3 is an identity matrix 3 � 3. The estimated QG

matrices for restrictions U0
1¼ 1 0 0½ � and U0

2¼
1 0 0
0 1 0

� �
were bQG1

¼U1
	
U0

1
bΓU1


�1

U0
1
bΓ¼

1:0 14:05 23:81
0 0 0
0 0 0

2
4

3
5 and bQG2

¼U2
	
U0

2
bΓU2


�1
U0

2
bΓ¼ 1:0 0 11:18

0 1:0 0:90
0 0 0

2
4

3
5 respec-

tively, whereas the estimated KG matrices for both restrictions were bKG1 ¼
�
I3� bQG1

�

¼
0 �14:05 �23:81
0 1:0 0
0 0 1:0

2
4

3
5 and bKG2¼

�
I3� bQG2

�¼ 0 0 �11:18
0 0 �0:90
0 0 1:0

2
4

3
5.

Let w0 ¼ 5 �0:1 �0:1½ � be the vector of economic weights; then the estimated
RLGSI vector of coefficients for one and two null restrictions were bβ0

RG1
¼ w0 bK0

G1
¼

3:78 �0:1 �0:1½ � and bβ0
RG2

¼ w0 bK0
G2

¼ 1:12 0:09 �0:1½ � respectively, and
the estimated RLGSI for both restrictions can be written as bIRG1 ¼ 3:78GEBV1 � 0:1
GEBV2 � 0:1GEBV3 and bIRG2 ¼ 1:12GEBV1 þ 0:09GEBV2 � 0:1GEBV3, where
GEBV1, GEBV2, andGEBV3 are the genomic estimated breeding values associated with
traits GY, EHT, and PHT respectively in the testing population.

Table 6.1 presents 20 genotypes selected from a population of 380 genotypes and
the GEBVs in the testing population ranked according to the estimated RLGSI
values for one restriction, where U0

1 ¼ 1 0 0½ �. The estimated RLGSI
values for genotypes 5 and 306 can be obtained as follows:bIRG5 ¼ 3:78 �0:6ð Þ � 0:1
�8:67ð Þ � 0:1 15:97ð Þ ¼ 0:196 andbIRG306 ¼ 3:78 0:13ð Þ � 0:1 1:31ð Þ � 0:1 1:66ð Þ ¼
0:194 respectively. This procedure is valid for any number of genotypes and GEBVs
in the testing population.

Assume a selection intensity of 10% (kIG ¼ 1:755); then the estimated
RLGSI selection response and expected genetic gain per trait not including the

interval length were bRRG1 ¼ kIG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
RG1

bΓbβRG1

q
¼ 0:40 and bE0

RG1
¼ kI

bβ0
RG1

bΓffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
RG1

bΓbβRG1

q
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¼ 0 �1:42 �2:58½ � respectively. For two restrictions, with U0
2 ¼

1 0 0
0 1 0

� �
,

the estimated RLGSI selection response and expected genetic gains not including

the interval length were bRRG2 ¼ kIG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
RG2

bΓbβRG2

q
¼ 0:23 and

bE0
RG2

¼ kI
bβ0
RG2

bΓffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
RG2

bΓbβRG2

q ¼ 0 0 �2:29½ � respectively. When the number of

restrictions increases, the estimated RLGSI selection response value decreases,
whereas the number of zeros increases in the estimated RLGSI expected genetic
gain per trait. The number of zeros in the estimated RLGSI expected genetic gain
per trait is equal to the number of restrictions imposed on RLGSI by matrix U0,
where each restriction appears as 1.

Figure 6.1 presents the frequency distribution of the estimated RLGSI values for
one (Fig. 6.1a) and two null restrictions (Fig. 6.1b). For both restrictions the
frequency distribution of the estimated RLGSI values approaches the normal
distribution.

Table 6.1 Number of genotypes selected from 380 genotypes of a real testing population; genomic
estimated breeding values (GEBVs) associated with three traits: grain yield (GY, ton ha�1), ear
height (EHT, cm), and plant height (PHT, cm) in the testing population, and estimated and ranked
restricted linear genomic selection index (RLGSI) values obtained in the testing population for one
null restriction

Number of genotypes

Estimated GEBVs in the testing population

Estimated RLGSIGEBV-GY GEBV-EHT GEBV-PHT

5 �0.6 �8.67 �15.97 0.196

306 0.13 1.31 1.66 0.194

6 0.06 1.83 �1.13 0.157

349 0.37 4.34 8.12 0.153

142 �0.26 �5.47 �5.85 0.149

69 �0.11 �3.43 �2.16 0.143

24 0.03 �0.43 0.19 0.137

192 �0.8 �13.91 �17.7 0.137

33 �0.18 �1.44 �6.71 0.135

18 �0.43 �5.48 �12.08 0.131

21 �1.00 �16.11 �22.96 0.127

41 0.17 1.09 4.08 0.126

351 0.16 2.64 2.15 0.126

323 0.04 �0.79 1.04 0.126

158 �0.49 �8.95 �10.83 0.126

25 �0.24 �3.46 �6.86 0.125

338 0.37 3.88 8.89 0.122

316 �0.01 �0.51 �1.09 0.122

32 �0.19 �3.97 �4.43 0.122

204 �0.46 �7.41 �11.19 0.121
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Now we use the simulated data set described in Chap. 2, Sect. 2.8.1, to compare
RLPSI (restricted linear phenotypic selection index, Chap. 3 for details) efficiency
versus RLGSI efficiency. Table 6.2 presents the estimated RLPSI and RLGSI
selection response for one, two, and three null restrictions imposed by matrices

U0
1 ¼ 1 0 0½ �, U0

2 ¼
1 0 0
0 1 0

� �
, and U0

3 ¼
1 0 0 0
0 1 0 0
0 0 1 0

2
4

3
5 for five simulated

selection cycles including and not including the interval between selection cycles. In
each selection cycle, the sample size was equal to 500 genotypes, each with four
repetitions and four traits, whereas the selection intensity was 10% (kI ¼ 1.755); the
interval lengths for the RLPSI and RLGSI were 4 and 1.5 years (Beyene et al. 2015)
respectively.

Table 6.2 was divided in two parts. The first part presents the estimated RLPSI
whereas the second part presents the estimated RLGSI selection responses. Columns
2, 3, and 4 in Table 6.2 present the estimated RLPSI and RLGSI selection responses
not including the interval length, whereas columns 5, 6, and 7 present the estimated
RLPSI and RLGSI selection response, including the interval length. The averages of
the estimated RLPSI selection response not including the interval length for one,
two, and three restrictions were 7.04, 5.50, and 3.90, whereas when the interval
length was included, the averages were 1.76, 1.38, and 0.98 respectively. The
averages of the estimated RLGSI selection response not including the interval length

Fig. 6.1 Distribution of 380 estimated restricted linear genomic selection index (RLGSI) values
with one (a) and two (b) null restrictions respectively obtained in a real testing population for one
selection cycle in one environment
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for one, two, and three restrictions were 5.04, 3.72, and 2.79, whereas when the
interval length was included the averages were 3.36, 2.48, and 1.86 respectively.
These results indicated that when the interval length was included in the estimation
of the RLPSI and RLGSI selection response, RLGSI efficiency was greater than
RLPSI efficiency, and vice versa, when the interval length was not included the
RLPSI efficiency was greater than RLGSI efficiency.

Table 6.3 presents the estimated RLPSI (first part) and RLGSI (second part)
expected genetic gain per trait not including the interval between selection cycles for
one, two, and three null restrictions in five simulated selection cycles. In this case,
RLPSI efficiency is greater than RLGSI efficiency because the averages of the
estimated RLPSI expected genetic gain per trait were �2.52, 2.26, and 2.26 for
one null restriction; 2.84 and 2.65 for two null restrictions; and 3.90 for three null
restrictions. For the same set of restrictions, the averages of the estimated RLGSI
expected genetic gain per trait were: �1.85, 1.13, and 2.06 for one null restriction;
1.52 and 2.19 for two null restrictions, and 2.79 for three null restrictions. However,
divided by the interval length (4 years in the RLPSI), the averages of the estimated
RLPSI expected genetic gain per trait were �0.63, 0.57, and 0.57 for one null
restriction; 0.71 and 0.66 for two null restrictions, and 0.98 for three null restrictions.
In a similar manner, dividing by the interval length (1.5 years in this case), the
averages of the estimated RLGSI expected genetic gain per trait were �1.23, 0.75,

Table 6.2 Estimated restricted linear phenotypic selection index (RLPSI) and RLGSI selection
responses for 1, 2, and 3 null restrictions for 5 simulated selection cycles including and not
including the interval between selection cycles. The interval lengths for the RLPSI and the
RLGSI were 4 and 1.5 years respectively

Cycle

Estimated RLPSI selection response

Not including interval length Including interval lengtha

1 2 3 1 2 3

1 6.87 5.54 4.13 1.72 1.39 1.03

2 8.45 5.94 4.27 2.11 1.49 1.07

3 7.17 5.79 4.16 1.79 1.45 1.04

4 6.68 5.06 3.72 1.67 1.27 0.93

5 6.02 5.16 3.24 1.51 1.29 0.81

Average 7.04 5.50 3.90 1.76 1.38 0.98

Cycle

Estimated RLGSI selection response

Not including interval length Including interval lengthb

1 2 3 1 2 3

1 6.41 5.58 4.71 4.28 3.72 3.14

2 5.04 3.47 2.47 3.36 2.32 1.65

3 4.76 3.36 2.22 3.17 2.24 1.48

4 4.51 3.07 2.28 3.01 2.05 1.52

5 4.46 3.10 2.26 2.97 2.07 1.51

Average 5.04 3.72 2.79 3.36 2.48 1.86
aThe estimated RLPSI selection response was divided by 4
bThe estimated RLGSI selection response was divided by 1.5
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and 1.37 for one restriction; 1.01 and 1.46 for two restrictions; and 1.86 for three
restrictions.

Table 6.4 presents the estimated RLPSI heritability (bh2IR ) values, the estimated
restricted linear genomic selection index (RLGSI) accuracy (bρHIRG) values, the values
of W ¼ bρHIRGbhIR LRP (LRP ¼ 4), and the values of bp ¼ 100

	bλR � 1


, where bλR ¼ bρHIR=

bρHIRG and bρHIR is the estimated RLPSI accuracy, for one, two, and three restrictions
for five simulated selection cycles. The RLGSI interval length was LRG ¼ 1.5

whereas the averages of the values of W ¼ bρHIRGbhIR LRP for each restriction were

1.22, 0.85, and 0.60; this means that the estimated Technow inequality (Technow

et al. 2013), LRG <
bρHIRGbhIR LRP (Chap. 5, Eq. 5.18), was not true. Thus, according to

the Technow inequality results, for this data set, RLGSI efficiency in terms of time

was not greater than RLPSI efficiency. The inequality LRG <
bρHIGbhIR LIR was not true

because the estimated RLGSI accuracywas very low, whereas RLPSI heritability was
high. Thus, note that the averages of the estimated RLGSI accuracy for one, two, and
three null restrictions were 0.25, 0.19, and 0.14 respectively, and the averages of the
estimated RLPSI heritability values were 0.70, 0.78 and 0.88, respectively. Thus,
according to these results, because the estimated RLGSI accuracy is very low and

Table 6.3 Estimated RLPSI and RLGSI expected genetic gain per trait for 1, 2, and 3 null
restrictions for 5 simulated selection cycles (each with 4 traits) not including the interval length
between selection cycles

Cycle

Estimated RLPSI expected genetic gain for one, two, and three null restrictions

1 2 3

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

1 0 �2.18 2.03 2.66 0 0 2.77 2.77 0 0 0 4.13

2 0 �3.41 2.33 2.71 0 0 2.87 3.07 0 0 0 4.27

3 0 �2.30 3.12 1.74 0 0 3.11 2.68 0 0 0 4.16

4 0 �2.88 1.42 2.38 0 0 2.35 2.70 0 0 0 3.72

5 0 �1.83 2.38 1.81 0 0 3.12 2.04 0 0 0 3.24

Average 0 �2.52 2.26 2.26 0 0 2.84 2.65 0 0 0 3.90

Cycle

Estimated RLGSI expected genetic gain for 1, 2, and 3 null restrictions

1 2 3

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

1 0 �1.41 1.29 3.72 0 0 1.89 3.70 0 0 0 4.71

2 0 �2.16 1.07 1.81 0 0 1.49 1.98 0 0 0 2.47

3 0 �1.94 1.24 1.57 0 0 1.58 1.78 0 0 0 2.22

4 0 �1.90 1.02 1.60 0 0 1.34 1.73 0 0 0 2.28

5 0 �1.83 1.02 1.61 0 0 1.33 1.77 0 0 0 2.26

Average 0 �1.85 1.13 2.06 0 0 1.52 2.19 0 0 0 2.79
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RLPSI heritability is high, RLGSI efficiency was lower than RLPSI efficiency in
terms of time.

The last three columns of Table 6.4, from left to right, present the estimated
p values, bp ¼ 100

	bλR � 1


, for one, two, and three null restrictions in five simulated

selection cycles. The average of the bp values indicates that for each of the three
restrictions the RLPSI efficiency was 65.05%, 78.73%, and 74.09%, greater than
RLGSI efficiency at predicting the net genetic merit. Thus, for this data set, the
RLPSI was a better predictor of the net genetic merit than the RLGSI in each cycle.

6.2 The Predetermined Proportional Gain Linear Genomic
Selection Index

6.2.1 Objective of the PPG-LGSI

Let d0 ¼ d1 d2 . . . dr½ � be a vector 1 � r (r is the number of predetermined
proportional gains) of the predetermined proportional gains imposed by the breeder,
and assume that μq is the population mean of the qth trait before selection. The
objective of the predetermined proportional gain linear genomic selection index
(PPG-LGSI) is to change μq to μq + dq in the testing population, where dq is a
predetermined change in μq. It is possible to solve this problem minimizing the mean
squared difference between IG ¼ β0γ and H ¼ w0g, E[(H � IG)

2], under the
restriction U0Γβ ¼ θGd, where θG is a proportionality constant, or under the

restriction D0U0Γβ ¼ 0, where D0 ¼
dr 0 . . . 0 �d1
0 dr . . . 0 �d2
⋮ ⋮ ⋱ ⋮ ⋮
0 0 . . . dr �dr�1

2
664

3
775 is a matrix

(r� 1)� r (see Chap. 3 for details), and dq (q¼ 1, 2. . ., r) is the qth element of vector

d0 ¼ d1 d2 . . . dr½ �; U0 is a matrix (t� 1) � t of 1s and 0s, and Γ ¼ σγqq0
n o

(q,

q0 ¼ 1, 2, . . ., t, t ¼ number of traits) is a covariance matrix of additive genomic
breeding values, γ0 ¼ [γ1 γ2. . .γt].

6.2.2 The Maximized PPG-LGSI Parameters

In this subsection, we minimize E[(H � IG)
2] under the restriction D0U0Γβ ¼ 0 and

later under the restriction U0Γb ¼ θGd. Under the restriction D0U0Γβ ¼ 0, it is
necessary to minimize the function

f P β; vð Þ ¼ β0Γβþ w0Cw � 2w0Γβþ 2v0D0U0Γβ ð6:7Þ
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with respect to β and v0 ¼ v1 v2 . . . vr�1½ �, where v0 is a vector of Lagrange
multipliers. From a mathematical point of view, Eq. (6.7) is equal to Eq. (6.1); thus,
the vector of coefficients β of the PPG-LGSI should be similar to the vector of
coefficients of the RLGSI (Eq. 6.3), i.e., the PPG-LGSI vector of coefficients is equal
to

βPG ¼ KPw, ð6:8Þ
where now KP ¼ [It � QP], QP ¼ UD(D0U0ΓUD)�1D0U0Γ, w is a vector of
economic weights, and It is an identity matrix t � t. When D0 ¼ U0, βPG ¼ βRG
(the RLGSI vector of coefficients), and when U0 is a null matrix, βPG ¼ w (the LGSI
vector of coefficients). This means that the PPG-LGSI includes the RLGSI and the
LGSI as particular cases.

Under the restriction U0Γβ ¼ θGd (see Chap. 3 for details) the vector of coeffi-
cients of the PPG-LGSI can be written as

βPG ¼ βRG þ θGU U0ΓUð Þ�1d, ð6:9Þ
where βRG ¼ KGw (Eq. 6.3), KG ¼ [I � QG], QG ¼ U(U0ΓU)�1U0Γ, and d0 ¼
d1 d2 . . . dr½ � is the vector of the predetermined proportional gains imposed by
the breeder. It can be shown that θG, the proportionality constant, can be written as

θG ¼ d0 U0ΓUð Þ�1U0Γw
d0 U0ΓUð Þ�1d

: ð6:10Þ

When θG¼ 0, βPG¼ βRG, and when U0 is a null matrix, βPG¼w. Equations (6.8)
and (6.9) give the same results, that is, both equations express the same result in a
different mathematical way.

The maximized selection response and expected genetic gain per trait of the
PPG-LGSI can be written as

RPG ¼ kI
LG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0PGΓβPG

q
ð6:11Þ

and

EPG ¼ kI
LG

ΓβPGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0PGΓβPG

p , ð6:12Þ

respectively, where LG is the time required to complete a selection cycle using the
PPG-LGSI. Equations (6.11) and (6.12) depend only on GEBV information.
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6.2.3 Statistical Properties of the PPG-LGSI

Assuming that H¼ w0g and the PPG-LGSI (IPG ¼ β0PGγ) have bivariate joint normal
distribution, βPG ¼ KPw; Γ, C, and w are known, it can be shown that PPG-LGSI
has the following statistical properties:

1. The vector βPG ¼ KPw minimizes the mean square error under the restriction
D0U0Γβ ¼ 0.

2. The variance of IPG ¼ β0PG γ (σ
2
IPG

¼ β0PGΓβPG) is equal to the covariance between
IPG ¼ β0PG γ and H ¼ w0g (σHIPG ¼ w0ΓβPG).

3. The maximized correlation between H and IPG (also called PPG-LGSI accuracy)

is equal to ρHIPG ¼ σIPG
σH

, where σIPG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0PGΓβPG

q
and σH ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

w0Cw
p

are the

standard deviations of IPG ¼ β0PG γ and H ¼ w0g respectively.

4. The variance of the predicted error, Var H � IPGð Þ ¼ 1� ρ2HIPG

� �
σ2H , is minimal.

The statistical PPG-LGSI properties are equal to the statistical PPG-LPSI prop-
erties, then, the PPG-LGSI is an application of the PPG-LPSI to the genomic
selection context.

6.2.4 Numerical Example

To illustrate the PPG-LGSI theory, we use the estimated matrix

bΓ ¼
0:21 2:95 5:00
2:95 42:41 71:11
5:00 71:11 121:53

2
4

3
5 and the GEBVs associated with the traits GY (ton

ha�1), EHT (cm), and PHT (cm), described in Sect. 6.1.3.
It is necessary to estimate the PPG-LGSI vector of coefficients βPG¼ βRG + θgU

(U0ΓU)�1d (Eqs. 6.9 and 6.10). In Sect. 6.1.3, we showed that the estimated
vectors of coefficients of βRG ¼ KGw for the null restrictions U0

1 ¼ 1 0 0½ �
andU0

2 ¼
1 0 0
0 1 0

� �
were bβ0

RG1 ¼ w0 bK0
G1 ¼ 3:78 �0:1 �0:1½ � and bβ0

RG2 ¼ w0

bK0
G2 ¼ 1:12 0:09 �0:1½ � respectively, where w0 ¼ 5 �0:1 �0:1½ �. This

means that to estimate βPG ¼ βRG + θGU(U0ΓU)�1d, we need only to estimate
θGU(U0ΓU)�1d for both sets of restrictions.

Consider matrix U0
1 ¼ 1 0 0½ � and let d1 ¼ 7.0 be the predetermined

proportional gain restriction for trait 1. We can estimate θG and U(U0ΓU)�1d as

bθG1 ¼ 7:0
	
U0

1
bΓU1


�1
U0

1
bΓw

7:0
	
U0

1
bΓU1


�1
7:0

¼ 0:036 and U1

	
U0

1
bΓU1


�1
7:0 ¼

33:333
0
0

2
4

3
5,

whence the PPG-LGSI vector of coefficients was

bβPG1
¼ bβRG1

þ bθG1U1

	
U0

1
bΓU1


�1
7:0 ¼

5:0
�0:1
�0:1

2
4

3
5, and the estimated PPG-LGSI
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was bI PG1 ¼ 5:0GEBV1 � 0:1GEBV2 � 0:1GEBV3. In a similar manner, we can
estimate the PPG-LGSI vector of coefficients under restrictions

U0
2 ¼

1 0 0
0 1 0

� �
and d02 ¼ 7 �3½ �. In this case,

bβPG2
¼ bβRG2

þ bθG2U2
	
U0

2
bΓU2


�1
d2 ¼

4:97
�0:18
�0:10

2
4

3
5 and the estimated PPG-LGSI

was bI PG2 ¼ 4:97GEBV1 � 0:18GEBV2 � 0:1GEBV3.
Figure 6.2 presents the frequency distribution of the estimated PPG-LGSI

values for one (Fig. 6.2a) and two (Fig. 6.2b) predetermined restrictions, d ¼ 7
and d0 ¼ 7 �3½ � respectively, obtained in a real testing population for one
selection cycle in one environment. For both restrictions, the frequency distribution
of the estimated PPG-LGSI values approaches the normal distribution.

Assume a selection intensity of 10% (kIG ¼ 1:755); then, for one predetermined
restriction, where U0

1 ¼ 1 0 0½ � and d1 ¼ 7.0, the estimated PPG-LGSI selection
response and expected genetic gain per trait, not including the interval length, were

bRPG1 ¼kIG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
PG1

bΓbβPG1

q
¼1:05 and bE0

PG1
¼kI

bβ0
PG1

bΓffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
PG1

bΓbβPG1

q ¼ 0:74 9:92 16:54½ �

Fig. 6.2 Distribution of 380 estimated predetermined proportional gain linear genomic selection
index (PPG-LGSI) values with one (a) and two (b) predetermined restrictions, d ¼ 7 and d0 ¼
7 �3½ � respectively, obtained in a real testing population for one selection cycle in one
environment
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respectively. For two restrictions, with U0
2¼

1 0 0
0 1 0

� �
and d0 ¼ 7 �3½ �, the

estimated RLGSI selection response and expected genetic gains, not including the

interval length, were bRPG2 ¼kIG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
PG2

bΓbβG2

q
¼0:52 and bE0

PG2
¼kI

bβ0
PG2

bΓffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
PG2

bΓbβPG2

q ¼

0:11 �0:05 0:14½ � respectively.
Now, we use the simulated data set described in Chap. 2, Sect. 2.8.1 to compare

PPG-LGSI efficiency versus predetermined proportional gain linear phenotypic

selection index (PPG-LPSI) efficiency. Let U0
1 ¼ 1 0 0½ �, U0

2 ¼
1 0 0
0 1 0

� �
,

and U0
3 ¼

1 0 0 0
0 1 0 0
0 0 1 0

2
4

3
5 be the matrices and d1 ¼ 7, d02 ¼ 7 �3½ �, and d03 ¼

7 �3 5½ � the vectors for one, two, and three predetermined restrictions respec-
tively. Table 6.5 presents the estimated PPG-LPSI and PPG-LGSI selection response
for each predetermined restriction in five simulated selection cycles including
and not including the interval between selection cycles (4 years for the PPG-LPSI
and 1.5 years for the PPG-LGSI); estimated PPG-LPSI and PPG-LGSI accuracy;
and estimated variance of the predicted error (VPE). In each selection cycle, the
sample size was equal to 500 genotypes, each with four repetitions and four
traits. The selection intensity was 10% (kI ¼ 1.755).

The averages of the estimated PPG-LPSI selection response not including the
interval length were 15.14, 14.87, and 13.30, whereas when the interval length was
included, the average selection responses were 3.79, 3.72, and 3.33, for one, two,
and three predetermined restrictions respectively (Table 6.5). The averages of the
estimated PPG-LGSI selection responses not including the interval length for one,
two, and three predetermined restrictions were 14.48, 13.47, and 11.26 respectively,
and when the interval length was included, the selection responses were 9.65, 8.98,
and 7.51 respectively (Table 6.5). These results indicate that when the interval length
was included in the estimation of the PPG-LPSI and PPG-LGSI selection responses,
PPG-LGSI efficiency was greater than PPG-LPSI efficiency, and vice versa, when
the interval length was not included in the PPG-LPSI and PPG-LGSI selection
responses, PPG-LPSI efficiency was higher than PPG-LGSI efficiency.

The averages of the estimated VPE values of the PPG-LPSI for one, two, and
three predetermined restrictions were 22.42, 30.56, and 41.17 respectively, whereas
the estimated VPE values of the PPG-LGSI (see Sect. 6.2.3 for details) were 59.80,
66.95, and 83.98, respectively, that is, in all selection cycles, the VPE of the
PPG-LPSI was lower than that of the PPG-LGSI. This means that for this data set,
the PPG-LPSI was a better predictor of the net genetic merit than the PPG-LGSI.
These results can be explained by observing that the averages of the estimated
PPG-LPSI accuracies were 0.88, 0.86, and 0.77, whereas the estimated PPG-LGSI
accuracies were 0.65, 0.68, and 0.57 for each predetermined restriction, that is, the
estimated PPG-LGSI accuracies were lower than the estimated PPG-LPSI accuracies
for this data set.
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Table 6.6 presents the estimated predetermined PPG-LPSI heritability (bh2P) values,
WP ¼ bρHIGbhP LP (LP ¼ 4) values, and ratio of the estimated PPG-LPSI accuracy (bρHIP)
to the estimated PPG-LGSI accuracy (bρHIPG ), i.e., bλP ¼ bpHIP=bpHIPG , and, finally,
values of bp ¼ 100

	bλP � 1



for one, two, and three null restrictions for five
simulated selection cycles.

The averages of theWP values for one, two, and three null restrictions were 3.29,
3.12, and 2.53, respectively, whereas the PPG-LGSI interval length was 1.5

(LG ¼ 1.5). This means that the estimated Technow inequality, LG <
bρHIGbhP LP (see

Chap. 5, Eq. 5.18) was true. Thus, PPG-LGSI efficiency in terms of time was greater
than PPG-LPSI efficiency for this data set. These results coincide with those
obtained earlier in this chapter, when we compared PPG-LGSI efficiency versus
PPG-LPSI efficiency in terms of interval length. However, the average values ofbp ¼ 100

	bλP � 1



(see Chap. 5, Eq. 5.15) were, in percentage terms, 16.80%,
20.76%, and 25.85% for each restriction. These latter results indicate that for this
data set, the PPG-LPSI was a better predictor of the net genetic merit than the
PPG-LGSI. This is because the estimated PPG-LPSI accuracies were higher than the
estimated PPG-LPSI accuracies for this data set. We found similar results when we
compared the PPG-LPSI VPE versus PPG-LGSI VPE (Table 6.5).

6.3 The Combined Restricted Linear Genomic Selection
Index

The combined restricted linear genomic selection index (CRLGSI) is based on the
RLPSI (Chap. 3) and combined linear genomic selection index (CLGSI, Chap. 5)
theory. In the RLPSI, the breeder’s objective is to improve only (t � r) of t (r < t)

Table 6.6 Estimated PPG-LPSI heritability (bh2P), values ofWP ¼ bρHIGbhP LP (LP¼ 4), and the ratio of

the estimated PPG-LPSI accuracy (bρHIP ) to the estimated PPG-LGSI accuracy (bρHIPG ):bλP ¼ bρHIP=bρHIPG , and values of bp ¼ 100
	bλp � 1



for 1, 2 and 3 predetermined restrictions for

five simulated selection cycles

Cycle

PPG-LPSI heritability Values of WP Estimated ratio values (bp)
1 2 3 1 2 3 1 2 3

1 0.84 0.77 0.83 4.71 4.13 3.72 �18.62 �6.71 �10.20

2 0.80 0.78 0.83 3.22 3.17 2.42 18.30 20.54 32.04

3 0.77 0.76 0.8 3.18 3.09 2.45 19.89 21.59 31.42

4 0.76 0.75 0.78 2.80 2.71 2.10 29.16 31.84 33.75

5 0.75 0.75 0.79 2.57 2.49 1.97 35.26 36.55 42.35

Average 0.72 0.71 0.76 3.29 3.12 2.53 16.80 20.76 25.87
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traits, leaving r of them fixed; the same is true for the CRLGSI, but in the latter case,
it is necessary to impose 2r restrictions, i.e., we need to fix r traits and their
associated r GEBVs to obtain results similar to those obtained with the RLPSI.
This is the main difference between the CRLGSI and the RLPSI.

It can be shown that Cov(IC, aC) ¼ ΨCβC is the covariance between the breeding
value vector (a0C ¼ g0 γ0½ �) and the CLGSI, IC ¼ β0CtC (see Chap. 5 for details),
where t0C ¼ y0 γ0½ �. In the CRLGSI, we want some covariances between the
linear combinations of aC (U0

CaC ) and CLGSI to be zero, i.e.,
Cov IC;U0

CaC
	 
 ¼ U0

CΨCβC ¼ 0, where U0
C is a matrix 2(t � 1) � 2t of 1s and 0s

(1 indicates that the trait and its associated GEBV are restricted, and 0 that the trait

and its GEBV have no restrictions) andΨC ¼ C Γ
Γ Γ

� �
is a block covariance matrix

of a0C ¼ g0 γ0½ � where C and Γ are the covariance matrices of breeding (g) and
genomic (γ) values respectively. This problem can be solved by minimizing the
mean squared difference between the CLGSI and H (E[(H � IC)

2]) under the
restriction U0

CΨCβC ¼ 0 similar to the RLGSI in Sect. 6.1.

6.3.1 The Maximized CRLGSI Parameters

Let TC ¼ P Γ
Γ Γ

� �
be the block covariance matrix of t0C ¼ y0 γ0½ � where P and Γ

are the covariance matrices of phenotypic (y) and genomic (γ) values respectively.
Based on the Eq. (6.1) result, it can be shown that the CRLGSI vector of coefficients
that minimizes E[(H � IC)

2] under the restriction U0
CΨCβC ¼ 0 is

βCR ¼ KCβC, ð6:13Þ

where KC ¼ [I � QC], QC ¼ T�1
C ΦC Φ0

CT
�1
C ΦC

	 
�1Φ0
C, ΦC ¼ U0

CΨC, and βC
¼ T�1

C ΨCaC (the vector of coefficients of the CLGSI, see Chap. 5 for details);
T�1
C is the inverse of matrix TC, and I is an identity matrix 2t � 2t. When no

restrictions are imposed on any of the traits, U0
C is a null matrix and βCR ¼ βC

(the vector of coefficients of the CLGSI). That is, the CRLGSI is more general
than the CLGSI. Similar to the RLPSI and the RLGSI, matrices KC and QC are
idempotent (KC ¼ K2

C andQC ¼ Q2
C) and orthogonal (KCQC ¼ QCKC ¼ 0), that

is, KC and QC are projectors. Thus, we can assume that the CRLGSI has
similar properties to those described for the RLPSI (see Chap. 3 for details)

when matrices ΨC ¼ C Γ
Γ Γ

� �
and TC ¼ P Γ

Γ Γ

� �
are known.

The maximized selection response and the optimized expected genetic gain per
trait of the CRLGSI can be written as
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RCR ¼ kI
LI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0CRTCβCR

q
ð6:14Þ

and

ECR ¼ kI
LI

ΨβCRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0CRTCβCR

p , ð6:15Þ

respectively. Although in the RLGSI and the PPG-LGSI the interval between
selection cycles is denoted as LG, in the CRLGSI it is denoted as LI. This is because
the RLPSI and the CRLGSI should have the same interval between selection cycles.

6.3.2 Numerical Examples

To illustrate the CRLGSI theoretical results, we use a real training maize (Zea mays)
F2 population with 248 genotypes (each with two repetitions), 233 molecular
markers, and three traits: GY (ton ha�1), EHT (cm), and PHT (cm). Matrices
P and C were estimated based on Eqs. (2.22) to (2.24) described in Chap. 2. The

estimated matrices were bP ¼
0:45 1:33 2:33
1:33 65:07 83:71
2:33 83:71 165:99

2
4

3
5 and

bC ¼
0:07 0:61 1:06
0:61 17:93 22:75
1:06 22:75 44:53

2
4

3
5. In a similar manner, we estimated matrix Γ using

Eqs. (5.21) to (5.23) described in Chap. 5. The estimated matrix was

bΓ ¼
0:07 0:65 1:05
0:65 10:62 14:25
1:05 14:25 26:37

2
4

3
5.

To estimate the CRLGSI and its associated parameters (selection response,

expected genetic gain per trait, etc.), we need to obtain matrices bTC ¼ bP bΓbΓ bΓ
� �

and bΨC ¼ bC bΓbΓ bΓ
� �

using phenotypic and genomic information and the esti-

mated CRLGSI vector of coefficients bβCR ¼ bKC
bβC, where bKC ¼ �

I� bQC

�
,bQC ¼ bT�1

C
bΦC

	 bΦ0
C
bT�1
C

bΦC


�1 bΦ0
C, bΦC ¼ U0

C
bΨC, and bβC ¼ bT�1

C
bΨCaC.

We have indicated that the main difference between the RLGSI and the CRLGSI
is matrixU0

C, on which we now need to impose two restrictions: one for the trait and
another for its associated GEBV. Consider the (Zea mays) F2 population described
earlier and suppose that we restrict trait GY; then, matrixU0

C should be constructed as

U0
C1

¼ 1 0 0 0 0 0
0 0 0 1 0 0

� �
. If we restrict traits GY and EHT, matrix U0

C should
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be constructed as U0
C2

¼
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

2
664

3
775, etc. The procedure for obtaining

matrices bKC ¼ �
I� bQC

�
, bQC ¼ bT�1

C
bΦC

	 bΦ0
C
bT�1
C

bΦC


�1 bΦ0
C, and bΦC ¼ U0

C
bΨC is

similar to that described in Chap. 3.
Let w0 ¼ 5 �0:1 �0:1 0 0 0½ � be the vector of economic weights

and assume that we restrict trait GY; in this case, according to the estimated matricesbP, bC, and bΓ described earlier, the estimated CRLGSI vector of coefficients wasbβ0
RG ¼ 0:076 �0:004 �0:018 2:353 �0:096 �0:082½ �, whence the esti-

mated CRLGSI can be written as

bICR ¼ 0:076GY� 0:004EHT� 0:018PHTþ 2:353GEBVGY � 0:096GEBVEHT

� 0:082GEBVPHT

where GEBVGY, GEBVEHT, and GEBVPHT are the GEBVs associated with traits
GY, EHT, and PHT respectively. The same procedure is valid for two or more
restrictions.

Figure 6.3 presents the frequency distribution of the estimated CRLGSI values for
one (Fig. 6.3a) and two null restrictions (Fig. 6.3b) using matrices U0

C1
and U0

C2
, and

the real data set of the F2 population. For both restrictions, the frequency distribution
of the estimated CRLGSI values approaches normal distribution.

Suppose a selection intensity of 10% (kI ¼ 1.755), matrix

U0
C1

¼ 1 0 0 0 0 0
0 0 0 1 0 0

� �
and that the vector of economic weights is w0 ¼

5 �0:1 �0:1 0 0 0½ �; then, according to the estimated matrices bP, bC, and bΓ
described earlier, the estimated CRLGSI selection response and the estimated

CRLGSI expected genetic gain per trait were bRCR ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
CR

bTC
bβCR

q
¼ 0:96 and

bE0
CR ¼ kI

bβ0
CR

bΨffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
CR

bTC
bβCR

q ¼ 0 �3:53 �6:03 0 �2:93 �4:87½ � respectively,

whereas the estimated CRLGSI accuracy was bρHICR ¼ bσ ICRbσH
¼ 0:51 (see Chaps. 3

and 5 for details).
Now, we use the simulated data described in Chap. 2, Sect. 2.8.1 to compare

CRLGSI efficiency versus RLGSI efficiency. The criteria for this comparison are the
Technow inequality (Eq. 5.18, Chap. 5) and the ratio of the estimated CRLGSI
accuracy (bρHICR ) to the estimated RLGSI accuracy (bρHIR ) expressed as percentages
(Eq. 5.17, Chap. 5), i.e., bp ¼ 100

	bλCR � 1


, where bλP ¼ bρHICR=bρHIR , for one, two,

and three null restrictions for five simulated selection cycles.
Table 6.7 presents the estimated CRLGSI heritability (bh2C), the estimated RLGSI

accuracy (bρHIR ), the values of WC ¼ bρHIRbhI LI (LI ¼ 4), and the values of
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bp ¼ 100
	bλCR � 1



, where bλCR ¼ bρHICR=bρHIR and bρHICR is the estimated CRLGSI

accuracy, for one, two, and three null restrictions for five simulated selection cycles.

The averages of the WC ¼ bρHIRbhC LI values for one, two, and three null restrictions

were 1.26, 0.92, and 0.59 respectively, whereas the RLGSI interval length was 1.5

(LG ¼ 1.5). This means that the estimated Technow inequality (LG <
bρHIGbhI LI ) was

not true. Thus, for this data set, RLGSI efficiency in terms of time is not greater than

CRLGSI efficiency. The inequality LG <
bρHIGbhI LI was not true because the estimated

RLGSI accuracy was very low, whereas CRLGSI heritability was high. Thus, note
that the averages of the estimated RLGSI accuracy for one, two, and three null
restrictions were 0.25, 0.19, and 0.14 respectively, whereas the averages of the
estimated CRLGSI heritability values were 0.72, 0.75, and 0.89 respectively.
Thus, according to these results, when the estimated RLGSI accuracy is very low
and the estimated CRLGSI heritability is high, RLGSI efficiency will be lower than
CRLGSI efficiency in terms of time.

Fig. 6.3 Distribution of 244 estimated combined restricted linear genomic selection index
(CRLGSI) values with one (a) and two (b) null restrictions respectively obtained in a real training
population for one selection cycle in one environment
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The last three columns of Table 6.7, from left to right, present the average of the
values of bp ¼ 100

	bλCR � 1


, for one, two, and three null restrictions of five

simulated selection cycles. According to these results, CRLGSI efficiency was
53.78%, 78.25%, and 61.25% higher than RLGSI efficiency. Thus, for this data
set, the CRLGSI was a better predictor of the net genetic merit than the RLGSI.

6.4 The Combined Predetermined Proportional Gains
Linear Genomic Selection Index

In the PPG-LPSI described in Chap. 3, the vector of the PPG (predetermined
proportional gains) was d0 ¼ d1 d2 . . . dr½ �. However, because the combined
predetermined proportional gains LGSI (CPPG-LGSI) uses phenotypic and GEBV
information jointly to predict the net genetic merit, the vector of the PPG (dC) should
be twice the standard vector d0, that is,
d0C ¼ d1 d2 � � � dr drþ1 drþ2 � � � d2r½ �, where we would expect that if
d1 is the PPG imposed on trait 1, then dr + 1 should be the PPG imposed on the
GEBV associated with trait 1, etc. In addition, in the CPPG-LGSI, we have three
possible options for determining (for each trait and GEBV) the PPG, e.g., for trait
1, d1 ¼ dr + 1, d1 > dr + 1, or d1 < dr + 1. This is the main difference between the
standard PPG-LPSI described in Chap. 3 and the CPPG-LGSI.

6.4.1 The Maximized CPPG-LGSI Parameters

It can be shown that the vector of coefficients of the CPPG-LGSI can be written as

βCP ¼ βCR þ θCPδCP, ð6:16Þ
where

θCP ¼ β0CΦC

	
Φ0

C
bT�1
C ΦC


�1
dC

d0C
	
Φ0

C
bT�1
C ΦC


�1
dC

ð6:17Þ

is a proportionality constant. In addition, in Eq. (6.16), βCR ¼ KCβC is the vector of

coefficients of the CRLGSI (Eq. 6.13), δCP ¼ T�1
C ΦC

	
Φ0

C
bT�1
C ΦC


�1
dC,

Φ0
C ¼ U0

CΨC, and βC ¼ T�1
C ΨCaC (the vector of coefficients of the CLGSI).

When θCP ¼ 0, βCP ¼ βCR, and if θ ¼ 0 and U0
C is the null matrix, then βCR ¼ βC.
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Thus, the CPPG-LGSI is more general than the CRLGSI and the CLGSI, and
includes the latter two indices as particular cases. In addition, it can be shown that
the CPPG-LGSI has the same properties as the PPG-LPSI described in Chap. 3.

The maximized selection response and the expected genetic gain per trait of the
CPPG-LGSI can be written as

RCP ¼ kI
LI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0CPTCβCP

q
ð6:18Þ

and

ECP ¼ kI
LI

ΨβCPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0CPTCβCP

p , ð6:19Þ

respectively. Although in the RLGSI and the PPG-LGSI the interval between
selection cycles is denoted as LG, in the CPPG-LGSI it is denoted as LI. This is
because the RLPSI and the CPPG-LGSI should have the same interval between
selection cycles because they use phenotypic information to predict the net genetic
merit.

6.4.2 Numerical Examples

Similar to the CRLGSI, to illustrate the CPPG-LGSI results we use the
real training maize (Zea mays) F2 population with 248 genotypes,
233 molecular markers, and three traits—GY (ton ha�1), EHT (cm), and PHT

(cm)—where bP ¼
0:45 1:33 2:33
1:33 65:07 83:71
2:33 83:71 165:99

2
4

3
5, bC ¼

0:07 0:61 1:06
0:61 17:93 22:75
1:06 22:75 44:53

2
4

3
5, and

bΓ ¼
0:07 0:65 1:05
0:65 10:62 14:25
1:05 14:25 26:37

2
4

3
5 were the estimated matrices of P, C, and Γ

respectively.
We can obtain the estimated CPPG-LGSI vector of coefficients as bβCP ¼ bβCR þbθCPbδCP (Eq. 6.16). Suppose that we restrict trait GY and its associated GEBV

withmatrixU0
C1

¼ 1 0 0 0 0 0
0 0 0 1 0 0

� �
and the vector of predetermined restriction

d0C ¼ 7 3:5½ �. In Sect. 6.3.2, we showed that the estimated CRLGSI vector of
coefficients was bβ0

CR ¼ 0:076 �0:004 �0:018 2:353 �0:096 �0:082½ � ;
then, we only need to calculate bθCP and bδCP to obtain the vector of coefficients bβCP.
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Let w0 ¼ 5 �0:1 �0:1 0 0 0½ � be the vector of economic weights. It
can be shown that bθCP ¼ 0:00030 is the estimated value of the proportionality
constant and δ0CP ¼ 0:56 �77:28 40:89 49:44 77:28 �40:89½ �. Thus,
the estimated CPPG-LGSI vector of coefficients wasbβ0
CR ¼ 0:76 �0:030 �0:004 2:369 �0:070 �0:096½ �, whence the esti-

mated CPPG-LGSI can be written as

bICP ¼ 0:076GY� 0:03EHT� 0:004PHTþ 2:369GEBVGY � 0:070GEBVEHT

� 0:096GEBVPHT,

where GEBVGY, GEBVEHT, and GEBVPHT are the GEBVs associated with traits
GY, EHT, and PHT respectively. The same procedure is valid for two or more
restrictions. Note that because bθCP ¼ 0:0003 is very small, the estimated CPPG-
LGSI and CRLGSI values were very similar.

Figure 6.4 presents the frequency distribution of the estimated CPPG-LGSI
values for one (Fig. 6.4a) and two predetermined restrictions (Fig. 6.4b) using

matrices U0
C1

and U0
C2

¼
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

2
664

3
775, the vectors of the PPG

Fig. 6.4 Distribution of 244 estimated combined predetermined proportional gain linear genomic
selection index (CPPG-LGSI) values with one (a) and two (b) predetermined restrictions, d¼ 7 and
d0 ¼ 7 �3½ � respectively, obtained in a real training population for one selection cycle in one
environment
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d0C1 ¼ 7 3:5½ � and d0C2 ¼ 7 �3 3:5 �1:5½ �, and the real data set F2. For both
restrictions, the frequency distribution of the estimated CPPG-LGSI values
approaches normal distribution.

Suppose a selection intensity of 10% (kI¼ 1.755) and that we restrict trait GY and
its associated GEBV. The estimated CPPG-LGSI selection response and expected

genetic gain per trait were bRCP ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
CP

bTC
bβCP

q
¼ 0:98 and bE0

CP ¼ kI
bβ0
CP

bΨffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
CP

bTbβCP

q
¼ 0:007 �3:647 �5:760 0:004 �2:829 �4:711½ � respectively, whereas

the estimated CPPG-LGSI accuracy was bρHICP ¼ bσ ICPbσH
¼ 0:52. Once again, because

bθCP ¼ 0:0003, the latter results are very similar to the CRLGSI results.
Now, we use the simulated data described in Chap. 2, Sect. 2.8.1, to compare

CPPG-LGSI efficiency versus PPG-LGSI efficiency. The criteria for this compari-
son are the Technow inequality (Chap. 5, Eq. 5.18) and the ratio of CPPG-LGSI
accuracy (ρHICP ) to PPG-LGSI accuracy (ρHIP ) expressed as percentages (Chap. 5,
Eq. 5.17), bp ¼ 100

	bλCP � 1


, where bλCP ¼ bρHICP=bρHIP for one, two, and three null

restrictions in five simulated selection cycles.
Table 6.8 presents the estimated CPPG-LGSI heritability ( bh2I ), the

estimated PPG-LGSI accuracy ( bρHICP ), values of WCP ¼ bρHIGbhI LI (LI ¼ 4) and

bp ¼ 100
	bλCP � 1



, where bλP ¼ bρHICP=bρHIP and bρHIP is the estimated CPPG-LGSI

accuracy, for one, two, and three null restrictions in five simulated selection cycles.
The averages of the estimated WCP values for one, two, and three predetermined
restrictions were 3.60, 3.31, and 2.50 respectively, whereas the PPG-LGSI interval
length was 1.5 (LG ¼ 1.5). This means that the estimated Technow inequality,

LG <
bρHIGbhI LI , was true. Thus, for this data set, PPG-LGSI efficiency is greater

than CPPG-LGSI efficiency in terms of time.
The last three columns of Table 6.8, from left to right, present the values ofbp ¼ 100

	bλCP � 1


, for one, two, and three null restrictions in five simulated selec-

tion cycles. The average values of bp ¼ 100
	bλCP � 1



for each of the three restric-

tions, in percentage terms, were 37.19%, 32.82%, and 37.08% respectively. This
means that the CPPG-LGSI efficiency was greater than PPG-LGSI efficiency at
predicting the net genetic merit.
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Chapter 7
Linear Phenotypic Eigen Selection Index
Methods

Abstract Based on the canonical correlation, on the singular value decomposition
(SVD), and on the linear phenotypic selection indices theory, we describe the eigen
selection index method (ESIM), the restricted ESIM (RESIM), and the
predetermined proportional gain ESIM (PPG-ESIM), which use only phenotypic
information to predict the net genetic merit. The ESIM is an unrestricted linear
selection index, but the RESIM and PPG-ESIM are linear selection indices that
allow null and predetermined restrictions respectively to be imposed on the expected
genetic gains of some traits, whereas the rest remain without any restrictions. The
aims of the three indices are to predict the unobservable net genetic merit values of
the candidates for selection, maximize the selection response, and the accuracy,
and provide the breeder with an objective rule for evaluating and selecting several
traits simultaneously. Their main characteristics are: they do not require the eco-
nomic weights to be known, the first multi-trait heritability eigenvector is used as its
vector of coefficients; and because of the properties associated with eigen analysis, it
is possible to use the theory of similar matrices to change the direction and propor-
tion of the expected genetic gain values without affecting the accuracy. We describe
the foregoing three indices and validate their theoretical results using real and
simulated data.

7.1 The Linear Phenotypic Eigen Selection Index Method

The conditions described in Chap. 2 for the linear phenotypic selection index (LPSI)
are necessary and sufficient for constructing the linear phenotypic eigen selection index
method (ESIM). The ESIM index can be written as I¼ b0y, where b0 ¼ [b1 b2 � � � bt]
is the unknown index vector of coefficients, t is the number of traits, and
y0 ¼ y1 y2 � � � yt½ � is a known vector of trait phenotypic values. The objectives
of ESIM are:

1. To predict the net genetic merit H ¼ w0g, where g0 ¼ g1 g2 . . . gt½ � is
the unknown vector of true breeding values for an individual and
w0 ¼ w1 w2 . . . wt½ � is a vector of unknown economic weights.
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2. To maximize the ESIM selection response and the accuracy.
3. To select individuals with the highest H values in each selection cycle as parents

of the next generation.
4. To provide the breeder with an objective rule for evaluating and selecting several

traits simultaneously.

Although in the context of the LPSI w is a known and fixed vector of economic
weights, in the ESIM w is fixed, but unknown and its values must be estimated in
each selection cycle. This latter assumption is the fundamental difference between
the ESIM and the LPSI and implies that the ESIM is more general than the LPSI.
Thus, when w is known, the LPSI and ESIM give the same results.

7.1.1 The ESIM Parameters

The theoretical ESIM selection response can be written as

RI ¼ kIσHρHI , ð7:1Þ
where kI is the standardized selection differential (or selection intensity),
σH ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

w0Cw
p

is the standard deviation of H, ρHI ¼ w0Cbffiffiffiffiffiffiffiffiffi
w0Cw

p ffiffiffiffiffiffiffi
b0Pb

p is the correlation,

and w0Cb ¼ σHI the covariance between H and I respectively, σI ¼
ffiffiffiffiffiffiffiffiffiffi
b0Pb

p
is the

standard deviation of I, C is the covariance matrix of the true breeding values (g),
and P is the covariance matrix of the trait phenotypic values (y).

In the ESIM, it is assumed that kI and σH are fixed, and that C and P are known;

thus, to maximize Eq. (7.1), it is necessary to maximize ρ2HI ¼
w0Cbð Þ2

w0Cwð Þ b0Pbð Þ with
respect to vectors b and w under the restrictions σ2H ¼ w0Cw, σ2I ¼ b0Pb, and 0 < σ2H ,
σ2I<1, where σ2H ¼ w0Cw is the variance of H ¼ w0g and σ2I ¼ b0Pb is the variance
of I ¼ b0y. That is, it is necessary to maximize the function

f b;w; μ;ϕð Þ ¼ w0Cbð Þ2 � μ b0Pb� σ2I
� �� ϕ w0Cw� σ2H

� � ð7:2Þ
with respect to b, w, μ, and ϕ, where μ and ϕ are Lagrange multipliers. The
derivative results of Eq. (7.2) with respect to b, w, μ, and ϕ are:

w0Cbð ÞCw� μPb ¼ 0, ð7:3Þ
w0Cbð ÞCb� ϕCw ¼ 0, ð7:4Þ

b0Pb ¼ σ2I and w0Cw ¼ σ2H , ð7:5Þ
respectively, where Eq. (7.5) denotes the restrictions imposed for maximizing ρ2HI . It

can be shown thatw0Cb ¼
ffiffiffiffiffiffiffi
μσ2I

q
¼

ffiffiffiffiffiffiffiffiffi
ϕσ2H

q
¼ θ1=2; then, Eqs. (7.3) and (7.4) can be

written as
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θ1=2Cw� θ

σ2I
Pb ¼ 0 ð7:6Þ

and

θ1=2Cb� θ

σ2H
Cw ¼ 0, ð7:7Þ

respectively. Equation (7.6) is equal to Cw ¼ θ1=2

σ2I
Pb; then, vector w can be written

as

wE ¼ θ1=2

σ2I
C�1Pb: ð7:8Þ

By the result of Eq. (7.8), the net genetic merit in the ESIM context isHE ¼ w0
Eg

and the correlation between HE and I is ρHEI ¼
w0

ECbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0

ECwE

p ffiffiffiffiffiffiffiffiffiffi
b0Pb

p ¼
ffiffiffiffiffiffiffiffiffiffi
b0Pb

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0PC�1Pb

p .

Now, it is necessary to find the vector b that maximizes ρHEI , which should be the
ESIM index vector of coefficients. Substituting w with wE in Eq. (7.7), we get

Cb� w0
ECb

� �2
σ2I σ

2
HE

Pb ¼ 0, ð7:9Þ

where
w0

ECb
� �2
σ2I σ

2
HE

¼ ρ2HEI
is the square of the correlation between ESIM and

HE ¼ w0
Eg. Let ρ

2
HEI

¼ λ2E, then Eq. (7.9) can be written as

P�1C� λ2EI
� �

bE ¼ 0, ð7:10Þ
and the optimized ESIM index is IE ¼ b0Ey. Note that in Eq. (7.10) P

�1C is the multi-
trait heritability. By Eqs. (7.8) and (7.10), the maximized correlation between HE

¼ w0
Eg and IE ¼ b0Ey (or ESIM accuracy) can be written as

ρHEIE ¼ σIE
σHE

, ð7:11Þ

where σIE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b0EPbE

q
is the standard deviation of the variance of IE ¼ b0Ey, and

σHE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0EPC

�1PbE
q

is the standard deviation of the variance of HE ¼ w0
Eg.

Hereafter, we write Eq. (7.11) as ρE ¼ ρHEIE or λE ¼ ρHEIE to simplify the notation.
An additional restriction on Eq. (7.10) is b0b¼ 1, because ρHEIE is invariant to the

scale change and because if bE is an eigenvector of the multi-trait heritability matrix
P�1C, vector αbE is also an eigenvector of P

�1C for all real values of α (Mardia et al.
1982). This means that in the ESIM the magnitude of an eigenvector is unimportant;
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only the direction matters (Watkins 2002). Equation (7.10) can also be written as
CbE ¼ λ2EPbE, which is called the generalized eigenvalue problem (Watkins 2002).
In the latter case, bE is called a generalized eigenvector and λ2E a generalized
eigenvalue. The generalized eigenvalues may not exist; that is, they may be infinite.
However, if P is positive definite and has the same size asC, all eigenvalues of P�1C
exist and are finite (Gentle 2007). Matrix P is symmetric and positive definite and its
eigenvalues are different with a probability of 1 if the number of genotypes is higher
than the number of traits (Okamoto 1973).

If the heritability of the ESIM is h2I ¼
b0Cb
b0Pb

, then another way of writing Eq. (7.1)

is

RI ¼ kIσIh
2
I ¼ kI

b0Cbffiffiffiffiffiffiffiffiffiffi
b0Pb

p , ð7:12Þ

which is similar to the univariate breeder’s equation (see Chap. 2, Eq. 2.4). All the
parameters of Eq. (7.12) were defined earlier.

The derivative of the ratio b0Cbffiffiffiffiffiffiffi
b0Pb

p (Eq. 7.12) with respect to b can be written as

2(b0Pb)1/2Cb � (b0Pb)�1/2(b0Cb)Pb ¼ 0, and, except by a proportionality constant,
the result is

P�1C� h2IEI
� �

bE ¼ 0, ð7:13Þ

where h2IE ¼¼ b0ECbE
b0EPbE

is the maximized ESIM heritability. Let λ2E ¼ ρ2E ¼ h2IE , then

Eq. (7.13) is equal to Eq. (7.10) and can be written as b0ECbE ¼ λ2Eb
0
EPbE, whence

the maximized ρ2E in terms of h2IE is

ρ2E ¼ b0ECbE
b0EPbE

, ð7:14Þ

which should give a equivalent result to that of Eq. (7.11).

By Eq. (7.11) and σHE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0EPC

�1PbE
q

, the maximized ESIM selection

response and expected genetic gain per trait can be written as

RE ¼ kI
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b0EPbE

q
ð7:15Þ

and

EE ¼ kI
CbEffiffiffiffiffiffiffiffiffiffiffiffiffi
b0EPbE

p , ð7:16Þ

respectively. Equations (7.15) and (7.16) do not require the economic weights to be
known. In the original derivation of the ESIM, Cerón-Rojas et al. (2008) imposed the
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restrictions σ2HE
¼ 1 and σ2IE ¼ 1. Under these restrictions, λE ¼ w0

ECbE and
Eq. (7.15) can be written as RE ¼ kIλE. When σ2HE

6¼ 1 Eq. (7.15) is equal to

RE ¼ kIσHEλE, where σHE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0EPC

�1PbE
q

and λ2E ¼ ρ2E ¼ h2IE .

Let T ¼ P�1C and λ2E ¼ h2IE ; then, Eq. (7.13) can be written as TIbE ¼ λ2EIbE,
where I ¼ F�1F is an identity matrix of size t � t (t¼ number of traits), and
F ¼ diag f 1 f 1 � � � f tf g is a diagonal matrix with values equal to any real
number, except zero values. Thus, another way of writing Eqs. (7.10) and (7.13) is

T2 � λ2EI
� �

β ¼ 0, ð7:17Þ
where T2 ¼ FTF�1 and β ¼ FbE; T and T2 ¼ FTF�1 are similar matrices and both
have the same eigenvalues but different eigenvectors (Harville 1997). When the
F values are only 1s, vector bE is not affected; when the F values are only �1s,
vector bE changes its direction, and if the F values are different from 1 and �1,
matrix F changes the proportional values of bE. In practice, bE is first obtained from
Eq. (7.13) and then multiplied by matrix F to obtain β ¼ FbE, that is, β is a linear
transformation of bE. Matrix T2 ¼ FTF�1 is called the similarity transformation,
and matrix F is called the transforming matrix (Watkins 2002). Cerón-Rojas et al.
(2006) introduced an alternative procedure for modifying the bE signs that is a
particular case of Eq. (7.17). Vector β ¼ FbE can substitute bE in Eqs. (7.15) and
(7.16); and in this case, the optimized ESIM index should be written as IE ¼ β0y.

7.1.2 Statistical ESIM Properties

The ratio of the index accuracies and the variance of the predicted error (VPE) are
good criteria for comparing the index efficiencies for predicting the net genetic merit
(see Chap. 2 for details). In Eq. (7.11), we obtained the accuracy of the ESIM; now,
we derive the VPE of the ESIM.

The variance of IE ¼ b0Ey (σ2IE ) and the covariance between HE ¼ w0
Eg and

IE ¼ b0Ey(σHEIE ) are the same, that is,

σ2IE ¼ b0EPbE and σHEIE ¼ w0
ECbE ¼ b0EPC

�1CbE ¼ b0EPbE, ð7:18Þ

respectively; that is, σ2IE ¼ σHEIE . By Eq. (7.18), the VPE of the ESIM can be written
as

E HE � IEð Þ2
h i

¼ σ2HE
þ σ2IE � 2σHEIE ¼ σ2HE

� σ2IE ¼ 1� ρ2E
� �

σ2HE
: ð7:19Þ
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The relative effectiveness of IE ¼ b0Ey in predicting HE ¼ w0
Eg is the ratio of

1� ρ2E
� �

σ2HE
over σ2HE

, i.e., 1� ρ2E ; thus, the greater ρ2E is, the more effective
IE ¼ b0Ey is at predicting HE ¼ w0

Eg. The mean squared effect of IE on HE, or the
total variance of HE explained by IE is

σ2IE ¼ ρ2Eσ
2
HE
, ð7:20Þ

and the relative mean squared effect can be measured by ρ2E (Anderson 2003). If in
Eq. (7.20) ρ2E ¼ 1, σ2IE ¼ σ2HE

, and if ρ2E ¼ 0, σ2IE ¼ 0. That is, the variance of HE

explained by IE is proportional toρ
2
E, and whenρ

2
E is close to 1,σ

2
IE
is close toσ2HE

, and
if ρ2E is close to 0, σ

2
IE
is close to 0. All these results are valid for any index associated

with the ESIM, such as the restricted ESIM (RESIM) and the predetermined
proportional gains ESIM (PPG-ESIM), which are described in the following sections
of this chapter.

7.1.3 The ESIM and the Canonical Correlation Theory

Canonical correlation theory describes the associations between two sets of variables
(Hotelling 1935, 1936) and searches for linear combinations, called canonical vari-
ables, of each of two sets of variables having maximal correlation. The vector of
coefficient of these linear combinations is called the canonical vector and the
correlations between the canonical variables is called the canonical correlation
(Wilms and Croux 2016).

To see how the ESIM and the canonical correlation theory are related, note that
vectors y and g (Eq. 7.1) can be ordered in a new vector x as x0 ¼ y0 g0½ �, whence
the covariance matrix of x is

P C
C C

� �
. Onemeasure of the association between the jth

linear combination of y(IE ¼ b0E j
y) and the jth linear combination of g(HE ¼ w0

E j
g) is

the jth canonical correlation (λj) value obtained from equation P�1C� λ2jI
� �

bEj ¼ 0,

where bEj is the jth canonical vector ( j ¼ 1, 2� � �, t) of matrix P�1C, and
wE j ¼ C�1PbE j . Thus, in the canonical correlation context, IE ¼ b0E j

y andHE ¼ w0
E j

g are canonical variables.
In the ESIM, the first eigenvector (bE1 ) of matrix P�1C should be used on

IE ¼ b0E1
y; the first eigenvalue (λ21) and bE1 of P

�1C should be used on the ESIM
selection response and on the ESIM expected genetic gain per trait, because, in this
case, the ESIM has maximum accuracy compared with other indices, such as the
LPSI. The latter results in this subsection imply that the sampling statistical properties
associated with the canonical correlation theory are also valid for the ESIM.
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7.1.4 Estimated ESIM Parameters and Their Sampling
Properties

The estimated covariance matrix of the true breeding values (C) and that of the trait
phenotypic values (P) are denoted as bC and bP respectively; they can be obtained by
restricted maximum likelihood using Eqs. (2.22) to (2.24) described in Chap. 2. With
matrices bC and bP, we constructed matrix bT ¼ bP�1bC and equation

�bT � bλ2EjI�bbEj ¼ 0, ð7:21Þ

j ¼ 1, 2, � � �, t, where t is the number of traits in the ESIM index. Note that bλ2Ej is
positive only if bP is positive definite (all eigenvalues positive) and bC is positive
semidefinite (no negative eigenvalues); in addition, as bP�1bC is an asymmetric
matrix, the values of bbEj and bλ2Ej should be obtained using the singular value
decomposition (SVD) theory (Anderson 2003).

Matrix bT is square and asymmetric of order t � t and rank q� minimum ( p, c),
where p and c denote the rank of bP�1 and bC respectively; the rank of bT is equal to
c only if bC is square and nonsingular. Thus, matrix bT has a maximum of q eigenvalues
different from zero (Rao 2002). In addition, bTbT 0 and bT0bT are symmetric matrices, butbTbT0 6¼ bT0bT. Using the SVD theory, matrix bT can be written as

bT ¼ V1L1=2V0
2, ð7:22Þ

where V1 (V
0
1V1 ¼ V1V0

1 ¼ Iq) and V2 (V
0
2V2 ¼ V2V0

2 ¼ Iq) are matrices with the
eigenvectors of matrices bTbT0 and bT 0bT respectively; L1/2 is a diagonal matrix with
the square root of the eigenvalues (bλ2E1

� bλ2E2
� � � � � bλ2Eq

> 0) of either bTbT0 or bT0bT
(the eigenvalues of bTbT0 and bT0bT are the same). The entries bλ2E1

� bλ2E2
� � � � � bλ2Eq

> 0of L1/2 are uniquely determined, and they are called the singular values of bT. The
columns of V1 are orthonormal vectors called left singular vectors of bT, and the
columns of V2 are called right singular vectors (Watkins 2002).

Estimators bbE1 and bλ2E1
of the first eigenvector bE1 and the first eigenvalue λ2E1

respectively are the first column of matrixV1 and the first diagonal element of matrix
L1/2. Thus, because bTbT0 is a symmetric matrix, the maximum likelihood estimatorsbλ2E1

and bbE1 in the ESIM context can be obtained from

�bTbT0 � bμjI
�bbE j ¼ 0, ð7:23Þ

where bμj ¼ bλ4E j
, j¼ 1, 2, . . ., t. In the asymptotic context, bλ2E1

and bbE1 are consistent

and unbiased estimators (Anderson 2003).

The latter results allow the ESIM index (IE ¼ b0Ey) asbI E ¼ bb0E1y to be estimated.
The estimator of the maximized ESIM selection response and expected genetic gain
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per trait are bRE ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0E1
bPbbE1

q
and bEE ¼ kI

bCbbE1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0E1
bPbbE1

q respectively, whereas the

estimator of the maximized ESIM accuracy is bλE1 , which should be similar to the
estimator of the square root of the maximized ESIM heritability.

In the asymptotic context, the estimator of bEj (bbEj ) has multivariate normal
distribution with expectation E

�bbEj

� ¼ bEj and variance

Var
�bbEj

� ¼ 1
2n

bEjb0Ej þ
1
n

1� λ2Ej

� �Xt

i6¼j

λ2Ej þ λ2Ei � 2λ2Eiλ
2
Ej

λ2Ei � λ2Ej

� �2 bEib0Ei, ð7:24Þ

and, for i 6¼ j, the covariance between bbEi and bbEj can be written as

Cov
�bbEi; bbEj

� ¼ 1� λ2Ej

� �
1� λ2Ei
� �

λ2Ei þ λ2Ej

� �
n λ2Ei � λ2Ej

� �2 bEjb0Ei, ð7:25Þ

where n is the number of individuals or genotypes (Anderson 1999). The variance ofbbEj and the covariance between bbEi and bbEj depend not only on n, but also on
eigenvalues λ2Ei and λ2Ej. Suppose that λ2Ej > λ2Ei ; then, when λ2Ej is very close to 1,

Var
�bbEj

� � 1
2n

bEjb0Ej (“�”denotes an approximation) andCov
�bbEi; bbEj

�
is very close

to 0. By the result of Eq. (7.24), the variance of the first eigenvector (bbE1) of bP�1bC
can be written as Var

�bbE1
� ¼ 1

2n
bE1b0E1þ 1

n 1� λ2E1
� �Pt

j¼2

λ2E1þλ2Ej�2λ2E1λ
2
Ej

λ2E1�λ2Ejð Þ2 bEjb0Ej. If the

first eigenvalue λ2E1 of P
�1C is very close to 1 (λ2E1 � 1), Var

�bbE1
� ¼ 1

2n
bE1b0E1 and

Cov
�bbE1; bbEj

� � 0.
In the asymptotic context, the jth estimator (bλEj) of the canonical correlations has

normal distribution with expectation E
�bλEj� � λEj and variance

Var
�bλEj� � 1� λ2Ej

� �2

n
, ð7:26Þ

whereas the jth estimator of the square of the canonical correlations bλ2Ej has normal

distribution with expectation E
�bλ2Ej� � λ2Ej and variance

Var
�bλ2j � � 4λ2Ej 1� λ2Ej

� �2

n
: ð7:27Þ
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In addition, for i 6¼ j, the correlation between bλ2Ej and bλ2Ei is zero, i.e., Corr�bλ2Ei;bλ2Ej� ¼ 0 (Bilodeau and Brenner 1999; Muirhead 2005).
Equation (7.26) implies that under the restrictions σ2H ¼ 1 and σ2I ¼ 1, the

expectation and variance of bRE ¼ kIbλE1 are E
�bRE

� � kIλE1 and Var
�bRE

� �
k2I 1�λ2E1ð Þ2

n respectively. However, obtaining the expectation and variance of bRE ¼ kI

bσH
bλE1 or bRE ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0E1bPbbE1

q
is more difficult, because in both equations there are

two estimators: bσH and bλ1 in the first one, and bP and bbE1 in the second one.

7.1.5 Numerical Examples

We compare ESIM efficiency versus LPSI efficiency using a real data set from
commercial egg poultry lines obtained from Akbar et al. (1984). The estimated
phenotypic (bP ) and genetic ( bC ) covariance matrices among the rate of lay (RL,
number of eggs), age at sexual maturity (SM, days) and egg weight (EW, kg), were

bP ¼
240:57 �95:62 2:07
�95:62 167:20 4:58
2:07 4:58 22:80

2
4

3
5 and bC ¼

29:86 �17:90 �4:13
�17:90 18:56 1:49
�4:13 1:49 9:24

2
4

3
5 respec-

tively. The number of genotypes and the vector of economic weights were n¼ 3330
andw0 ¼ 19:54 �3:56 17:01½ � respectively, whereas the selection intensity was
10% (kI ¼ 1.755) for both indices.

The estimated LPSI vector of coefficients was bb0
S ¼ w0bP�1bC ¼

1:82 �1:38 3:25½ �, whereas the estimated selection response, expected
genetic gain per trait, accuracy, and heritability of the LPSI were

bRS ¼ 1:755

ffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0SbPbbS

q
¼ 74:91, bE0

S ¼ 1:755
bb0
S
bCffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0SbPbbS

q ¼ 2:70 �2:20 0:84½ �,

bρS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0SbPbbS

q
ffiffiffiffiffiffiffiffiffiffiffiffi
w0bCw

p ¼ 0:362, and bh2S ¼ bb0SbCbbSbb0SbPbbS

¼ 0:143 respectively.

Note that because in the ESIM context bb0EbbE ¼ 1, the best way of comparing
ESIM results versus LPSI results is when the LPSI coefficient vector is normalized,

i.e., when the LPSI coefficient vector is equal to bbS
∗ ¼ bbS=

bb0SbbS and then bb0∗0
S
bb∗
S

¼ 1 ; however, it can be shown that the normalization process only affects the
estimated LPSI selection response because in that case, bRS ¼ 74:91 is divided bybb0SbbS. For example, for this data set result, bb0SbbS ¼ 15:76; then, the estimated LPSI

selection response using bbS
∗ ¼ bbS=

bb0SbbS is bRS ¼ 74:91
15:74

¼ 4:75, whereas the rest of

the estimated LPSI parameters are the same. When 0 < bb0SbbS < 1 and 1 < bRS, the
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values of bRS increase, but when 1 < bb0SbbS, the values of bRS decrease, as in the
example.

The product bb0SbbS does not affect bρS because it is invariant to scale change. Also,bb0SbbS does not affect bh2S and bES because bb0SbbS appears in the numerator and
denominator of both estimated parameters.

In the ESIM, the sign and proportion of the expected genetic gain values for traits
RL, SM, and EW should be in accordance with the breeder’s interest. For example, if
the breeder’s interest is that the expected genetic gain per trait for RL should be
positive and negative for SM, the sign and proportion of the values of the first
eigenvector should be modified using a linear combination of the estimated first
eigenvector bbE1 , i.e., bβ ¼ FbbE1 , to achieve expected genetic gain per trait values in
RL and SM according to the breeder’s interest.

The information needed to obtain the estimated ESIM parameters are matrices bT¼
bP�1bC¼

0:1102 �0:0405 �0:0280
�0:0390 0:0864 �0:0184
�0:1833 0:0517 0:4115

2
4

3
5and bTbT 0 ¼

0:0146 �0:0073 �0:0338
�0:0073 0:0093 0:0041
�0:0338 0:0041 0:2056

2
4

3
5.

We need to find the eigenvalues and eigenvectors of equation
�bTbT0�bμjI

�bbE j ¼0,
where bμj¼bλ4E j

, to obtain matrices V1 and L
1/2, which form matrix bT¼V1L1=2V0

2.

Matrix V1 is equal to V1 ¼
�0:1701 0:6818 0:7115
0:0259 �0:7187 0:6948
0:9851 0:1366 0:1046

2
4

3
5, whereas the diag-

onal elements of matrix L are 0.2115, 0.0155, and 0.0025, that is, matrix

L1=2 ¼
0:4599 0 0

0 0:1244 0
0 0 0:0498

2
4

3
5. Thus, bμ1 ¼ bλ4E1

¼ 0:2115, bλ2E1
¼ 0:4599,

and the estimated ESIM accuracy was bλE1 ¼ 0:6782. The estimated ESIM eigen-
vector of coefficients is the first column of matrix V1, i.e.,bb0
E1

¼ �0:1701 0:0259 0:9851½ �, and the estimated ESIM index can be

constructed as bIE ¼ �0:1701RLþ 0:0259SMþ 0:9851EW.
The estimated ESIM selection response and expected genetic gain per trait were

bRE ¼ 1:755
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0E1

bPbbE1

q
¼ 9:54 and bE0

E ¼ 1:755
bb0
E1
bCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0E1
bPbbE1

q ¼ �3:10 1:61 3:18½ �

respectively. Because the estimated LPSI selection response wasbRS ¼ 74:91
15:74

¼ 4:75, the estimated ESIM selection response was higher than the

estimated LPSI response. In addition, the estimated LPSI expected genetic gain
per trait was bE0

S ¼ 2:70 �2:20 0:84½ �. Now, suppose that the breeder’s interest is to
increase RL and decrease SM; then, bE0

S is a good result but bE 0
E is wrong.

We can change the sign and proportion of bE0
E by transforming bbE1 into bβ ¼ FbbE1

using a convenient matrix F such as F ¼
�9 0 0
0 1 0
0 0 1

2
4

3
5. In such a case
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bβ0 ¼ bb0
E1
F ¼ 1:531 0:026 0:981½ �, bRE ¼ 1:755

ffiffiffiffiffiffiffiffiffiffiffibβ0bPbβq
¼ 42:44, and bE 0

E ¼
1:755

bβ0bCffiffiffiffiffiffiffiffibβ0bPbβq ¼ 2:990 �1:85 0:205½ �. However, vector bβ0 was not normalized.

To normalize bβ0 we need to divide it by bβ0bβ ¼ 3:314, but bβ0bβ should only affectbRE ¼ 42:44, which should be divided by 3.314, that is, bRE ¼ 42:44
3:314

¼ 12:806.

According to the theory of similar matrices (Harville 1997), the estimated maxi-
mized ESIM accuracy, bλE1 ¼ 0:6782, should not be affected by matrix F.

We can compare ESIM efficiency versus LPSI efficiency to predict the net
genetic merit using the ratio of the estimated ESIM accuracy bλE1 ¼ 0:6782 to

LPSI accuracy bρS ¼ 0:362, i.e.,
bλE1bρS ¼ 0:6782

0:362
¼ 1:873, or in percentage terms,

bpE ¼ 100 1:873� 1ð Þ ¼ 87:3 (see Chap. 5, Eq. 5.17). According to the latter
result, the ESIM is a better predictor of the net genetic merit and its efficiency
is 87.3% higher than that of the LPSI for this data set.

Now, we compare ESIM efficiency versus LPSI efficiency using the data set
described in Sect. 2.8.1 of Chap. 2. From this data set, we ran five phenotypic
selection cycles, each with four traits (T1, T2, T3, and T4), 500 genotypes, and four
replicates for each genotype. The economic weights for T1, T2, T3, and T4 were
1, �1, 1, and 1 respectively. In this case, matrix F is an identity matrix of size 4 � 4
for all five selection cycles.

Table 7.1 presents the estimated LPSI, the restricted LPSI (RLPSI), and the
predetermined proportional gain LPSI (PPG-LPSI) selection response (the latter
two for one, two, and three restrictions) for five simulated selection cycles when
their vectors of coefficients are normalized. Table 7.1 also presents the estimated
ESIM, the RESIM and the PPG-ESIM selection response for one, two, and three
restrictions for five simulated selection cycles. The selection intensity was 10%
(kI ¼ 1.755) for all five selection cycles. In this subsection, we compare only LPSI
results versus ESIM results. The estimated LPSI selection response when the vector
of coefficients was not normalized was described in Chap. 2 (Table 2.4). The
averages of the estimated LPSI and ESIM selection responses were 4.70 and 6.31
respectively.

Table 7.2 presents the estimatedESIMexpected genetic gain per trait, accuracy (bρE),
and the values bpE ¼ 100

�bλE � 1
�
, where bλE ¼ bρE=bρS is the ratio of bρE to the

estimated LPSI accuracy (bρS ), expressed as percentages. Table 7.2 also presents the
accuracy of the PPG-ESIM and the estimated ratio (bpPE) of the estimated PPG-ESIM
accuracy to the estimated PPG-LPSI accuracy, expressed as percentages, for one, two,
and three predetermined restrictions for five simulated selection cycles. In this subsec-
tion, we use only the estimated ESIM expected genetic gain per trait and bpE ¼ 100�bλE � 1

�
to compare ESIM efficiency versus LPSI efficiency.

The estimated LPSI expected genetic gains per trait were presented in Chap. 2,
Table 2.4. According to the results shown in Table 2.4, the averages of the estimated
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LPSI expected genetic gain per trait T1, T2, T3, and T4 for five simulated selection
cycles were 7.26, �3.52, 2.78, and 1.58, whereas according to the results of
Table 7.2, the averages of the estimated ESIM expected genetic gains per trait
were 5.67, �2.67, 1.81, and 2.9 respectively. This means that the estimated LPSI
expected genetic gain for traits T1, T2, and T3 was higher than the estimated ESIM
expected genetic gain for those traits.

The average of thebpE ¼ 100
�bλE � 1

�
values was 9.76 for all five selection cycles

(Table 7.2). The latter result is not in accordance with the LPSI and ESIM expected
genetic gain per trait; however, note that the bpE values are associated with the
estimated LPSI and ESIM selection responses (Table 7.1), not with the expected

genetic gain per trait, because bλE ¼ bρEbρS �
bREbRS

, where bRE and bRS are the estimated

ESIM and LPSI selection responses respectively. Thus, thebpEvalues indicate that the
efficiency of the ESIM and that of the LPSI were very similar because the former
was only 9.76% higher than the latter for this data set.

The equality
bρEbρS ¼

bREbRS

is true only when the denominators of both estimated

correlations are the same, as in the linear selection indices described in Chaps. 2–6.

Table 7.1 Estimated linear phenotypic selection index (LPSI), restricted null LPSI (RLPSI), and
predetermined proportional gains LPSI (PPG-LPSI) selection responses when their vectors of
coefficients are normalized; estimated eigen selection index method (ESIM), restricted null ESIM
(RESIM), and predetermined proportional gain ESIM (PPG-ESIM) selection responses for one,
two, and three restrictions for five simulated selection cycles

Cycle LPSI response

RLPSI response for one, two,
and three null restrictions

PPG-LPSI response for one, two,
and three predetermined
restrictions

1 2 3 1 2 3

1 4.78 4.79 4.44 5.06 4.78 5.41 3.18

2 4.84 4.51 4.39 5.15 4.84 5.19 3.35

3 4.59 4.51 4.39 5.26 4.59 4.83 3.53

4 4.80 4.15 4.06 4.71 4.80 4.96 2.64

5 4.48 4.19 4.22 4.41 4.48 4.14 2.99

Average 4.70 4.43 4.30 4.92 4.70 4.91 3.14

Cycle ESIM response

RESIM response for one, two,
and three null restrictions

PPG-ESIM response for one, two,
and three predetermined
restrictions

1 2 3 1 2 3

1 8.88 4.78 4.64 4.57 8.88 7.1 7.4

2 6.13 4.86 4.69 4.69 6.13 6.04 7.3

3 5.44 4.96 4.79 4.68 5.44 5.87 6.91

4 4.84 4.30 4.19 4.19 4.84 4.91 5.77

5 6.24 3.79 3.78 3.78 6.24 7.49 6.39

Average 6.31 4.54 4.42 4.38 6.31 6.28 6.75
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Note that bρS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0SbPbbS

q
ffiffiffiffiffiffiffiffiffiffiffiffi
w0bCw

p and bρE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0EbPbbE

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0

E
bCwE

q , whereas bRS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0SbPbbS

q
and

bRE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0EbPbbE

q
; this means that if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0

E
bCwE

q
6¼

ffiffiffiffiffiffiffiffiffiffiffiffi
w0bCw

p
,
bρEbρS 6¼

bREbRS

. For the

Akbar et al. (1984) data, bRE ¼ 9:54 and bRS ¼ 4:75, then
bREbRS

¼ 2:0 but

bλE1bρS ¼ 1:873; that is,
bρEbρS �

bREbRS

, where “�” indicates an approximation.

Figure 7.1 presents the frequency distribution of 500 estimated ESIM values for
cycle 2 (Fig. 7.1a) and cycle 5 (Fig. 7.1b), obtained from one selection cycle for
500 genotypes and four traits simulated in one environment. Figure 7.1a, b indicates
that the frequency distribution of the estimated ESIM values approaches normal
distribution.

Table 7.2 Estimated eigen selection index method (ESIM) expected genetic gain per trait,
accuracy (bρE), and ratio of bρE to the estimated LPSI (data not presented) accuracy (bρS), expressed
in percentage terms, bρE ¼ 100

�bλE � 1
�
(where bλE ¼ bρE=bρS)

Cycle

ESIM expected genetic gain per trait ESIM
accuracy bρE values (in %)T1 T2 T3 T4

1 7.81 �4.62 3.11 2.21 0.98 8.11

2 5.15 �2.98 2.31 3.48 0.96 9.34

3 4.74 �1.15 0.66 3.79 0.97 10.94

4 3.94 �2.44 0.74 3.34 0.95 10.04

5 6.68 �2.15 2.24 2.05 0.95 10.35

Average 5.67 �2.67 1.81 2.97 0.96 9.76

Cycle

PPG-ESIM accuracies for one, two, and
three predetermined restrictions

bρP values (in %) for one, two, and three
predetermined restrictions

1 2 3 1 2 3

1 0.98 0.96 0.99 9.34 8.90 20.99

2 0.96 0.96 0.98 10.94 12.46 25.20

3 0.97 0.97 1.00 10.04 9.71 41.43

4 0.95 0.94 0.99 10.35 13.98 28.95

5 0.98 0.96 0.99 9.34 8.90 20.99

Average 0.96 0.96 0.99 9.76 11.71 29.03

Estimated PPG-ESIM accuracy (bρP) and estimated ratio (bρP) of the bρP to the estimated accuracy of
the PPG-LPSI (data not presented), expressed in percentages (%), for one, two, and three
predetermined restrictions for five simulated selection cycles
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7.2 The Linear Phenotypic Restricted Eigen Selection Index
Method

Similar to the RLPSI (see Chap. 2), the objective of the RESIM is to fix r of
t (r < t) traits by predicting only the genetic gains of (t � r) of them. Let H ¼ w0g
be the net genetic merit and I ¼ b0y the ESIM index. In Chap. 2, we showed that
Cov(I, g) ¼ Cb is the covariance between the breeding value vector (g) and I ¼ b0y.
Thus, to fix r of t traits, we need r covariances between the linear combinations
of g (U0g) and I ¼ b0y to be zero, i.e., Cov(I,U0g) ¼ U0Cb ¼ 0, where U0 is a
matrix with 1s and 0s (1 indicates that the trait is restricted and 0 that the trait has
no restrictions). In the RESIM, it is possible to solve this problem by maximizing

ρ2HI ¼
w0Cbð Þ2

w0Cwð Þ b0Pbð Þ with respect to vectors b and w under the restrictions

U0Cb ¼ 0, b0b ¼ 1, w0Cw ¼ 1, and b0Pb ¼ 1, where w0Cw is the variance of
H¼w0g and b0Pb is the variance of I¼ b0y. Also, the RESIM problem can be solved
by maximizing b0Cbffiffiffiffiffiffiffi

b0Pb
p (Eq. 7.12) with respect to vectors b only under the restrictions

U0Cb ¼ 0 and b0b ¼ 1, as we did to obtain Eq. (7.13). Both approaches give the
same result, but it is easier to work with the second approach than with the first one.

Fig. 7.1 Frequency distribution of 500 estimated eigen selection index method (ESIM) values for
(a) cycle 2 and (b) cycle 5, obtained from one selection cycle for 500 genotypes and four traits
simulated in one environment

162 7 Linear Phenotypic Eigen Selection Index Methods



7.2.1 The RESIM Parameters

To obtain the RESIM vector of coefficients that maximizes the RESIM selection
response and the expected genetic gain per trait, we need to maximize the function

f b; v0ð Þ ¼ b0Cbffiffiffiffiffiffiffiffiffiffi
b0Pb

p � v0U0Cb ð7:28aÞ

with respect to b and v0, where v0 ¼ v1 v2 � � � vr�1½ � is a vector of Lagrange
multipliers. The derivatives of Eq. (7.28a) with respect to b and v0 can be written as

2 b0Pbð Þ1=2Cb� b0Pbð Þ�1=2 b0Cbð ÞPb� CUv ¼ 0 ð7:28bÞ
and

U0Cb ¼ 0, ð7:29Þ
respectively, where Eq. (7.29) denotes the restriction imposed for maximizing
Eq. (7.28a). Using algebraic methods on Eq. (7.28b) similar to those used to obtain
Eqs. (7.10) and (7.13), we get

KP�1C� h2IRIt
� �

bR ¼ 0, ð7:30Þ

whereK¼ [It�QR], It is an identitymatrix of size t� t,QR¼ P�1CU(U0CP�1CU)�1

U0C, and h2IR ¼
b0RCbR
b0RPbR

is the maximized RESIM heritability obtained under the

restriction U0Cb ¼ 0; h2IR is also the square of the maximized correlation between the
net genetic merit and IR ¼ b0Ry, that is, h

2
IR
¼ λ2R. This means that Eq. (7.30) can be

written as

KP�1C� λ2RIt
� �

bR ¼ 0: ð7:31Þ
Thus, the optimized RESIM index is I ¼ b0Ry. The only difference between

Eqs. (7.31) and (7.13) is matrix K. Equation (7.31) was obtained by Cerón-Rojas
et al. (2008) by maximizing ρ2HI (Eq. 7.1) with respect to vectors b and w under the
restriction U0Cb ¼ 0, b0b ¼ 1, w0Cw ¼ 1 and b0Pb ¼ 1 in a similar manner to the
canonical correlation theory. The RESIM expected genetic gain per trait uses the first
eigenvector (bR) of matrix KP�1C, whereas the RESIM selection response uses bR
and the first eigenvalue (λ2R) of matrixKP�1C. WhenU0 is a null matrix, bR¼ bE (the
vector of the ESIM coefficients); thus, the RESIM is more general than the ESIM
and includes the ESIM as a particular case.
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In the RESIM context, vector w can be obtained (Cerón-Rojas et al. 2008) as

wR ¼ C�1 λRPbR þΨv½ �, ð7:32Þ
where λR and bR are the square roots of the first eigenvalue (λ

2
R) and the first eigenvector

of matrix KP�1C respectively; Ψ ¼ CU and v ¼ λ�1
R Ψ0P�1Ψ
� ��1Ψ0P�1CbR. Let

HR ¼ w0
Rg be the net genetic merit in the RESIM context; then, because the

correlation between IR ¼ b0Ry and HR ¼ w0
Rg is not affected by scale change, λR

and λ�1
R can be considered proportional constants and then Ψv can be written as

Ψv ¼ Ψ Ψ0P�1Ψ
� ��1Ψ0P�1CbR ¼ Q0

RCbR, whereQ
0
R is the transpose of matrix QR

described in Eq. (7.30). Thus, another way of writing Eq. (7.32) is

wR ¼ C�1 PþQ0
RC

	 

bR: ð7:33Þ

By Eq. (7.33) and the restriction b0Ψ ¼ 0, the covariance between IR ¼ b0Ry and
HR ¼ w0

Rg (σHRIR ) can be written as

σHRIR ¼ w0
RCbR ¼ b0RPbR þ b0RQ

0
RCbR ¼ b0RPbR, ð7:34Þ

where b0RQ
0
RCbR ¼ 0 according to the restriction b0Ψ ¼ 0. Equation (7.34) indicates

that the covariance between IR and HR (σHRIR ) is equal to the variance of IR (σ2IR ¼
b0RPbR).

The maximized correlation between IR and HR (or RESIM accuracy) can be
written as

ρHRIR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b0RPbR

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0

RCwR

p , ð7:35Þ

where w0
RCwR ¼ σ2HR

is the variance of HR, wR ¼ C�1 PþQ0
RC

	 

bR, Q0

R ¼
Ψ Ψ0P�1Ψ
� ��1Ψ0P�1, and Ψ ¼ CU. When U0 is a null matrix, w0

RCwR ¼
b0EPC

�1PbE ¼ w0
ECwE, the variance of HE, and σ2IR ¼ b0RPbR ¼ b0EPbE ¼ σ2IE , the

variance of IE. Hereafter, to simplify the notation, we write Eq. (7.35) as ρR or λR.
The maximized selection response (RR) and expected genetic gain per trait (ER) of

the RESIM can be written as

RR ¼ kI
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b0RPbR

q
ð7:36Þ

and

ER ¼ kI
CbRffiffiffiffiffiffiffiffiffiffiffiffiffi
b0RPbR

p , ð7:37Þ
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respectively, where
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b0RPbR

q
¼ σIR is the standard deviation of the variance of

IR ¼ b0Ry. If vector bR is transformed as βR ¼ FbR, where matrix F was defined
earlier, vector bR should be changed by βR in Eqs. (7.36) and (7.37), and in IR ¼ b0Ry.

Equation (7.36) can also be written as RR ¼ kIσHRλR, where σHR ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0RPC

�1PbR þ b0RPC
�1Q0

RCbR
q

is the standard deviation of the variance of HR,

and λR ¼ ρHRIR is the first canonical correlation between HR ¼ w0
Rg and IR ¼ b0Ry.

When σHR ¼ 1, λR is the covariance between HR ¼ w0
Rg and IR ¼ b0Ry, and then

Eq. (7.36) can be written as RR¼ kIλR. This last result was presented by Cerón-Rojas
et al. (2008) in their original paper.

The ratio of the index accuracies and the VPE are also valid in the RESIM
context. In Eq. (7.34) we showed that the covariance between IR ¼ b0Ry and HR ¼
w0

Rg (σHRIR) is equal to the variance of IR ¼ b0Ry (σ
2
IR
). This means that the VPE of the

RESIM can be written as

E HR � IRð Þ2
h i

¼ σ2HR
þ σ2IR � 2σHRIR ¼ σ2HR

� σ2IR ¼ 1� ρ2R
� �

σ2HR
: ð7:38Þ

Statistical properties associated with the ESIM and described in Sect. 7.1.2 are
also valid for the RESIM.

7.2.2 Estimating the RESIM Parameters

We can estimate the RESIM parameters in a similar manner to the ESIM parameters
in Sect. 7.1.4. With matrices bC and bP, we constructed matrix bSR ¼ bKbP�1bC and
equation

�bSR
bS0
R � bμRjIt

�bbR j ¼ 0, ð7:39Þ

where bμRj ¼ bλ4R j
, j¼ 1, 2, . . ., t. The estimated RESIM index (IR ¼ b0Ry) isbIR ¼ bb0R1y

and the estimator of the maximized RESIM selection response and its expected genetic

gain per trait can be denoted as bRR ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0R1
bPbbR1

q
and bER ¼ kI

bCbbR1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0R1
bPbbR1

q
respectively, whereas the estimator of the maximized RESIM accuracy is bλR1 .

7.2.3 Numerical Examples

We compare the RLPSI results with those of the RESIM using the Akbar et al.
(1984) data described in Sect. 7.1.5. We restrict the trait RL (number of eggs) in both
indices. In Chap. 3, Sect. 3.1.3, we indicated how to construct matrix U0 and, in Sect.
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3.1.4 of the same chapter, we described how to obtain matrix bK ¼ 	
It � bQ


for one
and two restrictions. Matrix bK is the same for the RLPSI and the RESIM. Thus, in
this subsection we omit the steps needed to construct matrices U0 and bK.

First, we estimate the RLPSI parameters. Assume a selection intensity of 10%
(kI ¼ 1.755) and a vector of economic weights w0 ¼ 19:54 �3:56 17:01½ �.
The estimated RLPSI vector of coefficients for one restriction wasbb0 ¼ 0:29 �0:84 5:78½ �, and the estimated selection response, expected genetic

gain per trait, accuracy, and heritability of the RLPSI were bR ¼ 1:755

ffiffiffiffiffiffiffiffiffiffiffibb0bPbbq
¼

53:01, bE0 ¼ 1:755
bb0bCffiffiffiffiffiffiffiffiffiffiffibb0bPbbp ¼ 0 �0:71 2:96½ �, bρ ¼

ffiffiffiffiffiffiffiffiffiffiffibb0bPbbp
ffiffiffiffiffiffiffiffiffiffiffiffi
w0bCw

p ¼ 0:26, and bh2 ¼
bb0 bCbbbb0bPbb ¼ 0:33 respectively. In this case, bb0bb ¼ 34:25; then, the estimated RLPSI

selection response using the normalized RLPSI vector of coefficients wasbR ¼ 53:01
34:25

¼ 1:55, and the rest of the estimated RLPSI parameters were the same.

In the RESIM, matrix F was an identity matrix of size 3 � 3; that is, we did not
use matrix F to transform the RESIM vector of coefficients. In Sect. 7.1.5 we

obtained matrix bP�1bC ¼
0:1102 �0:0405 �0:0280
�0:0390 0:0864 �0:0184
�0:1833 0:0517 0:4115

2
4

3
5, and we have indi-

cated that matrix bK is the same for the RLPSI and the RESIM. In the RESIM, we

need matrix bSR ¼ bKbP�1bC to solve equation
�bSR

bS0R � bμRjIt
�bbR j ¼ 0, wherebμRj ¼ bλ4R j

, whence we shall obtain the eigenvalues and eigenvectors that form

matrices L1=2
R , VR1, and bSR ¼ VR1L

1=2
R V0

R2.

For one null restriction, matrix bSR ¼ bKbP�1bC ¼
0 0:0285 0:0232
0 0:0620 �0:0365
0 �0:0630 0:3263

2
4

3
5.

This means that bSR reflects the trait restrictions imposed on the covariance
between the RESIM and the vector of genotypic values; thus, if r traits are
restricted, r columns of bSR are equal to zero. Matrix

bSR
bS0R ¼ 0:0013 0:0009 0:0058

0:0009 0:0052 �0:0158
0:0058 �0:0158 0:1104

2
4

3
5 and VR1 ¼

0:0500 0:5216 �0:8517
�0:1446 0:8476 0:5106
0:9882 0:0976 0:1178

2
4

3
5,

whereas the bμRj¼bλ4R j
values were 0.1130, 0.0039, and 0.0, whence

L1=2
R ¼

0:3362 0 0
0 0:0626 0
0 0 0:0

2
4

3
5. Thus, bμR1

¼bλ4R1
¼0:1130, bλ2R1

¼0:3362, and the

estimated RESIM accuracy was bλE1 ¼0:5798. The estimated RESIM
eigenvector, index, the selection response, and expected genetic gain per trait
were bb0

R1
¼ 0:0500 �0:1446 0:9882½ �, bI R¼0:0500RL�0:1446SMþ0:9882EW,
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bRR¼1:755
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0R1

bPbbR1

q
¼9:06, and bE0

R¼1:755
bb0
R1
bCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0R1
bPbbR1

q ¼ 0 �0:72 2:96½ �

respectively.

The estimated RLPSI selection response was bR ¼ 53:01
34:25

¼ 1:55 ; thus, the

estimated RESIM selection response was higher than the estimated RLPSI response.
In addition, the estimated RLPSI expected genetic gain per trait wasbE0 ¼ 0 �0:71 2:96½ �, which is the same as the estimated RESIM expected
genetic gain per trait.

We can compare RESIM efficiency versus RLPSI efficiency to predict the net
genetic merit using the ratio of the estimated RESIM accuracy bλE1 ¼ 0:5798 to the

RLPSI accuracy bρ ¼ 0:26, i.e.,
bλR1bρS ¼ 0:5798

0:26
¼ 2:23, or in percentage terms, bpE ¼

100 2:23� 1ð Þ ¼ 123 (see Chap. 5, Eq. 5.17). That is, the RESIM is a better
predictor of the net genetic merit and its efficiency was 123% higher than the
RLPSI efficiency for this data set.

Now, we compare RESIM efficiency versus RLPSI efficiency using the simulated
data set described in Sect. 2.8.1 of Chap. 2 for five phenotypic selection cycles, each
with four traits (T1, T2, T3, and T4), 500 genotypes, and four replicates for each
genotype. The economic weights for T1, T2, T3, and T4 were 1, �1, 1, and 1 respec-
tively. For this data set, matrix F was equal to an identity matrix of size 4 � 4 for all
five selection cycles.

The first and second parts of columns 3, 4, and 5 of Table 7.1 present the
estimated RLPSI and RESIM selection responses respectively for one, two, and
three null restrictions for five simulated selection cycles, where the selection inten-
sity was 10% (kI ¼ 1.755) for all five selection cycles. The averages of the estimated
RLPSI selection response for each null restriction were 4.43, 4.30, and 4.92, whereas
the averages of the estimated RESIM selection response were 4.54, 4.42, and 4.38
respectively. These results indicate that the estimated RLPSI selection response was
greater than the estimated RESIM selection response only for three null restrictions.

The first part of Table 7.3 presents the estimated RESIM expected genetic gain
per trait for one, two, and three restrictions for five simulated selection cycles. The
estimated RLPSI expected genetic gains per trait for one, two, and three restrictions
are given in Chap. 3 (Table 3.3). According to the results shown in Table 3.3
(Chap. 3), the averages of the estimated RLPSI expected genetic gains per trait for
five simulated selection cycles were �2.52, 2.25, and 2.26 for one restriction; 2.84
and 2.65 for two restrictions; and 3.90 for three restrictions. According to the results
shown in Table 7.3, the averages of the estimated RESIM expected genetic gains per
trait for five simulated selection cycles were �0.43, �0.75, and 3.90 for one
restriction; �0.59 and 3.89 for two restrictions; and 3.90 for three restrictions.
This means that the RESIM and RLPSI were the same only for three restrictions,
whereas for one and two restrictions, the average of the estimated RESIM expected
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genetic gains per trait was higher than that of the estimated RLPSI expected genetic
gains per trait only for trait 4.

Figure 7.2 presents the estimated accuracy of the RLPSI and the RESIM for one,
two, and three null restrictions for five simulated selection cycles. In all five selection
cycles, the estimated RESIM accuracy was greater than the RLPSI accuracy. This
means that the RESIM is a better predictor of the net genetic merit than the RLPSI.
Additional results associated with the frequency distribution of the estimated RESIM
values are presented in Fig. 7.3. Figure 7.3a presents the frequency distribution of
the estimated RESIM values with one null restriction for cycle 2, whereas Fig. 7.3b
presents the frequency distribution of the estimated RESIM values with two null
restrictions for cycle 5; both figures indicate that the estimated RESIM values
approach normal distribution.

Finally, in Chap. 10 we present the results of comparing the ESIM with the LPSI
and the RESIM with the RLPSI for many selection cycles. Such results are similar to
those obtained in this chapter.

Table 7.3 Estimated RESIM and PPG-ESIM expected genetic gain per trait for one, two, and three
restrictions for five simulated selection cycles

Cycle

Estimated RESIM expected genetic gain per trait

One null restriction Two null restrictions Three null restrictions

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

1 0 �0.86 �1.22 4.14 0 0 �0.96 4.12 0 0 0 4.13

2 0 �1.38 �0.004 4.31 0 0 �0.07 4.27 0 0 0 4.27

3 0 1.36 �1.74 4.07 0 0 �1.39 4.09 0 0 0 4.16

4 0 �1.13 �0.34 3.73 0 0 �0.08 3.72 0 0 0 3.72

5 0 �0.14 �0.43 3.22 0 0 �0.43 3.22 0 0 0 3.24

Average 0 �0.43 �0.75 3.90 0 0 �0.59 3.89 0 0 0 3.90

Cycle

Estimated PPG-ESIM expected genetic gain per trait

One predetermined
restriction

Two predetermined
restrictions

Three predetermined
restrictions

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

1 7.81 �4.62 3.11 2.21 7.09 �3.04 3.12 2.76 6.62 �2.84 4.73 0.83

2 5.15 �2.98 2.31 3.48 5.41 �2.32 2.41 3.48 6.14 �2.63 4.39 0.92

3 4.74 �1.15 0.66 3.79 5.45 �2.34 1.24 3.26 5.52 �2.37 3.94 1.35

4 3.94 �2.44 0.74 3.34 4.57 �1.96 1.17 3.24 5.03 �2.15 3.59 0.30

5 6.68 �2.15 2.24 2.05 6.93 �2.97 2.25 1.4 5.25 �2.25 3.75 0.72

Average 5.67 �2.67 1.81 2.97 5.89 �2.52 2.04 2.83 5.71 �2.45 4.08 0.82

The selection intensity was 10% (kI ¼ 1.755) and the vectors of the PPG for each predetermined
restriction were d01 ¼ 7, d02 ¼ 7 �3½ � and d03 ¼ 7 �3 5½ � respectively

168 7 Linear Phenotypic Eigen Selection Index Methods



Fig. 7.3 Frequency distribution of 500 estimated RESIM values for (a) cycle 2 and (b) cycle
5, obtained from one selection cycle for 500 genotypes and four traits simulated in one environment

Cycle
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RLPSI: 1 2 3 RESIM: 1restric�ons 2 3 restric�ons

Fig. 7.2 Estimated correlation values between the restricted linear phenotypic selection index
(RLPSI) and the net genetic merit (H ¼ w

0
g); estimated correlation values between the restricted

eigen selection index method (RESIM) and H for one, two and three null restrictions for four traits
and 500 genotypes in one environment simulated for five selection cycles
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7.3 The Linear Phenotypic Predetermined Proportional
Gain Eigen Selection Index Method

In a similar manner to the PPG-LPSI (see Chap. 3), in the PPG-ESIM the breeder
pre-sets optimal levels (predetermined proportional gains) on certain traits before the
selection is carried out. Let d0 ¼ d1 d2 � � � dr½ � be the vector of the PPGs
(predetermined proportional gains) imposed by the breeder on r traits and assume
that μq is the population mean of the qth trait before selection. The objective of the
PPG-ESIM is to change μq to μq + dq, where dq is a predetermined change in μq
(in the RESIM, dq ¼ 0, q ¼ 1, 2, � � �, r, where r is the number of PPGs). That is, the
PPG-ESIM attempts to make some traits change their expected genetic gain values
based on a predetermined level, whereas the rest of the traits remain without
restrictions.

The simplest way to solve the foregoing problem is by maximizing the
PPG-ESIM heritability under the restriction D0U0Cb ¼ 0, where

D0 ¼
dr 0 � � � 0 �d1
0 dr � � � 0 �d2
⋮ ⋮ ⋱ ⋮ ⋮
0 0 � � � dr �dr�1

2
664

3
775 (see Chap. 3 for details) is a matrix (r� 1)� r,

r is the number of PPGs, dq (q ¼ 1, 2. . ., r) is the qth element of vector d
0
, U0 is the

RLPSI matrix of restrictions of 1s and 0s, and C is the covariance matrix of
genotypic values. Matrix D0 is a Mallard (1972) matrix of PPGs used to impose
predetermined restrictions.

The Mallard (1972) matrix of predetermined restrictions can be written as M
0

¼ D0Ψ0, where Ψ0 ¼ U0C and U0 is the Kempthorne and Nordskog (1959) matrix of
restrictions of 1s and 0s (1 indicates that the trait is restricted, i.e., dq ¼ 0, and 0 that
the trait has no restrictions).

To find the PPG-ESIM vector of coefficients that maximizes the PPG-ESIM
selection response and expected genetic gain per trait, we can maximize ρ2HI ¼

w0Cbð Þ2
w0Cwð Þ b0Pbð Þ with respect to vectors b and w under the restrictions M

0
b ¼ 0,

b0b¼ 1, w0Cw¼ 1, and b0Pb¼ 1, where w0Cw is the variance of H¼ w0g and b0Pb
is the variance of I¼ b0y, as did Cerón-Rojas et al. (2016) according to the canonical
correlation theory, or we can solve this problem by maximizing b0Cbffiffiffiffiffiffiffi

b0Pb
p (Eq. 7.12) only

with respect to vectors b under the restriction M
0
b ¼ 0 and b0b ¼ 1, as we did to

obtain the RESIM vector of coefficients. Both approaches give the same result, but
we use the latter approach because it is easier to work with.
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7.3.1 The PPG-ESIM Parameters

To obtain the PPG-ESIM vector of coefficients, we need to maximize the function

f b; v0ð Þ ¼ b0Cbffiffiffiffiffiffiffiffiffiffi
b0Pb

p � v0M0b ð7:40Þ

with respect to vectors b and v0, where v0 ¼ v1 v2 � � � vr�1½ � is a vector of
Lagrange multipliers. The derivatives of Eq. (7.40) with respect to b and v0 were:

2 b0Pbð Þ1=2Cb� b0Pbð Þ�1=2 b0Cbð ÞPb�Mv ¼ 0 ð7:41Þ
and

M0b ¼ 0, ð7:42Þ
respectively, where Eq. (7.42) denotes the restriction imposed for maximizing
Eq. (7.40). By using algebraic methods on Eq. (7.41) similar to those used to obtain
Eq. (7.10) we get

KPP�1C� λ2PIt
� �

bP ¼ 0, ð7:43Þ
where KP ¼ [It � QP], QP ¼ P�1ΨD(D0Ψ0P�1ΨD)�1D0Ψ0, Ψ0 ¼ U0C, It is an
identity matrix t� t,λ2P ¼ h2IP , and bP are the first eigenvalue and the first eigenvector
of matrix KPP

�1C respectively. Note that h2IP is PPG-ESIM heritability and λP is
the maximum correlation between IP ¼ b0Py and H ¼ w0g. When D0 ¼ U0, bP ¼ bR
(the vector of coefficients of the RESIM), and when U0 is a null matrix, bP ¼ bE (the
vector of coefficients of the ESIM). That is, the PPG-ESIM is more general than the
RESIM and the ESIM and includes the latter two indices as particular cases.
Matrices KP ¼ [It � QP] and QP ¼ P�1ΨD(D0Ψ0P�1ΨD)�1D0Ψ0 are the same as
those obtained in the PPG-LPSI (see Chap. 3). Also, vector bP can be transformed as
βP ¼ FbP; matrix F was defined earlier.

Let SP ¼ Ψ0P�1Ψ; then, under the assumption D0d ¼ 0, it is possible to show
that D D0SPDð Þ�1D0 ¼ S�1

P � S�1
P d d0S�1

P d
� ��1

d0S�1
P (see Chap. 3), whence by

substituting S�1
P � S�1

P d d0S�1
P d

� ��1
d0S�1

P for D(D0SPD)
�1D0 in matrix QP ¼ P�1

ΨD(D0Ψ0P�1ΨD)�1D0Ψ0, matrix KPP
�1C can be written as

KPP�1C ¼ It � P�1ΨS�1Ψ0	 

P�1Cþ AP, ð7:44Þ

whereΨ0 ¼U0C,AP¼ δα
0
, δ¼ P�1Ψ(Ψ0P�1Ψ)�1d, andα0 ¼ d0S�1Ψ0P�1C

d0S�1d
. When AP

is a null matrix,KPP
�1C¼KP�1C (matrix of the RESIM), and ifU0 is a null matrix,

KPP
�1C ¼ P�1C (matrix of the ESIM), this means that Eq. (7.44) is a mathematical

equivalent form of matrix KPP
�1C and that Eq. (7.44) does not require matrix D0.

The easiest way to obtain bP and λP is to use matrix [It � P�1ΨS�1Ψ0]P�1C + AP in
Eq. (7.43) instead of matrix KPP

�1C.
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In the PPG-ESIM context, vector w can be obtained as

wP ¼ C�1 λPPbP þMvP½ �, ð7:45Þ
whence H ¼ w0g can be written as HP ¼ w0

Pg. In Eq. (7.45), λP is the
maximum correlation between IP ¼ b0Py and HP ¼ w0

Pg, bP is the first eigenvector

of matrix KPP
�1C, vP ¼ λ�1

P M0P�1M
� ��1

M0P�1CbP, M
0 ¼ D0Ψ0, and Ψ0 ¼ U0C.

In a similar manner to the RESIM context, we can assume that λP and λ�1
P are

proportionality constants and it can be shown that the covariance between IP ¼ b0Py
and HP ¼ w0

Pg (σHPIP ) is equal to the variance of IP ¼ b0Py (σ2IP ¼ b0pPbP), that is,
σHPIP ¼ w0

PCbP ¼ b0pPbP.
The accuracy of the PPG-ESIM can also be written as

ρHPIP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b0PPbP

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0

PCwP

p , ð7:46Þ

where σ2HP
¼ w0

PCwP ¼ b0PPC
�1PbP þ b0PPC

�1Q0
PCbP is the variance ofHP. When

D0 ¼ U0, w0
PCwP ¼ w0

RCwR (the variance of HR), and when U0 is a null matrix, w0
P

CwP ¼ w0
ECwE (the variance of HE). Hereafter, to simplify the notation, we write

Eq. (7.46) as ρP or λP.
Let βP ¼ FbP be the PPG-ESIM transformed vector of coefficients by matrix F.

By Eqs. (7.1) and (7.46), the maximized selection response (RP) and expected
genetic gain per trait (EP) of the PPG-ESIM can be written as

RP ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffi
β0PPβP

q
ð7:47Þ

and

EP ¼ kI
CβPffiffiffiffiffiffiffiffiffiffiffiffiffi
β0PPβP

p , ð7:48Þ

respectively, where
ffiffiffiffiffiffiffiffiffiffiffiffiffi
β0PPβP

q
¼ σIP is the standard deviation of the variance of

IP ¼ β0Py. Equations (7.47) and (7.48) do not require economic weights. When F is

an identity matrix, βP ¼ bP, IP ¼ b0Py, RP ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b0PPbP

q
, and EP ¼ kI

CbPffiffiffiffiffiffiffiffiffiffiffiffiffi
b0PPbP

p .

Equation (7.47) can also be written as RP ¼ kIσHPλP, where σHP ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0PPC

�1PbP þ b0PPC
�1Q0

PCbP
q

is the standard deviation of the variance of HP,

and λP is the canonical correlation between HP and IP ¼ β0Py. When σHP ¼ 1,
Eq. (7.47) can be written as RP ¼ kIλP, where λP is the covariance between IP ¼ b0P
y and H ¼ w0

Pg.
The prediction efficiency of the PPG-ESIM can be obtained in a similar manner to

the ESIM and RESIM. The accuracy of the PPG-ESIM (Eq. 7.46) can be used to
construct the ratio of index accuracies. The PPG-ESIMmean square error or the VPE
can be obtained as
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E HP � IPð Þ2
h i

¼ σ2HP
þ σ2IP � 2σHPIP ¼ σ2HP

� σ2IP ¼ 1� ρ2P
� �

σ2HP
: ð7:49Þ

Additional properties associated with the ESIM are also valid for the PPG-ESIM.

7.3.2 Estimating PPG-ESIM Parameters

The procedure used to estimate PPG-ESIM parameters is the same as that described
for RESIM. Let bC and bP be the estimated matrices of C and P. In the PPG-ESIM
context, we use matrix bS ¼ bKP

bP�1bC to obtain the estimated eigenvalues and
eigenvectors of equation

�bS � bλ2PjIt�bbPj ¼ 0, ð7:50Þ

j ¼ 1, 2, � � �, t, where t is the number of traits in the PPG-ESIM index,bKP ¼ 	
It � bQP



, It is an identity matrix of size t � t andbQP ¼ bP�1 bΨD

�
D0cΨ0bP�1 bΨD

��1
D0cΨ0 . As bS is an asymmetric matrix, the values ofbbPj and bλ2Pj should be obtained using SVD (singular value decomposition).

According to SVD, we need to solve equation

�bSbS0 � bμPjIt
�bbP j ¼ 0, ð7:51Þ

where bμPj ¼ bλ4P j
( j¼ 1, 2, . . ., t). By Eq. (7.51), the estimated PPG-ESIM index

( IP ¼ b0Py ) is bIP ¼ bb0P1y. The estimator of the maximized PPG-ESIM selection
response, and its expected genetic gain per trait, can be denoted as

bRP ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0P1
bPbbP1

q
and bEP ¼ kI

bCbbP1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0P1
bPbbP1

q respectively, whereas the estimator of

the maximized accuracy of the PPG-ESIM is bλP1 .

7.3.3 Numerical Examples

We compare the results of the PPG-LPSI and the PPG-ESIM using the Akbar et al.
(1984) data described earlier. We restrict traits RL and SM, on both indices using the
PPG vector d0 ¼ 3 �1½ �. In Chap. 3, Sect. 3.1.4, we indicated how to construct
matrix U0 and, in Sect. 3.2.4 of the same chapter, we described how to obtain matrixbKP for one and two restrictions. Matrix bKP is the same for the PPG-LPSI and the
PPG-ESIM. Thus, we omit the steps for constructing matrices U0 and bKP.

Assume a selection intensity of 10% (kI ¼ 1.755) and that the vector of economic
weights is w0 ¼ 19:54 �3:56 17:01½ �. The estimated PPG-LPSI vector of coeffi-
cients for two predetermined restrictions was bb0 ¼ 1:70 1:04 2:93½ �, and its
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estimated selection response, expected genetic gain per trait, accuracy, and heritability

were bR ¼ 1:755

ffiffiffiffiffiffiffiffiffiffiffibb0bPbbq
¼ 49:02, bE0 ¼ 1:755

bb0bCffiffiffiffiffiffiffiffiffiffiffibb0bPbbp ¼ 1:25 �0:42 1:36½ �,

bρ ¼
ffiffiffiffiffiffiffiffiffiffiffibb0bPbbp
ffiffiffiffiffiffiffiffiffiffiffiffi
w0bCw

p ¼ 0:24, and bh2 ¼ bb0 bCbbbb0bPbb ¼ 0:12 respectively. In this case,

bb0bb ¼ 12:57; then, the estimated PPG-LPSI selection response using the normalized

PPG-LPSI vector of coefficients was bR ¼ 49:02
12:57

¼ 3:90, whereas the rest of the

estimated PPG-LPSI parameters were the same.
In the PPG-ESIM, we need matrix bS ¼ bKP

bP�1bC to obtain the eigenvalues
and eigenvectors of

�bSbS0 � bμPjIt
�bbP j ¼ 0 that make up matrices L1=2

P , VP1 ,

and bS ¼ VP1L
1=2
P V0

P2
, where bμPj ¼ bλ4P j

. It can be shown that bS¼
bKP

bP�1bC¼
0:1047 �0:0349 �0:0279
0:0678 �0:0226 �0:0213
�0:1970 0:0657 0:4119

2
4

3
5, bS bS0 ¼ 0:0130 0:0085 �0:0344

0:0085 0:0056 �0:0236
�0:0344 �0:0236 0:2118

2
4

3
5,

and VP1¼
�0:1663 0:8292 0:5336
�0:1138 0:5214 �0:8457
0:9795 0:2014 �0:0076

2
4

3
5, whereas the bμPj¼bλ4P j

values were 0.2214,

0.0099, and 0.0, whence L1=2
P ¼

0:4705 0 0
0 0:0997 0
0 0 0:0

2
4

3
5. Thus, bμP1

¼bλ4P1
¼0:2214,

bλ2P1
¼0:4705, and the estimated maximized PPG-ESIM accuracy was bλP1 ¼0:6859.

We transformed the first eigenvector bb0
p1
¼ �0:1663 �0:1138 0:9795½ � using

matrix F ¼
�9 0 0
0 1 0
0 0 1

2
4

3
5 to obtain vector bβP ¼ bb0

p1
F¼ 1:4968 �0:1138 0:9795½ �

and bβ0
P
bβP ¼ 3:21, whence the estimates of the index, the selection response, and

expected genetic gain per trait of the PPG-ESIM were bIP ¼ 1:4968RL�0:1138SMþ

0:9795EW, bRP ¼
1:755

ffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
P
bPbβP

q
bβ0
P
bβP

¼ 43:01
3:21

¼ 13:39, and bE 0
P ¼ 1:755

bβ0
p
bCffiffiffiffiffiffiffiffiffiffiffiffiffibβ0

p
bPbβp

q ¼

3:05 �1:96 0:19½ � respectively. The estimated PPG-LPSI selection response wasbR¼ 49:02
12:57

¼ 3:90, which means that the estimated PPG-ESIM selection response was

greater than the estimated PPG-LPSI response.
We compared PPG-ESIM efficiency versus LPSI efficiency to predict the net

genetic merit using the ratio of the estimated PPG-ESIM accuracy (bλP1 ¼ 0:6859) to

PPG-LPSI accuracy (bρ ¼ 0:24), i.e.,
bλP1bρ ¼ 0:6859

0:24
¼ 2:858 or, in percentage terms,

bpP ¼ 100 2:858� 1ð Þ ¼ 185:80. Then, the PPG-ESIM was a better predictor of the
net genetic merit and its efficiency was 185.80% higher than that of the PPG-LPSI
for this data set.
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Now, we compare PPG-ESIM efficiency versus PPG-LPSI efficiency using the
data set described in Sect. 2.8.1 of Chap. 2 for five phenotypic selection cycles, each
with four traits (T1, T2, T3, and T4), 500 genotypes, and four replicates for each
genotype. The economic weights for T1, T2, T3, and T4 were 1, �1, 1, and 1 respec-
tively. For this data set, matrix F was an identity matrix of size 4 � 4 for all five
selection cycles.

The first and second parts of columns 6, 7, and 8 in Table 7.1 present the
estimated PPG-LPSI and PPG-ESIM selection responses for one, two, and three
predetermined restrictions for five simulated selection cycles. The selection intensity
was 10% (kI¼ 1.755) and the vectors of PPG for each predetermined restriction were
d01 ¼ 7, d02 ¼ 7 �3½ �, and d03 ¼ 7 �3 5½ � respectively, for all five selection
cycles. The estimated PPG-LPSI selection response when the vector of coefficients
was not normalized was presented in Chap. 3 (Table 3.5). The averages of the
estimated PPG-LPSI selection response for each predetermined restriction were
4.70, 4.91, and 3.14, whereas the averages of the estimated PPG-ESIM selection
response were 6.31, 6.28, and 6.75 respectively. These results indicate that the
estimated PPG-ESIM selection response was greater than the estimated PPG-LPSI
selection response for all predetermined restrictions.

The second part of Table 7.2 presents the estimated PPG-ESIM accuracy (bρP) and
the ratio of bρP to the estimated PPG-LPSI accuracy (bρ ), expressed in percentage
terms, bpP ¼ 100

�bλP � 1
�
, where bλP ¼ bρP=bρ, for one, two, and three predetermined

restrictions for five simulated selection cycles. The estimated PPG-LPSI accuracies
were presented in Chap. 3 (Table 3.6). The average estimated PPG-ESIM efficiency
for each restriction was 9.76%, 11.71%, and 29.03% greater than the PPG-LPSI
efficiency for this data set in all five selection cycles.

The second part of Table 7.3 presents the estimated PPG-ESIM expected genetic
gain per trait for one, two, and three predetermined restrictions for five simulated
selection cycles. The estimated PPG-LPSI expected genetic gains per trait for one,
two, and three predetermined restrictions were presented in Chap. 3, Table 3.5,
where it can be seen that the averages of the estimated PPG-LPSI expected genetic
gains per trait for five simulated selection cycles were 6.85,�3.25, 2.62 and 1.48 for
one restriction; 6.93, �2.97, 2.65 and 1.45 for two restrictions; and 5.20, �2.23,
3.72 and 1.43 for three restrictions, whereas for the same set of restrictions, the
averages of the estimated PPG-ESIM expected genetic gain per trait were 5.67,
�2.67, 1.81, and 2.97 for one restriction; 5.89, �2.52, 2.04, and 2.83 for two
restrictions; and 5.71, �2.45, 4.08, and 0.82 for three restrictions (Table 7.3).
Because the vectors of predetermined proportional gains for each predetermined
restriction were d01 ¼ 7, d02 ¼ 7 �3½ �, and d03 ¼ 7 �3 5½ �, the averages of the
estimated PPG-LPSI expected genetic gains per trait were closer than those of the
estimated PPG-ESIM expected genetic gains per trait for one and two predetermined
restrictions, whereas for three restrictions, the results of both selection indices were
similar.
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Chapter 8
Linear Molecular and Genomic Eigen
Selection Index Methods

Abstract The three main linear phenotypic eigen selection index methods are the
eigen selection index method (ESIM), the restricted ESIM (RESIM) and the
predetermined proportional gain ESIM (PPG-ESIM). The ESIM is an unrestricted
index, but the RESIM and PPG-ESIM allow null and predetermined restrictions
respectively to be imposed on the expected genetic gains of some traits, whereas the
rest remain without any restrictions. These indices are based on the canonical
correlation, on the singular value decomposition, and on the linear phenotypic
selection indices theory. We extended the ESIM theory to the molecular-assisted
and genomic selection context to develop a molecular ESIM (MESIM), a genomic
ESIM (GESIM), and a genome-wide ESIM (GW-ESIM). Also, we extend the
RESIM and PPG-ESIM theory to the restricted genomic ESIM (RGESIM), and to
the predetermined proportional gain genomic ESIM (PPG-GESIM) respectively.
The latter five indices use marker and phenotypic information jointly to predict the
net genetic merit of the candidates for selection, but although MESIM uses only
statistically significant markers linked to quantitative trait loci, the GW-ESIM uses
all genome markers and phenotypic information and the GESIM, RGESIM, and
PPG-GESIM use the genomic estimated breeding values and the phenotypic values
to predict the net genetic merit. Using real and simulated data, we validated the
theoretical results of all five indices.

8.1 The Molecular Eigen Selection Index Method

The molecular eigen selection index method (MESIM) is very similar to the linear
molecular selection index (LMSI) described in Chap. 4; thus, it uses the same set of
information to predict the net genetic merit of individual candidates for selection,
and therefore needs the same set of conditions as those of the LMSI. The only
difference between the two indices is how the vector of coefficients is obtained and
the assumption associated with the vector of economic weights. Thus, although the
LMSI obtains the vector of coefficients according to the linear phenotypic selection
index (LPSI) described in Chap. 2 and assumes that the economic weights are known

© The Author(s) 2018
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and fixed, the MESIM assumes that the economic weights are unknown and fixed
and obtains the vector of coefficients according to the ESIM theory.

8.1.1 The MESIM Parameters

In the MESIM context, the net genetic merit can be written as

H ¼ w0
1gþ w0

2s ¼ w0
1 w0

2

� � g
s

� �
¼ w0a, ð8:1Þ

where g0 ¼ g1 . . . gt½ � is the vector of true breeding values, t is the number of
traits, w0

1 ¼ w1 � � � wt½ � is a vector of unknown economic weights associated
with g, w0

2 ¼ 01 � � � 0t½ � is a null vector associated with the vector of marker
score values s0 ¼ s1 s2 . . . st½ �,w0 ¼ w0

1 w0
2½ � and a0 ¼ g0 s0½ � (Chap. 4 for

details). The MESIM index can be written as

I ¼ β0yyþ β0ss ¼ β0y β0s
� � y

s

� �
¼ β0t, ð8:2Þ

where y0 ¼ y1 � � � yt½ � is the vector of phenotypic values; s0 ¼ s1 s2 . . . st½ �
is the vector of marker scores; β0y and βs are vectors of phenotypic and marker score
weight values respectively, β0 ¼ β0y β0G

� �
and t0 ¼ y0 s0½ �. The objectives of the

MESIM are the same as those of the ESIM (see Chap. 7 for details).
Let Var Hð Þ ¼ w0ΨMw ¼ σ2H be the variance of H, Var Ið Þ ¼ β0TMβ ¼ σ2I the

variance of I, and Cov(H, I ) ¼ w0ΨMβ the covariance between H and I, where

ΨM ¼ Var
g
s

� �
¼ C SM

SM SM

� �
and TM ¼ Var

y
s

� �
¼ P SM

SM SM

� �
are block matri-

ces of size 2t� 2t (t is the number of traits) of covariance matrices where P, SM, and
C are covariance matrices t � t of phenotypic (y), marker score (s), and genetic

breeding (g) values respectively. Let ρHI ¼ w0ΨMβffiffiffiffiffiffiffiffiffiffiffi
w0ΨMw

p ffiffiffiffiffiffiffiffiffiffi
β0TMβ

p and h2I ¼
β0ΨMβ
β0TMβ

be the

correlation between H and I, and the heritability of I respectively; then, the MESIM
selection response can be written as

R ¼ kIσHρHI ð8:3Þ
and

R ¼ kIσIh
2
I , ð8:4Þ

where kI is the standardized selection differential (or selection intensity) associated
with MESIM; σH ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w0ΨMw
p

and σI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
β0TMβ

p
are the standard deviations of the
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variance of H and I respectively. It is assumed that kI is fixed, and that matrices TM

and ΨM are known; therefore, we can maximize R by maximizing ρHI (Eq. 8.3)
with respect to vectors w and β, or by maximizing h2I (Eq. 8.4) only with respect to
vector β.

Maximizing h2I only with respect to β is simpler than maximizing ρHI with respect
to w and β; however, in the latter case the maximization process of ρHI gives more
information associated with MESIM parameters than when h2I is maximized only
with respect to β (see Chap. 7, Eq. 7.13, for details). In this subsection, we maximize
ρHI with respect to vectorsw and β similar to the ESIM in Chap. 7, Sect. 7.1.1. Thus,
we omit the steps and details of the maximization process of ρHI.

We maximize ρHI ¼ w0ΨMβffiffiffiffiffiffiffiffiffiffiffi
w0ΨMw

p ffiffiffiffiffiffiffiffiffiffi
β0TMβ

p with respect to vectors w and β under the

restrictions σ2H ¼ w0Ψw, σ2I ¼ β0Tβ, and 0 < σ2H , σ
2
I <1, where σ2H is the variance of

H ¼ w0a and σ2I is the variance of I ¼ β0t. Thus, it is necessary to maximize the
function

f β;w; μ;ϕð Þ ¼ w0Ψβ� 0:5μ β0Tβ� σ2I
� �� 0:5ϕ w0Ψw� σ2H

� � ð8:5Þ
with respect to β, w, μ, and ϕ, where μ and ϕ are Lagrange multipliers. The
derivatives of Eq. (8.5) with respect to β, w, μ, and ϕ are:

Ψw� μTβ ¼ 0, ð8:6Þ
Ψβ� ϕΨw ¼ 0, ð8:7Þ

β0Tβ ¼ σ2I and w0Ψw ¼ σ2H , ð8:8Þ
respectively, where Eq. (8.8) denotes the restrictions imposed for maximizing ρHI. It
can be shown (see Chap. 7) that vector w can be obtained as

wM ¼ Ψ�1
M TMβ ð8:9Þ

and the net genetic merit in the MESIM context can be written as HM ¼ w0
Ma; thus,

the correlation betweenHM ¼ w0
Maand I isρHMI ¼

ffiffiffiffiffiffiffi
β0Tβ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0TΨ�1Tβ

p and the MESIM vector

of coefficients (β) that maximizes ρHMI can be obtained from equation

T�1Ψ� λ2MI2t
� �

βM ¼ 0, ð8:10Þ
where I2t is an identity matrix of size 2t� 2t (t is the number of traits), and λ2M and βM
are the eigenvalue and eigenvector of matrix T�1

M ΨM . The words eigenvalue and
eigenvector are derived from the German word eigen, which means owned by or
peculiar to. Eigenvalues and eigenvectors are sometimes called characteristic values
and characteristic vectors, proper values and proper vectors, or latent values and
latent vectors (Meyer 2000). The square root of λ2M (λM) is the canonical correlation
betweenHM ¼ w0

Ma and IM ¼ β0Mt, and the optimized MESIM index can be written
as IM ¼ β0Mt. Using a similar procedure to that described in Chap. 7 (Eq. 7.17), it can
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be show that vector βM can be transformed into βC ¼ FβM, where F is a diagonal
matrix with values equal to any real number, except zero values.

The maximized correlation between HM ¼ w0
Ma and IM ¼ β0Mt, or MESIM

accuracy, is

ρHMIM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0MTMβM

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0MTMΨ�1

M TMβM
q ¼ σIM

σHM

, ð8:11Þ

where σIM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0MTMβM

q
is the standard deviation of IM ¼ β0Mt, and σHM ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β0MTMΨ�1
M TMβM

q
is the standard deviation of HM ¼ w0

Ma.

The maximized selection response and expected genetic gain per trait of MESIM
are

RM ¼ kI
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0M1

TMβM1

q
ð8:12Þ

and

EM ¼ kI
ΨMβM1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0M1

TMβM1

q , ð8:13Þ

respectively, where βM1
is the first eigenvector of matrix T�1

M ΨM . If vector βM1
is

multiplied by matrix F, we obtain βC1
¼ FβM1

; in this case, we can replace βM1
with

βC1
¼ FβM1

in Eqs. (8.12) and (8.13), and the optimized MESIM index should be
written as IM ¼ β0C1

y.

8.1.2 Estimating MESIM Parameters

We estimate the MESIM parameters using the same procedure described in Chap. 7
(Sect. 7.1.4) to estimate the ESIM parameters. Let bC, bP, and bSM be the estimates of
the genotypic, phenotypic, and marker scores covariance matrices,bTM ¼ bP bSMbSM

bSM

� �
and bΨM ¼ bC bSMbSM

bSM

� �
the estimated block matrices (Chap. 4)

and cW ¼ bT�1
M

bΨM; then, to find the estimators bβM1
and bλ2M1

of the first eigenvector
(βM1

) and the first eigenvalue (λ2M1
) respectively, we need to solve the equation�cWcW0 � bμjI

�bβM j
¼ 0, ð8:14Þ

where bμj ¼ bλ4M j
, j¼ 1, 2, . . ., 2t. For additional details, see Eqs. (7.22) and (7.23),

and Sect. 7.1.5 of Chap. 7. The result of Equation (8.14) allow the MESIM index
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(IM ¼ β0M1
t) to be estimated as bIM ¼ bβ0M1

t, whereas the estimator of the maxi-
mized ESIM selection response and its expected genetic gain per trait can be
denoted by

bRM ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0M1
bTM

bβM1

q
and bEM ¼ kI

bΨM
bβM1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0M1
bTM

bβM1

q , ð8:15Þ

respectively.

8.1.3 Numerical Examples

To validate the MESIM theoretical results, we use a real maize (Zea mays) F2
population with 247 genotypes (each with two repetitions), 195 molecular markers,
and two traits—plant height (PHT, cm) and ear height (EHT, cm)—evaluated in one
environment. We coded the marker homozygous loci for the allele from the first
parental line by 1, whereas the marker homozygous loci for the allele from the
second parental line was coded by �1 and the marker heterozygous loci by 0. The
estimated phenotypic, genetic, and marker scores covariance matrices werebP ¼ 191:81 106:89

106:89 167:93

� �
, bC ¼ 83:00 57:44

57:44 59:80

� �
, and bSM ¼ 15:750 0:983

0:983 28:083

� �
respectively, and the vector of economic weights was a0 ¼ w0 00½ �, where w0 ¼
�1 �1½ � and 00 ¼ 0 0½ �. Details of how to estimate the marker scores and their
variance were given in Chap. 4.

We compare LMSI versus MESIM efficiency. The estimated LMSI vector of
coefficients was bβ0 ¼ a0 bΨM

bT�1
M ¼ �0:59 �0:18 �0:41 �0:82½ �. Using a

10% selection intensity (kI ¼ 1.755), the estimated LMSI selection response and

the expected genetic gain per trait were bR ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0 bTM
bβq
¼ 20:41 and

bE0 ¼ kI
bβ0 bΨMffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0 bTM

bβq ¼ �10:09 �10:31 �2:53 �4:39½ � respectively, whereas the esti-

mated LMSI accuracy was bρ
HbI ¼ bσ IbσH

¼ 0:72.

Vector bβ0
M1

¼ 0:089 �0:061 �0:536 0:837½ � was the original estimated

MESIM vector of coefficients. Using matrix F ¼
�0:1 0 0 0
0 �0:1 0 0
0 0 0:75 0
0 0 0 �0:75

2664
3775,

vector bβ0
M1

was transformed as bβ0
C1

¼ bβ0
M1
F ¼ �0:009 0:006 �0:402 0:628½ �

and then the estimated MESIM index was bIM ¼ �0:009PHTþ 0:006EHT�
0:402SPHT þ 0:628SEHT, where SPHT and SEHT denote the marker scores
associated with PHT and EHT respectively. The estimated MESIM expected
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genetic gain, selection response, and accuracy were bE0
M ¼ kI

bβ0 C1bΨMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0C1bTM
bβC1

q ¼

�3:438 �8:516 �3:319 �8:372½ �, bRM ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0C1
bTM

bβC1

q
¼ 6:573 and

bρ
HMbIM ¼ bσ IMbσHM

¼ 0:99 respectively.

The inner product of the estimated LMSI and MESIM vector of coefficients were
1.221 and 0.556 respectively, whence the estimated LMSI selection response (20.41)
divided by 1.221 was 16.716, and the estimated MESIM selection response (6.573)
divided by 0.556 was 11.821. That is, the estimated LMSI selection response was
higher than the estimated MESIM selection response for this data set. Similar results
were found when we compared the estimated LMSI expected genetic gain per trait
with the estimated MESIM expected genetic gain per trait. Finally, Fig. 8.1 presents
the frequency distribution of the 247 estimated MESIM values for the real data set
described earlier, which approaches normal distribution, as we would expect.

Now with a selection intensity of 10% (kI ¼ 1.755), we compare the LMSI and
MESIM efficiency using the simulated data set described in Sect. 2.8.1 of Chap. 2 for
four phenotypic selection cycles, each with four traits (T1, T2, T3 and T4), 500 geno-
types, and four replicates of each genotype. The economic weights for T1, T2, T3, and
T4 were 1, �1, 1, and 1 respectively. For this data set, we did not use the linear
transformation bβC1

¼ FbβM1
.

The estimated selection responses of the linear marker, combined genomic and
genome-wide selection indices (LMSI, CLGSI, and GW-LMSI respectively; see

Fig. 8.1 Frequency distribution of 247 estimated molecular eigen selection index method
(MESIM) values for one selection cycle in an environment for a real maize (Zea mays) F2
population with 195 molecular markers and two traits, plant height (PHT, cm) and ear height
(EHT, cm), and their associated marker scores SPHT and SEHT respectively
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Chaps. 4 and 5 for details) for four simulated selection cycles when their vectors of
coefficients were normalized, are presented in Table 8.1. Also, in this table the
selection responses of the estimated linear molecular, genomic, and genome-wide
eigen selection index methods (MESIM, GESIM, and GW-ESIM respectively;
details in Sect. 8.2) are shown for four simulated selection cycles. The average of
the estimated LMSI selection response was 2.22, whereas the average of the
estimated MESIM selection response was 1.69. The estimated LMSI selection
response was higher than that of the MESIM.

Table 8.2 presents the estimated LMSI and MESIM expected genetic gains for
four traits (T1, T2, T3, and T4) and their associated marker scores (S1, S2, S3, and
S4) for four simulated selection cycles. The averages of the estimated LMSI

Table 8.1 Estimated linear molecular, combined genomic, and genome-wide selection index
(LMSI, CLGSI and GW-LMSI respectively) selection responses when their vectors of coefficients
are normalized for four simulated selection cycles

Cycle

Estimated selection response

LMSI CLGSI GW-LMSI MESIM GESIM GW-ESIM

1 0.02 1.24 0.93 0.50 3.95 0.73

2 4.94 0.80 0.80 1.21 3.07 1.06

3 3.69 0.34 0.93 3.91 2.05 0.77

4 0.23 0.35 0.83 1.15 1.90 1.14

Average 2.22 0.68 0.87 1.69 2.74 0.93

Estimated linear molecular, genomic, and genome-wide eigen selection index method (MESIM,
GESIM, and GW-ESIM respectively) selection responses for four simulated selection cycles. The
selection intensity was 10% (kI ¼ 1.755)

Table 8.2 Estimated linear molecular selection index (LMSI) and estimated linear molecular eigen
selection index method (MESIM) expected genetic gains for four traits (T1, T2, T3, and T4) and
their associated marker scores (S1, S2, S3, and S4) for four simulated selection cycles. The selection
intensity was 10% (kI ¼ 1.755)

Cycle

Estimated LMSI expected genetic gain

Traits Marker scores

T1 T2 T3 T4 S1 S2 S3 S4

1 24.48 �0.01 0.74 �0.87 4.18 �1.14 0.72 0.79

2 7.14 �3.39 2.62 1.55 3.78 �2.30 1.02 1.37

3 9.17 �3.04 1.87 1.21 6.22 �1.51 1.02 0.26

4 10.16 �1.95 1.17 1.88 8.63 �3.83 0.09 0.13

Average 12.74 �2.10 1.60 0.94 5.70 �2.19 0.71 0.64

Cycle

Estimated MESIM expected genetic gain

Traits Marker scores

T1 T2 T3 T4 S1 S2 S3 S4

1 27.48 2.60 �1.03 �2.64 3.85 0.00 �0.04 �0.43

2 8.82 �4.75 0.37 2.11 14.06 4.09 0.38 �2.76

3 9.83 1.74 0.72 0.37 8.03 1.76 0.31 0.34

4 11.47 �1.13 �1.64 1.53 8.66 �3.96 �1.47 0.04

Average 14.40 �0.38 �0.39 0.34 8.65 0.47 �0.21 �0.70
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expected genetic gains for the four traits and their associated marker scores were
12.74, �2.10, 1.60, 0.94, 5.70, �2.19, 0.71, and 0.64 respectively, whereas the
averages of the estimated MESIM expected genetic gains for the four traits and their
associated marker scores were 14.40, �0.38, �0.39, 0.34, 8.65, 0.47, �0.21, and
�0.70 respectively. Except for trait T1 and its associated molecular scores, the
estimated LMSI expected genetic gains per trait were higher than the estimated
MESIM expected genetic gains. Thus, for this data set, LMSI efficiency was greater
than MESIM efficiency.

Chapter 11 presents RIndSel, a user-friendly graphical unit interface in JAVA
that is useful for estimating the LMSI and ESIM parameters and selecting parents for
the next selection cycle.

8.2 The Linear Genomic Eigen Selection Index Method

The linear genomic eigen selection index method (GESIM) is based on the standard
CLGSI described in Chap. 5, and uses genomic estimated breeding values (GEBVs)
and phenotypic values jointly to predict the net genetic merit. Thus, conditions for
constructing a valid GESIM are the same as those for constructing the CLGSI. Also,
the MESIM theory described in Sect. 8.1 is directly applied to the GESIM and only
minor changes are necessary in GESIM theory. For example, instead of marker
scores, the GESIM uses GEBVs to predict the net genetic merit; thus, the details of
the estimation process are the same as for the MESIM.

8.2.1 The GESIM Parameters

In the GESIM context, the net genetic merit can be written as

H ¼ w0
1gþ w0

2γ ¼ w0
1 w0

2½ � g
γ

� �
¼ w0α, ð8:16Þ

where g0 ¼ g1 . . . gt½ � is the vector of true breeding values, t is the number of
traits, w0

1 ¼ w1 � � � wt½ � is a vector of unknown economic weights associated
with g, w0

2 ¼ 01 � � � 0t½ � is a null vector associated with the vector of genomic
breeding values γ0 ¼ γ1 γ2 . . . γt½ �, w0 ¼ w0

1 w0
2½ �, and α0 ¼ g0 γ0½ �. The

estimator of γ is the GEBV (see Chap. 5 for additional details). The GESIM index
can be written as

I ¼ β0yyþ β0γγ ¼ β0y β0γ
� � y

γ

� �
¼ β0f , ð8:17Þ
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where y0 ¼ y1 � � � yt½ � is the vector of phenotypic values;β0y and βγ are vectors of
weights of phenotypic and genomic breeding values weights respectively;
β0 ¼ β0y β0γ

� �
and f 0 ¼ y0 γ0½ �.

Let Var Hð Þ ¼ w0Aw ¼ σ2H be the variance of H ¼ w0α, Var Ið Þ ¼ β0Φβ ¼ σ2I the
variance of I ¼ β0f, and Cov(H, I ) ¼ w0Aβ ¼ σHI the covariance between H and I,

where A ¼ Var
g
γ

� �
¼ C Γ

Γ Γ

� �
and Φ ¼ Var

y
γ

� �
¼ P Γ

Γ Γ

� �
are block matrices

2t � 2t (t is the number of traits) of covariance matrices and P, Γ, and C are
covariance matrices of phenotypic (y), genomic (γ), and genetic (g) values respec-
tively. Then, ρHI ¼ w0Aβffiffiffiffiffiffiffiffiffi

w0Aw
p ffiffiffiffiffiffiffiffi

β0Φβ
p is the correlation between H ¼ w0α and I ¼ β0f and

the GESIM selection response can be written as

R ¼ kIσHρHI , ð8:18Þ
where kI is the standardized selection differential (or selection intensity) associated
with the GESIM and σH ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

w0Aw
p

is the standard deviation of the variance of H. It
is assumed that kI is fixed, and that matrices Φ and A are known; then, we can
maximize R by maximizing ρHI with respect to vectorsw and β under the restrictions
σ2H ¼ w0Aw, σ2I ¼ β0Φβ, and 0 < σ2H , σ

2
I < 1; similar to the MESIM.

It can be shown that the vector w in the GESIM context is

wG ¼ A�1Φβ ð8:19Þ
and that the net genetic merit can be written asHG ¼ w0

Gα. The correlation between
HG ¼ w0

Gα and I ¼ β0f is ρHGI ¼
ffiffiffiffiffiffiffiffi
β0Φβ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0ΦA�1Φβ

p and the GESIM index vector of

coefficients that maximizes ρHGI can be obtained from the equation

Φ�1A� λ2GI2t
� �

βG ¼ 0, ð8:20Þ
where I2t is an identity matrix of size 2t� 2t (t is the number of traits); the optimized
GESIM index can be written as IG ¼ β0Gf . By Eqs. (8.19) and (8.20), GESIM
accuracy can be written as

ρHGIG ¼ σIG
σHG

, ð8:21Þ

where σIG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0GΦβG

q
is the standard deviation of IG ¼ β0Gf , and σHG ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β0GΦA�1ΦβG
q

is the standard deviation of HG ¼ w0
Gα. In Eq. (8.20), λ2G ¼

ρ2HGIG
is the square of the canonical correlation between HG and IG, and βG is the

canonical vector associated with λ2G ¼ ρ2HGIG
.
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The maximized GESIM selection response and expected genetic gain per trait are

RG ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0GΦβG

q
ð8:22Þ

and

EG ¼ kI
AβGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0GΦβG

p , ð8:23Þ

respectively, where βG is the first eigenvector of matrix Φ�1A. Vector βG can be
transformed as βCG ¼ FβG, where F is a diagonal matrix defined earlier.

8.2.2 Numerical Examples

To compare the CLGSI versus GESIM theoretical results, we use a real maize
(Zea mays) F2 population with 244 genotypes (each with two repetitions), 233
molecular markers, and three traits—grain yield (GY, ton ha�1), ear height (EHT,
cm), and plant height (PHT, cm). We estimated matrices P and C using Eqs. (2.22)
to (2.24) described in Chap. 2, whence the estimated matrices were

bP ¼
0:45 1:33 2:33
1:33 65:07 83:71
2:33 83:71 165:99

24 35 and bC ¼
0:07 0:61 1:06
0:61 17:93 22:75
1:06 22:75 44:53

24 35. In a similar

manner, we estimated matrix Γ by applying Eqs. (5.21) to (5.23) described in
Chap. 5 using phenotypic and marker information jointly; the estimated matrix

was bΓ ¼
0:07 0:65 1:05
0:65 10:62 14:25
1:05 14:25 26:37

24 35. The selection intensity for making a selection

cycle was 10% (kI ¼ 1.755) and the vector of economic weights was
w0 ¼ 5 �0:1 �0:1 0 0 0½ �. To obtain the estimated vector of coefficient
of CLGSI (bβ ¼ bΦ�1bAw) and GESIM (Eq. 8.20), it is necessary to construct matricesbA ¼ bC bΓbΓ bΓ

� �
and bΦ ¼ bP bΓbΓ bΓ

� �
.

The estimated CLGSI vector of coefficients for the traits GY, EHT, and
PHT and their associated GEBVs (GEBVGY, GEBVEHT, and GEBVPHT respec-
tively) was bβ0 ¼ 0:08 �0:02 �0:01 4:92 �0:08 �0:09½ �, whereas the
estimated CLGSI selection response, accuracy, and expected genetic gain per

trait were bR ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffibβ0 bΦbβq
¼ 1:54, bρHI ¼ bσ IbσH

¼ 0:814, and bE0 ¼ kI
bβ0bAffiffiffiffiffiffiffiffiffiffiffiffibβ0 bΦbβq ¼

0:36 1:04 1:70 0:36 1:53 2:38½ � respectively. Finally,bI ¼ 0:08GY� 0:02
EHT� 0:01PHTþ 4:92GEBVGY � 0:08GEBVEHT �0:09GEBVPHT was the esti-
mated CLGSI.
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The estimated GESIM vector of coefficients, selection response, accuracy,
and expected genetic gain per trait were bβ0

G1
¼

�0:207 0:029 0:041 0:820 0:337 0:411½ �, bRG ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
G1

bΦbβG1

q
¼ 6:288,

bρbHGbI G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
G1

bΦbβG1

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
G1

bΦbA�1 bΦbβG1

q ¼ 0:9056, and bE0
G ¼ k1

bβ0
G1
bAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0

G1
bΦbβG1

q ¼

0:369 5:528 9:186 0:370 5:250 8:702½ � respectively.
Fig. 8.2 presents the frequency distribution of the 244 estimated GESIM index

values for one (Fig. 8.2a) and three traits (Fig. 8.2b) using the real data set described
earlier. The frequency distribution of the estimated GESIM index values approaches
the normal distribution for both indices.

Now, we compare the estimated CLGSI and GESIM selection response and
expected genetic gain per trait using the simulated data set described in Sect. 2.8.1
of Chap. 2 for four phenotypic selection cycles, each with four traits (T1, T2, T3 and
T4), 500 genotypes, and four replicates per genotype. The economic weights of T1,
T2, T3, and T4 were 1, �1, 1, and 1 respectively and the selection intensity for both

Fig. 8.2 Frequency distribution of the 244 estimated genomic eigen selection index method
(GESIM) values for the one-trait case (a) and for the three-trait case (b) for one selection cycle in
an environment for a real maize (Zea mays) F2 population with 233 molecular markers. Note that
the frequency distribution of the estimated GESIM index values approaches normal distribution for
both indices
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indices was 10% (kI ¼ 1.755). For this data set, matrix F was an identity matrix of
size 8 � 8 in all four selection cycles.

For this data set, the averages of the estimated CLGSI and GESIM selection
responses were 0.68 and 2.74 (Table 8.1) respectively. The estimated CLGSI
selection response was lower than the estimated GESIM selection response.
Table 8.3 presents the estimated CLGSI and GESIM expected genetic gain for
four traits (T1, T2, T3, and T4) and their associated genomic estimated breeding
values (GEBV1, GEBV2, GEBV3, and GEBV4) for four simulated selection cycles.
The averages of the estimated CLGSI expected genetic gains for the four traits and
their associated GEBVs were 7.45, �3.35, 2.68, 1.09, 7.13, �3.68, 3.13, and 2.69
respectively, whereas the averages of the estimated GESIM expected genetic gains
for the four traits and their associated GEBVs were 8.18, �3.08, 2.27, 0.71, 7.46,
�3.53, 2.86, and 2.39 respectively. The estimated CLGSI and GESIM expected
genetic gains per trait were very similar.

8.3 The Genome-Wide Linear Eigen Selection Index
Method

The MESIM requires regressing phenotypic values on marker coded values to
predict the marker score values for each individual candidate for selection, and
then combining the marker scores with phenotypic information using the MESIM

Table 8.3 Estimated combined linear genomic selection index (CLGSI) and estimated GESIM
expected genetic gains for four traits (T1, T2, T3, and T4) and their associated genomic estimated
breeding values (GEBV1, GEBV2, GEBV3, and GEBV4) for four simulated selection cycles. The
selection intensity was 10% (kI ¼ 1.755)

Cycle

Estimated CLGSI expected genetic gain

Traits Genomic estimated breeding value

T1 T2 T3 T4 GEBV1 GEBV2 GEBV3 GEBV4

1 7.46 �3.69 3.26 1.60 7.28 �4.38 3.72 3.29

2 7.08 �3.45 2.91 1.17 7.08 �3.63 3.66 2.67

3 7.81 �3.51 2.06 0.76 7.30 �3.92 2.35 2.40

4 7.46 �2.76 2.48 0.81 6.84 �2.79 2.79 2.40

Average 7.45 �3.35 2.68 1.09 7.13 �3.68 3.13 2.69

Cycle

Estimated GESIM expected genetic gain

Traits Genomic estimated breeding value

T1 T2 T3 T4 GEBV1 GEBV2 GEBV3 GEBV4

1 8.28 �3.51 2.93 0.92 7.77 �4.27 3.52 2.64

2 7.89 �3.09 2.42 0.82 7.40 �3.41 3.29 2.38

3 8.47 �3.26 1.69 0.46 7.55 �3.78 2.11 2.16

4 8.08 �2.46 2.04 0.66 7.15 �2.67 2.53 2.39

Average 8.18 �3.08 2.27 0.71 7.46 �3.53 2.86 2.39
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to obtain a final prediction of the net genetic merit. In addition, the GESIM requires
fitting of a statistical model to estimate all available marker effects in the training
population; these estimates are then used to obtain GEBVs, which are predictors of
breeding values. Crossa and Cerón-Rojas (2011) extended the ESIM theory to a
genome-wide linear molecular ESIM (GW-ESIM) similar to the GW-LMSI
described in Chap. 4. The GW-LMSI and GW-ESIM are very similar and only
minor changes are necessary in GW-ESIM; for example, instead of estimating the
GW-LMSI vector of coefficients according to the LPSI method (Chap. 2), the
GW-ESIM vector of coefficients is estimated according to the singular value decom-
position (SVD) described in Chap. 7.

8.3.1 The GW-ESIM Parameters

In the GW-ESIM context, the net genetic merit can be written as

H ¼ w0
1gþ w0

2m ¼ w0
1 w0

2½ � g
m

� �
¼ w0x, ð8:24Þ

where g0 ¼ g1 . . . gt½ � is the vector of true breeding values, t is the number of
traits, w0

1 ¼ w1 � � � wt½ � is the vector of unknown economic weights associated
with the breeding values; w0

2 ¼ 01 � � � 0N½ � is a null vector associated with the
vector of marker code values m0 ¼ m1 � � � mN½ �, where mj ( j ¼ 1, 2, . . .,
N ¼ number of markers) is the jth marker in the training population;
w0 ¼ w0

1 w0
2½ � and x ¼ g0 m0½ �. The GW-ESIM (I ) index combines the pheno-

typic value and all the marker information of individuals to predict Eq. (8.24) values
in each selection cycle and can be written as

I ¼ β0yyþ β0mm ¼ β0y β0m
� � y

m

� �
¼ β0q, ð8:25Þ

where β0y and βm are vectors of phenotypic and marker weights respectively;
y0 ¼ y1 � � � yt½ � is the vector of phenotypic values; m was defined in
Eq. (8.24); β0 ¼ β0y β0m

� �
and q0 ¼ y0 m0½ �.

Let σ2I ¼ β0Qβ and σ2H ¼ w0Zw be the variance of I ¼ β0q and H ¼ w0z respec-

tively, and σHI ¼ w0Zβ the covariance between I and H, where Q ¼ Var
y
m

� �
¼

P G0
M

GM M

� �
and X ¼ Var

g
m

� �
¼ C G0

M
GM M

� �
are block matrices of size

(t + N) � (t + N) (t is the number of traits and N is the number of markers) where
P ¼ Var(y), M ¼ Var(m), C ¼ Var(g), and GM ¼ cov (y,m) ¼ cov (g,m) are
covariance matrices of phenotypic (y), coded marker (m), and genetic (g) values
respectively, whereas GM is the covariance matrix between y and m, and between
g andm (for details see Chap. 4); w and β were defined earlier. Note that although the
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size of matrices P andC are t� t, the sizes of matricesM andGM are N� N and N� t
respectively. Thus, if the number of markers is very high, the size of matrices M and
GM could also be very high.

In Chap. 4 we described matrix M as

M ¼
1 1� 2θ11ð Þ . . . 1� 2θ1Nð Þ

1� 2θ21ð Þ 1 . . . 1� 2θ2Nð Þ
⋮ ⋮ ⋱ ⋮

1� 2θN1ð Þ 1� 2θN2ð Þ . . . 1

2664
3775, ð8:26Þ

where (1 � 2θij) and θij (i, j¼ 1, 2, . . ., N¼ number of markers) are the covariance
(or correlation) and the recombination frequency between the ith and jth marker
respectively, whereas matrix GM can be written as

GM ¼
1� 2r11ð Þα11 1� 2r11ð Þα12 . . . 1� 2r1Nð Þα1NQ

1� 2r21ð Þα21 1� 2r22ð Þα22 . . . 1� 2r2Nð Þα2NQ

⋮ ⋮ ⋱ ⋮
1� 2rt1ð Þαt1 1� 2rN2ð Þαt2 . . . 1� 2rNNð ÞαtNQ

2664
3775, ð8:27Þ

where (1 � 2rik)αqk (i¼ 1, 2, . . ., N, k¼ 1, 2, . . ., NQ ¼ number of quantitative trait
loci (QTL), q¼ 1, 2, . . ., t) is the covariance between the qth trait and the ith marker;
rik is the recombination frequency between the ith and kth QTL, and αqk is the effect
of the kth QTL over the qth trait.

Let ρHI ¼ w0Xβffiffiffiffiffiffiffiffiffi
w0Xw

p ffiffiffiffiffiffiffiffi
β0Qβ

p be the correlation between I ¼ β0q and H ¼ w0x; then, the

GW-ESIM selection response can be written as

R ¼ kIσHρHI , ð8:28Þ
where kI is the standardized selection differential (or selection intensity) associated
with GW-ESIM and σH ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

w0Xw
p

is the standard deviation of the variance of H.
Assuming that kI is fixed, and that matricesQ andX are known, we can maximize

R (Eq. 8.28) by maximizing ρHI with respect to vectors w0 and β under the
restrictions σ2H ¼ w0Xw, σ2I ¼ β0Qβ, and 0 < σ2H ,σ

2
I < 1, similar to the MESIM

and GESIM. It can be shown that vector w can be written as

wW ¼ X�1Qβ ð8:29Þ
and that HW ¼ w0

Wx is the net genetic merit in the GW-ESIM context. The

correlation between HW ¼ w0
Wx and I ¼ β0q is ρHWI ¼

ffiffiffiffiffiffiffiffi
β0Qβ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0QX�1Qβ

p and the

GW-ESIM vector of coefficients (β) that maximizes ρHWI can be obtained from
equation

Q�1Z� λ2WI tþNð Þ
� �

βW ¼ 0, ð8:30Þ
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where I(t + N ) is an identity matrix of size (t + N ) � (t + N ) and IW ¼ β0Wq is the
optimized GW-ESIM. The accuracy of the GW-ESIM can be written as

ρHWIW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0WQβW

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0WQX�1QβW

q ¼ σIW
σHW

, ð8:31Þ

where σIW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0WQβW

q
is the standard deviation of IW ¼ β0Wq, and σHW ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β0WQX�1QβW
q

is the standard deviation of HW ¼ w0
Wx. In Eq. (8.30) λ2W ¼

ρ2HWIW
is the square of the canonical correlation between HW and IW.

The maximized GW-ESIM selection response and expected genetic gain per trait
are

RW ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0WQβW

q
ð8:32Þ

and

EW ¼ k1
XβWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0WQβW

p , ð8:33Þ

respectively, where βW is the first eigenvector of Eq. (8.30).

8.3.2 Estimating GW-ESIM Parameters

In Chap. 2, Eqs. (2.22) to (2.24), we described the restricted maximum likelihood
methods to estimate matrices C and P, which can be denoted by bC and bP. In
Chap. 4, we described how to estimate matrices M and GM, which can be denoted
by bM and bGM . With these estimates, we constructed the block estimated matrices asbQ ¼ bP bG0

MbGM
bM

" #
and bX ¼ bC bG0

MbGM
bM

" #
, whence we obtained the equation

�bQ�bX � bλ2WjI
�bβWj ¼ 0, ð8:34Þ

j ¼ 1, 2, . . ., (t + N ), where (t + N ) is the number of traits and markers in
the GW-ESIM index. Similar to the MESIM, we obtained estimators bβW1

and bλ2W1

of the first eigenvector βW1
and the first eigenvalue bλ2W1

respectively, from equation�bEbE0 � bμjI
�bβW j

¼ 0, ð8:35Þ
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where bE ¼ bQ�bX and bμj ¼ bλ4W j
. These results allow the GW-ESIM index selection

response and its expected genetic gain per trait to be estimated as bIW ¼ bβ0W1
bq,

bRW ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0W1
bQβ0W1

q
and bEw ¼ kI

bX bβ0W1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0W1
bQβ0W1

q respectively, whereas the estimator

of GW-ESIM accuracy is bλW1 .

8.3.3 Numerical Examples

We compare the estimated GW-LMSI and GW-ESIM selection responses using the
simulated data set described in Sect. 2.8.1 of Chap. 2, with a selection intensity of
10% (kI ¼ 1.755). Table 8.1 presents the estimated GW-LMSI selection response for
four simulated selection cycles when their vectors of coefficients are normalized,
whence it can be seen that the average estimated GW-LMSI selection response was
0.87. Table 8.1 also presents the estimated GW-ESIM selection response for four
simulated selection cycles; the average of the estimated GW-ESIM selection
responses was 0.93. Thus, for this data set, the estimated GW-LMSI and selection
responses were very similar.

8.4 The Restricted Linear Genomic Eigen Selection Index
Method

The restricted linear genomic eigen selection index method (RGESIM) is based on
the restricted linear phenotypic ESIM (RESIM) theory described in Chap. 7. In the
RESIM, the breeder’s objective is to improve only (t � r) of t (r < t) traits, leaving
r of them fixed. The same is true for RGESIM, but in this case, we should impose 2r
restrictions, i.e., we need to fix r traits and their associated r GEBV to obtain results
similar to those obtained with the RESIM (see Chap. 7 for details). This is the main
difference between the RGESIM and the RESIM.

It can be shown that Cov(I,α)¼ Aβ is the covariance between the breeding value
vector (α0 ¼ [g0 γ0]) and the GESIM index (I ¼ β0f). In the RGESIM, we want
some covariances between the linear combinations of α (U0

Gα) and I¼ β0f to be zero,
i.e., Cov IG;U0

Gα
� � ¼ U0

GAβ ¼ 0, where U0
G is a matrix 2(t � 1) � 2t of 1s and 0s

(1 indicates that the trait and its associated GEBV are restricted, and 0 indicates that
the trait and its GEBV have no restrictions). We can solve this problem by maxi-
mizing β0Aβffiffiffiffiffiffiffiffi

β0Φβ
p with respect to vector β under the restriction U0

GAβ ¼ 0 and β0β ¼ 1

similar to the RESIM, or by maximizing the correlation between H ¼ w0α and
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I ¼ β0f, ρHI ¼ w0Aβffiffiffiffiffiffiffiffiffi
w0Aw

p ffiffiffiffiffiffiffiffi
β0Φβ

p , with respect to vectors w0 and β under the restrictions

U0
GAβ ¼ 0, σ2H ¼ w0Aw, σ2I ¼ β0Φβ and 0 < σ2H , σ

2
I < 1, as we did for the GESIM.

8.4.1 The RGESIM Parameters

To obtain the RGESIM vector of coefficients, we maximize the function

f β; v0ð Þ ¼ β0Aβffiffiffiffiffiffiffiffiffiffiffi
β0Φβ

p � v0U0
GAβ ð8:36Þ

with respect to β and v0, where v0 ¼ [v1 v2 � � � v2(r � 1)] is a vector of Lagrange
multipliers. The derivatives of function f(β, v0) with respect to β and v0 can be written
as

2 β0Φβð Þ1=2Aβ� β0Φβð Þ�1=2 β0Aβð ÞΦβ� AUGv ¼ 0, ð8:37Þ
U0

GAβ ¼ 0, ð8:38Þ
respectively, where Eq. (8.38) denotes the restriction imposed for maximizing
Eq. (8.36). Using algebraic methods on Eq. (8.37), we get

KRGΦ�1A� λ2RGI2t
� �

βRG ¼ 0, ð8:39Þ
where λ2RG ¼ h2IRG , h

2
IRG

is the RGESIM heritability obtained under the restriction U0
G

Aβ ¼ 0 ; KRG ¼ [I2t � QRG], I2t is an identity matrix of size 2t � 2t, and
QRG ¼ Φ�1AUG U0

GAΦ
�1AUG

� ��1
U0

GA. When U0
G is a null matrix, β0RG ¼ β0G

(the vector of the GESIM coefficients); thus, the RGESIM is more general than
the GESIM and includes the GESIM as a particular case. The RGESIM index IGR ¼
β0RGy and its selection response and expected genetic gain per trait use the first
eigenvector of matrix KGΦ�1A. It can be shown that the vector of coefficients of
H ¼ w0

RGα in the RGESIM can be written as

wRG ¼ A�1 ΦþQ0
RGA

� �
βRG, ð8:40Þ

where Q0
RG ¼ AUG U0

GAΦ
�1AUG

� ��1
U0

GAΦ
�1.

Note that the restriction U0
GAβ ¼ 0 can be written as β0AUG ¼ 0; this means that

β0Q0
RG ¼ 0 and that the covariance between HRG ¼ w0

RGα and IRG ¼ β0RGf (σHRGIRG)
can be written as

σHRGIRG ¼ w0
RGAβ

0
RG ¼ β0RGΦβRG þ β0RGQ

0
RGCβRG ¼ β0RGΦβRG: ð8:41Þ
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Equation (8.41) indicates that σHRGIRG is equal to the variance of IRG ¼ β0RGf
(σ2IRG ¼ β0RGΦβRG); therefore, the maximized correlation between IRG and HRG or
RGESIM accuracy can be written as

ρHRGIRG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0RGΦβRG

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0

RGAwRG

p , ð8:42Þ

wherew0
RGAwRG is the variance of HRG. Hereafter, to simplify the notation, we write

Eq. (8.42) as λRG.
The maximized selection response and the expected genetic gain per trait of the

RGESIM are

RRG ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0RGΦβRG

q
ð8:43Þ

and

ERG ¼ kI
AβRGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0RGΦβRG

p , ð8:44Þ

respectively, where βRG is the first eigenvector of matrix KRGΦ�1A.

8.4.2 Estimating RGESIM Parameters

In Sect. 8.2, we indicated how to estimate matrices P, Γ, andC using phenotypic and

genomic information, whence we can estimate matrices A ¼ C Γ
Γ Γ

� �
and

Φ ¼ P Γ
Γ Γ

� �
. Those methods are also valid for the RGESIM. This means that the

SVD methods described for estimating MESIM parameters are also valid for esti-
mating RGESIM parameters.

8.4.3 Numerical Examples

With a selection intensity of 10% (kI ¼ 1.755), we compare the CRLGSI (for details
see Chap. 6) versus the RGESIM theoretical results using a real maize (Zea mays)
F2 population with 244 genotypes (each with two repetitions), 233 molecular
markers, and three traits—GY (ton ha�1), EHT (cm), and PHT (cm)—described in

Sect. 8.2.2, where bP ¼
0:45 1:33 2:33
1:33 65:07 83:71
2:33 83:71 165:99

24 35, bC ¼
0:07 0:61 1:06
0:61 17:93 22:75
1:06 22:75 44:53

24 35,
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and bΓ ¼
0:07 0:65 1:05
0:65 10:62 14:25
1:05 14:25 26:37

24 35 were the estimated matrices of P, C, and Γ

respectively.
We have indicated that the main difference between the RLPSI and the CRLGSI

is the matrix U0
C, on which we now need to impose two restrictions: one for the trait

and another for its associated GEBV. Consider the data set described earlier and
suppose that we restrict the trait GY (ton ha�1) and its associated GEBVGY; then,

matrix U0
C should be constructed as U0

C1 ¼
1 0 0 0 0 0
0 0 0 1 0 0

� �
. If we restrict

traits GY and EHT (cm) and their associated GEBVGY and GEBVEHT, matrix U0
C

should be constructed as U0
C2 ¼

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

2664
3775, etc. The procedure for

obtaining matrices bKRG ¼ �
I2t � bQRG

�
and bQRG ¼ bΦ�1bAUG

�
U0

G
bA bΦ�1bAUG

��1
U0

GbA was described in Chap. 6, and is also valid for estimating RGESIM parameters.
The estimated CRLGSI vector of coefficients is bβCR ¼ bKRG

bβ, where bβ ¼ bΦ�1bA
w is the estimated CLGSI vector of coefficients (Chap. 6). Letw0 ¼ [5 � 0.1 � 0.1
0 0 0] be the vector of economic weights and suppose that we restrict trait

GY and its associated GEBVGY; in this case, U0
C1 ¼

1 0 0 0 0 0
0 0 0 1 0 0

� �
,

and according to matrices bP, bC, and bΓ described earlier, bβ0
CR ¼

0:076 �0:004 �0:018 2:353 �0:096 �0:082½ � was the estimated
CRLGSI vector of coefficients and the estimated CRLGSI was

bICR ¼ 0:076GY� 0:004EHT� 0:018PHTþ 2:353GEBVGY � 0:096GEBVEHT

� 0:082GEBVPHT

where GEBVGY, GEBVEHT, and GEBVPHT are the GEBVs associated with the traits
GY, EHT, and PHT respectively. The same procedure is valid for two or more
restrictions.

The estimated CRLGSI selection response and expected genetic gain per

trait were bRCR ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
CR

bΦbβCR

q
¼ 0:96 and bE0

CR ¼ kI ¼
bβ0
CR

bAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
CR

bΦbβCR

q
0 �3:53 �6:03 0 �2:93 �4:87½ � respectively, whereas the estimated

CRLGSI accuracy was bρHlCR ¼ bσ ICRbσH
¼ 0:51. Note that in bE0

CR, the trait GY and its

associated GEBVGY have null values, as we would expect.
The estimated RGESIM vector of coefficients was bβ0

CR ¼
0:015 �0:001 �0:004 0:998 �0:029 �0:045½ �, and the estimated
RGESIM index was bI RG ¼ 0:015GY� 0:001EHT� 0:004PHTþ 0:998GEBVGY

�0:029GEBVEHT � 0:045GEBVPHT where GEBVGY, GEBVEHT, and GEBVPHT
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are the GEBVs associated with traits GY, EHT, and PHT respectively. The same
procedure is valid for two or more restrictions.

The estimated RGESIM selection response and expected genetic gain per

trait were bRRG ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
RG

bΦbβRG

q
¼ 0:37 and bE0

RG ¼ kI ¼
bβ0
RG

bAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
RG

bΦbβRG

q
0 �3:28 �6:03 0 �2:93 �5:40½ � respectively, whereas the estimated

RGESIM accuracy was bρbHRGbI RG ¼
bσbI RGbσbHRG

¼ 0:86.

Fig. 8.3 presents the frequency distribution of the 244 estimated RGESIM index
values for two null restrictions on traits GY and EHT and their associated GEBVGY

and GEBVEHT, for one selection cycle in an environment for a real maize (Zea mays)
F2 population with 233 molecular markers. Note that the frequency distribution of
the estimated RGESIM index values approaches the normal distribution.

Now we compare the estimated CRLGSI and RGESIM selection responses and
expected genetic gains per trait using the simulated data set described in Sect. 2.8.1
of Chap. 2. We used that data set for four phenotypic selection cycles (C2, C3, C4,
and C5), each with four traits (T1, T2, T3, and T4), 500 genotypes, and four replicates
per genotype. The economic weights for T1, T2, T3, and T4 were 1, �1, 1, and

Fig. 8.3 Frequency distribution of the 244 estimated restricted genomic eigen selection index
method (RGESIM) values for two null restrictions on traits grain yield (GY) and EHT and their
associated genomic estimated breeding values (GEBVs), GEBVGY and GEBVEHT respectively, for
one selection cycle in an environment for a real maize (Zea mays) F2 population with 233 molecular
markers. Note that the frequency distribution of the estimated RGESIM index values approaches
normal distribution
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1 respectively. For this data set, matrix F was an identity matrix of size 8 � 8 for all
four selection cycles.

Columns 2, 3, and 4 (from left to right) of Table 8.4 present the estimated
CRLGSI selection responses when their vectors of coefficients are normalized and
the estimated RGESIM and selection responses for one, two, and three restrictions
for four simulated selection cycles. The averages of the estimated CRLGSI selection
responses of the traits and their associated GEBVs for each of the three null
restrictions were 3.24 for one restriction, 4.08 for two restrictions, and 5.06 for
three restrictions, whereas the averages of the estimated RGESIM selection
responses were 3.08 for one restriction, 2.79 for two restrictions, and 3.23 for
three restrictions. Note that although for one restriction the selection response was
similar for both indices, for two and three restrictions the CRLGSI selection
responses were greater than the RGESIM selection responses.

Table 8.5 presents the estimated CRLGSI and RGESIM expected genetic gains
per trait for four traits (T1, T2, T3, and T4) and their associated GEBVs (in this case
denoted by G1, G2, G3, and G4 to simplify the notation) in four simulated selection
cycles and for one, two, and three null restrictions in four simulated selection cycles.
Note that the null values of the traits and their restricted GEBVs are not shown in
Table 8.5 with the aim of simplifying the table. The averages of the estimated
CRLGSI expected genetic gains for the three traits and their associated GEBVs
were �2.60, 2.16, 2.84, �1.21, 0.67, and 1.02 for one restriction; 2.74, 3.23, 0.78,

Table 8.4 Estimated combined null restricted linear genomic selection index (CRLGSI) and
estimated combined predetermined proportional gain linear genomic selection index (CPPG-
LGSI) selection responses for one, two, and three restrictions when their vectors of coefficients
are normalized for four simulated selection cycles

Cycle

CRLGSI response for one, two and
three null restrictions

CPPG-LGSI response for one, two and three
predetermined restrictions

1 2 3 1 2 3

1 3.25 4.09 4.89 5.36 2.80 1.81

2 3.28 4.19 5.21 5.07 3.64 1.99

3 2.91 3.89 4.97 5.37 3.86 1.42

4 3.53 4.17 5.15 4.52 3.38 1.20

Average 3.24 4.08 5.06 5.08 3.42 1.60

Cycle

RGESIM response for one, two, and
three null restrictions

PPG-GESIM response for one, two, and
three predetermined restrictions

1 2 3 1 2 3

1 3.21 2.78 3.47 1.95 4.07 4.26

2 3.11 2.86 3.06 1.85 4.12 5.49

3 2.93 2.76 3.20 2.04 4.18 6.30

4 3.07 2.76 3.21 2.02 4.17 5.82

Average 3.08 2.79 3.23 1.96 4.14 5.47

Estimated null restricted genomic eigen selection index method (RGESIM) and predetermined
proportional gain genomic eigen selection index method (PPG-GESIM) selection responses for one,
two, and three restrictions for four simulated selection cycles. The selection intensity was 10%
(kI ¼ 1.755)
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and 0.99 for two restrictions; and 4.02 and 1.33 for three restrictions. On the other
hand, the averages of the estimated RGESIM expected genetic gains for the three
traits and their associated GEBVs were 3.27,�1.67,�1.33, 2.16,�0.92, and�0.84
for one restriction; 3.29, 1.02, 1.76, and 0.46 for two restrictions; and 3.53 and 2.07
for three restrictions. These results indicate that in terms of absolute values, the
estimated expected genetic gains for the traits and their associated GEBVs were
similar for both indices.

8.5 The Predetermined Proportional Gain Linear Genomic
Eigen Selection Index Method

The predetermined proportional gain linear genomic eigen selection index method
(PPG-GESIM) theory is based on the predetermined proportional gain linear phe-
notypic ESIM (PPG-ESIM) described in Chap. 7. In the PPG-ESIM, the vector of
PPG (predetermined proportional gain) imposed by the breeder was
d0 ¼ �

d1 d2 � � � dr
�
. However, because the PPG-GESIM uses phenotypic

and GEBV information jointly to predict the net genetic merit, the vector of PPG

Table 8.5 Estimated CRLGSI and estimated null RGESIM expected genetic gains per trait for four
traits (T1, T2, T3, and T4) and their associated genomic estimated breeding values (G1, G2, G3, and
G4) for four simulated selection cycles and for one, two, and three null restrictions for four
simulated selection cycles. The selection intensity was 10% (kI ¼ 1.755)

Cycle

CRLGSI expected genetic gains for one, two and three null restrictions

One restrictiona Two restrictionsb
Three
restrictionsc

T2 T3 T4 G2 G3 G4 T3 T4 G3 G4 T4 G4

1 �2.32 2.17 2.87 �1.48 0.73 1.24 2.60 3.38 0.86 1.15 4.08 1.50

2 �2.76 2.14 2.89 �1.19 0.76 0.96 2.81 3.30 0.87 0.98 3.95 1.25

3 �2.22 2.27 2.98 �1.15 0.62 0.97 2.77 3.14 0.69 0.90 3.93 1.33

4 �3.09 2.08 2.64 �1.05 0.58 0.92 2.80 3.08 0.70 0.93 4.13 1.24

Mean �2.60 2.16 2.84 �1.21 0.67 1.02 2.74 3.23 0.78 0.99 4.02 1.33

Cycle

RGESIM expected genetic gains for one, two and three null restrictions

One restrictiona Two restrictionsb
Three
restrictionsc

T2 T3 T4 G2 G3 G4 T3 T4 G3 G4 T4 G4

1 3.27 �1.52 �1.24 2.48 �0.88 �1.00 3.18 0.93 1.88 0.43 3.66 2.21

2 3.30 �1.79 �1.41 2.10 �1.09 �0.82 3.26 1.34 1.82 0.66 3.41 2.00

3 2.98 �1.62 �1.44 2.13 �0.83 �0.75 3.31 0.86 1.70 0.21 3.45 2.05

4 3.56 �1.73 �1.23 1.92 �0.89 �0.78 3.40 0.96 1.62 0.53 3.58 2.02

Mean 3.27 �1.67 �1.33 2.16 �0.92 �0.84 3.29 1.02 1.76 0.46 3.53 2.07
aAll T1 and G1 expected genetic gains were null
bAll T1, T2, G1, and G2 expected genetic gains were null
cAll T1, T2, T3, G1, G2, and G3 expected genetic gains were null
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imposed by the breeder (dPG) should be twice the standard vector d0, that is,
d0PG ¼ �

d1 d2 � � � dr drþ1 drþ2 � � � d2r
�
, where we would expect that

if d1 is the PPG imposed on trait 1, then dr + 1 should be the PPG imposed on the
GEBV associated with trait 1, etc. Thus, in the PPG-GESIM we have three possible
options for determining (for each trait and GEBV) the PPG: e.g., for trait 1, d1¼ dr + 1,
d1 > dr + 1 or d1 < dr + 1. This is the main difference between the standard PPG-ESIM
described in Chap. 7 and the PPG-GESIM.

8.5.1 The PPG-GESIM Parameters

Using the same procedure described for RGESIM and PPG-ESIM, the PPG-GESIM
vector of coefficients (βPG), which maximizes the PPG-GESIM selection response
and the expected genetic gain per trait, is the first eigenvector of the following
equation

TPG � λ2PGI2t
� �

βPG ¼ 0, ð8:45Þ
where TPG ¼ KRGΦ�1A + B, KPG ¼ [I2t � QRG], I2t is an identity matrix of
size 2t � 2t, QRG ¼ Φ�1AUG U0

GAΦ
�1AUG

� ��1
U0

GA, B ¼ δφ0, δ ¼

Φ�1AUG U0
GAΦ

�1AUG

� ��1
dPG, and φ0 ¼ d0PG U0

GAΦ
�1AUG

� ��1
U0

GAΦ
�1A

d0PG U0
GAΦ

�1AUG

� ��1
dPG

.

When B is a null matrix, TPG ¼ KRGΦ�1A (matrix of the RGESIM), and when
U0

G is a null matrix, TPG ¼ Φ�1A (matrix of the GESIM); this means that the
PPG-GESIM includes the RGESIM and GESIM as particular cases. The opti-
mized PPG-GESIM index can be written as IPG ¼ β0PGf .

The vector of coefficients of H ¼ w0
PGα in the PPG-GESIM can be written as

wPG ¼ A�1 ΦþQ0
PGA

� �
βPG, ð8:46Þ

where Q0
PG ¼ AUGDG D0

GU
0
GAΦ

�1AUGDG

� ��1
D0

GU
0
GAΦ

�1, and

D0
G ¼

d2r 0 � � � 0 �d1
0 d2r � � � 0 �d2
⋮ ⋮ ⋱ ⋮ ⋮
0 0 � � � d2r �d2r�1

2664
3775. Similar to RGESIM, it can be shown that

the covariance between HRG ¼ w0
PGα and IPG ¼ β0PGf ( σHPGIPG ) is equal to

the variance of IPG ¼ β0PGf ( σ2IPG ¼ β0PGΦβPG ), that is, σHPGIPG ¼ w0
PGAβPG ¼

β0PGΦβPG ¼ σ2IPG .
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The maximized correlation between IPG and HPG, or PPG-GESIM accuracy, is

ρHPGIPG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0PGΦβPG

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0

PGAwPG

p ð8:47Þ

wherew0
PGAwPG is the variance of HPG. Hereafter, to simplify the notation, we write

Eq. (8.47) as λPG.
The maximized selection response and the expected genetic gain per trait of the

PPG-GESIM are

RPG ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0PGΦβPG

q
ð8:48Þ

and

EPG ¼ kI
AβPGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0PGΦβPG

p , ð8:49Þ

respectively, where βPG is the first eigenvector of Eq. (8.45).

8.5.2 Numerical Examples

The process for estimating PPG-ESIM parameters is similar to the method
described for estimating RGESIM parameters. With a selection intensity of
10% (kI ¼ 1.755), we compare the combined predetermined proportional
gain linear genomic selection index (CPPG-LGSI) and PPG-GESIM results
using the real maize (Zea mays) F2 population with 244 genotypes,
233 molecular markers, and three traits—GY (ton ha�1), EHT (cm), and PHT

(cm)—where bP ¼
0:45 1:33 2:33
1:33 65:07 83:71
2:33 83:71 165:99

24 35, bG ¼
0:07 0:61 1:06
0:61 17:93 22:75
1:06 22:75 44:53

24 35 and

bΓ ¼
0:07 0:65 1:05
0:65 10:62 14:25
1:05 14:25 26:37

24 35 are the estimated matrices of P, G, and Γ respec-

tively, whereas w0 ¼ 5 �0:1 �0:1 0 0 0½ � was the vector of economic
weights.

The estimated CPPG-LGSI vector of coefficients was bβCP ¼ bβCG þ bθCPbδ (see

Chap. 6 for additional details). Let bA ¼ bG bΓbΓ bΓ
� �

and bΦ ¼ bP bΓbΓ bΓ
� �

be the

estimated block matrices and d0PG ¼ 7 �3 3:5 �1:5½ � the vector of PPG
imposed by the breeder on the traits GY and EHT, and their associated genomic
estimated breeding values (GEBVGY and GEBVEHT), and let
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U0
C ¼

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

2664
3775 be the matrix of null restrictions on the CPPG-LGSI

and w0 ¼ 5 � 0:1 � 0:1 0 0 0½ � the vector of economic weights. It can be
shown that bθCP ¼ �0:00009 is the estimated value of the proportionality con-
stant, bδ0 ¼ �112:92 �72:16 61:35 231:79 64:75 �61:35½ �, bβ0

CP ¼
�0:01 0:01 �0:01 0:59 0:09 �0:09½ � is the estimated CPPG-LGSI vec-
tor of coefficients, and the estimated CPPG-LGSI can be written as

bICP ¼ �0:01GYþ 0:01EHT� 0:01PHTþ 0:59GEBVGY þ 0:09GEBVEHT

� 0:09GEBVPHT

where GEBVGY, GEBVEHT, and GEBVPHT are the GEBVs associated with traits
GY, EHT, and PHT respectively. The same procedure is valid for more than
two predetermined restrictions. The estimated CPPG-LGSI selection response

and expected genetic gain per trait were bRCP ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
CP

bΦbβCP

q
¼ 0:443 and

bE0
CP ¼ kI

bβ0
CP

bAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
CP

bΦbβCP

q ¼ �0:004 0:002 �4:639 �0:002 0:001 �4:326½ �

respectively, whereas the estimated CPPG-LGSI accuracy is bρHICP ¼ bσ ICPbσH
¼ 0:234.

Because the estimated value of the proportionality constant was negative (bθCP ¼
�0:00009), the expected genetic gains of the traits GY and EHT, and their associated
genomic estimated breeding values (GEBVGY and GEBVEHT), which appeared in
the bE0

CP values, were not in accordance with the values of the vector of PPG imposed
by the breeder, d0PG ¼ 7 �3 3:5 �1:5½ �, as we would expect, and CPPG-LGSI
accuracy (0.234) was low. These results indicate that in the CPPG-LGSI, it is very
important for the estimated values of bθCP to be positive (see Chaps. 3 and 6 for
details).

In the PPG-GESIM, we need to find the solutions to equation
�bTPG � bλ2PG j

I2t
�

bβPG j
¼ 0, for bλ2PG j

and bβPG j
(see Eq. 8.45). The estimated PPG-GESIM vector of

coefficients wasbβ0
PG ¼ 0:001 �0:050 0:029 0:975 0:154 �0:157½ �, which

was transformed using matrix F ¼

�0:1 0 0 0 0 0
0 3 0 0 0 0
0 0 2 0 0 0
0 0 0 �1 0 0
0 0 0 0 �1 0
0 0 0 0 0 �1

26666664

37777775, that is, we
changed the direction of the original vector. With the bβ0

PG values, we can estimate the
PPG-GESIM index as
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bIPG ¼ 0:001GY� 0:05EHTþ 0:029PHTþ 0:975GEBVGY þ 0:154GEBVEHT

� 0:157GEBVPHT

where GEBVGY, GEBVEHT, and GEBVPHT are the GEBVs associated with the
traits GY, EHT, and PHT respectively. The estimated PPG-GESIM selection
response, accuracy, and expected genetic gain per trait were bRPG ¼
kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
PG

bΦbβPG

q
¼ 0:696, bρbHPGbI PG ¼

bσbI PGbσbHPG

¼ 0:843, and bE 0
PG ¼ kI

bβ0
PG

bAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
PG

bΦbβPG

q ¼

0:01 �1:00 �3:56 0 �0:46 �3:98½ � respectively.
Fig. 8.4 presents the frequency distribution of the 244 estimated PPG-GESIM

index values for two predetermined restrictions on the traits GY and EHT and their
associated GEBVs (GEBVGY and GEBVEHT), for one selection cycle in an envi-
ronment for a real maize (Zea mays) F2 population with 233 molecular markers. Note
that the frequency distribution of the estimated PPG-GESIM index values
approaches normal distribution.

Now, with a selection intensity of 10% (kI¼ 1.755) and a vector of predetermined
restrictions d0PG ¼ 7 �3 5 3:5 �1:5 2:5½ �, we compare the estimated
CPPG-LGSI and PPG-GESIM selection responses and expected genetic gains per

Fig. 8.4 Frequency distribution of the 244 estimated predetermined proportional gain genomic
eigen selection index method (PPG-GESIM) values for two predetermined restrictions on the traits
GY and EHT and their associated GEBVs, GEBVGY and GEBVEHT, for one selection cycle in an
environment for a real maize (Zea mays) F2 population with 233 molecular markers
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trait using the simulated data set described in Sect. 2.8.1 of Chap. 2. Traits T1, T2,
and T3 and their associated GEBVs (GEBV1, GEBV2, and GEBV3 respectively)
were restricted, but trait T4 and its associated GEBV4 were not restricted. For
this data set, matrix F was an identity matrix of size 8 � 8 for all four selection
cycles.

Table 8.6 presents the estimated CPPG-LGSI selection responses when their
vectors of coefficients are normalized, and the estimated PPG-GESIM selection
responses for one, two, and three predetermined restrictions for four simulated
selection cycles. The averages of the estimated CPPG-LGSI selection responses
were 5.08 for one restriction, 3.42 for two restrictions, and 1.60 for three restrictions,
whereas the averages of the estimated PPG-GESIM selection responses were 1.96
for one restriction, 4.14 for two restrictions, and 5.46 for three restrictions. For this
data set, when the number of restrictions increases, the estimated CPPG-LGSI

Table 8.6 Estimated CPPG-LGSI expected genetic gains for one, two, and three restricted
predetermined traits (T1, T2, and T3) and for one, two, and three restricted predetermined
GEBVs (GEBV1, GEBV2, and GEBV3) for four simulated selection cycles

Cycle

CPPG-LGSI expected genetic gain for one predetermined restriction

Traits Genomic estimated breeding values

T1 T2 T3 T4 GEBV1 GEBV2 GEBV3 GEBV4

1 8.24 �3.62 3.32 2.26 4.12 �2.33 1.75 1.09

2 7.98 �4.06 3.03 2.68 3.99 �2.24 1.79 1.04

3 8.61 �4.48 3.24 1.96 4.30 �2.32 1.70 0.98

4 8.30 �4.34 3.32 2.04 4.15 �2.16 1.62 0.92

Average 8.28 �4.12 3.23 2.23 4.14 �2.26 1.71 1.01

Cycle

CPPG-LGSI expected genetic gain for two predetermined restrictions

Traits Genomic estimated breeding values

T1 T2 T3 T4 GEBV1 GEBV2 GEBV3 GEBV4

1 8.06 �3.46 3.30 2.06 4.03 �1.73 1.72 0.98

2 8.17 �3.50 3.08 2.65 4.09 �1.75 1.79 0.98

3 8.88 �3.81 3.31 1.83 4.44 �1.90 1.72 0.90

4 8.61 �3.69 3.43 1.99 4.30 �1.84 1.65 0.87

Average 8.43 �3.61 3.28 2.13 4.22 �1.81 1.72 0.93

Cycle

CPPG-LGSI expected genetic gain for three predetermined restrictions

Traits Genomic estimated breeding values

T1 T2 T3 T4 GEBV1 GEBV2 GEBV3 GEBV4

1 5.77 �2.47 4.12 2.28 2.88 �1.24 2.06 0.98

2 5.68 �2.43 4.06 2.76 2.84 �1.22 2.03 0.97

3 5.87 �2.52 4.20 1.98 2.94 �1.26 2.10 0.79

4 5.91 �2.53 4.22 2.00 2.95 �1.27 2.11 0.83

Average 5.81 �2.49 4.15 2.26 2.90 �1.24 2.07 0.89

The selection intensity was 10% (kI ¼ 1.755) and the vector of predetermined restrictions was
d0PG ¼ 7 �3 5 3:5 �1:5 2:5½ �. Trait T4 and its associated GEBV4 were not restricted
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selection response tends to decrease, whereas the estimated PPG-GESIM selection
response increases.

Tables 8.7 presents the estimated CPPG-LGSI and PPG-GESIM expected genetic
gains for one, two, and three predetermined restrictions respectively, for four
simulated selection cycles. The averages of the estimated CPPG-LGSI expected
genetic gains for the four traits and their four associated GEBVs were 8.28, �4.12,
3.23, 2.23, 4.14, �2.26, 1.71, and 1.01 for one restriction; 8.43, �3.61, 3.28, 2.13,
4.22, �1.81, 1.72, and 0.93 for two restrictions; and 5.81, �2.49, 4.15, 2.26, 2.90,
�1.24, 2.07, and 0.89 for three restrictions. On the other hand, the averages of the
estimated PPG-GESIM expected genetic gains for the four traits and their four
associated GEBVs were 6.97, �1.31, 1.78, 0.52, 5.64, �1.74, 1.75, and 0.58 for
one restriction; 6.93, �2.73, 1.29, 0.85, 5.75, �2.55, 1.49, and 0.79 for two
restrictions, and 8.12, �3.27, 2.99, 1.13, 2.19, �1.15, 1.30, and 0.45 for three

Table 8.7 Estimated PPG-GESIM expected genetic gains for one, two, and three restricted traits
(T1, T2, and T3) and for one, two, and three restricted GEBVs (GEBV1, GEBV2, and GEBV3) for
four simulated selection cycles

Cycle

PPG-GESIM expected genetic gain for one predetermined restriction

Traits Genomic estimated breeding values

T1 T2 T3 T4 GEBV1 GEBV2 GEBV3 GEBV4

1 6.89 �1.44 1.94 0.63 6.36 �1.89 2.04 0.62

2 6.71 �1.33 1.90 0.65 6.06 �2.00 1.97 0.75

3 7.09 �1.69 1.67 0.40 5.40 �1.72 1.63 0.55

4 7.18 �0.78 1.58 0.39 4.73 �1.34 1.35 0.39

Average 6.97 �1.31 1.78 0.52 5.64 �1.74 1.75 0.58

Cycle

PPG-GESIM expected genetic gain for two predetermined restrictions

Traits Genomic estimated breeding values

T1 T2 T3 T4 GEBV1 GEBV2 GEBV3 GEBV4

1 6.61 �2.55 1.40 0.94 6.49 �2.80 1.75 0.87

2 5.67 �2.48 1.24 0.87 6.16 �2.84 1.70 0.91

3 7.35 �3.08 1.21 0.85 5.54 �2.49 1.37 0.82

4 8.10 �2.80 1.29 0.76 4.80 �2.08 1.16 0.56

Average 6.93 �2.73 1.29 0.85 5.75 �2.55 1.49 0.79

Cycle

PPG-GESIM expected genetic gain for three predetermined restrictions

Traits Genomic estimated breeding values

T1 T2 T3 T4 GEBV1 GEBV2 GEBV3 GEBV4

1 7.21 �2.94 2.64 1.02 1.69 �1.10 1.07 0.45

2 7.71 �2.97 2.41 1.46 2.22 �1.15 1.21 0.45

3 8.72 �3.43 3.17 0.93 2.21 �1.06 1.34 0.42

4 8.85 �3.73 3.72 1.09 2.63 �1.29 1.60 0.48

Average 8.12 �3.27 2.99 1.13 2.19 �1.15 1.30 0.45

The selection intensity was 10% (kI ¼ 1.755) and the vector of predetermined restrictions was
d0PG ¼ 7 �3 5 3:5 �1:5 2:5½ �. Trait T4 and its associated GEBV4 were not restricted
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restrictions. These results indicate that the estimated CPPG-LGSI expected genetic
gains for the four traits and their four associated GEBVs were generally higher than
the estimated PPG-GESIM expected genetic gains for the four traits and their four
associated GEBVs.
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Chapter 9
Multistage Linear Selection Indices

Abstract Multistage linear selection indices select individual traits available at
different times or stages and are applied mainly in animals and tree breeding, where
the traits under consideration become evident at different ages. The main indices are:
the unrestricted, the restricted, and the predetermined proportional gain selection
index. The restricted and predetermined proportional gain indices allow null and
predetermined restrictions to be imposed on the trait expected genetic gain (or multi-
trait selection response) values, whereas the rest of the traits remain changed without
any restriction. The three indices can use phenotypic, genomic, or both sets of
information to predict the unobservable net genetic merit values of the candidates
for selection and all of them maximize the selection response, the expected genetic
gain for each trait, have maximum accuracy, are the best predictor of the net genetic
merit, and provide the breeder with an objective rule for evaluating and selecting
several traits simultaneously. The theory of the foregoing indices is based on the
independent culling method and on the linear phenotypic selection index, and is
described in this chapter in the phenotypic and genomic selection context. Their
theoretical results are validated in a two-stage breeding selection scheme using
real and simulated data.

9.1 Multistage Linear Phenotypic Selection Index

In a similar manner to the linear phenotypic selection index (LPSI, Chap. 2), the
objectives of the multistage linear phenotypic selection index (MLPSI) are:

1. To predict the net genetic merit H ¼ w0g, where g0 ¼ [g1 g2 . . . gt] is the vector
of true breeding values of an individual for t traits and w0 ¼ w1 w2 . . . wt½ �
is the vector of economic weights.

2. To select individuals with the highest H values at each stage as parents of the next
generation.

3. To maximize the MLPSI selection response and its expected genetic gain per
trait.
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4. To provide the breeder with an objective rule for evaluating and selecting several
traits simultaneously.

When selection is based on all the individual traits of interest jointly, the LPSI
vector of coefficients that maximizes the selection response R ¼ k

ffiffiffiffiffiffiffiffiffiffi
b0Pb

p
and the

expected genetic gain per trait E ¼ k Cbffiffiffiffiffiffiffi
b0Pb

p is b ¼ P�1Cw, where C and P are the

covariance matrices of the true breeding values (g) and trait phenotypic values (y)
respectively, and k is the selection intensity. In MLPSI terminology, the LPSI is
called a one-stage selection index. The MLPSI is an extension of the LPSI theory to
the multistage selection context and, as we shall see, the MLPSI theoretical results
are very similar to the LPSI theoretical results described in Chap. 2.

9.1.1 The MLPSI Parameters for Two Stages

Let y0 ¼ y1 y2 � � � yt½ � be a vector with t traits of interest and suppose that we can
select only ni of them (ni< t) at stage i (i¼ 1, 2, � � �,N), such that afterN stages (N< t),

∑
N

i¼1
ni ¼ t. Thus, for each stage we should have a selection index with a different

number of traits. For example, at stage i the index would be Ii ¼ ∑
ni

j¼1
bijyij, and at

stage N the index would be IN ¼ ∑
n1

j¼1
b1 jy1 j þ ∑

n2

j¼1
b2 jy2 j þ � � � þ ∑

nN

j¼1
bNjyNj ¼ ∑

N

i¼1
Ii,

where the double subscript of yij indicates that the jth trait is measured at stage i, so
that at each sub-index Ii, all the ni traits are measured at the same age.

Suppose that there are four traits of interest and that y0 ¼ y1 y2 y3 y4½ � is the
vector of observable phenotypic values and g0 ¼ g1 g2 g3 g4½ � is the vector of
unobservable breeding values. If at the first and second stages we select two traits,
then n1 ¼ n2 ¼ 2 and y0 can be partitioned as y0 ¼ x01 x02½ �, where x01 ¼ y1 y2½ �
and x02 ¼ y3 y4½ � are the vectors of traits that become evident at the first and second
stages respectively. At the first stage, the phenotypic covariance matrix of x1 (P1)
and the covariance matrix of x1 with the vector of true breeding values g (G1) can be

written as Var x1ð Þ ¼ Var y1ð Þ Cov y1; y2ð Þ
Cov y2; y1ð Þ Var y2ð Þ

� �
¼ P1 and

Cov x1; gð Þ ¼ Cov y1; g1ð Þ Cov y1; g2ð Þ Cov y1; g3ð Þ Cov y1; g4ð Þ
Cov y2; g1ð Þ Cov y2; g2ð Þ Cov y2; g3ð Þ Cov y2; g4ð Þ

� �
¼ G1

respectively. For the second stage, in addition to matrix P1, we need the phenotypic
covariance matrix between x1 and x2 (P12) and the phenotypic covariance matrix of
x2 (P2); thus, the covariance matrix of phenotypic values at stage 2 is

P ¼ P1 P12

P21 P2

� �
. In a similar manner, in addition to matrix G1, at stage 2 we

need the covariance between x2 and g (G2); that is, at stage 2 the covariance matrix
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between phenotypic and breeding values can be written as G ¼ G1

G2

� �
. Matrices G

and C are not exactly the same, because although C¼ Var(g),G ¼ Cov x1; gð Þ
Cov x2; gð Þ

� �
¼

G1

G2

� �
and this latter matrix changes at each stage.

Letw0 ¼ w1 w2 w3 w4½ � be the vector of economic weights; then, at the first
and second stages the MLPSI vectors of coefficients are b01 ¼ w0G0

1P�1
1 ¼

b11 b12½ � and b02 ¼ w0G0P�1 ¼ b21 b22 b23 b24½ � respectively. The selection
indices at stages 1 and 2 can be written as I1 ¼ b11y1 þ b12y2 ¼ b01x1 and
I2 ¼ b21y1 þ b22y2 þ b23y3 þ b24y4 ¼ b02y, which could be correlated and then
numerical integration would be required to find optimal truncation points and
selection intensities (Xu and Muir 1992; Hicks et al. 1998) before obtaining the
maximized MLPSI selection response and expected genetic gain per trait.

The accuracy of the MLPSI at stages 1 and 2 can be written as

ρHI1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b01P1b1
w0Cw

r
and ρHI2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b02P

∗b2
w0C∗w

r
, ð9:1Þ

respectively. Let k1 and k2 be the selection intensities for stages 1 and 2; then, the
maximized MLPSI expected genetic gains per trait can be written as

E1 ¼ k1
G0

1b1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b01P1b1

p and E2 ¼ k2
b02C

∗ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b02P

∗b2
p , ð9:2Þ

and the total expected genetic gain per trait for the two stages is equal to E1 + E2. In a
similar manner, the maximized selection responses for both stages are

R1 ¼ k1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b01P1b1

q
and R2 ¼ k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b02P

∗b2
q

, ð9:3Þ

and the total selection response for the two stages is R1 + R2. In Eqs. (9.1) to (9.3),
matrices P∗ and C∗ are matrices P and C respectively, adjusted for previous
selection on I1 ¼ b01x1. That is, the MLPSI accuracy, expected genetic gain per
trait, and selection response at stage 2 are affected by previous selection on I1
(Saxton 1983) and it is necessary to adjust P and C.

One method for adjusting matrices P and C has been provided by Cochran (1951)
and Cunningham (1975). Suppose that X, Y, and W are three jointly normally
distributed random variables and that the covariance among them is known, then
the covariance between X and Y adjusted for the effects of selection on W can be
obtained as

Cov X; Yð Þ∗ ¼ Cov X; Yð Þ � u
Cov X;Wð ÞCov Y ;Wð Þ

Var Wð Þ , ð9:4Þ
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where u ¼ k1(k1 � τ), k1 is the selection intensity at stage 1 and τ is the truncation
point when I1 ¼ b01x1 is applied. For example, if the selection intensity at the first
stage is 5%, k1 ¼ 2.063, τ ¼ 1.645, and u ¼ 0.862 (Falconer and Mackay 1996,
Table A).

According to Dekkers (2014), with the result of Eq. (9.4), it is possible to obtain
matrices P∗ and C∗ using the following two equations:

P∗ ¼ Var yð Þ∗ ¼ P� u
Cov y; x1ð Þb1b01Cov x1; yð Þ

b01Var x1ð Þb1

¼ P� u

P1

P21

� �
b1b01 P1 P21½ �
b01P1b1

ð9:5Þ

and

C∗ ¼ Var gð Þ∗ ¼ C� u
Cov g; x1ð Þb1b01Cov x1; gð Þ

b01Var x1ð Þb1 ¼ C� u
G0

1b1b
0
1G1

b01P1b1
: ð9:6Þ

With the Eq. (9.5) result, the correlation between I1 ¼ b01x1 and I2 ¼ b02y is

Corr I1; I2ð Þ ¼ b01 P1 P21½ �b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b01P1b1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
b02Pb2

p ¼ ρ12, ð9:7Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b01P1b1

q
and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b02Pb2

q
are the standard deviations of the variances of

I1 ¼ b01x1 and I2 ¼ b02y respectively.

9.1.2 The Selection Intensities

Selection intensity k is related to the height of the ordinate of the normal curve (z)
and the proportion selected ( p) in the LPSI as k ¼ z/p. In the multistage selection
context, it is usual to fix the total proportion to be selected ( p) before selection is
carried out and then to determine the unknown proportion qi (i¼1, 2,� � �, N ) for each
stage under the restriction

p ¼
YN
i¼1

qi, ð9:8Þ

where N is the number of stages. In the two-stage selection scheme, we would have
p ¼ q1q2. Based on the fixed proportion p and the ρ12 value (Eq. 9.7), Young (1964)
used the bivariate truncated normal distribution theory to obtain the selection
intensity for two stages. A truncated distribution is a conditional distribution
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resulting when the domain of the parent distribution is restricted to a smaller region
(Hattaway 2010). In the multistage selection context, a truncation occurs when a
sample of individuals from the parent distribution are selected as parents for the next
selection cycle, thus creating a new population of individuals that follow a truncated
normal distribution.

Suppose that I1 ¼ b01x1 and I2 ¼ b02y have joint normal distribution and let I1 and

I2 be transformed as v1 ¼ I1�μI1
σI1

and v2 ¼ I2�μI2
σI2

with a mean of zero and a variance of

1, where μI2 and μI2 are the means, whereas σI1 and σI2 are the standard deviations of
the variances of I1 and I2 respectively. In this case, the method of selection is to retain
animals or plants with v1 � c1 at stage 1 and v1 + v2 � c2 at stage 2, where c1 and c2
are truncation points for I1 and I2 respectively.

The selected population has bivariate left truncated normal distribution with a
probability density function given by h v1; v2ð Þ ¼ f v1;v2ð Þ

p , where

f v1; v2ð Þ ¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ212

p exp � 1

2 1� ρ212
� � v21 þ v22 � 2ρ12v1v2

� �( )
and ρ12 is the

correlation between v1 and v2. The fixed total proportion ( p) before selection can

be written as p ¼
ð1
c1

ð1
c2�v1

f v1; v2ð Þdv2dv1, where c1 and c2 are truncation points for
I1 and I2, respectively. Then, as p is fixed, Young (1964) integrated by parts (Thomas
2014) ð1

c1

ð1
c2�v1

f v1; v2ð Þdv1dv2 ð9:9Þ

and found the expectations of v1 and v2 in the selected population, writing the
selection intensity values for stages 1 (k1) and 2 (k2) as

k1 ¼ z c1ð ÞQ að Þ
p

þ z c3ð ÞQ bð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ12ð Þ=2p

p
ð9:10Þ

and

k2 ¼ ρ12z c1ð ÞQ að Þ
p

þ z c3ð ÞQ bð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ12ð Þ=2p

p
ð9:11Þ

respectively, where z c1ð Þ ¼ exp �0:5c21
	 
ffiffiffiffiffi

2π
p and z c3ð Þ ¼ exp �0:5c23

	 
ffiffiffiffiffi
2π

p are the heights

of the ordinates of the standard normal distribution at the lowest value of c1 and
c3 ¼ c2ffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1þρ12ð Þ
p and p is the total proportion of the population of animal or plant

lines selected; a ¼ c2 � c1 1þ ρ12ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ212

p and b ¼ 2c1�c2ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1�ρ12ð Þ

p , whereas Q(a) ¼ 1 � Φ(a)

and Q(b) ¼ 1 � Φ(b) are the complement of the standard normal distribution;

Φ að Þ ¼
ð a

�1

1ffiffiffiffiffi
2π

p exp �0:5w2
	 


dw and Φ bð Þ ¼
ð b

�1

1ffiffiffiffiffi
2π

p exp �0:5t2
	 


dt are
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probabilities of the standard normal distribution, i.e., Φ(a) ¼ Pr(W � a) and
Φ(b) ¼ Pr(T � b).

Young (1964) provided figures to obtain values of c1 and c2 when the ρ12 values
are between �0.8 and 0.8, and the p values are between 0.05 and 0.8. For example,
suppose that ρ12 ¼ 0.8 and p ¼ 0.2 (or 20%), then, according to Young (1964,
Fig. 9), c1 ¼ 0.80 and c2 ¼ 1.6, and to find the selection intensities for the first (k1)
and second stages (k2) we need to solve Eqs. (9.10) and (9.11). That is, as c1 ¼ 0.80,

c2 ¼ 1.6, ρ12 ¼ 0.8, and p ¼ 0.2, then z c1ð Þ ¼ exp �0:5 0:8ð Þ2f gffiffiffiffi
2π

p ¼ 0:290,

z c3ð Þ ¼ exp �0:5 1:6ð Þ2=2 1:8ð Þ½ �f gffiffiffiffi
2π

p ¼ 0:28, a ¼ 1:6�0:8 1:8ð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:8ð Þ2

p ¼ 0:27, b ¼ 2 0:8ð Þ�1:6ffiffiffiffiffiffiffiffiffi
2 0:2ð Þ

p ¼ 0,

Φ(a)¼ 0.6064,Φ(b)¼ 0.5,Q(a)¼ 1�Φ(a)¼ 0.3936, andQ(b)¼ 1�Φ(b)¼ 0.5.
Based on these results, the selection intensities for stages 1 and 2 are

k1 ¼ 0:29ð Þ 0:3936ð Þ
0:2

þ 0:28ð Þ 0:5ð Þ 0:9ð Þ
0:2

¼ 0:744 and

k2 ¼ 0:8ð Þ 0:29ð Þ 0:3936ð Þ
0:2

þ 0:28ð Þ 0:5ð Þ 0:9ð Þ
0:2

¼ 0:721

respectively. Note that the values of Φ(a) ¼ 0.6064 and Φ(b) ¼ 0.5 can be obtained
from any table with values showing the area under the curve of the standard normal
distribution (e.g., Rausand and Hϕyland 2004, Table F.1).

One problem with Eqs. (9.10) and (9.11) is that they tend to overestimate
the selection intensities values and also overestimate the selection response
when the total proportion retained p is lower than 10%. Cochran (1951) have
given two equations to obtain selection intensities in the two stages context but his
equations also overestimate the selection intensities values when p is lower than
10%. Up to now, there is not an accurate method to estimate selection intensities for
two or more stages in the MLPSI context. Mi et al. (2014) have developed an R
package called selectiongain that enables calculation of the OMLPSI selection
response for up to 20 selection stages. Selectiongain uses raw integration to obtain
the first moment of a lower truncated multivariate standard normal distribution and
then it estimates the OMLPSI selection response at each stage; however, this integral
requires complex numerical algorithms with no convergence criteria (Arismendi
2013) and could also overestimate the selection intensity at each stage.

9.1.3 Numerical Example

To illustrate the two-stage selection theory, we use the poultry data of Xu and Muir
(1992). This data set contains four traits: age at sexual maturity, defined as the age
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(in days) at which the first trap-nested eggwas laid (y1); rate of lay, defined as 100 times
(total eggs in the laying period)/(total days in the laying period) (y2); body weight
(in pounds) measured at 32 weeks of age (y3); and average egg weight (in ounces per
dozen) of all the eggs laid up to 32 weeks of age (y4). The estimated phenotypic and

genetic covariance matrices were bP ¼
137:178 �90:957 0:136 0:564
�90:957 201:558 1:103 �1:231
0:136 1:103 0:202 0:104
0:564 �1:231 0:104 2:874

2664
3775

and bC ¼
14:634 �18:356 �0:109 1:233
�18:356 32:029 0:103 �2:574
�0:109 0:103 0:089 0:023
1:233 �2:574 0:023 1:225

2664
3775 respectively, whereas

the vector of economic weights for the four traits was w0 ¼
�3:555 19:536 �113:746 48:307½ �.
Suppose that at the first and second stages we select two traits (n1¼ n2¼ 2); then,

y0 ¼ x01 x02½ �, where x01 ¼ y1 y2½ � and x02 ¼ y3 y4½ �. The estimated phenotypic
( bP1 ) and genetic ( bG1 ) covariance matrices for the first stage were

bP1 ¼ 137:178 �90:957
�90:957 1:103

� �
and bG1 ¼ 14:634 �18:356 �0:109 1:233

�18:356 32:029 0:103 �2:574

� �
respectively. For the first and second stages, the estimated MLPSI vector of
coefficients were bb0

1 ¼w0 bG0
1
bP1 ¼ �0:918 2:339½ � and bb0

2 ¼ bw0bCbP�1 ¼
�0:59 2:78 �49:45 3:75½ � respectively.
The estimated correlation value between the estimated indices bI 1 ¼ bb0

1x1 andbI 2 ¼ bb0
2y was bρ12 ¼ bb0

1
bP1 bP21

� �bb2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0
1
bP1

bb1

q ffiffiffiffiffiffiffiffiffiffiffiffiffibb0
2
bPbb2

q ¼ 0:88, where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0
1
bP1

bb1

q
and

ffiffiffiffiffiffiffiffiffiffiffiffiffibb0
2
bPbb2

q
were the estimated standard deviations of the variance of bI 1 and bI 2 respectively.
Assuming that p ¼ 0.2 (or 20%), an approximate selection intensity for the first
stage was k1 ¼ 0.744, whence the estimated MLPSI selection response, expected

genetic gain per trait, and accuracy were bR1 ¼ k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0
1
bP1

bb1

q
¼ 29:85, bE0

1 ¼

k1
bG 0

1
bb1ffiffiffiffiffiffiffiffiffiffiffibb 0
1
bP1bb1

q ¼ �1:046 1:702 0:006 �0:133½ �, and bρHI1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0
1
bP1

bb1

w0bCw

s
¼ 0:353

respectively.
According to the k1 ¼ 0.744 value, the approached value of u

was u ¼ 0.554, and by Eqs. (9.5) and (9.6), the estimated and adjusted phen-
otypic (bP∗) and genetic (bC∗) covariance matrices for the second stage were

bP∗ ¼
97:682 �26:241 0:422 0:168
�26:241 95:518 0:634 �0:582
0:422 0:634 0:200 0:107
0:168 �0:582 0:107 2:870

2664
3775 and
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bC∗ ¼
13:540 �16:575 �0:102 1:094
�16:575 29:129 0:092 �2:348
�0:102 0:092 0:089 0:024
1:094 �2:384 0:024 1:207

2664
3775, respectively.

For the second stage, the approximated selection intensity was k2 ¼ 0.721,
whereas the estimated MLPSI selection response, expected genetic gain per trait

and accuracy, were bR2 ¼ kI2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0
2
bP∗
2
bb2

q
¼ 24:84, bE0

2 ¼ kI2
bC∗0bb2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0
2
bP∗
2
bb2

q ¼

�0:443 0:804 �0:087 �0:087½ �, and bρHI2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0
2
bP∗
2
bb2

w0bC∗w

s
¼ 0:314 respec-

tively. Finally, the total estimated MLPSI selection response and expected
genetic gain per trait were bR1 þ bR2 ¼ 54:69 and bE 0

1 þ bE0
2 ¼

�1:488 2:506 �0:081 �0:219½ �.

9.2 The Multistage Restricted Linear Phenotypic Selection
Index

The multistage restricted linear phenotypic selection index (MRLPSI) is an exten-
sion of the null restricted linear phenotypic selection index (RLPSI) described in
Chap. 3 to the multistage case; thus, the theoretical results of the MRLPSI are very
similar to those of the RLPSI. The MRLPSI allows restrictions equal to zero to be
imposed on the expected genetic gains of some traits, whereas other traits increase
(or decrease) their expected genetic gains without any restrictions being imposed.

9.2.1 The MRLPSI Parameters for Two Stages

In Chap. 3, we indicated that vector bR ¼ Kb is a linear transformation of the LPSI
vector of coefficients (b) made by the projector matrix K, and that matrix K is
idempotent (K¼K2) and projects b into a space smaller than the original space of b.
The reduction of the space into which matrix K projects b is equal to the number of
zeros that appears on the expected genetic gain per trait. Hence, the MRLPSI vector
of coefficients for stages 1 and 2 should be a linear transformation of the MLPSI
vector of coefficients at stages 1 (b1 ¼ P�1

1 G1w) and 2 (b2 ¼ P�1Cw) described in
Sect. 9.1.1 of this chapter, and should be written as

bR1 ¼ K1b1 ð9:12Þ
and

bR2 ¼ K2b2, ð9:13Þ
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respectively, where, at stage 1, K1 ¼ [I1 � Q1], Q1 ¼ P�1
1 Ψ1 Ψ0

1P
�1
1 Ψ1

� ��1Ψ0
1,

Ψ0
1 ¼ U0G0

1, I1 is an identity matrix of the same size as P1, and P
�1
1 is the inverse of

matrix P1. At stage 2,K2¼ [I2 �Q2],Q2 ¼ P�1Ψ2 Ψ0
2P

�1Ψ2
� ��1Ψ0

2,Ψ
0
2 ¼ U0C, I2

is an identity matrix of the same size as P, and P�1 is the inverse of matrix P. By
Eqs. (9.12) and (9.13), the MRLPSI for stages 1 and 2 can be written as I1 ¼ b0R1

x1
and I2 ¼ b0R2

y, where y0 ¼ x01 x02½ �; x01 and x02 are the vectors of traits that become
evident at the first and second stages respectively.

Let k1 and k2 be the selection intensities for stages 1 and 2 (Eqs. 9.10 and 9.11)
respectively, and let P∗ and C∗ be the covariance matrices adjusted in the MRLPSI
context according to Eqs. (9.5) and (9.5) respectively. The maximized MRLPSI
selection response, expected genetic gain per trait, and accuracy at stages 1 and 2 can
be written as

RR1 ¼ k1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0R1

P1bR1

q
and RR1 ¼ k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0R2

P∗bR2

q
, ð9:14Þ

ER1 ¼ k1
G0

1bR1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0R1

P1bR1

q and ER2 ¼ k2
b0R2

C∗ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0R2

P∗bR2

q ð9:15Þ

and

ρR1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0R1

P1bR1

w0Cw

s
and ρR2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0R2

P∗bR2

w0C∗w

s
, ð9:16Þ

respectively, whereas the total MRLPSI selection response and expected genetic
gain per trait for both stages are equal to RR1 þ RR2 and ER1 þ ER2 .

9.2.2 Numerical Examples

To illustrate the MRLPSI theory for a two-stage selection breeding scheme, we
use the real data set of the White Leghorn chickens of Hicks et al. (1998). This data
set is conformed with six traits (y1 to y6) that correspond to records consisting of the
number of eggs laid during different periods: from week 0 through 4 (y1), 4 through
8 (y2), 8 through 28 (y3), 28 through 32 (y4), 32 through 36 (y5), and 36 through
52 (y6) respectively. The estimated phenotypic and genotypic covariance matrices
were

bP ¼

102 32 14 4 3 �1
32 80 80 16 17 7
14 80 298 78 112 62
4 16 78 66 80 51
3 17 112 80 135 49
�1 7 62 51 49 98

26666664

37777775 and bC ¼

44 11 �11 �3 �8 �3
11 26 24 7 7 3
�11 24 62 23 37 20
�3 7 23 14 23 14
�8 7 37 23 42 25
�3 3 20 14 25 18

26666664

37777775,
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respectively, and w0 ¼ 0:08 0:08 0:38 0:08 0:08 0:31½ � was the vector of
economic weights.

Let y0 ¼ y1 y2 y3 y4 y5 y6½ � and g0 ¼ g1 g2 g3 g4 g5 g6½ � be the
vectors of observed phenotypic and unobserved genotypic values respectively, and
suppose that at stage 1 we select four traits and at stage 2 we select two traits, then
x01 ¼ y1 y2 y3 y4½ � and x02 ¼ y5 y6½ � are the vector of observations at stages
1 and 2 respectively, whereas y0 ¼ x01 x02½ � is the vector of total observations at
stage 2. We need to estimate vectorsb0R1

¼ b01K
0
1 andb

0
R2

¼ b02K
0
2, whereb

0
1 ¼ w0G0

1

P�1
1 and b02 ¼ w0G0P�1. In Chap. 3, we described methods of estimating matrices

K1 ¼ [I1 � Q1], Q1 ¼ P�1
1 Ψ1 Ψ0

1P
1
1Ψ1

� ��1Ψ0
1, Ψ0

1 ¼ U0G0
1, K2 ¼ [I2 � Q2],

Q2 ¼ P�1Ψ2 Ψ0
2P

�1Ψ2
� ��1Ψ0

2, and Ψ0
2 ¼ U0C, which are used in this subsection.

At stage 1, the estimated phenotypic and genotypic covariance matrices were

bP1 ¼
102 32 14 4
32 80 80 16
14 80 298 78
4 16 78 66

2664
3775 and G1 ¼

44 11 �11 �3 �8 �3
11 26 24 7 7 3
�11 24 62 23 37 20
�3 7 23 14 22 14

2664
3775

respectively. At both stages, traits y1 and y2 are restricted. Matrix U can

be written as U0 ¼ 1 0 0 0 0 0
0 1 0 0 0 0

� �
, whence the estimated matrix of

restrictions was bΨ0
1 ¼ UbG0

1 ¼
44 11 �11 �3
11 26 24 7

� �
; therefore, the estimated

matrices of Q1 ¼ P�1
1 Ψ1 Ψ0

1P
�1
1 Ψ1

� ��1Ψ0
1 and K1 ¼ [I4 � Q1] were

bQ1 ¼ bP�1
1

bΨ1
� bΨ0

1
bP�1
1

bΨ1
��1 bΨ0

1 ¼
0:923 �0:013 �0:511 �0:144
0:164 1:026 1:093 0:317
�0:145 �0:069 �0:001 �0:001
0:010 0:159 0:178 0:052

2664
3775 and

bK1 ¼
�
I4 � bQ1

� ¼ 0:077 0:013 0:511 0:144
0:164 �0:026 �1:093 �0:317
0:145 0:069 1:001 0:001
�0:010 �0:159 �0:178 0:948

2664
3775 respectively, where

I4 is an identity matrix of size 4 � 4.
The estimated vector b0R1

¼ b01K
0
1 was bb0

R1 ¼ bb0
1
bK0
1 ¼ 0:044 �0:095½

0:0450:131�, where bb0
1 ¼ w0 bG0

1
bP�1
1 ¼ �0:067 0:125 0:045 0:167½ �, andbIR1 ¼ bb0

R1x1 was the estimated MRLPSI at stage 1. The estimated MRLPSI vector of
coefficients at stage 2 was bb0

R2 ¼ bb0
2
bK0
2 ¼ 0:045 �0:068 0:028½ �0:057 0:099

0:106� and bI R2 ¼ bb0
R2y was the estimated MRLPSI at stage 2.

The estimated correlation value (bρR12
) betweenbIR1 ¼ bb0

R1x1 andbI R2 ¼ bb0
R2ywasbρR12

¼
bb0

R1
bP1 bP21

� �bbR2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0
R1
bP1bbR1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0
R2
bPbbR2

q ¼ 0:564, where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0

R1
bP1

bbR1

q
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0
R2
bPbbR2

q
are

the estimated standard deviations of the variance of bIR1 ¼ bb0
R1x1 and bIR2 ¼ bb0

R2y
respectively. According to Young (1964, Fig. 8), and Eqs. (9.10) and (9.11),
the selection intensities for stages 1 and 2 were k1 ¼ 0.641 and k2 ¼ 0.593
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respectively. The estimated selection responses and expected genetic gains per traits

for both stages were bRR1 ¼ k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0
R1
bP1

bbR1

q
¼ 0:973 andbRR2 ¼ k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0
R2
bP∗bbR2

q
¼ 0:930,

bE0
R1 ¼ k1

bG0
1
bbR1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0

R1
bP1

bbR1

q ¼ 0 0 1:271 0:870 1:482 0:974½ � and bE0
R2 ¼

k2
bC∗0bbR2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb 0

R2
bP∗bbR2

q ¼ 0 0 1:419 1:014 2:037 1:349½ �, whereas bRR1 þ bRR2 ¼ 1:903

and bE0
R1 þ bE0

R2 ¼ 0 0 2:691 1:884 3:519 2:322½ � were the total estimated
MRLPSI selection response and expected genetic gain per trait respectively.

Finally, the estimated MRLPSI accuracy at stage 1 was bρR1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0R1
bP1

bbR1

w0bCw

s
¼

0:320 and at stage 2 it was bρR2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0R2
bP∗bbR2

w0bC∗w

s
¼ 0:334. In this case, bρR2

> bρR1
. We

can explain these results considering that although bρR2
was obtained with six traits,bρR1

was obtained only with four traits, two of them restricted.

9.3 The Multistage Predetermined Proportional Gain
Linear Phenotypic Selection Index

The main objectives of the multistage predetermined proportional gain linear phe-
notypic selection index (MPPG-LPSI) are the same as those of the predetermined
proportional gain linear phenotypic selection index (PPG-LPSI) described in
Chap. 3, i.e., to optimize, under some predetermined restrictions, the expected
genetic gains per trait, to predict the net genetic merit, and to select the individual
with the highest net genetic merit values as parents of the next generation under
some predetermined restrictions. The MPPG-LPSI allows restrictions different from
zero to be imposed on the expected genetic gains of some traits, whereas other traits
increase (or decrease) their expected genetic gains without any restrictions being
imposed.

9.3.1 The MPPG-LPSI Parameters

In a similar manner to the MRLPSI, the MPPG-LPSI vector of coefficients for stages
1 and 2 should be a linear transformation of the MLPSI vector of coefficients at
stages 1 (b1 ¼ P�1

1 G1w) and 2 (b2 ¼ P�1Cw), and should be written as
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bM1 ¼ KM1b1 ð9:17Þ
and

bM2 ¼ KM2b2, ð9:18Þ

respectively, where, at stage 1,KM1 ¼ I1�QM1

� �
,QM1

¼P�1
1 M1 M0

1P
�1
1 M1

� ��1
M0

1,
M0

1 ¼D0Ψ0
1, Ψ0

1 ¼U0G0
1, I1 is an identity matrix of the same size as P1, and P�1

1 is
the inverse of matrix P1. At stage 2, KM ¼ [I � QM], QM ¼ P�1M(M0P�1M)�1M0,
M0 ¼D0Ψ0,Ψ0 ¼U0C, I is an identity matrix of the same size as P, P�1 is the inverse

of matrix P, and D0 ¼
dr 0 � � � 0 �d1
0 dr � � � 0 �d2
⋮ ⋮ ⋱ ⋮ ⋮
0 0 � � � dr �dr�1

2664
3775, where dq (q ¼ 1, 2. . ., r) is the qth

element of d0 ¼ d1 d2 � � � dr½ �, the vector PPG (predetermined proportional gains)
imposed by the breeder (see Chap. 3 for details).

By Eqs. (9.17) and (9.18), the MPPG-LPSI for stages 1 and 2 can be written as
IM1 ¼ bM1x1 and IM2 ¼ bM2y respectively, where, assuming that at stage 1 we select
four traits and at stage 2 we select two traits, x01 ¼ y1 y2 y3 y4½ � and x02 ¼
y5 y6½ � are the vectors of phenotypic observations at stages 1 and 2 respectively,
and y0 ¼ x01 x02½ � is the vector of total phenotypic observations at stage 2.

Let k1 and k2 be the selection intensities for stages 1 and 2 (Eqs. 9.10 and 9.11)
respectively and let P∗ and C∗ be the adjusted matrices according to Eqs. (9.5) and
(9.6) in the MPPG-LPSI context. Then, the MPPG-LPSI selection response and
expected genetic gain per trait for both stages can be written as

RM1 ¼ k1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0M1

P1bM1

q
and RM2 ¼ k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0M2

P∗bM2

q
ð9:19Þ

and

EM1 ¼ k1
G0

1bM1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0M1

P1bM1

q and EM2 ¼ k2
b0M2

C∗ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0M2

P∗bM2

q , ð9:20Þ

respectively, whereas the total MPPG-LPSI selection response and expected genetic
gain per trait for both stages are equal to RM1 þ RM2 and EM1 þ EM2 . In addition, the
MPPG-LPSI accuracy for both stages can be written as

ρM1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0M1

P1bM1

w0Cw

s
and ρM2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0M2

P∗bM2

w0C∗w

s
: ð9:21Þ
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9.3.2 Numerical Examples

We use the real data set described in Sect. 9.2.2 to illustrate the theoretical results of
the MPPG-LPSI in the same form as we did with those of the MRLPSI. We need to
estimate vectors b0M1

¼ b01K
0
M1

and b0M2
¼ b02K

0
M2
, where b01 ¼ w0G0

1P�1
1 and

b02 ¼ w0G0P�1. In Chap. 3 we have given methods to estimates KM ¼ [I � QM],
QM ¼ P�1M(M0P�1M)�1M0,M0 ¼ D0Ψ0, and Ψ0 ¼ U0C, which will be used in this
subsection.

The estimated phenotypic and genotypic covariance matrices at stage 1 were

bP1 ¼
102 32 14 4
32 80 80 16
14 80 298 78
4 16 78 66

2664
3775 and G1 ¼

44 11 �11 �3 �8 �3
11 26 24 7 7 3
�11 24 62 23 37 20
�3 7 23 14 22 14

2664
3775

respectively, whereas w0 ¼ 0:08 0:08 0:38 0:08 0:08 0:31½ � was the vec-
tor of economic weights. The traits restricted at both stages are y1, y2, and y3. The

vector of PPG was d0 ¼ 2 3 5½ �, whence D0 ¼ 5 0 �2
0 5 �3

� �
and

U0 ¼
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

24 35 were matrices D0 and U. The estimated matrices

of M0
1 and KM1 ¼ I�QM1

� �
were bM0

1 ¼ D0Ψ0
1 ¼ 242 7 �178 �61

88 58 �66 �34

� �
and

bKM1 ¼
0:176 0:205 0:606 0:159
0:031 0:032 �0:007 0:199
0:195 0:235 0:852 �0:098
0:130 0:130 �0:098 0:940

2664
3775 respectively, where bΨ0

1 ¼ U0 bG0
1.

At stages 1 and 2, the estimated MPPG-LPSI vector of coefficients were bb0M1

¼ bb01 bK0
M1 ¼ 0:068 0:035 0:039 0:160½ � and bb0

1 ¼ w0 bG0
1
bP�1
1 ¼

�0:067 0:125 0:045½ 0:167�, whence the estimated MPPG-LGSI werebIM1 ¼ bb0M1x1 and bIM2 ¼ bb0M2y. The estimated correlation value (bρM12
) between bIM1

¼ bb0M1x1 and bIM2 ¼ bb0M2y was bρM12
¼

bb0M1
bP1

bP21

� �bbM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0M1
bP1bbM1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0M2
bPbbM2

q ¼ 0:870, whereffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0M1
bP1

bbM1

q
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0M2
bPbbM2

q
were the estimated standard deviations of variance ofbIM1 ¼ bb0M1x1 andbIM2 ¼ bb0M2y respectively. According to Young (1964, Fig. 8), the

selection intensities for stages 1 and 2 were k1¼ 0.744 and k2¼ 0.721 (Eqs. 9.10 and
9.11) respectively.

The estimated selection responses and expected genetic gains per traits for both

stages were bRM1 ¼ k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0M1
bP1

bbM1

q
¼ 1:553 and bRM2 ¼ k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0M2
bP∗bbM2

q
¼ 1:401,bE0

M1 ¼ k1
bG0
1
bbM1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0M1
bP1

bbM1

q ¼ 0:877 1:316 2:193 1:128 1:655 1:037½ �, and
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bE0
M2 ¼ k2

bC∗0bbM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0M2
bP∗bbM2

q ¼ 0:878 1:346 2:604 1:433 2:506 1:602½ �, whereas

bRM1 þ bRM2 ¼ 2:954 and bE0
M1 þ bE0

M2 ¼ 1:755 2:662 4:797½ 2:561 4:161 2:639�
were the total estimated MPPGLPSI selection response and expected genetic gain
per trait respectively. Note that the vector of predetermined restriction was
d0 ¼ 2 3 5½ �. This means that the MPPG-LPSI efficiency at predicting the total
expected genetic gain per trait was high because the difference between each
predetermined value (2, 3, and 5) and the total of each predicted value (1.755,
2.662, and 4.797) were 0.245, 0.338, and 0.203 respectively.

Finally, the estimated MPPG-LPSI accuracy at stage 1 was bρM1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0M1
bP1bbM1

w0bCw

s

¼ 0:435, and at stage 2 it was bρM2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb0M2
bP∗bbM2

w0bC∗w

s
¼ 0:428; that is, both were very

similar.

9.4 The Multistage Linear Genomic Selection Index

We describe the multistage linear genomic selection indices (MLGSI) as an exten-
sion of the linear genomic selection index (LGSI, Chap. 5) theory to the multistage
genomic selection context; thus, the theoretical results of the MLGSI are very similar
to those of the LGSI. The MLGSI is a linear combination of genomic estimated
breeding values (GEBVs) and is useful for predicting individual net genetic merit
and for selecting individuals from a nonphenotyped testing population as parents of
the next selection cycle.

9.4.1 The MLGSI Parameters

The objective of the MLGSI is to predict the net genetic merit H ¼ w0g, where g is a
vector of true breeding values and w0 is the vector of economic weights, using only
GEBVs. In Chap. 5, we indicated that the covariance between γi and gi is equal to the
variance of γi, i.e.,Cov gi; γið Þ ¼ s2i , and that the GEBV associated with the ith trait is
a predictor of the ith vector of genomic breeding values (γi). In the testing popula-
tion, the only observable information is w0 and the GEBV associated with the traits
of interest. For this reason, in practice, we construct a linear combination of GEBVs,
which should be a good predictor of H ¼ w0g.

Suppose that the breeder is interested in four traits, and that
γ0 ¼ γ1 γ2 γ3 γ4½ �, g0 ¼ g1 g2 g3 g4½ �, and w0 ¼ w1 w2 w3 w4½ �
are the vectors of genomic breeding values (γ), true breeding values (g), and
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economic weights (w) respectively. Let Γ ¼ Var γð Þ ¼
s21 s12 s13 s14
s21 s22 s23 s24
s31 s32 s23 s34
s41 s42 s43 s24

2664
3775 and

C ¼ gð Þ ¼
σ21 σ12 σ13 σ14
σ21 σ22 σ23 σ24
σ31 σ32 σ23 σ34
σ41 σ42 σ43 σ24

2664
3775 be the covariance matrix of g and γ. At a

two-stage selection breeding scheme, γ0 ¼ γ1 γ2 γ3 γ4½ � can be partitioned
into γ01 ¼ γ1 γ2½ � and γ02 ¼ γ3 γ4½ � ; therefore, at stage 1, Γ1 ¼ Var γ1ð Þ ¼
s21 s12
s21 s22

� �
is the genomic covariance matrix of γ01 ¼ γ1 γ2½ � and Cov γ1; gð Þ ¼

s21 s12 s13 s14
s12 s22 s23 s24

� �
¼ A1 is the covariance matrix of γ01 ¼ γ1 γ2½ � with

g0 ¼ g1 g2 g3 g4½ �. Matrix A1 indicates that we are assuming that the
covariance between γi and gj (i, j ¼ 1, 2, � � �, g; g¼ number of genotypes) is equal
to the covariance between γi and γj. This is because, in practice, in the testing
population, we can only estimate matrix Γ.

At stage 2, Γ ¼ Var(γ) is the covariance matrix of γ and A ¼ Γ is the covariance
matrix of the vector of genomic breeding values γ with the vector of breeding values
g. The MLGSI vector of coefficients at stages 1 and 2 are β01 ¼
w0A0

1Γ�1
1 ¼ β11 β12½ � and β02 ¼ w0AΓ�1 ¼ w0 ¼ w1 w2 w3 w4½ � respec-

tively, and the MLGSI for both stages can be written as I1 ¼ β11γ1 þ β12γ2 ¼ β01
γ1 and I2 ¼ w1γ1 + w2γ2 + w3γ3 + w4γ4 ¼ w0γ.

Let k1 and k2 be the MLGSI selection intensities for stages 1 and 2. For both
stages, the MLGSI accuracies (ρHI1 andρHI2), expected genetic gains per trait (E1 and
E2) and selection responses (R1 and R2) can be written as

ρHI1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β01Γ1β1
w0Cw

r
and ρHI2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0Γ∗w
w0C∗w

r
, ð9:22Þ

E1 ¼ k1
A0

1β1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β01Γ1β1

p and E2 ¼ k2
Γ∗wffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0Γ∗w

p ð9:23Þ

and

R1 ¼ k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β01Γ1β1

q
and R2 ¼ k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0Γ∗w

p
: ð9:24Þ

The total MLGSI expected genetic gain per trait and selection response at both
stages are equal to E1 + E2 and R1 + R2. To simplify notation, in Eqs. (9.23) and
(9.24), we have omitted the intervals between stages or selection cycles (LG).
Matrices C∗ and Γ∗ in Eqs. (9.22) to (9.23) are matrices Γ and C adjusted for
previous selection on I1.

We adjust matrices Γ and C for previous selection on I1 as
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Γ∗ ¼ Γ� u
A0

1β1β
0
1A1

β01Γ1β1
ð9:25Þ

and

C∗ ¼ C� u
G0

1b1b
0
1G1

b01P1b1
, ð9:26Þ

respectively, where u¼ k1(k1 � τ), k1 is the standardized selection differential, and τ
is the truncation point when I1 ¼ β01γ1 is applied. All the terms in Eq. (9.26) were
defined in Eq. (9.6).

The correlation between I1 ¼ β01γ1 and I2 ¼ w0γ can be written as

Corr I1; I2ð Þ ¼ β01A1wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β01Γ1β1

p ffiffiffiffiffiffiffiffiffiffiffi
w0Γw

p ¼ ρI1I2 , ð9:27Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β01Γ1β1

q
and

ffiffiffiffiffiffiffiffiffiffiffi
w0Γw

p
are the standard deviations of the variances of I1 ¼ β01

γ1 and I2 ¼ w0γ respectively. In Eq. (9.27), matrix Γ was not adjusted according to
Eq. (9.25).

9.4.2 Estimating the Genomic Covariance Matrix

All the MLGSI parameters are associated with matrix Γ; thus, the estimation of this
matrix in the testing population is very important. We estimate matrix Γ according to
the estimation method described in Chap. 5 (Eq. 5.25), that is, as

bΓl ¼ bσγqq0

n o
, ð9:28Þ

where bσγqq0 ¼
1
g

�bγql � 1bμγql

�0
G�1

l

�bγq0l � 1bμγq0 l

�
is the estimated covariance betweenbγql ¼ Xlbuq andbγq0l ¼ Xlbuq0 at stage l or selection cycle of the testing population; g is

the number of genotypes; bμγql
and bμγq0 l are the estimated arithmetic means of the

values of bγql and bγq0l; 1 is an g � 1 vector of 1s and Gl ¼ c�1XlX0
l is the additive

genomic relationship matrix at stage l or selection cycle in the testing population (see
Chap. 5 for details).

9.4.3 Numerical Examples

We illustrate the MLGSI theoretical results using the data described in Chap. 2,
Sect. 2.8.1 simulated for eight phenotypic and seven genomic selection cycles,
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each with four traits (T1, T2, T3 and T4), 500 genotypes, four replicates for
each genotype, 2500 molecular markers, and 315 quantitative trait loci in one
environment. The economic weights of T1, T2, T3, and T4 were 1, �1, 1, and
1 respectively. In this subsection, and only for illustrative purposes, we use the
data set from cycle 1.

The genotypic and genomic estimated covariance matrices in cycle 1 were

bC¼
36:21 �12:93 8:35 2:74
�12:93 13:04 �3:4 �2:24
8:35 �3:4 9:96 0:16
2:74 �2:24 0:16 6:64

2664
3775 and bΓ¼

16:26 �6:51 5:60 2:29
�6:51 5:79 �2:23 �1:62
5:60 �2:23 3:75 0:94
2:29 �1:62 0:94 2:62

2664
3775

respectively, whereas w0 ¼ 1 �1 1 1½ � was the vector of economic weights.
Matrices bP and bC were obtained according to Eqs. (2.22) to (2.24), whereas matrixbΓ was obtained according to Eq. (9.28).

Suppose that we select two traits at stages 1 and 2. Then, at stage 1,bΓ1 ¼ 16:26 �6:51
�6:51 5:79

� �
and bA1 ¼ 16:26 �6:51 5:60 2:29

�6:51 5:79 �2:33 �1:62

� �
are the

estimated covariance matrices of Γ1 and A1 respectively, and the estimated

MLGSI vector of coefficients was bβ01 ¼ w0cA0
1
bΓ�1
1 ¼ 1:39 �1:25½ �. Because at

stage 2 β02 ¼ w0AΓ�1 ¼ w0 ¼ w1 w2 w3 w4½ �, the estimated MLGSI vector of

coefficients is the vector of economic weights. Thus, bρI1I2 ¼ bβ01bA1wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ01bΓ1
bβ1

q ffiffiffiffiffiffiffiffiffiffiffiffi
w0bΓwp ¼

0:97 was the estimated correlation between bI 1 ¼ bβ01bγ1 and bI 2 ¼ w0bγ, and assuming
that the fixed proportion was 0.2 (20%), k1 ¼ 0.744 and k2 ¼ 0.721 were
the approximated selection intensities for stages 1 and 2 respectively. The

adjusted matrices Γ∗ and C∗ for previous selection on bI 1 ¼ bβ01bγ1 were

bΓ∗¼
7:96 �2:11 2:71 0:88
�2:11 3:46 �0:80 �0:87
2:71 �0:80 2:75 0:45
0:88 �0:87 0:45 2:38

2664
3775 and bC∗¼

24:40 �5:65 5:47 1:39
�5:65 8:55 �1:63 �1:41
5:47 �1:63 9:26 �0:17
1:39 �1:41 �0:17 6:49

2664
3775.

The estimated MLGSI accuracy, selection response, and expected genetic

gain for stage 1 in the testing population were bρHI1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ01bΓ1

bβ1

w0bCw

s
¼ 0:71,

bR1 ¼ k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ01bΓ1
bβ1

q
¼ 5:90, and bE0

1 ¼ k1
bA0
1
bβ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β01bΓ1
bβ1

q ¼ 2:88 �1:53 1:00 0:49½ �

respectively, whereas at stage 2, the estimated MLGSI accuracy, selection response,

and expected genetic gain were bρHI2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0bΓ∗w

w0bC∗w

s
¼ 0:64, bR2 ¼ k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0bΓ∗w

p
¼ 4:10,

and bE0
2 ¼ k2

bΓ∗wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0bΓ∗w

p ¼ 1:74 �0:92 0:85 0:58½ � respectively. The estimated

MLGSI accuracy, selection response, and expected genetic gain at stage 2 were
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lower than at stage 1. This means that the adjusted matrices bΓ∗ and bC∗ negatively
affected the estimated MLPSI parameters at stage 2. The total estimated MLGSI
selection response and expected genetic gain for stages 1 and 2 were bR1þ bR2 ¼ 9:99
and bE0

1þ bE0
2 ¼ 4:62 �2:45 1:85 1:07½ �.

9.5 The Multistage Restricted Linear Genomic Selection
Index (MRLGSI)

The restricted linear genomic selection index (RLGSI) described in Chap. 3 is
extended to the multistage restricted linear genomic selection index (MRLGSI)
context in a two-stage breeding selection scheme.

9.5.1 The MRLGSI Parameters

In Sect. 9.4.1, we indicated that the MLGSI vector of coefficients at stage 1 can be
written as β01 ¼ w0A0

1Γ�1
1 ¼ β11 β12½ � and at stage 2 as β02 ¼ w0AΓ�1 ¼

w0 ¼ w1 w2 w3 w4½ �. It can be shown that the MRLGSI vector of coefficients
is a linear transformation of vectors β1 and β2 made by matrix KG, which is a
projector (see Chaps. 3 and 6 for details) that projects β1 and β2 into a space smaller
than the original space of β1 and β2. Thus, at stages 1 and 2, the MRLGSI vector of
coefficients is

βR1
¼ KG1β1 ð9:29Þ

and

βR2
¼ KG2β2 ¼ KG2w, ð9:30Þ

respectively, whereKG1 ¼ I�QG1

� �
,QG1

¼U1 U0
1Γ1U1

� ��1
U0

1Γ1,KG2 ¼ I�QG2

� �
,

and QG2
¼U2 U0

2ΓU2
� ��1

U0
2Γ are matrix projectors. By Eqs. (9.29) and (9.30), the

MRLGSI at stages 1 and 2 can be written as IR1 ¼ β0R1
γ1 and IR2 ¼ β0R2

γ respectively,
where γ01 ¼ γ1 γ2½ � and γ0 ¼ γ1 γ2 γ3 γ4½ � are vectors of genomic breeding values,
which can be estimated using GEBVs, as described in Chap. 5. In Chap. 6 we
described methods for constructing matrix U0 and estimating matrix KG; those
methods are also valid in the MRLGSI context.

In a similar manner to the MLGSI context, MRLGSI accuracies, expected genetic
gains per trait, and selection responses for stages 1 and 2 in the testing population can
be written as
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ρHI1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0R1

Γ1βR1

w0Cw

s
and ρHI2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0R2

Γ∗βR2

w0C∗w

s
, ð9:31Þ

ER1 ¼ k1
A0

1βR1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0R1

Γ1βR1

q and ER2 ¼ k2
Γ∗βR2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0R2

Γ∗βR2

q ð9:32Þ

and

RR1 ¼ k1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0R1

Γ1βR1

q
and RR2 ¼ k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0R2

Γ∗βR2

q
, ð9:33Þ

respectively. The total MRLGSI expected genetic gain per trait and selection
response for both stages are equal to ER1 þ ER2 and RR1 þ RR2 . To simplify the
notation, in Eqs. (9.32) and (9.33), we have omitted the intervals between stages or
selection cycles (LG). Matrices Γ∗ and C∗ in Eqs. (9.31) to (9.33) are matrices Γ and
C adjusted for previous selection.

In the MRLGSI context, matrices Γ∗ and C∗ can be obtained as

Γ∗ ¼ Γ� u
A0

1βR1
β0R1

A1

β0R1
Γ1βR1

ð9:34Þ

and

C∗ ¼ C� u
G0

1bR1b
0
R1
G1

b0R1
P1bR1

, ð9:35Þ

where βR1
was defined in Eq. (9.29) and vector bR1 can be obtained according to the

RLPSI as described in Chap. 3. The term u ¼ k(k � τ) was defined earlier.
The correlation between IR1 ¼ β0R1

γ1 and IR2 ¼ β0R2
γ can be written as

ρIR1 IR2 ¼
β0R1

A1βR2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0R1

Γ1βR1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0R2

ΓβR2

q , ð9:36Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0R1

Γ1βR1

q
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0R2

ΓβR2

q
are the standard deviations of the variances of

IR1 ¼ β0R1
γ1 and IR2 ¼ β0R2

γ respectively. In Eq. (9.36), matrix Γ was not adjusted for
previous selection on IR1 ¼ β0R1

γ1.

9.5.2 Numerical Examples

To illustrate the MRLGSI theory in a two-stage breeding selection scheme, we use
the simulated data described in Sect. 9.4.3. In that subsection we indicated that the
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estimated covariance matrices of Γ1 and A1 were bΓ1 ¼ 16:26 �6:51
�6:51 5:79

� �
and

bA1 ¼ 16:26 �6:51 5:60 2:29
�6:51 5:79 �2:33 �1:62

� �
, and that bβ01 ¼w0bA0

1
bΓ�1
1 ¼ 1:39½ �1:25�

was the estimated MLGSI vector of coefficients at stage 1. At stage 2, the estimated
MLGSI vector of coefficients was w0 ¼ 1 �1 1 1½ �, the vector of economic
weights.

Suppose that we restrict only trait 2; then at stages 1 and 2, matrix U0
1 ¼ 0 1½ �

and matrixU0
2 ¼ 0 1 0 0½ � respectively. In addition, bQG1

¼U1
�
U0

1
bΓ1U1

��1
U0

1
bΓ1,bQG2

¼U2
�
U0

2
bΓU2

��1
U0

2
bΓ, bKG1 ¼

�
I� bQG1

�
, and bKG2 ¼

�
I� bQG2

�
are the

estimated matrices described in Eqs. (9.29) and (9.30) for stages 1 and 2. It can be
shown that, at stages 1 and 2, bβ0

R1
¼ bβ0

1
bK0
G1

¼ 1:39 1:558½ � and bβ0
R2
¼w0 bK0

G2 ¼
1:0 1:81½ 1:01:0� are the MRLGSI vectors of coefficients respectively.
Suppose that the total proportion retained for the two stages was 20%, then at

stage 1, k1 ¼ 0.744 is an associated approximated selection intensity and the
estimated MRLGSI selection response, expected genetic gain per trait, and accuracy

were bRR1 ¼ k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0R1
bΓ1

bβR1

q
¼ 3:083, bER1 ¼ 2:225 0 0:742 0:117½ �, and

bρHI1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0R1

bΓ1
bβR1

w0bCw

s
¼ 0:370 respectively. The estimated MRLGSI expected

genetic gain, accuracy, and selection response at stage 2 were

bER2 ¼ k2
bβ0
R2
bΓ∗ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0R2
bΓ∗bβR2

q ¼ 1:156 0 0:793 0:536½ �, bρHI2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0R2

bΓ∗bβR2

w0bC∗w

s
¼ 0:32,

and bRR2 ¼ k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0R2
bΓ∗bβR2

q
¼ 2:485 respectively, where k2 ¼ 0.721 was the approx-

imated selection intensity value for stage 2.
The estimated total MRLGSI selection response and expected genetic gain at

stages 1 and 2 were bRR1 þ bRR2 ¼ 5:568 andE0
R1
þ E0

R2
¼ 3:380 0 1:535½ 0:653�

respectively. Note that, in effect, the expected genetic gain for trait 2 was 0, as
expected.

9.6 The Multistage Predetermined Proportional Gain
Linear Genomic Selection Index

The MPPG-LGSI is an adaptation of the predetermined proportional gain linear
genomic selection index (PPG-LGSI) described in Chap. 6; thus, the theoretical
results, properties, and objectives of both indices are similar. The MPPG-LGSI
objective is to change μq to μq + dq, where dq is a predetermined change in μq. We
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solve this problem by minimizing the mean squared difference between I ¼ β0γ and
H ¼ w0g (E[(H � I)2]) under the restriction U0Γβ ¼ θGd, where θG is a proportion-
ality constant, d0 ¼ [d1 d2. . .dr] is the vector of predetermined restrictions, U0 is a
matrix (t � 1) � t of 1s and 0s, and Γ is a covariance matrix of additive genomic
breeding values, γ0 ¼ [γ1 γ2. . .γt], where r is the number of predetermined restric-
tions and t the number of traits.

9.6.1 The OMPPG-LGSI Parameters

According to the results in Chap. 6, at stages 1 and 2, the MPPG-LGSI vector of
coefficients can be written as

βP1
¼ βR1

þ θ1U1 U0
1Γ1U1

� ��1
d ð9:37Þ

and

βP2
¼ βR2

þ θ2U2 U0
2ΓU2

� ��1
d, ð9:38Þ

respectively, where βR1
¼ KG1β1, βR2

¼ KG2β2 ¼ KG2w, KG1 ¼ I�QG1

� �
,

QG1
¼ U1 U0

1Γ1U1
� ��1

U0
1Γ1, KG2 ¼ I�QG2

� �
, and QG2

¼ U2 U0
2ΓU2

� ��1
U0

2Γ
were described in Eqs. (9.29) and (9.30). Also, it can be shown that the proportion-
ality constants for stages 1 (θ1) and 2 (θ2) are

θ1 ¼
d0 U0

1Γ1U1
� ��1

U0
1A1w

d0 U0
1Γ1U1

� ��1
d

and θ2 ¼
d0 U0

2ΓU2
� ��1

U0
2Γw

d0 U0
2ΓU2

� ��1
d

, ð9:39Þ

respectively. By Eqs. (9.37) to (9.39), the MPPG-LGSI for stages 1 and 2 can be
written as IP1 ¼ β0P1

γ1 and IP2 ¼ β0P2
γ respectively, where γ1 and γ are vectors of

genomic breeding values, which can be estimated using GEBVs (see Chap. 5 for
details).

For stages 1 and 2, the MPPG-LGSI accuracies (ρHI1 and ρHI2), expected genetic
gains per trait (EP1 and EP2), and selection responses (RP1 and RP2) can be written as

ρHI1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0P1

Γ1βP1

w0Cw

s
and ρHI2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0P2

Γ∗βP2

w0C∗w

s
, ð9:40Þ

EP1 ¼ k1
A0

1βP1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0P1

Γ1βP1

q and EP2 ¼ k2
Γ∗βP2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0P2

Γ∗βP2

q ð9:41Þ

and

9.6 The Multistage Predetermined Proportional Gain Linear Genomic Selection Index 227



RP1 ¼ k1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0P1

Γ1βP1

q
and RP2 ¼ k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0P2

Γ∗βP2

q
, ð9:42Þ

respectively. The total MPPG-LGSI expected genetic gain per trait and selection
response at both stages are equal to EP1 þ EP2 and RP1 þ RP2 . To simplify the
notation, in Eqs. (9.41) and (9.42), we omitted the intervals between stages or
selection cycles (LG). Matrices Γ∗ and C∗ are matrices Γ and C adjusted for
previous selection on IP1 according to Eqs. (9.34) and (9.35) respectively in the
MPPG-LGSI context.

The correlation between IP1 ¼ β0P1
γ1 and IP2 ¼ β0P2

γ can be written as

ρ12 ¼
β0p1A1βp2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β0p1Γ1βp1
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β0p2Γβp2
q : ð9:43Þ

In Eq. (9.43), matrix Γ was not adjusted for previous selection on IP1 ¼ β0P1
γ1.

9.6.2 Numerical Examples

To illustrate the MPPG-LGSI theory, we use the simulated data described in
Sect. 9.4.3. Suppose that we select two traits at stages 1 and 2; then, at stage 1,bΓ1 ¼ 16:26 �6:51

�6:51 5:79

� �
and bA1 ¼ 16:26 �6:51 5:60 2:29

�6:51 5:79 �2:33 �1:62

� �
are the

estimated covariance matrices of Γ1 and A1 respectively. We restricted trait 2 with
d ¼ � 2; then, at the stage 1 matrix U0

1 ¼ 0 1½ � and at the stage 2 matrix

U0
2¼ 0 1 0 0½ �. In addition, bQG1

¼U1
�
U0

1
bΓ1U1

��1
U0

1
bΓ1, bQG2

¼U2
�
U0

2
bΓU2

��1
U0

2
bΓ,bKG1 ¼

�
I� bQG1

�
, and bKG2 ¼

�
I� bQG2

�
are the estimates of matrix projectors associated

with stages 1 and 2 (Eqs. 9.37 and 9.38 for details).
In Sect. 9.4.3, we showed that the estimated MRLGSI vector of coefficients

for stage 1 was bβ0
R1

¼ bβ0
1
bK0
G1

¼ 1:386 1:550½ �. Thus, by Eq. (9.37), to obtainbβP1
¼ bβR1

þ bθ1U1
�
U0

1
bΓ1U1

��1
d, we only need to obtain bθ1 and U1

�
U0

1
bΓ1U1

��1
d,

where d¼� 2 andbθ1 ¼ d0
�
U0

1
bΓ1U1

��1
U0

1
bA1w

d0
�
U0

1
bΓ1U1

��1
d

. It can be shown thatU1
�
U0

1
bΓ1U1

��1

d¼ 0
�0:345

� �
and bθ1 ¼ 8:125; therefore, bβ0P1

¼ 1:39 �1:25½ � is the MPPG-LGSI

vector of coefficients at stage 1.
Suppose that the total proportion retained for the two stages was 20%; then,

k1 ¼ 0.744 is an approximate selection intensity associated with MPPG-LGSI and
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the estimated MPPG-LGSI accuracy, selection response, and expected genetic gain

at stage 1 were bρHI1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0P1

bΓ1
bβP1

w0bCw

s
¼ 0:71, bRP1 ¼ k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0P1
bΓ1

bβP1

q
¼ 5:90 and

bE0
P1

¼ k1
bA0
1
bβP1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β0P1
bΓ1

bβP1

q ¼ 2:88 �1:53 1:00 0:49½ � respectively.

It can be shown that at stage 2, d0
�
U0

1
bΓ1U1

��1
U0

1 ¼ 0 �0:345 0 0½ �, bθ2 ¼
8:125 and bβ0P2

¼ w0 ¼ 1 �1 1 1½ �. Thus, the estimated MPPG-LGSI accu-
racy, selection response, and expected genetic gain at this stage were

bρHI2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0bΓ∗w

w0bC∗w

s
¼ 0:64, bRP2 ¼ k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0bΓ∗w

p
¼ 4:10, and bE0

P2 ¼ k2
bΓ∗wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0bΓ∗w

p ¼
1:74 �0:92 0:85 0:58½ � respectively, where k2 ¼ 0.721. The estimated total
MPPG-LGSI selection response and expected genetic gain for both stages were bRP1

þbRP2 ¼ 9:99and bE0
P1

þ bE 0
P2

¼ 4:62 �2:45 1:85 1:07½ � respectively. Note that
the total expected genetic gain for trait 2 was�2.45, which is similar to d¼ � 2, the
PPG imposed by the breeder. Finally, to simplify the notation, we omitted the
intervals between stages or selection cycles (LG) in the estimated MPPG-LPSI
selection response and expected genetic gain for both stages.
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Chapter 10
Stochastic Simulation of Four Linear
Phenotypic Selection Indices

Fernando H. Toledo, José Crossa, and Juan Burgueño

Abstract Stochastic simulation can contribute to a better understanding of the
problem, and has already been successfully applied to evaluate other breeding
scenarios. Despite all the theories developed in this book concerning different
types of indices, including phenotypic data and/or data on molecular markers, no
examples have been presented showing the long-term behavior of different indices.
The objective of this chapter is to present some results and insights into the in silico
(computer simulation) performance comparison of over 50 selection cycles of a
recurrent and generic population breeding program with different selection indices,
restricted and unrestricted. The selection indices included in this stochastic simula-
tion were the linear phenotypic selection index (LPSI), the eigen selection index
method (ESIM), the restrictive LPSI, and the restrictive ESIM.

10.1 Stochastic Simulation

Simulations were used to evaluate the accuracy, effectiveness, response to selection,
and the decrease in the overall genetic variance in a recurrent selection scheme under
the use of the Smith (1936) and Hazel (1943) index (or linear phenotypic selection
index, LPSI, see Chap. 2 for details); the eigen selection index method (ESIM, see
Chap. 7 for details); the Kempthorne and Nordskog (1959) restricted index (K&N or
restricted phenotypic selection index, RLPSI, see Chap. 3 for details); and the
restricted eigen selection index method (RESIM, see Chap. 3 for details). The
different scenarios are described below and encompass variations in the nature of
the genetic correlation between traits in addition to their expected heritabilities.
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10.1.1 Breeding Design

A total of 50 forward recurrent selection cycles of modern breeding were simulated,
in which the breeder has the ability to select based on breeding value estimates of
genetically correlated traits, and to apply the various above-mentioned selection
indices. All simulated scenarios (described below) followed a common general
breeding design. In each cycle, 350 full sib progenies (S1) were generated taking
700 parents at random from the base population. From each progeny, 100 double-
haploid lines were randomly derived (which shortened the cycle interval by five
inbreeding generations). The simulated phenotypic values of the 35,000 resulting
lines were then evaluated in simulated trials. The selection was made by means of the
progeny average performance. The selected progenies (top quarter) according to
each index were then recombined by random mating a sample of the lines within the
progeny to recover the population for the next cycle.

10.1.2 Simulating Quantitative Traits

Genetically correlated quantitative traits were simulated assuming a full pleiotropic
model. This was carried out by randomly sampling genetic effects for all segregating
sites from a multivariate normal distribution with zero mean and a previously stated
variance–covariance. The genetic effects were in turn used to compute true breeding
values (TBVs). An individual’s phenotype was obtained by taking its TBV and
adding a zero mean normally random term with variance consistent with the
expected heritability (h2) for the trait at which phenotyping occurred. The genetic
variance in each cycle was calculated as the variance of the TBV of the individuals in
that generation. However, it was expressed as relative values of the genetic variance
in the initial cycle. The realized response to selection was also standardized in units
of the genetic standard deviation in cycle 0. Cycle 0 was used as the base generation
because it represents the available genetic variability, and also to observe, from the
start, the genetic changes in future breeding generations.

An empirical genome was considered comprising a set of 10 linkage groups
(chromosomes), each 200 cM in length, and 1000 uniformly distributed segregating
sites. To represent the historical evolution and recent breeding efforts up to the
present day in addition to incorporating a steady state of known linkage disequilib-
rium (LD) structure existing in crops, the starting populations (cycle 0) were taken
after 200 generations of random mating within an effective population size of 1000
segregating for all loci in which the allele frequency was 0.5.

The in silico meiosis reflected the Mendelian laws of segregation for diploid
species, by a count-location process that mimics the Haldane map function (Haldane
1919). Thus, homologous chromosomes are paired into bivalents and recombined
through randomly positioned chiasmata. The number of chiasmata follows a Poisson
distribution, where the λ parameter represents the chromosome length in Morgans
and their positions are uniformly distributed, i.e., without interference between
crossovers or any mutagenesis process.
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10.1.3 Simulated Scenarios

Three traits were considered, one with low heritability (the first, h2 ¼ 0.2) and two
with high heritability (the second and the third, h2 ¼ 0.5). The correlations between
the first and second trait vary from positive (ρG ¼ 0.5) to negative (ρG ¼ �0.5). The
third trait was always considered with segregation independent from the two others.

The selection process involved two unrestricted indices: the LPSI (see Chap. 2),
which ranks the progenies based on the average merit of their lines considering equal
economic weights for all traits, and the ESIM (see Chap. 7), where the progenies
were ranked in terms of ESIM values. Regarding the restricted selection indices, the
RLPSI (or K&N) was employed (see Chap. 3) with equal economic weights for the
traits in addition to the RESIM (see Chap. 7). Because of the restrictions, two
different situations were evaluated in the latter cases, i.e., where the restrictions
were applied for each of the first and second traits separately.

Thus, all simulated scenarios encompass a three-way factorial: four selection
procedures (the LPSI, the ESIM, the RLPSI or K&N, and the RESIM); two
correlation scenarios, positive (ρG ¼ 0.5) and negative correlations (ρG ¼ �0.5)
between the first and second trait; and two constraint situations, where the restric-
tions were applied separately for the first and second traits.

To simulate genetically correlated traits a full pleiotropic model was assumed.
Gene effects were sampled from a multivariate normal distribution with zero mean
and a previously stated variance–covariance matrix. In that sense it is possible to
represent a quantitative and infinitesimal model. Each genes has its own effect
varying according to a probabilistic density i.e., genes with positive and negative
effects varying its effects sizes; alleles with large effects at lower frequency (major
genes) and alleles with modest effects at higher frequency (minor genes).

10.1.4 Inferences

Results are presented as summaries of 100 Monte Carlo replicates for each scenario
and include the response to selection, decreases in the genetic variance, selection
accuracy, and observed heritabilities. The meiosis routine was implemented in C++,
and compiled, linked, and through the facilities provided by the Rccp R package
(Eddelbuettel 2013). All simulations were performed, analyzed, and summarized in
R version 3.3.3 (R Development Core Team 2017).

10.2 Results

Overriding the results of the simulations regarding the four selection indices under
the different trait genetic correlations and restrictions, scenarios are presented in
terms of the consistency of the observed heritabilities of the traits; the response to

10.2 Results 233



selection and changes in genetic variance for each trait; and the accuracy of the
indices’ selection.

First of all, the results show the stability of the Monte Carlo replicates in terms of
possible deviations in the observed heritability from that expected, which in turn
may affect further inferences (Table 10.1). The type I error (α) of the t test comparing
expected and observed heritabilities for all simulated scenarios did not show impor-
tant and significant departures. Slight departures that may be due to Monte Carlo
error (P < 0.05) were found, namely: for both high and low heritability traits of the
LPSI at cycle 5 when they were negatively correlated; for the independent trait also
with the LPSI at cycle 50, but, when the other traits are positively correlated; for the
high heritable trait at the first and last cycles, both under positive correlation in the
ESIM and RESIM indices respectively; and for the low heritability trait in both
restricted indices (RLPSI and RESIM) in cycles 0 and 5 for respective and negative
and positive correlations.

A complementary estimate of the power (type II error or β) of the tests was
performed considering departures from the expected heritabilities of 1%. It was
verified that the average power if the observed estimates was around 70%, which
reinforces the appropriateness of the simulation findings.

10.2.1 Realized Genetic Gains

Figure 10.1 shows the average genetic gains (expressed as standard deviations from
the mean of cycle 0) for cycles 0–50 for the traits (low and high heritabilities and the
independent trait); the four selection indices (unrestricted: LPSI and ESIM and
restricted: RLPSI and RESIM) when the correlations are positive and negative.

It is important to note that even after 50 recurrent cycles none of the scenarios has
shown any indication that the selection plateau has been reached (Fig. 10.1). It is
considered that even with the variation of the gains in the scenarios, there were
increases in the merit of the target traits. Thus, the employment of selection indices is
an effective way of achieving progress in long-term multi-trait selection.

As expected, the unrestricted selection indices have shown genetic gains higher
than their restricted counterparts (Fig. 10.1). It must be highlighted that the restric-
tions proved their properties because when any trait was restricted, no gains were
obtained for that trait (data not shown). The higher gains obtained with unrestricted
indices is well known and justified in comparison with their restricted homologous
because the net genetic merit is beneficiated by the gains in all traits, while, with
gains constrained to zero in some traits, there are no indirect gains that may be
highlighted especially because of positive correlations.

The independent trait has presented the higher gains in comparison with the other
traits for all correlation and selection process scenarios. The higher gains, however,
were for the RESIM followed by the RLPSI in both positive and negative correla-
tions (Fig. 10.1e and f). These findings may be understood both under the nature of
the trait (independent inheritance) and over the properties of the restricted indices.
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As the third trait becomes independent from the others, there are no indirect effects
owing to the constraints in the gains of the other traits. With regard to the technical
features of the RESIM, it must be emphasized that because of the eigen decompo-
sition, the largest eigenvector obtains higher weight from the most variable trait and
consequently ends in distinct gains, which in this case is the independent trait.

The Smith (or LPSI) and ESIM produce similar genetic gains for highly heritable
traits when the genetic correlations are positive (Fig. 10.1d). The ESIM is simply
another way of obtaining the LPSI based on the eigen decomposition theory, which
avoids the assignment of economic weights. Thus, the results prove that the same
results may be found with both indices. However, the ESIM is the preferred index

Fig. 10.1 Average genetic gains in 100 Monte Carlo replicates for traits with low and high
heritability (h2 0.2 and 0.5) and independent along cycles 0–50 of a simulated selection given
four indices, the linear phenotypic selection index (LPSI), the ESIM, the restricted linear phenotypic
selection index (RLPSI), and the RESIM with positive (0.5) and negative (�0.5) correlations
between the traits low h2 and high h2. (a) Gains for the trait with low heritability when it is
negatively correlated with the high heritability trait. (b) Gains for the trait with low heritability when
it is positively correlated with the high heritability trait. (c) Gains for the trait with high heritability
when it is negatively correlated with the low heritability trait. (d) Gains for the trait with high
heritability when it is negatively correlated with the low heritability trait. (e) Gains for the
independent trait when the other traits are negatively correlated. (f) Gains for the independent
trait when the other traits are positively correlated

10.2 Results 237



because of its advantages over the LPSI: no subjective decision for selecting
economic weights, and better statistical sampling properties.

When the traits are negatively correlated, the trait with greater heritability has
shown important realized genetic gains based on the ESIM and similar gains for the
LPSI and its restricted analogous, i.e., the RLPSI (Fig. 10.1a and c). In addition,
when traits are negatively correlated, restricting the traits with low heritability is an
alternative, to ensure similar progress to the use of unrestricted indices for highly
heritable traits. On the contrary, it is also interesting to note that the ESIM has the
worst performance when the traits are negatively correlated for trait with lower
heritability (Fig. 10.1a).

On the other hand, as already pointed out, the ESIM performance surpasses all the
others with regard to the highly heritable trait (Fig. 10.1c and d). The reason for this
is similar to the above-mentioned regarding the properties of the eigen decomposi-
tion. When the first trait is negatively correlated with the second one, heavier weight
is given to the trait with higher heritability than to the trait with low heritability.
However, when the traits are positively correlated, synergic and indirect effects
increase both traits, one positively affecting the other.

When the traits are positively correlated but with low heritability, the LPSI and
the ESIM have similar realized genetic gains until cycle 25; after this selection cycle,
the LPSI is superior to the ESIM (Fig. 10.1b). In this case, the two restrictive indices,
the RLPSI and the RESIM, are given lower realized genetic gains than the LPSI and
the ESIM (Fig. 10.1b). Finally, considering the third trait (the independent one), the
RESIM provides the greater realized genetic gains (Fig. 10.1e and f).

10.2.2 Genetic Variances

In Fig. 10.2, the average relative decreases in the genetic variances along the
50 cycles of selection for the three traits (with low and high heritability traits in
addition to the independent trait) under the selection system given by the four
selection indices, restricted (the RLPSI and the RESIM) and unrestricted (the LPSI
and the ESIM), both with negative and positive correlations between the first and
second traits.

As a general result, it is clear that after selection there were decreases in the
genetic variance along the recurrent cycles (Fig. 10.2). From the most conservative
decrease (around 40% in Fig. 10.2a and b) to the sharp decrease (close to 10% in
Fig. 10.2e and f) and in contrast to the trends in genetic gains, it is possible to
conceive that the genetic variability was not yet exhausted by selection. This
observation endorses what was said regarding the effectiveness of the selection
indices as a criterion for long-term multi-trait selection.

As expected, the restricted indices are more conservative, maintaining greater
genetic variance (Fig. 10.2). Their feature is to prevent the restricted trait from
changing its genetic merit. Thus, they tend to keep its genetic variance unchanged,
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which is reflected in the lower decreases in the genetic variance, even under the
indirect effects of the other traits.

It should be noted that there was a slight increase in variance in the short term
(up to cycle 3) for the trait with lower heritability when negatively correlated with
the highly heritable one (Fig. 10.2a and b). This is an outcome of the changes in
allele frequencies of the first trait due to the indirect effects of the second trait and/or
the release of genetic disequilibrium owing to the assortative mating of the individ-
uals given higher weights regarding the second trait (highly heritable).

Reflecting the findings regarding the genetic gains (Fig. 10.1), the trait with
strong decreases in genetic variance on average was the one in which the response

Fig. 10.2 Average genetic variances in 100 Monte Carlo replicates for traits with low and high
heritability (h2 0.2 and 0.5) and independent along cycles 0–50 of a simulated selection given four
selection indices, the LPSI, the ESIM, the RLPSI, and the RESIM, with positive (0.5) and negative
(�0.5) correlations between the traits low h2 and high h2. (a) Genetic variance of the low heritability
trait when it is negatively correlated with the high heritability trait. (b) Genetic variance of the low
heritability trait when it is positively correlated with the high heritability trait. (c) Genetic variance
of the high heritability trait when it is negatively correlated with the low heritability trait. (d)
Genetic variance of the high heritability trait when it is negatively correlated with the low
heritability trait. (e) Genetic variance of the independent trait when the other traits are negatively
correlated. (f) Genetic variance of the independent trait when the other traits are positively
correlated
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to selection was more pronounced, i.e., the independent trait (Fig. 10.2e and f). This
trait has shown stronger decreases over the selection through the ESIM index in both
positive and negative correlation scenarios. As mentioned before, as the third trait is
independent of the others, a greater response to selection was achieved in that trait
and consequently strong changes in allele frequencies, which drove the decreases in
genetic variance.

When the heritability is high, it is easy to differentiate the trends in the decrease in
the genetic variance between restricted and unrestricted indices (Fig. 10.2c). It is
more evident, especially when the traits are positively correlated (Fig. 10.2d). Thus,
the ESIM has the highest decreases followed by the LPSI. Nevertheless, for the traits
with low heritability, the decreases in genetic variance are indistinguishable between
the indices, showing that the effectiveness of the response to selection is a function
of the heritability (Fig. 10.2a and b).

10.2.3 Selection Accuracy

The accuracy of the selection was measured as the square root of the correlation
between the net genetic merit and the estimated linear function of each index.
Figure 10.3 shows the absolute accuracies (left axis) and relative values in relation
to the mean accuracy of the first cycle (right axis) for all indices in both negative
(Fig. 10.3a) and positive (Fig. 10.3b) correlation scenarios.

In all cases, a reduction in the selection precision of all the indices was observed.
The effect of selection is the improvement in the genetic merit of the traits by means
of changes in allele frequencies that also affect/decrease the genetic variance.
However, as a side effect, the selection becomes harder and has lower precision.

The LPSI has shown greater accuracy in comparison with the other indices in any
situation (Fig. 10.3a and b). Its main feature is precisely maximizing the correlation
between the net genetic merit and the linear combination of the trait. It may be

Fig. 10.3 Average absolute and relative accuracy of selection in 100 Monte Carlo replicates for
traits with low and high heritability (h2) and independent along cycles 0–50 of a simulated selection
given four selection indices, the LPSI, the ESIM, the RLPSI, and the RESIM with positive and
negative correlations between the traits low h2 and high h2
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argued that the ESIM also does that; however, only when the phenotypic and
genotypic variances and covariances are known are they the best linear predictors.
Thus, according to what was found, it is possible to note that the ESIM was more
affected by the sampling properties when estimating matrices of variance and
covariance (Fig. 10.3a).

For the scenario with positive correlations, the differences between the two types
of indices, the restricted ones and the unrestricted ones, were clear, as the
unrestricted indices have shown greater selection accuracy (Fig. 10.3b). This reflects
the fact that the restricted index constrains the gains by means of restrictions in the
correlation between the net genetic merit and the linear combination of the traits.
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Chapter 11
RIndSel: Selection Indices with R

Gregorio Alvarado, Angela Pacheco, Sergio Pérez-Elizalde, Juan Burgueño,
and Francisco M. Rodríguez

Abstract RIndSel is a graphical unit interface that uses selection index theory to
select individual candidates as parents for the next selection cycle. The index can be
a linear combination of phenotypic values, genomic estimated breeding values, or a
linear combination of phenotypic values and marker scores. Based on the restriction
imposed on the expected genetic gain per trait, the index can be unrestricted, null
restricted, or predetermined proportional gain indices. RIndSel is compatible with
any of the following versions of Windows: XP, 7, 8, and 10. Furthermore, it can be
installed on 32-bit and 64-bit computers. In the context of fixed and mixed models,
RIndSel estimates the phenotypic and genetic covariance using two main experi-
mental designs: randomized complete block design and lattice or alpha lattice
design. In the following, we explain how RIndSel can be used to determine indi-
vidual candidates as parents for the next cycle of improvement.

11.1 Background

The linear selection index theory (see Chaps. 2 to 9 for details) can be difficult to
apply without the use of specific codes developed in statistical analysis system
(SAS) software. At the International Maize and Wheat Improvement Center
(CIMMYT, for its Spanish acronym), codes were developed in SAS software
version 9.4 (SAS institute 2017) that can help to determine individuals as parents
for the next selection cycle. The SAS codes can be found at the following link:
https://data.cimmyt.org/dataset.xhtml?persistentId¼hdl:11529/10242.
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Afterward, the SAS codes were translated to R language as scripts (Pacheco
et al. 2017) and denoted by RIndSel (R software to analyze Selection Indices), with
the objective of creating a user-friendly graphical unit interface (GUI) in JAVA.
The link to download the software is: https://data.cimmyt.org/dataset.xhtml?
persistentId¼hdl:11529/10854.

11.2 Requirements, Installation, and Opening

RIndSel is compatible with a Windows platform, in any of the following versions:
XP, 7, 8, and 10; furthermore, it can be installed on 32-bit and 64-bit computers. To
install RIndSel on a computer, the user must double-click on the executable file
downloaded over the link given above and then follow the instructions that appear in
the installation box. Once RIndSel has been installed, it can be opened by:

1. Double-clicking on the shortcut located in the desktop.
2. Locating it in the Windows menu and clicking.
3. Locating the software via the pathway C:/RIndSel, and double-clicking on

RIndSel.exe.

As we shall see, the software has been partitioned into two modules.

11.3 First Module: Data Reading and Helping

This module (Fig. 11.1) deploys two small boxes upper left denoted by “Open File”
and “Help.” With Open File, the user may access a set of files where he/she can
open, for example, the file of phenotypic data, which should contain information

Fig. 11.1 Module for reading data
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associated with the experimental design. This file contains information about the
field book where the experimental design variables can be identified in the first
columns, whereas the remaining columns contain information about traits measured
in the field; design variables and traits are connected by the plot number. Previously,
the data set should have been captured in a spreadsheet using Excel or any other
similar software and saved as a comma delimited file. To save the data as a comma
delimited file in Excel, the following steps should be taken. In the Excel file that
contains the data set (Fig. 11.2), select from the main menu: FILE ! Save As !
Browser View Options (look for the path were the data will be saved) ! Save as
type (look for CSV, comma separated values). The end of the file name should be “.
csv,” indicating that the file is ready to be used.

The small box “Help” (Fig. 11.1) shows basic features such as the installation
manual and software licenses. The installation manual provides a brief description of
the selection indices that can be calculated and the pathway to where the software is
located (Fig. 11.3). Furthermore, it shows folders related to the software features
such as how the software could be used. There is also a folder called “Examples,”
where the user can find data for test phenotypic selection indices, selection indices of
coded score markers, and wide genome selection indices. The folders “Lib” and
“Programs” contain information related to the software functioning; therefore, the
authors highly recommend not modifying these folders.

Fig. 11.2 Steps for saving a comma delimited file

11.3 First Module: Data Reading and Helping 245



11.4 Second Module: Capturing Parameters to Run

Once the data have been read (first module), RIndSel moves to the second module
(Fig. 11.4), where some feedback is required:

1. To choose the selection index to calculate.
2. To select the experimental design.
3. To identify the variables of experimental design.
4. To choose the traits that will be used to calculate the selection index in the

data file.

This module is structured in such a way that calculating any selection index is
relatively easy. There are three other small buttons located upper left of the module:
“Back,” “Analyze,” and “Help.” Back returns to the previous module (Fig. 11.1),
Analyze executes and calculates the selection index, and Help provides the same
functions as described in the previous section. In addition, there are four windows,
each of which must be filled with the correct parameters. The first one is related to
the indices that RIndSel is able to calculate (Fig. 11.5).

11.5 Selection Index

In this menu, it is necessary to define the percentage of genotypes that will be
selected. By default, it is 5%, but any other percentage can be chosen. RIndSel uses
the correlation matrix or the variance–covariance matrix to obtain the index; how-
ever, by default, the variance–covariance matrix is used. To work with the correla-
tion matrix box, “Correlation” should be checked. The sign for “economic weights”

Fig. 11.3 Tree diagram of the RIndSel structure
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can be used to determine the behavior of the expected genetic gain of the traits. For
example, with �1, the mean of the traits tends to decrease, whereas with 1, it
increases. It is also possible to use the trait heritability. The economic weights can
be assigned by creating a comma-delimited file with the name of the trait and
economic weight sign (Fig. 11.6a). Once the file has been created, it can be browsed
by pressing the open button and where the *.csv file is located (Fig. 11.6b).

To calculate the restricted linear phenotypic selection index (RLPSI or K&N, see
Chap. 3 for details), it is necessary to create the same file and incorporate an
additional column called “Restrictions.” This last column must be filled with the
number one for those traits that remain fixed (restricted) and zeros for those traits that
change (Fig. 11.7). An additional option is to ignore the “Weights” box, which
means that RIndSel automatically presents an Excel file covering the options for
capturing economic weights; the only requirement is that the file must be saved as a
comma delimited file.

11.6 Experimental Design

The menu allows the user to select the field array design to be used. There are two
choices:

1. Lattice or alpha-lattice
2. Random complete block designs

Fig. 11.4 RIndSel module of analysis
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Fig. 11.6 Example of content for (a) economic weights of (b) file location

Fig. 11.5 Flow diagram of the selection indices that RIndSel is able to calculate; 1Smith (1936), 2,3

Cerón-Rojas (2008a), 4Lande R, Thompson R (1990), 5Cerón-Rojas (2008b), 6Cerón-Rojas (2015)
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11.7 Variable Selection

Experimental design is strongly related to the “Variable Selection” menu, where it
is possible to identify the variables that constitute the experimental design. Thus,
we can choose variables that match with the “Location,” replicate for random
complete block design and block, provided that we have a lattice or alpha-lattice
experiment.

11.8 Response Variables

In this menu, the user can select traits to be used to calculate the selection index. It
can be activated by clicking on the trait to be selected. Figure 11.8 shows an
example of how this window must be filled when a Smith phenotypic selection
index is calculated.

Fig. 11.7 Economic weights for restricted selection indices
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11.9 Molecular Selection Indices

If the selection index to be calculated is molecular, such as the Lande and Thompson
(1990) or the linear molecular selection index (Fig. 11.9, and see Table 1.1, Chap. 1,
for details), two additional files are required:

1. Whole molecular markers matrix (green arrow).
2. Marker scores or estimated quantitative trait loci values (red arrow).

Marker scores can be obtained by making a regression of the phenotypic values
on a codified molecular markers matrix (see Chap. 4 for details). The file can be
created in Excel and must have the score with its respective marker for each trait; this
file is saved with a .csv extension. An example of how these kinds of files must be
generated is shown in Fig. 11.10a.

To calculate the scores in an F2 population, it is important for the molecular
marker to have previously been codified as �1, 0, and 1 for genotypes aa, Aa, and
AA respectively. When data come from an recombinant inbred line population, the
molecular marker should be codified as �1 and 1 for homozygous genotype aa and
AA respectively. In the genomic selection indices (LGSI) context (see Chap. 5 for
details), it is only necessary to codify the molecular marker matrix (Fig. 11.10b), as
these indices do not require a marker score.

Fig. 11.9 Example of parameters that could be used to calculate a molecular selection index

Fig. 11.8 Example of parameters that could be used to calculate a phenotypic selection index
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11.10 How to Use RIndSel

The use of RIndSel can be illustrated with an example from the Smith linear
phenotypic selection index (LPSI) (Smith 1936, see Chap. 2 for details). Figure 11.11
shows the phenotypic data (Fig. 11.11a), together with the file of economic weights
(Fig. 11.11b). Three simulated traits (T1, T2, and T3) described in Chap. 2 were
used. T1 and T3 are positive (economic value ¼ 1), whereas trait T2 is negative
(economic value ¼ �1). It is important to remember that all data files must be saved
in comma delimited format (*.csv).

After the data and economic weights files have been generated, the data need to be
loaded into RIndSel; thus, it is important to be able to find the pathway to where the
files are located (e.g., “C://Book/datafile/C1_PSI_05_Phen.csv”). Once the data file
has been located, it must be uploaded, which can be done by clicking on the file,
causing it to automatically begin this process. It is then possible go to the second
module (Fig. 11.12) and select subsequent parameters from the menus. In this case,
Selection Index: Smith; Percent: 5; Weights: here we must look for where the
economic weights are, for example “C://Book/datafile/C1_PSI_05_Phen Weights.
csv.” Once this file has been located, it must be selected by clicking.

Fig. 11.10 Comma delimited files read in Excel for (a) scores of markers for traits plant height
(PHT) and ear height (EHT), (b) a codified molecular marker matrix
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Fig. 11.12 Example of filling in a phenotypic selection index without restrictions

Fig. 11.11 Simulated data from Chap. 2 with (a) array in an alpha-lattice and (b) economic weights
required to test the Smith linear phenotypic selection index (LPSI)
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After the selection index windows are filled, the following menu is called:
Experimental design, which allows the user to select the appropriate design – (for
example, a lattice). To select the design variables, the user must navigate to the
Variable Selection. In this example, the experiment has only one location, and the
following should be selected: rep as Replicate, block as Block and entry as
Genotype. An output name of the index must be assigned by writing its name in
the Box Output folder, which is below the Variable Selection menu. For the Smith
LPSI, the name chosen was SmithSimulated. Finally, the Response Variables menu
should be filled by selecting the traits T1, T2, and T3.

11.11 RIndSel Output

This section explains the structure of the RIndSel output. First, RIndSel presents the
genotypic variance–covariance matrix and the phenotypic variance–covariance
matrix (Table 11.1). In addition, when the selection index involves molecular data,
RIndSel presents an additional molecular variance–covariance matrix, which con-
tains the additive variability associated with the markers (Table 11.2).

RIndSel also presents a table with the estimated values of the index parameters
(Table 11.3). These estimates are the covariance of the selection index, the variance
of the selection index, the net genetic merit (breeding value), the correlation between
the selection index and the net genetic merit, the selection response, and the
heritability of the index (see Chap. 2 for additional details).

Additional results are presented in Table 11.4, which show the ranked selected
individuals; this ranking was done as a function of the estimated selection index
values. Table 11.4 also presents the means of the traits of the selected individuals;
the means of the traits of the total population; the selection differential (see Chap. 2),

Table 11.1 Matrices of
variance–covariance deployed
by RIndSel

rownames T1 T2 T3

Genetic covariance matrix

T1 36.21 �12.93 8.35

T2 �12.93 13.04 �3.40

T3 8.35 �3.40 9.96

Phenotypic covariance matrix

T1 62.50 �12.74 8.53

T2 �12.74 17.52 �3.38

T3 8.53 �3.38 12.31

Table 11.2 Molecular
covariance matrix

rownames T1 T2 T3

T1 62.50 �12.74 8.53

T2 �12.74 17.52 �3.38

T3 8.53 �3.38 12.31
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Table 11.3 Estimated selection index parameters given by the RIndSel output

Parameter Output

Covariance between the selection index and the breeding value 86.7185

Variance of the selection index 86.7185

Variance of the breeding value 108.5746

Correlation between the selection index and the breeding value 0.8937

Response to selection 16.3431

Heritability 0.8168

Table 11.4 Values of the three traits for selected individuals and the values of the Smith linear
phenotypic selection index, means and gains with k ¼ 5%

rownames T1 T2 T3 Index

Entry 353 189.68 38.16 36.13 103.97

Entry 370 178.27 34.38 37.79 103.45

Entry 480 174.84 42.72 45.12 100.66

Entry 300 177.38 39.15 40.34 100.65

Entry 273 181.18 35.94 35.14 100.52

Entry 275 167.94 36.82 42.20 99.92

Entry 148 173.37 37.07 39.62 99.86

Entry 137 185.48 46.48 42.55 99.77

Entry 351 173.79 38.38 40.52 99.68

Entry 236 182.85 37.88 34.96 99.20

Entry 217 175.13 38.48 39.16 98.84

Entry 356 171.09 39.60 41.98 98.47

Entry 167 175.39 38.73 37.73 97.17

Entry 230 169.73 37.10 38.69 96.80

Entry 243 171.90 41.53 41.45 96.29

Entry 55 170.02 36.92 37.76 96.15

Entry 68 172.56 37.18 36.70 96.13

Entry 36 175.80 38.86 36.34 95.75

Entry 164 173.61 38.37 36.42 95.14

Entry 140 170.53 42.52 41.97 95.05

Entry 146 177.40 39.64 35.50 94.89

Entry 432 174.01 40.73 38.26 94.84

Entry 378 176.62 42.69 38.47 94.44

Entry 288 172.14 39.37 37.26 94.23

Entry 386 175.77 42.89 38.81 94.13

Mean of selected individuals 175.46 39.26 38.83

Mean of all individuals 161.88 45.19 34.39

Selection differential 13.58 �5.92 4.44

Expected genetic gain 5% 9.51 �5.48 4.22
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and the expected genetic gain per trait. Selected individuals can be identified by the
first column called “rownames,” as columns 2 to 4 contain the best linear and
unbiased estimator for each mean trait. Finally, column 5 presents the estimated
selection index values.

Comparison between means of selected individuals and all individuals is done by
selection differential, where in general traits whose economic weight was 1 are
positive, whereas those traits whose economic weight was �1 are negative. The
expected genetic gain is an inferential tool based on normal distribution that depends
on the percentage of selected individuals and gives the estimated index expected
genetic gain per trait.

Finally, Table 11.5 shows the best linear and unbiased estimators for all individ-
uals accompanied by its respective selection index. In this case, only the first
20 individuals were included. This table output is important, because on some
occasions, it is necessary to determine the specific behavior of a group of genotypes
that may not have a good performance, even though they have shown a good general
performance from previous analyses. Another possibility is that a group of individ-
uals belongs to a specific population group; thus, it is possible to select the best
individual for this population group.

Table 11.5 First 20 values of
the entries and their
corresponding selection index
for all individuals when three
traits are analyzed

rownames T1 T2 T3 Index

Entry 1 164.46 39.63 34.66 86.81

Entry 2 144.39 50.77 34.65 63.82

Entry 3 157.48 48.04 37.90 77.52

Entry 4 167.30 47.98 30.49 74.97

Entry 5 164.11 49.89 32.03 72.85

Entry 6 166.26 40.44 29.93 81.81

Entry 7 154.59 52.22 30.31 63.22

Entry 8 160.00 42.91 31.23 77.12

Entry 9 158.51 46.32 34.52 76.25

Entry 10 163.63 45.43 35.73 81.35

Entry 11 156.16 46.75 35.58 75.62

Entry 12 171.38 41.17 35.13 89.52

Entry 13 153.17 54.18 36.23 66.79

Entry 14 149.89 52.33 31.13 61.39

Entry 15 159.63 49.01 31.72 70.96

Entry 16 160.70 42.51 32.99 79.85

Entry 17 157.07 45.49 28.40 69.68

Entry 18 167.50 41.69 36.73 88.55

Entry 19 159.17 50.60 36.25 73.93

Entry 20 161.80 46.58 37.33 80.85
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