J. Jesus Céron-Rojas
José Crossa

Linear Selection
Indices in Modern
Plant Breeding

Foreword by
Daniel Gianola

@ Springer Open



Linear Selection Indices in Modern Plant Breeding



J. Jesus Céron-Rojas * José Crossa

Linear Selection Indices
in Modern Plant Breeding

Foreword by Daniel Gianola

@ Springer Open



J. Jesus Céron-Rojas José Crossa

Biometrics and Statistics Unit Biometrics and Statistics Unit

International Maize and Wheat International Maize and Wheat Improvement
Improvement Center (CIMMYT) Center (CIMMYT)

Mexico, Mexico Mexico, Mexico

Chapter 10 was written by Fernando H. Toledo, José Crossa and Juan Burguefio.
Chapter 11 was written by Gregorio Alvarado, Angela Pacheco, Sergio Pérez-Elizalde, Juan Burguefio
and Francisco M. Rodriguez.

ISBN 978-3-319-91222-6 ISBN 978-3-319-91223-3  (eBook)
https://doi.org/10.1007/978-3-319-91223-3

Library of Congress Control Number: 2018942233

© The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by the registered company Springer International Publishing AG part of

Springer Nature.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland


https://doi.org/10.1007/978-3-319-91223-3

To Newi



Foreword

Genetic improvement programs of plants and livestock are aimed at maximizing the
rate of increase of some merit function (e.g., economic value of a wheat line) that is
expected to have a genetic basis. Typically, candidates for selection with the highest
merit are kept as parents of the subsequent generation and those with the lowest
merit are eliminated (“culled”) or used less intensively. There are at least two key
questions associated with this endeavor: how merit is defined and how it is assessed.

Merit can be represented by a linear or nonlinear function of genetic values for
several traits regarded as important from the perspective of producing economic
returns or benefits. The genetic component of merit cannot be observed; thus, it must
be inferred from data on the candidates for selection, or on their relatives. Hence, and
apart from the issue of specifying economic values (an area requiring expertise
beyond animal and plant breeding), the problem of inferring merit is a largely
statistical one.

This book represents a substantial compilation of work done in an area known as
“selection indices” in animal and plant breeding. Selection indices were originally
developed by Smith (1936) in plant breeding and by Hazel (1943) in animal breeding
to address the selection of plants or animals scored for multiple attributes. In
agriculture, the breeding worth (or net genetic merit) of a candidate for selection
depends on several traits. For example, milk production and composition, health,
reproductive performance, and life-span in dairy cows; and grain yield, disease
resistance, and flowering time in maize. Smith (1936) defined a linear merit function

1
in which the “merit” (H, say) of a candidate was expressed as H = Z w;g;, where
i=1
t is the number of traits, g; is the unobservable additive genetic value (breeding
value) of the candidate for trait i, and w; is the relative economic value of trait
i (calculated externally and taken as a known quantity); in vector notation, H = w'g,
where w and g are ¢t x 1 vectors of relative economic values and breeding values
respectively. The preceding definition of H implies that the rate of increase of merit
rises by w; units as the breeding value for trait i rises by one unit; thus, it is somewhat
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naive, as it does not contemplate diminishing returns, nonlinearity, or situations in
which the economic return from increasing trait 1, say, depends on the genetic level
for trait 2.

The book contains a wealth of material on how various types of linear indices can
be constructed, interpreted, optimized, and applied. The techniques described in the
book were developed mainly with plant breeding as a focal point, an area in which
the authors have wide experience. However, I expect that the book will be of interest
to animal breeders as well. The linear selection index (LSI) theory developed in this
book is based on the Smith (1936) and Hazel (1943) linear phenotypic selection
index (LPSI) (Chap. 2), and all the LSIs described in Chaps. 3-9 are only variants of
the LPSI. Thus, in Chap. 3, the author describes null restriction and no null
predetermined restriction imposed over the expected genetic gain of the LPSI. In
Chap. 4, the authors incorporated molecular marker information into the LPSI, and
in Chap. 5 genomic estimated breeding values (GEBVs) are included in the LPSIL.
Interestingly, Chap. 6 shows how the restrictive LPSI is used in the genomic
selection context, but this is based on the LPSI theory of Smith (1936) and Hazel
(1943). In Chaps. 7 and 8 the only change was to assume that the economic weights
are fixed, but unknown, and then, based on this assumption, the authors demonstrate
the eigen selection index method (ESIM) and its variants, which are, of course,
associated with the LPSIL. In Chap. 9, the reader is shown how to combine the LPSI
theory with the independent culling method to develop the multistage selection
index theory.

Chapter 10 shows results on stochastic simulations from cycles of selections
using the linear phenotypic selection index (LPSI), the ESIM, the restrictive LPSI
and the restrictive ESIM. In Chap. 11 the use of RindSel (R software to analyze
Selection Indices) is presented with examples for using unrestrictive, restrictive, null
or predetermined proportional gain indices.

Animal and plant breeders follow somewhat different routes in the treatment of
multiple-trait improvement by selection, mainly because the former field deals with
candidates possessing an unequal amount of information, and extensive genetic
inter-relatedness. Recently, however, genomic selection has reunified perspectives
somewhat. In animal breeding, Henderson (1973) introduced the notion of “best
prediction,” and showed that the conditional expectation function E(H/DATA),
where DATA represents all available records on all traits, unbalanced or not, was
the “best predictor” in the sense of the mean squared error. He also showed that the
best predictor had some additional properties that were appealing from a response to
selection perspective.

In a multiple-trait context and assuming multivariate normality (with known
parameters) of the joint distribution of genetic values and DATA, the best predictor
retrieves the selection index evaluation derived by Smith (1936) and Hazel (1943) in
less general settings (Henderson 1963). It follows immediately that if w is known,
the best predictor of merit is
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E(H/DATA) = E(Wg/DATA) = w'E(g/DATA)

where E(g/DATA) is the best predictor of the breeding values. Smith (1936) and
Hazel (1943) failed to recognize that the economic values did not need to enter into
the selection index until after the predictions of the breeding values were obtained,
simply because of linear invariance. Bulmer (1980) pointed out, pertinently, that it
was unclear why ranking animals using a predictor, minimizing the mean squared
error of prediction, would maximize expected genetic progress in a single round of
selection, and suggested an alternative predictor that was later shown by Gianola and
Goffinet (1982) and Fernando and Gianola (1986) to be exactly the best predictor.
Animal breeders can perhaps interpret many of the results given in this book from
such a perspective.

A more difficult problem (although outside of the scope of the book) is that of
inferring nonlinear merit. Suppose now that the merit of a candidate has the form:

H=wg+gQg

where W' is a known row vector, as above, and Q is a known matrix, assumed to be
symmetric without loss of generality. The conditional distribution of H given DATA
does not have a closed form, but it can be estimated using Monte Carlo methods by
drawing samples of g from some posterior distribution and, thus, obtaining samples
of H from the preceding expression. If g = E(g/DATA) and C = Var(g/DATA) are
available, the mean and variance of the conditional distribution of H can be calcu-
lated analytically, then

E(H/DATA) = w'g + Qg + 1r(QC)
and, assuming multivariate normality

Var(H/DATA) = Var(w'g) + Var(g'Qg) + 2w’ Cov(g, g'Qg)
= w'Cw + 21r(QC)* + 48'QCQg + 2w CQg

Contrary to the case of a linear merit function, the precision of the evaluation
candidate or, equivalently, the reliability of its evaluation, enters nontrivially when
inferring second-order merit. Gianola and Fernando (1986) suggested the Bayesian
approach as a general inferential method for solving a large number of animal
breeding problems, linear or nonlinear, even in situations where there is uncertainty
about all location and dispersion parameters known. Today, the posterior distribu-
tion of any nonlinear merit function can be arrived at via Monte Carlo sampling.

Even when the statistical principles are well understood, it is often useful to
understand the “architecture” of selection indices. The book is unique in presenting
techniques needed to attain such an understanding, and represents a very valuable
contribution to the statistical genetics of quantitative traits. It constitutes essential
reading for plant quantitative geneticists working in multiple-trait improvement.
However, animal breeders will also benefit from studying carefully many of its
chapters, as these contribute knowledge in areas of animal breeding research where
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there has been little traffic. Personally, I am sure that much benefit will be extracted
from studying this valuable and novel contribution to the literature.

Department of Animal Sciences, Daniel Gianola
University of Wisconsin, Madison, W1,
USA

Department of Biostatistics and Medical
Informatics, University of Wisconsin,
Madison, WI, USA

Department of Dairy Science,
University of Wisconsin, Madison, WI,
USA
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Preface

In the linear selection index (LSI) theory, the main distinction is between the net
genetic merit and the LSI. The net genetic merit is a linear combination of the true
unobservable breeding values of the traits weighted by their respective economic
values, whereas the LSI is a linear combination of phenotypic values, marker scores
or genomic estimated breeding values (GEBVs). The LSI can also be a linear
combination of phenotypic values and marker scores or phenotypic values and
GEBVs jointly. That is, the LSI is a function of observed phenotypic values, marker
scores, or GEBVs that is used to predict the net genetic merit and select parents for
the next generation. Thus, there are three main classes of LSI: phenotypic, marker,
and genomic. The main advantage of the genomic LSI over the other indices lies in
the possibility of reducing the intervals between selection cycles by more than two
thirds. One of the main characteristics of the LSI is that it allows extra merit in one
trait to offset slight defects in another. Thus, by its use, individuals with very high
merit in one trait are saved for breeding, even when they are inferior in other traits
(Hazel and Lush 1942).

Among the LSIs developed up to now, the main distinction is between an LSI that
uses economic weights and one that does not use economic weights to predict the net
genetic merit. The principal LSI theory was developed assuming that the economic
weights are fixed and known; however, recently, the LSI theory was extended to the
case where the economic weights are fixed but unknown. This latter theory is more
general than the first because it does not require the economic weights to be known.
An additional distinction among the LSIs is between the single-stage LSI and the
multistage LSI. Multistage LSIs are methods for selecting one or more individual
traits available at different times or stages; they are applied mainly in animal and tree
breeding where the target traits become evident at different ages. One advantage of
the latter method over the single-stage LSI is that the breeder does not need to carry a
large population of individuals throughout the multi-trait selection process. Some
authors have used multistage LSI as a cost-saving strategy for improving multiple
traits, because not all traits need to be measured at each stage. When traits have a
developmental sequence in ontogeny, or there are large differences in the costs of
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measuring several traits, the efficiency of multistage LSI over single-stage LSI can
be substantial (Xu and Muir 1991, 1992).

The LST has two main parameters: the selection response and the expected genetic
gain per trait or multi-trait selection response. The selection response is associated
with the mean of the net genetic merit and is defined as the mean of the progeny of
the selected parents or the future population mean, whereas the expected genetic gain
per trait, or multi-trait selection response, is the population means of each trait under
selection of the progeny of the selected parents. Thus, although the selection
response is associated with the mean of the net genetic merit, the expected genetic
gain per trait is associated with the mean of each trait under selection. The selection
response and expected genetic gain enable breeders to estimate the expected pro-
gress of the selection before carrying it out. This information gives improvement
programs a clearer orientation and helps to predict the success of the selection
method adopted and to choose the option that is technically most effective on a
scientific basis (Costa et al. 2008).

Based on the restriction imposed on the expected genetic gain per trait, the LSIs
can be divided into unrestricted, null restricted, or predetermined proportional gains
indices. The null restricted LSI allows restrictions equal to zero to be imposed on the
expected genetic gain of some traits, whereas the expected genetic gain of other traits
increases (or decreases) without imposing any restrictions. In a similar manner, the
predetermined proportional gains LSI attempts to make some traits change their
expected genetic gain values based on a predetermined level, whereas the rest of the
traits remain without restrictions. All the foregoing indices have as their main
objectives to predict the net genetic merit and select parents for the next generation.

The LSI theory is based on multivariate normal distribution because this distribu-
tion allows the traits under selection to be completely described using only means,
variances, and covariances. In addition, if the traits do not correlate, they are inde-
pendent. Linear combinations of traits are also normal; and even when the trait
phenotypic values do not have multivariate normal distribution, this distribution serves
as a useful approximation, especially in inferences involving sample mean vectors,
which, in accordance with the central limit theorem, have multivariate normal distri-
bution (Rencher 2002). By this reasoning, a fundamental assumption in the single-
stage LSI theory is that the net genetic merit and the LSI have bivariate normal
distribution, whereas in the multistage LSI theory, the net genetic merit and the
LSIs have multivariate normal distribution. Under the latter assumption, the regression
of the net genetic merit on any linear function of the phenotypic values is linear.

The LSI theory developed in this book was based on the Smith (1936) and Hazel
(1943) linear phenotypic selection index (LPSI) described in Chap. 2. As the reader
shall see, all the LSIs described in Chaps. 3-9 of this book are only variants of the
LPSI. Thus, in Chap. 3, the restricted Kempthorne and Nordskod (1959) index only
incorporates null restriction over the LPSI expected genetic gain, and in a similar
manner, the Mallard (1972) and Tallis (1985) index incorporates no null
predetermined restriction over the LPSI expected genetic gain. In Chap. 4, Lande
and Thompson (1990) and Lange and Whittaker (2001) have only incorporated into
the LPSI molecular marker information, and in Chap. 5, the authors (Dekkers 2007;
Togashi et al. 2011; Ceron-Rojas et al. 2015) incorporated GEBVs into the LPSI. In
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Chap. 6, the only news is that the Kempthorne and Nordskod (1959) and the Mallard
(1972) and Tallis (1985) indices have been used in the genomic selection context,
but such indices are based on the LPSI theory of Smith (1936) and Hazel (1943). In
Chaps. 7 and 8, the only change was to assume that the economic weights are fixed
but unknown, and then, based on this assumption, we have developed the eigen
selection index method (ESIM) and its variants, which are, of course, associated with
the LPSI. Finally, in Chap. 9 we show that Cochran (1951) and Young (1964)
combined the LPSI theory with the independent culling method to develop the
multistage selection index theory, but the base theory is the Smith (1936) and
Hazel (1943) LPSI theory.

Note that up to now, we have used the acronym LPSI to denote the Smith (1936)
and Hazel (1943) index, whereas the rest of the indices have been denoted by the
name of their authors. We think that the use of this latter type of notation created
confusion in the reader, because it gives the impression that there are many theories
associated with the indices or that all the indices were made ad hoc. In reality, there is
only one theory, that developed by Smith (1936) and Hazel (1943), whereas the rest
of the indices are only variants of this theory. In this book, we intended to solve this
problem by using a specific acronym for each index (see Table 1.1, Chap. 1 for
details) that indicates the relationship of each index (from Chaps. 3 to 9) with
the LPSI. For example, the null restricted Kempthorne and Nordskod (1959)
index was denoted by RLPSI (restricted linear phenotypic selection index), whereas
the predetermined proportional gain Mallard (1972) and Tallis (1985) index was
denoted by PPG-LPSI (predetermined proportional gains linear phenotypic selec-
tion index). Similar notation had been used for the molecular and genomic indices
(see Table 1.1, Chap. 1 for additional detail). We hope that acronyms such as the
RLPSI and PPG-LPSI help the reader to see that the latter two indices are only
variants of the LPSI developed by Smith (1936) and Hazel (1943). To be specific,
the RLPSI and PPG-LPSI are only projections of the LPSI to a different space. For
example, the RLPSI projects the LPSI vector of coefficients to a smaller space than
the original space of the LPSI vector of coefficients (see Chap. 3 for details).

The only thing that would be strange for the reader could be the acronyms ESIM
(eigen selection index method), RESIM (restricted eigen selection index method),
MESIM (molecular eigen selection index method), etc., that we have used in
Chaps. 7 and 8, and which would seem to be unrelated to the LPSI, RLPSI, etc.
However, we would expect that the context and the theory described in the book
indicate to the reader the relationship among all the indices described in the book.
As we shall see in Chaps. 7 and 8, ESIM and its variants are the result of a
application of the canonical correlation theory to the LPSI context. This is the
keyword to understand the ESIM theory.

The main objective of this book is to describe the LSI theory and its statistical
properties. First, we describe the single-stage LSI theory by assuming that economic
weights are fixed and known to predict the net genetic merit in the phenotypic
(Chaps. 2 and 3), marker (Chap. 4), and genomic (Chaps. 5 and 6) contexts. Next, we
describe the LSI by assuming that economic weights are fixed but unknown to
predict the net genetic merit in the phenotypic (Chap. 7), marker, and genomic
(Chap. 8) contexts. In Chap. 9, we describe the multistage LSI in the phenotypic,
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marker, and genomic contexts assuming that economic weights are fixed and known.
Chapters 10 and 11 present simulation results and SAS and R codes respectively to
estimate the parameters and make selections using some of the LSIs described in
Chaps. 2, 3,4, 7, and 8.

J. Jesus Cerdén-Rojas
José Crossa
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Chapter 1 ®)
General Introduction Creck o

Abstract We describe the main characteristics of two approaches to the linear
selection indices theory. The first approach is called standard linear selection
indices whereas the second of them is called eigen selection index methods. In the
first approach, the economic weights are fixed and known, whereas in the second
approach the economic weights are fixed but unknown. This is the main difference
between both approaches and implies that the eigen selection index methods include
to the standard linear selection indices because they do not require that the economic
weights be known. Both types of indices predict the net genetic merit and maximize
the selection response, and they give the breeder an objective criterion to select
individuals as parents for the next selection cycle. In addition, in the prediction they
can use phenotypic, markers, and genomic information. In both approaches, the
indices can be unrestricted, null restricted or predetermined proportional gains and
can be used in the context of single-stage or multistage breeding selection schemes.
We describe the main characteristics of the two approaches to the linear selection
indices theory and we finish this chapter describing the Lagrange multiplier method,
which is the main tool to maximize the selection index responses.

Linear selection indices that assume that economic weights are fixed and known
to predict the net genetic merit are based on the linear selection index theory
originally developed by Smith (1936), Hazel and Lush (1942), and Hazel (1943).
They are called standard linear selection indices in this introduction. Linear
selection indices that assume that economic weights are fixed but unknown are
based on the linear selection index theory developed by Cerén-Rojas et al. (2008a,
2016) and are called Eigen selection index methods. The Eigen selection index
methods include the standard linear selection indices as a particular case because
they do not require the economic weights to be known. To understand the Eigen
selection index methods theory, the point is to see that this is an application of the
canonical correlation theory to the standard linear selection index context. The
multistage linear selection index theory will be described only in the context of the
standard linear selection indices. As we shall see, there are three main types of
LSI: phenotypic, marker, and genomic. Each can be unrestricted, null restricted or
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2 1 General Introduction

predetermined proportional gains and can be used in the context of single-stage or
multistage breeding selection schemes.

For each specific selection index described in this book, we have used an
acronym. For example, the Smith (1936), Hazel and Lush (1942), and Hazel
(1943) index was denoted LPSI (linear phenotypic selection index), whereas the
Cerdn-Rojas et al. (2008a) index was denoted ESIM (Eigen selection index method),
etc. For additional details, see Table 1.1 and the Preface of this book. We think that
such notation gives the reader a more general point of view of the relationship that
exists among all the indices described in this book.

Table 1.1 Chapter where the index was described, authors who developed the selection index,
acronym of the index used in this book, and description of the acronym

Chapter | Authors who developed the index Acronym | Description
2 Smith(1936), Hazel and Lush (1942), | LPSI* Linear phenotypic selection
Hazel (1943) index
Williams (1962a) BLPSI* Base linear phenotypic selec-
tion index
3 Kempthorne and Nordskog (1959) RLPSI* Restricted linear phenotypic
selection index
Mallard (1972), Harville (1975), Tallis | PPG- Predetermined proportional
(1985), Itoh and Yamada (1987) LPSI* gain linear phenotypic selection
index
Pesek and Baker (1969), Yamada et al. | DG-LPSI* | Desired gains linear phenotypic
(1975), Itoh and Yamada (1986) selection index
4 Lande and Thompson (1990) LMSI? Linear marker selection index
Lange and Whittaker (2001) GW- Genome-wide linear marker
LMSI? selection index
5 Togashi et al. (2011), Ceron-Rojas LGSI° Linear genomic selection index
et al. (2015)
Dekkers (2007) CLGSI¢ Combined linear genomic
selection index
6 Kempthorne and Nordskog (1959), RLGSI® Restricted linear genomic
Ceron-Rojas et al. (2015) selection index
Tallis(1985), Ceron-Rojas et al. (2015) | PPG- Predetermined proportional
LGSI* gain linear genomic selection
index
Kempthorne and Nordskog (1959), CRLGSI® | Combined restricted linear
Dekker (2007) genomic selection index
Tallis (1985), Dekker (2007) PPG- Predetermined proportional
CLGSI? gain combined linear genomic
selection index
7 Cerén-Rojas et al. (2008a) ESIM* Eigen selection index method
Cerén-Rojas et al. (2008a) RESIM* Restricted eigen selection index
method
Cerén-Rojas et al. (2016) PPG- Predetermined proportional
ESIM* gain eigen selection index
method

(continued)
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Table 1.1 (continued)

Chapter | Authors who developed the index Acronym | Description
8 Ceroén-Rojas et al. (2008b) MESIM® | Molecular eigen selection
index method
Crossa and Cerén-Rojas (2011) GW- Genome-wide eigen selection
ESIM" index method
Dekkers (2007), Cerén-Rojas et al. GESIM? Genomic eigen selection index
(2008b) method
Dekkers (2007), Cer6n-Rojas et al. RGESIM? | Restricted genomic eigen
(2008a) selection index method
Dekkers (2007), Cerén-Rojas et al. PPG- Predetermined proportional
(2016) GESIM* gain genomic eigen selection
index method
9 Cochran (1951), Young (1964) MLPST* Multistage linear phenotypic
selection index
Cochran (1951), Young (1964), MRLPSI* | Multistage restricted linear
Kempthorne and Nordskog (1959) phenotypic selection index
Cochran (1951), Young (1964), Tallis | MPPG- Multistage predetermined pro-
(1985) LPSI* portional gain linear pheno-

typic selection index
Cochran (1951), Young (1964), Ceron- | MLGSI® Multistage linear genomic

Rojas et al. (2015) selection index
Cochran (1951), Young (1964), MRLGSI® | Multistage restricted linear
Kempthorne and Nordskog (1959), genomic selection index

Ceron-Rojas et al. (2015)

Cochran (1951), Young (1964), Tallis | MPPG- Multistage predetermined pro-
(1985), Ceron-Rojas et al. (2015) LGSI* portional gain linear genomic
selection index

“Indices that use only phenotypic information

"Indices that use marker and phenotypic information jointly

“Indices that use only genomic information

YIndices that use genomic and phenotypic information jointly in the prediction of the net genetic
merit

1.1 Standard Linear Selection Indices

1.1.1 Linear Phenotypic Selection Indices

Three main linear phenotypic selection indices used to predict the net genetic merit
and select parents for the next selection cycle are the LPSI, the null restricted LPSI
(RLPSI), and the predetermined proportional gains LPSI (PPG-LPSI). The LPSI is
an unrestricted index, whereas the RLPSI and the PPG-LPSI allow restrictions to be
imposed equal to zero and predetermined proportional gain restrictions respectively,
on the trait expected genetic gain per trait values to make some traits change their
mean values based on a predetermined level while the rest of the trait means remain
without restrictions. All these indices are linear combinations of several observable
and optimally weighted phenotypic trait values.
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The simplest linear phenotypic selection index (LPSI) can be written as Iz = w/y,
where w is a known vector of economic values and y is a vector of phenotypic
values. We called this index the base linear phenotypic selection index (BLPSI). In
this case, the breeder does not need to estimate any parameters, and some authors
have indicated that the BLPSI is a good predictor of the net genetic merit (H = w/g,
where g is a vector of true unobservable breeding values) when no data are available
for estimating the phenotypic (P) and genotypic (G) covariance matrices. When the
traits are independent and the economic weights are also known, the LPSI can be

1
written as] = w,-hizy,-, and when the economic weights are not known, the LPSI is
i=1

t
I = Z h?yi, where w; is the ith economic weight and hi2 is the heritability of trait y;.
i=1
In Chap. 2 (Sects. 2.5.1 and 2.5.2), we will show that the foregoing three indices are
particular cases of the more general LPSI, i.e., I = b/y, where b is the [ vector of
coefficients and y is the vector of observable trait phenotypic values. In the latter
case, we need to estimate matrices P and G.

The LPSI was originally proposed by Smith (1936) in the plant breeding context;
later Hazel and Lush (1942) and Hazel (1943) extended the LPSI to the context of
animal breeding. These authors made a clear distinction between the LPSI and the net
genetic merit. The net genetic merit was defined as a linear combination of the
unobservable true breeding values of the traits weighted by their respective economic
values. In the LPSI theory, the main assumptions are: the genotypic values that make
up the net genetic merit are composed entirely of the additive effects of genes, the
LPSI and the net genetic merit have a joint normal distribution, and the regression of
the net genetic merit on LPSI values is linear. Two of the main parameters of this
index are the selection response and the expected genetic gain per trait or multi-trait
selection response. The LPSI selection response is associated with the mean of the net
genetic merit and was defined as the mean of the progeny of the selected parents or
the mean of the future population (Cochran 1951). The selection response enables
breeders to estimate the expected selection progress before carrying it out. This
information gives improvement programs a clearer orientation and helps to predict
the success of the adopted selection method and choose the option that is technically
most effective on a scientific basis (Costa et al. 2008). On the other hand, the LPSI
expected genetic gain per trait, or multi-trait selection response, is the population
mean of each trait under selection of the progeny of the selected parents. Thus,
although the LPSI selection response is associated with the mean of the net genetic
merit, the LPSI expected genetic gain per trait is associated with the mean of each trait
under selection. The foregoing definition of selection response and the expected
genetic gain per trait are valid for all selection indices described in this book.

One of the main problems of the LPSI is that when used to select individuals as
parents for the next selection cycle, the expected mean of the traits can increase or
decrease in a positive or negative direction without control. This was the main reason
why Kempthorne and Nordskog (1959) developed the basics of the restricted LPSI
(RLPSI), which allows restrictions to be imposed equal to zero on the expected
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genetic gain of some traits whereas the expected genetic gain of other traits increases
(or decreases) without any restrictions being imposed. Based on the results of the
RLPSI, Tallis (1962) and James (1968) proposed a selection index called
predetermined proportional gains LPSI (PPG-LPSI), which attempts to make some
traits change their expected genetic gain values based on a predetermined level,
while the rest of the traits remain without restrictions. Mallard (1972) pointed out
that the PPG-LPSI proposed by Tallis (1962) and James (1968) does not provide
optimal genetic gains and was the first to propose an optimal PPG-LPSI based on a
slight modification of the RLPSI. Other optimal PPG-LPSIs were proposed by
Harville (1975) and Tallis (1985). Itoh and Yamada (1987) showed that the Mallard
(1972) index is equal to the Tallis (1985) index and that, except for a proportional
constant, the Tallis (1985) index is equal to the Harville (1975) index. Thus, in
reality, there is only one optimal PPG-LPSI.

In Chap. 3 (Sect. 3.1.1 and 3.2.1), we show that bz = Kb and bp = Kb are the
vectors of coefficients of the RLPSI and PPG-LPSI, respectively, where b is the
LPSI vector of coefficients. Matrices K and Kp are idempotent (K = K? and Kp
= K%, ), that is, they are projectors. Matrix K projects b into a space smaller than the
original space of b because the restrictions imposed on the expected genetic gains
per trait are equal to zero (Sect. 3.1.1). The reduction of the space into which matrix
K projects b will be equal to the number of null restrictions imposed by the breeder
on the expected genetic gain per trait, or multi-trait selection response. In the PPG-
LPSI context, matrix Kp has the same function as K (see Sect. 3.2.1 for details).

The aims of the LPSI, RLPSI, and PPG-LPSI are to:

1. Predict the unobservable net genetic merit values of the candidates for selection.

2. Maximize the selection response and the expected genetic gain for each trait.

3. Provide the breeder with an objective rule for evaluating and selecting several
traits simultaneously (Baker 1974).

The LPSI is described in Chap. 2, and the RLPSI and PPG-LPSI are described in
Chap. 3. As we will be see in this book, the RLPSI and PPG-LPSI theories can be
extended to all selection indices described in this book. Also, the main objectives of
all selection indices described in this book are the same as those of the LPSI, RLPSI,
and PPG-LPSL

1.1.2 Linear Marker Selection Indices

The linear marker selection index (LMSI) and the genome-wide LMSI (GW-LMSI)
are employed in marker-assisted selection (MAS) and are useful in training
populations when there is phenotypic and marker information; both are a direct
application of the LPSI theory to the MAS context. The LMSI was originally
proposed by Lande and Thompson (1990), and the GW-LMSI was proposed by
Lange and Whittaker (2001). The fundamental idea of these authors is based on the
fact that crossing two inbred lines generates linkage disequilibrium between markers
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and quantitative trait loci (QTL), which is useful for identifying markers correlated
with the traits of interest and estimating the correlation between each of the selected
markers and the trait; the selection criteria are then based upon this marker informa-
tion (Moreau et al. 2007). The LMSI combines information on markers linked to
QTL and the phenotypic values of the traits to predict the net genetic merit of the
candidates for selection because it is not possible to identify all QTL affecting the
economically important traits (Li 1998). That is, unless all QTL affecting the traits of
interest can be identified, phenotypic values should be combined with the marker
scores to increase LMSI efficiency (Dekkers and Settar 2004).

Moreau et al. (2000) and Whittaker (2003) found that the LMSI is more effective
than LPSI only in early generation testing and that LMSI increased costs because of
molecular marker evaluation. The LMSI assumes that favorable alleles are known, as
are their average effects on phenotype (Lande and Thompson 1990; Hospital et al.
1997). This assumption is valid for major gene traits but not for quantitative traits that
are influenced by the environment and many QTLs with small effects interacting
among them and with the environment. The LMSI requires regressing phenotypic
values on marker-coded values and, with this information, constructing the marker
score for each individual candidate for selection, and then combining the marker score
with phenotypic information using the LMSI to obtain a final prediction of the net
genetic merit. Several authors (Lange and Whittaker 2001; Meuwissen et al. 2001;
Dekkers 2007; Heffner et al. 2009) have criticized the LMSI approach because it makes
inefficient use of the available data. It would be preferable to use all the available data in
a single step to achieve maximally accurate estimates of marker effects. In addition,
because the LMSI is based on only a few large QTL effects, it violates the selection
index assumptions of multivariate normality and small changes in allele frequencies.

Lange and Whittaker (2001) proposed the genome-wide LMSI (GW-LMSI) as a
possible solution to LMSI problems. The GW-LMSI is a single-stage procedure that
treats information at each individual marker as a separate trait. Thus, all marker
information can be entered together with phenotypic information into the
GW-LMSI, which is then used to predict the net genetic merit and select candidates.
Both selection indices are described in Chap. 4.

1.1.3 Linear Genomic Selection Indices

The linear genomic selection index (LGSI) is a linear combination of genomic
estimated breeding values (GEBVs) and was originally proposed by Togashi et al.
(2011); however, Ceron-Rojas et al. (2015) developed the LGSI theory completely.
The advantage of the LGSI over the other indices lies in the possibility of reducing the
intervals between selection cycles by more than two thirds. A 4-year breeding cycle
(including 3 years of field testing) is thus reduced to only 4 months, i.e., the time
required to grow and cross a plant. As a result, thousands of candidates for selection
can be evaluated without ever taking them out to the field (Lorenz et al. 2011).
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In the LGSI, phenotypic and marker data from the training population are fitted in
a statistical model to estimate all available marker effects; these estimates are then
used to obtain GEBVs that are predictors of breeding values in a testing population
for which there is only marker information. The GEBV can be obtained by multi-
plying the genomic best linear unbiased predictor (GBLUP) of the estimated marker
effects in the training population (Van Raden 2008) by the coded marker values
obtained in the testing population in each selection cycle. Applying the LGSI in plant
or animal breeding requires genotyping the candidates for selection to obtain the
GEBYV, and predicting and ranking the net genetic merit of the candidates for
selection using the LGSI. An additional genomic selection index was given by
Dekkers (2007); however, this index can only be used in training populations
because GEBV and phenotypic information are jointly used to predict the net genetic
merit. Both indices are described in Chap. 5 and in Chap. 6, we describe both indices
in the context of the restricted selection indices.

1.2 Eigen Selection Index Methods

The eigen selection index methods are described in Chaps. 7 and 8. As we shall see,
these indices are only used in training populations and can be unrestricted, restricted,
and predetermined proportional gains selection indices; they can also use phenotypic
and/or marker information to predict the net genetic merit. In the context of this
linear selection index theory, it is assumed that economic weights are fixed but
unknown. The eigen selection index methods is based on the canonical correlation
theory and applied to the LPSI, RLSPI, etc., selection indices's context.

1.2.1 Linear Phenotypic Eigen Selection Index Method

Cerén-Rojas and Sahagin-Castellanos (2005) and Cerdén-Rojas et al. (2006) pro-
posed a phenotypic selection index in the principal component context that has low
accuracy; later, Cerén-Rojas et al. (2008a, 2016) developed the eigen selection index
method (ESIM), the restricted ESIM (RESIM) and the predetermined proportional
gain ESIM (PPG-ESIM) in the canonical correlations context (Hotelling 1935,
1936). The ESIM is an unrestricted index, but the RESIM and PPG-ESIM allow
null and predetermined restrictions respectively to be imposed on the expected
genetic gains of some traits, whereas the rest remain without restrictions. The latter
three indices use only phenotypic information to predict the individual net genetic
merit of the candidate for selection and use the elements of the first eigenvector of
the multi-trait heritability as the index vector of coefficients and the first eigenvalue
of the multi-trait heritability in their selection response. The main objectives of the
three indices are to predict the unobservable net genetic merit values of the candi-
dates for selection, maximize the selection response and the expected genetic gain
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per trait, and provide the breeder with an objective rule for evaluating and selecting
several traits simultaneously. Their main characteristics are:

1. They do not require the economic weights to be known.

2. The first eigenvector of the multi-trait heritability is used as their vector of
coefficients, and the first eigenvalue of the multi-trait heritability is used in the
selection response.

3. Owing to the properties associated with eigen analysis, it is possible to use the
theory of similar matrices (Harville 1997) to change the direction and proportion
of the expected genetic gain values without affecting the accuracy.

4. The sampling statistical properties of ESIM are known.

5. The PPG-ESIM does not require a proportional constant.

Finally, the main theory describe in Chapter 7 was developed by Cerén-Rojas et
al.(2008a, 2016) based on the canonical correlation framework. That is, ESIM and
its variants (RESIM, MESIM, PPG-ESIM) are applications of the canonical corre-
lation theory to the LPSI context.

1.2.2 Linear Marker and Genomic Eigen Selection Index
Methods

Cerdn-Rojas et al. (2008b) and Crossa and Cerén-Rojas (2011) extended the ESIM
to a molecular ESIM (MESIM) and to a genome-wide ESIM (GW-ESIM), respec-
tively, similar to the linear molecular selection index (LMSI) and to the genome-
wide LMSI (GW-LMSI). The MESIM and GW-ESIM have problems similar to
those associated with the LMSI and GW-LMSI respectively (Chap. 4 for details).
The MESIM and GW-ESIM use phenotypic information and markers linked to QTL
to predict the net genetic merit, but the GW-ESIM omits the molecular selection step
in the prediction. The main difference among the MESIM, the GW-ESIM, the LMSI,
and the GW-LMSI is how they obtain the vector of coefficients: while the LMSI and
GW-LMSI obtain the vector of coefficients according to the LPSI theory, the
MESIM and the GW-ESIM obtain the vector of coefficients based on canonical
correlation analysis and the singular value decomposition theory.

It is possible to extend the ESIM to a genomic ESIM (GESIM), and the restricted
RESIM and the PPG-ESIM can be extended to a restricted genomic ESIM
(RGESIM) and to a predetermined proportional gain genomic ESIM
(PPG-GESIM) that use phenotypic and GEBV information jointly to predict the
net genetic merit of the candidates for selection, maximizing the selection response
and optimizing the expected genetic gain per trait; but although the GESIM is not
constrained, the RGESIM and the PPG-GESIM allow null and predetermined
restrictions respectively to be imposed on the expected genetic gain to make some
traits change their mean values based on a predetermined level, while the rest of the
traits remain without any restriction.
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1.3 Multistage Linear Selection Indices

Multistage linear selection indices are methods of selecting one or more individual
traits available at different times or stages and are applied mainly in animals and tree
breeding where the traits under consideration become evident at different ages. The
theory of these indices is based on the independent culling level method and the
standard linear selection index theory. There are two main approaches associated
with these indices:

1. The optimal multistage linear selection index, which takes into consideration the
correlation among indices at different stages when makes selection.

2. The selection index updating or decorrelated multistage linear selection index, in
which the correlation among indices at different stages is zero when makes
selection.

These indices can use phenotypic or GEBV information to predict the net genetic
merit or combine phenotypic and GEBYV in the prediction. These indices can also be
unrestricted, null restricted or predetermined proportional gains. In this book, we
describe only the optimal multistage linear selection index in Chap. 9 and, in this
book, it is called simply multistage linear selection index.

Multistage linear selection indices are a cost-saving strategy for improving mul-
tiple traits, because not all traits need to be measured at each stage. Thus, when traits
have a developmental sequence in ontogeny or there are large differences in the costs
of measuring several traits, the efficiency of this index over LPSI efficiency can be
substantial (Xu et al. 1995). Xu and Muir (1992) have indicated that the optimal
multistage linear phenotypic selection index (MLPSI) increases selection intensity on
traits measured at an earlier age, and, with fixed facilities, a greater number of
individuals can be selected at an earlier age. For example, if some individuals can
be culled before final traits are measured (e.g., weaning weights in swine and beef
cattle breeding), savings are realized in terms of feed, labor, and facilities. With the
LPSI, the same individuals must be measured for each trait; thus, the number of traits
measured per mature individual is the same as that for an immature individual.

The original MLPSI was developed by Cochran (1951) in the two-stage context
and later, Young (1964) and Cunningham (1975) combined the LPSI theory with the
independent culling method to simultaneously select more than one trait in the
multistage selection context. This selection method was called multistage selection
by Cochran (1951) and Young (1964) and multistage index selection by
Cunningham (1975).

The MLPSI theory can also be adapted to the genomic selection context, where it
is possible to develop an optimal multistage unrestricted, restricted, and
predetermined proportional gains linear genomic selection index. The latter indices
are linear combinations of estimated breeding values (GEBV) used to predict the
individual net genetic merit and select individual traits available at different stages in
a non-phenotyped testing population and are called multistage linear genomic
selection indices. The advantage of these indices over the other selection indices
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lies in the possibility of reducing the intervals between selection cycles or stages by
more than two thirds.

One of the main problems of all the multistage selection indices is that after the
first selection stage their values could be non-normally distributed. In addition, for
more than two stages, those indices require computationally sophisticated multiple
integration techniques to derive selection intensities, and there are problems of
convergence when the traits and the index values of successive stages are highly
correlated. Furthermore, the computational time could be unacceptable if the number
of selection stages becomes too high (Borner and Reinsch 2012). One possible
solution to these problems was given by Xu and Muir (1992) in the selection
index updating or decorrelated multistage linear phenotypic selection index context.
However, one problem with the decorrelated multistage selection index is that its
accuracy and selection response is generally lower than the accuracy and selection
response of the multistage selection index described in this book.

1.4 Stochastic Simulation of Four Linear Phenotypic
Selection Indices

Chapter 10 describes a stochastic simulation of four linear indices: LPSI, ESIM,
RLPSI, and RESIM. We think that stochastic simulation can contribute to a better
understanding of the relationship between these indices and their accuracies to
predict the net genetic merit.

1.5 RlIndSel: Selection Indices with R

Chapter 11 describes how RIndSel can be used to determine individual candidates as
parents for the next cycle of improvement. RIndSel is a graphical unit interface that
uses the selection index theory to make selection. The index can be a linear
combination of phenotypic values, genomic estimated breeding values or a linear
combination of phenotypic values and marker scores.

1.6 The Lagrange Multiplier Method

To obtain the constrained linear selection indices (e.g., RLPSI, PPG-LPSI, RESIM)
described in Chaps. 3, 6, 7, 8, and 9, we used the method of Lagrange multipliers.
This is a powerful method for finding extreme values (maxima or minima) of
constrained functions. For example, the covariance between the breeding value vector
(g) and the LPSI (I = b/y) is Cov(1, g) = Gb. In the LPSI context, the Gb vector can
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take any value (positive or negative) which could be a problem for some breeding
objectives. That is, the breeder could be interested in improving only (+ — r) of ¢
(r < 1) traits, leaving r of them fixed; that is, the expected genetic gains of r traits will
be equal to zero for a specific selection cycle. In such cases, we want r covariances
between the linear combinations of g (U(g) and the [ = bly to be zero, i.e., Cov(l, U
g = U'Gb =0, where U is a matrix with  1’s and (t — r) 0’s; 1 indicates that the trait
is restricted and O that the trait is not restricted. This is the main problem of the
RLPSI, and the method of Lagrange multipliers is useful for solving that problem.

In the constrained linear selection indices context, the method of Lagrange multi-
pliers involves maximizing (or minimizing) the Lagrange function: L[H, I, g, v] = f(H,
D+ v/g(g, 1), where the elements of vector v are called Lagrange multipliers. In the
RLPSI context, fiH,I) = E[(H — 1)2] = wGw + bPb — 2w Gb is the mean squared
difference between I and H. Let g(g, I) = Cov(l, U/g) =U Gb be the covariances between
the linear combinations of g (Ulg), and = b/y, the LPSI. Then, to find the RLPSI vector
of coefficients bg = Kb, we need to minimize the Lagrange function: bPb+wGw — 2w
'Gb +2v Cb, with respect to vectors b and V= [vi vo -+ v,._ 4], where v is a vector of
Lagrange multipliers (see Chap. 3, Sect. 3.1.1 for details). Schott (2005) has given
additional details associated with the method of Lagrange multipliers.
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Chapter 2 ®)
The Linear Phenotypic Selection Index e
Theory

Abstract The main distinction in the linear phenotypic selection index (LPSI)
theory is between the net genetic merit and the LPSI. The net genetic merit is a
linear combination of the true unobservable breeding values of the traits weighted by
their respective economic values, whereas the LPSI is a linear combination of several
observable and optimally weighted phenotypic trait values. It is assumed that the net
genetic merit and the LPST have bivariate normal distribution; thus, the regression of
the net genetic merit on the LPSI is linear. The aims of the LPSI theory are to predict
the net genetic merit, maximize the selection response and the expected genetic gains
per trait (or multi-trait selection response), and provide the breeder with an objective
rule for evaluating and selecting parents for the next selection cycle based on several
traits. The selection response is the mean of the progeny of the selected parents,
whereas the expected genetic gain per trait, or multi-trait selection response, is the
population means of each trait under selection of the progeny of the selected parents.
The LPSI allows extra merit in one trait to offset slight defects in another; thus, with
its use, individuals with very high merit in one trait are saved for breeding even when
they are slightly inferior in other traits. This chapter describes the LPSI theory and
practice. We illustrate the theoretical results of the LPSI using real and
simulated data. We end this chapter with a brief description of the quadratic selection
index and its relationship with the LPSL

2.1 Bases for Construction of the Linear Phenotypic
Selection Index

The study of quantitative traits (QTs) in plants and animals is based on the mean and
variance of phenotypic values of QTs. Quantitative traits are phenotypic expressions
of plant and animal characteristics that show continuous variability and are the result
of many gene effects interacting among them and with the environment. That is, QT's
are the result of unobservable gene effects distributed across plant or animal
genomes that interact among themselves and with the environment to produce the
observable characteristic plant and animal phenotypes (Mather and Jinks 1971;
Falconer and Mackay 1996).

© The Author(s) 2018 15
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Fig. 2.1 Distribution of 252 phenotypic means of two maize (Zea mays) F, population traits: plant
height (PHT, cm; a) and ear height (EHT, cm; b), evaluated in one environment, and of 599 -
phenotypic means of the grain yield (GY1 and GY2, ton ha™'; ¢ and d respectively) of one double
haploid wheat (Triticum aestivum L.) population evaluated in two environments

The QTs are the traits that concern plant and animal breeders the most. They are
particularly difficult to analyze because heritable variations of QTs are masked by
larger nonheritable variations that make it difficult to determine the genotypic values
of individual plants or animals (Smith 1936). However, as QTs usually have normal
distribution (Fig. 2.1), it is possible to apply normal distribution theory when
analyzing this type of data.

Any phenotypic value of QTs (y) can be divided into two main parts: one related
to the genes and the interactions (g) among them (called genotype), and the other
related to the environmental conditions (e) that affect genetic expression (called
environment effects). Thus, the genotype is the particular assemblage of genes
possessed by the plant or animal, whereas the environment consists of all the
nongenetic circumstances that influence the phenotypic value of the plant or animal
(Cochran 1951; Bulmer 1980; Falconer and Mackay 1996). In the context of only
one environment, the phenotypic value of QTs (y) can be written as

y=g-+e, (2.1)

where g denotes the genotypic values that include all types of gene and interaction
values, and e denotes the deviations from the mean of g values. For two or more
environments, Eq. (2.1) can be written as y = g + e + ge, where ge denotes the

interaction between genotype and environment. Assumptions regarding Eq. (2.1)
are:
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1. The expectation of e is zero, E(e) = 0.

2. Across several environments, the expectation of y is equal to the expectation of g,
ie., E(g) = pg = E(y) = .

3. The covariance between g and e is equal to 0.

The g value can be partitioned into three additional components: additive genetic
(a) effects (or intra-locus additive allelic interaction), dominant genetic (d) effects
(or intra-locus dominance allelic interaction), and epistasis (z) effects (or inter-loci
allelic interaction) such that g = a + d + 1. In this book, we have assumed that g = a.

According to Kempthorne and Nordskog (1959), the following four theoretical
conditions are necessary to construct a valid LPSI:

1. The phenotypic value (Eq. 2.1) shall be additively made up of two parts: a
genotypic value (g) (defined as the average of the phenotypic values possible
across a population of environments), and an environmental contribution (e).

2. The genotypic value g is composed entirely of the additive effects of genes and is

thus the individual breeding value.

. The genotypic economic value of an individual is its net genetic merit.

4. The phenotypic values and the net genetic merit are such that the regression of the
net genetic merit on any linear function of the phenotypic values is linear.

W

Under assumptions 1 to 4, the offspring of a mating will have a genotypic value
equal to the average of the breeding values of the parents (Kempthorne and
Nordskog 1959). Additional conditions for practical objectives are:

5. Selection is practiced at only one stage of the life cycle.

6. The generations do not overlap.

7. All individuals below a certain level of desirability are culled without exception.

8. Selected individuals have equal opportunity to have offspring (Hazel and Lush
1942).

9. The LPSI values in the ith selection cycle and the LPSI values in the (i + 1)th
selection cycle do not correlate.

10. The correlation between the LPSI and the net genetic merit should be at its

maximum in each selection cycle.

Conditions 5 to 10 indicate that the LPSI is applying in a single stage context.

2.2 The Net Genetic Merit and the LPSI

Not all the individual traits under selection are equally important from an economic
perspective; thus, the economic value of a trait determines how important that trait is
for selection. Economic value is defined as the increase in profit achieved by
improving a particular trait by one unit (Tomar 1983; Cartuche et al. 2014). This
means that for several traits, the total economic value is a linear combination of the
breeding values of the traits weighted by their respective economic values (Smith
1936; Hazel and Lush 1942; Hazel 1943; Kempthorne and Nordskog 1959); this is
called the net genetic merit of one individual and can be written as
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H=wg, (2.2)
where g = [g, &> ... g is a vector of true unobservable breeding values and
w =[w; wy ... w] is a vector of known and fixed economic weights.

Equation (2.2) has several names, e.g., linear aggregate genotype (Hazel 1943),
genotypic economic value (Kempthorne and Nordskog 1959), net genetic merit
(Akbar et al. 1984; Cotterill and Jackson 1985), breeding objective (Mac Neil et al.
1997), and total economic merit (Cunningham and Tauebert 2009), among others.
In this book, we call Eq. (2.2) net genetic merit only. The values of H = w'g are
unobservable but they can be simulated for specific studies, as is seen in the
examples included in this chapter and in Chap. 10, where four indices have been
simulated for many selection cycles.

In practice, the net genetic merit of an individual is not observable; thus, to select
an individual as parent of the next generation, it is necessary to consider its overall
merit based on several observable traits; that is, we need to construct an LPSI of
observable phenotypic values such that the correlation between the LPSI and
H = w'g is at a maximum. The LPSI should be a good predictor of H = w'g and
should be useful for ranking and selecting among individuals with different net
genetic merits. The LPSI for one individual can be written as

I=Vy, (2:3)
whereb’ = [b; b, --- b,]is the I vector of coefficients, ¢ is the number of traits
onl,andy =[y, y, --- /] 1isa vector of observable trait phenotypic values

usually centered with respect to its mean. The LPSI allows extra merit in one trait to
offset slight defects in another. With its use, individuals with very high merit in some
traits are saved for breeding, even when they are slightly inferior in other traits
(Hazel and Lush 1942). Only one combination of b values allows the correlation of
the LPSI with H = w'g for a particular set of traits to be maximized.

Figure 2.2 indicates that the regression of the net genetic merit on the LPSI is
lineal and that the correlation between the LPSI and the net genetic merit is maximal
in each selection cycle. Also, note that the true correlations between the LPSI and the
net genetic merit, and the true regression coefficients of the net genetic merit over the
LPSI are the same, but the estimated correlation values between the LPSI and the net
genetic merit are lower than the true correlation (Fig. 2.2). Table 2.1 indicates that
the LPSI in the ith selection cycle and the LPSI in the (i + 1)th selection cycle do not
correlate. However, in practice, the correlation values between any pair of LPSIs
could be different from zero in successive selection cycles.

One fundamental assumption of the LPSI is that I = b’y has normal distribution.
This assumption is illustrated in Fig. 2.3 for two real datasets: a maize (Zea mays) F,
population with 252 lines and three traits—grain yield (ton ha™'); plant height
(cm) and ear height (cm)—evaluated in one environment; and a double haploid
wheat (Triticum aestivum L.) population with 599 lines and one trait—grain yield
(ton hafl)—evaluated in three environments. Figure 2.3 indicates that, in effect, the
LPSI values approach normal distribution when the number of lines is very large.
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Fig. 2.2 True correlation (7C) and estimated correlation (ECO) values between the linear pheno-
typic selection index (LPSI) and the net genetic merit for seven selection cycles, and true regression
coefficient (TRC) of the net genetic merit over the LPSI for four traits and 500 genotypes in one
environment simulated for seven selection cycles

Table 2.1 Estimated 1 2 3 4 5 6 7

correlation values between the =007 00™ (1556 0220 |0.168 |0.225 | 0.123
linear phenotypic selection
index (LPST) values in seven  0-199 | 1.000 0225 0252 0284 [0292 |0.362
simulated selection cycles 0256 0225 |1.000 |0.198 |0276 |0267 0213
0220 0252 |0.198 |1.000 |0.258 0224 |0.240
0.168 0284 |0276 |0.258 |1.000 |0.269 |0.195
0225 0292 |0267 |0.224 |0269 |1.000 |0.325

0.123 10362 |0.213 |0.240 |0.195 |0.325 |1.000

2.3 Fundamental Parameters of the LPSI

There are two fundamental parameters associated with the LPSI theory: the selection
response (R) and the expected genetic gain per trait (E). In general terms, the
selection response is the difference between the mean phenotypic values of the
offspring (1) of the selected parents and the mean of the entire parental generation
(up) before selection, i.e., R = uo — pp (Hazel and Lush 1942; Falconer and Mackay
1996). The expected genetic gain per trait (or multi-trait selection response) is the
covariance between the breeding value vector and the LPSI (/) values weighted by

the standard deviation of the variance of I(o)), i.e., %}I’g) = %’, multiplied by the
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Fig. 2.3 Maize LPSI (Fig. 2.3a) is the distribution of 252 values of the LPSI constructed with the
phenotypic means of three maize (Zea mays) F, population traits: grain yield (ton ha™"), PHT (cm)
and EHT (cm), evaluated in one environment. Wheat LPSI (Fig. 2.3b) is the distribution of
599 LPSI values constructed with the phenotypic means of the grain yield (ton ha™') of a double
haploid wheat (Triticum aestivum L.) population evaluated in three environments

selection intensity. This is one form of the LPSI multi-trait selection response. In the
univariate context, the expected genetic gain per trait is the same as the selection
response.

One additional way of defining the selection response is based on the selection
differential (D). The selection differential is the mean phenotypic value of the
individuals selected as parents (ug) expressed as a deviation from the population
mean (up) or parental generation before the selection was made (Falconer and
Mackay 1996); that is, D = ug — pp. Thus, another way of defining R is as the
part of the expected differential of selection (D = ug — up) that is gained when
selection is applied (Kempthorne and Nordskog 1959); that is

_ Cov(g,y)

2
oy

R D = koyh?, (2.4)

where Cov(g,y) = a§ is the covariance between g and y, g is the individual breeding
value associated with trait y, 0'5 is the variance of y, k = g is the standardized
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selection differential or selection intensity, and h* =

2
o

g . . .oy . .
o) is the heritability of trait y in

y
the base population. Heritability (k%) appears in Eq. (2.4) as a measure of the
accuracy with which animals or plants having the highest genetic values can be
chosen by selecting directly for phenotype (Hazel and Lush 1942).

The selection response (Eq. 2.4) is the mean of the progeny of the selected parents
or the future population mean of the trait under selection (Cochran 1951). Thus, the
selection response enables breeders to estimate the expected progress of the selection
before carrying it out. This information gives improvement programs a clearer
orientation and helps to predict the success of the selection method adopted and
choose the option that is technically most effective on a scientific base (Costa et al.
2008). Equation (2.4) is very powerful but its application requires strong assump-
tions. For example, Eq. (2.4) assumes that the trait of interest does not correlate with
other traits having causal effects on fitness and, in its multivariate form the validity of
predicted change rests on the assumption that all such correlated traits have been
measured and incorporated into the analysis (Morrissey et al. 2010).

2.3.1 The LPSI Selection Response

The univariate selection response (Eq. 2.4) can also be rewritten as
R = koyh* = kogp,,, (2.5)

where 6, was defined in Eq. (2.4) and p,, is the correlation between g and y. Thus, as
H = w'g and I = b’y are univariate random variables, the selection response of the
LPSI (R)) can be written in a similar form as Eq. (2.5), i.e.,

R[ = kIGHpHI» (26)

where ¢y and o are the standard deviation and py; the correlation between H = w'g
and I = by respectively; k; = ”’AG;[”’B is the standardized selection differential or the
selection intensity associated with the LPSI; u;4 and u;z are the means of the LPSI
values after and before selection respectively. The second part of Eq. (2.6) (k;ocupmr)
indicates that the genetic change due to selection is proportional to k;, oy, and py;
(Kempthorne and Nordskog 1959). Thus, the genetic gain that can be achieved by
selecting for several traits simultaneously within a population of animals or plants is
the product of the selection differential (k;), the standard deviation of H = w'g (cg),
and the correlation between H = w'g and I = b’p (pg;). Selection intensity k; is
limited by the rate of reproduction of each species, whereas oy is relatively beyond
man’s control; hence, the greatest opportunity for increasing selection progress is by
ensuring that py; is as large as possible (Hazel 1943). In general, it is assumed that k;
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and oy are fixed and w known and fixed; hence, R; is maximized when pg; is
maximized only with respect to the LPSI vector of coefficients b.
Equation (2.6) is the mean of H = w'g, whereas o7,p%,(1 — v) is its variance and

# the correlation between H = w'g and I = b’p after selection
HI

was carried out (Cochran 1951), where v = k;(k; — 7) and 7 is the truncation point.
For example, if the selection intensity is 5%, k; = 2.063, 7 = 1.645, and v = 0.862
(Falconer and Mackay 1996, Table A). In R (in this case R denotes a platform for
data analysis, see Kabakoff 2011 for details), the truncation point and selection
intensity can be obtained as v <— gnorm(1 — q) and k <— dnorm(v)/q, respectively,
where g is the proportion retained. Both the variance and the correlation (p};,) are
reduced by selection. If H = w'g could be selected directly, the gain in H = w'g
would be k;. Thus, the gain due to indirect selection using I = b'p is a fraction py; of
that due to direct selection using H = w'g. As k; increases, R; increases (Eq. 2.6),

P;-k]l = PHi1

o4py, (1 —v) and pjj,; decrease, and the effects are in the same direction as pj;

increases (Cochran 1951). These results should be valid for all selection indices
described in this book.

Smith (1936) gave an additional method to obtain Eq. (2.6). Suppose that we have a
large number of plant lines and we select one proportion g for further propagation. In
addition, assume that the values of 7 for each line are normally distributed with variance
of = b'Pb;, let I be transformed into a variable u, with unit variance and mean at zero,

thatis, u = ! ;f", where i, is the mean of 1. Assume that all 7 values higher than I’ value

are selected; then the value of u’ = 1’;—,"’ corresponding to any given value of ¢ may be

ascertained from a table of the standard normal probability integral (Fig. 2.4).
Assuming that the expectations of H and [ are E(H) = 0 and E(I) = y;, the

conditional ~ expectation of H given [ can be  written as

02
1

Culled values

Scale of z values

01

00
|

T T T T T [ T T

v
Standarized LPSI values
Fig. 2.4 Graph of standardized LPSI values showing how a population can be separated sharply at

a given point (') into a selected fraction (g), denoted by the red area, and a remainder that is culled,
denoted by the white area
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EH/I) = % I —u) = %mu = Boju, where B = %, o = wW'Gb is the covari-
T [ i

ance between H and I, and 0% = b'Pbis the variance of I. Therefore, if 0% and oy are
fixed, the LPSI selection response (R;) can be obtained as the expectation of the
selected population, which has univariate left truncated normal distribution. A
truncated distribution is a conditional distribution resulting when the domain of
the parent distribution is restricted to a smaller region (Hattaway 2010). In the LPSI
context, a truncation distribution occurs when a sample of individuals from the
parent distribution is selected as parents for the next selection cycle, thus creating a
new population of individuals that follow a truncated normal distribution. Thus, we

need to find E[E(H/I)] = q_lBa,E(u), or, using integral calculus,

Bo; /OC u { 1 2} F4
EEH/I)| =— ——expy —=u" pdu=-o , 2.7
[ ( / )] q o \/5]‘1_ Y 2 q HPHI ( )

exp{70.5u’2} .
2

where z = is the height of the ordinate of the normal curve at the lowest

value of «’ retained and ¢ is the proportion of the population of animal or plant lines
that is selected (Fig. 2.4). The proportion ¢ that must be saved depends on the
reproductive rate and longevity of the species under consideration and on whether
the population is expanding, stationary or declining in numbers. The ordinate (z) of
the normal curve is determined by the proportion selected (q) (Fig. 2.4). The
amount of progress is expected to be larger as g becomes smaller; that is, as
selection becomes more intense (Hazel and Lush 1942). Kempthorne and
Nordskog (1959) showed that é: k;. Thus, Egs. (2.6) and (2.7) are the same,

that is, E[E(H/I)] = R,.

2.3.2 The Maximized Selection Response

The main objective of the LPSI is to maximize the mean of H = w'g (Eq. 2.7).
Assuming that P, G, w, and k; are known, to maximize R; we can either maximize
ppr or minimize the mean squared difference between [ and H, E[(H — 1)2] =
wGw + DbPb — 2w'Gb  with respect to b, that s,

%E [(H - 1)2} = 2Pb — 2Gw = 0, from where
b=P 'Gw (2.8)
is the vector that simultaneously minimizes E[(H — I )2] and maximizes pg;, and then

R = kioupur.
By Eq. (2.8), the maximized LPSI selection response can be written as
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R; = k;Vb'Pb. (2.9)

The maximized LPSI selection response predicts the mean improvement in H due
to indirect selection on 7 only when b = P~'Gw (Harris 1964) and is proportional to
the standard deviation of the LPSI variance (o;) and the standardized selection
differential or the selection intensity (k;).

The maximized LPSI selection response (Eq. 2.9) it related to the Cauchy—
Schwarz inequality (Rao 2002; Cerén-Rojas et al. 2006), which establishes that
for any pair of vectors u and v, if A is a positive definite matrix, then the inequality
Ww'v)> < (VAv) (WA 'u) holds. Kempthorne and Nordskog (1959) proved that

(WGb)?
(w'Gw)(b'Pb)
(WGb)®

T (b'Pb) °
maximizing (X),?,::) Let GW = u, b = v, and A = P, by the Cauchy—Schwarz

(wGb)*
(b'Pb)

%'?1:) = wGP~'Gw, at which point R; = k; VWGP~ 'Gw. This latter result is the
same as Eq. (2.9) when b =P~ IGw.

Result R; = k;vVW'GP~'Gw obtained using the Cauchy—Schwarz inequality
corroborates that b = P~'Gw (Eq. 2.8) is a global minimum when the mean squared
difference between I and H (E[(H — I )2]) is minimized, and a global maximum when
the correlation pg; between [ and H is maximized because

R; = k;vVB'Pb = k; VWGP~ 'Gw only when b = P~'Gw.

maximizing p,zﬂ = also maximizes R;. According to Egs. (2.6) and

2.7, R2 can be written as R2 = k2 , such that maximizing R? is equivalent to

< W' GP~'Gw. This implies that the maximum is reached when

inequality

2.3.3 The LPSI Expected Genetic Gain Per Trait

Cov(g, y)

Whereas R = D (Eq. 2.4) denotes the selection response in the

2
. Cov(l,
univariate case, E = ”"( g)

D COV(g>) devlg)
oy

denotes the LPSI expected genetic gain per trait. Also,

Cov(g.,y)
\

except by are mathematically equivalent and whereas

is the covariance between g and y weighted by the standard deviation of the variance
of y, C”V(l 8 is the covariance between the breeding value vector and the LPSI

values welghted by the standard deviation of the variance of LPSI. This means that
in effect, E is the LPSI multi-trait selection response and can be written as

E = k,g, (2.10)
o]
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where G, o; and k; were defined earlier. As Eq. (2.10) is the covariance between

1
I=bpandg =[g, g ... g]dividedby o, considering g;and/ = Z bjy;,
=1
the genetic gain in the jth index trait due to selection on I will be

/

k b'e;
COV([,gj) :o_—i|:b161j+b262j+"'+bj6§+"'+bt6tj:| :k] 61]’ (211)

k;
o]

where G'j = [61 i (73 .. o-t]} is a vector of genotypic covariances of the jth index

trait with all the index traits (Lin 1978; Brascamp 1984).

If Eq. (2.11) is multiplied by its economic weight, we obtain a measure of the
economic value of each trait included in the net genetic merit (Cunningham and
Tauebert 2009). In percentage terms, the economic value attributable to genetic
change in the jth trait can be written as

bIG j
wj—5=100. (2.12)
o7

In addition, the percentage reduction in the net genetic merit of overall genetic
gain if the jth trait is omitted from the LPSI (Cunningham and Tauebert 2009) is

P

b2
[1— 1- 212]100, (2.13)

where go;z is the jth diagonal element of the inverse of the phenotypic covariance
matrix P~" and b? the square of the jth coefficient of the LPSI. Equations (2.12) and

(2.13) are measures of the importance of each trait included in the LPSI when makes
selection.

2.3.4 Heritability of the LPSI

As the variance of I = b'y is equal to 67 = b'Pb = b’Gb + b'Rb, where P = G + R,
G and R are the phenotypic, genetic, and residual covariance matrices respectively,
then the LPSI heritability (Lin and Allaire 1977; Nordskog 1978) can be written as

b'Gb

When selecting a trait, the correlation between the phenotypic and genotypic
values is equal to the square root of the trait’s heritability (p,, = h); however, in the
LPSI context, when b = P_le, the maximized correlation between H and [ is

Y. vl://(l;l\:v = 2, whereas hy = ‘l’)/,(gl‘)’ is the square root of I heritability; that is,
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Fig. 2.5 Estimated values of the square correlation between the LPSI and the net genetic merit
(H = w'g) and the LPSI heritability for four traits and 500 genotypes in one environment simulated
for seven selection cycles

from a mathematical point of view, py; # h;. In practice, h,2 and pgﬂ give similar
results (Fig. 2.5).

2.4 Statistical LPSI Properties

Assuming that H and I have joint bivariate normal distribution, b = P~ 'Gw, and P,
G and w are known, the statistical LPSI properties (Henderson 1963) are the
following:

1. The variance of 1 (a?) and the covariance between H and I (o) are equal, i.e.,
af = oy We can demonstrate this property noting that as b = P~ 'Gw,
o7 = b'Pb, and 65; = W'Gb, then o7 = (WGP~ ')PP"'Gw = WGP 'Gw, and
om = WGP 'Gw; ie., a% = opy. This last result implies that when y; = 0, E
(HII) =L

2. The maximized correlation between H and I is equal to py; = ;’—; That is,

- wGb wGP_'Gw — /WGP 'Gw _ o thus P = 2L
HI ™ /' GwvVb'Pb \/vm\/w’GP’le wGw on’ > PHI = 5
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3. The variance of the predicted error, Var(H — I) = (1 — pj;) o7, is minimal. Note
that Var(H —1I) = E{(H - 1)2} =067 + 0% — 20p, and when b = P~'Gw,
o7 = opy, from where Var(H — I) = o, — 6; = (1 — pj;,) o7, is minimal because
by Eq. (2.8), b =P~ 'Gw minimizes Var(H — I) = (1 — p},) o3, Thus, the larger
pur the smaller E[(H — I)*] and the more similar / and H are. If py; > 0, I and
H tend to be positively related; if py; < 0, they tend to be negatively related; and if
pur =0, I and H are independent (Anderson 2003).

4. The total variance of H explained by Iis 67 = p%,67%. It is evident that if py; = 1,
612 = 121, and if py; = 0, 6% = 0. That is, the variance of H explained by I is
proportional to pg;, and when pg; is close to 1, of is close to aﬁ,, and if pyyis close
to 0, o? is close to 0.

2.5 Particular Cases of the LPSI
2.5.1 The Base LPSI

To derive the LPSI theory, we assumed that the phenotypic (P) and the genotypic
(G) covariance matrix, and the vector of economic values (w) are known. However,
P, G, and w are generally unknown and it is necessary to estimate them. There are
many methods for estimating P and G (Lynch and Walsh 1998) and w (Cotterill and
Jackson 1985; Magnussen 1990). However, when the estimator of P(IA’) is not
positive definite (all eigenvalues positive) or the estimator of G(é) is not positive
semidefinite (no negative eigenvalues), the estimator of b = P 'Gw (B =p! éw)
could be biased. In this case, the base linear phenotypic selection index (BLPSI):

Ip=wy (2.15)

may be a better predictor of H = w'g than the estimated LPSI I=v y (Williams
1962a; Lin 1978) if the vector of economic values w is indeed known. Many authors
(Williams 1962b; Harris 1964; Hayes and Hill 1980, 1981) have investigated the
influence of parameter estimation errors on LPST accuracy and concluded that those
errors affect the accuracy of =V y when the accuracy of P and G is low. If vector
w values are known, the BLPSI has certain advantages because of its simplicity and
its freedom from parameter estimatio/r\l errors (Lin 1978). Williams (1962a) pointed
out that the BLPST is superior tol = b’y unless a large amount of data is available for
estimating P and G.

There are some problems associated with the BLPSI. For example, what is the
BLPSI selection response and the BLPSI expected genetic gains per trait when no
data are available for estimating P and G? The BLPSI is a better selection index than
the standard LPSI only if the correlation between the BLPSI and the net genetic merit
is higher than that between the LPSI and the net genetic merit (Hazel 1943).
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However, if estimations of P and G are not available, how can the correlation
between the base index and the net genetic merit be obtained? Williams (1962b)
pointed out that the correlation between the BLPSI and H = w’g can be written as

wGw

PHI; = (2.16)

wPw
and indicated that the ratio py,, /ppr can be used to compare LPSI efficiency versus
BLPSI efficiency; however, in the latter case, at least the estimates of P and G, i.e., P
and é, need to be known.

In addition, Eq. (2.15) is only an assumption, not a result, and implies that P and
G are the same. Thatis,b=P 'Gw=w only when P = G, which indicates that the
BLPSI is a special case of the LPSI. Thus, to obtain the selection response and the
expected genetic gains per trait of the BLPSI, we need some information about P and
G. Assuming that the BLPSI is indeed a particular case of the LPSI, the BLPSI
selection response and the BLPSI expected genetic gains per trait could be written as

Ry = kjv/WPw, (2.17)
and
Gw
Ez =k s 2.18
by (2.18)

respectively. The parameters of Eqgs. (2.17) and (2.18) were defined earlier.

There are additional implications if b = P !Gw =w. For example, if P = G, then
/

; o wGw
Pty = /e and BLPSI heritability h;, = Pw
practice, the estimated values of the py; (py;,) are usually lower than the estimated

values of the pg(py,) (Fig. 2.6).

are equal to 1. However, in

2.5.2 The LPSI for Independent Traits

Suppose that the traits under selection are independent, then P and G are diagonal
matrices and b = P~'Gw is a vector of single-trait heritabilities multiplied by the
economic weights, because P~ 'G is the matrix of multi-trait heritabilities (Xu and
Muir 1992). Based on this result, Hazel and Lush (1942) and Smith et al. (1981) used
trait heritabilities multiplied by the economic weights (or heritabilities only) as
coefficients of the LPSI. Thus, when the traits are independent and the economic
weights are known, the LPSI can be constructed as
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Fig. 2.6 Values of the true correlation between the LPSI and the net genetic merit (H = w'g) (True-
(), the estimated correlation between the LPSI and H (LPSI-C), and the estimated correlation
between the base index and H (Base-C) for four traits and 500 genotypes in one environment
simulated for seven selection cycles

t
I= Zwihizyi’ (2.19)
=1

and when the economic weights are unknown, the LPSI can be constructed as

t
I = Z h2y;. (2.20)
i=1

The selection response of Eq. (2.19) and (2.20) can be seen in Hazel and Lush
(1942).

2.6 Criteria for Comparing LPSI Efficiency

Assuming that the intensity of selection is the same in both indices, we can compare
BLPSI (I3 = w'y) efficiency versus LPSI efficiency to predict the net genetic merit in
percentage terms as
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p=100(1—1), (2.21)
where 1 = ﬁ (Williams 1962b; Bulmer 1980). Therefore, when p = 0, the
efficiency of both indices is the same; when p > 0, the efficiency of the LPSI is
higher than the base index efficiency, and when p < 0, the base index efficiency is
higher than LPSI efficiency (Fig. 2.6). Equation (2.21) is useful for comparing the
efficiency of any linear selection index, as we shall see in this book.

2.7 Estimating Matrices G and P

To derive the LPSI theory we assumed that matrices P and G are known. In practice,
we have to estimate them. Matrices P and G can be estimated by analysis of variance
(ANOVA), maximum likelihood or restricted maximum likelihood (REML) (Baker
1986; Lynch and Walsh 1998; Searle et al. 2006; Hallauer et al. 2010). Equation
(2.1) is the simplest model because we only need to estimate two variance compo-
nents: the genotypic variance (og) and the residual variance (ag), from where the
phenotypic variance for trait y is the sum of a§ and 05, that is, 6_3 = aﬁ + 65.
However, to construct matrices P and G, we also need the covariance between any
two traits. Thus, if y; and y; (i, j = 1, 2, - - -, 1) are any two traits, then the covariance
between y; and y; (Gy,;f) can be written as 0y, = Og, + Oy, where O, and o, denote the
genotypic and residual covariance respectively of traits y; and y;.

Several authors (Baker 1986; Lynch and Walsh 1998; Hallauer et al. 2010) have
described ANOVA methods for estimating matrix G using specific design data, for
example, half-sib, full-sib, etc., when the sample sizes are well balanced. In the
ANOVA method, observed mean squares are equal to their expected values; the
expected values are linear functions of the unknown variance components; thus the
resulting equations are a set of simultaneous linear equations in the variance
components. The expected values of mean squares in the ANOVA method do not
need assumptions of normality because the variance component estimators do not
depend on normality assumptions (Lynch and Walsh 1998; Hallauer et al. 2010).

In cases where the sample sizes are not well balanced, Lynch and Walsh (1998)
and Fry (2004) proposed using the REML method to estimate matrix G. The REML
estimation method does not require a specific design or balanced data and can be
used to estimate genetic and residual variance and covariance in any arbitrary
pedigree of individuals. The REML method is based on projecting the data in a
subspace free of fixed effects and maximizing the likelihood function in this
subspace, and has the advantage of producing the same results as the ANOVA in
balanced designs (Blasco 2001).

In the context of the linear mixed model, Lynch and Walsh (1998) have given

formulas for estimating variances a§ and o> that can be adapted to estimate

e

covariances o, and o,,. Suppose that we want to estimate az and ag for the gth
trait (¢ = 1, 2---, t = number of traits) in the absence of dominance and epistatic
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effects using the model y, = 1u, + Zg, + e,, where the vector of averages y,~NMV
(Aug, V) is g X 1 (g = number of genotypes in the population) and has multivariate
normal distribution; 1is a g X 1 vector of ones, y, is the mean of the gth trait, Z is an
identity matrix g x g, g,~NMV(0, Aaé q) is a vector of true breeding values, and
eq~NMV(0,IG§q) is a g x 1 vector of residuals, where NMV stands for normal
multivariate distribution. Matrix A denotes the numerical relationship matrix
between individuals (Lynch and Walsh 1998; Mrode 2005) and V, = Ady, + 1o .

The expectation—-maximization algorithm allows the REML to be computed for
the variance components O'é and azq by iterating the following equations:

q

)
G2t — g2 4 giT [y; (T(ﬂ)AT(”)>yq — (T<">A)] (2.22)

&g &g

and

()
G2t = g2 ALy (T )y, — o (TO))], (2.23)

where, after n iterations, a?"“)

0§ and aiq respectively; 7r(.) denotes the trace of the matrices within brackets; T
q

_ vl “11(1v-11\1'v-! -1 : : A2 2
=V, -V, 1 (1 v, 1) 'V, and V " is the inverse of matrix V, = Aoy, + Io, .
In T, V;l("> is the inverse of matrix V((;’) = Ao-%fp + Iagq(”).

The additive genetic and residual covariances between the observations of the gth
and ith traits, y, and y; (agq,i and Cepin > I = 1, 2, ..., ), can be estimated using

REML by adapting Eqs. (2.22) and (2.23). Note that the variance of the sum of y,
and y; can be written as Var(y; +y,) = V;+ V,+2C,,, where V; = Aaéi + 103, is the

and 63"“)

are the estimated variance components of
q q

variance of y; and V,= Aaéq —|—Ia§ is the variance of y,; in addition,
q

2C,, = 2A0,, + 2lo,;; = 2Cov(y;, y,) is the covariance of y, and y;, and o,;, and
C.ig are the additive and residual covariances respectively associated with the
covariance of y, and y;. Thus, one way of estimating ¢, and c.;, is by using the
following equation:

0.5Var(y; +y,) — 0.5Var(y;) — 0.5Var(y,). (2.24)

for which Eqgs. (2.22) and (2.23) can be used. Equations (2.22) to (2.24) are used to
estimate P and G in the illustrative examples of this book.
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2.8 Numerical Examples

2.8.1 Simulated Data

This data set was simulated by Ceron-Rojas et al. (2015) and can be obtained at
http://hdl.handle.net/11529/10199. The data were simulated for eight phenotypic
selection cycles (CO to C7), each with four traits (7, T, T5 and Ty), 500 genotypes,
and four replicates for each genotype (Fig. 2.7). The LPSI economic weights for 77,

AxB Cycle 0

Haplotype of F,

Genomic
training

------- > IEEGRGETS Phenotypic data —1\

Phenotypic selection

self x tester(s)

10% of F, families

nter-cross | Cycle 1

Genomic selection
S, 10% selected

self x tester(s)

(oo

l Phenotypic selection

<— 10% of S, families

Inter-cross S, 5 Inter-cross S,

Fig. 2.7 Schematic illustration of the steps followed to generate data sets 1 and 2 for the seven
selection cycles using the linear phenotypic selection index and the linear genomic selection index.
Dotted lines indicate the process used to simulate the phenotypic data (according to Ceron-Rojas
et al. 2015)
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T,, T5 and T4 were 1, —1, 1, and 1 respectively. Each of the four traits was affected
by a different number of quantitative trait loci (QTLs): 300, 100, 60, and 40, respec-
tively. The common QTLs affecting the traits generated genotypic correlations of
—0.5,0.4,0.3, —0.3, —0.2, and 0.1 between T and T», T} and T3, T} and T4, T, and
T3, T and T4, and T5 and T, respectively. The genotypic value of each plant was
generated based on its haplotypes and the QTL effects for each trait.

Simulated data were generated using QU-GENE software (Podlich and Cooper
1998; Wang et al. 2003). A total of 2500 molecular markers were distributed
uniformly across 10 chromosomes, whereas 315 QTLs were randomly allocated
over the ten chromosomes to simulate one maize (Zea mays L.) population. Each
QTL and molecular marker was biallelic and the QTL additive values ranged from
0 to 0.5. As QU-GENE uses recombination fraction rather than map distance to
calculate the probability of crossover events, recombination between adjacent pairs
of markers was set at 0.0906; for two flanking markers, the QTL was either on the
first (recombination between the first marker and QTL was equal to 0.0) or the
second (recombination between the first marker and QTL was equal to 0.0906)
marker; excluding the recombination fraction between 15 random QTLs and their
flanking markers, which was set at 0.5, i.e., complete independence (Haldane 1919),
to simulate linkage equilibrium between 5% of the QTLs and their flanking markers.
In addition, in every case, two adjacent QTLs were in complete linkage. For each
trait, the phenotypic value for each of four replications of each plant was obtained
from QU-GENE by setting the per-plot heritability of 7', 75, T3, and T, at 0.4, 0.6,
0.6, and 0.8 respectively.

2.8.2 Estimated Matrices, LPSI, and Its Parameters

For this example, we used only cycle C1 data and traits T, T,, and 75. The
phenotypic and genotypic estimated covariance matrices for traits 74, T, and 73

R 62.50 —12.74 8.53 R 36.21 —12.93 835
were P= | —12.74 1752 —-338| and G= | —1293 13.04 —-3.40
8.53 —-3.38 1231 8.35 —-3.40 9.96
respectively, whereas  the  inverse  of  matrix P was
R 0.01997  0.01251 —-0.01040
P'= | 0.01251 0.06809 0.01005 |. The estimated heritabilities for T,

—0.01040 0.01005 0.09123
T>, and T5 were ﬁ% = 0.579, ﬁ% = 0.744, and ﬁ% = 0.809 respectively.

According to matrices P! and @, and becausew’ = [1 —1 1], the estimated
vector of coefficients was b’ = WGP~ = [0.555 —1.063 1.087], from which
the estimated LPSI can be written as 1 = 0.555T, — 1.063T, + 1.087T5. Table 2.2
presents the first 20 genotypes, the means of the three traits (T1, T2 and T3) and the
first 20 estimated unranked LPSI values of the 500 simulated genotypes for cycle C1.
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Table 2.2 Number of genotypes, means of the trait (T1, T2 and T3) values, and unranked values of
the LPSI for part of a simulated data set

Means of the trait values Unranked
Number of genotypes Tl T2 T3 LPSI values
1 164.46 39.63 34.66 86.81
2 144.39 50.77 34.65 63.82
3 157.48 48.04 37.9 77.52
4 167.30 47.98 30.49 74.97
5 164.11 49.89 32.03 72.85
6 166.26 40.44 29.93 81.81
7 154.59 52.22 30.31 63.22
8 160.00 4291 31.23 77.12
9 158.51 46.32 34.52 76.25
10 163.63 45.43 35.73 81.35
11 156.16 46.75 35.58 75.62
12 171.38 41.17 35.13 89.52
13 153.17 54.18 36.23 66.79
14 149.89 52.33 31.13 61.39
15 159.63 49.01 31.72 70.96
16 160.70 42.51 32.99 79.85
17 157.07 45.49 28.4 69.68
18 167.50 41.69 36.73 88.55
19 159.17 50.6 36.25 73.93
20 161.80 46.58 37.33 80.84

According to the means of the three traits, the first estimated LPSI value was
obtained as

71 = 0.555(164.46) — 1.063(39.63) + 1.087(34.66) = 86.81;

the second estimated LPSI value was obtained as

T, = 0.555(144.39) — 1.063(144.39) + 1.087(34.65) = 63.82, etc.;

and the 20th estimated LPSI value was obtained as

T2 = 0.555(161.80) — 1.063(46.58) + 1.087(37.33) = 80.84.

This estimation procedure is valid for any number of genotypes. Table 2.3 pre-
sents the 20 genotypes ranked by the estimated LPSI values. Note that if we use 20%
selection intensity for Table 2.2 data, we should select genotypes 12, 18, 1, 6, and
10, because their estimated LPSI values are higher than the remaining LPSI values
for that set of genotypes. Using the idea described in Fig. 2.4, genotypes 12, 18, 1, 6,
and 10 should be in the red zone, whereas the rest of the genotypes are in the white
zone and should be culled. Here, the proportion selected is ¢ = 0.2 and
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Table 2.3 Number of genotypes, means of the trait (T1, T2 and T3) values and ranked values of the
LPSI for part of a simulated data set

Means of the trait values Ranked

Number of genotypes Tl T2 T3 LPSI values
12 171.38 41.17 35.13 89.52
18 167.50 41.69 36.73 88.55
1 164.46 39.63 34.66 86.81
6 166.26 40.44 29.93 81.81
10 163.63 45.43 35.73 81.35
20 161.80 46.58 37.33 80.84
16 160.70 42.51 32.99 79.85
3 157.48 48.04 37.9 77.52
160.00 4291 31.23 77.12
9 158.51 46.32 34.52 76.25
11 156.16 46.75 35.58 75.62
4 167.30 47.98 30.49 74.97
19 159.17 50.6 36.25 73.93
5 164.11 49.89 32.03 72.85
15 159.63 49.01 31.72 70.96
17 157.07 45.49 28.4 69.68
13 153.17 54.18 36.23 66.79
2 144.39 50.77 34.65 63.82
7 154.59 52.22 30.31 63.22
14 149.89 52.33 31.13 61.39

. u/z
= % = 0.31, where /' = % = 0.704, 81.35 is the estimated LPSI

value or the genotype number 10, 75.64 is the mean of the 20 LPSI values, and 8.11
is the standard deviation of the estimated LPSI values of the 20 genotypes presented
in Tables 2.2 and 2.3.

Table 2.4 presents 25 genotypes and the means of the three traits obtained from
the 500 simulated genotypes for cycle C1 and ranked by the estimated LPSI values.
In this case, we used 5% selection intensity (k; = 2.063). Also, the last four rows in
Table 2.4 give:

1. The means of traits Ty, T,, and T5 (175.46, 39.26, and 38.83 respectively) of the
selected individuals and the mean of the selected LPSI values (97.84).

2. The means of the three traits in the base population (161.88, 45.19, and 34.39)
and the mean of the LPSI values in the base population (79.18)

3. The selection differentials for the three traits (13.58, —5.92, and 4.44) and the
selection differential for the LPSI (18.66)

4. The LPSI expected genetic gain per trait (9.51, —5.48, and 4.22) and the LPSI
selection response (19.21).

The variance of the estimated selection index for the 500 genotypes was
V@ = b'Pb = 86.72, from which the standard deviation of I was 9.312. The
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Table 2.4 Number of selected genotypes, selected means of the trait (T1, T2 and T3) values and
ranked selected values of the LPSI from one simulated set of 500 genotypes with four repetitions

Means of the trait values Ranked
Number of genotypes T1 T2 T3 LPSI values
353 189.68 38.16 36.13 103.97
370 178.27 34.38 37.79 103.45
480 174.84 42.72 45.12 100.66
300 177.38 39.15 40.34 100.65
273 181.18 35.94 35.14 100.52
275 167.94 36.82 422 99.92
148 173.37 37.07 39.62 99.86
137 185.48 46.48 42.55 99.77
351 173.79 38.38 40.52 99.68
236 182.85 37.88 34.96 99.2
217 175.13 38.48 39.16 98.84
356 171.09 39.6 41.98 98.47
167 175.39 38.73 37.73 97.17
230 169.73 37.1 38.69 96.8
243 171.9 41.53 41.45 96.29
55 170.02 36.92 37.76 96.15
68 172.56 37.18 36.7 96.13
36 175.8 38.86 36.34 95.75
164 173.61 38.37 36.42 95.14
140 170.53 42.52 41.97 95.05
146 1774 39.64 355 94.89
432 174.01 40.73 38.26 94.84
378 176.62 42.69 38.47 94.44
288 172.14 39.31 37.26 94.23
386 175.77 42.89 38.81 94.13
Mean of selected individuals 175.46 39.26 38.83 97.84
Mean of all individuals 161.88 45.19 34.39 79.18
Selection differential 13.58 —-5.92 4.44 18.66
Expected genetic gain for 5% 9.51 —5.48 4.22 19.21

The selection intensity was 5%

estimated standardized selection differentials for the LPSI can be obtained from
Table A in Falconer and Mackay (1996), where, for 5% selection intensity,

k; = 2.063. This means that the estimated LPSI selection response was
R =2.063(9.312) = 19.21, whereas the expected genetic gain per trait, or multi-
b'G

trait selection response, was E' = 2.063

=951 —548 4.22].
9.312 (95 548 }
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2.8.3 LPSI Efficiency Versus Base Index Efficiency

The estimated correlation between the LPSI and the net genetic merit was

~ 4 . . .

Pur = ,\—1 = 0.894, whereas the estimated correlation between the base index and
OH

o~

the net genetic merit was py;, = 0.875, thus 7= fi = 1.0217 and, by Eq. (2.21),

PHIy
D= 100@ — 1) = 2.171. This means that LPSI efficiency was only 2.2% higher
than the base index efficiency for this data set.

Using the same data set described in Sect. 2.8.1 of this chapter, we conducted
seven selection cycles (C1 to C7) for the four traits (7, T, T3, and T,) using the
LPSI and the BLPSI. These results are presented in Table 2.5. To compare the LPSI
efficiency versus BLPSI efficiency, we obtained the true selection response of the
simulated data (second column in Table 2.5) and we estimated the LPSI and BLPSI
selection response for each selection cycle (third column in Table 2.5); in addition,
we estimated the LPSI and BLPSI expected genetic gain per trait for each selection
cycle (columns 4 to 7 in Table 2.5). The first part of Table 2.5 shows the true
selection response and the estimated values of the LPSI selection response and
expected genetic gain per trait. In a similar manner, the second part of Table 2.5
shows the true selection response, the estimated values of the BLPSI selection

Table 2.5 The LPSI and BLPSI responses (true and estimated) and estimated expected genetic
gain per trait for seven simulated selection cycles

Selection response Estimated expected genetic gain per trait
Cycle True Estimated Tl ‘ T2 ‘ T3 T4
LPSI
1 17.84 17.81 7.90 —4.67 3.33 1.92
2 15.66 15.69 7.06 —3.59 3.17 1.86
3 14.44 14.22 6.67 —3.21 2.82 1.52
4 14.29 14.34 7.53 —3.45 2.07 1.29
5 13.86 13.64 7.14 —2.66 2.51 1.33
6 12.47 12.04 6.23 —2.62 1.98 1.21
7 12.44 11.61 5.38 —2.55 2.47 1.22
Average 14.43 14.19 6.85 —3.25 2.62 1.48
BLPSI
1 17.84 22.15 8.38 —4.40 3.04 1.64
2 15.66 20.49 7.74 —3.33 2.82 1.53
3 14.44 19.33 7.29 —3.00 2.44 1.22
4 14.29 19.49 8.05 —3.17 1.89 1.05
5 13.86 18.93 7.64 —2.53 2.19 1.07
6 12.47 17.72 6.81 —2.40 1.72 0.93
7 12.44 17.28 5.89 —2.35 2.11 0.93
Average 14.43 19.34 7.40 —3.02 2.32 1.19

The selection intensity was 10% (k; = 1.755)
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response, and the expected genetic gain per trait. The average value of the true
selection response was equal to 14.43, whereas the average values of the estimated
LPSI and BLPSI selection response were 14.19 and 19.34 respectively. Note that
14.43-14.19 = 0.24, but 19.34-14.43 = 4.91. According to this result, the BLPSI
over-estimated the true selection response of the simulated data by 34.7%. Thus,
based on the Table 2.5 results and those presented in Fig. 2.6, we can conclude that
the LPSI was more efficient than the BLPSI for this data set.

Finally, additional results can be seen in Chap. 10, where the LPSI was simulated
for many selection cycles. Chapter 11 describes RIndSel: a program that uses R and
the selection index theory to make selection.

2.9 The LPSI and Its Relationship with the Quadratic
Phenotypic Selection Index

In the nonlinear selection index theory, the net genetic merit and the index are both
nonlinear. There are many types of nonlinear indices; Goddard (1983) and Weller et
al. (1996) have reviewed the general theory of nonlinear selection indices. In this
chapter, we describe only the simplest of them: the quadratic index developed
mainly by Wilton et al. (1968), Wilton (1968), and Wilton and Van Vleck (1969),
which is related to the LPSI.

2.9.1 The Quadratic Nonlinear Net Genetic Merit

The most common form of writing the quadratic net genetic merit is

Hy=a+wW(p+g) +(pn+g A(n+g). (2.25)

where a is a constant, g is the vector of breeding values, which has normal
distribution with zero mean and covariance matrix G, p is the vector of population
means, and w is a vector of economic weights. In addition, matrix A can be written

wq 0.5W12 s O.SWU
asA = 0.5:w12 Vl?z ' O'Szwzl , where the diagonal ith values w; (i = 1,2,
O.SW” 0'5W2t cee Wy
..., 1) is the relative economic weight of the genetic value of the squared trait i and
w;; (i,j=1,2,...,1)1is the economic weight of the cross products between the genetic

values of traits i and j. The main difference between the linear net genetic merit (Eq.
2.2) and the net quadratic merit (Eq. 2.25) is that the latter depends on p and (p + g)

A(p +g).
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2.9.2 The Quadratic Index

The quadratic phenotypic selection index is

I,=p+b'y+yBy (2.26)
where /3 is a constant, y is the vector of phenotypic values that has multivariate normal
distribution with zero mean and covariance matrix P, b’ = [b; b, --- b,] isa

by 0.5b1, --- 0.5by,
vector of coefficients, and B = O'S:blz b:Z 0'5:b2’ . In matrix B, the
0.5b1;, 0.5by ... b,
diagonal ith values b; (i = 1,2, ..., t ) is the index weight for the square of the

phenotypic i and b;; (i,j = 1,2, .. ., t) is the index weight for the cross products between
the phenotype of the traits i and j.

2.9.3 The Vector and the Matrix of Coefficients
of the Quadratic Index

As we saw in Sect. 2.3.2 of this chapter, to obtain the vector (b) and the matrix (B) of
coefficients of the quadratic index that maximized the selection response, we can
minimize the expectation of the square difference between the quadratic index (/)
and the quadratic net genetic merit (H,): ® = E{[I, — E(I,))] — [H, — E(Hq()] }2,)or we
Cov(Hy,l,

R CONZI D)

where Cov(H,,1,) is the covariance between I, and H,, ,/Var (Iq) is the standard

can maximize the correlation between I, and H,, i.e., p
q q H,l,

deviation of the variance of I,, and Var(Hq) is the standard deviation of the
variance of H,. In this context, it is easier to maximize py ; than to minimize ®.
Vandepitte (1972) minimized @, but in this section we shall maximize py ; .

Suppose that p = 0, since a and § are constants that do not affect PH,1,» W can
write I, and H, as I, = b’y + yBy and H, = w'g + g'Ag. Thus, under the assumption
that y and g have multivariate normal distribution with mean 0 and covariance matrix
P and G, respectively, E(I,) = tr(BP) and E(H,) = tr(AG) are the expectations of /,
and H,, whereas Var(l,) = b'Pb + 2tr[(BP)*] and Var(H,) = w'Gw + 2tr[(AG)’] are
the variances of I, and H,, respectively. The covariance between I, and H, is Cov
(Hy 1) = wGb + 2tr(BGAG) (Vandepitte 1972), where tr(o) denotes the trace
function of matrices.

According to the foregoing results, we can maximize the natural logarithm of

Pu 1, [In (qu ,q)] with respect to vector b and matrix B assuming that w,A,P, and G

are known. Hence, except for two proportional constants that do not affect the



40 2 The Linear Phenotypic Selection Index Theory

maximum value of py ; because this is invariant to the scale change, the results of

the derivatives of In (PHqu) with respect to b and B are

b=P 'Gw and B =P 'GAGP ', (2.27)

respectively. In this case, b = P~ 'Gw is the same as the LPSI vector of coefficients
(see Eq. 2.8 for details); however, when p # 0, b = P_lG(w +2Ap) = P 'Gw+2P!
GAp. In the latter case, b has the additional term 2P~ 'GAp, which is null when p = 0
or A = 0. Hence, when p # 0 the quadratic index vector b shall have two
components: P !Gw, which is the LPSI vector of coefficients, and ZPflGAp,
which is a function of the current population mean p multiplied by matrix A.
Therefore, when p # 0 and A # 0, the quadratic index vector b will change when
the p values change. However, p does not affect matrix B.

2.9.4 The Accuracy and Maximized Selection Response of the
Quadratic Index

According to Eq. (2.27) results, Var(l,) = Cov(H,,1,) = b'Pb + 2tr[(BP)2], which
means that the quadratic index accuracy and the maximized selection response can
be written as:

WGP~ Gw + 21| (P GAG)’

(2.28)

PH I, =

\/W’Gw + 2r {(AG)Z}

and

R, = k\/ WGP 'Gw + 2tr[(P‘1GAG)2} , (2.29)

respectively, where k is the selection intensity of the quadratic index. Equations
(2.27) to (2.29) indicate that the LPSI and the quadratic index are related, and the
only difference between them is the quadratic terms. Wilton et al. (1968) wrote Eq.

(2.29) as: R, = kVD'Pb + K21r [(BP)Z] .
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Chapter 3 )
Constrained Linear Phenotypic Selection e
Indices

Abstract The linear phenotypic selection index (LPSI), the null restricted LPSI
(RLPSI), and the predetermined proportional gains LPSI (PPG-LPSI) are the main
phenotypic selection indices used to predict the net genetic merit and select parents
for the next selection cycle. The LPSI is an unrestricted index, whereas the RLPSI
and the PPG-LPSI allow restrictions equal to zero and predetermined proportional
gain restrictions respectively to be imposed on the expected genetic gain values of
the trait to make some traits change their mean values based on a predetermined level
while the rest of the trait means remain without restrictions. One additional restricted
index is the desired gains LPSI (DG-LPSI), which does not require economic
weights and, in a similar manner to the PPG-LPSI, allows restrictions to be imposed
on the expected genetic gain values of the trait to make some traits change their mean
values based on a predetermined level. The aims of RLPSI and PPG-LPSI are to
maximize the selection response, the expected genetic gains per trait, and provide the
breeder with an objective rule for evaluating and selecting parents for the next
selection cycle based on several traits. This chapter describes the theory and practice
of the RLPSI, PPG-LPSI, and DG-LPSI. We show that the PPG-LPSI is the most
general index and includes the LPSI and the RLPSI as particular cases. Finally, we
describe the DG-LPSI as a modification of the PPG-LPSI. We illustrate the theoret-
ical results of all the indices using real and simulated data.

3.1 The Null Restricted Linear Phenotypic Selection Index

Conditions to construct a valid null restricted linear phenotypic selection index
(RLPSI) are the same as those described in Sect. 2.1 of Chap. 2. The main objective
of the RLPSI is to optimize, under some null restrictions, the selection response, to
predict the net genetic merit H = w'g and select the individuals with the highest net
genetic merit values as parents of the next generation. The RLPSI allows restrictions
equal to zero to be imposed on the expected genetic gains of some traits, whereas
other traits increase (or decrease) their expected genetic gains without imposing any
restrictions. The RLPSI solves the LPSI equations subject to the condition that the
covariance between the index and some linear functions of the genotypes involved
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be zero, thus preventing selection on the RLPSI from causing any genetic change in
some expected genetic gains of the traits (Cunningham et al. 1970).

Vector b = P~'Gw maximizes the LPSI selection response, expected genetic
gains per trait, and the correlation between the LPSI and H = ng. In this section, we
show that the vector of the RLPSI coefficients, br = Kb:

1. Maximizes the RLPSI selection response.

2. Impose null restrictions on the RLPSI expected genetic gains per trait (or multi-
trait selection response).

. Maximizes the correlation with the true net genetic merit.

4. Minimizes the mean prediction error.

w

Vector by = Kb is a linear transformation of the LPSI vector of coefficients (b)
made by the projector matrix K. Matrix K is idempotent (K = K?) and projects
b into a space smaller than the original space of b because the restrictions imposed
on the expected genetic gains per trait are equal to zero. The reduction of the space
into which matrix K projects b is equal to the number of null restrictions imposed by
the breeder on the expected genetic gain per trait, or multi-trait selection response
(Cerén-Rojas et al. 2016).

The covariance between the breeding value vector (g) and the LPSI (I = b/y) is
Cov(l,g) = Gb. Suppose that the breeder is interested in improving only (¢ — r) of
t (r < 1) traits, leaving r of them fixed, that is, r expected genetic gains of the trait are
equal to zero for a specific selection cycle. Thus, we want r covariances between the
linear combinations of g (U/g) and the I = b/y to be zero, i.e., Cov(l, U/g) =U
Gb = 0, where U is a matrix with r 1’s and (t — r) 0’s; 1 indicates that the trait is
restricted and O that the trait is not restricted. That is, in the linear combinations of
g (U/g), 1 is the coefficient of the genotypes that have covariance equal to zero with
the LPSI, whereas the genotypes with coefficient 0 have no restriction on the
expected genetic gains. We can solve this problem by maximizing the correlation
between I and H (pg;) or minimizing the mean squared difference between I and H(E
[(H — I)*]) under the restriction UGb = 0.

3.1.1 The Maximized RLPSI Parameters

In the LPSI context, vector b = P~'Gw minimizes the mean squared difference
between / and H, E[(H — I)*] = w Gw + bPb — 2w'Gb. Let C = UG and Cb = 0;
we need to minimize E[(H — I )2] with respect to b under the restriction Cb = 0.
Thus, assuming that P, G, U and w are known, we need to minimize the function

¥(b,v) = b'Pb + wGw — 2w'Gb + 2v'C'b (3.1)

with respect to vectors b and vV = [vi vo -+ v, _ ], where v is a vector of Lagrange
multipliers. The derivative results from b and v are
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Pb + Cv = Gw
and
Cb =0,
or, in matrix notation,
P C|[b Gw 0 C'|[v 0
SR e Sl a] e

In the latter case of Eq. (3.2), the solution is

vl _ [0 C To
MEER{RPE 33)
o 1. . . C .
where [ C P} is the inverse of matrix [ C P] and by is the RLPSI vector of

coefficients. There is a mathematical algorithm (Searle 1966; Schott 2005) for

/

-1
C P } . It can be shown that

finding matrix [

o ¢

C P o
whence the RLPSI vector of coefficients (bg) that minimizes E[(H — I)’] and
maximizes pg; under the restriction Cb = 0 can be written as

(-c'p'c)” (cp'c)”'cp!

, (3.4
P'c(cpP'c)” —plc(c’P'Cc)'CP 4P (34)

bx = Kb, (3.5)

where K=[I—Q],Q=P 'C(CP'C) 'C and b =P 'Gw; P! is the inverse of
matrix P and I'is an identity matrix # x z. When there are no restrictions on any traits,
U is a null matrix and br=b = P_le, the LPSI vector of coefficients. Thus, the
RLPSI includes the LPSI as a particular case.

According to Eq. (3.5), the RLPSI can be written as

whereas the maximized correlation between the RLPSI and the net genetic merit is

- W/GbR
Pil = S Gw+/bPby
According to conditions for constructing a valid RLPSI, the index Ir = bjy

should have normal distributions. Using 1 and 2 null restrictions, this assumption is
illustrated in Fig. 3.1 for a real maize (Zea mays) F, population with 247 lines and

(3.7)
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Fig. 3.1 (a) and (b) show the distributions of 247 values of the restricted linear phenotypic
selection index (RLPSI), with one and two restrictions respectively, constructed with the pheno-
typic means of four maize (Zea mays) F, population traits: grain yield (ton ha™"), plant height (cm),
ear height (cm), and anthesis day (days), evaluated in one environment

four traits—grain yield (ton ha™'): plant height (cm), ear height (cm), and anthesis
day (days)—evaluated in one environment. Figure 3.1 indicates that, in effect, the
RLPSI values approach normal distribution.

Under the null restrictions made by the breeder, Iz = bjey should have maximum
correlation with H = w/g and should be useful for ranking and selecting among
individuals with different net genetic merit; however, py; is lower than the
correlation between LPSI and H = w/g (pay) in each selection cycle because when
the restriction Cb = 0 is imposed on the RLPSI vector of coefficients, the restricted
traits do not affect the correlation py;, . Using simulated data described in Sect. 2.8.1
of Chap. 2, we estimated py,;, and py; for seven selection cycles and compared the
results in Fig. 3.2. Correlation py;  values were estimated for one, two, and three null
restrictions and in effect, they were lower than the estimated values of py; in all
selection cycles (Fig. 3.2). Additional results can be seen in Chap. 10, where the
RLPSI was simulated for many selection cycles. Chapter 11 describes RIndSel: a
program that uses R (in this case R denotes a platform for data analysis, see Kabakoff
2011 for details) and the selection index theory to select individual candidates for
selection.
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Fig. 3.2 Estimated correlation values between the linear phenotypic selection index (LPSI) and the
net genetic merit (H = w’g); estimated correlation values between the RLPSI and H for one (red),
two (yellow), and three (green) restrictions for four traits and 500 genotypes in one environment
simulated for seven selection cycles

The maximized RLPSI selection response and the restricted expected genetic gain

per trait can be written as
RR = kyy/bpPbg (3.8)

and

Ep = kPR (3.9)

NCATTS
respectively, where k; is the standardized selection differential or selection intensity
associated with the RLPSIL.

The maximized RLPSI selection response has the same form as the maximized
LPSI selection response; thus, under r restrictions, Eq. (3.8) predicts the mean
improvement in H owing to indirect selection on I = by when bz = Kb. The
restriction effects are observed on the RLPSI expected genetic gains per trait
(Eq. 3.9) where each restricted trait has an expected genetic gain equal to zero. In
addition, because the RLPSI selection response and expected genetic gain per trait
values are also affected by the restricted traits, they are lower than the LPSI selection
response and expected genetic gain per trait values.
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3.1.2 Statistical Properties of the RLPSI

Under the assumptions that H = w/g and Ix = byy have a bivariate joint normal
distribution, by = Kb, b = P 'Gw, and P, G, and w are known, the RLPSI has the
following properties:

1. Matrices Q = P”C(C/P”C)ACI and K = [I — Q] are projectors. That is, Q and
K are idempotent (Q = Q% and K = K?) and orthogonal (KQ = QK = 0). It can
be shown that Q = Q7 K = K>, and KQ = QK = 0 noting that
Q=P 'cccp'o)y’'cP'cCP 'Oy =P 'C(CP'0)'C = Q K
=I-QII-QI=1-2Q+Q’=I-Q=K andKQ=QK=0Q - Q’=0.

2. Matrix Q projects vector b into a space generated by the columns of matrix C owing
to the restriction C'b = 0 used when Y(b, v) is maximized with respect to b and v.

3. Matrix K projects b into a space perpendicular to the space generated by the
C matrix columns (Rao 2002).

4. Because of the restriction C'b = 0, matrix K projects b into a space smaller than
the original space of b. The space reduction into which matrix K projects b is
equal to the number of zeros that appears in Eq. (3.9).

5. Vector bz = Kb minimizes the mean square error under the restriction Chb =0.

6. The variance of Iz = by (G%R = bPbg) is equal to the covariance between
Iz = blyand H = w'g (61, = W' Gbg). First note that K = K?, KP = PK, and
bP = wG;thens;, = bjPbr = b'’K'PKb = b'PK’b = b'PKb = W Gbz = oy,

7. The maximized correlation between H and Iy is equal to py;, = %’j In point 6 of
this subsection we showed that oy, = G%R; then

N W/GbR N kabR N Oy
Pl =/ Gw./oePby  V WGwW oy

8. The variance of the predicted error, Var(H — Ig) = (1 - p%—]]R)G%], is minimal.

By point 6 o, = O'%R, whence Var(H — Ig) = 6% — G%R = (1 — p,zﬂR)cr%I.
b, Gbg
bPbg’

9. RLPSI heritability is equal to hj =

Points 1-4 show that in effect, the RLPSI projects the LPSI vector of coefficients
into a space smaller than the original LPSI vector of coefficients. In addition, the
RLPSI statistical properties denoted by points 5-9 are the same as the LPSI
statistical properties. Thus, the RLPSI is a variant of the LPSIL.

3.1.3 The RLPSI Matrix of Restrictions

The main difference between the RLPSI and the LPSI is the restriction UGb = 0
used to obtain the RLPSI vector of coefficients. This restriction is introduced through
matrix U (¢t — 1) x ¢, which is called matrix of null restrictions and is very important
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in an RLPSI context. The form and size of matrix U depends on the number of
restricted traits. For example, suppose that we restrict only one of ¢ traits; then we

can restrict the first of them as U =[1 0 0 --- 0], the second as
U=[0 1 0 --- 0], thethirdas U=[0 0 1 --- 0], etc. When we
restrict two of ¢ traits, matrix U could be constructed as follows. We can restrict
the first and second traits as U’ = { (1) (1) 8 8 , the first and third traits as
, |1 00 --- 0 . .
U = {0 01 - ol the second and third traits as
, o1 0 --- 0 . . .
U = 001 - 0l etc. If we restrict three of ¢ traits, matrix U will have
the following form when the first, second, and third traits are restricted,
(1 0 0 O 0]
U=1[(0 1 0 0 0 [ ; if the first, second, and fourth traits are restricted,
10 01 0 0]
[1 0 0 O 0]
U=[(01 0 0 0 [, if the second, the third and the fourth traits are
|10 0 0 1 0]
01 0 O 0
restricted, U= |0 0 1 O --- 0/, etc. The procedure to construct matrix
0 0 0 1 0

U is valid for any number of restricted traits.

t
There are Z <£) = 2" (Leon-Garcia 2008) possible forms for constructing
r=0

matrix U/, where (;) = #ﬁr)!andt V' =1t — 1) —2)(t—3)--(t— (t— 1)). Note,

however, that when r = 0, U'is a null matrix, and when r = ¢, all traits are restricted
and then the RLPSI values are null. Thus, the breeder should be interested only in 2
— 2 possible ways of constructing matrix U.

3.1.4 Numerical Examples

To illustrate the RLPSI theoretical results, we use the data set described in Sect. 2.8.1
of Chap. 2. We used that data set for seven phenotypic selection cycles (C1 to C7),
each with four traits (T}, T,, T5 and T,), 500 genotypes and four replicates for each
genotype. The economic weights for T, T, T3, and T, were 1, —1, 1, and 1 respec-
tively. The estimated phenotypic (ﬁ) and genetic ((A}) covariance matrices for traits 77,
T,, T5, and T, obtained for the first selection cycle (C1) of the simulated data were
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62.50 —12.74 8.53 2.73
—12.74 1752 —-3.38 —-2.28

P=1g¢s53 338 1231 o016 | ™
273 —228 0.6 7.27
3621 —12.93 835 274

G_ 1293 1304 —340 —224

8.35 —-340 996 0.16 |’
2.74 —-224 016 6.64

respectively. We can restrict 7y with matrix Uj =[1 0 0 0]; 7y and 7, with

1 0 0 O
matrix U, = [(1) (1) 8 8],andT1, T, and T3 with matrixU; = [0 1 0 0
0 0 1 0

Matrix C' =U'G associated with U}, U, and U, can be obtained as
C =UG=1[3621 —1293 835 2.74],

;v | 3621 —1293 835 2.74
G=U6= {—12.93 13.04 340 —224| ¢
R 36.21 —1293 8.35 2.74
C’3 = UgG =|-1293 13.04 -3.04 -2.24
8.35 —-340 9.96 0.16
The estimated LPSI vector of coefficients was

b’ =wGP ' =[055 —1.05 1.09 1.06].
The estimated matrices Q = ﬁ_lC(C'ﬁ_'C)_lC' andK = L — 6] (where I, is
an identity matrix 4 x 4) for 1 null restriction, were

0.72 -026 0.17 0.05
-0.51 0.18 —-0.12 —-0.04

A _ p-1 ' p—1 -l
Q=P C(CPC) Ci=| 13 14 009 o003 |
0.14 -0.05 0.03 0.01
028 026 -0.17 -0.05
= ~ 0.51 0.82 0.12 0.04
Ki=[L-Q]= —0.39 0.14 091 —0.03
—-0.14 0.05 -0.03 0.99
Thus, the estimated RLPSI vector of coefficients was
~ ~ ~/
b;el = (Klb) =[-0.35 —-0.41 0.59 0.89], whence the estimated RLPSI for

1 null restriction can be written as /I\Rl = —0.35T; — 0417, + 0.59T3 + 0.897 4.
The average values of Ty, T,, T3, and T, were 164.46, 39.63, 34.66, and 23.11
(Table 3.1) respectively; then,
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Table 3.1 Ten genotypes, mean values of four traits, and unranked and ranked values of the
restricted linear phenotypic selection index (RLPSI) obtained from 500 simulated genotypes (each
with four repetitions) and four traits (T1, T2, T3, and T4) in one environment for one selection cycle

Means of the trait values
Number of genotypes T1 T2 T3 T4 RLPSI values
1 164.46 39.63 34.66 23.11 —33.24 (unranked)
2 144.39 50.77 34.65 19.56 —33.94 (unranked)
3 157.48 48.04 37.9 19.03 —35.96 (unranked)
4 167.3 47.98 30.49 24.75 —38.73 (unranked)
5 164.11 49.89 32.03 25.32 —36.98 (unranked)
6 166.26 40.44 29.93 20.55 —39.29 (unranked)
7 154.59 5222 30.31 18.86 —41.33 (unranked)
8 160 4291 31.23 20.95 —36.98 (unranked)
9 158.51 46.32 34.52 18.36 —38.2 (unranked)
10 163.63 45.43 35.73 19.57 —37.85 (unranked)
1 164.46 39.63 34.66 23.11 —33.24 (ranked)
2 144.39 50.77 34.65 19.56 —33.94 (ranked)
3 157.48 48.04 37.9 19.03 —35.96 (ranked)
5 164.11 49.89 32.03 25.32 —36.98 (ranked)
8 160 4291 31.23 20.95 —36.98 (ranked)
10 163.63 45.43 35.73 19.57 —37.85 (ranked)
9 158.51 46.32 34.52 18.36 —38.2 (ranked)
4 167.3 47.98 30.49 2475 —38.73 (ranked)
6 166.26 40.44 29.93 20.55 —39.29 (ranked)
7 154.59 5222 30.31 18.86 —41.33 (ranked)

Tg, = —0.35(164.46) — 0.41(39.63) + 0.59(34.66) + 0.89(23.11) = —33.24.

In Table 3.1 we present ten genotypes, the mean values of four traits, and the
unranked and ranked values of the RLPSI from 500 genotypes in one environment
simulated for one selection cycle. The first part of Table 3.1 presents the ten
unranked genotypes, whereas the second part presents the ten genotypes ranked by
the estimated RLPSI values.

Assuming a selection intensity of 10% (k; = 1.755), the estimated selection
response and the estimated expected genetic gain per trait forAl null restriction

/
were Rg, = 1.755,/bj Pbg, = 6.87 and Ej = 1.755 ———=
\/b' &, Pbp,

2.03 2.66], respectively, and the estimated correlation between the RLPSI and the

o /b ¢, Pb
net genetic merit was pp, = % =0.35.
wGw

In a similar manner to that for 1 null restriction, it is possible to obtain the
~ ~ ~ —1 ~ ~
estimated matrices Q = P~'C(C'P~'C) C'andK = [I, — Q], and the estimated

=[0 -22
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RLPSI vector of coefficients for 2 and 3 null restrictions. Thus, for 2 and 3 null
restrictions, the estimated selection responses were Rz, = 1.7554/ B}ezﬁ)\Rz =5.54

and IAQR3 = 1.755\/B}e3§f)1¢3 =4.12  respectively, whereas the estimated

~
!

expected genetic gains per trait were ITZ;?Z = 1.755A1642 =
b’z Pbg,
~, b, G
[0 0 2773 2768] and Ep =1.755———===[0 0 0 4.12].

\/b' &, Py,

Note that the estimated RLPS selection response decreased when the number of
restrictions increased. Also, the number of zeros in the expected genetic gain per trait
increased from 1 to 3 depending on the number of null restrictions. The same is true
for the estimated correlation between the RLPSI and the net genetic merit (Fig. 3.2).

Table 3.2 presents the estimated LPSI selection response and its heritabilities, and
the estimated RLPSI selection response and its heritabilities for 1, 2, and 3 null
restrictions for seven simulated selection cycles using a selection intensity of 10%
(k; = 1.755). Note that the averages of the estimated RLPSI selection response for
the seven selection cycles were 6.76, 5.30, and 3.70 for 1, 2, and 3 null restrictions
respectively, and that 3.70, the average value for 3 null restrictions, is only 54.73%
of the average value for 1 null restriction (6.76). However, the estimated RLPSI
heritabilities for 1, 2, and 3 null restrictions tend to increase. This is because the
simulated true heritabilities of traits T, T,, T3, and T4 were 0.4, 0.6, 0.6, and 0.8
respectively, whereas the averages of the estimated heritabilities of traits 7', 75, T3,
and T, were 0.70, 0.78, and 0.87 for 1, 2, and 3 null restrictions respectively.

Table 3.3 presents the estimated LPSI expected genetic gain per trait and the
estimated RLPSI expected genetic gain per trait for 1, 2, and 3 null restrictions for

Table 3.2 Estimated linear phenotypic selection index (LPSI) selection response and its heritabil-
ity, and estimated restricted LPSI (RLPSI) selection response and its heritability for one, two, and
three null restrictions for seven simulated selection cycles

RLPSI

selection response for Heritability for one,

one, two, and three two, and three

LPSI restrictions restrictions

Cycle selection response | Heritability | 1 2 3 1 2 3
1 17.81 0.84 6.87 5.54 4.13 0.65 |0.77 ]0.89
2 15.69 0.80 8.45 5.94 4.27 0.76 |0.80 |0.90
3 14.22 0.77 7.17 5.79 4.16 0.71 0.80 |0.88
4 14.34 0.76 6.68 5.06 3.72 071 |0.79 |0.89
5 13.64 0.75 6.02 5.16 3.24 0.67 |0.76 |0.86
6 12.04 0.71 6.37 5.17 3.31 0.70 |0.79 |0.86
7 11.61 0.72 5.77 4.44 3.09 068 |0.74 ]0.84
Average | 14.19 0.76 6.76 5.30 3.70 0.70 |0.78 |0.87

The selection intensity was 10% (k; = 1.755)
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Table 3.3 Estimated LPSI expected genetic gain per trait, and estimated RLPSI expected genetic
gain per trait for one, two, and three null restrictions for seven simulated selection cycles

RLPSI expected gain per trait for one

LPSI expected gain per trait restriction
Cycle Tl T2 T3 T4 T1 T2 T3 T4
1 7.90 —4.67 333 1.92 0 —2.18 2.03 2.66
2 7.06 —3.59 3.17 1.86 0 —3.41 2.33 2.71
3 6.67 —3.21 2.82 1.52 0 —2.30 3.12 1.74
4 7.53 —3.45 2.07 1.29 0 —2.88 1.42 2.38
5 7.14 —2.66 2.51 1.33 0 —1.83 2.38 1.81
6 6.23 —2.62 1.98 1.21 0 —2.41 2.09 1.87
7 5.38 —2.55 2.47 1.22 0 —2.24 1.34 2.19
Average |6.85 —3.25 2.62 1.48 0 —2.46 2.10 2.19

RLPSI expected gain per traits for two RLPSI expected gain per traits for three

restrictions restrictions
Cycle T1 T2 T3 T4 T1 T2 T3 T4
1 0 0 2.71 2.71 0 0 0 4.13
2 0 0 2.87 3.07 0 0 0 427
3 0 0 3.11 2.68 0 0 0 4.16
4 0 0 2.35 2.70 0 0 0 3.72
5 0 0 3.12 2.04 0 0 0 3.24
6 0 0 2.84 2.33 0 0 0 3.31
7 0 0 2.07 2.37 0 0 0 3.09
Average |0 0 2.73 2.57 0 0 0 3.70

The selection intensity was 10% (k; = 1.755)

seven simulated selection cycles using a selection intensity of 10% (k; = 1.755). In
effect, due to the restriction C'b = 0, matrix K projects b into a space smaller than
the original space of b and the space reduction into which matrix K projects b is
equal to the number of zeros that appear in the RLPSI expected genetic gain per trait.

It can be shown that in the three restrictions case (Table 3.3) the estimated RLPSI
expected genetic gain pert traits (or multi-trait selection response) is equal to the one
trait selection response (Eqs. 2.4 and 2.5) when only trait T4 is selected. This means
that in effect, when we imposed three restriction over the RLPSI expected genetic gains
pert trait, we reduced one space of four dimensions to one space of only one dimension.

3.2 The Predetermined Proportional Gains Linear
Phenotypic Selection Index

This index is called the predetermined proportional gains phenotypic selection index
(PPG-LPSI) because the breeder pre-sets optimal levels for certain traits before the
selection is carried out. The conditions for constructing a valid PPG-LPSI are the
same as those described for the LPSI in Sect. 2.1 of Chap. 2. Some of the main
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objectives of the PPG-LPSI are to optimize the expected genetic gain per trait,
predict the net genetic merit H = w’g, and select the individuals with the highest
net genetic merit values as parents of the next generation. The PPG-LPSI allows
restrictions different from zero to be imposed on the expected genetic gains of some
traits, whereas other traits increase (or decrease) their expected genetic gains without
imposing any restrictions. The PPG-LPSI solves the LPSI equations subject to the
condition that the covariance between the LPSI and some linear functions of the
genotypes involved be equal to a vector of predetermined constants or genetic gains
defined by the breeder (Cunningham et al. 1970).

Letd =[d, d, --- d,]beavectorr x 1 of the predetermined proportional
gains and assume that y,, is the population mean of the gth trait before selection. One
objective could be to change y,, to u, + d,, where d, is a predetermined change in y,,
(in the RLPSL, d, =0, g = 1, 2, - -+, r, where r is the number of predetermined
proportional gains). We can solve this problem in a similar manner to that used with
the RLPSI. That is, minimizing the mean squared difference between I and H(E

[(H — D?) under the restriction DUGb = 0, where
d 0 --- 0 —d
D = 9 d ? _flz is a Mallard (1972) matrix (r — 1) x r of

o 0 - d —d

predetermined proportional gains, d, (g =1, 2.. ., r) is the g"" element of vector
d’, U is the RLPSI matrix of restrictions of 1’s and 0’s described earlier in this chapter,
G is the covariance matrix of genotypic values, and b is the LPSI vector of
coefficients. Also, it is possible to minimize E[(H — 1)?] under the restriction
U'Gb = 6d (Tallis 1985), where 0 is a proportionality constant, which is a scalar to
be determined a posteriori (Lin 2005), that is, 0 is indeterminate a priori (Itoh and
Yamada 1987). Both approaches are very similar but the equations obtained when
introducing the D U Gb = 0 restriction are simpler than when introducing UGb=6d
restrictions into the process of minimizing E[(H — I)*]. The D'U'Gb = 0 restriction
leads to a set of equations similar to Eq. (3.5) whereas the U'Gb = 6d restriction
leads to a set of equations that are difficult to solve.

3.2.1 The Maximized PPG-LPSI Parameters

Let M = D'C be the Mallard (1972) matrix of predetermined restrictions, where
C = UG. Under the restriction M'b = 0, we can minimize E[(I — H )2], assuming
that P, G, U, D, and w are known; that is, we need to minimize the function

®(b,v) = b'Pb + WGw — 2w'Gb + 2v'M'b (3.10)

with respect to vectors b and v =[v; v, --- v,_], where v is a vector of
Lagrange multipliers. Note that the only difference between Eqs. (3.1) and (3.10) is
matrix D' and that matrix M = D'C has the same function in Eq. (3.10) that matrix
C = UG had in Eq. (3.1). Then, the derivative results of Eq. (3.10) from b and
v should be similar to those of Eq. (3.1), i.e.,
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P M|(b| |Gw
M 0]||v] | 0
whence the vector that minimizes E[(H — I)*] under the restriction Mb = 0 is

by = Kyb, (3.11)

where Ky, = [I, — Qul, Q=P 'MMP'M)"'M =P~'CDIDCP'CD)"'D C,
and I, is an identity matrix of size ¢ X . When D = U, by, = by (the RLPSI vector of
coefficients), and when D = U and U is a null matrix, b, = b (the LPSI vector of
coefficients). Thus, the Mallard (1972) index is more general than the RLPSI and is
an optimal PPG-LPSI. In addition, it includes the LPSI and the RLPSI as particular
cases.

Instead of using restriction Mb = 0 to minimize E[I - H )2], Wwe can use
restriction C'b = 0d and minimize

®7(b,v) = b’Pb + WGw — 2w'Gb + 2v(C’'b — 0d) (3.12)

with respect to b, v, and 0 (Tallis 1985; Lin 2005) assuming that P, G, U, d, and
w are known. The derivative results in matrix notation are

—1

by P C 0, Gw
vi=|C 0. -d 0|, (3.13)
0 0 —d 0 0

1xt

where 0, . ; is a null vector ¢ x 1, 0, . ,is a null matrix r x z, and 0 is a null column

vector (r — 1) x 1; 0 is the standard zero value. The inverse matrix of coefficients
P C 07"

¢ o, —d in Eq. (3.13) is not easy to obtain; for this reason, Tallis

0/1 Xt —d’ 0

(1985) obtained his results in two steps. That is, Tallis (1985) first derived Eq. (3.12)
with respect to b and v, whence he obtained

br = by + 00, (3.14)

where b = Kb (Eq. 3.5), 8 = P'C(CP™'C)"'d,and d' = [d, dy --- d,].
Next, he derived E {(b’Ty — H) 2} only with respect to 0, and his result was

bc(CcP'c) 'a
g MCICPC) d (3.15)
d (C’ P! C) d
where b = P~'Gw is the LPSI vector of coefficients, C = U'G, d is the vector of the
predetermined proportional gains imposed by the breeder and P! is the inverse of
matrix P. When 6 =0, b= Dbg, and if ® = 0 and U is the null matrix, b;=b. That is,

the PPG-LPSI obtained by Tallis (1985) is more general than the RLPSI and the
LPSI. The foregoing results indicate that Eq. (3.14) consists of three parts:
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1. Vector b = Kb, which represents the weights of the RLPSI with the restriction
that the expected genetic gain per trait be equal to zero.

2. Vector 8 = P7'C(CP~'C)"'d, which should represent the weights of the
PPG-LPSI leading to the greatest improvement in the desired direction indepen-
dently of economic weights.

3. 0 represents the regression coefficient of H = w/g on & =P !C(CP'C)"d
(Itoh and Yamada 1987).

When 6 = 1, Eq. (3.14) is equal to

bTo = bR + 8~ (316)

The latter equation was the original result obtained by Tallis (1962). Tallis (1962)
derived Eq. (3.12) with respect to vectors b and v under the restriction UGb =d,
i.e., without 8 or © = 1. Later, James (1968) maximized the correlation between I and
H(pyy) under the Tallis (1962) restriction and once more obtained Eq. (3.16).
Mallard (1972) showed that Eq. (3.16) is not optimal, i.e., it does not minimize E
[(I — H)?] and does not maximize pur, and gave the optimal solution, which we have
presented here in Eq. (3.11). Later, using restriction UGb = 0d, Tallis (1985)
obtained Eq. (3.14), which also is optimal.

Figure 3.3 presents the estimated correlation values between PPG-LPSI and the
net genetic merit (H = w/g) for the optimal PPG-LPSI (Eq. 3.14) and non-optimal
PPG-LPSI (Eq. 3.16) using one (d; = 7), two (d' =[7 —3]), and three (d' =
[7 —3 35)) predetermined restrictions, four traits and 500 simulated genotypes in

1.00

Optimum PPG-LPSI: 3 Non-Optimum PPG-LPsI: [11 213"

0.90 4
0.80 4
0.70 4
0.60 4
0.50 4

0.40 4

Correlation values

0.30 4

0.20 4

0.10 4

0.00 +
1 2 3 4 5 6 7
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Fig. 3.3 Estimated correlation values between the predetermined proportional gain linear pheno-
typic selection index (PPG-LPSI) and the net genetic merit (H = w’g) for the optimal and
non-optimal PPG-LPSl using 1 (d; =7),2d' = [7 —3))and3(@ =[7 -3 5]) predetermined
restrictions, 4 traits and 500 simulated genotypes in 1 environment for 7 selection cycles
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one environment for seven selection cycles (see Sect. 2.8.1 of Chap. 2). Note that in
effect, the non-optimal PPG-LPSI has lower correlations than the optimal PPG-LPSI
for the seven simulated selection cycles.

Let bp = by = by be the PPG-LPSI vector of coefficients. Then, the optimal
PPG-LPSI can be written as

Ip = by, (3.17)

whereas the maximized correlation between the PPG-LPSI and the net genetic merit
is

N Wlep
PHlr = G /b, by

According to the conditions for constructing a valid PPG-LPSI described in Sect.
2.1 of Chap. 2, the index Ip = b}y should have normal distributions. Figure 3.4
presents the distribution of 500 estimated PPG-LPSI values with two (d' = [7 —3])
and three (' = [7 —3 5]) predetermined restrictions respectively, obtained from
one selection cycle, with four traits and 500 genotypes simulated in one environment

(3.18)
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Fig. 3.4 (a) and (b) show the distribution of 500 estimated predetermined proportional gain linear
phenotypic selection index values with two (d'=[7 —3]) and three (d'=[7 -3 5])
predetermined restrictions respectively, obtained from one selection cycle for 500 genotypes and
four traits simulated in one environment
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(see Chap. 2, Sect. 2.8.1 for details). Figure 3.4 indicates that, in effect, the
PPG-LPSI values approach normal distribution.

Under the predetermined restrictions imposed by the breeder, Ip = b}y should
have maximal correlation with H = w/g and it should be useful for ranking and
selecting among individuals with different net genetic merits. However, for more
than two restrictions the proportionality constant (8) could be lower than 1; in that
case, pyy, is lower than the correlation between LPSI and H = wlg (pup- In addition,
when the restriction M'b = 0 or UGb = 6d is imposed on the PPG-LPSI vector of
coefficients, the restricted traits decrease their effect on the correlation between
PPG-LPSI and H = wlg. Using the simulated data set described in Sect. 2.8.1 of
Chap. 2, we estimated pg;, and ppy; for seven selection cycles and compared
the results in Fig. 3.5. Correlation py;, values were estimated using one (d; = 7),
two (d' =[7 -3]), and three (d'=[7 —3 5]) predetermined restrictions.
Figure 3.5 indicates that when the number of predetermined restrictions is equal to
or higher than two, the estimated values of pj;, decrease more than when only one
predetermined restriction is imposed on the PPG-LPSI.

The maximized PPG-LPSI selection response and expected genetic gains per trait
can be written as

Rp = ki/bl Py = kyy /b Pby (3.19)
and
1.00
LPSI PPG-LPSI: 2 Restrictions
LPs! | H:5E
0.80 +
g 0.70 1
3
g 0.60 1
c
O 050
k=
QO 040
S
o
O 0301
0.20
0.10 4
0.00 +

1 2 3 4 5 6 7

Cycle

Fig. 3.5 Estimated correlation values between the LPSI and the net genetic merit (H = w,g); and
estimated correlation values between the PPG-LPSI and H with one (d; = 7), two (d' = [7 —3)),
and three (d' =[7 —3 5]) predetermined restrictions obtained from seven selection cycles for
four traits and 500 simulated genotypes in one environment
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o Gbu__ Gy
/B Pby /0 Pb;

Ep

(3.20)

respectively, where k; is the standardized selection differential or selection intensity
associated with the PPG-LPSI.

The maximized PPG-LPS selection response (Eq. 3.19) has the same form as the
maximized LPSI selection response. Thus, under r predetermined restrictions,
Eq. (3.19) predicts the mean improvement in H due to indirect selection on
Ip = bly. Predetermined restriction effects are observed on the PPG-LPSI expected
genetic gain per trait (Eq. 3.20). The main difference between the RLPSI and the
PPG-LPSI is the vector of predetermined proportional gains.

3.2.2 Statistical Properties of the PPG-LPSI

Assuming that H = w/g and Ip = bpy have a bivariate joint normal distribution,
b = Kyb, b = Pfle, and P, G and w are known, the PPG-LPSI has the same
properties as the RLPSI. Some of the main PPG-LPSI properties are:

1. Matrices Q,, = P*IM(M/P*IM)*IM/ and K,; = [I — Q,,] have the same
function as matrices Q = P"'C(CP~'C)~!C and K = [I — Q] in the RLPSIL.

2. Matrices Q,, and K,, are both projectors, i.e., they are idempotent (K, = szw and
Qy = QZZW), unique and orthogonal, i.e., K;,Qy = QuKy, = 0.

3. Matrix Q,, projects b into a space generated by the columns of matrix M due to
the restriction M b = 0 that is introduced when ®(b, v) is maximized with respect
to b, whereas matrix K,, projects b into a space that is perpendicular to the space
generated by the columns of matrix M (Rao 2002). Thus, the function of matrix
K, is to transform vector b = P~ 'Gw into vector b, = K,,b.

4. The variance of Ip = bpy (oi = b},Pbp) is equal to the covariance between
Ip = blhyand H=wa @, = wGbp). AsKy, = K2, K, P = PKy andbP=wG,
then

o7, = bpPbp = b'’K'yPKyb = b'PK};b = b'PKyb = W Gbp = oy,

5. The maximized correlation between H and Ip = b}y is equal to Pur, = %f[’ In

point 4 of this subsection, we showed that og7, = G%P, then
- W/Gbp N b/PPbp B [
PHle = Gw /0, Pby  V WGW oy

6. The variance of the predicted error, Var(H — Ip) = (1 - P%zl,,)cfi,, is minimal.

By point 4 of this subsection, OHI, = a,zp, then
Var(H — Iz) = 63 — o}, = (1 - p?ﬂP)ai,_

b,Gb
7. The heritability of the PPG-LPSI is equal to h} = 2.
b,Pb,
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Points 1-3 show that in effect, the PPG-LPSI projects the LPSI vector of
coefficients into a different space than the original LPSI vector of coefficients. In
addition, the PPG-LPSI statistical properties denoted by points 4—7 are the same as
the LPSI statistical properties. Thus, the PPG-LPSI is a variant of the LPSI.

3.2.3 There Is Only One Optimal PPG-LGSI

LetS = CIP”C, under the restriction D'd = 0, Itoh and Yamada (1987) showed that
DMD'SD)"'D'=S~! — S~ 'dd'S~'d)"'d'S™!, whence substituting S~' — S~'d(d -
S~!'d)"'d'S™! for D(D'SD) " 'D’ in matrix Qy, Eq. (3.11) can be written as Eq. (3.14),
i.e., byy = br. Therefore, the Mallard (1972) and Tallis (1985) vectors of coefficients
are the same. In addition, Itoh and Yamada (1987) showed that the Harville (1975)
vector of coefficients can written as :TTT (Eq. 2.21d), where oy, is the standard deviation

of the variance of the Tallis (1985) PPG-LPSI. Thus, in reality, there is only one

optimal PPG-LPSL
Itoh and Yamada (1987) also  pointed out that matrix
d 0 -+ 0 —d
D' = O d:r O _:dZ is only one example of several possible
0o 0 - d, —d_

Mallard (1972) D' matrices. They showed that any matrix D that satisfies condition
Dd = 0 is another Mallard (1972) matrix of predetermined proportional gains.
According to Itoh and Yamada (1987), matrices

[d, —d, 0 - 0 0
po |0 b 00
0o 0 0 4
(d, —d, o -+ 0
p- |4 0 a0
o 0 o

are also Mallard (1972) matrices of predetermined proportional gains because they

d 0 - 0 —d
satisfy condition Dd = 0. However, matrix D' = O d:, ' O _;dz is
0 0 - d —d-

“easier” to construct.
Harville (1975) maximized the correlation between I and H (p;y) under the
restriction Cb = 6d and was the first to point out the importance of the
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proportionality constant (8) in the PPG-LPSI. Mallard (1972) showed that the
restriction UGb = d does not maximize the correlation with the net genetic merit
(H= w’g) and Harville (1975) indicated that the restriction UGb=d only changes
the sign of the genetic expected gain (or multi-trait selection response) but does not
maximize the correlation between [ = bly and H = w/g. According to Mallard (1972),
Harville (1975), and Tallis (1985), the PPG-LPSI is optimal only under the
restriction U'Gb = 6d.

Itoh and Yamada (1987) pointed out several problems associated with the Tallis
(1985) PPG-PSI:

1. When the number of restrictions imposed on the PPG-PSI expected genetic gains
increases, 0 tends to zero and then the accuracy of the PPG-PSI decreases.

2. The 0 values could be negative, in which case PPG-PSI results have no meaning
in practice.

3. The PPG-PSI may cause the population means to shift in the opposite direction to
the predetermined desired direction; this may happen because of the opposite
directions between the economic values and the predetermined desired direction.

Itoh and Yamada (1987) thought that one possible solution to those problems
could be to use the linear phenotypic selection index with desired gains.

3.2.4 Numerical Examples

The estimated phenotypic (ﬁ) and genetic (G) covariance matrices described in Sect.
3.1.4 of this chapter for RLPSI are used as the first example. First, Eq. (3.11) is
described to obtain the PPG-LPSI vector of coefficients. Let d, = [7 —3] be the
vector for 2 predetermined restrictions, then, the Mallard (1972) matrix is
D' =[—3 —7], while matrix U is U, = Ll) (1) 8 8} Matrix M’ = D'U'G
for 2 predetermined restrictions will be
M =D'U,G =[—18.12 —5249 —1.25 7.46], whence

0.084 0242  0.006 —0.034

S St -l | 0313 0906 0.022 —0.129

Q=P 'MMP'M) M =| 05 e 0003 _oois| A
—~0.019 —0.055 —0.001 0.008

0916 —0.242 -0.006 0.034
—0.313 0.094 -0.022 0.129 |
—0.037 0.106 0997 0.015]’

0.019  0.055 0.001  0.992

Ky = L _GM} =

I, is an identity matrix of size 4 x 4.
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The estimated LPSI and PPG-LPSI vectors of coefficients were
b’ =[0554 —1.053 1.090 1.058] and b}, = (Kyb) =[0.793 —0.159
1.1941.004] respectively, and the estimated PPG-LPSI was TM =0.793T,—
0.159T, + 1.194T5 + 1.004T 4. The standard deviation of the estimated variance

of TM was o7, = \/ I;’MIA)BM = 9.526, whereas the estimated correlation value

between the PPG-LPSI and the net genetic merit was py;, = Olu 0.85, where oy
OH

= VwGw = 11.202 is the estimated standard deviation of the variance of the net

genetic merit.

Suppose that the selection intensity was 10% (k; = 1.755); then, the estimated
PPG-LPSI expected genetic gain per trait and the estimated selection response are
b),G
/D 3Py
\ l/)\’Mﬁi)\M = (1.755)(9.526) = 16.717 respectively.

Now, let d; =[7 —3 5] be the vector for three predetermined restrictions,
then there are three possible predetermined Mallard matrices, i.e.,

D’I[S 0 _7], D’z{_3 -7 O],and Dg{_3 -7 0}, and

E/, = 1.755 —=[8.013 —3.434 3541 1.730] and Ry = (1.755)

05 3 0 5 3 5 0 -7

1 0 0 O
matrix U for three restrictions is U'3 =10 1 O O0]. Thus, for three
00 1 0

predetermined restrictions matrix M’ = D'U'G shall have three possible forms,

122.60 —-40.85 -27.97 12.58 but
—39.60 55.00 12.88 —10.72 |’ “

—18.12 —-52.49 —-125 746
122.60 —40.85 —-27.97 12.58

M is different from matrices M), and M3, and that the two latter are the same;

ie., M, = D\U,G = [

M, = D,U,G = M, = [ ] Note that matrix

however, both matrices should lead to the same estimated PPG-LPSI vector of
coefficients and to the same estimated PPG-LPSI expected genetic gain per trait
and selection response. It can be shown that for matrices M’1 s M'z, and Mg, matrices

Q, and K, = L — (A)M} are the same and can be written as

(0771 0.080 —0.145 0.026 ]
- 0.123 0951  0.063 —0.145
Qu=1_1131 0382 0258 -o117| *d
0.118 —0.087 —0.031 0.020 |

[0.229 —0.080 0.145 —0.026]

R, _ | 0123 0049 0063 0.145
1131 —0382 0742  0.117

| —0.118  0.087  0.031  0.980 |
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The estimated LPSI  vector of coefficients was equal to
b’ =[0.554 —1.053 1.090 1.058], whereas the estimated PPG-LPSI vector
of coefficients was bj, = (Kyb) = [0.342 —0.035 1.960 0.914]. The esti-
mated PPG-LPSI was I, = 03127, — 0.0357, + 1.96073 + 0.914T 4 and the stan-

dard deviation of the estimated variance of TM was oy, = \/ b’ Mi’\l/)\M = 8.68. The
estimated correlation value between the PPG-LPSI and the net genetic merit was

Pur, = iﬂ = 0.775, where oy =V wGw = 11.202 is the estimated standard
OH

deviation of the variance of the net genetic merit.
Using a selection intensity of 10% (k; = 1.755), the estimated PPG-LPSI
expected genetic gain per trait and the estimated selection response were

!/
EMiG: (6410 —2.747 4.579 1.496] and Ry = (1.755)\/ b/ Pby,
\/b'4Pby
= (1.755)(8.68) = 15.32, respectively.
According to Eq (3 14), the estimated Tallis (l 985) vector of coefficients can be

obtained as bT = bR + 98 where bR —Kb is the estimated RLPSI,
~ ~ 1

o ~ 1.~ bc(cplc) d

8 =P'C(CP'C) ' 0= (€] )71
d (C'P*IC) d

portionality, b = P !Gw is the estimated LPSI vector of coefficients, and d’' =

[di dy --- d,]is the vector of predetermined restrictions.

In Sect. 3.1.4 of this chapter we described how to obtain BR = Kb, and we also

E), =1.755

is the estimated constant of pro-

obtained matrix C =UG for two and three null restrictions as
.o 3621 1293 835 274 S oA
CG=U6=1_103 1304 —340 —224 and G =06 =

36.21 —1293 8.35 2.74 R .
—12.93 13.04 —3.04 —-2.24 |, whence the bz = Kb values for two and
8.35 —-340 9.96 0.16

three null restrictions were lA);e =[-0.164 0.162 0.680 0.856] and

B}e =[-0.032 0.136 0.059 0.890] respectively.
The 0 and & values for two and three predetermlned restnctlons were
b’C3(CgP C3) d3

- DG(CPIC) 4, ~

0, = 2= ) 6213, 0; = = ) D 4509,
d,(C,P1Cy) dp / d,(C;P-1C3) ds

8, = (P'C2(CP'Cy) ') =[0153 —0.052 0083 0.024], and

5, = (P'cy (Cgﬁ—lc3)‘ld3)' =[0.083 —0.038 0420 0.005]. With these
results, the estimated Tallis (1985) vectors of coefficients for two and three
predetermined restrictions were b, = [0.793 —0.159 1.194 1.004] and b/,
=[0.342 —0.035 1.960 0.914] respectively. These latter two vectors of coef-
ficients are the same as the vectors of coefficients obtained using the Mallard (1972)

method for two and three predetermined restrictions. These results corroborate that,
in effect, the Mallard (1972) and Tallis (1985) PPG-LPSIs are the same.
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With the data set described in Sect. 2.8.1 of Chap. 2 we constructed Table 3.4,
which presents the estimated LPSI selection response and heritability, and the
estimated PPG-LPSI selection response and heritability for one, two, and three
predetermined restrictions for seven simulated selection cycles using a selection
intensity of 10% (k; = 1.755). The averages of the estimated PPG-LPSI selection
responses were 14.19, 14.00, and 12.58 for one, two, and three restrictions respec-
tively. Note that 14.19 is also the average value for the estimated LPSI selection
response. This means that the PPG-LPSI and the LPSI selection responses are the
same for only one predetermined restriction. However, the estimated PPG-LPSI
selection responses for two and three restrictions tend to decrease (Table 3.4). The
same is true for the estimated PPG-LPSI heritability. That is, the estimated
PPG-LPSI heritability for one predetermined restriction is equal to the estimated
LPSI heritability. The estimated PPG-LPSI heritability for two predetermined
restrictions decreased, but increased for three predetermined restrictions
(Table 3.4). This is because the simulated true heritabilities of traits T, T,, T3, and
T, were 0.4, 0.6, 0.6, and 0.8 respectively.

Table 3.5 presents the estimated LPSI expected genetic gain per trait without
restrictions, and the estimated PPG-LPSI expected genetic gain per trait for one, two,
and three predetermined restrictions for seven simulated selection cycles using a
selection intensity of 10% (k; = 1.755). Once again, note that for one predetermined
restriction, the estimated PPG-LPSI expected genetic gains were equal to the
estimated LPSI expected genetic gains, and for two predetermined restrictions, the
estimated PPG-LPSI expected genetic gains were similar to the estimated LPSI
expected genetic gains; however, for three predetermined restrictions, the estimated
PPG-LPSI expected genetic gains tended to decrease.

Table 3.4 Estimated LPSI selection response and heritability, and estimated predetermined pro-
portional gain LPSI (PPG-LPSI) selection response and heritability for one, two, and three
predetermined restrictions for seven simulated selection cycles

PPG-LPSI
Selection response for Heritability for one,
one, two, and three two, and three
LPSI restrictions restrictions
Cycle Selection response | Heritability |1 2 3 1 2 3
1 17.81 0.84 17.81 |16.72 |1523 |0.84 |0.77 |0.83
2 15.69 0.80 15.69 | 1559 |1439 |0.80 |0.78 |0.83
3 14.22 0.77 1422 |14.16 |13.18 |0.77 |0.76 |0.80
4 14.34 0.76 1434 1433 |11.56 |0.76 |0.75 |0.78
5 13.64 0.75 13.64 |13.56 |12.16 |0.75 |0.75 |0.79
6 12.04 0.71 12.04 |12.04 |10.77 |0.71 |0.71 |0.76
7 11.61 0.72 11.61 |11.59 |10.75 |0.72 |0.71 |0.76
Average | 14.19 0.76 14.19 | 14.00 |12.58 |0.76 |0.75 |0.79
The selection intensity was 10% (k; = 1.755) and the vectors of predetermined proportional gains
for one, two, and three predetermined restrictions were d’l =17, d, = [7 —-3] and

d; =[7 -3 5] respectively
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Table 3.5 Estimated LPSI expected genetic gain per trait, and estimated PPG-LPSI expected
genetic gain per trait for one, two, and three predetermined restrictions for seven simulated selection
cycles

PPG-LPSI expected gain per trait for one

LPSI expected gain per trait restriction

Cycle T1 T2 T3 T4 T1 T2 T3 T4

1 7.90 —4.67 3.33 1.92 7.90 —4.67 3.33 1.92

2 7.06 -3.59 3.17 1.86 7.06 —3.59 3.17 1.86

3 6.67 —3.21 2.82 1.52 6.67 —3.21 2.82 1.52

4 7.53 —3.45 2.07 1.29 7.53 —3.45 2.07 1.29

5 7.14 —2.66 2.51 1.33 7.14 —2.66 2.51 1.33

6 6.23 —2.62 1.98 1.21 6.23 —2.62 1.98 1.21

7 5.38 —2.55 2.47 1.22 5.38 —2.55 2.47 1.22

Average |6.85 -3.25 2.62 1.48 6.85 —3.25 2.62 1.48
PPG-LPSI expected gain per trait for two | PPG-LPSI expected gain per trait for three
restrictions restrictions

Cycle T1 T2 T3 T4 T1 T2 T3 T4

1 8.01 —3.43 3.54 1.73 6.41 —2.75 4.58 1.50

2 7.39 —3.17 3.22 1.81 5.89 —2.52 4.21 1.77

3 6.86 —2.94 2.71 1.60 5.48 —2.35 391 1.45

4 7.65 —3.28 2.12 1.27 4.76 —2.04 3.40 1.35

5 6.88 —2.95 2.41 1.33 5.08 —2.18 3.63 1.28

6 6.20 —2.66 1.98 1.21 4.39 —1.88 3.14 1.36

7 5.50 —2.36 2.53 1.19 441 —1.89 3.15 1.30

Average |6.93 —2.97 2.65 1.45 5.20 —2.23 3.72 1.43

The selection intensity was 10% (k; = 1.7,55) and the vectors of predetermined proportional gains
for one, two, and three restrictions wered = 7,d' = [7 —3]andd =[7 —3 5]respectively

The first part of Table 3.6 presents the estimated correlation of the net genetic
merit (H = w/g) with the estimated LPSI and RLPSI values for one, two, and three
null restrictions. In addition, this first part presents the estimated LPSI versus RLPSI
efficiency p = 100(Ag — 1) (Eq. 2.21, Chap. 2). The second part of Table 3.6 presents
the estimated correlation of H = w/g with the estimated LPSI and PPG-LPSI values
for one, two, and three predetermined restrictions, and the estimated LPSI versus
RLPSI efficiency p = 100(1p — 1). Finally, the third part of Table 3.6 presents the
estimated variance of the predicted error (VPE) of the LPSI ((1 — pj,)o7,), the
RLPSI ((1 - pi,,R)aﬁ,), and the PPG-LPSI ((1 - p%,,P)ai,) for one, two, and three
restrictions for seven simulated selection cycles.

The estimated VPE of the RLPSI is higher than that of the LPSI and PPG-LPSI
for one, two, and three restrictions for the seven simulated selection cycles; however,

the estimated VPE of PPG-LPSI is only greater than that of the LPSI for two and
three predetermined restrictions.
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Table 3.6 Correlation of the net genetic merit with the LPSI, the RLPSI, and the PPG-LPSI for
one, two, and three null and predetermined restrictions; LPSI versus RLPSI efficiency and LPSI
versus PPG-LPSI efficiency, and estimated variance of the predicted error (VPE) of the LPSI, the
RLPSI, and the PPG-LPSI for one, two, and three restrictions for seven simulated selection cycles

RLPSI correlation for one,

two, and three null restrictions

LPSI versus RLPSI efficiency in
percentage terms for one, two,
and three null restrictions

Cycle LPSI Correlation | 1 2 3 1 2 3
1 0.91 0.35 0.28 0.21 159.16 221.34 331.65
2 0.88 0.48 0.33 0.24 85.69 164.19 267.25
3 0.87 0.44 0.35 0.25 98.42 145.51 241.61
4 0.86 0.40 0.30 0.22 114.77 183.56 285.28
5 0.86 0.38 0.32 0.20 126.47 164.15 321.00
6 0.83 0.44 0.36 0.23 89.09 132.96 264.22
7 0.83 0.41 0.32 0.22 101.23 161.60 275.26
Average |0.86 0.41 0.32 0.23 110.69 167.62 283.75
PPG-LPSI correlation for one, | LPSI vs. PPG-LPSI efficiency in
two, and three predetermined | percentage terms for one, two,
restrictions and three predetermined
restrictions
Cycle LPSI Correlation | 1 2 3 1 2 3
1 0.91 0.91 0.85 0.77 0 17.13 22.74
2 0.88 0.88 0.88 0.81 0 3.44 10.42
3 0.87 0.87 0.86 0.80 0 3.35 10.21
4 0.86 0.86 0.86 0.70 0 2.32 22.96
5 0.86 0.86 0.85 0.76 0 0.30 10.09
6 0.83 0.83 0.83 0.74 0 0.83 11.13
7 0.83 0.83 0.83 0.77 0 2.35 7.74
Average |0.86 0.86 0.85 0.77 0 4.25 13.61
RLPSI VPE for one, two, and | PPG-LPSI VPE for one, two,
three null restrictions and three predetermined
restrictions
Cycle LPSI VPE 1 2 3 1 2 3
1 22.53 110.16 | 11552 |119.96 |22.53 50.44 57.14
2 22.66 79.40 91.13 96.65 |22.66 27.88 37.03
3 21.95 70.92 76.70 81.97 |21.95 26.14 33.55
4 22.84 75.16 81.33 85.14 |22.84 25.84 45.46
5 22.13 70.75 73.86 79.11 |22.13 22.49 32.69
6 21.18 55.07 59.56 64.68 |21.18 21.95 30.13
7 19.47 52.44 56.85 60.14 | 19.47 21.45 25.53
Average |21.82 73.41 79.28 83.95 |21.82 28.03 37.36

Thus, according to the results obtained for the LPSI, the RLPSI, and the
PPG-LPSI, the best predictor of the net genetic merit was the LPSI followed by
the PPG-LPSI and the RLPSIL
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3.3 The Desired Gains Linear Phenotypic Selection Index

The most important aspect of the desired gains linear phenotypic selection index
(DG-LPSI) is that it does not require economic weights. Note that the LPSI expected
genetic gain per traitE = kl(i—}’is maximized when b = P~'Gw and is proportional to
k; and 6;. Now let Gb be written as

Gb =d, (3.21)
where d is the vector of desired gains. From Eq. (3.21), E can be written as
d
E=k—.

o]

(3.22)

Equation (3.22) indicates that E is inversely proportional to o;; then we can
minimize o; with respect to b subject to the constraints Gb = d and then E is
maximized (Brascamp 1984; Itoh and Yamada 1986). That is, we need to take the
derivative of the function

®pc(b,v) = 0.5(b'Pb) + v (Gb — d) (3.23)

with respect to b and v, where v is a vector of Lagrange multipliers, assuming that P,
G, and d are known. The restriction Gb = d in Eq. (3.23) is similar to the Tallis
(1985) restriction UGb =06d, but with U =Tand® =1, 0r0 = (’% (Tallis 1962).

It can be shown that the vector that minimizes ¢; and maximizes E can be written
as

by = P'G(GP'G)'d. (3.24)

thus, in effect, as Gb =d, bp =P 'G(GP'G) 'd =P 'G(GP 'G) 'Gb=b.In
Eq. (3.24) we are assuming that the traits in the index are the same as those in the net
genetic merit. However, this may not be the case, that is, the number of traits could
be different from the number of genotypes. In the latter case, Eq. (3.21) should be
written as G b = d and Eq. (3.24) as bpg = P"'G(GP~'G)~'d (Itoh and Yamada
1986).

According to Itoh and Yamada (1986, 1988), Eq. (3.24) does not maximize the
correlation between [ and H (p;) nor the selection response because the covariance
between I and H is not defined, given that Cov(H,I) = w Gb requires the economic
weight vector w and DG-LPSI does not use economic weights. However, note that
because Gb = d, the variance of the DG-LPSI is Var(Ipg) = d (GP~'G)"'d = b Pb.

In practice, d is chosen arbitrarily and then we are in the same situation as when
economic weights need to be selected. Pesek and Baker (1969), Yamada et al.
(1975), and Itoh and Yamada (1986, 1988) argued that this should not be a problem
for experienced breeders because they must know the relative merits and demerits of
their strains. However, this may be true only for some breeders and the selection of
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d is always subjectlve Another problem w1th this index is that, as it is not associated
with H = w g, it is not a predictor of H = w g.

3.4 Applicability of the LPSI, RLPSI, and PPG-LPSI

In the context of animal breeding, Hazel (1943) pointed out that because any index is
constructed from data on a herd in one locality, it may not be widely applicable. The
reasons for this are:

1. Relative economic values for a trait may vary according to the particular locality
or nature of the enterprise.

2. The genetic constitution of herds may differ, especially when they are under
distinctly nonrandom mating systems such as intense inbreeding.

3. Different managerial practices may cause standard deviations for the traits to vary
in different herds. The standard deviations for subjective traits such as market
conformation measured by judging or by scores may vary because different
judges vary the range over which they spread their scores.

4. Few herds are large enough to provide enough data to make the sampling errors of
the genetic constants small. These limitations are applicable to the LPSI, RLPSI,
and PPG-LPSI, and to all selection indices described in this book.

References

Brascamp EW (1984) Selection indices with constraints. Anim Breed Abstr 52(9):645-654

Cerén-Rojas JJ, Crossa J, Sahagiin-Castellanos J (2016) Statistical sampling properties of the
coefficients of three phenotypic selection indices. Crop Sci 56:51-58

Cunningham EP, Moen RA, Gjedrem T (1970) Restriction of selection indexes. Biometrics 26
(1):67-74

Harville DA (1975) Index selection with proportionality constraints. Biometrics 31(1):223-225

Hazel LN (1943) The genetic basis for constructing selection indexes. Genetics 8:476-490

Itoh Y, Yamada Y (1986) Re-examination of selection index for desired gains. Genet Sel Evol 18
(4):499-504

Itoh Y, Yamada Y (1987) Comparisons of selection indices achieving predetermined proportional
gains. Genet Sel Evol 19(1):69-82

Itoh Y, Yamada Y (1988) Selection indices for desired relative genetic gains with inequality
constraints. Theor Appl Genet 75:731-735

James JW (1968) Index selection with restriction. Biometrics 24:1015-1018

Kabakoff RI (2011) R in action: data analysis and graphics with R. Manning Publications Co.,
Shelter Island, NY

Leon-Garcia A (2008) Probability, statistics, and random processes for electrical engineering, 3rd
edn. Pearson Education, Upper Saddle River, NJ

Lin CY (2005) A simultaneous procedure for deriving selection indexes with multiple restrictions. J
Anim Sci 83:531-536

Mallard J (1972) The theory and computation of selection indices with constraints: a critical
synthesis. Biometrics 28:713-735



References 69

Pesek J, Baker RJ (1969) Desired improvement in relation to selection indices. Can J Plant Sci
49:803-804

Rao CR (2002) Linear statistical inference and its applications, 2nd edn. Wiley, New York

Schott JR (2005) Matrix analysis for statistics, 2nd edn. Wiley, Hoboken, NJ

Searle SR (1966) Matrix algebra for the biological sciences. Wiley, New York

Tallis GM (1962) A selection index for optimum genotype. Biometrics 18:120-122

Tallis GM (1985) Constrained selection. Jpn J Genet 60(2):151-155

Yamada Y, Yokouchi K, Nishida A (1975) Selection index when genetic gains of individual traits
are of primary concern. Jpn J Genet 50(1):33—41

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.



Chapter 4 )
Linear Marker and Genome-Wide Selection <o
Indices

Abstract There are two main linear marker selection indices employed in marker-
assisted selection (MAS) to predict the net genetic merit and to select individual
candidates as parents for the next generation: the linear marker selection index
(LMSI) and the genome-wide LMSI (GW-LMSI). Both indices maximize the
selection response, the expected genetic gain per trait, and the correlation with the
net genetic merit; however, applying the LMSI in plant or animal breeding requires
genotyping the candidates for selection; performing a linear regression of phenotypic
values on the coded values of the markers such that the selected markers are
statistically linked to quantitative trait loci that explain most of the variability in
the regression model; constructing the marker score, and combining the marker score
with phenotypic information to predict and rank the net genetic merit of the
candidates for selection. On the other hand, the GW-LMSI is a single-stage proce-
dure that treats information at each individual marker as a separate trait. Thus, all
marker information can be entered together with phenotypic information into the
GW-LMSI, which is then used to predict the net genetic merit and select candidates.
We describe the LMSI and GW-LMSI theory and show that both indices are direct
applications of the linear phenotypic selection index theory to MAS. Using real and
simulated data we validated the theory of both indices.

4.1 The Linear Marker Selection Index

4.1.1 Basic Conditions for Constructing the LMSI

In Chap. 2, Sect. 2.1, we indicated ten basic conditions for constructing a valid linear
phenotypic selection index (LPSI). These ten conditions are also necessary for the
linear marker selection index (LMSI); however, in addition to those conditions, the
LMSI also requires the following conditions:

1. The markers and the quantitative trait loci (QTL) should be in linkage disequi-
librium in the population under selection.
2. The QTL effects should be combined additively both within and between loci.

© The Author(s) 2018 71
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3. The QTL should be in coupling mode, that is, one of the initial lines should have
all the alleles that have a positive effect on the chromosome, and the other lines
should have all the negative effects.

4. The traits of interest should be affected by a few QTL with large effects (and
possibly a number of very small QTL effects) rather than many small QTL
effects.

. The heritability of the traits should be low.

6. Markers correlated with the traits of interest should be identified.

W

Under these conditions, the LMSI should be more efficient than the LPSI, at least
in the first selection cycles (Whittaker 2003; Moreau et al. 2007).

4.1.2 The LMSI Parameters

Lety;, = g;+ ¢;be the ith trait (i = 1, 2, . . ., £, t = number of traits), where e,~N(0, o-f’,)
is the residual with expectation equal to zero and variance value ai_, and N stands for

normal distribution. Assuming that the QTL effects combine additively both within
and between loci, the ith unobservable genetic value g; can be written as

No

&= adg (4.1)
k=1

where a is the effect of the kth QTL, ¢, is the number of favorable alleles at the kth
QTL (2, 1 or 0), and Ny, is the number of QTL affecting the ith trait of interest.

If the QTL effect values are not observable, the g; values in Eq. (4.1) are also not
observable; however, we can use a linear combination of the markers linked to the
QTL (s;) that affect the ith trait to predict the g; value as

M
Si = Zajxj, (42)
Jj=1

where s; is a predictor of g;, 6; is the regression coefficient of the linear regression
model, x; is the coded value of the jth markers (e.g., 1, 0, and —1 for marker
genotypes AA, Aa and aa respectively), and M is the number of selected markers
linked to the QTL that affect the ith trait. Equation (4.2) is called the marker score
(Lande and Thompson 1990; Whittaker 2003) and this is the main reason why the
LMST is not equal to the LPSI described in Chap. 2. The number of selected markers
is only a subset of potential markers linked to QTL in the population under selection;
thus, the s; values should be lower than or equal to the g; values. One way of
estimating the s; values is to perform a linear regression of phenotypic values on
the coded values of the markers, select markers that are statistically linked to
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quantitative trait loci that explain most of the variability in the regression model, and
then obtain the estimated value of s; (5;) as the sum of the products of the QTL effects
linked to markers and multiplied by the marker coded values associated with the ith
trait. Some authors (e.g., Moreau et al. 2007) call’s; the molecular score; in this book,
we call s; the marker score and s; the estimated marker score.

The objective of the LMSI is to predict the net genetic merit of each individual
and select the individuals with the highest net genetic merit for further breeding. In
the LMSI context, the net genetic merit can be written as

H=wg+wys=[w w] [f] =a'z, (4.3)
whereg' = [g ... g,]isthe vector of breeding values; W' = [wy -+ w;]is
the vector of economic weights associated with g; w) =[0; --- 0,] is a null
vector associated with the vector of marker scores 8’ = [s; -+ s,]; s; is the ith

marker score; a' = [w wh]andz=[g ]

The information provided by the marker score can be used in breeding programs
to increase the accuracy of predicting the net genetic merit of the individuals under
selection. The LMSI combines the phenotypic and marker scores to predict H in each
selection cycle and can be written as

= by s = (8, 8[3] -pe (@4

where ﬁ; and B, are vectors of phenotypic and marker score weights respectively;

Yy =[» --- ¥] is the vector of trait phenotypic values and s was defined in
Eq. (43);p' =B, Bi]andt =[y ]
The LMSI selection response can be written as

a’ZM[i
VaZya\/BTup’

where k; is the standardized selection differential of the LMSI, 6y = v/a'Zya and
/B’ TP are the standard deviations of the variances of H and I;, whereas p1,n and

RM = k]GHpIMH = k]O'H (45)

a'ZyP are the correlation and the covariance between H and I, respectively; Ty,

B yl [P S o g/ _|C S ;
Var{s}{s S} and ZMVWL}{S g| are block matrices of

covariance where P = Var(y), S = Var(s), and C = Var(g) are the covariance
matrices of phenotypic values (y), the marker score (s), and the genetic value (g)
respectively in the population. Vectors a and § were defined in Eqgs. (4.3) and (4.4)
respectively.

The LMSI expected genetic gain per trait can be written as
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Ey =k (4.6)

VBTup

All the parameters in Eq. (4.6) were previously defined.

4.1.3 The Maximized LMSI Parameters

Suppose that P, S and C are known matrices; then, matrices T,; and Z,, are known
and, according to the LPSI theory (Chap. 2 for details), the LMSI vector of
coefficients (By,) that maximizes p;, ., Ry, and Ey can be written as

B =T, Zya, (4.7)

whence the maximized selection response and the maximized correlation (or LMSI
accuracy) between H and Iy, can be written as

Ry = kiv/ B TuP, (4.8a)
and

PryH = Gﬂ’ (4.8b)
OH
respectively, where o7, = /B Ty is the standard deviation of the variance of I,
and oy = v/a'Zya is the deviation of the variance of H. Equations (4.8a) and (4.8b)
show that the LMSI is a direct application of the LPSI theory in the marker-assisted
selection (MAS) context.
Let Q = T,,'Zy; then, matrix Q can be written as

[ ®-s)7'c-8) o 49
Q [I—(P—S)I(C—S) 1) (4.9)
whence f = Qa, and as w'2 =1[0; --- 0], we can write the two vectors of i

=[P B]as
B,=(P-85) ' (C-S)w and P, =[1-(P-5) ' (C-S)|w. (4100
Another way of writing the marker score vector weights is
B, =w—P,, (4.10b)

where B, = (P — S)~'(C — S)w. By Eq. (4.10b), the optimal LMSI can be written as
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Iy =Ws+B(y—s). (4.11)

Equation (4.11) indicates that, in practice, to estimate the optimal LMSI, we only
need to estimate the vector of coefficients B,. By Eq. (4.10a), Eq. (4.8a) can be
written as

Ry = k,\/w’C(P —S)(C—S)w+wS [1 —P-S)(C-8)|w. @12

Thus, by Eqgs. (4.10a) and (4.12), when S is a null matrix, vector B, is equal to
B, = P 'Cw = b and Ry = k;vVb'Pb = R;, which are the LPSI vector of coeffi-
cients and its selection response respectively.

Assume that when the number of markers and genotypes tend to infinity, S tends
to C; then, at the limit, we can suppose that S = C, and by this latter result, Ry, is
equal to

kivVw'Cw. (4.13)

That is, Eq. (4.13) is the maximum value of the LMSI selection response when
the numbers of markers and genotypes tend to infinity. Thus, the possible LMSI
selection response values of Eq. (4.12) should be between k;v/b'Pb and k;v/'w'Cw,
ie.,

k[ \% b/Pb < RM < k[\/ W’CW, (414)
VWCw __ on :
or between 1 and TPy — o that is,
1 <Ry <28 (4.15)
o
Note that‘;—‘,‘ = p#m, where py; is the maximized correlation between the net genetic

merit (H) and the LPSI (/) described in Chap. 2. Equation (4.15) indicates that LMSI
efficiency tends to infinity when the pg; value tends to zero and is an additional way
of denoting the paradox of LMSI efficiency described by Knapp (1998), which
implies that LMSI efficiency tends to infinity when the py; value tends to zero.

4.1.4 The LMSI for One Trait

For the one-trait case, matrices Ty, Z,,, and Q can be written as
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2 _ 2
(Fg oy 0
2 2 2 2 2 2
O [ O O o, — O
Tu=|3% 3. Zu=|"% "53| and Q=3 5 |, (4.16)
62 62 2 2 62—02
s s K s Y g
1
2 _ 52
(Fy Oy

where 63,

respectively. By Egs. (4.10a) and (4.10b), whena’ = [1 0], the elements of vector
p = Qa are

O'g, and 6? are the phenotypic, genetic, and marker score variances

o2 — o2
po="5—— ad p=1-4, (4.17a)
y s

whence the optimal LMSI can be written as
Iy =s+p,(—s); (4.17b)

whereas by Eq. (4.12), the maximized LMSI selection response can be written as

2( 2 _ 2 2( 2 _ 2
og(ag os)—l—as(ay ag)

Ry =k; p—— (4.18)
y s
2 2
2 % 0, g2 _ % 2 .
Wheno; =0, ,By === h”, Iy = h”y, and Ry = k— = ko,h” = R, the selection
oy oy

response for the one-trait case without markers.

4.1.5 Efficiency of LMSI Versus LPSI Efficiency for One
Trait

Suppose that the intensity of selection is the same in both indices; then, to compare

LMSI versus LPSI efficiency for predicting the net genetic merit, we can use the

ratio Ay = p/’)";:’ = % (Bulmer 1980; Moreau et al. 1998), where R, is the maximized

LPSI selection response. In percentage terms, the LMSI versus LPSI efficiency can
be written as

Py = 100(Ay — 1). (4.19)

When p,, = 0, the efficiency of both indices is the same; when p,, > 0, the
efficiency of the LMSI is higher than that of the LPSI, and when p,, < 0, LPSI
efficiency is higher than LMSI efficiency for predicting the net genetic merit.

In the case of one trait, Lande and Thompson (1990) showed that LMSI efficiency
(not in percentage terms) with respect to phenotypic efficiency can be written as
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Ry q (1—51)2
ﬁv - = _+ s
MR 11— gh?

(4.20)

2
where R, was defined in Eq. (4.18), R = ka)h2 h? is the trait heritability, and g = 6—32

Og
is the proportion of additive genetic variance explained by the markers. According to

Eq. (4.20), the advantage of the LMSI over phenotypic selection increases as the
2

population size increases and heritability decreases, because in such cases, g = 6—;

8
tends to 1 and Eq. (4.20) approaches % Therefore, the LMSI is most efficient for traits
with low heritability and when the marker score explains a large proportion of the
genetic variance. Thus, note that when A” tends to zero, %tends to infinity; this means
that in the asymptotic context, LMSI efficiency with respect to phenotypic efficiency
for one trait (Eq. 4.20) tends to infinity and this is the LMSI paradox pointed out by
Knapp (1998). There are other problems associated with the LMSI: it increases the
selection response only in the short term and can result in lower cumulative
responses in the longer term than phenotypic selection, as the LMSI fixes the QTL
at a faster rate than phenotypic selection. In addition, it requires the weights
(Eq. 4.17a) to be updated, because in each generation the frequency of the QTL
changes (Dekkers and Settar 2004).

4.1.6 Statistical LMSI Properties

Assume that H and I, have bivariate joint normal distribution, = T]\}l Zya, and
that P, C, S, and w are known; then, the statistical LMSI properties are the same as
the LPSI properties described in Chap. 2. That is,

1. G%M = oyy,,: the variance of I, (an) and the covariance between H and Iy, (opy,,)
are the same.

2. The maximized correlation between H and Iy, (or Iy, accuracy) is py,,, = (Z—g

3. The variance of the predicted error, Var(H — Iy) = (1 - PHJ )GH, is minimal.

4. The total variance of H explained by I, is a, pH,Mai,

_ ﬁMZMBM
By Tuby

Properties 1 to 4 are the same as LPSI properties 1 to 4, but, because the LMSI
jointly incorporates the phenotypic and marker information to predict the net genetic
merit, LMSI accuracy should be higher than LPSI accuracy. The same is true of the
LMST selection response and expected genetic gain per trait when compared with the
LPSI selection response and expected genetic gain per trait.

5. The heritability of Iy is hy
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4.2 The Genome-Wide Linear Selection Index

The genome-wide linear marker selection index (GW-LMSI) is a single-stage
procedure that treats information at each individual marker as a separate trait.
Thus, all marker information can be entered together with phenotypic information
into the GW-LMSI, which is then used to predict the net genetic merit. In a similar
manner to the LMSI, the GW-LMSI exploits the linkage disequilibrium between
markers and the QTL produced when inbred lines are crossed.

4.2.1 The GW-LMSI Parameters

In a similar manner to the LPSI, the main objective of the GW-LMSI is to predict the
net genetic merit values of each individual and select the best individuals for further
breeding. In the GW-LMSI context, the net genetic merit can be written as

H=wg+wm=[w W/2]|:Ii:| = aj,zy, (4.21)
where g =[g, ... g] (j=1,2,...,t= number of traits) is the vector of
breeding values, w' = [w; --- w;]is the vector of economic weights associated
with the breeding values, and W'2 =[0; --- 0] is anull vector associated with
the coded values of the markers m’ = [m; --- m,], where m; (j = 1,2, ...,
m = number of markers) is the jth marker in the training population;

ay, =[w w)andzy =[g m'].

The GW-LMSI (/) combines the phenotypic value and the molecular informa-
tion linked to the individual traits to predict H values in each selection cycle. It can
be written as

o =By + B =6, 8] [ 5] =By 422)

where [i; and B,, are vectors of phenotypic and marker weights respectively;

y=[y - ] is the vector of phenotypic values and m was defined in
Eq. (4.21); By = [B, B,,] and t}, =[y m'].
The GW-LSI selection response can be written as

ay, Wy
Vay Yay /B, @By,

where k; is the standardized selection differential of the GW-LMSI, 6%1 = ay, Way
and Var(ly) = §,,®Py, are the variance of H and Iy, whereas p; =

ay, By,
Val,Yay /Bl PPy

RW = kIGHpIWH = k[GH (4233)

and ajy, WPy, are the correlation and the covariance between
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. ] o y| [P W
H and Iy  respectively; D = Var{m] = [W M and
Y = Var gl _|C w are block covariance matrices where P = Var(y)
“m| T W M - ey

M = Var(m), C = Var(g), and W = Cov(y,m) = Cov(g,m) are the covariance
matrices of phenotypic values (y), the molecular marker (m) coded values, and the
genetic (g) values, whereas W is the covariance matrix between y and m, and
between g and m. The size of matrices P and C is 7 x ¢, but the sizes of matrices
M and W are m x m and m X t respectively.

From a theoretical point of view, Crossa and Cerén-Rojas (2011) showed that
matrix M can be written as

1 (1—2511) (1_251N)
Mo | (120 1 (1=28) | (4.23b)
(1—=28v1) (1—26v) - 1

where (1 — 26, is the covariance (or correlation) and 6;; the recombination fre-
quency between the ith and jth marker (i, j = 1, 2, ..., m = number of markers).
According to Crossa and Cerén-Rojas (2011), matrix W can be written as

(I=2r)an (1 =2r)ay -+ (1 =2ry)aw,
wo [(=2rar (1=2r)an - (1= 2r)a, (4.23¢)
(1=2rm)an (1 =2rv)an -+ (1= 2rw)aw,

where (1 — 2rp)ay (i=1,2,...,m k=1,2,..., Ny = number of QTL, g =1,
2, ..., t) is the covariance between the gth trait and the ith marker; r; is the
recombination frequency between the ith marker and the kth QTL; and a is the
effect of the kth QTL over the gth trait.

The GW-LMSI expected genetic gain per trait can be written as

Y
= e

All parameters in Eq. (4.24) were previously defined.

Matrix @ could be singular, i.e., its inverse ((I)_l) could not exist because matrix
W is singular. Suppose that matrices ® and ¥ are known; then, according to the
LPSI theory, the GW-LMSI vector of coefficients (By) that maximizes p;, ; can be
written as

(4.24)
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Py = @ Yay, (4.25a)

where matrix @~ denotes a generalized inverse of ®. By Eq. (4.25a), the maximized
GW-LMSI selection response is

Ry = k;\/ By ®Pyy- (4.25b)

Equations (4.25a) and (4.25b) show that the GW-LMSI is a direct application of
the LPSI to MAS. By Eq. (4.25a), the maximized correlation between H and Iy is

Oly
PiyH = ’ (4.25¢)
OH

where o7, = /Py ®Py is the standard deviation of the variance of Iy and oy
= \/aj,Way is the standard deviation of the variance of H.

4.2.2 Relationship Between the GW-LMSI and the LPSI

Matrix @~ can be written as

_ L~ L WM~
@ = -MWL™ M +M WL WM |’ (4.26)
where L™ is a generalized inverse of matrix L = P — W/M_W, and M~ is a
generalized inverse of matrix M. In matrix @, the inverse of matrix W is not

required and the standard inverse of matrix M (M~ ") may exist. In the latter case, the

standard inverse of matrix L (L.~ ") exists and can be written as L' = (P — wWM™!
W) '=P '+ P'W[M — WP 'W ] 'WP! (Searle et al. 2006).
By Eq. (4.26) and because w, =[0; --- Oy], the vector components of

By = [B, B, ], or py = ® WPay, can be written as
B, =[L C—L WM Ww (427)
and
B, =[(M" +M WL WM )W - M WL C]w, (4.28)

where w is the vector of economic weights. Suppose that there is no marker
information; then, matrices M and W are null and Eq. (4.27) is equal to §, = P!
Cw = b (the LPSI vector of -coefficients), whereas f,, = 0 and

Ry = kiy/ ﬁ'W(I)[SW = k;Vb'Pb = R;, the LPSI selection response. Now suppose

that the markers explain all the genetic variability; in this case, f, = 0 and §,, = X
X)"XY, the matrix of linear regression coefficients in the multivariate context,
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where (X X) ™ is a generalized inverse matrix of X'X and Y is a matrix of phenotypic
observations.

4.2.3 Statistical Properties of GW-LMSI

Assume that H and Iy, have bivariate joint normal distribution, fy, = ® Way,, and P,
C,M, W, and w are known; then, the statistical GW-LMSI properties are the same as
the LMSI properties. That is,

1. a%w = opy,, 1.€., the variance of Iy, (G%W) and the covariance between H and Iy (
onr, ) are the same.

. . . . (o)
2. The maximized correlation between H and Iy, or Iy accuracy, is pg;, = 0’—3

3. The variance of the predicted error, Var(H — Iy) = (1 - Pé]w)cﬁ,, is minimal.

4. The total variance of H explained by Iy is afw = p%,,w 6%,.

According to Lange and Whittaker (2001), GW-LMSI efficiency should be
greater than LMSI efficiency. However, this would be true only if matrices P, C,
M, and W are known and trait heritability is very low.

4.3 Estimating the LMSI Parameters

When covariance matrices P, C, and S, and the vector of economic weights (w) are
known, there is no error in the estimation of the LMSI parameters (selection
response, expected genetic gain, etc.); the same is true for the GW-LMSI when, in
addition to P, C, and w, the covariance matrices M and W are known. In such cases,
the relative efficiency of the LMSI (GW-LMSI) depends only on the heritability of
the traits and on the portion of phenotypic variation associated with markers. Using
simulated data, Lange and Whittaker (2001) found that GW-LMSI efficiency was
higher than LMSI efficiency when trait heritability was 0.2 and matrices P, C, M,
and W were known. When P, C, S, M, and W are unknown, it is necessary to
estimate them; then, the LMSI and GW-LMSI vector of coefficients and the effects
associated with markers are estimated with some error. This error leads to lower
LMSI and GW-LMSI efficiency than expected under the assumption that the
parameters are known; however, in the latter case, Lange and Whittaker (2001)
also found that GW-LMSI efficiency was greater than that of the LMSI when trait
heritability was 0.05. Moreover, in the LMSI there is additional bias in the estima-
tion of the parameters because only markers with significant effects are included in
the index (Moreau et al. 1998).

In Chap. 2, we described the restricted maximum likelihood (REML) method for
estimating matrices P and C. Some authors (Lande and Thompson 1990; Charcosset



82 4 Linear Marker and Genome-Wide Selection Indices

and Gallais 1996; Hospital et al. 1997; Moreau et al. 1998, 2007) have described
methods for estimating marker scores, the variance of the marker scores, the LMSI
vector of coefficients, etc., in the context of one trait; however, up to now there have
been no reports on the estimation of matrix S in the multi-trait case. Lange and
Whittaker (2001) only indicated that matrix S can be estimated as S = Var(s),
where § is a vector of estimated marker scores associated with several individual
traits.
The main problems associated with the estimated LMSI parameters are:

1. The estimated values of the covariance matrix S (§) tend to overestimate the
genetic covariance matrix (C).
2. The estimated variances of the marker scores can be negative.

When the first point is true, the estimated LMSI selection response and efficiency

could be negative because the estimated matrix Ty = {g 2} is not positive

~ o~

definite (all eigenvalues positive) and the estimated matrix Zy = [g g] is not
positive semi-definite (no negative eigenvalues). In addition, the results can lead to
all weights being placed on the molecular score and the weights on the phenotype
values can be negative (Moreau et al. 2007). When the second point is true, the
variance of the marker scores is not useful. The two problems indicated above could
be caused by using the same data set to select markers and to estimate marker effects,
and there is no simple way of solving them. Lande and Thompson (1990) proposed
that the markers used to obtain S be selected a priori as those with the most highly
significant partial regression coefficients from among all the markers in the linkage
group analyzed in the previous generation. Zhang and Smith (1992, 1993) proposed
using two independent sets of markers: one to estimate marker effects and the other
to select markers. Additional solutions to these problems were described by Moreau
et al. (2007).

In this subsection, we describe methods (in the univariate and multivariate
context) for estimating molecular marker effects, marker scores, and their variance
and covariance, and for estimating the LMSI and GW-LMSI vector of coefficients,
selection response, expected genetic gain, and accuracy. This subsection is only for
illustration; we use the same data set to select markers, and to estimate marker effects
and the variance of marker scores.

4.3.1 Estimating the Marker Score

According to Egs. (4.11) and (4.17b), when the vector of economic weights is equal
toa’=[1 0], the LMSI for the ith traity; i = 1,2, ---, ;¢ = number of traits)
value can be written as Iy, = s; + ﬂ,vi (y;j—si)(I = 1,2,---,n; n = number of
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i W0 (-4,
individuals or genotypes), where f,; = — > = >~ is the LMSI coeffi-
) 0y, — %% 1 - qihi
o o I . o . .
cient, hy = —- is the heritability of the ith trait, and ¢, = —- is the proportion of
o o
Yi 8i

genetic variance explained by the QTL or markers associated with the ith trait; s;

M
= Ze,-xj G =1, 2,---, M; M = number of selected markers) is the ith
=1

individual trait marker score; and 05, 6:,
phenotypic, genetic, and marker score values respectively.

The simplest way of estimating the ith marker score s; is to perform a multiple
linear regression of phenotypic values (y;) on the coded values of the markers (x;) and
then select the markers statistically linked to the ith QTL that explain most of the
variability in the regression model and use them to construct s; = > 6x;.

jem
We can fit the model y;* = Z 0;x; + e, wherey =y, — y;and y; are the average
jem
values of the ith trait, by maximum likelihood or least squares. When estimating 6,
the main problem is to choose the set of markers M based on criteria for declaring
markers as significant and then use the estimated values of 0; (9;) to estimate the ith
marker score s; as’s; = Z 0;x ;. The values of 5; may increase or decrease according
jeM
to the number of markers (x;) included in the model, and ; affects LMSI selection
response and efficiency by means of the estimated variance of s; (8%_) (Figs. 4.1 and

4.2).

According to the least squares method of estimation, 6 = (X'X)”'X'y* is an
estimator of the vector of regression coefficients 0 = [ 6, --- 6,], where
m (m < n) is the number of markers, X is a matrix n x m of coded marker values
(e.g., 1, 0 and —1 for marker genotypes AA, Aa, and aa respectively) and y™ is a
vector n X 1 of phenotypic values centered based on its average values. Only a
subset M(M < m) of the m markers is statistically linked to the QTL and then only a

and afi are the ith variances of the

M
subset M of the estimated vector 0 values is selected to estimate s; as s; = Z Oix;.
j=1

To illustrate how to obtain §; = ngx j» we use a real maize (Zea mays) F,
jeM

population with 247 genotypes (each one with two repetitions), 195 molecular
markers, and four traits — grain yield (GY, ton hafl); plant height (PHT, cm), ear
height (EHT, cm), and anthesis day (AD, days) — evaluated in one environment. In
an F, population, the marker homozygous loci for the allele from the first parental
line can be coded by 1, whereas the marker homozygous loci for the allele from the
second parental line can be coded by —1, and the marker heterozygous loci by 0.
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Fig. 4.1 Efficiency of the linear molecular selection index with respect to phenotypic selection for
the one-trait case for different values of the variance of the marker score when the phenotypic and
genetic variances are fixed

LMSI response values
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Variace of the marker score values

Fig. 4.2 Selection response values of the linear molecular selection index for the one-trait case for
different values of the variance of the marker score when the phenotypic and genetic variances are
fixed

For this example, we used trait PHT. Only seven markers were statistically linked
to the fHT. The estimated vector of regression coefficients for these seven markers
was 0 =[546 —454 098 739 -7.75 —191 —3.53]. Table 4.1 pre-
sents the first 20 genotypes, the coded values of the seven selected markers, and
the first 20 estimated Spyr values of the 247 genotypes in the maize (Zea mays) F,
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Table 4.1 Number of selected genotypes, coded values of seven selected markers, and estimated
marker score values obtained from a maize (Zea mays) F, population with 247 genotypes and
195 molecular markers

Coded values of the selected markers
Number of genotypes | M1 M2 |M3 M4 | M5 M6 | M7 Marker score
1 0 0 0 0 0 1 —1 1.62
2 —1 —1 0 0 0 —1 0 0.99
3 0 0 0 0 0 0 1 —3.53
4 1 1 0 0 0 -1 -1 6.37
5 1 1 0 -1 -1 -1 -1 6.72
6 0 0 1 0 0 0 0 0.98
7 1 1 0 1 1 0 0 0.57
8 0 0 0 0 0 0 0 0
9 0 0 1 0 0 1 0 —0.93
10 0 0 1 1 0 0 1 4.84
11 0 0 0 0 0 0 0 0
12 —1 —1 0 0 0 0 0 —0.92
13 0 0 0 0 0 0 0 0
14 1 1 0 —1 —1 0 —1 4.81
15 0 0 1 —1 —1 0 0 1.34
16 0 0 0 0 0 0 0 0
17 —1 —1 0 0 0 0 1 —4.46
18 —1 —1 0 0 0 0 1 —4.46
19 —1 —1 1 0 0 —1 1 —1.56
20 0 0 0 0 0 0 -1 3.53

population. According to ®' and the coded values of the seven markers, the first
estimated Spyr value was obtained as Spyr; = —1.91(1) + —3.53(—1) = 1.62;
the second estimated Spyr value was obtained as Spyrp = 5.46(—1)+
—4.54(—1) = 1.91(—1) = 0.99, etc. The 20th estimated Spyr value was obtained
as Spura0 = —3.53(—1) = 3.53. This estimation procedure is valid for any number
of genotypes and markers.

Figure 4.3 shows the distribution of the 247 estimated marker scores associated
with traits PHT and EHT of the maize F, population. Note that the estimated marker
score values approach normal distribution.

4.3.2 Estimating the Variance of the Marker Score

There are many methods of estimating the variance of the marker score associated
with the ith trait (o-fi); the first one was proposed by Lande and Thompson (1990).

According to these authors, afi can be estimated as
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Fig. 4.3 Distribution of the marker scores associated with traits (a) plant height and (b) ear height
of a maize (Zea mays) F, population. Note that the distribution of frequencies of the marker score
values approaches normal distribution

~2 DN D ME?
62 = M0, — —=, (4.29)
S n

where 6,- is the estimated vector of regression coefficients of the selected markers,
2 . . .

M,; = —X;X[ is the covariance matrix M x M of the selected markers that are
n

R "TI-H
statistically linked to the ith trait marker loci; 05_ _Yu-uy ( )i’
1 n — ‘4 —

estimated variance of the residuals, H =1 — X; (X;X,-)le;, I is an identity matrix
n x n, M is the number of selected markers statistically linked to the QTL, and X is a
matrix n X M with the coded values of the selected markers. According to Lande and
Thompson (1990), Eq. (4.29) is an unbiased estimator of ofi and its variance can be
written as

is the unbiased

2 2
v (Az ) 40?,-05,- N 2M (cri) N 2M? <O’£i)
)T T n? n*(n—M)’

(4.30)

which tends to zero when n, the number of genotypes or individuals, is very high.
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From Eq. (4.29), it is possible to obtain an estimator of the covariance between
the ith and jth marker scores when the number of selected markers statistically linked
to the QTL is the same in the ith and jth traits. Thus, by Eq. (4.29), the covariance
between the ith and jth marker scores can be estimated as

o~

Oey

5~ = 0/M;9,

S',j

(4.31)

where 6; and ﬁj are the estimated vectors of regression coefficients of the selected
markers associated with the ith and jth trait loci respectively; M;; = =XX is the
n

covariance matrix M x M of the markers statistically linked to the ith and jth trait
marker loci; X; and X are n X M matrices with the coded values of the selected
yi(I-Hy)y; .
n—M-—1 s
the estimated covariance of the residuals between the ith (y;) and jth (y)) trait values,
H;=1-X; (X;X_,-)_IX’j, I is an identity matrix n x n, and M is the number of
selected markers statistically linked to the QTL.
According to the PHT values described in Sect. 4.3.1 of this chapter, M = 7,
n=247,5, = 180.80 and 6% = 48.23 (Eq. 4.29). Note that a%PHT <5, where

SPHT
~2

markers associated with the ith and jth trait loci respectively; 6., =

O,y = 83.01s an estimate of the genetic variance of PHT. The estimated portion of
~ 48.23
the genetic variance attributable to 6= = 48.23 was Gpyy = T 0.5811; that
S PHT

is, the seven markers explain 58.11% of the genetic variance associated with PHT.

Charcosset and Gallais (1996) considered two possible methods of estimating

o> based on the coefficient of multiple determination or squared multiple

S
correlation R* (note that in this case R” is not the square of the selection response).
The coefficient R gives the portion of the total variation in the phenotypic values

that is “explained” by, or attributable to, the markers and can be written as

0X'y —ny® &
R=—3"" % (4.32a)
yy-ny* 6

IS AR S

~

where 0X/ y — ny* is the overall regression sum of squares adjusted for the intercept
and y'y — nj” is the total sum of squares adjusted for the mean. The coefficient R? is
equal to 1 if the fitted equation y; = 0y + ) 6,x; + ¢; passes through all the data
jeM
points, so that all residuals are null; then, the markers explain all the phenotypic
variance. At the other extreme, R? is zero if y; = @0 and the estimated regression
coefficients are null, i.e., 51 = 52 =...= EM = 0. In the latter case, markers do not
affect the phenotypic observations and the variance of the marker score values is

zero. Thus, the R? values are between 0 and 1, i.e., 0 < R? < 1.0. Equation (4.32a) is
M

useful for estimating 6?,- as 85' Z R? = 83, where Rﬁ is the estimated value of the jth
=1
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marker and 85 is the phenotypic variance of the ith trait; however, this is a biased
estimator of of’, (Hospital et al. 1997).

Charcosset and Gallais (1996) and Hospital et al. (1997) proposed an unbiased
estimator of ai_ based on all the selected markers using the adjusted coefficient of
multiple determination, i.e.,

n—1

- 4.32b
n—M—1 ’ (4.326)

BN

Rij=1- (1-r) =

whence we can obtain a unbiased estimator of > as Ez.Ri 4= 62 by jointly using all
Si y i Si

the markers that affect the phenotypic values. The problem with Eq. (4.32b) is that
the Rf, dj values could be negative; in that case, the estimated value of ‘75, would also be
negative. One additional problem with Eq. (4.32b) is that the R} 4 Values can produce
Ef values that are higher than those of the estimated variance of the breeding values
5.

Using Egs. (4.32a) and (4.32b), we can estimate afi, but from them it is not clear
how we can estimate the covariance between two different estimated marker score
values.

Consider the case of the PHT values described in Sect. 4.3.1 of this chapter,
where M = 7, n = 247, and the estimated variance of PHT was EPHT =191.81. The
estimated values of R? for each of the seven markers were 0.0038, 0.0005, 0.006,
0.0013, 0.0036, 0.0114, and 0.0298, whence, by multiplying each estimated R*
value by 65, = 191.81 and summing the results, we found that the estimated

value of afPHT was 8% = 9.78. In this case, the estimated portion of the genetic
SPHT
. . ~ ~ 9.78
variance attributable to o% =9.78 was gpyr = T 0.1178; thus, when we
PHT

estimated afPHT according to Eq. (4.32a), the seven markers explained only 11.78% of
the genetic variance associated with PHT.
The estimated value of Rf‘ 4 for the seven markers jointly was 0.06, whence EEPHT

= (191.81)(0.06) = 11.50 is an estimate of a?PHT. In the latter case, the estimated

portion of the genetic variance attributable to 62 =11.50 was

SPHT
=R 11.5 . . .
9pur = =3 = 0.1385; that is, according to Eq. (4.32b), the seven markers explain

13.85% of the genetic variance associated with PHT.
One additional way of estimating the variance of the marker score 532,/_ was
proposed by Lange and Whittaker (2001) as

LS 6-a) (4.33)

n—1 i=1
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M
wheres; = > 0x; and My, is the mean of 5; values. The covariance between the ith
J=1

and jth marker scores can be estimated as the cross products of the marker score
values divided by n — 1. Note that in this case, the number of markers associated
with the ith and jth traits may be different.

For the PHT values described in Sect. 4.3.1 of this chapter, where n = 247, the
estimated value of afi was EfPHT = 15.75 and the estimated portion of the genetic

~ ~ 15.75 .
variance attributable to 62PHT = 15.75 was qpyr = 3 0.1897. That is, the

seven markers jointly explain 18.97% of the genetic variance associated with PHT
according to Eq. (4.33).

4.3.3 Estimating LMSI Selection Response and Efficiency

With the estimated phenotypic variances (E%HT = 191.81), the estimated genetic

variance (E§ = 83.0) and the estimated marker score variances: 62 =48.23
PHT S PHT

(Eq. 4.29), 2 =9.78 (Eq. 4.32a), 62 = 11.50 (Eq. 4.32b), and 67 = 15.75
SPHT PHT PHT

(Eq. 4.33), we can estimate the LMSI coefficient, selection response, and efficiency.

Using the estimated value 62 = 48.23 obtained with Eq. (4.29), it is possible to

SPHT
=2 =2

— c -0 83.0 — 48.23
timate the LMSI weight = _Sear eAT _ =0.242,
estmate the weight as fpur =25 52 191.81 —48.23
whereas for 62 = 9.78, Efpm = 11.50, and /ofpm, = 15.75, the estimated values

SPHT

of fprr were 0.402, 0.40, and 0.382 respectively. The latter results indicate that the
estimated values of fpgr associated with the phenotypic values tend to decrease when
the estimated values of the variance of the marker score increase. This means that at the
limit, when all the genetic variance is explained by the markers, the estimated values of
Ppyr are zero and the estimated LMSI is equal to TM =5. Thus, for trait PHT, when
the estimated values of fpyr are not zero, the estimated LMSI can be written as
Tryy = Spur + Brur (PHT; — Spur). The Ty, values are used to predict, rank, and
select the net genetic merit value of each individual candidate for selection.

Based on the result E%PHT = 48.23 obtained with Eq. (4.29) and using a selection

intensity of 10% (k= 1.755), the estimated LMSI selection response can be
obtained as
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52(62 — 52 52(52 — 52
by D
y s

| 755\/83(83 — 48.23) 4 48.23(191.81 — 83)
' 191.81 — 48.23

= 1.755v/56.65 = 13.21.
In a similar manner, using the result Efmﬂ = 15.75, the estimated selection

~ 83(83 — 15.75) + 15.75(191.81 — 83)
Ry =1. = 1.755V41.44
response was Ry 755\/ 19181 = 1575 755

= 11.30. With 32 =9.78 and 5., = 11.50, the estimated values of the LMSI

selection responses were 10.99 and 11.10 respectively. The latter results indicate that

the estimated values of the LMSI selection responses tend to increase when the
estimated values of the variance of the marker score increase.
We can estimate LMSI versus phenotypic efficiency for one trait as

2
~ 1 — ~ A?
A==+ % where h” is the estimated trait heritability and § = % is
h? 1 —gh? Og
the estimated portion of additive genetic variance explained by the markers. When

48.23 ~
62 =48.23, Gpyr = —53 — 0-3811, and h* = 0.433, the estimated LMSI effi-

SPHT

ciency was Ay =V1.58=125. For &2 =1575 &% =9.78, and

§ SPHT
~2

05, = 11.50, the estimated portions of the additive genetic variance explained by
~ 15.75 . 9.78

the markers were  Gpyr = - - 0.1897,  qpyr = T 0.1178, and

~ 11.5

dpur = g3~ = 0.1385 respectively, whence the estimated LMSI efficiencies were

1.1, 1.04, and 1.05 respectively. The latter results indicate that the estimated values
of LMSI efficiency tend to increase when the estimated values of the variance of the
marker score increase (Fig. 4.1).

Figure 4.1 presents the change in LMSI efficiency with respect to phenotypic
selection for different values of the variance of the marker score when the pheno-
typic (191.81) and genetic (83) variances are fixed. In a similar manner, Fig. 4.2
presents the change in the LMSI selection response for different values of the
variance of the marker score when the phenotypic (191.81) and genetic (83) vari-
ances are fixed. In effect, LMSI efficiency and the selection response depend on the
genetic variance explained by the markers.
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4.3.4 Estimating the Variance of the Marker Score
in the Multi-Trait Case

Equation (4.33) can be used in the multi-trait context when the numbers of markers
associated with the ith and jth traits are different. Also, it is possible to adapt
Egs. (4.32a) and (4.32b) to the multi-trait case. However, in the latter case, in
addition to the markers linked to the QTL that affect one specific trait, we need to
find markers that affect more than one trait, which may be very difficult. For this
reason, in the multi-trait context, Eqs. (4.32a) and (4.32b) could be used to estimate
the variance of the marker score (S) without preselecting the markers that affect the
phenotypic traits, only when the number of genotypes is higher than the number of
markers.

Letyy, y2, ..., ¥, be r independent multivariate normal vectors of observations,
Y Y2 0 i

each with n observations, such that Y = |2 2 7" 2 | s a matrix n x ¢ of
Ynt. Y2 0 Ve

observations for  traits; then, the multivariate linear regression model can be written
as Y = XB + U, where X is a matrix n x m (m= number of markers and m < n) of
known coded marker values, B is a matrix m X n of regression coefficients, and U is
a matrix n x t of unobserved random disturbance whose rows for given X are
uncorrelated, each with mean 0 and common covariance matrix E (Mardia et al.
1982; Rencher 2002). According to the least squares method of estimation, B =

~ i ~
Nl . A_(Y_BX) (Y_BX)
(X’X) XY is an estimator of B and E = 1
n—m—

the residual covariance matrix E assuming that n > m (Johnson and Wichern 2007).

/\/\

e'e
Note that 1 — R*> = ——, where € is a vector of estimated residual values of the
Yy

is an estimator of

model y; =60y + > 0;x; + ¢; and R” is the coefficient of multiple determination
jeM

(Eq 4.32a). In addition, as in the multi-trait context the est1mated matrix of residuals

is U=Y — BX, 1 — R? can be written as D = (Y'Y)~ '0'U (Mardia et al. 1982),

whence R? in the multivariate context can written as

R2=1I-D=P'S, (4.34a)
whereas Ri dj (Eq. 4.32b) can be written as

2 n—1 p-1g
where I is an identity matrix ¢ X f, P! is the inverse of the estimated covariance
matrix of phenotypic values (P), and S is the estimated covariance matrix of marker
score values. From Eq. (4.34b),
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PR}, =S (4.34¢)

is an unbiased estimator of matrix §, whereas PR? = S (Eq. 4.34a) is a biased
estimator of matrix S. The main problem of Eq. (4.34c) is that the diagonal elements
of S could be negative.

From the maize F, population including 247 genotypes (each one with two
repetitions) and 195 molecular markers described in Sect. 4.3.1, we used two
traits—PHT (cm) and EHT (cm)—to illustrate the multivariate method of estimating
the LMSI parameters. The estimated phenotypic and genetic covariance matrices
were P = “gég; igggg] and C = [2322 g;gg}, whereas the estimated

15.750 0.983
0.983 28.083]'
When we used Eq. (4.34a) and Eq. (4.34c), we obtained estimated values of the
variance and covariance of the marker scores that were higher than the genetic values
(data not presented). Equations (4.29) and (4.31) are used later to compare LMSI
efficiency versus GW-LMSI efficiency using the simulated data described in Chap. 2,
Sect. 2.8.1.

With matrices IA’, 6, and §, and the vector of economic weights a’ = [w’ 0’ 1,

covariance matrix of marker scores, using Eq. (4.33), was S = [

where W =[—1 —1] and 0/ =[0 0], we obtained the estimated matrices T
= [SE g] and Z = {g 2} , whence the estimated LMSI vector of coefficients

was p' = a'ZyT;' =[—0.59 —0.18 —0.41 —0.82]. Using a selection inten-
sity of 10% (k; = 1.755), the estimated LMSI selection response and the expected

Vo
~ ~ o ~ ~ Z
genetic gains per trait were Ry = k;\/ ' Typ = 20.41 and E), = kIﬁA;M =
B'T P
—10. —10. —2. —4. respectively, whereas the estimate

10.09 —10.31 —2.53 —4.39 pectively, wh. he estimated LMSI
~ Oly
accuracy was py; o

The estimated LPSI parameters (see Chap. 2 for details) using the phenotypic
information from the maize F, population for traits PHT and EHT are as follows.

The estimated LPSI vector of coefficients was b’ = w/CP~! = [-0.53 —0.36],
and, with a selection intensity of 10% (k; = 1.755), the estimated LPSI selection

A~

response and the expected genetic gains per trait were R =k b'Pb = 18.97 and

-  bC
E =k —=[-10.52 —8.45] respectively, whereas the estimated LPSI accu-
o1

~ c
racy was py; = L —o0.67.
OH
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We can determine LMSI efficiency versus LPSI efficiency to predict the net

genetic merit using the ratio of estimated accuracy values py; = 0.72 and py;

~ 0.72
= 0.67 of the LMSI and LPSI respectively, i.e., Ay = 067 = 1.075, whence,

according to Eq. (4.19), the estimated LMSI efficiency versus the LPSI efficiency,
in percentage terms, was p,, = 100(1.075 — 1) = 7.5. That is, for these data, the
estimated LMSI efficiency was only 7.5% greater than LPSI efficiency at predicting
the net genetic merit.

4.4 Estimating the GW-LMSI Parameters
in the Asymptotic Context

Lange and Whittaker (2001) proposed the GW-LMSI. However, these authors did
not provide detailed procedures for estimating matrices P, C, W, and M. They
indicated that matrix C can be estimated using the estimated matrix of covariance of
marker scores (§) and that matrices P, W, and M can be estimated directly by their
empirical variances and covariances, but this assertion does not indicate a clear
method for estimating those covariance matrices. In Chap. 2, we described the
REML method of estimating C and P. Crossa and Cerén-Rojas (2011) described
matrices W and M in a doubled haploid population. In this study, we describe and
estimate matrices W and M for an F, population in the asymptotic context according
to the Wright and Mowers (1994) approach, which is based on regressing phenotype
values on marker coded values. We used this latter approach to estimate W and M,
because it is a clearer estimation method than that of Lange and Whittaker (2001);
however, the Wright and Mowers (1994) approach is an asymptotic method and
should be regarded with precaution.

Matrix M is the covariance matrix of the molecular marker code values. All
marker information used to construct matrix M is presented in Table 4.2. Based on
this information, we found that the expectations (E(X;) and E(X,)) and the variances
(V(X,) and V(X>)) of the marker coded values X; and X, are E(X;) = E(X,) = 0 and
V(X1) = V(X,) = 1, whereas the covariance (Cov(X;, X,)) and correlation (Corr(X;,
X5)), between X and X, were

COV(X],XQ) = CO}"V(XhXQ) =1-26. (435)

Thus, as the variances of X; and X, are equal to 1, the correlation between X; and

X, is Corr(Xy,X3) — ColXiXo) 26, i.e., the covariance and correlation
V(X1)V(X2)

between X; and X, are the same. Equation (4.35) results indicate that if we perform
the same operation with many markers, we will obtain similar results; they also
indicate that this is the way to construct matrix M.
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Tablet4(.12f Marker genztypes, Marker genotype Expected frequency X, X,
coded values (X, and Xy of  ABY/AIB: (-5 L
the marker genotypes in an F, _A1B1/Ai1B, 2(6—07)/4 1 0
population AB,/AB, 5/4 1 —1
AB,/A:B, 2(6—8%)/4 0 1
AB,/A,B, 2(1-28 + 28%)/4 0 0
ABy/A,B, 2(6—8%)/4 0 -1
A>B/A-B, 5%/4 -1 1
A>B1/A;B, 2(6—8%)/4 -1 0
A>B,/AB, (1-8)%/4 —1 -1

Let X be a matrix of coded markers of size n x m, where n > m and
m= number of markers; then according to Wright and Mowers (1994), because
all marker information is contained in matrix X/X, when the number of observations
(n) tends to infinity, the product xx;/n tends to the covariance between markers
ith and jth, whence matrix n~'X'X should tend to the covariance matrix between
the markers that conform matrix X with the ijth element equal to (0.5 — &;). Thus,
matrix 2n~'X'X should tend to a covariance matrix where the ijth entry is equal to
(I — 25;). Based on the latter result, an estimator of matrix M in the asymptotic
context is

M =2n"'X'X. (4.36)

Equation (4.36) is an asymptotic result and should be taken with caution. To date,
there has been no clear method for estimating M in the non-asymptotic context; for
this reason, Eq. (4.36) is used to estimate the GW-LMSI parameters.

Assume that a QTL is between the two markers in Table 4.2; then, § can be
written as 0 = ry + r, — 2r r,, where r| and r, denote the recombination frequency
between marker 1 and marker 2 respectively, with the QTL between them. When the
number of genotypes or individuals tends to infinity, the covariance between the
phenotypic trait values (y) and the marker 1 coded values (X;) in an F, population
can be written as

1
Cov(Xy,y) = Eal(l —2r), (4.37)

where a;(1 — 2ry) is the portion of the additive effect (a;) of the QTL linked to
marker 1 (Edwards et al. 1987), and r, is the recombination frequency between the
QTL and marker 1. We can assume that for many markers, the covariance of the
phenotypic values is similar to Eq. (4.37), whence matrix W can be obtained.

Let y be a vector n x 1 of recorded phenotypic values, where n denotes the
number of observation or records, and X is a matrix of coded markers of size n x m.
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When 7 tends to infinity, 2n_1X/y tends to be a vector with elements equal to
ai(1 — 2r;), where «; is the additive effect of the ith QTL linked to the ith marker,
and r; is the recombination frequency between the ith QTL and the ith marker. Now

i Yz o Y
let Y= 2 Y 2 Y 21| be a matrix of observations for ¢ traits; then, an
Ynt Y2 "0 YV

estimator of matrix W in the asymptotic context is

W =2n"'XY. (4.38)

Once again, Eq. (4.38) is an asymptotic result and should be accepted with
caution. But to date, there has been no clear method for estimating W in the
non-asymptotic context; for this reason, Eq. (4.38) is used to estimate the
GW-LMSI parameters.

4.5 Comparing LMSI Versus LPSI and GW-LMSI
Efficiency

To compare LMSI efficiency versus GW-LMSI efficiency for predicting the net
genetic merit, we use the simulated data set described in Chap. 2, Sect. 2.8.1.

o~

Figure 4.4 presents the estimated accuracy values of the LPSI (p,; = ,6\—1), the

& & !

LMSI (57, = #), and the GW-LMSI (5,,;, = 3%) for five simulated selection
cycles. In addition, Table 4.3 presents the estimated LPSI, LMSI, and GW-LMSI
selection responses, the estimated LPSI, LMSI, and GW-LMSI variances of the
predicted error ((1 —p%; )57, (1 — ﬁZiM)E?{ and (1 — ﬁiﬁw)gé respectively), the
ratios of the estimated LMSI accuracy to the estimated LPSI accuracy and the
estimated LMSI accuracy to the estimated GW-LMSI accuracy, expressed as per-
centages (Eq. 4.19), for five simulated selection cycles.

According to Fig. 4.4, for this data set the estimated LMSI accuracy (py;, ) was
higher than the estimated LPST and GW-LMSI accuracy (p;; andp;;  respectively),
for the five simulated selection cycles, that is, py; > pyi > Py, In a similar
manner, Table 4.3 results indicate that the estimated LMSI selection response (RM)
was higher than the estimated LPSI and GW-LMSI selection responses (R; and Ry
respectively): RM > R, > RW.

Note that the estimated LPSI, LMSI, and GW-LMSI variances of the predicted
error, and the estimated LMSI efficiency versus LPSI efficiency and versus
GW-LMSI efficiency (expressed in percentages) are related to the estimated
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3
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Fig. 4.4 Estimated correlation values of the linear phenotypic selection index (LPSI), the linear
molecular selection index (LMSI), and the genome-wide LMSI (GW-LMSI) with the net genetic
merit for four traits, 2500 markers and 500 genotypes (each with four repetitions) in one environ-
ment for five simulated selection cycles

Table 4.3 Estimated linear phenotypic, molecular, and genome-wide selection indices (LPSI,
LMSI, and GW-LMSI respectively), selection responses and variance of the predicted error, and
estimated ratio of LMSI accuracy to LPSI and GW-LMSI accuracy expressed in percentages for
4 traits, 2500 markers and 500 genotypes (each with four repetitions) in one environment for five
simulated selection cycles

Variance of the predicted

Efficiency of LMSI

Selection response error versus
Cycle LPSI |LMSI |GW-LMSI |LPSI |LMSI |GW-LMSI |LPSI GW-LMSI
1 17.84 |19.60 |16.24 22.53 10.07 39.84 10.07 | 20.67
2 15.66 |24.36 |13.88 22.66 |0.07 |40.06 12.14 | 26.81
3 14.44 |14.70 | 12.13 2195 |1.86 [39.86 343  [21.27
4 1429 | 1529 |12.48 22.84 |1.46 |39.09 6.57 |22.50
5 13.86 |15.15 |11.49 22.13 |0.88 39.65 11.11 | 31.88
Average |15.22 | 17.82 |13.24 2242 10.87 39.70 8.66 |24.63
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LMSI, LPSI, and GW-LMSI accuracies, and that in all five selection cycles,
Pui, > Pui > Pyi,- This implies that the estimated LMSI variance of the predicted

error was lower than the estimated LPSI and GW-LMSI variance of the predicted
error. In a similar manner, because ﬁHiM > Py > Z)\Hiw’ the estimated LMSI

efficiency was higher than the estimated LPSI efficiency and the estimated
GW-LMSI efficiency.

Based on Fig. 4.4 and Table 4.3 results, we conclude that the LMSI was a better
predictor of the net genetic merit than the LPSI, and that the LPSI is a better predictor
of the net genetic merit than the GW-LMSI for this simulated data set.
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Chapter 5 )
Linear Genomic Selection Indices Check or

Abstract The linear genomic selection index (LGSI) is a linear combination of
genomic estimated breeding values (GEBVs) used to predict the individual net genetic
merit and select individual candidates from a nonphenotyped testing population as
parents of the next selection cycle. In the LGSI, phenotypic and marker data from the
training population are fitted into a statistical model to estimate all individual available
genome marker effects; these estimates can then be used in subsequent selection
cycles to obtain GEB Vs that are predictors of breeding values in a testing population
for which there is only marker information. The GEBVs are obtained by multiplying
the estimated marker effects in the training population by the coded marker values
obtained in the testing population in each selection cycle. Applying the LGSI in plant
or animal breeding requires the candidates to be genotyped for selection to obtain the
GEBYV, and predicting and ranking the net genetic merit of the candidates for selection
using the LGSI. We describe the LGSI and show that it is a direct application of the
linear phenotypic selection index theory in the genomic selection context; next, we
present the combined LGSI (CLGSI), which uses phenotypic and GEBV information
jointly to predict the net genetic merit. The CLGSI can be used only in training
populations when there are phenotypic and maker information, whereas the LGSI is
used in testing populations where there is only marker information. We validate the
theoretical results of the LGSI and CLGSI using real and simulated data.

5.1 The Linear Genomic Selection Index

5.1.1 Basic Conditions for Constructing the LGSI

Conditions described in Chap. 4 (Sect. 4.1.1) for constructing a valid linear molec-
ular selection index (LMSI), are also necessary for the linear genomic selection
index (LGSI); however, in addition to those conditions, the LGSI also requires:

1. All marker effects to be estimated simultaneously in the training population.

2. The estimated marker effects to be used in subsequent selection cycles to obtain
GEBVs that are predictors of the individual breeding values in the testing
population (candidates for selection) for which there is only marker information.

© The Author(s) 2018 99
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3. The GEBYV values to be composed entirely of the additive genetic effects.

4. Phenotypes to be used to estimate all marker effects in the training population, not
to make selections in the testing population (Heffner et al. 2009; Lorenz et al.
2011).

5.1.2 Genomic Breeding Values and Marker Effects

The breeding value (g;) is the average additive effects of the genes an individual
receives from both parents; thus, it is a function of the genes transmitted from parents
to progeny and is the only component that can be selected and, therefore, the main
component of interest in breeding programs (Mrode 2005). The ith phenotypic value
(y;) can be denoted as y; = g; + e;, where g; is the breeding value and e; the residual.
Basic assumptions for g; and e; are: both g; and e; have normal distribution with
expectation equal to zero and variance aéz,i and 02_ respectively. This means that
Vi = i + g; + e; is a linear mixed model (Mrode 2005; Searle et al. 2006), where y; is
the mean of y;.

Lety, = [viy Y - Yi) be avector 1 x n of observations in the ith trait and let
g =[g1 8> - &n) be avector 1 x n of unobservable breeding values
associated with y;; then y; can be written as

y, =1y, +Zg; +e, (5.1)

where y; is the mean of the ith trait, 1 is a vector n x 1 of 1s, Z is a design matrix of
0Os and 1s, g; ~ MVN (0, AG;,.) is a vector of breeding values, and e; ~ MVN (0, I,,ai)
is a vector of residuals; 0 is the mean and Aaf,l_ and In(ri, the covariance matrix of g;
and e; respectively; A is the numerical relationship matrix (Mrode 2005) and I,, an
identity matrix n X n; ai and ai_ are the additive and residual variances associated
with g; and e;; and MVN stands for multivariate normal distribution.

Suppose that A, Z, y;, azi, and ai_ are known; then, according to Mrode (2005), the

best linear unbiased predictor (BLUP) of g; can be written as
g = o-;AZ'V_l (vi — L), (5.2)

where V™! is the inverse matrix of the variance of y, ie.,
Var(y;) = oziZAZ’ + I,,ai_ = V. In the context of animal breeding, Eq. (5.2) is
considered a univariate linear phenotypic selection index (LPSI) (Mrode 2005)
and is used to rank and select individuals as parents of the next generation in the
context of one trait. Equation (5.2) can be extended to the multi-trait phenotypic
selection index case, but to predict the net genetic merit (H = w’g, see Chap. 2 for
details) it would be necessary to construct linear combinations of the predicted
values of g; associated with the traits of interest as was described in the Foreword
of this book.
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The vector of the individual genomic breeding values (y;) associated with the ith
characteristic (. =1, 2,...,t; ¢t = number of traits) of the candidates for selection can
be written as

¥, = Xu;, (5.3)

where X is an n X m matrix (n = number of observations and m = number of
markers in the population) of coded marker values (2 — 2p, 1 — 2p, and —2p for
genotypes AA, Aa, and aa respectively) associated with the additive effects of the
quantitative trait loci (QTL) and u; is an m x 1 vector of the additive effects of the
QTL associated with markers that affect the ith trait. It is assumed that y; has MVN
with mean 0 and variance GJ}%, ie., y; ~ MVN (0, Gaii ), where aii is the
additive genomic variance of y; and G = XX'/c is the n x n additive genomic
m
relationship matrix between genotypes; ¢ = ZZp j(l -p J-) in an F, population,
j=1

andc = Z 4p j(l —-p j) in a double haploid population; p is the frequency of allele
j=1

A and 1 — p is the frequency of allele a in the jth marker (j = 1, 2, ..., m).

The additive genomic relationship matrix G = XX'/c has special properties.
For example, in the asymptotic context, the expectation of matrix G is equal to the
numerical relationship matrix A, i.e., E(G) = A (Habier et al. 2007; Van Raden 2008);
this means that G is a particular realization of A and when the number of markers and
genotypes increases in the training population, the value of G tends to concentrate
around A. Thus, it can be assumed that at the limit, when the number of markers and
genotypes is very high, G = A (Cer6n-Rojas and Sahagtin-Castellanos 2016).

The vector of genomic breeding values (Eq. 5.3) has a similar function in
genomic selection as g; in the phenotypic selection context. In addition, g; can be
written as g; = y; + 1;, where 1, = g; — v, (Gianola et al. 2003). Also, note that

Cov(g;, ;) = oy, (5.4)

i.e., the covariance between v; and g; is equal to the variance of y; (Dekkers 2007).

Lety, = [y; Yo -+ Yi)beavector 1 x nof observation of the ith trait in the
training population and let ¥, ={[y; 7n ‘- Vi) be a vector I x n of
unobservable genomic breeding values associated with y;; then, y; can also be
written as

Vi =1y +Zy; + ¢, (5.5)

where y; is the mean of the ith trait, 1 is a vector n x 1 of s, Z is a design matrix,
Y: ~ MVN (0, Gof) and g; ~ MVN (0, I,,ai) are vectors of genomic breeding values
and of residuals respectively, and ai, is the residual variance. I,,, G, and 03 were

defined in Egs. (5.2) and (5.3).
According to Egs. (5.2) and (5.3), when y;, 63 and ai are known, the vector of

GEBVs for the individuals with the ith trait can be obtained as



102 5 Linear Genomic Selection Indices

¥i= UiGZ/V_l (vi — 1), (5.6)

where the variance of y; should now be written as V = aiZGZ’ + Inai. In the

context of genomic selection, Eq. (5.6) is considered a univariate LGSI and is used to
rank and select individuals as parents of the next generation (Van Raden 2008;
Togashi et al. 2011). Equation (5.6) is the BLUP of y; and can be extended to a multi-
trait genomic selection index, but to predict the net genetic merit (H = w'g), it is
necessary to construct an LGSI, which is a linear combination of v;.

Although Eq. (5.6) is theoretically very important in LGSI, in practice we need to
estimate the marker effects associated with all the traits of interest and to use these
estimates in the testing population to obtain the GEBV of the candidates for
selection. Let ' = [u} w, --- u/] be a vector 1 x nt associated with ¢ traits.
In the univariate context, Van Raden (2008) showed that the ith vector u; of marker
effects in the training population can be estimated as

i = ¢ 'X/[G + oL (y, - 1), (5.7)
o2
where v = —;, a;, og_ and the other parameters were defined earlier. According to
6 1 1
8i
Ceron-Rojas et al. (2015), to estimate the vector ' = [u} w) --- u}] in the

multi-trait context, Eq. (5.7) can be written as

i=c'W[LeG) +(NoL) '(y-—pa1), (5.8)

where W, =1, ® X, “®” denotes the Kronecker product (Schott 2005), c and X were
defined in Eq. (5.3); N = RC !, whereR and C are the residual and breeding value

covariance matrices for 7 traits respectively; y = [y] ¥y, -+ ¥,] ~MVN(, V)
is a vector of size 1 X tn, with covariance matrix V=C ® G + R ® I,;; I, is an
identity matrix of size 7 x t and I, was defined earlier; W' = [p; u, -+ p,]isa

vector 1 x t of means associated with vector y, and 1 is a vector n x 1 of 1s. In this
case, the estimator of the vector of sub-vectors of genomic breeding values y' =

[Yi Y2 -.- 7v,]in the testing population can be obtained as
T=Wau (5.9)

Equation (5.9) is the vector of GEBVs for the multi-trait case. Thus, in the testing
population, in Eq. (5.9), only the coded values in matrix X change, whereas U is the
same in each selection cycle. Note that to obtain Egs. (5.7) and (5.8), we assumed
that p, C, and R are known.

We indicated that the genomic breeding values have normal distribution
(Eq. 5.5). Using the simulated data described in Chap. 2, Sect. 2.8.1, in Fig. 5.1
we present the distribution of the GEBVs (Eq. 5.9) associated with traits T1 in the
first (Fig. 5.1a) and the fifth (Fig. 5.1b) selection cycles in the testing population. In
effect, the frequency distribution of the GEBVs approaches normal distribution in
both selection cycles.



5.1 The Linear Genomic Selection Index 103

126

17 a

108 \

9 / Distribution of
# ; ) GEBV values
72 2 A

63

54

45

36

27

18

: I

= _-| L _

120
12 o

b
104 %
:g Distribution of
s \ GEBV values
72 / 3
84
56

Fig. 5.1 Distribution of the genomic estimated breeding values (GEBVs) associated with traits T'1
in (a) the first and (b) the fifth selection cycles in the testing population

5.1.3 The LGSI and Its Parameters

Similar to the LPSI (Chap. 2), the objective of the LGSI is to predict the net genetic
merit H = w'g, where g’ = [g, g ... g /] = number of traits) is a vector of
unobservable true breeding values and W =[w; wy ... w;] is a vector of
economic weights. Suppose that the genomic breeding values y; = Xu; are known;
then, the LGSI can be written as

IG = ﬁ,y’ (510)

where P is an unknown vector of weights.

The main advantage of the LGSI over the LPSI lies in the possibility of reducing
the intervals between selection cycles (Lg) by more than two thirds (Lorenz et al.
2011); thus, this parameter should be incorporated into the LGSI selection response
and the expected genetic gain per trait to reflect the main advantage of the LGSI
over the LPSI and the other indices. Assuming that L; = 1, in the LPSI context we
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wrote the selection response as R; = k;ogpnr; however, if Lg # 1, the LGSI selection
response can be written as

k[ OHJ,. k]
Ry, =——3%=-" : 5.11
e Lo U%G Lo OHPHI; ( )

where k; is the standardized selection differential (or selection intensity) associated
with the LGSI, oy, is the covariance between H = w'g and the LGSI, (rfG is the
variance of the LGSI, oy is the standard deviation of H, Pul, is the correlation
between H and the LGSI, and Ls denotes the intervals between selection cycles.

Let C and I" be matrices of covariance of the breeding values (g) and of the
genomic breeding values (y) respectively; then, the correlation between H = w'g and
Ig = P’y can be written as

B wTp
Pte = WG /P

where WT'B = oy, is the covariance between H = w'g and Ig = B'y, oy = VW Cw
is the standard deviation of the variance of H = w'g, and o;, = \/p'TP is the
standard deviation of the variance of I = f'y.

(5.12)

5.1.4 Maximizing LGSI Parameters

To maximize the genomic selection response (Eq. 5.11), suppose that k;, 6 and Lg
are fixed and take the derivative of the natural logarithm (In) of the correlation
between H and Ig (Eq. 5.12) with respect to vector f, equate the result of the
derivative to the null vector, and isolate f, i.e.,

0 0 wTp
— 1 =—n|————1] =0. 5.13
op V= op " <s/—w'Cw\/ﬁ’Fﬁ> 13

The result is p = sw, where s = §'Tp/w'I'p is a proportional constant that does
not affect the maximum value of py; ., because this is invariant to the scale change;
then, assuming that § = w, the maximized LGSI selection response can be written as

k
Ry, = —/WTw. (5.14)
Lg
Hereafter, we refer to the LGSI genomic selection response as that of Eq. (5.14).
Also, because p = w, Eq. (5.12) can be written as



5.1 The Linear Genomic Selection Index 105

o = vVwI'w _ o,
g = A -
¢ VwCw on

which is the maximized correlation between H = w'g and I = 'y, or LGSI
accuracy; oy = VW Cw is the standard deviation of the variance of H, and o, =
/BT is the standard deviation of the variance of Ig.

The LGSI expected genetic gain per trait (E;,) can be written as

(5.15)

k[ I'w
E =— 5.16
" Lo vVwWI'w (5.16)

All the terms in Eq. (5.16) were previously defined.
Letdg = % be LGSI efficiency versus LPSI efficiency to predict the net genetic
merit, where py; . is the LGSI accuracy and pp; the LPSI accuracy; in percentage

terms, LGSI efficiency versus LPSI efficiency for each selection cycle can be written
as

pc =100(4g — 1). (5.17)

According to Eq. (5.17), if p¢ > 0, LGSI efficiency is greater than LPSI
efficiency; if pg = 0, the efficiency of both selection indices is equal, and if
pc < 0, the LPSI is more efficient than the LGSI at predicting H = w'g.

Equation (5.17) is useful for measuring LGSI efficiency in terms of accuracy
when predicting the net genetic merit (H = w’g), whereas the Technow et al. (2013)
inequality measures LGSI efficiency in terms of the time needed to complete one
selection cycle. In the context of the LGSI and the LPSI, the Technow inequality can
be written as

Pty (5.18)
hy

Ls <
where Ls and Lp denote the time required to complete one selection cycle for the
LGSI and the LPSI respectively, pyy,. is the LGSI accuracy, and h; is the square root
of the heritability (Lin and Allaire 1977; Nordskog 1978) of the LPSI, which can be

b/

denoted as h; = % (see Chap. 2 for details). Then, assuming that the selection

intensity is the same for both selection indices, if Eq. (5.18) is true, the LGSI is more
efficient than the LPSI per unit of time.

5.1.5 Relationship Between the LGSI and LPSI Selection
Responses

To obtain the relationship between R;, and R, in the asymptotic context, we omitted
the intervals between selection cycles (L and L; respectively) to simplify the
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algebra. Consider a population where the number of genotypes and markers tends to
infinity; in this case, markers explain most of the true additive genetic variances and
covariances. Thus, we can assume that matrices I" and C are very similar, and at the
limit, I' = C. Now suppose that in this population the phenotypic variance—covari-
ance matrix (P) is known and comprises matrix I' and the variance—covariance
residual matrix (R). In this case, the inverse of P can be written as P! = (' + R) ! =
r'!- I‘_l(l“_1 + R_l)_ll“_l, where I' ! and R™! are the inverses of matrices I and
R respectively. Thus, the LPSI selection response is given by

R; = kVD'Pb = k;VWTIP 'Tw = k,\/WTW —w( 'R W, (5.19)

where b = P~ 'T'w is the vector of coefficients of the LPSI in the asymptotic context.
Note that b’Pb > 0 and w'T'w > 0, i.e., b’Pb and w'I'w are positive semi-definite,
meaning that w'I'w > w' (Ff1 + Rfl)flw > 0; then, in the asymptotic context,
R;, > R;. This result is not common when the number of genotypes and markers is
small; however, it gives an idea of the theoretical behavior of R;, with respect to R,
when the number of markers and genotypes is very large.

Because g, can be written as g, =y, + 1, wheren, =g, —v,(q¢ = 1, 2,---,1),
for low numbers of markers and genotypes, the covariance genotypic matrix C can
be written as C = I" + E, where E = C — T'; then, the inverse of matrix P can be
written as P ' = [T +E)+R] '=T+E) ' - T+E) [T+E)'+R !
(T + E)"". In the latter case, the LPSI selection response R; can be written as

R = ki\/w/(T + E)P~/(T + E)w

1
:k,\/w’Fw+W’Ew—w’ T+E)"' +R'| w. (5.20)

Equation (5.20) indicates that in the non-asymptotic context (low numbers of
markers and genotypes), R;, and R; are related in three possible ways:

1. R, > Ry, if WEwW > W[ +E)"' + R ]"'w
2. Ry =R, if WEW=wW[T+E) ' +R'T"'w
3. Ry, > R if WEW < W[T +E)"' + R 'w

The second and third points indicate that R;, may be equal to or larger than R,
even under a small number of markers, depending on the size of w'Ew and w’
[T + E)"' + R7']7'w. These three points explain the theoretical relationship
between R; and R;, for a low number of markers and genotypes. When I' = C,

E =0, and R, = k,\/wTw —w(Ir! +R’1)71w, then Ry, > R;.
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5.1.6 Statistical LGSI Properties

Assuming that H and I; have joint bivariate normal distribution and that I', C, and
w are known, the LGSI has the following properties:

1. The variance of I (0'126) and the covariance between H and I (opy,,) are equal, i.e.,
O'IZG = OHlg;-

2. The maximized correlation between H and I; (or LGSI accuracy) is equal to
Pur, = %‘j where oy, is the standard deviation of G?G and oy is the standard

deviation of the variance of H (of,).
3. The variance of the predicted error, Var(H — 1) = (1 - pfﬂc)afi, is minimal.

Note that Var(H —Ig) = G%G + 6% — 26p1,, and when B = w, G%G = onur,»
whence Var(H — Ig) = o3, — 0] = (1 - pi,la)ail is minimal.

4. The total variance of H explained by I; is O'%G = pIZﬂGaf{. It is evident that if
Pur, = 1, G%G = 612_1, and if py; . = 0, G%G = (. That is, the variance of H explained
by I is proportional to py, ., and when py; . is close to 1, a%c is close to a%,; it pyy,
is close to O, a%c is close to 0.

The LGSI properties described in points 14 of this subsection are the same as the
LPSI properties described in Chap. 2. This corroborates the LGSI as an application
of the LPSI theory to the genomic selection context.

5.1.7 Genomic Covariance Matrix in the Training
and Testing Population

To derive the LGSI theory, we assumed that the true genomic additive variance—
covariance matrix I' was known. However, in practice, we need to estimate it. In the
training population, matrix I' can be estimated by restricted maximum likelihood
(REML) using phenotypic and genomic information, as described by Vattikuti et al.
(2012) and Su et al. (2012). In Egs. (2.22) to (2.24) of Chap. 2, we presented the
formulas for estimating the genotypic and residual variance and covariance based on
the formulas described by Lynch and Walsh (1998). Here, we present a brief
description of how we can estimate the gth component (6,,,) of I' in the training
population using the REML method.

We estimated oy, = qu (g, ¢ = t = number of traits) in the absence of
dominance and epistatic effects, using the model y, = 1y, + Zy, + €,, where the
vectory, ~NMV(1u,, V,) g x 1 (g = number of genotypes in the population) had a
multivariate normal distribution; 1 was a g x 1 vector of 1s, s, was the mean of the
gth trait, Z was an identity matrix g x g; v, ~NMV(0, Go-i ) Was a vector of genomic
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breeding values, and &, ~ NMV(0, Iagq) was a g X 1 vector of residuals. Matrix
N
G = XX'/c was the genomic relationship matrix, and in an F, population, ¢ = Z 2pq;;
=1
X was a g x m matrix (m = number of markers) of the coded marker values (2 — 2p
for AA, 1 — 2p for Aa, and —2p for aa) for the additive effects of the markers; p and
q denote the frequency of allele A and the frequency of allele a in the jth marker
G =1, 2..,madV,=Go, + Io—i.
The expectation—maximization algorithm allowed the REML for the variance
components aiq and ai to be computed by iterating the following equations:

2(n) 2
20n+1) _ 2(n) (UV" ) 1 () @(n) (n)

) — 62 +T[yq<T GT >yq7tr(T G)} (5.21)

and

()
G2t = g2 L[y (T )y, —ar(TO)], (5.22)
q q g

where g is the number of genotypes. After n iterations, when a%”“) was very similar

n+1) 2(n+1

was very similar to a?q(’o, o (1)

) and 62 were the estimated

q
variance components of 05 . and ozq respectively. In Egs. (5.21) and (5.22) #r(.) denoted

2(n) 2(
to o,” and o,

—1
the trace of the matrices within brackets; T = V;l — V;ll (I'V;l) 1’V;1, and
V;l was the inverse of V, = Gaf(q + Iafq. In matrix T, V;l(") was the inverse of
matrix Vi = Gop") + 162"

The genomic additive genetic covariance between the observations of the gth and
ith traits, y, and y; (Grqw q,1 =1, 2,...,1), can be estimated by REML. Here, we
adapted Eqs. (5.21) and (5.22) using the variance of the sum of y, and y;, i.e., Var
(yi+y,) =Vi+V,+2C,, where V; = Go’ii + Iai = Var(y;) is the variance of y;
and V, = Go, +1Io; = Var(y,) is the variance of y,; 2C;; = 2Goy, + 2o,
= 2Cov(yi, yq) is the covariance of y, and y;, and oy, and o, are the genomic and

residual covariance respectively, associated with y; and y,. Thus, one way of
estimating oy, and o,,, is by using the following equation:

0.5Var(y; +y,) — 0.5Var(y;) — 0.5Var(y,). (5.23)

for which Eqgs. (5.21) and (5.22) can be adapted.

If there is only marker information on the testing population, then it is not
possible to estimate I" using Egs. (5.21) to (5.23). Another way of estimating I' is
to use the method proposed by Ceron-Rojas et al. (2015), which requires the
estimated values of v, (?q) in the cycle of interest. Let U be the estimator of the
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vector of marker effectsu’ = [u] w5 --- u]] for traits obtained in the training
population. We obtained the gth GEBVs (¢ = 1, 2, ..., ?) in the /th selection
cycle I = 1,2, ..., number of cycles) as

Yy = X, (5.24)

where u,, is the vector of size m x 1 of the estimated marker effects of the gth trait in
the training population and X is a matrix of size n x m of the coded values of marker
genotypes in the /th selection cycle of the testing population.

Now suppose that y, and 7y, have multivariate normal distribution jointly,
with mean 1/4“ and lyyq, respectively, and covariance matrix Go, ,, where 1 is
an n x 1 vector of 1s and G = XX'/c is the additive genomic relationship matrix.

Then, I' = {Gn,qr} can be estimated as

r={,} (5.25)

| . R ~ N . .
=2 (¥, — lyyql)/Gl 'Y — lﬂh//) is the estimated covariance between
Y, and 7y, in the /th selection cycle of the testing population; g is the number of
genotypes; ?ql was defined in Eq. (5.24); ﬁyqz and ﬁm are the estimated arithmetic

where o, ,
a9

means of the values of ¥, and¥,; 1is a g x 1 vector of Is and G; = ¢ 'X/X] is the
additive genomic relationship matrix in the /th selection cycle (I =1, 2, . . ., number
of cycles) in the testing population.

From Eq. (5.25) we can estimate the LGSI response and expected genetic gain per
trait in the testing population as

A & kg T
Rlc:é wlw and E;, = i (5.26)

Lo whw
respectively. The estimated LGSI (TG) values in the Ith selection cycle can be
obtained as

t
Io = Wty (5.27)
g=1

where w, is the gth economic weight and ?q, was defined in Eq. (5.24). Equation

(5.27) is a vector of size g X 1 (g= number of genotypes). In practice, I values are
ranked to select individual genotypes with optimal GEBVs.
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5.1.8 Numerical Examples

To estimate matrices C and R and the marker effects in the training population,
we used a real maize (Zea mays) F, population with 248 genotypes (each with
two repetitions), 233 molecular markers, and three traits—grain yield (GY, ton
ha '), ear height (EHT, cm), and plant height (PHT, cm)—evaluated in one
R 0.07 0.61 1.06
environment. The estimated matrices were C = [ 0.61 17.93 22.75| and
1.06 22.75 44.53
R 0.38 0.72 1.27
R= 1072 47.14 60.96 |, which were estimated by Egs. (5.21) to (5.23)
1.27 60.96 121.46
using the numerical relationship A instead of the genomic relationship matrix
(G = XX'/e).
Table 5.1 presents the first 20 BLUPs of the estimated marker effects (Eq. 5.8)
in the training population and the first 20 marker coded values and GEBVs
(Eq. 5.9) obtained in the testing population associated with trait GY. In the

Table 5.1 The 20 best linear unbiased predictors (BLUPs) of the estimated marker effects in the
training population and the first 20 marker coded values and genomic estimated breeding values
(GEBVs) obtained in the testing population associated with grain yield

Training population Testing population
Marker coded values
BLUPs M1 M2 M3 M233 GEBVs
—0.0003 1 1 0 —1 0.195
—0.0038 0 0 0 —1 0.221
—0.0085 —1 1 0 —1 —0.643
0.0069 0 1 0 1 0.525
—0.0042 0 0 0 0 —0.603
0.0038 —1 0 0 0 0.062
0.0008 0 1 1 0 —0.226
0.0012 0 1 1 1 0.023
—0.0004 0 —1 0 0 0.444
0.0062 0 0 1 -1 —0.286
0.0121 —1 1 0 1 —0.196
0.0077 —1 —1 —1 0 —0.566
0.0033 —1 0 0 0 0.073
0.0102 -1 1 0 1 0.058
0.0054 0 1 0 0 0.874
0.0002 0 0 0 0 0.102
0.0171 0 1 0 —1 —0.342
0.0159 —1 0 1 —1 —0.428
0.0117 -1 0 0 —1 0.072
0.0121 0 -1 0 -1 —0.428
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testing population, there were 380 genotypes and 233 molecular markers. In this
population, the estimated genomic covariance matrix I' = {ayqll,} was

R 0.21 2.95 5.00
I'=1295 4241 71.11 |. The first GEBV (0.195) related to GY in
5.00 71.11 121.53
Table 5.1 was obtained as 0.195 = — 0.0003(1) — 0.0038(1) — 0.0085
) + --- — 0.03(—1). The other GEBVs can be obtained in a similar manner.
Suppose a selection intensity of 10% (k; = 1.755) and a vector of economic weights of
w =[5 —0.1 —0.1]; then, the estimated LGSI selection response and the expected

genetic gain per trait without including the interval between selection cycle is ﬁIG =

wT
VwTl'w
respectively, whereas the estimated LGSI accuracy was py;, = 0.48.

Chapter 11 presents RIndSel, a graphical unit interface that uses selection index
theory to select individual candidates as parents for the next selection cycle, which
can be used to obtain the results of the real numerical example described in this
subsection.

To compare LGSI efficiency versus LPSI efficiency we used the simulated data
described in Chap. 2, Sect. 2.8.1. According to Beyene et al. (2015), at least 4 years
are required to complete one phenotypic selection cycle in maize, whereas genomic
selection requires only 1.5 years. Thus, to compare LGSI efficiency versus LPSI
efficiency in terms of time, we can use the Technow et al. (2013) inequality
described in Eq. (5.18).

Table 5.2 presents the estimated value of Eq. (5.18) for five simulated selection
cycles. The LGSI efficiency was higher than LPSI efficiency in terms of time,
because the Technow et al. (2013) inequality was true in the five selection cycles.
An additional result obtained by Ceron-Rojas et al. (2015) is presented in Fig. 5.2,
which shows the correlation among the LGSI, the LPSI, and the true net genetic

(1.755)VwIw =092 and Ej = (1.755) =[0.80 11.41 19.28]

Table 5.2 Five simulated 5
selection cycles N ~ e 1 p

Cycle Lg Lp PHig hy hi

1 1.5 4.0 0.73 0.92 3.17

2 1.5 4.0 0.78 0.89 3.50

3 1.5 4.0 0.83 0.88 3.77

4 1.5 4.0 0.74 0.87 3.40

5 1.5 4.0 0.71 0.87 3.30

Time required for the linear genomic selection index (Ls) and
linear phenotypic selection index (Lp) to complete one selection
cycle; estimated accuracy (py;,,) of the linear genomic selection
index and the square root of the estimated heritability of the
linear phenotypic selection index (ﬁ;); estimated right-hand side

(pflc Lp) of the inequality formula (Lg < ’)”,';I’G Lp)
I




112 5 Linear Genomic Selection Indices

| LGSl | LPSI
1 2 3 4 5 6

7

-
o
=3

Correlation values
© © © © o o o
w S o (2] ~ [~ ©o
o o o o o o o

o
N
)

o
o
o

o
o
=3

Selection cycle

Fig. 5.2 Correlation between the linear genomic selection index (LGSI), the linear phenotypic
selection index (LPSI), and true net genetic merit (H) values in seven selection cycles. For each
selection cycle, the first column indicates the correlation between the LGSI estimated values and the
H true values, whereas the second column shows the correlation between the LPSI estimated values
and the H true values

merit values in seven selection cycles. According to Fig. 5.2, the correlation between
the LGSI and the true net genetic merit values was higher than the correlation
between the LPSI and the true net genetic merit values for the first three selection
cycles; after this cycle, the correlation between LGSI and the true net genetic merit
values tended to decrease.

5.2 The Combined Linear Genomic Selection Index

The combined LGSI (CLGSI) developed by Dekkers (2007) is a slightly modified
version of the LMSI (see Chap. 4 for details), which, instead of using the marker
scores, uses the GEBVs and the phenotypic information jointly to predict the net
genetic merit. The main difference between the CLGSI and the LGSI is that the
CLGSI can only be used in training populations, whereas the LGSI is used in testing
populations. The basic conditions for constructing a valid CLGSI include conditions
for constructing the LPSI, the LMSI, and the LGSI, because the CLGSI uses GEBVs
and phenotypic information jointly to predict the net genetic merit.
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5.2.1 The CLGSI Parameters

The net genetic merit can be written in a similar manner to that in the LMSI context,
that is, as

H=wg+wy=[w W] [ﬂ = agzg, (5.28)
where g’ =[g, ... g/ is the vector of breeding values, W' = [w; -+ w;]
is the vector of economic weights associated with breeding values,
w, =[0; --- 0,]is anull vector associated with the vector of genomic breeding
valuesy = [y, 7, ... 7 ).ag=[w w)]andzg=1[g 7|

The CLGSI can be written as

te = By+ 0= [0, 0] ]3] = ete (5.29)
wherey’ = [y, --- y,](#=number of traits) is the vector of phenotypic values; y

was defined earlier; B; and P¢ are vectors of coefficients of phenotypic and genomic
weight values respectively; . = [B, Py | andt; =[y v'].
The CLGSI selection response can be written as

ac¥chc
7 7 ’
\/aCTCaC \/ﬁcTCﬁC

where k; is the standardized selection differential of the CLGSI, 6%_1 = a’c‘l’cac and
Var(I¢) = BTcP are the variances of H and I, whereas a. WP and py; . are the

covariance and the correlation between H and I respectively; T¢ = Var z =

RC = kIUHpHIC = k](FH (530)

rr r r
covariance matrix, P = Var(y), the genomic covariance matrix, I' = Var(y), and
the genetic breeding values covariance matrix, C = Var(g).
Suppose that matrices ¥ and T are known; then the CLGSI vector of coeffi-
cients that simultaneously maximizes py; . and R¢ can be written as

{P F} and ¥¢ = Var{s ] = [C F} are block matrices of the phenotypic

Be =T Weac, (5.31)
whence the optimized CLGSI is
Ic = Bete, (5.32)

Equations (5.31) and (5.32) indicate that the CLGSI is an application of the LPSI
to the genomic selection context.
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From Eq. (5.31), the maximized CLGSI selection response, expected genetic gain
per trait and accuracy can be written as

Rc = ki\/BTcPe, (5.33)
Ec =k _Febe (5.34)
VBcTcBe
and
BTch
Pric = #wc (5.35)
respectively. Note that the maximized LPSI accuracy is py; = bPh (gee Chap. 2).

VW Cw

The denominator of the accuracy of the CLGSI and py; = \/—Vvl;:g’v is the same;

however, the numerator of the two indices accuracy is different. We would expect

that \/BTcPe > Vb'Pb, and then py;. > pyy;. Similar results can be observed
when we compared the maximized LPSI selection response and expected genetic
gain per trait with the maximized CLGSI selection response and expected genetic
gain per trait.

5.2.2 Relationship Between the CLGSI and the LGSI

As we have indicated, the CLGSI is mathematically equivalent to the LMSI; thus, it
has similar statistical properties to those of the LMSI, some of which are described in
this section. The rest can be seen in Chap. 4. Let Q- = TEI‘I’C, then matrix Q¢ can
be written as

P-r)'(C-I) 0

= , 5.36
Qe I-P-I)'(C-T) I (5:36)
whence asw) = [0; - 0,], the two sub-vectors that conform vector B¢ = Qcac
or B = [By B ] can be written as
B, =(P—-I)"'(C—-T)w, (5.37)

and

B = [1— P-T)'(C—T)|w=w—B8, (5.38)
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When I is equal to the null matrix (no genomic information), Eq. (5.37) is equal
o By = P !Cw = b and Rc = k;Vb'Pb = R, which are the LPSI vector of
coefficients and the selection response.

By Egs. (5.37) and (5.38), the maximized CLGSI selection response and the
optimized CLGSI can be written as

Re = k,\/w'C(P —T)"(C-T)w+wTl [1 —®-1)(C- F)]w (5.39)
and

Ic = Byy + Bey = Wy + By(y — 7)s (5.40)

respectively.

Assume that when the number of markers and genotypes increases, matrix I'
tends to matrix C and that, at the limit, I' = C; then, Eq. (5.39) can be written as
Rc = kivw'T'w = Rg (except by Lg); in addition, By = 0 and f; = w, the weights of
the LGSI, and, in this latter case, the CLGSI is equal to the LGSI, as we would
expect. Thus, in the asymptotic context, the LGSI and the CLGSI are the same.

An additional interesting result of the relationship between the CLGSI and the
LGSI is as follows. The maximized correlation between H and I~ (or CLGSI
accuracy) can be written as

- ac¥che (5.41)

\/ a-Wcac \/ BcTcPe ’

PHIc

However, when I' = C, WY,¢= [? ?] By = 0, Bc = w, and

Bo=[By, Bs]=[0 W], whence a WcPo=ar¥cac=p.Tcho=wTw,
and Eq. (5.41) is equal to 1. That is, the maximum correlation between H and I
in the asymptotic context is equal to the maximum correlation between H and the
LGSI, and that value will be equal to 1.

The asymptotic relationship between the CLGSI expected genetic gain per trait,
E. (Eq. 5.34), and the LGSI expected genetic gain per trait, E;, (Eq. 5.16), is as

follows. WhenI' = C, ¥ = [£ ?] and B = [0 W], whence

\PCﬁC —k 2I'w
VBeTche  VwWTw

This means that in the asymptotic context, the CLGSI expected genetic gain per
trait is twice the LGSI expected genetic gain per trait. Of course, 2 is only a
proportionality constant; thus, in reality, Ec = Ey,.

Ec =k

=2E,,. (5.42)
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5.2.3 Statistical Properties of the CLGSI

Assume that H and I have bivariate joint normal distribution; P, C, I', and w are
known, and B, = TEI‘I‘CaC; then, the CLGSI properties are as follow:

1. a%c = oni, 1.€., the variance of I (a%c) and the covariance between H and I¢ (67,.)
are the same.
2. The maximized correlation between H and I is py; . = 2€, where o, is the
Cc oH c

standard deviation of the variance of I (U%C) and o is the standard deviation of
the variance of H(af{).

3. The variance of the predicted error, Var(H — I¢) = (1 - P;quc) 6?,, is minimal.
4. The total variance of H explained by I is O'%C = /qulccrz .

Note that CLGSI properties 1 to 4 are the same as LMSI properties 1 to 4 and that
both indices jointly incorporate phenotypic and marker information to predict the net
genetic merit; however, the LMSI incorporates the marker information by the marker
score values, whereas the CLGSI uses the GEBVs.

5.2.4 Estimating the CLGSI Parameters

Using the real maize (Zea mays) F, population with 248 genotypes (each with two
repetitions), 233 molecular markers and three traits—GY (ton ha™ '), EHT (cm), and
PHT (cm)—described in Sect. 5.1.8 of this chapter, we estimated matrices P and
C using Egs. (2.22) to (2.24) described in Chap. 2 of this book. The estimated

R 045 1.33 2.33 N 0.07 0.61 1.06
matrices were P = [ 1.33 65.07 83.71 | andC = [0.61 1793 22.75
2.33 83.71 165.99 1.06 22.75 44.53

In a similar manner, we estimated matrix I' using Eqgs. (5.21) to (5.23). The
R 0.07 0.65 1.05 R R
estimated matrix was I' = | 0.65 10.62 14.25 |. Note that matrices C and T’
1.05 14.25 26.37
have similar values. This means that, in the asymptotic context, we can assume that
matrix I tends to matrix C.

To estimate the CLMSI and its associated parameters (selection response,
expected genetic gain per trait, etc.), we need to est/i\matAe the vector of cAoefﬁcients
Be = TEI‘I‘CaC as EC = TEl‘f‘cac, where 'fc = {; %} and‘f’c = {% g} are

r
rr

mated CLGSI vector of coefficients Ec = TEI‘I’CaC is conformed by the vector of

estimates of matrices T¢ = [ } and ¥¢ = {g ?] respectively. The esti-
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phenotypic weights, ﬁy ( ) (C F)W and by the vector of genomic
weights, [iG = {I — ( ) ( )]

Letw =[5 —0.1 —0.1] be the vector of economic weights; then, according
to the estimated matrices P, C, and T, ﬁ’y =1[0.08 —-0.02 -0.01] and

ﬁG =[4.92 -0.08 —0.09], whence the estimated CLGSI in the training popu-
lation can be written as

Ic =B,y + BT (5.43)
Suppose a selection intensity of 10% (k; = 1.755); then, the estimated CLGSI

selection response and expected genetic gain per trait were Re = ki/ 6’ CTCEC =
1.54 and E. = k, _Be¥e [036 1.04 1.70 036 1.53 2.38] respec-

VB TeBe A

tively, whereas the estimated CLGSI accuracy was py; .= & = 0.814.
OH

The estimated LPSI selection response, expected genetic gain per trait, and
accuracy were 0.601, [0.09 —0.81 —0.89], and 0.32 respectively; thus, the
CLGSI was more efficient to predict the net genetic merit than the LPSI because
the CLGSI accuracy and selection response were 0.814 and 1.54 respectively.

5.2.5 LGSI and CLGSI Efficiency Vs LMSI, GW-LMSI and
LPSI Efficiency

In this subsection, we compare the accuracy, selection response, and efficiency of the
LGSI and CLGSI with the LMSI, the GW-LMSI, and the LPSI using the simulated
data for a maize (Zea mays) population described in Chap. 2, Sect. 2.8.1.

Figure 5.3 presents the estimated accuracy values of the LMSI, the LGSI, the
CLGSI, the LPSI, and the GW-LMSI for five simulated selection cycles. According to
these results, for the first three selection cycles, the estimated accuracies of the indices,
in decreasing order, were LMSI > LGSI > CLGSI > LPSI > GW-LMSI. That is, the
highest estimated accuracy was obtained with the LMSI, whereas the lowest was
obtained with the GW-LMSI. For the fourth and fifth selection cycles, the estimated
accuracies, in decreasing order, were LMSI > LPSI > CLGSI > LGSI > GW-LMSL
This means that in all five selection cycles, the LMSI had the highest accuracy and the
GW-LMSI had the lowest accuracy, whereas the estimated LGSI accuracy was
reduced to fourth place. Thus, the accuracy of the LGSI tended to decrease after the
first three selection cycles whereas LPSI accuracy was a constant.

To compare LGSI efficiency versus the efficiency of the other selection indices,
we assumed that the interval between selection cycles in the LGSI is 1.5 years,
whereas for CLGSI, LMSI, GW-LMSI, and LPSI, the interval was 4.0 years.
Table 5.3 presents the estimated selection response of the LPSI, the LMSI, the
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Fig. 5.3 Estimated accuracy values of the linear molecular selection index (LMSI), the LGSI, the
combined LGSI (CLGSI), the LPSI, and the genome-wide LMSI (GW-LMSI) with the net genetic
merit for four traits, 2500 markers, and 500 genotypes (each with four repetitions) in one environ-
ment for five simulated selection cycles

Table 5.3 Estimated selection response of the linear phenotypic selection index (LPSI), the linear
molecular selection index (LMSI), the genome-wide LMSI (GW-LMSI), the linear genomic
selection index (LGSI), and the combined LGSI (CLGSI), not including (first part of the Table)
and including (second part of the Table) the interval length between selection cycles, obtained using
five simulated selection cycles

Cycle | LPSI | LMSI | GW-LMSI | LGSI | C-LGSI
Estimated selection response not including the interval length

1 17.84 19.60 16.24 14.36 18.24
2 15.66 24.36 13.88 13.90 16.02
3 14.44 14.70 12.13 13.59 14.61
4 14.29 15.29 12.48 12.30 14.14
5 13.86 15.15 11.49 11.38 13.51
Average 15.22 17.82 13.24 13.11 15.30
Estimated selection response including the interval length®

1 4.46 4.90 4.06 9.58 4.56
2 3.92 6.09 3.47 9.27 4.00
3 3.61 3.68 3.03 9.06 3.65
4 3.57 3.82 3.12 8.20 3.53
5 3.47 3.79 2.87 7.59 3.38
Average 3.80 4.46 3.31 8.74 3.83

“The interval length for the LPSI, LMSI, GW-LMSI, and C-LGSI was 4 years, whereas the interval
length for the LGSI was 1.5 years
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Table 5.4 Estimated accuracy of the LMSI, the LGSI, the CLGSI, the LPSI, and the GW-LMSI;
LMSI efficiency compared with LGSI, CLGSI, LPSI, and GW-LMSI efficiencies, expressed in
percentages, for five simulated selection cycles

Estimated accuracy LMSI efficiency compared with
GW- GW-
Cycle LMSI |LGSI |CLGSI |LPSI |LMSI LGSI |CLGSI |LPSI |LMSI
1 1.00 095 ]0.93 091 |0.83 493 | 745 10.07 |20.67
2 0.99 091 |0.90 0.88 0.78 8.78 | 9.88 12.14 |26.81
3 0.90 0.88 |0.89 0.87 |0.74 126 | 0.64 343 |21.27
4 0.92 0.77 |0.85 0.86 |0.75 19.99 | 8.12 6.57 |225
5 0.95 0.75 |0.85 0.86 |0.72 26.71 |12.2 11.11 | 31.88
Average |0.95 0.85 ]0.88 0.87 |0.76 12.33 | 7.66 8.66 |24.63

GW-LMSI, the LGSI, and the CLGSI, including and not including the interval
between selection cycles (first and second parts of Table 5.3 respectively), obtained
using five simulated selection cycles. According to the first part of Table 5.3, the
average estimated selection responses, in decreasing order, of the LMSI, CLGSI,
LPSI, GW-LMSI, and LGSI for the five simulated selection cycles were 17.82,
15.30, 15.22, 13.24, and 13.11 respectively, when the length of the interval between
selection was not included. If the length of the interval between selection cycles is
included when comparing the selection response of the indices in terms of time, the
estimated selection response of LMSI, CLGSI, LPSI, GW-LMSI must be divided by
4 in each selection cycle, and the estimated LGSI selection response should be
divided by 1.5. Thus, according to the second part of Table 5.3, if we include the
length of the interval between selection cycles, the average estimated selection
responses, in decreasing order, of LGSI, LMSI, CLGSI, LPSI, and GW-LMSI for
the five simulated selection cycles were 8.74, 4.46, 3.83, 3.80, and 3.31. This means
that in terms of time, the efficiency of the LGSI was higher than the efficiency of the
other four selection indices.

Table 5.4 presents the estimated accuracy of the LMSI, LGSI, CLGSI, LPSI, and
the GW-LMSI. In addition, Table 5.4 presents the efficiency when predicting the net
genetic merit of the LMSI with respect to the LGSI, CLGSI, LPSI, and GW-LMSI as
percentages, for five simulated selection cycles. Note that in this case, LMSI
efficiency was higher than the efficiency of the other four selection indices, because
the LMSI had the highest correlation with the net genetic merit.
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Chapter 6 )
Constrained Linear Genomic Selection Check or
Indices

Abstract The constrained linear genomic selection indices are null restricted and
predetermined proportional gain linear genomic selection indices (RLGSI and
PPG-LGSI respectively), which are a linear combination of genomic estimated
breeding values (GEBVs) to predict the net genetic merit. They are the results of a
direct application of the restricted and the predetermined proportional gain linear
phenotypic selection index theory to the genomic selection context. The RLGSI can
be extended to a combined RLGSI (CRLGSI) and the PPG-LGSI can be extended to
a combined PPG-LGSI (CPPG-LGSI); the latter indices use phenotypic and GEBV
information jointly in the prediction of net genetic merit. The main difference
between the RLGSI and PPG-LGSI with respect to the CRLGSI and the CPPG-
LGSI is that although the RLGSI and PPG-LGSI are useful in a testing population
where there is only marker information, the CRLGSI and CPPG-LGSI can be used
only in training populations when there are joint phenotypic and marker information.
The RLGSI and CRLGSI allow restrictions equal to zero to be imposed on the
expected genetic advance of some traits, whereas the PPG-LGSI and CPPG-LGSI
allow predetermined proportional restriction values to be imposed on the expected
trait genetic gains to make some traits change their mean values based on a
predetermined level. We describe the foregoing four indices and we validated their
theoretical results using real and simulated data.

6.1 The Restricted Linear Genomic Selection Index

Let H = w'g be the net genetic merit and I = B’y the linear genomic selection index
(LGSI, see Chap. 5 for details), where g, v, w, and f are vectors ¢ X 1 (= number of
traits) of breeding values, genomic breeding values, economic weights, and LGSI
coefficients respectively. It can be shown that Cov(Ig,g) = I'§ is the covariance
between g and I = By, and that Var(y) = I is the genomic covariance matrix of
size t x t (see Chap. 5 for details). The objective of the restricted linear genomic
selection index (RLGSI) is to improve only (¢ — r) of t (r < ?) traits (leaving r of them
fixed) in a testing population using only genomic estimated breeding values

© The Author(s) 2018 121
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(GEBVs). The RLGSI minimizes the mean squared difference between Ig and H,
E[(H — I5)*], with respect to B under the restriction Cov(lg, U'g) = UTB = 0, where
U’ is a matrix (f — 1) x ¢ of 1s and Os, in a similar manner to the restricted linear
phenotypic selection index (RLPSI) described in Chap. 3 in the phenotypic selection
context.

6.1.1 The Maximized RLGSI Parameters

Let Var(Ig) = p'Tp be the variance of I = By, w'Cw the variance of H = w'g, and
Cov(Ilg,H) = wW'T'p the covariance between H = w'g and I = p’y. The mean
squared difference between H and I can be written as E[(H — IG)Z], which should be
minimized under the restriction U'TB = 0 assuming that ', C, U’, and w are known,
i.e., it is necessary to minimize the function

fr(B,v) = WCw + BT — 2w I + 2vUTH (6.1)
with respect to vectors pand v/ = [v; v, --- v, _ ], where v is a vector of Lagrange
multipliers. In matrix notation, the derivative results of Eq. (6.1) are

-1
p| | I TIU I'w
[v —|ur o 0| (6.2)

Following the procedure described in Chap. 3 (Eqgs. 3.2 to 3.5), it can be shown
that the RLGSI vector of coefficients that minimizes E[(H — IG)Z] under the
restriction UT = 0 is

Brc = Kow, (6.3)

where K¢ = [I, — Qgl, Qg = U(UTU) 'UT, w is a vector of economic weights,
and I, is an identity matrix ¢ X t. When no restrictions are imposed on any of the
traits, U’ is a null matrix and pr; = w, the optimized LGSI vector of coefficients (see
Chap. 5 for details).

By Egq. (6.3), the RLGSI, and the maximized RLGSI selection response and
expected genetic gain per trait can be written as

IrG = PrYs (6.4)

k;
Rpg = Lo \/ BrcTBre (6.5)

and
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ki TPy

Erg = ——F——,
Lg vV ﬁ;eGrﬁRG

respectively, where k; is the standardized selection differential (or selection inten-
sity) associated with the RLGSI, and L is the interval between selection cycles or
the time required to complete a selection cycle using the RLGSI. Equations (6.4) to
(6.6) depend only on GEBYV information; thus, they are useful in testing populations.

(6.6)

6.1.2 Statistical Properties of RLGSI

Assuming that H = w'g and Irg = Py have bivariate joint normal distribution,
Brc = Kgw, and I, C, and w are known, it can be shown that the RLGSI has the
following properties:

1. Matrices Ks and Qg are idempotent (K¢g = KZG and Qg = QZG) and orthogonal
KsQs = QK = 0), that is, they are projectors. Matrix Qg projects vector
B = w into a space generated by the columns of matrix U'T due to the restriction
U'T'H = 0 used when fz(B, v) (Eq. 6.1) is minimized with respect to vectors p and
v, whereas matrix Kg projects w into a space perpendicular to that generated by
the U'T matrix columns.

2. Because of the restriction UT = 0, matrix K projects vector w into a space
smaller than the original space of w. The space reduction into which matrix Kg
projects w is equal to the number of zeros that appears in Eq. (6.6).

3. Vector frg = Ksw minimizes the mean square error under the restriction
uTp =0.

4. The variance of Iz = PrsY (G%RG = BrcI'Bre) is equal to the covariance between
IRG = ﬁ;?GY and H = W/g (GH’RG = erﬁRG)'

5. The maximized correlation between H and Irc is equal to py;, . = 0;—’:", where

61,6 = \/ BrgIBrg and 6 = /W Cw are the standard deviations of Irg = BrsY
and H = w'g respectively.

6. The variance of the predicted error, Var(H — Igg) = (1 - P%HRG> oy, is minimal.

Note that Var(H —Igg) = O'%RG + 6% — 2011,,, and when Brg = Kgw,

2 _ 2 2 2 2 i
07, = OHls» Whence Var(H — Igg) = o7, — Ol = (1 — pHIRG>5H is minimal.

The statistical RLGSI properties are equal to the statistical RLPSI properties.
Thus the RLGSI is an application of the RLPSI to the genomic selection context.

6.1.3 Numerical Examples

To estimate the parameters associated with the RLGSI, we use the real data set
described in Chap. 5, Sect. 5.1.8, where we found that, in the testing population, the
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0.21 295 5.00
estimate of matrix TwasT = | 2.95 42.41 71.11 |.We use this matrix and the
5.00 71.11 121.53
GEBVs associated with the traits grain yield (GY, ton hafl), ear height (EHT, cm),
and plant height (PHT, cm) to illustrate the RLGSI theoretical results.
Suppose that on the RLGSI expected genetic gain per trait we impose one
1 00
0 1 O}
(see Chap. 3, Sect. 3.1.3, for details about matrix U’). We need to estimate the
RLGSI vector of coefficients (Brc = Kgw) as ﬁRG = Ksw, where K¢ = I - (A)G}
and Qg = u(U fU)flU’f are estimates of matrices Kg = [I; — Qg] and Qg = U
(UTU)"'UT respectively, and I is an identity matrix 3 x 3. The estimated Qg

and two null restrictions using matrices Uy =[1 0 0] and U, = {

matrices for restrictions Uj=[1 0 0] and U,= {(1) (1) 8} were QGI =V, (U'lfU1)71
10 1405 23817 ., [oo1Ls
UT=[0 0 0 |andQa=U,(U,FU,) U,T=| 0 1.0 0.90 | respec-
0 0 0 00 O

tively, whereas the estimated K matrices for both restrictions were ﬁGl = [13 — QGI]

0 —14.05 —23.81 R R 00—-11.18
=10 1.0 0 | and Kg,=[I3—Qg,]=[00 —0.90
0 0 1.0 00 1.0
Letw =[5 —0.1 —0.1] be the vector of economic weights; then the estimated

RLGSI vector of coefficients for one and two null restrictions were f RG, = W'K’G1 =
[3.78 —0.1 —0.1] and ﬁRGZ = wK’G2 =[1.12 0.09 —0.1] respectively, and
the estimated RLGSI for both restrictions can be written as iRG. = 3.78GEBV; — 0.1
GEBV; — 0.1GEBV; and /I\RGZ = 1.12GEBV, + 0.09GEBV, — 0.1GEBV3, where
GEBV,, GEBV,, and GEB V3 are the genomic estimated breeding values associated with
traits GY, EHT, and PHT respectively in the testing population.

Table 6.1 presents 20 genotypes selected from a population of 380 genotypes and
the GEBVs in the testing population ranked according to the estimated RLGSI
values for one restriction, where U} =[1 0 O0]. The estimated RLGSI
values for genotypes 5 and 306 can be obtained as follows:fRG5 = 3.78(—-0.6) — 0.1
(—8.67) — 0.1(15.97) = 0.196 andTRGm =3.78(0.13) — 0.1(1.31) — 0.1(1.66) =
0.194 respectively. This procedure is valid for any number of genotypes and GEBVs
in the testing population.

Assume a selection intensity of 10% (k;, =1.755); then the estimated
RLGSI selection response and expected genetic gain per trait not 1nclud1ng the

ﬁRGl

interval length were RRGl = ki 1/ ﬁRG FﬁRGl = 0.40 and E}\,G =k —F—
\ ﬁRGlrﬁRGl
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Table 6.1 Number of genotypes selected from 380 genotypes of a real testing population; genomic
estimated breeding values (GEBVs) associated with three traits: grain yield (GY, ton ha '), ear
height (EHT, cm), and plant height (PHT, cm) in the testing population, and estimated and ranked
restricted linear genomic selection index (RLGSI) values obtained in the testing population for one
null restriction

Estimated GEBVs in the testing population

Number of genotypes GEBV-GY GEBV-EHT GEBV-PHT Estimated RLGSI
5 —0.6 —8.67 —15.97 0.196
306 0.13 1.31 1.66 0.194
6 0.06 1.83 —1.13 0.157
349 0.37 4.34 8.12 0.153
142 —0.26 —5.47 —5.85 0.149
69 —0.11 —3.43 —2.16 0.143
24 0.03 —0.43 0.19 0.137
192 —0.8 —13.91 —-17.7 0.137
33 —0.18 —1.44 —6.71 0.135
18 —0.43 —5.48 —12.08 0.131
21 —1.00 —16.11 —22.96 0.127
41 0.17 1.09 4.08 0.126
351 0.16 2.64 2.15 0.126
323 0.04 -0.79 1.04 0.126
158 —0.49 —8.95 —10.83 0.126
25 —0.24 —3.46 —6.86 0.125
338 0.37 3.88 8.89 0.122
316 —0.01 —0.51 —1.09 0.122
32 —0.19 —3.97 —4.43 0.122
204 —0.46 —7.41 —11.19 0.121

010
the estimated RLGSI selection response and expected genetic gains not including

the interval length  were ﬁRG2 = ki \/ ﬁ}erfﬁRGz =0.23 and
n/ ﬁ;{Gzr .
Epg, =ki——=——=—==[0 0 —2.29] respectively. When the number of

=[0 —142 —2.58]respectively. For two restrictions, with U}, = [1 0 0],

restrictions increases, the estimated RLGSI selection response value decreases,
whereas the number of zeros increases in the estimated RLGSI expected genetic
gain per trait. The number of zeros in the estimated RLGSI expected genetic gain
per trait is equal to the number of restrictions imposed on RLGSI by matrix U,
where each restriction appears as 1.

Figure 6.1 presents the frequency distribution of the estimated RLGSI values for
one (Fig. 6.1a) and two null restrictions (Fig. 6.1b). For both restrictions the
frequency distribution of the estimated RLGSI values approaches the normal
distribution.
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Fig. 6.1 Distribution of 380 estimated restricted linear genomic selection index (RLGSI) values
with one (a) and two (b) null restrictions respectively obtained in a real testing population for one
selection cycle in one environment

Now we use the simulated data set described in Chap. 2, Sect. 2.8.1, to compare
RLPSI (restricted linear phenotypic selection index, Chap. 3 for details) efficiency
versus RLGSI efficiency. Table 6.2 presents the estimated RLPSI and RLGSI
selection response for one, two, and three null restrictions imposed by matrices
1 00 / 1000 .

0 1 0} ,andU; = |0 1 O O for five simulated
0 010

selection cycles including and not including the interval between selection cycles. In

each selection cycle, the sample size was equal to 500 genotypes, each with four

repetitions and four traits, whereas the selection intensity was 10% (k; = 1.755); the

interval lengths for the RLPSI and RLGSI were 4 and 1.5 years (Beyene et al. 2015)

respectively.

Table 6.2 was divided in two parts. The first part presents the estimated RLPSI
whereas the second part presents the estimated RLGSI selection responses. Columns
2,3, and 4 in Table 6.2 present the estimated RLPSI and RLGSI selection responses
not including the interval length, whereas columns 5, 6, and 7 present the estimated
RLPSI and RLGSI selection response, including the interval length. The averages of
the estimated RLPSI selection response not including the interval length for one,
two, and three restrictions were 7.04, 5.50, and 3.90, whereas when the interval
length was included, the averages were 1.76, 1.38, and 0.98 respectively. The
averages of the estimated RLGSI selection response not including the interval length

U =1 0 0],U’2:[
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Table 6.2 Estimated restricted linear phenotypic selection index (RLPSI) and RLGSI selection
responses for 1, 2, and 3 null restrictions for 5 simulated selection cycles including and not
including the interval between selection cycles. The interval lengths for the RLPSI and the
RLGSI were 4 and 1.5 years respectively

Estimated RLPSI selection response

Not including interval length Including interval length®
Cycle 1 2 3 1 2 3
1 6.87 5.54 4.13 1.72 1.39 1.03
2 8.45 5.94 4.27 2.11 1.49 1.07
3 7.17 5.79 4.16 1.79 1.45 1.04
4 6.68 5.06 3.72 1.67 1.27 0.93
5 6.02 5.16 3.24 1.51 1.29 0.81
Average 7.04 5.50 3.90 1.76 1.38 0.98

Estimated RLGSI selection response

Not including interval length Including interval length®
Cycle 1 2 3 1 2 3
1 6.41 5.58 4.71 4.28 3.72 3.14
2 5.04 3.47 247 3.36 2.32 1.65
3 4.76 3.36 222 3.17 2.24 1.48
4 4.51 3.07 2.28 3.01 2.05 1.52
5 4.46 3.10 2.26 2.97 2.07 1.51
Average 5.04 3.72 2.79 3.36 2.48 1.86

“The estimated RLPSI selection response was divided by 4
®The estimated RLGSI selection response was divided by 1.5

for one, two, and three restrictions were 5.04, 3.72, and 2.79, whereas when the
interval length was included the averages were 3.36, 2.48, and 1.86 respectively.
These results indicated that when the interval length was included in the estimation
of the RLPSI and RLGSI selection response, RLGSI efficiency was greater than
RLPSI efficiency, and vice versa, when the interval length was not included the
RLPSI efficiency was greater than RLGSI efficiency.

Table 6.3 presents the estimated RLPSI (first part) and RLGSI (second part)
expected genetic gain per trait not including the interval between selection cycles for
one, two, and three null restrictions in five simulated selection cycles. In this case,
RLPSI efficiency is greater than RLGSI efficiency because the averages of the
estimated RLPSI expected genetic gain per trait were —2.52, 2.26, and 2.26 for
one null restriction; 2.84 and 2.65 for two null restrictions; and 3.90 for three null
restrictions. For the same set of restrictions, the averages of the estimated RLGSI
expected genetic gain per trait were: —1.85, 1.13, and 2.06 for one null restriction;
1.52 and 2.19 for two null restrictions, and 2.79 for three null restrictions. However,
divided by the interval length (4 years in the RLPSI), the averages of the estimated
RLPSI expected genetic gain per trait were —0.63, 0.57, and 0.57 for one null
restriction; 0.71 and 0.66 for two null restrictions, and 0.98 for three null restrictions.
In a similar manner, dividing by the interval length (1.5 years in this case), the
averages of the estimated RLGSI expected genetic gain per trait were —1.23, 0.75,
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Table 6.3 Estimated RLPSI and RLGSI expected genetic gain per trait for 1, 2, and 3 null
restrictions for 5 simulated selection cycles (each with 4 traits) not including the interval length
between selection cycles

Estimated RLPSI expected genetic gain for one, two, and three null restrictions

1 2 3
Cycle T1 |T2 T3 T4 T1 |T2 |T3 T4 Tl |T2 |T3 |T4
1 0 —2.18 [2.03 |2.66 |0 0 2797 277 |0 0 0 4.13
2 0 —341 [233 |271 |0 0 287 [3.07 |0 0 0 4.27
3 0 —-2.30 |3.12 [1.74 |0 0 311 268 |0 0 0 4.16
4 0 —2.88 |142 |238 |0 0 235 270 |0 0 0 3.72
5 0 —1.83 [2.38 |1.81 |0 0 312 (204 |0 0 0 3.24
Average |0 —2.52 [226 [226 |0 0 284 [265 |0 0 0 3.90

Estimated RLGSI expected genetic gain for 1, 2, and 3 null restrictions

1 2 3
Cycle T1 |T2 T3 T4 T1 |T2 |T3 T4 Tl |T2 |T3 |T4

0 —141 129 |3.72 |0 0 1.89 [3.70 |0 0 0 4.71
2 0 —-2.16 |1.07 [1.81 |0 0 149 198 |0 0 0 247
3 0 —-1.94 124 [1.57 |0 0 1.58 |1.78 |0 0 0 222
4 0 —190 [1.02 |1.60 |0 0 134 |1.73 |0 0 0 2.28
5 0 —1.83 |1.02 |1.61 |0 0 133 |1.77 |0 0 0 2.26
Average |0 —-1.85 |1.13 |2.06 |0 0 1.52 [2.19 |0 0 0 2.79

and 1.37 for one restriction; 1.01 and 1.46 for two restrictions; and 1.86 for three
restrictions.

Table 6.4 presents the estimated RLPSI heritability (E%R) values, the estimated
restricted linear genomic selection index (RLGSI) accuracy (py;,,) values, the values

of W = pflm Lgp (Lgp = 4), and the values of p = 100 (ER — 1), where 1z = Pur./
Ig

Py, and Py, is the estimated RLPSI accuracy, for one, two, and three restrictions

for five simulated selection cycles. The RLGSI interval length was Lgg = 1.5

whereas the averages of the values of W = %LRP for each restriction were

Ig
1.22, 0.85, and 0.60; this means that the estimated Technow inequality (Technow
et al. 2013), Lgg < prRG Lgp (Chap. 5, Eq. 5.18), was not true. Thus, according to
Ig

the Technow inequality results, for this data set, RLGSI efficiency in terms of time

was not greater than RLPSI efficiency. The inequality Lgg < %LIR was not true
Ir

because the estimated RLGSI accuracy was very low, whereas RLPSI heritability was

high. Thus, note that the averages of the estimated RLGSI accuracy for one, two, and

three null restrictions were 0.25, 0.19, and 0.14 respectively, and the averages of the

estimated RLPSI heritability values were 0.70, 0.78 and 0.88, respectively. Thus,

according to these results, because the estimated RLGSI accuracy is very low and
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RLPSI heritability is high, RLGSI efficiency was lower than RLPSI efficiency in
terms of time.

The last three columns of Table 6.4, from left to right, present the estimated
p values, p = 100 @R — 1), for one, two, and three null restrictions in five simulated
selection cycles. The average of the p values indicates that for each of the three
restrictions the RLPSI efficiency was 65.05%, 78.73%, and 74.09%, greater than
RLGSI efficiency at predicting the net genetic merit. Thus, for this data set, the
RLPSI was a better predictor of the net genetic merit than the RLGSI in each cycle.

6.2 The Predetermined Proportional Gain Linear Genomic
Selection Index

6.2.1 Objective of the PPG-LGSI

Letd =[d; d» ... d,]beavector1 x r(ris the number of predetermined
proportional gains) of the predetermined proportional gains imposed by the breeder,
and assume that y, is the population mean of the gth trait before selection. The
objective of the predetermined proportional gain linear genomic selection index
(PPG-LGSI) is to change u, to u, + d, in the testing population, where d, is a
predetermined change in y,,. It is possible to solve this problem minimizing the mean
squared difference between I = B'y and H = w'g, E[(H — I5)*], under the
restriction UI'p = 0gd, where Og is a proportionality constant, or under the

d 0 ... 0 —d
restriction D'UTP = 0, where D' = 0: d:’ 0 _:dz is a matrix
o 0 ... d —d_
(r — 1) x r(see Chap. 3 for details), and d, (¢ = 1, 2. . ., r) is the qth element of vector
d=[d d ... d];Uisamatrix (r— 1) x tof Isand 0s, and ' = {ayw,} @
qd = 1,2, ..., t, t = number of traits) is a covariance matrix of additive genomic

breeding values, ¥ = [y y2. ..y

6.2.2 The Maximized PPG-LGSI Parameters

In this subsection, we minimize E[(H — IG)Z] under the restriction D'U'TP = 0 and
later under the restriction UI'b = 0gd. Under the restriction D'UTH = 0, it is
necessary to minimize the function

fp(B,v) = BTP + WCw — 2wTP + 2vD'UTP (6.7)



6.2 The Predetermined Proportional Gain Linear Genomic Selection Index 131

with respect to § and v = [v; va ... v,_;], where V' is a vector of Lagrange
multipliers. From a mathematical point of view, Eq. (6.7) is equal to Eq. (6.1); thus,
the vector of coefficients p of the PPG-LGSI should be similar to the vector of
coefficients of the RLGSI (Eq. 6.3), i.e., the PPG-LGSI vector of coefficients is equal
to

Brg = Kpw, (6.8)

where now Kp = [I, — Qp], Qp = UD(D'UTUD) 'D'UT, w is a vector of
economic weights, and I, is an identity matrix 7 x t. When D' = U, Bpg = Brc
(the RLGSI vector of coefficients), and when U’ is a null matrix, pp; = w (the LGSI
vector of coefficients). This means that the PPG-LGSI includes the RLGSI and the
LGSI as particular cases.

Under the restriction UTB = 0gd (see Chap. 3 for details) the vector of coeffi-
cients of the PPG-LGSI can be written as

BrG = Bre + 0cU(UTU) " 'd, (6.9)

where Brc = Kow (Eq. 6.3), Kg = [I — Qgl, Qg = UUTU) 'UT, and d' =
[di d, ... d,]isthe vector of the predetermined proportional gains imposed by
the breeder. It can be shown that O, the proportionality constant, can be written as

"(U'T —1 T
_dUTY)UTw 6.10)
d'(UTU) 'd

When 0 = 0, Bpc = Pre> and when U’ is a null matrix, fpg = w. Equations (6.8)
and (6.9) give the same results, that is, both equations express the same result in a
different mathematical way.

The maximized selection response and expected genetic gain per trait of the

PPG-LGSI can be written as
_ /
Rpc = =1/ BrclBrG (6.11)
G

and

ki TBpg

EPG - T >
L6 \/BreTBro

respectively, where L is the time required to complete a selection cycle using the
PPG-LGSI. Equations (6.11) and (6.12) depend only on GEBV information.

(6.12)
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6.2.3 Statistical Properties of the PPG-LGSI

Assuming that H = w'g and the PPG-LGSI (Ip¢ = B)Y) have bivariate joint normal
distribution, Bpg = Kpw; I, C, and w are known, it can be shown that PPG-LGSI
has the following statistical properties:

1. The vector fpc = Kpw minimizes the mean square error under the restriction
D'UTH = 0.

2. The variance of Ipg = Bpg ¥ (U%PG = BcIBpe) is equal to the covariance between
IpG = Bpgy and H = W'g (omr,, = WTBp).

3. The maximized correlation between H and Ip¢ (also called PPG-LGSI accuracy)

is equal to pg,. = i’f—”:, where 6/,, = \/BpgIBpg and oy = VW Cw are the
standard deviations of Ipg = Py and H = W'g respectively.

4. The variance of the predicted error, Var(H — Ipg) = (1 - p3ﬂm> ai,, is minimal.

The statistical PPG-LGSI properties are equal to the statistical PPG-LPSI prop-
erties, then, the PPG-LGSI is an application of the PPG-LPSI to the genomic
selection context.

6.2.4 Numerical Example

To illustrate the PPG-LGSI theory, we wuse the estimated matrix
R 021 295 5.00
I'=1]295 4241 71.11 and the GEBVs associated with the traits GY (ton
5.00 71.11 121.53

ha™ '), EHT (cm), and PHT (cm), described in Sect. 6.1.3.

It is necessary to estimate the PPG-LGSI vector of coefficients Bpg = Prg + 0,U
(UTU)'d (Egs. 6.9 and 6.10). In Sect. 6.1.3, we showed that the estimated
vectors of coefficients of Prc = Kgw for the null restrictions Uj =[1 0 0]

1 00 ~ = ~
andU’zz[O 1 0}wereﬂ;?G1:w’K’Gl=[3.78 —0.1 —0.1]andPrs =W

K,, =[1.12 0.09 —0.1] respectively, where W =[5 —0.1 —0.1]. This
means that to estimate Ppg = Prc + OcUUTU) " 'd, we need only to estimate
0U(U'TU)'d for both sets of restrictions.

Consider matrix U; =[1 0 0] and let d; = 7.0 be the predetermined
proportional gain restriction for trait 1. We can estimate 65 and U(U'TU)'d as

. 70(UTU) UTw e 33.333
01 = S — =0.036 and U (UTU;) 7.0= 0o |,
7.0(UT'U,) 7.0 0
whence the PPG-LGSI vector of coefficients was
5.0
Bro, = Bro, + 06, Ui (UTU;) 7.0 = | 0.1 |, and the estimated PPG-LGSI

—0.1
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was TPGI = 5.0GEBV, — 0.1GEBV, — 0.1GEBV3. In a similar manner, we can
estimate the PPG-LGSI vector of coefficients wunder restrictions

U, = [é (1) 8] and =17 -=3]. In this case,

R R R R 4 4.97

Brc, = Brg, + 06,U2 (U’ZI‘UZ) d, = | —0.18 | and the estimated PPG-LGSI
—0.10

was 1pg, = 4.97GEBV, — 0.18GEBV, — 0.1GEBV3.

Figure 6.2 presents the frequency distribution of the estimated PPG-LGSI
values for one (Fig. 6.2a) and two (Fig. 6.2b) predetermined restrictions, d = 7
and d' =[7 —3] respectively, obtained in a real testing population for one
selection cycle in one environment. For both restrictions, the frequency distribution
of the estimated PPG-LGSI values approaches the normal distribution.

Assume a selection intensity of 10% (k;, = 1.755); then, for one predetermined
restriction, where U} = [1 0 0] and d; = 7.0, the estimated PPG-LGSI selection
response and expected genetic gain per trait, not inclllding the interval length, were

/
_ P _ r
RpG, =kig\/ B, TBpg, =1.05 and E}GI:kIL:[O.M 9.92 16.54]

v/ B, TBrc,

&2
48
44 gl
40 a
36 {
a2 . \_ PPG-LGSI values for one
;f restriction
20
16
12
8
e s
65
= .
55 =
50
45
40 b
35 PPG-LGSI values for two
:” i \ restrictions
20 |
15 ‘i
10
5 { | |
0 . | P—

Fig. 6.2 Distribution of 380 estimated predetermined proportional gain linear genomic selection
index (PPG-LGSI) values with one (a) and two (b) predetermined restrictions, d = 7 and d’' =
[7 —3] respectively, obtained in a real testing population for one selection cycle in one
environment
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. - . 100
respectively. For two restrictions, with U: [

010
estimated RLGSI selection response and expected genetic gains, not including the
~ A
~ PN ~ r
interval length, were Rpg, =ki;1\/ By, T'Bg, =0.52 and Ej; :k,ﬁp#:

\/ ﬁ;)szﬁPGZ
[0.11 —0.05 0.14] respectively.

Now, we use the simulated data set described in Chap. 2, Sect. 2.8.1 to compare
PPG-LGSI efficiency versus predetermined proportional gain linear phenotypic

} and d'=[7 —3], the

selection index (PPG-LPSI) efficiency. Let Uy =[1 0 0], U, = [ (1) (1) g],
1 00O

and Uy= |0 1 0 O] be the matrices and d; =7, d;, =[7 —3], and d} =
00 10

[7 —3 5] the vectors for one, two, and three predetermined restrictions respec-
tively. Table 6.5 presents the estimated PPG-LPSI and PPG-LGSI selection response
for each predetermined restriction in five simulated selection cycles including
and not including the interval between selection cycles (4 years for the PPG-LPSI
and 1.5 years for the PPG-LGSI); estimated PPG-LPSI and PPG-LGSI accuracy;
and estimated variance of the predicted error (VPE). In each selection cycle, the
sample size was equal to 500 genotypes, each with four repetitions and four
traits. The selection intensity was 10% (k; = 1.755).

The averages of the estimated PPG-LPSI selection response not including the
interval length were 15.14, 14.87, and 13.30, whereas when the interval length was
included, the average selection responses were 3.79, 3.72, and 3.33, for one, two,
and three predetermined restrictions respectively (Table 6.5). The averages of the
estimated PPG-LGSI selection responses not including the interval length for one,
two, and three predetermined restrictions were 14.48, 13.47, and 11.26 respectively,
and when the interval length was included, the selection responses were 9.65, 8.98,
and 7.51 respectively (Table 6.5). These results indicate that when the interval length
was included in the estimation of the PPG-LPSI and PPG-LGSI selection responses,
PPG-LGSI efficiency was greater than PPG-LPSI efficiency, and vice versa, when
the interval length was not included in the PPG-LPSI and PPG-LGSI selection
responses, PPG-LPSI efficiency was higher than PPG-LGSI efficiency.

The averages of the estimated VPE values of the PPG-LPSI for one, two, and
three predetermined restrictions were 22.42, 30.56, and 41.17 respectively, whereas
the estimated VPE values of the PPG-LGSI (see Sect. 6.2.3 for details) were 59.80,
66.95, and 83.98, respectively, that is, in all selection cycles, the VPE of the
PPG-LPSI was lower than that of the PPG-LGSI. This means that for this data set,
the PPG-LPSI was a better predictor of the net genetic merit than the PPG-LGSIL
These results can be explained by observing that the averages of the estimated
PPG-LPSI accuracies were 0.88, 0.86, and 0.77, whereas the estimated PPG-LGSI
accuracies were 0.65, 0.68, and 0.57 for each predetermined restriction, that is, the
estimated PPG-LGSI accuracies were lower than the estimated PPG-LPSI accuracies
for this data set.
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Table 6.6 Estimated PPG-LPSI heritability (ﬁfw), values of Wp = pSIG Lp (Lp =4), and the ratio of

the estimated PPG-LPSI accuracy (py;,) to the estimated P[;’G-LGSI accuracy (Dpy,):
ap= Puiy /P, and values of p = 100 @, —1) for 1, 2 and 3 predetermined restrictions for
five simulated selection cycles

PPG-LPSI heritability Values of Wp Estimated ratio values (p)
Cycle 1 2 3 1 2 3 1 2 3
1 0.84 0.77 0.83 471 |4.13 |372 |—-18.62 |—6.71 |—10.20
2 0.80 0.78 0.83 322 317 |242 18.30 20.54 32.04
3 0.77 0.76 0.8 3.18 |3.09 |245 19.89 21.59 31.42
4

5

0.76 0.75 0.78 280 (271 |2.10 29.16 31.84 33.75
0.75 0.75 0.79 257 249 |1.97 35.26 36.55 42.35
Average |0.72 0.71 0.76 329 312 |2.53 16.80 20.76 25.87

Table 6.6 presents the estimated predetermined PPG-LPSI heritability (E%) values,

Wp = pg L Lp (Lp = 4) values, and ratio of the estimated PPG-LPSI accuracy (9 Hi,)

P
to the estimated PPG-LGSI accuracy (pyy,,, ). i.e., Ap = Dui,/Phi,,- and, finally,
values of p = 100@13 — 1) for one, two, and three null restrictions for five
simulated selection cycles.

The averages of the Wp values for one, two, and three null restrictions were 3.29,
3.12, and 2.53, respectively, whereas the PPG-LGSI interval leng/t\h was 1.5

(Lg = 1.5). This means that the estimated Technow inequality, Ls < pi?’c Lp (see

P
Chap. 5, Eq. 5.18) was true. Thus, PPG-LGSI efficiency in terms of time was greater

than PPG-LPSI efficiency for this data set. These results coincide with those
obtained earlier in this chapter, when we compared PPG-LGSI efficiency versus
PPG-LPSI efficiency in terms of interval length. However, the average values of
p= 100@1: — 1) (see Chap. 5, Eq. 5.15) were, in percentage terms, 16.80%,
20.76%, and 25.85% for each restriction. These latter results indicate that for this
data set, the PPG-LPSI was a better predictor of the net genetic merit than the
PPG-LGSI. This is because the estimated PPG-LPSI accuracies were higher than the
estimated PPG-LPSI accuracies for this data set. We found similar results when we
compared the PPG-LPSI VPE versus PPG-LGSI VPE (Table 6.5).

6.3 The Combined Restricted Linear Genomic Selection
Index

The combined restricted linear genomic selection index (CRLGSI) is based on the
RLPSI (Chap. 3) and combined linear genomic selection index (CLGSI, Chap. 5)
theory. In the RLPSI, the breeder’s objective is to improve only (¢ — r) of ¢ (r < )
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traits, leaving r of them fixed; the same is true for the CRLGSI, but in the latter case,
it is necessary to impose 2r restrictions, i.e., we need to fix r traits and their
associated »r GEBVs to obtain results similar to those obtained with the RLPSI.
This is the main difference between the CRLGSI and the RLPSI.

It can be shown that Cov(Ic, ac) = W is the covariance between the breeding
value vector (e = (g v']) and the CLGSL, I¢ = P tc (see Chap. 5 for details),
where t. =[y" 7']. In the CRLGSIL, we want some covariances between the
linear combinations of ac (U’Cac) and CLGSI to be zero, ie.,
Cov(Ic, Uzac) = U ¥cPe = 0, where Uy is a matrix 2( — 1) x 2t of 1s and Os
(1 indicates that the trait and its associated GEBV are restricted, and O that the trait

. .. C . . .
and its GEBV have no restrictions) and W¢ = [ is a block covariance matrix

r
r I‘]
of a. = [g y'] where C and T are the covariance matrices of breeding (g) and
genomic (y) values respectively. This problem can be solved by minimizing the
mean squared difference between the CLGSI and H (E[(H — IC)Z]) under the
restriction U-¥ P = 0 similar to the RLGSI in Sect. 6.1.

6.3.1 The Maximized CRLGSI Parameters

P I
rr
are the covariance matrices of phenotypic (y) and genomic (y) values respectively.
Based on the Eq. (6.1) result, it can be shown that the CRLGSI vector of coefficients
that minimizes E[(H — Ic)?] under the restriction U/C‘I’cﬁc =0is

LetTc = [ be the block covariance matrix of t. = [y’ y'] where P and T’

Ber = KeBe, (6.13)

where K¢ = [I — Q¢l, Q¢ = Tgltl)c((l)'CTEI(I)C)A(I)'C, D = U Y, and B
= Tgl‘l‘cac (the vector of coefficients of the CLGSI, see Chap. 5 for details);
TEI is the inverse of matrix T, and I is an identity matrix 2¢ x 2¢. When no
restrictions are imposed on any of the traits, Uy is a null matrix and g = Be
(the vector of coefficients of the CLGSI). That is, the CRLGSI is more general
than the CLGSI. Similar to the RLPSI and the RLGSI, matrices K and Q. are
idempotent (K¢ = K2C and Q¢ = ch) and orthogonal (KcQ¢c = QcK¢ = 0), that
is, K¢ and Q¢ are projectors. Thus, we can assume that the CRLGSI has
similar properties to those described for the RLPSI (see Chap. 3 for details)

when matrices W = {g ?} and T = [llz ?} are known.

The maximized selection response and the optimized expected genetic gain per
trait of the CRLGSI can be written as
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k
Rcr = L_j\/ BexrTcBer (6.14)

and

gl Whor
Ly vV ﬁ/CRTCﬁCR

respectively. Although in the RLGSI and the PPG-LGSI the interval between
selection cycles is denoted as Lg, in the CRLGSI it is denoted as L;. This is because
the RLPSI and the CRLGSI should have the same interval between selection cycles.

(6.15)

6.3.2 Numerical Examples

To illustrate the CRLGSI theoretical results, we use a real training maize (Zea mays)
F, population with 248 genotypes (each with two repetitions), 233 molecular
markers, and three traits: GY (ton hafl), EHT (cm), and PHT (cm). Matrices
P and C were estimated based on Egs. (2.22) to (2.24) described in Chap. 2. The
R 045 1.33 2.33
estimated matrices were P= 133 6507 83.71 and
2.33 83.71 165.99
R 0.07 0.61 1.06
C= 061 17.93 2275 |. In a similar manner, we estimated matrix I' using
1.06 22.75 44.53
Egs. (5.21) to (5.23) described in Chap. 5. The estimated matrix was
0.07 0.65 1.05
=065 1062 1425
1.05 14.25 26.37
To estimate the CRLGSI and its associated parameters (selection response,
expected genetic gain per trait, etc.), we need to obtain matrices Tc = {% %}

~ o~

and W¢ = {g %} using phenotypic and genomic information and the esti-

mated CRLGSI vector of coefficients BCR = Kcﬁc, where K¢ = [1— QC],
Qe = T2 B (BT Bc) B, B = UFe, and e — T-"Beac.

We have indicated that the main difference between the RLGSI and the CRLGSI
is matrix Uy, on which we now need to impose two restrictions: one for the trait and
another for its associated GEBV. Consider the (Zea mays) F, population described
earlier and suppose that we restrict trait GY; then, matrix U’C should be constructed as
U. — 1 000 0O

¢ =

. . o
000100l If we restrict traits GY and EHT, matrix U should
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1 00 0 00O
, 1010 0 0 O -
be constructed as U, = 000100l etc. The procedure for obtaining
00 0O0T10O0
matrices K¢ = [I - Q¢], Q¢ = T¢'®¢ (CB’CTEICDC)_I(T)’C, and ®¢ = U W is

similar to that described in Chap. 3.

Let ww=[5 —0.1 —0.1 0 0 O] be the vector of economic weights
and assume that we restrict trait GY; in this case, according to the estimated matrices
IA’, 6, and T' described earlier, the estimated CRLGSI vector of coefficients was
B;ec =[0.076 —0.004 —-0.018 2.353 —0.096 —0.082], whence the esti-
mated CRLGSI can be written as

Tcr = 0.076GY — 0.004EHT — 0.018PHT + 2.353GEBV gy — 0.096GEBVyr
— 0.082GEBVpur

where GEBVgy, GEBVggt, and GEBVpyr are the GEBVs associated with traits
GY, EHT, and PHT respectively. The same procedure is valid for two or more
restrictions.

Figure 6.3 presents the frequency distribution of the estimated CRLGSI values for
one (Fig. 6.3a) and two null restrictions (Fig. 6.3b) using matrices U’C1 and U'CZ, and
the real data set of the F, population. For both restrictions, the frequency distribution
of the estimated CRLGSI values approaches normal distribution.

Suppose a selection intensity of 10% (k;, = 1.755), matrix

U. — 1 0 0 00O

G 0 001 0O
[5 —0.1 —0.1 0 0 O0];then,according to the estimated matrices P, C, and T’
described earlier, the estimated CRLGSI selection response and the estimated
CRLGSI expected genetic gain per trait were Rer = kry/ B/CRTCECR =0.96 and
B

/BT cBer

whereas the estimated CRLGSI accuracy was py;,,, = @ = 0.51 (see Chaps. 3
OH

] and that the vector of economic weights is w' =

E’CR:kI =[0 —-3.53 —-6.03 0 -293 —4.87]respectively,

~

and 5 for details).

Now, we use the simulated data described in Chap. 2, Sect. 2.8.1 to compare
CRLGSI efficiency versus RLGSI efficiency. The criteria for this comparison are the
Technow inequality (Eq. 5.18, Chap. 5) and the ratio of the estimated CRLGSI
accuracy (P, ) to the estimated RLGSI accuracy (py;, ) expressed as percentages
(Eq. 5.17, Chap. 5), ie., p = 1OO@CR — 1), where ap = PHicy/PHr,» for one, two,
and three null restrictions for five simulated selection cycles.

Table 6.7 presents the estimated CRLGSI heritability (EZC), the estimated RLGSI

accuracy (ﬁHIR), the values of W¢ :pflR L; (L; = 4), and the values of
1
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Fig. 6.3 Distribution of 244 estimated combined restricted linear genomic selection index
(CRLGSI) values with one (a) and two (b) null restrictions respectively obtained in a real training
population for one selection cycle in one environment

pP= 100@@ — 1), where Acr = Prilee/Prr, and Py, is the estimated CRLGSI
accuracy, for one, two, and three null restrictions for five simulated selection cycles.

-~

The averages of the W¢ = Hlg L; values for one, two, and three null restrictions

c
were 1.26, 0.92, and 0.59 respectively, whereas the RLGSI interval length was 1.5

(Lg = 1.5). This means that the estimated Technow inequality (Lg < p;l\”‘; L) was

I
not true. Thus, for this data set, RLGSI efficiency in terms of time is not greater than

CRLGSI efficiency. The inequality Lg < %LI was not true because the estimated
I

RLGSI accuracy was very low, whereas CRLGSI heritability was high. Thus, note
that the averages of the estimated RLGSI accuracy for one, two, and three null
restrictions were 0.25, 0.19, and 0.14 respectively, whereas the averages of the
estimated CRLGSI heritability values were 0.72, 0.75, and 0.89 respectively.
Thus, according to these results, when the estimated RLGSI accuracy is very low
and the estimated CRLGSI heritability is high, RLGSI efficiency will be lower than
CRLGSI efficiency in terms of time.
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The last three columns of Table 6.7, from left to right, present the average of the
values of p = IOOQCR — 1), for one, two, and three null restrictions of five

simulated selection cycles. According to these results, CRLGSI efficiency was
53.78%, 78.25%, and 61.25% higher than RLGSI efficiency. Thus, for this data
set, the CRLGSI was a better predictor of the net genetic merit than the RLGSI.

6.4 The Combined Predetermined Proportional Gains
Linear Genomic Selection Index

In the PPG-LPSI described in Chap. 3, the vector of the PPG (predetermined
proportional gains) was d’ = [d; d, ... d,]. However, because the combined
predetermined proportional gains LGSI (CPPG-LGSI) uses phenotypic and GEBV
information jointly to predict the net genetic merit, the vector of the PPG (d.) should
be twice the standard vector d, that is,
d.=[di d» -+ d dy dro -+ do], where we would expect that if
d; is the PPG imposed on trait 1, then d, , ; should be the PPG imposed on the
GEBYV associated with trait 1, etc. In addition, in the CPPG-LGSI, we have three
possible options for determining (for each trait and GEBV) the PPG, e.g., for trait
1,dy=d,,,d >d,.,ord, <d,, ;. This is the main difference between the
standard PPG-LPSI described in Chap. 3 and the CPPG-LGSI.

6.4.1 The Maximized CPPG-LGSI Parameters

It can be shown that the vector of coefficients of the CPPG-LGSI can be written as
Bcr = Ber + Ocrdep, (6.16)
where

_ BeDe(@, T @) e

Ocp — -1
de (PLT ' @) de

(6.17)

is a proportionality constant. In addition, in Eq. (6.16), fcr = KB is the vector of
~ -1
coefficients of the CRLGSI (Eq. 6.13), 8cp =T '®@c(P T '®c) de,
@, =U.¥., and B- =T:'Wcac (the vector of coefficients of the CLGSI).
When 0cp = 0, Bep = Pk, and if 6 = 0 and U is the null matrix, then fcr = Pe.
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Thus, the CPPG-LGSI is more general than the CRLGSI and the CLGSI, and
includes the latter two indices as particular cases. In addition, it can be shown that
the CPPG-LGSI has the same properties as the PPG-LPSI described in Chap. 3.

The maximized selection response and the expected genetic gain per trait of the
CPPG-LGSI can be written as

kr /
RCPZE ﬁ/CPTCﬁCP (6-18)

and

B, Whor
L vV ﬁ/CPTCﬁCP

respectively. Although in the RLGSI and the PPG-LGSI the interval between
selection cycles is denoted as Lg, in the CPPG-LGSI it is denoted as L;. This is
because the RLPSI and the CPPG-LGSI should have the same interval between
selection cycles because they use phenotypic information to predict the net genetic
merit.

(6.19)

6.4.2 Numerical Examples

Similar to the CRLGSI, to illustrate the CPPG-LGSI results we use the
real training maize (Zea mays) F, population with 248 genotypes,
233 molecular markers, and three traits—GY (ton hafl), EHT (cm), and PHT

N 045 1.33 2.33 R 0.07 0.61 1.06
(cm)—where P = | 1.33 65.07 83.71 |, C= |0.61 1793 22.75], and
2.33 83.71 165.99 1.06 22.75 44.53

0.07 065 1.05
=065 1062 1425 were the estimated matrices of P, C, and T’
1.05 14.25 26.37
respectively.
We can obtain the estimated CPPG-LGSI vector of coefficients as Bcp = ECR +

/écpgcp (Eq. 6.16). Suppose that we restrict trait GY and its associated GEBV
1 0 00 0O
0001 O00O0

d-=[7 3.5]. In Sect. 6.3.2, we showed that the estimated CRLGSI vector of
coefficients was Pr = [0.076 —0.004 —0.018 2.353 —0.096 —0.082];
then, we only need to calculate O¢p and 8¢p to obtain the vector of coefficients f -p.

with matrix U’Cl = and the vector of predetermined restriction
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Let ww=[5 —0.1 —0.1 0 0 0] be the vector of economic weights. It
can be shown that 8cp = 0.00030 is the estimated value of the proportionality
constant and 8, =[0.56 —77.28 40.89 49.44 77.28 —40.89]. Thus,
the estimated CPPG-LGSI vector of coefficients was
E'CR =[0.76 —0.030 —0.004 2.369 —0.070 —0.096], whence the esti-
mated CPPG-LGSI can be written as

Tcp = 0.076GY — 0.03EHT — 0.004PHT + 2.369GEBV gy — 0.070GEBVgyr
— 0.096GEBVpyr,

where GEBVgy, GEBVggt, and GEBVpyr are the GEBVs associated with traits
GY, EHT, and PHT respectively. The same procedure is valid for two or more
restrictions. Note that because §Cp = 0.0003 is very small, the estimated CPPG-
LGSI and CRLGSI values were very similar.

Figure 6.4 presents the frequency distribution of the estimated CPPG-LGSI

values for one (Fig. 6.4a) and two predetermined restrictions (Fig. 6.4b) using
0 0 0O

matrices U and Up, = the vectors of the PPG

0
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Fig. 6.4 Distribution of 244 estimated combined predetermined proportional gain linear genomic
selection index (CPPG-LGSI) values with one (a) and two (b) predetermined restrictions, d = 7 and
d' =[7 -—3] respectively, obtained in a real training population for one selection cycle in one
environment
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d, =[7 3.5]andd,, =[7 -3 3.5 —1.5], and the real data set F,. For both
restrictions, the frequency distribution of the estimated CPPG-LGSI values
approaches normal distribution.

Suppose a selection intensity of 10% (k; = 1.755) and that we restrict trait GY and
its associated GEBV. The estimated CPPG-LGSI selection response and /e\xpefted

!
=~ PPN =~ L 4
genetic gain per trait were Rcp = ki\/BrpTcPep = 0.98 and Ep = k; AﬁciPAA
\/ BerTBer
=1[0.007 —-3.647 —5.760 0.004 —2.829 —4.711] respectively, whereas

the estimated CPPG-LGSI accuracy was py;,,, = %ler _ 1,52, Once again, because
OH

§Cp = 0.0003, the latter results are very similar to the CRLGSI results.

Now, we use the simulated data described in Chap. 2, Sect. 2.8.1, to compare
CPPG-LGSI efficiency versus PPG-LGSI efficiency. The criteria for this compari-
son are the Technow inequality (Chap. 5, Eq. 5.18) and the ratio of CPPG-LGSI
accuracy (ppy,,) to PPG-LGSI accuracy (py;,) expressed as percentages (Chap. 5,
Eq. 5.17), p = 100 @Cp — 1), where dcp = PHic,/Pur, for one, two, and three null
restrictions in five simulated selection cycles.

Table 6.8 presents the estimated CPPG-LGSI heritability ( ﬁ% ), the

P g’c L (L, = 4) and

I
P = 100(Zcp — 1), where p = ., /P, and pyy, is the estimated CPPG-LGSI
accuracy, for one, two, and three null restrictions in five simulated selection cycles.
The averages of the estimated Wcp values for one, two, and three predetermined
restrictions were 3.60, 3.31, and 2.50 respectively, whereas the PPG-LGSI interval
lengthAwas 1.5 (Lg = 1.5). This means that the estimated Technow inequality,

Ls < ﬂg@ L;, was true. Thus, for this data set, PPG-LGSI efficiency is greater

estimated PPG-LGSI accuracy (pg;,,), values of Wep =

than CPIgG—LGSI efficiency in terms of time.

The last three columns of Table 6.8, from left to right, present the values of
p =100 @Cp — 1), for one, two, and three null restrictions in five simulated selec-
tion cycles. The average values of p = 100 @Cp — 1) for each of the three restric-
tions, in percentage terms, were 37.19%, 32.82%, and 37.08% respectively. This
means that the CPPG-LGSI efficiency was greater than PPG-LGSI efficiency at
predicting the net genetic merit.
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Chapter 7 ®)
Linear Phenotypic Eigen Selection Index s
Methods

Abstract Based on the canonical correlation, on the singular value decomposition
(SVD), and on the linear phenotypic selection indices theory, we describe the eigen
selection index method (ESIM), the restricted ESIM (RESIM), and the
predetermined proportional gain ESIM (PPG-ESIM), which use only phenotypic
information to predict the net genetic merit. The ESIM is an unrestricted linear
selection index, but the RESIM and PPG-ESIM are linear selection indices that
allow null and predetermined restrictions respectively to be imposed on the expected
genetic gains of some traits, whereas the rest remain without any restrictions. The
aims of the three indices are to predict the unobservable net genetic merit values of
the candidates for selection, maximize the selection response, and the accuracy,
and provide the breeder with an objective rule for evaluating and selecting several
traits simultaneously. Their main characteristics are: they do not require the eco-
nomic weights to be known, the first multi-trait heritability eigenvector is used as its
vector of coefficients; and because of the properties associated with eigen analysis, it
is possible to use the theory of similar matrices to change the direction and propor-
tion of the expected genetic gain values without affecting the accuracy. We describe
the foregoing three indices and validate their theoretical results using real and
simulated data.

7.1 The Linear Phenotypic Eigen Selection Index Method

The conditions described in Chap. 2 for the linear phenotypic selection index (LPSI)
are necessary and sufficient for constructing the linear phenotypic eigen selection index
method (ESIM). The ESIM index can be written as I = b’y, where b’ = [b; b, --- b)]
is the unknown index vector of coefficients, ¢ is the number of traits, and

Y=I[y Y - ¥]isaknown vector of trait phenotypic values. The objectives

of ESIM are:

1. To predict the net genetic merit H = w'g, where g =[g, g ... g&] is
the unknown vector of true breeding values for an individual and
w =[w; wy ... w]isa vector of unknown economic weights.
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2. To maximize the ESIM selection response and the accuracy.

3. To select individuals with the highest H values in each selection cycle as parents
of the next generation.

4. To provide the breeder with an objective rule for evaluating and selecting several
traits simultaneously.

Although in the context of the LPSI w is a known and fixed vector of economic
weights, in the ESIM w is fixed, but unknown and its values must be estimated in
each selection cycle. This latter assumption is the fundamental difference between
the ESIM and the LPSI and implies that the ESIM is more general than the LPSIL.
Thus, when w is known, the LPSI and ESIM give the same results.

7.1.1 The ESIM Parameters

The theoretical ESIM selection response can be written as

R] = k]GHpHI, (71)

where k; is the standardized selection differential (or selection intensity),
oy = VW Cw is the standard deviation of H, py; = \/v%:vicxl/)ﬁ’_ﬁ) is the correlation,

and w'Cb = o the covariance between H and [ respectively, 6; = Vb'Pb is the
standard deviation of I, C is the covariance matrix of the true breeding values (g),
and P is the covariance matrix of the trait phenotypic values (y).

In the ESIM, it is assumed that k; and o are fixed, and that C and P are known;
(W Cb)?
(w'Cw)(b'Pb)
respect to vectors b and w under the restrictions 5%, = w/Cw, 5? =b'Pb, and 0 < 012;,,
o2<00, where 67, = W' Cw is the variance of H = w'g and 67 = b'Pb is the variance

of I = b’y. That is, it is necessary to maximize the function

thus, to maximize Eq. (7.1), it is necessary to maximize pfﬂ = with

f(b, W, p1, ) = (WCb)* — u(b'Pb — 67) — p(WCw — o%) (7.2)

with respect to b, w, y, and ¢, where u and ¢ are Lagrange multipliers. The
derivative results of Eq. (7.2) with respect to b, w, u, and ¢ are:

(W' Cb)Cw — uPb = 0, (7.3)
(W Cb)Cb — ¢Cw = 0, (7.4)
b'Pb = 67 and W Cw = o7, (7.5)

respectively, where Eq. (7.5) denotes the restrictions imposed for maximizing p%”. It

can be shown that wW'Cb = y/uc? = \/ o, = 6'/%; then, Egs. (7.3) and (7.4) can be
written as
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0
0">Cw ——Pb=0 (7.6)
o7
and
1/2 0
0'/-Cb ——Cw =0, (7.7)
o
1/2
respectively. Equation (7.6) is equal to Cw = —-Pb; then, vector w can be written
o7
as
91/2
wg =-—C'Pb. (7.8)
o7

By the result of Eq. (7.8), the net genetic merit in the ESIM context is Hg = Wy.g
wCb ~ Vb'Pb
VWCweVb'Pb  Vb'PC~'Pb
Now, it is necessary to find the vector b that maximizes py,;, which should be the
ESIM index vector of coefficients. Substituting w with wg in Eq. (7.7), we get

and the correlation between Hg and 1 is py ; =

2
w;Cb
Cb — %Pb =0, (7.9)
010y,
/ 2
(WCb) 2 :
where ~————=pj;; is the square of the correlation between ESIM and
10H,

Hp = wig. Let p},ﬁ, = A%, then Eq. (7.9) can be written as

(P~'C — 2;1)bg =0, (7.10)

and the optimized ESIM index is /g = b/.y. Note that in Eq. (7.10) P 'C is the multi-
trait heritability. By Egs. (7.8) and (7.10), the maximized correlation between Hg
= wyg and /5 = byy (or ESIM accuracy) can be written as

o]

PHgly 157 (7.11)
E

where oj, = \/b’EPbE is the standard deviation of the variance of I = b'Ey, and

on, = \/b;PC'Pbg is the standard deviation of the variance of Hp = w}g.
Hereafter, we write Eq. (7.11) as pg = py,;, or Ag = py, ;. to simplify the notation.

An additional restriction on Eq. (7.10) is b'b = 1, because p, ;. is invariant to the
scale change and because if by is an eigenvector of the multi-trait heritability matrix
P~'C, vector aby is also an eigenvector of P~ 'C for all real values of a (Mardia et al.
1982). This means that in the ESIM the magnitude of an eigenvector is unimportant;
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only the direction matters (Watkins 2002). Equation (7.10) can also be written as
Cbg = ﬂéPbE, which is called the generalized eigenvalue problem (Watkins 2002).
In the latter case, bz is called a generalized eigenvector and li a generalized
eigenvalue. The generalized eigenvalues may not exist; that is, they may be infinite.
However, if P is positive definite and has the same size as C, all eigenvalues of P~'C
exist and are finite (Gentle 2007). Matrix P is symmetric and positive definite and its
eigenvalues are different with a probability of 1 if the number of genotypes is higher

than the number of traits (Okamoto 1973).
/

b'Cb
If the heritability of the ESIM is h% = YPb’ then another way of writing Eq. (7.1)
is
b'Ch
Ry = kjoh? = k,\/ﬁ, (7.12)
which is similar to the univariate breeder’s equation (see Chap. 2, Eq. 2.4). All the
parameters of Eq. (7.12) were defined earlier.

. . . b/Cb . .
The derivative of the ratio NG (Eq. 7.12) with respect to b can be written as

2(b’Pb)'>Cb — (b’Pb)~"2(b’Cb)Pb = 0, and, except by a proportionality constant,
the result is

(P*lc - h%EI) b = 0, (7.13)

/

b},.Cb
where h == b‘? ij is the maximized ESIM heritability. Let A7 = p = h; , then
E

Eq. (7.13) is equal to Eq. (7.10) and can be written as b, Cbz = A2b,Pb, whence
the maximized p% in terms of h%E is

b),Chy
b, Pb;’

o= (7.14)

which should give a equivalent result to that of Eq. (7.11).
By Eq. (7.11) and op, = \/b’EPC_leE, the maximized ESIM selection

response and expected genetic gain per trait can be written as

R = k;\ /b Pby (7.15)

and

E 7](&
E 1 rngE’

respectively. Equations (7.15) and (7.16) do not require the economic weights to be
known. In the original derivation of the ESIM, Cerdén-Rojas et al. (2008) imposed the

(7.16)
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restrictions aﬁ,ﬁ =1 and G%E = 1. Under these restrictions, iz = w;Cbg and
Eq. (7.15) can be written as Ry = k;Ax. When G%IE # 1 Eq. (7.15) is equal to

Ri = ko, Ap, where oy, = /bPC™'Pbg and A} = p}. = hj,.

Let T = P~'C and A7 = i ; then, Eq. (7.13) can be written as TIbg = 4;Ib,
where I = F'F is an identity matrix of size ¢ X f (= number of traits), and
F =diag{f, f, --- f:} is a diagonal matrix with values equal to any real
number, except zero values. Thus, another way of writing Eqgs. (7.10) and (7.13) is

(T, — 2Z1)p =0, (7.17)

where T, = FTF ' and p=Fbg Tand T, = FTF ' are similar matrices and both
have the same eigenvalues but different eigenvectors (Harville 1997). When the
F values are only 1s, vector by is not affected; when the F values are only —1s,
vector by changes its direction, and if the F values are different from 1 and —1,
matrix F changes the proportional values of bg. In practice, b is first obtained from
Eq. (7.13) and then multiplied by matrix F to obtain p = Fbpg, that is, p is a linear
transformation of by. Matrix T, = FTF ' is called the similarity transformation,
and matrix F is called the transforming matrix (Watkins 2002). Cerén-Rojas et al.
(2006) introduced an alternative procedure for modifying the by signs that is a
particular case of Eq. (7.17). Vector § = Fbg can substitute bz in Egs. (7.15) and
(7.16); and in this case, the optimized ESIM index should be written as I = fy.

7.1.2  Statistical ESIM Properties

The ratio of the index accuracies and the variance of the predicted error (VPE) are
good criteria for comparing the index efficiencies for predicting the net genetic merit
(see Chap. 2 for details). In Eq. (7.11), we obtained the accuracy of the ESIM; now,
we derive the VPE of the ESIM.

The variance of Iy = bjy (o7 ) and the covariance between Hp = wyg and
Ir = byy(op,:,) are the same, that is,

o7, = bPbg and 6,1, = W;Chbg = b;PC~'Cb; = b};Pbg, (7.18)

respectively; that is, (;%E = ou,1,- By Eq. (7.18), the VPE of the ESIM can be written
as

E{(HE - 15)2} = 6%15 + 612E — 2641, = 0y — O'%E =(1- pé)alzh. (7.19)

E
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The relative effectiveness of Ir = by in predicting Hr = wjg is the ratio of
(1 —pé)afqﬁ over ”%IE’ i.e., 1 —p2; thus, the greater p7 is, the more effective
Ir = by is at predicting Hr = wjg. The mean squared effect of I on Hp, or the
total variance of Hy explained by I is

o1, = PrOH, (7.20)

and the relative mean squared effect can be measured by pé (Anderson 2003). If in
Eq. (7.20) pz = 1, 612E = 01215, and if p; = 0, 6125 = 0. That is, the variance of Hg
explained by I is proportional to pfg, and when p,25 isclose to 1 ,ai is close to aﬁ,ﬁ, and
if p2 is close to 0, G%E is close to 0. All these results are valid for any index associated
with the ESIM, such as the restricted ESIM (RESIM) and the predetermined
proportional gains ESIM (PPG-ESIM), which are described in the following sections
of this chapter.

7.1.3 The ESIM and the Canonical Correlation Theory

Canonical correlation theory describes the associations between two sets of variables
(Hotelling 1935, 1936) and searches for linear combinations, called canonical vari-
ables, of each of two sets of variables having maximal correlation. The vector of
coefficient of these linear combinations is called the canonical vector and the
correlations between the canonical variables is called the canonical correlation
(Wilms and Croux 2016).

To see how the ESIM and the canonical correlation theory are related, note that
vectors y and g (Eq. 7.1) can be ordered in a new vector x as x' = [y’ g'], whence

C C
linear combination of y(/g = bgjy) and the jth linear combination of g(Hg = ngg) is

. . . |PC . .
the covariance matrix of X is ] . One measure of the association between the jth

the jth canonical correlation (4;) value obtained from equation (P_' C- ﬂ?l) bg =0,

where bg; is the jth canonical vector (j = 1, 2---, ) of matrix P 'C, and
wg, = C'Pbg,. Thus, in the canonical correlation context, Iy = by yand Hp = W,
g are canonical variables.

In the ESIM, the first eigenvector (bg, ) of matrix P 'C should be used on
Ig = by y; the first eigenvalue (43) and bg, of P~'C should be used on the ESIM
selection response and on the ESIM expected genetic gain per trait, because, in this
case, the ESIM has maximum accuracy compared with other indices, such as the
LPSI. The latter results in this subsection imply that the sampling statistical properties
associated with the canonical correlation theory are also valid for the ESIM.



7.1 The Linear Phenotypic Eigen Selection Index Method 155

7.1.4 Estimated ESIM Parameters and Their Sampling
Properties

The estimated covariance matrix of the true breeding values (C) and that of the trait
phenotypic values (P) are denoted as C and P respectively; they can be obtained by
restricted max1mum likelihood using Egs. (2 22) to (2.24) described in Chap. 2. With
matrices C and P, we constructed matrix T = P~ 'C and equation

(T —231)bg =0, (7.21)
j=1,2,--- t, where t is the number of traits in the ESIM index. Note that ;1\% is

positive only if P is positive definite (all eigenvalues pos1t1ve) and C is positive
semidefinite (no negatlve e1genvalues) in addition, as P'C is an asymmetric
matrix, the values of bE, and l should be obtained using the singular value
decomposition (SVD) theory (Anderson 2003).

Matrix T is square and asymmetric of order ¢ X ¢ and rank ¢< minimum (p, c),
where p and ¢ denote the rank of P'and C respectively; the rank of T is equal to
conly if Cis square and nonsingular. Thus, matrix T has a maximum of q eigenvalues
different from zero (Rao 2002). In addition, TT and T'T are symmetric matrices, but
TT #* T'T. Using the SVD theory, matrix T can be written as

T = V,L'/?V), (7.22)

where V; (V| V; =V, V| =1,) and V, (V,V, = V,V; = L) are matrices with the
eigenvectors of matrices TT and T'T respectively; L' is a diagonal matrix with
the square root of the eigenvalues (;1\1251 > Zéz >0 > Eq > 0) of either TT' or T'T
(the eigenvalues of TT” and T'T are the same). The entries Iél > ;1%2 > > ;1\1254
> 0of L' are uniquely determined, and they are called the singular values of T. The
columns of V; are orthonormal vectors called left singular vectors of T, and the
columns of V, are called right singular vectors (Watkins 2002).

Estimators BEI and ;1%] of the first eigenvector bg, and the first eigenvalue }%]
respectively are the first column of matrix V; and the first diagonal element of matrix
L', Thus, because TT isa symmetric matrix, the maximum likelihood estimators
Eé] and BEI in the ESIM context can be obtained from

(TT' - iiL)bg, =0, (7.23)

where ﬁj = 145,’ j=1,2, ..., t In the asymptotic context, ;1%1 and BEI are consistent
and unbiased estimators (Anderson 2003).

The latter results allow the ESIM index (/g = bgy) as TE = l;’ £, to be estimated.
The estimator of the maximized ESIM selection response and expected genetic gain
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- Chb
per trait are Ry = k;\/b'z, Pby, and Ej = e
\/b' g, Pby,

estimator of the maximized ESIM accuracy is /151, which should be similar to the
estimator of the square root of the maximized ESIM heritability.

In the asymptotic context, the estimator of bg; ( BE/‘) has multivariate normal
distribution with expectation E (bg;) = bg; and variance

respectively, whereas the

- 1 1 YRy Y s Wy
Var(bs) = 5-bibp; + (1-2)> B by, (7.24)

i (/1?9[ — 121)2

and, for i # j, the covariance between BE; and IA)Ej can be written as
(1-4)0-2) (3 +4)

2
n (zg,. - zgj)

Where n is the number of 1nd1v1duals or genotypes (Anderson 1999). The variance of

bEj and the covariance between bEl and bE] depend not only on n, but also on

eigenvalues 4% and 12 £~ Suppose that Y B> A% then, when AEJ is very close to 1,

COV(E)\EZ‘7 BEJ) = bEjb/Ei’ (725)

Var (BE]) ~s b;by; (“~”denotes an approximation) and Cov (BEi, BEJ) is very close
to 0. By the result of Eq. (7.24), the variance of the first eigenvector (BEI) of P~IC

~ 1 ro2 2
can be written as Var(Bz1) = 2-beiblpy+ 4 (1 - 42,) > %b@bgj If the
J= Ej

~ 1
first eigenvalue A7, of P~'C is very close to 1 (1, =~ 1), Var (bg) = 2—b51b%l and
n
COV(bEl,bEj) ~ 0. N
In the asymptotic context, the jth estimator (Ag;) of the canonical correlations has
normal distribution with expectation E (/1 Ej) ~ Agj and variance

(1-4 .)2
Var (i) ~ TEJ (7.26)

whereas the jth estimator of the square of the canonical correlations ;I%i has normal
distribution with expectation £ @j) ~ ﬂéj and variance

Var(3?) ~ M. (7.27)
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In addition, for i # j, the correlation between 1125] and 21251 is zero, i.e., Corr
(;1\125,,;1\2 ) = 0 (Bilodeau and Brenner 1999; Muirhead 2005)

Equation (7.26) implies that under the restrictions aH =1 and a? =1, the
expectation and variance of Ry =k/Ap are E(Rg) ~ kiApr and Var(Rg) ~
20152 )2 ~
M respectively. However, obtaining the expectation and variance of Rg = k;
EHEEl or R £ =kr\/ l/)\’ EIIA’IA)EI is more difficult, because in both equations there are
two estimators: ¢y and A in the first one, and P and bg; in the second one.

7.1.5 Numerical Examples

We compare ESIM efficiency versus LPSI efficiency using a real data set from
commercial egg poultry lines obta.lned from Akbar et al. (1984). The estimated
phenotypic (P) and genetic (C) covariance matrices among the rate of lay (RL,
number of eggs), age at sexual maturity (SM, days) and egg weight (EW, kg), were
R 240.57 -95.62 2.07 R 2986 —17.90 —4.13
P=|-9562 16720 458 [andC = | —-1790 18.56 1.49 | respec-
2.07 4.58  22.80 —4.13 1.49 9.24
tively. The number of genotypes and the vector of economic weights were n= 3330
andw' =[19.54 —3.56 17.01]respectively, whereas the selection intensity was
10% (k; = 1.755) for both indices.
The estimated LPSI vector of coefficients was by =wP 'C =
[1.82 —1.38 3.25], whereas the estimated selection response, expected
genetic gain per trait, accuracy, and herital)ility of the LPSI were

. ~ < ~ bC
Rs = 1.755\/b'sPbs = 7491, E{= 1.755——=-"— =270 —2.20 0.84],

\/b/sPbyg

W DR VN
Ps = L{’bs = 0.362, and ﬁé = bAS(jAbS = 0.143 respectively.

vV WwWCw b’ sPbg

Note that because in the ESIM context b’ Eb g = 1, the best way of comparing

ESIM results versus LPSI results is when the LPSI coefficient vector is normalized,
i.e., when the LPSI coefficient vector is equal to Bs* = BS / l;’ SBS and then E’;’B;
= 1; however, it can be shown that the normalization process only affects the
eAstimated LPSI selection response because Ain that case, Rg = 74.91 is divided by
b’ SBS. For example, for this data set result, b’ 565 = 15.76; then, the estimated LPSI

selection response using BS* = BS /l;’slA)S is IA?S = 5' 1= = 4.75, whereas the rest of

the estimated LPSI parameters are the same. When 0 < b’SbS <land1<R s, the
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values of IAQS increase, but when 1 < b’ SBS, the values of IAi’S decrease, as in the
example.

The product b Sb s does not affect pg because it is invariant to scale change. Also,

b’ SbS does not affect h and ES because b sbs appears in the numerator and
denominator of both est1mated parameters.

In the ESIM, the sign and proportion of the expected genetic gain values for traits
RL, SM, and EW should be in accordance with the breeder’s interest. For example, if
the breeder’s interest is that the expected genetic gain per trait for RL should be
positive and negative for SM, the sign and proportion of the values of the first
eigenvector should be modlﬁed using a linear combination of the estimated first
eigenvector b E,» 1.€., [i Fb £, to achieve expected genetic gain per trait values in
RL and SM according to the breeder’s interest.

The information needed to obtain the estimated ESIM parameters are matrices T=

o 0.1102 —0.0405 —0.0280 . 0.0146 —0.0073 —0.0338
P~'C=|-0.0390 0.0864 —0.0184|andTT = | —0.0073 0.0093 0.0041
—0.1833 0.0517 0.4115 —0.0338 0.0041 0.2056

We need to find the eigenvalues and eigenvectors of equation (TT —H; )b E; =0,
where 1 K 7/1Ej, to obtain matrices V; and L1/2, which form matrix T =V LI/ZV/ .
—0.1701 0.6818 0.7115
Matrix Vyisequalto Vi = | 0.0259 —0.7187 0.6948 |, whereas the diag-
0.9851 0.1366  0.1046
onal elements of matrix L are 0.2115, 0.0155, and 0.0025, that is, matrix

04599 0 0 R
L'2=| 0 01244 0 |. Thus, i, =4} =02115, 2% = 0.4599,
0 0 0.0498

and the estimated ESIM accuracy was IEI = 0.6782. The estimated ESIM eigen-
vector of coefficients is the first column of matrix V,;, ie.,
by =[—0.1701 0.0259 0.9851], and the estimated ESIM index can be

constructed as TE = —0.1701RL + 0.0259SM + 0.9851EW.
The estimated ESIM selection response and expected genetic gain per trait were

b' C
REf1755\/b’EleElf9 54 and E%,17557 [—3.10 1.61 3.18]

\/bEleEl

respectively.  Because the estimated LPSI selection response was

~ 7491
RSZH:4'75’ the estimated ESIM selection response was higher than the

estimated LPSI response. In addition, the estimated LPSI expected genetic gain
per trait was E,= [2.70 —2.20 O. 84] Now, suppose that the breeder’s interest is to
increase RL and decrease SM; then, E isa good result but E/ £ 1s s wrong.
We can change the sign and proportion of E, ¢ by transforming b E, into ﬁ = Fbyg,
-9 0 0
using a convenient matrix F such as F=| 0 1 O/f. In such a case
0 0 1
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p'=b,F=[1531 0026 0981], Ry=1.755\/p'Pp=4244, and E =

1.755 B/AC =[2.990 —1.85 0.205]. However, vector E’ was not normalized.
\/ B'PB
To normalize B’ we need to divide it by p'p = 3.314, but p'p should only affect

~ ~ 42.44
Rg = 42.44, which should be divided by 3.314, that is, Rg = 3314 12.806.

According to the theory of similar matrices (Harville 1997), the estimated maxi-
mized ESIM accuracy, /AIEl = 0.6782, should not be affected by matrix F.

We can compare ESIM efficiency versus LPSI efficiency to predict the net
genetic merit using the ratio of tlle estimated ESIM accuracy IE, =0.6782 to
~ ) /151 0.6782
LPSI accuracy pg = 0.362, i.e., ﬁ_s = 0362
prp =100(1.873 — 1) = 87.3 (see Chap. 5, Eq. 5.17). According to the latter
result, the ESIM is a better predictor of the net genetic merit and its efficiency
is 87.3% higher than that of the LPSI for this data set.

Now, we compare ESIM efficiency versus LPSI efficiency using the data set
described in Sect. 2.8.1 of Chap. 2. From this data set, we ran five phenotypic
selection cycles, each with four traits (7}, T, T3, and Ty), 500 genotypes, and four
replicates for each genotype. The economic weights for 7', T,, T3, and T, were
1, —1, 1, and 1 respectively. In this case, matrix F is an identity matrix of size 4 x 4
for all five selection cycles.

Table 7.1 presents the estimated LPSI, the restricted LPSI (RLPSI), and the
predetermined proportional gain LPSI (PPG-LPSI) selection response (the latter
two for one, two, and three restrictions) for five simulated selection cycles when
their vectors of coefficients are normalized. Table 7.1 also presents the estimated
ESIM, the RESIM and the PPG-ESIM selection response for one, two, and three
restrictions for five simulated selection cycles. The selection intensity was 10%
(k; = 1.755) for all five selection cycles. In this subsection, we compare only LPSI
results versus ESIM results. The estimated LPSI selection response when the vector
of coefficients was not normalized was described in Chap. 2 (Table 2.4). The
averages of the estimated LPSI and ESIM selection responses were 4.70 and 6.31
respectively.

Table 7.2 presents the estimated ESIM expected genetic gain per trait, accuracy (9 ),
and the values pp = IOO@E — 1), where Ay = Pe/Ps is the ratio of pp to the
estimated LPSI accuracy (p), expressed as percentages. Table 7.2 also presents the
accuracy of the PPG-ESIM and the estimated ratio (P py) of the estimated PPG-ESIM
accuracy to the estimated PPG-LPSI accuracy, expressed as percentages, for one, two,
and three predetermined restrictions for five simulated selection cycles. In this subsec-
tion, we use only the estimated ESIM expected genetic gain per trait and p = 100

= 1.873, or in percentage terms,

(ZE — 1) to compare ESIM efficiency versus LPSI efficiency.
The estimated LPSI expected genetic gains per trait were presented in Chap. 2,
Table 2.4. According to the results shown in Table 2.4, the averages of the estimated
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Table 7.1 Estimated linear phenotypic selection index (LPSI), restricted null LPSI (RLPSI), and
predetermined proportional gains LPSI (PPG-LPSI) selection responses when their vectors of
coefficients are normalized; estimated eigen selection index method (ESIM), restricted null ESIM
(RESIM), and predetermined proportional gain ESIM (PPG-ESIM) selection responses for one,
two, and three restrictions for five simulated selection cycles

PPG-LPSI response for one, two,
RLPSI response for one, two, | and three predetermined
and three null restrictions restrictions
Cycle LPSI response | 1 2 3 1 2 3
1 4.78 4.79 4.44 5.06 4.78 5.41 3.18
2 4.84 4.51 4.39 5.15 4.84 5.19 3.35
3 4.59 4.51 4.39 5.26 4.59 4.83 3.53
4 4.80 4.15 4.06 4.71 4.80 4.96 2.64
5 4.48 4.19 4.22 441 4.48 4.14 2.99
Average |4.70 4.43 4.30 4.92 4.70 491 3.14
PPG-ESIM response for one, two,
RESIM response for one, two, | and three predetermined
and three null restrictions restrictions
Cycle ESIM response | 1 2 3 1 2 3
1 8.88 4.78 4.64 4.57 8.88 7.1 7.4
2 6.13 4.86 4.69 4.69 6.13 6.04 73
3 5.44 4.96 4.79 4.68 5.44 5.87 6.91
4 4.84 4.30 4.19 4.19 4.84 491 5.77
5 6.24 3.79 3.78 3.78 6.24 7.49 6.39
Average |6.31 4.54 442 4.38 6.31 6.28 6.75

LPSI expected genetic gain per trait T1, T2, T3, and T4 for five simulated selection
cycles were 7.26, —3.52, 2.78, and 1.58, whereas according to the results of
Table 7.2, the averages of the estimated ESIM expected genetic gains per trait
were 5.67, —2.67, 1.81, and 2.9 respectively. This means that the estimated LPSI
expected genetic gain for traits T1, T2, and T3 was higher than the estimated ESIM
expected genetic gain for those traits.

The average of the p, = 100 (EE — 1) values was 9.76 for all five selection cycles
(Table 7.2). The latter result is not in accordance with the LPSI and ESIM expected
genetic gain per trait; however, note that the p, values are associated with the
estimated LPSI and ESIM selection responses (Table 7.1), not with the expected

. . . ~ D, R ~ ~ .
genetic gain per trait, because 1p = ’? ~ ,\—E, where Rr and Ry are the estimated
Ps Rs

ESIM and LPSI selection responses respectively. Thus, the p pvalues indicate that the
efficiency of the ESIM and that of the LPSI were very similar because the former
was only 9.76% higher than the latter for this data set.

R
The equality @ = IAQ—E is true only when the denominators of both estimated
Ps S

correlations are the same, as in the linear selection indices described in Chaps. 2-6.
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Table 7.2 Estimated eigen selection index method (ESIM) expected genetic gain per trait,
accuracy (pj), and ratio of pj to the estimated LPSI (data not presented) accuracy (py), expressed

in percentage terms, py = 100 (EE — 1) (where g = Pe/Ps)

ESIM expected genetic gain per trait ESIM

Cycle T1 T2 T3 T4 accuracy P values (in %)

1 7.81 —4.62 3.11 2.21 0.98 8.11

2 5.15 —2.98 2.31 3.48 0.96 9.34

3 4.74 —1.15 0.66 3.79 0.97 10.94

4 3.94 —2.44 0.74 3.34 0.95 10.04

5 6.68 -2.15 2.24 2.05 0.95 10.35

Average 5.67 —2.67 1.81 2.97 0.96 9.76
PPG-ESIM accuracies for one, two, and | pp values (in %) for one, two, and three
three predetermined restrictions predetermined restrictions

Cycle 1 2 3 1 2 3

1 0.98 0.96 0.99 9.34 8.90 20.99

2 0.96 0.96 0.98 10.94 12.46 25.20

3 0.97 0.97 1.00 10.04 9.71 41.43

4 0.95 0.94 0.99 10.35 13.98 28.95

5 0.98 0.96 0.99 9.34 8.90 20.99

Average 0.96 0.96 0.99 9.76 11.71 29.03

Estimated PPG-ESIM accuracy (pp) and estimated ratio (pp) of the pp to the estimated accuracy of
the PPG-LPSI (data not presented), expressed in percentages (%), for one, two, and three
predetermined restrictions for five simulated selection cycles

R b sPby R b :Pbs R ———
Note that pg = “——= and pp = ——=—— whereas Ry = \/b’sPbs and
wCw \/ W/ECWE

~

. ~ o~ ~ = N R
Rp = \/b gPbg; this means that if \/w;Cwg # V wCw, 'i—E #A—E For the

Ps _Rs
~ ~ R
Akbar et al. (1984) data, Rp =9.54 and Rg=4.75, then IAe—E =2.0 but
N
P pr R
% = 1.873; that is, @ ~ A—E where “~” indicates an approximation.
Ps Ps Ry

Figure 7.1 presents the frequency distribution of 500 estimated ESIM values for
cycle 2 (Fig. 7.1a) and cycle 5 (Fig. 7.1b), obtained from one selection cycle for
500 genotypes and four traits simulated in one environment. Figure 7.1a, b indicates
that the frequency distribution of the estimated ESIM values approaches normal
distribution.
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Fig. 7.1 Frequency distribution of 500 estimated eigen selection index method (ESIM) values for
(a) cycle 2 and (b) cycle 5, obtained from one selection cycle for 500 genotypes and four traits
simulated in one environment

7.2 The Linear Phenotypic Restricted Eigen Selection Index
Method

Similar to the RLPSI (see Chap. 2), the objective of the RESIM is to fix r of
t (r < 1) traits by predicting only the genetic gains of (r — r) of them. Let H = w'g
be the net genetic merit and 7 = b’y the ESIM index. In Chap. 2, we showed that
Cov(1, g) = Cb is the covariance between the breeding value vector (g) and I = b'y.
Thus, to fix r of ¢ traits, we need r covariances between the linear combinations
of g (U'g) and I = b’y to be zero, i.e., Cov(I,U'g) = U'Cb = 0, where U’ is a
matrix with 1s and Os (1 indicates that the trait is restricted and O that the trait has
no restrictions). In the RESIM, it is possible to solve this problem by maximizing
. (WCb)
PHI = (w/Cw)(b'Pb)
UCb =0,bb =1, wCw = 1, and b’Pb = 1, where w'Cw is the variance of
H = w'g and b'Pb is the variance of I = b'y. Also, the RESIM problem can be solved

by maximizing Jb;% (Eq. 7.12) with respect to vectors b only under the restrictions

U'Cb = 0 and b'b = 1, as we did to obtain Eq. (7.13). Both approaches give the
same result, but it is easier to work with the second approach than with the first one.

with respect to vectors b and w under the restrictions




7.2 The Linear Phenotypic Restricted Eigen Selection Index Method 163

7.2.1 The RESIM Parameters

To obtain the RESIM vector of coefficients that maximizes the RESIM selection
response and the expected genetic gain per trait, we need to maximize the function

b'Cb
fb,v) = ——=—vUCb 7.28a
®Y) = Ve (7.282)
with respect to b and v/, where v/ = [v; v, --- v,_] is a vector of Lagrange

multipliers. The derivatives of Eq. (7.28a) with respect to b and v’ can be written as

2(b'Pb)"/*Cb — (b'Pb)”"/*(b'Ch)Pb — CUv = 0 (7.28b)
and
U'Cb = 0, (7.29)

respectively, where Eq. (7.29) denotes the restriction imposed for maximizing
Eq. (7.28a). Using algebraic methods on Eq. (7.28b) similar to those used to obtain
Egs. (7.10) and (7.13), we get

(KP*‘C - h%RI,) b = 0, (7.30)

where K = [I, — Qg], I, is an identity matrix of size t x ¢, Qg = P~'CU(U'CP~'CU)™!
b,,Cbr

UC, and h} =X

M M = b Py

restriction U'Cb = 0; h?R is also the square of the maximized correlation between the

net genetic merit and Ix = byy, that is, hfk = 22. This means that Eq. (7.30) can be

written as

is the maximized RESIM heritability obtained under the

(KP~'C — AZ1,)bg = 0. (7.31)

Thus, the optimized RESIM index is / = byy. The only difference between
Egs. (7.31) and (7.13) is matrix K. Equation (7.31) was obtained by Cerén-Rojas
et al. (2008) by maximizing pfﬂ (Eq. 7.1) with respect to vectors b and w under the
restriction U'Cb = 0, b’b = 1, w'/Cw = 1 and b’Pb = 1 in a similar manner to the
canonical correlation theory. The RESIM expected genetic gain per trait uses the first
eigenvector (bg) of matrix KP 'C, whereas the RESIM selection response uses bp
and the first eigenvalue (l,ze) of matrix KP~'C. When U’ is a null matrix, bg = b (the
vector of the ESIM coefficients); thus, the RESIM is more general than the ESIM
and includes the ESIM as a particular case.
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In the RESIM context, vector w can be obtained (Cerén-Rojas et al. 2008) as

wr = C7'[1zPbg + W], (7.32)

where 1z and by, are the square roots of the first eigenvalue (/11%) and the first eigenvector
of matrix KP~'C respectively; ¥ = CU and v = 13" (W P’l‘l’)_l‘I"P’ICbR. Let
Hi = w}g be the net genetic merit in the RESIM context; then, because the
correlation between I = by and Hg = wig is not affected by scale change, Az
and l,;l can be considered proportional constants and then Wv can be written as

Py =¥ (PP 'Y) “h'p-ichy = Q;Cbg, where QY is the transpose of matrix Qg
described in Eq. (7.30). Thus, another way of writing Eq. (7.32) is

wg = C7' [P+ QxC]bi. (7.33)

By Egq. (7.33) and the restriction b"¥ = 0, the covariance between Iz = bjy and
Hp = Wig (6m,1,) can be written as

OHplg = W;erR = b;ePbR + b;eQ;?CbR = b;ePbR, (734)

where b3 Q;Cby = 0 according to the restriction b"¥ = 0. Equation (7.34) indicates
that the covariance between Iz and Hg (0y,1,) is equal to the variance of I (a%k =
b%Pbg).

The maximized correlation between I and Hi (or RESIM accuracy) can be
written as

\/bzPbg

= 7.35
PH rIR \/m ( )
where WjCwg = o7, is the variance of Hg, wg=C '[P+ QzClbg, Q=
‘I’(‘I’/P_I‘P)_I‘I"P_', and ¥ = CU. When U’ is a null matrix, wyCwg =
b PC~'Pb; = w,Cwg, the variance of Hg, and o], = bpPbg = b;Pby = o7 , the

variance of I;. Hereafter, to simplify the notation, we write Eq. (7.35) as py or Ag.
The maximized selection response (Ry) and expected genetic gain per trait (Ez) of

the RESIM can be written as
Rp = k1 /b}szR (7.36)

and

Cbg

/b Pby’

Ep =k (7.37)
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respectively, where /bxPbg = 6, is the standard deviation of the variance of

Iz = by. If vector by is transformed as Bz = Fbg, where matrix F was defined
earlier, vector bg should be changed by B in Eqs. (7.36) and (7.37), and inIg = bjy.
Equation (7.36) can also be written as Rgp = kjop,Ag, where op, =

\/ bPC~'Pbg + bPC'Q;Cby is the standard deviation of the variance of Hpg,

and Ag = py,, is the first canonical correlation between Hr = wprg and Iz = bly.
When oy, = 1, Ag is the covariance between Hg = Wig and Ix = byy, and then
Eq. (7.36) can be written as Rz = k;Ag. This last result was presented by Cerén-Rojas
et al. (2008) in their original paper.

The ratio of the index accuracies and the VPE are also valid in the RESIM
context. In Eq. (7.34) we showed that the covariance between Iz = by and Hg =
Whg (611,1,) 1s equal to the variance of Iz = by (G%R). This means that the VPE of the
RESIM can be written as

E[(HR - 1R>2] — % 403 — 200, = 05, — 02, = (1= pR)o.  (71.38)

Statistical properties associated with the ESIM and described in Sect. 7.1.2 are
also valid for the RESIM.

7.2.2 Estimating the RESIM Parameters

We can estimate the RESIM parameters in a similar manner to the ESIM A parameters
in Sect. 7.1.4. With matrices C and P we constructed matrix SR =KP'C and
equation

(S&Sk — figl)br, = 0, (7.39)

where jig; = 24 E j=1,2,...,t The estimated RESIM index (Iz = bjy) isTgp = l;’ RY
and the estlmator of the maximized RESIM selection response and its expected genetlc

[ Ch
gain per trait can be denoted as Rg = ki\/V RleRl and Eg =k il

\/lePbRI

respectively, whereas the estimator of the maximized RESIM accuracy is 2 Ry

7.2.3 Numerical Examples

We compare the RLPSI results with those of the RESIM using the Akbar et al.
(1984) data described in Sect. 7.1.5. We restrict the trait RL (number of eggs) in both
indices. In Chap. 3, Sect. 3.1.3, we indicated how to construct matrix U’ and, in Sect.
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3.1.4 of the same chapter, we described how to obtain matrix K= [I, — (A)} for one
and two restrictions. Matrix K is the same for the RLPSI and the RESIM. Thus, in
this subsection we omit the steps needed to construct matrices U’ and K.

First, we estimate the RLPSI parameters. Assume a selection intensity of 10%
(k; = 1.755) and a vector of economic weights w' =[19.54 —3.56 17.01].
The estimated RLPSI vector of coefficients for one restriction was
b = [0.29 —0.84 5.78], and the estimated selection response, expected genetic

gain per trait, accuracy, and heritability of the RLPSI were R =1.755\/ b'Pb =
_ b'C __ Vb'Pb

53.01, E' =1.755———==1[0 —0.71 296],p=—=
VwCw

Vb'Pb

= 0.33 respectively. In this case, l;'lA) = 34.25; then, the estimated RLPSI

= 0.26, and h? =
b Cb
b'Pb
selection response using the normalized RLPSI vector of coefficients was
~ 53.01
R=—+—
34.25

In the RESIM, matrix F was an identity matrix of size 3 x 3; that is, we did not
use matrix F to transform the RESIM vector of coefficients. In Sect. 7.1.5 we

o 0.1102 —0.0405 —0.0280
obtained matrix P7!C = | —0.0390 0.0864 —0.0184 |, and we have indi-
—0.1833  0.0517 0.4115
cated that matrix K is the same for the RLPSI and the RESIM. In the RESIM, we

need matrix §R =KP !C to solve equation (§RSA’R fﬁRjI,)i)\Rj =0, where

= 1.55, and the rest of the estimated RLPSI parameters were the same.

ﬁRj :Zj‘ej, whence we shall obtain the eigenvalues and eigenvectors that form
matrices L}e/z, Vi, and Sg = VRlL,le/zV;n.
R IR 0 0.0285 0.0232
For one null restriction, matrix S = KP'C= |0 0.0620 —0.0365
0 —-0.0630 0.3263

This means that §R reflects the trait restrictions imposed on the covariance
between the RESIM and the vector of genotypic values; thus, if r traits are

restricted, r columns of Sk are equal to zero. Matrix

. 0.0013 0.0009 0.0058 0.0500 0.5216 —0.8517

SkS'r=[0.0009 0.0052 —0.0158 | and Vg, = | —0.1446 0.8476 0.5106 |,
0.0058 —0.0158 0.1104 0.9882 0.0976 0.1178

~

whereas the ,uRj:/lj‘el_ values were 0.1130, 0.0039, and 0.0, whence
0.3362 0 0

L>=| 0 00626 0 |. Thus, fig =Ag =0.1130, 23 =0.3362, and the
0 0 00

estimated RESIM accuracy was EEI =0.5798. The estimated RESIM

eigenvector, index, the selection response, and expected genetic gain per trait

were by =[0.0500 —0.1446 0.9882], Tg=0.0500RL —0.1446SM +0.9882EW,
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5 S oo o b, C
Rx=1.755\/b'g Pbg, =9.06, and  Ep=1755—L__—=[0 —0.72 2.96]
\/ b, Phy,

~ 53.01
The estimated RLPSI selection response was R :m = 1.55; thus, the

estimated RESIM selection response was higher than the estimated RLPSI response.
In addition, the estimated RLPSI expected genetic gain per trait was
E'=[0 —0.71 2.96], which is the same as the estimated RESIM expected
genetic gain per trait.

We can compare RESIM efficiency versus RLPSI efficiency to predict the net
genetic merit using the ratio of the estimated RESIM accuracy ZE] = 0.5798 to the
RLPST accuracy p = 0.26, i.e., ;—R‘ = 065328 = 2.23, or in percentage terms, py =

S .
100(2.23 — 1) = 123 (see Chap. 5, Eq. 5.17). That is, the RESIM is a better
predictor of the net genetic merit and its efficiency was 123% higher than the
RLPSI efficiency for this data set.

Now, we compare RESIM efficiency versus RLPSI efficiency using the simulated
data set described in Sect. 2.8.1 of Chap. 2 for five phenotypic selection cycles, each
with four traits (7, T,, T3, and T,), 500 genotypes, and four replicates for each
genotype. The economic weights for T, T, T3, and T4 were 1, —1, 1, and 1 respec-
tively. For this data set, matrix F was equal to an identity matrix of size 4 x 4 for all
five selection cycles.

The first and second parts of columns 3, 4, and 5 of Table 7.1 present the
estimated RLPSI and RESIM selection responses respectively for one, two, and
three null restrictions for five simulated selection cycles, where the selection inten-
sity was 10% (k; = 1.755) for all five selection cycles. The averages of the estimated
RLPSI selection response for each null restriction were 4.43, 4.30, and 4.92, whereas
the averages of the estimated RESIM selection response were 4.54, 4.42, and 4.38
respectively. These results indicate that the estimated RLPSI selection response was
greater than the estimated RESIM selection response only for three null restrictions.

The first part of Table 7.3 presents the estimated RESIM expected genetic gain
per trait for one, two, and three restrictions for five simulated selection cycles. The
estimated RLPSI expected genetic gains per trait for one, two, and three restrictions
are given in Chap. 3 (Table 3.3). According to the results shown in Table 3.3
(Chap. 3), the averages of the estimated RLPSI expected genetic gains per trait for
five simulated selection cycles were —2.52, 2.25, and 2.26 for one restriction; 2.84
and 2.65 for two restrictions; and 3.90 for three restrictions. According to the results
shown in Table 7.3, the averages of the estimated RESIM expected genetic gains per
trait for five simulated selection cycles were —0.43, —0.75, and 3.90 for one
restriction; —0.59 and 3.89 for two restrictions; and 3.90 for three restrictions.
This means that the RESIM and RLPSI were the same only for three restrictions,
whereas for one and two restrictions, the average of the estimated RESIM expected

respectively.
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Table 7.3 Estimated RESIM and PPG-ESIM expected genetic gain per trait for one, two, and three
restrictions for five simulated selection cycles

Estimated RESIM expected genetic gain per trait

One null restriction Two null restrictions Three null restrictions
Cycle |T1 |T2 T3 T4 T1 |T2 |T3 T4 Tl |T2 |T3 |T4
1 0 —-0.86 |—1.22 |4.14 |0 0 —-0.96 |[4.12 |0 0 0 4.13
2 0 —1.38 | —-0.004 [4.31 |0 0 —-0.07 427 |0 0 0 4.27
3 0 136 |—-1.74 |4.07 |0 0 —1.39 [4.09 |0 0 0 4.16
4 0 —-1.13 |-034 |3.73 |0 0 —-0.08 |3.72 |0 0 0 3.72
5 0 —0.14 | -0.43 322 |0 0 —-043 322 |0 0 0 3.24
Average | 0 —-0.43 | -0.75 390 |0 0 —-0.59 |3.89 |0 0 0 3.90

Estimated PPG-ESIM expected genetic gain per trait

One predetermined Two predetermined Three predetermined

restriction restrictions restrictions

Cycle |T1 |T2 T3 |T4 |T1 T2 T3 |T4 |T1 T2 T3 |T4

7.81|—4.62 [3.11 |2.21 |7.09 | —3.04|3.12 |2.76 |6.62 | —2.84|4.73 |0.83
2 5.15|-298 (231 |3.48 |541 |—-232|2.41 |3.48 |6.14 | -2.63|4.39 |0.92
3 4.74 | —1.15 |0.66 |3.79 |545 |—234|1.24 |3.26 |5.52 | —-2.37|3.94 |1.35
4 394 | -2.44 |0.74 |3.34 |4.57 |—-1.96|1.17 |3.24 |5.03 | —2.15|3.59 |0.30
5 6.68 | —2.15 [2.24 |2.05 |6.93 | -297|2.25 |14 |525 |-2.25|3.75 |0.72
Average | 5.67 | —2.67 |1.81 |2.97 |5.89 | -2.52|2.04 [2.83 |5.71 | —2.45|4.08 |0.82

The selection intensity was 10% (k; = 1.755) and the vectors of the PPG for each predetermined
restriction were d; =7, d, =[7 —3]andd} =[7 -3 5] respectively

genetic gains per trait was higher than that of the estimated RLPSI expected genetic
gains per trait only for trait 4.

Figure 7.2 presents the estimated accuracy of the RLPSI and the RESIM for one,
two, and three null restrictions for five simulated selection cycles. In all five selection
cycles, the estimated RESIM accuracy was greater than the RLPSI accuracy. This
means that the RESIM is a better predictor of the net genetic merit than the RLPSI.
Additional results associated with the frequency distribution of the estimated RESIM
values are presented in Fig. 7.3. Figure 7.3a presents the frequency distribution of
the estimated RESIM values with one null restriction for cycle 2, whereas Fig. 7.3b
presents the frequency distribution of the estimated RESIM values with two null
restrictions for cycle 5; both figures indicate that the estimated RESIM values
approach normal distribution.

Finally, in Chap. 10 we present the results of comparing the ESIM with the LPSI
and the RESIM with the RLPSI for many selection cycles. Such results are similar to
those obtained in this chapter.
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Fig. 7.3 Frequency distribution of 500 estimated RESIM values for (a) cycle 2 and (b) cycle
5, obtained from one selection cycle for 500 genotypes and four traits simulated in one environment
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7.3 The Linear Phenotypic Predetermined Proportional
Gain Eigen Selection Index Method

In a similar manner to the PPG-LPSI (see Chap. 3), in the PPG-ESIM the breeder
pre-sets optimal levels (predetermined proportional gains) on certain traits before the
selection is carried out. Let d' = [d; dy --- d,] be the vector of the PPGs
(predetermined proportional gains) imposed by the breeder on r traits and assume
that p, is the population mean of the gth trait before selection. The objective of the
PPG-ESIM is to change yu, to u, + d,, where d, is a predetermined change in y,
(in the RESIM, d, =0, ¢ = 1, 2, - - -, r, where r is the number of PPGs). That is, the
PPG-ESIM attempts to make some traits change their expected genetic gain values
based on a predetermined level, whereas the rest of the traits remain without
restrictions.

The simplest way to solve the foregoing problem is by maximizing the

PPG-ESIM  heritability under the restricion D'UCb = 0, where
d 0 --- 0 —d

D' = O d:, L 0 *:dz (see Chap. 3 for details) is a matrix (r — 1) x r,
0 0 - d —d,

r is the number of PPGs, d, (¢ = 1, 2. . ., r) is the gth element of vector d/, U’ is the
RLPSI matrix of restrictions of 1s and Os, and C is the covariance matrix of
genotypic values. Matrix D’ is a Mallard (1972) matrix of PPGs used to impose
predetermined restrictions.

The Mallard (1972) matrix of predetermined restrictions can be written as M
= D'V, where %' = U'C and U’ is the Kempthorne and Nordskog (1959) matrix of
restrictions of 1s and Os (1 indicates that the trait is restricted, i.e., d, = 0, and O that
the trait has no restrictions).

To find the PPG-ESIM vector of coefficients that maximizes the PPG-ESIM
selection response and expected genetic gain per trait, we can maximize p%ﬂ =
(WCb)?
(w'Cw)(b'Pb)
b'’b =1, w'Cw = 1, and b’Pb = 1, where w'Cw is the variance of H = w’g and b’Pb
is the variance of I = b'y, as did Cer6n-Rojas et al. (2016) according to the canonical
correlation theory, or we can solve this problem by maximizing \l/’;% (Eq. 7.12) only

with respect to vectors b and w under the restrictions Mb = 0,

with respect to vectors b under the restriction Mb = 0 and b’b = 1, as we did to
obtain the RESIM vector of coefficients. Both approaches give the same result, but
we use the latter approach because it is easier to work with.
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7.3.1 The PPG-ESIM Parameters

To obtain the PPG-ESIM vector of coefficients, we need to maximize the function

e

fb,v) = —vM'b 7.40)
Vb'Pb (
with respect to vectors b and v/, where V' =[v; v, --- v,_;] is a vector of

Lagrange multipliers. The derivatives of Eq. (7.40) with respect to b and v’ were:

2(b'Pb)"/>Cb — (b'Pb)"/*(b'Ch)Pb — My = 0 (7.41)
and
M'b =0, (7.42)

respectively, where Eq. (7.42) denotes the restriction imposed for maximizing
Eq. (7.40). By using algebraic methods on Eq. (7.41) similar to those used to obtain
Eq. (7.10) we get

(KpP~'C — 221,)bp = 0, (7.43)

where Kp = [I, — Qp], Qp = P'¥YDM'YP 'WD) 'D'W, ¥ = UC, I, is an
identity matrix ¢ X f, /112,, = hfP, and bp are the first eigenvalue and the first eigenvector
of matrix KpP~'C respectively. Note that hj, is PPG-ESIM heritability and 2 is
the maximum correlation between Ip = by and H = w'g. When D' = U’, bp = by
(the vector of coefficients of the RESIM), and when U’ is a null matrix, bp = bg (the
vector of coefficients of the ESIM). That is, the PPG-ESIM is more general than the
RESIM and the ESIM and includes the latter two indices as particular cases.
Matrices Kp = [I, — Qp] and Qp = P 'WD(D'WP 'WD) 'D'W are the same as
those obtained in the PPG-LPSI (see Chap. 3). Also, vector bp can be transformed as
Br = Fbp; matrix F was defined earlier.

Let Sp = ‘I”P_I‘I’; then, under the assumption D'd = 0, it is possible to show
that D(D'SpD)"'D’' =S, —S;'d(d'S;'d)”'d'S;"' (see Chap. 3), whence by
substituting S;' — S;'d(d'S;'d)”'d'S,;' for D(D'S,D) "D’ in matrix Qp = P~
YDD'WP '¥D) 'D'Y, matrix KpP~'C can be written as

KpP 'C= [, —P'WST'WIP'C + Ap, (7.44)
where W' = U'C, Ap =8, 5 =P "¥(¥P'¥) 'd, and o =45 ¥P_C When A,
is a null matrix, KPP”C =KP~!C (matrix of the RESIM), and if U’ is a null matrix,
KpP 'C = P!C (matrix of the ESIM), this means that Eq. (7.44) is a mathematical
equivalent form of matrix KyP!C and that Eq. (7.44) does not require matrix D’.
The easiest way to obtain bp and Ap is to use matrix [I, — P lws gy P IC+ Apin
Eq. (7.43) instead of matrix KP~'C.
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In the PPG-ESIM context, vector w can be obtained as
wp = C'[1pPbp + Mvp], (7.45)

whence H = w'g can be written as Hp = wpg. In Eq. (7.45), Ap is the
maximum correlation between Ip = byy and Hp = Wpg, bp is the first eigenvector
of matrix K;P~'C, vp = 2;' (M'P"'M) " 'M'P"'Cbp, M' = D'W, and ¥’ = U'C.
In a similar manner to the RESIM context, we can assume that 1p and /1;' are
proportionality constants and it can be shown that the covariance between Ip = by
and Hp = Whg (om,1,) is equal to the variance of Ip = bpy (U?P = b[',Pbp), that is,
OHplp = W;;Cbp = b;Pbp
The accuracy of the PPG-ESIM can also be written as

/b,Pb,
= Vor P 7.46
PHyly w,hCwp ( )

where 3, = WpCwp = bPC™'Pbp + b,PC ™' Q,Cbp is the variance of Hp. When
D' = U, w,Cwp = wCwg (the variance of Hg), and when U’ is a null matrix, w),
Cwp = wCwg (the variance of Hy). Hereafter, to simplify the notation, we write
Eq. (7.46) as pp or Ap.

Let Bp = Fbp be the PPG-ESIM transformed vector of coefficients by matrix F.
By Egs. (7.1) and (7.46), the maximized selection response (Rp) and expected
genetic gain per trait (Ep) of the PPG-ESIM can be written as

Rp = ki\/BpPPp (7.47)

and

. Cp,

P = KJ r’pPBP’

respectively, where |/B,PPp = o7, is the standard deviation of the variance of
Ip = Bpy. Equations (7.47) and (7.48) do not require economic weights. When F is

Cb
an identity matrix, Bp = bp, Ip = bhy, Rp = k;1/b,Pbp, and Ep = kj————.
/bpPbp

Equation (7.47) can also be written as Rp = kjou,Ap, where oy, =
\/ b,PC~'Pbp + b,PC'Q},Cb, is the standard deviation of the variance of Hp,

and Ap is the canonical correlation between Hp and Ip = Bpy. When oy, = 1,
Eq. (7.47) can be written as Rp = kAp, where Ap is the covariance between Ip = b},
y and H = w)g.

The prediction efficiency of the PPG-ESIM can be obtained in a similar manner to
the ESIM and RESIM. The accuracy of the PPG-ESIM (Eq. 7.46) can be used to
construct the ratio of index accuracies. The PPG-ESIM mean square error or the VPE
can be obtained as

(7.48)




7.3 The Linear Phenotypic Predetermined Proportional Gain Eigen Selection. .. 173

E|:(Hp — IP)Z] = oi,P + (rlzp — 20,1, = 6%1P — (FIZP = (1 — pf,)afip. (7.49)

Additional properties associated with the ESIM are also valid for the PPG-ESIM.

7.3.2 Estimating PPG-ESIM Parameters

The procedure used to estimate PPG-ESIM parameters is the same as that described
for RESIM. Let C and P be the estlmated matrices of C and P. In the PPG-ESIM
context, we use matrix S K pP 1C to obtain the estimated eigenvalues and
eigenvectors of equation

(S —231,)bp; =0, (7.50)

=1, 2, ---, t, where ¢t is the number of traits in the PPG-ESIM index,
Kp=[L—-Qp|, I, is an identity matrix of size ¢ x ¢ and
~ i~ B D ~
Q, =P '¥YD(D'WYP '¥D) D'¥.AsS is an asymmetric matrix, the values of
Bpj and fo,j should be obtained using SVD (singular value decomposition).
According to SVD, we need to solve equation

<§§/ - ///ZP]I{>BP, = 0, (7.51)

where ip; = /1P (]— 1, 2, ... ). By Eq. (7.51), the estimated PPG-ESIM index

(Ip = Py) is 1, p= b p,y. The estimator of the maximized PPG-ESIM selection
response, and its expected genetic gain per trait, can be denoted as

~ Cb
Rp = k\/ b P]Pbpl and Ep = kI—P respectively, whereas the estimator of

\/b'p Pbp,

the maximized accuracy of the PPG-ESIM is 7 P,

7.3.3 Numerical Examples

We compare the results of the PPG-LPSI and the PPG-ESIM using the Akbar et al.
(1984) data described earlier. We restrict traits RL and SM, on both indices using the
PPG vector d = [3 —1]. In Chap. 3, Sect. 3.1.4, we indicated how to construct
matnx U’ and, in Sect. 3.2.4 of the same chapter we described how to obtain matrix
Kp for one and two restrictions. Matrix Kp is the same for the PPG-LPSI and the
PPG-ESIM. Thus, we omit the steps for constructing matrices U’ and Kp.

Assume a selection intensity of 10% (k; = 1.755) and that the vector of economic
weights is w' = [19.54 —3.56 17.01]. The estimated PPG-LPSI vector of coeffi-
cients for two predetermined restrictions was b = [1.70 1.04 2.93], and its
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estimated selection response, expected genetic gain per trait, accuracy, and heritability
N ~ ~ b'C
were R =1.755\/b'Pb =49.02, E' = 1.755——==1[125 —-042 1.36],
R vV b'Pb

~, b Cb
p= — =0.24, and h? = ——=0.12  respectively. In this case,
__ VwCw b'Pb
b’b = 12.57; then, the estimated PPG-LPSI selection response using the normalized

~  49.02
PPG-LPSI vector of coefficients was R = 257 = 3.90, whereas the rest of the

estimated PPG-LPSI parameters were the same.

In the PPG-ESIM, we need matrix S = fcpﬁ—‘é to obtain the eigenvalues
and eigenvectors of (§§’ fﬁPjI,)BP‘f =0 that make up matrices L,lj/ 2, Vp,,
and S = VPIL},/2V}2, where  fip :E‘}Jf. It can be shown that S=

o 0.1047 —0.0349 —0.0279 ‘AA 0.0130 0.0085 —0.0344

K,P~!IC=| 0.0678 —0.0226 —0.0213 |, SS'=| 0.0085 0.0056 —0.0236 |,
—0.1970 0.0657 0.4119 —0.0344 —0.0236 0.2118
—0.1663 0.8292 0.5336 R

and Vp, = |—0.1138 0.5214 —0.8457 |, whereas the ﬁpj:/l;‘,/_ values were 0.2214,
0.9795 0.2014 —0.0076

0.4705 0 0 R
0.0099, and 0.0, whence L,l,/zz 0 0.0997 0 |. Thus, ﬁP]:/14P1:0.2214,
0 0 0.0
Ef,l =0.4705, and the estimated maximized PPG-ESIM accuracy was Zpl =0.6859.
We transformed the first eigenvector B;,l =[-0.1663 —0.1138 0.9795] using

-9 0 0 R

matrix F= | 0 1 0| toobtain vector B =b, F=[1.4968 —0.1138 0.9795]

0 0 1

and E;ﬁp =3.21, whence the estimates of the index, the selection response, and
expected genetic gain per trait of the PPG-ESIM were Ip = 1.4968RL — 0.1138SM +

R 1.755\/6’ lA’B 43.01 _ B C
0.9795EW, Rp= = Rk 301 13.39, and EL= 1.755%:
BBy : \/B.PB,

5 —1.96 0.19] respectively. The estimated PPG-LPSI selection response was
49.02
12,57
greater than the estimated PPG-LPSI response.

We compared PPG-ESIM efficiency versus LPSI efficiency to predict the net
genetic merit using the ratio of the estimated PPG-ESIM accuracy (1p, = 0.6859) to

~ . A 0.6859
PPG-LPSI accuracy (p = 0.24), i.e., % =
P 0.24

pp = 100(2.858 — 1) = 185.80. Then, the PPG-ESIM was a better predictor of the
net genetic merit and its efficiency was 185.80% higher than that of the PPG-LPSI
for this data set.

=3.90, which means that the estimated PPG-ESIM selection response was

= 2.858 or, in percentage terms,
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Now, we compare PPG-ESIM efficiency versus PPG-LPSI efficiency using the
data set described in Sect. 2.8.1 of Chap. 2 for five phenotypic selection cycles, each
with four traits (7', T,, T3, and T,), 500 genotypes, and four replicates for each
genotype. The economic weights for T, 75, T3, and T, were 1, —1, 1, and 1 respec-
tively. For this data set, matrix F was an identity matrix of size 4 x 4 for all five
selection cycles.

The first and second parts of columns 6, 7, and 8 in Table 7.1 present the
estimated PPG-LPSI and PPG-ESIM selection responses for one, two, and three
predetermined restrictions for five simulated selection cycles. The selection intensity
was 10% (k; = 1.755) and the vectors of PPG for each predetermined restriction were
d,=7,d,=[7 —3],and d; =[7 —3 5] respectively, for all five selection
cycles. The estimated PPG-LPSI selection response when the vector of coefficients
was not normalized was presented in Chap. 3 (Table 3.5). The averages of the
estimated PPG-LPSI selection response for each predetermined restriction were
4.70, 4.91, and 3.14, whereas the averages of the estimated PPG-ESIM selection
response were 6.31, 6.28, and 6.75 respectively. These results indicate that the
estimated PPG-ESIM selection response was greater than the estimated PPG-LPSI
selection response for all predetermined restrictions.

The second part of Table 7.2 presents the estimated PPG-ESIM accuracy (pp) and
the ratio of pp to the estimated PPG-LPSI accuracy (p), expressed in percentage
terms, pp = 100 @p — 1), where Ip = pp/p, for one, two, and three predetermined
restrictions for five simulated selection cycles. The estimated PPG-LPSI accuracies
were presented in Chap. 3 (Table 3.6). The average estimated PPG-ESIM efficiency
for each restriction was 9.76%, 11.71%, and 29.03% greater than the PPG-LPSI
efficiency for this data set in all five selection cycles.

The second part of Table 7.3 presents the estimated PPG-ESIM expected genetic
gain per trait for one, two, and three predetermined restrictions for five simulated
selection cycles. The estimated PPG-LPSI expected genetic gains per trait for one,
two, and three predetermined restrictions were presented in Chap. 3, Table 3.5,
where it can be seen that the averages of the estimated PPG-LPSI expected genetic
gains per trait for five simulated selection cycles were 6.85, —3.25, 2.62 and 1.48 for
one restriction; 6.93, —2.97, 2.65 and 1.45 for two restrictions; and 5.20, —2.23,
3.72 and 1.43 for three restrictions, whereas for the same set of restrictions, the
averages of the estimated PPG-ESIM expected genetic gain per trait were 5.67,
—2.67, 1.81, and 2.97 for one restriction; 5.89, —2.52, 2.04, and 2.83 for two
restrictions; and 5.71, —2.45, 4.08, and 0.82 for three restrictions (Table 7.3).
Because the vectors of predetermined proportional gains for each predetermined
restriction wered} = 7,d, =[7 —3],andd; =[7 —3 5], the averages of the
estimated PPG-LPSI expected genetic gains per trait were closer than those of the
estimated PPG-ESIM expected genetic gains per trait for one and two predetermined
restrictions, whereas for three restrictions, the results of both selection indices were
similar.
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Chapter 8 )
Linear Molecular and Genomic Eigen s
Selection Index Methods

Abstract The three main linear phenotypic eigen selection index methods are the
eigen selection index method (ESIM), the restricted ESIM (RESIM) and the
predetermined proportional gain ESIM (PPG-ESIM). The ESIM is an unrestricted
index, but the RESIM and PPG-ESIM allow null and predetermined restrictions
respectively to be imposed on the expected genetic gains of some traits, whereas the
rest remain without any restrictions. These indices are based on the canonical
correlation, on the singular value decomposition, and on the linear phenotypic
selection indices theory. We extended the ESIM theory to the molecular-assisted
and genomic selection context to develop a molecular ESIM (MESIM), a genomic
ESIM (GESIM), and a genome-wide ESIM (GW-ESIM). Also, we extend the
RESIM and PPG-ESIM theory to the restricted genomic ESIM (RGESIM), and to
the predetermined proportional gain genomic ESIM (PPG-GESIM) respectively.
The latter five indices use marker and phenotypic information jointly to predict the
net genetic merit of the candidates for selection, but although MESIM uses only
statistically significant markers linked to quantitative trait loci, the GW-ESIM uses
all genome markers and phenotypic information and the GESIM, RGESIM, and
PPG-GESIM use the genomic estimated breeding values and the phenotypic values
to predict the net genetic merit. Using real and simulated data, we validated the
theoretical results of all five indices.

8.1 The Molecular Eigen Selection Index Method

The molecular eigen selection index method (MESIM) is very similar to the linear
molecular selection index (LMSI) described in Chap. 4; thus, it uses the same set of
information to predict the net genetic merit of individual candidates for selection,
and therefore needs the same set of conditions as those of the LMSI. The only
difference between the two indices is how the vector of coefficients is obtained and
the assumption associated with the vector of economic weights. Thus, although the
LMSI obtains the vector of coefficients according to the linear phenotypic selection
index (LPSI) described in Chap. 2 and assumes that the economic weights are known
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and fixed, the MESIM assumes that the economic weights are unknown and fixed
and obtains the vector of coefficients according to the ESIM theory.

8.1.1 The MESIM Parameters

In the MESIM context, the net genetic merit can be written as

8
H=wg+ws=[w w’z][s] = Wa, (8.1)
where g =[g, ... g] is the vector of true breeding values, ¢ is the number of
traits, w; = [w; -+ w,] is a vector of unknown economic weights associated
with g, w5, =[0; --- 0,] is a null vector associated with the vector of marker
score valuess' = [s; s2 ... s, W =[w, w)]anda’ =[g '] (Chap.4 for

details). The MESIM index can be written as

T=py =8 8] [3]=pe 82)

wherey’ = [y, --- Y,]is the vector of phenotypic values;s’ = [s; s2 ... 5]
is the vector of marker scores; B’y and f, are vectors of phenotypic and marker score
weight values respectively, B’ = [B, B ] andt = [y’ s']. The objectives of the
MESIM are the same as those of the ESIM (see Chap. 7 for details).

Let Var(H) = WWyw = o3, be the variance of H, Var(I) = p'Typ = o the
variance of I, and Cov(H,I) = wW¥,f the covariance between H and I, where
Wy = Var[ﬂ = [S(;,; gg] and T, = Var{ﬂ = {SI;,, SZ] are block matri-
ces of size 2t x 2t (¢ is the number of traits) of covariance matrices where P, S,,, and
C are covariance matrices ¢ X t of phenotypic (y), marker score (s), and genetic

/
% \I‘
breeding (g) values respectively. Let py; = %m and h% = [[;’TM[[: be the
VW EyW M M

correlation between H and 7, and the heritability of I respectively; then, the MESIM
selection response can be written as

R = kIUHﬂHI (83)
and
R = kjoih, (8.4)

where k; is the standardized selection differential (or selection intensity) associated
with MESIM; 6 = WW¥y,w and 6; = /P’ TP are the standard deviations of the



8.1 The Molecular Eigen Selection Index Method 179

variance of H and I respectively. It is assumed that k; is fixed, and that matrices T,
and ¥, are known; therefore, we can maximize R by maximizing pg; (Eq. 8.3)
with respect to vectors w and f, or by maximizing h? (Eq. 8.4) only with respect to
vector f.

Maximizing h? only with respect to f is simpler than maximizing py; with respect
to w and f; however, in the latter case the maximization process of py; gives more
information associated with MESIM parameters than when h% is maximized only
with respect to p (see Chap. 7, Eq. 7.13, for details). In this subsection, we maximize
pur with respect to vectors w and P similar to the ESIM in Chap. 7, Sect. 7.1.1. Thus,
we omit the steps and details of the maximization process of pg;.

#M\/ﬁm with respect to vectors w and p under the
restrictions o7, = W¥w, o7 = p'TP, and 0 <67, 67 < 00, where o7 is the variance of
H = w'a and a% is the variance of I = f't. Thus, it is necessary to maximize the
function

We maximize py; =

F(B,w, 1, ) = W¥B —0.5u(B'TB — 57) — 0.5¢(W'Pw — o7;) (8.5)

with respect to , w, u, and ¢, where u and ¢ are Lagrange multipliers. The
derivatives of Eq. (8.5) with respect to , w, u, and ¢ are:

Ww — uTP = 0, (8.6)
WB — p¥w = 0, (8.7)
BTP =0, and WW¥w =7, (8.8)

respectively, where Eq. (8.8) denotes the restrictions imposed for maximizing pg;. It
can be shown (see Chap. 7) that vector w can be obtained as

wy =¥, Typ (8.9)

and the net genetic merit in the MESIM context can be written as Hy = w),a; thus,

. . VTP
the correlation between Hy, = wy,aand lispy, ; = and the MESIM vector
VB TY TP

of coefficients () that maximizes py, ; can be obtained from equation
(T™'W — 23,15)By, = 0, (8.10)

where I, is an identity matrix of size 2¢ x 2¢ (¢ is the number of traits), and /1,2\4 and B,/
are the eigenvalue and eigenvector of matrix T;II‘I‘M. The words eigenvalue and
eigenvector are derived from the German word eigen, which means owned by or
peculiar to. Eigenvalues and eigenvectors are sometimes called characteristic values
and characteristic vectors, proper values and proper vectors, or latent values and
latent vectors (Meyer 2000). The square root of ﬂjzu (Aag) 1s the canonical correlation
between Hy = wj,aand I = B),t, and the optimized MESIM index can be written
as Iy = B),t. Using a similar procedure to that described in Chap. 7 (Eq. 7.17), it can
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be show that vector B,, can be transformed into p- = Ff,,, where F is a diagonal
matrix with values equal to any real number, except zero values.

The maximized correlation between Hy = wya and Iy = Bj,t, or MESIM
accuracy, is

By Tub o1y
Pty e (8.11)
\/ Br Ty TuBy Hw

where o, = 1/}, TuBy is the standard deviation of I = B),t, and oy, =

\/[SSWTM‘I‘A}ITMBM is the standard deviation of Hy = w),a.

The maximized selection response and expected genetic gain per trait of MESIM

are
Ry = ki /By, TuBy, (8.12)

and

Wy,
\/Br, T,

respectively, where B, is the first eigenvector of matrix T;ll Wy If vector B, is
multiplied by matrix F, we obtain ﬁc, =Fpy ,; in this case, we can replace B , with
Bc, = FBy, in Egs. (8.12) and (8.13), and the optimized MESIM index should be
written as Iy = P, y.

Ey =k (8.13)

8.1.2 Estimating MESIM Parameters

We estimate the MESIM parameters using the same procedure described in Chap. 7
(Sect. 7.1.4) to estimate the ESIM parameters. Let C P and S m be the estimates of
the genotyplc phenotypic, and marker scores covariance matrices,

Ty = AP SM and ¥, = AC SM the estimated block matrices (Chap. 4)
Su Su Su Su

and W = T "W ,; then, to find the estimators [3 u, and 2 w, of the first eigenvector
(Bys,) and the first eigenvalue (/1Ml) respectively, we need to solve the equation

(WW' — i I)B,, =0, (8.14)

where ﬁj = ﬁ/,j,j: 1,2, ..., 2t. For additional details, see Egs. (7.22) and (7.23),
and Sect. 7.1.5 of Chap. 7. The result of Equation (8.14) allow the MESIM index
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Iy = ﬁ;ult) to be estimated as TM =p u,t, whereas the estimator of the maxi-
mized ESIM selection response and its expected genetic gain per trait can be

denoted by
A — . ¥,B
Ru = ki\/B 3, TuBy, and By = k,AMifMIA, (8.15)
VB o, TuBys,
respectively.

8.1.3 Numerical Examples

To validate the MESIM theoretical results, we use a real maize (Zea mays) F,
population with 247 genotypes (each with two repetitions), 195 molecular markers,
and two traits—plant height (PHT, cm) and ear height (EHT, cm)—evaluated in one
environment. We coded the marker homozygous loci for the allele from the first
parental line by 1, whereas the marker homozygous loci for the allele from the
second parental line was coded by —1 and the marker heterozygous loci by 0. The
estimated phenotypic, genetic, and marker scores covariance matrices were
S [191.81 106.89] ~ [83.00 57.44] s [15.750 0.983 }
P= s = ,and Sy =
106.89 167.93 57.44 59.80 0.983 28.083

respectively, and the vector of economic weights was a’ = [w' 0], where w' =
[-1 —1]and 0’ =[0 O0]. Details of how to estimate the marker scores and their
variance were given in Chap. 4.

We compare LMSI versus MESIM efficiency. The estimated LMSI vector of
coefficients was B’ =a'¥,T,' =[-059 —0.18 —041 —0.82]. Using a
10% selection intensity (k; = 1.755), the estimated LMSI selection response and

the expected genetic gain per trait were R= kiy/ [? TME =2041 and

.
~ ¥
E' = kIﬁAiM: [—10.09 —10.31 —2.53 —4.39] respectively, whereas the esti-
B'Tp
mated LMSI accuracy was p ~= f—l =0.72.
HI oy

Vector B\;w, =[0.089 —0.061 —0.536 0.837] was the original estimated
—0.1 0 0 0

0 -01 O 0

0 0 075 0 ’

0 0 0 -0.75
vector B;vz, was transformed as EIC, = ﬁjwlF =[-0.009 0.006 —0.402 0.628]
and then the estimated MESIM index was TM = —0.009PHT + 0.006 EHT —
0.402 Spyt + 0.628 Sgyt, where Spyr and Sgyr denote the marker scores
associated with PHT and EHT respectively. The estimated MESIM expected

MESIM vector of coefficients. Using matrix F =
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o
B e, ¥u

genetic gain, selection response, and accuracy were Ej, = kj———=
\/ e, Tube,

[—3438 —8516 —3319 —8372], Ry =k/p ¢, TuPe, =6573 and

p o~ = fl = 0.99 respectively.
Hyly oMy,

The inner product of the estimated LMSI and MESIM vector of coefficients were
1.221 and 0.556 respectively, whence the estimated LMSI selection response (20.41)
divided by 1.221 was 16.716, and the estimated MESIM selection response (6.573)
divided by 0.556 was 11.821. That is, the estimated LMSI selection response was
higher than the estimated MESIM selection response for this data set. Similar results
were found when we compared the estimated LMSI expected genetic gain per trait
with the estimated MESIM expected genetic gain per trait. Finally, Fig. 8.1 presents
the frequency distribution of the 247 estimated MESIM values for the real data set
described earlier, which approaches normal distribution, as we would expect.

Now with a selection intensity of 10% (k; = 1.755), we compare the LMSI and
MESIM efficiency using the simulated data set described in Sect. 2.8.1 of Chap. 2 for
four phenotypic selection cycles, each with four traits (7', 75, T5 and T}), 500 geno-
types, and four replicates of each genotype. The economic weights for T, 75, T3, and
T, were 1, —1, 1, and 1 respectively. For this data set, we did not use the linear
transformation ﬁcl = FﬁM].

The estimated selection responses of the linear marker, combined genomic and
genome-wide selection indices (LMSI, CLGSI, and GW-LMSI respectively; see

MESIM frequency distribution values

Fig. 8.1 Frequency distribution of 247 estimated molecular eigen selection index method
(MESIM) values for one selection cycle in an environment for a real maize (Zea mays) F,
population with 195 molecular markers and two traits, plant height (PHT, cm) and ear height
(EHT, cm), and their associated marker scores Spyt and Sgyt respectively
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Chaps. 4 and 5 for details) for four simulated selection cycles when their vectors of
coefficients were normalized, are presented in Table 8.1. Also, in this table the
selection responses of the estimated linear molecular, genomic, and genome-wide
eigen selection index methods (MESIM, GESIM, and GW-ESIM respectively;
details in Sect. 8.2) are shown for four simulated selection cycles. The average of
the estimated LMSI selection response was 2.22, whereas the average of the
estimated MESIM selection response was 1.69. The estimated LMSI selection
response was higher than that of the MESIM.

Table 8.2 presents the estimated LMSI and MESIM expected genetic gains for
four traits (T1, T2, T3, and T4) and their associated marker scores (S1, S2, S3, and
S4) for four simulated selection cycles. The averages of the estimated LMSI

Table 8.1 Estimated linear molecular, combined genomic, and genome-wide selection index
(LMSI, CLGSI and GW-LMSI respectively) selection responses when their vectors of coefficients
are normalized for four simulated selection cycles

Estimated selection response
Cycle LMSI CLGSI GW-LMSI MESIM GESIM GW-ESIM
1 0.02 1.24 0.93 0.50 3.95 0.73
2 4.94 0.80 0.80 1.21 3.07 1.06
3 3.69 0.34 0.93 391 2.05 0.77
4 0.23 0.35 0.83 1.15 1.90 1.14
Average 222 0.68 0.87 1.69 2.74 0.93

Estimated linear molecular, genomic, and genome-wide eigen selection index method (MESIM,
GESIM, and GW-ESIM respectively) selection responses for four simulated selection cycles. The
selection intensity was 10% (k; = 1.755)

Table 8.2 Estimated linear molecular selection index (LMSI) and estimated linear molecular eigen
selection index method (MESIM) expected genetic gains for four traits (T1, T2, T3, and T4) and
their associated marker scores (S1, S2, S3, and S4) for four simulated selection cycles. The selection
intensity was 10% (k; = 1.755)

Estimated LMSI expected genetic gain

Traits Marker scores
Cycle T1 T2 T3 T4 S1 S2 S3 S4
1 24.48 —0.01 0.74 —0.87 4.18 —1.14 0.72 0.79
2 7.14 -3.39 2.62 1.55 3.78 —2.30 1.02 1.37
3 9.17 —3.04 1.87 1.21 6.22 —1.51 1.02 0.26
4 10.16 —1.95 1.17 1.88 8.63 —3.83 0.09 0.13
Average 12.74 -2.10 1.60 0.94 5.70 -2.19 0.71 0.64

Estimated MESIM expected genetic gain

Traits Marker scores
Cycle T1 T2 T3 T4 S1 S2 S3 S4
1 27.48 2.60 —1.03 —2.64 3.85 0.00 —0.04 —0.43
2 8.82 —4.75 0.37 2.11 14.06 4.09 0.38 —2.76
3 9.83 1.74 0.72 0.37 8.03 1.76 0.31 0.34
4 11.47 —1.13 —1.64 1.53 8.66 —3.96 —1.47 0.04
Average 14.40 —0.38 —0.39 0.34 8.65 0.47 —0.21 —0.70
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expected genetic gains for the four traits and their associated marker scores were
12.74, —2.10, 1.60, 0.94, 5.70, —2.19, 0.71, and 0.64 respectively, whereas the
averages of the estimated MESIM expected genetic gains for the four traits and their
associated marker scores were 14.40, —0.38, —0.39, 0.34, 8.65, 0.47, —0.21, and
—0.70 respectively. Except for trait T1 and its associated molecular scores, the
estimated LMSI expected genetic gains per trait were higher than the estimated
MESIM expected genetic gains. Thus, for this data set, LMSI efficiency was greater
than MESIM efficiency.

Chapter 11 presents RIndSel, a user-friendly graphical unit interface in JAVA
that is useful for estimating the LMSI and ESIM parameters and selecting parents for
the next selection cycle.

8.2 The Linear Genomic Eigen Selection Index Method

The linear genomic eigen selection index method (GESIM) is based on the standard
CLGSI described in Chap. 5, and uses genomic estimated breeding values (GEBVs)
and phenotypic values jointly to predict the net genetic merit. Thus, conditions for
constructing a valid GESIM are the same as those for constructing the CLGSI. Also,
the MESIM theory described in Sect. 8.1 is directly applied to the GESIM and only
minor changes are necessary in GESIM theory. For example, instead of marker
scores, the GESIM uses GEBVs to predict the net genetic merit; thus, the details of
the estimation process are the same as for the MESIM.

8.2.1 The GESIM Parameters

In the GESIM context, the net genetic merit can be written as

H=wg+wyy=[W, w’z][ﬂ =wa, (8.16)
where g =[g, ... g ] is the vector of true breeding values, ¢ is the number of
traits, w; = [w; --- w;] is a vector of unknown economic weights associated
with g, w, = [0; --- 0,] is a null vector associated with the vector of genomic
breeding values ¥ = [y, 7, ... 7], W =[w, wh],and o =[g 7] The

estimator of y is the GEBV (see Chap. 5 for additional details). The GESIM index
can be written as

1=by b= (8 8)]3] = 8.17)
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wherey = [y; --- y,]is the vector of phenotypic values; B, and B, are vectors of
weights of phenotypic and genomic breeding values weights respectively;
p=[B, B Jandf' =]y 7]

Let Var(H) = W Aw = 67, be the variance of H = wa, Var(I) = p'®p = o7 the
variance of I = p'f, and Cov(H,I) = W A = oy the covariance between H and 1,

B g| |C T _ y| (P T .
WhereA—Var{Y}—{r F} and(D—Var[y}—{F r are block matrices

2t x 2t (t is the number of traits) of covariance matrices and P, I', and C are
covariance matrices of phenotypic (y), genomic (y), and genetic (g) values respec-

tively. Then, py; = \/TI:;— is the correlation between H = w'at and 7 = p'f and
w/

the GESIM selection response can be written as
R = kIUHpHIa (818)

where k; is the standardized selection differential (or selection intensity) associated
with the GESIM and 6y = v W' Aw is the standard deviation of the variance of H. It
is assumed that k; is fixed, and that matrices ® and A are known; then, we can

maximize R by maximizing py; with respect to vectors w and § under the restrictions

o2, = WAW, o7 = p'®P, and 0 < 6%, 67 < o0; similar to the MESIM.

It can be shown that the vector w in the GESIM context is

we =A"'Dp (8.19)

and that the net genetic merit can be written as Hg = wa. The correlation between

R _ Qlf YA L :
Hg=wsa and [ = B'fis py ;= Jhen ap and the GESIM index vector of

coefficients that maximizes py , can be obtained from the equation

(@ 'A — 251y )B; = 0, (8.20)

where I, is an identity matrix of size 2¢ x 2¢ (¢ is the number of traits); the optimized
GESIM index can be written as I = ﬁgf. By Egs. (8.19) and (8.20), GESIM
accuracy can be written as

o]
PHglg = j’ (8-21)
G

where o7, = \/P;®P; is the standard deviation of Ig = Psf, and oy, =
\/[S’GCI)A”(I)[SG is the standard deviation of Hg = wga. In Eq. (8.20), 22 =

p%,a 1, 1s the square of the canonical correlation between Hg and /g, and B¢ is the
canonical vector associated with AZG = /)121, I
GIG
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The maximized GESIM selection response and expected genetic gain per trait are

R = ki\/ B ®Pg (8.22)

and

ABg
VB PBg
respectively, where B¢ is the first eigenvector of matrix @ 'A. Vector g can be
transformed as g = FPg, where F is a diagonal matrix defined earlier.

Ec =k (8.23)

8.2.2 Numerical Examples

To compare the CLGSI versus GESIM theoretical results, we use a real maize
(Zea mays) F, population with 244 genotypes (each with two repetitions), 233
molecular markers, and three traits—grain yield (GY, ton ha™'), ear height (EHT,
cm), and plant height (PHT, cm). We estimated matrices P and C using Eqgs. (2.22)
to (2.24) described in Chap. 2, whence the estimated matrices were

R 045 133 2.33 R 0.07 0.61 1.06
P=|133 6507 8371| and C= [0.61 1793 22.75|. In a similar
2.33 83.71 165.99 1.06 2275 44.53

manner, we estimated matrix I' by applying Egs. (5.21) to (5.23) described in

Chap. 5 using phenotypic and marker information jointly; the estimated matrix
R 0.07 065 1.05

was I' = | 0.65 10.62 14.25|. The selection intensity for making a selection
1.05 14.25 26.37

cycle was 10% (k; = 1.755) and the vector of economic weights was

w =[5 —-0.1 —-0.1 0 0 O0]. To obtain the estimated vector of coefficient

of CLG§I (ﬁ = (f)‘lgw) anii GIESIM (Eq. 8.20), it is necessary to construct matrices

A=|C Tlgad=|P L}
r r r r
The estimated CLGSI vector of coefficients for the traits GY, EHT, and
PHT and their associated GEBVs (GEBVgy, GEBVgyr, and GEBVpyr respec-

tively) was P’ =[0.08 —0.02 —0.01 492 —0.08 —0.09], whereas the
estimated CLGSI selection response, accuracy, and expected genetic gain per

) ~ PPN R o1 =, p'A
trait were R = k;\/p'®P =1.54, py; ==—=0.814, and E' =k =
n pop

[0.36 1.04 1.70 0.36 1.53 2.38]respectively. Finallyj = 0.08GY — 0.02
EHT — 0.01PHT + 4.92GEBVgy — 0.08GEBVgyr —0.09GEBVpyt was the esti-
mated CLGSI.
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The estimated GESIM vector of coefficients, selection response, accuracy,
[—0.207 0.029 0.041 0.820 0.337 0.411], Rg = km/ﬁ’cltﬁﬁ(;l = 6.288,
A/ B/ &)EG —~ B A
o = o __ —0.9056, E/G:klﬁc—l_
Gle T —-1Rn
\V/ BG, PAT @B,

Fig. 8.2 presents the frequency distribution of the 244 estimated GESIM index
values for one (Fig. 8.2a) and three traits (Fig. 8.2b) using the real data set described
the normal distribution for both indices.

Now, we compare the estimated CLGSI and GESIM selection response and
of Chap. 2 for four phenotypic selection cycles, each with four traits (7, T,, T5 and
T4), 500 genotypes, and four replicates per genotype. The economic weights of T,

and expected genetic gain per trait were [S’Gl =
~~ = and —
\/ /G| (I)ﬁGl
[0.369 5.528 9.186 0.370 5.250 8.702] respectively.
earlier. The frequency distribution of the estimated GESIM index values approaches
expected genetic gain per trait using the simulated data set described in Sect. 2.8.1
T,, T5, and T, were 1, —1, 1, and 1 respectively and the selection intensity for both
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Fig. 8.2 Frequency distribution of the 244 estimated genomic eigen selection index method
(GESIM) values for the one-trait case (a) and for the three-trait case (b) for one selection cycle in
an environment for a real maize (Zea mays) F, population with 233 molecular markers. Note that
the frequency distribution of the estimated GESIM index values approaches normal distribution for
both indices
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Table 8.3 Estimated combined linear genomic selection index (CLGSI) and estimated GESIM
expected genetic gains for four traits (T1, T2, T3, and T4) and their associated genomic estimated
breeding values (GEBV1, GEBV2, GEBV3, and GEBV4) for four simulated selection cycles. The
selection intensity was 10% (k; = 1.755)

Estimated CLGSI expected genetic gain

Traits Genomic estimated breeding value
Cycle T1 T2 T3 T4 GEBV1 GEBV2 | GEBV3 GEBV4
1 7.46 —3.69 3.26 1.60 |7.28 —4.38 3.72 3.29
2 7.08 —3.45 291 1.17 7.08 —3.63 3.66 2.67
3 7.81 —3.51 206 |0.76 |7.30 —3.92 2.35 2.40
4 7.46 —2.76 2.48 0.81 6.84 —2.79 2.79 2.40
Average | 7.45 —3.35 2.68 1.09 |7.13 —3.68 3.13 2.69
Estimated GESIM expected genetic gain
Traits Genomic estimated breeding value
Cycle T1 T2 T3 T4 GEBV1 GEBV2 | GEBV3 GEBV4
1 8.28 —3.51 2.93 092 |7.77 —4.27 3.52 2.64
2 7.89 —3.09 242 082 |7.40 —3.41 3.29 2.38
3 8.47 —3.26 1.69 046 |7.55 —3.78 2.11 2.16
4 8.08 —2.46 204 066 |7.15 —2.67 2.53 2.39
Average 8.18 —3.08 2.27 0.71 7.46 —3.53 2.86 2.39

indices was 10% (k; = 1.755). For this data set, matrix F was an identity matrix of
size 8 x 8 in all four selection cycles.

For this data set, the averages of the estimated CLGSI and GESIM selection
responses were 0.68 and 2.74 (Table 8.1) respectively. The estimated CLGSI
selection response was lower than the estimated GESIM selection response.
Table 8.3 presents the estimated CLGSI and GESIM expected genetic gain for
four traits (T1, T2, T3, and T4) and their associated genomic estimated breeding
values (GEBV1, GEBV2, GEBV3, and GEBV4) for four simulated selection cycles.
The averages of the estimated CLGSI expected genetic gains for the four traits and
their associated GEBVs were 7.45, —3.35, 2.68, 1.09, 7.13, —3.68, 3.13, and 2.69
respectively, whereas the averages of the estimated GESIM expected genetic gains
for the four traits and their associated GEBVs were 8.18, —3.08, 2.27, 0.71, 7.46,
—3.53, 2.86, and 2.39 respectively. The estimated CLGSI and GESIM expected
genetic gains per trait were very similar.

8.3 The Genome-Wide Linear Eigen Selection Index
Method

The MESIM requires regressing phenotypic values on marker coded values to
predict the marker score values for each individual candidate for selection, and
then combining the marker scores with phenotypic information using the MESIM
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to obtain a final prediction of the net genetic merit. In addition, the GESIM requires
fitting of a statistical model to estimate all available marker effects in the training
population; these estimates are then used to obtain GEBVs, which are predictors of
breeding values. Crossa and Cerén-Rojas (2011) extended the ESIM theory to a
genome-wide linear molecular ESIM (GW-ESIM) similar to the GW-LMSI
described in Chap. 4. The GW-LMSI and GW-ESIM are very similar and only
minor changes are necessary in GW-ESIM; for example, instead of estimating the
GW-LMSI vector of coefficients according to the LPSI method (Chap. 2), the
GW-ESIM vector of coefficients is estimated according to the singular value decom-
position (SVD) described in Chap. 7.

8.3.1 The GW-ESIM Parameters
In the GW-ESIM context, the net genetic merit can be written as
H=w\g+wm=[w, w’z}[rgn} =w'x, (8.24)

where g’ =[g, ... g is the vector of true breeding values, 7 is the number of
traits, w; = [wy -+ w,] is the vector of unknown economic weights associated
with the breeding values; w’2 =[0; --- Oy] is anull vector associated with the
vector of marker code values m' = [m; --- my], where m; (j = 1, 2, ...,
N = number of markers) is the jth marker in the training population;
w =[w, Ww,]andx=[g m']. The GW-ESIM (/) index combines the pheno-
typic value and all the marker information of individuals to predict Eq. (8.24) values
in each selection cycle and can be written as

y
I=Bly+p,m=[B B,] M =P, (8.25)
where ﬁ; and f,, are vectors of phenotypic and marker weights respectively;
y=[y - y] is the vector of phenotypic values; m was defined in

Eq. (824); p'=[B, B,] and q' =]y m'].
Let o7 = B'QP and 67, = w'Zw be the variance of [ = f'q and H = w'z respec-

tively, and oy; = W'Z the covariance between I and H, where Q = Var [fn] =

P G;W . g| | C Gg,, . .
|:GM M} and X = Var[m =lG, M are block matrices of size

(t+ N) X (t + N) (t is the number of traits and N is the number of markers) where
P = Var(y), M = Var(m), C = Var(g), and Gy, = cov (y,m) = cov (g, m) are
covariance matrices of phenotypic (y), coded marker (m), and genetic (g) values
respectively, whereas Gy, is the covariance matrix between y and m, and between
g and m (for details see Chap. 4); w and f were defined earlier. Note that although the
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size of matrices P and C are ¢ X ¢, the sizes of matrices M and G,are N x Nand N X ¢
respectively. Thus, if the number of markers is very high, the size of matrices M and
G, could also be very high.

In Chap. 4 we described matrix M as

1 (1 =201) ... (1—=201y)
Mo | ( —:2921) 1 (- :2921v) ’ (8.26)
(1=20y1) (1—20w) ... 1
where (1 — 26;) and 0;; (i, j= 1, 2, ..., N= number of markers) are the covariance

(or correlation) and the recombination frequency between the ith and jth marker
respectively, whereas matrix G,, can be written as

(1 =2r)ay (1 =2r)an ... (1 =2ry)aw,
Gy — (1— 2:;’21)0421 (1- 2:’22)0622 (1- 2r:2N)“2NQ ) (8.27)
(I=2r)an (1 =2rm)an ... (1—2rw)aw,

where (1 — 2riag (i=1,2,...,N, k=1, 2, ..., No = number of quantitative trait
loci (QTL), g =1, 2, .. ., t) is the covariance between the gth trait and the ith marker;
ri is the recombination frequency between the ith and kth QTL, and a,, is the effect
of the kth QTL over the gth trait.

—_ wWXp : Y — wix-
Let pyy Ny be the correlation between I = f'q and H = w'x; then, the

GW-ESIM selection response can be written as
R = k[GHp]_”, (8.28)

where k; is the standardized selection differential (or selection intensity) associated
with GW-ESIM and oy = vW Xw is the standard deviation of the variance of H.
Assuming that k; is fixed, and that matrices Q and X are known, we can maximize
R (Eq. 8.28) by maximizing py; with respect to vectors w and f under the
restrictions U%[ = wXw, a% =p'Qp, and 0 < a%,,a% < 00, similar to the MESIM

and GESIM. It can be shown that vector w can be written as

wy = X'Qp (8.29)

and that Hy = Wyx is the net genetic merit in the GW-ESIM context. The
correlation between Hy = wipx and I = f/q is = VPO 44 the

w W B'q PHylI BOX 'Qp
GW-ESIM vector of coefficients (B) that maximizes py, , can be obtained from
equation

(QilZ - A%VI(H»N))[;W =0, (8.30)
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where I, , n) is an identity matrix of size (t + N) X ( + N) and Iy = B'Wq is the
optimized GW-ESIM. The accuracy of the GW-ESIM can be written as

PHyly = on
\/ ﬁ/WQxilQﬁw Hw

where o7, = /B,y QPy is the standard deviation of Iy = Bj,q, and oy, =
q/ﬁ’WQX’lQﬁW is the standard deviation of Hy = wy,x. In Eq. (8.30) 2, =

pi,w 1, 18 the square of the canonical correlation between Hy and Iy.
The maximized GW-ESIM selection response and expected genetic gain per trait

are
Rw = ki\/BwQByw (8.32)

and

Xpy

VByQBy

respectively, where By is the first eigenvector of Eq. (8.30).

w = ki (8.33)

8.3.2 Estimating GW-ESIM Parameters

In Chap. 2, Eqgs. (2.22) to (2.24), we described the restricted maximum likelihood
methods to estimate matrices C and P, which can be denoted by C and P. In
Chap. 4, we described how to estimate matrices M and G,,, which can be denoted
by Mand G u. With these estimates, we constructed the block estimated matrices as

R ) ~/ N -~ ~/
= J) GAM and X = AC GAM , whence we obtained the equation
GM GM M
(Q X —231)By; =0, (8.34)
j=1,2, .., (+ N), where (t + N) is the number of traits and markers in

the GW-ESIM index. Similar to the MESIM, we obtained estimators EWI and PWI
of the first eigenvector By, and the first eigenvalue PW, respectively, from equation

(EE' —a1)By, =0, (8.35)
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where E = QX and Hi= %V,» These results allow the GW-ESIM index selection

response and its expected genetic gain per trait to be estimated as Ty = B’Wlfi,
<R

~ =~ = ~ X
Rw =ki\/$'w,QBy, and E,, = k; AﬁiY‘ respectively, whereas the estimator
\/ B w, QBy,

of GW-ESIM accuracy is Zwl-

8.3.3 Numerical Examples

We compare the estimated GW-LMSI and GW-ESIM selection responses using the
simulated data set described in Sect. 2.8.1 of Chap. 2, with a selection intensity of
10% (k; = 1.755). Table 8.1 presents the estimated GW-LMSI selection response for
four simulated selection cycles when their vectors of coefficients are normalized,
whence it can be seen that the average estimated GW-LMSI selection response was
0.87. Table 8.1 also presents the estimated GW-ESIM selection response for four
simulated selection cycles; the average of the estimated GW-ESIM selection
responses was 0.93. Thus, for this data set, the estimated GW-LMSI and selection
responses were very similar.

8.4 The Restricted Linear Genomic Eigen Selection Index
Method

The restricted linear genomic eigen selection index method (RGESIM) is based on
the restricted linear phenotypic ESIM (RESIM) theory described in Chap. 7. In the
RESIM, the breeder’s objective is to improve only (¢ — r) of ¢ (r < ¢) traits, leaving
r of them fixed. The same is true for RGESIM, but in this case, we should impose 2r
restrictions, i.e., we need to fix r traits and their associated r GEBV to obtain results
similar to those obtained with the RESIM (see Chap. 7 for details). This is the main
difference between the RGESIM and the RESIM.

It can be shown that Cov(I, ) = AP is the covariance between the breeding value
vector (o' = [g' y']) and the GESIM index (I = f'f). In the RGESIM, we want
some covariances between the linear combinations of a (Ug o) and I = §'f to be zero,
i.e., Cov(Ig, Ugzar) = UgAB = 0, where Uy is a matrix 2(t — 1) x 2t of 1s and Os
(1 indicates that the trait and its associated GEBV are restricted, and O indicates that
the trait and its GEBV have no restrictions). We can solve this problem by maxi-
mizing BAB \ith respect to vector B under the restriction U;Ap = 0 and p/'p = 1

VB'®p

similar to the RESIM, or by maximizing the correlation between H = w'a and
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I1=0f py = \/"Xw—liA\;[?dTﬁ’ with respect to vectors w' and f under the restrictions
W AW
ULAB = 0,67, = WAW, 67 = B'®B and 0 < o7, 67 < 00, as we did for the GESIM.

8.4.1 The RGESIM Parameters

To obtain the RGESIM vector of coefficients, we maximize the function

p'Ap ey
f(B,V) = —vUGAP 8.36
B, V) To8 (8.36)
with respect to B and v/, where vV = [v; v, --- va, — 1] is a vector of Lagrange

multipliers. The derivatives of function i, v') with respect to § and v’ can be written
as

2(p0p)'°Ap — (B@B) "’ (BFAP)DP — AUgv = 0, (8.37)
UAB =0, (8.38)

respectively, where Eq. (8.38) denotes the restriction imposed for maximizing
Eq. (8.36). Using algebraic methods on Eq. (8.37), we get

(Krg® 'A — ApgL:) Brg = 0, (8.39)

where A3 = hj ., hj,_is the RGESIM heritability obtained under the restriction Uy,
AB=0; Krg = [I; — Qggl, I, is an identity matrix of size 2¢t x 2f, and
Qrg = D 'AUG (U AD 'AU;) U A. When Uy, is a null matrix, B, = Bl
(the vector of the GESIM coefficients); thus, the RGESIM is more general than
the GESIM and includes the GESIM as a particular case. The RGESIM index Igg =
Brcy and its selection response and expected genetic gain per trait use the first
eigenvector of matrix Ko® 'A. It can be shown that the vector of coefficients of
H = wpso in the RGESIM can be written as

Wrg = A7 [@ + QA Bro. (8.40)

where Qp; = AUg (U,A®D 'AU;) U AD .

Note that the restriction U;Ap = 0 can be written as f’AUg = 0; this means that
B'Q'rc = 0 and that the covariance between Hrg = Wy and Iz = Prof (GHpoine)
can be written as

OHgglrg = W;?GAB;?G = ﬁ;ec‘l)ﬁRG + ﬁ;?GQ;?GCBRG = ﬁ;?G(I)ﬁRG' (8.41)
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Equation (8.41) indicates that 6,1, is equal to the variance of Irg = Prsf
(G%RG = ﬁ;eG(I)BRG); therefore, the maximized correlation between Ir; and Hyg or
RGESIM accuracy can be written as

v/ BrePBrc
Pt = ~ARE2RG 8.42
Hralka = /WhAWRG ( )

where W;eGAWRG is the variance of Hyg. Hereafter, to simplify the notation, we write
Eq. (8.42) as Agg.
The maximized selection response and the expected genetic gain per trait of the

RGESIM are
Rrg = k“/[i;wdlﬁRG (8.43)

and

ABrc

VBro®Brc

respectively, where Brg is the first eigenvector of matrix Kzo® 'A.

Erc = ki (8.44)

8.4.2 Estimating RGESIM Parameters

In Sect. 8.2, we indicated how to estimate matrices P, I, and C using phenotypic and

.. . . . Cr
genomic information, whence we can estimate matrices A = r r and

D= [II: ;} . Those methods are also valid for the RGESIM. This means that the
SVD methods described for estimating MESIM parameters are also valid for esti-
mating RGESIM parameters.

8.4.3 Numerical Examples

With a selection intensity of 10% (k; = 1.755), we compare the CRLGSI (for details
see Chap. 6) versus the RGESIM theoretical results using a real maize (Zea mays)
F, population with 244 genotypes (each with two repetitions), 233 molecular
markers, and three traits—GY (ton hafl), EHT (cm), and PHT (cm)—described in
045 1.33 2.33 N 0.07 0.61 1.06
Sect. 8.2.2, where P = | 1.33 65.07 83.71 |, C= |0.61 17.93 22.75 ]|,
2.33 83.71 165.99 1.06 2275 44.53
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R 0.07 0.65 1.05
and I' = [ 0.65 10.62 14.25| were the estimated matrices of P, C, and T
1.05 14.25 26.37
respectively.
We have indicated that the main difference between the RLPSI and the CRLGSI
is the matrix U’C, on which we now need to impose two restrictions: one for the trait
and another for its associated GEBV. Consider the data set described earlier and

suppose that we restrict the trait GY (ton ha™!) and its associated GEBVgy; then,

- ;|1 0 0 0 0 O .
matrix U, should be constructed as Uy, = 00010 0 . If we restrict

traits GY and EHT (cm) and their associated GEBVgy and GEBVgyr, matrix U’C

1 000 0O
should be constructed as U, = (O) (1) 8 (1) 8 8 , etc. The procedure for
000 01O

obtaining matrices Kgg = Ly, — (A)RG} and Qg = ® 'AUg (Ug K(/I\)’IKUG)AU'

A was described in Chap. 6, and is also valid for estlmatmg RGESIM parameters.
The estimated CRLGSI vector of coefficients is [3 R = KRGﬁ where [5 @ 'A

wis the estimated CLGSI vector of coefficients (Chap. 6). Letw’ =[5 —0.1 —0.1

0 0 0] be the vector of economic weights and suppose that we restrict trait
1 0 00 0O
00 01 0 0
and according to matrices IA’, 6, and T  described earlier, B/CR =
[0.076 —0.004 —0.018 2.353 —-0.096 —0.082] was the estimated
CRLGSI vector of coefficients and the estimated CRLGSI was

GY and its associated GEBVgy; in this case, U’C1 =

Tcr = 0.076GY — 0.004EHT — 0.018PHT + 2.353GEBV gy — 0.096GEBVyr
— 0.082GEBVpur

where GEBV gy, GEBVgyr, and GEBVpyt are the GEB Vs associated with the traits
GY, EHT, and PHT respectively. The same procedure is valid for two or more
restrictions.

The estimated CRLGSI selection response and expected genetic gainA per

/
=~ PP =~ A

trait were  Rep = ki\/Blg®Pog = 096 and  Blp =k = AﬁciRM

\/ Ber®PBcr
[0 —353 —6.03 0 —293 —4.87] respectively, whereas the estimated
CRLGSI accuracy was pp., = @ = 0.51. Note that in ITZ’CR, the trait GY and its

OH

associated GEBV gy have null values, as we would expect.

The estimated RGESIM vector of coefficients was Ber =
[0.015 —0.001 —0.004 0.998 —0.029 —0.045], and the estimated
RGESIM index was Igg = 0.015GY — 0.001EHT — 0.004PHT + 0.998GEBVgy
—0.029GEBVgur — 0.045GEBVpur where GEBVgy, GEBVgyt, and GEBVpyr
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are the GEBVs associated with traits GY, EHT, and PHT respectively. The same
procedure is valid for two or more restrictions.
The estimated RGESIM selection response and expected genetic gain per

/
N = = ~ A
trait were  Rgg = ki\/Brg®PBrg =037 and Ej; =k = AﬁRiGAA
\/ Brc®PPBrc
[0 —328 —6.03 0 —293 —540] respectively, whereas the estimated

~

U/\
RGESIM accuracy was p~ ~ = _Ira _ ).86.

Hglr o~
Hre

Fig. 8.3 presents the frequency distribution of the 244 estimated RGESIM index
values for two null restrictions on traits GY and EHT and their associated GEBVgy
and GEB Vgyr, for one selection cycle in an environment for a real maize (Zea mays)
F, population with 233 molecular markers. Note that the frequency distribution of
the estimated RGESIM index values approaches the normal distribution.

Now we compare the estimated CRLGSI and RGESIM selection responses and
expected genetic gains per trait using the simulated data set described in Sect. 2.8.1
of Chap. 2. We used that data set for four phenotypic selection cycles (C2, C3, C4,
and C5), each with four traits (7}, T,, T3, and T}), 500 genotypes, and four replicates
per genotype. The economic weights for 7, 75, T3, and T4 were 1, —1, 1, and

RGESIM frequency distribucion values

Fig. 8.3 Frequency distribution of the 244 estimated restricted genomic eigen selection index
method (RGESIM) values for two null restrictions on traits grain yield (GY) and EHT and their
associated genomic estimated breeding values (GEBVs), GEBV gy and GEBVgyr respectively, for
one selection cycle in an environment for a real maize (Zea mays) F, population with 233 molecular
markers. Note that the frequency distribution of the estimated RGESIM index values approaches
normal distribution
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1 respectively. For this data set, matrix F was an identity matrix of size 8 x 8 for all
four selection cycles.

Columns 2, 3, and 4 (from left to right) of Table 8.4 present the estimated
CRLGSI selection responses when their vectors of coefficients are normalized and
the estimated RGESIM and selection responses for one, two, and three restrictions
for four simulated selection cycles. The averages of the estimated CRLGSI selection
responses of the traits and their associated GEBVs for each of the three null
restrictions were 3.24 for one restriction, 4.08 for two restrictions, and 5.06 for
three restrictions, whereas the averages of the estimated RGESIM selection
responses were 3.08 for one restriction, 2.79 for two restrictions, and 3.23 for
three restrictions. Note that although for one restriction the selection response was
similar for both indices, for two and three restrictions the CRLGSI selection
responses were greater than the RGESIM selection responses.

Table 8.5 presents the estimated CRLGSI and RGESIM expected genetic gains
per trait for four traits (T1, T2, T3, and T4) and their associated GEB Vs (in this case
denoted by G1, G2, G3, and G4 to simplify the notation) in four simulated selection
cycles and for one, two, and three null restrictions in four simulated selection cycles.
Note that the null values of the traits and their restricted GEBVs are not shown in
Table 8.5 with the aim of simplifying the table. The averages of the estimated
CRLGSI expected genetic gains for the three traits and their associated GEBVs
were —2.60, 2.16, 2.84, —1.21, 0.67, and 1.02 for one restriction; 2.74, 3.23, 0.78,

Table 8.4 Estimated combined null restricted linear genomic selection index (CRLGSI) and
estimated combined predetermined proportional gain linear genomic selection index (CPPG-
LGSI) selection responses for one, two, and three restrictions when their vectors of coefficients
are normalized for four simulated selection cycles

CRLGSI response for one, two and CPPG-LGSI response for one, two and three
three null restrictions predetermined restrictions

Cycle 1 2 3 1 2 3

1 3.25 4.09 4.89 5.36 2.80 1.81

2 3.28 4.19 5.21 5.07 3.64 1.99

3 291 3.89 4.97 5.37 3.86 1.42

4 3.53 4.17 5.15 4.52 3.38 1.20

Average |3.24 4.08 5.06 5.08 3.42 1.60
RGESIM response for one, two, and | PPG-GESIM response for one, two, and
three null restrictions three predetermined restrictions

Cycle 1 2 3 1 2 3

1 3.21 2.78 3.47 1.95 4.07 4.26

2 3.11 2.86 3.06 1.85 4.12 5.49

3 2.93 2.76 3.20 2.04 4.18 6.30

4 3.07 2.76 3.21 2.02 4.17 5.82

Average |3.08 2.79 3.23 1.96 4.14 5.47

Estimated null restricted genomic eigen selection index method (RGESIM) and predetermined
proportional gain genomic eigen selection index method (PPG-GESIM) selection responses for one,
two, and three restrictions for four simulated selection cycles. The selection intensity was 10%
(ky = 1.755)
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Table 8.5 Estimated CRLGSI and estimated null RGESIM expected genetic gains per trait for four
traits (T1, T2, T3, and T4) and their associated genomic estimated breeding values (G1, G2, G3, and
G4) for four simulated selection cycles and for one, two, and three null restrictions for four
simulated selection cycles. The selection intensity was 10% (k; = 1.755)

CRLGSI expected genetic gains for one, two and three null restrictions

Three

One restriction® Two restrictions® restrictions®
Cycle |T2 T3 T4 G2 G3 G4 |T3 T4 G3 G4 |T4 G4
1 —2.32 |2.17 |2.87 |—148 |0.73 |1.24 |2.60 |3.38 |0.86 [1.15 [4.08 |1.50
2 —2.76 [2.14 |2.89 | —1.19 [0.76 |0.96 |2.81 |3.30 |0.87 |0.98 |3.95 |1.25
3 —2.22 227 (298 | —1.15 [0.62 097 |2.77 |3.14 |0.69 |0.90 |3.93 |1.33
4 —-3.09 [2.08 [2.64 |—1.05 |0.58 [0.92 |2.80 [3.08 |0.70 [0.93 [4.13 |1.24
Mean | —-2.60 |[2.16 [2.84 |—1.21 |0.67 |1.02 [2.74 [3.23 |0.78 [0.99 [4.02 |1.33

RGESIM expected genetic gains for one, two and three null restrictions

Three

One restriction® Two restrictions® restrictions®
Cycle |T2 T3 T4 G2 G3 G4 T3 T4 G3 G4 |T4 G4
1 327 | —1.52 | —1.24/2.48 | —-0.88| —1.00 |3.18 |0.93 |1.88 |0.43|3.66 |2.21
2 330 | —-1.79 | —1.41/2.10 | —1.09|—-0.82 [3.26 |1.34 |1.82 [0.66|3.41 |2.00
3 298 | —1.62 | —1.44/2.13 | -0.83|-0.75 [3.31 |0.86 |1.70 [0.21|3.45 |2.05
4 3.56 | —1.73 | —1.23/1.92 | -0.89|-0.78 [3.40 [0.96 |1.62 [0.53|3.58 |2.02
Mean |3.27 | —1.67 |—1.33|2.16 |—-092|—-0.84 |329 |1.02 |1.76 |0.46|3.53 |2.07

ZA11 T1 and G1 expected genetic gains were null
PAll T1, T2, G1, and G2 expected genetic gains were null
°All T1, T2, T3, G1, G2, and G3 expected genetic gains were null

and 0.99 for two restrictions; and 4.02 and 1.33 for three restrictions. On the other
hand, the averages of the estimated RGESIM expected genetic gains for the three
traits and their associated GEBVs were 3.27, —1.67, —1.33, 2.16, —0.92, and —0.84
for one restriction; 3.29, 1.02, 1.76, and 0.46 for two restrictions; and 3.53 and 2.07
for three restrictions. These results indicate that in terms of absolute values, the
estimated expected genetic gains for the traits and their associated GEBVs were
similar for both indices.

8.5 The Predetermined Proportional Gain Linear Genomic
Eigen Selection Index Method

The predetermined proportional gain linear genomic eigen selection index method
(PPG-GESIM) theory is based on the predetermined proportional gain linear phe-
notypic ESIM (PPG-ESIM) described in Chap. 7. In the PPG-ESIM, the vector of
PPG (predetermined proportional gain) imposed by the breeder was
d =[d d, --- d,]. However, because the PPG-GESIM uses phenotypic
and GEBYV information jointly to predict the net genetic merit, the vector of PPG
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imposed by the breeder (dps) should be twice the standard vector d’, that is,
ds=[di do -~ dr dwy1 dra -+ dy |, where we would expect that
if d is the PPG imposed on trait 1, then d, , | should be the PPG imposed on the
GEBYV associated with trait 1, etc. Thus, in the PPG-GESIM we have three possible
options for determining (for each trait and GEBV) the PPG: e.g., for trait 1, d; =d, , 1,
dy>d,, ord, <d,, . Thisis the main difference between the standard PPG-ESIM
described in Chap. 7 and the PPG-GESIM.

8.5.1 The PPG-GESIM Parameters

Using the same procedure described for RGESIM and PPG-ESIM, the PPG-GESIM
vector of coefficients (fps), which maximizes the PPG-GESIM selection response
and the expected genetic gain per trait, is the first eigenvector of the following
equation

(Tpg — Aplas)Bpg = 0. (8.45)

where Tps = KRG(IJ_IA + B, Kpg = [I; — Qrgl, I, is an identity matrix of
size 21 X 21, Qpg =D 'AUG(UL,A® 'AU;) 'ULA, B = 8¢, 8=
, o (U,A®'AUG) ' ULA®'A
&, (UL, A®'AUG) ™ dpo
When B is a null matrix, Tpg = KRG<I)71A (matrix of the RGESIM), and when
U’G is a null matrix, Tpg = o 'A (matrix of the GESIM); this means that the
PPG-GESIM includes the RGESIM and GESIM as particular cases. The opti-
mized PPG-GESIM index can be written as Ipg = Ppf.
The vector of coefficients of H = Wy in the PPG-GESIM can be written as

@ 'AUG(UL,AD 'AUG) 'dpg, and

wrg = A~ [® + QA ] Bpg, (8.46)
where Q) = AUgDg (DU, A® 'AUsD;) 'D,ULAD ", and
dr 0 0 —d
D’G — 0: d:2’ ' 0: jd2 . Similar to RGESIM, it can be shown that
0 0 - do —dy_y

the covariance between Hgg = Wyt and Ipg = Bpsf (0w, ) is equal to
the variance of Ipg = Ppf (o-%PG = BrcPPBpc ), that i, om,uie = WpeABpg =

/ _ 2
BrcPPrc = Olpg
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The maximized correlation between Ip; and Hpg, or PPG-GESIM accuracy, is

vV ﬁ;’Gq)ﬁPG
g == 8.47
PHpglpg w;, AWrg ( )

where wp;AWpg is the variance of Hpg. Hereafter, to simplify the notation, we write
Eq (847) as APG‘
The maximized selection response and the expected genetic gain per trait of the

PPG-GESIM are
RpG = ki\/ Bp®Brg (8.48)

and

ABprg

EPG = k[i,
VBrPBrc

respectively, where Bp¢ is the first eigenvector of Eq. (8.45).

(8.49)

8.5.2 Numerical Examples

The process for estimating PPG-ESIM parameters is similar to the method
described for estimating RGESIM parameters. With a selection intensity of
10% (k; = 1.755), we compare the combined predetermined proportional
gain linear genomic selection index (CPPG-LGSI) and PPG-GESIM results
using the real maize (Zea mays) F, population with 244 genotypes,
233 molecular markers, and three traits—GY (ton ha~'), EHT (cm), and PHT

N 045 1.33 233 0.07 0.61 1.06
(cm)—where P = | 1.33 65.07 83.71|, G= [0.61 1793 22.75| and
2.33 83.71 165.99 1.06 22.75 44.53

R 0.07 0.65 1.05
I'={0.65 10.62 14.25| are the estimated matrices of P, G, and I respec-
1.05 14.25 26.37

tively, whereas w' =[5 —0.1 —0.1 0 O 0] was the vector of economic
weights.
The estimated CPPG-LGSI vector of coefficients was Bep = Bog + 0cpd (see

Chap. 6 for additional details). Let A= [9 1:} and @ = [E E] be the
r r rr
estimated block matrices and dp; =[7 —3 3.5 —1.5] the vector of PPG
imposed by the breeder on the traits GY and EHT, and their associated genomic
estimated  breeding values (GEBVgy and GEBVgyr), and let
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U, = be the matrix of null restrictions on the CPPG-LGSI

(= e )

0
0
0
1

SO O =
(=N e o)
(=Rl )
(=Rl e)

and w =[5 —0.1 —0.1 00 0] the vector of economic weights. It can be
shown that 8cp = —0.00009 is the estimated value of the proportionality con-
stant, 8 =[—112.92 —72.16 61.35 231.79 64.75 —61.35], Plp=
[-0.01 0.01 —-0.01 0.59 0.09 —0.09] is the estimated CPPG-LGSI vec-
tor of coefficients, and the estimated CPPG-LGSI can be written as

Tcp = —0.01GY + 0.01EHT — 0.01PHT + 0.59GEBVgy + 0.09GEBVgpr
— 0.09GEB Vppr

where GEBVgy, GEBVgyr, and GEBVpyt are the GEBVs associated with traits
GY, EHT, and PHT respectively. The same procedure is valid for more than
two predetermined restrictions. The estimated CPPG-LGSI selection response

and expected genetic gain per trait were Rep = k,\/ﬁ’cpi)ﬁcp =0.443 and
BepA

\/ Bep®Bcr
_ 81CP

respectively, whereas the estimated CPPG-LGSI accuracy is py;., = == = 0.234.
OH

E'CP:kI =[-0.004 0.002 —4.639 —0.002 0.001 —4.326]

Because the estimated value of the proportionality constant was negative (@cp =
—0.00009), the expected genetic gains of the traits GY and EHT, and their associated
genomic estimated breeding values (GEBVgy and GEBVgyr), which appeared in
the IAE’CP values, were not in accordance with the values of the vector of PPG imposed
by the breeder,dp; =[7 —3 3.5 —1.5], as we would expect, and CPPG-LGSI
accuracy (0.234) was low. These results indicate that in the CPPG-LGS], it is very
important for the estimated values of §CP to be positive (see Chaps. 3 and 6 for
details).

In the PPG-GESIM, we need to find the solutions to equation (TPG - ;1\12,6/12,)

Brg, = 0, for 3, and B, (see Eq. 8.45). The estimated PPG-GESIM vector of
coefficients was Bl; = [0.001 —0.050 0.029 0.975 0.154 —0.157], which

—-0.1 0 0 O 0 0
0 30 0 0 0
. . 0 0 2 O 0 0 .
was transformed using matrix F = 0 00 -1 0 'k that is, we
0 00 0 -1 0
0 0 0 O 0o -1

changed the direction of the original vector. With the B\;,G values, we can estimate the
PPG-GESIM index as
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Tpg = 0.001GY — 0.05EHT + 0.029PHT + 0.975GEBVgy + 0.154GEBVgyr
— 0.157GEBVpur

where GEBVgy, GEBVgyt, and GEBVpyt are the GEBVs associated with the
traits GY, EHT, and PHT respectively. The estimated PPG-GESIM selection
response, accuracy, and expected genetic gain per trait were Rpg =

o~ /
ki\/Bro®Brg = 0.696, p~ ~ =% —0843, and E,, P
Hpclpg o~ =
Hpg \/ BrcPPrc
[0.01 —1.00 —3.56 0 —0.46 —3.98] respectively.

Fig. 8.4 presents the frequency distribution of the 244 estimated PPG-GESIM
index values for two predetermined restrictions on the traits GY and EHT and their
associated GEBVs (GEBVgy and GEBVEgyr), for one selection cycle in an envi-
ronment for a real maize (Zea mays) F, population with 233 molecular markers. Note
that the frequency distribution of the estimated PPG-GESIM index values
approaches normal distribution.

Now, with a selection intensity of 10% (k; = 1.755) and a vector of predetermined
restrictions dp; =[7 -3 5 3.5 —1.5 2.5], we compare the estimated
CPPG-LGSI and PPG-GESIM selection responses and expected genetic gains per

PPG-GESIM frequency distribution values

0 = —

Fig. 8.4 Frequency distribution of the 244 estimated predetermined proportional gain genomic
eigen selection index method (PPG-GESIM) values for two predetermined restrictions on the traits
GY and EHT and their associated GEBVs, GEBV gy and GEBVgyr, for one selection cycle in an
environment for a real maize (Zea mays) F, population with 233 molecular markers
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trait using the simulated data set described in Sect. 2.8.1 of Chap. 2. Traits T1, T2,
and T3 and their associated GEBVs (GEBV1, GEBV2, and GEBV3 respectively)
were restricted, but trait T4 and its associated GEBV4 were not restricted. For
this data set, matrix F was an identity matrix of size 8 x 8 for all four selection
cycles.

Table 8.6 presents the estimated CPPG-LGSI selection responses when their
vectors of coefficients are normalized, and the estimated PPG-GESIM selection
responses for one, two, and three predetermined restrictions for four simulated
selection cycles. The averages of the estimated CPPG-LGSI selection responses
were 5.08 for one restriction, 3.42 for two restrictions, and 1.60 for three restrictions,
whereas the averages of the estimated PPG-GESIM selection responses were 1.96
for one restriction, 4.14 for two restrictions, and 5.46 for three restrictions. For this
data set, when the number of restrictions increases, the estimated CPPG-LGSI

Table 8.6 Estimated CPPG-LGSI expected genetic gains for one, two, and three restricted
predetermined traits (T1, T2, and T3) and for one, two, and three restricted predetermined
GEBVs (GEBV1, GEBV2, and GEBV3) for four simulated selection cycles

CPPG-LGSI expected genetic gain for one predetermined restriction
Traits Genomic estimated breeding values
Cycle T1 T2 T3 T4 GEBV1 GEBV2 |GEBV3 |GEBV4
1 8.24 —-3.62 [3.32 |226 |4.12 —2.33 1.75 1.09
2 7.98 —4.06 [3.03 2.68 3.99 —2.24 1.79 1.04
3 8.61 —4.48 |3.24 1.96 |4.30 —2.32 1.70 0.98
4 8.30 —434 332 204 |4.15 —2.16 1.62 0.92
Average | 8.28 —-4.12 323 223 |4.14 —2.26 1.71 1.01
CPPG-LGSI expected genetic gain for two predetermined restrictions
Traits Genomic estimated breeding values
Cycle T1 T2 T3 T4 GEBV1 GEBV2 |GEBV3 |GEBV4
1 8.06 —346 330 206 [4.03 —1.73 1.72 0.98
2 8.17 —3.50 |3.08 2.65 |4.09 —1.75 1.79 0.98
3 8.88 —3.81 3.31 1.83 |4.44 —1.90 1.72 0.90
4 8.61 —3.69 [343 1.99 |4.30 —1.84 1.65 0.87
Average | 8.43 -3.61 3.28 213 422 —1.81 1.72 0.93
CPPG-LGSI expected genetic gain for three predetermined restrictions
Traits Genomic estimated breeding values
Cycle T1 T2 T3 T4 GEBV1 GEBV2 |GEBV3 |GEBV4
1 5.77 —2.47 412 228 |2.88 —1.24 2.06 0.98
2 5.68 —243 406 (276 284 —1.22 2.03 0.97
3 5.87 —2.52  |4.20 1.98 2.94 —1.26 2.10 0.79
4 591 —2.53 422 |2.00 |295 —1.27 2.11 0.83
Average | 5.81 —2.49 |4.15 226 290 —1.24 2.07 0.89

The selection intensity was 10% (k; = 1.755) and the vector of predetermined restrictions was
dpc=[7 -3 5 3.5 —1.5 2.5]. Trait T4 and its associated GEBV4 were not restricted
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selection response tends to decrease, whereas the estimated PPG-GESIM selection
response increases.

Tables 8.7 presents the estimated CPPG-LGSI and PPG-GESIM expected genetic
gains for one, two, and three predetermined restrictions respectively, for four
simulated selection cycles. The averages of the estimated CPPG-LGSI expected
genetic gains for the four traits and their four associated GEBVs were 8.28, —4.12,
3.23,2.23, 4.14, —2.26, 1.71, and 1.01 for one restriction; 8.43, —3.61, 3.28, 2.13,
422, —1.81, 1.72, and 0.93 for two restrictions; and 5.81, —2.49, 4.15, 2.26, 2.90,
—1.24, 2.07, and 0.89 for three restrictions. On the other hand, the averages of the
estimated PPG-GESIM expected genetic gains for the four traits and their four
associated GEBVs were 6.97, —1.31, 1.78, 0.52, 5.64, —1.74, 1.75, and 0.58 for
one restriction; 6.93, —2.73, 1.29, 0.85, 5.75, —2.55, 1.49, and 0.79 for two
restrictions, and 8.12, —3.27, 2.99, 1.13, 2.19, —1.15, 1.30, and 0.45 for three

Table 8.7 Estimated PPG-GESIM expected genetic gains for one, two, and three restricted traits
(T1, T2, and T3) and for one, two, and three restricted GEBVs (GEBV1, GEBV2, and GEBV3) for
four simulated selection cycles

PPG-GESIM expected genetic gain for one predetermined restriction
Traits Genomic estimated breeding values
Cycle T1 T2 T3 T4 GEBV1 GEBV2 |GEBV3 |GEBV4
1 6.89 —1.44 194 063 |6.36 —1.89 2.04 0.62
2 6.71 —1.33 190 |0.65 |6.06 —2.00 1.97 0.75
3 7.09 —1.69 1.67 040 |5.40 —1.72 1.63 0.55
4 7.18 —0.78 1.58 039 |4.73 —1.34 1.35 0.39
Average |6.97 —1.31 1.78 052 |5.64 —1.74 1.75 0.58
PPG-GESIM expected genetic gain for two predetermined restrictions
Traits Genomic estimated breeding values
Cycle T1 T2 T3 T4 GEBV1 GEBV2 |GEBV3 |GEBV4
1 6.61 —2.55 140 094 |6.49 —2.80 1.75 0.87
2 5.67 —2.48 124 087 |6.16 —2.84 1.70 0.91
3 7.35 —3.08 1.21 085 |5.54 —2.49 1.37 0.82
4 8.10 | —2.80 129 076 |4.80 —2.08 1.16 0.56
Average |6.93 —2.73 1.29 |0.85 5.75 —2.55 1.49 0.79
PPG-GESIM expected genetic gain for three predetermined restrictions
Traits Genomic estimated breeding values
Cycle T1 T2 T3 T4 GEBV1 GEBV2 |GEBV3 |GEBV4
1 7.21 —294 |2.64 1.02 1.69 —1.10 1.07 0.45
2 7.71 —297 |[241 146 |222 —1.15 1.21 0.45
3 8.72 —3.43 3.17 093 2.21 —1.06 1.34 0.42
4 8.85 —3.73 3.72 1.09 |2.63 —1.29 1.60 0.48
Average |8.12 -327 (299 1.13 2.19 —1.15 1.30 0.45

The selection intensity was 10% (k; = 1.755) and the vector of predetermined restrictions was
dpc=[7 -3 5 3.5 —1.5 2.5]. Trait T4 and its associated GEBV4 were not restricted
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restrictions. These results indicate that the estimated CPPG-LGSI expected genetic
gains for the four traits and their four associated GEBVs were generally higher than
the estimated PPG-GESIM expected genetic gains for the four traits and their four
associated GEBVs.
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Chapter 9 )
Multistage Linear Selection Indices e

Abstract Multistage linear selection indices select individual traits available at
different times or stages and are applied mainly in animals and tree breeding, where
the traits under consideration become evident at different ages. The main indices are:
the unrestricted, the restricted, and the predetermined proportional gain selection
index. The restricted and predetermined proportional gain indices allow null and
predetermined restrictions to be imposed on the trait expected genetic gain (or multi-
trait selection response) values, whereas the rest of the traits remain changed without
any restriction. The three indices can use phenotypic, genomic, or both sets of
information to predict the unobservable net genetic merit values of the candidates
for selection and all of them maximize the selection response, the expected genetic
gain for each trait, have maximum accuracy, are the best predictor of the net genetic
merit, and provide the breeder with an objective rule for evaluating and selecting
several traits simultaneously. The theory of the foregoing indices is based on the
independent culling method and on the linear phenotypic selection index, and is
described in this chapter in the phenotypic and genomic selection context. Their
theoretical results are validated in a two-stage breeding selection scheme using
real and simulated data.

9.1 Multistage Linear Phenotypic Selection Index

In a similar manner to the linear phenotypic selection index (LPSI, Chap. 2), the
objectives of the multistage linear phenotypic selection index (MLPSI) are:

1. To predict the net genetic merit H = w'g, where g’ = [g; g» ... g/]is the vector
of true breeding values of an individual for ¢ traits and W' = [w;  wy ... wy]
is the vector of economic weights.

2. To select individuals with the highest H values at each stage as parents of the next
generation.

3. To maximize the MLPSI selection response and its expected genetic gain per
trait.

© The Author(s) 2018 207
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4. To provide the breeder with an objective rule for evaluating and selecting several
traits simultaneously.

When selection is based on all the individual traits of interest jointly, the LPSI

vector of coefficients that maximizes the selection response R = kv'b'Pb and the

expected genetic gain per trait E = & \/g,bﬁ; is b = P~'Cw, where C and P are the

covariance matrices of the true breeding values (g) and trait phenotypic values (y)
respectively, and k is the selection intensity. In MLPSI terminology, the LPSI is
called a one-stage selection index. The MLPSI is an extension of the LPSI theory to
the multistage selection context and, as we shall see, the MLPSI theoretical results
are very similar to the LPSI theoretical results described in Chap. 2.

9.1.1 The MLPSI Parameters for Two Stages

Lety = [y, y, --- ]beavectorwith?traits of interest and suppose that we can
select only n; of them (n; < t) at stage i (i= 1, 2, - - -, N), such that after N stages (N < ?),

N
> n; = t. Thus, for each stage we should have a selection index with a different
i=1
ni
number of traits. For example, at stage i the index would be I; = } by, and at
=1
. ny ny ny N
stage N the index would be Iy = ‘21 bijyi;+ Zl byjypj+ -+ 21 byjynj = ‘21 I;,
J= J= Jj= i=
where the double subscript of y;; indicates that the jth trait is measured at stage i, so
that at each sub-index I;, all the n; traits are measured at the same age.

Suppose that there are four traits of interest and thaty’ = [y, ¥, ¥3 y4]isthe

vector of observable phenotypic values and g’ = [g, g, &3 &4] is the vector of
unobservable breeding values. If at the first and second stages we select two traits,
then n; = n, = 2 and y’ can be partitioned as y' = [X| X} ], where x| = [y, »,]

andx, = [y; y,]are the vectors of traits that become evident at the first and second
stages respectively. At the first stage, the phenotypic covariance matrix of x; (P;)
and the covariance matrix of x; with the vector of true breeding values g (G) can be
Ve C

ar(yl) Ov(ylayZ) — P] and

written as Var(x;) = [Cov(yz v Var(s)

_ | Cov(y1,81) Cov(yi &) Cov(y,g3) Cov(y,gs)
Cov(xy,g) =

Cov(yy,81) Cov(yy,8,) Cov(yy,83) Cov(ya,84)
respectively. For the second stage, in addition to matrix Py, we need the phenotypic
covariance matrix between x; and x, (P,) and the phenotypic covariance matrix of
X, (P,); thus, the covariance matrix of phenotypic values at stage 2 is
P, Pp

P =
Py P
need the covariance between x, and g (G,); that is, at stage 2 the covariance matrix

}. In a similar manner, in addition to matrix G, at stage 2 we
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between phenotypic and breeding values can be written as G = {gl } . Matrices G
2

o8]

and C are not exactly the same, because although C = Var(g),G = {

[gl } and this latter matrix changes at each stage.
2

Letw = [w; wp w3 wy]be the vector of economic weights; then, at the first
and second stages the MLPSI vectors of coefficients are b) = wG/'{P;! =
[b1y bia]andby, = WGP = [by by by bay] respectively. The selection

indices at stages 1 and 2 can be written as I| = b1y, + b2y, :b’lxl and
Iy = b1y, + by, + bozy; + bosy, = b’zy, which could be correlated and then
numerical integration would be required to find optimal truncation points and
selection intensities (Xu and Muir 1992; Hicks et al. 1998) before obtaining the
maximized MLPSI selection response and expected genetic gain per trait.

The accuracy of the MLPSI at stages 1 and 2 can be written as

b'P,b,; b,P*b,
PHI, = m and  ppy, = V:’C*w’ (9.1)

respectively. Let k; and k, be the selection intensities for stages 1 and 2; then, the
maximized MLPSI expected genetic gains per trait can be written as

b, b, C*
" /bPb, NCASS

and the total expected genetic gain per trait for the two stages isequal to E; + E;. Ina
similar manner, the maximized selection responses for both stages are

R1 = kl\/b/ll)lbl and Rz = kz\ / blzp*bz, (93)

and the total selection response for the two stages is R + R,. In Egs. (9.1) to (9.3),
matrices P* and C* are matrices P and C respectively, adjusted for previous
selection on I; = b)x,. That is, the MLPSI accuracy, expected genetic gain per
trait, and selection response at stage 2 are affected by previous selection on I;
(Saxton 1983) and it is necessary to adjust P and C.

One method for adjusting matrices P and C has been provided by Cochran (1951)
and Cunningham (1975). Suppose that X, Y, and W are three jointly normally
distributed random variables and that the covariance among them is known, then
the covariance between X and Y adjusted for the effects of selection on W can be
obtained as

E1 =k and E2 = kg (92)

Cov(X,W)Cov(Y,W)
Var(W) ’

Cov(X,Y)* = Cov(X,Y) —u (9.4)
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where u = k|(k; — 7), k; is the selection intensity at stage 1 and 7 is the truncation
point when I; = b}x; is applied. For example, if the selection intensity at the first
stage is 5%, k; = 2.063, © = 1.645, and u = 0.862 (Falconer and Mackay 1996,
Table A).

According to Dekkers (2014), with the result of Eq. (9.4), it is possible to obtain
matrices P* and C* using the following two equations:

P* = Var(y)* =P—u Cov(y,x;)bb| Cov(x;,y)

b’ Var(x;)b,
P
{lel }blb’l[Pl P |
=P- 9.5
! b/ P;b, 5:3)
and

COV(g X])b]b/ COV(X] g) G/blb/ G]
C* =V, *=C- ’ ! B C—u——17 (96
ar(g) b, Var(x:)b; “TH P, (9:6)

With the Eq. (9.5) result, the correlation between I; = b|x; and I, = b}y is

b [P; Py by

N

where q/b’lPlbl and \/b'szz are the standard deviations of the variances of

Corr(11,I) = (9.7)

I} = bix; and I, = bly respectively.

9.1.2 The Selection Intensities

Selection intensity k is related to the height of the ordinate of the normal curve (z)
and the proportion selected (p) in the LPSI as k = z/p. In the multistage selection
context, it is usual to fix the total proportion to be selected (p) before selection is
carried out and then to determine the unknown proportion ¢g; (i=1, 2,- - -, N) for each
stage under the restriction

p= qu" (9.8)

where N is the number of stages. In the two-stage selection scheme, we would have
P = q19». Based on the fixed proportion p and the p;, value (Eq. 9.7), Young (1964)
used the bivariate truncated normal distribution theory to obtain the selection
intensity for two stages. A truncated distribution is a conditional distribution
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resulting when the domain of the parent distribution is restricted to a smaller region
(Hattaway 2010). In the multistage selection context, a truncation occurs when a
sample of individuals from the parent distribution are selected as parents for the next
selection cycle, thus creating a new population of individuals that follow a truncated
normal distribution.

Suppose that/; = b|x; and I, = b}y have joint normal distribution and let /; and

Ii—p L—pu . .
I, be transformed as v = p Land v, = p "2 with a mean of zero and a variance of
1 2

1, where y,, and y,, are the means, whereas o7, and oy, are the standard deviations of
the variances of I; and I, respectively. In this case, the method of selection is to retain
animals or plants with v; > ¢; at stage 1 and v + v, > ¢, at stage 2, where ¢, and ¢,
are truncation points for /; and I, respectively.

The selected population has bivariate left truncated normal distribution with a
probability  density  function given by h(vi,vo) = w, where

1

1
fvi,m) = exp [V 4+v3 —2ppviva] ¢ and pys is the
22\/1 = pis 2(1—pp) "

correlation between v; and v,. The fixed total proportion (p) before selection can

OO OO
be written asp = J J F(vi,v2)dvodvy, where ¢ and ¢, are truncation points for
C1

I, and I, respectively. Then, as p is fixed, Young (1964) integrated by parts (Thomas
2014)

C2—V]

ro JOO Fvi,vp)dvidvy (9.9)

Cl =V

and found the expectations of v; and v, in the selected population, writing the
selection intensity values for stages 1 (k;) and 2 (k,) as

k= z(c1)Q(a) +Z(C3)Q(b) (1+p1)/2 (9.10)

p p

and

by = P1Ele)0@) | 2(e3)0(b) V(T +p1) /2 (9.11)

p p

exp{—0.5¢ exp{—0.5¢2
p{ CI}andZ(C3) _ p{ C3}
\V2r V2r
of the ordinates of the standard normal distribution at the lowest value of ¢; and
= and p is the total proportion of the population of animal or plant

= Vo

lines selected; a =

respectively, where z(¢;) = are the heights

—c(1
w and b = 2”767 whereas Q(a) =1 - ¢(a)
1—ph, 201-pi)

and Q(b) = l — @®(b) are the complement of the standard normal distribution;

®(a) = J exp{—0.5w*}dw and @ exp{—0.5¢}dt are

o b) = J:\/_
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probabilities of the standard normal distribution, i.e., ®(a) = P(W < a) and
o) = PAT < b).

Young (1964) provided figures to obtain values of ¢ and ¢, when the p, values
are between —0.8 and 0.8, and the p values are between 0.05 and 0.8. For example,
suppose that p;, = 0.8 and p = 0.2 (or 20%), then, according to Young (1964,
Fig. 9), ¢; = 0.80 and ¢, = 1.6, and to find the selection intensities for the first (k;)
and second stages (k,) we need to solve Egs. (9.10) and (9.11). That is, as ¢; = 0.80,

¢ = 16, pi» = 08, and p = 02, then z(c)= w —0.290,

_exp{-05[(1.6°/2(1.8)]}  1.6-08(1.8) _ _ 2(08)-16
z(e3) = wor =028, a= o 027, b= o
®(a) = 0.6064, D(b) =0.5, Q(a) =1 — ®(a) =0.3936, and Q(b) =1 — D(b) =0.5.

Based on these results, the selection intensities for stages 1 and 2 are

)

~(0.29)(0.3936)  (0.28)(0.5)(0.9)
ki = s + 05 —=0.744 and

(0.8)(0.29)(0.3936)  (0.28)(0.5)(0.9)
ky = 02 + 02 =0.721
respectively. Note that the values of ®(a) = 0.6064 and ®(b) = 0.5 can be obtained
from any table with values showing the area under the curve of the standard normal
distribution (e.g., Rausand and H¢yland 2004, Table F.1).

One problem with Egs. (9.10) and (9.11) is that they tend to overestimate
the selection intensities values and also overestimate the selection response
when the total proportion retained p is lower than 10%. Cochran (1951) have
given two equations to obtain selection intensities in the two stages context but his
equations also overestimate the selection intensities values when p is lower than
10%. Up to now, there is not an accurate method to estimate selection intensities for
two or more stages in the MLPSI context. Mi et al. (2014) have developed an R
package called selectiongain that enables calculation of the OMLPSI selection
response for up to 20 selection stages. Selectiongain uses raw integration to obtain
the first moment of a lower truncated multivariate standard normal distribution and
then it estimates the OMLPSI selection response at each stage; however, this integral
requires complex numerical algorithms with no convergence criteria (Arismendi
2013) and could also overestimate the selection intensity at each stage.

9.1.3 Numerical Example

To illustrate the two-stage selection theory, we use the poultry data of Xu and Muir
(1992). This data set contains four traits: age at sexual maturity, defined as the age
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(in days) at which the first trap-nested egg was laid (y;); rate of lay, defined as 100 times
(total eggs in the laying period)/(total days in the laying period) (y,); body weight
(in pounds) measured at 32 weeks of age (y3); and average egg weight (in ounces per
dozen) of all the eggs laid up to 32 weeks of age (y4). The estimated phenotypic and
137.178 —90.957 0.136 0.564
—90.957 201.558 1.103 —1.231
0.136 1.103 0202 0.104
0.564 —1.231 0.104 2.874

14.634 —18356 —0.109 1.233
d G | 18356 32029 003 —2574| L
| —0.109 0103 0089  0.023 p Y

1.233 —-2.574  0.023 1.225

genetic covariance matrices were P =

the vector of economic weights for the four traits was w =

[—3.555 19.536 —113.746 48.307].

Suppose that at the first and second stages we select two traits (n; = n, = 2); then,
y =[x; x], wherex| = [y, y,]andx)=[y; y,]. The estimated phenotypic
(Py) and genetic (G;) covariance matrices for the first stage were

137.178  —90.957 ~ 14.634 —18.356 —0.109 1.233
nd G] =

)

1= 1290957 1.103 —18.356 32.029 0.103 -—-2.574

respectively. For the first and second stages, the estimated MLPSI vector of
coefficients were b, =wG'|P, =[—0.918 2339] and b,=wCP '=
[—0.59 2.78 —49.45 3.75] respectively.

The estimated correlation value between the estimated indices 7] = lA)’lxl and

b1 P, le}b2

\/b P bm/b Pb,

were the estimated standard deviations of the variance of 7; and 1, respectively.
Assuming that p = 0.2 (or 20%), an approximate selection intensity for the first
stage was k; = 0.744, whence the estimated MLPSI selection response, expected

genetic gain per trait, and accuracy were ﬁl :km/ﬁ’lﬁlgl = 29.85, ]i/l\’l =

= by was pj, = = 0.88, where \/E’lﬁlf)l and \/i)\lzﬁi)\g

Gib b,P,b
ki (i‘lil/\ =[—-1.046 1.702 0.006 —0.133], and py;, = L —0.353
4/ b\Pib, wCw
respectively.
According to the k; = 0.744 value, the approached value of u

was u = 0.554, and by Egs. (9.5) and (9.6), the estimated and adjusted phen-
otypic (P*) and genetic (C ) covariance matrices for the second stage were
97.682 —26.241 0.422 0.168
Pt —26.241 95518 0.634 —0.582 and
0.422 0.634  0.200 0.107

0.168 —-0.582 0.107 2.870
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13.540 —-16.575 —0.102 1.094
—16.575 29.129  0.092 —2.348
—0.102 0.092 0.089  0.024
1.094 —-2.384 0.024  1.207
For the second stage, the approximated selection intensity was k, = 0.721,
whereas the estimated MLPSI selection response, expected genetic gain per trait

C* = , respectively.

. ——— - C*b
and accuracy, were Ry = ki, \/b,PFiby =24.84, E, =k, T{\ =
\/b5P5b,
. b,Pb
[~0.443 0.804 —0.087 —0.087], and pyy, = {/ 22— =0.314 respec-
wC*w

tively. Finally, the total estimated MLPSI selection response and expected
genetic gain per trait were Ri + Ry = 54.69 and E| +E, =
[—1.488 2506 —0.081 —0.219].

9.2 The Multistage Restricted Linear Phenotypic Selection
Index

The multistage restricted linear phenotypic selection index (MRLPSI) is an exten-
sion of the null restricted linear phenotypic selection index (RLPSI) described in
Chap. 3 to the multistage case; thus, the theoretical results of the MRLPSI are very
similar to those of the RLPSI. The MRLPSI allows restrictions equal to zero to be
imposed on the expected genetic gains of some traits, whereas other traits increase
(or decrease) their expected genetic gains without any restrictions being imposed.

9.2.1 The MRLPSI Parameters for Two Stages

In Chap. 3, we indicated that vector bz = Kb is a linear transformation of the LPSI
vector of coefficients (b) made by the projector matrix K, and that matrix K is
idempotent (K = K?) and projects b into a space smaller than the original space of b.
The reduction of the space into which matrix K projects b is equal to the number of
zeros that appears on the expected genetic gain per trait. Hence, the MRLPSI vector
of coefficients for stages 1 and 2 should be a linear transformation of the MLPSI
vector of coefficients at stages 1 (b; = Pflle) and 2 (b, = P~'Cw) described in
Sect. 9.1.1 of this chapter, and should be written as

br, = Kb, (9.12)
and

bz, = Ksbs, (9.13)
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respectively, where, at stage 1, K; = [I; — Q,], Q, = P;'¥, (‘P’lPl’l‘I’l)fl‘I"l,
¥, = UG, I, is an identity matrix of the same size as P}, and P, " is the inverse of
matrix Py. Atstage 2, Ky = [I, — Qu1,Q, = P/, (W,P'W,) W, W, = U'C, 1,
is an identity matrix of the same size as P, and P~ is the inverse of matrix P. By
Egs. (9.12) and (9.13), the MRLPSI for stages 1 and 2 can be written as I} = b;e]xl
and I = by y, where y' = [X|  x)]; X| and x; are the vectors of traits that become
evident at the first and second stages respectively.

Let k; and k, be the selection intensities for stages 1 and 2 (Egs. 9.10 and 9.11)
respectively, and let P* and C* be the covariance matrices adjusted in the MRLPSI
context according to Egs. (9.5) and (9.5) respectively. The maximized MRLPSI
selection response, expected genetic gain per trait, and accuracy at stages 1 and 2 can

be written as
RR| = kH/b;?]PIbRI and RR] = kzq / b;eZP*sz, (914)
G/b b/ C*
Ep, =k ——="—  and Eg, = ky —2 (9.15)

b}, Pibg, \/ P, P br,

b;% P]bR b;; P*bR
=\ Twew o=\ Cyiche (-16)

respectively, whereas the total MRLPSI selection response and expected genetic
gain per trait for both stages are equal to Rg, + Rg, and Eg, + Eg,.

and

9.2.2 Numerical Examples

To illustrate the MRLPSI theory for a two-stage selection breeding scheme, we
use the real data set of the White Leghorn chickens of Hicks et al. (1998). This data
set is conformed with six traits (y; to yg) that correspond to records consisting of the
number of eggs laid during different periods: from week 0 through 4 (y,), 4 through
8 (¥2), 8 through 28 (y3), 28 through 32 (y,), 32 through 36 (ys), and 36 through
52 (ye) respectively. The estimated phenotypic and genotypic covariance matrices
were

102 32 14 4 3 -1 44 11 -11 -3 -8 -3
32 80 80 16 17 7 11 26 24 7 7 3

P 14 80 298 78 112 62 and € — —11 24 62 23 37 20
4 16 78 66 80 51 -3 7 23 14 23 14|
3 17 112 80 135 49 -8 7 37 23 42 25

-1 7 62 51 49 098 -3 3 20 14 25 18
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respectively, and w' = [0.08 0.08 0.38 0.08 0.08 0.31] was the vector of
economic weights.

Lety' =[yi 2 y3 y ¥s Yelandg' =[g g & 8 & g]bethe
vectors of observed phenotypic and unobserved genotypic values respectively, and
suppose that at stage 1 we select four traits and at stage 2 we select two traits, then
X; =y, ¥» ¥3 ys]andx,=[ys Y| are the vector of observations at stages
1 and 2 respectively, whereas y' = [X| X, ] is the vector of total observations at
stage 2. We need to estimate vectorsby, = b} K| andb; = b,K, whereb| = w'G’,
P;! and by, = w'G'P~'. In Chap. 3, we described methods of estimating matrices
K =L - Ql Q=P ¥ (‘I"lPi‘I‘l)_l‘I"l, ¥, =UG", K, = [, — Qal,
Q, = P "W, (W,P'W,) ' W), and W, = U'C, which are used in this subsection.

At stage 1, the estimated phenotypic and genotypic covariance matrices were

102 32 14 4 4 11 -11 -3 -8 -3
P, = 32 80 80 16 and Gy = 11 26 24 7 7 3
14 80 298 78 —11 24 62 23 37 20
4 16 78 66 -3 7 23 14 22 14

respectively. At both stages, traits y; and y, are restricted. Matrix U can
1 000 0O
01 00 0O
44 11 —-11 -3
|:11 26 24 7
matrices of Q, :PI’I‘I’I (‘I"IPI’I‘I’])A‘I"1 and K; = [I, — Q] were
0923 —-0.013 —-0.511 -0.144
~ =18 S el e 0.164 1.026 1.093 0.317
Q=P Wi (¥R W) W= | s 0069 0001 —0001|
0.010 0.159 0.178 0.052
0.077 0.013 0.511 0.144
0.164 —-0.026 —1.093 —-0.317
0.145 0.069 1.001 0.001
—0.010 —-0.159 —-0.178 0.948
I, is an identity matrix of size 4 X 4.

The estimated vector bj =b/K; was b'g =b/K|=1[0.044 —0.095
0.0450.131], where b} =wG/P;' = [-0.067 0.125 0.045 0.167], and
TR] =b’ &, X1 was the estimated MRLPSI at stage 1. The estimated MRLPSI vector of
coefficients at stage 2 was b'g, = b,K}, = [0.045 —0.068 0.028 —0.057 0.099
0.106] and 7R2 = ﬁ'Rzy was the estimated MRLPSI at stage 2.

The estimated correlation value (pg, ) between Iz, = b’ r X and Tz, = b’ R,Y Was

—~ b/Rl [§1 ﬁZI ]sz

PR, = PSP PPN
\/b’RlPle1 \/b’RZPbR2

the estimated standard deviations of the variance of le = I;’Rlxl and 7R2 =b R,Y

respectively. According to Young (1964, Fig. 8), and Egs. (9.10) and (9.11),
the selection intensities for stages 1 and 2 were k; = 0.641 and k, = 0.593

be written as U = [ }, whence the estimated matrix of

restrictions was W) = UG/ = } therefore, the estimated

Ki=[L-Q]= respectively, where

= 0.564, where \/B/Rlﬁli)\m and \/B’RzlA’BRZ are
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respectively. The estimated selection responses and expected genetic gains per traits

for both stages were IA?Rl =k1y/ B’RIIA)IBR] =0.973 and

Rg, = ka\/b'g, P*bg, = 0.930,

L/ G/IBR] I/
E'r, =kj————==[0 0 1.271 0.870 1.482 0.974] and E'g, =
\/b’r,P1bg,
S0 [0 0 1.419 1.014 2.037 1.349], whereas Ry, + Rg, = 1.903
A/ b'r,P*bp,
and E'g +E'f, =[0 0 2.691 1.884 3.519 2.322] were the total estimated
MRLPSI selection response and expected genetic gain per trait respectively.

k>

~ b, Pib
Finally, the estimated MRLPSI accuracy at stage 1 was pgp, = R TR
wCw
. b 5, P*D , S
0.320 and at stage 2 it was pp, = —R TR — 0.334. In this case, pp, > pPg,- We
wC*w

can explain these results considering that although pr, was obtained with six traits,
pr, Was obtained only with four traits, two of them restricted.

9.3 The Multistage Predetermined Proportional Gain
Linear Phenotypic Selection Index

The main objectives of the multistage predetermined proportional gain linear phe-
notypic selection index (MPPG-LPSI) are the same as those of the predetermined
proportional gain linear phenotypic selection index (PPG-LPSI) described in
Chap. 3, i.e., to optimize, under some predetermined restrictions, the expected
genetic gains per trait, to predict the net genetic merit, and to select the individual
with the highest net genetic merit values as parents of the next generation under
some predetermined restrictions. The MPPG-LPSI allows restrictions different from
zero to be imposed on the expected genetic gains of some traits, whereas other traits
increase (or decrease) their expected genetic gains without any restrictions being
imposed.

9.3.1 The MPPG-LPSI Parameters

In a similar manner to the MRLPSI, the MPPG-LPSI vector of coefficients for stages
1 and 2 should be a linear transformation of the MLPSI vector of coefficients at
stages 1 (b; = Pflle) and 2 (b, = P~ 'Cw), and should be written as
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by, = Ky, by (9.17)
and
by, = Ky, b, (9.18)

respectively, where, at stage 1, Ky, = [I; — Qyy, |, Quy, =P;'M, (M’IPI’IM])%M’I,

M| =D'V, ¥, =U'G'}, I, is an identity matrix of the same size as P}, and P ' is

the inverse of matrix P;. At stage 2, Ky, = [I — Qu], Qu = P"'MM'P~'M)"'M/,

M’ =D'W, W = U'C, Lis an identity matrix of the same size as P, P~ is the inverse
d 0 --- 0 —d;

0 d - 0 —do

of matrix P, and D' = , whered, (g =1,2...,r)is the q"

0 0 - d —d—
elementof d'=[d| d, --- d,], the vector PPG (predetermined proportional gains)
imposed by the breeder (see Chap. 3 for details).

By Egs. (9.17) and (9.18), the MPPG-LPSI for stages 1 and 2 can be written as
Iy, = by, Xy and Iy, = by, y respectively, where, assuming that at stage 1 we select
four traits and at stage 2 we select two traits, X; = [y, Y, »3 4] and x5 =
[¥s ye] are the vectors of phenotypic observations at stages 1 and 2 respectively,
andy = [x| x,]is the vector of total phenotypic observations at stage 2.

Let k; and k, be the selection intensities for stages 1 and 2 (Eqgs. 9.10 and 9.11)
respectively and let P* and C* be the adjusted matrices according to Egs. (9.5) and
(9.6) in the MPPG-LPSI context. Then, the MPPG-LPSI selection response and
expected genetic gain per trait for both stages can be written as

RMl = kl\/b;l/[]Plel and RM2 = k2 b;VIZP*sz (919)

and

G'b b}, C*
— M and By, =k (9.20)
b}, Piby, b}, P*by,

Ey, =k

1

respectively, whereas the total MPPG-LPSI selection response and expected genetic
gain per trait for both stages are equal to Ry, + Ry, and Eyy, 4 Eyy,. In addition, the
MPPG-LPSI accuracy for both stages can be written as

b Piby,

bj, P by,
pM[ - = y

and py, = (9.21)

wCw wC*w
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9.3.2 Numerical Examples

We use the real data set described in Sect. 9.2.2 to illustrate the theoretical results of
the MPPG-LPSI in the same form as we did with those of the MRLPSI. We need to
estimate vectors bj, =b\K}, and bj, =b)K), . where b} =wG' P and
b, = w'G'P~!. In Chap. 3 we have given methods to estimates K, = [I — Q]
QM P 'MMP 'M)"'M', M’ = D'W, and ¥ = U'C, which will be used in this
subsection.

The estimated phenotypic and genotypic covariance matrices at stage 1 were

102 32 14 4 4 11 —-11 -3 -8 -3
P - 32 80 80 16 and Gy = 11 26 24 7 7 3
14 80 298 78 —11 24 62 23 37 20
4 16 78 66 -3 7 23 14 22 14
respectively, whereas w' = [0.08 0.08 0.38 0.08 0.08 0.31] was the vec-
tor of economic weights. The traits restricted at both stages are y,, y,, and y3. The
vector of PPG was d' =[2 3 5|, whence D' = F) 2 :g] and
1 000 00O
U=]0 1 0 0 0 0| were matrices D' and U. The estimated matrices
001 000

of M| and Ky, = [I — Qy, ] were M| = D'W'| = 28482 578 —16768 _gi] and
0.176  0.205 0.606 0.159
0.031 0.032 —-0.007 0.199
0.195 0.235 0.852 —0.098
0.130 0.130 —0.098 0.940
ét stages 1 and 2, the estimated MPPG-LPSI vector of coefficients were l:’ M,
=K'y, = [0.068 0.035 0.039 0.160] and b, =wG/P;! =
[ —0.067 0.125 0.045 0.167], whence the estimated MPPG-LGSI were
IM1 = b M, X1 and IM2 = b M,y The estlmated correlation value (pM ,) between IM1

by, [P, Py }sz

\/b w, Piby, \/b w,Pby,

\/ by, Pb M, and \/ b’ Msz M, were the estimated standard deviations of variance of

IMl =1 M, X1 and IM2 = b M,y respectively. According to Young (1964, Fig. 8), the
selection intensities for stages 1 and 2 were k; = 0.744 and k, = 0.721 (Egs. 9.10 and
9.11) respectively.

The estimated selection responses and expected genetic gains per traits for both

stages were IAQM1 = kn/l;’M,ﬁlBM] = 1.553 and IAQM2 = kQ\/l;’leA)*Bm = 1.401,

~ G'b
E'y, =k M

Ky, = respectively, where ¥/ = U'G/.

~

=b'y,x; and TMZ = l; LY Was py = = 0.870, where

=[0.877 1316 2.193 1.128 1.655 1.037], and
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.
C*by,

/b 1, P*byy,
IA?Ml —l—IA?M2 =2.954 and E'y;, + E'yy, =[1.755 2.662 4.797 2.561 4.161 2.639]
were the total estimated MPPGLPSI selection response and expected genetic gain
per trait respectively. Note that the vector of predetermined restriction was
d'=[2 3 5]. This means that the MPPG-LPSI efficiency at predicting the total
expected genetic gain per trait was high because the difference between each
predetermined value (2, 3, and 5) and the total of each predicted value (1.755,
2.662, and 4.797) were 0.245, 0.338, and 0.203 respectively.

. /b3, BB
Finally, the estimated MPPG-LPSI accuracy at stage 1 was p,, = %
wCw

’\, ~ o~
b, P*by,

wC*w

E/‘:’Mzzkz =1[0.878 1.346 2.604 1.433 2506 1.602], whereas

= 0.435, and at stage 2 it was fo\Mz = = 0.428; that is, both were very

similar.

9.4 The Multistage Linear Genomic Selection Index

We describe the multistage linear genomic selection indices (MLGSI) as an exten-
sion of the linear genomic selection index (LGSI, Chap. 5) theory to the multistage
genomic selection context; thus, the theoretical results of the MLGSI are very similar
to those of the LGSI. The MLGSI is a linear combination of genomic estimated
breeding values (GEBVs) and is useful for predicting individual net genetic merit
and for selecting individuals from a nonphenotyped testing population as parents of
the next selection cycle.

9.4.1 The MLGSI Parameters

The objective of the MLGSI is to predict the net genetic merit H = w'g, where g is a
vector of true breeding values and w’ is the vector of economic weights, using only
GEBVs. In Chap. 5, we indicated that the covariance between y; and g; is equal to the
variance of y;, i.e., Cov(g;, ;) = s7, and that the GEBV associated with the ith trait is
a predictor of the ith vector of genomic breeding values (y;). In the testing popula-
tion, the only observable information is w’ and the GEBV associated with the traits
of interest. For this reason, in practice, we construct a linear combination of GEB Vs,
which should be a good predictor of H = w'g.

Suppose that the breeder is interested in four traits, and that
Y=I[rn rn rs val, €=[g & & &l and W=[wi wr w3 wy]
are the vectors of genomic breeding values (y), true breeding values (g), and
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2
ST S12 S13 S14
S0 85 S; Sm
economic weights (w) respectively. Let I' = Var(y) = 2 5 and

$31 S32 §3 834
S41  S42 843 Sﬁ
o1 on 01 o
C=(g) = o1 07 0223 ©24 | be the covariance matrix of g and y. At a
031 032 O3 034
041 042 043 6421
two-stage selection breeding scheme, ¥y = [y, 7, 73 7] can be partitioned
into v\ =[y; 7,] and v, =[y; 74]; therefore, at stage 1, Ty = Var(y,) =

2

.:211 11%2 is the genomic covariance matrix of ¥, = [y, 7,] and Cov(y,,g8) =

5T S S13 Sia

S12 S5 S S
g =[g & & &) Matrix A; indicates that we are assuming that the
covariance between y; and g; (i, j = 1, 2, - - -, g; g= number of genotypes) is equal
to the covariance between 7y, and 7y;. This is because, in practice, in the testing
population, we can only estimate matrix I'.

At stage 2, I' = Var(y) is the covariance matrix of y and A =TI is the covariance
matrix of the vector of genomic breeding values y with the vector of breeding values
g. The MLGSI vector of coefficients at stages 1 and 2 are f) =
wWA'\T;' = (B, P] and B, =wWAL ' =w =[w; wy ws wy] respec-
tively, and the MLGSI for both stages can be written as I} = f,7, + 1272 = B}
Y1 and I = wyyy + wayz + Ways + Ways = WY.

Let k; and k, be the MLGSI selection intensities for stages 1 and 2. For both
stages, the MLGSI accuracies (py;, and py,,), expected genetic gains per trait (E; and

E,) and selection responses (R; and R,) can be written as

BB, wT*w
Pun =\ "Cw and  py;, = e (922)

] = A, is the covariance matrix of ¥, ={[y, y,] with

/ *
Ei =k % and B> = ky (9.23)
vV BiLiB vVwT*w

and

R =ki\/BT1B, and Ry, = ko VWTI*w. (9.24)

The total MLGSI expected genetic gain per trait and selection response at both
stages are equal to E; + E, and R; + R,. To simplify notation, in Egs. (9.23) and
(9.24), we have omitted the intervals between stages or selection cycles (Lg).
Matrices C* and I'* in Eqs. (9.22) to (9.23) are matrices I' and C adjusted for
previous selection on ;.

We adjust matrices I' and C for previous selection on I, as
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AlBiBIA

1
and
G b,b,G,
C*=C—-u——~1—, 9.26
“"biPb, (9:26)

respectively, where u = ky(k; — 7), k is the standardized selection differential, and =
is the truncation point when I; = By, is applied. All the terms in Eq. (9.26) were
defined in Eq. (9.6).

The correlation between I; = By, and I, = W'y can be written as

piaw

where /BB, and v/w'I'w are the standard deviations of the variances of I; = f]

v, and I, = w'y respectively. In Eq. (9.27), matrix T was not adjusted according to
Eq. (9.25).

Corr(Iy,1I>) = (9.27)

9.4.2 Estimating the Genomic Covariance Matrix

All the MLGSI parameters are associated with matrix I'; thus, the estimation of this
matrix in the testing population is very important. We estimate matrix I' according to
the estimation method described in Chap. 5 (Eq. 5.25), that is, as

I = {Ey} (9.28)

where s, , = é (¥ — lﬁyql)/Gfl (Vg1 — lﬁy,,/,) is the estimated covariance between
¥, = X, and,,; = X, at stage [ or selection cycle of the testing population; g is
the number of genotypes; ﬁm and ﬁm are the estimated arithmetic means of the
values of ¥, and ¥,,;; 1 is an g x 1 vector of Is and G; = ¢ 'X/X] is the additive

genomic relationship matrix at stage [ or selection cycle in the testing population (see
Chap. 5 for details).
9.4.3 Numerical Examples

We illustrate the MLGSI theoretical results using the data described in Chap. 2,
Sect. 2.8.1 simulated for eight phenotypic and seven genomic selection cycles,
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each with four traits (77, T, T3 and T,), 500 genotypes, four replicates for
each genotype, 2500 molecular markers, and 315 quantitative trait loci in one
environment. The economic weights of Ty, T,, T5, and T, were 1, —1, 1, and
1 respectively. In this subsection, and only for illustrative purposes, we use the
data set from cycle 1.

The genotypic and genomic estimated covariance matrices in cycle 1 were

36.21 —1293 835 274 1626 —6.51 5.60 2.29

C— —12.93 13.04 -34 -224 df= —6.51 579 -223 —1.62
T 835 —34 996 016 | "N T | 560 —223 3.75 094
274 =224 0.16 6.64 229 —-1.62 094 262

respectively, whereas w'=[1 —1 1 1] was the vector of economic weights.
Matrices P and C were obtained according to Eqgs. (2.22) to (2.24), whereas matrix
T’ was obtained according to Eq. (9.28).

Suppose that we select two traits at stages 1 and 2. Then, at stage 1,
T, = [16.26 —6.51] and A, = {16.26 —6.51 5.60 229 } are the
6.51 5.79 651 579 —-233 -1.62
estimated covariance matrices of Fl and A 1 respectively, and the estimated

MLGSI vector of coefficients was | = w’A’1F "'=1[1.39 —1.25]. Because at
stage 2 B, = w' WAT ' =w =[w; wy ws W4] the estimated MLGSI vector of
ﬁ 1A1W

coefficients is the vector of economic weights. Thus, p; ;, = —= =
\/ ﬁllrlﬁl V W’FW
0.97 was the estimated correlation between I = B’ 7, and I, = w'y, and assuming
that the fixed proportion was 0.2 (20%), k; = 0.744 and k, = 0.721 were
the approximated selection intensities for stages 1 and 2 respectively. The

adjusted matrices I'™ and C™* for previous selection on 1, = By, were

796 -2.11 271 0.88 2440 —5.65 547 1.39
I —2.11 346 -0.80 —0.87 and CF — —5.65 855 —1.63 —1.41
271 —-0.80 275 045 547 —-1.63 926 -0.17
0.88 —0.87 045 2.38 1.39 —141 —-0.17 6.49
The estimated MLGSI accuracy, selection response, and expected genetic
T~
gain for stage 1 in the testing population were py; = w:&ﬂ,

L wCw

—~ [~ ~ ~ ~ A
Ri=ki\/p B, =590, and E’I:kl%:[Z.SS —1.53 1.00 0.49]
\/ ﬁ]rlﬁl

respectively, whereas at stage 2, the estimated MLGSI accuracy, selection response,

T . —
and expected genetic gain were pp;, = \/ w/ég*w =0.64, R, =k, VWI'*w=4.10,
wC*w

I'*w

vV wT*w

MLGSI accuracy, selection response, and expected genetic gain at stage 2 were

and ]g’z:kz =[1.74 —0.92 0.85 0.58] respectively. The estimated
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lower than at stage 1. This means that the adjusted matrices I'* and C* negatively
affected the estimated MLPSI parameters at stage 2. The total estimated MLGSI
selection response and expected genetic gain for stages 1 and 2 were Ri+R,=9.99
and B/ + B, =[4.62 —2.45 1.85 1.07].

9.5 The Multistage Restricted Linear Genomic Selection
Index (MRLGSI)

The restricted linear genomic selection index (RLGSI) described in Chap. 3 is
extended to the multistage restricted linear genomic selection index (MRLGSI)
context in a two-stage breeding selection scheme.

9.5.1 The MRLGSI Parameters

In Sect. 9.4.1, we indicated that the MLGSI vector of coefficients at stage 1 can be
/ !/

written as P, = WA \[[' =[f,, P] and at stage 2 as P, =wAIl ' =
w =[w; wy w; wy]. It can be shown that the MRLGSI vector of coefficients
is a linear transformation of vectors ; and B, made by matrix K5, which is a
projector (see Chaps. 3 and 6 for details) that projects f; and , into a space smaller
than the original space of B, and B,. Thus, at stages 1 and 2, the MRLGSI vector of

coefficients is

Br, = Ka, B (9-29)

and
BRZ = KGZ ﬁZ = KG2w5 (930)

respectively, where K¢, = [I-Qg, |, Qs, =U, (UGF1U1)71U3F1 Kg, =[1-Qg,].
and Qg, =1, (U'QI‘UZ)_IUQF are matrix projectors. By Egs. (9.29) and (9.30), the
MRLGSI at stages 1 and 2 can be written as Iz, = ﬁ;e, Yiand Ig, = ﬁ}\,zy respectively,
where ¥\ = [y, v,]andy =[y, 7, 73 74] are vectors of genomic breeding values,
which can be estimated using GEBVs, as described in Chap. 5. In Chap. 6 we
described methods for constructing matrix U’ and estimating matrix Kg; those
methods are also valid in the MRLGSI context.

In a similar manner to the MLGSI context, MRLGSI accuracies, expected genetic
gains per trait, and selection responses for stages 1 and 2 in the testing population can
be written as
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B Lib Bl By

PHI, = Iilf’Cw - and PHI, = SVZ’C*WZ’ (9.31)
N r*

Ep = ki—Pr g By gt PR (9.32)

\/Br T8k, Br. T Br,

and

RR] = kl \/ ﬁ;]rlﬁRl and RR2 = k2 ﬁkzr*ﬁRz, (933)

respectively. The total MRLGSI expected genetic gain per trait and selection
response for both stages are equal to Eg, + Eg, and Rg, + Rg,. To simplify the
notation, in Egs. (9.32) and (9.33), we have omitted the intervals between stages or
selection cycles (Lg). Matrices I'* and C* in Egs. (9.31) to (9.33) are matrices I" and
C adjusted for previous selection.

In the MRLGSI context, matrices I'* and C* can be obtained as

A'Bg, By, A1

r=r— 9.34
"B Tibe 534)
and
G'bg b, G,
C*=C-u—r LR 9.35
b} Pibg, (9:35)

where B, was defined in Eq. (9.29) and vector bg, can be obtained according to the
RLPSI as described in Chap. 3. The term u = k(k — 7) was defined earlier.
The correlation between Ig, = B ¥, and Iz, = Py ¥ can be written as
 BrAibg
\/ﬁ;i’l I ﬁRl \/ﬁ;?zrﬁRz

(9.36)

P, Ir,

where \/ ﬁ}ell"l[ikl and \/ ﬁ;ezl’ﬁkz are the standard deviations of the variances of
Ig, = By, ¥, and I, = P, ¥y respectively. In Eq. (9.36), matrix I was not adjusted for

previous selection on Ig, = ﬁ;eﬂ 1-
9.5.2 Numerical Examples

To illustrate the MRLGSI theory in a two-stage breeding selection scheme, we use
the simulated data described in Sect. 9.4.3. In that subsection we indicated that the
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1626 —6.51
—-6.51 5.79

. and that B/, = WA L' =[1.39 —1.25]

estimated covariance matrices of I'y and A; were I’y = { } and

A= 16.26 —6.51 5.60 2.29

—6.51 579 -233 —-1.62
was the estimated MLGSI vector of coefficients at stage 1. At stage 2, the estimated
MLGSI vector of coefficients was w'=[1 —1 1 1], the vector of economic
weights.

Suppose that we restrict only trait 2; then at stages 1 and 2, matrix U} = [0 1]
and matrix Uy = [0 1 0 0] respectively. In addition, Qg, = U, (U,T,U,)  U,T,
Qq, =U,(U)TU,) 'UT, Kg =[1-Qg,], and Kg, =[I1-Qq,] are the
estimated matrices described in Eqgs. (9.29) and (9.30) for stages 1 and 2. It can be
shown that, at stages 1 and 2, B\;el —PB/K!  =1[1.39 1.558] and B;ez =wK'g, =
[1.0 1.81 1.01.0] are the MRLGSI vectors of coefficients respectively.

Suppose that the total proportion retained for the two stages was 20%, then at
stage 1, k; = 0.744 is an associated approximated selection intensity and the
estimated MRLGSI selection response, expected genetic gain per trait, and accuracy

were  Rg, = ki\/B' g T1Bp, =3.083, Eg =[2225 0 0742 0.117], and

~ [BrTiBr . :
Pur, = T— 0.370 respectively. The estimated MRLGSI expected
wCw

genetic gain, accuracy, and selection response at stage 2 were

N 8. T* ol T*p
Eg, =k fRZ =[1.156 0 0.793 0.536], pp, = M:osz,
ﬁ/ f*ﬁ wC*w
Rz Rz

and ﬁRz =ko\/ B sz*ﬁRz = 2.485 respectively, where k, = 0.721 was the approx-
imated selection intensity value for stage 2.

The estimated total MRLGSI selection response and expected genetic gain at
stages 1 and 2 were Rg, + Rg, = 5.568 and E; +E; =[3380 0 1.5350.653]
respectively. Note that, in effect, the expected genetic gain for trait 2 was 0, as
expected.

9.6 The Multistage Predetermined Proportional Gain
Linear Genomic Selection Index

The MPPG-LGSI is an adaptation of the predetermined proportional gain linear
genomic selection index (PPG-LGSI) described in Chap. 6; thus, the theoretical
results, properties, and objectives of both indices are similar. The MPPG-LGSI
objective is to change u, to u, + d,, where d, is a predetermined change in u,. We
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solve this problem by minimizing the mean squared difference between I = p'y and
H=wg (E[(H — I)Z]) under the restriction UTP = 0gd, where 0g is a proportion-
ality constant, d’ = [d; d,...d,] is the vector of predetermined restrictions, U’ is a
matrix (f — 1) x ¢ of 1s and Os, and I' is a covariance matrix of additive genomic
breeding values, ¥ = [y; y»...y:, where r is the number of predetermined restric-
tions and ¢ the number of traits.

9.6.1 The OMPPG-LGSI Parameters

According to the results in Chap. 6, at stages 1 and 2, the MPPG-LGSI vector of
coefficients can be written as

Bp, = B, +6,U; (UT,U,)"'d (9.37)

and

Bp, = Bg, + 60U (UlgrUz)_ld, (9.38)

respectively, where ﬁRl =Kg, B, ﬁRZ =K, B, =Kg,w, Kg = [I — QGI],
-1 -1

Qg = Ul(U’lrlUl) ur, Kg = [I— QGZ], and Qg, = Ug(U’ZFUz) u,r

were described in Egs. (9.29) and (9.30). Also, it can be shown that the proportion-

ality constants for stages 1 (6,) and 2 (6,) are

d(Uru,) U AW d 6 _d(UTU,) U
d(Uru,)'a T d(uru,) d

(9.39)

respectively. By Eqgs. (9.37) to (9.39), the MPPG-LGSI for stages 1 and 2 can be
written as Ip, = B}lyl and Ip, = B}zy respectively, where y; and y are vectors of
genomic breeding values, which can be estimated using GEBVs (see Chap. 5 for
details).

For stages 1 and 2, the MPPG-LGSI accuracies (py;, and py,,), expected genetic
gains per trait (Ep, and Ep,), and selection responses (Rp, and Rp,) can be written as

B, T1Bp BrT*Bp,
PHI, = 7&7’Cwl and py, = 7\&;’C*w s (9.40)
Al r*
Ep, = ki L and Ep, = ky Pr, (9.41)

\/Br T1Bp, Bp, T Bp,

and



228 9 Multistage Linear Selection Indices

Rp, = ki\/BpT1Bp, and Rp, =ka\/Bp,T*Bp,. (9.42)

respectively. The total MPPG-LGSI expected genetic gain per trait and selection
response at both stages are equal to Ep, + Ep,and Rp, + Rp,. To simplify the
notation, in Egs. (9.41) and (9.42), we omitted the intervals between stages or
selection cycles (Lg). Matrices T'* and C* are matrices I' and C adjusted for
previous selection on Ip, according to Egs. (9.34) and (9.35) respectively in the
MPPG-LGSI context.

The correlation between Ip, = B, ¥, and Ip, = P, ¥ can be written as

ﬁlplAlﬁpz
P12 = :
\/ﬁélrlﬁl’l \/ﬁlgzrﬁpz

In Eq. (9.43), matrix I" was not adjusted for previous selection on /p, = ﬁ}ly,.

(9.43)

9.6.2 Numerical Examples

To illustrate the MPPG-LGSI theory, we use the simulated data described in
Sect. 9.4.3. Suppose that we select two traits at stages 1 and 2; then, at stage 1,

P 16.26 —6.51 and A — 16.26 —6.51 5.60 229
T -651 579 'T-651 579 -233 —1.62
estimated covariance matrices of I'y and A respectively. We restricted trait 2 with
d = — 2; then, at the stage 1 matrix U} =[0 1] and at the stage 2 matrix
~ ~ -1 ~ o~ ~ 1 ~
U,=[0 1 0 0]. In addition, Q;, =U, (UT';U;) U|Ty, Qg,=U,(UL'U,) UL,
ﬁgl = [I—QGI],and IA(G2 = [I—QGZ] are the estimates of matrix projectors associated
with stages 1 and 2 (Eqs. 9.37 and 9.38 for details).

In Sect. 9.4.3, we showed that the estimated MRLGSI vector of coefficients
for stage 1 was B = BKf; =[1.386 1.550]. Thus, by Eq. (9.37), to obtain
-~ -~ ~ EN - ~ =~ -1
Bp, = Bg, +6,U; (U T U) ld, we only need to obtain 8; and U, (U\T',U;) d,

~ —1 —~
d/(Ullr|U1) U’1A1W

d(UT,U,) d

d= { 0 ] and 0, = 8.125; therefore, ﬁ'pl =[1.39 —1.25] is the MPPG-LGSI

are the

whered = — 2 and/e\l =

. It can be shown that U; (U'lflUl)_]

—0.345
vector of coefficients at stage 1.
Suppose that the total proportion retained for the two stages was 20%; then,
ky = 0.744 is an approximate selection intensity associated with MPPG-LGSI and
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the estimated MPPG-LGSI accuracy, selection response, and expected genetic gain

g, T'1p ~ ==

Prlibr o, Rp, = ki\/p pT1Bp =5.90 and
wCw

=[2.88 —1.53 1.00 0.49] respectively.

at stage 1 were pp; =

Allﬁpl

\/Bp T1Bp,
~ —1 ~
It can be shown that at stage 2, d’ (U’lflUl) 1=[0 -0345 0 0],6, =
8.125 and §'p, =W =[1 —1 1 1]. Thus, the estimated MPPG-LGSI accu-
racy, selection response, and expected genetic gain at this stage were
R T R = ~ r*
o, =\~ — 0.64, Rp, = ks VWI*w = 4.10, and B p, = ky——r— =
wC*w vV wI*w
[1.74 —0.92 0.85 0.58] respectively, where k, = 0.721. The estimated total
MPPG-LGSI selection response and expected genetic gain for both stages were Rp,
+Rp, =9.99andE}, +Ej, =[4.62 —2.45 1.85 1.07]respectively. Note that
the total expected genetic gain for trait 2 was —2.45, which is similar tod = — 2, the
PPG imposed by the breeder. Finally, to simplify the notation, we omitted the
intervals between stages or selection cycles (Lg) in the estimated MPPG-LPSI
selection response and expected genetic gain for both stages.

E), =k
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Chapter 10 )
Stochastic Simulation of Four Linear st
Phenotypic Selection Indices

Fernando H. Toledo, José Crossa, and Juan Burguefio

Abstract Stochastic simulation can contribute to a better understanding of the
problem, and has already been successfully applied to evaluate other breeding
scenarios. Despite all the theories developed in this book concerning different
types of indices, including phenotypic data and/or data on molecular markers, no
examples have been presented showing the long-term behavior of different indices.
The objective of this chapter is to present some results and insights into the in silico
(computer simulation) performance comparison of over 50 selection cycles of a
recurrent and generic population breeding program with different selection indices,
restricted and unrestricted. The selection indices included in this stochastic simula-
tion were the linear phenotypic selection index (LPSI), the eigen selection index
method (ESIM), the restrictive LPSI, and the restrictive ESIM.

10.1 Stochastic Simulation

Simulations were used to evaluate the accuracy, effectiveness, response to selection,
and the decrease in the overall genetic variance in a recurrent selection scheme under
the use of the Smith (1936) and Hazel (1943) index (or linear phenotypic selection
index, LPSI, see Chap. 2 for details); the eigen selection index method (ESIM, see
Chap. 7 for details); the Kempthorne and Nordskog (1959) restricted index (K&N or
restricted phenotypic selection index, RLPSI, see Chap. 3 for details); and the
restricted eigen selection index method (RESIM, see Chap. 3 for details). The
different scenarios are described below and encompass variations in the nature of
the genetic correlation between traits in addition to their expected heritabilities.
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10.1.1 Breeding Design

A total of 50 forward recurrent selection cycles of modern breeding were simulated,
in which the breeder has the ability to select based on breeding value estimates of
genetically correlated traits, and to apply the various above-mentioned selection
indices. All simulated scenarios (described below) followed a common general
breeding design. In each cycle, 350 full sib progenies (S;) were generated taking
700 parents at random from the base population. From each progeny, 100 double-
haploid lines were randomly derived (which shortened the cycle interval by five
inbreeding generations). The simulated phenotypic values of the 35,000 resulting
lines were then evaluated in simulated trials. The selection was made by means of the
progeny average performance. The selected progenies (top quarter) according to
each index were then recombined by random mating a sample of the lines within the
progeny to recover the population for the next cycle.

10.1.2 Simulating Quantitative Traits

Genetically correlated quantitative traits were simulated assuming a full pleiotropic
model. This was carried out by randomly sampling genetic effects for all segregating
sites from a multivariate normal distribution with zero mean and a previously stated
variance—covariance. The genetic effects were in turn used to compute true breeding
values (TBVs). An individual’s phenotype was obtained by taking its TBV and
adding a zero mean normally random term with variance consistent with the
expected heritability (%) for the trait at which phenotyping occurred. The genetic
variance in each cycle was calculated as the variance of the TBV of the individuals in
that generation. However, it was expressed as relative values of the genetic variance
in the initial cycle. The realized response to selection was also standardized in units
of the genetic standard deviation in cycle 0. Cycle O was used as the base generation
because it represents the available genetic variability, and also to observe, from the
start, the genetic changes in future breeding generations.

An empirical genome was considered comprising a set of 10 linkage groups
(chromosomes), each 200 cM in length, and 1000 uniformly distributed segregating
sites. To represent the historical evolution and recent breeding efforts up to the
present day in addition to incorporating a steady state of known linkage disequilib-
rium (LD) structure existing in crops, the starting populations (cycle 0) were taken
after 200 generations of random mating within an effective population size of 1000
segregating for all loci in which the allele frequency was 0.5.

The in silico meiosis reflected the Mendelian laws of segregation for diploid
species, by a count-location process that mimics the Haldane map function (Haldane
1919). Thus, homologous chromosomes are paired into bivalents and recombined
through randomly positioned chiasmata. The number of chiasmata follows a Poisson
distribution, where the A parameter represents the chromosome length in Morgans
and their positions are uniformly distributed, i.e., without interference between
Crossovers or any mutagenesis process.
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10.1.3 Simulated Scenarios

Three traits were considered, one with low heritability (the first, W= 0.2) and two
with high heritability (the second and the third, 4> = 0.5). The correlations between
the first and second trait vary from positive (pg = 0.5) to negative (pg = —0.5). The
third trait was always considered with segregation independent from the two others.

The selection process involved two unrestricted indices: the LPSI (see Chap. 2),
which ranks the progenies based on the average merit of their lines considering equal
economic weights for all traits, and the ESIM (see Chap. 7), where the progenies
were ranked in terms of ESIM values. Regarding the restricted selection indices, the
RLPSI (or K&N) was employed (see Chap. 3) with equal economic weights for the
traits in addition to the RESIM (see Chap. 7). Because of the restrictions, two
different situations were evaluated in the latter cases, i.e., where the restrictions
were applied for each of the first and second traits separately.

Thus, all simulated scenarios encompass a three-way factorial: four selection
procedures (the LPSI, the ESIM, the RLPSI or K&N, and the RESIM); two
correlation scenarios, positive (pg = 0.5) and negative correlations (pg = —0.5)
between the first and second trait; and two constraint situations, where the restric-
tions were applied separately for the first and second traits.

To simulate genetically correlated traits a full pleiotropic model was assumed.
Gene effects were sampled from a multivariate normal distribution with zero mean
and a previously stated variance—covariance matrix. In that sense it is possible to
represent a quantitative and infinitesimal model. Each genes has its own effect
varying according to a probabilistic density i.e., genes with positive and negative
effects varying its effects sizes; alleles with large effects at lower frequency (major
genes) and alleles with modest effects at higher frequency (minor genes).

10.1.4 Inferences

Results are presented as summaries of 100 Monte Carlo replicates for each scenario
and include the response to selection, decreases in the genetic variance, selection
accuracy, and observed heritabilities. The meiosis routine was implemented in C++,
and compiled, linked, and through the facilities provided by the Rccp R package
(Eddelbuettel 2013). All simulations were performed, analyzed, and summarized in
R version 3.3.3 (R Development Core Team 2017).

10.2 Results

Overriding the results of the simulations regarding the four selection indices under
the different trait genetic correlations and restrictions, scenarios are presented in
terms of the consistency of the observed heritabilities of the traits; the response to
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selection and changes in genetic variance for each trait; and the accuracy of the
indices’ selection.

First of all, the results show the stability of the Monte Carlo replicates in terms of
possible deviations in the observed heritability from that expected, which in turn
may affect further inferences (Table 10.1). The type I error (a) of the # test comparing
expected and observed heritabilities for all simulated scenarios did not show impor-
tant and significant departures. Slight departures that may be due to Monte Carlo
error (P < 0.05) were found, namely: for both high and low heritability traits of the
LPSI at cycle 5 when they were negatively correlated; for the independent trait also
with the LPSI at cycle 50, but, when the other traits are positively correlated; for the
high heritable trait at the first and last cycles, both under positive correlation in the
ESIM and RESIM indices respectively; and for the low heritability trait in both
restricted indices (RLPSI and RESIM) in cycles 0 and 5 for respective and negative
and positive correlations.

A complementary estimate of the power (type II error or ) of the tests was
performed considering departures from the expected heritabilities of 1%. It was
verified that the average power if the observed estimates was around 70%, which
reinforces the appropriateness of the simulation findings.

10.2.1 Realized Genetic Gains

Figure 10.1 shows the average genetic gains (expressed as standard deviations from
the mean of cycle 0) for cycles 050 for the traits (low and high heritabilities and the
independent trait); the four selection indices (unrestricted: LPSI and ESIM and
restricted: RLPSI and RESIM) when the correlations are positive and negative.

It is important to note that even after 50 recurrent cycles none of the scenarios has
shown any indication that the selection plateau has been reached (Fig. 10.1). It is
considered that even with the variation of the gains in the scenarios, there were
increases in the merit of the target traits. Thus, the employment of selection indices is
an effective way of achieving progress in long-term multi-trait selection.

As expected, the unrestricted selection indices have shown genetic gains higher
than their restricted counterparts (Fig. 10.1). It must be highlighted that the restric-
tions proved their properties because when any trait was restricted, no gains were
obtained for that trait (data not shown). The higher gains obtained with unrestricted
indices is well known and justified in comparison with their restricted homologous
because the net genetic merit is beneficiated by the gains in all traits, while, with
gains constrained to zero in some traits, there are no indirect gains that may be
highlighted especially because of positive correlations.

The independent trait has presented the higher gains in comparison with the other
traits for all correlation and selection process scenarios. The higher gains, however,
were for the RESIM followed by the RLPSI in both positive and negative correla-
tions (Fig. 10.1e and f). These findings may be understood both under the nature of
the trait (independent inheritance) and over the properties of the restricted indices.
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Fig. 10.1 Average genetic gains in 100 Monte Carlo replicates for traits with low and high
heritability (4> 0.2 and 0.5) and independent along cycles 0-50 of a simulated selection given
four indices, the linear phenotypic selection index (LPSI), the ESIM, the restricted linear phenotypic
selection index (RLPSI), and the RESIM with positive (0.5) and negative (—0.5) correlations
between the traits low 4> and high A% (a) Gains for the trait with low heritability when it is
negatively correlated with the high heritability trait. (b) Gains for the trait with low heritability when
it is positively correlated with the high heritability trait. (c) Gains for the trait with high heritability
when it is negatively correlated with the low heritability trait. (d) Gains for the trait with high
heritability when it is negatively correlated with the low heritability trait. (e) Gains for the
independent trait when the other traits are negatively correlated. (f) Gains for the independent
trait when the other traits are positively correlated

As the third trait becomes independent from the others, there are no indirect effects
owing to the constraints in the gains of the other traits. With regard to the technical
features of the RESIM, it must be emphasized that because of the eigen decompo-
sition, the largest eigenvector obtains higher weight from the most variable trait and
consequently ends in distinct gains, which in this case is the independent trait.

The Smith (or LPSI) and ESIM produce similar genetic gains for highly heritable
traits when the genetic correlations are positive (Fig. 10.1d). The ESIM is simply
another way of obtaining the LPSI based on the eigen decomposition theory, which
avoids the assignment of economic weights. Thus, the results prove that the same
results may be found with both indices. However, the ESIM is the preferred index
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because of its advantages over the LPSI: no subjective decision for selecting
economic weights, and better statistical sampling properties.

When the traits are negatively correlated, the trait with greater heritability has
shown important realized genetic gains based on the ESIM and similar gains for the
LPSI and its restricted analogous, i.e., the RLPSI (Fig. 10.1a and c). In addition,
when traits are negatively correlated, restricting the traits with low heritability is an
alternative, to ensure similar progress to the use of unrestricted indices for highly
heritable traits. On the contrary, it is also interesting to note that the ESIM has the
worst performance when the traits are negatively correlated for trait with lower
heritability (Fig. 10.1a).

On the other hand, as already pointed out, the ESIM performance surpasses all the
others with regard to the highly heritable trait (Fig. 10.1c and d). The reason for this
is similar to the above-mentioned regarding the properties of the eigen decomposi-
tion. When the first trait is negatively correlated with the second one, heavier weight
is given to the trait with higher heritability than to the trait with low heritability.
However, when the traits are positively correlated, synergic and indirect effects
increase both traits, one positively affecting the other.

When the traits are positively correlated but with low heritability, the LPSI and
the ESIM have similar realized genetic gains until cycle 25; after this selection cycle,
the LPSI is superior to the ESIM (Fig. 10.1b). In this case, the two restrictive indices,
the RLPSI and the RESIM, are given lower realized genetic gains than the LPSI and
the ESIM (Fig. 10.1b). Finally, considering the third trait (the independent one), the
RESIM provides the greater realized genetic gains (Fig. 10.1e and f).

10.2.2 Genetic Variances

In Fig. 10.2, the average relative decreases in the genetic variances along the
50 cycles of selection for the three traits (with low and high heritability traits in
addition to the independent trait) under the selection system given by the four
selection indices, restricted (the RLPSI and the RESIM) and unrestricted (the LPSI
and the ESIM), both with negative and positive correlations between the first and
second traits.

As a general result, it is clear that after selection there were decreases in the
genetic variance along the recurrent cycles (Fig. 10.2). From the most conservative
decrease (around 40% in Fig. 10.2a and b) to the sharp decrease (close to 10% in
Fig. 10.2e and f) and in contrast to the trends in genetic gains, it is possible to
conceive that the genetic variability was not yet exhausted by selection. This
observation endorses what was said regarding the effectiveness of the selection
indices as a criterion for long-term multi-trait selection.

As expected, the restricted indices are more conservative, maintaining greater
genetic variance (Fig. 10.2). Their feature is to prevent the restricted trait from
changing its genetic merit. Thus, they tend to keep its genetic variance unchanged,



10.2  Results 239

negative correlations positive correlations

A Mol

0.31 w= Smith
057w ESIM
031, == KaN

021@ o RESIM (b)

U uby

) (d

Relative Genetic Variance

j=N~]
o N
1 y —
juapuadapuy

2%l ®

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Recurrent Selection Cycles

Fig. 10.2 Average genetic variances in 100 Monte Carlo replicates for traits with low and high
heritability (4% 0.2 and 0.5) and independent along cycles 0-50 of a simulated selection given four
selection indices, the LPSI, the ESIM, the RLPSI, and the RESIM, with positive (0.5) and negative
(—0.5) correlations between the traits low 4 and high 1?. (a) Genetic variance of the low heritability
trait when it is negatively correlated with the high heritability trait. (b) Genetic variance of the low
heritability trait when it is positively correlated with the high heritability trait. (¢) Genetic variance
of the high heritability trait when it is negatively correlated with the low heritability trait. (d)
Genetic variance of the high heritability trait when it is negatively correlated with the low
heritability trait. (e) Genetic variance of the independent trait when the other traits are negatively
correlated. (f) Genetic variance of the independent trait when the other traits are positively
correlated

which is reflected in the lower decreases in the genetic variance, even under the
indirect effects of the other traits.

It should be noted that there was a slight increase in variance in the short term
(up to cycle 3) for the trait with lower heritability when negatively correlated with
the highly heritable one (Fig. 10.2a and b). This is an outcome of the changes in
allele frequencies of the first trait due to the indirect effects of the second trait and/or
the release of genetic disequilibrium owing to the assortative mating of the individ-
uals given higher weights regarding the second trait (highly heritable).

Reflecting the findings regarding the genetic gains (Fig. 10.1), the trait with
strong decreases in genetic variance on average was the one in which the response
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to selection was more pronounced, i.e., the independent trait (Fig. 10.2e and f). This
trait has shown stronger decreases over the selection through the ESIM index in both
positive and negative correlation scenarios. As mentioned before, as the third trait is
independent of the others, a greater response to selection was achieved in that trait
and consequently strong changes in allele frequencies, which drove the decreases in
genetic variance.

When the heritability is high, it is easy to differentiate the trends in the decrease in
the genetic variance between restricted and unrestricted indices (Fig. 10.2¢). It is
more evident, especially when the traits are positively correlated (Fig. 10.2d). Thus,
the ESIM has the highest decreases followed by the LPSI. Nevertheless, for the traits
with low heritability, the decreases in genetic variance are indistinguishable between
the indices, showing that the effectiveness of the response to selection is a function
of the heritability (Fig. 10.2a and b).

10.2.3 Selection Accuracy

The accuracy of the selection was measured as the square root of the correlation
between the net genetic merit and the estimated linear function of each index.
Figure 10.3 shows the absolute accuracies (left axis) and relative values in relation
to the mean accuracy of the first cycle (right axis) for all indices in both negative
(Fig. 10.3a) and positive (Fig. 10.3b) correlation scenarios.

In all cases, a reduction in the selection precision of all the indices was observed.
The effect of selection is the improvement in the genetic merit of the traits by means
of changes in allele frequencies that also affect/decrease the genetic variance.
However, as a side effect, the selection becomes harder and has lower precision.

The LPSI has shown greater accuracy in comparison with the other indices in any
situation (Fig. 10.3a and b). Its main feature is precisely maximizing the correlation
between the net genetic merit and the linear combination of the trait. It may be

negative correlations positive correlations

== Smith == ESIM == K&N == RESIM

"0 5 o f5 20 25 30 45 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Recurrent Selection Cycles
Fig. 10.3 Average absolute and relative accuracy of selection in 100 Monte Carlo replicates for
traits with low and high heritability (h?) and independent along cycles 0—50 of a simulated selection
given four selection indices, the LPSI, the ESIM, the RLPSI, and the RESIM with positive and
negative correlations between the traits low 42 and high h?
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argued that the ESIM also does that; however, only when the phenotypic and
genotypic variances and covariances are known are they the best linear predictors.
Thus, according to what was found, it is possible to note that the ESIM was more
affected by the sampling properties when estimating matrices of variance and
covariance (Fig. 10.3a).

For the scenario with positive correlations, the differences between the two types
of indices, the restricted ones and the unrestricted ones, were clear, as the
unrestricted indices have shown greater selection accuracy (Fig. 10.3b). This reflects
the fact that the restricted index constrains the gains by means of restrictions in the
correlation between the net genetic merit and the linear combination of the traits.
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RIndSel: Selection Indices with R Creck o

Gregorio Alvarado, Angela Pacheco, Sergio Pérez-Elizalde, Juan Burgueiio,
and Francisco M. Rodriguez

Abstract RIndSel is a graphical unit interface that uses selection index theory to
select individual candidates as parents for the next selection cycle. The index can be
a linear combination of phenotypic values, genomic estimated breeding values, or a
linear combination of phenotypic values and marker scores. Based on the restriction
imposed on the expected genetic gain per trait, the index can be unrestricted, null
restricted, or predetermined proportional gain indices. RIndSel is compatible with
any of the following versions of Windows: XP, 7, 8, and 10. Furthermore, it can be
installed on 32-bit and 64-bit computers. In the context of fixed and mixed models,
RIndSel estimates the phenotypic and genetic covariance using two main experi-
mental designs: randomized complete block design and lattice or alpha lattice
design. In the following, we explain how RIndSel can be used to determine indi-
vidual candidates as parents for the next cycle of improvement.

11.1 Background

The linear selection index theory (see Chaps. 2 to 9 for details) can be difficult to
apply without the use of specific codes developed in statistical analysis system
(SAS) software. At the International Maize and Wheat Improvement Center
(CIMMYT, for its Spanish acronym), codes were developed in SAS software
version 9.4 (SAS institute 2017) that can help to determine individuals as parents
for the next selection cycle. The SAS codes can be found at the following link:
https://data.cimmyt.org/dataset.xhtml ?persistentld=hdl: 11529/10242.
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Afterward, the SAS codes were translated to R language as scripts (Pacheco
etal. 2017) and denoted by RIndSel (R software to analyze Selection Indices), with
the objective of creating a user-friendly graphical unit interface (GUI) in JAVA.
The link to download the software is: https://data.cimmyt.org/dataset.xhtml?
persistentld=hdl:11529/10854.

11.2 Requirements, Installation, and Opening

RIndSel is compatible with a Windows platform, in any of the following versions:
XP, 7, 8, and 10; furthermore, it can be installed on 32-bit and 64-bit computers. To
install RIndSel on a computer, the user must double-click on the executable file
downloaded over the link given above and then follow the instructions that appear in
the installation box. Once RIndSel has been installed, it can be opened by:

1. Double-clicking on the shortcut located in the desktop.

2. Locating it in the Windows menu and clicking.

3. Locating the software via the pathway C:/RIndSel, and double-clicking on
RIndSel.exe.

As we shall see, the software has been partitioned into two modules.

11.3 First Module: Data Reading and Helping

This module (Fig. 11.1) deploys two small boxes upper left denoted by “Open File”
and “Help.” With Open File, the user may access a set of files where he/she can
open, for example, the file of phenotypic data, which should contain information

Wlcome to Rind Sel { Seloction ndex with B for Wisdows]. Verseon 1.0 (2016-11.30)
e de Malz y Trigo (CRINYT)

‘This program is based in some from Java, INC. and R
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Fig. 11.1 Module for reading data
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Fig. 11.2 Steps for saving a comma delimited file

associated with the experimental design. This file contains information about the
field book where the experimental design variables can be identified in the first
columns, whereas the remaining columns contain information about traits measured
in the field; design variables and traits are connected by the plot number. Previously,
the data set should have been captured in a spreadsheet using Excel or any other
similar software and saved as a comma delimited file. To save the data as a comma
delimited file in Excel, the following steps should be taken. In the Excel file that
contains the data set (Fig. 11.2), select from the main menu: FILE — Save As —
Browser View Options (look for the path were the data will be saved) — Save as
type (look for CSV, comma separated values). The end of the file name should be “.
csv,” indicating that the file is ready to be used.

The small box “Help” (Fig. 11.1) shows basic features such as the installation
manual and software licenses. The installation manual provides a brief description of
the selection indices that can be calculated and the pathway to where the software is
located (Fig. 11.3). Furthermore, it shows folders related to the software features
such as how the software could be used. There is also a folder called “Examples,”
where the user can find data for test phenotypic selection indices, selection indices of
coded score markers, and wide genome selection indices. The folders “Lib” and
“Programs” contain information related to the software functioning; therefore, the
authors highly recommend not modifying these folders.
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Fig. 11.3 Tree diagram of the RIndSel structure

11.4 Second Module: Capturing Parameters to Run

Once the data have been read (first module), RIndSel moves to the second module
(Fig. 11.4), where some feedback is required:

1. To choose the selection index to calculate.

2. To select the experimental design.

3. To identify the variables of experimental design.

4. To choose the traits that will be used to calculate the selection index in the
data file.

This module is structured in such a way that calculating any selection index is
relatively easy. There are three other small buttons located upper left of the module:
“Back,” “Analyze,” and “Help.” Back returns to the previous module (Fig. 11.1),
Analyze executes and calculates the selection index, and Help provides the same
functions as described in the previous section. In addition, there are four windows,
each of which must be filled with the correct parameters. The first one is related to
the indices that RIndSel is able to calculate (Fig. 11.5).

11.5 Selection Index

In this menu, it is necessary to define the percentage of genotypes that will be
selected. By default, it is 5%, but any other percentage can be chosen. RIndSel uses
the correlation matrix or the variance—covariance matrix to obtain the index; how-
ever, by default, the variance—covariance matrix is used. To work with the correla-
tion matrix box, “Correlation” should be checked. The sign for “economic weights”
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Fig. 11.4 RIndSel module of analysis

can be used to determine the behavior of the expected genetic gain of the traits. For
example, with —1, the mean of the traits tends to decrease, whereas with 1, it
increases. It is also possible to use the trait heritability. The economic weights can
be assigned by creating a comma-delimited file with the name of the trait and
economic weight sign (Fig. 11.6a). Once the file has been created, it can be browsed
by pressing the open button and where the *.csv file is located (Fig. 11.6b).

To calculate the restricted linear phenotypic selection index (RLPSI or K&N, see
Chap. 3 for details), it is necessary to create the same file and incorporate an
additional column called “Restrictions.” This last column must be filled with the
number one for those traits that remain fixed (restricted) and zeros for those traits that
change (Fig. 11.7). An additional option is to ignore the “Weights” box, which
means that RIndSel automatically presents an Excel file covering the options for
capturing economic weights; the only requirement is that the file must be saved as a
comma delimited file.

11.6 Experimental Design

The menu allows the user to select the field array design to be used. There are two
choices:

1. Lattice or alpha-lattice
2. Random complete block designs
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11.7 Variable Selection

Experimental design is strongly related to the “Variable Selection” menu, where it
is possible to identify the variables that constitute the experimental design. Thus,
we can choose variables that match with the “Location,” replicate for random
complete block design and block, provided that we have a lattice or alpha-lattice
experiment.

11.8 Response Variables

In this menu, the user can select traits to be used to calculate the selection index. It
can be activated by clicking on the trait to be selected. Figure 11.8 shows an
example of how this window must be filled when a Smith phenotypic selection
index is calculated.
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11.9 Molecular Selection Indices

If the selection index to be calculated is molecular, such as the Lande and Thompson
(1990) or the linear molecular selection index (Fig. 11.9, and see Table 1.1, Chap. 1,
for details), two additional files are required:

1. Whole molecular markers matrix (green arrow).
2. Marker scores or estimated quantitative trait loci values (red arrow).

Marker scores can be obtained by making a regression of the phenotypic values
on a codified molecular markers matrix (see Chap. 4 for details). The file can be
created in Excel and must have the score with its respective marker for each trait; this
file is saved with a .csv extension. An example of how these kinds of files must be
generated is shown in Fig. 11.10a.

To calculate the scores in an F2 population, it is important for the molecular
marker to have previously been codified as —1, 0, and 1 for genotypes aa, Aa, and
AA respectively. When data come from an recombinant inbred line population, the
molecular marker should be codified as —1 and 1 for homozygous genotype aa and
AA respectively. In the genomic selection indices (LGSI) context (see Chap. 5 for
details), it is only necessary to codify the molecular marker matrix (Fig. 11.10b), as
these indices do not require a marker score.
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Fig. 11.9 Example of parameters that could be used to calculate a molecular selection index
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11.10 How to Use RIndSel

The use of RIndSel can be illustrated with an example from the Smith linear
phenotypic selection index (LPSI) (Smith 1936, see Chap. 2 for details). Figure 11.11
shows the phenotypic data (Fig. 11.11a), together with the file of economic weights
(Fig. 11.11b). Three simulated traits (T1, T2, and T3) described in Chap. 2 were
used. T1 and T3 are positive (economic value = 1), whereas trait T2 is negative
(economic value = —1). It is important to remember that all data files must be saved
in comma delimited format (*.csv).

After the data and economic weights files have been generated, the data need to be
loaded into RIndSel; thus, it is important to be able to find the pathway to where the
files are located (e.g., “C://Book/datafile/C1_PSI_05_Phen.csv”’). Once the data file
has been located, it must be uploaded, which can be done by clicking on the file,
causing it to automatically begin this process. It is then possible go to the second
module (Fig. 11.12) and select subsequent parameters from the menus. In this case,
Selection Index: Smith; Percent: 5; Weights: here we must look for where the
economic weights are, for example “C://Book/datafile/C1_PSI_05_Phen Weights.
csv.” Once this file has been located, it must be selected by clicking.
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After the selection index windows are filled, the following menu is called:
Experimental design, which allows the user to select the appropriate design — (for
example, a lattice). To select the design variables, the user must navigate to the
Variable Selection. In this example, the experiment has only one location, and the
following should be selected: rep as Replicate, block as Block and entry as
Genotype. An output name of the index must be assigned by writing its name in
the Box Output folder, which is below the Variable Selection menu. For the Smith
LPSI, the name chosen was SmithSimulated. Finally, the Response Variables menu
should be filled by selecting the traits T1, T2, and T3.

11.11 RIndSel Output

This section explains the structure of the RIndSel output. First, RIndSel presents the
genotypic variance—covariance matrix and the phenotypic variance—covariance
matrix (Table 11.1). In addition, when the selection index involves molecular data,
RIndSel presents an additional molecular variance—covariance matrix, which con-
tains the additive variability associated with the markers (Table 11.2).

RIndSel also presents a table with the estimated values of the index parameters
(Table 11.3). These estimates are the covariance of the selection index, the variance
of the selection index, the net genetic merit (breeding value), the correlation between
the selection index and the net genetic merit, the selection response, and the
heritability of the index (see Chap. 2 for additional details).

Additional results are presented in Table 11.4, which show the ranked selected
individuals; this ranking was done as a function of the estimated selection index
values. Table 11.4 also presents the means of the traits of the selected individuals;
the means of the traits of the total population; the selection differential (see Chap. 2),

Taple 11.1 Mgtrices of rownames ‘ T1 ‘ ™ ‘ T3
variance—covariance deployed : - -
by RIndSel Genetic covariance matrix
T1 36.21 —12.93 8.35
T2 —12.93 13.04 —3.40
T3 8.35 —3.40 9.96
Phenotypic covariance matrix
T1 62.50 —12.74 8.53
T2 —12.74 17.52 —3.38
T3 8.53 —3.38 12.31
Table 11.2 Molecular rownames Tl ™ T3
covariance matrix T1 62.50 1274 853
T2 —12.74 17.52 —3.38
T3 8.53 —3.38 12.31
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Table 11.3 Estimated selection index parameters given by the RIndSel output

Parameter Output

Covariance between the selection index and the breeding value 86.7185
Variance of the selection index 86.7185
Variance of the breeding value 108.5746
Correlation between the selection index and the breeding value 0.8937
Response to selection 16.3431
Heritability 0.8168

Table 11.4 Values of the three traits for selected individuals and the values of the Smith linear
phenotypic selection index, means and gains with k = 5%

rownames T1 T2 T3 Index
Entry 353 189.68 38.16 36.13 103.97
Entry 370 178.27 34.38 37.79 103.45
Entry 480 174.84 42.72 45.12 100.66
Entry 300 177.38 39.15 40.34 100.65
Entry 273 181.18 35.94 35.14 100.52
Entry 275 167.94 36.82 42.20 99.92
Entry 148 173.37 37.07 39.62 99.86
Entry 137 185.48 46.48 42.55 99.77
Entry 351 173.79 38.38 40.52 99.68
Entry 236 182.85 37.88 34.96 99.20
Entry 217 175.13 38.48 39.16 98.84
Entry 356 171.09 39.60 41.98 98.47
Entry 167 175.39 38.73 37.73 97.17
Entry 230 169.73 37.10 38.69 96.80
Entry 243 171.90 41.53 41.45 96.29
Entry 55 170.02 36.92 37.76 96.15
Entry 68 172.56 37.18 36.70 96.13
Entry 36 175.80 38.86 36.34 95.75
Entry 164 173.61 38.37 36.42 95.14
Entry 140 170.53 42.52 41.97 95.05
Entry 146 177.40 39.64 35.50 94.89
Entry 432 174.01 40.73 38.26 94.84
Entry 378 176.62 42.69 38.47 94.44
Entry 288 172.14 39.37 37.26 94.23
Entry 386 175.77 42.89 38.81 94.13
Mean of selected individuals 175.46 39.26 38.83

Mean of all individuals 161.88 45.19 34.39

Selection differential 13.58 —5.92 4.44

Expected genetic gain 5% 9.51 —5.48 4.22
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’[l‘lable 11.5 l:i irit 20 values of 15\ names Tl T2 T3 Index
20122;%‘;2?;; i ey Eniry 1 164.46 39.63 34.66 86.81
for all individuals when three ~_ENtry 2 144.39 50.77 34.65 63.82
traits are analyzed Entry 3 157.48 48.04 37.90 7752
Entry 4 16730 47.98 30.49 7497
Entry 5 164.11 49.89 32.03 72.85
Entry 6 166.26 40.44 29.93 81.81
Entry 7 154.59 5222 3031 63.22
Enury 8 160.00 4291 3123 77.12
Entry 9 158.51 46.32 34.52 76.25
Entry 10 163.63 4543 3573 81.35
Entry 11 156.16 46.75 3558 75.62
Entry 12 17138 41.17 35.13 89.52
Enury 13 153.17 54.18 36.23 66.79
Entry 14 149.89 5233 3113 6139
Enury 15 159.63 49.01 3172 70.96
Entry 16 160.70 4251 32.99 79.85
Entry 17 157.07 45.49 28.40 69.68
Entry 18 167.50 41.69 36.73 88.55
Enury 19 159.17 50.60 36.25 73.93
Entry 20 161.80 46.58 37.33 80.85

and the expected genetic gain per trait. Selected individuals can be identified by the
first column called “rownames,” as columns 2 to 4 contain the best linear and
unbiased estimator for each mean trait. Finally, column 5 presents the estimated
selection index values.

Comparison between means of selected individuals and all individuals is done by
selection differential, where in general traits whose economic weight was 1 are
positive, whereas those traits whose economic weight was —1 are negative. The
expected genetic gain is an inferential tool based on normal distribution that depends
on the percentage of selected individuals and gives the estimated index expected
genetic gain per trait.

Finally, Table 11.5 shows the best linear and unbiased estimators for all individ-
uals accompanied by its respective selection index. In this case, only the first
20 individuals were included. This table output is important, because on some
occasions, it is necessary to determine the specific behavior of a group of genotypes
that may not have a good performance, even though they have shown a good general
performance from previous analyses. Another possibility is that a group of individ-
uals belongs to a specific population group; thus, it is possible to select the best
individual for this population group.
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